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INTRODUCTION 

Each part of this dissertation is a separate manuscript to be 

submitted for journal publication. Both parts will be submitted to 

Agronomy Journal, an American Society of Agronomy Publication. Articles 

in this journal are peer reviewed and must report experiments repeated 

over time and/or space. 
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PART I 

LONG TERM MONO- AND DOUBLE-CROPPING WHEAT, SOYBEAN, AND GRAIN SORGHUM 

UNDER RAINFED AND IRRIGATED CONDITIONS 

2 



ABSTRACT 

Many growers continue to have interest in double-cropping hard red 

winter wheat {Triticum aestivum {L.} em Thell}, soybean {Glycine max L. 

Merr.}, and grain sorghum {Sorghum bicolor {L.} Moench} in the eastern 

part of Oklahoma. Fall, winter, and spring precipitation is usually 

sufficient in this part of the state to produce wheat. Removal of water 

from the soil profile by the wheat crop and erratic distribution of 

rainfall during the summer months, however, often results in soil 

moisture deficits during the reproductive growth stages of both double

cropped soybean and grain sorghum. An eight-year {1981-1988} field 

study was conducted at the.Oklahoma Vegetable Research Station, Bixby, 

Oklahoma, on a Wynona silt loam soil {Cumulic Haplaquoll} with 0-1% 

slope. The objective of the field investigation was to evaluate the 

long-term yields of mono- and double-cropped wheat, soybean, and grain 

sorghum. All wheat was produced under rainfed conditions while soybean 

and grain sorghum were produced under both conventional and no-till 

systems and under irrigated and rainfed conditions in eastern Oklahoma. 

Over the 8-yr study period, monocropped wheat yielded an average of 2970 

compared with an average of 2405 kg ha" 1 for all double-cropped wheat. 

When the data for wheat yields were pooled and analyzed over years, 

there was a significant {P < 0.01} cropping system {C} x year {Y} 

interaction. The higher yields under monocropping were expected as 

monocropped wheat is planted around the first to third week of October 
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and benefits from more fall growth and tillering compared with early 

November to early December planting and less tillering of the double

cropped wheat. Irrigated monocropped soybean yielded an average of 3110 

compared with 2720 kg ha- 1 for rainfed, monocropped soybean, and 

irrigated double-cropped yielded an average of 2250 compared with 1940 

kg ha- 1 for rainfed, double-cropped soybean. When the data for soybean 

yields were pooled and analyzed over years there were significant water 

(W) x Y, C x Y, and W x C x Y interactions. When compared with rainfed 

conditions the application of supplemental irrigation consistently 

increased soybean yields under monocropping. Under double-cropping, 

irrigation increased yields in five out of eight years. These results 

are most likely responsible for the significant interaction effects of C 

x W x Y interaction. Irrigated conventionally tilled monocropped grain 

sorghum averaged 6220 compared with 6010 kg ha- 1 for rainfed 

conventionally tilled monocropped grain sorghum. Irrigated no-till 

double-cropped sorghum yielded an average of 5300 compared with 4360 kg 

ha- 1 for rainfed no-till double-cropped sorghum. When the data for 

grain sorghum were pooled and analyzed over years, there were 

significant (P < 0.01) C x W, W x Y, C x Y, and W x C x Y interactions. 

The C x W, W x Y, and C x Y interactions can be attributed to the 

contrasting yield differences between rainfed and irrigated treatments 

over years for different cropping systems. These interaction effects 

were due to wide variation in amounts and distributions of rainfall 

during the 8-yr period. The significance of the three-factor 

interaction (C x W x Y) for both soybean and grain sorghum implies that 

the two-factor interaction effect of C x W was not the same for yields 

in all the eight years. 



INTRODUCTION 

With some 215 frost free days and the desire to more fully utilize 

climatic resources, land, equipment, labor, and management skills, many 

growers continue to have interest in double-cropping hard red winter 

wheat [Triticum aestivum (L.) em Thell], soybean (Glycine max L. Merr.), 

and grain sorghum [Sorghum bicolor (L.) Moench] in the eastern part of 

Oklahoma. Fall, winter, and spring precipitation is usually sufficient 

to produce wheat. Removal of water from the soil profile by the wheat 

crop and erratic distribution of rainfall during the summer months, 

however, often results in soil moisture deficits during the reproductive 

growth stages of both double-cropped soybean and grain sorghum. 

The objective of this field investigation was to evaluate the 

long-term yields of mono- and double-cropped wheat, soybean, and grain 

sorghum. All wheat was produced under rainfed conditions. Soybean and 

grain sorghum were produced under conventionally tilled mono- and 

no-till double-cropped systems and under rainfed and irrigated 

conditions. 
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LITERATURE REVIEW 

Conventional Tillage 

Conventional tillage is often considered the standard of 

comparison for other tillage systems (Sanford, 1982). Larson (1962) 

defines conventional tillage as a system of soil preparation for 

planting which includes plowing, disking, harrowing, and in many cases, 

subsequent cultivation. Baeumer and Bakermans, (1973) defined 

conventional tillage in much the same way as Larson, in that it usually 

begins with a primary deep tillage operation such as a mold-board plow 

followed by secondary tillage using a disk, harrow, hoe, or cultivator 

for seedbed preparation. Primary tillage often increases porosity and 

surface roughness thereby increasing water infiltration and the soil's 

resistance to water and wind erosion (Larson, 1962). 

Secondary tillage operations usually degrade soil structure units 

and decrease protective cover, thereby reducing water infiltration and 

increasing the soil's water and wind erodibility potential (Baeumer and 

Bakermans, 1973). Soane and Pidgeon (1975) reported that secondary 

tillage is required to prepare the top 10 cm of soil so that crop seeds 

can be placed uniformly at the correct depth, insuring adequate soil

seed contact to provide water for germination and early growth, as well 

as eliminating large clods which can obstruct shoot and seedling root 

growth. 
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Kuipers (1963) reported that the principal advantage of tillage is 

to get a good soil environment for plant growth. According to him the 

relationship between the tillage operation and yield is affected by such 

factors as soil condition (soil type and pore space), the implements 

used in the operation (soil engaging heads), and the way in which the 

implements are used (working depth and speed). 

According to Graffis et al. (1973) and Hoeft et al. (1975), some 

of the advantages of conventional tillage are: (1) uniform seedbed for 

easy planting; (2) insecticides and herbicides can be incorporated as 

needed; (3) flexible and adaptable to a wide range of soil, crop, and 

weather conditions; (4) results in yields as high or higher than other 

systems over a wide range of soil and climatic conditions; and (5) 

necessary equipment is readily available on most farms. 

Unger and Phillips (1973) reported that conventional tillage 

practices, which expose the bare soil during periods of potentially high 

runoff and evaporation, can serve to deplete the soil moisture supply or 

reduce the possibilities for moisture recharge when it is most needed. 

Graffis et al. (1973) and Hoeft et al. (1975) also reported other 

disadvantages of conventional tillage which include: (1) high cost 

because of the large number of operations; (2) often results in 

excessive tillage so that soil crusting and compaction may be a problem; 

(3) results in small aggregates so that water intake is reduced; (4) 

takes valuable time and decreases soil moisture in the plow layer, 

making it less suitable for double-cropping; (5) subjects fine and 

compact soil particles to wind and water erosion. 

Graffis et al. (1973), Hoeft et al. (1975), Buntley (1977), Soane 

and Pidgeon (1975), and Kamprath et al.(1979) reported that in many 
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cases the recompaction of the layer below the cultivated soil is due to 

the heavy traffic of implements used to conduct secondary tillage 

operations. However, this was largely offset by the loosening effect of 

primary tillage. Hard pans, caused by cementation processes, can also 

reduce root proliferation and penetration into horizons below the pan so 

that water uptake efficiency is decreased (Kamprath et al., 1979). 

Unger and Stewart (1976) proposed that reducing field operations or 

restricting field traffic to specific zones should maintain better soil 

conditions for planting and seedling establishment. 

Another disadvantage of conventional tillage is the formation of a 

soil crust. Allen et al. (1975) and Sanford (1982) found 8 cm of 

intense rainfall, four days after planting and accompanied by a hot dry 

wind, caused a dense crust formation which prevented the emergence of 

soybean seedlings. In contrast, soybean in no-tilled plots emerged to a 

near perfect stand. Sanford (1982) reported that during land 

preparation by disking and harrowing, the loss of soil moisture through 

evaporation significantly reduced emergence and survival of soybean 

seedlings. 

No-Tillage 

Young (1982) defined no-tillage as planting crops in unprepared 

soil by opening a narrow slot, trench or band only of sufficient width 

and depth to obtain proper seed coverage. He also reported that the 

terms no-tillage, zero tillage, chemical tillage, direct seeding, direct 

planting, direct drilling, no-plow tillage, eco-fallow, no-till and sod 

planting are all known as "no-tillage." Young (1982), also reported 

that a further refinement of no-tillage is aerial seeding of small 



grains in standing corn, grain sorghum, soybean or other crops making 

possible production of both row crops and small grains in a sequence 

without tillage. 

Crosson (1981) and Young (1973) defined no-tillage as placing the 

crop seed into the soil by a device that opens a trench or slot through 

the sod, or previous crop residue, only sufficiently wide and deep 

enough to receive the seed and to provide satisfactory seed coverage. 

Sanford et al. (1973) defined no-tillage as a term which refers to 

tillage only by the rolling coulter at planting in the seed zone, 

usually 5 cm wide and 10 cm deep. 

The concern for pollution of lakes, streams, and reservoirs from 

soil erosion and surface runoff has prompted researchers to develop and 

evaluate systems that require less tillage (Sanford et al, 1973). In 

no-tillage systems, herbicides are used to control existing vegetation 

and the crop is planted directly into the soil with no plowing or other 

tillage operations (Clapp, 1972). The key to successful no-tillage is 

satisfactory control of noncrop vegetation with herbicides without 

injury to the crop (Young, 1973). 

Sanford et al. (1973) reported that management is the keystone to 

a sound no-tillage program. They reported that no-tillage planting 

provided the least delay in establishing a second crop, thereby 

increasing chances for success in double-cropping. They also observed 

that in Mississippi, when unsatisfactory results were obtained from use 

of reduced tillage methods, they were usually related to poor weed 

control, poor management, or lack of knowledge of the complete 

technology of production. Crops grown under a no-till system generally 

use more available soil moisture during their life cycles and use it 
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more efficiently than do crops grown with conventional tillage practices 

(Blevins et al., 1971; Prihar et al., 1979; Shanholtz and Lillard, 

1969). 

Some of the advantages that can be derived from no-tillage systems 

include: (1) reduced soil and moisture loss, (2) control of wind and 

water erosion, (3) ability to plant with higher moisture conditions, (4) 

reduced labor and production costs, (5) reduced soil compaction, (6) 

earlier planting, and (7) yields equal to or higher than those produced 

from conventional tillage (Graffis et al., 1973; Gregory et al., 1970; 

Hargrove et al., 1982; Stougaard et al., 1984). 

Much evidence has accumulated showing that the surface mulch often 

associated with no-tillage lowers soil temperatures at depths ranging 

from 2.5 to 10 cm. The mulch reduces the diurnal fluctuation in soil 

temperature with the greatest difference, compared to bare soil, 

occurring in the daily maximum temperature (Phillips, 1969; Moody et 

al., 1963). Moody et al. (1963) concluded that later in the growing 

season corn growth rates were superior for no-tillage (mulch) compared 

to bare soil. 

Bennett et al. (1973) reported that lower soil temperatures under 

mulch reduced evaporation rates considerably in no-till plots, and with 

reduced rainfall runoff, resulted in a significantly greater amount of 

available soil moisture for plant growth. Mulch also physically absorbs 

raindrop impact energy; thus, slaking and sealing of soil surface is 

prevented or retarded. In most instances no-tillage offers surface 

residues to increase infiltration and decrease erosion (Unger and 

Phillips, 1973). Unger (1978) reported that soil temperature is 
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affected by many factors, including air temperature, soil water content, 

soil structure, soil texture, and type and amount of vegetative cover. 

Surface residues associated with reduced or no-tillage systems 

often result in lower spring and summer soil temperatures when compared 

with fallow soil (Taylor, 1967; Unger, 1978). Therefore, favorable 

temperatures for germination and emergence may occur up to 7 days later 

in a no-tillage seedbed. Planting may be delayed 6 or 7 days with no

tillage systems used in northern latitudes of the United States (Unger 

and Stewart, 1976). Although lower temperatures may delay planting in 

the spring, lower temperatures under surface residues in the summer may 

beneficially influence a late-planted crop or crops growing during hot 

periods (Allen et al., 1975; Rockwood and Lal, 1974). Rockwood and Lal 

(1974) reported that corn yields were 50% greater with no-tillage 

compared with conventional tillage because lower temperatures reduced 

plant water stress. 

Smith and Camper (1975) reported that both size and quality of 

soybean seed are affected by genetic and environmental conditions. 

Green et al. (1965) and Tyler and Overton (1982) reported that, in a hot 

dry growing season, soybean seed produced under no-tillage usually 

appeared to be of greater quality than those produced under conventional 

tillage. Greater seed quality was attributed to more soil water 

availability. In Tennessee, Tyler and Overton (1982) found that soybean 

seed quality from no-tillage systems was improved over soybean grown in 

conventional tillage systems. This was primarily due to the enhanced 

availability of soil water under the no-tillage system during dry 

periods. Seed germination, weight, density, and yield were also 



superior under drought stress in no-tillage compared with conventional 

tillage methods. 

12 

The purely protective effect of residue cover may influence the 

rate of evaporation. Bond and Willis (1969) and Papendick and Miller 

(1977) observed that the evaporation rate decreased as the amount of 

mulch increased, resulting in a higher mean volumetric moisture content 

in the upper soil layer when compared with conventional tillage. 

Tillage systems may influence the retention and movement of water 

in the soil profile (Soane and Pidgeon, 1975). Mulch increases the 

level of soil water storage and conserves water by increasing 

infiltration and reducing runoff and evaporation (Blevins et al., 1971; 

Greb et al., 1970; Jones et al., 1969; Robertson et al., 1976). No

tillage is often employed with a heavy surface mulch of plant residues 

to increase infiltration and decrease erosion hazards (Harrold et al., 

1970), but in Britain, the presence of mulch is considered undesirable 

(Soane and Pidgeon, 1975). On silt loam with an 8 to 10% slope that was 

planted in row crops using a no-tillage system, reduction of runoff was 

decreased from 1/2 to 1/6 of the amount observed under clean tillage 

(Harrold and Edwards, 1972; Jones et al., 1969). 

In long term (10-years) tillage study on a Maury silt loam in 

Kentucky, Frye (1986) found the organic matter content in the surface 5 

cm of soil receiving annual applications of 168 kg ha" 1 fertilizer N was 

4.82% for no-tillage and 2.40% for conventional tillage. He reported 

that the higher amount of organic matter near the soil surface with no

tillage could be attributed to lack of mechanical mixing of plant 

residues into the soil that resulted in slower decomposition. He also 

reported that exchangeable potassium (K) in the surface 5 cm was about 
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twice as high under no-tillage compared with conventional tillage. 

Hargrove et al. (1982) reported that continuous no-tillage resulted in 

increased nutrient concentrations in the surface soil with a rapid 

decrease with depth, while conventional tillage resulted in a more 

homogeneous soil with respect to soil fertility status. Blevins et al. 

(1977) reported that soil organic matter and organic nitrogen (N) 

increased significantly in the top 5 cm of soil for corn production 

under no-tillage, compared with conventional tillage systems. 

In the Texas panhandle, under no-tillage, grain sorghum plants 

emerged faster, grew taller, and matured up to 5 days earlier compared 

with tilled plots .. Slower drying of the soil surface and improved 

microclimate under no-tillage during seedling emergence, apparently aids 

in a faster start and resulted in an increased yield average of 5,690 

compared with 5070 kg ha" 1 under conventional tilled grain sorghum 

production systems (Allen et al., 1975). 

Total water use efficiency was higher for no-tillage than for 

conventional tillage corn populations in West Virginia (Bennett et al., 

1973). They reported that greater water use efficiency with no-tillage 

can largely be attributed to early season residue effects on slowing 

evaporation loss and increasing growth and yield. 

Inadequate seedbed water at planting time is a major limiting 

factor to early establishment of any crop (Papendick and Miller, 1977). 

Plant growth and yield responses to a given tillage system depends 

primarily on water conservation practices. Under no-tillage conditions, 

the decreased evaporation at the surface and reduced runoff enhances the 

potential for a given soil to store moisture often results in a water 

reserve which can carry the crop through periods of short-term drought 
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without detrimental moisture stress developing in the plants (Blevins et 

al., 1971). 

Some disadvantages of no-tillage systems are: (1) poor stands, in 

some instances which may limit yields; (2) special planting equipment 

requirements; (3) higher incidence of insect and disease damage due to 

crop residues, serving as a host habitat; (4) weed control problems due 

to interference of crop residues with herbicides; and (5) escaped or 

herbicide-tolerant grassy and broadleaf weeds (Graffis et al., 1973; 

Gregory et al., 1970; Sanford et al., 1973; Sanford, 1982). 

Weeds are the most economically detrimental pest problem for 

soybean growers using reduced tillage practices (Marra and Carlson, 

1983). Thompson (1981) reported that competition for moisture, plant 

nutrients, and sunlight made weeds the number one soybean yield robber. 

Triplett (1978) reported that for no-till cropping practices, complete 

reliance for control of weeds must be placed on the use of herbicides. 

According to Robinson et al. (1984), weeds have to be controlled in no

till soybeans for 90% of the growing season to avoid yield loss. 

In a study by Sanford et al. (1973), competition from weeds in no

till soybean and grain sorghum caused significant yield reductions. In 

Arkansas, Hinkle (1975) showed that soybean and grain sorghum grown 

under no-till conditions resulted in yields comparable to conventionally 

tilled production if good chemical weed control was obtained. 

There are many herbicides available for use on no-till cropping 

systems, but when soybean is grown under no-tillage conditions whether 

mono- or double-cropped, some weeds may be quite difficult to control 

(Shurtleff and Coble, 1985). They reported that common cocklebur with a 

density of 8 weeds per 10 m row reduced soybean yields 11%, while a 



density of 16 weeds per 10 m row for common ragweed (Ambrosia 

artemesilfolia) resulted in a 12% reduction in yield. 
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Johnsongrass (Sorghum halepense), and several morningglory species 

(lpomoea spp.) are some of the most serious weed pests in the southern 

region of the United States (Palmer, 1979). He reported that they were 

difficult to control due to herbicidal tolerance. The primary factor to 

the herbicidal tolerance of these weeds is that the seedlings will 

emerge from depths of up to 15 cm, which is below the zone of herbicide

treated soil in most cases (Chandler et al., 1977). Mcwhorter and 

Anderson (1981) reported that various degrees of infestations of 

johnsongrass reduced soybean yields by 50% or more. Black et al. (1969) 

considered johnsongrass a very competitive species, in that it fixed 

carbon dioxide at very high rates and produced large quantities of 

rhizomes and seeds. 

Weed control was a major factor in yield reduction for soybean and 

grain sorghum (Sanford et al, 1973). In a study in Mississippi, Sanford 

(1982) reported that the two-year yield average for no-tillage was 3,250 

compared with 3,870 kg ha- 1 for conventional tillage grain sorghum with 

the difference in yield being attributed mainly to a lack of weed 

control on no-tilled plots. 

Studies conducted in Arkansas double-cropping wheat with soybean 

or grain sorghum by Hinkle (1975), showed that yields of a second crop 

planted no-tillage resulted in comparable yields to conventional tillage 

with good chemical weed control. High yields and improvements in 

herbicides have become important reasons in the change to no-tillage 

crop production (Young, 1973). With the continuous development of new 

and improved herbicides to control grass and broadleaf weed problems, 
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the popularity of no-tillage systems has increased in many areas in the 

United States (Kapusta, 1979; Whitwell et al., 1985). It has been 

predicted that 653 of the seven major annual grain crops will be grown 

by the no-tillage system by the year 2000 (USDA, 1975). 

Water Requirements for Crops 

Plant water requirements change during the growing season and 

stress at some growth stages affects crop yield more than at other 

stages (Stone et al., 1978). Soil water potential, coupled with 

atmospheric demands and other plant factors, acts indirectly on growth 

through its influence on plant water potential which, in turn, affects 

the rate of plant growth (Gandar and Tanner, 1976). 

Entz and Fowler (1988) reported that the extent to which water and 

temperature stresses affected the yield of wheat was dependent on the 

development stage at which time these stresses occurred and pre-stress 

conditioning. The influence of temperature and water stresses on wheat 

yield is generally least during tillering stage and greatest during the 

period between stem elongation and anthesis (Nix and Fitzpatrick, 1969; 

Fischer and Maurer, 1976; Doorenbos and Kassam, 1979; Johnson and 

Kanemasu, 1982). 

Water supply at wheat jointing has been shown to influence spike 

number per unit area (Baier and Robertson, 1967; Day and Intalap, 1970), 

and post-anthesis drought causes die-back of tillers (Musick and Dusek, 

1980). The number of kernels per spike of wheat has been reported to be 

most severely reduced by water stress during the 15 day period prior to 

anthesis (Baier and Robertson, 1967; Fischer, 1973). Both water (Baier 

and Robertson, 1967; Day and Intalap, 1970) and high temperature (daily 
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maximum temperature of 34 vs. 26°C), stress (Fischer and Maurer, 1976) 

during the grain filling period have been shown to reduce kernel weight. 

Schneider et al. (1969) reported that the most critical period for 

winter wheat was from the booting through the grain filling stages. 

They found that timing of irrigation was as important as total quantity 

of water applied. Eck (1980) reported that if limited irrigation was to 

be used in wheat production in the Southern Great Plains, it could be 

used more efficiently by preventing stress during tillering and jointing 

than during heading and grain filling. He also reported that stress 

during tillering and jointing limited yield potential that was not 

regained when stress was relieved. Thus, if stress is prevented until 

heading, the maximum yield of the plant is developed and can be taken 

advantage of during heading and grain filling. 

Under humid or irrigated conditions, narrow row spacings of 0.10 

to 0.20 m give highest yields for most small grains (Holliday, 1963; 

Joseph et al., 1985). Johnson and Davis (1980) reported that winter 

wheat which did not develop adequate secondary rooting in the fall on a 

Pullman clay loam soil did not effectively utilize stored soil water 

from below the 1.0 m depth. Winter and Welch (1987) reported that while 

using semi-dwarf wheat in wide-row systems was successful in reducing 

crop water deficit and increasing plant height, grain yield was reduced 

in wide-row systems compared to narrow-row systems for both tall and 

semi-dwarf wheat. 

In semi-arid regions, yearly differences in yield response to N 

fertilizer in wheat may be attributed to variability in precipitation 

and the associated variability in the degree of moisture stress (French 

and Schultz, 1984). Campbell and Davidson (1979) reported that 
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monitoring moisture stress during the season might provide a guideline 

for timing N fertilizer application to increase the efficiency of N 

utilization in wheat. Korentajer and Berliner (1988} reported that over 

69% of the variability in wheat yields was due to main seasonal stress 

index effect. 

Withholding irrigation or inducing water stress in wheat has 

increased water use efficiency (WUE} (Singh and Kumar, 1981; Aggarwal 

and Sinha, 1983; Misra and Chaudhary, 1985}, but others have reported 

that withholding water decreased WUE (Johnson et al., 1984; Bapna and 

Khuspe, 1980; Rao and Bhardwaj, 1981}. Nicholas et al. (1984} reported 

that drought and heat stress during the first 10 to 12 days following 

anthesis reduced kernel weight of wheat. 

According to Heatherly (1980} a plant's response to water is 

evidently more closely related to soil water potential than to any other 

single factor. He found that for the most rapid vegetative growth and 

development of soybean, soil moisture potential should be kept above 

-0.6 bars. He also reported that adequate moisture is the major factor 

limiting yield in most areas where soybean is grown. 

Subjecting soybean to water stress during flower induction 

shortens the flowering period and causes flower abortion, whereas stress 

during pod filling reduces seed number and weight (Sionit and Kramer, 

1977}. When the supply of water and nutrients translocated to the shoot 

are severely limited, the shoot may slow its rate of terminal growth 

functions which include photosynthesis and assimilation, leaf expansion, 

and flower initiation or retention according to Howell (1960} and Levitt 

(1980}. Sojka and Parsons (1983} reported that when significant water 

stress occurred during the vegetative stages of growth, complete canopy 



coverage was never achieved for determinate soybean cultivars because 

vegetative growth tended to cease with flowering. 
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Soybean is also more sensitive to water deficits during 

reproductive stages than during vegetative growth stages {Brown et al., 

1985; Salter and Goode, 1967; Thompson, 1975; Jung and Scott, 1980; Doss 

et al., 1974). They reported that pod filling was the critical period 

when soybean plants needed adequate water for maximum yield. Their 

results showed that reductions in seed size and seed number were major 

components responsible for reduced soybean yield in moisture stressed 

treatments. 

Doss et al. {1974) reported that the pod-fill stage, from 15 

August to 20 September for "Bragg" soybean at Thorsby, Alabama, was the 

critical time to have adequate water for maximum yield. Farah {1983) 

reported that yield reduction from water deficits depends not only on 

the magnitude of the deficit, but also on the stage of the plant growth. 

Shipley and Regier {1975) found that withholding a 10 cm irrigation 

during the six to eight-leaf stage, mid to late bloom stage and early 

pod set stage in soybean reduced yields 12, 35, and 45%, respectively. 

The sensitivity of soybean to water stress measured in terms of yield 

reduction tended to increase dramatically as the crop advanced through 

its natural sequence of reproductive ontogeny {Kadhem et al., 1985). 

They reported that sensitivity increased to a maximum during the late 

pod elongation and subsequent seed enlargement stages. They also 

suggested that the full pod {R4) stage was a critical "cross-over" point 

in reproductive ontogeny rel~tive to irrigation timing and its effect on 

seed size. 
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Researchers have not agreed upon the growth stage of grain sorghum 

that is most susceptible to drought stress. Stages identified are boot 

through bloom (Lewis et al., 1974), heading through bloom (Shipley and 

Regier, 1975), boot (Inuyama et al., 1976), heading to milk (Plant et 

al., 1969), and heading through grain filling (Musick and Dusek, 1971). 

Despite these differences, the consensus is that water stress, just 

prior to or during reproductive stages of growth, decreases yields. 

Eck and Musick (1979a) reported that when grain sorghum plants are 

stressed at the early boot stage and continued for 27 days or longer, 

the yields decreased as a result of a reduction in number and size of 

seed, but when stress was initiated at heading or later, only seed size 

was decreased. Musick and Dusek (1971) reported that water stress 

influenced yield primarily by reducing the size and/or number of heads 

and limiting grain filling. Robins et al. (1967) reported that when 

sorghum was stressed during the boot to flowering stage, pollination 

failure or head blast may occur, so grain yield is reduced. 

Unger (1988) reported that grain sorghum is adapted to the 

Southern and Central Great Plains, but water stress at critical 

reproductive stages could sharply reduce grain yields of the crop on 

dryland. He also concluded that forage sorghums used water effectively 

and were not as dependent on adequate water at critical reproductive 

growth stages as grain sorghum for grain production. 

Unger (1984), Unger and Wiese (1979), and Musick and Dusek (1971) 

reported that although grain sorghum responded to irrigation, it also 

performed well on dryland provided soil water was not limiting at 

planting, and rainfall was near normal in the southern High Plains 

during the growing season. Sorghum grain yields on dryland, however, 
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can be reduced sharply by water stress during critical reproductive 

growth stages (booting, flowering, and grain filling), even though early 

growth may provide for near-normal stover production (Unger and Wiese, 

1979). 

Arkin et al. (1978) reported that water deficits in grain sorghum 

might also affect canopy development by a reduction in total leaf 

number, rates of individual leaf emergence from the whorl, and on leaf 

extension and senescence. All these components are important in 

determining the surface area available for transpiration and assimilate 

production (Meyers et al., 1984; Parameswara and Krishnasastry, 1982; 

El-Sharkawy et al., 1965). Rosenthal et al. (1987) reported that the 

reduction in leaf extension induced by soil water deficit also reduced 

leaf area and total biomass and was highly correlated with reduction in 

cumulative transpiration in grain sorghum. They also reported that 

reductions of leaf development were closely related to soil water 

deficits in grain sorghum. 

Recent studies (Ogunlela and Eastin, 1984; Saeed et al., 1986) 

have reported that increases in kernel weight of sorghum were due 

largely to rate of kernel fill with little difference in duration of 

growth. While number of kernels per panicle of sorghum is the yield 

component most variable with environment, final dry weight per kernel is 

the only component that can change for a panicle after kernel number per 

panicle has been set (Stickler and Pauli, 1961). 

Irrigation 

Dillon and Mckibben (1972) reported that drought was probably the 

major cause of failure in nonirrigated double-cropping systems in 



Illinois. When rainfall is inadequate or not properly distributed 

throughout the growing season, irrigation will usually increase both 

mono- and double-cropped yields (Ashley and Ethridge, 1978; Boerma and 

Ashley, 1982}. Crabtree and Makonnen (1981} predicted that double

cropping without irrigation would be successful in eastern Oklahoma 

approximately 60% of the time. 
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Noori et al. (1985} reported that germination and emergence of 

winter wheat were critical to crop stand establishment. Low soil water 

potentials, often found in seedbeds in semi-arid areas, result in slow 

seed imbibition and germination (Collis-George and Sands, 1959}. Slow 

emergence influences seedling vigor and can affect yield (Lindstrom, 

1973}. Ward and Shaykewich (1972} and Ashraf and Abu-Shakra (1978} 

reported that as soil water content decreased, the rate of water uptake 

by the wheat kernel decreased. Decreasing soil moisture content tends 

to delay wheat germination (Pawloski and Shaykewich, 1972}. 

Stark and Longley (1986} reported that tillers in spring wheat 

which developed under optimal soil moisture conditions were uniform in 

appearance and reached maximum populations over relatively short degree

day periods. They also reported that soil water deficits decreased the 

rate of appearance of all main stem tillers, caused tiller appearance to 

occur over longer intervals, and dry soil conditions severely reduced 

development of tillers at the coleoptilar node. Klepper et al. (1982} 

and Rickman et al. (1983} reported that adverse seedbed conditions 

caused tillers to be omitted or delayed in appearance in winter wheat. 

Cannell (1969} reported that the time of tiller appearance has a 

pronounced effect on yield potential. He also reported that the time of 

appearance was closely linked to tiller survival, size, and 
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productivity. Soil water deficits during vegetative development of 

wheat can affect leaf area, tiller survival, tiller size, initiation of 

floral primordia, and the number of grains per spikelet (Aspinall et 

al., 1964; Slatyer, 1973; Begg and Turner, 1976; Oosterhuis and 

Cartwright, 1983). 

Water is the primary limiting factor to successful soybean 

production in the semi-arid Great Plains (Korte et al., 1983). Drought 

stress has been shown to reduce critical growth processes such as 

photosynthesis, cell enlargement, cell division, and nitrogen fixation. 

Water stress at critical growth periods appears to be one of the most 

frequently limiting factors in successful crop production (Brown et al., 

1985; Doss and Thurlow, 1974). In a study conducted by Korte et al. 

(1983) eight soybean cultivars were subjected to either no irrigation or 

one irrigation applied at three reproductive stages of growth: (1) 

flowering, (2) pod elongation, and (3) seed enlargement. The flowering 

irrigation increased yields 20 kg ha- 1, pod elongation irrigation 

increased yields 379 kg ha- 1, and seed enlargement irrigation increased 

yields 384 kg ha- 1, compared with nonirrigation. 

Ashley and Ethridge (1978) and Kadhem et al. (1985) reported that: 

(1) a moderate water supply produced about the same yield response as a 

high supply; (2) irrigation during the vegetative growth period is less 

important than during flowering, pod set, and pod fill stages; (3) 

response to irrigation varies with cultivars; and (4) plant lodging is 

frequently a problem when soybean cultivars are irrigated. Timing 

rather than quantity of irrigation appears to be more important in 

determining the effects of irrigation on soybean yields. Results are 

variable, but most research indicates that irrigation during pod 
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elongation and seed enlargement results in highest seed yields (Brown et 

al., 1985; Reicosky and Deaton, 1979; Doss et al. 1974). 

Research has indicated that grain sorghum yields are reduced if 

water stress occurs at any time during plant growth (Lewis et al., 

1974). Since it is more drought tolerant and highly responsive to added 

water, it is adapted to both dryland and irrigated conditions (Eck and 

Musick, 1979a). The greatest response to irrigation has been during the 

vegetative, vegetative to heading, booting and heading, booting through 

bloom, and grain filling growth stages (Lewis et al., 1974; Musick and 

Dusek, 1971; Salter and Goode, 1967; Stewart et al., 1975). Lewis et 

al. (1974) recorded yield reductions of 17%, 34%, and 10% when the water 

deficit occurred during the late vegetative to boot stage, boot through 

bloom stage, and milk through soft dough stage, respectively. Stewart 

et al. (1975) reported no yield response to irrigation at milk stage or 

later. Crabtree et al. (1986) reported that irrigation increased the 

yields of mono- and double-cropped grain sorghum 786 and 1120 kg ha" 1, 

respectively. 

Management practices for higher yields such as higher plant 

populations, increased fertilization, improved varieties, better 

irrigation timing, and narrower rows are more feasible with irrigation, 

although maximum response to irrigation comes when other management 

practices are optimum (Jensen and Musick, 1962). 

Double-Cropping 

Hovermale et al. (1979) defined double~cropping as the production 

of two crops grown in succession on the same area of land in one year. 

According to Hinkle (1975), double-cropping achieves greater utilization 



of solar energy, reduction of production costs, and better land use 

efficiency. Phillips and Young (1973) reported that the most widely

used double-cropping program in the United States is small grains and 

soybean. Wheat following soybean in a double-cropping system is 

efficient in much of the southeastern United States, extending from 

Florida and Georgia north to Southern Illinois and west to Oklahoma 

(Crabtree and Rupp, 1980; McHarry and Kapusta, 1979; Touchton et al., 

1980). 
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Double-cropping with the use of no-tillage systems requires a high 

level of management in that each operation must be performed at the most 

appropriate time (Sanford et al., 1973). They also reported that 

planting time is critical if the normal maturity date of the preceding 

crop extends beyond the normal planting range for the succeeding crop. 

Therefore, no-tillage planting provides the least delay in establishing 

a second crop. Knapp and Knapp (1978) reported that late-planted wheat 

produced lower grain yields because it extracted less water from the 

soil, developed a less extensive root system, fewer tillers, and 

resulted in fewer heads to harvest when compared with optimal planted 

dates. 

Weather risks associated with double-cropping are reduced through 

no-tillage practices, largely, because of a reduction in the time 

required for seedbed preparation and reduction in evaporation loss of 

soil moisture because of less soil disturbances (Young, 1982). He also 

reported that harvesting might be easier in a wet season than in 

conventional tilled fields. 

Touchton and Johnson (1982) postulated that climatic conditions, 

such as number of frost-free days and distribution of rainfall in 



midsummer, played an important role in the success of double-cropping. 

They also reported that after wheat harvest, potential soybean yield 

decreased each day planting was delayed. 

McKibben and Pendleton (1968) reported that factors contributing 
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to yield reductions of late-planted, double-cropped soybean were the 

uncertainty of rainfall in late June and July for good germination and 

early growth, and frost before crop maturity. Despite the reduction of 

individual crop yields in the double-cropping system, the total grain 

yield of the two crops combined is usually higher than either crop grown 

as a mono-crop (Crabtree and Makonnen, 1981; Rogers et al., 1971; 

Sanford, 1982). Sanford (1982) also reported that yields of wheat were 

higher when double-cropped after soybean than when double-cropped after 

grain sorghum. He attributed the higher wheat yields following soybean 

to the contribution by soybean to the nitrogen supply and improved 

tilth. 

Dillon and McKibben (1972) reported that perennial weeds caused 

more problems than annual weeds with double-cropping. A major factor in 

the occurrence of weed problems is that herbicides with longer residual 

effects that can be used to effectively control weeds in one crop may 

cause injury to the subsequent crop and, therefore, are not suitable for 

use in double-cropping systems (Dillon and McKibben, 1972; Hinkle, 1975; 

Ndon et al., 1982). 

Malcolm (1980) and Mullins et al. (1972) reported that residue 

interference could reduce crop stands in double-cropping systems, while 

residue removal or burning over a period of several years might reduce 

soil productivity, and increase soil erosion and water runoff. 

Swearingin (1973) found that using weighted fluted coulters in front of 



planter units helped to overcome the problem of stand establishment in 

residues by cutting through them and placing the seed deep enough to 

reach moist soil for good germination and emergence. 

Other management practices that increase the chances for 
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successful double-cropping include: (1) excellent stand of small grain 

to help control weeds; (2) sufficient moisture; (3) adequate fertility 

for both crops; and (4) planting the summer crop as soon as possible 

(Crabtree and Rupp,1980; Flannery, 1977; Mederski et al., 1973; Buntley, 

1977). 



MATERIALS AND METHODS 

This study was conducted at the Vegetable Research Station, Bixby, 

Oklahoma from 1981-88 on a Wynona silt loam soil (Cumulic Haplaquolls) 

with 0-1% slope. 

In the fall of 1980, the seedbed for all wheat was prepared by 

moldboard plowing plus two tandem diskings. In subsequent years, the 

same tillage operations were used to prepare the seedbed for monocropped 

wheat. Two tandem diskings of the double-cropped soybean and grain 

sorghum stubble were used to prepare the seedbed for double-cropped 

wheat. From 1980 to 1987, fall soil tests showed phosphorus (P) and 

potassium (K) to be at the 100% sufficiency levels as determined by the 

Oklahoma State University soil testing laboratory procedures and 

recommendations. 

Winter wheat, 'TAM-105' was planted on monocropped plots, with a 

range of 5 October to 21 October planting dates at a rate of 67 kg ha·1• 

Double-cropped wheat plots were planted with a range of 6 November to 4 

December planting dates at a rate of 101 kg ha· 1 • A hoe drill with 0.25 

m row spacings was used to plant the wheat in plots 9.15 x 18.3 m (1981-

88). Each year wheat was top-dressed by broadcasting NH4N03 at a rate 

of 135 kg N ha· 1 during mid to late February. Wheat grain yields were 

obtained by harvesting a 3.05 x 18.3 m strip from the center of each 

plot on dates that ranged from 8 June to 2 July. Wheat yield data were 
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analyzed using a randomized complete-block design consisting of five 

treatments with four replications. 
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Seedbed preparation for the conventionally tilled monocropped 

soybean and grain sorghum treatments consisted of moldboard plowing and 

two tandem diskings. No-till double-cropped soybean and grain sorghum 

were seeded directly into standing wheat stubble. All grain sorghum 

plots received a broadcast application of NH4N03 at 135 kg N ha-1 just 

prior to planting. 

Soybean, 'Forrest,' (Maturity Group V) were planted at 296,000 

viable seed ha- 1 • Grain sorghum, cultivars 'Acco BR-Y93' (1981-84) and 

'Acco BR-Y90' (1985-88), were planted at 296,000 viable seeds ha- 1 • 

Both crops were planted using an eight row, no-till planter equipped 

with ripple coulters, double-disk openers, 40 mm depth bands, and press 

wheels. The planter was configured to plant wheel traffic and non-wheel 

traffic rows in 0.75 and 0.50 m row spacings, respectively. 

Conventionally tilled monocropped soybean and grain sorghum were planted 

with a range of 22 May to June planting dates. No-till double-cropped 

soybean and grain sorghum were planted with a range of 9 June to 3 July 

planting dates. Soybean and grain sorghum plots were the same size as 

wheat. 

Trifluralin (a,a,a-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine) 

was broadcast on the conventionally tilled, monocropped soybean plots at 

1.1 kg ha- 1 in 234 L ha- 1 water and incorporated with a Do-all prior to 

planting. All mono-cropped soybean treatments also received one 

mechanical cultivation. No-till double-cropped soybean treatments 

received 1.1 kg ha- 1 glyphosate [N-(phosphonomethyl) glycine] broadcast 

in 234 L ha- 1 water immediately after planting. All soybean plots 
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received a tank-mixed, postemergence application of bentazon (3-

isopropyl-lH-2,1,3-benzothiadiazin-4-(trifluoromethyl}phenoxy]-2-

nitrobenzoate at 0.56 and 0.42 kg ha- 1, respectively, in 234 L ha- 1 

water. Glyphosate was used to control rhizome johnsongrass [Sorghum 

halepense (L.} Pers.] by spot treating as needed from 1981-83. In 1984 

and subsequent years, a separate application of fluazifopbuty(±}-butyl 

2-[4-[(5-(trifluoromethyl}-2-pyridinyl}oxy]phenoxy]propanoate at 0.19 kg 

ha- 1 along with 0.53 L surfactant in 234 L ha- 1 water were also applied 

postemergence to all soybean treatments for continued johnsongrass 

control. 

The above-mentioned postemergence herbicide applications were 

necessary due to weed pressure from morningglory (Ipomoea purpurea, 

Ipomoea hederacea var. jacq., and Ipomoea hederaceae var. 

integriuascula}, cocklebur (Xanthium pensylvanicum Wallr.}, redroot 

pigweed (Amaranthus retroflexus L.}, common lambsquarters (Chenopodium 

album L.}, and rhizome johnsongrass. 

Propazine [2-chloro-4,6-bis(isopropylamino}-s-triazine] was 

broadcast at 1.34 kg ha- 1 in 234 L ha- 1 water, on the conventionally 

tilled, monocropped grain sorghum plots immediately after planting. 

Glyphosate and linuron[3-(3,4-dicholorophenyl}-1-methoxy-1-methylurea] 

were broadcast on the no-till, double-cropped grain sorghum plots as a 

tank-mixed preemergence application at 1.12 and 0.56 kg ha- 1, 

respectively, in 234 L ha- 1 water. Conventionally tilled, monocropped 

grain sorghum plots received one mechanical cultivation. All grain 

sorghum plots also received a postemergence broadcast application of 

0.84 kg ha- 1 2,4-Dacamine (N-oleyl-1,3-propylenediamine) in 234 L ha- 1 
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water. Glyphosate was used to spot treat rhizome johnsongrass as needed 

for control throughout the experiment. 

Soybean and grain sorghum yields were obtained by harvesting 2.92 

x 18.3 m strip from the center of each plot. Harvest dates ranged from 

21 October to 20 November and 13 September to 30 October for monocropped 

soybean and grain sorghum, respectively. Harvest dates ranged from 25 

October to 20 November and 25 September to 20 November for double

cropped soybean and grain sorghum, respectively. Soybean and grain 

sorghum yield data were analyzed separately using a 2 x 2 factorial. 

Treatment factors and their respective levels were water (rainfed and 

irrigated) and cropping systems (monocropped and double-cropped). These 

constituted the treatments in a randomized complete-block design with 

four replications. 



RESULTS AND DISCUSSION 

Rainfall 

Monthly distribution and total rainfall amounts from 1 January 

1981 to 31 December 1988 and the 30-yr monthly average (1959 to 1988) 

are given in Table 1. Monthly distributions of rainfall for each year 

of the eight year study are given in Fig. 1 and 2. Rainfall is 

generally sufficient to replenish soil water during late winter, spring, 

and early summer. The last half of July, August, and September remain 

critical for double-cropped soybean and grain sorghum because of less 

rainfall and higher atmospheric demand. 

Wheat Yields 

Total amount of precipitation during the months of February, 

March, and April was low (63 mm) in 1982 compared with 192, 204, and 258 

mm in 1981, 1983 and 1984, respectively. Over the next four-year period 

(1985-1988) rainfall amounts and distribution were good from February 

through May of each year with the exception of April and May 1988, when 

lower than average rainfall was obtained (Figure 2, Table 1). 

In 1981 monocropped wheat yielded significantly more (P < 0.01) 

compared with double-cropped wheat (Table 2). Double-cropped wheat 

yields were significantly higher (P < 0.05) where the previous years 

rainfed and irrigated double-cropped soybeans were grown compared 

32 



33 

with the rainfed and irrigated double-cropped grain sorghum treatments 

(Table 2). The 1982 yields for all wheat cropping systems were 

considerably lower in magnitude compared with other years and can be 

attributed to an outbreak of tan spot (Pyrenophora triticirepentis). 

Although tan spot decreased yields, monocropped wheat still 

significantly (P < 0.01) out yielded double-cropped wheat (Table 2). 

Higher than normal rainfall in May and June, along with lower wheat 

yields, allowed subsoil water to accumulate in considerable magnitude. 

Double-cropped wheat yields were not significantly different whether 

soybean or grain sorghum was grown under rainfed or irrigated conditions 

in 1981. 

In 1983 monocropped wheat yielded significantly (P < 0.01) more 

compared with double-cropped wheat (Table 2). The wheat yield from the 

rainfed double-cropped wheat and irrigated double-cropped soybean 

treatment was significantly (P < 0.05) higher compared with the two 

wheat yields double-cropped following grain sorghum in 1982 (Table 2). 

For the 1984 environment monocropped wheat yielded significantly more 

(P < 0.01) than double-cropped wheat. A wheat yield of 2970 kg ha- 1 

from the rainfed double-cropped wheat and irrigated double-cropped 

soybean treatment was significantly (P < 0.05) higher compared with the 

rainfed double-cropped wheat and rainfed double-cropped grain sorghum 

treatment (Table 2). 

In 1985 monocropped wheat yielded significantly (P < 0.01) more 

compared with double-cropped wheat. There were no statistically 

significant differences (P > 0.05) between double-cropped wheat 

treatments (Table 2). The rainfall pattern in 1986 was slightly 

different from the previous years in that there was zero precipitation 
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in January and well above average precipitation in April, May, 

September, and October of the same year compared with the 30-yr average. 

However, the total rainfall in 1986 was lower than total rainfall for 

1984 and 1985 (Table 1). Monocropped wheat yielded significantly (P < 

0.05) more in 1986 compared with double-cropped wheat (Table 2). The 

drastic yield reduction in 1986 was due to an outbreak of leaf rust 

(Puccinia recondita Rob. ex Desm F. sp. tritici Eriks). 

For the 1987 environment monocropped wheat yielded 2480, 

significant at (P < 0.01), compared with 1910, 1940, 1660, and 1750 kg 

ha- 1 for double-cropped wheat (Table 2). Double-cropped wheat yields 

were not significantly different from one another across all treatments. 

As with the seven previous years, the 1988 monocropped wheat yielded 

significantly more (P < 0.01) when compared with double-cropped wheat 

with the 2920 kg ha- 1 wheat yield from the rainfed double-cropped wheat 

and rainfed double-cropped grain sorghum treatment being significantly 

higher (P < 0.05) compared with rainfed double-cropped wheat and 

irrigated double-cropped soybean treatment (Table 2). 

When wheat yield data were pooled and analyzed over the 8-yr study 

period, there was a significant (P < 0.01) cropping system, year, and 

cropping system x year interaction effect. Monocropped wheat yielded an 

average of 2970 (significant P < 0.01) compared with an average of 2400, 

2460, 2390, and 2370 kg ha- 1 for double-cropped wheat (Table 2). These 

results are similar to those reported by Crabtree and Makonnen (1980) 

and Crabtree et al. (1987). The higher yields under monocropping were 

expected as monocropped wheat is planted around the first to third week 

of October and benefits from more fall growth and tillering compared 
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with early November to early December planting and less tillering of the 

double-cropped wheat. 

Soybean Yields 

Rainfall amounts and distribution the last half of July, August, 

and September remain critical for summer grown crops. During this 

period supplemental water applications were made on the designated irri

gation treatments in either 0, 50, 60, or 70 nvn increments (Table 3). 

In 1981 there was a highly significant (P < 0.01) response to 

irrigation by both mono- and double-cropped soybean (Table 4). 

Irrigated monocropped soybean yielded 3200 compared with 1860 kg ha- 1 

for rainfed monocropped soybean, and irrigated double-cropped soybean 

yielded 2300 compared with 1800 kg ha- 1 for rainfed double-cropped 

soybean. The water x cropping system interaction was significant (P < 

0.01) and can be attributed to the magnitude in increased yield response 

to irrigation for both mono- and double-cropped soybean (Table 4). 

The 1982 soybean yields differed markedly from the 1981 yields. 

Irrigated monocropped soybean yielded significantly more (P < 0.05) 

compared with rainfed monocropped soybean (Table 4). With the addition 

of 260 mm of supplemental water, irrigated double-cropped soybean 

yielded only 1740 compared with 1590 kg ha- 1 for rainfed double-cropped 

soybean. The only plausible explanation that can be offered for the 

failure of double-cropped soybean to show a better response to 

irrigation is that from middle to late August and during the first half 

of September high temperatures accompanied low amounts of rainfall which 

resulted in a high rate of flower abortion and lower pod set. 
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In 1983, 300 and 360 mm of water were applied to the irrigated 

monocropped and irrigated double-cropped soybean treatments, 

respectively. Irrigated monocropped soybean yielded more (P < 0.05) 

3000 compared with 2610 kg ha- 1 for rainfed monocropped soybean. 

Irrigated double-cropped soybean yielded 2680 (significant (P < 0.05) 

compared with 1170 kg ha- 1 for rainfed double-cropped soybean (Table 4). 

There was a significant (P < 0.01) water x cropping system interaction 

(Table 4), but unlike 1981, it may be attributed to the magnitude of the 

yield response of the double-cropped soybean to irrigation, which was 

much higher (129%) than for the monocropped soybean (15%). 

Total rainfall during July, August, and September was somewhat 

improved over 1983 and was similar in total amount to 1982 (Table 1). 

With good subsoil moisture and 55 mm of rainfall on 8, 9, 10 August and 

another 34 mm on 9 September, there was no significant difference in 

yields of irrigated and rainfed monocropped soybean, although the 

irrigated treatment had received 120 mm of supplemental water. With the 

addition of 200 mm water, irrigated double-cropped yielded 1530 compared 

with 1260 kg ha- 1 for the rainfed double-cropped soybean (Table 4). The 

lack of response to irrigation by both soybean cropping systems was 

similar to that recorded for the 1982 environment. 

With the addition of 150 mm of supplemental water to both 

monocropped and double-cropped soybean treatments in 1985, there was no 

significant response to irrigation (Table 4). The rainfed monocropped 

soybean yield of 3240 kg ha- 1 was not significantly higher (P > 0.05) 

when compared with both rainfed and irrigated double-cropped soybean 

yields of 2840 and 2760 kg ha- 1 , respectively. The irrigated double

cropped soybean yield was not significant (P > 0.05) when compared with 
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the rainfed double-cropped soybean yield and the irrigated monocropped 

yield of 3560 kg ha- 1 was not significant (P > 0.05) when compared with 

3240 kg ha" 1 for rainfed monocropped soybean (Table 4). 

For the 1986 environment the application of 120 mm supplemental 

water to both monocropped and double-cropped soybean in June and July 

did not result in significant higher yields (Table 4). There was 

adequate precipitation during August, September, and through mid-October 

and is likely responsible for no significant response to irrigation 

(Fig. 2). As expected the analysis of variance showed no cropping 

system, water or water x cropping system interaction effects (Table 4). 

In 1987, significantly (P < 0.01) higher yields were obtained from 

mono- compared with double-cropped soybean treatments (Table 4). The 

rainfall amount and distribution during the summer months were similar 

to that of 1986 (Table 1). With an application of 110 mm supplemental 

water irrigated monocropped soybean yielded only 60 kg ha- 1 more than 

rainfed monocropped soybean and irrigated double-cropped yielded only 80 

kg more compared with rainfed double-cropped soybean (Table 4). There 

was a significant (P < 0.01) cropping system effect on soybean yields in 

1987 (Table 4). 

There was also a significant cropping system response on soybean 

yields in 1988 (Table 4). This can be attributed to the replanting of 

double-cropped soybeans because of the lack of water at the soil surface 

for adequate first planting stand establishment. The late planting 

produced small soybeans at harvest. There was no statistically 

significant difference between the yields of irrigated and rainfed 

monocropped soybean or irrigated and rainfed double-cropped soybeans 

(Table 4). 
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Over the 8-yr period irrigated monocropped soybean yields averaged 

3110 compared with 2720 kg ha- 1 for rainfed monocropped soybean. 

Monocropped soybean responded significantly (P < 0.05) to irrigation in 

only three out of eight years. Irrigated double-cropped soybean yielded 

an average of 2250 compared with 1940 kg ha- 1 for rainfed, double

cropped soybean. Double-cropped soybean responded significantly (P < 

0.01) to irrigation in only two out of eight years (Table 4). When the 

data for soybean yields were analyzed over years there were significant 

(P < 0.01) cropping system, water, and year effects. In addition there 

were significant (P < 0.01) water x year, crop x year, and a significant 

(P < 0.05) water x crop x year interactions. The significance of the 

three-factor interaction implies that the two-factor interaction effect 

of water x cropping system was not the same for yields over the 8-yr 

period. 

Grain Sorghum Yields 

In 1981, 200 and 260 mm of supplemental water were applied to 

irrigated conventionally tilled monocropped and no-till double-cropped 

grain sorghum treatments, respectively. Yields of both irrigated grain 

sorghum treatments were similar (Table 5). Rainfed no-till double

cropped yielded 640 kg ha- 1 more than did rainfed conventionally tilled 

monocropped grain sorghum. This demonstrates the erratic differences in 

environments growers have to contend with in growing summer crops, 

regardless of the cropping system in the Southern Great Plains. 

In 1982 higher than normal rainfall in May and June along with 

lower wheat yields allowed subsoil water to accumulate prior to planting 

sorghum. Cooler than normal temperatures and timely distribution and 
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favorable amounts of rainfall during the growing season resulted in no 

significant yield (P > 0.01) differences between treatments, even when 

160 and 180 mm of supplemental water were applied to conventionally 

tilled and no-till double-cropped grain sorghum, respectively (Table 5). 

During the summer of 1983, 320 and 360 mm of water were applied to 

the conventionally tilled monocropped and no-till double-cropped grain 

sorghum treatments, respectively. Irrigated conventionally tilled 

monocropped grain sorghum yielded 6160 (P < 0.01) compared with 5000 kg 

ha" 1 for rainfed no-till double-cropped grain sorghum (Table 5). 

Irrigated no-till double-cropped sorghum yielded 5330 (P < 0.01) 

compared with 3520 kg ha" 1 for rainfed no-till double-cropped grain 

sorghum. Unlike the previous two years, there was a significant (P < 

0.05) water x cropping system interaction (Table 5) which can be 

attributed to the increase in yields of both cropping treatments due to 

irrigation. The increase was significantly higher for irrigated no-till 

double-cropped (52%) compared with an increase of 23% for conventionally 

tilled monocropped grain sorghum. 

Total rainfall during July, August, and September of 1984 was 

higher than that in 1983, but similar in total amount to that of 1982 

(Table 1). With good subsoil moisture and 55 mm of rainfall on 8, 9, 

and 10 August and another 34 mm on 9 September, there was no significant 

difference in yields of irrigated conventionally tilled monocropped and 

rainfed no-till double-cropped grain sorghum, although the irrigated 

conventionally tilled monocropped treatment had received 120 mm of 

supplemental water. With the addition of 200 mm of water, no-till 

double-cropped grain sorghum yielded 4680 compared with 2700 kg ha· 1 for 

the rainfed no-till double-cropped grain sorghum (Table 5). The 



cropping system ~ water interaction was significant (P < 0.01) and can 

be attributed to the magnitude in yield difference (37%) between the 

irrigated no-till double-cropped and rainfed no-till double-cropped 

grain sorghum treatments. 
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The highest annual precipitation (1266 mm) during the 8-yr study 

period was recorded in 1985. Only 70 mm of water were applied to each 

of the conventionally tilled monocropped and no-till double-cropped 

grain sorghum treatments (Table 3). Irrigated conventionally tilled 

grain sorghum yielded significantly more compared with rainfed 

conventionally tilled monocropped grain sorghum. Irrigated no-till 

double-cropped grain sorghum yielded 5420 (P < 0.01) compared with 4020 

kg ha" 1 for rainfed no-till double-cropped grain sorghum (Table 5). The 

cropping system x water interaction was significant (P < 0.01) and can 

be attributed to the magnitude in yield difference between the irrigated 

monocropped and irrigated double-cropped grain sorghum treatments (Table 

5). 

Total rainfall during July, August, and September, 1986 was higher 

than that in 1985 (Table 1). With improved adequate distribution and 

favorable amounts of rainfall during the growing season (Table 1, Fig 2) 

no significant yield differences between rainfed and irrigated 

conventionally tilled monocropped grain sorghum or rainfed and irrigated 

no-till double-cropped grain sorghum treatments, even when 120 mm of 

supplemental water was applied to conventionally tilled monocropped and 

no-till double-cropped grain sorghum (Table 5). However, rainfed 

conventionally tilled monocropped grain sorghum was significantly (P < 

0.01) higher than rainfed no-till double-cropped grain sorghum and 

irrigated conventionally tilled monocropped grain sorghum was 



significantly (P < 0.05) higher than rainfed no-till double-cropped 

grain sorghum treatment. There was a significant (P < 0.05) cropping 

system effect on grain sorghum yield in 1986. 
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There was adequate precipitation for both mono- and double-cropped 

grain sorghum and no supplemental water was applied in 1987 (Table 1 and 

3). The yield pattern was similar to those obtained in 1986 (Table 5) 

in that rainfed conventionally tilled monocropped grain sorghum yield 

was not significantly (P > 0.05) different from irrigated conventionally 

tilled monocropped grain sorghum and rainfed no-till double-cropped 

grain sorghum was not significantly (P > 0.05) different from irrigated 

no-till double-cropped grain sorghum treatment. However, irrigated no

till double-cropped grain sorghum was significantly (P < 0.05) higher 

compared with irrigated conventionally tilled monocropped grain sorghum 

yield. There was no significant (P > 0.05) cropping system effect on 

grain sorghum yields in 1987. 

In 1988, 150 mm of supplemental water was applied to irrigated 

conventionally tilled monocropped grain sorghum treatments, 

respectively. There was no significantly different yield at 0.05 level 

between rainfed and irrigated monocropped grain sorghum (Table 5). Both 

the rainfed and irrigated conventionally tilled monocropped yield of 

5860 and 5660 kg ha- 1, respectively, were significantly different 

(P < 0.01) when compared with 2590 and 3300 kg ha- 1 yields of rainfed 

no-till double-cropped and irrigated no-till double-cropped grain 

sorghum yields, respectively (Table 5). There was a significant (P < 

0.01) cropping system effect on grain sorghum yield in 1988. 

Over the 8-yr study period, irrigated conventionally tilled 

monocropped grain sorghum averaged 6220 compared with 6010 kg ha- 1 for 
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rainfed conventionally tilled monocropped grain sorghum. Irrigated no

till double-cropped sorghum yielded an average of 5300 compared with 

4360 kg ha- 1 for rainfed no-till double cropped sorghum (Table 5). When 

the data for grain sorghum were analyzed over years, there were 

significant (P < 0.01) water x year, crop x year, and water x crop x 

year interactions. The significance of the three-factor interaction 

implies that the two-factor interaction effect of water x cropping 

system was not the same over the 8-yr period. These results are similar 

to those obtained by Crabtree et al. (1986). In six out of the eight 

years, supplemental irrigation did not significantly increase grain 

sorghum yields when monocropped (Table 5). In contrast, irrigation of 

double-cropped grain sorghum significantly increased yields four out of 

eight years (Table 4). When the grain sorghum yield data were pooled 

over the 8-yr period, there was a significant (P < 0.01) W x C 

interaction (Table 5), which can be attributed to the contrasting yield 

differences between rainfed and irrigated treatments. These interaction 

effects were due to wide variation in amounts and distributions of 

rainfall during the 8-yr period (Table 1, Fig. 1 and 2) which often 

occurs in the southern Great Plains. 



SUMMARY AND CONCLUSIONS 

Over the 8-yr study period, monocropped wheat yielded an average 

of 2970 compared with 2400 kg ha- 1 for double-cropped wheat. During 

this period, wheat yields from the double-cropping practices were not 

significantly influenced by the supplemental water applied to the 

preceding double-cropped soybean or grain sorghum. These results are 

similar to those reported by Crabtree and Makonnen (1980) and Crabtree 

et al. (1987). When the data for wheat yields were pooled and analyzed 

over years there were significant water x year, crop x year, and water x 

crop x year interactions. 

Irrigated monocropped soybean yielded an average of 3110 compared 

with 2720 kg ha- 1 for rainfed monocropped soybean. Irrigated double

cropped soybean yielded an average of 2250 compared with 1940 kg ha- 1 

for rainfed double-cropped soybean. When the data for soybean yields 

were pooled and analyzed over years, there were significant water x 

year, crop x year, and water x crop x year interactions. The 

significance of the three-factor interaction implies that the two-factor 

interaction effect of cropping system x water was not the same for 

yields in all the eight years. The largest magnitudes in yield 

deviations from the 8 year mean occurred from 1981 to 1984. When 

compared with rainfed conditions, the application of supplemental 

irrigation increased soybean yields in five out of eight years. These 

43 



results are most likely responsible for the significant interaction 

effects of C x W x Y. 
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Irrigated conventionally tilled monocropped grain sorghum averaged 

6220 compared with 6010 kg ha- 1 for rainfed conventionally tilled 

monocropped grain sorghum. Irrigated no-till double-cropped grain 

sorghum yielded an average of 5300 compared with 4360 kg ha- 1 for 

rainfed no-till double-cropped grain sorghum. When the data for grain 

sorghum were pooled and analyzed over years there were significant 

(P < 0.01) cropping system x water, water x year, crop x year, and a 

significant water x crop x year interactions. In six out of the eight 

years, supplemental irrigation did not significantly (P > 0.05) increase 

grain sorghum yields when monocropped. In contrast, the irrigation of 

double-cropped grain sorghum significantly increased yields four out of 

eight years. The significant cropping system x water interaction can be 

attributed to the contrasting yield differences between rainfed and 

irrigated treatments. These interaction effects were due to wide 

variation in amounts and distributions of rainfall during the 8-yr 

period which is common in eastern Oklahoma. 
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Table 1. Rainfall from 1 January 1981 to 31 December 1988 and the 30-yr monthly 
average (1959-1988) at the Vegetable Research Station, Bixby, Oklahoma. 

Rainfall 

Month 1981 1982 1983 1984 1985 1986 1987 1988 30-yr Avg.+ 

January 17 91 65 10 21 00 77 26 39 
February 34 12 71 70 102 31 136 35 44 
March 50 20 48 125 118 49 56 162 65 
April 108 31 85 63 123 114 17 45 96 
May 141 199 177 126 74 204 210 30 126 
June 96 156 69 89 170 56 67 27 114 
July 76 59 26 15 69 12 72 135 86 
August 104 58 7 57 57 88 65 22 67 
September 100 20 41 55 118 264 78 133 103 
October 166 42 260 180 237 178 32 23 85 
November 81 159 78 62 144 81 90 148 74 
December 4 81 13 268 33 27 177 71 48 

Totals 977 928 940 1120 1266 1104 1077 867 947 

+Rainfall data collected at the Vegetable Research Station. 
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Table 2. Means and mean squares for estimating the effects of cropping systems and years on the 
yields of wheat. 

Cro1rni ng S~stems 1981+ 1982 1983 1984 1985 1986 1987 1988 1981-88 

kg ha·1 

RMCWH+ 3580 2570 3490 3520 2660 2190 2480 3310 2970 
RDCWH-RDCSB 3210 1980 2990 2770 1860 1870 1910 2630 2400 
RDCWH-IDCSB 3160 1940 3080 2970 2190 1860 1940 2530 2460 
RDCWH-RDCGS 3060 2070 2770 2550 2100 1980 1660 2920 2390 
RDCWH-IDCGS 2940 2150 2700 2820 2150 1730 1750 2760 2370 
LSD (0.05) 200 250 180 270 360 280 310 340 93 
LSD (0.01) 280 340 250 380 500 390 440 480 123 

MS 
SOURCE 1981 1982 1983 1984 1985 1986 1987 1988 1981-88 

** ** ** ** ** * ** ** ** 
Cropping system (C) 230820 254610 390610 526860 341090 118990 407500 371940 2102130 

** 
Year (Y) - - - - - - - - 5350947 

** 
c x y - - - - - - - - 77180 

ERROR 16750 25260 13170 30830 54280 32020 40820 48520 34992 

+Mean of four replications. 
+Rainfed monocropped wheat (RMCWH). 

Rainfed double-cropped wheat and rainfed double-cropped soybean (RDCWH-RDCSB). 
Rainfed double-cropped wheat and irrigated double-cropped soybean (RDCWH-IDCSB). 
Rainfed double-cropped wheat and rainfed double-cropped grain sorghum (RDCWH-RDCGS). 
Rainfed double-cropped wheat and irrigated double-cropped grain sorghum (RDCWH-IDCGS). 

*,**Significant at the 0.05 and 0.01 probability levels, respectively. 
Vi 
-....J 



Table 3. Supplemental irrigation applied to soybean and grain sorghum at the 
Vegetable Research Station, Bixby, Oklahoma. 

Cropping system 1981 1982 1983 1984 1985 1986 1987 

mm 

ICT-MCSB+ 200 200 300 120 150 120 110 

INT-DCSB 260 260 360 200 150 120 110 

ICT-MCGS 200 160 320 120 70 120 0 

INT-DCGS 260 180 360 200 70 120 0 

+irrigated conventionally tilled monocropped soybean (ICT-MCSB), 
irrigated no-till double-cropped soybean (INT-DCSB), 
irrigated conventionally tilled monocropped grain sorghum (ICT-MCGS), 
and irrigated no-till double-cropped grain sorghum (INT-DCGS) 

1988 

150 

150 

150 

150 
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Table 4. Means and mean squares for estimating the effects of cropping systems and supplemental water 
on the yields of soybean. 

Crouuing S~stems 1981+ 1982 1983 1984 1985 1986 1987 1988 1981-88 

kg ha·1 

RCT-Mcse+ 1860 1820 2620 2560 3240 3440 3380 2860 2720 
ICT-MCSB 3200 2310 3000 2800 3560 3450 3440 3150 3110 
RNT-DCSB 1800 1590 1170 1260 2840 3410 2560 850 1940 
INT-DCSB 2300 1740 2680 1530 2760 3390 2640 980 2250 
LSD (0.05) 210 370 270 330 380 180 520 400 310 
LSD (0.01) 300 530 390 470 550 260 740 580 400 

MS 
SOURCE 1981 1982 1983 1984 1985 1986 1987 1988 1981-88 

** ** ** ** ** ** ** ** 
Cropping systems(C) 922700 627230 3126650 6685840 1462980 6780 2584010 17550000 21760000 

** * ** * ** 
Water (W) 3381210 398450 3586090 257790 61980 60 19920 180960 4031570 

** ** 
c x w 697410 113690 1248580 860 155260 1540 550 23980 43520 

** 
Year (Y) - - - - - - - - 5562070 

** 
w x y - - - - - - - - 550700 

** 
c x y - - - - - - - -· 1600330 

* 
c x w x y - - - - - - - - 314050 

ERROR 16660 53370 29310 42100 57000 12330 104630 63220 47370 

+Mean of four replications. 
+Rainfed conventionally tilled monocropped soybeans (RCT-MCSB). 

Irrigated conventionally tilled monocropped soybean (ICT-MCSB). 
Rainfed no-till double-cropped soybean (RNT-DCSB). 
Irrigated no-till double-cropped soybean (INT-DCSB). 
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Table 5. Means and mean squares for estimating the effects of cropping systems and supplemental 
water on the yields of grain sorghum. 

Cronning S~stems 1981+ 1982 1983 .1984 1985 1986 1987 1988 1981-88 

kg ha"1 

RCT-MCGs+ 3180 6100 5000 7110 7330 6530 6980 5860 6010 
ICT-MCGS 4570 5910 6160 7160 7630 6230 6420 5660 6220 
RNT-DCGS 3820 5860 3520 2700 4020 5370 7000 2590 4360 
INT-DCGS 4670 5960 5330 4680 5420 5950 7070 3300 5300 
LSD (0.05) 650 810 450 830 420 710 600 1030 620 
LSD (0.01) 940 1170 640 1200 600 1030 860 1480 820 

MS 
SOURCE 1981 1982 1983 1984 1985 1986 1987 1988 1981-88 

** ** ** * ** ** 
Cropping systems(C) 554920 34680 5341880 47620000 32500000 2076070 444250 31790000 53900000 

** ** ** ** ** 
Water (W) 5064660 7110 8890480 4124640 2326090 78580 240190 259780 10130000 

* ** ** ** 
c x w 292740 83040 421040 3720980 834520 781660 403420 841700 4026000 

** 
Year (Y) - - - - - - - - 14390000 

** 
w x y - - - - - - - - 1551110 

** 
c x y - - - - - - - - 9493000 

* 
c x w x y - - - - - - - - 479020 

Error 165570 258020 78460 271880 67780 198940 139220 415140 192420 

•Mean of four replications 
+Rainfed conventionally tilled monocropped grain sorghum (RCT-MCGS). 

Irrigated conventionally tilled monocropped grain sorghum (ICT-MCGS). 
Rainfed no-till double-cropped grain sorghum (RNT-DCGS). 
Irrigated no-till double-cropped grain sorghum (INT-DCGS). 

°' *,**Significant at the 0.05 and 0.01 probability levels, respectively. 0 
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PART II. EVALUATION OF POTASSIUM QUANTITY-INTENSITY RELATIONSHIPS 

OF TWO OKLAHOMA SOILS 

63 



ABSTRACT 

Various studies have been made in the evaluation of the K status 

of soils by considering the quantity-intensity {Q/I) relationships. 

These Q/I studies have been used for a better understanding of K release 

into the soil solution from K-bearing minerals and subsequent uptake by 

plants. The objective of the greenhouse and laboratory studies was to 

evaluate the K supplying power of a Kirkland silt loam {Udertic 

Paleustolls) and a Wynona silt loam {Cumulic Haplaguolls) as affected by 

previous management and cropping practices using Q/I relationships and 

to relate these factors to dry matter yields and K uptake by four 

successive crops of wheat {Triticum aestivum L.) in the greenhouse. 

Soil samples were collected from a Wynona silt loam soil which had 

been field cropped since 1980 without addition of K fertilizer and a 

Kirkland silt loam soil which had been cropped with wheat from 1893 to 

present. These soils were further intensively cropped in the greenhouse 

by growing four successive wheat crops on the Wynona silt loam in a 9 by 

9 Latin Square experimental design and in a randomized complete-block 

design with six treatments and four replications on the Kirkland silt 

loam. The wheat plants were harvested just prior inflorescence. Dry 

matter yields were obtained and the K content in the plant dry matter 

was determined. From each cropping system, a 5 g soil sample was 

equilibrated to construct typical Q/I curves. The Q/I relation for each 
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soil treatment was determined by plotting.6.K against the corresponding 

ARK value. Potential buffering capacity (PBCK) was calculated as the 

slope of the Q/I curve and K-potential values were obtained from the 

product of .6_K and PBCK for each Q/I curve. The.6_K, PBCK, and K

potential values were correlated with dry matter yields and K uptake for 

four successive wheat croppings. When the data for dry matter yields 

and K uptake by wheat plants, grown on Kirkland silt loam, were analyzed 

for each crop, there were significant (P < 0.01) treatment differences 

for three out of the four croppings. When the data were pooled and 

analyzed over croppings, there were significant (P < 0.01) treatment, 

cropping, and treatment x cropping interaction effects. Correlation 

coefficients were poor and showed no clear trend of relationship when 

.6_K, PBCK, and K-potential were correlated with yields and K uptake by 

wheat plants grown on the Kirkland silt loam. When the dry matter 

yields for wheat grown on Wynona silt loam were analyzed for each 

cropping there was a significant (P < 0.05) treatment effect for each of 

the four croppings, but when the K uptake data were analyzed for each 

cropping, there was no significant (P > 0.05) treatment effect for any 

of the four croppings. When the dry matter yield data were pooled and 

analyzed over croppings, this resulted in significant (P < 0.05) 

treatment, cropping, and treatment x cropping interaction effects, 

however, when the K uptake data were pooled and analyzed over croppings 

there was only a significant (P < 0.05) cropping effect for the Wynona 

silt loam. Similar to the Kirkland silt loam, the correlation 

coefficients were poor and showed no clear measure of the intensity of 

association when.6_K, PBCK, and K-potential were correlated with dry 

matter yields and K uptake by wheat plants on Wynona silt loam. 



INTRODUCTION 

In a very generalized way potassium {K) in a soil system can be 

characterized as K in soil solution, K exchangeable, K nonexchangeable, 

and K mineral with equilibrium reactions existing between solution, 

exchangeable, nonexchangeable, and mineral phases {Mclean and Watson, 

1985; Brady, 1984; Tisdale et al., 1985). The rate and direction of the 

equilibrium reactions determine whether applied K will be leached into 

lower soil horizons, taken up by plants, converted into unavailable 

forms, or released as available forms {Brady, 1984; Tisdale et al., 

1985). 

Nutrient removal in grain year after year by both mono- and 

double-cropped systems can be substantial. Plant available quantities 

of soil K are largely a function of the nutrient supplying power of a 

given soil or fertilizer additions. Geleta {1989) reported that under 

double-cropped conditions in eastern Oklahoma, whether irrigated or 

rainfed, response to K fertilization has been marginal after seven years 

of cropping on a Wynona silt loam soil. 

There is a need for an attempt to assess the K supplying power of 

soils by means other than that of extracting K by the 1 N NH40Ac, 

Mehlich III, or by the use of other chemical extracting methods. One 

such way is by considering the quantity-intensity {Q/I) relationships. 

The quantity, Q, is usually the gain or loss in exchangeable K after 
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equilibrium of soil and solution and the intensity, I, the activity 

ratio 8K/( 8Ca+8Mg)~ in the soil solution. The objective of this 

greenhouse and laboratory study was to evaluate the K supplying power of 

two selected Oklahoma soils (Wynona silt loam and Kirkland silt loam) as 

affected by previous management and cropping practices using Q/I 

relationships and to relate these factors to dry matter production and 

uptake of K by four successive crops of wheat grown in the greenhouse. 



LITERATURE REVIEW 

Evaluation of the K-Supplying Power of Soils 

Pratt (1951) reported that exchangeable K provided a good index of 

K supply to plants. However, several attempts have been made in the 

past few years to improve the predictability of exch~ngeable K in 

assessing the supply of K to plants. Beckett (1964a} suggested the 

activity ratio of K divided by the square root of Ca + magnesium (Mg) 

( 8K/( 8Ca+8Mg)~ in soil suspensions as a measure of the intensity factor 

of soil K. He also related the amount of labile soil K quantity (Q) to 

the intensity (I) and proposed the slope Q/I to represent the potential 

buffering capacity (PBC), i.e., to define the rate of change in the 

activity ratio with respect to K removal from the soil. Acquaye and 

Maclean (1966) reported that the PBC in conjunction with the activity 

ratio gave a more meaningful description of the K status of soil than 

did the activity ratio alone. 

Availability of labile K is considered to be influenced by the 

parameters intensity (I) and quantity (Q) of labile K present in soil 

(Ram and Prasad, 1981). They also reported that all the measured 

parameters except PBC correlated positively and significantly with each 

other and also with dry matter yield and K uptake in the soils of 

Meghalaya. However, they reported that the measured Q/I parameters of K 

could not show any superiority over the commonly used neutral ammonium 
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acetate for predicting the plant available Kin soil. They also 

reported that a positive and significant relationship existed between 

cation exchange capacity (CEC) and PBC. 
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Notable advances have been made in the study of the K status of 

soils by considering the Q/I relationships. Parra and Torrent (1983) 

reported that the activity ratio at equilibrium (AReK), and the 

buffering capacity (dQ/dl) at equilibrium, (PBCeK) were the most 

important parameters of the Q/I curves to predict the K-supplying power 

of a soil. Fergus et al. (1972) postulated that intensity might be 

expected to determine short-term uptake, and quantity to be more 

significant in the case of long-term withdrawals. They also reported 

that K was a convenient nutrient to choose for tests of the usefulness 

of the Q/I concept, since the soil supply of labile K could be fairly 

easily depleted by intensive-cropping. Subba et al. (1984) reported 

that soil reaction and soluble salt content seemed to influence the Q/I 

parameters. They reported that the labile K values differed widely 

(0.04 to 0.43 cmol kg" 1 soil) which was much smaller than that for 

exchangeable K, indicating that only a fraction of the latter was 

readily replaceable with other cations or available to plants. 

Bandyopadhyay et al. (1985) reported that the K buffering capacity 

was higher because of higher content of exchangeable and nonexchangeable 

K which were in equilibrium with the intensity factor. Potassium Q/I 

studies of labile K and sodium (Na) of an alluvial soil by Narain and 

Singh (1979) revealed three exchange sites for K, namely, planar, edge, 

and interlattice. They also reported that the planar exchange sites 

were equally accessible to K and Ca while edge and interlattice sites 

showed a high degree of specificity for K adsorption. Evangelou et al. 
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(1986) reported that PBC for ammonium (NH4+) and K+ appeared to be a 

function of the affinity of the exchange phase for each cation and the 

magnitude of the CEC. Ghelani et al. (1985) observed that high ionic 

activity ratio of top soil indicated higher availability of Kand Mg and 

the high linear buffering capacity of sub-soil which limited the K 

uptake by the plant. However, Fergus et al. (1972) reported that the 

interpretation of soil chemical data in terms of plant uptake of K 

during exhaustive cropping was limited by the difficulty of achieving 

complete removal of labile soil K by the plants. They also concluded 

that Q/I relation characterized only those K ions in rapid equilibrium 

with Ca and Mg ions. 

Ross et al. (1972) reported that attention has shifted to a more 

comprehensi~e description, the curvilinear quantity-intensity 

relationship, which related changes in labile K in the soil to 

corresponding changes in effective K concentration in the equilibrium 

solution rather than by a single measurement of the labile K status of 

soils by the exchangeable K. Beckett's model, according to Ross et al. 

(1972), assumes that some exchange sites on the soil show no appreciable 

selectivity for K over Ca and Mg (termed non-specific sites) while 

others exhibit a distinct specificity for K (termed specific sites). 

Previous studies have suggested that the intensity or period of 

cropping might be important, since the isotherm has been reported 

unchanged by moderate removal of K by crops (Beckett and Nafady, 1967; 

Moss, 1967; Addiscott, 1970), but sometimes altered by prolonged 

cropping (Beckett and Nafady, 1969), or by drastic removal of K from 

illite by sodium (Na) tetraphenylboron (Beckett and Nafady, 1967). The 

Q/I studies have been used for a better understanding of K+ release into 



the soil solution and consequent uptake by plants (Beckett, 1964a,b; 

Beckett and Nafady, 1967; Moss, 1967; Rasnake and Thomas, 1976; LeRoux 

and Sumner, 1968; Sparks and Liebhardt, 1981). 

Interpretation and applications of Q/I parameters 
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Various interpretations have been made on the parameters that can 

be derived from a Q/I plot. The linear portion of the curve has been 

ascribed to nonspecific sites for K (Beckett, 1964b), while the curved 

portion has been attributed to specific sites with a high K affinity 

(Beckett, 1964b; Rich, 1964; Beckett and Nafady, 1967; LeRoux and 

Sumner, 1968). The nonspecific sites have been attributed to planar 

surfaces (Beckett, 1964b; Lee, 1973), while the specific sites have been 

ascribed to edges of clay crystals and to wedge sites of weathered micas 

(Rich, 1964; Beckett and Nafady, 1967). 

The ARK value is a measure of availability or intensity of labile K 

in soil. Beckett and Nafady (1967) found that K fertilization increased 

AReK values. San Valentin et al. (1973) investigated the effect of 

cropping on Q/I relations using a Red Bay soil from Florida. They found 

that before cropping AReK increased with added K and decreased with 

added lime. 

LeRoux (1966) noted that the change in K (AK) was a better 

estimate of soil labile K than normal exchangeable K. He found that 

higher values of labile K (L\AK) indicated a greater K release into soil 

solution resulting in a larger pool of labile K. The labile K pool 

increased with K fertilization (LeRoux and Sumner, 1968; San Valentin et 

al., 1973). San Valentin et al. (1973) noted that labile K generally 

increased with lime additions on cropped soils. 
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The potential buffering capacity of K (PBCK) value is a measure of 

the ability of the soil to maintain the intensity of K in the soil 

solution and is proportional to CEC (Lee, 1973). LeRoux (1966) noted 

that a higher soil PBCK value is indicative of good K availability while 

a low PBCK soil would suggest a need for frequent fertilization. 



METHODS AND MATERIALS 

Greenhouse Procedures 

Soil samples (Wynona silt loam) were collected from long term 

mono- and double-cropped plots located at the Vegetable Research 

Station, Bixby, Oklahoma. The plots had been cropped from 1981-88 with 

mono- and double-cropped wheat, soybean, and grain sorghum without 

additions of P or K fertilizer. The soil samples were air dried and 

pots containing 2,000 g of soil were planted to 'Bounty 122' wheat (20 

plants per pot), then placed in the greenhouse and further intensively 

cropped by growing four successive wheat crops in a 9 by 9 latin square 

experimental design. 

The nine mono- and double-cropped cropping system treatments were 

rainfed monocropped wheat (RMCWH), rainfed double-cropped wheat and 

rainfed double-cropped soybean (RDCWH-RDCSB), rainfed double-cropped 

wheat and irrigated double-cropped soybean (RDCWH-IDCSB), rainfed 

double-cropped wheat and rainfed double-cropped grain sorghum (RDCWH

RDCGS), rainfed double-cropped wheat and irrigated double-cropped grain 

sorghum (RDCWH-IDCGS), rainfed conventionally tilled monocropped soybean 

(RCT-MCSB), irrigated conventionally tilled monocropped soybean (ICT

MCSB), rainfed conventionally tilled monocropped grain sorghum (RCT

MCGS), and irrigated conventionally tilled monocropped grain sorghum 

(ICT-MCGS). 
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Soil samples (Kirkland silt loam) were also collected from the 

Magruder plots located at the Agronomy Research Station, Stillwater, 

Oklahoma, which have been cropped with wheat from 1893 to present. 

These soil samples were also further intensively cropped in the 

greenhouse by growing four successive wheat crops in a randomized 

complete-block design with six treatments and four replications. 
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The six treatments from the Magruder plots consisted of check (no 

fertilizer), P, NP, NPK, NPK + Lime, and manure. Until 1941 the manure 

was applied at the rate of 22.4 kg N ha" 1 every fourth year. Nitrogen 

was applied annually at the rate of 33.6 kg N ha- 1 through 1967 at which 

time the annual rate was increased to 67 kg N ha- 1 with a fall 

application since the rate increase. Prior to 1947 sodium nitrate 

(NaN03) was the source of N, but amonium nitrate (NH4N03) has been used 

since that time. Phosphorus and K have been applied at the annual rate 

of 14 kg P ha" 1 and 27.9 kg K ha- 1, respectively. Lime has been applied 

when soil analysis indicate a pH of 5.5 or less. 

The wheat plants were harvested just prior inflorescence. Four 

successive crops of wheat were grown in this manner with border pots 

around each experimental design. Dry matter weight and K content in the 

plant dry matter were determined. 

Soil Potassium Evaluations 

Equilibrium solution concentrations of K, Ca, and Mg were 

determined as given by Beckett (1964a and 1964b). For each greenhouse 

cropping system treatment and replication, a 5 g sample of soil was 

equilibrated with 50 ml 0.001 M CaC1 2 containing different amounts of 

KCl. The amounts of KCl used in the equilibrating solutions were 0, 
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0.000307, 0.001152, 0.002022, and 0.002739 M/L. Samples were kept at 

constant temperature (25 ± l°C) for 24 hours and in this period received 

8 hours of shaking. After settling, 25 ml of the supernatant solution 

were removed. Potassium, Ca, and Mg were determined using a Perkin 

Elmer Model 3030 B atomic absorption spectrophotometer, respectively, 

using lanthanum (La) to suppress interfering ions (Doll and Christenson, 

1966). 

Activity ratios were calculated from the composition of 

supernatant solutions and activity coefficients determined according to 

the Davies modifications of the Debye-Huckel equation (Butler, 1964). 

For an ion of charge Z, either positive or negative, the activity 

coefficient (Y) of the ion is given by 

2 ~ 
-log10 Y = 0.5091 Z 1 +fl -0.21 

The constants apply to solutions at 25°C. The ionic strength (I) 

of the solution is given by 

I= 1/2 I: Ci Z2i 

where Ci is the concentration of the ith ion, Zi is its charge and the 

summation extends over the ions in the solutions. 

The gain or loss of K VlK) by the soils was obtained by 

subtracting the K concentrations of the solution before and after 

equilibration. The quantity-intensity (Q/I) relation for each soil was 

determined by plotting~K against the corresponding ARK value. The 

activity ratio at equilibrium (AReK) was obtained from the intersection 

of the Q/ I curve with the .6. K = 0 axis. The ARe K represents the ratio 

8 K/8 (Ca + Mg) 112 in a solution that upon admixture with soil maintains 

its numerical value with respect to the activity of K, Ca, and Mg. 
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The exchangeable K {6K) values were determined by extending the 

linear part of the curve to the ARK= Oline. Potential buffering 

capacity {PBCK) was calculated as the slope of the Q/I curve or !J.K/AReK· 



RESULTS AND DISCUSSION 

Potassium Quantity-Intensity (Q/I) Parameters 

Several interpretations have been made on the parameters that can 

be derived from a Q/I plot. The linear portion of the curve has been 

ascribed to nonspecific sites for K while the curved portion has been 

attributed to specific sites with a high K affinity. The nonspecific 

sites have been attributed to planar surfaces while the specific sites 

have been ascribed to edges of clay crystals and to wedge sites of 

weathered micas. The ARK value is a measure of availability or 

intensity of labile Kin soil. The gain or loss of K ~K) by the soils 

was obtained by subtracting the K concentrations of the equilibrating 

solutions before and after equilibration. 

These parameters, tiK, PBCK, and K-potential, (LjK x PBCK) derived 

from the Q/I curves (Fig. 1 to 15) were correlated with the whole plant 

dry matter yields and K uptake by four successive wheat croppings on 

Kirkland and Wynona silt loam soils. 

Dry Matter Yields of Wheat Grown on Kirkland Silt Loam. 

The mean whole plant dry matter yields of the four successive 

crops of wheat are shown in Table 1. There was a significant (P < 0.01) 

treatment effect on dry matter yields of the first cropping and can be 
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attributed to different fertilizer combinations applied to the Kirkland 

soil. 

Yields for the check and P treatments were not significantly 

different (P > 0.05), but yields of both treatments were significantly 

lower (P < 0.05) compared with the NP treatment and most likely can be 

attributed to the N fertilizer inclusion in the treatment. There was no 

significant difference (P > 0.05) in yield between the NP and NPK 

treatments, but the yield for the NPK treatment was significantly (P < 

0.05) lower compared with the NPK +lime treatment. The yield for the 

manure treatment was significantly (P < 0.05) higher compared with the 

NPK + lime treatment. The high yield of dry matter for the manure 

treatment could possibly be due to greater release and chelating effect 

of nutrients during manure decomposition. 

Similar to the first cropping, there was a significant (P < 0.01) 

treatment effect on dry matter yields of the second cropping. The yield 

trend of the second cropping was similar to the first cropping in that 

the yields of check and P treatments were not significantly (P > 0.05) 

different, but significantly (P < 0.05) lower compared with the NP 

treatment yield. It is interesting to note that there is no significant 

(P > 0.05) difference between the three treatments where N was applied 

as NH4N03 • Although the manure was not significantly different 

(P > 0.05) from NP, NPK, and NPK +lime, the results suggest that N was 

probably beginning to limit dry matter accumulation in the second 

cropping. 

In the third cropping K deficiency symptoms were observed as the 

cells at the tips and margins of the wheat leaves died first, and this 

necrosis spread basipetally toward the younger lower parts at the base 
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of the leaf. Similar to the two previous croppings there was a 

significantly different (P < 0.01) treatment effect on yield. However, 

unlike the two previous croppings the check yield was significantly (P < 

0.05) lower compared with the P treatment yield. There was no 

significant difference (P > 0.05) in yields of the P, NP, and NPK 

treatments and can probably be attributed to the depletion of the N by 

previous croppings. Similarly, the highest yield was recorded for NPK 

treatment in the third cropping and can possibly be attributed to a 

better nutrient balanced under intensive cropping conditions. 

The high yields recorded for each of the treatments in the fourth 

cropping were probably due to the fact that the fourth crop occupied the 

pots longer than the previous croppings by about 14 days. Unlike the 

previous croppings, there were no significant (P > 0.05) differences due 

to treatment effects on yield. The check yield was significantly (P < 

0.05) lower compared with the other five treatments and the P treatment 

was significantly lower (P < 0.05) compared with the NP, NPK, NPK + 

lime, and the manure treatments The lower dry matter yields can most 

likely be attributed to N depletion by previous croppings. There was no 

significant difference (P > 0.05) in yields between NP, NPK, NPK +lime, 

and manure treatments. 

When the dry matter yields were pooled and analyzed over croppings 

the yield response varied with crop and treatments resulting in a 

significant (P < 0.01) treatment x crop interaction (Table 6). The 

yield of the check treatment was significantly (P < 0.05) lower compared 

with the P treatment yield. However, there was no significant 

difference (P > 0.05) between NP, NPK, NPK +lime, and manure yields 

when the dry matter yields were pooled over croppings. 



The Mean K Uptake by Successive Wheat Crops on Kirkland Silt Loam 

The whole plant K uptake by four successive croppings of wheat is 

shown in Table 2. The main objective of successive wheat croppings on 

Kirkland silt loam was to crop K out of the soil. There was a 

significant (P < 0.01) treatment effect on K uptake during the first 

cropping. There was no significant difference (P > 0.05) between K 

uptake by the check and P treatment. However, plant K uptake by the 

check treatment was significantly (P < 0.05) lower compared with K 

uptake for the NP treatment. The higher plant K uptake by the NP 

treatment may be due to N fertilizer inclusion in the NP treatment. 

Plant K uptake by NP, NPK, NPK +lime, and manure treatments were not 

significantly different (P > 0.05). The highest plant K uptake was 

recorded for the manure treatment in the first cropping. 
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Plant K uptake by the second cropping was similar to the first 

cropping in that there was a significant (P < 0.01) treatment effect. 

Unlike the first cropping, there was no significant (P > 0.05) 

difference in plant K uptake between the check and P treatments. The K 

uptake from the P treatment was lower (P < 0.05) than uptake for the NP 

treatment, but there were no significant (P > 0.05) differences in plant 

K uptake for the NP, NPK, NPK +lime, and manure treatment comparisons 

(Table 2). 

The K uptake by wheat plants during the third cropping was similar 

to the two previous croppings as there was a significant (P < 0.01) 

treatment effect. As with the first two croppings, the plant K uptake 

from the check treatment was lower (P < 0.05) than K uptake from the P 

treatment. There was no significant (P > 0.05) difference for K uptake 



for P, and NP, and NPK treatment comparisons, however, plant K uptake 

for the NP treatment was lower {P < 0.05) than K uptake for the NPK + 

lime and manure treatments. Although there was no significantly 

different {P > 0.05) plant K uptake between NPK +lime and manure 

treatments, the highest plant K uptake was recorded for the NPK +lime 

treatment for the third cropping {Table 2). 
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Marked nitrogen deficiency symptoms were observed in the fourth 

cropping and the magnitude of K uptake was about one-half compared with 

the three previous croppings. This resulted in no significantly {P > 

0.05) different treatment effect for plant K uptake. Plant K uptake for 

the NP, NPK, NPK +lime, and manure treatments were not significantly 

different (P > 0.05) from each other for the fourth cropping (Table 2). 

When the plant K uptake data were pooled and analyzed over 

croppings the K uptake by the wheat plants varied with crop and 

treatments resulting in a significant (P < 0.01) treatment x crop 

interaction. There was no significant difference (P > 0.05) between 

plant K uptake for the check compared with the P treatment, but the 

plant K uptake by the check treatment was significantly (P < 0.05) lower 

than K uptake for the NP treatment. The plant K uptake for the NP, NPK, 

NPK +lime, and manure treatments were not significantly different (P > 

0.05) when K uptake data were pooled over croppings (Table 2). 

Correlation Coefficients Relating~K With Dry Matter Yields and K Uptake 

of Four Successive Wheat Croppings on Kirkland Silt Loam 

While the soil may have a more or less initial uniform 

distribution of ions, the roots of growing plants alters this 

uniformity. The influence of the plant root on the ionic conditions of 
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the soil begins when the root starts to force its way through the soil. 

Since the diameter of the root is frequently larger than the diameter of 

the majority of soil pores, the root moves soil particles aside and in 

so doing increases the density of soil in the immediate vicinity of the 

root so that it has greater than average density. This will also 

increase the concentration of exchangeable K per unit volume of soil. 

In addition to pushing the soil aside, the root will intercept K ions in 

its path and absorption will occur. The root absorbs water and causes 

movement of water through the soil toward the root. Since this water 

contains K ions, these ions are transported to the root. The amount 

reaching the root will depend on the amount of water and the K 

concentration in the soil. 

The correlation coefficients relatingD._K with potassium uptake and 

yields of successive wheat crops are shown in Table 3. The exchangeable 

K or the quantity by which the soil gains or loses potassium in reaching 

equilibrium was poorly correlated (r = 0.218) with dry matter yield for 

the check treatment, r = 0.388 for P treatment, and r = 0.203 for NPK + 

lime treatment for the first cropping. There was a negative correlation 

(r = -0.606) betweenD._K and dry matter yield for the NPK treatment the 

first cropping. A better correlation (r = 0.519) betweenD._K and yield 

was obtained for the manure treatment and the highest correlation of r = 

0.813 was obtained for dry matter yield and the NP treatment. 

In general there was a poor correlation betweenD._K and yield for 

check, P, NPK, NPK + lime, and manure treatments for the second 

cropping. However, a better correlation of r = 0.556 between~K and 

yield was recorded for NP treatment in the second cropping. In the 

third cropping there was a poor correlation between.6._K and yield of 
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check (r = 0.031), P (r = 0.488), NP (r = 0.173), and NPK (r = 0.120 

treatments. However, better correlation coefficients were recorded for 

the NPK + lime and manure treatments, r = 0.915 and r = 0.867, 

respectively. 

The correlation coefficients relatingt::...K with dry matter yield for 

the fourth cropping was similar to those obtained for the previous three 

successive croppings. There were poor correlations betweent::...K and dry 

matter yields for the check (r = 0.572), P (r = -0.520), NP (r = 0.406), 

NPK + lime (r = 0.448), and manure (r = 0.982) treatments. Better 

correlation between.6..K and yield was recorded for NPK treatment (r = 

0.629). There was a significant (P < 0.05) negative correlation between 

t::,. K and dry matter yield (r = -0.982) for the manure treatment. 

Poor correlation coefficients were also obtained fort::...K and total 

dry matter yields for the check (r = 0.474), P (r = 0.093), NP (r = 

0.780), NPK (r = 0.261), NPK +lime (r = -0.198), and manure (r = 0.106) 

treatments (Table 3). 

There were better correlations between.6..K and K uptake for the 

first cropping. The correlation coefficients for check, P, NP, and NPK 

treatments were r = 0.817, r = 0.849, r = 0.619, and r = 0.962, 

respectively, with significant (P < 0.05) correlation for the NPK 

treatment. Althought::...K correlation with K uptake was significant (P < 

0.05) for the NPK +lime treatment it was negatively correlated. Also 

there was a negative correlation betweent::,..K and K uptake for the manure 

treatment (r = -0.592) (Table 3). 

Poor correlation coefficients were recorded between.6..K and K 

uptake for the second cropping. These were r = 0.420, r = 0.181, r = 

0.079, r = 0.205, r = -0.109, and r = -0.769 for the check, P, NP, NPK, 
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NPK +lime, and manure treatments, respectively. Likewise, poor 

correlation coefficients between.6.K and K uptake were recorded for the 

third cropping especially for the check, P, NP, NPK, and NPK +lime 

treatments, respectively. However, there was a better correlation (r = 

0.857) between.6..K and K uptake for the manure treatment. 

For the fourth cropping poor correlation coefficients of r = 0.050 

and r = 0.228 were recorded for the check and NP treatments. However, a 

stronger correlation of r = 0.641 and r = 0.906 were obtained for the P 

and NPK treatments, respectively. Negative correlation coefficients of 

r = -0.729 and r = -0.642 between.6.K and K uptake were recorded for NPK 

+lime and manure treatments, respectively. Better correlation 

coefficients were obtained when~K was correlated with total K uptake as 

indicated by r = 0.639 for check, r = 0.801 for P, r = 0.568 for NP, and 

r = 0.691 for NPK treatments. As in the fourth cropping negative 

correlation coefficients of r = -0.682 and r = -0.935 were recorded for 

NPK +lime and manure treatments, respectively. The wide disparity in 

correlating.6.K with yield and K uptake could possibly be explained on 

the basis that K uptake from soils represented uptake from a dynamic 

system that was not at equilibrium; therefore, rate processes involved 

with release and ion movement possibly become the limiting factor in 

determining absorption rates by plant roots. 

Correlation Coefficients Relating PBCK With Dry Matter Yields and K 

Uptake of Four Successive Wheat Croppings on Kirkland Silt Loam 

The slope of the linear portion of the Q/I relation,L:._Q~I, gives 

the amount of labile K that can be removed before AReK changes by a 

given amount. This represents the Potential Buffering Capacity (PBCK) 



of the soil for K, as defined by Beckett (1964a). The correlation 

coefficients relating PBCK with dry matter yields and potassium uptake 

of successive wheat croppings are shown in Table 4. 
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There were better correlations between PBCK and dry matter yields 

for the check treatment after each cropping than before cropping for 

each of the croppings under study. The PBCK correlated poorly with dry 

matter yields for each of the croppings both before and after cropping 

for the P treatment. A better correlation between PBCK and yield was 

recorded for both before and after cropping for the fourth crop compared 

with poor correlations for the other three croppings for the NP 

treatment. Better correlation coefficients after cropping were recorded 

for both the first and second croppings for the NPK treatment, but poor 

correlations were recorded for before and after cropping for the third 

and fourth croppings of the NPK treatment. Unlike the previous 

treatments, better correlations were observed in the second and fourth 

cropping for NPK +lime treatment. Better correlations were recorded 

for the second crop before cropping and for the fourth crop after 

cropping when PBCK was correlated with dry matter yields for the manure 

treatment. However, poor correlations were recorded for both before and 

after crop for the remaining croppings for the manure treatment. When 

total dry matter yields were correlated with PBCK, better correlation 

coefficients were recorded after cropping for check and NPK +lime 

treatments. Better, before cropping correlations, were recorded for NP, 

NPK + lime, and manure treatments, however, none were statistically 

significant (Table 4). 

When PBCK was correlated with K uptake there was no uniform 

relationship or trend detected for the various treatments before or 



after cropping for any of the four croppings {Table 4). When PBCK was 

correlated with total K uptake there were significant {P < 0.05) 

correlations, before cropping, for the NP {r = 0.985) and, after 

cropping, for the manure {r = 0.984) treatments {Table 4). 
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Correlation Coefficients Relating K-Potential With Dry Matter Yields and 

K Uptake of Successive Wheat Crops Grown on Kirkland Silt Loam 

The AReK indicates the status of the immediately exchangeable K 

and, therefore, should represent exchange of K ions from the soil 

complex; the6,K denotes the amount of exchangeable K and supposedly rate 

at which the activity of K on the exchange complex decreases as K is 

removed from the complex as indicated by the PBCK. As the activity 

ratio of K is reduced, the diffusion gradient away from the complex is 

also reduced, and K supply to the plant root may be insufficient. By 

multiplying the6,K by the PBCK measurements, the Q/I relation could be 

defined in a single parameter in which the6,K value of the soil is 

related to a standard PBCK. This product, the K-potential, is 

supposedly the amount of exchangeable K {6K) multiplied by the ease of 

release of the K. 

Correlation coefficients relating K-potential to dry matter yields 

and uptake are shown in Table 5. There was no general trend or 

conclusions that could be drawn when these correlations were studied for 

all treatments or croppings. When K-potential was correlated with total 

dry matter yields and total K uptake, no correlations were statistically 

significant {Table 5). These results suggest that the typical Q/I 

relationship failed to measure different long term effects of soil 
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fertility amendments relative to dry matter production and total plant K 

uptake when intensively cropped with wheat in pots. 

Dry Matter Yields of Successive Wheat Crops Grown on Wynona Silt Loam 

The mean whole plant dry matter yields of four successive crops of 

wheat are shown in Table 6. There was a significant (P < 0.05) 

treatment effect on dry matter yield of the first cropping. This can 

most likely be attributed to different cropping system treatments 

applied to the Wynona soil in 1981. The yields for rainfed monocropped 

wheat (RMCWH), rainfed double-cropped wheat and rainfed double-cropped 

soybean (RDCWH-RDCSB), and rainfed double-cropped wheat and irrigated 

double-cropped soybean (RDCWH-IDCSB) treatments were not significantly 

(P > 0.05) different, but the yield of RMCWH was significantly 

(P < 0.05) higher compared with the rainfed double-cropped wheat and 

rainfed double-cropped grain sorghum (RDCWH-RDCGS) treatment. The 

rainfed double-cropped wheat and irrigated double-cropped grain sorghum 

(RDCWH-IDCGS) yield was significantly (P < 0.05) higher compared with 

the rainfed conventionally tilled monocropped soybean (RCT-MCSB), 

irrigated conventionally tilled monocropped soybean (ICT-MCSB), rainfed 

conventionally tilled monocropped grain sorghum (RCT-MCGS), and 

irrigated conventionally tilled monocropped grain sorghum (ICT-MCGS) 

treatments. 

Similar to the first cropping there was a significant (P < 0.05) 

treatment effect on dry matter yields for the second cropping. Unlike 

the first cropping the RDCWH-RDCSB yield was significantly (P < 0.05) 

higher than RMCWH, RDCWH-IDCSB, and RDCWH-RDCGS yields in the second 

cropping. The RDCWH-IDCGS yield was not significantly different (P > 



0.05) compared with RCT-MCSB yield. However, the RCT-MCSB yield was 

significantly (P < 0.05) higher than ICT-MCSB and ICT-MCGS yields. 

For the third cropping there was a significant (P < 0.05) 
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treatment effect on dry matter yields. Similar to the first cropping 

the RMCWH yield was not significantly different (P > 0.05) compared with 

RDCWH-RDCSB and RDCWH-IDCSB yields. The RDCWH-RDCGS yield was lower 

(P < 0.05) compared with RDCWH-IDCGS yield. Also the RCT-MCSB yield was 

significantly (P < 0.05) lower compared with ICT-MCSB yield, but RCT

MCGS and ICT-MCGS yields were not significantly different (P > 0.05). 

Similar to Kirkland silt loam, N deficiency symptoms were observed 

in the wheat plants in the fourth cropping and can be attributed to the 

depletion of N by the previous croppings. There was a significant (P < 

0.05) treatment effect on dry matter yields as in the three previous 

croppings. Similar to the third cropping the yields of the RMCWH, 

RDCWH-RDCSB, and RDCWH-IDCSB treatments were not significantly different 

(P > 0.05). The RDCWH-RDCGS yield was significantly (P < 0.05) higher 

compared with the RDCWH-IDCGS yield and the RCT-MCSB yield was 

significantly (P < 0.05) lower compared with the ICT-MCSB yield, but 

there was no significant difference (P > 0.05) when the RCT-MCGS yield 

was compared with the ICT-MCGS yield. A general decline in dry matter 

yield in almost all treatments was observed with the exception of the 

RDCWH-RDCGS treatment in which the highest yield was recorded for the 

fourth cropping. 

When the dry matter yields were pooled and analyzed over croppings 

the yield response varied with crop and treatments resulting in a 

significant (P < 0.05) treatment x crop interaction. The RMCWH yield 

was not significantly different (P > 0.05) compared with the RDCWH-RDCSB 
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yield, but RDCWH-RDCSB yield was significantly (P < 0.05) higher 

compared with the RDCWH-IDCSB yield. The RDCWH-RDCGS was significantly 

(P < 0.05) lower compared with RDCWH-IDCGS yield. However, there were 

no significant differences (P > 0.05) between the ICT-MCSB, RCT-MCGS, 

and ICT-MCGS yields when the dry matter yields were pooled over 

croppings (Table 6). 

The Mean K Uptake by Successive Wheat Crops on Wynona Silt Loam 

The whole plant K uptake by four successive croppings of wheat is 

shown in Table 7. The objective of successive wheat croppings was to 

crop K out of the Wynona silt loam soil. Unlike Kirkland silt loam, 

there was no significant (P > 0.05) treatment effect on K uptake during 

the first cropping. 

The trend of plant K uptake by the second and third cropping was 

similar to the first cropping in that there was no significant (P > 

0.05) treatment effect. Substantial K had been removed from the soils 

as reflected in much lower plant K uptake by all treatments under study 

in the fourth cropping. However, as in the first three croppings, there 

was no significant treatment effect on K uptake. When the plant K 

uptake data were pooled and analyzed over croppings, the K uptake by the 

wheat plants did not vary with treatment and there was no treatment x 

crop interaction, but there was a significant (P < 0.05) crop effect on 

plant K uptake when K uptake data were pooled over croppings (Table 7). 



Correlation Coefficients Relating.6.K With K Uptake and Yields of 

Successive Wheat Croppings on Wynona Silt Loam 
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The correlation coefficients relating.6.K with potassium uptake and 

yields of successive wheat crops are shown in Table 8. The exchangeable 

K ~K) or the quantity by which the soil gains or loses K in reaching 

equilibrium had correlations of (r = 0.544, r = 0.604, and r = 0.669) 

with dry matter yields for the RCT-MCSB, RCT-MCGS, and ICT-MCGS 

treatments, respectively, for the first cropping. There was a 

significant (P < 0.05) correlation between.6.K and dry matter yield of 

.ICT-MCGS, but correlations were poor between.6.K and dry matter yields of 

the other treatments. 

For the second cropping a significant (P < 0.05) negative 

correlation was obtained between.6.K and dry matter yield for the RDCWH

RDCGS treatment, and a significant correlation (r = 0.676) was obtained 

for the RCT-MCSB treatment. Poor correlation coefficients between.6,_K 

and yields were obtained for the other treatments under study. For the 

third cropping significant (P < 0.05) correlation coefficients (r = 

0.657, r = 0.666) were recorded for RDCWH-RDCSB and RDCWH-IDCSB 

treatments, respectively. Poor correlation coefficients were obtained 

for all other treatments when.6._K was correlated with dry matter yields. 

Significant (P < 0.05) correlation coefficient was recorded for 

RMCWH (r = 0.790) treatment between.6.K and dry matter yield in the 

fourth cropping. However,.6.K was poorly correlated with yields of the 

other treatments under study in the fourth crop. When the total dry 

matter yield was correlated with.6,_K, a significant (P < 0.05) 

correlation coefficient (r = 0.667) was recorded for only the RMCWH 



treatment while poor correlation coefficients were obtained for the 

other treatments under study (Table 8). 

In general there was a poor correlation between.6_K and K uptake 
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for all treatments for the first crop. However, there was a significant 

(P < 0.05) correlation between.6,K and K uptake (r = 0.812) for the RCT

MCGS treatment. Relative poor correlations were obtained for the other 

treatments for the second cropping. Similar to the two previous 

croppings poor correlation coefficients were recorded for all the 

treatments for the third cropping. Significant (P < 0.05) correlation 

coefficients (r = 0.784 and r = 0.676) were obtained for the RDCWH-RDCSB 

and RDCWH-IDCSB treatments, respectively, for the fourth cropping. Poor 

correlations were obtained for the other treatments in the fourth crop. 

Generally, there was a poor correlation between.6.K and dry matter yields 

and.6,K and K uptake for all treatments under study. 

Correlation Coefficients Relating PBCK With Dry Matter Yields and K 

Uptake of Four Successive Wheat Crops Grown on Wynona Silt Loam in the 

Greenhouse 

The correlation coefficients relating PBCK with dry matter yields 

and K uptake of successive wheat croppings are shown in Table 9. For 

the most part there were poor correlations between PBCK and dry matter 

yields of all the treatments for each cropping and total dry matter 

whether PBCK was determined before or after the completion of the fourth 

cropping. Similar to the yield data, poor correlations were obtained 

for all treatments before and after cropping when PBCK was correlated 

with K uptake (Table 9). 
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Correlation Coefficients Relating K-Potential With Dry Matter Yields and 

K Uptake of Four Successive Wheat Crops Grown on Wynona Silt Loam In the 

Greenhouse 

Correlation Coefficients relating K-potential to K uptake and 

yields are shown in Table 10. Potassium-potential is the product o~K x 

PBCK and since these two parameters did not correlate well as previously 

reported one would predict poor correlations with dry matter yields and 

K-uptake. Such was the case and most likely this can be attributed to 

the failure of the typical Q/I relationship to measure the dynamics of K 

release from all four phases of K, particularly from the primary mineral 

form of K in the Kirkland and Wynona silt loam soils. 



SUMMARY AND CONCLUSIONS 

When the data for dry matter yields and K uptake by wheat plants, 

grown on Kirkland silt loam, were analyzed for each cropping, there was 

significant (P < 0.01) treatment effect for three out of the four 

croppings. When the data were pooled and analyzed over croppings, there 

were significant (P < 0.01) treatment, cropping, and treatment x 

. cropping interaction effects. The dry matter yield of the check 

treatment was significantly (P < 0.05) lower compared with the P 

treatment. However, there were no significant (P > 0.05) differences in 

dry matter yields of the NP, NPK, NPK +lime, and manure treatments. 

When the wheat plant K uptake data were pooled and analyzed over 

croppings the K uptake varied with treatment and cropping resulting in a 

significant (P < 0.01) treatment x cropping interaction effect. There 

was a significant (P < 0.05) difference between the check and P 

treatments. Potassium uptake by wheat for the check treatment was 

significantly (P < 0.05) lower compared with the NP treatment. Uptake 

of K by wheat for the NP, NPK, NPK +lime, and manure treatments was not 

significantly different (P > 0.05) when K uptake data were pooled and 

analyzed over croppings for Kirkland silt loam. In general, correlation 

coefficients were poor and showed no clear trend of relationship when 

~K, PBCK, and K-potential were correlated with yields and K uptake by 

wheat plants grown on the Kirkland silt loam. 
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When the dry matter yields for wheat grown on Wynona silt loam 

were analyzed for each cropping, there was a significant (P < 0.05) 

treatment effect for each of the four croppings, but when the K uptake 

data were analyzed for each cropping, there was no significant (P > 

0.05) treatment effect for any of the four croppings. When the dry 

matter yield data were pooled and analyzed over croppings, a significant 

(P < 0.05) treatment, cropping, and treatment x cropping interaction 

effects resulted, however, when the K uptake data were pooled and 

analyzed over croppings there was only a significantly (P < 0.05) 

cropping effect for the Wynona silt loam. The RMCWH treatment dry 

matter yield was not significantly different (P > 0.05) compared with 

the RDCWH-RDCSB yield, but the RDCWH-RDCSB treatment yield was 

significantly (P < 0.05) higher compared with the RDCWH-IDCSB yield. 

The RDCWH-RDCGS dry matter yield was significantly (P < 0.05) lower 

compared with the RDCWH-IDCGS treatment yield. There were no 

significant differences (P > 0.05) between the ICT-MCSB, RCT-MCGS, and 

ICT-MCGS yields when the dry matter yields were pooled over croppings. 

Similar to the Kirkland silt loam, the correlation coefficients 

were poor and showed no clear measure of the intensity of association 

when..c:i.K, PBCK, and K-potential were correlated with dry matter yields 

and K uptake by wheat plants grown on Wynona silt loam. These poor 

correlations may be attributed to the failure of the Q/I relationship to 

measure the dynamics of K release for all phases of K, particularly from 

the primary mineral form(s) of K in both the Kirkland and Wynona silt 

loam soils. 
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Table 1. Means and mean squares for dry matter yields of wheat from 
successive croppings on Kirkland silt loam. 

Treatments Croggings 
1 2 3 4 1-4 

g pot-1 

Check+ 1.142 2.374 2.132 4.247 2.474 

p 1.285 2.318 2. 723 6.041 3.092 

NP 2.252 3.671 3.776 4.614 3.578 

NPK 2.428 3.824 4.050 4.445 3.687 

NPK + Lime 2.162 3.499 3.486 5.108 3.564 

Manure 2.508 3.246 3.133 5.269 3.539 

LSD (0.05) 0.293 0.666 0.545 1.343 0.316 

MS 

Source Crop 1 Crop 2 Crop 3 Crop 4 Crop 1-4 
** ** ** ** 

Trt.+ 1.416 1. 721 2.006 1. 744 3.445 
** 

Crop 36.387 
** 

Trt. X Crop 1.147 

Error 0.038 0.195 0.131 0.794 0.364 

+ Treatment. 
+Mean of four replications. 
**significant at 0.01 probability level. 
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Table 2. Means and mean squares for K uptake by wheat plants from 
successive croppings on Kirkland silt loam. 

Treatments Croggings 
1 2 3 4 1-4 

mg K g-1 

Check+ 38.097 32.742 42.297 21.840 33.744 

p 43.032 36.260 49.787 18.235 36.829 

NP 47.302 44.975 47.337 19.547 39.791 

NPK 49.087 48.352 53.952 19.112 42.626 

NPK + Lime 47.460 44.152 55.107 20.370 41. 772 

Manure 50.067 43.997 54.442 18.147 41.664 

LSD (0.05) 6.022 7.967 5.853 3.068 3.753 

MS 
Source Crop 1 Crop 2 Crop 3 Crop 4 Crop 1-4 

** ** ** ** 
Trt.+ 161.615 281. 747 202.370 15.686 43.825 

** 
Crop 208.520 

** 
Trt. X Crop 14.489 

Error 31. 936 55.892 30.170 8.291 3.286 

+Treatment. 
+Mean of four replications. 
**significant at 0.01 probability level. 



Table 3. Correlation coefficients relating ..6._K with dry matter yields and K uptake of 
four successive wheat crops grown on Kirkland silt loam in the greenhouse. 

Check p NP NPK NPK+Lime Manure 

Dry matter Crop 1 0.218 0.388 0.813 -0.606 0.203 0.519 

II Crop 2 -0.537 0.228 0.556 -0.600 0.097 -0.038 

II Crop 3 -0.031 0.488 0.173 0.120 0.915 0.867 
* 

II Crop 4 -0.572 -0.520 0.406 0.629 -0.448 -0.982 

Total dry matter -0.474 -0.093 0.780 0.261 -0.198 0.106 

* * 
K uptake Crop 1 0.817 0.849 0.619 0.962 -0.968 -0.592 

II Crop 2 0.420 0.181 0.079 0.205 -0.109 -0.769 

II Crop 3 0.308 -0.273 0.345 -0.054 0.283 0.857 

II Crop 4 -0.050 0.641 0.228 0.906 -0.729 -0.642 

Total K uptake 0.639 0.801 0.568 0.691 -0.682 -0.935 

*Significant at 0.05 probability level. 

t-' 
0 
0 



Table 4. Correlation coefficients relating PBCk with dry matter yields and K uptake of four successive wheat 
crops grown on Kirkland silt loam in the greenhouse. 

Check Check p p NP NP NPK NPK NPK+L NPK+L Manure Manure 
before after before after before after before after before after before after 

* * 
Dry matter Crop 1 0.380 0.855 0.309 0.622 0.263 -0.275 -0.875 0.632 -0.965 -0.700 -0.978 -0.815 

* 
II Crop 2 -0.116 0.554 0.332 -0.962 -0.305 -0.774 -0.888 0.605 0.792 0.400 0.891 0.426 

* 
II Crop 3 -0.058 0.608 0.486 0.434 -0 .165 -0. 871 0.166 -0.052 -0.568 -0.960 -0.200 -0. 718 

II Crop 4 -0.147 0.687 -0.521 -0.394 0.683 0.600 0.456 -0.676 0.871 0.801 0.427 0.900 

Total dry matter -0.093 0.929 -0.074 -0.765 0.557 0.066 -0.130 -0.283 0.883 0.634 0.601 0.188 

* * * 
K uptake Crop 1 0.975 0.403 0.822 -0.802 0.951 -0.040 0.822 -0.976 0.379 0.888 -0.447 0.233 

II Crop 2 0.277 0.349 0.339 0.087 0.280 -0.447 -0.173 -0.231 0.432 0.342 0.814 0.917 

II Crop 3 -0.062 -0.232 -0.158 0.561 -0.041 0.178 -0.482 0.076 -0.127 -0.287 -0.287 -0.741 
* 

II Crop 4 -0.028 -0.620 0.599 -0.845 0.895 0.579 0.706 -0.924 0.511 0.807 0.969 0.897 
* * 

Total K uptake 0.343 -0.100 0.906 -0.513 0.985 0.126 0.361 -0.710 0.583 0.817 0.694 0.984 

*Significant at 0.05 probability level. 
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Table 5. Correlation coefficients relating K-potential with dry matter yields and K uptake of four successive 
wheat crops grown on Kirkland silt loam in the greenhouse. 

Check Check p p NP NP NPK NPK NPK+L NPK+L Manure Manure 
before after before after before after before after before after before after 

* 
Dry matter Crop 1 0.299 -0.165 -0.222 0.266 -0.507 0.520 -0.620 -0.928 0.327 0.417 0.905 0. 727 

* * * 
II Crop 2 0.123 -0.914 -0.418 -0.686 0.057 0.968 -0.503 -0.853 -0.145 -0.012 -0.965 -0.299 

II Crop 3 0.140 0.221 -0.422 -0.llO 0.161 0.555 -0.398 -0. l18 -0.177 0.745 -0.060 0.784 
* * 

II Crop 4 0.170 -0.954 0.460 0.146 -0.723 -0.459 0.006 0.623 -0.677 -0.881 -0.154 -0.946 

Total dry matter 0.152 -0.773 0.002 -0.185 -0.734 0.126 -0.527 -0.028 -0.822 -0.742 -0.697 -0.090 

* 
K uptake Crop 1 -0.953 -0.200 -0.837 -0.409 -0.896 -0.330 -0.177 0.836 0.325 -0.695 0.676 -0.357 

II Crop 2 -0.212 0.497 -0.349 -0.666 -0.148 -0.051 -0.472 -0.051 0.446 0.193 -0.650 -0.884 

II Crop 3 0.090 0.904 0.170 -0.215 -0 .163 0.269 -0.877 -0.533 -0.754 -0.237 0.045 0.798 

II Crop 4 -0.054 -0.219 -0.626 -0.273 -0.774 -0.790 -0.248 0.744 0.431 -0.400 -0.857 -0.826 
* * * 

Total K uptake -0.313 0.788 -0.923 -0.841 -0.920 -0.453 -0.460 0.423 0.365 -0.401 -0.464 -0.987 

*Significant at 0.05 probability level. 
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Table 6. Means and mean squares for dry matter yields of wheat 
from successive croppings on Wynona silt loam. 

Treatments Ccggging~ 
1 2 3 4 1-4 

--------------------- g ---------------------

RMCWW 3.635 4.613 3.404 2.923 3.644 

RDCWH-RDCSB 3.382 5.009 3.621 3.265 3.819 

RDCWH-IDCSB 3.471 4.581 3.179 2.957 3.547 

RDCWH-RDCGS 3.233 3. 711 2.809 4.033 3.446 

RDCWH- IDCGS 4.412 5.336 3.339 2.707 3.949 

RCT-MCSB 3.116 5.203 2.840 2.204 3.341 

ICT-MCSB 3.088 4.262 3.801 3.029 3.545 

RCT-MCGS 3.184 5.227 3.085 2.564 3.515 

ICT-MCGS 3.114 4.797 3.503 2.655 3.518 

LSD (0.05) 0.381 0.294 0.475 0.491 0.210 

MS 
Source Crop 1 Crop 2 Crop 3 Crop 4 Crop 1-4 

* * * * * 
Trt. + 1.597 2.487 1.034 2.392 1.267 

* 
Crop 51. 558 

* 
Trt. x Crop 2.081 

Error 0.163 0.097 0.253 0.270 0.199 

+Treatment 
+Mean of 9 replications. 
*Significant at 0.05 probability level. 
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Table 7. Means and mean squares for K uptake of wheat plants 
from successive croppings on Wynona silt loam. 

Treatments Croggings 
1 2 3 4 1-4 

------------------ mg K g-1 ____________________ 

RMCWW 27.642 25.620 26.444 16.116 23.956 

RDCWH-RDCSB 28.902 26.071 26.273 16.987 24.558 

RDCWH- IDCSB 28.404 26.024 26.553 16.862 24.461 

RDCWH-RDCGS 28.124 25.356 27.582 16.644 24.427 

RDCWH- IDCGS 28.311 25.293 26.896 16.769 24.317 

RCT-MCSB 28.529 25.387 26.553 16.162 24.158 

ICT-MCSB 27.129 25.931 26. 771 16.971 24.201 

RCT-MCGS 27.331 26.833 27.144 16.489 24.449 

ICT-MCGS 27.160 26.431 26.927 16.644 24.291 

LSD (0.05) 1.307 1.384 0.976 0.613 0.572 

MS 

Source Crop 1 Crop 2 Crop 3 Crop 4 Crop 1-4 

Trt.+ 3.808 2.478 1.442 0.923 1.254 
* 

Crop 2184.454 

Trt. x Crop 2.466 

Error 1.915 2.147 1.069 0.422 1.469 

+Treatment 
+Mean of 9 replications. 
*Significant at 0.05 probability level. 



Table 8. Correlation coefficients relating~ with dry matter yields, and K uptake of four successive wheat crops 
grown on Wynona silt loam in the greenhouse. 

Treatment Dry matter Dry matter Dry matter Dry matter Total Dry K uptake K uptake K uptake K uptake 
Crop 1 Crop 2 Crop 3 Crop 4 Matter Crop 1 Crop 2 Crop 3 Crop 4 

* * 
RMCWH 0.445 -0.152 0.070 0.790 0.667 -0.171 0.624 0.395 -0.094 

* * 
RDCWH-RDCSB -0.161 0.299 0.657 0.098 0.473 -0.135 -0.126 0.277 0.784 

* * 
RDCWH-IDCSB -0.309 0.205 0.666 0.397 0.422 -0.451 0.350 0.364 0.676 

* 
RDCWH-RDCGS 0.187 -0.852 0.144 0.170 -0.057 -0.045 0.570 0.575 0.236 

RDCWH-IDCGS 0.125 -0.187 -0.093 0.162 0.086 0.143 0.107 0.146 -0.160 
* 

RCT-MCSB 0.544 0.676 -0.541 0.411 0.335 0.448 -0.557 -0.235 0.185 

ICT-MCSB 0.289 0.336 -0.295 -0.259 -0.068 -0.397 -0.602 -0.281 0.406 
* 

RCT-MCGS 0.604 -0.192 -0.282 0.493 0.508 -0.076 0.812 0.266 -0.058 
* 

ICT-MCGS 0.669 -0.172 0.146 0.072 0.277 -0.518 0.127 0.144 0.119 

*Significant at 0.05 probability level. 

Total 
K uptake 

0.644 

0.112 

0.173 

0.631 

0.141 

0.009 
* 

-0.755 

0.519 

-0.228 
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0 
U1 



Table 9. Correlation coefficients relating PBCK with dry matter yields and K uptake of four successive 
wheat crops grown on Wynona silt loam in the greenhouse. 

Dry Dry Dry Dry Dry Dry Dry Dry Total dry Total dry K K K K K K K K Total K Total K 
matter matter matter matter matter matter matter matter matter matter uptake uptake uptake uptake uptake uptake uptake uptake uptake uptake 
crop 1 crop 1 crop 2 crop 2 crop 3 crop 3 crop 4 crop 4 crop 1 crop 1 crop 2 crop 2 crop 3 crop 3 crop 4 crop4 
Before After Before After Before After Before After Before After Before After Before After Before After Before After Before After 

• 
RMCWH 0.217 -0293 -0.181 -0.455 -0.077 -0.049 0.299 -0.461 0.185 -0.531 -0.414 -0.083 0.252 -0.527 0.691 0.189 -0.357 -0.162 0.185 -0.492 

• • • 
RDCWH-RDCSB 0.161 0.231 -0.164 -0.236 -0.098 -0.779 -0.645 -0.435 -0.340 -0.660 -0282 -0.072 0.176 0223 0.629 -0.086 0.123 -0.684 0.187 -0.079 

• 
RDCWH-IDCSB -0.692 0.189 0.095 -0.153 -0.036 -0.435 0.095 -0.137 -0232 -0230 -0.015 0.270 0.211 -0.394 -0.302 -0.188 0245 -0.450 0.004 -0.178 

• 
RDCWH-RDCGS 0.356 -0.lU -0.741 -0.066 -0.362 -0.4U 0.370 0.391 -0.061 -0.042 0.493 0.406 0.413 -0.138 0206 -0.163 0.068 0.039 0.524 0.003 

• • • • • 
RDCWH-IDCGS -0.463 -0.042 -0.026 0.269 -0.635 -0.700 0.024 -0.3U -0.752 -0.642 -0.7% -0.379 -0.067 -0231 0.086 -0.381 0.700 0.744 -0.037 -0214 

• 
RCT-MCSB -0.165 0.213 0.510 -0.411 -0.572 0.218 -0.222 -0.6U -0.344 -0.272 -0.817 0.010 -0.058 0.618 0.164 0.497 0.460 0.043 -0.444 0.553 

• • 
ICT-MCSB 0.350 -0.201 0.157 0.024 -0.886 -0.445 -0.546 -0.165 -0.644 -0.460 -0.728 -0.285 -0.261 0.277 0.577 0.4% 0.132 0.003 -0.425 0282 . . 
RCT-MCGS 0.179 -0.071 0.056 -0.039 0.171 0.065 -0.006 -0237 0.345 -0220 0.081 0.369 0.722 -0.650 -0.227 0.102 0.332 0.047 0.533 -0.119 

• 
ICT-MCGS -0.148 -0.279 O.U4 0240 -0.335 0.045 -0.574 -0.022 -0.734 0.039 0.068 0256 0.042 0.021 -0.173 0.067 -0.372 -0.032 -0.060 0.192 

*Significant at 0.05 probability level. 
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Table 10. Correlation coefficients relating K-potential with dry matter yields and K uptake of four 
successive wheat crops grown on Wynona silt loam in the greenhouse. 

Dry Dry Dry Dry Dry Dry Dry Dry Total dry Total dry K K K K K K K K Total K Total K 
matter matter matter matter matter matter matter matter matter matter uptake uptake uptake uptake uptake uptake uptake uptake uptake uptake 
crop 1 crop 1 crop 2 crop 2 crop 3 crop 3 crop 4 crop 4 crop 1 crop 1 crop 2 crop 2 crop 3 crop 3 crop 4 crop4 
Before After Before After Before After Before After Before After Before After Before After Before After Before After Before After 

RMCWH -0.307 0233 0.256 0.295 0.136 0.397 -0.629 0.259 -0.382 0.525 0.290 0.252 -0.377 0.465 -0.612 -0.412 0.071 -0.064 -0.441 0.401 
* * * • 

RDCWH-RDCSB -0237 -0.242 0.162 0.287 0.411 0.730 0.729 0.457 0.545 0.650 0.431 o.tll -0.250 -0.247 -0.389 0.001 0.190 0.708 -0.016 0.061 
* 

RDCWH-IDCSB 0.407 0.971 -0.214 0.070 -0.412 0.353 -0.476 0.075 -0.305 0.211 0.235 -0.258 -0.136 0.256 -0.165 0.244 -0.484 0.320 -0.086 0.124 
* 

RDCWH-RDCGS -0.241 -0.058 0.868 0.007 0.022 0.269 -0.464 -0.544 -0.080 -0.262 -0.125 -0.278 -0.463 0.236 -0.425 0.262 -0.397 -0.281 -0.585 0.114 
* 

RDCWH-IDCGS 0.140 0.234 0.330 0.096 0.509 D.457 -0.025 0.163 0.503 0.601 0.465 0.635 -0.087 0.038 -0.266 -0.014 -0.554 -0.781 -0.226 -0.038 
* * 

RCT-MCSB 0.128 0.657 -0.572 0.307 0.603 -0.126 0.025 0.466 0.218 0.523 0.567 0.886 0.228 -0.415 0.142 -0.150 -0.476 -0.151 0.451 0.339 
* * 

ICT-MCSB -0.225 0.205 -0.485 -0.048 0.719 0.424 0.441 0.148 0.413 0.431 0.694 0.282 0.487 -0.287 -0.057 -0.533 -0.540 -0.041 0.632 -0.334 
* * 

RCT-MCGS -0.517 0.575 0.289 -0 .. 096 0.049 -0.478 -0.092 0.785 -0.245 0.617 0.339 0.191 -0.553 0.844 -0.550 -0.041 0.035 -0.076 -0.269 0.625 

ICT-MCGS -0.638 0.345 0.107 -0.128 -0.458 -0.410 -0.068 -0.028 -0.495 -0.249 0233 -0.536 -0.271 -0.083 -0.137 0.056 -0.182 -0.109 -0.071 -0.442 

*Significant at 0.05 probability level 
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