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CHAPTER I 

INTRODUCTION 

Convection is defined as the transport of mass and 

energy by potential gradients and by gross fluid motion. If 

the fluid motion arises "naturally" from the effect of a 

density difference, i. e., buqyancy, resulting from a 

temperature difference in the gravitational field, then the 

process is termed natural convection, or free convection. On 

the other hand, if the motion of the fluid is induced by some 

external means such as fluid machinery, the process is 

generally called forced convection. 

In a shell-and-tube heat exchanger where the tube-side 

fluid is moved by a pump or a compressor and there is a 

temperature difference between the tube wall and the fluid, 

the effect of natural convectibn always exists no matter how 

small it is, compared with the forced convection effect. The 

effect of natural convection would be superposed on the 

forced convection. This combined forced convection and 

natural convection process is called mixed convection. 

Within the gravity field of the earth, one would say 

that mixed convection is the most general type of phenomenon, 

while pure forced or pure free convection are only the 

limiting cases when either type of mixing motion can be 

1 



neglected in comparison to the other. However, for 

convenience of analysis, one prefers to use a correction 

factor on the limiting case unless both free and forced 

convection effects are of comparable order of magnitude. For 

instance, in the case of turbulent flow iriside a small 

diameter tube usually the natur,al convection can be neglected 

and a pure forced ,convection predictioh can be used. On the 

other hand, for most heat exchangers used in some solar 

energy systems or electronic element cooling systems where 

the velocity of working fluid is relatively slow and the flow 

is in laminar or transition region, the effect of natural 

convection should be taken into account using a method for 

mixed convection. 

When natural convection effects are pronounced, the 

orientation of the tub'e axis becomes important. For _example, 

in vertical tubes the velocity due to buoyancy forces are 

parallel to the direction of the forced motion; thus, 

rotational symmetry is retained, and it is possible to solve 

analytically the equations of motion and energy even in the 

case of mixed convection. However, in the case of horizontal 

tubes, the buoyancy-induced motion is perpendicular to the 

forced main flow direction, resulting in the loss of 

rotational symmetry. The fluid motion is thus much more 

difficult to analyze, hence one can appreciate the 

mathematical difficulties encountered in solving the 

resultant problem. The horizontal tube situation is 

considered in this study. 

2 
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When a flowing fluid is heated in a horizontal tube, the 

fluid near the wall is warmer, and therefore less dense, than 

the fluid further removed from the wall; it therefore flows 

upward along the wall, and continuity requires a downflow of 

the more dense fluid near the center of the tube. This 

buoyancy-induced motion composes a so-called secondary flow, 

compared with the primary forced flow. The motion will 

reverse during cooling. The three-dimensional streamlines 

exhibit a spiraling character down the tube as shown in 

Figure 1. In this case, it is expected that the heat transfer 

coefficient from the tube wall becomes larger than that 

estimated by the pure forced convection prediction. 

To analyze mixed convection in tubes, the following two 

cases are usually considered as possible boundary conditions: 

uniform heat flux (UHF) and uniform wall temperature (UWT) ; 

With UHF, a wall-minus-fluid temperature difference exists ---·----· 
throughout the tube; there~~,._t_:Qe __ s_e_c"aiLd.a.r_;'i._{.J,Q~L.S:..2E,tinues 
---

along the tube axis. This is quite different from the UWT 
-~-~··--- ~~~- ,_,... _______ ..._,... __ ~-

where the secondary flow develops to a maximum intensity and 

then diminishes to zero as the temperature diffarence 

gradually decreases. So, investigation of mixed convection 

with UHF has more significant meaning and is generally closer 

to industrial applications. 

Including the entrance length effect into the mixed 

convection study makes the problem more complex, and of 

course, more practical. Under these circumstances, the 

statement of "fully developed flow" is somewhat ambiguous. 
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One should distinguish the case of the fully developed 

velocity profile and temperature profile from the case of the 

fully developed velocity profil,e but developing temperature 

profile. Similarly, the concept of "entry length" can mean 

either fully developed velocity profile but developing 

temperature profi~e, or simultaneously developing velocity 

and temperature profiles, if the flow condition is not 

clearly specified. For most heat exchanger tubes, the 

simultaneously developing profiles case can simulate the real 

situation, but it is the most difficult problem to analyze. 

Besides the-temperature dependence of density which 

plays the key role in buoyancy-ind':lced secondar~ flow, the 

temperature dependence of other physical properties, 

especially viscosity, also exerts considerable effect on the 

heat transfer problem, es~ecially in the case of a large 

temperature difference between tube wall and the bulk fluid, 

or in the case of certain fluids ~hose properties are 

especially sensitive to temperature. In this study the 

constant property solution (CPS) would mean that every 
~,_~----- ' 

physical property__Qf_th_e_w_Qrking _lluig·'--~!: density, is a 
--- I --------

variable property solution (VPS) would take account of 
----·-------~-~-- ~"'"-'''""''...,.."~-"""-""'~----~---........ ....,."'..,.,..., 

variations with temperature for each property. If the 
~----· Y0"'' ·--~.,-~ ..... ---.. -----~-";:".,..._..,,.....,..-.~w-- -::----__.,...,...._,~, .... ~,,>""L_,.. ...... ___ _ 

equations expressing the temperature dependence function are 

accurate enough, the VPS would approach the real situation. 

In this thesis, theoretical analysis of mixed convection 

inside horizontal tubes with nominally uniform heat flux, 
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including hydrodynamic and thermal entrance regi~~ and 

variable properties, will be carried out. 
-·-~----- ~--~-------________ ,. ___ _ 

Because of the complexity of the problem, no analytical 

solutions can be expected and one can only use a numerical 

approach. This analysis is based on the principles of 

three-dimensional parabolic flow, which permits. a marching 

procedure. A corresponding three-dimensional computer 

program in FORTRAN has been developed. Numerical analyses 

were conducted using conditions of Chen's (1988) 

experimental work. The computational results agree very well 

with experiments. 

From the experimental results, a general correlation 

for laminar mixed convection, which is believed to fit most 

previous data better than previous correlations, has been 

derived. This correlation can be used directly in 

engineering design. 

In addition, by further data reduction, improvements of 

the existing mixed convection flow regime maps have been 

suggested. 



CHAPTER II 

LITERATURE SURVEY 

The effect of natural convection on forced convection 

heat transfer has drawn attention as early as the 1930's. 

Colburn (1933) is one of the pioneer workers studying 

combined forced and natural convection heat transfer. 

Afterwards, Sieder and Tate (1936), and Kern and Othmer 

(1943) modified and developed the original pioneering work. 

Eubank and Proctor (1951) first presented a mixed convection 

Nusselt number correlation. Since the late 60's, an 

increasing number of researchers have studied mixed 

convection, either experimentally or theoretically, or both. 

Many experimental data, analytical methods, and correlations 

have been publi~hed since then. 

Experimental Approaches 

Petukhov and Polyakov (1967) conducted an experimental 

study of laminar flow of water in a horizontal stainless 

steel tube (18.9 mm ID). The electrically heated (AC) length 

of 1.85 m (73 in.) was preceded by a 1.8 m (71 in.) calming 

length. Numerous thermocouples were attached to the tube 

7 
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wall at various axial and circumferential locations. The 

tube wall was also rotated to provide greater refinement of 

the measurement of circumferential temperature distribution. 

The experiments were performed for a range of Reynolds 

numbers from 50 to 2,400 and Rayleigh numbers from 2x10 5 to 

4x10 7 • All physical properties were evaluated at the axial 

local bulk temperature and the Grashof number was based on 

the average wall.heat flux. Figure 2 shows their 

experimental data of average local Nusselt number versus 

(z/di)/(RePr). Compared to the pure forced convection 

prediction, these data clearly show that the higher the 

Rayleigh number, the higher the local heat transfer rate and 

the shorter the entrance length. 

Siegwarth and Hanratty (1970) performed experimental 

studies of the effect of secondary flow on the fully 

developed temperature field and -primary flow to support 

their analytical study (Siegwarth et al. 1969). They used a 

10.97 m (36 ft) length of 64 mm (2.525 in.) ID tube with 

electrical heating on the outside of the tube. The wall 

temperature was measured at intervals along the entire 

length of the tube and at each axial station thermocouples 

whose junctions were approximately 2.4 mm (3/32 in.) from 

the inside wall, were spaced at 45°- interval around the 

circumference of the tube. Because they used a relatively 

thick wall, 25.4 mm (1 in.), and a material of high thermal 

conductivity, aluminum, they assumed a constant temperature 

around the inside circumference at any axial location, 



Nu 
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Figure 2. Local average heat transfer data 
(Petukhov and Polyakov, 1967) 
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though they had found variations of the temperature around 

the inside wall. Tests were conducted under conditions wh~re 

Tw-Tb was constant over the last two meters of the heating 

section where they believed fully developed velocity and 

temperature profiles had been reached. Ethylene glycol was 

used. In addition, v~locity and temperature,profiles were 

measured near the end of the heating section. They found 

relatively large secondary flo'ws for temperature differences 

between the wall and the fluid as low as 0:03°C (0.05°F) 

Hussain and McComas (1970) made an experimental 

investigation of combined forced and free convection in a 

25.4 mm ID, 3 m long uniformly heated horizontal tube 

preceded by a 2.13 m length of brass tube calming section. 

They tested air at Reynolds numbers between 670 and 3,800 

and Grashof numbers, based on the wall to bulk temperature 

difference, between 10,000 and 1,000,000. They found that, 

far from the thermal entrance and at Reynolds numbers below 

1,200, the local Nusselt nuffiPer was below the constant 

property pure forced flow prediction by Siegel et al. 

( 1958) . For the runs in the ,Reynolds number range from 1, 500 

to 2,~00, the data follow the forced convection solution 

closely in the thermal entrance region. The experimental 

results then started to deviate from that prediction giving 

increasingly higher values until a maximum occurred, and 

then the Nusselt number decreased with axial distance in the 

latter portion of the tube. For Reynolds numbers between 

2,300 and 3,800, the local Nusselt number was higher than 



predicted in the latter portion of the tube. They predicted 

a possible difference in the behavior of gases and liquids. 

Also, they observed significant peripheral temperature 

variations, the wall temperature at the top of the tube 

being as much as 7°C higher than at the bottom of the tube 

for the upper range of Grashof numbers investigated. They 

attributed this to free convection. In addition, they 

claimed that no fully developed condition exists in the 

presence of free convection. 

11 

Bergles and Simonds (1971) conducted visual and 

experimental investigations of water in a horizontal coated 

glass tube (11 mm ID, 0.76 m long) with constant heat flux. 

A 0.91 m (36 in.) length of copper tube was used for the 

entrance section and a dye injection needle was mounted on 

the tube centerline axially. They observed that the dye 

clearly delineated the spiraling streamlines characteristic 

of developing secondary flow. Raising the heat flux at 

constant flow rate tended to decrease the axial pitch of the 

streamlines, while the same effect was produced by 

decreasing the flow rate at constant heat flux. They 

suggested that the dye trajectories could be used as a crude 

test of fully developed flow, and that a fully developed 

condition occurred when the dye completed at least one 

spiral by the time it reached the end of the tube. They 

concluded that the thermal development length when secondary 

flow existed was shorter than that required by the pure 

forced convection prediction (Kays and Crawford, 1980) . 
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Depew and August (1971) studied the influence of 

buoyancy forces on convection heat transfer in a horizontal, 

isothermal tube by cooling experiments. A constant wall 

temperature condition was achieved by boiling Freon-12 in 

the annular space around the testing section. (Whether this 

actually achieves an isothermal wall is very questionable) . 

Working fluids were water, ethyl alcohol, and a mixture of 

glycerol and water. The cooling section was 0.57 m long of 

19.9 mm ID copper tube, preceded ~Y a 2.44 m long adiabatic 

inlet calming section to approach a fGlly developed velocity 

profile, which seems to be impractical in engineering 

applications. They pointed out that the influence of 

buoyancy forces was generally less in the uniform wall 

temperature situation than when a uniform heat flux was 

imposed. 

Morcos and Bergles (1915) investigated the effects of 

property variations on fully developed laminar flow heat 

transfer and pressure drop in horizontal tubes. !hey 

identified two classifications of uniform heat flux boundary 

conditions: uniform heat flux axially and circumferentially, 

i.e., zero wall conductivity, (ZC) and uniform heat flux 

along the tube but uniform temperature at each axial 

location, i.e., infinite wall conductivity, (IC). They used 

a coated glass tube (10.6 mm ID, 1.03 m heat length) for the 

ZC condition and a stainless steel tube (10.2 mm ID, 1.22 m 

heat length) for the IC condition. Before the heating 

section, a 1.9 m long tube was used to meet the "fully 
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developed velocity profile 11 assumption. Distilled water and 

ethylene glycol were used as working fluids. They observed a 

pronounced effect of free convection on heat transfer, as 

much as six times higher than the constant property 

prediction. They suggested that the Nusselt number was 

affected not only by Rayleigh number and other variations in 

the physical properties of the working fluids, but also by 

the circumferential conductance of the tube wall. 

Kate, Watanabe, Ogura, and Hanzawa (1982) conducted a 

comprehensive study of the effect of natural convection on 

laminar flow heat transfer in horizontal tubes with a high 

uniform wall temperature. In their experimental apparatus, 

copper tubes(28 mm ID, and 47 mm ID) and a stainless steel 

tube (56 mm ID) were used. The length of those tubes was in 

the range of 0.5-1 m according to their inside diameter. A 

length of tube 40-50 times the inside diameter was used as 

the calming section. Temperature was measured at 13 points 

in one cross section at various distances from the inlet of 

the tube. Air or nitrogen gas was the working fluid. Wall 

temperature, Reynolds number and inlet temperature of gas 

were in the range of 50 to 500°C, 100 to 1,500, and 15 to 

25°C, respectively. However, they did not find the 

peculiarity mentioned by Hussain and McComas (1970) 

(increasing and then decreasing Nusselt number) for air at 

low Re with constant heat flux. Their experimental data 

agreed well with the numerical results and an empirical 



equation was obtained which successfully correlated both 

liquid and gas data. 

14 

Coutier and Greif (1985) made an investigation of 

laminar mixed convection inside a horizontal isothermal 

tube. The copper test tube (25.4 rnrn OD,3 rnrn wall, and 1.52 m 

long) was immersed in a constant temperature water tank to 

ensure the uniform wall temperature boundary condition. A 

long piece o~ well-insulated tube preceded the entrance to 

the testing tube, ~ns~ring that'a fully developed velocity 

profile was a good assumption for their inlet conditions. 

Fluid and wall temperat~res were measured at four axial 

locations. At each of the locations, five thermocouples were 

used. Two of them were inside the tube and recorded the 

fluid temperature at the tube centerline and at two-thirds 

of the radius. Three of them recorded outside wall 

temperature at 9=0°, 90°, and, 180°. Water and a propylene

glycol solution were used as the working fluids in the 

cooling experiments. Reynolds numbers ranged between 40 and 

1,160, and Rayleigh nurnbers,from 1.6x106 to 9x10 6 • They 

also conducted a numerical analysis and their results for 

the temperature profile agreed well with the experimental 

data. They concluded that in their study the flow was 

developing thermally throug~out the entire length of the 

short tube, and over the range of conditions tested, the 

heat transfer in horizontal isothermal tubes was shown to be 

strongly dependent on the secondary flow. 
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In order to simulate more closely the real situation 

for horizontal tubes inside shell-and-tube heat exchangers, 

Chen(1988) performed an experimental study of heat transfer 

in high laminar,transition, and lower turbulent flow regimes 

in a horizontal tube. He used a stainless steel tube (16.07 

mm ID, 3.95 m long) with a square~edged entrance and heated 

the tube by electrical D. C. current for almost the entire 

length of the tube. Outside surface temperatures were 

measured at 12 axial stations, and at each station 4 or 8 

thermocouples were located around the circumference. 

Distilled water and diethylene glycol (DEG)-water scilutions 

were used as the .working fluids. The experiments covered 

local bulk Reynolds numbers between 121 and 12,400, Prandtl 

numbers between 3.5 and 285, and Grashof numbers, between 

930 and 1.04x106 • A total of 48 runs were conducted. Chen's 

data will form the major experimental support for this 

analysis. 

Theoretical Approaches 

Compared with experimental approaches, there are 

relatively few theoretical studies of mixed convection in 

horizontal tubes. The reported approaches include 

perturbation analysis, boundary layer approximation, 

vorticity analysis, and finite difference solution. Most of 

them have assumed a fully developed velocity profile at the 



16 

start of heating. The usual boundary conditions for those 

studies are either uniform wall temperature (UWT) or uniform 

heat flux (UHF) . The latter (UHF) has been further 

classified into the zero wall conductivity (ZC) model and 

the infinite wall conductivity (IC) model. 

After pointing out the very limited applicability of a 

perturbation analysis by Morton (1959), Mori and Futagami 

(1967) studied mixed convection of fully developed velocity 

and temperature fields in uniformly heated horizontal tubes. 

The infinite conductivity boundary condition was used. Based 

on their experiments and visualizations, they divided the 

tube flow into two parts: a flow in a thin layer along the 

tube wall and a flow in a core region. In the thin layer, 

velocity and temperature fields were affected by viscosity 

and thermal conductivity, and a boundary layer approximation 

was applied in the analysis. On the other hand, in the core 

region, velocity and temperature fields were affected mainly 

by the secondary flow and the effect of viscosity and 

thermal conductivity could be disregarded. On these 

assumptions, a boundary layer integral method was used, and 

correlations between Nusselt number and ReRa were obtained 

in the region of Pr not far from unity (Table I) . 

Theoretical results were in good agreement with their 

experimental data for air. 

Faris and Viskanta (1969) made an analytical study of 

laminar mixed convection heat transfer in a horizontal tube. 

They observed that for UHF condition, fully developed heat 
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transfer was reached asymptotically after a considerable 

starting length, e.g., z/d > 700 was needed to establish 

fully developed heat transfer prof-iles for water, (Shannon 

and Depew, 1968). However,their analysis was still confined 

to the fully developed velocity and temperature profile 

region, so.that the reduced governing equations could be 

solved by a perturbatipn method. After comparing their 

theoretical predictions with available experimental data, 

they claimed the validity of the perturbation method. One of 

the conclusions in that paper'., is that for all liquids, 

excepting liquid ~etals, the assumption that the inside tube 

wall temperature was uniform circumferentially was 

justifiable for ordinary tube thicknesses in view of the 

fact that the ratio of the thermal conductivities of the 

tube wall to that of the fluid was usually very high. 

However, this conclusion seems to be contrary to ·the results 

of most experimental _studies.· 

Newell and Bergles (1970) analyzed the problem of fully 

developed flow in uniformly heated horizontal tubes, with 

density as the only temperature-dependent property. They 

suggested that the development of the secondary flow could 

be considered to occur in two stages: at stage one, the 

temperature profile develops almost as a symmetric flow, but 

a nonuniform radial density distribution develops; at stage 

two, the body force (gravity) comes significantly into play. 

Their estimate for the length of stage one is L1/d S 

O.OSRePr. 
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After introducing the stream function, they solved the 

2-D momentum equations and energy equation by a finite 

difference method. Their computational data revealed as high 

as 59°C (106°F) temperature difference between the top and 

bottom of the inside tube wall (Figure 3) . Furthermore, they 

found that the wall temperature at the bottom can be less 

than the local bulk temperature (Figure 3) ·. Both ZC and IC 

boundary conditions. w;ere considered. The interesting results 

for these two conditions are shown on Figure 4. They 

concluded that because of. the complex nature of the problem, 

additional dimensi.onless groups wou-ld be required to 

correlate data for more than one' fluid. They recommended 

developing and using a 3-D soluti6n. 

In Hieber's (1974,1981,1982) theoretical 

investigations, the development of the velocity and 

temperature fields within an isothermal horizontal tube 

consists of a succession 'of r·egions, proceeding in the axial 

,direction: a "near region", wher~ buoyancy is a small 

perturbation upon the forced flow; a "intermediate region", 

where natural convection is dominant and the thermal 

boundary layer is_ axially invariant; a "break-u~ region", 

where the core region interacts with the thermal boundary 

layer and the natural convection effects therefore diminish; 

and a "far region", where· the forced convection reappears as 

the dominant transport mechanism and the fluid temperature 

approaches wall temperature asymptotically in a Graetz-like 

manner. He attempted to include all previous experimental 
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Figure 3. Circumferential inside wall temperature variation 
(Newell and Bergles, 1970) 
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aata into a se~i~analytical correlation with a different 

format, but his correlations are not easily acceptable 

because the definition of most of the parameters in his 

correlation differ from the ones in engineering 

applications. For example, the Grashof number and Nusselt 

number are based on the diff·erence of Tw and Tin' which is 

always constant for a certain ope.rating condition with UWT 

boundary. 
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While most of the analytical efforts concentrated on 

determining the effects of variable density,· Hong and 

Bergles (1976) added'effects of v~riable viscosity, which is 

another most important temperature-dependent property, into 

the fully developed mixed convection study. They used the 

two region (boundary layer and core) model and UHF boundary 

<;::ondition. They introduced a new viscosity parameter, y!l.T, 

and developed correlations for·variable viscosity mixed 

convection. 

Patankar, Ramadhyani, and S~arrow (1978) studied the 

effect of circumferentially nonuniform heating on fully 

developed, laminar mixed convection in a horizontal tube. 

Two heating conditions were investigated, one in which the 

tube was uniformly heated over the top half and insulated 

over the. bottom, and the other in which the heated and 

insulated portions were reversed. The results were obtained 

numerically for a wide range of the governing buoyancy 

parameter and for Prof 0.7 and 5. They found that bottom 

heating gives rise to a vigorous buoyancy-induced secondary 
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flow, with the result that the average Nu were much higher 

than those of pure forced convection, while the local Nu 

were nearly circumferentially uniform. It was also 

demonstrated that the buoyancy effects were governed solely 

by the modified Gr, based on wall heat flux, without regard 

for the Re of the forced convection flow. 

Numerical solutions for laminar mixed convection in the 

entrance region of a horizontal tube where the velocity and 

temperature profiles are developing simultaneously are 

available only in a few limited cases, due to the attendant 

complexities arising from the three-dimensionality of the 

flow. Hieber and Sreenivasan (1974), and Ou and Cheng (1977) 

obtained the solutions of the entry flow problem by using 

the large Prandtl number assumption. As the matter of fact, 

this assumption implies that the secondary flow is not 

significant in the momentum equations, but is important in 

the energy equation, so that one could neglect the nonlinear 

inertia terms in the momentum equations and avoid the chief 

difficulty in obtaining a numerical solution. Obviously, 

this assumption is unsatisfactory to describe the 

characteristics of fluid flow and heat transfer for ordinary 

gases and even smaller Prandtl number fluids. 

Without the aid of a large Prandtl number assumption, 

Hishida, Nagano, and Montesclaros (1982) performed 

analytical studies on mixed convection in the entrance 

region of an isothermally heated horizontal tube. Numerical 

solutions were presented for the developing primary and 



secondary velocity profiles, developing temperature 

profiles, local wall shear stress, and local and average 

Nusselt numbers. Figure 5 shows the variation of the 

circumferential average Nusselt number with Grashof number 

(which is based on Tw-Tin) as a parameter. With the addition 
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of free convection effects,the average Nu becomes higher 

than that for the pure forced convection (Gr=O} . After 

reaching a local maximum value, Nu decrease~ again until the 

limiting value,of Nu=3.66 is approached. It was claimed that 

increasing Gr decreases the entrance length prior to the 

onset of significant free convection effects and increases 

the local maximum of Nu. 

Assuming uniform heat flux, Aihara and Maruyama (1986} 

carried out a numerical analysis of laminar mixed convection 

heat transfer in a vertical tube, taking into account the 

temperature dependence of the physical properties. They 

found that in the case of UHF ducts, the difference of heat 

transfer characteristics between constant property solution 

and variable property solution is not so large as in the 

case of UWT ducts. The difference of local Nu is less than 

25% for air and 50% for transformer oil. 

Most recently, Choudhury and Patankar (1988} presented 

a nume~ical study of the developing laminar flow and mixed 

heat transfer in an inclined isothermal tube with constant 

properties. Three independent parameters;' Pr, Ra*, and a 

parameter related to the relative magnitude of buoyancy and 

inertial forces, appeared explicitly in the governing 
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equations. With suitable choices of these parameters, the 

vertical and horizontal orientations of the heated tube 

could be recovered as limiting cases. The governing 

equations were solved numerically by a modified version of 

the finite-difference method for 3-D parabolic flow 

described by Patankar and Spalding (1972) . The computations 

were carried out for Pr of_0.7, 5, and 10. Ra* was varied 

between 0 and 10 6 • This choice of parameters covers a wide 

range of possible combinations of fluid properties, fldw 

rate, temperature difference, and inclination angles. The 

results obtained from the computation included Nu, friction 

factor, velocity profile, isotherm maps,and secondary flow 

patterns in the entrance region of the tube. Comparisons 

with numerical and experimental results for the vertical and 

horizontal tube orientations ~hown reason~bly good 

agreement. They found that the buoyancy-induced secondary 

flow distorts the axial velocity and temperature 

distributions and the nature of the distortion depends on 

the relative magnitudes of Ra* and the inclination angle. 

But the effect of Pr is diminished for Pr greater than 10. 

The circumferential average Nu and the friction factor 

reached a local maximum at an axial location where the 

buoyancy effects were the most intense. 

As for the entrance effect, on the other hand, Siegel, 

Sparrow, and Hallman (1958) solved the pure forced 

convection thermal-entry-length problem for fully developed 

laminar flow in circular tube with UHF condition. By using 
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the method of separation of variables and Sturm-Liouville 

theory, they obtained an eigenvalue solution, which has been 

widely accepted and used as a standard reference case. 

Correlations 

A number of empirical correlations have been proposed, 

and some of 'them have been widely used in engineering 

applications, for the heating or cooling of various fluids 

in horizontal mixed convection tube flow with either UWT or 

UHF boundary co~ditions. According to the original 

experimental conditions,these correlations were individually 

applicable to fully developed v~locity and temperature 

profiles, fully developed velocity profile but developing 

temperature profile, or simultaneously developing velocity 

and temperature profiles. Most of them were attempted with a 

view toward obtaining an axial average Nusselt number, 
I 

though some of them gave local values. A summary of the 

important correlations and their experimental conditions, if 

given, is presented in Table I. 

Flow Regime Maps 

Exactly speaking, for laminar flow in horizontal 

tubes,mixed convection is the general case in most 

situations involving heat transfer. Pure forced convection 

or natural convection are only the extreme cases, when one 



Reference 

Ede (1961) 

Petukhov & 

Polyakov(1966) 

Mori & Futagami 

(1967) 

Morcos & Bergles 

(1975) 

Hong & Bergles 

(1976) 

TABLE I 

CORRELATIONS FOR MIXED CONVECTION IN HORIZONTAL TUBES 

A. Fully Developed Velocity and Temperature Profiles 

Boundary 
Conditions 

UHF 

UHF 

UHF 

UHF 

Correlations 

~u = 4.36 (1 + 0.06Gr3) 

Nu = 4.36[1 + Ra/(1.8 x 1 Q4)]0.045 

.Nu/NuF = 0.04085 (ReRa*)o.5 

Nu/NuF = 0.04823 (ReRa*)o.5 

Nu = {(4.36)2 + [0.145(GrPr1.351Pw 0.25)]2}0.5 

Nu = [0.8823 + 0.0153y~T + 0.1481(y~T) 2 
UHF(IC) + 0.00334(y~T)3]Ra0.25 

Nu = [0.877 + 0.0563y~T]Ra0.25 
Nu = [0.661 + 0.14y~ T - 0.0098(y~ T) 2 

UHF(ZC) + 0.027(y~T)3]Ra0.25 

Nu = [0.663+0.0886y~T +0.00526(y~T)2]Ra0.25 
where 'Y = - dJ.I}dT /Jl 

Range of Applicability 

Re < 2300 

Pr = 0.72 

- Pr = 1.0 

Ra: 3 x 1 o4 - 1 os 

1.5 ~ y~T ~ 0 

0 > y~T ~ 1.0 

2.0 ~ y~T ~ 0 

0 > y~T ~ 1.0 

N 
-.....! 



Reference 

Colburn(1933) 

Sieder & Tate 

(1936) 

Kern & Othmer 

(1943) 

Eubank & 

Proctor(1951) 

Oliver (1962) 

Brown & Thoma~ 

(1965) 

Depew& 

August (1971) 

TABLE I (continued) 

B. Fully Developed Velocity, but Qeveloping Temperature Profiles 

Boundary 
Conditions 

UWT 

uwr 

UWT 

UWT 

UWT 

UWT 

UWT 

Correlations Range of Applicability 

Nu(J.1t/J.Lb) 113 = 1.75Gz113(1 + 0.015Gr113) Pr: 0.76 - 160 

Nu = 1.75(J.Lw/J.lb)0·14Gz(1 + 0.01Gr113) 

NU(J.1wiJ.11:))0··1.4 = 1.86(R~Prdi/L) 1/3 

x 2.25(1 + 0.01Gr113)/Log(Re) 

NU(J.lw/J.lb)0·14 = 1.75[Gz + ).26(GrPrdi/L)0.4]1/3 

Nu(J.1.,/J.1b)0·14= 1.75[Gz + 5.6 x 1o-4(GrPrlldi)o. 7]1l3 

NU(J.lw/J.lb)0·14 = 1.75[Gz + 0.012(GzGr113)4/3]1/3 

Nu(J.1w/J.lb)0·14 = 1.75[Gz + 0.12(GzGr113pr0.36)o.ss11/3 

N 
CXl 



TABLE I (continued) 

B. Fully Developed Velocity, but Developing Temperature Profiles 

--------------------------------------------------------------~---------------------
Reference Boundary 

Conditions 
Correlations Rang~ of Applicability 

----~----------------------------------------------.....:.-------------------------....;:.., _____ _ 
Hong et al. 

(1974) 

Kato et al. 

( 1 9 82) 

Abdelmessih 

(1986) 

UHF 

UWT 

UHF 

~u := 0.378Gr0.28pr0.33/Pw 0.12 

· -- f\IU(J.Lwlllb)0·J 4 = 1.75[Gz + 0.63 

x 10-3(GzGr0.83)0.97i1/3 

Nu = 4.364 + 0.3271 (GrPr)0·.25 (J.Lwlllb)0· ~ 4 

Re: 100-2000 

Gr: 20 x 1 o3 - 5 x 1 os 

Re: 120 - 2500 

Gr: 2500 1.13 x 106 

Pr: 3.9 - 110 

N 
1.0 



Reference 

Jackson et al. 

(1961) 

Hieber 

(1982) 

Yousef & Tarasuk 

(1982) 

Chen 

(1988) 

TABLE I (continued) 

C. Simultaneously Developing Velocity and Temperature Profiles 

Boundary 
Conditions 

UWT 

UWT 

UWT 

UHF 

Correlations 

1/6 
Nu = 2.67[Gz2 + (0.0087)2(GrPr) 1·51 

0 14 3 3 1/3 
Nu = (IJ.wfl!b) · [Nu8 + NuF 1 

Nu 8 = ~(GrPr)0 ·25[1og(1 + 0.4785crL)]/2.2crL 

-1/3 
NuF = 1.282(2UdiRePr) exp(-8.2L/diRePr) 

+ 1.828[1 - exp(-13.5UdiRePr)1 

crL = (GrPr)0·25(2L/diRe Pr) 

Range of Applicability 

Gz: 60 - 1300 

N u (~w,~b) 0·14 = 1. 75[Gz where X = (x/0)/(RePr) 

. +0.245(Gz1·5Gr113)0·8821113 0.0073 <X< 0.04 

Nu(~w/~b)0 · 14= 0.969Gz0·82 0.04 <X< 0.25 

Nu = [4.364 + 0.001 06Re0.81 Pr0.45( 1 

+ 14exp(-0.063x/di)) + 0.268((GrPr)0.25 

(1 - exp(-0.042x/di))H~w/~b)o. 14 

Re: 121 - 2100 

Pr: 3.5 - 282.4 

Gr: 930 - 67300 

w 
0 
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of the processes can be neglected. However, in the view of 

engineering applications, one wants to know exactly when the 

natural convection can be neglected and when it must be 

accounted for. In other words, one should be able to predict 

which regime a given application will be in --- forced, 

natural, or mixed convection. Metais (1963), and Metais and 

Eckert (1964) made an original exploration towards this 

goal. After a study of·the available literature, they 

established criteria between these various regimes and 

presented empirical regime maps for vertical and horizontal 

tubes. The limits of ·the forc~d ~nd natural convection 

regimes were defined in such a way that the actual heat flux 

under the combined influence of the forces did not deviate 

by more than 10 percent from ,the heat flux that would be 

caused by the external forces alone or by the body forces 

alone. Figure 6 is one of the maps they provided for the 

horizontal orientation. Since there were only a few 

experimental studies' and no theoretical study for horizontal 

tubes at that time, they claimed that the results for 

horizontal tubes were more tentative than those for vertical 

tubes and they proposed further study in this area. But to 

the author's knowledge, these maps are the only ones on 

mixed convection flow regimes. The original regime maps have 

been widely applied, though they need further investigation, 

especially for horizontal tubes. 
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Summary of the Survey 

1. Laminar mixed convection in horizontal tubes is a 

very complex phenomenon and it is worth further 

investigation. 

2. With regard to this survey, there are more 

experimental studies on mixed convection than theoretical 

ones. 
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3. Most of the works surveyed have avoided the entrance 

length effect, especially on velocity profile, and used 

uniform tube wall temperature (at least circumferentially) 

boundary conditions. 

4. To the author's knowledge, the only two 3-D 

numerical solutions for mixed convection including entrance 

length are for UWT boundary conditions (Hishida, Nagano, and 

Montesclaros, 1982, and Choudhury and Patankar, 1988) . No 3-

D solutions for UHF boundary conditions have been reported. 

5. Generally speaking, each published correlation is 

only valid for its specific experimental condition and 

fluid, and may not be valid for others. No general 

correlation for mixed convection in horizontal tubes 

including entrance effect has been developed. 

6. The current flow regime maps for mixed convection 

have been unchanged since 1964. 



CHAPTER III 

THEORETICAL ANALYSIS 

Problem Statemeni 

The horizontal tube in Chen's (1988) experimental 

apparatus (Figures 7 and 8) is the model for this analysis. 

This tube with a square-edged entrance closely simulates 

the tubes in most shell-and-tube heat exchangers. The fluid 

enters the tube with a uniform velocity win and at a 

uniform temperature Tin' The tube wall heat flux is held 

nominally constant at q"w by passing D.C. current through 

the tube wall. 

Since the gravitational- force is perpendicular to the 

axis of the tube, the buoyancy-induced secondary flow acts 

at each cross section of the tube and superimposes on the 

primary flow, resulting in a three-dimensional spiraling 

movement. Therefore, the buoyancy force will appear in the 

governing equations for secondary flow. 

Besides the density of the fluid, other properties, 

such as viscosity, may demonstrate significant temperature

dependence and have considerable effect on heat transfer 

and fluid flow. In this analysis, water and water

diethylene glycol solutions are employed as the e~ample 
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L = 3.95 m 
I 

di=16.07mm .. 
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Station 1 2 3 4 5 6 7 8 9 10 . 11 12 
Number 

Station Number 1 2 3 4 5 6 7 8 9 10 1 1 12 

z (m) 0.0386 0.114 0.215 0.418 0.62 0.823 1.025 1.229 1.634 2.039 2.849 3.926 

Number of 

Thermocouples 4 8 8 4 8 4 8 4 

Figure 7. Test section (Chen, 1988) 
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F: Heating Coi 1 S: Stirrer 
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H: Heat Exchanger W: Pump 

. Figure 8. Experimental apparatus (Chen, 1988) 



fluids for computation and property variation with 

temperature and composition has been taken into account. 

In ,a word, the problem to be analyzed in this work is 

that of simultaneously developing laminar flow and heat 

transfer profiles of variable property fluids with 

appreciable buoyancy effects in a uniformly heated 

horizontal tube. 
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Figure 9 shows the cylindrical polar coordinate system 

and the corresponding velocity components for the present 

study. Because the gravitational force is exerted only in 

the vertical direction, symmetry about the vertical central 

surface is retained; hence, the calculation can be 

restricted to a solution domain that comprises one-half of 

the circular region as shown in Figure 9. 

Three-Dimensional Parabolic Flow 

In most cases tube side flows in shell-and-tube heat 

exchangers are characterized by the absence of reverse flow 

or separation and by a nearly uniform pressure over any 

cross section. Such flows can be treated as parabolic flow. 

Patankar and Spalding (1972) described the following 

conditions for parabolic flow: 

1) . There exists a predominant direction of flow, 

i.e., there is no reverse flow in that direction, 

2). the diffusion of momentum, heat, mass, etc. is 

negligible in that direction, and 
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Figure 9. The coordinate system and corresponding velocity components 



3}. the downstream pressure field has little influence 

on the upstream flow conditions. 

When these conditions are satisfied, the coordinate, 

z, in the main flow direction, becomes a 'one-way' 

COOrdinate; i.e., the UP,Stream COnditions Can determine the 

downstream flow properties, but not vice·versa. It is this 

convenient behavior of the parabolic flow that enables one 

to employ a marching procedure starting at the inlet plane 

and proceeding to successive cross-sectional planes 

downstream al~ng the z-direction. 

The advantage of a marching or parabolic procedure is 

that, although the flow domain is three-dimensional, the 

entire tube need not be considered at once. At any given 

station, the computational problem is to obtain, from the 

known values of the variables on an upstream plane, the 

unknown values of the variables on the next downstream 

plane. Successive repetition of this basic operation is 

used to cover the total length of the tube. Restriction of 

the basic computational module to the region between two 

planes implies that computer storage is needed for the 

variables only on the two planes and not throughout the 

entire tube. 

For a three-dimensional parabolic flow, the pressure 

variations across the cross section are so small that they 

would have negligible effect if included in the streamwise 

momentum equation. Thus, cross section pressure variations 
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have been neglected in the streamwise momentum equation. On 

the other hand, these small pressure variations are 

included in the e- and r-direction momentum equations since 

they play an important role in the distribution of the 

generally small components of the secondary flow velocity 

at the cross section .. 

Assumptions 

Concerning the mixed convection problem in this study, 

the following assumptions are made: 

1). It is a parabolic flow in the z-direction. 

2). It is a steady state laminar flow. 

3) . Working fluids are Newtonian and properties of the 

fluids are not dependent on pressure. 

4). Energy dissipation ls neglected. 

Governing Equations 

1). Continuity Equation 

.:::. 0 ~ (. ::::{'b a ') a fl a i! 1 ~pu) + 1 ~prv) + ~pw) = 0 
r ae r ar az (3-1) 

2) Momentum Equations 

a-component 
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! 

l~puu) + 1-#-u!rvu) + ~p~) + -!k!Suv) 
r ae J: r ar az J J 

= _ 1 ap + 1_ ~~au) + ~J.ld(ru)) + 2J.Lav + P gp(T ~)sine 
r f r2 ajlae dr r dr r;zae ./ 

,.) 
(3-2) 

r-component 

l ~puv) + 1 ~prvv) + i_(pwv) - !Pu2 
r ae r ar az r 

=- l_ ~ + l bJ.tav) + ~J.Lo(rv)) - 2gou - pg{3(Tw- T)cos9 
r ar r2 ae ae ar r ar r2 ae 

(3-3) 

z-component 

(3-4) 

3) . Energy Equation 
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(3-5) 

Boundary Conditions 

At inlet 

z=O, w=win' T=Tin' u=v=O 

At tube wall 

r=R, u=v=w=O, T=Tw, q"w is given (constant or 

variable) 

At vertical symmetry plane 

9=0 and 9=~, u=O, av;a9=aw;a9=dT/a9=0 



CHAPTER IV 

DEVELOPMENT OF THE NUMERICAL METHOD 

The General Mathematical Model 

Looking through Equations (3-2) to (3-5), one can find 

that those equations can be expressed by one general model. 

Let ~ denote the dependent variables u, v, p, T, and w in 

sequence; theri the general differential equation is 

~ ~pu<j>) + ~ ~prv<j>) + t<pw<j>) 
r aa r ar az 

= l~ra~) + ~rr0~) + s 
r2 aa aa rar ar 

( 4-1) 

Where r is the diffusion coefficient and S stands for the 

source term. r and S are specific to a particular meaning 

of ~ (see Table II). The ~erms on the left-hand side of 

Equation (4-1) are the convection terms, representing the 
' 

flux of ~ convected by the mass flow rate. The terms on the 

right-hand side of the equation are known as the .diffusion 
\ 

terms and the source term, respectively. By the assumption 

of parabolic flow, the diffusion term in the main stream 

direction has been omitted. 

The source term S is primarily meant for representing 
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the mechanisms for the generation (or destruction) of $. 

But it can also be used as a general 'dumping' ground; 

whatever cannot be conveniently expressed through the 

convection or diffusion terms can always be lumped into the 

source term. Because of this flexibility, the assumption 

that every dependent variable, cj) is governed by Equation (4-

1) does not limit the physical processes or the types of 

the dependent variable that can be accommodated in the 

calculation procedure. It provides great convenience for 

computer programming---one solver can deal with a wide 

variety of problems. 

Sometimes the source term depends on the variable $ 

itself. In order that the resulting discretization equation 

remains (at least nominally) linear, the source term S can 

be expressed as a linear function of cj). 

( 4-2) 

where SP is the coefficient of,cj)P, and Sc is the part of S 

that does not explicitly depend on cj). 

Comparing Equations(3-2) to (3-5) with the general 

model and assertions above, diffusion coefficients and 

source terms corresponding to each individual variable in 

this study are listed in Table II. 
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TABLE II 

rAND S FOR ,EACH VARIABLE 

Variable r Sc Sp 

u - rap+ 2flav + pg~(Tw- T) sine _1!_- pv 
rae r2ae ' ' r2 r 

v ll - ap - 2flau + pu2- pg~(Tw- T) cose _1!_ 
ar. r2ae r r2 

T k/Cp Sc(i,M1) = q"w/Cp 

w - dp/dz 

I 
! 



Grid and Control Volumes 

The aim of the numerical method is to calculate the 

values of the relevant dependent variables at a set of 

chosen grid points. In this practice, the computational 

domain is first divided into subdomains, i.e., control 

volumes. Figure 10 shows the scheme of grid and control 

volumes; the dashed lines denote the control volume 

boundaries, the solid lines are the grid lines, and the 

dots denote the grid points. The currently considered grid 

point is marked by P. Its four neighboring points at a 

cross section are marked by N, S, W, E sequentially. And 

its upstream neighbor is P' (Figure 11). 

Because of the characteristic of parabolic flow, each 

grid point is placed at the geometric center of the 

downstream face of the corresponding control volume; 

therefore, the value of $ at the grid point is dominant 

over the whole control volume except on the upstream face. 

Under these circumstances, a given grid point communicates 

with its five neighboring grid points, N, S, W, E, and P', 

through the five faces of the control volume. 

The situation with a near-boundary control volume is 

somewhat different; such a control volume is shown shaded 

in Figure 10. Here, one face of the control volume 

coincides with the boundary of the calculation domain, and 

a boundary grid point is placed at the center of the 
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Figure 1 0. The scheme of grid points 
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control volume face. 

Power-law Scheme 

In order to integrate- the general differential 

equation over the control volume for each grid point, 

profiles or distributions of variable ~' between the grid 

points, are required. For convenience of analysis, a one-

dimensional (x-direction) situation is depicted here; the 

result will be straightfor~ardly'extended to three 

dimensions in following sections. For the on~-dimensional 

convection-diffusion problem, the general equation becomes 

d(pu~- rd~/dx)/d~ s (4-3) 

Assuming constant r and S, for domain 0 ~ X ~ L, with 

the following boundary conditions: 

X = 0, ~ ~0 

and X = L, ~ ~L' 

the exact solution for Equation (4-3) is 

exp(Px)- 1 
L { 1 _ SL/(pu)} + SL/(pu) x_ 

exp(P) - 1 <j> L - <j> 0 . <j> L - <j> o L 
(4-4) 

where P is Peclet number defined by -



P = puL/r ( ~-5) 

In the present convection problem, it is convenient to 

combine the convection and diffusion fluxes that appear in 

Equation (4-3). Let Jj denote the total (i.e., convection 

plus diffusion) flux in the j direction. Then 

( 4-6) 

Consider the region between grid points P and E in 

Figure 12. If a one-dimensional convection-diffusion 

problem without source is solved between points P and E, 

the exponential solution leads to the following expression 

for flux·J 9 , at surface er 

( 4-7) 

where F9 is the mass flow rate (pu) 9 A9 • 

Because the exponential function appearing in Equation 

(4-7) is time-consuming to compute, approximations to the 

flux expression have been sought. After appraising the 

previously used upwi~d scheme and the hybrid scheme, 

Patankar (1980) proposed a power-law scheme: 

where 

J e = Fe cj> e + { D eA ( I p e I ) + [-Fe' 0 ] } ( <l>p -<j>E) 

A(IPI) = [0, (1- 0.11P'I) 5 ] 

( 4-8) 

( 4-9) 

Here the symbol [a,b] is used to denote the greater of a 

and b. It can be seen that the function A_ in Equation (4-8) 
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is much easier to compute than the exponential function and 

that Equations (4-8) and (4-9) provide an extremely good 

approximation to the exact expression given in Equation (4-

7) • 

Discretization Equation 

The discretization form of Equation(4-1) is obtained 

by integrating the equation over a typj,.cal control volume. 

A typical control volume in three-dimensional cylindrical 

coordinates is depicted in Figur~ 11 by dotted lines 

1'2'3'4'1234. An axial .increment Llz is demarcated by two 

planes, perpendicular to the main stream direction, the 

upstream plane and downstream plane. Figure 13 gives more 

details of the cross sectional face of the control volume. 

The points n, s, e, w setting at the faces of the control 

volume, are the midpoints of the lines PN, PS, PE, and PW, 

respectively. 

The z-direction convection across the upstream and 

downstream faces of the control volume is obtained by 

assuming that in the z-direction ~ varies in a stepwise 

manner; i.e., the downstream (z=z0 ) values of <j> are 

supposed to prevail over the interval from z 0 to z 0 except 

at z 0 • This makes the finite-difference scheme a fully

implicit one. While calculating the z-direction convection 

and source terms, the variation of <I> in cross section is 

also taken to be stepwise. Thus, in the rS plane the valu~ 



of ~ is assumed to remain uniform and equal to ~P over the 

shadowed sector (Figure 13) surrounding the point P and to 

change sharply to ~N'~s' ~E' or ~w outside the sector. 

For the combined function of convection and diffusion 

in the cross-stream direction, the power-law scheme 

mentioned previously will be used eventually. However, a 

separate and simple treatment is preferred here as the 

firs~ step of the deduction, so that one can follow the 

integrating process clearly and prec~sely. For .the cross 

stream convection from the Sz and rz faces of the control 

volume, the value of ~ convected is taken to be the 

arithmetic mean of the ~ values on either side of that 

face. A linear variation of ~ between grid points is 

assumed for diffusion across the Sz and rz faces of the 

control volume. 

Based on these assumptions and the principle of mass 

conservation, the general equation can be integrated term 

53 

by term over the control volume shown in Figure 11. 
9 r 

Let L , L stand for convected mass flow rate in e, and 

r direction, respectively, with unit ~z, 

9 
L = ~r~z (pu) ui~Z = ~r (pu) u (4-10) 

L r = r~S~z ( pv) ul~z = r~e (pv) u (4-11) 

The subscript U means these values are defined on the 

upstream plane, therefore, 



o· 
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N 

Figure 13. Cross-sectlonel fece of the control volume 



e e 
L e ( <l>E + <j>p ) I 2 - L w ( <l>w + <j>p ) I 2 (4-12) 

fa (prv<j>) l()rlr (4-13) 

Assume Fu and F 0 stand for mass flow rate across the 

upstream face and the downstream face of the control 

volume, respectively, 

(4-14) 

where division by 8z is 'for consistency with Equations (4-

10) and (4-11). By principles of mass balance, 

r r. e 
F 0 - F u + Ln - L s + L 

then · 
r r e 

F u - L n + L s -L e 

Therefore, 

e 
- L e w 

9 
+ L w 

= 0 

(4-15) 

(4-16) 

9 r 
Suppose T , T represent diffusion in 8 and r direction 

individually, 

9 
r8rl (rfe) T = (4-17) 

r 
rp&clor T (4-18) 

then 

Ja<ra<j>l()8)1d81r2 
9 9 

T e ( <j>E - <j>P ) - T (<j> - <j> ) (4-19) w p w 
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(4-20) 

From source linearization 

(4-21) 

where 

~v = r~9~r~z (4-22) 

Substituting Equations (4-12) to (4-21) into .Equation (4-

1), one gets 

r r r r 9 9 
(-L nl2 + T n)cj>p + (L sl2 + T )cj>p + (-L el2 +T e)cj>P + 

9 9 
( L wl 2 + T w) cj>P + F 0cj>P - , S P~ Vcj>P 

r r · r r 9 9 
( - L n I 2 + T n) cj>N + ( L s I 2 + T s ) cj> 5 + ( - L e I 2 + T e ) cj>E + 

(4-23) 

where the terms with~n'parentheses are the sums of 

convection and diffusion across each face of the control 

volume. The factor 112 arises from the assumption of the 

interfaces being midway. However, one prefers a more 

accurate scheme here, e.g., the power-law scheme mentioned 

in Section 3. Finally the discretization equation becomes 

the following simple form: 

(4-24) 

where 

(4-25) 
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DnA ( I P n I ) + [-F n, 0] 

D SA ( I p s I ) + [ F s' 0 ] 

D eA ( I P e I ) + [-Fe' 0] 

(4-26) 

(4-27) 

(4-28) 

(4-29) 
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At this stage, it is useful to write Equation(4-24) in 

a generalized form 

( 

(4-30) 

where the subscript nb denotes the neighbor grid points of 

P; the summation is to be taken over all the neighbors. 

Treatment of UHF Boundary Condition 

In this investigation, a uniform heat flux (UHF) 

boundary condition is provided by electrical heating. 

Figure 14 shows one of the control volumes involving 

boundary grid point. In most engineering calculations, a 

simple one-side formula was employed for the boundary flux 

(4-31) 

Since ( 4-32) 

Then 

( 4-33) 

Thus, the boundary temperature, T~,Ml' was simply obtained 
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Figure 14. A control volume near the tube wall 



59 

by 

q"w i~r. Ml/k. M2 + T. M2 , ~, l,. l, ( 4-34) 

However, this simple formula would not give a 

converged solution; no matter how many iterations were 

taken, values of Ti,M2 kept linearly increasing. It seems 

that the treatment of the UHF boundary condition is so 

critical to the success of the numerical method that a 

higher-order formula is required. Over the control volume 

near the tube wall described in Figure 14, by neglecting 

tangential flux variation in this volume, the radial flux J 

is assumed to be linear in the r-direction. Then 

(4-35) 

where the flux J is considered to be positive if it enters 

the calculation domain. For convenience of analysis, 

variable substitution is used here. Let 

x = rM1 - r (4-36) 

then 

ax = -ar (4-37) 

In the calculation domain 

x: 0 to 2~rM1 

Then Equation (4-35) becomes 

J ( 4-38) 



Integration gives 

When x TM2 • So, 

Therefore 

(4-39) 

or 

(4-40) 

where J 3 is the energy flux crossing through the bottom 

surface of the volume, which is created by diffusion as 

well as convection and can be computed by a power-law 

scheme. 

It has been established that Equation (4-40) is a 

better expression for boundary temperature under UHF 

condition. This treatment has brought about satisfactory 

results. 

Solving the Nonlinear Equations 

with a Linear Method. 

When one has constructed algebraic equations like 

Equation (4-24) for all internal grid points in the 

calculation domain, and solved the boundary grid by the 

boundary treatment just mentioned, the next task is to 

solve this set of equations. If these equations are truly 
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linear, a straightforward solution would yield the final 

answer. However, it must be recognized at this stage that 

these equations are only nominally linear. The coefficients 

in Equation (4-24) may themselves depend on the value of ~ 

(see Equations (3-2) to (3-5)). Further, since~ can stand 

for a number of physical quantities, such as velocity and 

temperature, the coefficients for one meaning of ~ may be 

influenced by some of the other ~'s. For example, when ~ 

stands for temperature, its discretization coefficients 

depend on velocity u, v, and w as shown in Equation (3-6) 

These velocity components, on the other hand, depend on 

temperature while calculating the variable property 

solution. 

Because of these interlinkages an~ nonlinearities, the 

final solution is to be obtained by iteration. At any given 

stage, the discretization coefficients can be calculated 

from the current estimates of all the ~ values. Then the 

algebraic equations like Equation (4-24) are solved by 

line-by-line TDMA (TriDiagonal Matrix Algorithm) technique 

with block-correction procedure (Patankar, 1980) . To avoid 

divergence of the strongly nonlinear equations, 

underrelaxation is employed. When, after many repetitions 

of this process, all the ~ values cease to change, the 

final converged solution is reached. 

Thus, the solution to a set of nonlinear and 

interlinked equations is obtained via many intermediate 
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solutions of nominally linear and decoupled algebraic 

equations. 

Pressure-Velocity Coupling in the 

Main Stream Direction 
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In the parabolic direction, the value of pressure drop 

dp/dz must be chosen such that, when it is used in z

momentum equation, values of w will reflect the correct 

cross sectional mass flow rate m: 

(4-41) 

Based on a method proposed by Raithby and Schneider (1979), 

the following procedures are executed 

Guess (dp/dz)*, then solve w*. The corresponding mass 

flow rate is 

(4-42) 

Motivated by the linear.relation between wand dp/dz, for a 

given set of coefficients, an equation for the rate of 

change of w with dp/dz is sought. Defining 

Q -dp/dz, (4-43) 

if the fp's were known, the correct velocities would be 

related to the w*'s by 

(4-44) 



8Q = -[dp/dz- (dp/dz)*] (4-45) 

The 8Q value is chosen to make the total mass flow rate 

correct; i.e., 

(4-46) 

The equation for fp is 

(4-47) 

where the coefficients are the same as those in the z

momentum equation. Therefore, fP can be solved by the 

general procedure, then 8Q is found by Equation (4-46), at 

last, wP and dp/dz are solved by Equations (4-44) and (4-

45) • 

Pressure-Velocity Coupling at Cross Section 

At any cross section, momentum equations for u and v 

contain the pressure gradient (-dp/d6)/r and (-dp/dr), 

respectively, as important source terms, which are not 
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expressible in terms of u, v, or other ~·s. If the velocity 

components and the pressure are calculated for the same 

grid points, some physically unrealistic results, such as 

zig-zag pressure field and velocity distributions, arise. A 

remedy for this ailment is the staggered grid (Patankar, 

1980). 
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Figure 15 shows a portion of grid at the cross 

section. In the staggered grid system, only variables other 

than cross section velocities are calculated at the grid 

points shown by dots, while the velocities u and v are 

evaluated at the corresponding control volume faces marked 

by short arrows. As a result, one can obtain an accurate 

mass flow rate at each face and the pressure difference 

between two grid points can play a real role of "driving 

force" to the velocity component located between them. 

Figure 16 illustrates the appropriate control volumes 

for u and v. For the 8-momentum equation, the final 

discretization form is 

(4-48) 

For the r-momentum equation 

(4-49) 

where the coefficient expressions for anb' ae, and an are 

identical to those given in Equations (4-25) to (4-29), 

the term b includes the source terms other than pressure 

gradient, and Ae and An stand for the areas over which the 

pressure force acts. 

At this step, if the pressure field is given, the 

velocity fields would be figured out by Equations (4-48) 

and (4-49), However, since the pressure field is unknown, 

one needs to estimate the pressure field first. Let p* 

stand for the estimated pressure field; then the 
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provisional velocities are expressed by u* and v*. 
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/ 

( 4-50) 

Introducing pressure correction p 1 and velocity corrections 

u 1 and v 1 

p p* + pi 

u u* + U 1 

v v* + V 1 

Subtracting Equation (4-50) from (4-48) 

a U 1 
e e I.anb U I nb + Ae (pI P - PI E) 

Neglecting SanbU 1 nb' Equation (4-51) simply becomes, 

ul 
e 

d (pI _ pI ) 
e P E 

where 

Similarly, 

VI = d '(pI - pI ) Jn n P N 

(4-51) 

(4-52) 

( 4-53) 

Substituting the above expressions for u and v into the 

continuity equation at a given cross section, a 

discretization equation for the pressure correction can be 

obtained: 

(4-54) 



w -2 v-e,l_.. 

.c?()._0~ .lf'..-
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where 0 ~ \l(ll ~VJ ~fi--ovL-. 
rvV?l.~ 

aN PndnAD 

as p d A-/ s s s 

aw p dK w w w 
(..<' 

aE pdA e e e 

aP ,aN -lv'as + aw + aE 

b = (pv*A) - (pv*A) + (pu*A) , - (pu*A) 
/ s v n ~ w ...-- e 

(4-55) 

(4-56) 

(4-57) 

(4-5,8) 

(4-59) 

(4-60) 

Patankar (1980) called this strategy as the SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) 

procedure, which is summarized as follows: 

1) . Guess the pressure fieldv-Pt. 

2) • Solve the momentum equations ~/get u* and v*. 

3) • Solve the pressure correction equation f o ri../'p"' . 

4) • Correct the pressure,-- p = p~+ p' 

5). Correct velocities, u = u* + u', and v = v* +v' 
v/ 

6) . Return to step 2) with the corrected pressure as 

the new p* field. Re~eat un~{l convergence. 

The Overall Solution Procedure 

. The complete solution of a three-dimensional tube flow 

is obtained by repeating the solution for one forward step 

in the z direction. For the first forward step, the values 

of ~ at the inlet plane are known. For subsequent forward 

steps, the ~ values. obtained on the downstream plane of the 

previous step become available as the upstream plane values 



for the current step. With this general framework, the 

various steps in the calculation sequence are outlined 

here. 

1) . Start with the initial guess for the $ values for 

the downstream plane. The known $ values on the upstream 

plane can serve as satisfactory guesses. 

2) . Solve z-momentum equation for w, obtain dp/dz by 

the technique mentione~ in Section 7. 

3) . Sol,ve 9-momentum, r-momentum, and pressure 

correction equations for u and v by SIMPLE procedure. 

4) Solve energy equation for T, using the method in 

Section 5 for UHF boundary treatment. 

5) . Take the downstream $ values as the upstream 

values for the next forward step and return to 1) to begin 

the calculation sequence for the next ~z. 
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CHAPTER V 

PROGRAMMING AND COMPUTATIONS 

The Computer Program 

A three-dimensional computer program for the solving 

strategy mentioned previously has been created. This 

program is based on a fundamental teaching program for two

dimensional conduction-type problems of Patankar (1984) . 

Programming, modifying, and testing of the program 

took about one year. Major programming work includes mixed 

convection, pressure-velocity decoupling, variable 

properties, UHF boundary treatment, and extension to the 3-

D situation. Tests of the 2-D program were carried out for 

all example problems in Patankar (1984), and the examples 

also served as the limiting cases for testing the 3-D 

program. 

The program in FORTRAN consists of four major parts: 

MAIN, SETUP, SOLVE, and TUBE. Each part includes several 

subprograms. Function of the subprograms are briefly 

described as follows: 

MAIN controls the sequence of operations. 
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SETUPl calculates geometrical quantities. 

SETUP2 calculates the discretization coefficients. 

SOLVE obtains the solution of the discretization 

equations. 

DIFLOW uses the power-law scheme for total flux. 

START gives operating conditions and initial values. 

GRID assigns the grid points and control volumes. 

DENSE computes the density at each grid point. 

VISCO computes the viscosity. 

SPHT is for specific heat of the/fluid. 

CONDY is for thermal conductivity of the fluid. 

BOUND gives boundary conditions each iteration. 

GAMSOR specifies r and S for each individual variable. 

Figure 17 is the flow chart of the program. The MAIN 

monitors the whole routine, TUBE specifies operating 

conditions and furnishes subroutines for physical 

properties. Mathematical models for properties of the 

sample fluids are given in Appendix A. SETUP computes the 

coefficients, and SOLVE get'S the solution for the 

equations. MAIN visits GRID, START, and SETUPl only once 

for a case, INPUT once for a marching st~tion, and other 

subprograms once per iteration. 

A brief guide to the computer program is furnished in 

Appendix B. 
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Figure 17. Flow chart of the 3-D program 



Computational Runs 

The 3-D program was executed on the VAX 6320 at the 

Computer Center of Oklahoma State University. Computations 

were carried out for a number of runs of Chen's (1988) 

experimental work. Table III lists conditions for these 

computations corresponding to Chen's work. 

For the early runs, a 15x15x44 (9xrxz) grid was used 

and a uniform grid spacing was chosen in the 9 and r 

directions. The axial step size 6z was varied from 0.02 m 

at the entrance to about 0.1 m towards the end of the tube. 

The value of 6z was adjusted so that the 12 experimental 

stations along the length of the tube would coincide with 

appropriate computational steps. Then a denser grid system, 

21x2lx44, was used. Grid spacing was still uniform in the 9 

direction, while a nonuniform spacing was chosen in the r 

direction, with grid lines being more closely packed near 

the tube wall. For most runs, a 19x19x44 grid, with 

nonuniform spacing in r direction, system was used. CPU 

time is approximately 7 minutes for the 15x15x44 system, 17 

minutes for 19x19x44, and 25 minutes for 21x21x44. For the 

same operating conditions, the results of the denser grid 

system did not show significant difference from the coarser 

one. 

The convergence criterion for ending iterations is 
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TABLE Ill 

CONDITIONS FOR COMPUTATIONAL RUNS 

Run No. q" w(w/m 2} m (kg/s} X Rein Reout Prin Prout 

-
1103 14100 0.02798 0. 2474 3941 6.2 3.7 
2105 12200 0.0785 0.9987 354 585 209 128 
2107 11600 0.0521 0.9987 222 452 221 1 1 1 
2110 20300 0.167 0.9305 1361 1809 116 88 
2121 9010 0.09985 0.6584 1580 1833 53 46 
2135 5110 0.04002 0.283 514 749 28 19 
2137 11300 0.0655 0.283 1769 2284 26 20 
2139 3050 0.0341 0.283 1104 1249 22 19 

----------------------------------

-...) 
.p-
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(5-1) 

The output for each marching station consists of key 

values for each iteration and converged solutions for 

distributions of three velocity components, stream function 

at cross section, and temperature. Appendix C illustrates a 

typical printout for one station. 



CHAPTER VI 

RESULTS AND DISCUSSIONS 

Peripheral Variation of Wall Temperature 

Figures 18 to 24 show comparisons of computed inside 

tube wall temperature at the top, Ttop and at the bottom, 

Tbottom' with Chen's (1988) experimental data for Runs listed 

in Table III, using the nominally uniform heat flux. It can 

be seen that agreement between the numerical results and 

experimental data is quite good, except Figure 22 (the 

experimental data for Run#2135 are questionable) . However, 

the measured Tbottom's are generally several degrees higher 

than computed ones, while the measured Ttop's are lower than 

the computed. This inconsistency may be explained by the 

following. 

As mentioned in Chapter IV, the boundary temperatures, 

i. e., the inside wall temperatures, were obtained by only 

considering the communication between the boundary g"rid 

point (grid point on the inside tube wall) .at which the wall 

heat flux exerts, and its inner ~eighboring point, e. g., 

points 1 and 3 ·in Figure 25. The peripheral interaction 

between boundary grid points, e.g., points 1 and 2 in Figure 

25, mainly the tube wall conduction, was not taken into 
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Figure 20. Peripheral wall temperature variation (Run#211 0) 
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Figure 21. Peripheral wall temperature variation (Run#2121) 
[Re: 1580-1830, Gr: 8580-39900, Pr: 53-46] 
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Figure 22. Peripheral wall temperature variation (Run#2135) 
[Re: 514-749, Gr: 16800-47300, Pr: 28-19] 
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Figure 23. Peripheral wall temperature variation (Run#2137) 
[Re: 1770-2284, Gr: 14100-67300, Pr: 26-20] 
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Figure 24. Peripheral wall temperature variation (Run#2139) 
[Re: 1100-1250, Gr: 9280-26900, Pr: 22-19] 
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F1gure 25. Near-wall control volume 
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account. However, usually the thermal conductivity of the 

wall is much higher than the fluid; therefore, the highly 

conductive wall would suppress the sharp peripheral 

temperature variation originated by the flowing field. 

Qualitatively, the extent of the suppression depends on the 

magnitude of the peripheral wall temperature difference 

which measures the effect of the natural convection, the 

temperature level of the wall relative to the local fluid or 

ambient temperature which measu~es the heat flux and 

reflects the heat loss to the surroundings, and the material 

of the tube. The effect of the suppression can be observed 

by comparison of Figure 20 (Run #2110) and Figure 24 (Run 

#2139) . For the for~er, the computed peripheral wall 
0 

temperature difference is as high as 45 C, and the average 

• 0 
wall temperature 1.s around 100 C. For the latter, the 

' 0 0 
corresponding temperatures are 10 C and 30 C. 

The basic agreement between numerical results and 

experimental data reveals that the flowing field with 

secondary flow still controls the temperature distribution, 

even at the inside -wall---the interface between the fluid 

and the tube. The finding ,is contrqry to the conclusion of 

Faris and Viskanta (1969), in which they claimed that for 

all liquids excepting liquid metals, the assumption that 

inside tube wall temperatu~e was uniform circumferentially 

was justifiable for ordinary tube thicknesses. Hence, the 

validity and the necessity of the infinite wall conductivity 



model may be suspected because it conceals a major 

consequence of mixed convection---the peripheral wall 

temperature variation---while assuming a circumferentially 

constant wall temperature. 
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Figure '26 is an exploration of flow in transition 

region. Although the Reynolds number of this run is as high 

as 3941, numerical results still show the same trends as the 

experiments. 

Distribution of the Inside Wall Heat Flux 

As shown in Figure 25, the metal _tube wall provides 

heat to the computation domain by passing D. C. current 

through it, which serves as a. surface source at the 

interface of the near-boundary control volume. If 

temperature of the tube wall were uniform circumferentially 

and the material of the tube wall were homogeneous, the 

electric current would produce a peripherally uniform heat 

flux. However, buoyancy-induced secondary flow results in 

peripheral wall tempe~ature variation, which affects 

considerably the distribution of the heat flux at the inside 

tube wall. For instance, if the temperature at the top of 

the tube is higher than that at the bottom, (during 

heating), part of the heat produced within the top region of 

the tube wall would not go directly into the fluid at the 

top location, but instead it would go towards the bottom 

region of the tube wall by peripheral wall conduction driven 
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by the circumferential temperature gradient. This portion of 

the heat produced at the top of the tube would finally 

transfer into the fluid near the bottom of the tube. As a 

consequence, a peripherally nonuniform heat flux 

distribution results. Therefore, the term "nominally uniform 

heat flux" has been employed in 'this thesis. 

From the measured outside wall temperature, Chen (1988) 

calculated the inside wall temperature and the inside wall 

heat flux using a two-dimensional relaxation method. The 

method accounted for the peripheral and radial wall 

conduction, while neglecting axial conduction. His results 

demonstrated a considerable nonuniformity of the wall heat 

flux. For example,' for Run #2137, the computed heat flux at 

the bottom of the tube is as a$ high as 11,865 W/m 2 , while 

at the top of the tube, the heat flux is as low as 7,043 

2 
W/m . 

With linearly interpolating Chen's heat flux data, 

computations for Runs #2121 and #2137 were conducted using 

variable heat flux. Figures 27 and 28 give the results. The 

better agreement between 'computations and experiments 

revealed the importance of the~wall peripheral conduction. 

Effect of Secondary Flow on Axial Velocity Profile 

For pure forced convection, the axial velocity profiles 

are symmetric about the axis of the tube. With the addition 

of buoyancy induced secondary flow, the symmetric velocity 
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profile is still retained in the horizontal central plane 

(8=x/2). However, this symmetry is lost along the vertical 

central plane (8=0 and 8=x). Figures 29 to 31 illustrate the 

developing profiles of dimensionless axial velocity w/wb 

along the vertical cent~al plane for the typical runs. For 

each run, profiles at four axial locations: z=0.114m, 

z=0.418m, z=1.634m, and z=3.926m (the end of the testing 

tube), were plotted. 

Figure 29 shows profiles for Run#2137, near the 

entrance (z=0.114m), the velocity profile is nearly uniform 

over the cross section. But further downstream, the curves 

are distorted due to buoyancy effects. The distortion for 

this run is displacement of maximum velocity from the 

central axis towards the bottom wall of the tube. This 

feature ~s consistent with those reported by Hishida et al. 

(1982) for Pr=0.7, and Choudhury and Patankar (1988) for 

Pr=0.72. However, both of those works are for isothermally 

heated horizontal tubes in which effect of free convection 

reaches a peak along the length of the tube, then decreases 

gradually with the decrease of temperature difference 

between the wall'and bulk flow, and finally' vanishes far 

downstream; therefore, a fully developed pa~abolic profile 

for Poiseuille flow is eventually attained. For UHF 

condition, the, temperature difference always exists, and as 

a result, secondary flow would not vanish downstream. 

Figures 29 to 31 suppo~t this assertion. 
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For Run#2107, Figure 30 demonstrates an opposite 

tendency to Run#2137 (Figure 29) . The maximum shifts towards 

the top wall of the tube and the curves reveal considerable 

asymmetry. This kind of velocity profile agrees with Palen 

and Taborek's prediction (1985). It results mainly from the, 

highly temperature-dependent viscosity of the fluid. Figure 

32 is a viscosity chart for diethylene glycol-water mixtures 

from Obermeier "et al. (1985). From this chart, one can see 

that viscosity of 100% DEG (close to the fluid in Run#2107) 

is much more sensitive to temperature than that of 25% 

mixture (close to Run#2137) . 

Therefore, it can be explained that, for Run#2107, the 

high temperature sensitivity of the fluid dominates the flow 

process. Because temperature of the fluid near the top of 

the tube is higher than that near the bottom of the tube, 

viscosity of the fluid near the top is lower, hence the 

maximum velocity would shift towards the top of the tube. 

For Run#2137, the small temperature-dependence of viscosity 

is overweighed by the buoyancy effect, and therefore the 

maximum shifts towards the bottom of the tube. 

Considering Run#1103 is in the transition region, the 

unusual velocity profile curves at downstream locations 

shown in Figure 31 are not surprising. 



96 

mPas 

-

Figure 32. Viscosity of diethylene glycol-water mixtures 
{Obermeier et al., 1985) 
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About Fully Developed Flow 

Shah and London (1978) defined so-called 

hydrodynamically fully developed flow as "when the fluid 

velocity distribution at a cross section is of an invariant 

form, i.e., indepen<;ient of the axial distance x, i. e., w = 

w(r,9) only and u, v = 0". 

Kays and Crawford (1980)· described fully developed flow 

as the boundary layer meeting itself at the tube centerline, 

and the velocity distribution establishing a fixed pattern 

that was invariant thereafter. They emphasized their 

assumption for the discussion that the fluid properties, 

including density, were not changing along the length of the 

tube. 

It is apparent that neither of the definitions can be 

applicable to the current situation of mixed convection in 

which secondary flow, i.e., velocities normal to the duct 

axis, and property variation play very important roles. 

Therefore, it is suggested that the argument of "fully 

developed flow" with mixed convection in horizontal tube is 

not a valid concept, at least not in the simple .terms used 

for the constant property case. 

As mentioned in the Literature Survey, however, most 

researchers used the concept of fully developed flow while 

dealing with mixed convection~ but they relaxed the ac~demic 

definitions cited above by focusing only on the "invariant 



velocity profile" and neglecting other restraints. Hishida 

et al., and Choudhury and Patankar, indeed, found fully 

developed velocity profiles by the relaxed definition for 

isothermally heated tubes. 
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Even comparing the relaxed definition with the 

presented figures, one can not find an invariant velocity 

profile within the tube length (4m) of the present study. As 

a result, it ,may be doubted that there exists fully 

developed flow inside the horizontal tubes of a typical size 

of shell-and-tube heat exchanger if laminar mixed convection 

exists. 

Effect of Secondary Flow on Heat Transfer 

With neglecting secondary flow and employing constant 

properties and nominal uniform heat flux for Run #2137, 

Figure 33 illustrates the computed profiles of the inside 

tube wall temperature and bulk temperature versus the axial 

distance of the tube. In order to evaluate the effect 

resulted from the assumption of fully developed velocity 

profile at the inlet of the tube (used in most literature), 

a wall temperature curve, computed on condition of fully 

developed velocity profile and developing temperature 

profile (so-called Graetz-Nusselt problem), is also depicted 

on the figure. The significant influence of this assumption 

on heat transfer can be understood clearly. It can be seen 

that at the outlet of the tube, the temperature difference 
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has not reached a constant, which means the temperature 

profile is still developing at that location. The result 

agrees with the traditional pure forced convection 

prediction of Kays and Crawford (1980) . 

However, with considering the buoyancy induced 

secondary flow ·for -the same run, Run :ft2137, the profile of 

the average inside wall temperature shows considerable 

difference from the traditional prediction (Figure 34). 

100 

Comparing Figure 34 with Figu;r-e 33 suggests that the 

effect of the buoyancy-induced secondary flow is so strong 

that it reduces the effect of the thermal entrance length 

predicted by the standard pure forced convection method, to 

a great extent. 

Figures 34 to 40 show the computed circumferential mean 

inside wall temperature using the nominally uniform heat 

flux, compared with experimental data which were obtained by 

simply taking arithmetic mean of the measured local data (4 

or 8) around the circumference, for the computational runs. 

It can be seen that the entrance effeqt dominates for only a 

short length from the inlet; after that length, the 

secondary, flow dominates for the rest of the tube. 

For pure forced convection, after the thermal entrance 

length, the profile of the increasing wall temperature 

parallels the profile of 'the bulk temperature, so that a 

constant ·temperature difference petwE;!en the two exists, and 

hence a fully deve-loped temperature profile is obtained. 
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However, including the buoyancy effect changes the situation 

and the temperature difference between the wall and the bulk 

flow decreases monotonically, and therefore, a fully 

developed temperature profile cannot be found along the test 

tube. 

This is because heat transfer is based on the flow 

field under the circumstance of the complex mixed 

convection. From the discussion in Section 4 of this 

chapter, it is realized that with mixed convection and 

nominally uniform heat flux, a fully developed velocity 

profile could not have been obtained for the runs currently 

considered; needless to say, a fully developed temperature 

profile can not be reached either. 

Figures 41 to 47 shows the axial variation of the 

Nusselt number for the typical runs. The local peripheral 

average Nusselt number, Nuz, is defined as 

( 6-1) 

where q"w is the nominal uniform heat flux, di is the inside 

diameter of the tube, k is thermal conductivity of the fluid 

defined at the local bulk temperature and Tw,avg is the 

peripheral mean inside wall temperature of the tube. 

The local Nusselt numbers from Chen's work (1988) are 

also depicted on the figures. It can be seen that the 

difference between numerical r~sults and experiments 
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increases with increase of the Grashof number. The major 

reason for this may be that a larger Grashof number would 

bring about a stronger secondary flow, hence a considerable 

peripheral variation of wall heat flux, therefore, the 

assumption of pniform heat flux used in numerical solution 

(Equation 6-1} would have less reliability. 

About the Local Bulk Mean Temperature 

For heat transfer study, the local bulk meap 

temperature is a very important parameter, it indicates the 

heat absorbed by the, f~uid upto, the axial location z where 

the bulk mean temperature is calculated: The bulk 

temperature can 9e obtained by .the following integration 

ov~~ the cross section of the t~be at a certain axial 

location z. 

(6-2} 

where w and T are the computed local values. 

On the other hand, for the case of heating with uniform 

heat flux, the lpcal bulk temperature can be obtained by 

heat balance, 

T = T . + 1td q" z/ (me } b, HB ~n i w p 
(6-3} 

where q"w is the nominal constant heat flux, and cP is 
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constant. 

Figures 34 to 40 also show bulk temperature for the 

corresponding runs, using Equations (6-2) and (6-3), 

respectively. The basic agreement of the two methods 

supports the validity of the numerical method. 

Axial Variation of Pressure Gradient 

The local pressure gradient was determined by the 
,' 

pressure-velocity decoupling technique.mentioned in Chapter 

IV. In order to compare with the pure forced convection 
<. 

situation, the pressure gradient may be expressed by the 

Fanning friction factor, 

(6-4) 

where wb is the local mean velocity. 

From the conventional prediction (Kays and Crawford, 

1980), the product off andRei's 64 for fully developed 

laminar flow. Figure 48 illustrates the variation of the 

product of f and Re with tube length for Run#2137, with 

considering only pure forced convection and constant 

properties. The agreement with the conventional prediction 

supports the validity of the analytical approach. 

Considering the buoyancy effect and variable 

properties, Figure 49 presents the variation for the same 

run, Run#2137. And Figures 50 and 51 show results for 
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Runs#2135 and #2139. It seems that the secondary flow has 

little effect on the hydraulic entrance length. After the 

entrance length, a peak value of f.Re marks onset of the 

secondary flow. 
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It should be pointed out here that, on the one hand, 

the secondary flow would inc~ease the pressure drop. On the 

other hand, considering variable properties, the decreasing 

viscosity of the fluid would decrease the pressure drop. The 

net result is a compromise between these two processes. 



CHAPTER VII 

EXPLORATION OF FLOW REGIMES 

In 1964, Metais and Eckert presented the flow regime 

maps (e. g., Figure 6); which were based on correlations 

and data ava'ilable at that time. Concerning horizontal 

tubes, for example,. they employed Oliver's correlation 

(1962) to account for laminar mixed convection, while 

Sieder and Tate's (1936) e9uation was used for laminar 

pure forced convection. The demarcations of the pure 

forced convection and mixed convection regimes were 

established at the conditions under which the actual heat 

flux deviated by lass than ten percent from the value 

predicted for either forced or mixed convection acting 

singly. A very few experimental data, all of them using a 

nominally uniform wall temperature boundary condition, 

were marked on the figure (Figure 6) . Because those data 

represented the average properties for the entire tube, it 

is difficult for the data to show clearly the significance 

of the natural convection. 

In order-to judge the magnitude of natural convection 

effect and verify· t'he flow regime map for horizontal 

tubes, more experimental data and new characteristic 
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parameter(s) should be pursued. Chen's experimental work 

(1988) provides, a good data base for this purpose. Since 

it gives local heat transfer coefficients both axially and 

circumeferentially, one is able to use a new dimensionless 

parameter, ht/hb, the ratio of the heat transfer 

coefficient at the top of the tube to that at the bottom, 

as a measure of the significance of natural convection. As 

mentioned previously, the buoyancy-induced secondary flow 

would result in considerable peripheral temperature 

variation and nonuniform distribution of heat flux at the 

tube wall, and hence, the peripheral variation of the heat 

transfer coefficient. Therefore, the stronger the natural 

convection, the smaller the ratio. Without natural 

convection, the ratio should always be unity. As a 

consequence, the ratio is always less than unity (with 

heating) if mixed convection exists. 

After introducing the new parameter and classifying 

it into four categories, 

0 • 8 s ht !hb s ' 1. '0 

0.6 s ht/hb < 0.8 

0. 4 s ht /hb < 0 . 6 

0.0 s ht/hb < 0.4 

Figure 52 correlates all of Chen's data with log(Re) -

log(Pr) coordinates, at axial stations 6, 8, 10, and 12. 

These plots demonstrate different- classes of the effect of 

natural convection with apparent flow regime pattern, 
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Figure 52. Re vs. Pr for different values of ht/hb 
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i'ncluding laminar, turbulent and transition flow regions. 

If a critical value, ht/hb = 0. 8, for the demarcation of 

mixed and forced convection, is assumed, the influence of 

Pr on the demarcation would be obvious; with increase of 

Pr, the demarcating Re decreases, and therefore, the 

natural convection effect decreases. 

Figure 53 plots the data on log(Re) - log(Gr) 

coordinates. The larger the Gr, the higher the demarcating 

Re, and the effect of natural convection increases. 

That the four subplots of Figures 52 and 53 show 

almost the same pattern reveals that the axial distance 

has minor influence on natural convection, and suggests it 

is possible to expand the correlation to more data using 

different tubes. 

Abdelmessih (1986) conducted an experimental study on 

horizontal U-tubes. She used four different sizes of U

tubes with electrically heated straight tube sections. For 

each test section, local axial and peripheral wall 

temperatures were measured' and the local peripheral heat 

transfer coefficients at the various locations were 

calculated. Her experime,ntal data for strai'ght tube 

sections upstream of the bends can be incorporated into 

the data bank of the present study. Specifications of the 

four test tubes are shown in Table IV. 

With the four test tubes, Abdelmessih carried out 84 

runs. Distilled water and almost pure ethylene glycol were 
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TABLE IV 

ABDELMESSIH'S TEST SECTIONS UPSTREAM FROM THE U-BENDS 

Section L * (m) 

A ·1.492 
8 1.175 
c 2.753 
D 2.740 

* heated length 

0.0222 
0.0222 
0.0191 
0.0191 

0.0195 
0.0195 
0.0157 
0.0157 

TABLE V 

Material 

lnconel 600 
lnconel 600 
ss 304 
ss 304 

ABDELMESSIH'S DATA INCLUDED IN FIGURES 54 AND 55 

Section Run Number 

A 22,, 23, 24, 25, 27, 29, 30, 31, 32, 49, 55, 56; 
58, 59, 60 . 

B 1 02, 1 03, 1 05, 1 06, 1 07 
c 201, 202, 203, 204, 205 
D 302, 303, 304, 305, 306 
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the test fluids. The experiments covered the local bulk Re 

range of 120 to 2500, Pr from 4 to 110, and Gr from 2500 

to 1,130,000. Thirty repre~entative runs have been 

selected to combine with Chen's data for flow regime 

investigation. Table V shows the run number of each test 

section. 

Figures 54 and 55 show patterns of the parameter, 

ht/hb at log(Re) - log(Pr), and log(Re) - log(Gr) , ' 

coordinates, respectively, with addition of Abdelmessih's 

data. In these figures, Chen's data at the station 10 

(close to geometrical mid-point of the tube), and 

Abdelmessih's data at the station 2 were selected. 

While the above two figures show reasonably good 

separation among. the flow regimes, attempts to correlate 

the data by the product of Gr and Pr, i. e., the Rayleigh 

number, Ra, failed. The Metais-Eckert regime map for 

horizontal tubes (Figure 6) thus must be regarded as 

questionable, and further study in this area is required. 
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CHAPTER VIII 

AN IMPROVED HEAT TRANSFER CORRELATION 

As mentioned in the Literature Survey, there are few 

correlations dealing with simultaneously developing velocity 

profile and temperature profile mixed convection heat 

transfer inside horizontal tubes with uniform heat flux. 

Based on his experimental data in laminar flow region, Chen 

(1988) derived a correlation for local peripheral average 

Nusselt numbers: 

Nuz = {4.364+0.00106Re 0 • 81 Pr0 • 45 [1+14.0exp(0.063z/di)] 

+0.268(GrPr) 114 [1 - exp(-0.042z/di)]} {J.l.b/J.lw) 0 · 14 

( 8-1) 

Abdelmessih (1986) correlated her local experimental 

data for straight tubes upstream of a U-bend with the 

following equation, 

(8-2) 

This equation does not include any dependency upon local 

axial position. 

For practical design of heat exchangers, however, a 

correlation giving an axial average value, instead of local 
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values, of the inside heat transfer,coefficient of the tube 

is more convenient. Recently, Palen and Taborek (1985) 

investigated over 600 horizontal tube data points on 

hydrocarbon oils, and developed the following correlation: 

Nu ( 8-3) 

where 

. Re * . = Re + 0 . 8Gr0 • s 

Equation (8-3) is ~ased on arithmetic average bulk physical 

properties and gives axial average Nusselt number. The 

following general limitations are imposed upon Equation (8-

3) 

0 ·< J.Lb/J.Lw < 55 

20 < Pr < 10000 

0.1 < Re < 2000 

7 
0 < Gr < 3 X 10 

40-<L/di<oo 

Since most of the data they used were for conditions 

approximating uniform wall temperature, instead of uniform 

heat flux, Palen and Taborek~claimed the correlation 

Equation 8-3) should be better suited to UWT than to UHF 

cases. 

As a consequence of this, an improved heat transfer 

correlation for uniform heat flux condition; including 

entrance effect and mixed convection, will be developed in 

this chapter. 
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Chen and Abdelmessih's data were employed. Data 

reduction involved calculations of the axial average 

Nusselt number by the length-weighted method and/of physical 

properties based on arithmetic mean bulk temperature. Since 

Abdelmessih's data did not provide values of the Sieder and 

Tate viscosity ratio term, a viscosity chart for ethylene 

glycol by Gallant (1968) was used to supply this term. Data 

for the correlation are listed in Appendix D. 

As for pure forced convection, the co~relating approach 

to use dimensio~less parameters and empirically determined 

constants has been successfully practiced in the past, for 

both laminar and turbulent heat transfer with or without 

entrance effect. Since, as ment~oned p~eviously, mixed 

convection incorporates a buoyancy-induced secondary flow, 

the new heat transfer correlation should reflect the 

following contributions: the forced convection (primary 

flow), the natural convection (secondary flow), the entrance 

effect, and the variable properties (especially the 

temperature-dependent viscosity) . Assuming that the forced 

convection and natural convection terms are additive, the 

basic format of the correlation would be 

-Nu 
C6 0.14 

+ C 5 (GrPr) ] (~/J.lw) 
(8-4) 

The first term in the brackets of Equation (8-4) is the 

predicted constant value for hydraulically and thermally 

fully developed pure forced convection. The second term 
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stands for the developing convective conduction effect in 

which besides the Reynolds and Prandtl numbers, the ratio of 

the tube diameter to the tube length is also incorporated, 

so that this term will go to zero as L~~. The natural 

convection expression, the third term, is expected to be a 

function of the Gras,hof ·number and the Prandtl number, 

probably a function of their produc~ which is the Rayleigh 

number. According to the analysis in Chapter VII, the axial 

location has less influence on natural convection, 

therefore, the entrance effect was neglected in the natural 

convection term. For convenience of design applications, the 

conventional Sieder-Tate viscosity correction factor was 

employed to account for the m~jor effect of temperature 

dependence of physical properti~s·. 

Regression analyses were conducted using models based 

on Equation (8-4), over the experimental data. The following 

correlation was finally selected. 

Nu = [4.364 + o. 1Reo.3B7pr0.41S(d./L)0.147 + 
' l. 

0.11 (GrPr) 0•3] (J.L /J.L ) 0·,. 14 
b w ' 

Equation (8-5) is valid for 

1 < J.Lb/J.Lw < 5 

4 < Pr < 270 

100 <Re < 2500 

1500 <Gr.< 2 x 10 5 

so· <. L/di < 300 

(8-.5) 
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Equation (8-5) has a root-mean-square deviation of 10% 

when compared with the experimental data as shown in Figure 

56. Figure 57 gives the relative deviation as a function of 

Reynolds number. It can be seen that relative errors of all 

data (except one peculiar point) fall into a domain of ±23%. 

By assuming that the physical properties remain the 

same for the entire tube, Chen (1988) integrated the 

correlation for local Nusselt number of laminar mixed 

convection, Equation (8-1), with respect to z from 0 to L, 

and obtained an expression for axial average Nusselt number 

as follows: 

Nu {4.364 + 0.00106Re 0 ' 81 Pr0 ' 45 [1 + 222diiL -222diiL 

I o.zs I exp(-0.063L di)] + 0.268(GrPr) [1- 23.8di L 

( 8-6) 

Figure 58 presents comparison between experimental data and 

Chen's prediction, Equation· (8-6) . ·It can be seen that 

Equation (8-6) has a little higher deviation than 

Equation(8-5). Furthermore, Equation (8-6) is too 

complicated to be used in·engineering applications. Even 

Chen himself did not recommend this equation. 

Figure 59 shows comparison of Palen and Taborek's 

prediction, Equation(8-3), with the experimental data. For 

most data points, Equation (8-3) i~ overpredicted. The 

maximum relative error is as high as 96%. 

Compared to the most recent correlations, Equation (8-
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5) has higher accuracy and a simple form, and it is 

recommended to use it directly in heat exchanger design 

practice where uniform heat flux condition exists. 
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CHAPTER IX 

FURTHER APPLICATION OF THE COMPUTER PROGRAM 

Development of the numerical method has been presented 

in previous chapters and, the validity of the computer 

program has been established by comparing numerical results 

with corresponding experimental data. However, a more 

important task is how to make good use of the computer 

program as a tool f9r mixed convection study. Therefore, 

further application of the computer program is encouraged 

and the following strategy is proposed: 

In order that the mapping of the flow regimes and the 

heat transfer correlation in previous chapters have 

generality, more data for various operating conditions are 

required. While only a very few experimental data sources 

with relatively narrow operating conditions are available, 

the computer program can generate with ease a diversified 

variety of data from given operating conditions. 

When usin'g numerical data to generate a heat transfer 

correlation for axial average Nusselt number, the computer 

will print out a peripheral average Nusselt number for each 

axial station. Then, numerical integration of those local 

average Nu along the t'ube length will give an axial average 
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Nusselt number for a specific run. 

As for the flow regimes, the computer program will 

provide ht/hb for each axial station. Then those data at 

certain axial location for different runs may be plotted on 

figure like Figures 54 and 55, and the boundary between 

different flow regi,mes may be established. 

Two major operational variables are tube diameter and 

the physical properties of the fluid. Since all the 

computational runs in this thesis are for one tube diameter, 

di=16.07mm, and water and diethylene glycol-water solutions, 

more computations for various operating conditions, for 

example, tube diameters ranging from 8 mm to 40 mm, Prandtl 

numbers from 300 to 10 4 , and Grashof numbers from 10 6 to 20 

6 
x 10 , are proposed. 

The given values of the inside wall heat flux should be 

checked with the tube diameter, properties of fluid, mass 

flow rate, and the expected fluid bulk temperature rise. For 

computational runs, only a nominally uniform heat flux can 

be used. The mass flow rate should be selected so that the 

fluid flow is within the laminar region along the whole tube 

length. 

For a working fluid other than diethylene glycol-water 

solution, appropriate correlations for physical properties 

such as density, viscosity, thermal conductivity, and 

specific heat, should be inserted into the program to 

substitute subroutines DENSE, VISCO, CONDY, and SPHT, 

respectively. 
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When a large tube diameter and high heat flux are 

employed, divergence or unrealistic solution may occur, 

unless enough attention is paid to the program. If this 

happens, possible treatments include adjusting the value of 

underrelaxation factors, RELAX(NF) and(or) using an 

alternative grid system. However, the smaller the 

underrelaxation factors, the slower the converging speed. 

For the computations in this thesis, the underrelaxation 

factors for the secondary flow velocities, u and v, and 

pressure correction, ~p, are.all 0.5, for the axial 

velocity, w, and temperature, T, the factors are 0.9 or 1. 



CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1) . Developing laminar mixed convection heat transfer 
e ' 

in horizontal, electrically heated tubes, with variable 

property fluids, has been investigated theoretically. The 

governing equations have been solved using a three-

dimensional parabolic computational technique. The 

computational runs .covered a wide range of Prandtl number, 

Grashof number, and Reynolds number. Comparisons with 

computational and experimental results show reasonably good 

agreement and support the validity of the numerical 

solutions. The investigation presented here provides a 

useful device to explore the complex interaction of fluid 

flow and heat transfer in the entrance region of horizontal 

tubes with nominally uniform heat flux. 

2). The buoyancy-induced secondary flow exerts a 

significant effect on the primary flow inside horizontal 

tubes. The secondary'flow distorts the axial velocity 

profile with maximum velocity displaced toward the tube 

bottom or top, instead of ~t the center. Because the 

temperature difference between the tube wall and the bulk 
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flow always exists, the secondary flow will not decay as in 

a UWT situation, therefore, a fully developed velocity 

profile would not be reached under these circumstances. 

3) . The influence of the secondary flow on heat 

transfer manifests itself mainly in two aspects. One is the 

peripheral variation of wall temperature, which results in a 

considerable peripheral wall heat conduction, and hence a 

nonuniformity of inside wall heat flux for electrically 

heated tubes. Very good agreement between experiments and 

computations c'alls into question the validity of the 

assertion of the infinite wall thermal conductivity case, i. 

e., circumferentially uniform wall temperature and axially 

uniform heat flux. Another aspect concerns the inconsistency 

between practical heat transfer applications and traditional 

pure forced convection, fully developed heat transfer case 

in which Nusselt number approaches a constant, 4.36. Because 

of the mixed convection, the profiles of the mean wall 

temperature and the bulk temperature are not parallel and 

the temperature difference decreased with tube length, and 

therefore, a constant Nusselt number would not be obtained. 

4) . The secondary flow strongly modified the 

traditional entrance effect on fluid flow and heat transfer. 

The entrance length is substantially shorter when mixed 

convection is involved. 

5) . By introducing a new parameter, ht/hb, the effect 

of natural convection was classified and therefore flow 
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regimes for mixed convection could be explored. Analysis of 

experimental data shows that Gr and Pr have decisive 

influence on mixed convection, but their influences act on 

opposite directions. It seems better to correlate 

experimental data with Gr and Pr individually, instead of 

their product, Ra, while dealing with mixed convection 

inside horizontal tubes with UHF boundary condition. 

6) . Based on available experimental data, an improved 

heat transfer yorrelation (Equation 8-5) was developed. It 

is expected to be 'directly used in engineering design. 

Recomm~ndations 

1). Numerical Approach 

It is recommended to use the numerical method and the 

computer program presented in this thesis over a wider range 

of operating conditions, which would further, at least 

qualitively, the exploration of the mechanism of mixed 

convection. 

The temperature problem for the solid tube wall needs 

to be analyzed simultaneously with that for the fluid in 

order to establish the actual .wall-fluid heat transfer flux 

distribution. This conjugated problem involves the 

simultaneous solutions of the energy equations for both the 

fluid and solid wall regions. The temperature and heat 

fluxes at the solid-fluid interface are considered 

continuous. 



148 

More advanced computational techniques are worth 

trying. For example, concerning the treatment of the 

coupling between the momentum and continuity equations, the 

procedure SIMPLER (SIMPLE Revised) can reduce substantially 

the number ·of iterations for constant property solutions. 

Many other discretization schemes of combined convection and' 

diffusion fluxes have been claimed to be better than the 

power-law scheme (Patankar, 1988) . 

2). Experimental Approach 

Since the yelocity of the working fluid serves as a 

"vehicle" for convection heat t~ansfer, it is recommended 

that local velocities be measure~ to verify the theoretical 

results of this work. 

In order to prove the prediction of the temperature 

field, it would be desirab,le to have some temperature data 

inside the tube. 

More working fluids and mo,re test tubes, other than 

those included in this work, are recommended,, so that 

experiments will cover a wider range of operating 

conditions. 
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APPENDIX A 

PROPERTIES OF TEST FLUIDS 

Water 

Sources of correlating equations for physical 

properties of testing fluids are the same as Chen's work 

(1988) . 

Density 

p 999.86 + 0.061464T - 0.0084648T 2 + 6.8794 X 10-5 T3 

(A-1) 

where p density, kg/m3 

T temperature, °C 

This equation is valid for the temperature range from 0 to 

100 °C and has an accuracy of ± D.05kg/m3 • 

Viscosity 

where 

(1.327(20- T) - 0.001053(20- ~) 2 ]/ 

(T + 105) 

Jl · 't f t t 20 °C, Ns/m2 20 = vJ.scosJ. y o wa er a 

JlT = viscosity of water at T °C, Ns/m2 

T = temperature, °C 
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(A-2) 
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This equation is valid within the temperature range from 10 

to 100°C. It has an accuracy within 1%. 

Specific Heat 

where 

CP = 4.267 - 2.2 X 10-3 T + 3.66 X 10-5 T2 

- 1. 475 X 10-7 T 3 

cP = specific heat, kJ/(kgK) 

0 
T = temperature, F 

(A-3) 

This equation has an accuracy within 1% for the range from 0 

0 

to 100 C. 

Thermal Conductivity 

k = 0.56276 + 1.874 X 10-3 T - 6.8 X 10-6 T2 (A-4) 

where k =thermal conductivity, W/(m.K) 

T = temperature, °C 

This equation is applied in the temperature range of 0 to 

100°C. It has an accuracy within 1%. 

Diethylene Glycol-water Solutions 

Density 

p = (998.80 + 207.29x- 72.103x2 ) 

+ (-0.10357 - 1.0797x + 0.42904x2 )T 

+ (-3.2251 X 10-3 + 3.4321 X 10-3 x - 4.5246 X 10-3 x 2 )T2 

(A-5) 



where p = density, kg/m3 

T temperature, °C 

x = mass fraction of DEG in DEG-water solution 

This equation has an accuracy of ±0.5%. It is good for the 

temperature range from -10 to 140 °C. 

Viscosity 

where 

1. 3514 
ln~ = (0.63513 + 3~0176x - 0.49609x 2 ) 

+ (-0.029276 - 0.040815x + 0.0099051x2 )T 

+ (1.8238 X 10-6 + 5.765 X 10-6 x 

(A-6) 

viscosity, mPa.s 

T temperature 

The equation has an accuracy of ±4.0%. It is good for the 
0 

temperature range ·from -10 to 80 C. 

Thermal Conductivity 

k = (1 - x)kw + xkDEG - A(kw - kDEG) (1 - x)x 

158 

(A-7) 

where kw = 0.56276 + 1.874 X 10-3 T - 6.8 X 10-6 T 2 

koEG = 0.19589 + 1. 689 X 10-4 T - 8.1 X 10-7 T 2 

A 0.4052 + 0.0594x - 8.4 X 10-4 T 

k- thermal conductivity, W/(m.K) .. 

T temperatu.re, °C 

The equation has an accuracy of ±0.3%. It is good for the 



temperature range from -20 to 200 °C. 

Specific Heat 

cP (1.027 - 0.52469x + 0.021435x2 ) + (-2.6187 x 10-4 

+ 3.8054 X 10-3 x - 2.5793 X 10-3 x 2 )T 

where cP =specific heat, Btu/(lb.°F) 

T = temperature, °C 

(A-8) 

This equation has an accuracy of ±0.5%. It is good for 

temperature range from -20 to 200 °C. 
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APPENDIX B 

A BRIEF GUIDE TO THE COMPUTER PROGRAM 

A flow chart of the three-dimensional program is shown 

in Figure 17, Chapter V. A listing of the FORTRAN variables 

used in the program and their definitions is presented here. 

Table VI spedifies the variables, which need to be changed 

for each specific computational run, and their locations in 

the program (by giving subroutine name). Run #2105 has been 

used as a sample for convenience of explanation. 

The program is listed with all comments. The program is 

available from 

Professor Kenneth J. Bell 

School of Chemical Engineering 

Oklahoma State University 

Stillwater, OK 74078 
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ACOF 

AIM (I, J) 

AlP (I, J) 

'-
AJM (I, J) 

, AJP (I, J)' 

AP (I, J) 

AMU(I,J) 

AMUl 

ANU 

AREA 

AREAMl 

AREAM2 

ARHO 

ARX (J) 

ARXJ (J) 

ARXJP (J) 

ASUI-1 

BL 1 
BLC 

''-' BLM J 
BLP 
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Notation 

quantity to give the combined convection and 
diffusion effect in subroutine DIFLOW 

the coefficient aw in Eq. (4-29) 

the coefticient aE in Eq. (4-28) 

the coefficient ~s in Eq. (4-27) 

the coefficient aN in Eq. ( 4-2 6) 

the coefficient aP in Eq. ( 4-25) ; 
also SP in GAMSOR 

variable viscosity 

constant viscosity 

Nusselt number 

local variable, usually the area of a C. v. 
face 

areas of the faces of the near-boundary C. V. 

local variable, (area) x p 

the area of the main C. V. face normal 
to the x direction 

the part of ARX(J) that overlaps on 
the C. V. for V(I,J) 

the part of ARX(J) that overlaps on 
the c. v. for V(I,J+l) 

P:J ?'fO 
coefficients used in the block correction 



CON (I, J) 

COND (I, J) 

\_,/ CONDl 

CP (I, J) 

CPl 

DEN OM 

DEZ (K) 

DIA 

DIFF 

DPSZ 

DQ 
\ 

'f DU(I,J) 

DV(I, J) 

DX 

DY 

,:§_RRl~ 
ERR2 \.. 
ERR4 J 
ERRS 
/-~ -- - -)-

ERSJ)'MJ:l 
ERSUM2 
ERSUM4j 
ERSUM5 

F(I,J,NF) 

FL 

FLM 

FLOW 

FLP 

constant term bin Eq. (4-30); 
also Sc in GAMSOR 

variable thermal conductivity 

constant thermal conductivity 

variable specific heat 

constant specific heat 

temporary storage 

variable steps in z-direction 

inside diameter of the tube 

diffusion conductance D 

pressure drop, dp/dz. 

AQ, for pressure-velocity decoupling 
Eq. (4-46) 

de influencing U(I,J) 

dn inflencing V(I,J) 

step in x-direction 

step in y-direction 

relative error between two iterations for 
u, v, T, and, w, respectively 

accumulative error 
for u, v, T, and w 

various cj)'s 

temporary storage 

temporary storage 

leading to 

leading to 

mass flow rate through a c.v 

temporary storage leading to 

FLOW 

FLOW 

face 

FLOW 
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---------

FRE 

FRSUM 

FU(I,J) 

FV(J) } 
FVP ( J) 

FX(I) 1') 
FXM (I)j/ 

-.. ....... ~ __ , "_ ... --

FY (J) l 
FYM(J)j 

'-• 

GAM (I, J) 

HTC 

I 

II 

IPREF 

IST 

ITER 

J 

JFL 

JFST 

JJ 

JPREF 

JST 

K 

LAST 

f.Re 

mass flow rate across the upstream face, 
Eq. (4-14) 

interpolation factors giving the mass flow 
pvr at a main grid point (I,J) as 
FV(J)*pvr(I,J)+FVP(J)*pvr(I,J+1) 

- interpolation factors which give the 
interface density RHOM (at -the location of 
U(I,J) )as 
FX(I)*RHO(I,J)+FXM(I)*RHO(I-1,J) 

interpolation factors which give. the 
interface density RHOM (at the location of 
V(I,J) )as . 
FY(J)*RHO(I,J)+FYM(I)*RHO(I,J-1) 

diffusion coefficient r 

local average heat transfer coefficient 

index in x-direction 

temporary index 

the value of I for the grid point which 
is used as a reference for pressure 

the first internal point value of I 

a counter. for iterations 

index in y-direction 

temporary index used in PRINT 

similar to IFST 

temporary index 

similar to IPREF 

the first internal point value of J 

index in z-direction 

maximum number of iterations 
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-

LBLK(NF) 

LISFIL 

LPR,l'NT(NF) 

LSOLVE(NF) 

LSTOP 

L1 

L2 

L3 

MODE 

when.TRUE. 1 the block correction for 
F (I 1 J 1 NF) is used 

name of the main output file 

when.TRUE. 1 F(I 1 J 1 NF) is printed 

when.TRUE. 1 we solve for F(I,J 1 NF) 

when.TRUE. 1 computation at a station stops 

the value of I for the last grid location 
in the x direction 

L1-1 

L1-2 

index for the coordinate system 
MODE = 1 for xy 1 then x=x 1 y=y 
MODE .:= .. 2.-.for rz, then x=z, y=r 
cJ1oD:E-:~{~.for re, then x=e, y=r 
~~~ -~--···----~·~,-~ -"''" 

M1 the value of J for the last grid location 
in the y direction 

M2 Ml-1 

M3 M1-2 

N the number of axial steps; 
also the temporary storage for NF 

NF ind~X--d~enoting a particular <!> 
~=1 for~~' NF=2 for v, --. 
NF,;;;;T·-·for p' (Eq. ( 4-5 4) ) 
NF=4 for T, NF=5 for w, 
NF=6 for f (Eq. (4-:-47)) 

NFMAX the largest value of NF for which storage 
is assigned 

NGAM NFMAX+3 
'· 

NP NFMAX+1 

NRHO NFMAX+2 

NTIMES(NF) the number of repetitions of the sweeps in 
SOLVE for the variable F(I 1 J,NF) 

P(I,J) the pressure p 
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PC(I,J) 

PI 

PREF 

PT (I) 
QT (I) 

or 
or 

QW(I,J,K) 

QW1 

R(J) 

RE 

REL 

RELAX(NF) 

RHO (I, J) 

RHOCON 

RM 

RMN(J) 

RMSUM 

SMAX 

SSUM 

sx (J) 

SXMN (J) 

TBULK 

TB1 

TEMP 

TIN 

the pressure correction p' 

1t=3.14159 

the pressure at the reference point 

PT (J)} 
QT (J) 

transformed coefficients 
in the TDMA 

variable inside wall heat flux 

constant inside wall heat flux 

the radius r for a main grid point (I,J) 

Reynolds number 

1.-RELAX(NF) 

relaxation factor for F(I,J,NF) 

the density p 

p for a constant-density problem 

0.5x( the total mass flow rate of the tube) 

the value of radius r for the location 
to which 'V(I,J) refers 

LpwM, Eq. ( 4-41) 

the largest absolute value of the "mass 
source" used in the p' equation 

the algebraic sum of all the "ma~s source" 
in the p' equation 

scale factor for the x direction 
at the main grid locations Y(J) 

scale factor for the x direction 
at 4he interface locations YV(J) 

Tbulk by integration of numerical results 

Tbulk by heat balance 

temporary storage 

inlet uniform temperature 
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TITLE(NF) 

TSUM 

TW 

TWSUM 

TO 
~--". 

(,U(I J-)) -----'- --

V (I, J) 
'-~ 

VOL 

WIN 

WSUM 

X (I) 

XCV (I) 
-~-~ 

XCVI (I) 

XCVIP ( 1 )1 
---~~~-

XCV$ (_I} 1 

XDIF(I) 

XL 

~~~-

'>., 
XU (I)) 

Xl 

y (J) 

YCV (J) 

YCVR (J) 

YCVRS (J) 

alphameric title for F(I,J,NF) 

average wall temperature 

:ET (I, Ml) 

TBl when calculating properties 

velocity u in x direction 

velocity v in y direction 

volume of the C. V. 

inlet uniform axial velocity 

the values of the x at grid points 

the x-direction widths of main C. V.'s 

the part of XCV(I) th~t overlaps on the 
C. V. for U (I, J) 

the part of XCV(I) that overlaps on the 
C. V. for U(I+l,J) 

the x-direction width of the staggered 
C. V. for U (I, J) 

the difference X(I)-X(I-1) 

the x-direction length of the calculation 
domain 

the location of the c. v. faces; i.e., 
the location of U(I,J) 

mass fraction of DEG in DEG-water solution 

the values of y at grid points 

the y-direction width of main c. v. IS 

the area rAy for a main c. v. 

the area rAy for the c. v. for V (I, J) 
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YCVS (J) 

YDIF (J) 

YL 

.. / 

YV(J) 

Z (K) 

the y-direction width of the staggered 
C. V. for V(I,J) 

the difference Y(J)-Y(J-1) 

the y-direction length of the calculation 
domain 

the location of C. V. faces; i.e., 
the location of V(I,J) 

the values of z at grid points 
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J 

Procedures 

Assign Outputs 

Grid 

Initialization 

Iteration control 

TABLE VI 

INPUT FOR A SPECIFIC COMPUTATIONAL RUN 

Variables 

LISFIL 

I\,100E 
L1 
M1 
DIA 
N 
DEZ(K) 

TIN 
WIN-
RM 

QW1 

JHX:X:N 
AMU1 
X1 
DPDZ 

LAST 
ITER 
ERSUM 
ERSUM 

Subroutine 

SETUP 
OUTPUT 

GRID 
GRID 
GRID 
GRID 
MAIN 
TUBE 

START 
START 
START 

START 

START 
START 
START 
START 

TUBE 
BOUND 
BOUND 
BOUND 

Run#2105 

R2105.SSS 
R2105.PL 

3 
1 9 
1 9 
0.016 m 
44 
44 data points 

36.167°C 
0.3 m/sec 
0.03925 kg/sec 

12200 w/m2 

1090 kg/m3 
1.4E-2 Pa.s 
0.09987 

. -400 Palm 

100 
5 
1 
1 E-2 

* In GRID, nonuniform spacing in r-direction should be rewritten if other DIA is used. 

Comments 

main output 
for plotting only 

for test or safety 
for w 
for u and v 
forT 

I 

I-' 
0\ 
00 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PROGRAM LISTING 

**************************************************************** 

* * 
,., A PROGRAM FOR LAMINAR MIXED CONVECTION HEAT TRANSFER INSIDE * 
* HORIZONTAL TUBES ~' 

* * 

* 

* 
* 
* 

AUTHOR CHANGLIN ZHANG 
INSTALLATION: OKLAHOMA STATE UNIVERSITY 
DATA : FALL 1989 
LANGUAGE FORTRAN 77 
REFERENCE PATANKAR,1984 

**************************************************************** 

10 

20 
30 

PROGRAM MAIN 
INCLUDE 'ZHANG.CMN' 
CALL GRID --, -~. ,_' 
CALL SETUP 1 -"• 
CALL START , -, , .' 1 

Z=O. 
N=44 
TO= TIN 

J' '~-

CALL SP~T - ' ,;~_,j 
DO 30 K-1 'N ' S•·AI"f\•"(i!.fol 
Z=Z+DEZ (K) -~ " r) v ~ t i \ ( t \ ( • 

TB1=TIN+ (PI~'DIA'''~;'QW1) I {!rRM*CP1) l/ I }t- p;.re 01 
TO=TB 1 \-:;. CJ;:rJOAJtJ 0 t 
CALL CONDC 
IF(K.EQ.1) GO TO 10 
CALL INPUT 
CALL DENSE 
CALL SPHT 
CALL CONDY 
CALL VISCO 
CALL BOUND 
CALL OUTPUT 
IF(LSTOP) GO TO 20 
CALL SETUP2 
GO TO 10 
CALL RESUME 
CONTINUE 
STOP 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE DIFLOW , 

169 

(******************************************************************** 
C-------USING POWER-LAW SCHEME--------------------------------------

INCLUDE 'ZHANG.CMN' 
ACOF=DIFF-
IF(FLOW.EQ.O.) RETURN 
TEMP=DIFF-ABS (FLOW) ~'0. 1 

' 



ACOF=O. 
IF(TEMP.LE.O.) RETURN 
TEMP=TEMP/DIFF 
ACOF=DIFF*TEMP)"*S 
RETURN 
END 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE RESUME 

(******************************************************************** 
c------INITIALIZING CONTROLLERS FOR EACH MARCHING-------------------

INCLUDE 'ZHANG.CMN' 
LSOLVE(4)=.FALSE. 
DO 60 NF=5,6 

60 LSOLVE(NF)=,TRUE. 
LSTOP=.FALSE. 
ITER=O 
SMAX=O. 
SSUM=O. 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE SOLVE 

(****************************************************************** 
INCLUDE 'ZHANG.CMN' 
ISTF=IS'f-1 
JSTF=JST-1 
IT1=L2+IST 
IT2=L3+IST 
JT1=M2+JST 
JT2=M3+JST 

C****************************************************************** 
DO 999 NT=1,NTIMES(NF) 
NFF=NF 
DO 999 N=NF,NFF 

C-------I-DIRECTION BLOCK CORRECTION-----------------------------
IF(.NOT.LBLK(NF)) GO TO 10 
PT(ISTF)=O. 
QT(ISTF)=O. 
DO 11 I=IST, L2 
BL=O. 
BLP=O. 
BLM=O. 
BLC=O. 
DO 12 J=JST,M2 
BL=BL+AP (I, J) 
IF(J.NE.M2) BL=BL-AJP(I,J) 
IF(J.NE.JST) BL=BL-AJM(I,J) 
BLP=BLP+AIP (I, J) 
BLM=BLM+AIM(I,J) 
BLC=BLC+CON(I,J)+AIP(I,J)*F(I+1,J,N)+AIM(I,J)*F(I-1,J,N) 

1 +AJP (I, J) >'<f (I, J+1 ,N) +AJM(I, J) ~'F (I, J-1 ,N)-AP (I ,J) ~'F (I, J ,N) 
12 CONTINUE 

DENOM=BL-PT(I-1)*BLM 
IF(ABS(DENOM/BL).LT.1.E-10) DENOM=1.D30 



PT(I)=BLP/DENOM 
QT(I)=(BLC+BLM*QT(I-1))/DENOM 

11 CONTINUE 
BL=O. 
DO 13 II=IST, L2 
I=ITl-II 
BL=BL*PT(I)+QT(I) 
DO 13 J=JST,M2 

13 F(I,J,N)=F(I,J,N)+BL 
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C--------J-DIRECTION BLOCK CORRECTION-----------------------------------
PT(JSTF)=O. 
QT(JSTF)=O. 
DO 21 J=JST,M2 
BL=O. 
BLP=O. 
BLM=O. 
BLC=O. 
DO 22 I=IST,L2 
BL=BL+AP (I, J) 
IF(I.NE.L2) BL=BL-AIP(I,J) 
IF(I.NE.IST) BL=BL-AIM(I,J) 
BLP=BLP+AJP(I,J) 
BLM=BLM+AJM (I, J) 
BLC=BLC+CON(I,J)+AIP(I,J)*F(I+1,J,N)+AIM(I,J)*F(I-1,J,N) 

1 +AJP (I, J) '~F (I, J+ 1, N) +AJM (I, J) '''F (I, J-1, N) -AP (I, J) >'<f (I, J, N) 
22 CONTINUE 

DENOM=BL-PT(J-1)*BLM 
IF(ABS(DENOM/BL).LT.1.E-10) DENOM=1.D30 
PT(J)=BLP/DENOM 
QT (J) = (BLC+BLM'''QT (J-1)) /DENOM 

21 CONTINUE 
BL=O. 
DO 23 JJ=JST,M2 
J=JTl-JJ 
BL=BL*PT(J)+QT(J) 
DO 23 I=IST,L2 

23 F(I,J,N)=F(I,J,N)+BL 
10 CONTINUE 

C---------FORWARD I-DIRECTION TDMA----------------------------
DO 90 J=JST,M2 
PT(ISTF)=O. 
QT(ISTF)=F(ISTF,J,N) 
DO 70 I=IST,L2 

50 DENOM=AP(I,J)-PT(I-1)"''AIM(I,J) 
PT(I)=AIP(I,J)/DENOM 
TEMP=CON (I, J) +AJP (I, J) *F (I, J+ 1, N) +AJM(I, J) "'F (I, J-1 ,N) 
QT (I)= (tEMP+ AIM (I, J) '''QT (I-1)) /DENOM 

70 CONTINUE 
DO 80 II=IST,L2 
I=ITl-II 

80 F(I,J,N)=F(I+1,J,N)*PT(I)+QT(I) 
90 CONTINUE 

C-------BACKWARD I-DIRECTION TDMA---------------------------------
DO 190 JJ=JST,M3 



J=JT2-JJ 
PT(ISTF)=O. 
QT(ISTF)=F(ISTF,J,N) 
DO 170 I=IST,12 

150 DENOM=AP (I ,J}-PT (I-1) '''AIM (I, J) 
PT (I),:; AlP (I, J) /DENOM 
·TEMP=CON (I; Jt+AJP (I, J) '''F_ (I, J+ 1, N) +AJM (I, J}'"F (I, J-1, N) 
QT (I)= (TEMP+AIM(I, J) ~<~T (I-1)) /DENOM' 

170 CONTINUE ~ 
DO 180 II=IST,12 
I=ITl-II 

180 F(I,J,N)=F(I+1,J,N)*PT(I)+QT(I) 
190 CONTINUE 

C--------FORWARD J-DIRECTION TDMA---------------------------------
DO 290 I=IST,12 
PT(JSTF)=O. 
QT(JSTF)=F(I,JSTF,N) 

250 DO 270 J=JST~M2 
DENOM=AP (I ,)}-PT (J-1) '''AJM (I, J)/ 
PT(J)=AJP(I,i)JDENOM 
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TEMP=CON (I, J) -PiiP (I, J) ~<p (1+1, J ,N) +AIM (I, J) i<F(I-1, J ,N) 
Jr"'M 

QT (J) == (TEMP+.AJM (I, J) ~'QT (J-1)) /DENOM--
270 CONTINUE Jf 

DO 280 JJ=JST,M2 
J=JTl-JJ 

280 F(I,J,N)=F(I,J+1,N)*PT(J)+QT(J) 
290 CONTINUE 

C--------BACKWARD J-DIRECTION TDMA---------------------------------
DO 390 II=IST, 13 
I=IT2-II 
PT(JSTF)=O. 
QT(JSTF)=F(I,JSTF,N) 

350 DO 370 J=JST,M2 
DENOM=AP (l,)) -PT (J-1) '''AJM (I, J) 
PT(J)~AJP(I,J)/DENOM 
TEMP=CON (I, J) +AlP (I, J) ''t-f (I+1, J ,N) +AIM(!, J) '''F (I-1, J ,N) 
QT(J)=(TEMP+AJM(I,J)*QT(J-1))/DENOM-

370 CONTINUE . 
DO 380 JJ=JST,M2 
J=JTl-JJ 

380 F(I,J,N)=F(I,J+I,N)*PT(J)+QT(J) 
390 CONTINUE 

C**************~**************************** 
999 CONTINUE 

DO 400 J=2,M2 
DO 400 !=2,12 
CON(I,J)=O. 
AP (I, J) =0. 

400 CONTINUE 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE SETUP 

C****************************************************************** 



INCLUDE 'ZHANG.CMN' 
(****************************************************************** 

3 FORMAT('!' ,14X, 'COMPUTATION IN POLAR COORDINATES') 
4 FORMAT (14X, 38 (lH~'<), I I) 

DATA LISFIL,INPUTF,SAVEFI'R2105.SSS', 'USER.DAT', 'USER.DAT'I 
DATA ZEROIO.OI 
DATA NFMAX,NP,NRHO,NGAMILIV,LIVl,LIV2,LIV31 
DATA LSTOP, LSOLVE, LPRINTil ~:.FALSE., LV'''. FALSE., LV*. FALSE. I 
DATA LINPUT, LSAVEILV7'. FALSE., LV'"'. FALSE. I 
DATA LBLKILV''<. TRUE. I 
DATA MODE,LAST,TIME,ITERI1,5,0.,01 
DATA RELAX,NTIMESILV7'1. ,LV~"'ll 
DATA DT,IPREF,JPREF,RHOCONI1.D+10,1,1,1043.1 

c-------------------------------------------------------------------
ENTR¥ s-El'UP 1 
L2=Ll-l 
L3=U-1 

- - '" 1{2=111-l' 
M3=M2-1 
X(1)=XU(2) 
DO 5 I=2,L2 

5 X(I)=0.5~':(xi,;(I+l)+XU(I)) 
X (Ll) =XU (Ll) 
Y (1) =YV (2) 
DO 10 J=2,M2 

10 Y(J)=0.5*(YV(J+1)+YV(J)) 
Y (M1) =YV (M1) 
DO 15 l:=2,Ll 

15 XDIF(I)=X(I)-X(I-1) 
DO 18,I=2,L2 

18 XCV(r)::=XU(I+l)-XU(I) 
DO 20 I=3', L2 

20 XCVS{I)=XDIF(I) 
XCVS(3)=XCVS(3)~XDIF(2) 
XCVS(L2)=XCVS(L2)+XDIF(Ll) 
DO 22 r='3, L3 
XCVI(I)=0.5*XCV(I) 

22 XCVTP(I)~XCVI(I) 
XCVIP(2)=XCV(2) 
XCVI(L2)=XCV(L2) 
DO 35 J=2,Ml 

35 YDIF(J)=Y(J)-Y(J-1) 
DO 40 J=2,M2 

40 YCV(J)=YV(J+l)-YV(J) 
DO 45 J=3,M2 

45 YCVS (J) =YDIF (J) 
YCVS(3)=YCVS(3)+YDIF(2) 
YCVS(M2)=YCVS(M2)+YDIF(M1) 
IF(MODE.NE.l) GO TO 55 
DO 52 J=l ,Ml 
RMN(J)=l.O 

52 R(J)=l.O 
GO TO 56 

55 DO 50 J=2,Ml 
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50 R(J)=R(J-1)+YDIF(J) 
RMN (2) =R (1) 
DO 60 J=3,M2 

60-RMN(J)=RMN(J-1)+YCV(J-1) 
RMN (M1) =R (M1) 

56 CONTINUE 
DO 57 J=1 ,M1 
sx (J) =1. 
SXMN (j) =1. 
IF(MODE.NE•.3) GO TO 57 
SX(J) =R (J) 
IF (J. NE. 1) SXMN (J) =RMN (J) 

57 CONTINUE 
DO 62 J=2,M2 
.YCVR(J)=l(J)*YCV(J) 
ARX (J) =YCVR (J) 
IF(MODE.NE.3) GO TO 62 

-ARX (J) =YCV (J) 
62 CONTINUE 

DO 64 J=4,M3 
64 YCVRS(J)=0.5*(R(J)+R(J-1))*YDIF(J) 

. YCVRS (3) =0. 5•': (R (3) +R (1)) 1<YCVS (3) 
YCVRS(M2)=0.5*(R(M1)+R(M3))*YCVS(M2) 
IF(MODE.NE.2) GO TO 67 
DO 65 J=3,M3 
ARXJ(J)=0.25*(1.+RMN(J)/R(J))*ARX(J) 

65 ARXJP(J)=ARX(J)-ARXJ(J) 
GO TO 68 

67 DO 66 J=3,M3 
ARXJ (J) =0. 5>'<ARX (J) 

66 ARXJP(J)=ARXJ(J) 
68 ARXJP(2)=ARX(2) 

ARXJ(M2)=ARX(M2) 
DO 70 J=3,M3 
FV(J)=ARXJP(J)/ARX(J) 

70 FVP(J)=1.-FV(J) 
DO 85 I=3,L2 

, • FX(I),=0.5''<XCV(I-1)/XDIF(I) 
I 85 FXM(I)=l.-FX(I) 

FX (2)''=0. 
FXM(2) =1. 
FX(Ll)J=1. 
FXM(Ll):ho. 
DO 90 J=3,M2 
FY(J)=0.5*YCV(J-1)/YDIF(J) 

90 FYM(J)=1.-FY(J) 
FY (2) =0. \_ 
FYM(2) =1. 
FY (M1) =1. 
FYM(M1)=0. 
DO 95 J=1 ,M1 
DO 95 I=1,L1 
PC (I, J) =0 • 

. U(I,J)=O. 
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V (I; J)=O. 
'CON(I,J)=O. e_:.c....,\'2./; u '--'1'" 

AP(I,J)=O. 
RHO(I,J)=RHOCON 
P(I,J)=O. 

95 CONTINUE 
OPEN (UNIT=!' FILE=LISFIL' S.TATUS= I NEW I) 
IF(MODE.EQ.l) WRITE (1,1) 
IF(f1:_0~~._~Q._2)~.WRITE (1,2) ).· 
ciFXMODE. ~Q. 3) WRITE ( 1 , 3) . 
WRITE (1,4) . ' 
RETURN 

c------------------------~--------------------------------------
ENTRY SETUP2 

COEFFICIENTS FOR THE U EQUATION-----~---------------------------
~F=l 
IF(.NOT.LSOLVE(NF)) GO TO 100 

/IST=3 
JST=2 
CALL GAMS.OR 
REL=l.-RELAX(NF) 
DO 102 I,;3,L2 
FL=XCVI(I)*V(I,2)*RHO(I,l) 
FLM=XCVIP (I-1) '''V (I-1, 2) "'RHO (I-1, 1) 

JLOW=R (1) '': (FL+FLM) 
DIFF=R (1) * (XCVI,(I) '"GAM (I, 1) +XCVIP (I-1) ,., 

+GAM(I-l,l))IYDIF(2) 
CALL DIFLOW 

102 AJM(I,2)=ACOF+MAX(ZERO,FLOW) 
DO 103 J=2,M2 
FLOW=ARX (J) 1'U (2, J) "'RHO (1, J) 
DIFF=ARX (J) '''GAM (1' J) I (XCV (2) ''<SX (J)) 
CALL DIFLOW 
AIM(3,J)=ACOF+MAX(ZERO,FLOW) 
DO 103 I=3,L2 
IF(I.EQ.L2) GO TO 104 
FL=U (I, J) ,., (FX (I) '''RHO (I, J) +FXM (I) "'RHO (I-1, J)) 
FLP=U (I+l, J) ,., (FX (I+ 1) '''RHO (I+l, J) +FXM (I+l) '"RHO (I, J)) 
FLOW=ARX (J) ''<0. 5'': (FL+FLP) 
DIFF=ARX(J)*GAM(I,J)I(XCV(I)*SX(J)) 
GO TO 105 

104 FLOW=ARX (J) 1'U (Ll, J) *RHO (Ll, J) 
DIFF=ARX(J)*GAM(Ll,J)I(XCV(L2)*SX(J)) 

105 CALL DIFLOW 
AIM(I+l,J)=ACOF+MAX(ZERO,FLOW) 
AIP(I,J)=AIM(I+l,J)-FLOW 
IF(J.EQ.M2) GO TO 106 
FL=XCVI(I)*V(I,J+l)*(FY(J+l)*RHO(I,J+l)+FYM(J+l)*RHO(I,J)) 
FLM=XCVIP (I-1) ''<V (I-1, J+ 1) ,., (FY (J+ 1) "'RHO (I-1, J+ 1) +FYM (J+ 1) ,., 

1 RHO(I-l,J)) . 
GM=GAM (I' J) *GAM (I' J+ 1) I (YCV (J) '''GAM (I' J+ 1) +YCV (J+ 1) "'GAM (I' J) + 

1 l.OE-30)*XCVI(I) 
GMM=GAM (I-1 'J) "'GAM (I-1' J+ 1) I (YCV (J) "'GAM (I-1' J+l) +YCV (J+l) * 

1 GAM(I-l,J)+l.E-30)''<XCVIP(I-1) 
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DIFF=RMN (1+1) >':2. >': (GM+GMM) 
GO TO 107 

106 FL=XCVI(I)*V(I,M1)*RHO(I,M1) 
FLM=XCVIP (I-1) ~:v (I-1 ,Ml) '''RHO (I-1 ,Ml) 
DIFF=R (M1) '':(XCVI{ I) '>':GAM (I, M1) +XCVIP (I-1) * 

-t-GAM(I-1 ,M1) )/YDIF (M1) 
107 FLOW=RMN(J4-1)*(FL+FLM) 

CALL DIFLOW 
AJM(I,J+1)=ACOF+MAX(ZERO,FLOW) 
AJP(I,J)=AJM(I,J+1)-FLOW 
VOL=YCVR (J) '''XCVS {I) 
CON(I,J)=CON(I,J)*VOL.;..FU(I,J)*F1(I,J,NF) 
AP (I, J) = (FU (I, J) -AP (I, J) "''VOL-t-AIP (I, J) +AIM (I, J) -t-AJP (I, J) 

1+AJM(I,J))/RELAX(NF) 
CON (I, J) =CON (I, J) -t-REL*AP (I, J) '''U (I, J) 
DU (I, J) =VOL/ (XDIF (I) '''SX (J)) 
CON (I , J) =CON (I , J) -t-DU (I , J) ,., ( P (I -1 , J) - P (I , J) ) 
DU(I,J)=DU(I,J)/AP(I,J) 

103 CONTINUE 
CALL SOLVE 

100 CONTINUE 
COEFFICIENTS FOR THE V EQUATION---------------------------------

NF=2 
IF(.NOT.LSOLVE(NF)) GO TO 200 
IST=2. 
JST=3 
CALL GAMSOR 
REL=1.-RELAX(NF) 
DO 202 I=2,L2 
AREA=R (1) *XCV (I) 
FLOW=AREA'''V (I, 2) "'RHO (I, 1) 
DIFF=AREA'''GAM (I, 1) /YCV (2) 
CALL DIFLOW 

202 AJM(I,3)=ACOF+MAX(ZERO,FLOW) 
DO 203 J=3,M2 
FL=ARXJ (J) '~U (2, J) 7'RHO (1, J) 
FLM=ARXJP (J-1) '''U (2, J-1) '''RHO (1, J-1) 
FLOW=FL4-FLM 
DIFF= (ARXJ (J) *GAM (1, J) -t-ARXJP (J-1) '''GAM (1, J-1)) 

+/(XDIF(2)*SXMN(J)) 
CALL DIFLOW 
AIM(2,J)=ACOF.;..MAX(ZERO,FLOW) 
DO 203 I=2,L2 
IF(I.EQ.L2) GO TO 204 
FL=ARXJ (J) *U (I-t-1, J) * (FX (I+ 1) '''RHO (I+1, J) +FXM (I+ 1) '''RHO (I, J)) 
FLM=ARXJP (J-1) >'<u (I+ 1, J-1) .,., (FX (I+ 1) *RHO (I+ 1, J-1) +FXM (I+ 1) * 

1 RHO(I,J-1)) 
GM=GAM (I' J) >'<GAM (I.;..1 'J) I (XCV (I) '''GAM (I .;..1' J) +XCV (I+ 1) "'GAM (I' J) + 

1 l.E-30)'''ARXJ(J) 
GMM=GAM (I' J-1) *GAM (I+1' J-1) I (XCV (I) '~GAM (I+1 'J-1) +XCV (I+l) * 

1 GAM(I,J-1)+1.0E-30)*ARXJP(J-1) 
DIFF=2 • .,., (GM+GMM) /SXMN (J) 
GO TO 205 

204 FL=ARXJ (J) *U (l.l, J) '''RHO (L1, J) 
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·FI:.M=ARXJP (J-1) '>:W'ft1, J-1) ~'RHO (L1, J-1) 
DI FF= (ARXJ ( J) ~'GM>€1:?1 , J) + ARXJP ( J -1) '"GAM (L 1 , J -1)) 

+I (XDIF (Ll) '''SXMN (6)) 
205 FLOW=~-tf_JJ1 ~ ' 
. CALL UIF..l.OW 

AIM(I+1,J)=ACOF+MAX(ZERO,FLOW) 
.AIP (I ;J'Jf=A:!M'(I-;'f7:f) -FLOW 
IF(J.EQ.M2) -GO TO 206 
AREA=R (J) '"XCV (f) 

' FL=V (I, J) ,., (FY (J) *RHO (I, J) +F.YM (J) ~'RHO (I, J-1)) '''RMN (J) 
~ FLP=V (I, J+ 1) '" (FY (J+ 1) ''<RHO (I, J+ 1) +FYM (J+ 1) ''<RHO (I, J)) ~'RMN (J+1) 

FLOW=(FV(J)*FL+FVP(J)*FLP)*XCV(I) 
~ DIFF=AREA''<GAM (I, J) IYCV (J) 

GO TO 207 
206 AREA=R (M1) ~'XCV (I) 

F'LOW=AREA"'V (I, M1) "''RHO (I, M1) 
- DIFF=AREA'"GAM (I ,M1) IYCV (M2) 

207 CALL DIFLOW 
-.JAJM (I, J+1) =~<;_OF+MAX (ZERO, FLOW) 

iV~A:fP (I, J) =AJfHf·, J+1) -ELOW 
~ YOL=YCVRS(J)*XCV(I) 

SXT=SX(J) ,___...__. 
, IF(J.EQ.M2) SXT=:SX(M1)' 

SXB=SX (J-_1) "" 
JF(J.EQ.3) SXB=SX(1) 
CON (I, J),=CON (I, J) '''VOL+FU (I, J) '''Fl (I, J, NF) 

, , AP (I, J),;. (FU1(I, J) -AP (I, lf) *VOL+\A ~p (I, J) +AIM (I, J)~+AJP (I, J) 
1+AJMCI,J))IRELAXCNF) r . , -_· · _ 1 

CON (I, J) =CON (I, J) +REL*.Af (I, J) ''<V (I, J) 
DV (I, J) =VOLIYDIF (J)' ' 
CON(I,J)=CON(I,J)+DV(I,J)*(P(I,J-1)-P(I,J)) 
DV (I' J) =DV (I' J) I AP (I' J) 

203· CONTINUE 
CALL SOLVE 

200 CONTINUE 
COEFFICIENTS FOR THE PRESSURE CORRECTION EQUATION------------------

v NF=3 
IF(.NOT.LSOLVE(NF)) GO TQ 500. 

viST=2 
. JST=2 
. CALL GAMSOR 

SMAX=O. 
SSUM=O. 
DO 390 J=2,M2 

, DO 390 I=2, L2 
.VOL=YCVR (J) .,.,XCV (I) 

390 CON(I,J)=CON(I,J)*VOL 
DO 402 I=2,L2 
ARH0'5R (.1) "'XCV (I) ''<RHO (I, 1) '1 
CON (¥,2) =CON (I , 2) + ARHO"''V (I, 2) I 

402 ~JM(I,2)=0. v 
\DO 403 J=2,M2 
-ARHO=ARX(J)*RH0(1,J) ' 
~.ON (2, J) =CON (2, J) + ARHO*"£! ~2 ~ _J) \ 
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AIM(2,J)=O. 
DO 403 I=2,L2 
IF(I.EQ.L2) GO TO 404 

I ARHO=ARX (J) ,., (FX (I+ 1) >'<RHO (I+ 1 'J) +FXM (I+ 1) "'RHO (I' J)) 
FLOW=ARHO'"'U(I+1,J) -"'~' 
CON(I,J)=CON(I,J)-FLOW 

\ '1,, CON(I+1,J)=CON(I+1,J)+FLOW . 
( AIP (r;-J}=ARHO'''DU (I+ 1, J) : 
:'AIM (I+1, J) =AIP (I, J) 
-GO-TO 405 . -

404 ARHO=ARX (J) *RHO (Ll, :!)_ 
CON{I, J) =CON (I, J) -]ARHO'''U (Ll, J)-
~I~(I,J)=O~ I 

405 IF(J.EQ.M2) GO TO 406 
ARHO=RMN (J+ 1) >'•XCV (I),., (FY (J+ 1) "'RHO (I, J+ 1) + 
+FYM(J+1)~RHO(I,J)) 

FLOW=ARHO"'V (I, J+l) 
CON(I,J)=CON(I,J)-FLOW 
CON(I,J+1)=CON(I,J+1)+FLOW 

L AJP (I, J) ·=ARHO'''DV (I, J+ 1) 
~ AJM(I,J+1)=AJP(I,J) 

GO TO 407 
406 ARHO=RMN (M1) '''XCV (I) "'RHO (I ,M1) 

v coN (I , Jt=coN (I , J)-ARHO'~'•v (I , Ml) 

407 ~;~1~ ~~~f~~ (I :-~·)HArM Cr, 1). +AJP (I, J) +AJM (I, J) 
PC (I' J) =0. ' : I ' ' 

SMAX~MAX(SMAX,ABS(CON(I,J))) 
SSUM=SSUM+CON (I, J) ./ 

403 CONTINUE v_ 
CALL SOLVE 

COME HERE TO CORRECT THE PRESSURE AND VELOCITIES------------------
DO 501 J=2,M2• 
DO 501 I=2,L2 

v:P(I, J) =P (I, J) +PC (I, J) "'RELAX (NP) ________ _ 
yiF(f.N'E. 2) U (I, J) ="u (I, J) +DU (I, J) :J, (P!= (I-1, J) -PC (I, J)), 

'-'IF(J;NE.2) V(I,J)=V(I,J)+DV(I,J)>'<(PC(I,J-1)-PC(I,J)) 
50_1 CONTINUE 
5 OO_,eONT INUE 

COEFFICIENTS FOR TEMPERATURE EQUATIONS----------------------------
~...-!ST=2 

\.,.JST=2 
\ ... N-F=4 
~F/(.NOT.LSOLVE(NF)) GO TO 400 
'-!21lLL GAMSOR 
R-EL= 1 • -RELAX (NF) 
-DC( 4~2 1=2, L2 
~AREA-R(1)*XCV(I) 
vFI.,OW=AREA'''V (I, 2) *RHO (I, 1) 
I.~J}IFF=AREA'''GAM (I' 1) /YDIF (2) 

h/CALL DIFLOW 
452 AJM(I,2)=ACOF+MAX(ZERO,FLOW) 

'-1)0 453 _J=2,]12 
fFLOW;ARX (J) >'•u (2, J) *RHO (1, J) 
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DIFF=ARX (J) )'<GAM (1, J) 1 (XDIF (2) ,·,sx (J)) 
CALL DIFLOW 

'AIM(2,J)=ACOF+MAX(ZERO,FLOW) 
DO 453 I=2,L2 
IF(I.EQ.L2) GO TO 454 
FLOW=ARX (J) "'U (I+ 1, J) ;, (FX (I+ 1) *RHO (I+ 1, J) + 

+FXM (I+ 1) "'RHO (I, J)) 
DIFF=ARX (J) )'<2. '''GAM (I' J) )'<GAM (I+ 1, J) I ((XCV (I) '''GAM (I+ 1' J) + 

+ XCV (I+1) >'<GAM (I, J) +1. OE-30) 1'SX (J)) 
GO TO 455 

454 FLOW=ARX (J) "'U (Ll, J) 1'RHO (L1, J) 
DIFF=ARX (J) '"GAM (L1' J) I (XDIF (L1) '"SX (J)) 

455 CALL DIFLOW 
AIM(I+1, J) =ACOF+MAX (ZERO, FLOW) 
AIP(I,J)=AIM(I+1,J)-FLOW 

. AREA=RMN (J+1) '''XCV (I) 
IF(J.EQ.M2) GO TO 456 
FLOW=ARSA?''V (I, J+l) ;, (FY (J + 1) '"RHO (I, J + 1) + FYM (J+ 1) "'RHO (I, J)) 
DIFF=AREA'''2. 7'GAM(I. J) '''GAM (I' J+l) I (YCV (J) *GAM (I' J+1) + 

+ YCV (J+l) '''GAM (I, J) +1. OE-30) 
GO TO 457 

456 FLOW=AREA''<V (I ,M1) )''RHO (I ,Ml) 
DIFF=AREA*GAM (I ,M1) IYDIF (M1) 

457 CALL DIFLOW 
AJM(I,J+1)=ACOF+MAX(ZERO,FLOW) 
AJP(I,J)=AJM(I,J+1)-FLOW 

45 3 CONTINUE 
c-------------------------------------------------------------

OMEGA=4.13. 
OMEGAM=OMEGA-1. 
DO 470 I=2,L2 
AREAM2=RMN(M2)*XCV(I) 
AREAM1=RMN(M1)*XCV(I) 
AJP (I, M2) =OMEGA,.'AJP (I, M2) 
AJP(I,M1)=AJP(I,M2)IAREAM1 
AJM (I , M1) =OMEGAM''' AJM (I , M2) / AREAM2 
AJM (I, M2) = AJM (I , M2) ,., ( 1 • +OMEGAM''' AREAM1 / AREAM2) 

470 CONTINUE 
c-----------------------------------------------------------

Do 475 J=2,M2 
DO 475 I=2,L2 
VOL=YCVR(J)*XCV(I) 

c-------------------~----------------------------------------
CON(I,J)=coN(I,J)*voL+FU(I,J)*F1(I,J,NF) 
AP(I,J)=FU(I,J)-AP(I,J)*VOL+AIP(I,J)+AIM(I,J)+ 

1AJP{I, J) +AJM (I, J) 
475 CON(I,J)=CON(I,J) 

c--------~---------------------------------------------------
DO 480 I=2,L2 
¥(I ,Ml) =AJP yt,M1) -AJ.?I~I ,M1) 
AP (I',M2) =AJ? fi ,M2) -A~(I ,M2) * (AJJ',{I ,M1) +A.rJ1(I ,M1)) I vcr ,M1) 
A}M (I, M2) =AJ,M (I ,M2) -A.p"(I, M2) ,.,AJ{i.{I, M1) I AP'(I, M1) 
CON (I ,M2) =CON (I ,.M2) +CONfi ,Ml) >'<AJP (I ,M2) I AP (I ,M1) 

480 AJP(I~M2)=0. 
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c-----------------------------------------------------------
DO 482 J=2,M2 
DO 482 I=2,L2 
AP (I, J) =AP (I, J) I~ELAX (NF) 

482 CON (I, J) =CON (I, J) +REL'''AP·(I, J) '''F (I, J ,NF) -
CALL SOLVE 

c-------------------------------------------------------------
DO 485 I=2,L2 
F(1{M1,NF)=(AJP(I,M1)*F(I,M2,NF)+ 
'/ 

1AJM (I' M1) .~ (F (I ,M2, NF) -F (I ,M3 ,NF)) +CON (I ,Ml)) I AP (I ,M1) 
CON (I, M1) ;-0. 
AP (I ,M1)__70. 

485 CONTINUE 
400 CONTINU'E 

COEFFICIENTS' FOR OTHER EQUATIONS-----------------------------------

IST=2-
JST=2 
DO 600 N=S,NFMAX 
NF=N 

viF(.NOT.LSOLVE(NF)) GO T0,600 
.,_,.CALL GAMSOR-

REL= 1. -RELAX (NF) 
\;DO 602 I=2,L2 
:AREA=R(1)*XCV(I) 
. FLOW=AREA'''V (I, 2) *RHO (I, 1) 
::DIFF=AREA*GAM (I, 1) IYDIF (2) 
.• CALL DIFLOW 

602jAJM(I,2)=ACOF+MAX(ZERO,FLOW) 
DO 603 J=2,M2 .. 

J::F[OVl=A.R.X (J) •'<U (2, J) "'RHO (1, J): 
,. DIFF.;,ARX ( J) "'GAM (1' J) I (XDIF (2) *SX (J)). 

CALL DIFLOW . 
_1 vAIM (2, J) =ACOF-i-MAX (ZERO, FLOW) 
'.,DO 603 I=2, L2 
; IF ( I.·1EQ. L2) GO ..JO 604 
\ F'Lo-w::AP,x (J) n:u(I+1, J) ·~ CFx CI+1) •'<Rao CI+1, J) + 
\+fXM (I+ 1) '''RHO (I, J)) 
\ DIFF.i.ARX(J) ,.,2. "'GAM(I' J) '''GAM(I+1' J) I t ((XC~ (I) '~GAM (I+ 1, J).+XCV (I+ 1) "'GAM (I, J) + 1. OE-30) "'SX (J)) 

·GO TG 605 -
604 -~FLO~.,.-ARX (J) '''U (Ll J) *RHO (L 1 J) -

' ,, ' ' 
DIFF=ARX (J) •':GAM(L1, J) 1 (XDIF (L1) ,·,sx (J)) 

605 CALL DIFLOW 
(AIM (I+1, .J) =ACOF+MAX (ZERO, FLOW) : 
I,_AIP (I' J) =AIM (I+1' J) -FLOW 

AREA=RMN(J+l) "'XCV (I) 
IF(J.EQ.M2) GO TO 606 
FLOW=AREA,.'V (I, J+ 1) '~ (FY (J+ 1) '''RHO (I, J+ 1) +FYM (J+ 1) *RHO (I, J)) 
DIFF=AREA'''2. "'GAM (I' J) >'<GAM (I' J+ 1) I (YCV (J) '''GAM (I']+ 1) + 

+,YCV(J+1)*GAM(I,J)+1.0E-30) 
'GO TO 607 

606 FLOW=AREA'~V (I ,M1) '''RHO (I ,M1) 
'~IFF=AREA1'GAM (I, M1) /YDIF (M1) 

607/CALL DIFLOW 
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~JM(I,J+l)=ACOF+MAX(ZERO,FLOW) 
AJP(I,J)=AJM(I,J+l)-FLOW 
~VOL=YCVR (J) )~XCV (I) 
CON(I,J)=CON(I,J)*VOL~FU(I,J)*Fl(I9J,NF) 
AP (I, J) = (FU (I, J) -AP (I, J) )'<VOL-1-:AIP (I, J)+AIM(I, J) +AJP (I, J) 

l+AJM(I(J))/RELAX(NF) 
CON (I: J) =CON (I, J) +REL*AP (I, J) )'<p (I, J ,NF) 

603 CONTINUE 
CALL SOLVE 

C*********************************************************** 
600 CONTINUE 

ITER=ITER+l 
IF(ITER.GE.LAST) LSTOP=.TRUE. 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE SUPPLY 

C****************************************************************** 
INCLUDE 'ZHANG.CMN' 

C****************************************************************** 
10 FORMAT('l' ,26(1H*),3X,Al0,3X,44(1H*)) 
20 FORMAT(lX,4H I =,I7,8I12) 
30 FORMAT(lX,lHJ) 
40 FORMAT(lX,I2,1P9E12.2) 
50 FORMAT(lX,lH) 
51 FORMAT(lX, 'I =',2X,9(I4,5X)) 
52 FORMAT(lX, 'X =',1P9E9.2) 
53 FORMAT(lX, 'TH =',1P9E9.2) 
54 FORMAT(lX, 'J =' ,2X,9(I4,5X)) 
55 FORMAT(lX, 'Y =' ,1P9E9.2) 

C****************************************************************** 
ENTRY PRINT 
IF(.NOT.LPRINT(3)) GO TO 80 

CALCULATE THE STREAM FUNCTION--------------------------------------
F(2,2,3)=0. 

c 

c 

DO 82 I=2,Ll 
IF(I.NE.2) F(I,2,3)=F(I-1,2,3)-RHO(I-l,l)*V(I-1,2) 

l>'<R (1) l'cxcv (I-1) 
DO 82 J=3,Ml 
RHOh=FX (I) ''<RHO (I, J-1) +FXM (I) *RHO (I-1, J-1) 

82 F (I, J, 3) =F (I, J-1, 3) +RHOM'~U (I, J-1) '''ARX (J-1) 
80 CONTINUE 

IF(.NOT.LPRINT(NP)) GO TO 90 

CONSTRUCT BOUNDARY PRESSURES BY EXTRAPOLATION 
DO 91 J=2,M2 
P (1, J) = (P (2, J) *XCVS (3) -p (3, J) >'<XDIF (2)) /XDIF (3) 

91 P (Ll ,.J) = (P (L2, J) '~XCVS (L2) -p (L3, J) *XDIF (Ll)) /XDIF (L2) 
DO 92 I=2,L2 
P(I,l)=(P(I,2)*YCVS(3)-P(I,3)*YDIF(2))/YDIF(3) 

92 P(I,Ml)=(P(I,M2)*YCVS(M2)-P(I,M3)*YDIF(Ml))/YDIF(M2) 
P (1, 1) =P (2, 1) +P (1, 2) -p (2, 2) 
P (Ll, 1) =P (L2, 1) +P (Ll, 2) -p (L2, 2) 
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c 

c 

P(l,Ml)=P(2,M1)+P(1,M2)-P(2,M2) 
P(L1,M1)=P(L2,M1)+P(L1,M2)-P(L2,M2) 
PREF=P(IPREF,JPREF) 
DO 93 J=1 ,M1 
DO 93 I=1,Ll 

93 P(I,J)=P(I,J)-PREF 
90 CONTINUE 

WRITE (1, 50) 
IEND=O 

301 IF(IEND.EQ.L1) GO TO 310 
IBEG=IEND+1 
IEND=IEND+9 
IEND=MINO(IEND,L1) 
WRITE (1, 50) 
WRITE (1,51), (I,I,=lBEG,I,END) 
IF(MODE.EQ.3) GO. TO 302. 
WRITE (1,52), (X(I),I=IBEG,IEND) 
GO TO 301 . 

, 302 eRITE o. 53) • ex (I) • I= IBEG. lEND)! 
GO TO 301 

310 JEND=O 
WRITE (1, 50) 

311 IF(JEND.EQ.M1) GO TO 320 
JBEG=JEND+1 
JEND=JEND+9 
JEND=MINO(JEND,M1) 
WRITE (1 ,50) 
WRITE (1,54), (J,J=JBEG,JEND) 
WRITE (1,55), (Y(J),J=JBEG,JEND) 
GO TO 311 

320 CONTINUE 

DO 999 N=1,NGAM 
NF=N 
IF(.NOT.LPRINT(NF)) GO TO 999 
WRITE (1, 50) .. 
WRITE (1,10) ,TITLE(NF) 
IFST=1 
JFST=1 

/ IF (N£. EQ . 1 . OR . NF . EQ . 3) IF S T= 2 
IF(NF.EQ.2.0R.NF.EQ.3) JFST=2 
IBEG=IFST-9 

110 CONTINUE 
IBEG=IBEG+9 
IEND=IBEG+8 
IEND=MINO(IEND,Ll) 
WRITE (1, 50) 
WRITE (1,20), (I,I=IBEG,IEND) 
WRITE ( 1, 30) 
JFL=JFST+Ml 
DO 115 JJ=JFST,Ml 
J=JFL-JJ 
WRITE (1,40),J,(F(I,J,NF),I=IBEG,IEND) 
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c 

c 

115 CONTINUE 
IF(IEND.LT.L1) GO TO 110 

999 CONTINUE 
RETURN 

LENTR Y INPUT.) 
OPEN(UNIT=2,FILE~INPUTF,STATUS='OLD') 

DO 410 N=l,NGAM 
NF=N 
IF(.NOT.LINPUT(NF)) GO TO 41~ 
READ (2, ,., ) 
READ(2,420) {~F(I,J,NF'') ,I=1,Ll) ,J=l,M:f) 

420 FORM:AT(lX,lO(E12.5,1X)) 
t,} 0 CONTINUE 

CLOSE (GNIT=2) 
DO 430 NF=1,5 
DO 430 J=l ,M1 
DO 430 I=l, L1 

430 F1(I,J,NF)=F(I,J,NF) 
DO 440 J=2,M:2 
DO 440 I=2,L2 

440 FU(I,J)=YCVR(J)*XCV(l)/DEZ(K)*RHO(I,J)*F1(I,J,5) 
RETURN 

. 
ENTRY SAVE 
OPEN(UNIT=3,FILE=SAVEF,STATUS='NEW') 
DO 500 N=1,NGAM 
NF=N 
IF(.NOT.LSAVE(NF)) GO TO 500 
WRITE (3, ~') 
WRITE(3,520) ((F(I,J,NF) ,I=l,Ll) ,J=l,M:l) 

520 FORM:AT(lX,10(1PE12.5,1X)) 
500 CONTINUE 

CLOSE CGNIT=3) 
RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE TUBE 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
INCLUDE 'ZHANG.CM:N' 
DIMENSION U1(30,30),V1(30,30),T1(30,30),W1(30,30) 
DIMENSION T(ID,JD) 
EQUIVALENCE (F(1,1.4),T(1,1)) 
DATA TITLE(1),TITLE(2),TITLE(3),TITLE(4),TITLE(5), 

+TITLE(11)/7H VEL G,7H VEL V,7H STR FN,6H TEMP , 
+7H W/WBAR,8HPRESSURE/ 

DATA RELAX(1) ,RELAX(2),RELAX(11)/0.5,0.5,0.5/ 
DATA RELAX(4)/0.9/ 
DATA (LSOLVE(I) ,I=5,6), (LINPUT(I),LSAVE(I),LPRINT(I) ,1=1,5) 

+/171'. TRUE. I 
DATA LAST/100/ 
DATA (NTIMES (I), I=1, 6) /6'~3/ 
DATA (DEZ(K) ,K=1,44)/0.0186,0.02,0.0377,0.0377,0.05,0.051, 

+0.06,b.07,0.073,0.06,0.07,0.072,0.101,0.102,0.101,0.101, 
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c 

+0.102,0.102,0.101,0.101,0.101,0.102,0.101,0.101,0.101,0.102, 
+0.101,0.101,0.101,0.101,0.101,0.101,0.101,0.103,0.105,0.105, 
+0.105,0.105,0.105,0.105,0.11,0.11,0.11,0.117/ 

ENTRY GRID 
MODE=3 
PI=3.14159 
L1=19 
M1=19 
L3=L1-2 
XU(2)=0. 
DX=PI/DFLOAT(L3) 
DO 101 I=3, L1 

101 XU(I)=XU(I-1)+DX 
(----------NONUNIFORM IN R-DIRECTION---------

YV(2)=0. 

c 

YV(3)=0.001 
DY=0.001 
DO 103 J=4,7 

103 YV(J)=YV(J-1)+DY 
DY=0.0004 
DO 105 J=8,13 

105 YV(J)=YV(J-1)+DY 
DY=0.0001 
DO 107 J=14,M1 

107 YV(J)=YV(J-1)+DY 
R(l)=O. 
RETURN 

ENTRY START 
C---------------RUN #2105-----~----------------------

TIN=36. 167 
WIN=0.3 
DO 120 J=1,M2 
DO 120 I=1, L1 
F(I,J,4)=TIN 
F (I ,M1, 4) =TIN 
F(I,J,5)=WIN 

120 F(I,M1,5)=0. 
c-----------------------------------------------------

c 

RM=0.03925 
DIA=0.016 
Q¥H == 12200. 
RHOCON=1090. 
AMU1=1. 4E-2 
X1=0.9987 
DPDZ=-400. 
DO 130 J=2,M2 
DO 130 I=2,L2 
FU (I, J) =YCVR (J) >'<XCV (I) /DEZ (1) ''<RHOCON''<F (I, J, 5) 
F1 (I, J, 4) =F (I, J, 4) 

130 F1(I,J,5)=F(I,J,5) 
RETURN 
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c 

c 

c 

c 

ENTRY DENSE 
A1=998.8+207.29*X1-72.103*X1**2 
B1=-0.10357-1.0797*X1+0.42904*X1**2 
C1=-3.2251E-3+3.4321E-3*X1-4.5246E-4*X1**2 
RHOCON=A1+B1*TO+C1*T0**2 
DO 200 J=1 ,111 · 
DO 200 I=1,Ll 
RHO(I,J)=A1+B1*T(I,J)+C1*T(I,J)**2 

200 CONTINUE 
RETURN 

ENTRY VISCO 
A2= (0. 63513+3. 0176'""Xl-O. 49609"'Xl ,'<>'<2,) "'"""1. 3514 
B2=-0.029276-0.0440815*X1+0.0099051*X1**2 

I 

C2=(1.8238E-6+5.]65E-6*X1-2.6245E-6*X1**2)**0.6803 
AMU1=EXP (A2+B2'''T0fC2'''TO'h'<2) '""1. E-3 
DO 210 J=1 ,111 . 

/ . 

DO 210 I=1,L1 
210 AMU (I, J) =EXP (A2+B2'''T (I, J) +C2'''T (I, J) >'d•2) '"1. E-3 ·+ 

RETURN -

ENTRY SPHT 
A3=1.027-0.52469*X1+0.021435*X1**2 
B3=-2.6187E-4+3.8054E-3*X1-2.5793E-3*X1**2 
C3=-2.3096E-7+6.0706E-7*X1 
CP1=4187.*(A3+B3*TO+C3*T0**2) 
DO 220 J=1,M1 
DO 220 I=1, L1 
CP (I, J) =418 7. ,., (A3+B3 '''T (I, J) +C3 ,.,T (I, J) *•'<2) 

220 CONTINUE 
RETURN 

ENTRY CONDC 
WK=O. 56276+ 1. 87 4E-3'"T0-'6. 8E-6,''TO,h'<2 
DEGK=O. 19589,+ 1. 689E-4,''T0-8. 1E-7,''T0"""2 
ALMDA=O. 4052+0. 0594,''X1-8. 4E-4"'T0 
ALM=ALMDA''' (WK-DEGK) >'c (1-Xl) -lcx1 
COND1=WK,'< (l-X1) +DEGK'"X1-ALM 
RETURN 

ENTRY CONDY 
DO 230 J=1,M1 
DO 230 I=1,Ll 
WK=O. 562 76+ 1. 8 7 4E-3"'T (I, J) -6. 8E-61'T (I, J) ,.,*2 
DEGK=O. 19589+ 1. 689E-4'''T (I, J) -8. 1E-7'''T (I, J) >'n'<2 
ALMDA=O. 4052+0. 0594,"X1-8. 4E-4*T (I, J) 
ALM=ALMDA''' (WK-DEGK) "~< (1-Xl) *X1 

230 COND (I, J) =WK''' (1-X1) +DEGK'"X1-ALM 
RETURN 

. ENTRY BOUND 
WSUM=O. 
ASUM=O. 
TSUM=O. 
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FRSUM=O. 
RMSUM=O. 
TWSUM=O. 
E:RSUM1=0, 
ERSUM2=0. 
ERSUM4=0. 
ERSUM5=0. 
DO 300 J=2,M2 
DO 300 I=2,L2 
AR=YCVR ( J) i<THCV (I) 
WSUM=WSUM+F (I, J.,.5) ''tAR 
TSUM=TSUM+AR'·:p (I, J ,5) *F (I, J, 4) 
FRSUM=FRSUM+F (I, J, 6) *RHO (I, J) 1'AR 
RMSUM=RMSCM+F (I, J, 5) '''RHO (I, J) '':AR 
ASUM=ASUM+AR 

300 CONTINUE 
c--------VELOCITY-PRESSURE DECOCPLING IN Z-DIRECTION-----------

IF(.NOT.LSOLVE(6)) GO TO 391 
IF(ITER.LE.2) GO TO 390 
DQ=(RM-RMSUM)/FRSUM 
DPDZ=DPDZ-DQ 
DO 390 J=2,M2 
DO 390 I=2,L2 

390 F(I,J,5)=F(I,J,5)~F(I,J,6)*DQ 
391 CONTINUE 

WBAR=WSUM/ASUM 
RE=RHOCON.,.<WBAR *DIA/ AMU1 
FRE,-2. ''<DPDZ''tDIA/ (RHOCON''tWBAR idr2~ 1. D-30) >'<RE 
TBULK=TSUM/(WSUM+1.D-30) 

C---------ERRORS BETWEEN TWO ITERATIONS-------------------------
DO 366 J=2,M2 
DO 366 I=2,L2 
ERR 1 =ASS ( ( F (I , J , 1) - U 1 (I , J) ) / (C (I , J) + 1. E-25) ) 
ERR2=ABS((F(I,J,2)-Vl(I,J))/(V(I,J)+1.E-25)l 
ERR4=ABS((F(I,J,4)-T1(I,J))/(F(I,J,4)+1.E-25)) 
ERR5=ABS((F(I,J,5)-W1(I,J))/(F(I,J,5)+1.E-25)) 
ERSUM1 =ERSUM1 ~ £'1UU 
ERSUM2=ERSUM2+ERR2 
ERSUM4=ERSUM4+ERR4 

366 ERSUM5=ERSU.M5+ERR5 
DO 32,0 J=2 ,M2 
U(2,J)=Q. 
U(Ll,J)==O. 
v(l,J)-=V(2,J) 
V(Ll,J)=V(L2,J) 
F(l,J,4)=F(2,J,4) 
F(Ll,J,4)=F(L2,J,4) 
F(1,J,5)=F(2,J,5) 
F(Ll,J,5)=F(L2,J,5) 
F<I,J,6)=F(2,J,6) 

320 F(Ll,J,6)=F(L2,J,6) 
DO 330 I=2,L2 
V( ,2)=0. 
U(J, l)=U(I,2) 
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F(I,1,4)=F(I,2,4) 
F(I,1,6J=F(I,2,6) 

330 F(I,1,5J=F(I,2,5) 
310 CONTINUE 

c----------------------------------------------------------------
Do 420 J=1,M1 
DO 420 I .. ~1,L~ __ 
U1(I,J)=F(I,J,1)1 
V1 (I, J) =FT1, 1",1) 
T1(I,J)=F(I,J,4) 

420 W1(I,J)=F(I,J,5) 
c-----------------------------------------------------------

372 CONTINUE 
IF(ITER.LE.5) RETURN 
DO 370 NF=5,6 

370 LSOLVE(NF)=.FALSE. 
DO 360 NF"'1,3 

360 LSOLVE(NF)=.TRUE. 
IF(ITER.LE.10) GO TO 382 
lF(ERSUM1.GE.1.J RETURN 
IF(ERSUM2.GE.1.) RETURN 
GO TO 383 

382 RETURN 
383 DO 362 NF 2 1,3 
362 LSOLVE(NF)=.FALSE. 

LSOLVE(4)=.TRUE. 
IF (ERSUM4.EQ.O.) GO TO 386 
IF(ERSUM4.LE.1E-2) LSTOP=.TRUE. 

386 CONTINUE 
C--------NUSSELT NUMBER------------------------------------

DO 352 I=2,L2 

c 

352 TW,SUM=TWSUM+F (l ,M1, 4J . 
TW=JTWSUMIDFLOAT(L3) 
HTC=QW1I(TW-TBULK+1.D-30J 
ANU=HTC'tDIAI COND 1 
RETURN 

ENTRY OGTPUT 
IF(ITER.NE.O) GO TO 400 
PRINT 402,K,TB1 
WRITE(1,402) K,TB1 

402 FORMAT (' 1' , 1 >'o'o'dddo~>'o'ddddob'do~>'o~STATION tt • , I3, • >'ddo'ob'do~>'ddddobd< 1 , 

+II' TBULK CALCULATED BY HEAT BALANCE=' ,1P1E12.3) 
PRINT 401 
WRITE (1, 401) 

40 1 FORMAT ( 1 X, j 1 ' >'dddobbb'<*>'<**>~>'ddd<*"lddddd<>'do'o'do~>'ddob~i<*>'o'o~>'dddd< 1 , 1 
+' ITER' ,6X, 'SSUM', 7X, 'ERR1' ,8X, 'ERR2' ,8X, 
+'ERR4' ,6X, 'DPDZ' ,8X, 'F.RE' ,8X, 'TBULK' ,8X, 'TWavg' ,8x, '"l'U') 

400 PRINT 403,ITER,SSUM,ERSUM1,ERSUM2, 
+ERSUM4,DPDZ,FRE,TBULK;TW,ANU 

WRITE(1,403) ITER,SSUM,ERSUM1,ERSUM2, 
+ERSUM4,DPDZ,FRE,TBULK,TW,ANU 

403 FORMAT(I6,1P9E12.3) 
IF(.NOT.LSTOP) RETURN 



C--------CREATE FILE FOR PLOTTING--------------------------------
OPEN(UNIT=7,FILE='R2105.PL' ,STATUS='NEW') 
WRITE(7,450)Z,TB1,TBULK,TW,ANU,FRE~f(2,M1,4),F(L2,M1,4) 

c 
450 FORMAT(1X,8Fl2.5) ' 

CALL SAVE 
DO 410 J=1,M1 
DO 410 I=1, L1 

410 F(I,J,5)=F(I,J,5)1WBAR 
c----------PRINT CONTROLLER------------------------------------

IF(MOD(K,11).NE.0) RETURN 

c 

CALL PRINT 
RETURN 

ENTRY GAMSOR 
DO 500 J=1,M1 
DO 500 I=1, L1 
GAM(I,J)=AMU(I,J) 
IF(NF.EQ.4) GAM(I,JJ=COND(I,J)ICP(I,J) 
GAM(1,J)=O. 
GAM(L1,J)=O. 

500 CONTINUE 
DO 510 J=2,M2 
DO 510 I=2,L2 
IF(NF .NE.1) 'GO TO ,520 
CON(I,J)=(F(I,M1,4)-T(I,J))*(-9.81)*(B1+2.*C1*T(I,J))* 

-r SIN ( TH (I) ) + 2 ~' AMU (I , J) ~' ( V (I+ 1 , J) - V (I , J) ) I XD IF (I) I Y ( J) id: 2 
AP (I, J)=-RHO(I, J) *V (I, J) IY (J) -AMU (I, J) IY (J) ''"''2 

520 IF(NF.EQ.2) CON(I,J)=-(F(I,M1,4)-T(I,J))*(-9.81)*(B1+ 
+2.*C1*T(I,J))*COS(TH(I))+RHO(I,J)*U(I,J)**2IY(J)-
-r2. '''AMU (I, J) ,., (U (I+ 1, J) -U (I, J)) /XDIF (I) IY (J) ""~2 

IF (NF. EQ. 2) AP (I, J) =-.M1U (I, J) /Y (J) >'d'2 
IF(NF.EQ.4) CON(I,M1)=QW1ICP(I,M1) 
IF(NF.EQ.5) CON(I,J)=-DPDZ 
IF(NF.EQ.6) CON(I,J)=1. 

510 CONTINUE 
RETURN 
END 
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Included File ZHANG.CMN 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C---- ID=I DIMENSION, JD=J DIMENSION,KD=K DIMENSION 
C---- IMX=MAXIMUM OF ID AND JD 

PARAMETER ID=64,JD=60,KD=50,IMX=64 
C---- LIV=NUMBER OF INDEPENDENT VARIABLES; INCLUDING U,V, AND PC 

PARAMETER LIV=lO , 
PARAMETER LV=LIV+3 
PARAMETER LIV1=LIV+1,LIV2=LI'V+2,LIV3=LIV+3 
CHARACTER'''40 INPUTF, INPUTT, SAVEF, LISFIL,DUMMY ,ANS1 ,ANS2 
COMMON/FILE/INPUTF,INPUTT(15),SAVEF,LISFIL,TITLE(LIV3) 
LOGICAL LSOLVE,LPRINT,LBLK,LSTOP,LINPUT,LSAVE 
COMMON/POSI/ITOTAL(2),XP(2,300),YP(2,300) 
COMMON/POINT/UIN,TURBV,PI,DIA,QW1,RM,CP1,K,COND1,RE,AMU1 
COMMON/GIVEN/ISINGLE,PR,DP,ROP,W,Z,TO,TB1,TIN,WIN,DPDZ 
COMMON F(ID,JD,LIV3) ,CON(ID,JD),FU(ID,JD),AMU(ID,JD), 

1 AIP(ID,JD),AIM(ID,JD),AJP(ID~JD) ,AJM(ID,JD) ,AP(ID,JD), 
2 X(ID),XU(ID) ,XDIF(ID),XCV(ID),XCVS(ID),F1(ID,JD,LIV3), 
3 Y(JD),YV(JD);YDIF(JD),YCV(JD) ,YCVS(JD),CP(ID,JD), 
4 YCVR(JD),YCVRS(JD),ARX(JD),ARXJ(JD),ARXJP(JD),COND(ID,JD), 
5 R(JD) ,RMN(JD),SX(JD),SXMN(JD),XCVI(ID),XCVIP(ID) 

COMMON DU(ID,JD),DV(ID,JD), FV(JD),FVP(JD), 
1 FX(ID),FXM(ID),FY(JD),FYM(JD) ,PT(IMX),QT(IMX),DEZ(KD) 
COMMON/INDX/NF,NFMAX,NP,NRHO,NGAM,L1,L2,L3,M1,M2,M3,IV1,IV2, 

1 IST,JST,ITER,LAST,RELAX(LIV3),TIME,DT,XL,YL,MO,TW, 
2 IPREF,JPREF,LSOLVE(LIV3),LPRINT(LIV3),LBLK(LIV3),MODE, 
3 NTIMES(LIV3) ,RHOCON,LINPUT(LIV3),LSAVE(LIV3) 

COMMON/CNTL/LSTOP 
COMMON/SORC/SMAX,SSUM 
COMMON/COEF/FLOW,DIFF,ACOF 
DIMENSION U(ID,JD) ,V(ID,JD),PC(ID,JD) 
DIMENSION P(ID,JD) ,RHO(ID,JD) ,GAM(ID,JD),BETA(ID,JD) 
EQUIVALENCE(F(1,1,LIV+1) ,P(1,1)), (F(1,1,LIV+2),RH0(1,1)), 

1 (F(1,1,LIV+3),GAM(1,1)) 
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EQUIVALENCE(F (1, 1, 1), U (1, 1)), (F(l, 1,2), V (1, 1)), (F(l, 1, 3) ,PC(1, 1)) 
DIMENSION TH(ID) ,THU(ID),THDIF(ID),THCV(ID),THCVS(ID) 
EQUIVALENCE (X, TH) , (XU, THU) , (XDIF, THDIF), (XCV, THCV) 

1 , (XCVS,THCVS), (XL,THL) 



APPENDIX C 

A SAMPLE OUTPUT 

Presented is a typical printout for one axial station. 

The first page is a record of iteration processes at the 

station. The following pages are distribution of velocity u, 

v, stream function, temperature, and dimensionless axial 

velocity, sequentially. 
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•~*****************STATION # 44**************** 

TBULK CALCULATED BY HEAT BALANCE= 4 897E+01 

****•*************************************** 
ITER SSUM ERR1 ERR2 ERR4 DPDZ F RE TBULK 

0 0 OOOE+OO 1 218E-04 1 355E-04 9 148E-05 -3 300E+02 5 220E+01 4 873E+01 
1 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 300E+02 5 211E+01 4 875E+01 
2 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 300E+02 5 211E+01 4 875E+01 
3 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 273E+02 5 168E+01' 4 875E+01 
4 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
5 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
6 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
7 8 724E-20 8 998E-01 2 488E+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
8 -7 p73E-20 6 590E-01 1 429E+OO 0 OOOE+OO -3 273E+02 5 1 175E+01 4 875E+01 
9 4 299E-20 5 857E-01 1 312E+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 

10 6 956E-20 5 035E-01 1 267E+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
1 1 -4.796E-20 4 535E-01 1 174E+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
12 -2 970E-20 4 208E-01 1 066E+OO 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
13 -2 451E-20 3 970E-01 9 671E-01 0 OOOE+OO -3 273E+02 5 175E+01 4 875E+01 
14 -2 451E-20 0 OOOE+OO 0 OOOE+OO 9 989E-01 -3 273E+02 5 175E+01 4 906E+01 
15 -2 451E-20 0 OOOE+OO, . 0 OOOE+OO 1 554E-01 -3 273E+02 5 175E+01 4 910E+01 
16 -2 451E-20 0 OOOE+OO 0 OOOE+OO 2 867E-02 -3 273E+02 5 175E+01 4 911 E+01 
17 -2 451E-20 0 OOOE+OO 0 OOOE+OO ,6 750E-03 -3 273E+02 51"175E+01 4 911 E+01 - ~ 

I = 1 2 3 4 5 6 7 8 9 
TH = 0 OOE+OO 1 21E-01 3 62E-01 6 04E-01 8 46E-01 1 09E+OO 1 33E+OO 1 57E+60 1 81E+OO 

I = 10 1 1 12 13 14 15 
TH = 2 05E+OO 2 30E+OO 2 54E+OO 2 78E+OO 3 02E+OO 3 14E+OO 

J = 1 2 3 4 5 6 7 8 9 
y = 0 OOE+OO 3 08E-04 9 23E-04 1 54E-03 2 15E-03 2 77E-03 3 38E-03 4 OOE-03 4 62E-03 

J = 10 1 1 12 13 14 15 
Y = 5 23E-03 5 85E-03 6 46E-03 7 08E-03 7 69E-03 8 OOE-03 

TWavg 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 004E+01 
8 021E+01 
8 024E+01 
8 025E+01 
8 025E+01 

NU 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 079E+01 
3 080E+01 
3 094E+01 
3 095E+01 
3 095E+01 
3 095E+01 

1-' 
\.0 
1-' 



*********************~**** VEL U 

I = 2 3 4 
J 
15 0 OOE+OO 0 OOE+OO 0 OOE+OO 
14 0 OOE+OO -1 03E-03 -1 90E-03 
13 0 OOE+OO -3 71E-04 -8 69E-04 
i2 0 OOE+OO -1 15E-04 -1 40E-04 
1 1 0 OOE+OO -8 32E-05 1 42E-04 
10 0 OOE+OO -3 92E-05 2 19E-04 

9 0 OOE+OO . 4 56E-05 2 72E-04 
8 o·ooE+oo 1 26E-04 3 28E-04 
7 0 OOE+OO 1 84E-04 3 53E-04 
6 0 OOE+OO 2 26E-04 3 37E-04 
5 0 OOE+OO 2 66E-04 3 08E-04 
4 0 OOE+OO 3 09E-04 3 20E-04 
3 0 OOE+OO 3 15E-04 3 74E-04 
2 0 OOE+OO 1 43E-04 2 26E-04 
1 0 OOE+OO 1 43E -04 - 2 26E-04 

I = 1 1 12 13 
J 
15 0 OOE+OO 0 OOE+OO 'o OOE+OO 
14 -2 96E-03 -2 32E-03 - 1 58E-03 
13 -1 92E-03 -1 64E-03 -1 22E-03 
12 -1 07E-03 -1 02E-03· -8 32E-04 
1 1 -3 46E-04 -4 53E-04 -4 30E-04 
10 2 25E-04 4 34E-05 -4 98E-05 

9 6 33E-04 4 41E-04 2 76E-04 
8 8 97E-04 7 32E-04 5 29E-04 
7 1 04E-03 9 15E-04 6 97E-04 
6 1 08E-03 9 87E-04 7 72E-04 
5 9 87E-04 9 31E-04 7 40E-04 
4 7 62E-04 7 37E-04 5 95E-04 
3 4 38E-04 4 36E-04 3 58E-04 
2 2 08E-04 1 83E-04 1 39E-04 
1 2 08E-04 1 83E-04 1 39E-04 

**********~~~~·~******************~********* 

5 6 7 8 

0 OOE+OO 0 OOE+OO 0 OOE+OO 0 OOE+OO 
-2 61E-03 -3 17E-03 -3 61E-03 -3 84E-03 
-1 17E-03 -1 35E-03 -1 57E-03 -1 84E-03 
-1 01E-04 -9 29E-06 -6, 68E-05 -3 59E-04 

3 47E-04 5 37E-04 ,6 13E-04 4 S2E-04 
4 55E-04 6 46E-04 8 OOE-04 8 36E-04 
4 77E--04 6 14E-04 7 67E-04 9 05E-04 
4 95E~04 5 79E-04 6 90E-04 8 58E-04 
4 88E-04 5 50E-04 6 29E-04 7 88E-04 
4 28E-04 4 86E-04 5 61E-04 7 08E-04 
3 28E-04 3 65E-04 4 41E-04 5 82E-04 
2 60E-04 2 33E-04 2 74E-04 3 86E-04 
3 03E-04 2 20E-04 1 86E-04 2 16E-04 
2 56E-04 2 ·54E-04 2 40E-04 2 29E-04 
2 56E-04 2 54E-04 2 40E-04 2 29E-04 

14 15-

0 OOE+OO 0 OOE+OO 
-7 69E-04 0 OOE+OO 
-7 02E-04 0 OOE+OO 
-5 16E-04 0 OOE+OO 
-2 86E-04 0 OOE+OO 
-5 52E-05 0 OOE+OO 

1 44E-04 0 OOE+OO 
2 97E-04 0 OOE+OO 
3 97E-04 0 OOE+OO 
4 41E-04 0 OOE+OO 
4 22E-04 0 OOE+OO 
3 40E-04 0 OOE+OO 
2 05E-04 0 OOE+OO 
7 57E-05 0 OOE+OO 
7 57E-05 0 OOE+OO 

9 

0 OOE+OO 
-3 78E-03 
-2 03E-03 
-7 05E-04 

1 97E-04 
7 02E-04 
9 23E-04 
9 81E-04 
9 61E-04 
8 93E-04 
7 62E-04 
5 40E-04 
2 93E-04 
2 23E-04 
2 23E-04 

10 

0 OOE+OO 
-3 46E-03 
-2 06E-03 
-9 60E-04 
- 1 17E-04 

4 66E-04 
8 14E-04 
9 92E-04 
1 06E-03 
1 04E-03 
9 18E-04 
6 83E-04 
3 80E-04 
2 19E-04 
2 19E-04 

,_. 
\.0 
N 



**~**~*******~*~****~***** VEL V 

I = 1 2 3 
J 
15 0 OOE+OO 0 OOE+OO 0 OOE+OO 
14 -3 56E-04 -3 56E-04 -3 03E-04 
13 -5 27E-04 -5 27E-04 -5 18E-04 
12 -6 26E-04 -6 26E-04 -5 80E-04 
11 -7 33E-04 -7 33E-04 -5 40E-04 
10 -8 43E-04 -8 43E-04 -4 73E-04 
9 -9 35E-04 -9 35E-04 -4 06E-04 
8 -1 OOE-03 -1 OOE-03 -3 33E-04 
7 -1 05E-03 -1 05E-03 -2 57E-04 
6 -1 07E-03 -1 07E-03 -2 05E-04 
5 -1 OGE-03 -1 OGE-03 -2 13E-04 
4 -9 51E-04 -9 51E-04 -2 95E-04 
3 -5 92E-04 -5 92E-04 -3 46E-04 
2 0 OOE+OO 0 OOE+OO 0 OOE+OO 

I = 10 11 12 
J 
15 0 OOE+OO . 0 OOE+OO 0 OOE+OO 
14 1 72E-04 2 19E-04 2 51E-04 
13 2 38E-04 3 46E-04 4 27E-04 
12 2 17E-04 4 OOE-04 5 48E-04 
11 1 36E-04 3 95E-04 6 20E-04 
10 2 83E-05 3 51E-04 6 49E-04 
9 -7 43E-05 2 87E-04 6 45E-04 
8 -1 52E-04 2 21E-04 6 12E-04 
7 -1 95E-04 1 61E-04 5 55E-04 
6 -2 03E-04 1 10E-04 4 71E-04 
5 -1 74E-04 7 03E-05 3. 65E-04 
4 -9 85E-05 5 54E-05 2 52E-04 
3 4 45E-05 1 03E-04 1 82E-04 
2 0 OOE+OO 0 OOE+OO 0 OOE+OO 

**.***~~~~********~********~~. l ~~~*****~**** 

4 5 6 7 

0 OOE+OO 0 OOE+OO 0 OOE+OO 0 OOE+OO 
-2 45E-04 -1 96E-04 -1 55E-04 -7 96E_:05 
-3 81E-04 -2 81E-04 -2 54E-04 -1 90E-04 
-4 02E-04 -2 71E-04 -3 03E-04 -3 30E-04 
-3 52E-04 -2 13E-04 -3 OOE-04 -4 26E-04 
-2 73E-04 -1 40E-04 -2 57E-04 -4 60E-04 
-1 89E-04 -7 85E-05 -2 02E-04 · -4 43E-04 
-1 04E-04 -3 28E-05 -1 58E-04 -4 OOE-04 
- 1 28E-05 1 30E-05 -1 23E-04 -3 48E-04 

7 97E-05 7 70E-05 -7 48E-05 -2 82E-04 
1 37E-04 1 54E-04 7 35E-06 -1 81E-04 
8 22E-05 1 75E-04 9 80E-05 -3 92E-05 

-1 24E-04 8 45E-06 5 48E-05 4 69E-05 
0 OOE+OO 0 OOE+OO 0 OOE+OO 0 OOE+OO 

13 14 15 

0 OOE+OO 0 OOE+OO 0 OOE+OO 
2 79E-04 2 64E-04 2 64E-04 
4 99E-04 5 50E-04 5 50E-04 
6 79E-04 8 18E-04 8 18E-04 
8 21E-04 1 04E-03 1 04E-03 
9 21E-04 1 20E-03 1 20E-03 
9 75E-04 1 29E-03 1 29E-03 
9 78E-04 1 30E-03 1 30E-03 
9 26E-04 1 23E-03 1 23E-03 
8 15E-04 1 08E-03 1 08E-03 
6 49E-04 8 55E-04 8·55E-04 
4 46E-04 5 81E-04 5 81E-04 
2 60E-04 3 13E-04 3 13E-04 
0 OOE+OO 0 OOE+OO 0 OOE+OO 

8 

0 OOE+OO 
1 86E-05 

-5 36E-05 
-2 03E-04 
-3 56E-04 
-4 70E-04 
-5 25E-04 
-5 28E-04 
-4 90E-04 
-4 20E-04 
-3 11E-04 
-1 47E-04 

2 41E-05 
0 OOE+OO 

9 

0 OOE+OO 
1 07E-04 
1 05E-04 
9 54E-06 

- 1 34E-04 
-2 72E-04 
-3 76E-04 
-4 30E-04 
-4 35E-04 
-3 96E-04 
-3 1:2E-04 
-1 72E-04 

1 81E-05 
0 OOE+OO 

1-' 
\0 
w 



************************** STR FN 

I = 2 3 4 
J 
15 0 OOE+OO -2 07E-07 -3 34E-07 
14 0 OOE+OO 6 76E-04 1 26E-03 
13 0 OOE+OO 9 21E-04 1 84E-03 
12 0 OOE+OO 9 97E-04 1 93E-03 
11 0 OOE~OO 1 05E-03 1 84E-03 
10 0 OOE+OO 1 08E-03 1 69E-03 

9 0 OOE+OO 1 05E-03 1 51E-03 
8 0 OOE+OO 9 64E-04 1 29E-03 
7 0 OOE+OO 8 42E-04 1 05E-03 
6 0 OOE+OO 6 91E-04 8 24E-04 
5 0 OOE+OO 5 14E-04 6 17E-04 
4 0 OOE+OO 3 07E-04 4 03E-04 
3 0 OOE+OO 9 60E-05 1 52E-04 
2 0 OOE+OO 0 OOE+OO 0 OOE+OO 

I = 1 1 12 13 
J 
15 -3 44E-07 -2 15E-07 -1 OOE-07 
14 1 98E-03 1 56E-03 1 OGE-03 
13 3 29E-03 2 67E-03 1 89E-03 
12 4 02E-03 3 36E-03 2 46E-03 
1 1 4 25E-03 3 67E-03 2 75E-03 
10 4 10E-03 3 64E-03 2 79E-03 

9 3 67E-03 3 34E-03 2 60E-03 
8 3 OGE-03 2 ,84E-03 2 24E-03 
7 2 35E-03 2 22E-03 1 77E-03 
6 1 62E-03 1 55E-03 1 24E-03 
5 9 53E-04 9 19E-04 7 39E-04 
4 4 37E-04 4 19E-04 3 36E-04 
3 1 40E-04 1 23E-04 9 36E-05 
2 0 OOE+OO 0 OOE+OO 0 OOE+OO 

*************~***•~*******~******•********** 

5 6 7 8 

-4 04E-07 -4 67E-07 -5 30E-07 -5 36E-07 
1 73E-03 2 11 E -03 2 41E-03 2 57E-03 
2 51E-03 3 02E-03 3 47E-03 3 81E-03 
2 58E-03 3 02E-03 3 52E-03 4 OGE-03 
2 35E-03 2 66E-03 3 10E -03 3 73E-03 
2 04E-03 2 23E-03 2 56E-03 3 16E-03 
1 72E-03 1 81E-03 2 04E-03 2 55E-03 
1 39E-03 1 42E-03 1 58E-03 1 97E-03 
1 06E-03 1 05E-03 1 15E-03 1 43E-03 
7 72E-04 7 22E-04 7 71E-04 9 55E-04 
5 51E-04 4 76E-04 4 72E-04 5 61E-04 
3 76E-04 3 19E-04 2 87E-04 3 OOE-04 
1 72E-04 1 71E-04 1 62E-04 1 54E-04 
0 OOE+OO 0 OOE+OO 0 OOE+OO 0 OOE+OO 

14 15 

-3 05E-08 0 OOE+OO 
5 17E-04 0 OOE+OO 
9 93E-04 0 OOE+OO 
1 34E-03 0 OOE+OO 
1 54E-03 0 OOE+OO 
1 58E-03 0 OOE+OO 
1 48E-03 0 OOE+OO 
1 28E-03 0 OOE+OO 
1 01E-03 0 OOE+OO 
7 07E-04 0 OOE+OO 
4 20E-04 0 OOE+OO 
1 90E-04 0 OOE+OO 
5 11E-05 0 OOE+OO 
0 OOE+OO 0 OOE+OO 

9 

-5 03E-07 
2 53E-03 
3 91E-03 
4 39E-03 
4 26E-03 
3 78E-03 
3 15E-03 
2 49E-03 
1 84E-03 
1 23E-03 
7 14E-04 
3 48E-04 
1 50E-04 
0 OOE+OO 

10 

-4 45E-07 
2 32E-03 
3 72E-03 
4 38E-03 
4 45E-03 
4 14E-03 
3 58E-03 
2 91E-03 
2 19E-03 
1 49E-03 
8 67E-04 
4 04E-04 
1 47E-04 
0 OOE+OO 

f-' 
\.0 
~ 



*********•**************·~ TEMP 

I = 1 2 3 
J 
15 3 62E+01 1 05E+02 9 35E+01 
14 9 16E+01 9 16E+01 7 95E+01 
13 8 50E+01 8 50E+01 7 05E+01 
12 8 21E+01 8 21E+01 6 83E+01 
1 1 7 95E+01 7 95E+01 6 67E+01 
10 7 71E+01 7 71E+01 6 50E+01 

9 7 49E+01 7 49E+01 6 32E+01 
8 7 27E+01 7 27E+01 6 17E+01 
7 7 04E+01 7 04E+01 6 05E+01 
6 6 81 E~+o 1 6 81E+01 5 ~96E+01 
5 6 57E+01 6 57E+01 5 91E+01 
4 6 31E+01 6 31E+01 5 88E+01 
3 6 02E+01 6 02E+01 5 80E+01 
2 5 50E+01 5 50E+01 5 44E+01 

3 62E+01 5 50E+01 5 44E+01 

I = 10 1 1 12 
J 
15 7 39E+01· 7 36E+01 7 33E+01 
14 5 61E+01 5 53E+01 5 48E+01 
13 3 94E+01 3 91E+01 3 90E+01 
12 3 71E+01 3 72E+01 3 76E+01 
1 1 3 69E+01 3 71E+01 3 75E+01 
10 3 74E+01 3 73E+01 3 76E+01 
9 3 83E+01 3 79E+01 3 79E+01 
8 3 92E+01 3 86E+01 3 85E+01 
7 3 98E+01 3 92E+01 3 91E+01 
6 4 04E+01 3 99E+01 3 97E+01 
5 4 10E+01 4 07E+01 4 06E+01 
4 4 24E+01 4 21E+01 4 22E+01 
3 4 ?2E+01 4 48E+01 4 47E+01 
2 4 90E+Q1. 4 85E+01 4 82E+01 
1 4 90E+01 4 85E+01 4 82E+01 

.-.*.***it****"**+:+:**+:+:****+:*.*.* .. * ... **.**.+:**. 

4 5 6 7 

8 72E+01 8 28E+01 7 94E+01 7 70E+01 
7 30E+01 6 84E+01 6 47E+01 6 17E+01 
6 22E+01 5 59E+01 5 04E+01 4 56E+01 
5 98E+01 5 33E+01 4 72E+01 4 16E+01 
5 88E+01 5 29E+01 4 76E+01 4 27E+01 
5 78E+01 5 26E+01 4 81E+01 4 38E+01 
5 65E+01 5 18E+01 4 80E+01 4 44E+01 
5 52E+01 5 08E+01 4 74E+01 4 45E+01 
5 42E+01 5 OOE+01 4 68E+01 4 44E+01 
5 37E+01 4 96E+01 4 66E+01 4 43E+01 
5 40E+01 5 01 E+01 4 70E+01 4 47E+01 
5 49E+01 5 15E+01 4 85E+01 4 61E+01 
5 56E+01 5 32E+01 5 09E+01 4 88E+~01 

5 37E+01 5 28E+01 5 20E+01 5 12E+01 
5 37E+01 5 28E+01 5 20E+01 5 12E+01 

13 14 15 

7 34E+01 7 37E+01 3 62E+01 
5 46E+01 5 51E+01 5 51E+01 
3 91E+01 3 95E+01 3 95E+01 
3 81E+01 3 86E+01 3 86E+01 
3 81E+01 3 89E+01 3 89E+01 
3 83E+01 3 92E:'-01 3 92E+01 
3~ 85E+01 3 95E+01 3 95E+01 
3 89E+01 3 98E+01 3 98E+01 
3 94E+01 4 03E+01 4 03E+01 
4 01 E+O 1 4 09E+01 4 09E+01 
4 11E+01 4 17E+01 4 17E+01 
4 25E+01 4 29E+01 4 29E+01 
4 47E+01 4 47E+01 4 47E+01 
4 79E+01 4 78E+01 4 78E+01 
4 79E+01 4 78E+01 3 62E+01 

8 

7 54E+01 
5 93E+01 
4 23E+01 
3 85E+01 
3 90E+01 
4 04E+01 
4 15E+01 
4 21E+01 
4 24E+01 
4 26E+01 
4 30E+01 
4 43E+01 
4 71E+01 
5 04E+01 
5 04E+01 

9 

7 45E+01 
5 74E+01 
4 04E+01 
3 73E+01 
3 71E+01 
3 83E+01 
3 94E+01 
4 03E+01 
4 09E+01 
4 13E+01 
4 18E+01 
4 30E+01 
4 59E+01 
4 97E+01 
4 97E+01 

1-' 
\.0 
Ul 



**********************•*** W/WBAR 

I = 1 -A 3 
J 
15 0 OOE+OO 0 OOE+OO 0 OOE+OO 
14 2 99E-01 2 99E-01 3 04E-01 
13 6 79E-01 6 79E-01 6 58E-01 
12 9 73E-01 9 73E-01 9 26E-01 
11 1 21E+OO 1 21E+OO 1 15E+OO 
10 1 40E+OO 1 40E+OO 1 34E+OO 

9 1 54E+OO 1 54E+OO 1 48E+OO 
8 1 65E+OO 1 65E+OO 1 60E+OO 
7 1 72E+OO 1 72E+OO 1 68E+OO 
6 1 76E+OO 1 76E+OO 1 73E+OO 
5 1 78E+OO 1 78E+OO 1 75E+OO 
4 1 78E+OO 1 78E+OO 1 76E+OO 
3 1 75E+OO 1 75E+OO 1 75E+OO 
2 1 71E+OO 1 71E+OO 1 71E+OO 
1 8 43E-01 1 71E+oo 1 71E+OO 

I = 10 1 1 12 
J 
15 0 OOE+OO 0 OOE+OO 0 OOE+OO 
14 3 26E-01 3 27E-01 3 28E-01 
13 5 90E-01 5 89E-01 5 89E-01 
12 7 49E-01 7 48E-01 7 50E-01 
11 8 87E-01 8 89E-01 8 93E-01 
10 1 01E+OO 1 02E+OO 1 02E+OO 
9 1 13E+OO 1 13E+OO 1 14E+OO 
8 1 24E+OO 1 24E+OO 1 25E+OO 
7 1 35E+OO 1 34E+OO 1 34E+OO 
6 1 44E+OO 1 43E+OO 1 43E+OO 
5 1 52E+OO 1 51E+OO 1 51E+OO 
4 1 59E+OO 1 58E+OO 1 57E+OO 
3 1 64E+OO 1 63E+OO 1 63E+OO 
2 1 68E+OO 1 68E+OO 1 67E+OO 
1 1 68E+OO 1 68E+OO 1 67E+OO 

***************************•**************~* 

4 5 6 7 

0 OOE+OO 0 OOE+OO 0 OOE+OO 0 OOE+OO 
3 06E-01 3 07E-01 3 09E-01 3 14E-O 1 
6 40E-01 6 23E-01 6 10E-01 6 02E..:01 
8 85E-01 8 43E-01 8 05E-01 7 77E-01 
1 09E+OO 1 03E+OO 9 73E-01 9 28E-01 
1 27E+OO 1 20E+OO 1 13E+OO 1 07E+OO 
1 41E+OO 1 34E+OO 1 27E+OO 1 21E+OO 
1 53E+OO 1 46E+OO 1 39E+OO 1 33E+OO 
1 62E+OO 1 55E+OO 1 49E+OO 1 43E+OO 
1 68E+OO 1 62E+OO 1 57E+OO 1 52E+OO 
1 72E+OO 1 67E+OO 1 63E+OO 1 59E+OO 
1 73E+OO 1 70E+OO 1 67E+OO 1 64E+OO 
1 73E+OO 1 72E+OO 1 70E+OO 1 68E+OO 
1 71E+OO 1 71E+OO 1 70E+OO 1 69E+OO 
1 71E+OO, 1 71E+OO 1 70E+OO 1 69E+OO 

13 14 15 

0 OOE+OO 0 OOE+OO 0 OOE+OO 
3 29E-01 3 29E-01 3 29E-01 
5 89E-01 5 91E-01 5 91E-01 
7 53E-01 7 55E-01 7 55E-01 
8 99E-01 9 03E-01 9 03E-01 
1 03E+OO 1 04E+OO 1 04E+OO 
1 15E+OO 1 16E+OO 1 16E+OO 
1 26E+OO 1 26E+OO 1 26E+OO 
1 35E+OO 1 35E+OO 1 35E+OO 
1 43E+OO 1 44E+OO 1 44E+OO 
1 51E+OO 1 51E+OO 1 51E+OO 
1 57E+OO 1 57E+OO 1 57E+OO 
1 62E+OO 1 62E+OO 1 62E+OO 
1 67E+OO 1 67E+OO 1 67E+OO 
1 67E+OO 1 67E+OO 8 43E-01 

8 

0 OOE+OO 
3 20E-01 
5 98E-01 
7 61E-01 
9 01E-01 
1 04E+OO 
1 16E+OO 
1 28E+OO 
1 39E+OO 
1 48E+OO 
1 56E+OO 
1 62E+OO 
1 66E+OO 
1 69E+OO 
1 69E+OO 

9 

0 OOE+OO 
3 24E-01 
5 94E-01 
7 53E-01 
8 90E-01 
1 02E+OO 
1 14E+OO 
1 26E+OO 
1 36E+OO 
1 46E+OO 
1 53E+OO 
1 60E+OO 
1 65E+OO 
1 68E+OO 
1 68E+OO 

f.-' 
\() 
0'1 



APPENDIX D 

DATA FOR CORRELATION 

TABLE VII 

CHEN'S DATA 

-------------------------------------------------------------
Run#. q"w,w/m2 Nu Re Pr Gr Lldj J..lb/J..lw 

-------------------------------------------------------------
2101 12700 23.35 611.33 167.91 7617.14 245.8 3.4359 
2104 11200 22.53 509.14 167.69 7831.70 245.8 3.5000 
2105 12200 22.73 463.30 161.10 8235.30 245.8 3.3400 
2107 11600 23.05 327.21 151.68 8953.80 245.8 3.1360 
2108 7860 20.37 186.20 165.04 5752.20 245.8 2.6590 
2109 20200 23.89 1065.70 92.42 31873.6 245.8 2.9380 
2110 20300 24.74 1582.30 99.99 26827.2 245.8 3.1240 
2111 24400 29.77 2059.14 93.73 33086.9 245.8 3.0345 
2115 5800 13.73 399.40 262.72 1847.0 245.8 2.9866 
2117 8300 18.88 964.41 214.85 3074.0 245.8 3.0560 
2:18 8750 20.54 1107.18 215.90 2986.1 245.8 3.0100 
2119 8790 21.19 1247.40 216.08 2905.3 245.8 2.9412 
2121 9010 16.56 1707.73 49.38 32168.6 245.8 1.9198 
2122 8790 16.29 1456.90 51.94 28049.7 245.8 1.9179 
2123 9950 15.72 1152.60 59.17 25792.4 245.8 2.2252 
2124 6870 14.30 953.20 57.12 21043.8 245.8 1.8781 
2126 7990 13.51 568.64 53.99 16172.1 245.8 2.0876 
2127 10900 15.74 1447.50 58.89 18983.9 245.8 2.3908 
2128 10600 15.77 1238.77 54.12 18926.9 245.8 2.3336 
2129 10400 15.54 1121.48 53.67 19115.1 245.8 2.3114 
2130 8690 15.02 837.35 55.26 15679.2 245.8 2.1242 
2131 8490 14.09 714.65 55.06 16147.0 245.8 2.1484 
2132 6880 13.44 438.85 50.84 15895.8 245.8 1.8952 
2133 11100 28.33 1339.38 57.08 8988.3 245.8 1.6068 
2135 5110 12.38 627.80 22.51 30873.3 245.8 1.4899 
2136 5220 12.75 1099.74 25.79 22949.3 245.8 1.5153 
2137 11300 16.81 2023.24 22.90 50004.6 245.8 1.8856 
2138 13100 18.65 2428.37 22.56 53582.0 245.8 1.9168 
2139 3050 11.50 1177.04 20.38 23827.3 245.8 1.2781 
2140 3810 11.99 1205.35 19.89 29856.8 245.8 1.3333 
2141 4680 12.84 1241.60 19.28 37130.1 245.8 1.3861 
2142 5970 13.96 1290.74 18.51 48971.9 245.8 1.4654 
2143 7400 15.20 1352.50 17.63 62789.4 245.8 1.5354 

-------------------------------------------------------------
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TABLE VIII 

ABDELMESSIH'S DATA 

--------------------------------------------------------------
Run# q"w• w/m2 Nu Re Pr Gr Lid· I llblllw 

--------------------------------------------------------------
22 4590 14.8 1650. 5.13 151000. 76.4 1 .41 
23 4580 15.3 1070. 4.93 197000. 76.4 1.36 
24 4580 15.5 2080. 5.15 137500. 76.4 1.42 
25 4610 14.4 1540. 4.99 195000. 76.4 1.45 
27 4550 16.1 126. 92.3 14500. 76.4 2.09 
29 4520 15.9 191. 92.1 14750. 76.4 2.07 
30 4610 16.0 247. 94.9 14100. 76.4 2.05 
31 3140 15.8 303. 97.3 13800. 76.4 2.10 
32 3640 16.5 305. 96.4 151 00. 76.4 2.21 
34 5530 17.1 377. 94.7 15950. 76.4 2.20 
44 10000 20.9 506. 93.7 23750. 76.4 3.00 
46 9200 20.0 386. 92.8 23200. ·76.4 2.90 
48 8550 20.2 339. 88.2 24900. 76.4 3.05 
49 7420 19.1 266. 88.6 21600. 76.4 2.58 
53 5450 19.0 926. 87.2 17850. 76.4 1.80 
54 10700 21.9 960. 84.3 31300. 76.4 3.10 
55 5700 20.1 1220. 87.6 17150. 76.4 1.90 
56 9990 22.3 1240. 86.1 27850. 76.4 2.75 
57 10200 21.7 679. 83.2 31600. 76.4 2.85 
58 5430 21.2 1510. 87.5 15900. 76.4 1.77 
59 10800 23.1 153.0. 86.5 28750. 76.4 2.70 
60 12900 25.2 1830. 86.8 31400. 76.4 3.20 

102 5080 15.3 179 102. 14500. 60.1 2.40 
1 03 9120 18.6 192. 95.4 24100. 60.1 2.80 
1 05 8840 18.5 245. 98.5 22000. 60.1 2.80 
106 5310 16.1 288. 105. 13600. 60.1 2.30 
107 11200 19.5 306. 98.9 25600. 60.1 2.95 
108 5430 17.1 351. 103. 13600. 60.1 2.30 
1 1 1 10100 19.1 415. 102. 21700. 60.1 3.20 

--------------------------------------------------------------
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TABLE VIII (continued) 

--------------------------------------------------------------
Run# q"w· w/m2 Nu Re Pr Gr Lid· I J.lb/J.lw 

--------------------------------------------------------------
11 2 5570 16.8 455. 107. 13100. 60.1 2.20 
114 10700 19.2 527. 104. 21500. 60.1 2.70 
153 9340 19.4 826. 98.8 19800. 60.1 3.14 
155 13300 19.5 835. 97.9 27600. 60.1 4.40 
160 13600 22.1 1600. 98.7 24200. 60.1 3.40 
201 3500 14.5 156. 92.5 6020. 174.8 1.88 
202 3910 15.0 230. 95.4 6280. 174.8 2.00 
203 6720 16.4 249. 88.5 10400. 174.8 2.30 
204 4000 14.2 306. 96.0 6320. 174.8 2.00 
205 8230 17.7 338. 87.2 12400. 174.8 2.60 
207 9010 18.1 407. 90.9 12300. 174.8 2.90 
208 8280 17.5 487. 91.9 11400. 174.8 2.40 
211 11200 19.2 638. 93.0 13300. 174.8 2.90 
212 10200 18.2 701. 95.3 12000. 174.8 2.70 
254 4160 15.2 665. 105. 5130. 174.8 1.90 
255 11000 19.5 712. 98.2 12000. 174.8 2.80 
256 5460 16.2 951. 105. 6170. 174.8 2.08 
260 15100 21.7 1320. 100. 14000. 174.8 3.60 
262 12800 21.4 1590. 103. 11300. 174.8 3.40 
302 3730 13.8 174. 80.6 7520. 174.2 1.73 
304 4280 13.9 255. 83.4 7780. 174.2 1.81 
305 7030 16.5 280. 76.3 13000. 174.2 2.30 
306 4080 13.9 334. 85.3 7110. 174.2 1.76 
308 4340 13.8 414. 86.3 7220. 174.2 2.10 
310 5700 15.1 506. 84.9 9100. 174.2 2.21 
311 8940 17.2 536. 80.3 13900. 174.2 3.02 
313 9860 17.9 615. 81.7 14200. 174.2 2.98 
314 8160 17.0 436. 82.1 12600. 174.2 2.51 
316 10200 17.7 692. 83.1 141 00. 174.2 3.10 
318 10000 17.5 775. 83.5 13700. 174.2 3.05 
351 11000 18.0 965. 79.9 15100. 174.2 3.20 
352 11600 18.2 1150. 81.8 14800. 174.2 3.00 
353 13000 18.9 1480. 83.4 15200. 174.2 3.37 
354 13300 19.4 1840. 83.3 15100. 174.2 3.36 
356 12800 20.0 2140. 84.9 13300. 174.2 3.13 

----------------------------------------------------------
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