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CHAPTER I 

INTRODUCTION 

During 1976-1980, Oklahoma planted a yearly average of 

3 million hectares of wheat. From this planting, 2.5 

million hectares were harvested with a yearly average grain 

yield of 2595 L/ha. Oklahoma also produced 672 Kg dry 

matter/ha in forage yield which was used for grazing cattle 

November through March 15. Approximately 1.5 million 

stocker cattle were grazed on wheat pastures each year 

(Tweeten 1982). 

Wheat soilborne mosaic virus (WSBMV) was first 

reported in Oklahoma in 1952 in the Ponca City area 

(Wadsworth and Young 1953). The virus is now found in all 

the major wheat growing counties in Oklahoma but the disease 

remains most severe along the Chikaskia and Salt Fork Rivers 

(Williams 1986). Reductions in yield due to WSBM of 32 to 

61% and reductions in test weight of o to 3% have been 

reported (Wadsworth and Young 1953). 

Hunger, et al. (1989) conducted evaluations for two 

seasons by growing wheat in a location with no history of 

the disease and in a location with a history of severe WSBM. 

Grain yield reductions ranged from 31.6% (Mustang in 1985-

86) to 69.4% (Triumph 64 in 1984-85). Resistant and 

susceptible cultivars had average yield decreases of 40.2% 

1 



(sd=l0.97) and 54.3% (sd=l0.66) over the two years. 

Reductions in thousand kernel weight (TKW) ranged from 0.8 

to 18.8%. 

The use of resistant cultivars is the most practical 

method to control WSBM. Visual assessment of wheat is the 

most commonly used method to evaluate resistance to wheat 

soilborne mosaic (WSBM) , but other factors may mimic 

symptoms of WSBM. This mimicry of symptoms presents a need 

to confirm visual assessments in programs breeding for 

resistance to WSBM. 

2 

Enzyme-linked immunosorbent assay (ELISA) has been 

used in conjunction with visual assessment to verify the 

presence of WSBMV. The objectives of these studies were: 1) 

to determine the optimum time to sample wheat for evaluation 

of resistance to WSBM by ELISA, 2) to determine the superior 

method of storing leaf tissue prior to ELISA, and 3) use 

symptomology, ELISA, and polyacrylamide gel electrophoresis 

(PAGE) to examine the relationships between capsid 

production, virion concentration, and the expression of 

resistance by hard red winter wheat to WSBM. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

Wheat soilborne mosaic was first reported in soft red 

winter wheat in Madison County, IL, during April 1919 by G. 

R. Lyman in a report on "take-all" in the United States of 

America (Johnson et al. 1924). Farmers in the area believed 

they had observed the disease in wheat for many years. The 

disease was originally called "take-all" because of 

similarity to Australasian take-all (McKinney 1923). 

Another name was "footrot" because the decay that often 

occurred in the base of the culms of infected plants in 

Illinois and Indiana resembled European footrot. After the 

decay at the base of the culms was found to be secondary, 

the name "rosette disease of wheat" was used to describe the 

characteristic stunting and proliferation of tillers that 

occurred in spring in infected plants (McKinney 1923). 

Intercellular bodies formed in plants infected with the 

rosette disease resembled those found in plants with a leaf 

mottling disease. Rosetting was never found without leaf 

mottling so McKinney, et al. (1923) suggested that the 

rosette disease might be a severe case of the mosaic-like 

3 
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leaf mottle disease. The most current name for this disease 

has been proposed by The American Phytopathological Society: 

wheat soilborne mosaic (WSBM: Hansing 1985). 

Susceptibility to WSBM is found in all cereal species 

of the tribe Hordeae (McKinney 1930). Also, the disease and 

its causal agent appear to be spreading. East of the 

Mississippi, the disease was reported in Florida in 1974 

(Kucharek and Walker 1974). Only the yellow strain has been 

reported on the Great Plains (Sill 1958). WSBM was reported 

in north-central Oklahoma in 1952, (Wadsworth and Young 

1953) in Texas in 1984, (Toler 1984) and also has been 

reported in Argentina, Brazil, Egypt, Italy, Japan (Wiese 

1977) and China (Xu, et al. 1984). 

The Virus 

The discovery of inclusion bodies in the cells of 

infected plants led to the identification of a viral causal 

agent. McKinney et al. (1923) suggested the rosette disease 

of wheat might be a severe case of mosaic-like leaf mottling 

of wheat. McKinney (1948) later found that some "strains" 

(cultigens) of wheat did not rosette when infected by a 

rosetting strain of the virus, and some virus isolates did 

not cause rosetting when infecting a hos~ with rosetting 

capability. The rosetting strain was designated the ''green 

strain" because infected lamina and sheaths were often dark 

blue-green. The non-rosetting strain was designated the 



"yellow strain" because infected wheat lamina and sheaths 

exhibited a pale green or yellow mottling (McKinney 1930). 

5 

A green strain and a yellow strain are also found in Japan. 

Only the Japanese strains infect tobacco and only the 

American strains infect spinach {Sill 1958, Tsuchizaki, et 

al. 1973, Wada and Fukano 1937). None of the WSBMV 

isolates found west of the Mississippi River caused 

rosetting when inoculated to rosette-susceptible wheat (Sill 

1958). Mckinney et al. (1944) renamed the viral strains 

"mosaic-rosette ·virus" (Marmor tritici var. typicum McK.) 

and "yellow-mosaic virus" (M. tritici var. fulvum McK.). 

The common name for the virus proposed by The American 

Phytopathological Society is "wheat soilborne mosaic virus" 

(WSBMV: Hansing 1985). 

WSBMV consists of two separate particles (virions) 

with single-stranded RNA and a single species of capsid 

protein to produce two rigid, rods. Both rods are 20 nm 

wide, have flush ends, and are morphologically similar to 

tobacco mosaic, tobacco rattle, and barley stripe mosaic 

viruses (Brakke 1971). One rod is 300 nm long and controls 

infectivity and viral concentration. The second rod is 110-

160 nm long and controls rod length, serotype, and inclusion 

body type {Tsuchizaki, et al. 1975). Both rods are 

necessary for infection, {Shirako and Brakke 1984a). No 

serological differences have been reported between the short 

and long particles. The Japanese strains and the American 
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strains have antigens in common and complementation between 

virions of the two strains occurs (Tsuchizaki, et al. 1975). 

The sedimentation coefficients are 219S for the long rod and 

1775-1595 for the short rod (Brakke 1977). WSBMV is 

thermally inactivated in sap after 10 min at 60-65 °C. The 

dilution end point is 10~-10~, viruliferous sap remains 

infective at 15 °C for three months, and the virus remained 

infective after being stored 11 years in desiccated wheat 

leaves (McKinney et al. 1965). The virus also has been 

shown to survive on montmorillonite-containing kaolin and 

bentonite clays for up to 8 months when kept at 10 - 15 °C. 

(Miyamoto 1959). 

An apparent lack of stability is the reason for the 

range in size of the short virion. The long particles, 281-

300 nm are designated lL while particles ranging 138-160 nm 

are designated 0.5L, 111-137 nm are 0.4L, and 92-110 nm are 

0.35L. The 0.4L particle is formed by a spontaneous 

deletion mutation of the 0.5L particle, and the 0.35L 

particles appear to be formed by spontaneous deletions of 

both the 0.5L and the 0.4L particles (Shirako and Brakke 

1984a-b, Hsu and Brakke 1985a). A positive correlation was 

found between disease severity and the amount of virions 

smaller than 0.5L (Shirako and Brakke 1984a). The a.SL 

particle is dominant in early spring but the shorter 

particles become dominant as spring progresses (Shirako and 

Brakke 1984b) . Variation in disease between fields can not 
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be explained by variation in short virion sizes nor the 

propensity for deletion mutations (Hsu and Brakke 1985b). 

Cell-free translation of the lL virion (RNA I) with rabbit 

reticulocyte lysates results in proteins of 180K, 152K, 

135K, SOK, and 45K molecular weights. The maximum molecular 

weight protein possible from an RNA this size (6700 

nucleotide residues) is 228K, thus, no read-through proteins 

are being produced. RNA from the short virion (RNA II) has 

no genome-linked proteins nor a cap ~tructure at the 5' end 

(Shirako and Brakke 1984a). Cell-free translation products 

of the 0.5L RNA have molecular weights of 90K, 28K, and 

19.7K. Cell-free translation products of the 0.4L RNA have 

molecular weights of 66K, 28K, and 19.7K while products of 

the 0.35L RNA are 55K, 28K, and 19.7K in molecular weight 

(Hsu and Brakke 1985c). Thus, all three lengths of RNA II 

code for a 19.7K protein that is thought to be the coat 

protein (Hsu and Brakke 1985c, Shirako and Brakke 1984a, b). 

Immunoglobulin G (IgG) against WSBMV reacts with all 

products of RNA II, but none of the products of RNA I. Hsu 

and Brakke (1985c) conclude that the 19.7K sequence is 

included within the 28K, 55K, 66K, and 90K products. The 

RNA from 0.5L and 0.35L show heterogeneity at the 5' end, 

(Hsu and Brakke 1985a) while the reading frames for the 90K, 

66K, and 55K products end at the same place near the 3' end 

of RNA II. Thus, Hsu and Brakke (1985c) concluded that the 

spontaneous deletions occurred at the 3 1 end of RNA II. 
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McKinney, et al. (1923) found intracellular inclusion 

bodies (also called "X-bodies") associated with WSBM. 

Crystalline aggregates of virions in parallel arrangement 

were found in cells infected with Japanese isolates of WSBMV 

but not in cells infected with American isolates (Hiboyuki, 

et al. 1974). Tsuchizaki, et al. (1973) reported a 

correlation between particle length of the short virion and 

type of inclusion body formed~ The 0.5L virion was 

associated with type A inclusion bodies with clear margins 

and vacuoles attributed to the green strain of WSBM. The 

0.35L virion was associated with the small type B inclusion 

bodies with rough margins attributed with the yellow strain 

of WSBM. The 0.4L virion was associated with the irregular 

type M inclusion bodies attributed to composite infections 

by both WSBM strains (Wada and Fukano 1937). Hsu and Brakke 

(1985c) suggest that the 90K, 66K, and 55K products for the 

three RNA IIs are the source of variation in inclusion body 

type. However, these inclusion bodies have been classified 

by light microscopy and types of structures identified in 

this manner have not been shown to correlate well with the 

types of fine structures observed by electron microscopy 

(Hiboyuki, et a 1. 19T4) . 

WSBMV and tobacco mosaic virus (TMV) was thought to be 

related because they cross-react in microprecipitin, and in 

ouchterlony agar double-diffusion serological tests. Also, 

infectivity of TMV on Pinto bean is reduced by 80% by the 
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addition of WSBMV (Powell 1976) . Thus, Gibbs (1977) 

included WSBMV in the tobamovirus group. However, 

hybridization was not found to occur between WSBMV cDNA and 

TMV RNA (Hsu and Brakke 1985). Shirako and Brakke (1984a) 

propose a new virus group, the fungus-borne rod-shaped virus 

group, or "furoviruses". Criteria for furoviruses are: 1) 

the virus genome be divided, 2) the viral particles be 

rigid, hollow rods, and 3) the virus be transmitted by a 

plasmodiophoraceous fungus. Other furoviruses are beet 

yellow vein virus, Nicotiana velutina mosaic virus, peanut 

clumping virus, potato mop top and Hypochoeris mosaic virus. 

The Vector 

The soilborne plasmodiophoraceous fungus, Polymyxa 

graminis Ledingham, was first suggested as a vector for 

WSBMV by Linford and McKinney (1954) because of the 

association between fungal-infected roots and viral-infected 

plants. Fungal zoospores from infected plants were shown to 

transmit the virus to healthy plants. Rao (1968) obtained 

successful transmission of WSBMV from powdered roots with a 

treatment of soil extracts or kinetin in distilled water. 

Powdered roots were incubated at 28 °C for two months prior 

to a pre-inoculation incubation at 20 °C. Non-viruliferous 

isolates of £. graminis were made viruliferous by 

parasitizing wheat infected with WSBMV, while viruliferous 

isolates were made non-virulif erous by maintenance on 
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Trifolium incarnatum (Canova 1966). However, non­

viruliferous zoospores of £. graminis acquired little if any 

virus from exposure to purified virus. Neither repeated low 

speed centrifugation of zoospores nor treating the zoospores 

and resting spores with antisera, acid, or alkali eliminated 

viral transmission. These results suggest that virions are 

either attached to the surface of zoospores in such a~way 

as to make the virions impervious to inactivation by 

antisera, acid or alkali, or are carried within the zoospore 

(Rao and Brakke 1969, Campbell 1979). However, Langenberg 

and Giunchedi (1982) used electron microscopy to observe the 

association between virus and vector, and, although the 

virus was seen in close contact with the plasmodia of £. 

graminis, the fungal cytoplasmic contents were so densely 

stained that the virus was not 3een inside zoospores, 

plasmodia, zoosporangia or cystosori. Most contact between 

virions and vector was an end-on attachment of virions to 

the outer membrane of the plasmodium, however Langenberg and 

Giunchedi conceded that this arrangement may have been an 

artifact of fixation. 

Plasmodia in the epidermal and cortical cells develop 

into zoosporangia or cystosori. Cystogenous plasmodia are 

amoeboid and lack an outer membrane. Mature cystosori 

cleave into cysts which are 4-7 µm in diameter with a 

hyaline inner wall and a yellowish-brown to dark brown, 

smooth outer wall. Cysts, or resting spores, are the 
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survival structures of the fungus and germinate to produce 

primary zoospores which directly penetrate host root hairs 

and other epidermal cells (Ledingham 1939, Karling 1968, Rao 

1968). Infection occurs most frequently at a soil-depth of 

3 cm but never below 15 cm (Ikata and Kawai 1938). 

Zoosporangia may become as large as 40 x 200 µm and are 

lobed, tubular and somewhat "zigzag" shaped. At maturity, 

zoosporangia are enveloped by thin membranes or walls. 

Zoosporangia produce one or more long exit tubes through 

which motile, secondary zoospores emerge. These 

biflagellate zoospores average 4.2 µm in dia. (Barr 1979, 

Ledingham 1939, Karling 1968). Mature zoosporangia appear 

at 4-6 days after inoculation but do not become abundant 

until 8-9 days after inoculation. At this time, infected 

plants yield infectious root washing although visible 

symptoms are not yet expressed (Rao 1968). Ledingham (1939) 

reported that secondary zoospores swam actively for 2-3 hr 

then lost their flagella and became amoeboid before 

eventually infecting host cells. Satisfactory methods to 

examine fungal structures using lactophenol with acid 

fuchsin have been developed (Rao 1968). 

Roots of wheat, barley, rye, hairy bromegrass, pigweed 

and lambsquarters are parasitized by ~. graminis (Barr 1979) 

but WSBMV symptoms have been reported only on the grasses 

(Wiese 1977). The 10 min thermal death point for cystosori 



is 45-50 °C, and for zoospores, 30-35 °C (Brakke and Estes 

1967) . 

Inoculation 

12 

WSBMV is not seed transmitted (Brakke 1971). Soil 

debris collected in spring and summer is not as infective as 

soil debris collected in autumn and winter (Brakke and Rao 

1967, Brakke and Estes 1967). Soaking soil debris or 

infected roots increases transmission of WSBMV. The best 

buffer for zoospore release and virus transmission is 0.01 M 

potassium phosphate, pH 7.6 (Brakke and Estes 1967). Source 

plants may be of any age and are better sources of inoculum 

if maintained in soil/sand (1:1 v/v) rather than vermiculite 

(Brakke and Rao 1967). Conditions for soaking the inoculum 

source for optimum release of zoospores are 20 min at 25 °C 

(Brakke, et al. 1965). This water can then be used to flood 

flats of seedlings (Backus and Niblett 1984, Hunger and 

Sherwood 1985a) or to soak seedling roots before 

transplanting into soil (Brakke et al. 1965, Rao 1969). The 

temperature and time for soaking seedling roots for optimum 

infection is 24 hr at 5 - 10 °C (Brakke et al. 1965). 

Sap from foliage showing symptoms of WSBM and 

expressed into a potassium phosphate or sodium sulfate 

buffer can be used as inoculum. Inoculum may be wipea onto 

roots or foliage with a pad of cheese cloth and an abrasive 

like carborundum, corundum, or diatomaceous earth (McKinney 
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1948, McKinney, et al. 1957, Rao and Brakke 1970, Shirako 

and Brakke 1984a-b, Hsu and Brakke 1985a-c). However, 

relative to other mosaic viruses, transmission of WSBMV in 

this manner is difficult. Sap solutions may be applied to 

foliage with an artist's airbrush resulting in viral 

transmission (Pring and Gumpf 1970). Maize streak virus is 

not successfully transmitted mechanically except through 

electro-endosmosis (von Wechmar and Polson 1980). Perhaps 

electro-endosmosis would also be effective with WSBMV. 

WSBMV/£. graminis cultures may be maintained in dried and 

powdered roots (Rao 1968), or in live plants through serial 

transfer throuqh root washings (Brakke and Rao 1967, Hunger 

and Sherwood 1985a) . 

Infection 

WSBMV is presumed to be released into host roots 

following infection of seedling roots by £. graminis during 

cool, wet periods primarily in the autumn (Brakke and Estes 

1967, Rao and Brakke 1969). In the field, the virus may be 

found in the roots within 2-3 weeks after planting. 

Although mottling of the leaves may become visible in 

susceptible cultivars as early as November, symptoms 

generally are not seen until spring (Brakke, et al 1965). 

Late-maturing susceptible cultivars appear to recover from 

infection in late spring (McKinney 1923, Eversmeyer, et al. 

1983) . 
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The yellow strain of Japan produced the most severe 

mosaic at 15 °C, moderately severe mosaic at 10 °c, 

inconspicuous mosaic at 20 °C, and imperceptible mosaic at 

25 °C (Ikata and Kawai 1938). Using an isolate of American 

yellow strain from Nebraska in the greenhouse, a mild mosaic 

was shown to develop at 20-25 °C in two weeks after 

inoculation. At 15 °C, symptoms were more severe but did 

not develope until three weeks following inoculation 

(Brakke, et al. 1965). Eversmeyer et al. (1983) theorized 

.that temperatures below 15 °C favor viral increase while 

temperatures above 15 °C favor wheat growth. 

Both grain and forage yields may be reduced as much as 

50% in hard red winter wheat (Wadsworth and Young 1953, 

Young and Williams 1981, Campbell, et al. 1975), and grain 

losses of 80.74% have been reported for soft red winter 

wheat (Bever and Pendleton 1954), and 70% for some Italian 

durum cultivars (Vallega and Rubies-Autonell 1985). WSBM 

reduces grain yield by reducing the number of kernels, 

kernel weight, test weight, plant height, and increasing 

weediness in the field (Campbell, et al. 1975, Vallega and 

Rubies-Autonell 1985). Finney and Sill (1963) reported that 

WSBMV did not significantly alter the mixing properties or 

protein quality of flour produced from the grain of diseased 

plants. However, protein quantity, ash content, and water 

absorption increased. 
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Control 

Late-seeding may lower disease severity but it also 

increases vulnerability to other diseases and to winterkill 

(Johnson, et al. 1924). Infectious soils lost infectivity 

after 10 min at 60 °C (Johnson 1942), or after treatment 

with formaldehyde, chloropicrin, carbon disulfide, 

dichloropropene-dichloropropane, ethyl alcohol or by 

autoclaving. Toluene did not reduce infectivity of soil 

(McKinney, et al. 1957). Fumigation with methyl bromide and 

chloropicrin increased wheat yields (Eversmeyer et al. 

1983), and application of nitrogen reduced the severity of 

visual symptoms and improved yields (Williams and Young 

1976). Crop rotation aids in disease control (Wiese 1977). 

However, attempts to control WSBM by cultural practices have 

been inefficient or impractical, (Williams and Young 1976, 

Modawi, et al. 1982). Thus, resistant cultivars has been 

the recommended method of control (McKinney 1923, Johnson, 

et al. 1924, Williams and Young 1976, Modawi, et al. 1982). 

Resistance 

Assessment for resistance. Originally, non-rosetting 

cultivars were considered resistant, (Webb, et al. 1923) but 

more recently, disease resistance is indicated by a 

reduction in the incidence and severity of symptoms 

(McKinney 1930, Campbell, et al. 1975). However, comparable 
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populations of cystosori of £. graminis are formed in roots 

of field resistant and susceptible cultivars (Larsen, et al. 

1985), and both types of cultivars are susceptible to WSBM 

when mechanically inoculated (Mckinney 1948, Larsen, et al. 

1985). Larsen, et al. (1985) reported finding the earliest 

onset of visual symptoms and the greatest amount of stunting 

in field resistant cultivars that have been mechanically 

inoculated. Single, dominant genes for resistance to WSBM 

have been reported (Dubey, et al. 1970, Modawi, et al. 1982, 

·Merkle and Smith 1983) but no qualitative resistance (situ 

Kegler and Meyer: 1987) has been reported. 

Campbell, et al. (1975) reported that yield loss due 

to WSBMV could be determined by the formula: 

L = (X - X.) - (~ - R,·) X n I 4 '11 

where Xn is the yield of susceptible cv. X in a disease-free 

soil, Xi is the yield of cv. X in an WSBMV infested soil, Rn 

is the average yield of all resistant cultivars in the 

disease-free soil, and Ri is the average yield of all 

resistant cultivars in WSBMV infested soil. 

Visual assessment of disease symptoms is frequently 

confounded by various factors. Plants in the greenhouse and 

growth chambers exhibit misleading chlorotic streaking 

(Brakke, et al. 1965, Hunger and Sherwood 1985a). Cultigens 

normally vary in growth habits including relative heights 

and color. Necrosis and stunting can be due to £. graminis, 
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(Teakle, 1969) other pathogens, drought and frost damage. 

Cultigens susceptible to WSBM are often also susceptible to 

winterkill (Campbell, et al. 1975). This mimicry of visual 

symptoms of WSBM by factors other than WSBMV presents a need 

to confirm visual assessments in programs breeding for 

resistance to WSBM. 

Other methods of assessing WSBM have been proposed. 

Aerial photographs using Kodachrome and Ektachrome films 

have been used for surveying the disease. However, aerial 

infrared photography does not allow for differentiation 

between levels of disease severity (Young and Williams 

1981). Assessment with transmission electron microscopy is 

considered unsuitable because the scarcity of virions found 

in leaves which exhibit WSBM symptoms leads to inconsistent 

results. Extractions and purifications of the virions for 

relative concentration determinations are possible but 

tedious (Hunger and Sherwood 1985a). 

Enzyme-linked immunosorbent assay (ELISA} has been used 

in conjunction with visual assessment to verify the presence 

of WSBMV, but during late spring ELISA values (absorbance at 

405 nm) from resistant cultivars increase to levels 

comparable to ELISA values in susceptible cultivars (Hunger 

and Sherwood 1985b) . ELISA readings did not correlate well 

with yield reductions in the same field trial (Hunger and 

Sherwood 1989). This may be due to ELISA measuring capsid 

protein which may be productf9n without virion assemblage. 
r!.c 
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For evaluations of resistance, plant samples are taken at 

various times during the growing season. If these samples 

are analyzed at the time of each sampling, reagents age or 

1re replaced and laboratory environmental conditions vary 

with each analysis. These variations could result in 

differences in ELISA readings that are unrelated to 

treatment effects. In order to reduce statistical error of 

this nature, all plant samples frequently are stored and 

analyzed at the same time. However, duration of storage 

then becomes an experimental variable. For example, Adams 

(1978) demonstrated a decline in plum pox virus antigen 

during the first 4 of 13 months of storage at -14 °C. 

Torrance and Dolby, (1984) found reductions in virus antigen 

titres of prunus necrotic ringspot, prune dwarf virus and 

apple mosaic in leaves stored for 12 weeks at -20 °C. 

Furthermore, virus antigen titres did not decrease 

proportionally with duration of storage. Decline of 

detectable antigen of lettuce mosaic virus in lettuce, 

cucumber mosaic virus in marrow (Ward et al. 1987), potato 

leafroll virus and potato virus A, s, X, and Y in potato 

(Singh and Somerville 1983) depended, in part, upon 

temperature of storage and physical condition of the sample. 

Singh and Somerville also found that the common procedure of 

storing leaves in plastic bags at -20 °C resulted in 50% and 

greater losses in virus antigen after 4 days as compared to 

fresh leaves. Dehydration also occurs in leaf tissue frozen 
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for extended periods of time. Thus, leaf samples collected 

and frozen at the end of a growing season contain a higher 

percentage of moisture than samples collected at the 

beginning of the season. This difference in water weight 

can affect the resulting ELISA values because tissue samples 

are standardized by weight. These variations in ELISA 

values may not appreciably affect a qualitative evaluation 

but could render a quantitative evaluation meaningless. 

Sources of Resistance. McKinney (1930) demonstrated that 

ali cereal species, including eight Triticum spp. were 

susceptible to WSBM. However, potential sources of 

resistance were observed in every species tested. Some 

cultivars were less susceptible than others and none showed 

homozygosity for this trait. The spring habit wheats were 

susceptible only when planted in the fall. Miyake (1938) 

reported that resistance to both the green and the yellow 

strains of WSBMV in Japan was due to a single, dominant 

allele. Nakagawa, et al. (1959) found three genes for 

resistance to both green mosaic and yellow mosaic of Japan 

in cvs. Norin 45, Kinki 54, and Norin 61. Genes H and M 

determine susceptibility while A inhibits H. Shaalan, et 

al. (1966) reported finding 2 genes for resistance to the 

WSBMV strain in Kansas in cv. Ottawa. The alleles for 

resistance demonstrated partial dominance over the alleles 

for susceptibility. Dubey, et al. (1970) suggested the 
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presence of one gene with three alleles for host resistance 

to the U.S.A. strains. The allele imparting susceptibility 

to both mosaic and rosetting (rmr) was recessive to the 

other alleles. The allele imparting resistance to both 

mosaic and rosetting (Rmr) was dominant over the other two 

alleles. The allele imparting resistance to rosetting with 

susceptibility to mosaic (rm) was recessive to Rmr but 

dominant over rmr. Modawi, et al. (1982) reported finding a 

single, dominant resistance gene in cvs. Shawnee, Oasis and 

in developmental lines KS73148 and KS73256. Vallega and 

Rubies-Autonell (1985) reported WSBM of Triticum durum in 

Central Italy. The older cultivars of Italy were resistant 

to WSBM, but many of the more recently developed, higher­

yielding, semidwarf types were extremely susceptible. 

Williams (1986) reported the following hard red winter 

wheat cultivars as resistant to WSBM: cvs. Newton, Rocky, 

Plainsman V, Chanute, Pronto, and Satanta. cvs. Centurk '78 

and Century 2148 were reported as tolerant. Willis and 

Brooks (1988) reported the following wheat cultivars as 

resistant to WSBM: cvs. Abilene, Arkan, Caldwell, Carson, 

DeLange 7837, DeLange 7846, Dodge, GB 2148, Hart, Hawk, KS83 

1374, Mesa, McNair 1003, Mustang, Newton, Norkan, Pioneer 

2154, Pioneer 2157, Pioneer 2165, Pioneer 2172, Plainsman V, 

Stallion, Tam 108, Thunderbird, Trailblazer, Victory, and 

Wrangler. 
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Plant samples, collected at various times during a 

growing season, are frequently stored prior to evaluating 

resistance to wheat soilborne mosaic virus (WSBMV) by 

enzyme-linked immunosorbent assay (ELISA). Leaves of winter 

wheat cvs. Sage and Vona, showing symptoms of WSBMV 

infection, were cut in half along the midrib. Each h-·~f was 

either: 1) refrigerated at 4 °C, 2) frozen at -20 °C, 3) 

frozen at -70 °C, or 4) desiccated with CaC12 • Relative 

virus antigen titres were evaluated for individual leaf 
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halves by ELISA. ELISA absorbance means from desiccated 

leaf halves were consistently higher than absorbance means 

from corresponding leaf halves that had been frozen. This 

distinction suggests that virus antigen decreases during 

freezing but is retained during chemical desiccation. All 4 

methods of storage were found to be suitable for short-term 

storage prior to qualitative evaluations by ELISA, but 

chemical desiccation was the superior method for long-term 

storage and for storage of foliar samples prior to 

quantitative evaluations by ELISA. 

Enzyme-linked immunosorbent assay (ELISA) is used to 

evaluate host resistance to wheat soilborne mosaic virus 

(WSBMV: Hunger and Sherwood 1985). For evaluations of 

resistance, plant samples are taken at various times during 

the growing season. When samples are analyzed at the time 

of each sampling, evaluation and environmental conditions in 

the laboratory vary with each analysis. These alterations 

could result in disparities in ELISA readings that are 

unrelated to treatment effects. In order to reduce 

statistical error due to these variables, all plant samples 

are frequently stored and analyzed at the same time. 

However, duration of storage then becomes an experimental 

variable. For example, Adams (1978) demonstrated a decline 

in plum pox virus antigen during the first 4 of 13 months of 

storage at -14 °C. Torrance and Dolby (1984) found 
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reductions in virus antigen titres of prunus necrotic 

ringspot virus, prune dwarf virus and apple mosaic virus in 

leaves stored for 12 weeks at -20 °C. Furthermore, virus 

antigen titres did not decrease proportionally with duration 

of storage. Decline of detectable antigen of lettuce mosaic 

virus in lettuce, cucumber mosaic virus in marrow (Ward et 

al. 1987), and potato leafroll virus, potato virus A, s, X, 

and Y in potato (Singh and Somerville 1983) was partially 

dependent upon temperature of storage and physical condition 

of the sample. Singh and Somerville also found that the 

common procedure of storing leaves in plastic bags at -20 °C 

resulted in losses of 50% (or greater) of the amount of 

virus antigen after 4 days as compared with fresh leaves. 

Dehydration also occurs in leaf tissue frozen for extended 

periods of time. Thus, leaf samples collected and frozen at 

the end of a growing season contain a higher percentage of 

moisture than samples collected at the beginning of the 

season. This change in water weight can affect the 

resulting ELISA values because tissue samples are 

standardized by weight. These inconsistencies in ELISA 

values may not appreciably affect a qualitative evaluation 

but could render a quantitative evaluation meaningless. 

A common method of storage in which virus infectivity 

is maintained is chemical desiccation of leaf material. 

WSBMV remained infective after being stored 11 years in 

desiccated wheat leaves (McKinney et al. 1965). If 
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infectivity is maintained, then reactions to ELISA should be 

maintained. The present study assessed chemical desiccation 

as a method of storing winter wheat foliage naturally 

infected with WSBMV prior to evaluation with ELISA. 

MATERIALS AND METHODS 

Plant tissue. Hard red winter wheat (Triticum aestivum 

L.) cvs. Sage and Vona are susceptible to WSBMV and were 

planted at 5 g per 3.0 m row, in 5 row plots at a location 

with a history of severe WSBMV infestation near Stillwater, 

Oklahoma. Several times from January to March, 1987 and 

1988, leaves showing visual symptoms of WSBMV were collected 

from these field plots. Individual leaves were cut in half 

along the midrib and each half was individually weighed. 

Only leaves with a fresh weight difference of less than 12 

mg (1987) and 5 mg (1988) between the resulting halves were 

used. Each leaf half was either: 1) dried at room 

temperature (20-25 °C) in paper coin envelopes in racks in a 

desiccator with CaC12, 2) refrigerated at 4 °C in small 

medicine cups for 3-5 days, 3) frozen in small medicine cups 

in a frost-free freezer at -20 °C, or 4) frozen in small 

medicine cups at -70 °C (1988 only). Each experiment 

consisted of a pair of storage treatments on typically 8 or 

16 leaves. Medicine cups for each experiment-treatment 

group were wrapped in polyethylene before storage. Leaf 

halves were stored a minimum of 3 days (the minimum time 

required for desiccation). When one set of leaf halves were 



refrigerated, neither set of leaf halves were stored no 

longer than 5 days to avoid fungal growth and decay. 

Desiccated leaf halves were reweighed to determine a dry 

weight for the sample and percentage weight loss. 
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Crude sap extracts were produced by grinding each leaf 

half with a mortar and pestle and 1 ml of sample buffer 

(phosphate buffered saline with 0.05% Tween 20 and 2% 

polyvinyl pyrrolidone) and then adding sample buff er to 

produce a final 1:100 (w/v) dilution. To correct for 

dehydration during storage, fresh weights were used for the 

refrigerated and frozen samples. Fresh weights were also 

used for desiccated leaf halves in some experiments (DESF), 

while dry weights were used for the other desiccated leaf 

halves (DESO). 

Blind checks of the storage treatments were performed. 

One person cut and weighed leaves. A second person then 

labelled the leaf halves in such a manner that matching both 

halves of a leaf during analysis would be impossible without 

the key. Rematching of leaf halves was performed during the 

numerical analyses that followed the ELISA. 

ELISA procedures. Rabbit polyclonal antiserum to WSBMV 

was prepared as previously reported (Bahrani et al. 1988). 

ELISA was performed using standard flat bottom plates by the 

double antibody sandwich as described previously (BahYani et 

al. 1988) except samples were applied at 100 µl per well 

because of the limited amount of sap extracted from single 
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leaf halves. In all assays, 5 wells per leaf half were used 

on each of 2 ELISA plates providing a total of 10 wells (and 

10 ELISA values) per leaf half. 

In 1987, the mean absorbance of 12 wells per plate with 

sap extracted from virus-free leaves of cv. Sage raised in a 

glasshouse were used as the negative check to determine 

background absorbance for each plate. Another four wells 

contained sap from cv. Sage that was known to contain high 

titres of virus antigen as a positive check. The alkaline 

phosphatase labeled IgG conjugate was used at a 1:200 

dilution. Absorbance values were measured at 405 nm with a 

EIA READER (Model EL-307, Bio-Tek Instruments, Inc., 

Laboratory Division, Burlington, VT 05401, U.S.A.). The 

positive check wells were providing absorbance readings of 

1.600 at 2-4 min after the addition of the substrate. 

Reactions were then stopped by the addition of 50 µl of 5 M 

NaOH to each well in the plate resulting in ELISA values 

approaching the 2.000 limit of the ELISA reader. In 1988, 

16 negative check wells were used with the samples being 

used as positive check. A conjugate dilution of 1:1600 was 

used, and plates were incubated 17 min after the addition of 

substrate prior to adding the NaOH. 

RESULTS AND CONCLUSIONS 

All four methods of storage were found to be suitable 

for qualitative evaluation as indicated by moderate to high 

ELISA means obtained for each storage treatment within 
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paired experiments. ELISA absorbance means obtained when 

both leaf halves were stored in the same manner (data not 

shown) were not found to differ significantly (P<0.05). 

Thus, variation between leaf halves did not influence 

resulting means when leaf halves were stored differently. 

Absorbance means and the difference between mean pairs are 

given in Table 1. Mean differences for treatment pairs are 

illustrated in Fig. 1. 

Changes in reagents, laboratory conditions, and 

maturity of host plants at time of sampling resulted in 

significant (P<0.05) diversity in mean differences between 

paired experiments, (Table 1; Experiments la-c, 4a-b, 6a-b, 

7a-b, 8a-b) . This diversity illustrates the need to analyze 

all samples at the same time. However, this inconsistency 

was a matter of degree and treatment effects within paired 

experiments remained. 

ELISA absorbances were significantly lower (P<0.05) for 

leaf halves frozen at -20 °C, than for corresponding leaf 

halves stored by any other method (Table 1; Experiments 

la-c, 5a-7b and Fig. 1). These distinctions in treatment 

effect supported previous findings in other disease systems 

(Singh and Somerville 1983, and Ward et al. 1987). Singh 

and Somerville (1983) suggested that membrane disruption by 

ice crystals which formed during slow freezing at -20 c 

resulted in release of host enzymes that degrade virus 

antigen. Although the same, if not greater, damage probably 



occurred during quick freezing at -70 °C (Levitt 1980a), 

host enzymes apparently did not accomplish similar amounts 

of degradation. 
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Use of dry weights when preparing desiccated leaf 

tissue for ELISA (DESO) consistently provided significantly 

greater (P<0.05) ELISA means than the use of fresh weights 

(DESF). (Table l; Experiments 4a-b and Fig. 1). This is 

due to the concentration of virus antigen that occurs during 

desiccation, i.e. 0.1 g of fresh tissue would yield less 

.virus than 0.1 g of the same tissue when desiccated because 

67% of the fresh weight was water. 

ELISA means for desiccated leaf halves (DESO and DESF) 

were significantly higher (P<0.05) than the ELISA means for 

corresponding frozen leaf halves (Table l; Experiments la-c, 

2a-c, 5a-b and 9). Although membrane and protein integrity 

is affected by desiccation (Levitt 1980b), these data 

suggest that host enzymes that degrade virus antigen during 

and/or following freezing are not released during 

desiccation. This hypothesis is further supported by the 

lack of appreciable differences between DESF ELISA means and 

CHIL ELISA means (Table 1; Experiments 9a-b). Variation in 

the data for Experiment 8b was apparently low enough that 

the ELISA mean 1.468 was statistically different from 1.413. 

However, this is not an appreciable difference in most ELISA 

data. 
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In a healthy plant cell, hydrophilic regions of plant 

proteins interact with the ionic water molecules and ions in 

the cytosol such that the hydrophilic regions remain exposed 

and hydrophobic regions are buried within the folds of the 

protein structure or within the hydrophobic region of cell 

membranes. During dehydration, changes occur in the plant 

cytosol that cause plant membranous proteins to separate 

from the membranes and causes these and other proteins to 

lose their integrity. The proteins essentially are turned 

inside-out as hydrophobic regions become exposed and 

hydrophilic regions aggregate internally. These proteins 

are often denatured permanently and aggregate by the 

formation of sulphur-sulphur bonds (Levitt 1980b) . 

Intact capsids of tobacco mosaic virus are thought to 

be stabilized by hydrophobic bonds more than by 

electrovalent or other types of bonds (Gibbs and Harrison 

1976). Possibly the same is true of WSBMV. However, the 

capsid does not appear to lose integrity as a plant protein 

does but instead appears to remain intact during 

dehydration. Proteins of drought-hardened, frost-hardened 

and drought-tolerant plants are modified to reduce or avoid 

damage due to dehydration (Levitt 1980a and b). Since WSBMV 

retains infectivity and serological properties after 

desiccation, perhaps the capsid proteins are similarly 

modified. 
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There are some special considerations to using chemical 

desiccation: 1) The loss in water weight should be 

accounted for, i.e. obtain and use fresh weights or 

desiccate all samples before analysis. 2) Samples should be 

reasonably small and well spaced in the desiccator to allow 

aeration. Otherwise, the centres of large samples or tight 

bundles of samples may start to decay before desiccation. 

Leaf halves stored at -20 °C in a frost-free freezer started 

to smell of decay after 2-3 months, and after 6 months for 

whole leaves. However, leaf halves were stored in a 

desiccator at room temperature (20-25 °C) for 18 months 

without showing signs of decay or fungal growth. 3) Frozen 

samples must be assayed immediately upon removal from the 

freezer because the lysing of host membranes that occurs 

during freezing results in an eventual release of enzymes 

that degrade virus antigen. These enzymes do not appear to 

be released during desiccation. Therefore, virus antigen 

titres in desiccated leaf tissue should be stable 

indefinitely. 

Refrigeration at 4 °C, freezing at -20 °C or -70 °C, 

and chemical desiccation at room temperature were all found 

to be suitable methods for short-term (0-5 days) storage of 

leaf tissue infected with WSBMV prior to analysis by ELISA. 

Freezing leaf tissue and chemical desiccation are sui~able 

for medium-term (0-3 months) storage but chemical 

desiccation is a superior method for long-term storage. All 
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4 methods of storage are suitable for qualitative evaluation 

by ELISA but chemical desiccation is a superior method for 

storage of leaf tissue prior to quantitative evaluation by 

ELISA. 
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Table 1. Comparisons of enzyme-liked immunosorbent assay 
(ELISA) absorbance (A4~nm) means from paired experiments on 
leaves of winter wheat cv. Sage and Vona infected with wheat 
soilborne mosaic virus. 

EXPERIMENT 

#1a 

#1b 

#1c 

#2a 

#2b 

#2c 

#3a 

#3b 

#4a 

#4b 

TREATMENT 
PA!Rw 

T1=DESD 
T2=FR20 

T1 =DESO 
T2=FR20 

T1=DESD 
T2=FR20 

T1=DESD 
T2=FR70 

T1=DESD 
T2=FR70 

T1=DESD 
T2=FR70 

T1=DESD 
T2=CHIL 

T1=DESD 
T2=CHIL 

T1=DESD 
T2=DESF 

T1=DESD 
T2=DESF 

ELISA VALUE 
~x MEMJsY T 1-T22 EXPERIMENT 

6 1.708 * #Sa 
1.406 0.302 ab 

7 1.758 * #Sb 
1.S84 0.174 a 

8 1. 94S * 
1.393 O.S51 b #6a 

8 0.908 * #6b 
0.565 0.343 a 

8 1.649* 
1.206 0.443 a #7a 

8 1. 727 * 
1.312 0.41S a #?b 

12 1.618* 
1.318 0.300 a #Ba 

8 0.883 * 
0.568 0.315 a #8b 

8 1.417* 
1.054 0.363 a #9 

8 0.835 * 
0.735 0.100 b 

#10 

TREATMENT 
PAIR 

T1=DESF 
T2=FR20 

T1=DESF 
T2=FR20 

T1=CHIL 
T2=FR20 

T1=CHIL 
T2=FR20 

T1=FR70 
T2=FR20 

T1=FR70 
T2=FR20 

T1=DESF 
T2=CHIL 

T1=CHIL 
T2=DESF 

T1=DESF 
T2=FR70 

ELISA VALUE 
~ MEANS T1-T2 

8 1.692 * 
1.081 0.610 a 

8 1.666 * 
0.962 0.704 a 

8 2.097 * 
1.671 0.426 a 

8 1.543 * 
1.294 0.249 b 

8 0.872 * 
0.699 0.173 a 

8 1.590 * 
1.473 0.117 b 

8 1 .225 
1.104 0. 121 a 

8 1.468 * 
1.413 0.055 b 

7 1.550 * 
1.364 0.186 

T1=CHIL 8 
T2=FR70 

1 .674 * 
1.332 0.343 

Leaves were cut in half along the midrib, and each half was treated in one of the following ways: 
DESO -- Leaf halves were desiccated and dry weights used for dilution with buffer (w/v) for ELISA, 
FR20 -- Leaf halves stored at -20 °C; dilution based on fresh weights, FR70 -- Leaf halves stored 
at -70 °C; dilution based on fresh weights, CHIL -- Leaf halves stored at 4 °C; dilution based on 
fresh weights, or DESF -- Leaf halves desiccated; dilution based on fresh weights. 

x Nl.llber of leaves tested. 
Y *denotes a significant difference (Fisher's LSD, P=O.OS) for the within-experiment comparison. 
z Means followed by the same letter are not significantly different (Fisher's LSD, P=0.05) for 

comparisons of experiments within a treatment pair. (ex. Experiment 1b is significantly different 
from Experiment 1c within the DESD/FR20 treatment pair.) 
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Figure 1 . Differences for ELISA absorbance (A4~nm) means 
from paired experiments on leaf halves of winter wheat cvs . 
Sage and Vona infected with WSBMV. 

* Leaves were cut in half along the midrib, and each half 
was treated in one of the following ways: DESO -- Leaf 
halves were desiccated and dry weights used for dilution 
with buffer (w/v) for ELISA, FR20 -- Leaf halves stored at 
-2 0 °C; dilution based on fresh weights, FR70 -- Leaf 
halves stored at -70 °C ; dilution based on fresh weights, 
CHIL -- Leaf halves stored at 4 °C ; dilution based on 
fresh weights, or DESF -- Leaf halves desiccated; dilution 
based on fresh weights. 
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ABSTRACT 

Armitage, c. R., Hunger, R. M., Sherwood, J. L., and Weeks, 

D. L. 1989. Relationship between ontological development 

of hard red winter wheat and expression of resistance to 

wheat soilborne mosaic virus. Plant Disease 73: 

Expression of resistance to wheat soilborne mosaic 

(WSBM) in field plots of susceptible cvs. Sage and Vona, and 

resistant cvs. Newton and Hawk was evaluated by 

polyacrylamide gel electrophoresis, enzyme-linked 

immunosorbent assay (ELISA), and visual assessment. All 

three evaluations showed that cvs. Newton and Hawk became 

infected by wheat soilborne mosaic virus (WSBMV), however, 

virus concentration and disease development differed between 

susceptible and resistant cultivars. Symptoms·were 
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strongest for all cultivars during early jointing in 

February and March. Symptoms waned from April through 

senescence in June. High ELISA values (A405nm) were obtained 

from susceptible cvs. Sage and Vona from February through 

May. However, the highest ELISA values (A405nm) were not 

obtained from resistant cvs. Newton and Hawk until late in 

the growing season, April and May, respectively. The 

highest virus concentrations obtained from cvs. Hawk, Sage 

and Vona were found in April, and from cv. Newton in May. 

The cv. Vona responded similarly when maintained in a growth 

chamber at 20/15 c with a 11/13 hr photoperiod. However, 

the late-season rise in ELISA values (A405nm) in Newton were 

better related to tiller maturity than to sampling date. 

Winter wheat (Triticum aestivum L.) is thought to be 

inoculated with wheat soilborne mosaic virus (WSBMV) 

following infection of seedling roots by the fungal vector 

Polymyxa graminis Ledingham during cool, wet periods 

primarily in the autumn (Brakke and Estes 1967, Rao and 

Brakke 1969). A mottling of the leaves is visible in 

susceptible cultivars as early as November, but generally is 

not seen until spring (Brakke, et al 1965). Disease 

development appears to be favored by early spring 

temperatures below 15 - 17 c, and late-maturing susceptible 

cultivars recover from disease symptoms in late spring 

(Eversmeyer, et al. 1983). 
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Visual assessment of wheat is the most commonly used 

method to evaluate resistance to wheat soilborne mosaic 

(WSBM), but other factors may mimic macroscopic symptoms of 

WSBM. Fertility and other viruses can induce chlorosis 

similar to the mosaic associated with WSBM, (Brakke, et al. 

1965; Hunger and Sherwood, 1985a), and£. graminis may cause 

stunting (Teakle, 1969). This mimicry of symptoms presents 

a need to confirm visual assessments in programs breeding 

for resistance to WSBM. 

Enzyme-linked immunosorbent assay (ELISA) has been used 

in conjunction with visual assessment to verify the presence 

of WSBMV. However, during late spring, ELISA values 

(absorbance at 405 nm) from resistant cultivars often 

increase to levels comparable to ELISA values in susceptible 

cultivars (Hunger and Sherwood, 1985b) . Thus, we previously 

determined that, in north central Oklahoma, February is the 

optimum month to sample wheat for evaluation of resistance 

to WSBM with ELISA (Armitage, et al. 1988). The objective 

of this study was to use symptomology, ELISA, and 

polyacrylamide gel electrophoresis (PAGE) to examine the 

relationships between visual symptoms, capsid production, 

and virion concentration, in order to better understand the 

nature of resistance by hard red winter wheat to WSBM. 



MATERIALS AND METHODS 

Field. Fo.ur replicate field plots of two hard red 

winter wheat cultivars resistant to WSBM (cvs. Hawk and 

Newton) and two susceptible cultivars (cvs. Vona and Sage) 

were planted in a locale with a history of severe WSBM. 
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Each plot consisted of five 3 m rows, solid seeded with 100-

150 kernels per row. Plots were assessed six·times during 

1988, (Feb. 14, March 1 and 24, April 8 and 21, and May 6, 

1988) on a scale of O=no mosaic or stunting, l=mild mosaic 

and little or no stunting, 2=moderate mosaic and stunting, 

and 3=severe mosaic and stunting. 

Leaves were collected at random from the second and 

fourth rows of each plot twelve times, commencing in Nov. 

1987 and ending in May 1988. From each sample, 5 g 

subsamples of 5-8 cm leaf .segments were taken. These leaf 

segments were passed through a Leaf Squeezer (Piedmont 

Machine & Tool Inc., Box 109, Six Mile, SC 29682) and 

expressed sap was rinsed into 50 ml grinding buffer (0.5 M 

sodium borate, pH 9, with 0.001 M EDTA, 1:10 w/v dilution) 

to produce a stock sap solution. 

Virus Extractions. Aliquots of 21 ml were removed from 

each stock sap solution for virus extraction. Virus 

extraction was performed as previously described (Hunger and 

Sherwood 1985a). These viral extracts were stored at -20 C 

until run against standards in PAGE to determine the 

relative absorbance (~~nm) and estimate virus concentration 



as previously described (Hunger and Sherwood 1985a). six 

samples and four standards (20, 10, 5, and 2.5 µg 

virus/well) were applied in 100 µl aliquots to each gel. 
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The twelve samples of a cultivar/replicated plot combination 

were run concurrently, each sample being run on two gels. 

Samples were randomly distributed among the wells of a gel. 

Mean absorbances (A5~nm) were plotted against virus 

concentrations for the standards. This plot was used to 

estimate virus concentration for the samples. 

ELISA Procedures. The remaining stock sap solutions 

were stored at -20 C until all sampling had been completed. 

All sap samples were analyzed concurrently by ELISA. 

Aliquots of stock sap solution were diluted (1:10 v/v) with 

sample buffer, (phosphate buffered saline with 2% polyvinyl­

pyrrolidone and 0.05% Tween 20), applied in 200 µl aliquots 

to five wells on each of two ELISA plates. 

Rabbit polyclonal antiserum was prepared to WSBMV and 

ELISA was performed using standard flat bottom plates by the 

direct double antibody sandwich procedure described 

previously (Bahrani, et al. 1988). Alkaline phosphatase 

labeled IgG conjugate was used at a 1:1600 dilution. The 

reaction was stopped by the addition of 50 µl aliquots of 5 

M NaOH 30 min after the addition of substrate. Absorbance 

values were measured at 405 nm with an EIA READER (Model EL-

307, Bio-Tek Instruments, Inc., Laboratory Division, 

Burlington, VT 05401, U.S.A.). Sixteen wells on each ELISA 



plate contained aliquots of sap extracted from virus-free 

leaves of cv. Blue Jacket, and the mean absorbance from 

these wells was used as a negative check to correct for 

background absorbance for each plate. 
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Growth chamber. Seed of cvs. Newton and Vona were 

soaked in a 0.26% sodium hypochlorite solution for 15 min on 

a reciprocal shaker at room temperature. Seeds were rinsed 

3 times with double distilled water, placed on filter paper 

in polyethylene petri dishes, saturated with double 

.distilled water, and allowed to germinate on a bench top 

under laboratory conditions. Germinated seeds were then 

planted into a clay loam soil collected in September from an 

area with a history of severe WSBM. Seeds were separated by 

standard Monarch plant bands (5.6 x 3.8 x 3.8 cm) in wooden 

flats (51 x 38 cm). Four flats of each cultivar were 

planted and maintained in a Conviron Plant Growth Chamber -

PGW36 under fluorescent and incandescent lights (180 µE M"2 

sec·1 at plant level) at 15/10 c (11/13 hr day/night). 

Photoperiod remained constant throughout the experiment. 

Seedlings were trimmed to 5 cm to enhance foliar infection 

(Rao and Brakke 1969) after reaching growth stage 4 on the 

Feekes' Scale (Large 1954). When the seedlings reached 

growth stage 5, temperatures were reduced to 5 C for 

vernalization. After six weeks, seedlings were transplanted 

into a 1:1:1 (v/v/v) peat-sand-soil mix in glazed 3.785 L 

clay pots, 3 plants to a pot, 44 pots per cultivar. Potted 



plants were returned to the growth chamber and kept at 5 c 

for three days after transplanting, then raised to 7/5 c 

(day/night) for three days, 10/7 c for eight days, 15/10 c 

for six days, and 20/15 c for the duration of the 

experiment. Negative checks were treated similarly except 

for being planted in a steamed mixture of soil-peat-sand 

(1:1:1, v/v/v) and maintained in separate drainage pans 

throughout the experiment to avoid infection by WSBMV. 
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Leaves were collected at random from seedlings of each 

flat before vernalization and again during the day of 

transplanting. Samples were collected six additional times 

commencing one week after growth chambers were set at 20/15 

C and ending at senescence. Four pots of each cultivar were 

sampled from each growth chamber, three with infested soil 

and one check. The youngest two or three leaves were 

collected from tillers of similar maturity. On the last 

three sampling dates a wide range of maturities existed 

between tillers within individual pots, so tillers were 

sampled according to maturity. Samples from plants 

maintained in growth chambers were processed, stored, and 

analyzed on the same weight-to-volume basis as samples 

collected from the field. 

RESULTS AND DISCUSSION 

Field. Frequently, symptoms were not uniform between 

plants within replicated plots. Differences in visual 

assessments, ELISA values (A4~), and virus concentrations 
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were sometimes significant (P<0.05) among replicated plots 

of the same cultivar (data not shown). These 

inconsistencies suggest that natural infection was not 

uniform among replicated plots within a field nor among 

plants within individual plots. This lack of uniformity of 

infection may have been due to non-uniform irrigation, 

drainage, or inoculum densities across the field although 

efforts were made to prevent these from being factors in the 

experiment. Infection of foliage within plants was also 

inconsistent. For example, within samples collected 

concurrently, the highest ELISA values were sometimes 

obtained from the youngest leaves, second youngest, or the 

third youngest leaves of different plants (data not 

included). Due to this non-uniformity which was observed 

over several growing seasons, foliage samples of 6 - 10 g 

per 6 row-meters consisting of random leaves were collected 

for evaluation. 

All three evaluations showed that resistant cvs. Newton 

and Hawk became infected by WSBMV, however, virus 

concentration and disease development differed between 

susceptible and resistant cultivars (Table 2)-. Virus 

concentrations, ELISA values (A405nm) , and visual assessments 

were often significantly different (P<0.05) for cvs. Hawk 

and Newton, and for cvs. Sage and Vona (Table 2). Syin_ptoms 

were most pronounced during jointing in March. High ELISA 

values (A405nm) were obtained from susceptible cvs. Sage and 
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Vona during February but these values remained high into May 

after the mosaic had partially faded. The highest ELISA 

values (A405nm) obtained from cvs. Newton and Hawk were in 

April and May, respectively. The highest virus 

concentrations were found in April for cvs. Newton, sage and 

Vona and in May for cv. Hawk (Table 2). Multivariant 

analyses of variance were performed for ELISA· and PAGE data 

by sampling dates. Although the late-season rise in viral 

antigen measured by ELISA in resistant cultivars might have 

been due, in part, to the rise in pelletable virions, the 

partial correlation coefficients for these data were low, -

0.043319 (0.19%) for cv. Hawk and -0.061453 (0.38%) for cv. 

Newton. The partial correlation coefficients for the 

susceptible cultivars in field plots were also low, 0.079768 

(0.69%) for cv. Sage and ~0.056826 (0.32%) for cv. Vona. 

Capsid protein production is apparently favored during more 

of the growing season than is viral assemblage. Although 

ELISA detects the presence of WSBMV, it is not necessarily a 

good indicator virion concentration. 

Growth chamber. No late-season rise in ELISA values 

was found in resistant cv. Newton when data were averaged by 

sampling date (Table 3). However, when ELISA values were 

averaged by maturity of the tillers in each sample, Newton 

showed a late-season rise (Table 4). Changes in photc~eriod 

and the high temperatures that occur in the field late in 

the growing season were not present in the growth chamber 
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and, therefore, do not account for the late-season rise in 

ELISA values. The late-season rise in ELISA values and 

virus concentration in disease resistant cultivars in field 

plots (Table 2) may be related to a reduced rate of viral 

activity and/or assemblage (Hunger, et al. 1989) but this 

explanation does not fit the pattern of ELISA values and 

virion concentrations found in the growth chamber (Tables 3 

and 4). Virus concentrations were moderately high in Newton 

prior to and immediately following cold treatment, dropped 

during jointing, and rose substantially during and/or 

following anthesis. Thus, the late-season rise in ELISA 

values observed in resistant cultivars may be dependant upon 

changes in host physiology associated with maturation and 

senescence. 

Eversmeyer et al (1983) theorized that fading of the 

mosaic symptom of WSBM which occurs in late spring is due to 

the rise in temperatures that also occurs at this time. 

Brakke, et al (1965) reported that seedlings maintained in a 

controlled environment developed pronounced leaf symptoms at 

15 c, less pronounced leaf symptoms at 20 and 25 c, and 

faint, transient leaf symptoms in few plants at 30 c. Yet, 

in our study mosaic faded almost completely in Vona and 

completely in Newton during jointing in the growth chamber 

set at 20 C and constant photoperiod. This suggests that 

the disappearance of foliar symptoms may not entirely result 

from the change in photoperiod or high temperatures that 



occur in late spring and summer. Chlorophyll content in 

wheat increas~s as plants approach "sexual maturity" then 

falls rapidly after heading (Whyte 1948). Perhaps this 

natural increase in chlorophyll content partially or 

completely masks the mosaic of WSBM. Further work is 

indicated to more fully explain the interaction between 

changes in host physiology associated with vernalization, 

maturation and senescence, and symptom expression, virus 

replication and virus assembly. 
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Table 2. Comparisons of virus concentration means, ELISA absorbances, and visual 
assessments for foliar samples of winter wheat collected during the 1987-88 growing season 
from a locale with a history of severe WSBM. 

VIRUS CONCENTRATION MEANS 
~~g Virus£g Fresh Leaf Tissue2u~ 

RESISTANT SUSCEPTIBLE 
CUL TI VARS CUL TI VARS 

DATE HAIJK NEIJTON SAGE VONA 

1987, Nov. 13 0.383 *x 0.327 0.591 0.415 
1987, Dec. 10 3.392 * 4.862 8.970 * 2.086 
1987, Dec. 30 4.234 * 7.199 3.028 * 4.648 
1988, Jan. 17 2.525 * 9.020 **y 8.267 * 10. 746 
1988, Jan. 30 2. 111 * 8.392 ** 32.430 * 15.996 
1988, Feb. 13 4.950 6.319 ** 25.347 * 10.296 
1988, Feb. 27 2.474 * 7.249 ** 12.812 * 19.429 
1988, Mar. 10 4.171 * 10.465 ** 19.475 * 36.437 
1988, Mar. 24 3.920 * 10.050 ** 19.118 * 24.554 
1988, Apr. 8 5.302 * 8.505 ** 46.922 * 21.634 
1988, Apr. 21 5.113 * 20.299 ** 38.161 * 43.986 
1988, May 6 7.299 * 11.212 ** 30.581 * 38.130 

ELISA VALUE MEANSV 

RESISTANT SUSCEPTIBLE 
CULTIVARS CULTIVARS 

HAIJK NEIJTON SAGE VONA 

0.018 0.023 0.027 * 0.019 
0.043 0.032 ** 1.796 * 0.874 

-0.004 -0.001 ** 1.535 * 1.051 
0.005 -0.004 ** 1.837 * T.437 
0.017 * 0.129 ** 2.093 * 1. 791 
0.068 0.040 ** 1.775 * 1.402 
0.105 * 0.341 ** 1.970 * 1.829 
0.156 * 0.424 ** 2.107 2.135 
0.272 * 0.412 ** 2.079 * 1.998 
0.293 0.301 ** 1.962 * 1.884 
0.348 * 0.614 ** 2.115 2.079 
0.895 * 0.566 ** 1.975 2.026 

VISUAL ASSESSMENT MEANSw 

RESISTANT 
CUL TI VARS 

HAIJK NEIJTON 

z 

0.16 * 0.42 
-- --

0.75 * 1.00 
0.58 * 0.92 
0.50 * 0.58 
0.24 0.33 
0.33 * 0.66 

** 

** 
** 
** 
** 
** 

SUSCEPTIBLE 
CUL TI VARS 

SAGE VONA 

1.58 * 1.16 
-- --

2.08 2.08 
2.25 2.25 
1.66 1.67 
1.33 1.24 
1.66 * 1.24 

u Leaves were collected at random from the second and fourth rows in each of four, 5-row plots for each cultivar. Sap from 5 g foliage subsamples 
was expressed into 50 ml 0.5 M sodium borate with 0.001 M EDTA to produce 1:10 (W/V) dilution stock sap solutions. Aliquots of 21 ml stock sap 
solution were used for virus extractions. Virus extracts were stored at -20 °C until assayed by acrylamide gel electrophoresis. Four standards 
(20, 10, 5, and 2.5 µg virus/well) were run on each gel and mean absorbances CA595nm) were plotted against virus concentration for the standards. 
This plot was used to determine the mean virus concentration for each sample. 

v Stock sap solution was stored at ·20 °C until all sampling was completed, thawed and assayed by ELISA. Means of ELISA absorbances CA405nm) are 
from five wells on each of two ELISA plates for each of four replicated field plots. 

w Visual assessment means are averages from four replicated field plots, rated with a scale of O=no mosaic or stunting, 1=mild mosaic and Little or 
no stunting, 2=moderate mosaic and stunting, and 3=severe mosaic and stunting. 

x *Means from the two cultivars are significantly different (Fisher's LSD P=0.05). 
Y **Means for the resistant cultivars are significantly different from the means for the susceptible cultivars (Fisher's LSD P>0.05). 
z Visual assessment was not made. 

~ 
Ul 
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Table 3. WSBMV virion concentrations and ELISA values for 
foliar samples of resistant cv. Newton and susceptible cv. 
Vona. 

NEWTON VONA 
DATE VIRUSV ELISAW VIRUS ELISA 

Jan. 10x 3.530 0.355 7.689 1. 216 
March 14Y 4.849 0.139 31. 004 1. 548 
April 10z 0.352 -0.003 13.961 0.869 
April 24 0.504 -0.008 3.631 1.055 
May 8 0.654 0.120 4.724 0.761 
May 15 3.669 0.322 37.913 1.181 
May 24 1.860 0.125 52.203 1. 020 
June 9 0.716 0.134 6.332 1. 079 

v 

w 

x 

y 

z 

Foliar samples of leaves of similar age from tillers of 
similar maturity were collected, and sap was expressed 
into 0.5 M sodium borate with 0.001 M EDTA to produce a 
1:10 (w/v) dilution stock solution. Aliquots of 21 ml 
stock sap solution were collected for virus extractions. 
Virus extracts were stored at -20 °C until assayed by 
acrylamide gel electrophoresis. Four standards (20, 10, 
5, and 2.5 µg virus per well) were run on each gel and 
mean absorbances (A595nm) were plotted against virus 
concentration for the standards. This plot was used to 
determine the mean virus concentration for each sample. 
Stock sap solutions were stored at -20 °C until all 
sampling was completed, thawed and assayed by ELISA. 
Means of ELISA absorbances (A405nm) are from five wells on 
each of two ELISA plates. 
Germinated seeds were planted in soil from a locale with 
a history of severe WSBM, separated by standard plant 
bands in wooden flats, and maintained in a growth 
chamber. Sampling one this date was just prior to six 
weeks at 4 °c. 
Sampling on this date followed six weeks at 4 °C and 
corresponded to the transplanting of seedlings to 3.785 L 
pots, 3 seedlings per pot. 
Potted plants were kept at 5 °C for three days after 
transplanting, then raised to 7/5 °C (day/night) for 
three days, 10/7 °C for eight days, 15/10 °C for six 
days, and 20/15 °C for the duration of the experiment. 
Data means are averages for 3 pots per cultivar. 
Sampling this date is following 1 week at 20/15 °C 
day/night, when plants were jointing. 
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Table 4. Means of ELISA absorbances averaged by maturity 
of tillers in foliar samples from resistant cv. Newton and 
susceptible cv. Vona. 

TILLER MATURITY OF SAMPLEw NEWTON VONA 

5 

5 

6 

7 

9 

10 

w 

x 

y 

z 

(before vernalization)x 0.355 1. 216 

(after vernalization) Y 0.139 1.548 

- 7z -0.003 0.869 

- 9 -0.008 1. 055 

- 10.5 0.102 0.958 

- 11.1 0.228 1. 033 

Foliar samples of leaves of similar age were collected 
from tillers of similar maturity according to Feekes' 
Scale, and sap was expressed into 0.5 M sodium borate 
with 0.001 M EDTA to produce a 1:10 (w/v) dilution stock 
solution. Stock sap solutions were stored at -20 °C 
until all sampling was completed, thawed and assayed by 
ELISA. Means of ELISA absorbances (A405nm) are from five 
wells on each of two ELISA plates. 
Germinated seeds were planted in soil from a locale with 
a history of severe WSBM, separated by standard plant 
bands in wooden flats, and maintained in a growth 
chamber. This sampling was just prior to six weeks at 4 
°C. Means of ELISA absorbances (A405nm) are from five 
wells on each of two ELISA plates for each sample. 
Sampling on this date followed six weeks at 4 °C and 
corresponded to the transplanting of seedlings to 3.785 L 
pots, 3 seedlings per pot. 
Growth chambers were kept at 5 °C for three days after 
transplanting, then raised to 7/5 °C (day/night) for 
three days, 10/7 °C for eight days, 15/10 °C for six 
days, and 20/15 °C for the duration of the experiment. 
Data means are averages for 3 pots per cultivar and 
growth chamber. Sampling this date is following 1 week 
at 20/15 °C day/night, when plants were jointing. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Resistance to wheat soilborne mosaic (WSBM) is 

typically measured by rating the severity of mottling and 

stunting which occurs following natural infection. Mimicry 

of these symptoms by other viruses and physiological 

conditions has resulted in the need for an additional method 

of evaluation to·verify visual ratings. Enzyme-linked 

immunosorbent assay (ELISA) is used as such an assessment. 

Foliar samples collected at various times during a 

growing season are frequently stored prior to evaluating 

resistance to WSBM by ELISA. Leaves of winter wheat cvs. 

Sage and Vona, showing symptoms of WSBM, were cut in half 

along the midrib. Each half was either: 1) refrigerated at 

4 °C, 2) frozen in a frost-free freezer at -20 °C, 3) frozen 

at -70 °C, or 4) desiccated with CaC12 • Relative virus 

antigen titers were determined for individual leaf halves by 

ELISA. Means of ELISA absorbances (A405nm) from desiccated 

leaf halves were consistently higher than absorbance means 

from corresponding leaf halves that had been frozen. This 

suggests that virus antigen decreases during freezing but is 

retained during chemical desiccation. All four methods of 

storage were suitable for short-term storage prior to 

qualitative evaluations by ELISA, but chemical desiccation 
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was the superior method for long-term storage and for 

storage of foliar samples prior to quantitative evaluations 

by ELISA. 

Qualitative resistance to WSBM has not been reported. 

Cultivars that are considered to be resistant under 

conditions which favor natural inoculation show mottling and 

stunting later than cultivars considered to be susceptible. 

Mottling and stunting remain less severe in resistant plants 

than in susceptible plants while incidence of infection is 

also repressed. A common assumption is that visual symptoms 

correspond to virus activity and/or virion concentration. 

However, virus antigen as measured by ELISA, frequently 

increases in resistant cultivars while mottling is fading. 

Sometimes this increase in virus antigen is equivalent to 

the levels found in susceptible cultivars. This late-season 

rise in virus antigen has also been observed in a growth 

chamber under constant temperature and photoperiod. 

Ideally, several grams of foliage are collected from 

replicated field plots several times during January through 

March to evaluate host resistance to WSBM by ELISA. 

However, a wheat breeder testing F2 or F3 plants may have 

limited tissue to sacrifice for ELISA. Furthermore, testing 

large numbers of lines is not conducive to repeated 

samplings and assays. To facilitate evaluations, the 

optimum month to collect foliar samples for ELISA was 

determined. ELISA value (A4~nm) curves were established for 
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winter wheat cvs. Hawk and Newton (resistant to WSBM) and 

cvs. Sage and Vona (susceptible to WSBM} and analyzed for 

three growing seasons. Field plots of cv. Vona did not show 

consistent infection as late as January 30 in the 1987-88 

growing season. However, ELISA values for cv. Newton 

sometimes approached those of susceptible cultivars in 

March. During February, ELISA values were consistently 

higher in the susceptible cultivars than in the resistant 

cultivars. Based on these data, February was identified as 

.the optimum month for sampling foliar tissue in north 

central Oklahoma for evaluation of resistance to WSBM by 

ELISA. Thus, researchers who are comparing cultivars for 

selection purposes for resistance to WSBM using ELISA should 

sample wheat foliage in February and chemically desiccate 

samples prior to storage so as to maximize observed 

differences in susceptible and resistant cultivars. 
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ABSTRACT 

Hunger, R. M., Armitage, c. R., and Sherwood, J. L. 1989. 

Reaction of hard red winter wheat to wheat soilborne mosaic 

virus. Plant Disease 73: 

The effects of wheat soilborne mosaic (WSBM) on 13 hard 

red winter wheats was evaluated using visual disease 

severity assessment, the enzyme linked immunosorbent assay 

(ELISA), and determination of virion concentration. 

Evaluations were conducted for two seasons by growing the 

wheats in a location with no history of the disease and in a 

location with a history of severe WSBM. Resistant cultivars 

(Hawk, Newton, Mustang, Plainsman V, and Tam 108) 

consistently demonstrated lower disease severity and lesser 

reductions in height, grain yield, and thousand kernel 

weight (TKW) than susceptible cultivars (Chisholm, Sage, Tam 

101, Vona, Danne, Payne, Tam 105, and Triumph 64). The 

cultivar Mustang demonstrated the least reduction in number 
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of tillers (8.3%), height (4.2%), grain yield (31.6%), and 

TKW (0.8%). ELISA was useful to insure the presence of the 

virus, and results suggest that some mechanism(s) inhibits 

or slows capsid protein production and virion accumulation 

or production in cultivars resistant to WSBM. 

Wheat soilborne mosaic virus (WSBMV) , which causes a 

serious disease on wheat, is considered to be vectored by 

the soilborne fungus Polymyxa graminis (Estes and Brakke 

·1966, Rao and Brakke 1969). Wheat soilborne mosaic (WSBM) 

was first reported in the United States in the eastern soft 

red winter wheat growing areas (McKinney 1937), but since 

has become one of the major virus diseases of hard red 

winter wheat in the Plains states. 

The first record of WSBM in Oklahoma was in 1952, and 

reductions in yield of 32 to 61% and reductions in test 

weight of Oto 3% were reported (Wadsworth and Young 1953). 

Subsequent studies have investigated the effects of WSBMV on 

various aspects of winter, spring, and durum wheat 

production. Bever and Pendleton (1954) reported reductions 

of grain yield ranging from o to 85% from 25 winter wheats 

cultivated in both a location with a history of WSBM and a 

location with no previous history of the disease. Roane, 

Starling, and McKinney (1954) reported yields of 49 and 13.5 

bu/acre by 'Atlas 50' in areas without and with a history of 

WSBM, respectively. Kucharek and Walker (1974) reported 
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that yield losses varied from 42 to 52.5% in infected areas 

of commercial fields in Florida, and Palmer and Brakke 

(1975) attributed reduced yields from WSBM ranging from 6.2 

to 44.4% (average=20%) in 11 of 13 fields observed over 3 

years. More comprehensive studies conducted during the 

1970's examined the effects of WSBMV on several aspects of 

wheat production. Campbell,·et al. (1975) reported 

reductions in grain yield, tiller number, kernel weight, 

test weight and plant height in a study conducted at four 

locations over three years. Environment significantly 

affected all characters studied and environment X variety 

interactions were significant. A subsequent study by 

Nykaza, et al. (1979) examined these same parameters over 5 

years using five near-isogenic lines and the two wheat 

cultivars (cvs) Centurk and Eagle. Reductions in grain 

yield, kernel weight, tiller number, test weight, and plant 

height averaged 22.0, 11.8, 11.8, 3.4, and 4.7%, 

respectively, and losses due to WSBM varied considerably 

from season to season and by location. Eversmeyer, et al. 

(1983) compared winter wheats cultivated in areas showing 

slight or severe WSBM symptoms in Kansas in 1973, and 

reported increases of 6.6 to 87.9%, -4.6 to 25.5% and 5.3 to 

50.4% in grain yield, thousand kernel weight, and heads/~, 

respectively from wheats in the area with slight symptoms. 

Vallega and Rubies-Autonell (1985) examined the reaction of 

durum wheats in Italy to WSBMV and reported grain yield 
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losses as high as 70% in the more susceptible cvs. Test 

weight, plant height, and weediness also were affected with 

grain number per square meter rather than kernel weight 

accounting for most of the yield reduction. 

The results from all of these studies indicate that 

WSBMV affects yield and growth parameters of wheat. 

However, no studies have been published which report the 

effects of WSBMV on cvs. of hard red winter wheats currently 

being grown in the Central and Southern Plains States and 

which have been released since the mid-1970s. Also, no 

studies have been reported that address the use of enzyme­

linked immunosorbent assay (ELISA) and isolation of 

pelletable virions to monitor reaction of wheat cvs. to 

WSBMV in the field, although these techniques have been used 

in growth chamber and greenhouse studies of WSBMV (Hunger 

and Sherwood 1985). Development of ELISA (to monitor capsid 

protein production) and isolation of virions (to monitor 

virus production) should facilitate studies elucidating 

mechanisms of resistance to WSBMV and the extent of 

replication once the virus has entered the plant. 

Therefore, this study was initiated to determine the 

effect(s) of WSBMV on selected hard red winter wheats 

adapted to the Central and Southern Plains, and to evaluate 

the reaction of these cvs. to WSBMV using symptomatology, 

ELISA, and virion concentration. 
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MATERIALS AND METHODS 

Experiment location and design. Trials were conducted 

at the Plant Pathology Department Experimental Farm west of 

Stillwater, OK during 1984-85 and 1985-86. Plots were 

planted in two locations approximately 150 m apart and 

situated so neither area drained into the other. One 

location had a consistent history of severe WSBM (Norge 

loam) and the other location had no previous history of the 

disease (Easpur loam). Soil tests for pH, nitrogen, 

phosphorous and potassium were conducted each year in each 

location. Preplant fertilization and/or liming were used to 

provide appropriate pH and N-P-K for wheat production in 

north central Oklahoma and to result in comparable fertility 

for the two locations. Additional nitrogen (38.1 kg/ha, in 

the form of ammonium nitrate) was topdressed onto each area 

in March or early April of each season. Glean 

(chlorosulfuron, E. I. duPont deNemours and Co., 9.46 gin 

18.9 L per 0.405 ha) was applied in the fall to control 

weeds, and Bayleton (triadimefon, Mobay Chemical, 113.5 g in 

14.2 L per 0.405 ha) was used during the spring as needed to 

maintain a low incidence of foliar fungal diseases. Plots 

were planted during September in each season and irrigated 

with 2.5 to 5.1 cm of water as coleoptiles were emerging 

through the soil. 

Ten hard red winter wheat (HRWW) cvs. (Hawk, Newton, 

Chisholm, Sage, Tam 101, Vona, Danne, Payne, Tam 105, and 
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Triumph 64) were tested in 1984-85. Twenty kernels of each 

cv. were planted into each of two, 5 m rows replicated 5 

times in each location in early September 1984. Early in 

March 1985 replications were thinned to 10 plants, or 

contained 7-9 plants as a result of poor emergence. Nine 

HRWW cvs. were evaluated in 1985-86. Six (Hawk, Newton, 

Chisholm, Sage, Tam 101, and Vona) had been evaluated in 

1984-85, and three (Mustang, Plainsman V, and Tam 108) were 

evaluated for the first time. Agronomic practices and 

treatment of plots in 1985-86 were the same as in 1984-85; 

however, in 1985-86 plot design differed. Plots in each 

location consisted of three, 30.05 m rows, solid planted, 

with 4 replications per cv. 

Disease assessment. In 1984-85, individual plants 

(considered subsamples for each replication) were assessed 

for disease reaction on 3-14-85, 3-28-85, and 4-15-85 using 

a scale of O=no mosaic or stunting symptoms present, 

l=slight mosaic present and slight stunting may or may not 

be present, 2=moderate mosaic with some stunting, and 

3=severe mosaic and stunting present. A disease severity 

index (OSI) was calculated for each cv. in each area using 

the formula of Sherwood and Hagedorn (1958). In 1985-86, 

severity of WSBM in the middle row of each replication was 

determined on 3-20-86 using the same scale as described for 

1984-85; however, the entire row rather than individual 

plants were evaluated and no DSI was calculated. 
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In 1984-85, foliage for evaluation by ELISA and 

isolation of pelletable virions was collected from each 

plant after each visual assessment, combined by replication 

and stored at -20 C until evaluations could be conducted. 

Collections were made sufficiently early in the season so 

that no flag or flag minus-1 leaves were collected. 

Following the ELISA evaluation of foliage by replication, 

foliage was combined from replications of each cv. in each 

location and evaluated again by ELISA. In 1984-85, ELISA 

values obtained from averaging replications resulted in the 

same information regarding the presence or absence of WSBMV 

capsid protein as did analyzing the combined samples of 5 

replications. Thus, samples for analysis by ELISA in 1985-

86 were obtained by combining foliage collected from the 

outer two rows of each replication 9 times starting in 

November 1985 and ending in May 1986 and reserving the 

middle row to collect data pertaining to grain yield. ELISA 

was conducted in both years using a direct sandwich ELISA 

with polyclonal antibodies as previously described (Bahrani, 

et al. 1988). Isolation and determination of concentration 

of pelletable virions by electrophoresis was conducted as 

previously reported (Hunger and Sherwood 1985) using the 

cvs. Hawk, Newton, Sage, and Tam 101 from the 1984-85 

season. 

Grain yield and thousand kernel weight were obtained 

for each replication in 1984-85 by combining grain harvested 



67 

from individual plants and using the mean for the value of 

the replication. Results were analyzed using an unpaired t­

test to compare the grain yield and thousand kernel weight 

from the same cv. grown in the two different locations. 

Regression analysis was conducted to determine the 

usefulness of visual assessment of symptoms (disease 

severity index) and ELISA for predicting the effect of WSBMV 

on yield. For this analysis, data from the ten plots (5 

from each location) were used for each cv, and analysis 

determining coefficients of determination were obtained for 

each assessment date. In 1985-86, the middle row (not 

sampled for ELISA} was used to gather data pertaining to 

tiller count, plant height, grain yield, and thousand kernel 

weight. These parameters were analyzed using an unpaired t­

test as described for 1984-85. 

RESULTS AND DISCUSSION 

Symptoms indicative of WSBM were uniformly observed on 

plants in both years in the location with a history of 

severe WSBM. Non-uniform symptoms of WSBM were observed in 

the location with no history of the disease which resulted 

in considerable statistical variation; however, disease 

severity in plots in the location with no history of the 

disease were consistently lower (especially for the 

resistant cultivars) than in the plots in the location with 

a history of severe WSBM (Table 5 and 6). Grain yield was 

consistently greater in the location with no history of WSBM 



68 

(Table 5 and 6) with yield reductions ranging from 31.6% 

(Mustang in 19~5-86) to 69.4% (Triumph 64 in 1984-85). 

Resistant and susceptible cvs. had average yield decreases 

of 40.2 (sd=l0.97) and 54.3% (sd=l0.66) over the two years. 

Reductions in thousand kernel weight (TKW) ranged from 0.8 

to 18.8% with 2 cvs. (Hawk and Chisholm) showing increases 

(Table 5 and 6). Plant height and tiller counts also were 

consistently greater in the location with no disease history 

(Table 6), but due to variation between replications, only 

the values for plant height were consistently significantly 

different. Hawk, Newton and Mustang demonstrated the least 

yield reduction (x=34.3% sd=2.44), and Mustang demonstrated 

the least reduction in tillers (8.3%), height (4.2%), grain 

yield (31.6%), and TKW (0.8) of all cvs. evaluated. 

Regression analysis of data from 1984-85 to determine 

the relationship between visual assessment of symptoms (OSI) 

with grain yield and ELISA with grain yield revealed that 

visual assessment was the best indicator of the effect of 

WSBMV on yield. Coefficients of determination (r2) between 

OSI and yield for the susceptible cvs. were significant at 

3-14-85 (P=0.01), and at 3-28-85 and 4-15-85 ·(P=0.05). 

However, no significant r 2 values were obtained with the 

resistant cvs. at any assessment date. Coefficients of 

determination between ELISA and yield were significant. 

(P=0.05) only with the susceptible cvs. at the first 

assessment date. Occasionally high ELISA values were 
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obtained from resistant cvs. that showed low disease 

severity [e.g. Hawk and Newton in 1984-85 (Table 5)]. This 

may be explained by the sensitivity of ELISA to detect virus 

capsid protein. Foliage from one or a few plants in these 

resistant cvs. may have been infected with WSBMV. Thus, 

visual assessment would indicate a low severity, but there 

would be sufficient virus capsid in the foliage sample to 

result in a high ELISA value. This helps explain the poor 

correlation between ELISA and yield observed in the 

regression analysis. Thus, we feel that visual assessment 

of symptoms used in conjunction with ELISA to assure 

presence of the virus in plants is the best approach to 

ascertaining the effect of WSBMV on yield and to identify 

resistant germplasm. 

ELISA values from the location with no history of WSBM 

in 1984-85 initially were lower than comparable values from 

the location with a history of severe WSBM, and ELISA values 

obtained from resistant cvs. initially were much lower than 

values in susceptible cvs. (Table 5). By the final 

assessment on 4-15-85, ELISA values of all cvs. were 

comparable. No virus particles were obtained from the 

resistant cvs. (Hawk and Newton) growing in the location 

with no history of WSBM (Table 5), although virions were 

obtained from Hawk and Newton growing in the location with a 

history of severe WSBM. ELISA values obtained during 1985-

86 were more sporadic over a longer period of time than 
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those obtained in 1984-85. No ELISA values were considered 

positive from resistant cvs. planted in the location with no 

history of WSBM until the final reading of the season on 5-

11-85 (Table 7). Positive ELISA values from resistant cvs. 

in the location with a history of severe WSBM were obtained 

as early as 1-19-86. In contrast, positive ELISA values 

were obtained from susceptible cvs. as early as 11-24-84 and 

1-19-85 from the locations of severe history and no history 

of WSBM, respectively (T.ole 7). These results from two 

seasons indicate that WSBMV capsid protein and virions are 

produced in resistant wheat cvs, but at a lower 

concentration and/or at a reduced rate as compared to 

susceptible cvs. In this and in a previous study (Hunger 

and Sherwood 1985) amounts of virus obtained from resistant 

cvs. never equalled amounts obtained from susceptible cvs. 

indicating that virus accumulation may be inhibited or 

replication may proceed at a slower rate in resistant cvs. 

Larsen, et al. (1985) reported greater sensitivity to foliar 

inoculation with WSBMV by cvs. field resistant to WSBM, and 

thus, felt that tolerance or resistance to the virus at the 

cellular level were not possible mechanisms of the plant 

resistance. Our results indicate that some mechanism is 

present in resistant cvs. which slows capsid protein and 

virus accumulation. This could result from a reduction in 

some aspect of the replicative cycle of the virus, although 



further work is indicated to ascertain more fully the 

mechanisms of resistance to WSBMV. 
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Table 5. Reaction of ten winter wheats to WSBM in 1985 in a 
location with no prior history of the disease (a) and in an 
adjacent location with a history of severe WSBM (b) . 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

u 

v 

w 

x 

y 

z 

Assessment of reaction to wheat soilborne mosaic 
3-14-85 3-28-85 4-15-85 YieldY mr 

Cultivaru DSI 9 ELISAW ~gLgf;(I OSI ELISA ~gLgfw DSI 9 ELISAW ~gLgf.;' ~92 ~g) 
Hawk (R) 0.7 0.058 0.0 0.0 0.311 0.0 0.7 1.180 0.0 102* 27 
Hawk (R) 6.7* 0.413 2.1 4.0 0.724 7.8 4.0* 0.826 0.8 67 32* 

Newton (R) 0.0 0. 102 0.0 0.0 0.440 0.0 0.0 1.400 0.0 73* 22 
Newton CR) 8.7* 0.50? 9.2 12.0 0.967 28.1 3.9 1.290 2.8 49 22 

Chisholm (S) 44.0 1. 126 18.6 1.238 20.0 1.846 74* 28 
Chisholm (S) 62.7 1.367 39.3* 1.345 40.0* 1.673 37 27 

Sage (S) 41.6 0.999 60.3 33.3 1.330 36.5 24.7 1.356 29.5 57* 27 
Sage (S) 78.6 1. 730 72.7 64.9 1.511 89.0 48.3* 1.512 51.5 28 25 

Tam 101 (S) 44.0 0.924 72.2 32.6 1.207 78.3 24.6 1.230 47.0 46 29 
Tam 101 (S) 63.3 1.501 74.2 44.3 1.648 100.1 43.3* 1.589 50.5 28 26 

Vona CS> 16.7 0.387 15.3 0.974 12.6 1.013 68* 23* 
Vona CS) 80.7* 1.449 58.0* 1.4n 45.9* 1.342 23 19 

Denne (S) 32.7 0.681 22.0 1.332 12.7 1.390 73* 29 
Denne CS) 75.0* 1. 156 40.6 1.161 40.0* 1.305 27 25 

Payne (S) 16.7 0.845 14.6 0.919 8.5 1.163 116* 32* 
Payne (S) 76.6* 1.444 42.6* 1.508 39.3* 1.953 55 26 

Tam 105 (S) 29.9 0. 741 22.5 1.096 13.4 1. 716 61* 25* 
Tam 105 (S) 76. 7* 1.323 55.8* 1.359 39.4* 1.n1 31 22 

Trh.1~ 64 (S) 32.8 0.495 17 .3 1.159 17.6 1.409 85* 32 
Tri\.lll)ll 64 CS) 81.3* 1.378 58.7* 1.428 42.2* 1.418 26 26 

The first listing of each pair of cultivars represents results from the location with no prior 
history of WSBM. The second listing represents results from the location with a history of 
severe WSBM. Letter in parenthesis denotes R for resistant and S for susceptible. 
OSI (disease severity index): ~=class x no. plants in class x 100, where O=no 

total no. plants X 3 
mosaic or stunting symptoms present, 1=slight mosaic, slight stunting may or may not be present, 
2=mosaic moderate with some stunting, and 3=severe mosaic and stunting present. Values 
presented are the means of 7-10 individual plants rated in each of five replications. Asterisks 
indicate significant difference CP=0.05) as determined by an unpaired t-test. 
ELISA values presented are the means obtained from foliar samples collected from 5 replications 
with 2 readings/replication. 
Micrograms of sedimentable virions per gram fresh weight of foliar samples of cvs. Hawk, Newton, 
Sage, and Tam 101 only. 
Yield is the average amount of grain collected from 7-10 plants from each of 5 replications. 
Asterisks indicate significant difference CP=0.05) as determined by an unpaired t-test. 
Thousand kernel weight determined by weighing 500 kernel samples from each of 5 replications and 
multiplying by 2. Asterisks indicate significant difference (P=0.05) as determined by an 
unpaired t-test. 
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Table 6. Disease severity (DS), tiller count, height, 
yield, and thousand kernel weight (TKW) of 9 hard red winter 
wheats planted in locations with no prior history of WSB~ 
(a) and with a history of severe WSBM (b). 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

u 

v 

DSV Tiller countw Heightx YieldY ml 
Cultivaru (3-20-86) Cper 0.3 m of row) (Cm) (g) (g) 
Hawk CR) 0.3 133* 78.5* 351.3 25.8* 
Hawk CR) 0.8 105 70.0 230.0 22.9 
Newton CR) 0.0 129 83.0* 327.0* 24.5 
Newton CR) 1.0* 84 71.3 202.5 23.6 

Chisholm CS) 0.8 121 74.3* 427.3 27.4 
Chisholm CS) 1.8* 87 64.8 265.8 29.2 

Sage CS) 1.0 105 80.0* '257.5* 24.3* 
Sage CS> 2.5* 87 66.5 137.3 20.3 

Tam 101 CS> 1.0 105 75.5* 325.5 29.9* 
Tam 101 CS> 2.3 74 58.8 132.8 26.7 

Vona CS) 0.5 120* 7.6.5* 493.8* 23.6* 
Vona CS) 2.3* 78 64.3 163.0 21.4 

Mustang CR> 1. 5 96 72.0 309.0* 26.5 
Mustang CR> 1.8 88 69.0 211.3 26.7 

Plainsman V CR) 0.5 92 71.0* 451.8* 24.5 
Plainsman v CR> 1.3 63 62.0 173.8 24.1 

Tam 108 CR> 0.0 119 82.5* 444.8* 25.6* 
Tam 108 CR> 1.0 99 71.3 229.0 21.9 

The first listing of each pair of cultivars represents results from the location with no prior 
history of WSBM. The second listing represents results from the location with a history of 
severe WSBM. Letter in parenthesis denotes R for resistant and S for susceptible. 
Disease severity obtained from averaging the ratings of four replicate plots each consisting of 
1, 3.05 m row, where O=no mosaic or stunting symptoms present, 1=slight mosaic, slight stunting 
may or may not be present, 2=moderate mosaic with some stunting, and 3=severe mosaic and 
stunting present. Asterisks indicate significant CP=0.05) differences as determined by an 
unpaired t-test. 

w Number of tillers was determined by counting the number of tillers with fertile heads in 0.305 m 
of each row in each of 4 replications. Asterisks indicate significant CP=0.05) differences as 
determined by an unpaired t-test. 

x 

y 

z 

Height was determined by measuring from the ground to the base of ears several times within each 
of 4 replicates. The average of these values was used for each replication. Asterisks indicate 
significant CP=0.05) differences as determined by an unpaired t-test. 
Yield is the average amount of grain collected from 4, 3.05 m rows. Asterisks indicate 
significant CP=0.05) differences as determined by an unpaired t-test. 
Thousand kernel weight determined by weighing 500 kernel samples from each of four replications 
and multiplying by 2. Asterisks indicate significant CP=0.05) differences as determined by an 
unpaired t-test. 
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Table 7. Detection of WSBMV capsid protein by ELISA in 9 
hard red winter wheats during 1985-86 in a location with no 
history of the disease (a) and in a location with a history 
of severe WSBM (b). 

y 

z 

~~~~~~~~~~Da~t~e:.....;.of'--=a=s~se~s~s~me~n~t:....=bv..._,,E=L~IS=AY~~~~~~~~~ 
1985 1986 

Cultivarz 11-24 12-22 1-19 2-16 3-2 3-16 3-30 4-20 5-11 
Hawk CR> ~~~--~o~.~03~0~~0~.~0~19=----0~.~0~1~0~-~o~.0~0~5~-o~.~00~2'--~o~.-0~13'---~_o~.~0~43=--~o~.-0~46=-----=o~.2~1~5~ a 

b Hawk CR) -0.004 0.012 0.026 -0.005 0.013 0.040 0.021 0.109 0.368 

a Newton CR) 
b Newton CR) 

a Chisholm CS) 
b Chisholm CS) 

a Sage CS> 
b Sage CS) 

a Tam 101 CS) 
b Tam 101 CS) 

a Vona CS) 
b Vona CS) 

-0.005 -0.013 0.004 -0.022 0.022 
-0.007 0.008 0.297 0.009 0.054 

-0.045 0.061 2.080 0.262 0.174 
1.175 0.234 2.415 1.015 1.310 

-0.040 -0.001 0.775 0.208 0.018 
1.728 0.226 1.871 0.889 1.268 

-0.002 0.026 0.954 1.018 0.761 
1.374 1.595 2.168 1.220 0.883 

-0.082 0.143 -0.015 -0.052 -0.005 
0.783 1.268 1.446 1.047 0.702 

0.012 -0.012 -0.002 0.151 
0.504 -0.014 -0.003 0.217 

0.628 
1.124 

0.525 
0.696 

0.253 
1.463 

0.008 
0.778 

0.681 
1.373 

0.454 
0.646 

0.879 
0.889 

0.564 
0.656 

0.902 0.062 
1.643 0.679 

0.424 0.078 
0.549 0.826 

0.025 0.485 
1.089 0.914 

0.012 0.016 
0.471 0.651 

a Mustang CR) 
b Mustang CR) 

-0.039 0.008 -0.021 -0.030 0.002 -0.014 0.055 -0.007 0.085 
0.666 0.008 0.503 -0.006 0.023 0.048 0.615 0.309 0.460 

a Plainsman V CR) -0.020 -0.025 -0.019 0.002 0.000 
b Plainsman V CR) -0.008 -0.023 0.070 0.489 0.692 

a Tam 108 CR) 
b Tam 108 CR) 

-0.030 0.007 -0.048 -0.005 0.046 
-0.035 0.156 0.415 0.436 0.298 

0.033 
0.031 

0.042 
0.232 

0.015 -0.046 
0.128 -0.048 

0.043 0.032 
0.027 0.332 

0.085 0.076 
0.271 0.562 

ELISA values are the average of 7 ELISA readings obtained from a composite foliar sample 
collected from 4 replicate plots in each of the two locations. 
The first listing of each pair of cultivars represents results from the location with no prior 
history of WSBM. The second listing represents results from the location with a history of 
servere WSBM. Letter in parenthesis denotes R for resistant and S for susceptible. 



APPENDIX B 

OPTIMUM MONTH FOR SAMPLING WINTER WHEAT FOLIAGE FOR 

EVALUATION OF RESISTANCE TO WHEAT SOILBORNE MOSAIC VIRUS BY 

ENZYME-LINKED IMMUNOSORBENT ASSAY. 

Enzyme-linked immunosorbent assay (ELISA) is used in 

conjunction with visual assessment to confirm the presence 

of wheat soilborne mosaic virus (WSBMV) in evaluation of 

host resistance. Confirmation is necessary because 

fertility, other viruses, and other parameters can induce 

similar chlorotic mottling, especially in greenhouse plants. 

Ideally, several grams of foliage are taken from replicated 

field plots several times during January through March. 

However, breeding for resistance to WSBMV frequently 

involves sampling from head rows or from individual plants. 

Sampling for ELISA is destructive and so the evaluation may 

be limited to a single sampling. The purpose of this study 

is to identify the optimum month for making this sampling. 

MATERIALS AND METHODS 

For three years, four replicated field plots of hard 

red winter wheat cultivars resistant to WSBM, Hawk and 

Newton, or susceptible to WSBM, Vona and Sage, were planted 

in soil with a history of severe wheat soilborne mosaic 

virus. Sampling commenced in autumn (October 1986, and 
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November 1985 and 1987) and ended in May. sampling 

techniques varied slightly between growing season. Leaf 

samples were stored in "Glad Zip-lock Freezer Bags" at -20 

°C. From each sample, 5 g subsamples of 5-8 cm leaf 

segments were taken and homogenized in phosphate buffered 

saline with 0.05% Tween 20 and 2% polyvinyl-pyrrolidone. 

Aliquots of 200 µl were applied to 7-10 wells divided 

between two standard flat bottom ELISA plates. ELISA was 

performed using the direct double antibody sandwich 

procedure as previously described (Bahrani et al. 1988). 

Absorbance values were measured at 405 nm with an EIA READER 

(Model EL-307, Bio-Tek Instruments, Inc., Laboratory 

Division, Burlington, VT 05401, U.S.A.). 

RESULTS AND CONCLUSIONS 

Means for ELISA absorbance values (A405nm) from cvs. 

Hawk, Newton, Sage and Vona at each sampling date are 

demonstrated in Fig. 2-4. Mean ELISA values for individual 

replicated field plots are demonstrated for January 30, 1987 

(Fig. 5), February 13, 1988 (Fig. 6) and March 24, 1988 

(Fig. 7). 

The highest mean ELISA values for cvs. Sage and Vona 

were found in January during the 1985-86 growing season 

(Fig. 2), and in March or April during the 1986-87 and 1987-

88 growing seasons (Figs. 3 and 4). WSBMV was detected by 

ELISA in one of four field plots of cv. Vona sampled on 
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January 30, 1987 (Fig. 5). Thus, and evaluation based upon 

an ELISA of a single sampling of new cultigen with a 

phenotype similar to cv. Vona, taken in January may result 

in a resistant rating when another parameter is the reason 

for the low ELISA values. High ELISA values were obtained 

from two plots of cv. Newton on March 24, 1988 (Fig. 7). 

Thus, a single evaluation of a cultigen similar to cv. 

Newton based on samples taken in March may result in a 

susceptible rating and removal from the breeding program 

when the cultigen contains quantitative resistance. 

WSBMV was detected more consistently in cvs. Sage and 

Vona during February than during January. WSBMV was 

occasionally detected in cvs. Hawk or Newton in February but 

the mean ELISA values were consistently lower than those of 

cvs. Sage and Vona (Fig. 6). Thus, the risk of false 

ratings based on a single ELISA is lowest during February. 

For this reason, we recommend that foliar sampling for 

quantitative resistance to WSBM in north-central Oklahoma 

occur during February. 
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Figure 2. ELISA absorbance means of foliar samples of two 
hard red winter wheat cultivars resistant (R) to WSBM a nd 
two susceptible (S) cultivars, collected on nine dates 
during the 1985- 86 growing season. 
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APPENDIX C 

SUGGESTIONS FOR FURTHER RESEARCH 

One of the most difficult aspects of graduating is 

leaving the research project to which you've devoted several 

years of your life when there are questions still unanswered 

and hypotheses still untested. In this section, I have 

attempted to provide some of my thoughts and hypotheses 

based on the literature, and on personal observation, for 

possible examination in the future. 
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RESEARCH PROJECT I 

THE EFFECT OF VERNALIZATION OF HARD RED WINTER WHEAT ON THE 

EXPRESSION OF RESISTANCE TO WHEAT SOILBORNE MOSAIC VIRUS 

Two growth chambers were used in the experiment 

described in Chapter IV. The data from one of the growth 

chambers (#1 in Tables 8 and 9) was not presented because of 

a mechanical malfunction resulting in a three day heat shock 

at 19/12 °C when the chamber was set at 7/5 °C. ELISA 

values from both growth chambers were similiar for cv. Vona 

(Fig. 8). However, when ELISA values were averaged by 

sampling date, cv. Newton showed a late-season rise as seen 

in the field only in Chamber #l (Table 8, Fig. 8). Only 

when ELISA values were averaged by tiller maturity was a 

late-season rise shown in both growth chambers (Table 9, 

Fig. 9). Plants in Chamber #1 did not mature as fast as 

plants in Chamber #2 and a few of these plants had not 

headed by the end of the experiment. Consequently, the heat 

shock, occurring so soon after vernalization, probably 

caused partial devernalization of the plants in Chamber #l 

and may account for the divergences in ELISA values and 

virus concentrations demonstrated in cv. Newton in the two 

growth chambers. Dissimilarities in net vernalization may 
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contribute to the yearly variability in disease response in 

the field as well. The effect of net vernalization on ELISA 

values and symptom expression is probably limited to disease 

resistant cultivars of winter wheat because susceptibility 

is known to occur in spring wheat (McKinney 1930). Although 

the heat shock may have effected the virus itself, this is 

unlikely because ELISA values for cv. Vona in the two growth 

chambers differed very little (Table 8, Fig. 8). 

The initial growth chamber experiment needs to be 

repeated. Lower temperatures might be pursued since the 

threshold suggested by Eversmeyer et. al. (1983) is 17 °C. 

The possible effect of devernalisation upon disease 

expression and virus replication also needs to be further 

investigated. 
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Table 8. WSBMV virion concentrations and ELISA absorbances 
for foliar samples of resistant cv. Newton and susceptible 
cv. Vona maintained in two growth chambers. 

NEWTON VONA 
GROWTH CHAMBER #1 GROWTH CHAMBER #2 GROWTH CHAMBER #1 GROWTH CHAMBER #2 

DATE VIRUS"' ELI SAW VIRUS ELISA VIRUS ELISA VIRUS ELISA 

Jan. 10x 3.530 0.355 7.689 1. 216 
March 14Y 4.849 0.139 31. 004 1.548 
April 1<f 0.176 0.013 0.352 -0.003 14.148 1.115 13.961 0.869 
April 24 2.123 0.325 0.504 -0.008 9.208 1.256 3.631 1.055 
May 8 1.068 0.299 0.654 0.120 4.460 0.925 4.724 0.761 
May 15 0.352 -0.012 3.669 0.322 17.534 0.789 37.913 1 . 181 
May 24 9.659 0.492 , .860 0.125 71.899 1. 131 52.203 1.020 
June 9 2.551 0.840 0 .716 0.134 6.759 1.192 6.332 1.079 

v 

w 

x 

y 

z 

Foliar saq>les of leaves of similar age from tillers of similar maturity were collected, and sap 
was expressed into 0.5 M sodillll borate with 0.001 M EDTA to produce a 1:10 (w/v) dilution stock 
solution •. Aliquots of 21 ml stock sap solution were collected for virus extractions. Virus 
extracts were stored at -20 °C until assayed by acrylamide gel electrophoresis. Four standards 
(20, 10, 5, and 2.5 µg virus per well) were run on each gel and mean absorbances CA595nm) were 
plotted against virus concentration for the standards. This plot was used to determine the mean 
virus concentration for each saq>le. 
Stock sap solutions were stored at -20 °C until all saq>ling was completed, thawed and assayed 
by ELISA. Means of ELISA absorbances (A405nm) are from five wells on each of two ELISA plates. 
Germinated seeds were planted in soil from a locale with a history of severe WSBM, separated by 
standard plant bands in wooden flats, and maintained in a growth chamber. Saq>ling one this 
date was just prior to six weeks at 4 °C. 
Saq>ling on this date followed six weeks at 4 °C and corresponded to the transplanting of 
seedlings to 3.785 L pots, 3 seedlings per pot. 
Growth chambers were kept at 5 °C for three days after transplanting, then raised to 7/5 °C 
(day/night) for three days, 10/7 °C for eight days, 15/10 °C for six days, and 20/15 °C for the 
duration of the experiment. Data means are averages for 3 pots per cultivar and growth chamber. 
Saq>ling this date is following 1 week at 20/15 °C day/night, when plants were jointing. 
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Table 9. Means of ELISA absorbances averaged by maturity of 
tillers in the samples from resistant cv. Newton and 
susceptible cv. Vona maintained in two growth chambers. 

NEWTON VONA 
TILLER MATURITY OF SAMPLEw CHAMBER 1 CHAMBER 2 CHAMBER 1 CHAMBER 2 

5 (before vernalization)x 0.355 1.216 

5 (after vernalization)Y 0.139 1.548 

6 - -,z -0.013 -0.003 1. 115 0.869 

7 - 9 0.319 -0.008 1.250 1.055 

9 - 10.5 0.329 0.102 0.974 0.958 

10 - 11. 1 0.789 0.228 1.158 1.033 

w Range of tiller maturities according to Feekes' Scale within a sample. 
x Germinated seeds were planted in soil from a locale with a history of severe WSBM, separated 

by standard plant bands in wooden flats, and maintained in a growth chamber. This sampling 
was just prior to six weeks at 4 °C. Means of ELISA absorbances CA405nm> are from five wells 
on each of two ELISA plates for each sample. 

Y Sampling on this date followed six weeks at 4 °C and corresponded to the transplanting of 
seedlings to 3.785 L pots, 3 seedlings per pot. 

z Growth chambers were kept at 5 °c for three days after transplanting, then raised to 7/5 °C 
(day/night) for three days, 10/7 °c for eight days, 15/10 °C for six days, and 20/15 °C for the 
duration of the experiment. Data means are averages for 3 pots per cultivar and growth chamber. 
Sampling this date is following 1 week at 20/15 °C day/night, when plants were jointing. 
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Figure 8. ELISA absorbances for foliar samples of resistant 
cv. Newton and susceptible cv. Vona maintained in two growth 
chambers. 
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Figure 9. ELISA absorbances averaged by maturity of tillers 
in the samples from resistant cv. Newton and susceptible cv. 
Vona maintained in two growth chambers. 



RESEARCH PROJECT II 

MOST PROBABLE NUMBER ESTIMATION WITH 

WHEAT SOILBORNE MOSAIC VIRUS. 

An important concept in epidemiology is "inoculum 

potential" which may be defined as "the capacity of a 

pathogen population to infect a population of fully 

susceptible host plants under conditions optimum for 

infection" (Michell 1979 situ Pfender, et al. 1981). 

Inoculum potential of soilborne pathogens may be estimated 

by the most probable number (MPN) technique. Optimal 

conditions for infection are determined. A concentration 

series of infested soil diluted with disinfested soil is 

produced. Host plants are grown in set amounts of each soil 

concentration and assayed for infection. The proportion of 

pots with infected plants at each soil concentration is used 

in the MPN formula to determine the inoculum potential of 

the original soil (Pfender, et al. 1981, Wilson and Trinick 

1982) • 

Wheat soilborne mosaic virus (WSBMV) is vectored by 

zoospores of Polymyxa graminis. Infective units, i. e. the 

number of virions/zoospore and viruliferous 

zoospores/seedling, has not been reported. However, the MPN 

technique would permit quantitative comparisons between 

different soils or different soil treatments. Thus, the 
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object of this study was to determine if MPN could be used 

with wheat soilborne mosaic (WSBM). 

MATERIALS AND METHODS 
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Soil was collected in October from an area with a 

history of severe WSBM (SD), and an area with a history of 

mild WSBM (MD), sifted through #8 and #20 mesh screens to 

remove rocks and large clumps, and mixed with autoclaved 

fine sand to produce 100%, 50%, 25%, 10%, 1%, and 0.1% 

soil/sand (by weight) dilutions. Fifteen standard Monarch 

plant bands (5.6 x 3.8 x 3.8 cm) were filled with 100 g 

soil/sand mix for each dilution and wedged into a 2 inch 

plastic pot. Seeds of cv. Vona (susceptible to WSBM) were 

soaked in a 0.26% sodium hypochlorite solution for 15 min on 

a reciprocal shaker at room temperature. Seeds were rinsed 

3 times with double distilled water, placed on filter paper 

in polyethylene petri dishes, saturated with double 

distilled water, and allowed to germinate on a bench top 

under laboratory conditions. Nine germinated seeds were 

placed (3 x 3) on each soil mix in plants bands and covered 

with 5 g autoclaved fine sand. Pots were maintained in a 

growth chamber at a 10/14 hr day/night cycle at 24/20 °C 

until emergence of the coleoptile to enhance seedling 

establishment and release of zoospores, then at 13/10 °C to 

enhance infection and symptom development (Brakke et al. 

1965). Pots were bottom-watered with tap water on alternate 
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days. After the sixth week, 18 ml of 20/20/20 N-P-K 

fertilizer was applied to each pot, then watering continued 

as before. At eleven weeks, plants were evaluated visually 

and by ELISA. 

RESULTS AND CONCLUSIONS 

The SD soil was infective down to the 0.1% level (Table 

10) while the MD soil was not shown to be infective. The 

MPN for the SD soil was 3 infective units/100 g soil. 

Table 10. The ratio of the number of plants showing 
symptoms of WSBM over the total number of plants per pot 
at six soil/sand dilutions. 

POTS 100% 50% 25% 10% 1% 0.1% 
#1 7/9 8/9 7/9 1/9 0/9 0/9 
#2 6/9 6/9 3/9 2/9 0/9 0/9 
#3 6/9 8/9 6/9 0/9 0/9 0/9 
#4 6/8 9/9 1/9 2/9 0/8 0/9 
#5 7/8 6/9 5/9 2/9 0/9 0/9 

Infested 5/5 5/5 5/5 4/5 0/5 0/5 
Total Pots 

The conditions used for this study were not optimum for 

infection by WSBMV. A 9/15 hr photoperiod might have been 

more effective (Rao and Brakke 1970}. The plants were in 

poor health as the nutrients in the soil/sand mix were 

depleted, and improved with fertilization~ Because the 

amount of nutrients available vary with the amount of soil 

in each mix, another source of nutrients should be applied 
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on a regular basis to standardize the effects of nutrients 

on disease. T~e amount of water received by the plants in 

each pot should also be better regulated to minimize pot-to­

pot variability. Much room for investigation remains in 

this project. 



RESEARCH PROJECT III 

INDUCTION OF RESISTANCE TO WHEAT SOILBORNE MOSAIC (WSBM) IN 

HARD RED WINTER WHEAT BY POLYMYXA GRAMINIS. 

Polymyxa graminis is generally assumed to vector WSBMV 

(Brakke et al. 1965, Estes and Brakke 1966). Comparable 

infections by £. graminis are found in roots of both 

susceptible cultivars and cultivars traditionally considered 

to be disease resistant (Larsen et al. 1985), yet, these 

resistant cultivars develop severe symptoms when 

mechanically inoculated with WSBMV in the absence of £. 

graminis (Larsen et al. 1985, McKinney 1948). 

In north central Oklahoma, the 1986-87 growing season 

was more wet than the 1985-86 growing season by 30.5 cm. 

Most of this precipitation fell during the last week in 

September and the first week in October after winter wheat 

in experimental plots had emerged. Resistant cultivars were 

healthier during the second growing season than the first 

(C. R. Armitage, personal observation) as might be expected 

since water can be a limiting factor in Great Plains 

agriculture, i.e. the extra water might have resulted in 

plants better able to overcome viral activity or the effects 

of infection. However, disease symptoms were more severe 
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in the susceptible cultivars during the second growing 

season than the first (C. R. Armitage, personal 

observation). In this case, the extra water seems to have 

aided germination and mobility of viruliferous zoospores 

resulting in a higher initial inoculum. This pair of 

observations, along with the susceptibility of Newton when 

mechanically inoculated, suggested that £. graminis induced 

resistance in some cultivars. Precedence exists for this 

hypothesis. Kassanis and Macfarlane (1965) reported 

.evidence for a similar induction by Olpidium brassicae to 

tobacco necrosis virus in cress. 

MATERIALS AND METHODS 

Soil was collected in October from an area with a 

history of severe WSBMV, sifted through #8 and #20 mesh 

screens to remove rocks and large clumps, and mixed with 

autoclaved fine sand to produce 50%, 25% and 10% soil/sand 

(by weight) dilutions. Fifteen standard Monarch plant bands 

(5.6 x 3.8 x 3.8 cm) were filled with 100 g soil/sand mix 

for each dilution and wedged into a 2 inch plastic pot. 

Seed of cvs. Newton and Vona were soaked in a 0.26% sodium 

hypochlorite solution for 15 min on a reciprocal shaker at 

room temperature. Seeds were rinsed 3 times with double 

distilled water, placed on filter paper in polyethylene 

petri dishes, saturated with double distilled water, and 

allowed to germinate on a bench top under laboratory 
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conditions. Nine germinated seeds of cv. Newton (resistant) 

were placed (3 x 3) on each soil mix in plants bands and 

covered with 5 g autoclaved fine sand. Fifteen bands with 

50% soil/sand were planted with Vona as a check. For each 

cultivar, five pots of each soil/sand dilution were watered, 

via a pipet, with 18 ml, 12 ml, or 6 ml tap water, and 

weighed. Pots were maintained in a growth chamber at a 

10/14 hr day/night cycle at 24/20 °C until emergence of the 

coleoptile, then at 13/10 °C. Pots were brought up to 

weight by the addition of tap water on alternate days. An 

extra 6 ml of water was added to the 6 ml treatment pots 

four days after planting first because of problems with 

seedling establishment. After the third week, 18 ml of 

20/20/20 N-P-K fertilizer was applied to each pot, then 

watering continued as before. Plants were evaluated 

visually and by ELISA. 

RESULTS AND DISCUSSION 

At the moisture levels used, the highest disease 

inc1dences and severities were generally found for cv. 

Newton with the most diluted soil mix (Table 11). For cv. 

Vona, high soil content favors high disease incidence and 

severity (see Appendix C:II). At any particular soil 

content used, the highest disease incidence and severity was 

found at the highest moisture level in cv. Vona but 

generally at the lowest moisture level in cv. Newton (Table 



11). This suggests that soil moisture and soil 

concentration may influence development of WSBM. 
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Presumably, the greater the soil content, the greater the £. 

graminis content. Likewise, the greater the soil moisture, 

the greater the £. graminis mobility and inoculum load. An 

interaction between these two variables is likely and 

suggested by the moderate rating for cv. Newton at 50% 

soil/12 ml and the high ELISA value at 25% soil/6 ml. 

However, these _results, along with evidence given in the 

introduction, suggest that £. graminis may induce disease 

resistance in cv. Newton. 

FURTHER CONSIDERATIONS 

WSBMV is thought to be released into host roots 

following infection of seedling roots by the vector, 

Polymyxa graminis L. during cool, wet periods primarily in 

the autumn (Brakke and Estes 1967, Rao and Brakke 1969). 

Cystosori are the probably primary inoculum when soil and 

soil debris are the virus source (Estes and Brakke 1966). 

Soil debris collected in spring and summer is not as 

infective as soil debris collected in autumn and winter 

(Brakke and Rao 1967, Brakke and Estes 1967). Rao (1968) 

obtained successful transmission of WSBMV from powdered 

roots with a treatment of soil extracts or kinetin in 

distilled water. Powdered roots were incubated at 28 °C for 

two months prior to a pre-inoculation incubation at 20 °C. 
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It seems probable that £. graminis goes dormant in the 

spring as wheat plants mature and developing heads become an 

increasingly dominant nutrient sink. 

If we accept the hypotheses that £. graminis induces 

resistance in resistant cultivars, and that the fungus is 

going dormant in the spring, then it is possible that this 

induction is reduced or ended as the fungus goes dormant in 

the spring. Thus, the effect on WSBM symptom expression by 

changes of host physiology during maturation and senescence 

.may not be directly on viral replication but on the vector 

and its effect on resistance expression. Detailed studies 

of £. graminis populations in wheat roots during maturation 

and study of disease progress in mechanically inoculated 

plants are needed to investigate these hypotheses. 



Table 11. Ratios of pots containing plants infected 
with WSBMV and ELISA absorbances for susceptible cv. 
Vona and resistant cv. Newtonv. 

WATER TREATMENT 
SOIL 18 ml 12 ml 6 ml 

CUL TIVAR CONCENTRATION PWS11 PWAY ELISA~ PWS PWA ELISA PWS PWA ELISA 

VONA 50% 5/5 5/5 0.823 4/5 3/5 0.469 0/5 0/5 -0.103 

NEWTON 50% 0/5 0/5 -0.031 1/5 3/5 0.054 0/5 0/5 -0. 102 

v 

25% 0/5 1/5 0.004 1/5 0/5 -0.028 3/5 4/5 
10% 0/5 2/5 0.004 2/5 3/5 0.044 3/5 5/5 

Soil from an area with a history of severe WSBMV, was mixed with autoclaved 
fine sand to produce 50%, 25% and 10% soil/sand Cby weight) dilutions. 
Fifteen standard Monarch plant bands (5.6 x 3.8 x 3.8 cm) were filled with 
100 g soil/sand mix for each dilution and wedged into a 5 cm plastic pot. 

0. 151 
0.092 

Nine germinated seeds of Newton were placed (3 x 3) on the soil mix in the 
plants bands and covered with 5 g autoclaved fine sand. Fifteen bands with 50% 
soil/sand were planted with Vona as a check. 

w For each cultivar, five pots of each soil/sand dilution were watered by 18 ml, 
12 ml, or 6 ml tap water and weighed. 

x 

y 

z 

Pots were maintained at 24/20 °C until emergence then reduced to 13/10 °C at a 10/14 
(day/night) in a growth chamber. On alternate days pots were brought up to 
weight by the addition of tap water. 
Three weeks after symptoms were first visible, plants were evaluated visually, 
defoliated, and the foliar samples were analyzed by ELISA. Ratio of the number 
of pots containing one or more plants showing visual symptoms of infection by 
WSBMV (i.e. 20ts ~ith ~ymptoms) over the total number of pots. 
Ratio of the number of pots containing one or more plants showing the presence of 
WSBMV antigen by ELISA (i.e. QOts ~ith Entigen) over the total number of pots. 
Means of ELISA absorbances CA405nm> are from five wells on each of two ELISA plates. 
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RESEARCH PROJECT IV 

EFFECT OF ATTACHMENT BY WHEAT SOILBORNE MOSAIC VIRUS 

PARTICLES TO POLYMYXA GRAMINIS ZOOSPORES ON VIRION 

UNCOATING. 

The first step in uncoating of rod-shaped viruses 

appears to be closely associated with end-on attachment to a 

lipid. In mechanical inoculation studies of tobacco mosaic 

virus, translation of the exposed viral RNA appears to 

follow attachment to host lipids. The product of this early 

translation appears to be involved in the remaining step(s) 

in viral uncoating (Kiho 1970, Shaw 1969). However, certain 

rod-shaped viruses demonstrate similar end-on attachment to 

the membranous surface of plasmodiophorid zoospores. These 

zoospores, in turn, enter host cells, exposing the surface­

bound virions to host ribosomes and translation system. 

Thus in vivo (and, presumably, in vitro) translation of the 

uncoating product is possible if uncoating is initiated by 

attachment to the zoospore. 

Langenberg and Giunchedi (1982) used electron 

microscopy to observe the association between wheat 

soilborne mosaic virus (WSBMV) and vector. Polymyxa graminis. 

Although the virus was seen in close contact with the . 

plasmodia of ~. graminis, the virus was not seen inside 

zoospores, plasmodia, zoosporangia or cystosori, perhaps 
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because the fungal cytoplasmic contents were densely 

stained. Most contact between virions and vector was an 

end-on attachment of virions to the outer membrane of the 

plasmodium, however Langenberg and Giunchedi allowed that 

this arrangement may have been an artifact of fixation. 
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The hypothesis that uncoating of WSBMV initiates with 

attachment to £. graminis may be tested in two ways. Place 

viruliferous zoospores in a cell~free translation system, 

for example, the rabbit reticulocyte lysate system used by 

Shirako and Brakke (1984a) and look for: 1) formation of 

viral polysomes on the zoospore surface, and 2) production 

of the same products found by Shirako and Brakke (1984a). 
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