Building an Exotic HPC Ecosystem at The University of Tulsa

John Hale
Peter Hawrylak
Andrew Kongs

Tandy School of Computer Science
Changing Our CS Culture

• Platforms
 – Desktop, workstations, mobile

• Programming
 – Java, python
 – Serial
Changing Our CS Culture

• Platforms
 – Desktop, workstations, mobile += Big iron and HPC

• Programming
 – Java, python += C, etc.
 – Serial += parallel and multi-threaded
Changing Our CS Culture

- Platforms
 - Desktop, workstations, mobile += Big iron and HPC

- Programming
 - Java, python += C and HPC toolchains/APIs.
 - Serial += parallel and multi-threaded

Tandy School of Computer Science
Friends in HPC Places

• OU – Oklahoma Supercomputing Center for Education and Research (OSCER)
 – Wisdom, guidance and models
• OneOklahoma Cyberinfrastructure Initiative (ONEOCII)
 – Community and relationships
• Tandy SuperComputing Center
 – Resources, access and expertise
• Researchers at TU and OU-Tulsa
 – Problem spaces and commiseration
TU HPC Ecosystem Overview

• Facilities
 – Anvi1, Hamm3r, Furn4ce

• Classes
 – High Performance Computing
 – HPC Competition

• Research
 – Security analytics, Bioinformatics, Geosciences

• Philosophy
 – Leverage resources; add value; be different
Bootstrapping

• Re: Friends in HPC Places
 – Sage advice
 – Generous donations of equipment and service

• Instrumentation grants
 – DoD DURIP
 – NSF MRI

• Finding a niche
 – Be different; add value...Heterogeneous computing
Heterogeneous Computing

• Definition: systems using more than one kind of processor, exploiting specialized capabilities in problem solving

• Common heterogeneous compute elements
 – CPU, GPU, MiC, FPGA

• Problem Domains
 – Systems biology, computer vision, image processing
Our First Cluster - Anvil

• Two Alums of our research group went to work at Wikipedia

• Wikimedia/Wikipedia was retiring a large number of servers and giving them to another non profit made the paperwork easy

• We thought we were going to get about five servers, we ended up with forty-five.

• I drove a U-Haul full of servers from Tampa, Florida back to Tulsa, OK

• We decided to build a cluster with the majority of the machines
Anvil – Duct Tape and Bailing Wire

• 32 compute node CPU-only Linux cluster using Dell PowerEdge 1950 III servers

• Dual Xeon L5420 (Quad-Core each), 2.5GHz “Harpertown” CPUs

• 32GB (Upgraded from 8GB) of Fully Buffered DDR2

• Each machine has three Ethernet networks – Compute/Management, Storage, and Lights out management

• Cluster-wide shared storage (3TB), VMware machine for management and services, Dedicated Login and Head node
Software

- Nodes run CentOS 6 for RHEL compatibility (for “science” software)
- Runs SLURM scheduler, single job queue
- Simple shared storage using NFS from NAS
- Machines are configured using puppet and pxe boot using razor
- Paths and environment variables are managed with lmod (lua)
New Machines - HAMM3R and FURN4CE

- 12/16 Nodes, each with Dual Xeon E5-2630 v3 “Haswell” CPUs @ 2.4GHz
- Each node has 64GB of RAM, 240GB SSD, 56Gb/s FDR Infiniband
- HAMM3R - Dual Xeon Phi 31S1P w/ 57 cores @ 1.1GHz, 8GB RAM
- FURN4CE – Single AMD FirePro S9050 GPU, 12GB RAM, 1792 SPs
- Each node will have a Nallatech OpenCL accelerator with either Altera Stratix-V (HAMM3R) FPGA or Arria-10 FPGA (FURN4CE)
- Built using SuperMicro servers assembled by Colfax

Tandy School of Computer Science
HAMM3R Node

<table>
<thead>
<tr>
<th>Memory</th>
<th>Processor</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>8GB DDR3</td>
<td>Stratix V FPGA</td>
<td>240GB SSD</td>
</tr>
<tr>
<td>32GB DDR4</td>
<td>Xeon 8C E5-2630v3</td>
<td>32GB DDR4</td>
</tr>
<tr>
<td>8GB GDDR5</td>
<td>Xeon Phi 31S1P</td>
<td>8GB GDDR5</td>
</tr>
</tbody>
</table>

FURN4CE Node

<table>
<thead>
<tr>
<th>Memory</th>
<th>Processor</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>32GB DDR4</td>
<td>Xeon 8C E5-2630v3</td>
<td>240GB SSD</td>
</tr>
<tr>
<td>12GB GDDR5</td>
<td>FirePro S9050</td>
<td>32GB DDR4</td>
</tr>
<tr>
<td>8GB DDR3</td>
<td>Arria 10 FPGA</td>
<td>8GB DDR3</td>
</tr>
</tbody>
</table>

Tandy School of Computer Science
Command and Control Interface

• Called – “Blacksmith”

• Web interface for monitoring and managing the cluster

• Tightly integrated with SLURM, Puppet, and Razor

• Planned to visual and simplify the using the machine greatly

• VAPORWARE
Computing Environment

1. Fixed Purpose Units
 - CPU
 - MiC
 - FPGA

2. Fixed Purpose Units
 - CPU
 - GPU
 - FPGA

User-Defined Hardware

Node

Tandy School of Computer Science
FPGA Benefits

• Customizable
 – “Blank Slate” for hardware
 – Custom pipelines
 – New architectures

• Reconfigurable between jobs
 – Optimally balance resources

• Soft-Core Processor
 – More control over internal components
FPGA Hardware

• Altera Stratix V
 – General purpose logic
• Customizable
• Connectivity
 – InfiniBand
 – Ethernet
Education and Outreach

• New 1-credit course
 – Basic HPC knowledge
 – Train to participate in HPC competition
 – Freshman to Senior Undergraduates

• HPC Competition
 – ISC 2016 Student Cluster Competition
 – Build a local HPC Competition?
Conclusions

• New Research Capabilities
 – HPC
 – Novel HPC Architecture
 – Software/Hardware Co-Development
 – HPC and Software/Hardware Tool Development

• New Education Capabilities
 – HPC Courses

• New Outreach Capabilities
 – HPC Competition – Internal and External