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CHAPTER I 

INTRODUCTION 

In the practical analysis of metal forming processes, particular 

attention must be paid to the die boundary conditions. Controlling the 

free surfaces and modelling the frictional forces significantly 

influence the results of the analysis. 

The effect of the friction in metal forming is very complex. I. V. 

Krageli 1 ski and V. S. Shchedrov (1956) in their introduction to the 

11 Development of the Science of Friction 11 wrote: 

The physical aspects of dry friction are not yet 
sufficiently clear. The engineer who encounters friction 
everywhere is not yet only incapable of controlling it, but 
is even unable to allow for it correctly, whereas the 
physicist lacks the data to provide comprehensive 
explanation for the phenomena. 

Muurice Godet (1988) in his discussion and conclusion of 11 Modeling of 

Friction and Wear Phenomena 11 wrote: Neither friction nor wear are 

sufficiently understood to offer a solid basis for modeling. 

Besides the complexity of the analysis another problem is faced 

when friction as a tangential force is modelled and introduced to an 

approximate numerical or analytical method in bulk deformation 

analysis. This difficulty arises from the existence of a point (neutral 

point or region) at the boundary where the friction force changes its 

orientation. In complex geometries (non-symmetric die or workpiece), 

finding the location of this point is difficult and proposed methods 

have, to date, proven unsuccessful. Also, an abrupt jump in the 
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friction value (positive to negative) at the neutral point in the 

friction modelling makes the analysis of the deformation ill 

conditioned. 

Another problem encountered is the change of the geometry during 

the deformation, parts of the free boundary come to touch the dies. 

Sometimes, by changing the free surfaces, the position (positions) and 

the number of the neutral points change. This results in a change in 

the flow direction which makes the modelling of friction even more 

complicated. 

1.1 Objective and Scope 

This work concerns the development of a general methodology for 

finite-element modelling of friction in non-symmetric geometries. The 

basic approach involves first fixing the boundary nodes to the die, and 

then appropriately applying a friction model as the limit of the 

interface shear strength and the boundary between sliding and sticking 

conditions. 

Some basic friction laws and theories suitable for numerical 

modelling are discussed in Chapter II. Previous works concerning finite 

element modelling of friction are also addressed. Some aspects of 

process modelling are outlined in Chapter III. To examine any friction 

model, having access to a source code is necessary. The source codes of 

softwares, typically commercial, were not available. Therefore, an 

elastic-plastic finite element code was developed and is discussed in 

Chapter IV. The method of incorporating the frictional boundary 

conditions into finite-element simulation of plastic deformation in the 

present work is also addressed in Chapter IV. Chapters V and VI are 

2 



devoted to verifications of the elastic-plastic program and the 

method(s) of friction modelling developed in Chapter IV. Chapter VII 

provides a summary and outlines the main conclusions of this work. This 

chapter also outlines some recommendations for future research. 
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CHAPTER II 

FRICTION AND MODELLING OF FRICTION IN METAL FORMING 

2.1 Friction 

Friction is most commonly characterized by using the constant 

coefficient of friction in the Amontons/Coulomb Law or by using the 

constant friction factor in the Law of Constant Friction. In some metal 

forming processes such as forging, when the hydrostatic pressure is 

high, application of the constant coefficient of friction is 

questionable. Also, there is some evidence (1) that the application of 

the Constant Friction Law along the entire interface is incorrect. In 

their most recent friction model, Bay [2] pointed out that Amontons Law 

is valid only at low pressures while the Constant Friction Law is 

permissible at high pressures. Neither of them is valid at the 

intermediate pressures. It is the objective of this section to 

investigate the sources of these models and to provide some basis for 

modelling of friction in Chapter IV. 

2.1.1 Causes of Friction 

Friction is the resistance to the relative movement (sliding) 

between two surfaces in contact. Due to the mechanism of surface 

interaction, friction has a dual molecular-mechanical nature. 

In microscopic scale, surfaces are rough no matter how finely 

finished they are (Figure 2.1). One source of friction is the asperity 
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Figure 2 .1 Typical surface map [ 7 ] . 
Lighter areas correspond 

to higher surface . 

Figure 2 . 2 As perity i nte rlockin g . 
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interlocking which is illustrated in Figure 2.2. According to this 

figure sliding cannot take place without cutting or deforming the softer 

asperities. Also it is possible the asperities of the harder material 

(die) plow through the softer one (workpiece) and contribute to the 

frictional force (Figure 2.3). At high pressure, atoms approach each 

other and interatomic forces come into play. It is said that adhesion 

takes place (Figure 2.4) When the surfaces are clean or the surface 

contaminant films are broken through, the metallic adhesion that takes 

place is very strong. Adhesion can be the weaker joints between the 

contaminant films of the contacting surfaces. In bulk deformation, 

metallic adhesion has been known as the major source of friction. 

2.1.2 Laws of Friction 

There are two basic friction laws which are empirical in nature. 

The first law states that friction is independent of the apparent 

contact area. The second law indicates that friction is proportional to 

the normal load between the surfaces. These laws are due to the French 

engineer G. Amontons (1699) and are usually referred to as 'Amontons 

Laws'. Laws of friction enable us to define a coefficient of friction: 

(2.1) 

where: µ = coefficient of friction 

F = tangential force required for sliding 

, = interface shear stress 

W = normal force 

P = pressure 

6 
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Figure 2.3 Plowing 

Hicroweld t 

Figure 2.4 Adhesion 



According to this equation, F is proportional to W when µ is constant. 

In metalworking, this is not necessarily realistic. For example in 

forging, due to the hydrostatic pressure, P reaches a multiple of the 

equivalent yield stress (o0 }. Since the maximum limit of • is the bulk 

shear strength (K = 1//3 o0 }, µdrops to a very unrealistic value 

otherwise µP > K which means the interface shear strength is higher than 

K (Figure 2.5). Therefore, the coefficient of friction is meaningless 

when P is very high. 

To avoid this difficulty, the interface shear strength (friction 

stress) is sometimes described by: 

l = fk (2.2) 

where f (frictional shear factor) is a constant less than one. f = O 

means the frictionless interface and f = 1 means condition of full 

sticking. Equation 2.2 is known as the Law of Constant Friction. 

The Law of Constant Friction is mathematically more convenient than 

Amontons Law because the value of k is known from the beginning while in 

contrast, the value of P must be found. Sometimes it is suitable to use 

the combination of these laws in metal forming (Figure 2.6). 

Values of µ and f are functions of several factors. Temperature, 

pressure, hardness, velocity, atmosphere, solubility of the mating pairs 

and surface crystal structure have shown to have some influence on 

friction. The effects of these factors have been well summarized in 

detail (3, 4]. Due to the variation of some of these factors, within 

the die/workpiece contact zone, µ and f must also vary. Therefore, an 

average µ or f is most often assumed in calculations. This is 

permissible for force calculation but can lead to errors in the 
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k ... 

Figure 2.5 Interface shear strength. 
When this strength is 
greater than the shear 
strength of the bulk it 
is easier for the mate­
rial to shear inside. 

l=fl< 

p 

Figure 2.6 Combination of Amontons 
and Constant friction 

Laws 
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calculation of strain distribution (5, pp. 16]. 

2.1.3 Theory of Adhesion 

2.1.3.1 Initial Theory of Adhesion. The theory of adhesion, due 

to Bowden and Tabor [6), is based on the analysis of real contact 

between rough surfaces in plastic deformation of the individual surface 

asperities. According to this theory, when two clean metallic surfaces 

are pressed together, they make contact only at the tips of the 

asperities. The true contact area increases by plastic deformation of 

the asperities until it is sufficient to carry the load (Figure 2.7). 

If the load is W and the yield pressure of the metal is P0 then the 

contact area A between the two asperities is: 

w 
A = p- (2.3) 

0 

Bowden and Tabor stated that strong adhesion occurs at the regions of 

real contact and before sliding takes place the adhered junctions must 

be sheared. If T is the required shear stress for shearing of the 

junctions then the friction force F is: 

F = AT + Fp (2.4) 

where Fp is an extra force due to the mechanical source of friction 

(plowing). Bowden and Tabor stated that for most situations with 

metallic surfaces Fp is small compared with AT and can be neglected. 

Therefore, the friction force can be written as: 

WT 
F = A-r = p-

o 
(2.5) 

10 



p 
Pressure 
4 .. t + ~ 

[ Ar~a ~ 

Figure 2.7 Contact between two iso­
lated asperities 

.. t ' ' 

(a) (b) 

Figure 2.8 Junction area between the asperities. 
a) Contact under normal load alone 
b) Contact with application of ta­

ngential force F. 
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This equation indicates that F is proportional to the normal load W and 

independent of the area A (Amontons Law). According to Equation 2.5 the 

coefficient of friction µ is: 

(2.6) 

For an ideal plastic material the local yield pressure P0 is three times 

the yield stress a0 [6, pp. 323) or: 

(2.7) 

In clean metals, under vacuum, , is equal to the yield shear stress K of 

material. Also, according to the Von Mises yield criterion: 

(2.8) 

Inserting Equations 2.7 and 2.8 into Equation 2.6: 

1 
µ = - "'0.2 

3/3 
(2.9) 

However, the coefficient of friction in most clean metals is much higher 

than 0.2. One may explain this due to the work-hardening characteristic 

of the real material where , increases during the deformation process. 

Bowden and Tabor indicated that this was an unlikely explanation since 

P0 increases parallel in ' and it is for this reason that the hardness 

of metals has little effect on the coefficient of friction. This 

problem led Bowden and Tabor to review the simple theory and to present 

a more realistic description of friction in terms of adhesion. 

2.1.3.2 Modified Theory of Adhesion. The simple theory of adhesion 
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was developed in the absence of the tangential force F from the 

beginning. In other words, the normal pressure P was independent of the 

shear stress '· This led to equation: 

w A=p 
0 

(2.10) 

In the real condition when the tangential force F is applied, due to the 

theory of plasticity, yielding in the junction must occur as a result of 

the combined normal and shear stresses. To illustrate this consider the 

simplified two-dimensional model in Figure 2.8. In the absence of the 

tangential force (Figure 2.8a) the material starts to flow when the 

pressure reaches the yield pressure P0 and area A can be found according 

to Equation 2.10. Now if a tangential force F (friction) is gradually 

applied (Figure 2.8b), the material continues to flow under the 

condition: 

(2.11) 

where K is a constant comparable to the yield stress of the metal. At 

the beginning when , is zero P = P0 • Therefore, Equation 2.11 becomes: 

= p 2 
0 

(2.12) 

According to this equation when shear stress increases, further plastic 

flow occurs and the contact area A increases. When A increases, 

pressure (W/A) and shear stress (•) drops. Again shear stress must 

increase to a value such that the combined stresses satisfy Equation 
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2.12 and further junction growth occurs. According to this model, there 

is a steady junction growth in the area of contact as , increases. 

Based on Equation 2.12, when shear stress reaches the yield shear stress 

of the material k, pressure becomes zero. Under this condition to carry 

the load {W = PA) surface area should approach infinity. This is true 

only for absolutely clean surfaces in vacuum {sliding never occurs). 

However, due to the weak contaminant films at the interface, , never 

reaches k. For the three dimensional case the criterion of plastic 

flow over the contact region is: 

(2.13) 

where a is a suitable constant and its value does not greatly affect the 

amount of junction growth in many practical cases (a= 9 in [6], a= 27 

in [2]). Again, when shear stress is zero K is equal to the yield 

pressure P0 • Therefore, 

p 2 
0 

(2.14) 

Equation 2.14 is similar to Equation 2.12 and the same mechanism of 

junction growth can be explained for the three dimensional case. 

According to the above discussion, for clean metals large-scale 

junction area is possible. This results in a higher coefficient of 

friction which can be confirmed experimentally [ 7, pp. 83]. 

2.1.3.3 Condition of Macroscopic Sliding. In the preceding 

section it was shown that due to the contaminant films such as oxides, 

the shear strength of the interface is less than k. In other words if 
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"f" is a positive constant less than one then: 

interface shear strength = fk (2.15) 

In Equation 2.15 when , = fk the interface cannot resist and sliding 

occurs (Figure 2.9). Therefore, the condition of sliding is: 

= p 2 
o 

In Equation 2.14 when pressure is zero (• = k): 

= p 2 
0 

Inserting Equation 2.17 into Equation 2.16: 

or 

The coefficient of friction µ becomes: 

F f KA f 
µ = W = PA = -[ a-(-l ---f....,.....2)_)..,,.....1/"""'"2 

When f = 1 (uncontaminate metals in vacuum), µ is infinity. 

(2.16) 

(2 .17) 

(2.18) 

(2.19) 

(2.20) 

In this 

condition the interface shear strength is equal to K and junction growth 

never ceases (A+ w). However, even a small amount of contaminant (e.g. 

moisture in the atmosphere) causes a sudden fall in coefficient of 
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friction (Figure 2.10). This is due to the weakening of the interface 

which in turn causes the ceasing of junction growth and sliding of one 

surface on the other. 

Equation 2.20 indicates the condition for the start of gross 

sliding. Sliding commences when a maximum static frictional resistance 

is developed and the junction separates. At this point frictional 

resistance is zero but new junctions form elsewhere and the process is 

continued this way (stick-slip). The static frictional resistance 

persists for a distance of the order of 10-4 cm as sliding commences 

then its magnitude falls up to a distance of 10-3 cm [8, pp. 35), when 

the kinetic component of frictional resistance is reached (Figure 

2.11). The magnitude of kinetic friction depends on the life of the 

stationary contact. It is small when the contact time is measurable in 

milliseconds and large when it is a few seconds but always smaller than 

the static friction. 

2.1.4 Theory of Friction By Halling and Edwards 

After Bowden and Tabor, a number of researchers were inspired by 

the analysis of plastic deformation of isolated asperities to develop a 

more advanced frictional model. Most important amongst these are 

Edwards and Halling [7, 9). Considering two wedge-shaped asperities 

(Figure 2.12) and using slip-line and upper-bound analyses, a solution 

was proposed which enables the value of coefficient of friction to be 

obtained at each time interval during the life history of a junction 

interaction. In this theory, the shear and normal forces are calculated 

from the first contact until the asperities separate (Figure 2.13). The 

coefficient of friction,µ, is the ratio of the instantaneous shear force 
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and the instantaneous normal force. Therefore, the coefficient of 

friction can be calculated from Figure 2.13 and plotted against f for 

various junction angles {Figure 2.14). The general relationship 

proposed by Edwards and Halling is: 

µ = [ f 2 1/2 + $] I (1 
a{l - f ) 

(2.21) 

where $ is a function of the geometry and f. $ is zero when the 

asperity angle is zero. This indicates that the Bowden and Tabor theory 

(Equation 2.20) is a special case of the Edwards and Halling theory. 

2.1.5 Plastic Interaction of Neighboring Asperities 

In Edwards-Halling and Bowden-Tabor theories, the deformation of 

each individual asperity was considered isolated. However, at high 

pressure, asperities make contact and their deformation cannot be viewed 

in isolation. By different slip line models, several aspects of this 

problem have been studied by Wanheim, Bay and co-workers and their 

results are well summarized in [2]. 

By a slip-line analysis under the statical loading condition, 

Wanheim estimated the relationship between the nominal pressure P and 

the ratio between real and apparent contact area s (Figure 2.15). 

According to this analysis, proportionality between s and P exists only 

at low pressure. At higher pressure, when the neighboring asperities 

make contact, the s-P curve bends away. At very high pressure, when the 

real contact area becomes equal to the apparent contact area, s becomes 

independent of P. 

2.1.5.1 Asperity Deformation With Tangential Force. Analysis of 
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asperity deformation by Wanheim was performed under static contact where 

no tangential force (friction) existed. Wanheim, Bay and Peterson [2] 

proposed a new slip-line field taking relative sliding and friction 

stress in the asperity contact into consideration (Figure 2.16). Since 

the angle between the free surface and bordering slip-line must be 45°, 

it was assumed that the asperity angle y is small and it remains small 

during the deformation (initial value of y is usually less than 15°). 

Based on this slip-line field, the real contact area and the friction 

stress were computed. Figures 2.17 and 2.18 show the results of this 

analysis. In these figures the contact area ratio s (Figure 2.17) and 

the normalized friction stress TIK (Figure 2.18) are plotted as 

functions of the normalized pressure Pla0 (a0 = equivalent yield stress) 

and friction factor f. At low normal pressure {Pla0 < 1.5) the contact 

area ratio and friction increase proportionally to the pressure. At 

higher pressure the neighboring asperities interaction start and the 

curves are no longer linear. At very high pressure (P > 3.5a0 ) the 

contact area ratio and friction become constant and independent of 

friction factor. 

This friction model (Figure 2.18) includes both the Amontons Law 

T = µP {Equation 2.1) and the Law of Constant Friction T = fK (Equation 

2.2) According to this model the Amontons Law is valid only at low 

pressure (Pla0 < 1.5). The Constant Friction Law is valid at high 

friction (Pla0 > 3.5). At the intermediate pressure (1.5 < Pla0 < 3.5) 

neither of these laws are valid. Figure 2.18 can be presented by 

equation: 

T = f sK (2.22) 

22 



23 

Figure 2.16 The slip line field proposed 
by Bay et al cosidering f­
riction stress [ 2 ] 

0.0 -- ------ ---____ ..___ 
00 10 l .O JO 

Figure 2.17 Variation of the co­
ntact area ratio 

[ 2 l 

I• tOO 

0.1 

10 20 JO 

Figure 2.18 The initial friction 
model proposed by 
Bay et al [ 2] 



2.1.5.2 Effect of Asperity Angle on Friction. In the preceding 

analysis it was assumed that the asperity angle remains small during the 

deformation. However. this assumption is valid only when friction is 

not too large. At high friction. asperities tilt and their angles can 

change. In a new slip-line field (Figure 2.19}, Bay took the variation 

of the asperity angle into consideration. When there is no friction 

(Figure 2.19a} 1 the slip-line field remains symmetric. When friction 

increases and acts from right to left 1 the slip-line field becomes 

asymmetric (Figure 2.19b, c} and the right asperity angle YR (Figure 

2.20} becomes bigger than the left asperity angle YL· In Figure 2.20 1 

the original asperity ACD is deformed into the quadrangle BCDE and the 

right-hand angle of valley increases from y 0 to YR whereas the left-hand 

angle remains constant YL = Yo· Bay explained that at larger pressure 

further change of the asperity slope is small. This development ended 

to a comprehensive friction model which is illustrated in Figure 2.21. 

In Figure 2.21 (the general friction model} friction has been plotted as 

functions of the initial asperity angle y 01 friction factor f and 

pressure P. The influence of asperity angle is limited when f is 

small. For pressure below the two marked lines (Pla0 < 1.5 for Yo = 0 

and Pla0 < 0.8 for Yo= 15°}, friction varies proportionally to pressure 

and the Amontons Law can be applied. Above this limit the curves become 

non-linear and approach a limiting value. The analytical development of 

the friction curves in Figure 2.21 are beyond the scope of this work but 

the final expressions are: 

(for P s P'} (2.23) 
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(for P > P1 } (2.24} 

where T 1 and P1 are friction stress and pressure at the limit of 

proportionality. Up to the limit of proportionality the coefficient of 

friction µ is: 

(2.25) 
. 2 

1 + i" + arccos f - 2yRl1 - f 

Figure 2.22 compares the coefficient of friction according to Equation 

2.25 and that by Bowden and Tabor in Equation 2.20 when a= 27. A very 

good agreement is noticed between the Bowden and Tabor•s curve and the 

curve for Yo = 0° when f - 0.6. Based on Figure 2.22 Bay proposed a 

simple way for the estimation of the friction factor in metal-forming. 

A ring compression test [38) is performed, the coefficient of friction 

can be estimated and then Figure 2.22 can be used to find the friction 

factor f. 

2.2 Review of the Literature in the Inclusion of 

Surface Friction in the Finite Element Solutions 

Due to the great influence of friction on material flow, several 

attempts have been made for the proper inclusion of the surface friction 

in metal-forming analyses. Friction distribution and orientation are 

the two major problems in any metal forming analysis. Depending on the 

methods of handling these two difficulties, three major approaches can 
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be found in the literature and this section is concerned with the 

discussion of these approaches. Also a brief description of these 

methods can be found in Table I. 

2.2.1 Direct Method 

One approach in finite element modelling of friction is the 

introduction of friction as the surface nodal force or surface shear 

stress against the motion. The conventional models in this approach 

adopt either the Amontons Law T = µp (T - friction stress. µ = 

coefficient of friction, P = pressure) or the Constant Friction Law T = 

fk {f =friction factor, k =shear yield stress of the workpiece). The 

direction of the friction is determined to be opposite to the direction 

of the material flow. 

Application of the Constant Friction Law or the Amontons law all 

along the interface causes a sudden jump in friction distribution at the 

neutral point, where the flow changes its direction (Figure 2.23). 

Experimental observations by some investigators [10, 11] in upsetting of 

a circular disk show a linear decrease of the friction towards zero in 

the center and such a jump is not likely to occur. Bay [2, pp. 26] 

explains that this is due to a central sticking zone {dead zone) where 

the shear stress is not large enough to overcome the frictional stress 

and sliding cannot occur. The radius of the central sticking zone was 

approximated [121 by the upper bound method as a function of the 

Diameter/Height ratio (Figures 2.24 a and b). Sometimes, because of the 

existence of the sticking zone, the term "neutral region" is used 

instead of the "neutral point". 

In most cases the location of the neutral point is unknown and 
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therefore the flow and friction direction is unpredictable. Such a case 

can be observed in compression of a ring. In well lubricated 

conditions, the ring deforms in the same way as a solid disk and 

material flows radially outward at a rate proportional to the distance 

from the center (Figure 2.25a). At low friction, the internal diameter 

of the ring increases (Figure 2.25c) and at high friction, the internal 

diameter reduces (Figure 2.25b). Thus, due to the unpredictable flow 

direction, friction cannot be modelled in the compression of a ring. 

In all the non-symmetric geometries, the location of the neutral 

point (region) is unknown and very few examples can be found in the 

literature which examine the effect of friction in the analysis of 

deformation in complex geometries by this approach. Park and Kobayashi 

[13] in the compression of wedge shaped blocks, modelled the surface 

friction as an arc tangent function of the relative velocity between the 

die and the workpiece: 

where: Ts = friction stress 

f = friction factor 

k = shear yield stress 

vs = relative velocity between the die and the workpiece. 

(2.26) 

a = a constant several order of magnitude less than the die 

velocity 

By using Equation 2.26, an abrupt jump in the value of friction at the 

neutral point is prevented (Figure 2.26). 

According to Equation 2.26 the direction of the surface friction is 

specified in the opposite direction to the relative movement of the 
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workpiece with respect to the die. In finite element method, to avoid 

the singularity condition, at least one node should be constrained in 

each direction. The position of the constrained nodes have a strong 

influence on the velocity field and therefore, the friction direction. 

In the complex geometries, it is very difficult to decide the correct 

location of the constrained nodes (the best choice is the neutral point 

which is unknown) and it is not clear how Kobayashi et al considered the 

constraints in their analysis. 

Another example of friction treatment in complex geometries is the 

compression analysis of wedge shaped blocks by Guo, Huang and Chen [14] 

(Figure 2.27). In this work friction, f, was prescribed in the 

following expression: 

-fk vs/lvsl' when lvsl > uc 

' = { 
-fk vs/uc , when lvsl < uc 

where: f = friction factor 

k = shear yield stress 

vs = slip at the generic point 

(2.27) 

uc = a positive constant smaller than the average slip over the 

whole die/workpiece interface. 

Equation 2.27, the same as Equation 2.26, is capable of explicitly 

giving the decreasing friction stress towards the center of the upset 

specimen. "f" is the function of the slip which in turn is related to 

the velocity or displacement field. Figure 2.28 shows some of the 

results of this analysis. For the theoretical results the transverse 

flow at the corners is too much and the longitudinal spread around the 

tip of the wedge which has become a thin "tongue'' seems not enough. 
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Chen et al explained these differences due to the coarse meshes in their 

finite element analysis. 

Rebelo et al (15] used the slab method to find the location of the 

neutral point in closed die forging of a turbine blade under plane 

strain conditions (Figure 2.29). In this method the section between the 

upper and the lower dies is considered subdivided into small deformation 

zones. Starting from the right and the left, stress distributions are 

obtained element by element until two distribution curves cross each 

other {Figure 2.30). The point of intersection of two curves is the 

neutral point. 

Although the slab method looks successful in prediction of the 

location of the neutral point, it fails when the flow changes its 

direction at more than one point at the die/workpiece boundary (Figure 

2.31). 

At this point it is very clear that due to the effect of the 

surface flow direction, which is usually unpredictable, modelling of 

friction by the introduction of nodal forces or surface shear stress is 

not always satisfactory. 

2.2.2 Surface Element Method 

The second approach for the inclusion of the friction in finite 

element analysis of metal forming is the surface element method. This 

method, which is independent of the material flow direction, requires 

the addition of a narrow surface element between the die and the 

workpiece where friction is present. The surface nodes of this element 

are fixed to the die and the workpiece. The elemental properties are 

such as T = fk (T = shear strength of the element, k = yield shear 
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stress of the workpiece) or cry = µam (cry = yield stress of the element, 

am= mean stress of the adjacent workpiece element). 

The extra element is simply a mathematical description ·of the 

lubricant (for convenience) and is not a physical representation of the 

interface. Due to its practicability, several examples can be found in 

the literature for the simulation of the surface friction using this 

method. 

The interface element with the specifications stated above is not 

appropriate for the large deformation and collapses. To remove this 

instability, Hartley, Sturges and Rowe [16) defined a modified factor a 

= f /(1 - f) instead of f in equation ' = fk. By this modification the 

surface element becomes stiffer and it can undergo more elongation. 

Also, in a technique, the forces are applied to the surface of the 

workpiece instead of the elemental surface nodes (Figure 2.32). The a 

technique was applied to the two dimensional analysis of ring 

compression and good agreement between the theoretical results and 

experimental observations was achieved. Later, the same technique was 

applied to the three dimensional analysis of upsetting of a rectangular 

block [17] and it was determined that the frictional restraint becomes 

too high, compared to the experimental results (Figure 2.33). 

The surface element method is not influenced by the flow 

direction. But, even if the answers with small errors are obtained, 

always there is some doubt about its appropriateness because boundary 

conditions do not simulate the actual phenomena. 

2.2.3 Slip Method 

The third approach in the finite element modelling of friction is 
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to solve a boundary problem of constrained displacements for the nodes 

between the die and the workpiece. Two examples of such approach are 

the works done by Nagamatsu et al [18] and Devaux et al [1]. 

Nagamatsu et al proposed a relative slip ratio for the surface 

nodes instead of the coefficient of friction. In case of plane strain 

compression of rectangular blocks, the relative slip ratio v was defined 

as: 

(2.28) 

where vs is the velocity of the relative slip between the tool and the 

surface of material at an instant in processing, vy is normal velocity 

of the die, 2H is height of the block, and x is the distance between the 

center and a generic point on the surface. 

Distribution of v on the interface in Equation 2.3 was measured 

experimentally for different height to width ratio h0 (Figure 2.34) and 

the results were introduced to an elastic-plastic computation. 

Devaux et al, [1] in upsetting of solid cylinders, expressed the 

radial displacements (ur) on the faces in contact with the dies as 

(2.29) 

where n is the step of computation, i is the surface node number and h 

is the instantaneous height of the cylinder. This relation was 

experimentally evaluated by measuring the displacement of the 

indentation marks on the faces in contact with the die at different 

upsetting steps and further used as the boundary condition in an 

elastic-plastic finite element computation. Among the results, it was 

38 



-n:.c 

-lCfoll 

Figure 2.34 Distribution of relative 
slip ratio on the int­
erface [ 18 ] 

r " 

' ' 

c •' 

SM!l• SlD!!~ l' lt-1 lh:(q•A:l 
01 {Qa.l Ai~ 

~11( .. '"c ~R1:11~ .. (O'i:J:•1~"' 

... 
' -.., 

\ 

' 
\ 
' 

\ 
' \ .. 

Figure 2.35 Distribution of shear stress under 
the die in sticking condition 

[ l l 

39 



found that the hypothesis of a constant shear stress is not correct and 

its local value increases with the average strain £ = ln (h0 /h) (Figure 

2.35). Also, it was found that the variation of shear strain under the 

die is almost linear from the center of the specimen to the half outer 

radius, after which the variation is parabolic up to the maximum value 

of r (Figure 2.36). 

The main objection to this approach is the need to conduct 

experimental measurements prior to the computations. 
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TABLE I 

MAJOR APPROACHES FOR INCORPORATING THE FRICTIONAL 
BOUNDARY CONDITIONS INTO METAL FORMING 

SIMULATION 

Approaches Hethod of 11odelli11g Advantages disadvantages 

11.1 troduc t ion of Effective Fails uh en 
1 friction as surface if friction flow direction 

nodal force. distribution is unknoun. 
is correct. 

Surface element Independent Unreliable. 
2 of the flou 

direction. 

Hod ifying the simulates Requires 
3 surface the actual experimental 

displacement. phenomena. data prior to 
the analysis. 
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CHAPTER III 

AN OUTLINE OF THE PROCESS MODELLING OF FORGING 

In their introduction to the 11 Process Modelling of Metal Forming 

and Thermomechanical Treatment. 11 Rebelo et al [15} wrote the following: 

The expression process model refers to a mathematical 
model which has been developed to a level at which it can 
quantitatively describes the essential characteristics of a 
process and which, when implemented as a computer program, 
permits the stepwise simulation of the process. 

Often in metal forming it is required to transform the initial 

geometry into a complex geometry without causing material failure or 

degrading material properties. The mathematical modelling provides some 

information to assist the forming engineer for the proper design and 

control of the process. 

The process modelling comprises several variables which interact 

with each other during the plastic flow. The flow stress, the die and 

workpiece geometries, the friction at the tool/workpiece interface and 

temperature are among these variables. Due to the influence of these 

variables on each other it is very difficult to express the physical 

phenomena of a forming operation with quantitative relationships. 

Figure 3.1 shows the interactions of some important variables in forging 

process. Interactions start with the ram displacement which influences: 

1. The flow stress in work hardening and strain rate sensitive 

material. 

2. The geometry and contact area which themselves affect the heat 
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transfer, flow stress and friction condition. 

Friction, geometry and flow stress are three major variables to be used 

in the analysis of deformation. 

There are several approximate methods (numerical and analytical) 

for the analysis of deformation. Due to the assumptions made in 

developing the mathematical approach, none of these methods is 

perfect. Also, every method requires some data which must be determined 

by experiment. The inaccuracy of the experimental data, such as 

friction factor and flow stress, affect the accuracy of the analysis. 

With this view the exact analysis of a process is not feasible in most 

cases. Figure 3.2 shows the contribution of some experimental data in 

the forging system. 

The most widely known methods among the analytical techniques are 

the slip line method, upper bound method and slab method. 

The slip line method [19, pp. 381] is used for the analysis of 

deformation in rigid-perfectly isotropic solids. This method has the 

capability to determine the stress and the velocity fields but it fails 

to take into account the behavior of real material properties such as 

workhardening, strain rate and temperature effects. 

The upper bound method was developed by Johnson [20] and Kudo [21] 

and it is widely applied in metal forming analysis to estimate the 

maximum load required to perform a certain operation. The load (power) 

computation in this method is based on the strain rate field considering 

the redundant work. The stress distribution cannot be analyzed by this 

method. 

The slab method (15, pp. 29] can be used for the elementary 

analysis of stresses and loads in plane strain or axisymmetric 
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conditions. The velocity field cannot be determined by this method. 

Several other analytical techniques in this area exist and have 

been well summarized in different books (19, 22, 23). 

Besides the analytical techniques, several numerical methods have 

been developed for the analysis of deformation in metal forming. 

Outstanding among these are the methods using finite difference and 

finite element methods. Usually, finite difference technique is used 

for the calculation of temperature distribution and finite element 

method {FEM) has proved to be superior to the classical methods due to 

its flexibility and ability to obtain a detailed solution. 

FEM was developed originally as a concept of structural analysis. 
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The general applicability of FEM made it a powerful and versatile tool 

for a wide range of problems. Several computer program packages have 

been developed for the solution of a variety of solid mechanics 

problems. Some of the programs have been developed in such a manner 

that the same program can be used for the solution of problems belonging 

to different branches of engineering with little or no modification. 

Table II shows a summary of the more widely used packages. 

In the field of plasticity, Rigid Plastic and Elastic Plastic are 

the two main approaches of finite element formulations. For an analysis 

of elastic plastic problems, the use of the plastic stress-strain matrix 

developed by Yamada et al [24) has been very useful. Using this matrix 

and the incremental variational formulations, developments have been 

made in the analysis of metal forming (25, 26, 27, 28). Today, the 

finite element has proved to be a very effective tool in the elasto­

plastic analysis of metal forming processes. However, due to the 

elasto-plastic property the use of large deformation is not permitted in 
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this approach. With this view Rigid-Plastic finite element method 

called 11 matrix method 11 was developed by Lee and Kobayashi [29, 30]. 

Rigid-plastic FEM is more effective in terms of the computation time but 

less accurate because of the neglection of the elastic strains at the 

beginning of the deformation. Some of the capabilities and 

characteristics of various methods are summarized in Table III. Figure 

3.3 exemplifies some important information obtained by process modeling 

of forging: 

1. Prediction of the microstructure and mechanical properties of 

the workpiece during and after deformation. 

2. Effects of the position of the flash line on the 

microstructure, extraction of the workpiece from the dies after the 

process is finished and furthermore the material lost. 

3. Flow of the material and its effects on the filling of the 

cavity between the dies. 

4. Effect of the geometry of the preform on the material flow. 

5. Initial position of the preform between the dies and its effect 

on the material flow and center of loading which has great influence on 

the press structure. 

6. Prediction of the forces and the energy necessary to carry out 

the forging operation. 
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LIST OF MAJOR FINITE ELEMENT PACKAGES [32] 
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TABLE III 

SUMMARY OF VARIOUS ANALYSIS METHODS [ 3 1 ] 
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CHAPTER IV 

FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC DEFORMATION 

4.1 Finite Element Approach 

This section introduces an elastic-plastic finite element program 

that has been developed for the analysis of deformation and further 

examination of the friction model. 

Rigid Plastic and Elastic Plastic are two main approaches of finite 

element formulations for metal deformation problems. The Rigid Plastic 

approach neglects the elastic strain and cannot accurately model the 

early stages of a deformation when the workpiece is in the process of 

yielding and Elastic regions predominate. Therefore, an Elastic Plastic 

approach was used in the development of this program. 

In the analysis of metal forming processes featuring large 

deformation, for the attainment of correct solutions at the end of 

several hundreds of incremental computation steps, possible sources of 

numerical errors should be carefully eliminated. The stress rate should 

be chosen properly in the constitutive relation and the geometric 

stiffness be considered adequately. 

The success of the finite element method (FEM) in the solution of 

Elastic Plastic problems dates back to the late 1960 1 s when the 

expression of the Plastic stress strain matrix (material nonlinearity) 

was brought out and incorporated in the standard form of FEM [24]. 

However, the application of this method has been largely confined to 
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some deformation regime where the overall strain is restricted to the 

order of 10-3 (due to the factors like neglecting the effect of rigid 

body rotation). Since then several attempts have been made for 

extending this solution to large deformations. One of the first 

attempts was made by Hibit, Marcal and Rice (331 who used a total 

Lagrangian formulation. Later, McMeeking and Rice (34] pioneered the 

use of an updated Lagrangian type approach which led to an improved 

formulation when large increments in rotation occurred. 

4.1.1 Assumptions 

1. Mechanical properties of the solid are time independent. 

2. The stress level depends on the current degree of plastic 

straining (work hardening). 

3. Any subsequent yield surface is parallel to the original one. 

In other words the work hardening model is isotropic and the Bauchinger 

effect is neglected. 

4.1.2 Equilibrium Equations 

Maybe the most general constitutive law leading to a symmetric 

stiffness matrix has been derived by Hill (35]. For an element of 

material the properties of which do not depend in any way on time: 
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Stress rate = f (strain rate) (4.1) 

where f is homogeneous and is of degree one in the components of the 

strain rate. If E is a homogeneous quadratic rate potential (depending 

on the current stress and strain history), then Equation 4.1 becomes: 

(4.2) 
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sij is the nominal stress rate and has nine independent components (non-

symmetric) (28, pp. 200] and v is the velocity. 

Any solution of the boundary value problem can be characterized by 

variational principle such that (35): 

where F and g are the surface and body forces and all integration 

extents are in the reference configuration. By neglecting the body 

forces, the general form of the equilibrium equation becomes: 

1 s .. a(ov.)/ax.dv=J ~.ov.ds v lJ J 1 v J J 
(4.4) 

Due to the rigid body rotation the stress tensor (non-symmetric) cannot 

be used to represent the stress rate in constitutive equations. For 

clarification consider a bar under uniform tensile stress as shown in 

Figure 4.1. 

When the bar and loads acting on it undergo a rigid body rotation 

with respect to the fixed coordinate system, the stress components with 

respect to the system change, because 

(4.5) 

This equation represents the material rate of change of the stress 

components with respect to a fixed coordinate system. The first term on 

the right side gives the convective part of this rate of change and the 

second term gives the local part. However, from the point of view of 

the moving body, the state of stress remains a constant. Stress rate 

tensor that can be used in the constitutive equation in this situation 
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must contain an additional term (rotary) to compensate for the local and 

the convective term and becomes zero. This difficulty can be avoided by 

choosing a reference stage that is momentarily coincident with the 

current state [34, 35). In this solution it can be written [34, 35, 36) 

as: 

(4.6) 

where: 

S = Nominal stress rate (non-symmetric) 

TAij = Jaumann or corotational rate of Kirchoff stress 

(symmetric). This is a meaningful definition of the 

stress rate of which the stress components are referred 

to a coordinate system that participates in the 

instantaneous rotation of the material [36) 

aij = Cauchy or Euler stress 

e: 1.J. = 1/2 (v· · + V· ·)or Euler strain rate l,J J,1 

In the present study no discrimination is made between the Kirchhoff and 

the Cauchy stress. (They differ only by terms of the order of the 

volume change.) 

The nominal stress change in Equation 4.6 is due to the pure 

deformation (T~ij) and/or the change of the geometry and the orientation 

which act on the original state of stress. 

Under this condition (new definition of stress in the current 

configuration) Equation 4.4 becomes [34, 35]: 

(4.7) 

where all integration extents are in the current configuration. 



4.1.3 Stiffness Equations 

Equation 4.7 has two stiffness terms. 

a. Deformation stiffness: 

This stiffness arises from /vT~oEij dv and can be shown in the 

standard form of finite elements as 
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{4.8) 

where 

{v} = [N]{liJ} 

{d = [B]{liJ} 

[[Bij] = (l/2)[Ni],j + (1/2) [Nj],i 

1iJ is defined as the rate of the nodal degree of freedom. 

b. Stress correction stiffness matrix [Appendix A]: 

This stiffness arises from: 

/ [{-l/2)o .. a(2~.k~k. - vk .vk .)] v lJ 1 J ,1 ,J 

and as was explained before is due to the changes of the 

geometry and can be written as 

4.1.4 Elastic Plastic Stress Strain Matrix 

In Equation 4.8, [D] is the constitutive matrix which appears as 

(4.10) 

[D] is the Elastic Plastic matrix and it is dependent on the state of 

the stresses and the slope of the equivalent stress versus equivalent 



Plastic strain curve at each moment [24]. According to the Prandtl 

Reuss and in conjunction with the Von Mises criterion [Appendix BJ: 
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- 3crij crkl / (2cr{l+2{l+v) H' / (3E))] (4.11) 

where: 

E 

I 

crij 

H' 

= Young's modulus 

= Poisson ratio 

= The deviatoric Cauchy stress 

= Slope of the equivalent stress versus Plastic strain curve 

at the current value of the plastic curve 

a = The generalized or equivalent stress 

6ik(Kronecker delta) = 0 IF i ~ K 

= 1 IF i = K 

4.1.5 Program ELPL 

Based upon the preceding discussion, an interactive Elastic Plastic 

Program (ELPL) has been developed for the plane strain condition 

[Appendix DI and can be developed to plane stress and axisymmetric 

conditions. The input data are read interactively and echoed to the 

program. This program contains a main part and several subroutines. 

The flow chart and the description of the subroutines are included in 

[Appendix CJ. 

4.1.5.1 Procedure of Computation. At the beginning of loading 

every part of the body is Elastic. Depending on the geometry and the 

boundary conditions, an increase in load causes some portions of the 



material to yield while the rest are still Elastic. Departure of the 

stress state from Elastic to Plastic is very important and increments of 

displacements should be chosen somehow to make every element yield 

exactly at the yield point. In Plastic region the stiffness ([Kol + 

[Kc]) of the material is dependent on the state of the stress and the 

slope of the equivalent stress versus equivalent strain H'. It was 

found that our computation is very sensitive to H' at each increment and 

any malestimation may create instability. In some materials where H' 

varies by deformation, appropriate numerical techniques should be used 

to avoid any deviations from the original path. Figure 4.2 shows the 

accumulation of the errors if the slope at the beginning of each 

increment is used to compute [K0]. In Figure 4.3, the value of H' is 

predicted at the end of each increment (H'pr) and the average of H'pr 

and H1 is used instead of H1 alone to compute [K01. H'pr can be 

computed according to the Euler predictor method [37, pp. 331] or by 

other similar methods. In the present program the stress strain curve 

has been simplified to a form where H' is constant. This simplification 

reduces the computer time considerably (Figure 4.4). 

4.1.5.2 The Sequence of Computations. 

1. The part is divided into a number of triangular elements under 

plane strain conditions. 

2. Elastic calculation is done by giving an incremental compres­

sion first. Nodal displacements, strains, stresses and equivalent 

stress of each are obtained. 

3. The element with smax is found and the scaling factor R is 

calculated by use of the following equation in plane strain conditions. 
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R (-P + 1P2 - 4 0 Q ) 
= 2 (4.12) 

where 

p = (2AB + 2DC + 2EF + 12axy flaxy 

0 (A2 + c2 + E2 2 = + fla xy) 

Q = (82 + 02 + F2 2 
+ o aXy) 

A = flax - flay 

B = ax - ay 

c = flay - flaZ 

D = ay - az 

E = flaZ - flaX 

F = az - ax 

Yo = Yield stress 

4. The increments of displacements, stresses and strains are 

multiplied by R and a in each element is calculated. At this stage the 

element with amax yielded but the rest of the elements remained in the 

elastic region. 

5. The nodal coordinates are updated. 

6. After another incremental compression the increments of nodal 

displacements, stresses and strains are calculated (plastic stiffness is 

used for the previous yielded element). 

7. amax among those elements in the Elastic region in the previous 

stage is found and R is calculated exactly as in step 3. (amax is the 

maximum equivalent stress.) 

8. The increments of stresses and strains are multiplied by R and 

added to the accumulative values of displacements, stresses and strains. 

9. The nodal coordinates are updated again. 



10. These loops of calculation (steps 6-9) are repeated until all 

the elements yielded. 

11. Computation is advanced by giving proper increments of 

compression in the Plastic condition. 

4.2 Modelling of Friction in the Present Work 

In Chapter II it was illustrated that finite element modelling of 

friction is difficult when the geometry is non-symmetric. Indeed, the 

main question is how to start the analysis when direction of material 

flow and friction is unknown. 

In this study, determination of the flow direction is based upon 

the concept of friction. Friction is the resistance to the relative 

movement between two surfaces in contact. The sources of this 

resistance are: 

1. Asperity interlocking (Figure 2.2) which indicates sliding 

cannot occur until the interface shear stress reaches a critical value 

sufficient to cut or deform the asperities. 

2. Ploughing (Figure 2.3) which indicates sliding cannot occur 

until the shear stress reaches a critical value sufficient to cut or 

deform the softer material. 
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3. Adhesion (Figure 2.4) which indicates sliding cannot take place 

until the interface shear stress reaches a critical value sufficient to 

rupture the adhered junctions. 

These causes of friction indicate that at the beginning of deformation, 

the relative movement of two surfaces in contact is zero. Therefore, 

the analysis can be started by prescribing the tangential displacement 

to be zero (sticking). Sticking condition is maintained until the nodal 



shear stress reaches that critical value mentioned before, the limit of 

static interface shear strength. Any friction model discussed in 

Chapter II can be examined for this critical value. Figure 4.5 

illustrates the friction stress capacity (boundary between sticking and 

sliding) in various models. 

After the commencement of sliding, the tangential force or shear 

stress can be applied to the free node. The direction of this force or 

stress is the same as that of the tangential force or stress in the 

previous iteration in sticking condition. Another option for 

determination of the friction direction is to apply a small increment of 

displacement after starting of sliding to find the direction of the 

material flow. The direction of friction is determined to be opposite 

to the direction of material flow. 

Due to the equilibrium of the external loads, in this process, 

there is always one node at the boundary where shear stress is zero (or 

very small} and it remains in sticking condition. This node represents 

the neutral point. The location of the neutral point remains fixed with 

respect to the die. This may be permissible when deformation is 

small. In large deformation, due to the variation of the die/workpiece 

boundary, the mode of material flow changes and as well as the neutral 

point. Therefore, for large deformation the friction model must have 

enough flexibility to allow the neutral point to change its location. 

At each node, the conditions of sliding and sticking must be 

interchangeable. This type of modelling is similar to the stick-slip 

phenomena [6, pp 78). According to this phenomena, a steady friction 

should not be expected in a sliding situation. During the sliding some 

asperities adhere and local shear stress increases. Shear stress 
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increases up to a point where the junction cannot resist and ruptures. 

At this point, sliding condition occurs and friction drops. The stick­

slip movement continues throughout the tangential displacement. The 

rate of friction fluctuation depends on the properties of the metals 

under load (Figure 4.6) and the limits of static and kinetic friction. 

In finite element modelling, the limit of static friction (upper limit) 

can be used for initiation of sliding and kinetic friction (lower limit) 

for commencement of sticking. 
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The bar and the tensile 
load are undergoing ro­
ation simultaneously 

Figure 4.1 Rigid body rotation 

INCREMENTAL ,STRESS STRAIN CURVE 

ORIGINAL PATH 

STRAIN 

Figure 4.2 The incremental stress strain curve when the slope 
at the beginning of each increment is used 
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Figure 4.3 The incremental stress strain curve 
when the avera8e slope is used 
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Figure 4.4 The stress strain curve in the 
present work 
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CHAPTER V 

FORGING OF SYMMETRIC AND NON-SYMMETRIC PARTS 

To demonstrate the numerical stability of program ELPL, analysis of 

compression of a rectangular block was performed. To evaluate the 

capability of the method of friction modelling discussed in Chapter IV, 

the solution to the compression of wedge-shaped specimen with frictional 

boundary condition was obtained. This chapter reveals the results of 

these analyses. 

5.1 Upsetting of Rectangular Block 

The solution to the upsetting of a rectangular block (2" x 2") with 

unit thickness under plane strain conditions was obtained. The material 

properties were assumed to be: 

ao = 10,000 psi 

H' = 10,000 psi 

v = 0.33 

E = 107 psi 

Due to the symmetry of the problem, a quarter section of the block was 

analyzed and the finite element fixed point (also the neutral point) was 

located at the centerline. As was mentioned before, the major objective 

in this analysis was to test the validity of the main program. 

Therefore, no friction modelling was incorporated in the computation and 

two simple boundary conditions were considered: 
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a. Sliding - 32 triangular elements and 220 increments of 

displacements were used to analyze the problem for 10 percent 

compression. This analysis was performed on the microcomputer. 

b. Sticking - 162 triangular elements and 232 increments of 

displacements were used to analyze the problem for 10 percent 

compression. This analysis was performed on the VAX 780. 

Figure 5.1 shows the finite element prediction of how the 

plastically-deforming region of the rectangular block developed in 

sticking condition. At 0.14 percent reduction in height, the billet had 

yielded fully. The finite element model first started to yield along 

the diagonal line from the outer corner and from the center. Subsequent 

deformation increased the thickness of the region. The growth of the 

plastic zone and the existence of the dead zone match with other works 

[18, pp. 328]. 

Figures 5.2 and 5.3 illustrate the shape of the workpiece after 10 

percent compression under sticking and sliding conditions. The 

geometries predicted by finite element in both conditions are 

reasonable. In sticking condition, bulging occurred. In sliding 

condition the geometry remained rectangular. 

66 

Figure 5.4 illustrates the upsetting load as a function of 

reduction in height of the block. Load computations were based on the 

stresses in the elements adjacent to the interface. The maximum load in 

sliding condition, when loading is uniaxial, is a suitable factor to 

evaluate the accuracy of the finite element program. Maximum load after 

10 percent compression in sliding condition by FEM was found to be 

13,080 pounds. Also, this load can be found analytically as the 

following: 
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Figure 5.4 Average load in sticking and sliding conditions 



71 

For elastic, linearly strain hardening material the stress is: 

a = 10,000 + 10,000 £ (5.1) 

After 10 percent reduction in height the true strain is: 

1 1£1 = ln 0•9 = 0.1043 (5.2} 

Therefore, the strength level that the material exhibits at this strain 

is: 

a = 10,000 + 10,000 (0.1043) = 11043 psi (5.3) 

The surface area A, after 10 percent reduction in height (for unit 

thickness), when the volume remains constant is: 

1 · 1 = A · 0.9 (5.4) 

A = 1.11 in2 (5.5) 

According to the Maximum Shear Stress criterion [40, pp. 72], the force 

required is: 

F = crA = (11,043)(1.1111) = 12,270 lbs (5.6) 

According to the Von Mises Criterion [40, pp. 74) the force required is: 

F = (1.15)(11,043)(1.1111) = 14,110 lbs (5.7) 

The predicted load by FEM (13,080 lbs) is acceptable because it is 

between the loads obtained by two valid theories. The percentage of 

error with respect to the Maximum Shear Stress Criterion is +6.7. The 

percentage of error with respect to the Von Mises Criterion is -7.2. 

These are the errors when only 32 triangular elements are considered in 



the analysis. It is obvious that the accuracy of the analysis changes 

when the number of elements changes. 

5.2 Plane Strain Compression of Wedge-Shaped 

Specimen With Frictional Boundary Conditions 
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The solution to the upsetting of a wedge-shaped specimen (Figure 

5.5) under plane strain conditions was obtained. The material was AL 

6061-0. One reason for choosing such geometry was the convenience in 

the manufacturing of the specimen. Also, compression of the wedge­

shaped specimen is used in practice for workability and microstructural 

studies in forging [44, pp. 281). Compared to the symmetric geometries, 

the boundary conditions in this analysis are more complex. In other 

words, the location of the neutral point and the friction direction are 

unknown prior to the computations. In Chapter IV a general methodology 

was proposed for handling the problem of the neutral point and the 

frictional boundary conditions in non-symmetric geometries. The main 

purpose of this analysis is to check the capability of the cited 

methodology in handling of such complex boundary conditions. Appendix E 

contains some experimental and numerical results regarding the materials 

discussed in this section. 

5.2.1 Boundary Conditions 

Figure 5.6 illustrates the boundary nodes. Friction exists at the 

nodes common between the die and the workpiece. During the deformation, 

some of the free nodes come in touch with the dies. Also, it is 

possible that some of the common nodes disengage. The condition of 

friction at the nodes in touch with the die and control of the boundary 



nodes regarding their positions with respect to the die (engaged or 

disengaged) are the important parts of the boundary conditions in this 

analysis. 

73 

5.2.1.1 Friction. During the deformation, the effect of friction 

was incorporated to the die/workpiece boundary as follows: 

a. Condition of friction at the beginning of deformation is 

sticking (boundary nodes are fixed to the die). 

b. When the nodal shear stress reaches the maximum static 

frictional resistance, that particular node is free to move 

tangentially. The Amontons/Coulumb Law T = µP, the Constant Friction 

Law T = fk, and the Equations 2.23 and 2.24 were examined as the maximum 

limit of sticking condition. 

c. After commencement of sliding and until the end of computation, 

the nodal frictional force is computed and applied to the corresponding 

node. Friction force is computed according to the same model which is 

used to determine the limit of sticking condition. The friction force 

direction is opposite to the flow direction. Always, due to the 

equilibrium of the external loads, there is one node at each common 

boundary where the shear stress is very small. This particular node 

remains in sticking condition and acts as the neutral point. 

5.2.1.2 Control of the Boundary Nodes. During the compression 

process, the boundary nodes were controlled as follows: 

a. At the die/workpiece boundary, the normal relative displacement 

at each node is zero. In other words, the boundary nodes are not 

allowed to move into the die. 

b. At each increment of compression, the coordinate of each free 



node is checked and if any node comes in contact with the die surface, 

it is considered to stick to the die. 
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c. At each increment of compression, the normal stresses of the 

boundary nodes are checked. If the nodal normal stress is positive, the 

corresponding node is allowed to separate from the die and friction 

force is zero. 

5.2.2 Finite Element Approach 

The boundary conditions cited in sections 5.2.1.1 and 5.2.1.2 were 

incorporated to Program ELPL. One hundred and four nodes and 171 

triangular elements were used in this analysis. The mesh system was 

according to Figure 5.7. 

5.2.3 Experimental Procedures 

Some experiments were performed to obtain the required data 

regarding the material properties and frictional boundary conditions. 

Also, compression of the wedge-shaped specimen under plane strain 

condition was performed for evaluation of the results obtained by FEM. 

5.2.3.1 Mechanical Properties of the Material. Material was 

initially AL 6061-T651. Following a general annealing procedure (391, 

it was transformed to AL 6061-0. To determine the stress-strain 

relation in compression, three compression tests were performed on 

cylindrical specimens with a 3/4 inch diameter and 3/4 inch height 

(Figure 5.8). The results of these tests are included in Appendix E. 

For each specimen, compression was carried out between two flat and 
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polished steel platens. To eliminate the effect of the material strain 

rate sensitivity, the compression was carried out very slowly. PTFE 

sheets were used as the lubricant between the platens and the specimens 

to eliminate the influence of barreling. The stress-strain relation in 

tension for AL 6061-0 is [40, pp. 351: 

a = 30,000 E0•2 (5.8) 

From the combination of the compression tests and Equation 5.8, the 

simplified form of the stress-strain relation was determined as in 

Figure 5.9. This figure was utilized as a part of the input data to the 

finite element program. 

To evaluate the effect of the material nonhomogeneity, two 

identical parts were cut from a block of aluminum (AL 6061-T651). After 

annealing, the parts were compressed under two different directions 

(Figure 5.10). No significant difference was found in the magnitude of 

barreling between the two specimens (less than one percent). The 

difference between the compression loads was around four percent. As in 

this analysis the normal nodal displacements are prescribed at the 

boundary rather than the loads, it can be said that the effect of the 

material nonhomogeneity is negligible on the final geometry (compared to 

the friction effect). 

5.2.3.2 Data on Friction. In order to determine the frictional 

behavior at the boundary, the ring compression test was performed 

(Figure 5.11). This method, which has gained wide acceptance in metal 

forming, was proposed by Male and Cockcroft [38]. By compressing the 

rings of 3/4 11 outer diameter; 3/8 11 inner diameter and 1/4 11 height, the 

coefficient of friction in dry condition was found to be µ = 0.21. This 
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value was obtained from the percent reduction in height and the percent 

reduction in the internal diameter (Figure 5.12). Three rings were 

compressed; the coefficient of friction µ = 0.21 is the average of the 

three results. The rings were compressed very slowly between two flat 

and parallel steel platens. Each platen was ground by the surface 

grinder in two cross directions. The rings were cut by the milling 

machine. The parallelness of the ring faces were checked by the vernier 

caliper. Before performing each compression test, all the marks on the 

machined surfaces of the rings and the platens were removed with very 

fine sandpaper. Also, the surfaces were degreased using acetone. The 

rings were initially AL 6061-T651, but after all the machining 

processes, they were transformed to AL 6061-0. 

The other data required for the determination of the frictional 

behavior at the boundary is the friction factor 11 f 11 • The conventional 

method for the estimation of 11 f 11 is the Equation 2.20 which has been 

illustrated as the dashed line in Figure 2.22. According to this 

method, for µ = 0.21, the friction factor is found to be f = 0.75. The 

other methods for determination of 11 f 11 are the solid lines in Figure 

2.22 which were proposed by Bay. According to these lines two other 

values are estimated for 11 f 11 • 

f = 0.8 when the asperity angle is zero degrees 

f = 0.7 when the asperity angle is fifteen degrees 

Based upon these results (µand f), four different models were found as 

the limit of the sticking condition cited in section 5.2.1.1. These 

models have been illustrated in Figure 5.13 and can be explained as 

follows: 

a - Amontons Law: this limit has been found simply by the 
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substitution of µ= 0.21 into T = µP. 

b - Constant Friction Law: this limit has been found by the 

substitution of f and k into to the equation T = fk. Value of f in this 

equation is 0.75 which was found by the traditional method cited 

above. k is the shear strength of the material and it can be shown as 

1 
k = - cr 

i3 ° 
According to the Distortion Energy Criterion (Von Mises}, the yield 

stress cr 0 under the plane strain condition is 

a0 = 1.15 a 1 = (1.15)(12,000} = 138,000 

where a 1 = 1,200 is the uniaxial yield stress and its value was found in 

section 5.2.3.1. Therefore, according to the Constant Friction Law, the 

limit of sticking condition can be written as: 

T = (0.75}( 1_)(13,800) = 5,976 psi 
13 

(5.9) 

c - Theory of friction by Bay. Based upon the discussion in 

section 2.1.5.2, friction changes linearly with pressure up to the limit 

of proportionality (P'/a0 ). The limit of proportionality for the 

asperity angle zero degree is 1.5 and for the asperity angle fifteen 

degrees is 0.8. Up to the limit of proportionality, friction variation 

can be found according to the equation T = 0.21P or equation 2.23. 

Beyond the limit of proportionality equation 2.24 must be used: 

P' p I 
(- - - ) .!.__ 

T , , , a0 a0 k 
k = k + ( f - F-) ( 1 - exp [ 1 p , ] ) 

(f - .!..-) -· k a 
0 



For asperity angle equal to zero, the elements of this equation were 

specified as the following: 

cr0 = 13,800 psi (effective yield stress) 

P 1 /cr0 = 1.5 

P' = (1.5)(13,800) = 20,700 psi (pressure at the limit 

of proportionality 

,• = (0.21)(20,700) = 4,347 psi (friction at the limit 

of proportionality 

f = 0.8 

k = (l/13)(13,800) = 7,967 psi 

substituting these values into the equation (2.24) 

(1.5 - p ) 
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'=4,347 + 2,026 (1 - exp( 13,800 ]) 0.7 (5.10) 

For asperity angle equal to fifteen degrees, the elements of equation 

2.24 can be found as the following: 

cr0 = 13,800 psi 

P'/cr0 = 0.8 

P' = (0.8)(13,800) = 11,040 psi 

,• = (0.21)(11,040) - 2,318 psi 

f = 0.7 

k = 7,967 

substituting these values into the equation (2.24) it can be written: 

(0.8 - p ) 
'= 2,318 + 3,259(1 - exp[ l.l~~· 800 ]) (5.11) 

According to these analyses, the friction models proposed by Bay can be 
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shown as the following: 

For asperity angle 0° 

T = 0.21 p (P $ 20,700) 

(1.5 - p ) 
(5.12) 

T = 4,347 + 2,026 (1 - exp[ 0_;32800 ]) 

For asperity angle = 15° 

T = 0.21 P (P $ 11,040 psi) 

(0. 8 - 13p800) 
2,318 + 3,259 (1 - exp[ ' ]) 1.125 

(5.13) 

5.2.3.3 Plane Strain Compression Test. Using CNC machine, a steel 

die was made for plane-strain compression of the wedge-shaped specimens 

(Figure 5.14). The specimen was confined by two side walls, each 1-1/4 

inches thick. PTFE sheets were used to eliminate the friction between 

the side walls and the specimen faces. The die/specimen surfaces in 

contact were polished with fine sandpaper and degreased with acetone 

prior to each test {the same as the ring compression tests). The 

compression was carried out very slowly up to ten percent the height of 

the specimen. The compression testing machine was MTS with 55 KPS 
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load capacity. The specimen dimensions were according to Figure 5.5. A 

total of 8 specimens were compressed. Among them, three of the best 

{the most accurate in reduction in height) were chosen for the final 

results. At different steps of compression, the load and the 

displacement were written down. After ten percent reduction in height 

(0.05 inches) in each test, the amount of the compression was measured 

by the vernier caliper and compared to the amount of the compression 

shown by LVDT on MTS at the end of the test. From this comparison, a 

correction factor was found and all the displacements shown by LVDT at 

the intermediate steps were multiplied by this factor and corrected. 

The results of these tests have been included in Appendix E. Figure 

5.15 shows one of the deformed specimens inside the die. To demonstrate 

the mode of deformation in the specimen, some lines were drawn on the 

specimen before the compression. In Figure 5.15, the lines on the 

bottom die indicate the initial positions of the lines on the 

specimen. By comparing the position of each line to its initial 

position the amount of slip between the die and workpiece can be 

determined at each point. The slip between the bottom die and the 

specimen at lines~ and 1 from the left is almost zero. Therefore, the 

neutral point must be located in this area. 

5.2.4 Results of the Analysis 

The friction models found in section 5.2.3.2 were examined as the 

boundary between the sticking and the sliding conditions (cited in 

section 5.2.1.1). In these examinations, the Coloumb/Amontons Law 

failed and could not provide any result. The cause of this failure was 

the high hydrostatic pressure in the forging process. Figure 5.16 helps 
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to describe this problem. According to the model T = µP, at some 

portions where P is very high (a multiple of the yield stress), r 

becomes very big. In other words, the limit of the sticking condition 

becomes very high. As the maximum limit of the shear stress is the bulk 

shear strength of the material (T = l/13a0 ), sliding never occurs at 

these zones. The permanent condition of sticking at some regions 

assists to increase the pressure P in the other regions previously 

slid. The friction force applied in the sliding condition is computed 

according to T = µP. Therefore, by increasing the pressure the friction 

stress increases and it sometimes reaches a value beyond the shear 

strength of the material (T = l/13a0 ), thus causing failure. 

Figure 5.17 reveals some numerical results regarding the rest of 

the friction models examined in this methodology. The amount of the 

normalized barreling w/L resulting from the Law of Constant Friction is 

higher than the experimental result. Also, the forging load is much 

higher than the real value when T = fk is applied. 

Generally it can be said that the Constant Friction Law revealed 

some over-strength at the interface. This had been predicted prior to 

the analysis. According to the model T = fk, friction reaches a high 

degree even when the pressure is zero. Therefore, sliding occurs late 

which, in turn, makes the barreling and the load very high. To 

demonstrate the sensitivity of the present analysis to the limit of 

sticking, variation of the shear stress at node number 2 are illustrated 

in Figures 5.18 and 5.19. In Figure 5.18 (Constant Friction Law), 

sliding commences when the shear stress reaches 6,000 psi. In Figure 

5.19 (Bay, y = 0°) sliding takes place when the shear stress reaches 

3,500 psi. The high value of sticking limit in Figure 5.18 causes 
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higher barreling and forging load. The predicted load and w/L (Figure 

5.17) are close to the real values when the friction model proposed by 

Bay (y = 0°) is applied. The predicted results obtained by using the 

friction model proposed by Bay for y = 15° is much less than the real 

values. One may guess that friction must increase when the asperity 

angle increases and the results obtained in these analyses are not 

logical. Conditions exemplified in Figures 2.20 and 2.21 may result in 

such erroneous conclusions. According to Figure 2.20. when the asperity 

angle y increases. the junction area BE increases. Therefore. friction 

must increase. Also. Figure 2.21 reveals that for a certain friction 

factor f the friction stress is higher when the asperity angle is 

bigger. But in Bay 1 s friction analysis. the asperity angle and the 

friction factor are not independent. Figure 2.22 reveals that for the 

higher asperity angle the friction factor is less. Also. when the 

asperity angle is high, the limit of proportionality P1 /00 (page 24) is 

less. When the asperity angle is bigger, the lower friction factor and 

limit of proportionality cause the friction curve to bend off earlier 

and to approach a smaller value (Figure 5.13). 

Figure 5.20 reveals the variation of the forging load up to 10 

percent reduction in height of the specimen. The predicted force 

obtained by using T = fk is much higher than the experimental result of 

the entire compression. The force obtained by Bay's friction model, 

when y = 0°, is high at the beginning of deformation and gets closer to 

the experimental result at higher deformation. This variation is 

reversed when the asperity angle is 15°. However, the loads obtained by 

FEM, regardless of the friction model applied. must be high at the 

beginning of compression. This is due to the simplified stress-strain 



relation (Figure 5.9) utilized in FEM. According to Figure 5.9 the 

yield stress is 12,000 psi. The yield stress in AL 6061-0 is 8,000 psi 

[440, pp. 154]. However, the simplified stress-strain curve and the 

stress-strain model a = 30,000 E0·2 (or the experimental results in 

Appendix E) get close by increasing the compression. Therefore, the 

influence of the friction modeling on the predicted load becomes more 

significant when deformation increases. 
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Figures 5.21 and 5.22 show the grid distortion for two frictional 

boundary conditions, T = fk and that proposed by Bay (y = 0°). Compared 

to Figure 5.15, some important results can be obtained regarding the 

appropriate sticking limit in the analysis. Figure 5.15 reveals some 

separation between the specimen and the bottom die on the right side. 

This separation can be observed in Figure 5.22 as well, but not in 

Figure 5.21. Separation of the specimen from the die in Figure 5.22 is 

the result of the tensile stress explained in section 5.2.l.2c. This 

agreement between the experiment and the analysis (Figure 5.22) confirms 

the Bay 1 s friction model (y = 0°) to be the limit of sticking. The 

little arrows in Figures 5.21 and 5.22 indicate the finite element fixed 

nodes. The shear stresses in these nodes were under the limit of 

sticking and never reached a magnitude sufficient to achieve a sliding 

condition. These nodes also represent the neutral points where the 

material flow changes its direction and where the amount of slip is zero 

(or minimum). Compared to Figure 5.15, the location of the neutral 

point at the bottom edge in Figure 5.22 (node 96) is very reasonable. 

The predicted neutral point in Figure 5.21 (node 98) does not match with 

Figure 5.15. The bases of this comparison are the minimum slip and the 

straightness of the line passing through the neutral point. 
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Prediction of the neutral point in non-symmetric geometries was the 

major goal in this work and it can be seen that this prediction is 

possible when the procedure cited in section 4.2 is used. 

Figure 5.23 compares the geometrical changes for two friction 

conditions after 10 percent compression. The degree of barreling and 

separation of the specimen from the bottom die were previously 

discussed. The mode of the material flow is an important factor which 

can be used to judge the correctness of the limit of sticking 

condition. Figure 5.15 illustrates that the specimen has more tendency 

to shift towards the right. In Figure 5.23 this can be observed in the 

predicted geometry using the friction model proposed by Bay, et al {y = 

0°). For Constant Friction Law as the limit of sticking, material 

incorrectly moves more towards the left. The importance of the material 

flow becomes more significant when the die is closed. Assume that the 

die is closed and there is a wall on the right side of the specimen. 

When the material reaches the wall, all the states of stress and strain 

and filling of the die cavity change. Figure 5.24 illustrates the 

computed effective strain at some points for two different frictional 

boundary conditions. Generally the effective strain at the central part 

is higher when T = fk is used as the frictional boundary condition. 

Since the effective strain is the state variable of the material 

undergoing deformation, it represents the mechanical property behavior 

during and after deformation. Therefore, Figures 5.23 and 5.24 

illustrate the manner in which friction affects the mechanical 

properties. 

Analysis of compression of the wedge-shaped specimen indicates that 

the general methodology, cited in section 4.2, is the suitable procedure 
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for the treatment of friction in non-symmetric geometries. This method 

is very successful when the friction formulations proposed by Bay (y = 

0°) are applied as the limit of sticking condition. Using this method, 

the location of the neutral point is quite predictable. 
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CHAPTER VI 

DISCUSSION 

In the friction part of this work, two factors of significance can 

be observed: 

a. A general methodology regarding the incorporation of the 

frictional boundary conditions suitable for any types of 

geometry. 

b. Comparison of different friction formulations with the same 

finite element code and the same method of incorporation. 

Also, program ELPL (Finite Element approach) served as a temporary 

tool for the development of the cited methodology. 

6.1 Finite Element Approach 

Program ELPL is based on Hill's variational principle (equation 

4.3) for incremental deformations and is ideally suited to isotropically 

hardening Prandtl-Ruess material. In this program the effect of the 

strain rate sensitivity is neglected. Therefore, the plane strain 

compression test (section 5.2) was. performed very slowly. The source of 

the finite element formulations (equations 4.7 or 4.9) was (34). In 

these formulations the effect of rigid body rotation was considered. 

In program ELPL, the Jaumann increment of Kirchoff stress was 

assumed to be equal to the increment of the Cauchy stress. This reduced 

the computation efforts but did not influence the results of the 
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analysis significantly {section 5.1). The load obtained by the analysis 

of the rectangular block, after 10 percent compression and under the 

sliding condition, was between the loads computed by the Von Mises and 

the Maximum Shear Stress Criterions. The growth of the plastic zone 

matched with that in [18]. 

The element type, used in program 11 ELPL 11 , was triangular. In 

plasticity, the components of the stiffness matricies {Equations 4.8 and 

4.9) are stress dependent. In any element except the triangular 

element, the stress is not constant. Therefore, an average stress must 

be used for the computation of the stiffness components which causes the 

increase of the computation effort and may create some types of error 

{e.g. by not sharing adequate and appropriate points in the computation 

of the average elemental stress). Application of the triangular element 

in program 11 ELPL 11 , would avoid such problems. However, there are 

several other factors involved in the accuracy of programs regarding the 

types of elements. Data pertinent to these factors can be found in 

other studies ([42) pp. 158 or [43)). Other significant factors 

involved in program 11 ELPL 11 may be summarized as follows: 

a. The increments of displacements are chosen somehow to make 

every element yield exactly at the yield point. These are done 

by the computation of a scaling factor explained in section 

4.1.5.2. 

b. The material is considered to be elastic-linearly plastic 

(Figure 4.4). This reduces the computational efforts and the 

numerical errors considerably when the slope of the plastic 

stress-strain relation is assumed to be constant. 

c. Particular attention has been paid to the elimination of the 
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numerical errors by the application of DOUBLE PRECISION command 

and elimination of some complex equations such as that 

explained in step b. 

Compression of the wedge-shaped specimen, validated the method of 

incorporating the frictional boundary condition into FEM. The location 

of the neutral point and the flow direction (Figures 5.22 and 5.23} are 

quite predictable by using this method. Compared to the other methods 

(section 2.2}, this procedure can be adopted as a new approach in 

finite-element modelling of friction. No other method such as the slab 

method (Section 2.2.l} is necessary to determine the friction 

direction. Also, the die and the workpiece are directly in contact and 

no GAP element (interface element} [16) is required at the 

die/workpiece interface. The analysis of deformation is started with 

the sticking frictional boundary condition. This assumption is based 

upon the concept of friction. If friction is a resistance force, 

sliding cannot take place until this resistance is overcome. Therefore, 

the condition of sticking persists until the surface shear stress 

reaches a critical value or limit of the static friction. In the search 

for an appropriate critical value, different friction models were 

examined and compared. The failure of the Amontons Law, confirmed that 

explained in [5, pp. 15) (see section 2.1.2). According to this 

discussion, the coefficient of friction becomes meaningless at high 

pressure. This usually occurs in the forging process. Also, the 

unsatisfactory results obtained by the Constant Friction Law were in 

agreement with Devaux [1] who found that friction cannot remain constant 
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at the interface. The friction model proposed by Bay, when the asperity 

angle is considered zero, fit as the limit of sticking in the present 

work. Therefore, two important results were obtained by this 

comparison. First, the proposed methodology for the treatment of 

friction in metal forming is quite practical. Second, the proposed 

friction model by Bay is more realistic compared to the Amontons and the 

Constant Friction Laws. 

Usually, in most conventional methods (direct methods), the 

friction stress/force is computed according to a model and introduced to 

the boundary • In the present work, up to the limit of sticking, 

friction is computed according to the equilibrium of the forces and it 

is independent of any model (Figure 5.19). The dependency of the 

friciotn to the introduced model starts when the sliding condition 

commences. 

The sticking critical shear procedure (Figure 5.19) can be extended 

to model the stick-slip phenomena. According to this phenomena, 

friction changes between two upper and lower limits. Bowden and Tabor 

[6] explained this behavior in a very understandable way (after 

Rabinawicz, 1959): 

Figure 6.1 illustrates two surfaces in contact The upper surface 

is attached to a spring with the stiffness k. When the lower surface is 

driven forward at a uniform velocity v, the spring force increases at a 

rate k.v.t (sticking condition) In Figure 6.2a, this process is 

represented by the straight line OA with the slope proportional to k-v 

(if the damping factor is negligible). At the Point A (limit of 

sticking), slip occurs. Slip continues until the spring force reaches 

the point B. At this point the upper surface in the Figure 6.1 comes to 
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rest in relation to the lower surface and no variation occurs in the 

spring force. After a while, the surfaces stick to each other (point C) 

and the spring force increases until again slip occurs (point D). These 

cycles continue and finally, a steady state is reached with stick-slip 

of constant size (Figure 6.2b). Figure 6.3 reveals the modeling of 

friction in the present work (solid lines) and its extension to the 

stick-slip model (dotted lines). In Figure 6.3, when nodal friction 

increases and reaches the limit of static friction (point A), instead of 

application of the nodal force according to the solid line, no load or 

stress is applied and that particular node is free to slide. Therefore, 

friction stress drops and reaches the kinetic limit (point B). 

Condition of sticking starts at point B and the behavior of stick-slip 

continues. For such a development, two extra steps must be 

accomplished. 

a. A search must be done for an appropriate kinetic friction 

limit. 

b. Condition of unloading must be considered in the finite element 

program. 
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Figure 6.1 Mechanism of stick-slip 

//!Ill 

t Horizontal displacement 

(a) (b) 

Figuri:~~2 Development of intermittent motion for a 
system in which friction increases with 
time of contact t according to a typical 
curve [6]. 
a) Friction- time curve. 
b) Resultant intermittent motion. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS AND RECOMMENDATION 

FOR FURTHER STUDIES 

Conclusions 

A General methodology for finite-element modelling of friction in 

non-symmetric geometries has been developed. The approach provides for 

the inclusion of a sticking-critical shear model for large scale 

deformation found in metal forming. This method does not require the 

use of CAP elements at the die-metal interface. 

An elastic-plastic finite element computer program was developed 

for plane strain deformation which provided the capability of evaluating 

various frictional boundary condition models. The effect of rigid body 

rotation was considered in this development. The stability of the 

program was examined by obtaining the solution of upsetting of a 

rectangular block. 

A review of the methods of incorporating friction as a boundary 

condition in large scale plastic deformation was conducted and the 

methods classified into three categories. The basic friction models 

were tested using the finite element code. The results of the 

simulations using these different methods of modelling friction were 

compared with experimental deformation data obtained from the 

deformation of wedge-shaped specimens under plane strain conditions. 

The recently proposed friction model by Bay [2), when incorporated into 

113 



the FEM code, provided the best correlation with the experimental 

results. The Bay model of sticking/friction at the die-workpiece 

boundary is an attempt to more accurately model the 

tribological/metallurgical events taking place in deformation. 
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The capability of the FEM elastic-plastic code, incorporating the 

friction model proposed by Bay, to predict the location of the neutral 

point in complex shapes was established by compression of a wedge-shaped 

specimen. It is no longer necessary to use other methods, such as the 

slab method, to predetermine the position of neutral points and the 

direction of flow at the boundary. 

Recommendations 

Based on the analyses and discussions presented in this work, it is 

recommended that the following research be undertaken: 

a. To give more flexibility to the present friction modeling 

approach, the complete phenomena of stick-slip can be 

modeled. This provides an opportunity for the boundary nodes, 

after commencement of sliding, to stick the die again. For 

this purpose, it is necessary to find a suitable kinetic 

friction model. 

b. It is suggested that the present friction work be linked to a 

more advanced elastic-plastic code, one with the capability of 

application of different element types and mesh generation. To 

model the phenomena of stick-slip, the condition of unloading 

must be considered in the computer program. 
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as: 
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In equation (4.9) the stress correction stiffness was defined 

Cf, . 
l.J 

Where: 

[N) = Shape function. 

[BJ = Strain - displacement matrix. 

For a triangular element in plane strain condition equation (3.9) 

becomes : 

ICU. SYMMETRJ:C 

I ICZ:l ICZ 

[Kc] = IC3:l IC3Z IC3!1 

IC':l IC'Z IC,3 IC'' 
I IC!S:l IC!SZ IC!S3 IC!S' IC!S!S 

I ICCS:l ICCS.Z ICC:SS ICd' ICd!S ICdd I 

Where: 

z z z z z 
Kll= A Y32 + B X32 - 2 C Y32 X32 + AA (Y32 + X34 I 4)+ BB X32/4) 

- 2 CC Y32 X32 
z 

K21= (-AA X32) I 4 - BB Y32 X32 I 4 + CC Y32 + CC X32 
z z z 

K22= A Y32 + B X32 - C Y32 X32 - C X32 Y32 + AA Y32 I 4 + 
z z 

BB Y32 I 4 + X32 - CC Y32 X32 - CC X32 Y32 

K31= - A Y31 Y32 - B X31 X32 + C Y31 X32 + C X31 Y32 - AA Y31 Y32 

- AA X31 X32 I 4 - BB X31 X32 I 4 + CC Y31 X32 + 

CC X31 Y32 



K32= AA X31 Y32 I 4 + BB X31 Y32 I 4 + - CC X31 X32 

cc Y31 Y32 
z z z z 

K33= A Y31 + B X31 - c Y31 X31 - C X31 Y31 + AA Y31 + AA X31 

K41= 

K42= 

z 
+ BB X31 I 4 - cc Y31 X31 - CC X31 Y31 

AA Y31 X32 I 4 + BB Y31 X32 I 4 - CC Y31 Y32 -CC X31 

- A Y31 Y32 - B X31 X32 + c Y31 X32 + C X31 Y32 -

AA Y31 Y32 I 4 - BB Y31 Y32 I 4 - BB X31 X32 + 

CC Y31 X32 + CC X31 Y32 
z z 

K43= - AA X31 Y31 /4 - BB Y31 X31 I 4 + CC Y31 + CC X31 

K44 = A Y31 + B X31 - C Y31 X31 - C X31 Y31 + AA Y31 I 4 + 

BB Y31 I 4 + BB X31 - 2 CC X31 Y31 

X32 

/4 

K51 = A Y21 Y32 + B X21 X32 C Y21 X32 C X21 Y32 + AA Y21 Y32 

+ AA X21 X32 /4 + BB X21 X32 /4 - Y21 X32 - CC X21 

K52= -AA X21 Y32 /4 - BB X21 Y32 /4 + CC Y21 Y32 + CC X21 X32 

K53= - A Y21 Y31 - B X21 X31 + C Y21 X31 + C X21 Y31 -AA Y21 Y31 

- BB X21 X31 I 4 - BB X21 X31 /4 +CC Y21 X31 +C C X21 Y31 

K54 = AA X21 Y31 /4 + BB X21 Y31 /4 - CC Y21 Y31 - CC X21 X31 
z z z z 

K55= A Y21 + B X21 - C Y21 X21 -C X21 Y21 + AA Y21 + AA X21 I 4 
z 

+ BB X21 I 4 - 2 CC Y21 X21 

K61= -AA Y21 X32 /4 -BB Y21 X32 I 4 +cc Y21 Y32 +c c X21 X32 

K62= A Y21 Y32 + B X21 X32 - C Y21 X32 - C X21 Y32 + 

AA Y21 Y32 I 4 + BB Y21 Y32 /4 + BB X21 X32 

CC Y21 X32 - CC X21 Y32 

K63= AA Y21 X31 /4 + BB Y21 X31 /4 - CC Y21 Y31 - CC X21 X31 

K64= -A Y21 Y31 -B X21 X31 + C Y21 X31 + C X21 Y31 -

AA Y21 X21 /4 - BB Y21 Y31 /4 - BB X21 X31 + CC Y21 X31 
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+ cc Y21 X31 + CC X21 Y31 
z z 

K65= -AA Y21 X21 /4 - BB Y21 X21 /4 + cc Y21 + cc X21 
z 2 z 

K66= A Y21 + B X21 - C Y21 X21 - C X21 Y21 + AA Y21 I 4 
2 z 

BB Y21 /4 + BB X21 - 2 CC X21 Y21 

z 
A= o I (4 S ) u. 

2 
AA= -2 a I (4 S ) 

u. 

2 

B= 0 22 I ( 4 S ) 

2 

BB= -2 a zz I (4 s ) 

S= Area of the triangular element 

X .. = X. 
1.J J 

Y .. = Y. 
1.J J 

X. 
" 

- Y. 
l. 

:Y 
I 
I 

:_ - - _x 

(Xz, Yz) 

~ 
(X1,Y1) (X3.Y3) 

z 
C= o I ( 4 S ) 

21 

z 
CC= -2 0 12/ (4 S ) 
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PLASTIC STRESS-STRAIN MATRIX 
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The Prandtl Ruess equations for the deviatoric strain increment 

de .. are: 
LJ 

(B.1) 

Where: 

dx = <312> d&P / o = <312> do 1 < o H') 

According to the Von Mises Yield Criterion: 

(2/3) -
o = o:. o' 

q i.j 
(B.3) 

(B.4) 

(B-2) 

- -p H'= do /d£ ,correspondes to the slope of the equivalent stress 

(o) versus plastic strain (f d&P) curve. 

The inverse of equation (B.l) can be writen as (18]: 

do . . = E/(l+v) 
L J 

Where 

s = ( 2/3 ) 

-
0 = -( (2/3 

(d& .. + 
L J 

-z 
( l+ 0 

o' o: . 
i. j L J 

v/( 1-v) 6 .. d& .. -a:. o~ l d&i. /S) 
L J LL L J 

(B.5) 

H' /3G) 

Equation (B.5) can now be used to construct the stress strain 

matrix [ DP ] used in equationm (3.8). 

In plane strain condition : 
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(1-v)/(1-2v) 

-()" T I s x xy 

-a' 2 /S 
x 

SYMMETRIC 

-O''T 
x xy I S 

-o'T I S 
Y xy 

2 
1/2-T /S xy 

CB.6) 
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SUBROUTINES AND FLOW CHART OF PROGRAM ELPL 
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SUBROUTINE HEA : 

This subroutine is the heart of the program and all the steps 

explained in section 4.5.2 are carried out in this subroutine. 

Fig c.1 shows the flowchart of subroutine HEA. 

SUBROUTINE BM : 

This subroutine computes the elements of strain-displacement 

matrix (BJ according to the infinitesimal strain theory for 

triangular element. 

SUBROUTINE DELA : 

This simple subroutine computes the elements of the elastic 

stress-strain matrix [De] for plane strain condition. 

SUBROUTINE DPLA 

Subroutine DPLA computes the plastic stress strain matrix 

[DP] for plane strain condition according to the prandtl-Ruess law. 

Matrix [DP] relates the increments of the Jaumman stresses and 

strains in the plastic region. [DP] is a function of the state of 

stresses and the slope of the equivalent stress versus equvalent 

strain curve (H') and therefore, must be computed at each 

increment of compression and for each element. The values of the 

stresses used to compute [DP] are from the results of the 

computations at the previous increment. 

SUBROUTINE STIFF: 

SUBROUTINE STIFF computes the elastic stiffness matrix of 

each element . The elements ofthis matrix are assembled into the 

banded matrix [Gs] of global coordinates. 



banded matrix [Gs] of global coordinates. 

SUBROUTINE PSTIFF: 

The role of this subroutine is calculation of [Kd] and [Kc] 

according to the equations (4.8) and (4.9) and assembling the 

results in global coordinates to the banded matrix [Gs]. 

SUBROUTINE VAL: 

This subroutine divides a rectangular block into a number of 

triangular elements according to the number of nodes in X & Y 

directions. The tasks of this subroutine are : 

1- Numbering the degrees of freedom and elements in a way to 

obtain a stiffness matrix with minimum bandwith. 

2- Computing the global coordinates of each node according to 

the coordinates of the upper right corner of the rectangle. 

3- Numbering the vertices of each element (locally) and storing 

the correspondig global node number in the array LOC(i,j) 

where i=No of element & j= No of the vertex. 

4- Storing the degrees of freedom the nodes where the 

displacements are prescribed. 

5- Storing the degrees of freedom of the fixed points under 

sticking or sliding conditions. 

For any other geometry this subroutine must be modified. 

SUBROUTINE DISL : 

This subroutine computes the increment of the local nodal 

displacements (QL). 

SUBROUTINE MATMUL : 

THis simple subroutine is used for matrix multiplication. 
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SUBROUTINE STRESS 

Subrotine stress computes the 

strains. 

SUBROUTINE RATIO : 

This routine computes the 

bringing an element with maximum 

point. The scalingfactor 

equation (4.12). 

SUBROUTINE DECOMP [32]: 

R is 
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increment of the stresse and 

increment of displacement for 

equivalent stress to the yield 

calculated according to the 

This subroutine decomposes the banded stiffness matrix into 

the upper and lower triangular matrices (METHOD OF CHOESKI) AND 

stores the elements of the upper triangular matrix in the original 

banded matrix. 

SUBROUTINE SOLVE [41]: 

This subroutine solves the system of equilibrium equations 

by using the decomposed stiffness matrix from SUBROUTINE DECOMP. 

Depending on the boundary conditions and the fixed points some 

elements of stiffness matrix shuld be modified [31,pp 457]. 

Subroutines Hea takes care of this modification. 

SUBROUTINE FRIC 

This Subroutine checks the nodal shear stress. If the shear 

stress is greater than the introduced static friction stress it 

removes the condition of the constrained displacement from that 

particular node and calculate and apply the frictional force in 

the opposite direction of the flow. 



f'Jg.C-1 •. LOGIC FLOW OF ELPL PROGRAM 

INITIAL INPUT 

DmRMINE IF· THE ELEMENT IS IN ELASTIC 

OR PLAsnC REMllN 

Ir PLASTIC 

COMPUTE 
Kd+Ke 

IF ELASTIC 
COMPUTE Ke 

ASSEMBLE IKJ INTO GLOBAL IGSJ 

YES 

ND 
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APPLY AH Inc. OF Dl1. AND 

BOUNDARY Cond. Ir SOLVE Sym.Eq 

Comp. THE Inc.Of' STltESS,Dltp Ir STRAIN 

COMP Equl, STltESSE AMONG THE El.EM 
IN ELASTIC REGION Ir Comp. It 

MULTIPLY ALL THE Inc.OF STRESSES 

STRAINS Ir NODAL Dl1p. BY R Ir 

ADD TO THE COftftESPONDING ACCUMULATIVE 

VALUES 

UPDATE THE NODAL COORDINATES 
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Comp. THE lne. a, Diep. n>R THE 
REST O' Cemp. ACCORDING TD TOTAL Dl•P· 

Comp. UCl•UCcJ+~KdJ A ASSEMILE 

N"PLY lne. O' Dl•P· 6 CALCULATE THE 
Ina.OF STRESSES, STRAINS A NODAL Dl•P• 

fr ADD TO THE CORRESPONDING ACCUMULATIVE 
VALUES. 

>---~~ WRITE THE ftESULTS 

UPDATE THE NODAL COORDINATES 
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PROGRAM "ELPL" FOR ELASTIC-PLASTIC 

DEFORMATION ANALYSIS 
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M=l 

DIMENSION LOC(171,3),CX(193),CY(193),IFIX(100),P(386,1), 
2GS(386,32),STRES(335,5),IDISP(50),STRAIN(335,5),N0(335),M0(335), 
3STR(335,5),STRE(335,5),PA(386,1),IDB(50),AC(20,24),F(20),FA(20), 
4ISL(20) 

DOUBLE PRECISION DIFF(l) 
CALL VAL (N,NE,NN,ND,NB,CX,CY,LOC,IDISP,NDISP,IFIX,NFIX,IDB, 

$NDB,E,ANU,H,YO,MG,NG,MY,ISL) 

DATA T,C,WN/1.0,26000.0,0.2/ 
DO 50 I=l,ND 

50 P(I,1)=0.0 
NC=NG*2 

CALL CST(NN,NE,ND,NB,M,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS,DIFF, 
2STRES,NDISP,IDISP,STRAIN,YO,C,WN,NO,MO,IDIS,STRE,STR,PA,IW,H, 
3AC,F,FA,NC,HG,NG,MY,ISL) 

STOP 

END 

133 

C************************************************************************** 
C THIS SUBROUTINE IS BEING USED TO BRING ALL ELEMENTS INTO ELASTIC REGION * 
C************************************************************************** 

SUBROUTINE CST(NN,NE,ND,NB,H,LOC,CX,CY,E,ANU,T,NFIX,IFIX,P,GS, 
2DIFF,STRES,NDISP,IDISP,STRAIN,YO,C,WN,NO,MO,IDIS,STRE,STR,PA, 
3IW,H,AC,F,FA,NC,HG,NG,MY,ISL) 

DIMENSION LOC(NE. 3) ,CX(NN) 'CY(NN) I IFIX( 100) ,P(ND. M) ,GS(ND. NB) I 

2STRES(NE,5),AA(6,6),QL(6),DD(3,3),DP(3,3),BB(3,6),DB(3,6), 
3BBT(6,3),IDISP(100),STRAIN(NE,5),NO(NE),MO(NE),STR(NE,5), 
4STRE(NE,5),PA(ND,M),AC(NC,NB),F(NC),FA(NC),ISL(MG),SNS(40), 
5QNS(40),YNS(40),SFS(40),KF(40),NF(40),FOX(40),NEE(30),LF(40) 

DOUBLE PRECISION DIFF(l) 

OPEN(25,FILE='DISA',STATUS='NEW') 
OPEN(40,FILE='STRP',STATUS='NEW') 

C OPEN(SO,FILE='SSY',STATUS='NEW') 
C OPEN(BO,FILE='SSX',STATUS='NEW') 

OPEN(70,FILE='FORCE',STATUS='NEW') 
C OPEN(BO,FILE='STR',STATUS='NEW') 

OPEN(90,FILE='RESULTS',STATUS='NEW') 

WRITE(*,*) 'HX=., MX, 'MY=', MY, 'NN=', NN 
WRITE(90,402)HX,HY,NN 
WRITE(*,*) 'NE=', NE, 'ND=', ND, 'NB=., NB 
WRITE(90,403)NE,ND,NB 
WRITE(*,*)'NFIX=',NFIX,'NDISP=',NDISP 
WRITE(90,404)NFIX,NDISP 



C DO 310 I=l,NE 
C WRITE(*,*)'LOC=',(LOC(I,J),J=l,3),'I=',I 
C 310 WRITE(90,405)I,(LOC(I,J),J=l,3) 
C DO 320 I=l,NFIX 
C 320 WRITE(90,406)I,IFIX(I) 
C 320 WRITE(*,*)'IFIX=",IFIX(I),'I=',I 

DO 330 I=l. NDISP 
330 WRITE(90,407)I,IDISP(I) 

C 330 WRITE(*,*)'IDISP=', IDISP(I) 
G=E/(2*(l+ANU)) 
WRITE(*,*)'ENTER THE VALUE OF DISPLACEMENT' 
READ(*,*) UT 
WRITE(*,*)'UT(DISPLACEHENT)=',UT 
WRITE(90,408)UT 
WRITE( 90, 410 )E ,AN.U, H, YO 
WRITE(*,*)'AHU AF AQP' 
READ(*,*)AHU,AF,AQP 
WRITE(90,420)AHU,AF,AQP 
WRITE(*,*)'DO YOU NEED PRINT OUT ABOUT FRIC 1 OR NOT' 
READ(*,*)KCP 
AY=1.15*YO 
AK=AY/SQRT(3.) 
ATP=AQP*SQRT(3.)*AHU 
AFT=AF-ATP 
YP=0.995*YO 
DO 99 I=l,40 
NF(I)=O 
FOX(I)=O 
SFS(I )=0 
YNS(I )=0 
QNS(I )=0 
LF(I)=O 
99 KF(I )=0 
NHQ=2 

93 DO 11 I=l,NE 
DO 12 J=l, 5 
STRES(I, J )=0. 0 
STRE(I,J):O.O 
STRAIN(I,J)=O.O 
STR(I,J):O.O 

12 CONTINUE 
HO(! )=1 
NO(I)=l 

11 CONTINUE 
DO 13 I=l,ND 
DO 13 J=l,H 
P(I,H)=O.O 

13 PA(I,H)=O.O 
DO 15 I=l,NC 
F(I )=0. 
FA(I )=O. 
DO 14 J=l ,NB 
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14 AC(I,J)=O. 
15 CONTINUE 

HE=CY(l) 
C**SUBROUTINE (DELA) CALCULATES D MATRIX [DD] ACCORDING TO HOOK LAW ** 

CALL DELA(E,ANU,DD) 
IGH=O 

101 DT=-0.1 
WRA=O.O 
DO 10 I=l,ND 
DO 10 J=l,NB 

10 GS(I,J)=0.0 
DO 100 I=LNE 

C**SUBROUTINE (STIFF) CALCULATES THE STIFFNESS MATRIX FOR EACH******** 
C********ELEMENT AND STORE IT IN BANDED MATRIX [GS]******************* 

IF (NO(I).EQ.1) CALL STIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS) 
IF (NO(I).EQ.2) THEN 

C**SUBROUTINE (DPLA) COMPUTES D MATRIX [DP] ACCORDING TO PRANDTL REUSS* 

CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H) 
CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE) 

ENDIF 
100 CONTINUE 

C*** DO 50 MULTIPLIES EVERY TERM OF [GS], CORRESPONDING TO THE FIXED** 
C*** POINTS(INCLUDING THE PRISCIBED POINTS), BY A LARGE NUMBER.******** 
***** 

DO 50 I=l,NFIX 
IX=IFIX(I) 

50 GS(IX,l)=GS(IX,1)*1.0EB 
IF(IGH.EQ.O) GO TO 777 
DO 778 I=l,NNC 
JJJ=NF(I )+1 
III=NF(I) 
IF(KF(I).EQ.1) GS(III,l)=GS(III,1)/1.0EB 
IF(LF(I).EQ.1) GS(JJJ,l)=GS(JJJ,1)/1.0EB 

778 CONTINUE 

C********* DO 52 INTRODUCES THE PRISCRIBED DISPLACEMENTS************** 

777 DO 52 I=l,NDISP 
IZ=IDISP(I) 
P(IZ,l)=GS(IZ,l)*DT 

52 CONTINUE 
IF(IGH.EQ.O)GO TO 776 
DO 787 I=l.NNC 
IF(KF(I).EQ.l) THEN 
KHW=NF(I) 
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P(KHW,l)=FOX(I) 
ENDIF 

787 CONTINUE 

C** SUBROUTINE (DECOMP) DECOMPOSES [GS] INTO LOWER AND UPPER Tr.***** 
C** MATRICES AND STORES THE ELEMENTS OF THE UPPER TRIANGLE [GS].***** 
C** SUBROUTINE (SOLVE) SOLVES THE SYSTEM OF EQUATIONS [GS]{U}={P} &*** 
C** STORES THE RESULTS INTO {P}. NOW,{P} ARE GLOBAL NODAL *********** 
C**DISPLACEMENT INCREMENTS. **************************************** 

776 CALL DECOMP(ND,NB,GS) 
CALL SOLVE(ND,NB,H,GS,P,DIFF) 
DO 200 I=l,NE · 

C**SUBROUTINE (DISL) COMPUTES THE LOCAL NODAL DISPLACEMENT ********** 
C**INCREMENT{QL}.***************************************************** 

CALL DISL(I,LOC,NE,ND,M,P,QL) 

C**SUBROUTINE (SH) COMPUTES THE B MATRIX [BB] ACCORDING TO ********** 
C**INCREMENTAL DISPLACEMENT THEORY. ********************************** 

CALL BH(NE,NN,I,LOC,CX,CY,BB,AREA) 

C**SUBROUTINE HATMUL MULTIPLIIES [DD] BY [BB] AND STORES IT IN [DB].** 

IF (NO(I).EQ.1) CALL HATHUL(DD,BB,DB,3,3,6) 
IF (NO(I).EQ.2) THEN 
CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H) 
HO(I)=HO(I)+l 
CALL HATHUL(DP,BB,DB,3,3,6) 
ENDIF 

C*** SUBROUTINE (STRESS) COMPUTES THE STRESS & STRAIN INCREMENTS ***** 
C*** & STORE THEM IN STRES & STRAIN ARRAYS. ************************** 

CALL STRESS(NE,I,QL,BB,DB,STRES,STRAIN) 

C** THE FOLLOWING 6 LINES FIND HAX EQUIVALENT STRES (STRE(I,4)) & **** 
** ADDRESS OF THE CORRESPONDING ELEMENT AMONG THE ELASTIC ELEMNTS**** 

IF(NO(I).EQ.1) THEN 
STRES(I,5)=ANU*(STRES(I,l)+STRES(I,2)) 
SX=STRES(I,1) +STRE(I,l) 
SY=STRES(I,2) +STRE(I,2) 
SXY=STRES(I,3)+STRE(I,3) 
SZ=STRES(I,5)+STRE(I,5) 
STRE(I,4)=SQRT(0.5*((SX-SY)**2+(SY-SZ)**2+(sz-sx)**2)+3*SXY**2) 

IF (STRE(I,4).GE.WRA) THEN 
WRA=STRE(I,4) 
IN=! 

ENDIF 
ENDIF 
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200 CONTINUE 

C**SUBROUTINE (RATIO) COMPUTES THE SCALING FACTOR FOR BRINGING THE *** 
C**ELEMENT (IN) INTO PLASTIC REGION . ******************************** 

CALL RATIO(NE,IN,YO,STRES,STRE,R) 
CO=R 
PCH=P(2,M)*CO 
IF(PCH.LT.-0.0015) C0=(-.0015/P(2,M)) 
IW=O 
DO 22 I=l,NE 
DO 23 J=l, 3 
STRES(I,J)=STRES(I,J)*CO 

C STRE(I,J)=STRE(I,J)+STRES(I,J) 
STRAIN(I,J)=STRAIN(I,J)*CO 
STR(I,J)=STR(l,J)+STRAIN(I,J) 

23 CONTINUE 
SX=STRE(I,l) 
SXX=STRES(I,l) 
SY= STRE(I, 2) 
SYY=STRES(I,2) 
SXY=STRE(I,3) 
SZ= STRE(I ,5) 
IF(NO(I).EQ.2)THEN 
Sl=STRAIN(I, 1) 
S2=STRAIN(I,2) 
S3=STRAIN(I,3) 
SM=(SX+SY+SZ)/3.0 
SXP=SX-SM 
SYP=SY-SM 
SZP=SZ-SM 
PP=SXP*Sl+SXY*S3+SYP*S2 
STRAIN(I,4)=PP/( STRE(I,4)*(l+H/(3*G)) ) 
IF (STRAIN(I,4).LT.0.0)WRITE(*,*)'STRAIN(I,4)<0=' ,STRAIN(I,4),I 
STR(I,4)=STR(I,4)+STRAIN(I,4) 
S=(STRE(I,4)**2)*(l+H/(3*G)) 
STRES(I,5)=2*G*((ANU/(l-2*ANU))*(Sl+S2)-(SZP/S)*(SXP*Sl+SYP*S2 

$+SXY*S3)) 
C STRES(I,5)=.5*(SXX+SYY) 
C AH=(SX-.5*(SY+SZ))/(SZ-.5*(SY+SX)) 
C STRES(I,5)=(ANU*AH*(SYY+SXX)+SXX-ANU*SYY-E*STRAIN(I,1))/(ANU+AH) 

ENDIF 
IF(NO(I).EQ.1) STRES(I,5)=ANU*(SXX+SYY) 
STRE(I,l)=STRE(I,l)+SXX 
STRE(I,2)=STRE(I,2)+SYY 
STRE(I,3)=STRE(I,3)+STRES(I,3) 
STRE(I,5)=STRE(I,5)+STRES(I,5) 
SX=STRE(I,l) 
SY= STRE(I,2) 
SXY=STRE(I,3) 
SZ= STRE(I, 5) 
STRE(I,4)=SQRT(0.5*((SX-SY)**2+(SY-SZ)**2+(sz-sx)**2)+3*SXY**2) 
Sl=STRAIN(I,l) 
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S2=STRAIN(I,2) 
S3=STRAIN(I, 3) 
STRAIN(I,5)=SQRT((4./9)*((Sl-S2)**2+Sl**2+S2**2)+(4./3)*(S3**2)) 
STR(I,5)=STR(I,5)+STRAIN(I,5) 
IF(STRE(I,4).GE.YP)THEN 
NO( !)=2 
IW=IW+l 
END IF 

22 CONTINUE 
DO 24 I=l,ND 
P(I ,M )=P( I ,M )*CO 
PA(I,M)=PA(I,M)+P(I,M) 

24 CONTINUE 
DO 72 J=l,NN 
JA=2*J-1 
JB=2*J 
CX(J)=CX(J)+P(JA,l) 
CY(J)=CY(J)+P(JB,l) 

72 CONTINUE 
IF(NMQ.LE.MG) THEN 
DO 700 I=NMQ,MG 
KA=ISL(I) 
IF(CY(KA).GE.CY(l))THEN 
NMQ=NMQ+l 
KDX=2*KA-1 
KDY=2*KA 
NDISP=NDISP+l 
WRITE(*,*)' I=' ,I,' NMQ' ,NMQ,. NDISP' ,NDISP 
IDISP(NDISP)=KDY 
NFIX=NFIX+2 
DO 701 J=l,NFIX 
IF(IFIX(J).GE.KDX)THEN 
JC=J 
GO TO 702 
END IF 

701 CONTINUE 
702 DO 703 K=JC,NFIX-2,2 

IRl=IFIX(K) 
IR2=IFIX(K+l) 
IFIX(K)=KDX 
IFIX(K+l)=KDY 
KDX=IRl 
KDY=IR2 

703 CONTINUE 
IFIX(NFIX-l)=KDX 
IFIX(NFIX)=KDY 
END IF 

700 CONTINUE 
END IF 
IGH=IGH+l 
WRITE(*,*)' ITER=',IGH,' DISP=',PA(2,l) 
WRITE(40,421)IGH,PA(2,l) 
CALL FRIC(NN,NE,NG,HG,STRE,SNS,QNS,YNS,NNB,NNC, 

$AQP,AY.ATP.AFT,AK,AHU,SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF) 
PPA=100*ABS(PA(2,1))/HE 
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WRITE(70,417) FORCE,PPA 
IF(KCP.NE.l)GO TO 967 
DO 113 I=l,NNC 
WRITE(40,419)I,SNS(I),YNS(I),QNS(l),SFS(I),FOX(I),CX(I),KF(I) 

$,NF(I),LF(I) 
113 CONTINUE 
967 IF(PA(2,1).LE.UT) GO TO 801 

IF(IW.LT.NE)GO TO 101 
801 WRITE(90,411) 

WRITE(*,*)' COMPRESSION:' ,PA(2,l) 
DO 110 I=l,NN 
J=I*2 

C WRITE(*,*)' DISPLACEMENT OF NODES' ,l,PA(I,l) 
WRITE(90,412)CX(I),CY(I),PA(J-1,1),PA(J,1),I 

110 CONTINUE 
DO 111 I= 1, NE 

C WRITE(*,*) 'STRESS' ,(STRE(I,J),J=l,5) 
WRITE(90,400)I,(STRE(I,J),J=1,5) 
WRITE(90,401)I,(STR(I,J),J=1,5) 

C WRITE(*,*) 'STRAIN' ,(STR(I,J),J=l,5) 
111 CONTINUE 

DO 112 I=l,NE 
C WRITE (*,*)'I=',I,'NO=',NO(I),' MO=',MO(I),' H=',H 

112 WRITE(90,413)I,NO(I),MO(I) 
WRITE(*,*)' NFIX=',NFIX 
DO 809 I=l,NFIX 

809 WRITE(*,*)' I=',I,' IFIX=',IFIX(I) 
DO 811 I=l,NDISP 

811 WRITE(*,*)' I=',IDISP(I) 
DO 812 I=l,NN 

812 WRITE(*,*) , I=',I,' CY',CY(I) 
C******************************************************************** 

WRITE(*,*)' ENTER NO OF !TR' 
READ(*,*)ITR 
WRITE(90,409)ITR 
DT=(UT-PA(2,1))/ ITR 
IF(DT.GE.O)GO TO 800 
WRITE(*,*)'00 YOU PRINT OUT ABOUT FRIC l=YES' 
READ(*,*)KCP 
DO 88 JR=l, ITR 
DO 31 I=l,NE 
CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H) 
CALL PSTIFF(I,LOC,DP,NN,NE,ND,NB,CX,CY,T,GS,STRE) 

31 CONTINUE 
DO 60 I=l,NFIX 
IX=IFIX( I) 

60 GS(IX,l)=GS(IX,1)*1.0E6 
DO 779 I=l,NNC 
III=NF(I) 
JJJ=NF(I)+l 
IF(KF(I).EQ.1) GS(III,1)=GS(III,l)/1.0E6 
IF(LF(I).EQ.1) GS(JJJ,1)=GS(JJJ,l)/1.0E6 
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779 CONTINUE 
DO 62 I=l,NDISP 
IZ=IDISP(I) 
P(IZ,l)=GS(IZ,l)*DT 

62 CONTINUE 
DO 788 I=l,NNC 
IF(KF(I).EQ.l)THEN 
KHW=NF(I) 
P(KHW,l)=FOX(I) 
END IF 

788 CONTINUE 
CALL DECOMP(ND,NB,GS) 
CALL SOLVE(ND,NB,M,GS,P,DIFF) 
DO 210 I=l,NE 
CALL DISL(I,LOC,NE,ND,M,P,QL) 
CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA) 
CALL DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H) 
MO(I )=MO(I )+1 
CALL MATMUL(DP,BB,DB,3,3,6) 
CALL STRESS(NE,I,QL,BB,DB,STRES,STRAIN) 

210 CONTINUE 
DO 32 I=l ,NE 
DO 33 J=l,3 
STR(I,J)=STR(I,J)+STRAIN(I,J) 

33 CONTINUE 
SX=STRE(I, 1) 
SXX=STRES(I,1) 
SY= STRE(I, 2) 
SYY=STRES(I,2) 
SXY=STRE (I, 3) 
SZ= STRE(I,5) 
Sl=STRAIN(I,1) 
S2=STRAIN(I,2) 
S3=STRAIN (I, 3) 
SM=(SX+SY+SZ)/3.0 
SXP=SX-SM 
SYP=SY-SM 
SZP=SZ-SM 
PP=SXP*Sl+SXY*S3+SYP*S2 
STRAIN(I,4)=PP/( STRE(I,4)*(l+H/(3*G)) ) 
IF (STRAIN(I,4).LT.0.0)WRITE(*,*)'STRAIN(I,4)<0=',STRAIN(I,4),I 
STR(I,4)=STR(I,4)+STRAIN(I,4) 
S=(STRE(I,4)**2)*(l+H/(3*G)) 
STRES(I,5)=2*G*((ANU/(l-2*ANU))*(Sl+S2)-(SZP/S)*(SXP*Sl+SYP*S2 

$+SXY*S3)) 
C STRES(I,5)=.5*(SXX+SYY) 

STRE(I,l)=STRE(I,l)+SXX 
STRE(I,2)=STRE(I,2)+SYY 
STRE(I,3)=STRE(I,3)+STRES(I,3) 
STRE(I,5)=STRE(I,5)+STRES(I,5) 
SX=STRE(I,1) 
SY= STRE(I,2) 
SXY=STRE(I,3) 
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SZ= STRE(I,5) 
STRE(I,4)=SQRTC0.5*((SX-SY)**2+(SY-SZ)**2+(sz-sx)**2)+3*SXY**2) 
Sl=STRAIN(I, 1) 
S2=STRAIN (I, 2) 
S3=STRAIN(I,3) 
STRAIN(I,5)=SQRT((4./9)*((S1-S2)**2+S1**2+S2**2)+(4./3)*(S3**2)) 
STR(I,5)=STR(I,5)+STRAIN(I,5) 

32 CONTINUE 
DO 34 I=l,ND 
PA(I,M)=PA(I,M)+P(I,M) 

34 CONTINUE 
DO 71 J=l,NN 
JA=Z*J-1 
JB=2*J 
CX(J)=CX(J)+P(JA,1) 
CY(J)=CY(J)+P(JB,1) 

71 CONTINUE 
IF(NMQ.LE.MG) THEN 
DO 750 I=NMQ,MG 
KA=ISL(I) 
IF(CY(KA).GE.CY(l))THEN 
NMQ=NMQ+l 
KDX=Z*KA-1 
KDY=2*KA 
NDISP=NDISP+l 
WRITE(*,*)' NMQ=",NMQ,. NDISP',NDISP 
IDISP(NDISP)=KDY 
NFIX=NFIX+2 
DO 751 J=l,NFIX 
IF(IFIX(J).GE.KDX)THEN 
JC=J 
GO TO 752 
END IF 

751 CONTINUE 
752 DO 753 K=JC,NFIX-2,2 

IRl=IFIX(K) 
IR2=IFIX(K+1) 
IFIX(K)=KDX 
IFIX(K+l)=KDY 
KDX=IRl 
KDY=IR2 

753 CONTINUE 
IFIX(NFIX-l)=KDX 
IFIX(NFIX)=KDY 
END IF 

750 CONTINUE 
END IF 
KTC=IGH+JR 
WRITE(*,*)' **ITR=',KTC,. DISP=',PA(2,1) 

C WRITE(40,421)KTC,PA(2,1) 
CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC, 

$AQP,AY,ATP,AFT,AK,AMU,SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF) 
PPA=100*ABSCPA(2,1))/HE 
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c 

780 
88 

813 

814 
c 
c 817 

c 
c 
c 
C167 

WRITE(70,417)FORCE,PPA 
IF(KCP.NE.l)GO TO 88 
DO 780 I=l,NNC 
WRITE(40,419)!,SNS(!),YNS(!),QNS(I),SFS(I),FOX(I),CX(I),KF(I) 

$,NF(!) 
CONTINUE 
CONTINUE 
WRITE(*,*)' NFIX=' ,NFIX,. !FIX' ,!FIX 
DO 813 I=l,NFIX 
WRITE(*,*)'!=',!,. IFIX=',IFIX(I) 
DO 814 I=l,NDISP 
WRITE(*,*)'!=',!,' IDISP',IDISP(!) 
DO 817 I=l,NN 
WRITE(*,*)' r=·,r,· CY',CY(I) 
WRITE(90,414) 
WRITE(*,*)'*******TOTAL COMPRESSION [IN] : ',PA(2,l),'******' 
DO 167 I=l.NC 
WRITE(90,415)I,FA(I),F(I) 
WRITE(*,415)!,FA(I),F(I) 
CONTINUE 
DO 67 I=l,NN 
J=I*2 
WRITE(*,*) 'DISPLACEMENT OF NODES',I,PA(I,1),' ITR=',JR 
WRITE(90,412)CX(I),CY(I),PA(J-1,1),PA(J,1),I 

67 CONTINUE 

913 

IGH=IGH+JR 
WRITE(90,421)IGH,PA(2,1) 
WRITE(*,*)' ITR=',IGH 
CALL FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC, 

$AQP,AY,ATP,AFT,AK,AMU,SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF) 
DO 913 I=l,NNC 
WRITE(90,419)I,SNS(I),YNS(I),QNS(I),SFS(I),FOX(I),CX(I),KF(I) 

$ , NF ( I ) , LF (I ) 
DO 68 I=l,NE 
WRITE(90,400)!,(STRE(!,J),J=1,5) 
WRITE(90,401)I,(STR(!,J),J=1,5) 

68 CONTINUE 
c 
c 69 

800 

DO 69 I=l,NE 
WRITE(90,413)!,NO(I),MO(I) 
DO 90 I=l,MG-1 
IF (I. EQ . 1 ) THEN 
NEE(I)=2*(NG-1)+1 
WRITE(*,*)' I=' ,I,' NE=' ,NEE(!) 
GO TO 90 
END IF 
NEE(I)=NEE(I-1)+2*(NG-1+!-1)+1 
WRITE(*,*)' I=' ,I,' NE' ,NEE(!) 
NT=! 

90 CONTINUE 
DO 91 I=l,MY-1 
J=NT+I 
NEE(J)=NEE(J-1)+2*(MG+NG-2) 
WRITE(*,*)' J=',J,' NE=',NEE(!) 



91 CONTINUE 
NPT=l 
DO 92 K=l,HG+HY-2 
DO 96 I=NPT,NEE(K),2 
IF(K.LE.HG-l)THEN 
IF(I.EQ.NEE(K))THEN 
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2)) 
WRITE(25,178)CX(LOC(I,1)),CYCLOC(I,1)) 
WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3)) 
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2)) 
GO TO 96 
END IF 
END IF 
IF(K.GT.HG-l)THEN 
IF(I.GT.NPT) GO TO 95 
WRITE(25,178)CX(LOC(I,2)),CYCLOC(I,2)) 
WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,1)) 

95 WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3)) 
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2)) 
WRITE(25,178)CX(LOC(I+l,2)),CY(LOC(I+l,2)) 
WRITE(25,178)CX(LOC(I,3)),CY(LOC(I,3)) 
GO TO 96 
ENDIF 
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2)) 
WRITE(25,178)CX(LOC(I,1)),CY(LOC(I,l)) 
WRITE(25,178)CX(LQC(I,3)),CY(LOC(I,3)) 
WRITE(25,178)CX(LOC(I,2)),CY(LOC(I,2)) 

96 CONTINUE 
JT=O 
DO 94 I=NPT,NEE(K),2 
JT=JT+2 
J=NEE(K)-JT+2 
WRITE(25,178)CX(LOC(J,2)),CY(LOC(J,2)) 
KL=J 

94 CONTINUE 
WRITE(25,178)CX(LOC(J,1)),CY(LOC(J,1)) 
NPT=NEE(K)+l 

92 CONTINUE 
178 FORHAT(2F10.4) 
400 FORHAT(5X,'ELEHENT: ',I4,. STRESSES: ',5F10.2) 
401 FORHAT(5X,'ELEHENT: ',I4,' STRAINS: ",5F10.6) 
402 FORHAT(5X, 'HX=' ,I3,. MY=' ,I3,. NN=' ,I4) 
403 FORHAT(5X,'NE=',I3,' ND=',I3,' NB=',I3) 
404 FORHAT(5X,'NFIX=' ,I3,. NDISP=',I3) 
405 FORHAT(5X,"I=',I3,. LDC=' ,3I3) 
406 FORHAT(5X,'NFIX=',I3,' IFIX=',I3) 
407 FORHAT(5x,'NDISP=',I3,' IDISP=' ,I3) 
408 FORMAT(5X,'TOTAL DIE DISPLACEMENT: ',Fl0.6) 
409 FORMAT(5X, 'No OF ITERATION AFTER ALL ELEM IN PLASTIC',I4) 

143 

410 FORMAT(5X,'E=',F10.1,. POIS RATIO=',F4.2,. H=' ,F8.2,. YO=' ,Fl0.2) 
411 FORMAT(5X, '***AT THIS PONT ALL ELMENTS ARE IN PLASTIC ZONE***') 
412 FORMAT(5X,4F9.5,' DISP AT NODE: ',I5) 
413 FORMAT(5X,"ELEMENT No:',I4,' NO=',I3,· MO=',I5) 
414 FORMAT(////,5X, '******RESULTS AT THE END OF DEFORMATION******') 
415 FORHAT(5X, 'NODE:' ,I3,. TOTAL LOAD:. ,F13.1,' INC LOAD:' ,F13.1) 



417 FORMAT(5X,F13.2,5X,F13.7) 
418 FORMAT(5X,F13.6,5X,F10.7) 
419 FORMAT(2X,I5,6F10.3,2I5) 
420 FORMAT(5X,'AMU=',F4.2,' AF=',F4.2,' AQP=',F4.2) 
421 FORMAT(5X,'ITER:',I4,' DISPLACEMENT: ',F9.5) 

RETURN 
END 

SUBROUTINE STRESS(NE,I,QL,BB,DB,STRES,STRAIN) 
DIMENSION QL(6),BB(3,6),DB(3,6),STRES(NE,5),STRAIN(NE,5),SLOC(3), 

$ST(3) 

DO 90 II=l,3 
SLOC(Il)=O.O 
ST(II)=O.O 
DO 90 JJ=l,6 
SLOC(II)=SLOC(II)+DB(II,JJ)*QL(JJ) 
ST(II)=ST(II)+BB(II,JJ)*QL(JJ) 

90 CONTINUE 
STRES(I,l)=SLOC(l) 
STRES(I,2)=SLOC(2) 
STRES(I,3)=SLOC(3) 
STRAIN(I,l)=ST(l) 
STRAIN(I,2)=ST(2) 
STRAIN(I,3)=ST(3) 

RETURN 
END 

SUBROUTINE DISL(I,LOC,NE,ND,M,P,QL) 
DIMENSION P(ND,M),QL(6),N(6),LOC(NE,3) 

J=LOC(I,1) 
K=LOC(I,2) 
L=LOC(I,3) 
N(l )=J*2-1 
N(2)=J*2 
N(3)=K*2-1 
N(4)=K*2 
N(5)=1*2-1 
N(6)=1*2 
DO 60 II=l,6 
NR=N( II) 

60 QL(II)=P(NR,1) 

RETURN 
END 

SUBROUTINE STIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS) 
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DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3), 
2N(6),DD(3,3),BB(3,6),DB(3,6),BBT(6,3) 

REAL KG(6,6) 
J=LOC(I, 1) 
K=LOC(I, 2) 
L=LOC(I,3) 
CALL BM(NE,NN,I,LOC,CX,CY,BB,AREA) 
CALL MATMUL(DD,BB,DB,3,3,6) 
DO 82 II=l,6 
DO 82 JJ=l,3 

82 BBT(II,JJ)=BB(JJ,II) 
CALL MATMUL(BBT,DB,KG,6,3,6) 
TTT=T*AREA 
DO 83 II=l,6 
DO 83 JJ=l,6 

83 KG(II,JJ)=TTT*KG(II,JJ) 
N(1)=J*2-1 
N(2)=J*2 
N(3)=K*2-1 
N(4)=K*2 
N(5)=L*2-1 
N(6)=1*2 
DO 40 II=l,6 
DO 40 JJ=l,6 
IK=N(Il) 
JK=N(JJ) 
IN=JK-IK+l 
IF(IN.LE.0) GO TO 40 
GS(IK,IN)=GS(IK,IN)+KG(II,JJ) 

40 CONTINUE 

RETURN 
END 

SUBROUTINE PSTIFF(I,LOC,DD,NN,NE,ND,NB,CX,CY,T,GS,STRE) 

DIMENSION CX(NN),CY(NN),GS(ND,NB),LOC(NE,3),STRE(NE,5), 
2N(6),DD(3,3),BB(3,6),DB(3,6),BBT(6,3),CXL(3),CYL(3) 

REAL KG(6,6),KR(6,6) 
J=LOC(I,1) 
K=LOC(I, 2) 
L=LOC(I, 3) 
GX=(CX(J)+CX(K)+CX(L))/3 
GY=(CY(J)+CY(K)+CY(L))/3 
CXL(l)=CX(J)-GX 
CXL(2)=CX(K)-GX 
CXL(3)=CX(L)-GX 
CYL(l)=CY(J)-GY 
CYL(2)=CY(K)-GY 
CYL(3)=CY(L)-GY 
AREA=((CXL(3)-CXL(2))*CCYL(2)-CYL(l))-(CXL(2)-CXL(l))*(CYL(3)-
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2CYL(2)))/2.0 
Y32=(CYL(3)-CYL(2))/(2.0*AREA) 
X32=(CXL(3)-CXL(2))/(2.0*AREA) 
Y31=(CYL(3)-CYL(l))/(2.0*AREA) 
X31=(CXL(3)-CXL(l))/(2.0*AREA) 
Y21=(CYL(2)-CYL(l))/(2.0*AREA) 
X21=(CXL(2)-CXL(l))/(2.0*AREA) 
DO 81 II=l, 3 
DO 81 JJ=l,6 

81 BB(II,JJ)=O.O 
BB(l,l)=Y32 
BB(l, 3 )=-Y31 
BB(l,5)=Y21 
BB(2,2)=-X32 
BB(2,4)=X31 
BB(2,6)=-X21 
BB(3,1)=-X32 
BB(3,2)= Y32 
BB(3,3)= X31 
BB(3,4)=-Y31 
BB(3,5)=-X21 
BB(3,6)= Y21 
CALL MATMUL(DD,BB,DB,3,3,6) 
DO 82 II=l, 6 
DO 82 JJ=l, 3 

82 BBT(II,JJ)=BB(JJ,II) 
CALL MATMUL(BBT,DB,KG,6,3,6) 
AR=l 
Al=STRE(I, 1 )/AR 
Bl=STRE(I,2)/AR 
Cl=STRE(I,3)/AR 
A2=-2*STRE(I,1)/AR 
B2=-2*STRE(I,2)/AR 
C2=-2*STRE(I,3)/AR 
KR(l,l)=Al*Y32*Y32+Bl*X32*X32-2*Cl*Y32*X32+A2*(Y32*Y32+X32*X32/4) 

$+B2*X32*X32/4-2*C2*(Y32*X32) 
KR(l,2)=-A2*X32*Y32/4-B2*X32*Y32/4+C2*(Y32*Y32+X32*X32) 
KR(2,l)=KR(1,2) 
KR(l,3)=-Al*Y32*Y31-Bl*X32*X31+Cl*Y32*X31+Cl*X32*Y31-A2*Y32*Y31 

$-A2*X32*X31/4-B2*X32*X31/4+C2*Y32*X31+C2*X32*Y31 
KR(3,l)=KR(l,3) 
KR(l,4)=A2*X32*Y31/4+B2*X32*Y31/4-C2*Y32*Y31-C2*X32*X31 
KR(l,5)=Al*Y32*Y21+Bl*X32*X21-Cl*Y32*X21-Cl*X32*Y21+A2*Y32*Y21 

$+A2*X32*X21/4+B2*X32*X21/4-C2*Y32*X21-C2*X32*Y21 
KR( 5, 1)=KR(1, 5) 
KR(1,6)=-A2*X32*Y21/4-B2*X32*Y21/4+C2*Y32*Y21+C2*X32*X21 
KR(6, l)=KR( l, 6) 
KR(2,2)=Al*Y32*Y32+Bl*X32*X32-Cl*Y32*X32-Cl*X32*Y32+A2*Y32*Y32/4 

$+B2*Y32*Y32/4+X32*X32-C2*Y32*X32-C2*X32*Y32 
KR(2,3)=A2*Y32*X31/4+B2*Y32*X31/4-C2*Y32*Y31-C2*X32*X31 
KR(3,2)=KR(2,3) 
KR(2,4)=-Al*Y32*Y31-Bl*X32*X31+Cl*Y32*X31+Cl*X32*Y31-A2*Y32*Y31/4 

$-B2*Y32*Y31/4-B2*X32*X31+C2*Y32*X3l+C2*X32*Y31 
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KR(4,2)=KR(2,4) 
KR(2,5)=-A2*Y32*X21/4-B2*Y32*X21/4+C2*Y32*Y21+C2*X32*X21 
KR(5,2)=KR(2,5) 
KR(2,6)=Al*Y32*Y21+Bl*X32*X21-Cl*X32*Y21-C1*Y32*X2l+A2*Y32*Y21/4 

$+B2*Y32*Y21/4+B2*X32*X21-C2*Y32*X21-C2*X32*Y21 
KR(6,2)=KR(2,6) 
KR(3,3)=Al*Y3l*Y31+B1*X3l*X31-Cl*Y3l*X31-Cl*X3l*Y31+A2*Y3l*Y31+ 

$A2*X3l*X31/4+B2*X3l*X31/4-C2*Y31*X31-C2*X3l*Y31 
KR(3,4)=-A2*X3l*Y31/4-B2*X3l*Y31/4+C2*Y3l*Y31+C2*X31*X31 
KR(4,3)=KR(3,4) 
KR(3,5)=-Al*Y3l*Y21-Bl*X3l*X2l+Cl*X2l*Y31+Cl*X3l*Y21-A2*Y3l*Y21 

$-A2*X3l*X21/4-B2*X3l*X21/4+C2*Y3l*X21+C2*X3l*Y21 
KR(5,3)=KR(3,5) 
KR(3,6)=A2*X3l*Y21/4+B2*X3l*Y21/4-C2*Y3l*Y21-C2*X3l*X21 
KR(6,3)=KR(3,6) 
KR(4,4)=Al*Y3l*Y3l+Bl*X3l*X31-Cl*Y3l*X31-Cl*X3l*Y31+A2*Y3l*Y31/4 

$+B2*Y3l*Y31/4+B2*X3l*X31-C2*X3l*Y31-C2*Y3l*X31 
KR(4,5)=A2*Y3l*X21/4+B2*Y3l*X21/4-C2*Y3l*Y21-C2*X3l*X21 
KR(5,4)=KR(4,5) 
KR(4,6)=-Al*Y31*Y21-Bl*X3l*X21+Cl*Y3l*X21+Cl*X3l*Y21-A2*Y3l*Y21/4 

$-B2*Y3l*Y21/4-B2*X3l*X2l+C2*Y3l*X21+C2*X3l*Y21 
KR(6,4)=KR(4,6) 
KR(5,5)=Al*Y2l*Y21+Bl*X2l*X21-Cl*Y2l*X21-Cl*X21*Y21+A2*Y2l*Y21 

$+A2*X2l*X21/4+B2*X2l*X21/4-C2*Y2l*X21-C2*X2l*Y21 
KR(5,6)=-A2*X2l*Y21/4-B2*X21*Y21/4+C2*Y2l*Y21+C2*X2l*X21 
KR(6,5)=KR(5,6) 
KR(6,6)=Al*Y2l*Y21+Bl*X2l*X21-Cl*Y2l*X21-Cl*X2l*Y21+A2*Y2l*Y21/4 

$+B2*Y2l*Y21/4+B2*X2l*X21-C2*X2l*Y21-C2*X2l*Y21 
TTT=T*AREA 
DO 83 II=l,6 
DO 83 JJ=l,6 

83 KG(II,JJ)=TTT*(KG(II,JJ)+KR(II,JJ)) 
N(l)=J*2-1 
N(2)=J*2 
N(3)=K*2-1 
N(4)=K*2 
N(5)=L*2-1 
N(6)=L*2 
DO 40 II=l, 6 
DO 40 JJ=l,6 
IK=N(II) 
JK=N(JJ) 
IN=JK-IK+l 
IF(IN.LE.0) GO TO 40 
GS(IK,IN)=GS(IK,IN)+KG(II,JJ) 

40 CONTINUE 

RETURN 
END 

SUBROUTINE DSTRES(E,ANU,DD) 
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c ******************************************************************* 
C [D] MATRIX FOR PLANE STRESS * 
c ***************************************** ************************* 

DIMENSIO~ DD(3,3) 
ENU=E/(l.O-ANU**2) 
DD(l, 1 )=ENU 
DD(l,2)=ANU*ENU 
DD(l,3)=0.0 
DD(2,l)=ANU*ENU 
DD(2,2)=ENU 
DD(2,3)=0.0 
DD(3,1)=0.0 
DD(3,2)=0.0 
DD(3,3)=(1-ANU)*ENU/2.0 
RETURN 
END 

SUBROUTINE DELA(E,ANU,DD) 

DIMENSION DD(3,3) 
PN=l-2*ANU 
ENU=E/(l+ANU) 
DD(l,l)=ENU*(l-ANU)/PN 
DD(l,2)=ENU*ANU/PN 
DD(l, 3)=0. 0 
DD(2,l)=DD(l,2) 
DD(2, 2)=DD(l, 1) 
DD(2,3)=0.0 
DD(3,1)=0.0 
DD(3,2)=0.0 
DD(3,3)=0.5*ENU 

RETURN 
END 

SUBROUTINE DPLA(NE,E,YO,C,WN,STRE,STR,I,MO,DP,H) 

DIMENSION DP(3,3),STRE(NE,5),STR(NE,5),MO(NE) 
ANU=.33 
SZ=STRE(I,5) 
SM=(STRE(I,l)+STRE(I,2)+SZ)/3 
SXP=STRE(I, 1)-SM 
SYP=STRE(I,2)-SM 
S=(2.0/3.0)*(STRE(I,4)**2)*(1+2*H*(l+ANU)/(3*E)) 
PN=l-2*ANU 
ENU=E/(l+ANU) 
DP(l,l)=ENU*((l-ANU)/PN -(SXP**2)/S) 
DP(l,2)=ENU*(ANU/PN - SXP*SYP/S) 
DP(l,3)=-ENU*SXP*(STRE(I,3))/S 
DP(2, l)=DP(l,2) 
DP(2,2)=((1-ANU)/(1-2*ANU)-(SYP**2)/S)*ENU 
DP(2,3)=-ENU*(SYP)*(STRE(I,3))/S 
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DP(3, 1)=DP(l,3) 
DP(3,2)=DP(2,3) 
DP(3,3)=ENU*(0.5-(STRE(I,3)**2)/S) 

RETURN 
END 

SUBROUTINE RATIO(NE,IN,YO,STRES,STRE,R) 

DIMENSION STRES(NE,5),STRE(NE,5) 
DOUBLE PRECISION Rl,R2 
X=STRES( IN, 1) 
Y=STRES (IN, 2) 
Z=STRES(IN,5) 
XY=STRES(IN,3) 
SX=STRE(IN, l) 
SY=STRE( IN, 2) 
SZ=STRE(IN,5) 
SXY=STRE(IN,3) 
A=X-Y 
B=SX-SY 
C=Y-Z 
D=SY-SZ 
E=Z-X 
F=SZ-SX 
O=A**2+C**2+E**2+6*(XY**2) 
P=2*(A*B+D*C+E*F+B*SXY*XY) 
Q=B**2+D**2+F**2+6*(SXY**2)-2*(Y0**2) 
Rl=(-P+SQRT(P**2-4*0*Q))/(2*0) 
R2=(-P-SQRT(P**2-4*0*Q))/(2*0) 
R=Rl 

RETURN 
END 

SUBROUTINE BM(NE,NN,I,LOC,CX,CY,BB,AREA) 

DIMENSION CX(NN),CY(NN),BB(3,6) 
DIMENSION CXL(3),CYL(3),LOC(NE,3) 
J=LOC(I, 1) 
K=LOC(I, 2) 
L=LOC(I,3) 
GX=(CX(J)+CX(K)+CX(L))/3 
GY=(CY(J)+CY(K)+CY(L))/3 
CXL(l)=CX(J)-GX 
CXL(2)=CX(K)-GX 
CXL(3)=CX(L)-GX 
CYL(l)=CY(J)-GY 
CYL(2)=CY(K)-GY 
CYL(3)=CY(L)-GY 
AREA=((CXL(3)-CXL(2))*(CYL(2)-CYL(l))-(CXL(2)-CXL(l))*(CYL(3)-
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2CYL(2)))/2.0 
X32=(CXL(3)-CXL(2))/(2.0*AREA) 
Y31=(CYL(3)-CYL(l))/(2.0*AREA) 
X31=(CXL(3)-CXL(l))/(2.0*AREA) 
Y21=(CYL(2)-CYL(l))/(2.0*AREA) 
X21=(CXL(2)-CXL(l))/(2.0*AREA) 
DO 81 II=l, 3 
DO 81 JJ=l,6 

81 BB(II,JJ)=O.O 
BB(l,l)=Y32 
BB(l, 3 )=-Y31 
BB(l,5)=Y21 
BB(2,2)=-X32 
BB(2,4)=X31 
BB(2,6)=-X21 
BB(3,1)=-X32 
BB(3,2)= Y32 
BB(3,3)= X31 
BB(3,4)=-Y31 
BB(3,5)=-X21 
BB(3,6)= Y21 

RETURN 
END 

SUBROUTINE DECOMP(N,NB,A) 
DIMENSION A(N,NB) 
DOUBLE PRECISION DIFF 
A(l,l)=SQRT(A(l,1)) 
DO 5 K=2,NB 

5 A(l,K)=A(l,K)/A(l,1) 
DO 25 K=2,N 
KPl=K+l 
KM1=K-1 
DIFF=A(K,1) 
DO 10 JP=l, KMl 
ICOL=K+l-JP 
IF (!COL .GT. NB) GO TO 10 
DIFF=DIFF-A(JP,ICOL)*A(JP,ICOL) 

10 A(K,l)=DSQRT(DIFF) 
DO 20 J=2.NB 
IF(K+J-1 .GT. N) GO TO 25 
DIFF=A(K,J) 
DO 15 JP=1,KM1 
ICOL=K+l-JP 
JCOL=K+J-JP 
IF (JCOL .GT. NB} GO TO 15 
IF (!COL .GT. NB) GO TO 15 
DIFF=DIFF-A(JP,ICOL)*A(JP,JCOL) 

15 CONTINUE 
20 A(K,J)=DIFF/A(K,1) 
25 CONTINUE 

RETURN 
END 
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SUBROUTINE SOLVE (N,NB,M,A,B,DIFF) 

DIMENSION A(N,NB),B(N,M) 
DOUBLE PRECISION DIFF(H) 
DO 5 J=l,H 

5 B(l,J)=B(l,J)/A(l,1) 
DO 30 !=2,N 
DO 10 J=l,H 

10 DIFF(J)=B(I,J) 
DO 20 K=2,NB 
IROW=I+l-K 
IF(IROW .LT. 1) GO TO 20 
ICOL=I+l-IROW 
IF (!COL .GT. NB) GO TO 20 
DO 15 J=l,H 

15 DIFF(J)=DIFF(J)-A(IROW,ICOL)*B(IROW,J) 
20 CONTINUE 

DO 25 J=l,H 
25 B(I,J)=DIFF(J)/A(I,1) 
30 CONTINUE 

DO 35 J=l,H 
35 B(N,J)=B(N,J)/A(N,1) 

DO 60 II=2,N 
I=N+l-II 
DO 40 J=l,H 

40 DIFF(J)=B(I,J) 
DO 50 K=2,NB 
IK=I-l+K 
IF (IK.GT.N)GO TO 50 
DO 45 J=l,H 

45 DIFF(J)=DIFF(J)-A(I,K)*B(IK,J) 
50 CONTINUE 

DO 55 J=l,H 
55 B(!,J)=DIFF(J)/A(I,1) 
60 CONTINUE 

RETURN 
END 

SUBROUTINE HATHUL (A,B,C,L,H,N) 
DIMENSION A(L,H),B(H,N),C(L,N) 
DO 10 I=l,L 
DO 10 J=l,N 
C(I,J)=O.O 
DO 10 K=l,H 
C(!,J)=C(I,J)+A(I,k)*B(K,J) 

10 CONTINUE 

RETURN 
END 
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SUBROUTINE VAL (N.NE.NN,ND,NB.CX,CY,LOC,IDISP,NDISP,IFIX,NFIX,IDB, 
$NDB,E,ANU,H,YO,H,NG,HY,ISL) 



DIMENSION CX(193),CY(193),LOC(171,3),IDISP(20),IFIX(100),IDB(40), 
$ISL(20) 

DOUBLE PRECISION Q1X,Q1Y,Q2X,Q2Y 

WRITE(*,*)'ENTER THE VALUES OF [E - ANU - H - YO]' 
READ(*,*) E,ANU,H,YO 
WRITE(*,*) E,ANU,H,YO 

C OPEN(20,FILE='AN',STATUS='NEW') 
WRITE(*,*)'ENTER XA& YA' 
READ(*,*)XA,YA 
WRITE(*,*)'XB & YB' 
READ(*,*)XB,YB 
WRITE(*,*)' XC& YC' 
READ(*,*)XC,YC 
WRITE(*,*)'ENTER N M MY' 
READ(*,*)N,M,MY 
NG=N 
QlX=(XB-XA)/(N-1) 
Q2X=<XC-XB)/(M-1) 
QlY=(YA-YC)/(M-1) 
Q2Y=YC/(MY-1) 
NB=(N+M+1)*2 
IT=l 
DO 12 J=l,M 
DO 10 I=l,N 
IP=IT+I-1 
CX(IP)=XA+(I-l)*QlX 
CY(IP)=YA-(J-l)*QlY 

10 CONTINUE 
IT=IP 
IF(J.GT.1) THEN 
DO 11 K=N+l , N+J-1 
IP=IT+K-N 
CX(IP)=XB+(K-N)*Q2X 
CY(IP)=YA-(J-l)*QlY 

11 CONTINUE 
END IF 
IT=IP+l 

12 CONTINUE 
DO 13 J=l,MY-1 
DO 14 I=l.N 
IP=IT+I-1 
CX(IP)=XA+(I-l)*QlX 
CY(IP)=YC-J*Q2Y 

14 CONTINUE 
IT=IP 
DO 15 K=N+l , N+M-1 
IP=IT+K-N 
CX(IP)=XB+(K-N)*Q2X 
CY(IP)=YC-J*Q2Y 

15 CONTINUE 
IT=IP+l 

13 CONTINUE 
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c 
c 
c 
c 
c 100 

c 
c 

35 
31 

30 

41 

40 

c 36 
150 

45 

NN=IT-1 
DO 20 I=l ,NN 
WRITE(20,100)I,CX(I),CY(I) 
20 WRITE(*,lOO)I,CX(I),CY(I) 
WRITE(*,*)' NN=',NN,' H N HY',H,N,HY 
FORMAT(/,5X,'I=',I4,' CX=',F6.3,' CY=' ,F6.3) 

IC=l 
IR=O 
DO 30 I=l,H-1 
IQ=2*N-1+2*(I-l)+IC-1 
DO 31 J=IC,IQ,2 
IR=IR+l 
JJ=J+l 
LOC(J,l)=N+IR 
LOC(J,2)=LOC(J,1)-(N+I-1) 
LOC(J,3)=LOC(J,l)+l 
IF(J.GE.IQ) GO TO 35 
LOC(JJ,l)=LOC(J,2) 
LOC(JJ,2)=LOC(JJ,1)+1 
LOC(JJ,3)=LOC(J,3) 
ID=J 
CONTINUE 
IR=IR+l 
IC=ID+l 
CONTINUE 
DO 40 I=l,HY-1 
IA=2*(H+N-2)+IC-1 
DO 41 J=IC,IA,2 
IR=IR+l 
JJ=J+l 
LOC(J,l)=N+IR 
LOC(J,2)=LOC(J,l)-M-N+l 
LOC{J,3)=LOC(J,l)+l 
LOC(JJ,l)=LOC(J,2) 
LOC(JJ,2)=LOC(J,2)+1 
LOC(JJ,3)=LOC(J,3) 
ID=JJ 
CONTINUE 
lR=IR+l 
IC=ID+l 
CONTINUE 
NE=IC-1 
WRITE(*,*)' NE=',NE 
DO 36 l=l,NE 
WRITE(20,150) I,(LOC(I,J),J=l,3) 
WRITE(*,150) I,(LOC(I,J),J=l,3) 
FORHATC3X,' l=',13,' LOC=',317) 
DO 45 I=l,N 
ID=I 
IDISP( l )=2*1 
CONTINUE 
NDISP=N 
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DO 50 I=l,2*N 
IFIX(I )=I 
IFB=I 

50 CONTINUE 
IR=O 
IFE=2*(NN-M-N+l) 
DO 51 I=IFB+l , IFB+2*(M+N-1) 
IR=IR+l 
IFIX( I )=IR+IFE 
IFD=I 

51 CONTINUE 
NFIX=IFD 
ND=NN*2 

C DO 60 I=l,NDISP 
C WRITE(*,160)1,IDISP(I) 
C 60 WRITE(20,160)I,IDISP(I) 

IG=O 
DO 110 I=l ,M 
ISL( I )=I*N+IG 
WRITE(*,*)' M=',I,' ISL=' ,ISL(I) 

110 IG=IG+I 
C DO 65 I=l,NFIX 
C WRITE(*,170)1,IFIX(I) 
C 65 WRITE(20,170)I,IFIX(I) 

160 FORMAT(/,5X,'I=',I4,' IDISP=',14) 
170 FORMAT(/,5X,'I=',I4,' IFIX=',14) 

RETURN 
END 

SUBROUTINE FRIC(NN,NE,NG,MG,STRE,SNS,QNS,YNS,NNB,NNC, 
$AQP,AY,ATP,AFT,AK,AMU,SFS,KF,NF,FOX,P,CX,ND,FORCE,CY,LF) 

DIMENSION STRE(NE,5),SNS(40),QNS(40),YNS(40),SFS(40), 
$ KF(40),NF(40),FOX(40),P(ND,l),CX(NN),DN(40),AR(40), 
$ CY(NN),LF(40) 

Q=AY*AQP 
IE=O 
DO 10 I=l,NG 
DN(I )=SNS(I) 
NNB=I 
IE=2*( I-1 )+1 
IF(I.EQ.l)THEN 
QNS(I)=(STRE(IE,4)+STRE(IE+l,4))/(2*SQRT(3.)) 
SNS(I)=(STRE(IE,3)+STRE(IE+l,3))/2 
YNS(I)=(STRE(IE,2)+STRE(IE+l,2))/2 
AR(I)=ABS((CX(2)-CX(l))/2) 
GO TO 10 
END IF 
IF(I .EQ.NG)THEN 
SNS(I)=(STRE(IE-1,3)+STRE(IE,3))/2 
YNS(I)=CSTRE(IE-l,2)+STRECIE,2))/2 
QNS(I)=(STRE(IE-l,4)+STRE(IE,4))/(2*SQRT(3.)) 
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AR(l)=ABS((CX(NG)-CX(NG-1))/2) 
GO TO 10 
END IF 
SNS(I)=(STRE(IE-l,3)+STRE(IE,3)+STRE(IE+1,3))/3 
YNS(l)=(STRE(IE-l,2)+STRE(IE,2)+STRE(IE+1,2))/3 
QNS(I)=(STRE(IE-l,4)+STRE(IE,4)+STRE(IE+l,4))/(3*SQRT(3.)) 
AR(I)=ABS((CX(I+l)-CX(l-1))/2) 

10 CONTINUE 
IG=NE-(NG+HG-2)*2+1 
DO 20 I=l,NG+MG-1 
J=NNB+I 
NNC=J 
IE=2*( I-1 )+IG 
DN(J)=SNS(J) 
JP=NN-(NG+HG-l)+l 
IF( I .EQ .1 )THEN 
SNS(J)=STRE(IE,3) 
QNS(J)=STRE(IE,4)/(SQRT(3.)) 
YNS(J)=STRE(IE,2) 
AR(J)=ABS((CX(JP+l)-CX(JP))/2) 
GO TO 20 
END IF 
IF(I.EQ.NG+MG-l)THEN 
SNS(J)=(STRE(NE,3)+STRE(NE-1,3))/2 
QNS(J)=(STRE(NE,4)+STRE(NE-1,4))/(2*SQRT(3.)) 
YNS(J):(STRE(NE,2)+STRE(NE-1,2))/2 
AR(J)=ABS((CX(NN)-CX(NN-1))/2) 
GO TO 20 
END IF 
SNS(J)=(STRE(IE,3)+STRE(IE-1,3)+STRE(IE-2,3))/3 
QNS(J):(STRE(IE,4)+STRE(IE-1,4)+STRE(IE-2,4))/(3*SQRT(3.)) 
YNS(J)=(STRE(IE,2)+STRE(IE-1,2)+STRE(IE-2,2))/3 
AR(J)=ABS((CX(JP+l)-CX(JP-1))/2) 

20 CONTINUE 
NTP=NN-(NG+MG-1) 
DO 30 I=l,NNC 
IF(I.LE.NG) NF(I)=2*I-1 
IF(I .GT .NG) THEN 
J=(NTP+I-NG)*Z-1 
NF(I )=J 
END IF 
PR=ABS(YNS(I)) 
IF(PR.LT.Q) SFS(I)=PR*AMU 
IF(PR.GE.Q)THEN 
APW=((AQP-PR/AY)*ATP)/(AFT*AQP) 
SFS(I)=AK*(ATP+AFT*(l-EXP(APW))) 
END IF 
IF(ABS(SNS(l)).GE.SFS(I)) KF(l)=l 
NW=NF(I) 
IF(P(NW,l).GE.0) FOX(l)=-ABS(SNS(l))*AR(I) 
IF(P(NW,l).LT.0) FOX(I)=ABS(SNS(l))*AR(l) 

30 CONTINUE 
DO 60 I=NG+l,NNC 
IF(YNS(l).GE.0) THEN 
LF(I )=1 



FOX(I )=0 
KF(I )=1 
END IF 
IF(CY(I).LT.0) LF(I)=O 

60 CONTINUE 
FORCE=O 
DO 40 I=1,NG 
PRT=AR(I)*YNS(I) 

40 FORCE=FORCE+ABS(PRT) 
FORCE=0.455*FORCE 

RETURN 
END 
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APPENDIX E 

SOME NUMERICAL AND EXPERIMENTAL RESULTS 
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1- Compression of the Wedge-Shaped specimen: 

Red. in Displacement Load (pound) 
hight % (inch) Test A Test B Test c Average 

1.2 0.006 1800 1670 2100 1857 

2 0.010 2300 2200 2200 2233 

3 0.015 3000 2450 2700 2716 

4.6 0.023 3580 3325 3620 3508 

6.8 0.034 4700 4450 4500 4550 

8 0.044 5200 5330 5100 5210 

9.4 0.047 5800 5500 5800 5833 

10 0.050 5800 5930 5930 5886 

2- Ring compression test: 

Test Red. in hight Red. in internal Coefficient 
x Diameter % of Friction 

A 33 14 0.20 

B 39 20 0.21 

c 47 42 0.22 

-----------
Average=0.21 
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3- Compression of the cylindrical specimen: 

P: = Load (pound) 
D = Initial diameter 
lo = Initial length (inch) 
1 = Instantaneous length (inch) 
.6.l = Displacement (inch) 
Ao = Initial Surface area (in**2) 
A = Instantaneous area (in**2) 
& = ln( lo/1) Natural strain 
O' = P/A Stress (psi) 

Test A: 

D =0.755 
lo=0.750 

p .6.1 1 & A O' 

2200 0.012 0.736 0.016 0.455 4832 

3850 0.020 0.730 0.027 0.460 8369 

4380 0.027 0.723 0.036 0.464 9424 

5100 0.034 0.716 0.046 0.469 10867 

5600 0.042 0.708 0.057 0.474 11800 

6220 0.043 0.707 0.059 0.475 13087 

7620 0.066 0.684 0.092 0.491 15520 

8600 0.086 0.664 0.128 0.508 16995 

9450 0.115 0.635 0.166 0.529 17859 

10350 0.139 0.611 0.205 0.550 18820 

13000 0.193 0.557 0.297 0.603 21550 

15500 0.252 0.498 0.409 0.675 22973 

17800 0.288 0.462 0.484 0.727 24475 
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Test B: 

lo=0.760 
D =0.755 

p ll.l 1 & A O' 

3880 0.016 0.744 0.021 0.457 8484 

4460 0.020 0.740 0.027 0.460 9700 

5140 0.025 0.735 0.033 0.463 11103 

5550 0.030 0.730 0.040 0.466 11909 

5900 0.035 0.725 0.047 0.469 12571 

8710 0.094 0.666 0.132 0.511 17049 

9100 0.105 0.655 0.149 0.519 17518 

10170 0.134 0.626 0.194 0.544 18711 

11110 0.147 0.613 0.215 0.555 20016 

12110 0.180 0.580 0.270 0.587 20643 

14080 0.218 0.542 0.338 0.628 22428 

15950 0.267 0.493 0.433 0.690 23110 

17360 0.289 0 .471 0.478 0.722 24031 
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Test C: 

lo=0.750 
D =0.750 

p li.l 1 & A Cf 

2740 0.010 0.740 0.013 0.448 6119 

3500 0.012 0.736 0.016 0.450 7774 

4400 0.019 0.731 0.026 0.453 9707 

5500 0.029 0.721 0.039 0.459 11982 

6400 0.039 o. 711 0.053 0.466 13733 

7200 0.058 0.692 0.080 0.479 15037 

7650 0.068 0.682 0.095 0.486 15741 

8950 0.091 0.659 0.129 0.503 17800 

9350 0.111 0.639 0.160 0.519 18031 

10090 0.141 0.609 0.208 0.544 18545 

13050 0.189 0.561 0.291 0.591 22095 

15770 0.248 0.502 0.401 0.660 23892 

17500 0.294 0.456 0.498 0.727 24071 



162 

3- The computed nodal coordinates in the Wedge-Shaped specimen: 

a) Bay's Friction modal (asperity angle=O) 
as the limit of sticking: 

x y ~x ~y 

-0.01641 0.44980 -0.01641 -0.05020 DISP AT NODE: 1 
0.09323 0.44980 -0.00677 -0.05020 DISP AT NODE: 2 
0.20000 0.44980 0.00000 -0.05020 DISP AT NODE: 3 
0.30068 0.44980 0.00068 -0.05020 DISP AT NODE: 4 
0.40086 0.44980 0.00086 -0.05020 DISP AT NODE: 5 

-0.02384 0 .41142 -0.02384 -0.04572 DISP AT NODE: 6 
0.08742 0 .41078 -0.01258 -0.04636 DISP AT NODE: 7 
0.19678 0.40978 -0.00322 -0.04736 DISP AT NODE: 8 
0.30379 0.40793 0.00379 -0.04921 DISP AT NODE: 9 
0.40730 0.40788 0.00730 -0.04926 DISP AT NODE: 10 
0.49234 0 .42471 0.00662 -0.03243 DISP AT NODE: 11 

-0.02792 0.37337 -0.02792 -0.04092 DISP AT NODE: 12 
0.08436 0.37234 -0.01564 -0.04195 DISP AT NODE: 13 
0.19535 0.37069 -0.00465 -0.04359 DISP AT NODE: 14 
0.30482 0 .36811 0.00482 -0.04618 DISP AT NODE: 15 
0.41254 0.36699 0.01254 -0.04729 DISP AT NODE: 16 
0.49968 0.38285 0.01397 -0.03143 DISP AT NODE: 17 
0.58515 0.39593 0.01372 -0.01836 DISP AT NODE: 18 

-0.03040 0.33552 -0.03040 -0.03591 DISP AT NODE: 19 
0.08254 0.33426 -0.01746 -0.03717 DISP AT NODE: 20 
0.19463 0.33214 -0.00537 -0.03929 DISP AT NODE: 21 
0.30551 0.32907 0.00551 -0.04236 DISP AT NODE: 22 
0.41512 0.32738 0.01512 -0.04405 DISP AT NODE: 23 
0.50547 0.34140 0.01975 -0.03003 DISP AT NODE: 24 
0.59183 0.35384 0.02040 -0.01759 DISP AT NODE: 25 
0.67764 0.36290 0.02050 -0.00853 DISP AT NODE: 26 

-0.03220 0.29782 -0.03220 -0.03075 DISP AT NODE: 27 
0.08125 0.29641 -0.01875 -0.03217 DISP AT NODE: 28 
0.19408 0.29393 -0.00592 -0.03464 DISP AT NODE: 29 
0.30588 0.29046 0.00588 -0. 03811 DISP AT NODE: 30 
0.41648 0.28833 0.01648 -0.04024 DISP AT NODE: 31 
0.50835 0.30063 0.02263 -0.02794 DISP AT NODE: 32 
0.59651 0.31171 0.02508 -0.01686 DISP AT NODE: 33 
0.68241 0.32048 0.02527 -0.00809 DISP AT NODE: 34 
0.76827 0.32668 0.02541 -0.00189 DISP AT NODE: 35 

-0.03360 0.26021 -0.03360 -0.02550 DISP AT NODE: 36 
0.08016 0.25875 -0.01984 -0.02696 DISP AT NODE: 37 
0.19368 0.25599 -0.00632 -0.02972 DISP AT NODE: 38 
0.30632 0.25214 0.00632 -0.03358 DISP AT NODE: 39 
0 .41766 0.24956 0.01766 -0.03615 DISP AT NODE: 40 
0.51019 0.26025 0.02447 -0.02547 DISP AT NODE: 41 
0.59933 0.26995 0.02790 -0.01576 DISP AT NODE: 42 
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0.68596 0.27792 0.02881 -0.00780 DISP AT NODE: 43 
0.77157 0.28403 0.02871 -0.00168 DISP AT NODE: 44 
0.85721 0.28981 0.02864 0.00410 DISP AT NODE: 45 

-0.03491 0.22277 -0.03491 -0.02009 DISP AT NODE: 46 
0.07935 0.22119 -0.02065 -0.02186 DISP AT NODE: 47 
0.19318 0.21833 -0.00682 -0.02453 DISP AT NODE: 48 
0.30676 0.21413 0.00676 -0.02873 DISP AT NODE: 49 
0.41913 0.21100 0.01913 -0.03186 DISP AT NODE: 50 
0.51209 0.22008 0.02637 -0.02277 DISP AT NODE: 51 
0.60168 0.22848 0.03025 -0.01438 DISP AT NODE: 52 
0.68886 0 .2·3550 0.03172 -0.00736 DISP AT NODE: 53 
0.77461 0.24128 0.03176 -0.00158 DISP AT NODE: 54 
0.86011 0.24706 0.03154 0.00420 DISP AT NODE: 55 
0.94566 0.25274 0.03138 0.00988 DISP AT NODE: 56 

-0.03195 0.18374 -0.03195 -0.01626 DISP AT NODE: 57 
0.07772 0.18387 -0.02228 -0.01613 DISP AT NODE: 58 
0.19229 0.18083 -0.00771 -0.01917 DISP AT NODE: 59 
0.30650 0.17651 0.00650 -0.02348 DISP AT NODE: 60 
0.42012 0.17282 0.02012 -0.02718 DISP AT NODE: 61 
0.51430 0.18007 0.02859 -0.01993 DISP AT NODE: 62 
0.60411 0.18712 0.03268 -0.01288 DISP AT NODE: 63 
0.69149 0.19323 0.03434 -0.00877 DISP AT NODE: 64 
0.77747 0.19855 0.03461 -0.00145 DISP AT NODE: 65 
0.86299 0.20429 0.03442 0.00429 DISP AT NODE: 66 
0.94851 0.20997 0.03422 0.00997 DISP AT NODE: 67 
1.03404 0.21563 0.03404 0.01563 DISP AT NODE: 68 

-0.02853 0.12213 -0.02853 -0.01121 DISP AT NODE: 69 
0.07946 0.12316 -0.02054 -0.01018 DISP AT NODE: 70 
0.18892 0.12297 -0.01108 -0.01036 DISP AT NODE: 71 
0.30401 0.11847 0~00401 -0.01486 DISP AT NODE: 72 
0.41855 0.11432 0.01855 -0.01901 DISP AT NODE: 73 
0.51486 0.11886 0.02914 -0.01447 DISP AT NODE: 74 
0.60733 0.12310 0.03590 -0.01024 DISP AT NODE: 75 
0.89555 0.12785 0.03840 -0.00568 DISP AT NODE: 76 
0.78185 0.13212 0.03899 -0.00122 DISP AT NODE: 77 
0.86741 0.13776 0.03884 0.00442 DISP AT NODE: 78 
0.95293 0.14343 0.03864 0.01010 DISP AT NODE: 79 
1. 03845 0.14910 0.03845 0.01576 DISP AT NODE: 80 

-0.02592 0.06071 -0.02592 -0.00596 DISP AT NODE: 81 
0.08238 0.06150 -0.01762 -0.00516 DISP AT NODE: 82 
0.19003 0.06204 -0.00997 -0.00463 DISP AT NODE: 83 
0.29910 0.06118 -0.00090 -0.00548 DISP AT NODE: 84 
0.41537 0.05651 0.01537 -0.01016 DISP AT NODE: 85 
0.51318 0.05885 0.02747 -0.00782 DISP AT NODE: 86 
0.60752 0.06095 0.03609 -0.00572 DISP AT NODE: 87 
0.69899 0.06262 0.04185 -0.00405 DISP AT NODE: 88 
0.78612 0.06580 0.04326 -0.00087 DISP AT NODE: 89 
0.87179 0.07123 0.04322 0.00457 DISP AT NODE: 90 
0.95732 0.07689 0.04304 0.01023 DISP AT NODE: 91 
1.04285 0.08256 0.04285 0.01589 DISP AT NODE: 92 

-0.02435 0.00000 -0.02435 0.00000 DISP AT NODE: 93 
0.08523 0.00000 -0.01477 0.00000 DISP AT NODE: 94 
0.19315 0.00000 -0.00685 0.00000 DISP AT NODE: 95 
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0.30000 0.00000 0.00000 0.00000 DISP AT NODE: 96 
0.40832 0.00000 0.00832 0.00000 DISP AT NODE: 97 
0.50884 0.00000 0.02312 0.00000 DISP AT NODE: 98 
0.60543 0.00000 0.03400 0.00000 DISP AT NODE: 99 
0.69878 0.00000 0.04164 0.00000 DISP AT NODE: 100 
0.78974 0.00000 0.04689 0.00000 DISP AT NODE: 101 
0.87617 0.00472 0.04760 0.00472 DISP AT NODE: 102 
0.96172 0.01036 0.04743 0.01036 DISP AT NODE: 103 
1. 04724 0.01603 0.04724 0.01603 DISP AT NODE: 104 
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b) Bay's Friction model (asperity angle=15) 
as the limit of sticking: 

x y 6X 6Y 

-0.01793 0.44977 -0.01793 -0.05023 DISP AT NODE: 1 
0.09257 0.44977 -0.00743 -0.05023 DISP AT NODE: 2 
0.20000 0.44977 0.00000 -0.05023 DISP AT NODE: 3 
0.30076 0.44977 0.00076 -0.05023 DISP AT NODE: 4 
0.40097 0.44977 0.00097 -0.05023 DISP AT NODE: 5 

-0.02579 0.41174 -0.02579 -0.04540 DISP AT NODE: 6 
0.08648 0.41106 -0.01352 -0.04608 DISP AT NODE: 7 
0.19671 0.40999 -0.00329 -0.04715 DISP AT NODE: 8 
0.30429 0.40795 0.00429 -0.04920 DISP AT NODE: 9 
0.40799 0.40786 0.00799 -0.04928 DISP AT NODE: 10 
0.49288 0.42533 0.00716 -0.03181 DISP AT NODE: 11 

-0.02954 0.37380 -0.02954 -0.04048 DISP AT NODE: 12 
0.08308 0.37297 -0.01692 -0.04132 DISP AT NODE: 13 
0.19507 0.37122 -0.00493 -0.04307 DISP AT NODE: 14 
0.30548 0.36832 0.00548 -0.04597 DISP AT NODE: 15 
0.41372 0.36706 0.01372 -0.04722 DISP AT NODE: 16 
0.50094 0.38366 0.01522 -0.03063 DISP AT NODE: 17 
0.58669 0.39679 0.01526 -0.01749 DISP AT NODE: 18 

-0.03136 0.33596 -0.03136 -0.03547 DISP AT NODE: 19 
0.08160 0.33498 -0.01840 -0.03645 DISP AT NODE: 20 
0.19401 0.33301 -0.00599 -0.03842 DISP AT NODE: 21 
0.30589 0.32964 0.00589 -0.04179 DISP AT NODE: 22 
0.41657 0.32763 0.01657 -0.04380 DISP AT NODE: 23 
0.50730 0 .34245 0.02158 -0.02898 DISP AT NODE: 24 
0.59409 0.35500 0.02266 -0.01643 DISP AT NODE: 25 
0.68049 0.36370 0.02335 -0.00773 DISP AT NODE: 26 

-0.03279 0.29835 -0.03279 -0.03022 DISP AT NODE: 27 
0.08091 0.29710 -0.01909 -0.03147 DISP AT NODE: 28 
0.19360 0.29491 -0.00640 -0.03366 DISP AT NODE: 29 
0.30578 0.29140 0.00578 -0.03717 DISP AT NODE: 30 
0.41748 0.28896 0.01748 -0.03961 DISP AT NODE: 31 
0.51047 0.30197 0.02476 -0.02661 DISP AT NODE: 32 
0.59924 0.31317 0.02782 -0.01541 DISP AT NODE: 33 
0.68571 0.32159 0.02857 -0.00698 DISP AT NODE: 34 
0. 77241 0.32566 0.02955 -0.00291 DISP AT NODE: 35 

-0.03364 0.26080 -0.03364 -0.02492 DISP AT NODE: 36 
0.08024 0.25948 -0.01976 -0.02624 DISP AT NODE: 37 
0.19378 0.25687 -0.00622 -0.02885 DISP AT NODE: 38 
0.30608 0.25322 0.00608 -0.03249 DISP AT NODE: 39 
0.41788 0.25060 0.01788 -0.03512 DISP AT NODE: 40 
0. 51166 0.26204 0.02595 -0.02368 DISP AT NODE: 41 
0.60201 0.27172 0.03059 -0.01399 DISP AT NODE: 42 
0.68940 0.27929 0.03226 -0.00642 DISP AT NODE: 43 
0.77568 0.28332 0.03283 -0.00239 DISP AT NODE: 44 
0.86222 0.28500 0.03365 -0.00071 DISP AT NODE: 45 

-0.03496 0.22355 -0.03496 -0.01930 DISP AT NODE: 46 
0.07989 0.22193 -0.02011 -0.02093 DISP AT NODE: 47 
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0.19372 0.21917 -0.00628 -0.02369 DISP AT NODE: 48 
0.30716 0.21500 0.00716 -0.02785 DISP AT NODE: 49 
0.41876 0.21220 0.01876 -0.03066 DISP AT NODE: 50 
0.51223 0.22229 0.02652 -0.02057 DISP AT NODE; 51 
0.60302 0.23067 0.03159 -0.01219 DISP AT NODE: 52 
0.69133 0.23714 0.03419 -0.00572 DISP AT NODE: 53 
0.77781 0.24072 0.03495 -0.00214 DISP AT NODE: 54 
0.86383 0.24246 0.03526 -0.00040 DISP AT NODE: 55 
0.95005 0.24299 0.03576 0.00013 DISP AT NODE: 56 

-0.03129 0.18448 -0.03129 -0.01552 DISP AT NODE: 57 
0.07820 0.18477 -0.02180 -0.01523 DISP AT NODE: 58 
0.19327 0.18162 -0.00673 -0.01838 DISP AT NODE: 59 
0.30725 0.17730 0.00725 -0.02270 DISP AT NODE: 60 
0.42061 0.17363 0.02061 -0.02637 DISP AT NODE: 61 
0.51337 0.18239 0.02766 -0.01761 DISP AT NODE: 62 
0.60358 0.18969 0.03215 -0.01031 DISP AT NODE: 63 
0.69200 0.19523 0.03485 -0.00477 DISP AT NODE: 64 
0.77890 0.19810 0.03604 -0.00190 DISP AT NODE: 65 
0.86481 0.19968 0.03624 -0.00032 DISP AT NODE: 66 
0.95062 0.20026 0.03633 0.00026 DISP AT NODE: 67 
1.03649 0.20063 0.03649 0.00063 DISP AT NODE: 68 

-0.02690 0.12239 -0.02690 -0.01094 DISP AT NODE: 69 
0.08017 0.12392 -0.01983 -0.00941 DISP AT NODE: 70 
0.18921 0.12398 -0.01079 -0.00935 DISP AT NODE: 71 
0.30459 0.11907 0.00459 -0.01427 DISP AT NODE: 72 
0.41863 0.11489 0.01863 -0.01844 DISP AT NODE: 73 
0.51443 0.12005 0.02872 -0.01328 DISP AT NODE: 74 
0.60480 0.12568 0.03337 -0.00765 DISP AT NODE: 75 
0.69306 0.13011 0.03591 -0.00323 DISP AT NODE: 76 
0.78009 0.13204 0.03723 -0.00129 DISP AT NODE: 77 
0.86617 0.13304 0.03760 -0.00029 DISP AT NODE: 78 
0.95176 0.13356 0.03748 0.00022 DISP AT NODE: 79 
1.03731 0.13401 0.03731 0.00068 DISP AT NODE: 80 

-0.02391 0.06078 -0.02391 -0.00589 DISP AT NODE: 81 
0.08403 0.06171 -0.01597 -0.00495 DISP AT NODE: 82 
0.19062 0.06270 -0.00938 -0.00397 DISP AT NODE: 83 
0.29876 0.06187 -0.00124 -0.00480 DISP AT NODE: 84 
0.41486 0.05672 0.01486 -0.00995 DISP AT NODE: 85 
0. 51191 0.05953 0.02619 -0.00714 DISP AT NODE: 86 
0.60525 0.06182 0.03382 -0.00485 DISP AT NODE: 87 
0.69389 0.06488 0.03674 -0.00179 DISP AT NODE: 88 
0.78083 0.06605 0.03797 -0.00062 DISP AT NODE: 89 
0.86697 0.06652 0.03840 -0.00015 DISP AT NODE: 90 
0.95272 0.06670 0.03843 0.00003 DISP AT NODE: 91 
1.03805 0.06711 0.03805 0.00044 DISP AT NODE: 92 

-0.02263 0.00000 -0.02263 0.00000 DISP AT NODE: 93 
0.08883 0.00000 -0.01317 0.00000 DISP AT NODE: 94 
0.19435 0.00000 -0.00565 0.00000 DISP AT NODE: 95 
0.30000 0.00000 0.00000 0.00000 DISP AT NODE: 96 
0.40684 0.00000 0.00684 0.00000 DISP AT NODE: 97 
0.50670 0.00000 0.02098 0.00000 DISP AT NODE: 98 
0.60192 0.00000 0.03049 0.00000 DISP AT NODE: 99 
0.69370 0.00000 0.03656 0.00000 DISP AT NODE: 100 



0.78126 
0.86732 
0.95295 
1.03858 

0.00000 
0.00000 
0.00000 
0.00000 

0.03840 
0.03875 
0.03866 
0.03858 

0.00000 DISP AT NODE: 
0.00000 DISP AT NODE: 
0.00000 DISP AT NODE: 
0.00000 DISP AT NODE: 

101 
102 
103 
104 
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c) Constant Friction model as the limit of sticking: 

x y 6X 6Y 

-0.02672 0.44948 -0.02672 -0.05052 DISP AT NODE: 1 
0.08439 0.44948 -o .01561 -0.05052 DISP A T "NO.D,g,; " 2 
0.19432 0.44948 -0.00568 -0.05052 DISP AT NOi' 3 
0.30000 0.44948 0.00000 -0.05052 DISP AT 1'00 4 
0.40043 0.44948 0.00043 -0.05052 DISP AT:Noo.:· 5 

-0.03773 0.41241 ;;.0.03778 -0.04473 DISP AT NOD!«\ 6 
0.07690 0.41104 -0.02310 -0.04~10 DISP AT NODE: 7 
0.18810 0.41063 -0.01190 -0.04651 DISP AT NODE: 8 
0.29806 0.40932 -0.00194 -0.04782 DISP AT NODE: 9 
0.40517 0.40780 0.00517 -0.04935 DISP AT NODE: 10 
0.49102 0.42382 0.00531 -0.03333 DISP AT NOOE: 11 

-0.04339 0.37487 -0.04339 -o .• 03942 DISP AT NODE: 12 
0.07023 0.37375 -0.02977 -0.04054 DISP AT NODE: 13 
0.18432 0.37226 -0.01568 -0.04202 DISP AT NODE: 14 
0.29573 0 • 3 7 0 61 ·- 0 • 0 0 4 2 7 -0.04368 DISP AT NODE: 15 
0.40632 0.36823 o.o 0 632 -0.04606 DISP AT NODE: 16 
0.49704 0.38189 0.01133 -0.03239 DISP AT NODE: 17 
0.58226 o.396ts 0.01083 -0.01763 DISP AT NODE: 18 

-0.04676 0.33733 -0.04676 -0.03410 DISP AT NODE: 19 
0.06699 0.3361.2 -0.03301 -0.03531 DISP AT NODE: 20 
0.18036 0.33479 -0.01964 -0.03664 DISP AT NODE: 21 
0.29397 0.33235·-0.00603 -0.03908 DISP AT NODE: 22 
0.40580 0.32972 0.00580 -0.04171 DISP AT NODE: 23 
0.49906 0.34111 0.01334 -0.03032 DISP AT NODE: 24 
0.58733 0.35428 0.01590 -0.01715 DISP AT NODE: 25 
0.67272 0.36431 0.01558 -0.00712 DISP AT NODE: 26 

-0.04940 0.30003 -0.04940 -0.02854 DISP AT NODE: 27 
0.06510 0.29852 -0.03490 -0.03005 DISP AT NODE: 28 
0.178o0 0.20706 -0.02141) -0.03151 DISP AT NODE: 29 
0.29109 0.29472 -0.00831 -0.03386 DISP AT NODE: 30 
0.40490 0.29157 0.00491) -0.03700 DISP AT NODE: 31 
0.4't89.'., 0.30098 0.01326 -0.02759 DISP AT NODE: 32 
u.58903 0.31250 0.01761 -0.01607 DISP AT NODE: 33 
0.67577 J.!2160 0.01863 -0.00697 DISP AT NODE: 34 
0.76140 0.32646 0.01855 -0.00211 DISP AT NODE: 35 

-0.04?91 G.26232 -0.04991 -G.02339 DISP AT NODE: 36 
O.Oo3<+5 0.2~120 -0.03655 -0.02452 DISP AT NODE: 37 
J.l.7h5 0.2593'4 -0.02215 -C.02637 DISP AT NODE: 38 
v.2;.e:..,.;:. 0.2St'.'!9 -!J.00906 -C.02882 DISP AT NODE: 39 
v.40?77 0.253130 0.00377 -0.031Cll DISP AT NODE: 40 
J.4 .. 361 0.25113 0.01290 -0.02458 DISP AT NODE: 41 
1 c: ~ ,, -. !"" 

'v • ..; - - .;.. "" ~.2712l O.'Jl782 -0.01447 DISP AT NODE: 42 
- "? .., -· c: J • ..., I j '- .. c·.2?·?1:; 0.'.)2011 -0.00656 DISP AT NODE: 43 

v. 7 :.3.:..~ ~.:?3~.L. 0.02'.)32 -C.00207 DISP AT NODE: 44 
~ • ~ '1- ~.:. ,; v.2353 0.a?·J31 -C·.00042 DISP AT NODE: 45 

- ·. f ,;... "". 
.; • '...r ~ .... 7 .... :.2?!l - 1}. () 4 69! -C'.01946 DISP .AT "lODE: 46 
\,I .... :.;, • ' .;_ ~ • : ? -:! c: - ,, • ~ "! ., u 0 -C.0193? DISP AT "' 'l DE: 47 
-.J.:-;·:_~_, ~.2.:!c"~· -~-~!23~~ -C.0?0~2 DISP AT "IODE: 48 



' 
~--·--· 

...... - J - :;, '.,, 

J • .... ; ;' 

.._'.~JS .... 7 
-v.o~;, .... J 

j.·Jo55S 
J.1751.2 
.J.2...:."'75 
v • :. Ji.+ 12 
j.!..,1~1~ 

u.5::3~~ 

J.:i?:.~:i 
' ~' . ") 
v.1~:;0_ 
~ -, I """\ -
J.V"+ . ..,0) 

~.}.55.J7 

1.02!•;3 
-J.J3923 

u.Oc913 
.).17773 
0.23627 
J.4Ci13J 
0.4'7796 
o.saoo 
J.67693 
·J.76332 
iJ.50+977 
.).9351+:3 
i.n1u 

-0.03377 
.... ::7395 
J.1.3172 
J.26915 
0.39631 
J.41355 
J.58754 
'J.67655 
J.7o357 
0.34908 
0.935.:+3 
1.02117 

-l.i.02924 
u.:l7901 
J.BSod 
J.21225 
J.39773 
J.4o571 
O.S~lii4 
v.!>7330 
0.7o.i22 
J.34753 
0.93335 
1.01909 

.• 22.::17 
) , '::: . 

'J • - - - -

·J. 2 3 'J.:. ~ 
).23709 
J.240.;14 
).24245 
J.24274 
J.1~425 

:;.1~455 

C • .l-3t:.~2 
·;.1'3E2 
·).17773 
:.1~167 

G.B915 
',I. l '.i 5 0 9 
v.l?e29 
J.1995~ 

J.1998~ 

).1?997 
'.J.1229o 
J.12346 
J.12363 
0.12405 
0.12005 
O.U.945 
J.12517 
J.12987 
0.13209 
0.13304 
0.13323 
0.13328 
0.06133 
:J.J6196 
0.0620!3 
0.0~242 
0.06263 
J.05935 
0.06147 
0.06467 
0.06599 
0.06648 
0.06660 

os:.;!659 o· · oo 
Q.~~00 
0;00000 
c.00000 
0.00000 
0.00000 
0.00000 
O.J0000 
0.01)000 
0.00000 
0.00000 
0.00000 

: •. ; 1: .c 5 
-.11-°'!.'i 
·: • ) l 7 s 2 
i'' .. , ., ·"' ,., Q -' . .' ·:... ·) . ., 

'l.l2104 
') • ')2 ') 9 2 

'.).:)2')92 

-~.)4'34~ 

-·).')3434 
-').'),21,.~~ 

-::l.J1025 
".')'J472 
').01233 
J.:)1703 
).)1971 
·';.'J207~ 

').')210~ 

'.l.J210S 
'.). n 10 ~ 

-0.03923 
-".1.03082 
-·).12227 
-o.n373 

0.00130 
o. n 224 
0.01717 
I). 'Jl 97'~ 
0.02096 
0.02119 
O.J2119 
0.0211~ 

-0.03377 
-0.021:>05 
-0.01828 
-0.01085 
-0.00369 

0.00784 
0.01611 
0.01940 
0.02071 
0. 02111 
0.02114 
0.1)2117 

-0.02924 
-0.'.)2099 
-0.01412 
-0.00775 
-·'.).'.)0227 

0.00000 
0.10Q61 
O.l)BlS 
0.0183~ 
0 .OH96 
0.01907 
o. n 909 

-f..0?3~4 

- ,- •• : 2 6 Q c; 
-·::.021'35 
-C.u1272 
-().0')577 
-0.00201 
-i.i.00041 
-0.00012 
-0.01575 
-0.01545 
-0.01538 
-0.01818 
-0.02227 
-0.01833 
-0.01085 
-C.00491 
-0.00171 
-0.00041 
-0.00012 
-0.00003 
-0.01037 
-0.00988 
-0.00970 
-0.00929 
-0.01328 
-0.01388 
-0.00816 
-0.00346 
-0.00124 
-0.00029 
-0.00011 
-0.00005 
-0.00534 
-0.00471 
-0.00458 
-0.00425 
-0.00403 
-0.00732 
-0.00520 
-0.00200 
-0.00067 
-0.00018 
-0.00007 
-0.00008 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

!ISP q ~woE: 

'! I 5 P A T 'J C' D E : 
:)ISP H 'lODE: 
DI5P AT "!ODE: 
!)!SP AT ~lCDE: 

DISP AT "JODE: 
ill SP AT ~JODE: 

DISP AT 'JODE: 
JISP AT "lODE: 
DISP AT NODE: 
')ISP AT NODE: 
OISP AT NODE: 
C>ISP AT NODE: 
D I S P A T 'IO D E : 
DISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 
DISP AT "!ODE: 
DISP AT ~ODE: 
DISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT t..JODE: 
DISP AT '!ODE: 
DISP AT '!ODE: 
DISP AT 'lOOE: 
DISP AT •JODE: 
DISP AT 'JODE: 
DISP AT NODE: 
OISP AT NODE: 
DISP AT NODE: 
DISP AT ~ODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 
OISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 
DISP AT NODE: 
DISP AT NOOE: 
DISP AT NODE: 

49 
so 
51 
5 2 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71. 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
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4- The computed forging load in the Wedge-Shaped specimen: 

a) Bay's Friction model as the (asperity angle=O) 
as the limit of sticking: 

Force 
(pound) 

923.90 
1698.37 
1736.98 
1749.39 
1772.08 
1797.72 
1819.19 
1880.09 
1918.93 
1972.44 
2011. 83 
2027.41 
2139.11 
2192.35 
2294.96 
2329.29 
2388.59 
2486.89 
2576.09 
2675.30 
2708.61 
2797.41 
2896.87 
2954.62 
3051.96 
3167.60 
3355.61 
3476.77 
3496.94 
3529.92 
3621.58 
3646.00 
3746.44 
3849.45 
3953.05 
4059.03 
4074.93 
4189.28 
4207.89 
4313.18 

Reduction in 
height % 

0.0688498 
0.1309693 
0.1412282 
0.1456203 
0.1543050 
0.1655355 
0.1761579 
0.2120082 
0.2413612 
0.2873378 
0.3301894 
0.3508841 
0.5185214 
0.6346235 
0.8891857 
0.9831882 
1.1508088 
1.4341595 
1.6943870 
1.9858477 
2.0716910 
2.3456366 
2. 6117108 
2.7263918 
3.0263920 
3.3263917 
3.6263916 
3. 8198411 
3.8603208 
3.9461401 
4.2461400 
4.3165030 
4.6165032 
4.9165030 
5.2081552 
5.5081549 
5.5449519 
5.8449516 
5.8908734 
6.1908731 

170 



4432.74 
4579.98 
4601. 74 
4745.87 
4854.18 
4955.06 
5072.90 
5191. 78 
5227.79 
5322.79 
5412.42 
5515.72 
5619.70 
5753.26 
5889.48 

6.4559660 
6.7559662 
6.7909918 
7.0909920 
7.2695627 
7.5695624 
7.8695626 
8.1695623 
8.2462034 
8.5462036 
8.8462029 
9.1462030 
9.4462032 
9.7462025 

10.0462027 
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b) Bay·s Friction model (asperity angle=15) 
as the limit of sticking: 

Force 
(pound) 

785.31 
1443.61 
1476.43 
1486.98 
1506.27 
1528.06 
1546.31 
1598.07 
1631.09 
1676.57 
1710.05 
1723.34 
1818.61 
1864.03 
1952.72 
2020.39 
2055.15 
2132.56 
2189.83 
2289.68 
2407.41 
2526.56 
2696.72 
2855.22 
3000.58 
3083.57 
3145.95 
3170.21 
3178.81 
3300.04 
3400.37 
3501.18 
3584.24 
3656.74 
3733.66 
3913.23 
4154.39 
4295.93 
4398.75 
4483.75 
4583.11 
4671. 67 
4766.93 
4846.58 
4932.66 
4950.19 
5014.77 
5083.17 
5129.30 

Reduction in 
height % 

0.0688498 
0.1309693 
0.1412282 
0.1456203 
0.1543050 
0.1655355 
0.1761579 
0.2120082 
0.2413612 
0.2873378 
0.3301894 
0.3510185 
0.5196947 
0.6383848 
0.9036185 
1.1392404 
1.2701501 
1. 5701500 
1. 7839741 
2.0839741 
2.3839743 
2.6839743 
2.9839742 
3.2839742 
3.5839741 
3.8839738 
4.1839738 
4.3148227 
4.3898458 
4.6898460 
4.9898458 
5.2898455 
5.5898452 
5.8898454 
6.1898451 
6.4898453 
6.7898455 
7.0898452 
7.3898449 
7.6462126 
7.9462128 
8.2462120 
8.5462122 
8.8462124 
9.1462116 
9.2194080 
9.5194082 
9.8194075 

10.0398865 
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c) Constant Friction model as the limit of sticking: 

Force Reduction in 
(Pound) height % 

923.90 0.0688498 
1111. 59 0.0828399 
1200.24 0.0895286 
1536.17 0 .1148519 
1564.95 0 .1176124 
1600.65 0.1220989 
1619.89 0.1250570 
1634.52 0.1275557 
1682.69 0.1364742 
1731. 92 0.1475635 
1735.70 0.1484974 
1805.89 0.1662754 
1816.99 0.1694434 
1870.47 0.1849853 
1935.61 0.2058427 
1964.92 0.2160415 
2100.45 0.2665507 
2153.48 0.2907103 
2162.65 0.2953303 
2322.84 0.3780988 
2346.02 0.3943539 
2368.54 0.4109188 
2434.20 0.4615031 
2441.17 0.4677172 
2562.87 0.5780740 
2638.57 0.6662615 
2667.56 0.7061642 
2767.89 0.8502644 
2901. 57 1.0650535 
3067.49 1.3650534 
3221. 73 1.6650535 
3357.03 1.9650536 
3560.15 2.2650535 
3770.66 2.5239460 
4061.70 2.8239460 
4401.43 3.1239462 
4711.96 3.4239459 
4836.58 3.5843897 
4924.19 3.8843896 
5016.52 4.1843896 
5118 .15 4.4843893 
5227.01 4.7843890 
5242.66 4.8230171 
5350.48 5.1230168 
5460.12 5.4230170 
5579.69 5.7230167 



5702.92 
5828.01 
5944.78 
6057.68 
6160.25 
6256.15 
6347.31 
6432.55 
6516.97 
6596.81 
6678.24 
6754.85 
6819.67 
6876.46 
6949.34 

6.0230165 
6.3230166 
6.6230164 
6.9230161 
7.2230163 
7.5230160 
7.8230157 
8.1230154 
8.4230156 
8.7230158 
9.0230150 
9.3230152 
9.5672522 
9.8035860 

10.1035862 
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