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CHAPTER I o
INTRODUCTION AND SUMMARY

It 1s well known that in steady-state glow discharges in tubes
the positive column tends to fill the entire cross-section at low gas
pressures and currents because of the ambipolar diffusion process. The
simplest example of this behavior was worked out by Schottky for a posi-
tive column consisting only of electrons, one species of ion, and the
parent gas at a uniform tem.perature.l The well-known result of his
investigation in the case of a cylindrical discharge is a radial profile
of electron density given by the zeroth order Bessel function.

For many years since Schottky's work, deviations from this
"normal" profile have been investigated both theoretically and experi-
mentally. Although a wide variety of situations have been congidered,
the most important can be grouped into three classes:

(1) Those occurring in noble and electropositive gases at
moderate currents and relatively high pressure;

(2) Those occurring at much lower currents and pressures
in electronegative gases;

(3) Magnetic pinches occurring at low pressures and high currents.
Deviations from the normel distribution have also been studied
experimentally for the case where a short D.C. pulse is passed through
a noble gas during a time of about one msec. The resulting positive
column hag been found to constrict at moderate current densities
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(order of 0.2 amp./cm.g) and relatively low pressures (order of 10
. Hg).3 Some unsuccessful attempts have been made by the author
(R. H. Lynch) to explain the observations, assuming that the column hed
reached a steady state. A possible alternative explanation is that the
column was in a transient state duc to thermal instability.4

There are a few investigations which show that one cannot expect
prounced variations to occur at low pressures and currents in noble
gases. For very small currents where free diffusion predominates, theory
predicts only a moderate wall-dependent constriction, which should
change into the normal profile as the current is increased.53

Another situation has been investigated in which both direct and
second-stage ionization take place.6 If the second stage ionization
predominates, the electron production term in the particle balance equa-
tion may vary quadratically with the electron density, end a constric-
tion should occur. Spenke's result, however, was small and illustrated
the fact that a precipitate radial decrease in ionization rate per elec-
tron is required in order to make the radial profile of electron density
deviate appreciably from Schottky's solution. This fact was also shown
for another case by Fabrikant.T He showed that if volume recombinstion
between electrons and ions is apﬁreciable, there is a radiasl increase in
the net electron production rate per electron, which engenders only a
small broadening of the radial profile.

Constrictions of the positive column in electronegative gases
have been dealt with both experimentally and theoretically. In Woolsey's
experiment8, for example, a wall-dependent constriction was obtained at

low currents and relatively low pressure. The constriction became



3

wall-independent as the current was increased. There were also charac-
teristic variations in electric field strength, which were theoretically
Predicted for a model consisting of electrons, positive and negative
ions, and the parent gas.g’lo

The first of the sbove classes of situations sre usually asso-
ciated with gas heating. Much experimental and theoretical work has
already been done on constrictions in high pressure arcs, where the elec-
tron temperature is nearly the same as the gas tem.per-ature.ll"l5 The
effect of gas heating in glow discharges has been recently investigated
theoretically for a model consisting only of electrons, one kind of posi-
tive ion, and the parent gas. The result obtained was a radial profile
which broadened as the heating increased.16

The main purpose of the investigation reported herein is to ana-
lyze theoretically a model consisting of a heated noble gas, its atomic
and molecular ions, and electrons. After the basic theory of the gas-
heated positive column is developed in Chapters II and III, Chapters IV
and V are devoted to a brief analysis of two speclal situations in the

positive column without volume recombination, and the constriction caused

by gas heating and volume recombination is dealt with in Chapter VI.



CHAPTER II
BASIC THEORY OF THE POSITIVE COLUMN

It is assumed that the reader already has some knowledge of the
kinetic theory of electrons and ions and is familiar with the papers on
that subject.l'—r In particular, a familiarity with the solution of the
Boltzmann equation by expansion methods is assumed.lT'eo However, for
convenience it is briefly outlined below for the steady state.

If the electron drift velocity is small as compared to the root
mean square velocity, one can expand the electron phase density f(;,z)

in terms of spherical harmonics in velocity space:

rd

£ = £ + FlW)Piol0) +£, (P () cOsd + g (P (® sing 4.

(2.1)

where f,,(v) is the isotropic part of the vetocity distribution and the
first order terms are small compared to it. In (2.1) and in what follows
the dependence of quantities on r is implied. Because of the orthogon-
ality of the spherical harmonics, only the isotropic term contributes to
averages of scalar quantities s(v); i.e., if the velocity distribution

function is normalized to the electron concentration n, then we have

ns :—:J#(!)s(v)dl = 411Jv“f,,(v)s(v)elv ; (2.2)



p)

where dv is the three-dimensional volume element in velocity space.
Likewise, since the velocity is a vector sum of only first order spheri-
cal harmonics, only the first order terms in (2.1) contribute to the

average value of gﬁ(v):

ns{vly = j%(g_)\_/ s(vidV = 4%1’ So\:%(v)f, (vMdv, (2.3)

vhere f, = ﬁfll + €g11 +'%flo , and has the direction of flow of the
quantity s(v).
Consider the steady state Boltzmann equation,

vNE AV =+ R (2.1)
The right hand terms in this equation stand for the rates of change of T
due to elastic and inelastic collisions, respectively, while Vyf‘is the
spatial gradient and Vyf is the velocity gradient of £ on the left side.
The vector a is the electron acceleration. If we operate on the expan-
sion (2.1) with the terms of (2.4), we obtain an infinite set of "Boltz-
mann equations" of different orders. Thus, an equation of order (§,m)
consists of those terms that are multiplied by Pim(e) and either the
sin(m¢ ) or the cos(mé ). The number of equations that one derives equals
the number of coefficients retained in the series (2.1). Higher order
coefficients contained in these equations are neglected. Hence, if we
retain the isotropic and the three first order terms, we get the zeroth
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order equation,

3 VYVt + §l\‘,z‘-§; (Vz&.'fl) = T

m 3 Kk
Mvaay | V% (fet 3y

+wiv) —Zwe (V) faolV)  (2.5)



and the first order vector equation,
— l_ . | 3‘900
fl iA V\"Foo & 7‘: Y (2.6)

In equations (2.5) and (2.6) m/M is the ratio of electron mass to mole-
cular mass, and Ze and 1@ are the electron momentum transfer frequency
and excitation frequenciés respectively. The gas temperature in (2.5) is
indicated by Tg. These equations apply only to the steady shate with
electric field and do not include terms for the interacticn between elec-
trons. These terms were obtained by J. H. Cahn in l9h921’22 and are dis-
cussed in Appendix I.

In the zeroth order equation (the plasma balance equation) the
first term on the left produces an effect on the shape of £, (v) due to
the spatial divergence of the electrons. The effect of force fields on
foo(v) is given by the second term. Since the magnetic field is assumed

to be negligible, the acceleration is given by the equation,
a = - eE/m. (2.7)

The electric field induces a general drift of electrons away from the

origin in velocity space. The opposite tendency, due to elastic colli-

sion energy loss, is represented by the first term on the right side of

(2.5), while the effect on foo(v) due to inelastic collisions is given

by the last two terms. The temaSVéibo gives the rate of disappearance
e

" while the term w(v) gives the corr-

of electrons in the "inelastic sin
esponding appearance rate of the inelastically scattered electrons in the
vicinity of the origin in velocity space.

From equation (2.6) one obtains the effect of the concentration

gradient and the force field on the flow rate of various quantities.
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From the plasma balance equation one obtains various conservation
equations by taking velccity averages of the respective terms with re-
spect to appropriate weight functions. Similar operations on the first
order equation give flow or diffusion equations.

The simplest case to consider is that where the spatial varia-
tion of gas density and electron temperature can be neglected. In that
case neither ¥, nor @% vary with position. Experiments on the variation
of mean electron energy with E/p indicate that for moderate electron
densities (n ~flOll/cm.3) we can also assume that inelastic collisions

have little effect on the velocity distribution profile as long as the

average electron energy is small as compared to the excitation energy.23
Hence, we can assume that
£ (r,v) = A(x) exp.(- ’v2) (2.8)
ooV V) = ML) exp.\-@V7), .

and calculate velocity averages accordingly. This case (constant gas
density) was analyzed and experimentally studied especially in the decade
before World War II.24

Since the effect of gas heating will be discussed later, the de-

sired flow and conservation equations will be derived from (2.5) and

(2.6) with spatially variable collision frequencies.

Macroscopic Equations

For a gas heating theory of the positive column we need the fol-
lowing macroscopic equations for positive ions, electrons, end neutral
molecules:

(1) Particle conservation

(2) Energy conservation



(3) Particle flow
(4) Energy flow
To obtain the particle flow equation for electreons, we multiply

(2.6) by 4TWv3/3 and integrate to obtain the equation,

47 v 3 3fw

S v = ¥ Vel dv —a ) ;’, gy (2.9)
Since Toolz,v) = A(x) exp.(- @QVQ);

then, 3;‘/ 2@ V‘Foo, (2.10)

where A = n(@ /ﬁ)3 and Pa= m/2KT.
Then, the last term in (2.9) reduces to the expression ’Angl) where the

electron mobility r\ is the velocity average,

—_ £ 17 1
p= 7 3(\' A (2.11)

The first term on the right side of (2.9) can be simplified by factoring
out the position dependence of V¥ . That is, let

Ve v, ) = N vez(v) = N() %), (2.12)
vwhere V, is the elastic collision frequency for unit gas density

(W=1 molecule/cm.3). Hence, the term becomes

I
Ag‘r b‘! ( vt V rfoo (1V)dV = — -N—V,.(hDo), (2.13)
where D, = l/ 3)(v / V) is the electron diffusion coefficient in a gas

of unit density.
From the definition (2.3) of nsv it follows that the term on the
left side of (2.9) is merely
nv =T , (2.14)
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the particle current density. Hence, the diffusion equation finally be-

comes

r ——V(nD)——nE (2.15)

where Mbis the electron mobility for unit gas density.
The heat flow equation is similarly obtained from (2.6) by let-
ting s(r,v) in the definition of nS¥ be the particle kinetic energy
2

imy©. That is, we multiply (2.6) by 2frmv”/3 and integrate it term by

term. The result is

q = -;—nmv*_\_f V(hd) NnE (2.16)
where R o) RN W
do - 6 (V /%) 3

and g is the heat current density.
The particle and energy conservation equations are obtained from
(2.5). In view of the definition of n¥ in terms of f,,, we multiply

(2.5) by 4Tv° and integrate it term by term over v to get the equation
o QQ

T30, £dv + 3 T2 (viaf )y = 1)

o . )
41;1‘MS ﬁ V’Vc <F¢°+ KI& %ﬁ‘) dV + 4WJVZ[W(V)_ 'Fo(ZVe(vildv'
° e

If we take the divergence operator outside the integral in the first term

3
<

we get the term Vr [ . The next two terms vanish because V2£l and

? v KT e
va(Foof m av)
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both vanish at the limits of integration. In the last term the integral
over the source w(v) cancels out the integrals over all the excitation
modes except jonization, since for every electron disappearing in the

inelastic sink due to ionization, two appear in the source. That is,
) 0

4‘n‘j‘v’[w(v) -4, vg(vildv = 411"{\/’\‘“7‘ (Vidv = n7, , (2.18)
0 e (.

So we obtain the particle conservation equation,

Vel = n7¥,

N7, | (2.19)

where '77‘0(5) is the average frequency of direct ionization per electron in
a gas of unit density.

In order to get the energy conservation equation, we now multiply
(2.5) by o% mv? ana integrate it term by term. As in the previous case,
the first term gives the heat divergence VL-ﬂ . In the last term all
modes of excitation make a contribution since for the eth mode of exci-
tation (or ionization) the difference between the kinetic energies of
the electron in the sink and the corresponding source electron is the

excitation energy V,. Therefore,

Q0
ijv‘[w(v) - o v.,(v)]&v = - n}:vez : (2.20)
(3 e e

In the energy conservation equation the two middle terms are not

zero. For the second term we get, integrating by parts,

o) &
Sz.?(nv*——a—(v af)dv = ;Ymv"qf 43"‘ via § dv

o . o 2]

= -mal = —ekT (2.21)

)
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since j_lv4 vanishes at both limits. Integration by parts likewise gives

four the elastic collision term,

Q

vhy, (ﬁ,o+ 'g-;; ””) dv

zv—ﬂf‘;[vm (F +—-@9£‘9]Jv— 4 2 f

[~}

=~ A nmvA) - & KTyn (vvc ﬁdzﬁﬁ (2.22)

In the first term of this expression 2m/M is the average fraction of ki-
netic energy transferred by an electron to a molecule not moving before
the collision. Hence, this term gives the rate per unit volume at which
electrons lose energy to a gas at absolute zero. The second term gives
the rate at which the molecules at temperature Tg give back energy to
the electrons. If f 4 is Maxwellian, the elastic collision expression

reduces to

n %—,tm (Y2 my2y. ) () -TGIT)‘ (2.23)

The complete electron energy conservation equation is then

Mo —

Vo = —eE L -2 TWmen)( -/ D =—m Vefy . (b
- e

This equation means that in the steady state, the rate of outflow of

electron energy per unit volume equals the net rate of production of the

energy per unit volume. The latter equals the rate at which the elec-

tric field does work on the electrons minus the rate of loss of electron

energy due to elastic and inelastic collisions.

Since the electric field strength divided by gas pressure is
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relatively small in the constriction phenomena of interest, the average
energy gained from the field by a positive ion between collisions is
muich smaller than kT'. That is, eE]CykT+<< 1, where At is the mean free
path of the positive ions. For helium molecular ions Xf~vlo cm./p,
where p is the gas pressure in dynes/cm.=. Then, if Tt~ 1000° X. and
E/p~10"" statv.cm./dyne (see Chapter VI), we get the result,

eEWY/KT ~ 1073.
Then the motion of the positive ions can be described by a diffusion

equation with the same form as (2.15); i.e.,
+ ‘ + Mg
.[ =~&'Vr(n+D°) + ‘N— h+£ ) (2.25)

where the coefficients have the same empirical definitions as before but
are not calculated from the same velocity averages.25

From the point of view of energy conservation and energy flow,
the positive ione can be considered as identical with the neutrals.
Since the electric field is not strong and the energy exchange rate be-
tween ions and neutrals is large, the energy conservation equation for
the ions reduces to

+ —
T = T, (2.26)

Also, the heat conduction due to the ions is negligible because we
assume that nt<< N.

If the inelastic interactions going on are only ionization and
excitations of neutrals by electrons, the particle conservation equation

is the same for ions as for electrons; i.e.,

Vo' ITT = n3 . (2.27)
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As a result, the radial components of the electron and ion current den~
sities are equal, and if the axial electron density is sufficiently
large, ambipolar diffusion predominates in the positive column. TIn cyl-~
indrical geometry a criterion’ for this condition is
T I
Aver D, NyJ> b

where Jo(rJia/Da) and Jl(rﬂliﬂ;Da) are Bessel functions and

.
D.‘:—,t:—D.

In this type of situation the solution of the diffusion equations (2.15)

and (2.25) and Poisson's equation leads to the well known results:

3
[ = - %—IET':_»(“D")’ (2.28)
Ey = —Flj;‘%(nD,‘), (2.29)

where Er is the radial space charge field associated with ambipolar dif-
fusion.

In the steady state the total pressure in the plasma is assumed
to be uniform. Because of low specific ionization the partial electron
pressure is very small (about .0l p) so the pressure of the neutrals is
nearly constant. For the same reason, the drift velocity of neutrals
from wall to axis is also slight. Hence, the diffusion equation and the

particle balance equation for the neutrals reduce to

P = NkTS = const. (2.30)

In the derivation of the energy balance equation, it is assumed

that the gas obtains all its thermal energy from elastic collisions with
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the electrons and none from collisions of the second kind with excited

atoms. Hence, we obtain
v|.' Q= n(zm/M)(%mVEVc)(l - Tg/T), (2.31)

where the heat flow vector Q is given as

Q =" .?\VyTs . (2.32)

According to the Engkog theory, the heat conductivity'j\ is Independent
1

of pressure but nearly proportional to TgE in the case of hard sphere

collisions.26

We now have the equations needed for an analysis of the gas-

heated positive column.



CHAPTER IIT
THE POSITIVE COLUMN WITH GAS HEATING

In what follows it is assumed there is only one type of positive
ion. Hence, the equations of interest are (2.15), (2.16), (2.19), (2.24),
(2.28), (2.29), (2.31), and (2.32). It is also assumed that no quanti-
-—;iés vary with z, the axial coordinate and that no convection takes
place.
The way irt which the gas concentration occurs in these equations
suggests the change of variable,
= pr. (3.1)
With this substitution and also equation (2.30), the macroscopic equa-
tions are as follows:

Flectron conservation:

Vsl =9 . (3.2)

Electron flow:

[ = - kTsv.g (nD°) - kTﬁ FOHES N (3.3)

where E-s = E/p.

Electron energy conservation:

Virq = —eEg' L — AP L TamviR)(I-Ty/T) - & VeVeo. (3.1)

M T, kT,

15
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Electron Energy flow:

q = ~kTgVs(nd,) - KTgHonE; .

Ambipolar diffusion equations:

+
_l_-|.+ = _r_‘t- = - ‘E kTavs(hDO),

- “P‘

Gas heating equations:

Q= — ATy pYsTy

Q = 2m n 2 T
VQ = M kTs('/zmv %) (I TS/T)'

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

In the above equations the gradient opera‘borvs refers to the meximum

rate of change with respect to s.

it follows that

=]
]

o = ckT Hv

where ¢ is a slowly varying function of T.

From the definitions of the mobility end diffusion coefficients,

- (3.10)

There are three unknown quantities--the gas temperature, the

electron temperature, and the electron concentration.

The first of

three simultaneous equations is derived by inserting the expressions

(3.10) into (3.5) to get the radial part of the heat flow vector:

9 = —KTgckT VsnDy) — KTy nD, Vs (ekT) ~KTgekTpnEsge,  (3.22)
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The radial space charge field is eliminated by comparing (3.11) with
(3.3). The result is

q" = CkT[,. - kTahDQVS(CkT) . (3.12)

We take the divergence of (3.12) in order to get the left side of (3.4):

Vg = cKTVel + I-VeKT) = Vg (kTynD, % (ckT).  (3.23)

Inserting (3.2), (3.6), and (3.7) into (3.13), we obtain
“-i
Vs'q = ““—’wzr}, = & KTq Vs tnDy) Vs {ckT)
~Vs+ (KTynDeVs (ckT)). (3.14)

Since the ratio Fﬁ?u@il, the second term on the right can be neglected.
The first term on the right of (3.14) is also very small by comparison
with the last term on the right of (3.4) because for the conditions of
interest KP<@:VE, and the total excitation frequency is larger than the
ionization frequency. The right side of (3.4) is expended with the help

of (3.3), (3.6), and (3.7), and the definition

(Y2mv2v,) = ' (T)KT. (3.15)

Then, also inserting (3.14) into (3.4), we finally obtain the energy

balance equation

EIFE

V- (KTgnD, %, (eKT) = — e Ed wkTyn +e L3 Koy n, )

n

amT h =
+ X T ne ( TS/T)+KT9E:¢..(3AL)
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The second term on the right side of (3.16) represents the rate of loss
of electron energy caused by ambipolar drift of the electrons to the
wall in opposition to the attractive force of the radial space charge
field. It is Bhown in Appendix~II that this term is very small except
very near the wall. The other terms on the right side of (3.16) repre-
sent a local balance at each point between the loss rate of energy due
to collisions and the gain rate of energy due to the axial field compo-
nent. In the gas-heated positive column this engenders a radial elec-
tron temperature variation that is more or less suppressed by the heat
conduction process represented by the divergence term in (3.16).

The second simultaneous equation that is required is obtained
from (3.2), (3.6), and (3.7). Theory3' indicates that at temperatures
well above 300O X. the atomic ion mobility in noble gases is the

approximate function of gas temperature,

ui = ;A’Ts'z (3.17)

where Pf is a constant. Inserting this expression into (3.6) and teking

the divergence of the result, we obtain for (3.2):

l/z
WV - [:—%- Vs (nDy) ] V,(T). (3.18)

The gas equations (3.8) and (3.9) yield the third simultaneous

equation,

V- (AVsTy) = — am L on ooy ~T,/T). (3.19)

Of the three equations (3.16), (3.18), and (3.19), only the last

one contains an explicit pressure dependence. This fact and the
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definition of the radial variable s suggest that if the axial electron
density n,y is varied with pressure (no/p held constant) and the tube
radius R is varied inversely with pressure (pR held constant), then the
shape of the radial profile of n stays constant and the radial profiles
of T and Tg are also constant both with respect to shape and absolute
magnitude. Since every term of (3.16) contains n, it is also true that
ESZ does not vary in the above type of variaetion of pressure and radius.
Then, according to (3.3), the axial component of current density at any
point is proportional to pressure. Since the tube cross-sectional area

2, the total tube current I varies inversely with

varies inversely with p
p. It follows that the solution of (3.16), (3.18), and (3.19) gives
n/no, Tg, and T as functions of s and the two parameters R' = pR and
I' = pI.

Different situations arise in the column in differenﬁwﬁanges of
R'. If R' is very small, the derivative terms in (3.18) are relatively
large and.iao has to be large in order to make up for the rapid diffusion
of electrons to the wall. Then, T is large enough so that the energy
loss due to inelastic collisions outweighs the elastic ccllision energy
loss (see Chapter V). As a result, the local energy balance is main-
tained by the radially varying inelastic energy loss rate, and the cor-
responding radial variation of electron temperature is small.

As R' 1s increased, T decreases until the inelastic energy loss
rate is negligible. For larger values of R' the radial variation of T
depends upon & competition between the variation of the elastic colli-
sion energy loss rate and the electron heat conduction. If R' is still

low enough, the heat conduction terms on the left side of (3.16) are

large, and the radial variation of T engendered by the first and third
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terms on the right side of (3.16) is suppressed (see Appendix III). As
R' is increased still further, the heat conduction becomes ineffectual,
and the radial variations of T, and T are comparable. This results in
a precipitate decrease of ionization rate from axis to wall.

These different cases will now be considered in some detail.



CHAPTER IV
THE POSITIVE COLUMN DOMINATED BY ELASTIC COLLISIONS

This situation has been recently investigated and definite re-
sults were obtained with a com.puter.16 The author's analysis (without
results) differs in detail from the analysis of Ecker and Zdller. Con-
sequently, there may be a qualitative difference in the results. This
depends on the assumptions that one mekes about the variations of cer-
tain coefficients with the electron and gas temperatures. We now derive
the relevant equations and explain the difference.

The effects of inelastic collisions and electron heat conduction

are neglected. Hence, the energy balance equation (3.16) becomes

eE:} = 2&" -E- __—?TE LMo (4.1)

vhere it is assumed that T /T<K1. The right side of (L4.1) is uniform
since the axial component of the field strength is assumed to be uniform.

Therefore, we obtain the equation,

/ — t I L
(T) }&.(T) (T )Tz ® (k.2)

or

— 2 lo(T) ()
T/T, (T /Tao) ) T (4.3)

21
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In these equations, Tgo and T, are the respective values of Tg and T on

the axis.

Consider the special case where 1@ = const.x v. In that case,

¢(T) = const.y T2

)
rln(T) = const. x T~ 72 , (h.1)
o (4.3) simplifies to
/Tq = Tg/Tyy- (.5)
Also for a Maxwellian distribution,
DO/M° = kT/e. (L.6)

If (4.5) and the above expression (4.4) for the coefficient U, are in-

serted into (3.18), the equation,

2
Ve = = KnF, (T Tg ™ - 12 n"’;f
g (4.7)
_ Y?'T _ VT

is obtained, where K is a constant. The second term on the right side
f (4.7) is associated with thermal diffusion. It can be related to
simpler terms by means of the gas heating equation (3.19). To a fair

approximation,
1 Vg,
= RTﬂ ; A = const.

If we insert this formula into equation (3.19), we get the equation,
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Wy = - K'n = 3(%T)VT,, (48)

where XK' is another constant. The right side of (L4.8) is substituted

for ‘L?Tg in (4.7) to get

2 2
%g—l = = Kn7, Ty 0+ K2
9 (4.9)
2 dn dTq _ ! dn
T3 ds 48 S ds

There are two classes of profiles which one obtains by solving this equa-
tion and equation (4.8). One consists of profiles which go to zero for
some value of s and hence can satisfy the boundary condition,

n(RP) =0,
at the wall. These profiles may be either broadened or constricted,
depending on how X' compares with XK. In Chapter VI is shown that the
thermal diffusion term (second term on the right side of (4.9)) has a
very weak effect. Therefore, the third term on the right side of (4.9)
dominates the column after the ionization term has become negligible
towards the wall. Since this term is increasingly negative towards the
waell, it has a broadening effect on the radial profile.

The other class of profiles turn upwards either initially or at
some point near the axis. That is, the ionization term 1s either less
or just a little greater in magnitude than the thermal diffusion term on
the axis. Away from the axis, the former quickly decreases, leaving the
latter dominant. Then the grad n becomes positive, both the second and
third terms on the right side of (%.9) become increasingly positive, and

the profile cannot turn down to satlsfy the boundary condition.
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In their work,16 Ecker and Z8ller use the relations
Tumgnamegmm

As equations (4.1) to (4.5) show, this simple relation between the elec-
tron and gas temperatures results if one assumes that V,e v. In that
case, the variation of electron mobility with gas temperature is

fk:: HaﬁN °<Tg%, and the corresponding variation of the electron dif-
fusion coefficient is Dox Tg3/2. Then, the ambipolar diffusion coeili-

cient is given by the relation,

_ K W OkT 372
Do = gD = =Ty,

since F:ﬂxﬂ?' Apparently, our results should agree at least quali-

2
g
tatively with those of Ecker and Zdller if we assume that r: is constant.

In this case, instead of equation (4.9), we get

&n _ _Kn L™ 1 odn
JS"— 3 m(Ta + KT S ds
? E . (4.10)
_ 5 L dndly a1 4T,
T E e 4(1'3??) '

The key term in this equation is the last one on the right side. If the
gas heating is small, this term Is small everywhere and the proflles
which satisfy the boundary condition are merely broadened. For large

gas heating and large n., the first three terms on the right side of

0’
(4.10) are dominant on the axis, and the first term quickly drops out as
we move away from the axis. Then, the second and fourth terms cause the
profile to turn upwards until the last term predominates to cause a
downturn. After the grad n becomes negative, the fourth term helps the
last term to steepen the profile toward the wall. Very near the wall

the fourth term predominates.
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Physically, there are three processes which govern the shape of
the electron density profile: ionization, ordinary diffusion, and thermal
diffusion. Ionization tends to mske the profile convex upwards. Ther-
mal diffusion is represented by the second and last terms on the right
side of (4.10). Hence, it tends to make the profile concave upwards
near the axis and convex upwards near the wall. The third term is asso-
clated with the radial decrease of the ambipolar diffusion coefficient
due to increasing gas density. It tends to steepen the profile either
upwards or downwards, whichever the case may be.

Now, since the positive ilon mobility varies with the gas tem-
perature in the way assumed by the author, the radial decrease of the
ambipolar diffusion coefficient is less than the decrease in the work of
Ecker and Zoller. Hence, the downturning tendency of the profile is too

small, and doubly peaked profiles should not occux.



CHAPTER V
THE POSITIVE COLUMN DOMINATED BY INELASTIC COLLISIONS

In this case the radlal electron temperature variation is small,

and the left side of (3.16) can be neglected. Also we set T = T_ in the

o}
first and third terms on the right side of (3.16). The second term is
neglected as usual. It is also true that Tg/T'£< 1.

The energy balance equation then becomes

eEXpuknT, = ne2 L 4 AV 5 (T, (50)
sz i N g M TS erﬁ e

If the gas pressure is low enough and the gas heating is not excessive,
then the inelastic collisions dominate the energy balance all the way to
the wall. In order that inelastic collisions control the energy balance

in equation (5.1), it is necessary that

M

In the case where ¥ =& v (6 is a constant cross-section),

2m | —
SR e/T << TZ:/Q-V,,(T) .

¢ = (da/WT) VEim T'2,

The variation of the inelastic collision term is given by (5.&), s0 the

inequality becomes

B (m/M)Yk/mar T3 << (b/K) expd = /KT)

26
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A more definite condition is that the rate of change of the left hand
term with respect to T be less than the rate of change of the right hand

term with respect to T. This gives the inequality

126 (n/MVRTmY T < B2 exp.(=Te/kT).

In the case of helium gas,

q

5.65 x 1016 cm.2,

<
iF,

20 eV. = 3.2 x 107+ ergs,

£
=

1/1350 ,

16.3 x 10720 ergs cm.3/sec.

o’
n

Then, for equality of the above terms,
T = 24,000° K.
What is the value of R' corresponding to this transition tempera-
ture? In the simplest case there is no gas heating, and we assume that
the ionization rate is given by equation (5.12) for complete second

stage ionization. Then, the particle balance equation (3.18) reduces to
(KT 920 = = (e%i,/KTpt)n
9 ] - e, P@ .

In cylindrical geometry,
—_ \ R
(e, /KTH'2 = kT, 2%,

For helium the constants in (5.12) are
b; =5.1x 1079 cm.3/sec.,
L -
and Mo ¥ 8.5 x 102 gn."Zem. 3/2,

for atomic ions. Then for an electron temperature of 2h,000° K., we get
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R' = 4,150 dyne/cm. = 3.11 cm.mm.Hg.
If there is only direct ionization, then iﬂozis given by equation (5.10),
and for T = 24,000° K.,

Vg = 2-30 x ].O"llL cma3/sec.

]

and R' = 11.9 cm. mm. Hg.
These values of R' are very small by comparison with the values at which
volume recombination becomes important in helium (see Chapter VI).

With the elastic loss term neglected in (5.1), we obtain the

equation,

D Vel (M = epg(Esy KTy ). (5.2)
(-

Since Eg, is assumed to be constant, the energy loss rate term in (5.2)
is proportional to ng. Hence, the energy loss rate off the axis is re-~

lated to that on the axis by the equation,

Tos D VeTeolT) = T2 D VeTao(T) (5.3)
e <

If one assumes the electron energy distribution to be Maxwellian,
and makes use of empirical curvese7:28 for the ]@,(v), one finds that the
sum of the inelastic collision energy losses can be expressed quite well

by the formula,
) VWi (T) = b exp.(=Ve/KT), (5.1)
e

where'ﬁé is the average effective excitation energy. The constant b

also contains such an average. Then, (5.3) becomes

Ve [ (5.5)
(Tyo/ T = exp. l{f(-_; - :‘r-) ,

0,
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or
.)F - % = 2(k/Ve) Log (Tye/Tg).  (5:6)
We now analyze the effect of the electron temperature radial
variation on the electron density profile. Consider again the case
where
Y, =¢-y ; o = const. (5.7)

Then, from the expression (2.11) one obtains the equation,

3/ -
Mo = 3?§-ekTp«ﬁr‘ = s:'3%2('rrkm)"""r =, (5.8)

If we insert this expression and the relation (4.6) for D, into (3.18),
we obtain
2 _ _ n V() 32 |\ VT,
Vn= KT (Ta,/Tﬂ) 7 Vsh —f—r;%, (5.9)
where K = (G'RB/Q) TgTﬂzlz.

To obtain the variation of the ionization frequency in (5.9),
consider two extreme cases:
(1) All ions are formed by direct ionization of unexcited atoms

by electron impact, and the lonizing frequency is given
guite well by the equation,

F,(T) = const. x exp, (—V,/KT). (5.10)

(2) Nearly all excitations result either directly or indirectly
in ionization.

In the second case most of the lonization goes in two steps:

(l) Ground state atoms are either excited or ionized by elec
tron impact.

(2) The excited atoms are ionized by electron impact before
they can decay permanently to the ground state.
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The success of the second stage depends on how long the excited states
can be preserved. Experiments29 indicate that even for small electron
densities, the ionization of metastable atoms is important. However,
the higher lying excited states often descend quickly to the ground
state. For values of pressure times radius of interest here, the reso-
nance radiation thus emitted is almost completely trapped--the excited
state wanders a small distance from the place of origin before descen-
ding by an alternate route to a metasgtable state.3o There is also some

production of molecular ions by atomic impact according to the equation,
X* + X—3 e + X7 (5.11)
27 '

where the asterisk indicates an excited atom.3l Hence, the second case

applies, and the ionizing frequency is given approximately by
¥, ()= by exp(-V,/kT). (5.12)
According to (5.5) the radial variation of i@,(T?is given by
- - 2
Yy (T) = by exp(-To/KT,) x (Ty/Tyy)" (5.13)

Then, in cylindrical geometry, equation {5.9) becomes

| d ([ dn | d n _ _ '/
TEE) TRy = —EeTy e

shere B = (bi/KT) o™ exp.{ ~Ve /KT,).

If we let p =8 dn/ds, we get the first order equation,

d d Yoy — %
= TPy lleaTy’2) = — BsnTy™, (5.15)
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with boundary condition p(0) = O.

To get an exact solution of (5.15), it is necessary to also solve
the gas heating equation simultaneously. However, the parabolic equation,

Tg = Tgo(l - hs?), (5.16)

is a good approximation to insert into (5.15). Also, n in the source
term on the right side of (5.15) is approximated by the parabolic equa-
tion,

n = no(l - cs2). (5.17)

As Spenke's work shows, a given error in such an approximstion should
cause much less error in the derivation of the radial profile of n.

The solution of (5.15), using the above approximations, is

2
S NP T [1=th40) £+ ne -gf_] . (538)

This equation can be integrated in a straight forward manner to obtain

Lot = - [‘/z (c/3h = D(1—hs2)2 + ¢ (¢/3h= 1)) - hsD¥2

~ o5 U —hs2)™ 4 2/3 = /45 ] 5 U= BTye/2h, (5.19)

\5h
At the tube boundary (s = R') it is assumed that n = O and Ty = Ty, 2
constant wall value of temperature. Then,
/ Tao — C T,
¢= I/R* h=legl ot (5.20)

12 3
R Tao h T%o ""Tw !
and U is evaluated by applying the wall condition to (5.19). In the

special case vhere T, >> T, (5.19) reduces to
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T ] T ) ] | ] | ] i
.5 1.0

s/R‘

Figure 1. RADIAL PROFILE OF n/n, IN THE COLUMN
DOMINATED BY INELASTIC COLLISIONS
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bl - -{' - 2 (1 —sy/R)"2

[ 1+ $0-sVRD + £ —sz/R’z)ﬂ} . (s.2)

The resulting variation of n/no is shown in Figure 1, where it is com~
pared with the normal Bessel function profile. This comparison shows
that even in the extreme case, the broadening of the electron density
profile is small. We also see from the solution (5.19) and the constants

(5.20) that the shape of the profile is not directly altered by chang-

ing R'.




CHAPTER VI
THE POSITIVE COLUMN WITH GAS HEATING AND VOLUME RECOMBINATION

There are several types of situations that may arise where vo-
lume recombinatignlis important. Most of these have already been dealt
with. The simplest case7 involves ionization and volume recombination
between electrons and positive ions in a gas of uniform density. In
this case, the quadratic variation of recombination rate with electron
density causes 1t to decrease faster than the ionization rate. As a
result, the net electron production rate per electron increases toward
the wall, and the electron density profile is broader than a Bessel
function.

More complicated situations arise in electronegative gases,
where volume recombination occurs between positive and negative ions for
sufficiently large currents.8‘lo

The case of interest here is a heated inert gas containing elec-
trons, atomic ions, and molecular ions of the parent gas. We assume
there is no convection. According to experimental data on recombination
rates, it 1s assumed that the dominant process is dissociative recombi-

32-3k4

nation of electrons with molecular ilons. The latter are formed
primarily by two processes:

(1) The Hornbeck-molnar process (5.11)31;

(2) The three-body collision,

3L
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X++2X-—>X+X2+.

(6.1
Experimental results35 indicate that the latter process predominates at

the pressures of interest for the constriction. Hence, the particle

conservation equations for the three charged components are

= Y - Q +
VoI = aN7,, — dnnf,

(6.2)
Ve I" = aN#, + YNnf - gN*nt (6.3)
Vel = —&nn; —YNn; + N n*, (6.4)
Since the current density is not very small, ambipolar diffusion is
assumed as before. That is, we assume
- + +
rl’ - r\‘ + rﬁ.i-)
(6.5)
= pnt -+
h=nt+nt,
The resulting particle flow equations are
Fut, ut
_ _pd+pad, |
+ 4
+ _ [nd
hi=- " i—V,.(nD,), (6.7)
+ .+
o quz |
Izr - - PA- WV‘-(“DO), (6'8)

+  +
where q+= n+/n, 0‘:= n2+/n, ro that ¢ +0{2 = 1.

The space charge field strength is given by

Ef' - - _L ‘%‘V‘. (hDO)‘ (6'9)



36

The quantities & and.ﬁ'are respectively the coefficient of dissociative
recombination and the rate coefficient for the three body process (6.1).
The second term on the right side of (6.4) gives the rate of dissocia-
tion of molecular ions by atomic impact. The coefficient 7Y is a rapid-
ly varying function of gas temperature and also depends greatly on the
dissociation energy of the molecular ion of interest.

To obtain the electron conservation equation, we amend (2.24) by

adding to the right side of the equation the term

any ‘2 mviaQy) |

which stands for the loss rate of energy due to the removal of free
electrons. Thls term, however, will be neglected because in the situa-
tions of interest the energy lost by recombination is small as compared
to that lost either by ionization or elastic impact. The chief reason
for this is that ionization energies are very large as compared to the.
energies for which the recombination cross-section is appreciable. This
is not true for the average energy lost in an elastic collision between
an electron and an atom. However, elastic collisions occur much more
frequently than recombinations.

If we again introduce the variable s = pr, we get for the last
two particle balsnce equations (6.3) and (6.4), with the help of (6.7)

and (6.8),

KTV | LTV 00 = = 0% —Tr* + aNeF . (6.10)
gvs | T KigVsind, Ve~ Ty, T RNNT (6.

we ol hns
kTSVs’[-jﬁ KTy Ve (nD)| =73 = +Yny — gNnt . (61D
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Of course, (6.2) is not independent but is the sum of (6.3) and (6.4)
because of charge conservation.
Unfortunately, these equations do not satisfy the similarity
principles of the gas-heated positive column without volume recombina-

tion. For if we stipulate that n, n', n," e p, then we find that

Y
5

h p?
N N T PRTg,

nv, = P,

but

PNh*« Np = p"‘/kTa~

Hence, the explicit pressure dependence of the terms cannot be divided
out of the equations (6.10) and (6.11). The immediate signicance of
this 1s that the shapes of the radial profiles of n, n+, and n2+ differ,
and these differences vary with gas pressure. The fact that the rate of
conversion of atomic ions is proportional to the square of the gas den-
sity35 leads to an important special case at high pressure--the average
atomic ion random-walks a very short distance before converting into a
molecular ion. Then, the formation rate of the molecular ions is given
essentially by the term, nNiﬂQ . Two subcases arise, which are deter-
mined by the value of the coefficient Y . If the dissociation energy of
the molecular ions ig high enough or the axial gas temperature is low
enough, the thermel dissociation is very small, and we can neglect the
atomic ions entirely (n = n2+). In the other subcase the relative con-

centrations of the two kinds of ions is determined at each point by a
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local balance between the dissociation rate of moleculer ions and the
rate of conversion of atomic ions into molecular ions. This latter case
has apparently been observed by Kenty36 in glow discharges in Xenon.
Since the dissociation energy of the noble gas molecular ions decreases
rapidly with increasing atomic weight, one would expect the former sub-
case to apply to the lighter ncble gases. This subecase will now be
considered.

In addition to the special approximations made for this case,
we also use the assumption of Chapter IV--the energy balance is domi-
nated by elastic collisions, so the energy balance equation (4.1) is
used. If it is inserted into the gas-heating equation (3.19), the

equation,

AV Tyt Uiy U = —ep Bz nkTy/p (6.12)

is obtained. This is one equation in the three unknowns n, T, and Tg.
Another is the particle balance equation.
Under the assumption that n = n2+, one gets from (6.2), with the

help of (6.6), the equatlon,

l"‘& _w¥, _gn
[ kT \Y (nD:\ kTa P (6.13)

The third equation is (h.l), which can be solved for T in terms of Tg,

and this solution is then inserted into (6.13).
The explicit pressure dependence of some terms in (6.13) and
(6.12) cen be removed by defining the "reduced electron concentration",
n' = n/p. (6.14)
For convenience we also deslgnate E , as E'. The equations (6.12) and

(6.13), then, are two simultaneous equations in the variables n' and T g
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with the parameter E!', the value of vhich depends on the values of R!
and ng'.

Consider again the case where the momentum transfer frequency
for elastic collisions is proportional to electron velceity (It applies
to helium gas for the electron temperatures of interest.). Also assume

that

pe o= WIS (6.15)

q
_ lme 1 /2
= kT‘i\ , (6.16)
a = u'T“m, (6.17)

where ’4' B ]', and 0\’ are constants determined by experiment. The
first two assumptions are idealizations. The experimental variation of
the molecular ion mobility may be somewhat faster than the variation
given by (6.15). The variation of A given by (6.16) is a little slower

38

than the true variation. The dependence of the dissociative recombi-
nation coefficient & on the electron temperature was determined by ob-
serving the variation of the intensity of emission of recombination radi-

34

ation with electron temperature in a micrewave cavity. Microwave
heating was used to vary the electron temperature over a narrow range of
300° K. to 1200° X. The equation (6.17) is also one of three cases in
the theory of Bates?o The value of the constant ll was obtained from

I

4
Chapman and Cowling l, while the value of F. was obtained by setting
T, = 300° K. in the data of Chenin and Biondi.3T The value of the dis-
sociative recombination coefficient in helium is very uncertain. Care-

ful mathematical analysish3’hh of the experimental conditions of
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measurements of electron-ion recombination in helium indicate that the
values of the dissociative recombination coefficient deduced by Biondi
and. others are too high.32)3b"h3 They also differ too much. The value
at 300° K. obtained by Chen et al3h is 0.89 x 10-8 cm.3/sec. as opposed

to 1.7 x 10-8

cm.3/sec. deduced by Biondi and Brown.32’h5 Using their
analysis of the experimental results, Gray and Kerrhg’h3 obtained a new
value of the dissociative recombination coefficient in helium of 1.3 x
10-9 cm.3/sec. However, the author, using the same analysis, obtained
an approximate value of about 6 x 1079 cm.3/sec. Oskam and Mittelstadt
in a similar type of analysishh fixed the upper limit of the dissocia-
tive recombination coefficient at L4 x 1077 cm.3/sec., and this value was

used by the author in determining &’ in equation (6.17).

As before; we assume complete second stage ionization, and hence,

18

7, = b exp. (~Ve/kT). (6.18)

For the case where V,= ¢ v, the coefficients c' and Hé are given by

et = ome(2k/m)3/ 2(qrx)F 12,

i

(2e/30%)(2k/m 'n)% T3,

Mo

If these expressions are inserted into (L4.1), one gets a quadratic equa-

tion in Tg or T, whose solution is
T= ATg, (6.19)
L1
vhere A=3 [ 1+ (1+ BE’2)2:| , end B = 1/3(e/a~)2(M/m). (6.20)

Then, the lonization frequency is given by
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17';°= by exp( - V/Tg), (6.21)

where
V=V KA. (6.22)

The particular form the particle balance equation (6.13) tekes is
1\ _ , -3/ h
Y, [T%Vs(h T% z):l = N zT3 _F :FS exp.(-V/T%), (6.23)

where

F bie/}A’AkB (6.24)

a'er~5/ 2/ M'kg. (6.25)

]

and G

Likewise, equation (6.12) assumes the form
A . 2 _ _
where H = (2/3r)"n",’)(eE')2(2k/mA)%. (6.27)

The solution of the equations (6.21) and (6.22) cen be simplified by

making the additional variable transformation,

L

vy = n'TgZ. (6.28)

In cylindrical geometry the equations finally become

&N ~3/z[ﬂ_ _ _ L dy 4T 1 dy
S =y, - P V/Ta):l T e
F s Py /s A S N
F = o (@ -9 3
with the boundary conditions:
dy/ds = 0 = dTg/ds at s = 0, (6.31)
and y=0, Tp="T, ats=R". (6.32)
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However, for analytical purposes we obtain from (6.23) and (6.26) the
equation,

d*n' _ -5/2 H
LN = - FNT e T + (T; + ﬁa)

_ _2_ 4n' {7, {T, dh)
Ty ds Wwts (2.T3T‘3 ds/ (633

The Regults
Because of the difficulty of solving equations (6.23) and (6.24)

46 on an IBM

analytically, they were solved by the Runge-Kutta method
1410 computer.u7 The general procedure was as follows: An appropriate
value of the parameter E' was chosen and the coefficients G, F, H, and
V were calculated from equations (6.20), (6.22), (6.24%), (6.25), and

.

(6.27) after the constants &=, V,, by,

» a’, X, ana ’.\’ were obtained from

experimental data (Table I). For each value of E' a range of values of
the gas temperature on the axis were chosen. The computer would then
integrate radial profiles of n' and Tg respectively for each value of
the axial gas temperature. The boundary conditions (6.31) and (6.32)
were satisfied simultaneously for each pair of profiles by generating
trial profiles for different values of n'(0) until the true value of R'
(= Rp) was bracketed with an error of less than 1%. The above procedure
was repeated for several values of E'.

Since the effect of gas heating on the constriction is the phe-
nomenon of interest here, a quantity called the constriction factor was

defined by the formula

C.F. = R'(Vn'/n)" . (6.34)

-
-
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For the zeroth order Bessel function, the value of C.F. is 2.405. The
value of C.F. is calculated for each correct radial profile integrated
by the computer. One can then plot C.F. as a function of R' for each
value of E'. However, the results are misleading because R' depends on
both the average gas density and the average gas temperature, which
varies appreciably with R' for a given value of E'. The initial value,
Ri', which a seéled discharge tube has before the discharge is turned on
and the gas heated, is more indicative of the average gas density. Table

IT contains the values of Ri' calculated with the formula,
/’/

p,/p = Ri/R = 2T ./R"‘jkiis— (6.35)
P TN MR Tyt

where Tgi = 300O K. With these values one can meke meaningful plots of
the variations of C.F. with Ry' for different values of E' as shown in
Figure 2.

Of more immediate interest to the experimenter is the variation
of C.F. with Ipi for a given value of Rp,. That is, if one keeps the
tube radius and cold gas pressure constant and varies only the tube cur-

rent, the constriction factor varies in a way shown in Table III and

Figure 3.
The values of Ip; were calculated for each case from the radial
profiles by using a formula derived as follows: The tube current (due

almost entirely to electrons) is given by the equation,

R
1= —esz My dr y | (6.36)

where rz = nvV, = — '%2 hEz ‘

¢
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If we again introduce the similarity transformations, s = pr, E, = pE',
n=n'p, I' = Ip, then (6.36) becomes
’
‘ / R
I = 2wekE _f S Tyh’ ds . (6.37)
s J
If we insert into (6.37) the previously given expressions for F° and y,

we finally get

[4

R
( -\ I'4
I' = CNE j syds , (6.38)
Q
s
where A is given by (6.20) and C = (4e®/3 6~)(2kMWy/m)2.
The cold gas values of I' (= I;') are finally obtained by multi-

plying the calculated values of I' by the pressure ratios obtained with
(6.35).

Analysis of Results

Figures 4 and 5 show that, in addition to the boundary condi-
tions (6.31) and (6.32), the radial profiles of n' all have two points
of inflection. In general, these points move closer to each other as
either Ip; or Rp; decreases. The qualitative features of the radial
profiles are governed primarily by the radial variations of three quan-
tities~-the ambipolar diffusion coefficlent, the ionization rate, and
the volume recombination rate. Since the production of ions and elec-
trons by lonization necessitates an increasing concentration gradient,
the ionization term (first term in (6.33)) tends to make the density
profile convex upwards. For just the opposite reason, the loss of elec-
trons by volume recombination (second term in (6.33)) tends to make the
density profile concave upwards. The effectiveness of these two pro-

cesses increases with gas density as shown by the factors Tg'5/2 and.




TABLE I

VALUES OF E/p AND THE CORRESPONDING VALUES OF THE COEFFICIENTS v, A, F, G, AND H
(The values of the empirical constants are shown at the bottom of the table.)

Ef A v F ¢ "
(statv. cm./dyne) (deg. ) (deg?/gcmg/dyneQ) (cm? deg3/d;yne) (cm3 deg./dyne)
1.0 x 1077 2.654  8.666 x 10% 1.513 x 10% 1.966 x 10-8 5.816 x 10716
1.5 x 1077 3.682  6.247 x 10t 1.090 x 10° 8.672 x 1077 . 1.111 x 1077 &=
2.1 x 107 4.928  L4.667 x 10% 8.147 x 10% 4.185 x 10~9 1.882 x 107
3.0 x 1077 6.805  3.380 x 10% 5.900 x 10% 1.868 x 1077 3.269 x 10~%°

1 i
,lk’-u- 2.32 x 1021* deg.zgm.—zcmf3/2 , X= 891 gm. cm./sec.3deg3/2, V., = 19.75 eV.

O = 2.08 x 1070 cmd dee Ysec., @ = 5.65 x 10710 em.2, b,

; = 5.10x 1072 cm?/sec.

Il
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TABLE IT

VALUES OF Rp, Rp;, AND THE CONSTRICTION FACTOR C.F. CORRESPONDING
TO VALUES OF THE AXTAL GAS TEMPERATURE FOR SEVERAL VALUES OF E/p
(pi 1s the pressure of the cold gas before the discharge is
turned on.)

E' x 107 i R' x 10~ R! x 1076 C.F.

go
(statv. cm./dyne) (deg. X.) (ayne/cm. ) (ayne/cm. )

1.0 ¥olole} 38.0 7.99 7-95
4250 20.2 k.06 7-39
4500 11.5 2.22 6.91
4750 6.97 1.30 6.53
5000 I .801 6.19
5500 2.06 .345 5.55
6000 1.09 171 5.10
1.5 2750 37.0 10.0 6.4
3000 4.7 3.75 5.92
3250 6.75 1.64 5.48
3500 3.48 .803 5.09
4000 1.20 .251 L.52
L4500 .527 .102 4,08
2.1 2000 33.1 11.1 5.55
2100 19.4 6.28 5.34
2250 9.50 2.94 5.03
2500 3.53 . 1.02 4.60
2750 1.58 4o h.26
3000 .816 .208 3.98
3.0 1500 15.2 6.13 L.h
1750 3.37 1.23 4,29
2000 1.09 .366 3.91
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TABLE ITI

VALUES OF Ip; CORRESPONDING TO -VALUES OF Rp; AND E/ P

E' x 107 R} x 107° I} x 107
(statv. cm./dyne) (ayne/cm. ) { statamp. dyne/cm?)

1.0 7.99 1.73
4. 06 1.87

2.22 1.99

1.30 2.1h

.801 2.29

.345 2.56

171 2.82

1.5 10.0 .956
3.75 1.05

1.64 1.17

.803 1.27

.251 1.h7

.102 1.66

2.1 11.1 .551
2.94 .639
1.02 .720
428 .T97

208 .876

3.0 6.13 .312
1.23 .368

.366 429
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Figure 2. VARTATIONS OF THE CONSTRICTION FACTOR WITH Rp, FOR
SEVERAL VALUES OF E/p (p, is the pressure of the
cold gas before the discharge is turned on.)
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Figure 3. VARIATIONS OF THE CONSTRICTION FACTOR WITH Ip,
FOR SEVERAL VALUES OF Rpy
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0 5 1.0
s/R!

Figure 4. VARIATION OF THE RADIAL PROFILE OF n/n_ WITH AXIAL
GAS TEMPERATURE, E/p = 1.5 x 10-T STATY. CM./DYNE
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n/n

E' = 3.0 x 1077, Rp, = 6.13 x 10°

E' =2.1x 107/, Rp; = 1.11 x 107

E' = 1077, Rp; = 7.9 x 100

S 1.0
s/R’

Figure 5. VARIATION OF THE RADTAL PROFILE OF n/n_ WITH E/p
(The values of Rp; are of the same order of magnitude.)
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Figure 7. RADIAL PROFILES OF n/n_ AND T _/T

5 E/p = 3.0 x 1077
STATV. CM./DYNE, T, = 2000° K.

go’
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Figure 8. VARIATIONS OF E/p WITH Ip, FOR SEVERAL VALUES OF Rp,
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Tg_3 in (6.33). Because of the gas heating, the radial increase of gas
density induces a radial decrease of the ambipolar diffusion coefficient.
This in turn necessitates a steepening of the density profile in order
to facilitate the required diffusion to the wall. The fourth term in
(6.33) most directly shows this tendency, which is to make the density
profile broader.

Consider two extreme cases. If both Ip; and Rpi are large, the
volume recombination rate is an appreciable fraction of the ionization
rate on the axis. Also, the radial variation of the gas temperature is
relatively great. Hence, the ionization rate decreases very rapidly and
leaves the volume recombination process dominant at a relatively short
distance from the axis, and the first inflection point is reached. At
this point the electron density profile is steep, but the steepening
effect of the increasing gas density (fourth term in (6.33)) is still
small because (l/Tg)(dTg/ds) is small (see Figure 6). In fact, this
effect stays small because the slope of the density profile rapidly de-
creases in magnitude as the magnitude of (l/Tg)(dTg/ds) increases.

Since the recombination rate varies quadratically with n', its effect on
the profile finally becomes small, and the effect of increasing gas den-
sity causes a small downturn near the wall.

In the opposite extreme where Ipi and Rpi are both small, the
volume recombination rate is less than one tenth as large as the ioniza-
tion rate on the axis. Because of a smaller gas temperature variation,
the radial decrease of the jonigzation rate is smaller than in the other
case. Therefore, the volume recombination rate becomes dominant at a

greater distance from the axis. It stays dominant over a shorter
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distance because the slopes of the electron density and gas temperature
profiles are simultaneously large in the fourth term in (6.33). Physi-
cally, this means that as Ip; and Rpi are decreased, the volume recombi-
nation becomes unimportant and the broadening effect of gas heating pro-
gressively sets in. As in the case of gas heating without volume re-
combinationl6, thermal diffusion of electrons (third term in (6.33)) is
appreciable. However, its effect is weak. The main reason is that the
thermal diffusion term increases more slowly with decreasing gas temper-
ature than does the volume recombination term. We maske calculations for

two extreme cases with the use of Table I. For our most constricted

result,
E' = 1.0 x 1077 statv. cm./dyne,
— o}
Tgo = L000° X.
Then we get G/ng = 3.07 % 10”19,

H/2Ty, = 7.28 x 10720,
Not only is the recombination term larger on the axis, but it grows much
faster toward the wall because of the large gas temperature variation.
For the least constricted result,

E' = 3.0 x 10™( staty.cm./dyne,

Too = 2000° K.
In this case we get G/Tg0 = 2.3h x 10719,

/2Ty, = 8.18 x 10719.
The thermal diffusion term is important for some distance toward the
wall. Evidently, it does not succeed in making the column constrict in
this case (Figure T).

Perhaps, the results of greatest interest to the experimenter
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are illustrated in Figure 3. In order to confirm or deny these predic-
tions in the laboratory, one would choose a cylindrical discharge tube
having a convenient radius (R = a few cm.) and adjust the helium gas
pressure in the tube until Rpi has one of the values indicated in Figure
3. Beveral check points could then be chosen on the appropriste curve.
At a given check point the required current is calculated by the formula,

I= Ii’/pi.
The discharge is started and the tube is either dropped or rotated in
order to eliminate convection. After a steady state is reached, the
voltage across the tube 1s varied until the desired current is obtained.
To obtain the corresponding constriction factor, it is necessary to take
several probe measurements of the electron density in the vicinity of
the axis of the discharge. With these measured values the constriction

factor, -

CE o= R(VEn/mMY®|

is evaluated by numerical methods.52

Cne can also check the predicted axial gas temperature by measur-
ing the steady state pressure p and comparing pi/p with the values cal-
culated with (6.35). Since the radisl gas temperature variaticns are
approximately parabolic, the equation,

2
Ty = Tgo - (Tgo - T,)(s/R")5,

was inserted into (6.35) to obtain the simple formula,

P1/P = Tgi/(Tyq = Ty) x log(Tgy/T,). (6.39)
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Since in most cases Tgo>> T, little error is made by setting
T, = Tgy = 300° K.
Thus, for any point in general on the graphs in Figure 3, one measures
the initial pressure p;, turns on the discharge, measures the steady
state pressure p, and solves equation (6.39) for the axial gas tempera-
ture TgO'

The results of Figure 3 show that the constriction sets in fas~
ter with respect to increasing Ip; for larger values of Rp;. A possible
explanation of this is that for smaller values of Rp; the greater gas
heating makes the broadening effect of the radial variation of the ambi-
polar diffusion coefficient more important.

The decrease of E/p with increasing Ip; (Figure 8) is, of course,
explained by the fact that as the discharge constricts, the current
crowds into the hotter part of the discharge where the slectron mobility
is greater.

In view of the large amount of gas heating, the assumption that
the gas temperature at the tube wall equals the ambient temperature out-
side the tube may be in error. Since forced cooling outside the tube is
feagible, we ansume that the temperature of the outer surface of the
wall is 300° K. and consider only the conduction of heat through the
glass. If the thickness t of the glass wall is smell as compared with
the tube radius, we get the heat flow equation,

Q(R) = —7\% x To=To 5 (6.40).
=R t
where )\v is the thermal conductivity of the wall and Ty is the ambient

temperature outside the tube. For helium,
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A = 891 gm.cm. (sec.3deg.3/2) x T %}
g

and for glass,

b gm.cm./(sec.3 deg.).

)w= 8 x 10
Let t/R = const. = C.

Then, the similarity rules apply and (6.40) becomes

Ty—Tg = —-C %WR'% . (6.41)

Consider the case where E' = 1.0 x 1077 statv.cm./dyne and Tgo = h000° K.
Computer data give
dTg/ds 2.2 x 107* cn. deg.K./dyne,
R' ¥ 3.8 x 107 dyne/cm.

Then equation (6.41) gives the result,
T = 3000 K. + (C x 1607° K.).
If C = 0.1, then T = 461° K. This result is in error since the compu-
ter data were obtained for a profile satisfying the boundary condition,
T, = 300° K. However, the error is small because

161° K. €& Tp, - T, ¥ 3540° K.

Because the fractional error of Tgo - T, due to the finite con-

w7

ductivity of the glass, is small, one can meke an approximate estimate

of the corresponding fractional error in R' with the formula

éB.L: Tw=Ta = - 6.1
¥ T Rx@r, &) CATRw (6.42)

Then, in all cases where C = 0.1, the fractional error in R' is about
1
0.00111 x T2 v .022.
The constriction factor defined by (6.34) is proportional to R!.

Bowever, it also depends on the sharpness of curvature of the profile of




60

n' on the axis. Hence, as R' decreases, one expects the profile to be
narrover, and the constriction factor would tend to remain ng same. In
all cases, however, the percentage varisztica of (Eﬂfn'/n')s‘o from one
trial profile to another is very much less than the corresponding per-
centage variation of R'. Hence, the percentage errors in the values of
the constriction factor in Table II are ebout the same as the percentage
errors of R' in (6.42).

The author does not know of any constriction experiments with
helium that are directly related to the theory presented here. However,
there 1s a wealth of experimental data and theory on constrictions in
the high pressure D.C. arc, in which thermal equilibrium prevails.ll:5l
There are also some observations of constrictions in glow discharges in

36

xenon. The mechanisms proposed by Kenty to explain these constric-
tions are dissociative recombination and thermal dissociation of the
molecular ions by the heated gas. The latter process induces a radial
variation of molecular ion concentration. As explained in Appendix III,
the radial variation of electron temperature canhot be an important fac-

tor in Kenty's observations of the constriction in the low pressure

( ~ 10 mm. Hg) xenon discharge.



APPENDIX I

EFFECT OF COULOMB INTERACTIONS ON THE

ELECTRON VELOCITY DISTRIBUTION

To estimate the relative importance of random Coulomb interac-
tions in shaping the electron velocity distribution, we will calculate
the energy loss rate due to both Coulomb interactions and collisions be-
tween electrons and molecules. Since we are concerned here with a weak
plasma (specific ionization € 1077), the collision method of treating
Coulomb interactions is sufficiently accurate. Hence, we start with a

L8

basic formula ™ for the collision rate of change of some quantity @

9(A¢‘ J(Ct’. $,) ’FQ(Ya) ¢ e, %) 0 43_\.’2 (T.1)

In this equation,(¥, is the quantity belonging to the particles no. 1,

all having the same velocity v., c¢ is the relative speed lv - 22| , and

l)
s (c,]bis the differential scattering cross-section.

This equation was used by 8. Chandrasekhar to analyze the effects
of random interactions among stars in stellar systems. Since the gravi-
tational and the Coulomb forces have the same dependence on distance, we
can use Chandrasekhar's results by changing only a few constants in his
formulas. In plasmas, however, screening of the positive lons by the
electrons is sometimes important, and the interactions are weakened. The

plasma densities of interest here are low, and therefore the Debye length

61
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(the screening parameter) is large as compared to the average distance
between neighboring electrons. Hence, the screening effect is small at
that distance, which is therefore used as a cut-off value of the impact
parameter: Cut-off value = a = .55k x n‘l/3f,::%n‘l/3. ~
To estimate the effects of Coulomb interactions on electron ener-

gles, we use one of Chandrasekhar's results’? to get

3(aE) _ _ 4net
Nt my

G(x,) Lo% qv*, (1.2)

where G(Xo = ‘i\ﬁ [@(X@) - XOQ'I(X.)] )
X, = BV, 4 = ma/2e*,

and Q(xo) is the error integral.
This equation gives the average energy loss rate of a group of electrons
having the speed v, mass m, and charge -e.

The corresponding energy loss rate due to collisions with mole-

cules is obtained from the third term of equation (2.24) to get

l;-%—f) = = (m /Mm% (1.3)

Let us consider a representative electron velocity of 108 cm./sec. and
choose x, = 1, the value for which E = kT. Then G(xo) = 0.214. For the
velocities and electron concentrations of interest, qv2 > 1, and log qv2
varies very slowly with n. Hence, we assume that n = 1012/ cm.3 end cal-
culate log qv2 = 6.90. Setting (I.2) equal to (I.3), we obtain for the

specific ionization,

n/N = 1.16 x 10722 v3 Y, (v) (I.4)
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8

For v = 10° cm./sec. in helium, Y,= 5.65 x 10-8 cm.3/sec., and n/N =

6.53 x 10'6. This value applies to low pressure glow discharges where
the electron temperature is about 30,000° K. In the discharge consi-
dered in Chapter VI, the electron temperature is somewhat lower and
varies from 10,200° X. on the axis of the coolest discharge to 15,900°
K. in the hottest discharge. Consider the worst case presented in the
results in Chapter VI:

E' = 3 x 1077, Ty, = 1500° K., yo = 3.5 x 10%, R' = 1.525 x 10,
If we choose R = 3 cm., then, with the variable transformations given
in Chapter VI, we obtain on the axis

n 4.58 x 10%9/cm.3

o}

N,

n

2.69 x 10%9/cm.3

n,/Ny = 1.70 x 1079.
For an electron temperature of 10,200° K., v2 = 4.63 x 107 cm.?/sec.2.
For this case the value of specific ionization for which the Coulomb
interaction is effective is n/N = 1.34 x 10'6, or about three orders of
magnitude larger than the calculated value on the axis of the discharge.
The best case in the results of Chapter VI is the case where

both E' and R' are smallest. For that case we have E' = 1071, T

20
6000° K., R' = 1.008 x 106 y. = 3.914 x 109. Then the actual concen-
» Jo

trations on the axis of the discharge are

1.83 x 10%3/cm. 3

4.81 x 10 7/cm.3

1476}

N

]

¢]

n, /Ny = 3.80 x 10-5,
and the axial electron temperature is 15,900° K. For these values, the

critical value of speclfic lonization on the axis of the discharge 1s
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n/N = L.17 x 1070,

Hence, only some of the more constricted discharges satisfy the
condition for strong Coulomb interactions. Since 1Q60in (I.4) is pro-
portional to v for the electron velocities of interest,

n/N e vhex T2,
and there is a rapid radial decrease in the critical value of specific
ionization that is at least as fast as the decrease of the actual value.
It follows that the condition for strong Couwlomb interactions is more

likely to be satisfied in the outer parts of the discharge.



APPENDIX II
ELECTRON ENERGY IOSS BY AMBIPOLAR DIFFUSION

In Chapter III it is assumed that the electron energy loss rate
due to ambipolar diffusion is negligible. The proof of this is simpli-
fied by assuming slight gas heating so that the second term on the right
side of (3.16) is the only term generating a radial electron tempersture
variation. Also, we simplify the analysis even further by assuming that
1@ = const. The inelastic collision energy loss rate is taken to be
negligible so that an upper limit of the variation of electron tempera-
ture can be found. For 7V, = const., the expressions for the coeffi-

cients in (3.16) are

fo= e/mTo
Dy = kT/mVp
c = 5/2,

et =3/2x V.

The axial field strength term can be eliminated from (3.16) by solving
for 1t in terms of the axial values of the other terms. Thus, in view

of the above- assumptions and approximations, (3.16) becomes

AH: V- (hT%T)| - —'h-Vs-(nTVST)] = B(T,-T)
ARG
e
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where T, and n, refer to axial values of T and n, and the constants are

given by the formules,

2 +y, 2
A=K g =3 Y o Bk

2my, ° NkTE 0 T e

If we expand the divergence and gradient terms in this equation, we get

T p2r| o Lyrr (V) _%h WT| _ B (¢ _
A[TZVSTL TVST (.;.) -ST":'SI.—] - .TQ.(TO T)

A EAR L Y VT -
~[) + (S) 4+ 22 W) (1.2)

For large values of Rp the gradient terms are small, so the heat conduc-
tion terms on the left side of this equation-can be set equal to zero at
least near the axis of the discharge. In fact, only two ferms may be

apprecisble, so we get

2
B(T-T,) = - cﬁ(ln.glg) . (11.3)

This is a quadratic equation whose solution is

-8B (- L (Ldnt)/ n )\

If T varies little, then, n = ngJ (Ks),

and - (an/ds)/n = K[Jl(Ks)/JO(Ks)] .

If the discharge takes place in helium gas at a pressure of 10 mm.Hg in
a tube of radius 2.4 cm., then, the electron temperature should be about
25,000O K. and we get C/Bf~'1.6 X 10'8 cm,a/deg. It follows that the

solution for T can be approximated by the equation,

- _ L [ dnY
T = To[l B T, <n 4S)J ) (11.5)
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everywhere except very close to the wall. That is, the electron tempera-
ture is nearly constant over almost the entire cross-section. Suppose
the exact solution (II.4) of the equation (II.3) is valid near the wall

at points close enough to the wall so that

¢ (L 4n¥?
‘H."F (n ds) > 1,

There the solution can be approximated by the equation,

n_ (BTL)'2
T s (T) ' (TL.6)

This can be used to estimate the size of one of the terms neglected in

the original equation (II.2). For example,

L AT Ldn _li_n)z
T ds h d§ nh ods) -
Hence, the quadratic equation is not valid near the wall. In our numeri-
cal example,
¢/A = 6.8 x 1073.

Hence, the leading terms in the equation (II.2) for the region near the

wall are probably (]I:T)
_7) 2 aTdT Ldn (T e 27 _Ty2
8T T = AT4T 4L - (T4 + a(reT-Tee])

It appears from this equation that the second term on the right first
becomes sppreciable and induces a negative temperature gradient. Then
the first term on the right quickly grows to partially cancel the effect.
The contribution of the other terms on the right is hard o evaluate and
may be positive.

The behavior of the electron temperature very near the wall may
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be obtained more correctly by neglecting all terms in (II.T) except the

first two on the right side. That is, we solve the equation,

AT 8 s C(n 43) y 9
and get the solution,
T =T, (n/ng)C/A . (11.9)

Since C/A<¥< 1, the temperature varies little except near the wall.

For larger values of pressure times tube radius, the first term
on the right side of (II.2) becomes more dominent, and the solution (II.3)
becomes increasingly valid and the radial temperature variation is

smaller.



APPENDIX III

TRANSITION FROM THE COLLISION-DOMINATED

TO THE CONDUCTION-DOMINATED COLUMN

In Chepter IIT it was noted that the relative importance of the
collision energy loss terms on the right side of the energy bhalance
equation (3.16) increases with R'2. Hence, over a limited range of va-
lues of R', the dominance of the energy balance shifts rapidly from the
heat conduction terms on the left side to the elastic collision terms on
the right side of (3.16). This statement and the following analysis
apply only if the inelastic collision terms have already lost energy
dominance at the valueg of R! of interest.

To compare the relative importance of the elagtic collision terms
and the heat conduction terms for a given pressure and radius, we take
the solution (4.3) of {3.16) for the collision-dominated column and use
it to calculate one of the terms on the left side of (3.16). Assume

that ¥, = const. Then pg and ¢! are also constant, and
T/T, = (Tg/Tgo)2. (I1I.1)

Also, the energy balance equation reduces to equation (II.2) in Appendix

II. With the above solution we get
2T _ 2 2 2
VT = QLT [T+, e

69



T0

and ‘751' = (:fT; /-ng) —Ea‘Z;Tb .
Then, the off-axis terms on the left side of equation (II.2) become
2
- 2A Y&!Ié + 3‘Yg16 + Ygg..SEI%

Ty T4 h Ty

and for the important off-axis term on the right side we get

3

B/T = (BT%O/TO)/’.I% )

The axial values of these terms will be calculated and compared. For Tg

assume the function, Tg - ase, with the boundary condition,

= Tgo

Tg(R') = T, so that a = (m,. - TW)/R’Q. We now calculate the value of

go
R! at which the heat conduction terms equal the collision term. The

result is

’

RZ = 8(Tgo - Ty) Tolyo/Fs

where according to the definitions of A and B in Appendix IT,

F = 1.2 x (o/M)(n¥,x3).
For helium gas, F~19.8.
Then, if T, = 25,000° K. and Tgo>> Ty , R'= 35.6 x Ty
If Ty = 2000° K., R' = 71,200 dyne/cm. = 53.4 cm. mm. Hg.
Evidently, electron heat conduction is negligible for the values of R!
at which one would expect recombination to be effective in helium. The
above value of R' is an overestimate, because for that value,

Yy ~ VX const.
in helium, and the electron temperature varies more slowly with gas tem-
perature then in the case where V, = const.

The expression for F shows that in the heavier noble gases
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electron heat conduction is more important since the mass ratio is much
less. Also, ¥, is much less in neon than it is in helium. For the same
reasons, the energy loss due to inelastic collisions in the heavier
gases also has greater relative importance. At the same time, the vo-
lume recombination coefficient is much larger in the heavier noble gases
(> 2 x 10°7). Therefore, in the heavier inert gases the value of Rp

at %hich the constriction sets in is determined by the relative impor-

tance of either electron heat conduction or inelastic energy loss.
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