
AN INTERACTIVE MULTICRITERIA APPROACH TO

FACILITY LOCATION-ALLOCATION MODELS

UNDER STOCHASTIC DEMAND

By

MORTEZA ABTAHI
4

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1981

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1983

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
July, 1989

Oklahoma State Univ. Library

AN INTERACTIVE MULTICRITERIA APPROACH TO

FACILITY LOCATION-ALLOCATION MODELS

UNDER STOCHASTIC DEMAND

Thesis Approved:

Thesis Adviser

J?!

Dean of the Graduate co ~

ii
1.352050

PREFACE

This research focuses on the development of suitable

models to support the strategic planning of facilities

location-allocation in the presence of multiple conflicting

objectives and stochastic demands.

Two mathematical models based on chance-constrained and

stochastic programming are developed. Both models implement

zero-one integer goal programming methodology for the

analysis of multiple objectives. A solution algorithm based

on the chance-constrained goal programming is proposed for

the former model. And a two stage algorithm is suggested for

dealing with the nonlinear structure of the stochastic

programming model. Two types of demand distributions, normal

and uniform are considered. An integrated interactive

computer program is designed and implemented to experiment

with the proposed models on microcomputers.

I wish to express my sincere gratitude to my major

adviser and chairman of my Ph.D. Committee, Dr. M. Palmer

Terrell, for his guidance and encouragement during this study

and throughout my graduate program. I also wish to express

my thanks and appreciation to my committee members, Dr.

Michael H. Branson, Dr. Joe H. Mize, Dr. Allen Schuermann,

and Dr. William D. Warde for their assistance and suggestions.

iii

A note of appreciation is extended to Dr. Donald W.

Grace and Dr. Gary R. Stevens who initially served on my

committee before leaving Oklahoma State University.

I am greatly thankful to the School of Industrial

Engineering and Management at Oklahoma State University for

the financial assistance throughout my graduate study.

A note of thanks goes to Camille Deyong for her

friendship.

To my sisters, Fahimeh and Felor, whom I have not seen

for eleven years, I feel guilty for living in comfort while

they had to experience war.

I am forever grateful to my wife, Marzieh, for her love,

patience, and sacrifices. I am very fortunate to share my

life with her.

Finally, I wish to dedicate this dissertation to my

parents Nahid and Hossein Abtahi, who have devoted their life

to their children. I missed them very much during my

studying years.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. . . . • • • . • • . . • • • • . • . • . . • 1

The General Problem.......................... 1
Background. 1

Location Models • 3
Location Problems on a Plane............ 4
Location Problems on a Network.......... 5
Distance Metric......................... 6

Location-Allocation Models................... 7
Definition.............................. 7
Costs in I.AP. • . . . • . . . • . • . • . • 8
I.AP Classification...................... 9
Multiple Objectives in I.AP Models 11
stochastic Demand in I.AP Models 14

Research Objectives •.•••.••.....•..•......... 15
Primary Objectives. . . • • • • . . • . 16
Secondary Objectives ...•••.......•...... 16

Research Pl an. 16
Phase 1 - Investigation and System

Design. 17
Phase 2 - Program Development .••........ 18
Phase 3 - System Validation and

Sensitivity Analysis ••••.............. 20
Summary. 21

II. LITERATURE REVIEW. • • . • . • • • • • . • • • • • . • • 22

Location Problems on a Plane •••.......•...•.• 22
The Location-Allocation Problem ••.•..•••..•.• 25

The Basic Problem •••••••••••.••.•.....•. 25
Solution Techniques for the I.APs •••...••..•.• 27

Heuristic Procedures •.....••....•......• 28
Exact Procedures ..•••..••••.....•...•.•• 33
Simulation Techniques •.••.•.•..•..•••... 49

Multi-Objective I.APs •..••••••••...........••• 50
Conclusion.. 52

III. MULTIPLE OBJECTIVE DECISION MAKING •.•.•....•...... 56

Introduction. 56
An Overview of MCDM Methods .••••.•...••••..•• 57

MCDM Classification ••.••••••.•••..••.... 59

v

Chapter Page

Goal Programming Methods•............... 63
GP Computational Algorithms 67
Integer GP Techniques 69
Interactive GP and Sensitivity Analysis. 70

Summary and Conclusions •..................... 72

IV. MODEL DEVELOPMENT AND SOLUTION METHODOLOGY 73

Introduction. 7 3
Model Assumptions 74
Notations... 7 6
Chance-Constrained Programming 79

Normally Distributed Demands 81
Uniformly Distributed Demands 82

Stochastic Programming Model 83
Normally Distributed Demands 86
Uniformly Distributed Demands 89

Mathematical Formulations 90
Model A - Chance-Constrained Goal

Programming Formulation 91
Model B - Stochastic Goal Programming

Formulation........................... 98
Solution Algorithms 101

Model A Solution Procedure 101
Model B Solution Procedure 104

Summary. 111

V. VALIDATION, COMPUTATIONAL EXPERIENCE, AND
SENSITIVITY ANALYSIS 112

Introduction 112
Validating the Algorithms and Computer

Programs . 112
Test Problem 1 - A Multicriteria

Warehouse Location Model 113
Test Problem 2 - Location-Allocation

Model I. 115
Test Problem 3 - Location-Allocation

Model II 117
An Illustrative Example for Model A•... 121

System Description 121
System Formulation•............. 124

An Illustrative Example for Model B .•...••... 128
Sensitivity Analysis•..•...............•. 134

Type 1 Sensitivity Analysis 135
Type 2 Sensitivity Analysis 137
Type 3 Sensitivity Analysis 140

Computational Difficulties 145
summary. 14 7

vi

Chapter Page

VI. INTERACTIVE COMPUTER PROGRAM ••.••••••••...•.•..... 148

Introduction. 14 8
General Structure of the Program •..•••....... 148
Data Base Management Module •....•..•••......• 150
Solution Algorithms Module •.•••.•.••......... 153
Sensitivity Analysis Module ••.••..•...••..... 157
Summary ~ . 160

VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 161

summary. 161
Co·nclusions. 162
Recommendations for Future Research 163

BIBLIOGRAPHY. 166

APPENDIXES . • • 177

APPENDIX A - TEST MODELS DATA AND RESULTS .•....... 178

APPENDIX B - APPROXIMATION TO THE CDF AND INVERSE
CDF OF STANDARD NORMAL
DISTRIBUTION. . . • . • • . . • • • 185

APPENDIX C - PASCAL PROGRAM SOURCE CODES 188

vii

LIST OF TABLES

Table Page

1.1. Location-Allocation Problem Classification........ 9

2.1. summary of Single Objective LAP Procedures 54

2.2. Summary of Multiple Objective LAP Procedures 55

5.1. Comparison of Results for Test Problem 1 114

5.2. Test Problem 1 - Algorithm Performance 115

5.3. Comparison of Results for Test Problem 2 116

5.4. Test Problem 2 - Algorithm Performance 117

5.5. Comparison of Results for Test Problem 3 119

5.6. Test Problem 3 - Algorithm Performance 120

5.7. Allocation Costs, Stochastic Demands, Fixed Costs,
and Capacities for the Example Problem 123

5.8. summary of the Results of the Model A Example
Problem for Normal and Uniform Distribution
of Demands 126

5.9. Per Unit oversupplying and Undersupplying Costs
of Demand Centers for the Example Problem 129

5.10. Summary of the Results of the Model B Example
Problem for Normal and Uniform Distribution of
Demands • • 13 4

5.11. Type 1 Sensitivity Analysis of the Model A
Example Problem for Normal Distribution of
Demands . . . • . • • • . • • 13 6

5.12. Type 2 Sensitivity Analysis of the Model A
Example Problem for Normal Distribution of
Demands • . 13 8

5.13. Trade-off Analysis of the Model A Example Problem
for Normal Distribution of Demands 139

viii

Table

5.14. Solution of the Model A Example Problem for
Normal Distribution of Demands and Modified

Page

Budget Goal . 14 o

5.15. The Design and Partial Solutions of the Test
Problems for Type 3 Sensitivity Analysis 142

A.1. Test Problem 1 Input Data 179

A. 2. Test Problem 2 Input Data 180

A. 3. Test Problem 3 Input Data 182

C.1. Index to Program Units and Procedures 189

ix

LIST OF FIGURES

Figure Page

1.1. Facilities Planning Hierarchy..................... 2

1.2. A Typical Cost Trade-off Curve Between Transport-
ation and Fixed Costs 12

1.3. Interactive System Components and Flow 19

4.1. Flowchart of the Algorithm for the SMOLAP of
Model A..................... 103

4.2. Flowchart of the Stage 1 Algorithm for the SMOLAP
of Model B. 109

5.1. Graphical Representation of Potential Plant Sites
and Existing Demand Centers 122

5.2. Expected Cost of Penalties at Each Destination
for the Normally Distributed Demands 130

5.3. Expected Cost of Penalties at Each Destination
for the Uniformly Distributed Demands 132

6.1. General Structure of the Computer Program 149

6.2. Display of the Main Menu 149

6.3. Structure of the Data Base Management Module 151

6.4. Display of the Deterministic Input Data Screen 151

6.5. Structure of the Solution Algorithms Module 153

6.6. Sample Output Screen for Continuous Solution 155

6.7. Structure of the Sensitivity Analysis Module 158

6.8. Display of the Sensitivity Analysis Menu 159

x

CHAPTER I

INTRODUCTION

The General Problem

Background

The strategic issue of facility location in a given

system has been and continues to be of significant interest

to practitioners and researchers alike. The research

interest in this area stems from both its potential economic

return and applicability to problems in many diverse fields.

Historically, Alfred Weber pioneered the analytical approach

to location theory in the early 1900's. He considered the

problem of locating an industry between two resources and a

single market to minimize the transportation cost. In

general, facility location problems are concerned with the

selection of sites for new facilities in relation to some

existing demand centers to optimize some measure of

effectiveness.

In general, the problem of facilities location is a part

of facilities planning. Figure 1.1 illustrates the hierarchy

of facilities planning (Tompkins and White (1984)]. Because

of the nature of this problem and its breadth of application,

an interdisciplinary interest has been developed in this

1

2

area. In particular, the problem has been studied by

technical geographers, urban planners, operation researchers,

regional scientists, engineers, architects, economists,

logisticians, management scientists, applied mathematicians

and system analysts, [White and Case (1974)]. The facility

location problems occur in many settings both in private and

public sectors of the economy, (Revelle, Marks at al.

(1970)].

FACILITIES ____.
LOCATION

FACILITIES
~ STRUCTURAL

PLANNING ~
DESIGN

~
FACILITIES

~
LAYOUT .

DESIGN DESIGN

'--+
HANDLING

SYSTEM
DESIGN

Figure 1.1. Facilities Planning Hierarchy
(Tompkins & White (1984)]

Finally, among the examples of facility location

problems are the determination and location of warehouses,

3

distribution centers, production plants, machine tools,

waste-disposal facilities, hospitals, fire stations,

computers, missile batteries, and communication centers. In

addition, Sule (1981) presented an application of facility

location-allocation problems to production planning and fleet

management problems. Cornuejols et al. (1977) further

extended the application of this problem into financial

planning.

Location Models

Despite the large number of approaches to the site

selection problem, it is possible to distinguish between two

basic structural categories [Scott (1970), ReVelle, Marks

et al. (1970)];

1. Location on a plane.

2. Location on a network.

In addition, based upon criteria and constraints used in

formulating locational problems, Revelle, Marks et al. (1970)

have also distinguished between private and public sector

location models. In short, private sector models emphasize

quantitative measures such as minimization of cost or

maximization of profit while public sector models are

concerned with qualitative factors which are not usually

measurable in monetary terms. In general, the structure,

criteria, and constraints of a given problem will determine

the appropriate methodology to employ.

4

Location Problems on a Plane

Location on a plane, also referred to as the infinite

set method, considers that a site may be selected anywhere on

the coordinate plane. Therefore, an infinite number of

potential locations are available for selection. Eilon et

al. (1971) has identified the main features of this approach

as follows:

a. Locations which are selected are not required to be a
priori attractive.

b. Alternative selections are available in multi
facility location problems.

c. The solution obtained may involve non-feasible
locations.

d. Transport costs are a monotonic function of distance.

These models are based on a single objective and

explicitly incorporate a distance metric, 1 , into their
p

formulation. As item (d) indicates they also assume

transportation costs to be proportional to the distance

travelled. They seek to minimize the total cost by

minimizing the total sum of distances travelled between

source(s) and destination(s). As Lee and Franz (1979)

suggest, these models, the location of facilities as points

on the plane, do not treat many of today's realities and even

may not be feasible. For instance, the location(s) indicated

may be in conflict with many corporate policies or legislated

regulations or may be geographically infeasible. Also, as

indicated by Geoffrion (1975), treating transportation cost

as an explicit well-behaved function of distance (no look-

ups) does not represent a realistic cost structure for the

transportation flows.

Location Problems on a Network

This class of problems is characterized by a solution

space which consists of points on a network. The network of

interest may be a road network, a rail network, an air

transport network, a river network, or a network of shipping

lanes. These models enumerate previously determined

alternative facility locations (as contrasted to location on

a plane) and sites of demands as nodes on a network, Lee and

Franz (1979). Network problems can be further classified

into two categories; points only on the nodes of the network

and points on the nodes and/or the arcs joining the nodes.

Eilon et al. (1971) has identified the following main

features of the network problems:

a. They incorporate costs which are related to specific
geographical locations.

b. Transportation costs are not required to be any
single specific function of distance.

5

c. They require a set of sites which are known to be
feasible and for which all cost data are available.

d. The number of locations must be finite and
sufficiently small for computational efficiency.

Plant location-allocation problems are typical of this

category since in practice plant locations are usually

selected from a set of predetermined sites.

6

Distance Metric

The criterion used often for evaluation of locational

problems is minimization of some distance measure. Such

distance measures in relation to locations on planes and

locations on networks will be discussed next.

In the case of location on planes distances between

facilities are measured in various functional forms called

norms. In general, the distance between points q and s using

the 1 metric is represented as follows:
p

1 / p

lP (q,s) = llq-sllP = [i=!q 1 - s 1 IP J (1.1)

where n is the dimension of the solution space. The two most

common distance measures in locational analysis are

rectilinear and Euclidean distances.

When p=l the distance is called rectilinear,

rectangular, Manhattan, metropolitan, or 1 metric. The
1

rectilinear distance in two dimensional space is as follows:

(1. 2)

Rectilinear distances are typically used to measure travel

distances between points via rectilinear aisles or street

networks.

When p=2 the distance is called Euclidean, radial,

straight-line or 1 metric. An example of Euclidean distance
2

in two dimensional space is given below:

7

12 (q, s) J 1 / 2

= [(x - x) 2 + (y - y) 2 •
1 2 1 2

(1. 3)

Euclidean distances are used whenever travel between points

(sites) occur along a straight line, such as air or conveyor

travel. In cases where cost is not a linear function of

distance traveled (eg. emergency cases), squared-Euclidean

distances are frequently used.

When O<p<l the 1 metric is called hyper-rectangular
p

distance. Generally, such distances occur whenever travel

distances exceed rectilinear.

In the case of location on networks, distances are

determined as the length (time) of the shortest path between

the nodes. As the result, the expression for the distance

may not appear explicitly in the formulation of network

problems.

Location-Allocation Models

Definition

The location-allocation problem (LAP) was first

introduced by Leon Cooper (1963). Since then, many

modifications to the problem parameters have been made, and a

variety of techniques have been proposed for its solution.

The location-allocation problem may be generically stated as

follows: Given the location or distribution of a set of

customers/destinations and their associated demands,

simultaneously determine the number and location of

supplies/sources and the allocation of their products or

services to customers/destinations to optimize some measure

of effectiveness.

The area of facility location-allocation determination

covers a wide range of problems. Among others, applications

occur frequently in service systems, manufacturing systems,

and distribution systems. Although suppliers or sources may

refer to a variety of facilities and machines, the intent of

this research is specific to plant location-allocation

problems. Also, as mentioned previously, in practice, the

selection of plant locations is usually from a set of

pre-specified sites. As such, locations on networks is the

most appropriate structure to be used for modeling of these

problems. Throughout this research the term facilities will

be used generically to refer to plants, warehouses, or

distribution centers.

Costs in LAP

There are two important cost elements in the LAPs:

1. Transportation costs between plants and customers;

2. Production costs at each plant location;

a. Fixed costs of construction and operations;

b. Unit production costs.

8

Transportation and unit production costs are usually

assumed to be a linear function of the quantities distributed

and produced, respectively. And, construction/operation

9

costs are usually assumed constant, representing annual fixed

charges. However, some researchers have considered unit

production costs and/or construction and operation costs to

reflect economies-of-scale. Because, more realistically,

the marginal cost of supplying a customer usually decreases

as facility throughput (capacity) increases. This results in

a concave cost function which often is approximated with a

continuous, piece-wise linear, and concave function.

LAP Classification

Plant location-allocation problems may be classified

according to several characteristics. The major factors

considered in the literature are shown in Table 1.1:

TABLE 1.1

LOCATION-ALLOCATION PROBLEM CLASSIFICATION

Item Factor Factor Levels

A Objective 1. Single objective
2. Multiple objectives

B Solution Space 1. Discrete (finite set)
2. Continuous (infinite set)

c Nature of Demand 1. Deterministic
2. Stochastic

D Types of Plants 1. Uncapacitated
2. Capacitated

E Hierarchy 1. Zero echelon (transportation)
2. Single echelon (transshipment)
3. Multiple echelon (transship.)

TABLE 1.1 (continued)

Item Factor Factor Levels

F Planning Horizon 1. Static (single period)
2. Dynamic (multiple periods)

G Product 1. Single Product
2. Multiple Products

H Costs (Transportation, Production, Fixed plant cost)

1. Fixed
2. Linear
3. Nonlinear

I Elasticity of demand 1. Demand is price/distance
insensitive

2. Demand is price/distance
sensitive

J Solution Procedure 1. Heuristics
2. Optimizers
3. Simulators

K Other (problem-dependent) constraints

1. Single sourcing
2. Mutually exclusive plants
3. Etc.

The complexity of a model varies with the selection of

10

different characteristics from Table 1.1. For example, under

this system, problem A2, Bl, C2, D2, E3, F2, G2, H3, I2, J2

is substantially complex while problem Al, B2, Cl, Dl, El,

Fl, Gl, Hl, Il, J2 is relatively simple. However in

practice, whenever modeling a system, it is desirable to

achieve a compromise between simplicity and reality. As

such, typically, based upon the availability of data and the

real problem encountered, a particular combination of the

above characteristics will be selected for modeling and

analysis.

Multiple Objectives in LAP Models

11

Location-allocation analysis like most other strategic

decision making problems is multi-objective in nature. The

multiple objective aspect of LAPs have gained considerable

attention from researchers in recent years. Traditionally,

the objective function for location-allocation models has

been based upon monetary criteria: minimization of total

costs or maximization of profit. Profit maximization models

incorporate revenues generated from sales into the

formulation and are generally used whenever demand is not

constant or when it can be influenced by other decision

variables. On the other hand, the basic cost minimization

models minimize transportation costs or a combination of

fixed costs and transportation costs. In the latter case, as

the number of facilities increase, fixed costs increase while

the shipping costs decrease. On the contrary, as the number

of facilities decrease, shipping costs increase while the

fixed costs of establishing and operating facilities

decrease. Thus the problem becomes a search for the optimal

trade-off between the cost of building and operating

facilities and the cost of transportation. A typical cost

trade-off curve representing this trade-off is depicted in

Figure 1. 2.

II
ID
0
0

Number of Facilities Opened

Transportation
Costs

Figure 1.2. A Typical Cost Trade-off Curve Between
Transportation and Fixed Costs

12

Nevertheless, LAPS are complex and like most other real

world problems depend upon a number of tangible and

intangible factors which are unique to each problem.

According to Lee et al. (1981), although cost trade-off

remains an essential consideration, the trend of the 1970s

and the outcome of the future would include social,

psychological, safety and public oriented non-economic

considerations in the facility location determination.

13

Furthermore, location-allocation decisions involve a

substantial capital investment and result in long-term

constraints on production and distribution of products. In

view of these issues, and the significant benefits derived

from implementing a realistic model, it is appropriate to

study LAPs in their natural environment of multiple and

conflicting objectives. The need for multiple criteria

models are further emphasized by a survey of industrial

development activities, Lynch (1973). On the bases of this

survey the top ten factors important in locating new

facilities are as followings:

1. environmental considerations.

2. labor factors, emphasis on quality and supply.

3. availability of utilities.

4. transportation, primarily highways.

5. social factors, emphasis on trend to rural areas and
suburbs.

6. community attitude toward industry.

7. low cost financing.

8. supply and cost of available land.

9. markets.

10. taxes.

In addition, ReVelle, Marks et al. (1970) point out that

concentrating only on economic terms produces solutions which

are non-optimal with respect to governmental rules and

regulations. Fulton (1971) and student (1976) have also

emphasized the growing significance of environmental and

14

social factors in the facility location decisions.

In real life, it is evident that other criteria beside

costs play a significant role in determination of locations.

Therefore, clearly, single objective, pure cost minimization

models are no longer adequate to represent locational

problems in the presence of social, energy, and environmental

considerations. As such, a multiple criteria approach is the

most appropriate strategy to be used in modeling and

analyzing the location-allocation problems.

Stochastic Demand in LAP Models

Often, in real-life situations demands are not known

with certainty and only estimates are available. Whenever

demand at destinations is not known with certainty, it should

be treated as a random variable. Among the sources of

variations in demand are changes in market share

(competition), population movements, fluctuating costs, and

seasonal demand patterns. In general, in view of these

uncertainties, it is advantageous to incorporate the

assumption of stochastic demand into LAPs models. This

results in more realistic and comprehensive models and

increases validity and credibility of the solutions obtained.

From an economic perspective, inclusion of stochastic

demand is justified since in the presence of market

uncertainties it is likely to oversupply or undersupply the

demand centers which in turn would result in inventory "carry

15

overs" or "stock outs" costs. Revelle, Marks et al. (1970)

have also emphasized the importance of considering the

stochastic nature of the demand and supply with respect to

seasonal or periodic fluctuations, as well as changes in

economic conditions and population patterns for the facility

location problems.

Therefore, it is believed that introduction of

stochastic demand into multi-criteria LAPs will provide a

greater element of reality into the formulation and analysis

of this class of complex problems.

Research Objectives

Multiple objectives and stochastic demand are two

important elements of LAPs. Although studies are conducted

incorporating these factors separately, both facets have not

been considered simultaneously. This study is to explore the

effects of random demands explicitly in the modeling and

solution of multi-criteria location-allocation problems. The

objectives of this research are divided into two sets: The

primary objectives and the secondary objectives. The primary

objectives focus on the development of suitable models for

the multiple objective location-allocation problem in the

presence of stochastic demand and the determination of

appropriate solution methodologies. The secondary objectives

are to develop an interactive computer program based on the

solution algorithms developed earlier and to conduct a

sensitivity analysis by varying some appropriate parameters.

16

Specifically, the primary and secondary objectives are stated

below:

Primary Objectives

1) Development of mathematical models for the multi

objective location-allocation problem with stochastic demands.

2) Development of appropriate solution algorithms for

these models.

Secondary Objectives

1) Development of an interactive multiple objective

computer program based on the algorithms developed above.

2) Testing and validating the models by relaxing the

assumption of stochastic demand or multiple objectives and

comparing the results with the earlier work in multi-criteria

and single objective facility location-allocation problems,

respectively.

3) Demonstrating the sensitivity analysis of the models

by varying parameter(s) of the demand distribution and

performing what-if analysis.

Research Plan

In order to accomplish the above objectives the research

will be divided into three phases: 1) investigation and

system design, 2) program development, 3) system validation

and sensitivity analysis. A general outline of the tasks to

17

be performed in each phase follows:

Phase 1 - Investigation and System Design

In this stage a review of existing algorithms for single

and multiple objective programming will be performed and an

appropriate solution methodology will be selected

specifically suitable for interactive implementation. Next

in this stage, the mathematical model of the multi-criteria

location-allocation problem with stochastic demand will be

developed. Based on the above formulation a solution

algorithm will bedetermined. The design of the model will

include the following characteristics:

o multiple objectives;

o stochastic demand;

o capacitated/uncapacitated plants;

o single (aggregated, homogeneous) product;

o static planning horizon;

o zero echelon (no transshipment).

Potential objectives to be included are:

o minimize total costs (fixed costs plus
transportation costs) ;

o minimize transportation costs;

o maintain production capacity within prespecified
limits (e.g. for compliance with pollution
control standards within state regulations);

o locate where the quality of life is satisfactory;

o satisfy product demand goal;

o achieve any desired configuration constraints
(e.g. set upper and/or lower limits on the

18

number of open plants, specify minimum and/or
maximum number of locations to be selected
from a subset of locations, mutually exclusive
or mutually dependent locations, etc.);

o satisfy an upper limit on total fixed cost.

In addition, the following distribution of demands will

be considered:

o normal distribution;

o uniform distribution.

Phase 2 - Program Development

Given the solution algorithm developed previously, a

computer code will be written. The program will provide data

management facilities and will operate in an interactive

mode. The interactive routine will be designed such that the

decision maker (planner) can iteratively provide information

regarding various target values and preference data

concerning different objectives, in order to achieve

satisfactory trade-offs among various objectives. Figure 1.3

illustrates the components of the proposed interactive

system. The inputs/outputs expected from the computer system

are given below:

USER
DATA BASE
MANAGEMENT
PROGRAM

TRADEOIT

HO

FEEDBACK

IHPUT

DATA
BASE

MAIH PROGRAM
r··---------- -------------,
I

PROBLEM

FORMULATIOH

lVALUATIOH
or

OBJECTIUES

I I
L ••••••••••••••••••••••••• J

Figure 1.3. Interactive System Components and Flow

19

20

INPUTS:

o multiple objectives;

o demand pattern for each destination;

o location of destinations;

o potential sites;

o capacity of sources (plants);

o cost data.

OUTPUTS:

o status of objectives;

o number of sources;

o location of each source;

o size of sources at each site;

o assignment of destinations to new sources;

o allocation of products from sources to destinations

Phase 3 - System Validation and Sensitivity Analysis

This step consists of testing and validating the

integrated system and performing sensitivity analysis on the

parameter(s) of random demands. It includes debugging the

program and relaxing the stochastic demand so that its

results can be compared with the results available from

earlier work in the multiple objectives analysis of LAPs.

Furthermore, the assumption of multiple objectives will be

relaxed so that the results could be compared with the

results from single objective methods. The sensitivity

analysis will be conducted on the distribution parameter(s)

21

to provide insights into the behavior of the model and its

tolerance for estimation error in parameters. Also, changes

in constraints and criteria and their effect on the solution

will be investigated.

Summary

This study is about the facility location and product

allocation problem in the presence of multiple, conflicting

objectives and stochastic demand. The motivation behind this

research is to formulate and analyze mathematical models

which would better portray the real-life problems in the area

of LAPs. Besides integrating the two important factors,

multiple goals and stochastic demand, another advantage of

the proposed models is their ability for sensitivity analysis.

The latter will be accomplished by developing an interactive

program based on the proposed solution methodologies. The

interactive feature of the program will be a great asset in

understanding the sensitivity of the solutions to changes in

parameters, constraints, and/or criteria and hence, in

helping the decision maker achieve better solutions.

Finally, the application and sensitivity analysis of the

proposed models will be demonstrated through some example

problems.

CHAPTER II

LITERATURE REVIEW

This chapter contains a review of literature in the area

of location-allocation problem (LAP) . The basic LAP is to

determine the location of m facilities and their allocation

of a product to n existing demand centers to minimize the

distribution cost. In an even more general form, LAP also

involves the determination of the optimal number of new

facilities. The LAP was first formulated by Cooper (1963).

Since then, many researchers have contributed to the modeling

and the solution methodology of this problem. Since,

location-allocation problems are a class of general facility

location problems, this chapter begins with a brief review of

location models on a plane, followed by a review of location

allocation literature. Finally, the research in the area of

multiple objective LAP is reviewed.

Location Problems on a Plane

The modern location theory has been credited to Alfred

Weber, who published the book, "Uber den Standort der

Industrien" (Theory of location of Industries) in 1909. He

was the first to perform a quantitative analysis of a

location problem. Weber examined the location on a plane of

22

23

a factory in relation to two raw material sources and a

market place, with the objective of minimizing distribution

cost of a single product. The mathematical formulation of

the generalized Weber problem with Euclidean distances is

given below:

Minimize z = f w [(x -x) 2 + (y -y) 2]
112

L i i o i o
l = 1

(2 .1)

where

w = the weight assigned to point i (based on
l demand, population, etc.) ;

x Y1 = the coordinate of point i; i I

x Yo = the unknown coordinate of central facility;
0 I

n = the number of existing points.

Therefore, the objective is to find a single point which

minimizes the sum of weighted Euclidean distances from the

given points. Kuhn and Kuenne (1962) and Cooper (1963) both

have described an iterative process to solve this problem.

As discussed earlier in chapter I, an important element

in the formulation of analytical models for the facility

location problems on a plane is the inclusion of a distance

measure. Furthermore, locational problems, based on their

objectives, could be classified as follows:

1. p-median problems (minisum, maxisum);

2. p-center problems (minimax, maximin);

3. Covering problems.

In general, the median problem seeks to minimize

(maximize) the average distance (time) travelled by all

24

customers to a facility. The p-median problem on a network

consists of locating p facilities among n (>=p) locations on

a network, so that the sum of shortest distances from each of

the nodes of the network to its nearest facility is

minimized.

Next, the center problem is concerned with minimizing

(maximizing) the distance of the farthest (nearest) customer

from a facility. A p-center problem on a plane is to find p

new facilities on the plane that minimizes the maximum

weighted Euclidean distance between each demand point and

its closest new facility given n demand points on the plane

and a weight associated with each point. Among examples of

center problems are locating emergency or obnoxious

facilities such as hospitals and waste-disposal facilities,

respectively.

To motivate the covering problems in the facility

location models, assume a customer is covered if a facility

is within its certain distance or time. Then, the objective

of covering problems is to find the number and the location

of new facilities to cover all the customers at minimum cost.

Some examples of covering problems are locating police

stations, hospitals, radar installations, and libraries.

As is evident from the examples discussed in this

section, these problems arise frequently in conjunction with

public-sector location modeling. An extensive review of this

class of problems is provided by Tansel et al. (1983a,

1983b).

25

The Location-Allocation Problem

The Basic Problem

The location-allocation problem (LAP) was first proposed

by Cooper (1963). Originally, Cooper studied the problem in

a continuous solution space. However, today, LAP in discrete

solution space is used frequently when locating industrial

plants or warehouses. The simplest version of the problem

known as "Simple Plant Location" problem is as follows:

Given a set of locations where plants (warehouses) may be

built, a known demand from a given set of customers which

must be satisfied, and unlimited plant capacities, determine

the numbers and locations of plants to be established and

the allocation of products to the customers in order to

minimize total annual distribution and fixed costs. Assuming

m potential plant sites and n customers, this problem may be

represented by the following mixed integer programing

formulation:

m n

Minimize z =I
i = 1

I c i j
j = 1

(2.2)

Subject to:

m

Ix .. = 1 I (j=l, • • • t n)
i = 1 1 J

(2.3)

Y1 -x :!:: 0 (i=l, • • • Im j=l, ... ,n)
i j

(2. 4)

1 ~ x ~ 0 ' (i=l, ... ,m j =1, • • • t n)
i j

(2. 5)

where

c

j

26

Y1 = o ' 1 ' (i=l, ... , m) (2. 6)

i j

= proportion of customer J's demand
satisfied by plant i;

= total production and distribution costs
for supplying all of customer j's demand
from plant i;

= 1 if plant i is established, O otherwise;

= fixed cost of opening a facility at site i;

= indices associated with the plants;

= indices associated with the customers;

m = number of possible plant (warehouse) sites;

n = number of demand centers (areas).

In this formulation the objective function represents

the minimization of total production, distribution, and fixed

costs. Constraints in (2.3) ensure that each customer's

demand is fully satisfied. Constraints in (2.4) state that

assignments are made only from open facilities. And,

constraints in (2.5) and (2.6) are non-negativity and

integrality constraints respectively. An alternative

formulation which has also been used is to define x as the
1 j

number of units supplied from -plant i to demand center j and

to define C as the per unit cost of supplying customer j's
1 j

demand from plant i. In this formulation constraint sets

(2.3), (2.4), and (2.5) will change as follows:

m

l xi J = DJ '
i = 1

(j=l, .•. ,n) (2.7)

27

n

'\ x - M y :s O,
~ i j i

(i=l, ... ,m) (2. 8)
j=l

x i!:: o, (i=l, • • • Im; j=l, ..• ,n)
1 j

where

D = demand for customer Ji
j

M = some large positive number.

While the objective function and the integrality

constraints are represented by Equations (2.2) and (2.6)

respectively, as in the previous formulation.

Solution Techniques for the LAPs

Location-allocation models can take many forms, but

(2. 9)

based upon solution approaches, they may be classified into

the following three distinct types:

1. Heuristics;

2. Optimizers (exact);

3. Simulators.

Aside from these basic approaches, based on the

formulation of the problem, a variety of techniques have been

utilized to solve LAPs. Among these methodologies are

standard transportation/assignment, linear programming,

integer and mixed integer programming, stochastic

programming, decomposition, Lagrangian relaxations, and

dynamic programming. Application of any specific procedure

or method listed above is determined by the formulation and

assumptions of a given problem.

The principal focus of this chapter is on the

28

mathematical formulation and solution of LAPs using heuristic

and optimizer methods, and the multiple objective LAPs. As

such, simulation techniques as the main analytical tool will

not be reviewed extensively.

Heuristic Procedures

A heuristic algorithm involves procedures based on the

"rules of thumb" (common-sense principals) and/or

mathematical methods which produce "good" (acceptable)

results. The solution obtained from a heuristic procedure

may be optimal, but optimality is not guaranteed in general.

It is worth noting that this fact could limit suitability of

heuristics for exact sensitivity analysis. Heuristic

procedures are used whenever size and complexity of a problem

make exact optimizing algorithms impossible, or resources for

finding an optimal solution, such as computer time and memory

storage, are not available. Still, a heuristic algorithm is

proven to be an effective method whenever it can be shown that

the solution space near the optimal point is flat (shallow),

that is, there are many good near optimal solutions.

The principle difficulty in solving location-allocation

problems is in their combinatorial structure. To illustrate

this point, first consider the location aspect of the problem.

Assume m potential sites are available, then there are 2m

possible combinations (including the infeasible solution of

all facilities being closed) for selecting sites. Second,

29

take into account all the possible allocations when there are

n demand centers. Also assume that each demand center may be

supplied only from one supplier (single sourcing). Then, the

total number of location-allocation combinations is given by:

m n m n m n
Cm .(m) +C • (m-1) + •.. +C . (1)

m-1 1
(2 .10)

Therefore, it is evident that even for moderate values

of m and n (eg. 40 and 50) the possible combinations of

location and allocation patterns will be significantly large.

This is the combinatorial structure of LAPs which makes them

candidate for heuristic solution methods.

A large portion of the developed heuristics employ the

concept of largest marginal saving for the solution of

location-allocation problems. According to this procedure,

after starting from some arbitrary starting point, the

solution is driven toward an improved point gradually via an

iteration process. In each iteration, the value of one of

the components of the location vector is changed. That is an

open facility is set closed or vice versa. This could be

compared to moving on the lattice points of a unit hypercube

in one dimension. Using this approach, the choice of a

component is directed by the marginal saving that could

result from the change. The heuristic terminates if no

further change is possible. This procedure does not

guarantee optimality since the final solution depends upon

the specific starting point.

Several heuristic procedures which produce good results

30

are proposed by; Kuehn and Hamburger (1963), Manne (1964),

Feldman, Lehrer, & Ray (1966), Sa (1969), Walker (1976), Sule

1981), and Klincewicz and Luss (1986).

One of the earliest and best known heuristics for

solving the simple (single commodity), uncapacitated

warehouse location model is the "add" or "construction"

heuristic by Kuehn and Hamburger (1963). Their heuristic

program consists of two stages: First, the main program or

construction stage and second, the "bump and shift" routine

or improvement stage. The main program locates facilities

one at a time until no additional facilities can be opened

without increasing the total cost, then the second routine

attempts to improve the solution obtained earlier, by

evaluating the profit implications of closing or relocating

open facilities. The following three heuristics are employed

in the Kuehn and Hamburger algorithm:

1. Potential locations will be at or near demand
concentrations.

2. Near optimum systems can be achieved by adding
facilities one at a time, proceeding at each stage
to add that facility which produces the greatest
cost savings for the whole system.

3. At each stage, only a small subset of all possible
facility locations needs to be evaluated in detail
in order to determine the next facility site to
open. The size of the subset depends on the size
and the variance in the demands at all possible
sites. The larger the variance in the market
demands, the smaller the subset of possible
locations.

Manne (1964) investigated the use of SAOPMA (Steepest

31

Ascent One Point Move Algorithm) for solving simple plant

location problems. This method starts at an arbitrary

lattice point of the unit hypercube and then proceeds to

examine other alternative adjacent points. Alternative

adjacent points are formed by adding a new plant to or

dropping an existing plant from the subset under

consideration. If an improvement can be realized in terms of

total location and allocation costs, the new lattice point

will be selected as the best solution and the search will

continue from this point. Otherwise, the iterative process

terminates. Moreover, at each iteration, in the absence of

plant capacities, the total cost of any configuration is

readily found by assigning each demand center to a plant with

minimum sum of variable and fixed costs.

Feldman, Lehrer, and Ray (1966) in their heuristic

procedure, considered economies of scale to be continuous and

concave over the entire range of warehouse sizes and proposed

a "drop" or "elimination" heuristic as opposed to the "add"

heuristic by Kuehn and Hamburger (1963). The "drop"

heuristic assumes all the facilities are opened initially and

then drops facilities one at a time until no further savings

are realized.

Sa (1969) proposed a two phase heuristic procedure for

solving the capacitated facility location problem. The first

phase employs a combination of "add" and "drop" heuristics to

find a solution. Then the second phase performs single

exchanges to improve the solution obtained in phase one.

32

Walker (1976) proposed a two phase heuristic procedure

called SWIFT (Simplex With Forcing Trials). The main thrust

of this algorithm is that it complements the variable

selection rule of the standard simplex method with the fixed

charge of entering and leaving vectors. The first phase uses

the standard simplex method with modified variable selection

rule to find a local optimum (this is a nonconvex program).

The second phase tries to improve the solution obtained

previously by exploring the extreme points non-adjacent to

the current point. In phase two, forcing the solution to a

new non-adjacent extreme point may initially increase the

objective value, but iterating from this point could lead to

an improved solution.

Sule (1981) investigated three simple heuristic

procedures for solving uncapacitated facility location

problems. In addition, a simple procedure to deal with

multiperiod problems has also been discussed.

Klincewicz and Luss (1986) presented a Lagrangian

relaxation heuristic algorithm for capacitated problems in

which each customer is served by a single facility. The

Lagrangian relaxation technique incorporates the capacity

constraints into the objective function, leading to an

uncapacitated facility location subproblem. An iterative

procedure updates the Lagrangian multipliers between

successive solutions of the uncapacitated subproblems. The

dual ascent procedure of Erlenkotter (1978) (without branch

33

and bound) is used to generate feasible solutions to the

uncapacitated subproblems. The algorithm is also

complemented by an "add" heuristics which finds an initial

upper bound and feasible solution to the problem. Finally,

an adjustment heuristic is employed which attempts to improve

the best feasible solution obtained from the relaxation, by

adjusting the customer assignments.

Exact Procedures

Exact procedures yield an optimal solution, given there

is one, in a finite number of steps. However, since LAPs are

NP-complete, the computational requirements of optimal

seeking procedures grow exponentially with the problem size.

The formulation of LAP is one of mixed integer

programming. The integer portion of the formulation results

from the variables associated with fixed charges. Fixed

charges or fixed costs correspond with the building and

operating expenses of facilities. Whenever a facility is

established (opened) it incurs a fixed cost, and this cost

is zero when the facility is closed. It is the nonlinearity

of this cost function (discontinuity occurs when the facility

is closed), which makes the standard linear programming

techniques ineffective in solving this class of problems.

Furthermore, nonlinearities occur as the result of economies

of scale in transportation, production, and construction/

operation costs. However, in the absence of fixed charges

and economies of scale, or for a given location vector, the

facility location problem can be simply reduced to a

transportation problem and procedures such as Out-of-Kilter

algorithm may be used effectively to solve the problem.

Many algorithms developed to date for optimal solution

of LAPs employ the branch and bound procedure of integer

linear programming. The branch and bound procedure is an

implicit enumeration technique which is guided by an upper

and a lower bound on the value of the objective function.

34

The method is based on solving a series of linear programming

problems with the integer requirements relaxed. The

procedure progressively improves the bounds for the optimal

solution of the original mixed integer problem. A major

advantage of this technique is that it continually recomputes

the bounds on the objective value, which enables the decision

maker to stop the calculation whenever the solution is within

a prespecified tolerance of optimal value. For this method,

the lower bound could simply be established by solving the

original mixed integer (or integer) problem without

considering the integrality constraints. And, the upper

bound may be obtained by arbitrarily assigning values of o

and 1 to the binary variables.

Nevertheless, better lower bounds are established

through applying the Lagrangian relaxation technique. This

technique is based on multiplying some of the constraints by

a penalty factor and then adding them to the objective

function. It is shown that the resulting subproblem is

35

usually easier to solve than the original problem and

provides a better lower bound than the linear relaxation

method mentioned earlier. As will be evident throughout the

literature, the direction of research has been to improve

computational efficiency of the branch and bound procedures

by improving lower bounds, upper bounds, and the node

selection and branching rules.

Studies of exact methods in LAPs may be further

classified according to main characteristics of the problem

formulation, these are:

1) Simple (uncapacitated) problems;

2) Capacitated problems;

3) Dynamic problems;

4) Multi-commodity problems;

5) Stochastic problems.

Simple (Uncapacitated) Problems. In simple LAPs a

number of facilities with unlimited capacities are selected

from among a set of predetermined sites and then demand

centers are assigned to them. The assumption of

uncapacitated plants is usually justified whenever

considering establishing new plants. This assumption greatly

simplifies the allocation part of the problem. That is, for

this case, the optimal allocations for a given location

vector are found simply by assigning the demand for each

demand center from a single plant which has the lowest unit

cost (i.e. combination of the unit production and

36

distribution costs).

Among the exact methods proposed for solving the simple,

uncapacitated facility location problem, algorithms by

Efroymson and Ray, Spielberg, Khumawala, and Erlenkotter are

particularly well known.

An early attempt to optimize the simple, uncapacitated

facility location problem is a branch and bound procedure

proposed by Efroymson and Ray (1966). By reformulating the

problem, Efroymson and Ray were able to simplify the solution

of the linear programming problems at each node.

Additionally, they presented certain simplifications at each

node which reduced the number of evaluations required in

solving the original problem.

Spielberg (1969}a employed an implicit enumeration to

solve the simple plant location with side constraints. In

another paper Spielberg (1969}b reported computational

efficiency in solving the simple plant location problem by

relocating the search origin from a "natural" search origin

(where all facilities are initially opened or closed) to a

generalized search origin. This paper also suggests a series

of tests for pruning the branches of the branch and bound

tree.

Curry and Skeith (1969) utilized dynamic programming to

solve simple facility location problems.

Khumawala (1972) significantly improved the branch and

bound algorithm of Efroymson and Ray by proposing a set of

37

branching decision rules in conjunction with a more efficient

method for solving the linear programming problem at each

node. This algorithm partitions the set of feasible

locations into three sets: (1) the set of locations with

closed warehouses, K ; (2) the set of locations with open
0

warehouses, K ; and (3) the set of locations at which the
1

status of warehouses are undecided (free warehouses), K.
2

The branching decision rules determine which of the

warehouses should be opened or closed at each node. Among

the set of four proposed branching rules (Delta, Omega, Y,

Demand) , the largest Omega rule was shown to perform the

best. Omega is the symbol used to denote the minimum savings

of opening a free (not yet assigned open or closed) warehouse

in the presence of all open warehouses. Delta is a measure

similar to Omega except for the comparisons which are made

with respect to all non-closed (open and free) warehouses.

The Y branching rule selects a free warehouse with largest or

smallest Y.value at each node, and fixes it open or closed
l

respectively. Finally, the Demand rule selects a free

warehouse among the set of free warehouses which can supply

the greatest or smallest total demand, and fixes it open or

closed respectively.

Kaufman, Eede, and Hansen (1977) extended the work of

Efroyrnson and Ray by considering a single echelon facility

location problem. They applied the branch and bound

procedure to simultaneously solve for the location of plants

and warehouses in a distribution system. In this system

customer demands may be satisfied directly from plants or

through warehouses.

38

Erlenkotter (1978), proposed a dual-based solution for

the simple, uncapacitated facility location problem. He

applied a simple ascent and adjustment method to the

condensed dual formulation of the problem. The procedure

begins with an initial dual solution and adjusts the

multipliers (dual variables) incrementally in a way that

reduces complementary slackness violations. The procedure

continues until either complementary slackness is satisfied

or dual feasibility is violated. Moreover, if the optimal

dual solution does not correspond to the optimal integer

primal solution, then a branch and bound procedure is

employed to complete the solution. Erlenkotter demonstrated

computational efficiency of this algorithm through some

example problems.

Tcha and Lee (1984), generalized the work of Kaufman

et al. (1977) by studying the multi-echelon facility location

problems. Their algorithm, based on the modified dual ascent

procedure of Erlenkotter, is shown to be superior to the

algorithm of Kaufman et al (1977).

Capacitated Problems. In capacitated LAPs, it is

assumed that there exist an upper and/or lower bounds on the

production (capacity) of the potential facilities. Among the

exact procedures for solving capacitated facility location

39

problems are algorithms by Davis and Ray (1969), Sa (1969),

Ellwein and Gray (1971), Truscott (1975), Akinc and Khumawala

(1977), Geoffrion and McBride (1978), Nauss (1978),

Christofides and Beasley (1983), and Van Roy (1986).

Davis and Ray (1969) incorporated the capacity

constraints into facility location problems. Their method

employs a branch and bound procedure and uses Benders

decomposition technique to solve the dual of the associated

continuous linear problem at each node of the branch and

bound tree. The decomposition technique at each iteration

produces a "master problem" and a single "sub-problem". The

dual of the "sub-problem" represents a capacitated

transportation problem, and is solved effectively at each

iteration by an Out-of-Kilter algorithm.

Sa (1969) proposed a branch and bound procedure similar

to Davis and Ray's method. However, his method added a

dominance test and a feasible total fixed cost test which are

performed before solving any subproblem.

Ellwein and Gray (1971) studied capacitated facility

location problems with configuration constraints. They

employed an enumerative search technique where the

enumeration of the solution vectors is carried out by

generating a sequence of partial assignments. The partial

assignments constituted assignment of "zero", "one", and

"free" to the integer variables. Ellwein and Gray achieved

computational efficiency in solving the problem by reducing

the feasible solution set and therefore the size of the

40

search, through utilizing adaptive bounds on the fixed costs

and constraints based on the dual variables.

Truscott (1975) also investigated facility location

problems with capacity and configuration constraints. He

added the dimension of revenue generation to his model.

Because, the choice of facilities can effect the price

realized and/or the quantities demanded. Therefore, the

problem was formulated and solved as a zero-one integer

programming problem with an objective of maximizing profit.

Akinc and Khumawala (1977) presented a procedure

based upon the branch and bound algorithm for the capacitated

warehouse location problems. They increased the efficiency

of the branch and bound procedure by developing powerful

lower and upper bounds along with a different set of rules

for selecting nodes and branches. For example, they proposed

a hybrid node selection rule. This rule employs both least

lower bound and LIFO to select a node. The algorithm

switches between these two rules based on the value of the

two parameters. They indicated that the least lower bound

rule results in a large number of terminal nodes, therefore

it requires relatively large storage but has the advantage of

minimizing computational time. On the other hand, the LIFO

rule requires relatively smaller storage, but results in

longer computational time. Hence, they proposed the hybrid

node selection rule in an attempt to compromise between these

two rules.

41

Geoffrion and McBride (1978) applied Lagrangian

relaxation to capacitated facility location problems with

lower bounds on the capacity of each facility and an

arbitrary set of linear constraints. The Lagrangian problem

decomposes into m continuous Knapsack problems, one for each

facility. The linear side constraints are used to control

distribution flows as well as opening and closing of

facilities. Geoffrion and McBride (1978) also have shown, in

applying the branch and bound technique, that lower bounds

generated via Lagrangian relaxation is superior to the ones

obtained by traditional linear relaxation.

Nauss (1978) improved the branch and bound procedure of

Akins and Khumawala (1977) by deriving tighter lower bounds

through employing Lagrangian relaxation of demand

constraints. The tighter lower bounds facilitate fixing

certain facilities open or closed thus reducing the amount of

branching required.

Christofides and Beasley (1983) developed a similar

approach to that of Nauss (1978) and obtained slightly better

results.

Van Roy (1986) presented a different approach based on

the Cross Decomposition (CD) method developed by Van Roy

(1983) to solve the capacitated facility location problem.

The method is designed to exploit simultaneously the primal

and dual structure of the problem. This method unifies

Benders decomposition and Lagrangian relaxation into a single

framework that involves successive solutions to a Benders

42

(primal) subproblem and a Lagrangian (dual) subproblem. The

primal and dual subproblems are transportation and simple

plant location problems respectively.

Furthermore, capacitated location models with nonlinear

economies of scale are studied by Soland (1974), and Kelly

and Khumawala (1982).

Dynamic Problems. Whenever demands and/or costs change

from period to period, it is appropriate to incorporate the

time dimension into the formulation of the location

allocation problem. Relocation costs, possible expansion,

and changes in customer locations over time are other factors

that require dynamic location considerations, Green et al.

(1981). In short, multi-period or dynamic warehouse location

problem considers the locational decisions over a specified

planning horizon such that the total discounted costs of

meeting demands are minimized. Of course, the profit

maximization aspect could easily replace the objective of

cost minimization. Some of the studies which consider

dynamic characteristic of the problem are by Wesolowsky and

Truscott (1975), Khumawala and Whybark (1976), Karanicolas

(1979), Van Roy and Erlenkotter (1982).

Wesolowsky and Truscott (1975) presented two methods for

solving dynamic (multi-period) location problems. In the

first method, they discounted all costs to their present

values and then used a mixed integer programing formulation

to find the optimal solution. In the second method, they

43

applied dynamic programming solution methodology to solve the

problem. The dynamic programming formulation includes costs

of vacating and entering sites and defines stages, states,

and decision variables to be periods, facility

configurations, and choices of location changes respectively.

Khumawala and Whybark (1976) proposed a solution

procedure based upon the implicit enumeration, for solving

warehouse location problems with changing markets and costs

from period to period. The algorithm is comprised of three

steps. Steps one and two are applied iteratively to

determine if any free warehouses can be opened or closed.

The third step, a branch and bound procedure, is entered

only if there is at least one free warehouse following the

application of the previous cycle.

Karanicolas (1979) presented an algorithm for the

solution of multiperiod capacitated and uncapacitated plant

location problems. The proposed algorithm employs the

Lagrangian relaxation technique to decompose a multiperiod

problem into T single period mixed integer subproblems and an

integer master problem.

Van Roy and Erlenkotter (1982) developed a branch and

bound solution procedure incorporating an extension of the

dual ascent procedure of Erlenkotter (1978) with a primal

dual adjustment procedure to solve the dynamic, uncapacitated

facility location problem.

Dynamic facility location-allocation problems have also

been studied by Ballou {1968), Tapiero (1971), and Sweeney

and Tatham {1976).

44

Multi-commodity Problems. Another generalization of the

facility location problems has been to incorporate the aspect

of multi-commodity into the formulation. A simple method to

deal with this problem is to replicate each demand center as

many times as there are products and to assign an appropriate

demand to each one. Among the research in the area of multi

commodity problems is the study by Elson {1972), Warszawski

{1973), Geoffrion and Graves {1974), Khumawala and Neebe

(1978), and Karkazis and Boffey {1981).

Elson (1972) was among the first to study single

echelon, capacitated, multi-commodity facility location

problem. Elson presented a mixed-integer formulation of the

problem and applied existing mixed integer programming codes

to solve the problem. Among the characteristics of Elson's

model is the use of different set of variables to represent

product flows from and to the warehouses.

Warszawski (1973) also investigated the dimension of

multi-commodity. His study was motivated from the need to

locate different supply sources at a construction site.

Warszawski proposed a branch and bound procedure along with a

heuristic method to solve this problem.

Warszawski and Peer {1973) presented a formulation for

the multi-commodity, multi-period location problem, but did

not attempt to solve it.

45

Geoffrion and Graves (1974) also studied the single

echelon, capacitated, multi-commodity distribution system.

They implemented a solution technique based on the Benders

decomposition to decompose the full multi-commodity problem

into a series of simpler single commodity problems. Benders

method proceeds by alternatively solving an integer

programming master problem and then several transportation

subproblems. The master problem involves the 0-1 variables

of the location vector while the subproblems are a simple

transportation problem for each commodity. The solution

procedure starts by solving the master problem ignoring the

0-1 requirements followed by solving the transportation

subproblems. With each iteration, one or more additional

constraints are added to the master integer problem setting

fractional Y's to O or 1. These new constraints are called

Benders cuts. Contrary to Elson's model, Geoffrion and

Graves (1974) considered the product flow in such a way as to

preserve the identity of plants in the final assignment of

products from warehouses to customers. Moreover, Geoffrion

and Graves (1974) presented details of the application of

their model to a real world system.

Khumawala and Neebe (1978) and Neebe and Khumawala

(1981) improved the branch and bound procedure of Warszawski

by incorporating stronger lower bounds. Their algorithm

employed LIFO and the least lower bound as the node selection

rules and used the largest delta rule of Khumawala's

46

algorithm for the branching decision rule.

Karkazis and Boffey (1981) also proposed two dual based

algorithms for solving multi-commodity facility location

problems.

Loh (1983) studied the multiple commodity and multiple

stage transshipment location problem. He proposed an

algorithm based upon the integration of branch and bound and

dynamic programming as the fundamental solution methodology.

Stochastic Problems. Uncertainty considerations in the

forecast of demands for the LAPs are important and have been

accounted for by several researchers. In general, whenever

demand is not known with certainty, it is appropriate to

treat it as a random variable. A simple technique suggested

for dealing with the assumption of stochastic demands is to

compute an expected or most likely value for the demands.

Then the problem can be solved by applying the conventional

methodologies for the deterministic problems. Price

sensitive demand is another characteristic of LAPs which has

been considered by the researchers. In this situation prices

received at a demand center varies depending upon the

location of supplying facility because of transportation

costs, local utility costs, competition, etc. And, the price

of a product will determine its demand at a demand center.

Gonzalez-Valenzuela (1975) was the first to incorporate

stochastic demands into the simple and capacitated warehouse

location problems. This study investigated two different

47

approaches for dealing with the uncertainty in demands,

producing two different formulations: a chance-constrained

formulation and a stochastic or two-stage programming

formulation. The chance-constrained model is transformed to

an equivalent deterministic model and is solved by means of

one of the existing methods for deterministic warehouse

location problem. The stochastic programming model requires

an explicit assumption as when the actual values of the

demands will become known. Hence, an analysis is made of the

differences in the formulation of the problems that arise as

the result of this assumption. Then the stochastic

programming problem is transformed into a deterministic model

and the resultant problem is solved by an existing method

(Khumawala 1972) for deterministic warehouse location

problems.

Balachandran and Jain (1976) studied the facility

location problem with random demand and general cost

structure. They assumed cost of operating a plant to be a

piece wise linear function of the production level.

Jucker and Carlson (1976) extended the simple plant

location problem by permitting uncertainty in either the

price or the demand. They stated the problem as one of

maximizing total profit and presented a mean-variance

formulation for the objective function. Furthermore, Jucker

and Carlson assumed that there is no relationship between

price and quantity demanded and given the identification of a

firm's risk taking behavior, decomposed the problem into two

48

simpler problems which were solved by existing methods.

Erlenkotter (1977) formulated a simple plant location

problem such that demands are related to the prices

established at the various locations. Erlenkotter presented

a profit maximization model for private, public, and quasi

public facilities. In the latter case, the problem is to

maximize the net social benefits subject to generating

sufficient revenues to cover costs. In all the above cases

pricing and location decisions are determined simultaneously.

Erlenkotter reformulated the above problems into an

equivalent fixed demand models and then applied the existing

solution techniques for their solutions.

Hansen and Thisse (1977) also investigated the dimension

of price sensitivity and presented a profit maximization

model for the problem. Their solution technique is to

reformulate the problem into the simple plant location

problem and then to apply the existing well known methods for

its solution.

Harrison (1979) presented a stochastic programming

model, which through the expectation function, can deal with

uncertainties in demand.

Sicsu (1979) proposed a model to analyze capacitated

location-allocation problems with price-sensitive demands.

He considered a profit maximization objective and formulated

the problem as a mixed-integer, nonlinear optimization

problem.

49

Rasaratnam (1984) combined the dimensions of price

sensitivity and stochastic demand for the capacitated

facility location problems. He assumed parameter(s) of the

demand distribution vary with variations in price without

altering the distribution of demands. The results were also

extended to include uncapacitated facility location problems.

Logendran and Terrell {1988) reported on the solution

and results of the uncapacitated plant location-allocation

problems with price sensitive stochastic demands.

Simulation Techniques

Simulation is a flexible modeling and design tool. It

allows for the investigation of alternative system designs

and strategies without the expenses of actually building and

operating them.

The basic process of simulation methods in facility

location problems is to vary the facilities location

allocation pattern and compare the resultant effects on

distribution and total costs. According to Geoffrion (1975),

"simulators can take detailed account of policies and

activities relating to inventory replenishment, individual

buying patterns of customers, order filling, redistribution,

transportation, and so on, and produce a simulated daily

history of such activities for a period of one year or more".

Clearly, this depth of analysis is not easily possible by

other methods. Another great benefit of simulation

50

procedures is that extremely rich and precise cost parameters

may be included in the analysis. However, although

simulation allows for representation of complex and large

distribution systems, but it does not guarantee optimality of

these models.

Among the most widely cited simulation models in the

literature are the ones developed by Shycon and Maffei

(1960), and Cerson and Maffei (1963). These models deal with

two real distribution systems. For these models, gathering

and employing the data base was reported to be the most

difficult task in designing the logistical system.

Additionally, more complex simulation models are

reported by Bowersox (1972), Connors, Coray et al. (1972),

Camp (1973), and Markland (1973).

Multi-Objective LAPs

Multiple objectives location allocation models have

gained considerable attention from researchers in recent

years. LAPs traditionally have been studied as single

objective optimization problems. Nevertheless, in almost all

real world applications of LAPs, decisions must be made in

the presence of a number of conflicting objectives. As such,

a multiple criteria approach is the most appropriate strategy

to be used for analyzing the effect of various multiple and

often competing objectives in LAPs.

Although, literature on LAPs is considerably large, but

51

there are relatively a few papers in the area of multi

criteria LAPs. Among the research in this area are the work

by Lee and Franz (1979), Ross and Soland (1980), Green, Kim,

and Lee (1981), Eilon (1982), Fortenberry and Mitra (1986),

Lee and Luebbe (1987), and Sinha and Sastry (1987).

Lee and Franz (1979), and Lee, Green, Kim (1981) applied

the branch and bound method of integer goal programming for

the solution of facility location-allocation problems with

multiple objectives.

Ross and Soland (1980) conducted a multicriteria

analysis of the location of public facilities. The problem

is formulated as a generalized assignment problem (GAP) with

a set of additional constraints. The efficient solution of

the multicriteria location problem is generated by solving a

finite sequence of GAP-type problems. Furthermore, an

interactive approach is presented with which the decision

maker can efficiently arrive at an acceptable compromise

solution among the various criteria. The extension of this

model to private sector problems is also discussed.

Green, Kim, and Lee (1981) applied the integer goal

programming to study a multi-criteria warehouse location

problem in the presence of a single supply source. Their

model incorporates both qualitative and quantitative factors

in solving the problem.

Eilon (1982) presented an alternative approach based

upon the heuristic algorithm for the loading problem, Eilon

et al. (1971), to solve the problem presented by Green, Kim

52

et al. (1981).

Fortenberry and Mitra (1986) proposed a model based on

the weighted objective function to solve multi-criteria

location-allocation problems. The weights are established

based on the relative importance assigned to qualitative

factors and are applied to the transportation costs from each

location. The proposed model combines both qualitative and

quantitative techniques for the solution of the problem. In

particular, in the absence of fixed costs, it uses the

traditional transportation algorithm to obtain a solution for

the location-allocation problem.

Lee and Luebbe (1987) demonstrated the capability and

flexibility of the model developed originally by Green, Kim

et al. (1981) through conducting a sensitivity analysis of

this model.

Sinha and Sastry (1987) presented a zero-one linear goal

programming model and demonstrated its application for a real

world multi-objective facility location problem.

Conclusion

A summary of the literature in the area of single

objective and multiple objective LAPs is provided in Tables

2.1 and 2.2, respectively. Although single objective LAPs

have received a substantial amount of attention in the

literature, the multi-criteria formulations of the problem

have not been studied extensively. Specifically, to the best

53

of the author's knowledge, incorporation of stochastic demand

into these models is nonexistent. This research will combine

multi-criteria and uncertainty of demands into an interactive

model to better represent actual decision making environment

of this class of problems.

54

TABLE 2.1

SUMMARY OF SINGLE OBJECTIVE LAP PROCEDURES

Heuristic

Kuehn and Hamburger (1963)
Manne (1964)
Feldman, Lehrer, & Ray (1966)
Sa (1969)
Walker (1976)
Sule (1981)
Klincewicz and Luss (1986)

Optimization (Exact)

Uncapacitated
Efroymson and Ray (1966)
Spielberg (1969)
curry and Skeith (1969)
Khumawala (1972)
Kaufman et al. (1977)
Erlenkotter (1978)
Tcha and Lee (1984)

Capacitated
Davis and Ray (1969)
Sa (1969)
Ellwein and Gray (i971)
Soland (1974)
Truscott (1975)
Akinc et al. (1977)
Geoffrion et al. (1978)
Nauss (1978)
Kelly and Khumawala (1982)
Christofides et al. (1983)
Van Roy (1986)

Dynamic Problems
Ballou (1968)
Tapiero (1971)

Simulation

Shycon and Maffei (1960)
Cerson and Maffei (1963)
Bowersox (1972)
Connors et al. (1972)
Camp (1973)
Markland (1973)

Multi-commodity
Elson (1972)
Warszawski (1973)
Warszawski and Peer (1973)
Geoffrion and Graves (1974)
Khumawala and Neebe (1978)
Neebe and Khumawala (1981)
Karkazis and Boffey (1981)
Loh (1983)

Stochastic/Price Sensitive
Gonzalez-Valenzuela (1975)
Balachandran and Jain (1976)
Jucker and Carlson (1976)
Erlenkotter (1977)
Hansen and Thisse (1977)
Harrison (1979)
Sicsu (1979)
Rasaratnam (1984)
Logendran and Terrell (1988)

Wesolowsky and Truscott (1975)
Khumawala and Whybark (1976)
Sweeney and Tatham (1976)
Karanicolas (1979)
Van Roy and Erlenkotter (1982)

55

TABLE 2.2

SUMMARY OF MULTIPLE OBJECTIVE LAP PROCEDURES

Author Solution Strategy Stochastic Demand

Lee and Franz (1979)
Ross and Soland (1980)
Green, Kim, & Lee (1981)
Eilon (1982)
Fortenberry et al. (1986)
Lee and Luebbe (1987)
Sinha and Sastry (1987)

GP
Weighting Technique
GP
Weighting Technique
Weighting Technique
GP
GP

NO
NO
NO
NO
NO
NO
NO

CHAPTER III

MULTIPLE OBJECTIVE DECISION MAKING

Introduction

Multiple objective decision making (MODM) is a dynamic

process of making decisions in the presence of multiple and

frequently conflicting objectives and often subject to

satisfying the rigid constraints of the system. Today,

minimizing cost or maximizing profit is no longer recognized

as the sole objective of most organizations. The strategic

problems faced by today's managers and decision makers,

require the achievement of a balance between multiple and

often incommensurate objectives. These objectives or

criteria usually include issues such as economic,

environmental, political, public relations, labor relations,

and social responsibilities.

This chapter contains two main sections. First, an

overview of multiple criteria decision making techniques,

including basic terminology, and a classification scheme is

discussed. Second, a review of goal programming and in

particular its formulation, solution procedures, integer and

interactive goal programming is presented.

56

57

An Overview of MCDM Methods

This section presents some of the important

terminologies in multiple criteria decision making (MCDM) and

describes a classification of MCDM techniques.

Multiple criteria decision making involves any or all of

the following criteria: attributes, objectives, and goals.

An attribute describes an objective reality such as weight,

height, profit, cost, etc. An objective represents direction

of improvement or preference for attributes (Zeleny 1982);

for example improving quality is an objective. A goal

represents a specific value or level of an objective or

attribute; for instance achieving a profit of at least two

million dollars is a goal. Another important concept in MCDM

is the nondominated or noninferior solution. According to

Zeleny [1982, p. 72] "a nondominated solution is a feasible

solution for which an increase in value of any one criterion

can be achieved only at the expense of a decrease in value of

at least one other criterion". The set of nondominated

solutions are usually referred to as the "efficient set",

"admissible set", "noninferior set", or "Pareto optimal set".

Since in MCDM objectives are often conflicting, there is

usually no single solution which optimizes all objectives

simultaneously. As the result, the decision maker (DM) will

select the best compromise solution from the nondominated set

of solutions through a value trade-off analysis.

Some researchers have attempted to deal with multi-

58

objective problems through applying existing single objective

algorithms. Examples of these approaches include weighting

techniques and constraint techniques. Weighting techniques

aggregate all objectives into a single one by assigning the

same utility measure, such as monetary values, to all

objectives. The trade-off analysis of this approach is

accomplished by varying the specified weights and then

resolving the problem. On the other hand, constraint

techniques deal with multiple objectives by assigning to one

of the objectives the role of primary objective and treating

the remaining objectives (secondary objectives) as a system

of constraints to be satisfied. In this technique trade-off

analysis is performed by selecting a different primary

constraint and/or specifying different requirements for the

secondary objectives.

Nevertheless, these techniques are not adequate for

handling problems with multiple objectives. More

specifically, weighting techniques are not appropriate since

in practice some of the objectives are non-commensurable. In

this situation it is extremely difficult if not impossible to

assign the same utility measure across all objectives.

Furthermore, the use of a utility function requires that the

DM to specify his/her preferences quite accurately. on the

other hand, constraint techniques may fix the relative

importance of objectives improperly, and thus not allow for

compromise solutions. Additionally, when performing trade

off analysis, the computational requirement of both

techniques increases exponentially with an increase in the

number of objectives. Therefore, it is advantageous to use

algorithms developed specifically for MCDM to analyze this

class of problems.

MCDM Classification

59

An early attempt to classify MCDM methods was made by

MacCrimmon (1973). He described 19 methods and grouped them

into four main categories: 1) weighting methods, 2)

sequential elimination methods, 3) mathematical programming

methods, and 4) spatial proximity methods. However, since

then various classification schemes have been proposed; Cohan

(1978), Hwang et al. (1979, 1980), and Goicoechea et al.

(1982). A major component of all these classifications is

the point in time at which the decision maker incorporated

his/her preferences into the decision making process in order

to generate or rank the various alternative solutions.

Perhaps the most complete MCDM classification is presented by

Hwang et al. (1980). They proposed a hierarchical structure

based upon first, the stage at which the preference

information is needed, and second, the type of information

needed. With respect to the DM's articulation of preference,

they proposed four categories. These are:

1) no articulation of preference;

2) a priori articulation of preference;

3) progressive articulation of preference;

4) a posteriori articulation of preference.

Next, considering the type of information, they

distinguished between four categories: a) cardinal

information, b) ordinal information, c) explicit tradeoff,

and d) implicit tradeoff. A brief description of these

classifications along with advantages and drawbacks of each

class is given next.

60

No Articulation of Preference Methods. These methods

include mainly global criteria methods. They do not require

the DM to input his/her subjective preferences once the

problem is formulated. They provide a single alternative

solution for the DM. An advantage of these methods is that

the DM is not required to work with an analyst/computer

during the solution process. A disadvantage is that it

requires the analyst to make many assumptions about the DM's

preferences which is often very difficult or impossible. An

example illustrating this technique is to find a solution

vector which minimizes the sum of squares of the relative

deviation of the objective functions at this point from their

respective ideal points, where the latter is defined as the

value of each objective if it was the only one being

optimized.

A Priori Articulation of Preference Methods. This class

of methods relies on the decision maker to specify his/her

preference information about objective levels and/or their

ranks prior to analysis. The preference information may be

61

either cardinal or a combination of ordinal and cardinal

information. The advantages of these techniques are that the

DM is not required to participate during the solution

process, and that their computational speed is usually higher

than other classes, because only a .small portion of the

nondominated solutions will be investigated. On the other

hand, a major disadvantage of this class is that in most

situations, particularly when the DM is not familiar with the

available alternatives, he/she is unable to provide accurate

preference information prior to the analysis. In summary, the

underlying assumption of the algorithms in this category is

that the DM can provide accurate preference information

prior to analysis, and that his/her preference structure

remains relatively fixed and consistent throughout the

solution process. Among methods in this category are utility

function methods, lexicographic methods, and goal

programming.

Progressive Articulation of Preference Methods. These

methods, commonly referred to as interactive procedures, are

based upon interaction of the DM with the analyst or computer

during the solution process. At each iteration, given the

current solution(s), the DM is asked to provide some tradeoff

or preference information in order to generate the next

solution. This process continues until either the DM is

satisfied with a set of achievement levels for the objectives

or decides that there is no satisfactory solution for the

62

current system. Advantages of these methods according to

Hwang et al. (1980) are: 1) a priori preference information

is not required, 2) the DM will explore the criterion space

through a learning process, 3) only local preference

information is required, and 4) the solution has a better

chance of being accepted, since the DM is involved in the

solution process. To the contrary, the disadvantages are: 1)

the solution is highly dependent upon the ability of the DM

to indicate accurate local preferences, 2) a preferred

solution may not be obtained within a reasonable time, and 3)

effort on the part of the DM may be excessive. The

underlying assumption for the algorithms in this category is

that the DM's preferences form and evolve as the result of a

learning process, from one iteration to the next. Also

because of the complexity of the system, the DM is only able

to provide his/her preference information on a local level

for a particular solution. Interactive procedures such as

the methods of Zionts-Wallenius, STEM, interactive goal

programming, and interactive MOLP are a few examples in this

category.

A Posteriori Articulation of Preference Methods. These

methods, also referred to as generating techniques, are

designed to generate a subset or the complete set of

nondominated solutions. Then, the DM selects the best

solution among available alternatives based upon his/her

preference structure. The underlying assumption in this

63

class of algorithms is that the DM can not identify his/her

preferences prior to a knowledge of available alternative

solutions. The advantages of these methods are that they do

not require any information regarding the DM's utility

function before or during the computational phase. Also,

once the set of nondominated points are generated, they may

be used by different DMs to reach a solution without

resolving the problem. However, there are at least two

disadvantages to these methods. First, they are very

resource consuming. That is, given a large problem, it may

not be feasible to generate the whole set of nondominated

solutions due to constraints on computer time and/or storage

requirements. Second, as the number of nondominated

solutions grows, it becomes very difficult, if not

impossible, for the DM to select the most satisfactory

solution among the alternatives. Some of the techniques in

this category are: constraint method, multiple objective

linear programming, and parametric (weighting) methods such

as compromise programming.

A comprehensive review of methods and techniques in MCDM

is provided by Cohon (1978), Hwang et al. (1979), Zeleny

(1982), Goicoechea et al. (1982), and Steuer (1986).

Goal Programming Methods

Goal programming (GP) is one of the popular methods of

multiple objective analysis. It is particularly valuable

64

whenever achieving target values of objectives are

important and when preferences of the DM regarding the goals

and their priorities can be specified properly. The concept

of goal programming was originally introduced by Charnes and

Cooper (1961). Later, this technique was refined and

extended by Ijiri (1965), Lee (1972), and Ignizio (1976).

For instance, Ignizio (1976) extended the formulation of the

original continuous linear GP to include integer and

nonlinear models. Today, research and application of goal

programming continues to grow significantly. In fact,

studies by Petty and Bowlin (1976), and Green et al. (1977)

have identified goal programming as the major multiple

objective tool in use by practitioners.

For the general goal programming formulation, the DM

specifies goals, targets, or aspiration levels for multiple

objectives and provides an ordinal ranking of these

objectives. Next, each goal is written as an equality

constraint including a positive and a negative deviational

+ -variable, d , d . Then, the preferred solution is obtained

by minimizing the weighted set of these deviations which

represent the differences between actual objective

achievements and their prespecified desired goals, subject to

satisfying the technological (system) constraints. In

general, this is equivalent to finding a feasible solution

which satisfies the goals as closely as possible, based upon

some specified measure.

Regarding to the assignment of weights to the

65

deviational variables in the objective function, two basic GP

models are distinguished: Archimedian (weighted or minisum)

GP, and preemptive (lexicographic) GP. Both of these models

rely on setting the goals a priori. With the Archimedian GP,

all goals are considered simultaneously. That is, the

objective function consists of minimizing a weighted sum of

all goal deviations at the same time. The deviations are

measured using 1 metric, with p usually set at 1, 2, or oo.
p

Alternatively, preemptive GP considers the goals separately

based on a specified priority structure. For these models,

goals at a higher priority levels are considered to be

infinitely more important than the goals at a lower priority

levels. Considering these two approaches to GP, preemptive

GP has gained more attention in the literature. The general

mathematical formulation of the preemptive goal programming

problem can be stated as follows:

(3. 1)

SUBJECT TO:

n
d+ l -a x + d = G

i j j i i i
j = 1

i=l,2, ... ,m (3.2)

d+ -G d 2:: 0 ' i i i
i=l,2, ... ,m (3.3)

x 2:: 0 ' j
j=l,2, ... ,n. (3.4)

where

p
k =the kth preemptive priority level; k = 1,2, ... ,K.

w+ = the weight factor for d+ at priority P .
i k i k

wik =the weight factor for di at priority Pk.

d+ = over-achievement of goal i.
l

di = under-achievement of goal i.

aiJ = the coefficient of the jth decision variable in

the ith goal constraint.

xJ = jth decision variable; j = 1,2, ... ,n.

Gi =the ith goal (target) level; i = 1,2, ... ,m.

The constraints in Equation (3.2) may also include the

66

system (technological) constraints, in which case the goals,

- + G s, represent the rigid constraining values and d , d
i i i

represent the slack and surplus variables respectively as

appropriate. In this situation, slacks or surplus variables,

will be represented in the objective function at the highest

priority level. Then the minimization of variables at this

priority level must be fully achieved for the problem to have

a feasible solution.

If over-achievement or under-achievement is allowed for

goal i, then the negative or positive deviations about goal i

(d~ or d:), must be minimized respectively. Alternatively,

if goal i is to be achieved exactly then both deviational

variables must be minimized.

In Equation (3.1) P >> P which means that goals at k k+l

priority level P are considered only after goals at k+l

priority level P are fully achieved or reach a point beyond
k

which further improvement is not possible. Furthermore, in

considering goals at lower priorities, provisions are made to

prevent diminishing objective achievements for higher

priority goals. More specifically, in preemptive GP, one

first obtains all alternative solutions which minimize the

sum of deviations of all priority one objectives from

67

their corresponding goal values. Then, from those

alternatives we select the ones which minimize the sum of

deviations of priority two objectives from their

corresponding goal levels. This iterative process continues

until all priorities are considered or no more alternative

solutions are available. Thus, the solution method is a

dynamic process in which the information from the previous

stage is used to solve the subsequent stage.

GP Computational Algorithms

Generally, as discussed earlier, the solution procedure

of preemptive GP follows a sequential optimization process,

where successive optimizations are performed on the available

alternatives. At each iteration, a LP problem is solved for

each priority, from higher to lower priorities, with the

restriction of not deteriorating the previously established

goal attainments. However, since the development of the GP

technique, different algorithms have been proposed for its

solution.

Originally, Lee {1972) developed the "modified simplex

method" or "multiphase simplex" to solve the preemptive

linear GP. This technique is based on the conventional LP

68

simplex algorithm. The multiphase technique, along with its

extensions to integer and nonlinear GP, is discussed in detail

by Ignizio (1976). Other primal simplex variations such as

revised simplex and product form of the revised simplex,

Olson (1984), have also been used to solve preemptive GP.

The computational advantage of these latter methods are in

their storage requirements and solution accuracy.

Another approach for solving linear GP problems is

denoted as Sequential Linear Goal Programming or SLGP method,

Ignizio and Perlis (1979). In this technique the existing

linear programming computer codes, such as MPSX, are applied

sequentially to solve the linear GP problems. The above

computer codes are capable of solving very large linear

programming problems, thus this approach is particularly

advantageous whenever large-scale GP problems are involved.

Arthur and Ravindran (1978) developed an efficient

"Partitioning Algorithm", (PAGP), by taking advantage of the

hierarchical structure of preemptive GP. This algorithm is

based on solving a series of linear programming subproblems.

At each iteration, the solution of the higher priority

subproblem is used as the starting solution of the lower

priority subproblem. The algorithm iterations continue until

either no alternative solution is present for one of the

subproblems or all subproblems (priorities) are considered.

If the algorithm terminates before reaching the lowest

priority goal, achievement levels of the lower priority goals

are calculated by substituting values of the current optimal

69

solution into their corresponding equations. Computational

efficiency is gained by considering only the variables and

constraints affecting the current most important unsatisfied

goal (priority level).

Schniederjans and Kwak (1982) presented the dual simplex

goal programming algorithm based on the dual simplex method

of linear programming. The algorithm starts from an

infeasible basic solution formed by the positive deviational

variables and applies the dual iterations to find the optimal

solution. According to Olson (1984), in comparing various GP

algorithms, this method gains computational efficiency by

eliminating up to half of the deviational variable columns

from the simplex tableau. Stated differently, this algorithm

becomes more efficient as the number of positive deviations

in the problem increases.

Integer Goal Programming Techniques

Since the solution vector for multiobjective LAPs is

discrete or integer, it is necessary to employ integer

techniques for their solutions. According to Lee {1979),

given there is no conflict among multiple objectives of

an integer problem, the conventional integer linear

programming algorithms may be used to solve the problem.

However, in the presence of conflicting objectives and

preemptive priority weights, it requires an integer GP

procedure.

70

There are three basic approaches to integer GP. They

include modifications of the Gomery's (1958) cutting plane

technique, Land and Doig's (1960) branch-and-bound method,

and a combination of the Balas' additive algorithm (1965),

and Glover's backtracking procedure (1965} for solving the

zero-one GP problems. A complete description of these

methods along with several solution examples are provided by

Lee and Morris (1977} and Lee (1979).

Interactive GP and Sensitivity Analysis

Interactive procedures are the most effective methods of

searching the tradeoff space for the most satisfactory

solution and are gaining wide acceptance for implementation.

They enable the DM to find the best solution through a

systematic process. The reasons for employing an interactive

procedure are: 1) to allow the DM the ability to explore the

criterion space through the objective tradeoff analysis, 2)

to perform sensitivity analysis, 3) to reduce computational

burden of producing and then selecting from the whole set of

nondominated solutions, and 4) to exclude the requirement of

exact data from the DM prior to analysis.

Zeleny (1982) presents some of the assumptions and

limitations of preemptive GP. According to Zeleny there are

two main limitations or drawbacks of using the preemptive GP.

First, improper setting of goals may result in a dominated

solution. Second, no trade-off is allowed among achievement

levels of various goals, which means small improvement in

71

higher priority goals are preferred and achieved regardless

of the cost to the lower priority goals. In other words,

higher priority goals are infinitely more important than

lower priority goals. The application of interactive GP

overcomes these difficulties by allowing the OM to perform

value tradeoff analysis of the achievement levels of various

objectives. In interactive GP, at each iteration, the OM is

asked to express his/her preferences regarding the goal

priority and/or the target value of the goal constraints,

based upon the previous solution(s), to generate a new

solution. The algorithm terminates whenever the OM is

satisfied with a solution or decides there is no satisfying

solution under current constraints and resources.

The changes in the priority structure and/or levels of

the goals also constitute sensitivity analysis of the model.

It enables the OM to explore the feasible region to determine

his/her preferred solution.

Beside the application of the general interactive

multiobjective procedures to the GP, other algorithms have

been developed specifically for the GP technique. Among

these methods are the interactive sequential goal programming

procedure of Masud and Hwang (1981) and the augmented goal

programming method of Ignizio (1981). Both of these methods

produce nondominated solutions.

72

Summary and Conclusions

This chapter presented some of the basic terminologies

of multiple criteria decision making. Then, a classification

scheme of MCDM models along with their descriptions were

discussed. Finally, a brief review of goal programming models

including formulation, various solution procedures, integer

goal programming, and interactive GP was presented.

This research will incorporate an interactive integer/

zero-one goal programming procedure for the analysis of

stochastic, multiple objectives location-allocation problems.

The flexibility of GP in solving a variety of real world

applications, its ease of use and understanding, the ability

to analyze the performance of the system under different goal

levels and/or goal priority structure, and the presence of

relatively efficient algorithms are the criteria used for the

selection of this technique.

The next chapter presents the development of two models

along with their solution procedures for the stochastic

multiobjective location-allocation problems.

CHAPTER IV

MODEL DEVELOPMENT AND SOLUTION METHODOLOGY

Introduction

This chapter contains the formulations and the solution

procedures of the stochastic multiobjective facility

location-allocation problem (SMOLAP). There are two main

characteristics associated with this research problem,

multiple objectives and stochastic demand. From previous

chapter, application of interactive integer/zero-one goal

programming appears to be an appropriate approach to deal

with conflicting multiple objectives. On the other hand, to

account for probabilistic uncertainty in the demand, we will

explore two different techniques: chance-constrained
/

programming and stochastic or two-stage programming. Both

these methods deal with the stochastic nature of the problem

by converting the probabilistic model into an equivalent

deterministic case. The chance-constrained approach is based

on satisfying an a priori "service level" while the latter

method, stochastic programming, is based on expected value

analysis.

This chapter begins with a presentation of the

assumptions and notations employed throughout the development

73

of this research problem. Then a discussion of chance

constrained and stochastic programming is presented.

Mathematical derivations of two distributions, normal and

uniform, for the case of the chance-constrained and the

stochastic programming formulations are demonstrated next.

Finally, the mathematical models for the research problem,

and their solution algorithms are presented.

Model Assumptions

The following assumptions are made and used in

developing the mathematical models.

74

1. The probability distribution function of demand for

each customer is known and is assumed to be normally

or uniformly distributed. These distribution

functions are shown to be appropriate

representation of variability of demands in reality;

Gonzalez-Valenzuela (1975), Jucker and Carlson

·(1976), Rasaratnam (1984).

2. The probabilistic demands are independent and are

the only source of randomness introduced into the

problem.

3. For the stochastic programming model, all decisions

including the allocations are made prior to the time

when actual demands becoming known.

4. Production costs and variable plant operating costs

are a linear function of the amount produced at each

plant.

5. The variable transportation cost is a linear

function of the amount transferred between a plant

and a demand center.

6. All costs are deterministic and do not include any

economies-of-scale effect.

7. The potential plant sites are a priori known.

Often, these locations are selected from a larger

set of possible sites by a multi-criteria decision

making technique.

75

8. The locations of demand centers (markets) are known.

Also, demand from a region is assumed to be

concentrated at a point representing concentration

of demands.

9. There is no elasticity of demand. Specifically, we

assume demand is not significantly influenced by any

planning decisions such as plant configurations

(distance), product flow, and price. Therefore,

assuming there is no relationship between these

factors and quantity demanded, it is not necessary

to consider the revenue generation aspect of the

problem in our models.

10. There are no interactions among new plants. That is

no transfer of products are allowed between plants.

11. The products or services are homogeneous. Therefore,

a single product model is appropriate.

12. The cost matrix (distance) representing the cost

76

of assigning demand centers to potential plant sites

is known.

13. There is a fixed cost associated with establishing a

plant at a potential site. This cost is assumed to

be independent of the plant throughput. For this

study, this cost is the sum of the amortized

construction cost and fixed operating cost over the

life of the plant.

14. Each demand center may be supplied from more than

one source.

15. Assuming uncertainties in demands will affect the

decision procedures for each of the two models

differently. For the chance-constrained model we

assume that the service level for each market is

given a priori. This will establish the minimum

probability of achieving each demand constraint.

For the stochastic programming model, instead of

including the uncertainties in the constraints, we

will let the uncertainties appear as an objective

function. In this case we will assume a linear

overage and underage cost corresponding with

oversupplying and undersupplying of each demand

center respectively.

Notations

The following variables and definitions are employed to

describe the mathematical formulations of the proposed models

77

throughout this research:

m

J

n

c
1J

qj

f (q.)
q J

p (.)

CF
qj

A
1,max

=plant index, 1=1,2, •.• ,m.

= number of potential plant sites in the system.

=demand center index, J=l,2, ... ,n.

= number of demand centers in the system.

= units of product transported from plant i to demand
center j.

=total units of product received at demand center j.

= total variable cost of production, distribution and
operation for supplying one unit of product from
plant i to demand center j.

= a 0-1 binary variable; y =1 if plant i is
established, y =O othei-wise.

i

= fixed cost per time period of opening and operating
a plant at site i.

=random demand at demand center j.

= probability density function for the demand at
destination j.

= cumulative distribution function for the demand at
destination j. It is the probability that total
demand at center j takes on a value lass than or
equal to q •

J

= probability density function of the unit normal
distribution.

= probability distribution function of the standard
normal distribution.

= probability distribution function of a given
distribution.

= mean of random demand at destination j for a
normally distributed demand.

= standard deviation of random demand at destination
j for a normally distributed demand.

= maximum allowed capacity of a plant at site i.

A
1,min

UB
J

a
J

1-a
j

K

a
L

0
j

u
j

M

B

a

(3

q

d

78

= minimum allowed capacity of a plant at site i.

= upper bound for demand at demand center j for a
uniformly distributed demand.

= lower bound for demand at demand center j for a
uniformly distributed demand.

= probability or risk of shortage at demand center j.

=minimum service level required at demand center j.
This is the probability of not undersupplying
demand center j in the chance-constrained model.

= under-achievement of goals or constraints

associated with the kth equation.

= over-achievement of goals or constraints associated

with the kth equation.

= number of priority levels in the achievement
function.

= the vector of goal achievements at various priority
levels (P, P , ... , P) at iteration L.

1 2 k

=unit cost of oversupplying demand center j, for
stochastic programming model.

=unit cost of undersupplying demand center j, for
stochastic programming model.

= a sufficiently large positive number.

= maximum budget allowed for opening new plants.

= the minimum specified resolution between current
and previous objective value.

= acceleration factor used for extending the step
size, a:::: 1.0.

= contraction factor used for reducing the step size,
o.o :S (3 :S 1.0.

= best allocation pattern at previous solution.

= the allocation pattern after exploratory moves.

= current best allocation pattern.

step(i] = step size along coordinate direction i,
i=l, ... , (m) (n).

79

= maximum number of times allowed for evaluating the
objective function.

= maximum number of times allowed for reducing the
step size.

z = an objective function.

z = a random variable.

Chance-Constrained Programming

Chance-constrained programming is a technique designed

to deal with stochastic problems. It was first introduced by

Charnes and Cooper (1963). This technique requires that for

each stochastic constraint we meet a specified "service

level". For instance, for this research problem we require

demands to be satisfied with some minimum probability. In

order to introduce the chance-constrained programming model,

first consider the following deterministic linear

programming problem model.

Minimize

subject to:

z = !
i = 1

m
\ a x L i ·
i = 1 J

c x
i i

j = 1,2, ... ,n.

Equation (4.2) also includes the nonnegativity

constraints. In the general case, the uncertainties are

present in all of the parameters, a's, q's, and e's.

(4 .1)

(4.2)

However, for this presentation, we assume all a's and e's are

80

fixed and that q's are the only source of random variables

present. Furthermore, assume that the q's are independently

distributed with the following distribution function:

F (z) = P (q ~ z).
q J

(4.3)

Then the chance-constrained programming model of (4.1-4.2)

is defined as:

Minimize

subject to:

z = !
i =1

c x
i i

P [I a 1 . x. 2:: q. J 2:: 1-o:.. ; j =l, .•• , n.
1=1 J l J J

(4.4)

(4. 5)

The probability statements in Equation (4.5) are denoted as

chance-constrained inequalities. Where, O < ex ~ 1 is the
j

probability or risk of not achieving the jth constraint. And

1-o:. is the service level or the minimum probability of
J

realizing the jth constraint. Next, recalling the definition

of the cumulative distribution function and rewriting one of

the constraints in Equation (4.5) we obtain:

f (q)dq
J J

m

1-o:. •
j

(4. 6)

where b = l a x . Inverting the probability distribution
J i = 1 i J i

function F (.), constraint (4.6) becomes:
q

m - 1
\ a x
L i J i
i = 1

2:: F (1-o:.) •
q J

(4.7)

81

Constraint (4.7) is the deterministic equivalent of a

probabilistic constraint in Equation (4.5). As a result,

the deterministic equivalent of the original chance-

constrained programming problem defined by (4.4-4.5) can be

written as follows:

m

Minimize z = l c x
i i

(4.8)
i =1

subject to:

m - 1

\ a x
L i J i
i = 1

~ F (1-a)
q j

j=l,2, ... ,n. (4.9)

Other classes of the chance-constrained programming

models, specifically, those with variations in the form of

the objective function, or the ones containing randomness in

other parameters, a's and e's, have been examined by Charnes

and Cooper (1963).

Normally Distributed Demands

Derivations of an equivalent deterministic for a chance-

constrained model when the right hand side is normally

distributed is presented by Taha (1982). Using the notations

defined previously, the chance-constrained equations for

satisfying the random demand constraints can be stated as:

P [~ = ~ i J ~ q J J ~ 1-a J ; j=l,2, ... ,n. (4.10)

Where demand q_ is normally distributed with meanµ and
J q j

variance 0" 2
q j

Following the procedures for determining

82

deterministic equivalents, inequality (4.10) can be

transformed to:

m - 1

l x1 J = b 2:: F (1-cx) · J q J , j=l,2, ... ,n. (4.11)
l = 1

Now, the inverse cumulative function, z , for a unit normal
j

distribution with a given probability value, (1-cx), can be
j

obtained from standard normal tables or by approximation

formulas. An approximation formula for calculating Z by
j

Hastings (1955) is provided in Appendix B. Next, given the

ZJ values and the expression for standardizing a normal

distribution, the right hand side of inequality (4.11) can be

given as follows:

- 1

F (1-cx.) = Z ~ + µ .
q J j qj qj

j=l,2, ... ,n.

Therefore equation (4.11) can be written as:

m

l x1 J
i = 1

2:: z ~ + µ
j q j q J

j=l,2, ... ,n.

(4.12)

(4.13)

where all the variables on the right hand side are known.

Inequality (4.13) is the deterministic equivalent of Equation

(4.10) for a normally distributed demand.

Uniformly Distributed Demands

Given the demand at demand center j, q , is uniformly
j

distributed between LB and UB , its distribution function
J J

can be represented as:

83

x

1-a = F (q =x) =
j q j

I 1
UB -LB

dq =
j

x -LB
j

UB -LB •
j j

(4. 14)
-oo j j

Thus, its inverse cumulative function is given by:

-1

x = Fq(l-aJ) = (UBJ-LBJ) (1-aJ) + LBJ. (4. 15)

Substituting (4.15) into Equation (4.11) we get:

m l x 1 J :!: (UBJ-LB) (1-aJ) + LBJ : j=l,2, ••• ,n.
i = 1

(4. 16)

Inequality (4.16) is the deterministic equivalent of Equation

(4.10) for a uniformly distributed demand.

Stochastic Programming Model

In this section an alternative method which deals with

randomness by incorporating it into the objective function

is considered. In this approach we will consider a penalty

cost whenever the supply to a destination does not match the

actual demand at that center. As stated previously, we

assume actual demands are realized after allocation decisions

are made. Also, we assume o and u are per unit cost of
J J

oversupplying and undersupplying of market j, respectively.

The above overage and underage costs have an opposite effect

on the supply of products to each demand center. The

shortage or underage cost tends to increase the product

allocation to a demand center while on the contrary the

surplus or overage cost tends to decrease this allocation.

As such, it is necessary to establish a balance between these

two costs. Given that these costs depend on random demands,

84

our objective is to minimize their expected value. All the

derivations in this section follows the inventory models for

style goods and perishable items as described by Silver and

Peterson (1985). Now, assume bJ units of a product are

allocated to demand center j and a demand of q units occur
j

at this center, then the cost realized is:

where

m

b = \ x
j L. l j

l =1

if qj ::5 bj

if qj > bj

(4.17)

(4.18)

(4. 19)

Equations (4.17) and (4.18) represent cost of oversupplying

and undersupplying, respectively. Now, the expected value of

the cost, as a function of demand at demand center j, is

given by:

Next, substituting from Equations (4.17) and (4.18), we

obtain:

dq •
j

(4.20)

(4.21)

Now given that demand cannot be less than zero, Equation

(4.21) can be written as:

85

b b
J J

E [c (b 'q) J = 0 b J fq(qj) dq - 0 J qj f (q) dq +
J j J J J J q J J

0 0

CXl CXl

+ u J qj f (q) dq - ub J f q (qj) dq .
j q J J J J J

b b
J J

(4.22)

The Equation (4.22) represents a nonlinear cost function

in the supply quantities, b 's, and therefore in the
J

allocation variables, x 's. To show that this function is
i J

convex and therefore has a global minimum we have to prove

that

d 2 E [c (b , q) J / db2 > o.
j j j

Recalling Leibniz's rule, given the following function:

h (x)
2

G(x) = J F(x,y) dy.
h (x)

1

Its derivative is given by:

h (x)
2

dG(x)/dx = J a F(x,y)/Bx dy + F(x,h 2) dh 2 (x)/dx -
h (x)

1

- F(x,h) dh (x)/dx.
1 1

Therefore, applying (4.25) to (4.22) we get:

b

= o J ~ (q) dq. + o b [o+f (b)-o] -Joq J J JJ q J

(4.23)

(4.24)

(4.25)

- o [o+b f (b) -o] + u [o+o-b f (b) J -J Jq J J jq j

- uJJ:fq(qJ) dqJ - uJbJ[o+o-fq(bJ)J.
j

(4.26)

After some simplification we get:

b
j tO

= o I f c q > dq - u I f c q > dq Joq J J Jbq J J
j

or
= 0 p < (b) - u [1 - p < (b)] •

J q J j q j

Now setting the first derivative to zero results in the

unconstrained minimum of b :
j

u
J

0 + u
j j

Applying the Equation (4.25) one more time, the second

derivative is as follows:

d 2 E[c(bJ,qJ)J /db~= oJ[o+fq(bJ)-oJ - uJ[o+o-fq(bJ)J =

= (o +u) f (b) > o.
J j q J

86

(4.27)

(4.28)

(4.29)

(4.30)

This proves that the cost function in Equation (4.22) is

convex and therefore has a global minimum. The result of

Equation (4.22) is applicable for any distribution of

demands. However in the following sections we will look at

the simplifications for special cases of normally and

uniformly distributed demands.

Normally Distributed Demands

The simplification of Equation (4.22) for the case of

normally distributed demand is shown next. Suppose the

demand at demand center j, qJ, is normally distributed with a

mean of µ and variance of ~2
qj qj

Now, define

87

b - µqj
k J

j (j
(4.31)

qj

and
qj - µqj

u =
J (j qj

(4.32)

From Equation (4.31)' we also .get:

b = µ + k (j .
J q J j q J

(4.33)

Recalling the transformation of a normal distribution to

standard (unit) normal form, we can write:

Prob (q J 2:: b J) = Prob (U J 2:: k J) = Pu 2:: (k J) (4.34)

or

Joo oo

f (q) dq = I f (U) dU = 1-F (k) = p 2:: (k) .
b q J j k u j J u J u j

(4.35)

J J

where U is a normally distributed variable with mean of
j

zero and variance one; u. - N (0,1). And P 2:: (k) is the
J u J

probability that a unit normal variable takes on a value of

k or larger. Now, since the chance of a negative value for
j

qJ is zero, that is no negative demand is allowed, we can

write:

Similarly;

= 1 - 0 - p (q 2:: b)
J J

=l-P2::(k). (4.36) u J

dq
j

88

(4.37)

Next, let

m m

= J b c q j - b j > f q c q j > dq j + J b b j f q c q j > dq j •

j j

(4.38)

Now, substituting from Equations (4.33) and (4.35) and

writing the expression for f (q), Equation (4.38) becomes:
q j

q =m
j

A= I (qj- µqj- k/Tqj
1

Exp [-(q -µ) 2/2u2 Jdq +
j qj qj j

q =/.l +k (j
j qj j qj

+ b p ~ (k) •
j u j

Next, from Equation (4.32) we get:

u (j
j qj

and
dU l

j = aq- (j
j qj

or dq = u dU .
j qj j

Also when the lower limit of the integral in (4.39) is

(4.39)

(4.40)

(4.41)

q = µ + k u from (4 • 4 o) we get U = K , and when the upper
j qj j qj' j j

limit is q= m we obtain U= m. Now, substituting from
j j

Equations (4.40) and (4.41) and these limits into Equation

(4.39) and after some simplification we get:

A= 1 (4.42)

or

89

IX)

A = CT J (U -k) f (U) dU + b P u=e (kJ) •
qj k j j u j J J

(4.43)

J

However, a special property of the unit normal distribution

is that;

IX)

JkuJ fu(UJ) dUJ = fu(kJ). (4.44)

J

Thus, after separating the terms in the integral of Equation

(4.43) and substituting from (4.44) we can write:

(4.45)

Finally, substituting from Equations (4.35), (4.36), (4.37),

and (4.45) into Equation (4.22) and after some simplification

we obtain:

(4.46)

For the equation above, values of f (k) and P ?;(k) for a
u J u J

given value of k may be found from the unit normal
j

distribution tables. Also, since the other parameters and

cost variables are known, therefore the expected cost can be

easily calculated for a given value of k or supply quantity,
J

b •
j

Uniformly Distributed Demands

Next we demonstrate the computational simplification of

Equation (4.22) for the case of uniformly distributed demand.

90

Suppose the demand qJ at demand center j is uniformly

distributed between LBJ and UBJ Also, define

r = UB - LB
J J J

then Equation (4.22) can be written as:

b b

E [c (b j' q j) J ob r~ dq - JJ 1 dq + = 0 qJr J J J J J
LB J LB J

J j

UB UB

J J 1 dq - J J 1 dq . (4.47) + u qJr ub --
J J J J r J

b J b J
J j

Simplifying Equation (4.47) yields:

0 b 0 Uj U b
= J J (b -LB) - _J_ (b2 - LB2) + (UB2-b2) - _J _J (UB b)

r J J 2r J J 2r J J r J - J
J j J J

or (4.48)

= 21r [(o + u) b 2 + (o LB2 + u UB2) -2 (o LB + u UB) b J .
J J J j J j j J j j j j j

(4.49)

As described in Equation (4.22) and is evident from

Equation (4.49) this is nonlinear cost function in terms of

supply quantities, b 's.
J

Mathematical Formulations

Based upon the procedures described for handling random

demands two models are presented. Model A and model B refer

to formulations employing chance-constrained and stochastic

programming respectively. Furthermore, assume the following

objectives are to be considered: lA) meet the random demands

with some minimum probability or lB) minimize the total

91

expected cost of allocation, 2) maintain production capacity

within prespecified limits, 3) satisfy the upper bound on

fixed cost, 4) minimize transportation cost, 5) minimize

total cost, and 6) satisfy configuration constraints. As

discussed previously, given the assumption on elasticity of

demands, the revenue generation aspect of the problem has not

been included in these objectives. The above objectives are

only representative of some of the possible multiple

objectives in stochastic LAP which are often in conflict.

Nevertheless, additional objectives/constraints may be

included, or existing objectives may be removed from the

models depending on the actual system under study.

In constructing the mathematical models of the SMOLAP,

special care must be taken to prevent trivial solutions. For

example to ensure that certain levels of demands are

satisfied, the solution space must be bounded by demand

constraints appearing as rigid system constraints and/or goal

constraints at priority one. This point will be further

discussed under the sensitivity analysis section of the

succeeding chapter.

The mathematical formulation of model A is presented

next.

Model A - Chance-constrained Goal Programming Formulation

In this section we present the chance-constrained goal

programming model of SMOLAP. This model deals with

stochastic demand through the chance-constrained programming

92

technique. The model consists of goal constraints, system

constraints, and the achievement function. The mathematical

formulation of model A is given next:

Goal Constraints. The goal constraints, as opposed to

rigid system constraints, are soft in that they do not

restrict the feasible region. The multiple objectives

involved in this study can be represented by the following

goal constraints. For these goal constraints it is desired

to achieve the specified target values as closely as

possible.

1. Probabilistic Constraints of Meeting Demand at Demand

Centers - using the chance-constrained concept these

equations may be stated as:

P [I X1 2:: q_ J 2:: 1 - a
i = 1 j J j

j = 1,2, ... ,n. (4.50)

Then, the deterministic equivalent of these constraints are:

m - 1

I xij
i = 1

2:: F (1 - a)
q j

j = 1,2, .•• ,n. (4. 51)

Converting these to goal constraints form, we have:

m I x + d- - d+ =
l=llj k k

-1

Fq(l - aJ) , j = 1,2, ••. ,n. (4.52)

where k=l,2, •.. ,n for j=l,2, ..• ,n respectively. The

negative deviational variables in (4.52) must be minimized in

order to satisfy demand with a specified minimum probability

bound.

2. Maintain Production Capacity within Prescribed Limits -

93

The lower and upper bounds on production capacity may be set

to represent the efficient operating range of each plant.

The upper bound on capacity may be determined based on a

number of factors such as environmental considerations

(pollution), availability of skilled labor, raw materials,

etc. Mathematically, these can be expressed as:

n

A ~\ X ~A
1,mln f.. lj 1,max

j=l

i= 1,2, ... ,m. (4. 53)

Once again, separating (4.53) and converting these to goal

constraints, we get Equations (4.54) and (4.55).

n

\ x + dk L. i j
J=l

d+ = A
k i 1 max

i= 1, 2 I • • • Im (4.54)

where k=n+l,n+2, ... ,n+m for i=l,2, ... ,m respectively.

Also d+ represents the degree of over production at site i
k

which must be minimized:

n +
\ X + d- - d = A L i j k k 1 1 min
j =1

i= 1, 2 I • • • Im (4.55)

where K=n+m+l,n+m+2, ... ,n+2m for i=l,2, •.. ,m respectively.

And, d~ denotes the under-achievement of capacity at site i

which must be minimized.

3. Satisfy an Upper Limit on Total Fixed Cost - Another

important consideration for the LAPs is the total fixed cost

goal. In actual practice there is a limitation on the

capital allocated to a project. Let B represents the limit

on the total investment budget. Then this can be

mathematically expressed as:

!
i =1

F Y :s B.
i i

Converting this to a goal constrained form, we have:

!
i =1

FY + d
i i k

d+ = B .
k

94

(4. 56)

(4. 57)

where k=n+2m+l. So, dk represents the amount of expenditure

below B, while d+ indicates this amount above B. Therefore,
k

this goal constraint can be achieved by minimizing its

positive deviational variable.

4. Transportation Cost Objective - An important

consideration in traditional LAPs is to minimize the total

transportation cost of allocating products from plants to

demand centers. Mathematically, this can be expressed as:

m n

l l c1j xij :s 0 •
i =1 j =1

Converting this to a goal constraint form, we have

m n

\' \' c x1J + dk L. L. ij
i =1 j=l

d + = 0 .
k

(4.58)

(4.59)

where k=n+2m+2. This goal can be achieved by minimizing the

positive deviational variable.

5. Total Cost Objective - A primary objective of the LAPs

is the minimization of the total cost. The total cost

consists of the total transportation cost between plants and

demand centers and the fixed cost of establishing and

operating new plants. Mathematically, this objective can be

95

expressed as:

m n

I I cij ! FY
1 1

:S 0. (4.60)
1 =1 j =1 1 =1

Converting this to a goal constraint form, we have:

m n

I I cij
1 =1 j =1

x
ij

d + = 0 .
k

(4. 61)

where k=n+2m+3. Therefore, minimization of total cost can be

achieved by setting the target value to zero and minimizing

the positive deviational variable.

6. Configuration Constraints - A possible configuration

constraint in locational analysis is mutually exclusive

sites. Whenever potential sites are geographically close to

each other it may be desirable to establish facilities, if

any, in only one of these locations. This is justified, for

example, if we want to eliminate service overlaps between

these locations or to evenly distribute the facilities.

Assume locations s and t are mutually exclusive sites, then

this relationship can be mathematically expressed as:

y + y :S 1 (s ' t) e m. (4.62)
s t

Converting Equation (4. 62) to a goal constraint, we have:

y + y + d-- d+
s t k k

= 1 ' (s ' t) e m. (4.63)

where k=2m+n+4. In order to satisfy the above goal

constraint we need to minimize the positive deviational

variable.

system Constraints. The system constraints are those

which must be strictly satisfied before an optimal solution

can be realized. Mathematically, for this model, these

constraints are stated as follows:

n

96

l X1J- M Y1 ::!: o , i=l,2, •.. ,m.
j=l

(4.64)

These constraints insure that the shipments to demand centers

are made only from open facilities. In choosing a value for

M, special care must be taken such that its magnitude does

not affect the computational accuracy of the problem. For

the case of deterministic models this value must be equal to

or greater than the sum of all demands. Next, non-negativity

and integrality requirements are given by:

x '1:: 0 i = 1,2, ... ,m ; j = 1,2, ... ,n (4.65)
ij

d - d+ 0 for all k (4.66) '1::
k k

y ::!: 1 and y = 0 1 i = 1,2, ... ,m (4.67)
1 1 I

d- . d+ = 0 for all k. (4. 68)
k k

The inequality constraints in Equation (4.67) are used

to obtain zero-one solutions through application of a branch

and bound routine. From Equation (4.68) the product of the

positive and negative deviational variables must be zero,

indicating that one can either be above or below the desired

goal targets. However, these constraints are automatically

satisfied in a linear programming type solution and need not

97

be considered explicitly.

Model A Achievement Function. The achievement function

for this model involves the minimization of appropriate

deviational variables according to their preemptive priority

weights. Assuming priorities are assigned to the goal

constraints in the order they are presented, the model A

achievement function is as follows:

Minimize z = P 1 (d~ + d 2 + ··· + . • . +

d+ + d- + d + . . . + d-) +
n + m n +m + 1 n + m + 2 n + 2 m

p (d+) + p (d+) + p (d+) +
3 n+2m+l 4 n+2m+2 5 n+2m+3

p (d+)
6 2m+n+4 ·

(4.69)

Another assumption in Equation (4.69) is that the

weights for all the deviational variables are equal to one.

Priorities P, P, ... , and P in Equation (4.69) are called
1 2 6

preemptive priorities or priority weights. They determine

the hierarchy of goals. For this model we also assume that

goals with lower indexed priority factors always take

priority over goals with higher indexed priority factors.

For example, the relationship between P 1 and P 2 is as follow:

p >>>P.
1 2

(4.70)

This means that lower priority goals are considered only

after higher priority goals are either fully achieved or

reached to a point beyond which no further improvement is

possible. However the system constraints are given the

highest priority ranking, P , and must be fully satisfied
0

before any of the above priorities can be considered.

Model B - Stochastic Goal Programming Formulation

This section presents an alternative model for the

formulation of SMOLAP. This model uses the stochastic

programming method to deal with random demands. The

formulation of this model is similar to model A except for

the probabilistic goal constraints in (1). For this model,

98

since demand or "service level" for meeting random demands at

each destination is not given beforehand, it is not possible

to include any explicit restriction to satisfy demands.

Instead, goal constraint (1) will be altered to include

penalties for oversupplying and undersupplying of the

markets. As shown previously, this will result in a

nonlinear goal constraint. The mathematical formulation of

model B is as follows:

Goal Constraints. Similar to model A the following goal

constraints can be formulated for model B:

1. Minimize the Total Expected Cost of Allocation - The

expected cost of allocating products from plants to demand

centers is the penalty costs of oversupplying and under-

supplying the demand centers. Recalling Equation (4.22),

this goal can be mathematically expressed as:

99

b b

~=1[
J J

0 b Jfq(qj) dq - 0 J qj f (q) dqj +
J J J J q J

0 0

(I) (I)

J + u J qj f (q) dq - ub J fq(qj) dqj :s 0
J

b
q J J J J

b
J J

(4.71)

m

where by definition bJ= l X1 J Next, converting Equation
i = 1

(4.71) to a goal constraint, we get:

(4. 72)

where k=l. As an alternative formulation, Equation (4.72)

may be divided into n goal constraints with n deviational

variables.

2. Maintain Production Capacity within Prescribed Limits -

n l x + d-
j =1 i j k

d+ = A
k i 1 max

i= 1,2, ... ,m (4.73)

where k=2,3, ... ,m+l for i=l,2, ... ,m respectively.

n l x + d-
j =1 ij k

d+ = A
k i 1 min

i= 1,2, ... ,m (4.74)

where K=m+2,m+3, ... ,2m+l for i=l,2, ... ,m respectively.

3. Satisfy an Upper Limit on Total Fixed Cost -

!
i =1

FY
i i

where k=2m+2.

(4.75)

4. Transportation Cost Objective -

m n

l l c1J
l =1 j =1

where k=2m+3.

x
ij

5. Total Cost Objective -

m n

l l c1J
i =1 j =1

x

where k=2m+4.

+ !
i =1

i j
FY

i i

0

6. Mutually Exclusive Locations -

y + y + d - d+ = 1
s t k k '

(s , t) e m

where k=2m+5.

System Constraints.

n

l x1J - M y ~ 0
j = 1

i=l, 2, ... , m

x 2:: 0
ij

i=l,2, ... ,m; j=l,2, ... ,n

d - d+ 0 2:: for all k
k k

Y ~ 1 and Y = o , 1
i i

i=l, 2, ... , m

for all k.

Model B Achievement Function.

Minimize Z = p (d-) + p (d+ +
1 1 2 2

+ + d + . . . + d +
3 m+l

+ d- + d- +
m+2 m + 3

+ d-) + p (d+) +
2m+1 3 2m+2

100

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

101

+ p (d+) + p (d+) + p (d+)
4 2m+3 5 2m+4 6 2m+S

(4.84)

The solution procedures for the models developed in this

chapter are presented next.

Solution Algorithms

In the preceding sections we proposed two models for the

stochastic multiobjective location-allocation problems. As

was demonstrated, model A, a multiobjective chance-

constrained model, can be easily transformed into an

equivalent deterministic model. Therefore, standard

multiobjective techniques may be applied to its solution.

However, transformation of model B, a multiobjective

stochastic model, to its deterministic equivalent is

considerably more difficult. As such, we develop different

solution algorithms for each model. The following sections

present the proposed solution algorithms for solving these

models.

Model A Solution Procedure

Once the problem is formulated utilizing the method

explained for model A and converted into its equivalent

deterministic model, it may be solved through interactive

preemptive goal programming. At each solution step the

analyst is given the opportunity to change his/her priority

structure and/or target goals in order to obtain a better

102

solution. Additionally, to aid the decision maker toward

better solutions, at each iteration, aside from the current

achievements, a list of conflicting objectives and their

trade-offs will be provided. The steps for this algorithm

are outlined below. Also, Figure 4.1 presents the logic

flowchart for this algorithm.

Step O: Formulate the problem as explained for model A.

This model is a collection of deterministic goals,

probabilistic goals, deterministic system

constraints, and the achievement function.

Step 1: Establish the appropriate priority structure,

service levels, and target values.

Step 2: Convert the probabilistic goal constraints to their

deterministic equivalents.

Step 3: Solve the problem by the modified simplex method of

preemptive goal programming.

Step 4: Examine the optimal solution. If it satisfies the

integer requirements go to step 5. Otherwise, apply

the branch-and-bound method of integer programming.

Step 5: Examine the integer solution. If achievements are

satisfactory, go to step 7. Otherwise proceed to

step 6.

Step 6: Perform trade-off analysis. Then solicit new

priority structure and/or target values from the DM.

Reformulate the problem and go to step 3.

Step 7: Terminate.

Yes

Fomulitt the
chance

constni ned
integer GP Model

of the snOLAP

Input priority
structure, tech.
coefficients,

cost data, and
goal leYels

Ho

ConYert the
probabilistic

deMand goal
constraints in

to their
deteministic
equiYalents

Apply the branch
and-bound Method >------•1•------1 of integer

progril"tling

Solve the probleM
using Modified

siMplex Method of
preeMptive goal

progril"tling

Stop

Perf om trade-off
analysis.

Then Modify the Ho
target Yalues,
serYice leYels
and/or priority

structure

Output decision
Yar1 ables and

----.1 the achi eveMent
Yes

vector

Figure 4.1. Flowchart of the Algorithm for the SMOLAP
of Model A

103

104

Model B Solution Procedure

The nonlinear goal constraint in model B is the convex

quadratic penalty cost function. The two basic approaches

for dealing with this nonlinearity are either to replace it

with an approximate linear cost function or to treat it using

nonlinear techniques. For a fixed location vector and a

single objective function, for example cost minimization,

this problem reduces to a transportation problem with

stochastic demand. Wilson (1972), proposed a linear

approximation technique for this nonlinear cost function by

establishing upper and lower bounds on the supply quantities

to each destination. Then, the nonlinear cost function was

replaced with a linear function between these two bounds. Of

course the quality of the solution can improve as tighter

bounds can be established. However, it is believed that for

the case of multiple objectives in this research problem such

bounds can not easily be determined.

The formulation of model B indicates the presence of an

integer nonlinear goal programming model. By its structure,

this is an extremely difficult problem to solve. For a given

location vector, this problem reduces to a nonlinear goal

programming problem. Ignizio (1976) has discussed an

extension of Hooke and Jeeves pattern search technique for

the solution of nonlinear goal programming problems. This

procedure consists of two major steps: exploratory moves, and

pattern move. The algorithm starts from a base point and

105

does a complete cycle through coordinate directions

(exploratory moves). If the new solution vector dominates

the solution at the base point, it takes a step in the

direction resulting from the net change in the initial point

(pattern move). Otherwise, the search continues from the

previous point with a contracted step size.

An initial experimentation with the above modified

pattern search technique did not prove satisfactory for

solving the allocation subproblems. The difficulty arise

after fully achieving the first priority goal (nonlinear

total expected penalty cost goal). For instance, although

after achieving the first priority goal, there are many

allocation patterns in a subproblem which result in the

minimum expected penalty cost, the modified pattern search

algorithm can not distinguish among them. And therefore, for

this problem, it always resulted in a dominated solution

vector. In general, once the first priority goal is fully

achieved, the algorithm, in its present form, is unable to

distinguish among available alternatives. Therefore, the

lower priority goals are ignored which can lead to dominated

solution. This problem may be solved if the solution vector

is allowed to go to a dominated point in the process of

obtaining a nondominated solution. But, a further

modification of different search parameters, such as vector

of step sizes and vector of resolutions (errors) between

achievement vectors did not overcome this difficulty. Thus,

106

an alternative method for the solution of model B was

investigated.

Goal one in model B, Equation (4.72), is the sum of n

expected penalty costs, one for each demand center. Given

that the expected penalty cost function at each destination

is convex, application of any nonlinear programming technique

to the n component of goal one will result in the

determination of optimum supply quantities to each demand

center. With this introduction, we propose a two-stage

·algorithm for the solution of model B. In stage one we apply

the direct search method of Hooke and Jeeves to find the

optimum supply quantities at each demand center. Next, in

stage two, we use the results from stage one to construct the

deterministic demand goal constraints. These goal

constraints along with goals at priorities 2 through 6

represent a deterministic linear integer goal programming

problem which is then solved by the modified simplex method.

In addition, the branch-and-bound routine along with the

appropriate system constraints are used to satisfy the

zero-one integer requirements. Figure 4.2 depicts the logic

flowchart for the stage 1. The logic flowchart for the stage

2 will be similar to Figure 4.1.

Stage 1 - Pattern Search. In the following steps

"point" refers to a set of allocations (X 's}. And, the
i j

objective function is the minimization of total expected

penalty cost function.

107

Step O: Formulate the total expected penalty cost goal for

normal or uniform distribution of demands. This is

the objective function to be minimized. Specify

convergence criteria (~, ¢), a,~' o, step sizes,

open plants, and an initial set of allocations, d.

Let m represent the number of open plants.
1

Step 1: Evaluate the total expected penalty cost value at

the starting (current) point, d. Initialize the

optimal (upper bound) solution. Also, let the

previous point q be equal to d.

Step 2: Search along each coordinate direction by moving

step[i] along the ith direction for i=l, ... , (m) (n).
1

Let the new point be ~· Determine the objective

value at this new point.

Step 3: If the total expected penalty cost at the new point

plus o dominates the upper bound, then update the

upper bound. Otherwise, go to step 7.

Step 4: Examine the convergence criteria. If the number of

times the total cost is evaluated is greater than or

equal to ~' or if the number of times the step size

is reduced is grater than or equal to ¢, go to step

8. Otherwise perform a pattern move as follows:

d = ~+ a(qT- q)

Set the previous point, q, equal to ~·

Step 5: Determine the total expected penalty cost at the new

point, d. If this solution dominates the upper

108

bound, update the upper bound and go to step 2.

Otherwise, proceed to step 6.

Step 6: Turn on the flag for unsuccessful pattern move (UPM).

Go to step 2.

Step 7: The exploratory moves are unsuccessful. Examine the

convergence criteria. If the number of times the

total cost is evaluated is greater than or equal to

¢, or if the number of times the step size is

reduced is grater than or equal to ¢, go to step 8.

Otherwise, reduce the step size by ~- If the flag

for unsuccessful pattern move is on, then set the

new (current) point be equal to the previous point

(i.e. d=q). Turn off the flag for unsuccessful

pattern move (UPM). Go to step 2.

Step 8: The current upper bound contains the optimal

solution (a set of allocations which minimizes the

total expected penalty cost function). Use this

solution to calculate the optimal supply quantities

to each demand center. Terminate.

Application of stage one determines the optimum supply

quantities to each demand center. For example, the optimum

supply quantities to demand center one, (OSQl), can be

calculated as shown below:

OSQl = x + x + ... + x
11 21 ml

Set
Unsuccessful
Pattern Move

<UPM)
flag

on

Figure 4.2.

No

Update the
uner bound

(Min !MUM cost)

Yes

Perf om a pattern
Move

Evaluate total
Penalty cost

Fomuh.te the
nonlinear integer

GP Mode 1 of the
SMOLAP

Input initial
ii locations,
step sizes,
converienct
criteria

InitialiH the

Evaluate the
total expected
penalty cost

function

Move to previous
set of

allocations
Set UPH flag

off

Reduce the step
size

outrut the
optiMa supply

quantity at
uch deMand
center

Flowchart of the Stage 1 Algorithm for
the SMOLAP of Model B

109

110

Stage 2 - Optimal Solution. Once the optimal supply

quantities to each destination is determined in stage 1, the

problem is solved as follows:

step o: Formulate the n demand goal constraints as in

Equation (4.52). However, set the target values of

these goals equal to the deterministic values

obtained in stage 1. Formulate other goals and

system constraints as presented for model B.

Step 1: Establish the appropriate priority structure and

target levels. Note that the target values (optimum

supply quantities) for the demand goal constraints

are obtained from stage 1 of the algorithm.

Step 2: Solve the problem by the modified simplex method of

preemptive goal programming.

Step 3: Examine the optimal solution. If it satisfies the

integer requirements go to step 4. Otherwise, apply

the branch-and-bound routine of integer programming

for an integer solution.

Step 4: Examine the integer solution. If achievements are

satisfactory, go to step 6. Otherwise proceed to

step 5

Step 5: Perform trade-off analysis. Then solicit new

priority structure and/or target values from the DM.

Reformulate the problem and go to step 2.

Step 6: Terminate.

111

Summary

This chapter presented the development of two models

along with their solution algorithms for the stochastic

multiobjective facility location-allocation problem (SMOLAP).

Chance-constrained and stochastic programming were used as

alternative procedures to deal with stochastic demand. Also

an integer/zero-one goal programming algorithm was used to

deal with the integer multiple objective aspect of the

problem.

In the next chapter, the above proposed models and

their solution procedures will be illustrated through

different example problems.

CHAPTER V

VALIDATION, COMPUTATIONAL EXPERIENCE, AND

SENSITIVITY ANALYSIS

Introduction

This Chapter addresses the validity, test problems,

computational results, and sensitivity analysis of the models

developed in this research. To accomplish this task and

according to the objectives established previously, an

interactive computer program based on the solution procedures

of Chapter IV is developed. The program is written in TURBO

PASCAL 5.0 for IBM compatible PC's with at least 640 KB of

memory.

Next, as a part of validation, descriptions of three

problems from the literature and their solutions are

discussed.

Validating the Algorithms and

Computer Programs

The algorithms and programs developed in this research

are extensively tested and validated through variety of

sample problems from the literature. In this section three

test problems used to validate the algorithms and computer

112

113

programs are presented. The test problems reported here

include one location model and two location-allocation

models. All of three models are of multiple objective

nature. However, test problem three has also been solved as

a pure (single objective) cost minimization problem.

Test Problem 1 - A Multicriteria Warehouse Location Model

This location problem is presented by Green, Kim, and

Lee (1981). The proposed problem is to determine the

location of potential warehouses to be served from a single

existing source. As such, contrary to multi-source facility

location problems, it does not consider the allocation or

demand aspect of the problem. The problem formulation

contains 12 variables, 10 constraints, and 7 priority levels.

The priorities, ranked based on their importance are:

p :
1

p :
2

locate new warehouses where competition saturation
is low.

meet the upper bound on the fixed cost of new
warehouses.

P 3 : avoid service overlap among warehouse locations by
locating them a minimum distance apart.

p :
4

p :
5

p :
6

p :
7

satisfy mutual dependency between two specified
locations.

satisfy favored customer service.

avoid decentralization by locating warehouses within
a specified distance from supply source.

minimize transportation costs from supply source to
warehouses.

The input data for this problem is given in Table A.1 in

Appendix A. And Table 5.1 presents a comparison of the

solution results for this problem. The solution for this

114

problem was obtained by the integer routine of the program.

The results were consistent with the ones reported by the

authors and are X2 = X4 = X10 = 1, with all other XJ equal to

zero. In addition, all goals were completely achieved except

for minimization of transportation cost. Of course this was

expected since this goal was set at zero level.

TABLE 5.1

COMPARISON OF RESULTS FOR TEST PROBLEM 1

Green, Kim, Lee (1981)

Locations:

Y2=1, Y4=1, YlO=l

Goal Under-Achievement:

Pl=O
P2=0
P3=0
P4=0
P5=0
P6=0
P7=790

Abtahi, M.

Y2=1, Y4=1, YlO=l

Pl=O
P2=0
P3=0
P4=0
P5=0
P6=0
P7=790

Furthermore, the statistics reported by the program for

this problem are listed in Table 5.2. Although execution

time is included in this table, its value is greatly

influenced by the hardware and software being used and should

115

not be employed for comparison with other algorithms. This

time statistic is mainly valuable for demonstrating the

relative time requirements among different problems. All

time statistics reported in this research are obtained on a

12 MHZ microcomputer with no math-coprocessor.

TABLE 5.2

TEST PROBLEM 1 - ALGORITHM PERFORMANCE

Total Total Nodes
Iterations Evaluated

54 5

Upper Bounds
Updated

1

Test Problem 2 - Location-Allocation Model I

Execution
Time (Sec.)

21.58

This problem is presented by Lee and Franz (1979). They

studied a location-allocation problem for five potential

sites of manufacturing facilities and four distribution

centers. The problem contains 6 priority levels, 23

constraints and 25 variables. The variables include both

zero-one location variables and the integer assignment

variables. The constraints are divided into 13 goal

constraints and 10 system constraints. The priorities

considered in this problem are given below:

P : meet the product demand of all distribution centers.
1

p :
2

p :
3

p :
4

p :
5

p :
6

do not exceed the fixed budget for establishing
facilities.

116

keep an upper limit on the production level at each
site.

satisfy at least SO units of the demand at
distribution center 3 from site 1 or site 2.

minimize total fixed costs and transportation costs.

minimize transportation costs.

Table A.2 in Appendix A presents the input data for this

problem. A comparison of solution results for this problem

is reported in Table 5.3.

TABLE 5.3

COMPARISON OF RESULTS FOR TEST PROBLEM 2

Lee, Franz (1979)

Locations:

Allocations:

Y4=1, Y5=1

X41=400
X52=300
X53=200
X54=100

Goal Under-Achievement:

Pl=O
P2=0
P3=0
P4=50
PS=l,304,500
P6=54,SOO

Abtahi, M.

Y4=1, YS=l

X41=400
X52=300
X53=200
X44=80
X54=20

Pl=O
P2=0
P3=0
P4=50
PS=l,303,300
P6=53,300

117

The solution generated by the proposed algorithms gives the

same location pattern as the one reported by the authors [Lee

and Franz (1979)] with sites 4 and 5 selected for

establishing new manufacturing plants. However, the proposed

algorithms produce a different pattern for allocation of

products among manufacturing plants and distribution centers.

The new distribution assignments are: X =400, X =300,
4 1 5 2

X =200, X =80, and X =20. This solution dominates the
53 44 54

solution presented by the authors which matches priorities 1

through 4 as reported, but results in a higher achievement

level for priorities 5 and 6. More precisely, this new

solution reduces the transportation and total cost by $1200.

The computational results for this problem is given in Table

5.4.

TABLE 5.4

TEST PROBLEM 2 - ALGORITHM PERFORMANCE

Total
Iterations

892

Total Nodes
Evaluated

39

Upper Bounds
Updated

2

Execution
Time (Sec.)

1006.89

Test Problem 3 - Location-Allocation Model II

This problem is presented by Lee, Green, and Kim (1981).

118

They solved a multiple criteria location-allocation problem

for 6 potential plant location sites and 4 different

distribution centers. The model consists of 8 priority

levels, 28 constraints, and 30 variables. 6 of these

variables are zero-one integer variables representing the

location vector. The constraint set consist of 16 goal and

12 system constraints. The priorities considered are:

p :
1

p :
2

p :
3

p :
4

p :
5

p :
6

p :
7

p :
8

satisfy the demand for all distribution centers.

insure favored customer service for distribution
center 1.

meet the goal on budget ceiling.

locate where quality of life is satisfactory.

maintain a policy of desired expansion by
establishing a minimum of three plants.

keep the production level below the upper bound set
by state regulations for air pollution control.

minimize total costs of opening plants and
distribution costs.

minimize transportation costs.

The input data for this problem is given in Table A.3 in

Appendix A. The solution generated by the proposed

algorithms is superior to the solution reported by the

authors. The optimum solution indicates opening plants at

sites 2, 4, and 6 with the following assignments: X =50,
21

X41 =5oo, X61 =30, X22=420, X23 =130, X63 =130, X64 =1so. This

solution, contrary to the solution presented by the authors,

satisfies priority 2 completely. It also produces a lower

transportation cost. However, total cost is higher due to

119

selection of site 2 instead of site 3. Table 5.5 presents

the comparison of the solution results for this problem. In

addition, Table 5.6 gives the computational results for this

problem.

TABLE 5.5

COMPARISON OF RESULTS FOR TEST PROBLEM 3

Lee, Green, Kim (1979) Abtahi, M! Abtahi, M~ ' 3

Locations:

Y3=1, Y4=1, Y6=1 Y2=1, Y4=1, Y6=1 Y2=1, Y4=1, Y6=1

Allocations:

X31=80
X41=500
X62=420
X63=260
X34=150

Goal Under-Achievement:

Pl=O
P2=50
P3=0
P4=785
P5=0
P6=0
P?=l,841,250
P8=91,250

X21=80
X41=500
X22=420
X23=100
X63=160
X64=150

Pl=O
P2=0
P3=0
P4=775
P5=0
P6=0
P?=l,990,800

P8=90,800

1 The formulation includes the total cost goal.
2 The formulation excludes the total cost goal.
3 This is the nondominated solution.

X21=50
X41=500
X61=30
X22=420
X23=130
X63=130
X64=150

Pl=O
P2=0
P3=0
P4=775
PS=O
P6=0
P7=1,990,200

P8=90,200

TABLE 5.6

TEST PROBLEM 3 - ALGORITHM PERFORMANCE

Total Total Nodes
Iterations Evaluated

666 27

Upper Bounds
Updated

4

Execution
Time (Sec.)

1059.52

120

It may be noted that the execution time for this problem

to obtain the optimal solution on an IBM 370-158 is reported

by the authors to be 439.26 seconds.

In experimenting with this problem it was discovered that

the solution can be very sensitive to the value of M in the

system constraints. While this value needs to be sufficiently

large to enforce the constraints of type (4.64), selection of

excessively large values for M can significantly affect the

computational accuracy of the algorithms.

Another observation made was the need to increase the

precision of the real type variables. This reduces the round

off errors whenever the number of iterations becomes too

large. However, the drawbacks are an increase in CPU time

and larger storage (virtual memory) requirements.

Further analysis identified another characteristic of

this problem which can affect the computational accuracy and

therefore the final decision set produced by the model. As

shown in Table A.3, the coefficients of the location

121

variables for the total cost goal (row 15) are considerably

larger than the coefficients of the allocation variables in

the problem. This relatively large gap among the

technological coefficients will influence the accuracy of the

simplex based calculations. To eliminate this potential

source of error, the problem was formulated and solved

without the total cost goal. Then this goal was evaluated at

the current solution. This method resulted in a different

allocation pattern and reduced the transportation cost by

$600.00, an improvement of 0.66%.

Finally, this problem was formulated and solved as a

single objective cost minimization problem as explained by

Lee, et al. (1981). The solution obtained was similar to the

one reported by the authors. The transportation cost is

minimized at $50,350. However, the program identified an

alternative solution. This new solution is to select

location I instead of location II and to replace X =260 with
23

X13=260.All other location and allocation assignments remain

-the same as reported in the paper.

An Illustrative Example for Model A

Next, the solution algorithms and sensitivity analysis of

SMOLAP for model A is illustrated by a sample problem.

System Description

A manufacturing firm is considering the establishment of

a facility or facilities to service three major demand

centers. Through initial analysis the firm has identified

four potential sites for plant location which satisfy

production requirements such as availability of skilled

labor, closeness to suppliers, raw materials, access to

transportation, etc. Figure 5.1 depicts a graphical

122

configuration of the proposed plant sites and demand centers

for this example problem.

,, 3 11 [!j]
DJ

DJ ICJJI

IOJI
lg] Potential Plant Sites [JJ
[J Existing Demand Centers

Figure 5.1. Graphical Representation of Potential Plant
Sites and Existing Demand Centers

Furthermore, Table 5.7 presents unit distribution

cost between potential plants and demand centers,

distribution of demand at each destination, annual fixed

costs of establishing a facility at each potential site, and

the capacity limits at each proposed location.

123

TABLE 5.7

ALLOCATION COSTS, STOCHASTIC DEMANDS, FIXED COSTS,
AND CAPACITIES FOR THE EXAMPLE PROBLEM

Demand Demand Demand Fixed Capacity
Costs1 Center 1 Center 2 Center 3 Max Min

Site
Site
Site
Site

Mean2
2 S.D.

1
2
3
4

80
60

250
100

350
10

300
400

90
70
40
20

400
15

350
450

200
180

30
100

500
20

400
550

~ Multiply by 1000.
For normally distributed demands.

3 For uniformly distributed demands.

650 500
800 700
725 400
600 650

Next assume management is considering the following

goals/priorities for selecting "ideal" location(s) among

potential sites and allocating products to the demand

centers.

Priority 1: Satisfy random demand at each destination
with the minimum probability of 0.9
(service level=0.9).

Priority 2: Capacity of potential facilities (plants)
should not exceed or fall below their
planned upper and lower bounds. Note,
specifying a minimum capacity for a given
site at this priority level, can force a
facility to be established at that site.

Priority 3: Limit the total annual fixed costs to
$1,350,000.

Priority 4: Minimize transportation cost of allocating
products.

0
0
0
0

Priority 5: Minimize the total cost of location and
allocation.

Priority 6: Satisfy the forecasted future growth, by
opening at least three facilities.

System Formulation

124

The chance-constrained goal programming formulation for

this problem can be stated as follows:

Goal 1 (Demand):

x + x + x + x + d-+ d+ = F-1 (O. 9)
1 1 21 31 4 1 1 1 q

x + x + x + x + d-+ d+ = F-1 (0. 9)
1 2 22 32 42 2 2 q

x + x + x + x + d-+ d+ = F-1 (0. 9)
1 3 23 33 43 3 3 q

where distribution of demands are as given in Table 5.7.

Goal 2 {Capacity):

x + x + x + d - d+ = 500
1 1 1 2 1 3 4 4

x + x + x + d-- d+ = 700
2 1 22 23 5 5

x + x + x + d-- d+ = 400
3 1 32 33 6 6

x + x + x + d-- d+ = 650
4 1 42 43 7 7

Goal 3 (Budget):

- d+ 650 y + 800 y + 725 y + 600 y + d - = 1200
1 2 3 4 8 8

Goal 4 (Transportation):

80 x + 60 x + 250 x + 100 x + 90 x +
1 1 21 31 41 1 2

70 x + 40 x + 20 x + 200 x + 180 x +
22 32 42 1 3 23

30 x + 100 x + d-- d+ = 0
33 43 9 9

125

Goal 5 (Total Cost):

4 3 l ~c1 Jx1 J+ (650000)Y 1 + (800000)Y 2 + (725000)Y 3 +
i = j=l

+ (600000)Y 4 + d 10

Goal 6 (Configuration):

y + y + y + y + d- - d+ = 3
1 2 3 4 11 11

and the system constraints are:

Then, the

y, :s 1,
1

x + x
1 1

x + x
21

x + x
3 1

x + x
4 1

1 2

22

32

42

achievement

i = 1,2,3,4

+ x - 2500 y
1 3 1

+ x - 2500 y
23 2

+ x - 2500 y
33 3

+ x - 2500 y
43 4

function can be

:s 0

:s 0

:s 0

:s 0

written as:

Minimize - - ~) p (d++ d++ d++ d+) z = p (d + d + d +
1 1 2 2 4 5 6 7

+ p (d+) + p (d+) + p (d-) .
4 9 5 10 6 1 1

p (d+) +
3 8

Based on the distribution of demands, two problems are

realized. Each problem contains 16 variables, 19

constraints, and 6 priorities. The processing time for each

problem is about 230 seconds.

Table 5.8 presents the summary of the results for both

normal and uniform distribution of demands.

TABLE 5.8

SUMMARY OF THE RESULTS OF THE MODEL A EXAMPLE
PROBLEM FOR NORMAL AND UNIFORM

DISTRIBUTION OF DEMANDS

Normal a Uniforma

126

Open Facilities: Y2=1, Y4=1 Yl=l, Y3=1,
Y4=1

Allocation Assignments:

Priority Order ·

1. Demand
2. capacity
3. Budget
4. Trans.
5. Total
6. Config.

a Service Level=0.9.
b Multiply by 1000.

X21=363
X22=296
X42=124
X43=526

0
0

sob
97580

1497580
1

X11=390
X33=400
X42=440
X43=135

Underachievements

0
0

625b
65500

2040500
0

From Table 5.8, the optimal solution when the demand

distribution is normal and service level is 0.9, is to

establish facilities at sites 2 and 4. Also, the solution

results in the following assignments: Assign facility at

site 2 to demand center 1, assign facility at site 4 to

demand center 3, and assign both open facilities to demand

center 2. This solution along with specified allocations

satisfy the goals at priorities 1 and 2 completely. However,

the fixed cost budget goal exceeds by $50,000. Also the

127

goal on minimum number of facilities (goal 6) is under

achieved by 1. The under-achievement of transportation and

total cost is expected since their initial goals were

intentionally set very low at zero. This forces the minimum

of these goals within there specified priority structure.

The results in Table 5.8 can also be verified through

inspection of the problem. For instance, converting the

chance-constrained demand goals into their equivalent

deterministic goals results in a total demand of 1309 units

by all demand centers. Now, by inspection, facilities at

sites 2 and 4 are the best combination of available

facilities which have enough capacity to satisfy these

demands and to result in minimum annual fixed costs.

Next, from Table 5.8, for the uniform distribution of

demands, facilities are to be established at sites 1, 3, and

4. Once again obtaining the deterministic equivalence of

demand goals, the total demand to be satisfied at the 90%

service level is 1365 units. Recalling the available

capacities in Table 5.7 and realizing the high priority of

meeting demands, at least 3 facilities are required to meet

this demand. Now, as can be seen in Table 5.8, the model has

selected three sites with the lowest annual fixed costs, from

the potential sites. This will satisfy priority 3, requiring

the minimization of total fixed costs. Next, comparing the

two problems, although total demand for uniformly distributed

demands is higher than the one for normally distributed

demands, the transportation cost is lower by near to 33%.

This can easily be justified from the fact that the extra

facility provides more flexibility for distributing the

products. As the result, lower transportation cost is

expected.

128

Finally, the location-allocation problem with normal

distribution of demands was solved as a single objective

fixed charge problem. The problem was modified to minimize

the total cost subject to meeting the random demands at the

90% service level. The resulting solution indicates a

facility at site 4 with $697,300 total annual cost. This

cost is only about 46.5% of the total cost obtained from the

earlier multi-objective model in Table 5.8 ($1,497,580). The

difference between these two costs ($800,280) can be

explained as the amount the management is willing to spend in

order to satisfy the multiple goals.

An Illustrative Example for Model B

Consider the example problem presented previously. The

data for this problem is given in Table 5.7. To formulate

the model B we require additional penalty costs associated

with deviations between the supplies (quantities) assigned to

the demand centers and the actual demands that occur at these

centers. Assume that the per unit cost of undersupplying and

oversupplying a demand center are as given in Table 5.9.

TABLE 5.9

PER UNIT OVERSUPPLY AND UNDERSUPPLY COSTS OF
DEMAND CENTERS FOR THE

EXAMPLE PROBLEM

129

Cost Demand Center
1

Demand Center
2

Demand Center
3

Oversupply 50

Undersupply 25

35

55

Figures 5.2 and 5.3 depict the effects of supply

45

50

quantities on the expected penalty costs at each destination

for the case of normally and uniformly distributed demands.

As was shown previously and is evident from these graphs, the

expected penalty cost at each destination represents a

nonlinear convex function. Therefore, model B has a

nonlinear goal programming structure.

The stochastic goal programming formulation of this

problem is similar to the formulation presented earlier for

model A with the exception of goal one. Goal one for model B

is to minimize the expected penalty costs at each demand

center and is expressed as in Equation (4.72). Breaking

Equation (4.72) into n goal constraints and applying the

pattern search to the resultant nonlinear goal constraints

give the optimum supply quantities to each demand center.

t5

t4

t3

t2

u

-!•
t.) l
l:

0.9

- ii! 0.8 i.c::
0(t::

LiJ 0.7

0.6

0.5

0.4

0.3

0.2

320

2.8

2.4

2..2

2

t8 -•-8i ts
l "' -8 ii; t4

~
t2

355 365

330

375

340 350

Supply (Quantity!

(A) Demand Center 1

385 395 405

Supply (Quantity!

(B) Demand Center 2

130

360 370 380

415 425 435 445

Figure 5.2. Expected Cost of Penalties at Each Destination
For the Normally Distributed Demands

131

3

2.8

2.6

2.4

2.2

~- 2

~1
t8 :! 8

~E ts
~

14

t2

440 450 460 470 480 490 500 510 520 530 540 550 560

Supply (Quantity)

(C) Demand Center 3

Figure 5.2. (Continued)

For the case of normally distributed demands, the

optimum supply quantities to demand centers 1, 2, and 3 are

345, 404, and 501 units respectively. And the total expected

penalty cost is $1,547.78. These values for the case of

uniformly distributed demands are 332, 410, and 477 units

with the total expected penalty cost of $3,680.64.

132

2.5

2.4

2.3

2.2

2.1

2

19

~i 18

"I : 17

-i!! 16 le; l5
""' 14

t.3

l2

u

0.9

0.8
300 310 320 330 340 350 360 370 380 390 400

Supply IOuantityl

(A) Demand Center 1

2.8

2.7

2.6

2.5

2.4

2.3

2.2

~-
2.1

2
"I 1 19 -i!! le; 18
i!1 17

l6

15

14

13

l2

u

350 360 370 380 390 400 410

Supply IOuantityl

(B) Demand Center 2

Figure 5.3. Expected Cost of Penalties at Each Destination
For the Uniformly Distributed Demands

133

3.8-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.7

3.6

3.5
3.4
3.3
3.2
3.1

3
2.9

2.8
2.7
2.6
2.5
2.4
2.3

2.2
2.1

2
l9
t8
t7 -+--r--,--r--,--r--,--,--,---,---,--.--,--.--.-~.,--.,--.,--.,--.,--.,--.,..-..--.,..-..--..--,...-,,...-,,.---1

400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

Supply IOuantityl

(C) Demand Center 3

Figure 5.3. (Continued)

Table 5.10 presents summary of the results for both

normal and uniform distribution of demands. From this table,

the zero underachievement for goal 1 indicate that the total

penalty cost is fully minimized. In situations were this

goal can not be completely satisfied, the underachievement

for this goal depicts the difference between the resulting

total expected penalty cost and its minimum value possible.

TABLE 5.10

SUMMARY OF THE RESULTS OF THE MODEL B EXAMPLE
PROBLEM FOR NORMAL AND UNIFORM

DISTRIBUTION OF DEMANDS

Open Facilities:

Allocation Assignments:

Normal

Y2=1, Y4=1

X21=345
X22=255
X42=149
X43=501

Uniform

Y2=1, Y4=1

X21=332
X22=237
X42=173
X43=477

Priority Order Underachievements

1. Penalty
2. Capacity
3. Budget
4. Trans.
5. Total
6. Config.

oa
0

50c
91630

1491630
1

a Minimum expected penalty cost is 1547.78.
b Minimum expected penalty cost is 3680.64.
c Multiply by 1000.

Sensitivity Analysis

ob
0

50c
87670

1487670
1

134

Sensitivity analysis is an integral part of the decision

making process. It provides insights into the problem and

facilitates the successful implementation of the model.

This section presents sensitivity analysis of the sample

problem accomplished by changing its priority structure, goal

levels, and parameters of the demands distributions. From

this point the above changes are referred to as Type 1, Type

2, and Type 3 sensitivity analysis, respectively. Moreover,

as an illustration, the sensitivity analysis is only

demonstrated for model A and for the case of normally

distributed demands.

Type 1 Sensitivity Analysis

135

Type 1 sensitivity analysis for the example problem

presented earlier, is to reorder the specified priority

structure. However, in doing so the user must be cautious

about the resulting model structure. For instance,

identifying the total cost goal as the first priority goal

without imposing any ''hard" constraint(s) on the system will

result in the trivial solution of do nothing (zero

allocations) with zero total cost. This is similar to the

traditional linear programming problems in which objectives

must be optimized subject to satisfying system constraints.

Because, in the absence of limiting constraints the

objectives become unbounded.

Given the general purpose design of the computer

programs and the variety of problem structures possible, the

developed software will not check for trivial solutions.

Therefore, it is the responsibility of the modeler to design

a sound model structure which will not result in a trivial

solution.

Table 5.11 presents the results of type 1 sensitivity

analysis. In column 3 we assumed management decided that

minimization of transportation (allocation) cost should take

priority over the capacity goal. Also in column 4 we assumed

136

that management is interested in evaluating the alternative

of assigning higher priority level to goal 3 (fixed annual

budget) than to goal 2 (capacity).

TABLE 5.11

TYPE 1 SENSITIVITY ANALYSIS OF THE MODEL A EXAMPLE
PROBLEM FOR NORMAL DISTRIBUTION OF

Priority Structure

Open Facilities:

Allocations:

Goals Identification

1. Demanda
2. Capacity
3. Budget
4. Trans.
5. Total
6. Config.

a Service Level=0.9.
b Multiply by 1000.

DEMANDS

1,2,3,4,5,6

Y2=1, Y4=1

X21=363
X22=296
X42=124
X43=526

0
0

50b
97580

1497580
1

1,4,3,2,5,6 1,3,2,4,5,6

Y2=1, Y3=1 Y1=1, Y4=1
Y4=1

X21=363 X11=363
X33=526 X13=296
X42=420 X42=420

X43=230

Underachievements

0
126
775b

45960
2170960

0

0
159

0
119640

1369640
1

As a comparison, the solution to the original priority

structure is also provided in column two. As shown in Table

5.11, the set of selected sites are different based upon the

specified priority structure. However, a closer look reveals

that the facility at site 4 is selected regardless of the

137

priority structure used. This can be contributed to the low

fixed cost and relatively high capacity of a plant at this

site. This analysis provides the management with a great

insight into selecting among alternative sites for

establishing new facilities.

Type 2 Sensitivity Analysis

Type 2 sensitivity analysis is used to analyze the

changes in the decision variables and priority achievements

which result from changing the goal levels. Assume, the

decision maker desires to evaluate the effects of changes in

service level on location and allocation decisions. Table

5.12 presents the results of type 2 sensitivity analysis.

Once again column two of this table provides the solution for

the original problem when service levels are set at 90%.

Column 3 presents the results when service level at each

demand center increases to 99%. And column 4 contains the

results for 80% service level. Similar to the observation

made in type 1 sensitivity analysis, site 4 is selected

regardless of the service level specified.

From Table 5.12, when service level increases to 99

percent, the number of open facilities increases by one.

This is because the higher service level at a demand center

translates to higher supplies to that demand center, which in

turn demands higher capacity. Moreover, although the extra

facility increases the fixed costs, but the transportation

138

cost decreases by 33.l percent. This is expected because the

higher number of established plants offers more flexibility

in distributing the products. Next, from column 4, when

service level at all demand centers change to 80 percent, it

reduces the transportation cost by 2.13% without affecting

the location or allocation patterns. Finally, the lower

service level also indicates more chance of undersupplying

the demand centers.

TABLE 5.12

TYPE 2 SENSITIVITY ANALYSIS OF THE MODEL A EXAMPLE
PROBLEM FOR NORMAL DISTRIBUTION OF

Service Level

Open Facilities:

Allocations:

Priority Order

1. Demand
2. Capacity
3. Budget
4. Trans.
5. Total
6. Config.

a Multiply by 1000.

DEMANDS

0.90

Y2=1, Y4=1

X21=363
X22=296
X42=124
X43=526

0
0

50a
97580

1497580
1

0.99

Yl=l, Y3=1
Y4=1

Xll=374
X33=400
X42=433
X43=147

Underachievements

0
0

625a
65280

2040280
0

0.80

Y2=1, Y4=1

X21=359
X22=280
X42=133
X43=517

0
0

50a
95500

1495500
1

Additional type 2 sensitivity analysis are performed by

139

employing the trade-off information provided by the

sensitivity analysis algorithm. Table 5.13 presents the

trade-off information for the example problem of model A when

demands are normally distributed. This Table is obtained as

a part of sensitivity analysis from the computer program

described latter in Chapter VI. The trade-off information

indicates how much higher priority goals must be relaxed such

that lower priority goals can be increased by one unit. The

small trade-off values in Table 5.13 are justified by

relatively large allocation (transportation) costs.

TABLE 5.13

TRADE-OFF ANALYSIS OF THE MODEL A EXAMPLE PROBLEM
FOR NORMAL DISTRIBUTION OF DEMANDS

Priority <Conflicts with> Priority Trade-Offs

3
4
4
5
5
5
6
6

a Multiply by 1000.

System Constraints
2 o. 02
1 0.01
2 o. 02
1 0.01

System Constraints
5 650000.00
3 650.00a

From Table 5.13, in order to improve the priority 6

(configuration goal) achievement level by one unit, we need

to relax priority 3 goal level (annual fixed cost budget

140

limitation) by 650 thousand units. This can be verified by

increasing the goal level of priority 3 from 1,350,000

dollars to 2,000,000 dollars and resolving the problem.

Table 5.14 contains the priority achievements along with the

location pattern and allocation quantities for this modified

problem.

TABLE 5.14

SOLUTION OF THE MODEL A EXAMPLE PROBLEM
FOR NORMAL DISTRIBUTION OF DEMANDS

AND MODIFIED BUDGET GOAL

Priority Underachievement Location Allocation

1. Demand
2. capacity

1 3. Budget
4. Trans.
5. Total
6. Config.

0
0
0

62040
2037040

0

1 Budget goal is 2000000.

Type 3 Sensitivity Analysis

Yl
Y3
Y4

X11=363
X33=400
X42=420
X43=126

The primary purpose of type 3 sensitivity analysis is

to investigate changes in the location-allocation pattern and

the achievement vector for different parameters of the demand

distribution. This is extremely important whenever the above

parameters can not be determined accurately or if only their

estimates are available.

141

To explore the changes in the parameters of the demand

distribution on the solution of SMOLAP, 24 test problems are

designed and solved. Each problem is basically the same as

the sample problem presented earlier for model A with

normally distributed demands. However, with the exception

that the parameters of the demand distributions for each

demand center are systematically changed to produce the

different test problems. Also, for each problem, it is

assumed that the distribution parameters of all demand

centers are equal. This along with equal service levels at

all demand centers lead to equal equivalent deterministic

demands at these centers.

Table 5.15 presents the different distribution

parameters used for the test problems. As shown, the mean of

the demands at the demand centers is changed from 100 to 600

in increments of 100, while the standard deviation is changed

from 10 to 40 in steps of 10. These values are chosen such

that they represent the extreme values of the demands for the

current system. Additionally, service level at all demand

centers is set to 95% level.

The average CPU time to solve these problems was 183

seconds with values ranging from 86 to 269 seconds. In all

the problems, priorities 1 and 2 were fully achieved while

priorities 3 through 6 were achieved at various levels. In

order to perform site selection analysis, the location

patterns for all test problems are shown in Table 5.15. From

142

examining these locational variables, four observations are

made:

MEAN

100

200

300

400

500

600

TABLE 5.15

THE DESIGN AND PARTIAL SOLUTIONS OF THE TEST PROBLEMS
FOR TYPE 3 SENSITIVITY ANALYSIS

S.D. 10

i ...
y , y

3 4

v ...
y , y

3 4

ix

y , y
~ 4

xi i i

y ,Y
2 4

xvii

Y ,Y ,Y
1 2 4

xxi

y , y , y
1 2 4

20

ii

vi

x•..•...........•..............•............

y ,Y
3 4

xiv

y , y
2 4

xviii

xxii

30

iii

y , y
3 4

vii

xi

y ,Y
3 4

xv

y ,Y
2 4

xix

Y ,Y ,Y
1 2 4

xx iii

Y ,Y ,Y ,Y
1 2 3 4

40

iv

y , y
3 4

vi ii

y , y
3 4

xii

xvi

xx

y , y , y
1 2 4

xx iv

NOTE: for each problem, mean and standard deviation of all
demand centers are assumed equal.

1) Site 4 is a candidate for establishing a new plant

regardless of the variations in the demand parameters. This

may be explained by the low fixed cost and relatively high

capacity available for a plant at this site.

2) Combinations of sites (1,4) and sites (1,3,4) are

143

selected only for a small range of variations in the

parameters of the demand distribution (problems xii and xvi).

3) Site 3 is preferred to site 2 for low demand

requirements while site 2 is preferred to site 3 for larger

demands. This may be explained by the combination of high

priority of capacity goal and the larger capacity available

at site 2.

4) For relatively low demand requirements (eg.

[100,102]), although the desired service level can be met by

opening only one plant at any site, but in order to achieve

the various priority goals, two site are selected by the

algorithm.

Next considering the allocations, in test problems i

through ix, the proposed plant at site 4 supplies both demand

centers 1 and 2, while the proposed plant at site 3 only

supplies the demand center 3. Furthermore, for test problems

x through xxiv, demand center 1 is usually serviced by a

single plant, while demand centers 2 and 3 are supplied by

multiple plants.

Another observation is made regarding the capacity at

site 4. With the exception of problem xvi, the upper

capacity limit for the plant at this site is always reached

for problems x through xxiv. This suggests the potential of

increasing the plant capacity at this site to improve the

solution. Therefore, further analysis may be performed by

increasing the capacity at site 4.

144

Next, to examine the effects of unequal demands on the

location-allocation decisions of the current system, and to

compare the results with the earlier case of equal demands,

24 more test problems are designed. Each problem in the new

set corresponds to a problem in the former set through a

constraint on the total demand generated. That is, although

the demands for the new problems are not equally distributed

among the three demand centers, their total deterministic

equivalent value is equal to the total equivalent

deterministic demand obtained from the former set (case of

equal demands). Therefore, the total demand for each test

problem is divided into three unequal parts, one for each

demand center. The unequal demands are selected such that

they represent low, medium, and high demands. For instance,

the equal demands of 450 units (this is the deterministic

equivalent) at each demand center are arbitrary divided to

demands of 220 units, 440 units and 690 units. The unequal

demands are then arbitrary assigned to the three demand

centers. A comparison of the location-allocation decisions

between the cases of equal and unequal demands can then be

accomplished.

Analyzing the locational decisions, all the new problems

produced the same locational patterns as their counterparts,

except for the problem xi which indicated selection of site

1 instead of site 3. This illustrates that the locational

decisions for this problem are more sensitive to the total

demand as opposed to an uneven allocation of the demand.

145

Regarding the allocations, half of the new problems produced

allocation patterns which were different from the earlier

cases of equal demands. The different allocation assignments

occurred mainly for the problems in the high total demand

category (Problems ix,xi,xiii,xiv,xvi,xvii,xviii,xix,xx,xxi,

xxiii,xxiv). This may be explained by the large demand of

one demand center in each of these problems. As stated

previously in establishing these problems, the unequal

demands were selected such that three levels of demands can

be distinguished; low, medium, and high. Now, the different

allocation patterns may be explained by the fact that the

high demand at one of the demand centers is greater than the

available capacity (total or remaining capacity) in the

other supplying plant(s). As a result, new or alternative

allocation assignments are required. Therefore, the modified

allocation patterns are mainly due to the larger demands and

capacity constraints.

Computational Difficulties

A common problem inherent in algorithms requiring a

large number of iterations is the cumulative round-off error.

This problem was encountered several times in the course of

validating and performing computational analysis for the

algorithms proposed in this research. The effects of

round-off errors have varied from obtaining infeasible

solutions to feasible but dominated solutions. To overcome

146

this difficulty and obtain optimal solutions, the accuracy of

the real type variables was increased at the expense of

computational speed and computer storage. Originally, the

real type variables were changed to double precision

variables. This increased the number of significant digits

of real type variables from 11-12 to 14-16. However, this

still proved to be inadequate for the illustrative example

presented in this chapter. As a consequence, the definition

of these variables was changed to extended variables.

Extended type variables provide 19-20 significant digits for

the real type variables.

Another difficulty encountered, as discussed previously

in Test Problem 3, was the selection of M value for the

system constraints. These constraints insure that allocation

of products are made from open facilities. It was

experienced that selection of relatively large values for M

can lead to round-off errors in the simplex iterations.

Finally, the usually large coefficients of location

variables in the total.cost goal may contribute to

computational errors in the simplex iterations. This point

was discussed and illustrated earlier in analyzing the Test

Problem 3. Thus, in order to insure the accuracy of the

results, it is recommended that these models be solved both

with and without the total cost goal. Then the results of

these two formulations may be compared to determine if errors

have occurred. Specifically, use the decision variables

obtained from the latter formulation (formulation without

total cost goal) to evaluate the total cost goal. Then,

compare the goal achievement levels of both formulations.

If the solution from the latter formulation dominates the

solution from the former one, errors have occurred, so we

select the nondominated solution as the optimal solution.

Summary

147

This chapter presented the validation and computational

analysis of the models developed in this research. To

validate the algorithms and computer programs, various test

problems from the literature were selected and solved.

Results for three test problems were presented. In all cases

the program performed well by reproducing the documented

results. Furthermore, in two of the above three cases the

developed algorithms performed better by dominating the

reported solutions, and finding the true optimal solutions.

Next, in order to demonstrate the formulation and solution

procedures of the proposed models and to obtain computational

experiments with them, a hypothetical problem was presented.

The problem was solved using both models. Sensitivity

analysis of the SMOLAP was demonstrated through analysis of

model A. Finally the computational difficulties encountered

were discussed.

CHAPTER VI

INTERACTIVE COMPUTER PROGRAM

Introduction

In order to experiment with the proposed models, an

interactive computer program is developed. The program is

written in TURBO PASCAL 5.0 and runs on IBM compatible

microcomputers with at least 640 KB memory. The program

consists of three main modules; data base management

utilities, solution algorithms, and sensitivity analysis.

The following sections present a description of the program

structure and the main features of each module.

General Structure of the Program

Figure 6.1 depicts the general structure of the computer

program. The program operates through two menu systems; the

main menu and the sensitivity analysis menu. Figure 6.2

presents the display of the main menu system. The main menu

presents options regarding data base management, solution

algorithms, and the ·option to access the sensitivity analysis

menu. The current model name (last model loaded or created)

is displayed on the top right hand side of the menu screen.

Also, displayed is the model type; deterministic, chance-

148

constrained, or stochastic.

Sensitivity
Analysis Main Program

Data Base
Management

Solution
Algorithms

Figure 6.1. General Structure of the Computer Program

SMOLAP - Decision Support System

DATA BASE UTILITIES:

[AJ Create a New Model
[BJ Retrieve an Existing Model
[CJ Save current Model
[D] Display Current Model

SYSTEM ANALYSIS:

[EJ Continuous Solution
[F] Integer Solution
[GJ Nonlinear Solution
[HJ Sensitivity Analysis

[IJ EXIT

Enter Option -1>

Current Model > None
Type: None

Figure 6.2. Display of the Main Menu

149

150

The program validates all the user inputs and checks for

the out of sequence selection of menu items. For example,

the sensitivity analysis option can not be selected before a

model is created or loaded from storage and a solution is

obtained for it. Furthermore, the last line of the screen is

reserved mainly for soliciting inputs from the user and

displaying various messages.

Data Base Management Module

This module presents to the user the capability of

creating a new model, recalling an existing model, saving the

current model,or displaying the data pertaining to the

current model. The structure of this module is depicted in

Figure 6.3.

To create a new model the user selects option A from the

main menu. Then, the program requests the model type. There

are three model types possible; Deterministic (D), Chance

Constrained (C), and Stochastic (S). Next, based on the user

response, the program presents a data entry screen

appropriate for the specified model type. In general, the

user is required to provide three sets of information;

information regarding priorities, information for non-zero

technological coefficients, and information on the right hand

side values. However, the information required for the last

category differs based on the model type selected. Figure

6.4 presents a typical data entry screen for the

deterministic models.

r .. 1

; Stochastic ;
: Hodel :
L ... _j

Load
a Model

r ... 1

; Deterministic;
: Hodel :
L ... j

Create a New
Model

Data Base
Management

Display
Current Model

r ... 1
: Chance- :
; Constrained ;
= Hodel = L. .. J

Save
Current Model

151

Figure 6.3. Structure of the Data Base Management Module

CREATE A NEW MODEL

Type: Deterministic

SET 1 - PRIORITY STRUCTURE:

Sign 'P' or 'N' ~-~
Row Number ~

Priority ~
Weight ~

SET 2 - TECHNOLOGICAL COEFFICIENTS:

Row Number ~

Column Number ~

Coefficient ~

SET 3 - CONST. SIGN AND RHS VALUES:

Sign for Constraint 1 ~~
RHS for Constraint 1 ~~

Save This Model? (Y/N) -~

HELP
SET 1
0 < ROW s 30
0 < Priority s 10
0 < Weight
SET 2
0 < ROW s 30
o < Variable s 30
O < Coefficient
SET 3

Sign
E • • • • • • =
G • • • • • • 2:::

L • • . . • . ::s
B GOAL

RHS 2::: 0

Figure 6.4. Display of the Deterministic Input Data Screen

152

The window on the right hand side of the input screen

provides help for data entries. Data for technological

coefficients in SET 2 may be entered either row wise or

column wise. In either case, the program always sorts this

data columnwise for use by the solution algorithms.

After a complete set of information is entered for a

given category the user can switch to the subsequent class

just by pressing carriage return in response to the first

question of the current category. Furthermore, the program

checks the validity and the range of data for all entries.

The program requires minimum input data from the user. This

is accomplished by calculating some of the information such

as number of rows, variables, and priorities from other input

data. All inputs to the program are converted into an

appropriate format for use by the solution algorithms.

Finally, the present definition of array dimensions in the

program allows a user to input and solve problems with up to

30 variables, 30 constraints (goals) and 10 priorities. To

solve larger problems it is necessary to increase these

dimensions. However, when modifying these dimension

settings, special attention must be made to allow memory for

dynamic variables. These variables are used by the branch

and bound routine to obtain integer solutions. Insufficient

memory allocation for dynamic variables can result in out of

Memory error in the course of obtaining an integer solution.

153

Solution Algorithms Module

This module is capable of obtaining a continuous or an

integer (pure, mixed, zero-one) solution for a given model.

In addition, the pattern search algorithm in this module

finds solutions to single objective unconstrained problems.

The structure of this module is depicted in Figure 6.5.

r-··-..... __ ,, ___ -...................... 1

; Continuous ;
: Solution :
L_ T -......... -.......... J

Revised Simplex
With Product

Form of Inverse

r-........ -.. ,
; Pure Integer ;

Solution
L ... J

Solution
Algorithins

Branch-and
Bound Routine

r····••oo•oooo .. ,

; Zero-One ;
: Solution :
L ... J

r -.. -...... -........... ,
; Nonlinear ;
: Models :
L 'f.-........................... J

Pattern
Search

r .. ,
; Mixed Integer ;

Solution
L .. J

Figure 6.5. Structure of Solution Algorithm Module

The continuous solution algorithm is based on the

modified simplex algorithm for preemptive GP problems by Lee

(1972). However, for computer storage conservation and

computational accuracy, the algorithm takes advantage of the

revised simplex method and utilizing the product form of the

inverse in finding the optimal solutions. Specifically, the

154

revised simplex method uses the original data to calculate

the Z - C 's and updated columns, Y 's, which tends to
j j k

reduce the round-off errors. Figure 6.6 presents a sample

output screen representing a continuous solution for a given

problem. The output consists of three major parts: Analysis

of multiple objectives which provides underachievement of all

priorities, analysis of decision variables which reports the

value for all decision variables, and analysis of deviational

variables which provides positive and negative deviations for

all goal and system constraints.

Furthermore, this module employs a branch-and-bound

routine to drive pure or mixed integer solutions. The mixed

integer solutions are made possible by allowing the DM to

mark the variables with integer requirements through an

interactive menu system. The primary data structure used in

this routine is a binary tree. The zero-one requirements

are handled through proper problem formulation and the

branch-and-bound algorithm. In searching for an integer

solution, the branch-and-bound routine employs a depth-first

strategy. In this approach, the program attempts to go

deeper and deeper into the tree before examining neighboring

nodes. This strategy is employed in hope of establishing a

tight upper bound early in the search for the optimal integer

solution. A good upper bound can facilitate pruning the

branches of the binary tree.

Finally, a modified pattern search based on the Hooke

and Jeeves algorithm is used to solve the nonlinear models of

stochastic formulation.

Continuous Solution

ANALYSIS
Priority

1

OF MULTIPLE OBJECTIVES

2
3

Under-Achievement
o.oo
0.00
2.80

ANALYSIS OF DECISION VARIABLES
x(1)= 3.80
x(2)= 2.00

ANALYSIS OF
Const./Goal

1

DEVIATIONAL VARIABLES

2
3

d-
0. 00
o.oo
2.80

Print? (Y/N) -1>

RUN STATUS
Iteration•... 2
CPU. •. • 0. 05 S

Model Name > Test

d+
o.oo
0.00
o.oo

155

Figure 6.6. Sample Output Screen for Continuous Solution

Managing the computer storage and execution time for

integer solutions is particularly important. In order to

reduce the demand on virtual storage, the branch-and-bound

procedure takes advantage of the dynamic variables. These

variables allow for the nodes to be allocated and disposed as

necessary in finding an integer solution. This will enables

the program to handle larger integer problems. On the other

hand, in order to speed the execution time and reduce

computer storage, tighter upper bounds are established for

156

problems containing only goal constraints. This is

accomplished by first solving the continuous problem and then

rounding the variables with integer requirement to their

nearest integer values. Next, the upper bound is determined

by calculating the achievement function for these new

variables. In course of validating and experimenting with

the program, this was proved to be very effective in solving

multiobjective integer problems with only goal constraints.

Moreover, after solving a subproblem at a node and selecting

the next node, a dominance test is performed at the new node

before solving its subproblem. The branch at this new node

is pruned if the objective vector at this node is dominated

by the upper bound. This test compares the set of

achievement levels at the current node with the upper bound.

If the current solution dominates the upper bound the

solution continues, otherwise the selected node is terminated

(disposed) and the search continues by selecting a new node.

The selection of nodes follows the LIFO rule.

Next, during the execution of this module a window on

the right hand side of the screen will inform the user of the

status of the program. In the case of continuous and

nonlinear solutions this information includes current

iteration number, execution time in seconds, and the name of

the model under study. Additionally, for integer solutions,

the program also displays total number of nodes generated,

total number of nodes evaluated, and the number of times the

157

upper bound is updated. To be more specific, number of

iterations refers to the number of pivots performed in the

modified simplex tableau, number of nodes generated indicates

how many nodes are created for the branch-and-bound tree,

number of nodes evaluated means how many nodes from the

latter set are currently being evaluated explicitly, and

number of upper bound updated indicates the number of

solutions obtained in course of finding the optimal solution

which satisfies the integer requirements and dominate the

existing upper bound. Of course, in case of such solutions

the upper bound will be updated to reflect the new

achievement vector.

Sensitivity Analysis Module

This module presents four options to assist the DM in

making an intelligent trade-offs among various objectives.

The structure of this module is shown in Figure 6.7. Figure

6.8 presents the display of the sensitivity analysis menu.

There are four options available: list actual vs. desired

goals, perform trade-off analysis, change priority structure,

and change right hand side of the goals or rigid constraints.

While the first two options assist in determination of the

appropriate changes, the last two options are used to

actually accomplish the necessary modifications in the model.

More specifically, the trade-off analysis lists the

conflicting objectives and displays the marginal substitution

rates (MSR) for each pair. So, this value is calculated only

158

for conflicting objectives. The conflicting objectives in

the modified simplex tableau are identified by the sign of

their ZJ- XJ's in the objective column. The ZJ- CJ of the

higher priority goal will be negative while this value will

be positive for the lower priority goal.

Change
Priority
Structure

Actual vs.
Desired Goals

Sensitivity
Analysis

Trade-Off
Analysis

Change
RHS Values

Figure 6.7. Structure of the Sensitivity Analysis Module

Sensitivity Analysis

[A] List Actual vs. Desired Goals
[B] Perform Trade-Off Analysis
[C] Change Priority Structure

Current Model > None
Type: None

[D] Change RHS of Goal/Real Constraints

[E] Return to Main Menu

Enter Option -1>

Figure 6.8. Display of the Sensitivity Analysis Menu

The marginal substitution rate implies how much

159

achievement of a higher priority goal must be deteriorated so

that the achievement level of the lower priority goal can be

increased by one unit. Mathematically, this relationship can

be stated as follows:

MSR = - (Z -C) /(Z -C)
j j m j j n

Where m and n are conflicting goals and m>n (i.e. m

indicates the higher priority goal). Obviously, if a goal

conflicts with a system constraint, then its MSR is

nonexistent.

160

Summary

In this chapter the general structure of the computer

program along with some of its main features was presented.

Development of this software for use on a microcomputer

greatly enhances the flexibility and convenience of its use.

The program is designed such that it can be easily applied to

other applications requiring multiple objective analysis

without and modifications to the existing source codes.

The source codes for the computer program, except for

the procedure Update, are listed in Appendix C. In addition,

Table C.1 provides the index to the units and procedures of

the program. The next chapter presents a summary,

conclusion, and future studies for this research problem.

CHAPTER VII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

This research has explored the effects of variability of

demand in the multiple objective analysis of location

allocation models. As the result, two multiobjective models

based on chance-constrained programming and stochastic

programming were developed. A solution algorithm based on

chance-constrained goal programming was proposed for the

former model. A two-stage algorithm was suggested for

dealing with the nonlinear goal programming structure of the

latter model. Both algorithms produce an optimal solution

for their respective models.

Next, in order to experiment with the proposed models,

an interactive computer program was written. Development of

this interactive computer program on a microcomputer adds

to the convenience and ease of use of the proposed solution

algorithms by a decision maker. Although the software

developed in this research is used mainly to analyze the

multi-objective LAPs with stochastic demands, its general

structure allows for the solution and sensitivity analysis of

other multiobjective models without requiring any

161

162

modifications to the existing codes. Finally, the solution

algorithms and the different sensitivity analysis of the

proposed models were demonstrated through an example problem.

Conclusions

From the analysis of the stochastic multiobjective

location-allocation problem {SMOLAP) in Chapter V, optimal

location of facilities and their optimal allocation of

products to the demand centers are greatly influenced by the

priority structure of the multiple objectives, their goal

levels, and the demand distribution. Therefore, inclusion of

stochastic demand into the analysis of multiobjective LAPs

has provided for a more comprehensive treatment of these

problems. Furthermore, it was shown that based on the data

available and the decision maker's preference, different

models may be established to analyze SMOLAP's.

The application of the nonlinear multiobjective pattern

search as presented by Ignizio {1976) to allocation

subproblems of model B was not successful. Also, initial

experimentation with modifying step sizes, error levels (o),

initial starting point, and convergence criteria did not

prove encouraging.

The models developed in this research can be easily

extended to incorporate multiple products through

reformulation of the problem. The approach, except for

handling the random demand, is basically equivalent to the

one already suggested for single objective deterministic

163

LAP's. This is accomplished by defining the N demand centers

and the M potential plants appropriately. For instance,

demand centers j and j+l may be defined to refer to the same

physical demand center but, indicating the requirement for

two different commodities at that location. Similarly, we

can introduce K artificial facilities at site i to represent

the source of K different commodities (services) at site i.

Now, the stochastic demand for each product can be specified

separately at each destination and the problem can be

formulated and solved using one of the methods presented

earlier. However, the drawback of this technique is that the

problem size increases significantly with an increase in the

number of products.

Finally, the proposed models may be extended to employ

other important objectives or different demand distributions.

The next section will present some of the possible extensions

to this research study.

Recommendations for Future Research

Several recommendations can be made with regard to the

proposed models and further research in this area. But,

first, there are two recommendations for improving the

developed software.

It is recommended to enhance the existing interactive

computer program with a graphic system. The graphic system

can facilitate the process of multi-objective decision making

by conveying the trade-off information effectively to the

decision maker.

164

The computational speed of the developed software may be

improved by devising and implementing more efficient

selection and branching rules for the branch-and-bound

routine. Furthermore, larger problems may be solved by

allowing the use of auxiliary storage devices to store the

intermediate results.

It is recommended to include inventory carryovers and

backorders into the proposed models. Inclusion of these

dynamic aspects will enable the analyst to study the behavior

of the system over some predetermined planning horizon.

Another possibility is to study the effect of randomness

in other factors such as capacity (supply), transportation

costs, and fixed costs for the models developed in this

research. Additionally, the dimension of price sensitivity

can be added to the stochastic demand.

Further analysis of the proposed models can be made by

incorporating other characteristics of the LAP, such as the

interaction among facilities at potential locations and the

presence of existing facilities in the system.

The possibility of deriving a linear approximation for

the nonlinear cost function of model B should be examined.

This can result in simpler linear models. The goodness of

this approximation can then be verified by comparing its

results with the optimal solution.

Another area of further research is development of an

alternate optimal seeking algorithm to solve the nonlinear

integer multi-objective programming problem of model B.

165

Application and effectiveness of other nonlinear

techniques such as the Rosenbrock's method with variable

search directions, Nelder and Mead's "simplex method", or a

modification of the existing pattern search method for the

solution of model B and in general for the solution of the

nonlinear goal programming models should be explored.

Investigate other multicriteria approaches, such as

compromise programming and linear multiobjective programming,

for the solution of the SMOLAP.

Multiobjective formulation and analysis of distribution

systems where location of warehouses are to be determined in

relation to existing suppliers and demand centers is another

potential area for future study.

Finally, further research could be conducted to develop

heuristic procedures for the nonlinear integer programing and

nonlinear integer multiobjective programming problems.

BIBLIOGRAPHY

Aikens, c. H. "Facility Locatiori Models for Distribution
Planning." European Journal of Operational Research, 22
(1985), 263-279.

Akinc, u. & Khumawala, B. M. "An Efficient Branch and Bound
Algorithm for the capacitated Warehouse Location
Problem." Management Science, 23, 6 (1977), 585-594.

Alcouffe, A. & Muratet, G. "Optimal Location of Plants."
Management Science, 23, 3 (1976), 267-274.

Arthur, J. L. & Ravindran, A. "An Efficient Goal Programming
Algorithm using Constraint Partitioning and Variable
Elimination." Management Science, 24, 8 (1978),
867-868.

Balachandran, V. & Jain, s. "Optimal Facility Location Under
Random Demand with General Cost Structure." Naval
Research Logistics Quarterly, 23 (1976), 421-436.

Balas, E. "An Additive Algorithm for Solving Linear Programs
with Zero-One Variables." Operations Research, 13
(1965), 517-545.

Balinski, M. L. "Fixed-Cost Transportation Problems."
Naval Research Logistics Quarterly, 8 (1961), 41-54.

Ballou, R. H. "Dynamic Warehouse Location Analysis."
Journal of Marketing Research, 5, {1968), 271-276.

Banks, J., Spoerer, J. P., & Collins, R. L. IBM PC
Applications for the Industrial Engineer and Manager,
Englewood Cliffs, N.J.: Reston. {1986).

Baumol, W. J. & Wolfe, P. "A Warehouse Location Problem."
Operations Research, 6, 2 {1958), 252-263.

Bellman, R. "An Application of Dynamic Programming to
Location-Allocation Problems." SIAM Review, 7, 1
{1965) I 126-128.

Bowersox, D. J. "Planning Physical Distribution Operations
with Dynamic Simulation." Journal of Marketing, 36, 1
(1972) I 17-25.

166

167

Camp, R. c. "The Effect of Variable Lead Times on Logistics
Systems." (Ph.D. dissertation, Penn State University,
1973).

Cerson, M. L. & Maffei, R. B. "Technical Characteristics
of Distribution Simulators." Management Science, 10, 1
(1963) ' 62-69.

Changchit, c. "A Multiobjective Approach to the Reservoir
Operation Problem with Stochastic Inflows." (Ph.D.
dissertation, Oklahoma State University, Stillwater,
1986) .

Charnes, A., & Cooper, W. W. Management Models and
Industrial Applications of Linear Programming, Vol. 1&2,
Wiley, New York, 1961.

Charnes, A., & Cooper, W.W. "Deterministic Equivalents for
Optimizing and Satisficing Under Chance Constraints."
Operations Research, 11, 1 (1963), 18-39.

Chaudhry, S. S. , McCormick, s. T. , & Moon, I. D. "Locating
Independent Facilities with Maximum Weight: Greedy
Heuristics." OMEGA International of Management Science,
14 I 5 (1986) I 383-389 •

Christofides, N. & Beasley, J. E. "Extensions to a
· Lagrangean Relaxation Approach for the Capacitated

Warehouse Location Problem." European Journal of
Operations Research, 12 (1983), 19-28.

Cohen, J. L. Multiobjective Programming and Planning,
Academic Press, New York, 1978.

Connors, M. M., Coray, c., Cuccaro, c. J., Green, W. K., Low,
D. w., & Markowitz, H. M. "The distribution System
Simulator." Management Science, 18, 8 (1972), B-425 -
B453.

Cooper, L. "Location-Allocation Problems." Operations
Research, 11 (1963), 331-343.

Cooper, L. "Heuristic Methods for Location Allocation
Problems." SIAM Review, 6 (1964), 37-53.

Cooper, L. "Solutions of Generalized Locational Equilibrium
Models." Journal of Regional Science, 7, 1 (1967), 1-
18.

Cooper, L. & Drebes, c. "An Approximate Solution Method for
the Fixed Charge Problem." Naval Research Logistics
Quarterly, 14, 1 (1967), 101-113.

168

Cooper, L. "The Transportation-Location Problem."
Operations Research, 20 (1972), 94-108.

Cornuejols, G., Fisher, M., & Nemhauser,
Bank Accounts to Optimize Float: An
Exact and Approximate Algorithms."
23 (1977) , 789-810.

G. "Location of
Analytic Study of
Management Science,

Curry, G. L., & Skeith, R. W. "A Dynamic Programming
Algorithm for Facility Location and Allocation." AIIE
Transactions, 1, 2 (1969), 133-138.

Davis, P. S. & Ray T. L. "A Branch and Bound Algorithm for
the Capacitated Facility Location Problem." Naval
Research Logistics Quarterly, 16, 3 (1969), 331-343.

Efroymson, M. A. & Ray, T. L. "A Branch-Bound Algorithm for
Plant Location." Operations Research, 14, 3 (1966),
361-369.

Eilon, s. "Multi-Criteria Warehouse Location."
International Journal of Physical Distribution and
Materials Management, 12, 1 (1982), 42-45.

Eilon, S., Watson-Gandy, c. D. T., & Christofides, N. {1971).
Distribution Management: Mathematical Modelling and
Practical Analysis. New York: Hafner Publishing, 1-94.

Ellwein, L. B., & Gray, P. "Solving Fixed Charge Location
Allocation Problems with Capacity and Configuration
Constraints." AIIE Transactions, 3, 4 (1971), 290-298.

Elson, D. G. "Site Selection via Mixed-Integer Programming."
Operational Research Quarterly, 23, 1 (1972), 31-43.

Erlenkotter, D. "Facility Location with Price-Sensitive
Demands: Private, Public, and Quasi-Public." Management
Science, 24 (1977), 378-386.

Erlenkotter, D. "A Dual-Based Procedure for Uncapacitated
Facility Location." Operations Research, 26, 6 (1978),
992-1009.

Feldman, E., Lehrer, F. A., & Ray, T. L. "Warehouse Location
Under Continuous Economies of Scale." Management
Science, 12, 9 (1966), 670-684.

Fortenberry, J. c. & Mitra, A. "A Multiple Criteria Approach
to the Location-Allocation Problem." Computers &
Industrial Engineering, 10, 1 (1986), 77-87.

Francis, R. L., & Goldstein, J.M. "Location Theory: A

Selective Bibliography." Operations Research, 22
(1972) I 400-410.

169

Francis, R. L., & White, J. A. (1974). Facility Layout and
Location: An Analytical Approach. Englewood Cliffs, N.J:
Prentice-Hall, pp. 230-232.

Fulton, M. "New Factors in Plant Location." Harvard
Business Review, May-June (1971), 4-17.

Gelders, L. F., Pintelon, L. M., & Wassenhove, L. N. "A
Location-Allocation Problem in a Large Belgian Brewery."
European Journal of Operational Research, 28 (1987),
196-206.

Geoffrion, A. M. "A Guide to Computer-Assisted Methods for
Distribution Systems Planning." Sloan Management
Review, 16, 2 (1975), 17-41.

Geoffrion, A. M. & Graves, G. W. "Multicommodity
Distribution System Design by Benders Decomposition."
Management Science, 20, 5 (1974), 822-844.

Geoffrion, A. M. & Mc Bride, R. "Lagrangean Relaxation
Applied to capacitated Facility Location Problems."
AIIE Transactions, 10 (1978), 40-47.

Gerson, M. L. & Maffei, R. B. "Technical Characteristics
of Distribution Simulator." Management Science, 10, 1
(1963), 62 - 69.

Glover, F. "Multi-Phase Dual Algorithm for the Zero-One
Integer Programming Problems." Operations Research, 13,
6 (1965), 879-919.

Goicoechea, A., Hansen, D. R., & Duckstein, L.
Multi-Objective Decision Analysis with Engineering and
Business Applications, Wiley, New York, 1982.

Gomory, R. E. "An Algorithm for Integer Solutions to Linear
Programs." Bulletin of the American Math Society, 64
(1958), 275-278.

Gonzalez-Valenzuela, F. "Simple and Capacitated Warehouse
Location Problems with Stochastic Demands." (Ph.D.
dissertation, Stanford University, 1975).

Green, G. I., Kim, c. s., & Lee, S. M. "A Multicriteria
Warehouse Location Model." International Journal of
Physical Distribution and Material Management, 11, 1
(1981), 5-13.

Green, T. B., Newsom, W. B., & Jones, s. R. "A Survey of the

170

Application of Quantitative Techniques to
Production/Operations." Academy of Management Journal,
20, 4 (1977), 669-676.

Hansen, P. & Thisse, J-F, "Multiplant Location for Profit
Maximisation." Environment Planning A, 9 (1977), 63-73.

Harrison, H. "A Planning System for Facility and Resources
in Distribution Networks." Interfaces, 9, 2 (1979), 6-
22.

Hastings, c. Approximations for Digital Computers, Princeton
University Press, Princeton, N.J., 1955.

Hwang, C. L., Masud, A. S. M., Paidy, s. R., & Yoon, K.
Multiple Objective Decision Making-Methods and
Applications: A State-of-the-Art Survey, Springer
Verlag, Berlin/Heidelberg/New York, 1979.

Hwang, c. L., Paidy, s. R., Yoon, K., & Masud, A. S. M.
"Mathematical Programming with Multiple Objectives: A
Tutorial." Computers and Operations Research, 7, 1
(1980) I 5-31.

Ignizio, J. P. Goal Programming and Extensions, Lexington
Books, Heath, Lexington, Mass., 1976.

Ignizio, J. P. "The Determination of a Subset of Efficient
Solutions Via Goal Programming." Computers & Operations
Research, 8 (1981), 9-16.

Ignizio, J. P., & Perlis, J. H. "Sequential Linear Goal
Programming: Implementation Via MPSX." Computers &
Operations Research, 6 (1979), 141-145.

Ijiri, Y. Management Goals and Accounting for Control,
Amsterdam: North Holland, 1965.

Jucker, J~ V., & Carlson, R. c.
Problem under Uncertainty."
(1976), 1045-1055.

"The simple Plant-Location
Operations Research, 24, 6,

Karanicolas, P. C. "Multiperiod Plant Location Problems."
(Ph.D. dissertation, Syracuse University, 1979).

Karkazis, J., & Boffey, T. B. "The Multi-Commodity
Facilities Location Problem." Journal of Operational
Research Society, 32, 9 (1981), 803-814.

Kaufman, L., Eede, M. V., & Hansen, P. "A plant and Warehouse
Location Problem." Operational Research Quarterly, 28,
3 (1977) I 54 7-554 •

Kelly, D. L., & Khumawala, B. M. "Capacitated Warehouse
Location with Concave Costs." Journal of the
Operational Research Society, 33 (1982), 817-826.

171

Khan, A. M. "Solid-Waste Disposal with Intermediate Transfer
stations: An Application of the Fixed-Charge Location
Problem." Journal of the Operational Research Society,
38, 1 (1987), 31-37.

Khumawala, B. M. "An Efficient Branch and Bound Algorithm
for the Warehouse Location Problem." Management
Science, 18, 12 (1972), 718-731.

Khumawala, B. M., & Kelly, D. L. "Warehouse Location with
Concave Costs." INFOR, 12, 1 (1974), 55-65.

Khumawala, B. M., & Whybark, D. C. "Solving the Dynamic
Warehouse Location Problem." International Journal of
Distribution, 6, 5 (1976), 238-251.

Khumawala, B. M., & Neebe, A. W. "A Note on Warszawski's
Multi-Commodity Location Problem." Journal of
Operational Research Society, 29, 2 (1978), 171-172.

Klein, M., & Klimpel, R. R. "Application of Linearly
Constrained Nonlinear Optimization to Plant Location and
Sizing." The Journal of Industrial Engineering, 18, 1
(1967)' 90-95.

Klincewicz, J. G., & Luss, H. "A Lagrangian Relaxation
Heuristic for Capacitated Facility Location with Single
Source Constraints." Journal of the Operational
Research Society, 37, 5 (1986), 495-500.

Kuehn, A. A. & Hamburger, M. J. "A Heuristic Program for
Locating Warehouses." Management Science, 9, 4 (1963),
643-666.

Kuhn, H. W. & Kuenne, R. E. "An Efficient Algorithm for the
Numerical Solution of the Generalized Weber Problem in
Spatial Economics." Journal of Regional Science, 4, 2
(1962), 21-33.

Land, A. H., & Doig, A. "An Automatic Method of Solving
Discrete Programming Problems." Econometrica, 28
(1960)' 497-520.

Lee, S. M. Goal Programming for Decision Analysis,
Philadelphia: Auerbach, 1972.

Lee, s. M. "Goal Programming for Decision Analysis of
Multiple Objectives." Sloan Management Review, 14, 2
(1973) , 11-24.

172

Lee, s. M. Goal Programming Methods for Multiple Objective
Integer Programs, OR Monograph Series, No. 2., American
Institute of Industrial Engineers (1979).

Lee, s. M. "Goal Programming Methods for Multiple Objective
Integer Programs." OR Monograph Series, No. 2.
American Institute of Industrial Engineers (1979).

Lee, s. M., & Franz, L. s. "Optimising the Location
Allocation Problem with Multiple Objectives."
International Journal of Physical Distribution and
Materials Management, 9, 6 (1979), 245-255.

Lee, s., Green, G., & Kim, c. "A Multiple Criteria Model for
the Location-Allocation Problem." Computers &
Operations Research, B (1981), 1-8.

Lee, s. M., & Luebbe, R. L. "The Multi-Criteria Warehouse
Location Problem Revisited." International Journal of
Physical Distribution and Materials Management, 17, 3
(1987) I 56-59 o

Lee, S. M. & Morris, R. "Integer Goal Programming Methods."
TIMS Studies in the Management Sciences, 6 (1977),
273-289.

Logendran, R. & Terrell, M. P. "Uncapacitated Plant
Location-Allocation Problems with Price Sensitive
Stochastic Demands." Computers & Operations Research,
15 I 2 (1988) I 189-198 •

Loh, A. "Multiple Commodity and Multiple Stage Capacitated
Dynamic Facility Location." (Ph.D. dissertation,
University of Houston, 1983).

Lynch, A. A. "Environment and Labor Quality Take Top
Priority in Site Selection." Industrial Development,
142, 2 (1973), 13-15.

MacCrimmon, K. R. "An overview of Multiple Objective
Decision Making." in Multiple Criteria Decision Making,
Cochrane, J. L., and Zeleny, M. (Eds.), University of
South Carolina Press (1973), 18-44.

Manne, A. s. "Plant Location Under Economies of Scale
Decentralization and Computation." Management Science,
11, 2 (1964), 213-235.

Markland, R. E. "Analyzing Geographically Discrete
Warehousing Networks by Computer Simulation."
Decision Science, 4, 2, (1973), 216-236.

173

Marks, D. H., ReVelle, c. s., & Liebman, J. C. "Mathematical
Models of Location: A Review." Journal of Urban
Planning and Development Division, 96 (1970), 81-93.

Masud, A. s., & Hwang, c. L. "Interactive Sequential Goal
Programming." Journal of the Operational Research
Society, 32 (1981), 391-400.

McGinnis, L. F., & White, J. A. "A Single Facility
Rectilinear Location Problem with Multiple Criteria,"
Transportation Science, 12, 3 (1978), 217-231.

Narula, s. c. "Hierarchical Location Allocation Problems: A
Classification Scheme." European Journal of Operational
Research, 15 (1984), 93-99.

Nauss, R. M. "An Improved Algorithm for the Capacitated
Facility Location Problem." Journal of Operational
Research Society, 29, 12 (1978), 1195-1201.

Neebe, A. w., & Khumawala, B. M. "An Improved Algorithm
for the Multi-Commodity Location Problem." Journal of
Operational Research Society, 32, 2 (1981), 143-149.

Olson, D. L. "Comparison of Four Goal Programming
Algorithms." Journal of Operational Research Society,
35, 4 (1984), 347-354.

Park, Y. B. "The Solution of Vehicle Routing Problems in a
Multiple Objective Environment" (Ph.D. dissertation,
Oklahoma State University, Stillwater, 1984).

Petty, J. w., & Bowlin, o. D. "The Financial Manager and
Quantitative Decision Models." Financial Management, 5,
4 (1976), 32-41.

Rasaratnam, L. "Plant Location-Allocation Problems with
Price Sensitive Demands." (Ph.D. dissertation, Oklahoma
State University, Stillwater, 1984).

Ravindranath, K., Vrat, P., & Singh, N. "Bicriteria Single
Facility Rectilinear Location Problems in the Presence
of a Single Forbidden Region." The Journal of
Operational Research Society of India, 22, 1 (1985), 1-
16.

Revelle, c. s., Marks, D., & Liebman, J. c. "An Analysis of
Private and Public Sector Location Models." Management
Science, 16 (1970), 692-707.

Revelle, c. s., & Swain, R. w.
Geographical Analysis, 2,

"Central Facility Locations."
1 (1970) I 30-42.

174

Ross, T. G., & Soland, R. M. "A Multicriteria Approach to
the Location of Public Facilities." European Journal of
Operations Research, 4, 5 (1980), 307-321.

Sa, G. "Branch-and-Bound and Approximate Solutions to the
Capacitated Plant-Location Problem." Operations
Research, 17 (1969), 1005-1016.

Schniederjans, M. J. & Kwak, N. K. "An Alternative
Solution Method for Goal Programming Problems: A
Tutorial." Journal of Operational Research Society, 33,
(1982) , 24 7-251.

Scott, A. J. "Location-Allocation Systems: A Review."
Geographical Analysis, 2 (1970), 95-119.

Shannon, R. E. & Ignizio, J. P. "A Heuristic Programming
Algorithm for Warehouse Location." AIIE Transactions,
2, 4 (1970), 334-339.

Shycon, H. N. & Maffei, R. B. "Simulation-Tool for Better
Distribution." Harvard Business Review, Nov. Dec.
(1960), 65-75.

Sicsu, A. L. "The Capacitated Location-Allocation Problem
with Price-Sensitive Demands." (Ph.D. dissertation,
Stanford University, 1979).

Silver, E. A. & Peterson, R. (1985). Decision Systems for
Inventory Management and Production Planning (2nd ed.).
Wiley, Chapter 10.

Sinha, s. B. & Sastry, S. V. C. "A Goal Programming Model
for Facility Location Planning." Socio-economic
Planning Sciences, 21, 4 (1987), 251-255.

Soland, R. M.
Costs."

"Optimal Facility Location with Concave
Operations Research, 22 (1974), 373-385.

Spielberg, K. "Algorithms for the Simple Plant Location
Problem With Some Side Conditions." Operations
Research, 17 (1969)a, 85-111.

Spielberg, K.
Origin."

"Plant Location with Generalized Search
Management Science, 16, 3 (1969)b, 165-178.

Steuer, R. E. Multiple Criteria Optimization: Theory,
Computation, and Application, Wiley, New York, 1986.

Student, K. R. "Cost vs. Human Values in Plant Location."
Business Horizons, 19, 2 (1976), 5-14.

Sule, D. R. "Simple Methods for Uncapacitated Facility

Location/Allocation Problems." Journal of Operations
Management, 1, 4 (1981), 215-223.

175

Sweeney, D. J. & Tatham, R. L. "An Improved Long Run Model
for Multiple Warehouse Locations." Management Science,
22, 7, (1976), 748-758.

Taha, H. A. (1982). Operations Research (3rd ed.).
Macmillan, pp. 784-788.

Tansel, B. c., Francis, R. L., & Lowe, T. J. "Location on
Networks: A Survey. Part I: The P-Center and P-median
Problems." Management Science, 29 (1983a), 482-497.

Tansel, B. c., Francis, R. L., & Lowe, T. J. ''Location on
Networks: A Survey. Part II: Exploiting Tree Network
Structure." Management Science, 29 (1983b), 498-511.

Tapiero, C. S. "Transportation-Location-Allocation Problems
Over Time." Journal of Regional Science, 11, 2 (1971),
377-384.

Tcha, D. & Lee, B. "A Branch-and-Bound Algorithm for the
Multi-Level Uncapacitated Facility Location Problem.''
European Journal of Operational Research, 18 (1984), 35-
43.

Tompkins, J. A. & White, J. A. (1984). Facility Planning.
Wiley, pp. 487-526.

Truscott, W. G. "The Treatment of Revenue Generation Effects
of Facility Location." AIIE Transactions, 7, 1 (1975),
63-69.

Van Roy, T. J. "Cross Decomposition for Mixed Integer
Programming." Mathematical Programming, 25 (1983), 46-
63.

Van Roy, T. J. "A Cross Decomposition Algorithm for
Capacitated Facility Location." Operations Research,
34, 1 (1986), 145-163.

Van Roy, T. J. & Erlenkotter, D.
Dynamic Facility Location."
(1982), 1091-1105.

"A Dual-Based Procedure for
Management Science, 28, 10

Walker, W. E. "A Heuristic Adjacent Extreme Point Algorithm
for the Fixed Charge Problem." Management Science, 22,
5 (1976), 587-596.

Warszawski, A. "Multi-Dimensional Location Problems."
Operational Research Quarterly, 24, 2 (1973), 165-179.

Warszawski, A. & Peer, s. "Optimizing the Location of
Facilities on a Building Site." Operational Research
Quarterly, 24 (1973), 35-44.

Weber, A. (1909). Uber den Standort der Industrien,
Tubingen, Translated as Alfred Weber's Theory of
Location of Industries by C.J. Friedrich, Chicago:
University of Chicago Press.

Wesolowsky, G. 0. "Location in Continuous Space."
Geographical Analysis, 5, 2 (1973), 95-112.

176

Wesolowsky, G. o. & Truscott, w. G. "The Multiperiod
Location-Allocation Problem with Relocation of
Facilities." Management Science, 22, 1 (1975), 57-65.

White, J. A. & Case, K. E. "On Covering Problems and the
Central Facilities Location Problem.'' Geographical
Analysis, 6 (1974), 281-293.

Wilson, D. "An a Priori Bounded Model for Transportation
Problems with Stochastic Demand and Integer Solutions."
AIIE Transactions, 4, 3 (1972), 186-193.

Zeleny, M. Multiple Criteria Decision Making, McGraw-Hill,
New York, NY, 1982.

APPENDIXES

177

APPENDIX A

TEST MODELS DATA AND RESULTS

178

179

TABLE A.1

TEST PROBLEM 1 INPUT DATA

(Green, Kim, and Lee 1981)

N0 1 x1 x2 x3 x4 x5 x6 x7 XS X9 x10 x11 x12 RHS TYPE

1 85 438 165 275 63 155 50 77 298 90 120 74 750 B2

2 126 210 363 240 122 340 320 203 210 135 388 177 900 B
3 1 1 1 B
4 1 1 1 B
5 1 1 1 B
6 1 1 1 B
7 1 -1 0 B
8 1 1 1 1 2 B
9 1 1 1 1 1 B

10 1. 8 1. 6 2.1 1.9 2.1 4.8 4.1 4.1 3.5 4.4 3.3 1.2 0 B

1The constraint numbers correspond to the subscript of the
deviational variables.

2Type B refers to goal constraints.

Achievement Function:

6

Min Z =
- pd+ l d~ pd+ pd+ pd+ Pd + + p + + pd + +

1 1 2 2 3 4 7 5 a 6 9 7 10
i=3

180

TABLE A.2

TEST PROBLEM 2 INPUT DATA

(Lee and Franz 1979)

NO x11 x21 x31 x41 x51 x12 x22 x32 x42 x52 x13 x23 x33 x43

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1
4
5
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1

10 1 1
11 1 1
12 200 180 50 35 210 110 90 200 160 35 40 40 225 250
13 200 280 50 35 210 110 90 200 160 35 40 40 225 250
14 1 1 1
15 1 1 1
16 1 1 1
17 1 1 1
18 1 1
19
20
21
22
23

181

TABLE A.2 (Continued)

NO x53 x14 x24 x34 x44 x54
Yo

1
Yo

2
Yo

3
Yo

4
Yo

5 RHS TYPE

1 400 B
2 300 B
3 1 200 B
4 1 1 1 1 1 100 B
5 825 750 600 600 650 1300 B
6 1 600 B
7 1 600 B
8 1 480 B
9 1 480 B

10 1 1 800 B
11 50 B
12 125 90 80 25 35 50 825a 750a 600a 600a 650a 0 B
13 125 90 80 25 35 50 0 B
14 1 -3000 0 Lb

15 1 -3000 0 L
16 1 -3000 0 L
17 1 -3000 0 L
18 1 1 -3000 0 L
19 1 1 L
20 1 1 L
21 1 1 L
22 1 1 L
23 1 1 L

0 These variables are specified to be integers (0 or 1) .
aThese numbers must be multiplied by 1000. b
Type L refers to less than or equal to constraints.

Achievement Function:

4
pd+

10 +
Min Z = p l d~ + + p l di + pd + pd++ pd+

1 2 5 3 4 11 5 12 6 13
1 = 1 1=6

182

TABLE A.3

TEST PROBLEM 3 INPUT DATA

(Lee, Green, and Kim 1981)

NO x11 x21 x31 x41 x51 x61 x12 x22 x32 x42 x52 x62 x13 x23

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1
4
5 1 1
6
7
8
9 1 1 1

10 1 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 200 180 50 35 210 180 110 90 200 160 35 120 40 40
16 200 280 50 35 210 180 110 90 200 160 35 120 40 40
17
18
19
20
21
22
23 1 1 1
24 1 1 1
25 1 1
26 1 1
27 1 1
28 1 1

183

TABLE A.3 (Continued)

NO x33 x43 x53 x63 x14 x24 x34 x44 x54 x64
yo

1
yo

2
yo

3

1
2
3 1 1 1 1
4 1 1 1 1 1 1
5
6 825 750 600
7 70 75 65
8 1 1 1
9 1

10 1
11 1 1
12 1 1
13 1 1
14 1 1 • • • 15 225 250 125 60 90 80 25 35 50 50 825 750 600
16 225 250 125 60 90 80 25 35 50 50
17 1
18 1
19 1
20
21
22
23 1 -3000
24 1 -3000
25 1 1 -3000
26 1 1
27 1 1
28 1 1

1

NO

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

TABLE A.3 (Continued)

Yo
4

600
80

1

600

1

•

-3000

Yo
5

650
50

1

650

1

•

-3000

Yo
6

550
70

1

550

1

•

-3000

RHS

580
420
260
150

50
2000

600
3

600
600
500
500
800
800

0
0
1
1
1
1
1
1
0
0
0
0
0
0

TYPE

B1

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
L2

L
L
L
L
L
L
L
L
L
L
L

Type B refers to goal constraints.
2 Type L refers to less than or equal to constraints.
0 These variables are specified to be integers (0 or 1).
•These number must be multiplied by 1000.

Achievement Function:

184

4 + 14 + +
Min Z = P \' d- + Pd- + Pd + Pd + Pd- + P \' d 1 + Pd +

1 L I 2 5 3 6 4 7 5 8 6 L 7 15
i=l 1=9

Pa+
8 16

APPENDIX B

APPROXIMATION TO THE CDF AND INVERSE CDF

OF STANDARD NORMAL DISTRIBUTION

185

APPROXIMATION TO THE CDF AND INVERSE CDF

OF STANDARD NORMAL DISTRIBUTION

Assume random variable X is normally distributed with

mean µ and variance u 2 , then its density function can be

written as follows:

1
f (x) exp [

1
-2- -oo < x < 00

where -oo < µ < oo and u 2 > o. A substitution of variables

Z = (x-µ)/u -oo < z < oo

results in Z's normally distributed with mean zero and

standard deviation 1, i.e. standard normal distribution.

186

Next, the cumulative distribution function of random variable

Z is:

Y = P(z) = Prob (Z ~ z) = 1

and the inverse cumulative distribution function is:

-1
Z = F (y) •

The value of the above inverse CDF for various y values or

the value of the above probability distribution function for

different z values are available from normal tables. However

two formulas to approximate the inverse CDF and CDF is given

by Hastings (1955) and are as follows:

2 3

z l a1w
l

I l b 1w
l

= w -
l = 0 l=O

where:

{ p = p (z) for 0 < p (z) ~ 0.5
w = /1n (l/p2)

p = 1-p(z) for p (z) > 0.5

a= 2.515517 I b= 1. 0
0 0

a= 0.802853 I b= 1.432788
1 1

a= 0.010328 I b= 0.189269 I 2 2

and the maximum, error is 0.00045.

Next, the approximation for CDF is:

5

P (z) = 1 - f (z) l a 1 w1 z ::!:: 0
l = 1

where:

f (z)
z2

= exp (- ~) I ~

-1
w = [1+(0.2316419) z]

a= 0.3193815
1

a= - 0.3565638
2

a= 1.781478
3

a= -1.821256
4

a=l.330274
5

and the maximum error is 0.0000001.

187

b= 0.001308.
3

APPENDIX C

PASCAL PROGRAM SOURCE CODES

188

TABLE C.1

INDEX TO PROGRAM UNITS AND PROCEDURES

Units and Procedures Name

PROGRAM SMLAP
EXECUTEPROGRAM .. .

Setup
FindPivotColumn ..
FindPivotRow.
Update
ComputeResult.

ExecuteProgram

BRANCHBOUND ..
IndexFrac ..
UpdateUB ..
InitialUB ..
CheckPriority.
GetLeaf ...

BranchBound ..
Smlap

UNIT smlautil
PATTERNSEARCH ..

Normal CDF ..
MultiObjective ..
Compare

PatternSearch.

Uppercase.
Cursor
LineDraw ..
Blank ...
DrawBox.
Message.
Input Integer ..
InputReal ..
InputChar ..
Linecount
Saveinput ..
SortCoef ...

Unit dbasutil ..
NinvCDF ..
UinvCDF
CREATEDATABASE.

Stochastic ...
ChanceConst.
InputData

CreateDataBase.

Page

193
193
193
196
198
198
199
200

202
202
203
204
205
206
206
209

219
220
221
221
221
223

226
227
227
227
228
228
229
230
231
231
232
232

233
233
233
234
234
237
240
244

189

TABLE C.l (continued)

Units and Procedures Name

LoadDataBase ..
SaveDataBase.
DisplayDataBase ..
OutputResul t ..
FinalZj_Cj .. .
SENSIANALY

ListAchievrot ..
TradeoffAnly ..
ChangePri ..
ChangeRhs.

SensiAnaly ...

Page

246
247
249
253
254
255
256
256
258
259
262

190

191

{--}
{ }
{ SMOLAP }
{ }
{ This interactive, menu driven program allows for the solution and }
{ sensitivity analysis of the integer, stochastic, multicriterion }
{ optimization problems. Additionally, a nonlinear routine is provided}
{ for the solution of the model B facility location-allocation problem }
{developed in this research. The program is written in Borland's }
{Turbo Pascal 5.0. }
{ }
{--}
{ Written By }
{ }
{ MORTEZA ABTAHI }
{ }
{ School of Industrial Engineering and Management }
{ Oklahoma State University }
{ Stillwater, Oklahoma 74078 }
{ July 1989 }
{--}
{ }
{ Uni ts and Procedures Descriptions }
{ -------------------- ------------ }

{ PROGRAM smlap }
{ ExecuteProgram Finds a continuous solution. }
{ Setup Prepares data for preemptive goal programming.}
{ FindPivotColumn ... Finds the pivot column. }
{ FindPivotRow Finds the Pivot row. }
{ Update Updates the modified simplex tableau. }
{ ComputeResult Calculates the output variables. }
{ BranchBound }
{ IndexFrac Reports the index of non-integer variable. }
{ UpdateUB Updates the upper bound. }
{ InitialUB Calculates the initial upper bound. }
{ CheckPriority Compares current priorities with upper bound. }
{ GetLeaf Selects a node on the branch-and-bound tree. }
{ }
{ UNIT smlautil }
{ PatternSearch Modified Hooke and Jeeves pattern search. }
{ NormalCDF Computes 1-CDF and density of the normal dist.}
{ MultiObjective Calculates multiple objectives for a point. }
{ Compare Tests if current solution is better than UB }
{ Uppercase Returns upper case of the input string. }
{ Cursor Turns the cursor On or Off. }
{ LineDraw Draws a line. }
{ Blank Blanks a specified entry. }
{ DrawBox Draws a box on the screen. }
{ Message Displays a message on the last line of screen.}
{ Inputinteger Accepts a valid integer number. }
{ InputReal Accepts a valid real number. }
{ InputChar Accepts a valid character. }
{ LineCount Counts number of lines displayed on screen. }

192

{ Saveinput Saves the necessary input information. }
{ SortCoef Sorts the input coefficients columnwise. }
{ }
{ UNIT dbasutil }
{ NinvCDF Inverse cumulative density function of normal.}
{ UinvCDF Inverse cumulative density function of uniform}
{ CreateDataBase Allows the user to input a new model. }
{ Stochastic Accepts inputs for stochastic model }
{ ChanceConst Accepts inputs for chance-constrained model }
{ InputData Inquires input data from the user. }
{ LoadDataBase Loads an existing model from disk. }
{ SaveDataBase Saves the current model to disk. }
{ DisplayDataBase Displays the current model. }
{ OutputResult Sends results to screen or printer. }
{ FinalZj_Cj Calculates and stores the optimum Zj-Cj matrix}
{ SensiAnaly Performs various sensitivity analysis. }
{ ListAchievmt Lists the achievements. }
{ TradeoffAnly Performs trade-off analysis. }
{ ChangePri Changes the priority structure. }
{ ChangeRhs Changes deterministic or probabilistic RHSs. }
{--}
{ }
{ Definition of Variables }
{ ----------------------- }
{ coef - array of coefficient. }
{ coefficient - record containing the row number, column number, and }
{ value of technological coefficients. }
{ csign array containing the sign (B, E, G, L) of constraints. }
{ elapsed - CPU time in second to find a solution. }
{ filename - string representing the models name. }
{ obj - array of objective record. }
{ objective - record containing sign, row number, priority, and weight }
{ of deviations in the achievement function. }
{ ncols - number of columns (negative deviations, positive }
{ deviations, and decision variables). }
{ nelemty - number of elementary matrices. }
{ niteration- number of iterations. }
{ npdvs - number of positive deviations. }
{ nprt - number of priorities. }
{ nrows - number of rows. }
{ ntc - number of technological variables. }
{ nvars - number of decision variables. }
{ opyZjCj - matrix of optimum ZJ-Cj values. }
{ pcol - index for the pivot column. }
{ prow - index for the pivot row. }
{ pw - array of value. contains priority number and weight for }
{ all the variables. }
{ pwBasis - array of value. Contains priority number and weight for }
{ variables in the basis. }
{ rhs - array of right hand side values }
{ rhsF - array of values for optimal solution. }
{ tprt - number of deviations in achievement function. }

· { value - record containing priority number and weight of }

193

{ deviational variables
{ ubUpdate number of times upper bound is updated in integer routine}
{ zmax - maximum Zi-Cj value. }
{--}

PROGRAM smlap;

USES CRT,DOS,PRINTER,smlaUtil,dbasUtil;
LABEL a;
VAR

tempFilename:
xl, yl:

STRING [10];
BYTE;

{··}
{ * ExecuteProgram *}

{··}
PROCEDURE ExecuteProgram;

LABEL a,b;
VAR

store:
priority!:

BYTE;
EXTENDED;

{*···}
{* Setup *}

{··}
PROCEDURE setup;

BEGIN

{ Calculate number of positive deviational variables (surplus) }

npdvs: = O;
FOR i:= 1 TO nrows DO

IF((csign[i] = 'G')OR(csign[i] = 'B')) THEN INC(npdvs, 1);

{ Calculate number of columns }

ncols := nrows + npdvs + nvars;

{ Initialization phase }

FOR j:= 1 TO ncols DO
BEGIN

pw[j].priority:= O;
pw[j].weight:= 0.0;
currentBasic[j):= O;{Will contain the index of basic columns}

END;

FOR i:= 1 TO nrows DO
pdevc [i] : = 0;

{ Set up the initial tableau. A negative deviational variable

194

(artificial slack) will be added to "G" and "E" type constraints
to form the initial basis. These variables will be placed at
priority 1 for minimization. In this case all other priorities
will be shifted down by 1. priority 1 must be completely
satisfied (minimized to zero) for a feasible solution to exist. }

flgl:= FALSE; {Indicates if artificial slacks are added to problem}
npdvs:= O;
FOR i:= 1 TO nrows DO

BEGIN
basicCol[i] := i; { Array of size nrows }
CASE csign(i] OF

'E':
{ System constraint is of strict equality type. No deviations present }

BEGIN
pw[i].priority
pw[i]. weight
flgl : = TRUE;

END;
, G':

1;
: = 1. O;

{ System constraint is of >= type. Only positive deviation is presenl }
BEGIN

, B':

pw[i].priority
pw[i].weight
INC(npdvs, 1);
pdevc[i] := nrows
flgl : = TRUE;

END;

1.
'

1. O;

+ npdvs;

{ Goal constraint. Both positive and negative deviations are present }
BEGIN

INC(npdvs, 1);
pdevc(i]:=nrows + npdvs;

END;

{ Otherwise it is a system constraint of 'L' (<=) type. Only negative
deviation is present. No action is required. }

END
END;

{ End of case statement }

{ If we have to include negative deviational variables
(artificials) in case of 'E' and 'G' type constraints to form the
initial basis, then we need to minimize these variables to zero
at priority 1. So, we need to shift other priorities down by 1.}

FOR i:= 1 TO tprt DO
BEGIN

rown := obj(i].row;
CASE obj[i].sign OF

'N':
BEGIN

'P':

IF (flgl) THEN
pw[rown].priority:= obj[i].priority + 1

ELSE
pw[rown].priority:= obj[i].priority;

pw[rown].weight:= obj[i].weight;
END;

BEGIN
IF (flgl) THEN

195

pw[pdevc[rown]].priority:= obj[i].priority + 1
ELSE

pw[pdevc[rown]].priority:= obj[i].priority;
pw[pdevc[rown]].weight:= obj[i].weight;

END
END;

END;
{ End of case }

IF(flgl)THEN INC(nprt,1); { Adjust for the additional priority }

{ Set the priorities and weights of the initial basis }

FOR i:= 1 TO nrows DO
pwBasis[i]:= pw[i]; { Assigns both priority and weight }

{ Information for negative deviations }

FOR i:=l TO nrows DO
BEGIN

currentBasic[i]:= i;
avalue[i]:= 1.0;
arow[i]:=i;
n(i]:= 1;

END;

{ Information for positive deviations }

FOR j:=l TO npdvs DO
BEGIN

FOR i:=l TO nrows DO
BEGIN

IF(pdevc(i] = nrows+j) THEN

END;
END;

BEGIN
avalue[nrows+j]:=-1.0;
arow[nrows+j]:=i;
n[nrows+j]:=l;

END;

{ Information for decision variables }

c: =nrows+npdvs;
FOR i:=l TO nvars DO

n [c+ i]: =num [i] ;

FOR j:=l TO ntc DO
BEGIN

INC(c,1);
avalue[c]:=coef[j].value;
arow[c]:=coef[j].row;

END;

196

{ Find starting position of each tableau column in 'avalue' array }

start[l]:=l;
FOR i:=Z TO ncols DO

start[i]:=n[i-l]+start[i-1];

{ Set the right hand side values }

FOR i:=l TO nrows DO
rhsF[i]:= rhs[i];

END; { End of selup }

{**}
{* FindPivotColumn *}

{**}

PROCEDURE FindPivotColumn;
LABEL s;
VAR

zjcj, tempZmax: EXTENDED;

BEGIN
zmax:=O.O;
pcol:=O;

FOR k:=l TO ncols DO
BEGIN

{Do not consider the column if its variable is already in basis}

IF(currentBasic[k] <> 0) THEN GOTO s;
WITH pw[k] DO

BEGIN
IF(((priority > O)AND(priority < p))OR

((priority= p)AND(weight> lw)))THEN GOTOs;
END;

{ Priority index of the current potential entering variable
is either zero, higher than current priority being
satisfied, or equal to with lower weight }

{ Initialize the potential new basic column }

FOR i:=l TO nrows DO

y[i]:=O.O;

{ Construct the original a column }

FOR i:=start[k] TO start[k]+n[k]-1 DO
y[arow[i]]:=avalue[i];

{ Update the 'a' column }

IF (nelemty <> O)THEN
BEGIN

FOR i:=l TO nelemty DO
BEGIN

ar:=y[position[i]];

197

y[position[i]]:=O.O; { This is the a-hat }

END;

IF(ABS(ar) > 1.0E-10) THEN

END;

BEGIN
indxl:=ElCount[i];
indx2:=E1Count[i+l]-1;
FOR j:=indxl TO indx2 DO

END;

BEGIN
ij:=ElRow[j];
y[ij]:=y[ij]+ar*ElValue[j];

END;

tempzmax:=O.O;

{ Calculate zj-cj for the current variable and priority }

FOR i:=l TO nrows DO
IF(pwBasis[i].priority = p) THEN

tempzmax:=tempzmax+pwBasis[i].weight • y[i];

{ If p equal to priority of variable at column k, 'Cj' is nonzero.
Therefore, we have to subtract Cj to find Zj-Cj }

IF(pw[k].priority = p)THEN tempzmax:=tempzmax-pw[k].weight;
IF((tempzmax <= 1.0E-lO)OR(tempzmax <= zmax))THEN GOTOs;

{ Check If the entering variable deteriorate higher priority goals}

IF(p-1 > O)THEN
BEGIN

{ For priority 2 or higher }

{ Consider all higher priorities up to p }
FOR i:=l TO p-1 DO

BEGIN
zjcj:=O.O;
FOR j:=1 TO nrows DO

IF(pwBasis(j].priority =i)THEN
zjcj:=zjcj+pwBasis[j).weight*y[j];

END;

IF(zjcj < O.O)THEN GOTOs;
END;

198

{ Update the maximum zjcj and its corresponding column and index }

zmax:=tempzmax;
FOR i:=l TO nrows DO

x [i] : ::::y [i] ;
pcol: =k;

s: END;
{ Pivot column }

{ End of column loop }
{ End of column } END;

{··}
{* FindPivotRow . }
{··}
PROCEDURE FindPivotRow;

VAf{

mRatio, ratio, mWeight:
mPriori ty:

BEGIN

{ Initialization }

mRatio: =l. Oe20;
mPriority:=O;
mlJeight:=O.O;
prow:=O;

FOR i:=l TO nrows DO
BEGIN

IF(x[i] >l.OE-lO)THEN
BEGIN

EXTENDED;
BYTE;

ratio:=rhsF[i]/x[i];
IF((ratio<mRatio)OR
((ratio=mRatio)AND(pwBasis[i).priority<mPriority))OR
((ratio=mRatio)AND(pwBasis[i].priority=mPriority)AND
(pwBasis[i].weight>mWeight)))THEN

END;
END;

END;

BEGIN
mRatio:=ratio;
prow: =i;
mPriority:=pwBasis(i].priority;
mlJeight:=pwBasis[i].weight;

END;

{ Pivoting row }

{ End of procedure row }

{··}
{ * Update •}

{··}

PROCEDURE update;
VAR

yrk, d:
count:

EXTENDED;
INTEGER;

BEGIN

{ This procedure updates the right hand side values and
generates a new elementary matrix. The complete source code
for this procedure is not provided. }

199

END; { End of procedure update }

{··}
{ • ComputeResul t •}

<··}
PROCEDURE ComputeResult;

VAR
tpos: ARRAY[l .. 50] OF EXTENDED;

BEGIN

{ If artificial slacks were added, priority 1 represents them and
its value is zero ~t this stage. So, our original priorities
start from index 2. }

c: =l;
IF(flgl)THEN c:=O;

FOR p:=2-c TO nprt DO
BEGIN

prty[p]: =O. O;
FOR i:=l TO nrows DO

IF(pwBasis[i].priority = p)THEN
prty[p):=prty[p)+pwBasis[i).weight*rhsF[i];

END;

IF(flgl)THEN
BEGIN

DEC (npr t , 1) ;
FOR i:=l TO nprt DO

prty[i]:=prty[i+l];
END;

{ Decision variables }

j: =O;
FOR i:=nrows+npdvs+l TO ncols DO

BEGIN
INC(j, 1);
IF(currentBasic(i] = O)THEN

{ Original number of priority }

decn[j]: =O. 0
ELSE

decn[j]:=rhsF[currentBasic[i]);
END;

{ Negative deviations }

FOR i:=l TO nrows DO
BEGIN

IF(currentBasic[i] = O)THEN
neg[i]:=O.O

ELSE
neg[i):=rhsF[currentBasic[i]);

END;

{ Positive Deviations }

j:=O;
FOR i:=nrows+l TO nrows+npdvs DO

BEGIN
INC(j, 1);
IF(currentBasic[i] = O)THEN

t po s [j] : =O. 0
ELSE

tpos[j]:=rhsF[currentBasic[i]];
END;

j: =O;
FOR i:=l TO nrows DO

BEGIN
IF((csign[i] = 'G')OR(csign[i] = 'B'))THEN

BEGIN
INC(j,1);
pos[i]:=tpos[j];

END
ELSE

pos [i 1: =O;
END;

200

END; { End of procedure ComputeResult }

{ .. }
{. ExecuteProgram . }
{ .. }

BEGIN
setup; { Call Procedure setup }

{ Initialize index variables }

El Count [1]: =1;
nelemty:=O;
feasible:=TRUE;

{ Number of elementary matrices }
{ Indicates if the current solution is feasible }

FOR p:= 1 TO nprt DO

201

BEGIN

{ If artificial slacks were added for initial basis, then the
added priority 1 must be zero For a feasible solution to exist }

IF((flgl)AND(p=2))THEN
BEGIN

{ Calculate priority 1 }

priorityl:=O.O;
FOR i:=l TO nrows DO

IF(pwBasis[i].priority=l)THEN
priorityl:=priorityl+pwBasis[i].weight*rhsF[i];

IF(priorityl<>O)THEN

END;

BEGIN
feasible:=FALSE;
nprt: =orig_nprt;
EXIT;

END;

{ Find the largest weight associated with highest priority in ll1c basis}

b:

lw:=O.O;
{flg2 indicates a match between current priority & basis pr.}
flg2: =FALSE;

FOR i:= 1 TO nrows DO
BEGIN

IF(pwBasis[i].priority = p) THEN
BEGIN

flg2: =TRUE;
IF(pwBasis[i].weight > lw) THEN

lw:=pwBasis[i].weight;
END;

END;

IF(NOT flg2) THEN GOTO a;

{ Find the pivot column }

FindPivotColumn;
IF(pcol=O)THEN GOTO a;

{ Find the pivot row }

FindPivotRow;
IF(prow=O)THEN GOTO a;

INC(nlteration, l);
GOTOXY (1 , 3) ;

{ Examine the next priority }

{ Call procedure column }

{ Call procedure row }

{ Update number of iterations }

202

a:

WRITE(' Iteration ', nI teration: 4);

{ Update the basis by introducing the new variable }

store:=basicCol[prow];
basicCol[prow]:=pcol;
currentBasic[pcol]:=prow;
currentBasic[store]:=O;
pwBasis[prow]:=pw[pcol];

{ Update the tableau }

update;

GOTO b; { Next
END;

{ Call procedure update

iteration for current priority
{ End of the priority loop

ComputeResul t;
END; { End of ExecuteProgram

}

}

}

}

{··}
{ • BranchBound • }

{··}
PROCEDURE BranchBound;

LABEL a, b;
TYPE

VAR

nodePtr =

leafNode = RECORD
index:
sign:
rhs:
nae:
prty:

END;

index,leafCount,pdx:
rhsL,rhsR,dif,lhs:
decnUB,pd,nd:
ptrArray:
tempPtr,leftPtr,rightPtr:
potlLeaf, flg4:

hleafNode;

ARRAY[l .. 20] OF BYTE;
ARRAY[l .. 20] OF CHAR;
ARRAY[l .. 20] OF EXTENDED;
BYTE;
ARRAY[l .. 20] OF EXTENDED;

BYTE;
EXTENDED;
ARRAY[l .. 50] OF EXTENDED;
ARRAY[l .. 200] OF nodePtr;
nodePtr;
BOOLEAN;

{***••·······················}
{ * indexFrac * }
{**}

FUNCTION indexFrac:BYTE;

{ This function returns index of the variable with largest fraction }

VAR

ndx:
maxFrac, tFrac:

BYTE;
EXTENDED;

BEGIN
maxFrac:=O.O;
ndx: =O;

{ Check to see if any of basic variables are fractional }

FOR i:=l TO nvars DO
BEGIN

IF(decnType[i)=' I')THEN
BEGIN

tFrac:=FRAC(decn[i]);
IF((tFrac >= O.OOl)AND(tFrac <= 0.999)) THEN

BEGIN
IF(tFrac > maxFrac) THEN

BEGIN

END;

maxFrac:= tFrac;
ndx: =i;

END;

END;
END;

indexFrac:=ndx;
END;

203

{****************************•···} { * upda teUB • }
{··}
PROCEDURE updateUB;

{ This updates the upper bound and saves its corresponding integer
solution. }

BEGIN
FOR i:=l TO nprt DO

prtyUB[i]:=prty[i);
FOR i:=l TO nvars DO

intDecn[i]:=decn[i];
FOR i:=l TO nrows DO

BEGIN
intNeg[i]:=neg[i];
intPos[i]:=pos[i];

END;
keepFlgl: =flgl;
FinalZjCj;
INC(ubUpdate, 1);
GOTOXY (1, 6) ;
WRITELN(' U.B. Updates ' ,ubUpdate:4);

END;

204

{··}
{* initialUB *}

<··}
PROCEDURE initialUB;

{ This procedure calculates an initial upper bound for the branch and
bound. It is possible to establish a tighter bound for pure goal
constraints because constraints remain feasible by selecting arbitrary
integer variables. }

BEGIN
{ Find out if all constraints are of goal type }

flg4:=TRUE; { Indicator for pure goal constraints, no system}
FOR i:=l TO nrows DO

IF(csign[i] <> 'B')THEN flg4:=FALSE;

{ Set initial upper bound }

IF(NOT flg4)THEN
FOR i:=l TO nprt DO

prtyUB[i]:=l.OE20
ELSE

BEGIN
{ Round off all decision variables to the nearest integer }

FOR i:=l TO nvars DO
IF(FRAC(decn[i]) <= O.S)THEN

decnUB[i):=INT(decn[i])
ELSE

decnUB[i]:=INT(decn[i])+l.O;

{ Upper bound for pure goal constraints }

{ Calculate deviational variables for each goal constraint }

FOR i:=l TO nrows DO
BEGIN

lhs:=O.O;
FOR j:=l TO ntc DO

IF(coef[j].row = i)THEN
lhs:=lhs+coef[j].value*decnUB[coef[j].column];

dif:=rhs[i]-lhs;
IF(dif >= O.O)THEN

BEGIN
nd[i]:=dif;
pd[i]:=O.O;

END
ELSE

BEGIN
nd[i]:=O.O;
pd[i]:=-dif;

END;
END;

{ Upper bound }

FOR l:=l TO nprt DO
BEGIN

prtyUB[i]:=O.O;
FOR j:= 1 TO tprt DO

BEGIN
IF(obj[j].priority = i)THEN

205

IF(obj[j]. sign= 'P')THEN
prtyUB[l]:=prtyUB[l]+pd[obj[j].row]*obj[j].weight

ELSE
prtyUB[i]:=prtyUB[i]+nd[obj[j].row]*obj[j].weight;

END;
END;

IntegerSoln:=TRUE;
FOR i:=l TO nvars DO

intDecn[i]:=decnUB[i];
FOR i:=l TO nrows DO

BEGIN
intNeg[i]:=nd[i];
intPos[i]:=pd[i];

END;
keepflgl: =flgl;
FinalZjCj;
INC(ubUpdate, 1);
GOTOXY (1 , 6) ;
WRITELN(' U.B. Updates ',ubUpdate:4);

END;
END;

{**}
{* CheckPriority *}
{********************************••····································}

FUNCTION CheckPriority:BOOLEAN;

{ This function checks the current priority against the upper bound. }

VAR
equal, better:

BEGIN

equal:=TRUE;
better:=FALSE;
i: =O;
REPEAT

INC(i);

BOOLEAN;

IF(prty(i] <> prtyUB[i])THEN
equal:=FALSE;

UNTIL((NOT equal)OR(i=nprt));

IF{{NOT equal)AND{prty[i] < prtyUB[i]))THEN
better:=TRUE;

206

{ If all priorities are equal, set better to true. This will make
the program to update the upper bound for the case the initial
upper bound determined in 'initialUB' is the optimal solution }

IF{equal)THEN better:=TRUE;
CheckPriority:=better;

END;

{•···}
{ • getLeaf •}

{··}
FUNCTION getLeaf:BOOLEAN;

{ This function finds index of the most recent non nil node in ptrArray}

VMl
found:
i:

BEGIN
found:=FALSE;
i: =leafCount;
REPEAT

BOOLEAN;
BYTE;

IF(ptrArray[i] <> NIL) THEN
BEGIN

END
ELSE

found:=TRUE;
pdx: =i;

DEC{ i);
UNTIL{{found)OR{i=O));
getLeaf:=found;

END;

{ .. }
{. BranchBound . }
{ .. }

BEGIN
integerSoln:=FALSE;
index:=indexFrac; { Find index of the fractional variable if any }
IF { index=O)THEN

BEGIN
integerSoln:=TRUE;
updateUB;
EXIT;

END;

{ Initialization }

{ Solution is already integer }

initialUB;
leafCount:=O;

NEW(leftPtr);
leftPtrA.nac:=O;
NEW(rightPtr);
rightPtrA.nac:=O;

{ Set up the left leaf node }

207

{ Initialize the left leaf node }

{ Initialize the right leaf node }

a: INC(leftPtrA.nac, 1);

b:

leftPtrA. index[leftPtrA.nac]:=index;
leftPtrA.sign[leftPtrA.nac]:='L';
leftPtrA.rhs[leftPtrA.nac]:=INT(decn[index]);
FOR i:=l TO nprt DO

leftPtrA.prty[i]:=prty[i];

{ Set up the right leaf node }

INC(rightPtrA.nac, 1);
rightPtrA.index[rightPtrA.nac]:=index;
rightPtrA.sign[rightPtrA.nac]:='G';
rightPtrA.rhs[rightPtrA.nac]:=INT(decn[index])+l.O;
FOR i:=l TO nprt DO

rightPtrA.prty[i]:=prty[i];

{ Add the two new nodes to the ptrArray }

INC(nNodGe,2);
GOTOXY(l,4);
WRITELN(' Nodes Generated .. ' ,nNodGe:4);
INC(leafCount,2);
ptrArray[leafCount-l]:=leftPtr;
ptrArray[leafCount]:=rightPtr;

{ Get the most recent non nil node from ptrArray }

potlLeaf:=FALSE;
REPEAT

IF(NOT getLeaf)THEN
EXIT;

tempPtr:=ptrArray[pdx];

{ All nodes have been considered }

{ Compare priorities of current node against the upper bound }

FOR i:=l TO nprt DO
prty[i]:=tempPtrA.prty[i];

{ Continue with this node only if its priorities are better
than UB }

IF(NOT CheckPriority)THEN
BEGIN

ptrArray[pdx]:=NIL;
DISPOSE(tempPtr);

END
ELSE

potlLeaf: =TRUE;
UNTIL (potlLeaf);

{ Prepare to solve the current node }

nrows:=orig_nrows+tempPtrA.nac;
FOR i:=l TO tempPtrA.nac DO

BEGIN
ntc:=orig_ntc+i;
orig_coef[ntc].row:=orig_nrows+i;
orig_coef[ntc).column:=tempPtrA. index[i];
orig_coef[ntc).value:=l.O;
csign[orig_nrows+i):=tempPtrA.sign[i);
rhs[orig_nrows+i):=tempPtrA.rhs[i];

END;

208

{Place new coefficient(s) in appropriate place in 'coef' array}

INC (nNodEv, 1);
GOTOXY (1 , 5) ;
WRITELN(' Nodes Evaluated .. ' ,nNodEv:4);
sortCoef(orig_coef);
ExecuteProgram;
IF(NOT feasible)OR(NOT CheckPriority)THEN

BEGIN
ptrArray[pdx]:=NIL;
DISPOSE(tempPtr);
GOTO b;

END;

{ Priority of the new solution is better or equal to the upper
bound. If the solution is also integer, update the upper bound.}

index:=indexFrac;
IF (index=O) THEN

BEGIN
updateUB;
integerSoln:=TRUE;
ptrArray[pdx):=NIL;
DISPOSE(tempPtr);
GOTO b;

END;

NEW (leftPtr);
leftPtrA.nac:=tempPtrA.nac;
FOR i:=l TO tempPtrA.nac DO

BEGIN

leftPtrA. index[i]:=tempPtrA. index[i];
leftPtrA.sign[i]:=tempPtrA.sign[i];
leftPtrA.rhs[i]:=tempPtrA.rhs[i];

END;

NEW(rightPtr);
rightPtrA.nac:=tempPtrA.nac;
FOR i:=1 TO tempPtrA.nac DO

BEGIN
rightPtrA. index[i]:=tempPtrA.index[i];
rightPtrA.sign[i]:=tempPtrA.sign[i];
rightPtrA.rhs[i]:=tempPtrA.rhs[i];

END;

209

ptrArray[pdx]:=NIL;
DISPOSE(tempPtr);
GOTO a; { Setup the two new nodes }

END;

{ .. }
{. smlap . }
{ .. }

BEGIN
flg3: =FALSE;

{ Program SMLAP }
{ Indicates if a data base is created or loaded }

filename:='None';
model Type:=' N';
{ flg4 indicates if a continuous or integer solution is obtained }
flg4: =FALSE;
REPEAT

TEXTCOLOR (11) ;
TEXTBACKGROUND(1);
CLRSCR;
drawBox(1, 1,80,24);
WINDOW(l,25,80,25);
TEXTBACKGROUND(7);
CLRSCR;
WINDOW(l,1,80,25);
TEXTBACKGROUND(11);
TEXTCOLOR (1) ;
GOTOXY(22, 1);

{ Selects light cyan characters }
{ Selects blue background }

{ Last line of the screen }
{ Light Gray }

WRITELN (' SMOLAP - Decision Support System ');
TEXTBACKGROUND(1);
TEXTCOLOR (15) ;
GOTOXY (51 , 3) ;

{ Select white characters }

WRITELN('Current Model '+CHR(26),' ',filename);
GOTOXY(51, 4);
CASE modelType OF

'D': WRITELN('Type:
' C' : WR I TELN (' Type:
'S': WRITELN('Type:
'N': WRITELN('Type:

END;

Deterministic') ;
Chance-Constrained');
Stochastic') ;
None') ;

210

TEXTCOLOR(14); { Select yellow characters }
GOTOXY (4, 4) ;
TEXTCOLOR (15) ;
WRITELN('DATA BASE UTILITIES:');
TEXTCOLOR (14) ;
GOTOXY (4, 6) ;
WRITELN(' [A] Create a New Model');
GOTOXY (4, 7) ;
WRITELN(' [B] Retrieve an Existing Model');
GOTOXY (4, 8) ;
WRITELN(' [C] Save Current Model');
GOTOXY(4, 9);
WRITELN (• [D] Display Current Model') ;
GOTOXY (4, 11) ;
TEXTCOLOR (15) ;
WRITELN('SYSTEM ANALYSIS:');
TEXTCOLOR (14) ;
GOTOXY(4, 13);
WRITELN(' [El Continuous Solution');
GOTOXY (4, 14) ;
WRITELN(' [Fl Integer Solution');
GOTOXY (4, 15) ;
WRITELN(' [G] Nonlinear Solution');
GOTOXY (4, 16) ;
WRITELN (' [HJ Sensitivity Analysis') ;
GOTOXY (4, 1 9) ;
WRITELN (' [I l EXIT') ;

a: message('Enter Option -'+CHR(16)+' ',' 1' ,validSet3,option);

CASE option OF
, A': { Create Input Data Base }

BEGIN
message('Deterministic/Chance-Constrained/Stochastic '+

'(D/C/S)? -' +CHR(16)+' ',' 1', validSet6,modelType);
WINDOW(l, 1,80,24); { Do not reset color of the last line }
CLRSCR;
WINDOW(l, 1,80,25);
CreateDataBase;
{ Initialize priority order }
FOR i:=l TO nprt DO

prtyOrder [i]: =i;
flg4: =FALSE;

END;

'B': { Load Input Data Base }
BEGIN

tempFilename:=filename;
REPEAT

GOTOXY (3, 23) ;
WRITE ('Enter the Input File Name -'+CHR(16)+' ');
READLN (filename);

UNTIL (filename <> ''); { Do not accept return only }
LoadDataBase;

IF(NOT flgS)THEN
filename:=tempFilename

211

ELSE { A new model is loaded }

END;

'C':

BEGIN
{ Initialize priority order }
FOR i:=l TO nprt DO

prtyOrder[i]: =i;
flg4: =FALSE;

END;

BEGIN
IF(flg3=FALSE)THEN

BEGIN
message('No Output File is Present ... ', 'O' ,validSet4,

inCh);
GOTO a;

END;
SaveDataBase;

END;

'D': { Display Current Data Base }
BEGIN

IF(flg3=FALSE)THEN
BEGIN

'E':

message('No Output File is Present ... ', 'O' ,validSet4,
inCh);

GOTO a;
END;

WINDOW(l, l,80,24); { Do not reset color of last line }
CLRSCR;
WINDOW(l,1,80,25);
TEXTCOLOR (11) ;
drawbox(l,1,80,24);
GOTOXY (29, 1) ;
WRITELN(' DISPLAY CURRENT MODEL ');
TEXTCOLOR (14) ;
DisplayDataBase;

END;

{ Continuous Solution }
BEGIN

IF(flg3=FALSE)THEN
BEGIN

message('No Output File is Present ... ', 'O' ,validSet4,
inCh);

GOTO a;
END;

IF(modelType='S')THEN
BEGIN

message('This is a Nonlinear Model - Select [G] ... ,

212

'O' ,validSet4, inCh);
GOTO a;

END;
WINDOW(l, 1,80,24);
CLRSCR;

{ Do not reset the last line }

WINDOW(l, 1,80,25);

{ Restore the original values in case continuous solution
were selected after the integer solution in the main menu}

ntc:=orig_ntc;
nprt:=orig_nprt;
nrows:=orig_nrows;
FOR i:=l TO ntc DO

coef[i]:=orig_coef[i];
FOR i:=l TO nvars DO

num[i]:=orig_num[i];

TEXTCOLOR (11) ;
drawbox(l, 1,80,24);
GOTOXY(30, 1);
TEXTBACKGROUND(ll);
TEXTCOLOR (1) ;
WRITELN(' Continuous Solution ');
TEXTBACKGROUND(l);
TEXTCOLOR (14) ;

{ Cyan }

nlteration:=O; { Initialize number of iterations }
TEXTBACKGROUND(ll);
drawBox(49,5,73, 16);
WINDOW(50,6,72, 15);
CLRSCR;
TEXTCOLOR (0) ;
WRITELN (' RUN STATUS') ;
WRITELN;
WRITELN(' Iteration ', nlteration: 4);
WRITELN(' CPU ');
WRITELN;
WRITELN(' Model Name '+CHR.(26)+' ',filename);
cursor (FALSE); { Turn off the cursor }
GETTIME(hrl,minl,secl,hsecl);
ExecuteProgram;
GETTIME(hr2,min2,sec2,hsec2);
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.01)-

(hr1*3600.0+min1*60.0+secl+hsec1*0.01);
GOTOXY (1 , 4) ;
WRITE (' CPU ',elapsed: 6: 2,' S') ;
cursor(TRUE); { Turn on the cursor }

IF(feasible=FALSE)THEN
message('No feasible solution exist', 'O' ,validSet4, inCh)

ELSE
BEGIN
OutputResul t;

213

firstTime:=TRUE; {Indicates a new model has been solved}
solution:='c'; { Indicates continuous solution}

END;
END;

'F': { Integer Solution }
BEGIN

IF(flg3=FALSE)THEN
BEGIN

message('No Output File is Present ', 'O',
validSet4, inCh);

GOTO a;
END;

IF(modelType='S')THEN
BEGIN

message('This is a Nonlinear Model - Select [G)
'O' ,validSet4,inCh);

GOTO a;
END;

message(' All Variables Integer? (YIN) -'+CHR(16)+' ','l',
validset4,answer);

IF(answer='N')THEN
BEGIN

flg6:=TRUE;{lndicates we have a mixed integer problem}
FOR i:=l TO nvars DO

decnType[i):='C';
GOTOXY(3, 23);
WRITE(' Enter Index of Integer Variable -'+CHR(l6)+' ');
xl:=WHEREX;yl:=WHEREY;
REPEAT

i:=inputinteger(xl,yl, l,nv,ars);
decnType[i]:=' I';
message('More Integer Variables? (YIN) -'+CHR(16)+

' ','l' ,validSet4,answer);
IF(answer='Y')THEN blank(xl,yl,2);

UNTIL(answer='N');
END

ELSE
BEGIN

flg6:=FALSE; { This is a pure integer problem }
FOR i:=l TO nvars DO

decnType[i]:='I';
END;

WINDOW(l,1,80,24); {Do not reset the last line }
CLRSCR;
WINDOW(l,1,80,25);

{Restore the original values in case integer solution were
selected two times in a row. }

ntc:=orig_ntc;
nprt:=orig_nprt;

nrows:=orig_nrows;
FOR i:=l TO ntc DO

coef[i]:=orig_coef[i];
FOR i:=l TO nvars DO

num[i]:=orig_num[i];

TEXTCOLOR (11) ;
drawbox(l,1,80,24);
GOTOXY (31 , 1) ;
TEXTBACKGROUND(ll);
TEXTCOLOR (1) ;
WRITELN(' Integer Solution ');
TEXTBACKGROUND(l);
TEXTCOLOR (14) ;

214

niteration:=O;
TEXTBACKGROUND(ll);
drawBox(49,5,73,16);
WINDOW(S0,6,72,15);
CLRSCR;

{ Initialize number of iterations }

nNodEv: =1;
nNodGe: =1;
ubUpdate:=O;

RUN STATUS') ;

Iteration ' ,nlteration:4);

TEXTCOLOR (0) ;
WRITELN('
WRITELN;
WRITELN('
WRITELN('
WRITELN('
WRITELN('
WRITELN('
WRITELN;

Nodes Generated .. ' ,nNodGe:4);
Nodes Evaluated .. ' ,nNodEv:4);
U.B. Updates ' ,ubUpdate:4);
CPU ');

WRITELN(' Model Name '+CHR(26)+'
cursor (FALSE);
GETTIME(hrl,minl,secl,hsecl);
ExecuteProgram;
IF(feasible=FALSE)THEN

BEGIN

' , f i 1 ename) ;
{ Turn off the cursor }

message('No feasible solution exist', 'O' ,validSet4,
inCh);

cursor (TRUE) ;
END

ELSE
BEGIN

BranchBound;
GETTIME(hr2,min2,sec2,hsec2);
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.01)-

(hr1*3600.0+min1*60.0+secl+hsecl*0.01);
GOTOXY (1 , 7) ;
WRITE(' CPU ', elapsed: 6: 2,' S') ;
cursor(TRUE); { Turn on the cursor }
IF(NOT integerSoln)THEN

message ('No Integer Solution Exist',' O', v.al idSet4,

ELSE
BEGIN

inCh)

{ Get upper bound values }

FOR i:=l TO nprt DO
prty[i]:=prtyUB[i];

FOR i:=l TO nvars DO
decn[i]:=intDecn[i];

FOR i:=l TO orig_nrows DO
BEGIN

neg[i]:=intNeg[i];
pos[i]:=intPos[i];

END;
nrows:=orig_nrows;

215

OutputResul t;
first Time: =TRUE;
solution:=' i';

{ Indicates a new model
{ Indicates integer solution

END;
END;

END;

'G': { Nonlinear Solution }
BEGIN

IF(flg3=FALSE)THEN
BEGIN

message('No Output File is Present ', 'O',
val idSet4, inCh);

GOTO a;
END;

IF(modelType<>'S')THEN
BEGIN

message('This is a Linear Model - Select [E] or [F] '+
' ... ','O' ,validSet4,inCh);

GOTO a;
END;

WINDOW(l,1,80,24); {Do not reset the last line}
CLRSCR;
WINDOW(l, 1,80,25);
TEXTCOLOR(ll); { Cyan }
drawbox(l, 1,80,24);
GOTOXY(30, 1);
TEXTBACKGROUND(ll);
TEXTCOLOR (1) ;
WRITELN(' Nonlinear Solution ');
TEXTBACKGROUND(l);
TEXTCOLOR (14) ;
niteration:=O; { Initialize number of iterations }
TEXTBACKGROUND(ll);
drawBox(49,5,73, 16);
WINDOW(S0,6,72, 15);

CLRSCR;
TEXTCOLOR (0) ;
WRITELN (' RUN STATUS') ;
WRITELN;
WRITELN(' Iteration ' ,niteration:4);
WRITELN(' Step Size 1.00');
WRITELN(' CPU ');
WRITELN;
WRITELN(' Model Name '+CHR(26)+' ',filename);
WINDOW(l, 1,80,24);

216

message(' Input a new Starting Point (YIN)? -'+CHR(16)+' '
'1' ,validSet4,answer);

IF(answer='Y')THEN
BEGIN

{ Initialize all decision variables to zero }
FOR 1:=1 TO (nsources*ndestns)+nsources DO

BEGIN
decn[i]:=O.O;
varChange[i]:='F';

END;

{ Input the index of open sources }
GOTOXY(6, 21);
WRITE(' Index for an Open Source -'+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
REPEAT

l:=inputinteger(xl,yl, l,nsources);
decn[(nsources*ndestns)+i]:=l.O;
message('More Open Sources? (YIN) -'+CHR(16)+' '

'1' ,validSet4,answer);
IF(answer='Y')THEN blank(xl,yl,2);

UNTIL(answer='N');

{ Input the allocation variables }
FOR l:=l TO nsources DO

BEGIN
FOR j:=l TO ndestns DO

BEGIN
IF(decn[(nsources*ndestns)+i]=l.O) THEN

BEGIN
varChange[(j-l)*nsources+i]:='V';
GOTOXY (16, 22) ;
WRITE(' ENTER X(', i: 2, j: 2,') -' +CHR(16)+

, ,) ;
xl:=WHEREX;yl:=WHEREY;
REPEAT

temp:=inputReal(xl,yl);
IF(temp<O.O)THEN

BEGIN
message('Allocations Must be Nonne'+
'gative ... ', '2' ,validSet4,answer);
STR (temp, s) ;
blank(xl,yl,LENGTH(s));

END;

END;
UNTIL(temp>=0.0);
decn[(j-l)*nsources+i]:=lemp;
SIR(temp, s);
blank(xl,yl,LENGTH(s));

END;
END;

END;

{ Initialize the step size }

FOR i:=l TO nvars DO

217

step[i]:=l.O; { default step size }
message('Current Step Size is 1 - Change (YIN)?-'+

CHR (16) +' ' , ' 1' , val idSet4, answer);
IF(answer='Y')THEN

BEGIN
GOTOXY(6, 23);
WRITE('Enter the New Step Size -'+CHR(16),' ');
xl:=WHEREX;yl:=WHEREY;
temp:=inputReal(xl,yl);
FOR i:=l TO nvars DO

step[i]:=temp;
END;

WINDOW(S,21,79,23);CLRSCR;WINDOW(S0,6, 72, 15);
TEXTCOLOR (0) ;
cursor(FALSE); { Turn off the cursor }
{ Rewrite the step size if it was changed }
GOTOXY (1 , 4) ;
WRITE(' Step Size ',step[l):S:Z);
GETTIME(hrl,minl,secl,hsecl);
PatternSearch;
GETTIME(hr2,min2,sec2,hsec2);
elapsed:=(hr2*3600.0+min2*60.0+sec2+hsec2*0.0l)-

(hr1*3600.0+min1*60.0+secl+hsecl*0.01);
GOTOXY (1 , 5) ;
WRITE(' CPU ' ,elapsed:6:2,' S');
cursor(TRUE); { Turn on the cursor }
{ Get the optimum solution }

FOR i:=l TO nprt DO
prty[i]:=prtyUB[i);

FOR i:=l TO nvars DO
decn[i]:=intDecn[i];

FOR i:=l TO nrows DO
BEGIN

neg[i]:=intNeg[i];
pos[i]:=intPos[i];

END;
OutputResult;

END;

218

'H': { Sensitivity Analysis }
BEGIN

IF(flg3=FALSE)THEN
BEGIN

message('No Output File is Present ... ', 'O' ,validSet4,
inCh);

GOTO a;
END;

IF(NOT flg4)THEN
BEGIN

message(' No Solution Exist ... ', 'O' ,validSet4,inCh);
GOTO a;

END;
WINDOW(l, 1,80,24); { Do not reset the last line }
CLRSCR;
WINDOW(l, 1,80,25);
TEXTCOLOR (11) ;
drawbox(l, 1,80,24);
GOTOXY(27, 1);
TEXTCOLOR (1) ;
TEXTBACKGROUND(ll);
TEXTCOLOR (1) ;
WRITELN(' Sensitivity Analysis ');
TEXTBACKGROUND(l);
TEXTCOLOR (14) ;
SensiAnaly;

END;
END { End of the case statement }

UNTIL (option = ' I') ;
CLRSCR;

END. { SMLAP Program }

219

UNIT smlaUtil;

INTERFACE

USES CRT,DOS,PRINTER;

CONST
enter = #13; {ASCII character for enter}
bell = #1; {ASCII character for bell}
validSetl: SET OF CHAR = ['P', 'N' ,enter];
validSet2: SET OF CHAR = ['E', 'G', 'L', 'B'];
validSet3: SET OF CHAR = ['A',' B', 'C', 'D', 'E' , 'F' , 'G', 'H',' I'] ;
validSet4: SET OF CHAR
validSetS: SET OF CHAR
validSet6: SET OF CHAR
validSet7: SET OF CHAR

TYPE

VAR

setType = SET OF CHAR;

objective = RECORD
sign:
row:
priority:
weight:

END;

coefficient =
row:
column:
value:

END;

value = RECORD
priority:
weight:

END;

coefArray =

RECORD

=
=
=
=

[' Y', 'N'] ;
['A' , 'B' , 'C' , 'D' , 'E'] ;
['D', 'C', 'S'];
[' N', 'U'] ;

CHAR;
BYTE;
BYTE;
EXTENDED;

BYTE;
BYTE;
EXTENDED;

BYTE;
EXTENDED;

ARRAY[l .. 500] OF coefficient;

i, j, k, p, ij, c, tprt, nprt,
orig_nprt,ntc,orig_ntc,nrows,
orig_nrows,ncols,nlteration,
nNodEv,nNodGe,nprtl,indxl,indx2: INTEGER;
nvars, npdvs, rown, peal, prow,
nelemty, lcount, ubUpdate,nsources,
ndestns: BYTE;
hrl,hr2,minl,min2,secl,sec2,
hsecl,hsec2:
zmax,lw,ar,elapsed:
temp:
coef, orig_coef:

WORD;
EXTENDED;
REAL;
coefArray;

220

obj:
pw:
pwBasis:
rhs,rhsF,x,y,decn,prty,neg,pos,

ARRAY[O .. 100] OF objective;
ARRAY[l .. 130) OF value;
ARRAY[l .. 70) OF value;

prtyUB,intDecn,intNeg,intPos: ARRAY[l .. 70) OF EXTENDED;
avalue, ElValue: ARRAY[l .. SOO]OF EXTENDED;
OptZjCj: ARRAY[l .. 11, 1 .. 130]0F EXTENDED;
mu,sigma,Lbound,Ubound,Ocost,Ucost: ARRAY[l .. 29] OF REAL;
step: ARRAY[l .. 30) OF REAL;
arow, ElRow: ARRAY[l .. SOO]OF BYTE;
prtyOrder: ARRAY[l .. 10] OF BYTE;
pdevc,basicCol,num,orig_num: ARRAY[l .. 70] OF BYTE;
currentBasic,n,start,position,
ElCount:
csign,decnType,constType:
varChange:
s:
filename:
device:
datafile:
option, answer, inCh, solution,
model Type, demand:
flgl,flg2,flg3,flg4,flg5,flg6,
feasible,integerSoln,keepFlg1,
firstTime:

PROCEDURE PatternSearch;

ARRAY[l .. 400]0F INTEGER;
ARRAY[l .. 70) OF CHAR;
ARRAY[l .. 30) OF CHAR;
STRING;
STRING[lO];
STRING[3];
TEXT; {Sequential file}

CHAR;

BOOLEAN;

FUNCTION UpperCase(inString:STRING):STRING;
PROCEDURE Cursor(OnOff:BOOLEAN);
PROCEDURE lineDraw(lsize:BYTE;lchar:CHAR);
PROCEDURE blank(x,y, l:BYTE);
PROCEDURE drawBox(xupL,yupL,xloR,yloR: INTEGER);
PROCEDURE message(prompt:STRING;action:CHAR; insett:setType;

VAR inCh:CHAR);
FUNCTION inputinteger(xpos,ypos: BYTE;

LoLmt,UpLmt: INTEGER): INTEGER;
FUNCTION inputReal(xpos,ypos:BYTE):EXTENDED;
FUNCTION inputChar(inSet:setType):CHAR;
PROCEDURE lineCount;
PROCEDURE savelnput;
PROCEDURE sortCoef(inTemp:coefArray);

IMPLEMENTATION

{**}
{* PatternSearch *}
{**}

PROCEDURE PatternSearch;

{This procedure applies a modified Hooke and Jeeves procedure to
solve a nonlinear SMLAP. All variables with the prefix of
**** int **** or suffix of **** UB **** refer to the optimum values}

221

VAR
n,maxob,maxss,stoxRow,icount,jcount,ncount: INTEGER;
wPrev,curntValue,delta,q,qq,decnR: ARRAY[l .. 30] OF REAL;
TempPoint,alpha,beta: REAL;
kflag,terminate,better,different,nonLinearRow: BOOLEAN;
acoef: ARRAY[l .. 31, 1 .. 30]0F REAL;

{··}
{ • NormalCDF •}

{··}
PROCEDURE NormalCDF(k:REAL; VAR d,p:REAL);

{This procedure computes the probability that a standard normal random
variable is greater than or equal to k (1-F(k)). It also compute the
ordinate of the normal density at k, f(k). Maximum error is 0.0000007.
The approximation is based on C. Hastings. }

VAR
tempk,w: REAL;

BEGIN
tempk: =ABS (k);
w:=l.0/(l.0+0.2316419*tempk);
d:=0.3989423*EXP(-(tempk*tempk)/2.0);
p:=l.O-d*w*((((l.330274*w-1.821256)*w+l.781478)*w-0.3565638)*w+

0. 3193815);
IF(k>O)THEN p:=l.0-p;

END;

<··}
{* multiObjective *}

{··}
PROCEDURE multiObjective;

VAR
i. j:
lhs:
bj,kj,mag,prob,temp:

BEGIN

INTEGER;
ARRAY [1 .. 30]0F REAL;
REAL;

{ Find left hand side of all rows (constraints) }
FOR i:=l TO nrows DO

BEGIN
lhs[i]:=O.O;
FOR j:=l TO nvars DO

lhs[i]:=lhs[i]+acoef[i,j]*decnR[j];
END;

{ Find left hand side for the nonlinear constraints }

lhs[stoxRow]:=O.O;
n: =1;

FOR j:=l TO ndestns DO
BEGIN

bj:=O.O;
FOR i:= n TO n+nsources-1 DO

bj: =bj+decnR [i];

222

IF(demand='N')THEN { Normal distribution of demands }
BEGIN

kj:=(bj-mu[j])/sigma[j];
NormalCDF(kj,mag,prob);
lhs[stoxRow]:=lhs[stoxRow]+sigma[j]*(Ocosl[j]+Ucost[j])•

(mag-kj*prob)+Ocost[j]*(bj-mu[j]);
END

ELSE { Uniform distribution of demands }
BEGIN

lhs[stoxRow]:=lhs[stoxRow]+l/(2*(Ubound[j]-Lbound[j]))*
((Ocost[j]+Ucost[j])*SQR(bj)+Ocost[j]*SQR(Lbound[j])+
Ucost[j]*SQR(Ubound[j])-2*(0cost[j]*Lbound[j]+Ucost[j]*
Ubound [j]) *bj);

END;
n:=n+nsources;

END;

{ Compute the deviational variables }

FOR i:=l TO nrows DO
BEGIN

temp:=rhs[i]-lhs[i];
IF(temp >=0.0)THEN

BEGIN
neg [i]: =temp;
pos[i]:=O.O;

END
ELSE

END;

BEGIN
pos [i]: =-temp;
neg[i]: =O. O;

END;

{ Calculate the achievement values }

FOR i:=l TO nprt DO
BEGIN

prty[i]:=0.0;
FOR j:=l TO tprt DO

BEGIN
IF(obj[j].priority=i)THEN

BEGIN
IF(obj[j].sign='P')THEN

prty[i]:=prty[i]+pos[obj[j].row]*obj[j].weight
ELSE

prty[i]:=prty[i]+neg[obj[j].row]*obj[j].weight;

END;
END;

END;
INC(niteration);

END;

223

{•···}
{* compare *}

{··}
PROCEDURE compare;

VAR
i' j:

BEGIN
better:=FALSE;
different:=FALSE;
j: =O;
REPEAT

INC(j);

INTEGER;

IF ABS(prty[j] - prtyUB[j]) >= delta[j] THEN
different:=TRUE;

UNTIL(j=nprt)OR(different);
IF(different)AND(prty[j] < prtyUB[j])THEN

BEGIN

END;

better:=TRUE;
FOR i:=l TO nvars DO

intDecn[i]:=decnR[i];
FOR i:= 1 TO nrows DO

BEGIN
intNeg[i]:=neg[i];
intPos[i]:=pos[i];

END;
FOR i:=l TO nprt DO

prtyUB[i]:=prty[i];
END;

{ .. }
{. PatternSearch . }
{ .. }

BEGIN
maxob:=SOO;
maxss:=6;
alpha: =1. O;
beta:=0.5;
niteration:=O;
jcount:=O;
ncount:=O;
kflag: =TRUE;
terminate:=FALSE;

{ Maximum number to evaluate objectives }
{ Maximum number to reduce the step size }

{ Acceleration factor }
{ Step reduction factor }

{ Counter for objective evaluation }
{ Counter for step size reduction }
{ Counter for number of coordinates }

{ Indicates if pattern move is successful }
{ Indicates if convergence criteria is met}

{ Set the error in achievement vector to be reached before an

achievement vector can dominates the upper bound }

FOR i:=l TO nprt DO
delta[i]:=0.1;

224

{ Read the initial starting point. decnR[] is used so it can be
used as a real type variable instead of decn[] which is extended}

FOR i:=l TO nvars DO
decnR[i]:=decn[i];

FOR i:=l TO nrows DO
FOR j:=l TO nvars DO

acoef[i,j]:=O.O;
{ Set nonzero coefficients }

FOR j:=l TO ntc DO
acoef[coef[j].row,coef[j].column]:=coef[j].value;

{ Find the nonlinear constraint row, nonlinear constraint is a row
with a-11 coefficients zero }

i: =O;
REPEAT

nonLinearRow:=TRUE;
INC(i);
j: =O;
REPEAT

INC(j);

{ Indicates if the nonlinear row is found }

IF(acoef[i,j]<>O)THEN nonLinearRow:=FALSE;
UNTIL(NOT nonLinearRow)OR(j=nvars);

UNTIL(nonLinearRow);
stoxRow: =i;
FOR i:=l TO nvars DO

BEGIN
q [i]: =decnR [i];
qq [i] : =decnR [i] ;

END;
multiObjective;
{ Initialize the initial optimal (upper bound) solution }
FOR i:=l TO nvars DO

intDecn[i):=decnR[i];
FOR i:= 1 TO nrows DO

BEGIN
intNeg[i]:=neg[i];
intPos[i]:=pos[i];

END;
FOR i:=l TO nprt DO

BEGIN
wPrev[i]:=prty[i];
prtyUB[i):=prty[i];

END;

{ Start the search }

REPEAT
FOR i:=l TO nprt DO

CurntValue[i]:=prty[i];

{ Establish the search pattern }

icount:=O;
FOR i:=l TO nsources*ndestns DO

IF(varChange[i]='V')THEN
BEGIN

INC (icount);
TempPoint:=decnR[i];
decnR[i]:=decnR[i]+step[i];
mul tiObjective;
compare;
IF (better)THEN

BEGIN
FOR j:=l TO nprt DO

curntValue[j]:=prty[j];
qq [i] : =decnR [i] ;

END
ELSE

225

{ Search the opposite direction of the current coordinate }

BEGIN
decnR[i]:=decnR[i)-2.0*step[i];
IF(decnR[i]<O.O)THEN decnR[i]:=O.O;
multiObjective;
compare;
IF (better)THEN

BEGIN
FOR j:=l TO nprt DO

curntValue[j]:=prty[j];
qq [i] : =decnR [i] ;

END
ELSE

{ Search in current coordinate unsuccessful, backtrack }
BEGIN

INC(ncount, 1);
decnR[i]:=TempPoint;
qq [i] : =decnR [i] ;

END;
END;

END;

{ Test to determine termination of the program }

GOTOXY (1 , 3) ;
WRITE (' Iteration ' , nltera t ion: 4);
GOTOXY (1 , 4) ;
WRITE(' Step Size ' ,step[1]:5:2);

226

IF(nlteration >= maxob)OR(jcount >= maxss)THEN
terminate:=TRUE

ELSE
BEGIN

{ IF search for all axes fail, reduce the step size }

IF(ncount = icount)THEN
BEGIN
{ If search failed due to pattern move, retrack to previous

point }
IF(NOT kflag)THEN

BEGIN
kflag: =TRUE;
FOR i:=l TO nsources•nctestns DO

decnR [i] : :::q [i] ;
END;

{ Reduce the step size }
INC(jcount);
FOR i:= 1 TO nsources•ndestns DO

step[i]:=step[i]*beta;
END

ELSE
{ Perform a pattern move }
FOR i:=l to nvars-nsources DO

BEGIN
decnR[i]:=decnR[i] + alpha•(ctecnR[i]-q[i]); {New point }
IF(decnR[i]<O.O)THEN decnR[i]:=0.0;
q[i]:=qq[i]; { Previous Point }

END;
ncount:=O;
FOR i:=1 TO nprt DO

wPrev[i]:=curntValue[i];
multiObjective;
compare;
IF(NOT better)THEN

kflag: :::FALSE;
{ Pattern move or step size reduction is unsuccessful }

END;
UNTIL(terminate);

END; { End of PatternSearch }

{*************••···}
{ * Uppercase •}
{***•**********}

FUNCTION UpperCase(inString:STRING):STRING;

{ This function returns an uppercase version of the string it receives }

VAR
outString: STRING;

BEGIN
outString :=
FOR i:=l TO LENGTH(inString) DO

BEGIN
outString:=outString + UPCASE(instring[i]);

END;
Uppercase:=outString;

END;

227

{··}
{* Cursor *}

{··}
PROCEDURE Cursor(OnOff:BOOLEAN);

{ This procedure turns the cursor on/off }

VAR
reg: REGISTERS;

BEGIN
IF (OnOff) THEN

IF MEM[0:$449]=7 THEN
reg.CX:=$0COD

ELSE
reg.CX:=$0607

ELSE
reg.CX:=$2000;

reg.AX:=$0100;
INTR($10,reg)

END;

{··}
{* lineDraw *}

{··}
PROCEDURE lineDraw(lsize:BYTE;lchar:CHAR);

{This procedure draws a line of length 'lsize' using character 'lchar' }
VAR

i: BYTE;
BEGIN

FOR i:=l TO lsize DO
WRITE (lchar);

WRITELN;
END;

{**********************************•···································}
{* blank •}

{•···}
PROCEDURE blank(x,y, l:BYTE);

VAR
i: BYTE;

{ This procedure blanks a specified entry }

BEGIN
GOTOXY(x, y);
FOR i:=l TO 1 DO

WRITE(' ');
GOTOXY(x, y);

END;

228

{··}
{ • drawBox •}

{··}
PROCEDURE drawBox(xupL,yupL,xloR,yloR: INTEGER);

{ This procedure draws a box on the screen }

CONST
upLcor=#201;
loLcor=#200;
loRcor=#188;
upRcor=#187;
horizl=#205;
vertil=#186;

BEGIN
GOTOXY(xupL,yupL);
WRITE (upLcor);
j: =xloR-xupL-1;
FOR i:=l TO j DO

WRITE(horizl);
WRITE (upRcor);
FOR i:=yupL+l TO yloR-1 DO

BEGIN
GOTOXY (xloR, i);
WRITE(vertil);
GOTOXY(xupL, i);
WRITE(vertil);

END;
GOTOXY(xupL,yloR);
WRITE (loLcor);
FOR i:=l TO j DO

WRITE(horizl);
WRITE (loRcor);

END;

{ Upper left corner }
{ Lower left corner }

{ Lower right corner }
{ Upper right corner }

{ Draw the top line }

{ Draw the bottom line }

{***•····························}
{ * message *}

{··}
PROCEDURE message(prompt:

action:
STRING;
CHAR;

insett:
VAR inCh:

set Type;
CHAR);

229

{ This procedure displays a given prompt on the last line of screen }

BEGIN
WINDOW(l, 1,80,25);
TEXTBACKGROUND(7);
TEXTCOLOR (4) ;
GOTOXY(2, 25);
WRITE(prompt);
CASE action OF

'O':
BEGIN

{ Light gray }
{ Red }

TEXTCOLOR(O); { Black }
GOTOXY(50,25);
WRITE('Press any Key to Continue ... ');
answer::::::READKEY;
GOTOXY(1, 25);
CLREOL; { Clear the message }

END;
• 1' :

BEGIN
inCh::::::inputChar(insett);
GOTOXY (1 , 25) ;
CLREOL;

END;
, 2':

BEGIN
WRITE (be 11) ;
DELAY (1000) ;
GOTOXY (1 , 25) ;
CLREOL;

END;
, 3':

BEGIN
GOTOXY (1, 25) ;

{ Clear the message }

{ Delay 1 Second }

{ Clear the message }

CLREOL; { Clear the message }
END;

{ If '4', It only displays the prompt without erasing it }
END;

TEXTBACKGROUND(l);
TEXTCOLOR (14) ;

END;

{ Blue }
{ Yellow }

{**}
{* inputlnteger *}
{**}

FUNCTION inputinteger(xpos,ypos: BYTE;
LoLmt,UpLmt: INTEGER): INTEGER;

{ This function accepts a valid integer number }

VAR
temp:
templnteger,code:
CkRange:

BEGIN
GOTOXY(xpos,ypos);
REPEAT

CkRange:=TRUE;
READLN (temp) ;

STRING[30];
INTEGER;
BOOLEAN;

230

{ inputlnteger }

VAL(temp,templnteger,code);
IF(LENGTH(temp)=O)THEN { Enter has been pressed }

BEGIN
inputlnteger: =O;
code:=O;

END;
IF(code = O)THEN

IF((templnteger < LoLmt)OR(templnteger
CkRange:=FALSE;

IF((code<>O)OR(CkRange=FALSE))THEN
BEGIN

{ Check the range }
> UpLmt))THEN

message(' Data Out of Range ', '2' ,validSet4,answer);
blank(xpos,ypos,LENGTH(temp));

END;
UNTIL ((code=O)AND(CkRange));
inputlnteger:=templnteger;

END; { inputlnteger }

{··}
{* inputReal *}

{•···}
FUNCTION inputReal(xpos,ypos:BYTE):EXTENDED;

{ This function accepts a valid real number }

VAR
temp:
tempReal:
code:

STRING[20];
EXTENDED;
INTEGER;

BEGIN
REPEAT

REPEAT
GOTOXY(xpos,ypos);
READLN (temp);

UNTIL(LENGTH(temp) > O);
VAL(temp,tempReal,code);
IF(code<>O)THEN

BEGIN

{ inputReal }

{ Do not except Enter }

WRITE (bel 1);
blank(xpos,ypos,LENGTH(temp));

END;
UNTIL (code=O);
inputReal:=tempReal;

END;

231

{ inputReal }

{··}
{* inputChar *}
{**}

FUNCTION inputChar(inSet:setType):CHAR;

{ This function accepts a valid character }

VAR
ansr,ansr2: CHAR;

BEGIN
REPEAT

ansr:=UPCASE(READKEY);

{ If a key with extended code (Function Keys, Arrows,
Ctl-,Alt-) has been pressed, discard the seconq character }

IF(ansr=#O)THEN ansr2:=READKEY;

IF NOT(ansr IN inSet)THEN
WR I TE (be 11) ;

UNTIL(ansr IN inSet);

WRITE (ansr);
inputChar:=ansr;

END;

{ Echo back the input }

{**}
{* lineCount *}
{**}

PROCEDURE lineCount;

{ This procedure stops the screen from scrolling }

BEGIN
INC (lcount);
IF(lcount>20)THEN

END;

BEGIN
lcount:=O;
message('', 'O' ,validSet4, inCh);
WINDOW(3,2,48,23);
GOTOXY (1 , 22) ;

END;

232

{··}
{* savelnput *}
{***••·························}

PROCEDURE saveinput;
BEGIN

{ Save necessary input information which may be altered by integer
routine }

orig_ntc:=ntc;
orig_nprl:=nprt;
orig_nrows:=nrows;
FOR i:=l TO ntc DO

orig_coef[i]:=coef[i];
FOR i:=l TO nvars DO

orig_num[i]:=num[i];
END;

{**}
{* sortCoef *}

{··}
PROCEDURE sortCoef(inTemp:coefArray);

BEGIN

{ Sorts the information columnwise if they were entered rowwise. Also,
finds number of coefficients (decision variable) in each column }

c:=O;
k:=O;
FOR j:=l TO nvars DO

BEGIN
FOR i:=l TO ntc DO

BEGIN
IF (inTemp[i].column = j) THEN

BEGIN
INC(c, 1); {Counter for dee. variable in column j}
INC(k, 1);

END;
END.

coef[k] := inTemp(i];
END;

END;
num[j]:=c;
c:=O;

END;

{ smlautil }

UNIT dbasUtil;

INTERFACE

USES CRT,DOS,PRINTER,smlaUtil;
PROCEDURE CreateDataBase;
PROCEDURE LoadDataBase;
PROCEDURE SaveDataBase;
PROCEDURE DisplayDataBase;
PROCEDURE OutputResult;
PROCEDURE FinalZjCj;
PROCEDURE SensiAnaly;

IMPLEMENTATION

233

{**}
{* NinvCDF *}
{**}

PROCEDURE NinvCDF(mu,sigma,ccprob: REAL; VAR ccRhs: REAL);

{ This procedure computes the inverse cumulative distribution
function of a random variable Z, distributed normally with mean
zero and variance one. ie. Z=F**(-l)(prob). }

VAR
tempProb,w,w2,z:

BEGIN
tempProb:=ccProb;

REAL;

IF(tempProb > O.S)THEN tempProb:=l.0-tempProb;
w2:=LN(l.O/SQR(tempProb));
w:=SQRT(w2);
{ Z value for unit normal distribution }
z:=w-(2.515517+0.802853*w+0.010328*w2)/

(1.0+1.432788*w+O. 189269*w2+0.001308*w*w2);
IF(ccProb<=O.S)THEN z:=-z;

{ Find corresponding x value for the given normal distribution }

ccRhs:=mu+z*sigma;
IF(FRAC(ccRhs) > O.OOl)THEN

ccRhs:=INT(ccRhs+l.O)
ELSE

ccRhs:=INT(ccRhs);
END;

{**}
{* UinvCDF *}
{**}

PROCEDURE UinvCDF(Lbound,Ubound,ccProb: REAL; VAR ccRhs: REAL);

{ This procedure computes the inverse probability function of a
random variable distributed uniformly between Lbound and Ubound.

BEGIN
ccRhs:=(Ubound-Lbound)*ccProb + Lbound;
IF(FRAC(ccRhs) > 0. 001)THEN

ccRhs:=INT(ccRhs+l.0)
ELSE

ccRhs:=INT(ccRhs);
END;

234

{··}
{* CreateDataBase *}

{•···}
PROCEDURE CreateDataBase;

CONST
f = #196;

VAR
{ ASCII Character for - }

xl,x2,x3,x4,x5,x6,x7,x8,x9,x10,xll,
yl,y2,y3,y4,y5,y6,y7,y8,y9,yl0,yll: BYTE;

{··}
{* Stochastic *}

{··}
PROCEDURE Stochastic;

BEGIN

{ Input rhs values

FOR i:= 1 TO nrows DO
BEGIN

constType[i]:='D';
b 1 ank (x8, y8, 18) ;
GOTOXY(6, 18);
WRITE ('RHS for Constraint ',i:2,' '+f+f+Cfffi(16)+' ');
REPEAT

rhs[i]:=inputReal(x8,y8);
IF(rhs[i)<O)THEN

BEGIN

{ Input the rhs }

message('RHS Must be>= O', '2' ,validSet4,answer);
blank(x8, y8, 18);

END;
UNTIL (rhs[i] >= O);

END;
{ Input number of sources and destinations }
REPEAT

nsources:=inputinteger(x9,y9, 1,29);
ndestns:=inputinteger(xlO,ylO, 1,29);
IF((nsources*ndestns+nsources)>30)THEN

BEGIN
message('Problem is Too Big ... ', '2' ,validSet4,answer);

235

STR(nsources,s);
blank(x9,y9,LENGTH(s));
STR(ndestns, s);
blank(xlO,ylO,LENGTH(s));

END;
UNTIL(nsources*ndestns+nsources <= 30);
GOTOXY(xll,yll);
demand:=inputChar(validSet7);

{ Input the demand parameters }

FOR i:=l TO ndestns DO
BEGIN

blank(xl,yl, 15);
blank (x2, y2, 15);
CASE demand of

'N':
BEGIN

GOTOXY(6, 22);
WRITE('Destination ',i:2,' Mean '+f+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
GOTOXY(6, 23);
WRITE('Destination ',i:2,' S.D. '+f+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
mu[i]:=inputReal(xl,yl);
sigma[i]:=inputReal(x2,y2);

END;
'U':

BEGIN
GOTOXY (6, 22) ;
WRITE('Destination ', i:2,' Lower Bound '+f+CHR(l6)+' ');
xl:=WHEREX;yl:=WHEREy;
GOTOXY(6, 23);
WRITE('Destination ',i:2,' Upper Bound '+f+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
REPEAT

REPEAT
Lbound[i]:=inputReal(xl,yl);
IF(Lbound[i]<O.O)THEN

BEGIN
message(' Lower Bound Must be>= 0 ', '2' ,validSet4,

answer);
blank(xl,yl, 15);

END;
UNTIL(Lbound[i]>=O);
REPEAT

Ubound[i]:=inputReal(x2,y2);
IF(Ubound[i]<O.O)THEN

BEGIN
message('Upper Bound Must be>= 0 ', '2' ,validSet4,

answer);
blank(x2,y2,15);

END;

UNTIL(Ubound[i]>=O);
IF(Lbound[i]>=Ubound[i])THEN

BEGIN
message(' Lower Bound Must b~ <Upper Bound ', '2',

validSet4,answer);
b 1 ank (x 1 , y l , 15) ;
blank(x2, y2, 15);

END;
UNTIL(Lbound[~] < Ubound[i]);

END;
END;

END;
{ input penalty costs }
WINDOW(2, 19,50,23);
CLRSCR;
WINDOW(l, 1,80,25);
FOR i:= 1 TO ndestns DO

BEGIN
b 1 ank (x 1 , y 1 , 12) ;
blank (x2, y2, 12);
GOTOXY(6, 20);
WRITE('Oversupply Cost at Destn. ',i:Z,' '+f+Clffi(16)+' ');
xl:=WHEREX;yl:=WHEREY;
GOTOXY(6, 21);
WRITE('Undersupply Cost at Destn. ', i: 2,' '+f+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
REPEAT

Ocost[i]:=inputReal(xl,yl);
IF(Ocost[i]<O)THEN

BEGIN
message('Cost Must be Nonnegative ... ', '2' ,validSet4,

answer);
blank(xl,yl, 12);

END;
UNTIL(Ocost[i]>=0.0);
REPEAT

Ucost[i]:=inputReal(x2,y2);
IF(Ucost[i]<O)THEN

BEGIN
message('Cost Must be Nonnegative ... ', '2' ,validSet4,

answer);
blank (x2, y2, 12);

END;
UNTIL(Ucost[i]>=O.O);

END;

{ Initialize all decision variables to zero }
FOR i:=l TO (nsources*ndestns)+nsources DO

BEGIN
decn[i]:=O.O;
varChange[i]:='F';

END;

236

{ Input the index of open sources }
GOTOXY(6, 22);
WRITE(' Index for an Open Source '+f+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
REPEAT

i:=inputinteger(xl,yl, 1,nsources);
decn[(nsources*ndestns)+i]:=l.O;
message('More Open Sources? (YIN) -'+CHR(16)+' ',' 1' ,validSet4,

answer);
IF(answer='Y')THEN

blank(xl,yl,2);
UNTIL(answer='N');

{ Input the allocation variables }
FOR i:=l TO nsources DO

END;

BEGIN
FOR j:=l TO ndestns DO

BEGIN
IF(decn[(nsources*ndestns)+i]=l.O) THEN

BEGIN
varChange[(j-l)*nsources+i]:='V';
GOTOXY (16, 23) ;
WRITE('ENTER X(', i:2,j:2,') '+f+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
REPEAT

temp:=inputReal(xl,yl);
IF(temp<O.O)THEN

BEGIN
message(' Allocations Must be Nonnegative

'2' ,validSet4,answer); ·
STR(temp, s);
blank(xl,yl,LENGTH(s));

END;
UNTIL(temp>=0.0);
decn[(j-l)*nsources+i]:=temp;
STR(temp, s);
blank(xl,yl,LENGTH(s));

END;
END;

END;

237

{··}
{* ChanceConst *}

{··}
PROCEDURE ChanceConst(i: INTEGER);

{ This procedure accepts RHS information for chance-Const. formulation }

VAR
mu, sigma, serviceLvl, rhsTemp,
Lbound,Ubound: REAL;

ansr:
x1,yl,x2,y2,x3,y3,x4,y4:

BEGIN
GOTOXY (6, 1 9) ;

CHAR;
BYTE;

WRITE('#',i:2,' Probabilistic (Y/N) '+f+CHR(16)+' ');
ansr:=inputChar(validSet4);

238

IF(ansr='N')THEN { Deterministic constraint }
BEGIN

GOTOXY(6, 20);
WRITE ('RHS for Constraint' ,i:2,' '+f+f+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
REPEAT

rhs[i):=inputReal(xl,yl); { Input the rhs }
IF(rhs[i]<O)THEN

BEGIN
message('RHS Must be>= 0 ', '2' ,validSet4,answer);
b 1 ank (x 1 , y 1 , 18) ;

END;
UNTIL (rhs[i] >= O);

END
ELSE { Probabilistic constraint }

BEGIN
GOTOXY (6, 20) ;
WRITE('Normal or Uniform (N/U) '+f+CHR(16)+' ');
ansr:=inputChar(validSet7);
GOTOXY (10, 21);
WRITE('Enter Service Level '+f+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
IF(ansr='N')THEN { Normal }

BEGIN
GOTOXY (10, 22) ;
WRITE(' Enter Mean '+f+f+f+f+f+f+f+f+f+f+CHR(16)+' ');
x3:=WHEREX;y3:=WHEREY;
GOTOXY (10, 23) ;
WRITE('Standard Deviation '+f+f+CHR(16)+' ');
x4:=WHEREX;y4:=WHEREY;

END
ELSE { Uniform }

BEGIN
GOTOXY (10, 22) ;
WRITE('Enter Lower Bound '+f+f+f+CHR(16)+' ');
x3:=WHEREX;y3:=WHEREY;
GOTOXY(10, 23);
WRITE('Enter Upper Bound '+f+f+f+CHR(16)+' ');
x4:=WHEREX;y4:=WHEREY;

END;
{ Input the service level probability }
REPEAT

serviceLvl:=inputReal(x2,y2);
IF(serviceLvl<O.O)OR(serviceLvl>l.O)THEN

BEGIN
message('Service Level Must be Between 0 and 1 •, '2',

validSet4,answer);
blank (x2, y2, 18);

END;
UNTIL(serviceLvl>=O.O)AND(serviceLvl<=l.0);

{ Read parameters for normal distribution }

239

IF(ansr='N')THEN { Normal }
BEGIN

constType[i]:='N';
IF(serviceLvl=O.O)THEN serviceLvl:=0.001;
IF(serviceLvl=l.O)THEN serviceLvl:=0.999;
REPEAT

mu:=inputReal(x3,y3);
sigma:=inputReal(x4,y4);
NinvCDF(mu,sigma,serviceLvl,rhsTemp);
IF(rhsTemp<=O)THEN

BEGIN
message(' Invalid Parameters - Enter Again', '2',

validSet4,answer);
STR(mu, s);
blank(x3,y3,LENGTH(s));
STR (sigma, s) ;
blank(x4,y4,LENGTH(s));

END;
UNTIL(rhsTemp>0.0);
rhs[i]:=rhsTemp;

END;

{ Read parameters for uniform distribution }

IF(ansr=' U')THEN
BEGIN

constType[i]:='U';
REPEAT

REPEAT
Lbound:=inputReal(x3,y3);
IF(Lbound<O.O)THEN

BEGIN

{ Uniform }

message('Lower Bound Must be>= 0 ', '2' ,validSet4,
answer);

blank(x3,y3, 18);
END;

UNTIL(Lbound>=O);
REPEAT

Ubound:=inputReal(x4,y4);
IF(Ubound<O.O)THEN

BEGIN
message('Upper Bound Must be>= 0 ', '2' ,validSet4,

answer);
blank (x4, y4, 18);

END;
UNTIL(Ubound>=O);

END;

IF(Lbound>=Ubound)THEN
BEGIN

message('Lower Bound Must be <Upper Bound ', '2',
validSet4,answer);

blank(x3, y3, 18);
blank (x4, y4, 18);

END;
UNTIL(Lbound < Ubound);
UinvCDF(Lbound,Ubound,serviceLvl,rhsTemp);
rhs[i]:=rhsTemp;

END;

blank (x8, y8, 1);
blank (:X:9, y9, 1);
WINDOW(2,20,50,23);
CLRSCR;

240

WINDOW(l,1,80,25);
END; { End of ChanceConst }

{··}
{ • inputDa ta •}

{•···}
PROCEDURE inputData;

LABEL a,b,c,d;
VAR

s:
temp:
nnrows:

BEGIN
{ Set up the input entry display }

GOTOXY(3, 3);
TEXTCOLOR (10) ;

STRING;
coefArray;
BYTE;

WRITELN ('SET 1 - PRIORITY STRUCTURE:');
GOTOXY (3, 10) ;
WRITELN ('SET 2 - TECHNOLOGICAL COEFFICIENTS:');
GOTOXY(3, 16);
WRITELN ('SET 3 - CONSTRAINTS SIGN AND RHS VALUES:');
TEXTCOLOR (14) ;

{ Information for the priority structure }

GOTOXY(6, 5);
WRITE ('Sign "P" or "N" '+CHR(196)+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
GOTOXY(6, 6);
WRITE('Row Number '+f+f+f+f+f+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
GOTOXY (6, 7) ;
WRITE ('Priority '+f+f+f+f+f+f+f+CHR(16)+' ');
x3:=WHEREX;y3:=WHEREY;

{ inputData }

GOTOXY (6, 8) ;
WRITE ('Weight '+f+f+f+f+f+f+f+f+f+CHR(16)+' ');
x4:=WHEREX;y4:=WHEREY;

{ Information for the technological coefficients }

GOTOXY(6, 12);
WRITE ('Row Number '+f+f+f+f+f+CHR(16)+' ');
xS:=WHEREX;yS:=WHEREY;
GOTOXY(6, 13);
WRITE ('Column Number '+f+f+CHR(16)+' ');
x6:=WHEREX;y6:=WHEREY;
GOTOXY (6, 14) ;
WRITE ('Coefficient '+f+f+f+f+CHR(16)+' ');
x7:=WHEREX;y7:=WHEREY;

{ Information for the constraints sign and rhs values }

CASE modelType OF

241

'D': { Deterministic }
BEGIN

GOTOXY (6, 18) ;
WRITE ('Sign for Constraint 1 '+f+f+CHR(16)+' ');
x8:=WHEREX;y8:=WHEREY;
GOTOXY (6, 1 9) ;
WRITE('RHS for Constraint 1 '+f+f+CHR(16)+' ');
x9:=WHEREX;y9:=WHEREY;

END;
'C': { Chance-constrained }

BEGIN
GOTOXY (6, 18) ;
WRITE ('Sign for Constraint 1 '+f+f+CHR(16)+' ');
x8:=WHEREX;y8:=WHEREY;
GOTOXY (6, 1 9) ;
WRITE('# 1 Probabilistic (YIN) '+f+CHR(16)+' ');
x9:=WHEREX;y9:=WHEREY;

END;
·s·: { Stochastic }

BEGIN
GOTOXY (6, 18) ;
WRITE('RHS for Constraint 1 '+f+f+CHR(16)+' ');
x8:=WHEREX;y8:=WHEREY;
GOTOXY (6, 1 9) ;
WRITE(' Number of Sources '+f+f+f+f+f+f+f+CHR(16)+' ');
x9:=WHEREX;y9:=WHEREY;
GOTOXY(6, 20);
WRITE('Number of Destinations '+f+f+CHR(16)+' ');
xlO:=WHEREX;YlO:=WHEREY;
GOTOXY(6, 21);
WRITE(' Normal or Uniform Demands (N/U) '+f+CHR(16)+' ');
xll:=WHEREX;yll:=WHEREY;

END;
END;

242

{ Start reading the information }

{ Input the achievement function. Read in the sign, row, priority,
and weight of deviational variables in the objective function.
Also, compute total number of priorities present. }

a: nprt : = O;
tprt := O;
nnrows:=O;

b: GOTOXY(xl, yl);
INC(tprt,1);
WITH obj[tprt] DO

BEGIN
sign := inputChar(validSetl);
IF(sign <> enter) THEN

BEGIN

{ Input the achievement sign }
{ Increment tprt by 1 }

row:=inputinteger(x2,y2,l,30); { Input the row number}

END;

IF(row > nnrows)THEN nnrows:=row;
{ Input priority number }
priority:=inputinteger(x3,y3, 1, 10);
REPEAT

weight:=inputReal(x4,y4); { Input the weight }
IF(weight <= O)THEN

BEGIN
message('Weight Must be > 0 ', '2' ,validSet4,answer);
STR(weight, s);
blank(x4,y4,LENGTH(s));

END;
UNTIL (weight>O.O);
IF (priority> nprt) THEN nprt:=priority;
blank(xl,yl, l);
STR (row, s) ;
blank(x2,y2,LENGTH(s));
STR(priority, s);
blank(x3,y3,LENGTH(s));
STR(weight,s);
blank(x4,y4,LENGTH(s));
GOTO b; { Read the next priority }

END;

DEC (tprt, 1); { Decrement tprt by 1 }
IF (nprt = 0) THEN

BEGIN
message('Number of priorities must be> O', 'O' ,validSet4,

inCh);
GOTO a;

END;

{ Input the technological coefficients- (row, column, value).
Also, calculate number of rows and decision variables. }

243

c: ntc: = O;
nvars:= O;
nrows:= O;

d: INC (ntc, 1);
WITH temp[ntc] DO

BEGIN
row:=inputinteger(xS,yS,0,30);
WHILE (row <> 0) DO

BEGIN
{ Input the column number }
column:=inputinteger(x6,y6, 1,30);
REPEAT

value:=inputReal(x7,y7);
IF(value = O)THEN

BEGIN

{ Input the row number }

{ Input the value }

message('Value Must be> 0 ', '2' ,validSet4,answer);
blank (x7, y7, 1);

END;
UNTIL (value<>O.O);
IF (column> nvars) THEN nvars :=column;
IF (row> nrows) THEN nrows :=row;
STR (row, s) ;
blank(xS,yS,LENGTH(s));
STR (column, s);
blank(x6,y6,LENGTH(s));
STR(value, s);
blank(x7,y7,LENGTH(s));
GOTO d; { Read the next coefficient }

END;
blank(x5,y5, l); { Clear the 0 if it was used instead of return}

END;
DEC (ntc, 1);
IF (ntc = 0) THEN

BEGIN
message('Number of Variables Must be> 0 ', 'O' ,validSet4, inCh);
GOTO c;

END;

{ The following is true for stochastic models when the nonlinear
constraint is the last row }

IF(nnrows>nrows)THEN nrows:=nnrows;

{ Sort the information columnwise if they were entered rowwise.
Also, find number of coefficients (decision variables) in each
column }

sor tCoef (temp);

{ Input the sign for each constraint:

E - System (rigid) equality constraints

G - System > = constraints
L - System < = constraints
B - Goal constraints }

IF(modelType='S')THEN
Stochastic

ELSE
BEGIN

FOR i:= 1 TO nrows DO
BEGIN

constType[i]:='D';
GOTOXY (6, 18) ;
WRITE ('Sign for Constraint ',i:2,' '+f+f+CHR(16)+' ');

244

GOTOXY(x8,y8); { Input the constraint sign }

END;

csign[i] := inputChar(validSet2);

{ Input the rhs for each constraint }

CASE modelType OF
• D':

BEGIN
GOTOXY (6 , 1 9) ;
WRITE ('RHS for Constraint ', i:2,' '+f+f+CHR(16)+

, ') ;

REPEAT
rhs[i]:=inputReal(x9,y9);
IF(rhs [i] <O)THEN
BEGIN

{ Input the rhs }

message('RHS Must be>= O', '2' ,validSet4,ans~er);
blank (x9, y9, 18);

END;
UNTIL (rhs[i] >= O);
blank (x8, y8, 1);
blank (x9, y9, 18);

END;
·c·:

END;

{ Call chance-constrained routine for input }
ChanceCons t (i) ;

END;
END;

{ End of inputData }

{ .. }
{. CreateDataBase . }
{ .. }

BEGIN

TEXTCOLOR (11) ;
drawBox(l, 1,80,24);
GOTOXY(30, 1);
WR ITELN (' CREATE A NEW MODEL ') ;

{ CreateDataBase }

GOTOXY (51 , 2) ;
CASE modelType OF

'D': WRITELN('Type: Deterministic');
'C': WRITELN{'Type: Chance-Constrained');
'S': WRITELN{'Type: Stochastic');

END;
TEXTCOLOR { 14) ;

{ Open up the help window }

TEXTBACKGROUND{ll);
drawbox{51,4, 74,22);
GOTOXY(59, 4);
WRITELN (' HELP ') ;
window(52,5,73,21);
CLRSCR;

1') ;
TEXTCOLOR (0) ;
WRITELN(' SET
WRITELN(' 0
WRITELN(' 0
WRITELN(' 0
WRITELN;
WRITELN('
WRITELN('
WRITELN('
WRITELN('
WRITELN;

< Row '+CHR(243)+' 30');
<Priority '+CHR(243)+' 10');
< Weight');

SET 2');
0 < Row '+CHR(243)+' 30');
0 <Variable '+CHR(243)+' 30');
0 < Coefficient');

WRITELN(' SET 3');
IF(modelType<>'S')THEN

BEGIN
WRITELN('
WRITELN('
WRITELN('
WRITELN('
WRITELN('

END;

Sign') ;
E
G
L
B

=') ;
'+CHR(242));
'+CHR{243));
GOAL') ;

WRITE(' RHS '+CHR(242),' O') ;
IF{modelType='S')THEN

BEGIN
WRITELN;
WRITELN(' Sources*Destinations');
WRITELN(' +Sources '+CHR(242),' O');

END;

{ End of the help window }

245

WINDOW(l,1,80,25);
TEXTBACKGROUND(l);
TEXTCOLOR (14) ;
inputData;
save Input;

{ Get all the input data }
{ Save the original data }

flg3: =TRUE;
message {'Save This Model? (Y/N) -'+CHR{16), 'l' ,validSet4,answer);

IF(answer='Y')THEN
SaveDataBase

ELSE
filename:='Test';

246

END; { CreateDataBase }

{··}
{* LoadDataBase *}

{··}
PROCEDURE LoadDataBase;

BEGIN
flgS: =FALSE;
ASSIGN (datafile,
cursor (FALSE);

{ LoadDataBase }
{ Indicates if the current load is successful }

filename); { Identify the file's name on disk }

message('Loading File '+filename+' •, '4' ,validSet4, inch);

{ Check if the file exist }

{$I-}
APPEND(datafile);
{$I+}
IF(IORESULT <> O)THEN

BEGIN
cursor (TRUE);
message('•, '3' ,validSet4,inch);
message('File does not exist', 'O' ,validSet4, inCh);
EXIT;

END
ELSE

CLOSE (datafile);
RESET (datafile);
READLN(datafile,modelType);
READLN(datafile, tprt, nprt);

{ File exist }
{ Open the file for reading }

FOR i:=l TO tprt DO
WITH obj [i] DO

READLN(datafile, sign, row, priority, weight);
READLN(datafile, ntc, nvars, nrows);
FOR i:= 1 TO ntc DO

WITH coef [i] DO
READLN(datafile, row, column, value);

IF(modelType<>'S')THEN
BEGIN

FOR i:=l TO nrows DO
READLN (datafile, csign [i], constType [i], rhs [i]) ;

FOR i:=l TO nvars DO

END
ELSE

BEGIN

READLN(datafile, num[i]);

FOR i:=l TO nrows DO
READLN(datafile,constType[i],rhs[i]);

{ Stochastic model }

{*

247

READLN(datafile,demand,nsources,ndestns);
FOR i::l TO ndestns DO

BEGIN
IF(demand:'N')THEN

READLN(datafile,mu[i],sigma[i],Ocost[i],Ucost[i])
ELSE

READLN(datafile,Lbound[i],Ubound[i),Ocost[i],Ucost[i]);
END;

FOR i::l TO (nsources*ndestns)+nsources DO
READLN(datafile,varChange[i], decn[i]);

END;
CLOSE (datafile);
message('', '3' ,validSet4,inch);
cursor (TRUE);
save Input;
flg3: :TRUE;
flg5: :TRUE;

{ Save the original data }

END; { End of LoadDataBase }

SaveDataBase *}
{**}

PROCEDURE SaveDataBase;
VAR

rightFile:
xlO,ylO:

BEGIN
GOTOXY(3, 23);

BOOLEAN;
BYTE;

WRITE ('Enter the output file name -'+CHR(16)+' ');
xlO::WHEREX;ylO::WHEREY;
rightFile::FALSE;
REPEAT

READLN (filename);
ASSIGN (datafile, filename);
cursor (FALSE);
message('Saving File '+filename+' ', '4' ,validSet4, inch);

{ Check if the file exist }

{$I-}
APPEND(datafile);
{$I+}
IF(IORESULT <> O)THEN { File does not exist }

rightFile::TRUE
ELSE

BEGIN
CLOSE (datafile);
cursor (TRUE);
message('File Already Exist '+

Overwrite (YIN) -'+
CHR(16)+' ',' 1' ,validSet4,answer); ·

IF(answer='N')THEN
blank(xlO,ylO,LENGTH(filename))

ELSE
BEGIN

248

message('Saving File '+filename+' ','4',validSet4,
inch);

rightFile:=TRUE;
cursor (FALSE);

END;
END;

UNTIL rightFile;

{ Write all the information into the file }

{$!-}
REWRITE (datafile); { create the output data file }
{$!+}
IF (IORESULT <>0) THEN

BEGIN
WRITE (bel 1);
message('', '3' ,validSet4, inch);
message('Can not Open File', 'O' ,validSet4, inCh);
cursor (TRUE);
EXIT;

END;
WRITELN(datafile,modelType);
WRITELN(datafile, tprt, ' ' nprt);
FOR i:= 1 TO tprt DO

WITH obj [i] DO
BEGIN

WRITELN (datafile, sign,' ',row,' ',priority,' ',weight);
END;

WRITELN (datafile,ntc,' ',nvars,' ',nrows);
FOR i:= 1 TO ntc DO

WITH coef [i] DO
BEGIN

WRITELN (datafile, row,' ',column,' ',value);
END;

IF(modelType<>'S')THEN
BEGIN

FOR i:= 1 TO nrows DO
WRITELN(datafile, csign[i],constType[i],' ',rhs[i]);

FOR i:=l TO nvars DO

END
ELSE

BEGIN

WRITELN(datafile, num[i]);

FOR i:=l TO nrows DO
WRITELN (datafile, constType [i], ' ' , rhs [i]) ;

WRITELN(datafile,demand,' ',nsources,' ',ndestns);
FOR i:=l TO ndestns DO

BEGIN
IF(demand='N')THEN

WRITELN(datafile,mu[i],' ', sigma[i],' ',Ocost[i],' '
Ucost(i])

ELSE

249

WRITELN(datafile,Lbound[i],' ',Ubound[i],' ',Ocost[i],' '
Ucost [i]);

END;
FOR i:=l TO (nsources*ndestns)+nsources DO

WRITELN (datafile, varChange [i], ' ' , decn [i]) ;
END;

CLOSE (datafile);
message('', '3' ,validSet4, inch); {Clear the message from last line}
cursor (TRUE);

END;

{··}
{* DisplayDataBase *}

{··}
PROCEDURE DisplayDataBase;

BEGIN
TEXTBACKGROUND(ll);
IF(modelType<>'S')THEN

BEGIN
drawBox(49,5,73, 16);
WINDOW(S0,6, 72, 15);

END
ELSE

BEGIN
drawBox(49,5,73, 19);
WINDOW(S0,6,72, 18);

END;
CLRSCR;
TEXTCOLOR (0) ;
WRITELN(' INPUT SUMMARY');
WRITELN;
WRITELN(' #of Priorities ... ' ,nprt:3);
WRITELN(' #of Rows ' ,nrows:3);
WRITELN(' #of Variables ' ,nvars:3);
WRITELN(' #of Tech. Coeff .. ',ntc:3);
IF(modelType='S')THEN

BEGIN
WRITELN(' #of Sources ' ,nsources:3);
WRITELN(' #of Destinations.' ,ndestns:3);
WRITELN(' Demand Distribution:' ,demand);

END;
WRITELN;
WRITELN(' Current Model '+CHR(26)+' ',filename);
CASE modelType OF

'D': WRITELN(' Type: Deterministic');
'C': WRITELN(' Type: Chance-Const.');
'S': WRITELN(' Type: Stochastic');

END;

{ Black }

WINDOW(3,2,48,23);
TEXTCOLOR (14) ;
TEXTBACK.GROUND(l);
WRITELN('ACHIEVEMENT FUNCTION:');
lineDraw(21,CHR(196)};
WRITELN('SIGN ROW PRIORITY WEIGHT');
lcount:=3;
FOR i:= 1 TO tprt DO

WITH obj [i] DO
BEGIN

WRITELN(sign:2,row:7,priority:9,weight: 11:2);
lineCount;

END;
WRITELN;lineCount;
WRITELN('TECHNOLOGICAL COEFFICIENTS:'); lineCount;
lineDraw(27,CHR(196)};lineCount;
WRITELN ('ROW COLUMN VALUE');lineCount;
FOR i:= 1 TO ntc DO

WITH coef[i] DO
BEGIN

WRITELN(row:2,column:7,value: 12:2);
lineCount;

END;
WRITELN;
lineCount;
WRITELN('RIGHT HAND SIDE:');
lineCount;
lineDraw(l6,CHR(196));
lineCount;
IF (modelType<>'S' }THEN

BEGIN
WRITELN('ROW SIGN
lineCount;
FOR i:= 1 TO nrows DO

BEGIN

VALUE TYPE') ;

250

WRITELN(i:2,csign[i]:7,rhs[i]: 12:2,' ' , constType [i]};

END
ELSE

lineCount;
END;

BEGIN
WRITELN('ROW TYPE
lineCount;
FOR i:=l TO nrows DO

BEGIN

VALUE'};

WRITELN(i:2,constType[i]:7,rhs[i]: 12:2);
lineCount;

END;
WRITELN;lineCount;
IF(demand='N')THEN

WRITELN('Dest. Mean S.D. Over S. Cost Under S. Cost')
ELSE

WRITELN('Dest. Lbound Ubound Oversup. $ Undersup. $');

lineCount;
FOR i:=l TO ndestns DO

BEGIN
IF(demand='N')THEN

WRITELN(i:2,mu[i]:8:2,sigma[i]:7:2,0cost[i]:9:2,
Ucost[i]:15:2)

ELSE
WRITELN(i:2,Lbound[i]:9:2,Ubound[i]:9:2,0cost[i]:9:2,

Ucost[i]: 12:2);
lineCount;

END;
WRITELN;lineCount;
WRITELN('STARTING SOLUTION:');lineCount;
lineDraw(18,CHR(196));lineCount;
WRITELN('Variable Value Fixed/Variable'); lineCount;
FOR i:=l TO nsources DO

FOR j:=l TO ndestns DO
BEGIN

251

WRITELN('X(' ,i:2,j:2,') = ',decn[(j-l)*nsources+i]:7:2,
' ',varChange[(j-l)*nsources+i]);

lineCount;
END;

FOR i:=l TO nsources DO
BEGIN

END;

WRITELN(' Y(' ,i:2,') = ',decn[(nsources*ndestns)+i]:7:2,
',varChange[(nsources*ndestns)+i]);

lineCount;
END;

message(' Print (Y/N)? -'+CHR(16),' 1' ,validSet4,answer);
IF(answer='Y')THEN

BEGIN
WRITELN(LST, '---');
WRITELN(LST,' INPUT DATA FILE: ',filename);
WRITELN(LST,'---•);
CASE modelType OF

'D': WRITELN(LST,' Type: Deterministic');
'C': WRITELN(LST,' Type: Chance-Constrained');
'S': WRITELN(LST,' Type: Stochastic');

END;
WRITELN(LST);
WRITELN(LST,' Number of Priorities ... ' ,nprt:3);
WRITELN(LST,' Number of Rows ' ,nrows:3);
WRITELN(LST,' Number of Variables ' ,nvars:3);
WRITELN(LST,' Number of Tech. Coeff .. ',ntc:3);
IF(modelType='S')THEN

BEGIN
WRITELN(LST,' Number of Sources ' ,nsources:3);
WRITELN(LST,' Number of Destinations.' ,ndestns:3);
WRITELN(LST,' Demand Distributions ... ',demand);

END;
WRITELN(LST);
WRITELN(LST, 'ACHIEVEMENT FUNCTION:');

WRITELN(LST, 'SIGN ROW PRIORITY WEIGHT');
FOR i:= 1 TO tprt DO

WITH obj(i] DO
WRITELN(LST,sign:2,row:7,priority:9,weight: 12:2);

WRITELN(LST);
WRITELN(LST,'TECHNOLOGICAL COEFFICIENTS:');
WRITELN (LST, 'ROW COLUMN VALUE');
FOR i:= 1 TO ntc DO

WITH coef[i] DO
WRITELN(LST,row:2,column:7,value: 12:2);

WRITELN(LST);
WRITELN(LST, 'RIGHT HAND SIDE:');
IF(modelType<>'S')THEN

BEGIN
WRITELN(LST, 'ROW SIGN VALUE TYPE');
FOR i:= 1 TO nrows DO

WRITELN(LST,i:2,csign[i]:7,rhs[i]: 12:2,'
constType[i]);

END
ELSE

BEGIN
WRITELN(LST, 'ROW TYPE VALUE');
FOR i:=l TO nrows DO

WRITELN(LST, i:2,constType[i]:7,rhs[i]: 12:2);
WRITELN(LST);
IF(demand='N')THEN

252

WRITELN(LST, 'Dest. Mean S.D. Over S. Cost Under S. '+
'Cost')

ELSE
WRITELN(LST, 'Dest. Lbound Ubound Oversup. $ '+

'Undersup. $');
FOR i:=l TO ndestns DO

IF(demand='N')THEN
WRITELN(LST,i:2,mu[i]:8:2,sigma[i]:7:2,0cost[i]:9:2,

Ucost[i]:15:2)
ELSE

WRITELN(LST,i:2,Lbound[i]:9:2,Ubound[i]:9:2,
Ocost[i]:9:2,Ucost[i]: 12:2);

WRITELN(LST);
WRITELN(LST,'STARTING SOLUTION:');
WRITELN(LST, 'Variable Value Fixed/Variable');
FOR i:=l TO nsources DO

FOR j:=l TO ndestns DO
WRITELN(LST,'X(' ,i:2,j:2,') = '.

decn[(j-1)*nsources+i]:8:2,
' ',varChange[(j-l)*nsources+i]);

FOR i:=l TO nsources DO

END;
END;

END;

WRITELN(LST,' Y(' ,i:2,') = ',
decn[(nsources*ndestns)+i]:8:2,
' ',varChange[(nsources*ndestns)+i]);

{End of DisplayDataBase}

253

{*****•··}
{* OutputResult . }
{··}
PROCEDURE OutputResult;

BEGIN
flg4:=TRUE; { A continuous or integer solution is obtained }
WINDOW(3,2,48,23);
TEXTCOLOR (14) ;
TEXTBACKGROUND(l);
WRITELN;

{ Yellow }
{ Blue }

WRITELN('ANALYSIS OF MULTIPLE OBJECTIVES');
WRITELN('Priority Under-Achievement');
lcount: =3;
FOR i:=l TO nprt DO

BEGIN
WRITELN(i:4,prty[i]: 14:2);
lineCount;

END;
WRITELN;
1 ineCount;
WRITELN('ANALYSIS OF DECISION VARIABLES');
lineCount;
FOR i:= 1 TO nvars DO

BEGIN
WR ITELN (' x (' , i: 2, ') =' , decn [i] : 10: 2) ;
lineCount;

END;
WRITELN;

lineCount;
WRITELN('ANALYSIS OF DEVIATIONAL VARIABLES');
lineCount;
WRITELN('Const./Goal #
1 ineCount;
FOR i:=l TO nrows DO

BEGIN
WRITE(i:8,neg[i]:l7:2);
WRITELN(pos[i]: 12:2);
lineCount;

END;

d- d+') ;

message(' Print? (Y/N) -'+CfIR(16)+' ',' 1' ,validSet4,answer);
IF(answer='Y')THEN
BEGIN

WRITELN(LST, '***');
IF(option='E')THEN { Continuous Solution is selected }

WRITELN(LST,'* CONTINUOUS SOLUTION *')
ELSE

WRITELN(LST, '* INTEGER SOLUTION
WR I TELN (LST, ' * * • * * • • * * * "' * • * * • • * * * * * * "' * • • * * • • * * • * • • * • • • ') ;
WRITELN (LST, 'Model Name: ',filename);
WRITELN(LST, 'Iteration: ',niteration:8);
IF(option='F')THEN

*') ;

BEGIN
WRITELN(LST, 'Nodes Generated:' ,nNodGe:4);
WRITELN(LST, 'Nodes Evaluated:' ,nNodEv:4);
WRITELN(LST, 'U.B. Updates:' ,ubUpdate:7);

END;
WRITELN(LST,'CPU: ',elapsed:l8:2,' SECONDS');

WRITELN(LST);
WRITELN(LST, 'ANALYSIS OF MULTIPLE OBJECTIVES');
WRITELN(LST, 'Priority Under-Achievement');
FOR i:=l TO nprt DO

WRITELN(LST,i:S,prty[i]: 16:2);
WR ITELN (LST) ;
WRITELN(LST, 'ANALYSIS OF DECISION VARIABLES');
FOR i:=l TO nvars DO

WRITELN(LST,' X(' ,i:2,')=' ,decn[i]: 14:2);
WRITELN (LST);
WRITELN(LST, 'ANALYSIS OF DEVIATIONAL VARIABLES');
WRITELN (LST, 'Const. /Goal # d- d+') ;
FOR i:=l TO nrows DO
BEGIN

WRITE(LST,i:8,neg[i): 17:2);
WRITELN(LST,pos[i]:l2:2);

END;
END;

254

END; { End of OutputResult }

{··}
{* FinalZjCj *}

{··}
PROCEDURE FinalZjCj;

{ This procedure calculates and stores the optimum Zj-Cj matrix for
tradeoff analysis in sensitivity analysis module }

LABEL s;
VAR

tempZmax:

BEGIN
IF(flgl)THEN nprtl:=nprt+l
ELSE

nprtl: =nprt;
FOR k:=l TO ncols DO

BEGIN
IF(currentBasic[k] <> 0) THEN

BEGIN
FOR p:=l TO nprtl DO

OptZjCj[p,k]:=O.O;
GOTO s;

END;

EXTENDED;

FOR i:=l TO nrows DO y[i]:=O.O;

{ Construct the original a column }

FOR i:=start(k] TO start(k]+n[k]-1 DO
y[arow(i]]:=avalue[i];

{ Update the 'a' column }

IF (nelemty <> O)THEN
BEGIN

FOR i:=l TO nelemty DO
BEGIN

255

ar:=y[position[i]];
y[position[i]]:=O.O;
IF(ABS(ar) > 1.0E-10) THEN

{ This is the a-hat }

END;
END;

BEGIN
lndxl:=ElCount[i];
indx2:=E1Count[i+l]-1;
FOR j:=indxl TO indx2 DO

END;

BEGIN
ij: =ElRow [j];
y[ij]:=y[ij]+ar*ElValue[j];

END;

FOR p:=l to nprtl DO
BEGIN

tempzmax:=O.O;

{ Calculate zj-cj for the current variable and priority }

FOR i:=l TO nrows DO
IF(pwBasis[i].priority = p) THEN

tempzmax:=tempzmax+pwBasis[i].weight * y[i];
IF(pw[k].priority = p)THEN

tempzmax:=tempzmax-pw[k].weight; { Zj-Cj }
OptZjCj[p,k]:=tempzmax;

END;
s: END; { End of column loop }

END;

{•···}
{* SensiAnaly *}
{**}

PROCEDURE SensiAnaly;
VAR

option2:
s:
conflict:
tradeoff:
temp Trade:

CHAR;
STRING;
ARRAY[Z .. 11, 1 .. ll]OF BOOLEAN;
ARRAY[2 .. 11, 1 .. ll]OF EXTENDED;
EXTENDED;

serviceLvl,mu,sigma,Lbound,
Ubound, tempRhs:
xl,yl,x2,y2,x3,y3,x4,y4:
conflictFlag,change:

REAL;
BYTE;
BOOLEAN;

256

{··}
{* ListAchievmt *}
{**}

PROCEDURE ListAchievmt;
BEGIN

FOR i:=l TO 2 DO
WRITE(' Goal # Desired Level Actual Level ');

WRITELN;
FOR i:=l TO 2 DO

WRITE(' ------------------------------------ ');
WRITELN;
IF(nrows<=15)THEN

BEGIN
FOR i:=l TO nrows DO

WRITELN(i: 4, rhs[i]: 16: 2, rhs[i]-neg[i]+pos[i]: 17: 2);
END

ELSE
BEGIN

FOR i:=l TO 15 DO
WRITELN (i: 4, rhs [i] : 16: 2, rhs [i] -neg [i] +pos [i] : 17: 2);

j: =1 j

FOR i:=16 TO nrows DO
BEGIN

GOTOXY(39, j+J);
WRITELN(i: 4, rhs[i]: 16: 2, rhs[i]-neg[i]+pos[i]: 17: 2);
INC(j);

END;
END;

message('', 'O' ,validSet4,inCh);
END;

{**}
{* TradeoffAnly *}
{**}

PROCEDURE TradeoffAnly;

BEGIN

{ Initialization }

IF(solution='c')THEN
BEGIN

keepFlgl: =flgl;
FinalZjCj;

END;
conflictFlag:=FALSE;

{ If integer,' i', this is done in 'updateUB }

{ Indicates if a conflict is present }

FOR i:=2 TO nprtl DO
FOR j:=l TO nprtl DO

BEGIN
conflict[i,j]:=FALSE;
tradeoff[i,j]:=l.OE20;

END;

IF(KeepFlgl)AND(firstTime)THEN
BEGIN

257

{Set the flag so the program does not execute these statements
more than once for the current solution. This can happen if
this option is selected more than once for the current solution}

firstTime:=FALSE;
FOR i:=nprtl DOWNTO 2 DO

prty[i]:=prty[i-1);
prty[i]:=O.O;

END;
FOR p:=2 TO nprtl DO

BEGIN
IF(prty[p] >= l.OE-lO)THEN

BEGIN
{Goal is not fully achieved}

FOR k:=l TO ncols DO
BEGIN

IF(OptZjCj[p,k] >= l.OE-lO)THEN
BEGIN

{Positive Zj-Cj}

FOR i:=l TO p-1 DO

END;
END;

END;

IF(OptZjCj[i,k] <= -1.0E-lO)THEN {Neg Zj-Cj}
BEGIN

conflict[p,i]:=TRUE;
conflictFlag:=TRUE;
tempTrade:=-OptZjCj[i,k]/OptZjCj[p,k];
IF(tempTrade < tradeoff[p, i])THEN

tradeoff[p,i]:=tempTrade;
END;

END;

{If conflict exist, list conflicting objectives and their tradeoffs}

IF(conflictFlag)THEN
BEGIN

WRITELN(' Priority <Conflicts with> Priority',' Trade-Offs');
WRITELN(' --');
FOR p:=2 TO nprtl DO

BEGIN
FOR i:=p-1 DOWNTO 1 DO

BEGIN
IF(conflict[p,i])THEN

BEGIN

IF(keepFlgl)THEN
BEGIN

j : = i -1 ; k: =p-1 ;
END

ELSE
BEGIN

j: =i; k: =p;
END;

258

IF (j =O)THEN
WRITELN (k: 6,'

ELSE
. System Constraints')

BEGIN
WR I TE (k: 6, ' ' , j : 12) ;
WRITELN(tradeoff[p, i]: 13:2);

END;
END;

END;
END;

END;

IF(NOT conflictFlag)THEN
message('*** WARNING*** No Conflict is Present', 'O' ,validSet4,

inCh)
ELSE

message('', 'O' ,validSet4,inCh);
END;

{**}
{* ChangePri *}
{**}

PROCEDURE ChangePri;
LABEL a;

BEGIN
WRITELN(' Priority Under Current New');
WRITELN(' NAME Achievement Priority Priority');
WRITELN(' --');
FOR i:=l TO nprt DO

WRITELN(' Prty ',i:2,prty[i]: 14:2,prty0rder[i]:8);
message(' Change Priority? (Y/N) -'+CHR(16)+' ', '1' ,validset4,

answer);
{Window is now (1,1,80,25) }
IF(answer='Y')THEN

BEGIN
GOTOXY (4, 22) ;
WRITE('Swap Priority Level -'+CHR(16)+' ');
xl:=WHEREX;yl:=WHEREY;
GOTOXY(4, 23);
WRITE('With Priority Level -'+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;

a: i:=inputlnteger(xl,yl,1,nprt);
j:=inputlnteger(x2,y2, 1,nprt);

FOR k:=l TO nprt DO
BEGIN

IF(prtyOrder[k]=i)THEN
prtyOrder[k]:=j

ELSE
IF(prtyOrder[k]=j)THEN

prtyOrder [k]: =i;
END;

flg4:=FALSE;
FOR k:=l TO nprt DO

BEGIN
GOTOXY (41, k+S);
WRITELN(prty0rder[k]:2);

END;

{ Exchange the priorities }

FOR k:=l TO tprt DO
BEGIN

IF(obj[k].priority=i)THEN
obj[k].priority:=j

ELSE
IF(obj[k].priority=j)THEN

obj[k].priority:=i;
END;

message('More Changes? (Y/N) -'+CHR(16)+' ',' l' ,validSet4,
answer);

IF(answer='Y')THEN
BEGIN

blank (xl, yl, 2);
blank(x2,y2,2);
GOTO a;

END;
END;

END;

259

{··}
{ * ChangeRhs *}

{•···}
PROCEDURE ChangeRhs;

LABEL a;
VAR

x1,yl,x2,y2,x3,y3,x4,y4: BYTE;
BEGIN

FOR i: = 1 TO 2 DO
WRITE(' Row# Current Value New Value ');

WRITELN;
FOR i:=l TO 2 DO

WRITE(' ----------------------------------- ');
WRITELN;
IF(nrows<=lS)THEN

FOR i:=l TO nrows DO

WRITELN(i:4,rhs[i]:16:2)
ELSE

BEGIN
FOR i:=l TO 15 DO

WRITELN(i:4,rhs[i):16:2);
j: =1;
FOR i:=l6 TO nrows DO

END;

BEGIN
GOTOXY(39, j+3);
WRITELN(i:4,rhs[i):l6:2);
INC(j);

END;

message('Change RHS? (Y/N) -'+CHR(16)+' ', '1' ,validset4,answer);
{ After above message the window is (1, 1,80,25) }
IF(answer='Y')THEN

BEGIN
GOTOXY(4, 20);
TEXTCOLOR (15) ;
WRITE(' Enter Row Number -'+CHR(16)+' ');
TEXTCOLOR (14) ;
xl:=WHEREX;yl:=WHEREY;

a: i:=inputinteger(xl,yl, l,nrows);
IF(constType[i]='D')THEN { Deterministic Constraint }

BEGIN
GOTOXY(4, 21);
TEXTCOLOR (15) ;
WRITE('Enter New RHS -'+CHR(16)+' ');
TEXTCOLOR (14) ;
x2:=WHEREX;y2:=WHEREY;
REPEAT

tempRhs:=inputReal(x2,y2);
IF(tempRhs < O.O)THEN

BEGIN
message('RHS Must be> 0 ', '2' ,validSet4,answer);
STR (tempRhs, s) ;
blank(x2,y2,LENGTH(s));

END;
UNTIL(tempRhs>=0.0);

END;

260

IF(constType[i]='N')THEN { Normal }
BEGIN

GOTOXY(4,21);
TEXTCOLOR (15) ;
WRITE(' Enter Service Level -'+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
GOTOXY(4, 22);
WRITE('Enter Mean -'+CHR(16)+' ');
x3:=WHEREX;y3:=WHEREY;
GOTOXY(4, 23);
WRITE('Standard Deviation -'+CHR(16)+' ');
x4:=WHEREX;y4:=WHEREY;
TEXTCOLOR (14) ;

261

END;
IF(constType[i]='U')THEN { Uniform }

BEGIN
GOTOXY(4, 21);
TEXTCOLOR (15) ;
WRITE('Enter Service Level -'+CHR(16)+' ');
x2:=WHEREX;y2:=WHEREY;
GOTOXY(4, 22);
WRITE('Enter Lower Bound -'+CHR(16)+' ');
x3:=WHEREX;y3:=WHEREY;
GOTOXY(4, 23);
WRITE('Enter Upper Bound -'+CHR(16)+' ');
x4:=WHEREX;y4:=WHEREY;
TEXTCOLOR (14) ;

END;
IF(constType[i]='N')OR(constType[i]='U')THEN

BEGIN
REPEAT

serviceLvl:=inputReal(x2,y2);
IF(serviceLvl<O.O)OR(serviceLvl>l.O)THEN

BEGIN
message('Service Level Must be Between 0 and 1',

'2' ,validSet4,answer);
STR(serviceLvl,s);
blank(x2,y2,LENGTH(s));

END;
UNTIL(serviceLvl>=O.O)AND(serviceLvl<=l.O);

END;
IF(constType[i]='N')THEN

BEGIN
IF(serviceLvl=O.O)THEN serviceLvl:=0.001;
IF(serviceLvl=l.O)THEN serviceLvl:=0.999;
REPEAT

mu:=inputReal(x3,y3);
sigma:=inputReal(x4,y4);
NinvCDF(mu,sigma,serviceLvl,tempRhs);
IF(tempRhs<=O)THEN

BEGIN
message(' Invalid Parameters - Enter Again', '2',

validSet4,answer);
STR(mu, s);
blank(x3,y3,LENGTH(s));
STR(sigma, s);
blank{x4,y4,LENGTH(s));

END;
UNTIL(tempRhs>0.0);

END;
IF(constType[i]='U')THEN

BEGIN
REPEAT

REPEAT
Lbound:=inputReal(x3,y3);
IF(Lbound<O.O)THEN

END;
END;

262

BEGIN
message('Lower Bound Must be >= 0 ', '2' ,validSet4,

answer);
STR(Lbound,s);
blank(x3,y3,LENGTH(s));

END;
UNTIL(Lbound>=O);
REPEAT

Ubound:=inputReal(x4,y4);
IF(Ubound<O.O)THEN

BEGIN
message('Upper Bound Must be>= 0 ', '2' ,valldSet4,

answer);
STR (Ubound, s);
blank(x4,y4,LENGTH(s));

END;
UNTIL(Ubound>=O);
IF(Lbound>Ubound)THEN

BEGIN
message('Lower Bound Must be < Upper Bound ', '2',

validSet4,answer);
STR(Lbound,s);
blank(x3,y3,LENGTH(s));
STR (Ubound, s);
blank(x4,y4,LENGTH(s));

END;
UNTIL(Lbound < Ubound);
UlnvCDF(Lbound,Ubound,serviceLvl, tempRhs);

END;
rhs[i]:=tempRhs;
change:=TRUE;
flg4: =FALSE;
IF(i<=lS)THEN

GOTOXY(22,i+4)
ELSE

GOTOXY(60,i-15+4);
WRITELN(rhs[i]: 16:2);
message('More Changes? (YIN) -'+CHR(16)+' ', '1' ,validSet4,

answer);
IF(answer='Y')THEN

BEGIN
blank(xl,yl,2);
WINDOW(3,21,78,23);
CLRSCR;
WINDOW(l, 1,80,25);
GOTO a;

END;

{ .. }
{. SensiAnaly . }
{ .. }

263

BEGIN
change:=FALSE; {Indicates if rhs or priority structure has changed}
REPEAT

WINDOW(2,2,79,23);
CLRSCR;
TEXTCOLOR(15); { Select white characters }
GOTOXY(51, 2);
WRITELN('Current Model '+CHR(26),' ',filename);
GOTOXY (51 , 3) ;
CASE modelType OF

END;

'D': WRITELN('Type: Deterministic');
'C': WRITELN('Type: Chance-Constrained');
'S': WRITELN('Type: Stochastic');

TEXTCOLOR(14); { Select yellow characters }
GOTOXY(3, 4);
WRITELN(' [A] List Actual vs. Desired Goals');
GOTOXY(3, 5);
WRITELN(' [BJ Perform Trade-off Analysis');
GOTOXY(3, 6);
WRITELN(' [CJ Change Priority Structure');
GOTOXY(3, 7);
WRITELN(' [DJ Change RHS of Goal/Real Constraints');
GOTOXY (3, 13) ;
WRITELN(' [EJ Return to Main Menu');
message(' Enter Option -'+CHR(16)+' ', '1' ,validSet5,option2);
WINDOW(2,2,79,23);
CLRSCR;
CASE option2 OF

•A':
BEGIN

IF(change)THEN
message('Model has been Changed, Resolve ', 'O',

validSet4,inch)
ELSE

BEGIN;
TEXTCOLOR (15) ;
GOTOXY(54, 1);
WRITELN(' Actual vs Desired Goals');
TEXTCOLOR (14) ;
ListAchievmt;

END;
END;

'B':
BEGIN

IF(modelType='S')THEN
message('This Option is Not Available for Stochastic '+

'Model', 'O' ,validSet4, inCh)
ELSE

BEGIN
TEXTCOLOR (15) ;
GOTOXY(54, 1);

WRITELN(' Trade-Off Analysis');
TEXTCOLOR (14) ;
TradeoffAnly;

END;
END;

·c·:
BEGIN

TEXTCOLOR (15) ;
GOTOXY(52, 1);
WRITELN(' Change Priority Structure');
TEXTCOLOR (14) ;
ChangePri;

END;

'D':
BEGIN

TEXTCOLOR (15) ;
GOTOXY(54, 1);
WRITELN(' Change RHS Values');
TEXTCOLOR (14) ;
ChangeRhs;

END;

264

END { End of the case statement }
UNTIL(option2='E');
WINDOW(l, 1,80,25);

END;
END. { End of dbasUtil }

VITA

MORTEZA ABTAHI

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN INTERACTIVE MULTICRITERIA APPROACH TO FACILITY
LOCATION-ALLOCATION MODELS UNDER STOCHASTIC DEMAND

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Isfahan, Iran, March 12, 1957,
the son of Nahid Madani and Hossein Abtahi.
Married to Marzieh Torabian on January 12, 1985.

Education: Graduated from Ershad High School, Tehran,
Iran in June 1975; received Associate Degree in
Electronics from Tehran Technical College, Iran in
June, 1977; received Bachelor of Science Degree in
Electronics Engineering Technology from Oklahoma
State University in May, 1981; received Master of
Science Degree in Industrial Engineering from
Oklahoma State University in May, 1983; completed
requirements for the Doctor of Philosophy degree at
Oklahoma State University in July, 1989.

Professional Experience: Teaching and Research
Associate, School of Industrial Engineering and
Management, Oklahoma State University, Fall, 1982
to Summer 1989. System Manager for HP-3000
minicomputer, and microcomputers, School of
Industrial Engineering and Management, Oklahoma
State University, Fall 1984 to Fall 1988.

Professional Organizations: Institute of Industrial
Engineers, Operations Research Society of America,
Alpha Pi Mu, Tau Beta Pi.

