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CHAPTER I 

INTRODUCTION 

Because of the increase in man's population and 

economic activities, fragmentation of the natural vegetation 

in North America has been a significant trend. Vast 

segments of the continent's natural vegetation are 

disappearing, while much of the remainder is being 

fragmented. Such a trend of fragmentation is especially 

intensive in forest regions. Curtis (1956) reported that the 

total forest area in Cadiz Township, Green County, Wisconsin 

was almost 27 times smaller. in 1950 than it-was in 1831; the 

average size of forest islands decreased 1,504 times during 

the same period of time; and the average inter-island 

distance increased from 153 m in 1882 to 339 m in 1950. Such 

trends of fragmentation of natural vegetation have also been 

significant in grassland regions where agricultural 

activities are predominant (Risser et al. 1981). According 

to predictions (USDA Forest Service 1981), an additional 

25.5 million hectares of grasslands will be lost by 2030 as 

grasslands are turned into agricultural lands, other 

vegetation types, or urbanized rights-of-ways, residential 

areas, and industrial areas. 

A number of physical c~anges are induced by 

fragmentation: (1) reduced total area of natural vegetation; 

(2) reduced average sizes of the fragments of natural 

1 



2 

vegetation; and (3) increased degree of isolation among the 

fragments. With respect to the ecological effects caused by 

these physical changes, curtis (1956) speculated that, 

because the small size and increased isolation of the stands 

tend to prevent easy exchange of individuals or propagules 

among them, stochastic events in any given stand over a 

period of years could eliminate one or more species. In 

addition, as the stands gradually lose species, those 

remaining may approach unusually low population density. 

A positive relationship between species richness and 

area has been reported for plant communities (Levenson 1981; 

Weaver and Kellman 1981; Peterken and Game 1984; Currie and 

Paquin 1987; Nilsson et al. 1989); for fish species richness 

in relation to drainage areas of stream systems (Eadie et 

al. 1986; Livingstone et al. 1982; Sheldon 1988); and for 

game bird and raptor species in rain forest of French Guiana 

(Thiollay 1989). Exceptions have also been reported 

(Levenson, 1981; Weaver and Kellman, 1981; Peterken and 

Game, 1984). 

A number of quantitative models have been proposed to 

simulate the species - area relationship (Fisher et al. 

1943; Goodall 1961; Dahl 1960; Arrhenius 1921; Preston 

1962). Among them, the logarithmic model (Goodall 1961; Dahl 

1960) and the exponential model (Arrhenius 1921, Preston 

1962) are more popular. 

S p Log (A + 1) (Goodall 1961; Dahl 1960) 

S = c A z (Arrhenius 1921; Preston 1962) 

Three hypotheses have been proposed to explain the 
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ecological mechanism behind the positive species - area 

relationship. May (1975) suggested that increased species 

richness with increased area was the consequence of 

increased sample size. The "Habitat Diversity Hypothesis" 

(Williams 1964) proposed that, as the amount of sampled area 

increases, new habitats with their associated species are 

encountered, and thus species number increases with area. 

The equilibrium theory of island biogeography developed by 

MacArthur and Wilson (1964) deemphasises the importance of 

habitat diversity and inste~d explains the increase in 

species richness as a function of immigration and extinction 

rates. 

The phenomenon of edge effect and its relationship to 

fragmentation has also attracted interest (Wales 1972; 

Ranney et al. 1981; Harris 1984, 1988; Wiens et al. 1985; 

Lovejoy et al. 1986; stamps et al. 1987; Quinn and Robinson 

1988; Marshall, 1989). Previous research on edge effects 

have mainly been on edge species composition and its change 

in relative proportion with area. Edge effect has been 

proposed to be the main cause of the increase of species 

richness associated with increaseed fragmentation. 

In addition to edge effect, types of neighbors may also 

affect a community's structure. Studies have shown that 

different boundaries lead to differences in both abiotic and 

biotic exchanges among the neighbors (Evans and Clark 1954; 

Forman and Godron 1981; Madder 1984; Stamps et al. 1987; 

Marshall 1989). 

Numerous studies (papers in Burgess and Sharpe 1981; 
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Weaver and Kellman 1981; Peterken and Game 1984; Harris 

1984) have been conducted on the effects of forest 

fragmentation on species richness and community development. 

In contrast to the intensive studies of the effects of 

fragmentation in forests, few studies have been undertaken 

in grasslands. Previous work on the fragmentation of 

grasslands has focused on California annual grasslands 

(Quinn and Hastings 1987; Robinson and Quinn 1988; Quinn and 

Harrison 1988; Murphy and Ehrlich 1989). Little work has 

been done on the Central Grasslands of North America. 

The goal of the research reported here is to examine 

the effects of fragmentation on the tal1grass prairie. The 

specific objectives are to determine: (1) whether grassland 

fragmentation affects the richness and composition of 

flowering species; 

(2) the influence of edge.effects on species richness 

and species composition, specifically 

A. whether edge effects exist, 

B. whether edge species richness changes with area, 

c. how much difference exists between edge and 

interior, 

D. if there is a difference between edge and 

interior, whether this difference changes with 

area, and 

E. if the total species composition changes with 

area, whether this change is due to the change in 

edge species composition or due to the change in 

interior species composition, or due to the 



changes in both edge and interior species 

composition; 

(3) whether differences in neighbor types affect edge 

species composition. 
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CHAPTER II 

RESEARCH METHODS 

Study Area 

Ten grassland sites of different sizes were selected 

in Payne, Noble, and Pawnee counties of Oklahoma (Figure 1, 

Table 1). Criteria for selection were four: (1) all study 

sites had to have similar environmenta~ conditions in terms 

of climate and soil; (2) all sites had to be in excellent 

range condition according to the criteria indicated in the 

Range Condition Class-Guide (USDA Soil Conservation Service 

1984); (3) all sites had to be ungrazed; and (4) all had to 

be remnants of natural grasslands. 

The ten study sites are in an area where the average 

maximum July temperature is 35 °c and the average minimum 

January temperature is -2.8 °c. The mean annual temperature 

is 16.1 °c (Cartography Service 1979). The average annual 

precipitation is 83.8 em, minimum rainfall occurs in January 

while maximum monthly rainfall occurs in June, with a 

secondary maximum in September and a secondary minimum in 

August. Generally, the largest amounts of precipitation are 

received in summer with the least amounts received during 

the winter (Risser et al, 1981). 

Potential evapotranspiration is high in this area, with 

a yearly total of 132 em of which 94 em is during the 

growing season and 38 em during the nongrowing season. The 
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Figure 1. Locations of study sites distributed in Noble, 

Pawnee, and Payne counties of Oklahoma. 
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Table 1. Locality information for ten grassland study 
sites in Oklahoma 

Site no. area (ha) County Range, Township, Section 

9 

-----------------------------------------------------------
1 10.1 Payne R2E, T19N, Sec 6, SE1/4 

2 32.4 Payne R2E, T20N, Sec 32, SW1/4 

3 16.2 Payn~ R2E, T20N, Sec 32, SW1/4 

4 42.9 Payne R2E, T20N, Sec 30, E1/2 

5 64.8 Payne R2E, T20N, Sec 10, NE1/4 

6 32.4 Payne R2E, T20N, Sec 24, SW1/4 

7 80.9 Noble R3E, T24N, Sec 11, .W1/2 

8 93.1 Noble R3E, T24N, Sec 12 E1/2 

9 64.8 Pawnee R3E, T23N, Sec 33, E1/2 

10 14.2 Noble R1E, T20N, Sec 34, SW1/4 
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ratio of precipitation to potential evapotranspiration is 

0.63. The growing season averages 216 days, the mean date of 

last frost day is about 28 March and the mean date of first 

frost day is about 30 October. 

The study sites are situated in two geomorphological 

provinces, the Central Red Plains and Northern Limestone 

Cuesta Plains (Curtis and Ham, 1979). The soils are 

primarily mollisols in the suborder udolls and ustolls which 

include soils previously called Brunizens, Chernozens, 

Chestnut and Reddish prairie soils. Leaching is so high 

that there is no horizon of calcium carbonate, yet base 

saturation is high. Especially in the upper portions, 

mollisols are rich in organic matter and slightly acid. The 

principal textures of these soils are loam and silty clay 

loam in the A horizon, clay loam to silty clay loam in the B 

horizon, and loam or silt loam in the C horizon (Risser et 

al. 1981). 

All ten study sites are remnants of the tallgrass 

prairie. The vegetation is composed of bunchgrasses and 

sod-forming grasses with a canopy height of less than 1 m. 

The dominant grasses include Andropogon gerardii (big 

bluestem), Schizachyrium scoparium (little bluestem), 

Sorghastrum nutans (indiangrass), and Panicum virgatum 

(switchgrass). Although, grasses produce 80%- 90% of the 

biomass, forb species exceed grass species by threefold to 

fourfold (Sims, 1988). Forbs common in the tallgrass 

prairie are Aster ericoides (heath aster), Liatris punctata 

(dotted gayfeather), and Solidago missouriensis (Missouri 



11 

goldenrod) among others. 

All study sites are classified as loamy prairie range 

sites in excellent range condition. Loamy prairie is a 

productive range site with deep, loamy upland soils. Big 

bluestem little bluestem , indiangrass, and switchgrass 

represent about 70 percent of the vegetation. Principal 

increaser (species that increase in abundance as a response 

to grazing) grasses are Bouteloua curtipendula (sideoats 

grama) and Bouteloua gracilis ex Steud (bluegrama) . 

Amorpha canescens (leadplant), Baptisia Leucophaea 

(wild-indigo) and Psoralea (scurfpea) are common legumes 

(Soil Conservation Service 1984). 

All study sites are maintained as hay meadows and 

generally cut about 4 July. Information regarding history of 

fire and grazing was collected by personal communication 

with landowners. 

Field Data Collection 

The modified step - point method of Owensby (1973) was 

used to sample the vegetation at each site in June, July, 

and August of 1989. This method was selected to minimize 

subjectivity in placement of sampling points and selection 

of species at each point. One thousand thirty-nine points 

were sampled at each site along 32 transects which divided 

the grassland uniformly. The transects along the edges were 

established 0.3 m inside the recognizable boundaries of 

the grassland. All sampling points nearest the boundary of 

the study sites were designated edge points and the plant 
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species present at each point were differentiated from those 

in the interior (Figure 2). The type of neighbor on each 

side of the study site was recorded. 

Qata Analysis 

In 'order to examine the e~fects of grassland area on 

species richness and to have a reasonable estima~e of the 

species richness in the study sites, an extrapolation 

technique was used. The first-order jackknife method of 

Heltshe and Forrester (1983) (Appendix A)' was selected 

because it has been shown to.give a better estimate of 

species richness than other techniques (Palmer 1990). Using 

the values derived by this m~thod the relationship between 

species richness and area was examined by regression 

analysis. Three .models were fitted to the data: linear, 

logarithmic (Goodall l96l), and exponential (Preston 1962). 

The Shannon - Weaver species diversity index, the 

Pielou species evenness index, and the simpson dominance 

index (Odum 1970) (Appendix A) were calculated for each site 

to investigate the effect of area on relative abundance of 

species. Linear regressi9n analyses were perfprmed between 

areas and these indices. 

Detrended correspondence analysis (DCA) and canonical 

correspondence analysis (CCA) were used to examine the 

effects of area, edge, and neighbors on species composition 

of grassland. DCA is an indirect eigenvector .ordination 

technique which is advantageous because positions of samples 

in the ordination are less distorted by high beta diversity 
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Figure 2. Re~.resentation of f.ield ,sc:pnpling scheme.· There 

are 32 transects and 32 sampling point,s along each transect; 

·The dots represent sampling points at study sites. 
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than other techniques (Hill and Gauch 1980; Gauch 1989). 

DCA reports eigenvalues for the first four ordination axes. 

The eigenvalue is always a number between 0 and 1; the 

higher the eigenvalue, the more important the ordination 

axis. In the weighted averaging'methops used in this study, 

the eigenvalue is a measure of .separation of the species 

distributions along the ordination axis. In DCA, the sample 

(site) scores along each ordination axis are qerived from 

the species data regardless 'pf any environmental variables. 

The relationship between environmental variables and 

species composition has to be deri~ed after the DCA. 

CCA is a direct eigenvector ordination technique. It 

differs from DCA in that the axes are constrained to 

optimize their relationship with a set of environmental 

variables whose direction in the ordination can be indicated 

by arrows with length proportional to their influence. The 

main utility of CCA is the possibility of showing ~irectly 

the relation between the environmental variables and the 

ordination axes (Ter B~aak 1986, 1987). The eigenvalues of 

each ordination axis reported in CCA have the same meaning 

as that of DCA, yet they are usually smaller than that in 

DCA because of the restrictions by environmental variables 

imposed on the sample scores in ·ccA. Different from DCA, CCA 

reports two sets of sample scores: sample scores derived 

from species scores and sample scores which are linear 

combinations of environmental variables. The former make the 

species axes while the latter makes the environmental axes 

(Jongman et al. 1987). CCA'also reports canonical 
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coefficients and inter-set correlation coefficients. 

Canonical coefficients are computed so as to optimize the 

fit of the environmental axis to species data and not just 

to the species axis. Inter-set correlation coefficients are 

the correlation coefficients between environmental variables 

and the species axes. The two coefficients provide 

information on which environmental variable is responsible 

for the majority of the variation along an ordination axis. 

In contrast to canonical coefficients, the inter-set 

correlations do -not become unstable when the environmental 

variables are strongly correlated with each other. 

Both DCA and CCA were applied to the total vegetation 

data to determine whether the overall species composition 

changes with area. CANOCO software package (Ter Braak 1988) 

was used to carry ou,t the analysis. The relationship between 

area and species composition was tested using a Monte Carlo 

test (Ter Braak 1988) with.99 permutations. 

Investigation of the effects of edge on species 

composition comprised three analyses. First, in order to 

determine whether the species composition at the edge was 

significantly different from that in the interior, CCA was 

performed on a combined file consisting of both edge and 

interior species composition. Area and Edgeness were used 

as the environmental variables. Edgeness was considered as 

a categorical variable, value of the variable was 1 if the 

sample was from edge and 0 if the sample was at interior. 

The total number of samples was therefore 20 consisting of 

10 samples from the edge and 10 samples from the interior. 



A Monte carlo significance test with 99 permutations was 

also performed. 

Second, Manhattan distances (Faith et al. 1987) 

(Appendix A) were calculated for each site in order to 

obtain a quantitative estimate of the difference between 

edge and interior in terms of species composition. Linear 

regression was also applied to area and distance values in 

order to examine whether the difference between edge and 

interior species composition is related to area. 

Third, DCA and CCA were used to analyze the relations 

between area and interior species composition, and between 

area and edge species composition. The Monte Carlo 

significance test with 99 permutations was applied. The 

analyses were an~effort to determine whether the change in 

total species composition with area was due to a change in 

interior species composition, _or a change in edge species 

composition, or a change i~ both. 

17 

In order to investigate the effects of the neighbors on 

edge species composition, the types qf neighbors associated 

with the grasslands were grouped into six categories: (1) 

wooded area, (2) disturbed land or residence, (3) road (dirt 

gravel), (4) pasture· (slightly or severely· grazed), (5) 

highway '(highway or secondary), and (6) cropland 

(wheatfield). Using the types of neighbors as environmental 

variables and area as a covariable, a CCA was performed on 

the edge species composition, followed by a Monte carlo 

significance test with 99 permutations. The samples in this 

analysis were the edges on each of the four aspects of each 
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site, and the total number of samples was 40. 



CHAPTER III 

RESULTS 

Species Richness and Diversity 

In the 1989 ,growing season, all study sites contained a 

variety of flowering species (Appendix B). Estimates of 

species richness of each s~te as,calculated by the first 

order Jackknife method are presented in Table 2. As can be 

seen, there was a difference of 31 species between the two 

extremes in species richness values while the area increased 

by almost ten times. The smallest site (10.1 ha) had the 

lowest species richness while the larger sites generally had 

higher values. The highest estimates of species richness, 

however, were found at the 32.4 ha and 64.8 ha sites. Site 6 

(32.4 ha) had the highest number of species which occurred 

at only one sampling point. When plotted as a function of 

area (Figure 3) species richness exhibited an initial rapid 

increase and then leveled off. When fitted to the species

area models introduced previously, the logarithmic model of 

Goodall and Dahl (1961) gave the highest significance level 

and correlation coefficient (Table 3). 

Species Composition in Relation to Area 

The simple linear regression analysis of the ten areas 

using the three community indices of diversity, evenness, 

19 



Table 2. ·Species richness of each study site 
estimated by first order Jackknife. 

Site Area(ha) 

1 10.1 
10 14.2 

3 16.2 
2 32.4 
6 32.4 
4 42.9 
5 64.8 
9 64.8 
7 80.9 
8 93.1 

Spec1.es 
observed 

61 
82 
69 
82 
77 
78 
76 
92 
75 
84 

Spec1.es 
estimated 

78 
98 
84 
99 

109 
95 
92 

105 
95 
95 

20 
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Figure 3. Relationship between species richness and area of 

ten grasslands in north-central Oklahoma. 
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Table 3. The significance levels, correlation 
coefficients and parameters estimated for linear, 
logarithmic, and exponential models of species-area 
relationship 

Model Fitted model p>F r 

Linear s = 90.73 + 0.04 A 0.39 0.31 

Logarithmic s = 47.99+15.17Log(A+1) 0.07 0.60 

Exponential s = 70.15 A 0.067 0.13 0.51 
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and dominance indicated low correlations and relatively low 

variation in each (Table 4). 

In all study sites, Schizachyrium scoparium was the 

most dominant species with mean relative frequency of 27.3% 

and a standard deviation of 3.6. Andropogon gerardii also 

dominated with a mean relative frequency of 13.9 ± 5.3. 

Sorgastrum nutans was the third dominant in some sites and 

exceeded ~ gerardii in other sites. Its mean relative 

frequency was 12.5 ± 4.6. 

DCA analysis of the total species composition produced 

eigenvalues of 0.164, 0.115, and 0.069 for the first three 

species ordination axes. The relatively low eigenvalues 

indicate the absence of a gradient which would explain the 

majority of the variation in species composition. 

When sample scores along the first species axis were 

plotted as a function of area (Figure 4), there seemed to be 

a trend of change in species composition with area. The 

trend, however, appeared to be less obvious among the sites 

that were smaller than 64.85 ha. In addition, the trend 

among the small sites appeared opposite to that exhibited by 

the large sites. The results from the CCA performed on the 

same data again produced relatively low eigenvalues (0.100, 

0.128, 0.113, and 0.082) for the first four species 

ordination axes. Compared with the DCA eigenvalue of the 

first species axis, the eigenvalue of the first CCA species 

axis which was directly related to area was only 0.064 

lower. This may indicate the variation along the first DCA 

axis can be largely explained by change in area. 



Table 4. Species diversity, species evenness, and 
species dominance indices for each study site, 
along with their means (x), standard deviations 
(Sd) and results of simple linear regression 
analysis between the indices and area 

site area (ha) diversity evenness dominance 

1 10.1 2.59 0.66 0.13 
10 14.2 2.38 0.62 0.16 

3 16.2 2.25 0.62 0.15 
2 32.4 2.91 0.69 0.09 
6 32.4 2.71 0.64 0.13 
4 42.9 2_. 53 0.64 0.12 
5 64.8 2.60 0.63 0.14 
9 64.8 2.57 0.65 0.13 
7 80.9 2.62 0.66 0.13 
8 93.1 2.52 0.65 0.16 

X 2.57 0.65 0.13 
Sd 0.18 0.02 0.02 

P(f) 0.62 0.60 0.74 
r 0.17 0.20 0.10 
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Figure 4. Relationship between total species composition 

and area of ten grasslands in north-central Oklahoma as 

determined by Detrended Correspondence Analysis. 
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When plotting the CCA sample scores against area, the 

correlation between area and species composition became more 

distinct (Figure 5). This correlation was also indicated by 

the relatively high canonical correlation coefficient of 

0.88 between sample scores and area. However, it should be 

pointed out again that the eigenvalue of the first axis was 

low, indicating a relatively low percentage· of the total 

variation in species data was explained by the first axis. 

The correlation between sample scores and area was again 

less clear in the group of relatively small sites in 

contrast to that in the group of large sites. 

The Monte Carlo significance 'test produced a P-value of 

0.12 for the first ordination axis. Although not highly 

significant, it is strongly suggestive that the correlation 
I 

between area and the first ordination axis is not due to 

random chance. 

Edge Species Composition and Interior 

Spe~ies Composition 

The CCA on the combined data of both interior and edge 

species composition produced results indicating a. 

significant edge effect (Table 5, Figure 6). The first 

species axis had a very high eigenvalue (0.802), it 

therefore accounted for the majority of the total variation 

in the species data. This axis is highly correlated with 

edgeness, as indicated by the high canonical coefficient and 

correlation coefficient. The Monte carlo significance test 

on the first axis gave a highly significant level (P<O.Ol), 
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Figure 5. Relationship between total species composition and 

area of ten grasslands in north-central Oklahoma as 

determined by Canonical Correspondence Analysis. 
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Table 5. Canonical coefficients and inter-set correlations 
of environmental variables (edgeness and area) with the 
first two ordination axes of CCA for the combined data of 
edge and interior species composition. 

Environmental 

Variables 

Edgeness 

Area 

Coefficients 

ax~s1 ax~s2 

-201 1 

1 31 

Correlations 

ax~s1 ax~s2 

-998 6 

-23 859 



Figure 6. Effects of area and edgeness on species 

composition in ten grassla~ds in north-central Oklahoma as 

determined by Canonical Correspondence Analysis of the 

combined file of edge and interior species composition. 
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edgeness was therefore indeed the major factor for 

explaining the major variation along the first axis. 
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The second axis had a relatively low eigenvalue (0.087) 

and was correlated with area (Table 5). According to this 

information, area accounted for only minor part of total 

variation. 

It was obvious that little correlation existed between 

edgeness and area, which was indicated by the almost 

orthogonal ordinate positions of the two environmental 

variables and was reflected also by the low correlation 

coefficient between the two. 

There was a linear trend of positive correlation 

between grassland area and the Manhattan Distances (Figure 

7), in other words, the difference between edge and interior 

species composition increased with area. The simple linear 

regression analysis produced a P-value of 0.10 and a 

correlation coefficient of 0.54, indicating a fairly close 

relationship between area and the difference between edge 

and interior. The plot of the residuals of the regression 

against area (Figure 8) showed no obvious curvature, 

indicating the absence of nonlinear factors and, therefore, 

the confirmation of a linear relationship between area and 

the distance measures. 

The DCA performed bn the data set for edge species 

produced eigenvalues of 0.241, 0.184, and 0.155 for the 

first three species axes. When the sample scores were 

plotted against area (Figure 9), no trend of correlation was 

evident. When CCA was performed on the same data, the 
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Figure 7. Relationship between Manhattan Distances and area 

in ten grasslands in north-central Oklahoma. 
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Figure 8. Residuals of the linear regression analysis of 

Manhattan Distances with area of ten grasslands in north

central Oklahoma. 
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Figure 9. Relationship between edge species composition and 

area of ten grasslands in north-central Oklahoma as 

determined by Detrended Correspondence Analysis. 
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eigenvalues were 0.163, 0.214, and 0.194 for the first three 

species axis. Compared with the results of DCA, there was a 

decrease of 0.078 in the eigenvalue for the first species 

axis. The Monte Carlo significance test on the pattern of 

sample distribution produced a P-value of 0.26. These 

results may indicate that the first species axis was 

responsible for a fair amount of variation in edge species 

composition. However, area could not explain the majority of 

the variation, as suggested by the absence of a distinct 

pattern and the low significance level from the Monte Carlo 

test. 

The DCA performed on the data set for interior species 

produced eigenvalues of 0.168, 0.113, and 0.070 for the 

first three species axes. With the exceptions of site 1 

{10.1 ha) and site 10 (14.2 ha), the other sites appeared to 

be arranged along the first species axis according to 

increasing area {Figure 10). The CCA performed on the same 

data set produced eigenvalues of 0.100, 0.131, and 0.113 for 

the first three species axes, and there was a decrease of 

0.068 for the eigenvalue of the first species axis. The 

trend of correlation between area and sample scores became 

more distinct (Figure 11) with a correlation coefficient of 

0.871. The Monte carlo significance test on the sample 

distribution on the first species axis produced a P-value of 

0.10. Area was more closely related to changes in interior 

species composition than to edge species composition. 
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Figure 10. Relationship between interior species composition 

and area of ten grasslands in north-central Oklahoma as 

determined by Detrended Correspondence Analysis. 
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Figure 11. Relationship between interior species composition 

and area of ten grasslands in north - central Oklahoma as 

determined by Canonical Correspondance Analysis. 
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Species Composition at Edges Associated 

with Different Neighbors 
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CCA performed on the edges associated with the six 

neighbor types produced eigenvalues of 0.152, 0.113, 0.104, 

and 0.080 for the first four species axes. The small 

differences among the eigenvalues of the first three axis 

indicated the absence of a dominant factor in determining 

the edge species composition. The canonical correlations 

between the species ordination axes and the neighbor types 

were relatively low (Table 6), and little separation was 

found along the first and the second axis among the samples 

associated with different neighbors. The Monte Carlo 

significance test on the first species axis produced a P

value of 0.42, indicating absence of significant effect of 

neighbor types on the edge species composition. 
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Table 6. canonical coefficients and inter-set correlations 
of environmental variables (types of neighbors) with the 
first four ordination axes~. 

Environmental Coefficients Correlations 

Variables ax~s1 ax~s2 ax~s3 ax~s4 ax~s1 ax~s2 ax~s3 ax~s4 

Wood -252 -484 15 368 -208 165 302 683 

Disturbance 134 -510 166 52 525 -365 563 -137 

Road -73 -733 -295 217 456 -140 -704 83 

Pasture -431 -736. -so 74 -672 -185 99 -464 

Highway -91 -370 -23 115 15 14 53 47 



CHAPTER IV 

DISCUSSION 

Species - Area Relationship 

According to the results of this study, flowering plant 

species - area relationship in grasslands agreed with much 

of the previous research conducted in other communities, 

i.e. species richness increased with area. However, large 

variations existed, indicating the presence of other 

variables affecting species richness. As suggested by Pianka 

{1983), area itself is probably not the primary factor 

affecting species richness in most situations, but 

presumably affects indirectly by increasing the variety of 

available habitats. Haila (1983) also suggested that the 

relationship between area and species richness was an 

indirect one. 

Results from a large number of research studies have 

pointed to the determinant role of habitat heterogeneity in 

species richness. Nilsson et al. {1989) found that the only 

factors significantly correlated with total species richness 

were substrata heterogeneity and substrata fineness. Barkman 

{1989) also stated that, in addition to area, species 

richness of habitat islands were also affected by age of the 

islands and degree of disturbance. 

In contrast, Levenson (1981) investigated the species 

-area relationship in the woodlots in the metropolitan 

48 
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Milwaukee region. He sampled 43 sites ranging in area from 

0.03 ha to 39.96 ha. Even though his largest site was 1,332 

times greater in area than his smallest site, Levenson found 

no correlation between area and species richness (R=0.01). 

It was suggested that, in addition to area, species richness 

may also be affected by topography, general soil conditions, 

successional age, degree of disturbance, time since the 

island development, and interaction with other islands in 

terms of propagule exchanges'with surroundings. In grassland 

studies, the specific variables may be different, or the 

order of importance of the variables may be different, but 

it appears that species richness is likewise affected by 

more than just area. 

It is my view that there are two levels of habitats 

according to their scales and their relationship to area: 

microhabitats and macrohabitats. Increase in microhabitats 

is concomitant with increasing area, i.e., as area increases 

it is more likely to incorporate new microhabitats due to 

increased chances in variations in small scale. As a result 

of such a relation between area and microhabitats, species 

richness increases with area. This interpretation is 

essentially the same as the habitat heterogeneity hypothesis 

(Williams 1964; Shmida and Wilson 1985). On the other hand, 

the changes in macrohabitats, such as presence of a creek, a 

steep slope, a trail, or a change in soil type, may not be 

related to area within a certain range, yet they may play 

significant role in affecting species richness. If the 

macrohabitat conditions are equal among samples, a positive 
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species-area relationship may be observed at a relatively 

short range of area. If the macrohabitat conditions are not 

equal, the positive microhabitats-area relationship may be 

obscured by the macrohabitat changes, so will be the 

positive species-area relationship. In this case, given the 

condition that the number of samples is equal, a large range 

of area is necessary in order to detect a positive species

area relationship. 

In the results of species rJchness from this study, 

site 6 which was 32.38 ha in area had the highest species 

richness. According to visual observation, this site had 

considerable variation in macrohabitats with a wooded ridge, 

a large depression filled with water, and greater slope than 

the other sites. 

Due to the low number of samples used in this study, 

the changes in species richness should not be 

overemphasized. However, detection of a correlated species

area relationship depends on whether a adequate range of 

area or sample number are used, and this ·adequate range' or 

·adequate sample number' 

depends upon the degree of·habitat heterogeneity. Evaluation 

or estimation of the habitat heterogeneity at different 

spatial scales should precede the selection of range of area 

and sample numbers. 

This precaution is consistent with findings that the 

pattern of species richness is scale-dependent. Palmer 

(1990) found that among-plot standard deviation in magnesium 

concentration explained more than half of the variation in 
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species richness of 0.1 ha plots, yet the same variation 

failed to explain the within-plot variation in species 

richness. When discussing the almost ubiquitous phenomenon 

in which species number is stable over several plot sizes, 

Barkman (1989) wrote: 11 I therefore believe that every 

phytocoenosis as a general rule is a compound mosaic, 

consisting of a coarse pattern, the elements of which 

consist of a finer patternt etc." Similarly, it had been 

proposed that each unit of environment may be composed of a 

number of subunits, and that this structure may be 

responsible for the observed patterns .of species abundances 

(Kolasa and Strayer, 1988; Kolasa, 1989). These findings or 

comments all suggest that different sets of factors may 

operate at different spatial scales in affecting patterns of 

species richness and distribution, which should be kept in 

mind when conducting a research on species - area 

relationship, or on any phenomena in community ecology and 

landscape ecology. 

Even though abundant evidence is available in proving 

the determinant role of habitat heterogeneity in species 

richness, the theory of island biogeography meets a few 

direct challenges and is still the focus of hot debate 

(Simberloff and Abele 1982, Soule and Wilcox 1980, Lovejoy 

and Oren 1981, Wilcox and Murphy 1985). Though I have no 

direct information from my research with respect to this 

issue, it is my view that both the habitat-diversity 

hypothesis and island biogeography theory can partially 

account for the species-area relationship. In other words, 
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observed species richness is the combined product of habitat 

diversity and species immigration and extinction. On oceanic 

islands, the effects of immigration and extinction may be 

more obvious than on terrestrial habitat islands, because 

habitat diversity would not be able to fully display its 

effect if there are not enough immigrants to occupy them. 

Terrestrial habitat islands are surrounded by media of 

different kinds which, in comparison to the ocean, may be a 

lesser barrier to many species. Also, the source pool of a 

habitat island is composed of numerous neighbors of its own 

type which may not be as distant as between an oceanic 

island and its mainland source pool. Therefore, habitat 

heterogeneity may play a more significant role in 

determining species richness. 

The species-area curve from this study was better 

described by the logarithmic model of Dahl (1960) and 

Goodall (1961) than the exponential model of Arrhenius and 

Preston. This observation differs from the results of 

Kilburn (1966) who found the best fit from the exponential 
'• 

model based on his investigation of 6 sites of 3 plant 

communities in the Midwest. However, Barkman (1989) 

indicated that highly anthropogenic grass communities showed 

a better fit to the Dahl-Goodall model. Although the study 

sites of this research were selected for the absence of 

major disturbances, they were actually maintained by annual 

mowing for hay. However, because of the relatively low 

number of samples, the results should not be considered as 

strong evidence for, or against, either of the models. 
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The exponential model of Arrhenius (1921) and Preston 

(1962) is most popular among north American ecologists. The 

interpretation of the parameters of c and z spurred numerous 

investigations. Z is of more interest since it is the slope 

of the s = c A z function after a logarithmic 

transformation. The magnitude or changes of z have been 

cause for considerable debate (Connor and McCoy 1979, Wilcox 

1980; Martin 1981; Sugihara 1981, Wright 1988). The z value 

has been suggested to vary according to degree of isolation 

(Preston 1962; MacArthur and Wilson 1967; Harris 1984). In 

cases of non-isolation, it ranges from 0.12 to 0.17 wheras 

in cases of isolation from 0.19 to 0.37. The divergence of z 

values for habitat islands (samples) compared to oceanic 

islands was explained as a failure of habitat islands to 

represent a complete lognormal ensemble of species (Preston 

1962). If z is indeed a measure of degree of isolation, then 

the low z value of 0.066 from my research would indicate a 

low degree of isolation among the sample sites. This may 

reflect the true situation because most of my sites were 

close in distance to their own type of vegetation, often 

separated only by fence or narrow dirt road. Moreover, the 

low z value from this study may also indicate the 

incompleteness of the samples. In their studies of bird 

faunas on the Solomon Archipelago, Diamond and Mayr (1976) 

calculated a z value of 0.025 for the "highly vagile" 

species and 0.28 for the species with "low vagility" on the 

same islands. They explained the difference as a result of 

samples for the "highly vagile" species being less complete 



than those of "low vagile" species. On the other hand, 

disagreement also exists as to tpe relation between z and 

degree of isolation. Barkman (1989) analyzed data from 

several studies and concluded the exponent z was an 

unsuitable measure for the degree of isolation of habitat 

islands. 

Area Effects on Species Composition 

54 

Less direct attention in previous research has been 

paid to area effects on species composition although 

qualitative discussions are in existence for edge effects 

(Levenson 1981; Harris 1984; Wilcove et al. 1986; Lovejoy et 

al. 1986; Diamond 1988). According to the results of this 

study, area has no observed effect on species diversity 

measured by the Shannon-Weaver index, nor on species 

dominance or evenness measured respectively by Simpson's and 

Pielou•s indices. The homogeneous abundances of the first 

three dominants throughout'the sample sites indicate their 

insensitivity to changes in area in the absence of other 

disturbances. However, these three indices are based only 

on the number of individuals of each species present on the 

sites, and do not reflect what species are present and what 

species are absent. In terms of addressing area effects, the 

presence or absence of certain species are important issues. 

Large taxonomic collections normally contain a few very 

abundant species and a long list of less abundant or rare 

species (Preston 1962; Williams 1964). Area does not seem to 

affect the most abundant species, rather it changes the 
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presence or absence of the less abundant species. 

According to the results of DCA and CCA performed on 

total vegetation data, species composition changed with 

area, with a suggestive p-value (0.12). However, the first 

DCA axis, which was shown to be related to changes in area 

by CCA, had a relatively low eigenvalue. When 'CCA was 

performed, the eigenvalue became lower, lower than the 

eigenvalues of the other reported species axis. This 

suggests the presence of other deterministic environmental 

factors. Area alone can not account for the major variation 

in species composition. Yet, within the variation along the 

first species axis, area seems to be the major factor 

explaining the changes in species composition. However, it 

is interesting that such correlation was less clear in the 

group of smaller sites. At certain spatial scale, 

environmental heterogeneity may obscure the relation between 

area and species composition. 

Edge Effects in Relation to Area Effects 

The classical edge effect is the tendency for increased 

species richness and density at community boundaries as a 

result of overlapping communities in addition to organisms 

which are characteristic of the boundary habitats (Odum 

1970). Previous studies indeed found elevated species 

diversity at edges of different communities (Ranney et al. 

1981; Lovejoy et al. 1986; Lukac 1988). 

Edge species composition was shown by the CCA results 

of this study to be significantly different from interior 
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species composition, and, according to the measure of 

Manhattan distance and the regression analysis to area, the 

difference between edge and interior species composition 

became more distinct as area increased. Therefore, the 

change in total species composition in response to area 

could result from (1) lower percentage of edge, and 

therefore lower percentage.of edge species in larger sites; 

and (2) gradual changes in interior species composition with 

change in area. 

The low correlation between area and edgeness indicates 

that edge species composition changes little with area. 

According to the results of DCA and CCA on edge species 

composition, this indeed is the situation: edge species 

composition did not show significant change with area. This 

is easily understandable because habitat conditions on the 

edges should be similar regardless of the size of the sites. 

It is therefore clear that edge species composition did not 

contribute to changes in total species/ composition. 

In contrast with edge species composition, the change 

in interior species composition in response to increase of 

area is more distinct than either edge species or total 

species composition. This may indirectly suggest that the 

less distinct trend of change in total species composition 

than that of interior may be partially caused by 

insensitivity of edge species composition to area. The more 

noticeable change in interior species composition indicates 

this change may be the major or at least a very important 

cause of change in total species composition. This finding 



57 

is different from the results of previous research that 

indicate the change in species composition is the result of 

change in relative proportion of edge species with area 

(Harris 1984; Lovejoy et al. 1986). 

In relation to-the gradual increase in the difference 

between edge and interior species composition, the statement 

becomes questional;>le that there is a size for habitat 

islands below which ~nterior con~U tions · cannot be found 

(Levenson 1981) • In my point of vie_w, the:re may not be a 

physically definable area at which so-called interior 

conditj,ons are formed. Instead, the interior condition is 

being formed gradually, no abrupt discontinuity occurs in 

the edge to interior gradient that would serve to separate 

edge from interior. In response to change of area, species 

composition may change from mainly xeric edge species 

assemblages to mixture of edge and less edge species, and to 

mixture of edge and less edge and interior species. As area 

increases, the proportion· of_each changes. To advance the 

notion one step further~ there may not be a physically 

definable 'minimum criti9al area' either. Minimum critical 

area is defined as a.continuous habitat large enough in 

extent to contain and maintain its characteristic species 

diversity and species composition (Lovejoy and Oren 1981). 

However~ based on the information from this research, new 

species appear and species compo$ition changes gradually and 

continuously as area increases even though the major 

dominants of 'the community remain unchanged. How would the 

so-called 'characteristic species diversity and composition' 



be defined? Since discontinuity in species composition is 

unlikely found, so unlikely would be the nonselective 

minimum critical area', unless an arbitrary definition is 

used. 
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Edge effect is different from, yet related to area 

effect. Lovejoy et al. (1986) presented data which suggested 

a mixture of area and edge effects. They indicated that edge 

-related changes were dominant in the smaller isolated 

reserves, and area effects can only be studied in larger 

reserves. They were the first to conceptually separate 

changes in species richness caused by edge from the changes 

caused by area alone. This necessary distinction was not 

considered in many previous studies on species-area 

relationships. In my opinion, area effect is different from 

pure edge effect yet it must be evaluated in relation to 

edge effects because the "dominant" role of edge in smaller 

islands is a reflection of area effect. It would truncate 

either edge or area effect if studies on edge effect on 

total species richness or composition are confined to small 

sites and studies on area effe~ts to large sites. 

I consider that edge effect has two components: its 

buffer effect on interior habitat condition and its 

different species diversity and composition from the 

interior. The absolute effects are constant while the 

relative effects changes with area. In another words, edge 

effect is confounded with area effect which in turn has two 

components, one is the change in the ratio of edge to area, 

and another is changes in habitat heterogeneity and ratio of 



extinction to immigration, which is associated with change 

of area. Such recognition has not been suggested 

previously. 
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Physical characteristics of edge may indirectly affect 

the interior species composition by serving as a 

'differential - permeable membrane' to biotic and abiotic 

influxes to and outflow from a habitat island. This 

'membrane• functions differently as a consequence of the 

physical features of the edge itself, such as its thickness. 

Such features would determine the degree of the responses of 

different materials, organisms, or abiotic factors to the 

edge (Weins et al. 1985). Wales (1972) and Levenson (1981) 

showed that the edges of small forest islands might play a 

particularly important role in the development of individual 

forest islands. Edge vegetation provides propagules of a 

different species composition than would otherwise be 

available to interior vegetation replacement process if edge 

were not present. Ranney et al (1981) believed that because 

of forest edges, the forest islands they examined had a 

greater component of shade-intolerant species in the 

interior than if the same sites were in extensive forest. 

our results agree with their notion. With edge being 

excluded, that is to exclude the factor of relative 

proportion of edge, the interior species composition of 

small sites were still different from these of larger sites 

as shown by the results of distance analysis and by the 

results of CCA analysis on interior vegetation. This result 

indicates the presence of larger percentage of edge species 
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and species with some edge traits in the interior of small 

sites than in the interior of large sites. However, several 

aspects of edge effects deserve further investigation, such 

as (1) whether the change in interior species composition is 

due to edge effect in serving as a pool of propagules of 

edge species; (2) whether the change in interior species 

composition is due to the buffer effect of edge as discussed 

above; and (3) whether edge affects interior species 

composition by a combined effects of various aspects 

including the two mentioned above. 

Edge Effects On Interior Species Composition 

It is an interesting fi~ding that interior species 

composition is different among islands of grasslands of 

different sizes, and this finding can be related to the 

controversial issue.of 'species quantity' versus species 

quality' within the discussion of edge effect and habitat 

fragmentation. 

A number of researchers claim that species diversity 

could be increased by habitat fragmentation (Higgs and Usher 

1980; Gotfryd and Hansell 1986; Simberloff and Gotelli 1984, 

Quinn and Harrison 1988, Robinson and Quinn 1988), and that 

subdivision into a number of independent subpopulations may 

frequently act to decrease the probability of overall 

extinction in rare species (Quinn and Hastings 1987). The 

enhanced species diversity was considered to be due to the 

creation of additional habitat edge within the originally 

continuous habitat. Therefore, these researchers 



61 

deemphasize the detrimental effect of habitat fragmentation 

on the survival of wild species. However, species are 

different in their properties, some are specialized in 

certain types of habitat with relatively narrow ranges of 

distribution, and are sensitive to disturbances and changes 

in their habitat. Some species are generalized in having 

broad ranges of habitat, and being robust to disturbances. 

Habitat fragmentation increases the edge to interior ratio 

and results in negative effects on interior species. Species 

which require extensive and continuous habitat to sustain 

their population above dangerous level are also negatively 

affected by habitat fragmentation. Meanwhile the habitat 

fragmentation may have no effect on, or even may promote, 

the abundances of edge species and opportunistic r-selected 

species. This may explain the enhanced species richness in 

response to the degree of fragmentation as claimed by some 

ecologists. People should be aware that 'creation of 

additional habitat edge within continuous habitat can 

dramatically increase local species diversity, but it 

fulfills no conservation objective. The enhanced species 

richness by additional edge involves enhanced "junk" species 

at the expense of interior species, edge species, and native 

species (Murphy 1989, Verner 1986). An example is provided 

by Murphy's (1989) critique of research done in a winter 

annual grassland in central California (Robinson and Quinn 

1988). 'Of 42 plant species monitored by Robinson and Quinn, 

only 11 (26%) were native species. Of these 11, only 3 

native plant species (just 7% of the total) were found in 
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more than 3 sample habitat plots (of a total of 42) per year 

during the three-year study.' 

Neighbor Effects on Edge Species Composition 

Abiotic factors such as wind or surface water respond 

differently to boundary fe~tures than do biotic factors such 

as birds or cattle (Weins et al. 1985; Stamps et al. 1987). 

Differences also exist within the two categories. For 

example, a fence can effectively prevent cattle from passing 

to another patch of grassland while it has little effect on 

birds' mobility. Consequently, the quantities of 

immigrantjemmigrant propagules disseminated by different 

vectors would differ at various types of boundaries, and, 

the types of propagules immigrated to a certain site would 

be largely dependent on the ~ypes of its neighbors. As 

Ranney et al. (1981) suggested, edge species composition at 

the early stage of edge development is largely determined by 

the invasion of propagules from neighboring vegetations. In 

Dutch limestone grassland, a conspicuous influence of the 

adjacent communities was observed on the quantitative 

species composition (Barkman 1989). Similar observations are 

available from studies in forests. As areas of conserved 

pristine forest are reduced in size they are increasingly 

susceptible to significant immigration of species from their 

neighbors (Janzen 1983). 

The neighbor effect is related to the degree to which 

the two adjacent communities differ; the more distinct 

difference between two neighbors, the more significantly 
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they affect each other's species composition. As reasoned by 

Barkman (1989), with everything else being equal, arable 

field and active sand dunes will have more influence on a 

forest edge than meadows, meadows more than heathland, and 

heathland more than scrub. The least influence will be 

exerted by adjacent woods of a sligh~ly different type. A 

field study conducted in West Germany showed that both road 

construction and agricultural activities contribute to 

habitat isolation, and highway had much more significant 

isolation effect on forest-dwelling mice and carabid beetles 

than cropland (Mader 1984). 

Neighbor effect is assumed to be more pronounced in 

edge species composition of adjacent communities since edge 

is the first frontier different propagules cross. The lack 

of significant separations in the CCA ordination among edge 

species composition bordered by different neighbors was not 

expected. However, it is still worth mentioning that, along 

the first species axis, edges bordered by extremely 

disturbed land, urban development, and road were located at 

the far higher end, in contrast with edges bordered by wood 

or pasture which were located at the far lower end of the 

axis. This pattern fits·our expectation based on the 

information discussed above. Also, according to the ranking 

of sample scores along the first species axis, the edges 

facing south and west tend to be at the higher end while the 

edges facing north and east at the lower end. This trend may 

suggest confounding effects between neighbor effect and 

aspect effect. However, these explanations are very 



tentative, since none of the trends were shown to be 

statistically significant. 
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It should be pointed out that neighbor effect is a 

complicated issue confounded by many factors which are 

usually difficult to control under natural settings. This 

difficulty may partially explain the large amount of 

research done on species -area relationship while relatively 

few studies have been carried out on neighbor effects. 

Arbitrary allocation of the boundary line is one problem 

involved in the study of neighbor effect (Addicott et al. 

1987). One always has to develop criteria for determining 

the boundaries of a neighborhood. These criteria will be 

arbitrary, but they should be explicit. 

Fences were used in this study as the boundary line, 

and species 0.3 m inside the fences were sampled as edge 

vegetation. Although the criteria were specific, they were 

subjectively chosen for the convenience of field work. 

Convenience is us~ally at the expense of closeness to 

reflecting the true situation and is too often involved in 

the field data collections of ecological studies. For 

example, fences may be a good boundary line between two 

pastures separated only by a fence; yet a fenceline may be 

far from being the true boundary between a highway 

construction and the grassland since there is usually a zone 

of 5 to 8 m wide, or even wider, between the highway and the 

fenceline. This may be part of the cause for little 

separation among the edges bordered by different neighbors. 

True edge effects may be more significant than observed in 



this study. Many other factors such as the extent of 

neighbor, the neighbor's neighbor, aspects, scale of 

measurement, and smoothness of edge may contribute and 

complicate the neighbor effect (Forman and Godron 1986, 

Madder 1984, Addicott et al. 1987, Stamps et al. 1987, 

Harris 1988, Marshall 1989, Weins 1989). 
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Such complicated situations can be effectively dealt 

with by multivariate analysis methods (Gauch 1989). Yet its 

effectiveness decreases as.sample size and number of samples 

decrease since information or relationship is derived from 

the redundancy of data. Relatively small sample size may 

also be one of the causes for the failure in detecting 

neighbor effect by this study. large numbers of samples is 

one of the recommendations for further investigations of 

neighbor effect. 

Conclusions and Recommendations 

Species richness of flowering plants in the grassland 

community is positively related to area, and the 

relationship is represented better by the logarithmic model 

proposed by Dahl (1960) and Goodall (1961) than by linear or 

exponential models. 

Total species composition also changes with area. As 

area increases the interior species composition changes more 

noticeably than edge species composition. The change in 

total species composition with area. is due to the change in 

interior species composition and the change in relative 

proportions of edge and interior. Edge species composition 
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is significantly different.from interior species 

composition and the difference is positively related to 

area; however, the increase is gradual and may indicate the 

lack of practicality of the 'minimum critical area' concept. 

Neighbor effect is not detected in this study, possibly due 

to the difficulty in controlling some of the confounding 

factors. Intensive grassland fragmentation may lead to lower 

species richness per grassland fragment, and may alter the 

regional species composition by changing interior species 

composition, by reducing the proportion of interior species 

and by increasing the proportion of edge species in each of 

the grassland fragments. 

Due to the limitations of.· relatively small sample size 

and short duration of field sampling, the above conclusions 

are only exploratory and tentative. Long-term studies and 

large numbers of samples are recommended for further 

research. 
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APPENDIX A 

EQUATIONS USED IN DATA ANALYSIS 

1. First Order Jackknife 

Jackknife = so +· r1 (n+1) ;n 

where Jackknife is the estimated species richness, 

so is the number of species which are present only at 

one sampling point, and n is the total number of 

sampling points. 

2. Community Indices 

(1) Shannon-Weaver species diversity index 
s 

H = - 2fi Log2 fi 

where H is Shannon-Weaver species diversity index, 

fi is the relative frequency of species i, and s is 

the total number of species. 

(2) Pielou species evenness index 

E = H I Hmax = H I Log2 S 

Where E is Pielou species evenness index, H is 

Shannon-weaver species diversity index, Hmax is Shannon 

-weaver maximum species diversity index, and s is 

total number of species. 

(3) Simpson species dominance index 
s 

D =:Z(ni/N) 2 
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where D is Simpson species dominance index, ni is 

the number of sampling points of species i, and N is 

total number of sampling points. 

3. Manhattan distance 

S1 
CDj = 21 (Aij - A' ij) I 
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where CDj is the Manhattan distance value for site 

j, Aij is the relative frequency of species i at edge 

of site j, A'ij is the relative frequency of species i 

at interior of site j. The relative frequency at edge 

was calculated as the number of sampling points of 

species i at edge of site j divided by the total 

sampling points at edge of site j, and the relative 

frequency at interior was calculated as the number of 

interior points of species i at site j divided by the 

total interior points at site j. 



APPENDIX B 

PRIMARY SAMPLING DATA 

EDGE 
SITE 

SITE SPECIES TOTAL TOTAL SOUTH NORTH WEST EAST 

1 sese 247 26 8 8 4 6 
1 ANGE 215 26 4 8 3 11 
1 AROL 23 2 0 0 1 1 
1 BRJA 26 16 2 3 9 2 
1 BUDA 1 0 0 0 0 0 
1 CYDA 18 7 0 4 3 0 
1 COCY 10 1 0 0 0 1 
1 PAOL 50 3 0 2 0 1 
1 PAVI 50 8 1 5 0 2 
1 SONU 146 12 4 0 1 7 
1 SPAS 57 8 1 0 5 2 
1 SOHA 3 p 0 0 0 0 
1 ASTE 1 0 0 0 0 0 
1 ASVI 1 0 0 0 0 0 
1 ACMI 11 4 1 1 2 0 
1 AMPS 10 6 3 0 2 1 
1 ANNE 10 2. 0 2 0 0 
1 ARLU 6 1 0 0 1 0 
1 CARE 9 0 0 0 0 0 
1 CYPE 24 5 2 0 2 1 
1 ELEO 13 3 0 0 2 1 
1 LESP 3 0 0 0 0 0 
1 POVE 9 1 0 1 0 0 
1 PSTE 2 0 0 0 0 0 
1 RUHI 1 0 0 0 0 0 
1 SCIR 24 0 0 0 0 0 
1 SENE 12 3 0 1 1 1 
1 LATH 2 1 1 0 0 0 
1 VAOC 2 0 0 0 0 0 
1 UMBE 1 0 0 0 0 0 
1 PAD! 2 0 0 0 0 0 
1 SERI 1 0 0 0 0 0 
1 UKD1 1 0 0 0 0 0 
1 UKD2 3 2 1 0 1 0 
1 ERIG 3 1 1 0 0 0 
1 PLAN 17 4 4 0 0 0 
1 MEAL 1 1 1 0 0 0 
1 LIAT 1 0 0 0 0 0 
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1 DAPU 2 0 0 0 0 0 
1 PYHR 2 0 0 0 0 0 
1 RUEL 1 0 0 0 0 0 
1 LEPI 1 1 0 0 1 0 
1 TRAD 1 1 1 0 0 0 
1 POPR 9 1 1 0 0 0 
1 ERCU 1 0 0 0 0 0 
1 UKG3 3 0 0 0 0 0 
1 ULAM 1 1 0 1 0 0 
1 COTI 1 1 0 1 0 0 
1 TOAR 1 0 0 0 0 0 
1 TRIF 1 1 0 0 0 1 
2 sese 236 19 4 6 4 5 
2 ANGE 132 26 6 5 5 10 
2 AROL 15 1 1 0 0 0 
2 BRJA 4 4 1 2 0 1 
2 BUDA 6 0 0 0 0 0 
2 ·cYDA 19 6 1 0 3 2 
2 COCY 37 3 1 0 2 0 
2 PAOL 50 3 0 0 3 0 
2 PAVI 62 11 2 5 0 4 
2 SONU 91 15 6 2 3 4 
2 SPAS 92 9 1 1 5 2 
2 ACMI 4 1 0 1 0 0 
2 AMPS 6 1 1 0 0 0 
2 ANNE 3 0' 0 0 0 0 
2 ARLU 3 3 1 2 0 0 
2 CARE 72 6 1 1 3 1 
2 CYPE 26 0 0 0 0 0 
2 ELEO 2 0 0 0 0 0 
2 LESP 1 0 0 0 0 0 
2 POVE 3 1 0 1 0 0 
2 PSTE 6 2 0 2 0 0 
2 RUHI 3 0 0 0 0 0 
2 SCIR 5 1 1 0 0 0 
2 SENE 1 0 0 0 0 0 
2 BOUT 7 0 0 0 0 0 
2 ANVI 5 0 0 0 0 0 
2 SPRE 7 1 0 0 0 1 
2 UKD2 1 0 0 0 0 0 
2 POVE 1 1 0 0 0 0 
2 AVFA 11 7 0 4 0 3 
2 PASP 5 1 1 0 0 0 
2 BOCU 10 6 4 1 1 0 
2 SOLI 2 2 1 0 0 1 
2 PANI 2 0 0 0 0 0 
2 COTI 1 0 0 0 0 0 
2 DAPU 2 2 2 0 0 0 
2 COMP 18 0 0 0 0 0 
2 SYOR 3 3 0 1 1 1 
2 RHCO 1 1 0 0 1 0 
2 RUDB 25 2 0 1 1 0 
2 PSOR 3 0 0 0 0 0 
2 ERIG 3 d 0 0 0 0 
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2 SCUT 1 0 0 0 0 0 
2 LITH 2 0 0 0 0 0 
2 COCA 2 2 0 0 2 0 
2 PEPU 1 0 0 0 0 0 
2 OXAL 2 0 0 0 0 0 
2 PYRR 3 1 1 0 0 0 
2 PLAN 7 0 0 0 0 0 
2 CRGL 3 0 0 0 0 0 
2 TRIF 1 0 0 0 0 0 
2 ASTR 1 0 0 0 0 0 
2 LIAT 1 d 0 0 0 0 
2 TOAR 1 0 0 0 0 0 
2 AMFR 1 0 0 0 0 0 
2 CHPI 9 0 0 0 0 0 
2 CYPE 1 0 0 0 0 0 
2 ASER 2 1 0 0 1 0 
2 UKCO 1 0 0 0 0 0 
2 LTNU 5 0 0 0 0 0 
2 PLAN 3 0 0 0 0 0 
2 SOGY 2 0 0 0 0 0 
2 ASVI 1 0 0 0 0 0 
2 NLCO 3 0 0 0 0 0 
2 RUEL 1 0 0 0 0 0 
3 sese 262 '29 6 12 5 6 
3 ANGE 103 9 3 4 1 1 
3 AROL 0 0 0 0 0 0 
3 BRJA 2 2 0 1 0 1 
3 BUDA 0 0 0 0 0 0 
3 CYDA 11 8 0 1 6 1 
3 COCY 34 2 0 0 1 1 
3 PAOL 36 4 1 2 0 1 
3 PAVI 36 5 1 1 3 0 
3 SONU 215 34 6 12 7 9 
3 SPAS 86 13 9 1 3 0 
3 ACMI 1 1 0 0 0 1 
3 AMPS 4 4 0 0 3 1 
3 ANNE 4 0 0 0 0 0 
3 ARLU 1 1 0 0 0 1 
3 CARE 159 19 7 4 4 4 
3 CYPE 1 1 1 0 0 0 
3 ELEO 4 0 0 0 0 0 
3 POVE 1 1 1 0 0 0 
3 PSTE 4 2 1 0 0 1 
3 BOCU 21 6 1 0 4 1 
3 BOSA 2 2 0 0 0 2 
3 ERIN 1 0 0 0 0 0 
3 PASP 28 3 1 1 0 1 
3 PETA 1 0 0 0 0 0 
3 ASER 1 1 0 0 0 1 
3 HEL2 1 1 0 0 1 0 
3 UNKF 1 0 0 0 0 0 
3 RUEL 2 0 0 0 0 0 
3 BAPT 1 1 0 0 0 1 
3 SOGY 1 0 0 0 0 0 
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3 OXAL 1 0 0 0 0 0 
3 ERIG 1 1 0 0 0 1 
3 CODR 2 1 0 0 1 0 
3 PLAN 4 2 0 0 0 2 
3 SOLI 2 2 1 0 0 1 
3 HEMO 5 0 0 0 0 0 
3 HIER 1 0 0 0 0 0 
4 sese 237 30 11 8 10 1 
4 ANGE 97 22 8 3 6 5 
4 AROL 1 0 0 0 0 0 
4 BRJA 3 2 0 0 2 0 
4 BUDA 0 0 0 0 0 0 
4 CYDA 13 1 0 1 0 0 
4 COCY 24 0 0 0 0 0 
4 PAOL 47 1 0 0 0 1 
4 PAVI 21 3 0 2 1 0 
4 SONU 130 12 7 2 0 3 
4 SPAS 166 14 0 3 4 7 
4 ACMI 2 0 .o 0 0 0 
4 AMPS 0 0 0 0 0 0 
4 ANNE 5 0 0 0 0 0 
4 ARLU 1 1 0 0 1 0 
4 CARE 134 19 5 3 1 10 
4 CYPE 0 0 0 0 0 0 
4 ELEO 17 7 0 4 0 3 
4 POVE 3 0 0 0 0 0 
4 PSTE 1 0 0 0 0 0 
4 RUHI 8 0 0 0 0 0 
4 TUKG 2 2 0 1 1 0 
4 SILV 2 0 0 0 0 0 
4 SETA 1 0 0 0 0 0 
4 PASP 13 1 0 0 1 0 
4 LECO 1 0 0 0 0 0 
4 BOCU 34 6 1 2 0 3 
4 BOGR 1 0 0 0 0 0 
4 LINU 6 1 0 1 0 0 
4 RUEL 3 0 0 0 0 0 
4 HEMO 8 1 0 0 0 1 
4 BAPT 2 1 1 0 0 0 
4 GAIL 5 0 0 0 0 0 
4 ECHI 1 0 0 0 0 0 
4 SCUT 1 0 0 0 0 0 
4 OXAL 1 0 0 0 0 0 
4 CHRY 3 0 0 0 0 0 
4 CORO 1 0 0 0 0 0 
4 HELI 5 5 0 0· 5 0 
4 ERIG 1 0 0 0 0 0 
4 LUKC 21 4 0 2 2 0 
4 SABA 2 0 0 0 0 0 
4 SOLI 3 1 0 1 0 0 
4 SYOR 2 2 0 1 1 0 
4 SCHR 1 0 0 0 0 0 
4 CORE 3 0 0 0 0 0 
4 ASER 2 1 0 0 0 1 
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4 AMCU 1 0 0 0 0 0 
4 EUPA 1 0 0 0 0 0 
4 TRFL 1 0 0 0 0 0 
4 PLAN 1 0 0 0 0 0 
4 ALCS 1 1 0 0 1 0 
4 RUBU 1 1 1 0 0 0 
5 sese 305 37 15 10 10 2 
5 ANGE 98 13 l. 6 2 4 
5 AROL 0 0 0 0 0 0 
5 BRJA 1.8 1.6 8 2 3 3 
5 CYDA 45 4 0 1 3 0 
5 COCY 9 0 0 0 0 0 
5 PAOL 48 3 0 0 2 1 
5 PAVI 54 5 3 1 1 0 
5 SONU 168 22 1 1 7 13 
5 SPAS 79 5 2 2 1 0 
5 ACMI 14 2 0 0 1 1 
5 AMPS 3 0 0 0 0 0 
5 ANNE 4 0 0 0 0 0 
5 ARLU 3 1 0 1 0 0 
5 CARE 56 11 0 8 3 0 
5 PSTE 4 0 0 0 0 .0 
5 RUHI 9 1 1 0 0 0 
5 SILV 5 3 0 2 0 1 
5 BOGR 4 0 0 0 0 0 
5 UKSG 1 0 0 0 0 0 
5 UKPG 1 0 0 0 0 0 
5 BOCU 11 2 0 0 2 0 
5 SETA 8 2 0 0 0 2 
5 PASP 1 0 0 0 0 0 
5 WBHG 1 0 0 0 0 0 
5 ABLU 3 1 0 1 0 0 
5 LUKG 8 3 0 0 0 3 
5 SKLG 1 0 0 0 0 0 
5 ELVI 1 0 0 0 0 0 
5 DACT 1 0 0 0 0 0 
5 CONY 1 1 1 0 0 0 
5 OXAL 9 1 1 0 0 0 
5 ASER 4 1 1 0 0 0 
5 RUEL 1 0 0 0 0 0 
5 EUSP 1 0 0 0 0 0 
5 LINU 5 1 0 0 0 0 
5 SABA 2 0 0 0 0 0 
5 RANU 1 0 0 0 0 0 
5 LIPU 1 0 0 0 0 0 
5 SCHR 1 0 0 0 0 0 
5 RATI 1 0 0 0 0 0 
5 ASVI 1 0 0 0 0 0 
5 SCUT 4 0 0 0 0 0 
5 ERIG 3 0 0 0 0 0 
5 RUMA 1 0 0 0 0 0 
5 JUNC 6 1 0 0 0 1 
5 MALL 2 0 0 '0 0 0 
5 LWEE 1 0 0 0 0 0 
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5 LUKC 9 2 0 0 1 1 
5 DENO 1 0 0 0 0 0 
5 SISY 1 0 0 0 0 0 
5 SOLI 4 0 0 0 0 0 
5 MIMO 1 0 0 0 0 0 
5 PLAT 7 0 0 0 0 0 
5 POVE 2 0 0 0 0 0 
5 MILK 2 2 1 0 0 1 
5 SYMP 3 2 ,Q 1 0 1 
5 LITH 1 0 0 0 0 0 
5 HEDE 1 0 0 0 0 0 
6 sese 310 33 6 6 7 14 
6 ANGE 102 14 5 4 0 5 
6 AROL 36 2 0 2 0 0 
6 BRJA 27 23 8 10 3 2 
6 BUDA 7 0 0 0 0 0 
6 CYDA 25 5 2 2 1 0 
6 COCY 12 0 0 0 0 0 
6 PAOL 41 4 0 1 1 2 
6 PAVI 47 4 1 1 2 0 
6 SONU 98 16 3 0 10 3 
6 SPAS 77 6 3 2 1 2 
6 ACMI 1 1 1 0 0 0 
6 AMPS 2 2 1 1 0 0 
6 ANNE 3 0 0 0 0 0 
6 ARLU 1 1 0 0 1 0 
6 CARE 74 9 0 1 4 4 
6 PSTE 4 0 0 0 0 0 
6 RUHI 1 0 0 0 0 0 
6 SILV 4 2 1 0 1 0 
6 BUKG 9 0 0 0 0 0 
6 BOHI 16 0 0 0 0 0 
6 SUKG 2 0 0 0 0 0 
6 FLBG 1 0 0 0 0 0 
6 MUHL 3 3 0 0 1 2 
6 BOCU 50 1 1 0 0 0 
6 SETA 1 0 0 0 0 0 
6 LLBG 3 0 0 0 0 0 
6 SAG 1 0 0 0 0 0 
6 BOGR 12 0 0 0 0 0 
6 PAFL 5 0 0 0 0 0 
6 RHIZ 2 0 0 0 0 0 
6 BUKG2 2 0 0 0 0 0 
6 WHEA 1 1 0 1 0 0 
6 ELVI 1 0 0 0 0 0 
6 LUKG 1 0 0 0 0 0 
6 PASP 4 0 0 0 0 0 
6 SHGR 4 0 0 0 0 0 
6 ERAG 1 0 0 0 0 0 
6 VALE 1 1 1 0 0 0 
6 SYMP 1 0 0 0 0 0 
6 SCHR 1 0 0 0 0 0 
6 TOXI 2 2 0 0 2 0 
6 UKSF 1 0 0 0 0 0 
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6 CONY 2 0 0 0 0 0 
6 SOLI 1 1 0 0 1 0 
6 SABA 1 0 0 0 0 0 
6 EUMA 2 0 0 0 0 0 
6 OXAL 2 0 0 0 0 0 
6 HELI 1 0 0 0 0 0 
6 LVCC 1 0 0 0 0 0 
6 TRIF 1 0 0 0 0 0 
6 POVE 1 0 0 0 0 0 
6 LUKC 8 1 0 1 0 0 
6 KRAM 2 0 0 0 0 0 
6 PLAN 5 0 0 0 0 0 
6 ASCL 1 0 0 0 0 0 
6 TRBI 1 0 0 0 0 0 
6 SABI 1 1 0 0 0 1 
6 UKNF 1 0 0 0 0 0 
6 SPIG 1 1 1 0 0 0 
6 LMIN 1 1 1 0 0 0 
6 UNKA 4 ·o 0 0 0 0 
6 LEPT 1 0 0 0 0 0 
6 LINU 1 0 0 0 0 0 
6 UKNW 1 1 0 1 0 0 
6 LIAT 1 0 0 0 0 0 
6 CRAB 1 1 0 1 0 0 
6 PLYS 1 1 0 1 0 0 
7 sese 291 15 10 4 0 1 
7 ANGE 176 10 3 4 1 2 
7 AROL 8 8 2 0 3 3 
7 BRJA 25 14 > 3 7 2 2 
7 BUDA 0 0 0 0 0 0 
7 CYDA 72 24 5 1 1 17 
7 COCY 0 0 0 0 0 0 
7 PAOL 47 4 0 0 2 2 
7 PAVI 25 4 0 1 0 3 
7 SONU 113 15 1 10 3 1 
7 SPAS 15 3 0 2 1 0 
7 ACMI 4 0 0 0 0 0 
7 AMPS 22 9 0 2 4 3 
7 ARLU 1 1 0 1 0 0 
7 CARE 17 4 0 1 2 1 
7 RUHI 7 1 0 0 1 0 
7 BOCU 26 8 1 1 5 1 
7 BOHI 1 0 0 0 0 0 
7 PASP 18 1 0 0 1 0 
7 SMGR 3 0 0 0 0 0 
7 LBLO 1 0 0 0 0 0 
7 LEPT 28 3 1 0 1 1 
7 SOME 1 0 0 0 0 0 
7 TEND 1 1 1 0 0 0 
7 BARN 7 7 0 0 6 1 
7 SCPA 50 2 2 0 0 0 
7 SETA 9 4 4 0 0 0 
7 ARGR 2 0 0 0 0 0 
7 SSWG 3 0 0 0 0 0 
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7 HAIR 1 0 0 0 0 0 
7 OXAL 4 3 1 0 1 1 
7 CONY 10 4 1 0 2 1 
7 LWED 3 2 0 2 0 0 
7 ASER 12 3 2 1 0 0 
7 UNKO 1 0 0 0 0 0 
7 RUEL 2 0 0 0 0 0 
7 VIPO 6 4 2 0 2 0 
7 ALTC 1 0 0 0 0 0 
7 ASVI 1 0 0 0 0 0 
7 SFUP 1 0 0 0 0 0 
7 AMOR 1 1 0 1 0 0 
7 BUBR 8 0 0 0 0 0 
7 LINU 3 0 0 0 0 0 
7 PLAN 2 0 0 0 0 0 
7 SCUT 1 0 0 0 0 0 
7 LESP 2 0 0 0 0 0 
7' SABA 1 0 0 0 0 0 
7 LUKC 1 0 0 0 0 0 
7 EUMA 1 0 0 0 0 0 
7 PHYS 1 0 0 0 0 0 
7 PETA 1 1 0 1 0 0 
7 POKE 1 0 0 0 0 0 
7 CALL 1 1 0 0 1 0 
7 RUBU 1 0 0 0 0 0 
8 sese 313 30 5 11 7 7 
8 ANGE 250 30 7 6 8 9 
8 AROL 10 2 0 0 2 0 
8 BRJA 31 18 7 4 5 2 
8 BUDA 3 3 1 1 1 0 
8 CYDA 60 5 4 0 0 1 
8 COCY ·o 0 0 0 0 0 
8 PAOL 43 5 0 1 1 3 
8 PAVI 22 3 0 1 1 1 
8 SONU 45 2 1 0 0 1 
8 SPAS 36 15 1 10 2 2 
8 ACMI 14 2 1 0 0 1 
8 AMPS 6 2' 0 2 0 0 
8 ANNE 2 1 0 0 1 0 
8 ARLU 3 2 0 0 1 1 
8 CARE 29 7 1 3 2 1 
8 RUHI 6 0 0 0 0 0 
8 BOCU 21 11 5 1 3 2 
8 BOHI 11 3 1 0 2 0 
8 SETA 6 0 0 0 0 0 
8 BOGR 1 0 0 0 0 0 
8 SPAS 12 1 1 0 0 0 
8 LEPT 21 4 0 0 1 3 
8 TSKG 1 0 0 0 0 0 
8 ELCA 1 0 0 0 0 0 
8 FUZG 2 2 1 0 0 1 
8 HCRA 2 2 2 0 0 0 
8 PASP 13 0 0 0 0 0 
8 SBLU 5 1 0 0 1 0 
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8 OXAL 4 1 1 0 0 0 
8 ASER 6 3 1 1 0 1 
8 VPEA 5 2 1 0 0 1 
8 TPEP 6 1 0 0 1 0 
8 BUBR 12 2 0 1 0 1 
8 CONY 10 0 0 0 0 0 
8 RUEL 4 0 0 0 0 0 
8 SABA 2 0 0 0 0 0 
8 SCHR 1 0 0 0 0 0 
8 LUKC 3 0 0 0 0 0 
8 LESP 6 1 0 0 1 0 
8 LINU 3 0 0 0 0 0 
8 POLY 1 1 0 0 0 1 
8 PLAN 3 0 0 0 0 0 
8 PHYS 1 0 0 0 0 0 
8 DIOD 1 0 0 0 0 0 
8 LESC 1 0 0 0 0 0 
8 EUPA 1 0 0 0 0 0 
8 eROT 1 0 0 0 0 0 
9 sese 283 19 5 2 4 8 
9 ANGE 152 22 3 5 8 6 
9 AROL 9 4 0 4 0 0 
9 BRJA 39 24 3 2 15 4 
9 BUDA 0 0 0 0 0 0 
9 CYDA 4 2 0 1 1 0 
9 COCY 1 0 0 0 0 0 
9 PAOL 89 3 1 1 0 1 
9 PAVI 12 2 0 1 1 0 
9 SONU 157 22 1 10 0 11 
9 SPAS 18 4 2 2 0 0 
9 ACMI 14 1 0 0 0 0 
9 AMPS 36 13 4 2 2 5 
9 ANNE 11 1 0 0 0 1 
9 CARE 66 15 7 5 3 0 
9 PSTE 1 0 0 0 0 0 
9 RUHI 6 1 0 1 0 0 
9 LEPT 15 3 1 1 1 0 
9 BOeU 18 4 0 1 1 2 
9 SPAS 2 1 0 0 0 1 
9 FBLG 2 1 0 0 1 0 
9 ELCA 1 0 0 0 0 0 
9 PASP 7 3 0 0 2 1 
9 SBLU 2 2 0 0 2 0 
9 BOHI 10 3 3 0 0 0 
9 SETA 2 0 0 0 0 0 
9 MEDI 1 1 1 0 0 0 
9 MELA 1 1 0 0 1 0 
9 ASER 8 1 1 0 0 0 
9 SCHR 1 1 0 0 1 0 
9 LINU 2 0 0 0 0 0 
9 BROW 8 8 7 0 0 1 
9 PLAN 16 4 0 2 2 0 
9 LESP 2 1 0 0 0 1 
9 CODR 1 1 0 0 1 0 
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9 DESM 2 2 0 1 1 0 
9 AMCA 8 2 1 0 0 1 
9 LPLP 3 2 0 1 1 0 
9 LUKN 7 1 0 0 0 1 
9 JUNC 2 1 1 0 0 0 
9 LITH 3 0 0 0 0 0 
9 SOLI 2 0 0 0 0 0 
9 SABA 5 0 0 0 0 0 
9 DAPU 1 1 1 0 0 0 
9 SABR 3 0 0 0 0 0 
9 HEDE 1 0 0 0 0 0 
9 ASCL 1 0 0 0 0 0 
9 CONY 1 0 0 0 0 0 
9 WPET 2 0 0 0 0 0 
9 ERIG 1 o. 0 0 0 0 
9 DIOD 1 1 0 0 0 1 

10 sese 350 38 9 10 5 14 
10 ANGE 115 14 5 0 5 4 
10 AROL 39 1 0 0 0 1 
10 BRJA 11 6 1 0 5 0 
10 BUDA 4 2 1 0 1 0 
10 CYDA 45 2 1 0 1 0 
10 PAOL 91 7 2 0 1 4 
10 PAVI 29 6 2 1 3 0 
10 SONU 150 35 3 8 15 6 
10 SPAS 54 '5 0 0 2 3 
10 ACMI 4 0 0 0 0 0 
10 AMPS 5 1 0 1 0 0 
10 ANNE 0 0 0 0 0 0 
10 ARLU 3 0 0 0 0 0 
10 CARE 39 6 3 1 1 1 
10 SPAS 8 3 0 1 1 1 
10 BOCU 12 2 2 0 0 0 
10 PASP 7 0 0 0 0 0 
10 BOGR 1 0 0 0 0 0 
10 SILV 7 1 0 0 1 0 
10 SETA 9 2 0 0 0 2 
10 BOHI 2 0 0 0 0 0 
10 FSGR 3 3 1 2 0 0 
10 LEPT 21 1 0 0 0 1 
10 ELCA 2 ·O 0 0 0 0 
10 BRWE 4 2 0 0 1 1 
10 SABA 2 1 0 0 0 0 
10 LINU 1 0 0 0 0 0 
10 CONY 1 1 0 1 0 0 
10 DIOD 2 1 0 0 0 1 
10 OXAL 1 0 0 0 0 0 
10 SRFO 1 1 0 1 0 0 
10 TPLP 3 0 0 0 0 0 
10 SALM 1 0 0 0 0 0 
10 HEMO 1 0 0 0 0 0 
10 DESM 1 0 0 0 0 0 
10 RUEL 3 0 0 0 0 0 
10 LESP 1 0 0 0 0 0 



10 
10 
10 
10 
10 
10 
10 

PLAN 
LUKF 
KRAM 
SOLI 
TEUC 
OESE 
LECA 

1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 

.0 
0 
0 
0 
0 
0 
0 

* Species names and abbreviations: 
Achillea millefolium 
Agropyron sp. 
Ambrosia psilostachya 
Amorpha cenescens 
Amorpha fruticosa 
Andropogon gerardii 
Andropogon virginicus 
Andropogon sp. 
Antennaria neglecta 
Aristida oligantha 
Artemisia ludoviciana 
Aster ericoides 
Asclepias stenophyla 
Asclepias viridis 
Astragalus sp. 
Avena fatua 
Baptisia sp. · 
Bothriochloa saccharoides 
Bouteloua curtipendula 
Bouteloua gracilis 
Bouteloua hirsuta 
Bouteloua hispida 
Bromus japonicus 
Buchloe dactyloides 
Callirhoe sp. 
Carex sp. 
Chrysopsis pilosa 
Chrysopsis sp. 
Coelorachis cylind~ica 
Conyza canadensis 
Conyza sp. 
Coreopsis tinctoria 
Cornus drummondii 
Cotinus sp. 
Croton glandulosa 
Croton sp. 
cynodon dactylon 
Dactyl is 
Daucus pusilis 
Desmanthus sp. 
Dianthera sp. 
Digitaria sp. 
Diodia sp. 
Echinacea sp. 

0 
0 
0 
0 
0 
0 
0 

ACMI 
AGRO 
AMPS 
AMCE 
AMFR 
ANGE 
ANVI 
ANDR 
ANNE 
AROL 
ARLU 
ASER 
ASST 
ASVI 
ASTR 
AVFA 
BAPT 
BOSA 
BOCU 
BOGR 
BOHI 
BOHI 
BRJA 
BUDA 
CALL 
CARE 
CHPI 
CHRY 
COCY 
COCA 
CONY 
COTI 
CODR 
COTI 
CRGL 
CROT 
CYDA 
DACT 
DAPU 
DESM 
DIAN 
DIGI 
DIOD 
ECHI 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
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Echinochloa crusgalli 
Eleocharis sp. 
Elymus canadensis 
Elymus virginicus 
Eragrastis curtipedicellata 
Eragrastis intermedia 
Eragrastis sp. 
Erigeron sp. 
Eupatorium sp. 
Euphorbia maculata 
Eu~horbia spathulata 
Ga~llardia sp. 
Hedeoma sp. 
Hed¥otis nigricans 
Hel~anthus mollis 
Helianthus sp. 
Hieracium sp. 
Juncus sp. 
Koeleria macrantha 
Krameria sp. 
Lathyrus sp. 
Lespedeza capitata 
Les~edeza sp. 
Lep~dium sp. 
Leptoloma cognatum 
Liatris paniculata 
Liatris sp. 
Linum sp. 
Lithospermum sp. 
Medicago sp. 
Melilotus alba 
Mimosa sp. 
Muhlenbergia sp. 
Oenothera serrulata 
oxalis sp. 
Panicum hispidum 
Panicum oligosanthes 
Panicum virgatum 
Panicum sp. 
Paspalum dilatatum 
Paspalum sp. 
Petalostemum purpureum 
Physalis sp. 
Plantago sp. 
Poa pratensis 
Polygala verticillata 
Polygonum sp. 
Psoralea tenuifolia 
Pyrrhopappus sp. 
Radicula sp. 
Ranunculus sp. 
Rhus copallina 
Rubus sp. 
Rudbeckia hirta 

ECCR 
ELEO 
ELCA 
ELVI 
ERCU 
ERIN 
ERAG 
ERIG 
EUPA 
EUMA 
EUSP 
GAIL 
HEDE 
HENI 
HEMO 
HELI 
HIER 
JUNC 
KOMA 
KRAM 
LATH 
LECA 
LESP 
LEPI 
LECO 
LIPA 
LIAT 
LINU 
LITH 
MEDI 
MEAL 
MIMO 
MUHL 
OESE 
OXAL 
PAHI 
PAOL 
PAVI 
PANI 
PADI 
PASP 
PEPU 
PHYS 
PLAN 
POPR 
POVE 
POLY 
PSTE 
PYRR 
RADI 
RANU 
RHCO 
RUBU 
RUHI 
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Ruellia humilis 
Ruellia sp. 
Rumex sp. 
Sabbatia sp. 
Salvia sp. 
Schrankia sp. 
Scirpus sp. 
Scutellaria sp. 
senecio sp. 
Serinia sp. 
Setaria sp. 
Sisyrinchium sp. 
Solidago alttissima 
Solidago gymnospermoides 
Solidago sp. 
Sorghastrum nutans 
Sorghum halapense 
Sporobolus asper 
Sporobolus repens 
Symphoricarpos orbiculata 
Teucrium sp. 
Torilis arvensis 
Toxicodendron sp. 
Tradescantia sp. 
Tridens flavus 
Trifolium sp. 
Ulmus americana 
Umbelliferae SJ?· 
Unknown compos1te 
Unknown dicotl 
Unknown dicot2 
Unknown forb 
Unknown flat-stem grass 
Unknown grass3 
Unknown mint 
Unknown annual 
Unknown little forb 
Unknown soft-round forb 
Unknown weed 
Valerianella sp. 
Valpia octoflora 
Vinny pea 

RUHU 
RUEL 
RUME 
SABA 
SALV 
SCHR 
SCIR 
SCUT 
SENE 
SERI 
SETA 
SISY 
SOAL 
SOGY 
SOLI 
SONU 
SOHA 
SPAS 
SPRE 
SYOR 
TEUC 
TOAR 
TOXI 
TRAD 
TRFL 
TRIF 
ULAM 
UMBE 
UKCO 
UKDl 
UKD2 
UKNF 
UKFG 
UKG3 
UKMI 
UNKA 
UNLF 
SRFO 
UKNW 
VALE 
VAOC 
VPEA 
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