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Chapter 1
INTRODUCTION

For those not familiar with fracture mechanics, perhaps a broad definition might

be in order.

Fracture mechanics is an engineering disciI;liné that quantifies the con-
ditions under whiéh a load-bearing solid body can fail due to the enlarge-

ment of a dominant crack contained in that body. [37]

Engineers have always been concerned Wifh fracture siﬁce it often has unexpected and
tragic consequences. More recently, lightweighf &esigns and small factors of safety
have contributed to the interest, iﬁ i"rac%ure mechanics a‘nd given rise to the concept of
damage tolerance. N ondestructive evalua,tioﬁ allows for determination of crack-like
flaws and their severity. Using fractﬁre mechanics, the ﬂa,wéd part is theﬁ evaluated
as to whether it should be re;nc;ved from service or not.

Linear elastic fracture mechanics (LEFM)'\ is conéeptually similar to an ¢la,stic
analysis. An analysis is made of a géome_’grié conﬁguratioﬁ gfving éome sort of maa@- |
mum stress. That ma.:éix’num stress is compared in some manner to an experimentally
determined yield stress. For éxaniélé, the calculated octé,hedral Ishear stress is com-
pared to the yield stress for the material through the von Mises thepry of failure.

Similarly, in LEFM, a mathematical analysis of a géométgic configuration is made
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to determine the stress intensity factor (SIF), K. The fractt;‘re toﬁghness K, is then
independently determined for a particular material, and K a,nd‘ K, are compared.
‘ There are other material parameters that play a'similar role"in fracture mechanics,
such as the J integral. These parameters ;Will be more completely defined in later
chapters.

While there are nonlinear fracture mecha,nicsqalmalyses, LEFM plays a major part
in them, just as elasticity plays a majdr paIt 1n al‘pla;stipit& a.x;aiysis. “Advances in’
LEFM will therefore often translate into adyaﬁces i;n= nonﬁﬁea.:" fracture mechanics.

Stress intensity factors can _bg det;ermine_z&\ in a number of Ways. For a few sim-
ple geometries, an a,naly;tlgc/soliltion is possible;' La.rge‘sczﬂe testing is also possible,
altilough not pra,cticall in most situé,{;ioqs. ;I‘odé,y, mucﬂ work is done numerically,
primarily using the finite elemént mnet>ho;d (FEM) and the boundary element method
(BEM). |

The objective of this dissergf"atiqn is to better represent the geometry of a crack
through the use of parametric covntinuous:ybounda,ry elements in both two a.nd three
dimension; and thus enha.ncé the accuracy of the boundary elemelilt method in the
solution of linear elastic fracture mechanics problems. Methods will be introduced
for evaluating the stress intensity factors most ai)propriate fér the boun&ary element

method along with integration procedures for the new elements.



| | Chapter II
LITERATURE “REVIEW
Numerical M"e’:thociis' in Liqgai; Elastic
FréctureJ Mechgnics

This section will give a very brie)f outline of ﬁnit"e elements and boundary élements
as apélied to LEFM and then a more 'det_aik;d baci{groﬁnd on the devélopmegt of crack
tip elements and the evaluation of fracture I\(necha,nics‘pa‘rame:terrs.

Chan, Tuba, and Wiisén [15] were sémg of twhie ﬁrst,invéstigafors to use the finite
element methc?q to determine stress intensity factors. A number of researchers then
developed special elements that coi;t@ined the singularity at the crack tip. Isopara-
metric elements that ha,ci the singula,lk'ity'lwere (iew}eléped independently by‘Henshell
and Shaw [30] and Barsoum [6]. StrlessAinte‘r_rsthy factors are then typically calculated
using the J integral de'veloped\ i)y Rlce [53]

There are a number of ways that the \st?lution of fracture mechanics prpblems can
be a,pproa.chéd with the BEM. The first é.pproacil v[rés to use Kelwiin’s funda.menta.l
sqlut,ion with many Lagrangian isoparametric elements to model the crack [18,24].
There have been some advances with highgr#order elqments and self-édaptive meshes

using this approach. For a detailed review of advancements of the boundary element



method in fracture mechanics, the reader is referred to References [21] and [55].

There are also modified boundary element methods. Snyder and Cruse [56] de-
veloped a new complex Green’s function for a straight \cen’ter crack in an infinite
anisotropic plate that eliminated the need to model the crack at"a.ll. The method
was later improved by Cruse [20]. Méaws [48] ex;céﬁded the method‘ to straight and
angled center and edge cracks ixi isotropic ;naterials. The subtra.ctién of the singular-
ity technique was introduced by Symm for éote’n‘tial “pr(m)blems [60] a.nd/Alia,ba,di for
elasticity proble;msﬁ[l].v The weight function ﬁlethod involves cglcﬂating the strain
energy release by means of an integral over th\el crack surface. This method was
originated by Bueckﬁgr [14]. The displacement dis\continuit&r method [17] typically
models only the crack and solutions are the‘diﬁ'eljences in tractions ‘t22] or displace-
ments [59] across the crack surface. Stress’:inten;sity fa;qtors are th;:n calculated from
the solution. The metﬁod is tyi)ically applied in infinite regidns a,nd éa;rly results in
finite regions are not promisiné [27. . . |

Another approach is i;o use spegi;l crack tip elements with the standard Kelvin’s
fundamental solution in multipie régions‘. This la,pproa;ch is very general, as any
straight or curyed crack can be modeled in two or three dimensions. Two areas must
be investigated when Wo;‘king LEFM problems by the BEM using <;rack tip eléments\.
The first is the mimefical evaluation of the étresé intéﬁsity f;ctors or related material
parameters, and the second is t‘ile modeliﬁg of the crack itself with various cfack tip

elements.



Evaluation of Stress Intensity Factors

Methods for the evaluation of stress intensity factors can be roughly broken into
two categories. The first méthod is an integral eéuation method. The second‘ method
uses information from the nodes near the crack tip.

The path iﬁdependent contou‘r intég;ral, iJ , deyeiope'd by Rice [53], 1s one manner
of characterizing the crack. It .'hla,sdth‘e advantage in that it is valid ’for both linear
and nonlinear fracture mechanics. There are other i;lva.riant iﬁtegrals as v;reH [40,13].
Snyder and Cruse [56] deveioped path iﬁdépendent vintt’egra,ls for deterr;li‘ﬁing stress
intensity factors for a éenter cracked anisotropi(; inﬁm'fj:e plate. Kishitani, Hirai, apd
Mura.kai'nid [39] calculated the J in;:egral by spe(;\ifying a sef;ara,te path through the :
domain of -the problem. 'While they achieved good results ’fof some problems, thié
approach is ﬁot in the “spirit” of the BEM ‘There are al:s,o‘serious numerical problems
with this a,i)proach. As the internal p“oi.nts get c}os‘er to an element, the fundamental
BEM solution gets more singule;r, rgsultin’g in poor answers. \While fhese ﬁumerical
difficulties may be overcome in some insta,;lces, a practical approa,;:h has not yet been
developed. Therefore, this approach will ﬁot be considered further.

At first, the stress intensity factor, K, was extra.polated from the displacements
of a sequenée of nodes near the crack tip [15 24] ThlS gave way to What is called
the single-point, ﬁrst-order dlsplacement formula for calculatmg K and later to the
two-point formula [8]. Martinez and Dommguez [46] developed a traction nodal value
formula which gives the; stress 1nten31ty i"a,ctor b@s.ed on the traction n(?dai values at

the crack tip. For the problems they examined, the traction nodal value formula gave



the best results and is relatively independent of the crack element size. Jia, Shippy, /
and Rizzo [35,36] conﬁrméd their results. This approach also ‘takes advantage of the
traction solution that is unique to the BEM For these reasons, the one and two point
displacer;lent formulas and the traction formulas will be used in this work, with a

concentration on the latter.
| - Crack ’i‘ip Eleméﬁté

Crack tip elements originated in the \conte}it'lof the FEM Aithbugh some special [
hybrid crack tip finite elements had been»‘ aeveléﬁed previously, Henshell and Shaw
[30] showed that isoparalfletfjc quadratic qﬁé,drila,tera.l ﬁnife elements displayed the
appropriate square root singuiarity (v/7) at the cfaék tip by moving the mid-side
nodes to the quarter péint(p’osition‘, where 7' ié tile distance from the crack tip.
Concurrently, Barsoum [6] developeti quadratic triangular, qua.drilaterql, prism, and
brick crack tip elements. He also showed tila,t the quadratic triangular element has
the appropriate /7 sing‘ula,ri‘ty é,lox;gi all r’amys emanating from the crack tip. Shih,
deLorenzi, and German [54] n';é.ke a correction to the formula for K developed by
Barsoum and compafe the calculation of K versus the (y:a,lcula;ti;)n? of the J inte-
gral. | Because Barsoum obtained better results with quadratic triangular elements
than quadratic quadrilateral eler;lénts, ﬁibbitt [3#1](suggested thé strain energy of
the quad;*atic qt#adrilateral elt,an‘lentsw was unbburlde(L :Ying [69] showed this to be

incorrect. However, the ténde‘ncy to use triangular elements persists today. Lynn

and ingraﬁea, [45] dev’eloped’ quadratic transition elements, and Hussain, Vasilakis,
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and Pu [33] developed cubic transitioﬁ elements that go betﬁeen the standa.r& ele-
ments and the crack tip elements in order to improve on the solution accurécy. Murti
and Valliappan [50] made sevefal corrections in the derivation of transition elements.
Bank-Sills and Bortman reviewed };he use of quadratic qua;drila,terals [4]. Bank-Sills
[3] expanded on her previous work and cqnclﬁd;:d tha;t qu‘a,)dx“a{',ic quadrilafcérals must
be rectangular and quadrg.tic fi‘ia.nglés may be a.ny sha,pé as }ong as the “edges are
straight for the elémelit to have the proi)e‘r) \/7_' singularity aqug all rastemaLné,ting
from the crack tip. | |

Crack tip elements were introduced into the BEM by ’Crusé and Wilson [25]
where they employe(i symmetry in the 'a,fnalysis.“ In the BEM, unlike the FEM, the
same shape functions are t&pica,lly 1Jis§d for both 1;he displa;cemerits and the tractions.
Therefore, the traction shape functions must be modiﬁed to obtain the proper 1/4/7
singulafity at the crack tip.v Blandford, Ingraffea, Né.ndLLiggett [8] expanded on the
two dimensional portion of Cruse a,nd Wilson’s work and employed traﬁsition ele-
ments that were not corrected for tl;e, 1/+/T singularity for the tracti(;ns. Thesr also
introduced the idea of using multiplelrggioﬁé, one on each si&e of a ;:ra,ck. Mason and
Smith [47] compare the one and i‘:wo) pbint displacement formulae for curved crack
problems. Van Der Weeén [62] emlo‘yed (’11A1a,d,ra,tiéﬂa,nd (cubié‘gra,ck t1p ;\nd transi-
tion elements, each with proi)er singula,l;ities, in .the solution of anisotropic plates. He
obtained the best results with cubic cra;ck Ttip and transition elements. This would
seem to indicate that higher order elements giv:e better solutioné.

Three dimensional crack problems were solved using constant boundary elements
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by Cruse and Vanburen [24] and using lingar triangular elements by Cruse and Meyers
[23]. Tan and Fenner [61] used standard gua,dratic qua,drilza;teral boundary elements
to solve several crack problems. Luchi and Poggialini [42] Wére apparently the first to
properly model the 1/./7 singularity in the tractions with the use of a set of special
shape functions they de\vrelop"ed‘.l Luchi aﬁ.nd‘Rizzuti [44] expanded on Reference [42] by
employing the stress intensity factor calcul‘ation approach of Ma,rtl'nez and Dominguez
[46] and a special series of ni;.ppings for singular element i)ntegra‘.tions. Jia, Shippy,
and Rizzo [36] use a multi-déma.in 1:'ne1;hc;d to solve a nurnber of crack problems.
They used shape fﬁn(:tions of Referen;:'e,’[‘42] and a combination of Ca,r-tesian( and

polar mappings for singular element integrations.



Chapter III
BOUNDARY ELEMENT
EbiiMUI;ATION FOR LINEAR
ELASTIC FRACTURE
" MECHANICS |

o Linear Elastostatics

The basic theory f01‘" applying the BEM to linear elastostatic problems is well
developed and caﬁ be foﬁnd in numerous, texts [2,11,10,29,49]. ’i‘he basic equations
are developed here for corppleteﬁess van'db use the sa.n"le notation as [10]. Indicial
notation will be used throﬁghoufc_ this t:ievelbpment, where repeated indices indicate
a sum and a comma indicates a deriwiqti;re. . |

A linear elastic, isotropic, homogeneous, three-dimensional body 2 is bounaed by
a surface I' which consists of the sum of its two parts I'y and I'; (Figure 1). The
governing differential equ;mtioﬁs of équilibrium for a differential V\eler’nent of the bbdy
) are

o th =0 inQ 1)

in which oy, are the stress components, and b; are tﬁe components of the bddy force
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Figure 1. Notation for an Elastic Body

per unit volume. The surface tractions p, are related to the surface stress components
by

D, = oyn, on I (2)

where n, is the outward directed unit surface normal. In order for the problem to be

well posed, the boundary condit‘ions must be one of two types
u; =14, on Iy (3)
where u, are the displacements and %; are the spgciﬁed displacements or
pi=oynj=p; on I (4)

where p; are the specified tractions.
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The kinematic equations assuming small strains and displacements are
1
€ij = '2‘(Ui,j +upi) (5)

in which ¢,, are the components of the strain.
The constitutive relations may be written in terms of thevmodulus‘ of elasticity,

E, and Poisson’s ratio, v, -

v | 14v
€ij = —-E-Gk@&j + TR ‘ (6)
or , .
Oy = T [ i€k + 6.',‘] (7)

1 + v 1 - 2u
where §,, is the Kronecker delta. Of coufse, the shear modulus, y, can be written in-

terms of E and v
. v’ E .
== 8
HT A+ | ®
- Substituting the kinematic equations (Equation 5) and the constitutive relations
(Equation 7) into the equilibrium equations (Equation 1) yields Navier’s equations
(the equilibrium equations in terms of the displacements instead of the stresses):

1

T gy Wit i + I—‘bz =0 (9)
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Fundamental Solutions
The Kelvin fundamental solution of the effect of a unit load applied at the source
or load point m on the field point in the direction of the unit vector e;

b, = Ah‘e; \ ’ : (10)

may be obtained from Navier’s equations (Equation 9) using the Galerkin vector
approach [19,32,10]. Displacemeﬂts and tractions at any point in the domain due to

this point load at m acting in the ¢ direction are given by
uy = uje, o (11)

D, = P,,€i (12_)

Fundamental solutions are displacements or tractions in the j direction due to a
unit load at the source point m or ( acting in the : direction. They are, for two
dimensional displacements

O = gy (0~ )R (13)

for three dimensional displacements

u:j(47 7]) =

1
Ten(—or 0 ke (8
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and for two and three dimensional tractions

-1 [2,;

p,(C,m) = Tar(l= ) (L= 20)8; + Brr,) = (1 = 2v)(rum,j —ryn,)| (15)

where & = 1 and 8 = 2 for two dimensions, and & = 2 and 8 = 3 for three
dimensions. For two dimensional plane strain problems, » = v/, and for plane stress

v =v'[/(1 +7'). In the above equations
=z =al) | (16)

r=vEn o | an

or

A ) s
T = 6:1:,(77) = _7‘- N (18)
or o _ or )
I Vr. n = av’ﬂi(ﬂ)n' =r,n; | (19),

where 7 represents the field point and ( represents the source point.
Displacement and traction equations may be differentiated with respect to the
source point to obtain

1 «

Uik = Zom (T = p)rB 0~ 20)(r 8% + 18k +Tai5) + Prargrs]  (20)
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B [0 o
p:]k - 2(17('(1 _ l/)'l‘ﬂ {ﬁan[(l 2”)61]7',k

+ V(&,kr,jﬁ‘l" 5Jkrvi) - ’YT,,T'Jr'k] A
(21)
+ Bv(n.r,r i+ nyrirg) — (1 —4v)ngé;,
S (1 - 2V)(,an¢r,,-r,] + njbix + n,Sjk)}

where a =1, =2, and ~ = 4 for two dimeﬁsions‘, and a =2, =3, and vy = 5 for

three dimensions.

Boundary Integral Formulation

The boundary integral formulation for elagtosizat{cs will be derived using the
weighted residual approach. V The formulation’s ;:elation to a derivation from Betti’s
reciprocal law will also,be shown.

It is desired to minimizé the error in the equilibrium equation (Equation 1) by

multiplying it by an ap'p?(')pi"iaté. We‘ighting‘ function u; a.nd integrating ovgr Q:
- i (q,;;,- +h)ujda =0 | | (22)
Integrating by parts twice yields the atijoin;c of the Equation 1:
[ Ju, a+ [ bju; o - Jopiudr + [ pjusdr | (23)

If Equation 1 is substituted here, Betti’s reciprocal theorem will result. Applying the

boundary conditions to Equation 23 and infegrafing its first term by parts twice, the
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generalized weighted residual statement results.

/‘](O';k,jua +b,)d = /1,2 (p; — p,)u;‘ dl’' — /Fx (u, - "—‘J')P; ar (24)

The choice of weighting functions should be one that removes the domain integral

. of the stresses. By letting .

bi = A"'e,-
Ok k +VA"/'e,' =0
| (25)
u; = iu’,-“Je,- '
p; = Dpijei "
the domain integral of t‘:hekstresses is tra,nsformed‘to ‘
/na;k'juj d§) = »/x"z Ok U A2 = — /n Am%e‘ dQ = ;-u:"e; (26)

If the boundary conditions are applfgd at a later stage, Equation 24 simplifies to
Somigliana’s identity, which gives Yd/isplacem:ents of internal points in terms of bound-

ary values and body forces:

Somigliana’s indentity cannot be evaluated directly when the source point. is on the
boundary. Therefore, let the source point be sﬁrrpunded by a small hemispherical

region. Taking the limit as the volume of the small hemispherical region goes to zero,
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the following equation is obtained:

cZ‘uf‘+/;‘pfju, dl' = /Fu’,‘;p,dl"-l-/nu;“]b, an (28)

where the c;, term depends on the boﬁﬁda.ry geométpy. It is most commonly evaluated

using the rigid body motion a.(uxi\lia.ry‘ equation

‘ c;;=/rp:jdr L (29)

Displacements at points internal to the body may be found from Somigliana’s
identity (Equation 28) with c,, = &;,. Stresses at internal points may be found from

Equation 27 differentiation with respect to the source point:’
Ok =/Fp:‘jku,-dI‘"— /Fdfjkp,dI‘+/nukab; aQ K (30)

where uj, and pj; are given in Equations 20 and 21. From this point on, we will
not be concerned with body forces and therefore those terms of Equations 28 and 30

will be dropped.
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Boundary Discretization

The boundary of the domain is discretized into a series of elements, hence the
name “boundary elements.” The variation of the geometry, displacements, and trac-

tions may be independently approximated in the, following manner:

T;= ng Ty
uj = N wj X (31)
pi = N} pi;

* where N/ are the ge(;mei;ry shape functions corresponding toﬂxylode ! on the element,
and zj, is the coordinate iﬁ direction j of node I of the element. The displacements
and tractions are simila.r’. Normally the same sét of sl;ape functions is used f(;r .::1.11
approximations; but as we shall see, they are different for crack tip elements.
Substituting the above apprbximatidn into Equation 28 and factoring out the

boundary values yields l
g +uy [ 5Ny A0 = py [ ui NP dT (32)

By forming this equation from every source node m in the boundary elément inesh,
a system of simultaneous. equations relating the known and unknown boundary dis-

~ placements and tractions results and has the form

[H]{v} =[G]{p} (33)
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The well posed boundary value problem has either a displacement or a traction
specified at every node in every direction on the boundary. This implies Equation 33

can be rearranged such that ‘ ,
[Al{z} = {y} (34)

where all unknown displacements and tra!ctions are in the z vectkor and all known
displacements and tractions are in the y vector. ‘ThiS’systel;l of equations is fully
populated for single—region' probiems \a.ndwis in ge;lerél neither symmetric nor poéitivé
definite. Once the syétem (of equations is soived, l‘)othb the dispiacements and tractions
are known at all poi;lts on the boﬁnda.ryv‘\a,nd’ they can ‘;)e employed to find the
displacements and stresées at internal poigts,using Equation 30.

Equation 32 can be further brokeﬁ (iOWil into integrals over each bouﬁdary element

in the mesh:

HE, = /F pyNPdTe : - (35)
Gl = /I,e?‘:‘ijdFe | . (36)

Shape functions and methods for integration and their respective derivations are ex-
amined in the next several chapters and constitute the major qurtipn and innovation

of this work.

Subregions

 In some cases the boundary element model may be piecewise homogeneous as

shown in Figure 2. In that case, the boundary element procedure may be applied to
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Figﬁrev 2. TWQ Sﬁbregion BEM Model

each region independently and the regions tied together with Equation 37 applied to
the nodes along the interface betWeen the regions.
U4 =('u B
(37)
ba = —PB
This approach is particularly useful when modeling crack problems. The interface on

_ either side of a crack is “stitched” together, while the crack surface is left traction-free.

Linear Elastic Fracture Mechanics

Linear elastic fré.cturie‘ﬁaecha’,nic\s analysis is based on the coﬁcept of small scale
yielding. The region of inelastic deformation at the crack tip must be small with
respect to the size of the crack or a,ny)othgl" characteristic length [37]. LEFM neglects
the localized effects at the crack tip such as plasticity} and lmicro‘cracking,\a.nd relates

the stress field directly to the geometry and applied stresses.
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" Two Dimensional LEFM

Irwin [34] largely developed the idea of stress intensity factors which is shown in

Figure 3 The crack tip geometry and stresses for two dimensional problems is defined

P .

Figure 3. Three Basic. Loading Modes for a Cracked
Body: K; - Crack Opening Mode, Ky -
Crack Sliding Mode, and K77 — Crack Tearing
Mode “

in Figure 4.

Irwin determined timt a gebmetfy dependent factor (the stress intepsity factor),
K, may be used to characterize stress;:s at the crack tip. For a crack of lengf.h 2a
in an infinite plate subjected to a uniform tension &, K has a value oy/7a. In
a more general setting, substitution of Irwin’s definition of K into Willia.m’s [67]
eigenfunction expansion for. stresses of a Y’traction-free crack in an infinite domain

yields stresses defined in terms of the stress intensity factors. For r much smaller
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X1 Uy 6ll
A ' __L> Go;
Crack .
Faces ) / Cgo
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Crack Xg» U

. Figure 4. Crack Tip Coordinates for 2D

than the size of the crack and neglecting higher order terms, the expansions are

9 ( .0 . 30 | N
oo = K cos = | 1 —sin -~ sin 39\ _ Ko sin g 2+ cos g cos ® (38)
V2rr 2. 2 2 \2rr 2 -2 2

K c 's‘e 1+sinesin 38 + Kt sinacosecos 30 (39)
- o= —=—=cos= | —sin — — COS = COS —
WS Verr 2\ 22 V2rr 2 2 2
9.6 39 Ku 6( .. 60.38 ‘
Oo1 = %c‘os ESin—iCOS %—+ \/2;_Ir cos 5 (l—sinisin —2—) (40)

The displacements near the crack tip are
‘ K [T 6 AN ¢ 8 . 20
==L/ o os=[1— Z 2 L GnZ(o—9 Z 41
U p 27rcos2(1 2v + sin 5]+ p \‘/27rs.m2 2 =1/+c,os 5 (41)

Uy = —If—f- 5:—r sing (2 —2v — cos® g) + -I%l‘/%ﬁcosg (—1 + 2v + sin? 5) (42)

When crack tib boundary elements are employéd, the displacement and tractions
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at the crack tip are properly modeled and the stress intensity factors may be di-
rectly obtained from the displacement and traction solution. The so-calléd one point
displacement formula may be found by equating displacemepts at one point on the
crack tip element with Uy and u, and solving fof the si:ress intensity factors. The
tw;o poinf dispiacement f;)rmula may be’ found for symmetric proBlems by equating
the coefficients of /r in Equation 41; ;>r 42 W;th the coefficients of \/F in the dis-
placement shape fﬁnctions of t.lié element type in question. Tile traction foﬁnula is
derived by taking the iimit; of ‘the prod’uct‘of the coefficient of the stress intensity
factors in Equations 38, 39 and 40 with ;th? traction shape function at. the crack tip.
These operations need to Be perfqrmed fo;‘qa,ch type of crack tip bouncia.ry element
that properly models the tre;,c'tions and Will be covered in mor;a detail in Chapter V.
The traction formula ha,é spécial significance in :bounda,ry elemenf analysis because
it depends only on the traction s:olution values at the crack tip which are obtained
directly from the boundary e}ement fdrmulaﬁion and it is relatively insensitive to the

element length.

Three Dimensional LEFM

The crack tip geometry and ‘stresses for three dimensional problems are defined
in Figure 5.
The relations between the stresses apd‘disf;la.cemgnts and stress intensity factors

are the same in three dimensions as they are in two dimensions with the following
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Xpty

Crack Plane

Crack Front

Xy Uy

Xp» Up

'Figure 5. Crack Tip Coordinates for 3D

additions: ,
. Ky - 0 K ‘
o2 = 2Vﬁ cos‘—é- - 21/———217;{; sing | (43)
L K 0 | ’ .
Oy = \/271'—7'008 5 B : (44)
K, 6

002 = —-\/2? sin (45)

2K11 \/7 _g_ | (46)

Stress intensity factors can be determmed in a manner similar to those in two dimen-

sions and will be derived for the three dimensional crack tip elements in Chapter VIL
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Chapter IV
TWO DIMENSIONAL BOUNDARY

ELEMENTS

In this chapter, the noncrack tip tw§ dimensional shape functions will be derived
and their applica,tibn in'j;hé boundary "elerhgnt nj1ethod examined. As discussed in "
Chapter III, the variatioﬁ of geofnetry, disp}écements, and tractions over an element
may be approxim&ted by a series of éhape functions. Each éler;ent' is comprised of
a series of nodes where the geometry, diéplacemépts, and tractions may be specified.
In general, these shape functioﬁs mustrform an interpolating curve, one that passes
through all of the nodes. There arelother shape functions tha,t‘ generate approximating
curves. These shape funcfioﬁs fbrfn C;II‘VGS that may or fnay not actually pass through
the nodes. However, for shape functions to‘»Be ugeful ?n the most common boundary
elements formulation, the curve must be of the interpolating type and therefore has
the same number of shape functions as nodes on the elements.

All of the elements discussed in this‘ chaﬁpté? will ha,ve; the isoparametric formu-

lation: shape functions for the geometry, displacements, and tractions will be the

sarne.



25

Derivation

The shape functions for the standard parametric two dimensional elements can

be derived in one of several ways [52]:

Inspection

Simultaneous Equations

Lagrange Interpolating POIynoﬁﬁals

Divided Differences

The last three approaches should yield th’e‘the ‘same“results when\only‘positional
(C°) information is u‘se(ui'. "They will eacﬂhﬂ be ‘uéed ﬁhere it is most appropriate in
derivations for varioﬁs element types, which will be described later in their respective
sections. B | |

The shape functions mey be found directly frqnj the Lagrange polynomial

N =1} = I] =5 @)
S b o

where 7 is the degree of the polynomial (i.e., for a quadratic n = 2), { is the parameter
along the element, and & and ¢, are the values of the parameter at the positions
corresponding to [ and m, respectively. Shape functions derived in this manner are

often called Lagrangian shape functions. .
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It is often desirable that shape functions have one or more of the following prop-

erties. The first property is positivity:
Ni(ém) 20 for &m €[0,1] (48)

This property assures that the curve ségment formed by these shape functions lies
completely within the C(;nvex hull of the points forming the curve. Another property
similar to this one, but only concerned vjvitht fhe shape function values at the nodes,
is given in Equa,tion‘ 49:

Ni(ém) = Gim I (49)

The second property is the partition of unity: .
2N =1 - “ (50)
1=0 '

This property ensures that the curve is invariant under affine transformations.
It shall be seen that crack tip boundary elements often do not satisfy either
Equation 49 or 50. However, all shape functions considered in this work will have

the property of affine transformation invariance.

Linear (LINE) Element

~ The simplest and least accurate of the two dimensional element types is the linear

element, which is defined by two nodes, one at each end of the element. The LINEar



27

element type will be abbreviated LINE. The geometry and parametric mapping for

the LINE element is shown in Figure 6. The LINE shape functions are easily derived

Xy \y

. @ ©
Xqj =0 y=1

Figure 6. LINE Element Geometry and Parametric
Mapping

using Equations 47 and 51:
n=1 and = t,=<0 1> (51)

The LINE shape functions are givén in Equation 52 and are plotted in Figure 7.
Since the displacement and traction shape functions are same as the geometry shape
functions, only the geometry shape functions are given and the superscript g has

been dropped:
No(t)=1—¢
o) (52)
Nl(t) =t
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Figure 7. LINE Element Shape Functions
- Quadratic (QUAD) Element

The quadratic element is the siml;lést element that is of pra,cticgi‘ use in elasto-
statics, since it can properly model bending. The QUADdratic element type will be
abbreviated QUAD. It is defined by three nodes as shown in Figure 8. The QUAD

shape functions are easily derfved ﬁsing Equations 47 and 53:

n=2 and . tm=<0 1/2 1> (53)
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' @ ®
Xoj =0 4=172 =1

Figure 8. QUAD Element Geometry and Parametric
Mapping ‘

The QUAD shape functions are given in Ei]ua,tioﬁ 54

No(t) = (¢t - v1)(2t ~1)
Ny(t) = —4(t— 1)t | (4

N(t) = (2t — 1)
and are plotted in Figure 9.
Cubic (CUBIC) Element

The next higher order element is the ‘cubic element. The CUBIC element type
will be represented by CUBIC. It is defined by four nodes as shown in Figure 10.

The CUBIC shape functions are easily derived using Equations 47 and 55:

n=3 and tm=<0 1/3 2/3 1> | (55)
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VFigure 9. QUAD Element Shape Functions

The CUBIC shape functions are given in Equation 56 and are plotted in Figure 11:

(t—1)(3t — 2)(3t — 1)

No(t) o 5
9(t — 1)t(3t —2)
N(t) = 2 (56)
Ny(t) = = 9(t — 12)t(3t -1)
Nagt) — 13 =23 = 1)

2
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e o ° -
=0 4=13 =23 =1

Figure 10. CUBIC Element Geométr’y and- Parametric
Mapping ' '

Overhauser (OVER) Element

As described in the previous sections, L’ag’raqgian linear, quadratic, and cubic
elements are commonly used in elastostaﬁcsy . They provide only parametric positional
(C°) continuity between elements. When the bounda,r& geometry ’isylinea,r', éuametrie
derivative continuity (C 1)\ between ele{nents is satisﬁeci; however, this is not the case
when the boundary geoeletr& iﬁs’ cur\}eci. The a,pproximation» of t‘he\ displacements
and tractions may elso require d:e’rri\/rVa,tive continuity Between elements for accuracy.
This is especially important in ela,stds'gatics because of its inherent dependence on a
~ continuous strain field. C* continulity is also desirable since the normal direction and
hence the boundary stresses are the saﬁle as a node is approached from two different
elements. |

C?! continuous curves have long been a sﬁbject of interest for many researchers,

often in the context of computer-aided design. However, much of the research has
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Figure 11. CUBI,C:‘ Element Shape Functions

gone into developing C* approi;imating cu1:j(es [7} which produced éurfaées for de-
sign. Watson [65,66] developed a hermitian cubic bounda.ry element which requires
the specification o% positional and derivative data at each nodg. This requires the
recasting of the boun(iary 'int’egrals descrii)ed in Cﬁapfer ITI ;co inqlude the dgriva,tive
data. The C! continuous curvg‘shq/uld be an inter:pola.ting curve that requires only
positional data. Overhauser [51] developed such a curve based ;)1; a parabolic blend-

ing technique which forms an ipterpola;ting parametric cubic by blending parametric
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.quadratics. Brewer and Anderson [12] developed a formulation for rapid computa-

tion which is described below. The use of the Overhauser element is described more
extensively in [63]. The OVERhauser element will be abbreviated OVER.

The Overhauser curve‘c‘J (t), shown in Figure 12, is a linea.; blend of two overlap-

ping parametric parabolas. The first ‘pq.ra.béla, p,(r) is defined by the three points,

@©

t=-1 o , ’ ] ' ,t=1 !
r=0 ‘ . r=1"
s=1/2

- Figure 12. OVER 'Element Geometry and Parametric
Mapping S o

Toy, T1j, and 9. The second parabola .g,(s) is defined by the three points, z;;, =2,

and z3;. If r, s, and t are related in-a linear manner
r=kit+k; ‘ ' (57)

kst ks (58)
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then ¢,(t) is given by

o) = (L-0p() +tals) (59)

p;(r) and g,(s) are the quadratic curves
pi(r) = No(r)zo, + Ni(r)z1; + Na(r)zs, (60)

400 = Moy + Nilo)en + Na(s)ay (61

where the N; are the quadratic shape functions.

No(r) = (r=Der —1) M) = ~4r=1)r Nolr)=r(zr=1)  (62)

}

Ni(s) =(s—=1)(2s =1) Np(s)= —4(s—1)s N3(s)=s(2s—1) (63)
The relationship betwéeg r and ¢ may b’ek determined by evaluating Equation 57 at
points z1; and

N =

Which yields

t+ (65)

'[‘:

o=
DN | =

The relationship between s and ¢ may be determined be evaluating Equation 58 at
points z1, and zg;

0=Fk0+k and =ki1+k, ‘ (66)

vt\')lo—ﬂ



35

which yields

=it | (67)

Substituting Equations 60, 61, 62, 63, 65, and 67 into Equation 59 and simplifying

yields the OVER element written in terms of shape functions

7,(t) = No(t)zo, + Ni(t)a, + Na(t)a; + Na(t)za; (68)
where ( " .
—(t=1)%
No(t) = '(—2)'(—'— .
: t—1)(3t* —2t—2
Ny(t) = . .
N zt; G Tﬁ2475 -1) -9
o\t = 9
(t — 1)t
Na(t) = :

Note that the OVER eleme‘rjlt is only defined between z;, and z,, as indicated by the
solid line in Figure 12. Howevér, Zo, gnd z3, do give contributions to the element
assembly matrix when the element is integrated. These shape functions are evaluated

at the values of the parameter ¢ éorrespondihg to the node locations in Equation 70.

- Since the element is only defined over the interval 0 < ¢ < 1, the OVER shape



functions satisfy Equation 49.‘ They also satisfy Equation 50.

t= -1 01 2
N(t)= 2 00 -1
M (t) = =310 3
No(t) = 3 01 -3
No(t)= -1 00 2
The shape functions-are piotted in Figure 13.
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Figure 13. OVER Element Shape thgt'ions :
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(70)



37

Derivative continuity between elements can be shown as follows. The curve may

be differentiated with respect to t:

dz,(t) dNi(t)

2y (t) = — = = M)z, = — o (1)
where
i =~ 0=
Ny(t) = 1 2 1,0')' » (72)
) = —-(t—12)(9t+1)
Nie = 18 =)

2

Evaluating Equation 72 at the values of ¢ corresponding to the node locations gives

t= -1 0 1 2
Nif)= —4 F 0 F
M@H= 2 0 2 s (73)
M= -8 3 0 R

Ni)= § 0

=
NN

Given two overlapping OVER elem‘ents, A,(t) defined by nodes xoj, 15, T9,, and 3;,
and B,(t) defined by nodes zy,, z3,, 3,, and z4,, if A,(t) is evaluated at £ = 1 and

B,(t) is evaluated at t = 0, we find that

: 1 1
A(t=1)=B)(t=0)= — 5% + 2735 (74)
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showing C? continuity at node z,, between elements A4,(t) and B,(t) |

Right Corner Overhauser

(OVRR) Element

Since the OVER element is ldesigned to ha;ve first dgrivative 'continuity between
elements, problems occur when atizefﬁpi‘;iﬁg to model tl‘lezr.egion near a corner (a
geometric singularity). One method of m&leling a co#‘ner is to make the nodes on
one side of the element coincidehi;. Unfdrtuﬁatel&, excessive error is intrpduced into
the element integration by this approa,ch,' sincé the eiemént iﬁtegration is néa.rly
singular for the last node. Another approach takén in References [63,64] is to use
cubic elements in the c<¥rners. ﬁoﬁever, % J‘c'ontinuity is lost at tile point where the
OVER and CUBIC elements Ir;et.

The approach i;nplem\ent,edl here waé Ofiginated by Hibbs [32]. Hibbs developed
a corner element that has C? Jcontiril‘u'ity on one side and C° cc;nfinuity on the other.
This can be achieved by ﬁer,forr\nin’g) a Qﬁadratic extra,pola,tion fér thq point z3; Which
is “missing” when compared to the OVER eiement (see Figure 14). This new element
will be named OVRR which is short for ‘OVeB;ha.user Right since the element ter-

minates at its right-hand side. Referring to Figure 12, node T3; may be extrapolated
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x2J \
R
’
’

’

'
o ®-------- -—
XOJ t0=-1 tl=0 =1

Figure 14. OVRR Element Geometry and Parametric
Mapping

by constructing a difference table:

To,
T1; — Zoy
T, T2y — 2215 + Toj
T2y — Ty T3; — 3:62] + 3:171] — Ty (75)
T2y T3y — 21;21 + Ty
I3; — Ty
T3,

By assuming a zero difference, z3, becomes

T3; = 3T2; — 3T1; + Toj (76)
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Substituting into Equations 68 and 69 and simplifying yields the new shape functions

No(t) =

(t—1)t

2

M(t)= - (-1(+1)

Ng(t) =

t(t+1)
2

(77)

The shape functions are plotted‘in Figure 15; The\sha,pe functions may be evaluated

Géometry Shape Functions

1.0 -~ - T T T T v
. > ~ N \‘
0.8} AN .
- N0 - ’/',
- Nl \
0.6} N, N , -
N
04F ) ‘\\ i
’l, AY
0.2} .
-~ " \
0.0k -
_0‘2 1 1 - - 1
0.0 0.2 . 04 0.6 0.8 1.0
| Parameter t : ;

Figure 15. OVRR Element Shape Functions
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at the values of the parameter ¢ which corresponds the the node locations.
(78)

Derivative continuity between the OVER element and the OVRR element may

be shown as follows. Differentiating the shape functions with respect to ¢,

Np=2-0 |
NI(8) = — 2t (79)
Ny = &1

The shape functions may then be evaluated at the values of the parameter ¢ which

corresponds to the node locations.

t= 1.0 1
N = 3 F 3 (50)
N@E= 2 0 -2
Nyt)= 3 35 3

Given an OVER element A;(t) defined by nodes Zojs T15, T2j, and 35, and an OVRR

element B,(t) defined byi nodes zy,, Z3j, and a:3j; if A;(2) is evaluated at ¢ = 1 and
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B,(t) is evaluated at t = 0, we find that

1
Al(t=1)=B)(t=0)= —5%, + %-’533 (81)

showing C! continuity at node 2, between elements A,(t) and B,(t).

Left Corner Overhauser

(OVRL) Element

The left corner Overhauser is similar to the OVRR element with the exception
that it has its C° and C?! positions reversed. This element will be named OVRL
which is short for OVeRhauser Left since the element terminates at its left-hand
side. The OVRL element geometry and parametric mapping is shown in Figure 16.

The OVRL element may be derived in a manner similar to that of the OVRR element.

Y
_- - - x2] \
le
6——®-------- -©
Xoj t=0 =1 =2

Figure 16. OVRL Element Geometry and Parametric
Mapping
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The OVRL shape functions are given in Equation 82 and plotted in Figure 17:

No(t) = (t— 2)2(t ~1)
Ny(t) = — (t —2)t (82)
Nz(t) _ (t ;l)t

The shape functions may be evaluated at the values of the parameter ¢ which corre-

Parameter t

Figure 17. OVRL Element Shape Functions
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sponds the the node locations.

t= 01 2
No(t)= 1 0 0
(83)
N1(t)= 010
Nz(t) = 001

C' continuity between OVER and OVRL element may be shown in a manner

similar to that of OVER and OVRR by employing the following equations:

, 2 —3
Ny = &=
Ni(t)= —2(t—1) (84)
, 2 —1
M=
t= 0 1 2
N(t)= =2 =L 1
=3 3 2 (85)
Nit)= 2 0 -2
Nt = T 3 3
Integration

The integrations that must be performed over a single boundary element are

sa¢om) = [ #h(Cm)Ne(n) dre (86)
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Geu(6m) = [ (¢ mNEmyare (87)

These integrals are evaluated in the local coordinate system of the element. This

may be accomplished with the Jacobian transformation

dre = ;I(t) dt | (88)

J(t) = 4/ i) 423 (t) (39)

dt- dt

doi(t) _ dN(t) o
@ @ B ' (%)

where ¢ is the local parametric coordinate which varies from 0 to 1 along the element.

The normal to the element is célculated by

dwl(t) 1J(2)
| d:co() o)
m == ——1J (t) ‘
Substituting
H(00) = [ oG NI (0 de 92)
Giu(6rt) = [ wi(riC O)NP(E)I () de Y

where the { shows that the fundamental solution is also a function of the source node

position. The radius vector is calculated by

r3(C,1) = 23(t) = 24(0) (99
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,(t) = N{ (), | (95)

These integrations can be perfofmed using standard Gaussian quadrature formulas

[58]:
' Q ] ,
Hfjl(c,t) ~ ;P:j(rf«’tq))Nl?(tq)J(tq)wq . ‘ (96)
| ‘é . N
i (Cst) Nz_; g, (13 (s tq)) NE (1) I (tg)wq (97)

where t, are the quadrature points, w, are the quadrature weights, and @ is the

number of quadrature points and weights.
Singular Integration

If the source node beiongs to the element which is being integrated, then the
two. dimensional fundamental solution becomes singular when r((,?) = 0 (i.e:, when
z,(t) = :L',(( ) the source node and ﬁeld node are the same). Equation 92 then has a

singularity on the order of

€ ‘ o 1 u
#5060 =0 (| w0 ) (%8)
The shape functions which do not’ cdri‘espond to the source node are zero at the
singular point, thereby canceling the singularity in the denominator. The shape
function which corresponds to the source node has a value of one at the singular
point and the singula,rityl is not canceled. But this term can be calculated by the

‘- rigid body motion equation (Equation 29) and is therefore not needed. Equation 93
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has a singular integrand on the order of

(60 = 0 ([ NI &) (99)

and it must be calculated. One a,pprbach is to breé.k the integral up into a sum of
a singular part and a nonsingular part. The nonsingular part is integrated using
standard quadrature as outlined iﬁ the previoﬁs section.

The key to the singular integration is fecognizing that if r({ ','t‘) is expanded in
terms of the shape f@qtioﬁé and ¢, the result will be a function in which all powers of
t are greater than or equal to t2. A t? can be f;xctort;d out of the expression for r and
In(r), then broken into a sum. Thein(i) term is integrated using a special natural
log quadrature [58] and ‘“i"..he re¥na.indér using standard quadrature as outlined in the
previous section.

A general a,pfroach, for any elefrient' t‘:ype, to singular integration is as foilows.
After mapping the shape functioﬁ of the el\ément“to one or more sections such that

t = 0 at the source node, the shape functioné may be factored such that
M) = Tu®Mw - (100)

where Tp,(2) is a vector that contains powers of ¢, and My, is a matrix of constant

coefficients. The coordinates of the field node may then be written

zi(t) = Tm(t)Mmzﬂ;zj | | (’101)
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and r, becomes, with Bp,; = Mz,

15(6ot) = Toalt) By — 12,() (102)

Recognizing that T, always has a constant 1 in its m position, we can perform the

source node subtraction from the m position only of By,;
Cmi() = Bumj — 2,(C) position m only ©(103)

Let

B(G1) = Tu()Om(Q) (104)

be the resultant polynomial in ¢. Thelsqu’ar‘e of the radius vector becomes
[rs (6,0 = [B(G O = B (¢, 1)) (105)

and [P)((,t)]* may be eva.lua,tec% in tﬁe followiﬁg mannef. The square of the polyno-
mial is performed by a general pé)lynbmial multiplica.ti\oﬁ écheme [41], which multi-
plies the coefficients of the polynomial and does not ’require its actual éva.luation. The
scheme is as follows Whére t]‘levsubscripts in the following three équé.tions indicate

polynomial coefficients and not summation indices. If there are two polynomials

u(t) =ut’ +---+ut+uo and v(t) =vit*+---+ovit+ve  (106)
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then their product is

u(t)o(t) = Weat™ 4o+ wp (107)

where

Wi = UUk + U V-1 + * %+ + U101 + Uglo (108)

and u, or v, are treated as zero if ¢ > r or j > s. Hence we can perform the square
of the coefficients of a Iiolynomial and delay evaluating at power‘s”‘ of t until a later
step. Since

r? = TS , (109)

and the powers of ¢ in PJ’ (¢ ,\t) are the same fér all coordinate directions, the squared
polynomial coefficients from the »ge‘neral polynomial multiplication for each coordinate
direction may be added together to get: P'((,1). ﬁy Horner’s rule, the polynomial
evaluation in powers of ¢ must be performed only once. While this singular log -
quadrature approach is fairly commc;;, :the‘ ge;leral approach, for any element type,
taken here is fairly unique. | |

Finally, we can rewrite Equations 13 and 93 as
ujj(¢,t) = ufy, (6, 1) + ufj, (2) g (110)
where

u () = g =y [~ )3 PG =G ra(G0)] (1)



and

ufJB (t) = m(?) e 41/) 1n(t)6,'J

Goa(¢t) = [ (G DNEO TG dt 4 [ iy, (OVP(E)TE)

50

(112)

(113)
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| Chapter V
TWO bIMENSIOl}iAL CRACK TIP
BOUNDARY ELEMENTS
All of the two dimensional crack tip boundary elements will be derived in this

chapter. The methods for integration and stress intensity factor calculation will also

be examined. The folnlow‘irjlg element types; w1llbe examingd |
e Quadratic Qﬁarter Point Cr.ack"I‘i.p\(’CTQQ). | B
e Quadratic Traction Sing;ilf"mr Qﬁart;ar 1‘30in1‘: Cr‘ack Tip (CTQT)
e Quadratic Crack 'fip (CJyTQUA)
o Overhauser Crack Tip (CTOVR) ‘

The first element types, CTQQ and CTQT,\ which, are based on thé QUAD element
shape functions, achieve tileir rriodeiing of the stress singularity at the crack tip by
moving the mjddle node from its normal ¢ = -;-\positiio‘n to the ¢ = % position. The
CTQT element type models the 1/4/T traction sin@lmity While the CTQQ element
type does not. The last element types, CTQIJ'A ;md CTOVR, model the singularity
properly in the shabe functions ﬁhemselves. The normal and sir}gular integrations and

SIF of the various elements will be described after all elements have been described.
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Quadratic Quarter Point Crack Tip

(CTQQ) Element

The Quadratic Quarter point Crack Tip element will be abbreviated CTQQ. The
geometry, displacen}ent", and tractiqn shape functions and shape function plqtg for |
the CTQQ element are the same as those for the QUAD element. The /T singularity
in the displacement shapé (fu‘nctions at th;e crack til;: is achieved by ;xloving the middle
node to the ¢t = % position ﬁofn’its typi{éa,llt = % p(osiii',ion, where t is the puaﬁeter
aloﬁg the element. Hené:_e,(this‘ is the s;iniple;st cra;.ck tip?elernent, since no additional
programming is requir\éd. The /r singularity may be shown in the following manner.

Evaluation of the QUAD element shape functions
()= New, ,\ (114)

N = (t-1)2t-1)
NY(t) = = 4(t — 1)t ~ (115)
NE@t) = t(étf_ 1)

at

’U,OJ=<0‘ 0>
u,=<% 0> (116)

Ugj '=< L 0 >
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where L is the length of the element in real space, yields
: L |
u= —4(t— 17 +1(2t - 1)L (117)

which simplifies to

t= or u=+tL (118)

¥
L v

Finally, the Jacobian vanishes at t = 0 (or vequiva,lently at u=0)

J=S_m-ovul ()
QUadrafic Traction V‘S'ing‘ular Quarter

Point Crack Tip (CTQT) Element

The Quadratic Traction singula,r quartér point Crack Tip element will be abbre-
viated CTQT. The geometry and displacefmentvshg,pe functions and shape function
piots for the CTQT eleme;nt are the vsa,me"a,'s those for the QUAD element. The /7
singularity in the displa,cemlent. shape fun‘(;tions is achieved in the same rﬁa.nner as
‘that for the CTQQ element, By moving the middle node to the ¢t = % position from
its typical ¢ = % position. The traction shape funct&ons‘ need a 1/+/T singularity at

the crack tip. Dividing Equation 115 by

[P
=y | (120)
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the proper singularity is achieved:

. Ng(t)=2t+%—3
M= -4-y (2

Np(f)=2t-1

The traction shape functions are plotted in Figure 18. Evaluating the shape functions

8.0 —
7.0 i
6.0} .
g
.% 50k .
= .
I
= 40p .
5
s 30t .
=
S
9 20} T
=
7 1.0} Pt
0.0 s
O )| ES e — ot
000 02 04 06 08 10

Parameter t

Figure 18. CTQT Element Tréétion Shape Functions

at several values of ¢ corresponding to the nodes zo;, z1; and z,; (of course N§(0) =
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oc, therefore a value is chosen that is close to ¢ = 0)

t= L

100 1

N =

NE(t)= 97.02 0.0 0.0
(122)
NP(t)= 3.96 2.0 0.0

NE(t)= —0.98 0.0 1.0

From this evaluation, it can be seen that the shape functions satisfy Equation 49 only
at node 2. Also, as shown in Equation 123, Equation 50 is no longer satisfied
3 1

t

3 N7(t) =

=0

(123)

Quadratic Crack Tip

(CTQUA) Element

The QU Adratic Crack Tip element will be abbreviated CTQUA. This type of
shape function was originated by Luchi and Poggialini [42] and used in a two di-
mensional context by Jia, Shippy, and Rizzo [35]. Their innovation was to build the
proper modeling of the |/r singularity into the displacement shape functions and
1/4/r into the traction shape functions while leaving the middle node in its usual
t = 1 position. The geometry shape functions are the same as the ones for the
QUAD element. The element is defined by three nodes as shown in Figure 19 where

the crack tip is at the zo, node. When the crack tip is at node z3j, the nodes may

be mapped in real space prior to their integration. Essentially, this entails reversing
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the order of the nodes within the element and changing the sign of the normal.

: , , °
Xq, =0 t,=1/2 t=1

Figure 19. CTQU,A Eleme;ﬁt Geometry and Parametric
Mapping

The CTQUA displacément shape functions a,r'e’ derived directly using Equations 47
and 124.
n=2
e=vi (124)
tn=Vlm=<0 & 1>
The CTQUA shape functions are given»ii'l,, Equétioﬁ 125 and plotted in Figure 20.

They satisfy Equations 49 and 50.

NY(t) =2t — (\/§+ )VE+1 ,
N(t) = 2(V2 + Vi - 2(V2 + 1)t (125)
Ni(t) = (V2+2)t = (V2 +1)VE
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1.4 — . ,

Displacement Shape Functions
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Figure 20. CTQUA Diéﬁlacemeut Shape Functions

The CTQUA traction shape functions Ihay be derived from the CTQUA displace-
ment shape functions by dividing them by v/ct, where ¢ is a constant. Note that the

only requirement on these shape functions is that they have the 1/ ﬁ singularity:

NE() = NeOINE
NP = NV | (126)
| NE(t) = NE(t)/VE |

The CTQUA traction shape functions are given in Equation 127 and are plotted in



Figure 21:

1 (V241
(V2t) V2

NP(t) = ﬁ(ﬁ+ 1)(1 - V1)
N(t) = (V2+2)VE-v2 -1

Ng(t) = vE+

58

- (127)
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Figure 21. CTQUA Traction Shape Functions

Evaluation at various valueé of ‘t,he‘pa.ra,meterjt shows that the traction shape

functions satisfy Equation 49 at nodes z;; and z2;, and that Equation 50 is no longer
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satisfied.
t= & 11
NE(t)= 5.464 0.0 0.0
\ ' (128)
NP()= 3.073 1.0 00
NE(t)= ~2.073 0.0 1.0
i NP(t) = \/{_'_ B (129)
=0 \/5{ " \/i

Overhauser Crack Tip
' (CTOVR) Element

The OVeRhauser erck Tip element will be abbreviated CTOVR. The idea
was to build the proper _rnodeiing of ‘the \/r singularity into the displacement shape
functions and 1/ \/F singularity into the traction shape functions at the cra,;:k tip end
of the element. vAt the same time,> the )CTOVRJ element leaves the middle node in
its usual position and prévides C! continuity at ithe other end with all of the other
Overhauser elemeni; types. Tile CTbVR element also lays the foundation for the
three dimensional elements derived fr;)m thls type.

~ The element is defined bjr three ﬁodés as shown in Figure 22 where the crack tip
is at thie Zo, node. The geometry sha.I’)é;' 'fulictio\r;s; are fhe same as‘“the ones for the

OVRL element and are repeated here for convenience in Equation 130. The geometry
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.-
p— - -9
' t0= . tl=]_ ‘ t2=

Figure 22. CTOVR Element Georﬁetry and Parametric
Mapping

shape functions are plotted in Figure 23. -

Ny = =20
N(@#) = =~ (=2 - (130)
(-1t |

M) =5

The CTOVR displa:cen}ent shape ,fupctibns could be derived using a simultaneous

equation approach by evaluating Eqﬁ.ation 131 at the desired values of t:

N:‘(t) = a3t(%) + ast + al\/z'i’ (+74) ,
| @31
dN,u(t) _ 3(13\/z a

However, the derivative equation is undefined at ‘t‘= 0; therefore, the coefficients will

be solved for in the range of 1 < ¢ < 2 as shown in Equation 132 and then the shape
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Figure 23. CTOVR Geometry Shape Functions

functions will be mapped back into the desired range of 0 < ¢ < 1 by letting ¢ = ¢ +1.

3
—~~
(5
N—
I
—t
(=]

N(t)= 0 0 (132)
wr 31

No'(t)= -5 —3

NM'(t) = 2
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which, after solution and substitution of ¢ = ¢ + 1, yield the CTOVR displacement

shape functions, given in Equation 133 and plotted in Figure 24: .-

Ni(t) =i+ 1((\/54 1)(t+1)+vV2+2) - 2(VZ+2)(t +1)+2
NY(t) = VEFI(=2(V2+ 1)t +1) —2(V2+2) + (4V2+ 7t +1) -1  (133)

N(t) = VE+ (V2 +1)(E+1) + V2 +2) - (2\/§+ 3)(t+1)

An evaluation at several values of ¢ shows that N¥(t) and N{‘(t),safisfy Equation 50;
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5 o6l / TN J
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s 02 o+ - o .
=% N4 . ‘ )
4 / )
[ /

/
0.0 fr—
_0.2 1 1 1 1
0.0 02 - 04 0.6 0.8 1.0 -

‘Parameter t

Figure 2¢. CTOVR Disblacement Shape Functions
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however, N3'(t) does not. They also satisfy Equation 49.

t = 0 1 2

N¢(t)= 1.0 0.0 —2.707 x 10~%
L (134)

NpE(t)= 0.0 1.0 5.414 x 1072

Ny(t)= 00 0.0 0.9729.

After differentiating Equation 133 and ei{aluatilig at several values of ¢, it can be
seen that the CTOVR displacement shape func{iiqns have first derivative continuity

with the Overhauser family of elements ih'Equqtipns 74 and 81 at the position ¢ = 1:

t= 0 1 2

CNg'(t)= -1.5.-0.5 0.4295
o ; | (135)
N#'(t)=" 20 00 -1.859

Np'(t)y= =05 05 143

The CTOVR traction shape functions may be derived in a manner similar to }

that used for derivation of the CTOVR displaccment shape functions as shown in
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Equation 136.
t= 12

N = 1 0

N:t)y= -0 1

CNy@H= 00 (136)
w3

Nt)= 2 5

NH)= —3 5.

After solution and substitution of ¢ = t+ 1, the displacemeht shape functions yield

the CTOVR traction shape functions, given in Equation 137 and plotted in Figure 25.

VIFT((VE+ DE+1) +v2+2) - 2(</§ +E+1)+2)

N3(t) = ,
\/E‘ ’ ’ .
NP(t) = (VEFL(VZ4+2)(E+1)+3BV2+4) - (6vV2+ )t +1) —4v/2=T)
1 - g \ \/-E —
Ny = O T(V2Z+1)(t+1)+v2+2) — (2v2 +3)(t + 1))

Vi |
o (137)

Evaluation at various values of the parameter ¢ shows that the traction shape

functions satisfy Equation 49 at nodes 2, and x3; and that Equation 50 is no longer

satisfied.- o /
t = 1%.0 ’ 1 2
NP(#)= 9851 0.0 —1914x 10-2
(138)
NP(#)= - 01982 10  1.031

NE(t) = —4.952 x 10~ 0.0 0.688
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Figure 25. CTOVR\ ijaction Shape Functions

z"j NP(t) = (VE+1((38V2+ 4)2 + 14;/§<+ 20) + ()— 10v2 — 14)t — 142 19) (139)
=0 .

After differentiating Equation 137 and evaluating at several values of ¢, it can be

seen that the CTOVR traction Nshape functions .héive first \deriva,yti've continuity with
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the Overhauser family of elements in Equations 74 and 81 at the position ¢t = 1.

t = L 1 2

100

NP/(t)= —507.4 —0.5 0.3085
(140)
NP/(t)= 9.732 0.0 0.1124

NP/()= —2.428 0.5 0.8388

Integration

The integrations for the two dimensional crack tip boundary elements are gen-
erally performed in the same manner as those for the standard two dimensional
boundary elements (Chapter IV). However, Equation 93 has a singular integrand at

t = 0 on the order of &t- as shown (r((,t) does not go to zero here).

e =o([ 2D a) (141

Because the integral itself exists in the ordinary sense, the singularity may be elimi-

nated by an appropriate mapping of ¢. The required mapping is
t=¢ dt =4£d¢ (142)

This same mapping may be a,pplied\to Equation 92 without detrimental effect. The
integration for the right type crack tip elements may be performed by reversing the

nodes within the element and changing the direction of the normal to the element.
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Singﬁlar Integration

Singular integrations for thé CTQQ and CTQT element types are performed in
the sa;me manner as those for standa,i'd tVYO dimensional boundary elements (Chap-
ter IV). Although this is incorrect for the CTQT element,‘ the error int-roduced was
apﬁa.rently ignored in several early vv‘orksvl [25,8,46]. The singular integrations for the
two dimensional crack tip boundary eleﬁiénts CTQUA and CTOVR, are much more
involved than thos;e for the standard two ;lvimensioﬁa.l\bo\unda.ry elementg.

The traction shape functions ma& be bréken up -
NP(t) = NE () + Ny (8) (143)
S

where N} (t) contains the 1/ Vi terms and Nj, (t) contains the remainder. Equa-
tion 113 may now be written
Geu(Ct) = (¢, ) + Lat) + I(t)
. B
(Gt = [ ul, (rs(C ONPOT (@) dt
1
L(t) = [ ui, (ONE(DI () dt

t) = [ i, (NG T dt

(144)

and for completeness

CEWGH = [ G ONGIHE (145)
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Recalling that

¥ou() = gy (8~ 95 BP0 — (GG )] (40

*

ul, (t) = : é}‘(‘ﬁ(?’ 4a)ln(t)s; | (147)

and P'((,t) does not go to zero, it can be shown that I1((; t) has a singular 1ntegrand
at ¢ = 0 on the order of 1 W' When the source node is at the t = 1 position, L(¢,t) is
mapped such that ti:le integrand becomes singular at ¢ =A1 and is on tﬂe order of 711_-{
I2(t) has a singula,r.'inte)gra,nd Aat t=0 v\on the order‘ of 1-1—3-5) AWhe«n the source node
is at thet =1 p051t10n I(t) is mapped such that the mtegra,nd becomes singular at
both t = 0 and t= 1 and is on the order of \/4—L In both cases, the integral itself
exists and the singularity may be eliminated by an appropriate mapplng of t. Ir(t)
has a simple In(2) smgulanty and is mtegra.ted using a logar1thm1c quadrature The
mapping for I;({,t) may be applled to Equatlon 145 Wlthout detrimental effect
Recalling from Chapter IV tha’,t r(( ,t) and J(t) are e calculated after a “splitting”
mapping such that ¢ = #(s), I(¢,t) and I;(t) ‘cé,n be rewritten and simplified for

easier manipulation.

L= [ R s
=/0‘1n()})(>s

For the case when there is a mapi)ing of the type

(148)

t=s di=ds (149)



the singularity may be removed for both I;(t) and Ip(¢) with
s =¢* ds = 4¢3 d¢

For example ~

) ‘1' N(s)

1=/ rls)= 2 I(s) ds

- [ e e
= 4£r(§4)N(£“)J(£“)d£

and

J/ In(s) xﬁ—)J(S)d
—/ In ({4)N(£ )4£3J(§4)d§
= /0 16¢ In(é )N(§4)J(£4)d€ |

For the case when théfe is a Inappinglof the type
t=1-—s dt = —1ds

the singularity may be removed for I(t) with .

s=1-(1-¢" ds=4(1-¢)7>d¢
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 (150)

(151)

(152)

(153)

(154)



Substituting

I1=/01r(l—s)i\;—§——i_._:—z)

- [+ _5)4)%(8::8?4“ — eI - ) dt

J(1—-s)ds

= [ 41~ Or(( - 9N - )I((1 - §)*) e

For the case when there is a mapping of the type
t=1-s dt = —1ds

the singularity may be removed for I,(¢) with

s=sin’f ds=2sinfcos¢d 1 —sin? ¢ = cos? ¢

s

T
£=§n d£=2dn

Substituting
1 N(1-3s)
12_/0 In(1 - 6)—==J(1 - 5)ds

(1 —sin?¢)

= /OW/Z In(1 — sin? §)N oo T 2sin € cos £J(1 — sin® £) d¢

= ,/01 '72£1n(1 — sinz(%"))N(l - sinz(%n))z Sin(zzr'n)'](l - sinz(gﬂ)) dn
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(155)

(156)

(157)

(158)

The various mappings are summarized in Table 1, for both left-type and right-

type crack elements as shown in Figure 26, where “Section” denotes the section of

the element, “Lwr Upr” denotes the lower and upper limits of integration over that

section, “Reverse” denotes reversal of the element’s nodes, and “Normal” denotes the
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coefficient that the caléulated normal is multiplied by. The mappings applied to the
CTQUA and CTOVR elements may also be applied to the CTQT element singular

integrations yielding more consistent results than if the mappings are not applied.

0 1 22 1

A 2 . 0
L> . —o ' © o— <R
=0 = =12 =1 =0 =12 - t=1

Figure 26. 2D Singular: Integration Corfiguration
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Table 1. 2D Singular Integration Mapping Summary

Left Crack Element

Right Crack Element

Src Node 0 0

Section 0 0

Lwr Upr 0 1 1 0

Reverse No Yes

Normal +1 +1

Split Map t=s dt=ds t=1—-s dit=-1ds

I, Map s=¢4 ds=4£3d¢ s=1—-(1=-¢*ds=4(1- £)3d¢
I, Map s=¢4 ds=4£3d¢ s=sin’¢ ds=2sinfcosfd
I, Map =2n dé=3Fdn

Src Node 1 ' 1

Section 0 0

Lwr Upr 1/2 1 1/2 0

Reverse No Yes

Normal +1 -+l

Split Map t=1f dt =3 ds t=1= dt=—3ds

I; Map ‘ s=1—(1—-§*ds=4(1-¢yd¢
I, Map s=sin’¢ ds=2sinfcosédf
L, Map =2 dE=%dn

Src Node 1 1

Section 1 1

Lwr Upr 0 1/2 1 1/2

Reverse No Yes

Normal -1 -1

Split Map t=1=2 dt=—}ds t=14 dt=1ids

I, Map s=1-(1-¢*ds=4(1- £)3d¢

I, Map s=sin?¢ ds=2sincosédf

I, Map =Zp df=7%dn

Src Node 2 2

Section 0 0

Lwr Upr 10 0 1

Reverse No Yes

Normal -1 -1

Split Map t=1—s dt=-1ds t=s dt=ds

I, Map s=1-(1—¢)*ds=4(1—¢)>d s=¢r ds=48d¢

I, Map s=sin?¢ ds=2sin{cos{df s=¢4 ds=4£d¢

I, Map f:%n df:%dﬂ
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Stress Intensity Factor Calculation

The two dimensional stress intensity factors that may be derived for use in bound-
ary elements fall into two categories, those that use crack tip displacement values and
those that use crack tip traction values. The configuration that will be used in this

section is shown in Figure 27.

Crack
Faces

Figure 27. 2D SIF Configuration

Displacement SIF

Since the CTQQ element type does not model the tractions properly, only the

SIF derived from the displacements will be useful. Evaluation of

ud = N up, (159)
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where N} are given in Equation 115 at

t = \/—% | (160)

yields
’ N
W0 = ul, + (—3ul, + 4ud, — ug,.)\/% @, — 4l + 2% (160)
For a symmetric crack problem (i.e., % = —z},), tio = uo; = 0 and Equation 161
reduces to
O _ (400 — w0 )/ & (400, + 200 )= ‘
uy = (4uyy —uy) I + (4uy; + uZI)L (162)

The one point displacement formula is found by equating Equation 42 with u?,

for 8 = 7 yielding

Kr= =t [2T0

=3a—p)| 7 (163)

Evaluating for the case r = L/4, yields

_ vl‘ /2_7" 0
K[— 1—o Luu (164)

The two point displacement formula is found by equating the coefficients of /r

in Equations 42 and 162 for § = 7 and r = L/4 yields

kK
T 2(1-v)

127
K -L-(4u‘1’1 — ug;) (165)

For the more general nonsymmetric (mixed mode) crack with 8 = =, and r = L/4,
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the SIF in Equations 41 and 42 uncouple and the one point (Equation 166) and two

point (Equation 167) displacemént formulas are found in a manner similar that above.

| Bk 2r , o
K= ( —»V (uu uil)
v , 2 (166)
‘ p 2m 1
’KII i1 V) (um Ugo)

2
K= 41— V)v [4 un un (uz1 — “21)] .
~(167)

KI‘I = T——V_) L [4(u10 u1o) + (“20 - uzo)]

'Traction SIF

The CTQT, CTQUA, and CTOVR, elements properly model the 1/4/r singularity
i1l1 the tractions. We can therefore employ the tractlon values directly to find the
SIF. Note that since the.,dlsple’mcefment shape functlops are still quadratic, the one
and two point displacement SIF’ formulas are still valid. Recall that the geoﬁletry is
represented by | - ‘“ |

=N, . (6s)

the tractions by

()= NP(Wpy | (169)

and the radius vector for two dimensions By

7(6) = [(oo(t) — 200 + (@1(t) ~ 210)] " (170)
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Boundary discretization can always be done such that § = w. This yields, from

Equations 38, 39 and 40

K

ooo(t) = on(t) =
)= onlt) = L

K
cult) =7 H(t
Tr

1

Let p, be defined as follows
p, =limp;(t) = lim N (t) pyj

where

pi(t) = a5(t) mi

(171)

(172)

(173)

Combining these equations with ng = 0 and n; = 1 for a symmetric crack yields

) ‘ . K;
p1 = Um NP(t) py = lim
t—0" ! =0 [orr(t)
- Kir

Po = lim N7 (%) pio = lim
0 t—0 I() 0 t—0 /27r7'(t)

Rearranging
Ky = v2r lim+/r(t)NF(t) pu
Kur = Var i r N7 (0)

(174)

(175)

For the CTQT element type, Nf(t) is given in Equation 54 and NJ(?) is given in

Equation 121. Evaluating the limit portion of Equation 175 with ¢ = '\/-;:_, where r is
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the position along the element in real space and L is the length of the element yields

lim /P N§(r) = VL
lim +/rNY(r) = 0 (176)

lim /7 N3 (r) = 0

The traction SIF for the CTQT element type are therefore

K[ =V 27('Lp01

| (177)
Kip=v 27T'Lpoo

For the CTQUA element type, N/(t) is given in Equation 54 and N(¢) is given

in Equation 127. Evaluating the limit portion of Equation 175 yields

: oy M
lim /r () N (2) 5
lim /r(t)NE(t) = 0 | (178)

limo/r(t)NB(t) = 0

where

L .
M= [(—33700 +4z10 — -7320)\2 + (—3z01 + 411 — 3721)2] ‘ (179)

Note that for evenly spaced nodes M reduces to \/f where L is the length of the
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element. The traction SIF for the CTQT‘élément type aré’therefofe

K= ﬁMp01

K= \/EMPoo

(180)

For the CTOVR element tyi)e', ng (t) is ’gix;'e;n in Equation 130 and NP(t) is given
in Equation 137. Evaluating the limit portion of Equation 175 yields

v

limy/rONE(H) = 7
ClmyrOMEO=0 (181)
lim/r()NE() =0

where M is as deﬁnedxié,'bo\vé. The traiction SIF for the CTQT element type are

therefore

‘. K= \/7?M Po1 (182)

. K= TM puo
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Chapter VI

THREE DIMENSIONAL BOUNDARY

ELEMENTS

The noncrack tip three dimensional shape functions and their use in the boundary
element method will be examined in this chapter. The variation of the geometry,
displacements, and tractions over an element will form an interpolating surface patch
in two parametric coordinates. As with the two dimensional shape functions, all of

these elements will have an isoparametric formulation.

Derivation

Most surface patches fall into one of two categories, tensor product surfaces or
lofting surfaces (more recently called Coons, blending, or transfinite surfaces). Al-
though both of these types have been in use for many years, a distinction is rarely
made between them.

One of the most common examples of tensor product surfaces is the Lagrange

form:

S(s,t) = 33 st KP(s)LT(2) (183)

1=0 j=0

where K7(s) and L7 (t) are the Lagrange polynomials (see Equation 47). Some of
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the most common three dimensional boundary elements can be derived using this
approach: the three-noded triangular element, the six-noded triangular element, and
the four-noded rectangular element.

Lofting surfaces have long been used in number of areas including ship design
[28]. Coons used a related method for blending four curves to form a surface [16,5].
A Coons approach was employed in 1977 by Brewer to first dellive’ the Overhauser
surface patch that had C? continuity along all four edges [12]. Hibbs [32] employed
a tensor product approach to derive a three dimensional boundary element that he
called “Overhauser.”

The components that go into the derivation of a Coons-type surface are depicted

in Figure 28. The surface itself is a function of both the curves that make up the

Figure 28. Coons Surface Configuration
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edges of the patch C(s,t) and a set of blending function §,(s) and §;(t) and is given

in Equation 184:

S(s,1) = C(0,)a(s) + O, ()
0080 + O DAE)
- = C(0,0)80(s)Bo(t) — C(0,1)Bo(s)Aa(t)
— O(L,0)B(s)u(t) = C(LDA(e)Br(E)

(184)

The edge curves are the two dimensional boundary element shape functions derived
in Chapters IV and V, while the blending functions are typica.,lly linear Lagrangian
or cubic Hermite shape functions. The surface patch S(s,t) may then be factored

into three dimensional shape functions such that

"’J(S, t) = ng(‘g, t) iy,

u, (s, t)'(= N (s,t) uyy - (183)

- py(s,t) = NP (s, t) pig

where Nj(s,t) are the Jgeom;etry éhaﬁe functions corresponding to node ! on the
- element and x5 *iis the cqordina,te in direction j of ﬁdde ! of the elément. )’VI‘he dis-
placemeﬁt shape functions 1\17,“1(3, t) and the traction Lsha,pe functionst N (3,“t) are both
equal to the geometry shape fungtions )for the ‘noncracic tip elements.

The Coons approach. can be used to derive many three dimensiona.l bound-
ary elements includir;g the Ovérhauser-type elements, thé Yeight-node “serendipity”

quadratic quadrilateral, and the twelve-node “serendipity” cubic quadrilateral. The
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derivation of the “serendipity” elements is much more straightforward than the one

that is typically presented (for example, see Reference [70]).

Rectangular Linear (RLIN) Element

One of the simplest three dimensiona,l boundary elements is the rectangular linear
element (often called the four noded quadrilateral). The Rectangular LINear element
type will be abbreviated RLIN a,knd\its geometry is given in Figure 29. Both of the

parameters s and ¢t vary from 0 to 1.

] j

[ S— : ®
Xg) Xy

Y

Figure 29. RLIN Element Geometry

The RLIN element may be derived using a La,gra,ngia,n tensor product approach
(Equation 183) with the linear Lagrangian shape functions (Equation 52). The RLIN
shape functions are given in Equation 186. Np(s,t) is plotted in Figure 30. The

other shape functions are so similar in appearance to Ny(s,t) (i.e., N1(1,0) = 1,



N3(1,1) =1, and N3(0,1) = 1) that they are not shown for brevity.

No(s,8) = (s — 1)(t — 1)
Ni(s,t) = s(1 —1)
Ny(s,) =st

Nj(s,t) = t(1 - s)

83

(186)



Figure 30. RLIN Ny Shape Function
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Rectangular Quadratic
(RQUA) Element

The simplest three dimensional boundary element that is useful for elastostatics
problems that involve bending is the recta.ﬁgula,r quadratic element. The Rectangular
QUAdratic element type will be abbreviated RQUA and its geometry is given in

Figure 31. Both of the parameters s and ¢ varj from 0 to 1. |

t
. A
o e— ® ' ]
Xo | 0 X5 X4
¢ ®
® —e ®- > S
X Xy Xy

Figure 31. RQUA Element Geometry
The RQUA shapleunctionS may“t‘)e/derived "using the Coons surface approach
with the linear Lagrangian blendiﬁg functions /y

@o(t) =1-t
ﬂl(t) =t

(187)



86

and the edges of the patch made up of Lagrangian quadratic shape functions (Equa-

tion 54). Substituting into the various C(s,1)

C(s,0) = z4,8(28 — 1) + zgy(s — 1)(28 — 1) — 4z1,(s — 1)s
C(s,1) = 24,8(28 — 1) + z6)(s — 1)(28 — 1) — 4z5,(s — 1)s
C(0,) = ze;t(2t — 1) + o, (t — 1)(2t — 1) — 4ar,(t — 1)t

C(1,t) = w4,t(2t — 1) + w2j(t — 1)(2t — 1) — da;(t — 1)t

(188)
C(O, 0) = Zoy
C(O, 1) = T¢y
C(l, 0) = T,
C(l, 1) = T4,y
Substituting into Equation 184 yields the equation for the surface patch
S(s,t) = (1 — 8)(ze,t(2t — 1) + mqy(t — 1)(2t — 1) — dz7, (¢t — 1)2)
+ s(z4t(2t — 1) + 29, (t — 1)(2¢ — 1) — 43, (t — 1)t)
+ (24,5(25 — 1) + Ty (s — 1)(28 — 1) — dasy(s — 1)s)¢ (189)

— 24,8t — Tg,(1 — 8)t + (2258(28 — 1) + xoj(s — 1)(2s — 1)

— 4z4,(s — 1)8)(1 — t) — Ta,8(1 — ) — zg,(1 — 8)(1 — 2)
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Factoring out the coefficients of the z;, gives the RQUA shape functions in Equé,-

87

tion 190:
No(s,t) = —(s=1)(t=1)(2(t+s)—1)

Ni(s,t) =4(s —1)s(t —1)
Ny(s,t) =s(t —1)(2t —2s + 1)
Ns(s,t) = —4s(t —1)t
(190)
Ny(s,t) = st(2(t +s) — 3)
Ns(s,t) = —4(s —1)st
" Neg(s,t) = — (s —1)t(2t — 25 — 1)
No(s,t) =4(s —1)(¢ —— 1)t
Plots of No(s,t) and Ny(s,t) are given in Figures 32 and 33 respectively, The other

plots are similar and are omitted.



Figure 32. RQUA Ng Shape Function
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| Figure 33.'RQUA N; Shape Function
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Rectangular Cubic (RCUB) Element

The rectangular cubic element is the most highest order boundary element in
common use for elastostatics. The Rectangular CUBIic element type will be abbre-
viated RCUB and its geometry is given in Figure 34. Both of the parameters s and

t vary from 0 to 1.

@ @ GT
X9j x8_| x7_| x6_]
° [
xlO_] x5_|
[ (-]
X1 Xy
® ° ° ¢—> |
Xo) Xy ) X3

Figure 34. RCUB Element Geometry

The RCUB shape functions may be derived using the Coons surface approach

with the linear Lagrangian blending functions

Po(t)=1-1
B(t)=t |

(191)
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and the edges of the patch made up of Lagrangian cubic shape functions (Equa-

tion 54). Substituting into Equation 184 and factoring out the coefficients of the z;,

yields the RCUB shape functions in Equation 192:

No(o, 1) = 8= 1) = (Bt = 2)(3t = 1) + 8(s — 1)s)

Nyt = —As= 1)3(33' - )t 1)
Ny(s,t) = 9(s — 1)3(3.;_ 1)(t—-1).
Na(s,t) = — s(t — 1)((3tf 2)(23f —1) +9(s —1)s)
Na(s,t) = gs(t — 1)2t(3t _(2) E
Ni(s,8) = — 9s(t — ;)t(;t —1) - .
Ne(s, ) = st((3t — 2)(3t ;1)/+ ‘9'(3 ~1)s) ,
No(s,t) = — 9(s - 1;s(§§ — 1)t
Ng(s,t)“_'—__ Gl 1‘)32(33 — 2)t
No(s,t) = — (s —..1)t(§3t - 2)95 ~1) 4+ 9(s — 1)s)
Nio(s, t) = 9(s — 1)(;-21);(3:5 -1)
Nui(s, 1) _ = 9(3 — 1)(? —1)4(3t —2)

2
Plots of Np(s,t) and No(s,t) are given in Figures 35 and 36, respectively. The plots

of the other shape func'tions are similar and are omitted for brevity.



Figure 35. RCUB N, Shape Function
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Figure 36. RCUB ™, Shape Function
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Rectangular Overhauser

(ROVR) Element

The Rectangular OVeRhauser element type will be abbreviated ROVR. It is the
same as the Overhauser surface patch described in Reference [12] and its geometry

is illustrated in Figure 37. Both of the parameters s and ¢ vary from 0 to 1. The

]
X105, X115,
] 1
] i
t ]
] 1
L T e o
Xe) X35 Xo;
o------"@p—@------ @—> §
. ! I )
X2 X35 X4 Xsi
] I
1 1
] ]
] ]
® ®
Xoj Xy

Figure 37. ROVR Element Geometry

ROVR shape functions may be derived using the Coons surface approach with the
cubic Hermite polynomial blending functions

=1-3t2+23
Aolt) vt (193)

Bui(t) = 3t* — 2°
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and both of the edge curves are OVER curves. Substituting into Equation 184
and factoring out the coefficients of the r;, yields the ROVR shape functions in
Equation 194 No(s,t) is plotted in Figure 38 and Ns(s,t) in Figure 39. The other

shape function plots are similar and are omitted for brevity.

(s —1)%(2s +1)(t — 1)%¢

NO(S,t) = — 5
s%(2s — —1)2
Ni(s,t) = (2 32)(t 1)*
Nifs, 1y = oLl DD
- (3 — 1)(t - 1)(t((432 —3s — 3)t — 352425+ 2) — 352 425+ 2)
:\!3(8,‘[') = 5
Nals,t) = = s(t —1)(¢((4s* — 5s — 2)tv—2332 +4s+ 1) — 352 +4s +1)
oo BT DSE-1702t+1)
. (s —1) tz(gt —3) (194)
,.V6(3, t) = 5 32’
(s.t) = —S T DS =35 = 3)t = 557 45 +4) — (s~ 1)(2s +1)
+¥V7 S, — 2
N(s.t) = st(t((4s® — 5s — 2)t — 5;2 + 65 +3) — s(2s — 3))
4’\"9(3, t) = — (3 _ 1)322t2(2t — 3)
; TlO(S,t) _ (S —_ 1)2(23 ;— 1)(t — 1)t2
Ni(s,t) = — s*(2s — 3)(t — 1)¢

2
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Figure 38. ROVR Nj Shape Function
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Figure 39. ROVR N; Shape Function
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Rectangular Side Overhauser
' (ROVRS) Element

The Rectangular Side OVeRhauser eleﬁlenf type will be abbreviz;ted ROVRS. It
is an entirely new element whpse purpose is to fit along a side where the overlapping
ROVR element would be inalpprqpria.te. In a computer graphics application, a corner
type Overhauser element would be made by n‘aovin’g one of the overlapping ROVR
nodes onto the surface patch proper. Hoyvever, this qpp;oaéh is not applicable f,o the
boundary element method, \since the singuia:r ihtegrations whénv the d‘verla.pped node
is a source node would be incorrect. The ROVRS element geometry is pictured in

Figure 40. Both of the parameters s and ¢ vary from 0 to 1.

L d

Figure 40. ROVRS Element Geo;rlétry
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The ROVRS element is derived using the Coons surface approach (Equation 184)
where f,(t) is given by Equation 193, C(0,t) and C(1,t) by the OVER shape func-
tions, and C(s,0) and C(s,1) by the OVRL shape functions. The resultant ROVRS
shape functions are given in Equation 195. N,(s,t) is presented in Figure 41. The

other shape functions are similar to Ny(s,t) as ‘shohwn ‘and Ny(s,t) for the ROVR

element.
Nifs ) = == @ + )= 1)
Ny(syt) = 22— 32)(t - 1)2t\ | |
Ny(s,t) = — (s = 1)(t = 1)(B((25” _233 +3)t+ £ )+ s —2)
No(s,1) = s(t — 1){t((2s* = Ts +28)t + 25 —4) + 25 — 4)
oyt = = E Sz : (195)
Na(s,2) = (s — 1)tl(t((2s2 —3s+ 3)&- 4;2 + 55— 4) (+‘(s —1)(2s +1))
N(s, 1) = = st(¢((25% — s + 8)t —42(32 —35+3)) + (25 —3))
Ne(s,t) = = (s — 1);tf(2t -3
Na(s,2) = (s — 1)2(23‘; 1)(t — 1)#2
No(s,t) = — s2(2s = 3)(t — 1)¢?

2
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Figure 41. ROVRS NV; Shape Function
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Rectangular Corner Overhauser

(ROVRC) Element

The Recta,nglila.r Corner OVeRhauser element type will be abbreviated ROVRC.
It is an entirely new element whose purpose is to fit in a corner where the overlapping
ROVR or ROVRS element would be inappropriate. The ROVRC element geometry

is illustrated in Figure 42. Both of the parameters s and ¢ vary from 0 to 1.

- o>
P ------@

‘Figure 42. ROVRC Element Geometry |

The ROVRC element is derived using the Coons surface approach (Equation 184) .
where B;(t) is given by Equation 193 and C(s, ) by the OVRL shape functions. The -
resultant ROVRC shape functions are given in Equation 196. Ng(s,t) is pictured in

Figure 43. The other shape functions are similar to No(s,t) presented and No(s,t)-
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for the ROVR element.
No(s, t) = = (s = 1)(t = 1)((2s((4s -2 3)f —354+2)+1)+s—2)
Ny(s, ) = S DB — 1 (225 —1)(3s —4)) + 25 — 4)
Na(s,t) = (s —1)s(t —21)2(2t +1) N
Ny(s,t) = (s l)t(t(8(2(43 — 3)t — 165 ;r 11) + 2) +4(s— 1)(23 +1) -

Ny(s,t) = — 3t(t(4(3 —1)% — 8s% +.155 — 6) + 2s(2s — 3))
— (s —1)st2(2t — 3)

Ns(s,t) =

2 .
No(s, 1) = =L@ A DE 1)
‘Ny(s,t) = — 32(?3 —3)(-1)t

2
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Figure 43. ‘ROVRC Ny Sh@pe Function



104

Rectangular Corner Overhauser Variant

(ROVRCYV) Element

The Rectangula; Cornér OVeRhauser Variant element typel will be abbreviated
ROVRCV. It is an entirely new element whose pﬁfpose is primarily the same as the
ROVRC elemenf; however, it is used iﬁ the crack tip context where the geometry
of the probiem would cause the ROVRC eleI/nent’S normal to point in the wrong
direction. The ROVRCV element geonfei;i_yi is picfured in Figure 44. Both of the

parameters s and ¢ va.ry from 0 to 1.

-t

®
I
I
1
1
'
[

.

Figure 44. ROVRCYV Element Geometry

The ROVRCV element is derived ﬁsing the Coons surface approach (Equa-
tion 184) where ﬂ,(f) is given by Equation 193 and C(s,t) by the OVRL shape

functions. The resultant ROVRCYV shape functions are shown in Equation 196. The
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shape functions look the same as those for the ROVRC element.

—(s—1)(t = 1)(t(2s((4s — 3)t— 35 +2) + 1) + 5 — 2)

N0(3>t) =

2
Ny(s,1) = (2= LSS = 30 1o ; 11) +2) + 4(s — 1)(2s + 1))
No(s, 1) = B DG + D=1t
Ni(oyt) = L= D0 = 1% = o - DEs = ) 42 ¢
(197)

Ny(s,t) = — st(t(4(s — 1)* — 8% + 15s — 6) + 2s(2s — 3))
—s%(2s=3)(t—-1) '

Ns(s,t) = .
Ne(s,t) = (s —1)s(t ; 12(2t +1)
No(s, 1) = — (8= Vst = 3)

2
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Integratidn

The integrations that need to be performed over'a single boundary element are

- HyGn) = [ B GnNmyare (198)
s = [ [ un(¢mNpmyare (199)

These integrals are evaluated in the loctal coordinate system of the element. This

may be accomplished with the Jacobian tra@s‘fox{mation
dre = J(s,t)dsdt = (200)

R CORN o e
6171)8122 61’2_61‘1

=550t  bs 0t |
. 0z 0z 6(1)0 Ozg - 202
T 55 ot~ 0s ot (202
; O0zo 6:1:1‘_ Oz O0zg
9= 5ot T Bs ot

where s and ¢ are the local parametric coordinates which both vary from 0.to 1 along

the element. The normal to the element is calculated by

__9 \ ‘
,’ n, = 70 ~(203)

.
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Substituting

1 rl

Hyy(Gs,t) = [ [ 0G5 N (s, 1) (s, ) ds d (204)
1 pl

G(Cys,t) = /0 /0 wli(ri(C, 8,8))NF(s, ) I (s, t) ds dt (205)

where the ( shows that the fundamental solution is also a function of the source node

position. The radius vector is calculated by

TJ(C7 s7t) = rj(‘s: t) - 1"1(() (206)

zy(s,t) = N (s,t) mu (207)

These integrations can performed using standard product rule Gaussian quadrature
formulas [58]. The product rule is basically a one dimensional quadrature in both

the s and t directions

Q Q
Hy(Chs,t) = 30D 5 (75(C, Sar t8)) Vi (Say 6) T (Sa, to) watws (208)
a=1b=1
Q Q
Goi(C,8,t) = YD up (ri(C, Sa 1)) N (Sas t6) T (Sas to)wawwp (209)
a=1b=1

where s, and f, are the quadrature points, w, and w, are the quadrature weights,

and @ is the number of quadrature points and weights.
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Singular Integration

If the source node belongs to the element which is being integrated, then the
three dimensional fundamental solution becomes singular when r(¢{,s,t) = 0 (i.e.,
when z,(s,t) = z,(() the source node and field node are the same). Equation 204

then has a singularity on the order of

“((,5,8) = 0 ( I/ WLEN,"(s,t)J'(s,t) ds dt) (210)

The shape functions which do not corréspoﬁd to the source node are zero at the
singular point, thereby canceling the singularity in the denominator. The shape
function which corresp’onlds to the source node has a v;a,lue of one at the singular
point and the singularity is not can?eled. Because this term can be calculated using
the rigid body motion equat;‘or} (Equa,tién 29), it is not ne@ded. Equation 205 has a

singular integrand on the order of .

60 =0 (ff | == t)+((’?(t)t) N;’(s,t)J(s,t)ésdt) )

and it must be calculated. The key is to find a tra,nsforma,tion such that the éin-
gularity is eliminated. Oney such transformation is the triangle to square mapping
(Figure 45); this maps one node (typically the singular one) of a triangle, to a line on
the square. This is done; by “doubli;lg up” the shape %unctions for the square with

the node that is to be mapped (i.e., node z;, with shape functions N; and N;). For
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Figure 45; Tria.ngle to Square Tranéfofmai;ion
example, in Figure 45
(5,t) = ¢y(a, B) = NO(a,ﬂ)f"?oJ:l' -’Va(a,ﬂ)f'?z{+ [Ni(e, B) + No(a, B))z1;  (212)
where, the N,(a, B) are the RLIN shape functions as follows

No(es ) = (= 1)(8 - 1)
Nl(a7 IB) = a(l _ﬂ)

(213)
N2(a7:3) =)‘a,8
N3(a?ﬂ) = 13(1 - a)
and
To; =< 0 0>
;=<1 0> | , (214)

.’B2j=<0 1>
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then
s = Ni(a,B) + Na(e, ) =
(215)
t = N3(e, B) = B(1 —‘a)
The Jacobian J(a, #) may then be calculated as follows
0s O0Os
3a b? 1 0
J(a, B) = = =1-a (216)
o 0|7l
da 08 o
For the triangle, Equation 211 becomes
(s, t)r,(s,t)

Gr((r8,8) =0 (/ol‘/oba [T(Ca:ls»t) ¥

Employing the triangle to square mapping

r3(C, 5,2) } NP (s,t)J(s,t)ds dt) (217)

Gc: 00 =0 ([ [ |y + A | w0900 - @) das)

(218)

where () = (s(e, 8),t(e, 8)). A (1 — a) may be factored out of r(),r;() and r;() such

that

r() = (1 - o))

n0) = (1 - )7) (219)
() = (1 — @) 75()
Substituting and canceling common factors yields
ool PP OO T e s da
G0 =0 ([ [ [ry+ Fpg] w0s0deds) @)
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which is no longer singular. Note that N() goes to a nonzero value at the singular
node so that the integrands are singular and not just indeterminate. This same
procedure may be applied to any shape element as long as it can be subdivided into
triangular pieces. The RLIN element may be subdivided into two tria,ngula,; pieces,

each of which may be mapped to squai‘es as shown in Figure 46. Performing the

No N,

Figure 46. RLIN Singular Integration With Source at
Node Toj

triangle to square mapping when the source is at node zqj, yields for ¢;(a, ) and

8;(a, B), respectively . | |
s=ap t=F Jef)=
s =« t=aﬁ J(a,ﬂ)=a

(221)



When the source is at node z,;, the transformations are

s=a«a t= —(a-1)8 J(a,B)=1-«

s=(a—1)8+1 t=48 J(e,B) =8

When the source is at node xj,, the transformations are

s=a—(a=-1)p t=p J(c‘r,ﬂ):l—‘ﬂ

s=a - t=a—-(a-18 JeB)=1—a

When the source is at node z3;, the transformations are

s=a t=a(f-1)+1 J(a,B)=c

s=-af-1)  t=f  J@B)=1-8

112

(222)

(223)

(224)

The transformations used for the RLIN element may also be used for the ROVR,

ROVRS, and ROVRC elements.

The RQUA element may be subdivided into three J‘cri:a,ngula.r pieces that may be

transformed into squares as shown in Figure 47. Performing the triangle to square

mapping when the source is at node z7;, yields for ¢j(d, B), 8,(a, B), and ¥;(a, B),

respectively
N HeB)=5
s=« t=(a(2ﬂ_21)+1) J(a,8) = a
s= —a(f-1) =5 T, p)= =1

(225)
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Figure 47. RQUA Singular Integration With Source at
Node z7;

When the source is at node z1;, the transformations are

a L : = (a=1)
((s=—2—)ﬂ | t= —(@-1f J(af)=—3—
20 -1)8+1 : ‘
= t=4p T )= 8
a+1 a
= 2 t=cof | J(anB)='2_

113

(226)
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When the source is at node z3,; the transformations are

s=a—(a—1) t=§ J(a,ﬁ):Lé‘_l_)
AP I
s=(@-pp+1 1= EED T p) =2

When the source is at node zs;, the transformations are

3=(a-2|-1) t=a(ﬂ—l)+‘1 - J(a,ﬂ):%
s — (2 —21),3—2a) vt=:ﬂ J(e,f)=1—7 (228)
o« _ = (a=1).
s=3 t=a—(a-1)8 J(a,ﬂ)_——z——

When the source node is at a corner, the same transformations that were applied to
the RLIN element are applied here.

The RCUB element is subdivided into three triangular pieces, similar to the
RQUA element. The corner nodeg are transformed the same as for the RLIN element.

When the source is at node zy;, the transformations are

=3 t=—(@-Dp Jap =5
s ((3d—;)ﬂ+1) t=p o f) = B (229)
(2a+1) _ 3 -22
s = 3 t=af B J(a,B) = 7



When the source is at node z,,, the transformations are

=2 t= (218 J(af) =221
_ (8 =2)8+2) _ _
S t=f  Jep)=p
a+2 o
s="3 t=ap J(a,,B)=§

When the source is at node z4,, the transformations are

s=a—(a—-1)8 t=§ J(a,ﬂ)=_(§_1)
s=a t= —(3(a—31)ﬂ—a) J(a,B)=1-a
s=(a-1)p+1 t=(2ﬂ3+1)" J(q,ﬁ)=¥

When the source is at node zs,, the transformations are

e (1)
s=a t= = (3(a —31)'3 —~2a) J(,f)=1-a
s=(a—-1)8+1 ‘t=(ﬂ:2) J(a,ﬂ)=§

When the source is at node z7;, the transformations are

8=(i-3|:‘—22 t=a(,3—1)+1 J(a,ﬂ)=%
s —(Ba=2p-3a) 4 J(e,B)=1-8
3 ‘ o )
3_—_?.32 t:a—(a‘—,l)ﬂ J(a,ﬂ):-':—2(_‘1“_12 .

3
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(230)

(231)

(232)

(233)
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When the source is at node zs,, the transformations are

s=(2a;-1) t=a(f-1)+1 J(oz,,3)=?3g
s = —((3a—31),3—3a) t=p J(e,f)=1-8 (234)
_«a _ _ —(a=1)
s=3 =a—(a-1)F J(ef) = —75—

When the source is at node z1q,, the transformations are

s=af 1= E13) I ) =12
sma 1= CEIEAED g (235)
s= —a(f-1) t='2§ﬂ- J(a,ﬂ):—————.z(’g—l)

Finally, when the source is at node z;y,, the transformations are

_(28+1) _ 28

S::a’B t= 3 N J(a,ﬂ)— 3 )

s=a t:<a(3ﬂ"31)+1) J(,B)=a (236)
s=—a(f-1) t=§ J(a,ﬂ):—-————(ﬂ_l)

3
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Chapter VII

THREE DIMENSIONAL CRACK TIP

BOUNDARY ELEMENTS

The three dimensional crack tip Overhauser elements, methods for integration,

and methods for stress intensity factor calculation will be examined in this chapter.

Derivation -

All of the three dimensional Overhauser crack tip elements will be derived using
the Coons approach outlined in Chapter VI. However, the notatfon will be changed
slightly to emphasize that the curves along adjacent e;:lges may be of different types

as shown in Figure 48. The revised Coons surface patch equation is

S(s,t) = C(0,8)fo(s) + C(1,£)Ba(s)
+ D(s,0)80(£) + D(s, )Ar(t) *
— P(0,0)B0(s)fo(t) — P(0,1)Bo(s)a(¥)
— P(1,0)8:(s)fo(t) — P(1, 1)Ba(s)a(t)

(237)
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Figure 48. Crack Tip Coons Surface Coﬁﬁguration

where the blending functions are the cubic Hermite polynomials, Equation 193, re-
peated here for completeness:

Bo(t) = 1 — 3t* + 28
- (238)

Au(t) = 3t* — 267

Equation 237 is then factored into the geometry, displacement, and traction shape
functions as usual.

Rectangular Side Overhauser Crack Tip

(CTROVRS) Element

The Rectangular Side OVeRhauser Crack Tip element will be abbreviated

CTROVRS. The crack front of the element, as shown in Figure 49 by the thick
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line, is placed along the middle of a three dimensional crack. The geometry shape

functions are the same as for the ROVRS element given in Equation 195.

—t

1 .
Xgj 4 j
]
' ,
]
]
------ ®
Xsj Xgj X3
- - _)_’ - > S
] | .
X1 X3 X -
] ]
] 1
1 1
I i
e ®

Figure 49. CTROVRS Element Ge;;wmetry

The displacement shape functions are derived from Equation 237 where C(0,t) |
and C(1,t) are the OVER displacement shape functions, D(s,0) and D(s,1) are
the CTOVR displacement functions, and f;(f) are given by Equation 238. Upon

examination of Equation 237, the CTROVRS displacement shape functions may be



written directly as follows:

Di(s) = N¥(2)

N3(t) = VE+ (V2 + 1)t +1) + V2 +2) —2(V2+2)(t+1)+2
NPt = VE+1(-2(V2+1)(t+1) - 2AV2+2)) + (@V2+ )t +1) -1

120

Ci(t) = NS (2)

Ny =~

(t—1)(3t2 — 2t — 2)
2

— (32 —4t —1)
L2

(t—1)
5

N{(t)= (239)

N3(t) =

N{(t) =

(240)

NH(E) = VEFT((VE+ 1) +1) +VE+2) — (V3 +3)( 4+ 1)

N (s,) = C2(t)fals)

N (s,1) = C4()Ba(s)

NE(5,) = DY()Bolt) + CE(B)Bo(s) — olt)o(s)
N3(s,t) = DY (8)Bo(t) + C1(£)B1(s) — Bo(t)Ba(s)

N (s,) = Dy(s)Ba(t) -

N (s,) = DE()B(2) + CE(B)Bo(s) — B(t)Bo(s)
N(s,) = DH()B1(t) + CEBB(S) — A(B)r(s)
N¥(5,1) = Di(s)a(t)

Ne(s,1) = CE)u(o)

Ng(s,¢) = C3()Pa(s)

(241)
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In general, the CTROVRS displacement shape functions look like the ROVRS geom-

etry shape functions.

The traction shape functions are derived from Equation 237 where C(0,t) and

C(1,t) are the OVER traction shape functlons D(s 0) and D(s,1) are the CTOVR.

traction functlons, and f;(t) are given by Equatwn 238. Upon examination of Equa-

tion 237, the CTROVRS traction shape functions may be written directly as follows:

(242)

CP(t) = N{(t)
oy —(E=1)%
No(t) - ‘_—2“—2_ ) )
. ONI(t) = (t— 1)(3t2— 2t — 2)
| g —t(3t2 -4t —1)
N3 (t) = o 5
gran_ (E=1)E
N§ (f) =
DP(s) = NP(t)
NE(t) = (Vit+ ((\/_+ D(iE+1)+ V2 + 2) 2(\/_+ 2)(t+1)+2)
o Vi
NP(2) = (VEFL((vV2+2)(t+1) +3(3\/‘ J\r;)) - (6f + 7)(t+1) 42 -7)
NE(t) = (Vi+1 ((\/_ + 1)(t+ 1) + f +2) - (22 +3)(t+ 1))
i - 1

(243)
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NE(5,) = CE(2)6a(s)

NE(s,) = CE()6s(s)

NE(5,4) = DE(s)flt) + CL(E)6a(s) — Bolt)o(s)
N8 (s,1) = DE(s)Bolt) + CEOB(5) — Bo(t)()

Nt = DE)Ge)

N2(s,t) = DB(s)Bi(t) + CE()Bols) — Bult)Bols)
NE(s,) = DE(s)fa(t) + CEE)u(s) — Bild)Bu(s)
N2(s,1) = DR(s)(t) |
NE(s,) = CE(2)6a(s)

N3 (s, t) = C3(2)Ba(s)

(244)

Plots of N5 (s,t) and Nj(s,t) are given in Figﬁres 50 and 51.
Rectangular Corner Overhauser Crack

Tip (CTROVRC) Element

The Rectangular Corner OVeRhauser Crack Tip element will be abbreviated
CTROVRC. The crack front of the element, as shown in Figure 52 by the thick line,
is placed along the end of althree dimensional crack. The geometry shape functions
are the same as for the ROVRC elément given in Equation 195. |

The displacement shape functions are derived from Equation 237 where C(0,t)
and C(1,t) are the QVRL geometry shape functions, D(s,0) and D(s,1) are the
CTOVR displacement functions, and B;(t) are given by Equation 238. Upon exami-

nation of Equation 237, the CTROVRC displacement shape functions may be written
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Figure 50. CTROVRS Nj(s,t) Shape Function

directly as follows:
CH(t) = NI(t)
gy — E—2)(t—1)
Ng(t) = 5 (245)
N{(@t)= - (t-2)
(t=1)

Ni() = S5
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- Figure 51. CTROVRS N3(s,t) Shape Function

D:(s) = NX(#)
Ny = VE+ (V2 + 1)+ 1) +V2+2) —2(V2+2)(t +1) + 2 (248)
Nt =vVE+1(—2(V2+ 1)t +1) —2(vV2+2)) + @V2+ T)(t+1) -1

Nyt = VIF (V2 +1)(E+1)+V2+2) - (2V2+3)(t+1)
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Figure 52. CTROVRC Element Geometry

NE(5,8) = DY()Bol) + C(2)6(s) — Folt) o(s)
N2 (s,) = Di(s)olt) + CEE(5) — Bo(t)Br(s)
N¥(s,t) = DY()Bol?)
N3 (s,1) = D§(s)B1(t) + CY(2)Bo(s) — Ba(2)Bo(s)
Ni(s,1) = DE(s)3(8) + CHOB(5) ~ BB
Ni(s,8) = D))
NE(s,) = C(t)6o(s)

N7 (s,8) = C3(t)Bu(s)

(247)

In general, the CTROVRC displac'ement'ysha,pe functions look like the ROVRC ge-
ometry shape functions.

The traction shape functions are derived from Equation 237 where C(0,t) and

C(1,t) are the OVRL geometry shape functions, D(s,0) and D(s,1) are the CTOVR



126

traction functions, and f,(t) are given by Equation 238. Upon examination of Equa-

tion 237, the CTROVRC traction shape functions may be written directly as follows:

oP) = NG
g(p\ _ (t—2)(t-1)
M) = == o
NI(t) = — (-2}t
(t—1)

Ni(#) = 5

Di(s)=NP(t) -
VIFLU(V2+1)(E+1)+v2+2) -2(vV2+2)(t+1) +2)
Vit L
VEF (V2 +2)(t + 1) + 3(3v2 + 4)) — (6v2 + 7)(¢ + 1) — 4v/2 —7)
/2 o
VEFT(V2+1)(E+1) +v2+2) — (2v2+3)(t +1))
Vi

NE(t) =

NE(t) = ¢

Ny =

(249)
N3(s,1) = DY(s)6ult) + CR(E)6o(s) — Bolt) (s
NE(s,1) = DY ($)olt) + CR()B:(5) — Bot)a(s)
Ny(s,t) = DE)Blt)
NE(s,) = DE(s)Bu(#) + CE(t) o(s) — Bu(£)Po(s)
 Ni(s,t) = DE(s)Bs(t) + CL(t)Bu(s) — Bu(t)Ba(s)
NE(s,) = DY()Ba(2)
N2(s,1) = C5(1)6ols)

NE(s,t) = C3(t)Ba(s)

(250)

Plots of N§(s,t) and N¥(s,t) are given in Figures 53 and 54.
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Figure 53. CTROVRC N{(s,t) Shape Function

Rectangular Corner Overhauser Crack

Tip Variant (CTROVRCYV) Element

The Rectangular Corner OVeRhauser Crack Tip Variant element will be ab-

breviated CTROVRCV. The crack front of the element, as shown in Figure 55 by
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Figure 54. CTROVRC‘N{’ (s,t) Shape Function

the thick line, is placed along the end of a three dimensional crack. This element
is useful when the geometry of the proble’Ivn‘ would cause the CTROVRC element’s
normal to point in the wrong direction. The geometry shape functions are the same

as for the ROVRC element given in Equa.tioﬁ 195.
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Figure 55. CTROVRCYV Element Geometry

The displacement shape functions are derived from Equation 237 where C(0,1)
and C(1,t) are the OVRL geometry shape functions, D(s,0) and D(s,1) are the
CTOVR displacement functions, and §;(t) are given by Equation 238. Upon ex-
amination of Equation 237, the CTROVRCYV displacement shape functions may be

written directly as follows:

Cy(t) = N/(t)
N@) =vVEFL(V2+ 1)+ 1)+ V2 +2) —2(V2 4 2)(t + 1) +2 251
NY) =vVE+I(-2(V2+ 1)t +1) = 2(V2+2)) + (4V2+ )¢ +1) -1

Ni®) = VEFL(V2+1)(E+1) +V2+2) — (2V2+3)(t + 1)
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D¢(s) = N2(t)

NEH) (t—2)2(t-—1)

(252)
NO(t) = — (-2t
Ny =G

N3(5,1) = Dy(a)Ao(t) + C(2)Bos) — Ao(t)fols)
N¥(5,8) = DE(s)Ba(t) + CL(B)fals) — Bu($)Bols)
N3 (s,1) = CH(B)Ao(s) |
N(s,1) = Di(s)o(t) + C3(t)B(s) ~ Bolt)Ba(s)
N(s,t) = D(8)Ba(t) + CHB(s) — A(H)B(s)
N#(s,t) = CH(H)B(5)

N(s,) = D3(s)o(?)

N7(s,t) = D3(s)Bu(t)

(253)

In general, the CTROVRCV displacement shape functions look like the ROVRCV

geometry shape functions.
The traction shape functions are derived from Equation 237 where C(0,t) and

C(1,t) are the OVRL geometry shape functions, D(s,0) and D(s,1) are the CTOVR
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traction functions, and §,(t) are given by Equation 238. Upon examination of Equa-

tion 237, the CTROVRCYV traction shape functions may be written directly as follows:

CP(t) = NP(%)

Vo) = LTI+ DE+D) +v2+2) —2(V2+2)(t+1) +2)
_ >
Vr() = AFIV2+2)(E+D) +3(3v2 +4) = (VI DE+D) =43 1)
1 - \/_
VEFI((V2+ 1)+ 1) +v2+2) - (2v2+3)(t+1)) .

Ni(t) =
| (254)
D?(s) = N¢(t)

g _ E=2)(E=1)
No(t) =——F%— (255)
Ni(t) = —’(t—-2)t' <

iy = L5

NE(s,8) = Di(e)Solt) + CE(E)Bo(e) — Aot)Buls)
N2(s,2) = DR(s)B() + CE)u(s) — ()6l
N3 (s,1) = C(2)Bo(s)

NE(s,) = D)) + CEOAE) — AoA()
N ) = DEA0)-+ CHORE) ~ BB
N2(s,1) = GE()A(s) |

(256)

Ng(s,t) = D5()Ao(t)
NE(s,t) = DE()B(1)

Plots of N§(s,t) and NY(s,t) are given in Figures 56 and 57.
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Figure 56. CTROVRCV Nj(s,t) Shape Function

Integration

The integrations for a three dimensional crack tip boundary element are performed
in a manner similar to that of the standard three dimensional boundary element

(Chapter VI). However, Equation 205 has a singular integrand on the order of :}; as
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Figure 57. CTROVRCV N7(s,t) Shape Function

shown:

GG s t) =0 ( / j [r( C,sl,t) 7t ’;gat)s’vm NP(s,8)J (s, 1) ds dt) (257)
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Because the integral exists, the singularity may be eliminated through an appropriate

mapping of s. One such mapping for the CTROVRS and CTROVRC elements is

s=0o® ds=4cda (258)

The CTROVRCYV element has an -}t— singularity and an appropriate mapping is 7
t=p4% dt = 433 dp (259)
This same mapping may be applied to Equation 204 without detrimental effect.

Singular Integration

Most of the methods for pgrforming the integration with singular integrands for
three dimensional crack tip boundary elements involve an element subdivision into
triangles and then a transformatioﬁ of \coord\ina‘,tes to eliminate the singularity. Luchi
and Rizzuti [44] use an element subdivision and a cartesian coordinate transforma-
tion with elemental parameters ranging from —1 to 1. Jia, Shippy, and Rizzo [36]
employ an element subdivision, a cartesian coordine\mtei trqnsformatiqn, and a difficult
polar transformation over an element with parameters ranging from —1 to 1. These
approaches are not applicable to the Overha,ﬁser‘crack,tip elements for a number of
reasons: the parameter range is differént, all transfbrmations needed are-not clear
from the information given in those papers, and, most importantly, the Overhauser

crack tip elements cannot be “rotated around” to get the integrations from similar
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nodes. As an example, in many boundary element codes, the singular integrations
for node 1 of the RLIN element are performed by “rotating around” the coordinates
in real space for node 1 until they were in the place of node 0 and then performing
the singular integrations as if the singular node was at node 0. This approach is very
similar to the “reversing” strategy used in Chapter V. A new approach was needed
that would address the problems outlined above.

The key idea to the new approach is to use element subdivision and a triangle to
square mapping approach. However, instead of using the RLIN shape functions for
the square, a different set of quadratic shape functions based on the direction of the
\/LZ and the location of the singular node is used for the square. This will become
more clear as we look at the details.

The behavior that is desired in the “square” part of the triangle to square trans-
formation is to eliminate the % singularity. This suggests a transformation of the
form t = a?. Various combinations of transformations of this type will be used to
build up a set of shape functions for the “square” part of the triangle to square
transformation. Recall from Chapter VI that the RLIN shape functions were used
previously. The quadratic shape functions that will be used in various combinations
are shown in Figure 58.

The proper combination of quadratic shape functions was derived by inspection,

? was required since that is the “direction” of the

influenced by the fact that s = «
singularity. The quadratic shape functions are depicted in Figure 59. Note that they

are symmetric with respect to the line § = a and they are the same on opposite
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Figure 58. Quadratic Shape Functions for Sin’gﬁlar In-
' tegration : ' \

edges. The “square” shape functions are given in Equation 260 and are valid for the
CTROVRS element nodes 3, and zg,, the CTROVRC element nodes zo; and zyj,

and the CTROVRCV element nodes a:0; and Tyt

No(@,) = (1 - a?)(1 - £
Ni(e,B) = aX(1 - %)
‘N2(aa :B) = a2ﬁ2

 Ny(ayB) = (1—a®)p*

(260)

Nodes z3; and z5; of the CTROVRS element and nodes z,; and z3; of the CTRO-
VRC element require a different set of shape functions. The quadratic shape func-
tions are shown in Figure 60. Note that they are s&mfnetric with respect to the line

B = —a+ 1. The “square” shape functions are given in Equation 261.
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Figure 59. Shape Function Derivation for Triangle to
Square Transformation for Crack Tip Over- -
hauser Type Elements -

Nifa, ) = (1 - @2)(8 - 1)
Ni(a,6) = a2(g - 17

N ) = @*(1 - (8- 1))
No(a, ) = (1= a?)(1— (8~ 1))

(261)

Nodes z3; and z1; of the CTROVRCV element require yet another different -set
of shape functions because the direction of the singularity is a.longn,B not a. 'The
quadratic shape functions are shown in Figure 61 Note that they are again symmetric

with respect to the line § = —a + 1. The “squaxé’? shape functions are given in
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Figure 60. Shape Function Derivation for Triangle to
Square Transformation for the CTROVRS
and CTROVRC Element

Equation 261. -
No(a, 8) = (a = 1)*(1 — )
Nia,B) = (1 — (= 1Y)(1 - %)
No(ao ) = (1= (o= 1))
Na(a,B) = (@ — 16"

(262)

The next step is to perform the subdivision of the elements into triangles and
perform the triangle to square transformation as outlined in Chapter VI. The results
for the CTROVRS and CTROVRC elements are summarized in the following equa-

tions. The transformations for the CTROVRS element node z,; and the CTROVRC
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Figure 61. Shape Function Derivation for Triangle to
Square Transformation for the CTROVRCV

Element -
element node z¢; are
s =a? ﬁz
t=p? ‘ | (263)
J(a‘7 18) = 4a183
and
5= a? ) L
ey | (264)

 J(af)=ta®B

The transformations for the CTROVRS element node z3; and the CTROVRC element
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node z,, are

s =a?

t=(@-Da+)(F-28 (265)
J(@,B) = 4{a — Da(a+ 1)(8 - 1)
and ] | ‘
s=1-(a-1)(a+1)(8-2)
b= —(8-2)8 | (266)
J(a,B)=4a(B-D(B-1)F
The transformations for the CTROVRS element node z¢; and the CTROVRC element
node z., are | |
s=a?- (a:—- 1)(a +1)8?
| t = p? o (267)
(e B) = —4a(f - DAB+1

and
-

s=a
=ao?—(a—1)(a+1)p? (268)

J(e, B) = - 4(a—-1)a(a+1)8
The transformations for the CTROVRS element node :1:5’,- and the CTROVRC element

node z3, are

t=—(a(f-1) - 1)(@(/3‘— 1) -’+~1) ~ (269)
J(a,B8) = —4e*(B—1)
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and

s=a*(f-1)
- (8-2)8 » ' (270)
J(@,) = -—’4a( -1y
The results for the CTROVRCV element are summanzed in the followmg equa-

tions. The transformations for the CTROVRCV elemént ,node zq, are

s=a?f?
= (211)
7(2,B) = 4af® |
and
o
‘= azzz , (272)
J(0,B) = 4078 ‘

The transformations for the CTROVRCV element node z3; are

s= —(a—2)a |
t=(a —egr (273)

- J(e,f) = —4(a— l)sﬂ



and

s=—((e=1)B-1)((a=1)8+1)
t=p?
J(@,8) = —4(a—1)f°

The transformations for the CTROVRCV element ‘node T4, a;re

s=o?—(a-1)(a+1)f*
t=p
J(,) = — 4a(f ~ 1)B(B+1)

and ‘
=’ — (a~1)(a+1)p’
J(@f) = ~4a~1a(a+1)p

The transformations for the CTROVRCYV element node z,, are

s= f(’c)z—:Q)a
t=1-(a—2)a(8-1)(8+1)

J(@f)=4(a=2)(a—1)af

and

s=(a—2a(B-1)(B+1)
B
J(@,8) = 4a—1)(B - 1)B(B+1)
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(274)

(275)

(276)

(277)

(278)
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The three dimensional Mode I, symmetric, flat crack, stress intensity factors for

three dimensional Overhauser-type boundary elements are those that use crack tip

traction values. The approach is nearly identical to that used with the two dimen-

sional CTOVR elements; only the nodal indices have changed.

The SIF for the CTROVRS element is calculated from the formula

K= \/7TMP22

‘ L
M= [(—3:1:20 + 4@30 — "’40)2 + (—3zx + 4z3 — 241)?] ’

or
K1 = /7M ps;
: ' L
M= [(—33750 + 4z60 — T70)? + (=351 + 4761 — $71)2] !
The SIF for the CTROV”RC element'is calculated from the formula
K1 = +/mM po,
' 1
M = [(—33700 + 4z10 — T20)” + (—3z01 + 4711 — 9321)2] !
or

Ki = /mM ps

L
4

M = (=330 + 4240 — 250)* + (=331 + 4zay — 751)?)

(279)

(280)

(281)

(282)



144

Finally, the SIF for the CTROVRCYV element is calculated from the formula

K = /TM poy
, . (283)
M = [(—31:00 + 4z30 — T60)? + (—3z01 + 4731 — 2761)2] !
or
K =+/1M p1
(284)

B!
M= [(—31:10 + 4240 — T10)* + (3211 + dzyy — :c71)2] )
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Chapter VIII

EXAMPLE ANALYSES

In order to verify the correctness and usefulness of the new two and three di-
mensional crack tip Overhauser boundary eleménts, they will be)compa.red to the
results of a number of well known crack tip problems. Some of these problems have
analytical solutions while others were obtained numerically;. Some boundary element

results from other researchers will be included.

Doublé Edge Cracked Plate

The first example, the finite width plate with double édge cracks, has been used by
a number of boundary element researcheré [8,46,35]. The plate is shown in Figure 62.
The model dimensions and material propelfi:ies are crack length ¢ = 1.8 in, elastic
modulus E = 5250.0 ksi, Poisson’s ratio » = 0.20, and load stress oo = 1 ksi. An
approximate analytical solution accurate to 1% has '«beén reported by Bovsfie [9] as
K = 2.737 ksi - in'/2.

Taking advantage of the sfmmetry of the problem, only one-quarter of the plate
needs to be discretized as shovgtn in Figure 63. The boundary element mesh c‘onsists
of a combination of RQUA elements along the top and sides and Overhauser-type

elements along the crack. The arrangement of Overhauser-type elements from left to
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Figure 62. Double Edge Cracked Plate

right is OVRL, O\;ER, OVER, CTOVRR, \C;I‘OVRL, OVER, OVER, and OVRR.
The ratio of the length of the c;'ack tip botmé}ary element to "ffhe length of the crack
[/a is an important parameter i%l a.na.lyéing the performance of crack tip boundary
elements. It is desirable that the SIF values be relatively insensitive to changes in
l/a. Tt should b(;, notéd that, as the fo,rm‘of AEﬂqﬁa,tion :179 inciicétes, the effective
length for the CTOVR boundary elements is ’ghe distance from node zo; to z3;. With

this in mind, values for K; may be obtained for ratios of 1 /a in the range of 0.05 to
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Figure 63. Cracked Plate (BEM Mesh

0.9. The percent error is calculated by the formula

Kigem — Kr

Percent Error. = K,

100 (285)

where K = 2.737 ksi - in/2,
The results for the CTQQ and CTQT elements are plotted in Figure 64. It can

be seen that the SIF calculated by the traction method are generally less sensitive to

the I/a ratio.
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Figure 64. Percent Error in K for Double Edge Cracked
Plate With CTQQ and CTQT Elements

The results for the CTQUA element are plotted in Figure 65. Again, the SIF

calculated by the traction method are generally less sensitive to the I/a ratio.
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Figure 65. Percent Error in Ky for Double Edge Cracked
Plate With CTQUA Elements

The results for the CTOVR element are plotted in Figure 66. For l/a < 0.2
the SIF are way off. This is due to the parameter in the Overhauser-type element
becoming nonmonotonic when two elements that are very different in leﬂgth are

placed next to each other.
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Figure 66. Percent Error in K for Double Edge Cracked
Plate With CTOVR Elements

From Figures 64 through 66 1t can be seen that the traction method for calculating
the SIF is less sensitive to the //a ratio. For completeness, a cvompz:u‘ison of the SIF
calculated by the traction method for the CTQT, CTQUA, and CTOVR elements is
given in Figure 67. As shown, for I/a > 0.2, the ﬁer;ent errors are similar; however,

the CTOVR element is clearly less sensitive to the [/a ratio.
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Figure 67. Comparison of Percent Errors in K 7 Cal-
culated by the Traction Method for Double
Edge Cracked Plate

Center Cracked Plate

The finite width centerlcra,cked pIé.te, de;;icted in Figure 68, is very similar to
the double edge cracked plate. The same dimensions, a = 1.8 in, material constants,
E = 5250.0 ksi and v = 0.20, and loading, a; = 1 :ksi, are used. Only the boundary
conditions on the bouﬁda.ry element mesh (Figure 63) need to be changed. Bowie [9]

reports an approximate analytical solution of K; = 2.8298 that is accurate to 1%.
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Figure 68. Center Cracked Plate

The percent error is ca,lculatedyby Equa,tion> 285 where K1 = 2.8298.
The results for the CTQQ and CTQT élements are plotted in Figure 69. It can
be seen that the SIF calculated by the traction method are generally less sensitive to

the l/a ratio.
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Figure 69. Percent Error in Ky for Center Cracked Plate
With CTQQ and CTQT Elements

The results for the CTQUA element are plotted in Figure 70. Again, the SIF

calculated by the traction method are generally less sensitive to the //a ratio.
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Figure 70. Percent Error in K for Center Cracked Plate
With CTQUA: Elements

The results for the CTOVR element are plotted in Figure 71. As before, the SIF
for I/a < 0.2 are inaccurate. This is due to the parameter in the Overhauser-type
element becoming nonmonotonic when two elements that are very different in length

are placed next to each other.
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Figure‘ 71. Percent Errorin K 1 for Center Cracked Plate
With CTOVR Elements
For completeness, a comparison of the SIF calculated by the traction method for
the CTQT, CTQUA, and CTOVR elgments is given in Figure 72. As shown, for
I/a > 0.2, the percent errors are similar; hdwever,,*the CTOVR element is the least

sensitive to the //a ratio.
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Figure 72. Co,mparisoﬁ of Percent Eréors in K; Cal-

culated by the Traction Method for Center
Cracked Plate

Full Model Center Cracked Plate

This example is the sameé as ‘the ceﬁter cracked plate, ekcép_f that a full size model
is made (i.e., no symmetry). The‘movdel employg Equation 37 along the interface
between the regions and both crack suA’rfa.cesk‘é.ré ﬁlg(ieied. A ;:ompaajison with results
from the previous exa,mple\for the CTQU.A; ;md CTOVR elements where [ [a=0.51s |

given in Table 2. As can be seen from the results above, the stress intensity factors
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Table 2. Comparison of Selected Results between the
Full and Quarter Model Center Cracked Plate

Element Type | Full Model K ksi - in'/? | Quarter Model Ky ksi - in'/?
CTQUA 2.826 2.822
CTOVR 2.807" : E 2.809

for the quarter model, which uses symmeffy, and the full model are very similar

indicating the full model approach can be uses with-confidence.

Center Slant Crack in an Infinite Domain

The center slant crack in an infinite ddmain under uniaxial tension was analyzed
and is a mixed mode crack problem (i.e., both K; and K7 will be calculated). The
infinite domain was approxima.téd by a square mesh’of l’ength’2(’)a on a side where a is
the half length of the crack as shc;wn inyF‘igure 73. Fof this exzzmple a=1lin, f=7/4,
E = 5250 ksi, v = 0.20, 0o = 1 ksi, and l\/‘d = 0.5. Two regioﬁs were employed in
the model with the crack at the éeﬁte: ‘of thé interface between th; regions and 83
nodes. The results are compared to the anaflyj:ipal solution fog a slanted crack in an

infinite plane:
. K; = ogy/7masin?
. (286)
' K = 0o masin 3 cos B
where 3 is the angle between the load axis and the crack axis. There will be some

small error in this model since the model is not truly infinite. A comparison of the

_stress intensity factors calculated with the traction approach for the CTQUA and
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20a

Figure 73. Center-Slant Crack in an Infinite Domain

CTOVR elements with the a.nalytica,lx results is given in Table 3. The comparison

Table 3. Comparison of Stress Intensity Fa,ctors\fo‘r the »
Center Slant Crack in an Infinite Domain

K[ ksi - 2'1111/2

Percent Error

.K‘H ksi - iIlll2

Percent Error

Analytical | 0.8862 — 0.8862 e
CTQUA 0.8876 0.16 ~0.8660 -2.28
CTOVR 0.8858 -0.04 0.8864 -2.24
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shows that this approach yields fairly good resﬁlts; however, the two element types

performances are so close that little can be inferred from them.

Elliptical Crack in an Infinite Region

A three dimensional example that has been employed by several boundary element
researchers [44,36] is the flat ellipi:ical crack in an infinite region under a uniform
normal stress at infinity as shown in Figure 74. The infinite region may be divided

into a forespace and a backspace using the crack face as a dividing plane. A close up

Go
Infinite
Domain - -
Y
i Cutaway
: ‘ \ Oblique
G, . \
' Crack Face
Forespace ‘ Backspace |
- e
Oy Co
Right Side View

Figure 74. Elliptical Crack in an Infinite Region
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of the crack face is shown in Figure 75 where the ratio of the major axis to the minor

axis of the ellipse is a/b = 2/1.

Crack o N Crack
Face - Front
b e 0

b

Y

A

Figure 75. Crack Face Close Up for the Elliptica,l Crack
in an Infinite Region

The crack was modeled with a large finite dimension elliptical cylinder approx-
imating the backspace of the infinite région and the crack itself. Two views of the
boundary element mesh are shown in Figures 76 and 77. Only an eighth of 1?he cylin-
der needs to be) modeled because of symmetry and has dimensions of 7.81b x 8b x
40b. The large finite size of the C);linder was ;:hosen to minimize the effects of the

finite size. The dimension, material properties, and loads of the model are a = 2 in,

b=11in, E = 5250 ksi, » = 0.20, and o¢ =1 ksi.
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Figure 76. Elliptical Crack BEM Mesh

The analytical solution of ‘this problem was first reported in [38] and is given by

. . 1
ovrb ., b? g\t
Kr= E(m) (sm 6 + —3 Co8 6 (287)
where E(m) is the elliptic integral of the second kind
2
m=k=1 _-b_2
a (288)

E(m) = /05(1 — k?sin? 0)7 df

The percent error in the boundary element solution was calculated by Equation 285.
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Figure 77. Elliptical Crack O\;erall BEM Mesh

The results for the three dimensional Overhauser crack tip elements are com-
pared to those given in Reference [44] for a duadra,tic crack tip boundary element
in Figure 78 for various values of the elliptic angle §. As shown in the figure, the

Overhauser crack tip elements gave slightly better and more consistent results.

Compact Tension Sipecimen

Another common problem is the standard compact tension specimen as specified
in ASTM E399-83 [26]. It is depicted in Figure 79. The simpliﬁed boundary element
model shown in Figure 80 is similar to ones employed ‘in Refe;rénces [4?;,68]. The effect
of the pin holes was disregarded-(i.e., the model is s:ectioned through the centerline
of the holes) and a parabolic shear equivalent to the applied force P was applied to
the end faces of the solid model. Symmetry is employed in two directions, explicitly

in the z direction and implicitly in the z direction by reflecting through the y — 2
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Figure 78. Percent Error in K for the Elliptical Crack
in an Infinite Region ‘

plane, yielding a model that is one-quarter of the original specimen. The model’s
dimensions and material properties are a = 1 in, W = 2 in, F = 1 ksi, P = 1 klbf,
and » = 0.30.

The boundary element mesh, shown in Figure 81, is composed of both RQUA

elements and Overhauser type elements (ROVRC, CTROVRC, and CTROVRCV).

It contains a total of 118 nodes and 32 elements.

The problem was run with two sets of boundary conditions, one to simulate plane
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Figure 79. Standard Compact Tension Specimen (after
Luchi and Rizzuti, 1987)

strain conditions and the other a full three dimensional problem. The plain strain
strain conditions were simulated by constraining the z direction at £ = B/2. The
results may now be compared to the ASTM values as calculated by the formula given

in References [57,26]. -

P (2+ )(0.866 + 4.64c — 13.3202 + 14.720% — 5.60)
BVW (1- )2

Kr= (289)

where

IA
=
=)

(290)

SIE



165

P
)
y
a \
w ) > X
z
06w
v
B/Z:W/c;

Figure 80. Compact Tension Specimen Model

A comparison of the boundary element results and ASTM values are given in Table 4.
As can be seen, the smallest perceﬁt error, 0.04, is a,ti z = 0 and increases to a
maximum of 0.63 at the free surface. This increase in error is consistent with the
results given in Reference [43].

The fuil three dimensional problem was modeled with the same boundary element
mesh, but the boundary conditi;)n at ¢ = B/2 was changed to a free surface. The
CTROVR results are ’compa,red in Figure 82 to the ASTM plane strain formula,

boundary element values in Reference [43], and finite element values in Reference
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Figure 81. Compact Tension Specimen BEM Mesh

Table 4. Compact Tension Specimen SIF Comparison
With the Plane Strain Value of K; = 6.73 ksi -

in!/?

2z/B | Ky ksi - in!/? | Percent Error
0.0 6.73280 0.04
0.5 6.71776 -0.18
1.0 6.77291 0.63

[68] and are quite similar.
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Chapter IX
CONCLUSIONS

Numerical methods, such as the finite element method and the boundary element
method, are more convenient in many cases to the various theoreti;al techniques for
the solution of linear elastic fracture mechanics problems with arbitrary geometries
and loading conditions; Boundary element m)etho‘ds have some practical and theo-
retical advantages over finite element methods for linear elastic fracture mechanics
problems. One is that only the boundary must be modeled as opposed to the entire
domain, i.e., a three dimengiona,i problem may be modeled by a surface and a two
dimensional problem by a curve. Another is that the stresses are typically modeled
with a lower order polynomial th?m the‘,dispfacements, while the boundary element
method typically models displacements and tractions with the same order polyno-
mial. Since stress intensity factors may be derived directly from stresses and the
boundary element method directly solves for tractions, a more direct link between
the problem solution and the stress intensity factors is obtained. A disadvantage of
the boundary element method when compared to the finite element method is that
the mathematics for describing and implemeqting the boundary element method are
more complex.

The objective of this work was to better represent the geometry of a crack through
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the use of C' continuous elements in both two and three dimensions and thus en-
hance the accuracy of the boundary element method in the solution of linear elastic
fracture mechanics problems. Since the Overhauser crack tip elements overlap and
are C! continuous, much of the\ previous work déne‘in implementing Lagrangian type
elements in the boundary element method this area was of little use. The innovations

done in support of the objective are listed below.
o The two dimensional crack tip Overhauser elements

o Methods for performing the singular integrations for the two dimensional crack

tip Overhauser elements

o A general approach for derivation of stress intensity factors from two dimen-
sional boundary elements that properly model the 1/,/r behavior of the trac-

tions

o The use of Coons type surfaces in.the derivation of all the three dimensional

rectangular element tyf)es

1

o The three dimensional Overhauser elements

o A general transformation approach for performing the three dimensional singu-

lar integrations
e The three dimensional crack tip Overhauser elements

o A general transformation approach for performing the three dimensional crack

tip singular integrations



170

The superiority of employing stress intensity factors derived from tractions as op-
posed to those derived from displacements was demonstrated in the two dimensional
examples. In particular, the traction stress intensity factors were much less sensitive
to the ratio of the length of the crack tip eleméﬁt to the length of the crack.

The Overha,user-type‘ crack tip elements were ;nore generally accurate than the
other element types for the two and threé dimensional ekamplgs examined. The two
dimensional Overhauser crack tip element showed a nearly complete insensitivity to
the ratio of the length of tﬁé crack tip element to the length of the crack except for
extremely small values where the parameter Became nonmonc;tonic. It is believed
the more accurate results of the Overhauser crack tip elements are a result of both
the C! continuity and a better modeling of the near field crack tip stresses. However,
percentage errors for all boundary elements that properly model the tractions are
fairly close, indica,ting_ that the quadratic behavior of these shape functions may be
the dominant factor. While all of tﬁe Overhauser elements give excellent results, they
have a small disadvantage in that the meshes are slightly more difficult to assemble
by hand.

The significance of this work lies not only‘in the fact that the Overhauger elements
generally modeled the problems examined more accuratelj and Wi}:h a nearly complete
insensitivity to the ratio of the length of the crack tip element to the length of the
crack, but that the approach taken will make derivation and implementation of new
crack tip boundary elements easier. vSpeciﬁca,lly, the Coons approach to derivation of

surface elements and the general transformation approach for performing the three
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dimensional singular integrations for standard and crack tip elements are meaningful
advances in boundary elements in general and as applied to linear elastic fracture
mechanics in particular.

The results of the current study indicate the need for a cubic crack tip boundary
element and the proper transformations to find the stress intensity factors for nonflat

three dimensional crack tip boundary elements.
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