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CHAPTER I 

INTRODUCTION 

Background 

A plant lives in two realms, the soil and the atmosphere. Water movement 

from the soil, through' a plant, and out into the surrounding atmosphere can be 

treated as a series of mutually related and dependent processes. Taken together, 

these processes define water movement through the soil-plant-atmosphere continuum 

(SPAC) (Philip, 1966). A schematic representation of SPAC interactions is shown in 

Figure I. 

Because the interrelationships are complex, especially under natural 

conditions, the SPAC is often studied using simulation models. Frequently such 

models divide the soil root zone into several layers and assume that the canopy

atmosphere interaction can be represented by an evapotranspiration equation 

combining energy balance and aerodynamic concepts (Federer, 1979). 

Simulation models differ in their approaches to describing plant behavior and 

water uptake from the soil. The rate of plant transpiration is determined not only 

by plant characteristics, but also by the evaporative demand of th,e atmosphere and 

the soil's ability to provide water. Since climatic factors and soil physical 

properties vary continually and markedly in both time and space, the mode,ling of 

plant responses to its environment remains one of the most intriguing problems in 

irrigation management. 

Considerable research work has been done on each of the separate components 
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of the soil-plant-atmosphere system. For example, soil physicists and agricultural 

engineers have been among those studying such soil water processes as infiltration, 

redistribution, and evaporation. Plant physiologists, botanists, and others have 

studied plant water relations at both the cellular and whole plant levels. The 

physics of the evapotranspiration process have been analyzed by micrometeorologists 

and other agricultural scientists. The interdisciplinary nature of the problem is 

evident. 

ATMOSPHERE Irrigation & Rainfall 

PLANT Hydration 

Evaporation · 

SOIL 
Infiltration 

Figure 1. Water Movement in the Soil-Plant-Atmosphere Continuum 



3 

Understanding root growth and water uptake is perhaps the weakest link in 

modeling water movement through the SPAC. The roots of a plant are indeed an 

intricate system, with their main function being to absorb water and mineral 

nutrients from the soil. Plant roots comprise the interface be.tween water activity 

in the soil and in the plant. 

The growth and activity Of plant roots and their interaction with soil 

environments are influenced by a number of factors. These may include soil 

moisture, mechanical resistance, temperature, chemical composition of the soil 

solution, and the genetic characteristics and c;urrent physiological status of the plant 

itself. Because of this complexity and the inherent difficulty in making root 

measurements, research on root growth and activity has been a challenge. 

Early conceptual models of water uptake by plant roots were based on single 

roots assumed to be semi-infinite line sinks or "mathematical" roots (Philip, 1957; 

Gardner, 1960; Cowan, 1965). Later on, more complexity was introduced in root 

water uptake models (Molz and Remsqn, 1970; Feddes et al., 1974). A 

comprehensive review article (Molz, 1981) summarized root extraction functions 

which have appeared in the literature. 

The approaches can be generally classified as one of two types. The first type 

builds on the concepts of van den Honert (1948), who stated that, under steady flow 

conditions, the rate of water flo~ through a plant part is directly proportional to the 

water potential difference across that part and inversely proportional to the water 

flow resistance (or directly proportional to the water flow conductivity). The 

application of this approach requires knowledge of such physical properties as water 

potentials in the soil and at the soil-root interface, and the soil and root 

cond ucti vi ties. 

In the second category of extraction functions, an estimated 

evapotranspiration (ET) rate per unit surface area is divided among soil layers. 
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Several methods of dividing the ET have been proposed (Molz and ,Remson, 1970; 

Raats, 1976; Feddes et al., 1976; Molz, 1981; Novak, 1987). A common approach is to 

use the product of unsaturated soil diffusivity (or conductivity) and root length 

density as a weighting factor to divide ET among soil layers. Under typical 

irrigated conditions, the potential root activity plays a more important role than do 

soil properties. To date, there' are limited references to dynamic simulation of 

water movement in crop root zones w:ith emphasis on root activity. This is 

especially true for two-dimensional simulations which can realistically describe row 

crop behavior in a field environment. 

Objectives of Study 

The overall objective of this study was to simulate water movement through 

the soil-plant-atmosphere continuum, wjth particular emphasis on plant water 

uptake by roots. The specific supporting objectives were to: 

1. using peanut field data as a case study, develop schemes for empirically 

describing the spatial distribution of roots; 

2. incorporate the functional "root sink" term into a dynamic simulation model 

of unsaturated flow in crop root zones; 

3. test the model using field data from an irrigated peanut crop with 

differential water treatments. 



General 

CHAPTER II 

LITERATURE REVIEW 

Modeling Water Movement in the Soil

Plant-Atmosphere Continuum 

In the last two decades, significant progress has been made in modeling water 

transport in the soihplant-atmosphere' continuum. Klepper et al. (1983) draw a 

helpful distinction between soil-centered models and plant-centered models. Soil

centered models are based on water balance concepts from a soil physics perspective 

and typically provide for a "root sink". The root sink term is an attempt to quantify 

the amount of water leaving the profqe via root water uptake. The models of 

Nimah and Hanks (1973a,b) and F,eddes et al. (1974) are two among many examples 

of soil-centered models. 

Plant-centered models; on the other hand, are based on the concepts of the 

water balance and carbon balance from the view of soil physics and plant 

physiology. A plant-centered model has the potential to give an explicit expression 

of root water uptake as affected by the soil environment and meteorological factors 

during the plant growing season. 

A good example of a plant-centered model was presented by Huck and Hillel 

(1983). Later on, this model was modified and tested by Hoogenboom et al. (1987a). 

They described a model of root growth and water uptake accounting for 

photosynthesis, respiration, transpiration, and soil hydraulics. They provided a 

5 
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conceptual framework for the formulation and testing of theories regarding plant 

\ 
adoption to variable environments. This approach could overcome the 

shortcomings of numerous models which have attempted to characterize separately 

the effects of either the soil conditions, plant attributes ot the climate regime, while 

holding the other variables constant or assigning them arbitrary values. For 

example, some root activity and water uptake models consider the canopy to be 

constant, whereas other models portray canopy growth as if detached from the roots 

or as if linked to a static root system of fixed spatial distribution. 

The main physical principles used to describe water movement through the 

soil-plant-atmosphere continuum are thermodynamics and hydrodynamics. The 

underlying theory for each of these will be briefly discussed in the following 

sections. 

Thermodynamics 

Thermodynamics is the science of energy transformation. According to the 

second law of thermodynamics, all kinds of energy in a system can be expressed as 

follows: 

G E + p X v "" T X s 

H- T X s (1) 

where G is the Gibbs free energy, E is the internal energy, Pis the absolute pressure, 

V is volume, T is the absolute temperature, S is entropy, and H is enthalpy. The 

free energy per unit quantity of substance, specifically per gram molecular weight 

(i.e., the free energy /mol), is called the chemical potential (Salisbury and Ross, 1985). 

In 1943, Edlefsen and Anderson published a valuable report entitled 

"Thermodynamics of Soil Moisture". It was the first systematic study of 

thermodynamics of water in soil, and it emphasized the importance of the use of 
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chemical potential. The authors pointed out the advantages of using the chemical 

potential: 

1. If a heterogeneous system arrives at equilibrium, the chemical potential of 

each substance involved in the system shows the same value through all phases. 

Therefore, the value of the chemi·cal potential of water in soil under a certain 

water content can be obtained by allowing the soil to arrive at equilibrium 

with ice or water vapor whose chemical potential is already known. 

2. If the chemical potential of any substance is great<?r in one part of the 

system than in another, that substance will move from the former to the latter 

place if an osmotic barrier is present, i.e., a gas phase or cell membrane. 

Therefore, the direction of water movement between two points in the soil or 

in a plant or between the soil and a plant can be estimated easily according to 

the potential values of the two points. This theory plays an important role in 

water uptake by roots: 

3. It becomes possible to estimate the change of the state quantity of water in 

soil resulting from a temperature change. 

The chemical potential of water is an extremely valuable concept in studies of 

the soil-plant-atmosphere system. Most plant physiologists and soil scientists now 

use the following definition of water potential. The water potential (1/J) is the 

chemical potential of water in a system or part of a system, expressed in units of 

pressure (energy per unit volume) and compared to the chemical potential (also in 

pressure units) of pure water at atmospheric pressure and at the same temperature. 

The chemical potential of pure water is arbitrarily set at zero. 

A noteworthy analysis of unsaturated soil was done by Sposito and Chu (1981). 

They attempted to describe the state of an unsaturated soil with a set of independent 

variables: the masses of the three components of soil (solids, water, and air), 

together with the applied pressure and absolute temperature. Although, at the 
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present stage, the analysis is not sufficiently complete to be used for practical 

purposes, such a thermodynamic study on a total soil system, including not only the 

water but the solids and air, will be important in future research on soil water. 

In a series of papers published in 1958, Philip (1958a, b) developed the first 

detailed quantitative description of water transport in' plant tissue. His approach 

resulted in a diffusion equation which could be written with water potential as the 

dependent variable. Philip's derivation assumed that water movement was 

primarily from vacuole to vacuole. 

Hydrodynamics 

Classical hydrodynamic equations which describe the flow of viscous fluids 
' ' ' 

are derived from considerations of momentum balance, conservation of mass, and 

conservation of energy. For water flow through isotropic soil, combining Darcy's 

law with the equation of continuity, the Richards (1931) water flow equation can be 

written as (Hillel, 1980): 

a9 
at 

where 9 is the volumetric water content (U/L3), K is the unsaturated soil 

(2) 

conductivity (L/T), '1/J is the soil water pressure potential (L), tis time (T), and x, y, z 

are geometric variables (L). 

For water flow through the root zone, one or two dimensional equations are 

generally used. Combination of the two dimensional equation with a "root sink" 

yields the following equation: 

a9 
at (3) 
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where S(x,z,t) is the intensity of water uptake by roots [(V/L3)/T]. 

In 1952, Klute obtained a diffusion-type equation from the pressure potential 

equation (2). Combining the two dimensional equation with a "root sink" term, it 

can be expressed as 

a9 
at 

~D(B)a9) + i!.JD(fJ)ae) aK(9) S( ) ax' ax az' az + az - x,z,t 

where D(9) is soil diffusivity and defined as 

D(9) = K(9) a'I/J 
a9 

(4) 

Equations (2), (3) and ( 4) are highly nonlinear due to the dependency of the 

hydraulic conductivity, soil diffusivity and water potential on water content, and 

they belong to the class of nonlinear, second order, partial differential equations. 

These have led to a host of analytical and numerical solutions (Klute, 1952; Philip, 

1957; and Raats, 1976) describing water entry into soil and its movement under a 

variety of boundary conditions. 

Modeling Water Uptake by Roots 

Background 

In the study of water movement through the SPAC, much attention has been 

paid to the intensity of the root sink term. A valuable review of papers on 

modeling water uptake by roots was provided by Molz (1981). The first notable root 

water uptake model was presented by Gardner (1960). Because of the complex 

structure and geometry of plant roots, the root was taken to be an infinitely long 

cylinder of uniform radius and water-absorbing properties, water was assumed to 
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move only in the radial direction, and the gravitational potential was considered to 

be negligible. The governing Darcy flow equation can be written in radial 

coordinates as 

80 = .!_.£_ (r K(1P)81P) 
at r8r ar 

(5) 

Gardner (1960) suggested that transient drying of the soil conditions could be 

approximated as a series of steady states (i.e. 80/8t = 0), and obtained equation (6) as 

the steady-state solution of equation (5) under the assumption of constant K : 

q 
21rK(~ -1P ) 

s r 
(6) 

where q is the rate of water extraction per unit length of root, r 1 and r 2 are the root 

radius and half the average distance between roots, and 1P and 1P are the pressure 
. s r 

potentials of soil and root. The use of the model can be limited when the root 

spatial arrangement is highly variable. 

In many studies, the water uptake rate was assumed to decrease linearly or 

exponentially with the depth below the soil surface (Molz and Remson, 1970; Raats, 

1976; Novak, 1987). A group of methods has been developed to determine the root 

sink from the distribution of the evapotranspiration rate (Et) in the vertical 

direction of the root zone depending on the soil and root characteristics (Gardner, 

1964; Molz and Remson, 1970). Other authors have assumed that the root sink is 

proportional to the soil water content or to soil water potential (Feddes, et al., 1974, 

1976). In the upper soil layer, water uptake rate decreases as soil water potential 

decreases, whereas in the deeper layers, an increase in the water uptake rate may 
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occur with decreasing soil water potential (Glinski and Lipiec, 1990). 

During the 1970's, more and more experimental work was done in the field. 

Taylor and Klepper observed the water uptake by a corn root system in 1973, and 

examined the assumptions of the single root model for cotton in 1975. Molz (1976) 

and Hillel and Talpaz (1976) presented. more complicated root sink models by 

assuming nonuniform root systems. 

In recent years, a number of other researchers have studied water uptake and 

root distribution under different environments and management schemes. Jung 

(1980) did research on water uptake and transport of soybeans as a function of root 

distribution patterns; Hoogenboom et al. (1987b) studied the root growth rate of 

soybeans as affected by drought stres~; Said (1980) examined the root growth of 

cowpeas in soils with layers compacted in a chamber at different bulk densities; 

Lascano (1982) studied .cotton root wate,r uptake ,as influenced by soil water 

distribution in the root zone; Aina and Fapohunda (1986) investigated the root 

distribution and water uptake patterns of maize under field conditions subjected to 

differential irrigation; Gajri and Prihar (1985) did research on wheat's rooting, 

water use and yield relations; Berliner and Oosterhuis (1987) studied the root and 

water distribution of spring w~eat grown in lysimeters and in the field under water 

stress conditions; Grecu et al. (1988) did research on root growth and penetration 

resistance of alfalfa and fescue in a claypan with a maize or soybean rotation; and 

Dwyer et al. (1988) investigated the rooting characteristics of corn, soybeans and 

barley affected by water availability and soil physical properties. 

Fourteen different water extraction functions were presented by Molz in 1981. 

Twenty-four different water extraction functions are reviewed herein. Generally 

speaking, they can be classified into two types, those u~ing potential flow theory and 

those which apportion transpiration. 
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Potential Flow Approach 

The first approach to modeling root water uptake follows the school of van 

den Honert (1948). He defined that under steady conditions the rate of water flow 

through a plant part is directly proportional to the water potential difference across 

that part and inversely proportional to the water flow resistance (or directly 

proportional to the water flow conductivity). For the case of plant roots, the 

equation was written as 

(7) 

Where Q is the rate of water flow (cm3/sec), <P is the water potential at the root w n 

surface (kPa), <P is the water potential of the root xylem (kPa), and R is the 
rx r 

resistance of the root system to water flow (kPa secjcm3 ). 

Sixteen water extraction functions which use this general approach are 

described herein. One important characteristic of the approach is that S is 

predicted by knowing the physical quantities related to water flow through the soil 

and the plant, such as resistance and water potential. The symbols used are those in 

the original references. 

1. Gardner (1964): 

s B(8 - ,. - z)kL (8) 

where B is a constant, 8 is the wat~r potential of plant roots,,. is the suction potential 

of soil, z is the depth below the soil surface, k is the unsaturated hydraulic 

conductivity, and L is the length of roots per unit soil volume. 



2. Cowan ( 1965): 

1/.> -1/.> s r 
S = [ha/(DK)] 
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(9) 

where 1/.> is the soil water potential, 1/.> is the water potential at the root surface, h is s r 

a conversion factor from head of water to pressure, and equal to 9.807 kPa/m, D is 

the thickness of a single layer of soil, K is the soil hydraulic conductivity evaluated 

at the geometric mean potential (1/.>s't/.>/·~. and a is Cowan's root parameter: 

1 6 
a = S1T"L (6 - 3 - 2ln1_6) ( 10) 

where 6 is the volume of root per unit volume of soil, and Lis the length of root per 

unit volume of soil. 

3. Whisler et al. (1968): 

(11) 

where A(z) is a root density function, k is the unsaturated hydraulic conductivity, 

h is the water potential of roots, and h is the water' potential of soil. 
p s 

4. Nimah and Hanks (1973a): 

s 
[H t'+(PRES)(z)-H(z,t)-s(z,t)]RDF(z)K( e) 

roo (12) 
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where H is the internal root pressure head at the soil surface where z is 
root 

considered zero, z is depth, PRES is the head loss coefficient for longitudinal water 

flow in the root xylem, H(z,t) is soil pressure head, s(z,t) is soil osmotic head, RDF(z) 

is the proportion of total active roots in depth increment ~z, K(6) is soil hydraulic 

conductivity, and ~x is the distance between roots at depth z. 

5. Feddes et al. (1974): 

s 
h (z)-h(z) 

r 
- K(6) b(z) (13) 

where K(6) is soil hydraulic conductivity, h (z) is the pressure head at the soil-root 
r 

interface, h(z) is the pressure head in the soil, and b(z) is an empirical function 

representing the geometry of the flow. 

6. van Bavel (1974): 

s. = 
J 

(t/> .-q,1 .)RD. 
S,] ,] ] 

SRPL (14) 

where j is the root zone layer or compartment, S. is the rate of water extraction from 
J 

the jth compartment, 4> • is the soil water potential in that compartment, q,1 . is the 
S,J ,J 

effective leaf water potential in that compartment, RD. is the relative (fractional) 
J 

root density in the compartment, and SRPL is the specific plant resistance. 
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7. Taylor and Klepper (1975): 

-27l"k [..P -vJ ] sys rootxylern s 
ln(r cylr stele) 

(15) 

where q is the water uptake rate per centimeter of root, k is the hydraulic 
r sys 

conductivity of the combined soil-root radial pathway, ..P t 1 is a value · roo xy ern 

obtained from shoot water ,potential measurements, ..P is the pressure potential of 
' s 

water at a distance r 1 = rb lk .1, r 1 is the radius of the cylinder of soil through cy u sot cy , 

which water is moving, and r , is the radius of the root stele. 
stele, 

8. Hillel and Tal paz ( 1976): 

4>soiC4>plant s = ~=~=;.:;;:.:;.. 
R .1+R (16) 

so1 roots 

where 4> •1 is the total hydraulic head of the soil as a function of depth, ¢ 1 t is so1 - · . pan 

the hydraulic head in the plant at the base of the stern, R .1 is the resistance to 
SOl 

water flow in the soil, and equal to 1/(BKL), B is an empirical constant, K is the soil 

hydraulic conductivity, L is the length of active roots per unit soil volume, and 

R t is the hydraulic resistance of the roots taken to be the sum of a resistance of roo s 

absorption and a resistance to conduction which depends on depth. 
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9. Herkelrath et al. (1977): 

(17) 

where (}is the volumetric soil water content, (} tis the saturation water content, pis 
. sa 

the root permeability per unit length of root, P. is the length of roots per unit volume 

of soil, 1/J is the soil water potential, and 1/J is the water potential inside the root. s r 

10. Rowse et al. (1978): 

~ZL(h -h ) 
S = ---,=---=-s __.p_ 

R +R 
s p 

(18) 

where ~Z is the thickness of the soil layer, L is the length of roots per unit soil 

volume, h is the bulk soil water potential, h is the plant water potential assumed s p 

constant throughout the root xylem, R is the soil resistance to root water uptake per 
s 

unit length of root, and R is the plant resistance to water uptake per unit length of 
p 

root. 

11. Taylor and Klepper (1978): 

i 
U. = V. D. K. ( 1/J • - 1/Jp + 1/J • + ~ ~ 1/JfJ.) 

1 1 1 1 S1 Z1 j= l 
(19) 

where U. is the rate of water uptake from soil unit i, V. is the volume of soil in the 
1 1 
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unit, D. is the root length density in the unit, K. is the root-soil system permeability, 
1 1 

'if.J • is the soil water potential in the unit, 'if.J is the xylem water potential at the land 
S1 p 

surface, 'if.J • is the loss in potential due to elevation, and t:..'!/.Jf. are the water potential 
Zl J 

losses between units due to friction in the moving water column. 

with 

12. Zur and Jones (1981): 

'if.J .-1/.J . 
rootl s1 
R .+R. 

S1 f1 

'if.J rooti 1/.JL - q R - i(t:..z) 
p X 

d'if.J . = cv .;c .)do . 
Sl Sl Sl Sl 

R. 
Sl 

ln(r /r ) cyl root 
21l"k .p . v . 

S1 f1 Sl 

R . = -:----:~ 
n k p .V. 

r n Sl 

(Gardner, 1960) 

(Taylor and Klepper, 197 5) 

(20) 

(21) 

(22) 

(23) 

(24) 

where q . is the total flux of water from a soil layer to the roots of one plant (cm3 /s), 
S1 

'if.J t" is the water potential at the root surface (bars), 'if.J • is the water potential of a roo 1 , s1 

soil layer (bars), R . is the resistance to water flow from a soil layer to the roots (bar 
S1 

sjcm3), R . is the resistance to radial water flow inside the roots (bar s/cm3), 1/.JL is 
n 

the total water potential of leaves {bars), q is the total flux of water from the soil 
p 
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volume to the plant (cm3 /s), R is the resistance to water flow through the plant 
X 

xylem system (bar s/cm3), V . is the volume of the soil layer per plant (cm3), C . is the 
Sl Sl 

slope of the soil water retention curve multiplied by the soil volume, r 1 is the 
cy 

radius of the soil cylinder through which water is moving (em), assumed to be one 

half the distance between adjacent roots, r t is the radius of root stele (em), p . is roo n 

the density of roots in layer i (cmjcm3), k . is the soil hydraulic conductivity in layer 
Sl , 

i (cm/s), 1/k = (1/k ) - (1/k ), where k is the overall root-soil conductivity, r sys s sys 

and ks and kr are soil and root co?-ductivity. 

13. Rowse et al. (1983): 

s = CD[h(1r - 2A) - 2'1/J cosA]j1r (25) m 

with 

c 1 
(26) 

(RS+Rp) 

A 
-1 

= sin (h/'1/J ) (27) m 

where S is the daily uptake of water from a unit volume of soil, Dis the duration of 

daylight (as a fraction of a whole day), h is the hydraulic head of bulk soil, '1/J is the 
m 

minimum (most negative) plant water potential (measured at the soil surface), and 

R 8 and Rp are soil and root resistances per unit volume of soil. Rp was calculated 

as R/Lv, where Rr (day/em) is the radial resistance per unit length of root, and Ly 

(cm-2) is the length of root per unit volume of soil. 



with 

14. McCoy et al. (1984): 

J(t) = 21rr D( 6) 88
9 

r r 

9(r ,0) = 90(r) 

89 
ar - O, 

t>O, r=r 
r 

t=O, r < r< R r--

t>O, r=R 

19 

(28) 

where J(t) is the transient flux at the root surface due to evaporation from the leaf 

(cm3/cm2 root surface per hour), r is the radius of the root (em), R is the radius of 
r 

the outer boundary of the soil cylinder (em) located at the half -distance between 

adjacent roots, and D(9) is the soil water diffusivity as a function of the water 

content. 

15. Protopapas and Bras (1987) 

ROOTY .+pROOTO. 
u. 

J 
(1/J • - 1/J ) 

SJ p KR 
(29) 

where U. is the water uptake rate at the jth soil compartment (g/m2sec), 1/J . is the 
J S] 

effective water potential in the soil (bars), 1/J is the water potential in the roots, 
p 

characterizing the water status of the plant (bars), ROOTY. is the weight of young 
J 

roots at the jth compartment, ROOTO. is the weight of old roots at the Jth 
J 
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compartment, KR is the effective conductivity of the root system per unit weight of 

roots, f Tis the effect of soil temperature, f 1/J • is the effect of soil potential, and p is 
SJ 

the proportion of old roots still active in water uptake. 

16. Marino and Tracy (1988): 

(30) 

where q is the extraction of soil-water by a crop's root system, z is the vertical 

coordinate, K is the hydraulic conductivity of the soil, '1/J is the soil-water pressure 
s ' s 

head, /3=0 if '1/J < 0 and /3= 1 if '1/J > 0, S is the specific yield of the soil, s1 is the 
s- ' s y 

effective saturation in the soil, and S is the specific storage of the soil. s 

Apportioned Transpiration Approach 

In the second approach to modeling root water uptake, a kn,own transpiration 

rate per unit surface area is divided among soil layers, considering conditions in the 

soil profile. Eight such functions. are described herein. 

1. Molz and Remson (I 970): 

1.8T 
v 

(31) 

where S is the intensity of water uptake by roots, T is the transpiration rate per unit 

soil surface area, z is the depth below the soil surface, and v is the depth of the root 

zone. Integration of this equation yields the familiar root water uptake pattern 
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where 40% of the uptake comes from the first quarter of the rooting depth, 30% from 

the second, 20% from the third and 10% from the fourth. 

2. Molz and Remson ( 1970): 

TL(z)Ds(9) s = ___ ....:::.__ 
v 

J 
0 

L(z)D(9)dz 

(32) 

where Sis the intensity of water uptake by roots, Tis the transpiration rate per unit 

soil surface area, L(z) is the length of roots per unit volume of soil, D (e) is the soil 
s 

water diffusivity, z is the depth below the soil surface, 9 is the volumetric soil water 

content, and v is the depth of the root zone. 

3. Raa ts (197 6): 

S = T8-l exp(-z/8) (33) 

where S is the intensity of water uptake by roots, Tis the transpiration rate per unit 

soil surface area, 8 is a parameter chosen so that the integral of S over the root zone 

is equal to T, and z is the depth. 

4. Selim and Iskandar (19781!. 

s = 
TL(z)K (1/.>) 

s 
v 

I • L(z)K,(.P)dz 

(34) 
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where Sis the intensity of water uptake by roots, Tis the transpiration rate per unit 

soil surface area, L(z) is the length of roots per unit soil volume, K ( 1/.>) is the 
s 

unsaturated hydraulic conductivity of the soil, z is the depth below the soil surface, 

1/.> is the soil water pressure potential, and v is the depth of the root zone. 

with 

5. Feddes et al. (1978): 

s = 0 

s = s 
max 

s = 0 

s max T/z r 

(35) 

(36) 

where S is the intensity of water uptake by roots, S is the maximum rate of root max 

water uptake, T is the potential transpiration rate, z is the root depth, 1/.> is the 
r 

pressure head of soil moisture, 1/.> 1 is the maximum soil pressure head for which S = 

S , 1/.>. is the minimum soil pressure head for which S = S , and 1/.>3 is the soil 
max - max 

pressure head at the wilting point. 



6. Molz (1981 ): 

T( t)9(z, t)L(z. t)[ 1/J(z, t)-¢ x ( t)] 

S = jv(t) 

0 
9(z, t)L(z,t)[ 'lfl(z,t)-¢ x(t)]dz 
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(37) 

where S is the intensity of water uptake by roots, z is the depth below the soil 

surface, tis time, 1/J is the soil water pressure potential, Tis the transpiration rate per 

unit soil surface area, 9 is the volumetric soil water content, L is the length of roots 

per unit soil volume,¢ is the pressure potential of the root xylem, and vis the depth 
X 

of the root zone. 

with 

7. Novak (1987): 

S = So P( 1/J ) s 

oexp[ -o(z/z )] 
r 

(38) 

where Sis the intensity of water uptake by roots, So(z) is the rate of water extraction 

by roots unlimited by the soil water potential, Etp is the potential transpiration, 8 is 

an empirical constant, z is the root depth, P('!fl ) is a function dependent on the soil r s 

water potential distribution, and 



or 

or 

P( 1J> ) 
s 

P( 1J> ) 
s 
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1 

0 if 

where 1J> a is the anaerobiosis point, wkl is dependent on the transpiration rate, the 

soil-water properties, the species, and th~ growth stage of the plant, and wk2 is near 

the permanent wilting point. 

8. Perrochet (I 987): 

s = ~(w)g(z)TP (39) 

where S is the intensity of water uptake by roots, ~(w) is the reducing factor 

(dimensionless), g(z) is the ;oot distribution function (m- 1), and T is the potential 
. ' . p 

transpiration (m/s). The root distribution function ~(w) was defined as a linear 

function of depth (Ritchie, 1984): 

g(z) c(2z-L)+L 
L2 -1 < c < I, izl < L 

where cis a constant depending on the plant and its vegetative stage, Lis the depth 

of the root zone, and z is the depth below the soil surface. Moreover, under optimal 
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moisture conditions and for c = -0.8, this approach is the same as approach 1 by Molz 

and Remson (1970). The reducing factor Ot('I/J) was defined as: 

Ot('I/J) 
K('I/J)('I/J -'1/J) 

r 

or under optimal water conditions: 

1 

where K('I/J) is the hydraulic conductivity of the soil containing roots at a given 

depth (m/s), '1/J is the root suction generated by plants (m), '1/J is the soil suction 
r 

around the roots at the given depth (m), and 'I/J0 is the soil suction around the roots at 

which the transpiration rate starts to diminish (m). 

Peanut Root Activity 

Peanut (Arachis hypogaea), also called groundnut, is grown worldwide in a 

variety of climates. Peanut plants grow in two main ways, either as a bunch plant 

or as a runner plant (Wynne and Coffelt, 1982). Bunch-type peanuts are either 

spanish or valencia types, have a fairly erect main stem and produce multi-seeded 

pods. The runner-type plants, with their vine-like stems, grow mostly prostrate 

along the ground and produce seeds that vary in size from the small spanish to the 

larger virginia types. Peanuts in the temperate zone of the U. S. rna ture in 120 to 

140 days for spanish-types and 140 to 180 days for runner types. 

Peanut roots form a deep foundation to hold the plant in place. The plant's 

taproot and secondary branch roots absorb nutrients and water from the soil for the 

above-ground portions of the plants. During early growth stages, the roots grow 
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faster than the above ground stems and leaves. The basic root system has been 

formed when the plant starts to flower, about 30 days after planting. Peanut plants 

grow deep taproots. They can extend to depths of 120 em by six weeks after 

planting. Each taproot can produce many lateral roots. The extent of the root 

system depends on the distribution of water in the soil. Normally, plants grow best 

when there is adequate (but not too much) water in the soil, and roots grow quickly 

to seek out moisture .when water is somewhat limiting. 

Although scientists have conducted a great deal of research on peanut growth 

and environmental effects on production, data on peanut root growth patterns are 

sparse. This is, of course, partly due to the difficulty in digging roots. Robertson 

et al. (1980) repo'rted that roots penetrated deeper than 150 em in the fine sands on 

which the experiments were conducted. 

Peanut root elongation and distribution are significantly affected by soil 

moisture level. During drought stress periods, lower roots continue to grow down 

into deeper moist zones even though top growth may appear to stop (Allen et al., 

1976). Rooting depth is frequently deeper for water stressed plants as compared to 

irrigated peanuts (Lin et al., 1963). 

Genetic variability can have a large influence on root and shoot growth. 

Ketring et al. (1982) found significant differences in both root growth (length and 

numbers) and shoot growth (dry weight and leaf area) among the genotypes tested. 

A method to estimate root growth potential of peanut by measuri,ng root volumes was 

developed and used to make 'Comparisons among peanut genotypes (Ketring, 1984). 

In all of these studies there was a stro~g positive correlation between root and shoot 

growth. 

Peanut growth models have been used to simulate peanut growth and 

production (e.g., Young et al., 1979; Boote et al., 1985). The earliest physiologically

based peanut growth model was developed by Young et al. (1979). Grosz et al. 
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(1988) calibrated this model to simulate the growth and yield of spanish peanuts 

under Oklahoma conditions. The model did not have a soil-water submodel nor a 

root growth submodel. Soil moisture content during the growing season is one of 

the inputs to their computer program. 

Singh and Young (1988) presented a peanut root growth model for 

incorporation in Young's peanut growth model. In their soil-water submodel, the 

potential evapotranspiration was calculated using a modified Penman equation 

(1948). The actual transpiration rate and water uptake were simulated by 

combining Feddes' (1981) model with Nimah and Hanks model (1973a). Two basic 

assumptions were used: (1) the water uptake rate from a given soil layer decreases 

linearly between 'I/J 1 and 'I/J2, where 'I/J1 is the upper limit of the soil water potential 

above which water uptake rate is maximum, and 'I/J2 is the lower limit of the soil 

water potential below which water uptake rate is zero; and (2) the water uptake rate 

for a given soil layer is proportional to the amount of roots in the layer. There were 

two basic features of their root submodel: (1) photosynthate was partitioned 

between roots and shoots, and (2) the distribution of the roots was used to apportion 

photosynthate among soil zones. Also, a moisture stress factor was included for the 

' 
case when soil moisture is' limiting. 

In the soil-water submodel of Boote et al. (1985), the potential plant 

transpiration rate was determined by weather conditions and the LAI (leaf area 

index). The water-supplying capability of the soil-root system was calculated and 

compared with the potential plant transpiration. Actual plant transpiration and 

water uptake by roots was the minimum of the two rates. 

In their root growth submodel, the rate of root-depth increase was 0.249 cm/°C-

day starting at an initial root depth at emergence and ending when the maximum 

root-depth was reached. The maximum depth was soil-and crop-limited (a value of 
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210 em was used in their research). Total root length was estimated by the 

carbohydrate partitioned to roots and a weight-to-length parameter. The root 

length weighting function was developed based on the data of Robertson et al. 

(1980). The distribution of roots among soil layers was determined based on the 

root depth, the soil water condition in those layers, and an empirical weighting 

function that represented the probability distribution of roots growing in each layer 

later in the season if well-watered. The root growth in each layer was estimated by 

dividing the total growth according to the root distribution function and soil water 

condition- in that layer. 



CHAPTER III 

MODEL DESCRIPTION 

Because the relationships among, the soil, the plant, and the atmosphere are 

complicated under natural conditions, the general physical processes are often 

described by simulation models. A "model" is another term for a group of equations 

that describe the functional relationships involved. A model can be either very 

simple or very complicated depending on the volume of input data and parameters 

needed. 

There are two basic categories of soil water transport models used to describe 

water movement toward roots in unsaturated zones. One type is based on the soil 

potential energy concept which relates changes in root water uptake to changes in 

soil hydraulic conductivity. Another type is based on the diffusion equation which 

is related to the soil diffusivity. In this research, the potential energy equation was 

selected to describe water flow in plant root zones. The simulations were based on a 

well documented computer model (VS2D) developed by the United States Geological 

Survey (Lappala et al., 1987) for solving problems of variably saturated, single-phase 

flow in porous media. The flow equation is written with total water potential as 

the dependent variable: This allows straightforward treatment of both saturated 

and unsaturated conditions. 

29 
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Description of the VS2D Model 

Governing Equation 

The ~quation that describes water movement under isothermal and isohaline 

conditions was developed by combining the equation for conservation or' mass for 

water with auxiliary equations for flux and storage. The equation solved by VS2D 

is: 

A 

m 
v{p[c + sS ]}0H- pI: A K K(h)0H - pqv = 0 

m s at k=l k s r ·. ank 
(40) 

where vis the volume of the porous medium (L3); pis the liquid density (M/L3); c is . . m 

the specific moisture capacity, which is the slope of the moisture retention curve 

(1/L) or c = 86/oh; s is the liquid saturation· (dimensionless); S is the specific 
m s 

storage (1/L); H is the total hydraulic head, expressed as the height of a column of 

A 

the liquid (L); h is the pressure head (L); t is time (T); mis the number of faces of a 

general curvilinear polygonal volume, v (dimensionless); Ak is the area of the kth 

face to which nk is orthogonal (L2); n is direction (L); Ks is the saturated hydraulic 

conductivity (L/T); K is the -relative hydraulic conductivity (dimensionless); and q r . 

is the volumetric source-sink term accounting for liquid added to (+q) or taken away 

from (-q) the volume, v, per unit .volume per unit time (1/T). 

Initial Conditions 

The initial conditions must specify values of the total potential, H, throughout 

the entire solution domain. The initial conditions usually represent some type of 
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steady state or equilibrium. Since equation (40) is nonlinear, it is not appropriate to 

use the principle of superposition to subtract out the effects of transient initial 

conditions, as is often done in simulations of fully saturated ground water flow, 

where the aquifer properties are not a fu~ction of total potential. 

Boundary Conditions 

The boundary conditions must specify either the water flux across each 

boundary and the total potential along those boundaries, or the combination of water 

flux and pressure potential. The general form of the flux boundary condition is: 

( 41) 

> where uk is the water flux per unit area in the direction k, and f 1 is a general 

function of position, time, the 'gradient in total hydraulic potential across the face, 

and the pressure head at the face. 

The general form of the boundary condition for total water potential is: 

(42) 

where f 2 is a general time-dependent function. 

Four kinds of boundary conditions that can not be priori specified' are 

included in the computer code for VS2D simulations. They are infiltration, 

evaporation, evapotranspiration, and discharge through seepage faces. 

Infiltration and Ponding. Infiltration of water into a soil layer from rainfall 

or sprinkler irrigation is a two-stage process. During the first stage, water enters 



32 

the system at the applied rate as long as the conductive and sorptive capacities of the 

medium are not exceeded. If these capacities are exceeded, water ponds on the 

surface and infiltration decreases exponentially to a rate equal to the saturated 

hydraulic conductivity of the soil. This process is illustrated in Figure 2. 

Evaporation. Evaporation is also a two-stage process analogous to infiltration. 

During ~he first stage of evaporation, occurring when the soil surface is wet, the 

meteorological conditions limit the rate (energy input and transport are the limiting 

factors). The evaporation rate is equal to the evaporative demand of the 

atmosphere defined as the potential evaporation rate. This rate will be constant if 

the conditions are constant. During the second stage of evaporation, occurring 

when water is limiting, the soil hydraulic conductivity will be reduced. The dryer 

the soil, the lower its conductivity.· This process is also illustrated in Figure 2. 

In the VS2D model, evaporation is computed as the upward flux driven by the 

pressure-potential gradient between the soil and the atmosphere by the equation: 

with 

E = K S (H - h) r a 

H = RT ln(h ) 
a M g u 

w 

(43) 

(44) 

where E is evaporation from the bare soil (em/day), K is the soil hydraulic 

conductivity (em/day), S is the soil surface resistance (1/m), H is the pressure r a 

potential of the atmosphere (m), R is a constant and equal to 8.31 (kg m 2/sec 2 °K 

g-mol), M is equal to 0.018 (kg/ g-mol), T is air temperature (°K), h is the relative w . u 

humidity of the atmosphere, g is a gravitational constant and equal to 9.81 (m/sec2), 

and h is soil pressure potential at the soil surface (L). 
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Figure 2. Schematic Representation of the Two-Stage Process of Evaporation and 
Infiltration 
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Evapotranspiration. When plants grow in the soil, evapotranspiration occurs by 

evaporation from the soil surface and transpiration through root water uptake from 

the rooting zones. The extraction rate from a soil layer is limited by the amount of 

available energy to the potential evapotranspiration rate, and by the soil supplying 

capability. 

Using a development similar to that of Hillel and Talpaz (1976), plant root 

extraction is expressed as: 

and 

with 

(pqv)m = v 

(pqv)m = 0, 

R 
m + R root 

m 
= K(h)r(z,t) 

if h > h 
m root 

(45) 

if h < h m - root (46) 

(47) 

where h is the soil pressure potential (L), h tis the pressure potential in the plant 
m roo 

roots (L), R is the resistance to flow in the soil (L T), R t is the hydraulic m roo 
m 

resistance of the roots (LT), K is the unsaturated hydraulic conductivity (L/T), and r 

is the root activity function which is calculated by linearly interpolating the root 

length density at the top and base of a root zone (l/L 2). 

A 

Transpiration from the soil column, Q is the sum of the uptake rate computed 

by equation (45) over all cells containing roots in that column. 
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-
A m 
Q=p ~ (qv) 

m 
(48) 

m=l 

where in is the number of volume subdivisions in the column. If the transpiration 

A 

from a unit of soil surface, Q'(pA), is greater than potential ET, q for each node is 
m 

A 

reduced uniformly so that the two term's are equal. If Q'(pA) is less than potential 

ET, q remains as originally computed. Finally, if h becomes less than h . t' q m . m roo m 

is equal to zero. In each case, q is a speCified flux for that node. 
m Because q is 

m 

dependent on the pressure potential difference between soil and roots, unsaturated 

hydraulic conductivity, and root activity function, its value must be evaluated 

iteratively. 

Potential evapotranspiration is treated simplistically in VS2D as an 

empirically determined value that can vary in time similar to evaporation. 

Seepage Faces. Seepage faces are boundaries along which water leaves the 

system and along which the total potential is equal to the elevation potential, H=h . 
z 

Examples of these boundaries are along the interfaces between the surface of the 

solution domain and the atmosphere, such as along stream banks and spring 

discharge zones. These boundaries are usually not linear. 

Nonlinear Parameter Estimation 

The coefficients in equation ( 40) are nonlinear functions of the pressure 

potential. Several functional relations for porous media have been developed (e.g., 

Gardner, 1958; Brooks and Corey, 1964; Haverkamp et al., 1977; van Genuchten, 

1980). The functional relations used by VS2D are: 
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1. Soil moisture characteristics, which describe the volumetric water content 

as a function of pressure potential, 8(h), or the inverse function, h(e). 

2. Specific moisture capacity, which is the slope of the moisture retention 

curve, as a function of pressure potential, c (h) = d9/dh. 
m 

3. Relative hydraulic conductivity as a function of pressure potential, K (h). 
r 

When experimental data cannot be fit well by functional relations, tabulations of 

parameters can be used in the VS2D program. 

Because hysteresis exists in the relationship between volumetric water content 

and pressure potential, different functions should be used during dr:Hnage and 

wetting. This hysteretic relation is quite complicated and consists of the main 

wetting and drying curves and a family of scanning curves that represent the 

functional relation when a partially drained medium is rewetted, or when drainage, 

follows incomplete wetting (Hillel, 1971; Kirkham and Powers, 1972). The VS2D 

program does not treat hysteresis among the head-related functional parameters. 

Soil Moisture Characteristic Curve. Three different functional equations to 

represent the relations between volumetric water content and pressure head can be 

used in the VS2D program, including one by Brooks and Corey (1964), one by 

Gardner (1958), as used by Haverkamp et al. (1977), and one by van Genuchten 

(1980). 

Brooks and Corey (1964) equation: 

8-B 
r --= ,p-e 
r 

(49) 

(50) 
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where s is the effective saturation (dimensionless), 8 is the volumetric moisture e 

content (L3/U), 8 is the residual moisture content (U/L3), <P is porosity 
r 

(dimensionless), hb is the bubbling or air~entry pressure potential, equal to the 

pressure potential required to desaturate the largest pores in the medium (L), h is 

pressure potential (L), and >.. is a pore size distribution index based on soil texture 

(dimensionless). 

Haverkamp et al. (1977) equation: 

s e 
1 

1 +(.!3.8 
~ 

(51) 

where~ is the pressure potential at which s =0.5, (L), and .8 is the slope of the log-log e 

plot of [(1/s )-1] versus h (dimensionless). 
e 

Van Genuchten (1980) equation: 

I '"'f 
s = [ h .8'] (52) 
e 1+(--;) 

~ 

where ~· = ~/[(2 1 /'"Y- 1)1-'"Y], (L), .8' is an exponent, and '"'f is an exponent equal to 

1-(1/ .8'). 

The parameters required by the three types of equations are listed in the VS2D 

documentation for 11 soils. Comparisons of these equations with experimental data 

on moisture content and pressure head have shown the best fit for sand and light 

clay soils. 
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Specific Moisture Capacity. Specific moisture capacity is defined as the slope 

of the soil moisture characteristic curve. It can be expressed as: 

c (h) 
m 

8,() 
ah 

For the moisture-characteristic curves represented by the Brooks-Corey 

equation, specific moisture capacity is defined as: 

and 

c (h) 
m 

c (h) 
m 

0 

where all terms are as defined previously. 

(53) 

(54) 

(55) 

If the moisture-characteristic curve is expressed by the Haverkamp equation, 

specific moisture capacity is defined as:. 

and 

c (h) 
m 

. 1/ {3 = _ (cp-O )(,8/a)(h/a) 
2 

r [l+(h/alJ 

c (h) = 0 m 

h<O (56) 

(57) 

If the moisture-characteristic curve is expressed by the van Gen uch ten 

equation, specific moisture capacity is defined as: 



and 

c (h) = 
m 

c (h) 
m 0 
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'1!3'(¢-8 )(h/a•/'-l 
r 

(58) 

h> 0 (59) 

When the soil moisture chara,cteristic curve is represented in tabular form, 

specific moisture capacity can be estimated by taking the slope of the line segment 

between data points adjacent to the h value of interest. 

Relative Hydraulic Conductivity. Relative hydraulic conductivity is defined 

as the ratio of unsaturated to saturated hydraulic conductivity. It decreases with 

the increase of the negative pressure potential. It may be obtained experimental!'¥ 

or may be estimated by the empirical formulas below. 

Haverkamp approach: 

(60) 

where A' is the pressure potentiaJ at which K = 0.5, (L), and B' is a constant, equal to 
r 

the slope of the log-log plot of [(1/K )-I)] versus the pressure potential. 
r 

Brooks-Corey approach: 

and 

(61) 
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(62) 

This equation fits the data for sandy soils very well, but poorly represents the data 

for clay soils. 

van Genuchten approach: 

K = 
r 

{ 1-(~)/3'- 1 [1 +(~l' ( 1}2 

[l+(!.>f3'(y/2 
(63) 

This equation also fits measured data for sandy soils better than for clay soils. 

Numerical Solution Scheme 

VS2D is a finite difference model which approximates spatial derivatives by 

central differences written about grid-block boundaries, and time derivatives by a 

fully implicit backward scheme. The saturated hydraulic conductivity is computed 

using a distance-weighted harmonic mean of the adjacent cells to represent the 

intercell hydraulic conductivity. The relative hydraulic conductivity is calculated 

using either a geometric mean or a weighted arithmetic mean. Geometric mean 

averages provide the most accurate simulation, and they are recommended for use 

whenever possible. These approximations result in a set of nonlinear algebraic 

equations (or matrix) that must 'be first linearized, and then solved. Implicit 

linearization is used to estimate nonlinear parameters of hydraulic conductivity, 

source-sink terms, and those ...yhich may occur in boundary condition equations. 

These terms are evaluated at the current time step. The matrix can be solved by 

iterative techniques. 

The VS2D program is written in FORTRAN language with extensive use of 

subprograms, thereby simplifying the process of program modification. 
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Data Input 

Input data for running VS2D include the following five types: 

I. Executive control file. This file includes data of solution domain 

dimensions, simulation periods of infiltration and evapotranspiration, time 

and space steps, program options, and output location and times for monitoring 

files. 

2. Initial data and boundary conditions. This file includes: (a) initial values 

of total hydraulic pote,ntial or soil moisture in the whole solution domain, and 

the initial water table d,epth, and (b) parameters for calculating surface 

evaporation such as H and S . a r 

3. Weather data. This file includes data on irrigation and rainfall, and data 

describing the variation of potential ET and potential evaporation with time. 

4. Soil texture and characteristics. These data include the parameters for 

calculating the relationships between water potential and soil moisture, 

relative hydraulic conductivity, and specific moisture capacity, such as 

saturated hydraulic conductivity, K , soil porosity¢, and some exponents (e.g., s 

>.., a, and /3). Tabulations of the above relationships can be used when 

experimental data can not be fit well by functional relations. 

5. Crop root water uptake. These data include the pressure potential in the 

soil and in the root, the root activity function (i.e., the root length density at 

the top and base of a root zone), and root depth. 

Data Output 

Several output files are provided by the VS2D model: 
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1. Pressure head, moisture content, and saturation at the selected points and at 

the end of each time step. 

2. Head changes for each iteration in every time step. 

3. Pressure head and moisture content at selected times. 

4. One-line mass balance summary for each time step and at ends of recharge 

periods. 

Model Modifications for this Study 

Evapotranspiration 

Various versions of the Penman combination equation have been widely used 

to calculate the potential evapotranspiration (ET)' of a reference crop such as grass 

or alfalfa under well watered conditions. Crop ET can then be estimated by 

multiplying the potential ET by an appropriate crop coefficient. 

Reference crop ET was computed from the modified Penman equation 

(Burman et al., 1980):. 

(64) 

where ET is alfalfa reference crop ET [calj(cm2day)], .6. is the slope of the vapor 
r 

pressure-temperature curve [mbar / 0C], '"t is the psychrometric constant [mbar / 0C], R 
n 

is net radiation [cal/(cm2day)], G is soil heat flux to the surface [cal/(cm2day)], W f is 

the dimensionless wind function, (ea-ed) is the mean daily vapor pressure deficit 

[mbar], and 15.36 is a constant of proportionality [cal/(cm2day mbar)]. W f is 

expressed as: 
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wf == a + bU (65) 

where U is the daily wind speed (km/day) at a height of 2 m, and a and b are 

regression coefficients. Elliott et al. (1988) calibrated equation (65) for Oklahoma 

conditions and arrived at values of -0.3405 and 0.0108 for a and b, respectively. 

Crop coefficients for peanuts were determined by dividing the measured ET 

of well watered peanuts by reference crop ET (Elliott et al., 1988). The third-order 

polynomial which best fitted the data was: 

K = - 1.644 + 12.05F - 17.155F2 + 7.499P c 
(66) ' 

where K is the crop coefficient for peanuts, and F is the fraction of the growing 
c 

season (ratio of days since planting to da·ys between planting and harvesting). This 

is a time dependent function. Thus the potential crop ET, ET , was obtained as the 
c 

product of the potentiaJ reference crop ET, ET r' and the crop coefficient, Kc. ETc is 

also equal to actual crop ET when soil moisture is not limiting. 

Root Water Uptake 

Recall the root sink models reviewed in Chapter II. The sinks can be depth 

and time dependent variables. The root extraction submodel in VS2D follows the 

potential flow approach and requires inform.ation on soil and root. pressure 

potentials and resistances. For the apportioned transpiration approach, most 

uptake models were developed by considering both the root activity and one or more 

parameters relating to the soil moisture conditions. A general rna the rna tical 

expression can be written as 

S = T f (K,D,1P,r) 
w 

(67) 
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where Sis the root water uptake rate at depth z (1/T), Tis the transpiration rate per 

unit soil surface for a one-dimensional approach (L/T) or the transpiration rate per 

unit length in the third dimension (parallel to the crop row) for a two-dimensional 

approach (L 2/T), f is a weighting function, r is a root activity function, and K, D, 
w 

and 1/J are the soil water conductivity, diffusivity, and potential, respectively. 

It would seem that root activity plays a more important role than soil 

properties do in some situations, especially when the crop is irrigated. Thus, a 

modified water uptake model is proposed for inclusion in the VS2D program. 

There are three main aspects of the model. First, the root activity function is 

defined based on experimental data. Second, crop transpiration is apportioned 

among soil layers according to the root activity function. Third, water uptake in 

each layer is reduced if soil moisture is limiting. 

1. Root Activity Function. A two dimensional root activity function, r(x,z,t), 

will be estimated based on the experimental data. It is a depth- and lateral 

direction-dependent variable for ~··specific growth stage, defined as a normalized 

root length density, L/L3• For one-dimensional modeling, r is a function of depth 

and time. 

2. Apportioning Transpiration. The potential amount of total soil water 

extracted by crop roots is set equal to T as determined by the type of crop, stage of c 

growth, and climatic parameters, and c~n be estimated by subtracting soil 

evaporation from crop ET. Then this potential amount is apportioned in either one 

or two dimensions according to the root activity function. Thus for the one-

dimensional approach: 

S (z) = T r(z) 
p c 

(68) 
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with 

RLD(z) 

r(z) = ----- (69) 
z 

I 
0 

r RLD(z)dz 

where S (z) is the potential rate of extraction of soil water by roots at depth z [1/T], 
p 

T is the potential crop transpiration per unit soil surface area [L/T], r(z) is a root 
c 

activity function (1/L), RLD(z) is the root length density (length of roots per unit 

soil volume) at, depth z [L/L3], and z is the depth of the root zone [L]. 
r 

with 

For the two dimensional approach: 

S (x,z) 
p 

r(x,z) = 

T r(x,z) 
c 

RLD(x,z) 

I A RLD(x,z)dxdz 

(70) 

(71) 

where S (x,z) is the potential rate of extraction of soil water by roots at depth z and 
p 

lateral distance x (1/T), T is the potential rate of crop transpiration per unit length 
c 

in the third dimension (L2/T), r(x,z) is a two dimensional root activity function 

(1 /U), and A is equal to the product of the root depth, z , and row spacing (L 2). 
r 
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3. Reductions due to Soil Moisture. The potential water uptake rate by roots at 

location (x,z) is reduced if soil moisture is limiting: 

(72) 

or 

S(x,z) = Sp(x,z) f('I/J) (73) 

where S is the actual rate of extraction of soil water by roots at location (x,z) [T- 1], 

and f('I/J) is a function which varies between 0 and 1 and depends on the soil water 

potential. Following Feddes et al. (1978), a linear function can be used to estimate 

f( 1/J): 

f('I/J) = 0 

f('I/J) 

f( 1/J) 0 (74) 

where 1/J is soil moisture potential [L], 1/71 is maximum soil moisture potential for 

which f('I/J) = 1 (near the anaerobiosis point), 1/72 is minimum soil moisture potential 

for which f('I/J) = 1 (near the limiting point), and 1/73 is soil moisture potential at 

wilting. 



CHAPTER IV 

PROCEDURE 

Field Measurements 

Layout 

Field research was conducted during the 1988 and 1989 peanut growing 

seasons at the Agronomy Research Station near Perkins, Oklahoma. Two different 

sites for the study were designated as site 1 for the year of 1988 and site 2 for the 

year of 1989. The two sites had a very similar layout in terms of field size and 

orientation, crop arrangement, water supply system, and the location of the weather 

station. Site 2 was immediately adjacent to site I, and to the south of it. A 

schematic diagram of the field arrangement for site 2 is g1' en in Figure 3. 

The soil type was a Teller sandy loam (fine, mixed, thermic, udic, Argiustoll). 

Three water treatments (full, intermediate, minimum) were established by means of 

a line-source sprinkler irrigation system (Hanks et al., 1976). Within each 

treatment, there were six, blocks, with plots of two different peanut genotypes in 

each block. The genotypes were Okrun and Florunner. Two-row plots (0.91 m row 

spacing x 6.1 m long) were planted with a two-row cone planter on 6 June 1988 or 

calendar day (CD) 158 and 16 June 1989 or CD 167. One hundred seeds were 

planted each 6.1 m of row length. Rows were planted parallel to the line-source 

gradient irrigation system. 
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Neutron Scattering Measurements of Soil Water 

A field calibrated neutron moisture gauge (Troxler Electronic Laboratories, 

Model 3333) was used to measure volumetric soil water content at eighteen different 

locations within the plots. One additional sampling site (number 19) was in an area 

adjacent to the plots but void of plants: The access tubes were made of 3.81 em 

diameter electro-'mechanical tubing and were installed in the crop row soon after the 

peanuts emerged. In 1988, there were nine tubes located in Okrun plots (three tubes 

for each treatment), and another nine tubes located in Florunner plots. These 

eighteen tubes were located in blocks I through 6. In 1989, there were fifteen tubes 

located in Okrun plots of blocks I through 5 (three tubes for each treatment). Soil 

water content was measured every 15 em to a depth of 120 em. Measurements were 

made about two times per week throughout the growing season. When an irrigation 

occurred, measurements were made just before and two days after the irrigation 

event. 

Soil Core Samples 

In order to determine root length densities, soil cores were taken five times 

during the 1988 growing season and four times during the 1989 growing season usmg 

a hydraulic soil coring machine (The Gidding Machine Co., Model GSR-T-S). 

During 1988, the cores were 4.13 em in diameter for the first three sampling times 

and 3.81 em for the last two sampling times and taken to a depth of 120 em. A 

smaller core diameter was used later in the season in 1988 due to hardness of the soil 

and inability of the larger core size to penetrate the soil. At the first sampling time, 

eighteen cores were taken (three cores for each genotype within each treatment) 

from the crop row. At the second and the third times, twelve cores were taken from 

the crop row for only two treatments (no samples were taken from the minimum 
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water treatment because of excessive soil resistance). At the fourth sampling time, 

only the full water treatment could be sampled. Most of the cores were taken from 

the crop row, but later in the season some additional lateral sampling was done 

between crop rows. At times, the penetration resistance of clay layers precluded 

coring to the full 120 em depth. 

During 1989, the cores were 3.81 em in diameter and taken to a depth of 120 em 

every time. At each sampling time; eighteen cores were taken (two cores for each 

treatment at each of three locations relative to the crop row). The three locations 

were in the crop row, 15 em away from the row, and 46 em away from the row (in the 

center between adjacent rows). All of· the root samples were taken from the Okrun 

genotype plots in 1989. Tables 1 and 2 show the scheduling for taking soil cores 

during these two years. 

The cores were cut in the field at intervals of 15 em for root analysis. The 

root samples were bagged and then frozen for later analysis at the USDA-ARS Plant 

Science Research Laboratory, Stillwater, OK. Each 0.15 m sample was washed free 

of soil using a Gillison hydropneumatic root washer and manually picked free of 

other debris. Root lengths were determined with a Comair rootlength scanner. 

A soil moisture core was taken within a few em of each root core. These cores 

were cut in the field at intervals of 7.5 em and stored in cans for the measurement of 

gravimetric water content (grams of water per gram of oven-dry soil) in the ground 

water laboratory of the Agricultural Engineering Department, OSU. The wet 

weight of each sample was measured on the sampling day using a computer 

controlled balance. Water was removed from the soil by oven-drying at 105°C to a 

constant weight. The dry weight of each sample was obtained and then the 

gravimetric water content determined. 



Date 

July 21 

Aug. 11 

Aug. 25 

Sept. 8 

Oct. 4 

TABLE 1 

SCHEDULING FOR TAKING SOIL 
CORES DURING 1988 

Days After Treat- Maximum 
Planting ment Coring 

Depth 
(em) 

45 Full 120 
Inter. 120 
Min. 120 

66 Full 120 
Inter. 120 
Min 

80 Full 120 
Inter. 120 
Min 

94 Full 120 
30 
60 

105 
120 

Inter. 
Min 

120 Full 120 
Inter. 45 
Min 60 
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Lateral 
Distance from 

Crop Row 
(em) 

0 
0 
0 

0 
0 

.o 
0 

0 
10 
20 
30 
40 

0 
0 
0 



Date 

July 26 

Aug. 17 

Sept. 7 

Sept. 28 

TABLE 2 

SCHEDULING FOR TAKING SOIL 
CORES DURING 1989 

Days After Maximum 
Planting Coring 

Depth 
(em) 

40 120 

62 120 

83 120 

104 120 

52 

Lateral 
Distance from 

Crop Row 
(em) 

0 
15 
46 

0 
15 
46 

0 
15 
46 

0 
15 
46 
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Weather Data 

A microprocessor-based weather station (Campbell Scientific, Inc.) was set up 

immediately adjacent to the field plots. The weather station's datalogger computed 

hourly and daily summaries of wet and dry bulb temperature, solar radiation, and 

wind speed. The data were stored and read once per week. 

Rainfall and irrigation data were collected using multiple rain gauges 

mounted just abov,e the crop canopy. The gauges were checked soon after rainfall 

or irrigation events. Except when significant rainfall amounts were received, the 

plots were irrigated approximate!~ once per week, with application amounts of 

about 30, 20, and 10 mm for the full, intermediate, and minimum irrigation 

treatments, respectively. 

Laboratory Measurements 

Soil properties were measured in the ground water laboratory of the 

Agricultural Engineering Department using samples from undisturbed soil cores. 

Soil water characteristic data (water potential, 1/J, versus water content, 9) were 

determined using a 15 'bar pressure plate, apparatus (Klute, 1982). 

Soil water diffusivity was measured using the Bruce-Klute method ( 1956) and 

a Mariotte flask arrangement permitted the supply of water at constant head. All 

flow columns were packed using plastic films. During the filling process the flow 

column was placed on a wooden horizontal stand. Soil hydraulic conductivity was 

calculated from the diffusivity and water characteristic data under wetting 

conditions. 

Field capacity, saturated water content, anaerobiosis point, and wilting point 

were obtained from soil water characteristic data. 



CHAPTER V 

FIELD AND LABORATORY DATA ANALYSIS 

Neutron Scattering Data 

The neutron sea ttering measurements of soil water were taken every 15 em to 

a depth of 120 em. The readings were in the form of a count ratio relating a 

measured count to a reference count. These data were transformed into volumetric 

soil moisture content data using linear equa!ions calibrated by the OSU Agronomy 

Department: 

1. For the year of 1988: 

fJ 0.0098 + 0.5855 R for depth = 15 em 

fJ - 0.0161 + 0.5678 R for depths > 15 em 

2. For the year of 1989: 

fJ = 0.0099 + 0.582 R for depth = 15 em 

0 = - 0.0161 + 0.5643 R for depths > 15 em 

where (} is the volumetric water content (cm3/cm3) and R is the count ratio. The 

first reading represents the count ratio to a dep'th of 22.5 em, and the last reading 

represents the count ratio at a depth of 112.5-120 em. Appendix I shows the total 

water content throughout the 120 em depth during the peanut growing season in 1988 

and 1989. 
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Statistical analysis was conducted to check the existence of differences among 

the three water treatments. The data in Appendix I were used in the following 

calculations. For the data of 1988, the number of observations for each genotype 

under the same water treatment was 93. There were 186 observations in each 

treatment. There were 558 total observations used for statistical analysis. The 

means and standard deviations for the three water treatments are shown in Table 3. 

The analysis of variance is given in Table 4. There was significant difference 

among the three water treatments at the 5% level. 

For the data of 1989, only the fifteen tubes located in Okrun plots were 

considered (Table 5). There were 125 observations in each treatment, and a total of 

375 observations were used in the ANOV A calculations. Table 6 shows no 

significant difference. among at least two water treatments at the 5% level. Table 7 

shows that significant differences existed between the full and minimum water 

treatments. 

Weather conditions were drier and hotter in 1988 than in 1989. Periodic rains 

in 1989 precluded establishment of a complete water gradient. 

Gravimetric Water Content 

The gravimetric water content was measured at each time when soil cores were 

taken. In order to compare the gravimetric data with the neutron probe data, soil 

bulk densities were obtained by dividing soil dry weight by soil volume. ' If the soil 

samples are "good", the soil volume should be the product of the sample length (7.5 

em) and the cross-sectional area (11.4 cm2 for the 3.81 em diameter soil cores or 13.4 

cm2 for the 4.13 em diameter soil cores). Figures 4 and 5 show the scatter plots of 

the data. Bulk density values less than 1.5 gjcm3 or greater than 1.8 gjcm3 were 

assumed to be clearly unrepresentative (either incomplete or overly compacted soil 

samples). Good samples. were not obtained for the last depth increments at the 



Treatment 

Full 

TABLE 3 

STATISTICAL ANALYSIS OF NEUTRON PROBE 
READINGS OF TOTAL WATER (em) IN 

120 em DEPTH DURING 1988 

Item F1orun Okrun 

Mean 24.959 25.347 
SD 3.337 3.423 

Intermediate Mean 24.434 23.245 
"SD 3.392 3.638 

Minimum Mean 22.947 22.698 
SD 3.452 3.616 

TABLE 4 

Average 

25.153 
3.377 

23.839 
3.558 

22.822 
3.528 

ANOV A FOR NEUTRON PROBE READINGS OF 1988 

Source Sum of Squares DF MS F-Ratio Pro b. 

Treatment 507.894 2 253.947 20.903 0.000 ** 

Genotype 17.078 17.078 1.406 0.236 

Replication 30.267 2 15.133 1.246 0.288 

Error 6706.144 552 12.149 
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** - Significant difference among water treatments at the 5% level of 
probability. 



TABLE 5 

STATISTICAL ANALYSIS OF NEUTRON PROBE 
READINGS OF TOTAL WATER (em) IN 

120 em DEPTH DURING 1989 

Treatment .Item Okrun 

Full Mean 27.906 
SD 2.169 

Intermediate Mean 27.586 
SD 2.534 

Minimum Mean 27.273 
SD 2.857 

, TABLE 6 

ANOV A FOR NEUTRON PROBE READINGS OF FIFTEEN 
TUBES LOCATED IN OKRUN PLOTS IN 1989 

Source Sum of Squares DF Mean-Square F-Ratio Pro b. 

Treatment 25.066 2 12.533 1.955 0.143 

Replication 32.946 4 8.237 1.285 0.275 

Error 2359.165 368 6.411 
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TABLE 7 

t-TEST BETWEEN TREATMENTS 

Between Treatments Statistic Pro b. 

Full & Intermediate 1.426 0.155 

Full & Minimum 2.255 0.025 ** 

Intermediate & Minimum 0.865 0.388 

**- Significant difference between the full and minimum water treatments 
at the 5% level of probability. 
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Figure 5. Bulk Density Distribution at Site 2 (1989) 
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bottom of the soil cores. Table 8 shows the results for bulk density at the different 

depths at site I and site 2. 

The gravimetric data were averaged over depths at which neutron data were 

measured. These data and the corresponding neutron probe data (measured in the 

same plot, at the same depth, and at the same time) are plotted and shown in 

Appendix II. These figures indicate that the measurements by the two methods 

were in reasonably good agreement, particularly considering the inherent spatial 

variability in soil moisture. 

Weather Data 

Appendix III shows the summary of the weather data through the 1988 and 

1989 peanut growing seasons. The daily alfalfa reference crop evapotranspiration 

was estimated using these weather data. Peanut ET was estimated ~sing the method 

discussed in Chapter UI. The daily reference crop ET, peanut ET and crop 

coefficients are listed in Appendix IV. 

Rainfall and irrigation data are shown in Appendix V .. During the 1988 peanut 

growing season, the total rainfall was 331 mm. Irrigation occurred 11 times with 

total amounts of 317 mm, 198 mm, and 117 mm for the full, intermediate, and 

minimum water treatments. The corresponding average amounts per irrigation 

were 29 mm, 18 mm, and II mm, respectively. During the 1989 peanut growing 

season, the total rainfall was 349 mm. Irrigation occurred 7 times with total amounts 

of 208 mm, 13 3 mm, and- 61 mm for the three water treatments. The corresponding 

average amounts were 30 mm, 19 mm, and 9 mm, respectively. 

Soil Water Balance Simulation 

In order to compare the weather-based ET estimates to field observations, it is 

necessary to conduct a water balance simulation to predict the daily total water in a 



Site Depth 
(em) 

0 - 22.5 

22.5 - 60 

60 - 120 

2 0 - 22.5 

22.5 - 60 

60 - 120 

TABLE 8 

RESULTS FOR BULK DENSITY 
AT SITE 1 AND SITE 2 

No. of Cases Mean 
(g/cm3) 

44 1.673 

88 1.601 

112 1.705 

84 1.667 

167 1.615 

196 1.727 

62 

Std. Dev. 
(g/cm3) 

0.069 

0.060 

0.081 

0.071 

0.058 

0.045 
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crop root zone of 120 em. In the water balance, irrigation or rainfall amounts are 

added and ET, runoff, and deep percolation amounts are subtracted. Model inputs 

included irrigation and rainfall data, weather data necessary for computing 

reference crop ET, values of the crop coefficient, and the soil's field capacity to be 

used as the starting point for the simulations. Appendix VI shows the daily water 

balance results. There are two assumptions in the simulations: 

1. The first 6 mm of irrigation or rainfall were not added to the root zone 

(Elliott et al., 1988). 

2. Because of the difficulty in estimating runoff, a significant portion of the 

rainfall was not added to the root zone whe~ the daily rainfall was greater 

than 50 mm. This assumption was used twice during the 1988 growing season. 

In addition, whenever the simulation showed that field capacity had been 

reached, any excess water was assigned to runoff. 

Figures 6 and 7, show the model estimates and the neutron measurements of 

total water in a soil zone of 120 em under full irrigation. Because the total rainfall 

was 140 mm between calendar days 257 and 262 in 1988, this period is omitted in 

Figure 6. The calculations were restarted on calendar day 263. During 1989, a 

rainfall of 80 mm occurred on calendar day 255. The water balance simulations 

were restarted one week after this large rainfall event. These figures indicate that 

the overall predictive ability of the,simula"tion model was good and that the weather

based estimates of peanut ET can be applied to root water uptake modeling. 

Laboratory Data 

Soil parameters were measured for the soil at site 2 in 1989. The undisturbed 

soil cores were used in the measurement of soil water characteristic data (water 

potential, '1/J, versus water content, 9) as shown in Table 9. There were 16 samples, 

and each represented a length of 7.5 em. The three depth increments were defined 



340 

320 

300 

280 

,.-.... 
E 
E 

260 
'-" 

..... 
(I) ..... 

240 ctl s 
"'iti ..... 
0 220 1-

200 

180 

160 

140 
185 

0 

0 

0 

205 225 

-- Simulated 

0 

245 
Calendar Day 

o Neutron Data 

0 

265 285 

Field Capacity 

Figure 6. Simulated and Measured Soil Water in 120 em Depth for the I 988 Peanut 
Growing Season 

0 

305 

0\ 
.t:'-



320 

310 

300 

290 

,..-.,. 
E 280 
E ..___, 
.... 
Q) .... 

270 cu s 
cu .... 
0 260 1-

250 

240 

230 

220 
200 210 220 230 

-- Simulated 

240 250 
Calendar Day 

o Neutron Data 

0 
0 

260 270 280 

Field Capacity 

Figure 7. Simulated and Measured Soil Water in 120 em Depth for the 1989 Peanut 
Growing Season 

0 0 

290 300 

"' V1 



-'If; 

(kPa) 

0 

2 

10 

20 

33 

50 

100 

300 

500 

1500 

Notation: 

TABLE 9 

RELATIONSHIP BETWEEN SOIL WATER POTENTIAL 
AND SOIL WATER CONTENT AT SITE 2 (1989) 

Depth (em) 

0-37.5 37.5-90 90-120 

(Jd (J (Jd (J (Jd (J 
w w w 

-------------------- --------------------- --------------------

0.351 0.351 0.354 0.354 0.339 0.339 

0.338. 0.309 0.342 0.295 0.322 0.267 

0.279 0.251 '0.301 0.265 0.261 0.236 

0.263 0.241 0.285 0.254 0.235 0.207 

0.255 0.222 0.274 0.242 0.212 0.184 

0.222 0.203 0.259 0.226 0.195 0.168 

0.209 0.194 0.238 0.195 0.179 0.150 

0.170. 0.162 0.200 0.174 0.156 0.125 

0.145 0.141 0.175 0.169 0.138 0.124 

0.129. 0.120 ' 0.141 0.141 0.120 0.120 

9d -- Soil water content (cm3/cm3) under drying conditions; 

0 -- Soil water content (cm3/cm3) under wetting conditions. 
w 
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based on the laboratory results. Soil diffusivity data are shown in Table 10. After 

plotting these data as shown in Figures 8 through 11, the best fit equations are in the 

following forms: 

(75) 

(76) 

where fJ is soil water content (cm3/cm3 ), '1/.1 is soil water potential (kPa), D is soil 

diffusivity (cm2/sec), and· a's and b's are empirical constants. 

The soil hydraulic conductivity can be estimated by the following equation: 

K (77) 

where K is the soil hydraulic conductivity (em/sec). From Equations (75) (76), and 

(77), the relationship of fJ and K can also be written in the logarithmic form: 

ln(K) (78) 

with 

(79) 

(80) 

Table 11 shows the soil parameters calculated by th·e logarithmic approach 

Since the VS2D model can accommodate tabular data, the values in Table 9 were 

used as model inputs for 1/.l(fJ). Because the model does not treat hysteresis among 

the water potentialrelated functional param-eters, the data for the drying condition 

were used in the calculations. The K(fJ) relationship was derived from '1/.1(0) and 
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TABLE 10 

RELATIONSHIP BETWEEN SOIL DIFFUSIVITY 
AND SOIL WATER CONTENT AT SITE 2 ( 1989) 

Depth (em) 

0 - 37.5 37.5 - 90 90 - 120 

9 D(9) 9 D(9) 9 D(9) 
cm3/cm3 cm2/sec cm3/cm3 cm2/sec cm3/cm3 cm2/sec 
--~--------------------- ------------------------- ------------------------

0.044 l.lE-06 0.059 4.3E-06 0.051 6.2E-06 

0.167 0.00078 0.126 0.000'21 0.178 0.00078 

0.228 0.00095 0.248 0.00317 

0.257 0.00567 0.262 0.01755 

0.272 0.00494 0.267 0.00828 0.269 0.03487 

0.289 0.01362 0.275 0.01057 0.280 0.03851 

0.300 0.02075 0.282 0.01206 0.284 0.04690 

0.308 0.02874 0.288 . 0.01328 0.288 0.05467 

0.314 0.03261 0.294 0.01437 0.292 0.05726 

0.321 0.03751 0.300 . 0.01490 0.295 0.06105 

0.325 0.04609 0.305 '0.01685 0.301 0.07386 

0.330 0.05953 0.315 0.02648 0.305 0.09880 
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Soil 
Parameter 

-1/J( e) 

D(e) 

K(e) 

TABLE 11 

ESTIMATED SOIL PARAMETERS FOR 
THE LOGARITHMIC APPROACH 

Depth 
(em) 

0 - 37.5 

37.5 - 90 

90 - 120 

0 - 37.5 

37.5 - 90 

90 - 120 

0 - 37.5 

37.5 - 90 

90 - 120 

a 

11.80 

11.50 

11.19 

-12.77 

-14.96 

-15.56 

-28.08 

-29.84 

-30.29 

73 

b 

-33.55 

-29.27 

-34.45 

29.61 

37.20 

43.04 

63.16 

66.47 

77.49 
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D(8), so the regression equations from table 11 were used as model inputs for K(ll). 

Field capacity, saturated water content, and wilting point were estimated from 

the soil water characteristic data and field observations. The soil water potentials 

and the corresponding soil water contents in the 120 em root zone are listed in Table 

12. 

Root Data and Analysis 

Root length measurements were made using a Comair rootlength scanner. 

The root length density (RLD) was calculated in two steps (Commonwealth Aircraft 

Corporation Ltd.): 

RLD = La (100/ V) 

with 

L a - 0.2246 + 0.9655 L + 0.00123 L 2 

e e 

(81) 

(82) 

where RLD is the root length density (em root length per cm3 soil volume), L is the 
e 

estimated root length (m), L is the actual root length (m), V is the soil volume (cm3 ) 
a 

and equal to 171 cm3 if the diameter of the soil cores is 3.81 em or 201 cm3 if the 

diameter of the soil cores is 4.13 em. The distributions of root length density for 

1989 are shown in Appendix VII. The values represent the average of two 

replications for each row location. 

Using 17 August 1989 data, Figures 12 and 13 contrast the full and minimum 

water treatments for each of three locations relative to the crop row. Presenting the 

same data in a different way, Figure 14 highlights the effect of the sampling 

location relative to the crop row under 'run and minimum water treatments. 

Several trends are apparent in these data. In almost all cases, the RLD values 



Saturation 

TABLE 12 

ESTIMATED SOIL WATER CONTENTS (em) AT 
SATURATION, FIELD CAPACITY, AND WILTING 

POINT FOR A 120 em ROOT ZONE 

Depth (em) 
Pressure 

(kPa) 0-37.5 37.5-90 90-120 

0 13.2 1,8.6 10.2 

Field Capacity 33 9.6 14.4 6.4 

Wilting Point 1500 4.5 7.4 3.6 

75 

Total 

42.0 

30.4 

15.5 



......... 
('t) 

E 
<.> -E 
<.> 

""-" 
;::.. .... 

"iii 
c: 
~ 
0 
.1:: .... 
C) 
c: 
~ 

....J .... 
0 
0 
a: 

2.00 

15 

76 

1 7 August 1 989 
x = 0 em 

30 45 60 75 90 105 120 
. Depth (em) 

• Full ~ Minimum 

Figure 12. Observed Peanut Root Length Densities under Full and Minimum Water 
Treatments. Soil Cores were Taken in the Crop Row (x=O) on 17 
August 1989. 



2.00 

........ 
C") 

E 
() - 1. E 
() 

......... 
>o ..... 

·u; 
c 
Cl) 
0 
..c: ..... 
C') 
c 
Cl) 

....J 
..... 
0 
0 
a: 

0 
15 

2.00 

........ 
C") 

E 
() - 1.50 E 
() 

......... 
>o ..... 
(/) 
c 
Cl) 
0 
..c: ..... 
C') 
c 
Cl) 

....J 
..... 
0 
0 
a: 

15 

30 

• 

1 7 August 1989 
x = 15 em 

45 60 7,5 
Depth (em) 

Full ~ Minimum 

1 7 August 1989 
x:: .46 em 

90 

30 45 60 75 90 
Depth (em) 

• Full ~ Minimum 

77 

105 120 

105 120 

Figure 13. Observed Peanut Root Length Densities under Full and Minimum Water 
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are greater in the minimum water treatment, reflecting one response of the peanut 

plant to increased water stress. In the crop row, the RLD in the top 15 em of soil is 

substantially higher than at greater depths. As the sampling location moves away 

from the crop row, the RLD tends (with some exceptions) to decrease in magnitude 

and become more uniform. 

Using only one sampling location (in the crop row), Figure 15 compares RLD 

data for two successive sampling dates ( 17 August 1989 and 7 September 1989) under 

full and minimum water treatments. Except at the deeper depths in the minimum 

water treatment, the RLD tends to increase during the three week period between 

sampling dates. This increase is particularly evident in the top 30 em of soil. 
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CHAPTER VI 

MODELING RESULTS AND DISCUSSION 

Root Activity Functions 

Recall the models of rapt water uptake in Chapter III. The root activity 

function is an important part of those models which apportion transpiration. The 

two dimensional root activity function can be expressed as: 

RLD(x,z) 

r(x,z) = (83) 

r A RLD(x,z)dxdz 

where r is a two dimensional root activity function [ 1/L 2], RLD is the root length 

density [L/L3], and A is the area of the solution domain and equal to the product of 

the root depth and the plant row spacing [U]. 

In order to estimate the root activity function, the distribution of root length 

density data (Appendix VII) should be analyzed. There are perhaps several ways of 

empirically representing root length density as a function of depth and the lateral 

direction. Two approaches are presented here. 

1. Linear Approach 

Suppose the root length density is a linear function of depth, z, and lateral 

direction, x. The general expression could be written as: 

81 
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(84) 

where RLD is the root length density, and /30, f3u and /32 are empirical constants. 

with 

According to Equations (83) and (84), r(x,z) can be expressed as: 

ctC2z-z )+c2(2x-x )+z r r r r(x,z) = --------,---x z2 

r r 
(85) 

(86) 

(87) 

where all terms are as previously defined. 

with 

For the one dimensional problem with /3 2 0, r(z) can be expressed as: 

r(z) 

c 

c(2z-z )+z 
r r 

(88) 

(89) 

Equation (88) is in the same form obtained by Ritchie in 1984. The range of c 
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is between -1 and I. Figure 16 illustrates the effect of c on the root distribution 

pattern. As the c value decreases, proportionally more roots are present in the 

upper layers. 

2. Exponential Approach 

Suppose the root length density is an expbnent~al function of depth, z, and 

lateral direction, x. The general expression of root length density could be written as: 

RLD = /30 exp(-/31 z) exp(-/32 x) (90) 

where all terms are as defined previously. 

According to Equations (83) and (90), r(x,z) can be expressed as: 

r(x,z) 0! exp( -/3 1 z) exp( -/32 x) (91) 

with 

(92) 

For the one dimensio~al problem with {32 0, r(z) can be derived as: 

r(z) = 0! exp( -/31Z) (93) 

with 

(94) 
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3. Parameters Estimated from Field Data 

Prior to 12 September 1989 (when a large rainfall event occurred), the total 

rainfall was 239 mm, and irrigation occurred four times with a total of 122 mm, 80 

mm, and 32 mm for the full, intermediate, and minimum water treatments, 

respectively. Compared with the amount of water received (both irrigation and 

rainfall) by the full irrigation plots, there was 12% less under intermediate 

irrigation, and 25% less under minimum irrigation. From the statistical analysis in 

Chapter V, the significant difference exists between the full and minimum water 

treatments. The following calculations are conducted using the data from only the 

full and minimum water treatments. These treatments can be considered to 

represent well irrigated and limited irrigated co'nditions, respectively. 

By linear and exponential regression analysis using a software package called 

SYST AT (SYST AT, Inc., 1985), the parameters for estimating root length density and 

the root activity function were obtained. The rooting depth was assumed to be 120 

em and the root activity and water uptake below 120 em were assumed to be not 

significant, although it would be possible to model below that depth. Tables 13 and 

14 show the estimated parameters and the standard errors. Table 15 gives the error 

sum of squares for the estimated root length densities. From the values listed in 

Table 15, the exponential regression se~ems to be the better approach for describing 

the distribution of root length density. 

According to the one dimensional exponential regression for the root data of 

26 July 1989 for the full water treatment, the coefficient {3 1 is equal to 0.0273. By 

substituting this regression coefficient and a rooting depth of 120 em into equation 

(94), we get a = 0.0284. By integrating ,the calculated root activity function over 

four equal depth increments, the corresponding root water uptake pattern is that 



TABLE 13 

THE ESTIMATED PARAMETERS AND THE CORRESPONDING 
STANDARD ERRORS FOR THE ROOT DATA ON 

Date 
& 

Method 

July 26 
Linear 

Exponential 

August 17 
Linear 

Exponential 

26 JULY AND 17 AUGUST 1989 

Treatment Parameter 

Full & 1D 0.570 0.00469 
STD Error 0.110 0.00159 
Full & 2D 0.729 0.00532 0.00282 
STD Error 0.103 0.00132 0.00236 
Minimum & ID 0.521 0.00362 
STD Error 0.053 0.00077 
Minimum & 2D 0.547 0.00362 0.00126 
STD Error 0.060 0.00077 0.00138 
Full & ID 0.836 0.02730 
STD Error 0.208 0.00999 
Full & 2D 1.739 0.04117 0.05576 
STD Error 0.135 0.00335 0.00781 
Minimum & 1D 0.584 0.01236 
STD Error 0.073 0.00281 
Minimum & 2D 0.700 0.01317 0.00817 
STD Error 0.098 0.00274 0.00445 

Full & 1D 0.808 0.00640 
STD Error 0.104 0.00137 
Full & 2D 0.865 0.00640 0.00280 
STD Error 0.115 0.00137 0.00245 
Minimum & 1D 1.039 0.00650 
STD Error 0.135 0.00178 
Minimum & 2D 1.152 0.00650 0.00556 
STD Error 0.142 0.00170 0.00304 
Full & lD 1.211 0.02156 
STD Error 0.218 0.00499 
Full & 2D 1.789 0.02522 0.01638 
STD Error 0.298 0.00458 0.00511 
Minimum & 1D 1.299 0.01308 
STD Error 0.222' 0.00357 
Minimum & 2D 1.639 0.01387 0.0 I 089 
STD Error 0.280 0.00334 0.00474 
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TABLE 14 

THE ESTIMATED PARAMETERS AND THE CORRESPONDING 
STANDARD ERRORS FOR THE ROOT DATA ON 

Date 
& 

Method 

September 
Linear 

7 

Exponential 

September 28 
Linear 

Exponential 

7 SEPTEMBER AND 28 SEPTEMBER 1989 

Treatment Parameter 

f3o 

Full & lD 1.315 0.00971 
STD Error 0.147 0.00195 
Full & 2D 1.384 0.00971 0.00340 
STD Error 0.164 0.00195 0.00350 
Minimum & lD 1.373 0.00992 
STD Error 0.156 0.00206 
Minimum & 2D 1.419 0.00992 0.00225 
STD Error 0.176 0.00209 0.00375 
Full & lD 1.848 0.01851 
STD Error 0.277 0.00379 
Full & 2D 2.371 0.02004 0.01090 
STD Error 0,358 0.00352 0.00430 
Minimum & lD 1.827 0.01672 
STD Error 0.277 0.00357 
Minimum & 2D 2.357 0.01864 0.01026 
STD Error. 0.392 0.00357 0.00471 

Full & lD 1.117 0.00937 
STD Error 0.147 0.00188 
Full & 2D 1.117 0.00937 0.00000 
STD Error 0.147 0.00188 0.00000 
Minimum & · lD 1.201 0.01068 
STD Error 0.135 0.00195 
Minimum & 2D 1.316 0.01068 0.00580 
STD Error 0.146 0.00187 0..00335 
Full & 1D 1.849 0.02849 
STD Error 0.198 0.00466 
Full & 2D 1.869' 0.02862 0.00044 
STD Error 0.264 0.00489 0.00351 
Minimum & 1D 1.747 0.02572 
STD Error 0.214 0.00471 
Minimum & 2D 2.320 0.02716 0.01440 
STD Error 0.231 0.00357 0.00361 
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Date 

July 26 

August 17 

September 7 

September 28 

TABLE 15 

THE ERROR SUM OF SQUARES FOR THE 
ESTIMATED ROOT LENGTH DENSITIES 

Treatment Error Sum of Squares 
Linear Exponential 

Full & lD 1.568 1.392 
Full & 2D 1.030 0.160 
Minimum & 1D 0.368 0.356 
Minimum & 2D 0.354 0.302 

Full & 1D 1.179 0.936 
Full & 2D 1.109 0.568 
Minimum & 1D 1.982 1.769 
Minimum & 2D 1.710 1.369 

FuH & 1D 2.364 1.835 
Full & 2D 2.262 1.348 
Minimum.& lD 2.642 2.215 
Minimum & 2D 2.598 1.752 

Full & lD 2.107 1.049 
Full & 2D 2.107 1.048 
Minimum & 1D 2.370 1.515 
Minimum & 2D 2.074 0.775 

88 



89 

58% of the uptake comes from the first quarter of the rooting depth, 26% from the 

second, II% from the third and 5% from the fourth. 

By regressing the data of 26 July 1989 under the minimum irrigation 

condition, we get (3 1 = 0.0124 and ~ = 0.0160. The corresponding water uptake 

pattern is that 40% of the uptake comes from the first quarter of the rooting depth, 

28% from the secon<;i, 19% from the third and 13% from the fourth. This means that 

more roots are distributed at the deeper layers when soil moisture is limiting. 

Table 16 shows the percentages obtained by using a root zone depth of 120 em 

and integrating the root activity fu,nctions for both linear and exponential 

approaches over four equal depth increments. As a check on the ability of the 

functions to reproduce the observed root data, the percentages calculated directly 

from field data (incorporating all these sampling locations) are also included in 

Table 16. Although the model percentages deviate somewhat from the observed 

percentages, the trends in spatial root distributions are clearly preserved. Overall 

the exponential model seems to better represent the observed data. 

Overall Root Growth 

Figure 17 shows the. average root length densities over the eight depths and 

three lateral locations th.rough the 1989 growing season. It seems that the growth 

rate under the minimum water treatment is slightly higher than that under the full 

water treatment. This is consistent with what was reported in Chapter V. At 41 

days after planting, there was only a slight difference in root growth between the 
J ' · •• 

full and minimum water treatments. This may be due to the fact that significant 

rainfall (a total of 106 mm) occurred' during this period along with only one 

irrigation event. Between 41 and 62 days after planting, root growth was especially 

rapid under the minimum water treatment. For both treatments, there was a 

decline in average RLD between 83 and 104 days after planting, perhaps indicating 
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TABLE 16 

RELATIVE ROOT DISTRIBUTIONS OVER FOUR EQUAL DEPTH 
INCREMENTS FOR OESER VED DATA AND THE ONE-

DIMENSIONAL EMPIRICAL FUNCTIONS 

' 
Date Method Percentage Root Distributions 

& --------------------------------------------------------
Treatment 0-30 30-60 60-90 90-120 

July 26 

Full Observed 54 21 14 II 
Linear 52 33 15 0 
Exponential 58 26 II 5 

Minimum Observed 39 29 19 13 
Linear 52 34 14 0 
Exponential 40 28 19 13 

August 17 

Full Observed 50 24 16 10 
Linear 42 31 19 8 
Exponential 52 27 14 7 

Minimum Observed 43 18 24 15 
Linear 36 29 21 14 
Exponential 41 28 19 12 

September 7 

Full Observed 47 21 21 11 
Linear 37 29 21 13 
Exponential 48 27 16 9 

Minimum Observed 46 22 19 13 
Linear 36 29 21 14 
Exponential 46 28 17 10 

September 28 

Full Observed 55 19 15 11 
Linear 39 30 20 11 
Exponential 59 25 11 5 

Minimum Observed 56 20 14 10 
Linear 40 30 20 10 
Exponential 56 26 12 16 
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root senescence. Table 17 shows the data used in Figure 17. 

VS2D Simulations 

Bare Soil_ 

The mathematical model was f-irst used to simulate water movement in a 

bare-soil (no root water uptake). Neutron moisture data were used to compare to 

the simulation results. The starting time for the model simulation was 17 August 

1989. The ending time was 31 August 1989, two days before 30 mm of rainfall. 

This two-week per1od represented a drying cycle uninterrupted by rainfall. The 

bare-soil neutron tube was shaded with a plexiglass cover to prevent direct sunlight 

on the soil surface and reduce evap<?ration. The evaporation flux computed by 

VS2D varied between 1.1 and 1.6 mmjd. For the lower boundary condition, a 

constant water content of 0.212 cm3/cm\ which was the average of the observed field 

data at a depth of 120 em, was assumed throughout the simulation period. Figure 

18 shows that the simulated water contents agreed well with the measured water 

contents. 

Peanut Root Zone 

VS2D was then used to model water movement in the root zone of a peanut 

crop. Using the functional relationships for root length density, the root activity 

function can be obtained mathematically. The sink term in Richards flow equation 

can then be quantified by using the root activity function and the crop 

transpiration. The crop vanspiration is determined by the type of crop, stage of 

growth, and climatic parameters, and can be estimated by subtracting soil 

evaporation from crop ET. The estimates of crop ET by Elliott et al., (1988) were 

previously tested using soil water balance simulations as shown in Figure 7. The 



TABLE 17 

A VER.AGE ROOT LENGTH DENSITIES OVER EIGHT DEPTHS 
AND THREE LATERAL LOCATIONS 

Days 
After 

Planting 

0 

41 

62 

83 

104 

Root Length Density (cm/cm3) 

Full Treatment Minimum Treatment 

0 0 

0:257 0.305 

0.376 0.600 

0.659 0.703 

0.556 0.558 

93 



-.. 
(") 

E 
() -(") 

E 
() 

-.._; ... c: 
Q) ..... c: 
0 

C) 
.... 
Q) ..... 
ctJ s 
0 en 

0.30 

0.28 

0.26 

0.24 

0.22 

0.20 

~----·----~---·---·-

.... .a ,..,... ,, .,. ,, 
.-·-""· • '· --- August 1 7 

--~~ ' .. e...... • ,, 

--- August 31 

• 

94 

• 

0 · 18o~------1~5-------3~0------4r5------6~0------~~75~--~90------1~0-5--~120 

Depth (em) 

·-&- Initial • Observed - Simulated 

Figure 18. Observed and Simulated" Soil Water Contents over a Period of 14 Days 
for Bare Soil Conditions 



95 

difficulty in estimating runoff was noted in Chapter V, and the same infiltrated 

amounts used in the water balance simulations were also used in the VS2D 

simulations. The simulations discussed in this section are based on the two 

dimensional root activity functions for the data of the 1989 peanut growing season. 

The soil zone simulated was' 2 m deep by 0.46 m wide (half the distance 

between crop rows). The upper boundary conditions varied in time according to the 

evaporation demand and the soil water availability at the soil surface. The rooting 

depth was assumed to be 1.2 m for all simulation periods. For the lower boundary 

condition, the water content was assumed to be constant and equal to 0.212 cm3 /Cm3 

which is about the field capacity at depth 1.2 m. Because measurements of soil 

parameters and water contents at depths below 1.2 m were lacking, the soil texture at 

depths, of 1.2 to 2 m was assumed_ to be the same as that at a depth of 1.2 m. 

The starting ~ime for the simulations was 20 July 1989, about one week before 

the first root data were taken. The ending time was 2 October 1989, four days after 

the last root core sampling data were taken. Because of a very large rainfall event 

on September 12, and the difficulty in estimating the infiltrated amount, the 

simulation period was interrupted and restarted on September 18. 

The neutron probe access tubes were located in the crop row. The radius of 

measurement changes with the soil moisture conditions. In VS2D, the output grid 

spacing in the lateral direction is 4.5 em. For comparison to the field neutron data, 

three grid points (0, 4.5, and 9 em) were averaged when the soil moisture was greater 

than or equal to 0.2 cm3/cm3, and four grid points (0, 4.5, 9, 13.5 em) were averaged 

when the soil moisture was less than 0.2 cm3/Cm3 • The assumption of three or four 

grid points has a small effect on the computed average soil moisture content. 

Figures 19 through 22 show, for selected times, the measured data and 

simulated results under a full water treatment. Both linear and exponential 



0.30 

-.. 
(') 0.28 E 
0 -(') 

E 0.26 0 
'-" -c: 

Cl) ..... 0.24 c: 
0 
u 
.... 
Cl) 

0.22 -cu s 
·o 0.20 
(/) 

0.18 
0 

• 

Full Water Treatment 
July 20 - July 27 

15 30 45 60 75 
Depth (em) 

-G· Initial • Observed 

Exponential ....... Linear 

96 

90 105 120 

Figure 19. Observed and Simulated Soil Water Contents under a Full Water 
Treatment on 27 July 1989. The Starting Time is 20 July 1989. 



-.. 
M 
E 
() -M 
E 
() ......... .... 
c 
~ .... 
c 
0 
() 
.... 
~ -cu 
$ 
'(5 
CJ) 

0.30 

0.28 

0.26 

0.24 

0.22 

0.20 

• 

Full Water Treatment 
7 August 1 989 

• 

0 · 18oL-----1~5-----3~0-----4~5~--~60~--~75-----9~0-----1~0-5--~120 

• Ob'served 

0.30 

-.. 
M 

0.28 E 
() -M 
E 0.26 () 

......... -c 
~ 

0.24 -c 
0 

C) 
,_ 
~ 0.22 .... 
C1l 

$ 
"(5 0.20 
CJ) 

0.18 
0 15,. 

• Observed 

Depth (em) 

Exponential 

Full Water Treatment 
21 August 1989 

• • 

30 45 60 75 
Depth (em) 

- Exponential 

Linear 

90 105 

Linear 

Figure 20. Observed and Simulated Soil Water Contents under a Full Water 
Treatment on 7 August 1989 and 21 August 1989. 

120 

97 



0.27 

""" Ct) 
E 0.25 
0 -Ct) 

E 
0 0.23 ...._, 
+' c: 
(j) 
+' 
c: 
0 u 

·o 
U) 

0.21 

0.19 

0.17 

0.15 
0 

0.26 

""" Ct) 
E 0.24 
0 -Ct) 

E 
0 0.22 ...._, 
+' c: 
(j) 

"E 0.20 
0 
u 
.... 
2 0.18 
ctl s: 
0 
U) 

0.16 

• 

• 

15 

Observed 

• 

Full Water Treatment 
28 August 1989 

30 45 60 75 
Depth (em) 

- Exponential 

Full Water Treatment 
11 September 1989 

90 105 120 

Linear 

0.14~----~----r-----~--~~--~----~----~----~ 
0 15 30 45 60 75 90 105 120 

Depth (em) 
• Observed - Exponential Linear 

Figure 21. Observed and Simulated Soil Water Contents under a Full Water 
Treatment on 28 August 1989 and 11 September 1989. 

98 



,...... 
('I') 

E 
() -('I') E 
() ..._., -c: 
Cl> -c: 
0 u 
..... 
Cl> .... 
ell s 
0 
(/) 

,...... 
('I') 

E 
() -('I') E 
() ..._., 
.... 
c: 
Cl> -c: 
0 u 
..... 
Cl> .... , 
ell s 
·o 
(/) 

0.28 

0.26 

0.24 

0.22 

0.20 

0.18 

0.16 
0 

0.28 

0.26 

0.24 

0.22 

0.20 

0.18 

Q 

" \ ·, 
\ 
\ 
\ ·, 

Full Water Treatment 
Sept. 18 - Sept. 25 

Sept. 18 

.:. __ Sept. 2s 

\ 

15 

-G· 

\ 

• 

30 45 60 75 
Depth (em) 

Initial • Observed 
Exponential ....... Linear 

Full' Water Treatment 
2 October 1 989 

• 

90 105 120 

• 

0' 16o~-------1+5-------3~0-------4~5-------6~0------~7~5------~90-------1~0-5---~120 

• Observed 
Depth (em) 

- Exponential Linear 

99 

Figure 22. Observed and Simulated Soil Water Contents under a Full Water 
Treatment on 25 September 1989 and 2 October 1989. The Starting 
Time is September 18, One Week after a Large Rainfall Occurred. 
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approaches were used in modeling root distributions. Figures 23 through 26 show 

the measured data and simulated results under the minimum water treatment. 

Figures 27 through 34 provide an alterJ?.ative way of looking at the dynamic 

simulation results. These are plots of soil water content throughout the simulation 

period for a particular treatment and depth. 

Figures 19 through 26 show that the model generally did a good job of 

simulating the distribution of soil water with depth. In Figures 19 through 22, for 

the full water treatment, the exponential approach to root distribution seemed to fit 

the field data slightly better than did the linear approach. Acco~ding to the root 

data plotted in Chapter V, the root length density in the top 15 em of soil was 

substantially higher than at greater depths, especially under the full water 

treatment. The exponential function. can better match the high root densities 

observed near the soil surface. 

Figures 23 through 26 indicate that, for the minimum water treatment, 

differences in simulation. results for the linear and exponential approaches are 

insignificant. According to the root data plotted in Chapter V, the root length 

densities were greater in the minimum water treatment and more roots grew at 

deeper layers. In this situation, both functional approaches were able to estimate 

root distributions well, leading to quite similar simulations of water uptake and 

moveme.nt. 

Figures 27 through 34 show that the simulation results fit with the field data 

at most of the depths except at a depth of 60 em under the full water treatment and 

at a depth of 90 em under the minimum water treatment. Inaccurate 

characterization of soil parameters- woulq be one possible explanation for these 

deviations. 
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120 em under a Full Water Treatment during 1989 Peanut Growing 
Season. 
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Figure 33. Observed and Simulated Soil Water Contents at Depths of 75 em and 90 
em under a Minimum Water Treatment during 1989 Pe.anut Growing 
Season. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Summary 

Improved' understanding of root water uptake is an important element in 

advancing the state-of -the-art in modeling water movement through the soil-plant

atmosphere continuum. Researchers have traditionally placed far less attention on 

roots than on the above-ground portions of the.plant. Even in an applied field such 

as irrigation management, there is opportunity for a more rigorous treatment of root 

growth and activity, particularly with regard to spatial and temporal patterns of 

root development and water uptake. 

The modeling of water transport and uptake in root zones has been addressed 

in many different ways. Some models tend to concentrate on the soil and greatly 

simplify the process of water extraction by roots, while others place greater emphasis 

on physiological processes. Some models use a simple mass balance to describe 

water movement in the soil, while others use fundamental flow theory and numerical 

solution schemes. Two general types of root water uptake models are present in the 

literature. The models in one category are based on potential flow theory and 

require estimates of resistances and potentials. 'Models in the other category 

apportion plant transpiration based on the density of roots and the soil water 

condition. 

A dynamic simulation model named VS2D was used for solving the two

dimensional equation of fluid flow in variably saturated porous media. The flow 
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equation is written with total water potential as the dependent variable and is solved 

using finite difference techniques. The VS2D program was written in FORTRAN 

language with extensive use of subprograms, thereby simplifying the process of 

program modification. The ~ubprogram for estimating crop evapotranspiration was 

changed by incorporating the Penman combination equation and appropriate crop 

coefficients. The root water uptake submodel was converted from a potential flow 

approach to an apportioned transpiration appro'ach. 

Field data were qollected during the 1989 peanut growing season. Different 

water treatments were established by means of a line-source sprinkler irrigation 

system. Neutron measurements of soil water were taken twice a week throughout 

the season. Root data and gravimetric soil water data were collected four times 

between 26 July and 28 September. Irrigation and weather data were also collected. 

Laboratory measurements were made for estimating soil parameters needed in the 

VS2D model. 

Statistical analysis was conducted to check the existence of differences among 

the water treatments. Two water treatments"(full and minimum) were significantly 

different. A comparison of gravimetric water contents, and neutron measurements 

indicated that the two methods were in reasonably good agreement. In order to 

compare the weather-based ET estimates to field observations, a water balance 

simulation was conducted to predict the daily total water in a crop root zone of 120 

em. Results showed that the overall predictive ability of the simulation model v:as 

good and that the weather-based estimates of peanut ET could be used in root water 

uptake modeling. 

Root length measurements we,re made and root length densities were 

calculated. Results showed that the root length density values tended to be greater 

in the minimum water treatment. In the crop row, the root length density in the top 

15 em of soil was much higher than at greater depths. As the sampling location 
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moved away from the crop row, the root length density tended to decrease in 

magnitude and become more uniform with depth. 

Linear and exponential approaches. were presented for describing the root 

distributions in either one or two dimensions. A root activity function was defined 

which is essentially a normalized root length density. This function can be 

obtained mathematically from the linear and exponential regression fits to root data, 

and can be used to calculate relative root distributions. 

Results obtained by VS2D simulations. of the full and minimum water 

treatments were in good agreement with field data. Both linear and exponential 

approaches were used in modeling the two-dimensional root distributions. The 

model is general in· the sense that it has the potential to be easily applied to other 

crops. 

Conclusions 

Two dimensional root distribution functions were developed and incorporated 

into a dynamic simulation model of water uptake and movement. The results led to 

the following conclusions: 

1. The weather-based estimates of peanut ET can be applied to root water 

uptake modeling. 

2. The values of root len'gth density were generally greater in the minimum 

water treatment than·in the full water treatment. In the crop row, the root 

length density in the top 15 em of soil was much higher than at greater depths. 

As the sampling location moved away from the crop row, the root length 

density tended to decrease in magnitude and become more uniform with depth. 

3. The linear and exponential root distribution functions can be used to 

represent peanut root distributions in either one or two dimensions. The 

exponential model seemed to agree better with the observed data. Functional 



relationships have the advantages of being concise representations, and 

mathematically continuous rather than discrete. 
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4. In the VS2D simulations, the sink term was successfully modified from a 

potential flow approach to an apportioned transpiration approach. 

5. The simulated distributions of soil water with depth were in good agreement 

with the field data. For the full water treatment, the exponential approach to 

root distribution seemed to fit the field data slightly better than did the linear 

approach. For the minimum water treatment, both linear and exponential 

approaches were able to estimate root distributions well, leading to quite 

similar simulations of water uptake and movement. 

Recommendations 

The research in this dissertation presents a preliminary study of two 

dimensional simulation of water movement and uptake in crop root zones with 

specific application to peanuts. The possible directions for future research may be 

described as follows: 

1. Modeling approaches may be developed for describing spatial and temporal 

patterns in root growth. , 

2. Research may be done under no irrigation (rain-fed) conditions. The 

effects of water stress on root distribution and water uptake should be more 

obvious. 

3. Other approaches to the root distribution in addition to linear and 

exponential functions may be investigated. 

4. The model has the potential to be applied to other crops, and to be 

incorporated into dynamic crop growth models. 
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NEUTRON PROBE MEASUREMENTS OF TOTAL WATER (em) 
IN 120 em SOIL ZONE IN 1988 

(Full Irrigation) 
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Calendar Florunner Okrun 
Day -------------------------------------------- ------------------------------------------

Tube 1 Tube 3 Tube 5 Tube 2 Tube 4 Tube 6 

179 30.29 30.76 30.11 30.10 29.64 30.09 
182 31.04 31.19 30.39 30.71 31.23 31.15 
186 30.38 30.54 29.76 30.12 29.21 29.80 
189 . 30.28 30.64 29.85 30.60 30.39 30.19 
193 29.92 29.30 28.59 29.91 27.94 29.32 
196 29·.54 29.79 28.86 30.14 29.36 29.58 
200 26.52 26.76 26.44 26.72 28.85 27.26 
203 29.37 29.11 27.75 30.04 28.64 29.11 
207 25.78 26.56 25.45 26.62 25.05 26.96 
211 29.28 29.00 28.91 ' 30.36 28.17 29.42 
214 26.19 26.58 26.47 27.26 25.38 27.57 
221 22.85 23.00 22.78 22.74 21.08 23.71 
224 23.65 24.51 23.55 26.99 23.11 24.56 
228 21.94 22.58 22.36 23.23 20.93 22.97 
232 21.92 22.57 22.06 24.38 20.86 ' 24.41 
235 20.59' 21.60 21.05 22.01 19.62 23.00 
238 22.67 23.76 22.44 25.44 22.00 26.29 
242 21.50 22.79 21.79 24.05 20.51 24.56 
245 20.73 21.80 21.20 22.67 19.56 23.71 
249 20.22 20.74 20.45 21.06 18.90 22.53 
252 21.43 22.37 . 21.67 22.48 19.98 23.67 
256 19.72 20.75 '20.27 20.64 18.37 22.03 
263 25.95 25.64 ,27.47 25.17 24.42 29.84 
266 24.27 23.74 25.35 24.02 22.96 27.29 
270 24.42 24.60 25.78 24.71 23.51 27.86 
278 22.89 23.47 24.05 23.43 22.31 26.39 
284 24.16 24.88 25.45 24.60 23.52 27.15 
287 23.58 24.33 24.34 24.01 22.78 26.57 
291 22.63 23.21 24.14 23.09 22.32 26.26 
294 21.71 22.07 23.26 22.33 21.35 25.17 
298 20.87 21.44 22.76 21.90 20.66 24.74 



NEUTRON PROBE MEASUREMENTS OF TOTAL WATER (em) 
IN 120 em SOIL ZONE IN 1988 

(Intermediate Irrigation) 
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Calendar F1orunner Okrun 
Day -------------------------------------------- ------------------------------------------

Tube 8 Tube 10 Tube. 12 Tube 7 Tube 9 Tube 11 

179 29.22 31.04 . 29.49 29.69 29.45 29.27 
182 29.76 31.07 29.93 30.07 30.57 29.32 
186 29.05 30.78. :29.55 29.32 29.19 29.03 
189 29.24 30.83 ·29.54 29.43 29.69 28.77 
193 28.86 30.33 28.61 27.61 27.90 26.90 
196 28.51 29.72 28.09 27.26 27.89 26.69 
200 26.54 27.62 26.52 25.32 25.26 24.51 
203 27.57 28.56 27.75 26.33 26.49 25.42 
207 25.79 26.94 25.55 24.24 24.33 23.51 
211 28.28 27.29 27.58 28.21 26.69 26.42 
214 26.59 26.54 26.00 25.86 24.58 24.88 
221 22.73 23.82 2(..77 21.79 20.74 21.86 
224 22.66 23.95 22.75 21.85 21.25 21.86 
228 21.66 22.93 22.15 21.12 20.03 21.09 
232 21.21 22.32 21.59 20.17 19.97 19.83 
235 20.49 21.74 21.23 19.64 19.28 19.43 
238 20.66 21.92 21.11 19.98 19.42 19.14 
242 20.32 21.65 20.88 19.79 19.28 18.72 
245 19.84 21.13 20.27 19.56 18.87 18.32 
249 19.18 20.64 20.29 18.78 18.23 17.75 
252 19.30 20.49 20.05 18.84 18.29 17.69 
256 18.73 19.70 19.34 17.78 18.03 16.83 
263 25.13 23.89 24.90 25.75 23.77 22.58 
266 23.57 22.99 23.69 24.01 22.44 21.74 
270 24.40 23.54 . 24.44 24.90 23.47 22.59 
278 23.07 22.95 23.56 23.05 22.34 22.04 
284 24.06 23.97 24.57 24.57 23.54 22.82 
287 23.56 23.50 23.85 24.11 23.24 22.78 
291 23.39 23.22 23.66 22.99 22.70 22.33 
294 22.60 22.18 23.09 22.32 21.74 21.52 
298 22.10 21.50 22.77 21.17 21.12 20.81 



NEUTRON PROBE MEASUREMENTS OF TOTAL WATER (em) 
IN 120 em SOIL ZONE IN 1988 

(Minimum Irrigation) 

Calendar Florunner Okrun 
Day ---------------------------------- -----------------------------~----

Tube 13 15 17 14 16 18 19 

179 29.43 29.73 29.02 28.24 28.91 29.26 28.05 
182 28.78 29.01 28.57 28.04 28.23 28.81 27.63 
186 29.02 28.85 28.17 27.62 27.63 28.08 27.97 
189 28.12 28.24 27.55 26.94 26.98 27.91 27.86 
193 27.75 27.30 26.26 25.98 . 26.01 27.13 27.61 
196 27.23 26.94 26.08 25.52 . 26.01 26.63 27.32 
200 25.57 24.85 24.46 23.96 23.93 25.23 27.18 
203 26.21 25.16 24.71 25.15 24.69 25.74 27.78 
207 24.57' 23.59 23.18 23.09 , 22.72 24.43 27.05 
211 25.75 24.75 24.64 26.36 23.36 25.56 28.71 
214 24.40 23.31 23.42 23.88 22.12 24.28 28.14 
221 21.88 20.88 20.54 20.75 19.16 21.76 27.48 
224 21.46 20.97 20.33 20.42 19.17 21.16 27.59 
228 20.89 19.81 19.59 19.97 18.20 20.26 27.17 
232 19.77 19.28 18.60 19.19 17.66 19.60 26.74 
235 19.52 19.02 18.21 18.75 17.17 18.87 26.69 
238 19.51 19.33 19.00 19.22 17.74 19.10 26.43 
242 19.24 19.42 18.65 19.20 17.99 19.12 27.46 
245 19.23 18.84 18.34 18.52 . 17.33 18.43 26.90 
249 18.75 18.30 . 18.03 18.16 17.13 18.18. 26.36 
252 18.60 18.44 17.70 18.19 17.17 18.27 25.94 
256 17.99 1.7 .43 17.17 17.76 16.55 17.50 25.54 
263 24.93 24.64 25.90 28.38 22.81 25.14 27.82 
266 23.20 23.15 24.34 25.88 2L63 23.23 27.36 
270 24.15 24.65 24.94 26.97 22.62 24.36 27.87 
278 22.68 22.99 23.21 25.86 21.61 22.69 27.92 
284 23.69 23.79 24.01 26.88 22.30 23.91 28.79 
287 23.14 23.33 23.33 26.14 21.86 23.02 28.24 
291 22.37- 22.44 22.68 25.33 21.21 22.60 28.35 
294 21.32 21.34 21.93 ' 24.51 20.26 21.36 28.44 
298 20.65 20.93 20.97 23.71 19.68 20.90 27.76 

126 



NEUTRON PROBE MEASUREMENTS OF TOTAL WATER (em) 
IN 120 em SOIL ZONE IN 1989 

(Full Irrigation) 

Florunner Okrun 
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Calendar------------ -0------------------------~---------------------------------------------

Day Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 Tube 6 

187 30.17 32.10 31.64 32.06 31.48 30.73 
191 31.62 31.27 31.32 29.60 '30.91 30.65 
198 30.44 32.13 31.91 31.68 32.01 31.37 
201 29.12 31~96 31.07 31.32 31.17 30.54 
208 27.87 29.80 29.48 29.49 29.41 28.86 
212 27.86 29.90 29.41 28.97 29.55 28.69 
219 27.95 29.83 29.23 29.18 29.36 28.55 
222 27.54 29.13 28.52· 28.37 28.67 28.39 
229 28.24 30.24 29.34 . 29.30 29.62 28.78 
233 27.07 29.60 27.99 27.88 28.51 27.51 
236 27.00 29.24 27:96 27.91 28.88 27.73 
240 25.00 28.43 25.97 25.45 27.28 25.84 
243 24.58 28.30 26.02 25.66 27.57 25.58 
250 24.02 27.85 25.71 25.54 27.61 25.75 
254 22.98 '26.83 24.55. 24.14 26.01 24.50 
257 25.66 28.85 27.20 26.63 28.30 26.84 
261 24.97 28.86 26.81 26.21 27.84 26.25 
265 23.78 27.78 25.62 24.50 27.18 25.12 
268 23.34 27.41 25.52 24.17 26.68 24.57 
275 23.45 28.07 25.82 24.77 27.20 25.99 
282 23.89 27.85 26.25 24.82 27.84 25.89 
285 23.45 27.94 26.27 24.53 27.56 25.30 
292 23.85 28.61 26.54 24.26 27.57 25.11 
296 23.61 28.15 26.95 24.14 27.72 25.16 
299 23.57 27.70 26.68 24.01 27.68 24.74 
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Calendar------------ ------------------------------------------------------------------------

Day Tube I2 Tube 7 Tube 8 Tube 9 Tube 10 Tube II 

187 32.I2 31.53 31.99 32.5I 32.54 32.6I 
I9I 31.53 3I.22 31.07 3I.23 31.76 32.00 
198 32.49 31.49 31.35 31.93 32.46 32.92 
20I 31.70 30.78 30.97 31.33 31.52 31.87. 
208 29.8I 29.20 29:3I 29.33 29.99 30.I3 
212 30.22 29.4I 28.95 29.55 30.09 29.85 
2I9 30.I8 29.06 29.03 28.82 29.76 30.40 
222 29.92 28.5I 28.52 28.59 29.27 29.66 
229 30.30 29.02 30.0I 29.60 29.90 30.58 
233 29.38 27.74 28.46 28.26 28.79 29.30 
236 29.27 27.94 27.96 27.46 28.69 29.44 
240 27.46 24.44 26.07 26.03 26.82 26.61 
243 27.3I 25.55 25.18 25.67 26.52 26.64 
250 26.82 25.1I 24.97 25.00 26.07 -26.37 
254 26.IO 23.88 24.06 23.84 24.88 25.39 
257 28.07 26.42 26.70 27.03 27.21 28.25 
261 27.94 25.76 26.36 26.53 26.84 27.82 
265 26.96 24.49 25.24 25.10 25.68 26.3I 
268 26.73 24.24 24.97 25.00 25.48 25.81 
275 26.83 24.48·' 25.20 24.78 25.36 26.32 
282 27.27 24.94 25.89 25.44 25.77 26.46 
285 27.I1 24.61 25.77 25.I1 25.32 26.80 
292 27.I9 24.53 25.7I 24.66 25.4I 26.70 
296 26.98 24.21 25.66 24.50 25.20 26.70 
299 26.83 24.35 25.88 24.48 25.52 26.54 



NEUTRON PROBE MEASUREMENTS OF TOTAL WATER (em) 
IN 120 em SOIL ZONE IN 1989 

(Minimum Irrigation) 

Florunner Okrun 
Calendar---------- -----------------------------------------------------------
Day Tube 13 14 15 16 17 18 Tube 19 

187 31.92 32.58 33.38 32.42 32.51 32.59 31.17 
191 31.14 32.36 32.90, 31.66 31.97 31.96 30.55 
198 30.54 32.00 32.31 31.34 31.44 31.46 30.48 
201 29.93 31.63 31.72 31.02 30.91 30.95 30.40 
208 28.29 30.05 30.53 29.57 29.12 29.33 29.10 
212 27.80 30.05 30.94 29.35 29.04 29.12 30.34 
219 27.06 30.09 30.04 28.55 28.61 28.05 29.94 
222 26.33 29.61 29.41 28.12 28.04 27.55 30.14 
229 27.96 30.11 30.27 29.64 28.70 28.59 30.34 
233 27.12' 28.79 28.98 28.51 27.34 27.63 30.17 
236 26.71 28.47 28.46 27.70 26.35 27.05 29.65 
240 23.97 26.77 26.29 25.29 23.99 24.93 28.94 
243 23.87 26.34 25.36 24.79 23.60 24.19 28.34 
250 23.46 26.07 25.18 24.76 23.55 24.42 27.84 
254 22.19 24.60 24.21 23.70 22.44 23.54 27.86 
257 26.68 27.29 27.78 27.77 26.19 26.13 30.23 
261 25.76 27.09 27.11 27.42 25.86 25.40 29.74 
265 24.46 26.01 26.08 25.68 24.11 24.51 29.15 
268 24.20 25.77 25.87 25.65 23.98 24.33 29.01 
275 24.10 25.75 25.62 25.32 24.10 24.43 28.70 
282 24.99 26.10 25.99 25.35 23.99 24.72 28.95 
285 24.61 26.36 26.14 25.23 24.44 24.78 28.48 
292 23.53 25.58 25.42 <24.39 23.59 24.45 28.19 
296 23.90 25.62 25.13 23.23 23.96 24.07 27.93 
299 23.69 25.47 25.48 24.51 23.80 23.89 27.72 
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WEATHER DATA OF 1988 

Calendar Net Wind Mean Mean 
Day Radia~ion Run Temp<fra ture VPD 

(cal/cm .day) (km/day) ( C) (mbar) 

161 385.3 16.87 25.59 14.59 
162 387.3 9;17 21.84 14.82 
163 403.9 11.02 22.13 17.15 
164 398.0 14.04 25.39 19.46 
165 381.8 12.92 25.89 17.97 
166 381.0 12.33 26.50 17.57 
167 316.7 8.26 26.45 14.23 
168 284.6 8.16 24.95 9.15 
169 366.2 7.37 27.17 16.75 
170 381.6 11.99 28.84 19.75 
171 391.5 14.39 29.76 22.25 
172 391.5 14.25 30:04 24.10 
173 393.9 12.64 30.00 22.41 
174 401.7 11.43 29.85 23.18 
175 430.6 6.49 29.40 21.83 
176 376.5 6.00 30.76 24.62 
177 282.4 8.69 28.82 16.39 
178 218.0 7.42 27.78 13.57 
179 331.0 5.99 27.79 17.16 
180 414.6 10.10 28.12 19.21 
181 438.4 12.20 29.23 22.62 
182 397.7 ' 15.92 32.11 24.48 
183 257.1 13.17 25.74 12.83 
184 230.1 10.03 22.55 13.51 
185 ' 385.8 6.29 26.71 21.89 
186 399.7 9.70 30.11 21.22 
187 461.4 10.12 29.77 19.47 
188 356.4 10.10 29.32 21.46 
189 354.6 9.77 27.67 14.43 
190 296.5 7.55 26.05 11.88 
191 316.2 9.59 26.57 17.92 
192 267.0 6.32 27.53 15.28 
193 261.8 9.28 26.97 10.62 
194 ' 361.2 5.97 28.65 18.07 
195 419.2 10.60 31.15 20.15 
196 372.0 14.62 31.71 16.54 
197 395.5 16.43 31.71 14.96 
198 334.4 12.29 31.62 13.47 
199 '279.4 10.80 31.97 13.03 
200 232.7 7.59 30.15 10.75 
201 245.1 9.32 25.75 7.68 
202 342.8 15.49 23.92 6.40 
203 408.9 5.85 25.51 7.29 
204 365.8 9.60 26.70 5.60 
205 373.7 14.39 28.88 5.18 
206 288.5 10.99 30.15 4.37 
207 391.6 8.83 30.14 4.09 
208 376.4 8.20 29.53 4.04 
209 264.6 9.04 24.72 6.26 
210 183.5 10.95 24.04 6.74 
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WEATHER DATA OF 1988 (CONTINUED) 

Ca1e,ndar Net Wind Mean Mean 
Day Radia2ion Run Temp<frature VPD 

(cal/cm .day) (km/day) ( C) (mbar) 

211 442.4 10.84 29.50 5.32 
212 420.0 8.46. 30.67 3.98 
213 402.4 8.87 30.04 3.74 
214 400.9 11.40 30.15 2.78 
215 374.4 11.67 30.14 2.53 
216 383.9 10.68 29.54 2.52 
217 387.6 10.05 29.96 3.27 
218 321.9 7.15 29.35 1.63 
219 387.6 6.89 30.93 3.83 
220 386.4 10.34 33.10 1.61 
221 377.4 9.56 33.87 1.04 
222 267.9 7.13 28.76 1.85 
223 406.6 6.21 29.09 4.34 
224 384.1 8.15 28.75 1.50 
225 310.6 9.29 28.29 13.36 
226 385.5 14.98 31.30 21.50 
227 254.5 11.04 31.33 20.20 
228 358.4 9.36 31.96 22.66 
229 392.0 7.38 31.28 14.11 
230 311.2 7.13 29.69 12.81 
231 282.0 5.20 28.01 13.26 
232 279.7 5.95 28.06 15.21 
233 319.4 6.29 29.29 18.04 
234 372.4 9.78 31.67 23.89 
235 368.8 14.27 32.35 24.88 
236 185.7 9.89 28.83 16.50 
237 345.6 5.11 28.37 17.56 
238 325.7 '9.37 30.44 17.62 
239 338.8 > 9.87 28.33 13.88 
240 115.3 11.99 27.09 9.87 
241 94.5 9.51 18.92 5.28 
242 370.9 8.98 19.25 5.67 
243 320.0 7.28 20.66 5.59 
244 324.8 8.28 22.58 6.19 
245 309.7 6.58 23.77 6.17 
246 200.0 5.43 23.97 3.98 
247 335.8 11.37 24.72 5.78 
248 351.6 13.80 21.97 4.45 
249 336.8 8.80 22.39 4.83 
250 374.7 8.80 22.60 7.16 
251 346.8 15.42 23.41 5.78 
252 271.2 13.05 . 24.71 4.64 
253 302.7 6.54 25.83 5.35 
254 307.4 6.87 25.70 5.08 
255 297.1 6.80 25.37 4.43 
256 287.1 9.08 27.39 5.70 
257 318.1 7.44 25.87 4.84 
258 171.8 6.32 24.07 2.63 
259 190.8 6.30 23.38 2.92 
260 233.2 9.50 24.27 2.63 
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WEATHER DATA OF 1988 (CONTINUED) 

Calendar Net Wind Mean Mean 
Day Radia2ion Run Tempcfrature VPD 

(cal/cm .day} (km/day) ( C) (mbar) 

261 148.9 9.19 24.41 2.89 
262 187.6 10.62 23.42 2.63 
263 370.2 13.50 21.75 3.33 
264 360.5 5.72 20.66 3.70 
265 321.0 11.59 26.16 4.11 
266 319.4 14.19 26.65 3.63 
267 69.7 9.61 19.76 1.54 
268 133.9 9.34 15.54 2.62 
269 306.1 4.60 18.34 3.24 
270 316.7 8.10 21.42 3.98 
271 296.8 9.60 23.58 4.17 
272 230.5 14.29 22.87 3.15 
273 228.6 8.41 17.13 2.59 
274 256.5 5.48 16.43 2.44 
275 73.9 7.94 15.39 2.17 
276 272.4 9.24 17.11 2.92 
277 247.0 4.40 16.69 2.86 
278 157.7 7.03 15.00 2.09 
279 48.4 12.15 8.61 0.87 
280 97.0 9.90 10.36 1.40 
281 35.0 7.14 10.43 1.17 
282 66.5 4.76 12.50 1.99 
283 138.6 4.44 f2.49 2.30 
284 254.2. 7.36 15.10· 2.96 
285 245.1 10.11 14.46 2.56 
286 242.3 5.27 13.11 2.51 
287 232.8 11.92 16.30 2.75 
288 195.3 17.79 19.73 2.47 
289 152.3 14.82 20.69 2.24 
290 223.7 6.61 22.45 4.44 
291 217.2 14.45 24.74 4.40 
292 142.2 14.44 14.49 1.59 
293 202.6 7.77 13.65 2.25 
294 115.9 6.04 15.48 2.50 
295 216.8 3.71 16.39 3.49 
296 206.6 12.15 17.59 3.27 
297 192.5 13.92 17.54 2.94 
298 192.9 6.68 15.08 2.65 
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WEATHER DATA OF 1989 

Calendar Net Wind Mean Mean 
Day Radia2ion Run Tempcfra ture VPD 

(caljcm .day) (km/day) (C) (mbar) 

172 392.8 14.35 29.10 19.11 
173 274.2 13.92 24.21 10.27 
174· 336.8 9.17 23.11 10.84 
175 396.2 8.21 28.04 18.68 
176 361.8 4.75 28.97 25.27 
177 380.3 7.40 28.44 20.41 
178 . 411.3 ' 11.95 24.59 12.72 
179 369.3 7.73 26.22 15.12 
180 338.4 8.31 26.67 16.13 
181 303.1 6.51 27.61 19.78 
182 304.8 7.50 26.92 17.70 
183 138.5 8.41 27.07 17.29 
184 428.1 8.41 27.07 17.29 
185 344.3 5.12 28.09 20.50 
186 '340.0 4.61 28.36 21.42 
187 314.9 4.76 28.43 22.28 
188 304.6 5.01 27.94 16.02 
189 325.5 5.18 28.26 11.57 
190 353.0 11.13 29.17 11.84 
191 391.0 14.83 30.34 15.16 
192 379.5 13.66 28.16 8.16 
193 296.5 10.44 29.21 8.88 
194 307.7 8.84 27.77 7.66 
195 114.7 5.74 24.58 5.91 
196 345.6 5.78 26.79 11.83 
197 409.6 8.50 26.92 8.16 
198 328.0 13.52 25.51 4.89 
199 267.8 8.40 27.51 6.07 
200 358.9 13.92 26.45 11.34 
201 338.4 11.85 24.69 10.48 
202 298.6 7.58 23.81 9.64 
203 239.8 4.69 24.45 8.49 
204 227.3 7.03 22.41 8.49 
205 332.8 6.22 24.31 4.44 
206 343.6 5.00 26.29 6.66 
207 234.3 5.75 26.64 5.97 
208 333.8 6.51 27.10 7.31 
209 296.3 5.97 27.19 7.17 
210 352.4 9.85 30.14 10.75 
211 369.1 10.39 31.50 13.02 
212 270.1 9.38 29.09 5.66 
213 365.1 6.44 27.52 7.09 
214 221.8 10.50 26.56 5.58 
215 239.7 15.22 27.47 8.80 
216 394.7 17.32 30.33 14.53 
217 371.3 12.96 30.68 15.97 
218 391.2 8.55 26.14 10.10 
219 384.9 12.79 22.06 6.52 
220 364.1 4.34 22.03 8.92 
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WEATHER DATA OF 1989 (CONTINUED) 

Calendar Net Wind Mean Mean 
Day Radia2ion Run Temp<frature VPD 

(caljcm .day) (km/day) ( C) (mbar) 

221 355.9 5.46 22.83 9.37 
222 120.7 7.64 19.79 2.78 
223 317.7 6.51 23.11 7.78 
224 177.6 4.87 23.04 4.65 
225 < 32.6 5.49 20.86 9.37 
226 161.7 9.98 20.41 16.35 
227 290.9 4.06 23.70 6.81 
228 217.6 6.45 22.66 2.10 
229 339.2 6.42 25.02 5.74 
230 226.2 6.67 25.25 3.31 
231 369.9 13.52 28.50 8.84 
232 365.4 13.87 27.52 9.87 
233 278.5 10.55 27.83 6.08 
234 293.8 9.20 29.20 9.68 
235 366.7 5.58 30.56 11.36 
236 342.9 5.83 30.80 12.06 
237 287:4 8.42 29.29 8.31 
238 343.9 10.62 30.98 12.80 
239 339.6 8.68 30.45 11.82 
240 342.1 9.21 30.67 12.77 
241 301.8 10.60 27.18 8.32 
242 260.9 6.54 27.31 5.58 
243 341.7 14.14 30.47 10.97 
244 167.3 11.10 28.14 9.57 
245 235.4 4.26 25.98 13.24 
246 260.3. 7.89 26.45 4.57 
247 144.7 8.69 24.40 9.32 
248 320.9 10.97 28.37 6.08 
249 333.6 11.74 28.25 6.58 
250 307.2 11.14 28.56 6.97 
251 323.2 13.55 29.24 9.29 
252 58.8 12.41 21.59 1.33 
253 ' 215.6 '1.76 20.79 2.09 
254 191.4 10.89 20.93 1.96 
255 35.7 10.60 16.21 6.19 
256 44.1 13.88 11.27 7.58 
257 74.0 10.95 12.93 3.16 
258 195.4 4.37 16.29 1.57 
259 338.4 5.95 19.13 4.23 
260 336.5 7.00 22.51 5.67 
261 322.3 8.40 21.89 3.98 
262 304.5 5.68 21.14 4.37 
263 285.1 5.26 20.90 4.66 .. 
264 279.0 4.26 22.07 5.43 
265 290.2 16.57 20.22 4.12 
266 287.5 18.84 12.05 1.65 
267 277.9 5.49 11.79 2.86 
268 270.8 4.76 13.77 4.04 
269 292.0 6.26 15.79 4.74 
270 274.8 6.05 16.84 3.96 
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WEATHER DATA OF 1989 (CONTINUED) 

Calendar Net Wind Mean Mean 
Day Radia~ion. Run Temp<frature VPD 

(ca1/cm .day) (km/day) ( C) (mbar) 

271 270.4 3.31 16.80 5.79 
272 257.0 3.24 18.13 6.58 
273 251.4 3.40 19.30 6.62 
274 266.0 8.47 20.86 7.60 
275 248.5 5.46 12.38 3.42 
276 250.6 10.00 16.91 2.64 
277 214.5 8.79 18.75 2.27 
2'78 214.6 12.84 23.44 3.85 
279 245.5 13.54 18.30 6.77 
280 263.3 6.92 14.70 2.71 
281 262.7 4.33 15.59 3.70 
282 238.5 5.62 18.14 3.74 
283 247.4 4.71 19.56 5.77 
284 245.4 12.51 23.30 11.59 
285 ·233.3 7.52 23.87 9.88 
286 230.2 9.58 22.82 8.60 
287 228.6 10.98 23.41 8.07 
288 223.8 14.26 23.61 6.79 
289 30.4 14.82 14.02 0.28 
290 80.2 15.18 9.36 0.01 
291 145.0 13.27 6.33 0.00 
292 197.5 " 10.00 4.40 0.33 
293 221.3 6.61 8.64 2.85 . 
294 115.6 7.97 15.57 3.07 
295 176.4 7.20 18.49 3.86 
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PEANUT ET IN 1988 

Date Calendar Alfalfa Kc Peanut 
Day ET ET 

(rom) (rom) 

June 9 161 5.8 0.2 1.2 
June 10 162 5.6 0.2 1.1 
June 11 l63 6.3 0.2 1.3 
June 12 164 6.2 0.2 1.2 
June 13 165 5.9 0.2 1.2 
June 14 166 5.9 0.2 1.2 
June 15 167 4.9 0.2 1.0 
June 16 168 4.1 0.2 0.8 
June 17 169 5.7 0.2 1.1 
June 18 170 6.1 0.2 1.2 
June 19 171 6.4 0.2 1.3 
June 20 172 6.5 0.2 1.3 
June 21 173 6.4 0.2 1.3 
June 22 174 6.6 0.2 1.3 
June 23 175 6.9 0.2 1.4 
June 24 176 6.3 0.2 1.3 
June 25 177 4.5 0.2 0.9 
June 26 178 3.5 0.2 0.7 
June 27 179 5.3 0.2 1.1 
June 28 180 6.4 0.2 1.3 
June 29 181 7.0 0.2 1.4 
June 30 182 6.6 0.2 1.3 
July 1 183 3.9 0.2 0.8 
July 2 184 3.5 0.2 0.7 
July 3 1'85 6.2 0.2 1.2 
July 4 186 6.5 0.2 1.3 
July 5 187 7.2 0.2 1.4 
July 6 188 5.9 0.22 1.3 
July 7 189 5.4 0.27 1.4 
July 8 190 4.4 0.30 1.3 
July 9 191 5.1 0.34 1.7 
July 10 192 4.3 0.38 1.6 
July 11 193 4.0 0.41 1.6 
July 12 194 5.8 0.45 2.6 
July 13 195 6.7 0.48 3.2 
July 14 196 5.9 0.51 3.0 
July 15 197 6.2 0.54 3.3 
July 16 198 5.2 0.57 3.0 
July 17 199 4.4 0.60 2.7 
July 18 200 3.6 0.63 2.3 
July 19 201 3.5 0.66 2.3 
July 20 202 4.6 0.68 3.1 
July 21 203 5.6 0.71 4.0 
July 22 204 5.1 0.73 3.7 
July 23 205 5.3 0.75 4.0 
July 24 206 4.1 0.77 3.2 
July 25 207 5.5 0.79 4.4 
July 26 208 5.3 0.81 4.3 
July 27 209 3.6 0.83 3.0 
July 28 210 2.6 0.85 2.2 
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PEANUT ET IN 1988 (CONTINUED) 

Date Calendar Alfalfa Kc Peanut 
-Day ET ET 

(mm) (mm) 

July 29 211 6.2 0.87 5.4 
July 30 212 6.0 0.88 5.2 
July 31 213 5.7 0.90 5.1 
Aug. 1 214 5.6 0.91 5.1 
Aug. 2 215 5.2 0.92 4.8 
Aug. 3 216 5.3 0.94 5.0 
Aug. 4 217 5.4 0.95 5.1 
Aug. 5 218 4.4 0:96 4.2 
Aug. 6 219 5.5 0.97 5.3 
Aug. 7 220 5.5 0.98 5.4 
Aug. 8 221 5.4 0.99 5.3 
Aug. 9 222 3.7 1.00 3.6 
Aug. 10 223 5.7 1.00 5.7 
Aug. 11 224 5.2 1.20 5.2 
Aug. 12 225 4.7 1.26 4.8 
Aug. 13 226 6.3 1.02 6.4 
Aug. 14 227 4.3 1.03 4.4 
Aug. 15 228 6.0 1.03 6.2 
Aug. 16 229 6.0 1.03 6.2 
Aug. 17 230 4.8 1.04 5.0 
Aug. 18 231 4.3 1.04 4.5 
Aug. 19 232 4.4 1.04 4.6 
Aug. 20 233 5.1 1 . .04 5.3 
Aug. 21 234 6.2 1.04 6.5 
Aug. 22 235 6.2 1.04 6.4 
Aug. 23 236 3.1 1.04 3.2 
Aug. 24 237 5.3 1.04 5.6 
Aug. 25 - 238 5.2 1.04 5.4 
Aug. 26 239 5.1 1.04 5.3 
Aug. 27 240 1.9 1.04 2.0 
Aug. 28 241 1.3 1.03 1.3 
Aug. 29 242 4.6 1.03 4.8 
Aug. 30 243 4.1 1.03 4.2. 
Aug. 31 244 4.3 1.02 4.4 
Sept. 1 245 4.2 1.29 4.3 
Sept. 2 246 2.7 1.25 2.8 
Sept. 3 247 4.5 1.20 4.6 
Sept. 4 248 4.5 1.01 4.6 
Sept. 5 249 4.4 1.00 4.4 
Sept. 6 250 5.3 0.99 5.0 
Sept. 7 251 4.6 0.99 4.6 
Sept. 8 252 3.7 0.98 3.6 
Sept. 9 253 4.2 0.98 4.1 
Sept.lO 254 4.2 0.97 4.1 
Sept.11 255 4.2 0.96 3.9 
Sept.12 256 4.0 0.96 3.9 
Sept.13 257 4.3 0.95 4.1 
Sept.l4 258 2.3 0.94 2.2 
Sept.15 259 2.5 0.94 2.3 
Sept.16 260 3.0 0.93 2.8 
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PEANUT ET IN 1988 (CONTINUED) 
I 

Date Calendar Alfalfa Kc Peanut 
Day ET ET 

(mm) (mm) 

Sept.l7 261 2.2 0.92 1.9 
Sept.18 262 2.4 0.92 2.2 
Sept.l9 263 4.7 0.91 4.2 
Sept.20 264 4.5 0.90 4.0 
Sept.21 265 4.4 0.89 3.9 
Sept.22 266 4.3 0.89 3.8 
Sept.23 267 0.9 0.88 0.7 
Sept.24 268 1.6 0.87 1.4 
Sept.25 269 3.7 0.86 3.2 
Sept.26 270 4.1 0.86 3.5 
Sept.27 271 3.9 0.85 3.3 
Sept.28 272 3.0 0.84 2.5 
Sept.29 273 2.7 0.84 2.3 
Sept.30 274 3.0 0.83 2.5 
Oct. 1 275 0.9 0.82 0.7 
Oct. 2 276 3.2 0.82 2.6 
Oct. 3 277 2.9 0.81 2.4 
Oct. 4 278 1.8 0.80 1.4 
Oct. 5 279 0.5 0.80 0.4 
Oct. 6 280 1.0 0.79 0.8 
Oct. 7 281 0.3 0.79 0.3 
Oct. 8 282 0.7 0.78 0.5 
Oct. 9 283 1.5 0.78 1.2 
Oct. 10 284 2.9 0.77 2.3 
Oct. 11 285 2.8 0.77 2.1 
Oct. 12 286 2.7 0.76 2.0 
Oct. 13 287 ,2.7 0.76 2.1 
Oct. 14 288 2.4 0.76 1.8 
Oct. 15 289 1.9 0.76 1.5 
Oct. 16 290 3.0 0.75 2.2 
Oct. 17 291 3.0 0.75 2.2 
Oct. 18 292 1.6 0.75 1.2 
Oct. 19 293 2.2 0.75 1.7 
Oct. 20 294 1.4 0.75 1.0 
Oct. 21 295 2.6 0.75 1.9 
Oct. 22 296 2.5 0.75 1.9 
Oct. 23 297 2.3 0.75 1.8 
Oct. 24 298 2.2 0.75 1.7 
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PEANUT ET IN 1989 

Date Calendar Alfalfa Kc Peanut 
Day ET ET 

(mm) (mm) 

June 21 172 6.2 . 0.20 1.2 
June 22 173 4.0 0.20 0.8 
June 23 174 4.8 '·0.20 1.0 
June 24 175 6.2 0.20 1.2 
June 25 176 6.1 0.20· 1.2 
June 26 177 6.1 0.20. 1.2 
June 27 178 5.9 0.20· 1.2 
June 28 179 5.6 0.20 1.1 
June 29 180 5.3 0.20 1.1 
June 30 181 5.1 0.20 1.0 
July 1 182 4.9 0.20 1.0 
July 2 183 2.3 0.20 0.5 
July 3 184 6.5 0.20 1.3 
July 4 185 5.6 0.20 1.1 
July 5 186 5.6 0.20 1.1 
July 6 187 5.3 0.20 1.1 
July 7 188 4.9 0.20 1.0 
July 8 189 4.9 0.20 1.0 
July 9 190 5.3 0.20 1.1 
July 10 191 6.1 0.20 1.2 
July 11 192 5.5 0.20 1.1 
July 12 193 4.4 0.20 0.9 
July 13 194 4.4 0.20 0.9 
July 14 195 1.7 0.20 0.3 
July 15 196 5.1 0.20 1.0 
July 16 197 5.8 0.23 1.3 
July 17 198 4.4 0.27 1.2 
July 18 199 3.9 0.3·1 1.2 
July 19 200 5.3 0.35 1.8 
July 20 201 4.9 0.39 1.9 
July 21 202 4.3 OA2 1.8 
July 22 203 3.5 0.46 1.6 
July 23 204 3.3 0.49 1.6 
July 24 205 4.5 0.52 2.3 
July 25 206· 4.8 0.56 2.7 
July 26 207 3.3 0.59 2.0 
July 27 208 4.8 0.62 2.9 
July 28 209 4.2 0.64 2.7 
July 29 210 5.3 0.67 3.6 
July 30 211 5.7 0.70 4.0 
July 31 212 3.9 0.72 2.8 
Aug. 1 213 5.2 0.74 3.8 
Aug. 2 214 3.2 0.77 2.4 
Aug. 3 215 . 3.5 0.79 2.8 
Aug. 4 216 6.0 0.81 4.9 
Aug. 5 217 5.8 0.83 4.8 
Aug. 6 218 5.6 0.85 4.7 
Aug. 8 220 5.0 0.88 4.4 
Aug. 9 221 5.0 0.90 4.5 
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PEANUT ET IN 1989 (CONTINUED) 

Date Calendar Alfalfa Kc Peanut 
Day ET ET 

(mm) (mm) 

Aug. 10 222 1.6' 0.91 1.4 
Aug. 11 223 4.4 0.93 4.1 
Aug. 12 224 2.5 0.94 2.3 
Aug. 13 225 0.4 0.95 0.4 
Aug. 14 226 2.8 0.96 2.7 
Aug. 15 227 . 4.0 0.97 3.9 
Aug. 16 228 2.8 0.98 2.7 
Aug. 17 229 4.6 0.99 4.6 
Aug. 18 230 3.1 1.00 3.1 
Aug. 19 231 5.4 1.01 5.4 
Aug. 20 232 5.3 1.22 5.4 
Aug. 21 233 4.0 1.11 4.0 
Aug. 22 234 4.3 1.02 4.4 
Aug. 23 235 5.6 1.03 5.7 
Aug. 24 236 5.3 1.03 5.4 
Aug. 25 237 4.2 1.04 4.4 
Aug. 26 238 5.2 1.04 5.4 
Aug. 27 239 5.2 1.04 5.4 
Aug. 28 240 5.2 1.04 5.4 
Aug. 29 241 4.4 1.04 4.5 
Aug. 30 242 3.7 1.04 3.8 
Aug. 31 243 5.2 1.04 5.4 
Sept. 1 244. 2.6 1.04 2.7 
Sept. 2 245 3.6 1.04 3.7 
Sept. 3 246 3.6 1.04 3.7 
Sept. 4 247 . 2.1 1.04 2.2 
Sept. 5 248 ' 5.0 1.03 5.2 
Sept. 6 249 4.8 1.03 4.9 
Sept. 7 250 4.4 1.03 4.5 
Sept. 8 251 4.8 1.02 4.9 
Sept. 9 252 0.7 1.29 0.7 
Sept.10 253 2.7 1.24 2.7 
Sept.11 254 2.4 1.01 2.4 
Sept.l2 255 0.4 1.00 0.4 
Sept.l3 256 0.4 1.00 0.4 
Sept.14 257 0.9 0.99 0.9 
Sept.l5 258 2.3 0.99 2.2 
Sept.l6 259 4.2 0.98 4.1 
Sept.17 260 4.5 0.97 4.4 
Sept.18 261 4.1 0.97 . 4.0 
Sept.19 262 3.9 0.96 3.7 
Sept.20 263 3.7 0.95 3.5 
Sept.21 264 3.7 0.95 3.5 
Sept.22 265 3.7 0.94 3.4 
Sept.23 266 3.0 0.93 2.8 
Sept.24 267 3.0 0.92 2.7 
Sept.25 268 3.1 0.92 2.9 
Sept.26 269 3.5 0.91 3.2 
Sept.27 270 3.3 0.90 3.0 
Sept.28 271 3.4 0.89 3.0 
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PEANUT ET IN 1989 (CONTINUED) 

Date Calendar Alfalfa Kc Peanut 
Day ET ET 

(mm) (mm) 

Sept.29 272 3.3 0.89 3.0 
Sept.30 273 3.3 0.88 2.9 
Oct. 1 274 3.6 0.87 3.2 
Oct. 2· 275 3.1 0.86 2.7 
Oct. 3 276 2.9 0.86 2.5 
Oct. 4 277 2.6 0.85 2.2 
Oct. 5 278 2.9 0.84 2.4 
Oct. 6 279 3.2 0.84. 2.7 
Oct. 7 280 3.0· 0.83 2.5 
Oct. 8 281 3.1 ~ 0.82 2.5 
Oct. 9 282 2.9 0.81 2.4 
Oct. 10 283 3.2 0.81 2.6 
Oct. II 284 3.6 0.80 2.9 
Oct. I2 285 3.4 0.80 2.7 
Oct. 13 286 3.3 0.79 2.6 
Oct. 14 287 3.2 0.78 2.5 
Oct. I5 288 3.I 0.78 2.4 
Oct. 16 289 0.3 0.78 0.2 
Oct. I7 290 0.7 0.77 0.5 
Oct. 18 291 1.2 0.77 0.9 
Oct. I9 292 1.6 0.76 1.2 
Oct. 20 293 2 .. 3 0.76 1.7 
Oct. 2I 294 1.5 0.76 1.1 
Oct. 22 295 2.3 0.75 1.7 
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IRRIGATION AND RAINFALL DATA OF 1988 

Date Calendar Rain 
Day (mm) 

Planted 
June 6 158 
June 15 167 0 
June 23 175 0 
June 26 178 2 
June 28 180 4 
July I 183 7 
July 5 187 0 
July 12 194 0 
July 19 201 13 
July 26 208 0 
July 27 209 22 
July 28 210 7 
Aug. 9 222 ' 5 
Aug. 16 '229 18 . 
Aug. 23 236 1 
Aug. 28 241 19 
Sept. 2 246 3 
Sept. 6 250 0 
Sept. 13 257 0 
Sept. 15 259 17 
Sept. 16 260 44 
Sept. 17 261 1 
Sept. 18 262 56 
Sept. 19 263 4 
Sept. 23 267 si 
Sept. 28 272 17 
Oct. 1 275 3 
Oct. 5 279 4 
Oct. 6 280 4 
Oct. 7 281 14 
Oct. 15 289 2 
Oct. 20 294 7 
Oct. 24 298 

Total 331 
Rain+Irrigation 

Notation: 

FI -- Full Irrigation 
II -- Intermediate Irrigation 
MI -- Minimum Irrigation 

FI II 
(mm) (mm) 

23 11 
29 19 

30 24 

27 23 
26 17 
39 26 
30 18 

29 20 

38 21 

23 7 
23 12 

317 198 
648 529 
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MI 
(mm) 

4 
10 

7 

9 
II 
19 
10 

7 

20 

9 
11 

117 
448 



IRRIGATION AND RAINFALL DATA OF 1989 

Date Calendar Rain 
Day (rom) 

Planted 
June 16 167 
June 27 178 20 
July 2 183 13 
July 11 192 0 
July 13 194 9 
July 14 195 49 
July 22 203 15 
Aug. I 213 0 
Aug. 3 215 6 
Aug. 5 217 56 
Aug. 13 225 35 
Aug. 20 232 5 
Aug. 21 233 1 
Aug. 23 235 0 
Aug. 29 241 0 
Sept. 2 245 30 
Sept. 12 255 80 
Sept. 26 269 0 
Oct. 3 276 0 
Oct. 6 279 30 
Oct. 17 290 0 

Total 349 
Rain+ Irrigation 

Notation: 

FI -- Full Irrigation 
II -- Intermediate Irrigation 
MI -- Minimum Irrigation 

FI II 
(mm) (mm) 

30 20 

39 25 

15 13 
38 22 

40 22 
25 15 

21 16 

208 133 
557 482 
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MI 
(mm) 

0 

16 

2 
14 

21 
8 

0 

61 
410 
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Calendar 
Day 

189 
190, 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 

WATER BALANCE SIMULATION FOR THE 
1988 PEANUT GROWING SEASON 

(Full Irrigation) 

Irrigation Runoff Estimated Simulated 
& (Assumed) ET Soil 

Rainfall Water 
(mm) (mm) (mm) (mm' 

303 
1 302 
2 300 
2 298 
2 297 

26 17 3 303 
3 300 
3 297 
3 294 
3 291 
3 288 
2 286 

'53 39 2 297 
3 294 
4 290 
4 286 
4 282 
3 279 
4 275 

30 4 294 
22 11 3 303 

7 2 302 
5 297 
5 292 
5 287 
5 282 
5 277 
5 272 
5 267 
4 262 
5 257 
5 252 
5 246 

34 4 271 
6 265 
5 260 
5 255 
6 249 
4 244 
6 238 

18 6 244 
5 239 
4 235 
5 230 
5 225 
7 218 
6 212 

155 

Measured 
Soil 

Water 
(mm) 

303 

292 

295 

271 

290 

261 

292 

266 

227 

244 

223 

227 

213 



Calendar 
Day 

236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 

WATER BALANCE SIMULATION FOR THE 
1988 PEANUT GROWING SEASON 

(Full Irrigation) 

Irrigation Runoff Estimated Simulated 
& (Assumed) ET Soil 

Rainfall Water 
(mm) (mm) (mm) (mm) 

' 

40 3 242 
6 237 
5 231 
5 226 
2 224 

19 1 235 
5 231 
4 227 
4 222 
4 218 
3 215 
5 210 
5 206 
4 201 

23 5 213 
5 209 
4 205 
4 201 
4 197 
4 193 
4 189 

23 4 
2 

17 2 
44 3 

2 
56 2 
4 4 264 

4 260 
4 256 
4 252 

57 48 I 260 
1 259 
3 256 
3 252 
3 249 

17 3 258 
2 256 
2 253 
1 252 
3 250 
2 247 
1 246 
0 246 
1 245 

14 0 253 
I 252 
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Measured 
Soil 

Water 
(mm) 

238 

225 

216 

207 

219 

203 

264 

246 

252 

238 



Calendar 
Day 

283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298' 

WATER BALANCE SIMULATION FOR THE 
1988 PEANUT GROWING SEASON 

(Full Irrigation) 

Irrigation Runoff Estimated Simulated 
& (Assumed) ET Soil 

Rainfall Water 
(mm) (mm) (mm) (mm) 

1 251 
2 249 
2 246 
2 244 
2 242 
2 ' 241 
1 239 
2 237 
2 235 
1 233 
2 232 

7 1 231 
2 229 
2 227 
2 226 
2 224 

157 

Measured 
Soil 

Water 
(mm) 

250 

243 

236 

227 

221 



Calendar 
Day 

201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 

WATER BALANCE SIMULATION FOR THE 
1989 PEANUT GROWING SEASON 

(Full Irrigation) 

Irrigation Runoff Estimated Simulated 
& (Assume,d) ET Soil 

Rainfall Water 
(mm) (mm) (mm) (mm) 

304 
2 302 

15 1L 2 304 
2 302 
2 300 
3 297 
2 295 
3 292 

-3 289 
4 286 
4 282 
3 279 

39 11 4 304 
2 301 

6 3 298 
5 294 

56 41 5 304 
5 299 
4 294 
4 290 
4 286 
1 284 
4 280 
2 278 

35 8 0 304 
3 301 
4 297 
3 294 
5 290 
3 287 
5 281 
5 276 
4 272 
4 267 

15 6 270 
5 265 
4 260 
5 255 
5 250 
5 244 

38 5 271 
4 267 
5 262 
3 259 

30 4 279 
4 276 
2 273 
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Measured 
- Soil 

Water 
(mm) 

304 

294 

293 

292 

286 

295 

283 

283 

266 

266 
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WATER BALANCE SIMULATION FOR THE 
1989 PEANUT GROWING SEASON 

(Full Irrigation) 

Calendar Irrigation Runoff Estimated Simulated Measured 
Day & (Assumed) ET Soil Soil 

Rainfall Water Water 
(mm) (mm) (mm) (mm) (mm) 

248 5 268 
249 5 263 
250 5 259 265 
251 5 254 
252 1 253 
253 3 251 
254 2 248 252 
255 294 0 
256 0 
257 I 
258 2 
259 4 
260 4 
261 4 272 272 
262 4 268 
263 3 265 
264 3 261 
265 3 258 260 
266 3 255 
267 3 252 
268 3 249 257 
269 40 3 280 
270 3 277 
271 3 274 
272 3 271 
273 3 268 
274 3 265 
275 3 263 264 
276 25 3 279 
277 2 276 
278 2 274 
279 30 3 296 
280 2 293 
281 3 291 
282 2 288 265 
283 3 286 
284 3 283 
285 3 280 263 
286 3 278 
287 3 275 
288 2 273 
289 0 272 
290 21 1 287 
29I I 286 
292 1 285 264 
293 2 283 
294 1 282 



Calendar 
Day 

295 
296 
297 
298 
299 

WATER BALANCE SIMULATION FOR THE 
1989 PEANUT GROWING SEASON 

(Full Irrigation) -

Irrigation Runoff Estimated Simulated 
& (Assumed) ET Soil 

Rainfall Water 
(mm) (mm) (mm) (mm) 

2 281 
2 279 
1 278 
1 277 
1 276 
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Measured 
Soil 

Water 
(mm) 

264 

262 
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DISTRIBUTION OF ROOT LENGTH DENSITY 
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