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CHAPTER I 

INTRODUCTION 

Solving large scale mathematical problems has been and will always be a 

vital concern in many areas of life. This concern has led to an increased popular

ity and explosive growth of numerical analysis. Numerical analysis is the theory 

of constructing methods for approximating, in an efficient manner, the solutions 

to mathematical problems. Existing methods are grouped into two types: direct 

methods and iterative methods (Golub and Van Loan, 1983). Direct methods will 

determine a solution exactly, up to the precision of accuracy of the computer, in a 

finite number of steps. The goal of iterative methods is to start with an initial guess 

of the solution and then improve the guess by the use of an updating step which 

is called an iteration. A succession of iterations will produce a sequence of scalars 

- real or complex numbers - or vectors, as appropriate, which converges to a limit, 

the solution. If the limit is not obtained in a finite number of iterations, it may be 

approximated to a desired accuracy after a finite number of iterations. This study 

will be concerned only with iterative methods. 

Before the age of digital computers, methods requiring a large amount of com

putational effort were impractical, if not totally unreasonable, to apply. However, 

we now have the high speed computers available that allow us to solve large scale 

problems to a high degree of accuracy. But we still have a problem: computer time 

costs. Therefore, it was essential that the subject area of numerical analysis respond 

to the overwhelming need for faster computation and reduced computer time. The 

result was the development of sophisticated numerical methods called acceleration 
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techniques. These techniqt.'..es use the original sequence to produce a new sequence 

which converges to the same limit as the original one, only faster. 

An acceleration technique is presented in the form of what is called an ex

trapolation algorithm (Skelboe, 1980). An extrapolation algorithm determines an 

element of the second sequence from some desired number, say k, of consecutive 

elements of the original sequence. In other words, assume our original sequence is 

We then extrapolate (compute) a second sequence, {Yn}, by applying the algorithm 

to the k terms and represent an extrapolation by the notation 

The purpose of this study is to compare several of these acceleration tech

niques. The techniques studied will include Wynn's (1956) epsilon algorithm, the 

modified epsilon algorithm (Cheng and Hafez, 1959), Cabay and Jackson's (1976) 

Minimal Polynomial Extrapolation method (MPE), a matrix Full Rank Extrapola

tion (FRE) originally developed by Henrici (1964) and modified to a Reduced Rank 

Extrapolation (RRE) by Eddy (1979), and Anderson's (1965) generalized secant 

methods. In addition, a method derived by Aitken (1936-37) for scalars and mod

ified for vectors by Jennings (1971) will be studied in the early chapters to help 

establish notation and to set the pattern of how extrapolation algorithms will be 

developed. 

The focus of this study will be on acceleration techniques for finding the so

lution of the problem 

F(x)=O, (1) 

where F is an operator on a scalar x or on a m-dimensional vector x. The theory 

will be developed in the beginning with the use of scalars; however, all theory will 
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quickly be related to vectors and by the end of the study our only concern will be 

solving (1) operating on m-dimensional vectors. 

For convenience, Eqm:.tion (1) will be rewritten as 

:z: = G(:z:), (2) 

where G(:z:) = :z: - F(:z:)H(:z:) for any H such that, ifs is a solution of (1), then 

H(s) is finite and nonzero (Traub, 1964). Ifs is a solution of (1), thens is also a 

solution of (2) and we have converted our problem to determining a fixed point s 

of Equation (2). A sequence { :z:n} is produced from Equation (2) by the iterative 

scheme 

:z:n+1 = G(:z:n), n.= O, 1, ... , (3) 

where liIDn-+oo :Z:n = s for a convergent sequence { :z:n}· The function G is referred 

to as an iteration function. An iteration is, therefore, defined as computing :Z:n+i 

by Equation (3) for some non-negative integer n. An acceleration technique will 

produce a new sequence {Yn} which also converges to s, but faster than the original 

sequence {:z:n}· 

Sequences are generated several different ways. For scalars, there exist the 

well-studied sequences produced by the partial sums of a series. Perhaps the best 

known method for producing vector sequences is numerically solving the system of 

linear equations 

(4) 

where A is an m x m matrix, i and bare m-dimensional column vectors with b 

constant. Hence, the basic iteration equation becomes 

(5) 

Vector sequences can also be generated by nonlinear problems: integral equations 

and ordinary differential equations. Examples and test problems of varied form will 

be presented throughout the thesis. 
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Equations ( 4) and (5) will be used extensively in later chapters in the devel

opment of the acceleration methods. However, in practice, problems of this type 

would normally be solved by other methods that will not be discussed in this paper. 

The small linear problems, where the value of min Equation (4) is small, would 

be solved by a direct method called Gaussian elimination. There also exist efficient 

special methods that will solve sparse linear problems of large dimension. However, 

linear problems are quite useful for designing extrapolation models and testing the 

algorithms. The small nonlinear problems would be solved, in practice, by Newton's 

method or an optimization method, for example, a quasi-Newton method. These 

problems are most useful as test problems where the limit can only be estimated 

and not found exactly. The domain of problems that will be most practical for the 

methods presented in this study is medium-to-large-sized nonlinear problems. Fox 

(1965), Ortega and Rheinholdt (1970), Varga (1962), and Young (1971) provide 

further background material on these other methods. 



CHAPTER II 

MOTIVATIONAL EXAMPLES 

Using Acceleration Techniques 

Before developing the acceleration techniques, this chapter will be used to help 

motivate interest. The motivation will come in two parts. First, it will be shown 

how an acceleration technique can be used to find the limit of a sequence. It will 

then be shown how the eig~nvalues of the matrix A of the iteration Equation (5) 

effect the convergence of the vector sequence {in}· 

To start with, consider the scalar problem 

F(x) = x - e-0·5"' = O, (6) 

with a solution of 0. 703467 4 for seven place accuracy. Figure 1 (page 6) is the 

graph of F(x) on the interval [O, 1]. The solution is found by solving the fixed point 

solution of (2), where 

x = e-0·5"' = G(x). 

This will give an iteration equation of 

-0.SID,.. G( ) Xn+l = e =. Xn • (7) 

Figure 2 (page 6) shows the graph of G( x) and the equation y = x on the inter

val [0,1]. In addition, the figure illustrates graphically the convergence of the fixed 

poin_t problem (Conte and de Boor, 1980) with an initial value of x 0 = 0.5. If a solu

tion of Equation ( 6) exists, then it will be the intersection of y = x and y = G( x ). To 

5 
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find this point graphically, it is known that the point ( :Cn-1, Zn) must lie on the 

graph of G(z). The next point, (zn,Zn+i), can be found by drawing a line through 

(zn_1, Zn) parallel to the z axis. This line intersects the graph of y = z at (zn, Zn)· 

Now draw through this point the line parallel to they axis. The intersection of this 

line and the graph y = G(z) will be the point (zn,G(zn)), or (zn,Zn+i)· Continuing 

this procedure will eventually lead us to the desired solution. 

It is a fact, however, that not all fixed point iterations converge. It often 

occurs that a mathematical problem has a unique and reasonable solution, but 

when a numerical algorithm is devised to solve the problem, like the fixed point 

iteration scheme, the resulting sequence of approximations diverges. However, there 

are certain criteria that will insure convergence. It is not the intent of this paper 

to discuss such criteria, but one can find good discussion for the linear case in 

texts written by Henrici (1964) or by Conte and de Boor (1980). We will consider 

divergent sequences after determining the solution of Equation (6). 

Using (7) and z0 = 0.5, a sequence {zn} is derived whose limit is the solution. 

As shown in Table 1 (page 8), it requires 16 iterations before the sequence converges 

to the correct value with seven decimal place accuracy. The correct digits for each 

iterate are underlined. In addition, Table 1 gives the differences between consecutive 

iterates and also the ratios of consecutive differences, denoted by Un = Zn+i - Zn 

and rn = un/Un-1' respectively. This information will help develop an acceleration 

technique to apply to Equation (7) for comparison (Atkinson, 1972). 

A closer look at the first few ratios of Table 1 shows that they seem to be con

verging to a value of approximately -0.3517. The ratios for n > 9 no longer converge 

due to rounding errors in determining Zn and Un to seven places. Assuming that the 

ratio is approximately constant after the fifth iteration, estimates for u 5 through 

u11 , denoted by un, n = 5, ... , 11, can be made by Ui+i = ui(r), i = 4, ... , 10, where 

r = r 4 = -0.3512072 and ii.4 = u 4 • These estimates are given in Table 2 (page 9) 
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along with the actual values from Table 1. 

TABLE 1 

ITERATED VALUES FOR EQUATION (7) 

n Xn U = Xn+l - Xn Tn = Un/Un-1 

0 0.5000000 0.2788008 

1 0.7788008 -0.1013378 -0.3634773 

2 0.6774630 0.0352108 -0.3474596 

3 0.1126738 -0.0124371 -0.3532183 

4 0.7002367 0.0043680 -0.3512072 

5 0.7046047 -0.0015372 -0.3519230 

6 0. 703013'15 0.0005406 -0.3516783 

7 0.7036081 -0.0001902 -0.3518312 

8 0.7034179 0.0000669 -0.3517350 

9 0.7034848 -0.0000235 -0.3512705 

10 0.7034613 0.0000083 -0.3531914 

11 0.7034696 -0.0000029 -0.3493975 

12 0.7034667 0.0000010 -0.3448275 

13 0.70346'77 -0.0000004 -0.4000000 

14 0.7034673 0.0000002 -0.5000000 

15 0.7034675 -0.0000001 -0.5000000 

16 0.7034674 0.0000000 0.0000000 

17 0.7034674 



TABLE 2 

ESTIMATED AND ACTUAL VALUES FOR CONSECUTIVE 
·DIFFERENCES FOR EQUATION (7) 

n Un= Un-1(r) Un(r) 

5 (0.0043680)r = -0.0015340 -0.0015372 

6 ( -o.0015340)r = 0.0005388 0.0005406 

7 (o.ooo5388)r = -0.0001892 -0.0001902 

8 ( -o.0001892)r = 0.0000664 0.0000669 

9 (o.oooo664)r = -0.0000233 -0.0000235 

10 ( -o.0000233)r = 0.0000082 0.0000083 

11 (o.0000082)r = -0.0000029 -0.0000029 

It is true that 

Therefore, we can estimate :z:11 by 

z~1 ~ 0.7046047 - 0.001534 + 0.0005388 - 0.0001892 + 

0.0000664 - 0.0000233 + 0.0000082 - 0.0000029 

0.7034687. 

9 

Hence, using only information obtained from :z:3 , z 4 , and z 5 ; z~1 has been determined 

more accurately than the actual iterated z 11 • Even though an estimate for z1c, for 

some positive integer k, may not always be more accurate than the iterated z1c, the 

estimate, z~, will usually be a better approximation of the solution than zp, for 

some p, p:::; k. 
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Generalizing the concept, assume :Z:n_2 , :Z:n_1 , and :Z:n have been computed. 

Also assume rn is approximately constant with r = rn-1 = Un-1/un-2· Then the 

solution can be approximated by viewing it as the limit, :z:oo, of the sequence: 

:Z:oo ~ :Z:n + Un + Un+l + Un+2 + • · • 

(8) 

since the series in parentheses is a geometric series. Substituting r = Un-i/Un-2 

and simplifying give 

:Z:n - (un-i)2 /(un-1 - Un-2) 

(:z:n - :Z:n-d2 
(9) 

This formula is Aitken's A 2 formula (1936-37) for accelerating a ~onvergent se-

quence. More information will be discussed concerning Aitken's formula in Chapter 

IV. However, based on the above development, one may assume that if Aitken's 

method is applied to Equation (7) after the nth iteration, a better estimate of the 

solution can often be found with no additional iterations. 

Aitken's formula can be used as a sequence generator to derive a new sequence 

{Yn}· The new sequence is generated by Formula (9) rewritten as 

(10) 

In fact, (10) can be used to produce even a third sequence {zn} from {Yn}· Apply

ing this technique to the sequence derived from Equation (7), the resulting three 
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sequences are shown in Table 3. One can see that the solution, to seven place ac

curacy, is found after only five iterations. Generating sequences in this fashion is 

called a static model and Table 3 is referred to as a static display. 

TABLE 3 

AITKEN'S COMPUTED VALUES FOR EQUATION (7) 

n Xn Yn Zn 

0 0.5000000 

1 0.7788008 

2 0.6774630 0.7044777 

3 0.1126738 0.7035942 

4 0.7002367 0.7034830 0.7034669 

5 0.7046047 0.7034693 0.7034674 

Equation (10) is written differently than the way it is given in many texts. 

The difference is that the new term in {Yn} is denoted by the subscript n+2 instead 

of its usual subscript n. The reason for this change is that if we want to compare 

terms of the two sequences for error, that is, their closeness to the exact answer, 

then to compare the nth term of {Yn}, call it y for the moment, to the nth term of 

{xn}, call it x, is unfair. This y cannot be computed until Xn+2 is available. If the 

original sequence converges, not only should y have a smaller error than x, but so 

should the next two terms following x in the original sequence. Therefore, what is 

valuable is to compare y with Xn+ 2 in error. Hence, the nth term of {Yn} is referred 
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to as Yn+ 2 so that when comparisons are made, the elements being compared will 

have the same subscripts. 

Now consider the geometric series 

1+2+4+ ... 

Then the sequence of partial sums is 

1,3,7, ... , or Xn=-1+2n, n=l,2, ... (11) 

If Aitken's method is applied to Sequence (11), the resulting sequence is 

-1, -1, -1, ... 

Hence, the acceleration technique determined the value -1 as the "limit" of a 

divergent sequence. Shanks (1955) says the divergent sequence is "diverging from" 

-1 and calls the value -1 the "antilimit" of (11). 

As stated earlier, iterated sequences of some mathematical problems do not 

converge. However, if the sequence has an antilimit, the antilimit is usually unique, 

equal to the solution of the problem, and can usually be found by applying an ac

celeration method to the original divergent sequence (Sidi, Ford, and Smith, 1986). 

There are cases known where this is not true (Shanks, 1955); therefore, one must be 

careful to ensure that the computed antilimit is, in fact, the solution. An example 

where Aitken's method gives erroneous results will be discussed in Chapter IV. 

The early leader in the use of divergent sequences to derive correct answers 

was Euler (1707-1783). He maintained that if a function f gave rise to a series, then 

the "sum" of the series should be J(x) for any :c, even when the series diverged. 

Even though his definition of the word "sum" exte::ided the normal definition of 

a sum of a series, he felt quite comfortable with it since "the new definition ... 

coincides with the ordinary meaning when a series converges ... " (Bromwich, 1926, 

p. 322). 
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One may look at antilimits as the assigning of a number to a divergent se-

quence. This has been around for quite some time in mathematics in the form of 

summability methods. There exists several methods' of summability. Excellent ma-

terial on the subject matter may be found in texts written by Hardy (1949), Lubkin 

(1952), Moore (1938), and Zygmund (1959). 

Illustrations of Convergence in Two Dimensions 

Let us now look at the second motivational factor of this chapter. Consider 

Equation ( 4) with dimension m = 2. Define A and b by 

[ 
1.0 

A= 
-0.5 

0.1 l 
0.4 

.... [ 1.2 l and b = . 
-2.0 

(12) 

Using Equation (5) and the initial vector (1,1), a convergent sequence {in} of two

dimensional vectors is generated that converges to the solutions= (10.4, -12.0f. 

Table 4 shows the first six terms of the sequence. The path of convergence of {in} 

to sis shown in Figure 3 (page 14). The graph can be considered as a trajectory of 

a moving particle originating at i 0 and terminating at the solution. 

n 

0 

1 

2 

TABLE 4 

FIRST SIX TERMS OF THE GENERATED 

SEQUENCE OF PROBLEM (12) 

Xn n Xn 

(1.000000, 1.000000) 3 ( 4.091000, -5.241000) 

(2.300000, -2.100000) 4 ( 4. 766900, -6.141900) 

(3.290000, -3.990000) 5 (5.352710, -6.840210) 
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The matrix A has eigenvalues q = 0.9 and q1 = 0.5 with associated eigenvectors 

if= (1, -l)T and if1 = (1, -5)T, respectively, which are also shown in Figure 3. The 

trajectory of {in} shows that as Xn converges to s, the convergence is asymptotic 

along the vector if. Since v and if1 are linearly independent, the vector £0 - scan 

be written as a linear combination of these vectors. Hence, 

_, _, 
Xo - S (-9.4, 13.0f = -8.5(1, -lf - 0.9(1, -5f. 

-8.5if - 0.9if1. 

Using the fact that if and if1 are eigenvectors, it follows that 

A(io - S) = -8.5(0.9)if - 0.9(0.5)if1 

(2.3, -2.lf, and 
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= (3.29, -3.99f. 

Continuing, it can be seen that the sequence_{ in} can be generated by the equation 

where a = -8.5 and ai = -0.9. Assume that n = 100. Then 

Since the last term is approximately zero, i100 is primarily the sum of s and a 

multiple of the eigenvector v. So, as n increases, the convergence of the sequence is 

controlled by the dominant eigenvalue, 0.9, resulting in the asymptotic convergence 

along if. In addition, for n greater than 200, the coefficient of vis less than 1 x 10-s 

which implies {in} has converged to s with seven place accuracy. 

The problem can be generalized for dimension m where qi, q2 , ••• , qm are the 

eigenvalues of A with corresponding eigenvectors vi, v2 , ••• , Vm; and with the as-

sumption that unity is not an eigenvalue of A so that the problem has the unique 

solutions. Then for some scalars ai, the sequence {in} can be generated by 

m 
-+ -+ ~ -+ n 0 1 
Xn = s + L...J ai Vi qi , n = , , ... (13) 

i=i 

If qi is the dominant eigenvalue and ai =f. O, which will usually be true for the given 

io, then the limit of {in} is sprovided lqil < i. I£ lqil 2: 1, then {in} is a divergent 

sequence and sis its antilimit. Therefore, assuming that {in} converges, it is the 

dominant eigenvalue, call it q, that is of importance. The smaller the modulus of q, 

the faster the convergence. However, if one or more eigenvalues have modulus close 

to unity, then the convergence will be slow. 

Figures 4 through 6 (pages 16 and 17) show other trajectories of the sequence 

{in} generated by Equation (5) with dimension two. The matrix A and associated 
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eigenvalues for each figure are 

5 '"I 
Figure A' Figure if Figure 6 

A= [ -1.0 -0.2 l [ 1.0 -0.2 l [ 1.0 -1.0 l A= A= 
0.75 0.6 0.75 -0.6 1.0 -0.2 

-0.9, 0.5 qi= 0.9, -0.5 qi= 0.4 ± O.Si 

In addition, the eigenvectors are graphed and labeled as v, for the eigenvector 

corresponding to the dominant eigenvalue q and referred to as the major eigen-

vector, and £1 , the eigenvector corresponding to q1 and referred to as the mi-

nor eigenvector. Since the eigenvalues of the matrix A in Figure 6 are complex 

conjugates, the eigenvectors are also complex and, hence, are not graphed. Fig-

ures 4 and 5 support the fact that the convergence of {in} is indeed asymp

totic along the eigenvector v. Figure 6 suggests that the trajectory of {in} for 
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problems with complex eigenvalues is some form of a spiral. The trajectory of 

another problem with complex conjugate eigenvalues is shown in Figure 7.a. Re-

turning to Figure 3, it shows a smooth monotonic convergence. This is not always 

the case for two positive eigenvalues. However, as n continues to increase the conver-

gence will eventually become monotonic and resemble Figure 3. Figure 7.b shows 

the trajectory of another problem with positive eigenvalues that initially begins 

to "converge" along the minor eigenvector but eventually converges monotonically 

along the major eigenvector. Figure 7 .c shows an example of a trajectory for a 

problem with two negative eigenvalues. 

Comparing Figures 4 and 5, we see that both trajectories zig-zag across the 

vrn' rt.<>,,.. 
eigenvector associated with the negative eigenvalue. Because this is the ·ma;JOf-

eigenvector in Figure 4, the zig-zag motion dampens out as the sequence approaches 

'T 

Fig. 7.a 

Fig. 7 .c 

\ 
\ 
\ 
I .. \ 

\ 
\ 
\ 

' \ 
\ 

F'ig. 7. b 

Fig. 7.d 

Figure 7. Other Trajectory Examples 

\ 
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;, and the convergence becomes almost linear along the major eigenvector. Figure 

7 .d shows the trajectory of a problem where the case is reversed and the graph 

starts in an almost linear approach and eventually ends up in the zig-zag motion. 

Why do the trajectories of these two problems differ? 

From Equation (13), we have 

m 
....,. -+ ~ -+ n 0 1 
Zn - S = L.J °'i Vi qi , n = , , • • . 

i=i 

Since the left-hand side of the equation is the difference between the nth term of 

the sequence {in} and the solutions, it will be referred to as the nth error vector, 

denoted by~- Form= 2, the error vector can be rewritten as 

where q is the dominant eigenvalue and vis the eigenvector associated with q. If 

n = 0, then the initial error vector is 

If a is sufficiently smaller than ai, then the dominant eigenvector for the first few 

sequence elements will be vi. Therefore, the trajectory will start almost parallel 

to vi. However, as n increase, the higher powers will result in a dampening of qi 

and the dominant eigenvalue will cause a convergence in the direction of the major 

eigenvector. Figure 4 shows the resulting trajectory for q negative and qi positive. 

If the signs of the eigenvalues are reversed, then the trajectory starts almost linearly 

and terminates in a zig-zag fashion as shown in Figure 7 .d. 

Relaxation Factor 

Up to this point, successive elements of the generated sequence {in} have been 

found by using the iteration Equation (3). However, there is a variation of (3) that 
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may be helpful in accelerating the convergence. This method uses a constant called 

a relaxation factor to adjust the distance the iteration moves from the previous 

sequence element. The new iteration equation is 

(14) 

where n = O, 1, ... , y0 = x0 of Equation (5), and w > 0 is the relaxation factor. For 

0 < w < 1, (14) is called vector under-relaxation, and for w > 1, (14) is referred to 

as vector over-relaxation. With no restrictions on w, (14) is a parametric equation 

for the line containing the points Yn and G(yn)· For w = 0 and 1, Yn+i equals ik 

and G(fk), respectively. If 0 < w < 1, Yn+i is located on the line between y and 

G(yn)· If w > 1, Yn+l is still on the line; however, Yn+l is "beyond" G(yn), as viewed 

form Yn· 

Returning to (14) and using Equation (5), 

Yn+l Yn + w([Ayn + ~ - fjn) 

w(Ayn + b) + (1- w)yn 

(wA + [1- w]l)Yn + wb 

- Aw'fk + wb, (15) 

where Aw = wA + (1 - w )l. Equations (14) and (15) are equivalent iteration 

equations. 

Let qi and Pi, i = 1, ... , m, be the eigenvalues of the matrices A and Aw, 

respectively. Then 

0 - det(Aw - pl)= det(wA + [1 - w]l - pl) 

det(wA + [1 - w - p]l) 

wmdet(A - [1 - (1 - p)/w]l). 

Since w =f. 0, the eigenvalues of A must be q = 1-(1-p)/w. Hence, p = l+w(q-1). 
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Therefore, we have a parametric equation for a line through the point z = 1 = (1, 0) 

and q in the complex plane. Since 

IP-11 = ll+w(q-1)-11 = lw(q-1)1, 

the distance between the eigenvalues of Aw and the point z is w times the distance 

between the eigenvalues of the matrix A and z. 

As a result, Equation (13) can be rewritten with a new set of eigenvalues. 

By carefully choosing w, one may be able to convert a divergent problem into a 

convergent one. For example, if we have a two-dimensional problem with eigenval

ues 0.5 and -1.5, then iteration Equation (5) will generate a divergent sequence. 

However, the eigenvalues of iteration Equations (14) and (15) with a relaxation 

factor of w = 0.5 are 0. 75 and -0.25. Hence, by using Equation (14), one "may" 

produce a convergent sequence even if some of the eigenvalues of A have moduli 

greater than unity. The word may is used because there are cases where no value of 

w will convert a divergent sequence into a convergent one; for example, a problem 

with an eigenvalue of 2.0. For any value of w =f. O, the modulus of the converted 

eigenvalue will always be greater than unity. Figure 8 (page 22) shows the region 

in the complex plane of eigenvalues of Equation ( 4) for which Equation (14) with 

w = 0.5 generates a convergent sequence. The region can be described as 

{p: IP - al < 4, where a= -1 + Oi}. 

Choosing w > 1 can also be useful on some occasions. Consider the two

dimensional problem where the eigenvalues are 0.6 and 0.9. Even though the itera

tion equation will produce a convergent sequence, because the dominant eigenvalue 

is close to unity, the convergence will be slow. A relaxation factor of w = 2 will 

transform the problem into an equivalent problem with eigenvalues 0.2 and 0.8. 

Hence, the transformation has a smaller dominant eigenvalue, resulting in faster 
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2 

IP + 11 < 4 

-2 

Figure 8: Eigenvalue Region of A Resulting 
in Convergent Sequences for 

Aw, w = 0.5 
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2 

One must show care in choosing w. There are problems where a relaxation 

factor less than unity can cause a convergent sequence to converge slower or a relax-

ation factor greater than unity can cause a convergent sequence to diverge. Consider 

the sequence generated by (5) with eigenvalues 0.8 and -0.2. Using Equation (14) 

and w = 0.5, the transformation problem has eigenvalues 0.9 and 0.4. The trans-

formed problem has a dominant eigenvalue closer to unity; hence, the convergence 

is slower. If w = 2.0, the transformation problem has eigenvalues 0.6 and -1.4, 

resulting in a divergent problem. Unless otherwise stated, the results given in this 

study will be for w = 1. 



CHAPTER III 

GENERALIZED INVERSES 

Before we continue with acceleration methods, there is an area that needs 

extended coverage beyond that which is available in a normal course of matrix 

theory or linear algebra. This area is the theory and applications of what is called 

a generalized inverse of a matrix. 

Let A be a square m x m matrix with rank R(A) = m. Then we know that 

there exists a unique matrix B, called the inverse of A, such that AB= BA= Im, 

where Im is the identity matrix of order m. The inverse of A is normally denoted 

by A-1 • Hence, given the square m x m matrix A and the m-dimensional vector fj, 

then the solution of a set of consistent linear equations 

... Ay= x (16) 

is (A-1)fj = (A-1)(Ai) = Imi = i. If A has an mverse, then A is said to be 

non8ingular; otherwise, A is singular. If A is a rectangular matrix, then no such 

matrix B exists as the inverse of A and, thus, a simple expression of a solution of 

(16) in terms of A is more difficult. 

Moore (1920) extended the normal concept of inverses to singular and rectan-

gular matrices. However, the theoretical properties of these matrices were not fully 

investigated until 1955, when Penrose defined a uniquely determined inverse matrix 

for any matrix A which he called the generalized inverse. Moore's and Penrose's 

inverses are equivalent when the inner product of the two m-dimensional vectors 

i= (x1, ... ,xmf,y= (y1, ... ,ymf is defined by 

23 
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m 

(i, Y) = (y*)i = LYi Xi, 
i=l 

where y * indicates the complex conjugate transpose of y and Yi is the complex 

conjugate of Yi· Penrose's definition of a generalized inverse is as follows: 

Definition: For any matrix A, square or rectangular, real or complex, there exists a 

unique matrix G satisfying the conditions 

(1) AGA =A 

(3) (AG)* =AG 

(2) GAG= G 

(4) (GA)*= GA. 

G is called the Moore-Penrose generalized inverse of A. 

(17) 

With the use of generalized inverses, we can extend the concept of solving (16) 

where A is am x k matrix of rank r, r = k ~ m, yis am-dimensional vector, and 

i is a k-dimensional vector. If r = k = m, A is nonsingular and the problem is 

as before with a solution of x = (A-1 )y. If m =J. k, then i = Gy, where G is the 

unique solution of Equations (17). However, as Penrose pointed out, a solution of 

(16) does not require a matrix G which satisfies all the conditions of (17). One can 

find a solution of (16) which satisfies only condition (1) of (17). Given y = Ai, then 

AGy = AG Ai = Ai. Therefore, i = Gy. 

Some authors refer to generalized inverses by other names. Greville (1959) and 

Rohde (1964) prefer the use of the name "pseudo-inverses." Rao (1965) referred to 

them frequently as the "Moore-Penrose inverses." Albert (1972) combines the names 

together and calls them the "Moore-Penrose pseudo-inverse." In addition, different 

names are given to matrices which satisfy one or more of the conditions of (17). 

In this study, generalized inverses will refer to those matrices that satisfy at least 

condition (1) of (17). 
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Generalized inverses of matrices satisfying condition (1) of (17) are not unique 

(Pringle and Rayner, 1971). Let A be a m x k matrix. If R(A) = m, then a 

generalized inverse of A is 

G = (V A*)(AV A*t1 , 

where V is an arbitrary matrix such that R(AV A*) = R(A). G is called a right 

inverse of A in this case. If R(A) = k, then a generalized inverse of A is 

G = ((A*)V A)-1 (A*)V, (18) 

where V is an arbitrary matrix such that R((A*)V A) = R(A). G is called a left 

inverse of A for this case. 

Returning to the problem (16), when A is a m x k matrix of rank r = k ~ m, 

we can find a solution to the problem by using generalized inverses. Hence, 

where G is of the form (18). A simple choice for Vis V =I,. such that 

G = (A*At 1 A*. (19) 

Henceforth, the definition of the generalized inverse of the m x k matrix A, k ~ m, 

is the k x m matrix G as defined in (19) with the notation G = A+. 



CHAPTER IV 

AITKEN'S A2 METHOD FOR 

SCALARS AND VECTORS 

Theory for Scalars 

Aitken's A2 method was introduced in Chapter II to help solve Equation (6). 

Consider Equation (8) applied to a geometric series where {xn} is the sequence of 

partial sums. Then the ratio, r, is constant and, hence, (8) can be written as the 

sum 

s = Xn + Un-1 ( l : r) , Ir I < 1. 

Substituting Un-1 = run-2 = rn-luo and Uo = x1 - xo = rxo gives 

s n 1 ( r ) ( Uo ) n Xn + uor - 1 - r = Xn + 1 - r r 

( xor ) n xn+--r. 
1-r 

(20) 

Therefore, for lrl < 1, Xn.- s = crn, where 

-x0r 
c=--. 

1-r 

So, there exist constants s and r such that as n increases by one, the distance from 

Xn to s is multiplied by r. It is easy to see that if lrl < 1, then rn goes to zero as 

n increases, which implies that s is the limit of the sequence {xn}· If r = -1 or 

lrl > 1, then s is the antilimit of {xn}· This is a special case of Equation (13). 

If we assume that there exists a constant p -=f. s such that Xn - p = drn, for 

some constant d, then 

26 
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dr" = Zn - p = s + er" - p. 

Hence, s - p = ( d - c )r" = br". Since s and p are constants, br" must remain 

constant as n increases; hence, b = 0. So s - p = O, which implies s = p. Therefore, 

sis unique. 

Written below is (10) in a slightly different form and two variations: 

(21) 

(22) 

(23) 

where Un = Zn+l - Zn and Vn = (zn+2 - Zn+1) - (zn+l - Zn) are defined as the 

forward difference operators. Formula (21) is the most desirable one for a convergent 

sequence using floating point arithmetic since Zn+2 is a better estimate of the limit 

than Zn and the computed error, Zn+2 - s, is smaller than the computed error, 

Zn - s. On the other hand, ifs is the antilimit, then (23) should be the choice. 

Aitken (1936-37) used (22), but apparently never used an automated computer and 

could monitor rounding errors "visually" at each step. 

If the sequence {Zn} is such that the ratios of consecutive errors converge to a 

nonzero constant, independent of n, then (20) still holds, where r is the limit of the 

ratios. Therefore, Equations (21) through (23) will also hold as an estimate for s 

and we can apply Aitken's method to approximate the limit of the sequence. This 

amounts to having what is called linear convergence if lrl < 1. 

DEFINITION: Given the convergent sequence {Zn} and its limit s. If 
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where en = Xn - s is the error of the nth element and IOI < 1, then the sequence 

{xn} converges linearly to s. 

The question now arises as to what happens if tb_e ratios of consecutive errors 

approach a C outside of the open interval (-1, 1). It can be shown that if C = 1, 

then the denominators of Equations (21) through (23) go to zero. Hence, the A2 

method will not work well if the ratios converge to 1. If C is -1 or outside the 

closed interval [-1, 1], we do not have convergence, but the method can still be 

used in hopes of finding the antilimit of the sequence. 

It was shown in Chapter II how Aitken's A 2 method can be used in the static 

sense to accelerate a scalar sequence. However, a modification of this method is to 

compute the extrapolated value x~ by applying Aitken's method to x0 , x1 , and x2. 

Using x~ as the initial value, generate two iterates x; and x~. Extrapolating again, 

we determine the value x~ and continue the pattern until convergence. A procedure 

following this type of pattern: iterating, extrapolating, and then iterating the result, 

is referred to as a repeated method or a semi-dynamic extrapolation model. Figure 9 

(page 29) shows a diagram of a semi-dynamic procedure where EXT(xn, Xn+i, Xn+2) 

implies applying the extrapolation method to the values in parentheses. 

Vector Theory 

For a sequence of vectors, Aitken (1936-37) applied the extrapolation technique 

componentwise. In other words, if :z:(i), i = 1, ... , m, represents the ith component 

of the vector x, then (10) becomes 

( - ( i) - ( i) ) 2 
-(i) _ -(i) · X n+2 - X n+l 
Y n+2 - X n+2 - -(i) 2 -(i) -(i) 

X n+2 - X n+l + X n 

n=0,1, ... 

The major problem with this technique is that the computation of one or more 

component elements may involve a denominator of zero, which obviously results 
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Figure 9. Diagram of Semi-Dynamic Model 
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in an invalid element in our new sequence. In addition, since the convergence of 

the components of a vector· is usually related to one another, applying the tech-

nique componentwise loses this relationship and may result in some components 

accelerating the "wrong" way, in the direction opposite to the majority. 

Jennings (1971) modified Aitken's vector method for the linear case to help 

prevent the possibility of this infinite or even erratic result. He used a vector w to 

help define a rate of decay between Xn+l and Xn+2. His iterative method is 

y = Xn+2 + Q(xn+2 - Xn+1), n = O, 1, ... , (24) 

where 

(25) 

w• represents the complex conjugate transpose of w, and g represents either Yn+2 

of Equation (10) or x ~+2 depending upon whether the model used is static or 

semi-dynamic. 

In order to discuss possible choices of W* Jennings' work, some definitions are 

needed. Because a m-dimensional vector consists of m components, it is convenient 

to have some method of determining its size. This measurement is provided by 

assigning to a vector a real-valued, nonnegative number known as a norm. However, 
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the assignment is not unique since there exist several norms. For purposes of this 

study, only two norms will be used: the infinity norm ( oo-norm) and the Euclidean 

norm (2-norm). Given the vector i = (z1 , ••• , zmf, the two norms are respectively 

defined as 

llilloo - max lzil, i = 1, ... , m; and 

( 
m )1/2 

1lil12 ~(zi Zi)2 

Jennings gave two choices for w. The first choice is when the iterative sequence 

is governed by a symmetric matrix A. For this case, Jennings suggested the vector 

w =in - Zn+i and referred to the formula as First Difference Modulation (FDM). 

Given the scalars iii, i = 1, ... , m, such that 

m - - """" -z 0 - s = L...Jai vi, 
i=l 

where V; is the eigenvector corresponding to the eigenvalue qi of the iterative matrix 

A, he showed that 

Q _ E~o qi Zi 
- 1:~0(1 - qi)Zi' 

where Zi = qln(l -qi)2a~ > 0. Since all eigenvalues of A must have moduli less than 

unity for convergence, Q cannot have a zero denominator except when convergence 

is obtained. 

Jennings' ·second choice for w, Second Difference Modulation (SDM), is when 

the sequence is governed by a nonsymmetric matrix. For this case he chose 

w = in+2 -2in+l +in. Thus the denominator is the square of the Euclidean norm of 

the second difference vector. Hence, the denominator cannot result in zero unless, 

once again, convergence is obtained. It should be added that for nonlinear cases 

there is no guarantee that the denominator will not be zero. 

The importance of Qin Equation (24) is to specify the distance of the current 

extrapolation as a multiple of the last difference vector, in+2 - in+l· Though 
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Jennings' two suggestions come naturally from Aitken's formula, values for Q can 

be found by other effective methods. Chandler (1987) suggests two other methods 

for determining Q, that based on results obtained on test problems in Chapter XI 

work as well, if not better in some cases, than Jennings' suggestions. First, define 

Q as the quotient of Euclidean norms: 

(26) 

where sign= 1 except when the cosine of the angle between the difference vectors, 

in+2 - in+l and in+l - in, is negative or the norm of (in+l - in) is less than the 

norm of (in+2 - in+1). In these cases set sign= -1. His second suggestion is 

(27) 

where the denominator is a sum if the cosine of the difference vectors is negative 

and a subtraction, otherwise. 

The key to these four variations is that they all extrapolate along the vector 

in+2 - in+l · Therefore, it is essential for efficient operation of the algorithm that 

the cosines of the difference vectors converge to either plus or minus unity. If the 

cosine equals plus· or minus unity, then all four methods give precisely the same 

results, which is also the same result as componentwise Aitken. However, there 

exi;t problems where all·four suggested methods for determining Q work poorly. 

One example is where the dominant eigenvalues are complex, resulting in a spiral-

ing convergence, see Figure 6. A second example is VThere a single real eigenvalue 

does not dominate, e.g., the two-dimensional problem with eigenvalues of 0.8 and 

-0.8 where the cosine of the angle between consecutive difference vectors is con-

stant, approximately -0.42753, see Figure 10 (page 32). However, Jennings pointed 

out that this case can be handled very well by taking successive pairs of the ha-

sic iteration to form new basic iterati9ns to accelerate, i.e., accelerate the sequence 
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3. 

2.5 ·cos 9;;:; -0,42753 

2. 

1.5 

I. 

.s+_.-------+--+_6--------+.B---+---+---+--il~.~x~-AX--I_S,___l.~2-------L~.4--------11.B 

Figure 10. Trajectory for Eigenvalues 0.8, -0.8 

{Yn} where Yn = Z2n or Yn = Z2n+i, n = O, 1, ... This effectively squares all of the 

eigenvalues of the iteration matrix {Jennings, 1971). Fortunately, many practical 

iterations are dominated by a single real eigenvalue, and the vector Aitken method 

with. the Q suggestions of Jennings and Chandler are often e:ffecti ve in these cases. In 

addition, Aitken's method will not work tremendously well on divergent sequences 

since the method is trying to approximate the solution along the vector Zn+2 - Zn+i · 

Chen {1984) suggests interchanging the vectors Zn and Zn+2 in equation {24). Hence, 

the extrapolation will be along the vector Zn - Zn+i · 

Combining Equation {24) with Aitken's repeated model, a semi-dynamic al-

gorithm for vectors results. Henceforth, when vector Aitken's method is mentioned, 

it is referring to this algorithm. Unless otherwise stated, Q will be Jennings' SDM. 
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AITKEN'S SEMI-DYNAMIC ALGORITHM 4.1: 

Find a solution to i · = G(i) given the initial approximation vector io. Define 

the terminology "If converged" to mean "If Iii - ill < Tol, where Tol is some 

predetermined tolerance value and i and y are the vectors of the current step." 

Step 1. Compute i 1 = G(io). 

Step 2. Compute i 2 = G( i1 ). If converged, stop; otherwise, go to step 3. 

Step 3. Find y = i 2 - Q(i2 - i 1), where Q is defined by Equation (25), (26), 

or (27). 

Step 4. Compute z = G(Y). If converged, stop; otherwise, set i 0 = y, 

i 1 = z and go to step 2. 

One may use any norm desired for the stopping criterion. There are advan

tages and disadvantages for all of them. The Euclidean norm will show a smoothness 

in the differences as they approach the tolerance value. However, the use of this 

norm could result in system overflow due to the squaring of the difference compo

nents unless care is taken in computing Q. The infinity norm is simply the largest 

component of the difference vector, y - i. It is not as smooth as the Euclidean 

norm since the largest component may be a different component from one iteration 

to the next. However, due to its simplicity, results in this study are based on the 

infinity norm of the difference vector. 

In addition, there are other stopping criteria which may be used: 

Iii- i2ll :5 (Tol)llY11, Yi- O, and llF(Y'Jll < Tol, 

where F(i) = O. Unfortunately, difficulties can arise no matter which of the stop

ping criteria we use. For example, the sequence defined by Zn = L:i:=1(1/k) is 

divergent but liIDn-+oo(zn - Zn-1) = 0. This sort of harmonic convergence is "sub

linear" (Brent, 1972) and, ordinarily, is never encountered in practical fixed point 
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problems. For purpose of this study, the stopping criterion for all algorithms will 

be as stated in Algorithm 4.1. 

Numerical Examples 

As an example of the vector Aitken method, consider the two-dimensional 

problem of finding the solution to the system 

A(sinx) + B(cosy) and 
(28) 

y A(cosx) -B(siny), 

where A= 0.7, B = 0.2, and x 0 = y0 = 0 (Henrici, 1964). The iteration function 

then becomes 

Xn+l A( sin Xn) + B( cos Yn) and 

Yn+l - A(cosxn)-B(sinyn)· 

After thirty-one iterations, we obtain the solution vector to five decimal places, 

(0.52652,0.50792). If we apply vector Aitken in static form, we obtain the solution 

to the same degree of accuracy in 12 iterations. Table 5 (page 35) shows the 

Euclidean norm of the error vector, denoted by E~i) = llz~) - sll2, where the ith 

column represents the sequence derived by applying Aitken's method i times. The 

zero column is the original iteration sequence. 

Using Aitken's method semi-dynamically, Algorithm 4.1, the same results are 

obtained in 15 iterations, Table 6 (page 36). However, Anderson (1965, p. 551) says 

that Aitken's method "is considerably less effective if applied statically, ... than it 

is if applied dynamically." The static model requires 32 extrapolations to only 6 

for the semi-dynamic model. Therefore, the benefit of 3 fewer iterations is loss due 

to the time required to perform 26 additional extrapolations. In addition, since 

the number of column sequences are not known beforehand for the static method, 

the semi-dynamic method does not require the allocation of storage space to ensure 
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TABLE 5 

AITKEN'S STATIC METHOD APPLIED TO PROBLEM (28) 
WITH RESULTS AS EUCLIDEAN NORM 

OF ERROR VECTOR 

n E(O) 
n 

E(1) 
n 

E(2) 
n 

E(a) 
n 

E(4) 
n 

E(S) 
n 

0 0.53521 

1 0.37883 

2 0.23961 0.25854 

3 0.16527 0.16557 

4 0.11013 0.07612 0.01575 

5 0.73253 0.00578 0.31493 

6 0.04820 0.00328 0.00336 0.15449 

7 0.03156 0.00154 0.00182 0.00181 

8 0.02058 0.00077 0.00041 0.00062 0.00061 

9 0.01338 0.00032 0.00005 0.00015 0.00062 

10 0.00868 0.00014 0.00004 0.00003 0.00001 0.00021 

11 0.00563 0.00006 0.00001 0.00001 0.00001 0.00001 

12 0.00365 0.00003 0.00000 0.00000 

enough columns for convergence. Thus, the semi-dynamic model is usually more 

efficient than the static model. 

Irons and Shrive (1987) made a modification to Aitken's method for scalars. 

Assume that we have the two relations y1 = G(y0 ) and y3 = G(y2), that the ratio 

of consecutive error terms is constant, and that sis the limit of the sequence {Yn}· 

Then the following is true: 
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TABLE 6 

AITKEN'S SEMI-DYNAMIC METHOD 
APPLIED TO PROBLEM (28) 

n En n En n En 

1 0.37883 6 0.00393 11 0.00005 

2 0.23961 7 0.00291 12 0.00004 

3 0.17611 8 0.00189 13 0.00001 

4 0.11835 9 0.00016 14 0.00001 

5 0.00734 10 0.00010 15 0.00000 

Solving for s gives 

(y2 - Ya)(Y1 - Ya) 
8 =Ya - (Yo -yi) - (Y2 - Ya)° 

(29) 

We can use (29) as a model iteration formula for estimating the limit of a 

sequence for which the ratios of consecutive errors converge to a constant. Given 

the scalars yo,Y1,y2, and Ya; then 

· (Yn+2 - Yn+a)(Yn+l - Yn+a) 
Yn+3 - . and 

(Yn - Yn+i) - (Yn+2 - Yn+a) 

Yn+s G(YnH), n = 0, 2, 4, ... (30) 

Formula (30) gives us a third type of model, a fully dynamic method. Study

ing the diagram of the dynamic model in Figure 11 (page 37), we see that each 

extrapolation after the first one uses only one additional iterate and data obtained 

from previous iterations. A dynamic model does not require restarting our pro-

cedure by generating all necessary iterates from the latest extrapolation. We will 

see in later chapters the advantages of this model. Given the sequence { xn}, we 

may apply Irons and Shrive's dynamic model after two iterations by setting Yo = x0 , 
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Yo-+ Yt } EXT(yo, Yi, Y2, Ya) -+ Y4 

Y2-+ Ya 

Y2-+ Ya } EXT(y2, ya, y4, Ys)-+ Ys 

Y4-+ Ys 

Y4-+ Ys } 
EXT(y4, Ys, Ys, Y1)-+ Ys etc. 

Ys-+ Y1 

Figure 11. Diagram of Dynamic Model 

y1 = y2 = z1, and Ya = z2. Hence, the first extrapolation will be identical to 

Aitken's first extrapolation; however, the equalities stop at this point. 

Consider the iterative equation 

Zn+l = 2 sin(zn), n = O, 1, ... , and Zo = 1. (31) 

Table 7 (page 38) shows a comparison of the results obtained when Aitken's semi

dynamic method and Irons and Shrive's fully dynamic method are applied to (31). 

The column headings represent the current iterated value (iter) and the current 

extrapolated value (ext), if one was applied on that iteration. 

Unsuccessful Application 

In Chapter II, it was noted that wrong answers can sometimes be obtained 

when trying to accelerate a sequence by Aitken's method. Shanks (1955) found 

such a problem. Let {zn} be the sequence of partial sums of the function 

J(z) 
2 

(1 - z)(2 .- z) 

1 + (3/2)z + (7 /4)z2 + (15/S)za + ... 
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TABLE 7 

DYNAMIC VS SEMI-DYNAMIC COMPARISON 
FOR PROBLEM (31) 

Semi-Dynamic Dynamic 

n iter ext iter ext 

0 1.000000 1.000000 

1 1.682942 1.682942 

2 1.987436 1.915372 1.987436 1.915372 

3 1 . .8.82438 1 . .8.82438 1.892686 

4 1.903662 1.895344 1.897278 1.895462 

5 1.895590 1.895514 1.895494 

6 1.895434 1.895495 

7 1.895494 

If z = 4, the series diverges. However, it was shown in Chapter II that Aitken's 

method can obtain the antilimit of a divergent sequence. Table 8 (page 39) shows 

the static results when Aitken's method is applied to this problem. Column i is 

the sequence obtained by the ith application of the method. We see that the later 

columns converge to 7 /27 = 0.25926... However, the value of f ( 4) is 1 /3. Thus, 

Aitken's method did converge, but to the "wrong" value. Shanks showed that 

erroneous results in this problem will be obtained only for z = 4. Hence, one may 

feel confident that wrong results are few and far between in practical applications, 

but do exist. However, Lubkin (1952) did prove that if any two consecutive columns 

of the Aitken's table both converge, then they converge to the same limit. Hence, 

if all columns converge, then they all converge to the correct limit. 
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TABLE 8 

CONVERGENCE TO WRONG ANSWER BY 
AITKEN'S STATIC METHOD APPLIED 

TO SHANKS' EXAMPLE 

n 0 1 2 3 4 

0 0 

1 1 

2 7 -0.2000 

3 35 -0.6364 

4 155 -1.5217 0.2241 

5 651 -3.2979 0.2437 

6 2667 -6.8526 0.2519 0.2589 

7 10,795 -13.9634 0.2557 0.2589 

8 43,435 -28.1854 0.2575 0.2592 0.2593 



CHAPTER V 

SHANKS' TRANSFORMATIONS FOR SCALARS 

In this chapter the general framework for deriving the remaining acceleration 

techniques will be established. The motivation will be similar to Shanks' (1955) 

development of his e1e transformation for scalar sequences. First, consider a variety 

of typical scalar sequences { xn}: convergent, divergent, monotonic and oscillatory. 

Plotting the sequence elements versus n and connecting them with a smooth curve 

give graphs similar to the samples shown in Figure 12. 

n ---+ 

Figure 12. Plots of Typical Sequences 

40 
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Shanks observed that the graphs all look like the graphs of what he called 

"physical transients." By this term he meant a physical quantity, p, as a function 

of time in the form: 

le 

p(t) = s +I: °'i ebit, 

i=l 

where the bi's are complex numbers, bi =f:. 0. He referred to them as "transients" 

so that he could apply the term in a more general sense for both convergent and 

divergent sequences. Since p(t) is an exponential function with bi an element of 

the complex numbers, the set of functions also include the trigonometric functions. 

Shanks represented the sequences {zn} as if they were "mathematical transients," 

a function of n in the form 

le 

:z:" = s + L°'i q'/, qi =1o,1, 
i=l 

where s, ai, and qi are constants independent of n and qi =f:. q; for i =f:. j. There-

fore, his "mathematical transient" equation is identical to the relationship (13) for 

scalars. Once again, we have the concept that sis either the limit or the antilimit 

of {:z:n} depending upon the moduli of the q/s. As stated earlier, Shanks referred 

to a divergent sequence as "diverging from s" (1955, p. 7). 

Shanks' proposed method of approximating s was to solve the 2k + 1 system 

of nonlinear equations, 

le 

:z:,. = Ble,n + L °'i qi, n ~ r ·~ n + 2k, 
i=l 

for Ble,n with ah qi, i = 1, ... , k, the rest of the unknown values. Here B1c,n is taken 

to be an approximation of s. Shanks determined that the solution Ble,n could be 

represented in the determinant form 
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Un+k-1 Un+ le 
B1en = 

I 

Un+2k-1 
(32) 

1 1 1 

Un Un+l 

Un+k-1 

n = 0, 1, ... , and where Un= Zn+i - Zn· Therefore, Shanks derived a new sequence 

{ B1e,n} defined by (32) where k is a nonnegative integer and for which the denom-

inator does not vanish. If the denominator vanishes for n = m and the numerator 

does not, then B1e,m is assigned the value oo. If both numerator and denominator 

vanished for n = m, then B1e,m = B1e-l,m· He wrote the transforms in operator form 

as 

Shanks called e1e "the k'th order transform of {An}," (Shanks, 1955, p. 2) 

wh~re {An}= {zn}· There are two transforms that need to be identified. The first 

one is k = 0 where eo(zn) =Zn· For the second one, letting k = 1 we have 

1 1 

Zn(Zn+2 - Zn+1) - Zn+1(Xn+l - Zn) 
(zn+2 - Zn+i) - (zn+l - Zn) 

(33) 
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Comparing (33) with (22) we see that the two right-hand expressions are equivalent. 

Therefore, the first extrapolated sequence of Aitken's f12 method and Shanks' ei 

transformation are equivalent for scalars. However, this is not true for a second, 

third, or kth application of the methods. In the next chapter, it will be shown how 

the sequences of scalars obtained by higher order applications (second, third, etc.) 

of Aitken's method can be obtained from the e1c transformations. However, the 

e1c transformation sequences will be derived by a technique different from Shanks' 

determinant method. As one can clearly see, the larger the value of k, the more 

complicated the solving for B1c,n, since two (k + 1) x (k + 1) determinants must 

be computed. Hence, a method of obtaining similar results without the use of 

determinants would be a valuable asset. In the next chapter, such a technique is 

presented. 



CHAPTER VI 

WYNN'S EPSILON AND MODIFIED EPSILON METHODS 

Theory for Scalar Epsilon Method 

Wynn (1956) derived the epsilon (e:) algorithm to accelerate a sequence of 

scalars. His simple algorithm effected Shanks' e1e(zn) transformation without the 

use of determinants. Wynn showed that he could calculate e1(zn) directly from the 

elements of {zn} and ei(zn) directly from the ei-1 (zn) elements and values deter-

mined from the ei-2 ( Zn) elements, i = 2, 3, ... He used the symbol e:;: to represent 

his new values, where the k subscript refers to a column number and the n super-

script refers to a diagonal number. His method will be derived for both scalars and 

vectors. 

For the scalar case, the values e:;: are determined from a given sequence by 

setting the initial two column values as 

g~l = 0, e~ = Zn, n = 0, 1, ... , 

and by the relationship 

n _ n+l ( n+l n)-l 
e:1e+i - e1e_1 + e:1e - e:1e , k, n = O, 1, ... (34) 

The quantities e:;: may be arranged as shown in Figure 13 (page 45). Note that the 

four quantities of (34) are located at the four corners of a lozenge, as indicated for 

n = O, k = 2 in Figure 13. Therefore, a quick way of remembering how to find the 

right side entry of the lozenge is 

Right = Left + (Bottom - Top r 1 • 

44 
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eg = zo 

e:.1 = 0 eo 
1 

e~ = Z1 eo 
2 

e:1 = 0 e1 
1 e~ 

e~ = Z2 el 
2 

eo 
4 

e~1 = 0 e2 
1 ei 

e~ = Z3 e~ 

e~:1 = 0 e~ 

e~ = Z4 

Figure 13. Wynn's Epsilon Arrangement 

The odd and even numbered columns are quite varied in the information 

they give. The odd subscript columns normally diverge and give no directly useful 

information as to the limit or antilimit of the sequence. However, one can obviously 

see that they are vital as they are used to determine the next even column. The 

even subscript columns will often converge to the desired limit or antilimit of {zn} 

and will do so more quickly than the original sequence. However, the key sequence 

for convergence is the diagonal sequence whose elements are egm, m = O, 1, ... This 

sequence will most often converge not only the quickest, but in some cases, will 

converge even when each even numbered column sequence diverges. 

In order to find e~, one must first have computed e~, e~, and el. This even

tually leads to the fact that before e~ can be found, all elements in the first six 

"cross-diagonals" must be determined. The term cross-diagonals refers to the di-

agon~s of Wynn's epsilon arrangement, Figure 13, which rise as one moves from 

left to right in the figure and where n + k is constant. Wynn (1964) suggested 

that_ to prevent the use of unnecessary storage, computation of the elements can be 
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made by computing one cross-diagonal at a time, using only the data saved from 

the previous cross-diagonal. 

Therefore, to use his technique as an acceleration method, elements of the 

arrangement diagram are computed one cross-diagonal at a time until the cgm ele

ment has the desired precision of accuracy as measured by llG(cgm) - cgmll < Tol, 

where G is the iteration function. Wynn's theorem relating ck(xn) (or ci;) to ek(xn) 

follows. 

THEOREM 6.1: If c2m(xn) = em(xn) and c2m+i(xm) = (em(un))-1, where 

Un= Xn+i - Xni then ca+1(xn) = ca-1(Xn+i) + (c.(Xn+i)- c.(xn)t1, s = 1,2, ... 

Wynn's proof was by mathematical induction (Wynn, 1956, p. 92-94). He 

proved the equality by showing that 

are equivalent expressions in determinant form. Hence, in certain cases, the se

quence cgm, m = O, 1, ... , converges to the limit or antilimit of {xn} and the con

vergence is more rapid than the original sequence. 

For an example of how Wynn's epsilon method works, consider Equation (7). 

Table 9 (page 47) shows the epsilon arrangement for five iterations. Hence, Wynn's 

c method converges in the same number of iterations as Aitken's static method. In 

addition, this example will be used to illustrate how the scalar sequences obtained 

by more than one application of Aitken's A 2 method can be computed by the use of 

Wynn's epsilon method. Once column two has been computed, calculate the next 

two columns as if the second column were column zero. In other words, when com

puting column three, treat column one as if every element were zero. Repeat this 

process with columns four, five, and six, etc. When all is done, the even numbered 

columns will be the same sequences as would be derived by repeated applications 
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TABLE 9 

WYNN'S EPSILON ARRANGEMENT FOR EQUATION (7) 

n co c~ cn 
2 c~ cn 

4 

0 0.5000000 
3.586790 

1 0.1788008 0.7044777 
-9.867936 -1141.7298 

2 0.6774630 0.7035942 0.7034663 
28.400377 -8964.4053 

3 0.1126738 0.7034830 0.7034674 
-80.404595 -73073.1050 

4 0.7002567 0.7034693 
228.937720 

5 0.7046047 

of Aitken's .6.2 method. Table 10 (page 48) shows the results of this procedure for 

columns two, three, and four. One may check that the columns labeled c0' and c2' 

are identical to columns two and three of Table 3, which were obtained by applying 

Aitken's method to this same problem. 

Theory for Vector Epsilon Method 

Now consider {X'n} as a sequence of vectors. Before Wynn's algorithm can be 

apP.lied to a vector sequence, the inverse of the vector x = ( x 1 , x2 , ••• , Xm Y must 

be defined. Wynn (1962) discusses two possible inverses: 

(1) Primitive Inverse: 

-1 ( -1 -1 -l)T x = x 1 , x 2 , ••• , xm , where Xi -=f. 0 for all i. 

For Xi = O, take x;1 = 0. 

(2) The Samelson Inverse: 



n 

1 

2 

3 

4 

TABLE 10 

AITKEN'S A.2 SEQUENCES DERIVED 
·FROM WYNN'S ARRANGEMENT 

n' eo 

0.7044777 

0.7035942 

0.7034830 

0.7034693 

n' e1 

-1131.8619 

-8992.8058 

- 72992. 7007 

0.7034669 

0.7034674 
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where Xr is the complex conjugate of Zr and z is not the zero vector. Define the 

zero vector as the inverse of itself. Samelson's inverse is equivalent to the Moore-

Penrose generalized inverse of z considered as am x 1 matrix. Hence, it will always 

be referred to as such. The primitive inverse ignores the relationship between the 

scalar sequences of different components. In addition, it will frequently have major 

problems in that one or more of the reciprocals will be quite large numerically due 

to a denominator very close to zero. Further more, as far as is known, the primitive 

inverse seldom gives better results than the generalized inverse (Smith, Ford, Sidi; 

1987, p. 223). Therefore, the generalized inverse is more useful and, hence, all work 

in this study involving inverses of vectors will use generalized inverses. 

WYNN'S VECTOR EPSILON ALGORITHM 6.2: 

Given the iteration equation Zn+i = G( zn) and the in.i.tial vector z0 • Define 
->n o~ ~o -4 d e _1 = , n = 1, 2, ... , e 0 = :c0 , an set n = 1. 

Step 1. e~ = zn. 

Step 2. "D k - O t _ 1 fi d ·_,n-le-1 _ ->n-le + ( ->n-le _ ->n-le-1)-l .ror - o n , n e le+l - e le-l e le e le • 



Step 3. If n is even and 11£~ - €~_2 11 < Tol or if n is odd and 

11£~_ 1 - e!-all < Tol, then go to step 4; otherwise, n = n + 1 and 

go to step 1. 

Step 4. Find if= G( e~) if n is even or if= G( e~_1 ) if n is odd. If 

JJif- e~ (or e~_1 )11 < Tol, then stop; oiherwise, n=n+l and 

go to step 1. 

49 

Through the work of Cheng and Hafez (1959), the epsilon method can be 

modified to make a semi-dynamic model. Using only the initial vector and the first 

two iterates, the first extrapolated term, eg, is found by Equation (34). Using 

this vector as a new initial vector, two new iterates are generated and another 

extrapolated vector determined. This pattern is continued until an iteration has 

the desired precision of accuracy as measured by llG(e;:) - ek'IJ < Tol. A diagram 

of the model is shown in Figure 14 (page 50). This semi-dynamic model of Wynn's 

epsilon method is called. the Modified Epsilon Method. 

MODIFIED VECTOR EPSILON ALGORITHM 6.3: 

Given the iteration equation in=l = G(in) and the initial vector i 0 • Define 

e~1 = O, n = 0,1,2; eg = io; and e~ = G(io). 

Step 1. Compute e~ = G(e5). 

Step 2. Compute e~, e~, and eg by equation (34). 

Step 3. Compute e~ = G(eg). If 11£~ - eglJ < Tol, then stop; otherwise, 

set ig = ig, e5 = e~, and go to step 1. 

The modified epsilon method as described in Algorithm 6.3 and shown in 

Figure 14 is just one version of several. The method shown is of order one with 



.. o_ .. 10 
.. 2 - .. 0 

e 12 
0 

.. 10_ .. 110 
.. 2 - .. 0 

etc. 

Figure 14. Diagram for Modified Epsilon Method 
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respect to the initial value i'g = z0 • Order two with respect to i'g uses the vectors i'g 

through e~ to determine e~ and then sets e-g = e~ until convergence. Higher order 

methods continue in a similar fashion; however, orders less than four seem to work 

the best, especially for divergent sequence to keep the iteration from diverging too 

quickly. As was the case with Aitken's method, the semi-dynamic model is more 

efficient than the original cross-diagonal static model due to the time and storage 

required to compute the triangular arrangement for problems of large dimension. 

Other variations start with a different element of the original sequence as 

the initial value. Here, a desired number of elements, say i, of the sequence are 

skipped and the process begins withe~. This procedure is useful if the multiplicity 

of the eigenvalue zero is known, even though exact zero eigenvalues are rare in 

practical application. Skipping the number of elements equal to the multiplicity 

of the eigenvalue zero will result in faster convergence. Another more practical 

pur~ose for skipping a set number of iterates is when under-relaxation is used to 

move various eigenvalues closer to zero. 
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Numerical Examples 

Consider this original problem of Equation ( 4) where 

[ 
1.0 

A= 
-0.5 

0.1 l 
0.4 

_, T 
and b = (1.2, -2.0) . (35) 

The solution to this problem is {10.4, -12.0). Using the iterative Equation (5) 

and the initial vector (1,1), Wynn's vector epsilon method determines the solution 

with only four iterations. Table 11 (page 52) shows the Euclidean norm of the 

error vectors for the even numbered columns. Remember that the even numbered 

columns in Wynn's arrangement are the only valid sequences. By checking the rate 

of convergence of the first column, one can easily see that Wynn's method took a 

very slow converging sequence and accelerated it tremendously. Table 12 (page 52) 

shows the results of applying the semi-dynamic (modified) model to problem (35). 

Results are shown for orders one, two, and three. 

Wynn conjectured and McLeod (1971), Theorem 6.4, and Gekeler (1972), 

Theorem 6.5, proved the following theorems which were thoroughly discussed by 

Brezinski (1974). 

THEOREM 6.4: Let the relation 

le le 
I: ai in+i = sL: ai, n = o, 1, ... 
i=O i=O 

hold for the initial values, where the coefficients ai are real, ale f. 0, sand in are m-

dimensional vectors over the complex numbers, and the vectors £: are determined 

by ( 34) and exist for n + r :::; 2k. Then 

le 
e-~le =; for every n if I: ai =1= o, and 

i=O 

£~le = 0 for every n otherwise. 



n 

TABLE 11 

EUCLIDEAN NORMS OF WYNN'S EVEN NUMBERED 
COLUMN ERROR VECTORS FOR PROBLEM (35) 

0 16.042443 

n 

0 

1 

2 

3 

1 

2 

3 

4 

4 

5 

6 

7 

12.791403 

10.710378 

9.245948 

8.127063 

7.066314 

5.960512 

4.807537 

TABLE 12 

0.000000 

EUCLIDEAN NORMS OF ERROR VECTORS FOR 
MODIFIED c METHOD FOR 

PROBLEM (35) 

Euclidean Norms for Order 

1 2 3 

16.042443 16.042443 16.042443 

12.791403 12.791403 12.791403 

10.710378 10.710378 10.710378 

6.127186 9.245948 9.245948 

5.399512 8.127063 8.127063 

2.481779 0.000000 7.217934 

2.078020 6.448139 

1.188792 0.000000 
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THEOREM 6.5: If the vector e:-algorithm is applied to vectors produced by the 

linear system (4) where A is a real matrix such that (I - A) is nonsingular, then 

(36) 

where k is the degree of the monic minimal polynomial of A with respect to the 

vector io - s; that is, k is the smallest integer such that there exists the polynomial 

Tc 

p(y) = LPi yi, Plc = 1 
i=O 

where 

p(A)(io - S) = 0. 

Equation (36) can be generalized to 

__,n+q __, 
e: 2(1c-q) = s, 

where 0 :::; q :::; r for r equal to the multiplicity of the eigenvalue zero of the matrix 

A (Brezinski, 1974). 

The significance of this fact will primarily be seen in later chapters as we look 

at other acceleration techniques. However, the results of Problem (35) shown in 

Table 11 illustrate this principle. It can be shown that 

p(y) = y 2 - 1.4y + 0.45 

is the minimal polynomial of A with respect to i 0 - s. Hence, k = 2 and, there-

fore, e ~ should be equal to s if rounding errors are not considered. The minimal 

polynomial of the matrix A will also be considered more in later chapters. 



CHAPTER VII 

THE MINIMAL POLYNOMIAL EXTRAPOLATION METHOD 

Theoretical Aspect 

From this point on the focus of this study will center on vector sequences only. 

The first method to consider is a method developed by Cabay and Jackson (1976). 

They derived a polynomial extrapolation method for finding the limit ( antilimit) 

of a vector sequence {x} governed by the linear iteration (5). They assume that 

(I - At1 does exist so that the limit is the unique solution of equation (4). 

The key item in their method is the minimal polynomial p(y) of A which 

annihilates u0 = x1 - x0 ; in other words, pis that unique monic polynomial ofleast 

degree such that 

p(A)ilo = 0. (37) 

Therefore, their technique is referred to as the minimal polynomial extrapolation 

(MPE). To derive their algorithm, let s be the solution of ( 4) and define 

.... .... .... d .... .... .... 
U = S - Xo an Un= Xn+l - Xn· (38) 

Hence, 

Un+i =Aun, (I - A)il = ilo, and 
(39) 

(I - A)(s - xi)= ili. 

Let 

Sp(Y) - ~ (t c;) y', where 

k 

p(y) L Cj yj' Ck = 1, ( 40) 
j=O 
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Hence, 

(I - A)Sp(A) [(c1 + ... + c1c)I + (c2 + ... + c1c)A + ... + c1cATc-l] -

{(c1 + ... + c1e)AA0 + (c2 + ... + c1e)AA1 + ... + c1cAA1c-1 } 

(c1 + c2 + ... + c1c)I - (c1 + c2 + ... + c1c)A1c 

p(I) - p(A). 

Assuming p(A) annihilates i10 , then 

(I - A)Sp(A)i10 = (p(I) - p(A))ilo = p(I)ilo. 

Using equations (38) and (39) and simplifying give 

(41) 

However, it is also true that 

_, _, _, A_, A- Ai-
ui = Xi+I - Xi = Xi - Xi-1 = ... = Uo. (42) 

Hence, ( 41) becomes 

s-xo 

Therefore, solving for s gives 

s= Xo + [~ (.t Cj) Uil /p(l) 
i=O 3=i+1 

(43) 

Since (I -A)-1 exists, A has no eigenvalue at unity and thus p(l) -=j:. 0. There-

fore ii can be found after k + 1 iterations, provided the annihilating polynomial ex-

ists. Cabay and Jackson made no attempt to produce the minimal polynomial p(y). 

Instead, they found an almost-annihilating polynomial a(y) = I:;~0 ai yi, a( 1) -=j:. 0 



56 

and a1c1 = 1, such that I:;~0 ai ili = S for S relatively small. Once the a/s are found, 

the extrapolated vector is determined by calculating il and adding the result to io. 

One method for solving the lli's is to minimize the norm by using a least squares 

technique. Hence, we solve 

lc1-1 
~ .......... 
L.,, ai ·ui = -u1c1. 
i=O 

Another approach (Sidi, 1986, and Sidi, Ford, and Smith, 1986) in developing 

the MPE method is to begin with the minimal polynomial, p(y), of A with respect 

to il0, Equation (40). Using (37) and (42), 

le k 

0 = p(A)ilo = L c; Ai il0 = L c; il;. 
i=O i=O 

So the unknown coefficients of the polynomial p are C'fc = 1 and the components of 

the vector c = ( c0 , ci, •.. , C'fc-i)T which solves the system of equations 

U ..... ..... 
c = -uk, (44) 

where U is them x k matrix defined by 

If k < m, then there are more equations in the system than unknowns; however, we 

have shown consistency. Therefore, the unique solution can be found. 

We now express any element i; in terms of i 0 by using the fact that if sis 

the solution of ( 4) then s =(I - A)-1 b. So 

i; Aii0 +(I+A+ ... +Ai-1 )b 

Aiio +(I - Ai)(I - A)-1b = Aiio +(I - Ai)s 

Ai(io - s) + s. 

Hence, Ai(io - s) = i; - s. 
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Smith, Ford, and Sidi (1987) showed that the minimal polynomial of A with 

respect to the vector x; - 8 is the same polynomial as that for ii;, for every j, and 

thus true for j = 0. (Hence, p(y) is the same minimal polynomial that was discussed 

in Chapter VI when it was shown that egle = 8for k the degree of p(y).) So 

le le le 
L:c; Ai iio = L:c; Ai (xo -8) = L:c3 (x3 -8) 
j=O j=O j=O 

"tc; x-8("tc;). 
3=0 3=0 

(46) 

Since unity is assumed not to be an eigenvalue of A, E~=o c3 = p(l) f:. 0. Hence, 8 

is computed directly from ( 46). 

The above proof can also be shown for the starting vector Xn instead of x0 • 

Therefore, a theorem for any k + 1 consecutive terms of a sequence was proven by 

Smith, Ford, and Sidi (1987). 

THEOREM 7.1: For any k+l consecutive terms of the sequence {x}, say Xn, Xn+i, ... 

Xn+le, we have 

t Cj Xn+j = 8 (t Cj) · 
j=O j=O 

(47) 

where c3,j = O, ... ,k, are defined by equation (40). 

If ( 43) is rewritten i.n terms of the x/s, we have 

S -t.l; ii;, where I;= c;/ (t.c;). 
If r is the multiplicity of the eigenvalue zero, then r terms on each side of ( 47) 

are zero. Therefore, if r is known or suspected to be positive, there is an advantage 

of starting the k + 1 consecutive terms at Xn, n > 0, instead of x0 • Preferably, we 

should start at x,.. 
To this point, the discussion has dealt with finding the solution of a linear sys-

tern. For linear problems of large dimension, the degree of the minimal polynomial 
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may be difficult to determine. For nonlinear problems, the annihilating polynomial 

changes for each iteration and the limit cannot be obtained in a finite number of 

iterations. Therefore, a small value of k is chosen and Equation { 43) is used as 

a model for approximating the solution. Repeating the process until convergence 

with each new initial vector set equal to the last computed extrapolated vector, a 

semi-dynamic method is developed for solving large linear problems and nonlinear 

problems. Even for small linear problems where the exact k is known, rounding 

errors may prevent obtaining the solution to the desired accuracy on the first ex

trapolation. Hence, the semi-dynamic model is used for all types of problems. 

MINIMAL POLYNOMIAL EXTRAPOLATION (MPE) ALGORITHM 7.2: 

Given the sequence Zn+i = G(in), the initial value i 0 , and the positive integer k. 

Step 1. Generate i 1 , i 2 , ... , i1c+1 by the function G. 

Step 2. Compute U and i11c by use of ( 45) and {38). 

Step 3. Compute cfrom {44) and set Cfc = 1. 

Step 4. Compute ifrom {47) where Zn+;= zj. 

Step 5. Generate y = G( 8). If Iii - i II < Tol, then stop; otherwise, set 

io = i and go to step 1. 

Theoretical Application to Numerical Problems 

Let us consider Problem {35) again. In Chapter VI, it was shown that Wynn's 

vector epsilon method obtains the solution in four {2k) iterations since the degree 

of the monic minimal polynomial is k = 2. Since this example is a linear problem, 

according to theory, the MPE method should compute the solution in k + 1 = 3 

iterations. This is the case as the solution, {10.4, -12.0), is found to six decimal 

place accuracy after only three iterations and one extrapolation. Therefore, in 

theory, whereas Wynn's Vector Epsilon method requires 2k iterations to obtain i, 
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the MPE method can obtain it in only k + 1 iterations. If k is large, one can see a 

major advantage of the MPE method. However, the larger the value of k, the larger 

the dimension of our matrix U in determining the coefficient vector, c. If the MPE 

method is applied to (35) with k = 1, the extrapolation procedure still converges; 

however, it takes 78 iterations to determine the solution to six decimal places. 

For larger dimensional problems, k usually should be chosen such that 

2 ~ k ~ 5. There are two reasons for this restriction of k. The first reason is the 

storage space and the time required in working with large dimensional matrices. The 

second reason is given by Anderson (1965, p. 555), "the power of an iterative method 

increases slowly with degree for M > 3 since the "early," poor approximations are 

not samples of significant information content ... " (Here Anderson's M refers to k ). 

Results found from the numerical test problems in Chapter XI show that no one k 

is the best choice for all problems. 

Variations for Convergent/Divergent Sequences 

Since Equation ( 47) uses only the first k iterates of the generated sequence, 

the most accurate approximation of the limit for a convergent sequence, i1e+i, is not 

used. What would be helpful is to modify the algorithm so that the most current 

estimates are used. Chandler (1988) suggests the following model for the linear 

equation ( 4). 

Let the finite sequence S = {i0 , ii, ... , i1e+1 } be the k + 2 generated vectors 

that are used to determine the coefficient vector c of ( 44). As shown in Chapter II, 

Equation (13), there exist constants ai and qi, i = 1, ... , m, where mis the order of 

A, such that 

m 

in= s +Lai Vi qf', n = O, 1, ... , k + 1. 
i=l 
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m 

- - ~ b - k+l-n Q 1 k + 1 Xn = s + L.J i Vi Pi , n = , , , .. , . 
i=l 

Then there exist a sequence T = { x ~, x ~, ... , x ~+1 } s:ich that 

m 

_, -+ ~ b - ,. 0 k + 1 x ,. = s L.J i Vi Pi , r = , ... , , 
i=O 

h _, -w ere x ,. = z1e+1-,.. If Jqil < 1 for all i, then IPil > 1. Hence, sis the limit of S 

and the antilimit of T. If the moduli of all q/s are greater than unity, then IPil < 1 

for all i. Therefore, sis the antilimit of S and the limit of T. Otherwise, sis the 

antilimit of both S and T. 

If the generated sequence S diverges, then the most accurate estimate of the 

antilimit is £0 • Therefore, the MPE method should be applied to the sequence S 

in that case to approximate the antilimit so that ( 4 7) will be the sum of the most 

accurate estimate plus a small error. If S converges, then the most accurate estimate 

of the limit is z1e+i; hence, sequence T should be used in this case to approximate 

the limit. Even though the above theory was developed for the linear case, it can be 

used as a model for estimating the solution of a nonlinear problem. A comparison 

of the two techniques will be shown in Chapter XI. 



CHAPTER VIII 

THE REDUCED RANK EXTRAPOLATION METHOD 

Theory for the Full Rank Extrapolation Method 

· Henrici (1964) set forth to extend Aitken's formula for systems of equations. 

His goal was to estimate the limit of a sequence of m-dimensional vectors. His 

formula contains two m x m matrices, of which one involves an inverse. For large 

problems, solving a large linear system is not exactly helpful. However, the theo-

retical application of his work is valid. Mesina (1977) and Eddy (1979) modified 

Henrici 's basic formula by reducing the dimension of the linear system to a value 

that is reasonable for computation. Eddy referred to his method as the Reduced 

Rank Extrapolation (RRE) method. 

Before their methods and formulas are derived, some basic definitions are 

needed which will be used throughout this chapter. Some of the definitions have 

already been used in previous chapters; however, they are mentioned again for 

completeness. 

Let {in} be an m-dimensional vector sequence generated by the Equation (3) 

such that ; is a solution of (2). Define the first and second difference vectors as 

Un= Zn+i - in and Vn = Un+i -iln, respectively. The following m x k (1 < k < m) 

rectangular matrices are very valuable in the development of the theory. Their 

columns are first or second difference vectors. Define 

and 
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Also, define A = A( i) to be the Jacobian matrix of the function G taken at the 

solution s. The Jacobian matrix is defined as 

91(i) 
8gi(i) 

aij = 8 , i, j = 1, ... , m, where G ( i ) = 
Xj 

9m(i) 

aij is the ( i, j) component of the matrix A, and i = ( x1, x2, ... , Xmf. Henrici (1964, 

p. 104) showed that e'n+1 = A(i)e'n + O(llenll)2 where e'n = in - sand O(lle'nll 2 ) 

denotes a quantity bounded by Clle'nll 2, C an integer. If we assume that this error 

formula is exact with O(lle'nll) = 0 for finite values of n, then Xn+i - s = A(in - i). 

Then the following relationships are satisfied: 

(48) 

(49) 

If k = m, then Un and Vn are square matrices. Assuming that Un is nonsin-

gular, Equation (49) gives 

Since A is the Jacobian ~atrix of G, then 

This implies that 

- - A- AXn+1 - S = Xn - S. 

Therefore, if unity is not an eigenvalue of (A - I), then (A - J)-1 exists and 

- --+ . (A 1)-1-s = Xn - - Un. 

(50) 

(51) 
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Using (50), we change (A - It1 in the following fashion: 

Substituting into (51), the extrapolation formula is 

.... .... u v:-1-s = Zn - n n Un• (52) 

Though the development of (52) is due to Henrici (1964), some of the notation used 

is due to Smith, Ford, and Sidi (1987). As was the case with the MPE method, 

Equation ( 52) should be applied to the sequence S = {in, in+l' ... , Zn+fc+l} if the 

sequence S diverges. If Sis a convergent sequence, then the sequence 

Eddy (1979) derived the same extrapolation formula as follows: 

- lim( io + uo + u1 + ... ) 

- io + lim(J + A + A 2 + ... )uo 

- io +(I -At1uo. (53) 

Equation ( 48) then yields 

s - io + UoZ and 0 = uo + VoZ, 

which matches Equation (52) for n = O. Therefore, for a linear system and with no 

rounding errors, sis computed exactly. For a nonlinear problem, the limit cannot be 

obtained for a finite value of k, but Equation (52) is used as a model for estimating;, 

the solution of the problem. Since the extrapolated vector will be only an estimate 

of s, a repeating process with a new initial vector set equal to the extrapolated 
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vector is used to establish a semi-dynamic procedure. This method will be referred 

to as the Full Rank Extrapolation (FRE) method. 

The FRE method is an acceleration technique that requires m + 1 iterations, 

where m is the dimension of the vector space of the problem. There is one obvious 

problem with this method: if m is large, then to obtain m + 1 iterations before 

we can even apply the extrapolation technique defeats the purpose of accelerating. 

Though Henrici (1964) indicated that the technique is still valid for values much 

smaller than m, Eddy (1979) proved this fact. 

Theory for the Reduced Rank Extrapolation Method 

Assume that we choose k such that 1 ~ k < m. Then U and V are now non

square matrices and have no inverses, so Equation (50) does not hold. Therefore, 

an alternate approach for establishing the basic extrapolation formula is needed. 

Let the exact limit, 8, in (53) be replaced by the extrapolated value 8 1• Define 

(54) 

Using (48) and (54), we have 

ilo =(I -A)UoZ = -VoZ 

so that the extrapolated vector can be expressed by 

s' = zo + UoZ and 0 = ilo + VQZ. (55) 

Solving Equation (55) by the .method of least squares gives 

Therefore, 

(56) 
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where v;,+ is the generalized inverse of V0 • 

Substituting (56) into (55) and generalizing give an extrapolation method for 

k < m and any starting vector in: 

- - u. v::+-s = Xn - n n Un• (57) 

As with the MPE and FRE methods, the sequence used in (57) may be the generated 

sequence, S, or Sin reverse order, depending upon whether the iterated sequence 

diverges or converges, respectively. Eddy (1979) called this method the Reduced 

Rank Extrapolation (RRE) method. Once again, it is usually best to keep k less 

than about six for large dimensional problems. From this point on, this procedure 

will be referred to as the RRE method, regardless of the value of k. 

REDUCED RANK EXTRAPOLATION ALGORITHM 8.1: 

Given the iteration equation ii+1 = G(i,), the initial vector i 0 , and the positive 

integer k. 

Step 1. For i = 0, 1, ... , k, co:i:npute Zi+i = G(i,). 

Step 2. For i = O, 1, ... , k - 1, compute it, = Zi+i - i, and Vi = iti+l - it,. 

Step 3. Define U and V by U = [it0 , iti, ... , it1c-1] and V = [vo, v1, ... , v1c-1]. 

Step 4. Computes= i 0 - UHit0 , where H = v-1, if k = m, the dimension 

of the problem; or H = V+ = ((V*)V)-1 V*, the generalized inverse 

of V, if k < m. 

Step 5. If llG(s) - 811 < Tol, then stop; otherwise, set i 0 =;and i 1 = G(s), 

generate the vectors i 2 , ••• , Z1c+i by the iteration equation, and go 

to step 2. 

The computation of Step 4 of Algorithm 8.1 involves the generalized inverse 

of V. Eddy (1979) and Smith, Ford, and Sidi (1987) suggest that this matrix be 
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computed in the algorithm. Therefore, the matrix ((V*)Vt1 must be determined, 

which requires costly computer time, especially for larger values of k. I suggest an 

alternate approach. Let B = (V*)V and if= (V*)it0 • Then U Hito in Step 4 can be 

rewritten as 

where Bz = if. The vector z is found by Gaussian elimination. Since the product 

(V*)V will be a symmetric matrix, the amount of computer time is reduced even 

more. 

Numerical Examples 

For an example, consider the two-dimensional problem (Henrici, 1964) of find

ing the solution of the system 

x - :z;2 + y2, 

y - :z;2 -y2, 
(58) 

near the point (0.8,0.4). A quick check will show that the solution of (58) is 

(0.771845,0.419643) to six decimal places. However. converting (58) into its it

eration equations, 

the iterative sequence {Zn}, where Zn = (Zn, Yn), diverges. 

Table 13 (page 67) shows infinity norm results of applying the RRE method, 

k = 2, to this problem. The first column gives the norms of each difference vector, 

itn. The norms given in the second column are for the error vectors, ~' of each 

extrapolated vector. Since k = 2, there must be k + 1 = 3 iterations before the 

extrapolation technique can be applied. Hence, extrapolated results, column two, 

are obtained only once every three iterations. 
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TABLE 13 

INFINITY NORMS OF DIFFERENCE AND 
ERROR VECTORS FOR THE RRE 

METHOD FOR PROBLEM (58) 

-+ -+ n Un en 

0 0.080000 

1 0.070400 

2 0.180224 0.002280 

3 0.003916 

4 0.004952 

5 0.009096 0.000023 

6 0.000023 

7 0 000047 

8 0.000079 0.000000 

9 0.000000 

Table 13 shows that the solution, to six place accuracy, is obtained upon 

extrapolating after the ninth iteration. However, a tenth iteration is needed to 

ensure that the ninth difference vector has the desired precision of accuracy for 

convergence. In addition, column two measures the error vector, which normally 

cannot be measured since the answer is not known. 

Figure 15 (page 68) shows a graph of how the RRE method (k = 2) compares 

with the MPE method (k = 2), the modified vector epsilon method {order 2), and 

Aitken's semi-dynamic method {Jennings' SDM) on Problem {58). The graph plots 

the logarithm (base 10) of the infinit:r norm of the difference vector 

{ Un-1 = Xn - Xn-1) as a function of the number of iterations. The results show that 
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the RRE and MPE methods clearly converge faster then the c method and Aitken's 

method. In fact, the graph suggests that the RRE and the MPE are equivalent 

methods since the results obtained from these two methods are identical. However, 

this is NOT so. In Chapter X, it will be shown that the two methods are very 

similar (in fact, their results are identical for some problems, as is the case for this 

example), but they are not equivalent methods. Probably, the most important fact 

shown in Figure 15 is that the MPE and RRE methods both produced an accurate 

fixed point solution from a divergent nonlinear iteration and obtained the results 

very rapidly. 
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Figure 15. Graph Comparisons for Problem (58) 



CHAPTER IX 

ANDERSON'S GENERALIZED SECANT ALGORITHMS 

Theoretical Development for Secant Methods 

Anderson (1965) was motivated by the inability of Aitken's and Wynn's meth-

ods to "feed back" into the process in a fully dynamic manner iterates already ob-

tained. He expressed his feelings by stating "The Aitken A 2 process, of which the 

e-algorithm is a generalization, is considerably less effective if applied statically ... 

than if applied dynamically ... " (Anderson, 1965, p. 552). His referral to a dynamic 

process is what has been called a semi-dynamic method in this study. He desired to 

find a fully dynamic procedure which would accelerate the convergence of a vector 

sequence. This process is similar to the fully dynamic scalar Aitken algorithm of 

Irons and Shrive (1987) discussed in Chapter IV. Anderson developed one algorithm 

and then derived variations from it. He obtained the first algorithm by generalizing 

the univariate secant method geometrically; see Figure 16 (page 70). Given the 

equation x = g( x) and the scalars x0 and x1 , the univariate secant method is 

Xn+l = Xn + B(xn-1 - Xn), n = 1,2, ... ' 

where 

B = g(xn) - Xn . 
[g(xn) - g(xn-1)] - [xn - Xn-1] 

Generalizing the method for m-dimensions, Wolfe (1959) saw the next element of 

the sequence as being the solution of a system of nonlinear equations of m secant 

hyperplanes through m + 1 points. However, Anderson considered only a hyperline 
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I . 

through two points. It must be noted that, in general, a hyperline does not intersect 

the subspace defining the solution; however, the point chosen is the point that is in 

some sense "closest" to this subspace. 

Now for the development of Anderson's first algorithm. Given the vector 

sequence {in} and the basic iteration equation in+l = G( in), Anderson sought two 

other sequences which converge to the same limit as {in}, but more rapidly. He 

first defined a coupled pair of iterative sequences {in} and {in} by 

Also define the residual vector, r'n, and the inner product, (it, v), of the two real 

m-dimensional vectors it and v by 

m 

r'n = ~ - 'fin and (it,v) =Lui Vi wi, 
i=l 
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respectively, where the weights Wi are positive real numbers and the scalars Ui and 

vi are the components of it and v. Define it~ and v~ for the generalized univariate 

case 
-+I 
Un Yn + Qn(Yn-1 - Yn), and 

Also define the "linearized residual" Rn by 

D Q 5(-+ I -+I -+I -+I ) 
.LLn = . V n - Un' V n - Un . 

(59) 

If R = ( i, i), then from calculus ~~ = 2 (g~, i). Hence, minimizing JL with respect 

to the parameter Qn yields 

( av~ aa~ ... , ... , ) 
aQn - aQn 'V n - U n 

( -+ -+ -+I -+I) Q 
- Tn-1 - rn, V n - Un = . 

Solving for Qn, we have 

( -+ -+ -+) Q (-+ -+ -+ -+) rn-1 - rn, rn + n rn-1 - rn, rn-1 - rn . 

Hence, 

(60) 

Define the extrapolated vector by 

(61) 

According to Anderson the choice of a positive Bn prevents Yn+l from becoming 

trapped in the subspace spanned by the previous Yn iterates. Usually Bn = 1 is most 

appropriate; however, one must determine the optimum value for Bn empirically. 

Anderson refers to this algorithm as the "extrapolation algorithm." 

. Before applying Anderson's extrapolation method, the first two terms of both 

{in} and {.?n} are required. Therefore, {ffn} and {.?n} usually are initiated by 
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setting Yo= io and computing Zo = G(y0 ) = i1. Also set Y1 = Zo and compute z1 

by Zi = G(yi) = G(i1 ) = i 2 • The extrapolation technique is now applied. 

For the special case where m = 1, Qn = T'n/(r'n-T'n-1). Therefore, for Bn = O, 

the next iterate is 
.... .... 

.... .... Zn-Yn ( ........ ) 
Yn+l = Yn + (.... .... ) (.... .... ) Yn-1 - Yn • Zn - Yn - Zn-1 - Yn-1 

Substituting Zn = G(yn) and rearranging give 

.... .... G(yn)-Yn (.... -+ ) 

Yn+l = Yn + .... - .... - G( .... ) + G(.... ) Yn - Yn-1 ' Yn Yn-1 Yn Yn-1 

which is the univariate secant method. Hence, Anderson's method is consistent for 

m=l. 

ANDERSON'S EXTRAPOLATION ALGORITHM 9.1 

Given the iteration equation Xn+i = G(in), the initial vector i 0 , and the sequence 

Step 1. Define Yo= io, Zo = Y1 = i1, ro = Zo - Yo, and set n = 1. 

Step 2. Compute Zn = G(yn) and Tn = Zn - Yn· 

Step 3. Find Qn, it~, and v~ by (60) and (59). 

Step 4. Compute Yn+1 =it~+ Bn(v~ - it~). 

Step 5. If l!Yn+l - Ynll < Tol, stop; otherwise, in:rease n by one and 

go to step 2. 

Anderson developed an alternate algorithm he referred to as the "relaxation 

algorithm." The name was so given because the method defines a relaxation param-

eter dynamically. Define 

.... , .... Q .... 
Un Zn+ nTn, 

v~ Zn-1 + Qnr'n-1, and 

D 05( .... 1 -+I .... , .... ,) 
..ll.fi • V n - Un' V n - 'ti. n • 



73 

Minimizing Rn with respect to Qn yields 

8Rn ( ............ , .... ,) 0 
8Qn = Tn~l - Tn, V n - Un = • 

Hence, 

( .... .... .... ....+Q(.... .... .... ....) Tn-1 - Tn, Zn-1 - Zn n Tn-1 - Tn, Tn-1 - Tn • 

So 

Q ( .... .... .... .... )/(.... .... .... .... ) 
n = - Tn - Tn-1, Zn - Zn-1 Tn - Tn--1' Tn - Tn-1 • (62) 

Thus define Yn+l = u~. It should be noted here that Anderson has a typographical 

error in his article. His equation does not have the negative sign. 

ANDERSON'S RELAXATION ALGORITHM 9.2. 

Given the iteration equation Xn+i = G(xn), the initial vector x0 , and the sequence 

S lDfi ................................ d t 1 tep. e ney0 =zo,zo=y1=z1,ro=zo-Yo,an sen=. 

Step 2. Compute~= G(fin) and~= Zn - Yn· 

Step 3. Determine Qn by (62). 

Step 4. Set Yn+l = U ~ = ~ + Qn~· 

Step 5. If llfin+1 - Ynll <Toi, stop; otherwise, increase n by one and 

go to step 2. 

Anderson discussed two particular variants of the first algorithm. The first is 

the choice of the metric of the inner product for which Rn is defined. The second 

variant is for higher degree methods. The higher degree methods are obtained by 

minimizing a linearized residual, Rn, over subspaces of higher dimensions. 



Define, for a positive integer k, 

'le _, 
Un - Yn + L: Q~(Yn-j - Yn), 

j=l 

'le _, 
vn zn + L: Q~(Z'n-; - in), and 

j=l 

Rn - 0 5( .... ' .... ' .... ' .... ' ) , Vn -un,Vn -Un' 

Minimizing Rn with respect to Q~ yields, for i = 1, 2, ... , k, 

'le 

L:<~ - ~-i,~ - ~-;)Q~ = (~ - ~-h~). 
j=l 

Define Yn+i as in Equation (61). 
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(63) 

(64) 

This algorithm is dynamic, coupled, and can be applied after finding k + 1 

iterations. In addition, Anderson's method can "build up" the degree by being 

applied for k = 1, 2, etc., until the desired value of k is reached. Hence, for any 

positive integer k, Anderson's higher degree algorithm is a fully dynamic technique 

which can be applied after only two iterations. As previously mentioned, Anderson 

states that low-degree ca.ses, limiting k to less than six, usually work best. 

ANDERSON'S HIGHER-DEGREE ALGORITHM 9.3. 

Given the iteration equation Zn+i = G(in), the initial vector i 0 , the positive integer 

k, a:nd the sequence { B0 , B1, ... } . 

Step 1. For n = 0 to k, define Yn =in, Zn = G(ffn), and 

Step 2. Solve the system (64) for Q~. 

Step 3. Determine u~ and v~ by (63). 

- Step 4. Compute Yn+1 = u~ + Bn(v~ - u~). 

Step 5. If llffn+i -:ifnll < Tol, stop; otherwise, compute 

Zn+i = G(ffn+1),~+1 = Zn+i - ffn+i,n = n + 1, and go to step 2. 
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Numerical Examples 

Consider the linear system ( 4) where A is the tridiagonal matrix whose 

superdiagonal is (1, 0, 1/3, O, O, 0), 

diagonal is (1/2, 1/2, 1, -1, -1/6, 1/3, 1/3, 1/3), 
(65) 

subdiagonal is (0, O, -1, O, 3, 0), and 

bis the constant vector (-1/2,1/2,-1/3,13/6,2/3,-7/3,2/3)T. 

Figure 17 compares the convergence of Anderson's method for 2 ~ k ~ 5 and the 

relaxation method with the basic iteration. Convergence, the infinity norm of the 

difference vector less than 10-15 , with no acceleration is obtained in 57 iterations. 

The best results are obtained for Anderson's method with k = 4 and 5. This is 

not by coincidence since this problem was designed to have a matrix of order seven 

with a monic minimal polynomial of degree 4: 

5 

0 

..... 
. } 
--5 

0 ..... 
~ 
.-I 

-10 

. k = 4 
& 5 

k = 3 Relax 

-1s+--+-+--+--+-->----<--'+---+-+--+-+--+---+--+---"I--<-__,_-+---_.__-+--+--+--+---=-< 
0 5 10 ITERATION 15 20 

Figure 17. Graph Comparison of Anderson's 
Methods for Problem (65) 

25 
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0 .... 
~ 
rl 

-10 

-15+----+~--~-+---+~-t--~-+---+~--~+--l-~-+-~,__---=~~ 

o 5 ITERATIOU 10 15 

Figure 18. Comparison of Results for Anderson's Methods, 
the MPE Method, and the RRE Method for 

· Problem (28) 

p(y) = (y - 1/2)2(y - 1/3)2 ' 
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Hence, the best results are obtained when k is chosen as the degree of the minimal 

polynomial of A, as was the case for the MPE and RRE methods for linear problems. 

Another point is that if k is greater than the degree of the minimal polynomial, the 

sequence will still converge; however, the convergence rate will not improve. Once 

again, we see that an acceleration method has determined a fixed point solution 

much faster than the basic iteration. 

Recall the familiar examples, Problems (28) and (58). In Figures 18 and 19 

(Figure 19 on page 77), the results of these two problems for Anderson's three 

methods: k = 1, 2, and the relaxation method, are compared with the results ob-

tained by the RRE and MPE methods, k = 2. Clearly, Anderson's method with 



0 

-10 
Anderson 

Relax 

-15+---~--~--'---+~--t-~----~-----'I---+-~------~_,__~_,____, 

o 5 ITERATION Io 15 

Figure 19. Comparison of Results for Anderson's Methods, 
the MPE Method, and the RRE Method for 
Problem (58) 
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k = 2 gives the best results for these examples. This leads to a few questions. Are 

these results consistent with results of other problems? Are there ways of comparing 

two or more of these techniques from the theoretical view point? The latter question 

leads into the next chapter where the first extrapolation method of Anderson, the 

MPE method, and the RRE method are compared in theory. The former question 

is saved for Chapter XI. 

A final comment concerning Anderson's method needs to be made. Even 

though he wrote his article in 1965, it has been widely ignored. There were no 

references found to Anderson's article or to Anderson's method in the research for 

this ~hesis. The majority of the articles or papers written on the subject area concern 

the theoretical and/or numerical comparison of the vector Aitken, the vector e, the 

RRE, and/or the MPE methods. One may speculate that the title of his article, 
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"Iterative Procedures for Nonlinear Integral Equations," may have something to do 

with the problem since it makes no reference to the subject of acceleration methods. 

For whatever the reason, the article and the acceleration method have received little 

attention. 



CHAPTERX 

THEORETICAL COMPARISONS 

Determinant Form for the MPE Method 

Now that all the acceleration techniques have been given, they can be com-

pared theoretically. Since the MPE, the RRE, and Anderson's methods all rely on 

solving a system of linear equations, it seems logical to start with them. The theory 

presented in this chapter for the MPE and the RRE methods was derived by Sidi 

(1986) and Sidi, Ford, and Smith (1986). The theory for Anderson's method and 

the examples, to the best of our knowledge, have not been published. 

Define the inner product of two sequence terms i4 and a; to be a;,;= (aha;), 

i, j ~ 0. Also define the matrix [t0 , ••• , t1c] by 

ao,o ao,1 ao,lc 

(66) 

Denote the determinant of the matrix (66) by D [to, ••• , t1c], and denote by Ni the 

cofactor of ti in D [to, ••• , t1c]., i = O, .•• , k. If the elements of the first row of 

D [i;,, ... , i;.] are vectors, then the determinant is to be interpreted as 

le 

D [t;,, ... 't;.] = L~ Ni. (67) 
i=O 

79 
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It was shown in Chapter VII that given the m-dimensional vector sequence 

{in}, its limit ;, and some positive number k ~ m; il can be estimated by use of 

the MPE method by 

(68) 

provided Ej=0 c; =f. 0. The vector c = ( c0 , ci, ... , c1e-if solves the system of equa

tions Uc= -il1e, where U and il,. are found by (45) and (38) and c1e = 1. The vector 

c that satisfies this system satisfies the normal equations 

le-1 

'I:(ili,il;)c; = -(ili,il1e), o ~ i ~ k -1, 
j=O 

Consequently, the vector f · (10 , ••• , l1e) of Equation (68) satisfies the equations 

Ej=O l; = 1, and 
(69) 

L:j=0(ili,il;)l; = 0, 0 ~ i ~ k - l, 

provided these equations have a solution. The matrix of Equations (69) is (66) 

where ti = 1 and ai,j = (ili,il;). Assuming that its determinant is nonzero, then 

Cramer's rule can be used to write the solution of {69) as 

From (67) and {68) we find 

-+/ s ~l .... ~ N; .... 
- L..J j :Cj = L..J :Cj 

j=O j=O D [l, ... , 1] 

EJ=o i; N; D [io, ... , i1e] 
D[l, ... ,1] - D[l, ... ,1]. (70) 

Determinant Form for the RRE Method 

Now consider the RRE method. From Equation (57) and letting n = 0, the 

first extrapolated vector found by the RRE method is 

-+/ -+ TT v;+-+ 
S = Xo - uo O Uo, (71) 



81 

where v+ is the generalized inverse of v. {If k = m, then v+ is the inverse of v.) 

Define q = ( q0, qi, ... , q1c-i )T to be the vector which satisfies the system of equations 

Vq= -u0 • {72) 

Then {71) can be rewritten as 

{73) 

As was the case for the MPE method, the q that satisfies {72) will also satisfy the 

normal equations 

lc-1 
L:(Vi,v;)qi = -(Vi,uo), o < i < k -1. {74) 
i=O 

Substituting v; = i1;+1 - u; for the second component on the left-hand side of {74) 

and rearranging the equation, we have 

lc-1 
o = (Vi,uo) + L:(Vi,u;+i -u;)q; 

Define 

i=O . 
lc-1 

- (Vi,uo) + (Vi,i11 - uo)qo + L:(Vi,i1;+1 - u;)u; 
i=l 

lc-1 
- (Vi,uo) + (Vi,i11)qo - (Vi,uo)qo + L: [(Vi,i1;+1)q; - (Vi,u;)q;] 

i=l 
- (Vi,uo){l - qo) + (Vi,i11)(qo - qi)+ (vi,i12)(q1 - q2) 

+ ... + (Vi,u1c-1)(q1c-2 - q1c-1) + (Vi,i11c)q1c-1 
lc-1 

- (vi, uo)(1-'- qo) +(Vi, u1c)q1c-1 + L:<Vi, u;)(q;-1 - q;), o ~ i ~ k - i. 
i=l 

l; = q;-1 - q;, 1 ~ j ~ k - 1. 

It is easy to see that 

(75) 

(76) 
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Therefore, Equations (75) and (76) establish a one-to-one correspondence between 

the qi's and l;'s. Hence, the system of linear equations (74) for the qi's is equivalent 

to the linear system 

Ej=o l; = 1, and 
(77) 

E~=0(Vi, u;)l; = o, o ~ i < k - 1, 

for the l;'s. Substituting u; = i;+1 - i; on the right-hand side of (73), rearranging, 

and applying the one-to-one correspondence (75), (73) can be written in the form 

of (68). The matrix of the system (77), once again, is (66), where °'i,i = (Vi, u;). 

Assuming that the determinant of the matrix is nonzero, Cramer's rule can be used 

to solve the system. The result will be (70). It is important to notice that even 

though the extrapolated results for both the MPE and RRE methods have the same 

determinant form, the results are not necessarily the same. This is because the °'i,; 

elements of the matrices are different. For the MPE, they are (ui,it;); whereas, for 

the RRE, they are (Vi,u;). 

Determinant Form for Anderson's Methods 

Lastly we consider Anderson's higher degree method. Assume that the first 

ext~apolation is not performed until k + 1 iterations· have been obtained. Hence, 

the first k + 1 iterations will generate the same sequence, i 0 , • •• , ZTc+i, as the MPE 

and RRE methods do. Also assume that Bn = 1 for all n. Therefore, using (61) 

and (63) the extrapolation formula becomes 

le 
-+ _-+I_-+ ~Qi(-+, -+) 
Yn+l - V n - Zn + L..J n Zn-3 - Zn • (78) 

i=l 

As was shown in Chapter IX, to start Anderson's method one sets y0 = i 0 , z0 = 

G(yo) = ii, y1 = z0 , etc., until the necessary number of sequence elements are 

obtaine& for extrapolation. Therefore, the two sequences Yo, ... , Yn and io, ... , in 
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are the same sequences, as are the two sequences zo, ... , ~ and ii, ... , in+l · This 

information will be very valuable later. 

The Q~'s are found by solving the linear system of equations (64). Since 

Tn = ~ - Yn = Xn+i - in= Un, then (64) is equivalent to 

le 

L( Un - Un-i, Un - Un-j )q; 
j=i 

le 

(- - -) = Un - Un-i, Un , 1 ~ i ~ k, or 

L(un - Un-i-i,un - Un-;)q; - (un - Un-i-i,un), 0 ~ i ~ k -1, or 
j=i 

le-i 
'""°'(- - - - ) L..J Un - Un-i-i, Un - Un-j-i q;+i (- - -) = Un - Un-i-i, Un , 0 ~ i ~ k -1, 
j=O 

where q3 = Qn. The system can be rearranged as follows: 

Set 

0 = -(un - Un-i-i,Un - Un-i)qi + (un - Un-i-1.,un) -
le-i 
L(Un - Un-i-i,Un - Un-j-i)qj+i 
j=i 

( - - - ) +(- - - )+(- - - ) - Un - Un-i-i,Un qi Un - Un-i-i,un Un - Un-i-i,Un-i qi -
le-i le-i 
L(Un - Un-i-i,un)qj+i + L(Un - Un-i-i,Un-j-i)qj+l 
j=i j=i 

le 

(un - Un-i-i,Un)(l - qi - q2 - • • · - q1e) + L(Un - Un-i-i,Un-j)q3. 
j=i 

It is easy to verify that I:j=i lj = 1. Once again, we have established a one-to-one 

correspondence between ·the qi's, 0 ~ i ~ k, and the l/s, 0 ~ j ~ k. Hence, the 

linear system of equations (64) for the q/s is equivalent to the linear system 

I:~=O l; = 1, 

L:j=o(Un - Un-i-i,Un-j)l3 = O, 0 ~ i ~ k - l, 

for the l/s. As with the other two methods, the matrix for this system of equations 

is (66) where 

a·. i,3 



(- - - ) Un - Un-i-1' Un-j • 

Therefore, the solution is 

N· 
l; = 3 ' 0 ::; j < k. 

D [l, ... , 1] 

Rearranging (78) and using the one-to-one correspondence, we have 

k 

Yn+l - v~ =Zn+ E q;(zn-j - Z'n) 
j=l 

k 

- Zn+i + L q;(in+l-j - Zn+1) 
j=l 

- (1 - qi - • • • - qk)Zn+i + qiin + • • • + qkin+l-k 

- loin+l + l1in + l2Zn-l + · • • + qkin+l-k 
k 

- L l; Zn+l-j • 
j=O 

Therefore, from (67) and (80), and letting n = k, we have 

k k N -
~ [ - ~ jXk+l-j 
L..J j Xk+i-j = L..J D [l 1] 
j=O j=O , ••• , 

D[ik+i, ... ,i1] 

D [l, ... , 1] 
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(79) 

(80) 

(81) 

Anderson's extrapolated vector with Bn = 1 is quite different from the ex-

trapolated vector for the MPE and RRE methods. First the matrix elements °'i,j 

are, as before, different; but, in addition, we see that the first row of the matrix 

is different. Instead of the sequence elements i 0 , ii, ... , ik; the row contains the 

1 t - - -e emen s Xk+1, Xk, ... , :z:1. 

Consider Anderson's higher degree method with one change: let Bn = 0 for all 

n. Anderson said that this value should never be used, it is used here for theoretical 

purposes only. Then the extrapolated vector will be 

k - __ , __ ~Qj(- -) 
Yn+l - U n - Yn + L..J n Yn+l - Yn • 

j=l 
(82) 
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Since all other factors remain the same as for the case where Bn = 1, (82) can be 

rewritten as 

le 

Yn+1 u~ = .Yn + Lq;(Yn-; -.Yn) 
j=O 

- Zn+ ql(Zn-1 - Zn)+ q2(Zn-2 - Zn)+•••+ qn(Zn-le - Zn) 

- lozn + lizn-1 + l2zn-2 + · · · + q1eZn-h 
le 

L:l; zn-;· 
j=O 

As was done in deriving (81), (83) is used to obtain the extrapolation formula 

... D[z1e, ... ,zo] 
Ylc+l = D[l, ... ,1] ' 

(83) 

(84) 

where the elements ai,; of Matrix (66) are defined by (u1e - u1e-i-1,u1e-;). Hence, 

for Anderson's two cases, the extrapolated vectors have the same determinant form 

with the exception of the first row of the numerator matrices. 

Anderson vs RRE Comparison 

Let R be the Matrix (66) defined for the RRE case, and let A be the matrix 

defined for Anderson's case with Bn = 0 . By interchanging the columns of A, A can 

be rewritten as (z0 , ••• , z1e) where the new ai,; elements are (u1e - u1e-i-l, u;). Since 

the interchanging of columns will be identical for both the numerator and denom-

inator matrices, the sign change, if any, will cancel out. Hence, the extrapolated 

vector has not changed. 

Since the two matrices; R and A, have identical second components for the 

ai,j elements, let us consider only the first components which are determined by the 

variable i, the row variable. By interchanging rows, we can rewrite A in such a way 

that the jth column of A will have the form 



-+ :z:· , 
( -+ -+ -+) u1c - uo, u; 

( -+ -+ -+) u1c - u1c-1, u; . 
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Once again, the extrapolated vector will remain the same since the sign change, if 

appropriate, of the numerator and the denominator will cancel out. In order, for 

i = 2 to k - 1, set the ith row equal to the ith row minus the ( i + 1 )th row. The 

resulting jth column of matrix A will be 

-+ :z:· , 
( -+ -+ ... ) 
u1 - uo,u; 

( -+ -+ ... ) u1c - u1c-1, u; . 

This column is identical to the lh column of R. Therefore, the extrapolated vector 

Ylc+l is the same vector for the RRE method and this special case of Anderson's 

higher degree method, Bn = 0. 

Now consider Equation (81) for Anderson's method with Bn = 1 applied to 

thelinearequation(4). Leta;=N;/D[l, ... ,1), j=O, ... ,k. Then 

Y1c+1 = ta; i1c+i-; = ta; Ai1c-; = A (ta; i1c-;) 
;=o ;=o ;=o 
AD [i1c, ... ,i0 ] 

- D[l, ... ,1) ' 

which is one iteration of equation (84). Therefore, it is seen that, for the linear 

case, the extrapolated vector for Anderson's method with the B's equal to unity is 

identical to one iteration of the extrapolated vector for Anderson's method with the 

B's equal to zero; hence, it is equivalent also to one iteration of the extrapolated 

vector obtained by the RRE method. An example will follow to illustrate this fact. 
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Numerical Examples 

Smith, Ford, and Sidi (1987) suggested using the Gauss-Seidel iteration scheme 

applied to the linear equation (Wynn, 1962, Eq. (14)) F(i) =Ai - b = O, where 

A= 

2 1 3 4 

1 -3 1 5 

3 1 6 -2 

4 5 -2 -1 

and b= 

10 

4 

8 

6 

(85) 

To define the Gauss-Seidel scheme, let D.i;, i,j = 1, ... , m, where mis the order of 

A, be the ( i, j) component of A. Define the matrices L and UP by 

0 0 

L 

am1 am2 

0 a12 

0 0 

UP -

0 0 

0 

0 

am,m-1 

aim 

a2m 

am-1,m 

0 

0 

0 

0 

(86) 

(87) 

Also define D to be the diagonal matrix (a11 , a22 , ••• , amm]· Then the Gauss-Seidel 

iteration is defined by 

(88) 

When this scheme is applied to Problem (85), the result is a divergent sequence; 

however, all three acceleration techniques obtain the solution, (1, 1, 1, 1). If we let 

k = 2, then the first extrapolated vectors, to five place accuracy, for the RRE 
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method, r, and Anderson's method, ii, with Bn = 1, are 

r - (-0.17247,1.09243,0.67697,1.39913f and 

ii (0·.64007, 1.43756, 1.24008, 1.26795)T, respectively. 

Applying an iteration to r shows that ii = F(T), as was shown and previously 

discussed. This fact in itself would lead one to believe that for linear problems, 

Anderson's method has a major advantage over the RRE method. Now consider 

another example, a nonlinear one. 

In Chapter VIII, Problem (58) was used to compare the RRE method with 

previously derived techniques. As noted in the last paragraph of Chapter VIII, the 

RRE method and the MPE method seemed to be equivalent procedures since they 

produced identical results for k = 2. One may wonder how this can be true since the 

theory proven in this chapter shows that they are not equivalent. Let us examine 

this problem more closely. The second and third rows of matrix (66) for the MPE, 

RRE, and Anderson's methods are given in Table 14 (page 89). Hence, matrix 

(66) is different for each method. However, when the extrapolated vector for each 

method is computed, we find that all four methods (MPE, RRE, and Anderson's 

method with Bn = 0 and Bn = 1) give identical results: 

(0.774124,0.419430f = 1.080567i0 + 0.286985i1 - 0.367552i2 

for the RRE, MPE, and Anderson's (Bn = 0) methods and 

(0.774124, 0.419430)T = 1.080567i1 + 0.286985i2 - 0.367552ia 

for Anderson's method (Bn = 1), where 

(0.8,0.4)T, X1 = (0.8,0.48f, 

T . -+ T (0.8704, 0.4096) , and :c3 = (0.925368, 0.589824) . 
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TABLE 14 

SECOND AN:P THIRD ROWS OF MATRIX (66) FOR THE MPE, 
RRE, AND ANDERSON'S METHOD FOR PROBLEM (58) 

MPE RRE 

0.00640 -0.00563 0.01442 0.00802 -0.00319 0.02108 

-0.00563 0.00991 -0.00882 0.02005 -0.01873 0.04432 

ANDERSON 

-0.01203 0.01554 -0.02324 

0.02005 -0.01873 0.04432 

Equivalent results were expected for Anderson's method with Bn = 0 and the 

RRE method; but, why did all four methods obtain the same results? Consider, for 

the moment, only the MPE and RRE methods, and the difference between their 

ai,i elements of matrix (66). Substituting Un+i - Un for Vn and carrying out the 

determinant calculations, the resulting coefficients for i 0 , i 1 , and i 2 , respectively, 

in terms of inner products with notation M0112 = (u0 ,u1)(u17 u2 ), are 

M1122 - M0122 + M0112 - M1212 + M0212 - M0211, 

M0212 - M0202 + M0102 - M0122 + M0022 - M0012, and 

M0112 - M0012 + MOOll - M02ll + M0102 - MOlOl 

for the RRE method and 

M0112 - M0211, M0102 - M0012, and MOOll - M0101 

for the MPE method. Comparing the different coefficients, there is a difference of 

Mll22 - M0122 -:- M1212 + M0212, 

M0212 - M0202 - M0122 + MOG22, and (89) 

M0112 - M0012 - M0211 + M0102 
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for i 0 , i 1 , and i 2 , respectively. In addition, the difference of D [1, ... , 1] for the two 

extrapolations is 

M1122 - 2M0122 + M0112 - M1212 + M0212 - M0211+ 

M0212 - M0202 + M0102 + M0022 - M0012. 
(90) 

Define wO, wl, w2 to be the quotient of the expressions in (89) divided by (90) for 

i 0 , ii, and i2, respectively. The results are 

wO = 1.080567, wl = 0.286985, and w2 = -0.367552. 

These values are the same values as their corresponding coefficients. 

Consider the coefficient of one term of D [i0,i1 , i 2] for the MPE method. Let 

NM represent this value and let DM represent the value D [1,1,1]. In addition, 

define DN as the difference (89) for the chosen coefficient and DD as the dif

ference ( 90 ). As was shown in the previous paragraph, the quotients NM/ D M 

and DN/DD are equal. Setting this value to r, we have DN = DD(r) and 

NM= DM(r). Also, 

NM +DN = DM(r) +DD(r) = (DM +DD)r. 

Therefore, (NM+ DN)/(DM +DD) = r. Since this is true for each coefficient, 

we see that the linear combination of ii 's is the same for both methods. 

Similar results can be shown for Anderson's method with Bn = 1. Though 

the results showed equality for this case, it is easy to see that the two methods are 

not equivalent. To show this fact by example, consider the problem 

:z: - :z:2 + y2 _ z2, 

y - :z:2 - y2 + z2, and 

z 2 -:z:2 +Y2 + z. 

One extrapolation of this problem gives 



(0.175810,-0.786335, -0.978136) for the MPE method, 

(0.071951, 0.020600, -0.039942) for Anderson's, Bn = 1, 

(0.236638, 0.039550, -0.063152) for the RRE method, and 

(0.236638, 0.039550, -0.063152) for Anderson's, Bn = 0. 
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Hence, they are all different with the exception of the RRE and Anderson's with 

Bn = 0 methods, as expected. The above results indicate that the MPE, the 

RRE, and Anderson's (Bn = 0) methods are very similar for one extrapolation. 

However, the first extrapolated vector for Anderson's method (Bn = 1), for the 

linear case, is one iteration better than the RRE method. H the fact that Anderson's 

method is fully dynamic is also considered, then one might assume that Anderson's 

method (Bn > 0) will accelerate a sequence to its correct limit faster than the other 

techniques. In the next chapter, we will check the validity of this assumption by 

testing Anderson's method and the other methods on several types of test problems. 



CHAPTER XI 

NUMERICAL TEST PROBLEMS 

In this chapter we compare the acceleration methods numerically. Test prob

lems will include linear and nonlinear problems with dimensions varying from 4 up 

to 8000. The problems were tested using FORTRAN coded programs. All problems 

except Examples 9 and 10 were computed on a Kaypro 286 PC with double pre

cision, giving a relative precision of 1 x 10-19 • Examples 9 and 10 were computed 

on a IBM 3081K (VS FORTRAN) with double precision, giving a relative precision 

of 2 x 10-16 • Dr. John P. Chandler, Oklahoma State University, developed the 

main software for the semi-dynamic Vector Aitken (VA) method, Wynn's original 

Vector e (Ve) method, the Modified Vector e (MVe) method, the MPE method, 

and Anderson's (AND) method. I wrote the program for the RRE method and 

made some modifications to Chandler's Ve, MPE, and AND programs. 

The results will be presented in figures which show graphs of the logarithm 

(base 10) of the infinity norm of the difference vector, Un-l = Xn -in_1 , as a function 

of the number of iterations. Exceptions are Examples 9 and 10. Example 9 is the 

graph of the infinity norm of the error vector, en= i- in, where sis the solution. 

Example 10 plots the Euclidean norm of the difference vector. The notation will be 

log10 lliln-1 II· The stopping criterion on all programs is llilnll < 1x10-15 . Therefore, 

this value, denoted by Cl5, will be considered as defining numerical convergence 

for all problems. 

Results were obtained for the basic iteration; all four variations of the VA 

method; the Ve method; orders one, two, and three for the MV e method; and for k 
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values of two through five (or the dimension of the problem if less than five) for the 

RRE, MPE, and AND methods. In addition, the AND method was applied with 

the relaxation option. However, this method never obtained results that matched 

those of Anderson's higher degree methods; hence, results of the relaxation method 

will be shown for Example 1 only. In addition, the convergence of the VA, Ve, 

and MVc methods were usually much slower than that of the AND, MPE, or RRE 

methods. Therefore, the results of the VA, V c, and MV c methods will not be shown 

for examples where their results did not compare favorably with the other methods. 

Because of the structure of the V c method, the results will show the difference 

vector of c~_1 , if n is even, or c~_1 , if n is odd. The RRE, MPE, and AND methods 

consistently obtained the best results, faster convergence. For each of these three 

methods, the results for the value of k which obtained fastest convergence for that 

particular method will be shown. In addition, some examples will show results for 

varying values of k for a particular method. 

Before we continue, it should be understood that throughout this study we 

have assumed that the fewest number of iterations implies the best results. This 

is not always the case. Because of the sophistication of some of the methods and 

the simplicity of the basic iteration scheme of some p:rmblems, more extrapolations 

and fewer iterations may _be more time consuming than the convergence of the basic 

iteration. However, this type of problem is not in the majority, and fewer iterations 

usually means less computer time and better results. 

EXAMPLE 1: The first example is a simple highly degenerate, linear problem 

(Anderson, 1965, Eq. (5.1)). Define F(i) of Equation (1) by 

( ..... ) ..... ..... ..... 
F x = Ax - db = O, 

where d is a free parameter and 



{ 
d, if i = j 

ai; = 1, if i =f. j . 
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Choose b such that the component elements of the solution s = ( s1, .. . , sm)T is 

Si= 2/i, i = 1, ... ,m. The matrix A can be written as A= L +UP+ D, where 

Land UP are defined by (86) and (87), respectively; and Dis the diagonal matrix 

[a11 , ••• , amm]· Therefore, the problem can be rewritten in the Jacobian iteration 

form 

i = G(i) = -n-1(L + UP)i + n-1 db. (91) 

Form = 20, d = 25, and i 0 = (1, ... , l)T; the basic iteration sequence con-

verges in fifteen iterations. All six acceleration methods also obtain convergence 

(results are not shown). The RRE, MPE, and AND methods converge after only 

four iterations (k = 2). The Ve and MVc methods converge in 5 iterations, while 

the VA method requires 18 iterations. 

When dis set to 15, the problem is a little different because the basic iteration 

scheme produces a divergent sequence. However, all acceleration methods obtain 

the correct solution. Figure 20 (page 95) shows best results for all acceleration 

methods except the VA method. Figure 21 (page 95) shows results of the basic 

iteration, the VA method, the relaxation option of the AND method (relax), and 

the MPE method for k = 3 and 4. Best results are for order 2 for the MV c method 

and k = 2 for the three methods using k values. As mentioned earlier, the VA 

method is inappropriate for divergent problems unless the vectors in and in+2 are 

interchanged in the formula. The graph of the VA method as shown in Figure 21 is 

without this change and is shown for comparison purposes only. The convergence 

rate of the other five methods are similar. 

One point of interest noted in Figure 20 is that the AND method converges 
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fork :;::: 2 in four iterations due to its ability to extrapolate after only two iterations 

even though the final value of k may be larger than 2. For the RRE and MPE 

methods, the number of iterations increases for k > 2 as shown in Figure 21 for the 

MPE method with k = 3 and 4. 

EXAMPLE 2: Consider the divergent linear problem (91) (Smith, Ford, and 

Sidi, 1987). The iteration scheme for this problem was discussed in Chapter X, 

and the results are shown in Figure 22 for the RRE, MPE, AND, and MVc meth-

ods. Even though the dimension of this problem is four, the degree of the minimal 

polynomial is three since the matrix A has one zero eigenvalue. All three methods 

are able to detect the zero eigenvalue as demonstrated by the fact that the best 

results are obtained for k = 3 when the first iteration is discarded. In addition, the 

AND method achieves machine accuracy (the norm of the difference vector equals 
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zero) fork = 4 and the first iterate discarded. However, the number of iterations 

remains seven and the accuracy of the sixth iterate is not as high as the sixth iterate 

fork= 3. If the first iteration is not discarded, the AND method still converges in 

seven iterations while the RRE and MPE methods require one additional iteration 

each to converge. However, for all three methods, the best results are obtained 

with k = 4. The results of the MVe method are for order 3 with the first iterate 

discarded. 

There is another point of interest concerning this example. Since the problem 

is linear and the degree of the minimal polynomial is three (k = 3), the exact solution 

should be found by all three methods in k + 1 = 4 iterations and one extrapolation. 

This was not done because computer computation is not exact arithmetic; hence, 

rounding errors result and exact convergence in four iterations is not obtained. 

Smith, Ford, and Sidi (1987) obtained a "wrong" solution for this problem 

using the RRE method. The reason their RRE method failed to converge to the 

correct solution is discussed in the Appendix. 

EXAMPLE 3: For a final loo~ at a linear case, we find the solution of the 

system 

5 7 6 5 23 

7 10 8 7 32 .... z= 
6 8 10 9 33 

5 7 9 10 31 

by use of the Jacobian iteration, (91), with an initial vector z0 = (0, O, O, O)T (Smith, 

Ford, Sidi, 1987, Ex. 1). The solution is (1,1,1,1). One of the eigenvalues for this 

problem is near 0.9985, causing the matrix I - A to be nearly singular. Figure 

23 (page 98) gives the results for the RRE and MPE methods (k = 4), the AND 

method (k = 4 and 3), and the MVe (order 3). This is a linear problem whose 
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minimal polynomial has degree four. Therefore, ignoring roundoff, convergence 

should be obtained in k + 1 = 5 iterations and one extrapolation. However, once 

again, this is not achieved due to rounding errors. 

One observation is· that whereas the AND methods converge m 7 and 11 

iterations, the RRE and MPE methods do not converge to high accuracy in even 25 

iterations. In fact, the convergence of these two methods does not improve in 250 

iterations for any value of k. For both methods, the log of the difference vectors 

:fluctuates between -9 and -13 with no set pattern. As a result, the log of the 

error vectors never gets smaller than -11. This inability to improve convergence 

beyond a certain value is referred to as "limited accuracy." The VA method and the 

e metho_ds have the same difficulty o:p. this problem only with much lower accuracy. 

There were several variations made to the basic iteration scheme to attempt 
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to achieve convergence. These included using combinations of different relaxation 

factors, discarding the first few iterates, and discarding a set number of iterates at 

the beginning of each extrapolation throughout the run of the program or only after 

the limited accuracy had been achieved. However, no improvement was made as all 

attempts eventually led to some value of limited accuracy. 

Before investigating the cause of this limited accuracy problem, a few defi-

nitions are in order. Given the vector norm llill, define the norm, llAll, and the 

condition number, cond(A), of the matrix A by 

llAll =sup 11
1
A
1
!

11
11 and cond(A) = llAllllA-1 11, 

:t=Fi) :z: 

respectively (Conte and de Boor, 1980). For the linear system Ai= b, define the 

relative error as 11fi~fl where i is the computed vector of z, and the residual error 

by llb~$i~ll. It is shown by Golub and Van Loan (1983) how the condition number 

and the relative errors in A, i, and b relate. If cond(A) ~ 1, then the relative error 

and the residual error will be of the same order of magnitude; hence, i is a good 

approximation of i. If the condition number is large, then a small change in the 

data MAY cause a large change in the solution. In short, the condition number 

"quantifies the sensitivity of the Az = b problem" (Golub and Van Loan, 1983). 

Ortega and Poole (1981) give the example that a condition number of 106 could 

result in a loss of 6 decimal digits of accuracy. A matrix with a large condition 

number is called an "ill-conditioned" matrix. 

The RRE, MPE, and AND methods all involve solving a linear system U z = b 

to determine the extrapolated vector. Therefore, consider the condition number 

of U for each extrapolation. For the· k values shown in the Figure 22, the first 

condition number for the RRE method is 1013 and for the MPE method is 1010• 

The remaining condition numbers vary between 103 and 109 • For the AND method, 

the first condition number is 104 and the condition number for the matrix when 
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convergence is obtained is 2.67. This is a major difference and could be a factor in 

allowing Anderson's method to overcome the limited accuracy problem. 

Since the example is a small linear problem, it can be solved by Gaussian elim-

ination. The condition number of the matrix A is 50 and the computed solution 

has a relative error of 0.1896 x 10-13 • The relative error of Anderson's computed 

solution is 0.2251 x 10-12 • The relative errors for the RRE and MPE methods never 

obtain an accuracy higher than 0.4467 x 10-10 and 0.1973 x 10-s, respectively. The 

AND method, even with the low condition numbers, still cannot achieve quite the 

same degree of accuracy that the Gaussian elimination method achieves. However, 

when comparing acceleration methods, the AND method definitely shows superi-

ority in overcoming the problem of limited accuracy. The RRE method for Smith, 

Ford, and Sidi (1987) failed to converge for this problem. See the Appendix for 

more details. 

EXAMPLE 4: The first nonlinear example is a quadratic problem with solu-

tions, (1,1,1,1) and (3,3,3,3) (Gekeler, 1972, Ex. V). Define G(i) of equation (2) 
"*·-

by 

G(i) =Ai+ b + Q(i), 

where 

The basic iteration converges to the solution (3, 3, 3, 3) in 52 iterations with a con-
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vergence criterion of 1 x 10-14, C14; however, in 400 iterations the norm of the 

difference vector never gets smaller than the normal convergence criterion, C15. 

This problem has some unusual properties.· Figure 24 (page 102) shows the 

results of the basic iteration, the Ve method, the MVe method (order 4), and the 

MPE and RRE methods with k = 4. Each of these methods converges to (3, 3, 3, 3). 

Figure 25(page102) shows the convergence of the VA with Q equal to formula {33), 

the AND method (k = 3), the MVe (order 3), and the MPE method (k = 1). These 

four methods converge to the solution (1, 1, 1, 1). In addition, Figure 25 shows the 

convergence of Newton's iterative method, the "most famous iterative method for 

obtaining roots of equations (as well as for solving systems of nonlinear equations 

... )." (Ortega and Poole, 1981, p. 128). Convergence is not obtained for the RRE 

method (k < 4) and the MPE method (k = 2 and 3). For these methods, the 

system either overflows or the limited accuracy is 10-1 • 

A possible reason for this difference for the methods involving k values is the 

matrix determined for computing the first extrapolated vector. For both methods 

that converge to (3, 3, 3, 3), the matrix is singular. As a result, the matrix of the 

linear system has a rank smaller thank; hence, a linear system of smaller degree is 

solved resulting in a first computed extrapolated vector near (3, 3, 3, 3). Remaining 

itere.tes and extrapolati~ns converge to this vector. The rank of the matrix for 

the other converging methods is k and the resulting extrapolated vector is near 

(1,1,1,1). 

As stated in Chapter I, small nonlinear problems will in practice be solved 

by methods other than those discussed in this thesis. To illustrate this point, this 

problem is solved by Newton's method. Let F(i) = G(i) - i, then Newton's 

method is the iterative formula 
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for F'(in) the Jacobian matrix of F(i) evaluated at Xn· As can be seen in Figure 

25, all the methods that converge to (1, 1, 1, 1) have some difficulty with limited 

accuracy. However, Newton's method and the AND method overcome this problem 

and achieve convergence fairly quickly. 

Example 5: The next example comes from Wynn (1964, Eq. (1)) and is 

referred to as the Lichtenstein-Gershgorin integral equation. The iteration scheme 

for n = O, 1, ... is 

where 

k r k18n(t) klOn(-rr - t) dt 
7r lo 1 - k2 cos( t + :z:) 1 + k2 cos( t + z) 

k-1 sin(z) 
+2arctan . , 

[1- cos(z)] [k3 cos(z) - k-2] 

The integrals are approximated by the trapezoid rule with end corrections: 

ra+mh {1 1 } la J(t) dt = h 2fo + /1 + · • · + fm-1 + 2fm + C 

for 

where 

(92) 

Choosing m = 73 and z 0 = (0, ... , Ol, the basic iteration converges in 136 

iterations. Figure 26 (page 104) shows the graphs for the convergence of the RRE, 

MPE, and AND methods with k = 5, the MVe method (order 3), and the VA 

method with Q equal to formula (33). As can be seen from the figure, this example 
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has very similar results. This problem does illustrate the importance of an accel

eration method. Due to the nature of an integral equation problem, the computer 

time required to compute one iterate is much more than any of the previous ex-

amples. Therefore, to decrease the number of iterations to less than one-fifth that 

required by the basic iteration is a significant reduction in computer time and cost. 

There are no other interesting. points concerning the results of this example other 

than the fact that this is the first example in which a method other than the AND 

method even came close to having the best results. The AND method is still quite 

competitive, however. 

Example 6: The next examples are the integral equation problems (Anderson, 

1965, Eqs. (5.10) & (5.11)): 

/ 2 (x) = 27ry'2/_1 f(t) (cos7rjx-tl)
2 dt-! and 

16 -1 4 4 
(93) 
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37ry'211 7r lz - ti 1 7rZ f(z) = -- f 2 (t) cos dt - -4 cos -4 , 
16 -1 4 

(94) 

with both solutions f(z) = cos(7rz/4). 

Letting m = 101, fo = (1, ... , 1 )T, and integrating both problems with the 

iteration scheme (92); Integral (93) converges in 75 iterations while Integral (94) 

diverges. Results for Integral (93) are shown in Figure 27 (page 106). The AND 

method clearly obtains the fastest convergence. Once again, the RRE and MPE 

methods ( k = 2) have similar convergence. This example will also show how using 

a convergent generated sequence in reverse order can affect the convergence rate. If 

the MPE method (k = 2) is applied to the sequence S = {i0 , ••• ,i1e+1}, the norm 

of the thirteenth difference vector is 10-11 as compared to 10-15 when the method 

is applied to the sequence T = { i1e+i, ... , i 0}. In addition, it requires four more 

iterations to converge to 10-15 . Though there are exceptions to the rule, applying 

the acceleration method to the sequence T instead of the sequence S usually reduces 

the number of iterations for convergence if Sis a convergent sequence. Using the 

most accurate estimate of the solution as the first term of the sequence will usually 

cause faster convergence. 

For Integral (94), the basic iteration scheme produces a sequence that diverges 

quadratically, the logarithm of the norm of the difference vector roughly doubling 

as n increases by one. Unlike many linear divergences, this divergence cannot be 

"tamed" by using a relaxation factor in the interval (0, 1 ). The two c methods also 

produce divergent sequences. Because the norm of the difference vectors increases 

rapidly even for the first few iterates, the RRE and MPE methods for k ~ 2 do 

not obtain convergence. Fork= 1, both methods converge, but the convergence is 

slow as illustrated in Figure 28 (page 106). The graphs clearly show that the AND 

method gives the best results. In fact, for all values of k, the results of the AND 

method are almost identical. 
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Example 7: This problem is the "model problem" of Varga (1962) and Young 

(1971). It is designed to solve the Dirichlet problem on a rectangle. Define Ras the 

interior of a rectangle, S as the boundary of the rectangle, and RU S as their union. 

Let G(z, y) and g(z, y) be continuous functions defined on R and S, respectively. 

Then the desired solution is a function u( z, y) that is continuous on RU S, is twice 

continuously differentiable on R, and satisfies Poisson's equation 

(95) 

In addition, u(z, y) = g(z, y) on S. If G(z, y) = O, then (95) reduces to Laplace's 

equation. 

The function u is found numerically by finding approximations to the function 

at a finite number of interior points. These points are obtained by superimposing 

a rectangular mesh of horizontal and vertical lines with uniform spacing. With 

reference to Figure 29 (page 108), define (zo,Yo) and (zp,Ym), p and m integers, 

as the lower left point and upper right point, respectively, of the rectangle. Also 

defined= Zp - z 0 ,w = Ym - y0 ,h = d/p, and k = w/m. Then the spacing of 

the rectangular mesh is h for the vertical lines and k for the horizontal lines. The 

spacing in Figure 29 is h = d/3 and k = w/4. Other points of the mesh are 

(zi,Y;) = (zo +hi, yo+ kj). Denote the functional value u(zi,Y;),i = O, ... ,n and 

j = O, ..• , m, by Uii = u(zi, Y;). Hence the solution will be the approximations Uii· 

Finite difference approximations to the second derivative with respect to z 

and y are defined by 

::~ = (u(z + h, y) - 2u(z, y) + u(z - h, y)] /h2 and 

:~ = (u(z, y + k) - 2u(z,y) + u(z,y- k)] /k2 , 

(96) 

resp_ectively (Ortega and Poole, 1981). To simplify the problem, assume the re-

gion RU Sis the unit square, h = k,(z0 ,y0 ) = (0,0), and G(z,y) = g(z,y) = 0. 



Figure 29. Rectangular Mesh with Spacing of 
h = d/3 and k = w/4 
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Therefore, adding the two equations of (96) and using (95) result in a natural 

iteration formula for the problem: 

(n+l) [ (n) (n) (n) (n) ] /4 
U·· = U·+1 · + U·-1· · + U· ·+1 + U· ·-1 IJ I ,J I ,J 1,J 1,J ' (97) 

i,j = 1, ... ,p-l. The right-hand side of (97) is referred to as the five-point Jacobian 

operator. 

The basic iteration generates a slowly convergent sequence as illustrated by 

the fact that the infinity norm of the 272nd difference vector is only 0.944519 x 10-7 

to six place accuracy. Figure 30 (page 109) shows the first 50 iterations of the best 

results of the RRE, MPE, and AND methods. The other acceleration methods do 

not work well on this problem. As an example, all three orders of the MV e method 

converge slower than or similar to the basic iteration, as shown in the figure for 



0 

-2 

-6 

MV<E 
order J 

-6-t-+->---<--+-t--..-+---+-------+----_,__-+-+--f---<--+-+--+--t-------+--------< 
0 10 20 ITERATIOU 30 40 

Figure 30. Results for Example 7: AND, 
MPE, RRE, and MV E 

50 

109 

order three. This problem is a good example to illustrate how using a relaxation 

factor other than unity and discarding a few iterations may provide a faster conver-

gence. Testing was done for relaxation factors between 0.5 and 1.5 and discarding 

one to five iterations. Though not all variations produced faster convergence, better 

results than those shown in Figure 30 were obtained for all three methods. Table 

15 (page 110) gives some of the results obtained and the variations for the AND 

and RRE methods. It should be noted that this is only the second test problem in 

which another method matched the results of the AND method. 

Example 8: This example is another nonlinear integral equation (Rall, 1969) 

F(z) = 1 + (7ro/2)zF(z) (1 F(y) dy, 0 ~ z ~ 1, 
Jo z+y 

(98) 

for 0 ~ 7ro ~ 1. The background material for the equation is fairly elaborate (Chan-

drasekhar, 1960). Due to the natural iterative form of (98), the basic iteration 



TABLE 15 

ITERATIONS REQUIRED FOR CONVERGENCE OF 
EXAMPLE 7 WITH MODIFICATIONS TO THE 

ANDERSON AND RRE METHODS WITH A 
CONVERGENCE CRITERION OF 10-7 

Method Relaxation Number of Discarded Number of 

AND 

AND 

RRE 

RRE 

formula is 

Parameter Iterations 

0.5 2 

1.0 1 

0.5 1 

1.0 1 

Fn+1(:c) = 1 + (7ro/2):cFn(:c) (1 Fn(Y) dy, 
Jo :c + y 

Iterations 

37 

45 

45 

44 

110 

(99) 

n = O, 1, ... , with F0 (:c) = 1, 0::; :c::; 1. However, analytic difficulties do develop 

involving the integration portion for finding F2(:c). Rall showed that for F0(:c) = 1, 

for all :c an element of the interval of integration, to be a satisfactory initial approx-

imation to the solution, w0 is restricted by 0 ::; 7ro ::; ( J2 - 1)/(ln2) ~ 0.59758 ... 

Therefore, he constructed a corresponding arithmetic model by introducing a "nu

merical integration rule" of the form 

where si, 0 < Si ::; 1, i = 1, ... , m, are nodes; the parameters wi, i = 1, ... , m, are 

weights; and mis the order of the rule. The integral portion of (98) becomes 

{1 F(y) dy--t f w; F(y;), 0::; :c::; 1. 
Jo :c + y i=l :c + Yi 

(100) 



The solution F(x) is approximated by determining F(xi), 0 ~Xi~ 1, 

i = 1, ... , m. Choosing Xi = Yii i = 1, ... , m and using (100), the value at Xi is 

m x· w· 
F(xi) = 1 + (7ro/2)F(xi) L ' 3 F(x;). 

j=l Xi+ Xj 

Letting bi; = ;ii+;;, i,j = 1, ... , m, Equation (98) becomes 

m 

fi = 1 + (7ro/2)fiLbi; f;, i = 1, ... ,m, 
i=l 
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where fi = F(xi)· Defining them-dimensional vectors i and f by i =(Ji, ... , fm)T 

and f = (1, ... , lf, respectively, the iteration formula takes the form 

where B = [bi;] and® stands for the component-by-component multiplication of 

the vectors: y@z= (y1z1, ... ,ymzm) for if= (y1, ... ,ym)T and z= (zi, ... ,zm)T. 

Table 16 gives the nodes and weights to seven places for the Gaussian integra-

tion rule of order nine (Milne, 1949). Using these values and 7l"o = O.l(i), for 

i = 1, ... , 10, Rall obtained convergence to eight decimal places for all cases; 

TABLE 16 

NODES AND WEIGHTS FOR THE GAUSSIAN 
INTEGRATION RULE OF ORDER NINE 

i Si Wi i Si Wi 

1 0.0159199 0.0406372 6 0.6621267 0.1561735 

2 0.0819844 0.0903241 7 0.8066857 0.1303053 

3 0.1933143 0.1303053 8 0.9180156 0.0903241 

4 0.3378733 0.1561735 9 0.9840801 0.0406372 

5 0.5000000 0.1651197 



TABLE 17 

NUMBER OF ITERATIONS REQUIRED TO OBTAIN 
CONVERGENCE ON RALL'S PROBLEM FOR 

DIFFERENT VALUES OF 7ro 

7ro Number of 7ro Number of 
Iterations Iterations 

0.1 7 0.6 17 

0.2 8 0.7 21 

0.3 10 0.8 28 

0.4 12 0.9 43 

0.5 14 1.0 10587 
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however, as 7ro increased so did the number of iterations for convergence, Table 

17 (Rall, 1969). Table 17 also shows that for 7ro = 1, convergence is extremely 

slow, and according to Rall has limited accuracy. Because w0 = 1 is by far the most 

difficult case, the acceleration methods are applied to this problem for this case only. 

Figure 31(page113) shows results obtained for the MPE, RRE, and AND methods 

for the first 50 iterations. What the figure does not show is that this problem 

is another example of limited accuracy for the RRE and MPE methods. Both 

methods converge to ClO, but neither one converges to Cll in 3000 iterations even 

with modifications to the relaxation factor and the number of iterations discarded. 

It should be added that the AND method converges to 015 for all values of k .:'.'.'.: 2 

in less than 132 iterations. 

Example 9: The next example has the largest dimensional value of all the test 

problems. It approximates the steady-state solution of the scalar three-dimensional 

Burger's equation 

(101) 
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on the unit cube (Hyman and Manteuffel, 1984). The parameter t represents time; 

Ut, U:in uy, and Uz are the partials of u with respect to t, x, y, and z, respectively; 

and A is the Laplacian operator 

{102) 

Hyman and Manteuffel tested an acceleration method they developed by studying 

the convergence of a second-order Runge-Kutta method for this problem using 

e = 0.02 and the Dirichlet boundary conditions 

u(O, y, z) = u(x, O, z) = u(x, y, 0) = 0 and 

u(l,y,z) = u(x,1,z) = u(x,y,1) = 1 

to provide a thin boundary layer. In addition, a time step of At = 0.5( Ax) was 

chosen. As in Example 7, a second order finite difference equation was used to 
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approximate the solution on a uniform grid of N points. They gave results for 

N = 8000 (a 20 x 20 x 20 grid of points) (Hyman and Manteuffel, 1984, p. 312). 

The exact structure of their test case is not clear. First, there is a class of 

second order Runge-Kutta integration methods, and Hyman and Manteuffel do not 

mention which one of these methods they used. Gear (1971) defined the two-step 

calculation of a Runge-Kutta method as 

qi Yn + ahJ(yn, tn) 

Yn+i - Yn + bhf(yn, tn) + chf(qi, tn + dh), 

where dy/dt = f(y,t); a,b,c, and dare parameters; and h = Az. To make the 

expansion of Yn+l and the Taylor series agree as closely as possible, the relationship 

between the parameters must be b = 1 - c and a = d = c/2. Therefore, the basic 

iteration formula for Burger's equation with u = y, .6.t = 0.5h, and Ut = f(y, t) is 

qi - Un+ a(.6.t)(ut)n 

Un+l - Un+ b(.6.t)(ut) + c(.6.i)(ut)n+i' 

where ( ut)n+i is Ut evaluated at qi and tn + dh. Three common second order Runge

Kutta methods are for c = 1/2, 3/4, and 1 (Gear, 1971, p. 31). A second unclear 

area is whether the number of grid points, N, includes the boundary points. Because 

the software and the exact parameters for their test problem were not available, the 

results shown for this example are for N = 8000 to be the number of interior points 

and for c = 1/2. Results of the basic iteration do not exactly match those shown 

by Hyman and Manteuffel; ~owever, the problem is still a good test problem due 

to the size of its dimension. 

Results obtained for this problem are shown in Figure 32 (page 115) for the 

AND (k = 4), MPE (k = 3), RRE (k = 1), and MVe (order 3) methods for the 

first 50 iterations. In addition, the graphs plot the infinity norm of the error vector, 
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en-l = s - xn_1, instead of the difference vector. The change is to match Hyman and 

Manteuffel's test problem as close as possible. The only methods that consistently 

increase the convergence rate are the AND and MPE methods. The other methods 

do not work very well for this problem. In fact, the convergence of the MPE and 

RRE methods is not smooth as illustrated by the periodic peaks in their graphs 

even though the basic iteration generates a convergent sequence. In addition, the 

MPE method is very erratic. Hence, these two extrapolation methods have their 

problems in this example. 

Example 10: The last example comes from Moler (1967). The problem is 

to solve for the eigenvalues and eigenfunctions of the Laplacian operator, Equa-

tion (102) in two variables on~y, on an "L" shaped region L, Figure 33 (page 116). 
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Figure 33. "L" Shaped Region for Example 10 

The eigenvalues q and the functions u(p), not identically zero, are to satisfy 

~u(p) + qu(p) = O, p = (z,y) an element of L 

u(p) = O,p an element of L. 
(103) 

Since there are infinitely many eigenvalues, only the smallest one is considered. 

Once again, the solution is approximated using finite differences over a square 

mesh of width h = 1/N, N an integer. Letting 1Lij = u(zi,Yi), the five-point 

Laplacian operator is define by 

(104) 

However, direct iteration of the Laplacian operator will produce the largest eigen

value. The smallest eigenvalue can be found by use of the five-point Jacobian 

operator: 

(105) 
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Denote qL and qJ as the eigenvalues of the Laplaciau and Jacobian operators, re-

spectively. Using equations (103), (104), and (105), the following relationship holds: 

. . 2 
4 [(ui+l,j + Ui-1,j + Ui,;+1 + Ui,;-1)/4ui; -1] /h 

(106) 

Hence, the approach of finding q, the smallest eigenvalue, is to solve the problem 

by using (105) and then convert the solution from an eigenvalue of the Jacobian 

operator to one of the Laplacian operator by the Relation (106). 

Figure 34 shows the results for the first 50 iteration'S for the AND, RRE, 

MPE, and both e methods. For this. last problem, the graphs plot the log of the 

Euclidean norm of the difference vector instead of the infinity norm. The RRE and 



118 

MPE methods do not work well on this problem. In fact, for values of knot shown 

in Figure 34, the convergence is slower than that obtained by the basic iteration. 

The AND and V c methods do accelerate the convergence, but even the accelerated 

convergence is slow. However, the solution can be obtained in fewer iterations by 

applying either one of these methods. (Note that the Ve method has enormous 

storage and time requirements in this example.). 



CHAPTER XII 

THE GENERALIZED MINIMUM RESIDUAL ALGORITHM 

Information on another acceleration method, the Generalized Mi~mum Resid

ual (GMRES) algorithm, was received just prior to the completion of this thesis. 

Because of the time factor and the complexity of the software of the method, test

ing of the method was minimal. The GMRES algorithm was developed for linear 

systems by Saad and Schultz (1986). The method has had further development 

by Kerkhoven and Saad (1987)1 Brown and Saad (1987), and Burkhart and Young 

(1988). There now exist routines for both linear and nonlinear problems. Discussion 

of this method will be sketchy. 

The nonlinear GMRES method resembles Newton's method for solving a sys

tem of nonlinear equations. However, GMRES reduces the effective dimension of 

the solution space .. The method involves finding an orthonormal basis of the Krylov 

subspace K1c = span{vi,Av1 , ••• ,A1c-1v1 }, where A is the matrix of the linear sys

tem· Ai= band v1 is th~ normal vector v1 = ro/ro, ro = b - Ai0 • The basis is 

found by a procedure called Arnoldi's algorithm. 

Software for GMRES was obtained from Burkhut and Young (1987) of Boe

ing Computer Services. The test driver program that was provided for the nonlin

ear GMRES .routine solved Laplace's equation on a Dquare mesh, using an SSOR 

(symmetric successive over-relaxation) iteration (Varga, 1962) with a mesh size of 

h = 1/22 and optimizing the over-relaxation factor OMEGA automatically dur

ing the process. Nonlinear GMRES solved this problem to full double precision 

accuracy using a total of 129 sweeps of SSOR over the grid. 
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Anderson's method (k = 5) on this problem, wifa. OMEGA set to 1.75, which 

is near the optimum value, requires only about 60 iterations to achieve full double 

precision accuracy. However, the GMRES software is organized in a very conserva

tive way in order to avoid divergence. If similar search strategies were used in the 

Anderson routine, the number of iteration would be increased considerably. (Such 

search strategies should be an option of the software, used only when divergence is 

anticipated or detected.) 



CHAPTER XIII 

SUMMARY AND CONCLUSIONS 

The intent of this thesis was to demonstrate the importance of acceleration 

methods and to compare several of these methods both theoretically and numeri

cally. For each method, the theory and the algorith:ln were derived for the linear 

case. However, through numerically testing the algorith~s on different types of 

problems, it was shown that the methods can be applied to both linear and nonlin

ear problems. 

Clearly, the purpose of acceleration methods is to reduce the number of it

erations required to solve numerically a mathematical problem in a vector space. 

All methods presented in this thesis demonstrate the capability of achieving this 

purpose, though the convergence rate may vary for different problems. This in itself 

is of great value since for the majority of practical problems reducing the number 

of iterations also reduces the computer time and co:st. In addition, acceleration 

methods also have demonstrated the capability of ac.:elerating some divergent se

quences to the solution of a problem. Therefore, a greater number of problems 

may be solved numerically by applying an acceleration technique to the generated 

sequence. 

There are three categories of acceleration models: the static model, the semi

dynamic model, and the fully dynamic model. If an extrapolation accelerates the 

convergence, then one may suspect that the fully dynamic model will provide the 

fastest convergence, since extrapolation is accomplished after every iterate once the 

first extrapolation is done. The only fully dynamic method for vectors presented, 
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Anderson's Generalized Secant Method, proves this intuition right. For all but a 

few test problems, Anderson's method is clearly superior in the number of iterations 

required for convergence. Even for the exceptions, AnG.erson's convergence rate was 

almost identical to the method that obtained the best results. In addition, there was 

not one test problem for which Anderson's method failed to converge to the solution. 

There were test cases, Examples 3 and 8, where the other methods had the problem 

of limited accuracy, the inability to achieve convergence with a precision of 015 even 

though convergence to a poorer precision is obtained. For these problems, making 

variations to the method by combining different relaxation parameters with different 

amounts of discarded iterates still did not achieve C15 convergence. Therefore, 

it is the author's conclusion that Anderson's method will consistently solve most 

numerical problems in fewer iterations than the other methods studied in this thesis, 

and that it is less susceptible to limited accuracy than are the other methods. 

As stated previously, it should be emphasized that because Anderson's method 

does require an extrapolation every iteration after the first extrapolation, the com

puter time required to solve some fast iterative problems may be more than if the 

method is not applied. However, for most problems, especially integral equation 

problems and problems with a divergent generated sequep.ce, fewer iterations is 

definitely desired; hence, Anderson's method will usually provide the best results. 

Another area I want to stress is the reversing of the generated sequence when 

applying the RRE and MPE methods to a convergent generated sequence. Test 

results show that this procedure will produce better results (though there were a 

few exceptions for certain k values and a particular problem) than if the sequence 

is not reversed. For a divergent sequence, results prove that the original sequence 

produces the best result. In almost all test problems, the RRE and MPE methods 

gave similar results. Even though these two methods seldom equaled Anderson's 

method, they consistently outperformed the vector Aitken and the vector e methods. 
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There are still areas of study that can be investigated. First, the GMRES 

method of Chapter XII can b.e fully tested and compared with the other methods. 

A second area that can receive future study is trying to convert either the RRE or 

MPE methods into a fully dynamic model. By using the principle introduced by 

Irons and Shrive (1987) in Chapter IV for the scalar case, perhaps a fully dynamic 

model can be derived for the RRE and/or the MPE raethods. 
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APPENDIX 

CORRECTIONS TO ARTICLE WRITTEN BY 

SMITH, FORD, AND SIDI (1987) 

David A. Smith, William F. Ford, and Avram Sidi wrote an article, "Extrap

olation Met.hods for Vector Sequences," in the SIAlJ Review, Vol 29 (1987) com

paring acceleration techniques. These methods included the vector epsilon method 

with both types of inverses, the generalized and the ?rimitive; the MPE method; 

and the RRE method. Several of the comments in the paper concerning their test 

results are not correct. This Appendix details the errors and corrections needed, if 

appropriate. 

In their Example 2 (Example 2 in Chapter XI also), they claim that the 

RRE and Vector Epsilon methods "converge" to a vector approximately equal to 

(13.36, -1.940, 5.532, -5.342). This is not the case. Both methods converge to 

the unique solution (1, 1, 1, 1). When converting the problem to the Gauss-Seidel 

iteration scheme (88), they continued to use the original vector b = (10, 4, 8, 6)T 

instead of the converted vector (D + L)-1b = (5, 1/3, -11/9, 163/9)T. As a result 

they determined the solution of a different fix point problem, and their method 

converged to the correct solution for their incorrect problem. Using the correct 

converted vector, the RRE and Vector Epsilon methods converge nicely to the 

solution (1, 1, 1, 1). 

They also state that because the system has a zero eigenvalue, the system of 

equations is singular fork= 4. However, for the initial vector they used, (0, O, O, 0), 

the error vector does not lie in a subspace spanned by any three eigenvectors of the 
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iteration matrix, and the system is not singular for this starting point and value 

of k. As a result, the MPE method is exact, in the absence of rounding error, for 

k = 4 but not for k = 3. If the initial iterate is discarded, as discussed in Chapter 

XI, then k = 3 is appropriate. 

For their Examples 1 and 8 (Examples 3 and 4 in Chapter XI), they stated 

that the RRE method failed to converge to the correct solution. Test results show 

that the RRE method does converge to the solution in both cases. For the first 

example, convergence is very similar to that obtained by the MPE method and is 

obtained for all values of k, though the convergence is hampered by the problem of 

limited accuracy. The second example is a problem with two solutions. The RRE 

method (k = 4) converges to the same solution as the basic iteration, (3, 3, 3, 3). 

However, it should be noted that fork< 4 the RRE method caused system overflow 

for this problem. 
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