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.Chapter I 

INTRODUCTION, 

For those not familiar with fracture mechanics, perhaps a broad definition might 
' ' 

be in order. 

Fracture mechanics is an enginee,rln~ discipline thart quantifies the con-

ditions under which a load-bearing solid body .can fail due to the enlarge­

ment of a dominant crack contained in that, body. [37] 

Engineers have always been concerned with fracture since it often has unexpected and 

tragic consequences. More recently, lightweight designs and small factors of safety 

have contributed to the interest)n fracture mechanics and given rise to the concept of 

damage tolerance. Nondestructive evaluation allows for determination of crack-like 

:flaws and their severity. Using fracture mechanics, the :flawed part is then evaluated 

as to whether it should be removed from service or not. 

Linear elastic fracture mechanics~ (LEFM)', is con~eptually similar to ~ elastic 

analysis. An analysis is made of a geom~tri~ configuration giving some sort of maxi-

mum stress. That maximum stress is compared in some manner to an experimentally 

determined yield ~tress. For example, the calculated octahedral shear stress is com-

pared to the yield stre~s for the ~aterial through the von Mises theory of failure. 

Similarly, in LEFM, a mathematical analysis of a geometr.ic configuration is made 
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to determine the stress intensity factor (SIF), K. The fracture toughness Kc is then 

independently determined for a particular material, and K and Kc are compared. 

There are other material parameters that play a· similar role in fracture mechanics, 

such as the J integral. These parameters will be ;more completely defined in later 

chapters. 

While there are nonlinear fracture mechanics analyses, LEFM plays a major part 

in them, just as elasticity plays a major part 'in a· plasticity analysis. , Advances in 

LEFM will therefore often translate into advances in nonlinear fracture mechanics. 

Stress intensity factors can be determined' in a numb~r of ways. For a few sim­

ple geometries, an analytic solution is possible~ Large scale testing is also possible, 

although not practical in most situations. Today, much work is done 'numerically, 

primarily using the finite elemeri~ m~t.hoa (FEM) and the boundary: element method 

(BEM). 

The objective of this dissertation is to better represent the geometry of a crack 

through the use of parametric continuous boundary elements in both two and three 

dimensions and thus enhance the accuracy of the boundary element method in the 

solution of linear elastic fracture mechanics problems. Methods will ~e introduced 

for evaluating the stress intens~ty f~ctors most appropriate for the boundary element 

method along with integration procedures for the. new elements. 
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LITERATURE REVIEW 

Numerical Methods in Linear Elastic 

Fracture Mechanics 

This section will give a very brief outline Of finite elements and boundary elements 

' ' 

as applied to LEFM and then a·more detai~ed background on the development of crack 

tip elements and the evaluation' of fracture inechanics_par~eters. 

Chan, Tuba, and Wilson [15] were some of the first investigators to ll.se the finite 

element method to determine stress intensity factors. A number of researchers then 

developed special elements that conbined the singularity at the crack tip. Isopara-

metric el~II1ents that had the singularity-were developed independently by Henshell 

and Shaw (30] and Barsou~ [6],. Stress .intensity factor~ are then typically calculated 

using the J integral developed by Rice [53]. 

There are a number of ways that the solution of fracture mechanics problems can 

be approached with the BEM. Th~ first ~pproach was to use Kdvin's fundamental 

solution with many Lagrangian isoparametric dements to model the crack [18,24]. 

There have been sqme advances with higher-'ord~r elements and self-adaptive meshes 

using this approach. For a detailed review of advancements of the boundary element 
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method in fracture mechanics, the reader is referred to References [21] and [55]. 

There ate also modified boundary element methods. Snyder and Cruse [56] de-

veloped a new complex Green's function for a straight center crack in an infinite. 
' 

. . 
anisotropic plate that eliminated the need to model the crack. at all. The method 

was later improved by Cruse [20]. M~ws [48] extended the method to straight and 

angled center and edge cracks in isotropic mater~als. The subtraction of the singular-

ity technique was introduced· by Symm for potential-problems [60] and J\.liabadi for 

el~sticity probl~ms[1]. The weight function method involves c~culating the strain 

energy release. by means of an integral over the crack surface. This method was 

originated by Bueckner [14]. The displacement discontinuity method [17] typically 

models only the crack and solutions are the differences in tractions [22] ?r displace-

ments [59] across the crack surface. Stress intensity factors are then calculated from 

the solution. The method is typically applied in infinite regions ~d early results in 

finite regions are not promising [27]. 

Another approach is to use special crack tip elements with the standard Kelvin's 

fundamental solution in multiple regions. This approach is very general, as any 

straight or curved crack can be modeled in two ~r three dimensions. Two areas must 

be investigated when working LEFM problems by the BEM using crack tip elements. 

The first is the numerical evaluation of the stress intensity factors or related material 

parameters, and the second is the modeling of the crack itself with various crack tip 

elements. 
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Evaluation of Stress Intensity Factors 

Methods for the evaluation of stress intensity factors can be roughly broken into 

two categories. The first method is an integral equation method. The second method 

uses information from the nodes near the crack tip. 

The path independent contour integral, J, developed by Rice [53], is one manner 

of characterizing the ,crack It hasthe advantage in that it is· valid for both linear 

and nonlinear frac;ture mechanics. There are other invariant integrals as well [40,13]. 

Snyder and Cruse [56] developed path ind~pendent integrals for determining stress 

intensity factors for a center cracked anisotropic infinite plate. Kishitani, Hirai, and 

Murakami [39] calculated the J integral by specifying a separate path through the ·. 

domain of the problem. ·While they achieved good results for some problems, this 

approach is not in the "spirit" of the BEM. There are also·serious numerical problems 

with this approach. As the internal points get closer to an element, the fundamental 

BEM solution gets more singular, resulting in poor answers. While these numerical 

difficulties may be overcome in some instances, a practical approach has not yet ·been 

developed. Therefore, this approach will not be considered further. 

At fi.rst, the stress intensity factor, K, was extrapolated from the displacements 
~ ' ' I 

of a sequence of nodes near the cra~k tip [15,24] .. This gave way to what is called 

the single-point, first-order displacement formula for calculating K, and later to the 

two-point formula [8]. Martinez and Dominguez (46] developed a traction nodal value 

formula which gives the stress intensity fa~tor based on the traction nodal values at 

the crack tip. For the problems they examined, the traction nodal value formula gave 



6 

the best results and is relatively independent of the crack element size. Jia, Shippy, 

and Rizzo [35,36] confirmed their results. This approach also takes advantage of the 

traction solution that is unique to the BEM. For these reasons, the one and two point 

displacement formulas and the traction formulas will be used in this work, with a, 

concentration on the latter. 

, Crack Tip Elements 

Crack tip elements originated in the context of the FEM. Alth~ugh some special. 

hybrid crack tip finite ·elements had been developed previously, Henshell and Shaw 

' 

[30] showed that isopara~etric quadratic q~adrilateral finite elements displayed the 

appropriate square root singularity ( vr) at the crack tip qy moving the mid-side 

nodes to the quarter point· position, wh~re r is the distance from the crack tip. 

Co:p.currently, Barsoum [6] develope_d qu~dratic triangular, quadrilateral, prism, and 

brick crack tip elements. He also showed that the quadratic triangular element has 
. . 

the appropriate ,fF singularity along all rays emanating from the crack tip. Shih, 

deLorenzi, and German [54] make a correction to the formula for K developed by 

Barsoum and comp~e the c8lculation of K versus the calculation of the J .inte-

gral. Because Barsoum obtained better results· with quadratic triangular elements 

than quadratic quadrila-teral elements, Hibbitt [3J] suggested the strain energy of 

the quadratic quadrilateral elements was unbounded. Ying [69] showed this to be 

incorrect. However, the tendency to use triangular elements persists today. Lynn 

and Ingraffea [45] developed quadratic transition elements, and Hussain, Vasilakis, 
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and Pu [33] developed cubic transition elements that go between the standard ele-

ments and the crack tip elements in order to improve on the solution accuracy. Murti 

" 

and Valliappan [50] made several corrections in the derivation oftransition elements. 

Bank-Sills and Bortman. reviewed the use of qu~dratic quadrilaterals [4]. Bank-Sills 

[3] expanded on her previous work and concluded that qu,a~atic quadrilaterals must 

be rectangular and quadratic triangles may be ·~y shape a8 long as the edges are 

straight for the element to have the proper vr singularity along all rays eman~ting 

from the crack tip. 

Crack tip elements w~re introduced into the BEM by ·Cruse and Wilson [25] 

where they employed symmetry in the aP.alysis .. In the BEM, ~nlike the FEM, the 

same shape functions are typically used for both the displacements and the tractions. 

Therefore, the traction shape functions must be modified to obtain the proper 1/ Vr 

singularity at the crack tip. Blandford, lngraffea, and Liggett [8] expanded on the 
- . ' 

two dimensional portion of Cruse ~d Wilson's work and employed transition ele-

ments that were not corrected for the)/ vr singularity f~r the tractions. They also 

introduced the idea of using multiple regions, one on each side of a crack. Mason and 

Smith [4 7] compare the one and two point displacement formulae for curved crack 

' . 

problems. VanDer Weeen [62] employed quadratic and cubic·cra.ck tip and transi-

tion elements, each with proper singularities, in the solution of anisotropic plates. He 

obtained the best results with cubic crack tip and transition elements. This would 

seem to indicate that higher order elements give better' solutions. 

Three dimensional crack problems were solved using constant boundary elements 
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by Cruse and Vanburen [24] and using linear triangular elements by Cruse and Meyers 

[23]. Tan and Fenner [61) used standard quadratic quadrilateral boundary elements 

to solve several crack problems. Luchi and Poggialini [42]_ were apparently the first to 

properly model the 1/ Vr ~ingularity in the 'tractions with the use of a set of special 

shape functions they developed. Luchi and Rizzuti [44] eJq>anded on Reference [42] by 

employing the stress intensity factor calculation approach of Mar~:fnez and Dominguez 

[46] and a special series of mappings for singular element i~tegrations. Jia, Shippy, 

and Rizzo [36] use a multi-domain me~hod ·to solve • a number of crack problems. 

They used shape functions of Referen~e. [42] and a combination of Cartesian and 

polar mappings for singular element· integrations. 
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Chap~er III 

BOUNDARY ELEMENT 

FORMULATION ·FOR LINEAR 
' ' 

ELASTIC FRACTURE 

MECHANICS 

Linear Elastostatics 

The basic theory for applying the BEM to linear elastostatic problems is well 

developed and can be found in numerous. texts [2,11,10,29,49). The basic equations 

are developed here for completeness arid use the same notation as [10]. Indicia! 

notation will be used thro~gh<;m.t this development, where repeated indices indicate 

a sum and a comma indicates a deriva#ve .. 

A linear elastic, isotropic, homogeneous, three-dimensional body n is bounded by 

a surface r whiCh consists of the sum of its two parts r1 and r2 (Figure 1). The . . 

go~erniD.g differential equations of equilibrium for a differential element of the body 

n are 

Uij,j + b, = 0 inn (1) 

in which O'i3 are the stress compone~ts, and bi are the components of the body force . 
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Figure 1. Notation for an Elastic Body 

per unit volume. The surface tractions p, are related to the surface stress components 

by 

on r (2) 

where n3 is the outward directed unit surface normal. In order for the problem to be 

well posed, the boundary conditions must be one of two types 

Ui = U1 on f1 (3) 

where u, are the displacements and Ui are the specified displacements or 

(4) 

where Pi are the specified tractions. 
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The kinematic equations assuming small strains and displacements are 

1 
e:· ·- -(u· · + u ·) 13 - 2 '·3 3,1 (5) 

in which e:,3 are the components of the strain. 

The constitutiv~ relations may be writte4 in terms of the modulus of elasticity, 

E, and Poisson's ratio, v, 

(6) 

or 

(7) 

where 8,3 is the Kronecker delta. Of course, the shear modulus, p,, can be wr!tten in· 

terms of E and v 

E 
(8) 

JL . .. 2(1 + v) 

Substituting the kinemati~ equations (Equation 5) and the constitutive relations 

(Equation 7) into the equilibrium equations (Equation 1) yields Navier's equations 

(the equilibrium equations in terms of the displacements instead of the stresses): 

1 . 1 . 
--u · ., + Ut .. + -b, = 0 
·1 - 2v 3'3 '33 JL 

(9) 
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Fundamental Solutions 

The Kelvin fundamental solution of the effect of a unit load applied at the source 

or load point m on the field point in the dir~ction of the unit vector ei 

(10) 

may be obtained from Navier's equations (Equation 9) using the Galerkin :vector_ 

approach [19,32,10]. Displacements and tractions at -any point in the domain due to 
' -. 

this point load at m acting in the i direction· are given by 

(11) 

(12) 

Fundamental solutions are displacements or tractions in the j direction due to a 

unit load at the source point m or ( acting in the i direction. They are, for two 

dimensional displacements 

* . ...,...! ' . 
ui;((, 71) = S1r(1 - v)J.L [(3- 4v)ln(r)8i;- r,ir,;] (13) 

for three dimensional displacements 

- 1 
ui;((, 71) = 161r(i- v)J.Lr [(3- 4v)8i; + r,ir,;] . (14) 
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and for two and three dirn:ensional tractions 

(15) 

where a = 1 and f3 = 2 for two dimensions, and a = 2 and f3 = 3 for' three 

dimensions. For two dimensional plane strain problems, v = v', and for plane stress 

v = v' /(1 + v'). In the above equations 

(16) 

r=~ . (17) 

fJr ri 
r, = =-
·' fJx,(7J) r 

(18) 

(19) 

where 77 represents the field point and (represents the source point. 

Displacement and traCtiQn equations may be differentiated with respect to the 

source point to obtain 



p;,, = 2oor(/"- v)r~ {11:[(1-2v)h;3r,k 

+ v( 8,kr./ + 83kr,i) - lr,,r,3r,k] ~ 

+ {3v(n,r,3r,k + n3r,ir,k)- (1- 4v)nk8i3 

, +(1 - 2v)(f3n~r,ir,3 + n;Dik + n,8;k)} 

14 

(21) 

where a= 1, {3 = 2, and 1 = 4 for two dimensions, and a= 2, {3 = 3, and 1 = 5 for 

three dimensions. 

Boundary Integral Formulation 

The boundary integral ·formulation for elastostatics will, be· derived using the 

weighted residual approach. The formulation's relation to a derivation from Betti's 

reciprocal law will also be shown. 

It is desired to mini~ize the error in the equilibrium equation (Equation 1) by 

multiplying it by an appr~p~iate w~ighting function u; and integrating over n: 

(22) 

Integrating by parts twice yields the adjoint of the Equation 1: 

(23) 

If Equation 1 is substituted here, Betti's reciprocal theorem will result. Applying the 

boundary conditions to Equation 2'3 and integrating its first term by parts twice, the 
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generalized weighted residual statement results. 

The choice of weighting functions should be one that remov,es the domain integral 

of the stresses. By letting 

(25) 

the domain integral of the.stresses is transformed'to 

If the boundary conditions are applied at .a later stage, Equation 24 simplifies to 

Somigliana's identity, whi~h gives displacements of internal points in terms of bound-

ary values and body forces: 

(27) 

Somigliana's indentity cannot be evaluated directly when the source point. is on the 

boundary. Therefore, let the source point be surr~unded by a small hemispherical 

region. Taking the limit as the volume of the small hemispherical region goes to zero, 
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the following equation is obtained: 

(28) 

where the c;3 term depends on the bo~nd~y geometry. It is most commonly evaluated 

using the rigid body motion auxiliary equation 

c"'. = r p'!'. dr 
'3 lr '3 

(29) 

Displacements at points internal to the body may be found from Somigliana's 

identity (Equation 28) with c,3 = 8i,- Stresses at internal points may be found from 

Equation 27 differentiation with respeCt to the source point:' 

(30) 

where u;3k and P'ijk are given in Equations 20 and 21. From this point on, we will 

not be concerned with body forces and therefore those terms of Equations 28 and 30 

will be dropped. 
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Boundary Discretization 

The boundary of the domain is discretized into a series of elements, hence the 

name "boundary elements." The variation of the geometry, displacements, and trac-

tions may be independently approximated in the following manner: 

Xj = Nf Xlj 

(31) 

Pi= Nfpt; 

, where Nf are the geometry shape functions corresponding to node l on the element, 

and x13 is the coordinate in direction j of node l of the element. The displacements 

and tractions are similar. Normally the same set of shape functions is used for all 

approximations; but as we shall see, they are different for crack tip elements. 

Substituting the above approxii1;1atio'n into Equation 28 and facforing out the 

boundary values yields 

c'!':u'!' + u,3• ,f p!.N1u di' = Pt3· f u!.N1P di' 
IJ I Jr IJ Jr IJ 

(32) 

By forming this equation from every source node m in the boundary element mesh, 

a system of simultaneous, equations, relating the known and unknown boundary dis-

placements and tractions results ~d has the form 

[H]{u} = [G] {p} (33) 
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The well posed boundary value pro~lem has either a displacement or a traction 

specified at every node in every direction on the boundary. This implies Equation 33 

can be rearranged such that 

[A]-'{x}= {y}" (34) 

where all unknown displacements and tractions are in the x vector and all known 

displacements and tractions are in the '!} vector. This ·system of equations is fully 

populated for single-region problems ,and.,is·in general neither symmetric nor positive 

definite. Once the system of equations is solved, both the displacements and tractions 

are known at all points on the bm~ndary, and they can be employed to find the 

displacements and stresses at internal points. using Equation 30. 

Equation 32 can be further broke~ do~n into integrals over each bou.'ndary element 

in the mesh: 

(35) 

(36) 

Shape functions and methods for integration and their respective derivations are ex-

amined in the next several chapters and constitute the major porti9n and innovation 

of this work. 

Subregions 

In some cases the boundary element model may be piecewise homogeneous as 

shown in Figure 2. In that case, the boundary element procedure may be applied to 
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Figure 2. Two Subregion BEM Model 
'' 

each region independently and the regioi;J.s tied together with Equation 37 applied to 

the nodes along the interface between the regions. 
' ' ' 

(37) 

This approach is particularly u&eful when modeling crack problems. The interface on 

either side of a crack is "stitched" together' while the crack surface is left traction-free. 

Linear Elastic Fracture Mechanics 

Lin~ar elastic fracture' mechanics analysis is b~sed on the concept of s~all s~ale 

yielding. The region of inelastic deformation at the crack tip must be small with 

respect to the size of the crack or any other characteristic length [37]. LEFM neglects 

the localized effects at the crack tip such as plasticity' and microcracking, ,and relates 

the stress field directly to the geometry and applied stresses. 
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Two Dimensional LEFM 

Irwin [34] largely developed the idea of stress intensity factors which is shown in . ' 

Figure 3 The crack tip geometry and stresses for two dimensional problems is defined 

in Figure 4. 

Figure 3: Three Basic Lo~ding Modes for a Cracked 
Body: K1 - Crack Opening Mode, Kn -
Crack. Slidil+g Mode, and K:rii - Crack Tearing 
Mode .. 

Irwin determined that .a geometry dependent factor (the stress intensity factor), 

K, may be used to characterize stresses at the crack tip. For a crack of ~ength 2a 

in an infinite plate subject~d to a uniform tension u, K1 4as a. value uVi'Q,.~ In 
'' 

a more general setting, substitution of Irwin's defi.;nition of K iri.to William's [67] 

eigenfunction expansion for. stresses of a traction-free crack in an infinite domain . 

yields stresses defined in te~ms of the stres~ intensity factors. For r much smaller 
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Crack 

Figure 4. Crack Tip, Coordinates for 2D 

than the size of the crack and neglecting higher order terms, the eipansions are 

K I () ( " . () . 3() ) '' K II . . () ( ' . () 3() ) 
O'oo = -- COS - 1 - Sill - Sill -' - --Sill - 2 + COS - COS -
~· 2," 2 2 V2iT 2 .2 2 

(38) 

Kr · () ( ; () . 30) Ku . () () 30 
- O'n = -- COS - 1 + Sill - Sill - + -- Sill - COS - COS -
~ ,2 •' . . 2 2 ~ 2 2 2 

(39) 

Kr · () . () , 30 Ku () ( . . () .. 30) 
a 01 = -- COS - Sill - COS - + -- COS - 1 - Sill - Sill -
~ ' 2 2 2 . 'V2-ir 2 2 2 

(40) 

The displacements near the crack tip ar~ 

Kr{£ () ( . . ·2 ())· · Ku{£ . () (' · 2 ()) u0 = - -cos - 1 - 2v + Sill - + -. -Sill- 2 - 2v + cos -
J1 27r 2 2 J1 27r 2 . ' 2 

(41) 

Kr{£ . () ( · · 2 ()). Krr{£r () ( . 2 ()) u1 = - -Sill- 2 - 2v - COS - + - -COS - -1 + 2v + Sill -
J1 27r 2 2 J1 27r . 2 2 

(42) 

When crack tip boundary elements are employ~d, the displacement and tractions 
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at the crack tip are prop~rly modeled and the stress intensity factors may be di-

rectly obtained from the displacement and traction solution. The so-called one point 

displacement formula may be found by equating displaceme~ts at one point on the 

crack tip element with u1 a:p.d u 2 and_ solving for the stress intensity f~ctors. The 

two point displacement formula may be fbund for symmetric problems by equating 
' " 

the coefficients of JF in Equation 41 or 42 with the coefficie~ts of .JT in the dis-

'' 
placement shape functions of the element· type in question. The traction formula is 

derived by taking the limit of the product. of the. coefficient of the· stress intensity 

factors in Equations 38, 39 and 40 with :the traction shape function at the crack tip. 
' ' 

These operations need to be performed for each ty:pe of crack tip boundary element 

that properly models the tractions and will be covered in more detail in Chapter V. 

The traction formula has special significance in boundary element analysis because 

it depends only on the traction solution values at the crack tip which are obtained 

directly from the boundary element formulation and it is relatively insensitive to the 

element length. 

Three Dimensional LEFM 

The crack tip geometry and· stresses for three dimensional problems are defined 

in Figure 5. 

The relations between the· stresses ~d <;lisplacements and stress intensity factors 

are the same in three dimensio~s as they . are in two dimensions with 'the following 



additions: 

·'Figure 5. Crack Tip Coordinates for 3D 

· · K1 : fJ · Kn . fJ 
u22 = 2v-- cos- - 2v-- s1n-

. y'2;; . 2 . y'2;; 2 

Kn1 fJ 
0"21 = --cos -

y'2;; 2 

Kn1 . fJ 
0"02 = ---sm-

. y'2;; 2 

2Kni {;i . fJ 
u2 = -- -sm-

/1 271" '2 

(43) 

(44) 

(45) 

(46) 

Stress intensity factors can be d,etermined ill a manner similar to those in two dimen-

sions and will be derived for· the three dimensional crack tip elements in Chapter VII. 
' . 



24 

Chapter IV 

TWO DIMENSIONAL BOUNDARY 

ELEMENTS 

In this chapter,'the noncrack tip two dimensional shape functions will be derived 

and their application in , the boundary ~element method examined. As discussed in' 

Chapter III, the variation of geometry, displacements, and tractions over an element 

~ ' 

may be approximated by a series of shape furicti,ons. Each element is comprised of 

a series of nodes where the geometry, displacements, and tractions may be specified. 

In general, these shape functions must form an interpolating curve, one that passes 

through all of the nodes. Ther~' are other shape functions that generate approximating 

curves. These shape functions form curves that may or ~ay not actually pass through 

the nodes. However, for shape functions to be useful in the most common boundary 

elements formulation, the curve must be of the interpolating type and therefore has 

the same number of shape functions as nodes on the elements. 

All of the el~ments discussed in this chapt~r will have the isoparametric formu-

lation: shape functions for the geometry, displacements, and tractions will be the 

same. 
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Derivation 

The shape functions for the standard parametric two dimensional ~lements can 

be derived in one of several ways [52]: 

• Inspection 

• Simultaneous Equations 

• Lagrange Interpolating Polynomials 

• Divided Differences· 

The last three approaches should yield the the same· results when· only ·positional . . 

( C0 ) information is used. They will each be used where it is most appropriate in 

derivations for various element types, which will be described later in their respective 

sections. 

The shape functions may be found directly from the Lagrange polynomial 

(47) 

where n is the degree of the polynomial (i.e., for a quadratic n = 2), fis the parameter . . . 

along the element, and 6 and ·em are the values of the parameter at the positions 

corresponding to l and m, respectively. Shape functions derived in this manner are 
' ' '., ,. 

often called Lagrangian shape functions. _ :· 
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It is often desirable that shape functions have one or more of the following prop-

erties. The first property is positivity: 

(48) 

This property assures that the curve segment formed by these shape functions lies 

completely within the convex hull of the points forming the curve. Another property 

similar to this one, ,but only concerned ~ith the shape function values at the nodes, 

is given in Equation 49: 

(49) 

The second property is the partition of unity: 

n 

I:N,(e) = 1 (50) 
1=0 

This property ensures tha:t the curve is invariant under affine transformations. 

It shall be seen that crack tip boundary elements often do not satisfy either 

Equation 49 or 50. However, all shape functions considered in this work will have 

the property of affine transformation .in variance. 

Linear (LIN~) Element 

The simplest and least accurate of the two dimensional element types is the linear 

element, which is defined by two nodes, one ~t each end of the element. The LINEar 
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element type will be abbreviated LINE. The geometry and parametric mapping for 

the LINE element is shown in Figure 6. The LINE shape functions are easily derived 

• 
to=O 

Figure 6. LINE Element Geometry and Parametric 
Mapping 

using Equations 47 and 51: 

n=1 and - tm =< 0 1 > (51) 

The LINE shape functions are given in Equation 52 and are plotted in Figure 7. 

Since the displacement and traction shape functions are same as the geometry shape 

functions, only the geometry shape functions are given and the superscript g has 

been dropped: 

No(t) = 1- t 
(52) 
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Quadratic (QVAD) Element 

28 

The quadratic element is the simplest element that is of practical' use in elasto-

statics, since it can properly model bending. 'The QUADdratic element type will be 

abbreviated QUAD. It is defined by three nodes as shown in Fig~re 8. The QUAD 

shape functions are easily derived using Equations 47 and 53: 

n=2 and tm =< 0 1/2 1 > (53) 



• • 
lQ=O {2=1 

Figure 8. QUAD Element Geometry and Parametric 
Mapping 

The QUAD shape functions are given in Equation 54 

and are plotted in Figure 9. 

N0 (t) = (t -1)(2t -'--1) 

N1(t) = """""4(t- l)t 

N2(t) = t(2t- 1) 

Cubic (CUBIC) Element 
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(54) 

The next higher order .element is' the cubic element. The CUBIC element type 

will be represented by CUBIC.· It is defin~d by four nodes as shown in Figure 10. 

The CUBIC shape functions are easily derived using Equations 47 and 55: 

n=3 and tm =< 0 1/3 2/3 1 > (55) 
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The CUBIC shape functions are given in Equation 56 and are plotted in Figure 11: 

- (t -1)(3t- 2)(3t- 1) 
No(t) = 2 

N1(t) = 9(t- 1)t(3t- 2) 
2 

- 9(t- 1)t(3t- 1) 
N2(t) = 2 

Na(t) = t(3t- 2)(3t- 1) 
2 

(56) 
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Figure 10. CUI3IC Element Geometry and Parametric 
Mapping 

Overhauser (OVER) Element 

31 

As described in the previous sections, Lagrangian linear, quadratic, and cubic 

elements are commonly used in elastostatics. They provide only parametric positional 

( C0 ) continuity between elem~nts. When the boundary geometry is. linear, parametric 

derivative continuity (C1 ) between elements is satisfied; however, this is not the case 

when the boundary geometry is curved. The approximation of the displacements 

and tractions may also require detiv~tive continuity between elements for accuracy. 

This is especially important in elastdstatics because of its inherent dependence on a 

continuous strain field. C1 continuity is also desirable since the normal direction and 

hence the boundary stresses are the same as a node is ~pproached from two different 

elements. 

C1 continuous curves have long been a subject of interest for manyTesearchers, 

often in the context of computer-aided design. However, much of the research has 
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Figure 11. CUBIC Element Shape Functions 

gone into developing C1 approximating curv:es [7] which produced surfaces for de-

sign. Watson [65,66] developed a hermitian cubic boundary element which requires 

the specification of positional and derivative data at each node. This requires the 

recasting ~f the boundary integrals described in Chapter III to include the derivative 

data. The C1 continuous curve should be an interpolating curve that requires only 
' i : , 

positional data. Overhauser [51] developed such a curve based on a parabolic blend-

ing technique which forms an ~:p.terpolating parametric cubic by blending parametric 
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,quadratics. Brewer and Anderson [12] developed a formulation for rapid computa-

tion which is described below. The use of the Overhauser element is described more 

extensively in [63]. The OVERhauser element will be abbreviated OVER. 

The Overhauser curve c3 (t), shown in Figure 12, is a linear blend of two overlap­

ping parametric parabolas. The fust parab~la pj(r) is defined by the three points, 

• 
t=-1 
r=O 

t=l 
r=l 
s=lfl 

Figure 12. OVER' Element Geometry and Parametric 
Mapping 

x03 , x1;, and x2;. The second parabola ,q,(s) is defined by the thre~ points, Xlj, x23, 

and x3;. If r, s, and tare relatedjn-aJinear manner 

(57) 

(58) 
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then c3 (t) is given by 

(59) 

p;(r) and qAs) are.the quadr;atic curves 

(60) 

(61) 

where the N1 are the quadratic shape functic;ms 

N0 (r) = (r -·1)(2r- 1} N1 (r) = -:- 4(r -1)r N2(r) = r(2r- 1) (62) 

N1(s) = (s- 1)(2s--:- 1) N2(s) = - 4(s -1)s N3(s) = s(2s- 1) (63) 

The relationship between r and. t may be determined by evaluating Equation 57 at 

points x1; and x23 

which yields . 

and 

. 1 1 
r = -t +­' 2 2 

(64) 

(65) 

The relationship between. s ~d t may be determined be evaluating Equation 58 at 

points x 13 and .x:o 

arid (66) 
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which yields 

1 . 
s = -:-t 

2 
(67) 

Substituting Equations 60, 61, 62, 63, 65, and 67 into Equation 59 and simplifying 

yields the OVER element \vritten in .terms of shape functions 

where 

. ' 

No(t) = - (t- 1)2t 
2 

(t- 1)(3t2 - 2t ..... 2) 
N1(t) = .. 2 

. N2 (t) = ,.-- t(3t2 ;· 4t- 1) 

N ( ) - ( t - i )t2 

3 t - . 
2' 

{68) 

(69) 

Note that the OVER element is ·only defined between x 13 and x 23 as indicated by the 

solid line in Figure 12. However, .x03 ~nd x33 do give contributions to the element 

assembly matrix when the eleiii.ent 'is i~t.egrated. These ~hape functions are evaluated 

at the values of the parameter t corresponding to the node locations in Equation 70. 

Since the element is only defined over .the interval. 0 ~ t ~ 1, the OVER shape 



functions satisfy Equation 49. They also satisfy Equation 50. 

t= -1 0 1 2 

No(t) = 2 0 0 -1 

N1(t) = -3 1 0 3 

N2(t) ~ 3 0 1 -3 

N3(t)( = -1 0 0 2 

The shape functions· are plotted in Figure 13. 
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(70) 
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Derivative continuity between elements can be shown as follows. The curve may 

be differentiated with respect to t: 

where 

1 ( ) dx3(t) N'( ) dN,(t) 
x3 t = dt = l t X13 = dt X13 

N~(t) = - (t- 1)(3t- 1) 
2 

Nf(t) = t(9t -10) 
2 

N~(t) = - (t- 1)(9t + 1) 
2 

N~(t) = t(3t- 2) 
2 

(71) 

(72) 

Evaluating Equation 72 at the values oft corresponding to the node locations gives 

i= -1 0 1 2 

N~(t) = -4 -1 0 -5 
2 2 

N{ (t) .:... 19 0 -1 8 (73) 
2 2 

NHt) = -8 ! 0 -19 
2 2 

N~(t) = §. 0 ! 4 
2 2 

Given two overlapping OVER elements, A3(t) defined by nodes Xoj, x1j, x 23 , and X3j, 

and B,(t) defined by nodes x13 , x23 , x33 , and x43 , if A,(t) is evaluated at t = 1 and 

B3 (t) is evaluated at t = 0, we find that 

(74) 
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showing C1 continuity at node x23 between elements A3 (t) and B3(i). 
'' -

Right Corner Overhauser 

{OVRR) _Element ' 

Since the OVER element is designed to have first derivative continuity between 

elements, problems occur when attempting to _model the r~gion near a corner (a 

' 
geometric singularity). One method of modeli~g a· corner is to make the nodes on 

one side of the ele~ent coinciqent. Unf~rtunately, excessive ~rror is. introduced into 

the element integration by this approach, since the element integration is nearly 
' 

singular, for the last node. Another approach taken in References [63,64) is to use 

cubic elements in the corners. However, C1 continuity is lost at the point where the 

OVER and CUBIC elements met. 

The approach implemented here was originated by Hibbs [32]. Hibbs developed 

a corner element that has C1 continuity on one side and C0 continuity on the other. 

This can be achieved by performing a ~uadratic extrapolation for the point x3; which 
' ' 

is "missing" when compared to'the OVER element (see Figure 14). This new element 

will be named OVRR which is short for OV eRhauser Right since the element ter-

minates at its right-hand side. Referring to Figure 12, node x3; may be extrapolated 
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to=-1 tl =0 12= 1 

Figure 14. OVRR Element Geometry and Parametric 
Mapping 

by constructing a difference table: 

By assuming a zero difference, x 33 becomes 

39 

(75) 

(76) 
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Substituting into Equations 68 and 69 and simplifying yields the new shape functions 

No(t) = (t- l)t 
2 

N1 (t) = - (t- 1)(t + 1) 

N2(t) = t(t + 1) 
. . 2 

(77) 

The shape functions are plotted in Figure 15. The shape functions may be evaluated 
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at the values of the parameter t which corresponds the the node locations. 

t= -1 0 1 

No(t) = 1 0 0 
(78) 

N1(t) = 0 1 0, 

N2(t) = 0 0 1 

Derivative continuity betwee'u th~ OVER element and 'the OVRR element may 

be shown as follows. Differentiating the shape functions with respect to t, 

N.'(t) = (2t -1) 
0 ' 2 ' ' 

N{(t) = ·- 2t 

N'(t) . (2t + 1) 
2 . 2 

(79) 

The shape functions may then. be evaluated at the val11es of the parameter t which 

corresponds to the node locations. 

t= -:- 1 . 0 1 

N~(t) = -3 -1 1 
2 2 2 

(80) 

N{(t) = 2 0 -2 

N~(t) = -1 1 ', ~ 
2 2 2 

Given an OVER element A;(t) d~fined by nodes x0;, x1;, x 2;, and xa;, and an OVRR 

element B3(t) defined by nodes x13 , x 2;, and x3;, if A;(t) is. evaluated at t = 1 and 
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B3 (t) is evaluated at t = 0, we find that 

(81) 

showing C1 continuity at node x 23 between elements A3 (t) and B3 (t). 

Left Corner Overhauser 

(OVRL) Element 

The left corner Overhauser is similar to the OVRR element with the exception 

that it has its C0 and C1 positions reversed. This element will be named OVRL 

which is short for OVeRhauser Left since the element terminates at its left-hand 

side. The OVRL element geometry and parametric mapping is shown in Figure 16. 

The OVRL element may be derived in a manner similar to that of the OVRR element. 

__ .... --

··----------·---------e 
to=O t1=1 t:z=2 

Figure 16. OVRL Element Geometry and Parametric 
Mapping 



The OVRL shape functions are given in Equation 82 and plotted in Figure 17: 

No(t) = (t- 2)(t- 1) 
2 

N1(t) = - (t- 2)t 

N2(t) = (t- 1)t 
2 

43 

(82) 

The shape functions may be evaluated at the values of the parameter t which corre-
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sponds the the node locations. 

i= 0 1 2 

No(t) = 1 0 0 
(83) 

N1(t) = 0 1 0 

N2(t) = 0 0 1 

C1 continuity between OVER and OVRL element may be shown in a manner 

similar to that of OVER and OVRR by employing the following equations: 

N~(t) = (2t- 3) 
2 

N~(t) = - 2(t- 1) 

N~(t) = (2t- 1) 
2 

i= 0 1 2 

N~(t) = -3 -1 !. 
2 2 2 

N~(t) = 2 0 -2 

N~(t) = -1 !. 3 
2 2 2 

Integration 

(84) 

(85) 

The integrations that must be performed over a single boundary element are 

(86) 
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(87) 

These integrals are evaluated in the local. coordinate system of the element. This 

may be accomplished with the J~cobian tran~formation 

are= J(t) dt (88) 

J(t) = dx;(t) dx;(t) 
dt dt 

(89) 

dx;(t) dNf(t) 
dt = . d( Xlj (90) 

where tis the local parametric coordinate which varies from 0 to 1 along the element. 

The normal to the element is calculated by 

no= ~x~~t) / J(t) 

n1 = _ dxo(t) jJ(t) 
. . dt . 

(91) 

Substituting 

(92) 

r . 
Gijz((; t) = lo uij(r;((, t))Nf(t)J(t) dt (93) 

where the (shows that the fundamental solution is also a function of the source node 

position. The radius vector is calculat~d by 

rj((, t) = Xj(t)- Xj(() (94) 
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x3 (t) = Nf(t) x,3 (95) 

These integrations can be performed using standard Gaussian quadrature formulas 

[58]: 
.Q ' 

Hf;1((, t)::::::! 2:Pi;(r;((, tq))Nt(tq)J(tq)wq (96) 
q=l . ' 

Q 

G~31 ((, t) ::::! .. I: ui3 (r;((, tq))Nf(tq)J(tq)wq (97) 
q=l 

where tq are the quadr~ture points, Wq are the quad~ature weights, and Q is the 

number of quadrature points and weights. 

Singular Integration 

If the source node be~ongs to the element which is being integrated, then the 

two. dimensional fundament~! soluti~n becomes singular when r((, t) = 0 (i.e., w4en 

x 3 ( t) = x 3 ( () the source node ~d ~eld node are the same). Equation 92 then has a 

singularity on the order of 

Hi;,((,t) . 0 (! rd,t)JVi(t)J(t)dt) (98) 

The shape functions which do not correspond to ·the source node are zero at the 

singular point, thereby canceling the singularity in the denominator. The shape 

function which corresponds to the source node has a value of one at the .singular 

point and the singularity. is not canceled. But this term can be calculated by the 

rigid body motion equation (Equatioij. 29) and is therefore not needed .. Equation 93 
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has a singular integrand on the order of 

Gij1((,t) . 0 (j ln(r((,t))Nf(t)J(t)dt) (99) 

and it must be calculated. One approach is to break the integral up int~ a sum of 

a singular part and a nonsingular part. The nonsingular part is integrated using 

standard quadrature as outlined in the previous section. 

The key to the 'singular integration' is r~cognizing that if r((, t) is expanded in 

terms of the shape functions and t~ the r~su.lt will be a function in' which all powers of 

t are greater than or equal to t2 • A t2 can be factored out of the expression for r and 

ln(r), then broken into a,sum. The'ln(-i) term is integrated using a special natural 

log quadrature [58] and the remainder using standard quadrature ~s ·outlined in the 

previous section. 

A general approach, for any elelllent type, to singular integration is as follows. 

After mapping the shape function of the element to one or more sections such that 

t = 0 at the source node, the shape f'll;nctions may be factored. such that 

N,a(t) = T~(t)Mml (100) 

where Tm(t) is a vector that contains pow:ers oft, and Mml is a matrix 'of cpnstant 

coefficients. The coordinates of the field node may then be written 

(101) 
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and r3 becomes, with Bmj = MmzXz3 

(102) 

Recognizing that Tm always has a constant 1 in its in position, we ccan perform the 

source node subtraction from the m position only of. Bmj 

c Cm;(() , Bmj- x,(() position m only (103) 

Let 

' , ' 

P3 ((, t) _:_ Tm(t)Cm,(() (104) 

be the resultant polynomial in t .. The,square of the radius vector becomes 

(105) 

and (P;((, t)]2 may be evaluated in the following manner. The square of the polyno-
, ,, 

mial is performed by a general polynomial multiplication scheme [41]' which multi-

plies th~ coeffiCients of the polynomial and does not require its actual evaluation. The 
' ' ' 

scheme is as follows where the subscripts in the following three equations indicate 

polynomial coefficients and not su~matioi;J. indices. H there are two polynomials 

u(t) = Urtr + · · · + u1t + Uo and v(t) = V8 i 8 + · · · + v1t + Vo {106) 
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then their product is 

(107) 

where 

(108) 

and u, or v3 are treated as zero if i > r- or j > s. Hence we can perform the square 

' ' ' 

of the coefficients of a polynomial and delay evaluating at powers of t until a later 

step. Since 

(109) 

and the powers of t in P; ( (, ,t) are the same for all coordinate directions,· the squared' 

polynomial coefficients from the,general polynomial multiplication for each coordinate 

direction may be added together to get P'((, t). By Horner's rule, the polynomial 

evaluation in powers of t must be performed only once. While this singular log -

quadrature approach is fairly common, .the general approach, for any element type, 

taken here is fairly unique. 

Finally, we can rewrite Equations 13 and 93 as 

(110) 

where 

ui3A ((, t) = 811"( 1-~ v)Jl [(3- 4v)~ ln(P'((, t))c5ii- r,i((, t)r,j((, t)] (111) 
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(112) 

and 

{1 ' /1 G:3z((, t) = Jo u:3A (r,((, t))Nf(t)J(t) dt + Jo u:3B(t)Nf(t)J(t) dt (113) 
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9hapter V 

TWO DIMENSIONAL CRACK TIP 

BOUNDARY ELEMENTS 

All of the two dimensional crack tip boundary elements will be derived in this 

chapter. The methods for integration an~ stress intensity factor calculation will also 

be examined. The fol~owing element types 'will be examined 

• Quadratic Quarter Point Crack Tip (CTQQ). 

• Quadratic Traction Singular Quarter Point Crack Tip (CTQT) 

• Qu"adratic Crack Tip (CTQUA) 

• Overhauser Crack Tip (CTOVR) 

The first element types, CTQQ and CTQT, which, are based on the QUAD element 

shape functions, achieve their modeling of the stress singularity at the crack tip by 

moving the middle node. from its normal t = ! . position to the t = ·l position. The 
. ' . 

CTQT element type models the 1/Vr traction singularity while the CTQQ element 

type does not. The last element tyPes, CTQUA and CTOVR, model the singularity 

' . 
properly in the shape functions themselves. The normal and singular integrations and 

SIF of the various elements will be described after all elements have been described. 
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Quadratic Quarter Point Crack Tip 

(CTQQ) Element 

The Quadratic Quart,er point Crack Tip element will be abbreviated CTQQ. The 
! } ' I 

geometry, displacement, and traction shape functions and shape function plots for 

the CTQQ element are the $arne as those for the QUAD element. The ,fF singularity 

in the dispJacement shape functions at the crack tip is achieved by moving the middle 
,~ I < 

node to the t = ~ p9sition from'its typi~al t = i p'osi~ion, where tis the parameter 

along the element. Hence,, this is the simplest crack tip element, since no additional 

programming is requir~d .. The \fi singularity may be shown in the following manner. 

Evaluation of the QUAD element sh~pe f1+nctions 

(114) 

· N~(t) = (t- 1)(2t- 1) 

Nr(t) = - 4(t- l)t (115) . 

N;(t) = t(2t ·~ 1) 

at 

uo, =< 0. 0> 

'L 
U!J =< 4 0> (116) 

U2j =< L 0> 



where L is the length of the element in. real space, yields 

which simplifies to 

L 
U= -4(t-1)t-+t(2t-1)L 

4 

t= fU ·VI or 

Finally, the Jacobian vanishes at t = 0 (or equivalently at u = 0) 

du · rr 
J(t) = -. = 2tL = 2vuL dt ' . 

Quadratic Traction Singular Quarter 

Point Crack Tip ( CTQT) Element 
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(117) 

(118) 

(119) 

The Quadratic Traction singular quarter point Crack Tip elem~nt will be abbre-

via ted CTQT. The geometry and displacement sh~pe functions and shape function 

plots for the CTQT element are the same as those for the QUAD element. The y'r 

singularity in the displacement shape fun~tions is achi~ved in the same manner as 

that for the CTQQ element, by moving the middle node to the t = -~ posi~ion from 

its typical t = ! position. The traction. shape functions need a 1/ y'r singularity at 

the crack tip. Dividing Equation 115 by 

(120) 



the proper singularity is achieved: 

0 NC(t) = 2t + ~- 3 

Nf(t) = - 4(t -1) 

Nf(t) = 2t-:- 1 
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(121) ' 

The traction shape functions are plotted in Figure 18. Evaluating the shape functions 
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Figu~e 18. CTQT Element Traction Shape ~ctions 
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1.0 

at several values oft corresponding to the nodes xo;, Xtj and x2; (of course Ng(O) = 
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oc, therefore a value is chosen that is close to t = 0) 

t= 1 1 1 100 2 

IVC(t) = 97.02 0.0 0.0 
(122) 

Nf(t) = 3.96 2.0 0.0 

Nnt) = -0.98 0.0 1.0 

From this evaluation, it can be seen that the shape functions satisfy Equation 49 only 

at node 2. Also, as shown in Equation 123, Equation 50 is no longer satisfied 

tNf(t) =! 
l=O t 

(123) 

Quadratic Crack Tip 

(CTQUA) Element 

The QUAdratic Crack Tip element will be abbreviated CTQUA. This type of 

shape function was originated by Luchi and Poggialini [42] and used in a two di-

mensional context by Jia, Shippy, and Rizzo (35]. Their innovation was to build the 

proper modeling of the Vr singularity into the displacement shape functions and 

1/Vr into the traction shape functions while leaving the middle node in its usual 

t = ! position. The geometry shape functions (l.fe the same as the ones for the 

QUAD element. The element is defined by three nodes as shown in Figure 19 where 

the crack tip is at the x01 node. When the crack tip is at node x2;, the nodes may 

be mapped in real space prior to their integration. Essentially, this entails reversing 
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the order of the nodes within the element and changing, the sign of the normal . 

• 

Figure 19. CTQUA Element Geometry and Parametric 
Mapping· 

• 
~=1 

The CTQ U A displacement shape functions are derived directly using Equations 4 7 

and 124. 

n=2 

f= Vi 

em = vr;;: =< 0 

(124) 

1' 
./2 1> 

The CTQUA shape functions are given in.J?quation .125 an<,l plotted in Figure 20. 

They satisfy Equations 49 ~d 50. 

N~(t) =·V'2t-:- (V2 + 1)Vt + 1 

Nf(t) = 2(:J2 + 1)\ft"- 2( J2 + 1)t . 

N;(t) = (V2 + 2)t- (V2 + 1)Vt 

(125) 
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The CTQUA traction shape functions m~y be derived froin the CTQUA displace-

ment shape functions by dividing them by ..;ct, where cis a constant. Note that the 

only requirement on these shape functions is that they have the 1/ -..fi singularity: 

NC(t) = Ng(t)Jhi 

. Nf(t) = N~(t)/VU 

'. Jvf(t) = N;{t)/Vt 

(126) 

The CTQUA traction shape functions are given in Equation 127 and are plotted in 



Figure 21: 

N.P(t) = Vf + _1_- (J2 + 1) 
0 (v'U) J2 

Nf(t) = v'2( v'2 + 1)(1- Vt) 
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Figure 21. CTQUA Traction Shape Functions 
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(127) 

Evaluation at various values of the, parameter t shows, that the traction shape 

functions satisfy Equation 49 at 'nodes x1; and x 2;, and that Equation 50 is no longer 



satisfied. 

...!...: 
100 

N6(t) = 5.464 0.0 0.0 

Nf(t) = 3.073 1.0 0.0 

Nnt) = '-2.073 o.o 1.0 

n · ' 1 1 
·~ Nf(t) = Vt + rru- 10 . 
l=o v2t · v2 

Overhauser Crac~ Tip 

(CTOVR) Element 
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(128) 

(129) 

The OVeRhauser Crack Tip eleme11t will be a'Qbreviated CTOVR. The idea 

was to build the proper modeling of the vr singularity into the displacement shape 

functions and 1/ Jr singularity into the traction shape functions at the crack tip end 

of the element. At the same time, the CTOVR element leaves the middle node in 

its usual position and provides C1 coriti:q.uity at the other end with all of the other 

Overhauser element types. The CTOVR element also lays the foundation for the 

three dimensional elements derived from this type. 

The element is defined by three nodes as shown in Figure 22 where the crack tip 

is at the x03 node. The geometry shape' furictio:q.s are the same as, the ones for the 

OVRL element and are repeated here for convenience in Equation 130. The geometry 
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Figure 22. CTOVR Element Geometry and Parametric 
Mapping 

shape functions are plotted in Figure 23. 

l'ig(t) = (t- 2)(t- 1) 
2 

Nf(t) = ~ (t -.2)t 

-N.g(t) = (t- 1)t 
··,. 2 2 . 

6U 

(130) 

The CTOVR displacement shape fu~ctions could be derived using a simultaneous 
' ,· . 

equation approach by evaluating Equation 131 at the desired values of t: 

(131) 

However, the derivative equation is unde~ned at t.= 0; therefore, the coefficients will 

be solved for in the range of .1 :::;; t :::;; 2 as shown in Equation 132 and then the shape 
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functions will be mapped back into the desired range of 0 :::; t :::; 1 by letting t = t + 1. 

t= 1 2 

N~(t) =, 1 0 

N~(t) = 0 1 

N;(t) = 0 0 (132) 

N~ '(t) = 
3 1. 
2 2 

N~ '(t) = 2 0 

N; '(t) = 
1 1 -- -
2 2 
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which, after solution and substitution oft ' t + 1, yield the CT<?VR displacement 

shape functions, given in Equation 133 and plotted in Figure 24: .. 

N~(t) = Jt+T((J2 + 1)(t + 1) + J2 +2)- 2(v'2 + 2)(t + 1) + 2 

N~(t) = Jt+I(- 2(J2 + 1)(t + 1) ~ ~(J2 + 2)) + (4J2 + 7)(t + 1) -J (133) 
- ~ ' ' " ·• ' 

N;(t) = v't+I(( y'2 + l)(t + 1) -t y'2 + 2)- (2V2 + 3)(t + 1) 

An evaluation at several values oft shows th~t N0(t) and Ni(t).satisfy Equation 50; 
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Figure 24. CTOVR Displacement Shape Functions 



63 

however, N~(t) does not. They also satisfy Equation 49. 

t= 0 1 2 

N0(t) = 1.0 0.0 -2.707 X lQ-2 

(134) 
Ni(t) = 0.0 1.0 5.414 X lQ-2 

N~(t) = 0.0 0.0 0.9729, 

After differenticding Equation 133 and, e~.aluating at several values of t, it can be 

seen that the CTOVR displacement shape, functions have first derivative continuity 

with the Overhauser faniily of elements ii1 Equati~ns 74 and 81 at the position t = 1: 

t= o, 1 2 

N0 '(t) = -1.5 '-0.5 0.4295 
(135) 

Ni'(t) = · 2.0 0.0 -1.859 

N~'(tr= ··~o.5 0.5 1.43 

The CTOVR traction shape functions may be derived in a manner similar to 
. ' 

that used for derivation of the CTOVR displac~ment shape functions as shown in 
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Equation 136. 

i= 1 2 

N:f(t) = 1 0 

N~(t) = 0 1 

N;(~) -:- 0 0 (136) 

, N:f '(t) = 
3 1 
2 2 

N; '(t) = ·2 
1 -
2 

N; '(t) = 
1 ,1 -
2 2 

After solution and substitution oft = t+ 1, the displacement shape functions yield 

the CTOVR traction shape functions, given in Equation 137 and plotted in Figure 25. 

1\TP( ) _ ( v't+T(( J2 + 1)(t + 1) +, J2 4-.2) - 2( J2 + 2)(t'+ 1) + 2) . 
.tVa t - . . li. 

yt· ' 

N P( ) _ ( v't+T(( V2 + 2)(t + 1) + 3(3J2 + 4))- (60" + 7)(t + 1) -.40"- 7) 
1 t - . , li. 

· vt · . 

N P() _ (v't+T((J2 + 1)(t + 1) + 0 + 2)- (20 + 3)(t + 1)) 
2 t- Vi . ' 

(137)' 

Evaluation at various values of the parameter t shows that the traction shape 
.' 

functions satisfy Equation 49 a~ nodes Xtj and X2j and that Equation 50 is.no longer 

satisfied.· 

t= _L 1 2 100 

NC(t) = 9,.851 0.0 -1.914 X 10-2 

(138) 
. Nf(t) = 0.1,982' 1.0 1.031 

Nf(t) = -4.952 x 1.0-2 0.0 0.688 
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"L Nf(t) = ( v't+T((3\1'2 + 4)t + 14vf2·+ 20) + ( -10vf2 -14)t -14vf2 -19) (139) 
l=O 

After differentiating Equation 137 and evaluating at several values oft, it_ can be 

seen that the CTOVR t~action shape functions .have first derivative continuity with 
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the Overhauser family of elements in Equations 74 and 81 at the position t = 1. 

t= _I 1 2 100 

NC'(t) = -507.4 -0.5 0.3085 
(140) 

Nf'(t) = 9.732 0.0 0.1124 

m'(t) = -2.428 0.5 0.8388 

Integration 

The integrations for the two, dimensional crack tip boundary elements are gen-

erally performed in the same manner as those for the standard two dimensional 

boundary elements (Chapter IV). However, Equation 93 has a singular integrand at 

t = 0 on the order of -J; as shown ( r( (, t) does not go to zero here). 

G~J1 ((, t) = 0 (11 ln(r~ t)) Nf(t)J(t) dt) (141) 

Because the integral itself exists in the ordinary sense, the singularity may be elimi-

nated by an appropriate mapping oft. The required mapping is 

(142) 

This same mapping may be applied to Equation 92 without detrimental effect. The 

integration for the right type crack tip elements may be performed by reversing the 

nodes within the element and changing the direction of the normal to the element. 
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Singular Integration 

Singular integrations for the CT.QQ and CTQT element types are performed in 

the same manner as those for standard two dimensional boundary elements (Chap-

ter IV). Although this is incorrect for the ·cTQT element, the error introduced was 

apparently ignored in several early works [25,8,46]. The singular integrations for the 

two dimensional crack tip boundary elements CTQUA and CTOVR, are much more 

involved than those for 'the standard two dimensio~al boundary elements. 

The traction shape functions may be broken up 

Nf(t) = Nfs(t) + N~(t)' (143) 

where Nf8 (t) contains the 1/Vt te~ms and NfN(t) contain~ the remainder. Equa-

tion 113 may now be written 

and for completeness 

Gi31 ((, t) =./1((, t) + I2(t) + h(t) 

/1(~, t) = .fo1 ui;,t (r;((, t))Nf(t)J(t) dt 

12(t) = fo1 ui;B(t)Nf's(t)J(t) dt 

h(t) = fol ui;B(t)NfN(t)J(t) dt · 

(144) 

(145) 



68 

Recalling that 

u73 A ((, t) = 811"(1---= v)p, [(3- 4v)~ ln(P'((, t))t5,j- r,,((, t)r,3 ((, t)] (146) 

-1 . 
u;i (t) .= 8 (1 ) (3- 4v) ln(t)t5ij (147) 

B" . 11" -vp, 

and P'((, t) does not go to zero~ it can be sho~n that11((; t) has a singular integrand 

at t = 0 on the order of 7t· When the sour~e node is at th~ t = 1 position~ I 1((, t) is 

mapped such that the integrand becomes singular at t = 1 and is on the order of J=t· 
I 2 (t) has a singular integrand at t = 0 on the ord~r of 1)· When the source node 

is at the t = 1 position, I 2(t) is mapped such that the integrand becomes singular at 

both t = 0 and t = 1 and is on ~he order of ~· In both cases, the integral itself 

exists and the singularity may be eliminated by an appropri~te mapping oft. h(t) 

has a simple ln(t) singularity and is integ~ated using a logarithmic qua9-rature. The 

mapping for It ( (, t.) may be applied to Equation 145 without detrimental effect. 

Recalling from Chapter 'IV that r( (, t) and J ( t) are calculated after a "splitting" 

mapping such that t = t(s), It((, t) and I 2(t) can be rewritten and simplified for 

easier manipulation. 
· lot N(t) . 
It= r(s) ~; J(s) ds 
· o. vt .,1 ·N(t) 
I2= }0 'ln(s) Vi J(s)~s 

(148) 

For the case when there is. a mapping of the type 

t=s dt = ds (149) 
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the singularity may be removed for both I 1(t) and J2 (t) with 

s=e (150) 

For example - , 

/1 .la1 r(s) N~) J(s) ds 

. = la1 r(e4 ) N%~ 4e J(e) de 
' \ 

(151) 

= fo1 4er(e)N(e4 )J(e4 ) de 

and 

(152) 

For the case when th~re is a mapping of the type 

I'' 

t .-:- 1, - s .dt = -1 ds (153) 

the singularity may be removed for I 1(t) with 

(154) 
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Substituting 

For the case when there is a mapping of the type 

t=1-s dt = -lds (156) 

the singularity may be removed for I 2(t) with 

(157) 

Substituting 

(158) 

The various mappings are summarized in Table 1, for both left-type and right-

type crack elements as shown in Figure 26, where "Section" denotes the section of 

the element, "Lwr Upr" denotes the lower and upper limits of integration over that 

section, "Reverse" denotes reversal of the element's nodes, and "Normal" denotes the 
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coefficient that the calculated norJUal,is multiplied by. The mappings applied to the 

CTQUA and CTOVR elements may also be applied to the CTQT element singular 

integrations yielding more consistent results than if the mappings are not applied. 

~ 1 '2 

L~•::-o ___ t=··1-/2 ____ t .. :1 
2 1 0 ' 

t•:-o---~·~-/2~--t•~ 

Figure 26.. ~I)· S1ngular: Integration Configuration 

\' 



Src Node 
Section 
Lwr Upr 
Reverse 
Normal 
Split Map 
It Map 
Iz Map 
I2 Map 
Src Node 
Section 
Lwr Upr 
Reverse 
Normal 
Split Map 
It Map 
I2 Map 
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Table 1. 2D Singular Integration Mapping Summary 

Left Crack Element 
0 
0 

0 1 
No 
+1 

t == s dt == ds 
s = e ds = 4eae 
s = {4 ds == 4e ae 

1 
0 

1/2 1 
No 
+1 

t = !±.! dt = 12 ds 
. 2 

1 
1 

0 1/2 
No 
-1 

t = 1; 8 dt = -!ds' 
s = 1- (1- e)4 ds = 4(1- {)3 de 

s == sin2 e ds . 2 sine cos e ae 

e = ~TJ ae = ~ aTJ 
2 
0 

1 0 
No 
-1 

t = 1 - s dt = -1 ds 
s = 1- (1- e)4 ds = 4(1- e)3 de 

s = sin2 e ds == 2 sine cos e ae 

e = ~TJ ae = ~ aT} 

Right Crack Element 
0 
0 

1 0 
Yes 
+1 

t=1-s dt=-1ds 
s = 1- (1- e)4 ds = 4(1- {)3 de 

s = sin2 e ds = 2sin{ cos{ ae 

e = ~7] ae = ~ a71 
1 
0 

1/2 0 
Yes 
+1 

t = t;s dt = - ~ ds 
s = 1- (1- e)4 ds = 4(1- {)3 de 

s = sin2 e ds = 2sine cos{ d{ 

e = i7J ae = ~ a71 
1 
1 

1 1/2 
Yes 
-1 

t = !:p dt = l ds 

2 
0 

0 1 
Yes 
-1 

t = s dt = ds 
s=e4 ds=4eae 
s = e4 ds = 4e ae 
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Stress Intensity Factor Calculation 

The two dimensional stress intensity factors that may be derived for use in bound-

ary elements fall into two categories, those that use crack tip displacement values and 

those that use crack tip traction values. The configuration that will be used in this 

section is shown in Figure 27. 

Crack 
Faces 

ul't· pfl 

-

Figure 27. 2D SIF Configuration 

Displacement SIF 

r 

Since the CTQQ element type does not model the tractions properly, only the 

SIF derived from the displacements will be useful. Evaluation of 

0 Nu 0 u, = l u,, (159) 
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where Nt are given in Equation 115 at 

(160) 

yields 

(161) 

For a symmetric crack problem (i.e., x?1 = -xl1), Uio = u01 = 0 and Equation 161 

reduces to 

(162) 

The one point displacement formula is found by equating Equation 42 with u~1 

for 0 = 1r yielding 

(163) 

Evaluating for the case r = L/4, yields 

(164) 

The two point displacement formula is found by equating the coefficients of :,.jr 

in Equations 42 a~d 162 for 0 = 7r and r = L/4 yields 

(165) 

For the more general nonsymmetric (mixed mode) crack with 8 = 1r, and r = L/4, 
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the SIF in Equations 41. and 42 uncouple and the one point (Equation 166) and two 

point (Equation 167) displacement f<:>rmulas are found in a manner similar that above. 

J1, {2;( 0 : 1 ) 
K I = 4( 1 - v) vr: Un - Un 

' ' J1, {2;( 0 1 ) 
. Ku = 4(1- v) V L .uiP- uiO . 

(166) 

. . 

. ~ ~ [ ( 0 1). ( 0 . 1 )] 
KI = 4(1 - v) V L . 4 .'un - uu + u21 ~ u2i 

. J1, . ~ [ '( 0 1 ) . ( 0 1 )] 
Ku = 4(1 ·- v) V L 4 uiO :- uiO +. u2o :- u2o 

(167) 

·Traction SIF 

The CTQT, CTQUA, and CTOVR, ele~ent~ properly model the 1/..;; singularity 
. ' . 

in the tractio~s. We cap. therefore employ the· traction values directly to find the 
" r ,) < ' ' ' 

SIF. Note that since the . displacement shape functions are still quadratic, the one 

and two point displacement SIF for~ulas .are still valid. Recall that the geometry is 

represented by 

· x3 (t) = Nf(t) xz3 (168) 

the tractions by 

pj(t) = .Nf(t) pz3 (169) 

and the radius vector for two dimensions by 

. 1 

·~(t) = [(xo(t)·- Xoo? + (x1(t) .,-\x10) 2P" .(170) 
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Boundary discretization can always be done such that (} = 1r. This yields, from 

Equations 38, 39 and 40 

Let p3 be defined as follows 

where 

J{I 
O"oo(t) = an(t) = .j 

21rr(t) 

Kn 
O"Ql(t) = .; 

21rr(t) 

Pi(t) = o-3,(t) ni 

(171) 

(172) 

(173) 

Combining these equations with no= 0 and n 1 = 1 for a symmetric crack yields 

l. Np( ) l" J{I fit = liD 1 t Pll = 1m .; 
t--+0 t--+O 21rr( t) 

- '1" NP(t) 1· , Kn Po = 1m 1 Plo = 1m .j 
t--+0 t--+O 21rr( t) 

(174) 

Rearranging 

K1 = .J2;"1im ;;:(i)Nf(t)pll t--+Oyr·~~J 
(175) 

Kn = y'2;Iim r;:(i)Nf(t)pzo t--+0 yr~~) 

For the CTQT element type, Nf(t) is given in Equation 54 and Nf(t) is given in 

Equation 121. Evaluating the limit portion of Equation 175 with t = ·jf, where r is 
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the position along the element in real space and Lis the length of the element yields 

limvrN6(r) = JL 
r-+0 

limvrNf(r) = o 
r-+0 

(176) 

limy'rNf(r) = 0 
r-+0 

The traction SIF for the CTQT element type are therefore 

(177) 

For the CTQUA element type, Nf(t) is given in Equation 54 and Nf(t) is given 

in Equation 127. Evaluating the limit portion of Equation 175 yields 

lim r;{i)Ng(t) = ~ 
t-+O yr~~J v2 

lim r;{i)Nf(t) = 0 t-+0 vI"~~) 
(178) 

lim r;{i)Nf(t) = 0 t-+0 vI"~~) 

where 
1 

M = [ ( -3xoo + 4x10 - x2o? + ( -3xol + 4xn - x21)2] 4 (179) 

Note that for evenly spaced nodes M reduces to JL where L is the length of the 
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element. The traction SIF for the CTQT' element type are therefore 

(180) 

For the CTOVR element type·, Nf(t) i'~ given in Equation 130 and Nf(t) is given 

in Equation 137. Evaluating the limit por:tion of Equation 175· yields 

,' 

.··· .. ,M 
~~{r(i)NC(t) =.J2 

E~ Vr{t)Nf(t) ~ 0 . 

~~{r(t1Nf(t) · _.· 0 · . 

(181) 

where M is as defined ,~bov~. The tra:ftion SIF for the GTQT element type are 

therefore 

(182) 

· l<n= .vfiM Poo 
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Chapter VI 

THREE DIMENSIONAL BOUNDARY 

ELEMENTS 

The noncrack t~p three dimensional shape functions and their use in the boundary 

element method will be examined in this chapter. The variation of the geometry, 

displacements, and tractions over an element will form an interpolating surface patch 

in two parametric coordinates. As with the two dimensional shape functions, all of 

these elements will have an isoparametric formulation. 

Derivation 

~lost surface patches fall into one of two categories, tensor product surfaces or 

lofting surfaces (more recently called Coons, blending, or transfinite surfaces). Al-

though both of these types have been in use for many years, a distinction is rarely 

made between them. 

One of the most common examples of tensor product surfaces is the Lagrange 

form: 
n m 

S(s,t) = I:L:s,t3Ki(s)Lj(t) (183) 
'=0 j=O 

where K~(s) and Lj(t) are the Lagrange polynomials (see Equation 47). Some of 
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the most common three dimensional boundary elements can be derived using this 

approach: the three-noded triangular element, the six-noded triangular element, and 

the four-noded rectangular element. 

Lofting surfaces have long been used in number of areas including ship design 

[28]. Coons used a related method for blending four curves to form a surface [16,5]. 

A Coons approach was employed in 1977 by Brewer to first derive· the Overhauser 

surface patch that had C1 continuity along all four edges [12]. Hibbs (32] employed 

a tensor product approach to derive a three dimensional boundary element that he 

called "Overhauser." 

The components that go into the derivation of a Coons-type surface are depicted 

in Figure 28. The surface itself is a function of both the curves that make up the 

t 

C(O,O) 

s 

Figure 28. Coons Surface Configuration 
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edges of the patch C(s, t) and a set of blending function j3,(s) and f3i(t) and is given 

in Equation 184: 

S(s, t) = C(O, t)f3o(s) + C(l, t)j31(s) 

+ C(s, O)f3o(t) + C(s, 1)j31(t) 

~ C(O, O)f3o( s )f3o( t) - C(O, 1 )f3o( s ){31 (t) 

- C(1,0)f3t(s)f3o(t) ~ C(1,l)f3t(s)f3t(t) · 

(184) 

The edge curves are the. two dimensional boundary element shape functions derived 

in Chapters IV and V, while the blending functions are typically linear Lagrangian 

or cubic Hermite shape fu:t;tctions. ·The surface patch S(s, t) may then be factor:ed 

into three dimensional shape functions such that · 

x 3(s, t) = Nf(s, t) x13 

u3 (s, t) = N,U(s., t) u,3 

p3 (s,t) = Nf(s,t)pi3 

(185) 

where Nf(s, t) are the .geometry shape functions corresponding to node l on the 

.. element ~d Xlj i~ the coordinate in dire~tion j of node l of the element .. The dis­

placement shape functions N,U(s, t) and the traction shape functions Nf(s, t) are both 

equal to the geometry shape functions for the noncrack tip elements. 

The Coons approach., ~an be used to, deriv~ many three dimensional bound­

ary elements including the Overhauser-type elements, the eight-node "serendipity" 

quadratic quadrilateral, and the twelve-node "serendipity" cubic quadrilateral. The 
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derivation of the "serendipity" elements is much more straightforward than the one 

that is typically pres"ented (for example, see Reference [70]). 

Rectangular Linear (RLIN) Element 

One of the simplest three dimensional boundary elements is the rectangular linear 

element (often called the four noded quadrila~eral). The Rectangular LIN ear element 

type will be abbreviated RLIN andits geometry is given in Figw;e 29. Both of the 

parameters s and" t vary from 0 to 1. 

t 

s 

*oJ 

Figure 29. RLIN Element Geometry 

The RLIN element may be deriyed using a Lagrangian tensor product approach 

(Equation 183) with the linear Lagrangian shape functions (Equation 52). The RLIN 

shape functions are given in Equation 186. N0 (s, t) is plotted in Figure 30. The 

other shape functions are so similar in appearance to N0 (s, t) (i.e., N1 (1, 0) = 1, 



N2(1, 1) = 1, and N3 (0, 1) = 1) that they are not shown for brevity. 

N0 (s, t) = (s- 1)(t- 1) 

N1(s, t) = s(1- t) 

N2(s, t) = st 

N3(s, t) = t(1- s) 
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(186) 
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Rectangular Quadratic 

(RQUA) Element 

85 

The simplest three dimensional boundary element that is useful for elastostatics 

problems that involve bending is the rectangular quadratic element. The Rectangular 

QUAdratic ele~ent type will be abbreviated RQUA and its geometry is given in 

Figure 31. Both of the parameters s and t vary from 0 to 1. 

t 

s 
' ~lj 

Figure 31. RQUA Element Geometry 

The RQ U A shape· functions may· be derived using the, Coons surface approach 

with the linear Lagrangian blending functions 

f3o(t) , 1-~ 

f31(t) = t 
(187) 
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and the edges of the patch made up of Lagrangian quadratic shape functions (Equa­

tion 54). Substituting into the various C(s, t) 

C(s, 0) = x23s(2s- 1) + xa3(s- 1)(2s- 1)- 4x13(s- 1)s 

C(s, 1) = x43s(2s- 1) + x63(s- 1)(2s- 1)- 4x53 (s- 1)s 

C(O, t) = x63t(2t- 1) + xa3(t- 1)(2t- 1)- 4x73(t- 1)t 

C(1, t) = x43t(2t- 1) + x2;(t- 1)(2t -1)- 4x3j(t- 1)t 

C(O, 0) = Xo3 

C(O, 1) = X63 

C(1, 0) = X2J 

C(1, 1) = X43 

Substituting into Equation 184 yields the equation for the surface patch 

S(s, t) = (1- s)(x63t(2t -1) + xa3(t- 1)(2t -1)- 4x73(t -1)t) 

+ s(x43t(2t- 1) + x2At- 1)(2t- 1)- 4x3At- 1)t) 

+ (x 43s(2s -1) + x63(s- 1)(2s- 1)- 4x53 (s- 1)s)t 

- x43st- x63(1- s)t + (x23s(2s- 1) + Xoj(s- 1)(2s- 1) 

- 4x1,(s -1)s)(1- t)- x23s(1- t)- xci,(1- s)(1- t) 

(188) 

(189) 
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Factoring out the coefficients of the x13 gives the RQUA shape functions in Equa­

tion 190: 

N0 (s, t) = - (s- 1)(t- 1)(2(t + s)- 1) 

N1(s, t) = 4(s- 1)s(t- 1) 

N2(s, t) = s(t- 1)(2t- 2s + 1) 

N3 (s, t) = - 4s(t- 1)t 

N4(s, t) = st(2(t + s)- 3) 

N5(s, t) = - 4(s __.: l)st 

N6 (s, t) .:... - (s -1)t(2t- 2s- 1) 

N7(s, t) = 4(s- 1)(t -1)t 

(190) 

Plots of N0 (s, t) and N1(s, t) are given in Figures 32 and 33 respectively, The other 

plots are similar and are omitted. 
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Figure 32. RQUA No Shape Function 
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Figure 33. RQUA N1_ Shape Function 
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Rectangular Cubic (RCUB) Element 

The rectangular cubic element is the most highest order boundary element in 

common use for elastostatics. The Rectangular CUBic element type will be abbre-

viated RCUB and its geometry is given in Figure 34. Both of the parameters s and 

t vary from 0 to 1. 

s 

-- -
x9J XgJ x7J x6J 

• ~ 
xlOJ xsJ 

• • 
Xuj x4J 

- - t 

XoJ xlJ xzJ x3J 

Figure 34. RCUB Element Geometry 

The RCUB shape functions may be derived using the Coons surface approach 

with the linear Lagrangian blending functions 

f3o(t) = 1 - t 

{31(t) = t 
(191) 
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and the edges of the patch made up of Lagrangian cubic shape functions (Equa-

tion 54). Substituting into Equation 184 and factoring out the co-efficients of the x,3 

yields the RCUB shape functions iri. Equation 192: 

No(s, t) = (s- 1)(t- 1)((3t- 2~(3t- 1) + 9(s- 1)s) 
' ' 

- 9(s- 1)s(3s- 2)(t -1) 
N1 (s, t) = · 2 , 

N ( ) _ 9(s- 1)s(3s- 1)(t -c- 1) , 
~ s, t - 2 

N ( -) _ - s(t- 1)((3t- 2)(3t -1) + 9(s -1)s) 
3 s, t - _ __;___..:....;....:.. _ ___:._:__ _ _:______; _ __,_...._ 

' ' 2 
11.r ( ) _ 9s( t - 1 )t(3t - 2) , ' 

.lY 4 s' t - -----;,----'-~--'-
2 '_ 

N ( ) _ - 9s(t- 1)t(3t ~ 1) 
5 s, t - 2 ' 

N6 (s, t) , st((3t- 2)(3t ~ 1)+ 9(s- t)s) 
(192) 

N7(s, t)' = - 9(s- 1)s(3~ ,- 1)t 
2 -

11.r ( ) _ 9(s- 1)s(3s- 2)t 
.ng s, t --:--· , 2 

11.r ( ) _:_ - (s -1)t((3t- 2)(3t- 1) + 9(s- 1)s) 
J. vg s, t -, _ - 2 

N ( ) _ 9(s- 1)(t- 1)t(3t -1) 
10 s, t - ' ' 2 ' 

, - ~(s- 1)(t'- 1,)t(3t- 2) 
N11 (s, t) = , 2 

Plots of N0 (s, t) and N0 (s, t) are given in Figures 35 and 36, respecti~ely. The plots 

of the other shape fmictions ate similar ~d are qplitted for brevity. 



.92 

Figure 35. RCUB No Shape Function 
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Figure 36. RCUB N1 Shape Function 
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Rectangular Overhauser 

(ROVR) Element 

The Rectangular OV eRhauser element type will be abbreviated ROVR. It is the 

same as the Overhauser surface patch described in Reference [12] and its geometry 

is illustrated in Figure 37. Both of the parameters s and t vary from 0 to 1. The 

t 

1 • xloj: xllj: 

. -·----------·------. 
x9j 

·-----------·------. x3. I 
~ I x4J : 

I 
I 
I 

I I 

• • Xoj xlJ 

... s 

Figure 37. ROVR Element Geometry 

ROVR shape functions may be derived using the Coons surface approach with the 

cubic Hermite polynomial blending functions 

f30(t) = 1 - 3t2 + 2t3 

f31(t) = 3t2 - 2t3 

(193) 
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and both of the edge curves are OVER curves. Substituting into Equation 184 

and factoring out the coefficients of the .r13 yields the ROVR shape functions in 

Equation 194 .. V0 (s, t) is plotted in Figure 38 and N3 (s, t) in Figure 39. The other 

shape function plots are similar and are omitted for brevity. 

N. ( ) _ - (s- 1)2 (2s + 1)(t- 1)2t 
0 s, t - 2 

7\r ( ) _ s2(2s- 3)(t- 1)2t 
J.V}S,t- 2 

7\r ( ) _ - (s -1)2s(t- 1)2(2t + 1) 
.LV2 S, t - 2 

, ... ( ) _ (s- 1)(t -1)(t((4s2 - 3s- 3)t- 3s2 + 2s + 2)- 3s2 + 2s + 2) 
.. ~3 s, t - 2 

1\"" ( ) _ - s(t- 1)(t((4s2 - 5s- 2)t- 3s2 + 4s + 1)- 3s2 + 4s + 1) 
1.~4 s, t - 2 

... ( (s- 1)s2(t- 1)2(2t + 1) 
.. '\ss,t)= 2 

, ... ( ) _ (s- 1)2st2(2t- 3) 
.. ,6 S, t - 2 

(194) 

... ( ) - (s -1)t(t((4s2 - 3s- 3)t- 5s2 + 4s + 4)- (s -1)(2s + 1)) 
.. '\7 S, t = 2 

, ... ( st(t((4s2 - 5s- 2)t- 582 + 6s + 3)- s(2s- 3)) 
.. ,8 b,t) = 2 

... - (s- 1)s2t2(2t- 3) 
.. '\ 9 (s, t) = 2 

'1\r ( ) _ (s- 1)2(2s + 1)(t- 1)t2 

.. '10 s, t - 2 

- s2 (2s- 3)(t- 1)t2 
Nu(s, t) = 2 
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Rectangular Side Overhauser 

{ROVRS} Element 

The Rectangular Side OVeRhauser element type will be abbreviated ROVRS. It 

is an entirely new element whose p1;1rpose is to fit along a side where the overlapping 

ROVR element would be inappropriate. In a computer graphics application, a corner 

type Overhauser element would be made by moving one of the overlapping ROVR 

nodes onto the surface patch proper. However, this approach is notapplicable to the 

boundary element method, since the singular integrations when the overlapped node 

is a source node would be incorrect. The ROVRS element geometry is pictured in 

Figure 40. Both of th~ parameters s andt vary from 0 to 1. 

t . 

1 
Xg· I 

J I 
I 
I'' 
I 
I 

• . . Xg· I 
' , 1 I . 
. I 

I 
I 

. I 
..,.____, __ .. - - _!.:.. - - • 

x7j 

----·------. ... s 

I I 
I I 
I I 
I I 

• • 
Xoj :xlj 

Figure 46. ROVRS Element Geometry 
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The ROVRS element is derived using the Coons surface approach (Equation 184) 

where j31 (t) is given by Equation 193, C(O, t) and C(1, t) by the OVER shape func-

tions, and C(s, 0), and C(s, 1) by the OVRL shape functions. The resultant ROVRS 

shape functions are given in Equation 195. N2 (~, t) is presented in Figure 41. The 

other shape functions are simi!~ to N2,(s, t) as ,shown and N0(s, tr for the ROVR 
' ' "' ' ·, 

element. 

No(s, t) = - (s- 1)2(2s + 1)(t- 1)2t 
' 2 

N ( ) _ s2 (2s-;- 3)(t-'- 1)2t 
1 s, t - 2 

N ( ) _ - (s- 1)(t- 1)(t((2s2 - 3s + 3)t + s- 2)'+ s- 2) 
2 s, t - ' 2 

N ( ) _ s(t -1)(t((2s2 - 7s + 8)t + 2s ~ 4) + 2s- 4) 
3 s, t - 2 ' ' 

N. ( ) _ (s- 1)s(t- 1)2(2t +1) 
4 s, t - 2 ' 

Ns( 5 , t) = (s- 1)t(t((2s2 - 3s + 3)t __ - 4;2 +5s- 4) +(s -1)(2s + 1)) 
(195) 

(- ) - st(t((2s2 - 7s +-B)t -4(s2 - 3s + 3)) + s(2s- 3)) 
N6 s, t = 2 

- (s- 1)st2(2t- 3) 
N7 (s,t) = 2 , 

71 r ( ) _ (s- 1)2(2s+ 1)(t- 1)t2 
Hg S, t - 2 

- s2(2s- 3)(t- 1)t2 

N9(s, t) = 2 



1.00 
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Rectangular Corner Overhauser 

(ROVRC) Element 

The Rectangular Corner OVeRhauser element type will be abbreviated ROVRC. 

It is an entirely new element whose purpose is to fit in a corner where the overlapping 

ROVR or ROVRS element would. be inappropriate. The ROVRC element geometry 

is illustrated in Figure 42. Both of the parameters sand t vary from 0 to 1. 

t 

1 . 
X6' I X I,, 

~· I 7j I 
, I 

I 
I 

.I, -------------· XsJ 

...,_..,.....----e·- - - - - - • 91o .S 

'. xlJ Xzj 

Figure 42. ROVRC Element Geometry 

The ROVRC element' is derived using the Coons surface approach (Equation 184) . 

where fii(t) is given by Equation 193 and C(s, t) by the OVRL shape fun~tions. The 

resultant ROVRC shape funCtions are given in Equation 196. N0 (s, t) is pictured in 

Figure 43. The other. shape funGtions are similC;U" to N0 (s, t) presented and No(s, t) ·, 
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for the ROVR element. 

11.r ( ) - (s- 1)(t- 1)(t(2s((4s- 3)t- 3s + 2) + 1) + s- 2) 
HQ S, t = . 2 

N ( ) _ s(t -1)(t(~(s- 1)2t- (2s- 1)(3s- 4)) + 2s- 4) 
1 s, t - 2 

11.r ( ) _ (s- 1)s(t- 1)2 (2t-+ 1) 
H2 S, t - 2 . . 

N3(s,t) = (s·-1):(t(s(2(4s :_ 3)t -16s; 11) + 2) + 4(s -1)(2s + 1)) 
(196) 

N4(s, t) = - st(t(4(s -1)2t- Ss2 +15s- 6) + 2s(2s- 3)) · 

..:_ (s- 1)st2(2t- 3) 
N5(s, t) = 2 

11.r ( ) (s- 1)2(2s + 1)(t- 1)t . 
H6 S, t = 2 

- s2(2s- 3)(t- 1)t . 
·N1(s, t) = . 2 . 
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Rectangular Corner Overhauser Variant 

(ROVRCV) El~ment 

The Rectangular Corner OVeRhauser V ari_ant element type will be abbreviated 

ItOVRCV. It is an enti'rely new element whose purpose is primarily the same as the 

ROVRC element; however, it is used in th~ crack tip context where the geometry 

of the problem would cause the ROVRC element's normal to point in the wrong 

direction. The ROVRCV element geometry is pictured in Figure 44. Both of the 

parameters s and t va:ty from 0 to 1. 

t 

1 
x2j : 

I 
I 

.'I, 
I 

• Xs I 
J I 

I 
I 
I, 

--------..------. 
, x7J 

-----. --:----· 
Xoj x3j x6J 

Ill s 

~igure 44. ROVRCV Element Geometry 

The ROVRCV element is derived using the Coons surface approach (Equa-

tion 184) where f33(t) is .given by Equation 193 a:nd C,(s, t) by the OVRL shape 

functions. The resultant ROVRCV shape functions are shown in Equation 196. The 
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shape functions look the same as those for the ROVRC element. 

7\T ( ) _ - (s- 1)(t- 1)(t(2s((4s- 3)t-- 3s + 2) + 1) + s- 2) 
HQ S, t - 2 

N ( ) _ (s- 1)t(t(s(2(4s- 3)t -·16s + 11) + 2) + 4(s- 1)(2s + 1)) 
1 s, t - 2 

J\r ( ) _ (s- 1)2 (2s + 1)(t -1)t 
J.V2 s, t - 2 -

7\T ( ) _ s(t- l)(t(B(s- 1)2t- (2s- 1)(3s- 4)) + 2s- 4) 
.LV3 S, t - . 2 ' 

(197) 
N4(s, t) = - st(t(4(s- l?t- 8s2 + 15s- 6) + 2s(2s- 3)) 

- s2(2s- 3)(t- 1)t 
N5(s, t) = 2 

7\r ( ) _ (s- 1)s(t- 1)2(2t + 1) 
1V6 s, t - 2 

- (s- 1)st2(2t- 3) 
N1(s,t) = 2 
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Inte~ration -

The integrations that need to be performed over a single boundary element are 

(198) 

(199) 

' 
These integrals are evaluated in the local coordinate system of the element. This 

' 0 

may be accomplished with the Jacobian transformation 

dre = J(s, t}ds dt (200) 

J( s, t) = vg:gi (201) 

(202) 

where s and t are the local parametric coordinates which both vary from 0 .to 1 along 

the element. The. :normal to the element is calculated by 

9i 
n, =· 
. ·· J(s, t) 

/ (203) 
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Substituting 

(204) 

(205) 

where the ( shows that the fundamental solution is also a function of the source node 

position. The radius vector is calculated by 

r3((,s,t) = Xj(s,t)- Xj(() (206) 

(207) 

These integrations can performed using standard product rule Gaussian quadrature 

formulas [58]. The product rule is basically a one dimensional quadrature in both 

the s and t directions 

Q Q 
Hf,1((, s, t) ~ I: I:P;,(r3((, sa, tb))N,U(sa, tb)J(sa, tb)WaWb (208) 

a=lb=l 

Q Q 
G~31 ((, s, t) ~I: I: u';3(rj((, Sa, tb))Nf(sa, tb)J(sa, tb)WaWb (209) 

a=lb=l 

where sa and tb are the quadrature points, Wa and Wb are the quadrature weights, 

and Q is the number of quadrature points and weights. 
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Singular Integration 

If the source node belongs to the element which is being integrated, the~ the 

three dimensional fundamental solution becom~s singular when r((, s, t) = 0 (i.e., 

when x3(s, t) , x3(() the source node and field node are the same). Equation 204 

then has a singularity on the order of 

Hf;,((,S,t) = 0 (!J r(/s,t)N;'(s,t)J(•,t)d.odt) {210) 

The shape functions which do not correspond to the so~ce node are zero at the 

singular point, thereby canceling the singularity in the denominator. The shape 

functi~n which corresponds to the source node has a value of one at the singular 

point and the singularity is not cance~ed. Because this term can be calculated using 

the rigid body motio~ equation (Equati~n 29), it is not ne~de~. Equation 205 has a 

singular integrand on the order of 

e (JJ [ 1 r,(s, t)r3 (s, t)ll\TP ) 
G,31 ((,s,t) = 0 r((,s,t) + r.3 ((,s,t) 1v; (s,t)J(s,t)dsdt (211) 

and it must be calculated. The key is to find a transformation such that the sin-

gularity is eliminated. One such transformation is the triangle to square mapping 

(Figure 45); this maps one node (typically the singular one) of a triangle, to a line on 

the square. This is done by "doubling up" the shape functions for the square with 

the node that is to be mapped (i.e., node x 13 with shape functions N1 and N2). For 
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t 

Figure 45: Triangle to Square Transformation 

example, in Figure 45' 

where, the N3 ( a, (3) are the RLIN shape functions as follows 

No(a,/3) = (a-,1)(/3-1) 

N1 (a,{') = £;¥(1 _, f3) 
(213) 

N2( a, f3) = af3 

N3(a,f3) = /3(1- a) 

and 

xo, = < 0 0> 

X1j = < 1 0> (214) 

X2j = < 0 1> 



then 

t = N3 (a,{3) = {3(1- a) 

The Jacobian J( a, {3) may then be calculated as follows 

J(a, {3) = 
as as 
aa a{3 
at at 
aa a{3 

For the triangle, Equation 211 becomes 

1 0 

-{3 1- a 

=1-a 

e (1" ) Q ( r r-s [ 1 r,(s, t)r3(s, t)l p( ) ( ) ) 
G,,z..,,s,t = lolo r((,s,t)+ r3((,s,t) N1 s,tJs,t dsdt 

Employing the triangle to square mapping 

110 

(215) 

(216) 

(217) 

(218) 

where()= (s(a,/3), t(a,{3)). A (1- a) may be factored out of r(),r;() and r;() such 

that 

r() = (1- a) r() 

r,() = (1 -a) r,() 

r 3 () = (1- a)r;() 

Substituting and canceling common factors yields 

e ( r r [ 1 r;()r;() l p ) G;,,((,())=O lolo r((,())+r3((,()) N,()J()dad/3 

(219) 

(220) 
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which is no longer singular. Note that N() goes to a nonzero value at the singular 

node so that the integrands are singular and not just indeterminate, This same 

procedure may be applied to any shape element as long as it can be subdivided into 

triangular pieces. The RLIN element may be subdivided into two triangular pieces, 

each of which may be mapped to squares as shown in Figure 46. Performing the 

t ~ N3 N2 

a 
x2j No Nl 

~ 

s 
_xOJ xlj N2 

~·. 
a 

No Nl 

Figure 46. RLIN Singular Integration With Source at 
Node Xoj 

triangl~ to square mapping when the source' is at node Xoj, yields for 4>J( a, {3) and 

B J( a, {3), respectively • 

s'= af3 t = f3 J(a,/3) = f3 
(221) 

s =a t = a/3 J(a,/3) =a 
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When the source is at node x1j, the transformations are 

t =- (a-1)(3 J(a,(3) = 1-a 
(222) 

s = (a- 1)(3 + 1 t = (3 J(a, (3) = (3 

When the source is at node x 23 , the transformations are 

s=a-(a-1),8 J( a, ,8)~= 1 - ,8 
(223) 

s=a t=a-(a-1),8 J(a,,8)=1-a 

When the source is at node x 3j, the transformations are 

s=a t = a(,B- 1) + 1 J(a, ,8) =a 
(224) 

s = - a((3 -1) t = (3 J(a,(3) = 1- (3 

The transformations used for the RLIN element may also be used for the ROVR, 

ROVRS, and ROVRC elements. 

The RQUA element may be subdivided into three triangular pieces that may be 

transformed into squares as shown in Figure 47. Performing the triangle to square 

mapping when the source is at node x7j, yields for <PJ( a, ,8), 0,( a, ,8), and 1/J;( a, ,8), 

respectively 

s = a,B 

s=a 

s = - a(,B -1) 

t = ((3 + 1) 
2 

t = ~(a...:..( 2..;._,8_1~) +_1~) 
2 

t = ,8 
2 

,8 
J(a,f3)=2 

J(a,,B) =a 

J( a, ,8) = -" (,8- 1,) 
2 

(225) 



a 

t 
No Nt 

~ 

x4j 
Oj(a,~) N2 

X3j 

s a 

Xoj xlj x2j No Nt 

~ 

Figure 47. RQUA Singul~ Integration With Source at 
Node X7j 

When the source is at node x1j, the tr-ansformations are 

a 
t= -(a- 1),8 J(a, ,8) = 

-(a -1) 
s=- 2 2 

s= 
((2a- 1),8 + 1) 

t = ,8 J(a,,B) = ,8 
2 

(a+ 1) 
t = a,B 

a 
s= 2 

J(a,,B) =-
2 

113 

(226) 



114 

When the source is at node x 33 , the transformations are 

s=a-(a-1),8 
,8 

J(a,,B)= 
- (,8- 1) 

t=-
2 2 

s=a t= 
- (2(a- 1),8- a) 

2 
J(a,,B) = 1- a (227) 

s = (a- 1),8 + 1 t= 
(,8 + 1) J(a,,B) = ,8 

2 2 

When the source is at node x 5;, the transformations are 

(a+ 1) 
t = a(,B - 1) + 1 

a 
s= 

2 
J(a, ,8) =-

2 

s= 
- ((2a- 1),8- 2a) 

t = ,8 J(a,,B) = 1-,8 (228) 
2 
a 

t=a-(a-1),8 J(a,,B)= 
-(a-1). 

s =-
2 2 

When the source node is at a corner, the same transformations that were applied to 

the RLIN element are applied here. 

The RCUB element is subdivided into three triangular pieces-, similar to the 

RQUA element. The corner nodes are transformed the same as for the RLIN element. 

When the source is at node x1;; the transformations are 

s= 

a 
s=-

3 
((3a- 1),8 + 1) 

3 
(2a + 1) s= -

3 

t= -(a-1),8 

t=,B 

t = a,B 

J(a,,B) = -(a --1) 
' 3 ' 

J(a,,B) = ,8 

2a 
J(a,,B) = 3. 

(229) 



When the source is at node x 23 , the tr!ill-sformations are 

2a 
s=-

3 

8 = ..:...:.( (_3a_2~)f3_+_2...:....) 
' 3 

(a+ 2) 
s = -=---~ 

3 

t= -(a-1)(3 

t = (3 

t = af3 

J(a,f3)= -2(a-1) 
3 

J(a,(3) = (3 

a 
J(a,f3)=-

3 

When the source is at node x 43 , the transformations are 

s =a- (a -1)(3 
(3 

J(a,(3) = 
- ((3 -1) 

t=-
3 3 

s=a t= 
- (3(a- 1)(3- a) 

J(a,(3) = 1- a 
3 

s=(a-1)(3+1· t= 
(2(3 + 1) 2(3 

3 J(~,(3) = 3 

When the source is at node x 53 , the transformations are 

s=a-(a-1)(3 

s=a 

s=(a-1)(3+1 

t = 2(3 
3 

t = - (3(a -1)(3- 2a) 
3 

. t = ((3 + 2) 
3 

·. J(a,(3) = - 2((3 -1) 
. 3 

J(a,(3) = 1- a 

(3 
J(a, (3) = 3 

When the source is at node x 7;, the transformations are 

(a+ 2) 
t = a(f3- 1) + 1 

. a 
s= 

3 
J(a,(3) =-

3 

s= 
- ((3a- 2)(3- 3a) 

t=f3 J(a,f3) = 1- {3 
3 

2a 
~=a- (a--: 1)(3 J(a, (3) = 

- 2(a -1) 
s=-

3 3 
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(230) 

(231) 

(232) 

(233) 
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When the source is at node x 83 , the transformations are 

(2a + 1) 
t = a(j3 - 1) + 1 

2a 
s= 

3 J(a,/3)=3 

s= 
- ((3a -1)/3- 3a) 

t=f3 J(a, j3)-:- 1- j3 (234) 
3 
a 

t =a- (a- 1)/3 J(a,/3) = -(a -1) 
8=-

3 3 

When the source is at node x103 , the transformations are 

s = aj3 t= 
(!3 + 2) {3 

J(a, {3) =-
3 3 

s=a t= 
(a(3j3- 2) + 2) 

3 
J(a,{3)=a (235) 

s = - a({3 -1) 2/3 
J(a, !3) = 

-2(/3-1) 
t=-

3 3 

Finally, when the source is at node x 113 , the transformations are 

s = aj3 t= 
(2/3+1) 2{3 

3 
J(a,j3) =-

3 

8=a t= 
(a(3j3-1)+1) 

J(a, j3) =a (236) 
3 

8 = - a(j3 -1) 
j3 

J(a, j3) = 
- (!3- 1) 

t=-
3 3 



Chapter VII 

THREE DIMENSIONAL CRACK TIP 

BOUNDARY ELEMENTS 
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The three dimensional crack tip Overhauser elements, methods for integration, 

and methods for stress intensity factor calculation will be examined in this chapter. 

Derivation 

All of the three dimensional Overhauser cr~ck tip elements will be derived using 

the Coons approach outlined in Chapter VI. However, the notatiolf will be changed 

slightly to emphasize that the curves along adjacent edges may be of different types 

as shown in Figure 48. The revised Coons surface patch equation is 

S( s, t) = C(O, t),Bo( s) + C(l, t),Bt(s) 

+D(s,O),Bo(t) + D(s, 1),81(t) 

~ P(O, O),Bo(s),Bo(t)- P(O, l),Bo(s),Bt(t) 

- P(l, O),Bt(s),Bo(t)- P(l, l),Bt(s),Bt(t) 

(237) 
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t 

P(O,O) 

Figure 48. Crack Tip Coons Surface Configuration 

where the blending functions are the cubic Hermite polynomials, Equation 193, re­

peated here for completeness: 

f3o ( t) = 1 - 3t2 + 2e 

f31(t) = 3t2 - 2t3 

(238) 

Equation 237 is then factored into the geometry, displacement, and· traction shape 

functions as usual. 

Rectangular Side Overhauser Crack Tip 

{CTROVRS) Element 

The Rectangular Side OVeRhauser Crack Tip element will be abbreviated 

CTROVRS. The crack front of the element, as shown in Figure 49 by the thick 
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line, is placed along the middle of a three dimensional crack. The geometry shape 

functions are the same as for the ROVRS element given in Equation 195. 

t 

1 
Xg· I 

~ I 
I 
I 
I 
I• 

,. 
X-. I 
'"liij I 

1-
, I 

I 
I .----·------.• 

Xsj x6j x7j 

----·----,..:-· .. s 
X3· I 

j 1. 

I I 
I I 

• • 
XoJ xlJ -

Figure 49. CTROVRS Element Geometry 

The displacement shape functions are derived from Equation 237 where C(O, t) 

and C(1, t) are the OVER displacement shape functions, D(s, 0) and D(s, 1) are 

the CTOVR displacement functions, and f3i(t) are given by Equation 238. Upon 

examination of Equation 237, the CTROVRS ·displacement shape ~ctions may be 
. ' -



written directly as follows: 

D~(8) = Nf(t) 

Ci(t) = N;(t) 

N8(t) = - (t -1)2t 
. 2 

Nf(t) = (t- 1)(3t2 - 2t- 2) 
' 2 

Nu(t) = ""7"" t(3t2 - 4t -1) , , 
2 ' 2 

Nl(t) = (t- 1)t2 
2 

N~(t) = Jt+l((h + 1)(t + 1) + h + 2) '-- 2(h + 2)(t + 1) + 2 

N~(t) = Jt+l(- 2(h + 1)(t + 1)- 2(J2 + 2)) + (4J2 -t 7)(t + ~) -1 

N;(t) = Jt+l((h + 1)(t + 1) + J2 + 2)- (2J2 + 3)(t + 1) 

N~ ( 8, t) = C~ ( t) f3o ( 8) . 

N~(8, t) = C~(t)f3t(8) 

N;(8, t) = D~(8){30 (t) + C~(t)f3o(8)- f3o(t)f3o(8) 

N;(8, t) = D~(8)f3o(t) + C~(t)f3t(8)- f3o(t)f3t(8) 

N:(8,t), D~(8)f3o(t) 

N~(8, t) = Dg(s)f31(t) + c;(t)f3o(s)- f31(t)f3o(s) 

N:(s, t) = D~(8){31 (t) + c;(t)f31(8)- fJ1(t)f31(s) 

N;(8, t) = D~(s)f31(t) 

N:(8, t) = c;(t)f3o(8) 

N~(s, t) = c;(t)f31(s) 

120 

(239) 

(240) 

(241) 
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In general, the CTROVRS displacement shape functions look like the ROVRS geom-

etry shape functions. 

The traction shape functions are derived from Equation 237 where C(O, t) and 

C(1, t) are the OVER traction shape functions, D(s~ 0) and D(s, 1) are the CTOVR 

traction functions, and f3i(t) are given by Equation 238. Upon examination of Equa-

tion 237, the CTROVRS traction shape functions may be writt~n directly as follows: 

-

D!'(s) = N;(t) 

. ; 

Qf(t) = Nf(t) 

N8(t) = - (t- 1)2t, 
2 

Nf(t) = (t- 1)(3t2 - 2t- 2) 
2 

, Nf(t) = - t(3t2 - 4t- 1) 
2 

NK(t)'= (~- 1)t2 
2 

p() (.JiTI((¥2 + 1)(t + 1) + V2 + 2)- 2(v'2 + 2)(t + 1) + 2) 
No t = .Ji 

(242) 

N P( ) _ ( v't+T((V2 + 2)(t + 1) + 3(3v'2 + 4))- (6¥2 + 7)(t + 1)- 4v'2 -7) 
lt- .fi ' yt 

p( ) ( v't+T(( V2 + 1)(t + 1) + V2 + 2)- (2¥2 + 3)(t + 1)) 
N2 t = . fi . yt ' 

(243) 



N6(s, t) = C6(t)f3o(s) 

Nf ( s, t) = cg ( t) ;31 ( s) 

Nf(s, t) = Dg(s)f3o(t) + Cf(t)f3o(s)- f3o(t)f3o(s) 

Nf(s, t) = Di(s)f3o(t) + Cf(t)f31(s)- f3o(t)f31(s) 

N:(s, t) = ~(s )f30(t) 

N:(s, t) = Dg(s)f3I(t) + Cf(t)f3o(s)- f3I(t)f3o(s) 

NG(s, t) = Df(s)f31(t) + Cf(t)f3I(s)- f31(t)f31(s) 

Ni(~, t) = D~(s)f31(t) 

Nf(s, t) = Cf(t)f3o(s) 

NC(s, t) ~ Cf(t)f31(s) 

,, ' 

Plots of Nf(s, t) and Nf(s, t) are given in Figures 50 and 51. 

Rectangular Corner Overhauser Crack 

Tip (CTROVRC) Element 

122 

(244) 

The Rectangular Corner OV eRhauser Crack Tip element will be abbreviated 

CTROVRC. The crack front of the element, as shown in Figure 52 by the thick line, 

is placed along the end of a three dimensional crack. The geometry shape 'functions 
' ' 

are the same as for the ROVRC element given in Equation 195, 

The displacement shape functions are derived from Equation 237 where C(O, t) 

and C(1, t) are the OVRL geometry shape functions, D(s, 0) and D(s, 1) are the 

CTOVR displacement functions, and f3i(t) are given by Equation 238. Upon e~ami-

nation of Equation 237, the CTROVRC displacement shape functions may be written 



Figure 50. CTROVRS Nf(s, t) Shape Function 

directly as follows: 

Ci(t) = Nf(t) 

NC(t) = (t- 2)(t- 1) 
2 

Nf(t) = - (t- 2)t 

N:(t) = (t -1)t 
2 
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(245) 
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Figure 52. CTROVRC Element Geometry 

N~(s, t} = Dg(s),Bo(t) + C~(t),B0(s)-- ,Bo(t),Bo(s) 

Nf(s, t) = D~(s),Bo(t) + C~(t),81(s)- ,Bo(t),B1(s) 

N;(s, t) = D~(s),B0 (t) 

N:(s, t) =,Dg(s),81(t) + c;(t),Bo(s)- ,81(t),Bo(s) 

N;( s, t) = D~( s ),81 ( t) + c;( t),81( s) - ,81 ( t),81( s) 

N~ ( s, t) = .zj~ ( s) ,81 ( t) 

N:(s, t) = c;(t),Bo(s) 

N; ( s, t) = c; ( t) ,81 ( s) 

125 

(247) 

In general, the CTROVRC displacement· shape functions look like the ROVRC ge-

ometry shape functions. 

The traction shape functions are derived from Equation 237 where C(O, t) and 

C(1, t) are the OVRL geometry shape functions, D(s, 0) and D(s, 1) are the CTOVR 
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traction functions, and j3,(t) are given by Equation 238. Upon examination of Equa-

tion 237, the CTROVRC traction shape functions may be written directly as follows: 

Df(s) = N;(t) 

c;(t) = N:(t) 

NC(t) = (t- 2)(t- 1) 
2 

Nf(t) = - (t,- 2)t 

N~(t) ·= (t- 1)t 
2 

1\TP( ) _ ( vlt+I(( v'2 + 1)(t + 1) + v'2 + 2) - 2(v'2 + 2)(t + 1) + 2) 
Ho t - Vt . 

(248) 

N P( ) _ ( Jt+l(( v'2 + 2)(t + 1) + 3(3J2 + 4))- (6v'2 + 7)(t + 1)- 4v'2- 7) 
1 t - ' Jt ' 
p( ) ( Jt+T(( v'2 + 1)(t + 1) + v'2 + 2)- (2v'2 + 3)(t + 1)) 

N2 t = Vt , 

N6(s, t) = D~(s)f3o(t) + C6(t)f3o(s)- f3o(t)f3o(s) 

Nf(s,t) = Df(s)f3o(t) + Cg(t)f3t(s)- f3o(t)f3t(s) 

Nf(s, t) = D~(s )j30 (t) 

N:(s, t) = .Dg(s)f3t(t) + Cf(t)f3o(s)- f3t(t)f3o(s) 

N:( s, t) = .Df( s )f3t(t) + Cf(t)f3t(s) - f3t(t)f3t(s)' 

Nf(s, t) = ~(s)f3t(t) 

NC(s, t) = C~(t)f3o(s) 

Nf(s, t) = cnt)f3t(s) 

Plots of N6(s, t) and Nf(s, t) are given in Figures 53 and 54. 

(249) 

(250) 



Figure 53. CTROVRC NC( s, t) Shape Function 

Rectangular Corner Overhauser Crack 

Tip Variant (CTROVRCV) Element 
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The Rectangular Corner OV eRhauser Crack Tip Variant element will be ab­

breviated CTROVRCV. The crack front of the element, as shown in Figure 55 by 
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Figlire 54. CTROVRC' Nf( s, t) Shape Function 

the thick line, is placed along the end of a three dimensional crack. This element 

is useful when the geometry of the problem would cause the 'CTROVRC element's 

normal to point in the wrong direction. The geometry shape functions are the same 

as for the ROVRC element given in Equation 195. 
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Figure 55. CTROVRCV Element Geometry 
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The displacement shape functions are derived from Equation 237 where C(O, t) 

and C(1, t) are the OVRL geometry shape functions, D(s, 0) and D(s, 1) are the 

CTOVR displacement functions, and f3i(t) are given by Equation 238. Upon ex-

amination of Equation 237, the CTROVRCV displacement shape functions may be 

written directly as follows: 

C~(t) = N,u(t) 

N~(t) = v't+I((v/2 + 1)(t + 1) + v/2 + 2)- 2(Vi + 2)(t + 1) + 2 

N~(t) = v't+I(- 2(v/2 + 1)(t + 1)- 2(v/2 + 2)) + (4v/2 + 7)(t + 1) -1 

N;(t) = v't+I((v/2 + 1)(t + 1) + J2 + 2)- (2J2 + 3)(t + 1) 

(251) 



D~(s) = N;(t) 

Ng(t) = (t- 2)(t- 1) 
2 

Nf(t) = - (t- 2)t 

,N~(t) = (t- 1)t -
2 

N~(s, t) = D~(s)f3o(t) + C~(t)f3o(s)- f3o(t)f3o(s) 

N;(s, t) = D~(s)f3t(t) + C;(t)f3o(s}- f3t(t)f3o(s) 

N;(s, t) = c;(t)f3o(s) 

N;(s, t) = Df(s)f3o(t) + C~(t)f3t(8)- f3o(t)f3t(s) 

N:(s, t) = nr(s)f3t(t) + c;(t)f3t(s)- f3t(t)f3t(s) 

N;(s, t) = C;(t)f3t(s) 

N:(s, t) = D~(s){30 (t) 

N;(s, t) = D~(s){31 (t) 
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(252) 

(253) 

In general, the CTROVRCV displacem~nt shape functions look like the ROVRCV 

geometry shape functions. 

The traction shape functions are derived from Equation 237 where C(O, t) and 

C(1, t) are the OVRL geometry shape functi~ns, D(s, 0) and D(s, 1) are the CTOVR 
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traction functions, and {3,(t) are given by Equation 238. Upon examination of Equa-

tion 237, the CTROVRCV traction shape functions may be written directly as follows: 

Cf(t) = Nf(t) 

N.P() _ (vlt+I((J2 + 1)(t + 1) + v'2 + 2)- 2(v'2 +2)(t + 1) +2) 
0 t - r.i vt · 

NP() _ (vlt+I((J2 + 2)(t + 1) + 3(3v'2 + 4))- (6v'2 + 7)(t + 1)- 4v'2 -7) 
1 t - . ..[i 

N.P( ) _ (ViTI(( y'2 + 1)(t + 1) + y'2 + 2)- (2v'2 + 3)(t + 1)) ~. 
2 t - . fi . yt 

Df(s) = Nf(t) 

Ng(t) = (t- 2)(t- 1) 
,2 

Nf(t) = - (t- 2)t 

N~(t) = (t- 1)t 
.2 

N6(s, t) = D[;(s)f3o(t) + C6(t)f3o(s)- f3o(t)f3o(s) 

Nf(s, t) = D[;(s)f3I(t) + Cf"(t)f3o(s)- f3I(t)f3o(s) 

Nf(s, t) .= C~(t)f3o( s) 

N:(s, t) = Di(s)f3o(t) + C6(t)f3I(s)- f3o(t)f3I(s) 

N:(s, t). Df(s)f3I(t) + Cf(t)f3I(s)- f3I(t)f3I(s) 

. N:(s, t) = Cf(t)f31(s) 

Nf(s, t) == D~(s)f3o(t) 

Nf(s, t) = DHs)f3I(t) 

Plots of N6(s, t) and Nf(s, t) are given in Figures 56 and 57. 

(254) 

(255) 

(256) 
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Figure 56. CTROVRCV NC(s, t) Shape Function 

Integration 

The integrations for a three dimensional crack tip boundary element are performed 

in a manner similar to that of the standard three dimensional boundary element 

(Chapter VI). However, Equation 205 has a singular integrand on the order of* as 
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Figure 57. CTROVRCV Nf(s, t) Sh~pe Func~ion. 

shown: 

e ( ) _ O (JJ f 1 r,(s, t)r,(s, t)1 P( ), ( ) d d) G,;1 (,s,t - lr((,s,t)JS+ r"((,s,t)JS N1 s,t J s,t s t 
(257) 
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Because the integral exists, the singularity may b~ eliminated through an appropriate 

mapping of s. One such mapping for the CTROVRS and CTROVRC elements is 

s = o? ds = 4a3 da (258) 

The CTROVRCV element has an -j; singularity and an appropriate mapping is 

(259) 

This same mapping may b,e applied to Equation 204 without detrimental effect. 

Singular Integration 

Most of the methods for performing the integration with singular integrands for 

three dimensional crack tip boundary elements involve an element subdivision into 

triangles and then a transformation of coordinates to eliminate the singularity. Luchi 

and Rizzuti (44] use an element subdivision and a cartesian coordinate transforma-

tion with elemental parameters ranging from -1 to 1. Jia, Shippy, and Rizzo (36] 

employ~ element subdivision, a cartesian coordinate: transformation, an4 a difficult 
, I , t, ~ 

polar transformation over an element with parameters ranging from -1 to 1. These 

approaches are not applicable to the Overhauser crack tip elements for a number of 
,, 

reasons: the parameter range is different, all transformations needed are-not clear 

from the information given in those papers, and, most importantly, the Overhauser 

crack tip elements cannot be "rotated around" to get the integrations from similar 
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nodes. As an example, in many boundary element codes, the singular integrations 

for node 1 of the RLIN element are performed by "rotating around" the coordinates 

in real space for node 1 until they were in the place of node 0 and then performing 

the singular integrations as if the singular node was at node 0. This approach is very 

similar to the "reversing" strategy used in Chapter V. A new approach was needed 

that would address the problems outlined above. 

The key idea to the new approach is to use element subdivision and a triangle to 

square mapping approach. However, instead of using the RLIN shape functions for 

the square, a different set of quadratic shape functions based on the direction of the 

)t and the location of the singular node is used for the square. This will become 

more clear as we look at the details. 

The behavior that is desired in the "square" part of the triangle to square trans­

formation ~s to eliminate the )t singularity. This suggests a transformation of the 

form t = a 2 • Various combinations of transformations of this type will be used to 

build up a set of shape functions for the "square" part of the triangle to square 

transformation. Recall from Chapter VI that the RLIN shape functions were used 

previously. The quadratic shape functions that will be used in various combinations 

are shown in Figure 58. 

The proper combination of quadratic shape functions was derived by inspection, 

influenced by the fact that s = a? was required since that is the "direction" of the 

singularity. The quadratic shape functions are depicted in Figure 59. Note that they 

are symmetric with respect to the line (3 = a and they are the same on opposite 
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edges. The "square" shape functions are given in Equation 260 ,and are valid for the 

CTROVRS element nodes x23 and x63 , the CTROVRC element nodes x0; and x 4;, 

and the CTROVRCV element nodes x 03 and x43 : .. 

No( a, /3) = (1- a 2)(1- {32) 

N1(aJ3) = a 2(1.:.._ /32) 

,N2(a,f3) = a 2{32 

N3( a,:f3) = (1 - a 2 )f32
h 

(260) 

Nodes x3; and x 5; of the CTROVRS element and nodes x1; and x3; of the CTRO-

VRC element require a different set of shape func~ions. The quadratic shape func-
,, 

tions are shown in Figure 60. Note that they are symmetric with respect ·to the line 

f3 =-a+ 1. The "square" shapefunctions are given in Equation:· 261. 



Figure 59. Shape Function Derivation for Triangle to 
Square Transformation for Crack Tip Over-, 
hauser Type Elements 

No(a,/3) = (1 7 a 2)(/3 -1)2 

N1 (a, /3) ~ a 2(/3 - 1 )2 

N2(a,f3) , a 2(1-(/3-1)2 ) 

N3(a,, /3) = (1- a 2)(1 ~ ({3- 1?) 
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(261) 

N~des J?3j and x1j of the CTROVRGV element require yet another different·set 

of shape functions because the direction of the sin~larity is along f3 not a. ·The 

quadratic shape functions are shown in Figure 61. Note that they are again symmetric 

with respect to the line f3 = -~ + L The 'fsquare" shape functions are given in 



Equation 261. 

Figure 60. Shape Function Derivation for Triangle to 
Square Transformation for the CTROVRS 
and CTROVRC Element 

No( a, {3) =(a- 1)2(1- (32) 

N1(a,{3) = (1- (a .....:"1)2)(1- (3 2) 

N2 ( a, {3) = (1 - (a - 1 )2){32 

N3 (a,{3) =(a -1?{32 
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(262) 

The next step is to perform the subdivi~ion of the elements into triangles and 

perform the triangle to square transformation as outlined in Chapter VI. The results 

for the CTROVRS and CTROVRC elements are summarized in the following equa-

tions. The transformations for the CTROVRS element node x2; and the CTROVRC 



(a.-1)2 

1-(a.-1)2 

a. ' 

Figure 61. Shape Function Derivation for Triangle to 
Square Transformation for the· CTROVRCV 
'Element 

element node Xoj are 

and 
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(263) 

(264) 

The transformations for the <?TROVRS element ri:ode X3j and the CTROVRC element 



node x 11 are 

and 

t =(a- 1)(a + 1)(,8- 2),8 

J(a,,B) = 4(a -1)a(a+ 1)(,8 -1) 

s = 1-:- (a- 1)(a +'1)(,8- 2),8 

t = - (,8 .,- 2),8 

J(a,,8) = 4a(,8- 2)(,8 -1),8 

140 

(265) 

(266) 

The transformations for the CTROVRS element node x6i and the CTROVRC element 

node x41 are 

and 

· s = a2 - (a - 1 )(a + 1 ),82 

t = ,82 

J(a, ,8) = - 4a(,8- 1),8(,8 + 1) 

t = a2 - (a - 1) (a + 1) ,82 

J(a,,8) = - 4(a -1)a(a + 1),8 

(267) 

(268) 

The transformations for the CTROVRS. element node x5i and the CTROVRC element 

node x31 are 

t = - (a(,8- 1)- 1)(a(,B- 1) + 1) 

J(a, ,8) = - 4a3 (,8- 1) 

(269) 



and 

t = - ((3 - 2)/3 

J(a,/3) = - 4a(f3 -~ 1)3 
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(270) 

The results for the CTROVRCV element ~e summ~ized in the following equa­

tions. The tran~formations for the CTROVRCV eleme~t n~d~ x03 are 

s - a2f32 

t = /32 

J( a, (3) = 4af33 

and 
" s = a2 

t = a2(32 

J( a, (3) = 4a3 f3 

The transformations for the- CTROVRCV element node x3; are 

s = -(a- 2)a 

t ·(a -1)2(32 

J(a,/3)= -4(a-1)3 /3 

(271) 

(272) 

(273) 



and 

s = -((a -1),8 -1)((a -1),8 + 1) 

t = ,82 

J(a,,B)= -4(a-1),83 

The transformations for the CTROVRCV element node x 43 , are 

and 

s = a2 - (a - 1 )(a + 1 ),82 

t = ,8,~ 

J(a,,B) = - 4a(,B -1),8(,8 + 1) 

, t = a2 - (a- 1)(a + 1),82 

J(a, ,B)= - 4(a- l)a(a + 1),8 

The transformations for the CTROVRCV element node x13 are 

and 

s= -(a~2)a 

t = 1- (a_:_ 2)a(,B -1)(,8 + 1) 

J(a, ,B)= 4(a- 2)(a- 1)a,B 

s =(a- 2)a(,B- 1)(~ + 1) 

t = ,82 

J(a,,B) = 4(a -1)(,8 -1),8(,8 + 1) 
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(274) 

(275) 

(276) 

(277) 

(278) 
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Stress Intensity Factor Calculation 

The three dimensional Mode I, symmetric, flat crack, stress intensity factors for 

three dimensional Overhauser-type boundary elements are those that use crack tip 

traction values. The appro~ch is nearly identical to that used with the two dimen-

sional CTOVR elements; only the nodal indices have changed. 

or 

or 

The SIF for the CTROVRS element is calculated from the fo~ula 

Kr = -/iM P22 
' 1 

M = [( -3x2o + 4x3o- X4o? + ( -3x21 + 4X3t- X4t)2] i 

Kr =.jiM Ps2 
. ' 1 

M = [( -3xso + 4x6o- X7o) 2 + ( -3Xst + 4x61- xn?] 4 

The SIF for the CTROVRC element is calculated from the formula 

Kr =.jiM Po2 

!. 
M = [ ( -3xoo + 4xw - X2o? + ( -3x01 + 4xn - X21?] • 

Kr = yliMp32 
l 

M = [( -3x3o + 4x4o- Xso)2 + ( -3X3t + 4x41- Xst)2] • 

(279) 

(280) 

(281) 

(282) 



144 

Finally, the' SIF for the CTROVRCV element is calculated from the formula 

' 1 

M = [C -3xoo + 4x3o- Xso? + ( -3xol + 4x31- Xs1?] i 

(283) 

or 

KJ = ViMPI2 
(284) 

2 " 2] t M = [( ~3xlo + 4x4o- X7o) + (-3xu + 4x41 ~ xn) . 



Chapter VIII 

EXAMPLE ANALYSES 
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In order to verify the correctness and usefulness of the new two and three di­

mensional crack tip Overhauser boundary elements, they will be compared to the 

results of a number of well known crack tip problems. Some of these problems have 

analytical solutions while others were obtained numerically. Some boundary element 

results from other researchers will be included. 

Double Edge Cracked Plate 

The first example, the finite width plate with double edge cracks, has been used by 

a number of boundary eleme~t researchers [8,46,35]. The plate is shown in Figure 62. 

The model dimensions and material prope;rties are crack length a = 1.8 in, elastic 

modulus E = 5250.0 ksi, Poisson's ratio v = 0.20, and load stress o-0 = 1 ksi. An 

approximate analytical solution accurate to 1% has· been reported by Bowie [9] as 

K1 = 2.737 ksi · in1/ 2• 

Taking advantage of the symmetry of the problem, only one-quarter of the plate 

needs to be discretized as sho~n in Figure 63. The'bo:undary element mesh consists 

of a combination of RQUA elements along the top and sides and 9verhauser-type 

elements along the crack. The arrangement of Overhauser~type elements from left to 
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4a 

Discretization 

Domain 

Figure 62. Double 'Edge Cracked Plate 
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right is OVRL, OVER, OVER, CTOYRR, CTOVRL, OVER, OVER, and OVRR. 

The ratio of the length of the crack tip boundary element to 'the length of the crack 

l /a is an important parameter in analyzing the performance of crack tip boundary 

elements. It is desirable that the SIF values be relatively insensitive to changes in 

l /a. , It .should be noted that, as the form of Equation 179 indicates, ~he effective 

length for the CTOVR boundary elements is the distance from node x0; to x2;. With 

this in mind, values for K1 may be obtained for ratios of lfa in the range of 0.05 to 
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Fi~ure 63. Cracked Plate BEM Mesh 

0.9. The percent error is calculated by the formula 

KIBEM-KI 
Percent Error == KI 100 (285) 

where K1 = 2.737 ksi · in112• 

The results for the CTQQ and. CTQT elements are plotted in Fig1p:e 64. lt can 

be seen that the SIF calculated by the traction method are generally less sensitive to 

the l /a ratio. 



15~----~----~------------------~ 
• CTQQ 1 PT 
• CTQQ2PT 

10 • CTQT 1 PT 
• CTQT2PT 

5 

, -CTQT TRAC 

.................................. 
.............................. ~ 

•... •• "--,_-'P"' 
.~--· .,...--....- ' 

0~-r·-.?_~---~.---.----------------------------~~ -.... __ ........ -------- .. -. 
-5 

-10 

rl 
I 

I 
I 

I 
~ 

" 
'7 

" 

... ""..r C' ..::- " .,. ,. ... -- ...... __ 
-~ -·-· ,.. .... __ -.. 

-15~----~------~----~------~------
0.0 0.2 0.4 0.6 " 0.8. 

1/a 

Figure 64. Percent Error in I<1 for Double Edge Cracked 
Plate With CTQQ and CTQT Elements 

1.0 

148 

The results for the CTQUA element are plotted in Figure 65. Again, the SIF 

c~culated by the traction method are generally less sensitive to the 1/a ratio. 
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The results for the CTOVR element are plotted in Figure 66. For l /a < 0.2 

the SIF are way off. This is due to the parameter in the Overhauser-type element 

becoming nonmonoto~ic when two elements that are very ,different in length are 

placed next to each other. 



15r-----~----~-----r----~----~ 

10 

5 

-5 

-10 

• \ 
\ 
\ 
\ . \ 

\ \ 

\' 
\\ 

'" ' l, 

• CTOVR 1 Pr 
• CTOVR2Pr 
• CTOVR TRAC 

,, 
, .... -+ --- + --- + --- +--- + -+ -+ ---· 

-------~----- .. ......... ... ... ... 

-15~----~----~~----~~--~----~ 
0.0 0:2 0.4 0.6 0.8 

1/a 

Figure 66. Percent Error in Kr for Double Edge Cracked 
Plate With CTOVR Elements 

1.0 

150 

From Figures 64 through 66 it c~m be s~en that the traction method for calculating 

the SIF is less sensitive to the l /a ratio. For completeness, a comparison of the SIF 

calculated by the traction method for the CTQT, CTQUA, and CTOVR elements is 

given in Figure 67. As shown, for lfa 2: 0.2, the percent errors are similar; however, 

the CTOVR element is clearly less sensitive to the lfa ratio. 
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Figure 67. Comparison of Percent Errors in K1 Cal-
culat~d by the Tr:action Method for Double 
Edge Cracked, Plate 

Center Cracked Plate 

The finite width center cracked plate, depicted ip. Figure 68, .is very similar to 

the double edge cracked plate.' The same dimensions, a= 1.8 in, material constants, 

E = 5250.0 ksi and v = 0.20, and loading, uo = 1 ksi, are used. Only the boundary 

conditions on the boundary element mesh (Figure 63) need to be changed. Bowie [9] 

reports an approximate analytical solution of K1 = 2.8298 that is accurate to 1%. 
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Figure 68. Center Cracked Plate 

The percent error is calculated by Equation 285 where Kr = 2.8298. 
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The results for the CTQQ and CTQT elements are plotted in Figure 69. It can 

be seen that the SIF calculated by the traction method are generally less sensitive to 

the l /a ratio. 
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The results for the CTQUA element are plotted in Figure 70. Again, the SIF 

calculated by the traction method are generally less sensitive to the I/ a ratio. 



] 
.... 
5 
~ 
rf 

15 
• 

• CTQUA 1 PT 
, , 

• CTQUA2PT 
, ,.. 

10 • CTQUA TRAC 
, , 

/ , , , , 
5 

, 
;r 

;r , .. , , 
0 

I -·---·--- ---·--- ... 
I " .. + -...... _ 

~ 
~ ...... 

' ~ 
~ ... 

-5 

-10 

-15~----~----~~----~----~--~~ 
0.0 0.2 0.4 0.6 0.8 

1/a 

Figure 70. Percent Error in Ki for Center Cracked Plate 
With CTQUA Elements 

1.0 

154 

The results for the CTOVR element are plotted in Figure 71. As before, the SIF 

for lfa < 0.2 are inaccurate. This is due to the parameter ,in the Overhauser-type 

element becoming nonmonotonic when two elements that are very different in length · 

are placed next to each other. 
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For completeness, a comparison of ;the .SIF calculated by the traction method for 

the CTQT, CTQUA, and CTOVR ele~ents is given in fi~ure 72. As shown, for 

lfa ~ 0.2,· the percent errors are similar; however, the CTOVR element is the least 

sensitive to the l /a· ratio. 
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Full Model Center Cracked Plate 
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1.0 

This example is the same as the center cracked plate, except that a f~ll size model 

is made (i.e., no symmetry). The mo~el employs Equation 37 along the interface 

between the regions and both crack surfaces·are mod~led. A comparison with results 

from the previous example for the CTQUA and CTOVR elements where lfa = 0.5 is 

given in Table 2. As can be seen from the results above, the stress intensity factors 



Table 2. Comparison of Selected Results between the 
Full and Quarter Model Center Cracked Plate 

Element Type 
CTQUA 
CTOVR 

Full Model K1 ksi · in112 

2.826 
2.807. 

'Quarter Model K1 ksi · in112 

2.822 
2.809 
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for the quarter model, which uses symmet:ry, .and . the full moder are very similar 

indicating the full model approach can be uses with -confidence. 

Center Slant Crack in an Infinite Domain 

The center slant crack in an infinite do~ain under uniaxial tension was analyzed 

and is a mixed mode crack.probfem (i.e., both Kr and Ku will be calculated). The 

infinite domain was approximated by a square mesh of length 20a on a side where a is 

the half length of the crack as shown in Figure 73. For this example a= 1 in, f3 = 1r /4, 

E = 5250 ksi, v = 0.20, a0 = 1 ksi, and lf ~ . 0.5. Two regions were employed in 

the model with the crack at the center ·of the interface between the regions and 83 

nodes. The results are compared to the analytical solution for a slanted crack in an 
' . ' 

infinite plane: 

(286) 

Ku = ao..[iO. sin f3 cos f3 

where f3 is the angle betwee.n the load axis and the crack axis. There will be some 

small error in this model since the model is not truly infinite. A comparison of the 

stress intensity factors calculated with the traction approach for the CTQUA and 
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Figure 73. Center-Slant Crack in an Infinite Domain 

158 

CTOVR elements with the analytical results is given in Table 3. The comparison 

Table 3. Comparison of Stress Jntensity Factors. f~r th~ 
Center Slant Crack in an Infinite Domain 

K1 ksi · in1/ 2 Percent Error K k · · 112 1t Sl· m Percent Error 
Analytical 0.8862 - 0.8862 -
CTQUA p.8876 0.16 0.8660 -2.28 
CTOVR 0.8858 -0.04 0.8864 -2.24 
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shows that this approach yields fairly good results; however, the two element types 

performances are so close that little can be inferred from them. 

Elliptical Crack. in an Infinite Region 

A three dimensional example that has been employed by several boundary element 

researchers [44,36] is the flat elliptical crack in an infinite region under a uniform 

normal stress at infinity as shown in Figure 74. The infinite region may be divided 

into a forespace and a backspace using the era~ face as a dividing plane. A close up 

Infinite . 
Domain 

Forespace 

Crack Face 

Backspace 

Right Sid~ View 

Figure 74. Elliptical Crack in an Infinite Region 
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of the crack face is shown in Figure 75 where the ratio of the major axis to the minor 

axis of the ellipse is ajb = 2/1. 

Crack 
y 

Crack 

Figure 75. Crack Face Close Up for the Elliptical Crack 
in an Infinite Region 

The crack was modeled with a large finite dimension elliptical cylinder approx-

imating the backspace of the infinite region and the crack itself. Two views of the 

boundary element mesh are shown in Figures 76 and 77. Only iiD eighth of the cylin-

der needs to be modeled because of symmetry and has dimensions of 7.81b x 8b x 

40b. The large finite size of the cylinder was chosen to minimize the effects of the 

finite size. The dimension, material properties, and. loads of the model are a = 2 in, 

b = 1 in, E = 5250 ksi, v = 0.20, and a0 = 1 ksi. 
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Figure 76. Elliptical Crack BEM Mesh 

The analytical solution of this problem was first reported in [38] and is given by 

' ' ' 1 

a..;;rb ( . 2 b2 2 ) i 
K1 = E(m) sm () + a2 cos () (287) 

where E(m) is the elliptic integral of the second kind 

(288) 

The percent error in the boundary element solution was calculated by Equation 285. 
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Figure 77. Elliptical Crack Overall BEM Mesh 

The results for the three dimensional Overhauser crack tip elements are com­

pared to those given in Reference [44] for a quadratic crack tip boundary element 

in Figure 78 for various values of the elliptic angle (). As shown in the figure, the 

Overhauser crack tip elements gave slightly better and more consistent results. 

Compact Tension Specimen 

Another common problem is the standard compact tension specimen as specified 

in ASTM E399-83 [26]. It is d~picted in Figure 79. The simplified boundary element 

model shown in Figure 80 is similar to ones employed in References [43,68]. The effect 

of the pin holes was disregarded-(i.e., _the model is s'ectioned through the centerline 

of the holes) and a parabolic shear equivalent, to the applied force P wa.S applied to 

the end faces of the solid model. Symmetry is employed in two directions, explicitly 

in the z direction and implicitly in the x direction by reflecting through the y- z 
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Figure 78. Percent Error in K1 for the Elliptical Crack 
in an Infinite Region 
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plane, yielding a model that is one-quarter of the original specimen. The model's 

dimensions and material properties are a = 1 in, W = 2 in, E = 1 ksi, P = 1 klbf, 

and v = 0.30. 

The boundary element mesh, shown in Fi~ure 81, is composed of both RQUA 

elements and Overhauser type elements (ROVRC, CTROVRC, and CTROVRCV). 

It contains a total of 118 nodes and 32 elements. 

The problem was run with two sets of boundary conditions, one to simulate plane 



w 

Figure 79. Standard Compact Tension Specimen (after 
Luchi and Rizzuti, 1987) 
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strain conditions and the other a full three dimensional problem. The plain strain 

strain conditions were simulated by constraining the x direction at x = B /2. The 

results may now be compared to the ASTM values as calculated by the formula given 

in References [57,26]. 

]{ _ P (2 + a)(0.866 + 4.64a- 13.32a2 + 14.72a3 - 5.6a4 ) ( 289) 
I- BJW (1- a)3/2 

where 

a 
0.2 < a = - < 1.0 - w- (290) 
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H 
B/2=W/4 

Figure 80. Compact Tension Specimen Model 

A comparison of the boundary element results and ASTM values are given in Table 4. 

As can be seen, the smallest percent error, 0.04, is at x = 0 and increases to a 

maximum of 0.63 at the free surface. This increase in error is consistent with the 

results given in Reference"[43]. 

The full three dimensional problem was modeled with the same boundary element 

mesh, but the boundary condition at x = B /2 was changed to a free surface. The 

CTROVR results are compared 'in Figure 82 to the ASTM plane strain formula, 

boundary element values in Reference [43], and finite element values in Reference 



Figure 81. Compact Tension Specimen BEM Mesh 

Table 4. Compact Tension Specimen SIF Comparison 
With the Plane Strain Value of K1 = 6.73 ksi · 
ini/2 

2x/B K1 ksi · in1/ 2 Percent Error 
0.0 6.73280 0.04 
0.5 6.71776 -0.18 
1.0 6.77291 0.63 

[68] and are quite similar. 
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Chapter IX 

CONCLUSIONS 

Numerical methods, such as the finite element method and the boundary element 

method, are more convenient in many cases to the various theoretical techniques for 

the solution of linear e~astic fracture mechanics problems with arbitrary geometries 

and loading conditions. Boundary element methods have some practical and theo-

retical advantages over finite element methods for linear elastic fracture mechanics 

problems. One is that only the boundary must be modeled as opposed to the entire 

domain, i.e., a three dimensional problem may be modeled by a surface and a two 

dimensional problem by a curve. Another is .that the stresses are typically modeled 

< 

with a lower order polynomial than the displacements, while the boundary element 

method typically models displacements and tractions with the same order polyno-

mial. Since stress intensity factors may be derived directly from stresses and the 

boundary elemen.t method directly solves for tractions, a more' direct link between 
' \ ' , 

the problem solution and the stress intensity factors is obtained. A disadvantage of 

the boundary element method wheri compared to the finite element method is that 

the mathematics for describing and implementing the boundary element method are 

more complex. 

The objective of this work was to better represent the geometry of a 'crack through 
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the use of C1 continuous elements in both two and three dimensions and thus en­

hance the accuracy of the boundary element method in the solution of linear elastic 

fracture mechanics problems. Since the Overhauser crack tip elements overlap and 

are C1 continuous, much of the previous work done in implementing Lagrangian type 

elements in the boundary element method this area was of little use. The innovations 

done in support of the objective ar,e listed below. 

• The two dimensional crack tip Overhauser elements 

• Methods for performing the singular integrations for the two dimensional crack 

tip Overhauser elements 

• A general approachfor derivation of stress intensity factors from two dimen­

sional boundary elements that properly model the 1/ Jr behavior of the trac­

tions 

• The use of Coons type surfaces in, the, derivation of all the three dimensional 

rectangular element types 

• The three dimensional Overhauser elements 

• A general transformation approach for performing the three dimensional singu­

lar integrations 

• The three dimensional crack tip Overhauser elements 

• A general transformation approach for performing the three dimensional crack 

tip singular int~,grations 
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The superiority of employing stress intensity factors derived from tractions as op-

posed to those derived from displacements was demonstrated in the two dimensional 

examples. In particular, the traction stress intensity factors were much less sensitive 

to the ratio of the length of the crack tip element to the length of the crack. 

The Overhauser-type crack tip elements wer~ more generally accurate than the 

other element types for the two and three dimensional examples examined. The two 
' ' 

dimensional Overhauser crack tip element showed a nearly complete insensitivity to 

the ratio of the length of the crack tip element 'to the .length of the crack except for 

extremely small values where the parameter became nonmonotonic. It is believed 

the more accurate results of the Overhauser crack tip elements are a result of both 

the 0 1 continuity and a better modeling of the near field crack tip stresses. However, 

percentage errors for all boundary elements that properly model the tractions are 

fairly close, indicating that the quadratic behavior of these shape functions may be 

the dominant factor. While all of the Overhauser elements give excellent results, they 

have a small disadvantage in that th~ meshes are slightly more difficult to assemble 

by hand. 

The significance of this work lies not only in the fact that the Overhauser elements 

generally modeled the problems examined more accurately and with a nearly complete 

insensitivity to the ratio of the length of the crack tip element to the length of the 

crack, but that the approach taken will make derivation and implementation of new 
' ' ' 

crack tip boundary elements easier. Specifically, the Coons approach to derivation of 

surface elements and the general transformation approach for performing the three 
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dimensional singular integrations for standard and crack tip elements are meaningful 

advances in boundary elements in general and as applied to linear elastic fracture 

mechanics in particular. 

The results of the current study indicate the need for a cubic crack tip boundary 

element and the proper transformations to find the stress intensity factors for non:fl.at 

three dimensional crack tip boundary elements. 
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