CONSIDERATION OF FRICTIONAL BOUNDARY

MODELLING IN METAL FORMING

By
AHMAD ASSEMPOOR
Bachetor of Science
Tehran Polytechnic
Tehran, Iran
1979
Master of Science
Tehran Polytechnic
Tehran, Iran
1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for
the Degree of DOCTOR OF PHILOSOPHY

December, 1989

Thesis
1989D
A844C cop. 2

Oklahoma State Univ. Libras

CONSIDERATION OF FRICTIONAL BOUNDARY

MODELLING IN METAL FORMING

Thesis Approved:

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major adviser, Dr. Delcie R. Durham, for her invaluable assistance and guidance at all stages of this research. Appreciation is also extended to other committee members, Dr. C. Eric Price, Dr. Richard Lowery, Dr. J. Keith Good, Dr. G. S. Gipson, Dr. F. Zwerneman, and Dr. I. T. Hong. Profound gratitude is expressed to Mr. Ron Markum and Mr. Fred Dodds for their technical assistance in the lab experiments.

Thanks are expressed to Mrs. Daleene Caldwell for her typing skills and to Ms. Linda Gray for typing assistance.

Sincere gratitude is expressed to my mother, brothers and sisters for their moral support, encouragement and financial support.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 Objective and Scope 2
II. FRICTION AND MODELLING OF FRICTION IN METAL FORMING 4
2.1 Friction. 4
2.1.1 Causes of Friction 4
2.1.2 Laws of Friction 6
2.1.3 Theory of Adhesion 10
2.1.3.1 Initial Theory of Adhesion 10
2.1.3.2 Modified Theory of Adhesion 12
2.1.3.3 Condition of Macroscopic Sliding 14
2.1.4 Theory of Friction By Halling and Edwards. 17
2.1.5 Plastic Interaction of Neighboring Asperities 19
2.1.5.1 Asperity Deformation With Tangential Force 19
2.1.5.2 Effect of Asperity Angle on Friction. 24
2.2 Review of the Literature in the Inclusion of Surface Friction in the Finite Element Solutions 27
2.2.1 Direct Method 28
2.2.2 Surface Element Method 34
2.2.3 Slip Method 36
III. AN OUTLINE OF THE PROCESS MODELLING OF FORGING 42
IV. FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC DEFORMATION 51
4.1 Finite Element Approach 51
4.1.1 Assumptions 52
4.1.2 Equilibrium Equations 52
4.1.3 Stiffness Equations 55
4.1.4 Elastic Plastic Stress Strain Matrix 55
4.1.5 Program ELPL 56
4.1.5.1 Procedure of Computation 56
4.1.5.2 The Sequence of Computations 57
4.2 Modelling of Friction in the Present Work 59
v. FORGING OF SYMMETRIC AND NON-SYMMETRIC PARTS 65
5.1 Upsetting of Rectangular Block 65
5.2 Plane Strain Compression of Wedge-Shaped Specimen With Frictional Boundary Conditions 72
5.2.1 Boundary Conditions 72
5.2.1.1 Friction 73
5.2.1.2 Control of the Boundary Nodes 73
5.2.2 Finite Element Approach 74
5.2.3 Experimental Procedures 74
5.2.3.1 Mechanical Properties of the Material 74
5.2.3.2 Data on Friction. 75
5.2.3.3 Plane Strain Compression Test 79
5.2.4 Results of the Analysis. 80
VI. DISCUSSION 106
6.1 Finite Element Approach 106
6.2 Friction 108
VII. SUMMARY AND CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDIES 113
REFERENCES 115
APPENDICES 118
APPENDIX A - STRESS CORRECTION STIFFNESS 118
APPENDIX B - PLASTIC STRESS-STRAIN MATRIX 122
APPENDIX C - SUBROUTINES AND FLOW CHART OF PROGRAM ELPL. 125
APPENDIX D - PROGRAM ELPL 132
APPENDIX E - SOME NUMERICAL AND EXPERIMENTAL RESULTS 157

LIST OF TABLES

Table Page
I. Major Approaches for Incorporating the Frictional Boundary Conditions Into Metal Forming Simulation..................... 41
II. List of Major Finite Element Packages [32] 46
III. Summary of Various Analysis Methods [31] 47

LIST OF FIGURES

Figure Page
2.1. Typical Surface Map [8]. 5
2.2 Asperity Interlocking 5
2.3 Plowing 7
2.4 Adhesion 7
2.5 Interface Shear Strength. 9
2.6 Combination of Amontons and Constant Friction Laws 9
2.7 Contact Between Two Isolated Asperities 11
2.8 Junction Area Between the Asperities 11
2.9 Commencement of Sliding 16
2.10 Coefficient of Friction as Function of f and α 16
2.11 Schematic Representation of Static and Kinetic Friction 18
2.12 The Idealized Wedge-Shaped Asperities in Edward and Halling Theory 18
2.13 The Variation of the Normal Force w and the Friction Force F Through the Junction Life [7] 20
2.14 The Variation of Coefficient of Friction with f for Various Junction Angle [7] 20
2.15 The Neighbouring Asperities Deformation [2] 21
2.16 The Slip Line Field Proposed by Bay et al Considering Friction Stress [2] 23
2.17 Variation of the Contact Area Ratio [2] 23
2.18 The Initial Friction Model Proposed by Bay et al [2] 23
2.19 The Modified Slip Line Field Proposed by Bay et al [2] 25
2.20 The Asperity Geometry Before and After Deformation 25
Figure Page
2.21 The Developed Friction Model by Bay [2] 26
2.22 The Coefficient of Friction as Function of Asperity Angle and f 26
2.23 The Conventionally Assumed Friction Models and the Corresponding Pressure Distributions in Upsetting of Cylinder 29
2.24 Upsetting of a Circular Disk [12] 29
2.25 Possible Mode of Flow in Ring Compression 31
2.26 Distribution of Friction According to Equation 2.26 Around the Neutral Point 31
2.27 Wedge for Compression and Finite Element Discretization [14] 33
2.28 Contact Surface of Wedge and Horizontal Sectoin Through Its Center at 50\% Reduction [14] 33
2.29 Slab Method Principle for Plane Strain Closed Die Forging [15] 35
2.30 Neutral Determination With the Slab Method [15] 35
2.31 One Example When Flow Changes Its Direction at More Than One Point 35
2.32 Surface Element Modification [16] 37
2.33 Comparison of Finite Element and Experimental Deformation at 40\% Reduction in Height [17] 37
2.34 Distribution of Relative Slip Ratio on the Interface [18] 39
2.35 Distribution of Shear Stress Under the Die in Sticking Condition [1] 39
2.36 Distribution of Shear Strain Under the Die in Dry Friction Condition [1] 41
3.1 Interaction Among Some Variables in Forging 48
3.2 Forging System [15] 49
3.3 Closed Die Forging 50
4.1 Rigid Body Rotation 62
4.2 The Incremental Stress Strain Curve When the Slope at the Beginning of Each Increment is Used 62
Figure Page
4.3 The Incremental Stress Strain Curve When the Average Slope is Used 63
4.4 The Stress Strain Curve in the Present Work 63
4.5 Different Friction Models Studied in Chapter II 64
4.6 Stick-slip of Three Metal Combinations [8] 64
5.1 Growth of the Plastic Zone 67
5.2 10\% Compression in Sticking Condition 68
5.3 10\% Compression in Sliding Condition 69
5.4 Average Load in Sticking and Sliding Conditions 70
5.5 The Wedge-Shaped Specimen 86
5.6 The Boundary Nodes 87
5.7 The Mesh System for Wedge-Shape Specimen 88
5.8 Some Specimens Used in Compression Test to Determine the Stress-Strain Curve 89
5.9 True Stress - True Strain in Al 6061-0 90
5.10 The Effect of Material Nonhomogenity on the Degree of Barreling and the Upsetting Load 91
5.11 Some Compressed Rings for Determination of Coefficient of Friction 92
5.12 Diagrams for Determination of Coefficient of Friction [38] 93
5.13 Different Friction Models Used in This Analysis 94
5.14 The Die Used for Plane Strain Compression of the Wedge- Shaped Specimen 95
5.15 The Specimen After 10\% Compression Inside the Die. 96
5.16 The Cause of the Amontons Law Failure 97
5.17 Some Numerical and Experimental Results. 98
5.18 Variation of Shear Stress at Node Number 2 Up to the Sticking Limit (Constant Fr.) 99
5.19 Variation of Shear Stress at Node Number 2 Up to the Limit of Sticking (Bay) 100
5.20 Computed and Measured Load History in Specimen 101
5.21 10\% Compression With Constant Friction. 102
5.22 10\% Compression With Friction Mode1 Proposed by Bay. 103
5.23 Effect of Friction on Final Geometry 104
5.24 The Computed Effective Strain at Some Points. 105
6.1 Mechanism of Stick-S1ip. 111
6.2 Development of Intermittent Motion for a System in Which Friction Increases With Time of Contact t According to a Typical Curve [6] 111
6.3 Modelling of Friction in the Present Work and Its Extension.. 112

NOMENCLATURE

A	junction area
E	Young's modulus
F	tangential force
f	friction factor
g	body force
H^{\prime}	slope of the equivalent stress-equivalent strain curve at the current value of the plastic curve
k	yield shear stress
p	pressure
p^{\prime}	pressure at the limit of proportionality
p_{0}	normal yield pressure
$S_{i j}$	nominal stress tensor (non-symmetric) in Hill's equilibrium equations
t	time
$T_{i j}^{\Delta}$	Jaumann or corotational rate of Kirchoff stress (symmetric)
v	volume
w	normal force
α	a constant used by Bowden and Tabor to simplify the yield criterion in three-dimension
B	contact area ratio in friction model proposed by Bay, also $\beta=f /(1-f)$ in modelling of friction by Hartley [16]
γ_{0}	asperity angle before deformation
γ_{L}	left asperity angle
${ }^{\gamma} \mathrm{R}$	right asperity angle
$\delta_{i k}$	Kronecker delta

$\mu \quad$ coefficient of friction
$\checkmark \quad$ Poisson ratio
$\varepsilon_{i j} \quad$ Euler strain
$\sigma \quad$ the generalized (equivalent) stress
$\sigma_{i j} \quad$ Cauchy or Euler stress
$\sigma^{\prime}{ }_{i j}$ the deviatoric Cauchy stress
σ_{0} yield stress
$\tau \quad$ friction, shear stress
$\tau^{\prime} \quad$ friction stress at the limit of proportionality

CHAPTER I

INTRODUCTION

In the practical analysis of metal forming processes, particular attention must be paid to the die boundary conditions. Controlling the free surfaces and modelling the frictional forces significantly influence the results of the analysis.

The effect of the friction in metal forming is very complex. I. V. Krageli'ski and V. S. Shchedrov (1956) in their introduction to the "Development of the Science of Friction" wrote:

The physical aspects of dry friction are not yet sufficiently clear. The engineer who encounters friction everywhere is not yet only incapable of controlling it, but is even unable to allow for it correctly, whereas the physicist lacks the data to provide comprehensive explanation for the phenomena.

Muurice Godet (1988) in his discussion and conclusion of "Modeling of Friction and Wear Phenomena" wrote: Neither friction nor wear are sufficiently understood to offer a solid basis for modeling.

Besides the complexity of the analysis another problem is faced when friction as a tangential force is modelled and introduced to an approximate numerical or analytical method in bulk deformation analysis. This difficulty arises from the existence of a point (neutral point or region) at the boundary where the friction force changes its orientation. In complex geometries (non-symmetric die or workpiece), finding the location of this point is difficult and proposed methods have, to date, proven unsuccessful. Also, an abrupt jump in the
friction value (positive to negative) at the neutral point in the friction modelling makes the analysis of the deformation ill conditioned.

Another problem encountered is the change of the geometry during the deformation, parts of the free boundary come to touch the dies. Sometimes, by changing the free surfaces, the position (positions) and the number of the neutral points change. This results in a change in the flow direction which makes the modelling of friction even more complicated.

1.1 Objective and Scope

This work concerns the development of a general methodology for finite-element modelling of friction in non-symmetric geometries. The basic approach involves first fixing the boundary nodes to the die, and then appropriately applying a friction model as the limit of the interface shear strength and the boundary between sliding and sticking conditions.

Some basic friction laws and theories suitable for numerical modelling are discussed in Chapter II. Previous works concerning finite element modelling of friction are also addressed. Some aspects of process modelling are outlined in Chapter III. To examine any friction model, having access to a source code is necessary. The source codes of softwares, typically commercial, were not available. Therefore, an elastic-plastic finite element code was developed and is discussed in Chapter IV. The method of incorporating the frictional boundary conditions into finite-element simulation of plastic deformation in the present work is also addressed in Chapter IV. Chapters V and VI are
devoted to verifications of the elastic-plastic program and the method(s) of friction modelling developed in Chapter IV. Chapter VII provides a summary and outlines the main conclusions of this work. This chapter also outlines some recommendations for future research.

CHAPTER II

FRICTION AND MODELLING OF FRICTION IN METAL FORMING

2.1 Friction

Friction is most commonly characterized by using the constant coefficient of friction in the Amontons/Coulomb Law or by using the constant friction factor in the Law of Constant Friction. In some metal forming processes such as forging, when the hydrostatic pressure is high, application of the constant coefficient of friction is questionable. Also, there is some evidence [1] that the application of the Constant Friction Law along the entire interface is incorrect. In their most recent friction model, Bay [2] pointed out that Amontons Law is valid only at low pressures while the Constant Friction Law is permissible at high pressures. Neither of them is valid at the intermediate pressures. It is the objective of this section to investigate the sources of these models and to provide some basis for modelling of friction in Chapter IV.

2.1.1 Causes of Friction

Friction is the resistance to the relative movement (sliding) between two surfaces in contact. Due to the mechanism of surface interaction, friction has a dual molecular-mechanical nature.

In microscopic scale, surfaces are rough no matter how finely finished they are (Figure 2.1). One source of friction is the asperity

Figure 2.1 Typical surface map [7]. Lighter areas correspond to higher surface.

Figure 2.2 Asperity interlocking.
interlocking which is illustrated in Figure 2.2. According to this figure sliding cannot take place without cutting or deforming the softer asperities. Also it is possible the asperities of the harder material (die) plow through the softer one (workpiece) and contribute to the frictional force (Figure 2.3). At high pressure, atoms approach each other and interatomic forces come into play. It is said that adhesion takes place (Figure 2.4) When the surfaces are clean or the surface contaminant films are broken through, the metallic adhesion that takes place is very strong. Adhesion can be the weaker joints between the contaminant films of the contacting surfaces. In bulk deformation, metallic adhesion has been known as the major source of friction.

2.1.2 Laws of Friction

There are two basic friction laws which are empirical in nature. The first law states that friction is independent of the apparent contact area. The second law indicates that friction is proportional to the normal load between the surfaces. These laws are due to the French engineer G. Amontons (1699) and are usually referred to as 'Amontons Laws'. Laws of friction enable us to define a coefficient of friction:

$$
\begin{equation*}
\mu=\frac{F}{W}=\frac{\tau}{P} \tag{2.1}
\end{equation*}
$$

where: $\mu=$ coefficient of friction
$F=$ tangential force required for sliding
$\tau=$ interface shear stress
W = normal force
$\mathrm{P}=$ pressure

Figure 2.3 Plowing

According to this equation, F is proportional to W when μ is constant. In metalworking, this is not necessarily realistic. For example in forging, due to the hydrostatic pressure, P reaches a multiple of the equivalent yield stress (σ_{0}). Since the maximum limit of τ is the bulk shear strength ($K=1 / \sqrt{3} \sigma_{0}$), μ drops to a very unrealistic value otherwise $\mu \mathrm{P}>\mathrm{K}$ which means the interface shear strength is higher than K (Figure 2.5). Therefore, the coefficient of friction is meaningless when P is very high.

To avoid this difficulty, the interface shear strength (friction stress) is sometimes described by:

$$
\begin{equation*}
\tau=f k \tag{2.2}
\end{equation*}
$$

where f (frictional shear factor) is a constant less than one. $f=0$ means the frictionless interface and $f=1$ means condition of full sticking. Equation 2.2 is known as the Law of Constant Friction.

The Law of Constant Friction is mathematically more convenient than Amontons Law because the value of k is known from the beginning while in contrast, the value of P must be found. Sometimes it is suitable to use the combination of these laws in metal forming (Figure 2.6).

Values of μ and f are functions of several factors. Temperature, pressure, hardness, velocity, atmosphere, solubility of the mating pairs and surface crystal structure have shown to have some influence on friction. The effects of these factors have been well summarized in detail [3, 4]. Due to the variation of some of these factors, within the die/workpiece contact zone, μ and f must also vary. Therefore, an average μ or f is most often assumed in calculations. This is permissible for force calculation but can lead to errors in the

Figure 2.5 Interface shear strength. When this strength is greater than the shear strength of the bulk it is easier for the material to shear inside.

[^0]calculation of strain distribution [5, pp. 16].

2.1.3 Theory of Adhesion

2.1.3.1 Initial Theory of Adhesion. The theory of adhesion, due to Bowden and Tabor [6], is based on the analysis of real contact between rough surfaces in plastic deformation of the individual surface asperities. According to this theory, when two clean metallic surfaces are pressed together, they make contact only at the tips of the asperities. The true contact area increases by plastic deformation of the asperities until it is sufficient to carry the load (Figure 2.7). If the load is W and the yield pressure of the metal is P_{0} then the contact area A between the two asperities is:

$$
\begin{equation*}
A=\frac{W}{P_{0}} \tag{2.3}
\end{equation*}
$$

Bowden and Tabor stated that strong adhesion occurs at the regions of real contact and before sliding takes place the adhered junctions must be sheared. If τ is the required shear stress for shearing of the junctions then the friction force F is:

$$
\begin{equation*}
F=A_{\tau}+F_{P} \tag{2.4}
\end{equation*}
$$

where F_{p} is an extra force due to the mechanical source of friction
(plowing). Bowden and Tabor stated that for most situations with metallic surfaces F_{P} is small compared with A_{τ} and can be neglected. Therefore, the friction force can be written as:

$$
\begin{equation*}
F=A_{\tau}=\frac{W \tau}{P_{0}} \tag{2.5}
\end{equation*}
$$

Figure 2.7 Contact between two isolated asperities

Figure 2.8 Junction area between the asperities.
a) Contact under normal load alone
b) Contact with application of tangential force F.

This equation indicates that F is proportional to the normal load W and independent of the area A (Amontons Law). According to Equation 2.5 the coefficient of friction μ is:

$$
\begin{equation*}
\mu=\frac{F}{W}=\frac{\tau}{P_{0}} \tag{2.6}
\end{equation*}
$$

For an ideal plastic material the local yield pressure P_{0} is three times the yield stress $\sigma_{0}[6, \mathrm{pp} .323]$ or:

$$
\begin{equation*}
P_{0}=3 \sigma_{0} \tag{2.7}
\end{equation*}
$$

In clean metals, under vacuum, τ is equal to the yield shear stress K of material. Also, according to the Von Mises yield criterion:

$$
\begin{equation*}
\tau=k=\frac{1}{\sqrt{3}} \sigma_{0} \tag{2.8}
\end{equation*}
$$

Inserting Equations 2.7 and 2.8 into Equation 2.6:

$$
\begin{equation*}
\mu=\frac{1}{3 \sqrt{3}} \simeq 0.2 \tag{2.9}
\end{equation*}
$$

However, the coefficient of friction in most clean metals is much higher than 0.2. One may explain this due to the work-hardening characteristic of the real material where τ increases during the deformation process. Bowden and Tabor indicated that this was an unlikely explanation since P_{0} increases parallel in τ and it is for this reason that the hardness of metals has little effect on the coefficient of friction. This problem led Bowden and Tabor to review the simple theory and to present a more realistic description of friction in terms of adhesion.
2.1.3.2 Modified Theory of Adhesion. The simple theory of adhesion
was developed in the absence of the tangential force F from the beginning. In other words, the normal pressure P was independent of the shear stress τ. This led to equation:

$$
\begin{equation*}
A=\frac{W}{P_{0}} \tag{2.10}
\end{equation*}
$$

In the real condition when the tangential force F is applied, due to the theory of plasticity, yielding in the junction must occur as a result of the combined normal and shear stresses. To illustrate this consider the simplified two-dimensional model in Figure 2.8. In the absence of the tangential force (Figure 2.8a) the material starts to flow when the pressure reaches the yield pressure P_{0} and area A can be found according to Equation 2.10. Now if a tangential force F (friction) is gradually applied (Figure 2.8b), the material continues to flow under the condition:

$$
\begin{equation*}
p^{2}+3 \tau^{2}=k^{2} \tag{2.11}
\end{equation*}
$$

where K is a constant comparable to the yield stress of the metal. At the beginning when τ is zero $P=P_{0}$. Therefore, Equation 2.11 becomes:

$$
\begin{equation*}
P^{2}+3 \tau^{2}=P_{0}^{2} \tag{2.12}
\end{equation*}
$$

According to this equation when shear stress increases, further plastic flow occurs and the contact area A increases. When A increases, pressure (W / A) and shear stress (τ) drops. Again shear stress must increase to a value such that the combined stresses satisfy Equation
2.12 and further junction growth occurs. According to this model, there is a steady junction growth in the area of contact as increases. Based on Equation 2.12, when shear stress reaches the yield shear stress of the material k, pressure becomes zero. Under this condition to carry the load ($W=P A$) surface area should approach infinity. This is true only for absolutely clean surfaces in vacuum (sliding never occurs). However, due to the weak contaminant films at the interface, τ never reaches k. For the three dimensional case the criterion of plastic flow over the contact region is:

$$
\begin{equation*}
p^{2}+\alpha \tau^{2}=k^{2} \tag{2.13}
\end{equation*}
$$

where α is a suitable constant and its value does not greatly affect the amount of junction growth in many practical cases ($\alpha=9$ in [6], $\alpha=27$ in [2]). Again, when shear stress is zero K is equal to the yield pressure P_{0}. Therefore,

$$
\begin{equation*}
P^{2}+\alpha \tau^{2}=P_{0}^{2} \tag{2.14}
\end{equation*}
$$

Equation 2.14 is similar to Equation 2.12 and the same mechanism of junction growth can be explained for the three dimensional case.

According to the above discussion, for clean metals large-scale junction area is possible. This results in a higher coefficient of friction which can be confirmed experimentally [7, pp. 83].
2.1.3.3 Condition of Macroscopic Sliding. In the preceding section it was shown that due to the contaminant films such as oxides, the shear strength of the interface is less than k. In other words if
" f " is a positive constant less than one then:

$$
\begin{equation*}
\text { interface shear strength }=f k \tag{2.15}
\end{equation*}
$$

In Equation 2.15 when $\tau=f k$ the interface cannot resist and sliding occurs (Figure 2.9). Therefore, the condition of sliding is:

$$
\begin{equation*}
p^{2}+\alpha f^{2} k^{2}=p_{0}^{2} \tag{2.16}
\end{equation*}
$$

In Equation 2.14 when pressure is zero ($\tau=k$):

$$
\begin{equation*}
\alpha k^{2}=p_{0}^{2} \tag{2.17}
\end{equation*}
$$

Inserting Equation 2.17 into Equation 2.16:

$$
\begin{equation*}
p^{2}+\alpha f^{2} k^{2}=\alpha k^{2} \tag{2.18}
\end{equation*}
$$

or

$$
\begin{equation*}
p^{2}=a k^{2}\left(1-f^{2}\right) \tag{2.19}
\end{equation*}
$$

The coefficient of friction μ becomes:

$$
\begin{equation*}
\mu=\frac{F}{W}=\frac{f K A}{P A}=\frac{f}{\left[\alpha\left(1-f^{2}\right)\right]^{1 / 2}} \tag{2.20}
\end{equation*}
$$

When $f=1$ (uncontaminate metals in vacuum), μ is infinity. In this condition the interface shear strength is equal to K and junction growth never ceases $(A \rightarrow \infty)$. However, even a small amount of contaminant (e.g. moisture in the atmosphere) causes a sudden fall in coefficient of

Figure 2.9 Commencement of sliding

Figure 2.10 Coefficient of friction as function of f and α. The exact value of α is important only at large f.
friction (Figure 2.10). This is due to the weakening of the interface which in turn causes the ceasing of junction growth and sliding of one surface on the other.

Equation 2.20 indicates the condition for the start of gross sliding. Sliding commences when a maximum static frictional resistance is developed and the junction separates. At this point frictional resistance is zero but new junctions form elsewhere and the process is continued this way (stick-slip). The static frictional resistance persists for a distance of the order of $10^{-4} \mathrm{~cm}$ as sliding commences then its magnitude falls up to a distance of $10^{-3} \mathrm{~cm}[8, \mathrm{pp} .35]$, when the kinetic component of frictional resistance is reached (Figure 2.11). The magnitude of kinetic friction depends on the life of the stationary contact. It is small when the contact time is measurable in milliseconds and large when it is a few seconds but always smaller than the static friction.

2.1.4 Theory of Friction By Halling and Edwards

After Bowden and Tabor, a number of researchers were inspired by the analysis of plastic deformation of isolated asperities to develop a more advanced frictional model. Most important amongst these are Edwards and Halling [7, 9]. Considering two wedge-shaped asperities (Figure 2.12) and using slip-line and upper-bound analyses, a solution was proposed which enables the value of coefficient of friction to be obtained at each time interval during the life history of a junction interaction. In this theory, the shear and normal forces are calculated from the first contact until the asperities separate (Figure 2.13). The coefficient of friction,, , is the ratio of the instantaneous shear force

Figure 2.11 Schematic representation of static and kinetic friction

Figure 2.12 The idealized wedge-shaped asperities in Edward and Halling theory
and the instantaneous normal force. Therefore, the coefficient of friction can be calculated from Figure 2.13 and plotted against f for various junction angles (Figure 2.14). The general relationship proposed by Edwards and Halling is:

$$
\begin{equation*}
\mu=\left[\frac{f}{\alpha\left(1-f^{2}\right)^{1 / 2}}+\phi\right] /\left[1-\frac{f}{\alpha\left(1-f^{2}\right)^{1 / 2}} \phi\right] \tag{2.21}
\end{equation*}
$$

where ϕ is a function of the geometry and f. ϕ is zero when the asperity angle is zero. This indicates that the Bowden and Tabor theory (Equation 2.20) is a special case of the Edwards and Halling theory.

2.1.5 Plastic Interaction of Neighboring Asperities

In Edwards-Halling and Bowden-Tabor theories, the deformation of each individual asperity was considered isolated. However, at high pressure, asperities make contact and their deformation cannot be viewed in isolation. By different slip line models, several aspects of this problem have been studied by Wanheim, Bay and co-workers and their results are well summarized in [2].

By a slip-line analysis under the statical loading condition, Wanheim estimated the relationship between the nominal pressure P and the ratio between real and apparent contact area B (Figure 2.15). According to this analysis, proportionality between B and P exists only at low pressure. At higher pressure, when the neighboring asperities make contact, the B-P curve bends away. At very high pressure, when the real contact area becomes equal to the apparent contact area, B becomes independent of P.

2.1.5.1 Asperity Deformation With Tangential Force. Analysis of

Figure 2.13 The variation of the normal force W and the friction force F through the junction life [7]

Figure 2.14 The variation of coefficient of friction with f for various junction angle [7]

$$
\begin{aligned}
& P=\text { Nominal pressure } \\
& P_{r}=\text { Real pressure } \\
& A_{a}=\text { Apparent area }
\end{aligned}
$$

$$
T=\text { Nominal sear stress }
$$

$$
\tau_{r}=\text { Real shear stress }
$$

$$
A_{r}=\text { Real area }
$$

(a)

(b)
Figure 2.15 The neighbouring asperities deformation
a) Pressure and contact geometry between two rough surfaces.
b) Contact area ratio as function of normal pressure[2].
asperity deformation by Wanheim was performed under static contact where no tangential force (friction) existed. Wanheim, Bay and Peterson [2] proposed a new slip-line field taking relative sliding and friction stress in the asperity contact into consideration (Figure 2.16). Since the angle between the free surface and bordering slip-line must be 45°, it was assumed that the asperity angle γ is small and it remains small during the deformation (initial value of γ is usually less than 15°). Based on this slip-line field, the real contact area and the friction stress were computed. Figures 2.17 and 2.18 show the results of this analysis. In these figures the contact area ratio β (Figure 2.17) and the normalized friction stress τ / K (Figure 2.18) are plotted as functions of the normalized pressure P / σ_{0} ($\sigma_{0}=$ equivalent yield stress) and friction factor f. At low normal pressure ($\mathrm{P} / \sigma_{0}<1.5$) the contact area ratio and friction increase proportionally to the pressure. At higher pressure the neighboring asperities interaction start and the curves are no longer linear. At very high pressure ($P>3.5 \sigma_{0}$) the contact area ratio and friction become constant and independent of friction factor.

This friction model (Figure 2.18) includes both the Amontons Law $\tau=\mu \mathrm{P}$ (Equation 2.1) and the Law of Constant Friction $\tau=f K$ (Equation 2.2) According to this model the Amontons Law is valid only at low pressure $\left(P / \sigma_{0}<1.5\right)$. The Constant Friction Law is valid at high friction ($P / \sigma_{0}>3.5$). At the intermediate pressure ($1.5<P / \sigma_{0}<3.5$) neither of these laws are valid. Figure 2.18 can be presented by equation:

$$
\begin{equation*}
\tau=f_{\beta} K \tag{2.22}
\end{equation*}
$$

Figure 2.16 The slip line field proposed by Bay et al cosidering $f-$ riction stress [2]

Figure 2.17 Variation of the contact area ratio [2]

Figure 2.18 The initial friction model proposed by Bay et al [2]
2.1.5.2 Effect of Asperity Angle on Friction. In the preceding analysis it was assumed that the asperity angle remains small during the deformation. However, this assumption is valid only when friction is not too large. At high friction, asperities tilt and their angles can change. In a new slip-line field (Figure 2.19), Bay took the variation of the asperity angle into consideration. When there is no friction (Figure 2.19a), the slip-line field remains symmetric. When friction increases and acts from right to left, the slip-line field becomes asymmetric (Figure 2.19b, c) and the right asperity angle γ_{R} (Figure 2.20) becomes bigger than the left asperity angle γ_{L}. In Figure 2.20, the original asperity $A C D$ is deformed into the quadrangle $B C D E$ and the right-hand angle of valley increases from γ_{0} to γ_{R} whereas the left-hand angle remains constant $\gamma_{L}=\gamma_{0}$. Bay explained that at larger pressure further change of the asperity slope is small. This development ended to a comprehensive friction model which is illustrated in Figure 2.21. In Figure 2.21 (the general friction model) friction has been plotted as functions of the initial asperity angle γ_{0}, friction factor f and pressure P. The influence of asperity angle is limited when f is small. For pressure below the two marked lines $\left(P / \sigma_{0}<1.5\right.$ for $\gamma_{0}=0$ and $P / \sigma_{0}<0.8$ for $\gamma_{0}=15^{\circ}$), friction varies proportionally to pressure and the Amontons Law can be applied. Above this limit the curves become non-linear and approach a limiting value. The analytical development of the friction curves in Figure 2.21 are beyond the scope of this work but the final expressions are:

$$
\begin{equation*}
\frac{\tau}{K}=\frac{P / \sigma_{0}}{P^{1} / \sigma_{0}} \cdot \frac{\tau^{\prime}}{K} \quad\left(\text { for } P \leq P^{\prime}\right) \tag{2.23}
\end{equation*}
$$

a)

b)

c)

Figure 2.19 The modified slip line field proposed by Bay [2]

Figure 2.20 The asperity geometry before and after deformation

Figure 2.21 The developed friction model by Bay [2]

Figure 2.22 The coefficient of friction as function of asperity angle and f [2]
and

$$
\begin{equation*}
\frac{\tau}{K}=\frac{\tau^{\prime}}{K}+\left(f-\frac{\tau^{\prime}}{K}\right)\left(1-\exp \left[\frac{\left(P^{\prime} / \sigma_{0}-P / \sigma_{0}\right) \tau^{\prime} / K}{\left(f-\tau^{\prime} / K\right) P^{\prime} / \sigma_{0}}\right]\right) \quad\left(\text { for } P>P^{\prime}\right) \tag{2.24}
\end{equation*}
$$

where τ^{\prime} and P^{\prime} are friction stress and pressure at the limit of proportionality. Up to the limit of proportionality the coefficient of friction μ is:

$$
\begin{equation*}
\mu=\frac{f}{1+\frac{\pi}{2}+\arccos f-2 \gamma_{R^{\prime}} \overline{1-f^{2}}} \tag{2.25}
\end{equation*}
$$

Figure 2.22 compares the coefficient of friction according to Equation 2.25 and that by Bowden and Tabor in Equation 2.20 when $\alpha=27$. A very good agreement is noticed between the Bowden and Tabor's curve and the curve for $\gamma_{0}=0^{\circ}$ when $f \sim 0.6$. Based on Figure 2.22 Bay proposed a simple way for the estimation of the friction factor in metal-forming. A ring compression test [38] is performed, the coefficient of friction can be estimated and then Figure 2.22 can be used to find the friction factor f .

2.2 Review of the Literature in the Inclusion of

 Surface Friction in the Finite Element SolutionsDue to the great influence of friction on material flow, several attempts have been made for the proper inclusion of the surface friction in metal-forming analyses. Friction distribution and orientation are the two major problems in any metal forming analysis. Depending on the methods of handling these two difficulties, three major approaches can
be found in the literature and this section is concerned with the discussion of these approaches. Also a brief description of these methods can be found in Table I.

2.2.1 Direct Method

One approach in finite element modelling of friction is the introduction of friction as the surface nodal force or surface shear stress against the motion. The conventional models in this approach adopt either the Amontons Law $\tau=\mu$ (τ - friction stress, $\mu=$ coefficient of friction, $P=$ pressure) or the Constant Friction Law $\tau=$ $f k$ ($f=$ friction factor, $k=$ shear yield stress of the workpiece). The direction of the friction is determined to be opposite to the direction of the material flow.

Application of the Constant Friction Law or the Amontons law all along the interface causes a sudden jump in friction distribution at the neutral point, where the flow changes its direction (Figure 2.23). Experimental observations by some investigators [10, 11] in upsetting of a circular disk show a linear decrease of the friction towards zero in the center and such a jump is not likely to occur. Bay [2, pp. 26] explains that this is due to a central sticking zone (dead zone) where the shear stress is not large enough to overcome the frictional stress and sliding cannot occur. The radius of the central sticking zone was approximated [12] by the upper bound method as a function of the Diameter/Height ratio (Figures 2.24 a and b). Sometimes, because of the existence of the sticking zone, the term "neutral region" is used instead of the "neutral point".

In most cases the location of the neutral point is unknown and

Figure 2.23 The conventionally assumed friction models and the correspondig pressure distributions in upsetting of cylinder.
a) Amontons Law
b) Constant Friction Law
c) Combination Of the Laws

Figure 2.24 Upsetting of a circular disk [12]
a) Velocity pattern.
b) Radius of sticking region as a function of diameter/height ratio and friction factor.
therefore the flow and friction direction is unpredictable. Such a case can be observed in compression of a ring. In well lubricated conditions, the ring deforms in the same way as a solid disk and material flows radially outward at a rate proportional to the distance from the center (Figure 2.25a). At low friction, the internal diameter of the ring increases (Figure 2.25c) and at high friction, the internal diameter reduces (Figure 2.25b). Thus, due to the unpredictable flow direction, friction cannot be modelled in the compression of a ring.

In all the non-symmetric geometries, the location of the neutral point (region) is unknown and very few examples can be found in the literature which examine the effect of friction in the analysis of deformation in complex geometries by this approach. Park and Kobayashi [13] in the compression of wedge shaped blocks, modelled the surface friction as an arc tangent function of the relative velocity between the die and the workpiece:

$$
\begin{equation*}
\tau_{s}=-2 / \pi f k \tan ^{-1}\left(v_{s} / a\right) \tag{2.26}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
\tau_{s}= & \text { friction stress } \\
f & =\text { friction factor } \\
k & =\text { shear yield stress } \\
v_{s}= & \text { relative velocity between the die and the workpiece. } \\
\mathrm{a}= & \text { a constant several order of magnitude less than the die } \\
& \text { velocity }
\end{aligned}
$$

By using Equation 2.26, an abrupt jump in the value of friction at the neutral point is prevented (Figure 2.26).

According to Equation 2.26 the direction of the surface friction is specified in the opposite direction to the relative movement of the

(c) LOW FRICHON

Figure 2.25 Possible mode of flow in ring compression

[^1]workpiece with respect to the die. In finite element method, to avoid the singularity condition, at least one node should be constrained in each direction. The position of the constrained nodes have a strong influence on the velocity field and therefore, the friction direction. In the complex geometries, it is very difficult to decide the correct location of the constrained nodes (the best choice is the neutral point which is unknown) and it is not clear how Kobayashi et al considered the constraints in their analysis.

Another example of friction treatment in complex geometries is the compression analysis of wedge shaped blocks by Guo, Huang and Chen [14] (Figure 2.27). In this work friction, f, was prescribed in the following expression:

$$
\tau=\left\{\begin{array}{l}
-f k \text { vs } /\left|v_{s}\right| \text {, when }\left|v_{s}\right|>u_{c} \\
-f k v_{s} / u_{c} \text {, when }\left|v_{s}\right|<u_{c} \tag{2.27}
\end{array}\right.
$$

where: $f=$ friction factor
$k=$ shear yield stress
$v_{s}=$ slip at the generic point
$u_{C}=a$ positive constant smaller than the average slip over the whole die/workpiece interface.

Equation 2.27, the same as Equation 2.26, is capable of explicitly giving the decreasing friction stress towards the center of the upset specimen. "f" is the function of the slip which in turn is related to the velocity or displacement field. Figure 2.28 shows some of the results of this analysis. For the theoretical results the transverse flow at the corners is too much and the longitudinal spread around the tip of the wedge which has become a thin "tongue" seems not enough.

$$
\begin{gathered}
\text { Figure } 2.27 \text { Wedge for compression } \\
\text { and Einite element } \\
\text { discretization [} 14 \text {] }
\end{gathered}
$$

Figure 2.28 Contact surface of wedge and horizontal section through its center at 50\% reduction [14]

Chen et al explained these differences due to the coarse meshes in their finite element analysis.

Rebelo et al [15] used the slab method to find the location of the neutral point in closed die forging of a turbine blade under plane strain conditions (Figure 2.29). In this method the section between the upper and the lower dies is considered subdivided into small deformation zones. Starting from the right and the left, stress distributions are obtained element by element until two distribution curves cross each other (Figure 2.30). The point of intersection of two curves is the neutral point.

Although the slab method looks successful in prediction of the location of the neutral point, it fails when the flow changes its direction at more than one point at the die/workpiece boundary (Figure 2.31).

At this point it is very clear that due to the effect of the surface flow direction, which is usually unpredictable, modelling of friction by the introduction of nodal forces or surface shear stress is not always satisfactory.

2.2.2 Surface Element Method

The second approach for the inclusion of the friction in finite element analysis of metal forming is the surface element method. This method, which is independent of the material flow direction, requires the addition of a narrow surface element between the die and the workpiece where friction is present. The surface nodes of this element are fixed to the die and the workpiece. The elemental properties are such as $\tau=f k$ ($\tau=$ shear strength of the element, $k=y i e l d$ shear

Figure 2.29 Slab method principle for plane strain closed die forging
[15]

Figure 2.30 Neutral line determination with the slab method [15]

stress of the workpiece) or $\sigma_{y}=\mu \sigma_{m}$ ($\sigma_{y}=$ yield stress of the element, $\sigma_{\mathrm{m}}=$ mean stress of the adjacent workpiece element).

The extra element is simply a mathematical description of the lubricant (for convenience) and is not a physical representation of the interface. Due to its practicability, several examples can be found in the literature for the simulation of the surface friction using this method.

The interface element with the specifications stated above is not appropriate for the large deformation and collapses. To remove this instability, Hartley, Sturges and Rowe [16] defined a modified factor β $=f /(1-f)$ instead of f in equation $\tau=f k$. By this modification the surface element becomes stiffer and it can undergo more elongation. Also, in β technique, the forces are applied to the surface of the workpiece instead of the elemental surface nodes (Figure 2.32). The β technique was applied to the two dimensional analysis of ring compression and good agreement between the theoretical results and experimental observations was achieved. Later, the same technique was applied to the three dimensional analysis of upsetting of a rectangular block [17] and it was determined that the frictional restraint becomes too high, compared to the experimental results (Figure 2.33).

The surface element method is not influenced by the flow direction. But, even if the answers with small errors are obtained, always there is some doubt about its appropriateness because boundary conditions do not simulate the actual phenomena.

2.2.3 Slip Method

The third approach in the finite element modelling of friction is

Figure 2.32 Surface element modification [16]

Figure 2.33 Comparison of finite element and experimental deformation at 40% reduction in height [17]
to solve a boundary problem of constrained displacements for the nodes between the die and the workpiece. Two examples of such approach are the works done by Nagamatsu et al [18] and Devoux et al [1].

Nagamatsu et al proposed a relative slip ratio for the surface nodes instead of the coefficient of friction. In case of plane strain compression of rectangular blocks, the relative slip ratio u was defined as:

$$
\begin{equation*}
v=-\left(H v_{x}\right) /\left(x v_{y}\right) \tag{2.28}
\end{equation*}
$$

where v_{S} is the velocity of the relative slip between the tool and the surface of material at an instant in processing, v_{y} is normal velocity of the die, 2 H is height of the block, and x is the distance between the center and a generic point on the surface.

Distribution of v on the interface in Equation 2.3 was measured experimentally for different height to width ratio h_{0} (Figure 2.34) and the results were introduced to an elastic-plastic computation.

Devaux et al, [1] in upsetting of solid cylinders, expressed the radial displacements (u_{r}) on the faces in contact with the dies as

$$
\begin{equation*}
n+1_{(U r)_{i}}=\phi\left(n_{r_{j}}, n_{\delta_{h}}=n_{o}-n_{h}\right) \tag{2.29}
\end{equation*}
$$

where n is the step of computation, i is the surface node number and h is the instantaneous height of the cylinder. This relation was experimentally evaluated by measuring the displacement of the indentation marks on the faces in contact with the die at different upsetting steps and further used as the boundary condition in an elastic-plastic finite element computation. Among the results, it was

Figure 2.34 Distribution of relative slip ratio on the interface [18]

Figure 2.35 Distribution of shear stress under the die in sticking condition
[I]
found that the hypothesis of a constant shear stress is not correct and its local value increases with the average $\operatorname{strain} \varepsilon=\ln \left(h_{0} / h\right)$ (Figure 2.35). Also, it was found that the variation of shear strain under the die is almost linear from the center of the specimen to the half outer radius, after which the variation is parabolic up to the maximum value of r (Figure 2.36).

The main objection to this approach is the need to conduct experimental measurements prior to the computations.

Figure 2.36 Distribution of shear strain under the die in dry friction condition [1]

TABLE I
MAJOR APPROACHES FOR INCORPORATING THE FRICTIONAL BOUNDARY CONDITIONS INTO METAL FORMING SIMULATION

Approaches	Method of modelling	Advantages	disadvantages
1	Introduction of Priction as surface nodal force.	Effective if friction distribution la correct.	Fails misen flow direction is unknown.
2	Surface alement	Independent of the flow direction.	Unreliable.
3	Modifying the surface displacement.	gimulates the aotual phenomena.	Requires experimental data prior to the analyais.

CHAPTER III

AN OUTLINE OF THE PROCESS MODELLING OF FORGING

In their introduction to the "Process Modelling of Metal Forming and Thermomechanical Treatment." Rebelo et al [15] wrote the following:

The expression process model refers to a mathematical model which has been developed to a level at which it can quantitatively describes the essential characteristics of a process and which, when implemented as a computer program, permits the stepwise simulation of the process.

Often in metal forming it is required to transform the initial geometry into a complex geometry without causing material failure or degrading material properties. The mathematical modelling provides some information to assist the forming engineer for the proper design and control of the process.

The process modelling comprises several variables which interact with each other during the plastic flow. The flow stress, the die and workpiece geometries, the friction at the tool/workpiece interface and temperature are among these variables. Due to the influence of these variables on each other it is very difficult to express the physical phenomena of a forming operation with quantitative relationships. Figure 3.1 shows the interactions of some important variables in forging process. Interactions start with the ram displacement which influences:

1. The flow stress in work hardening and strain rate sensitive material.
2. The geometry and contact area which themselves affect the heat
transfer, flow stress and friction condition.
Friction, geometry and flow stress are three major variables to be used in the analysis of deformation.

There are several approximate methods (numerical and analytical) for the analysis of deformation. Due to the assumptions made in developing the mathematical approach, none of these methods is perfect. Also, every method requires some data which must be determined by experiment. The inaccuracy of the experimental data, such as friction factor and flow stress, affect the accuracy of the analysis. With this view the exact analysis of a process is not feasible in most cases. Figure 3.2 shows the contribution of some experimental data in the forging system.

The most widely known methods among the analytical techniques are the slip line method, upper bound method and slab method.

The slip line method [19, pp. 381] is used for the analysis of deformation in rigid-perfectly isotropic solids. This method has the capability to determine the stress and the velocity fields but it fails to take into account the behavior of real material properties such as workhardening, strain rate and temperature effects.

The upper bound method was developed by Johnson [20] and Kudo [21] and it is widely applied in metal forming analysis to estimate the maximum load required to perform a certain operation. The load (power) computation in this method is based on the strain rate field considering the redundant work. The stress distribution cannot be analyzed by this method.

The slab method [15, pp. 29] can be used for the elementary analysis of stresses and loads in plane strain or axisymmetric
conditions. The velocity field cannot be determined by this method. Several other analytical techniques in this area exist and have been well summarized in different books $[19,22,23]$.

Besides the analytical techniques, several numerical methods have been developed for the analysis of deformation in metal forming. Outstanding among these are the methods using finite difference and finite element methods. Usually, finite difference technique is used for the calculation of temperature distribution and finite element method (FEM) has proved to be superior to the classical methods due to its flexibility and ability to obtain a detailed solution.

FEM was developed originally as a concept of structural analysis. The general applicability of FEM made it a powerful and versatile tool for a wide range of problems. Several computer program packages have been developed for the solution of a variety of solid mechanics problems. Some of the programs have been developed in such a manner that the same program can be used for the solution of problems belonging to different branches of engineering with little or no modification. Table II shows a summary of the more widely used packages.

In the field of plasticity, Rigid Plastic and Elastic Plastic are the two main approaches of finite element formulations. For an analysis of elastic plastic problems, the use of the plastic stress-strain matrix developed by Yamada et al [24] has been very useful. Using this matrix and the incremental variational formulations, developments have been made in the analysis of metal forming $[25,26,27,28]$. Today, the finite element has proved to be a very effective tool in the elastoplastic analysis of metal forming processes. However, due to the elasto-plastic property the use of large deformation is not permitted in
this approach. With this view Rigid-Plastic finite element method called "matrix method" was developed by Lee and Kobayashi [29, 30]. Rigid-plastic FEM is more effective in terms of the computation time but less accurate because of the neglection of the elastic strains at the beginning of the deformation. Some of the capabilities and characteristics of various methods are summarized in Table III. Figure 3.3 exemplifies some important information obtained by process modeling of forging:

1. Prediction of the microstructure and mechanical properties of the workpiece during and after deformation.
2. Effects of the position of the flash line on the microstructure, extraction of the workpiece from the dies after the process is finished and furthermore the material lost.
3. Flow of the material and its effects on the filling of the cavity between the dies.
4. Effect of the geometry of the preform on the material flow.
5. Initial position of the preform between the dies and its effect on the material flow and center of loading which has great influence on the press structure.
6. Prediction of the forces and the energy necessary to carry out the forging operation.

TABLE III
SUMMARY OF VARIOUS ANALYSIS METHODS [31]

Figure 3.3 Closed die forging

CHAPTER IV

FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC DEFORMATION

4.1 Finite Element Approach

This section introduces an elastic-plastic finite element program that has been developed for the analysis of deformation and further examination of the friction model.

Rigid Plastic and Elastic Plastic are two main approaches of finite element formulations for metal deformation problems. The Rigid Plastic approach neglects the elastic strain and cannot accurately model the early stages of a deformation when the workpiece is in the process of yielding and Elastic regions predominate. Therefore, an Elastic Plastic approach was used in the development of this program.

In the analysis of metal forming processes featuring large deformation, for the attainment of correct solutions at the end of several hundreds of incremental computation steps, possible sources of numerical errors should be carefully eliminated. The stress rate should be chosen properly in the constitutive relation and the geometric stiffness be considered adequately.

The success of the finite element method (FEM) in the solution of Elastic Plastic problems dates back to the late 1960's when the expression of the Plastic stress strain matrix (material nonlinearity) was brought out and incorporated in the standard form of FEM [24]. However, the application of this method has been largely confined to
some deformation regime where the overall strain is restricted to the order of 10^{-3} (due to the factors like neglecting the effect of rigid body rotation). Since then several attempts have been made for extending this solution to large deformations. One of the first attempts was made by Hibit, Marcal and Rice [33] who used a total Lagrangian formulation. Later, McMeeking and Rice [34] pioneered the use of an updated Lagrangian type approach which led to an improved formulation when large increments in rotation occurred.

4.1.1 Assumptions

1. Mechanical properties of the solid are time independent.
2. The stress level depends on the current degree of plastic straining (work hardening).
3. Any subsequent yield surface is parallel to the original one. In other words the work hardening model is isotropic and the Bauchinger effect is neglected.

4.1.2 Equilibrium Equations

Maybe the most general constitutive law leading to a symmetric stiffness matrix has been derived by Hill [35]. For an element of material the properties of which do not depend in any way on time:

$$
\begin{equation*}
\text { Stress rate }=f(\text { strain rate }) \tag{4.1}
\end{equation*}
$$

where f is homogeneous and is of degree one in the components of the strain rate. If E is a homogeneous quadratic rate potential (depending on the current stress and strain history), then Equation 4.1 becomes:

$$
\begin{equation*}
S_{i j}=\partial E / \partial\left(v_{j} / \partial x_{i}\right) \tag{4.2}
\end{equation*}
$$

is the nominal stress rate and has nine independent components (non-
symmetric) [28, pp. 200] and v is the velocity.
Any solution of the boundary value problem can be characterized by
variational principle such that [35]:

$$
\begin{equation*}
s_{v} S_{i j} \partial\left(\delta v_{j}\right) / \partial x_{i} d v=s_{s} \dot{F}_{j} \partial v_{j} d s+s_{v} \dot{g}_{j} \partial v_{j} d v \tag{4.3}
\end{equation*}
$$

where F and g are the surface and body forces and all integration extents are in the reference configuration. By neglecting the body forces, the general form of the equilibrium equation becomes:

$$
\begin{equation*}
s_{v} S_{i j} \partial\left(\delta v_{j}\right) / \partial x_{i} d v=s_{v} \dot{F}_{j} \delta v_{j} d s \tag{4.4}
\end{equation*}
$$

Due to the rigid body rotation the stress tensor (non-symmetric) cannot be used to represent the stress rate in constitutive equations. For clarification consider a bar under uniform tensile stress as shown in Figure 4.1.

When the bar and loads acting on it undergo a rigid body rotation with respect to the fixed coordinate system, the stress components with respect to the system change, because

$$
\begin{equation*}
S_{j k}=V_{i} \partial S_{i k} / \partial X_{i}+\partial S_{j k} / \partial t \tag{4.5}
\end{equation*}
$$

This equation represents the material rate of change of the stress components with respect to a fixed coordinate system. The first term on the right side gives the convective part of this rate of change and the second term gives the local part. However, from the point of view of the moving body, the state of stress remains a constant. Stress rate tensor that can be used in the constitutive equation in this situation
must contain an additional term (rotary) to compensate for the local and the convective term and becomes zero. This difficulty can be avoided by choosing a reference stage that is momentarily coincident with the current state $[34,35]$. In this solution it can be written $[34,35,36]$ as:

$$
\begin{equation*}
S=T^{\Delta} i j-\sigma_{k j} \dot{\varepsilon}_{k i}-\sigma_{i k} \dot{\varepsilon}_{k j}+\sigma_{i k} v_{j, k} \tag{4.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
S= & \text { Nominal stress rate (non-symmetric) } \\
T^{\Delta}{ }_{i j}= & \text { Jaumann or corotational rate of Kirchoff stress } \\
& \text { (symmetric). This is a meaningful definition of the } \\
& \text { stress rate of which the stress components are referred } \\
& \text { to a coordinate system that participates in the } \\
& \text { instantaneous rotation of the material [36] } \\
\sigma_{i j}= & \text { Cauchy or Euler stress } \\
\dot{\varepsilon}_{i j}= & 1 / 2\left(v_{i, j}+v_{j, i}\right) \text { or Euler strain rate }
\end{aligned}
$$

In the present study no discrimination is made between the Kirchhoff and the Cauchy stress. (They differ only by terms of the order of the volume change.)

The nominal stress change in Equation 4.6 is due to the pure deformation ($T^{\Delta}{ }_{i j}$) and/or the change of the geometry and the orientation which act on the original state of stress.

Under this condition (new definition of stress in the current configuration) Equation 4.4 becomes [34, 35]:

$$
\begin{equation*}
\int_{v}\left[T^{\Delta} \partial \varepsilon_{i j}-(1 / 2) \sigma_{i j} \delta\left(2 \dot{\varepsilon}_{i k} \dot{\varepsilon}_{k j}-v_{k, i} v_{k, j}\right) \mid d v=j_{v}{ }^{\xi} \delta v_{i} d s\right. \tag{4.7}
\end{equation*}
$$

where all integration extents are in the current configuration.

4.1.3 Stiffness Equations

Equation 4.7 has two stiffness terms.
a. Deformation stiffness:

This stiffness arises from $\delta_{v} T^{\Delta} \delta \varepsilon_{i j} d v$ and can be shown in the standard form of finite elements as

$$
\begin{equation*}
\left[K_{D}\right]=s_{v}[B]^{T}[D][B] d v \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \{v\}=[N]\{\psi\} \\
& \{\varepsilon\}=[B]\{\psi\} \\
& {\left[\left[B_{i j}\right]=(1 / 2)\left[N_{j}\right], j+(1 / 2)\left[N_{j}\right], i\right.}
\end{aligned}
$$

ψ is defined as the rate of the nodal degree of freedom.
b. Stress correction stiffness matrix [Appendix A]:

This stiffness arises from:

$$
s_{v}\left[(-1 / 2) \sigma_{i j} \delta\left(2 \dot{\varepsilon}_{i k} \dot{\varepsilon}_{k j}-v_{k, i} v_{k, j}\right)\right]
$$

and as was explained before is due to the changes of the geometry and can be written as

$$
\begin{equation*}
\left[K_{c}\right]=s_{v}\left(\left[N_{k}\right]^{T}, i \sigma_{i j}\left[N_{k}\right], j-2\left[B_{k i}\right]_{\sigma_{i j}}^{T}\left[B_{k j}\right] d v\right. \tag{4.9}
\end{equation*}
$$

4.1.4 Elastic Plastic Stress Strain Matrix

In Equation 4.8, [D] is the constitutive matrix which appears as

$$
\begin{equation*}
\left\{T^{\Delta}\right\}=[D]\{\dot{\varepsilon}\} \tag{4.10}
\end{equation*}
$$

[D] is the Elastic Plastic matrix and it is dependent on the state of the stresses and the slope of the equivalent stress versus equivalent

Plastic strain curve at each moment [24]. According to the Prandtl Reuss and in conjunction with the Von Mises criterion [Appendix B]:

$$
\begin{align*}
D_{i j k l}= & E /(1+v)\left[\delta_{i k} \delta_{i}\right]+\delta_{i k} \delta_{k]}(v /(1-2 v) \\
& -3 a_{i j}^{1} \sigma_{k 1}^{1} /\left(2 \sigma\left(1+2(1+v) H^{\prime} /(3 E)\right)\right] \tag{4.11}
\end{align*}
$$

where:
$\mathrm{E}=$ Young's modulus
$v \quad=$ Poisson ratio
$\sigma_{i j}^{\prime}=$ The deviatoric Cauchy stress
$H^{\prime}=$ Slope of the equivalent stress versus Plastic strain curve at the current value of the plastic curve
$\sigma=$ The generalized or equivalent stress
$\delta_{i k}($ Kronecker delta $)=0$ IF $i \neq K$
$=1$ IF $\mathrm{i}=\mathrm{K}$

4.1.5 Program ELPL

Based upon the preceding discussion, an interactive Elastic Plastic Program (ELPL) has been developed for the plane strain condition [Appendix D] and can be developed to plane stress and axisymmetric conditions. The input data are read interactively and echoed to the program. This program contains a main part and several subroutines. The flow chart and the description of the subroutines are included in [Appendix C].
4.1.5.1 Procedure of Computation. At the beginning of loading every part of the body is Elastic. Depending on the geometry and the boundary conditions, an increase in load causes some portions of the
material to yield while the rest are still Elastic. Departure of the stress state from Elastic to Plastic is very important and increments of displacements should be chosen somehow to make every element yield exactly at the yield point. In Plastic region the stiffness $\left(\left[K_{D}\right]+\right.$ $\left[K_{C}\right]$) of the material is dependent on the state of the stress and the slope of the equivalent stress versus equivalent strain H^{\prime}. It was found that our computation is very sensitive to H^{\prime} at each increment and any malestimation may create instability. In some materials where H^{\prime} varies by deformation, appropriate numerical techniques should be used to avoid any deviations from the original path. Figure 4.2 shows the accumulation of the errors if the slope at the beginning of each increment is used to compute $\left[K_{D}\right]$. In Figure 4.3, the value of H^{\prime} is predicted at the end of each increment ($H^{\prime}{ }_{p r}$) and the average of $H^{\prime} \mathrm{pr}$ and H^{\prime} is used instead of H^{\prime} alone to compute $\left[K_{D}\right]$. $H^{\prime} \mathrm{pr}$ can be computed according to the Euler predictor method [37, pp. 331] or by other similar methods. In the present program the stress strain curve has been simplified to a form where H^{\prime} is constant. This simplification reduces the computer time considerably (Figure 4.4).

4.1.5.2 The Sequence of Computations.

1. The part is divided into a number of triangular elements under plane strain conditions.
2. Elastic calculation is done by giving an incremental compression first. Nodal displacements, strains, stresses and equivalent stress of each are obtained.
3. The element with $\dot{S}_{\max }$ is found and the scaling factor R is calculated by use of the following equation in plane strain conditions.

$$
\begin{equation*}
R=\frac{\left(-P+\gamma P^{2}-40 Q\right)}{2} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& P=\left(2 A B+2 D C+2 E F+12 \sigma_{x y} \Delta \sigma_{x y}\right. \\
& 0=\left(A^{2}+C^{2}+E^{2}+\Delta \sigma_{x y}^{2}\right) \\
& Q=\left(B^{2}+D^{2}+F^{2}+\delta^{2} \sigma_{x y}\right) \\
& A=\Delta \sigma x-\Delta \sigma y \\
& B=\sigma x-\sigma y \\
& C=\Delta \sigma y-\Delta \sigma z \\
& D=\sigma y-\sigma z \\
& E=\Delta \sigma z-\Delta \sigma x \\
& F=\sigma z-\sigma x \\
& Y_{O}=Y i e l d \text { stress }
\end{aligned}
$$

4. The increments of displacements, stresses and strains are multiplied by R and σ in each element is calculated. At this stage the element with $\sigma_{\max }$ yielded but the rest of the elements remained in the elastic region.
5. The nodal coordinates are updated.
6. After another incremental compression the increments of nodal displacements, stresses and strains are calculated (plastic stiffness is used for the previous yielded element).
7. $\sigma_{\max }$ among those elements in the Elastic region in the previous stage is found and R is calculated exactly as in step 3. ($\sigma_{\max }$ is the maximum equivalent stress.)
8. The increments of stresses and strains are multiplied by R and added to the accumulative values of displacements, stresses and strains.
9. The nodal coordinates are updated again.
10. These loops of calculation (steps 6-9) are repeated until all the elements yielded.
11. Computation is advanced by giving proper increments of compression in the Plastic condition.

4.2 Modelling of Friction in the Present Work

In Chapter II it was illustrated that finite element modelling of friction is difficult when the geometry is non-symmetric. Indeed, the main question is how to start the analysis when direction of material flow and friction is unknown.

In this study, determination of the flow direction is based upon the concept of friction. Friction is the resistance to the relative movement between two surfaces in contact. The sources of this resistance are:

1. Asperity interlocking (Figure 2.2) which indicates sliding cannot occur until the interface shear stress reaches a critical value sufficient to cut or deform the asperities.
2. Ploughing (Figure 2.3) which indicates sliding cannot occur until the shear stress reaches a critical value sufficient to cut or deform the softer material.
3. Adhesion (Figure 2.4) which indicates sliding cannot take place until the interface shear stress reaches a critical value sufficient to rupture the adhered junctions.

These causes of friction indicate that at the beginning of deformation, the relative movement of two surfaces in contact is zero. Therefore, the analysis can be started by prescribing the tangential displacement to be zero (sticking). Sticking condition is maintained until the nodal
shear stress reaches that critical value mentioned before, the limit of static interface shear strength. Any friction model discussed in Chapter II can be examined for this critical value. Figure 4.5 illustrates the friction stress capacity (boundary between sticking and sliding) in various models.

After the commencement of sliding, the tangential force or shear stress can be applied to the free node. The direction of this force or stress is the same as that of the tangential force or stress in the previous iteration in sticking condition. Another option for determination of the friction direction is to apply a small increment of displacement after starting of sliding to find the direction of the material flow. The direction of friction is determined to be opposite to the direction of material flow.

Due to the equilibrium of the external loads, in this process, there is always one node at the boundary where shear stress is zero (or very small) and it remains in sticking condition. This node represents the neutral point. The location of the neutral point remains fixed with respect to the die. This may be permissible when deformation is small. In large deformation, due to the variation of the die/workpiece boundary, the mode of material flow changes and as well as the neutral point. Therefore, for large deformation the friction model must have enough flexibility to allow the neutral point to change its location. At each node, the conditions of sliding and sticking must be interchangeable. This type of modelling is similar to the stick-slip phenomena [6, pp 78]. According to this phenomena, a steady friction should not be expected in a sliding situation. During the sliding some asperities adhere and local shear stress increases. Shear stress
increases up to a point where the junction cannot resist and ruptures. At this point, sliding condition occurs and friction drops. The stickslip movement continues throughout the tangential displacement. The rate of friction fluctuation depends on the properties of the metals under load (Figure 4.6) and the limits of static and kinetic friction. In finite element modelling, the limit of static friction (upper limit) can be used for initiation of sliding and kinetic friction (lower limit) for commencement of sticking.

Figure 4.1 Rigid body rotation

Figure 4.2 The incremental stress strain curve when the slope at the beginning of each increment is used

Figure 4.3 The incremental stress strain curve when the average slope is used

Figure 4.4 The stress strain curve in the present work

Figure 4.5 Different friction models studied in chapter 2

Figure 4.6 Stick slip of three metal combinations [8]

CHAPTER V

FORGING OF SYMMETRIC AND NON-SYMMETRIC PARTS

To demonstrate the numerical stability of program ELPL, analysis of compression of a rectangular block was performed. To evaluate the capability of the method of friction modelling discussed in Chapter IV, the solution to the compression of wedge-shaped specimen with frictional boundary condition was obtained. This chapter reveals the results of these analyses.

5.1 Upsetting of Rectangular Block

The solution to the upsetting of a rectangular block (2" $\times 2$ ") with unit thickness under plane strain conditions was obtained. The material properties were assumed to be:

$$
\begin{aligned}
\sigma_{0} & =10,000 \mathrm{psi} \\
\mathrm{H}^{\prime} & =10,000 \mathrm{psi} \\
\nu & =0.33 \\
E & =10^{7} \mathrm{psi}
\end{aligned}
$$

Due to the symmetry of the problem, a quarter section of the block was analyzed and the finite element fixed point (also the neutral point) was located at the centerline. As was mentioned before, the major objective in this analysis was to test the validity of the main program. Therefore, no friction modelling was incorporated in the computation and two simple boundary conditions were considered:
a. Sliding - 32 triangular elements and 220 increments of displacements were used to analyze the problem for 10 percent compression. This analysis was performed on the microcomputer.
b. Sticking - 162 triangular elements and 232 increments of displacements were used to analyze the problem for 10 percent compression. This analysis was performed on the VAX 780.

Figure 5.1 shows the finite element prediction of how the plastically-deforming region of the rectangular block developed in sticking condition. At 0.14 percent reduction in height, the billet had yielded fully. The finite element model first started to yield along the diagonal line from the outer corner and from the center. Subsequent deformation increased the thickness of the region. The growth of the plastic zone and the existence of the dead zone match with other works [18, pp. 328].

Figures 5.2 and 5.3 illustrate the shape of the workpiece after 10 percent compression under sticking and sliding conditions. The geometries predicted by finite element in both conditions are reasonable. In sticking condition, bulging occurred. In sliding condition the geometry remained rectangular.

Figure 5.4 illustrates the upsetting load as a function of reduction in height of the block. Load computations were based on the stresses in the elements adjacent to the interface. The maximum load in sliding condition, when loading is uniaxial, is a suitable factor to evaluate the accuracy of the finite element program. Maximum load after 10 percent compression in sliding condition by FEM was found to be 13,080 pounds. Also, this load can be found analytically as the following:

20 Inc. of Comp.

Full platle after 30 Inc. -0.147. Reduction in helght.

Figure 5.1 Growth of the plastic zone

Figure 5.210% compression in sticking condition

Figure 5.3 10\% compression in sliding condition

Figure 5.4 Average load in sticking and sliding conditions

For elastic, linearly strain hardening material the stress is:

$$
\begin{equation*}
\sigma=10,000+10,000 \varepsilon \tag{5.1}
\end{equation*}
$$

After 10 percent reduction in height the true strain is:

$$
\begin{equation*}
|\varepsilon|=\ln \frac{1}{0.9}=0.1043 \tag{5.2}
\end{equation*}
$$

Therefore, the strength level that the material exhibits at this strain is:

$$
\begin{equation*}
\sigma=10,000+10,000(0.1043)=11043 \mathrm{psi} \tag{5.3}
\end{equation*}
$$

The surface area A, after 10 percent reduction in height (for unit thickness), when the volume remains constant is:

$$
\begin{gather*}
1 \cdot 1=A \cdot 0.9 \tag{5.4}\\
A=1.11 \mathrm{in}^{2} \tag{5.5}
\end{gather*}
$$

According to the Maximum Shear Stress criterion [40, pp. 72], the force required is:

$$
\begin{equation*}
F=\sigma A=(11,043)(1.1111)=12,270 \mathrm{lbs} \tag{5.6}
\end{equation*}
$$

According to the Von Mises Criterion [40, pp. 74] the force required is:

$$
\begin{equation*}
F=(1.15)(11,043)(1.1111)=14,110 \mathrm{lbs} \tag{5.7}
\end{equation*}
$$

The predicted load by $\operatorname{FEM}(13,080 \mathrm{lbs})$ is acceptable because it is between the loads obtained by two valid theories. The percentage of error with respect to the Maximum Shear Stress Criterion is +6.7. The percentage of error with respect to the Von Mises Criterion is $\mathbf{- 7 . 2}$. These are the errors when only 32 triangular elements are considered in
the analysis. It is obvious that the accuracy of the analysis changes when the number of elements changes.

5.2 Plane Strain Compression of Wedge-Shaped Specimen With Frictional Boundary Conditions

The solution to the upsetting of a wedge-shaped specimen (Figure 5.5) under plane strain conditions was obtained. The material was $A L$ 6061-0. One reason for choosing such geometry was the convenience in the manufacturing of the specimen. Also, compression of the wedgeshaped specimen is used in practice for workability and microstructural studies in forging [44, pp. 281]. Compared to the symmetric geometries, the boundary conditions in this analysis are more complex. In other words, the location of the neutral point and the friction direction are unknown prior to the computations. In Chapter IV a general methodology was proposed for handling the problem of the neutral point and the frictional boundary conditions in non-symmetric geometries. The main purpose of this analysis is to check the capability of the cited methodology in handling of such complex boundary conditions. Appendix E contains some experimental and numerical results regarding the materials discussed in this section.

5.2.1 Boundary Conditions

Figure 5.6 illustrates the boundary nodes. Friction exists at the nodes common between the die and the workpiece. During the deformation, some of the free nodes come in touch with the dies. Also, it is possible that some of the common nodes disengage. The condition of friction at the nodes in touch with the die and control of the boundary
nodes regarding their positions with respect to the die (engaged or disengaged) are the important parts of the boundary conditions in this analysis.
5.2.1.1 Friction. During the deformation, the effect of friction was incorporated to the die/workpiece boundary as follows:
a. Condition of friction at the beginning of deformation is sticking (boundary nodes are fixed to the die).
b. When the nodal shear stress reaches the maximum static frictional resistance, that particular node is free to move tangentially. The Amontons/Coulumb Law $r=\mu P$, the Constant Friction Law $\tau=f k$, and the Equations 2.23 and 2.24 were examined as the maximum limit of sticking condition.
c. After commencement of sliding and until the end of computation, the nodal frictional force is computed and applied to the corresponding node. Friction force is computed according to the same model which is used to determine the limit of sticking condition. The friction force direction is opposite to the flow direction. Always, due to the equilibrium of the external loads, there is one node at each common boundary where the shear stress is very small. This particular node remains in sticking condition and acts as the neutral point.
5.2.1.2 Control of the Boundary Nodes. During the compression process, the boundary nodes were controlled as follows:
a. At the die/workpiece boundary, the normal relative displacement at each node is zero. In other words, the boundary nodes are not allowed to move into the die.
b. At each increment of compression, the coordinate of each free
node is checked and if any node comes in contact with the die surface, it is considered to stick to the die.
c. At each increment of compression, the normal stresses of the boundary nodes are checked. If the nodal normal stress is positive, the corresponding node is allowed to separate from the die and friction force is zero.

5.2.2 Finite Element Approach

The boundary conditions cited in sections 5.2.1.1 and 5.2.1.2 were incorporated to Program ELPL. One hundred and four nodes and 171 triangular elements were used in this analysis. The mesh system was according to Figure 5.7.

5.2.3 Experimental Procedures

Some experiments were performed to obtain the required data regarding the material properties and frictional boundary conditions. Also, compression of the wedge-shaped specimen under plane strain condition was performed for evaluation of the results obtained by FEM.

5.2.3.1 Mechanical Properties of the Material. Material was

 initially AL 6061-T651. Following a general annealing procedure [39], it was transformed to AL 6061-0. To determine the stress-strain relation in compression, three compression tests were performed on cylindrical specimens with a $3 / 4$ inch diameter and $3 / 4$ inch height (Figure 5.8). The results of these tests are included in Appendix E. For each specimen, compression was carried out between two flat andpolished steel platens. To eliminate the effect of the material strain rate sensitivity, the compression was carried out very slowly. PTFE sheets were used as the lubricant between the platens and the specimens to eliminate the influence of barreling. The stress-strain relation in tension for AL 6061-0 is [40, pp. 35]:

$$
\begin{equation*}
\sigma=30,000 \varepsilon^{0.2} \tag{5.8}
\end{equation*}
$$

From the combination of the compression tests and Equation 5.8, the simplified form of the stress-strain relation was determined as in Figure 5.9. This figure was utilized as a part of the input data to the finite element program.

To evaluate the effect of the material nonhomogeneity, two identical parts were cut from a block of aluminum (AL 6061-T651). After annealing, the parts were compressed under two different directions (Figure 5.10). No significant difference was found in the magnitude of barreling between the two specimens (less than one percent). The difference between the compression loads was around four percent. As in this analysis the normal nodal displacements are prescribed at the boundary rather than the loads, it can be said that the effect of the material nonhomogeneity is negligible on the final geometry (compared to the friction effect).

5.2.3.2 Data on Friction. In order to determine the frictional

 behavior at the boundary, the ring compression test was performed (Figure 5.11). This method, which has gained wide acceptance in metal forming, was proposed by Male and Cockcroft [38]. By compressing the rings of $3 / 4^{\prime \prime}$ outer diameter; $3 / 8^{\prime \prime}$ inner diameter and $1 / 4^{\prime \prime}$ height, the coefficient of friction in dry condition was found to be $\mu=0.21$. Thisvalue was obtained from the percent reduction in height and the percent reduction in the internal diameter (Figure 5.12). Three rings were compressed; the coefficient of friction $\mu=0.21$ is the average of the three results. The rings were compressed very slowly between two flat and parallel steel platens. Each platen was ground by the surface grinder in two cross directions. The rings were cut by the milling machine. The parallelness of the ring faces were checked by the vernier caliper. Before performing each compression test, all the marks on the machined surfaces of the rings and the platens were removed with very fine sandpaper. Also, the surfaces were degreased using acetone. The rings were initially AL 6061-T651, but after all the machining processes, they were transformed to AL 6061-0.

The other data required for the determination of the frictional behavior at the boundary is the friction factor " f ". The conventional method for the estimation of "f" is the Equation 2.20 which has been illustrated as the dashed line in Figure 2.22. According to this method, for $\mu=0.21$, the friction factor is found to be $f=0.75$. The other methods for determination of " f " are the solid lines in Figure 2.22 which were proposed by Bay. According to these lines two other values are estimated for "f".
$f=0.8$ when the asperity angle is zero degrees
$f=0.7$ when the asperity angle is fifteen degrees
Based upon these results (μ and f), four different models were found as the limit of the sticking condition cited in section 5.2.1.1. These models have been illustrated in Figure 5.13 and can be explained as follows:
a - Amontons Law: this limit has been found simply by the
substitution of $\mu=0.21$ into $\tau=\mu \mathrm{P}$.
b - Constant Friction Law: this limit has been found by the substitution of f and k into to the equation $\tau=f k$. Value of f in this equation is 0.75 which was found by the traditional method cited above. k is the shear strength of the material and it can be shown as

$$
k=\frac{1}{\sqrt{3}} \sigma_{0}
$$

According to the Distortion Energy Criterion (Von Mises), the yield stress σ_{0} under the plane strain condition is

$$
\sigma_{0}=1.15 \sigma^{\prime}=(1.15)(12,000)=138,000
$$

where $\sigma^{\prime}=1,200$ is the uniaxial yield stress and its value was found in section 5.2.3.1. Therefore, according to the Constant Friction Law, the limit of sticking condition can be written as:

$$
\begin{equation*}
\tau=(0.75)\left(\frac{1}{\sqrt{3}}\right)(13,800)=5,976 \mathrm{psi} \tag{5.9}
\end{equation*}
$$

c - Theory of friction by Bay. Based upon the discussion in section 2.1.5.2, friction changes linearly with pressure up to the limit of proportionality $\left(P^{\prime} / \sigma_{0}\right)$. The limit of proportionality for the asperity angle zero degree is 1.5 and for the asperity angle fifteen degrees is 0.8. Up to the limit of proportionality, friction variation can be found according to the equation $\tau=0.21 \mathrm{P}$ or equation 2.23. Beyond the limit of proportionality equation 2.24 must be used:

$$
\frac{\tau}{k}=\frac{\tau^{\prime}}{k}+\left(f-\frac{\tau^{\prime}}{k}\right)\left(1-\exp \left[\left.\frac{\left(\frac{p^{\prime}}{\sigma_{0}}-\frac{p}{\sigma_{0}}\right) \frac{\tau^{\prime}}{k}}{\left(f-\frac{\tau^{\prime}}{k}\right) \frac{p^{\prime}}{\sigma_{0}}} \right\rvert\,\right)\right.
$$

For asperity angle equal to zero, the elements of this equation were specified as the following:

$$
\begin{aligned}
\sigma_{0}= & 13,800 \mathrm{psi} \text { (effective yield stress) } \\
\mathrm{p}^{\prime} / \sigma_{0}= & 1.5 \\
\mathrm{p}^{\prime}= & (1.5)(13,800)=20,700 \mathrm{psi} \text { (pressure at the limit } \\
& \text { of proportionality } \\
\tau^{\prime}= & (0.21)(20,700)=4,347 \mathrm{psi} \text { (friction at the limit } \\
& \text { of proportionality } \\
\mathrm{f}= & 0.8 \\
\mathrm{k}= & (1 / \sqrt{3})(13,800)=7,967 \mathrm{psi}
\end{aligned}
$$

substituting these values into the equation (2.24)

$$
\begin{equation*}
\tau=4,347+2,026\left(1-\exp \left(\frac{\left(1.5-\frac{P}{13,800}\right)}{0.7}\right]\right) \tag{5.10}
\end{equation*}
$$

For asperity angle equal to fifteen degrees, the elements of equation 2.24 can be found as the following:

$$
\begin{aligned}
\sigma_{0} & =13,800 \mathrm{psi} \\
\mathrm{p}^{\prime} / \sigma_{0} & =0.8 \\
\mathrm{p}^{\prime} & =(0.8)(13,800)=11,040 \mathrm{psi} \\
\tau^{\prime} & =(0.21)(11,040)-2,318 \mathrm{psi} \\
\mathrm{f} & =0.7 \\
\mathrm{k} & =7,967
\end{aligned}
$$

substituting these values into the equation (2.24) it can be written:

$$
\begin{equation*}
\tau=2,318+3,259\left(1-\exp \left[\frac{\left(0.8-\frac{P}{13,800}\right)}{1.125}\right]\right) \tag{5.11}
\end{equation*}
$$

According to these analyses, the friction models proposed by Bay can be
shown as the following:

For asperity angle $=0^{\circ}$

$$
\begin{align*}
& \tau=0.21 P \quad(P \leq 20,700) \\
& \tau=4,347+2,026\left(1-\exp \left[\frac{\left(1.5-\frac{P}{13,800}\right)}{0.7}\right]\right) \tag{5.12}
\end{align*}
$$

For asperity angle $=15^{\circ}$

$$
\begin{align*}
& \tau=0.21 P \quad(P \leq 11,040 \mathrm{psi}) \\
& 2,318+3,259\left(1-\exp \left[\frac{\left(0.8-\frac{P}{13,800}\right)}{1.125}\right]\right) \tag{5.13}
\end{align*}
$$

5.2.3.3 Plane Strain Compression Test. Using CNC machine, a steel die was made for plane-strain compression of the wedge-shaped specimens (Figure 5.14). The specimen was confined by two side walls, each 1-1/4 inches thick. PTFE sheets were used to eliminate the friction between the side walls and the specimen faces. The die/specimen surfaces in contact were polished with fine sandpaper and degreased with acetone prior to each test (the same as the ring compression tests). The compression was carried out very slowly up to ten percent the height of the specimen. The compression testing machine was MTS with 55 KPS
load capacity. The specimen dimensions were according to Figure 5.5. A total of 8 specimens were compressed. Among them, three of the best (the most accurate in reduction in height) were chosen for the final results. At different steps of compression, the load and the displacement were written down. After ten percent reduction in height (0.05 inches) in each test, the amount of the compression was measured by the vernier caliper and compared to the amount of the compression shown by LVDT on MTS at the end of the test. From this comparison, a correction factor was found and all the displacements shown by LVDT at the intermediate steps were multiplied by this factor and corrected. The results of these tests have been included in Appendix E. Figure 5.15 shows one of the deformed specimens inside the die. To demonstrate the mode of deformation in the specimen, some lines were drawn on the specimen before the compression. In Figure 5.15, the lines on the bottom die indicate the initial positions of the lines on the specimen. By comparing the position of each line to its initial position the amount of slip between the die and workpiece can be determined at each point. The slip between the bottom die and the specimen at lines $\underline{3}$ and $\underline{4}$ from the left is almost zero. Therefore, the neutral point must be located in this area.

5.2.4 Results of the Analysis

The friction models found in section 5.2 .3 .2 were examined as the boundary between the sticking and the sliding conditions (cited in section 5.2.1.1). In these examinations, the Coloumb/Amontons Law failed and could not provide any result. The cause of this failure was the high hydrostatic pressure in the forging process. Figure 5.16 helps
to describe this problem. According to the model $\tau=\mu \mathrm{P}$, at some portions where P is very high (a multiple of the yield stress), τ becomes very big. In other words, the limit of the sticking condition becomes very high. As the maximum limit of the shear stress is the bulk shear strength of the material $\left(\tau=1 / \sqrt{3} \sigma_{0}\right)$, sliding never occurs at these zones. The permanent condition of sticking at some regions assists to increase the pressure P in the other regions previously slid. The friction force applied in the sliding condition is computed according to $\tau=\mu \mathrm{P}$. Therefore, by increasing the pressure the friction stress increases and it sometimes reaches a value beyond the shear strength of the material ($\tau=1 / \sqrt{3} \sigma_{0}$), thus causing failure.

Figure 5.17 reveals some numerical results regarding the rest of the friction models examined in this methodology. The amount of the normalized barreling w/L resulting from the Law of Constant Friction is higher than the experimental result. Also, the forging load is much higher than the real value when $\tau=f k$ is applied.

Generally it can be said that the Constant Friction Law revealed some over-strength at the interface. This had been predicted prior to the analysis. According to the model $\tau=f k$, friction reaches a high degree even when the pressure is zero. Therefore, sliding occurs late which, in turn, makes the barreling and the load very high. To demonstrate the sensitivity of the present analysis to the limit of sticking, variation of the shear stress at node number $\underline{2}$ are illustrated in Figures 5.18 and 5.19. In Figure 5.18 (Constant Friction Law), sliding commences when the shear stress reaches 6,000 psi. In Figure 5.19 (Bay, $\gamma=0^{\circ}$) sliding takes place when the shear stress reaches 3,500 psi. The high value of sticking limit in Figure 5.18 causes
higher barreling and forging load. The predicted load and w/L (Figure 5.17) are close to the real values when the friction model proposed by Bay $\left(\gamma=0^{\circ}\right)$ is applied. The predicted results obtained by using the friction model proposed by Bay for $\gamma=15^{\circ}$ is much less than the real values. One may guess that friction must increase when the asperity angle increases and the results obtained in these analyses are not logical. Conditions exemplified in Figures 2.20 and 2.21 may result in such erroneous conclusions. According to Figure 2.20, when the asperity angle γ increases, the junction area $B E$ increases. Therefore, friction must increase. Also, Figure 2.21 reveals that for a certain friction factor f the friction stress is higher when the asperity angle is bigger. But in Bay's friction analysis, the asperity angle and the friction factor are not independent. Figure 2.22 reveals that for the higher asperity angle the friction factor is less. Also, when the asperity angle is high, the limit of proportionality $\mathrm{P}^{\prime} / \sigma_{0}$ (page 24) is less. When the asperity angle is bigger, the lower friction factor and limit of proportionality cause the friction curve to bend off earlier and to approach a smaller value (Figure 5.13).

Figure 5.20 reveals the variation of the forging load up to 10 percent reduction in height of the specimen. The predicted force obtained by using $\tau=f k$ is much higher than the experimental result of the entire compression. The force obtained by Bay's friction model, when $\gamma=0^{\circ}$, is high at the beginning of deformation and gets closer to the experimental result at higher deformation. This variation is reversed when the asperity angle is 15°. However, the loads obtained by FEM, regardless of the friction model applied, must be high at the beginning of compression. This is due to the simplified stress-strain
relation (Figure 5.9) utilized in FEM. According to Figure 5.9 the yield stress is 12,000 psi. The yield stress in AL 6061-0 is 8,000 psi [440, pp. 154]. However, the simplified stress-strain curve and the stress-strain model $\sigma=30,000 \varepsilon^{0.2}$ (or the experimental results in Appendix E) get close by increasing the compression. Therefore, the influence of the friction modeling on the predicted load becomes more significant when deformation increases.

Figures 5.21 and 5.22 show the grid distortion for two frictional boundary conditions, $\tau=f k$ and that proposed by Bay $\left(\gamma=0^{\circ}\right)$. Compared to Figure 5.15, some important results can be obtained regarding the appropriate sticking limit in the analysis. Figure 5.15 reveais some separation between the specimen and the bottom die on the right side. This separation can be observed in Figure 5.22 as well, but not in Figure 5.21. Separation of the specimen from the die in Figure 5.22 is the result of the tensile stress explained in section 5.2.1.2c. This agreement between the experiment and the analysis (Figure 5.22) confirms the Bay's friction model $\left(\gamma=0^{\circ}\right)$ to be the limit of sticking. The little arrows in Figures 5.21 and 5.22 indicate the finite element fixed nodes. The shear stresses in these nodes were under the limit of sticking and never reached a magnitude sufficient to achieve a sliding condition. These nodes also represent the neutral points where the material flow changes its direction and where the amount of slip is zero (or minimum). Compared to Figure 5.15, the location of the neutral point at the bottom edge in Figure 5.22 (node 96) is very reasonable. The predicted neutral point in Figure 5.21 (node 98) does not match with Figure 5.15. The bases of this comparison are the minimum slip and the straightness of the line passing through the neutral point.

Prediction of the neutral point in non-symmetric geometries was the major goal in this work and it can be seen that this prediction is possible when the procedure cited in section 4.2 is used.

Figure 5.23 compares the geometrical changes for two friction conditions after 10 percent compression. The degree of barreling and separation of the specimen from the bottom die were previously discussed. The mode of the material flow is an important factor which can be used to judge the correctness of the limit of sticking condition. Figure 5.15 illustrates that the specimen has more tendency to shift towards the right. In Figure 5.23 this can be observed in the predicted geometry using the friction model proposed by Bay, et al ($\gamma=$ 0°). For Constant Friction Law as the limit of sticking, material incorrectly moves more towards the left. The importance of the material flow becomes more significant when the die is closed. Assume that the die is closed and there is a wall on the right side of the specimen. When the material reaches the wall, all the states of stress and strain and filling of the die cavity change. Figure 5.24 illustrates the computed effective strain at some points for two different frictional boundary conditions. Generally the effective strain at the central part is higher when $\tau=f k$ is used as the frictional boundary condition. Since the effective strain is the state variable of the material undergoing deformation, it represents the mechanical property behavior during and after deformation. Therefore, Figures 5.23 and 5.24 illustrate the manner in which friction affects the mechanical properties.

Analysis of compression of the wedge-shaped specimen indicates that the general methodology, cited in section 4.2 , is the suitable procedure
for the treatment of friction in non-symmetric geometries. This method is very successful when the friction formulations proposed by Bay ($\gamma=$ 0°) are applied as the limit of sticking condition. Using this method, the location of the neutral point is quite predictable.

Figure 5.5 The wedge-shaped specimen

Figure 5.6 The boundary nodes.

- Common nodes
- Free nodes

Figure 5.7 The mesh system for wedge-shaped specimen

Figure 5.8 Some specimens used in compression test to determine the stress-strain curve

Figure 5.9 True stress-true strain in A16061-0

(a)

(b)

Figure 5.10 The effect of material nonhomogenity on the degree of barreling and the upsetting load. a) Two identical specimens are cut from a block of aluminum. b) The specimens are compressed under two different direction.

Figure 5.11 Some compressed rings for dtermination of coefficient of friction

Figure 5.12 Diagrams for determination of coefficient of friction
[38]

Figure 5.13 Different friction models used in this analysis

$\tau=f k$

(a)

(b)

Figure 5.16 The cause of the Amontons Law failure.
a) According to this model, when the hydrostatic pressure increases to a high value, the friction stress becomes too high.
b) When the friction stress is beyond the shear strength of material , the state of equilibrium cannot be achieved and the finite - element analysis cannot provide any results.

	1 (Inch)	N (Inch)	W / L	Maximum Force (Pound)
Expertment $r=f / 1$ Bay $\left(\gamma=15^{\circ}\right)$ Bay $\left(\gamma=0^{\circ}\right)$	1.056	.014	.013	5900
1.047	.022	.021	6950	

Figure 5.17 Some numerical and experimental results
after 10% reduction in height

Figure 5.18 Variation of shear stress at node number 2 up to the limit of sticking (constant Fr.)

Figure 5. 20 Variation of the forging load with different sticking iimit.

Figure 5.21 10\% compression with the Constant Friction Law as the limit of sticking

Figure 5.22 10\% compression with the friction model by Bay as the limit of sticking

> Figure 5.23 The effect of friction on final geometry.

| | a | b | c | d | e | f | g |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tau=\mathrm{f}, \mathrm{K}$ | 0.15 | 0.03 | 0.14 | 0.06 | 0.00 | 0.10 | 0.14 |
| Gay $\left(, \gamma 0^{\circ}\right)$ | 0.14 | 0.03 | 0.13 | 0.03 | 0.00 | 0.11 | 0.15 |

Figure 5.24 The computed effective strain at some points inside the specimen

CHAPTER VI

DISCUSSION

In the friction part of this work, two factors of significance can be observed:
a. A general methodology regarding the incorporation of the frictional boundary conditions suitable for any types of geometry.
b. Comparison of different friction formulations with the same finite element code and the same method of incorporation.

Also, program ELPL (Finite Element approach) served as a temporary tool for the development of the cited methodology.

6.1 Finite Element Approach

Program ELPL is based on Hill's variational principle (equation 4.3) for incremental deformations and is ideally suited to isotropically hardening Prandtl-Ruess material. In this program the effect of the strain rate sensitivity is neglected. Therefore, the plane strain compression test (section 5.2) was performed very slowly. The source of the finite element formulations (equations 4.7 or 4.9) was [34]. In these formulations the effect of rigid body rotation was considered.

In program ELPL, the Jaumann increment of Kirchoff stress was assumed to be equal to the increment of the Cauchy stress. This reduced the computation efforts but did not influence the results of the
analysis significantly (section 5.1). The load obtained by the analysis of the rectangular block, after 10 percent compression and under the sliding condition, was between the loads computed by the Von Mises and the Maximum Shear Stress Criterions. The growth of the plastic zone matched with that in [18].

The element type, used in program "ELPL", was triangular. In plasticity, the components of the stiffness matricies (Equations 4.8 and 4.9) are stress dependent. In any element except the triangular element, the stress is not constant. Therefore, an average stress must be used for the computation of the stiffness components which causes the increase of the computation effort and may create some types of error (e.g. by not sharing adequate and appropriate points in the computation of the average elemental stress). Application of the triangular element in program "ELPL", would avoid such problems. However, there are several other factors involved in the accuracy of programs regarding the types of elements. Data pertinent to these factors can be found in other studies ([42] pp. 158 or [43]). Other significant factors involved in program "ELPL" may be summarized as follows:
a. The increments of displacements are chosen somehow to make every element yield exactly at the yield point. These are done by the computation of a scaling factor explained in section 4.1.5.2.
b. The material is considered to be elastic-linearly plastic (Figure 4.4). This reduces the computational efforts and the numerical errors considerably when the slope of the plastic stress-strain relation is assumed to be constant.
c. Particular attention has been paid to the elimination of the
numerical errors by the application of DOUBLE PRECISION command and elimination of some complex equations such as that explained in step b.

Friction

Compression of the wedge-shaped specimen, validated the method of incorporating the frictional boundary condition into FEM. The location of the neutral point and the flow direction (Figures 5.22 and 5.23) are quite predictable by using this method. Compared to the other methods (section 2.2), this procedure can be adopted as a new approach in finite-element modelling of friction. No other method such as the slab method (Section 2.2.1) is necessary to determine the friction direction. Also, the die and the workpiece are directly in contact and no GAP element (interface element) [16] is required at the die/workpiece interface. The analysis of deformation is started with the sticking frictional boundary condition. This assumption is based upon the concept of friction. If friction is a resistance force, sliding cannot take place until this resistance is overcome. Therefore, the condition of sticking persists until the surface shear stress reaches a critical value or limit of the static friction. In the search for an appropriate critical value, different friction models were examined and compared. The failure of the Amontons Law, confirmed that explained in [5, pp. 15] (see section 2.1.2). According to this discussion, the coefficient of friction becomes meaningless at high pressure. This usually occurs in the forging process. Also, the unsatisfactory results obtained by the Constant Friction Law were in agreement with Devaux [1] who found that friction cannot remain constant
at the interface. The friction model proposed by Bay, when the asperity angle is considered zero, fit as the limit of sticking in the present work. Therefore, two important results were obtained by this comparison. First, the proposed methodology for the treatment of friction in metal forming is quite practical. Second, the proposed friction model by Bay is more realistic compared to the Amontons and the Constant Friction Laws.

Usually, in most conventional methods (direct methods), the friction stress/force is computed according to a model and introduced to the boundary . In the present work, up to the limit of sticking, friction is computed according to the equilibrium of the forces and it is independent of any model (Figure 5.19). The dependency of the friciotn to the introduced model starts when the sliding condition commences.

The sticking critical shear procedure (Figure 5.19) can be extended to model the stick-slip phenomena. According to this phenomena, friction changes between two upper and lower limits. Bowden and Tabor [6] explained this behavior in a very understandable way (after Rabinawicz, 1959):

Figure 6.1 illustrates two surfaces in contact The upper surface is attached to a spring with the stiffness k. When the lower surface is driven forward at a uniform velocity v, the spring force increases at a rate k.v.t (sticking condition) In Figure 6.2a, this process is represented by the straight line OA with the slope proportional to k.v (if the damping factor is negligible). At the Point A (limit of sticking), slip occurs. Slip continues until the spring force reaches the point B. At this point the upper surface in the Figure 6.1 comes to
rest in relation to the lower surface and no variation occurs in the spring force. After a while, the surfaces stick to each other (point C) and the spring force increases until again slip occurs (point D). These cycles continue and finally, a steady state is reached with stick-slip of constant size (Figure 6.2b). Figure 6.3 reveals the modeling of friction in the present work (solid lines) and its extension to the stick-slip model (dotted lines). In Figure 6.3, when nodal friction increases and reaches the limit of static friction (point A), instead of application of the nodal force according to the solid line, no load or stress is applied and that particular node is free to slide. Therefore, friction stress drops and reaches the kinetic limit (point B). Condition of sticking starts at point B and the behavior of stick-slip continues. For such a development, two extra steps must be accomplished.
a. A search must be done for an appropriate kinetic friction limit.
b. Condition of unloading must be considered in the finite element program.

Figure 6.1 Mechanism of stick-slip

Figure: 6.2 Development of intermittent motion for a system in which friction increases with time of contact t according to a typical curve [6].
a) Friction- time curve.
b) Resultant intermittent motion.

Figure 6.3 Modelling of friction in the present work and its extension.

CHAPTER VII

SUMMARY AND CONCLUSIONS AND RECOMMENDATION
 FOR FURTHER STUDIES

Conclusions

A General methodology for finite-element modelling of friction in non-symmetric geometries has been developed. The approach provides for the inclusion of a sticking-critical shear model for large scale deformation found in metal forming. This method does not require the use of CAP elements at the die-metal interface.

An elastic-plastic finite element computer program was developed for plane strain deformation which provided the capability of evaluating various frictional boundary condition models. The effect of rigid body rotation was considered in this development. The stability of the program was examined by obtaining the solution of upsetting of a rectangular block.

A review of the methods of incorporating friction as a boundary condition in large scale plastic deformation was conducted and the methods classified into three categories. The basic friction models were tested using the finite element code. The results of the simulations using these different methods of modelling friction were compared with experimental deformation data obtained from the deformation of wedge-shaped specimens under plane strain conditions. The recently proposed friction model by Bay [2], when incorporated into
the FEM code, provided the best correlation with the experimental results. The Bay model of sticking/friction at the die-workpiece boundary is an attempt to more accurately model the tribological/metallurgical events taking place in deformation.

The capability of the FEM elastic-plastic code, incorporating the friction model proposed by Bay, to predict the location of the neutral point in complex shapes was established by compression of a wedge-shaped specimen. It is no longer necessary to use other methods, such as the slab method, to predetermine the position of neutral points and the direction of flow at the boundary.

Recommendations

Based on the analyses and discussions presented in this work, it is recommended that the following research be undertaken:
a. To give more flexibility to the present friction modeling approach, the complete phenomena of stick-slip can be modeled. This provides an opportunity for the boundary nodes, after commencement of sliding, to stick the die again. For this purpose, it is necessary to find a suitable kinetic friction model.
b. It is suggested that the present friction work be linked to a more advanced elastic-plastic code, one with the capability of application of different element types and mesh generation. To model the phenomena of stick-slip, the condition of unloading must be considered in the computer program.

REFERENCES

1. J. Devaux, J. C. Gelin, J. Oudin, Y. Ravalard. "Theoretical Analysis and Experimental Application of Barrelling and Folding in Cylinder Upsetting Tests. Int J. Mech. Sci (1984) 555.
2. N. Bay. "Friction and Adhesion in Metal Forming and Cold Welding." Technical University of Denmark (1985).
3. "BOUNDARY LUBRICATION." An Apprisal of World Literature. ASME, New York, (1969).
4. Donald H. Buckley. "Surface Effect in Adhesion, Friction, Wear, and Lubrication. Elsvier Scientific Publishing Company, New York, (1981).

5 John A. Schey. "Tribology in Metalworking." A.S.M. Ohio (1983).
6. F. P. Bowden, D. Tabor. "The Friction and Lubrication of Solids." Pt. II. Oxford University Press (1964).
7. J. Halling. "Principles of Tribology." MacMillan Press Ltd, England (1973).
8. A. D. Sarkar. "Wear of Metals." Pergamon Press, New York (1976).
9. C. M.Edwards, J. Halling. "An Analysis of the Plastic Interaction of Surface Asperities and Its Relevance to the Value of the Coefficient of Friction." J. Mech. Eng. Sci (1968).
10. G. W. Pearsall, W. A. Backofen. "Friction Boundary Conditions in Plastic Compression." Trans. ASME, J. Engn. Ind. (1963) 68.
11. F. P. Bowden, D. Tabor. "The Theory of Metallic Friction and Role of Shearing and Ploughing." Bull. 145, Comm. of Australia, Concil Sci and Ind Res (1942).
12. N. Bay, G. Gerverd. "Tool/Workpiece Interface Stresses in Simple Upsetting." J. Mech. Work Tech (1987).
13. J. J. Park and S. Kobayashi. "Three-Dimensional Finite Element Analysis of Block Compression." Int. J. Mech. Sci (1984) 165.
14. L. J Guo, Y. J. Huang and W. Q. Chen. "Three Dimensional Finite Element Analysis of Metal Forming Processes with Special Reference to Boundary Conditions." 16th NAMRC (1984) 114.
15. C. R. Boer N. Rebelo, H. Rydsted, G. Schroder. "Process Modelling of Metal Forming and Thermomechanical Treatment." Springer-Verlog Berlin, Heidelberg (1986).
16. P. Hartley, C. E. N. Sturgess, G. W. Rowe. "Friction in Finite Element Analysis of Metal Forming Processes." Int. J. Mech. Sci (1979) 301.
17. I. Pillinger, P. Hartley, C. E. N. Sturgess, G. W. Rowe. "An Elastic Plastic Three Dimensional Finite Element Analysis of the Upsetting of Rectangular Blocks and Experimental Compression." Int. J. Mach Tool Des. Res (1985) 229.
18. A. Nagamatsu, T. Muota, T. Jimma. "On the Non Uniform Deformation of a Block in Plane Strain Compression Caused by Friction." Bull J. ASME (1972) 322.
19. W. Johnson, P. B. Mellor. "Engineering Plasticity." Halstes Press. New York (1985).
20. W. Johnson. "Estimation of Upper Bound Loads for Extrusion and Coining Operations." Proc. Inst. Mech. Engrs Londin (1959).
21. H. Kudo. "An Upper Bound Approach to Plane Strain Forging and Extrusion, parts I, II, III." J. Mech. Sci (1960) 57, 229, 366.
22. E. G. Thomsen, C. T. Yang, S. Kobayashi. "Mehcanics of Plastic Deformation in Metal Processing." Macmillan, New York (1965).
23. B. Avitzur. "Metal Forming Analysis." McGraw Hill, New York (1968).
24. Y. Yamada, N. Yoshimura, T. Sakura. "Plastic Stress Strain Matrix and Its Applications for the Solution of Elastic Plastic Problems by Finite Element Method. Int. J. Mech. Sco (1968) 343.
25. K. Iwata, K. Osakada, S. Fujino. "Analysis of Hydrostatic Extrusion by the Finite Element Mehtod." Trans. ASME, J. Engrg. for Ind (1972) 697.
26. C. H. Lee. "Numerical Analysis of Plastic Deformation Problems." Ph.D. Dissertation, University of California, Berkeley (1970).
27. C. H. Lee, S. Kobayashi. "Analysis of Axisymmetric Upsetting and Plane Strain Side Pressing of Solid Cylinders by the Finite Element Method." Trans. ASME J. of Engrg. for Ind. (1971) 445.
28. C. H. Lee, S. Kobayashi. "Elastioplastic Analysis of Plane Strain and Axisymmetric Flat Punch Indentation by the Finite Element Method. Int. J. Mech. Sci. (1970) 349.
29. C. H. Lee, S. Kobayashi. "New Solutions to Rigid Plastic Deformation Problems Using a Matrix Method. Trans. ASME J. of Engrg. for Ind. (1973) 865.
30. C. H. Lee, S. Kobayashi. "Deformation Mechanics and Workability in Upsetting Solid Circular Cylinders." Proc. North Ameri. Met. Res. Conf., Hamilton, Canada (1973) 185.
31. T. Altan, S. I. Oh, H. Gegel. "Metal Forming." Fundamentals and Applications." ASM (1983).
32. S. S. Rao. "The Finite Element Method in Engineering." Pergamon Press, New York (1982).
33. H. D. Hibit, P. V. Marcal and J. R. Rice. "A Finite Element Formulation for Problems of Large Strain and Large Displacement." Int. J. Solid Str. (1970) 1069.
34. R. M.McMeeking, J. R. Rice. "Finite Element Formulations for Problems of Large Elastic Plastic Deformations." Int. J. Solids and Structures (1975) 601.
35. R. Hill. "Some Basic Principles in the Mechanics of Solids Without a Natural Time." J. Mech. Phys. Solids (1959) 209.
36. W. Prager. "Introduction to Mechanics of Continua." Gin (1961).
37. C. F. Gerald, P. O. Weatly. "Applied Numerical Analysis." Third Ed. Addison-Wesley Menlo Park, California (1985).
38. A. T. Male, M. G. Cockcroft. "A Method for the Determination of the Coefficient of Friction of Metals Under Conditions of Bulk Deformations." J. of Inst. of Metals (1964) 38.
39. Aerospace Structural Metal Handbook. Volume 3. (1977).
40. Serope Kalpakjian. "Manufacturing Processes for Engineering Materials." Melo Park, California (1984).
41. 0. C. Zienkiewicz. "The Finite Element Method in Engineering Science." McGraw Hill. London (1971).
42. "Metal forming Plasticity". IUTAM Symposium Tutzing/Germany. New York, 1978.
43. J. C. Ngtegaal, D. M. Parks and J. R. Rice. "On Numerically Accurate Finite Element Solutions in the Fully Plastic Range". Computer Methods in Applied Mechanics and Engineering. NorthHolland Publishing Company, 1974.
44. S. Kobayashi, S. Oh, T. Altan. "Metal Forming and the FiniteElement Method". Oxford University Press. New York, 1989.

APPENDIX A

STRESS CORRECTION STIFFNESS

In equation (4.9) the stress correction stiffness was defined as:

$$
\left[K_{c}\right]=S_{v}\left[N_{k}\right]^{T} \prime_{i} \alpha_{i j}[N K], j_{j}-2\left[B_{K i}\right]^{T} \alpha_{i j}\left[B_{K j}\right] d v
$$

Where:
[N] = Shape function.
$[B]=$ Strain - displacement matrix.
For a triangular element in plane strain condition equation (3.9) becomes :

Where:

$$
\begin{aligned}
& \text { - } 2 \text { CC Y32 X32 } \\
& \mathrm{K} 21=(-\mathrm{AA} \mathrm{X} 32) / \mathbf{2}-\mathrm{BB} \mathrm{Y} 32 \mathrm{X} 32 / 4+\mathrm{CC} \mathrm{Y}_{2}^{2} 2+\mathrm{CC} \underset{2}{ } \mathrm{X} 32
\end{aligned}
$$

$$
\begin{aligned}
& \text { BB Y32 / } 4 \text { + X32 - CC Y32 X32 - CC X32 Y32 } \\
& \text { K31 = - A Y31 Y32 - B X31 X32 + C Y31 X32 + C X31 Y32 - AA Y31 Y32 } \\
& \text { - AA X31 X32 / } 4 \text { - BB X31 X32 / } 4 \text { + CC Y31 X32 + } \\
& \text { CC X31 Y32 }
\end{aligned}
$$

```
K32= AA X31 Y32 / 4 + BB X31 Y32 / 4 + - CC X31 X32 -
```

CC Y31 Y32

$\mathrm{K} 41=\mathrm{AA} \mathrm{Y} 31 \mathrm{X} 32 / 4+\mathrm{BB} \mathrm{Y} 31 \mathrm{X} 32 / 4-\mathrm{CC} \mathrm{Y} 31 \mathrm{Y} 32$-CC X31 X32
$\mathrm{K} 42=-\mathrm{A} Y 31 \mathrm{Y} 32-\mathrm{BX} 31 \mathrm{X} 32+\mathrm{C} \mathrm{Y} 31 \mathrm{X} 32+\mathrm{C}$ X31 Y32 -
AA Y31 Y32 / 4-BB Y31 Y32 / 4-BB X31 X32 +
CC Y31 X32 + CC X31 Y32
$\mathrm{K} 43=-\mathrm{AA} \mathrm{X} 31 \mathrm{Y} 31 / 4-\mathrm{BB} \mathrm{Y} 31 \mathrm{X} 31 / 4+\mathrm{CC} \mathrm{Y} 31+\mathrm{CC} \mathrm{X} 31$
$\mathrm{K} 44=\mathrm{A} Y 31+\mathrm{BX}$ X1 - C Y31 X31 - C X31 Y31 + AA Y31 / $4+$
BB Y31 / 4 + BB X31 - 2 CC X31 Y31
$\mathrm{K} 51=\mathrm{A} \mathrm{Y} 21 \mathrm{Y} 32+\mathrm{B} \mathrm{X} 21 \mathrm{X} 32-\mathrm{C}$ Y21 X32 - C X21 Y32 + AA Y21 Y32
+AA X21 X32/4 + BB X21 X32/4-Y21 X32 - CC X21
$\mathrm{K} 52=-\mathrm{AA} \mathrm{X} 21 \mathrm{Y} 32 / 4-\mathrm{BB} \mathrm{X} 21 \mathrm{Y} 32 / 4+\mathrm{CC} \mathrm{Y} 21 \mathrm{Y} 32+\mathrm{CC} \mathrm{X} 21 \mathrm{X} 32$
K53 - - A Y21 Y31 - B X21 X31 + C Y21 X31 + C X21 Y31 -AA Y21 Y31
- BB X21 X31/4-BB X21 X31/4 +CC Y21 X31 +C C X21 Y31
K54 = AA X21 Y31/4 + BB X21 Y31/4-CC Y21 Y31 - CC X21 X31
$\mathrm{K} 55=\mathrm{A} \mathrm{Y}^{2} 1+\mathrm{B} \mathrm{X}^{2} 21-\mathrm{C} Y 21 \mathrm{X} 21-\mathrm{C} \mathrm{X} 21 \mathrm{Y} 21+\mathrm{AA} \mathrm{Y} 21+\mathrm{AA} \mathrm{X} 21 / 4$
$+\mathrm{BBX21/4-2CCY21X21}$
K61 $=-\mathrm{AA}$ Y21 X32 /4-BB Y21 X32 / 4 +CC Y21 Y32 +C C X21 X32
$\mathrm{K} 62=\mathrm{A} Y 21 \mathrm{Y} 32+\mathrm{B} \mathrm{X} 21 \mathrm{X} 32$ - C Y21 X32 - C X21 Y32 +
AA Y21 Y32/4 + BB Y21 Y32/4 + BB X21 X32
CC Y21 X32 - CC X21 Y32
K63 = AA Y21 X31/4 + BB Y21 X31/4-CC Y21 Y31-CC X21 X31
K64 = -A Y21 Y31 -B X21 X31 + C Y21 X31 + C X21 Y31-
AA Y21 X21/4-BB Y21 Y31/4-BB X21 X31 + CC Y21 X31
$+\mathrm{CC} \mathrm{Y} 21 \mathrm{X} 31+\mathrm{CC} \mathrm{X} 21 \mathrm{Y} 31$

$$
\mathrm{A}=\sigma_{11} /\left(4 \mathrm{~S}^{2}\right) \quad \mathrm{B}=\sigma_{22} /\left(4 \mathrm{~S}^{2}\right) \quad \mathrm{C}=\sigma_{21} /\left(4 \mathrm{~S}^{2}\right)
$$

$$
A A=-2 \sigma_{11} /\left(4 \mathrm{~S}^{2}\right) \quad \mathrm{BB}=-2 \sigma_{22} /\left(4 \mathrm{~S}^{2}\right) \quad \mathrm{CC}=-2 \sigma_{12} /\left(4 \mathrm{~S}^{2}\right)
$$

$$
S=\text { Area of the triangular element }
$$

$$
x_{i j}=x_{j}-x_{i}
$$

$$
Y_{i j}=Y_{j}-Y_{i}
$$

$$
\underbrace{Y}_{1} \ldots
$$

$$
\begin{aligned}
& \text { K65 = - AA Y21 X21/4-BB Y21 X21/4 + CC Y21 + CC X21 } \\
& \mathrm{K} 66=\mathrm{A} \underset{\mathrm{Y} 21}{\mathbf{2}}+\mathrm{BX} \underset{2}{2}-\underset{2}{\mathrm{C}} \mathrm{Y} 21 \mathrm{X} 21-\mathrm{C} \mathrm{X} 21 \mathrm{Y} 21+\mathrm{AA} \mathrm{Y} 21 / 4 \\
& \text { BB Y21/4 + BB X21-2 CC X21 Y21 }
\end{aligned}
$$

Abstract

APPENDIX B

PLASTIC STRESS-STRAIN MATRIX

The Prandtl Ruess equations for the deviatoric strain increment $\mathrm{d} \varepsilon_{i j}$ are:

$$
\begin{equation*}
d \varepsilon_{i j}^{\prime}=\sigma_{i j}^{\prime} d \lambda+d \sigma_{i j}^{\prime} / 2 G \tag{B.1}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\mathrm{d} \lambda=(3 / 2) \mathrm{d} \bar{\varepsilon}^{-p} / \bar{\alpha}=(3 / 2) \mathrm{d} \bar{\sigma} /\left(\bar{\alpha} \mathrm{H}^{\prime}\right) \tag{B-2}
\end{equation*}
$$

According to the Von Mises Yield Criterion:

$$
\begin{align*}
& (2 / 3) \bar{\sigma}=\sigma_{i j}^{\prime} \sigma_{i j} \tag{B.3}\\
& d \bar{\varepsilon}_{p}=(2 / 3) d \bar{\varepsilon}_{i j}^{p} \bar{\varepsilon}_{i j} \tag{B.4}
\end{align*}
$$

$H^{\prime}=\mathrm{d} \bar{\sigma} / \mathrm{d} \bar{\varepsilon}^{\mathrm{p}}$, correspondes to the slope of the equivalent stress ($\bar{\sigma}$) versus plastic strain ($s \mathrm{~d} \bar{\varepsilon}^{\mathrm{p}}$) curve.

The inverse of equation (B.1) can be writen as [18]:
$\mathrm{d} \sigma_{i j}=E /(1+\nu) \quad\left(\mathrm{d} \varepsilon_{i j}+\nu /(1-\nu) \delta_{i j} \mathrm{~d} \varepsilon_{i i^{\prime}}-\sigma_{i j}^{\prime} \sigma_{k i}^{\prime} \mathrm{d} \varepsilon_{i j} / \mathrm{S}\right)$
(B.5)

Where :

$$
\begin{aligned}
& S=(2 / 3) \bar{\sigma}^{2}\left(1+H^{\cdot} / 3 G\right) \\
& \bar{\sigma}=\sqrt{\left(2 / 3 \sigma_{i j}^{\prime} \sigma_{i j}^{\prime}\right.}
\end{aligned}
$$

Equation (B.5) can now be used to construct the stress strain matrix [$\left.D^{p}\right]$ used in equationm (3.8).

In plane strain condition :
(B.6)

APPENDIX C

SUBROUTINES AND FLOW CHART OF PROGRAM ELPL

SUBROUTINE HEA :
This subroutine is the heart of the program and all the steps explained in section 4.5 .2 are carried out in this subroutine. Fig c. 1 shows the flowchart of subroutine HEA.

SUBROUTINE BM :
This subroutine computes the elements of strain-displacement matrix [B] according to the infinitesimal strain theory for triangular element.

SUBROUTINE DELA :
This simple subroutine computes the elements of the elastic stress-strain matrix [De] for plane strain condition.

SUBROUTINE DPLA :
Subroutine DPLA computes the plastic stress strain matrix $\left[D^{P}\right]$ for plane strain condition according to the prandtl-Ruess law. Matrix $\left[D^{P}\right]$ relates the increments of the Jauman stresses and strains in the plastic region. $\left[D^{P}\right]$ is a function of the state of stresses and the slope of the equivalent stress versus equvalent strain curve (H^{*}) and therefore, must be computed at each increment of compression and for each element. The values of the stresses used to compute $\left[D^{P}\right]$ are from the results of the computations at the previous increment.

SUBROUTINE STIFF:
SUBROUTINE STIFF computes the elastic stiffness matrix of each element. The elements ofthis matrix are assembled into the banded matrix [Gs] of global coordinates.
banded matrix [Gs] of global coordinates.
SUBROUTINE PSTIFF:
The role of this subroutine is calculation of [Kd] and [Kc] according to the equations (4.8) and (4.9) and assembling the results in global coordinates to the banded matrix [Gs]. SUBROUTINE VAL:

This subroutine divides a rectangular block into a number of triangular elements according to the number of nodes in $X \quad \& \quad Y$ directions. The tasks of this subroutine are :

1- Numbering the degrees of freedom and elements in a way to obtain a stiffness matrix with minimum bandwith.

2- Computing the global coordinates of each node according to the coordinates of the upper right corner of the rectangle.

3- Numbering the vertices of each element (locally) and storing the correspondig global node number in the array LOC(i,j), where $i=N o$ of element $\& j=$ No of the vertex.

4- Storing the degrees of freedom the nodes where the displacements are prescribed.

5- Storing the degrees of freedom of the fixed points under sticking or sliding conditions.

For any other geometry this subroutine must be modified.
SUBROUTINE DISL :
This subroutine computes the increment of the local nodal displacements (QL).

SUBROUTINE MATMUL :
THis simple subroutine is used for matrix multiplication.

SUBROUTINE STRESS :
Subrotine stress computes the increment of the stresse and strains.

SUBROUTINE RATIO :
This routine computes the increment of displacement for bringing an element with maximum equivalent stress to the yield point. The scalingfactor R is calculated according to the equation (4.12).

SUBROUTINE DECOMP [32]:
This subroutine decomposes the banded stiffness matrix into the upper and lower triangular matrices (METHOD OF CHOESKI) AND stores the elements of the upper triangular matrix in the original banded matrix.

SUBROUTINE SOLVE [41]:
This subroutine solves the system of equilibrium equations by using the decomposed stiffness matrix from SUBROUTINE DECOMP. Depending on the boundary conditions and the fixed points some elements of stiffness matrix shuld be modified [31,pp 457]. Subroutines Hea takes care of this modification. SUBROUTINE FRIC :

This Subroutine checks the nodal shear stress. If the shear stress is greater than the introduced static friction stress it removes the condition of the constrained displacement from that particular node and calculate and apply the frictional force in the opposite direction of the flow.

Fig.C-1. LOGIC FLOW OF ELPL PROGRAM

APPENDIX D

PROGRAM "ELPL" FOR ELASTIC-PLASTIC
 DEFORMATION ANALYSIS

```
            DIMENSION LOC(171,3),CX(193),CY(193),IFIX(100),P(386,1),
        2GS(388,32),STRES(335,5),IDISP(50),STRAIN(335,5),NO(335),MO(335),
        3STR(335,5),STRE(335,5),PA(386,1),IDB(50),AC(20,24),F(20),FA(20),
        4ISL(20)
        DOUBLE PRECISION DIFF(1)
            CALL VAL (N,NE,NN,ND,NB,CX,CY,LOC,IDISP,NDISP,IFIX,NFIX,IDB,
        $NDB,E,ANU,H,YO,MG,NG,MY,ISL )
M=1
            DATA T,C,WN/1.0,26000.0,0.2/
            DO 50 I=1,ND
    5 0
    P(I,1)=0.0
NC=NG*2
```

CALL CST(NN,NE,ND,NB,M,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS,DIFF, 2STRES,NDISP, IDISP, STRAIN, YO, C, WN,NO,MO, IDIS,STRE,STR,PA,IH,H, 3AC,F,FA,NC,MG,NG,MY,ISL)

STOP
END
 C THIS SUBROUTINE IS BEING USED TO BRING ALL ELEMENTS INTO ELASTIC REGION * $C *$

SUBROUTINE CST(NN,NE,ND,NB,M,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS, 2DIFF,STRES,NDISP,IDISP,STRAIN,YO,C,WN,NO,MO,IDIS,STRE,STR,PA, 3IW,H,AC,F,FA,NC,MG,NG,MY,ISL)

DIMENSION LOC(NE,3),CX(NN),CY(NN),IFIX(100),P(ND,M),GS(ND,NB), $2 \operatorname{STRES}(\mathrm{NE}, 5), \operatorname{AA}(6,8), \operatorname{QL}(6), \mathrm{DD}(3,3), \mathrm{DP}(3,3), \mathrm{BB}(3,6), \mathrm{DB}(3,6)$, $3 \operatorname{BBT}(6,3), \operatorname{IDISP}(100), \operatorname{STRAIN}(N E, 5), N O(N E), M O(N E), \operatorname{STR}(N E, 5)$, $4 \operatorname{STRE}(N E, 5), \operatorname{PA}(N D, M), A C(N C, N B), F(N C), F A(N C), I S L(M G), S N S(40)$, 5QNS (40), YNS (40), SFS (40), KF (40),NF (40), FOX (40), NEE (30), LF (40)

DOUBLE PRECISION DIFF(1)
$\operatorname{OPEN}\left(25\right.$, FILE $^{\prime}{ }^{\prime}$ DISA', STATUS $={ }^{\prime}$ NEW $\left.{ }^{\prime}\right)$
OPEN (40,FILE='STRP', STATUS='NEW')
C OPEN (50,FILE='SSY', STATUS='NEW')
C OPEN (60,FILE='SSX',STATUS='NEW')
OPEN (70, FILE='FORCE', STATUS = 'NEW')
C OPEN(80,FILE='STR',STATUS='NEH')
OPEN (90, FILE = ' RESULTS', STATUS = ' ${ }^{\prime}$ NEW' $^{\prime}$)

WRITE(*,*)'MX=', MX,'MY=', MY,'NN=',NN
WRITE (90,402)MX,MY, NN
WRITE (*,*)'NE=', NE, 'ND =', ND, 'NB=', NB
WRITE (90,403)NE,ND,NB
WRITE (*,*)'NFIX =', NFIX, ${ }^{\circ}$ NDISP $={ }^{\circ}$, NDISP
WRITE(90,404)NFIX,NDISP

```
C DO 310 I=1,NE
C WRITE(*,*)'LOC=',(LOC(I,J),J=1,3),'I=',I
C 310 WRITE(90,405)I,(LOC(I,J),J=1,3)
DO 320 I=1,NFIX
C 320 WRITE(90,406)I,IFIX(I)
C 320 WRITE(*,*)'IFIX=',IFIX(I),'I=',I
    DO 330 I=1,NDISP
330 WRITE(90,407)I,IDISP(I)
C 330 WRITE(*,*)'IDISP=', IDISP(I)
    G=E/(2*(1+ANU))
    WRITE(*,*)'ENTER THE VALUE OF DISPLACEMENT'
    READ(*,*) UT
    WRITE(*,*)'UT(DISPLACEMENT)=',UT
    WRITE(90,408)UT
    WRITE(90,410)E,ANU,H,YO
    WRITE(*,*)'AMU AF AQP'
    READ(*,*)AMU,AF,AQP
    WRITE(90,420)AMU,AF,AQP
    WRITE(*,*)'DO YOU NEED PRINT OUT ABOUT FRIC 1 OR NOT'
    READ(*,*)RCP
    AY=1.15*YO
    AR=AY/SQRT(3.)
    ATP=AQP*SQRT (3.)*AMU
    AFT=AF-ATP
    YP=0.995*YO
    DO 99 I=1,40
    NF(I)=0
    FOX(I)=0
    SFS(I)=0
    YNS(I)=0
    QNS(I)=0
    LF(I)=0
    99 KF(I)=0
    NMQ=2
93 DO 11 I=1,NE
    DO 12 J=1,5
    STRES(I,J)=0.0
    STRE(I,J)=0.0
    STRAIN(I,J)=0.0
    STR(I,J)=0.0
    12 CONTINUE
    MO(I)=1
    NO(I)=1
    11 CONTINUE
        DO 13 I=1,ND
        DO 13 J=1,M
        P(I,M)=0.0
    13 PA(I,M)=0.0
    DO 15 I=1,NC
    F(I)=0.
    FA(I)=0.
    DO 14 J=1,NB
```

```
    14 AC(I,J )=0.
    15 CONTINUE
    HE=CY(1)
C**SUBROUTINE (DELA) CALCULATES D MATRIX [DD] ACCORDING TO HOOK LAW **
            CALL DELA(E,ANU,DD)
            IGH=0
    101 DT=-0.1
            WRA=0.0
            DO 10 I=1,ND
            DO 10 J=1,NB
    10 GS(I,J)=0.0
    DO 100 I=1,NE
C**SUBROUTINE (STIFF) CALCULATES THE STIFFNESS MATRIX FOR EACH********
C********ELEMENT AND STORE IT IN BANDED MATRIX [GS]*******************
    IF (NO(I).EQ.1) CALL STIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS)
    IF (NO(I).EQ.2) THEN
C**SUBROUTINE (DPLA) COMPUTES D MATRIX [DP] ACCORDING TO PRANDTL REUSS*
            CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
            CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE)
            ENDIF
    100 CONTINUE
C*** DO 50 MULTIPLIES EVERY TERM OF [GS], CORRESPONDING TO THE FIXED **
C*** POINTS(INCLUDING THE PRISCIBED POINTS), BY A LARGE NUMBER.********
*****
    DO 50 I=1,NFIX
    IX=IFIX(I)
    50 GS(IX,1)=GS(IX,1)*1.OE6
    IF(IGH.EQ.0) GO TO }77
    DO 778 I=1,NNC
    JJJ=NF(I)+1
    III=NF(I)
    IF(RF(I).EQ.1) GS(III,1)=GS(III,1)/1.OE6
    IF(LF(I).EQ.1) GS(JJJ,1)=GS(JJJ,1)/1.0E6
    778 CONTINUE
C********* DO 52 INTRODUCES THE PRISCRIBED DISPLACEMENTS**************
777 DO 52 I=1,NDISP
    IZ=IDISP(I)
    P(IZ,1)=GS(IZ,1)*DT
    52 CONTINUE
    IF(IGH.EQ.O)GO TO }77
    DO }787\textrm{I}=1\mathrm{ ,NNC
    IF(KF(I).EQ.1) THEN
    KHW=NF(I)
```

```
        P(KHW,1)=FOX(I)
        ENDIF
787 CONTINUE
C** SUBROUTINE (DECOMP) DECOMPOSES [GS] INTO LOWER AND UPPER Tr.*****
C** MATRICES AND STORES THE ELEMENTS OF THE UPPER TRIANGLE [GS].*****
C** SUBROUTINE (SOLVE) SOLVES THE SYSTEM OF EQUATIONS [GS]{U}={P} &***
C** STORES THE RESULTS INTO {P}. NOW,{P} ARE GLOBAL NODAL ***********
C**DISPLACEMENT INCREMENTS. *****************************************
    776 CALL DECOMP(ND,NB,GS)
    CALL SOLVE(ND,NB,M,GS,P,DIFF)
    DO 200 I=1,NE
C**SUBROUTINE (DISL) COMPUTES THE LOCAL NODAL DISPLACEMENT ***********
C**INCREMENT{QL}.******************************************************
    CALL DISL(I,LOC,NE,ND,M,P,QL)
C**SUBROUTINE (BM) COMPUTES THE B MATRIX [BB] ACCORDING TO **********
C**INCREMENTAL DISPLACEMENT THEORY. **********************************
CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
C**SUBROUTINE MATMUL MULTIPLIIES [DD] BY [BB] AND STORES IT IN [DB].**
IF (NO(I).EQ.1) CALL MATMUL(DD, BB,DB,3,3,6)
IF (NO(I).EQ.2) THEN
CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
\(M O(I)=M O(I)+1\)
CALL MATMUL(DP, BB, DB, 3,3,6)
ENDIF
C*** SUBROUTINE (STRESS) COMPUTES THE STRESS \& STRAIN INCREMENTS ***** C*** \& STORE THEM IN STRES \& STRAIN ARRAYS. ***********************
CALL STRESS(NE,I,QL,BB,DB.STRES,STRAIN)
C** THE FOLLOWING 6 LINES FIND MAX EQUIVALENT STRES (STRE(I,4)) \& **** ** ADDRESS OF THE CORRESPONDING ELEMENT AMONG THE ELASTIC ELEMNTS****
IF(NO(I).EQ.1) THEN
\(\operatorname{STRES}(\mathrm{I}, 5)=\operatorname{ANU*}(\operatorname{STRES}(\mathrm{I}, 1)+\operatorname{STRES}(\mathrm{I}, 2)\) )
SX=STRES (I,1) +STRE(I,1)
SY=STRES (I,2) +STRE(I,2)
SXY=STRES (I, 3)+STRE (I, 3)
SZ=STRES (I,5)+STRE (I,5)
\(\operatorname{STRE}(\mathrm{I}, 4)=\mathrm{SQRT}(0.5 *((\mathrm{SX}-\mathrm{SY}) * * 2+(\mathrm{SY}-\mathrm{SZ}) * * 2+(\mathrm{sz}-\mathrm{sx}) * * 2)+3 * \mathrm{SXY} * * 2)\)
IF (STRE(I,4).GE.WRA) THEN
WRA \(=\operatorname{STRE}(I, 4)\)
IN \(=1\)
ENDIF
ENDIF
```

```
200 CONTINUE
C**SUBROUTINE (RATIO) COMPUTES THE SCALING FACTOR FOR BRINGING THE ***
C**ELEMENT (IN) INTO PLASTIC REGION . ********************************
    CALL RATIO(NE,IN,YO,STRES,STRE,R)
    CO=R
    PCH=P(2,M)*CO
    IF(PCH.LT.-0.0015) CO=(-.0015/P(2,M))
    IW=0
    DO 22 I=1,NE
    D0 23 J=1,3
    STRES(I,J)=STRES(I,J)*CO
C STRE(I,J )=STRE(I,J)+STRES(I,J )
    STRAIN(I,J)=STRAIN(I,J)*CO
    STR(I,J)=STR(I,J)+STRAIN(I,J)
    23 CONTINUE
    SX=STRE (I, 1)
    SXX=STRES(I,1)
    SY= STRE(I,2)
    SYY=STRES(I,2)
    SXY=STRE(I,3)
    SZ= STRE(I,5)
    IF(NO(I).EQ.2)THEN
    S1=STRAIN(I,1)
    S2=STRAIN(I,2)
    S3=STRAIN(I,3)
    SM=(SX+SY+SZ)/3.0
    SXP=SX-SM
    SYP=SY-SM
    SZP=SZ-SM
    PP=SXP*S1+SXY*S3+SYP*S2
    STRAIN(I,4)=PP/( STRE(I,4)*(1+H/(3*G)) )
    IF (STRAIN(I,4).LT.0.0)WRITE(*,*)'STRAIN(I,4)<0=',STRAIN(I,4),I
    STR(I,4)=STR(I,4)+STRAIN(I,4)
    S=(STRE(I,4)**2)*(1+H/(3*G))
    STRES(I,5)=2*G*((ANU/(1-2*ANU))*(S1+S2)-(SZP/S)*(SXP*S1+SYP*S2
    $+SXY*S3))
C STRES(I,5)=.5*(SXX+SYY)
C AH=(SX-.5*(SY+SZ))/(SZ-.5*(SY+SX))
C STRES(I,5)=(ANU*AH*(SYY+SXX)+SXX-ANU*SYY-E*STRAIN(I,1))/(ANU+AH)
    ENDIF
    IF(NO(I).EQ.1) STRES(I,5)=ANU*(SXX+SYY)
    STRE(I,1)=STRE(I,1)+SXX
    STRE(I,2)=STRE(I,2)+SYY
    STRE(I, 3)=STRE(I,3)+STRES(I, 3)
    STRE(I, 5)=STRE(I,5)+STRES(I,5)
    SX=STRE(I,1)
    SY= STRE(I,2)
    SXY=STRE(I,3)
    SZ= STRE(I,5)
    STRE(I,4)=SQRT(0.5*((SX-SY)**2+(SY-SZ)**2+(sz-sx)**2)+3*SXY**2)
    S1=STRAIN(I,1)
```

```
        S2=STRAIN(I,2)
        S3=STRAIN(I,3)
        STRAIN (I,5)=SQRT ((4./9)*((S1-S2)**2+S1**2+S2**2)+(4./3)*(S3**2))
        STR(I,5)=STR(I,5)+STRAIN(I,5)
        IF(STRE(I,4).GE.YP)THEN
        NO(I)=2
        IW=IW+1
        ENDIF
22 CONTINUE
    DO 24 I=1,ND
    P(I,M)=P(I,M)*CO
    PA(I,M)=PA(I,M)+P(I,M)
24 CONTINUE
    DO 72 J=1,NN
    JA=2*J-1
JB=2*J
CX(J)=CX(J)+P(JA,1)
CY(J)=CY(J)+P(JB,1)
72 CONTINUE
    IF(NMQ.LE.MG) THEN
    DO 700 I=NMQ,MG
    KA=ISL(I)
    IF(CY(KA).GE.CY(1))THEN
    NMQ =NMQ+1
    KDX=2*KA-1
    KDY=2*KA
    NDISP=NDISP+1
    WRITE(*,*)' I=`,I,' NMQ',NMQ,' NDISP',NDISP
    IDISP(NDISP)=KDY
    NFIX=NFIX+2
    DO }701\textrm{J}=1,NFI
    IF(IFIX(J).GE.KDX)THEN
    JC=J
    GO TO }70
    ENDIF
7 0 1 ~ C O N T I N U E ~
702 DO 703 K=JC,NFIX-2,2
    IR1=IFIX(K)
    IR2=IFIX(K+1)
    IFIX(K)=KDX
    IFIX(K+1)=KDY
    KDX=IR1
    KDY=IR2
703 CONTINUE
    IFIX(NFIX-1)=KDX
    IFIX(NFIX)=KDY
    ENDIF
7 0 0 ~ C O N T I N U E ~
ENDIF
IGH=IGH+1
WRITE(*,*)' ITER=',IGH,' DISP=',PA(2,1)
WRITE(40,421)IGH,PA(2,1)
CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
$AQP, AY, ATP , AFT , AR , AMU,SFS, KF,NF,FOX,P,CX,ND, FORCE ,CY, LF )
    PPA=100*ABS(PA(2,1))/HE
```

```
        WRITE(70,417) FORCE,PPA
        IF(KCP.NE.1)GO TO 967
        DO 113 I=1,NNC
        WRITE(40,419)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I)
        $,NF(I),LF(I)
    113 CONTINUE
    967 IF(PA(2,1).LE.UT) GO TO 801
    IF(IW.LT.NE)GO TO 101
    801 WRITE(90,411)
    WRITE(*,*)' COMPRESSION:`,PA(2,1)
    DO 110 I=1,NN
    J=I*2
C WRITE(*,*)' DISPLACEMENT OF NODES',I,PA(I,1)
    WRITE(90,412)CX(I),CY(I),PA(J-1,1),PA(J,1),I
    110 CONTINUE
    DO 111 I=1,NE
C WRITE(*,*)'STRESS',(STRE(I,J),J=1,5)
    WRITE(90,400)I,(STRE(I,J),J=1,5)
    WRITE(90,401)I,(STR(I,J),J=1,5)
C WRITE(*,*) 'STRAIN',(STR(I,J),J=1,5)
    111 CONTINUE
    DO 112 I=1,NE
    WRITE (*,*)'I=',I,'NO=',NO(I),' MO=',MO(I),' H=',H
    WRITE(90,413)I,NO(I),MO(I)
    WRITE(*,*)' NFIX=',NFIX
    DO }809\textrm{I}=1,\textrm{NFIX
    809 WRITE(*,*)' I=',I,' IFIX=',IFIX(I)
    DO 811 I=1,NDISP
    811 WRITE(*,*)' I=',IDISP(I)
    DO 812 I=1,NN
    812 WRITE(*,*)' I=',I,' CY',CY(I)
C********************************************************************
    WRITE(*,*)' ENTER NO OF ITR'
    READ(*,*)ITR
    WRITE(90,409)ITR
    DT=(UT-PA(2,1))/ ITR
    IF(DT.GE.0)GO TO 800
    WRITE(*,*)'DO YOU PRINT OUT ABOUT FRIC 1=YES'
    READ(*,*)RCP
    DO 88 JR=1,ITR
    DO 31 I=1,NE
    CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
    CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE)
    31 CONTINUE
    DO 60 I=1,NFIX
    IX=IFIX(I)
60 GS(IX,1)=GS(IX,1)*1.0E6
    DO 779 I=1,NNC
    III=NF(I)
    JJJ=NF(I)+1
    IF(KF(I).EQ.1) GS(III,1)=GS(III,1)/1.OE6
    IF(LF(I).EQ.1) GS(JJJ,1)=GS(JJJ,1)/1.0E6
```

```
7 7 9 ~ C O N T I N U E ~
    DO 62 I=1,NDISP
    IZ=IDISP(I)
    P(IZ,1)=GS(IZ,1)*DT
    62 CONTINUE
    DO 788 I=1,NNC
    IF(RF(I).EQ.1)THEN
    KHW=NF(I)
    P(KHW,1)=FOX(I)
    ENDIF
788 CONTINUE
    CALL DECOMP(ND,NB,GS)
    CALL SOLVE(ND,NB,H,GS,P,DIFF)
    DO 210 I=1,NE
    CALL DISL(I,LOC,NE,ND,M,P,QL)
    CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
    CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
    MO(I ) =MO(I ) +1
    CALL MATMUL(DP,BB,DB,3,3,6)
    CALL STRESS(NE,I,QL,BB,DB,STRES,STRAIN)
210 CONTINUE
    DO 32 I=1,NE
    DO 33 J=1,3
    STR(I,J)=STR(I, J )+STRAIN(I ,J )
    33 CONTINUE
    SX=STRE (I,1)
    SXX=STRES(I,1)
    SY= STRE(I,2)
    SYY=STRES(I,2)
    SXY=STRE(I,3)
    SZ= STRE (I,5)
    S1=STRAIN(I,1)
    S2=STRAIN(I,2)
    S3=STRAIN(I,3)
    SM=(SX+SY+SZ )/3.0
    SXP=SX-SM
    SYP=SY-SM
    SZP=SZ-SM
    PP=SXP*S1+SXY*S3+SYP*S2
    STRAIN(I,4)=PP/( STRE(I,4)*(1+H/(3*G)) )
    IF (STRAIN(I,4).LT.0.0)WRITE(*,*)'STRAIN(I,4)<0=`,STRAIN(I,4),I
    STR(I,4)=STR(I,4)+STRAIN(I,4)
    S=(STRE(I,4)**2)*(1+H/(3*G))
    STRES(I,5)=2*G*((ANU/(1-2*ANU))*(S1+S2)-(SZP/S)*(SXP*S 1+SYP*S2
    $+SXY*S3))
    STRES(I,5)=.5*(SXX+SYY)
    STRE(I,1)=STRE(I,1)+SXX
    STRE(I,2)=STRE(I,2)+SYY
    STRE(I, 3)=STRE(I, 3)+STRES(I,3)
    STRE(I,5)=STRE(I,5)+STRES(I,5)
    SX=STRE(I,1)
    SY= STRE(I,2)
    SXY=STRE(I,3)
```

```
    SZ= STRE(I,5)
    STRE(I,4)=SQRT(0.5*((SX-SY)**2+(SY-SZ)**2+(sz-sx)**2)+3*SXY**2)
    S1=STRAIN(I,1)
    S2=STRAIN(I,2)
    S3=STRAIN(I,3)
    STRAIN(I,5)=SQRT((4./9)*((S1-S2)**2+S1**2+S2**2)+(4./3)*(S3**2))
    STR(I,5)=STR(I,5)+STRAIN(I,5)
    32 CONTINUE
    DO 34 I=1,ND
    PA(I,M)=PA(I,M)+P(I,M)
    34 CONTINUE
    DO 71 J=1,NN
    JA=2*J-1
    JB=2*J
    CX(J)=CX(J)+P(JA,1)
    CY(J)=CY(J)+P(JB,1)
    71 CONTINUE
        IF(NMQ.LE.MG) THEN
        DO }750\mathrm{ I=NMQ,MG
        KA=ISL(I)
        IF(CY(RA).GE.CY(1))THEN
    NMQ=NMQ+1
    KDX=2*KA-1
    KDY=2*KA
    NDISP=NDISP+1
    WRITE(*,*)' NMQ=',NMQ,' NDISP',NDISP
    IDISP(NDISP)=KDY
    NFIX=NFIX+2
    DO 751 J=1,NFIX
    IF(IFIX(J).GE.KDX)THEN
    JC=J
    GO TO }75
    ENDIF
7 5 1 ~ C O N T I N U E
752 DO 753 R=JC,NFIX-2,2
    IR1=IFIX(K)
    IR2=IFIX(K+1)
    IFIX(K)=KDX
    IFIX(K+1)=KDY
    KDX=IR1
    KDY=IR2
    7 5 3 ~ C O N T I N U E ~
    IFIX(NFIX-1)=RDX
    IFIX(NFIX)=KDY
    ENDIF
750 CONTINUE
    ENDIF
    KTC=IGH+JR
    WRITE(*,*)' **ITR=`,KTC,' DISP=`,PA(2,1)
C WRITE(40,421)KTC,PA(2,1)
    CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
    $AQP,AY,ATP,AFT,AR,AMU,SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF)
    PPA=100*ABS(PA(2,1))/HE
```

```
        WRITE(70,417)FORCE,PPA
        IF(KCP.NE.1)GO TO 88
        DO 780 I=1,NNC
        WRITE(40,419)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I)
    $,NF(I)
    780 CONTINUE
    88 CONTINUE
C WRITE(*,*) NFIX=',NFIX,' IFIX',IFIX
    DO 813 I=1,NFIX
    813 WRITE(*,*)' I=',I,' IFIX=',IFIX(I)
    DO }814\textrm{I}=1\mathrm{ ,NDISP
    814 WRITE(*,*)' I=',I,' IDISP',IDISP(I)
C DO }817\textrm{I}=1\mathrm{ ,NN
C 817 WRITE(*,*)' I=',I,' CY',CY(I)
    WRITE(90,414)
    WRITE(*,*)'*******TOTAL COMPRESSION [IN] :',PA(2,1),'*******'
C DO 167 I=1,NC
C WRITE(90,415)I,FA(I),F(I)
C WRITE(*,415)I,FA(I),F(I)
C167 CONTINUE
    DO 67 I=1,NN
    J=I*2
    WRITE(*,*) 'DISPLACEMENT OF NODES',I,PA(I,1),' ITR=',JR
    WRITE(90,412)CX(I),CY(I),PA(J-1,1),PA(J,1),I
    6 7
        IGH=IGH}+J
        WRITE(90,421)IGH,PA(2,1)
        WRITE(*,*)' ITR=',IGH
            CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
            $AQP, AY, ATP, AFT, AK,AMU,SFS, KF,NF,FOX,P,CX,ND,FORCE,CY,LF)
            DO 913 I=1,NNC
    913 WRITE(90,419)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I)
    $,NF(I),LF(I)
            DO 68 I=1,NE
            WRITE(90,400)I,(STRE(I,J),J=1,5)
            WRITE(90,401)I,(STR(I,J),J=1,5)
    68 CONTINUE
C DO 69 I=1,NE
C 69 WRITE(90,413)I,NO(I),MO(I)
    800 DO 90 I=1,MG-1
    IF(I.EQ.1) THEN
    NEE(I)=2* (NG-1)+1
    WRITE(*,*)' I=',I,' NE=',NEE(I)
    GO TO 90
    ENDIF
    NEE(I)=NEE(I-1)+2*(NG-1+I-1)+1
    WRITE(*,*)' I=',I,' NE',NEE(I)
    NT=I
    90 CONTINUE
    DO }91\textrm{I}=1,MY-
    J=NT+I
    NEE(J)=NEE(J-1)+2*(MG+NG-2)
    WRITE(*,*)' J=',J,'NE=',NEE(I)
```

```
91
    NPT=1
    DO 92 K=1,MG+MY-2
    DO 96 I=NPT,NEE(K),2
    IF(K.LE.MG-1)THEN
    IF(I.EQ.NEE(K))THEN
    WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
    WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1))
    WRITE(25,178)CX(LOC(I, 3)),CY(LOC(I, 3))
    WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
    GO TO 96
    ENDIF
    ENDIF
    IF(K.GT.MG-1)THEN
    IF(I.GT.NPT) GO TO 95
    WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
    WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1))
    WRITE(25,178)CX(LOC(I, 3)),CY(LOC(I, 3))
    HRITE(25,178)CX(LOC(I, 2)),CY(LOC(I, 2))
    WRITE(25,178)CX(LOC(I+1,2)),CY(LOC(I+1,2))
    WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3))
    GO TO 96
    ENDIF
    WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
    WRITE(25,178)CX(LOC(I, 1)),CY(LOC(I,1))
    #RITE(25,178)CX(LOC(I, 3)),CY(LOC(I, 3))
    WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
    CONTINUE
    JT=0
    DO 94 I=NPT,NEE(K),2
    JT=JT+2
    J=NEE (K)-JT+2
    WRITE(25,178)CX(LOC(J,2)),CY(LOC(J,2))
    KL=J
94 CONTINUE
    WRITE(25,178)CX(LOC(J,1)),CY(LOC(J,1))
    NPT=NEE(K)+1
    CONTINUE
    FORMAT(2F10.4)
    FORMAT(5X,'ELEMENT:',I4,' STRESSES:',5F10.2)
    FORMAT(5X,'ELEMENT:',I4,' STRAINS:',5F10.6)
    FORMAT(5X,'MX=`,I3,' MY=',I3,' NN=',I4 )
    FORMAT(5X,'NE=',I3,' ND=',I3,' NB=',I3)
    FORMAT(5X,'NFIX=',I3,' NDISP=',I3)
    FORMAT(5X,'I=',I3,' LOC=',3I3)
    FORMAT(5X,'NFIX=',I3,', IFIX=',I3)
    FORMAT(5x,'NDISP=',I3,' IDISP=',I3)
    FORMAT(5X,'TOTAL DIE DISPLACEMENT:',F10.6)
    FORMAT(5X,'No OF ITERATION AFTER ALL ELEM IN PLASTIC',I4)
    FORMAT(5X,'E=',F10.1,' POIS RATIO=',F4.2,' H=',F8.2,' YO=',F10.2)
    FORMAT(5X,'***AT THIS PONT ALL ELMENTS ARE IN PLASTIC ZONE***')
    FORMAT(5X,4F9.5,' DISP AT NODE:',I5)
    FORMAT(5X,'ELEMENT NO:',I4,' NO=',I3,' MO=',I5)
    FORMAT(////,5X,'****** RESULTS AT THE END OF DEFORMATION******`)
    FORMAT(5X,'NODE:',I3,' TOTAL LOAD:',F13.1,' INC LOAD:',F13.1)
```

```
417 FORMAT(5X,F13.2,5X,F13.7)
418 FORMAT(5X,F13.6,5X,F10.7)
418 FORMAT(2X,I5,6F10.3,2I5)
420 FORMAT(5X,'AMU=',F4.2,' AF=',F4.2,' AQP =', F4.2)
421 FORMAT(5X,'ITER:',I4,' DISPLACEMENT:',F9.5)
    RETURN
    END
    SUBROUTINE STRESS(NE,I,QL,BB,DB,STRES,STRAIN)
    DIMENSION QL(6), BB(3,6),DB(3,6),STRES(NE,5),STRAIN(NE,5),SLOC(3),
    $ST (3)
    DO 90 II=1,3
    SLOC(II)=0.0
    ST(II)=0.0
    DO 90 JJ=1,6
    SLOC(II)=SLOC(II)+DB(II.JJ)*QL(JJ)
    ST(II)=ST(II)+BB(II,JJ)*QL(JJ)
9O CONTINUE
    STRES(I,1)=SLOC(1)
    STRES (I, 2)=SLOC (2)
    STRES(I,3)=SLOC(3)
    STRAIN(I, 1)=ST(1)
    STRAIN(I,2)=ST(2)
    STRAIN (I,3)=ST(3)
    RETURN
    END
    SUBROUTINE DISL(I,LOC,NE,ND,M,P,QL)
    DIMENSION P(ND,M),QL(6),N(6),LOC(NE,3)
    J=LOC(I,1)
    K=LOC(I,2)
    L=LOC(I,3)
    N(1)=J*2-1
    N(2)=J*2
    N(3)=K*2-1
    N(4)=K*2
    N(5)=L*2-1
    N(6)=L*2
    DO 60 II=1,6
    NR=N(II)
    QL(II)=P(NR,1)
    RETURN
    END
    SUBROUTINE STIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS)
```

```
```

 DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),
    ```
```

 DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),
 2N(6),DD(3,3), BB(3,6),DB(3,6),BBT(6,3)
 2N(6),DD(3,3), BB(3,6),DB(3,6),BBT(6,3)
 REAL KG(6,6)
 REAL KG(6,6)
 J=LOC(I,1)
 J=LOC(I,1)
 K=LOC(I, 2)
 K=LOC(I, 2)
 L}=LOC(I,3
 L}=LOC(I,3
 CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
 CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
 CALL MATMUL(DD,BB,DB,3,3,6)
 CALL MATMUL(DD,BB,DB,3,3,6)
 DO 82 II=1,6
 DO 82 II=1,6
 DO }82\textrm{JJ}=1,
 DO }82\textrm{JJ}=1,
    ```
    BBT(II,JJ)=BB(JJ,II)
```

 BBT(II,JJ)=BB(JJ,II)
 CALL MATMUL(BBT,DB,KG,6,3,6)
 CALL MATMUL(BBT,DB,KG,6,3,6)
 TTT=T*AREA
 TTT=T*AREA
 DO 83 II=1,6
 DO 83 II=1,6
 DO 83 JJ=1,6
 DO 83 JJ=1,6
 KG(II,JJ)=TTT*KG(II,JJ)
 KG(II,JJ)=TTT*KG(II,JJ)
 N(1)=J*2-1
 N(1)=J*2-1
 N(2)=J*2
 N(2)=J*2
 N(3)=K*2-1
 N(3)=K*2-1
 N(4)=R*2
 N(4)=R*2
 N(5)=L*2-1
 N(5)=L*2-1
 N(6)=L*2
 N(6)=L*2
 DO 40 II=1,6
 DO 40 II=1,6
 DO 40 JJ=1,6
 DO 40 JJ=1,6
 IR=N(II)
 IR=N(II)
 JK=N(JJ)
 JK=N(JJ)
 IN=JK-IK+1
 IN=JK-IK+1
 IF(IN.LE.O) GO TO 40
 IF(IN.LE.O) GO TO 40
 GS(IR,IN)=GS(IK,IN)+KG(II,JJ)
 GS(IR,IN)=GS(IK,IN)+KG(II,JJ)
 CONTINUE
CONTINUE
RETURN
RETURN
END
END
SUBROUTINE PSTIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS,STRE)
DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),STRE(NE,5),
2N(6),DD(3,3),BB(3,6),DB(3,6),BBT(6,3),CXL(3),CYL(3)
REAL KG(6,6),KR(6,6)
J=LOC(I,1)
K=LOC(I,2)
L=LOC(I, 3)
GX=(CX(J)+CX(K)+CX(L))/3
GY=(CY(J)+CY(R)+CY(L))/3
CXL(1)=CX(J)-GX
CXL(2)=CX(K)-GX
CXL(3)=CX(L)-GX
CYL(1)=CY(J)-GY
CYL(2)=CY(K)-GY
CYL(3)=CY(L)-GY
AREA=((CXL(3)-CXL(2))*(CYL(2)-CYL(1))-(CXL(2)-CXL(1))*(CYL(3)-

```
```

 2CYL(2)))/2.0
 Y32=(CYL(3)-CYL(2))/(2.0*AREA)
 X32=(CXL(3)-CXL(2))/(2.0*AREA)
 Y31=(CYL(3)-CYL(1))/(2.0*AREA)
 X31=(CXL(3)-CXL(1))/(2.0*AREA)
 Y21=(CYL(2)-CYL(1))/(2.0*AREA)
 X21=(CXL(2)-CXL(1))/(2.0*AREA)
 DO 81 II=1,3
 DO 81 JJ=1,6
 (11,JJ)=0.0
 BB(1,1)=Y32
 BB}(1,3)=-Y3
 BB(1,5)=Y21
 BB}(2,2)=-X3
 BB (2,4)=X31
 BB}(2,6)=-X2
 BB}(3,1)=-X3
 BB(3,2)= Y32
 BB}(3,3)= X3
 BB(3,4)=-Y31
 BB}(3,5)=-X2
 BB(3,6)= Y21
 CALL MATMUL(DD,BB,DB,3,3,6)
 DO 82 II=1,6
 DO 82 JJ=1,3
 BBT(II,JJ)=BB(JJ,II)
 CALL MATMUL(BBT,DB,KG,6,3,6)
 AR=1
 A1=STRE(I,1)/AR
 B1=STRE(I,2)/AR
 C1=STRE(I,3)/AR
 A2=-2*STRE(I, 1)/AR
 B2=-2*STRE(I,2)/AR
 C2=-2*STRE (I, 3)/AR
 KR(1, 1)=A1*Y 32*Y32+B1*X32*X32-2*C 1*Y 32*X32+A2*(Y32*Y32+X32*X32/4)
 \$+B2*X32*X32/4-2*C2*(Y32*X32)
KR(1,2)=-A2*X32*Y32/4-B2*X32*Y32/4+C2*(Y32*Y32+X32*X32)
KR(2,1)=KR(1,2)
KR(1,3)=-A1*Y 32*Y31-B 1*X32*X31+C 1*Y 32*X31+C 1*X 32*Y31-A2*Y 32*Y31
\$-A2*X32*X31/4-B2*X32*X31/4+C2*Y32*X31+C2*X32*Y31
KR(3,1)=KR(1,3)
KR(1,4)=A2*X32*Y31/4+B2*X32*Y31/4-C2*Y32*Y31-C2*X32*X31
KR(1,5)=A1*Y}32*Y21+B1*X32*X21-C 1*Y 32*X21-C 1*X 32*Y 21+A2*Y 32*Y21
\$+A2*X32*X21/4+B2*X32*X21/4-C2*Y32*X21-C2*X32*Y21
KR(5,1)=KR(1,5)
KR(1,6)=-A2*X32*Y21/4-B2*X32*Y21/4+C2*Y 32*Y21+C2*X32*X21
KR(6,1)=KR(1,6)
KR(2,2)=A1*Y 32*Y32+B1*X32*X32-C 1*Y 32*X32-C 1*X X2*Y 32+A2*Y 32*Y 32/4
\$+B2*Y32*Y32/4+X32*X32-C2*Y32*X32-C2*X32*Y32
KR(2,3)=A2*Y32*X31/4+B2*Y32*X31/4-C 2*Y32*Y31-C2*X32*X31
KR(3,2)=KR(2,3)
KR(2,4)=-A1*Y32*Y31-B1*X32*X31+C1*Y 32*X31+C1*X32*Y31-A2*Y 32*Y 31/4
\$-B2*Y32*Y31/4-B2*X32*X31+C2*Y32*X31+C2*X32*Y31

```
\(\mathrm{KR}(4,2)=\mathrm{KR}(2,4)\)
\(\mathrm{KR}(2,5)=-\mathrm{A} 2 * Y 32 * \mathrm{X} 21 / 4-\mathrm{B} 2 * Y 32 * \mathrm{X} 21 / 4+\mathrm{C} 2 * Y 32 * Y 21+\mathrm{C} 2 * X 32 * X 21\)
\(\mathrm{KR}(5,2)=\mathrm{KR}(2,5)\)
\(\operatorname{KR}(2,6)=A 1 * Y 32 * Y 21+B 1 * X 32 * X 21-C 1 * X 32 * Y 21-C 1 * Y 32 * X 21+A 2 * Y 32 * Y 21 / 4\)
\$+B2*Y32*Y21/4+B2*X32*X21-C2*Y32*X21-C2*X32*Y21
\(K R(6,2)=K R(2,6)\)
\(\mathrm{KR}(3,3)=\mathrm{A} 1 * \mathrm{Y} 31 * \mathrm{Y} 31+\mathrm{B} 1 * \mathrm{X} 31 * \mathrm{X} 31-\mathrm{C} 1 * \mathrm{Y} 31 * \mathrm{X} 31-\mathrm{C} 1 * \mathrm{X} 31 * \mathrm{Y} 31+\mathrm{A} 2 * \mathrm{Y} 31 * \mathrm{Y} 31+\)
\$A2*X31*X31/4+B2*X31*X31/4-C2*Y31*X31-C2*X31*Y31
\(\mathrm{KR}(3,4)=-\mathrm{A} 2 * \mathrm{X} 31 * Y 31 / 4-\mathrm{B} 2 * \mathrm{X} 31 * \mathrm{Y} 31 / 4+\mathrm{C} 2 * \mathrm{Y} 31 * Y 31+\mathrm{C} 2 * \mathrm{X} 31 * X 31\)
\(\mathrm{KR}(4,3)=\mathrm{KR}(3,4)\)
\(\mathrm{KR}(3,5)=-\mathrm{A} 1 * \mathrm{Y} 31 * \mathrm{Y} 21-\mathrm{B} 1 * \mathrm{X} 31 * \mathrm{X} 21+\mathrm{C} 1 * \mathrm{X} 21 * \mathrm{Y} 31+\mathrm{C} 1 * \mathrm{X} 31 * \mathrm{Y} 21-\mathrm{A} 2 * \mathrm{Y} 31 * \mathrm{Y} 21\)
\$-A2*X31*X21/4-B2*X31*X21/4+C2*Y31*X21+C2*X31*Y21
\(\operatorname{KR}(5,3)=\operatorname{KR}(3,5)\)
\(\mathrm{KR}(3,6)=\mathrm{A} 2 * \mathrm{X} 31 * \mathrm{Y} 21 / 4+\mathrm{B} 2 * \mathrm{X} 31 * \mathrm{Y} 21 / 4-\mathrm{C} 2 * \mathrm{Y} 31 * \mathrm{Y} 21-\mathrm{C} 2 * \mathrm{X} 31 * \mathrm{X} 21\)
\(K R(6,3)=K R(3,6)\)
\(\mathrm{KR}(4,4)=\mathrm{A} 1 * \mathrm{Y} 31 * \mathrm{Y} 31+\mathrm{B} 1 * \mathrm{X} 31 * \mathrm{X} 31-\mathrm{C} 1 * \mathrm{Y} 31 * \mathrm{X} 31-\mathrm{C} 1 * \mathrm{X} 31 * \mathrm{Y} 31+\mathrm{A} 2 * \mathrm{Y} 31 * \mathrm{Y} 31 / 4\)
\$+B2*Y31*Y31/4+B2*X31*X31-C2*X31*Y31-C2*Y31*X31
\(\mathrm{KR}(4,5)=\mathrm{A} 2 * \mathrm{Y} 31 * \mathrm{X} 21 / 4+\mathrm{B} 2 * \mathrm{Y} 31 * \mathrm{X} 21 / 4-\mathrm{C} 2 * \mathrm{Y} 31 * \mathrm{Y} 21-\mathrm{C} 2 * \mathrm{X} 31 * \mathrm{X} 21\)
\(K R(5,4)=K R(4,5)\)
\(\mathrm{KR}(4,6)=-\mathrm{A} 1 * \mathrm{Y} 31 * \mathrm{Y} 21-\mathrm{B} 1 * \mathrm{X} 31 * \mathrm{X} 21+\mathrm{C} 1 * \mathrm{Y} 31 * \mathrm{X} 21+\mathrm{C} 1 * \mathrm{X} 31 * \mathrm{Y} 21-\mathrm{A} 2 * \mathrm{Y} 31 * \mathrm{Y} 21 / 4\)
\$-B2*Y31*Y21/4-B2*X31*X21+C2*Y31*X21+C2*X31*Y21
\(\operatorname{KR}(6,4)=\operatorname{KR}(4,6)\)
\(\mathrm{KR}(5,5)=\mathrm{A} 1 * \mathrm{Y} 21 * \mathrm{Y} 21+\mathrm{B} 1 * \mathrm{X} 21 * \mathrm{X} 21-\mathrm{C} 1 * \mathrm{Y} 21 * \mathrm{X} 21-\mathrm{C} 1 * \mathrm{X} 21 * \mathrm{Y} 21+\mathrm{A} 2 * \mathrm{Y} 21 * \mathrm{Y} 21\)
\$+A2*X21*X21/4+B2*X21*X21/4-C2*Y21*X21-C2*X21*Y21
\(\mathrm{KR}(5,6)=-\mathrm{A} 2 * \mathrm{X} 21 * \mathrm{Y} 21 / 4-\mathrm{B} 2 * \mathrm{X} 21 * \mathrm{Y} 21 / 4+\mathrm{C} 2 * \mathrm{Y} 21 * \mathrm{Y} 21+\mathrm{C} 2 * \mathrm{X} 21 * \mathrm{X} 21\)
\(K R(6,5)=K R(5,6)\)
\(\mathrm{KR}(6,6)=\mathrm{A} 1 * \mathrm{Y} 21 * \mathrm{Y} 21+\mathrm{B} 1 * \mathrm{X} 21 * \mathrm{X} 21-\mathrm{C} 1 * \mathrm{Y} 21 * \mathrm{X} 21-\mathrm{C} 1 * \mathrm{X} 21 * \mathrm{Y} 21+\mathrm{A} 2 * \mathrm{Y} 21 * \mathrm{Y} 21 / 4\)
\$+B2*Y21*Y21/4+B2*X21*X21-C2*X21*Y21-C2*X21*Y21
TTT=T*AREA
DO 83 II=1,6
DO \(83 \mathrm{JJ}=1,6\)
\(83 \mathrm{KG}(I I, J J)=T T T *(K G(I I, J J)+K R(I I, J J))\)
\(\mathrm{N}(1)=\mathrm{J} * 2-1\)
\(\mathrm{N}(2)=\mathrm{J} * 2\)
\(\mathrm{N}(3)=\mathrm{K} * 2-1\)
\(\mathrm{N}(4)=\mathrm{K} * 2\)
\(\mathrm{N}(5)=\mathrm{L} * 2-1\)
\(N(6)=L * 2\)
DO 40 II \(=1,6\)
DO \(40 \mathrm{JJ}=1,6\)
\(I K=N(I I)\)
\(J K=N(J J)\)
IN \(=\mathrm{JK}-\mathrm{IK}+1\)
IF(IN.LE.0) GO TO 40
GS(IK,IN)=GS(IK,IN)+KG(II,JJ)
40
CONTINUE
RETURN
END

SUBROUTINE DSTRES(E,ANU,DD)
```

C **
C [D] MATRIX FOR PLANE STRESS
C ** **************************
DIMENSION DD(3,3)
ENU=E/(1.0-ANU**2)
DD (1,1)=ENU
DD(1,2)=ANU*ENU
DD (1,3)=0.0
DD (2,1)=ANU*ENU
DD (2,2)=ENU
DD(2,3)=0.0
DD (3,1)=0.0
DD (3,2)=0.0
DD(3,3)=(1-ANU)*ENU/2.0
RETURN
END
SUBROUTINE DELA(E,ANU,DD)
DIMENSION DD(3,3)
PN=1-2*ANU
ENU=E/(1+ANU)
DD(1,1)=ENU*(1-ANU)/PN
DD (1,2)=ENU*ANU/PN
DD (1,3)=0.0
DD(2,1)=DD(1,2)
DD (2,2)=DD (1,1)
DD (2,3)=0.0
DD (3,1) =0.0
DD (3,2)=0.0
DD (3,3)=0.5*ENU
RETURN
END
SUBROUTINE DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
DIMENSION DP(3,3),STRE(NE,5),STR(NE,5),MO(NE)
ANU=.33
SZ=STRE(I,5)
SM=(STRE(I,1)+STRE(I,2)+SZ)/3
SXP=STRE(I,1)-SM
SYP=STRE(I,2)-SM
S=(2.0/3.0)*(STRE(I,4)**2)*(1+2*H*(1+ANU)/(3*E))
PN=1-2*ANU
ENU=E/(1+ANU)
DP(1,1)=ENU*((1-ANU)/PN -(SXP**2)/S)
DP(1,2)=ENU*(ANU/PN - SXP*SYP/S)
DP(1,3)=-ENU*SXP* (STRE (I,3))/S
DP(2,1)=DP(1,2)
DP(2,2)=((1-ANU)/(1-2*ANU)-(SYP**2)/S *ENU
DP(2,3)=-ENU*(SYP)*(STRE(I,3))/S

```
```

DP(3,1)=DP(1,3)
DP(3,2)=DP(2,3)
DP(3,3)=ENU*(0.5-(STRE(I,3)**2)/S)
RETURN
END
SUBROUTINE RATIO(NE,IN,YO,STRES,STRE,R)
DIMENSION STRES(NE,5),STRE(NE,5)
DOUBLE PRECISION R1,R2
X=STRES(IN,1)
Y=STRES(IN,2)
Z=STRES(IN,5)
XY=STRES(IN,3)
SX=STRE(IN,1)
SY=STRE(IN,2)
SZ=STRE(IN,5)
SXY=STRE(IN,3)
A=X-Y
B=SX-SY
C=Y-Z
D=SY-SZ
E=Z-X
F=SZ-SX
0=A**2+C**2+E**2+6*(XY**2)
P=2*(A*B+D*C+E*F+6*SXY*XY)
Q=B**2+D**2+F**2+6*(SXY**2)-2*(YO**2)
R1=(-P+SQRT(P**2-4*O*Q))/(2*O)
R2=(-P-SQRT(P**2-4*O*Q))/(2*0)
R=R1
RETURN
END
SUBROUTINE BM(NE,NN,I,LOC,CX,CY,BB,AREA)
DIMENSION CX(NN),CY(NN),BB(3,6)
DIMENSION CXL(3),CYL(3),LOC(NE,3)
J=LOC(I,1)
K=LOC(I,2)
L=LOC(I,3)
GX=(CX(J)+CX(K)+CX(L))/3
GY=(CY(J)+CY(R)+CY(L))/3
CXL(1)=CX(J)-GX
CXL(2)=CX(K)-GX
CXL(3)=CX(L)-GX
CYL(1)=CY(J)-GY
CYL(2)=CY(K)-GY
CYL(3)=CY(L)-GY
AREA=((CXL(3)-CXL(2))*(CYL(2)-CYL(1))-(CXL(2)-CXL(1))*(CYL(3)-

```
```

```
2CYL(2)))/2.0
```

```
2CYL(2)))/2.0
    X32=(CXL(3)-CXL(2))/(2.0*AREA)
    X32=(CXL(3)-CXL(2))/(2.0*AREA)
    Y31=(CYL(3)-CYL(1))/(2.0*AREA)
    Y31=(CYL(3)-CYL(1))/(2.0*AREA)
    X31=(CXL(3)-CXL(1))/(2.0*AREA)
    X31=(CXL(3)-CXL(1))/(2.0*AREA)
    Y21=(CYL(2)-CYL(1))/(2.0*AREA)
    Y21=(CYL(2)-CYL(1))/(2.0*AREA)
    X21=(CXL(2)-CXL(1))/(2.0*AREA)
    X21=(CXL(2)-CXL(1))/(2.0*AREA)
    DO }81\mathrm{ II=1,3
    DO }81\mathrm{ II=1,3
    DO 81 JJ=1,6
    DO 81 JJ=1,6
```

 BB(II,JJ)=0.0
    ```
    BB(II,JJ)=0.0
    BB(1,1)=Y32
    BB(1,1)=Y32
    BB}(1,3)=-Y3
    BB}(1,3)=-Y3
    BB}(1,5)=Y2
    BB}(1,5)=Y2
    BB}(2,2)=-X3
    BB}(2,2)=-X3
    BB}(2,4)=X3
    BB}(2,4)=X3
    BB}(2,6)=-X2
    BB}(2,6)=-X2
    BB}(3,1)=-X3
    BB}(3,1)=-X3
    BB}(3,2)=Y3
    BB}(3,2)=Y3
    BB}(3,3)=X3
    BB}(3,3)=X3
    BB}(3,4)=-Y3
    BB}(3,4)=-Y3
    BB}(3,5)=-X2
    BB}(3,5)=-X2
    BB}(3,6)=Y2
    BB}(3,6)=Y2
    RETURN
    RETURN
    END
    END
    SUBROUTINE DECOMP(N,NB,A)
    SUBROUTINE DECOMP(N,NB,A)
    DIMENSION A(N,NB)
    DIMENSION A(N,NB)
    DOUBLE PRECISION DIFF
    DOUBLE PRECISION DIFF
    A(1,1)=SQRT(A(1,1))
    A(1,1)=SQRT(A(1,1))
    DO 5 K=2,NB
    DO 5 K=2,NB
    A(1,K)=A(1,K)/A(1,1)
    A(1,K)=A(1,K)/A(1,1)
    DO 25 K=2,N
    DO 25 K=2,N
    KP1=K+1
    KP1=K+1
    KM1=K-1
    KM1=K-1
    DIFF=A(K,1)
    DIFF=A(K,1)
    DO 10 JP=1,KM1
    DO 10 JP=1,KM1
    ICOL=K+1-JP
    ICOL=K+1-JP
    IF (ICOL .GT. NB) GO TO 10
    IF (ICOL .GT. NB) GO TO 10
    DIFF=DIFF-A(JP,ICOL)*A(JP,ICOL)
    DIFF=DIFF-A(JP,ICOL)*A(JP,ICOL)
    A(K,1)=DSQRT(DIFF)
    A(K,1)=DSQRT(DIFF)
    DO 20 J=2,NB
    DO 20 J=2,NB
    IF(K+J-1 .GT. N) GO TO 25
    IF(K+J-1 .GT. N) GO TO 25
    DIFF=A(K,J)
    DIFF=A(K,J)
    DO 15 JP=1,KM1
    DO 15 JP=1,KM1
    ICOL=K+1-JP
    ICOL=K+1-JP
    JCOL=R+J -JP
    JCOL=R+J -JP
    IF (JCOL .GT. NB) GO TO 15
    IF (JCOL .GT. NB) GO TO 15
    IF (ICOL .GT. NB) GO TO 15
    IF (ICOL .GT. NB) GO TO 15
    DIFF=DIFF-A(JP,ICOL)*A(JP,JCOL)
    DIFF=DIFF-A(JP,ICOL)*A(JP,JCOL)
    CONTINUE
    CONTINUE
    A(K,J)=DIFF/A(K,1)
    A(K,J)=DIFF/A(K,1)
    CONTINUE
    CONTINUE
    RETURN
    RETURN
    END
```

 END
    ```
```

 SUBROUTINE SOLVE (N,NB,M,A,B,DIFF)
 DIMENSION A(N,NB),B(N,M)
 DOUBLE PRECISION DIFF(M)
 DO 5 J=1,M
 5 B(1,J)=B(1,J)/A(1,1)
DO 30 I=2,N
DO 10 J=1,M
10 DIFF(J)=B(I,J)
DO 20 R=2,NB
I ROW=I +1-K
IF(IROW .LT. 1) GO TO 20
ICOL=I+1-IROW
IF (ICOL .GT. NB) GO TO 20
DO 15 J=1,M
DIFF(J)=DIFF(J)-A(IROW,ICOL)*B(IROW,J)
CONTINUE
DO 25 J=1,M
B(I,J)=DIFF(J)/A(I,1)
CONTINUE
DO 35 J=1,M
B(N,J)=B(N,J)/A(N,1)
DO 60 II=2,N
I=N+1-II
DO 40 J=1,M
DIFF(J)=B(I,J)
DO 50 K=2,NB
IK=I-1+K
IF (IK.GT.N)GO TO 50
DO 45 J=1,M
5 DIFF(J)=DIFF(J)-A(I,K)*B(IK,J)
50 CONTINUE
DO 55 J=1,M
B(I,J)=DIFF(J)/A(I, 1)
CONTINUE
RETURN
END
SUBROUTINE MATMUL (A,B,C,L,M,N)
DIMENSION A(L,M),B(M,N),C(L,N)
DO }10\textrm{I}=1,\textrm{L
DO 10 J=1,N
C(I ,J) =0.0
DO 10 K=1,M
C(I,J)=C(I,J)+A(I,k)*B(R,J)
10 CONTINUE
RETURN
END
SUBROUTINE VAL (N,NE.NN,ND,NB,CX,CY,LOC,IDISP,NDISP,IFIX,NEIX,IDB,
\$NDB,E,ANU,H,YO,M,NG,MY,ISL)

```
```

 DIMENSION CX(193),CY(193),\operatorname{LOC}(171,3),IDISP(20),IFIX(100),IDB(40),
 $ISL(20)
 DOUBLE PRECISION Q1X,Q1Y,Q2X,Q2Y
 HRITE(*,*)'ENTER THE VALUES OF [E - ANU - H - YO]'
 READ(*,*) E,ANU,H,YO
 WRITE(*,*) E,ANU,H,YO
 C OPEN(20,FILE='AN`,STATUS='NEW') HRITE(*,*)'ENTER XA& YA`
READ(*,*)XA,YA
WRITE(*,*)'XB \& YB'
READ(*,*)XB,YB
WRITE(*,*)' XC\& YC'
READ(*,*)XC,YC
WRITE(*,*)'ENTER N M MY'
READ(*,*)N,M,MY
NG=N
Q1X=(XB-XA)/(N-1)
Q2X=(XC-XB)/(M-1)
Q1Y=(YA-YC)/(M-1)
Q2Y=YC/(MY-1)
NB=(N+M+1)*2
IT=1
DO 12 J=1,M
DO 10 I=1,N
IP=IT+I-1
CX(IP)=XA+(I-1)*Q1X
CY(IP)=YA-(J-1)*Q1Y
10 CONTINUE
IT=IP
IF(J.GT.1) THEN
DO 11 K=N+1,N+J-1
IP}=IT+K-
CX(IP)=XB+(K-N)*Q2X
CY(IP)=YA-(J-1)*Q1Y
11 CONTINUE
ENDIF
IT=IP+1
12 CONTINUE
DO 13 J=1,MY-1
DO 14 I=1,N
IP =IT+I-1
CX(IP)=XA+(I-1)*Q1X
CY(IP)=YC-J*Q2Y
14 CONTINUE
IT=IP
DO 15 K=N+1,N+M-1
IP}=IT+R-
CX(IP)=XB+(K-N)*Q2X
CY(IP)=YC-J*Q2Y
15 CONTINUE
IT=IP+1
13 CONTINUE

```
```

 NN=IT-1
 C DO 20 I=1,NN
C WRITE(20,100)I,CX(I),CY(I)
C 20WRITE(*,100)I,CX(I),CY(I)
C WRITE(*,*)'NN=',NN,' M N MY',M,N,MY
C 100 FORMAT(/,5X,'I=',I4,' CX=',F6.3,' CY=',F6.3)
IC=1
IR=0
DO 30 I=1,M-1
IQ=2*N-1+2*(I-1)+IC-1
DO 31 J=IC,IQ,2
IR=IR+1
JJ=J+1
LOC (J,1) =N+IR
LOC(J,2)=LOC(J,1)-(N+I-1)
LOC(J,3)=LOC(J,1)+1
IF(J.GE.IQ) GO TO 35
LOC(JJ,1)=LOC(J,2)
LOC(JJ,2)=LOC(JJ,1)+1
LOC(JJ,3)=LOC(J,3)
35
31 CONTINUE
IR=IR+1
IC=ID+1
30 CONTINUE
DO 40 I=1,MY-1
IA=2*(M+N-2)+IC-1
DO 41 J=IC,IA,2
IR=IR+1
JJ=J+1
LOC (J,1) =N+IR
LOC(J,2)=LOC (J,1)-M-N+1
LOC(J,3)=LOC(J,1)+1
LOC(JJ,1) =LOC (J,2)
LOC(JJ,2)=LOC(J,2)+1
LOC (JJ, 3)=LOC(J,3)
ID=JJ
41 CONTINUE
IR=IR+1
IC=ID+1
4 0 ~ C O N T I N U E ~
NE=IC-1
WRITE(*,*)' NE=`,NE
C DO 36 I=1,NE
C WRITE(20,150) I,(LOC(I,J),J=1,3)
C 36 WRITE(*,150) I,(LOC(I,J),J=1,3)
150 FORMAT(3X,' I=',I3,' LOC=',3I7)
DO 45 I=1,N
ID=I
IDISP(I)=2*I
45 CONTINUE
NDISP}=\textrm{N

```
```

 DO 50 I=1,2*N
 IFIX(I)=I
 IFB=I
 5 0
 5 1
 DO 60 I=1,NDISP
WRITE(*,160)I,IDISP(I)
C 60 WRITE(20,160)I,IDISP(I)
IG=0
DO 110 I=1,M
ISL(I)=I*N+IG
WRITE(*,*)' M=',I,' ISL=`,ISL(I)
IG=IG+I
DO 65 I=1,NFIX
WRITE(*,170)I,IFIX(I)
WRITE(20,170)I,IFIX(I)
FORMAT(/,5X,'I=',I4,' IDISP=',I4)
FORMAT(/,5X,'I=',I4,' IFIX=',I4)
RETURN
END
SUBROUTINE FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
\$AQP,AY, ATP ,AFT, AK,AMU,SFS, KF ,NF,FOX,P,CX,ND,FORCE,CY,LF)
DIMENSION STRE(NE,5),SNS(40),QNS(40),YNS(40),SFS(40),
\$ KF(40),NF(40),FOX(40),P(ND,1),CX(NN),DN(40),AR(40),
\$ CY(NN),LF(40)
Q=AY*AQP
IE=0
DO 10 I=1,NG
DN(I)=SNS(I)
NNB=I
IE=2*(I-1)+1
IF(I.EQ.1)THEN
QNS(I)=(STRE(IE,4)+STRE(IE+1,4))/(2*SQRT(3.))
SNS(I)=(STRE(IE,3)+STRE(IE+1,3))/2
YNS(I)=(STRE(IE,2)+STRE(IE+1,2))/2
AR(I)=ABS((CX(2)-CX(1))/2)
GO TO 10
ENDIF
IF(I.EQ.NG)THEN
SNS(I)=(STRE(IE-1,3)+STRE(IE,3))/2
YNS(I)=(STRE(IE-1,2)+STRE(IE,2))/2
QNS(I)=(STRE(IE-1,4)+STRE(IE,4))/(2*SQRT(3.))

```
```

 AR(I)=ABS((CX(NG)-CX(NG-1))/2)
 GO TO 10
 ENDIF
 SNS(I)=(STRE(IE-1,3)+STRE(IE,3)+STRE(IE+1,3))/3
 YNS(I)=(STRE(IE-1,2)+STRE(IE,2)+STRE(IE+1,2))/3
 QNS(I)=(STRE(IE-1,4)+STRE(IE,4)+STRE(IE+1,4))/(3*SQRT(3.))
 AR(I)=ABS((CX(I+1)-CX(I-1))/2)
 10 CONTINUE
IG=NE-(NG+MG-2)*2+1
DO 20 I=1,NG+MG-1
J}=\textrm{NNB}+\textrm{I
NNC=J
IE=2*(I-1)+IG
DN(J)=SNS(J)
JP=NN-(NG+MG-1)+I
IF(I.EQ.1)THEN
SNS(J)=STRE(IE,3)
QNS(J)=STRE(IE,4)/(SQRT(3.))
YNS(J)=STRE(IE,2)
AR(J)=ABS((CX(JP+1)-CX(JP))/2)
GO TO 20
ENDIF
IF(I.EQ.NG+MG-1)THEN
SNS(J)=(STRE(NE,3)+STRE(NE-1,3))/2
QNS(J)=(STRE(NE,4)+STRE(NE-1,4))/(2*SQRT(3.))
YNS(J)=(STRE(NE,2)+STRE(NE-1,2))/2
AR(J)=ABS((CX(NN)-CX(NN-1))/2)
GO TO 20
ENDIF
SNS(J)=(STRE(IE,3)+STRE(IE-1,3)+STRE(IE-2,3))/3
QNS(J)=(STRE(IE,4)+STRE(IE-1,4)+STRE(IE-2,4))/(3*SQRT(3.))
YNS(J)=(STRE(IE,2)+STRE(IE-1,2)+STRE(IE-2,2))/3
AR(J)=ABS((CX(JP+1)-CX(JP-1))/2)
CONTINUE
NTP=NN-(NG+MG-1)
DO 30 I=1,NNC
IF(I.LE.NG) NF(I)=2*I-1
IF(I.GT.NG) THEN
J=(NTP+I-NG)*2-1
NF(I)=J
ENDIF
PR=ABS(YNS(I))
IF(PR.LT.Q) SFS(I)=PR*AMU
IF(PR.GE.Q)THEN
APW=((AQP-PR/AY)*ATP)/(AFT*AQP)
SFS(I)=AR*(ATP+AFT*(1-EXP(APW)))
ENDIF
IF(ABS(SNS(I)).GE.SFS(I)) KF(I)=1
NW=NF(I)
IF(P(NW,1).GE.O) FOX(I)=-ABS(SNS(I))*AR(I)
IF(P(NW,1).LT.O) FOX(I)=ABS(SNS(I))*AR(I)
3O CONTINUE
DO 60 I=NG+1,NNC
IF(YNS(I).GE.O) THEN
LF}(I)=

```
```

 FOX(I)=0
 KF(I)=1
 ENDIF
 IF(CY(I).LT.O) LF(I)=0
 6 0
CONTINUE
FORCE=0
DO 40 I=1,NG
PRT=AR(I)*YNS(I)
FORCE=FORCE+ABS(PRT)
FORCE=0.455*FORCE
RETURN
END

```

\section*{APPENDIX E}

SOME NUMERICAL AND EXPERIMENTAL RESULTS
```

1- Compression of the Wedge-Shaped specimen:

```
\begin{tabular}{lccccc} 
Red. in & Displacenent & Lead (pound) & \\
hight \(\%\) & (inch) & Test A & Test & Test C & Average \\
1.2 & 0.008 & 1800 & 1870 & 2100 & 1857 \\
2 & 0.010 & 2300 & 2200 & 2200 & 2233 \\
3 & 0.015 & 3000 & 2450 & 2700 & 2716 \\
4.6 & 0.023 & 3580 & 3325 & 3620 & 3508 \\
6.8 & 0.034 & 4700 & 4450 & 4500 & 4550 \\
8 & 0.044 & 5200 & 5330 & 5100 & 5210 \\
9.4 & 0.047 & 5800 & 5500 & 5800 & 5633 \\
10 & 0.050 & 5800 & 5930 & 5930 & 5886
\end{tabular}
```

2- Ring compression test:

```

Test Red. in hight Red. in internal Coefficient
 Dianeter \% of Friction

A
33
14
0.20

B
39
20
0.21

C
47
42
0.22

Average \(=0.21\)

3- Compression of the cylindrical specimen:
```

P: = Load (pound)
D = Initial diameter
10 = Initial length (inch)
1 = Instantaneous length (inch)
\Deltal = Displacement (inch)
Ao = Initial Surface area (in**2)
A = Instantaneous area (in**2)
\varepsilon}=\operatorname{ln}(10/1) Natural strain
O = P/A Stress (psi)

```

Test A:
\(D=0.755\)
\(10=0.750\)
\begin{tabular}{cccccc}
\(P\) & \(\Delta l\) & \(l\) & \(\varepsilon\) & \(A\) & \(\sigma\) \\
2200 & 0.012 & 0.736 & 0.016 & 0.455 & 4832 \\
3850 & 0.020 & 0.730 & 0.027 & 0.460 & 8369 \\
4380 & 0.027 & 0.723 & 0.036 & 0.464 & 9424 \\
5100 & 0.034 & 0.716 & 0.048 & 0.469 & 10867 \\
5600 & 0.042 & 0.708 & 0.057 & 0.474 & 11800 \\
6220 & 0.043 & 0.707 & 0.059 & 0.475 & 13087 \\
7820 & 0.086 & 0.684 & 0.092 & 0.491 & 15520 \\
8600 & 0.086 & 0.664 & 0.128 & 0.508 & 18995 \\
9450 & 0.115 & 0.635 & 0.166 & 0.529 & 17859 \\
10350 & 0.139 & 0.611 & 0.205 & 0.550 & 18820 \\
13000 & 0.193 & 0.557 & 0.297 & 0.603 & 21550 \\
15500 & 0.252 & 0.498 & 0.409 & 0.675 & 22973 \\
17800 & 0.288 & 0.482 & 0.484 & 0.727 & 24475
\end{tabular}

\section*{Test B: \\ \(10=0.760\) \\ D \(=0.755\)}
\begin{tabular}{cccccc}
\(P\) & \(\Delta 1\) & \(l\) & \(\epsilon\) & \(A\) & 0 \\
3880 & 0.016 & 0.744 & 0.021 & 0.457 & 8484 \\
4460 & 0.020 & 0.740 & 0.027 & 0.460 & 9700 \\
5140 & 0.025 & 0.735 & 0.033 & 0.463 & 11103 \\
5550 & 0.030 & 0.730 & 0.040 & 0.466 & 11909 \\
5900 & 0.035 & 0.725 & 0.047 & 0.469 & 12571 \\
8710 & 0.094 & 0.666 & 0.132 & 0.511 & 17049 \\
9100 & 0.105 & 0.655 & 0.149 & 0.519 & 17518 \\
10170 & 0.134 & 0.626 & 0.194 & 0.544 & 18711 \\
11110 & 0.147 & 0.613 & 0.215 & 0.555 & 20016 \\
12110 & 0.180 & 0.580 & 0.270 & 0.587 & 20843 \\
14080 & 0.218 & 0.542 & 0.338 & 0.628 & 22428 \\
15950 & 0.267 & 0.493 & 0.433 & 0.690 & 23110 \\
17380 & 0.289 & 0.471 & 0.478 & 0.722 & 24031
\end{tabular}
```

Test C:
10=0.750
D =0.750

```
\begin{tabular}{cccccc}
\(P\) & \(\Delta l\) & 1 & \(\varepsilon\) & \(A\) & \(\sigma\) \\
2740 & 0.010 & 0.740 & 0.013 & 0.448 & 6118 \\
3500 & 0.012 & 0.736 & 0.016 & 0.450 & 7774 \\
4400 & 0.019 & 0.731 & 0.026 & 0.453 & 9707 \\
5500 & 0.029 & 0.721 & 0.039 & 0.459 & 11982 \\
6400 & 0.039 & 0.711 & 0.053 & 0.466 & 13733 \\
7200 & 0.058 & 0.692 & 0.080 & 0.479 & 15037 \\
7850 & 0.088 & 0.682 & 0.095 & 0.486 & 15741 \\
8950 & 0.091 & 0.659 & 0.129 & 0.503 & 17800 \\
9350 & 0.111 & 0.639 & 0.180 & 0.519 & 18031 \\
10090 & 0.141 & 0.609 & 0.208 & 0.544 & 18545 \\
13050 & 0.189 & 0.561 & 0.291 & 0.591 & 22095 \\
15770 & 0.248 & 0.502 & 0.401 & 0.660 & 23892 \\
17500 & 0.294 & 0.456 & 0.498 & 0.727 & 24071
\end{tabular}

3- The computed nodal coordinates in the Wedge-Shaped specimen:
a) Bay's Friction modal (asperity angle=0) as the limit of sticking:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X & Y & \(\Delta \mathrm{X}\) & \(\Delta Y\) & & & \\
\hline -0.01641 & 0.44980 & -0.01841 & -0.05020 & DISP & AT NODE: & \\
\hline 0.09323 & 0.44980 & -0.00877 & -0.05020 & DISP & AT NODE: & \\
\hline 0.20000 & 0.44980 & 0.00000 & -0.05020 & DISP & AT NODE: & \\
\hline 0.30068 & 0.44980 & 0.00068 & -0.05020 & DISP & AT NODE: & \\
\hline 0.40086 & 0.44980 & 0.00088 & -0.05020 & DISP & AT NODE: & \\
\hline -0.02384 & 0.41142 & -0.02384 & -0.04572 & DISP & AT NODE: & \\
\hline 0.08742 & 0.41078 & -0.01258 & -0.04636 & DISP & AT NODE: & \\
\hline 0.19678 & 0.40978 & -0.00322 & -0.04736 & DISP & AT NODE: & \\
\hline 0.30379 & 0.40793 & 0.00379 & -0.04921 & DISP & AT NODE: & \\
\hline 0.40730 & 0.40788 & 0.00730 & -0.04926 & DISP & AT NODE: & 10 \\
\hline 0.49234 & 0.42471 & 0.00662 & -0.03243 & DISP & AT NODE: & \\
\hline -0.02792 & 0.37337 & -0.02792 & -0.04092 & DISP & AT NODE: & 12 \\
\hline 0.08436 & 0.37234 & -0.01564 & -0.04195 & DISP & AT NODE: & 13 \\
\hline 0.19535 & 0.37089 & -0.00465 & -0.04359 & DISP & AT NODE: & 14 \\
\hline 0.30482 & 0.38811 & 0.00482 & -0.04818 & DISP & AT NODE: & 15 \\
\hline 0.41254 & 0.36699 & 0.01254 & -0.04729 & DISP & AT NODE: & 16 \\
\hline 0.49888 & 0.38285 & 0.01397 & -0.03143 & DISP & AT NODE: & 17 \\
\hline 0.58515 & 0.39593 & 0.01372 & -0.01836 & DISP & AT NODE: & 18 \\
\hline -0.03040 & 0.33552 & -0.03040 & -0.03591 & DISP & AT NODE: & 19 \\
\hline 0.08254 & 0.33426 & -0.01746 & -0.03717 & DISP & AT NODE: & 20 \\
\hline 0.19463 & 0.33214 & -0.00537 & -0.03929 & DISP & AT NODE: & 21 \\
\hline 0.30551 & 0.32907 & 0.00551 & -0.04236 & DISP & AT NODE & 22 \\
\hline 0.41512 & 0.32738 & 0.01512 & -0.04405 & DISP & AT NODE: & 23 \\
\hline 0.50547 & 0.34140 & 0.01975 & -0.03003 & DISP & AT NODE: & 24 \\
\hline 0.59183 & 0.35384 & 0.02040 & -0.01759 & DISP & AT NODE: & 25 \\
\hline 0.67764 & 0.36290 & 0.02050 & -0.00853 & DISP & AT NODE: & \\
\hline -0.03220 & 0.29782 & -0.03220 & -0.03075 & DISP & AT NODE: & 27 \\
\hline 0.08125 & 0.29641 & -0.01875 & -0.03217 & DISP & AT NODE & 28 \\
\hline 0.19408 & 0.29393 & -0.00592 & -0.03464 & DISP & AT NODE: & 29 \\
\hline 0.30588 & 0.29046 & 0.00588 & -0.03811 & DISP & AT NODE: & \\
\hline 0.41648 & 0.28833 & 0.01648 & -0.04024 & DISP & AT NODE: & 31 \\
\hline 0.50835 & 0.30063 & 0.02263 & -0.02794 & DISP & AT NODE: & 3 \\
\hline 0.59651 & 0.31171 & 0.02508 & -0.01886 & DISP & AT NODE: & 33 \\
\hline 0.68241 & 0.32048 & 0.02527 & -0.00809 & DISP & AT NODE: & 34 \\
\hline 0.76827 & 0.32668 & 0.02541 & -0.00189 & DISP & AT NODE: & 35 \\
\hline -0.03360 & 0.26021 & -0.03360 & -0.02550 & DISP & AT NODE: & 36 \\
\hline 0.08016 & 0.25875 & -0.01984 & -0.02696 & DISP & AT NODE: & 37 \\
\hline 0.19368 & 0.25599 & -0.00632 & -0.02972 & DISP & AT NODE & 38 \\
\hline 0.30632 & 0.25214 & 0.00632 & -0.03358 & DISP & AT NODE & 3 \\
\hline 0.41766 & 0.24956 & 0.01766 & -0.03615 & DISP & AT NODE: & 40 \\
\hline 0.51019 & 0.26025 & 0.02447 & -0.02547 & DISP & AT NODE & 41 \\
\hline 0.59933 & 0.26995 & 0.02790 & -0.01576 & DISP & AT NODE & \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
0.68596 & 0.27792 & 0.02881 & -0.00780 \\
0.77157 & 0.28403 & 0.02871 & -0.00168 \\
0.85721 & 0.28981 & 0.02884 & 0.00410 \\
-0.03491 & 0.22277 & -0.03491 & -0.02009 \\
0.07935 & 0.22119 & -0.02085 & -0.02186 \\
0.19318 & 0.21833 & -0.00682 & -0.02453 \\
0.30876 & 0.21413 & 0.00676 & -0.02873 \\
0.41913 & 0.21100 & 0.01913 & -0.03186 \\
0.51209 & 0.22008 & 0.02637 & -0.02277 \\
0.60168 & 0.22848 & 0.03025 & -0.01438 \\
0.68888 & 0.23550 & 0.03172 & -0.00736 \\
0.77461 & 0.24128 & 0.03176 & -0.00158 \\
0.86011 & 0.24706 & 0.03154 & 0.00420 \\
0.94566 & 0.25274 & 0.03138 & 0.00988 \\
-0.03195 & 0.18374 & -0.03195 & -0.01826 \\
0.07772 & 0.18387 & -0.02228 & -0.01613 \\
0.19229 & 0.18083 & -0.00771 & -0.01917 \\
0.30850 & 0.17851 & 0.00650 & -0.02348 \\
0.42012 & 0.17282 & 0.02012 & -0.02718 \\
0.51430 & 0.18007 & 0.02859 & -0.01993 \\
0.804111 & 0.18712 & 0.03268 & -0.01288 \\
0.69149 & 0.19323 & 0.03434 & -0.00877 \\
0.77747 & 0.19855 & 0.03461 & -0.00145 \\
0.86299 & 0.20429 & 0.03442 & 0.00429 \\
0.94851 & 0.20997 & 0.03422 & 0.00997 \\
1.03404 & 0.21563 & 0.03404 & 0.01563 \\
-0.02853 & 0.12213 & -0.02853 & -0.01121 \\
0.07946 & 0.12316 & -0.02054 & -0.010188 \\
0.18892 & 0.12297 & -0.01108 & -0.01036 \\
0.30401 & 0.11847 & 0.00401 & -0.01486 \\
0.41855 & 0.11432 & 0.01855 & -0.01901 \\
0.51486 & 0.11886 & 0.02914 & -0.01447 \\
0.80733 & 0.12310 & 0.03590 & -0.01024 \\
0.69555 & 0.12785 & 0.03840 & -0.00568 \\
0.78185 & 0.13212 & 0.03899 & -0.00122 \\
0.86741 & 0.13776 & 0.03884 & 0.00442 \\
0.95293 & 0.14343 & 0.03864 & 0.01010 \\
1.03845 & 0.14910 & 0.03845 & 0.01576 \\
-0.02592 & 0.06071 & -0.02592 & -0.00596 \\
0.08238 & 0.06150 & -0.01762 & -0.00516 \\
0.19003 & 0.06204 & -0.00997 & -0.00463 \\
0.29910 & 0.06118 & -0.00090 & -0.00548 \\
0.41537 & 0.05651 & 0.01537 & -0.01016 \\
0.51318 & 0.05885 & 0.02747 & -0.00782 \\
0.60752 & 0.06095 & 0.03609 & -0.00572 \\
0.69899 & 0.06262 & 0.04185 & -0.00405 \\
0.78612 & 0.06580 & 0.04326 & -0.00087 \\
0.87179 & 0.07123 & 0.04322 & 0.00457 \\
0.95732 & 0.07689 & 0.04304 & 0.01023 \\
1.04285 & 0.08256 & 0.04285 & 0.01589 \\
-0.02435 & 0.00000 & -0.02435 & 0.00000 \\
0.08523 & 0.00000 & -0.01477 & 0.00000 \\
0.19315 & 0.00000 & -0.00685 & 0.00000 \\
0
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DISP & AT NODE: & 43 \\
\hline DISP & AT NODE: & 44 \\
\hline DISP & AT NODE: & 45 \\
\hline DISP & AT NODE: & 46 \\
\hline DISP & AT NODE: & 47 \\
\hline DISP & AT NODE: & 48 \\
\hline DISP & AT NODE: & 49 \\
\hline DISP & AT NODE: & 50 \\
\hline DISP & AT NODE: & 51 \\
\hline DISP & AT NODE: & 52 \\
\hline DISP & AT NODE: & 53 \\
\hline DISP & AT NODE: & 54 \\
\hline DISP & AT NODE: & 55 \\
\hline DISP & AT NODE: & 58 \\
\hline DISP & AT NODE: & 57 \\
\hline DISP & AT NODE: & 58 \\
\hline DISP & AT NODE: & 59 \\
\hline DISP & AT NODE: & 80 \\
\hline DISP & AT NODE: & 61 \\
\hline DISP & AT NODE: & 82 \\
\hline DISP & AT NODE: & 63 \\
\hline DISP & AT NODE: & 64 \\
\hline DISP & AT NODE: & 65 \\
\hline DISP & AT NODE: & 86 \\
\hline DISP & AT NODE: & 87 \\
\hline DISP & AT NODE: & 68 \\
\hline DISP & AT NODE: & 69 \\
\hline DISP & AT NODE: & 70 \\
\hline DISP & AT NODE: & 71 \\
\hline DISP & AT NODE: & 72 \\
\hline DISP & AT NODE: & 73 \\
\hline DISP & AT NODE: & 74 \\
\hline DISP & AT NODE: & 75 \\
\hline DISP & AT NODE: & 78 \\
\hline DISP & AT NODE: & 77 \\
\hline DISP & AT NODE: & 78 \\
\hline DISP & AT NODE: & 79 \\
\hline DISP & AT NODE: & 80 \\
\hline DISP & AT NODE: & 81 \\
\hline DISP & AT NODE: & 82 \\
\hline DISP & AT NODE: & 83 \\
\hline DISP & AT NODE: & 84 \\
\hline DISP & AT NODE: & 85 \\
\hline DISP & AT NODE: & 86 \\
\hline DISP & AT NODE: & 87 \\
\hline DISP & AT NODE: & 88 \\
\hline DISP & AT NODE: & 89 \\
\hline DISP & AT NODE: & 90 \\
\hline DISP & AT NODE: & 91 \\
\hline DISP & AT NODE: & 92 \\
\hline DISP & AT NODE: & 93 \\
\hline DISP & AT NODE: & 94 \\
\hline DISP & AT NODE: & 95 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0.30000 & 0.00000 & 0.00000 & 0.00000 & DISP AT & NODE: & 96 \\
0.40832 & 0.00000 & 0.00832 & 0.00000 & DISP AT & NODE: & 97 \\
0.50884 & 0.00000 & 0.02312 & 0.00000 & DISP AT & NODE: & 98 \\
0.60543 & 0.00000 & 0.03400 & 0.00000 & DISP AT & NODE: & 99 \\
0.69878 & 0.00000 & 0.04164 & 0.00000 & DISP AT & NODE: & 100 \\
0.78974 & 0.00000 & 0.04689 & 0.00000 & DISP AT & NODE: & 101 \\
0.87617 & 0.00472 & 0.04760 & 0.00472 & DISP AT & NODE: & 102 \\
0.96172 & 0.01036 & 0.04743 & 0.01036 & DISP AT & NODE: & 103 \\
1.04724 & 0.01603 & 0.04724 & 0.01603 & DISP AT & NODE: & 104
\end{tabular}
b) Bay's Friction model (asperity angle=15) as the limit of sticking:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X & Y & \(\Delta \mathrm{x}\) & \(\Delta Y\) & & & \\
\hline -0.01793 & 77 & & -0.05023 & & AT NODE: & \\
\hline 0.09257 & 0.44977 & -0.00743 & -0.05023 & DISP & AT NODE: & \\
\hline 0.20000 & 0.44977 & 0.00000 & -0.05023 & DISP & AT NODE: & \\
\hline 0.30076 & 0.44977 & 0.00076 & -0.05023 & DISP & AT NODE: & \\
\hline 0.40097 & 0.44977 & 0.00097 & -0.05023 & DISP & AT NODE: & \\
\hline -0.02579 & 0.41174 & -0.02579 & -0.04540 & DISP & AT NODE: & \\
\hline 0.08848 & 0.41106 & -0.01352 & -0.04608 & DISP & AT NODE & \\
\hline 0.19671 & 0.40999 & -0.00329 & -0.04715 & DISP & AT NODE: & \\
\hline 0.30429 & 0.40795 & 0.00429 & -0.04920 & DISP & AT NODE: & \\
\hline 0.40799 & 0.40786 & 0.00799 & -0.04928 & DISP & AT NODE: & 0 \\
\hline 0.49288 & 0.42533 & 0.00716 & -0.03181 & DISP & AT NODE: & 1 \\
\hline -0.02954 & 0.37380 & -0.02954 & -0.04048 & DISP & AT NODE & 12 \\
\hline 0.08308 & 0.37297 & -0.01692 & -0.04132 & DISP & AT NODE & \\
\hline 0.19507 & 0.37122 & -0.00493 & -0.04307 & DISP & AT NODE: & 4 \\
\hline 0.30548 & 0.36832 & 0.00548 & -0.04597 & DISP & AT NODE: & 5 \\
\hline 0.41372 & 0.36706 & 0.01372 & -0.04722 & DISP & AT NODE: & 6 \\
\hline 0.50094 & 0.38366 & 0.01522 & -0.03063 & DISP & AT NODE: & 17 \\
\hline 0.58669 & 0.39679 & 0.01526 & -0.01749 & DISP & AT NODE & 8 \\
\hline -0.03136 & 0.33596 & -0.03136 & -0.03547 & DISP & AT NODE: & 9 \\
\hline 0.08160 & 0.33498 & -0.01840 & -0.03645 & DISP & AT NODE: & 20 \\
\hline 0.19401 & 0.33301 & -0.00599 & -0.03842 & DISP & AT NODE: & 1 \\
\hline 0.30589 & 0.32964 & 0.00589 & -0.04179 & DISP & AT NODE & 2 \\
\hline 0.41657 & 0.32763 & 0.01657 & -0.04380 & DISP & AT NODE & 3 \\
\hline 0.50730 & 0.34245 & 0.02158 & -0.02898 & DISP & AT NODE & 24 \\
\hline 0.59409 & 0.35500 & 0.02266 & -0.01643 & DISP & AT NODE: & 25 \\
\hline 0.68049 & 0.36370 & 0.02335 & -0.00773 & DISP & AT NODE & 26 \\
\hline -0.03279 & 0.29835 & -0.03279 & -0.03022 & DISP & AT NODE & 27 \\
\hline 0.08091 & 0.29710 & -0.01909 & -0.03147 & DISP & AT NODE & 28 \\
\hline 0.19360 & 0.29491 & -0.00640 & -0.03366 & DISP & AT NODE: & 29 \\
\hline 0.30578 & 0.29140 & 0.00578 & -0.03717 & DISP & AT NODE: & 30 \\
\hline 0.41748 & 0.28896 & 0.01748 & -0.03961 & DISP & AT NODE: & 31 \\
\hline 0.51047 & 0.30197 & 0.02476 & -0.02661 & DISP & AT NODE: & 32 \\
\hline 0.59924 & 0.31317 & 0.02782 & -0.01541 & DISP & AT NODE: & 33 \\
\hline 0.68571 & 0.32159 & 0.02857 & -0.00698 & DISP & AT NODE & 34 \\
\hline 0.77241 & 0.32566 & 0.02955 & -0.00291 & DISP & AT NODE: & 35 \\
\hline -0.03364 & 0.26080 & -0.03364 & -0.02492 & DISP & AT NODE: & 36 \\
\hline 0.08024 & 0.25948 & -0.01976 & -0.02624 & DISP & AT NODE: & 37 \\
\hline 0.19378 & 0.25887 & -0.00622 & -0.02885 & DISP & AT NODE & 38 \\
\hline 30608 & 0.25322 & 0.00608 & -0.03249 & DISP & AT NODE: & 39 \\
\hline 0.41788 & 0.25060 & 0.01788 & -0.03512 & DISP & AT NODE: & 40 \\
\hline 0.51166 & 0.26204 & 0.02595 & -0.02368 & DISP & AT NODE: & \\
\hline 0.60201 & 0.27172 & 0.03059 & -0.01399 & DISP & AT NODE: & 42 \\
\hline 0.68940 & 0.27929 & 0.03226 & -0.00642 & DISP & AT NODE: & 43 \\
\hline 0.77568 & 0.28332 & 0.03283 & -0.00239 & DISP & AT NODE & 44 \\
\hline 0.86222 & 0.28500 & 0.03365 & -0.00071 & DISP & AT NODE: & 5 \\
\hline -0.03496 & 0.22355 & -0.03486 & -0.01930 & DISP & AT NODE: & 46 \\
\hline 0.07989 & 0.22193 & -0.02011 & -0.02093 & DISP & AT NODE & \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
0.19372 & 0.21917 & -0.00628 & -0.02369 \\
0.30716 & 0.21500 & 0.00716 & -0.02785 \\
0.41876 & 0.21220 & 0.01876 & -0.03066 \\
0.51223 & 0.22229 & 0.02652 & -0.02057 \\
0.60302 & 0.23067 & 0.03159 & -0.01219 \\
0.69133 & 0.23714 & 0.03419 & -0.00572 \\
0.77781 & 0.24072 & 0.03495 & -0.00214 \\
0.86383 & 0.24246 & 0.03526 & -0.00040 \\
0.95005 & 0.24299 & 0.03576 & 0.00013 \\
-0.03129 & 0.18448 & -0.03129 & -0.01552 \\
0.07820 & 0.18477 & -0.02180 & -0.01523 \\
0.19327 & 0.18162 & -0.00673 & -0.01838 \\
0.30725 & 0.17730 & 0.00725 & -0.02270 \\
0.42061 & 0.17363 & 0.02061 & -0.02637 \\
0.51337 & 0.18239 & 0.02766 & -0.01761 \\
0.60358 & 0.18969 & 0.03215 & -0.01031 \\
0.69200 & 0.19523 & 0.03485 & -0.00477 \\
0.77890 & 0.19810 & 0.03604 & -0.00190 \\
0.86481 & 0.19968 & 0.03624 & -0.00032 \\
0.95062 & 0.20026 & 0.03633 & 0.00026 \\
1.03649 & 0.20063 & 0.03649 & 0.00063 \\
-0.02690 & 0.12239 & -0.02690 & -0.01094 \\
0.08017 & 0.12392 & -0.01983 & -0.00941 \\
0.18921 & 0.12398 & -0.01079 & -0.00935 \\
0.30459 & 0.11907 & 0.00459 & -0.01427 \\
0.41863 & 0.11489 & 0.01863 & -0.01844 \\
0.51443 & 0.12005 & 0.02872 & -0.01328 \\
0.60480 & 0.12568 & 0.03337 & -0.00765 \\
0.69306 & 0.13011 & 0.03591 & -0.00323 \\
0.78009 & 0.13204 & 0.03723 & -0.00129 \\
0.86617 & 0.13304 & 0.03760 & -0.00029 \\
0.95176 & 0.13356 & 0.03748 & 0.00022 \\
1.03731 & 0.13401 & 0.03731 & 0.00068 \\
-0.02391 & 0.06078 & -0.02391 & -0.00589 \\
0.08403 & 0.06171 & -0.01597 & -0.00495 \\
0.19062 & 0.06270 & -0.00938 & -0.00397 \\
0.29876 & 0.06187 & -0.00124 & -0.00480 \\
0.41486 & 0.05672 & 0.01486 & -0.00995 \\
0.51191 & 0.05953 & 0.02819 & -0.00714 \\
0.60525 & 0.06182 & 0.03382 & -0.00485 \\
0.69389 & 0.06488 & 0.03674 & -0.00179 \\
0.78083 & 0.06605 & 0.03797 & -0.00062 \\
0.86697 & 0.06652 & 0.03840 & -0.00015 \\
0.95272 & 0.06670 & 0.03843 & 0.00003 \\
1.03805 & 0.06711 & 0.03805 & 0.00044 \\
-0.02263 & 0.00000 & -0.02263 & 0.00000 \\
0.08883 & 0.00000 & -0.01317 & 0.00000 \\
0.19435 & 0.00000 & -0.00565 & 0.00000 \\
0.30000 & 0.00000 & 0.00000 & 0.00000 \\
0.40684 & 0.00000 & 0.00684 & 0.00000 \\
0.50670 & 0.00000 & 0.02098 & 0.00000 \\
0.60192 & 0.00000 & 0.03049 & 0.00000 \\
0.69370 & 0.00000 & 0.03656 & 0.00000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DISP & AT NODE: & 48 \\
\hline DISP & AT NODE: & 49 \\
\hline DISP & AT NODE: & 50 \\
\hline DISP & AT NODE: & 51 \\
\hline DISP & AT NODE: & 52 \\
\hline DISP & AT NODE: & 53 \\
\hline DISP & AT NODE: & 54 \\
\hline DISP & AT NODE: & 55 \\
\hline DISP & AT NODE: & 56 \\
\hline DISP & AT NODE: & 57 \\
\hline DISP & AT NODE: & 58 \\
\hline DISP & AT NODE: & 59 \\
\hline DISP & AT NODR: & 60 \\
\hline DISP & AT NODE: & 61 \\
\hline DISP & AT NODE: & 62 \\
\hline DISP & AT NODE: & 63 \\
\hline DISP & AT NODE: & 64 \\
\hline DISP & AT NODE: & 65 \\
\hline DISP & AT NODE: & 88 \\
\hline DISP & AT NODE: & 67 \\
\hline DISP & AT NODE: & 68 \\
\hline DISP & AT NODE: & 69 \\
\hline DISP & AT NODE: & 70 \\
\hline DISP & AT NODE: & 71 \\
\hline DISP & AT NODE: & 72 \\
\hline DISP & AT NODE: & 73 \\
\hline DISP & AT NODE: & 4 \\
\hline DISP & AT NODE: & 75 \\
\hline DISP & AT NODE: & 76 \\
\hline DISP & AT NODE: & 77 \\
\hline DISP & AT NODE: & 78 \\
\hline DISP & AT NODE: & 79 \\
\hline DISP & AT NODE: & 80 \\
\hline DISP & AT NODE: & 81 \\
\hline DISP & AT NODE: & 82 \\
\hline DISP & AT NODE: & 83 \\
\hline DISP & AT NODE: & 84 \\
\hline DISP & AT NODE: & 85 \\
\hline DISP & AT NODE: & 86 \\
\hline DISP & AT NODE: & 87 \\
\hline DISP & AT NODE: & 8 \\
\hline DISP & AT NODE: & 89 \\
\hline DISP & AT NODE: & 90 \\
\hline DISP & AT NODE: & 91 \\
\hline DISP & AT NODE: & 2 \\
\hline DISP & AT NODE: & 93 \\
\hline DISP & AT NODE: & 94 \\
\hline DISP & AT NODE: & 95 \\
\hline DISP & AT NODE: & 96 \\
\hline DISP & AT NODE: &  \\
\hline DISP & AT NODE: & 98 \\
\hline DISP & AT NODE: & 99 \\
\hline DISP & AT NODE: & 10 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0.78126 & 0.00000 & 0.03840 & 0.00000 & DISP AT & NODE: & 101 \\
0.86732 & 0.00000 & 0.03875 & 0.00000 & DISP AT & NODE: & 102 \\
0.95295 & 0.00000 & 0.03866 & 0.00000 & DISP AT & NODE: & 103 \\
1.03858 & 0.00000 & 0.03858 & 0.00000 & DISP AT NODE: & 104
\end{tabular}
c）Constant Friction model as the limit of sticking：
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline X & \(Y\) & \(\Delta X\) & \(\Delta Y\) & & & & \\
\hline －0．02672 & 0.44948 & －0．02672 & －0．05052 & DISP & \(A T\) & NODE： & \\
\hline 0.08439 & 0.44948 & －0．01561 & －0．05052 & DISP & AT & NODE： & 2 \\
\hline 0.19432 & 0.44948 & －0．00568 & －0．05052 & DISP & AT & NODET & \\
\hline 0.30000 & 0.44948 & 0.00000 & －0．05052 & DISP & AT & HODC & \\
\hline 0.40043 & 0.44948 & 0.00043 & －0．05052 & DISP & AT & & \\
\hline －0．03773 & 0.41241 & －0．03778 & －0．04473 & DISP & AT & NODES & 6 \\
\hline 0.07690 & 0.41104 & －0．02310 & －0．04610 & DISP & AT & NODE： & 7 \\
\hline 0.18810 & 0.41063 & －0．01190 & －0．04651 & DISP & AT & NODE： & 8 \\
\hline 0.29805 & 0.40932 & －0．00194 & －0．04782 & DISP & AT & NODE： & 9 \\
\hline 0.40517 & 0.40780 & 0.00517 & －0．04935 & DISP & AT & NODE： & 0 \\
\hline 0.47102 & 0.42382 & 0.00531 & －0．03333 & DISP & AT & NODE： & 1 \\
\hline －0．04339 & 0.37487 & －0．04339 & －0．03942 & DISP & AT & NODE： & 12 \\
\hline 0.07023 & 0.37375 & －0．02977 & －0．04054 & DISP & AT & NODE： & 13 \\
\hline 0.18432 & 0.37226 & －0．01568 & －0．04202 & DISP & AT & NODE： & 4 \\
\hline 0.29573 & 0.37061 & －0．00427 & －0．04368 & DISP & AT & NODE： & 15 \\
\hline 0.40632 & 0.36823 & 0.00632 & －0．04606 & DISP & AT & NODE： & 16 \\
\hline 0.49704 & 0.38190 & 0.01133 & －0．03239 & DISP & AT & NODE： & 17 \\
\hline 0.58226 & 0.39665 & 0.01083 & －0．01763 & DISP & AT & NODE： & 18 \\
\hline －0．04676 & 0.33733 & －0．04676 & －0．03410 & DISP & AT & NODE： & 9 \\
\hline 0.06699 & 0.33612 & －0．03301 & －0．03531 & DISP & AT & NODE： & 20 \\
\hline 0.18036 & 0.33479 & －0．01964 & －0．03664 & DISP & AT & NODE： & 21 \\
\hline 0.29397 & 0.33235 & －0．00603 & －0．03908 & DISP & AT & NODE： & 22 \\
\hline 0.40580 & 0.32972 & 0.00580 & －0．04171 & DISP & AT & NODE： & 23 \\
\hline 0.49906 & 0.34111 & 0.01334 & －0．03032 & DISP & AT & NODE： & 24 \\
\hline 0.58733 & 0.35428 & 0.01590 & －0．01715 & DISP & AT & NODE： & 5 \\
\hline 0.67272 & 0.36431 & 0.01558 & －0．00712 & DISP & AT & NODE： & 26 \\
\hline －0．04940 & 0.30003 & －0．04940 & －0．02854 & DISP & AT & NODE： & 27 \\
\hline 0.06510 & 0.29852 & －0．03490 & －0．03005 & DISP & AT & NODE： & 28 \\
\hline 0.17800 & 0.20706 & －0．02149 & －0．03151 & DISP & AT & NODE： & 29 \\
\hline 0.29109 & 0.29472 & －0．00831 & －0．03386 & DISP & AT & NODE： & 30 \\
\hline 0.40490 & 0.29157 & 0.00492 & －0．03700 & DISP & AT & NODE： & 1 \\
\hline 0.44998 & 0.30093 & 0.01326 & －0．02759 & DISP & AT & NODE： & 32 \\
\hline 0.58903 & 0.31250 & 0.01761 & －0．01607 & DISP & AT & NODE： & 33 \\
\hline 0.67577 & 0.32160 & 0.01863 & －0．00697 & DISP & AT & NODE： & 34 \\
\hline 0.76140 & 0.32646 & 0.01855 & －0．00211 & DISP & AT & NODE： & 35 \\
\hline －0．04791 & 0.26232 & －0．04991 & －0．02339 & DISP & AT & NODE： & 36 \\
\hline 0.00345 & 0.25120 & －0．03655 & －0．02452 & DISP & AT & NODE： & 37 \\
\hline 2．277E5 & 0.25934 & －0．02215 & －0．02637 & DISP & AT & NODE： & 38 \\
\hline －こ̇ぐメー & 0.25697 & －0．00906 & －0．02882 & DISP & AT & NODE： & 39 \\
\hline ソ．40こ77 & 0.25580 & 0.00377 & －0．03101 & DISP & AT & NODE： & 40 \\
\hline 」．49ミか1 & 0.25113 & 0.01290 & －0．02458 & DISP & AT & NODE： & 41 \\
\hline －．5このここ & ？．27124 & 0.01752 & －0．01447 & DISP & AT & NODE： & 42 \\
\hline う．こ？でら & こ．こ？915 & 0.22011 & －0．00656 & DISP & AT & NODE： & 43 \\
\hline フこ？ 2 & こ．こ？36i & 0.02032 & －0．00207 & DISP & AT & NODE： & 44 \\
\hline  & －． 23530 & 0.02031 & －0．00042 & DISP & AT & NODE： & 45 \\
\hline いこっこ & －2？ 40 & －1．04691 & －0．01946 & DISP & AT & NODE： & 46 \\
\hline & － & －\(\because\) ？ 710 & － 0.01937 & DISP & AT & node： & 47 \\
\hline & & 3 & －C．020：2 & DISP & A & NOD & 48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2：\({ }^{\text {a }}\) & －．こッチン & 94 & SP & \(\triangle T\) & NODE： & 49 \\
\hline & 21Eつ7 & ． 9265 & －-12609 & IISP & AT & VODE： & 50 \\
\hline & & －11215 & －5．02135 & DISP & \(4 T\) & VODE： & 51 \\
\hline & J． 23034 & \(\because .1175 ?\) & －i．01272 & DISP & AT & NODE： & 52 \\
\hline フ－3 & ）． 2370 \％ & 9．02302 & －0．02577 & OISP & AT & ICDE： & 53 \\
\hline 7－シy） & 3.24024 & ）． 12104 & －0．00201 & DISP & AT & NODE： & 54 \\
\hline ムらう & 3.24245 & 9．92972 & －6．00041 & OISP & AT & NODE： & 55 \\
\hline 55.7 & J． 24274 & 0.22092 & －6．00012 & DISP & AT & VODE： & 56 \\
\hline J．04j＋3 & 3．13425 & －2． 24343 & －0．01575 & OISP & AT & NODE： & 57 \\
\hline う．うっまこう & \(\because .27455\) & －0． 23434 & －0．01545 & DISP & AT & NODE： & 58 \\
\hline U．175i？ & －． 3.462 & － \(2.224 \% 2\) & －0．01538 & 2ISP & AT & NODE： & 59 \\
\hline v．2．う75 & \(\therefore .13122\) & －0．21025 & －0．01818 & DISP & AT & NODE： & 60 \\
\hline \(0 .+5412\) & 1．17773 & n． 2947 ？ & －0．02227 & DISP & AT & NODE： & 61 \\
\hline jo＋ミ10 & －．13167 & 0.21239 & －0．01833 & DISP & AT & NODE： & 62 \\
\hline U．5こ3＋b & c． 13915 & 2.01703 & －0．01085 & DISP & AT & NODE： & 63 \\
\hline 3．07530 & \(\because 17509\) & ， 21971 & －c．03491 & DISP & AT & NODE： & 64 \\
\hline う．アらご枵 & － 17827 & C． 22075 & －0．00171 & DISP & AT & NODE： & 65 \\
\hline う．34705 & 2.19957 & 3．22103 & －0．00041 & DISP & AT & NODE： & 66 \\
\hline 勺．735，7 & 2.1998 K & 0.22109 & －0．00012 & OISP & AT & NODE： & 67 \\
\hline 1．02：03 & 9．17997 & 2． 02109 & －0．00003 & DISP & AT & NODE： & 68 \\
\hline － 3.33923 & 2.12296 & －0．03923 & －0．01037 & DISP & AT & NODE： & 69 \\
\hline 0.00913 & 0.12340 & －？．0303？ & －0．00988 & DISP & AT & NODE： & 70 \\
\hline J．17773 & 0.12363 & －9． 22227 & －0．00970 & DISP & AT & NODE： & 71 \\
\hline J．23627 & 0.12405 & －0．01373 & －0．00929 & DISP & AT & NODE： & 72 \\
\hline 0.40130 & 0.12005 & 0.00130 & －0．01328 & DISP & AT & NODE： & 73 \\
\hline 0.45796 & 0.11945 & 0.31224 & －0．01388 & DISP & AT & NODE： & 74 \\
\hline 0.5 E800 & 0.12517 & 0.01717 & －0．00816 & DISP & AT & NODE： & 75 \\
\hline J．67693 & 0.12937 & 0.21970 & －0．00346 & OISP & AT & NODE： & 76 \\
\hline 0.703 こ？ & 0.13209 & 0.02095 & －0．00124 & DISP & AT & NODE： & 77 \\
\hline 0.34977 & 0.13304 & \(0.021: 9\) & －0．00029 & DISP & AT & ？ODE： & 78 \\
\hline 3.93543 & 0.13323 & 0.02119 & －0．00011 & DISP & AT & \(\because O D E:\) & 79 \\
\hline 1.02119 & 0.13328 & 0.02118 & －0．00005 & DISP & AT & VODE： & 80 \\
\hline 0.03377 & 0.05133 & －0．03377 & －0．00534 & DISP & AT & NODE： & 81 \\
\hline ，－07375 & 3． 06196 & －0．02505 & －0．00471 & DISP & AT & NODE： & 82 \\
\hline J．18172 & 0.06208 & －0．01328 & －0．00458 & DISP & AT & NODE： & 83 \\
\hline J． 28915 & 0.05242 & －0．01085 & －0．00425 & DISP & AT & NODE： & 84 \\
\hline － 3.3531 & 0.05253 & －0．00369 & －0．00403 & DISP & AT & NODE： & 85 \\
\hline J． 47355 & 0.05935 & 0.00784 & －0．00732 & DISP & AT & NODE： & 86 \\
\hline ง．58754 & 0.05147 & 0.01611 & －0．00520 & DISP & AT & NODE： & 87 \\
\hline J．0755 & 0.05467 & 0.01940 & －0．00200 & DISP & AT & NODE： & 88 \\
\hline 0.75357 & 0.05599 & 0.02071 & －0．00067 & DISP & AT & NODE： & 89 \\
\hline 0.94908 & 0.06648 & 0.02111 & －0．00018 & DISP & AT & NODE： & 90 \\
\hline 0.73543 & 0.06660 & 0.02114 & －0．00007 & DISP & AT & NODE： & 91 \\
\hline 1．02117 & 0 － 66659 & 0.02117 & －0．00008 & DISP & AT & NODE： & 92 \\
\hline －0．02924 & 0 armo 00 & －0．02924 & 0.00000 & DISP & AT & NODE： & 93 \\
\hline 0.07901 & 0.00000 & －0．02009 & 0.00000 & DISP & AT & NODE： & 94 \\
\hline 0.13563 & \(0=00000\) & －0．01412 & 0.00000 & DISP & AT & NODE： & 95 \\
\hline 0.27225 & 0.00000 & －0．00775 & 0.00000 & DISP & AT & NODE： & 96 \\
\hline －．39773 & 0.00000 & －0．00227 & 0.00000 & DISP & AT & NODE： & 97 \\
\hline J．40571 & 0.00000 & 0.00000 & 0.00000 & DISP & AT & NODE： & 98 \\
\hline 0.58104 & 0.00000 & 0.20961 & 0.00000 & DISP & AT & NODE： & 99 \\
\hline 0.07330 & 0.010000 & 0.21515 & 0.00000 & DISP & AT & NODE： & 100 \\
\hline － 70122 & 0.00000 & 0.01835 & 0.00000 & DISP & AT & NODE： & 101 \\
\hline 0.34753 & 0.00000 & 0.01895 & 0.00000 & OISP & AT & NODE： & 102 \\
\hline 0.93335 & 0.00000 & 0.01907 & 0.00000 & DISP & AT & NODE： & 103 \\
\hline 1.01909 & 0.00000 & 0.21909 & 0.00000 & DISP & AT & NODE： & 104 \\
\hline
\end{tabular}

4- The computed forging load in the Wedge-Shaped specimen:
a) Bay's Friction model as the (asperity angle=0) as the limit of sticking:
\begin{tabular}{|c|c|}
\hline Force (pound) & Reduction in height \% \\
\hline 923.90 & 0.0688498 \\
\hline 1698.37 & 0.1309693 \\
\hline 1736.88 & 0.1412282 \\
\hline 1749.39 & 0.1456203 \\
\hline 1772.08 & 0.1543050 \\
\hline 1797.72 & 0.1655355 \\
\hline 1819.19 & 0.1761579 \\
\hline 1880.09 & 0.2120082 \\
\hline 1918.93 & 0.2413612 \\
\hline 1972.44 & 0.2873378 \\
\hline 2011.83 & 0.3301894 \\
\hline 2027.41 & 0.3508841 \\
\hline 2139.11 & 0.5185214 \\
\hline 2192.35 & 0.6346235 \\
\hline 2294.96 & 0.8891857 \\
\hline 2329.29 & 0.9831882 \\
\hline 2388.59 & 1.1508088 \\
\hline 2486.89 & 1.4341595 \\
\hline 2576.09 & 1.6943870 \\
\hline 2675.30 & 1.9858477 \\
\hline 2708.61 & 2.0716910 \\
\hline 2797.41 & 2.3456366 \\
\hline 2896.87 & 2.6117108 \\
\hline 2954.62 & 2.7263818 \\
\hline 3051.96 & 3.0263920 \\
\hline 3167.60 & 3.3263917 \\
\hline 3355.61 & 3.6263916 \\
\hline 3476.77 & 3.8198411 \\
\hline 3496.84 & 3.8803208 \\
\hline 3529.92 & 3.9461401 \\
\hline 3621.58 & 4.2461400 \\
\hline 3646.00 & 4.3165030 \\
\hline 3746.44 & 4.6165032 \\
\hline 3849.45 & 4.9165030 \\
\hline 3953.05 & 5.2081552 \\
\hline 4059.03 & 5.5081549 \\
\hline 4074.93 & 5.5449519 \\
\hline 4183.28 & 5.8449516 \\
\hline 4207.89 & 5.8908734 \\
\hline 4313.18 & 6.1908731 \\
\hline
\end{tabular}
\begin{tabular}{rr}
4432.74 & 6.4559660 \\
4579.98 & 6.7559662 \\
4601.74 & 6.7909918 \\
4745.87 & 7.0909920 \\
4854.18 & 7.2695627 \\
4955.06 & 7.5695824 \\
5072.90 & 7.8695826 \\
5191.78 & 8.1695623 \\
5227.79 & 8.2462034 \\
5322.79 & 8.5462036 \\
5412.42 & 8.8462029 \\
5515.72 & 9.1462030 \\
5619.70 & 9.4462032 \\
5753.26 & 9.7462025 \\
5889.48 & 10.0462027
\end{tabular}
b) Bay's Friction model (asperity angle=15) as the limit of sticking:
\begin{tabular}{|c|c|}
\hline Force (pound) & Reduction in height \% \\
\hline 785.31 & 0.0688498 \\
\hline 1443.61 & 0.1309893 \\
\hline 1476.43 & 0.1412282 \\
\hline 1486.98 & 0.1458203 \\
\hline 1506.27 & 0.1543050 \\
\hline 1528.06 & 0.1655355 \\
\hline 1546.31 & 0.1761579 \\
\hline 1598.07 & 0.2120082 \\
\hline 1631.09 & 0.2413612 \\
\hline 1676.57 & 0.2873378 \\
\hline 1710.05 & 0.3301894 \\
\hline 1723.34 & 0.3510185 \\
\hline 1818.61 & 0.5198947 \\
\hline 1864.03 & 0.6383848 \\
\hline 1952.72 & 0.9036185 \\
\hline 2020.39 & 1.1392404 \\
\hline 2055.15 & 1.2701501 \\
\hline 2132.56 & 1.5701500 \\
\hline 2189.83 & 1.7839741 \\
\hline 2289.68 & 2.0839741 \\
\hline 2407.41 & 2.3839743 \\
\hline 2526.56 & 2.6839743 \\
\hline 2696.72 & 2.9839742 \\
\hline 2855.22 & 3.2839742 \\
\hline 3000.58 & 3.5839741 \\
\hline 3083.57 & 3.8839738 \\
\hline 3145.95 & 4.1839738 \\
\hline 3170.21 & 4.3148227 \\
\hline 3178.81 & 4.3898458 \\
\hline 3300.04 & 4.6898460 \\
\hline 3400.37 & 4.9898458 \\
\hline 3501.18 & 5.2898455 \\
\hline 3584.24 & 5.5898452 \\
\hline 3656.74 & 5.8898454 \\
\hline 3733.66 & 6.1898451 \\
\hline 3913.23 & 6.4898453 \\
\hline 4154.39 & 6.7898455 \\
\hline 4295.93 & 7.0888452 \\
\hline 4398.75 & 7.3898449 \\
\hline 4483.75 & 7.6462126 \\
\hline 4583.11 & 7.9462128 \\
\hline 4671.67 & 8.2462120 \\
\hline 4766.93 & 8.5462122 \\
\hline 4846.58 & 8.8462124 \\
\hline 4932.66 & 9.1462116 \\
\hline 4850.19 & 9.2194080 \\
\hline 5014.77 & 9.5194082 \\
\hline 5083.17 & 9.8194075 \\
\hline 5129.30 & 10.0398865 \\
\hline
\end{tabular}
c) Constant Friction model as the limit of sticking:
\begin{tabular}{|c|c|}
\hline Force (Pound) & Reduction in height \% \\
\hline 923.90 & 0.0688498 \\
\hline 1111.58 & 0.0828399 \\
\hline 1200.24 & 0.0895286 \\
\hline 1536.17 & 0.1148519 \\
\hline 1564.95 & 0.1176124 \\
\hline 1600.65 & 0.1220989 \\
\hline 1619.89 & 0.1250570 \\
\hline 1634.52 & 0.1275557 \\
\hline 1682.69 & 0.1364742 \\
\hline 1731.92 & 0.1475835 \\
\hline 1735.70 & 0.1484974 \\
\hline 1805.89 & 0.1662754 \\
\hline 1816.99 & 0.1694434 \\
\hline 1870.47 & 0.1849853 \\
\hline 1935.61 & 0.2058427 \\
\hline 1964.92 & 0.2160415 \\
\hline 2100.45 & 0.2665507 \\
\hline 2153.48 & 0.2907103 \\
\hline 2162.65 & 0.2953303 \\
\hline 2322.84 & 0.3780988 \\
\hline 2346.02 & 0.3943539 \\
\hline 2368.54 & 0.4109188 \\
\hline 2434.20 & 0.4615031 \\
\hline 2441.17 & 0.4677172 \\
\hline 2562.87 & 0.5780740 \\
\hline 2638.57 & 0.6662615 \\
\hline 2667. 56 & 0.7061642 \\
\hline 2767.89 & 0.8502644 \\
\hline 2901.57 & 1.0650535 \\
\hline 3067.49 & 1.3650534 \\
\hline 3221.73 & 1.6650535 \\
\hline 3357.03 & 1.9650536 \\
\hline 3560.15 & 2.2650535 \\
\hline 3770.66 & 2.5239460 \\
\hline 4061.70 & 2.8239460 \\
\hline 4401.43 & 3.1239462 \\
\hline 4711.96 & 3.4239459 \\
\hline 4836.58 & 3.5843897 \\
\hline 4924.19 & 3.8843896 \\
\hline 5016.52 & 4.1843896 \\
\hline 5118.15 & 4.4843893 \\
\hline 5227.01 & 4.7843890 \\
\hline 5242.66 & 4.8230171 \\
\hline 5350.48 & 5.1230168 \\
\hline 5460.12 & 5.4230170 \\
\hline 5579.69 & 5.7230167 \\
\hline
\end{tabular}
\begin{tabular}{lr}
5702.92 & 6.0230165 \\
5828.01 & 6.3230186 \\
5944.78 & 6.6230164 \\
8057.68 & 6.9230161 \\
6160.25 & 7.2230163 \\
6256.15 & 7.5230160 \\
6347.31 & 7.8230157 \\
6432.55 & 8.1230154 \\
6516.97 & 8.4230156 \\
6596.81 & 9.7230158 \\
6678.24 & 9.3230150 \\
6754.85 & 9.5672522 \\
6819.67 & 9.8035860 \\
6876.46 & 10.1035862 \\
6949.34 &
\end{tabular}

\section*{VITA}

Ahmad Assempoor
Candidate for the Degree of
Doctor of Philosophy

Thesis: CONSIDERATION OF FRICTIONAL BOUNDARY MODELLING IN METAL FORMING Major Field: Mechanical Engineering

Biographical:
Personal Data: Born in Tehran, Iran, June 20, 1955, the son of Mr . and Mrs. Assempoor.

Education: Graduated from Kharazmi High School, Tehran, Iran, in June 1974; received the Bachelor of Science degree in Mechanical Engineering from Tehran Polytechnic, Tehran, Iran in September 1979; received the Master of Science, in Mechanical Engineering from Tehran Polytechnic, Tehran, Iran, in December 1985; completed requirements for the Doctor of Philosophy degree in December, 1989, at Oklahoma State University, Stillwater, Oklahoma.

Professional Experience: Design Engineer, Iranian Research Organization for Science and Technology, January 1983, to February 1984; Design Engineer, National Iranian Gas Company, February 1984, to August 1985; Graduate teaching and research assistant, School of Mechanical and Aerospace Engineering, Oklahoma State University, August, 1987 to present.```


[^0]:    Figure 2.6 Combination of Amontons and Constant friction Laws

[^1]:    Figure 2.26 Distribution of friction according to equation 2.26 around the neutral point

