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junction area

Young's modulus
tangential force
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equations

time
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a constant used by Bowden and Tabor to simplify the yield
criterion in three-dimension

contact area ratio in friction model proposed by Bay,
also g = f/(1-f) in modelling of friction by Hartley [16]

asperity angle before deformation
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coefficient of friction

Poisson ratio
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CHAPTER I

INTRODUCTION

In the practical analysis of metal forming processes, particular
attention must be paid to the die boundary conditions. Controlling the
free surfaces and modelling the frictional forces significantly
influence the results of the analysis.

The effect of the friction in metal forming is very complex. I. V.
Krageli'ski and V. S. Shchedrov (1956) in their introduction to the
"Development of the Science of Friction" wrote:

"The physical aspects of dry friction are not yet
sufficiently clear. The engineer who encounters friction
everywhere is not yet only incapable of controlling it, but
is even unable to allow for it correctly, whereas the

physicist lacks the data to provide comprehensive

explanation for the phenomena.

Muurice Godet (1988) in his discussion and conclusion of "Modeling of
Friction and Wear Phenomena" wrote: Neither friction nor wear are
sufficiently understood to offer a solid basis for modeling.

Besides the complexity of the analysis another problem is faced
when friction as a tangential force is modelled and introduced to an
approximate numerical or analytical method in bulk deformation
analysis. This difficulty arises from the existence of a point (neutral
point or region) at the boundary where the friction force changes its
orientation. In complex geometries (non-symmetric die or workpiece),

finding the location of this point is difficult and proposed methods

have, to date, proven unsuccessful. Also, an abrupt jump in the



friction value (positive to negative) at the neutral point in the
friction model1ing makes the analysis of the deformation i11
conditioned.

Another problem encountered is the change of the geometry during
the deformation, parts of the free boundary come to touch the dies.
Sometimes, by changing the free surfaces, the position (positions) and
the number of the neutral points change. This results in a change in
the flow direction which makes the modelling of friction even more

complicated.

1.1 Objective and Scope

This work concerns the development of a general methodology for
finite-element modelling of friction in non-symmetric geometries. The
basic approach involves first fixing the boundary nodes to the die, and
then appropriately applying a friction model as the 1imit of the
interface shear strength and the boundary between sliding and sticking
conditions.

Some basic friction laws and theories suitable for numerical
modelling are discussed in Chapter II. Previous works concerning finite
element modelling of friction are also addressed. Some aspects of
process modelling are outlined in Chapter III. To examine any friction
model, having access to a source code is necessary. The source codes of
softwares, typically commercial, were not available. Therefore, an
elastic-plastic finite element code was developed and is discussed in
Chapter IV. The method of incorporating the frictional boundary
conditions into finite-element simulation of plastic deformation in the

present work is also addressed in Chapter IV. Chapters V and VI are



devoted to verifications of the elastic-plastic program and the
method(s) of friction modelling developed in Chapter IV. Chapter VII
provides a summary and outlines the main conclusions of this work. This

chapter also outlines some recommendations for future research.



CHAPTER II
FRICTION AND MODELLING OF FRICTION IN METAL FORMING
2.1 Friction

Friction is most commonly characterized by using the constant
coefficient of friction in the Amontons/Coulomb Law or by using the
constant friction factor in the Law of Constant Friction. In some metal
forming processes such as forging, when the hydrostatic pressure is
high, application of the constant coefficient of friction is
questionable. Also, there is some evidence [1] that the application of
the Constant Friction Law along the entire interface is incorrect. In
their most recent friction model, Bay [2] pointed out that Amontons Law
is valid only at low pressures while the Constant Friction Law is
permissible at high pressures. Neither of them is valid at the
intermediate pressures. It is the objective of this section to
investigate the sources of these models andvto provide some basis for

modelling of friction in Chapter IV.

2.1.1 Causes of Friction

Friction is the resistance to the relative movement (sliding)
between two surfaces in contact. Due to the mechanism of surface
interaction, friction has a dual molecular-mechanical nature.

In microscopic scale, surfaces are rough no matter how finely

finished they are (Figure 2.1). One source of friction is the asperity



Figure 2.1 Typical surface map [ 7 ].
Lighter areas correspond
to higher surface.

FELLASAA AT
W

Wiy 7
i

Figure 2.2 Asperity interlocking.

T
7 77

—-—

—




interlocking which is illustrated in Figure 2.2. According to this
figure s1iding cannot take place without cutting or deforming the softer
asperities. Also it is possible the asperities of the harder material
(die) plow through the softer one (workpiece) and contribute to the
frictional force (Figure 2.3). At high pressure, atoms approach each
other and interatomic forces come into play. It is said that adhesion
takes place (Figure 2.4) When the surfaces are clean or the surface
contaminant films are broken through, the metallic adhesion that takes
place is very strong. Adhesion can be the weaker joints between the
contaminant films of the contacting surfaces. In bulk deformation,

metallic adhesion has been known as the major source of friction.

2.1.2 laws of Friction

There are two basic friction laws which are empirical in nature.
The first law states that friction is independent of the apparent
contact area. The second law indicates that friction is proportional to
the normal load between the surfaces. These laws are due to the French
engineer G. Amontons (1693) and are usually referred to as 'Amontons

Laws'. Laws of friction enable us to define a coefficient of friction:

(2.1)

-
1}
=|m
"

v~

where: u = coefficient of friction
F = tangential force required for sliding
1 = interface shear stress
W = normal force
P = pressure



v

Figure 2.3 Plowing




According to this equation, F is proportional to W when y is constant.
In metalworking, this is not necessarily realistic. For example in
forging, due to the hydrostatic pressure, P reaches a multiple of the
equivalent yield stress (o). Since the maximum 1imit of t is the bulk
shear strength (K = 1//3 00), u drops to a very unrealistic value
otherwise uP > K which means the interface shear strength is higher than
K (Figure 2.5). Therefore, the coefficient of friction is meaningless
when P is very high.

To avoid this difficulty, the interface shear strength (friction

stress) is sometimes described by:
1 = fk (2.2)

where f (frictional shear factor) is a constant less than one. f =0
means the frictionless interface and f = 1 means condition of full
sticking. Equation 2.2 is known as thé Law of Constant Friction.

The Law of Constant Friction is mathematically more convenient than
Amontons Law because the value of k is known from the beginning while in
contrast, the value of P must be found. Sometimes it is suitable to use
the combination of these laws in metal forming (Figure 2.6).

Values of u and f are functions of several factors. Temperature,
pressure, hardness, velocity, atmosphere, solubility of the mating pairs
and surface crystal structure have shown to have some influence on
friction. The effects of these factors have been well summarized in
detail [3, 4]. Due to the variation of some of these factors, within
the die/workpiece contact zone, u and f must also vary. Therefore, an
average p or f is most often assumed in calculations. This is

permissible for force calculation but can lead to errors in the
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calculation of strain distribution [5, pp. 16].

2.1.3 Theory of Adhesion

2.1.3.1 Initial Theory of Adhesion. The theory of adhesion, due

to Bowden and Tabor [6], is based on the analysis of real contact
between rough surfaces in plastic deformation of the individual surface
asperities. According to this theory, when two clean metallic surfaces
are pressed together, they make contact only at the tips of the
asperities. The true contact area increases by plastic deformation of
the asperities until it is sufficient to carry the load (Figure 2.7).
If the load is W and the yield pressure of the metal is P, then the

contact area A between the two asperities is:
W
A =5 (2.3)
Po

Bowden and Tabor stated that strong adhesion occurs at the regions of
real contact and before sliding takes place the adhered junctions must
be sheared. If t is the required shear stress for shearing of the

junctions then the friction force F is:

F = At + Fp (2.4)
where Fp is an extra force due to the mechanical source of friction
(plowing). Bowden and Tabor stated that for most situations with
metallic surfaces Fp is small compared with Ar and can be neglected.
Therefore, the friction force can be written as:

F=At= (2.5)

oI

10



Figure 2.7 Contact between two iso-
lated asperities

(a) (b)

Figure 2.8 Junction area between the asperities.

a) Contact under normal load alone
b) Contact with application of ta-
ngential force F.
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This equation indicates that F is proportional to the normal load W and
independent of the area A (Amontons Law). According to Equation 2.5 the

coefficient of friction p is:

T

=l

= X 2.6
i (2.6)

For an ideal plastic material the local yield pressure P is three times

the yield stress o, [6, pp. 323] or:
Po = 3og (2.7)

In clean metals, under vacuum, t is equal to the yield shear stress K of

material. Also, according to the Von Mises yield criterion:

r=k=L o (2.8)
V3
Inserting Equations 2.7 and 2.8 into Equation 2.6:
1
p=—=0,2 (2.9)
3/3

However, the coefficient of friction in most clean metals is much higher
than 0.2. One may explain this due to the work-hardening characteristic
of the real material where 1 increases during the deformation process.
Bowden and Tabor indicated that this was an unlikely explanation since

P, increases parallel in t and it is for this reason that the hardness

)
of metals has 1little effect on the coefficient of friction. This
problem led Bowden and Tabor to review the simple theory and to present

a more realistic description of friction in terms of adhesion.

2.1.3.2 Modified Theory of Adhesion. The simple theory of adhesion

12
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was developed in the absence of the tangential force F from the
beginning. In other words, the normal pressure P was independent of the

shear stress t. This led to equation:
N
A= B (2.10)

In the real condition when the tangential force F is applied, due to the
theory of plasticity, yielding in the junction must occur as a result of
the combined normal and shear stresses. To illustrate this consider the
simplified two-dimensional model in Figure 2.8. In the absence of the
tangential force (Figure 2.8a) the material starts to flow when the
pressure reaches the yield pressure P, and area A can be found according
to Equation 2.10. Now if a tangential force F (friction) is gradually
applied (Figure 2.8b), the material continues to flow under the

condition:
P™ + 3t = K (2.11)

where K is a constant comparable to the yield stress of the metal. At

the beginning when t is zero P = P Therefore, Equation 2.11 becomes:

o
(2.12)

According to this equation when shear stress increases, further plastic
flow occurs and the contact area A increases. When A increases,
pressure (W/A) and shear stress (1) drops. Again shear stress must

increase to a value such that the combined stresses satisfy Equation



2.12 and further junction growth occurs. According to this model, there
is a steady junction growth in the area of contact as t increases.

Based on Equation 2.12, when shear stress reaches the yield shear stress
of the material k, pressure becomes zero. Under this condition to carry
the load (W = PA) surface area should approach infinity. This is true
only for absolutely clean surfaces in vacuum (s1iding never occurs).
However, due to the weak contaminant films at the interface, : never
reaches k. For the three dimensional case the criterion of plastic

flow over the contact region is:
_ 2
P + at” = K (2.13)

where a is a suitable constant and its value does not greatly affect the
amount of junction growth in many practical cases (a« = 9 in [6], a« = 27
in [2]). Again, when shear stress is zero K is equal to the yield
pressure P,. Therefore,
P + at” =P (2.14)

Equation 2.14 is similar to Equation 2.12 and the same mechanism of
junction growth can be explained for the three dimensional case.

According to the above discussion, for clean metals large-scale
junction area is possible. This results in a higher coefficient of

friction which can be confirmed experimentally [ 7, pp. 83].

2.1.3.3 Condition of Macroscopic Sliding. In the preceding

section it was shown that due to the contaminant films such as oxides,

the shear strength of the interface is less than k. In other words if

14



"f" is a positive constant Tess than one then:

interface shear strength = fk (2.

In Equation 2.15 when © = fk the interface cannot resist and sliding

occurs (Figure 2.9). Therefore, the condition of sliding is:

2 2,2 2

P™ + af k™ = PO (2.
In Equation 2.14 when pressure is zero (t = k)
ak? = p Z (2.
Inserting Equation 2.17 into Equation 2.16:
p? 4+ of2k? = ak? (2.
or
P2 = ak?(1 - £2) (2.
The coefficient of friction u becomes:
" _F _ fKA _ f (2

When f = 1 (uncontaminate metals in vacuum), u is infinity. In this

15)

16)

17)

18)

19)

20)

condition the interface shear strength is equal to K and junction growth

never ceases (A » «). However, even a small amount of contaminant (e.g.

moisture in the atmosphere) causes a sudden fall in coefficient of

15



T= K

Ceasing of the
junection growth

Figure 2.9 Commencement of sliding

Figure 2.10 Coefficient of friction as function
of £ and oo . The exact value of «
is important only at large f.

16



friction (Figure 2.10). This is due to the weakening of the interface
which in turn causes the ceasing of junction growth and sliding of one
surface on the other.

Equation 2.20 indicates the condition for the start of gross
sliding. S1iding commences when a maximum static frictional resistance
is developed and the junction separates. At this point frictional
resistance is zero but new junctions form elsewhere and the process is
continued this way (stick-slip). The static frictional resistance
persists for a distance of the order of 1074 cm as s1iding commences

-3 cm (8, pp. 35], when

then its magnitude falls up to a distance of 10
the kinetic component of frictional resistance is reached (Figure
2.11). The magnitude of kinetic friction depends on the life of the
stationary contact. It is small when the contact time is measurable in
milliseconds and large when it is a few seconds but always smaller than

the static friction.

2.1.4 Theory of Friction By Halling and Edwards

After Bowden and Tabor, a number of researchers were inspired by
the analysis of plastic deformation of isolated asperities to develop a
more advanced frictional model. Most important amongst these are
Edwards and Halling [7, 9]. Considering two wedge-shaped asperities
(Figure 2.12) and using slip-1ine and upper-bound analyses, a solution
was proposed which enables the value of coefficient of friction to be
obtained at each time interval during the 1ife history of a junction
interaction. In this theory, the shear and normal forces are calculated
from the first contact until the asperities separate (Figure 2.13). The

coefficient of friction,u, is the ratio of the instantaneous shear force

17
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Figure 2.11 Schematic representation of
static and kinetic frict-
ion

Figure 2.12 The idealized wedge-shaped
asperities in Edward and

Halling theory
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and the instantaneous normal force. Therefore, the coefficient of
friction can be calculated from Figure 2.13 and plotted against f for
various junction angles (Figure 2.14). The general relationship

proposed by Edwards and Halling is:

= | f

S S—— 1 - 2.21
T 7 .

a(l - f2)

where ¢ is a function of the geometry and f. ¢ is zero when the
asperity angle is zero. This indicates that the Bowden and Tabor theory

(Equation 2.20) is a special case of the Edwards and Halling theory.

2.1.5 Plastic Interaction of Neighboring Asperities

In Edwards-Halling and Bowden-Tabor theories, the deformation of
each individual asperity was considered isolated. However, at high
pressure, asperities make contact and their deformation cannot be viewed
in isolation. By different slip line models, several aspects of this
problem have been studied by Wanheim, Bay and co-workers and their
results are well summarized in [2].

By a slip-1ine analysis under the statical loading condition,
Wanheim estimated the relationship between the nominal pressure P and
the ratio between real and apparent contact area 8 (Figure 2.15).
According to this analysis, proportionality between g and P exists only
at low pressure. At higher pressure, when the neighboring asperities
make contact, the s8-P curve bends away. At very high pressure, when the
real contact area becomes equal to the apparent contact area, 8 becomes

independent of P.

2.1.5.1 Asperity Deformation With Tangential Force. Analysis of




Fuce

Figure 2.13 The variation of the normal force
W and the friction force F thr-
ough the junction life [ 7 ]

Figure 2.14 The variation of coefficient of
friction with £ for various

junction angle [ 7 ]
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asperity deformation by Wanheim was performed under static contact where
no tangential force (friction) existed. Wanheim, Bay and Peterson [2]
proposed a new slip-line field taking relative sliding and friction
stress in the asperity contact into consideration (Figure 2.16). Since
the angle between the free surface and bordering slip-line must be 45°,
it was assumed that the asperity angle y is small and it remains small
during the deformation (initial value of y is usually less than 15°).
Based on this slip-line field, the real contact area and the friction
stress were computed. Figures 2.17 and 2.18 show the results of this
analysis. In these figures the contact area ratio g (Figure 2.17) and
the normalized friction stress /K (Figure 2.18) are plotted as
functions of the normalized pressure P/q, (a0 = equivalent yield stress)
and friction factor f. At low normal pressure (P/o0 < 1.5) the contact
area ratio and friction increase proportionally to the pressure. At
higher pressure the neighboring asperities interaction start and the
curves are no longer linear. At very high pressure (P > 3.500) the
contact area ratio and friction become constant and independent of
friction factor.

This friction model (Figure 2.18) includes both the Amontons Law
t = yP (Equation 2.1) and the Law of Constant Friction v = fK (Equation
2.2) According to this model the Amontons Law is valid only at low
pressure (P/o, < 1.5). The Constant Friction Law is valid at high
friction (P/oy > 3.5). At the intermediate pressure (1.5 < P/ogy < 3.5)
neither of these laws are valid. Figure 2.18 can be presented by

equation:

t = f8K (2.22)
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2.1.5.2 Effect of Asperity Angle on Friction. In the preceding

analysis it was assumed that the asperity angle remains small during the
deformation. However, this assumption is valid only when friction is
not too large. At high friction, asperities tilt and their angles can
change. In a new slip-line field (Figure 2.19), Bay took the variation
of the asperity angle into consideration. When there is no friction
(Figure 2.19a), the slip-line field remains symmetric. When friction
increases and acts from right to left, the slip-line field becomes
asymmetric (Figure 2.19b, c) and the right asperity angle yp (Figure
2.20) becomes bigger than the left asperity angle vy - In Figure 2.20,
the original asperity ACD is deformed into the quadrangle BCDE and the
right-hand angle of valley increases from Yo to vp whereas the left-hand
angle remains constant YL = Yoo Bay explained that at larger pressure
further change of the asperity slope is small. This development ended
to a comprehensive friction model which is illustrated in Figure 2.21.
In Figure 2.21 (the general friction model) friction has been plotted as
functions of the initial asperity angle Yos friction factor f and
pressure P. The influence of asperity angle is limited when f is

small. For pressure below the two marked lines (P/oy < 1.5 for yj =0
and P/oo < 0.8 for Yo = 15°), friction varies proportionally to pressure
and the Amontons Law can be applied. Above this 1limit the curves become
non-linear and approach a limiting value. The analytical development of
the friction curves in Figure 2.21 are beyond the scope of this work but

the final expressions are:

r__60 . .I.‘. (for P < P') (2.23)
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a)

b)

c)

Figure 2.19 The modified slip line field proposed by
Bay [ 2 ]

Figure 2.20 The asperity geometry before
and after deformation
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and
. . (P'/o, - P/fa )T' /K
%’: ‘T<_ + (f - ]'T(_)(l - EXp[ (f —OTl/K)P?/UO ]] (for P > P') (2.24)

where t' and P' are friction stress and pressure at the 1imit of
proportionality. Up to the 1imit of proportionality the coefficient of
friction u is:

U= f (2.25)

1+ %— + arccos f - ZYR/l - £

Figure 2.22 compares the coefficient of friction according to Equation
2.25 and that by Bowden and Tabor in Egquation 2.20 when o = 27. A very
good agreement is noticed between the Bowden and Tabor's curve and the
curve for Yo = 0° when f ~ 0.6. Based on Figure 2.22 Bay proposed a
simple way for the estimation of the friction factor in metal-forming.
A ring compression test [38] is performed, the coefficient of friction
can be estimated and then Figure 2.22 can be used to find the friction

factor f.

2.2 Review of the Literature in the Inclusion of

Surface friction in thebFinite Element Solutions

Due to the great influence of friction on material flow, several
attempts have been made for the proper inclusion of the surface friction
in metal-forming analyses. Friction distribution and orientation are
the two major problems in any metal forming analysis. Depending on the

methods of handling these two difficulties, three major approaches can
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be found in the literature and this section is concerned with the
discussion of these approaches. Also a brief description of these

methods can be found in Table I.

2.2.1 Direct Method

One approach in finite element modelling of friction is the
introduction of friction as the surface nodal force or surface shear
stress against the motion. The conventional models in this approach

adopt either the Amontons Law v = up (tr - friction stress, u =

coefficient of friction, P = pressure) or the Constant Friction Law t =

fk (f = friction factor, k

shear yield stress of the workpiece). The
direction of the friction is determined to be opposite to the direction
of the material flow.

Application of the Constant Friction Law or the Amontons law all
along the interface causes a sudden jump in friction distribution at the
neutral point, where the flow changes its direction (Figure 2.23).
Experimental observations by some investigators [10, 11] in upsetting of
a circular disk show a linear decrease of the friction towards zero in
the center and such a jump is not 1ikely to occur. Bay [2, pp. 26]
explains that this is due to a central sticking zone (dead zone) where
the shear stress is not large enough to overcome the frictional stress
and sliding cannot occur. The radius of the central sticking zone was
approximated [12] by the upper bound method as a function of the
Diameter/Height ratio (Figures 2.24 a and b). Sometimes, because of the
existence of the sticking zone, the term "neutral region” is used
instead of the'"neutra1 point".

In most cases the location of the neutral point is unknown and
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therefore the flow and friction direction is unpredictable. Such a case
can be observed in compression of a ring. In well lubricated
conditions, the ring deforms in the same way as a solid disk and
material flows radially outward at a rate proportional to the distance
from the center (Figure 2.25a). At low friction, the internal diameter
of the ring increases (Figure 2.25c) and at high friction, the internal
diameter reduces (Figure 2.25b). Thus, due to the unpredictable flow
direction, friction cannot be modelled in the compression of a ring.

In a1l the non-symmetric geometries, the location of the neutral
point (region) is unknown and very few examples can be found in the
literature which examine the effect of friction in the analysis of
deformation in complex geometries by this approach. Park and Kobayashi
[13] in the compression of wedge shaped blocks, modelled the surface
friction as an arc tangent function of the relative velocity between the

die and the workpiece:

rg = -2/ fktan™' (v /a) (2.26)
where: 1o = friction stress
f = friction factor
k = shear yield stress
Vg = relative velocity between the die and the workpiece.
a = a constant several order of magnitude less than the die

velocity
By using Equation 2.26, an abrupt jump in the value of friction at the
neutral point is prevented (Figure 2.26).
According to Equation 2.26 the direction of the surface friction is

specified in the opposite direction to the relative movement of the
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workpiece with respect to the die. In finite element method, to avoid
the singularity condition, at Teast one node should be constrained in
each direction. The position of the constrained nodes have a strong
influence on the velocity field and therefore, the friction direction.
In the complex geometries, it is very difficult to decide the correct
location of the constrained nodes (the best choice is the neutral point
which is unknown) and it is not clear how Kobayashi et al considered the
constraints in their analysis.

Another example of friction treatment in complex geometries is the
compression analysis of wedge shaped blocks by Guo, Huang and Chen [14]
(Figure 2.27). In this work friction, f, was prescribed in the
following expression:

~-fk vs/[v_|, when |vS| > U,

= (2.27)

-fk v /u_ . when lvsl < u.

where: f friction factor
k = shear yield stress

Vg = slip at the generic point

[ od
n

c = @ positive constant smaller than the average slip over the
whole die/workpiece interface.
Equation 2.27, the same as Equation 2.26, is capable of explicitly
giving the decreasing friction stress towards the center of the upset
specimen. “f" is the function of the slip which in turn is related to
the velocity or displacement field. Figure 2.28 shows some of the
results of this analysis. For the theoretical results the transverse
flow at the corners is too much and the Tongitudinal spread around the

tip of the wedge which has become a thin "tongue" seems not enough.
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Figure 2.27 Wedge for compression
and finite element
discretization [ 14 ]
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Chen et al explained these differences due to the coarse meshes in their
finite element analysis.

Rebelo et al [15] used the slab method to find the location of the
neutral point in closed die forging of a turbine blade under plane
strain conditions (Figure 2.29). In this method the section between the
upper and the lower dies is considered subdivided into small deformation
zones. Starting from the right and the left, stress distributions are
obtained element by element until two distribution curves cross each
other (Figure 2.30). The point of intersection of two curves is the
neutral point.

Although the slab method looks successful in prediction of the
location of the neutral point, it fails when the flow changes its
direction at more than one point at the die/workpiece boundary (Figure
2.31).

At this point it is very clear that due to the effect of the
surface flow direction, which is usually unpredictable, modelling of
friction by the introduction of nodal forces or surface shear stress is

not always satisfactory.

2.2.2 Surface Element Method

The second approach for the inclusion of the friction in finite
element analysis of metal forming is the surface element method. This
method, which is independent of the material flow direction, requires
the addition of a narrow surface element between the die and the
workpiece where friction is present. The surface nodes of this element
are fixed to the die and the workpiece. The elemental properties are

such as t = fk (t = shear strength of the element, k = yield shear
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stress of the workpiece) or g, = Hap (oy = yield stress of the element,

y
= mean stress of the adjacent workpiece element).

°m

The extra element is simply a mathematical description -of the
lubricant (for convenience) and is not a physical representation of the
interface. Due to its practicability, several examples can be found in
the literature for the simulation of the surface friction using this
method.

The interface element with the specifications stated above is not
appropriate for the large deformation and collapses. To remove this
instability, Hartley, Sturges and Rowe [16] defined a modified factor 8
= f/(1 - f) instead of f in equation t = fk. By this modification the
surface element becomes stiffer and it can undergo more elongation.
Also, in g technique, the forces are applied to the surface of the
workpiece instead of the elemental surface nodes (Figure 2.32). The 8
technique was applied to the two dimensional analysis of ring
compression and good agreement between the theoretical results and
experimental observations was achieved. Later, the same technique was
applied to the three dimensional analysis of upsetting of a rectangular
block [17] and it was determined that the frictional restraint becomes
too high, compared to the experimental results (Figure 2.33).

The‘surface element method is not influenced by the flow
direction. But, even if the answers with small errors are obtained,
always there is some doubt about its appropriateness because boundary

conditions do not simulate the actual phenomena.

2.2.3 S1ip Method

The third approach in the finite element modelling of friction is
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to solve a boundary problem of constrained displacements for the nodes
between the die and the workpiece. Two examples of such approach are
the works done by Nagamatsu et al [18] and Devoux et al [1].

Nagamatsu et al proposed a relative slip ratio for the surface
nodes instead of the coefficient of friction. In case of plane strain
compression of rectangular blocks, the relative slip ratio v was defined

as:

v = -(Hvx)/(xvy) (2.28)

where v. is the velocity of the relative slip between the tool and the

S

surface of material at an instant in processing, v, is normal velocity

Y
of the die, 2H is height of the block, and x is the distance between the
center and a generic point on the surface.

Distribution of v on the interface in Equation 2.3 was measured
experimentally for different height to width ratio hy (Figure 2.34) and
the results were introduced to an elastic-plastic computation.

Devaux et al, [1] in upsetting of solid cylinders, expressed the

radial displacements (u,.) on the faces in contact with the dies as

n+ l(Ur).= ¢(nr., ng = h0 - nh) (2.29)
i i h

where n is the step of computation, i is the surface node number and h

is the instantaneous height of the cylinder. This relation was

experimentally evaluated by measuring the displacement of the

indentation marks on the faces in contact with the die at different

upsetting steps and further used as the boundary condition in an

elastic-plastic finite element computation. Among the results, it was
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found that the hypothesis of a constant shear stress is not correct and
its local value increases with the average strain ¢ = In (h,/h) (Figure
2.35). Also, it was found that the variation of shear strain under the
die is almost linear from the center of the specimen to the half outer
radius, after which the variation is parabolic up to the maximum value
of r (Figure 2.36).

The main objection to this approach is the need to conduct

experimental measurements prior to the computations.
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TABLE I

MAJOR APPROACHES FOR INCORPORATING THE FRICTIONAL
BOUNDARY CONDITIONS INTO METAL FORMING
SIMULATION

Approaches Hetliod of modelling Advantages disadvantages

Introduction of Effective Fails when
1 friction as surface if Friction |flow direction
nodal force. distributiontis unknown.

i3 correct.

Surface element Independent Unreliable.
2 of the flow
direction.
Hodifying the simulates Requires
3 surface the amotual experimental
displacement. ’ phenomena. data prior to

the analysis.




CHAPTER III

AN OUTLINE OF THE PROCESS MODELLING OF FORGING

In their introduction to the “Process Modelling of Metal Forming
and Thermomechanical Treatment." Rebelo et al [15) wrote the following:
The expression process model refers to a mathematical
model which has been developed to a level at which it can
quantitatively describes the essential characteristics of a
process and which, when implemented as a computer program,
permits the stepwise simulation of the process.

Often in metal forming it is required to transform the initial
geometry into a complex geometry without causing material failure or
degrading material properties. The mathematical modelling provides some
information to assist the forming engineer for the proper design and
control of the process.

The process modelling comprises several variables which interact
with each other during the plastic flow. The flow stress, the die and
workpiece geometries, the friction at the tool/workpiece interface and
temperature are among these variables. Due to the influence of these
variables on each other it is very difficult to express the physical
phenomena of a forming operation with quantitative relationships.

Figure 3.1 shows the interactions of some important variables in forging
process. Interactions start with the ram displacement which influences:

1. The flow stress in work hardening and strain rate sensitive

material.

2. The geometry and contact area which themselves affect the heat
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transfer, flow stress and friction condition.
Friction, geometry and flow stress are three major variables to be used
in the analysis of deformation.

There are several approximate methods (numerical and analytical)
for the analysis of deformation. Due to the assumptions made in
developing the mathematical approach, none of these methods is
perfect. Also, every method requires some data which must be determined
by experiment. The inaccuracy of the experimental data, such as
friction factor and flow stress, affect the accuracy of the analysis.
With this view the exact analysis of a process is not feasible in most
cases. Figure 3.2 shows the contribution of some experimental data in
the forging system.

The most widely known methods among the analytical techniques are
the s1ip 1line method, upper bound method and slab method.

The slip 1ine method [19, pp. 381] is used for the analysis of
deformation in rigid-perfectly isotropic solids. This method has the
capability to determine the stress and the velocity fields but it fails
to take into account the behavior of real material properties such as
workhardening, strain rate and temperature effects.

The upper bound method was developed by Johnson [20] and Kudo [21]
and it is widely applied in metal forming analysis to estimate the
maximum load required to perform a certain operation. The load (power)
computation in this method is based on the strain rate field considering
the redundant work. The stress distribution cannot be analyzed by this
method.

The slab method [15, pp. 29] can be used for the elementary

analysis of stresses and loads in plane strain or axisymmetric
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conditions. The velocity field cannot be determined by this method.

Several other analytical technigues in this area exist and have
been well summarized in different books [19, 22, 23].

Besides the analytical technigues, several numerical methods have
been developed for the analysis of deformation in metal forming.
Outstanding among these are the methods using finite difference and
finite element methods. Usually, finite difference technigue is used
for the calculation of temperature distribution and finite element
method (FEM) has proved to be superior to the classical methods due to
its flexibility and ability to obtain a detailed soiution.

FEM was developed originally as a concept of structural analysis.
The general applicability of FEM made it a powerful and versatile tool
for a wide range of problems. Several computer program packages have
been developed for the solution of a variety of solid mechanics
problems. Some of the programs have been developed in such a manner
that the same program can be used for the solution of problems belonging
to different branches of engineering with Tittle or no modification.
Table II shows a summary of the more widely used packages.

In the field of plasticity, Rigid Plastic and Elastic Plastic are
the two main approaches of finite element formulations. For an analysis
of elastic plastic problems, the use of the plastic stress-strain matrix
developed by Yamada et al [24] has been very useful. Using this matrix
and the incremental variational formulations, developments have been
made in the analysis of metal forming [25, 26, 27, 28]. Today, the
finite element has proved to be a very effective tool in the elasto-
plastic analysis of metal forming processes. However, due to the

elasto-plastic property the use of large deformation is not permitted in
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this approach. With this view Rigid-Plastic finite element method
called "matrix method" was developed by Lee and Kobayashi [29, 30].
Rigid-plastic FEM is more effective in terms of the computation time but
less accurate because of the neglection of the elastic strains at the
beginning of the deformation. Some of the capabilities and
characteristics of various methods are summarized in Table III. Figure
3.3 exemplifies some important information obtained by process modeling
of forging:

1. Prediction of the microstructure and mechanical properties of
the workpiece during and after deformation.

2. Effects of the position of the flash line on the
microstructure, extraction of the workpiece from the dies after the
process is finished and furthermore the material lost.

3. Flow of the material and its effects on the filling of the
cavity between the dies.

4. Effect of the geometry of the preform on the material flow.

5. Initial position of the preform between the dies and its effect
on the material flow and center of loading which has great infiuence on
the press structure.

6. Prediction of the forces and the energy necessary to carry out

the forging operation.
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LIST OF MAJOR FINITE ELEMENT PACKAGES [32]

SABOR/DRASTIC
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TABLE III

SUMMARY OF VARIOUS ANALYSIS METHODS ([31]

r Output |
Temper.
I input ] Velocity  Streas  ature Strennes
Methad Flox stress  Frction  field freld field on tools Comnments
Slab Average ta¥b)  No Yes No Yes Ignores redundant work
Uniform Average (bt No No No Average Redundant work ean be
energy included approximately
Slip line Average {aMb} Yes Yes No Yen Vahd for plane-strain
problems
Upper Distribution (bt Yes No No Average Gives upper bound on
bound loads, can delermine
free boundaries
Hill's Distribution (a¥b? Yes No No Average Can treat 3.D problems
Finite Distribution  (a¥bl  Yes Yes  Yes Yes Requires considerable
difference computer time
Finite
element  Distribution {(aXb} Yea Yes  Yes Yes Same as above
Matrix Distribution (anb} Yes Yes Yes Yes Treats rigid/plastic
material
Weighted
residuals  Distribution (aXb} Yes Yes  Yes Yes Very general approach

(gt 2 pn, thre = mn/\i
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CHAPTER 1V
FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC DEFORMATION
4,1 Finite Element Approach

This section introduces an elastic-plastic finite element program
that has been developed for the analysis of deformation and further
examination of the friction model.

Rigid Plastic and Elastic Plastic are two main approaches of finite
element formulations for metal deformation problems. The Rigid Plastic
approach neglects the elastic strain and cannot accurately model the
early stages of a deformation when the workpiece is in the process of
yielding and Elastic regions predominate. Therefore, an Elastic Plastic
approach was used in the development of this program.

In the analysis of metal forming processes featuring large
deformation, for the attainment of correct solutions at the end of
several hundreds of incremental computation steps, possible sources of
numerical errors should be carefully eliminated. The stress rate should
be chosen properly in the constitutive relation and the geometric
stiffness be considered adequately.

The success of the finite element method (FEM) in the solution of
Elastic Plastic problems dates back to the late 1960's when the
expression of the Plastic stress strain matrix (material nonlinearity)
was brought out and incorporated in the standard form of FEM [24].

However, the application of this method has been largely confined to
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some deformation regime where the overall strain is restricted to the
order of 1073 (due to the factors like neglecting the effect of rigid
body rotation). Since then several attempts have been made for
extending this solution to large deformations. One of the first
attempts was made by Hibit, Marcal and Rice [33] who used a total
Lagrangian formulation. Later, McMeeking and Rice [34] pioneered the
use of an updated Lagrangian type approach which led to an improved

formulation when large increments in rotation occurred.

4.1.1 Assumptions

1. Mechanical properties of the solid are time independent.

2. The stress level depends on the current degree of plastic
straining (work hardening).

3. Any subsequent yield surface is parallel to the original one.
In other words the work hardening model is isotropic and the Bauchinger

effect is neglected.

4.1.2 Equilibrium Equations

Maybe the most general constitutive law leading to a symmetric
stiffness matrix has been derived by Hi11 [35]. For an element of

material the properties of which do not depend in any way on time:
Stress rate = f(strain rate) (4.1)

where f is homogeneous and is of degree one in the components of the
strain rate. If E is a homogeneous quadratic rate potential (depending

on the current stress and strain history), then Equation 4.1 becomes:

Sij = 3k / a(vj / ¥x5) (4.2)
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Sij'is the nominal stress rate and has nine independent components (non-

symmetric) [28, pp. 200] and v is the velocity.

Any solution of the boundary value problem can be characterized by
variational principle such that [35]:

I, Sij a(svj) / axs dv = s Fj avy ds + 4, gy avg dv (4.3)

where F and g are the surface and body forces and all integration
extents are in the reference configuration. By neglecting the body

forces, the general form of the equilibrium equation becomes:
I, Sij a(avj) / axidv =1, Fj 8V 4ds (4.4)

Due to the rigid body rotation the stress tensor (non-symmetric) cannot
be used to represent the stress rate in constitutive equations. For
clarification consider a bar under uniform tensile stress as shown in
Figure 4.1.

When the bar and Toads acting on it undergo a rigid body rotation
with respect to the fixed coordinate system, the stress components with

respect to the system change, because

Sjk = Vi S, /Xy + asjk / at (4.5)

This equation represents the material rate of change of the stress
components with respect to a fixed coordinate system. The first term on
the right side gives the convective part of this rate of change and the
second term gives the local part. However, from the point of view of

the moving body, the state of stress remains a constant. Stress rate

tensor that can be used in the constitutive equation in this situation
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must contain an additional term (rotary) to compensate for the local and
the convective term and becomes zero. This difficulty can be avoided by
choosing a reference stage that is momentarily coincident with the

current state (34, 35]. In this solution it can be written [34, 35, 36]

as.

T % Ski T %k fkj t %k Y3,k (4.6)

where:

$ = Nominal stress rate (non-symmetric)

T%ij = Jaumann or corotational rate of Kirchoff stress
(symmetric). This is a meaningful definition of the
stress rate of which the stress components are referred
to a coordinate system that participates in the
instantaneous rotation of the material [36]

%y = Cauchy or Euler stress

éij = 1/2 (v4_ j + vj, i) or Euler strain rate

In the present study no discrimination is made between the Kirchhoff and
the Cauchy stress. (They differ only by terms of the order of the
volume change.)

The nominal stress change in Equation 4.6 is due to the pure
deformation (TAij) and/or the change of the geometry and the orientation
which act on the original state of stress.

Under this condition (new definition of stress in the current

configuration) Equation 4.4 becomes [34, 35]:

A . . —
J'V[T Beij - (1/2)01j6(2£1.kekj - Vk,1' Vk,j)ldv = J'VFGVidS (4.7)

where all integration extents are in the current configuration.



4.1.3 Stiffness Equations

Equation 4.7 has two stiffness terms.
a. Deformation stiffness:

This stiffness arises from IVTAdei dv and can be shown in the

J
standard form of finite elements as

Kyl = 7,181" D] [B] dv (4.8)
where
(v} = [N1{s)
(e} = [BI{4)

[[By31 = (1/2)[N31,3 + (1/2) [Nsl,i
b is defined as the rate of the nodal degree of freedom.
b. Stress correction stiffness matrix [Appendix A]:

This stiffness arises from:
J’V[ (-1/2)°1j6(2€1’k€kj - Vk,ivk,j)]

and as was explained before is due to the changes of the

geometry and can be written as
(K1 = £ (INIV,% 0:IN 1.5 - 208, .1 0. .[B, .]dv (4.9)
c ALRI'SEERERE E LS ki' 993'%kj .

4,1.4 Elastic Plastic Stress Strain Matrix

In Equation 4.8, [D] is the constitutive matrix which appears as
A .
{T%} = [D] (e} (4.10)

[D] is the Elastic Plastic matrix and it is dependent on the state of

the stresses and.the slope of the equivalent stress versus equivalent



Plastic strain curve at each moment [24]. According to the Prandt]

Reuss and in conjunction with the Von Mises criterion [Appendix B]:

Dijkl = E/(1+\;)[<s1.k<s1.1 + 51k5k1(“/(1"2“)
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- 3a%j o / (20(1+2(1+v) H' / (3E))] (4.11)
where:
E = Young's modulus
v = Poisson ratio
o%j = The deviatoric Cauchy stress
H' = Slope of the equivalent stress versus Plastic strain curve

at the current value of the plastic curve

o The generalized or equivalent stress

aik(Kronecker delta) =0 IF i # K

1IFi=K

4.1.5 Program ELPL

Based upon the preceding discussion, an interactive Elastic Plastic

Program (ELPL) has been developed for the plane strain condition
[Appendix D] and can be developed to plane stress and axisymmetric
conditions. The input data are read interactively and echoed to the
program. This program contains a main part and several subroutines.
The flow chart and the description of the subroutines are included in

[Appendix C].

4.1.5.1 Procedure of Computation. At the beginning of loading

every part of the body is Elastic. Depending on the geometry and the

boundary conditions, an increase in load causes some portions of the



material to yield while the rest are still Elastic. Departure of the
stress state from Elastic to Plastic is very important and increments of
displacements should be chosen somehow to make every element yield
exactly at the yield point. In Plastic region the stiffness ([Kpl +
[K.1) of the material is dependent on the state of the stress and the
slope of the equivalent stress versus equivalent strain H'. It was
found that our computation is very sensitive to H' at each increment and
any malestimation may create instability. In some materials where H'
varies by deformation, appropriate numerical techniques should be used
to avoid any deviations from the original path. Figure 4.2 shows the
accumulation of the errors if the slope at the beginning of each
increment is used to compute [Kp]l. In Figure 4.3, the value of H' is
predicted at the end of each increment (H‘pr) and the average of H‘pr
and H' is used instead of H' alone to compute [Kpl. H‘pr can be
computed according to the Euler predictor method [37, pp. 331] or by
other similar methods. In the present program the stress strain curve
has been simplified to a form where H' is constant. This simplification

reduces the computer time considerably (Figure 4.4).

4.1.5.2 The Sequence of Computations.

1. The part is divided into a number of triangular elements under
plane strain conditions.

2. Elastic calculation is done by giving an incremental compres-
sion first. Nodal displacements, strains, stresses and equivalent
stress of each are obtained.

3. The element with émax is found and the scaling factor R is

calculated by use of the following equation in plane strain conditions.
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R=(-P+/P§-4OQJ (4.12)
where
P = (2AB + 20C + 2EF + 120xy Acxy
0= (A2 +C2+ 2+ Aczxy)
Q= (82 + 0%+ F2+ Gzcxy)
A = AoXx - Aoy
B =oax - oy

C = Aoy - Aoz
D = oy - az

E = Aoz - AoX

-n
i

gZ - aX

Y. = Yield stress

)
4. The increments of displacements, stresses and strains are
multiplied by R and o in each element is calculated. At this stage the
element with max yielded but the rest of the elements remained in the

elastic region.

5. The nodal coordinates are updated.

6. After another incremental compression the increments of nodal
displacements, stresses and strains are calculated (plastic stiffness is
used for the previous yielded element).

7. @ among those elements in the Elastic region in the previous

max

stage is found and R is calculated exactly as in step 3. is the

(onax
maximum equivalent stress.)

8. The increments of stresses and strains are multiplied by R and
added to the accumulative values of displacements, stresses and strains.

9. The nodal coordinates are updated again.



10. These loops of calculation (steps 6-9) are repeated until all
the elements yielded.
11. Computation is advanced by giving proper increments of

compression in the Plastic condition.

4.2 Modelling of Friction in the Present Work

In Chapter II it was illustrated that finite element modelling of
friction is difficult when the geometry is non-symmetric. Indeed, the
main question is how to start the analysis when direction of material
flow and friction is unknown.

In this study, determination of the flow direction is based upon
the concept of friction. Friction is the resistance to the relative
movement between two surfaces in contact. The sources of this
resistance are:

1. Asperity interlocking (Figure 2.2) which indicates sliding
cannot occur until the interface shear stress reaches a critical value
sufficient to cut or deform the asperities.

2. Ploughing (Figure 2.3) which indicates sliding cannot occur
until the shear stress reaches a critical value sufficient to cut or

deform the softer material.
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3. Adhesion (Figure 2.4) which indicates sliding cannot take place

until the interface shear stress reaches a critical value sufficient to

rupture the adhered junctions.

These causes of friction indicate that at the beginning of deformation,

the relative movement of two surfaces in contact is zero. Therefore,

the analysis can be started by prescribing the tangential displacement

to be zero (sticking). Sticking condition is maintained until the nodal
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shear stress reaches that critical value mentioned before, the limit of
static interface shear strength. Any friction model discussed in
Chapter II can be examined for this critical value. Figure 4.5
illustrates the friction stress capacity (boundary between sticking and
s1iding) in various models.

After the commencement of sliding, the tangential force or shear
stress can be applied to the free node. The direction of this force or
stress is the same as that of the tangential force or stress in the
previous iteration in sticking condition. Another option for
determination of the friction direction is to apply a small increment of
displacement after starting of sliding to find the direction of the
material flow. The direction of friction is determined to be opposite
to the direction of material flow.

Due to the equilibrium of the external loads, in this process,
there is always one node at the boundary where shear stress is zero (or
very small) and it remains in sticking condition. This node represents
the neutral point. The location of the neutral point remains fixed with
respect to the die. This may be permissible when deformation is
small. In large deformation, due to the variation of the die/workpiece
boundary, the mode of material flow changes and as well as the neutral
point. Therefore, for large deformation the friction model must have
enough flexibility to allow the neutral point to change its location.
At each node, the conditions of sliding and sticking must be
interchangeable. This type of modelling is similar to the stick-slip
phenomena [6, pp 78]. According to this phenomena, a steady friction
should not be expected in a sliding situation. DBuring the sliding some

asperities adhere and local shear stress increases. Shear stress
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increases up to a point where the junction cannot resist and ruptures.
At this point, sliding condition occurs and friction drops. The stick-
slip movement continues throughout the tangential displacement. The
rate of friction fluctuation depends on the properties of the metals
under load (Figure 4.6) and the 1imits of static and kinetic friction.
In finite element modelling, the 1imit of static friction (upper limit)
can be used for initiation of sliding and kinetic friction (lower 1limit)

for commencement of sticking.
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CHAPTER V

FORGING OF SYMMETRIC AND NON-SYMMETRIC PARTS

To demonstrate the numerical stability of program ELPL, analysis of
compression of a rectangular block was performed. To evaluate the
capability of the method of friction modelling discussed in Chapter IV,
the solution to the compression of wedge-shaped specimen with frictional
boundary condition was obtained. This chapter reveals the results of

these analyses.

5.1 Upsetting of Rectangular Block

The solution to the upsetting of a rectanguilar block (2" x 2") with
unit thickness under plane strain conditions was obtained. The material

properties were assumed to be:

oy = 10,000 psi
H' = 10,000 psi
v = 0.33

E =107 psi

Due to the symmetry of the problem, a quarter section of the block was
analyzed and the finite element fixed point (also the neutral point) was
located at the centerline. As was mentioned before, the major objective
in this analysis was to test the validity of the main program.
Therefore, no friction modelling was incorporated in the computation and

two simple boundary conditions were considered:
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a. Sliding - 32 triangular elements and 220 increments of
displacements were used to analyze the problem for 10 percent
compression. This analysis was performed on the microcomputer.

b. Sticking - 162 triangular elements and 232 increments of
displacements were used to analyze the problem for 10 percent
compression. This analysis was performed on the VAX 780.

Figure 5.1 shows the finite element prediction of how the
plasticaily-deforming region of the rectangular block developed in
sticking condition. At 0.14 percent reduction in height, the billet had
yielded fully. The finite element model first started to yield along
the diagonal 1ine from the outer corner and from the center. Subseguent
deformation increased the thickness of the region. The growth of the
plastic zone and the existence of the dead zone match with other works
[18, pp. 328].

Figures 5.2 and 5.3 illustrate the shape of the workpiece after 10
percent compression under sticking and sliding conditions. The
geometries predicted by finite element in both conditions are
reasonable. In sticking condition, bulging occurred. In sliding
condition the geometry remained rectangular.

Figure 5.4 illustrates the upsetting load as a function of
reduction in height of the block. Load computations were based on the
stresses in the elements adjacent to the interface. The maximum load in
s1iding condition, when loading is uniaxial, is a suitable factor to
evaluate the accuracy of the finite element program. Maximum load after
10 percent compression in sliding condition by FEM was found to be
13,080 pounds. Also, this load can be found analytically as the

following:
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For elastic, linearly strain hardening material the stress is:
¢ = 10,000 + 10,000 ¢ (5.1)
After 10 percent reduction in height the true strain is:

le| = n 5o = 0.1043 (5.2)

Therefore, the strength level that the material exhibits at this strain

iss
o = 10,000 + 10,000 (0.1043) = 11043 psi (5.3)

The surface area A, after 10 percent reduction in height (for unit

thickness), when the volume remains constant is:
1-1=A.0.9 (5.4)
= s 2
A =1.11 in (5.5)

According to the Maximum Shear Stress criterion [40, pp. 72], the force

required is:
F = oA = (11,043)(1.1111) = 12,270 1bs (5.6)
According to the Von Mises Criterion [40, pp. 74] the force required is:
F = (1.15)(11,043)(1.1111) = 14,110 1bs (5.7)

The predicted load by FEM (13,080 1bs) is acceptable because it is
between the Toads obtained by two valid theories. The percentage of
error with respect to the Maximum Shear Stress Criterion is +6.7. The
percentage of error with respect to the Von Mises Criterion is -7.2.

These are the errors when only 32 triangular elements are considered in
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the analysis. It is obvious that the accuracy of the analysis changes

when the number of elements changes.

5.2 Plane Strain Compression of Wedge-Shaped

Specimen With Frictional Boundary Conditions

The solution to the upsetting of a wedge-shaped specimen (Figure
5.5) under plane strain conditions was obtained. The material was AL
6061-0. One reason for choosing such geometry was the convenience in
the manufacturing of the specimen. Also, compression of the wedge-
shaped specimen is used in practice for workability and microstructural
studies in forging [44, pp. 281]. Compared to the symmetric geometries,
the boundary conditions in this analysis are more complex. In other
words, the location of the neutral point and the friction direction are
unknown prior to the computations. In Chapter IV a general methodology
was proposed for handling the problem of the neutral point and the
frictional boundary conditions in non-symmetric geometries. The main
purpose of this analysis is to check the capability of the cited
methodolegy in handling of such complex boundary conditions. Appendix E
contains some experimental and numerical results regarding the materials

discussed in this section.

5.2.1 Boundary Conditions

Figure 5.6 illustrates the boundary nodes. Friction exists at the
nodes common between the die and the workpiece. During the deformation,
some of the free nodes come in touch with the dies. Also, it is
possible that some of the common nodes disengage. The condition of

friction at the nodes in touch with the die and control of the boundary
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nodes regarding their positions with respect to the die (engaged or
disengaged) are the important parts of the boundary conditions in this

analysis.

5.2.1.1 Friction. During the deformation, the effect of friction
was incorporated to the die/workpiece boundary as follows:

a. Condition of friction at the beginning of deformation is
sticking (boundary nodes are fixed to the die).

b. When the nodal shear stress reaches the maximum static
frictional resistance, that particular node is free to move
tangentially. The Amontons/Coulumb Law 1t = uP, the Constant Friction
Law v = fk, and the Equations 2.23 and 2.24 were examined as the maximum
1imit of sticking condition.

c. After commencement of sliding and until the end of computation,
the nodal frictional force is computed and applied to the corresponding
node. Friction force is computed according to the same model which is
used to determine the 1imit of sticking condition. The friction force
direction is opposite to the flow direction. Always, due to the
equilibrium of the external loads, there is one node at each common
boundary where the shear stress is very small. This particuiar node

remains in sticking condition and acts as the neutral point.

5.2.1.2 Control of the Boundary Nodes. During the compression

process, the boundary nodes were controlled as foliows:

a. At the die/workpiece boundary, the normal relative displacement
at each node is zero. In other words, the boundary nodes are not
allowed to move into the die.

b. At each increment of compression, the coordinate of each free
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node is checked and if any node comes in contact with the die surface,
it is considered to stick to the die.

c. At each increment of compression, the normal stresses of the
boundary nodes are checked. If the nodal normal stress is positive, the
corresponding node is allowed to separate from the die and friction

force is zero.

5.2.2 Finite Element Approach

The boundary conditions cited in sections 5.2.1.1 and 5.2.1.2 were
incorporated to Program ELPL. One hundred and four nodes and 171
triangular elements were used in this analysis. The mesh system was

according to Figure 5.7.

5.2.3 Experimental Procedures

Some experiments were performed to obtain the required data
regarding the material properties and frictional boundary conditions.
Also, compression of the wedge-shaped specimen under plane strain

condition was performed for evaluation of the results obtained by FEM.

5.2.3.1 Mechanical Properties of the Material. Material was

initially AL 6061-T651. fFollowing a general annealing procedure [39],
it was transformed to AL 6061-0. To determine the stress-strain
relation in compression, three compression tests were performed on
cylindrical specimens with a 3/4 inch diameter and 3/4 inch height
(Figure 5.8). The results of these tests are included in Appendix E.

For each specimen, compression was carried out between two flat and
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polished steel platens. To eliminate the effect of the material strain
rate sensitivity, the compression was carried out very siowly. PTFE

sheets were used as the lubricant between the platens and the specimens
to eliminate the influence of barreling. The stress-strain relation in

tension for AL 6061-0 is {40, pp. 35}:

0.2

o = 30,000 ¢ (5.8)

From the combination of the compression tests and Equation 5.8, the
simplified form of the stress-strain relation was determined as in
Figure 5.9. This figure was utilized as a part of the input data to the
finite element program.

To evaluate the effect of the material nonhomogeneity, two
identical parts were cut from a block of aluminum (AL 6061-T651). After
annealing, the parts were compressed under two different directions
(Figure 5.10). No significant difference was found in the magnitude of
barreling between the two specimens (less than one percent). The
difference between the compression loads was around four percent. As in
this analysis the normal nodal displacements are prescribed at the
boundary rather than the loads, it can be said that the effect of the
material nonhomogeneity is negligibie on the final geometry (compared to

the friction effect).

5.2.3.2 Data on Friction. In order to determine the frictional

behavior at the boundary, the ring compression test was performed

(Figure 5.11). This method, which has gained wide acceptance in metal
forming, was proposed by Male and Cockcroft [38]. By compressing the
rings of 3/4" outer diameter; 3/8" inner diameter and 1/4" height, the

coefficient of friction in dry condition was found to be u = 0.21. This
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value was obtained from the percent reduction in height and the percent
reduction in the internal diameter (Figure 5.12). Three rings were
compressed; the coefficient of friction u = 0.21 is the average of the
three results. The rings were compressed very slowly between two flat
and parallel steel platens. Each platen was ground by the surface
grinder in two cross directions. The rings were cut by the milling
machine. The parallelness of the ring faces were checked by the vernier
caliper. Before performing each compression test, all the marks on the
machined surfaces of the rings and the platens were removed with very
fine sandpaper. Also, the surfaces were degreased using acetone. fhe
rings were initially AL 6061-T651, but after all the machining
processes, they were transformed to AL 6061-0.

The other data required for the determination of the frictional
behavior at the boundary is the friction factor "f". The conventional
method for the estimation of "f" is the Equation 2.20 which has been
illustrated as the dashed 1ine in Figure 2.22. According to this
method, for u = 0.21, the friction factor is found to be f = 0.75. The
other methods for determination of "f" are the solid 1ines in Figure
2.22 which were proposed by Bay. According to these Tines two other
values are estimated for "f".

f

0.8 when the asperity angle is zero degrees

f

0.7 when the asperity angle is fifteen degrees

Based upon these results (u and f), four different models were found as
the 1imit of the sticking condition cited in section 5.2.1.1. These
models have been illustrated in Figure 5.13 and can be explained as
follows:

a - Amontons Law: this 1imit has been found simply by the
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substitution of u= 0.2l into 1 = uP.

b - Constant Friction Law: this 1imit has been found by the
substitution of f and k into to the equation r = fk. Value of f in this
equation is 0.75 which was found by the traditional method cited

above. k is the shear strength of the material and it can be shown as

k=1—-__uo
V3

According to the Distortion Energy Criterion (Von Mises), the yield

stress o, under the plane strain condition is

0

0, = 1.15 o' = (1.15)(12,000) = 138,000

where o' = 1,200 is the uniaxial yield stress and its value was found in
section 5.2.3.1. Therefore, according to the Constant Friction Law, the

1imit of sticking condition can be written as:

= (0.75) (1) (13,800) = 5,976 psi (5.9)
v3

¢ - Theory of friction by Bay. Based upon the discussion in
section 2.1.5.2, friction changes linearly with pressure up to the 1imit
of proportionality (P'/co). The 1imit of proportionality for the
asperity angle zero degree is 1.5 and for the asperity angle fifteen
degrees is 0.8. Up to the 1imit of proportionality, friction variation
can be found according to the equation v = 0.21P or equation 2.23.
Beyond the 1imit of proportionality equation 2.24 must be used:

1 a

L= %— + (f - ) (1 - exp]
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For asperity angle equal to zero, the elements of this equation were
specified as the following:

= 13,800 psi (effective yield stress)

o)

0

P'/ag = 1.5

p! = (1.5)(13,800) = 20,700 psi (pressure at the limit
of proportionality

! = (0.21)(20,700) = 4,347 psi (friction at the limit
of proportionality

f = 0.8

k = (1/v/3)(13,800) = 7,967 psi

substituting these values into the equation (2.24)

(1.5

LI
13,800 D

t =4,347 + 2,026 (1 - exp| 0.7

(5.10)

For asperity angle equal to fifteen degrees, the elements of equation

2.24 can be found as the following:

9 = 13,800 psi

P'/ay = 0.8

p! = (0.8)(13,800) = 11,040 psi
7! = (0.21)(11,040) - 2,318 psi
f = 0.7

k = 7,967

substituting these values into the equation (2.24) it can be written:

)
_13,800°
1.125

(0.8

t = 2,318 + 3,259(1 - exp| (5.11)

According to these analyses, the friction models proposed by Bay can be
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shown as the following:

For asperity angle = 0°

0.21 P (P < 20,700)

~
1]

( P (5.12)
1.5 - =5=77)
T = 4,347 + 2,026 (]_ - EXp[ 5 ;3,800 ]]
For asperity angle = 15°

t=0.21 P (P < 11,040 psi)

p (5.13)
(0.8 - +5—4==r)
2,318 + 3,259 (1 - exp| : igésoo )

5.2.3.3 Plane Strain Compression Test. Using CNC machine, a steel

die was made for plane-strain compression of the wedge-shaped specimens
(Figure 5.14). The specimen was confined by two side walls, each 1-1/4
inches thick. PTFE sheets were used to eliminate the friction between
the side walls and the specimen faces. The die/specimen surfaces in
contact were polished with fine sandpaper and degreased with acetone
prior to each test (the same as the ring compression tests). The
compression was carried out very sliowly up to ten percent the height of

the specimen. The compression testing machine was MTS with 55 KPS
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load capacity. The specimen dimensions were according to Figure 5.5. A
total of 8 specimens were compressed. Among them, three of the best
(the most accurate in reduction in height) were chosen for the final
results. At different steps of compression, the load and the
displacement were written down. After ten percent reduction in height
(0.05 inches) in each test, the amount of the compression was measured
by the vernier caliper and compared to the amount of the compression
shown by LVDT on MTS at the end of the test. From this comparison, a
correction factor was found and all the displacements shown by LVDT at
the intermediate steps were multiplied by this factor and corrected.

The results of these tests have been included in Appendix E. Figure
5.15 shows one of the deformed specimens inside the die. To demonstrate
the mode of deformation in the specimen, some lines were drawn on the
specimen before the compression. In Figure 5.15, the Tines on the
bottom die indicate the initial positions of the lines on the

specimen. By comparing the positiqn of each line to its initial
position the amount of slip between the die and workpiece can be
determined at each point. The slip between the bottom die and the
specimen at 1ines 3 and 4 from the left is almost zero. Therefore, the

neutral point must be located in this area.

5.2.4 Results of the Analysis

The friction models found in section 5.2.3.2 were examined as the
boundary between the sticking and the sliding conditions (cited in
section 5.2.1.1). In these examinations, the Coloumb/Amontons Law
failed and could not provide any result. The cause of this failure was

the high hydrostatic pressure in the forging process. Figure 5.16 helps
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to describe this problem. According to the model t = uP, at some
portions where P is very high (a multiple of the yield stress), =
becomes very big. In other words, the 1limit of the sticking condition
becomes very high. As the maximum 1imit of the shear stress is the bulk
shear strength of the material (r = l//§°o)’ sliding never occurs at
these zones. The permanent condition of sticking at some regions
assists to increase the pressure P in the other regions previously

s1lid. The friction force applied in the sliding condition is computed
according to v = uP. Therefore, by increasing the pressure the friction
stress increases and it sometimes reaches a value beyond the shear
strength of the material (r = l//§oo), thus causing failure.

Figure 5.17 reveals some numerical results regarding the rest of
the friction models examined in this methodoliocgy. The amount of the
normalized barreling w/L resulting from the Law of Constant Friction is
higher than the experimental result. Also, the forging load is much
higher than the real value when r = fk is applied.

Generally it can be said that the Constant Friction Law revealed
some over-strength at the interface. This had been predicted prior to
the analysis. According to the model r = fk, friction reaches a high
degree even when the pressure is zero. Therefore, sliding occurs late
which, in turn, makes the barreling and the load very high. To
demonstrate the sensitivity of the present analysis to the limit of
sticking, variation of the shear stress at node number 2 are illustrated
in Figures 5.18 and 5.19. In Figure 5.18 (Constant Friction Law),
s1liding commences when the shear stress reaches 6,000 psi. In Figure
5.19 (Bay, y = 0°) sliding takes place when the shear stress reaches

3,500 psi. The high value of sticking 1imit in Figure 5.18 causes
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higher barreling and forging load. The predicted load and w/L (Figure
5.17) are close to the real values when the friction model proposed by
Bay (y = 0°) is applied. The predicted results obtained by using the
friction model proposed by Bay for y = 15° is much less than the real
values. One may guess that friction must increase when the asperity
angle increases and the results obtained in these anaiyses are not
logical. Conditions exemplified in Figures 2.20 and 2.21 may result in
such erroneous conclusions. According to Figure 2.20, when the asperity
angle y increases, the junction area BE increases. Therefore, friction
must increase. Also, Figure 2.21 reveals that for a certain friction
factor f the friction stress is higher when the asperity angle is
bigger. But in Bay's friction analysis, the asperity angle and the
friction factor are not independent. Figure 2.22 reveals that for the
higher asperity angle the friction factor is less. Also, when the
asperity angle is high, the 1imit of proportionality P'/o, (page 24) is
less. When the asperity angle is bigger, the lower friction factor and
limit of proportionality cause the friction curve to bend off earlier
and to approach a smaller value (Figure 5.13).

Figure 5.20 reveals the variation of the forging load up to 10
percent reduction in height of the specimen. The predicted force
obtained by using v = fk is much higher than the experimental result of
the entire compression. The force obtained by Bay's friction model,
when y = 0°, is high at the beginning of deformation and gets closer to
the experimental result at higher deformation. This variation is
reversed when the asperity angle is 15°. However, the loads obtained by
FEM, regardless of the friction model applied, must be high at the

beginning of compression. This is due to the simplified stress-strain
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relation (Figure 5.9) utilized in FEM. According to Figure 5.9 the
yield stress is 12,000 psi. The yield stress in AL 6061-0 is 8,000 psi
{440, pp. 154]. However, the simplified stress-strain curve and the
stress-strain model ¢ = 30,000 €0.2 (or the experimental results in
Appendix E) get close by increasing the compression. Therefore, the
influence of the friction modeling on the predicted load becomes more
significant when deformation increases.

Figures 5.21 and 5.22 show the grid distortion for two frictional
boundary conditions, t = fk and that proposed by Bay (y = 0°). Compared
to Figure 5.15, some important results can be obtained regarding the
appropriate sticking 1imit in the analysis. Figure 5.15 reveals some
separation between the specimen and the bottom die on the right side.
This separation can be observed in Figure 5.22 as well, but not in
Figure 5.21. Separation of the specimen from the die in Figure 5.22 is
the result of the tensile stress explained in section 5.2.1.2c. This
agreement between the experiment and the analysis (Figure 5.22) confirms
the Bay's friction model (y = 0°) to be the 1imit of sticking. The
little arrows in Figures 5.21 and 5.22 indicate the finite element fixed
nodes. The shear stresses in these nodes were under the Timit of
sticking and never reached a magnitude sufficient to achieve a siiding
condition. These nodes also represent the neutral points where the
material flow changes its direction and where the amount of slip is zero
(or minimum). Compared to Figure 5.15, the location of the neutral
point at the bottom edge in Figure 5.22 (node 96) is very reasonable.
The predicted neutral point in Figure 5.21 (node 98) does not match with
Figure 5.15. The bases of this comparison are the minimum slip and the

straightness of the 1line passing through the neutral point.
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Prediction of the neutral point in non-symmetric geometries was the
major goal in this work and it can be seen that this prediction is
possible when the procedure cited in section 4.2 is used.

Figure 5.23 compares the geometrical changes for two friction
conditions after 10 percent compression. The degree of barreling and
separation of the specimen from the bottom die were previously
discussed. The mode of the material flow is an important factor which
can be used to judge the correctness of the 1imit of sticking
condition. Figure 5.15 illustrates that the specimen has more tendency
to shift towards the right. In Figure 5.23 this can be observed in the
predicted geometry using the friction model proposed by Bay, et al (y =
0°). For Constant Friction Law as the 1imit of sticking, material
incorrectly moves more towards the left. The importance of the material
flow becomes more significant when the die is closed. Assume that the
die is closed and there is a wail on the right side of the specimen.
When the material reaches the wall, all the states of stress and strain
and filling of the die cavity change. Figure 5.24 illustrates the
computed effective strain at some points for two different frictional
boundary condftions. Generally the effective strain at the central part
is higher when 1 = fk is used as the frictional boundary condition.
Since the effective strain is the state variable of the material
undergoing deformation, it represents the mechanical property behavior
during and after deformation. Therefore, Figurés 5.23 and 5.24
illustrate the manner in which friction affects the mechanical
properties.

Analysis of compression of the wedge-shaped specimen indicates that

the general methodology, cited in section 4.2, is the suitable procedure
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for the treatment of friction in non-symmetric geometries. This method
is very successful when the friction formulations proposed by Bay (y =
0°) are applied as the Timit of sticking condition. Using this method,

the location of the neutral point is quite predictable.
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Figure 5.16 The cause of the Amontons Law failure.
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According to this model, when

the hydrostatic pressure increas-
es to a high value, the friction
stress becomes too high.

When the friction stress is beyo-
nd the shear strength of material
, the state of egquilibrium cannot
be achieved and the finite - ele-
ment analysis cannot provide any
results.
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CHAPTER VI

DISCUSSION

In the friction part of this work, two factors of significance can

be observed:

a. A general methodology regarding the incorporation of the
frictional boundary conditions suitable for any types of
geometry.

b. Comparison of different friction formuiations with the same
finite element code and the same method of incorporation.

Also, program ELPL (Finite Element approach) served as a temporary

tool for the development of the cited methodology.

6.1 Finite Element Approach

Program ELPL is based on Hill's variational principle (equation
4.3) for incremental deformations and is ideally suited to isotropically
hardening Prandt1-Ruess material. In this program the effect of the
strain rate sensitivity is neglected. Therefore, the plane strain
compression test (section 5.2) was performed very slowly. The source of
the finite element formulations (equations 4.7 or 4.9) was (34]. In
these formulations the effect of rigid body rotation was considered.

In program ELPL, the Jaumann increment of Kirchoff stress was
assumed to be equal to the increment of the Cauchy stress. This reduced

the computation efforts but did not influence the results of the
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analysis significantly (section 5.1). The load obtained by the analysis
of the rectangular block, after 10 percent compression and under the
sliding condition, was between the loads computed by the Von Mises and
the Maximum Shear Stress Criterions. The growth of the plastic zone
matched with that in [18].

The element type, used in program “ELPL", was triangular. In
plasticity, the components of the stiffness matricies (Equations 4.8 and
4.9) are stress dependent. In any element except the triangular
element, the stress is not constant. Therefore, an average stress must
be used for the computation of the stiffness components which causes the
increase of the computation effort and may create some types of error
(e.g. by not sharing adequate and appropriate points in the computation
of the average elemental stress). Application of the triangular element
in program "ELPL", would avoid such problems. However, there are
several other factors involved in the accuracy of programs regarding the
types of elements. Data pertinent to these factors can be found in
other studies ([42] pp. 158 or [43]). Other significant factors
involved in program "ELPL" may be summarized as follows:

a. The increments of displacements are chosen somehow to make
every element yield exactly at the yield point. These are done
by the computation of a scaling factor explained in section
4.1.5.2.

b. The material is considered to be elastic-linearly plastic
(Figure 4.4). This reduces the computational efforts and the
numerical errors considerably when the slope of the plastic
stress-strain relation is assumed to be constant.

¢c. Particular attention has been paid to the elimination of the
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numerical errors by the application of DOUBLE PRECISION command
and elimination of some complex equations such as that

explained in step b.

Friction

Compression of the wedge-shaped specimen, validated the method of
incorporating the frictional boundary condition into FEM. The location
of the neutral point and the flow direction (Figures 5.22 and 5.23) are
quite predictable by using this method. Compared to the other methods
(section 2.2), this procedure can be adopted as a new approach in
finite-element modelling of friction. No other method such as the slab
method (Section 2.2.1) is necessary to determine the friction
direction. Also, the die and the workpiece are directly in contact and
no GAP element (interface element) [16] is required at the
die/workpiece interface. The analysis of deformation is started with
the sticking frictional boundary condition. This assumption is based
upon the concept of friction. If friction is a resistance force,
s1iding cannot take place until this resistance is overcome. Therefore,
the condition of sticking persists until the surface shear stress
reaches a critical value or 1imit of the static friction. In the search
for an appropriate critical value, different friction models were
examined and compared. The failure of the Amontons Law, confirmed that
explained in [5, pp. 15] (see section 2.1.2). According to this
discussion, the coefficient of friction becomes meaningless at high
pressure. This usually occurs in the forging process. Also, the
unsatisfactory results obtained by the Constant Friction Law were in

agreement with Devaux [1] who found that friction cannot remain constant
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at the interface. The friction model proposed by Bay, when the asperity
angle is considered zero, fit as the 1imit of sticking in the present
work. Therefore, two important results were obtained by this
comparison. First, the proposed methodology for the treatment of
friction in metal forming is quite practical. Second, the proposed
friction model by Bay is more realistic compared to the Amontons and the
Constant Friction Laws.

Usually, in most conventional methods (direct methods), the
friction stress/force is computed according to a model and introduced to
the boundary . In the present work, up to the 1imit of sticking,
friction is computed according to the equilibrium of the forces and it
is independent of any model (Figure 5.19). The dependency of the
friciotn to the introduced model starts when the sliding condition
commences.

The sticking critical shear procedure (Figure 5.19) can be extended
to model the stick-slip phenomena. According to this phenomena,
friction changes between two upper and lower limits. Bowden and Tabor
[6] explained this behavior in a very understandable way (after
Rabinawicz, 1959):

Figure 6.1 illustrates two surfaces in contact The upper surface
is attached to a spring with the stiffness k. When the Tower surface is
driven forward at a uniform velocity v, the spring force increases at a
rate k.v.t (sticking condition) In Figure 6.2a, this process is
represented by the straight line OA with the slope proportional to k.v
(if the damping factor is negligible). At the Point A (1imit of
sticking), s1ip occurs. S1ip continues until the spring force reaches

the point B. At this point the upper surface in the Figure 6.1 comes to
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rest in relation to the Tower surface and no variation occurs in the
spring force. After a while, the surfaces stick to each other (point C)
and the spring force increases until again slip occurs (point D). These
cycles continue and finally, a steady state is reached with stick-slip
of constant size (Figure 6.2b). Figure 6.3 reveals the modeling of
friction in the present work (solid lines) and its extension to the
stick-s1ip model (dotted 1ines). In Figure 6.3, when nodal friction
increases and reaches the 1imit of static friction (point A), instead of
application of the nodal force according to the solid 1ine, no load or
stress is applied and that particular node is free to slide. Therefore,
friction stress drops and reaches the kinetic 1imit (point B).
Condition of sticking starts at point B and the behavior of stick-slip
continues. For such a development, two extra steps must be
accomplished.

a. A search must be done for an appropriate kinetic friction

limit.
b. Condition of unloading must be considered in the finite element

program.
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CHAPTER VII

SUMMARY AND CONCLUSIONS AND RECOMMENDATION
FOR FURTHER STUDIES

Conclusions

A General methodology for finite-element modelling of friction in
non-symmetric geometries has been developed. The approach provides for
the inclusion of a sticking-critical shear model for large scale
deformation found in metal forming. This method does not require the
use of CAP elements at the die-metal interface.

An elastic-plastic finite element computer program was developed
for plane strain deformation which provided the capability of evaluating
various frictional boundary condition models. The effect of rigid body
rotation was considered in this development. The stability of the
program was examined by obtaining the solution of upsetting of a
rectanguiar block. |

A review of the methods of incorporating friction as a boundary
condition in large scale plastic deformation was conducted and the
methods classified into three categories. The basic friction models
were tested using the finite element code. The results of the
simulations using these different methods of modelling friction were
compared with experimental deformation data obtained from the
deformation of wedge-shaped specimens under plane strain conditions.

The recently proposed friction model by Bay [2], when incorporated into
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the FEM code, provided the best correlation with the experimental
results. The Bay model of sticking/friction at the die-workpiece
boundary is an attempt to more accurately model the
tribological/metallurgical events taking place in deformation.

The capability of the FEM elastic-plastic code, incorporating the
friction model proposed by Bay, to predict the location of the neutral
point in complex shapes was established by compression of a wedge-shaped
specimen. It is no longer necessary to use other methods, such as the
slab method, to predetermine the position of neutral points and the

direction of flow at the boundary.

Recommendations

Based on the analyses and discussions presented in this work, it is

recommended that the following research be undertaken:

a. To give more flexibility to the present friction modeling
approach, the complete phenomena of stick-slip can be
modeled. This provides an opportunity for the boundary nodes,
after commencement of sliding, to stick the die again. For
this purpose, it is necessary to find a suitable kinetic
friction model.

b. It is suggested that the present friction work be linked to a
more advanced elastic-plastic code, one with the capability of
application of different element types and mesh generation. To
model the phenomena of stick-slip, the condition of unloading

must be considered in the computer program.



1.

10.

11.

12.

13.

14.

REFERENCES

J. Devaux, J. C. Gelin, J. Oudin, Y. Ravalard. "Theoretical
Analysis and Experimental Application of Barrelling and Folding in
Cylinder Upsetting Tests. Int J. Mech. Sci (1984) 555.

N. Bay. "Friction and Adhesion in Metal Forming and Cold
Welding." Technical University of Denmark (1985).

"BOUNDARY LUBRICATION." An Apprisal of World Literature. ASME,
New York, (1969).

Donald H. Buckley. "Surface Effect in Adhesion, Friction, Wear,
and Lubrication. Elsvier Scientific Publishing Company, New York,
(1981).

John A. Schey. "Tribology in Metalworking." A.S.M. Ohio (1983).

F. P. Bowden, D. Tabor. "The friction and Lubrication of
Solids." Pt. II. Oxford University Press (1964).

J. Halling. "Principles of Tribology." MacMillan Press Ltd,
England (1973).

A. D. Sarkar. "Wear of Metals." Pergamon Press, New York (1976).

C. M.Edwards, J. Halling. "An Analysis of the Plastic Interaction
of Surface Asperities and Its Relevance to the Value of the
Coefficient of Friction." J. Mech. Eng. Sci (1968).

G. W. Pearsall, W. A. Backofen. "Friction Boundary Conditions in
Plastic Compression." Trans. ASME, J. Engn. Ind. (1963) 68.

F. P. Bowden, D. Tabor. "The Theory of Metallic Friction and Role
of Shearing and Ploughing." Bull. 145, Comm. of Australia, Concil
Sci and Ind Res (1942).

N. Bay, G. Gerverd. "Tool/Workpiece Interface Stresses in Simple
Upsetting." J. Mech. Work Tech (1987).

J. J. Park and S. Kobayashi. "Three-Dimensional Finite Element
Analysis of Block Compression." Int. J. Mech. Sci (1984) 165.

L. J Guo, Y. J. Huang and W. Q. Chen. "Three Dimensional Finite
Element Analysis of Metal Forming Processes with Special Reference
to Boundary Conditions." 16th NAMRC (1984) 114.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

116

C. R. Boer N. Rebelo, H. Rydsted, G. Schroder. "Process Modelling
of Metal Forming and Thermomechanical Treatment." Springer-Verlog
Berlin, Heidelberg (1986).

P. Hartley, C. E. N. Sturgess, G. W. Rowe. "Friction in Finite
Element Analysis of Metal Forming Processes." Int. J. Mech. Sci
(1979) 301.

I. Pillinger, P. Hartley, C. E. N. Sturgess, G. W. Rowe. "An
Elastic Plastic Three Dimensional Finite Element Analysis of the
Upsetting of Rectangular Blocks and Experimental Compression."
Int. J. Mach Tool Des. Res (1985) 229.

A. Nagamatsu, T. Muota, T. Jimma. "On the Non Uniform Deformation
of a Block in Plane Strain Compression Caused by Friction." Bull
J. ASME (1972) 322.

W. Johnson, P. B. Mellor. "Engineering Plasticity." Halstes
Press. New York (1985).

W. Johnson. "Estimation of Upper Bound Loads for Extrusion and
Coining Operations.” Proc. Inst. Mech. Engrs Londin (1959).

H. Kudo. "An Upper Bound Approach to Plane Strain Forging and
Extrusion, parts I, II, III." J. Mech. Sci (1960) 57, 229, 366.

E. G. Thomsen, C. T. Yang, S. Kobayashi. "Mehcanics of Plastic
Deformation in Metal Processing." Macmillan, New York (1965).

B. Avitzur. "Metal Forming Analysis."” McGraw Hi11, New York
(1968).

Y. Yamada, N. Yoshimura, T. Sakura. "Plastic Stress Strain Matrix
and Its Applications for the Solution of Elastic Plastic Problems
by Finite Element Method. Int. J. Mech. Sco (1968) 343.

K. Iwata, K. Osakada, S. Fujino. "Analysis of Hydrostatic
Extrusion by the Finite Element Mehtod." Trans. ASME, J. Engrg.
for Ind (1972) 697.

C. H. Lee. "Numerical Analysis of Plastic Deformation Problems."
Ph.D. Dissertation, University of California, Berkeley (1970).

C. H. Lee, S. Kobayashi. "Analysis of Axisymmetric Upsetting and
Plane Strain Side Pressing of Solid Cylinders by the Finite Element
Method." Trans. ASME J. of Engrg. for Ind. (1971) 445.

C. H. Lee, S. Kobayashi. "“Elastioplastic Analysis of Plane Strain
and Axisymmetric Flat Punch Indentation by the Finite Element
Method. Int. J. Mech. Sci. (1970) 349.

C. H. Lee, S. Kobayashi. “New Solutions to Rigid Plastic
Deformation Problems Using a Matrix Method. Trans. ASME J. of
Engrg. for Ind. (1973) 865.



30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

117

C. H. Lee, S. Kobayashi. "Deformation Mechanics and Workability in
Upsetting Solid Circular Cylinders." Proc. North Ameri. Met. Res.
Conf., Hamilton, Canada (1973) 185.

T. Altan, S. I. Oh, H. Gegel. "Metal Forming." Fundamentals and
Applications." ASM (1983).

S. S. Rao. "The Finite Element Method in Engineering." Pergamon
Press, New York (1982).

H. D. Hibit, P. V. Marcal and J. R. Rice. "A Finite Element
Formulation for Problems of Large Strain and Large Displacement."
Int. J. Solid Str. (1970) 1069.

R. M.McMeeking, J. R. Rice. "Finite Element Formulations for
Problems of Large Elastic Plastic Deformations." Int. J. Solids
and Structures (1975) 601.

R. Hi11. "Some Basic Principles in the Mechanics of Solids Without
a Natural Time." J. Mech. Phys. Solids (1959) 209.

W. Prager. "Introduction to Mechanics of Continua." Gin (1961).

C. F. Gerald, P. 0. Weatly. "Applied Numerical Analysis." Third
Ed. Addison-Wesley Menlo Park, California (1985).

A. T. Male, M. G. Cockcroft. "A Method for the Determination of
the Coefficient of Friction of Metals Under Conditions of Bulk
Deformations." J. of Inst. of Metals (1964) 38.

Aerospace Structural Metal Handbook. Volume 3. (1977).

Serope Kalpakjian. "Manufacturing Processes for Engineering
Materials." Melo Park, California (1984).

0. C. Zienkiewicz. "The Finite Element Method in Engineering
Science." McGraw Hill. London (1971).

"Metal forming Plasticity". IUTAM Symposium Tutzing/Germany. New
York, 1978.

J. C. Ngtegaal, D. M. Parks and J. R. Rice. "On Numerically
Accurate Finite Element Solutions in the Fully Plastic Range".
Computer Methods in Applied Mechanics and Engineering. North-
Holland Publishing Company, 1974.

S. Kobayashi, S. Oh, T. Altan. "Metal Forming and the Finite-
Element Method". Oxford University Press. New York, 1989.



APPENDIX A

STRESS CORRECTION STIFFNESS

118



119

In equation (4.9) the stress correction stiffness was defined

as:

_ T B T
[Kc] = fv ka] ’y OU [NK],.j 2 [Bxi] Olj [ij] dv
Where:
[N] = Shape function.
[B] = Strain -~ displacement matrix.
For a triangular element in plane strain condition equation (3.8)
becomes :
! x11 SYMMETRIC 1
1 K21 K2 i
[Kc] = | Xai X3z K33 1
! Kd1i K42 K43 Kaa ]
I K31 K32 K33 K34 K33 H
1 K61 K62 K63 KS4 KO3 Koo |
Where:
2 2 2 2 2

K11= A Y32 + B X32 - 2 C Y32 X32 + AA (Y32 + X34 / 4)+ BB X32/4)
- 2 CC Y32 X32

K21= (-AA X32) / 4 - BB Y32 X32 / 4 + CC Ygz + CC X32

K22= A Y;Z + B X;Z - C Y32 X32 ~ C X32 Y32 + AA Y;Z / 4+
BB Y;Z / 4 + X;Z - CC Y32 X32 - CC X3Z Y32

K31= - A Y31.Y32 - B X31 X32 + C Y31 X32 + C X31 Y32 - AA Y31 Y32
- AA X31 X32 / 4 - BB X31 X32 / 4 + CC Y31 X32 +

CC X31 Y32



1290

K32= AA X31 Y32 / 4 + BB X31 Y32 / 4 + - CC X31 X32 -~
CC Y31 Y32

2 2 2

K33= A Ygl + B X31 - C ¥31 X31 - C X31 Y31 + AA Y31 + AA X31 /4
+ BB Xgl / 4 - CC Y31 X31 - CC X31 Y31
K41= AA Y31 X32 / 4 + BB Y31 X32 / 4 -~ CC Y31 Y32 -CC X31 X32
K42= - A Y31 Y32 - B X31 X32 + C Y31 X32 + C X31 Y32 -
AA Y31 Y32 / 4 - BB Y31 Y32 / 4 - BB X31 X32 +
CC Y31 X32 + CC X831 Y32
K43= - AA X31 Y31 /4 - BB Y31 X31 / 4 + CC Ygl + CC Xgl
K44 = A Y31 + B X31 - C Y31 X31 - C X31 Y31 + AA Y31 / 4 +
BB Y31 / 4 + BB X31 - 2 CC X31 Y31
K51 = A Y21 Y32 + B X21 X32 - C Y21 X32 - C X21 Y32 + AA Y21 Y32
+ AA X21 X32 /4 + BB X21 X32 /4 - Y21 X32 - CC X21
K52= -AA X21 Y32 /4 - BB X21 Y32 /4 + CC Y21 Y32 + CC X21 X32
K§3= - A Y21 Y31 - B X21 X31 + C Y21 X31 + C X21 Y31 -AA Y21 Y31
- BB X21 X31 / 4 - BB X21 X31 /4 +CC Y21 X31 +C C X21 Y31
K54 = AA X21 Y31 /4 + BB X21 Y31 /4 - CC Y21 Y31 - CC X21 X31
K55= A Ygl + B Xgl - C Y21 X21 -C X21 Y21 + AA Y;1 + AA le / 4
+ BB Xél / 4 - 2 CC Y21 X21
KB61= -AA Y21 X32 /4 -BB Y21 X32 / 4 +CC Y21 Y32 +C C X21 X32
K62= A Y21 Y32 + B X21 X32 - C Y21 X32 - C X21 Y32 +
AA Y21 Y32 / 4 + BB Y21 Y32 /4 + BB X21 X32
CC Y21 X382 - CC X21 Y32
KB63= AA Y21 X31 /4 + BB Y21 X31 /4 - CC Y21 Y31 - CC X21 X31
KB4= -A Y21 Y31 -B X21 X31 + C Y21 X31 + C X21 Y31 -

AA Y21 X21 /4 - BB Y21 Y31 /4 - BB X21 X31 + CC Y21 X31



+ CC Y21 X31 + CC X21 Y31

z
KB65= -AA Y21 X21 /4 - BB Y21 X21 /4 + CC Y21 + CC X21

2 2
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4

4

K66= A Y21 + B X21 - C Y21 X21 - C X21 Y21 + AA Y21 / 4

2 2

BB Y21 /4 + BB X21 - 2 CC X21 Y21

2 2
A= o/ (4 8) B=0o,, /7 (4 8) C= ¢
2 2
AA= -2 c“/ (4 8 ) BB= -2 2,, / (4 8) CC=
S= Area of the triangular element
X = X -X
i) J 1
Y. = Y -Y
ij 3 i
(Xz,Y2)
(X1,Y1) (X3.Y3)
Y

b/ (48

-2 ¢,/ (4 8)
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The Prandtl Ruess equations for the deviatoric strain increment

dsu are:
de = o/ d\ + do;, / 26 (B.1)
Where:
d\ = (3/2) de® / & = (3/2) do/ ( @ H) (B-2)

According to the Von Mises Yield Criterion:

(2/3) o = o], o, (B.3)

L) vl

- - p =P
dsp = (2/3) de 4 de iy (B.4)

H = deo /dEp,correspondes to the slope of the equivalent stress
(o) versus plastic strain (J dEp) curve.

The inverse of equation (B.1) can be writen as [18]:

do. .
i

E/(1+v) (deij+ v/(1-v) 6tj de. -~o . oél dsij/S)

Where

( 2/3 ) &° ( 1+ H® /3G)

2]
"

o

fl

Y (2/3 o;j a;j

Equation (B.5) can now be used to construct the stress strain
matrix [ DP ] used in equationm (3.8).

In plane strain condition
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[DP1=E/(1+v)

.2
(1-v)/(1-2v) %%

-

Xy

X Xy

/ 8

S

/S SYMMETRIC

xTxy /S

2
v Xy 1277 yy/®

(B.B)
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SUBROUTINE HEA
This subroutine is the heart of the program and all the steps
explained in section 4.5.2 are carried out in this subroutine.

Fig c¢.1 shows the flowchart of subroutine HEA.

SUBROUTINE BM
This subroutine computes the elements of strain-displacement
matrix [B} &8according to the infinitesimal strain theory for

triangular element.

SUBROUTINE DELA
This simple subroutine computes the elements of the elastic

stress-strain matrix [De] for plane strain condition.

SUBROUTINE DPLA

Subroutine DPLA computes the plastic stress strain matrix
[DP] for plane strain condition according to the prandtl-Ruess law.
Matrix [DP] relates the increments of the Jaumman stresses and
strains in the plastic region. [DP] is a function of the state of
stresses and the slope of the equivalent stress versus equvalent
strain curve (H°) and therefore, must be computed at each
increment of compression and for each element. The values of the
stresses used to compute [DP] are from the results of the
computations at the previous increment.
SUBROUTINE STIFF:

SUBROUTINE STIFF computes the elastic stiffness matrix of

each element . The elements ofthis matrix are assembled into the

banded matrix [Gs] of global coordinates.



banded matrix [Gs] of global coordinates.
SUBROUTINE PSTIFF:

The role of this subroutine is calculation of [Kd4d] and [Kel
according to the egquations (4.8) and (4.8) and assembling the
results in global coordinates to the banded matrix [Gs].
SUBROUTINE VAL:

This subroutine divides a rectangular block into a number of
triangular elements according to the number of nodes in X & Y
directions. The tasks of this subroutine are

1- Numbering the degrees of freedom and elements in a way to

obtain .a stiffness matrix with minimum bandwith.

2- Computing.the global coordinates of each node according to
the coordinates of the upper right corner of the rectangle.

3- Numbering the vertices of each element (locally) and storing
the correspondig global node number in the array LOC(i,J) ,
where i=No of element & j= No of the vertex.

4- Storing the degrees of freedom the nodes where the

displacements are prescribed.

S5- Storing the degrees of freedom of the fixed points under
sticking or sliding conditions.

For any other geometry this subroutine must be modified.
SUBROUTINE DISL

This subroutine computes the increment of the 1loecal nodal
displacements (QL).
SUBROUTINE MATMUL

THis simple subroutine is used for matrix multiplication.
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SUBROUTINE STRESS

Subrotine stress computes the increment of the stresse and
strains.

SUBROUTINE RATIO

This routine computes the iﬁcrement of displacement for
bringing an element with maximum equivalent stress to the vyield
point. The scalingfactor R 1is calculated according to the
equation (4.12).

SUBROUTINE DECOMP [32]:

This subroutine decomposes the banded stiffness matrix into
the upper and lower triangular matrices (METHOD OF CHOESKI) AND
stores the elements of the upper triangular matrix in the original
banded matrix.

SUBROUTINE SOLVE [41]:

This subroutine solves the system of equilibrium equations
by using the decomposed stiffness matrix from SUBROUTINE DECOMP.
Depending on the boundary conditions and the fixed points some
elements of stiffness matrix shuld be modified [31,pp 457].
Subroutines Hea takes care of this modification.

SUBROUTINE FRIC

This Subroutine checks the nodal shear stress. If the shear
stress is greater than the introduced static friction stress it
removes the condition of the constrained displacement from that
particular node and calculate and apply the frictional force in

the opposite direction of the flow.



Fig.C—1. LOGIC FLOW OF ELPL PROGRAM

INITIAL INPUT
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OR PLASTIC REAGION

DETERMINE IF THE ELEMENT IS IN ELASTIC

l

l

IF PLASTIC IF ELASTIC
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APPLY AN Ine. OF Dis, AND
BOUNDARY Cond. & SOLVE Sym.Eq

v

Comp, THE Inc.OF STRESS,Disp & STRAIN

!

COMP Equl. STRESSE AMONG THE ELEM
IN ELASTIC REGION & Comp. R

!

MULTIPLY ALL THE inc.OF STRESSES
STRAINS & NODAL Disp. BY R &

ADD TO THE CORRESPONDING ACCUMULATIVE
VALUES

Y

UPDATE THE NODAL COORDINATES
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ALL ELEM NO

0

IN PLASTIC
REGION

WRITE THE RESULTS

l p



Comp, THE Inc. OF Disp. FOR THE
REST OF Cemp. ACCORDING TO TOTAL Disp.

v

Comp. (KImlKcl+IKd] & ASSEMBLE

i

APPLY Inc. OF Disp. & CALCULATE THE
Inc.OF STRESSES, STRAINS & NODAL Disp.

& ADD TO THE CORRESPONDING ACCUMULATIVE
VALUES,

WRITE THE RESULTS

UPDATE THE NODAL COORDINATES

STOP
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DIMENSION LOC(171,3),CX(193),CY(193),IFIX(100),P(388,1),
2GS8(386,32),STRES(335,5),IDISP(S0),STRAIN(335,5),N0(335),H0(335),
3STR(335,5),STRE(335,5),PA(386,1),IDB(50),AC(20,24),F(20),FA(20),
4ISL(20)

DOUBLE PRECISION DIFF(1)
CALL VAL (N,NE,NN,ND,NB,CX,CY,LOC,IDISP,NDISP,IFIX,NFIX,IDB,
$NDB,E,ANU,H,Y0,HMG,NG,HY,ISL)
M=1
DATA T,C,WN/1.0,26000.0,0.2/
DO S0 I=1,ND
S50 P(I,1)=0.0
NC=NGx2

CALL CST(NN,NE,ND,NB,M,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS,DIFF,
2STRES,NDISP, IDISP STRAIN YO C,WN, NO MO IDIS STRE STR PA,IW,H,
3AC,F, FA NC,MG,NG,MY,ISL)

STOP
END

3K ke 3 3 3K K 2 3 K 3 3 3 3 2 3 K 3 3 3 K 3 3 K 3 3 3K 3 K K 3K 3K 3 3K 3 3 K 3 K 33 K 3 e 35K 3K 3 3K o 3ok S K K K 3K K K K K oK K K KK

C THIS SUBROUTINE IS BEING USED TO BRING ALL ELEMENTS INTO ELASTIC REGION x
Cakak K K 3 KK K A KKK KK K K K K K K K 3 3K oK K oK K KK K A oK K K o KoK K KKK o oK oK Ko K o o koK

SUBROUTINE CST(NN,NE,ND,NB,M,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS,
2DIFF,STRES,NDISP,IDISP,STRAIN,YO,C,WN,NO,MO,IDIS,STRE, STR,PA,
3IW,H,AC,F,FA,NC,MG,NG,HMY,ISL)

DIMENSION LOC(NE,3),CX(NN),CY(NN),IFIX(100),P(ND,M),GS(ND,NB),
2STRES(NE, 5),AA(8,6),QL(6),DD(3,3),DP(3,3),BB(3,86),DB(3,6),
3BBT(6,3),IDISP(100),STRAIN(NE,S),NO(NE),HO(NE),STR(NE, 5),
4STRE(NE,5),PA(ND,M),AC(NC,NB),F(NC),FA(RC),ISL(MG),SNS(40),
5QNS(40),YNS(40),SFS(40),KF(40),NF(40),F0X(40),NEE(30),LF(40)

DOUBLE PRECISION DIFF(1)

OPEN(25,FILE="DISA",STATUS="NEW")
OPEN(40,FILE="STRP",STATUS="NEW")

C OPEN(S0,FILE="SSY ,STATUS="NEW ")

c OPEN(60,FILE="SSX",STATUS="NEW")
OPEN(70,FILE="FORCE’,STATUS="NEW")

c OPEN(80,FILE="STR",STATUS="NEW ")

OPEN(90,FILE="RESULTS",STATUS="NEW")

WRITE(X,%) MX=" 6 MX, "MY=",MY, "NN=",NN
WRITE(90,402)MX,HY,NN
WRITE(*,x) NE=',NE, "ND=",ND, "NB=",NB
WRITE(S0,403)NE,ND,NB

WRITE(*,x) NFIX=",NFIX, "NDISP=",NDISP
WRITE(S0,404)NFIX,NDISP



C 310

C 320
C 320

330
C 330

12

11

13

DO 310 I=1,NE

WRITE(*,%*) LOC=",(LOC(I,J),d=1,83), I=",1
WRITE(90,405)I,(LOC(I,J),J=1,3)

DO 320 I=1,NFIX

WRITE(90,408)I,IFIX(I)

WRITE(*,*) IFIX=",IFIX(I), I=",1

DO 330 I=1,NDISP

WRITE(S0,407)I,IDISP(I)

WRITE(*,%x) IDISP=", IDISP(I)

G=E/ (2% (1+ANU))

WRITE(*,x) ENTER THE VALUE OF DISPLACEMENT’
READ(x,%x) UT

WRITE(*,*) UT(DISPLACEMENT )=",UT
WRITE(90,408)UT

WRITE(S0,410)E,ANU,H, Y0

WRITE(*,*) AMU AF AQP~

READ (*,* )ANMU, AF , AQP

WRITE(S0,420)AMU, AF, AQP

WRITE(*,%) DO YOU NEED PRINT OUT ABOUT FRIC 1 OR
READ (k , x )KCP

AY=1.15%Y0

AR=AY/3QRT(3.)

ATP=AQP*3QRT (3. )*xAMU

AFT=AF-ATP

YP=0.995%Y0

DO 99 I=1,40

NF(I)=0

FOX(I)=0

SFS(I)=0

YNS(I)=0

QNS(I)=0

LF(I)=0

98 KF(I)=0

NMQ=2

DO 11 I=1,NE

DO 12 J=1,5

STRES(I,J)=0.0

STRE(I,J)=0.0

STRAIN(I,J)>=0.0

STR(I,J)=0.0

CONTINUE

MO(I)=1

NO(I)=1

CONTINUE

DO 13 I=1,ND

DO 13 J=1,M

P(I,H)=0.0
PA(I,H)=0.0
DO 15 I=1,NC
F(I)=0.
FA(I)=0.
DO 14 J=1,NB
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14 AC(I,J)>=0.
15 CONTINUE
HE=CY(1)
CxxSUBROUTINE (DELA) CALCULATES D MATRIX [DD] ACCORDING TO HOOK LAW *x

CALL DELA(E,ANU,DD)
IGH=0
101 DT=-0.1
WRA=0.0
DO 10 I=1,ND
DO 10 J=1,NB
10 GS(I,J)=0.0
DO 100 I=1,NE

CxxSUBROUTINE (STIFF) CALCULATES THE STIFFNESS MATRIX FOR EACHXXkXXkkX
Cxxxxxx**xELEMENT AND STORE IT IN BANDED MATRIX [GSIHRXKKKKXKKKKKKKKKKKKKXK

IF (NO(I).E@.1) CALL STIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS)
IF (NO(I).EQ.2) THEN

CxxSUBROUTINE (DPLA) COMPUTES D HATRIX [DP] ACCORDING TO PRANDTL REUSSx

CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,M0O,DP,H)
CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE)
ENDIF
100 CONTINUE

Cxxx DO 50 MULTIPLIES EVERY TERM OF [GS}, CORRESPONDING TO THE FIXED *x

Cxxx POINTS(INCLUDING THE PRISCIBED POINTS), BY A LARGE NUMBER.X*XX**Xx
%K KKk

DO &0 I=1,NFIX

IX=IFIX(I)
50 GS(IX,1)=GS(IX,1)*1._0ES6

IF(IGH.EQ.0) GO TO 777

DO 778 I=1,NNC

JJJ=NF(I)+1

III=NF(I)

IF(RF(I).EQ.1) GS(III,1)=GS(III,1)/1.0EB

IF(LF(I).EQ.1) GS(JJJ,1)=GS(JJJ,1)/1.0E86
778 CONTINUE

Crxxxk%x%xk*x DO 52 INTRODUCES THE PRISCRIBED DISPLACEMENTSHkkkkkkkkakkkk

777 DO 52 I=1,NDISP
IZ=IDISP(I)
P(IZ,1)=GS(IZ,1)*DT

52 CONTINUE
IF(IGH.EQ.0)XGO TO 776
DO 787 I=1,NNC
IF(KF(I).EQ.1) THEN
KHW=NF(I)



P(EHW, 1)=FOX(I)
ENDIF
787 CONTINUE

Cxx SUBROUTINE (DECOMP) DECOMPOSES [GS] INTO LOWER AND UPPER Tr.X¥Xxx
Cxx MATRICES AND STORES THE ELEMENTS OF THE UPPER TRIANGLE ([GS].%Xx*%x
Cxx SUBROUTINE (SOLVE) SOLVES THE SYSTEM OF EQUATIONS [GS]}{U}={P} &*x*x
Cxx STORES THE RESULTS INTO {P}. NOW,{P} ARE GLOBAL NODAL *XXX¥X**X%X
CxxDISPLACEMENT INCREMENTS. KK 3K K K 3K 3 OK 3K K K K K 3K K K KK K 3K K K 3K K K K K K K K K K K K K K XK K K X

7768 CALL DECOMP(ND,NB,GS)
CALL SOLVE(ND,NB,M,GS,P,DIFF)
PO 200 I=1,NE

CxxSUBROUTINE (DISL) COMPUTES THE LOCAL NODAL DISPLACEMENT *k¥xkxkkkxxk
CxkINCREMENT {QL J . 5okoKa ok ook o oK o KoK KKK o oK oK oK KA K K KK KKK oK o o ook KoK KoK oK 3K KK o 3K KoK KoK oK K oK

CALL DISL(I,LOC,NE,ND,H,P,QL)

Cx*SUBROUTINE (BM) COMPUTES THE B MATRIX [BB] ACCORDING TO  **kkkkk*kkx%
Cx*INCREMENTAL DISPLACEMENT THEORY. %%k k¥ kkokk ok kKoK kK ok Xk ok ok ok oK X kK K

CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
Cx*xSUBROUTINE MATMUL MULTIPLIIES [DD] BY [BB] AND STORES IT IN [DB].x*x*

IF (NO(I).EQ.1) CALL MATMUL(DD,BB,DB,3,3,6)
IF (NO(I).EQ.Z2) THEN

CALL DPLA(NE,E,Y0,C,WN,STRE,STR,I,H0,DP,H)
HO(I)=HO(I)+1

CALL MATMUL(DP,BB,DB,3,83,8)

ENDIF

Cxxx SUBROUTINE (STRESS) COMPUTES THE STRESS & STRAIN INCREMENTS **Xxx
Cxxx & STORE THEM IN STRES & STRAIN ARRAYS. XX¥kKakkHKdkkK kKKK KKKk KKK K KKK K

CALL STRESS(NE,I,QL,BB,DB,STRES,STRAIN)

Cxx THE FOLLOWING 8 LINES FIND MAX EQUIVALENT STRES (STRE(I,4)) & *Xxx
** ADDRESS OF THE CORRESPONDING ELEMENT AMONG THE ELASTIC ELEMNTS***x

IF(NO(I).EQ.1) THEN
STRES(I,5)=ANU*(STRES(I,1)+STRES(I,2))
SX=STRES(I,1) +STRE(I,1)
SY=STRES(I,2) +STRE(I,2)
SXY=STRES(I,3)+STRE(I, 3)
SZ=STRES(I,5)+STRE(I,5)
STRE(I,4)=SQRT(0.5%((SX~SY)**2+(SY~SZ)**2+(s52-SX)**2)+3kSXY**2)
IF (STRE(I,4).GE.WRA) THEN

WRA=STRE(I,4)

IN=I

ENDIF
ENDIF
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CONTINUE

CxxSUBROUTINE (RATIO) COMPUTES THE SCALING FACTOR FOR BRINGING THE *xx
Cx*¥ELEMENT (IN) INTO PLASTIC REGION . KkokokaKkkokkKKKkK KK KKK KKK kK K KKK KKK K

aaa

23

CALL RATIO(NE,IN,YO,STRES,STRE,R)

CO=R

PCH=P (2,4 )*CO

IF(PCH.LT.-0.6015) CO=(-.0015/P(2,M))

IW=0

DO 22 I=1,NE

DO 23 J=1,3

STRES(I,J)=STRES(I,J)*CO

STRE(I1,J)=STRE(I,J)+STRES(I,J)

STRAIN(I,J)=STRAIN(I,J)*CO

STR(I,J)=STR(I,J)+STRAIN(I,J)

CONTINUE

SX=STRE(I, 1)

SXX=STRES(I, 1)

SY= STRE(I,2)

SYY=STRES(I,2)

SXY=STRE(I, 3)

SZ= STRE(I,5)

IF(NO(I).EQ.2)THEN

S1=STRAIN(I, 1)

S2=STRAIN(I,2)

S3=STRAIN(I,3)

SM=(SX+SY+SZ)/3.0

SXP=SX-SM

SYP=SY-SM

SZP=SZ-SM

PP=SXP*S1+SXY*S3+SYP%*S2

STRAIN(I,4)=PP/( STRE(I,4)*(1+H/(3%G)) )

IF (STRAIN(I,4).LT.0.0)WRITE(*,*) STRAIN(I,4)<0=",STRAIN(I,4),I

STR(I,4)=STR(I,4)+STRAIN(I,4)

S=(STRE(I,4)**2)*(1+H/(3*%G))

STRES(I,5)=2%GX( (ANU/(1-2%ANU))*(S1+S2)~(SZP/S)*(SXPxS1+SYP*S2
$+SXY*S3))

STRES(I,S5)=.5%(SXX+SYY)

AH=(SX-.5%(SY+SZ))/(SZ-.5%(SY+5X))

STRES(I,5)=(ANUXAHX*(SYY+SXX)+SXX-ANUXSYY-EXSTRAIN(I,1))/(ANU+AH)

ENDIF

IF(NO(I).EQ.1) STRES(I,S5)=ANU*(SXX+5YY)

STRE(I,1)=STRE(I,1)+SXX

STRE(I,2)=STRE(I, 2)+SYY

STRE(I,3)=STRE(I,3)+STRES(I, 3)

STRE(I,5)=STRE(I,5)+STRES(I,S)

SX=STRE(I, 1)

SY= STRE(I,2)

SXY=STRE(I,3)

SZ= STRE(I,S)

STRE(I,4)=SQRT(0.5%((SX-SY)**2+(SY-SZ )**2+(sz-sx)*¥*2)+3XSKXY*%2)

S1=STRAIN(I, 1)
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24

72

701
702

703

700

S2=STRAIN(I,2)
S3=STRAIN(I,3)

STRAIN(I,S5)=SQRT((4./9)*((S1-S2)**2+S1kk2+52%*2)+(4./3)*(S3**2))

STR(I,5)=STR(I,5)+STRAIN(I,S)
IF(STRE(I,4).GE.YP)THEN
NO(I)=2

IN=IW+1

ENDIF

CONTINUE

DO 24 I=1,KD
P(I,M)=P(I,H)*CO
PA(I,M)=PA(I,M)+P(I,H)
CONTIRUE

DO 72 J=1,8N

JA=2%J-1

JB=2%J
CX(J)=CX(J)+P(JA,1)
CY(J)=CY(J)+P(JB, 1)
CONTINUE

IF(NMQ.LE.MG) THEN

DO 700 I=NMQ,MG
KA=ISL(I)
IF(CY(KA).GE.CY(1))THEN
NMa@=NMQ+1

KDX=2%EKA-1

KDY=2%KA

NDISP=NDISP+1

WRITE(*,x)" 1I=",I," NMQ’',NMQ, " NDISP’,NDISP

IDISP(NDISP)=KDY
NFIX=NFIX+2

DO 701 J=1,NFIX
IF(IFIX(J).GE.KDX)THEN
JC=J

GO TO 702

ENDIF

CONTINUE

DO 703 K=JC,NFIX-2,2
IR1=TFIX(K)
IR2=IFIX(K+1)
IFIX(K)=KDX
IFIX(EK+1)=KDY
KDX=IR1

KDY=IR2

CONTINUE
IFIX(NFIX-1)=KDX
IFIX(NFIX)=KDY
ENDIF

CONTINUE

ENDIF

IGH=IGH+1

WRITE(x,%)" ITER=',IGH, " DISP=",PA(2,1)

WRITE(40,421)IGH,PA(2, 1)

CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
$AQP,AY,ATP.AFT, AK, AMU, SFS,KF ,NF,F0X,P,CX,ND,FORCE,CY,LF)

PPA=100%ABS(PA(2,1))/HE
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801

C
110

C

C
111

C
112
809
811
812
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WRITE(70,417) FORCE,PPA

IF(RCP.NE.1)GDO TO 9867

DO 113 I=1,NNC
WRITE(40,419)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I)
$,NF(I),LF(I)

CONTINUE

IF(PA(2,1).LE.UT) GO TO 801

IF(IW.LT.NE)GO TO 101

WRITE(S80,411)

WRITE(*,x)" COMPRESSION:  ,PA(2,1)

DO 110 I=1,NN

J=1I%2

WRITE(*,*)  DISPLACEMENT OF NODES',I,PA(I,1)
WRITE(S0,412)CX(I),CY(I),PA(J-1,1),PA(J,1),I
CONTINUE

DO 111 I=1,NE

WRITE(*,*x) “STRESS',(STRE(I,J),J=1,5)
WRITE(80,400)I,(STRE(I,J),J=1,5)
WRITE(S80,401)I,(STR(I,Jd),J=1,5)

WRITE(*,x) °"STRAIN’,(STR(I,J),J=1,5)
CONTINUE

DO 112 I=1,NE

WRITE (*,%)"I=",I, NO=",NO(CI), " MO=",M0O(I)," H
WRITE(S0,413)I,NO(I),MO(I)

WRITE(*,%)  NFIX=',NFIX

DO 808 I=1,NFIX

WRITE(*,*)" I=",I, " IFIX=',IFIX(I)

DO 811 I=1,NDISP

WRITE(*,*x)" I=",IDISP(I)

DO 812 I=1,NN

WRITE(*,x) °~ I=",I,  CY ,CY(I)

1"
ja o}
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31

60

WRITE(*%,%x)  ENTER NO OF ITR~’

READ(*,x)ITR

WRITE(S0,408)ITR

DT=(UT-PA(2,1))/ ITR

IF(DT.GE.0)GO TO 800

WRITE(*,x) DO YOU PRINT OUT ABOUT FRIC 1=YES~
READ(*, x)KCP

DO 88 JR=1,ITR

DO 31 I=1,NE

CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H)
CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE)
CONTINUE

DO 60 I=1,NFIX

IX=IFIX(I)

GS(IX,1)=GS(IX,1)*1.0E6B

DO 779 I=1,NNC

III=NF(I)

JJJ=NF(I)+1

IF(KF(I).EQ.1) GS(III,1)=GS(III,1)/1.0E8B
IF(LF(IY.EQ.1) GS(JJJ,1)=GS(JJJ,1)/1.0E8
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779 CONTINUE
DO 82 I=1,NDISP
IZ=IDISP(I)
P(IZ,1)=GS(IZ,1)*DT
62 CONTINUE
DO 788 I=1,NNC
IF(KF(I).EQ.1)THEN
KHW=NF(I)
P(KHW, 1)=FOX(I)
ENDIF
788 CONTINUE
CALL DECOMP(ND,NB,GS)
CALL SOLVE(ND,NB,M,GS,P,DIFF)
DO 210 I=1,NE
CALL DISL(I,LOC,NE,ND,M,P,QL)
CALL BM(NE,NN,I,LOC,CX,.CY,BB,AREA)
CALL DPLA(NE,E,YO,.C,WN,STRE,STR,I,M0.DP,H)
MO(I)=MO(I)+1
CALL MATMUL(DP,BB,DB,3,3,8)
CALL STRESS(NE,I,QL,BB,DB,STRES,STRAIN)
210 CONTINUE
DO 32 I=1,NE
DO 33 J=1,3
STR(1,J)=STR(I,J)+STRAIN(I,J)
33 CONTINUE
SX=STRE(I, 1)
SXX=STRES(I,1)
SY= STRE(I,2)
SYY=STRES(I,2)
SXY=STRE(I,3)
SZ= STRE(I,S)
S1=STRAIN(I,1)
S2=STRAIN(I,2)
S3=STRAIN(I, 3)
SM=(SX+SY+SZ)/3.0
SXP=SX-SHM
SYP=SY-SM
SZP=SZ-SHM
PP=SXP*S1+SXY*S3+SYP*S2
STRAIN(I,4)=PP/( STRE(I,4)*(14+H/(3%G)) )
IF (STRAIN(I,4).LT.O0.0)WRITE(*x,%*) STRAIN(I,4)<0=",STRAIN(I,4),I
STR(I,4)=STR(I,4)+STRAIN(I,4)
S=(STRE(I,4)**2)%(1+H/(3%G))
STRES(I,5)=2%Gx((ANU/(1-2%ANU))Y*(S1+S2)-(SZP/S)X(SXP*S1+SYP*S2
$+SXY*S3))
STRES(I,5)=.5%(SXX+SYY)
STRE(I,1)=STRE(I,1)+SXX
STRE(I,2)=STRE(I,2)+SYY
STRE(I,3)=STRE(I,3)+STRES(I,3)
STRE(I,5)=STRE(I,5)+STRES(I,5)
SX=STRE(I,1)
SY= STRE(I,2)
SXY=STRE(I,3)
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34

71

751
752

753

750

SZ= STRE(I,5)

STRE(I,4)=SQRT(0.5%( (SX-SY)**2+(SY-SZ)**2+(s2-sx)¥*2)+3*%SXY**2)

S1=STRAIN(I, 1)
S2=STRAIN(I,2)
S3=STRAIN(I,3)

STRAIN(I,5)=SQRT((4./9)*((S1-S2)**2+S1k*2+S2%*2)+(4./3)*(S3%*2))

STR(I,5)=STR(I,S5)+STRAIN(I,S)
CONTINUE

DO 34 I=1,ND
PA(I,M)=PACI ,H)+P(1,H)
CONTINUE

DO 71 J=1,NN

JA=2%J-1

JB=2%J
CX(J)=CX(J)+P(JA, 1)
CY(J)=CY(J)+P(JIB, 1)
CONTINUE

IF(NMQ.LE.HMG) THEN

DO 750 I=NMQ,MHG
KA=ISL(I)
IF(CY(KA).GE.CY(1))THEN
NHQ=NHQ+1

KDX=2%KA-1

KDY=2%KA

NDISP=NDISP+1

WRITE(*,x)" NMQ=",NMQ, " NDISP’,NDISP

IDISP(NDISP)=KDY
NFIX=NFIX+2

DO 751 J=1,NFIX
IF(IFIX(J).GE.KDX)THEN
JC=J

GO TO 752

ENDIF

CONTINUE

DO 753 K=JC,NFIX-2,2
IR1=IFIX(K)
IR2=IFIX(K+1)
IFIX(K)=KDX
IFIX(K+1)=KDY
KDX=IR1

KDY=IR2

CONTINUE
IFIX(NFIX-1)=KDX
IFIX(NFIX)=KDY
ENDIF

CONTINUE

ENDIF

KTC=IGH+JR

WRITE(*,*) " *xITR=",RTC,  DISP=",PA(2,1)

WRITE(40,421)KTC,PA(2,1)

CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS, YNS,NNB,RNC,
$AQP,AY,ATP, AFT, AK, AMU, SFS,KF,NF,F0X,P,CX,ND,FORCE,CY,LF)

PPA=100%ABS(PA(2,1))/HE
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WRITE(70,417)FORCE,PPA

IF(KCP.NE.1)GO TO 88

DO 780 I=1,NNC

WRITE(40,418)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I)
$,NF(I)

CONTINUE

CONTINUE

WRITE(*,x) " NFIX=",NFIX,  IFIX",IFIX

DO 813 I=1,NFIX

WRITE(*,x)" I=",I," IFIX=",IFIX(I)

DO 814 I=1,NDISP

WRITE(*,%) " I=",I,  IDISP',IDISP(I)

DO 817 I=1,NN

C 817 WRITE(*,*x)  I=",I," CY ,CY(I)

c
c
c
C

187

67

913

68

C 88
800

90

WRITE(S0,414)

WRITE(*,%) %*xk**xxxTOTAL COMPRESSION T[IN] :’ ,PA(Z,1), *xkxkxkxkx’
DO 187 1I=1,NC

WRITE(SO0,415)I,FA(I),F(I)

WRITE(*,415)I,FA(I),F(I)

CONTINUE

DO 67 I=1,NN

J=I%2

WRITE(*,x) "DISPLACEMENT OF NODES',I,PA(I,1)," ITR=",JR
WRITE(S0,412)CX(I),CY(I),PA(J-1,1),PA(J,1),1

CONTINUE

IGH=IGH+JR

WRITE(S0,421)IGH,PA(2,1)

WRITE(*,%x)" ITR=",IGH

CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
$AQP,AY,ATP,AFT, AK, AMU, SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF)
DO 8913 I=1,NNC

WRITE(SO, 419)I SNS(I), YNS(I) QNS(I),SFS(I),FOX(I),CX(I),RF(I)
$,NF(I),LF(I)

DO 68 I=1,NE

WRITE(S0, 400)I (STRE(I,J),J=1,58)
WRITE(S0,401)I,(STR(I,J),J=1,5)

CONTINUE

DO 69 I=1,NE

WRITE(S0,413)I,NO(I),HMO0(I)

DO 80 I=1,MG-1

IF(I.EQ.1) THEN

NEE(I)=2%(NG-1)+1

WRITE(*,x)" I=’,I,° NE=',NEE(I)

GO TO 80

ENDIF

NEE(I)=NEE(I-1)+2%(NG-1+I-1)+1

WRITE(*,x)” I=",I," NE',NEE(I)

NT=I

CONTINUE

DO 91 I=1,MY-1

J=NT+I

NEE(J)=NEE(J-1)+2%(HG+NG-2)

WRITE(*,%*)" J=",J," NE=",NEE(I)



91

95

98

CONTINUE

NPT=1

DO 92 K=1,MG+MY-2

DO 96 I=NPT,NEE(K),2

IF(K.LE.MG-1)THEN

IF(I.EQ.NEE(K))THEN
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1))
WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3))
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
GO TO 98

ENDIF

ENDIF

IF(K.GT.MG~-1)THEN

IF(I.GT.NPT) GO TO 95
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1))
WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3))
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))

WRITE(25,178)CX(LOC(I+1,2)),CY(LOC(I+1,2))

WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3))
GO TO 98

ENDIF
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1))
WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3))
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2))
CONTINUE

JT=0 v

DO 94 I=NPT,NEE(K),2

JT=JdT+2

J=NEE(K)-JT+2
WRITE(25,178)CX(L0OC(J,2)),CY(LOC(J,2))
KL=J

CONTINUE
WRITE(25,178)CX(LOC(J,1)),CY(LOC(J,1))
NPT=NEE(K)+1

CONTINUE

FORMAT(2F10.4)

FORMAT(5X, "ELEMENT: ", 14, " STRESSES: " ,5F10.2)
FORMAT(5X, "ELEMENT: ", 14, " STRAINS: ,5F10.8)
FORMAT(5X, 'MX=",1I3," MY=",1I3,° NN=",I4)
FORMAT(5X, "NE=",13, "’ ND=",1I3,° NB=",I3)
FORMAT(5X, "NFIX=",1I3," NDISP=",13)

FORMAT(5X, "I=",1I3, " LOC=",3I3)
FORMAT(5X, "NFIX=",I3, " IFIX=",1I3)
FORMAT (5x, 'NDISP=",13, " IDISP=",1I3)

FORMAT(5X, "TOTAL DIE DISPLACEMENT: " ,F10.6)

FORMAT(5X, 'No OF ITERATION AFTER ALL ELEM IN PLASTIC’,I4)
FORMAT(5X, "E=",F10.1, " POIS RATIO=",F4.2,°
FORMAT(5X, "*xxAT THIS PONT ALL ELMENTS ARE IN PLASTIC ZONEx*x )

FORMAT(5X,4F9.5, " DISP AT NODE: " ,I5)
FORMAT(S5X, "ELEMENT No:’",I4," NO=",I3,"

FORMAT(////,5X, “*x%xxx RESULTS AT THE END OF DEFORMATIONXX¥Xxx ')
FORMAT(5X, 'NODE: ",I3,  TOTAL LOAD: ,F13.1,°

H=",F8.2,"

INC LOAD: " ,F13.1)
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80

FORMAT(5X,F13.2,5X,F13.7)
FORMAT(S5X,F13.8,5X,F10.7)
FORMAT(2X,I15,6F10.3,2I5)

FORMAT(5X, "AMU=",F4.2," AF=",F4.2,° AQP=",F4.2)
FORMAT(S5X, "ITER: *,I4, " DISPLACEMENT: ,FS8.5)

RETURN
END

SUBROUTINE STRESS(NE,I,QL,BB,DB,STRES,STRAIN)
DIMENSION QL(6),BB(3,8),DB(3,6),STRES(NE,5),STRAIN(NE,5),SL0OC(3),

$ST(3)

DO 80 II=1,3

SLOC(II)=0.0

ST(II)=0.0

DO 80 JJj=1,8
SLOC(II)=SLOC(II)+DB(II.JJ)*QL(JJ)
ST(II)=ST(II)+BB(II,JJ)*QL(JJ)
CONTINUE

STRES(I,1)=SL0OC(1)
STRES(I,2)=SL0OC(2)
STRES(I,3)=SL0OC(3)
STRAIN(I,1)=ST(1)
STRAIN(I,2)=8T(2)
STRAIN(I,3)=ST(3)

RETURN
END

SUBROUTINE DISL(I,LOC,NE,ND,H,P,QL)
DIMENSION P(ND,M),QL(8),N(8),LOC(NE,3)

J=L0C(I, 1)
K=LOC(I,2)
L=L0C(I,3)
N(1)=J%2-1
N(2)=J%2
N(3)=K*2-1
N(4)=K*2
N(5)=L*2-1
N(6)=L*2

DO 80 II=1,8
NR=N(II)
QL(II)=P(NR,1)

RETURN
END

SUBROUTINE STIFF(I,LOC,DD,NN,NE,ND,.NB,CX,CY,T,GS)
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40

DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),
2N(6),DD(3,3),BB(3,6),DB(3,6),BBT(6,3)

REAL KG(86,6)

J=L0C(I,1)

K=L0OC(I,2)

L=L0C(I,3)

CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA)
CALL MATMUL(DD,BB,DB,3,3,6)
DO 82 II=1,6

DO 82 JJ=1,3
BBT(II1,JJ)=BB(JJ,II)

CALL MATMUL(BBT,DB,KG,8,3.6)
TTT=T*AREA

DO 83 II=1,8

DO 83 JJ=1,8
RG(II,JJ)=TTT*KG(II,JJ)
N(1)=J%2-1

N(2)=J%2

N(3)=K*%2-1

N(4)=Kx2

N(5)=L*2-1

N(B)=Lx2

DO 40 II=1,8

DO 40 JJ=1,8

IK=N(II)

JK=N(JJ)

IN=JK-IK+1

IF(IN.LE.Q) GO TO 40
GS(IK,IN)=GS(IK,INY+KG(II,JJ)
CONTINUE

RETURN
END

SUBROUTINE PSTIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS,STRE)

DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),STRE(NE,5),
2N(6),DD(3,3),BB(3,8),DB(3,6),BBT(6,3),CXL(3),CYL(3)

REAL KG(8,8),KR(6,8)
J=L0C(I,1)

K=L0C(I,2)

L=L0C(I,3)
GX=(CX(J)+CX(K)+CX(L))/3
GY=(CY(J)Y+CY(K)+CY(L))/3
CXL(1)=CX(J)-GX
CXL(2)=CX(K)-GX
CXL(3)=CX(L)-GX
CYL(1)=CY(J)-GY
CYL(2)=CY(K)-GY
CYL(3)=CY(L)-GY

AREA=((CXL(3)-CXL(2))*(CYL(2)-CYL(1))-(CXL(2)-CXL(1))*(CYL(3)~

145



81

82

2CYL(2)))/2.0

Y32=(CYL(3)-CYL(2))/(2.0%AREA)
X32=(CXL(3)-CXL(2))/(2.0%AREA)
¥31=(CYL(3)-CYL(1))/(2.0%AREA)
X31=(CXL(3)-CXL(1))/(2.0%AREA)
Y21=(CYL(2)-CYL(1))/(2.0%AREA)
X21=(CXL(2)-CXL(1))/(2.0%AREA)

DO 81 II=1,3

DO 81 JJ=1,6

BB(II,JJ)=0.0

BB(1,1)=Y32

BB(1,3)=-Y31

BB(1,5)=Y21

BB(2,2)=-X32

BB(2,4)=X31

BB(2,86)=-X21

BB(3,1)=-X32

BB(3,2)= Y32

BB(3,3)= X31

BB(3,4)=-Y31

BB(3,5)=-X21

BB(3,6)= Y21

CALL MATMUL(DD,BB,DB,3,3,86)

DO 82 II=1,6

DO 82 JJ=1,3

BBT(II,JJ)=BB(JJ,II)

CALL MATMUL(BBT,DB,KG,8,3,6)

AR=1

A1=STRE(I,1)/AR

B1=STRE(I,2)/AR

C1=STRE(I,3)/AR

A2=-2%STRE(I,1)/AR

B2=-2%STRE(I,2)/AR

C2=-2%STRE(I,3)/AR
KR(1,1)=A1%Y32%Y32+B1%X32%X32-2%C1*xY32%X32+A2% (Y32*Y32+X32%X32/4)
$+B2*X32%X32/4~-2%C2%(Y32*%X32)
KR(1,2)=-A2%X32%Y32/4-B2%X32%Y32/4+C2%(Y32%Y32+X32%X32)
KR(2,1)=KR(1,2)
KR(1,3)=-A1%Y32%Y31~-B1%X32%X31+C1%Y32%X31+C1%*X32%Y31-A2%Y32%Y31
$-A2%X32%X31/4-B2%X32%X31/4+C2%Y32%X31+C2%*X32%Y31
KR(3,1)=KR(1,3)
KR(1,4)=A2%X32%xY31/4+B2%X32%Y31/4-C2%Y32%Y31-C2*X32%X31
KR(1,5)=A1%Y32%Y21+B1%X32%X21-C1%Y32%X21-C1xX32%Y21+AZXY32%Y21
$+A2%X32%X21/4+B2*xX32%X21/4~-C2%Y32%X21-C2%*X32%Y21
KR(5,1)=KR(1,5)
KR(1,8)=-A2%X32%Y21/4-B2%X32%Y21/4+C2%Y32%xY21+C2%X32%X21
KR(6,1)=KR(1,8)
KR(2,2)=A1%Y32%Y32+B1%X32%X32-C1%Y¥32%X32-C1%X32%Y32+A2%Y32%Y32/4
$+B2*Y32%Y32/4+X32%X32-C2%Y32%X32-C2*X32%Y32
KR(2,3)=A2%Y32%X31/4+B2*xY32%X31/4-C2*Y32%Y31-C2%X32%X31
KR(3,2)=KR(2,3)
KR(2,4)=-A1%Y32%Y31-B1*X32%X31+C1%Y32*%X31+C1*X32%Y31-A2%Y32%xY31/4
$~B2%Y32%Y31/4-B2*%X32%X31+C2%Y32%X31+C2%X32%Y31



40

83
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KR(4,2)=KR(2,4)
KR(2,5)=-A2%Y32%X21/4-B2%Y32%X21/4+C2%Y32%Y21+C2%xX32%xX21
KR(5,2)=KR(2,5)
KR(2,B)=A1xY32%Y21+B1%X32%X21-C1*X32%Y21-C1*Y32%X21+A2%Y32%Y21/4
$+B2*xY32%Y21/4+B2%xX32%X21-C2xY32%xX21-C2%X32%xY21

KR(B,2)=KR(2,8) ’ :
KR(3,3)=A1%Y31%Y31+B1*X31%X31-C1kY31%X31-C1kX31*%Y31+A2%xY31%Y31+
$A2*kX31%X31/4+B2*%X31%xX31/4-C2%Y31%X31-C2xX31%xY31
KR(3,4)=-A2%X31%Y31/4-B2*%X31%Y31/4+C2%Y31xY31+C2xX31%xX31
KR(4,3)=KR(3,4)
KR(3,5)=-A1%Y31%xY21-B1*xX31xX21+C1%X21%xY31+C1*X31%Y21-A2*%Y31%Y21
$-A2%X31%X21/4-B2xX31%xX21/4+C2%Y31*X21+C2%X31%Y21
KR(5,3)=KR(3,5)
KR(3,B8)=A2%X31%Y21/4+B2%xX31%Y21/4-C2%Y31%xY21-C2*X31%X21
KR(B,3)=KR(3,8B)
KR(4,4)=A1%xY31%Y31+B1xX31%X31-C1kY31*X31-C1xX31*xY31+A2%Y31%Y31/4
$+B2%Y31%Y31/4+B2%xX31%X31-C2xX31xY31-C2%xY31%xX31
KR(4,5)=A2%xY31%X21/4+B2%Y31%X21/4-C2%Y31xY21-C2%X31xX21
KR(5,4)=KR(4,5)
KR(4,B8)=-A1%Y31%xY21-B1*X31%X21+C1%Y31%xX21+C1*X31xY21-A2%Y31%xY21/4
$-B2%Y31%Y21/4-B2xX31%X21+C2%Y31*X21+C2xX31%Y21

KR(B,4)=KR(4,8)
KR(5,5)=A1%Y21*%Y21+B1*X21%X21-C1*xY21%X21-C1*xX21*xY21+A2%Y21%xY21
$+AZ2%X21%X21/4+B2%xX21%X21/4-C2%Y21%X21-C2%xX21%Y21
KR(5,B8)=-A2%X21%Y21/4-B2%X21%xY21/4+C2%Y21xY21+C2%X21%X21
KR(B,5)=KR(5,8)
KR(B,B6)=A1xY21%Y21+B1xX21%X21-C1xY21%X21-C1xX21%Y21+A2%Y21%Y21/4
$+B2%xY21%xY21/4+4B2%X21%X21-C2%X21%xY21~-C2%X21%xY21

TTT=T*AREA

DO 83 II=1,86

DO 83 JJ=1,6

KG(II,JJ)=TTT*(KG(II,JJ)+KR(II,JJI))

N(1)=J%2-1

N(2)=J%2

N(3)=Kx2-1

N(4)=Kx2

N(5)=L*2-1

N(B)=L*2

DO 40 II=1,86

DO 40 JJ=1,8

IK=N(II)

JRK=N(JJ)

IN=JK-IK+1

IF(IN.LE.O) GO TO 40

GS(IK,IN)=GS(IK,IN)Y+KG(II,JJ)

CONTINUE

RETURN
END

SUBROUTINE DSTRES(E,ANU,DD)
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DIMENSION DD(3,3)
ENU=E/(1.0-ANU%*x2)
DD(1,1)=ENU
DD(1,2)=ANUXENU
DD(1,3)=0.0
DD(2,1)=ANUXENU
DD(2,2)=ENU
DD(2,3)=0.0
DD(3,1)=0.0
DD(3,2)=0.0
DD(3,3)=(1-ANU)*ENU/2.0
RETURN

ENRD

SUBROUTINE DELA(E,ANU,DD)

DIMENSION DD(3,3)
PN=1-2%ANU
ENU=E/(1+ANU)
DD(1,1)=ENUx(1-ANU)/PN
DD(1,2)=ENU*ANU/PN
DD(1,3)=0.0
DD(2,1)=DD(1,2)
DD(2,2)=DD(1,1)
DD(2,3)=0.0
DD(3,1)=0.0
DD(3,2)=0.0
DD(3,3)=0.5%ENU

RETURN
END

SUBROUTINE DPLA(NE,E,YO,C,WN,STRE,STR,I,H0,DP,H)

DIMENSION DP(3,3),STRE(NE,S),STR(NE,5),HO(NE)
ANU=.33

SZ=STRE(I,S)

SM=(STRE(I,1)+STRE(I,2)+SZ)/3
SXP=STRE(I,1)-SM

SYP=STRE(I,2)-SM
5=(2.0/3.0)%(STRE(I,4)**2)*(1+2xH*(1+ANU)/(3*E))
PN=1-2%ANU

ENU=E/(1+ANU)

DP(1,1)=ENUx((1-ANU)/PN -(SXPx*2)/S)
DP(1,2)=ENUx(ANU/PN - SXP*SYP/S)
DP(1,3)=-ENUXSXP*(STRE(I,3))/S
DP(2,1)=DP(1,2)
DP(2,2)=((1-ANU)/(1-2%ANU)-(SYP**2)/S)*ENU
DP(2,3)=-ENUX(SYP )*(STRE(I,3))/S
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DP(3,1)=DP(1,3)
DP(3,2)=DP(2,3)
DP(3,3)=ENU*(0.5-(STRE(I,3)**2)/S)

RETURN
END

SUBROUTINE RATIO(NE,IN,YO,STRES,STRE,R)

DIMENSION STRES(NE,5),STRE(NE,S)
DOUBLE PRECISION R1,R2
X=STRES(IN,1)

Y=STRES(IN,2)

Z=STRES(IN,S5)

XY=STRES(IN,3)

SX=STRE(IN, 1)

SY=STRE(IN, 2)

SZ=STRE(IN,S)

SXY=STRE(IN,3)

A=X-Y

B=SX-SY

c=Y-2

D=SY-SZ

E=Z-X

F=S8Z-8X
O=A%X2+Ck*k2+EXX 2+ 8% ( XY%%2)
P=2%( A%XB+D*C+E*F+6%xSXY*XY)
Q=BX*k24+Dkk2+Fkk2+ Bk (SXYX%2)~2%(YO**2)
R1=(-P+SQRT(P**2-4%0%Q))/(2%0)
R2=(-P-SQRT (P**2-4%0%Q))/(2%0)
R=R1

RETURN
END

SUBROUTINE BM(NE,RN,I,LOC,CX,CY,BB,AREA)

DIMENSION CX(NN),CY(NN),BB(3,8)
DIMENSION CXL(3),CYL(3),LOC(NE,3)
J=L0C(I, 1)

K=L0OC(I, 2)

L=L0C(I,3)
GX=(CX(J)+CX(K)+CX(L))/3
GY=(CY(J)+CY(K)+CY(L))/3
CXL(1)=CX(J)-GX
CXL(2)=CX(K)-GX
CXL(3)=CX(L)-GX
CYL(1)=CY(J)-GY
CYL(2)=CY(K)-GY
CYL(3)=CY(L)-GY

AREA=((CXL(3)-CXL(2))*(CYL(2)-CYL(1))~(CXL(2)~-CXL(1))*(CYL(3)-
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81

10

15
20
25

2CYL(2)))/2.0
X32=(CXL(3)-CXL(2))/(2.
¥31=(CYL(3)-CYL(1))/(2.
X31=(CXL(3)-CXL(1))/(2.
Y21=(CYL(2)-CYL(1))/(2.
X21=(CXL(2)-CXL(1))/(2.

Do 81 II=1,3
DO 81 JJ=1,8
BB(II,JJ)=0.0
BB(1,1)=Y32
BB(1,3)=-Y31
BB(1,5)=Y21
BB(2,2)=-X32
BB(2,4)=X31
BB(2,8)=-X21
BB(3,1)=-X32
BB(3,2)= Y32
BB(3,3)= X31
BB(3,4)=-Y31
BB(3,5)=-X21
BB(3,8)= Y21

RETURN
END

O%AREA)
O%AREA)
OX%AREA)
O%AREA)
O%AREA)

SUBROUTINE DECOMP(N,NB,A)

DIMENSION A(N,NB)
DOUBLE PRECISION DIFF
A(1,1)=SQRT(A(1,1))

DO 5 K=2,NB

A(1,K)=A(1,K)/A(1,1)

DO 25 K=2,N
KP1=K+1
KM1=K-1
DIFF=A(K,1)

DO 10 JP=1,KM1

ICOL=K+1~JP

IF (ICOL .GT. NB) GO TO 10

DIFF=DIFF-A(JP,ICOL)*A(JP,ICOL)
A(K,1)=DSQRT(DIFF)

DO 20 J=2,NB

IF(K+J-1 .GT. N) GO TO 25

DIFF=A(K,J)

DO 15 JP=1,EM1

ICOL=K+1-JP
JCOL=K+J~-JP

IF (JCOL .GT. NB) GO TO 15
IF (ICOL .GT. NB) GO TO 15

DIFF=DIFF-A(JP,ICOL)XA(JP,JCOL)

CONTINUE

A(K,J)=DIFF/A(K, 1)

CONTINUE
RETURN
END

150



10

15
20

25
30

35

40

45
50

55
60

10

SUBROUTINE SOLVE (N,NB,M,A,B,DIFF)

DIMENSION A(N,NB),B(N,M)
DOUBLE PRECISION DIFF(M)
DO 5 J=1,M
B(1,J)=B(1,J)/A(1,1)

DO 30 I=2,N

DO 10 J=1,M
DIFF(J)=B(I,J)

DO 20 K=2,NB

IROW=I+1-K

IF(IROW .LT. 1) GO TO 20
ICOL=I+1-IROW

IF (ICOL .GT. NB) GO TO 20
DO 15 J=1,H

DIFF(J)=DIFF(J)-A(IROW,ICOLY*B(IROW,J)

CONTINUE

DO 25 J=1,M
B(I,J)=DIFF(J)/A(I,1)
CONTINUE

DO 35 J=1,M
B(N,J)=B(N,J)/A(N,1)
DO 80 II=2,N

I=N+1-II

DO 40 J=1,M
DIFF(J)=B(I,J)

DO 50 K=2,NB

IK=I-1+K

IF (IK.GT.N)GO TO 50
DO 45 J=1,M
DIFF(J)=DIFF(J)-A(I,R)*B(IK,J)
CONTINUE

PO &85 J=1,M
B(I,J)=DIFF(J)/A(I,1)
CONTINUE

RETURN

END

SUBROUTINE MATMUL (A,B,C,L,HM,N)
DIMENSION A(L,M),B(M,N),C(L,N)
DO 10 I=1,L

DO 10 J=1,N

C(I,J)=0.0

DO 10 R=1,M
C(I,Jd)=C(I,J)+A(I,k)*B(K,J)
CONTINUE

RETURN
END

151

SUBROUTINE VAL (N,NE.NN,ND,NB.CX,CY,LOC.IDISP,NDISP,IFIX,NFIX,IDB,

$NDB,E,ANU,H,YO0,H,NG,HY,ISL)



10

11

12

14

15
13

DIMENSION CX(193),CY(193),L0C(171,3),IDISP(20),IFIX(100),IDB(40),

$ISL(20)
DOUBLE PRECISION Q1X,Q1Y,Q2X,Q2Y

WRITE(*,%) ENTER THE VALUES OF [E - ANU - H - Y0)]~

READ(x,%) E,ANU,H,YO
WRITE(*,%x) E,ANU,H,YO
OPEN(20,FILE="AN",STATUS="NEW")
WRITE(*,x) ENTER XA& YA~
READ (% ,%*)XA,YA
WRITE(*,x) "XB & YB”
READ(*,*)XB,YB
WRITE(*,%*)" XC& YC°
READ(*,*)XC, YC
WRITE(*,*) ENTER N H MY’
READ(*,*)N,HM,MY

NG=N
QA1X=(XB-XA)/(N-1)
QA2X=(XC-XB)/(H-1)
QlY=(YA-YC)/(H-1)
Q2Y=YC/(MY-1)
NB=(N+M+1)*2

IT=1

DO 12 J=1,HM

DO 10 I=1,N
IP=IT+I~1
CX(IP)=XA+(I-1)*Q1X
CY(IP)=YA-(J-1)*QlY
CONTINUE

IT=IP

IF(J.GT.1) THEN

DO 11 K=N+1 , N+J-1
IP=IT+K-N
CX(IP)=XB+(K-N)*xQ2X
CY(IP)=YA-(J-1)%Q1lY
CONTINUE

ENDIF

IT=IP+1

CONTINUE

DO 13 J=1,MY-1

DO 14 I=1,N
IP=IT+I-1
CX(IP)=XA+(I-1)xQ1X
CY(IP)=YC-J*Q2Y
CONTINUE

IT=IP

DO 15 K=N+1 , N+M-1
IP=IT+K-N
CX(IP)=XB+(K-N)*xQ2X
CY(IP)=YC-I*Q2Y
CONTINUE

IT=IP+1

CONTINUE
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aan

oo

35

30

41

40

150

45

NN=IT-1
DO 20 I=1,NN

WRITE(20,100)I,CX(I),CY(I)

20 WRITE(*,100)I,CX(I),
WRITE(*,%)" NN=",NN, "~
FORMAT(/,5X,"I=",I4,"
IC=1

IR=0

DO 30 I=1,M-1
IQ=2%N-1+2%(I-1)+IC-1

DO 31 J=IC,IQ,2
IR=IR+1

JJ=J+1

LOC(J,1)=N+IR

LOC(J,2)=L0C(J,1)-(N+I-
LOC(J,3)=L0C(J,1)+1
IF(J.GE.IQ) GO TO 35
LOC(JJ,1)=L0C(J,2)

LOC(JJ,2)=L0OC(JJ,1)+1
1L0C(JJ,3)=L0C(J,3)
ID=J

CONTINUE

IR=IR+1

IC=ID+1

CONTINUE

DO 40 I=1,MY-1
IA=2%(M+N-2)+IC-1

DO 41 J=IC,IA,2
IR=IR+1

JJ=J+1

LOC(J,1)=N+IR

LOC(J,2)=L0OC(J,1)-M-N+1

LOC(J,3)=L0C(J,1)+1

LOC(JJ,1)=L0C(J,2)

LOC(JJ,2)=L0C(J,2)+1

1L.0C(JJ,3)=L0C(J,3)
ID=JJ

CONTINUE

IR=IR+1

IC=ID+1

CONTINUE

NE=IC-1

WRITE(*,%) " NE=',NE

DO 36 I=1,NE

WRITE(20,150) I,(LOC(I,Jd),J

WRITE(*,150) I,(LOC(I,J

FORMAT(3X,  I=",I3," LOC=",

DO 45 I=1,N
ID=I
IDISP(I)=2%I
CONTINUE
NDISP=N

CY(I)>

H N MY',M,N,MY

CX=",FB.3,"

1)

)

=1,3
),J=1,3)
317)

CY=",F6.3)
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50

51

aaa

110

C 65
160
170

DO 50 I=1,2%N

IFIX(I)=I

IFB=1I

CONTINUE

IR=0

IFE=2%(NN-H~-N+1)

DO 51 I=IFB+1 , IFB+2%(M+N-1)
IR=IR+1

IFIX(I)=IR+IFE

IFD=1

CONTINUE

NFIX=IFD

ND=NN*2

DO 60 I=1,NDISP
WRITE(*,160)I,IDISP(I)
WRITE(20,180)I,IDISP(I)
I1G=0

DO 110 I=1,HM
ISL(I)=I*N+IG
WRITE(*,*x)" M=",I," ISL=",ISL(I)
IG=IG+I

po 85 I=1,NFIX
WRITE(x,170)I,IFIX(I)
WRITE(20,170)I,IFIX(I)

FORMAT(/,5X, 'I=",14, " IDISP=",14)
FORMAT(/,5X, "I=",14, " IFIX=",14)
RETURN

END

SUBROUTINE FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC,
$AQP,AY, ATP, AFT, AK, AMU, SFS,KF ,NF,F0X,P,CX,ND,FORCE,CY,LF)

DIMENSION STRE(NE,5),SNS(40),QNS(40),YNS(40),SF5(40),
$ KF(40),NF(40),F0X(40),P(ND,1),CX(NN),DN(40),AR(40),
$ CY(NN),LF(40)

Q=AYxAQP

IE=0

DO 10 I=1,NG

DN(I)=SNS(I)

NNB=I

IE=2%(I-1)+1

IF(I.EQ.1)THEN

QNS(I)=(STRE(IE,4)+STRE(IE+1,4))/(2%SQRT(3.))

SNS(I)=(STRE(IE,3)+STRE(IE+1,3))/2

YNS(I)=(STRE(IE,2)+STRE(IE+1,2))/2

AR(I)=ABS((CX(2)-CX(1))/2)

GO TO 10

ENDIF

IF(I.EQ.NG)THEN

SNS(I)=(STRE(IE-1,3)+STRE(IE,3))/2

YNS(I)=(STRE(IE~1,2)+STRE(IE,2))/2

QNS(I)=(STRE(IE-1,4)+STRE(IE,4))/(2%SA@RT(3.))
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10

20

30

AR(I)=ABS((CX(NG)-CX(NG~-1))/2)>

GO TO 10

ENDIF :
SNS(I)=(STRE(IE-1,3)+STRE(IE,3)+STRE(IE+1,3))/3
YNS(I)=(STRE(IE-1,2)+STRE(IE,2)+STRE(IE+1,2))/3
QNS(I)=(STRE(IE-1,4)+STRE(IE,4)+STRE(IE+1,4))/(3%SQRT(3.))
AR(I)=ABS((CX(I+1)-CX(I-1))/2)

CONTINUE

IG=NE-(NG+HG-2)*2+1

DO 20 I=1,NG+MG-1

J=NNB+1I

NNC=J

IE=2%(I-1)+IG

DN(J)=5NS(J)

JP=NN-(NG+MG-1)+I

IF(I.EQ.1)THEN

SNS(J)=STRE(IE,3)

QNS(J)=STRE(IE,4)/(SQRT(3.))

YNS(J)=STRE(IE, 2)
AR(J)=ABS((CX(JIJP+1)~-CX(JP))>/2)

GO TO 20

ENDIF

IF(I.EQ.NG+MG-1)THEN
SNS(J)=(STRE(NE,3)+STRE(NE-1,3))/2
QNS(J)=(STRE(NE,4)+STRE(NE-1,4))/(2%SQRT(3.))
YNS(J)=(STRE(NE, 2)+STRE(NE-~1,2))/2
AR(J)=ABS((CX(NN)-CX(NN-1))/2)

GO TO 20

ENDIF
SNS(J)=(STRE(IE,3)+STRE(IE~-1,3)+STRE(IE-2,3))/3
QNS(J)=(STRE(IE,4)+STRE(IE-1,4)+STRE(IE~2,4))/(3%SQRT(3.))
YNS(J)=(STRE(IE,2)+STRE(IE-1,2)+STRE(IE-2,2))/3
AR(J)=ABS((CX(JP+1)~-CX(JP-1))/2)

CONTINUE

NTP=NN-(NG+HG-1)

DO 30 I=1,NNC

IF(I.LE.NG) NF(I)=2%I-1

IF(I.GT.NG) THEN

J=(NTP+I-NG)*2-1

NF(I)=J

ENDIF

PR=ABS(YNS(I))

IF(PR.LT.Q) SFS(I)=PRxANU

IF(PR.GE.Q)THEN

APW=((AQP-PR/AY)X*ATP )/ (AFTXAQP)
SFS(I)=ARX(ATP+AFT*(1-EXP(APW)))

ENDIF

IF(ABS(SNS(I)).GE.SFS(I)) KF(I)=1

NW=NF(I)

IF(P(NW,1).GE.0) FOX(I)=-ABS(SNS(I)>*AR(I)
IF(P(NW,1).LT.0) FOX(I)=ABS(SNS(I))*AR(I)
CONTINUE

DO 80 I=NG+1,NNC

IF(YNS(I).GE.O) THEN

LF(I)=1



80

40

FOX(I)=0

KF(I)=1

ENDIF

IF(CY(I).LT.0) LF(I)=0
CONTINUE

FORCE=0

DO 40 I=1,NG
PRT=AR(I)*YNS(I)
FORCE=FORCE+ABS(PRT)
FORCE=0.455%FORCE

RETURN
END
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APPENDIX E

SOME NUMERICAL AND EXPERIMENTAL RESULTS
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1- Compression of the Wedge-Shaped specimen:

Red. in
hight %

Displacement
(inch)

0.

0
0
0
0.
0
0
0

008
.010
.015
.023
034
.044
.047
.050

Test A

1800
2300
3000
3580
4700
5200
5800
5800

2- Ring compression test:

Test

Red.

in hight

X

33
38
47

Red. in internal
Diameter

14
20
42

1870
2200
2450
3325
4450
53830
5500
5830

%

Load (pound)
Test B

Test C Average
2100 1857
2200 2233
2700 2718
3620 3508
4500 4550
5100 5210
§800 5833
5830 5888

Coefficient

of Friction
0.20
0.21

Average=0.21
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3- Compression of the cylindrical specimen:

P: = Load (pound)

D = Initial diameter

lo = Initial length (inch)

1 = Instantaneous length (inch)

Al = Displacement (inch)

Ao = Initial Surface area (in**2)

A = Instantaneous area {(in*%x2)

e = 1n( lo/l) Natural strain

o = P/A Stress (psi)

Test A:

D =0.755

lo=0.750

p Al 1

2200 0.012 0.736 1]
3850 0.020 0.730 1]
4380 0.027 0.723 0
5100 0.034 0.716 0
5600 0.042 0.708 0
6220 0.043 0.707 0
7620 0.086 0.684 1]
8600 0.086 0.684 0
8450 0.115 0.835 1]
10350 0.138  0.811 0
13000 0.193 0.557 1]
15500 0.252 0.498 0
17800 0.288 0.482 1]

.018
.027
.036
.048
.057
.058
.082
.128
.168
.205
.297
.409
.484

0O o 0O o o o 0o o o o o o o

.455
.460
.464
.468
.474
.475
.481
.508
.928
.550
.803
.875
.727

4832

8368

9424
10867
11800
13087
15520
18985
17858
18820
21550
22973
24475
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Test B:

lo=0.760
D =0.755

3880
44860
5140
5350
5800
8710
8100
10170
11110
12110
14080
15850
173860

0
0

o o O o 0o o o o o

Al

.0186
.020
.025
.030
.035
.094
.105
.134
. 147
.180
.218
.2867
.288

O O O o o o o

. 744
.740
.735
.730
.725
.866
.855
.828
.613
.580
.542
.493
.471

.021
.027
.033
.040
.047
.132
. 149
.184
.215
.270
.338
.433

.478

0O O 0O o O o O o o o o o o

.457
.4860
.483
.466
.468
.511
.518
.544
.535
.587
.628
.690
722

8484

9700
11103
11908
12571
17048
17518
18711
20018
20843
22428
23110
24031
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Test C:

lo=0.750
D =0.750

2740
3500
4400
5500
5400
7200
7850
8950
8350
10080
13050
15770
17500

O o o o o o

Al

.010
.012
.018
.029
.038
.058
.08e8
.091
-111
.141
.188
.248
.294

O o o O o o o

o o o

. 740
.738
.731
.721
.711
.692
.882
.658
.638
.808
. 981
.9502
.456

o o O o

.013
.018
.028
.039
.053

0.080

.085
.129
.180
.208
.291
.401
.488

O O o o o o o

o o O o o

.448
.450
.453
.459
.4686
.478
.486
.503
.518
. 544
.581
.86860
.727

161

6118

7774

9707
11982
13733
15037
15741
17800
18031
18545
22085
23892
24071



3- The computed nodal coordinates in the Wedge-Shaped specimen:

a) Bay’'s Friction modal (asperity angle=0)
as the limit of sticking:

O00000000DOO0OOODOO0O0O0OODODODO0OO0O0D00DODOODO0DODO0ODODODODOODOOOOO

X

.01841
.09323
.20000
.30068
.40086
.02384
.08742
.19878
.30378
.40730
.49234
.02792
.084386
.18535
.30482
.41254
.498988
.58515
.03040
.08254
.194863
.30551
.41512
.50547
.59183
.87764
.03220
.08125
.18408
.30588
.41648
.o0835
.59851
.68241
.76827
.03360
.08016
.19368
.30632
.417686
.51018
.58933

OO0O00O0O00O00O00O0O0OO0O0O0O0O00O0O0O0ODDOOODOOOOODOODOODODOOOOOODOOODODODODOOO

Y

.443980
.443980
.44980
.44980
.443980
.41142
.41078
.40978
.40793
.40788
.42471
.37337
.37234
.37089
.36811
.368689
.38285
.39593
.33552
.33426
.33214
.32907
.32738
.34140
.35384
.36290
.29782
.29641
.28393
.290468
.28833
.30083
.31171
.32048
.32668
.26021
.25875
.25599
.25214
.249586
.26025
.26995

0O00O00O0

-0.
-0.
-0.

OO0OO0OoO

AX

.01841
.00877

.00000

.o0oo0e6s
.00088
.02384

.01258

.00322

.00378

.00730

.00862

.02792
.01564
.00485

.00482

.01254

.01397
.01372
.03040
.017486
.00537

.00551

.01512
.01975
.02040

.02050

.03220
.01875
.00592
.00s8es
.01848
.022863
.02508

.02527

.02541
03360
01984
00632
.00832

.017686

. 02447

.02790

AY

.05020
.05020
.05020
.05020
.05020
.04572
.04636
.04736
.04821
.04926
.03243
.040892
.041895
.04359
.04818
.04729
.03143
.01836
.03591
.03717
.03929
.04236
.04405
.03003
.01759
.00853
.03075
.03217
.03464
.03811
.04024
.02794
.01es86
.00809
.0o1s89
.02550
.02696
.02972
.03358
.03815
.02547
.015786

DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP

NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:

WOoO~J®wWL bW
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O0O0OrHOO0O0O0OD0DO00000O0OHODODODO0D0ODO00D0DO0O0OO0OHODODODOODODODODODOO0OOOO0OO0D0DODOODODO0OOO0OO0O0O0O0O

.885986
.771587
.85721
.03481
.07935
.18318
.30878
.41913
.51208
.60168
.68888
.774861
.86011
.94566
.03185
.07772
.18228
.30850
.42012
.51430
.B80411
.89148
.77747
.862889
.94851
.03404
.02853
.07948
.18892
.30401
.41855
.51488
.80733
.B9555
.78185
.86741
.85283
.03845
.02582
.08238
.18003
.29810
.41537
.51318
.80752
.69889
.78812
.87178
.95732
.04285
.02435
.08523
.18315

OO00O0O0OD0OOC0O0O0000O000O00O00O0O00D0DO0D0DOCOOO00O00DOO00O0O0L0ODO0O0OO0O0DO0O0DDODOOLODODDODOOOODO

.27792
.28403
.28981
.22277
.22118
.21833
.21413
.21100
.22008
.22848
.23550
.24128
.247086
.25274
.18374
.18387
.18083
.17851
.17282
.18007
.18712
.18323
.19855
.20428
.208897
.21563
.12213
.12316
.12287
.11847
.11432
.11888
.12310
.12785
.13212
.137786
.14343
.14910
.08071
.06150
.06204
.06118
.058651
.05885
.086085
.08282
.06580
.07123
.076889
.082586
.gooo00
.goooo
.goooo

[
O0O00

[
[ )

[ L (L | L 10t
O00CO0O00CO0O00O0000O0D0OO0O0O00D0DO0D000O0O0OD0DO0O0DO0O0DOD0DO0O0O0O0O00O0O0ODLDODOOO0OODODO0OOOOOO

.02881
.02871
.02864
.03491
.02085
.oos82
.008e78
.01913
.02637
.03025
.03172
.031786
.03154
.03138
.03185
.02228
.00771
.00850
.02012
.02859
.03288
.03434
.03481
.03442
.03422
.03404
.02853
.02054
.01108
.00401
.01855
.02914
.035890
.03840
.038899
.03884
.03864
.03845
.02582
.01782
.00997
.00080
.01537
.02747
.036089
.04185
. 04328
.04322
.04304
.04285
.02435
.01477
.00685

L L A L I | L T T T I I | | L O A T A A I | | L A T I T A |
OO0O00O0O000O000D0O0000D00D00D0D00D00D000000DODODO00O0DOO0O0O0O0DOOOOO0ODOO0ODODOODOO0OO

.00780
.001e68
.00410
.02008
.02186
.02453
.02873
.031886
.02277
.01438
.007386
.00158
.00420
.009s88
.01828
.01813
.01917
.02348
.02718
.01993
.01288
.00877
.00145
.00423
.00887
.01563
.01121
.01018
.010386
.014886
.01901
.01447
.01024
.005e8
.00122
.00442
.01010
.01576
.00586
.00518
.004863
.00548
.01016
.00782
.00572
.00405
.goos7
.00457
.01023
.01588
.gooooo
.00000
.0oo00

DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP

NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
RODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
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PO0OO0OOOOOO

.30000
.40832
.50884
.80543
.69878
.78874
.87617
.86172
.04724

[ 2 o I e I m o0 I n J o J om J{ )

.00000
.00000
.00000
.00000
.00000
.00000
.00472
.01036
.01803

[en Nen I e I o 3 o J e I e R o Rl

.00000
.00832
.02312
.03400
.04164
.04689
.04760
.04743
.04724

0O0000000O0o

.00000
.00000
.00000
.00000
.00000
.00000
.00472
.010386
.01603

DIsp
DIsP
DISP
DISP
DIsP
DISP
DISP
DISP
DISP
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b)

Bay’'s Friction model (asperity angle=15)
as the limit of sticking:

O0000O0OOO0OO0ODOO0O0DOO0O0ODODODODOODOOODOODOODODODODDODO0ODODOODOODOO0OOOOO0O0O0O0O

X

.01783
.09257
.20000
.300786
.40097
.02579
.08848
.19671
.30429
.40798
.49288
.02854
.08308
.19507
.30548
.41372
.50094
.5868689
.031386
.081860
.18401
.30588
.41657
.50730
.59409
.680489
.03279
.08091
.18380
.30578
.41748
.51047
.59924
.68571
.77241
.03364
.08024
.19378
.30608
.41788
.511686
.60201
.68840
.77568
.86222
.03486
.07989

OO0 O0OODOOO000O0OO0O0O00OLOO0O0O0O0ODOO0OO0OOO0OODOO0DODODODOOODODODOOODOODOOO0O00OO

Y

.44977
.44977
.44977
.44977
.44977
.41174
.41106
.40989
.40785
.40786
.42533
.37380
.37287
.37122
.36832
.36706
.383686
.398679
.33598
.33498
.33301
.32064
.32763
.34245
.35500
.36370
.29835
.29710
.29481
.29140
.28886
.30197
.31317
.321588
.32566
.28080
.25948
.25887
.25322
.25080
.26204
.27172
.27928
.28332
.28500
.22355
.22183

[
O00000O0O00OO0OOoO

OO0OO0O0O00O0O0O

AX

.01783
.00743
.00000
.00078
.00097
.02578
.01352
.00328
.00429
.00799
.00718
.02854
.01682
.00483
.00548
.01372
.01522
.01526
.031386
.01840
.00589
.00588
.01657
.02158
.02266
.02335
.03279
.01908
-0.
.00578
.01748
.02476
.02782
.02857
.02955
.03364
.01976
.o0os622
.00608
.01788
.02585
.03059
.03226
.03283
.03385
.03486
.02011

00640

AY

.05023
.05023
.05023
.05023
.058023
.04540
.04608
.04715
.04920
.04928
.03181
.04048
.04132
.04307
.04597
.04722
.03083
.01748
.03547
.03645
.03842
.04179
.04380
.02898
.01643
.00773
.03022
.03147
.033686
.03717
.03861
.02661
.01541
.00698
.00281
.024892
.02624
.02885
.03249
.03512
.02368
.01399
.00B42
.00238
.00071
.01930
.02083

DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP
DISP

NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE :
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:

W~IDB WN -



| |
000000000 HOO0OO0OO00O0O0O00O000OHOOO0OO00O00000O0OHO0D0O0O000000000000O0O00O000O

.19372
.307186
.41876
.51223
.80302
.69133
.77781
.86383
.95005
.03128
.07820
.18327
.30725
.420861
.51337
.B80358
.68200
.77830
.86481
.95062
.036489
.028680
.08017
.18921
.304358
.41883
.51443
.80480
.B69306
.78008
.86617
.95176
.03731
.02391
.08403
.18082
.298786
.41486
.51181
.80525
.69388
.78083
.86697
.85272
.03805
.02283
.08683
.19435
.30000
.40684
. 50670
.60182
.68370

0000000000000 00C0O0D0O0D00O00D0O0O0O00D0DO00O00D0D00D0O0000000D00O0OOD0DO0O0OODOOO0OO0O

.21917
.21500
.21220
.22229
.23087
.23714
.24072
.24246
.24299
.18448
.18477
.18182
.17730
.17363
.18238
.18969
.19523
.18810
.18968
.20026
.200863
.12239
.12392
.12398
.11807
.11489
.12005
.12588
.13011
.13204
.13304
.13356
.13401
.06078
.06171
.06270
.06187
.05672
.05953
.0B182
.06488
.06605
.06652
.06670
.06711
.0o000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

0O00O000000O

Porot P
O000C0O0O0000000O00O0D00D000O00O0O00O0OO00O0O

0O000O0

.00628
.007186
.018786
.02852
.03158
.03418
.03495
. 03526
.03576
.031289
.02180
.00673
.00725
.020861
.02766
.03215
.03485
.03604
. 03624
.03633
.03849
.02890
.01983
.01078
.00458
.01883
.02872
.03337
.03581
.03723
.03760
.03748
.03731
.02391
.01597
.00938
.00124
.01486
.02819
.03382
.03674
.03797
.03840
.03843
.03805
.02283
.01317
.00585
.00000
.00684
.02088
.030489
.03858

0000000000

.02369
.02785
.03066
.02057
.01218
.00572
.00214
.00040
.00013
.01552
.01523
.01838
.02270
.02837
.01761
.01031
.00477
.00190
.00032
.000286
.0oo08.3
.01084
.00941
.00835
.01427
.01844
.01328
.00785
.00323
.00128
.00029
.o0o022
.00068
.00588
.00485
.00387

.00480
.00985

.00714

.00485
.00178
.00062
.00015
.00003

.00044

.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000

NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE:
NODE :
NODE:
NODE :
NODE:
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0.78126
0.86732
0.85285
1.03858

0.00000
0.00000
0.00000
0.00000

0.03840
0.03875
0.03866
0.03858

0.00000
0.00000
0.00000
0.00000

DISP AT NODE:
DISP AT NODE:
DISP AT NODE:
DISP AT NODE:

101
102
103
104
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c¢) Constant Friction model as the limit of sticking:

X Y AX oY
~0.02672 0.44948 =-0.02672 -0.05052 DISP 1
0.08439 0.44948 =-0.01561 ~-0.05052 DISP 2
0.19432 0.464948 -0.00568 -0.05052 DISP 3
0.30000 0.44948 0.00000 -0.05052 DISP 4
0.40043 0.44948 .0.00043 -0.05052 DISP 5
-0.03778 0.41241 =0.03778 ~-0.04473 DISP 6
0.07690 0.41104 -0.02310 -0.04610 DISP 7
0.18810 0.41063 =0.01190 -0.04651 DISP 8
0.29806 0.40932 -0.00194 -0.04782 DISP 9
0.40517 0.40780 0.00517 -0.04935 DISP AT NODE: 10
J.49102 (.42382 0.00531 -0.03333 DISP AT NODE: 11

-0.04339 0.37487 =-0.04339 -0.03942 DISP AT NODE: 12
0.07023 (¢.3737?5 =0.02977 -0.04054 DISP AT NODE: 3
0.18432 0.37226 -0.0156% -0.04202 DISP AT NODE: 14
0.29573 0.37061 =0.00427 -0.04368 DISP AT NODE: 15
0.40632 0.36823 0.00632 -0.04606 DISP AT NODE: 16
0.49704 0.3812° 0.01133 -0.03239 DISP AT NODE: 17
0.58226 0.396¢65 0.01083 -0.01763 DISP AT NODE: 18

~0.04676 0.33723 =0.04676 -0.03410 DISP AT NODE: 19
0.06699 0.33612 =-0.03301 -0.03531 DISP AT NODE: 20
0.18036 0.33479 ~0.01964 -0.03664 DISP AT NODE: 21
0.29397 0.33235--0.00603 -0.03908 DISP AT NODE: 22
0.40580 0.32972 0.00580 -0.04171 DISP AT NODE: 23
0.49906 0.34111 0.013324 -0.03032 DISP AT NODE: 24
0.58733 0.35428 0.01590 -0.01715 DISP AT NODE: 25
0.67272 0.36431 0.01558 -0.00712 OISP AT NODE: 26

-0.04940 0.30003 -0.04940 ~-0.02854 DISP AT NODE: 27
0.06520 0.29852 -0.03490 ~-0.03005 DISP AT NODE: 28
017800 0.29706 -0.02140 -0.03153 DISP AT NODE: 29
0.29169 (0.29472 -0.00831 -0.03386 DISP AT NODE: 30
0.40490 0.29157 0.90490 -0.03700 DISP AT NODE: 31
0.49892 0.30098 0.01326 -0.02759 DISP AT NODE: 32
0.58903 0.32250 0.01761 =-(0.01607 DISP AT NODE: 33
067577 0.22160 0.01863 ~0.00697 DISP AT NODE: 34
0.70140 0.32646 0.01855 ~0.00211 DISP AT NODE: 35

-J.04291 (.26232 =-0.04991 ~-(G.0233% DISP AT NODE: 36
0.06245 $.25120 -0.03655 =-0.02452 DISP AT NODE: 37
J.07755 0.259%4 ~-0,.02215 =-0.02637 DISP AT NODE: 38
VaZ2%0ivs  (0.2542%9 -0,00906 -C.02882 DISP AT NODE: 39
VedU277 0.253%0 0.00377 -0.03191 DISP AT NODE: 40
Jeb7361 0.2%113 0.01290 -0.02458 DISP AT NODE: 41
daS5ZPIT  0,2712¢ 0.01782 =-0.01447 DISP AT NODE: 42
Jal 725 0L.Z7715  0.92011 -(.0065¢6 DISP AT NODE: 43
Va7 2L CeZfXAL N,N20232 ~-(,00207 DISP AT NODE: A
Jelwli®  L.Z233ZD 0,02031 ~0.05042 DISP AT NODE: 45

~delatvl Ja2P2L0 =D, 04691 =0,029L6 DISP AT NODE: ()
CeciLl L L UL.IZTESL LN 27700 (01932 DISP AT NAODE: 47
Jeslti. vellsl

0T =0,Nn23e? ~(.020%2 DISP AT NODE: 48
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4- The computed forging load in the Wedge-Shaped specimen:

a) Bay’'s Friction model as the (asperity angle=0)
as the 1limit of sticking:

Force Reduction in
(pound) height X

823.90 0.0688488
1688.37 0.1308693
1736.88 0.1412282
1749.39 0.1456203
1772.08 0.1543050
1797.72 0.1655355
1819.19 0.1761579
1880.09 0.2120082
1918.93 0.2413612
1972.44 0.2873378
2011.83 0.3301894
2027 .41 0.3508841
2139.11 0.5185214
2192.35 0.86346235
2294 .96 0.8891857
2329.28 0.8831882
2388.598 1.1508088
2486.89 1.4341585
2576.09 1.6943870
2675.30 1.9858477
2708.61 2.0718810
2797 .41 2.3456366
2896.87 2.6117108
2954 .62 2.7263818
3051.96 3.0263820
3167.80 3.3283917
3355.81 3.6263816
3476.77 3.8198411
3496.84 3.8803208
3529.92 3.9461401
3621.58 4.2461400
3646.00 4.3165030
3748.44 4.6165032
3848.45 4.91865030
39853.05 5.2081552
4059.03 5.50815489
4074 .93 5.5449519
4183.28 5.84495186
4207.89 5.8908734
4313.18 6.1908731



4432.
4579.
4601.
4745.
4854 .
4955.
5072.
5191.
5227.
5322.
5412.
5515.
5619.
5753.
5889.
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.45596860
.7559662
.7909918
.0908920
.2695827
.5695624
.86895626
. 1895623
.2462034
.5482036
.8462029
.1482030
.4462032
. 7462025
.0482027
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b) Bay's Friction model (asperity angle=15)
as the limit of sticking:

Force Reduction in
(pound) height %

785.31 0.0688498
1443.61 0.1309683
1476.43 0.1412282
1486.88 0.1456203
15086.27 0.1543050
1528.06 0.1655355
1546.31 0.1781579
1598.07 0.2120082
1631.09 0.2413612
1676.57 0.2873378
1710.05 0.3301894
1723.34 0.3510185
1818.61 0.5196947
1864.03 0.6383848
1952.72 0.9036185
2020.38 1.1392404
2055.15 1.2701501
2132.56 1.5701500
2189.83 1.7839741
2289.68 2.0839741
2407 .41 2.3839743
2526.58 2.6839743
2696.72 2.9839742
2855.22 3.2839742
3000.58 3.5833741
3083.57 3.8833738
3145.95 4.1839738
3170.21 4.3148227
3178.81 4.3898458
3300.04 4.6898460
3400.37 4.9898458
3501.18 5.2898455
3584.24 5.5898452
3656.74 5.8898454
3733.8686 6.1898451
3913.23 6.4898453
4154.39 6.7898455
4285.93 7.0888452
4398.75 7.3898449
4483.75 7.6462126
4583.11 7.9462128
4671.87 8.2462120
4766.93 8.5462122
4846.58 8.8462124
4932.68 8.1462116
4850.18 8.2194080
5014.77 9.5194082
5083.17 9.8194075

5128.30 10.0398865



c) Constant Friction model as the limit of sticking:

Force
(Pound)

923.80
1111.58
1200.24
1536.17
1564.85
18600.65
1818.89
1634.52
1882.68
1731.92
1735.70
1805.89
1816.99
1870.47
1935.61
1964.92
2100.45
2153.48
2182.65
2322.84
2346.02
2368.54
2434.20
2441.17
2562.87
2638.57
2667.58
2787.88
2801.57
3087.489
3221.73
3357.03
3560.15
3770.68
4081.70
4401.43
4711.96
4836.58
4924 .19
5018.52
5118.15
5227.01
5242 .68
5350.48
5460.12
5579.868

Reduction in

height %

NP WWWWNNNRPEHHRHFROOO0O0000000000000000000000000

.0688498
.08283899
.0895286
.1148519
.1176124
.1220988
.1250570
.1275557
.1364742
.1475835
.14848974
.1662754
.1684434
.1849853
.2058427
.2160415
.2685507
.2907103
.2853303
. 3780988
.3943539
.4109188
.4615031
.4877172
.5780740
.66628615
.7061642
.8502644
.0850535
.3650534
.8650535
.9650536
.2650535
.52384860
.8239480
.12384862
.4239459
. 5843887
.8843886
.1843898
.4843883
.7843880
.8230171
.1230168
.4230170
.7230187

173



5702.
5828.
5944.
8057.
6160.
62586.
8347.
8432.
8516.
6596.
B8678.
6754.
6819.
6876.
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.0230165
.3230188
.6230164
.82301861
.2230163
.5230160
.8230157
.1230154
.42301586
.7230158
.0230150
.3230152
.5672522
.8035860
. 1035862
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