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PREFACE 

This research focuses on the development of suitable 

models to support the strategic planning of facilities 

location-allocation in the presence of multiple conflicting 

objectives and stochastic demands. 

Two mathematical models based on chance-constrained and 

stochastic programming are developed. Both models implement 

zero-one integer goal programming methodology for the 

analysis of multiple objectives. A solution algorithm based 

on the chance-constrained goal programming is proposed for 

the former model. And a two stage algorithm is suggested for 

dealing with the nonlinear structure of the stochastic 

programming model. Two types of demand distributions, normal 

and uniform are considered. An integrated interactive 

computer program is designed and implemented to experiment 

with the proposed models on microcomputers. 
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CHAPTER I 

INTRODUCTION 

The General Problem 

Background 

The strategic issue of facility location in a given 

system has been and continues to be of significant interest 

to practitioners and researchers alike. The research 

interest in this area stems from both its potential economic 

return and applicability to problems in many diverse fields. 

Historically, Alfred Weber pioneered the analytical approach 

to location theory in the early 1900's. He considered the 

problem of locating an industry between two resources and a 

single market to minimize the transportation cost. In 

general, facility location problems are concerned with the 

selection of sites for new facilities in relation to some 

existing demand centers to optimize some measure of 

effectiveness. 

In general, the problem of facilities location is a part 

of facilities planning. Figure 1.1 illustrates the hierarchy 

of facilities planning (Tompkins and White (1984)]. Because 

of the nature of this problem and its breadth of application, 

an interdisciplinary interest has been developed in this 

1 



2 

area. In particular, the problem has been studied by 

technical geographers, urban planners, operation researchers, 

regional scientists, engineers, architects, economists, 

logisticians, management scientists, applied mathematicians 

and system analysts, [White and Case (1974)]. The facility 

location problems occur in many settings both in private and 

public sectors of the economy, (Revelle, Marks at al. 

(1970)]. 

FACILITIES ____. 
LOCATION 

FACILITIES 
~ STRUCTURAL 

PLANNING ~ 
DESIGN 

~ 
FACILITIES 

~ 
LAYOUT . 

DESIGN DESIGN 

'--+ 
HANDLING 

SYSTEM 
DESIGN 

Figure 1.1. Facilities Planning Hierarchy 
(Tompkins & White (1984)] 

Finally, among the examples of facility location 

problems are the determination and location of warehouses, 
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distribution centers, production plants, machine tools, 

waste-disposal facilities, hospitals, fire stations, 

computers, missile batteries, and communication centers. In 

addition, Sule (1981) presented an application of facility 

location-allocation problems to production planning and fleet 

management problems. Cornuejols et al. (1977) further 

extended the application of this problem into financial 

planning. 

Location Models 

Despite the large number of approaches to the site 

selection problem, it is possible to distinguish between two 

basic structural categories [Scott (1970), ReVelle, Marks 

et al. (1970)]; 

1. Location on a plane. 

2. Location on a network. 

In addition, based upon criteria and constraints used in 

formulating locational problems, Revelle, Marks et al. (1970) 

have also distinguished between private and public sector 

location models. In short, private sector models emphasize 

quantitative measures such as minimization of cost or 

maximization of profit while public sector models are 

concerned with qualitative factors which are not usually 

measurable in monetary terms. In general, the structure, 

criteria, and constraints of a given problem will determine 

the appropriate methodology to employ. 
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Location Problems on a Plane 

Location on a plane, also referred to as the infinite 

set method, considers that a site may be selected anywhere on 

the coordinate plane. Therefore, an infinite number of 

potential locations are available for selection. Eilon et 

al. (1971) has identified the main features of this approach 

as follows: 

a. Locations which are selected are not required to be a 
priori attractive. 

b. Alternative selections are available in multi­
facility location problems. 

c. The solution obtained may involve non-feasible 
locations. 

d. Transport costs are a monotonic function of distance. 

These models are based on a single objective and 

explicitly incorporate a distance metric, 1 , into their 
p 

formulation. As item (d) indicates they also assume 

transportation costs to be proportional to the distance 

travelled. They seek to minimize the total cost by 

minimizing the total sum of distances travelled between 

source(s) and destination(s). As Lee and Franz (1979) 

suggest, these models, the location of facilities as points 

on the plane, do not treat many of today's realities and even 

may not be feasible. For instance, the location(s) indicated 

may be in conflict with many corporate policies or legislated 

regulations or may be geographically infeasible. Also, as 

indicated by Geoffrion (1975), treating transportation cost 



as an explicit well-behaved function of distance (no look-

ups) does not represent a realistic cost structure for the 

transportation flows. 

Location Problems on a Network 

This class of problems is characterized by a solution 

space which consists of points on a network. The network of 

interest may be a road network, a rail network, an air 

transport network, a river network, or a network of shipping 

lanes. These models enumerate previously determined 

alternative facility locations (as contrasted to location on 

a plane) and sites of demands as nodes on a network, Lee and 

Franz (1979). Network problems can be further classified 

into two categories; points only on the nodes of the network 

and points on the nodes and/or the arcs joining the nodes. 

Eilon et al. (1971) has identified the following main 

features of the network problems: 

a. They incorporate costs which are related to specific 
geographical locations. 

b. Transportation costs are not required to be any 
single specific function of distance. 

5 

c. They require a set of sites which are known to be 
feasible and for which all cost data are available. 

d. The number of locations must be finite and 
sufficiently small for computational efficiency. 

Plant location-allocation problems are typical of this 

category since in practice plant locations are usually 

selected from a set of predetermined sites. 
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Distance Metric 

The criterion used often for evaluation of locational 

problems is minimization of some distance measure. Such 

distance measures in relation to locations on planes and 

locations on networks will be discussed next. 

In the case of location on planes distances between 

facilities are measured in various functional forms called 

norms. In general, the distance between points q and s using 

the 1 metric is represented as follows: 
p 

1 / p 

lP (q,s) = llq-sllP = [ i=!q 1 - s 1 IP J (1.1) 

where n is the dimension of the solution space. The two most 

common distance measures in locational analysis are 

rectilinear and Euclidean distances. 

When p=l the distance is called rectilinear, 

rectangular, Manhattan, metropolitan, or 1 metric. The 
1 

rectilinear distance in two dimensional space is as follows: 

( 1. 2) 

Rectilinear distances are typically used to measure travel 

distances between points via rectilinear aisles or street 

networks. 

When p=2 the distance is called Euclidean, radial, 

straight-line or 1 metric. An example of Euclidean distance 
2 

in two dimensional space is given below: 
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12 (q, s) J 1 / 2 

= [ (x - x ) 2 + (y - y ) 2 • 
1 2 1 2 

( 1. 3) 

Euclidean distances are used whenever travel between points 

(sites) occur along a straight line, such as air or conveyor 

travel. In cases where cost is not a linear function of 

distance traveled (eg. emergency cases), squared-Euclidean 

distances are frequently used. 

When O<p<l the 1 metric is called hyper-rectangular 
p 

distance. Generally, such distances occur whenever travel 

distances exceed rectilinear. 

In the case of location on networks, distances are 

determined as the length (time) of the shortest path between 

the nodes. As the result, the expression for the distance 

may not appear explicitly in the formulation of network 

problems. 

Location-Allocation Models 

Definition 

The location-allocation problem (LAP) was first 

introduced by Leon Cooper (1963). Since then, many 

modifications to the problem parameters have been made, and a 

variety of techniques have been proposed for its solution. 

The location-allocation problem may be generically stated as 

follows: Given the location or distribution of a set of 

customers/destinations and their associated demands, 

simultaneously determine the number and location of 



supplies/sources and the allocation of their products or 

services to customers/destinations to optimize some measure 

of effectiveness. 

The area of facility location-allocation determination 

covers a wide range of problems. Among others, applications 

occur frequently in service systems, manufacturing systems, 

and distribution systems. Although suppliers or sources may 

refer to a variety of facilities and machines, the intent of 

this research is specific to plant location-allocation 

problems. Also, as mentioned previously, in practice, the 

selection of plant locations is usually from a set of 

pre-specified sites. As such, locations on networks is the 

most appropriate structure to be used for modeling of these 

problems. Throughout this research the term facilities will 

be used generically to refer to plants, warehouses, or 

distribution centers. 

Costs in LAP 

There are two important cost elements in the LAPs: 

1. Transportation costs between plants and customers; 

2. Production costs at each plant location; 

a. Fixed costs of construction and operations; 

b. Unit production costs. 

8 

Transportation and unit production costs are usually 

assumed to be a linear function of the quantities distributed 

and produced, respectively. And, construction/operation 
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costs are usually assumed constant, representing annual fixed 

charges. However, some researchers have considered unit 

production costs and/or construction and operation costs to 

reflect economies-of-scale. Because, more realistically, 

the marginal cost of supplying a customer usually decreases 

as facility throughput (capacity) increases. This results in 

a concave cost function which often is approximated with a 

continuous, piece-wise linear, and concave function. 

LAP Classification 

Plant location-allocation problems may be classified 

according to several characteristics. The major factors 

considered in the literature are shown in Table 1.1: 

TABLE 1.1 

LOCATION-ALLOCATION PROBLEM CLASSIFICATION 

Item Factor Factor Levels 

A Objective 1. Single objective 
2. Multiple objectives 

B Solution Space 1. Discrete (finite set) 
2. Continuous (infinite set) 

c Nature of Demand 1. Deterministic 
2. Stochastic 

D Types of Plants 1. Uncapacitated 
2. Capacitated 

E Hierarchy 1. Zero echelon (transportation) 
2. Single echelon (transshipment) 
3. Multiple echelon (transship.) 



TABLE 1.1 (continued) 

Item Factor Factor Levels 

F Planning Horizon 1. Static (single period) 
2. Dynamic (multiple periods) 

G Product 1. Single Product 
2. Multiple Products 

H Costs (Transportation, Production, Fixed plant cost) 

1. Fixed 
2. Linear 
3. Nonlinear 

I Elasticity of demand 1. Demand is price/distance 
insensitive 

2. Demand is price/distance 
sensitive 

J Solution Procedure 1. Heuristics 
2. Optimizers 
3. Simulators 

K Other (problem-dependent) constraints 

1. Single sourcing 
2. Mutually exclusive plants 
3. Etc. 

The complexity of a model varies with the selection of 

10 

different characteristics from Table 1.1. For example, under 

this system, problem A2, Bl, C2, D2, E3, F2, G2, H3, I2, J2 

is substantially complex while problem Al, B2, Cl, Dl, El, 

Fl, Gl, Hl, Il, J2 is relatively simple. However in 

practice, whenever modeling a system, it is desirable to 

achieve a compromise between simplicity and reality. As 

such, typically, based upon the availability of data and the 

real problem encountered, a particular combination of the 



above characteristics will be selected for modeling and 

analysis. 

Multiple Objectives in LAP Models 

11 

Location-allocation analysis like most other strategic 

decision making problems is multi-objective in nature. The 

multiple objective aspect of LAPs have gained considerable 

attention from researchers in recent years. Traditionally, 

the objective function for location-allocation models has 

been based upon monetary criteria: minimization of total 

costs or maximization of profit. Profit maximization models 

incorporate revenues generated from sales into the 

formulation and are generally used whenever demand is not 

constant or when it can be influenced by other decision 

variables. On the other hand, the basic cost minimization 

models minimize transportation costs or a combination of 

fixed costs and transportation costs. In the latter case, as 

the number of facilities increase, fixed costs increase while 

the shipping costs decrease. On the contrary, as the number 

of facilities decrease, shipping costs increase while the 

fixed costs of establishing and operating facilities 

decrease. Thus the problem becomes a search for the optimal 

trade-off between the cost of building and operating 

facilities and the cost of transportation. A typical cost 

trade-off curve representing this trade-off is depicted in 

Figure 1. 2. 



II .... 
ID 
0 
0 

Number of Facilities Opened 

Transportation 
Costs 

Figure 1.2. A Typical Cost Trade-off Curve Between 
Transportation and Fixed Costs 
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Nevertheless, LAPS are complex and like most other real 

world problems depend upon a number of tangible and 

intangible factors which are unique to each problem. 

According to Lee et al. (1981), although cost trade-off 

remains an essential consideration, the trend of the 1970s 

and the outcome of the future would include social, 

psychological, safety and public oriented non-economic 

considerations in the facility location determination. 
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Furthermore, location-allocation decisions involve a 

substantial capital investment and result in long-term 

constraints on production and distribution of products. In 

view of these issues, and the significant benefits derived 

from implementing a realistic model, it is appropriate to 

study LAPs in their natural environment of multiple and 

conflicting objectives. The need for multiple criteria 

models are further emphasized by a survey of industrial 

development activities, Lynch (1973). On the bases of this 

survey the top ten factors important in locating new 

facilities are as followings: 

1. environmental considerations. 

2. labor factors, emphasis on quality and supply. 

3. availability of utilities. 

4. transportation, primarily highways. 

5. social factors, emphasis on trend to rural areas and 
suburbs. 

6. community attitude toward industry. 

7. low cost financing. 

8. supply and cost of available land. 

9. markets. 

10. taxes. 

In addition, ReVelle, Marks et al. (1970) point out that 

concentrating only on economic terms produces solutions which 

are non-optimal with respect to governmental rules and 

regulations. Fulton (1971) and student (1976) have also 

emphasized the growing significance of environmental and 



14 

social factors in the facility location decisions. 

In real life, it is evident that other criteria beside 

costs play a significant role in determination of locations. 

Therefore, clearly, single objective, pure cost minimization 

models are no longer adequate to represent locational 

problems in the presence of social, energy, and environmental 

considerations. As such, a multiple criteria approach is the 

most appropriate strategy to be used in modeling and 

analyzing the location-allocation problems. 

Stochastic Demand in LAP Models 

Often, in real-life situations demands are not known 

with certainty and only estimates are available. Whenever 

demand at destinations is not known with certainty, it should 

be treated as a random variable. Among the sources of 

variations in demand are changes in market share 

(competition), population movements, fluctuating costs, and 

seasonal demand patterns. In general, in view of these 

uncertainties, it is advantageous to incorporate the 

assumption of stochastic demand into LAPs models. This 

results in more realistic and comprehensive models and 

increases validity and credibility of the solutions obtained. 

From an economic perspective, inclusion of stochastic 

demand is justified since in the presence of market 

uncertainties it is likely to oversupply or undersupply the 

demand centers which in turn would result in inventory "carry 
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overs" or "stock outs" costs. Revelle, Marks et al. (1970) 

have also emphasized the importance of considering the 

stochastic nature of the demand and supply with respect to 

seasonal or periodic fluctuations, as well as changes in 

economic conditions and population patterns for the facility 

location problems. 

Therefore, it is believed that introduction of 

stochastic demand into multi-criteria LAPs will provide a 

greater element of reality into the formulation and analysis 

of this class of complex problems. 

Research Objectives 

Multiple objectives and stochastic demand are two 

important elements of LAPs. Although studies are conducted 

incorporating these factors separately, both facets have not 

been considered simultaneously. This study is to explore the 

effects of random demands explicitly in the modeling and 

solution of multi-criteria location-allocation problems. The 

objectives of this research are divided into two sets: The 

primary objectives and the secondary objectives. The primary 

objectives focus on the development of suitable models for 

the multiple objective location-allocation problem in the 

presence of stochastic demand and the determination of 

appropriate solution methodologies. The secondary objectives 

are to develop an interactive computer program based on the 

solution algorithms developed earlier and to conduct a 

sensitivity analysis by varying some appropriate parameters. 



16 

Specifically, the primary and secondary objectives are stated 

below: 

Primary Objectives 

1) Development of mathematical models for the multi­

objective location-allocation problem with stochastic demands. 

2) Development of appropriate solution algorithms for 

these models. 

Secondary Objectives 

1) Development of an interactive multiple objective 

computer program based on the algorithms developed above. 

2) Testing and validating the models by relaxing the 

assumption of stochastic demand or multiple objectives and 

comparing the results with the earlier work in multi-criteria 

and single objective facility location-allocation problems, 

respectively. 

3) Demonstrating the sensitivity analysis of the models 

by varying parameter(s) of the demand distribution and 

performing what-if analysis. 

Research Plan 

In order to accomplish the above objectives the research 

will be divided into three phases: 1) investigation and 

system design, 2) program development, 3) system validation 

and sensitivity analysis. A general outline of the tasks to 
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be performed in each phase follows: 

Phase 1 - Investigation and System Design 

In this stage a review of existing algorithms for single 

and multiple objective programming will be performed and an 

appropriate solution methodology will be selected 

specifically suitable for interactive implementation. Next 

in this stage, the mathematical model of the multi-criteria 

location-allocation problem with stochastic demand will be 

developed. Based on the above formulation a solution 

algorithm will bedetermined. The design of the model will 

include the following characteristics: 

o multiple objectives; 

o stochastic demand; 

o capacitated/uncapacitated plants; 

o single (aggregated, homogeneous) product; 

o static planning horizon; 

o zero echelon (no transshipment). 

Potential objectives to be included are: 

o minimize total costs (fixed costs plus 
transportation costs) ; 

o minimize transportation costs; 

o maintain production capacity within prespecified 
limits (e.g. for compliance with pollution 
control standards within state regulations); 

o locate where the quality of life is satisfactory; 

o satisfy product demand goal; 

o achieve any desired configuration constraints 
(e.g. set upper and/or lower limits on the 
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number of open plants, specify minimum and/or 
maximum number of locations to be selected 
from a subset of locations, mutually exclusive 
or mutually dependent locations, etc.); 

o satisfy an upper limit on total fixed cost. 

In addition, the following distribution of demands will 

be considered: 

o normal distribution; 

o uniform distribution. 

Phase 2 - Program Development 

Given the solution algorithm developed previously, a 

computer code will be written. The program will provide data 

management facilities and will operate in an interactive 

mode. The interactive routine will be designed such that the 

decision maker (planner) can iteratively provide information 

regarding various target values and preference data 

concerning different objectives, in order to achieve 

satisfactory trade-offs among various objectives. Figure 1.3 

illustrates the components of the proposed interactive 

system. The inputs/outputs expected from the computer system 

are given below: 
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Figure 1.3. Interactive System Components and Flow 
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INPUTS: 

o multiple objectives; 

o demand pattern for each destination; 

o location of destinations; 

o potential sites; 

o capacity of sources (plants); 

o cost data. 

OUTPUTS: 

o status of objectives; 

o number of sources; 

o location of each source; 

o size of sources at each site; 

o assignment of destinations to new sources; 

o allocation of products from sources to destinations 

Phase 3 - System Validation and Sensitivity Analysis 

This step consists of testing and validating the 

integrated system and performing sensitivity analysis on the 

parameter(s) of random demands. It includes debugging the 

program and relaxing the stochastic demand so that its 

results can be compared with the results available from 

earlier work in the multiple objectives analysis of LAPs. 

Furthermore, the assumption of multiple objectives will be 

relaxed so that the results could be compared with the 

results from single objective methods. The sensitivity 

analysis will be conducted on the distribution parameter(s) 
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to provide insights into the behavior of the model and its 

tolerance for estimation error in parameters. Also, changes 

in constraints and criteria and their effect on the solution 

will be investigated. 

Summary 

This study is about the facility location and product 

allocation problem in the presence of multiple, conflicting 

objectives and stochastic demand. The motivation behind this 

research is to formulate and analyze mathematical models 

which would better portray the real-life problems in the area 

of LAPs. Besides integrating the two important factors, 

multiple goals and stochastic demand, another advantage of 

the proposed models is their ability for sensitivity analysis. 

The latter will be accomplished by developing an interactive 

program based on the proposed solution methodologies. The 

interactive feature of the program will be a great asset in 

understanding the sensitivity of the solutions to changes in 

parameters, constraints, and/or criteria and hence, in 

helping the decision maker achieve better solutions. 

Finally, the application and sensitivity analysis of the 

proposed models will be demonstrated through some example 

problems. 



CHAPTER II 

LITERATURE REVIEW 

This chapter contains a review of literature in the area 

of location-allocation problem (LAP) . The basic LAP is to 

determine the location of m facilities and their allocation 

of a product to n existing demand centers to minimize the 

distribution cost. In an even more general form, LAP also 

involves the determination of the optimal number of new 

facilities. The LAP was first formulated by Cooper (1963). 

Since then, many researchers have contributed to the modeling 

and the solution methodology of this problem. Since, 

location-allocation problems are a class of general facility 

location problems, this chapter begins with a brief review of 

location models on a plane, followed by a review of location­

allocation literature. Finally, the research in the area of 

multiple objective LAP is reviewed. 

Location Problems on a Plane 

The modern location theory has been credited to Alfred 

Weber, who published the book, "Uber den Standort der 

Industrien" (Theory of location of Industries) in 1909. He 

was the first to perform a quantitative analysis of a 

location problem. Weber examined the location on a plane of 
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a factory in relation to two raw material sources and a 

market place, with the objective of minimizing distribution 

cost of a single product. The mathematical formulation of 

the generalized Weber problem with Euclidean distances is 

given below: 

Minimize z = f w [ (x -x ) 2 + (y -y ) 2 ]
112 

L i i o i o 
l = 1 

( 2 .1) 

where 

w = the weight assigned to point i (based on 
l demand, population, etc.) ; 

x Y1 = the coordinate of point i; i I 

x Yo = the unknown coordinate of central facility; 
0 I 

n = the number of existing points. 

Therefore, the objective is to find a single point which 

minimizes the sum of weighted Euclidean distances from the 

given points. Kuhn and Kuenne (1962) and Cooper (1963) both 

have described an iterative process to solve this problem. 

As discussed earlier in chapter I, an important element 

in the formulation of analytical models for the facility 

location problems on a plane is the inclusion of a distance 

measure. Furthermore, locational problems, based on their 

objectives, could be classified as follows: 

1. p-median problems (minisum, maxisum); 

2. p-center problems (minimax, maximin); 

3. Covering problems. 

In general, the median problem seeks to minimize 

(maximize) the average distance (time) travelled by all 
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customers to a facility. The p-median problem on a network 

consists of locating p facilities among n (>=p) locations on 

a network, so that the sum of shortest distances from each of 

the nodes of the network to its nearest facility is 

minimized. 

Next, the center problem is concerned with minimizing 

(maximizing) the distance of the farthest (nearest) customer 

from a facility. A p-center problem on a plane is to find p 

new facilities on the plane that minimizes the maximum 

weighted Euclidean distance between each demand point and 

its closest new facility given n demand points on the plane 

and a weight associated with each point. Among examples of 

center problems are locating emergency or obnoxious 

facilities such as hospitals and waste-disposal facilities, 

respectively. 

To motivate the covering problems in the facility 

location models, assume a customer is covered if a facility 

is within its certain distance or time. Then, the objective 

of covering problems is to find the number and the location 

of new facilities to cover all the customers at minimum cost. 

Some examples of covering problems are locating police 

stations, hospitals, radar installations, and libraries. 

As is evident from the examples discussed in this 

section, these problems arise frequently in conjunction with 

public-sector location modeling. An extensive review of this 

class of problems is provided by Tansel et al. (1983a, 

1983b). 
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The Location-Allocation Problem 

The Basic Problem 

The location-allocation problem (LAP) was first proposed 

by Cooper (1963). Originally, Cooper studied the problem in 

a continuous solution space. However, today, LAP in discrete 

solution space is used frequently when locating industrial 

plants or warehouses. The simplest version of the problem 

known as "Simple Plant Location" problem is as follows: 

Given a set of locations where plants (warehouses) may be 

built, a known demand from a given set of customers which 

must be satisfied, and unlimited plant capacities, determine 

the numbers and locations of plants to be established and 

the allocation of products to the customers in order to 

minimize total annual distribution and fixed costs. Assuming 

m potential plant sites and n customers, this problem may be 

represented by the following mixed integer programing 

formulation: 

m n 

Minimize z =I 
i = 1 

I c i j 
j = 1 

(2.2) 

Subject to: 

m 

Ix .. = 1 I (j=l, • • • t n) 
i = 1 1 J 

(2.3) 

Y1 -x :!:: 0 ( i=l, • • • Im j=l, ... ,n) 
i j 

( 2. 4) 

1 ~ x ~ 0 ' (i=l, ... ,m j =1, • • • t n) 
i j 

( 2. 5) 



where 

c 

j 
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Y1 = o ' 1 ' ( i=l, ... , m) (2. 6) 

i j 

= proportion of customer J's demand 
satisfied by plant i; 

= total production and distribution costs 
for supplying all of customer j's demand 
from plant i; 

= 1 if plant i is established, O otherwise; 

= fixed cost of opening a facility at site i; 

= indices associated with the plants; 

= indices associated with the customers; 

m = number of possible plant (warehouse) sites; 

n = number of demand centers (areas). 

In this formulation the objective function represents 

the minimization of total production, distribution, and fixed 

costs. Constraints in (2.3) ensure that each customer's 

demand is fully satisfied. Constraints in (2.4) state that 

assignments are made only from open facilities. And, 

constraints in (2.5) and (2.6) are non-negativity and 

integrality constraints respectively. An alternative 

formulation which has also been used is to define x as the 
1 j 

number of units supplied from -plant i to demand center j and 

to define C as the per unit cost of supplying customer j's 
1 j 

demand from plant i. In this formulation constraint sets 

(2.3), (2.4), and (2.5) will change as follows: 

m 

l xi J = DJ ' 
i = 1 

(j=l, .•. ,n) (2.7) 
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n 

'\ x - M y :s O, 
~ i j i 

(i=l, ... ,m) (2. 8) 
j=l 

x i!:: o, ( i=l, • • • Im; j=l, ..• ,n) 
1 j 

where 

D = demand for customer Ji 
j 

M = some large positive number. 

While the objective function and the integrality 

constraints are represented by Equations (2.2) and (2.6) 

respectively, as in the previous formulation. 

Solution Techniques for the LAPs 

Location-allocation models can take many forms, but 

(2. 9) 

based upon solution approaches, they may be classified into 

the following three distinct types: 

1. Heuristics; 

2. Optimizers (exact); 

3. Simulators. 

Aside from these basic approaches, based on the 

formulation of the problem, a variety of techniques have been 

utilized to solve LAPs. Among these methodologies are 

standard transportation/assignment, linear programming, 

integer and mixed integer programming, stochastic 

programming, decomposition, Lagrangian relaxations, and 

dynamic programming. Application of any specific procedure 

or method listed above is determined by the formulation and 

assumptions of a given problem. 

The principal focus of this chapter is on the 
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mathematical formulation and solution of LAPs using heuristic 

and optimizer methods, and the multiple objective LAPs. As 

such, simulation techniques as the main analytical tool will 

not be reviewed extensively. 

Heuristic Procedures 

A heuristic algorithm involves procedures based on the 

"rules of thumb" (common-sense principals) and/or 

mathematical methods which produce "good" (acceptable) 

results. The solution obtained from a heuristic procedure 

may be optimal, but optimality is not guaranteed in general. 

It is worth noting that this fact could limit suitability of 

heuristics for exact sensitivity analysis. Heuristic 

procedures are used whenever size and complexity of a problem 

make exact optimizing algorithms impossible, or resources for 

finding an optimal solution, such as computer time and memory 

storage, are not available. Still, a heuristic algorithm is 

proven to be an effective method whenever it can be shown that 

the solution space near the optimal point is flat (shallow), 

that is, there are many good near optimal solutions. 

The principle difficulty in solving location-allocation 

problems is in their combinatorial structure. To illustrate 

this point, first consider the location aspect of the problem. 

Assume m potential sites are available, then there are 2m 

possible combinations (including the infeasible solution of 

all facilities being closed) for selecting sites. Second, 
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take into account all the possible allocations when there are 

n demand centers. Also assume that each demand center may be 

supplied only from one supplier (single sourcing). Then, the 

total number of location-allocation combinations is given by: 

m n m n m n 
Cm .(m) +C • (m-1) + •.. +C . (1) 

m-1 1 
( 2 .10) 

Therefore, it is evident that even for moderate values 

of m and n (eg. 40 and 50) the possible combinations of 

location and allocation patterns will be significantly large. 

This is the combinatorial structure of LAPs which makes them 

candidate for heuristic solution methods. 

A large portion of the developed heuristics employ the 

concept of largest marginal saving for the solution of 

location-allocation problems. According to this procedure, 

after starting from some arbitrary starting point, the 

solution is driven toward an improved point gradually via an 

iteration process. In each iteration, the value of one of 

the components of the location vector is changed. That is an 

open facility is set closed or vice versa. This could be 

compared to moving on the lattice points of a unit hypercube 

in one dimension. Using this approach, the choice of a 

component is directed by the marginal saving that could 

result from the change. The heuristic terminates if no 

further change is possible. This procedure does not 

guarantee optimality since the final solution depends upon 

the specific starting point. 

Several heuristic procedures which produce good results 
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are proposed by; Kuehn and Hamburger (1963), Manne (1964), 

Feldman, Lehrer, & Ray (1966), Sa (1969), Walker (1976), Sule 

1981), and Klincewicz and Luss (1986). 

One of the earliest and best known heuristics for 

solving the simple (single commodity), uncapacitated 

warehouse location model is the "add" or "construction" 

heuristic by Kuehn and Hamburger (1963). Their heuristic 

program consists of two stages: First, the main program or 

construction stage and second, the "bump and shift" routine 

or improvement stage. The main program locates facilities 

one at a time until no additional facilities can be opened 

without increasing the total cost, then the second routine 

attempts to improve the solution obtained earlier, by 

evaluating the profit implications of closing or relocating 

open facilities. The following three heuristics are employed 

in the Kuehn and Hamburger algorithm: 

1. Potential locations will be at or near demand 
concentrations. 

2. Near optimum systems can be achieved by adding 
facilities one at a time, proceeding at each stage 
to add that facility which produces the greatest 
cost savings for the whole system. 

3. At each stage, only a small subset of all possible 
facility locations needs to be evaluated in detail 
in order to determine the next facility site to 
open. The size of the subset depends on the size 
and the variance in the demands at all possible 
sites. The larger the variance in the market 
demands, the smaller the subset of possible 
locations. 

Manne (1964) investigated the use of SAOPMA (Steepest 
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Ascent One Point Move Algorithm) for solving simple plant 

location problems. This method starts at an arbitrary 

lattice point of the unit hypercube and then proceeds to 

examine other alternative adjacent points. Alternative 

adjacent points are formed by adding a new plant to or 

dropping an existing plant from the subset under 

consideration. If an improvement can be realized in terms of 

total location and allocation costs, the new lattice point 

will be selected as the best solution and the search will 

continue from this point. Otherwise, the iterative process 

terminates. Moreover, at each iteration, in the absence of 

plant capacities, the total cost of any configuration is 

readily found by assigning each demand center to a plant with 

minimum sum of variable and fixed costs. 

Feldman, Lehrer, and Ray (1966) in their heuristic 

procedure, considered economies of scale to be continuous and 

concave over the entire range of warehouse sizes and proposed 

a "drop" or "elimination" heuristic as opposed to the "add" 

heuristic by Kuehn and Hamburger (1963). The "drop" 

heuristic assumes all the facilities are opened initially and 

then drops facilities one at a time until no further savings 

are realized. 

Sa (1969) proposed a two phase heuristic procedure for 

solving the capacitated facility location problem. The first 

phase employs a combination of "add" and "drop" heuristics to 

find a solution. Then the second phase performs single 

exchanges to improve the solution obtained in phase one. 
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Walker (1976) proposed a two phase heuristic procedure 

called SWIFT (Simplex With Forcing Trials). The main thrust 

of this algorithm is that it complements the variable 

selection rule of the standard simplex method with the fixed 

charge of entering and leaving vectors. The first phase uses 

the standard simplex method with modified variable selection 

rule to find a local optimum (this is a nonconvex program). 

The second phase tries to improve the solution obtained 

previously by exploring the extreme points non-adjacent to 

the current point. In phase two, forcing the solution to a 

new non-adjacent extreme point may initially increase the 

objective value, but iterating from this point could lead to 

an improved solution. 

Sule (1981) investigated three simple heuristic 

procedures for solving uncapacitated facility location 

problems. In addition, a simple procedure to deal with 

multiperiod problems has also been discussed. 

Klincewicz and Luss (1986) presented a Lagrangian 

relaxation heuristic algorithm for capacitated problems in 

which each customer is served by a single facility. The 

Lagrangian relaxation technique incorporates the capacity 

constraints into the objective function, leading to an 

uncapacitated facility location subproblem. An iterative 

procedure updates the Lagrangian multipliers between 

successive solutions of the uncapacitated subproblems. The 

dual ascent procedure of Erlenkotter (1978) (without branch 
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and bound) is used to generate feasible solutions to the 

uncapacitated subproblems. The algorithm is also 

complemented by an "add" heuristics which finds an initial 

upper bound and feasible solution to the problem. Finally, 

an adjustment heuristic is employed which attempts to improve 

the best feasible solution obtained from the relaxation, by 

adjusting the customer assignments. 

Exact Procedures 

Exact procedures yield an optimal solution, given there 

is one, in a finite number of steps. However, since LAPs are 

NP-complete, the computational requirements of optimal 

seeking procedures grow exponentially with the problem size. 

The formulation of LAP is one of mixed integer 

programming. The integer portion of the formulation results 

from the variables associated with fixed charges. Fixed 

charges or fixed costs correspond with the building and 

operating expenses of facilities. Whenever a facility is 

established (opened) it incurs a fixed cost, and this cost 

is zero when the facility is closed. It is the nonlinearity 

of this cost function (discontinuity occurs when the facility 

is closed), which makes the standard linear programming 

techniques ineffective in solving this class of problems. 

Furthermore, nonlinearities occur as the result of economies 

of scale in transportation, production, and construction/ 

operation costs. However, in the absence of fixed charges 

and economies of scale, or for a given location vector, the 



facility location problem can be simply reduced to a 

transportation problem and procedures such as Out-of-Kilter 

algorithm may be used effectively to solve the problem. 

Many algorithms developed to date for optimal solution 

of LAPs employ the branch and bound procedure of integer 

linear programming. The branch and bound procedure is an 

implicit enumeration technique which is guided by an upper 

and a lower bound on the value of the objective function. 
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The method is based on solving a series of linear programming 

problems with the integer requirements relaxed. The 

procedure progressively improves the bounds for the optimal 

solution of the original mixed integer problem. A major 

advantage of this technique is that it continually recomputes 

the bounds on the objective value, which enables the decision 

maker to stop the calculation whenever the solution is within 

a prespecified tolerance of optimal value. For this method, 

the lower bound could simply be established by solving the 

original mixed integer (or integer) problem without 

considering the integrality constraints. And, the upper 

bound may be obtained by arbitrarily assigning values of o 

and 1 to the binary variables. 

Nevertheless, better lower bounds are established 

through applying the Lagrangian relaxation technique. This 

technique is based on multiplying some of the constraints by 

a penalty factor and then adding them to the objective 

function. It is shown that the resulting subproblem is 
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usually easier to solve than the original problem and 

provides a better lower bound than the linear relaxation 

method mentioned earlier. As will be evident throughout the 

literature, the direction of research has been to improve 

computational efficiency of the branch and bound procedures 

by improving lower bounds, upper bounds, and the node 

selection and branching rules. 

Studies of exact methods in LAPs may be further 

classified according to main characteristics of the problem 

formulation, these are: 

1) Simple (uncapacitated) problems; 

2) Capacitated problems; 

3) Dynamic problems; 

4) Multi-commodity problems; 

5) Stochastic problems. 

Simple (Uncapacitated) Problems. In simple LAPs a 

number of facilities with unlimited capacities are selected 

from among a set of predetermined sites and then demand 

centers are assigned to them. The assumption of 

uncapacitated plants is usually justified whenever 

considering establishing new plants. This assumption greatly 

simplifies the allocation part of the problem. That is, for 

this case, the optimal allocations for a given location 

vector are found simply by assigning the demand for each 

demand center from a single plant which has the lowest unit 

cost (i.e. combination of the unit production and 
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distribution costs). 

Among the exact methods proposed for solving the simple, 

uncapacitated facility location problem, algorithms by 

Efroymson and Ray, Spielberg, Khumawala, and Erlenkotter are 

particularly well known. 

An early attempt to optimize the simple, uncapacitated 

facility location problem is a branch and bound procedure 

proposed by Efroymson and Ray (1966). By reformulating the 

problem, Efroymson and Ray were able to simplify the solution 

of the linear programming problems at each node. 

Additionally, they presented certain simplifications at each 

node which reduced the number of evaluations required in 

solving the original problem. 

Spielberg (1969}a employed an implicit enumeration to 

solve the simple plant location with side constraints. In 

another paper Spielberg (1969}b reported computational 

efficiency in solving the simple plant location problem by 

relocating the search origin from a "natural" search origin 

(where all facilities are initially opened or closed) to a 

generalized search origin. This paper also suggests a series 

of tests for pruning the branches of the branch and bound 

tree. 

Curry and Skeith (1969) utilized dynamic programming to 

solve simple facility location problems. 

Khumawala (1972) significantly improved the branch and 

bound algorithm of Efroymson and Ray by proposing a set of 
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branching decision rules in conjunction with a more efficient 

method for solving the linear programming problem at each 

node. This algorithm partitions the set of feasible 

locations into three sets: (1) the set of locations with 

closed warehouses, K ; (2) the set of locations with open 
0 

warehouses, K ; and (3) the set of locations at which the 
1 

status of warehouses are undecided (free warehouses), K. 
2 

The branching decision rules determine which of the 

warehouses should be opened or closed at each node. Among 

the set of four proposed branching rules (Delta, Omega, Y, 

Demand) , the largest Omega rule was shown to perform the 

best. Omega is the symbol used to denote the minimum savings 

of opening a free (not yet assigned open or closed) warehouse 

in the presence of all open warehouses. Delta is a measure 

similar to Omega except for the comparisons which are made 

with respect to all non-closed (open and free) warehouses. 

The Y branching rule selects a free warehouse with largest or 

smallest Y.value at each node, and fixes it open or closed 
l 

respectively. Finally, the Demand rule selects a free 

warehouse among the set of free warehouses which can supply 

the greatest or smallest total demand, and fixes it open or 

closed respectively. 

Kaufman, Eede, and Hansen (1977) extended the work of 

Efroyrnson and Ray by considering a single echelon facility 

location problem. They applied the branch and bound 

procedure to simultaneously solve for the location of plants 



and warehouses in a distribution system. In this system 

customer demands may be satisfied directly from plants or 

through warehouses. 
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Erlenkotter (1978), proposed a dual-based solution for 

the simple, uncapacitated facility location problem. He 

applied a simple ascent and adjustment method to the 

condensed dual formulation of the problem. The procedure 

begins with an initial dual solution and adjusts the 

multipliers (dual variables) incrementally in a way that 

reduces complementary slackness violations. The procedure 

continues until either complementary slackness is satisfied 

or dual feasibility is violated. Moreover, if the optimal 

dual solution does not correspond to the optimal integer 

primal solution, then a branch and bound procedure is 

employed to complete the solution. Erlenkotter demonstrated 

computational efficiency of this algorithm through some 

example problems. 

Tcha and Lee (1984), generalized the work of Kaufman 

et al. (1977) by studying the multi-echelon facility location 

problems. Their algorithm, based on the modified dual ascent 

procedure of Erlenkotter, is shown to be superior to the 

algorithm of Kaufman et al (1977). 

Capacitated Problems. In capacitated LAPs, it is 

assumed that there exist an upper and/or lower bounds on the 

production (capacity) of the potential facilities. Among the 

exact procedures for solving capacitated facility location 
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problems are algorithms by Davis and Ray (1969), Sa (1969), 

Ellwein and Gray (1971), Truscott (1975), Akinc and Khumawala 

(1977), Geoffrion and McBride (1978), Nauss (1978), 

Christofides and Beasley (1983), and Van Roy (1986). 

Davis and Ray (1969) incorporated the capacity 

constraints into facility location problems. Their method 

employs a branch and bound procedure and uses Benders 

decomposition technique to solve the dual of the associated 

continuous linear problem at each node of the branch and 

bound tree. The decomposition technique at each iteration 

produces a "master problem" and a single "sub-problem". The 

dual of the "sub-problem" represents a capacitated 

transportation problem, and is solved effectively at each 

iteration by an Out-of-Kilter algorithm. 

Sa (1969) proposed a branch and bound procedure similar 

to Davis and Ray's method. However, his method added a 

dominance test and a feasible total fixed cost test which are 

performed before solving any subproblem. 

Ellwein and Gray (1971) studied capacitated facility 

location problems with configuration constraints. They 

employed an enumerative search technique where the 

enumeration of the solution vectors is carried out by 

generating a sequence of partial assignments. The partial 

assignments constituted assignment of "zero", "one", and 

"free" to the integer variables. Ellwein and Gray achieved 

computational efficiency in solving the problem by reducing 

the feasible solution set and therefore the size of the 
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search, through utilizing adaptive bounds on the fixed costs 

and constraints based on the dual variables. 

Truscott (1975) also investigated facility location 

problems with capacity and configuration constraints. He 

added the dimension of revenue generation to his model. 

Because, the choice of facilities can effect the price 

realized and/or the quantities demanded. Therefore, the 

problem was formulated and solved as a zero-one integer 

programming problem with an objective of maximizing profit. 

Akinc and Khumawala (1977) presented a procedure 

based upon the branch and bound algorithm for the capacitated 

warehouse location problems. They increased the efficiency 

of the branch and bound procedure by developing powerful 

lower and upper bounds along with a different set of rules 

for selecting nodes and branches. For example, they proposed 

a hybrid node selection rule. This rule employs both least 

lower bound and LIFO to select a node. The algorithm 

switches between these two rules based on the value of the 

two parameters. They indicated that the least lower bound 

rule results in a large number of terminal nodes, therefore 

it requires relatively large storage but has the advantage of 

minimizing computational time. On the other hand, the LIFO 

rule requires relatively smaller storage, but results in 

longer computational time. Hence, they proposed the hybrid 

node selection rule in an attempt to compromise between these 

two rules. 
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Geoffrion and McBride (1978) applied Lagrangian 

relaxation to capacitated facility location problems with 

lower bounds on the capacity of each facility and an 

arbitrary set of linear constraints. The Lagrangian problem 

decomposes into m continuous Knapsack problems, one for each 

facility. The linear side constraints are used to control 

distribution flows as well as opening and closing of 

facilities. Geoffrion and McBride (1978) also have shown, in 

applying the branch and bound technique, that lower bounds 

generated via Lagrangian relaxation is superior to the ones 

obtained by traditional linear relaxation. 

Nauss (1978) improved the branch and bound procedure of 

Akins and Khumawala (1977) by deriving tighter lower bounds 

through employing Lagrangian relaxation of demand 

constraints. The tighter lower bounds facilitate fixing 

certain facilities open or closed thus reducing the amount of 

branching required. 

Christofides and Beasley (1983) developed a similar 

approach to that of Nauss (1978) and obtained slightly better 

results. 

Van Roy (1986) presented a different approach based on 

the Cross Decomposition (CD) method developed by Van Roy 

(1983) to solve the capacitated facility location problem. 

The method is designed to exploit simultaneously the primal 

and dual structure of the problem. This method unifies 

Benders decomposition and Lagrangian relaxation into a single 

framework that involves successive solutions to a Benders 
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(primal) subproblem and a Lagrangian (dual) subproblem. The 

primal and dual subproblems are transportation and simple 

plant location problems respectively. 

Furthermore, capacitated location models with nonlinear 

economies of scale are studied by Soland (1974), and Kelly 

and Khumawala (1982). 

Dynamic Problems. Whenever demands and/or costs change 

from period to period, it is appropriate to incorporate the 

time dimension into the formulation of the location­

allocation problem. Relocation costs, possible expansion, 

and changes in customer locations over time are other factors 

that require dynamic location considerations, Green et al. 

(1981). In short, multi-period or dynamic warehouse location 

problem considers the locational decisions over a specified 

planning horizon such that the total discounted costs of 

meeting demands are minimized. Of course, the profit 

maximization aspect could easily replace the objective of 

cost minimization. Some of the studies which consider 

dynamic characteristic of the problem are by Wesolowsky and 

Truscott (1975), Khumawala and Whybark (1976), Karanicolas 

(1979), Van Roy and Erlenkotter (1982). 

Wesolowsky and Truscott (1975) presented two methods for 

solving dynamic (multi-period) location problems. In the 

first method, they discounted all costs to their present 

values and then used a mixed integer programing formulation 

to find the optimal solution. In the second method, they 
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applied dynamic programming solution methodology to solve the 

problem. The dynamic programming formulation includes costs 

of vacating and entering sites and defines stages, states, 

and decision variables to be periods, facility 

configurations, and choices of location changes respectively. 

Khumawala and Whybark (1976) proposed a solution 

procedure based upon the implicit enumeration, for solving 

warehouse location problems with changing markets and costs 

from period to period. The algorithm is comprised of three 

steps. Steps one and two are applied iteratively to 

determine if any free warehouses can be opened or closed. 

The third step, a branch and bound procedure, is entered 

only if there is at least one free warehouse following the 

application of the previous cycle. 

Karanicolas (1979) presented an algorithm for the 

solution of multiperiod capacitated and uncapacitated plant 

location problems. The proposed algorithm employs the 

Lagrangian relaxation technique to decompose a multiperiod 

problem into T single period mixed integer subproblems and an 

integer master problem. 

Van Roy and Erlenkotter (1982) developed a branch and 

bound solution procedure incorporating an extension of the 

dual ascent procedure of Erlenkotter (1978) with a primal­

dual adjustment procedure to solve the dynamic, uncapacitated 

facility location problem. 

Dynamic facility location-allocation problems have also 



been studied by Ballou {1968), Tapiero (1971), and Sweeney 

and Tatham {1976). 
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Multi-commodity Problems. Another generalization of the 

facility location problems has been to incorporate the aspect 

of multi-commodity into the formulation. A simple method to 

deal with this problem is to replicate each demand center as 

many times as there are products and to assign an appropriate 

demand to each one. Among the research in the area of multi­

commodity problems is the study by Elson {1972), Warszawski 

{1973), Geoffrion and Graves {1974), Khumawala and Neebe 

(1978), and Karkazis and Boffey {1981). 

Elson (1972) was among the first to study single 

echelon, capacitated, multi-commodity facility location 

problem. Elson presented a mixed-integer formulation of the 

problem and applied existing mixed integer programming codes 

to solve the problem. Among the characteristics of Elson's 

model is the use of different set of variables to represent 

product flows from and to the warehouses. 

Warszawski (1973) also investigated the dimension of 

multi-commodity. His study was motivated from the need to 

locate different supply sources at a construction site. 

Warszawski proposed a branch and bound procedure along with a 

heuristic method to solve this problem. 

Warszawski and Peer {1973) presented a formulation for 

the multi-commodity, multi-period location problem, but did 

not attempt to solve it. 
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Geoffrion and Graves (1974) also studied the single 

echelon, capacitated, multi-commodity distribution system. 

They implemented a solution technique based on the Benders 

decomposition to decompose the full multi-commodity problem 

into a series of simpler single commodity problems. Benders 

method proceeds by alternatively solving an integer 

programming master problem and then several transportation 

subproblems. The master problem involves the 0-1 variables 

of the location vector while the subproblems are a simple 

transportation problem for each commodity. The solution 

procedure starts by solving the master problem ignoring the 

0-1 requirements followed by solving the transportation 

subproblems. With each iteration, one or more additional 

constraints are added to the master integer problem setting 

fractional Y's to O or 1. These new constraints are called 

Benders cuts. Contrary to Elson's model, Geoffrion and 

Graves (1974) considered the product flow in such a way as to 

preserve the identity of plants in the final assignment of 

products from warehouses to customers. Moreover, Geoffrion 

and Graves (1974) presented details of the application of 

their model to a real world system. 

Khumawala and Neebe (1978) and Neebe and Khumawala 

(1981) improved the branch and bound procedure of Warszawski 

by incorporating stronger lower bounds. Their algorithm 

employed LIFO and the least lower bound as the node selection 

rules and used the largest delta rule of Khumawala's 
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algorithm for the branching decision rule. 

Karkazis and Boffey (1981) also proposed two dual based 

algorithms for solving multi-commodity facility location 

problems. 

Loh (1983) studied the multiple commodity and multiple 

stage transshipment location problem. He proposed an 

algorithm based upon the integration of branch and bound and 

dynamic programming as the fundamental solution methodology. 

Stochastic Problems. Uncertainty considerations in the 

forecast of demands for the LAPs are important and have been 

accounted for by several researchers. In general, whenever 

demand is not known with certainty, it is appropriate to 

treat it as a random variable. A simple technique suggested 

for dealing with the assumption of stochastic demands is to 

compute an expected or most likely value for the demands. 

Then the problem can be solved by applying the conventional 

methodologies for the deterministic problems. Price 

sensitive demand is another characteristic of LAPs which has 

been considered by the researchers. In this situation prices 

received at a demand center varies depending upon the 

location of supplying facility because of transportation 

costs, local utility costs, competition, etc. And, the price 

of a product will determine its demand at a demand center. 

Gonzalez-Valenzuela (1975) was the first to incorporate 

stochastic demands into the simple and capacitated warehouse 

location problems. This study investigated two different 
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approaches for dealing with the uncertainty in demands, 

producing two different formulations: a chance-constrained 

formulation and a stochastic or two-stage programming 

formulation. The chance-constrained model is transformed to 

an equivalent deterministic model and is solved by means of 

one of the existing methods for deterministic warehouse 

location problem. The stochastic programming model requires 

an explicit assumption as when the actual values of the 

demands will become known. Hence, an analysis is made of the 

differences in the formulation of the problems that arise as 

the result of this assumption. Then the stochastic 

programming problem is transformed into a deterministic model 

and the resultant problem is solved by an existing method 

(Khumawala 1972) for deterministic warehouse location 

problems. 

Balachandran and Jain (1976) studied the facility 

location problem with random demand and general cost 

structure. They assumed cost of operating a plant to be a 

piece wise linear function of the production level. 

Jucker and Carlson (1976) extended the simple plant 

location problem by permitting uncertainty in either the 

price or the demand. They stated the problem as one of 

maximizing total profit and presented a mean-variance 

formulation for the objective function. Furthermore, Jucker 

and Carlson assumed that there is no relationship between 

price and quantity demanded and given the identification of a 

firm's risk taking behavior, decomposed the problem into two 
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simpler problems which were solved by existing methods. 

Erlenkotter (1977) formulated a simple plant location 

problem such that demands are related to the prices 

established at the various locations. Erlenkotter presented 

a profit maximization model for private, public, and quasi­

public facilities. In the latter case, the problem is to 

maximize the net social benefits subject to generating 

sufficient revenues to cover costs. In all the above cases 

pricing and location decisions are determined simultaneously. 

Erlenkotter reformulated the above problems into an 

equivalent fixed demand models and then applied the existing 

solution techniques for their solutions. 

Hansen and Thisse (1977) also investigated the dimension 

of price sensitivity and presented a profit maximization 

model for the problem. Their solution technique is to 

reformulate the problem into the simple plant location 

problem and then to apply the existing well known methods for 

its solution. 

Harrison (1979) presented a stochastic programming 

model, which through the expectation function, can deal with 

uncertainties in demand. 

Sicsu (1979) proposed a model to analyze capacitated 

location-allocation problems with price-sensitive demands. 

He considered a profit maximization objective and formulated 

the problem as a mixed-integer, nonlinear optimization 

problem. 
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Rasaratnam (1984) combined the dimensions of price 

sensitivity and stochastic demand for the capacitated 

facility location problems. He assumed parameter(s) of the 

demand distribution vary with variations in price without 

altering the distribution of demands. The results were also 

extended to include uncapacitated facility location problems. 

Logendran and Terrell {1988) reported on the solution 

and results of the uncapacitated plant location-allocation 

problems with price sensitive stochastic demands. 

Simulation Techniques 

Simulation is a flexible modeling and design tool. It 

allows for the investigation of alternative system designs 

and strategies without the expenses of actually building and 

operating them. 

The basic process of simulation methods in facility 

location problems is to vary the facilities location­

allocation pattern and compare the resultant effects on 

distribution and total costs. According to Geoffrion (1975), 

"simulators can take detailed account of policies and 

activities relating to inventory replenishment, individual 

buying patterns of customers, order filling, redistribution, 

transportation, and so on, and produce a simulated daily 

history of such activities for a period of one year or more". 

Clearly, this depth of analysis is not easily possible by 

other methods. Another great benefit of simulation 
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procedures is that extremely rich and precise cost parameters 

may be included in the analysis. However, although 

simulation allows for representation of complex and large 

distribution systems, but it does not guarantee optimality of 

these models. 

Among the most widely cited simulation models in the 

literature are the ones developed by Shycon and Maffei 

(1960), and Cerson and Maffei (1963). These models deal with 

two real distribution systems. For these models, gathering 

and employing the data base was reported to be the most 

difficult task in designing the logistical system. 

Additionally, more complex simulation models are 

reported by Bowersox (1972), Connors, Coray et al. (1972), 

Camp (1973), and Markland (1973). 

Multi-Objective LAPs 

Multiple objectives location allocation models have 

gained considerable attention from researchers in recent 

years. LAPs traditionally have been studied as single 

objective optimization problems. Nevertheless, in almost all 

real world applications of LAPs, decisions must be made in 

the presence of a number of conflicting objectives. As such, 

a multiple criteria approach is the most appropriate strategy 

to be used for analyzing the effect of various multiple and 

often competing objectives in LAPs. 

Although, literature on LAPs is considerably large, but 
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there are relatively a few papers in the area of multi­

criteria LAPs. Among the research in this area are the work 

by Lee and Franz (1979), Ross and Soland (1980), Green, Kim, 

and Lee (1981), Eilon (1982), Fortenberry and Mitra (1986), 

Lee and Luebbe (1987), and Sinha and Sastry (1987). 

Lee and Franz (1979), and Lee, Green, Kim (1981) applied 

the branch and bound method of integer goal programming for 

the solution of facility location-allocation problems with 

multiple objectives. 

Ross and Soland (1980) conducted a multicriteria 

analysis of the location of public facilities. The problem 

is formulated as a generalized assignment problem (GAP) with 

a set of additional constraints. The efficient solution of 

the multicriteria location problem is generated by solving a 

finite sequence of GAP-type problems. Furthermore, an 

interactive approach is presented with which the decision 

maker can efficiently arrive at an acceptable compromise 

solution among the various criteria. The extension of this 

model to private sector problems is also discussed. 

Green, Kim, and Lee (1981) applied the integer goal 

programming to study a multi-criteria warehouse location 

problem in the presence of a single supply source. Their 

model incorporates both qualitative and quantitative factors 

in solving the problem. 

Eilon (1982) presented an alternative approach based 

upon the heuristic algorithm for the loading problem, Eilon 

et al. (1971), to solve the problem presented by Green, Kim 
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et al. (1981). 

Fortenberry and Mitra (1986) proposed a model based on 

the weighted objective function to solve multi-criteria 

location-allocation problems. The weights are established 

based on the relative importance assigned to qualitative 

factors and are applied to the transportation costs from each 

location. The proposed model combines both qualitative and 

quantitative techniques for the solution of the problem. In 

particular, in the absence of fixed costs, it uses the 

traditional transportation algorithm to obtain a solution for 

the location-allocation problem. 

Lee and Luebbe (1987) demonstrated the capability and 

flexibility of the model developed originally by Green, Kim 

et al. (1981) through conducting a sensitivity analysis of 

this model. 

Sinha and Sastry (1987) presented a zero-one linear goal 

programming model and demonstrated its application for a real 

world multi-objective facility location problem. 

Conclusion 

A summary of the literature in the area of single 

objective and multiple objective LAPs is provided in Tables 

2.1 and 2.2, respectively. Although single objective LAPs 

have received a substantial amount of attention in the 

literature, the multi-criteria formulations of the problem 

have not been studied extensively. Specifically, to the best 
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of the author's knowledge, incorporation of stochastic demand 

into these models is nonexistent. This research will combine 

multi-criteria and uncertainty of demands into an interactive 

model to better represent actual decision making environment 

of this class of problems. 
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TABLE 2.1 

SUMMARY OF SINGLE OBJECTIVE LAP PROCEDURES 

Heuristic 

Kuehn and Hamburger (1963) 
Manne (1964) 
Feldman, Lehrer, & Ray (1966) 
Sa (1969) 
Walker (1976) 
Sule (1981) 
Klincewicz and Luss (1986) 

Optimization (Exact) 

Uncapacitated 
Efroymson and Ray (1966) 
Spielberg (1969) 
curry and Skeith (1969) 
Khumawala (1972) 
Kaufman et al. (1977) 
Erlenkotter (1978) 
Tcha and Lee (1984) 

Capacitated 
Davis and Ray (1969) 
Sa (1969) 
Ellwein and Gray (i971) 
Soland (1974) 
Truscott (1975) 
Akinc et al. (1977) 
Geoffrion et al. (1978) 
Nauss (1978) 
Kelly and Khumawala (1982) 
Christofides et al. (1983) 
Van Roy (1986) 

Dynamic Problems 
Ballou (1968) 
Tapiero (1971) 

Simulation 

Shycon and Maffei (1960) 
Cerson and Maffei (1963) 
Bowersox (1972) 
Connors et al. (1972) 
Camp (1973) 
Markland (1973) 

Multi-commodity 
Elson (1972) 
Warszawski (1973) 
Warszawski and Peer (1973) 
Geoffrion and Graves (1974) 
Khumawala and Neebe (1978) 
Neebe and Khumawala (1981) 
Karkazis and Boffey (1981) 
Loh (1983) 

Stochastic/Price Sensitive 
Gonzalez-Valenzuela (1975) 
Balachandran and Jain (1976) 
Jucker and Carlson (1976) 
Erlenkotter (1977) 
Hansen and Thisse (1977) 
Harrison (1979) 
Sicsu (1979) 
Rasaratnam (1984) 
Logendran and Terrell (1988) 

Wesolowsky and Truscott (1975) 
Khumawala and Whybark (1976) 
Sweeney and Tatham (1976) 
Karanicolas (1979) 
Van Roy and Erlenkotter (1982) 
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TABLE 2.2 

SUMMARY OF MULTIPLE OBJECTIVE LAP PROCEDURES 

Author Solution Strategy Stochastic Demand 

Lee and Franz (1979) 
Ross and Soland (1980) 
Green, Kim, & Lee (1981) 
Eilon (1982) 
Fortenberry et al. (1986) 
Lee and Luebbe (1987) 
Sinha and Sastry (1987) 

GP 
Weighting Technique 
GP 
Weighting Technique 
Weighting Technique 
GP 
GP 

NO 
NO 
NO 
NO 
NO 
NO 
NO 



CHAPTER III 

MULTIPLE OBJECTIVE DECISION MAKING 

Introduction 

Multiple objective decision making (MODM) is a dynamic 

process of making decisions in the presence of multiple and 

frequently conflicting objectives and often subject to 

satisfying the rigid constraints of the system. Today, 

minimizing cost or maximizing profit is no longer recognized 

as the sole objective of most organizations. The strategic 

problems faced by today's managers and decision makers, 

require the achievement of a balance between multiple and 

often incommensurate objectives. These objectives or 

criteria usually include issues such as economic, 

environmental, political, public relations, labor relations, 

and social responsibilities. 

This chapter contains two main sections. First, an 

overview of multiple criteria decision making techniques, 

including basic terminology, and a classification scheme is 

discussed. Second, a review of goal programming and in 

particular its formulation, solution procedures, integer and 

interactive goal programming is presented. 

56 
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An Overview of MCDM Methods 

This section presents some of the important 

terminologies in multiple criteria decision making (MCDM) and 

describes a classification of MCDM techniques. 

Multiple criteria decision making involves any or all of 

the following criteria: attributes, objectives, and goals. 

An attribute describes an objective reality such as weight, 

height, profit, cost, etc. An objective represents direction 

of improvement or preference for attributes (Zeleny 1982); 

for example improving quality is an objective. A goal 

represents a specific value or level of an objective or 

attribute; for instance achieving a profit of at least two 

million dollars is a goal. Another important concept in MCDM 

is the nondominated or noninferior solution. According to 

Zeleny [1982, p. 72] "a nondominated solution is a feasible 

solution for which an increase in value of any one criterion 

can be achieved only at the expense of a decrease in value of 

at least one other criterion". The set of nondominated 

solutions are usually referred to as the "efficient set", 

"admissible set", "noninferior set", or "Pareto optimal set". 

Since in MCDM objectives are often conflicting, there is 

usually no single solution which optimizes all objectives 

simultaneously. As the result, the decision maker (DM) will 

select the best compromise solution from the nondominated set 

of solutions through a value trade-off analysis. 

Some researchers have attempted to deal with multi-
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objective problems through applying existing single objective 

algorithms. Examples of these approaches include weighting 

techniques and constraint techniques. Weighting techniques 

aggregate all objectives into a single one by assigning the 

same utility measure, such as monetary values, to all 

objectives. The trade-off analysis of this approach is 

accomplished by varying the specified weights and then 

resolving the problem. On the other hand, constraint 

techniques deal with multiple objectives by assigning to one 

of the objectives the role of primary objective and treating 

the remaining objectives (secondary objectives) as a system 

of constraints to be satisfied. In this technique trade-off 

analysis is performed by selecting a different primary 

constraint and/or specifying different requirements for the 

secondary objectives. 

Nevertheless, these techniques are not adequate for 

handling problems with multiple objectives. More 

specifically, weighting techniques are not appropriate since 

in practice some of the objectives are non-commensurable. In 

this situation it is extremely difficult if not impossible to 

assign the same utility measure across all objectives. 

Furthermore, the use of a utility function requires that the 

DM to specify his/her preferences quite accurately. on the 

other hand, constraint techniques may fix the relative 

importance of objectives improperly, and thus not allow for 

compromise solutions. Additionally, when performing trade­

off analysis, the computational requirement of both 



techniques increases exponentially with an increase in the 

number of objectives. Therefore, it is advantageous to use 

algorithms developed specifically for MCDM to analyze this 

class of problems. 

MCDM Classification 
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An early attempt to classify MCDM methods was made by 

MacCrimmon (1973). He described 19 methods and grouped them 

into four main categories: 1) weighting methods, 2) 

sequential elimination methods, 3) mathematical programming 

methods, and 4) spatial proximity methods. However, since 

then various classification schemes have been proposed; Cohan 

(1978), Hwang et al. (1979, 1980), and Goicoechea et al. 

(1982). A major component of all these classifications is 

the point in time at which the decision maker incorporated 

his/her preferences into the decision making process in order 

to generate or rank the various alternative solutions. 

Perhaps the most complete MCDM classification is presented by 

Hwang et al. (1980). They proposed a hierarchical structure 

based upon first, the stage at which the preference 

information is needed, and second, the type of information 

needed. With respect to the DM's articulation of preference, 

they proposed four categories. These are: 

1) no articulation of preference; 

2) a priori articulation of preference; 

3) progressive articulation of preference; 



4) a posteriori articulation of preference. 

Next, considering the type of information, they 

distinguished between four categories: a) cardinal 

information, b) ordinal information, c) explicit tradeoff, 

and d) implicit tradeoff. A brief description of these 

classifications along with advantages and drawbacks of each 

class is given next. 
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No Articulation of Preference Methods. These methods 

include mainly global criteria methods. They do not require 

the DM to input his/her subjective preferences once the 

problem is formulated. They provide a single alternative 

solution for the DM. An advantage of these methods is that 

the DM is not required to work with an analyst/computer 

during the solution process. A disadvantage is that it 

requires the analyst to make many assumptions about the DM's 

preferences which is often very difficult or impossible. An 

example illustrating this technique is to find a solution 

vector which minimizes the sum of squares of the relative 

deviation of the objective functions at this point from their 

respective ideal points, where the latter is defined as the 

value of each objective if it was the only one being 

optimized. 

A Priori Articulation of Preference Methods. This class 

of methods relies on the decision maker to specify his/her 

preference information about objective levels and/or their 

ranks prior to analysis. The preference information may be 
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either cardinal or a combination of ordinal and cardinal 

information. The advantages of these techniques are that the 

DM is not required to participate during the solution 

process, and that their computational speed is usually higher 

than other classes, because only a .small portion of the 

nondominated solutions will be investigated. On the other 

hand, a major disadvantage of this class is that in most 

situations, particularly when the DM is not familiar with the 

available alternatives, he/she is unable to provide accurate 

preference information prior to the analysis. In summary, the 

underlying assumption of the algorithms in this category is 

that the DM can provide accurate preference information 

prior to analysis, and that his/her preference structure 

remains relatively fixed and consistent throughout the 

solution process. Among methods in this category are utility 

function methods, lexicographic methods, and goal 

programming. 

Progressive Articulation of Preference Methods. These 

methods, commonly referred to as interactive procedures, are 

based upon interaction of the DM with the analyst or computer 

during the solution process. At each iteration, given the 

current solution(s), the DM is asked to provide some tradeoff 

or preference information in order to generate the next 

solution. This process continues until either the DM is 

satisfied with a set of achievement levels for the objectives 

or decides that there is no satisfactory solution for the 
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current system. Advantages of these methods according to 

Hwang et al. (1980) are: 1) a priori preference information 

is not required, 2) the DM will explore the criterion space 

through a learning process, 3) only local preference 

information is required, and 4) the solution has a better 

chance of being accepted, since the DM is involved in the 

solution process. To the contrary, the disadvantages are: 1) 

the solution is highly dependent upon the ability of the DM 

to indicate accurate local preferences, 2) a preferred 

solution may not be obtained within a reasonable time, and 3) 

effort on the part of the DM may be excessive. The 

underlying assumption for the algorithms in this category is 

that the DM's preferences form and evolve as the result of a 

learning process, from one iteration to the next. Also 

because of the complexity of the system, the DM is only able 

to provide his/her preference information on a local level 

for a particular solution. Interactive procedures such as 

the methods of Zionts-Wallenius, STEM, interactive goal 

programming, and interactive MOLP are a few examples in this 

category. 

A Posteriori Articulation of Preference Methods. These 

methods, also referred to as generating techniques, are 

designed to generate a subset or the complete set of 

nondominated solutions. Then, the DM selects the best 

solution among available alternatives based upon his/her 

preference structure. The underlying assumption in this 
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class of algorithms is that the DM can not identify his/her 

preferences prior to a knowledge of available alternative 

solutions. The advantages of these methods are that they do 

not require any information regarding the DM's utility 

function before or during the computational phase. Also, 

once the set of nondominated points are generated, they may 

be used by different DMs to reach a solution without 

resolving the problem. However, there are at least two 

disadvantages to these methods. First, they are very 

resource consuming. That is, given a large problem, it may 

not be feasible to generate the whole set of nondominated 

solutions due to constraints on computer time and/or storage 

requirements. Second, as the number of nondominated 

solutions grows, it becomes very difficult, if not 

impossible, for the DM to select the most satisfactory 

solution among the alternatives. Some of the techniques in 

this category are: constraint method, multiple objective 

linear programming, and parametric (weighting) methods such 

as compromise programming. 

A comprehensive review of methods and techniques in MCDM 

is provided by Cohon (1978), Hwang et al. (1979), Zeleny 

(1982), Goicoechea et al. (1982), and Steuer (1986). 

Goal Programming Methods 

Goal programming (GP) is one of the popular methods of 

multiple objective analysis. It is particularly valuable 
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whenever achieving target values of objectives are 

important and when preferences of the DM regarding the goals 

and their priorities can be specified properly. The concept 

of goal programming was originally introduced by Charnes and 

Cooper (1961). Later, this technique was refined and 

extended by Ijiri (1965), Lee (1972), and Ignizio (1976). 

For instance, Ignizio (1976) extended the formulation of the 

original continuous linear GP to include integer and 

nonlinear models. Today, research and application of goal 

programming continues to grow significantly. In fact, 

studies by Petty and Bowlin (1976), and Green et al. (1977) 

have identified goal programming as the major multiple 

objective tool in use by practitioners. 

For the general goal programming formulation, the DM 

specifies goals, targets, or aspiration levels for multiple 

objectives and provides an ordinal ranking of these 

objectives. Next, each goal is written as an equality 

constraint including a positive and a negative deviational 

+ -variable, d , d . Then, the preferred solution is obtained 

by minimizing the weighted set of these deviations which 

represent the differences between actual objective 

achievements and their prespecified desired goals, subject to 

satisfying the technological (system) constraints. In 

general, this is equivalent to finding a feasible solution 

which satisfies the goals as closely as possible, based upon 

some specified measure. 

Regarding to the assignment of weights to the 
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deviational variables in the objective function, two basic GP 

models are distinguished: Archimedian (weighted or minisum) 

GP, and preemptive (lexicographic) GP. Both of these models 

rely on setting the goals a priori. With the Archimedian GP, 

all goals are considered simultaneously. That is, the 

objective function consists of minimizing a weighted sum of 

all goal deviations at the same time. The deviations are 

measured using 1 metric, with p usually set at 1, 2, or oo. 
p 

Alternatively, preemptive GP considers the goals separately 

based on a specified priority structure. For these models, 

goals at a higher priority levels are considered to be 

infinitely more important than the goals at a lower priority 

levels. Considering these two approaches to GP, preemptive 

GP has gained more attention in the literature. The general 

mathematical formulation of the preemptive goal programming 

problem can be stated as follows: 

( 3. 1) 

SUBJECT TO: 

n 
d+ l -a x + d = G 

i j j i i i 
j = 1 

i=l,2, ... ,m (3.2) 

d+ -G d 2:: 0 ' i i i 
i=l,2, ... ,m (3.3) 

x 2:: 0 ' j 
j=l,2, ... ,n. (3.4) 

where 

p 
k =the kth preemptive priority level; k = 1,2, ... ,K. 



w+ = the weight factor for d+ at priority P . 
i k i k 

wik =the weight factor for di at priority Pk. 

d+ = over-achievement of goal i. 
l 

di = under-achievement of goal i. 

aiJ = the coefficient of the jth decision variable in 

the ith goal constraint. 

xJ = jth decision variable; j = 1,2, ... ,n. 

Gi =the ith goal (target) level; i = 1,2, ... ,m. 

The constraints in Equation (3.2) may also include the 
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system (technological) constraints, in which case the goals, 

- + G s, represent the rigid constraining values and d , d 
i i i 

represent the slack and surplus variables respectively as 

appropriate. In this situation, slacks or surplus variables, 

will be represented in the objective function at the highest 

priority level. Then the minimization of variables at this 

priority level must be fully achieved for the problem to have 

a feasible solution. 

If over-achievement or under-achievement is allowed for 

goal i, then the negative or positive deviations about goal i 

(d~ or d:), must be minimized respectively. Alternatively, 

if goal i is to be achieved exactly then both deviational 

variables must be minimized. 

In Equation (3.1) P >> P which means that goals at k k+l 

priority level P are considered only after goals at k+l 

priority level P are fully achieved or reach a point beyond 
k 

which further improvement is not possible. Furthermore, in 

considering goals at lower priorities, provisions are made to 



prevent diminishing objective achievements for higher 

priority goals. More specifically, in preemptive GP, one 

first obtains all alternative solutions which minimize the 

sum of deviations of all priority one objectives from 
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their corresponding goal values. Then, from those 

alternatives we select the ones which minimize the sum of 

deviations of priority two objectives from their 

corresponding goal levels. This iterative process continues 

until all priorities are considered or no more alternative 

solutions are available. Thus, the solution method is a 

dynamic process in which the information from the previous 

stage is used to solve the subsequent stage. 

GP Computational Algorithms 

Generally, as discussed earlier, the solution procedure 

of preemptive GP follows a sequential optimization process, 

where successive optimizations are performed on the available 

alternatives. At each iteration, a LP problem is solved for 

each priority, from higher to lower priorities, with the 

restriction of not deteriorating the previously established 

goal attainments. However, since the development of the GP 

technique, different algorithms have been proposed for its 

solution. 

Originally, Lee {1972) developed the "modified simplex 

method" or "multiphase simplex" to solve the preemptive 

linear GP. This technique is based on the conventional LP 
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simplex algorithm. The multiphase technique, along with its 

extensions to integer and nonlinear GP, is discussed in detail 

by Ignizio (1976). Other primal simplex variations such as 

revised simplex and product form of the revised simplex, 

Olson (1984), have also been used to solve preemptive GP. 

The computational advantage of these latter methods are in 

their storage requirements and solution accuracy. 

Another approach for solving linear GP problems is 

denoted as Sequential Linear Goal Programming or SLGP method, 

Ignizio and Perlis (1979). In this technique the existing 

linear programming computer codes, such as MPSX, are applied 

sequentially to solve the linear GP problems. The above 

computer codes are capable of solving very large linear 

programming problems, thus this approach is particularly 

advantageous whenever large-scale GP problems are involved. 

Arthur and Ravindran (1978) developed an efficient 

"Partitioning Algorithm", (PAGP), by taking advantage of the 

hierarchical structure of preemptive GP. This algorithm is 

based on solving a series of linear programming subproblems. 

At each iteration, the solution of the higher priority 

subproblem is used as the starting solution of the lower 

priority subproblem. The algorithm iterations continue until 

either no alternative solution is present for one of the 

subproblems or all subproblems (priorities) are considered. 

If the algorithm terminates before reaching the lowest 

priority goal, achievement levels of the lower priority goals 

are calculated by substituting values of the current optimal 
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solution into their corresponding equations. Computational 

efficiency is gained by considering only the variables and 

constraints affecting the current most important unsatisfied 

goal (priority level). 

Schniederjans and Kwak (1982) presented the dual simplex 

goal programming algorithm based on the dual simplex method 

of linear programming. The algorithm starts from an 

infeasible basic solution formed by the positive deviational 

variables and applies the dual iterations to find the optimal 

solution. According to Olson (1984), in comparing various GP 

algorithms, this method gains computational efficiency by 

eliminating up to half of the deviational variable columns 

from the simplex tableau. Stated differently, this algorithm 

becomes more efficient as the number of positive deviations 

in the problem increases. 

Integer Goal Programming Techniques 

Since the solution vector for multiobjective LAPs is 

discrete or integer, it is necessary to employ integer 

techniques for their solutions. According to Lee {1979), 

given there is no conflict among multiple objectives of 

an integer problem, the conventional integer linear 

programming algorithms may be used to solve the problem. 

However, in the presence of conflicting objectives and 

preemptive priority weights, it requires an integer GP 

procedure. 
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There are three basic approaches to integer GP. They 

include modifications of the Gomery's (1958) cutting plane 

technique, Land and Doig's (1960) branch-and-bound method, 

and a combination of the Balas' additive algorithm (1965), 

and Glover's backtracking procedure (1965} for solving the 

zero-one GP problems. A complete description of these 

methods along with several solution examples are provided by 

Lee and Morris (1977} and Lee (1979). 

Interactive GP and Sensitivity Analysis 

Interactive procedures are the most effective methods of 

searching the tradeoff space for the most satisfactory 

solution and are gaining wide acceptance for implementation. 

They enable the DM to find the best solution through a 

systematic process. The reasons for employing an interactive 

procedure are: 1) to allow the DM the ability to explore the 

criterion space through the objective tradeoff analysis, 2) 

to perform sensitivity analysis, 3) to reduce computational 

burden of producing and then selecting from the whole set of 

nondominated solutions, and 4) to exclude the requirement of 

exact data from the DM prior to analysis. 

Zeleny (1982) presents some of the assumptions and 

limitations of preemptive GP. According to Zeleny there are 

two main limitations or drawbacks of using the preemptive GP. 

First, improper setting of goals may result in a dominated 

solution. Second, no trade-off is allowed among achievement 

levels of various goals, which means small improvement in 
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higher priority goals are preferred and achieved regardless 

of the cost to the lower priority goals. In other words, 

higher priority goals are infinitely more important than 

lower priority goals. The application of interactive GP 

overcomes these difficulties by allowing the OM to perform 

value tradeoff analysis of the achievement levels of various 

objectives. In interactive GP, at each iteration, the OM is 

asked to express his/her preferences regarding the goal 

priority and/or the target value of the goal constraints, 

based upon the previous solution(s), to generate a new 

solution. The algorithm terminates whenever the OM is 

satisfied with a solution or decides there is no satisfying 

solution under current constraints and resources. 

The changes in the priority structure and/or levels of 

the goals also constitute sensitivity analysis of the model. 

It enables the OM to explore the feasible region to determine 

his/her preferred solution. 

Beside the application of the general interactive 

multiobjective procedures to the GP, other algorithms have 

been developed specifically for the GP technique. Among 

these methods are the interactive sequential goal programming 

procedure of Masud and Hwang (1981) and the augmented goal 

programming method of Ignizio (1981). Both of these methods 

produce nondominated solutions. 
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Summary and Conclusions 

This chapter presented some of the basic terminologies 

of multiple criteria decision making. Then, a classification 

scheme of MCDM models along with their descriptions were 

discussed. Finally, a brief review of goal programming models 

including formulation, various solution procedures, integer 

goal programming, and interactive GP was presented. 

This research will incorporate an interactive integer/ 

zero-one goal programming procedure for the analysis of 

stochastic, multiple objectives location-allocation problems. 

The flexibility of GP in solving a variety of real world 

applications, its ease of use and understanding, the ability 

to analyze the performance of the system under different goal 

levels and/or goal priority structure, and the presence of 

relatively efficient algorithms are the criteria used for the 

selection of this technique. 

The next chapter presents the development of two models 

along with their solution procedures for the stochastic 

multiobjective location-allocation problems. 



CHAPTER IV 

MODEL DEVELOPMENT AND SOLUTION METHODOLOGY 

Introduction 

This chapter contains the formulations and the solution 

procedures of the stochastic multiobjective facility 

location-allocation problem (SMOLAP). There are two main 

characteristics associated with this research problem, 

multiple objectives and stochastic demand. From previous 

chapter, application of interactive integer/zero-one goal 

programming appears to be an appropriate approach to deal 

with conflicting multiple objectives. On the other hand, to 

account for probabilistic uncertainty in the demand, we will 

explore two different techniques: chance-constrained 
/ 

programming and stochastic or two-stage programming. Both 

these methods deal with the stochastic nature of the problem 

by converting the probabilistic model into an equivalent 

deterministic case. The chance-constrained approach is based 

on satisfying an a priori "service level" while the latter 

method, stochastic programming, is based on expected value 

analysis. 

This chapter begins with a presentation of the 

assumptions and notations employed throughout the development 
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of this research problem. Then a discussion of chance­

constrained and stochastic programming is presented. 

Mathematical derivations of two distributions, normal and 

uniform, for the case of the chance-constrained and the 

stochastic programming formulations are demonstrated next. 

Finally, the mathematical models for the research problem, 

and their solution algorithms are presented. 

Model Assumptions 

The following assumptions are made and used in 

developing the mathematical models. 
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1. The probability distribution function of demand for 

each customer is known and is assumed to be normally 

or uniformly distributed. These distribution 

functions are shown to be appropriate 

representation of variability of demands in reality; 

Gonzalez-Valenzuela (1975), Jucker and Carlson 

·(1976), Rasaratnam (1984). 

2. The probabilistic demands are independent and are 

the only source of randomness introduced into the 

problem. 

3. For the stochastic programming model, all decisions 

including the allocations are made prior to the time 

when actual demands becoming known. 

4. Production costs and variable plant operating costs 

are a linear function of the amount produced at each 

plant. 



5. The variable transportation cost is a linear 

function of the amount transferred between a plant 

and a demand center. 

6. All costs are deterministic and do not include any 

economies-of-scale effect. 

7. The potential plant sites are a priori known. 

Often, these locations are selected from a larger 

set of possible sites by a multi-criteria decision 

making technique. 
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8. The locations of demand centers (markets) are known. 

Also, demand from a region is assumed to be 

concentrated at a point representing concentration 

of demands. 

9. There is no elasticity of demand. Specifically, we 

assume demand is not significantly influenced by any 

planning decisions such as plant configurations 

(distance), product flow, and price. Therefore, 

assuming there is no relationship between these 

factors and quantity demanded, it is not necessary 

to consider the revenue generation aspect of the 

problem in our models. 

10. There are no interactions among new plants. That is 

no transfer of products are allowed between plants. 

11. The products or services are homogeneous. Therefore, 

a single product model is appropriate. 

12. The cost matrix (distance) representing the cost 
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of assigning demand centers to potential plant sites 

is known. 

13. There is a fixed cost associated with establishing a 

plant at a potential site. This cost is assumed to 

be independent of the plant throughput. For this 

study, this cost is the sum of the amortized 

construction cost and fixed operating cost over the 

life of the plant. 

14. Each demand center may be supplied from more than 

one source. 

15. Assuming uncertainties in demands will affect the 

decision procedures for each of the two models 

differently. For the chance-constrained model we 

assume that the service level for each market is 

given a priori. This will establish the minimum 

probability of achieving each demand constraint. 

For the stochastic programming model, instead of 

including the uncertainties in the constraints, we 

will let the uncertainties appear as an objective 

function. In this case we will assume a linear 

overage and underage cost corresponding with 

oversupplying and undersupplying of each demand 

center respectively. 

Notations 

The following variables and definitions are employed to 

describe the mathematical formulations of the proposed models 
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throughout this research: 

m 

J 

n 

c 
1J 

qj 

f (q.) 
q J 

p (.) 

CF 
qj 

A 
1,max 

=plant index, 1=1,2, •.• ,m. 

= number of potential plant sites in the system. 

=demand center index, J=l,2, ... ,n. 

= number of demand centers in the system. 

= units of product transported from plant i to demand 
center j. 

=total units of product received at demand center j. 

= total variable cost of production, distribution and 
operation for supplying one unit of product from 
plant i to demand center j. 

= a 0-1 binary variable; y =1 if plant i is 
established, y =O othei-wise. 

i 

= fixed cost per time period of opening and operating 
a plant at site i. 

=random demand at demand center j. 

= probability density function for the demand at 
destination j. 

= cumulative distribution function for the demand at 
destination j. It is the probability that total 
demand at center j takes on a value lass than or 
equal to q • 

J 

= probability density function of the unit normal 
distribution. 

= probability distribution function of the standard 
normal distribution. 

= probability distribution function of a given 
distribution. 

= mean of random demand at destination j for a 
normally distributed demand. 

= standard deviation of random demand at destination 
j for a normally distributed demand. 

= maximum allowed capacity of a plant at site i. 



A 
1,min 

UB 
J 

a 
J 

1-a 
j 

K 

a 
L 

0 
j 

u 
j 

M 

B 

a 

(3 

q 

d 
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= minimum allowed capacity of a plant at site i. 

= upper bound for demand at demand center j for a 
uniformly distributed demand. 

= lower bound for demand at demand center j for a 
uniformly distributed demand. 

= probability or risk of shortage at demand center j. 

=minimum service level required at demand center j. 
This is the probability of not undersupplying 
demand center j in the chance-constrained model. 

= under-achievement of goals or constraints 

associated with the kth equation. 

= over-achievement of goals or constraints associated 

with the kth equation. 

= number of priority levels in the achievement 
function. 

= the vector of goal achievements at various priority 
levels (P, P , ... , P) at iteration L. 

1 2 k 

=unit cost of oversupplying demand center j, for 
stochastic programming model. 

=unit cost of undersupplying demand center j, for 
stochastic programming model. 

= a sufficiently large positive number. 

= maximum budget allowed for opening new plants. 

= the minimum specified resolution between current 
and previous objective value. 

= acceleration factor used for extending the step 
size, a:::: 1.0. 

= contraction factor used for reducing the step size, 
o.o :S (3 :S 1.0. 

= best allocation pattern at previous solution. 

= the allocation pattern after exploratory moves. 

= current best allocation pattern. 



step(i] = step size along coordinate direction i, 
i=l, ... , (m) (n). 
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= maximum number of times allowed for evaluating the 
objective function. 

= maximum number of times allowed for reducing the 
step size. 

z = an objective function. 

z = a random variable. 

Chance-Constrained Programming 

Chance-constrained programming is a technique designed 

to deal with stochastic problems. It was first introduced by 

Charnes and Cooper (1963). This technique requires that for 

each stochastic constraint we meet a specified "service 

level". For instance, for this research problem we require 

demands to be satisfied with some minimum probability. In 

order to introduce the chance-constrained programming model, 

first consider the following deterministic linear 

programming problem model. 

Minimize 

subject to: 

z = ! 
i = 1 

m 
\ a x L i · 
i = 1 J 

c x 
i i 

j = 1,2, ... ,n. 

Equation (4.2) also includes the nonnegativity 

constraints. In the general case, the uncertainties are 

present in all of the parameters, a's, q's, and e's. 

( 4 .1) 

(4.2) 

However, for this presentation, we assume all a's and e's are 
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fixed and that q's are the only source of random variables 

present. Furthermore, assume that the q's are independently 

distributed with the following distribution function: 

F (z) = P (q ~ z). 
q J 

(4.3) 

Then the chance-constrained programming model of (4.1-4.2) 

is defined as: 

Minimize 

subject to: 

z = ! 
i =1 

c x 
i i 

P [ I a 1 . x. 2:: q. J 2:: 1-o:.. ; j =l, .•• , n. 
1=1 J l J J 

(4.4) 

( 4. 5) 

The probability statements in Equation (4.5) are denoted as 

chance-constrained inequalities. Where, O < ex ~ 1 is the 
j 

probability or risk of not achieving the jth constraint. And 

1-o:. is the service level or the minimum probability of 
J 

realizing the jth constraint. Next, recalling the definition 

of the cumulative distribution function and rewriting one of 

the constraints in Equation (4.5) we obtain: 

f (q )dq 
J J 

m 

1-o:. • 
j 

( 4. 6) 

where b = l a x . Inverting the probability distribution 
J i = 1 i J i 

function F (.), constraint (4.6) becomes: 
q 

m - 1 
\ a x 
L i J i 
i = 1 

2:: F ( 1-o:. ) • 
q J 

(4.7) 
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Constraint (4.7) is the deterministic equivalent of a 

probabilistic constraint in Equation (4.5). As a result, 

the deterministic equivalent of the original chance-

constrained programming problem defined by (4.4-4.5) can be 

written as follows: 

m 

Minimize z = l c x 
i i 

(4.8) 
i =1 

subject to: 

m - 1 

\ a x 
L i J i 
i = 1 

~ F (1-a ) 
q j 

j=l,2, ... ,n. (4.9) 

Other classes of the chance-constrained programming 

models, specifically, those with variations in the form of 

the objective function, or the ones containing randomness in 

other parameters, a's and e's, have been examined by Charnes 

and Cooper (1963). 

Normally Distributed Demands 

Derivations of an equivalent deterministic for a chance-

constrained model when the right hand side is normally 

distributed is presented by Taha (1982). Using the notations 

defined previously, the chance-constrained equations for 

satisfying the random demand constraints can be stated as: 

P [ ~ = ~ i J ~ q J J ~ 1-a J ; j=l,2, ... ,n. (4.10) 

Where demand q_ is normally distributed with meanµ and 
J q j 

variance 0" 2 
q j 

Following the procedures for determining 
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deterministic equivalents, inequality (4.10) can be 

transformed to: 

m - 1 

l x1 J = b 2:: F ( 1-cx ) · J q J , j=l,2, ... ,n. (4.11) 
l = 1 

Now, the inverse cumulative function, z , for a unit normal 
j 

distribution with a given probability value, (1-cx ), can be 
j 

obtained from standard normal tables or by approximation 

formulas. An approximation formula for calculating Z by 
j 

Hastings (1955) is provided in Appendix B. Next, given the 

ZJ values and the expression for standardizing a normal 

distribution, the right hand side of inequality (4.11) can be 

given as follows: 

- 1 

F (1-cx.) = Z ~ + µ . 
q J j qj qj 

j=l,2, ... ,n. 

Therefore equation (4.11) can be written as: 

m 

l x1 J 
i = 1 

2:: z ~ + µ 
j q j q J 

j=l,2, ... ,n. 

(4.12) 

(4.13) 

where all the variables on the right hand side are known. 

Inequality (4.13) is the deterministic equivalent of Equation 

(4.10) for a normally distributed demand. 

Uniformly Distributed Demands 

Given the demand at demand center j, q , is uniformly 
j 

distributed between LB and UB , its distribution function 
J J 

can be represented as: 
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x 

1-a = F (q =x) = 
j q j 

I 1 
UB -LB 

dq = 
j 

x -LB 
j 

UB -LB • 
j j 

( 4. 14) 
-oo j j 

Thus, its inverse cumulative function is given by: 

-1 

x = Fq(l-aJ) = (UBJ-LBJ) (1-aJ) + LBJ. ( 4. 15) 

Substituting (4.15) into Equation (4.11) we get: 

m l x 1 J :!: (UBJ-LB) (1-aJ) + LBJ : j=l,2, ••• ,n. 
i = 1 

( 4. 16) 

Inequality (4.16) is the deterministic equivalent of Equation 

(4.10) for a uniformly distributed demand. 

Stochastic Programming Model 

In this section an alternative method which deals with 

randomness by incorporating it into the objective function 

is considered. In this approach we will consider a penalty 

cost whenever the supply to a destination does not match the 

actual demand at that center. As stated previously, we 

assume actual demands are realized after allocation decisions 

are made. Also, we assume o and u are per unit cost of 
J J 

oversupplying and undersupplying of market j, respectively. 

The above overage and underage costs have an opposite effect 

on the supply of products to each demand center. The 

shortage or underage cost tends to increase the product 

allocation to a demand center while on the contrary the 

surplus or overage cost tends to decrease this allocation. 

As such, it is necessary to establish a balance between these 

two costs. Given that these costs depend on random demands, 
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our objective is to minimize their expected value. All the 

derivations in this section follows the inventory models for 

style goods and perishable items as described by Silver and 

Peterson (1985). Now, assume bJ units of a product are 

allocated to demand center j and a demand of q units occur 
j 

at this center, then the cost realized is: 

where 

m 

b = \ x 
j L. l j 

l =1 

if qj ::5 bj 

if qj > bj 

(4.17) 

(4.18) 

( 4. 19) 

Equations (4.17) and (4.18) represent cost of oversupplying 

and undersupplying, respectively. Now, the expected value of 

the cost, as a function of demand at demand center j, is 

given by: 

Next, substituting from Equations (4.17) and (4.18), we 

obtain: 

dq • 
j 

(4.20) 

(4.21) 

Now given that demand cannot be less than zero, Equation 

(4.21) can be written as: 
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b b 
J J 

E [ c (b 'q ) J = 0 b J fq(qj) dq - 0 J qj f (q ) dq + 
J j J J J J q J J 

0 0 

CXl CXl 

+ u J qj f (q ) dq - ub J f q (qj) dq . 
j q J J J J J 

b b 
J J 

(4.22) 

The Equation (4.22) represents a nonlinear cost function 

in the supply quantities, b 's, and therefore in the 
J 

allocation variables, x 's. To show that this function is 
i J 

convex and therefore has a global minimum we have to prove 

that 

d 2 E [c (b , q ) J / db2 > o. 
j j j 

Recalling Leibniz's rule, given the following function: 

h ( x ) 
2 

G(x) = J F(x,y) dy. 
h ( x ) 

1 

Its derivative is given by: 

h ( x) 
2 

dG(x)/dx = J a F(x,y)/Bx dy + F(x,h 2 ) dh 2 (x)/dx -
h ( x) 

1 

- F(x,h ) dh (x)/dx. 
1 1 

Therefore, applying (4.25) to (4.22) we get: 

b 

= o J ~ (q ) dq. + o b [o+f (b )-o] -Joq J J JJ q J 

(4.23) 

(4.24) 

(4.25) 

- o [o+b f (b ) -o] + u [o+o-b f (b ) J -J Jq J J jq j 

- uJJ:fq(qJ) dqJ - uJbJ[o+o-fq(bJ)J. 
j 

(4.26) 

After some simplification we get: 



b 
j tO 

= o I f c q > dq - u I f c q > dq Joq J J Jbq J J 
j 

or 
= 0 p < (b ) - u [ 1 - p < (b ) ] • 

J q J j q j 

Now setting the first derivative to zero results in the 

unconstrained minimum of b : 
j 

u 
J 

0 + u 
j j 

Applying the Equation (4.25) one more time, the second 

derivative is as follows: 

d 2 E[c(bJ,qJ)J /db~= oJ[o+fq(bJ)-oJ - uJ[o+o-fq(bJ)J = 

= ( o +u ) f (b ) > o. 
J j q J 
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(4.27) 

(4.28) 

(4.29) 

(4.30) 

This proves that the cost function in Equation (4.22) is 

convex and therefore has a global minimum. The result of 

Equation (4.22) is applicable for any distribution of 

demands. However in the following sections we will look at 

the simplifications for special cases of normally and 

uniformly distributed demands. 

Normally Distributed Demands 

The simplification of Equation (4.22) for the case of 

normally distributed demand is shown next. Suppose the 

demand at demand center j, qJ, is normally distributed with a 

mean of µ and variance of ~2 
qj qj 

Now, define 



87 

b - µqj 
k J 

j (j 
(4.31) 

qj 

and 
qj - µqj 

u = 
J (j qj 

(4.32) 

From Equation (4.31)' we also .get: 

b = µ + k (j . 
J q J j q J 

(4.33) 

Recalling the transformation of a normal distribution to 

standard (unit) normal form, we can write: 

Prob ( q J 2:: b J ) = Prob ( U J 2:: k J ) = Pu 2:: ( k J ) (4.34) 

or 

Joo oo 

f (q ) dq = I f (U ) dU = 1-F (k ) = p 2:: (k ) . 
b q J j k u j J u J u j 

(4.35) 

J J 

where U is a normally distributed variable with mean of 
j 

zero and variance one; u. - N (0,1). And P 2:: (k) is the 
J u J 

probability that a unit normal variable takes on a value of 

k or larger. Now, since the chance of a negative value for 
j 

qJ is zero, that is no negative demand is allowed, we can 

write: 

Similarly; 

= 1 - 0 - p (q 2:: b ) 
J J 

=l-P2::(k). (4.36) u J 

dq 
j 
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(4.37) 

Next, let 

m m 

= J b c q j - b j > f q c q j > dq j + J b b j f q c q j > dq j • 

j j 

(4.38) 

Now, substituting from Equations (4.33) and (4.35) and 

writing the expression for f (q), Equation (4.38) becomes: 
q j 

q =m 
j 

A= I (qj- µqj- k/Tqj 
1 

Exp [-(q -µ ) 2/2u2 Jdq + 
j qj qj j 

q =/.l +k (j 
j qj j qj 

+ b p ~ (k ) • 
j u j 

Next, from Equation (4.32) we get: 

u (j 
j qj 

and 
dU l 

j = aq- (j 
j qj 

or dq = u dU . 
j qj j 

Also when the lower limit of the integral in (4.39) is 

(4.39) 

(4.40) 

(4.41) 

q = µ + k u from ( 4 • 4 o) we get U = K , and when the upper 
j qj j qj' j j 

limit is q= m we obtain U= m. Now, substituting from 
j j 

Equations (4.40) and (4.41) and these limits into Equation 

(4.39) and after some simplification we get: 

A= 1 (4.42) 

or 
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IX) 

A = CT J (U -k ) f (U ) dU + b P u=e (kJ) • 
qj k j j u j J J 

(4.43) 

J 

However, a special property of the unit normal distribution 

is that; 

IX) 

JkuJ fu(UJ) dUJ = fu(kJ). (4.44) 

J 

Thus, after separating the terms in the integral of Equation 

(4.43) and substituting from (4.44) we can write: 

(4.45) 

Finally, substituting from Equations (4.35), (4.36), (4.37), 

and (4.45) into Equation (4.22) and after some simplification 

we obtain: 

(4.46) 

For the equation above, values of f (k ) and P ?;(k ) for a 
u J u J 

given value of k may be found from the unit normal 
j 

distribution tables. Also, since the other parameters and 

cost variables are known, therefore the expected cost can be 

easily calculated for a given value of k or supply quantity, 
J 

b • 
j 

Uniformly Distributed Demands 

Next we demonstrate the computational simplification of 

Equation (4.22) for the case of uniformly distributed demand. 
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Suppose the demand qJ at demand center j is uniformly 

distributed between LBJ and UBJ Also, define 

r = UB - LB 
J J J 

then Equation (4.22) can be written as: 

b b 

E [ c (b j' q j) J ob r~ dq - JJ 1 dq + = 0 qJr J J J J J 
LB J LB J 

J j 

UB UB 

J J 1 dq - J J 1 dq . (4.47) + u qJr ub --
J J J J r J 

b J b J 
J j 

Simplifying Equation (4.47) yields: 

0 b 0 Uj U b 
= J J (b -LB ) - _J_ (b2 - LB2 ) + (UB2-b2 ) - _J _J (UB b ) 

r J J 2r J J 2r J J r J - J 
J j J J 

or (4.48) 

= 21r [ ( o + u ) b 2 + ( o LB2 + u UB2 ) -2 ( o LB + u UB ) b J . 
J J J j J j j J j j j j j 

(4.49) 

As described in Equation (4.22) and is evident from 

Equation (4.49) this is nonlinear cost function in terms of 

supply quantities, b 's. 
J 

Mathematical Formulations 

Based upon the procedures described for handling random 

demands two models are presented. Model A and model B refer 

to formulations employing chance-constrained and stochastic 

programming respectively. Furthermore, assume the following 

objectives are to be considered: lA) meet the random demands 

with some minimum probability or lB) minimize the total 
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expected cost of allocation, 2) maintain production capacity 

within prespecified limits, 3) satisfy the upper bound on 

fixed cost, 4) minimize transportation cost, 5) minimize 

total cost, and 6) satisfy configuration constraints. As 

discussed previously, given the assumption on elasticity of 

demands, the revenue generation aspect of the problem has not 

been included in these objectives. The above objectives are 

only representative of some of the possible multiple 

objectives in stochastic LAP which are often in conflict. 

Nevertheless, additional objectives/constraints may be 

included, or existing objectives may be removed from the 

models depending on the actual system under study. 

In constructing the mathematical models of the SMOLAP, 

special care must be taken to prevent trivial solutions. For 

example to ensure that certain levels of demands are 

satisfied, the solution space must be bounded by demand 

constraints appearing as rigid system constraints and/or goal 

constraints at priority one. This point will be further 

discussed under the sensitivity analysis section of the 

succeeding chapter. 

The mathematical formulation of model A is presented 

next. 

Model A - Chance-constrained Goal Programming Formulation 

In this section we present the chance-constrained goal 

programming model of SMOLAP. This model deals with 

stochastic demand through the chance-constrained programming 
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technique. The model consists of goal constraints, system 

constraints, and the achievement function. The mathematical 

formulation of model A is given next: 

Goal Constraints. The goal constraints, as opposed to 

rigid system constraints, are soft in that they do not 

restrict the feasible region. The multiple objectives 

involved in this study can be represented by the following 

goal constraints. For these goal constraints it is desired 

to achieve the specified target values as closely as 

possible. 

1. Probabilistic Constraints of Meeting Demand at Demand 

Centers - using the chance-constrained concept these 

equations may be stated as: 

P [ I X1 2:: q_ J 2:: 1 - a 
i = 1 j J j 

j = 1,2, ... ,n. (4.50) 

Then, the deterministic equivalent of these constraints are: 

m - 1 

I xij 
i = 1 

2:: F (1 - a ) 
q j 

j = 1,2, .•• ,n. ( 4. 51) 

Converting these to goal constraints form, we have: 

m I x + d- - d+ = 
l=llj k k 

-1 

Fq(l - aJ) , j = 1,2, ••. ,n. (4.52) 

where k=l,2, •.. ,n for j=l,2, ..• ,n respectively. The 

negative deviational variables in (4.52) must be minimized in 

order to satisfy demand with a specified minimum probability 

bound. 

2. Maintain Production Capacity within Prescribed Limits -
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The lower and upper bounds on production capacity may be set 

to represent the efficient operating range of each plant. 

The upper bound on capacity may be determined based on a 

number of factors such as environmental considerations 

(pollution), availability of skilled labor, raw materials, 

etc. Mathematically, these can be expressed as: 

n 

A ~\ X ~A 
1,mln f.. lj 1,max 

j=l 

i= 1,2, ... ,m. ( 4. 53) 

Once again, separating (4.53) and converting these to goal 

constraints, we get Equations (4.54) and (4.55). 

n 

\ x + dk L. i j 
J=l 

d+ = A 
k i 1 max 

i= 1, 2 I • • • Im (4.54) 

where k=n+l,n+2, ... ,n+m for i=l,2, ... ,m respectively. 

Also d+ represents the degree of over production at site i 
k 

which must be minimized: 

n + 
\ X + d- - d = A L i j k k 1 1 min 
j =1 

i= 1, 2 I • • • Im (4.55) 

where K=n+m+l,n+m+2, ... ,n+2m for i=l,2, •.. ,m respectively. 

And, d~ denotes the under-achievement of capacity at site i 

which must be minimized. 

3. Satisfy an Upper Limit on Total Fixed Cost - Another 

important consideration for the LAPs is the total fixed cost 

goal. In actual practice there is a limitation on the 

capital allocated to a project. Let B represents the limit 

on the total investment budget. Then this can be 

mathematically expressed as: 



! 
i =1 

F Y :s B. 
i i 

Converting this to a goal constrained form, we have: 

! 
i =1 

FY + d 
i i k 

d+ = B . 
k 
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( 4. 56) 

( 4. 57) 

where k=n+2m+l. So, dk represents the amount of expenditure 

below B, while d+ indicates this amount above B. Therefore, 
k 

this goal constraint can be achieved by minimizing its 

positive deviational variable. 

4. Transportation Cost Objective - An important 

consideration in traditional LAPs is to minimize the total 

transportation cost of allocating products from plants to 

demand centers. Mathematically, this can be expressed as: 

m n 

l l c1j xij :s 0 • 
i =1 j =1 

Converting this to a goal constraint form, we have 

m n 

\' \' c x1J + dk L. L. ij 
i =1 j=l 

d + = 0 . 
k 

(4.58) 

(4.59) 

where k=n+2m+2. This goal can be achieved by minimizing the 

positive deviational variable. 

5. Total Cost Objective - A primary objective of the LAPs 

is the minimization of the total cost. The total cost 

consists of the total transportation cost between plants and 

demand centers and the fixed cost of establishing and 

operating new plants. Mathematically, this objective can be 
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expressed as: 

m n 

I I cij ! FY 
1 1 

:S 0. (4.60) 
1 =1 j =1 1 =1 

Converting this to a goal constraint form, we have: 

m n 

I I cij 
1 =1 j =1 

x 
ij 

d + = 0 . 
k 

( 4. 61) 

where k=n+2m+3. Therefore, minimization of total cost can be 

achieved by setting the target value to zero and minimizing 

the positive deviational variable. 

6. Configuration Constraints - A possible configuration 

constraint in locational analysis is mutually exclusive 

sites. Whenever potential sites are geographically close to 

each other it may be desirable to establish facilities, if 

any, in only one of these locations. This is justified, for 

example, if we want to eliminate service overlaps between 

these locations or to evenly distribute the facilities. 

Assume locations s and t are mutually exclusive sites, then 

this relationship can be mathematically expressed as: 

y + y :S 1 (s ' t) e m. (4.62) 
s t 

Converting Equation ( 4. 62) to a goal constraint, we have: 

y + y + d-- d+ 
s t k k 

= 1 ' (s ' t) e m. (4.63) 

where k=2m+n+4. In order to satisfy the above goal 

constraint we need to minimize the positive deviational 

variable. 



system Constraints. The system constraints are those 

which must be strictly satisfied before an optimal solution 

can be realized. Mathematically, for this model, these 

constraints are stated as follows: 

n 
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l X1J- M Y1 ::!: o , i=l,2, •.. ,m. 
j=l 

(4.64) 

These constraints insure that the shipments to demand centers 

are made only from open facilities. In choosing a value for 

M, special care must be taken such that its magnitude does 

not affect the computational accuracy of the problem. For 

the case of deterministic models this value must be equal to 

or greater than the sum of all demands. Next, non-negativity 

and integrality requirements are given by: 

x '1:: 0 i = 1,2, ... ,m ; j = 1,2, ... ,n (4.65) 
ij 

d - d+ 0 for all k (4.66) '1:: 
k k 

y ::!: 1 and y = 0 1 i = 1,2, ... ,m (4.67) 
1 1 I 

d- . d+ = 0 for all k. ( 4. 68) 
k k 

The inequality constraints in Equation (4.67) are used 

to obtain zero-one solutions through application of a branch 

and bound routine. From Equation (4.68) the product of the 

positive and negative deviational variables must be zero, 

indicating that one can either be above or below the desired 

goal targets. However, these constraints are automatically 

satisfied in a linear programming type solution and need not 
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be considered explicitly. 

Model A Achievement Function. The achievement function 

for this model involves the minimization of appropriate 

deviational variables according to their preemptive priority 

weights. Assuming priorities are assigned to the goal 

constraints in the order they are presented, the model A 

achievement function is as follows: 

Minimize z = P 1 (d~ + d 2 + ··· + . • . + 

d+ + d- + d + . . . + d- ) + 
n + m n +m + 1 n + m + 2 n + 2 m 

p (d+ ) + p (d+ ) + p (d+ ) + 
3 n+2m+l 4 n+2m+2 5 n+2m+3 

p (d+ ) 
6 2m+n+4 · 

(4.69) 

Another assumption in Equation (4.69) is that the 

weights for all the deviational variables are equal to one. 

Priorities P, P, ... , and P in Equation (4.69) are called 
1 2 6 

preemptive priorities or priority weights. They determine 

the hierarchy of goals. For this model we also assume that 

goals with lower indexed priority factors always take 

priority over goals with higher indexed priority factors. 

For example, the relationship between P 1 and P 2 is as follow: 

p >>>P. 
1 2 

(4.70) 

This means that lower priority goals are considered only 

after higher priority goals are either fully achieved or 

reached to a point beyond which no further improvement is 



possible. However the system constraints are given the 

highest priority ranking, P , and must be fully satisfied 
0 

before any of the above priorities can be considered. 

Model B - Stochastic Goal Programming Formulation 

This section presents an alternative model for the 

formulation of SMOLAP. This model uses the stochastic 

programming method to deal with random demands. The 

formulation of this model is similar to model A except for 

the probabilistic goal constraints in (1). For this model, 
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since demand or "service level" for meeting random demands at 

each destination is not given beforehand, it is not possible 

to include any explicit restriction to satisfy demands. 

Instead, goal constraint (1) will be altered to include 

penalties for oversupplying and undersupplying of the 

markets. As shown previously, this will result in a 

nonlinear goal constraint. The mathematical formulation of 

model B is as follows: 

Goal Constraints. Similar to model A the following goal 

constraints can be formulated for model B: 

1. Minimize the Total Expected Cost of Allocation - The 

expected cost of allocating products from plants to demand 

centers is the penalty costs of oversupplying and under-

supplying the demand centers. Recalling Equation (4.22), 

this goal can be mathematically expressed as: 
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b b 

~=1[ 
J J 

0 b Jfq(qj) dq - 0 J qj f (q ) dqj + 
J J J J q J 

0 0 

(I) (I) 

J + u J qj f (q ) dq - ub J fq(qj) dqj :s 0 
J 

b 
q J J J J 

b 
J J 

(4.71) 

m 

where by definition bJ= l X1 J Next, converting Equation 
i = 1 

(4.71) to a goal constraint, we get: 

( 4. 72) 

where k=l. As an alternative formulation, Equation (4.72) 

may be divided into n goal constraints with n deviational 

variables. 

2. Maintain Production Capacity within Prescribed Limits -

n l x + d-
j =1 i j k 

d+ = A 
k i 1 max 

i= 1,2, ... ,m (4.73) 

where k=2,3, ... ,m+l for i=l,2, ... ,m respectively. 

n l x + d-
j =1 ij k 

d+ = A 
k i 1 min 

i= 1,2, ... ,m (4.74) 

where K=m+2,m+3, ... ,2m+l for i=l,2, ... ,m respectively. 

3. Satisfy an Upper Limit on Total Fixed Cost -

! 
i =1 

FY 
i i 

where k=2m+2. 

(4.75) 



4. Transportation Cost Objective -

m n 

l l c1J 
l =1 j =1 

where k=2m+3. 

x 
ij 

5. Total Cost Objective -

m n 

l l c1J 
i =1 j =1 

x 

where k=2m+4. 

+ ! 
i =1 

i j 
FY 

i i 

0 

6. Mutually Exclusive Locations -

y + y + d - d+ = 1 
s t k k ' 

(s , t) e m 

where k=2m+5. 

System Constraints. 

n 

l x1J - M y ~ 0 
j = 1 

i=l, 2, ... , m 

x 2:: 0 
ij 

i=l,2, ... ,m; j=l,2, ... ,n 

d - d+ 0 2:: for all k 
k k 

Y ~ 1 and Y = o , 1 
i i 

i=l, 2, ... , m 

for all k. 

Model B Achievement Function. 

Minimize Z = p (d-) + p (d+ + 
1 1 2 2 

+ + d + . . . + d + 
3 m+l 

+ d- + d- + 
m+2 m + 3 

+ d- ) + p (d+ ) + 
2m+1 3 2m+2 

100 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 
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+ p (d+ ) + p (d+ ) + p (d+ ) 
4 2m+3 5 2m+4 6 2m+S 

(4.84) 

The solution procedures for the models developed in this 

chapter are presented next. 

Solution Algorithms 

In the preceding sections we proposed two models for the 

stochastic multiobjective location-allocation problems. As 

was demonstrated, model A, a multiobjective chance-

constrained model, can be easily transformed into an 

equivalent deterministic model. Therefore, standard 

multiobjective techniques may be applied to its solution. 

However, transformation of model B, a multiobjective 

stochastic model, to its deterministic equivalent is 

considerably more difficult. As such, we develop different 

solution algorithms for each model. The following sections 

present the proposed solution algorithms for solving these 

models. 

Model A Solution Procedure 

Once the problem is formulated utilizing the method 

explained for model A and converted into its equivalent 

deterministic model, it may be solved through interactive 

preemptive goal programming. At each solution step the 

analyst is given the opportunity to change his/her priority 

structure and/or target goals in order to obtain a better 
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solution. Additionally, to aid the decision maker toward 

better solutions, at each iteration, aside from the current 

achievements, a list of conflicting objectives and their 

trade-offs will be provided. The steps for this algorithm 

are outlined below. Also, Figure 4.1 presents the logic 

flowchart for this algorithm. 

Step O: Formulate the problem as explained for model A. 

This model is a collection of deterministic goals, 

probabilistic goals, deterministic system 

constraints, and the achievement function. 

Step 1: Establish the appropriate priority structure, 

service levels, and target values. 

Step 2: Convert the probabilistic goal constraints to their 

deterministic equivalents. 

Step 3: Solve the problem by the modified simplex method of 

preemptive goal programming. 

Step 4: Examine the optimal solution. If it satisfies the 

integer requirements go to step 5. Otherwise, apply 

the branch-and-bound method of integer programming. 

Step 5: Examine the integer solution. If achievements are 

satisfactory, go to step 7. Otherwise proceed to 

step 6. 

Step 6: Perform trade-off analysis. Then solicit new 

priority structure and/or target values from the DM. 

Reformulate the problem and go to step 3. 

Step 7: Terminate. 
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Figure 4.1. Flowchart of the Algorithm for the SMOLAP 
of Model A 
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Model B Solution Procedure 

The nonlinear goal constraint in model B is the convex 

quadratic penalty cost function. The two basic approaches 

for dealing with this nonlinearity are either to replace it 

with an approximate linear cost function or to treat it using 

nonlinear techniques. For a fixed location vector and a 

single objective function, for example cost minimization, 

this problem reduces to a transportation problem with 

stochastic demand. Wilson (1972), proposed a linear 

approximation technique for this nonlinear cost function by 

establishing upper and lower bounds on the supply quantities 

to each destination. Then, the nonlinear cost function was 

replaced with a linear function between these two bounds. Of 

course the quality of the solution can improve as tighter 

bounds can be established. However, it is believed that for 

the case of multiple objectives in this research problem such 

bounds can not easily be determined. 

The formulation of model B indicates the presence of an 

integer nonlinear goal programming model. By its structure, 

this is an extremely difficult problem to solve. For a given 

location vector, this problem reduces to a nonlinear goal 

programming problem. Ignizio (1976) has discussed an 

extension of Hooke and Jeeves pattern search technique for 

the solution of nonlinear goal programming problems. This 

procedure consists of two major steps: exploratory moves, and 

pattern move. The algorithm starts from a base point and 
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does a complete cycle through coordinate directions 

(exploratory moves). If the new solution vector dominates 

the solution at the base point, it takes a step in the 

direction resulting from the net change in the initial point 

(pattern move). Otherwise, the search continues from the 

previous point with a contracted step size. 

An initial experimentation with the above modified 

pattern search technique did not prove satisfactory for 

solving the allocation subproblems. The difficulty arise 

after fully achieving the first priority goal (nonlinear 

total expected penalty cost goal). For instance, although 

after achieving the first priority goal, there are many 

allocation patterns in a subproblem which result in the 

minimum expected penalty cost, the modified pattern search 

algorithm can not distinguish among them. And therefore, for 

this problem, it always resulted in a dominated solution 

vector. In general, once the first priority goal is fully 

achieved, the algorithm, in its present form, is unable to 

distinguish among available alternatives. Therefore, the 

lower priority goals are ignored which can lead to dominated 

solution. This problem may be solved if the solution vector 

is allowed to go to a dominated point in the process of 

obtaining a nondominated solution. But, a further 

modification of different search parameters, such as vector 

of step sizes and vector of resolutions (errors) between 

achievement vectors did not overcome this difficulty. Thus, 
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an alternative method for the solution of model B was 

investigated. 

Goal one in model B, Equation (4.72), is the sum of n 

expected penalty costs, one for each demand center. Given 

that the expected penalty cost function at each destination 

is convex, application of any nonlinear programming technique 

to the n component of goal one will result in the 

determination of optimum supply quantities to each demand 

center. With this introduction, we propose a two-stage 

·algorithm for the solution of model B. In stage one we apply 

the direct search method of Hooke and Jeeves to find the 

optimum supply quantities at each demand center. Next, in 

stage two, we use the results from stage one to construct the 

deterministic demand goal constraints. These goal 

constraints along with goals at priorities 2 through 6 

represent a deterministic linear integer goal programming 

problem which is then solved by the modified simplex method. 

In addition, the branch-and-bound routine along with the 

appropriate system constraints are used to satisfy the 

zero-one integer requirements. Figure 4.2 depicts the logic 

flowchart for the stage 1. The logic flowchart for the stage 

2 will be similar to Figure 4.1. 

Stage 1 - Pattern Search. In the following steps 

"point" refers to a set of allocations (X 's}. And, the 
i j 

objective function is the minimization of total expected 

penalty cost function. 
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Step O: Formulate the total expected penalty cost goal for 

normal or uniform distribution of demands. This is 

the objective function to be minimized. Specify 

convergence criteria (~, ¢), a,~' o, step sizes, 

open plants, and an initial set of allocations, d. 

Let m represent the number of open plants. 
1 

Step 1: Evaluate the total expected penalty cost value at 

the starting (current) point, d. Initialize the 

optimal (upper bound) solution. Also, let the 

previous point q be equal to d. 

Step 2: Search along each coordinate direction by moving 

step[i] along the ith direction for i=l, ... , (m) (n). 
1 

Let the new point be ~· Determine the objective 

value at this new point. 

Step 3: If the total expected penalty cost at the new point 

plus o dominates the upper bound, then update the 

upper bound. Otherwise, go to step 7. 

Step 4: Examine the convergence criteria. If the number of 

times the total cost is evaluated is greater than or 

equal to ~' or if the number of times the step size 

is reduced is grater than or equal to ¢, go to step 

8. Otherwise perform a pattern move as follows: 

d = ~+ a(qT- q) 

Set the previous point, q, equal to ~· 

Step 5: Determine the total expected penalty cost at the new 

point, d. If this solution dominates the upper 
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bound, update the upper bound and go to step 2. 

Otherwise, proceed to step 6. 

Step 6: Turn on the flag for unsuccessful pattern move (UPM). 

Go to step 2. 

Step 7: The exploratory moves are unsuccessful. Examine the 

convergence criteria. If the number of times the 

total cost is evaluated is greater than or equal to 

¢, or if the number of times the step size is 

reduced is grater than or equal to ¢, go to step 8. 

Otherwise, reduce the step size by ~- If the flag 

for unsuccessful pattern move is on, then set the 

new (current) point be equal to the previous point 

(i.e. d=q). Turn off the flag for unsuccessful 

pattern move (UPM). Go to step 2. 

Step 8: The current upper bound contains the optimal 

solution (a set of allocations which minimizes the 

total expected penalty cost function). Use this 

solution to calculate the optimal supply quantities 

to each demand center. Terminate. 

Application of stage one determines the optimum supply 

quantities to each demand center. For example, the optimum 

supply quantities to demand center one, (OSQl), can be 

calculated as shown below: 

OSQl = x + x + ... + x 
11 21 ml 
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Stage 2 - Optimal Solution. Once the optimal supply 

quantities to each destination is determined in stage 1, the 

problem is solved as follows: 

step o: Formulate the n demand goal constraints as in 

Equation (4.52). However, set the target values of 

these goals equal to the deterministic values 

obtained in stage 1. Formulate other goals and 

system constraints as presented for model B. 

Step 1: Establish the appropriate priority structure and 

target levels. Note that the target values (optimum 

supply quantities) for the demand goal constraints 

are obtained from stage 1 of the algorithm. 

Step 2: Solve the problem by the modified simplex method of 

preemptive goal programming. 

Step 3: Examine the optimal solution. If it satisfies the 

integer requirements go to step 4. Otherwise, apply 

the branch-and-bound routine of integer programming 

for an integer solution. 

Step 4: Examine the integer solution. If achievements are 

satisfactory, go to step 6. Otherwise proceed to 

step 5 

Step 5: Perform trade-off analysis. Then solicit new 

priority structure and/or target values from the DM. 

Reformulate the problem and go to step 2. 

Step 6: Terminate. 
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Summary 

This chapter presented the development of two models 

along with their solution algorithms for the stochastic 

multiobjective facility location-allocation problem (SMOLAP). 

Chance-constrained and stochastic programming were used as 

alternative procedures to deal with stochastic demand. Also 

an integer/zero-one goal programming algorithm was used to 

deal with the integer multiple objective aspect of the 

problem. 

In the next chapter, the above proposed models and 

their solution procedures will be illustrated through 

different example problems. 



CHAPTER V 

VALIDATION, COMPUTATIONAL EXPERIENCE, AND 

SENSITIVITY ANALYSIS 

Introduction 

This Chapter addresses the validity, test problems, 

computational results, and sensitivity analysis of the models 

developed in this research. To accomplish this task and 

according to the objectives established previously, an 

interactive computer program based on the solution procedures 

of Chapter IV is developed. The program is written in TURBO 

PASCAL 5.0 for IBM compatible PC's with at least 640 KB of 

memory. 

Next, as a part of validation, descriptions of three 

problems from the literature and their solutions are 

discussed. 

Validating the Algorithms and 

Computer Programs 

The algorithms and programs developed in this research 

are extensively tested and validated through variety of 

sample problems from the literature. In this section three 

test problems used to validate the algorithms and computer 

112 
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programs are presented. The test problems reported here 

include one location model and two location-allocation 

models. All of three models are of multiple objective 

nature. However, test problem three has also been solved as 

a pure (single objective) cost minimization problem. 

Test Problem 1 - A Multicriteria Warehouse Location Model 

This location problem is presented by Green, Kim, and 

Lee (1981). The proposed problem is to determine the 

location of potential warehouses to be served from a single 

existing source. As such, contrary to multi-source facility 

location problems, it does not consider the allocation or 

demand aspect of the problem. The problem formulation 

contains 12 variables, 10 constraints, and 7 priority levels. 

The priorities, ranked based on their importance are: 

p : 
1 

p : 
2 

locate new warehouses where competition saturation 
is low. 

meet the upper bound on the fixed cost of new 
warehouses. 

P 3 : avoid service overlap among warehouse locations by 
locating them a minimum distance apart. 

p : 
4 

p : 
5 

p : 
6 

p : 
7 

satisfy mutual dependency between two specified 
locations. 

satisfy favored customer service. 

avoid decentralization by locating warehouses within 
a specified distance from supply source. 

minimize transportation costs from supply source to 
warehouses. 

The input data for this problem is given in Table A.1 in 



Appendix A. And Table 5.1 presents a comparison of the 

solution results for this problem. The solution for this 

114 

problem was obtained by the integer routine of the program. 

The results were consistent with the ones reported by the 

authors and are X2 = X4 = X10 = 1, with all other XJ equal to 

zero. In addition, all goals were completely achieved except 

for minimization of transportation cost. Of course this was 

expected since this goal was set at zero level. 

TABLE 5.1 

COMPARISON OF RESULTS FOR TEST PROBLEM 1 

Green, Kim, Lee (1981) 

Locations: 

Y2=1, Y4=1, YlO=l 

Goal Under-Achievement: 

Pl=O 
P2=0 
P3=0 
P4=0 
P5=0 
P6=0 
P7=790 

Abtahi, M. 

Y2=1, Y4=1, YlO=l 

Pl=O 
P2=0 
P3=0 
P4=0 
P5=0 
P6=0 
P7=790 

Furthermore, the statistics reported by the program for 

this problem are listed in Table 5.2. Although execution 

time is included in this table, its value is greatly 

influenced by the hardware and software being used and should 
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not be employed for comparison with other algorithms. This 

time statistic is mainly valuable for demonstrating the 

relative time requirements among different problems. All 

time statistics reported in this research are obtained on a 

12 MHZ microcomputer with no math-coprocessor. 

TABLE 5.2 

TEST PROBLEM 1 - ALGORITHM PERFORMANCE 

Total Total Nodes 
Iterations Evaluated 

54 5 

Upper Bounds 
Updated 

1 

Test Problem 2 - Location-Allocation Model I 

Execution 
Time (Sec.) 

21.58 

This problem is presented by Lee and Franz (1979). They 

studied a location-allocation problem for five potential 

sites of manufacturing facilities and four distribution 

centers. The problem contains 6 priority levels, 23 

constraints and 25 variables. The variables include both 

zero-one location variables and the integer assignment 

variables. The constraints are divided into 13 goal 

constraints and 10 system constraints. The priorities 

considered in this problem are given below: 

P : meet the product demand of all distribution centers. 
1 



p : 
2 

p : 
3 

p : 
4 

p : 
5 

p : 
6 

do not exceed the fixed budget for establishing 
facilities. 
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keep an upper limit on the production level at each 
site. 

satisfy at least SO units of the demand at 
distribution center 3 from site 1 or site 2. 

minimize total fixed costs and transportation costs. 

minimize transportation costs. 

Table A.2 in Appendix A presents the input data for this 

problem. A comparison of solution results for this problem 

is reported in Table 5.3. 

TABLE 5.3 

COMPARISON OF RESULTS FOR TEST PROBLEM 2 

Lee, Franz (1979) 

Locations: 

Allocations: 

Y4=1, Y5=1 

X41=400 
X52=300 
X53=200 
X54=100 

Goal Under-Achievement: 

Pl=O 
P2=0 
P3=0 
P4=50 
PS=l,304,500 
P6=54,SOO 

Abtahi, M. 

Y4=1, YS=l 

X41=400 
X52=300 
X53=200 
X44=80 
X54=20 

Pl=O 
P2=0 
P3=0 
P4=50 
PS=l,303,300 
P6=53,300 
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The solution generated by the proposed algorithms gives the 

same location pattern as the one reported by the authors [Lee 

and Franz (1979)] with sites 4 and 5 selected for 

establishing new manufacturing plants. However, the proposed 

algorithms produce a different pattern for allocation of 

products among manufacturing plants and distribution centers. 

The new distribution assignments are: X =400, X =300, 
4 1 5 2 

X =200, X =80, and X =20. This solution dominates the 
53 44 54 

solution presented by the authors which matches priorities 1 

through 4 as reported, but results in a higher achievement 

level for priorities 5 and 6. More precisely, this new 

solution reduces the transportation and total cost by $1200. 

The computational results for this problem is given in Table 

5.4. 

TABLE 5.4 

TEST PROBLEM 2 - ALGORITHM PERFORMANCE 

Total 
Iterations 

892 

Total Nodes 
Evaluated 

39 

Upper Bounds 
Updated 

2 

Execution 
Time (Sec.) 

1006.89 

Test Problem 3 - Location-Allocation Model II 

This problem is presented by Lee, Green, and Kim (1981). 
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They solved a multiple criteria location-allocation problem 

for 6 potential plant location sites and 4 different 

distribution centers. The model consists of 8 priority 

levels, 28 constraints, and 30 variables. 6 of these 

variables are zero-one integer variables representing the 

location vector. The constraint set consist of 16 goal and 

12 system constraints. The priorities considered are: 

p : 
1 

p : 
2 

p : 
3 

p : 
4 

p : 
5 

p : 
6 

p : 
7 

p : 
8 

satisfy the demand for all distribution centers. 

insure favored customer service for distribution 
center 1. 

meet the goal on budget ceiling. 

locate where quality of life is satisfactory. 

maintain a policy of desired expansion by 
establishing a minimum of three plants. 

keep the production level below the upper bound set 
by state regulations for air pollution control. 

minimize total costs of opening plants and 
distribution costs. 

minimize transportation costs. 

The input data for this problem is given in Table A.3 in 

Appendix A. The solution generated by the proposed 

algorithms is superior to the solution reported by the 

authors. The optimum solution indicates opening plants at 

sites 2, 4, and 6 with the following assignments: X =50, 
21 

X41 =5oo, X61 =30, X22=420, X23 =130, X63 =130, X64 =1so. This 

solution, contrary to the solution presented by the authors, 

satisfies priority 2 completely. It also produces a lower 

transportation cost. However, total cost is higher due to 
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selection of site 2 instead of site 3. Table 5.5 presents 

the comparison of the solution results for this problem. In 

addition, Table 5.6 gives the computational results for this 

problem. 

TABLE 5.5 

COMPARISON OF RESULTS FOR TEST PROBLEM 3 

Lee, Green, Kim (1979) Abtahi, M! Abtahi, M~ ' 3 

Locations: 

Y3=1, Y4=1, Y6=1 Y2=1, Y4=1, Y6=1 Y2=1, Y4=1, Y6=1 

Allocations: 

X31=80 
X41=500 
X62=420 
X63=260 
X34=150 

Goal Under-Achievement: 

Pl=O 
P2=50 
P3=0 
P4=785 
P5=0 
P6=0 
P?=l,841,250 
P8=91,250 

X21=80 
X41=500 
X22=420 
X23=100 
X63=160 
X64=150 

Pl=O 
P2=0 
P3=0 
P4=775 
P5=0 
P6=0 
P?=l,990,800 

P8=90,800 

1 The formulation includes the total cost goal. 
2 The formulation excludes the total cost goal. 
3 This is the nondominated solution. 

X21=50 
X41=500 
X61=30 
X22=420 
X23=130 
X63=130 
X64=150 

Pl=O 
P2=0 
P3=0 
P4=775 
PS=O 
P6=0 
P7=1,990,200 

P8=90,200 



TABLE 5.6 

TEST PROBLEM 3 - ALGORITHM PERFORMANCE 

Total Total Nodes 
Iterations Evaluated 

666 27 

Upper Bounds 
Updated 

4 

Execution 
Time (Sec.) 

1059.52 
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It may be noted that the execution time for this problem 

to obtain the optimal solution on an IBM 370-158 is reported 

by the authors to be 439.26 seconds. 

In experimenting with this problem it was discovered that 

the solution can be very sensitive to the value of M in the 

system constraints. While this value needs to be sufficiently 

large to enforce the constraints of type (4.64), selection of 

excessively large values for M can significantly affect the 

computational accuracy of the algorithms. 

Another observation made was the need to increase the 

precision of the real type variables. This reduces the round 

off errors whenever the number of iterations becomes too 

large. However, the drawbacks are an increase in CPU time 

and larger storage (virtual memory) requirements. 

Further analysis identified another characteristic of 

this problem which can affect the computational accuracy and 

therefore the final decision set produced by the model. As 

shown in Table A.3, the coefficients of the location 
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variables for the total cost goal (row 15) are considerably 

larger than the coefficients of the allocation variables in 

the problem. This relatively large gap among the 

technological coefficients will influence the accuracy of the 

simplex based calculations. To eliminate this potential 

source of error, the problem was formulated and solved 

without the total cost goal. Then this goal was evaluated at 

the current solution. This method resulted in a different 

allocation pattern and reduced the transportation cost by 

$600.00, an improvement of 0.66%. 

Finally, this problem was formulated and solved as a 

single objective cost minimization problem as explained by 

Lee, et al. (1981). The solution obtained was similar to the 

one reported by the authors. The transportation cost is 

minimized at $50,350. However, the program identified an 

alternative solution. This new solution is to select 

location I instead of location II and to replace X =260 with 
23 

X13=260.All other location and allocation assignments remain 

-the same as reported in the paper. 

An Illustrative Example for Model A 

Next, the solution algorithms and sensitivity analysis of 

SMOLAP for model A is illustrated by a sample problem. 

System Description 

A manufacturing firm is considering the establishment of 



a facility or facilities to service three major demand 

centers. Through initial analysis the firm has identified 

four potential sites for plant location which satisfy 

production requirements such as availability of skilled 

labor, closeness to suppliers, raw materials, access to 

transportation, etc. Figure 5.1 depicts a graphical 
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configuration of the proposed plant sites and demand centers 

for this example problem. 

,, 3 11 [!j] 
DJ 

DJ ICJJI 

IOJI 
lg] Potential Plant Sites [JJ 
[J Existing Demand Centers 

Figure 5.1. Graphical Representation of Potential Plant 
Sites and Existing Demand Centers 

Furthermore, Table 5.7 presents unit distribution 

cost between potential plants and demand centers, 

distribution of demand at each destination, annual fixed 

costs of establishing a facility at each potential site, and 

the capacity limits at each proposed location. 
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TABLE 5.7 

ALLOCATION COSTS, STOCHASTIC DEMANDS, FIXED COSTS, 
AND CAPACITIES FOR THE EXAMPLE PROBLEM 

Demand Demand Demand Fixed Capacity 
Costs1 Center 1 Center 2 Center 3 Max Min 

Site 
Site 
Site 
Site 

Mean2 
2 S.D. 

1 
2 
3 
4 

80 
60 

250 
100 

350 
10 

300 
400 

90 
70 
40 
20 

400 
15 

350 
450 

200 
180 

30 
100 

500 
20 

400 
550 

~ Multiply by 1000. 
For normally distributed demands. 

3 For uniformly distributed demands. 

650 500 
800 700 
725 400 
600 650 

Next assume management is considering the following 

goals/priorities for selecting "ideal" location(s) among 

potential sites and allocating products to the demand 

centers. 

Priority 1: Satisfy random demand at each destination 
with the minimum probability of 0.9 
(service level=0.9). 

Priority 2: Capacity of potential facilities (plants) 
should not exceed or fall below their 
planned upper and lower bounds. Note, 
specifying a minimum capacity for a given 
site at this priority level, can force a 
facility to be established at that site. 

Priority 3: Limit the total annual fixed costs to 
$1,350,000. 

Priority 4: Minimize transportation cost of allocating 
products. 

0 
0 
0 
0 



Priority 5: Minimize the total cost of location and 
allocation. 

Priority 6: Satisfy the forecasted future growth, by 
opening at least three facilities. 

System Formulation 
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The chance-constrained goal programming formulation for 

this problem can be stated as follows: 

Goal 1 (Demand): 

x + x + x + x + d-+ d+ = F-1 ( O. 9) 
1 1 21 31 4 1 1 1 q 

x + x + x + x + d-+ d+ = F-1 ( 0. 9) 
1 2 22 32 42 2 2 q 

x + x + x + x + d-+ d+ = F-1 ( 0. 9) 
1 3 23 33 43 3 3 q 

where distribution of demands are as given in Table 5.7. 

Goal 2 {Capacity): 

x + x + x + d - d+ = 500 
1 1 1 2 1 3 4 4 

x + x + x + d-- d+ = 700 
2 1 22 23 5 5 

x + x + x + d-- d+ = 400 
3 1 32 33 6 6 

x + x + x + d-- d+ = 650 
4 1 42 43 7 7 

Goal 3 (Budget): 

- d+ 650 y + 800 y + 725 y + 600 y + d - = 1200 
1 2 3 4 8 8 

Goal 4 (Transportation): 

80 x + 60 x + 250 x + 100 x + 90 x + 
1 1 21 31 41 1 2 

70 x + 40 x + 20 x + 200 x + 180 x + 
22 32 42 1 3 23 

30 x + 100 x + d-- d+ = 0 
33 43 9 9 



125 

Goal 5 (Total Cost): 

4 3 l ~c1 Jx1 J+ (650000)Y 1 + (800000)Y 2 + (725000)Y 3 + 
i = j=l 

+ (600000)Y 4 + d 10 

Goal 6 (Configuration): 

y + y + y + y + d- - d+ = 3 
1 2 3 4 11 11 

and the system constraints are: 

Then, the 

y, :s 1, 
1 

x + x 
1 1 

x + x 
21 

x + x 
3 1 

x + x 
4 1 

1 2 

22 

32 

42 

achievement 

i = 1,2,3,4 

+ x - 2500 y 
1 3 1 

+ x - 2500 y 
23 2 

+ x - 2500 y 
33 3 

+ x - 2500 y 
43 4 

function can be 

:s 0 

:s 0 

:s 0 

:s 0 

written as: 

Minimize - - ~) p (d++ d++ d++ d+) z = p (d + d + d + 
1 1 2 2 4 5 6 7 

+ p (d+) + p (d+ ) + p (d- ) . 
4 9 5 10 6 1 1 

p (d+) + 
3 8 

Based on the distribution of demands, two problems are 

realized. Each problem contains 16 variables, 19 

constraints, and 6 priorities. The processing time for each 

problem is about 230 seconds. 

Table 5.8 presents the summary of the results for both 

normal and uniform distribution of demands. 



TABLE 5.8 

SUMMARY OF THE RESULTS OF THE MODEL A EXAMPLE 
PROBLEM FOR NORMAL AND UNIFORM 

DISTRIBUTION OF DEMANDS 

Normal a Uniforma 
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Open Facilities: Y2=1, Y4=1 Yl=l, Y3=1, 
Y4=1 

Allocation Assignments: 

Priority Order · 

1. Demand 
2. capacity 
3. Budget 
4. Trans. 
5. Total 
6. Config. 

a Service Level=0.9. 
b Multiply by 1000. 

X21=363 
X22=296 
X42=124 
X43=526 

0 
0 

sob 
97580 

1497580 
1 

X11=390 
X33=400 
X42=440 
X43=135 

Underachievements 

0 
0 

625b 
65500 

2040500 
0 

From Table 5.8, the optimal solution when the demand 

distribution is normal and service level is 0.9, is to 

establish facilities at sites 2 and 4. Also, the solution 

results in the following assignments: Assign facility at 

site 2 to demand center 1, assign facility at site 4 to 

demand center 3, and assign both open facilities to demand 

center 2. This solution along with specified allocations 

satisfy the goals at priorities 1 and 2 completely. However, 

the fixed cost budget goal exceeds by $50,000. Also the 
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goal on minimum number of facilities (goal 6) is under­

achieved by 1. The under-achievement of transportation and 

total cost is expected since their initial goals were 

intentionally set very low at zero. This forces the minimum 

of these goals within there specified priority structure. 

The results in Table 5.8 can also be verified through 

inspection of the problem. For instance, converting the 

chance-constrained demand goals into their equivalent 

deterministic goals results in a total demand of 1309 units 

by all demand centers. Now, by inspection, facilities at 

sites 2 and 4 are the best combination of available 

facilities which have enough capacity to satisfy these 

demands and to result in minimum annual fixed costs. 

Next, from Table 5.8, for the uniform distribution of 

demands, facilities are to be established at sites 1, 3, and 

4. Once again obtaining the deterministic equivalence of 

demand goals, the total demand to be satisfied at the 90% 

service level is 1365 units. Recalling the available 

capacities in Table 5.7 and realizing the high priority of 

meeting demands, at least 3 facilities are required to meet 

this demand. Now, as can be seen in Table 5.8, the model has 

selected three sites with the lowest annual fixed costs, from 

the potential sites. This will satisfy priority 3, requiring 

the minimization of total fixed costs. Next, comparing the 

two problems, although total demand for uniformly distributed 

demands is higher than the one for normally distributed 

demands, the transportation cost is lower by near to 33%. 



This can easily be justified from the fact that the extra 

facility provides more flexibility for distributing the 

products. As the result, lower transportation cost is 

expected. 
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Finally, the location-allocation problem with normal 

distribution of demands was solved as a single objective 

fixed charge problem. The problem was modified to minimize 

the total cost subject to meeting the random demands at the 

90% service level. The resulting solution indicates a 

facility at site 4 with $697,300 total annual cost. This 

cost is only about 46.5% of the total cost obtained from the 

earlier multi-objective model in Table 5.8 ($1,497,580). The 

difference between these two costs ($800,280) can be 

explained as the amount the management is willing to spend in 

order to satisfy the multiple goals. 

An Illustrative Example for Model B 

Consider the example problem presented previously. The 

data for this problem is given in Table 5.7. To formulate 

the model B we require additional penalty costs associated 

with deviations between the supplies (quantities) assigned to 

the demand centers and the actual demands that occur at these 

centers. Assume that the per unit cost of undersupplying and 

oversupplying a demand center are as given in Table 5.9. 



TABLE 5.9 

PER UNIT OVERSUPPLY AND UNDERSUPPLY COSTS OF 
DEMAND CENTERS FOR THE 

EXAMPLE PROBLEM 
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Cost Demand Center 
1 

Demand Center 
2 

Demand Center 
3 

Oversupply 50 

Undersupply 25 

35 

55 

Figures 5.2 and 5.3 depict the effects of supply 

45 

50 

quantities on the expected penalty costs at each destination 

for the case of normally and uniformly distributed demands. 

As was shown previously and is evident from these graphs, the 

expected penalty cost at each destination represents a 

nonlinear convex function. Therefore, model B has a 

nonlinear goal programming structure. 

The stochastic goal programming formulation of this 

problem is similar to the formulation presented earlier for 

model A with the exception of goal one. Goal one for model B 

is to minimize the expected penalty costs at each demand 

center and is expressed as in Equation (4.72). Breaking 

Equation (4.72) into n goal constraints and applying the 

pattern search to the resultant nonlinear goal constraints 

give the optimum supply quantities to each demand center. 
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Figure 5.2. Expected Cost of Penalties at Each Destination 
For the Normally Distributed Demands 
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Figure 5.2. (Continued) 

For the case of normally distributed demands, the 

optimum supply quantities to demand centers 1, 2, and 3 are 

345, 404, and 501 units respectively. And the total expected 

penalty cost is $1,547.78. These values for the case of 

uniformly distributed demands are 332, 410, and 477 units 

with the total expected penalty cost of $3,680.64. 
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Figure 5.3. (Continued) 

Table 5.10 presents summary of the results for both 

normal and uniform distribution of demands. From this table, 

the zero underachievement for goal 1 indicate that the total 

penalty cost is fully minimized. In situations were this 

goal can not be completely satisfied, the underachievement 

for this goal depicts the difference between the resulting 

total expected penalty cost and its minimum value possible. 



TABLE 5.10 

SUMMARY OF THE RESULTS OF THE MODEL B EXAMPLE 
PROBLEM FOR NORMAL AND UNIFORM 

DISTRIBUTION OF DEMANDS 

Open Facilities: 

Allocation Assignments: 

Normal 

Y2=1, Y4=1 

X21=345 
X22=255 
X42=149 
X43=501 

Uniform 

Y2=1, Y4=1 

X21=332 
X22=237 
X42=173 
X43=477 

Priority Order Underachievements 

1. Penalty 
2. Capacity 
3. Budget 
4. Trans. 
5. Total 
6. Config. 

oa 
0 

50c 
91630 

1491630 
1 

a Minimum expected penalty cost is 1547.78. 
b Minimum expected penalty cost is 3680.64. 
c Multiply by 1000. 

Sensitivity Analysis 

ob 
0 

50c 
87670 

1487670 
1 
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Sensitivity analysis is an integral part of the decision 

making process. It provides insights into the problem and 

facilitates the successful implementation of the model. 

This section presents sensitivity analysis of the sample 

problem accomplished by changing its priority structure, goal 

levels, and parameters of the demands distributions. From 

this point the above changes are referred to as Type 1, Type 

2, and Type 3 sensitivity analysis, respectively. Moreover, 



as an illustration, the sensitivity analysis is only 

demonstrated for model A and for the case of normally 

distributed demands. 

Type 1 Sensitivity Analysis 
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Type 1 sensitivity analysis for the example problem 

presented earlier, is to reorder the specified priority 

structure. However, in doing so the user must be cautious 

about the resulting model structure. For instance, 

identifying the total cost goal as the first priority goal 

without imposing any ''hard" constraint(s) on the system will 

result in the trivial solution of do nothing (zero 

allocations) with zero total cost. This is similar to the 

traditional linear programming problems in which objectives 

must be optimized subject to satisfying system constraints. 

Because, in the absence of limiting constraints the 

objectives become unbounded. 

Given the general purpose design of the computer 

programs and the variety of problem structures possible, the 

developed software will not check for trivial solutions. 

Therefore, it is the responsibility of the modeler to design 

a sound model structure which will not result in a trivial 

solution. 

Table 5.11 presents the results of type 1 sensitivity 

analysis. In column 3 we assumed management decided that 

minimization of transportation (allocation) cost should take 

priority over the capacity goal. Also in column 4 we assumed 
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that management is interested in evaluating the alternative 

of assigning higher priority level to goal 3 (fixed annual 

budget) than to goal 2 (capacity). 

TABLE 5.11 

TYPE 1 SENSITIVITY ANALYSIS OF THE MODEL A EXAMPLE 
PROBLEM FOR NORMAL DISTRIBUTION OF 

Priority Structure 

Open Facilities: 

Allocations: 

Goals Identification 

1. Demanda 
2. Capacity 
3. Budget 
4. Trans. 
5. Total 
6. Config. 

a Service Level=0.9. 
b Multiply by 1000. 

DEMANDS 

1,2,3,4,5,6 

Y2=1, Y4=1 

X21=363 
X22=296 
X42=124 
X43=526 

0 
0 

50b 
97580 

1497580 
1 

1,4,3,2,5,6 1,3,2,4,5,6 

Y2=1, Y3=1 Y1=1, Y4=1 
Y4=1 

X21=363 X11=363 
X33=526 X13=296 
X42=420 X42=420 

X43=230 

Underachievements 

0 
126 
775b 

45960 
2170960 

0 

0 
159 

0 
119640 

1369640 
1 

As a comparison, the solution to the original priority 

structure is also provided in column two. As shown in Table 

5.11, the set of selected sites are different based upon the 

specified priority structure. However, a closer look reveals 

that the facility at site 4 is selected regardless of the 
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priority structure used. This can be contributed to the low 

fixed cost and relatively high capacity of a plant at this 

site. This analysis provides the management with a great 

insight into selecting among alternative sites for 

establishing new facilities. 

Type 2 Sensitivity Analysis 

Type 2 sensitivity analysis is used to analyze the 

changes in the decision variables and priority achievements 

which result from changing the goal levels. Assume, the 

decision maker desires to evaluate the effects of changes in 

service level on location and allocation decisions. Table 

5.12 presents the results of type 2 sensitivity analysis. 

Once again column two of this table provides the solution for 

the original problem when service levels are set at 90%. 

Column 3 presents the results when service level at each 

demand center increases to 99%. And column 4 contains the 

results for 80% service level. Similar to the observation 

made in type 1 sensitivity analysis, site 4 is selected 

regardless of the service level specified. 

From Table 5.12, when service level increases to 99 

percent, the number of open facilities increases by one. 

This is because the higher service level at a demand center 

translates to higher supplies to that demand center, which in 

turn demands higher capacity. Moreover, although the extra 

facility increases the fixed costs, but the transportation 
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cost decreases by 33.l percent. This is expected because the 

higher number of established plants offers more flexibility 

in distributing the products. Next, from column 4, when 

service level at all demand centers change to 80 percent, it 

reduces the transportation cost by 2.13% without affecting 

the location or allocation patterns. Finally, the lower 

service level also indicates more chance of undersupplying 

the demand centers. 

TABLE 5.12 

TYPE 2 SENSITIVITY ANALYSIS OF THE MODEL A EXAMPLE 
PROBLEM FOR NORMAL DISTRIBUTION OF 

Service Level 

Open Facilities: 

Allocations: 

Priority Order 

1. Demand 
2. Capacity 
3. Budget 
4. Trans. 
5. Total 
6. Config. 

a Multiply by 1000. 

DEMANDS 

0.90 

Y2=1, Y4=1 

X21=363 
X22=296 
X42=124 
X43=526 

0 
0 

50a 
97580 

1497580 
1 

0.99 

Yl=l, Y3=1 
Y4=1 

Xll=374 
X33=400 
X42=433 
X43=147 

Underachievements 

0 
0 

625a 
65280 

2040280 
0 

0.80 

Y2=1, Y4=1 

X21=359 
X22=280 
X42=133 
X43=517 

0 
0 

50a 
95500 

1495500 
1 

Additional type 2 sensitivity analysis are performed by 
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employing the trade-off information provided by the 

sensitivity analysis algorithm. Table 5.13 presents the 

trade-off information for the example problem of model A when 

demands are normally distributed. This Table is obtained as 

a part of sensitivity analysis from the computer program 

described latter in Chapter VI. The trade-off information 

indicates how much higher priority goals must be relaxed such 

that lower priority goals can be increased by one unit. The 

small trade-off values in Table 5.13 are justified by 

relatively large allocation (transportation) costs. 

TABLE 5.13 

TRADE-OFF ANALYSIS OF THE MODEL A EXAMPLE PROBLEM 
FOR NORMAL DISTRIBUTION OF DEMANDS 

Priority <Conflicts with> Priority Trade-Offs 

3 
4 
4 
5 
5 
5 
6 
6 

a Multiply by 1000. 

System Constraints 
2 o. 02 
1 0.01 
2 o. 02 
1 0.01 

System Constraints 
5 650000.00 
3 650.00a 

From Table 5.13, in order to improve the priority 6 

(configuration goal) achievement level by one unit, we need 

to relax priority 3 goal level (annual fixed cost budget 
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limitation) by 650 thousand units. This can be verified by 

increasing the goal level of priority 3 from 1,350,000 

dollars to 2,000,000 dollars and resolving the problem. 

Table 5.14 contains the priority achievements along with the 

location pattern and allocation quantities for this modified 

problem. 

TABLE 5.14 

SOLUTION OF THE MODEL A EXAMPLE PROBLEM 
FOR NORMAL DISTRIBUTION OF DEMANDS 

AND MODIFIED BUDGET GOAL 

Priority Underachievement Location Allocation 

1. Demand 
2. capacity 

1 3. Budget 
4. Trans. 
5. Total 
6. Config. 

0 
0 
0 

62040 
2037040 

0 

1 Budget goal is 2000000. 

Type 3 Sensitivity Analysis 

Yl 
Y3 
Y4 

X11=363 
X33=400 
X42=420 
X43=126 

The primary purpose of type 3 sensitivity analysis is 

to investigate changes in the location-allocation pattern and 

the achievement vector for different parameters of the demand 

distribution. This is extremely important whenever the above 

parameters can not be determined accurately or if only their 

estimates are available. 
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To explore the changes in the parameters of the demand 

distribution on the solution of SMOLAP, 24 test problems are 

designed and solved. Each problem is basically the same as 

the sample problem presented earlier for model A with 

normally distributed demands. However, with the exception 

that the parameters of the demand distributions for each 

demand center are systematically changed to produce the 

different test problems. Also, for each problem, it is 

assumed that the distribution parameters of all demand 

centers are equal. This along with equal service levels at 

all demand centers lead to equal equivalent deterministic 

demands at these centers. 

Table 5.15 presents the different distribution 

parameters used for the test problems. As shown, the mean of 

the demands at the demand centers is changed from 100 to 600 

in increments of 100, while the standard deviation is changed 

from 10 to 40 in steps of 10. These values are chosen such 

that they represent the extreme values of the demands for the 

current system. Additionally, service level at all demand 

centers is set to 95% level. 

The average CPU time to solve these problems was 183 

seconds with values ranging from 86 to 269 seconds. In all 

the problems, priorities 1 and 2 were fully achieved while 

priorities 3 through 6 were achieved at various levels. In 

order to perform site selection analysis, the location 

patterns for all test problems are shown in Table 5.15. From 



142 

examining these locational variables, four observations are 

made: 

MEAN 

100 

200 

300 

400 

500 

600 

TABLE 5.15 

THE DESIGN AND PARTIAL SOLUTIONS OF THE TEST PROBLEMS 
FOR TYPE 3 SENSITIVITY ANALYSIS 

S.D. 10 

i ................................................. 
y , y 

3 4 

v ................................................. 
y , y 

3 4 

ix 

y , y 
~ 4 

xi i i 

y ,Y 
2 4 

xvii 

Y ,Y ,Y 
1 2 4 

xxi 

y , y , y 
1 2 4 

20 

ii 

vi 

x ......•..•...........•..............•............ 

y ,Y 
3 4 

xiv 

y , y 
2 4 

xviii 

xxii 

30 

iii 

y , y 
3 4 

vii 

xi 

y ,Y 
3 4 

xv 

y ,Y 
2 4 

xix 

Y ,Y ,Y 
1 2 4 

xx iii 

Y ,Y ,Y ,Y 
1 2 3 4 

40 

iv 

y , y 
3 4 

vi ii 

y , y 
3 4 

xii 

xvi 

xx 

y , y , y 
1 2 4 

xx iv 

NOTE: for each problem, mean and standard deviation of all 
demand centers are assumed equal. 

1) Site 4 is a candidate for establishing a new plant 

regardless of the variations in the demand parameters. This 

may be explained by the low fixed cost and relatively high 

capacity available for a plant at this site. 

2) Combinations of sites (1,4) and sites (1,3,4) are 
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selected only for a small range of variations in the 

parameters of the demand distribution (problems xii and xvi). 

3) Site 3 is preferred to site 2 for low demand 

requirements while site 2 is preferred to site 3 for larger 

demands. This may be explained by the combination of high 

priority of capacity goal and the larger capacity available 

at site 2. 

4) For relatively low demand requirements (eg. 

[100,102 ]), although the desired service level can be met by 

opening only one plant at any site, but in order to achieve 

the various priority goals, two site are selected by the 

algorithm. 

Next considering the allocations, in test problems i 

through ix, the proposed plant at site 4 supplies both demand 

centers 1 and 2, while the proposed plant at site 3 only 

supplies the demand center 3. Furthermore, for test problems 

x through xxiv, demand center 1 is usually serviced by a 

single plant, while demand centers 2 and 3 are supplied by 

multiple plants. 

Another observation is made regarding the capacity at 

site 4. With the exception of problem xvi, the upper 

capacity limit for the plant at this site is always reached 

for problems x through xxiv. This suggests the potential of 

increasing the plant capacity at this site to improve the 

solution. Therefore, further analysis may be performed by 

increasing the capacity at site 4. 
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Next, to examine the effects of unequal demands on the 

location-allocation decisions of the current system, and to 

compare the results with the earlier case of equal demands, 

24 more test problems are designed. Each problem in the new 

set corresponds to a problem in the former set through a 

constraint on the total demand generated. That is, although 

the demands for the new problems are not equally distributed 

among the three demand centers, their total deterministic 

equivalent value is equal to the total equivalent 

deterministic demand obtained from the former set (case of 

equal demands). Therefore, the total demand for each test 

problem is divided into three unequal parts, one for each 

demand center. The unequal demands are selected such that 

they represent low, medium, and high demands. For instance, 

the equal demands of 450 units (this is the deterministic 

equivalent) at each demand center are arbitrary divided to 

demands of 220 units, 440 units and 690 units. The unequal 

demands are then arbitrary assigned to the three demand 

centers. A comparison of the location-allocation decisions 

between the cases of equal and unequal demands can then be 

accomplished. 

Analyzing the locational decisions, all the new problems 

produced the same locational patterns as their counterparts, 

except for the problem xi which indicated selection of site 

1 instead of site 3. This illustrates that the locational 

decisions for this problem are more sensitive to the total 

demand as opposed to an uneven allocation of the demand. 
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Regarding the allocations, half of the new problems produced 

allocation patterns which were different from the earlier 

cases of equal demands. The different allocation assignments 

occurred mainly for the problems in the high total demand 

category (Problems ix,xi,xiii,xiv,xvi,xvii,xviii,xix,xx,xxi, 

xxiii,xxiv). This may be explained by the large demand of 

one demand center in each of these problems. As stated 

previously in establishing these problems, the unequal 

demands were selected such that three levels of demands can 

be distinguished; low, medium, and high. Now, the different 

allocation patterns may be explained by the fact that the 

high demand at one of the demand centers is greater than the 

available capacity (total or remaining capacity) in the 

other supplying plant(s). As a result, new or alternative 

allocation assignments are required. Therefore, the modified 

allocation patterns are mainly due to the larger demands and 

capacity constraints. 

Computational Difficulties 

A common problem inherent in algorithms requiring a 

large number of iterations is the cumulative round-off error. 

This problem was encountered several times in the course of 

validating and performing computational analysis for the 

algorithms proposed in this research. The effects of 

round-off errors have varied from obtaining infeasible 

solutions to feasible but dominated solutions. To overcome 
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this difficulty and obtain optimal solutions, the accuracy of 

the real type variables was increased at the expense of 

computational speed and computer storage. Originally, the 

real type variables were changed to double precision 

variables. This increased the number of significant digits 

of real type variables from 11-12 to 14-16. However, this 

still proved to be inadequate for the illustrative example 

presented in this chapter. As a consequence, the definition 

of these variables was changed to extended variables. 

Extended type variables provide 19-20 significant digits for 

the real type variables. 

Another difficulty encountered, as discussed previously 

in Test Problem 3, was the selection of M value for the 

system constraints. These constraints insure that allocation 

of products are made from open facilities. It was 

experienced that selection of relatively large values for M 

can lead to round-off errors in the simplex iterations. 

Finally, the usually large coefficients of location 

variables in the total.cost goal may contribute to 

computational errors in the simplex iterations. This point 

was discussed and illustrated earlier in analyzing the Test 

Problem 3. Thus, in order to insure the accuracy of the 

results, it is recommended that these models be solved both 

with and without the total cost goal. Then the results of 

these two formulations may be compared to determine if errors 

have occurred. Specifically, use the decision variables 

obtained from the latter formulation (formulation without 



total cost goal) to evaluate the total cost goal. Then, 

compare the goal achievement levels of both formulations. 

If the solution from the latter formulation dominates the 

solution from the former one, errors have occurred, so we 

select the nondominated solution as the optimal solution. 

Summary 
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This chapter presented the validation and computational 

analysis of the models developed in this research. To 

validate the algorithms and computer programs, various test 

problems from the literature were selected and solved. 

Results for three test problems were presented. In all cases 

the program performed well by reproducing the documented 

results. Furthermore, in two of the above three cases the 

developed algorithms performed better by dominating the 

reported solutions, and finding the true optimal solutions. 

Next, in order to demonstrate the formulation and solution 

procedures of the proposed models and to obtain computational 

experiments with them, a hypothetical problem was presented. 

The problem was solved using both models. Sensitivity 

analysis of the SMOLAP was demonstrated through analysis of 

model A. Finally the computational difficulties encountered 

were discussed. 



CHAPTER VI 

INTERACTIVE COMPUTER PROGRAM 

Introduction 

In order to experiment with the proposed models, an 

interactive computer program is developed. The program is 

written in TURBO PASCAL 5.0 and runs on IBM compatible 

microcomputers with at least 640 KB memory. The program 

consists of three main modules; data base management 

utilities, solution algorithms, and sensitivity analysis. 

The following sections present a description of the program 

structure and the main features of each module. 

General Structure of the Program 

Figure 6.1 depicts the general structure of the computer 

program. The program operates through two menu systems; the 

main menu and the sensitivity analysis menu. Figure 6.2 

presents the display of the main menu system. The main menu 

presents options regarding data base management, solution 

algorithms, and the ·option to access the sensitivity analysis 

menu. The current model name (last model loaded or created) 

is displayed on the top right hand side of the menu screen. 

Also, displayed is the model type; deterministic, chance-
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constrained, or stochastic. 

Sensitivity 
Analysis Main Program 

Data Base 
Management 

Solution 
Algorithms 

Figure 6.1. General Structure of the Computer Program 

SMOLAP - Decision Support System 

DATA BASE UTILITIES: 

[AJ Create a New Model 
[BJ Retrieve an Existing Model 
[CJ Save current Model 
[D] Display Current Model 

SYSTEM ANALYSIS: 

[EJ Continuous Solution 
[F] Integer Solution 
[GJ Nonlinear Solution 
[HJ Sensitivity Analysis 

[IJ EXIT 

Enter Option -1> 

Current Model > None 
Type: None 

Figure 6.2. Display of the Main Menu 

149 
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The program validates all the user inputs and checks for 

the out of sequence selection of menu items. For example, 

the sensitivity analysis option can not be selected before a 

model is created or loaded from storage and a solution is 

obtained for it. Furthermore, the last line of the screen is 

reserved mainly for soliciting inputs from the user and 

displaying various messages. 

Data Base Management Module 

This module presents to the user the capability of 

creating a new model, recalling an existing model, saving the 

current model,or displaying the data pertaining to the 

current model. The structure of this module is depicted in 

Figure 6.3. 

To create a new model the user selects option A from the 

main menu. Then, the program requests the model type. There 

are three model types possible; Deterministic (D), Chance­

Constrained (C), and Stochastic (S). Next, based on the user 

response, the program presents a data entry screen 

appropriate for the specified model type. In general, the 

user is required to provide three sets of information; 

information regarding priorities, information for non-zero 

technological coefficients, and information on the right hand 

side values. However, the information required for the last 

category differs based on the model type selected. Figure 

6.4 presents a typical data entry screen for the 

deterministic models. 



r ................................................................ 1 

; Stochastic ; 
: Hodel : 
L ............................................................... _j 

Load 
a Model 

r ..................................................................... 1 

; Deterministic; 
: Hodel : 
L ................................................................... j 

Create a New 
Model 

Data Base 
Management 

Display 
Current Model 

r ..................................................................... 1 
: Chance- : 
; Constrained ; 
= Hodel = L. .................................................................... J 

Save 
Current Model 
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Figure 6.3. Structure of the Data Base Management Module 

CREATE A NEW MODEL 

Type: Deterministic 

SET 1 - PRIORITY STRUCTURE: 

Sign 'P' or 'N' ~-~ 
Row Number ~ 

Priority ~ 
Weight ~ 

SET 2 - TECHNOLOGICAL COEFFICIENTS: 

Row Number ~ 

Column Number ~ 

Coefficient ~ 

SET 3 - CONST. SIGN AND RHS VALUES: 

Sign for Constraint 1 ~~ 
RHS for Constraint 1 ~~ 

Save This Model? (Y/N) -~ 

HELP 
SET 1 
0 < ROW s 30 
0 < Priority s 10 
0 < Weight 
SET 2 
0 < ROW s 30 
o < Variable s 30 
O < Coefficient 
SET 3 

Sign 
E • • • • • • = 
G • • • • • • 2::: 

L • • . . • . ::s 
B ...... GOAL 

RHS 2::: 0 

Figure 6.4. Display of the Deterministic Input Data Screen 
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The window on the right hand side of the input screen 

provides help for data entries. Data for technological 

coefficients in SET 2 may be entered either row wise or 

column wise. In either case, the program always sorts this 

data columnwise for use by the solution algorithms. 

After a complete set of information is entered for a 

given category the user can switch to the subsequent class 

just by pressing carriage return in response to the first 

question of the current category. Furthermore, the program 

checks the validity and the range of data for all entries. 

The program requires minimum input data from the user. This 

is accomplished by calculating some of the information such 

as number of rows, variables, and priorities from other input 

data. All inputs to the program are converted into an 

appropriate format for use by the solution algorithms. 

Finally, the present definition of array dimensions in the 

program allows a user to input and solve problems with up to 

30 variables, 30 constraints (goals) and 10 priorities. To 

solve larger problems it is necessary to increase these 

dimensions. However, when modifying these dimension 

settings, special attention must be made to allow memory for 

dynamic variables. These variables are used by the branch 

and bound routine to obtain integer solutions. Insufficient 

memory allocation for dynamic variables can result in out of 

Memory error in the course of obtaining an integer solution. 
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Solution Algorithms Module 

This module is capable of obtaining a continuous or an 

integer (pure, mixed, zero-one) solution for a given model. 

In addition, the pattern search algorithm in this module 

finds solutions to single objective unconstrained problems. 

The structure of this module is depicted in Figure 6.5. 

r-··-..... __ ,, ___ ........ -...................... 1 

; Continuous ; 
: Solution : 
L_ ....................... T ...... -......... -.......... J 

Revised Simplex 
With Product 

Form of Inverse 

r-........ -........................................................ , 
; Pure Integer ; 

Solution 
L ..................................................................... J 

Solution 
Algorithins 

Branch-and­
Bound Routine 

r····••oo•oooo ...................................................... , 

; Zero-One ; 
: Solution : 
L ..................................................................... J 

r ................................ -.. -...... -........... , 
; Nonlinear ; 
: Models : 
L ......................... 'f.-........................... J 

Pattern 
Search 

r .......................................................................... , 
; Mixed Integer ; 

Solution 
L .......................................................................... J 

Figure 6.5. Structure of Solution Algorithm Module 

The continuous solution algorithm is based on the 

modified simplex algorithm for preemptive GP problems by Lee 

(1972). However, for computer storage conservation and 

computational accuracy, the algorithm takes advantage of the 

revised simplex method and utilizing the product form of the 

inverse in finding the optimal solutions. Specifically, the 
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revised simplex method uses the original data to calculate 

the Z - C 's and updated columns, Y 's, which tends to 
j j k 

reduce the round-off errors. Figure 6.6 presents a sample 

output screen representing a continuous solution for a given 

problem. The output consists of three major parts: Analysis 

of multiple objectives which provides underachievement of all 

priorities, analysis of decision variables which reports the 

value for all decision variables, and analysis of deviational 

variables which provides positive and negative deviations for 

all goal and system constraints. 

Furthermore, this module employs a branch-and-bound 

routine to drive pure or mixed integer solutions. The mixed 

integer solutions are made possible by allowing the DM to 

mark the variables with integer requirements through an 

interactive menu system. The primary data structure used in 

this routine is a binary tree. The zero-one requirements 

are handled through proper problem formulation and the 

branch-and-bound algorithm. In searching for an integer 

solution, the branch-and-bound routine employs a depth-first 

strategy. In this approach, the program attempts to go 

deeper and deeper into the tree before examining neighboring 

nodes. This strategy is employed in hope of establishing a 

tight upper bound early in the search for the optimal integer 

solution. A good upper bound can facilitate pruning the 

branches of the binary tree. 

Finally, a modified pattern search based on the Hooke 

and Jeeves algorithm is used to solve the nonlinear models of 



stochastic formulation. 

Continuous Solution 

ANALYSIS 
Priority 

1 

OF MULTIPLE OBJECTIVES 

2 
3 

Under-Achievement 
o.oo 
0.00 
2.80 

ANALYSIS OF DECISION VARIABLES 
x( 1)= 3.80 
x( 2)= 2.00 

ANALYSIS OF 
Const./Goal 

1 

DEVIATIONAL VARIABLES 

2 
3 

# d-
0. 00 
o.oo 
2.80 

Print? (Y/N) -1> 

RUN STATUS 
Iteration ....•... 2 
CPU. . . . . . . . •. • 0. 05 S 

Model Name > Test 

d+ 
o.oo 
0.00 
o.oo 
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Figure 6.6. Sample Output Screen for Continuous Solution 

Managing the computer storage and execution time for 

integer solutions is particularly important. In order to 

reduce the demand on virtual storage, the branch-and-bound 

procedure takes advantage of the dynamic variables. These 

variables allow for the nodes to be allocated and disposed as 

necessary in finding an integer solution. This will enables 

the program to handle larger integer problems. On the other 

hand, in order to speed the execution time and reduce 

computer storage, tighter upper bounds are established for 
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problems containing only goal constraints. This is 

accomplished by first solving the continuous problem and then 

rounding the variables with integer requirement to their 

nearest integer values. Next, the upper bound is determined 

by calculating the achievement function for these new 

variables. In course of validating and experimenting with 

the program, this was proved to be very effective in solving 

multiobjective integer problems with only goal constraints. 

Moreover, after solving a subproblem at a node and selecting 

the next node, a dominance test is performed at the new node 

before solving its subproblem. The branch at this new node 

is pruned if the objective vector at this node is dominated 

by the upper bound. This test compares the set of 

achievement levels at the current node with the upper bound. 

If the current solution dominates the upper bound the 

solution continues, otherwise the selected node is terminated 

(disposed) and the search continues by selecting a new node. 

The selection of nodes follows the LIFO rule. 

Next, during the execution of this module a window on 

the right hand side of the screen will inform the user of the 

status of the program. In the case of continuous and 

nonlinear solutions this information includes current 

iteration number, execution time in seconds, and the name of 

the model under study. Additionally, for integer solutions, 

the program also displays total number of nodes generated, 

total number of nodes evaluated, and the number of times the 
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upper bound is updated. To be more specific, number of 

iterations refers to the number of pivots performed in the 

modified simplex tableau, number of nodes generated indicates 

how many nodes are created for the branch-and-bound tree, 

number of nodes evaluated means how many nodes from the 

latter set are currently being evaluated explicitly, and 

number of upper bound updated indicates the number of 

solutions obtained in course of finding the optimal solution 

which satisfies the integer requirements and dominate the 

existing upper bound. Of course, in case of such solutions 

the upper bound will be updated to reflect the new 

achievement vector. 

Sensitivity Analysis Module 

This module presents four options to assist the DM in 

making an intelligent trade-offs among various objectives. 

The structure of this module is shown in Figure 6.7. Figure 

6.8 presents the display of the sensitivity analysis menu. 

There are four options available: list actual vs. desired 

goals, perform trade-off analysis, change priority structure, 

and change right hand side of the goals or rigid constraints. 

While the first two options assist in determination of the 

appropriate changes, the last two options are used to 

actually accomplish the necessary modifications in the model. 

More specifically, the trade-off analysis lists the 

conflicting objectives and displays the marginal substitution 

rates (MSR) for each pair. So, this value is calculated only 
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for conflicting objectives. The conflicting objectives in 

the modified simplex tableau are identified by the sign of 

their ZJ- XJ's in the objective column. The ZJ- CJ of the 

higher priority goal will be negative while this value will 

be positive for the lower priority goal. 

Change 
Priority 
Structure 

Actual vs. 
Desired Goals 

Sensitivity 
Analysis 

Trade-Off 
Analysis 

Change 
RHS Values 

Figure 6.7. Structure of the Sensitivity Analysis Module 



Sensitivity Analysis 

[A] List Actual vs. Desired Goals 
[B] Perform Trade-Off Analysis 
[C] Change Priority Structure 

Current Model > None 
Type: None 

[D] Change RHS of Goal/Real Constraints 

[E] Return to Main Menu 

Enter Option -1> 

Figure 6.8. Display of the Sensitivity Analysis Menu 

The marginal substitution rate implies how much 
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achievement of a higher priority goal must be deteriorated so 

that the achievement level of the lower priority goal can be 

increased by one unit. Mathematically, this relationship can 

be stated as follows: 

MSR = - (Z -C ) /(Z -C ) 
j j m j j n 

Where m and n are conflicting goals and m>n (i.e. m 

indicates the higher priority goal). Obviously, if a goal 

conflicts with a system constraint, then its MSR is 

nonexistent. 
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Summary 

In this chapter the general structure of the computer 

program along with some of its main features was presented. 

Development of this software for use on a microcomputer 

greatly enhances the flexibility and convenience of its use. 

The program is designed such that it can be easily applied to 

other applications requiring multiple objective analysis 

without and modifications to the existing source codes. 

The source codes for the computer program, except for 

the procedure Update, are listed in Appendix C. In addition, 

Table C.1 provides the index to the units and procedures of 

the program. The next chapter presents a summary, 

conclusion, and future studies for this research problem. 



CHAPTER VII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

This research has explored the effects of variability of 

demand in the multiple objective analysis of location­

allocation models. As the result, two multiobjective models 

based on chance-constrained programming and stochastic 

programming were developed. A solution algorithm based on 

chance-constrained goal programming was proposed for the 

former model. A two-stage algorithm was suggested for 

dealing with the nonlinear goal programming structure of the 

latter model. Both algorithms produce an optimal solution 

for their respective models. 

Next, in order to experiment with the proposed models, 

an interactive computer program was written. Development of 

this interactive computer program on a microcomputer adds 

to the convenience and ease of use of the proposed solution 

algorithms by a decision maker. Although the software 

developed in this research is used mainly to analyze the 

multi-objective LAPs with stochastic demands, its general 

structure allows for the solution and sensitivity analysis of 

other multiobjective models without requiring any 
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modifications to the existing codes. Finally, the solution 

algorithms and the different sensitivity analysis of the 

proposed models were demonstrated through an example problem. 

Conclusions 

From the analysis of the stochastic multiobjective 

location-allocation problem {SMOLAP) in Chapter V, optimal 

location of facilities and their optimal allocation of 

products to the demand centers are greatly influenced by the 

priority structure of the multiple objectives, their goal 

levels, and the demand distribution. Therefore, inclusion of 

stochastic demand into the analysis of multiobjective LAPs 

has provided for a more comprehensive treatment of these 

problems. Furthermore, it was shown that based on the data 

available and the decision maker's preference, different 

models may be established to analyze SMOLAP's. 

The application of the nonlinear multiobjective pattern 

search as presented by Ignizio {1976) to allocation 

subproblems of model B was not successful. Also, initial 

experimentation with modifying step sizes, error levels (o), 

initial starting point, and convergence criteria did not 

prove encouraging. 

The models developed in this research can be easily 

extended to incorporate multiple products through 

reformulation of the problem. The approach, except for 

handling the random demand, is basically equivalent to the 

one already suggested for single objective deterministic 
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LAP's. This is accomplished by defining the N demand centers 

and the M potential plants appropriately. For instance, 

demand centers j and j+l may be defined to refer to the same 

physical demand center but, indicating the requirement for 

two different commodities at that location. Similarly, we 

can introduce K artificial facilities at site i to represent 

the source of K different commodities (services) at site i. 

Now, the stochastic demand for each product can be specified 

separately at each destination and the problem can be 

formulated and solved using one of the methods presented 

earlier. However, the drawback of this technique is that the 

problem size increases significantly with an increase in the 

number of products. 

Finally, the proposed models may be extended to employ 

other important objectives or different demand distributions. 

The next section will present some of the possible extensions 

to this research study. 

Recommendations for Future Research 

Several recommendations can be made with regard to the 

proposed models and further research in this area. But, 

first, there are two recommendations for improving the 

developed software. 

It is recommended to enhance the existing interactive 

computer program with a graphic system. The graphic system 

can facilitate the process of multi-objective decision making 



by conveying the trade-off information effectively to the 

decision maker. 
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The computational speed of the developed software may be 

improved by devising and implementing more efficient 

selection and branching rules for the branch-and-bound 

routine. Furthermore, larger problems may be solved by 

allowing the use of auxiliary storage devices to store the 

intermediate results. 

It is recommended to include inventory carryovers and 

backorders into the proposed models. Inclusion of these 

dynamic aspects will enable the analyst to study the behavior 

of the system over some predetermined planning horizon. 

Another possibility is to study the effect of randomness 

in other factors such as capacity (supply), transportation 

costs, and fixed costs for the models developed in this 

research. Additionally, the dimension of price sensitivity 

can be added to the stochastic demand. 

Further analysis of the proposed models can be made by 

incorporating other characteristics of the LAP, such as the 

interaction among facilities at potential locations and the 

presence of existing facilities in the system. 

The possibility of deriving a linear approximation for 

the nonlinear cost function of model B should be examined. 

This can result in simpler linear models. The goodness of 

this approximation can then be verified by comparing its 

results with the optimal solution. 

Another area of further research is development of an 



alternate optimal seeking algorithm to solve the nonlinear 

integer multi-objective programming problem of model B. 
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Application and effectiveness of other nonlinear 

techniques such as the Rosenbrock's method with variable 

search directions, Nelder and Mead's "simplex method", or a 

modification of the existing pattern search method for the 

solution of model B and in general for the solution of the 

nonlinear goal programming models should be explored. 

Investigate other multicriteria approaches, such as 

compromise programming and linear multiobjective programming, 

for the solution of the SMOLAP. 

Multiobjective formulation and analysis of distribution 

systems where location of warehouses are to be determined in 

relation to existing suppliers and demand centers is another 

potential area for future study. 

Finally, further research could be conducted to develop 

heuristic procedures for the nonlinear integer programing and 

nonlinear integer multiobjective programming problems. 
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TABLE A.1 

TEST PROBLEM 1 INPUT DATA 

(Green, Kim, and Lee 1981) 

N0 1 x1 x2 x3 x4 x5 x6 x7 XS X9 x10 x11 x12 RHS TYPE 

1 85 438 165 275 63 155 50 77 298 90 120 74 750 B2 

2 126 210 363 240 122 340 320 203 210 135 388 177 900 B 
3 1 1 1 B 
4 1 1 1 B 
5 1 1 1 B 
6 1 1 1 B 
7 1 -1 0 B 
8 1 1 1 1 2 B 
9 1 1 1 1 1 B 

10 1. 8 1. 6 2.1 1.9 2.1 4.8 4.1 4.1 3.5 4.4 3.3 1.2 0 B 

1The constraint numbers correspond to the subscript of the 
deviational variables. 

2Type B refers to goal constraints. 

Achievement Function: 

6 

Min Z = 
- pd+ l d~ pd+ pd+ pd+ Pd + + p + + pd + + 

1 1 2 2 3 4 7 5 a 6 9 7 10 
i=3 
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TABLE A.2 

TEST PROBLEM 2 INPUT DATA 

(Lee and Franz 1979) 

NO x11 x21 x31 x41 x51 x12 x22 x32 x42 x52 x13 x23 x33 x43 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 
4 
5 
6 1 1 1 
7 1 1 1 
8 1 1 1 
9 1 1 1 

10 1 1 
11 1 1 
12 200 180 50 35 210 110 90 200 160 35 40 40 225 250 
13 200 280 50 35 210 110 90 200 160 35 40 40 225 250 
14 1 1 1 
15 1 1 1 
16 1 1 1 
17 1 1 1 
18 1 1 
19 
20 
21 
22 
23 
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TABLE A.2 (Continued) 

NO x53 x14 x24 x34 x44 x54 
Yo 

1 
Yo 

2 
Yo 

3 
Yo 

4 
Yo 

5 RHS TYPE 

1 400 B 
2 300 B 
3 1 200 B 
4 1 1 1 1 1 100 B 
5 825 750 600 600 650 1300 B 
6 1 600 B 
7 1 600 B 
8 1 480 B 
9 1 480 B 

10 1 1 800 B 
11 50 B 
12 125 90 80 25 35 50 825a 750a 600a 600a 650a 0 B 
13 125 90 80 25 35 50 0 B 
14 1 -3000 0 Lb 

15 1 -3000 0 L 
16 1 -3000 0 L 
17 1 -3000 0 L 
18 1 1 -3000 0 L 
19 1 1 L 
20 1 1 L 
21 1 1 L 
22 1 1 L 
23 1 1 L 

0 These variables are specified to be integers (0 or 1) . 
aThese numbers must be multiplied by 1000. b 
Type L refers to less than or equal to constraints. 

Achievement Function: 

4 
pd+ 

10 + 
Min Z = p l d~ + + p l di + pd + pd++ pd+ 

1 2 5 3 4 11 5 12 6 13 
1 = 1 1=6 
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TABLE A.3 

TEST PROBLEM 3 INPUT DATA 

(Lee, Green, and Kim 1981) 

NO x11 x21 x31 x41 x51 x61 x12 x22 x32 x42 x52 x62 x13 x23 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 1 
4 
5 1 1 
6 
7 
8 
9 1 1 1 

10 1 1 1 
11 1 1 
12 1 1 
13 1 1 
14 1 1 
15 200 180 50 35 210 180 110 90 200 160 35 120 40 40 
16 200 280 50 35 210 180 110 90 200 160 35 120 40 40 
17 
18 
19 
20 
21 
22 
23 1 1 1 
24 1 1 1 
25 1 1 
26 1 1 
27 1 1 
28 1 1 
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TABLE A.3 (Continued) 

NO x33 x43 x53 x63 x14 x24 x34 x44 x54 x64 
yo 

1 
yo 

2 
yo 

3 

1 
2 
3 1 1 1 1 
4 1 1 1 1 1 1 
5 
6 825 750 600 
7 70 75 65 
8 1 1 1 
9 1 

10 1 
11 1 1 
12 1 1 
13 1 1 
14 1 1 • • • 15 225 250 125 60 90 80 25 35 50 50 825 750 600 
16 225 250 125 60 90 80 25 35 50 50 
17 1 
18 1 
19 1 
20 
21 
22 
23 1 -3000 
24 1 -3000 
25 1 1 -3000 
26 1 1 
27 1 1 
28 1 1 



1 

NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

TABLE A.3 (Continued) 

Yo 
4 

600 
80 

1 

600 

1 

• 

-3000 

Yo 
5 

650 
50 

1 

650 

1 

• 

-3000 

Yo 
6 

550 
70 

1 

550 

1 

• 

-3000 

RHS 

580 
420 
260 
150 

50 
2000 

600 
3 

600 
600 
500 
500 
800 
800 

0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 

TYPE 

B1 

B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
L2 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

Type B refers to goal constraints. 
2 Type L refers to less than or equal to constraints. 
0 These variables are specified to be integers (0 or 1). 
•These number must be multiplied by 1000. 

Achievement Function: 
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4 + 14 + + 
Min Z = P \' d- + Pd- + Pd + Pd + Pd- + P \' d 1 + Pd + 

1 L I 2 5 3 6 4 7 5 8 6 L 7 15 
i=l 1=9 

Pa+ 
8 16 
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APPROXIMATION TO THE CDF AND INVERSE CDF 

OF STANDARD NORMAL DISTRIBUTION 

Assume random variable X is normally distributed with 

mean µ and variance u 2 , then its density function can be 

written as follows: 

1 
f (x) exp [ 

1 
-2- -oo < x < 00 

where -oo < µ < oo and u 2 > o. A substitution of variables 

Z = (x-µ)/u -oo < z < oo 

results in Z's normally distributed with mean zero and 

standard deviation 1, i.e. standard normal distribution. 
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Next, the cumulative distribution function of random variable 

Z is: 

Y = P(z) = Prob (Z ~ z) = 1 

and the inverse cumulative distribution function is: 

-1 
Z = F (y) • 

The value of the above inverse CDF for various y values or 

the value of the above probability distribution function for 

different z values are available from normal tables. However 

two formulas to approximate the inverse CDF and CDF is given 

by Hastings (1955) and are as follows: 

2 3 

z l a1w 
l 

I l b 1w 
l 

= w -
l = 0 l=O 

where: 

{ p = p ( z) for 0 < p (z) ~ 0.5 
w = /1n ( l/p2) 

p = 1-p(z) for p (z) > 0.5 



a= 2.515517 I b= 1. 0 
0 0 

a= 0.802853 I b= 1.432788 
1 1 

a= 0.010328 I b= 0.189269 I 2 2 

and the maximum, error is 0.00045. 

Next, the approximation for CDF is: 

5 

P ( z) = 1 - f ( z) l a 1 w1 z ::!:: 0 
l = 1 

where: 

f (z) 
z2 

= exp (- ~ ) I ~ 

-1 
w = [1+(0.2316419) z ] 

a= 0.3193815 
1 

a= - 0.3565638 
2 

a= 1.781478 
3 

a= -1.821256 
4 

a=l.330274 
5 

and the maximum error is 0.0000001. 
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b= 0.001308. 
3 
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TABLE C.1 

INDEX TO PROGRAM UNITS AND PROCEDURES 

Units and Procedures Name 

PROGRAM SMLAP ... . 
EXECUTEPROGRAM .. . 

Setup ....... . 
FindPivotColumn .. 
FindPivotRow. 
Update ....... . 
ComputeResult. 

ExecuteProgram ..... . 

BRANCHBOUND .. 
IndexFrac .. 
UpdateUB .. 
InitialUB .. 
CheckPriority. 
GetLeaf ... 

BranchBound .. 
Smlap ......... . 

UNIT smlautil .... 
PATTERNSEARCH .. 

Normal CDF .. 
MultiObjective .. 
Compare .......... . 

PatternSearch. 

Uppercase. 
Cursor ..... 
LineDraw .. 
Blank ... 
DrawBox. 
Message. 
Input Integer .. 
InputReal .. 
InputChar .. 
Linecount ......... . 
Saveinput .. 
SortCoef ... 

Unit dbasutil .. 
NinvCDF .. 
UinvCDF ......... . 
CREATEDATABASE. 

Stochastic ... 
ChanceConst. 
InputData .... 

CreateDataBase. 

Page 

193 
193 
193 
196 
198 
198 
199 
200 

202 
202 
203 
204 
205 
206 
206 
209 

219 
220 
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221 
221 
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226 
227 
227 
227 
228 
228 
229 
230 
231 
231 
232 
232 

233 
233 
233 
234 
234 
237 
240 
244 
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TABLE C.l (continued) 

Units and Procedures Name 

LoadDataBase .. 
SaveDataBase. 
DisplayDataBase .. 
OutputResul t .. 
FinalZj_Cj .. . 
SENSIANALY ... . 

ListAchievrot .. 
TradeoffAnly .. 
ChangePri .. 
ChangeRhs. 

SensiAnaly ... 

Page 

246 
247 
249 
253 
254 
255 
256 
256 
258 
259 
262 
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{----------------------------------------------------------------------} 
{ } 
{ SMOLAP } 
{ } 
{ This interactive, menu driven program allows for the solution and } 
{ sensitivity analysis of the integer, stochastic, multicriterion } 
{ optimization problems. Additionally, a nonlinear routine is provided} 
{ for the solution of the model B facility location-allocation problem } 
{developed in this research. The program is written in Borland's } 
{Turbo Pascal 5.0. } 
{ } 
{----------------------------------------------------------------------} 
{ Written By } 
{ } 
{ MORTEZA ABTAHI } 
{ } 
{ School of Industrial Engineering and Management } 
{ Oklahoma State University } 
{ Stillwater, Oklahoma 74078 } 
{ July 1989 } 
{----------------------------------------------------------------------} 
{ } 
{ Uni ts and Procedures Descriptions } 
{ -------------------- ------------ } 

{ PROGRAM smlap } 
{ ExecuteProgram ....... Finds a continuous solution. } 
{ Setup ............. Prepares data for preemptive goal programming.} 
{ FindPivotColumn ... Finds the pivot column. } 
{ FindPivotRow ...... Finds the Pivot row. } 
{ Update ............ Updates the modified simplex tableau. } 
{ ComputeResult ..... Calculates the output variables. } 
{ BranchBound } 
{ IndexFrac ......... Reports the index of non-integer variable. } 
{ UpdateUB .......... Updates the upper bound. } 
{ InitialUB ......... Calculates the initial upper bound. } 
{ CheckPriority ..... Compares current priorities with upper bound. } 
{ GetLeaf ........... Selects a node on the branch-and-bound tree. } 
{ } 
{ UNIT smlautil } 
{ PatternSearch ........ Modified Hooke and Jeeves pattern search. } 
{ NormalCDF ......... Computes 1-CDF and density of the normal dist.} 
{ MultiObjective .... Calculates multiple objectives for a point. } 
{ Compare ........... Tests if current solution is better than UB } 
{ Uppercase ............ Returns upper case of the input string. } 
{ Cursor ............... Turns the cursor On or Off. } 
{ LineDraw ............. Draws a line. } 
{ Blank ................ Blanks a specified entry. } 
{ DrawBox .............. Draws a box on the screen. } 
{ Message .............. Displays a message on the last line of screen.} 
{ Inputinteger ......... Accepts a valid integer number. } 
{ InputReal ............ Accepts a valid real number. } 
{ InputChar ............ Accepts a valid character. } 
{ LineCount ............ Counts number of lines displayed on screen. } 
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{ Saveinput ............ Saves the necessary input information. } 
{ SortCoef ............. Sorts the input coefficients columnwise. } 
{ } 
{ UNIT dbasutil } 
{ NinvCDF .............. Inverse cumulative density function of normal.} 
{ UinvCDF .............. Inverse cumulative density function of uniform} 
{ CreateDataBase ....... Allows the user to input a new model. } 
{ Stochastic ........ Accepts inputs for stochastic model } 
{ ChanceConst ....... Accepts inputs for chance-constrained model } 
{ InputData ......... Inquires input data from the user. } 
{ LoadDataBase ......... Loads an existing model from disk. } 
{ SaveDataBase ......... Saves the current model to disk. } 
{ DisplayDataBase ...... Displays the current model. } 
{ OutputResult ......... Sends results to screen or printer. } 
{ FinalZj_Cj ........... Calculates and stores the optimum Zj-Cj matrix} 
{ SensiAnaly ........... Performs various sensitivity analysis. } 
{ ListAchievmt ...... Lists the achievements. } 
{ TradeoffAnly ...... Performs trade-off analysis. } 
{ ChangePri ......... Changes the priority structure. } 
{ ChangeRhs ......... Changes deterministic or probabilistic RHSs. } 
{----------------------------------------------------------------------} 
{ } 
{ Definition of Variables } 
{ ----------------------- } 
{ coef - array of coefficient. } 
{ coefficient - record containing the row number, column number, and } 
{ value of technological coefficients. } 
{ csign array containing the sign (B, E, G, L) of constraints. } 
{ elapsed - CPU time in second to find a solution. } 
{ filename - string representing the models name. } 
{ obj - array of objective record. } 
{ objective - record containing sign, row number, priority, and weight } 
{ of deviations in the achievement function. } 
{ ncols - number of columns (negative deviations, positive } 
{ deviations, and decision variables). } 
{ nelemty - number of elementary matrices. } 
{ niteration- number of iterations. } 
{ npdvs - number of positive deviations. } 
{ nprt - number of priorities. } 
{ nrows - number of rows. } 
{ ntc - number of technological variables. } 
{ nvars - number of decision variables. } 
{ opyZjCj - matrix of optimum ZJ-Cj values. } 
{ pcol - index for the pivot column. } 
{ prow - index for the pivot row. } 
{ pw - array of value. contains priority number and weight for } 
{ all the variables. } 
{ pwBasis - array of value. Contains priority number and weight for } 
{ variables in the basis. } 
{ rhs - array of right hand side values } 
{ rhsF - array of values for optimal solution. } 
{ tprt - number of deviations in achievement function. } 

· { value - record containing priority number and weight of } 



193 

{ deviational variables 
{ ubUpdate number of times upper bound is updated in integer routine} 
{ zmax - maximum Zi-Cj value. } 
{----------------------------------------------------------------------} 

PROGRAM smlap; 

USES CRT,DOS,PRINTER,smlaUtil,dbasUtil; 
LABEL a; 
VAR 

tempFilename: 
xl, yl: 

STRING [ 10]; 
BYTE; 

{······································································} 
{ * ExecuteProgram *} 

{······································································} 
PROCEDURE ExecuteProgram; 

LABEL a,b; 
VAR 

store: 
priority!: 

BYTE; 
EXTENDED; 

{*·····································································} 
{* Setup *} 

{······································································} 
PROCEDURE setup; 

BEGIN 

{ Calculate number of positive deviational variables (surplus) } 

npdvs: = O; 
FOR i:= 1 TO nrows DO 

IF((csign[i] = 'G' )OR(csign[i] = 'B' )) THEN INC(npdvs, 1); 

{ Calculate number of columns } 

ncols := nrows + npdvs + nvars; 

{ Initialization phase } 

FOR j:= 1 TO ncols DO 
BEGIN 

pw[j].priority:= O; 
pw[j].weight:= 0.0; 
currentBasic[j):= O;{Will contain the index of basic columns} 

END; 

FOR i:= 1 TO nrows DO 
pdevc [ i ] : = 0; 

{ Set up the initial tableau. A negative deviational variable 
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(artificial slack) will be added to "G" and "E" type constraints 
to form the initial basis. These variables will be placed at 
priority 1 for minimization. In this case all other priorities 
will be shifted down by 1. priority 1 must be completely 
satisfied (minimized to zero) for a feasible solution to exist. } 

flgl:= FALSE; {Indicates if artificial slacks are added to problem} 
npdvs:= O; 
FOR i:= 1 TO nrows DO 

BEGIN 
basicCol[i] := i; { Array of size nrows } 
CASE csign(i] OF 

'E': 
{ System constraint is of strict equality type. No deviations present } 

BEGIN 
pw[i].priority 
pw[i]. weight 
flgl : = TRUE; 

END; 
, G': 

1; 
: = 1. O; 

{ System constraint is of >= type. Only positive deviation is presenl } 
BEGIN 

, B': 

pw[i].priority 
pw[i].weight 
INC(npdvs, 1); 
pdevc[i] := nrows 
flgl : = TRUE; 

END; 

1. 
' 

1. O; 

+ npdvs; 

{ Goal constraint. Both positive and negative deviations are present } 
BEGIN 

INC(npdvs, 1); 
pdevc(i]:=nrows + npdvs; 

END; 

{ Otherwise it is a system constraint of 'L' (<= ) type. Only negative 
deviation is present. No action is required. } 

END 
END; 

{ End of case statement } 

{ If we have to include negative deviational variables 
(artificials) in case of 'E' and 'G' type constraints to form the 
initial basis, then we need to minimize these variables to zero 
at priority 1. So, we need to shift other priorities down by 1.} 

FOR i:= 1 TO tprt DO 
BEGIN 

rown := obj(i].row; 
CASE obj[i].sign OF 

'N': 
BEGIN 



'P': 

IF (flgl) THEN 
pw[rown].priority:= obj[i].priority + 1 

ELSE 
pw[rown].priority:= obj[i].priority; 

pw[rown].weight:= obj[i].weight; 
END; 

BEGIN 
IF (flgl) THEN 
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pw[pdevc[rown]].priority:= obj[i].priority + 1 
ELSE 

pw[pdevc[rown]].priority:= obj[i].priority; 
pw[pdevc[rown]].weight:= obj[i].weight; 

END 
END; 

END; 
{ End of case } 

IF(flgl)THEN INC(nprt,1); { Adjust for the additional priority } 

{ Set the priorities and weights of the initial basis } 

FOR i:= 1 TO nrows DO 
pwBasis[i]:= pw[i]; { Assigns both priority and weight } 

{ Information for negative deviations } 

FOR i:=l TO nrows DO 
BEGIN 

currentBasic[i]:= i; 
avalue[i]:= 1.0; 
arow[i]:=i; 
n(i]:= 1; 

END; 

{ Information for positive deviations } 

FOR j:=l TO npdvs DO 
BEGIN 

FOR i:=l TO nrows DO 
BEGIN 

IF(pdevc(i] = nrows+j) THEN 

END; 
END; 

BEGIN 
avalue[nrows+j]:=-1.0; 
arow[nrows+j]:=i; 
n[nrows+j]:=l; 

END; 

{ Information for decision variables } 

c: =nrows+npdvs; 
FOR i:=l TO nvars DO 



n [ c+ i]: =num [ i] ; 

FOR j:=l TO ntc DO 
BEGIN 

INC(c,1); 
avalue[c]:=coef[j].value; 
arow[c]:=coef[j].row; 

END; 
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{ Find starting position of each tableau column in 'avalue' array } 

start[l]:=l; 
FOR i:=Z TO ncols DO 

start[i]:=n[i-l]+start[i-1]; 

{ Set the right hand side values } 

FOR i:=l TO nrows DO 
rhsF[i]:= rhs[i]; 

END; { End of selup } 

{**********************************************************************} 
{* FindPivotColumn *} 

{**********************************************************************} 

PROCEDURE FindPivotColumn; 
LABEL s; 
VAR 

zjcj, tempZmax: EXTENDED; 

BEGIN 
zmax:=O.O; 
pcol:=O; 

FOR k:=l TO ncols DO 
BEGIN 

{Do not consider the column if its variable is already in basis} 

IF(currentBasic[k] <> 0) THEN GOTO s; 
WITH pw[k] DO 

BEGIN 
IF(((priority > O)AND(priority < p ))OR 

((priority= p)AND( weight> lw )))THEN GOTOs; 
END; 

{ Priority index of the current potential entering variable 
is either zero, higher than current priority being 
satisfied, or equal to with lower weight } 

{ Initialize the potential new basic column } 

FOR i:=l TO nrows DO 



y[i]:=O.O; 

{ Construct the original a column } 

FOR i:=start[k] TO start[k]+n[k]-1 DO 
y[arow[i]]:=avalue[i]; 

{ Update the 'a' column } 

IF (nelemty <> O)THEN 
BEGIN 

FOR i:=l TO nelemty DO 
BEGIN 

ar:=y[position[i]]; 
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y[position[i]]:=O.O; { This is the a-hat } 

END; 

IF(ABS(ar) > 1.0E-10) THEN 

END; 

BEGIN 
indxl:=ElCount[i]; 
indx2:=E1Count[i+l]-1; 
FOR j:=indxl TO indx2 DO 

END; 

BEGIN 
ij:=ElRow[j]; 
y[ij]:=y[ij]+ar*ElValue[j]; 

END; 

tempzmax:=O.O; 

{ Calculate zj-cj for the current variable and priority } 

FOR i:=l TO nrows DO 
IF(pwBasis[i].priority = p) THEN 

tempzmax:=tempzmax+pwBasis[i].weight • y[i]; 

{ If p equal to priority of variable at column k, 'Cj' is nonzero. 
Therefore, we have to subtract Cj to find Zj-Cj } 

IF(pw[k].priority = p)THEN tempzmax:=tempzmax-pw[k].weight; 
IF((tempzmax <= 1.0E-lO)OR(tempzmax <= zmax))THEN GOTOs; 

{ Check If the entering variable deteriorate higher priority goals} 

IF(p-1 > O)THEN 
BEGIN 

{ For priority 2 or higher } 

{ Consider all higher priorities up to p } 
FOR i:=l TO p-1 DO 

BEGIN 
zjcj:=O.O; 
FOR j:=1 TO nrows DO 

IF(pwBasis(j].priority =i)THEN 
zjcj:=zjcj+pwBasis[j).weight*y[j]; 



END; 

IF(zjcj < O.O)THEN GOTOs; 
END; 
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{ Update the maximum zjcj and its corresponding column and index } 

zmax:=tempzmax; 
FOR i:=l TO nrows DO 

x [ i ] : ::::y [ i ] ; 
pcol: =k; 

s: END; 
{ Pivot column } 

{ End of column loop } 
{ End of column } END; 

{······································································} 
{* FindPivotRow . } 
{······································································} 
PROCEDURE FindPivotRow; 

VAf{ 

mRatio, ratio, mWeight: 
mPriori ty: 

BEGIN 

{ Initialization } 

mRatio: =l. Oe20; 
mPriority:=O; 
mlJeight:=O.O; 
prow:=O; 

FOR i:=l TO nrows DO 
BEGIN 

IF(x[i] >l.OE-lO)THEN 
BEGIN 

EXTENDED; 
BYTE; 

ratio:=rhsF[i]/x[i]; 
IF((ratio<mRatio)OR 
((ratio=mRatio)AND(pwBasis[i).priority<mPriority))OR 
((ratio=mRatio)AND(pwBasis[i].priority=mPriority)AND 
(pwBasis[i].weight>mWeight)))THEN 

END; 
END; 

END; 

BEGIN 
mRatio:=ratio; 
prow: =i; 
mPriority:=pwBasis(i].priority; 
mlJeight:=pwBasis[i].weight; 

END; 

{ Pivoting row } 

{ End of procedure row } 

{······································································} 
{ * Update •} 

{······································································} 



PROCEDURE update; 
VAR 

yrk, d: 
count: 

EXTENDED; 
INTEGER; 

BEGIN 

{ This procedure updates the right hand side values and 
generates a new elementary matrix. The complete source code 
for this procedure is not provided. } 
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END; { End of procedure update } 

{······································································} 
{ • ComputeResul t •} 

<······································································} 
PROCEDURE ComputeResult; 

VAR 
tpos: ARRAY[l .. 50] OF EXTENDED; 

BEGIN 

{ If artificial slacks were added, priority 1 represents them and 
its value is zero ~t this stage. So, our original priorities 
start from index 2. } 

c: =l; 
IF(flgl)THEN c:=O; 

FOR p:=2-c TO nprt DO 
BEGIN 

prty[p]: =O. O; 
FOR i:=l TO nrows DO 

IF(pwBasis[i].priority = p)THEN 
prty[p):=prty[p)+pwBasis[i).weight*rhsF[i]; 

END; 

IF(flgl )THEN 
BEGIN 

DEC ( npr t , 1) ; 
FOR i:=l TO nprt DO 

prty[i]:=prty[i+l]; 
END; 

{ Decision variables } 

j: =O; 
FOR i:=nrows+npdvs+l TO ncols DO 

BEGIN 
INC(j, 1); 
IF(currentBasic(i] = O)THEN 

{ Original number of priority } 



decn[j]: =O. 0 
ELSE 

decn[j]:=rhsF[currentBasic[i]); 
END; 

{ Negative deviations } 

FOR i:=l TO nrows DO 
BEGIN 

IF(currentBasic[i] = O)THEN 
neg[i]:=O.O 

ELSE 
neg[i):=rhsF[currentBasic[i]); 

END; 

{ Positive Deviations } 

j:=O; 
FOR i:=nrows+l TO nrows+npdvs DO 

BEGIN 
INC(j, 1); 
IF(currentBasic[i] = O)THEN 

t po s [j ] : =O. 0 
ELSE 

tpos[j]:=rhsF[currentBasic[i]]; 
END; 

j: =O; 
FOR i:=l TO nrows DO 

BEGIN 
IF((csign[i] = 'G' )OR(csign[i] = 'B' ))THEN 

BEGIN 
INC(j,1); 
pos[i]:=tpos[j]; 

END 
ELSE 

pos [ i 1: =O; 
END; 
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END; { End of procedure ComputeResult } 

{ ...................................................................... } 
{. ExecuteProgram . } 
{ ...................................................................... } 

BEGIN 
setup; { Call Procedure setup } 

{ Initialize index variables } 

El Count [ 1]: =1; 
nelemty:=O; 
feasible:=TRUE; 

{ Number of elementary matrices } 
{ Indicates if the current solution is feasible } 

FOR p:= 1 TO nprt DO 



201 

BEGIN 

{ If artificial slacks were added for initial basis, then the 
added priority 1 must be zero For a feasible solution to exist } 

IF((flgl)AND(p=2))THEN 
BEGIN 

{ Calculate priority 1 } 

priorityl:=O.O; 
FOR i:=l TO nrows DO 

IF(pwBasis[i].priority=l)THEN 
priorityl:=priorityl+pwBasis[i].weight*rhsF[i]; 

IF(priorityl<>O)THEN 

END; 

BEGIN 
feasible:=FALSE; 
nprt: =orig_nprt; 
EXIT; 

END; 

{ Find the largest weight associated with highest priority in ll1c basis} 

b: 

lw:=O.O; 
{flg2 indicates a match between current priority & basis pr.} 
flg2: =FALSE; 

FOR i:= 1 TO nrows DO 
BEGIN 

IF(pwBasis[i].priority = p) THEN 
BEGIN 

flg2: =TRUE; 
IF(pwBasis[i].weight > lw) THEN 

lw:=pwBasis[i].weight; 
END; 

END; 

IF(NOT flg2) THEN GOTO a; 

{ Find the pivot column } 

FindPivotColumn; 
IF(pcol=O)THEN GOTO a; 

{ Find the pivot row } 

FindPivotRow; 
IF(prow=O)THEN GOTO a; 

INC(nlteration, l); 
GOTOXY ( 1 , 3 ) ; 

{ Examine the next priority } 

{ Call procedure column } 

{ Call procedure row } 

{ Update number of iterations } 
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a: 

WRITE(' Iteration ........ ', nI teration: 4); 

{ Update the basis by introducing the new variable } 

store:=basicCol[prow]; 
basicCol[prow]:=pcol; 
currentBasic[pcol]:=prow; 
currentBasic[store]:=O; 
pwBasis[prow]:=pw[pcol]; 

{ Update the tableau } 

update; 

GOTO b; { Next 
END; 

{ Call procedure update 

iteration for current priority 
{ End of the priority loop 

ComputeResul t; 
END; { End of ExecuteProgram 

} 

} 

} 

} 

{······································································} 
{ • BranchBound • } 

{······································································} 
PROCEDURE BranchBound; 

LABEL a, b; 
TYPE 

VAR 

nodePtr = 

leafNode = RECORD 
index: 
sign: 
rhs: 
nae: 
prty: 

END; 

index,leafCount,pdx: 
rhsL,rhsR,dif,lhs: 
decnUB,pd,nd: 
ptrArray: 
tempPtr,leftPtr,rightPtr: 
potlLeaf, flg4: 

hleafNode; 

ARRAY[l .. 20] OF BYTE; 
ARRAY[l .. 20] OF CHAR; 
ARRAY[l .. 20] OF EXTENDED; 
BYTE; 
ARRAY[l .. 20] OF EXTENDED; 

BYTE; 
EXTENDED; 
ARRAY[l .. 50] OF EXTENDED; 
ARRAY[l .. 200] OF nodePtr; 
nodePtr; 
BOOLEAN; 

{*********************************************••·······················} 
{ * indexFrac * } 
{**********************************************************************} 

FUNCTION indexFrac:BYTE; 

{ This function returns index of the variable with largest fraction } 

VAR 



ndx: 
maxFrac, tFrac: 

BYTE; 
EXTENDED; 

BEGIN 
maxFrac:=O.O; 
ndx: =O; 

{ Check to see if any of basic variables are fractional } 

FOR i:=l TO nvars DO 
BEGIN 

IF(decnType[i)=' I' )THEN 
BEGIN 

tFrac:=FRAC(decn[i]); 
IF((tFrac >= O.OOl)AND(tFrac <= 0.999)) THEN 

BEGIN 
IF(tFrac > maxFrac) THEN 

BEGIN 

END; 

maxFrac:= tFrac; 
ndx: =i; 

END; 

END; 
END; 

indexFrac:=ndx; 
END; 
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{****************************•·········································} { * upda teUB • } 
{······································································} 
PROCEDURE updateUB; 

{ This updates the upper bound and saves its corresponding integer 
solution. } 

BEGIN 
FOR i:=l TO nprt DO 

prtyUB[i]:=prty[i); 
FOR i:=l TO nvars DO 

intDecn[i]:=decn[i]; 
FOR i:=l TO nrows DO 

BEGIN 
intNeg[i]:=neg[i]; 
intPos[i]:=pos[i]; 

END; 
keepFlgl: =flgl; 
FinalZjCj; 
INC(ubUpdate, 1); 
GOTOXY (1, 6 ) ; 
WRITELN(' U.B. Updates ..... ' ,ubUpdate:4); 

END; 
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{······································································} 
{* initialUB *} 

<······································································} 
PROCEDURE initialUB; 

{ This procedure calculates an initial upper bound for the branch and 
bound. It is possible to establish a tighter bound for pure goal 
constraints because constraints remain feasible by selecting arbitrary 
integer variables. } 

BEGIN 
{ Find out if all constraints are of goal type } 

flg4:=TRUE; { Indicator for pure goal constraints, no system} 
FOR i:=l TO nrows DO 

IF(csign[i] <> 'B' )THEN flg4:=FALSE; 

{ Set initial upper bound } 

IF(NOT flg4)THEN 
FOR i:=l TO nprt DO 

prtyUB[i]:=l.OE20 
ELSE 

BEGIN 
{ Round off all decision variables to the nearest integer } 

FOR i:=l TO nvars DO 
IF(FRAC(decn[i]) <= O.S)THEN 

decnUB[i):=INT(decn[i]) 
ELSE 

decnUB[i]:=INT(decn[i])+l.O; 

{ Upper bound for pure goal constraints } 

{ Calculate deviational variables for each goal constraint } 

FOR i:=l TO nrows DO 
BEGIN 

lhs:=O.O; 
FOR j:=l TO ntc DO 

IF(coef[j].row = i)THEN 
lhs:=lhs+coef[j].value*decnUB[coef[j].column]; 

dif:=rhs[i]-lhs; 
IF(dif >= O.O)THEN 

BEGIN 
nd[i]:=dif; 
pd[i]:=O.O; 

END 
ELSE 

BEGIN 
nd[i]:=O.O; 
pd[i]:=-dif; 



END; 
END; 

{ Upper bound } 

FOR l:=l TO nprt DO 
BEGIN 

prtyUB[i]:=O.O; 
FOR j:= 1 TO tprt DO 

BEGIN 
IF(obj[j].priority = i)THEN 
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IF(obj[j]. sign= 'P' )THEN 
prtyUB[l]:=prtyUB[l]+pd[obj[j].row]*obj[j].weight 

ELSE 
prtyUB[i]:=prtyUB[i]+nd[obj[j].row]*obj[j].weight; 

END; 
END; 

IntegerSoln:=TRUE; 
FOR i:=l TO nvars DO 

intDecn[i]:=decnUB[i]; 
FOR i:=l TO nrows DO 

BEGIN 
intNeg[i]:=nd[i]; 
intPos[i]:=pd[i]; 

END; 
keepflgl: =flgl; 
FinalZjCj; 
INC(ubUpdate, 1); 
GOTOXY ( 1 , 6 ) ; 
WRITELN(' U.B. Updates ..... ',ubUpdate:4); 

END; 
END; 

{**********************************************************************} 
{* CheckPriority *} 
{********************************••····································} 

FUNCTION CheckPriority:BOOLEAN; 

{ This function checks the current priority against the upper bound. } 

VAR 
equal, better: 

BEGIN 

equal:=TRUE; 
better:=FALSE; 
i: =O; 
REPEAT 

INC(i); 

BOOLEAN; 

IF(prty(i] <> prtyUB[i])THEN 
equal:=FALSE; 

UNTIL((NOT equal)OR(i=nprt)); 



IF{{NOT equal)AND{prty[i] < prtyUB[i] ))THEN 
better:=TRUE; 
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{ If all priorities are equal, set better to true. This will make 
the program to update the upper bound for the case the initial 
upper bound determined in 'initialUB' is the optimal solution } 

IF{equal)THEN better:=TRUE; 
CheckPriority:=better; 

END; 

{•·····································································} 
{ • getLeaf •} 

{······································································} 
FUNCTION getLeaf:BOOLEAN; 

{ This function finds index of the most recent non nil node in ptrArray} 

VMl 
found: 
i: 

BEGIN 
found:=FALSE; 
i: =leafCount; 
REPEAT 

BOOLEAN; 
BYTE; 

IF(ptrArray[i] <> NIL) THEN 
BEGIN 

END 
ELSE 

found:=TRUE; 
pdx: =i; 

DEC{ i); 
UNTIL{{found)OR{i=O)); 
getLeaf:=found; 

END; 

{ ...................................................................... } 
{. BranchBound . } 
{ ...................................................................... } 

BEGIN 
integerSoln:=FALSE; 
index:=indexFrac; { Find index of the fractional variable if any } 
IF { index=O )THEN 

BEGIN 
integerSoln:=TRUE; 
updateUB; 
EXIT; 

END; 

{ Initialization } 

{ Solution is already integer } 



initialUB; 
leafCount:=O; 

NEW(leftPtr); 
leftPtrA.nac:=O; 
NEW(rightPtr); 
rightPtrA.nac:=O; 

{ Set up the left leaf node } 
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{ Initialize the left leaf node } 

{ Initialize the right leaf node } 

a: INC(leftPtrA.nac, 1); 

b: 

leftPtrA. index[leftPtrA.nac]:=index; 
leftPtrA.sign[leftPtrA.nac]:='L'; 
leftPtrA.rhs[leftPtrA.nac]:=INT(decn[index]); 
FOR i:=l TO nprt DO 

leftPtrA.prty[i]:=prty[i]; 

{ Set up the right leaf node } 

INC(rightPtrA.nac, 1); 
rightPtrA.index[rightPtrA.nac]:=index; 
rightPtrA.sign[rightPtrA.nac]:='G'; 
rightPtrA.rhs[rightPtrA.nac]:=INT(decn[index])+l.O; 
FOR i:=l TO nprt DO 

rightPtrA.prty[i]:=prty[i]; 

{ Add the two new nodes to the ptrArray } 

INC(nNodGe,2); 
GOTOXY(l,4); 
WRITELN(' Nodes Generated .. ' ,nNodGe:4); 
INC(leafCount,2); 
ptrArray[leafCount-l]:=leftPtr; 
ptrArray[leafCount]:=rightPtr; 

{ Get the most recent non nil node from ptrArray } 

potlLeaf:=FALSE; 
REPEAT 

IF(NOT getLeaf )THEN 
EXIT; 

tempPtr:=ptrArray[pdx]; 

{ All nodes have been considered } 

{ Compare priorities of current node against the upper bound } 

FOR i:=l TO nprt DO 
prty[i]:=tempPtrA.prty[i]; 

{ Continue with this node only if its priorities are better 
than UB } 



IF(NOT CheckPriority)THEN 
BEGIN 

ptrArray[pdx]:=NIL; 
DISPOSE(tempPtr); 

END 
ELSE 

potlLeaf: =TRUE; 
UNTIL (potlLeaf); 

{ Prepare to solve the current node } 

nrows:=orig_nrows+tempPtrA.nac; 
FOR i:=l TO tempPtrA.nac DO 

BEGIN 
ntc:=orig_ntc+i; 
orig_coef[ntc].row:=orig_nrows+i; 
orig_coef[ntc).column:=tempPtrA. index[i]; 
orig_coef[ntc).value:=l.O; 
csign[orig_nrows+i):=tempPtrA.sign[i); 
rhs[orig_nrows+i):=tempPtrA.rhs[i]; 

END; 
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{Place new coefficient(s) in appropriate place in 'coef' array} 

INC (nNodEv, 1); 
GOTOXY ( 1 , 5 ) ; 
WRITELN(' Nodes Evaluated .. ' ,nNodEv:4); 
sortCoef(orig_coef); 
ExecuteProgram; 
IF(NOT feasible)OR(NOT CheckPriority)THEN 

BEGIN 
ptrArray[pdx]:=NIL; 
DISPOSE(tempPtr); 
GOTO b; 

END; 

{ Priority of the new solution is better or equal to the upper 
bound. If the solution is also integer, update the upper bound.} 

index:=indexFrac; 
IF ( index=O) THEN 

BEGIN 
updateUB; 
integerSoln:=TRUE; 
ptrArray[pdx):=NIL; 
DISPOSE(tempPtr); 
GOTO b; 

END; 

NEW ( leftPtr); 
leftPtrA.nac:=tempPtrA.nac; 
FOR i:=l TO tempPtrA.nac DO 

BEGIN 



leftPtrA. index[i]:=tempPtrA. index[i]; 
leftPtrA.sign[i]:=tempPtrA.sign[i]; 
leftPtrA.rhs[i]:=tempPtrA.rhs[i]; 

END; 

NEW(rightPtr); 
rightPtrA.nac:=tempPtrA.nac; 
FOR i:=1 TO tempPtrA.nac DO 

BEGIN 
rightPtrA. index[i]:=tempPtrA.index[i]; 
rightPtrA.sign[i]:=tempPtrA.sign[i]; 
rightPtrA.rhs[i]:=tempPtrA.rhs[i]; 

END; 
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ptrArray[pdx]:=NIL; 
DISPOSE(tempPtr); 
GOTO a; { Setup the two new nodes } 

END; 

{ ...................................................................... } 
{. smlap . } 
{ ...................................................................... } 

BEGIN 
flg3: =FALSE; 

{ Program SMLAP } 
{ Indicates if a data base is created or loaded } 

filename:='None'; 
model Type:=' N'; 
{ flg4 indicates if a continuous or integer solution is obtained } 
flg4: =FALSE; 
REPEAT 

TEXTCOLOR ( 11 ) ; 
TEXTBACKGROUND(1); 
CLRSCR; 
drawBox(1, 1,80,24); 
WINDOW(l,25,80,25); 
TEXTBACKGROUND(7); 
CLRSCR; 
WINDOW(l,1,80,25); 
TEXTBACKGROUND(11); 
TEXTCOLOR ( 1 ) ; 
GOTOXY(22, 1); 

{ Selects light cyan characters } 
{ Selects blue background } 

{ Last line of the screen } 
{ Light Gray } 

WRITELN (' SMOLAP - Decision Support System '); 
TEXTBACKGROUND(1); 
TEXTCOLOR ( 15 ) ; 
GOTOXY ( 51 , 3 ) ; 

{ Select white characters } 

WRITELN('Current Model '+CHR(26),' ',filename); 
GOTOXY(51, 4); 
CASE modelType OF 

'D': WRITELN('Type: 
' C' : WR I TELN ( ' Type: 
'S': WRITELN('Type: 
'N': WRITELN('Type: 

END; 

Deterministic' ) ; 
Chance-Constrained'); 
Stochastic' ) ; 
None' ) ; 
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TEXTCOLOR(14); { Select yellow characters } 
GOTOXY ( 4, 4 ) ; 
TEXTCOLOR ( 15 ) ; 
WRITELN('DATA BASE UTILITIES:'); 
TEXTCOLOR ( 14 ) ; 
GOTOXY ( 4, 6 ) ; 
WRITELN(' [A] Create a New Model'); 
GOTOXY ( 4, 7 ) ; 
WRITELN(' [B] Retrieve an Existing Model'); 
GOTOXY ( 4, 8 ) ; 
WRITELN(' [C] Save Current Model'); 
GOTOXY(4, 9); 
WRITELN ( • [D] Display Current Model' ) ; 
GOTOXY ( 4, 11 ) ; 
TEXTCOLOR ( 15 ) ; 
WRITELN('SYSTEM ANALYSIS:'); 
TEXTCOLOR ( 14 ) ; 
GOTOXY(4, 13); 
WRITELN(' [El Continuous Solution'); 
GOTOXY ( 4, 14 ) ; 
WRITELN(' [Fl Integer Solution'); 
GOTOXY ( 4, 15 ) ; 
WRITELN(' [G] Nonlinear Solution'); 
GOTOXY ( 4, 16 ) ; 
WRITELN (' [HJ Sensitivity Analysis' ) ; 
GOTOXY ( 4, 1 9 ) ; 
WRITELN (' [I l EXIT' ) ; 

a: message('Enter Option -'+CHR(16)+' ',' 1' ,validSet3,option); 

CASE option OF 
, A': { Create Input Data Base } 

BEGIN 
message('Deterministic/Chance-Constrained/Stochastic '+ 

'(D/C/S)? -' +CHR(16)+' ',' 1', validSet6,modelType); 
WINDOW(l, 1,80,24); { Do not reset color of the last line } 
CLRSCR; 
WINDOW(l, 1,80,25); 
CreateDataBase; 
{ Initialize priority order } 
FOR i:=l TO nprt DO 

prtyOrder [ i]: =i; 
flg4: =FALSE; 

END; 

'B': { Load Input Data Base } 
BEGIN 

tempFilename:=filename; 
REPEAT 

GOTOXY ( 3, 23 ) ; 
WRITE ('Enter the Input File Name -'+CHR(16)+' '); 
READLN (filename); 

UNTIL (filename <> '' ); { Do not accept return only } 
LoadDataBase; 



IF(NOT flgS)THEN 
filename:=tempFilename 
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ELSE { A new model is loaded } 

END; 

'C': 

BEGIN 
{ Initialize priority order } 
FOR i:=l TO nprt DO 

prtyOrder[ i]: =i; 
flg4: =FALSE; 

END; 

BEGIN 
IF(flg3=FALSE)THEN 

BEGIN 
message('No Output File is Present ... ', 'O' ,validSet4, 

inCh); 
GOTO a; 

END; 
SaveDataBase; 

END; 

'D': { Display Current Data Base } 
BEGIN 

IF(flg3=FALSE)THEN 
BEGIN 

'E': 

message('No Output File is Present ... ', 'O' ,validSet4, 
inCh); 

GOTO a; 
END; 

WINDOW(l, l,80,24); { Do not reset color of last line } 
CLRSCR; 
WINDOW(l,1,80,25); 
TEXTCOLOR ( 11 ) ; 
drawbox(l,1,80,24); 
GOTOXY ( 29, 1) ; 
WRITELN(' DISPLAY CURRENT MODEL '); 
TEXTCOLOR ( 14) ; 
DisplayDataBase; 

END; 

{ Continuous Solution } 
BEGIN 

IF(flg3=FALSE)THEN 
BEGIN 

message('No Output File is Present ... ', 'O' ,validSet4, 
inCh); 

GOTO a; 
END; 

IF(modelType='S' )THEN 
BEGIN 

message('This is a Nonlinear Model - Select [G] ... , 
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'O' ,validSet4, inCh); 
GOTO a; 

END; 
WINDOW(l, 1,80,24); 
CLRSCR; 

{ Do not reset the last line } 

WINDOW(l, 1,80,25); 

{ Restore the original values in case continuous solution 
were selected after the integer solution in the main menu} 

ntc:=orig_ntc; 
nprt:=orig_nprt; 
nrows:=orig_nrows; 
FOR i:=l TO ntc DO 

coef[i]:=orig_coef[i]; 
FOR i:=l TO nvars DO 

num[i]:=orig_num[i]; 

TEXTCOLOR ( 11 ) ; 
drawbox(l, 1,80,24); 
GOTOXY(30, 1); 
TEXTBACKGROUND(ll); 
TEXTCOLOR ( 1 ) ; 
WRITELN(' Continuous Solution '); 
TEXTBACKGROUND(l); 
TEXTCOLOR ( 14 ) ; 

{ Cyan } 

nlteration:=O; { Initialize number of iterations } 
TEXTBACKGROUND(ll); 
drawBox(49,5,73, 16); 
WINDOW(50,6,72, 15); 
CLRSCR; 
TEXTCOLOR ( 0 ) ; 
WRITELN (' RUN STATUS' ) ; 
WRITELN; 
WRITELN(' Iteration ........ ', nlteration: 4); 
WRITELN(' CPU .......... '); 
WRITELN; 
WRITELN(' Model Name '+CHR.(26)+' ',filename); 
cursor (FALSE); { Turn off the cursor } 
GETTIME(hrl,minl,secl,hsecl); 
ExecuteProgram; 
GETTIME(hr2,min2,sec2,hsec2); 
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.01)-

(hr1*3600.0+min1*60.0+secl+hsec1*0.01); 
GOTOXY ( 1 , 4) ; 
WRITE (' CPU .......... ',elapsed: 6: 2,' S' ) ; 
cursor(TRUE); { Turn on the cursor } 

IF(feasible=FALSE)THEN 
message('No feasible solution exist', 'O' ,validSet4, inCh) 

ELSE 
BEGIN 
OutputResul t; 
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firstTime:=TRUE; {Indicates a new model has been solved} 
solution:='c'; { Indicates continuous solution} 

END; 
END; 

'F': { Integer Solution } 
BEGIN 

IF(flg3=FALSE)THEN 
BEGIN 

message('No Output File is Present .... ', 'O', 
validSet4, inCh); 

GOTO a; 
END; 

IF(modelType='S' )THEN 
BEGIN 

message('This is a Nonlinear Model - Select [G) 
'O' ,validSet4,inCh); 

GOTO a; 
END; 

message(' All Variables Integer? (YIN) -'+CHR(16)+' ','l', 
validset4,answer); 

IF(answer='N' )THEN 
BEGIN 

flg6:=TRUE;{lndicates we have a mixed integer problem} 
FOR i:=l TO nvars DO 

decnType[i):='C'; 
GOTOXY(3, 23); 
WRITE(' Enter Index of Integer Variable -'+CHR(l6)+' '); 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

i:=inputinteger(xl,yl, l,nv,ars); 
decnType[i]:=' I'; 
message('More Integer Variables? (YIN) -'+CHR(16)+ 

' ','l' ,validSet4,answer); 
IF(answer='Y' )THEN blank(xl,yl,2); 

UNTIL(answer='N' ); 
END 

ELSE 
BEGIN 

flg6:=FALSE; { This is a pure integer problem } 
FOR i:=l TO nvars DO 

decnType[i]:='I'; 
END; 

WINDOW(l,1,80,24); {Do not reset the last line } 
CLRSCR; 
WINDOW(l,1,80,25); 

{Restore the original values in case integer solution were 
selected two times in a row. } 

ntc:=orig_ntc; 
nprt:=orig_nprt; 



nrows:=orig_nrows; 
FOR i:=l TO ntc DO 

coef[i]:=orig_coef[i]; 
FOR i:=l TO nvars DO 

num[i]:=orig_num[i]; 

TEXTCOLOR ( 11 ) ; 
drawbox(l,1,80,24); 
GOTOXY ( 31 , 1) ; 
TEXTBACKGROUND(ll); 
TEXTCOLOR ( 1 ) ; 
WRITELN(' Integer Solution '); 
TEXTBACKGROUND(l); 
TEXTCOLOR ( 14) ; 
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niteration:=O; 
TEXTBACKGROUND(ll); 
drawBox(49,5,73,16); 
WINDOW(S0,6,72,15); 
CLRSCR; 

{ Initialize number of iterations } 

nNodEv: =1; 
nNodGe: =1; 
ubUpdate:=O; 

RUN STATUS' ) ; 

Iteration ........ ' ,nlteration:4); 

TEXTCOLOR ( 0 ) ; 
WRITELN(' 
WRITELN; 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN; 

Nodes Generated .. ' ,nNodGe:4); 
Nodes Evaluated .. ' ,nNodEv:4); 
U.B. Updates ..... ' ,ubUpdate:4); 
CPU .......... '); 

WRITELN(' Model Name '+CHR(26)+' 
cursor (FALSE); 
GETTIME(hrl,minl,secl,hsecl); 
ExecuteProgram; 
IF(feasible=FALSE)THEN 

BEGIN 

' , f i 1 ename ) ; 
{ Turn off the cursor } 

message('No feasible solution exist', 'O' ,validSet4, 
inCh); 

cursor (TRUE) ; 
END 

ELSE 
BEGIN 

BranchBound; 
GETTIME(hr2,min2,sec2,hsec2); 
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.01)-

(hr1*3600.0+min1*60.0+secl+hsecl*0.01); 
GOTOXY ( 1 , 7 ) ; 
WRITE(' CPU .......... ', elapsed: 6: 2,' S' ) ; 
cursor(TRUE); { Turn on the cursor } 
IF(NOT integerSoln)THEN 

message ('No Integer Solution Exist',' O', v.al idSet4, 



ELSE 
BEGIN 

inCh) 

{ Get upper bound values } 

FOR i:=l TO nprt DO 
prty[i]:=prtyUB[i]; 

FOR i:=l TO nvars DO 
decn[i]:=intDecn[i]; 

FOR i:=l TO orig_nrows DO 
BEGIN 

neg[i]:=intNeg[i]; 
pos[i]:=intPos[i]; 

END; 
nrows:=orig_nrows; 
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OutputResul t; 
first Time: =TRUE; 
solution:=' i'; 

{ Indicates a new model 
{ Indicates integer solution 

END; 
END; 

END; 

'G': { Nonlinear Solution } 
BEGIN 

IF(flg3=FALSE)THEN 
BEGIN 

message('No Output File is Present .... ', 'O', 
val idSet4, inCh); 

GOTO a; 
END; 

IF(modelType<>'S' )THEN 
BEGIN 

message('This is a Linear Model - Select [E] or [F] '+ 
' ... ','O' ,validSet4,inCh); 

GOTO a; 
END; 

WINDOW(l,1,80,24); {Do not reset the last line} 
CLRSCR; 
WINDOW(l, 1,80,25); 
TEXTCOLOR(ll); { Cyan } 
drawbox(l, 1,80,24); 
GOTOXY(30, 1); 
TEXTBACKGROUND(ll); 
TEXTCOLOR ( 1 ) ; 
WRITELN(' Nonlinear Solution '); 
TEXTBACKGROUND(l); 
TEXTCOLOR ( 14 ) ; 
niteration:=O; { Initialize number of iterations } 
TEXTBACKGROUND(ll); 
drawBox(49,5,73, 16); 
WINDOW(S0,6,72, 15); 



CLRSCR; 
TEXTCOLOR ( 0 ) ; 
WRITELN (' RUN STATUS' ) ; 
WRITELN; 
WRITELN(' Iteration ........ ' ,niteration:4); 
WRITELN(' Step Size ....... 1.00' ); 
WRITELN(' CPU .......... '); 
WRITELN; 
WRITELN(' Model Name '+CHR(26)+' ',filename); 
WINDOW(l, 1,80,24); 
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message(' Input a new Starting Point (YIN)? -'+CHR(16)+' ' 
'1' ,validSet4,answer); 

IF(answer='Y' )THEN 
BEGIN 

{ Initialize all decision variables to zero } 
FOR 1:=1 TO (nsources*ndestns)+nsources DO 

BEGIN 
decn[i]:=O.O; 
varChange[i]:='F'; 

END; 

{ Input the index of open sources } 
GOTOXY(6, 21); 
WRITE(' Index for an Open Source -'+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

l:=inputinteger(xl,yl, l,nsources); 
decn[(nsources*ndestns)+i]:=l.O; 
message('More Open Sources? (YIN) -'+CHR(16)+' ' 

'1' ,validSet4,answer); 
IF(answer='Y' )THEN blank(xl,yl,2); 

UNTIL(answer='N' ); 

{ Input the allocation variables } 
FOR l:=l TO nsources DO 

BEGIN 
FOR j:=l TO ndestns DO 

BEGIN 
IF(decn[(nsources*ndestns)+i]=l.O) THEN 

BEGIN 
varChange[(j-l)*nsources+i]:='V'; 
GOTOXY ( 16, 22 ) ; 
WRITE(' ENTER X(', i: 2, j: 2,' ) -' +CHR(16)+ 

, , ) ; 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

temp:=inputReal(xl,yl); 
IF(temp<O.O)THEN 

BEGIN 
message('Allocations Must be Nonne'+ 
'gative ... ', '2' ,validSet4,answer); 
STR (temp, s) ; 
blank(xl,yl,LENGTH(s)); 



END; 

END; 
UNTIL(temp>=0.0); 
decn[(j-l)*nsources+i]:=lemp; 
SIR( temp, s); 
blank(xl,yl,LENGTH(s)); 

END; 
END; 

END; 

{ Initialize the step size } 

FOR i:=l TO nvars DO 
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step[i]:=l.O; { default step size } 
message('Current Step Size is 1 - Change (YIN)?-'+ 

CHR (16) +' ' , ' 1' , val idSet4, answer); 
IF(answer='Y' )THEN 

BEGIN 
GOTOXY(6, 23); 
WRITE('Enter the New Step Size -'+CHR(16),' '); 
xl:=WHEREX;yl:=WHEREY; 
temp:=inputReal(xl,yl); 
FOR i:=l TO nvars DO 

step[i]:=temp; 
END; 

WINDOW(S,21,79,23);CLRSCR;WINDOW(S0,6, 72, 15); 
TEXTCOLOR ( 0) ; 
cursor(FALSE); { Turn off the cursor } 
{ Rewrite the step size if it was changed } 
GOTOXY ( 1 , 4 ) ; 
WRITE(' Step Size ....... ',step[l):S:Z); 
GETTIME(hrl,minl,secl,hsecl); 
PatternSearch; 
GETTIME(hr2,min2,sec2,hsec2); 
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.0l)-

(hr1*3600.0+min1*60.0+secl+hsecl*0.01); 
GOTOXY ( 1 , 5 ) ; 
WRITE(' CPU .......... ' ,elapsed:6:2,' S' ); 
cursor(TRUE); { Turn on the cursor } 
{ Get the optimum solution } 

FOR i:=l TO nprt DO 
prty[i]:=prtyUB[i); 

FOR i:=l TO nvars DO 
decn[i]:=intDecn[i]; 

FOR i:=l TO nrows DO 
BEGIN 

neg[i]:=intNeg[i]; 
pos[i]:=intPos[i]; 

END; 
OutputResult; 

END; 
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'H': { Sensitivity Analysis } 
BEGIN 

IF(flg3=FALSE)THEN 
BEGIN 

message('No Output File is Present ... ', 'O' ,validSet4, 
inCh); 

GOTO a; 
END; 

IF(NOT flg4)THEN 
BEGIN 

message(' No Solution Exist ... ', 'O' ,validSet4,inCh); 
GOTO a; 

END; 
WINDOW(l, 1,80,24); { Do not reset the last line } 
CLRSCR; 
WINDOW(l, 1,80,25); 
TEXTCOLOR ( 11 ) ; 
drawbox(l, 1,80,24); 
GOTOXY(27, 1); 
TEXTCOLOR ( 1 ) ; 
TEXTBACKGROUND(ll); 
TEXTCOLOR ( 1 ) ; 
WRITELN(' Sensitivity Analysis '); 
TEXTBACKGROUND(l); 
TEXTCOLOR ( 14 ) ; 
SensiAnaly; 

END; 
END { End of the case statement } 

UNTIL (option = ' I' ) ; 
CLRSCR; 

END. { SMLAP Program } 
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UNIT smlaUtil; 

INTERFACE 

USES CRT,DOS,PRINTER; 

CONST 
enter = #13; {ASCII character for enter} 
bell = #1; {ASCII character for bell} 
validSetl: SET OF CHAR = ['P', 'N' ,enter]; 
validSet2: SET OF CHAR = ['E', 'G', 'L', 'B' ]; 
validSet3: SET OF CHAR = ['A',' B', 'C', 'D', 'E' , 'F' , 'G', 'H',' I' ] ; 
validSet4: SET OF CHAR 
validSetS: SET OF CHAR 
validSet6: SET OF CHAR 
validSet7: SET OF CHAR 

TYPE 

VAR 

setType = SET OF CHAR; 

objective = RECORD 
sign: 
row: 
priority: 
weight: 

END; 

coefficient = 
row: 
column: 
value: 

END; 

value = RECORD 
priority: 
weight: 

END; 

coefArray = 

RECORD 

= 
= 
= 
= 

[' Y', 'N' ] ; 
['A' , 'B' , 'C' , 'D' , 'E' ] ; 
['D', 'C', 'S' ]; 
[' N', 'U' ] ; 

CHAR; 
BYTE; 
BYTE; 
EXTENDED; 

BYTE; 
BYTE; 
EXTENDED; 

BYTE; 
EXTENDED; 

ARRAY[l .. 500] OF coefficient; 

i, j, k, p, ij, c, tprt, nprt, 
orig_nprt,ntc,orig_ntc,nrows, 
orig_nrows,ncols,nlteration, 
nNodEv,nNodGe,nprtl,indxl,indx2: INTEGER; 
nvars, npdvs, rown, peal, prow, 
nelemty, lcount, ubUpdate,nsources, 
ndestns: BYTE; 
hrl,hr2,minl,min2,secl,sec2, 
hsecl,hsec2: 
zmax,lw,ar,elapsed: 
temp: 
coef, orig_coef: 

WORD; 
EXTENDED; 
REAL; 
coefArray; 



220 

obj: 
pw: 
pwBasis: 
rhs,rhsF,x,y,decn,prty,neg,pos, 

ARRAY[O .. 100] OF objective; 
ARRAY[l .. 130) OF value; 
ARRAY[l .. 70) OF value; 

prtyUB,intDecn,intNeg,intPos: ARRAY[l .. 70) OF EXTENDED; 
avalue, ElValue: ARRAY[l .. SOO]OF EXTENDED; 
OptZjCj: ARRAY[l .. 11, 1 .. 130]0F EXTENDED; 
mu,sigma,Lbound,Ubound,Ocost,Ucost: ARRAY[l .. 29] OF REAL; 
step: ARRAY[l .. 30) OF REAL; 
arow, ElRow: ARRAY[l .. SOO]OF BYTE; 
prtyOrder: ARRAY[l .. 10] OF BYTE; 
pdevc,basicCol,num,orig_num: ARRAY[l .. 70] OF BYTE; 
currentBasic,n,start,position, 
ElCount: 
csign,decnType,constType: 
varChange: 
s: 
filename: 
device: 
datafile: 
option, answer, inCh, solution, 
model Type, demand: 
flgl,flg2,flg3,flg4,flg5,flg6, 
feasible,integerSoln,keepFlg1, 
firstTime: 

PROCEDURE PatternSearch; 

ARRAY[l .. 400]0F INTEGER; 
ARRAY[l .. 70) OF CHAR; 
ARRAY[l .. 30) OF CHAR; 
STRING; 
STRING[lO]; 
STRING[3]; 
TEXT; {Sequential file} 

CHAR; 

BOOLEAN; 

FUNCTION UpperCase(inString:STRING):STRING; 
PROCEDURE Cursor(OnOff:BOOLEAN); 
PROCEDURE lineDraw(lsize:BYTE;lchar:CHAR); 
PROCEDURE blank(x,y, l:BYTE); 
PROCEDURE drawBox(xupL,yupL,xloR,yloR: INTEGER); 
PROCEDURE message(prompt:STRING;action:CHAR; insett:setType; 

VAR inCh:CHAR); 
FUNCTION inputinteger(xpos,ypos: BYTE; 

LoLmt,UpLmt: INTEGER): INTEGER; 
FUNCTION inputReal(xpos,ypos:BYTE):EXTENDED; 
FUNCTION inputChar(inSet:setType):CHAR; 
PROCEDURE lineCount; 
PROCEDURE savelnput; 
PROCEDURE sortCoef(inTemp:coefArray); 

IMPLEMENTATION 

{**********************************************************************} 
{* PatternSearch *} 
{**********************************************************************} 

PROCEDURE PatternSearch; 

{This procedure applies a modified Hooke and Jeeves procedure to 
solve a nonlinear SMLAP. All variables with the prefix of 
**** int **** or suffix of **** UB **** refer to the optimum values} 
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VAR 
n,maxob,maxss,stoxRow,icount,jcount,ncount: INTEGER; 
wPrev,curntValue,delta,q,qq,decnR: ARRAY[l .. 30] OF REAL; 
TempPoint,alpha,beta: REAL; 
kflag,terminate,better,different,nonLinearRow: BOOLEAN; 
acoef: ARRAY[l .. 31, 1 .. 30]0F REAL; 

{······································································} 
{ • NormalCDF •} 

{······································································} 
PROCEDURE NormalCDF(k:REAL; VAR d,p:REAL); 

{This procedure computes the probability that a standard normal random 
variable is greater than or equal to k (1-F(k)). It also compute the 
ordinate of the normal density at k, f(k). Maximum error is 0.0000007. 
The approximation is based on C. Hastings. } 

VAR 
tempk,w: REAL; 

BEGIN 
tempk: =ABS (k); 
w:=l.0/(l.0+0.2316419*tempk); 
d:=0.3989423*EXP(-(tempk*tempk)/2.0); 
p:=l.O-d*w*((((l.330274*w-1.821256)*w+l.781478)*w-0.3565638)*w+ 

0. 3193815); 
IF(k>O)THEN p:=l.0-p; 

END; 

<······································································} 
{* multiObjective *} 

{······································································} 
PROCEDURE multiObjective; 

VAR 
i. j: 
lhs: 
bj,kj,mag,prob,temp: 

BEGIN 

INTEGER; 
ARRAY [1 .. 30]0F REAL; 
REAL; 

{ Find left hand side of all rows (constraints) } 
FOR i:=l TO nrows DO 

BEGIN 
lhs[i]:=O.O; 
FOR j:=l TO nvars DO 

lhs[i]:=lhs[i]+acoef[i,j]*decnR[j]; 
END; 

{ Find left hand side for the nonlinear constraints } 

lhs[stoxRow]:=O.O; 
n: =1; 



FOR j:=l TO ndestns DO 
BEGIN 

bj:=O.O; 
FOR i:= n TO n+nsources-1 DO 

bj: =bj+decnR [ i]; 
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IF(demand='N' )THEN { Normal distribution of demands } 
BEGIN 

kj:=(bj-mu[j])/sigma[j]; 
NormalCDF(kj,mag,prob); 
lhs[stoxRow]:=lhs[stoxRow]+sigma[j]*(Ocosl[j]+Ucost[j])• 

(mag-kj*prob)+Ocost[j]*(bj-mu[j]); 
END 

ELSE { Uniform distribution of demands } 
BEGIN 

lhs[stoxRow]:=lhs[stoxRow]+l/(2*(Ubound[j]-Lbound[j]))* 
((Ocost[j]+Ucost[j])*SQR(bj)+Ocost[j]*SQR(Lbound[j])+ 
Ucost[j]*SQR(Ubound[j])-2*(0cost[j]*Lbound[j]+Ucost[j]* 
Ubound [j] ) *bj); 

END; 
n:=n+nsources; 

END; 

{ Compute the deviational variables } 

FOR i:=l TO nrows DO 
BEGIN 

temp:=rhs[i]-lhs[i]; 
IF(temp >=0.0)THEN 

BEGIN 
neg [ i]: =temp; 
pos[i]:=O.O; 

END 
ELSE 

END; 

BEGIN 
pos [ i]: =-temp; 
neg[i]: =O. O; 

END; 

{ Calculate the achievement values } 

FOR i:=l TO nprt DO 
BEGIN 

prty[i]:=0.0; 
FOR j:=l TO tprt DO 

BEGIN 
IF(obj[j].priority=i)THEN 

BEGIN 
IF(obj[j].sign='P' )THEN 

prty[i]:=prty[i]+pos[obj[j].row]*obj[j].weight 
ELSE 

prty[i]:=prty[i]+neg[obj[j].row]*obj[j].weight; 



END; 
END; 

END; 
INC(niteration); 

END; 
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{•·····································································} 
{* compare *} 

{······································································} 
PROCEDURE compare; 

VAR 
i' j: 

BEGIN 
better:=FALSE; 
different:=FALSE; 
j: =O; 
REPEAT 

INC(j); 

INTEGER; 

IF ABS(prty[j] - prtyUB[j]) >= delta[j] THEN 
different:=TRUE; 

UNTIL(j=nprt)OR(different); 
IF(different)AND(prty[j] < prtyUB[j])THEN 

BEGIN 

END; 

better:=TRUE; 
FOR i:=l TO nvars DO 

intDecn[i]:=decnR[i]; 
FOR i:= 1 TO nrows DO 

BEGIN 
intNeg[i]:=neg[i]; 
intPos[i]:=pos[i]; 

END; 
FOR i:=l TO nprt DO 

prtyUB[i]:=prty[i]; 
END; 

{ ...................................................................... } 
{. PatternSearch . } 
{ ...................................................................... } 

BEGIN 
maxob:=SOO; 
maxss:=6; 
alpha: =1. O; 
beta:=0.5; 
niteration:=O; 
jcount:=O; 
ncount:=O; 
kflag: =TRUE; 
terminate:=FALSE; 

{ Maximum number to evaluate objectives } 
{ Maximum number to reduce the step size } 

{ Acceleration factor } 
{ Step reduction factor } 

{ Counter for objective evaluation } 
{ Counter for step size reduction } 
{ Counter for number of coordinates } 

{ Indicates if pattern move is successful } 
{ Indicates if convergence criteria is met} 

{ Set the error in achievement vector to be reached before an 



achievement vector can dominates the upper bound } 

FOR i:=l TO nprt DO 
delta[i]:=0.1; 
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{ Read the initial starting point. decnR[ ] is used so it can be 
used as a real type variable instead of decn[ ] which is extended} 

FOR i:=l TO nvars DO 
decnR[i]:=decn[i]; 

FOR i:=l TO nrows DO 
FOR j:=l TO nvars DO 

acoef[i,j]:=O.O; 
{ Set nonzero coefficients } 

FOR j:=l TO ntc DO 
acoef[coef[j].row,coef[j].column]:=coef[j].value; 

{ Find the nonlinear constraint row, nonlinear constraint is a row 
with a-11 coefficients zero } 

i: =O; 
REPEAT 

nonLinearRow:=TRUE; 
INC( i); 
j: =O; 
REPEAT 

INC(j); 

{ Indicates if the nonlinear row is found } 

IF(acoef[i,j]<>O)THEN nonLinearRow:=FALSE; 
UNTIL(NOT nonLinearRow)OR(j=nvars); 

UNTIL(nonLinearRow); 
stoxRow: =i; 
FOR i:=l TO nvars DO 

BEGIN 
q [ i]: =decnR [ i]; 
qq [ i ] : =decnR [ i] ; 

END; 
multiObjective; 
{ Initialize the initial optimal (upper bound) solution } 
FOR i:=l TO nvars DO 

intDecn[i):=decnR[i]; 
FOR i:= 1 TO nrows DO 

BEGIN 
intNeg[i]:=neg[i]; 
intPos[i]:=pos[i]; 

END; 
FOR i:=l TO nprt DO 

BEGIN 
wPrev[i]:=prty[i]; 
prtyUB[i):=prty[i]; 

END; 

{ Start the search } 



REPEAT 
FOR i:=l TO nprt DO 

CurntValue[i]:=prty[i]; 

{ Establish the search pattern } 

icount:=O; 
FOR i:=l TO nsources*ndestns DO 

IF(varChange[i]='V' )THEN 
BEGIN 

INC ( icount); 
TempPoint:=decnR[i]; 
decnR[i]:=decnR[i]+step[i]; 
mul tiObjective; 
compare; 
IF (better )THEN 

BEGIN 
FOR j:=l TO nprt DO 

curntValue[j]:=prty[j]; 
qq [ i] : =decnR [ i] ; 

END 
ELSE 

225 

{ Search the opposite direction of the current coordinate } 

BEGIN 
decnR[i]:=decnR[i)-2.0*step[i]; 
IF(decnR[i]<O.O)THEN decnR[i]:=O.O; 
multiObjective; 
compare; 
IF (better )THEN 

BEGIN 
FOR j:=l TO nprt DO 

curntValue[j]:=prty[j]; 
qq [ i ] : =decnR [ i ] ; 

END 
ELSE 

{ Search in current coordinate unsuccessful, backtrack } 
BEGIN 

INC(ncount, 1); 
decnR[i]:=TempPoint; 
qq [ i ] : =decnR [ i ] ; 

END; 
END; 

END; 

{ Test to determine termination of the program } 

GOTOXY (1 , 3 ) ; 
WRITE (' Iteration ........ ' , nltera t ion: 4); 
GOTOXY ( 1 , 4 ) ; 
WRITE(' Step Size ....... ' ,step[1]:5:2); 
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IF(nlteration >= maxob)OR(jcount >= maxss)THEN 
terminate:=TRUE 

ELSE 
BEGIN 

{ IF search for all axes fail, reduce the step size } 

IF(ncount = icount)THEN 
BEGIN 
{ If search failed due to pattern move, retrack to previous 

point } 
IF(NOT kflag)THEN 

BEGIN 
kflag: =TRUE; 
FOR i:=l TO nsources•nctestns DO 

decnR [ i ] : :::q [ i ] ; 
END; 

{ Reduce the step size } 
INC(jcount); 
FOR i:= 1 TO nsources•ndestns DO 

step[i]:=step[i]*beta; 
END 

ELSE 
{ Perform a pattern move } 
FOR i:=l to nvars-nsources DO 

BEGIN 
decnR[i]:=decnR[i] + alpha•(ctecnR[i]-q[i]); {New point } 
IF(decnR[i]<O.O)THEN decnR[i]:=0.0; 
q[i]:=qq[i]; { Previous Point } 

END; 
ncount:=O; 
FOR i:=1 TO nprt DO 

wPrev[i]:=curntValue[i]; 
multiObjective; 
compare; 
IF(NOT better)THEN 

kflag: :::FALSE; 
{ Pattern move or step size reduction is unsuccessful } 

END; 
UNTIL( terminate); 

END; { End of PatternSearch } 

{*************••·······················································} 
{ * Uppercase •} 
{***********************************************************•**********} 

FUNCTION UpperCase(inString:STRING):STRING; 

{ This function returns an uppercase version of the string it receives } 

VAR 
outString: STRING; 



BEGIN 
outString := 
FOR i:=l TO LENGTH(inString) DO 

BEGIN 
outString:=outString + UPCASE(instring[i]); 

END; 
Uppercase:=outString; 

END; 
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{······································································} 
{* Cursor *} 

{······································································} 
PROCEDURE Cursor(OnOff:BOOLEAN); 

{ This procedure turns the cursor on/off } 

VAR 
reg: REGISTERS; 

BEGIN 
IF (OnOff) THEN 

IF MEM[0:$449]=7 THEN 
reg.CX:=$0COD 

ELSE 
reg.CX:=$0607 

ELSE 
reg.CX:=$2000; 

reg.AX:=$0100; 
INTR($10,reg) 

END; 

{······································································} 
{* lineDraw *} 

{······································································} 
PROCEDURE lineDraw(lsize:BYTE;lchar:CHAR); 

{This procedure draws a line of length 'lsize' using character 'lchar' } 
VAR 

i: BYTE; 
BEGIN 

FOR i:=l TO lsize DO 
WRITE ( lchar); 

WRITELN; 
END; 

{**********************************•···································} 
{* blank •} 

{•·····································································} 
PROCEDURE blank(x,y, l:BYTE); 

VAR 
i: BYTE; 



{ This procedure blanks a specified entry } 

BEGIN 
GOTOXY(x, y); 
FOR i:=l TO 1 DO 

WRITE(' '); 
GOTOXY(x, y); 

END; 

228 

{······································································} 
{ • drawBox •} 

{······································································} 
PROCEDURE drawBox(xupL,yupL,xloR,yloR: INTEGER); 

{ This procedure draws a box on the screen } 

CONST 
upLcor=#201; 
loLcor=#200; 
loRcor=#188; 
upRcor=#187; 
horizl=#205; 
vertil=#186; 

BEGIN 
GOTOXY(xupL,yupL); 
WRITE ( upLcor); 
j: =xloR-xupL-1; 
FOR i:=l TO j DO 

WRITE(horizl); 
WRITE ( upRcor); 
FOR i:=yupL+l TO yloR-1 DO 

BEGIN 
GOTOXY (xloR, i); 
WRITE(vertil); 
GOTOXY(xupL, i); 
WRITE(vertil); 

END; 
GOTOXY(xupL,yloR); 
WRITE (loLcor); 
FOR i:=l TO j DO 

WRITE(horizl); 
WRITE (loRcor); 

END; 

{ Upper left corner } 
{ Lower left corner } 

{ Lower right corner } 
{ Upper right corner } 

{ Draw the top line } 

{ Draw the bottom line } 

{*****************************************•····························} 
{ * message *} 

{······································································} 
PROCEDURE message(prompt: 

action: 
STRING; 
CHAR; 



insett: 
VAR inCh: 

set Type; 
CHAR); 
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{ This procedure displays a given prompt on the last line of screen } 

BEGIN 
WINDOW(l, 1,80,25); 
TEXTBACKGROUND(7); 
TEXTCOLOR ( 4 ) ; 
GOTOXY(2, 25); 
WRITE(prompt); 
CASE action OF 

'O': 
BEGIN 

{ Light gray } 
{ Red } 

TEXTCOLOR(O); { Black } 
GOTOXY(50,25); 
WRITE('Press any Key to Continue ... '); 
answer::::::READKEY; 
GOTOXY( 1, 25); 
CLREOL; { Clear the message } 

END; 
• 1' : 

BEGIN 
inCh::::::inputChar(insett); 
GOTOXY ( 1 , 25) ; 
CLREOL; 

END; 
, 2': 

BEGIN 
WRITE (be 11 ) ; 
DELAY ( 1000) ; 
GOTOXY ( 1 , 25 ) ; 
CLREOL; 

END; 
, 3': 

BEGIN 
GOTOXY ( 1, 25) ; 

{ Clear the message } 

{ Delay 1 Second } 

{ Clear the message } 

CLREOL; { Clear the message } 
END; 

{ If '4', It only displays the prompt without erasing it } 
END; 

TEXTBACKGROUND(l); 
TEXTCOLOR ( 14 ) ; 

END; 

{ Blue } 
{ Yellow } 

{**********************************************************************} 
{* inputlnteger *} 
{**********************************************************************} 

FUNCTION inputinteger(xpos,ypos: BYTE; 
LoLmt,UpLmt: INTEGER): INTEGER; 



{ This function accepts a valid integer number } 

VAR 
temp: 
templnteger,code: 
CkRange: 

BEGIN 
GOTOXY(xpos,ypos); 
REPEAT 

CkRange:=TRUE; 
READLN (temp) ; 

STRING[30]; 
INTEGER; 
BOOLEAN; 
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{ inputlnteger } 

VAL(temp,templnteger,code); 
IF(LENGTH(temp)=O)THEN { Enter has been pressed } 

BEGIN 
inputlnteger: =O; 
code:=O; 

END; 
IF(code = O)THEN 

IF((templnteger < LoLmt)OR(templnteger 
CkRange:=FALSE; 

IF((code<>O)OR(CkRange=FALSE))THEN 
BEGIN 

{ Check the range } 
> UpLmt) )THEN 

message(' Data Out of Range ..... ', '2' ,validSet4,answer); 
blank(xpos,ypos,LENGTH(temp)); 

END; 
UNTIL ((code=O)AND(CkRange)); 
inputlnteger:=templnteger; 

END; { inputlnteger } 

{······································································} 
{* inputReal *} 

{•·····································································} 
FUNCTION inputReal(xpos,ypos:BYTE):EXTENDED; 

{ This function accepts a valid real number } 

VAR 
temp: 
tempReal: 
code: 

STRING[20]; 
EXTENDED; 
INTEGER; 

BEGIN 
REPEAT 

REPEAT 
GOTOXY(xpos,ypos); 
READLN (temp); 

UNTIL(LENGTH(temp) > O); 
VAL(temp,tempReal,code); 
IF(code<>O)THEN 

BEGIN 

{ inputReal } 

{ Do not except Enter } 



WRITE (bel 1); 
blank(xpos,ypos,LENGTH(temp)); 

END; 
UNTIL ( code=O); 
inputReal:=tempReal; 

END; 
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{ inputReal } 

{······································································} 
{* inputChar *} 
{**********************************************************************} 

FUNCTION inputChar(inSet:setType):CHAR; 

{ This function accepts a valid character } 

VAR 
ansr,ansr2: CHAR; 

BEGIN 
REPEAT 

ansr:=UPCASE(READKEY); 

{ If a key with extended code (Function Keys, Arrows, 
Ctl-,Alt-) has been pressed, discard the seconq character } 

IF(ansr=#O)THEN ansr2:=READKEY; 

IF NOT(ansr IN inSet)THEN 
WR I TE (be 11 ) ; 

UNTIL(ansr IN inSet); 

WRITE ( ansr); 
inputChar:=ansr; 

END; 

{ Echo back the input } 

{**********************************************************************} 
{* lineCount *} 
{**********************************************************************} 

PROCEDURE lineCount; 

{ This procedure stops the screen from scrolling } 

BEGIN 
INC ( lcount); 
IF(lcount>20)THEN 

END; 

BEGIN 
lcount:=O; 
message('', 'O' ,validSet4, inCh); 
WINDOW(3,2,48,23); 
GOTOXY ( 1 , 22 ) ; 

END; 
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{······································································} 
{* savelnput *} 
{*******************************************••·························} 

PROCEDURE saveinput; 
BEGIN 

{ Save necessary input information which may be altered by integer 
routine } 

orig_ntc:=ntc; 
orig_nprl:=nprt; 
orig_nrows:=nrows; 
FOR i:=l TO ntc DO 

orig_coef[i]:=coef[i]; 
FOR i:=l TO nvars DO 

orig_num[i]:=num[i]; 
END; 

{**********************************************************************} 
{* sortCoef *} 

{······································································} 
PROCEDURE sortCoef(inTemp:coefArray); 

BEGIN 

{ Sorts the information columnwise if they were entered rowwise. Also, 
finds number of coefficients (decision variable) in each column } 

c:=O; 
k:=O; 
FOR j:=l TO nvars DO 

BEGIN 
FOR i:=l TO ntc DO 

BEGIN 
IF (inTemp[i].column = j) THEN 

BEGIN 
INC(c, 1); {Counter for dee. variable in column j} 
INC(k, 1); 

END; 
END. 

coef[k] := inTemp(i]; 
END; 

END; 
num[j]:=c; 
c:=O; 

END; 

{ smlautil } 



UNIT dbasUtil; 

INTERFACE 

USES CRT,DOS,PRINTER,smlaUtil; 
PROCEDURE CreateDataBase; 
PROCEDURE LoadDataBase; 
PROCEDURE SaveDataBase; 
PROCEDURE DisplayDataBase; 
PROCEDURE OutputResult; 
PROCEDURE FinalZjCj; 
PROCEDURE SensiAnaly; 

IMPLEMENTATION 
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{**********************************************************************} 
{* NinvCDF *} 
{**********************************************************************} 

PROCEDURE NinvCDF(mu,sigma,ccprob: REAL; VAR ccRhs: REAL); 

{ This procedure computes the inverse cumulative distribution 
function of a random variable Z, distributed normally with mean 
zero and variance one. ie. Z=F**(-l)(prob). } 

VAR 
tempProb,w,w2,z: 

BEGIN 
tempProb:=ccProb; 

REAL; 

IF(tempProb > O.S)THEN tempProb:=l.0-tempProb; 
w2:=LN(l.O/SQR(tempProb)); 
w:=SQRT(w2); 
{ Z value for unit normal distribution } 
z:=w-(2.515517+0.802853*w+0.010328*w2)/ 

(1.0+1.432788*w+O. 189269*w2+0.001308*w*w2); 
IF(ccProb<=O.S)THEN z:=-z; 

{ Find corresponding x value for the given normal distribution } 

ccRhs:=mu+z*sigma; 
IF(FRAC(ccRhs) > O.OOl)THEN 

ccRhs:=INT(ccRhs+l.O) 
ELSE 

ccRhs:=INT(ccRhs); 
END; 

{**********************************************************************} 
{* UinvCDF *} 
{**********************************************************************} 

PROCEDURE UinvCDF(Lbound,Ubound,ccProb: REAL; VAR ccRhs: REAL); 



{ This procedure computes the inverse probability function of a 
random variable distributed uniformly between Lbound and Ubound. 

BEGIN 
ccRhs:=(Ubound-Lbound)*ccProb + Lbound; 
IF(FRAC(ccRhs) > 0. 001 )THEN 

ccRhs:=INT(ccRhs+l.0) 
ELSE 

ccRhs:=INT(ccRhs); 
END; 
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{······································································} 
{* CreateDataBase *} 

{•·····································································} 
PROCEDURE CreateDataBase; 

CONST 
f = #196; 

VAR 
{ ASCII Character for - } 

xl,x2,x3,x4,x5,x6,x7,x8,x9,x10,xll, 
yl,y2,y3,y4,y5,y6,y7,y8,y9,yl0,yll: BYTE; 

{······································································} 
{* Stochastic *} 

{······································································} 
PROCEDURE Stochastic; 

BEGIN 

{ Input rhs values 

FOR i:= 1 TO nrows DO 
BEGIN 

constType[i]:='D'; 
b 1 ank ( x8, y8, 18 ) ; 
GOTOXY(6, 18); 
WRITE ('RHS for Constraint ',i:2,' '+f+f+Cfffi(16)+' '); 
REPEAT 

rhs[i]:=inputReal(x8,y8); 
IF(rhs[i)<O)THEN 

BEGIN 

{ Input the rhs } 

message('RHS Must be>= O', '2' ,validSet4,answer); 
blank(x8, y8, 18); 

END; 
UNTIL (rhs[i] >= O); 

END; 
{ Input number of sources and destinations } 
REPEAT 

nsources:=inputinteger(x9,y9, 1,29); 
ndestns:=inputinteger(xlO,ylO, 1,29); 
IF((nsources*ndestns+nsources)>30)THEN 

BEGIN 
message('Problem is Too Big ... ', '2' ,validSet4,answer); 
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STR(nsources,s); 
blank(x9,y9,LENGTH(s)); 
STR(ndestns, s); 
blank(xlO,ylO,LENGTH(s)); 

END; 
UNTIL(nsources*ndestns+nsources <= 30); 
GOTOXY(xll,yll); 
demand:=inputChar(validSet7); 

{ Input the demand parameters } 

FOR i:=l TO ndestns DO 
BEGIN 

blank(xl,yl, 15); 
blank (x2, y2, 15); 
CASE demand of 

'N': 
BEGIN 

GOTOXY(6, 22); 
WRITE('Destination ',i:2,' Mean '+f+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
GOTOXY(6, 23); 
WRITE('Destination ',i:2,' S.D. '+f+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
mu[i]:=inputReal(xl,yl); 
sigma[i]:=inputReal(x2,y2); 

END; 
'U': 

BEGIN 
GOTOXY ( 6, 22 ) ; 
WRITE('Destination ', i:2,' Lower Bound '+f+CHR(l6)+' '); 
xl:=WHEREX;yl:=WHEREy; 
GOTOXY(6, 23); 
WRITE('Destination ',i:2,' Upper Bound '+f+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
REPEAT 

REPEAT 
Lbound[i]:=inputReal(xl,yl); 
IF(Lbound[i]<O.O)THEN 

BEGIN 
message(' Lower Bound Must be>= 0 ', '2' ,validSet4, 

answer); 
blank(xl,yl, 15); 

END; 
UNTIL(Lbound[i]>=O); 
REPEAT 

Ubound[i]:=inputReal(x2,y2); 
IF(Ubound[i]<O.O)THEN 

BEGIN 
message('Upper Bound Must be>= 0 ', '2' ,validSet4, 

answer); 
blank(x2,y2,15); 

END; 



UNTIL(Ubound[i]>=O); 
IF(Lbound[i]>=Ubound[i])THEN 

BEGIN 
message(' Lower Bound Must b~ <Upper Bound ', '2', 

validSet4,answer); 
b 1 ank ( x 1 , y l , 15 ) ; 
blank(x2, y2, 15); 

END; 
UNTIL(Lbound[~] < Ubound[i]); 

END; 
END; 

END; 
{ input penalty costs } 
WINDOW(2, 19,50,23); 
CLRSCR; 
WINDOW(l, 1,80,25); 
FOR i:= 1 TO ndestns DO 

BEGIN 
b 1 ank ( x 1 , y 1 , 12 ) ; 
blank (x2, y2, 12); 
GOTOXY(6, 20); 
WRITE('Oversupply Cost at Destn. ',i:Z,' '+f+Clffi(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
GOTOXY(6, 21); 
WRITE('Undersupply Cost at Destn. ', i: 2,' '+f+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
REPEAT 

Ocost[i]:=inputReal(xl,yl); 
IF(Ocost[i]<O)THEN 

BEGIN 
message('Cost Must be Nonnegative ... ', '2' ,validSet4, 

answer); 
blank(xl,yl, 12); 

END; 
UNTIL(Ocost[i]>=0.0); 
REPEAT 

Ucost[i]:=inputReal(x2,y2); 
IF(Ucost[i]<O)THEN 

BEGIN 
message('Cost Must be Nonnegative ... ', '2' ,validSet4, 

answer); 
blank (x2, y2, 12); 

END; 
UNTIL(Ucost[i]>=O.O); 

END; 

{ Initialize all decision variables to zero } 
FOR i:=l TO (nsources*ndestns)+nsources DO 

BEGIN 
decn[i]:=O.O; 
varChange[i]:='F'; 

END; 
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{ Input the index of open sources } 
GOTOXY(6, 22); 
WRITE(' Index for an Open Source '+f+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

i:=inputinteger(xl,yl, 1,nsources); 
decn[(nsources*ndestns)+i]:=l.O; 
message('More Open Sources? (YIN) -'+CHR(16)+' ',' 1' ,validSet4, 

answer); 
IF(answer='Y' )THEN 

blank(xl,yl,2); 
UNTIL(answer='N' ); 

{ Input the allocation variables } 
FOR i:=l TO nsources DO 

END; 

BEGIN 
FOR j:=l TO ndestns DO 

BEGIN 
IF(decn[(nsources*ndestns)+i]=l.O) THEN 

BEGIN 
varChange[(j-l)*nsources+i]:='V'; 
GOTOXY ( 16, 23) ; 
WRITE('ENTER X(', i:2,j:2,') '+f+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

temp:=inputReal(xl,yl); 
IF(temp<O.O)THEN 

BEGIN 
message(' Allocations Must be Nonnegative 

'2' ,validSet4,answer); · 
STR( temp, s); 
blank(xl,yl,LENGTH(s)); 

END; 
UNTIL(temp>=0.0); 
decn[(j-l)*nsources+i]:=temp; 
STR(temp, s); 
blank(xl,yl,LENGTH(s)); 

END; 
END; 

END; 
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{······································································} 
{* ChanceConst *} 

{······································································} 
PROCEDURE ChanceConst(i: INTEGER); 

{ This procedure accepts RHS information for chance-Const. formulation } 

VAR 
mu, sigma, serviceLvl, rhsTemp, 
Lbound,Ubound: REAL; 



ansr: 
x1,yl,x2,y2,x3,y3,x4,y4: 

BEGIN 
GOTOXY ( 6, 1 9 ) ; 

CHAR; 
BYTE; 

WRITE('#',i:2,' Probabilistic (Y/N) '+f+CHR(16)+' '); 
ansr:=inputChar(validSet4); 
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IF(ansr='N' )THEN { Deterministic constraint } 
BEGIN 

GOTOXY(6, 20); 
WRITE ('RHS for Constraint' ,i:2,' '+f+f+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
REPEAT 

rhs[i):=inputReal(xl,yl); { Input the rhs } 
IF(rhs[i]<O)THEN 

BEGIN 
message('RHS Must be>= 0 ', '2' ,validSet4,answer); 
b 1 ank ( x 1 , y 1 , 18 ) ; 

END; 
UNTIL (rhs[i] >= O); 

END 
ELSE { Probabilistic constraint } 

BEGIN 
GOTOXY ( 6, 20) ; 
WRITE('Normal or Uniform (N/U) '+f+CHR(16)+' '); 
ansr:=inputChar(validSet7); 
GOTOXY ( 10, 21); 
WRITE('Enter Service Level '+f+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
IF(ansr='N' )THEN { Normal } 

BEGIN 
GOTOXY ( 10, 22) ; 
WRITE(' Enter Mean '+f+f+f+f+f+f+f+f+f+f+CHR(16)+' '); 
x3:=WHEREX;y3:=WHEREY; 
GOTOXY ( 10, 23 ) ; 
WRITE('Standard Deviation '+f+f+CHR(16)+' '); 
x4:=WHEREX;y4:=WHEREY; 

END 
ELSE { Uniform } 

BEGIN 
GOTOXY ( 10, 22 ) ; 
WRITE('Enter Lower Bound '+f+f+f+CHR(16)+' '); 
x3:=WHEREX;y3:=WHEREY; 
GOTOXY( 10, 23); 
WRITE('Enter Upper Bound '+f+f+f+CHR(16)+' '); 
x4:=WHEREX;y4:=WHEREY; 

END; 
{ Input the service level probability } 
REPEAT 

serviceLvl:=inputReal(x2,y2); 
IF(serviceLvl<O.O)OR(serviceLvl>l.O)THEN 

BEGIN 
message('Service Level Must be Between 0 and 1 •, '2', 



validSet4,answer); 
blank (x2, y2, 18); 

END; 
UNTIL(serviceLvl>=O.O)AND(serviceLvl<=l.0); 

{ Read parameters for normal distribution } 
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IF(ansr='N' )THEN { Normal } 
BEGIN 

constType[i]:='N'; 
IF(serviceLvl=O.O)THEN serviceLvl:=0.001; 
IF(serviceLvl=l.O)THEN serviceLvl:=0.999; 
REPEAT 

mu:=inputReal(x3,y3); 
sigma:=inputReal(x4,y4); 
NinvCDF(mu,sigma,serviceLvl,rhsTemp); 
IF(rhsTemp<=O)THEN 

BEGIN 
message(' Invalid Parameters - Enter Again', '2', 

validSet4,answer); 
STR(mu, s); 
blank(x3,y3,LENGTH(s)); 
STR ( sigma, s ) ; 
blank(x4,y4,LENGTH(s)); 

END; 
UNTIL(rhsTemp>0.0); 
rhs[i]:=rhsTemp; 

END; 

{ Read parameters for uniform distribution } 

IF(ansr=' U' )THEN 
BEGIN 

constType[i]:='U'; 
REPEAT 

REPEAT 
Lbound:=inputReal(x3,y3); 
IF(Lbound<O.O)THEN 

BEGIN 

{ Uniform } 

message('Lower Bound Must be>= 0 ', '2' ,validSet4, 
answer); 

blank(x3,y3, 18); 
END; 

UNTIL(Lbound>=O); 
REPEAT 

Ubound:=inputReal(x4,y4); 
IF(Ubound<O.O)THEN 

BEGIN 
message('Upper Bound Must be>= 0 ', '2' ,validSet4, 

answer); 
blank (x4, y4, 18); 

END; 
UNTIL(Ubound>=O); 



END; 

IF(Lbound>=Ubound)THEN 
BEGIN 

message('Lower Bound Must be <Upper Bound ', '2', 
validSet4,answer); 

blank(x3, y3, 18); 
blank (x4, y4, 18); 

END; 
UNTIL(Lbound < Ubound); 
UinvCDF(Lbound,Ubound,serviceLvl,rhsTemp); 
rhs[i]:=rhsTemp; 

END; 

blank (x8, y8, 1); 
blank (:X:9, y9, 1); 
WINDOW(2,20,50,23); 
CLRSCR; 
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WINDOW(l,1,80,25); 
END; { End of ChanceConst } 

{······································································} 
{ • inputDa ta •} 

{•·····································································} 
PROCEDURE inputData; 

LABEL a,b,c,d; 
VAR 

s: 
temp: 
nnrows: 

BEGIN 
{ Set up the input entry display } 

GOTOXY(3, 3); 
TEXTCOLOR ( 10 ) ; 

STRING; 
coefArray; 
BYTE; 

WRITELN ('SET 1 - PRIORITY STRUCTURE:'); 
GOTOXY ( 3, 10) ; 
WRITELN ('SET 2 - TECHNOLOGICAL COEFFICIENTS:'); 
GOTOXY(3, 16); 
WRITELN ('SET 3 - CONSTRAINTS SIGN AND RHS VALUES:'); 
TEXTCOLOR ( 14) ; 

{ Information for the priority structure } 

GOTOXY(6, 5); 
WRITE ('Sign "P" or "N" '+CHR(196)+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
GOTOXY(6, 6); 
WRITE('Row Number '+f+f+f+f+f+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
GOTOXY ( 6, 7 ) ; 
WRITE ('Priority '+f+f+f+f+f+f+f+CHR(16)+' '); 
x3:=WHEREX;y3:=WHEREY; 

{ inputData } 



GOTOXY ( 6, 8 ) ; 
WRITE ('Weight '+f+f+f+f+f+f+f+f+f+CHR(16)+' '); 
x4:=WHEREX;y4:=WHEREY; 

{ Information for the technological coefficients } 

GOTOXY(6, 12); 
WRITE ('Row Number '+f+f+f+f+f+CHR(16)+' '); 
xS:=WHEREX;yS:=WHEREY; 
GOTOXY(6, 13); 
WRITE ('Column Number '+f+f+CHR(16)+' '); 
x6:=WHEREX;y6:=WHEREY; 
GOTOXY ( 6, 14 ) ; 
WRITE ('Coefficient '+f+f+f+f+CHR(16)+' '); 
x7:=WHEREX;y7:=WHEREY; 

{ Information for the constraints sign and rhs values } 

CASE modelType OF 
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'D': { Deterministic } 
BEGIN 

GOTOXY ( 6, 18 ) ; 
WRITE ('Sign for Constraint 1 '+f+f+CHR(16)+' '); 
x8:=WHEREX;y8:=WHEREY; 
GOTOXY ( 6, 1 9 ) ; 
WRITE('RHS for Constraint 1 '+f+f+CHR(16)+' '); 
x9:=WHEREX;y9:=WHEREY; 

END; 
'C': { Chance-constrained } 

BEGIN 
GOTOXY ( 6, 18 ) ; 
WRITE ('Sign for Constraint 1 '+f+f+CHR(16)+' '); 
x8:=WHEREX;y8:=WHEREY; 
GOTOXY ( 6, 1 9 ) ; 
WRITE('# 1 Probabilistic (YIN) '+f+CHR( 16 )+' '); 
x9:=WHEREX;y9:=WHEREY; 

END; 
·s·: { Stochastic } 

BEGIN 
GOTOXY ( 6, 18 ) ; 
WRITE('RHS for Constraint 1 '+f+f+CHR(16)+' '); 
x8:=WHEREX;y8:=WHEREY; 
GOTOXY ( 6, 1 9 ) ; 
WRITE(' Number of Sources '+f+f+f+f+f+f+f+CHR(16)+' '); 
x9:=WHEREX;y9:=WHEREY; 
GOTOXY(6, 20); 
WRITE('Number of Destinations '+f+f+CHR(16)+' '); 
xlO:=WHEREX;YlO:=WHEREY; 
GOTOXY(6, 21); 
WRITE(' Normal or Uniform Demands (N/U) '+f+CHR(16)+' '); 
xll:=WHEREX;yll:=WHEREY; 

END; 
END; 
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{ Start reading the information } 

{ Input the achievement function. Read in the sign, row, priority, 
and weight of deviational variables in the objective function. 
Also, compute total number of priorities present. } 

a: nprt : = O; 
tprt := O; 
nnrows:=O; 

b: GOTOXY(xl, yl); 
INC(tprt,1); 
WITH obj[tprt] DO 

BEGIN 
sign := inputChar(validSetl); 
IF(sign <> enter) THEN 

BEGIN 

{ Input the achievement sign } 
{ Increment tprt by 1 } 

row:=inputinteger(x2,y2,l,30); { Input the row number} 

END; 

IF(row > nnrows)THEN nnrows:=row; 
{ Input priority number } 
priority:=inputinteger(x3,y3, 1, 10); 
REPEAT 

weight:=inputReal(x4,y4); { Input the weight } 
IF(weight <= O)THEN 

BEGIN 
message('Weight Must be > 0 ', '2' ,validSet4,answer); 
STR(weight, s); 
blank(x4,y4,LENGTH(s)); 

END; 
UNTIL (weight>O.O); 
IF (priority> nprt) THEN nprt:=priority; 
blank(xl,yl, l); 
STR ( row, s ) ; 
blank(x2,y2,LENGTH(s)); 
STR(priority, s); 
blank(x3,y3,LENGTH(s)); 
STR(weight,s); 
blank(x4,y4,LENGTH(s)); 
GOTO b; { Read the next priority } 

END; 

DEC ( tprt, 1); { Decrement tprt by 1 } 
IF (nprt = 0) THEN 

BEGIN 
message('Number of priorities must be> O', 'O' ,validSet4, 

inCh); 
GOTO a; 

END; 

{ Input the technological coefficients- (row, column, value). 
Also, calculate number of rows and decision variables. } 
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c: ntc: = O; 
nvars:= O; 
nrows:= O; 

d: INC (ntc, 1); 
WITH temp[ntc] DO 

BEGIN 
row:=inputinteger(xS,yS,0,30); 
WHILE (row <> 0) DO 

BEGIN 
{ Input the column number } 
column:=inputinteger(x6,y6, 1,30); 
REPEAT 

value:=inputReal(x7,y7); 
IF(value = O)THEN 

BEGIN 

{ Input the row number } 

{ Input the value } 

message('Value Must be> 0 ', '2' ,validSet4,answer); 
blank (x7, y7, 1); 

END; 
UNTIL (value<>O.O); 
IF (column> nvars) THEN nvars :=column; 
IF (row> nrows) THEN nrows :=row; 
STR (row, s) ; 
blank(xS,yS,LENGTH(s)); 
STR (column, s); 
blank(x6,y6,LENGTH(s)); 
STR(value, s); 
blank(x7,y7,LENGTH(s)); 
GOTO d; { Read the next coefficient } 

END; 
blank(x5,y5, l); { Clear the 0 if it was used instead of return} 

END; 
DEC (ntc, 1); 
IF (ntc = 0) THEN 

BEGIN 
message('Number of Variables Must be> 0 ', 'O' ,validSet4, inCh); 
GOTO c; 

END; 

{ The following is true for stochastic models when the nonlinear 
constraint is the last row } 

IF(nnrows>nrows)THEN nrows:=nnrows; 

{ Sort the information columnwise if they were entered rowwise. 
Also, find number of coefficients (decision variables) in each 
column } 

sor tCoef (temp); 

{ Input the sign for each constraint: 

E - System (rigid) equality constraints 



G - System > = constraints 
L - System < = constraints 
B - Goal constraints } 

IF(modelType='S' )THEN 
Stochastic 

ELSE 
BEGIN 

FOR i:= 1 TO nrows DO 
BEGIN 

constType[i]:='D'; 
GOTOXY ( 6, 18 ) ; 
WRITE ('Sign for Constraint ',i:2,' '+f+f+CHR(16)+' '); 
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GOTOXY(x8,y8); { Input the constraint sign } 

END; 

csign[i] := inputChar(validSet2); 

{ Input the rhs for each constraint } 

CASE modelType OF 
• D': 

BEGIN 
GOTOXY ( 6 , 1 9 ) ; 
WRITE ('RHS for Constraint ', i:2,' '+f+f+CHR(16)+ 

, ' ) ; 

REPEAT 
rhs[i]:=inputReal(x9,y9); 
IF(rhs [ i] <O )THEN 
BEGIN 

{ Input the rhs } 

message('RHS Must be>= O', '2' ,validSet4,ans~er); 
blank (x9, y9, 18); 

END; 
UNTIL (rhs[i] >= O); 
blank (x8, y8, 1); 
blank (x9, y9, 18); 

END; 
·c·: 

END; 

{ Call chance-constrained routine for input } 
ChanceCons t ( i ) ; 

END; 
END; 

{ End of inputData } 

{ ...................................................................... } 
{. CreateDataBase . } 
{ ...................................................................... } 

BEGIN 

TEXTCOLOR ( 11 ) ; 
drawBox(l, 1,80,24); 
GOTOXY(30, 1); 
WR ITELN ( ' CREATE A NEW MODEL ' ) ; 

{ CreateDataBase } 



GOTOXY ( 51 , 2 ) ; 
CASE modelType OF 

'D': WRITELN('Type: Deterministic'); 
'C': WRITELN{'Type: Chance-Constrained'); 
'S': WRITELN{'Type: Stochastic'); 

END; 
TEXTCOLOR { 14) ; 

{ Open up the help window } 

TEXTBACKGROUND{ll); 
drawbox{51,4, 74,22); 
GOTOXY(59, 4); 
WRITELN (' HELP ' ) ; 
window(52,5,73,21); 
CLRSCR; 

1' ) ; 
TEXTCOLOR ( 0 ) ; 
WRITELN(' SET 
WRITELN(' 0 
WRITELN(' 0 
WRITELN(' 0 
WRITELN; 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN; 

< Row '+CHR(243)+' 30' ); 
<Priority '+CHR(243)+' 10' ); 
< Weight'); 

SET 2'); 
0 < Row '+CHR(243)+' 30' ); 
0 <Variable '+CHR(243)+' 30' ); 
0 < Coefficient'); 

WRITELN(' SET 3'); 
IF(modelType<>'S' )THEN 

BEGIN 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN(' 
WRITELN(' 

END; 

Sign' ) ; 
E ...... . 
G ...... . 
L ...... . 
B ...... . 

=' ) ; 
'+CHR(242)); 
'+CHR{243)); 
GOAL' ) ; 

WRITE(' RHS '+CHR(242),' O' ) ; 
IF{modelType='S' )THEN 

BEGIN 
WRITELN; 
WRITELN(' Sources*Destinations' ); 
WRITELN(' +Sources '+CHR(242),' O' ); 

END; 

{ End of the help window } 
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WINDOW(l,1,80,25); 
TEXTBACKGROUND(l); 
TEXTCOLOR ( 14 ) ; 
inputData; 
save Input; 

{ Get all the input data } 
{ Save the original data } 

flg3: =TRUE; 
message {'Save This Model? (Y/N) -'+CHR{16), 'l' ,validSet4,answer); 



IF(answer='Y' )THEN 
SaveDataBase 

ELSE 
filename:='Test'; 
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END; { CreateDataBase } 

{······································································} 
{* LoadDataBase *} 

{······································································} 
PROCEDURE LoadDataBase; 

BEGIN 
flgS: =FALSE; 
ASSIGN (datafile, 
cursor (FALSE); 

{ LoadDataBase } 
{ Indicates if the current load is successful } 

filename); { Identify the file's name on disk } 

message('Loading File '+filename+' •, '4' ,validSet4, inch); 

{ Check if the file exist } 

{$I-} 
APPEND(datafile); 
{$I+} 
IF(IORESULT <> O)THEN 

BEGIN 
cursor (TRUE); 
message('•, '3' ,validSet4,inch); 
message('File does not exist', 'O' ,validSet4, inCh); 
EXIT; 

END 
ELSE 

CLOSE (datafile); 
RESET (datafile); 
READLN(datafile,modelType); 
READLN(datafile, tprt, nprt); 

{ File exist } 
{ Open the file for reading } 

FOR i:=l TO tprt DO 
WITH obj [ i] DO 

READLN(datafile, sign, row, priority, weight); 
READLN(datafile, ntc, nvars, nrows); 
FOR i:= 1 TO ntc DO 

WITH coef [ i] DO 
READLN(datafile, row, column, value); 

IF(modelType<>'S' )THEN 
BEGIN 

FOR i:=l TO nrows DO 
READLN (datafile, csign [ i], constType [ i], rhs [ i] ) ; 

FOR i:=l TO nvars DO 

END 
ELSE 

BEGIN 

READLN(datafile, num[i]); 

FOR i:=l TO nrows DO 
READLN(datafile,constType[i],rhs[i] ); 

{ Stochastic model } 



{* 
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READLN(datafile,demand,nsources,ndestns); 
FOR i::l TO ndestns DO 

BEGIN 
IF(demand:'N' )THEN 

READLN(datafile,mu[i],sigma[i],Ocost[i],Ucost[i]) 
ELSE 

READLN(datafile,Lbound[i],Ubound[i),Ocost[i],Ucost[i]); 
END; 

FOR i::l TO (nsources*ndestns)+nsources DO 
READLN(datafile,varChange[i], decn[i]); 

END; 
CLOSE (datafile); 
message('', '3' ,validSet4,inch); 
cursor (TRUE); 
save Input; 
flg3: :TRUE; 
flg5: :TRUE; 

{ Save the original data } 

END; { End of LoadDataBase } 

SaveDataBase *} 
{**********************************************************************} 

PROCEDURE SaveDataBase; 
VAR 

rightFile: 
xlO,ylO: 

BEGIN 
GOTOXY(3, 23); 

BOOLEAN; 
BYTE; 

WRITE ('Enter the output file name -'+CHR(16)+' '); 
xlO::WHEREX;ylO::WHEREY; 
rightFile::FALSE; 
REPEAT 

READLN (filename); 
ASSIGN (datafile, filename); 
cursor (FALSE); 
message('Saving File '+filename+' ', '4' ,validSet4, inch); 

{ Check if the file exist } 

{$I-} 
APPEND(datafile); 
{$I+} 
IF(IORESULT <> O)THEN { File does not exist } 

rightFile::TRUE 
ELSE 

BEGIN 
CLOSE (datafile); 
cursor (TRUE); 
message('File Already Exist .... '+ 

Overwrite (YIN) -'+ 
CHR(16)+' ',' 1' ,validSet4,answer); · 



IF(answer='N' )THEN 
blank(xlO,ylO,LENGTH(filename)) 

ELSE 
BEGIN 
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message('Saving File '+filename+' ','4',validSet4, 
inch); 

rightFile:=TRUE; 
cursor (FALSE); 

END; 
END; 

UNTIL rightFile; 

{ Write all the information into the file } 

{$!-} 
REWRITE (datafile); { create the output data file } 
{$!+} 
IF (IORESULT <>0) THEN 

BEGIN 
WRITE (bel 1); 
message('', '3' ,validSet4, inch); 
message('Can not Open File', 'O' ,validSet4, inCh); 
cursor (TRUE); 
EXIT; 

END; 
WRITELN(datafile,modelType); 
WRITELN(datafile, tprt, ' ' nprt); 
FOR i:= 1 TO tprt DO 

WITH obj [ i ] DO 
BEGIN 

WRITELN (datafile, sign,' ',row,' ',priority,' ',weight); 
END; 

WRITELN (datafile,ntc,' ',nvars,' ',nrows); 
FOR i:= 1 TO ntc DO 

WITH coef [ i] DO 
BEGIN 

WRITELN (datafile, row,' ',column,' ',value); 
END; 

IF(modelType<>'S' )THEN 
BEGIN 

FOR i:= 1 TO nrows DO 
WRITELN(datafile, csign[i],constType[i],' ',rhs[i]); 

FOR i:=l TO nvars DO 

END 
ELSE 

BEGIN 

WRITELN(datafile, num[i]); 

FOR i:=l TO nrows DO 
WRITELN (datafile, constType [ i], ' ' , rhs [ i] ) ; 

WRITELN(datafile,demand,' ',nsources,' ',ndestns); 
FOR i:=l TO ndestns DO 

BEGIN 
IF(demand='N' )THEN 



WRITELN(datafile,mu[i],' ', sigma[i],' ',Ocost[i],' ' 
Ucost(i]) 

ELSE 
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WRITELN(datafile,Lbound[i],' ',Ubound[i],' ',Ocost[i],' ' 
Ucost [ i]); 

END; 
FOR i:=l TO (nsources*ndestns)+nsources DO 

WRITELN (datafile, varChange [ i], ' ' , decn [ i] ) ; 
END; 

CLOSE (datafile); 
message('', '3' ,validSet4, inch); {Clear the message from last line} 
cursor (TRUE); 

END; 

{······································································} 
{* DisplayDataBase *} 

{······································································} 
PROCEDURE DisplayDataBase; 

BEGIN 
TEXTBACKGROUND(ll); 
IF(modelType<>'S' )THEN 

BEGIN 
drawBox(49,5,73, 16); 
WINDOW(S0,6, 72, 15); 

END 
ELSE 

BEGIN 
drawBox(49,5,73, 19); 
WINDOW(S0,6,72, 18); 

END; 
CLRSCR; 
TEXTCOLOR ( 0 ) ; 
WRITELN(' INPUT SUMMARY'); 
WRITELN; 
WRITELN(' #of Priorities ... ' ,nprt:3); 
WRITELN(' #of Rows ......... ' ,nrows:3); 
WRITELN(' #of Variables .... ' ,nvars:3); 
WRITELN(' #of Tech. Coeff .. ',ntc:3); 
IF(modelType='S' )THEN 

BEGIN 
WRITELN(' #of Sources ...... ' ,nsources:3); 
WRITELN(' #of Destinations.' ,ndestns:3); 
WRITELN(' Demand Distribution:' ,demand); 

END; 
WRITELN; 
WRITELN(' Current Model '+CHR(26)+' ',filename); 
CASE modelType OF 

'D': WRITELN(' Type: Deterministic'); 
'C': WRITELN(' Type: Chance-Const.'); 
'S': WRITELN(' Type: Stochastic'); 

END; 

{ Black } 



WINDOW(3,2,48,23); 
TEXTCOLOR ( 14 ) ; 
TEXTBACK.GROUND(l); 
WRITELN('ACHIEVEMENT FUNCTION:'); 
lineDraw(21,CHR(196)}; 
WRITELN('SIGN ROW PRIORITY WEIGHT'); 
lcount:=3; 
FOR i:= 1 TO tprt DO 

WITH obj [ i] DO 
BEGIN 

WRITELN(sign:2,row:7,priority:9,weight: 11:2); 
lineCount; 

END; 
WRITELN;lineCount; 
WRITELN('TECHNOLOGICAL COEFFICIENTS:'); lineCount; 
lineDraw(27,CHR(196)};lineCount; 
WRITELN ('ROW COLUMN VALUE' );lineCount; 
FOR i:= 1 TO ntc DO 

WITH coef[i] DO 
BEGIN 

WRITELN(row:2,column:7,value: 12:2); 
lineCount; 

END; 
WRITELN; 
lineCount; 
WRITELN('RIGHT HAND SIDE:'); 
lineCount; 
lineDraw(l6,CHR(196)); 
lineCount; 
IF (modelType<>'S' }THEN 

BEGIN 
WRITELN('ROW SIGN 
lineCount; 
FOR i:= 1 TO nrows DO 

BEGIN 

VALUE TYPE' ) ; 
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WRITELN(i:2,csign[i]:7,rhs[i]: 12:2,' ' , constType [ i]}; 

END 
ELSE 

lineCount; 
END; 

BEGIN 
WRITELN('ROW TYPE 
lineCount; 
FOR i:=l TO nrows DO 

BEGIN 

VALUE'}; 

WRITELN(i:2,constType[i]:7,rhs[i]: 12:2); 
lineCount; 

END; 
WRITELN;lineCount; 
IF(demand='N' )THEN 

WRITELN('Dest. Mean S.D. Over S. Cost Under S. Cost') 
ELSE 

WRITELN('Dest. Lbound Ubound Oversup. $ Undersup. $' ); 



lineCount; 
FOR i:=l TO ndestns DO 

BEGIN 
IF(demand='N' )THEN 

WRITELN(i:2,mu[i]:8:2,sigma[i]:7:2,0cost[i]:9:2, 
Ucost[i]:15:2) 

ELSE 
WRITELN(i:2,Lbound[i]:9:2,Ubound[i]:9:2,0cost[i]:9:2, 

Ucost[i]: 12:2); 
lineCount; 

END; 
WRITELN;lineCount; 
WRITELN('STARTING SOLUTION:' );lineCount; 
lineDraw(18,CHR(196));lineCount; 
WRITELN('Variable Value Fixed/Variable'); lineCount; 
FOR i:=l TO nsources DO 

FOR j:=l TO ndestns DO 
BEGIN 
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WRITELN('X(' ,i:2,j:2,') = ',decn[(j-l)*nsources+i]:7:2, 
' ',varChange[(j-l)*nsources+i]); 

lineCount; 
END; 

FOR i:=l TO nsources DO 
BEGIN 

END; 

WRITELN(' Y(' ,i:2,') = ',decn[(nsources*ndestns)+i]:7:2, 
',varChange[(nsources*ndestns)+i]); 

lineCount; 
END; 

message(' Print (Y/N)? -'+CHR(16),' 1' ,validSet4,answer); 
IF(answer='Y' )THEN 

BEGIN 
WRITELN(LST, '-----------------------------------------------' ); 
WRITELN(LST,' INPUT DATA FILE: ',filename); 
WRITELN(LST,'-----------------------------------------------• ); 
CASE modelType OF 

'D': WRITELN(LST,' Type: Deterministic'); 
'C': WRITELN(LST,' Type: Chance-Constrained'); 
'S': WRITELN(LST,' Type: Stochastic'); 

END; 
WRITELN(LST); 
WRITELN(LST,' Number of Priorities ... ' ,nprt:3); 
WRITELN(LST,' Number of Rows ......... ' ,nrows:3); 
WRITELN(LST,' Number of Variables .... ' ,nvars:3); 
WRITELN(LST,' Number of Tech. Coeff .. ',ntc:3); 
IF(modelType='S' )THEN 

BEGIN 
WRITELN(LST,' Number of Sources ...... ' ,nsources:3); 
WRITELN(LST,' Number of Destinations.' ,ndestns:3); 
WRITELN(LST,' Demand Distributions ... ',demand); 

END; 
WRITELN(LST); 
WRITELN(LST, 'ACHIEVEMENT FUNCTION:'); 



WRITELN(LST, 'SIGN ROW PRIORITY WEIGHT'); 
FOR i:= 1 TO tprt DO 

WITH obj(i] DO 
WRITELN(LST,sign:2,row:7,priority:9,weight: 12:2); 

WRITELN(LST); 
WRITELN(LST,'TECHNOLOGICAL COEFFICIENTS:'); 
WRITELN (LST, 'ROW COLUMN VALUE'); 
FOR i:= 1 TO ntc DO 

WITH coef[i] DO 
WRITELN(LST,row:2,column:7,value: 12:2); 

WRITELN(LST); 
WRITELN(LST, 'RIGHT HAND SIDE:'); 
IF(modelType<>'S' )THEN 

BEGIN 
WRITELN(LST, 'ROW SIGN VALUE TYPE'); 
FOR i:= 1 TO nrows DO 

WRITELN(LST,i:2,csign[i]:7,rhs[i]: 12:2,' 
constType[i]); 

END 
ELSE 

BEGIN 
WRITELN(LST, 'ROW TYPE VALUE'); 
FOR i:=l TO nrows DO 

WRITELN(LST, i:2,constType[i]:7,rhs[i]: 12:2); 
WRITELN(LST); 
IF(demand='N' )THEN 
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WRITELN(LST, 'Dest. Mean S.D. Over S. Cost Under S. '+ 
'Cost') 

ELSE 
WRITELN(LST, 'Dest. Lbound Ubound Oversup. $ '+ 

'Undersup. $' ); 
FOR i:=l TO ndestns DO 

IF(demand='N' )THEN 
WRITELN(LST,i:2,mu[i]:8:2,sigma[i]:7:2,0cost[i]:9:2, 

Ucost[i]:15:2) 
ELSE 

WRITELN(LST,i:2,Lbound[i]:9:2,Ubound[i]:9:2, 
Ocost[i]:9:2,Ucost[i]: 12:2); 

WRITELN(LST); 
WRITELN(LST,'STARTING SOLUTION:'); 
WRITELN(LST, 'Variable Value Fixed/Variable'); 
FOR i:=l TO nsources DO 

FOR j:=l TO ndestns DO 
WRITELN(LST,'X(' ,i:2,j:2,') = '. 

decn[(j-1)*nsources+i]:8:2, 
' ',varChange[(j-l)*nsources+i]); 

FOR i:=l TO nsources DO 

END; 
END; 

END; 

WRITELN(LST,' Y(' ,i:2,') = ', 
decn[(nsources*ndestns)+i]:8:2, 
' ',varChange[(nsources*ndestns)+i]); 

{End of DisplayDataBase} 
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{*****•································································} 
{* OutputResult . } 
{······································································} 
PROCEDURE OutputResult; 

BEGIN 
flg4:=TRUE; { A continuous or integer solution is obtained } 
WINDOW(3,2,48,23); 
TEXTCOLOR ( 14) ; 
TEXTBACKGROUND(l); 
WRITELN; 

{ Yellow } 
{ Blue } 

WRITELN('ANALYSIS OF MULTIPLE OBJECTIVES'); 
WRITELN('Priority Under-Achievement'); 
lcount: =3; 
FOR i:=l TO nprt DO 

BEGIN 
WRITELN(i:4,prty[i]: 14:2); 
lineCount; 

END; 
WRITELN; 
1 ineCount; 
WRITELN('ANALYSIS OF DECISION VARIABLES'); 
lineCount; 
FOR i:= 1 TO nvars DO 

BEGIN 
WR ITELN (' x ( ' , i: 2, ' ) =' , decn [ i] : 10: 2) ; 
lineCount; 

END; 
WRITELN; 

lineCount; 
WRITELN('ANALYSIS OF DEVIATIONAL VARIABLES'); 
lineCount; 
WRITELN('Const./Goal # 
1 ineCount; 
FOR i:=l TO nrows DO 

BEGIN 
WRITE(i:8,neg[i]:l7:2); 
WRITELN(pos[i]: 12:2); 
lineCount; 

END; 

d- d+' ) ; 

message(' Print? (Y/N) -'+CfIR(16)+' ',' 1' ,validSet4,answer); 
IF(answer='Y' )THEN 
BEGIN 

WRITELN(LST, '*****************************************' ); 
IF(option='E' )THEN { Continuous Solution is selected } 

WRITELN(LST,'* CONTINUOUS SOLUTION *') 
ELSE 

WRITELN(LST, '* INTEGER SOLUTION 
WR I TELN ( LST, ' * * • * * • • * * * "' * • * * • • * * * * * * "' * • • * * • • * * • * • • * • • • ' ) ; 
WRITELN (LST, 'Model Name: ',filename); 
WRITELN(LST, 'Iteration: ',niteration:8); 
IF(option='F' )THEN 

*' ) ; 



BEGIN 
WRITELN(LST, 'Nodes Generated:' ,nNodGe:4); 
WRITELN(LST, 'Nodes Evaluated:' ,nNodEv:4); 
WRITELN(LST, 'U.B. Updates:' ,ubUpdate:7); 

END; 
WRITELN(LST,'CPU: ',elapsed:l8:2,' SECONDS'); 

WRITELN(LST); 
WRITELN(LST, 'ANALYSIS OF MULTIPLE OBJECTIVES'); 
WRITELN(LST, 'Priority Under-Achievement'); 
FOR i:=l TO nprt DO 

WRITELN(LST,i:S,prty[i]: 16:2); 
WR ITELN ( LST) ; 
WRITELN(LST, 'ANALYSIS OF DECISION VARIABLES'); 
FOR i:=l TO nvars DO 

WRITELN(LST,' X(' ,i:2,' )=' ,decn[i]: 14:2); 
WRITELN (LST); 
WRITELN(LST, 'ANALYSIS OF DEVIATIONAL VARIABLES'); 
WRITELN (LST, 'Const. /Goal # d- d+' ) ; 
FOR i:=l TO nrows DO 
BEGIN 

WRITE(LST,i:8,neg[i): 17:2); 
WRITELN(LST,pos[i]:l2:2); 

END; 
END; 
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END; { End of OutputResult } 

{······································································} 
{* FinalZjCj *} 

{······································································} 
PROCEDURE FinalZjCj; 

{ This procedure calculates and stores the optimum Zj-Cj matrix for 
tradeoff analysis in sensitivity analysis module } 

LABEL s; 
VAR 

tempZmax: 

BEGIN 
IF(flgl)THEN nprtl:=nprt+l 
ELSE 

nprtl: =nprt; 
FOR k:=l TO ncols DO 

BEGIN 
IF(currentBasic[k] <> 0) THEN 

BEGIN 
FOR p:=l TO nprtl DO 

OptZjCj[p,k]:=O.O; 
GOTO s; 

END; 

EXTENDED; 

FOR i:=l TO nrows DO y[i]:=O.O; 



{ Construct the original a column } 

FOR i:=start(k] TO start(k]+n[k]-1 DO 
y[arow(i]]:=avalue[i]; 

{ Update the 'a' column } 

IF (nelemty <> O)THEN 
BEGIN 

FOR i:=l TO nelemty DO 
BEGIN 
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ar:=y[position[i]]; 
y[position[i]]:=O.O; 
IF(ABS(ar) > 1.0E-10) THEN 

{ This is the a-hat } 

END; 
END; 

BEGIN 
lndxl:=ElCount[i]; 
indx2:=E1Count[i+l]-1; 
FOR j:=indxl TO indx2 DO 

END; 

BEGIN 
ij: =ElRow [j]; 
y[ij]:=y[ij]+ar*ElValue[j]; 

END; 

FOR p:=l to nprtl DO 
BEGIN 

tempzmax:=O.O; 

{ Calculate zj-cj for the current variable and priority } 

FOR i:=l TO nrows DO 
IF(pwBasis[i].priority = p) THEN 

tempzmax:=tempzmax+pwBasis[i].weight * y[i]; 
IF(pw[k].priority = p)THEN 

tempzmax:=tempzmax-pw[k].weight; { Zj-Cj } 
OptZjCj[p,k]:=tempzmax; 

END; 
s: END; { End of column loop } 

END; 

{•·····································································} 
{* SensiAnaly *} 
{**********************************************************************} 

PROCEDURE SensiAnaly; 
VAR 

option2: 
s: 
conflict: 
tradeoff: 
temp Trade: 

CHAR; 
STRING; 
ARRAY[Z .. 11, 1 .. ll]OF BOOLEAN; 
ARRAY[2 .. 11, 1 .. ll]OF EXTENDED; 
EXTENDED; 



serviceLvl,mu,sigma,Lbound, 
Ubound, tempRhs: 
xl,yl,x2,y2,x3,y3,x4,y4: 
conflictFlag,change: 

REAL; 
BYTE; 
BOOLEAN; 
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{······································································} 
{* ListAchievmt *} 
{**********************************************************************} 

PROCEDURE ListAchievmt; 
BEGIN 

FOR i:=l TO 2 DO 
WRITE(' Goal # Desired Level Actual Level '); 

WRITELN; 
FOR i:=l TO 2 DO 

WRITE(' ------------------------------------ '); 
WRITELN; 
IF(nrows<=15)THEN 

BEGIN 
FOR i:=l TO nrows DO 

WRITELN(i: 4, rhs[i]: 16: 2, rhs[i]-neg[i]+pos[i]: 17: 2); 
END 

ELSE 
BEGIN 

FOR i:=l TO 15 DO 
WRITELN ( i: 4, rhs [ i] : 16: 2, rhs [ i] -neg [ i] +pos [ i] : 17: 2); 

j: =1 j 

FOR i:=16 TO nrows DO 
BEGIN 

GOTOXY(39, j+J); 
WRITELN(i: 4, rhs[i]: 16: 2, rhs[i]-neg[i]+pos[i]: 17: 2); 
INC(j); 

END; 
END; 

message('', 'O' ,validSet4,inCh); 
END; 

{**********************************************************************} 
{* TradeoffAnly *} 
{**********************************************************************} 

PROCEDURE TradeoffAnly; 

BEGIN 

{ Initialization } 

IF(solution='c' )THEN 
BEGIN 

keepFlgl: =flgl; 
FinalZjCj; 

END; 
conflictFlag:=FALSE; 

{ If integer,' i', this is done in 'updateUB } 

{ Indicates if a conflict is present } 



FOR i:=2 TO nprtl DO 
FOR j:=l TO nprtl DO 

BEGIN 
conflict[i,j]:=FALSE; 
tradeoff[i,j]:=l.OE20; 

END; 

IF(KeepFlgl)AND(firstTime)THEN 
BEGIN 
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{Set the flag so the program does not execute these statements 
more than once for the current solution. This can happen if 
this option is selected more than once for the current solution} 

firstTime:=FALSE; 
FOR i:=nprtl DOWNTO 2 DO 

prty[i]:=prty[i-1); 
prty[i]:=O.O; 

END; 
FOR p:=2 TO nprtl DO 

BEGIN 
IF(prty[p] >= l.OE-lO)THEN 

BEGIN 
{Goal is not fully achieved} 

FOR k:=l TO ncols DO 
BEGIN 

IF(OptZjCj[p,k] >= l.OE-lO)THEN 
BEGIN 

{Positive Zj-Cj} 

FOR i:=l TO p-1 DO 

END; 
END; 

END; 

IF(OptZjCj[i,k] <= -1.0E-lO)THEN {Neg Zj-Cj} 
BEGIN 

conflict[p,i]:=TRUE; 
conflictFlag:=TRUE; 
tempTrade:=-OptZjCj[i,k]/OptZjCj[p,k]; 
IF(tempTrade < tradeoff[p, i])THEN 

tradeoff[p,i]:=tempTrade; 
END; 

END; 

{If conflict exist, list conflicting objectives and their tradeoffs} 

IF(conflictFlag)THEN 
BEGIN 

WRITELN(' Priority <Conflicts with> Priority',' Trade-Offs'); 
WRITELN(' ------------------------------------------------------' ); 
FOR p:=2 TO nprtl DO 

BEGIN 
FOR i:=p-1 DOWNTO 1 DO 

BEGIN 
IF(conflict[p,i])THEN 

BEGIN 



IF(keepFlgl)THEN 
BEGIN 

j : = i -1 ; k: =p-1 ; 
END 

ELSE 
BEGIN 

j: =i; k: =p; 
END; 
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IF (j =O )THEN 
WRITELN (k: 6,' 

ELSE 
. . . . . . System Constraints' ) 

BEGIN 
WR I TE ( k: 6, ' . . . . . . ' , j : 12 ) ; 
WRITELN(tradeoff[p, i]: 13:2); 

END; 
END; 

END; 
END; 

END; 

IF(NOT conflictFlag)THEN 
message('*** WARNING*** No Conflict is Present', 'O' ,validSet4, 

inCh) 
ELSE 

message('', 'O' ,validSet4,inCh); 
END; 

{**********************************************************************} 
{* ChangePri *} 
{**********************************************************************} 

PROCEDURE ChangePri; 
LABEL a; 

BEGIN 
WRITELN(' Priority Under Current New'); 
WRITELN(' NAME Achievement Priority Priority'); 
WRITELN(' --------------------------------------------' ); 
FOR i:=l TO nprt DO 

WRITELN(' Prty ',i:2,prty[i]: 14:2,prty0rder[i]:8); 
message(' Change Priority? (Y/N) -'+CHR(16)+' ', '1' ,validset4, 

answer); 
{Window is now (1,1,80,25) } 
IF(answer='Y' )THEN 

BEGIN 
GOTOXY ( 4, 22 ) ; 
WRITE('Swap Priority Level -'+CHR(16)+' '); 
xl:=WHEREX;yl:=WHEREY; 
GOTOXY(4, 23); 
WRITE('With Priority Level -'+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 

a: i:=inputlnteger(xl,yl,1,nprt); 
j:=inputlnteger(x2,y2, 1,nprt); 



FOR k:=l TO nprt DO 
BEGIN 

IF(prtyOrder[k]=i)THEN 
prtyOrder[k]:=j 

ELSE 
IF(prtyOrder[k]=j)THEN 

prtyOrder [k]: =i; 
END; 

flg4:=FALSE; 
FOR k:=l TO nprt DO 

BEGIN 
GOTOXY (41, k+S); 
WRITELN(prty0rder[k]:2); 

END; 

{ Exchange the priorities } 

FOR k:=l TO tprt DO 
BEGIN 

IF(obj[k].priority=i)THEN 
obj[k].priority:=j 

ELSE 
IF(obj[k].priority=j)THEN 

obj[k].priority:=i; 
END; 

message('More Changes? (Y/N) -'+CHR(16)+' ',' l' ,validSet4, 
answer); 

IF(answer='Y' )THEN 
BEGIN 

blank (xl, yl, 2); 
blank(x2,y2,2); 
GOTO a; 

END; 
END; 

END; 
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{······································································} 
{ * ChangeRhs *} 

{•·····································································} 
PROCEDURE ChangeRhs; 

LABEL a; 
VAR 

x1,yl,x2,y2,x3,y3,x4,y4: BYTE; 
BEGIN 

FOR i: = 1 TO 2 DO 
WRITE(' Row# Current Value New Value '); 

WRITELN; 
FOR i:=l TO 2 DO 

WRITE(' ----------------------------------- '); 
WRITELN; 
IF(nrows<=lS)THEN 

FOR i:=l TO nrows DO 



WRITELN(i:4,rhs[i]:16:2) 
ELSE 

BEGIN 
FOR i:=l TO 15 DO 

WRITELN(i:4,rhs[i):16:2); 
j: =1; 
FOR i:=l6 TO nrows DO 

END; 

BEGIN 
GOTOXY(39, j+3); 
WRITELN(i:4,rhs[i):l6:2); 
INC(j); 

END; 

message('Change RHS? (Y/N) -'+CHR(16)+' ', '1' ,validset4,answer); 
{ After above message the window is (1, 1,80,25) } 
IF(answer='Y' )THEN 

BEGIN 
GOTOXY(4, 20); 
TEXTCOLOR ( 15 ) ; 
WRITE(' Enter Row Number -'+CHR(16)+' '); 
TEXTCOLOR ( 14 ) ; 
xl:=WHEREX;yl:=WHEREY; 

a: i:=inputinteger(xl,yl, l,nrows); 
IF(constType[i]='D' )THEN { Deterministic Constraint } 

BEGIN 
GOTOXY(4, 21); 
TEXTCOLOR ( 15 ) ; 
WRITE('Enter New RHS -'+CHR(16)+' '); 
TEXTCOLOR ( 14 ) ; 
x2:=WHEREX;y2:=WHEREY; 
REPEAT 

tempRhs:=inputReal(x2,y2); 
IF(tempRhs < O.O)THEN 

BEGIN 
message('RHS Must be> 0 ', '2' ,validSet4,answer); 
STR ( tempRhs, s) ; 
blank(x2,y2,LENGTH(s)); 

END; 
UNTIL(tempRhs>=0.0); 

END; 
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IF(constType[i]='N' )THEN { Normal } 
BEGIN 

GOTOXY(4,21); 
TEXTCOLOR ( 15 ) ; 
WRITE(' Enter Service Level -'+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
GOTOXY(4, 22); 
WRITE('Enter Mean -'+CHR(16)+' '); 
x3:=WHEREX;y3:=WHEREY; 
GOTOXY(4, 23); 
WRITE('Standard Deviation -'+CHR(16)+' '); 
x4:=WHEREX;y4:=WHEREY; 
TEXTCOLOR ( 14) ; 
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END; 
IF(constType[i]='U' )THEN { Uniform } 

BEGIN 
GOTOXY(4, 21); 
TEXTCOLOR ( 15 ) ; 
WRITE('Enter Service Level -'+CHR(16)+' '); 
x2:=WHEREX;y2:=WHEREY; 
GOTOXY(4, 22); 
WRITE('Enter Lower Bound -'+CHR(16)+' '); 
x3:=WHEREX;y3:=WHEREY; 
GOTOXY(4, 23); 
WRITE('Enter Upper Bound -'+CHR(16)+' '); 
x4:=WHEREX;y4:=WHEREY; 
TEXTCOLOR ( 14 ) ; 

END; 
IF(constType[i]='N' )OR(constType[i]='U' )THEN 

BEGIN 
REPEAT 

serviceLvl:=inputReal(x2,y2); 
IF(serviceLvl<O.O)OR(serviceLvl>l.O)THEN 

BEGIN 
message('Service Level Must be Between 0 and 1', 

'2' ,validSet4,answer); 
STR(serviceLvl,s); 
blank(x2,y2,LENGTH(s)); 

END; 
UNTIL(serviceLvl>=O.O)AND(serviceLvl<=l.O); 

END; 
IF(constType[i]='N' )THEN 

BEGIN 
IF(serviceLvl=O.O)THEN serviceLvl:=0.001; 
IF(serviceLvl=l.O)THEN serviceLvl:=0.999; 
REPEAT 

mu:=inputReal(x3,y3); 
sigma:=inputReal(x4,y4); 
NinvCDF(mu,sigma,serviceLvl,tempRhs); 
IF(tempRhs<=O)THEN 

BEGIN 
message(' Invalid Parameters - Enter Again', '2', 

validSet4,answer); 
STR(mu, s); 
blank(x3,y3,LENGTH(s)); 
STR(sigma, s); 
blank{x4,y4,LENGTH(s)); 

END; 
UNTIL(tempRhs>0.0); 

END; 
IF(constType[i]='U' )THEN 

BEGIN 
REPEAT 

REPEAT 
Lbound:=inputReal(x3,y3); 
IF(Lbound<O.O)THEN 



END; 
END; 
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BEGIN 
message('Lower Bound Must be >= 0 ', '2' ,validSet4, 

answer); 
STR(Lbound,s); 
blank(x3,y3,LENGTH(s)); 

END; 
UNTIL(Lbound>=O); 
REPEAT 

Ubound:=inputReal(x4,y4); 
IF(Ubound<O.O)THEN 

BEGIN 
message('Upper Bound Must be>= 0 ', '2' ,valldSet4, 

answer); 
STR (Ubound, s); 
blank(x4,y4,LENGTH(s)); 

END; 
UNTIL(Ubound>=O); 
IF(Lbound>Ubound)THEN 

BEGIN 
message('Lower Bound Must be < Upper Bound ', '2', 

validSet4,answer); 
STR(Lbound,s); 
blank(x3,y3,LENGTH(s)); 
STR (Ubound, s); 
blank(x4,y4,LENGTH(s)); 

END; 
UNTIL(Lbound < Ubound); 
UlnvCDF(Lbound,Ubound,serviceLvl, tempRhs); 

END; 
rhs[i]:=tempRhs; 
change:=TRUE; 
flg4: =FALSE; 
IF(i<=lS)THEN 

GOTOXY(22,i+4) 
ELSE 

GOTOXY(60,i-15+4); 
WRITELN(rhs[i]: 16:2); 
message('More Changes? (YIN) -'+CHR(16)+' ', '1' ,validSet4, 

answer); 
IF(answer='Y' )THEN 

BEGIN 
blank(xl,yl,2); 
WINDOW(3,21,78,23); 
CLRSCR; 
WINDOW(l, 1,80,25); 
GOTO a; 

END; 

{ ...................................................................... } 
{. SensiAnaly . } 
{ ...................................................................... } 



263 

BEGIN 
change:=FALSE; {Indicates if rhs or priority structure has changed} 
REPEAT 

WINDOW(2,2,79,23); 
CLRSCR; 
TEXTCOLOR(15); { Select white characters } 
GOTOXY(51, 2); 
WRITELN('Current Model '+CHR(26),' ',filename); 
GOTOXY ( 51 , 3) ; 
CASE modelType OF 

END; 

'D': WRITELN('Type: Deterministic'); 
'C': WRITELN('Type: Chance-Constrained'); 
'S': WRITELN('Type: Stochastic'); 

TEXTCOLOR(14); { Select yellow characters } 
GOTOXY(3, 4); 
WRITELN(' [A] List Actual vs. Desired Goals'); 
GOTOXY(3, 5); 
WRITELN(' [BJ Perform Trade-off Analysis'); 
GOTOXY(3, 6); 
WRITELN(' [CJ Change Priority Structure'); 
GOTOXY(3, 7); 
WRITELN(' [DJ Change RHS of Goal/Real Constraints'); 
GOTOXY ( 3, 13) ; 
WRITELN(' [EJ Return to Main Menu'); 
message(' Enter Option -'+CHR(16)+' ', '1' ,validSet5,option2); 
WINDOW(2,2,79,23); 
CLRSCR; 
CASE option2 OF 

•A': 
BEGIN 

IF(change)THEN 
message('Model has been Changed, Resolve .... ', 'O', 

validSet4,inch) 
ELSE 

BEGIN; 
TEXTCOLOR ( 15 ) ; 
GOTOXY(54, 1); 
WRITELN(' Actual vs Desired Goals'); 
TEXTCOLOR ( 14) ; 
ListAchievmt; 

END; 
END; 

'B': 
BEGIN 

IF(modelType='S' )THEN 
message('This Option is Not Available for Stochastic '+ 

'Model', 'O' ,validSet4, inCh) 
ELSE 

BEGIN 
TEXTCOLOR ( 15 ) ; 
GOTOXY(54, 1); 



WRITELN(' Trade-Off Analysis'); 
TEXTCOLOR ( 14 ) ; 
TradeoffAnly; 

END; 
END; 

·c·: 
BEGIN 

TEXTCOLOR ( 15 ) ; 
GOTOXY(52, 1); 
WRITELN(' Change Priority Structure'); 
TEXTCOLOR ( 14 ) ; 
ChangePri; 

END; 

'D': 
BEGIN 

TEXTCOLOR ( 15 ) ; 
GOTOXY(54, 1); 
WRITELN(' Change RHS Values'); 
TEXTCOLOR ( 14 ) ; 
ChangeRhs; 

END; 
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END { End of the case statement } 
UNTIL(option2='E' ); 
WINDOW(l, 1,80,25); 

END; 
END. { End of dbasUtil } 
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