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CHAPTER I 

INTRODUCTION 

The principal nutritional constraint on animal productivity from 

forages is the intake of digestible nutrients (Reid and Jung, 1982). 

The nutrient content of forage, its digestibility and conversion to 

fatty acids and microbial protein, and the quantity of forage that can 

be consumed determines the nutrient status of the grazing animal. 

Nutrient requirements of grazing animals are difficult to establish due 

to continually changing environmental conditions, differences in 

topography of pastures, and fluctuating body weights. 

The nutritive value of forage changes throughout the seasons of the 

year. The primary change that occurs with increasing maturity is the 

development of lignified cell walls . Additionally, nitrogen content 

declines. Waller et al. (1972) found that crude fiber content of native 

tallgrasses in north-central Oklahoma increased 41% from May to March, 

while crude protein content declined 80%. Rao et al. (1973) noted acid 

detergent fiber of hand clipped samples of tallgrass prairie forage 

increased 17% from June through October, while crude protein levels 

declined almost 50%. 

Raleigh (1970) found that digestible nitrogen intake, in relation 

to requirements of yearling steers for different rates of gain, became 

limiting in mid-June and digestible energy became limiting about two 

weeks later. Kansas bluestem forage becomes limiting in protein by mid-

1 



July and energy by late August for 200 kg yearling steers gaining .5 

kg/d {Rao et al. 1973). 

2 

Microbial metabolism in the rumen plays an important role in 

supplying available nutrients to the grazing ruminant. Ruminal 

fermentation end products are major sources of energy and protein for 

the animal. Microbial activity is dependent on the supply of readily 

fermentable carbohydrates, and nitrogen sources. Supplementation may 

enhance forage utilization by correcting microbial or tissue-level 

deficiencies. In general, high protein supplements increase forage 

intake and digestibility (Hibberd et al., 1987; Guthrie and Wagner, 

1988), while high energy supplements substitute for forage intake {Chase 

and Hibberd, 1985). Determining the optimal level and type of 

supplementation depends upon the quality and quantity of forage 

available. 

The development of management practices that will fully utilize 

nutrients from range forages requires better understanding of 

relationships between forage quality, intake and digestive physiology in 

grazing cattle. Therefore, the objectives of this research were to 

evaluate dietary composition, forage intake and rumen fermentation in 

beef steers grazing native tallgrass prairie rangeland throughout the 

spring and summer. 



CHAPTER II 

LITERATURE REVIEW 

The quantity and quality of native forage can vary dramatically 

throughout the growing season (Losada et al., 1982; Reid and Jung, 

1981). Nitrogen content declines and fiber increases with maturity 

(Waller et al., 1972; Rao et al., 1973; Wallace et al., 1972; Pieper et 

al., 1978), resulting in a decrease in digestibility and a corresponding 

decline in intake by grazing livestock (Cordova et al., 1978). Factors 

influencing forage intake include lag time, rate of digestion, extent of 

digestion and passage rate, which all relate to the amount of 

indigestible component in the forage. Diet digestibility, and thus rate 

of passage, is reduced if the nitrogen requirements of rumen bacteria 

are not met. Nitrogen requirements for maximum microbial growth are 

primarily a function of digestible organic matter intake (Van Soest, 

1982). The level of nitrogen needed in the rumen to support maximum 

rate of passage, thus allowing maximum intake, varies with carbohydrate 

digestibility. 

Forage Quality 

It is the maturation process of plants that gives rise to 

indigestibility. Two mechanisms have been proposed to account for this 

change (Morrison, 1979). The first is a physical theory where cellulose 

is protected from attack by rumen microbes or their enzymes by the 

"cage" effect of the ligno-hemicellulosic complex. The "bars" of the 

3 
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cage become closer together as the complex develops during the 

maturation process. Grinding forages partially destroys the cage by 

exposing ends of fibers, thereby increasing surface area and allowing 

more extensive microbial cellulolysis. The other theory proposes that 

components of hemicelluloses are more easily "recognized" by their 

respective hydrolases in young tissue. As the ligno-hemicellulosic 

complex builds up, polysaccarides are modified and enzyme recognition 

sites decrease in number. Morrison (1979) proposed that both mechanisms 

are involved with the physical impediments primarily affecting cellulose 

degradation and the enzyme impediment primarily affecting the other cell 

wall carbohydrates. 

In addition to increased lignin content and reduced digestibility, 

the protein content of forages decreases with advancing maturity. 

Waller et al. (1972) evaluated clipped samples of four major native 

grasses in central Oklahoma over a 15 year period. These samples 

averaged 8.43% crude protein (CP) in the spring and steadily declined to 

a winter low of 2.46%. Kansas researchers studying changes in the 

nutritive value of bluestem grass, found that CP in esophageal masticate 

declined 49% from 7.35% in June to 3.75% in October (Rao et al., 1973). 

Allen et al. (1976) noted an 84% decline in CP from 17.74% in May to 

2.89% in November for clipped samples of big and little bluestem. Using 

both hand-plucking and rumen evacuation methods, Raleigh (1970) 

determined that nitrogen content of sagebrush-bunchgrass range declined, 

while cellulose, lignin and crude fiber increased as grazing season 

progressed. Mccollum et al. (1985) noted that the CP content of 

esophageal masticate samples of blue grama rangeland in southern New 

Mexico declined from 18.4% in the early growing season to 11.7% at the 
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onset of dormancy. Holechek et al. (1981} evaluated esophageal 

masticate samples of forest and grassland range in eastern Oregon over a 

three year period and found no seasonal variation in CP concentration. 

The absence of seasonal variation was attributed to selection of a diet 

containing more shrubs and forbs at the end of the grazing season. 

The amount of available nitrogen present in forages is of great 

importance to livestock performance. Nitrogen availability (total N -

acid detergent insoluble N (ADIN}} in blue grama rangeland decreased 

from 84% during active growth to 67% during dormancy (Krysl et al., 

1987). Results from several New Mexico studies indicated that although 

levels of total nitrogen, soluble nitrogen and available nitrogen are 

affected by forage maturity, the ratios of nitrogen fractions to total 

nitrogen remain fairly constant (Krysl et al., 1987; Funk, 1986). The 

general range of ADIN noted in these studies was 11.2 - 16.7%. 

Available protein content reflected CP in these studies on blue grama 

rangeland. McMeniman et al. (1986) found that the intake and apparent 

digestibility of nitrogen are positively related to nitrogen 

concentration in the diet (r=.91; r=.94). Raleigh (1970) concluded that 

the first limiting nutrient for cattle on sagebrush-bunchgrass range was 

digestible nitrogen, which became limiting in mid-June. Digestible 

energy intake became limiting some two weeks later. In contrast, 

Holechek et al. (1981) concluded that digestible energy (predicted from 

IVOMD) was the first limiting nutrient for yearling heifers on mountain 

rangelands of eastern Oregon. 

Environmental factors affecting quality of range forages include 

available moisture, light intensity and daylength, temperature, wind, 

relative humidity and evaporative demand, frost and nutrient composition 
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of the soil (Wilson, 1982). It has been noted that the most important 

environmental influence on nutritive quality is growing temperature 

(Wilson, 1982; Van Soest, 1982). The general response of a wide range 

of species in sub-tropical and temperate regions is that dry matter 

digestibility is highest in the spring, falls to a low in late summer, 

increases slightly in autumn, and decreases again in winter (Andrews and 

Crofts, 1979; Powell et al., 1978). Increasing temperature has its 

greatest overall effect on plant development by increasing metabolic 

rate thereby promoting the accumulation of relatively less digestible 

structural tissues (Van Soest, 1982). 

The effect of moisture stress is of interest, particularly during 

periods of drought which may be experienced at some time in most forage 

regions of the world. Droughts severe enough to stop growth and cause 

leaves to shed surely effect forage quality. However, droughts of light 

to moderate severity may have no effect or actually increase 

digestibility (Wilson, 1982). Drought retards growth, delays aging of 

younger leaves and results in a correspondingly slower decline in 

nutritive quality (Wilson, 1981). Launchbaugh (1957) commented that 

drought years in the Kansas shortgrass prairie often produced high 

quality forage and animal gains well above average. Slight to moderate 

water stress does not usually result in lower forage nitrogen content 

(Funk, 1986). Usually, the concentration of nitrogen (Wilson and Ng, 

1975), most minerals (Gerakis et al., 1975) and soluble carbohydrates 

(Ford and Wilson, 1981) is greater in water stressed forage. In 

contrast, McMeniman et al. (1986) reported apparent digestibilities of 

dietary nitrogen within the rumen ranging from 70-90% when the grass was 



green, but fell to 58.5 and 37.6% when pastures were affected by 

drought. 

Diet Selection 

7 

Grazing animals exhibit the ability to select the most nutritious 

plants or plant parts when grazing in a heterogenous plant community. 

Bredon et al. (1967) proposed that selective grazing explained a 66% 

increase in CP of esophageal masticate from cattle grazing tropical 

forage pastures over that of clipped pasture forage. Wallace et al. 

(1972) noted that diets consumed by grazing animals were of a higher 

quality than the average of the total forage. Comparing esophageal to 

hand-clipped samples, Rao et al. (1973) found forage selected by cattle 

grazing tallgrass prairie was generally higher in protein and more 

digestible than clipped samples. Several researchers have noted lower 

fiber levels in esophageal samples than in hand-clipped samples (Rao et 

al., 1973; Ellis and Pfander, 1965; Edlefson et al., 1960; Keisling et 

al., 1968; Coleman and Barth, 1972). Hodgson (1982) also noted this 

relationship and reasoned that the stratified distribution of plant 

components within the sward may affect the quality of the diet by 

influencing the opportunity for selection. 

Palatability varies among species and plant parts. Generally leaves 

are more palatable than sterns, although in early growing stages, sterns 

are as digestible and palatable as leaves (Van Soest, 1982; Minson, 

1982). In general, leaf cell walls are more digestible than stern cell 

walls so plants with higher leaf:stern ratios will be more digestible 

(Morrison, 1979). Minson (1982) summarized results from four studies in 

which the average digestibility of leaf and stern fractions of grasses 
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consumed by cattle and sheep differed by only 1%, yet intake of leaf was 

15% higher than intake of stem. The higher intake of the leaf fraction 

was associated with a shorter retention in the rumen compared to the 

stem fraction. The mean retention time of leaf and stem of 26 forages 

was 24.6 and 33.3 hours, respectively (Laredo and Minson, 1973; Laredo 

and Minson, 1975; Poppi et al., 1981a and 1981b). The most probable 

reason for the longer retention time of stem is the greater proportion 

of large particles in masticated stem than in masticated leaf that 

results from the greater resistance of stern to physical breakdown 

(Minson, 1982). 

Rangeland vegetation is a heterogenous mix of grasses, forbs and 

browse. Environmental conditions affect availability, palatability and 

nutritive value of range plant species, and therefore diet selectivity. 

Although cattle are generally considered to be grazers, forb and browse 

consumption may increase at certain times of the year (Cook, 1983). 

Both cattle and sheep used forbs in mountain ranges of Utah, with 

utilization increasing as the growing season progressed (Cook et al., 

1967). Mccollum (1983) noted a 60% increase in forb consumption by 

grazing steers as season progressed f rorn early growing to early 

dormancy. Grasses tend to mature more quickly than forbs and become 

less palatable (Cook, 1983). Cook (1983) noted that forbs retained 

adequate or borderline digestible protein and phosphorus throughout most 

of the grazing season, whereas grasses were decidedly deficient in both 

nutrients after the heading stage. In Oklahoma, cattle will select 

forbs at various times of the year, particularly June, however, the 

occurence of forbs is low on tallgrass prairie (Dweyer, 1961). 
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Nutrient Availability 

The amount of net energy derived from the feed consumed is the 

major determinant of nutritive value. Fifty percent or more of the 

potentially useful energy of forages may be found in the cellulose and 

hemicellulose fractions (Crampton et al., 1960). Extensive fermentation 

in the rumen enables the ruminant animal to utilize the structural 

carbohydrates, which are less available to monogastrics. The end 

products of carbohydrate fermentation are volatile fatty acids (VFA), 

lactic acid, carbon dioxide and methane. VFA provide 50-85% of the 

metabolizable energy for ruminants on forage diets (Owens and Goetsch, 

1988). The proportions of particular VFA vary with type of diet, level 

of intake and frequency of meals {Sutton, 1979). In addition, the 

metabolism of the three major VFA differ significantly. Acetate and 

butyrate are used for oxidation. Acetate is the most important 

lipogenic precursor in ruminants. Propionate is a primary glucogenic 

substrate (Van Soest, 1982). 

The non-structural carbohydrates in forages include the simple 

sugars glucose, fructose and sucrose, as well as the storage 

polysaccarides starch and fructans. Starch, the prevalent storage 

polysaccaride in tropical grasses, tends to accumulate in the leaves 

(Smith, 1973) and can account for 1-5% of plant tissue dry matter 

(Morrison, 1979; Van Soest, 1982). Fructans, the principal storage 

component in temperate grasses, comprise up to 25% of plant tissue dry 

matter (Morrison, 1979; Van Soest, 1982) and tend to accumulate in the 

stem (Smith, 1973). Simple sugars comprise 5-10% of plant dry matter in 

most forage species (Van Soest, 1982). 

Lipids are present in leaves at levels up to 10% of dry weight 
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(Hawke, 1973), although usually less than 3% lipid is present. The 

concentration of utilizable lipid declines with the age of the plant and 

varies with proportion of leaves to stems (Hawke, 1973; Van Soest, 

1982). 

The energy supply from fermentable carbohydrates and other energy 

sources determines the rate of protein synthesis by ruminal microbes 

(Hogan, 1982). As forage matures, the availability of the structural 

carbohydrates declines, due to increased lignification and complexes 

formed as discussed previously. The cellular contents, which comprise 

the bulk of the protein, fructans, sugars, lipids and organic acids are 

totally available to digesting organisms and free from the effects of 

lignin or encrusted cell walls (Van Soest, 1982). However, these 

contents are translocated from stem and leaf to the inflorescence as 

grasses, forbs and browse flower and mature, causing a decline in forage 

quality (Hogan, 1982). 

The capacity of the diet to provide adequate ammonia and essential 

and nonessential amino acids for tissue and microbial protein synthesis 

reflects the protein value of the diet {Hogan, 1982). Non-protein 

nitrogen (NPN) from the feed provides ammonia, and true protein provides 

amino acids and ammonia. Grasses have 14-34% of their tota£ nitrogen as 

NPN {Van Soest, 1982). Dietary nitrogen sources are utilized by ruminal 

microbes which pass to the small intestine and comprise the primary 

protein source for ruminants. Ruminal microbes are composed of 

approximately 50% true protein, of which 67-87% is digestible {Van 

Soest, 1982; Owens and Bergen, 1983). Because the protein in most 

forages is quite susceptible to rumen degradation {Ulyatt, 1981; NRC, 

1985), small amounts of plant protein N reach the small intestine of 



ruminants on forage diets. Therefore, the contribution of microbial 

protein to total protein reaching the small intestine is relatively 

greater for grazing animals than animals on concentrate rations (NRC, 

1984). 

11 

Ammonia is derived from degradation of dietary protein and 

microbial protoplasm, and hydrolysis of dietary NPN and urea recycled to 

the rumen (Owens and Bergen, 1983). Ammonia is destined for uptake by 

microbes, absorption through the rumen wall or flushing to the omasum 

(Owens and Bergen, 1983). Since ammonia is the main source of nitrogen 

used by bacteria for incorporation into cellular protein (Demeyer, 1981; 

Van Soest, 1982), low armnonia levels may result in nitrogen limitation 

(Satter and Slyter, 1974) and result in reduced bacterial yields. 

However, nitrogen recycling serves to augment low nitrogen diets, 

providing ruminal microbes with an ammonia source and resulting in more 

nitrogen reaching the duodenum than was ingested. Ammonia that is 

flushed from the rumen is subject to absorption and recycling, or 

absorption and excretion in the urine, or is excreted in the feces after 

being incorporated into microbial nitrogen in the large intestine. 

Immature forages contain low levels of cell wall constituents that 

are readily ferrnentable, supplying ruminal microbes with a rich source 

of both energy and protein. As forages mature, energy becomes less 

available and protein levels decline. The protein content declines more 

rapidly than organic matter digestibility and the ratio of digestible 

organic matter to crude protein (DOM:CP) rises (Hogan, 1982). In a 

review (Hogan, 1982), data was presented from several studies involving 

23 temperate grasses and clovers harvested at varying stages of maturity 
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and fed to sheep. These studies indicated that ammonia levels decline 

as the DOM:CP ratio increases, as occurs with advancing maturity. 

Intake 

The amount of forage consumed is the most important factor in 

meeting the nutrient requirements of the grazing animal (Allison, 1985). 

The changes in forage consumption with advancing season have a dramatic 

effect on the grazing animal's ability to select and consume a diet that 

supplies adequate nutrients for maintenance and performance, as well as 

for ruminal microbial use. Also, because of the heterogenous nature of 

range plants and selective grazing, nutritive value and digestibility of 

the range herbivore diet is difficult to assess. Crampton et al. (1960) 

based the nutritive value index for forages on voluntary intake and 

digestibility. Reviews on methodology to determine forage intake by 

range ruminants include those by Cordova et al. (1978) and Kartchner and 

Campbell (1979). 

Several metabolic and sensory factors are known to affect meal size 

and frequency. Feeding behavior is also influenced by certain hormones 

and metabolites as well as gastrointestinal factors. Depending on the 

nutrient density and physical structure of the feedstuff, certain 

factors will prevail in signaling the end or beginning of a meal. The 

energy balance control center in the brain is the ventromedial nuclear 

region of the hypothalamus. Stimulation of this satiety center inhibits 

feeding (Hetherington and Ranson, 1939). 

Energy requirements for maintenance and production in addition to 

limitations on gastrointestinal capacity are dominant factors 

controlling feed intake of beef cattle (Fox, 1986). Intake in relation 



to body weight begins to decline at about 350 kg for an average frame 

steer, indicating that degree of fatness and/or a reduction in demand 

for growth influences voluntary intake (Fox, 1986). 
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Grovum (1986} suggests that intake of poor to moderate quality 

roughages is probably limited by distention of the reticulum and cranial 

sac of the rumen. With low quality roughage, nitrogen status 

(protein:energy) in the absorbed nutrients and palatability may play a 

role in determining intake. In contrast, VFA, osmotic pressure in 

reticulo-rurninal digesta, various hormones and distention may regulate 

intake of high quality roughage. 

Since the studies of Campling and Balch (1961), Campling et al. 

(1961) and Balch and Campling (1962), fill has been accepted as the 

primary factor regulating forage intake in ruminants. Fill is affected 

by two major processes - rate of digestion and rate of passage of 

undigested residues (Ellis, 1978; Van Soest, 1982). Mccollum and 

Galyean (1985b) noted that steers grazing blue grama forage had fairly 

constant fecal outputs throughout the grazing season, indicating that 

the steers ate to a constant fill. Thornton and Minson (1972) fed 

forage diets to sheep hourly and found level of fill to be relatively 

constant with little influence on intake. However, a correlation of .97 

was found between rate of disappearance and voluntary intake (Thornton 

and Minson, 1972). Retention time of ruminal dry matter and lignin 

content of the diet were negatively correlated (r=-.93, r=-.97) with 

intake. They concluded that the fiber component of the diet, through 

its influence on retention time, was the main factor limiting dry matter 

intake. 

Changes in diet composition affect rate of digestion, extent of 
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digestion and passage rates. Mccollum and Galyean (1985b) noted an 

increase in forb consumption and organic matter intake in the early 

dormant season in southern New Mexico. Forbs are similar to legumes and 

contain less cell wall, more lignin (Kothrnann, 1980; Van Soest, 1982) 

and are more rapidly digested than grasses (Short et al., 1974; 

Kothrnann, 1980). When legumes and grasses were compared, Thornton and 

Minson (1973) found a 28% increase in intake of legumes over grasses at 

similar digestibilities. They stated that decreased retention time, 

increased organic matter in rumen digesta, and the ability of legumes to 

pack densely contributed to intake differences between the forage types. 

Rate of passage is crucial, influencing not only feed intake on 

roughage diets, but also ruminal digestibility by modifying time 

available for rurninal digestion. Time for digestion is especially 

important with forage diets. Welch and Smith (1970) have shown that the 

fibrous nature of the feed influences rumination time. Longer retention 

time will increase total digestibility and reduce bypass (Owens and 

Isaacson, 1977). Cellulose and hemicellulose are poorly utilized at 

sites beyond the rumen (Hogan and Weston, 1967), while carbohydrates and 

high quality proteins are utilized more efficiently post-ruminally 

(Little and Mitchell, 1967). Hungate et al. (1959) stated that all but 

4% of fermentation occurs in the rumen. Reports of Ulyatt and Egan 

(1979) and Hoover (1978) indicate that 6-40% of the hemicellulose and 3-

27% of the cellulose are digested post-ruminally. Reports reviewed by 

Phillipson (1977) indicated about 10% or more of cellulose is digested 

in the cecum. Therefore, ruminal digestibility influences the end 

products of digestion through alteration of site and extent of 

absorption (Owens and Isaacson, 1977). 
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The passage of coarser feed particles from the rumen to the lower 

tract is impeded by the omasal filtration system (Owens and Isaacson, 

1977). The selective retention of coarse particles and their further 

rumination reduces particle size which delays passage. The retention 

time of these particles is inversely related to the rate of production 

through rumination and digestion (Van Soest, 1982). 

The level of rumen fill is not constant among diets but is 

influenced by other, presumably nutritional, factors (Egan, 1970). One 

such factor is protein content of the diet. Thornton and Minson (1973) 

suggested that the low protein content of some plants may reduce intake 

and gut fill. When crude protein content of a pasture falls below 8-

10%, appetite is depressed and intake declines (Blaxter and Wilson, 

1963; Minson and Milford, 1967). Milford and Minson (1965) observed 

that intake of tropical forage by sheep declined significantly when 

forage CP was less than 7%. Correlations of .72 and .63 were found 

between intake and CP for two tropical grass species when their CP 

content was below 7%. When these grasses contained over 7% CP, intake 

and %CP were not well associated. The authors stated that the failure 

of CP and intake to be correlated when CP was above 7% was probably due 

to nitrogen requirements of active rumen flora being satisfied at this 

level. Van Soest (1982) also suggests that diet crude protein 

concentrations below 7% do not meet the nitrogen needs of rumen 

microbial populations. 

When legumes were added to tropical grass diets, intakes increased 

sharply with a rise in CP content from 3.6% to 6%. The rapid rise was 

followed by a less rapid linear increase as CP increased from 6% to 22%. 

This increase in intake above 6% CP was attributed to substitution of 
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legumes for Pangola grass (Minson and Milford, 1967). Intakes of higher 

quality roughage containing greater than 6% CP are probably limited by 

gut distention and various hormones and metabolites as discussed 

earlier. 

Protein supplementation generally enhances voluntary intake of 

forages containing less than 7% CP (Allden, 1981). Hunter and Siebert 

(1985) fed speargrass (3.9% CP} and Pangola grass (6.2% CP} to steers. 

The Pangola grass was consumed in greater amounts than speargrass (17.0 

vs ll.6g/kg BW). However, cattle on both diets responded to protein 

supplementation by increasing intake, indicating that nitrogen 

deficiencies were limiting rumen function on the unsupplemented diets or 

possibly amino acid deficiencies in the small intestine were limiting 

intake. Mccollum and Galyean (1985a) noted higher voluntary intakes and 

faster particulate passage rates when steers consumed a cottonseed meal 

supplement with a prairie hay diet. Guthrie and Wagner (1988) reported 

a curvilinear increase in intake of prairie hay by heifers and steers as 

level of soybean meal supplement increased. Dry matter digestibilities 

increased with increasing level of supplement as well. Increased in 

situ forage digestion was noted by Barton and Hibberd (1984) when low 

protein levels were fed to steers on low quality native grass hay, 

however, intake was not affected. Higher levels of supplemental protein 

produced further increases in forage digestion and an increase in hay 

intake. Performance of cattle grazing native bluestem pasture in late 

summer has been improved with the feeding of small amounts of high 

protein supplement (Gill et al., 1984; Lusby and Horn, 1983). 

Yield and physical presentation of available forage to grazing 

animals may have marked effects on feed intake under intensive pasture 
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conditions, but may have no measurable effects on feed intake on 

extensively managed pastures (Arnold, 1964; Arnold and Dudzinski, 1967; 

Greenhalgh et al., 1966). Consumption of forage tends to increase as 

yield increases. Several researchers have studied the effect of herbage 

availability on intake (Arnold and Dudzinski, 1967; Broster et al., 

1963; Greenhalgh et al., 1967) and found intake to increase with 

increasing allowances. Greenhalgh et al. (1966) stated the relationship 

between herbage consumption and herbage allowance is probably 

curvilinear. 

Dry matter intake is often limited by total feed available, terrain 

or inaccessibility of range forage and palatability (Raleigh, 1970). 

Arnold (1960) found that rumination time declined as forage availability 

declined. Ruminants spend more time grazing and less time ruminating 

when forage is scarce. This would impact digestibility of forages, as 

rumination increases digestibility. Chacon and Stobbs (1976), working 

with cattle grazing Setaria anceps, concluded that as amount of leaf 

material available was reduced, bite size, intake and biting rate 

declined. Animals with low quality diets apparently spend less time 

grazing and select small bites. Nastis and Malechek (1980} also found 

increased biting rate and grazing time as forage availability declined 

on crested wheatgrass. Both studies indicated that up to a certain 

point, animals increased grazing time and biting rate, and decreased 

bite size to compensate for declining forage availability. However, at 

very low availability, overall intake, bite size and rate were reduced. 

Consumption of dead material and stern increased with declining 

availability and therefore reduced nutrient intake. 
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Digestibility and Rurninal Fermentation 

Digestion and Passage 

Feed disappears from the digestive tract by the processes of 

digestion and passage. The primary site of digestion is the rumen. 

Relationships among plant components, microorganisms in the rumen and 

the animal determine forage utilization. The digestive process can ?e 

divided into rate of digestion, digestion lag and potentially digestible 

fraction (Mertens and Ely, 1982). The most important component 

affecting digestiblity and intake is the size of the potentially 

digestible fraction, which is also the component most highly related to 

chemical composition, specifically lignin (Mertens and Ely, 1982). 

Mertens and Ely (1982) reported a correlation of .78 between lignin 

content and the potentially digestible fraction (determined by 72 h cell 

wall indigestibility). The extent of rurninal fiber digestion is related 

to rurninal retention time as well as the degree of lignification. The 

animal alters the fermentative environment by mastication and rumination 

to decrease particle size, increasing surface area for microbial attack. 

Mertens (1977) noted that the rate of digestion is directly related to 

potential extent of digestion, and that the extent may be related to the 

morphological, crystalline or physical nature of the fiber. Also, 

factors inhibiting microbial growth or their fiber digesting enzymes may 

be involved (Mertens, 1977). If fiber digesting microbes grow more 

slowly than average, then an increase in passage rate would decrease 

their concentration and result in a decline in fiber digestion (Mertens, 

1977). Faichney and Gheraldi (1986) observed depressed organic matter 

digestibility with increased intakes. They contributed this decline in 
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digestibility to shorter ruminal retention time. Any treatment which 

alters feed intake can be expected to alter ruminal retention time 

(Warner, 1981) and therefore extent of digestion. The limiting process 

of clearing indigestible fibers from the rumen is particle size 

reduction (Welch, 1982; Ellis et al., 1986). Particles broken down to 

sizes eligible for passage from the rumen prior to microbial digestion 

could be washed from the rumen, resulting in depressed digestibility. 

Poppi and Norton (1980) noted that the resistance to flow of particles 

of different sizes from the rumen was closely related to particle size 

with no difference between grasses and legumes or between young and 

mature forages. Waldo et al. (1965) pointed out that a portion of 

potentially digestible cell wall constituents is undigested due to rate 

of passage. 

Microbial Protein Synthesis 

In addition to producing the primary energy supply via fermentation 

and VFA production, microbial cells provide a high quality protein 

source to the host animal (Owens and Zinn, 1988). Dependent on several 

dietary and animal factors, 40-80% of the total protein reaching the 

small intestine is of microbial origin (Owens and Bergen, 1983). Amino 

acid content and biological value of microbial proteins have been shown 

to remain relatively constant on a variety of diets (Purser, 1970). 

Digestibilities of bacterial and protozoal nitrogen fed to rats have 

been estimated at 74-79% and 87-91%, respectively. Increases in the 

ratio of essential to non-essential amino acids resulting from the 

conversion of feed protein to microbial protein have been demonstrated 



when low quality proteins are fed to ruminants {Ben-Ghedalia et al., 

1974). 
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Efficient microbial protein synthesis requires an adequate supply 

of nitrogen. In vitro and in vivo experiments have indicated that this 

is achieved when ammonia-N concentration in the rumen is about 2-5 

mg/100 ml {Satter and Slyter, 1974; Okorie et al., 1977). The 

percentage of microbial-N derived from ruminal ammonia has been reported 

to range from 40-100% under various conditions {Pilgrim et al., 1970; 

Nolan et al., 1976; Al-Rabbat and Heaney, 1978). In grazing animals, 

nitrogen available to rumen microbes is derived from the breakdown of 

plant protein, plant non-protein nitrogen, urea nitrogen recycled to the 

rumen from the blood and saliva, and sloughed epithelial cells. The 

amount of nitrogen recycled to the rumen through the saliva is higher 

for grazing animals or those consuming unprocessed forages than those 

fed concentrates or processed forage diets (Van Soest, 1982). 

Microbial protein synthesis can occur in the rumen on diets in 

which urea is the sole nitrogen source {Hume, 1970). However, a 

deficiency of preformed amino acids may result in inefficient microbial 

growth. Hume {1970) fed sheep diets with nitrogen provided by urea, 

gelatin, casein and zein, resulting in microbial synthesis of 17.1, 

19.8, 23.3 and 22.5 g CP/100 g organic matter digested. He suggested 

that microbial production on the urea and gelatin diets was limited by 

the rate of synthesis of one or more amino acids by rumen bacteria. 

An adequate supply of readily available carbohydrate is required to 

provide ATP for bacterial growth. Energy from fermentation must be 

supplied at a rate that matches the synthetic abilities of rumen 

microbes in order to promote efficient utilization of degraded dietary 
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nitrogen (Oldham et al., 1977). Stern et al. (1978) increased microbial 

growth in continuous cultures by increasing the supply of nonstructural 

carbohydrates in isocaloric diets with similar VFA production and dry 

matter digestibilities. Stern and Hoover (1979) concluded that the 

extent and rate of degradation in the rumen of both nitrogen and 

carbohydrate sources are important determinants of the efficiency of 

microbial growth. 

Dilution rate of bacteria alters efficiency of bacterial growth. 

Accelerating fluid dilution rate promotes elevated microbial CP 

synthesis because the microbial maintenance requirement is reduced 

(Isaacson et al., 1975). Hogan and Weston (1970) reported that 

increasing dilution rates in sheep from .06 to .1/h increased efficiency 

of microbial production from 31 to 37 g N/kg OMD. Increasing 

roughage:concentrate ratio in the diet results in increased liquid 

dilution rate and increased protein synthesis (Cole et al., 1976; 

Whitelaw et al., 1984). Substrate energy directed toward microbial 

maintenance was shown to decrease from 55 to 15% as fluid dilution rate 

was raised from 2 to 12%/h (Isaacson et al., 1975), increasing the 

amount of energy derived from substrate which may be used to support 

microbial growth. Since bacterial mass is inversely related to growth 

rate (Isaacson et al., 1975), lower bacterial numbers would be expected 

at higher dilution rates. 



Techniques for Measurement of Digestion, Ruminal 

Fermentation and Microbial Activity 

Microbial Markers 
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The extent of dietary protein degradation in the rumen and 

subsequent synthesis of microbial protein can greatly alter amounts and 

kinds of amino acids available for absorption in the small intestine of 

ruminants. In order to clarify the effects of dietary regimens in 

altering the proportion of microbial protein reaching the lower tract, 

reliable estimates of microbial protein synthesis are essential. 

Estimates of microbial protein formation obtained with different 

markers can differ widely. Even with individual marker methods, there 

is often considerable variability both within and between animals (Dufva 

et al., 1982). The validity of any marker technique is difficult to 

establish since there is no absolute method for measuring amounts of 

microbial protein in vivo (Theurer, 1980). 

Ellis and Pfander (1965) fed sheep diets devoid of nucleic acids 

and found that 14-18% of total microbial nitrogen in ruminal fluid could 

be attributed to nucleic acid nitrogen. Of this, RNA nitrogen comprised 

10.4-14.8% and DNA nitrogen varied from 2.2-4.1%. Total nucleic acid 

nitrogen and RNA were highly correlated with total microbial nitrogen 

(r=.80 and r=.72, respectively). Similarly, Smith et al. (1969) 

reported a relatively constant portion (19%) of total microbial nitrogen 

was in the form of microbial nucleic acid N using rumen fluid from 

calves fed various roughage:concentrate diets. The relative consistency 

of RNA-N/total N ratio allows RNA-N or nucleic acids to be used as a 

marker. 
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The physiological stage of bacteria can effect nucleic acid 

content. Adams et al. (1976) reported values of 10-15% nucleic acid in 

mature, dry bacterial cells, while as much as 21% of rapidly growing 

bacteria were composed of nucleic acids. Bergen et al. (1982) have 

shown that the RNA to protein ratio increases with increased microbial 

growth rate. Therefore, the ratio should be quantified each time an 

experiment is conducted. 

Estimates of nucleic acid N leaving the rumen and available for 

postruminal use relies on the ability to acquire a satisfactory sample. 

Sampling at the duodenum poses the risk of digestion of nucleic acids 

and absorption of their constituents. Schelling et al. (1980) stated 

that nucleic acid digestion occurs fairly early in the small intestine. 

Also, backflow of ingesta into the proximal duodenum is a potential 

source of contamination. Therefore, cannula placement is extremely 

important. Abomasal sampling has a potential stratification problem. 

However, careful abomasal sampling would be the safest approach 

(Schelling et al., 1980). 

Since several studies have demonstrated negligible amounts of feed 

nucleic acids surviving rumen degradation, all nucleic acid nitrogen 

passing to the lower tract is assumed to be the contribution of 

microbial protein. This assumption can be a problem with high bypass 

feeds. Additionally, information on the amount of endogenous protein 

secretions to the small intestine is scarce. 

Analytical procedures to determine microbial protein synthesis via 

nucleic acids are generally laborious and recoveries are not complete. 

Progress has been made with the use of the purine and pyrimidine bases 

as indicators of microbial protein synthesis. A commonly used procedure 
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is one detailed by Zinn and Owens (1980) for estimation of purines 

(RNA). Data from Zinn and Owens (1980) support the use of nucleic acids 

as a microbial marker. However, they caution that measurement of the 

ratio of nucleic acid to protein in isolated microbes should be 

determined for each trial. They observed ratios of nucleic acid N : 

total N in isolated ruminal bacteria to range from .16 for very low 

quality forage diets to .20 for typical high concentrate diets. 

2,6-diaminopimelic acid (DAPA) is a cell wall constituent of 

several rumen bacteria and reportedly absent in plant material or 

protozoa. Several researchers (Ibrahim et al., 1970; Hutton et al., 

1971; Ling and Butlery, 1978) found no DAPA in dietary constituents 

using acid ninhydrin, which is more color specific than the ninhydrin 

normally used in automated analysis. In contrast, Theurer (1980) 

detected DAPA (or another acid with similar evolution time) in 

hydrolysates of bacteria, protozoa and all feedstuffs analyzed. 

Protozoal DAPA is generally attributed to engulfed bacteria. Whitelaw 

et al. (1984) found estimates of bacterial N based on DAPA 

concentrations to be highly variable and frequently impossibly high. 

They suggested this was most likely due to non-representative sampling 

of the rumen microbial population, occurring particularly when 

conditions within the rumen are unstable. 

2-amino ethylphosphonic acid (AEP) in protozoa was reported by 

Horiguchi and Kandatsu (1960) and suggested as a marker by Abou Akkada 

et al. (1968). However, data from Rahnema (1977:in Theurer, 1980) 

indicate absence of AEP in protozoa, and Whitelaw et al. (1984) found 

considerable concentrations of AEP in rumen bacteria, thus precluding 

its use as a protozoal marker. 



D-alanine occurs in relatively constant amounts in cell walls of 

most bacteria (Schleifer and Kandler, 1972) and has been used as a 

bacterial marker. Garrett et al. (1980) reported on an enzymatic 

procedure for the analysis of D-alanine. 
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Rahnema (1977:in Theurer, 1980) compared various amino acids for 

estimating bacterial protein in abomasal digesta of steers fed a grain 

diet. There was excellent agreement among four of the methods for 

ranking treatment means: corrected DAPA (adjusted for feed concentration 

of this acid), lysine, DAPA and leucine, or lysine and leucine. 

However, it is not known which of these amino acids or combinations 

would most accurately reflect the actual bacterial protein content of 

digesta. 

In Situ Methods 

Estimation of ruminal forage digestion can be made using the nylon 

bag technique (Lowrey, 1970). This technique involves the use of nylon 

bags containing diet samples attached to a suspension device. At 

various time intervals, the bags are submersed into the liquid strata of 

ruminal contents and the lines are secured to the rumen cannula to allow 

bag movement with contents. 

Various factors affecting this technique for examination of ruminal 

digestion have been i~entified. Bags introduced at different times and 

removed as a group results in less variation within procedure than 

introduction all at once and removal at specific subsequent time 

intervals (Nocek, 1985). Sample size effects on digestion appear to be 

negligible as long as sample weight:bag surface area is kept constant 

(Playne et al., 1978). If this ratio is too small, overestimates of 
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ruminal digestion will occur, and if too large, underestimates are 

likely (Santos et al., 1984). Nocek (1985) recommended 12.6 mg/cm2 as 

comparing most favorably with literature in vivo estimates for ruminal 

nitrogen digestion. 

Pore size and size of sample grind will effect the influx of 

digesting agents and ruminal particles, and efflux of sample material 

and digested residues. Weakley (1983) concluded that bag materials of 

small pore (5 um) size limit influx of digesting agents regardless of 

efflux of digested residues. Van Hellen and Ellis (1977) recommended a 

pore size of no larger than 10 um. However, Nocek (1985) found that 40-

102 um pore sizes were similar in estimated ruminal protein availability 

and compared more favorably with in vivo literature estimates than 

smaller sizes. The specific ingredient and nutrient being investigated 

could necessitate different pore sizes. Uden and Van Soest (1984) noted 

that there will always be a trade off between mechanical losses and 

gains of material and suppression of fermentation in the bag. They 

reconnnended grinding samples to no less than 2 nun, 37 um pore size bags 

and sample size of 6-7 mg/cm2 bag surface. 

Bacterial contamination could effect nitrogen digestion rates when 

in situ techniques are used. Certain ruminal bacteria attach to plant 

particles (Akin and Amos, 1975) and the impact of this contamination was 

investigated by Nocek (1985) using soybean meal. No significant 

differences were detected between nitrogen disappearance rate constants 

with or without correction for bacterial contamination. However, Nocek 

and Grant (1987) reported that correction for bacterial nitrogen altered 

rates of nitrogen digestion and suggested consideration of this 

correction should be made when establishing nitrogen digestion rates for 
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forages by in situ techniques. In addition, Vogel (1988) noted 

increased bacterial nitrogen contamination with increasing time in the 

rumen using wheat forage samples in situ, however, correction of N 

disappearance estimates for microbial N did not significantly alter 

extent of N disappearance at any incubation time. 

In Vivo Methods - Markers 

Estimation of forage digestibility in vivo for grazing animals 

requires the use of indigestible markers. These markers may be internal 

(occur naturally in the forage) or external (administered in known 

amounts). Lignin is the most common internal marker used to estimate 

digestibility. Lignin is considered indigestible and therefore should 

be completely recovered in the feces. Digestibility can be calculated 

through the use of a ratio of lignin to other constituents. However, 

lignin recovery in immature forages can be incomplete, and best results 

are seen in forages with >7% lignin in the dry matter (Van Soest, 1982). 

Fahey and Jung (1983) reviewed use of lignin as a digestion marker, 

including a thorough discussion of factors influencing lignin recovery 

and analytical considerations. Some recently studied internal markers 

include indigestible acid detergent fiber (Penning and Johnson, 1983), 

indigestible neutral detergent fiber (Lippke et al., 1986) and acid 

insoluble ash (Van Kuelen and Young, 1977). Galyean et al. (1986) 

summarized recent studies comparing digestibility estimates of various 

internal markers with in vivo digestibilities in ruminants. 

External markers are used more corrnnonly for fecal output, with 

intake calculated as the quotient of fecal output and indigestiblity of 

the diet. If actual intake is known, ruminal digestion can be estimated 
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by collection of digesta or feces and calculation of marker 

concentration and organic matter flow at the point of collection. 

Particulates, dyes, metal oxides, microorganisms, water-soluble markers, 

rare earths and radioactive markers have been used as external markers 

for determining digestibility of forage diets (Kotb and Luckey, 1972). 

Chromic oxide is the most commonly used external marker. The primary 

problems with chromic oxide is wide variation in fecal recovery. 

Langlands (1975) suggested that low chromic oxide recoveries in grazing 

situations are likely due to physical loss of feces, marker 

regurgitation, analytical errors or failure to establish marker 

equilibrium. Reviews of this marker are provided by Kotb and Luckey 

(1972), Langlands (1975) and Raleigh et al. (1980). 



CHAPTER III. 

STEERS GRAZING TALLGRASS RANGELAND I. CHEMICAL COMPOSITION 

AND DIGESTIBILITY OF DIETS DURING SPRING AND SUMMER. 

Abstract 

Four trials were conducted on tallgrass prairie in north-central 

Oklahoma during grazing seasons in each of two consecutive years to 

determine the effects of advancing season on diet nutrient content and 

digestibility. Trials were conducted in mid-May, late June, mid-August 

and late September. Forage samples were collected by esophageally 

fistulated beef steers and analyzed for crude protein (CP), neutral 

detergent fiber (NDF), acid detergent fiber (ADF) and in vitro organic 

matter disappearance. In situ organic matter and nitrogen disappearance 

were analyzed by incubating esophageal masticate in dacron bags for 6, 

12, 18, 24, 36, 48 and 72 hours in the rumens of fistulated steers 

grazing the study pasture. Diet CP levels were highest in May of both 

years (avg = 13.4%) and declined with each successive trial. However, 

in 1987, CP increased (P<.05) from 6.8% in August to 8.0% in September. 

Neutral detergent fiber increased an average of 7.8% and ADF increased 

an average of 17.7% across season. In vitro organic matter digestion 

values declined similarly both years. Digestibilities in May and June 

were not different (avg=55.55%; P>.05), but digestibility declined in 

August (50.49%; P<.05) and September (42.27%; P<.05). Potential organic 

matter degradability (POMD) and potential nitrogen degradability (PND), 
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as indicated by 72 h in situ incubation, declined with advancing season 

both years. Total seasonal decline in POMD was 22% in 1986 and 15% in 

1987. Total seasonal decline in PND was 45.4% in 1986 and 24.2% in 

1987. Crude protein digestibility (CP X PND) ranged from 9.68 in May to 

2.98 in September, 1986, and from 11.12 in May to 4.04 in August, 1987. 

Cotton string disappearance at 72 h incubation varied 18% among 1986 

trials, but only 9.5% among 1987 trials. Results suggest that the 

decline in ruminal digestibility of forage as the grazing season 

progresses is mainly due to indigestible forage components. 

Introduction 

The quantity and quality of native forage varies quite dramatically 

throughout the growing season because of maturation and environmental 

conditions (Losada et al., 1982; Reid and Jung, 1981) . Forage maturity 

is accompanied by a decline in nitrogen and an increase in fiber that 

result in reduced organic matter and nitrogen digestion. Feeding 

nitrogen supplements can increase performance of grazing livestock when 

protein content of forage is low (Gill et al., 1984; Lusby and Horn, 

1983). Protein requirements are 10.5-11.4% for 230-272 kg stocker 

calves gaining .9 kg/d, and 9.7% for 455 kg cows of average milking 

ability (NRC, 1984). Considering these requirements, protein levels of 

native pasture in the spring and summer become limiting in June for 

growing stockers and by mid to late July for cows nursing calves 

(Waller, 1972). Before optimal levels of supplementation can be 

determined, digestive processes of grazing animals must be more fully 

understood and variability in nutrient content of forage throughout the 

grazing season must be determined. The objectives of this study were to 



31 

determine the degree to which the availability of nutrients declines in 

the diets of beef steers grazing tallgrass prairie rangeland during the 

spring and summer. 

Materials and Methods 

Experimental Area 

The study was conducted on Section 5 of the OSU Range Research 

Area, located approximately 8 km SW of Stillwater, Oklahoma. A 49 ha 

pasture was used in 1986 and 24 ha of the same area were grazed in 1987. 

The pasture was moderately stocked (approximately 1.25 AUM/ha). 

Herbaceous vegetation in the pastures is composed primarily of big 

bluestem (Andropogon gerardii), indiangrass (Sorghastrum nutans) and 

switchgrass (Panicum virgatum), and little bluestem (Schizachyarium 

scoparium). Average annual precipitation at Stillwater is 831 nun., of 

which approximately 65% falls from April through September (Myers, 

1982). Average temperature during the growing season (May-September) is 

24 C, with an average minimum of 18 C and average maximum of 31 C. 

Precipitation and temperatures for 1986 and 1987 are presented in 

Appendix A and B. 

Trials 

Trials were initiated in May and were repeated at approximately six 

week intervals throughout the summer. There were four trials: mid-May, 

late June, mid-August and late September. Trial dates are presented in 

Appendix C. 
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Diet samples - Collection and Analysis 

Three or four mature Hereford steers fitted with esophageal 

cannulae were used to obtain esophageal masticate samples. Cattle were 

maintained on an area adjacent to the study pasture with similar 

vegetation and placed on the study pasture during collection periods. 

Diet samples were taken early (approximately 0630 h) the day preceding 

each trial and late (approximately 1700-1800 h) the first day of each 

trial. Steers were fasted twelve hours prior to collection times to 

insure grazing readiness. Each steer was harnessed with a screen-bottom 

collection bag and allowed to graze freely for 30-45 minutes. The 

cattle were herded into different areas of the study pasture during each 

collection period in an attempt to obtain samples representative of the 

entire pasture. Masticate samples were placed in plastic bags and 

refrigerated immediately after collection. Following the second 

collection, samples were composited within steer. Additional aliquots 

from each of the samples were composited across steers and prepared for 

in situ disappearance analysis. All samples were dried in a forced air 

oven at 40 C for 48 hours. After air equilibration, samples were ground 

through a 2-mm screen in a Wiley mill and stored in air-tight 

containers. Laboratory analysis included dry matter and ash (AOAC, 

1975), macro-kjeldahl N (AOAC, 1975), in vitro organic matter digestion 

(IVOMD) (Tilley and Terry, 1963), neutral detergent fiber (NDF) and acid 

detergent fiber (ADF) (Goering and Van Soest, 1970). Rumen fluid for 

IVOMD procedure was obtained from a donor steer receiving a prairie hay 

diet. 

Six rurninally cannulated beef steers (Hereford X Angus and Hereford 

X Limousin X Angus) were used for in situ incubations in 1986, and eight 
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ruminally cannulated beef steers (Hereford, Hereford X Angus and 

Hereford X Limousin X Angus) were used in 1987. The steers grazed the 

experimental pasture year round. Duplicate dacron bags (7.5 X 11.5 cm) 

containing 2.222 g (as-is) ground (2 mm) esophageal masticate samples 

were attached to polyethylene lines equipped with a large nut as a 

weight. Lines were introduced individually into the rumen beginning on 

day 7 of each trial and incubated for 6, 12, 18, 24, 36, 48 and 72 

hours. Duplicate bags containing .5 g of cotton string were included 

with the 72, 48, 36 and 24 h rumen lines to compare seasonal effects of 

ruminal environment on cellulose disappearance. All bags were removed 

from the rumen simultaneously at 0800 on day 10 and washed with water 

until effluent ran clear. Bags with forage residue were dried at 55 C 

for 48 hours and weighed. Forage was removed and placed in foil pans and 

dried 24 h in a 105 C oven to obtain 100% dry weight. Forage residues 

were analyzed for dry matter, ash, and macro-kjeldahl N (AOAC, 1975), 

and disappearance of organic matter and nitrogen were calculated. 

Cotton strings were removed from bags, washed clean, placed in foil pans 

and dried at 105 C for 24 hours. Strings incubated for 72 h were washed 

and dried in the bag to avoid loss of residue. Dry string residues were 

weighed and dry matter disappearance (DMD) values were calculated. 

Statistical Analysis 

Data were analyzed using the General Linear Models procedure of the 

Statistical Analysis System. The initial model contained year, trial 

and year X trial. Year X trial interactions were observed for CP and 

ADF, therefore the data were analyzed within year using a model 

containing trial as the sole variable. In situ disappearance data were 
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analyzed within year and incubation period with trial and steer in the 

model. Trial differences were evaluated by F-test and means were 

separated by least significant difference. 

Results and Discussion 

Chemical Composition and Digestibility of Diets 

Constituents and in vitro digestibilities of esophageal samples are 

presented in Tables 1 and 2. Organic matter varied slightly among 

trials, but no consistent pattern was noted. Waller et al. (1972) noted 

increases in OM content throughout the season when hand-pulled samples 

of native grasses were taken monthly at an area near the site of the 

current study. Their values were averaged over a 15 year period and 

consisted of the major four grass species in the area, big bluestem, 

little bluestem, indiangrass and switchgrass. Salivary contamination of 

esophageal samples can contribute 1-4% ash {Holechek et al., 1981). 

Considering this contribution, the OM levels observed in the current 

study are comparable to data of Waller et al. {1972), although the trend 

of increasing OM with advancing season was not noted in this study. 

The majority of growth of native grasses occurs from April to July 

{Gillen and McNew, 1987). The crude protein content of tallgrasses 

declines dramatically with advancing maturity and declining growth rate 

(Waller et al., 1972; Rao et al., 1973). The CP content of the 

masticate samples collected in the current study also declined with 

advancing season {Tables 1 and 2). Highest CP levels occurred in May of 

both years, averaging 13.4%. 

In 1986, CP declined {P<.05) with each succeeding trial from May to 

August, ranging from 13.33% to 7.62%, respectively. Crude protein 
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levels in August and September were not different (P>.10). In 1987, CP 

was again low (P<.05) in August, but by September, CP content had 

increased (P<.05) to 8.03%. The diet CP values correspond with the 

fiber content (Tables 1 and 2) and ruminal ammonia values (Chapter IV). 

The reason for the extreme drop (35.79%) from June to August and 

increase of 18% from August to September is not clear. Weather patterns 

will affect forage chemical composition. Temperatures and precipitation 

amounts are presented in Appendix Table 3. During the first week of 

August, 1987, high temperatures and dry conditions caused soil moisture 

to drop to a yearly low (Nat'l Oceanic and Atmospheric Admin., 1987). 

Increased temperature results in more rapid metabolic activity, which 

promotes conversion of photosynthetic products to structural components 

(Van Soest, 1982). This has the effect of decreasing nitrate, protein 

and soluble carbohydrate, and increasing structural cell wall. 

Crude protein levels of esophageal masticate samples reported in 

this experiment are higher in all grazing periods than hand-pulled 

samples reported by Waller et al. (1972). Animals have the ability to 

graze forage of higher nutritional content than the average of the sward 

(Hodgson, 1982; Arnold, 1982; Wallace, 1972; Rao et al., 1973). The 

seasonal pattern of diet CP content during the growing season is similar 

to forage CP reported by Waller (1972) and to tallgrass ranges in Kansas 

(Rao et al., 1973; Allen et al., 1976). 

Neutral detergent fiber (NDF) or cell wall content of esophageal 

masticate samples are presented in Tables 1 and 2. In 1986, cell wall 

content increased (P<.05) from June through August and then declined 

8.5% (P<.05) in September to levels similar to May. In 1987, NDF 

increased (P<.05) from May to June, stabilized through August, and 
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declined (P<.05) 3% by September to levels similar to May. Kansas 

research on bluestem pastures found similar values and a similar trend 

with NDF increasing through August, and then declining in September (Rao 

et al., 1973). 

Acid detergent fiber (ADF) represents primarily the cellulose and 

lignin components of the plant cell wall. In 1986, ADF increased 

throughout the season, although significance was noted only between May 

and September. In 1987, ADF increased (P<.05) through August, and then 

stabilized through September. The results from 1986 agree with results 

recorded over a 15 year period by Waller et al. (1972) in which crude 

fiber increased linearly from May through October. The decline (P<.05) 

from August to September in 1987 corresponds to results of Rao et al. 

(1973) in Kansas. When hand-clipped samples were compared to masticate 

samples, differences in ADF due to animal selection became more apparent 

as season progressed (Rao et al., 1973). 

The general increase in fiber levels observed through mid-August 

indicate an increase in structural components of the forage. Cell wall 

content of forage increases at high temperatures (Van Soest, 1982) 

because of increased metabolic rate and subsequent conversion of soluble 

nutrients to structural tissues or, in temperate grasses especially, a 

much lower accumulation of soluble carbohydrates (Smith, 1973). Moir et 

al. (1977) noted that cell wall digestibility decreased as temperature 

increased, and suggested that this was probably due to greater 

lignification that occurs at higher growth temperatures (Ford et al., 

1979; Van Soest, 1982). Wilson (1981) summarized published data on 

effects of low soil moisture on digestibility, cell wall content and 

lignin content of grasses and legumes, and found that overall, water 
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stressed herbage is likely to be of high quality. The studies reported 

by Wilson (1981) were, however, conducted at constant temperatures and 

water levels. 

In vitro diet OM digestibility declined with advancing season both 

years of the study (Tables 1 and 2). The September trial in 1986 was 

conducted during a period of excessive rainfall. During this trial, 303 

mm of rain was recorded, with 126 mm falling on September 30. Diet 

samples collected during this trial may not have been an accurate 

representation of forage normally grazed in late September due to 

leaching. Periods of decreased light can cause a decline in soluble 

carbohydrate levels in plants, and usually an accompanying increase in 

cell wall content, contributing to lower digestibility (Wilson, 1982). 

In both years, digestibility did not decline significantly until August. 

In 1986, a total seasonal decline in IVOMD of 30.85% was noted, while a 

21.51% decline was noted in 1987. 

Potential disappearance of forage organic matter (POMD), obtained 

from 72 h in situ incubation, decreased as season progressed (Table 3). 

In 1986, POMD remained around 76% from May through June, declined 

(P<.05) to 72.3% in August, and dropped to 59.4% (P<.05) by September, 

resulting in a 22% decrease over the season. In 1987, significant 

declines (P<.05) were noted in the first three trials. POMD declined 

from 78.2% in May to 75.3% in June to 67.9% in August. Further decline 

to 66.0% in September was not significant (P>.10). Total decline in 

POMD in 1987 was 15%. Once again, the decline was most severe in 1986, 

primarily due to the lower POMD in September. 

Potential nitrogen disappearance (PND), estimated by the 72 h in 

situ disappearance, was similar to the pattern of POMO. In 1986, PND 
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remained around 72% from May through June, declined (P<.05} to 65% in 

August and dropped sharply (P<.05) to 39.6% by September, resulting in a 

45.4% decline for the season. In 1987, a significant drop (P<.05) in 

PND was noted from 83% in May to 75.2% in June. A decline (P<.05) from 

June to August resulted in 59.4% PND, with no significant change 

occurring through September. Total decline in PND in 1987 was 24.2%. 

From combined values for CP and 72 h nitrogen disappearance estimated 

levels of digestible protein in 1986 were 9.68% in May, 6.63% in June, 

4.95% in August and 3.00% in September. Similarly, digestible protein 

estimates in 1987 were 11.12% in May, 7.97% in June, 4.04% in August and 

5.05% in September. A correlation of .87 was noted between CP 

concentration in the diet and digestible CP. CP intake was also highly 

correlated with digestible CP (r=.88; P<.05). These results are similar 

to McMeniman et al. (1986) who noted correlations of .91 and .94 between 

nitrogen concentration in the diet and apparent nitrogen digestibility 

and nitrogen intake. 

Several trials in north-central Oklahoma have shown that gains of 

cattle grazing tallgrass prairie in mid-late summer are improved with 

protein supplements (Lusby and Horn, 1983; Gill et al., 1984). 

Responses have been recorded on pastures with forages containing 7.7% CP 

and less. Feeding energy supplement produced no increase in gains over 

controls, indicating that protein was the first limiting nutrient (Lusby 

and Horn, 1983). Lusby et al. (1982) noted that protein supplements 

stimulate forage digestibility and intake. The combination of declining 

CP content and potential OM digestibility of forage as season progressed 

in this study indicate a decreasing availability of substrate for rumen 

microbes. Responses to a ruminally degradable protein supplement such 
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as soybean meal indicate correction of a rurninal protein deficiency. In 

the present study, microbial efficiency was not affected by advancing 

season (Chapter IV). 

Cotton string cellulose disappearance (Table 5) indicated no 

significant changes in rurninal environment among the first three trials 

both years. The difference noted between August and September in 1986 

indicates an increase in digestive function toward the end of the 

season, which is contrary to our expectation. If any changes in rurninal 

environment occur throughout the season, it would be expected that lower 

crude protein levels combined with lower rurninal arranonia values that 

occur with advanced maturity would contribute to a decline in digestive 

capabilities. The cotton string disappearances noted in 1987 are closer 

to what would be expected. Although significant differences were noted 

between the two early trials and September, a decline of only 9.5% 

occurred throughout the 1987 season, with the trend being decreasing 

digestive capabilities with advancing season. These results may reflect 

declining arranonia-N concentrations noted in the August and September 

trials of 1987 as discussed in Chapter IV. 



TABLE 1. CHEMICAL COMPOSITION AND DIGESTIBILITY OF ESOPHAGEAL 
MASTICATE SAMPLES GRAZED FROM TALLGRASS PRAIRIE, 1986. 

TRIAL 

Component 
Mid 
May 

Late 
June 

Mid 
Aug 

Late 
Sept 

-----------% of dry matter-------------
OM 87.25 87.32 90.33 89.75 

----------% of organic matter---------
CP 13.33 ... 9.20° 7.62c::: 7.52c::: 
NDF 76.23- 78.59° 81. 59c::: 74.85 .. 
ADF 42.92 ... 43.8780 44.96- 47.65° 
IVOMD 58.34 ... 55.97 .. 51.57° 40.34c::: 

a.be: Means within a row with different superscripts are 
different. 

a Standard error of the mean, n 
other trials. 

4 in trial 1, n 

1.69 

.41 

.92 
1.43 

. 78 

3 in 

TABLE 2. CHEMICAL COMPOSITION AND IN VITRO DIGESTIBILITY OF 
ESOPHAGEAL MASTICATE SAMPLES GRAZED FROM TALLGRASS 
PRAIRIE, 1987. 

Component 

OM 

CP 
NDF 
ADF 
IVOMD 

Mid 
May 

Late 
June 

TRIAL 
Mid 
Aug 

Late 
Sept 

-------------%of dry matter------------
91. 42... 90.53 ... 0 90.08°c::: 89.07c::: 

------------% of organic matter--------
13. 40.. 10.59° 6.80d 8.03c::: 
76.72.. 82.35° 83.03° 80.53 .. 
40.01... 44.08° 49.72c::: 47.89c::: 
56.32.. 54.788 49.40° 44.20° 

Means within a row with different superscripts are 
different. 

SEMa 
n=3 

.42 

.39 
1.65 
1.17 
1.55 

a Standard error of the mean, n = 4 in Sept trial, n = 3 
in other trials. 
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TABLE 3. FORAGE ORGANIC MATTER DISAPPEARANCE DETERMINED BY 
IN SITU TECHNIQUE. 

Hours of 
Incubation Year 

6 1986 

12 

18 

24 

36 

48 

72 

1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

Rate of OM 
disappearance, %/h 

1986 
1987 

TRIAL 

Mid Late Mid Late 
May June Aug Sept SEMd 

18.22b 24.168 24.238 23.458 .85 
25.178 21.92b 15.49° 26.268 .98 

29.37b 
38.21& 

40.91b 
47.15"' 

31.17- 33.80 8 

36.05- 27.24° 

39.32b 
43.05"' 

45.688 

37.64b 

31.18- 1. 62 
34. 77h 1.27 

33.11° 1. 78 
45.23 8 1.81 

48.02a 49.47a 47.87a 39.05b 1.89 
56.958 53.78ab 44.80° 49.92bc 1.96 

56.56- 60.61"' 
68.808 62.39b 

68.37a 67.55ab 
74.39 8 70.26b 

75.95... 76.65 ... 
78.198 75.34b 

4.62 
6.32 

4.30 
5.49 

58.37"' 
57.09b 

65.57b 
61.74° 

72.28b 
67.91° 

4.58 
5.22 

51.04b 2.46 
58.84b 2.18 

57 .17° 1.08 
63.68° 1.22 

59.39° .58 
66.02° .97 

6.50 
6.71 

Means within a row with different superscripts are 
different (P<.05). 

d Standard error of the mean, n = 5 in 1986 Sept trial, 
n = 6 in other 1986 trials. SEM from Sept used. 
n = 8 for all 1987 trials. 
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TABLE 4. FORAGE NITROGEN DISAPPEARANCE DETERMINED BY 
IN SITU TECHNIQUE. 

Hours of 
Incubation Year 

6 

12 

18 

24 

36 

48 

72 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

1986 
1987 

Rate of N 
disappearance, %/h 

1986 
1987 

Mid 
May 

13. 40c 
22.70bc 

18.66c 
40.14° 

30.72° 
49.85 ... 

42.27a. 
60.67"' 

66.64" 
79.53a. 

72.59 ... 
83.01" 

5.27 
6.79 

TRIAL 
Late 
June 

18.10° 
25.28° 

24.21° 
34.51°c 

30.25° 
40.87° 

38.73"' 
49.68bc 

52. 72"' 
62.44° 

60.30° 
69.09° 

72.12"' 
75.25° 

3.71 
5.54 

Mid 
Aug 

22.27 ... 
20. 77c 

35 .11 a 

31. 43c 

42.58a. 
38 .17° 

41. 68a. 
43.69c 

53.03"' 
56.79bc 

60.63° 
57.00"' 

64.99° 
59.43c 

5.05 
7. 72 

Late 
Sept 

19. 26ab 1. 22 
34. 57a. 1. 72 

21. 86bc 2 .16 
49.64a. 2.70 

22.45c 
48.79"' 

20.67° 
52.28° 

33.99° 
53.33c 

38.02c 
61. 34c 

39.63c 
62.90c 

6.13 
6.40 

2.15 
2.25 

2.68 
2.21 

3.03 
2.40 

2.32 
2.20 

1.57 
1. 74 

abc Means within a row with different superscripts are 
different (P<.05). 

a Standard error of the mean, n = 5 in Sept trial, 1986, 
n 6 in other 1986 trials. SEM from Sept trial used. 
n = 8 for all 1987 trials. 
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TABLE 5. COTTON STRING CELLULOSE DISAPPEARANCE DETERMINED 
BY IN SITU TECHNIQUE. 

TRIAL 
Hours of Mid Late Mid Late 
Incubation Year May June Aug Sept 

24 1986 17. 71 20.19 18.88 19.60 
1987 26.09bc: 29.43ab 21. 62° 31.95"" 

36 1986 32.14 37.27 39.86 41.87 
1987 53.22ab 39.34b 47.26b 63.75 ... 

48 1986 52.05i::. 53.14b 49.54b 65.60"" 
1987 71.10 ... i::. 64.53b 69.24b 79.85 ... 

72 1986 84.27ab 81. 84a.b 74.63b 88.04 .. 
1987 95.44 ... 96.95.,. 92.47a.b 87.71b 

a.be: Means within a row with different superscripts are 
different (P<.05). 

SEMd 

3.17 
2.00 

5.59 
4.98 

4.53 
3.66 

4.43 
2.03 

d Standard error of the mean, n = 5 in Sept trial, 1986, 
n 6 in other 1986 trials. SEM from Sept trial used. 
n = 8 for all 1987 trials. 
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CHAPTER IV 

STEERS GRAZING TALLGRASS RANGELAND. II. FORAGE INTAKE, 

DUODENAL NUTRIENT FLOW, MICROBIAL PROTEIN SYNTHESIS 

AND RUMINAL ENVIRONMENT 

Abstract 

Intake, ruminal fermentation and nutrient flows to the small 

intestine of ruminally fistulated beef steers grazing tallgrass 

rangeland were measured during four periods in both the 1986 and 1987 

growing seasons (May-September). Forage intake (g OM/100 g BW) remained 

around 2.1 during the first three trials of 1986 and decreased to 1.9 in 

September. In 1987, intake declined throughout the season, ranging from 

1.8 in May to 1.4 in September. Duodenal flow of organic matter (g/d) 

increased with advancing season in 1986 due to increased absolute 

organic matter intakes (g/d) of growing steers. No differences were 

noted among 1987 trials. Apparent ruminal digestion of organic matter 

declined 17% throughout the 1986 season and 25.2% in 1987. True ruminal 

organic matter digestion remained fairly stable throughout the 1986 

season (avg=54.9). In 1987, true ruminal organic matter digestion 

declined in the latter half of the summer. Nitrogen intake declined 

with advancing season. Duodenal flow of nitrogen exceeded nitrogen 

intake in all trials. Ammonia nitrogen levels remained above 2 mg/100 

ml rumen fluid in all trials except August, 1987, when concentrations 

dropped to 1.4 mg/100 ml. However, microbial efficiency (g microbial 
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N/kg OM truly fermented) did not change across trials either year 

(avg=18.9), indicating that nitrogen and fermentable organic matter was 

sufficient for microbial growth across season. September tended to have 

the lowest concentration of ruminal volatile fatty acids in both years. 

Molar proportions of acetate were inconsistent among 1986 trials, 

however in 1987, acetate tended to increase with advancing season. 

Propionate varied inconsistently in 1986, but tended to decrease across 

the 1987 season. Butyrate proportions increased from May to June, 

stabilized through August and declined by September, 1986. No 

significant changes occurred in molar proportions of butyrate across the 

1987 season. 

Introduction 

Changes in diet composition that occur as the growing season 

progresses affect the total amount of nutrients available to the grazing 

ruminant. Performance depends upon intake and nutritive value of the 

forage and also end-products of microbial fermentation in the rumen. 

Volatile fatty acids provide 50-85% of the metabolizable energy for 

ruminants on forage diets (Owens and Goetsch, 1988) and microbial 

protein provides 40-80% of the total protein reaching the small 

intestine (Owens and Bergen, 1983). Supplementation may enhance forage 

utilization by correction of microbial or tissue level deficiencies, in 

addition to increasing forage intake. The influence of declining forage 

quality on basic digestive processes of ruminants must be better 

understood before optimal level and type of supplementation can be 

determined. 

Studies were conducted in 1986 and 1987 to investigate the seasonal 
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changes in forage intake and nutrient utilization that occur on 

tallgrass prairie in central Oklahoma. 

Materials and Methods 

Study Area 

The study was conducted on Section 5 of the Downey Range Research 

Area, located approximately 8 km SW of Stillwater, Oklahoma. A.49 ha 

pasture was used in 1986. The pasture was divided in half prior to the 

1987 trials and the experimental cattle were restricted to 24 ha. The 

pastures were stocked at a light to moderate rate in both years. 

Vegetation in the pastures was typical of tallgrass prairie. 

Predominant grass species were big bluestem (Anaropogon gerardii), 

little bluestem (Schizachyarium scoparium), indiangrass (Sorghastrum 

nutans) and switchgrass (Panicum virgatum). Average annual 

precipitation is 831 mm., of which approximately 65% falls from April 

through September. Average temperature during the growing season (May­

September) is 24 C, with an average minimum of 18 C and average maximum 

of 31 C. Precipitation and temperatures for 1986 and 1987 are presented 

in Appendix B. 

Field Trials 

Trials were initiated at the beginning of the grazing season in May 

and repeated at approximately six week intervals throughout the growing 

season, resulting in four trials each year (mid-May, late June, mid­

August and late September). Trial dates are presented in Appendix C. 

Six steers (three Angus X Hereford and three Limousin X Angus X 

Hereford) equipped with ruminal and duodenal T-type cannulae were used 
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in 1986. One steer died in late August of 1986 and therefore only five 

steers were used for the September trial. Four of these steers were 

used in the second year of the study. In addition, four Hereford steers 

equipped with ruminal and duodenal T-type cannula were used in 1987. 

The steers were placed on the study pasture a minimum of two weeks 

before the first trial began and remained on the pasture throughout the 

grazing season. Cannulae were placed in the crossbred steers in March 

of 1986, two months before the first sampling. All steers used in 1987 

had cannulae fitted at' least a year before the first sampling. All 

steers were halterbroken and docile. Steers were weighed without shrink 

on three consecutive days at the beginning of each trial. Average 

weights are presented in Appendices D and E. 

Gelatin capsules containing chromium sesquioxide were administered 

daily via rumen cannula to estimate fecal output and digesta flow to the 

duodenum. During both years of the study, steers received 5 g of 

chromic oxide twice daily (0800 h and 2000 h) on days 1-8 of each trial. 

Fecal grab samples were collected on day 6 (1200 h and 2000 h}, day 7 

(0800 hand 1600 h} and day 8 (0200 h}. Samples were refrigerated until 

the end of the sampling period, at which time they were composited 

within steer and dried in a forced air oven (50° C} for 48 hours. After 

air-equilibration, samples were ground through a 1 mm screen in a Wiley 

mill and stored in plastic bags. 

Duodenal samples were obtained on day 7 (1600 h}, day 8 (0200, 1200 

and 2000 h} and day 9 (0800 h}. At each sampling period, 200 ml 

duodenal digesta were obtained from each steer. Digesta was transferred 

to a composite jar according to steer and refrigerated until the end of 

sampling. The composites for each steer were mixed thoroughly, poured 
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into plastic tubs and frozen (-15~ C}. Following lypholization, the 

samples were ground in a blender and stored in plastic bags. 

Rumen samples were collected on day 9 (0800, 1400 and 2000 h) and 

day 10 (0200 and 0800 h). Ruminal contents were thoroughly mixed before 

samples were withdrawn. The samples were strained through four layers 

of cheesecloth. A 100 ml aliquot of fluid was acidified (2 ml 20% 

sulfuric acid) and immediately frozen (-15~ C} in a whirlpak. 

Ruminal fluid for microbial pellet isolation was obtained from 

steers on day 9 (1400 h) and day 10 (0800 h). Ruminal contents were 

thoroughly mixed before samples were withdrawn. Whole rurninal contents 

were strained through four layers of cheesecloth. A 500 ml composite 

sample of fluid was poured into plastic bottles and immediately placed 

on ice to stop microbial action. This fluid was centrifuged at 1000 X g 

for 5 minutes to remove feed particles and protozoa. The supernatant 

was combined with a 37% formaldehyde solution (25 ml/100 ml), 

centrifuged at 20,000 X g for 20 minutes, washed with .9% NaCl, 

recentrifuged at 20,000 X g for 20 minutes, washed with distilled water 

and recentrifuged. The supernatant was withdrawn. The resulting 

bacterial suspension was frozen, lypholized, ground with mortar and 

pestal, and stored in whirlpaks. 

Laboratory Analyses 

Laboratory analyses of fecal samples included dry matter, ash, 

kjeldahl nitrogen (AOAC, 1975) and chromium concentration (Williams et 

al., 1962). Analyses of duodenal digesta included chromium 

concentration (Williams et al., 1962), kjeldahl-nitrogen (AOAC, 1975), 

and purine concentration (Zinn and Owens, 1980). Ammonia-nitrogen (NH3 -
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N) was determined by magnesium oxide distillation (AOAC, 1975). The 

isolated bacterial pellet was analyzed for kjeldahl-nitrogen (AOAC, 

1975) and purine concentration (Zinn and Owens, 1980). 

Ruminal fluid samples were thawed overnight at room temperature. 

Two 40-rnl aliquots from each sample were centrifuged at 1000 X g for 15 

minutes. A 20-ml aliquot of supernatant was analyzed for ammonia 

nitrogen using a phenol-hypochlorite procedure (Broderick and Kang, 

1980). Two ml of 25% (w/v) metaphosphoric acid were added to a 10 ml 

aliquot of fluid and centrifuged at 25,000 X g for 20 minutes. A 1 ml 

aliquot was withdrawn and .2 ml 2-ethylbutyric acid (internal standard) 

were added. Volatile fatty acid (VFA) analyses were performed by gas 

chromatography. 

Calculations 

The following calculations were made: 

Fecal output(g OM/d) = Dosage of chromium(g/d) 
Chromium cone. in feces(g/g OM) 

Forage intake(g OM/d) = Fecal output(g OM/d) 
1-(IVOMD/100) 

Duodenal OM flow(g/d) = Daily dosage of chromium(g) 
Chromium cone in duodenal digesta(g/g OM) 

Duodenal nutrient flows(g/d) = Duodenal OM flow (g/d) X 
nutrient cone. in duodenal digesta (g/g OM) 

Duodenal microbial N flow(g/d) = RNA-N flow 
~~~~~~~~~~~~~~ 

RNA-N cone. of bact pellet/total N cone. of bact pellet 

Duodenal forage-N flow(g/d) = Total duod-N flow­
(mic-N flow+NH3 -N flow) 

Microbial efficiency = Duodenal microbial-N flow(g)/kg OM 
truly fermented 

Apparent ruminal OM digestion = OM Intake - duodenal OM flow 
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True ruminal OM digestion OM Intake - (Duodenal OM flow -
microbial OM flow) 

Apparent ruminal N digestion = N Intake - duodenal N flow 

True ruminal N digestion N Intake - (forage-N flow) 

Lower tract OM digestion Duodenal OM flow - fecal OM 

Lower tract N digestion = Duodenal N - fecal N 

Statistical Analysis 

Data were analyzed using the General Linear Models procedure of the 

Statistical Analysis System. The initial model contained year, trial, 

steer within year and year X trial. Year X trial interactions were 

observed for intake, nutrient flows and VFA, therefore all data were 

analyzed within year. Fecal and duodenal data from 1986 were analyzed 

with a model containing trial and steer. In 1987, steers were blocked 

according to weight due to the use of additional large steers. The 

model contained trial, block, and steer within block. Ruminal ammonia 

nitrogen and VFA data were analyzed with a model containing trial, 

period, steer and trial X period. Trial differences were evaluated by 

F-test and means were separated by least significant difference. 

Results and Discussion 

When expressed as percent of body weight (g/lOOg), intakes remained 

fairly stable (avg=2.08) throughout the first three trials of 1986 and 

then declined (P<.05) to 1.88 in September. In 1987, intake was lower 

(P<.05) in August and September (avg=l.45) than in May and June 

(avg=l.77). In 1987, a significant block effect was noted when intake 

was expressed on a BW basis. Forage intake, averaged over the summer, 

by steers in the heavy block (average 636 kg), was 21.1% lower than the 
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smaller (average 457 kg) steers. If the heavy steers are excluded, 

intakes were 2.1, 1.9, 1.7 and 1.5 g/lOOg BW in May, June, August and 

September, respectively. Steers in the heavy block were four-year old, 

obese Herefords. Body fat levels and lack of growth requirements 

probably explain the lower intake as a function of body weight. 

Intake is influenced by the increase in fiber content that occurs 

as plants mature. In 1986, diet ADF tended to increase as the summer 

progressed, changing from 42.9% in mid-May to 44.9% in mid-August and 

47.6% in late September (Chapter III). Intake reflected this change. 

In 1987, intake also reflected the ADF content of the diet, which 

increased (P<.05) from mid-May through mid-August and stabilized through 

late September (Chapter III). 

Total organic matter flow to the duodenum and forage organic matter 

flow increased (P<.05) with advancing season in 1986 (Table 6) as a 

result of increasing absolute intakes of the growing steers which gained 

an average of 89 kg during the summer. Microbial organic matter flow 

was higher (P<.05) in the latter three trials than the May trial. 

However, when expressed as percent of total flow, the contribution of 

microbial organic matter was similar among trials (18.5-22.3%). In 

1987, no differences (P>.05) occurred among trials for total organic 

matter flow (Table 7). Significantly less microbial OM flowed to the 

duodenum in August than all other trials. The greatest flow of 

microbial OM (P<.05) occurred in May. When expressed as percent of 

total flow, microbial OM in August contributed the least (12.3%) and in 

May contributed the most (19.4%) among trials. The contribution made by 

microbial OM to total flow in 1987 is comparable with that found by Funk 
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(1986), who reported about 15% of OM reaching the small intestine was 

attributed to microbes. 

Although there was a tendency for OM digestion to decline with 

advancing season, no significant changes occurred among trials for 

either apparent or true OM digestion in 1986. Increased retention time 

of digesta allows more time for OM digestion, which may account for the 

similarity among seasons. However, in 1987 ruminal OM digestion 

declined with advancing season. Apparent ruminal OM digestion and true 

ruminal OM digestion declined (P<.05) 21% and 18.9%, respectively, from 

the early growing season to the late growing season. Values from this 

study are comparable with those reported by Funk (1986). Generally, 

increases in cell wall constituents and concomitant declines in cell 

contents result in decreased ruminal OM digestion. The less digestible 

fiber fractions of the diet (ADF) increased with advancing season both 

years (Chapter III). Ruminal OM digestion patterns reflected this 

change. McMeniman et al. (1986) reported lower apparent ruminal OM 

digestibilities for grazing sheep with the onset of the dry season and 

advanced maturity of Pangola grass. 

No differences were noted in lower tract OM disappearance (% of OM 

intake) with advancing season in 1986 and 1987 (Tables 6 and 7). When 

expressed as percent of OM entering the duodenum, disappearance declined 

across the season (P<.05) 82.5% in 1986 and 24.9% in 1987. Digestion of 

microbial cells constitutes a large portion of OM digested in the small 

intestine of forage-fed animals, while both undigested fiber and 

microbial cells are available for fermentation in the large intestine. 

Lower tract OM digestion values obtained in the early season of 1986 and 

across the 1987 season are similar to those reported in the early season 
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for cattle grazing blue grama rangeland in New Mexico (Funk, 1986). The 

percentage of total OM digestion occurring in the lower tract have been 

reported to range from 4% with low intake forage diets of sheep to 37% 

with high intake cattle diets (NRC, 1985). 

Nitrogen intake (NI) declined with advancing season both years 

(Tables 8 and 9). In 1986, NI declined 28.6% while in 1987 NI decreased 

51.6% from May to August. Differences in total nitrogen intake between 

years is not only due to differences in nitrogen concentration in the 

diet, but also to differences in total organic matter intake (g/d). In 

1986, total organic matter intake increased as the season progressed as 

a result of weight gain by the steers. Steers used in 1987 were larger 

and weights were relatively stable. 

Apparent ruminal nitrogen disappearance was negative in all trials. 

Forages containing less than 2-2.5% nitrogen are normally associated 

with a net gain of nitrogen reaching the duodenum relative to ingested 

nitrogen that results from nitrogen recycling into the rumen (Egan et 

al., 1975). Forages evaluated in this study ranged from 2.1 to 1.1% N 

(Chapter III). The sources of nitrogen in the duodenum are mainly 

undegraded forage nitrogen and microbial nitrogen. Ruminal digestion of 

forage N (true ruminal digestion) was highest in May and lowest in 

August both years. A negative value was noted in August both years for 

true N digestion. Up to 20% of the total nitrogen reaching the duodenum 

may be derived from endogenous sources (Steinhour and Clark, 1980). The 

contribution of endogenous nitrogen was not considered when calculating 

forage N digestion, which may account for the negative digestion in 

August. True ruminal N digestion compared with potential N 

disappearance from in situ bags was not in good agreement. The same 
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general trend of declining N digestibility with advancing season is 

noted with both techniques, but the average N digestibility as indicated 

with the marker technique is 40% lower than the average in situ values 

at 72 hr of incubation. 

Microbial efficiency (g microbial N/kg OM truly fermented) values 

did not change (avg=18.9; P>.05) across the season (Table 8 and 9). 

Microbial growth is dependent upon the quantities of ferrnentable organic 

matter and nitrogen available in the rumen. Up to 80% of nitrogen 

utilized by microbes can be supplied by ammonia. True rurninal organic 

matter digestion did not change significantly throughout the 1986 season 

(Table 6), and rurninal NH 3 -N levels remained above 2 mg/100 ml (Table 

10), a level which has been suggested as minimal for microbial growth. 

In 1987, true rurninal organic matter digestion declined the last two 

trials. However, no differences in microbial efficiency were noted, 

indicating that the balance of N and energy was sufficient for microbial 

growth. 

Microbial efficiency values reported by Funk (1986) were 

intermediate to those observed in the current study. Higher values were 

reported by Walker et al. (1975) with sheep fed roughage rations and 

McMenirnan et al. (1986) noted higher efficiency values across seasons 

with grazing sheep. However, McMenirnan et al. (1986) found significant 

declines in microbial efficiency associated with the decline of OM 

digestibility and NH 3 -N levels. 

Rurninal NH3 -N concentrations in 1986 were lower (P<.05) in late 

September than in earlier trials (Table 10). Ammonia-N concentrations 

in June were lower (P<.05) than May and August. In 1987, NH 3 -N levels 

were lowest (P<.05) in August. September NH 3 -N levels were lower 
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{P<.OS) than May and June trials {Table 11). Other researchers have 

noted relationships between NH 3 -N and CP {Krysl, 1986; Playne and 

Kennedy, 1976). Correlations of .SS and .92 were found for NH3 -N and CP 

in 1986 and 1987, respectively. However, when both years were pooled, 

CP and NH3 -N were not well related {r=.38; P>.3S) (Chapter III). This 

lack of relationship is similar to that reported by Mccollum (1983). 

The correlation between NH3 -N and CP intake (g/lOOg BW) were the most 

significant (r=.68; P<.10). In 1987, little variation in NH 3 -N 

concentrations were noted throughout the day. In 1986, NH3 -N levels 

fluctuated throughout the day in all trials. Variations in water intake 

and grazing patterns relative to sampling times may have influenced NH3 -

N concentrations. 

Previous research has suggested that ruminal microbes require 

between 2 and Smg NH3 -N/100ml rumen fluid for growth (Satter and Slyter, 

1974). Ruminal ammonia concentrations in August, 1987 suggest that 

microbial growth may have been limited. Also, cotton string 

disappearance at 72 h indicated a 4.6% decline in ruminal digestive 

capacity from June to August, 1987 (Chapter III). However, a further 

decline of S.1% in cotton string disappearance from August to September 

could not be accounted for by NH3 -N deficiencies. 

No consistent pattern was observed either year in total 

concentration of ruminal volatile fatty acids (TVFA) (Tables 12 and 13). 

Concentrations tended to be lowest in September of both years. 

Concentrations were higher across all trials than those reported by 

Scott (1988; avg=70.2) for cows grazing tallgrass prairie and Krysl 

(1986; avg=81.S) for steers grazing blue grama rangeland. 
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Digestibilities were also higher from the current study than these 

studies, which may account for the differences in TVFA. 

Molar proportions of acetate were inconsistent among trials in 

1986. Proportions were greater in June and September (avg=77.2) than in 

May and August (avg=74.9). However, in 1987, acetate tended to increase 

as the summer progressed, reflecting the increasing fiber content of the 

diet (Chapter III). Acetate is a product of cell wall fermentation and 

increased levels are normally associated with declining forage quality 

(Van Soest, 1982). 

Propionate followed no consistent pattern in 1986. Molar 

proportions of propionate were highest in May (avg=13.8), lowest in June 

(avg=ll.8) and similar in August and September (P>.05). In 1987, 

propionate tended to decrease with advancing season, reflecting the 

declining OM digestibilities (Chapter III). Propionate is associated 

with soluble carbohydrate fermentation and generally declines with 

advancing season (Van Soest, 1982). 

In 1987, butyrate remained stable from May to August and declined 

(P<.05) by September. No significant changes occurred across the 1987 

season in molar proportions of butyrate. Butyrate is normally present 

in higher concentrations with actively growing forage (Mccollum, 1983; 

Krysl, 1986). 

Acetate:propionate ratios were higher in all trials than typical 

ratios of 4:1 to 3:1 reported by Van Soest (1982) for animals on forage 

diets. Acetate proportions were higher, propionate lower and butyrate 

similar across seasons to that reported by Funk (1986) and Krysl (1986) 

with grazing steers (avgs: A=69.7, P=17.7, B=l0.1). Scott (1988) 

reported similar acetate proportions, higher propionate and lower 
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butyrate when averaged across May, June and July for cows grazing 

tallgrass prairie range. Acetate proportions were higher while 

propionate and butyrate were lower across seasons than that reported by 

Weller et al. (1969) for grazing sheep (avgs: A=63.2, P=21.9, B=14.9). 

Considering the wide variation within and between grazing animals in the 

amount and nature of herbage consumed each day (Weller et al., 1969), 

differences in daily production of VFA which are not directly related to 

the quality of the diet may result. Results from 1987 are in agreement 

with Topps et al. (1965) who found an increase in acetate, decrease in 

propionate and no changes in butyrate concentrations in cattle grazing 

tropical herbage throughout the growing season. 

Results from these studies suggest that the decline in livestock 

performance that is associated with advancing season results from an 

increase in indigestible forage constituents. Declines in NH3 -N levels 

in the rumen failed to affect microbial activity. These results suggest 

that microbial efficiency is not affected when ruminal NH 3 -N levels drop 

below 2 mg/100 ml rumen fluid. However, only one trial resulted in 

ruminal NH3 -N levels this low. The expected decline in organic matter 

intake associated with dietary crude protein levels below 7.0% was not 

noted in this study. 

Previous studies have demonstrated that daily gain of yearling 

cattle grazing tallgrass prairie in the late growing season increases 

.13 to .23 kg/day when .Skg/day of a protein concentrate supplement is 

offered. The mechanism behind the response is still unclear. Diet 

protein concentrations and ruminal NH 3 -N concentrations did not approach 

threshold values normally associated with a N deficiency in the rumen. 

Although there were no differences in microbial efficiency, there was a 
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consistent trend toward lower efficiencies in mid-season {June and 

August) suggesting that ruminal nutrient balances were inadequate. The 

combined influences of supplemental nutrients and increased forage 

intake possibly supply more N at the duodenum. 
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TABLE 6. EFFECT OF ADVANCING SEASON ON ORGANIC MATTER 
DIGESTION IN STEERS GRAZING TALLGRASS PRAIRIE, 
1986 

Component 
Mid 
May 

Steer Wt, kg 274 

Intake, g/d 
Intake, %BW 

Passage, g/d 

Duodenal 
Forage 
Microbial 

Fecal 

5620.4 ... 
2.os-

3002.4 .. 
2364.1,.. 
638.3a 

2341. 5a 

Digestion, % of intake 

Ruminal, apt 46.1 
Ruminal, true 57.6 
Lower tract 12.3 

Late 
June 

322 

TRIAL 

6784.0b 
2 .11 ... 

3577.6 .. b 
2778. o-

799. 61:> 
2987.0b 

47.2 
59.0 
8.8 

Digestion, % entering segment 

Lower tract 22.3 ... 

Passage, %BW 

Fecal 

Mid 
Aug 

353 

7394.0° 
2.09" 

4216.81:>0 

3421.0bc 
795.81:> 

3580.7° 

43.0 
53.8 
8.5 

14.6-

Late 
Sept 

382 

4449.1° 
3627.1° 
822.lb 

4274.4a 

37.7 
49.2 
2.6 

210. 96 
.07 

301.62 
249.88 
56.22 
89.67 

4.31 
3.56 
4.32 

6.83 

.03 

abc Row means with different superscripts are different 
(P<.05) 

a Standard error of the mean, n = 5 in late Sept trial, 
n = 6 in other trials. 
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TABLE 7. EFFECT OF ADVANCING SEASON ON ORGANIC MATTER 
DIGESTION IN STEERS GRAZING TALLGRASS PRAIRIE, 
1987. 

Component 

Steer wt, kg 

Intake, g/d 
Intake, %BW 

Passage, g/d 

Duodenal 
Forage 
Microbial 

Fecal 

Mid 
May 

510 

8909.9a 
1.80a 

5272.6 
4247.8c 
1024.8,.. 
3892.0° 

Digestion, % of intake 

Ruminal, apt 
Ruminal, true 
Lower tract 

40.5a 
52.la 
15.8 

TRIAL 
Late 
June 

530 

8913. 5a 
1. 73a 

5312.9 
4484.9bc 
828.0° 

4036.2° 

40.4a 
49.7,.. 
14.4 

Mid 
Aug 

564 

8504.8a 
1.53° 

5620.2 
4926.8"'-

693 .4c 
4303.2"'-0 

33.6° 
41.9b 
15.8 

Digestion, % entering segment 

Lower tract 26.la 23.8ab 23.1"'-0 

Passage, % BW 

Fecal .79 . 78 .77 

Late 
Sept 

579 

SEMa 
n=7 

7893.5° 235.96 
1. 38° . 06 

5487.6 
4669.5-
818.20 

4404.4,.. 

30.3° 
40.7° 
13. 9 

19.6° 

.77 

132.53 
116.71 
42.74 

115. 53 

2.03 
1.68 
2.03 

2.36 

.03 

abc Row means with different superscripts are different 
(P<.05) 

a Standard error of the mean, n = 7 in late June trial, 
n = 8 in other trials. 
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TABLE 8. EFFECT OF ADVANCING SEASON ON NITROGEN DIGESTION 
AND MICROBIAL PROTEIN SYNTHESIS IN STEERS GRAZING 
TALLGRASS PRAIRIE, 1986. 

Component 
Mid 
May 

Nitrogen intake, g/d 

119 .9"' 

Nitrogen passage, g/d 

Duodenal 
Forage 
Microbial 
Ammonia 

Fecal 

155.3 
92.3ah 
58.4 
4.5 

72.7 

Late 
June 

TRIAL 

99.8° 

154.0 
87.lah 
62.6 
4.3 

71.1 

Digestion, % entering segment 

Ruminal, apt 
Ruminal, true 
Lower tract 

ME, g/kg TFOMe 

-31.2"' 
22.0"' 
53.3"' 

18.4 

-54.8ab 
12.6.,. 
53.8"' 

15.8 

Mid 
Aug 

168.7 
99.7.,. 
63.5 
5.5 

73.6 

-86.8c 
-10.4bc 
56.la. 

16.1 

Late 
Sept 

142.3 
80.4° 
57.1 
4.9 

75.3 

SEMa 
n=5 

4.45 

9.91 
5.71 
4.04 

.47 
2.35 

-65. 31:>c 11. 60 
6.5"0 6.71 

43.8° 3.30 

19.1 2.91 

.... be Row means with different superscripts are different 
(P<.05). 

a Standard error of the mean, n = 5 in late Sept trial, 
n = 6 in other trials. 

- Microbial efficiency, g microbial-N/kg OM truly fermented 
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TABLE 9. EFFECT OF ADVANCING SEASON ON NITROGEN DIGESTION 
AND MICROBIAL PROTEIN SYNTHESIS IN STEERS GRAZING 
TALLGRASS PRAIRIE, 1987. 

TRIAL 
Mid Late Mid Late 

Component May June Aug Sept 

Nitrogen intake, g/d 

191.0"' 151.4° 92.5c 101.4c 

Nitrogen passage, g/d 

Duodenal 215. l"' 198. 5"' 165.1° 161. 5° 
Forage 190.2"' 175.8"' 149.9° 144.0° 
Microbial 99.3"' 80.6° 63.0c 72.2bc 
Ammonia 6.1"' 6.2"' 4.2° 5.7"' 

Fecal 90.4"' 89.3"' 69.7° 75.3° 

Digestion, % entering segment 

Ruminal, apt -13.2"' -31. 6° -79.2d -59.7c 
Ruminal, true 42.la. 25.7° -6.0c 17 .4° 
Lower tract 57.9 ... 54.9"'0 57.3 ... 53.1° 

ME, g/kg TFOM .. 21.6 18.3 18.4 23.0 

Row means with different superscripts are different 
(P<.05). 

d Standard error of the mean, n = 7 in mid-June trial, 
n = 8 in other trials. 

- Microbial efficiency, g microbial N/kg OM truly 
fermented. 

SEMd 
n=7 

5.76 

6.55 
6.07 
4.04 

.39 
2.95 

6.84 
4.61 
1. 75 

1.84 
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TABLE 10. EFFECT OF ADVANCING SEASON ON RUMINAL AMMONIA-N 
CONCENTRATIONS IN STEERS GRAZING TALLGRASS 
PRAIRIE, 1986. 

Item 

Time of Day 

0800 
1400 
2000 
0200 
0800 

. Average 

Mid 
May 

Late 
June 

TRIAL 

---------------mg/100 

9.18 .. 4.711'>e 
5.90 .. 3.91° 
7.09" 3.00° 
6.18" 2.96° 

4.15° 
7.09" 3.74° 

Mid 
Aug 

Late 
Sept 

ml--------------

5.19° 3.51c: 
7.03a. 1.80c: 
7. 73 ... 2.07° 
5.69" 2.27° 
7. 72" 3.42° 
6.67"' 2.62c: 

Row means with different superscripts are different 
(P<.05) 

a Standard error of the mean, n = 5 in late Sept trial, 
n = 6 in other trials. 

.74 

.45 

.46 

.59 

.55 

.26 
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TABLE 11. EFFECT OF ADVANCING SEASON ON RUMINAL AMMONIA-N 
CONCENTRATIONS IN STEERS GRAZING TALLGRASS 
PRAIRIE, 1987. 

Item 

Time of Day 

0800 
1400 
2000 
0200 
0800 

Average 

Mid 
May 

Late 
June 

TRIAL 

--------------mg/100 

3.76 ... 3.82 ... 
3.88 ... 3.22 ... 
3. 73a 3.59 .. 
3. 72a. 3.44 ... 
3. 75a 3 .81 ... 
3. 77a. 3.57 .. 

Mid 
Aug 

Late 
Sept 

ml---------------

1.44c 2.59° 
1.65° 3.11 ... 
1.33° 2.20° 
1.30c 2.38° 
1.44° 2.22° 
1.43c 2.50° 

Row means with different superscripts are different 
(P<.05) 

a Standard error of the mean, n 8. 

.30 

.31 

.28 

.37 

.38 

.14 

64 



TABLE 12. EFFECT OF ADVANCING SEASON ON RUMINAL 
CONCENTRATIONS OF TOTAL VOLATILE FATTY ACIDS AND 
MOLAR PROPORTIONS OF ACETATE, PROPIONATE AND 
BUTYRATE IN STEERS GRAZING TALLGRASS PRAIRIE, 
1986. 

Item 

Time of Day 

0800 
2000 

Average 

0800 
2000 

Average 

0800 
2000 

Average 

0800 
2000 

Average 

Mid 
May 

Late 
June 

TRIAL 
Mid 
Aug 

Late 
Sept 

------------ Total VFA, mM-------------
97.0° 

121.0 
109.0° 

124.6 ... 
131.6 
128.1 ... 

134.9 ... 
117 .0 
126.0"' 

89.1° 
119.3 
104.2° 

-------Acetate, moles/100 moles-------

76.3"'0 

77 .2 ... 
76.8"" 

77.1"' 
78.1" 
77.6"' 

------Propionate, moles/lOOmoles-------

14.1 .. 
13.6 ... 
13.8 ... 

12.9° 
12 .9'"' 
12.9° 

-------Butyrate, moles/100 moles-------

10.2° 
11.5 ... 
10. 8',.. 

11.4 ... 
11.4 ... 
11.4 ... 

11.6'"' 
11.9"' 
11.8"' 

abc: Row means with different superscripts are different 
(P<.05) 

SEMa 
n=5 

9.30 
9.30 
6.67 

.66 

.66 

.47 

.35 

.35 

.25 

.51 

.51 

.37 

a Standard error of the mean, n = 5 in late Sept trial, 
n = 6 in other trials. 
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TABLE 13. EFFECT OF ADVANCING SEASON ON RUMINAL 
CONCENTRATIONS OF TOTAL VOLATILE FATTY ACIDS AND 
MOLAR PROPORTIONS OF ACETATE, PROPIONATE AND 
BUTYRATE IN STEERS GRAZING TALLGRASS PRAIRIE, 
1987. 

Item 
Mid 
May 

Late 
June 

TRIAL 
Mid 
Aug 

Late 
Sept 

Time of Day -------------Total VFA, mM-------------

0800 
2000 

Average 

0800 
2000 

Average 

0800 
2000 

Average 

0800 
2000 

Average 

138.5ab 126.2ab 140.0 ... 106.3b 
118.3ab 148.28 118.5.,.0 107.8° 
128.4ab 137.26 129.2ab 107. lb 

-------Acetate, moles/100 moles-------

78.7° 78.0° 81.2 .. b 82.7 .. 
79.7 82.0 82.2 81.9 
79.2b 80.0b 81. ?6 82.3 6 

-----Propionate, moles/100 moles-"""----

ll.2a 11.5 .. lQ • 2ab 9.3b 
10 .5 9.3 9.4 9.3 
10. 9a. 10.4ab 9.8ab 9.3b 

------Butyrate, moles/100 moles-------
9.2a.b 10.2 ... 8.6b 7.9b 
9.2 8.5 8.4 8.7 
9.2 9.3 8.5 8.3 

a.be Row means with different superscripts are different 
(P<. 05) 

a Standard error of the mean, n 8. 

12.21 
12.21 
8.63 

1.18 
1.18 

.84 

. 71 

.71 

.50 

.53 

.53 

.38 

66 



CHAPTER V 

STEERS GRAZING TALLGRASS PRAIRIE IN THE SPRING AND SUMMER. 

III. CORRELATIONS AND PREDICTION EQUATIONS 

Abstract 

Stepwise regression techniques were used to develop prediction 

equations for intake, potential organic matter and nitrogen 

disappearance, in vitro organic matter disappearance, ruminal ammonia­

nitrogen and duodenal crude protein flow. Maximum r 2 and minimum mean 

square error were used as selection criteria. Data were from eight 

trials conducted in the late spring and summer of 1986 and 1987 on 

rangeland in north-central Oklahoma. Additional data points from 1985 

trials were included in some analyses. Organic matter intake (OMI; g/kg 

BW) was best estimated by 36 and 24 h in situ disappearance and the 

ratio of acid detergent fiber to neutral detergent fiber {ADF/NDF). 

Nitrogen disappearance at 36 AND 24 h accounted for 92% and ADF/NDF 

accounted for 72% of the variability in intake. Potential organic 

matter and potential nitrogen disappearance, determined by 72 h in situ 

incubation, were best predicted by short term in situ variables, 

(ADF/NDF) 2 and in vitro organic matter disappearance (IVOMD). In vitro 

organic matter disappearance accounted for 94% of the variation in 

potential organic matter disappearance, whereas the ADF to neutral 

detergent fiber (NDF) ratio (ADF/NDF) accounted for 89% of potential 

nitrogen disappearance and 74% of IVOMD in 1986 and 1987. In situ 
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organic matter disappearance at 24 h and nitrogen disappearance data at 

6 h accounted for 94%, 97% and 92% of potential organic matter 

disappearance, potential nitrogen disappearance and IVOMD, respectively. 

No single variable accounted for a significant amount of the variation 

in ruminal armnonia-N concentrations (P>.10). Acid detergent fiber and 

digestible crude protein (DCP) accounted for 78% of NH 3 -N variability 

(P<.05). When restricted to wet lab variables, the equation for 

prediction of crude protein flow to the duodenum used ADF/NDF and ADF 

(r2 =.96). In situ nitrogen disappearance at 36 h accounted for 90% of 

the variation in crude protein flow. When restricted to intake 

variables, actual crude protein flow (g/d) was best predicted by crude 

protein intake (CPI) and digestible organic matter intake (DOMI; 

r 2 =.62). When flow was expressed as g CP flow/g CP intake (CPF/CPI), 

CPI (g/d) and DOMI (g/d) provided the best fit (r2 =.91). Digestible 

organic matter to crude protein ratio (DOM/CP) explained 89% of CPF/CPI 

variability. Results from this study suggest that the ratio of ADF to 

NDF is a good wet lab predictor of intake. Thirty-six and 24 h in situ 

data reflect intake better than wet lab variables. Potential 

disappearance, both in situ and in vitro, are reflected by short term 

(24 h or less) in situ disappearance. The ratio of ADF to NDF has more 

influence on potential disappearance than either constituent by itself. 

Ruminal NH3 -N is best predicted by a combination of wet lab and in situ 

variables. Absolute intestinal CP flow can be predicted from DOMI and 

CPI or 36 h in situ data. DOM/CP is a good predictor of CP flow 

relative to CP intake. 
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Introduction 

It has been proposed that the amount of feed consumed by a ruminant 

is primarily determined by an interaction between energy demand of the 

animal and the amount of digesta which can accumulate in the rumen 

{Weston, 1982). The continual changing environment and pattern of food 

supply subjects the grazing animal to conditions in which intake is the 

determining factor for meeting maintenance and production needs. 

The amount of protein reaching the small intestine of ruminants, 

together with the energy available to the animal, play a primary role in 

the determination of performance. Factors affecting protein supply 

include protein intake, protein degradation and microbial protein 

synthesis. The estimation of protein reaching the small intestine is 

important for designing supplementation programs that will maximize the 

utilization of nutrients from forages available to grazing animals. 

The amount of protein reaching the small intestine relative to 

protein intake has been related to the digestible organic matter to 

crude protein ratio of the diet (DOM/CP) (Weston and Hogan, 1973), the 

dietary crude protein percentage (CP) (Kaufmann, 1977), and to crude 

protein and digestible organic matter intake (CPI, DOMI, respectively) 

(Hogan and Weston, 1981; Verite et al., 1979; Corbett and Pickering, 

1981). Ruminal ammonia nitrogen {NH3 -N) has also been used to predict 

nitrogen losses or gains across the rumen (Oyaert and Bouckaert, 1960). 

Studies with grazing animals involve limitations and uncontrollable 

influences not encountered in studies with penned animals. When 

concepts and data are transformed into mathematical equations, it is 

possible to evaluate the proposed hypotheses about how the ruminant 

system functions under various conditions. Numbers may limit the 
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precision and therefore the mathematical significance of the results. 

However, if the general behavior of the predictions is satisfactory, 

most likely, concepts are suitable and additional data can be collected 

to refine the prediction equations. Ultimately, it would be desirable 

to develop relationships for field application. 

Materials and Methods 

Data from trials conducted in mid-May, late June, mid-August and 

late September of 1985, 1986 and 1987 with cattle grazing tallgrass 

prairie rangeland were used to develop prediction equations. OM intake, 

potential OM and N disappearance (72 h in situ values), in vitro OM 

disappearance, ruminal ammonia-N and duodenal crude protein flow were 

.used as dependent variables. 

Prediction equations were developed using stepwise regression 

techniques with the MAXR-square option in the Statistical Analysis 

System. Simple and multiple regression using the General Linear Models 

procedure were also utilized. Criteria for model selection with 

stepwise regressions included maximum r 2 , minimum mean square error and 

variables with entry level P<.15. No equation using more than half the 

original degrees of freedom for error was accepted. First and second 

degree relationships were examined when the stepwise procedure was used. 

Conventional variables were used to predict crude protein flows to the 

duodenum and compared to other research results. Adjustments for body 

weight were made due to the use of growing steers the first year of the 

study. Trial averages were used as data points, resulting in 8 

observations for 1986 and 1987 data, and 12 observations when 1985 data 

was included. Diet and in situ data for 1986 and 1987 are listed and 
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discussed in Chapter III. Data from 1985 are listed in Appendix F. 

Intake, ruminal measurements and intestinal flow data from 1986 and 1987 

are from Chapter IV. 

Due to the method of calculating intakes in the current study 

(Fecal output/1-IVOMD), regressions for intake using digestible organic 

matter would not be valid. Therefore, IVOMD was not utilized to predict 

intake. 

Results and Discussion 

When the variable list was restricted to wet lab variables, organic 

matter intake (OMI; g/kg BW), was best predicted by the ratio ADF:NDF 

(r2 =.72; P<.05) (Table 14). Organic matter intake was more highly 

correlated to in situ data than wet lab variables. Thirty-six and 24 h 

in situ disappearance values, which are indicative of rate and extent of 

disappearance, were best related to OMI. The second degree terms for N 

disappearance at 36 and 24 h incubation accounted for 92% of the 

variation in intake. Including 24 h organic matter disappearance data 

with 36 and 24 h N in situ data explained 97% of intake variability. 

The combination of (ADF/NDF)2 and 36 and 24 h in situ N disappearance 

values accounted for 98% of the variation in organic matter intake. 

Using data from three years, the second degree term for ADF:NDF 

ratio accounted for 73 and 77% of the variation in potential organic 

matter disappearance (POMD; Table 15) and in vitro organic matter 

disappearance (IVOMD; Table 16), respectively. Excluding 1985 data, 

this ratio explained 89% of potential nitrogen disappearance (PND; Table 

17) and 74% of IVOMD. Conventional IVOMD accounted for 94% of the 

variation in POMD. Short term in situ disappearance data were 
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indicative of POMD, PND and IVOMD, with 24 h organic matter 

disappearance (OMD24) and 6 h nitrogen disappearance (ND6) accounting 

for 94, 97 and 92% of the variability, respectively. The relationship 

between short term and potential disappearance is in agreement with 

Mertens (1977) who stated that the rate of OM digestion is directly 

related to potential extent of digestion. 

Regression equations for prediction of ruminal ammonia-N (NH3 -N) 

were not significant for any single variable (Table 18). When wet lab 

and in situ values were combined, the combination ADF 2 and digestible 

crude protein2 (DCP: 72 h in situ N disappearance * CP)) accounted for 

78% of NH 3 -N variation. When the variable list was restricted to in 

situ values, indices of extent of OM and N disappearance (72 h in situ 

data) and rate of OM disappearance (12 and 24 h in situ data) were best 

related to NH3 -N (r2 =.95). 

Wet lab variables utilized to estimate nitrogen flow into the small 

intestine included ADF:NDF and (ADF:NDF) 2 (r2 =.8l; Table 19). Further 

reduction of the crude protein flow model added ADF2 and CP for a 

maximum r 2 of .99. Higher fiber content, and therefore less digestible 

organic matter, combined with declining CP content results in longer 

retention time in the rumen. An increase in retention time and 

corresponding decrease in passage rate from the rumen is associated with 

declines in microbial protein synthesis, which contributes 60-80% of the 

protein reaching the small intestine (NRC, 1985). 

Equations developed with intake variables as predictors of crude 

protein flow are listed in Table 20. Research with sheep has shown that 

crude protein flow (non-ammonia nitrogen flow X 6.25) is related to 

digestible organic matter intake {DOMI; in vitro OM digestion * OM 
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intake) and crude protein intake (CPI) (Hogan and Weston, 1981; Verite 

et al., 1979; Corbett and Pickering, 1981; Table 20). Data from the 

current study indicate that DOMI accounts for 86% of the variability in 

CP flow to the duodenum (Table 20, equation 1). The addition of CPI 

increased the r 2 to .96 (Table 20, equation 2). 

When expressing crude protein flow as a percent of crude protein 

intake (CPF/CPI), a commonly used variable is the ratio of digestible 

organic matter to crude protein (DOM/CP; 72 h in situ OM digestion:crude 

protein ratio). According to the equation generated by Weston and Hogan 

(1973; Table 20), CP flow to the duodenum exceeds CP intake when the 

DOM/CP ratio exceeds 3.72. Assuming an average 67% DOM, this equation 

indicates N losses above 14.2% CP (Weston and Hogan, 1973). Using the 

same variables (Table 20, equation 3), data from the current study found 

this value to be 4.39; diets having a higher ratio associated with a N 

gain and those with a lower ratio exhibiting N losses across the rumen. 

Substituting the average DOM (72 h in situ OM disappearance) value of 

71.5%, the breakpoint for N loss or gain across the rumen is 16.3% CP. 

Actual CPI and DOMI explained 91% of the variability in CPF/CPI (Table 

20, equation 4). Kaufmann (1977) used CP% of diet to predict apparent N 

digestion in the rumen of dairy cows (Table 20). He found losses of N 

to occur above 15.7% CP. Using dietary CP%, data from the current study 

found this point to be 15.14% CP (Table 20, equation 5). 

The determination of organic matter intake and nutrient 

availability from forage are primary factors in determining the nutrient 

status of grazing cattle. Nutrient availability can be measured by wet 

lab procedures. Intake, on the other hand, requires the use of 

indigestible markers and cannulated animals. Results from this study 
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indicate that ADF:NDF ratio, which is an index of gut fill, may be used 

to predict intake. In addition, indices of rate and extent of digestion 

(24 and 36 h in situ digestions) will increase the confidence of intake 

predictions. The discovery of the relationship between short term in 

situ digestions (24 h and less), ADF:NDF ratio and potential OM and N 

digestibility (72 h in situ digestions) allows for the prediction of 

extent of OM and N digestibility with less laborious techniques. 

The determination of N supply to the lower tract of grazing animals 

would allow livestock managers to determine whether protein or energy 

supplemention would be more beneficial. Considering the most convenient 

and feasible measurement for the prediction of duodenal N flow, wet lab 

variables are the most attractive. The combination of ADF:NDF, 

(ADF:NDF) 2 and ADF2 revealed a significant relationship (r2 = .96). The 

use of DOM/CP, DOMI and CPI indicated that these variables can be used 

to predict N flow, which is in agreement with other researchers. 



TABLE 14. PREDICTIONS EQUATIONS FOR ORGANIC MATTER INTAKE 
(g OM/kg BW)a DERIVED BY STEPWISE REGRESSION 
USING WET LAB AND IN SITU VARIABLES FROM 
MASTICATE SAMPLES COLLECTED DURING DIFFERENT 
GRAZING SEASONS. 0 

Equation n r 2 sy -x 
-------------------wet lab variables------------------------

1. 32.4180 - 29.4051 ADF/NDF 8 . 72 .89 

--------------------in situ variables-----------------------

1. 11. 9862 + .0012 (ND36) 2 8 . 78 .79 

2. 11. 3859 + .0023 (ND36) 2 - .0015 (ND24) 2 8 .92 .51 

3. 5. 5511 + .0020 (ND36) 2 - .0020 (ND24) 2 8 .97 .34 
+ .1609 OMD24 

4. 18.0095 + .0025 (ND36) 2 - .0022 (ND24) 2 8 .99 .24 
+ .0030 (OMD24) 2 - .2193 OMD36 

--------------wet lab and in situ variables-----------------

1. 11.9862 + .0012 (ND36) 2 

2. 11.3859 + .0023 (ND36) 2 - .0015 (ND24) 2 

3. 15.8571 + .0020 (ND36) 2 - .0015 (ND24) 2 

- 10.3753 (ADF/NDF) 2 

8 

8 

8 

Grams organic matter per kilogram body weight 

.78 .79 

.92 .51 

.98 .30 

h ADF/NDF = Acid detergent fiber to neutral detergent fiber 
ratio, ND36 = 36 h in situ nitrogen disappearance, ND24 = 
24 h in situ nitrogen disappearance, OMD24 = 24 h in situ 
organic matter disappearance. 
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TABLE 15. PREDICTION EQUATIONS FOR POTENTIAL ORGANIC MATTER 
DISAPPEARANCE (%) DERIVED BY STEPWISE REGRESSION 
USING WET LAB AND IN SITU VARIABLES FROM MASTICATE 
SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS .... 

Equation n r 2 sy·x 
-------------------wet lab variables------------------------

1. 106.8712 - 105.5274 (ADF/NDF) 2 

2. 97.1555 - 93.4769 (ADF/NDF) 2 

+ 45.0217 CP/NDF 

1.2 .73 3.09 

12 .79 2.87 

-------------------in situ variables------------------------

1. 24.3241 + .9680 OMD24 8 .67 4.11 

2. 28.0091 + 1.1584 OMD24 - .5864 ND6 8 .94 1.89 

3. -76.3094 + 5.3313 OMD24 - .0119 ND62 ; 8 .99 .89 
- .0440 OMD24 2 

-------------wet lab and in situ variables------------------

1. 18.3932 + 1.0309 IVOMD 8 .94 1.80 

2. 12.3184 + .8169 IVOMD + .3516 OMD24 8 .99 .30 

.,. ADF/NDF = Acid detergent fiber to neutral detergent fiber 
ratio, CP/NDF = Crude protein to neutral detergent fiber 
ratio, OMD24 = 24 h in situ organic matter disappearance, 
ND6 = 6 h in situ nitrogen disappearance, IVOMD = In 
vitro organic matter disappearance. 
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TABLE 16. PREDICTION EQUATIONS FOR IN VITRO ORGANIC MATTER 
DISAPPEARANCE (%) DERIVED BY STEPWISE REGRESSION 
USING WET LAB AND IN SITU VARIABLES FROM MASTICATE 
SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS."' 

Equation n r 2 sy·x 
------------------wet lab variables-------------------------

1. 89.6910 - 116.8064 (ADF/NDF) 2 

2. 81.6441 - 102.7553 (ADF/NDF) 2 

+ 196.7255 (CP/NDF) 2 

12 . 77 

12 .85 

3.04 

2.65 

----------------in situ variables---------------------------

1. 14.2479 + .7646 OMD24 8 .47 5.02 

2. 18.9369 + 1.0000 OMD24 - .7304 ND6 8 .92 2.07 

3. -78.3940 + 5.1476 OMD24 - .7327 ND6 8 .99 .61 
- .0436 OMD24 2 

--------------wet lab and in situ variables-----------------

1. 92.1102 - 124.8917 (ADF/NDF) 2 8 .74 3.50 

2. 202.6475 - 206.3330 ADF/NDF 8 .95 1.81 
- 1.0309 OMD12 

3. 108.8519 + .7361 CP - 147.8761 (ADF/NDF) 2 8 .99 .69 
- .0151 OMD12 2 

a ADF/NDF = Acid detergent fiber to neutral detergent fiber 
ratio, CP/NDF = Crude protein to neutral detergent fiber 
ratio, CP = Crude protein, OMD24 = 24 h in situ OM 
disappearance, ND6 = 6 h in situ N disappearance, OMD12 = 
12 h in situ OM disappearance. 
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TABLE 17. PREDICTION EQUATIONS FOR POTENTIAL NITROGEN 
DISAPPEARANCE (%) DERIVED BY STEPWISE REGRESSION 
USING WET LAB AND IN SITU VARIABLES FROM MASTICATE 
SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS.~ 

Equation n r 2 sy·x 
--------------------wet lab variables-----------------------

1. 41.7318 + 117.3142 CP/ADF 12 .48 8.38 

2. -92.3712 + 143.8128 CP/ADF + 1.6407 NDF 12 .64 7.30 

3. -4350.5432 + 292.1340 CP/NDF 12 .79 5.95 
+ 109.2132 NDF - .6793 NDF2 

-------------------in situ variables------------------------

1. -40.5885 + 2.1992 OMD24 

2. -36.3854 + 2.4102 OMD24 - .6547 ND6 

3. -169.6550 + 8.0892 OMD24 - .6578 ND6 
- .0597 (OMD24) 2 

8 .88 

8 .97 

8 .99 

4.88 

2.79 

.59 

--------------wet lab and in situ variables-----------------

1. 159.4376 - 285.8905 (ADF/NDF) 2 8 .89 4.74 

2. -54.0333 + .9436 IVOMD + 1.4777 OMD24 8 .99 1.30 

CP/ADF = Crude protein to acid detergent fiber ratio, NDF 
= Neutral detergent fiber, CP/NDF = Crude protein to 
neutral detergent fiber ratio, OMD24 = 24 h in situ 
organic matter disappearance, ND6 = 6 h in situ nitrogen 
disappearance, IVOMD = In vitro organic matter 
disappearance. 
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TABLE 18. PREDICTION EQUATIONS FOR RUMINAL AMMONIA NITROGEN 
(MG/100 ML)a DERIVED BY STEPWISE REGRESSION USING 
WET LAB AND IN SITU VARIABLES FROM MASTICATE 
SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS. 0 

Equation n r 2 sx x 

------------------wet lab variables-------------------------

1. 11.1314 - .0035 ADF2 

2. -134.2412 - .0770 ADF2 + 6.5555 ADF 

3. 32.4972 - .0098 ADF2 - .0978 IVOMD 
- 260.5705 (CP/NDF) 2 

4. -38.0453 + 2815.3288 (CP/NDF) 2 

- 292.9882 (CP/ADF) 2 

- 92.0958 (ADF/NDF) 2 

- .3390 CP2 

8 .33 1. 76 

8 .59 1.51 

8 .77 1.14 

8 .92 .85 

---------------in situ variables---------------------------

1. -1. 4210 + .0010 OMD72 2 8 .25 1.87 

2. -3.9805 + .0023 OMD72 2 - .0010 ND72 2 8 .59 1.50 

3. -29. 7175 + .3921 OMD72 - .0018 ND72 2 8 .82 1.13 
+ .4049 OMD12 

4. -30.9660 + .5787 OMD72 - .0014 ND72 2 8 .95 .70 
+ .0110 OMD12 2 - .0052 OMD24 2 

--------wet lab and in situ variables-----------------------

1. 11.1314 - .0035 ADF2 8 .33 1. 76 

2. 25.0954 - .0090 ADF2 - .0564 DCP2 8 .78 1.12 

3. 28.8929 - 1.0681 ADF - .1365 DCP2 8 .95 .57 
+ .4981 OMD36 

4. 12.7263 - 1.1092 ADF - .2210 DCP2 8 .99 .27 
+ 1.1519 OMD36 - .0027 NDF2 

a Milligrams arranonia nitrogen per 100 milligrams rumen 
fluid 

b ADF = Acid detergent fiber, NDF = Neutral detergent 
fiber, CP = Crude protein, IVOMD = In vitro organic 
matter disappearance, CP/NDF = CP to NDF ratio, CP/ADF = 
CP to ADF ratio, ADF/NDF = ADF to NDF ratio, DCP 
digestible crude protein (ND72*CP), OMD36 = 36 h in situ 
organic matter disappearance. 
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TABLE 19. PREDICTION EQUATIONS FOR CRUDE PROTEIN FLOW TO THE 
DUODENUM (G/D) DERIVED BY STEPWISE REGRESSION 
USING WET LAB AND IN SITU VARIABLES FROM MASTICATE 
SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS .... 

Equation n r 2 sx x 

-------------wet lab variables------------------------------

1. 2554.2090 - 2666.6780 ADF/NDF 

2. 13137.1871 - 39745.9834 ADF/NDF 
+ 32302.2536 (ADF/NDF) 2 

3. 20326.6729 - 65313.7876 ADF/NDF 
- 52259.9610 (ADF/NDF) 2 

+ .4221 (ADF) 2 

4. 21191.2933 - 75385.0468 ADF/NDF 
+ 60825.2129 (ADF/NDF) 2 

+ 59.2130 ADF + 27.9958 CP 

-----------------in situ variables----------

1. 662.4988 + .1182 (ND36) 2 

2. 555.4299 + .0962 (ND36) 2 + .1627 (OMD12) 2 

3. 550.9091 + .0613 (ND36) 2 + .4485 {OMD12) 2 

- .3804 (OMD6) 2 

4. 217.4805 + .1047 (ND36) 2 + 29.7955 OMD12 
- .4051 {OMD6) 2 - 4.5106 ND48 

8 .66 93.39 

8 .81 75.79 

8 .96 38.81 

8 .99 9.29 

8 .90 50.04 

8 .94 42.54 

8 .98 29~38 

8 .99 15.91 

--------wet lab and in situ variables-----------------------

1. 662.4988 + .1182 (ND36) 2 8 .90 

2. 555.4299 + .0962 (ND36) 2 + .1627 (OMD12) 2 8 .94 

3. 550.9091 + .0613 (ND36) 2 + .4485 (OMD12) 2 8 .98 
- .3804 {OMD6) 2 

4. 217. 4805 + .1047 (ND36) 2 + 29.7955 OMD12 8 .99 
- .4051 (OMD6) 2 - 4.5106 ND48 

a ADF/NDF = Acid detergent fiber to neutral detergent 
fiber ratio, ADF = Acid detergent fiber, CP = Crude 
protein, ND36 = 36 h in situ N disappearance, OMD12 

50.04 

42.54 

29.38 

15.91 

= 12 h in situ OM disappearance, OMD6 = 6 h in situ OM 
disappearance, ND48 = 48 h in situ N disappearance. 
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TABLE 20. PREDICTION EQUATIONS FOR CRUDE PROTEIN FLOW TO THE 
DUODENUM DERIVED BY SIMPLE, MULTIPLE OR STEPWISE 
REGRESSION, USING INTAKE AND RUMINAL VARIABLES 
FROM SAMPLES COLLECTED DURING DIFFERENT GRAZING 
SEASONS .... 

Equation n r 2 sy.x 
------------------------g/d---------------------------------

1. 296.5780 + .1867 DOM! 8 .86 59.56 

2. 352.1781 + .1158 DOM! + .3056 CPI 8 .96 35.42 

---------------------% of crude protein intake--------------

3. .3801 + .1412 DOM/CP 8 .89 .09 

4. 1.7604 - .0014 CPI+ .0002 DOM! 8 .91 .09 

5. 2.2974 - .0857 CP 8 .84 .11 

Other research: 

Equation Species Diet n r2 sy.x 
-------------------g/d------------------------

6 + .36 CPI + .16 DOMI0 sheep forage 

.41 CPI + .124 DO Mr" sheep forage 

.13 CPI + .174 DOM Ia sheep forage 

--------------% of crude protein intake---------------------

.33 + .18 DOM/cp• sheep 

.342 + 10.32/CPf dairy 

forage .96 

cone/ 45 
roughage 

DOM! = Digestible organic matter intake (g/d), CPI = 
Crude protein intake (g/d), DCPIGPKG =Digestible crude 
protein intake (g/kg BW), OMIGPKG =Organic matter intake 
(g/kg BW), DOM/CP = Digestible organic matter to crude 
protein ratio, CP = Crude protein. 

0 Hogan and Weston, 1981 
c Verite et al., 1979 
a Corbett and Pickering, 1981 
• Weston and Hogan, 1973 
f Kaufmann, 1977 
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FIGURE 1. CRUDE PROTEIN CONTENT OF FORAGE GRAZED 
BY STEERS 
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FIGURE 2. NEUTRAL DETERGENT FIBER IN FORAGE GRAZED 
BY STEERS 
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FIGURE 3. ACID DETERGENT FIBER IN FORAGE GRAZED 
BY STEERS 
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FIGURE 4. IN VITRO DIGESTION OF FORAGE GRAZED BY STEERS 
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FIGURE 5. POTENTIAL RUMINAL DIGESTION OF FORAGE GRAZED 
BY STEERS 
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FIGURE 6. POTENTIAL RUMINAL DIGESTION OF FORAGE 
NITROGEN GRAZED BY STEERS 
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FIGURE 7. 
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FIGURE 8. FORAGE INTAKE BY STEERS, g/100g BW 
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FIGURE 9. DUODENAL OM FLOW OF STEERS 
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FIGURE 10. APPARENT RUMINAL NITROGEN DIGESTION OF 
FORAGE GRAZED BY STEERS 
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FIGURE 11. TRUE RUMINAL OM DIGESTION, % OM INTAKE 
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FIGURE 12. MICROBIAL EFFICIENCY OF STEERS 

::g 
0 

24 

~ 22 
bD 
~ 

~20 
!>.. 
0 

~ 18 CL> 
•r-4 
0 

•r-4 
'H 

rJ 16 
~ 
•r-4 

.g 14 
J...t 
0 

•r-4 

~ 

~ / 

' / 
', 1987 ,," 

' / / ' / ' / ', / 
....... / 

'+----------+' 

,,+ 
/ 

12l_~~~~~~~~~~~~~~~~~~-

Mid May Late June Mid August Late Sept '° w 



FIGURE 13. LOWER TRACT OM DIGESTION BY STEERS 
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FIGURE 14. LOWER TRACT N DIGESTION BY STEERS 
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FIGURE 15. RUMINAL AMMONIA-N CONCENTRATION OF STEERS 
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FIGURE 16. TOTAL VFA CONCENTRATION OF STEERS 
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FIGURE 17. RUMINAL ACETATE CONCENTRATION OF STEERS 
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FIGURE 18. RUMINAL PROPIONATE CONCENTRATION OF STEERS 
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FIGURE 19. RUMINAL BUTYRATE CONCENTRATION OF STEERS 
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FIGURE 20. CRUDE PROTEIN FLOW/CRUDE PROTEIN INTAKE 
VS DIGESTIBLE OM/CRUDE PROTEIN 
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APPENDIX A 

MONTHLY PRECIPITATION (MM) AND DEVIATIONS FROM NORMAL AT OKLAHOMA 
AGRICULTURAL EXPERIMENT STATION, AGRONOMY DEPARTMENT, STILLWATER, FOR 

NOVEMBER, 1985, THROUGH SEPTEMBER, 1987 

PreciE Deviation 
1985 
Nov 71.6 26.4 
Dec 6.9 -24.1 

1986 
Jan 0.0 -22.9 
Feb 19.8 
March 26.7 -29.0 
April 93.7 28.2 
May 125.5 -3.6 
June 84.3 -15.2 
July 49.3 -47.0 
August 178.6 106. 7 
Sept 213.4 113.5 
Oct 168.9 95.3 
Nov 106.9 61. 7 
Dec 36.6 5.6 

1987 
Jan 64.0 41.1 
Feb 136.6 106.2 
March 85.6 30.0 
April 15.7 -49.8 
May 172.5 43.4 
June 175.3 75.7 
July 74.2 -22.1 
August 53.6 -18.3 
Sept 112.0 12.2 
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APPENDIX B 

MONTHLY PRECIPITATION (MM.) AND AVERAGE MINIMUM, AVERAGE MAXIMUM AND 
AVERAGE TEMPERATURES (C) AT OKLAHOMA AGRICULTURAL EXPERIMENT STATION, 
AGRONOMY DEPARTMENT, STILLWATER, FROM MAY THROUGH SEPTEMBER, 1986 AND 

1987. 

Max 
Min 
Avg 

May June July August Sept 
'86 '87 '86 '87 '86 '87 '86 '87 '86 '87 

---------------Precipitation, :mm--------------------
126 173 84 175 49 74 179 54 213 112 

-----------Daily Temperature Averages, c-------------
24.8 29.0 30.3 31.0 34.8 31.9 31.8 33.8 28.4 28.9 
14.3 15.9 19.3 19.0 22.3 21.0 19.4 21.1 18.6 14.6 
19.5 22.5 24.8 25.1 28.6 26.4 25.6 27.5 23.5 21.8 

118 



APPENDIX C 

DATES OF TRIALS AT THE RANGE RESEARCH AREA. 

Sampling Period 

Mid-May 

Late June 

Mid-August 

Late September 

Date 

May 7-16, 1986 

May 15-24, 1987 

June 23-July 2, 1986 

June 22-July 1, 1987 

August 11-20, 1986 

August 3-12, 1987 

Sept 26-0ct 5, 1986 

Sept.17-26, 1987 
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Steer 

517 
709 
734 
779 
790 
852 

Mean 

APPENDIX D 

STEER WEIGHTS DURING EACH TRIAL IN 19868 

TRIAL 
Mid May Late June Mid August Late Sept 
---------------weight, kg----------------------

297 339 370 406 
286 343 370 404 
265 317 343 
275 327 348 375 
239 276 317 339 
280 333 370 388 

274 322 353 382 

8 averaged over two days, no shrink 

APPENDIX E 

STEER WEIGHTS DURING EACH TRIAL IN 1987 8 

TRIAL 
Steer Mid May Late June Mid August Late SeEt 

---------------weight, kg----------------------

709 455 477 515 543 
779 399 426 464 482 
790 364 395 430 464 
852 416 449 505 521 

41 627 640 680 673 
42 626 637 665 682 
43 589 601 627 629 
44 605 617 630 640 

Mean 510 530 564 579 

8 averaged over two days, no shrink 
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APPENDIX F 

CORRELATIONS BETWEEN VARIABLES USED IN INTAKE, RUMINAL AMMONIA 
NITROGEN AND INTESTINAL FLOW REGRESSION EQUATIONS.a 

CPFLCPI CPF CPFGPKG MCPF ME NH;;i-N 
NH3 -N -.16 .00 .88 -.14 -.39 
DOM/CP .94 -.42 -.39 -.52 -.51 -.25 
DOM/DCP .74 -.76 -.30 -.78 -.33 -.21 
DOMI -.41 .93 -.09 .81 .16 -.15 
CPI -.88 .90 .21 .91 .44 .08 
FCP -.69 .07 -.31 .45 -.28 -.05 
DCP -.83 .86 .31 .89 .35 .14 
CP -.93 .58 .55 .61 .35 .38 
NDF .34 .17 -.14 .02 -.15 -.06 
ADF .81 -.67 -.63 -.65 -.16 -.55 
OMD72 -.54 .61 .63 .49 -.17 .49 
OMD48 -.74 .80 .49 .75 .13 .39 
OMD36 -.61 .90 .14 .91 .30 .04 
OMD24 -.66 .85 .20 .84 .34 .16 
OMD18 -.40 . 76 .16 . 76 .40 .32 
OMD12 -.52 .75 -.01 .84 .46 .08 
OMD6 -.15 .15 -.04 .37 .28 .02 
ND72 -.39 .82 .04 .80 .13 -.04 
ND48 -.65 .82 .33 • 77 .29 .31 
ND36 -.53 .92 .08 .85 .31 .04 
ND24 -.47 .79 -.03 . 78 .50 .04 
ND18 -.24 . 76 -.23 .78 .57 -.04 
ND12 -.00 .50 -.57 .62 .68 -.31 
ND6 .10 .25 -. 72 .41 .66 -.45 

CPF/CPI =Crude protein flow to crude protein intake ratio (g/g), CPF 
= Crude protein flow to the duodenum (g/d), CPFPCBW = Crude protein 
flow to the duodenum (g/kg body weight/d), MCPF =microbial crude 
protein flow to the duodenum (g/d), ME= microbial efficiency (g 
microbial protein/kg OM truly fermented), NH3 -N = ruminal ammonia 
nitrogen (mg/100 ml rumen fluid), DOM/CP =Digestible organic matter 
to crude protein ratio, DOM/DCP = Digestible organic matter to 
digestible crude protein ratio, DOMI = Digestible organic matter 
intake (g/d), CPI = Crude protein intake (g/d), FCP =Fecal crude 
protein (g/d), DCP =Digestible crude protein (%), CP =Crude protein 
(%), NDF =Neutral detergent fiber, ADF =Acid detergent fiber, 
OMD72 - OMD6 = 72 h through 6 h in situ organic matter 
disappearance (%), ND72 - ND6 = 72 h through 6 h in situ nitrogen 
disappearance (%). 
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APPENDIX G 

CORRELATIONS BETWEEN VARIABLES USED IN POTENTIAL ORGANIC MATTER AND 
NITROGEN DISAPPEARANCE, IN VITRO ORGANIC MATTER DISAPPEARANCE AND INTAKE 

REGRESSION EQUATIONS.a 

OMD72 ND72 Iv:..:·:"-: OM I NTK 
CP .71 .36 • -; --* .34 
ADF -.80 -.55 -. 77 -.41 
NDF .12 .39 .05 -.36 
ADF/NDF -.94 -.83 -.85 -.20 
CP/ADF .73 .39 .75 .33 
CP/NDF .65 .26 .69 .36 
IVOMD .97 .56 .50 
OMD72 .73 .97 .38 
OMD48 .93 .80 .85 .88 
OMD36 . 77 .95 .63 -.22 
OMD24 .82 .90 .68 -.17 
OMD18 .63 .76 .47 -.19 
OMD12 .37 .70 .17 -.29 
OMD6 -.03 .33 -.22 -.19 
ND72 .73 .56 -.25 
ND48 .87 .80 .79 -.05 
ND36 .77 .88 .66 -.26 
ND24 .67 .80 .54 -.39 
ND18 .42 .75 .24 -.54 
ND12 .01 .55 -.20 -.78 
ND6 -.24 .33 -.44 -.82 

a ADF = Acid detergent fiber, NDF = Neutral detergent fiber, CP = Crude 
protein, ADF/NDF = ADF to NDF ratio, CP/ADF = CP to ADF ratio, CP/NDF 
= CP to NDF ratio, IVOMD = In vitro organic matter disappearance, 
OMD72 - OMD6 = 72 h through 6 h in situ organic matter disappearance, 
ND72 - ND6 = 72 h through 6 h in situ nitrogen disappearance, OMINTK 
= grams organic matter intake per kilogram body weight. 

pr 
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APPENDIX H 

1985 DATA USED IN REGRESSION ANALYSES. 

TRIAL 
Component Mid-May Late Ju Mid-Aug Late Sept 

CP 12.63 10.43 7.89 7 .72 
NDF 74.40 78.37 76.57 76.45 
ADF 46.12 47.60 47.70 48.26 
IVOMD 48.70 45.34 44.25 42.26 
OM Intake, 1.32 1.45 1.28 1.40 

g/lOOg BW 
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