NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL

ERROR AND REFINING INCONSISTENCY FOR
MULTIPLE CRITERIA DECISION -

MAKING PROBLEMS

by
KOOK JIN yAM

Bachelor of Science
Korea Military Academy
Seoul, Korea
1975

Master "of Science
Naval Postgraduate School
Monterey, California

' 1984

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the 'Degree of
DOCTOR OF PHILOSOPHY
May, 1990 .



dhusiv
G94oD
NTH
COp. 3



Oklahoma State Univ. Library

NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL
ERROR AND REFINING INCONSISTENCY FOR
MULTIPLE CRITERIA DECISION

MAKING PROBLEMS

Thesis Approved:

Wes’aizzdviser
(//f //% }:/7/1 // /ﬁnﬁgw/—

Dean of the Graduate College



PREFACE

The objective of this study is to develop new
wveighting methods for use in solving multiple criteria
decision making problems.

I wish to\expréss sincere appreéiation to my major
adviser, Dr. M. Palmer Terrell, for his guidance,
assistance, and encouragement tﬁroughout this research and
during my doctoral studies. Apéréciations also to my
committee members, Dr. Michael H. Branson, Dr. Kenneth E.
Case, Dr. Joe H. Mize, and Dr. William D. Warde, for their
interest and assistance.

I also wish to thank the School of Industrial
Engineering and Management at Oklahoma State University for
financial support. |

Thanks are extended to Republic of Korean Army
Headquarters for‘their financial and moral support, and for
giving me the opportunity fo fulfill this study. A

Finally, I wish to dedicate‘this dissertation to my
parents, Mr. and Mrs. Hyodeok Nam, my wife, Eunja Kim, and
ny children Bomi and’Jaeho, for their prayers, sacrifice,

understanding, encouragement, and love.

iii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION . . &« ¢ ¢ « o o o o o o o o o

The General Problem . . . . . . . . . .
Statement of the Problem. . . . . . . .
Introduction . . . . e e e e e
Theoretical Valldatlon, Quallty,
and Simplicity . . . . .
Consistency Assunmptions and
Inconsistency . . .
Minimization of Judgmental Error
Summary of Research Goal and Objectives
Research Goal. . . . . . . . . . .
Objectives . . .+ + v « « + « « o
Contribution. . . . . . . . « + + .+ . .

II. LITERATURE REVIEW. . . . ¢ ¢ « o ¢ ¢ o o o &

Introduction. . . . . .+ + ¢« o v o .
Ranking . . . ¢ ¢ ¢« ¢ ¢ o o o o o o o .o
Rating. . . v e e s s e e e e e e s
Point Allocatlon. e e s s e e e e e e
Unit Weighting. . . . . . . o e e s
Successive Paired Comparison. . . . .
Indifference Trade-off. . . e
Eigen-vector Methods. . . . . . . . .
Conclusion. . . ¢ « ¢ o« o o o + o «

ITI. MODEL DEVELOPMENT. . . ¢ ¢ « ¢ o o « o =
Introduction. « « ¢ ¢ ¢ ¢ ¢ ¢ e o . e

Assumptions . . . « ¢ ¢ ¢ ¢ ¢ e e e o
Notation. . .

The New Models for Estlmating Welghts using

Pairwise Comparison Matrix from a Single

Decision Maker. . . . ¢ ¢« « ¢ ¢« « o«
Model 1 Development. . . . . . . .
Model 2 Development. . . . . . . .

Model 3 Development.

Procedures for Estimating Welghts u51ng

Pairwise Comparison Matrices from
Multiple Decision Makers. . . . . .

iv

Page

N NN

NI O Ut

o]

26
217
31
33

34



Chapter

Estimating Weights after Averaging
Pairwise Comparison Matrices . .

Averaging Individual Weights of
Decision Makers. . . . . . . . .

IV. USING THE INTERACTIVE COMPUTER PROGRAM . .

Introduction. . . . . . . . e e e
Interactive Program Development « e e .
Overview. . . . e v e e e e e e
Input Pairwise Comparisons, e e e e e e
SUMMALY &« + ¢ v o o o o o o 0 e e e e .

V. RESULTS, COMPARISON, AND ANALYSIS. . . . . .

Introduction. . . e e e e e
Measurement of Goodness of F1t . e e .
Deciding the Number of Replications . .
Experimental Design . . . . . . e

Results, Comparison, and Analy51s . e e
Discussions on Multiple Decision Makers

VI. SUMMARY, CONCLUSIONS. AND RECOMMENDATIONS. .

SUMMATY + « « o « o o o o o o o« o« o o &
Conclusions and Recommendations . . . .

BIBLIOGRAPHY. v v v v v v v o o o o o o o o o« o o W

APPENDIX -

INTERACTIVE PROGRAM LISTING. . . . . . .

Page

35
36
317

37
38
40
40
45

46
46
48
49
51
54
79
83

83
85

86

89



LIST OF TABLES

Page

Summary of Features of Various Weighting «
Methods. . . . . . . « + ¢ v ¢« ¢« v v ¢ « « ¢« 19

Summary of Various Weighting Methods . . . . ., . 20
Chronological Summary of Weighting Methods . . . 21

Summary of Eight Decision Making Setting
Problems Used by Takeda, et al . . . . . . . . 41

Estimated Values of ¢% When N=30 . . . . . . . . 51

Number of Replications for Simulation Run
when a=B=0.025 . . L " L ] .o L] . L] . . - . [ ] L] L] 51

Simulation Results Based on W=(0.15,0.55,0.3),
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16,
NC=3' Seed=’0 Y . e - e -‘ . . . . Y . . Y . 3 . . 55

Analysis of Variance for. Euclidean Distance
Measure Data of Table 5.4. . . . . . . . . . . 56

Analysis of Variance for City Block Distance
Measure Data of Table 5.4. . . . . . . . . . . 56

Simulation Results Based on W=(
D(1,2)=0.9, D(1,3)=0.6, D(2,3
NC=3, Seed=0 . . . . . . .".

0.3 , 15,0.55),
)=0 R=16, -
e v e« o & o & . 57
Analysis of Variance for Euclidean Distance
Measure Data of Table 5.7. . . . . . . . . . . 57

Analysis of Variance for City Block Distance
Measure Data of Table 5.7. . . . . . . . . . . 538

Simulation Results Based on W=(0.55,0.3,0.15),
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16,
NC=3, Seed=472 . . . + + « ¢ + & o « o« + + « » 59

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.10 . . . . . . . . . . 59

vi



Table

2.12

5.13

5.14

5.15

5.16

5.21

5.22

Page

Analyslis of Variance for City Block Distance
Measure Data of Table 5.10 . . . . . . . . . . 59

Simulation Results Based on W=(0.55,0.3,0.15),
p(1,2)=0.9, D(1,3)=0.8, D(2,3)=0.6, R=16,
NC=3, Seed=0 . . . . . . . . ¢ « ¢« v « +« +« ., . 60

Analysis of Variance for Euclidean Dlstance
Measure Data of Table 5.13 . . . . . . . . . . 60

Analysis of Variance for City Block Distance
Measure Data of Table 5.13 . . . . . . . . . . 60

Simulation Results Based on W=(0.2,0.4,0.1,0.3)
p(1,2)=0.7,D(1,3)=0.9,D(1,4)=0.8,D(2,3)=0.7,
D(2,4)=0.6,D(3,4)=0.4, R=15, NC=4, Seed=0. . . 61

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.16 . . . . . . . . . . 62

Analysis of Variance for City Block Distance
Measure Data of Table 5.16 . . . . . . . . . . 62

Simulation Results Based on W=(0.2,0.4,0.1,0.3)
p(i,2)=0.8,D(1,3)=0.7,D(1,4)=0.9,D(2,3)=0.4,
D(2,4)=0.6,D(3,4)=0.5, R=15, NC=4, Seed=40 . . 63

Analysis of Vaiiance for Euclidean Distance
Measure Data of Table 5.19 . . . . . . . . . . 63

Analysis of Variance for City Block Distance
Measure Data of Table 5.19 . . . . . . . . « . 63

Simulation Results Based on ¥=(0.2,0.4,0.1,0.3)
D(1,2)=0.7,D(1,3)=0.6,D(1,4)=0.8,D(2,3)=0.5,
D(2,4)=0.6,D(3,4)=0.3, R=15, NC=4, Seed=921. . 64

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.22 . . . . . . . . . . 65

Analysis of Variance for City Block Distance
Measure Data of Table 5.22 .. . . . . . . . . . 65

Simulation Results Based on W=(.25,.3,.15,.1,.2),
p(1,2)=0.6,D(1,3)=0.7,D(1,4)=0.8,D(1,5)=0.6,
p(2,3)=0.7,D(2,4)=0.6,D(2,5)=0.6,D(3,4)=0.5,
D(3,5)=0.8,D(4,5)=0.3, R=25, NC=5, Seed=0. . . 66

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.25 . . . . . . . . . . 66

vii



Table

5.27

5.32

5.33

Page
Analysis of Variance for City Block Distance
Measure Data of Table 5.25 . . . . . . . . . . 66
Summary of the Simulation Results for Eight
Decision Making Setting Problems . . . . . . . 617
Problem Descriptions for additiohal
Simulation Run . . . .. . . . . . . . . . . . 68

Simulation Results Based on’W=(.2,.12,.15,.l,.2,
.05,.18), D(i,Jj)* is Generated from Uniform
Random Numbers, R=25, NC=7, Seed=3211. . . . . 69

Analysis of Variance for Euclidean\Distance
Measure Data of Table 5.30 . . . . . . . . . . 69

Analysis of Variance for City Block Distance
Measure Data of Table 5.30 . . . . . . . . . . 69

Simulation Results Based on W=(.2,.12,.15,.1,.2,
.05,.18), D(i,Jj)™ is Generated from Uniform
Random Numbers, R=25, NC=7, Seed=4444. . . . . 171

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.33 . . . . . . . . . . 171

Analysis of Variance for City Block Distance
Measure Data of Table 5.33 . ... . . . . . . . 1T1

Simulation Results Based on W=(.2,.12,.15,.1,.2,
.05,.18), D(i,j)™ is Generated from Uniform
Random Numbers, R=25, NC=7, Seed=5678. . . . . 72

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.36 . . . . . « . . . « 13

Analysis of Variance for City Block Distance
Measure Data of Table 5.36 . . . . . . . . . . 173

Simulation Results Based on'W=(.2,.12,.08,.1,.17,
.05,.15,.1,.03), D(i,j)™ is Generated from
Uniform Random Numbers, R=25, NC=9, Seed=6156. 74

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.39 . . . . . . . . . . 15

Analysis of varlance for Cilty Block Distance
Measure Data of Table 5.39 . . . . . . . « . « 15

viii



Table

5.42

5.46

5.47

Simulation Results Based on Ww=(.2,.12,.08,.1,.17,

.05,.15,.1,.03), D(i,3J)" is Generated from

\

Uniform Random Numbers, R=25, NC=9, Seed=7312.

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.42 . . . . . . . .

Analysis of Variance for City Block Distance
Measure Data of Table 5.42 . . -~ . . . . .

Simulation Results Based on W=(.2,.12,.08,.1,.17,

.05,.15,.1,.03), D(i,j)™ is Generated from

3

Uniform Random Numbers, R=25, NC=9, Seed=8866.

Analysis of Variance for Euclidean Distance
Measure Data of Table-5.45 . . . . . . . .

Analysis of Variance for City Block Distance
Measure Data of Table 5.45 . . . . . .

Simulation Results for Two Decision Makefs
When N=30. . . . ¢ ¢« ¢« ¢ ¢ « « o o

Analysis of Variance for Euclidean Distance
Measure Data of Table 5.48 When NC=3 ,

Analysis of Variance for City Block Distance
Measure Data of Table 5.48 When NC=3 . . .

Analysis of Variance fpr~Euclidean Distance
Measure Data of Table 5.48 When NC=4 .

Analysis of Variance for City Block Distance
Measure Data of Table 5.48 When NC=4 . . .

Analysis of Variance for Euclideaﬁ Distance
Measure Data of Table 5.48 When NC=5 . . .

Analysis of Variance for City Block Distance
Measure Data of Table 5.48 When NC=5 . .

viiii

Page

75
76

76

11
71
78
QO
80
81
81l
81
82

82



LIST OF FIGURES

Figure Page
4.1 Flowchart for Interactive Model. . . . s e .. 39
5.1 Summary of Experimental Design for Simulation. . 52



CHAPTER I

INTRODUCTION
The General Problem

Weighting procedures have beenxused since the
beginning of human life. Humans use some>kind of weighting
procedure, impliéitly or explicitly, whenever they have
need to allocate reéburces among a set of aétivities or to
select the most important activity.

In recent history, many researchers have contributed
their efforts for developing methods of weight determina-
tion. In general, weight determination methods are
concerned with determining the breference of decision //
makers. Because of the nature of this problem and its
breadth of application, an interdlisciplinary interest has
been developed in this area. 1In particular, thé problem
has been studied by economists, engineers,
environmentalists, management scientists, mathematicians,
operations researchers, statisticians, system analysts,
urban planners, etc.

The importance of generating better weights for
multiple criteria decision making (MCDM) problems continues

to be of much interest to researchers and decision makers



alike. The research interest in thlis area stems from both
its simplicity of use in additive models and its

applicability to problems in many diverse figlds.
Statement of the Problem

Introduction

One of the purposes of deriving weights is for their
use in additive models. Due to their simplicity, additive V/
veight methods have great appeal in MCDM prdblems
(Frazelle, 1985). It is important to study(the wveighting
determination procedures closgly and determine and
understand the strehgtﬁs and the weaknesses of the
procedures. Research effort and direction can be motivated

through such an analysis.

Theoretical Valida Qgglitx,
and Simplilcity

Many techniques for MCDM prbblems use weightsftb
combine attributes into a singie sum that indicates value \/
or suitability. The most frequent;y applied multiple
criteria decision rule is- the weighting summation or linear

model:

(1.1)

<
®
i}
nMs
Lo
»
>
I
®

vhere Vi = value of the sulitabllity of alternative k;



Xix the level of criterion i for alternative k;

Wa the true weight of criterion i.

Many researchers have contributed their efforts to the
development of better methods for determining the values of
Wi. As a result of these researchers' effort, many
methodologies have been developed from simple methodologies
such as the ranking method, rating method, point allocation
method, or unit weighting method to more sophisticated
methodologies such as successive paired comparison method,
indifference trade-off method, and eigen-vector method.
Although the relatively easy models such as ranking method,
rating method, point allocation method, and unit weight
method are simple to use, they do lack formal theory. To
be a theoretically valld model, the declsion maker's trade-
off ghould be reflected when comparing the criteria to each
other (Fischer, 1977) (Hobbs, 1979). Theoretically the
most defensible methods are those such as successive paired
comparison methods and indifference trade-off methods, but
they are the most compllicated methods to use. Unfortuna-
tely, there is no guarantee that a theoretically valid
method generates more superior weights than those generated
using theoretically invalid methods (Einhorn and Hogarth,
1975). The purpose of the research to be presented in this
paper is to contribute to the development of new methods
which are theoretically valid, more superior in their use

compared to other methods, and more easy to use.



Consistency Assumptions and Inconsistency

Since weights are difficult to estimate directly,
researchers estimate these weights by using ratios of one
criterion to another obtained through interaction with the
decision maker. The comparisons used to construct the
ratios may or may not be consistent. The necessary
judgment used in making comparisons is dependent on many
factors, such as personal experience, learning, situations,
the state of mind, etc. The consistency assumption for
comparisons is very critical. For instance, the main
difference of various eigen-vector methods (more completely
discussed in the literature review) developed by Saaty
(1977), Cogger and Yu (1985), Takeda, Cogger, and Yu (1987)
is the assumption of consistency. Saaty (1977) assumes
that decision makers are consistent in their comparisons.
Other researchers, however, do not agree with this
consistency assumption because they believe most decision
makers are going to be somewhat inconsistent, even after
repeated attempts to alert them to their inconsistencies
and attempts to refine the estimated reciprocal portion of
the matrix. With this argument, they have devoted their
research efforts to refining decision makers'
inconsistencies in pairwise comparisons.

It does not really matter which eigen-vector method is
used when the response of the decision maker is consistent

in the pairwise comparisons, because they will give the



same solution. This aspect demonstrates a need for
developing methods which refine decision makers'

inconsistencies in an appropriate and better way.

Minimization of Judgmental Erxror

Minimization of judgmental error is a new and
important concept when estimating weights using subjective
approaches. Due to a decision maker's inconsistency,
knowledge, interest, state of mind,. fatique, and other
factors, the weights will include possible error. However,
none of the subjective approaches account for or consider
this error (Schmitt and Levine, 1977). Minimizing this
error term when estimating weights is very important.

The research to be presented will contribute to
resolving these problem issues of the decision maker's
inconsistency and judgmental error and thus lead to an
improved model(s) for estimating welghts. Now that the
general problem area and issues have been dlscussed,
Chapter II will summarize in additional detail the

pertinent literature related to the topic.
Summary of Research Goal and Objectives

Based on the above discussion, the research goal is

stated as follows:



Research Goal

To develop new weighting methods for use in solving

MCDM problems based on the minimization of a decision

maker's judgmental error and the refinement of a

decision maker's inconsistency.

This research goal will be reached by achieving the

following objéétives:

Objectives

1.

By developing three new analytical models based on
minimizing the sum of a decision maker's
judgmental error usipé all a.s of a pairvise
comparison matrix for refinement of a decision
maker's inconsistenéy,’utilizing linear-—-
\Eﬁggﬁiﬁﬂiﬂ%M§§;QH”thimizatLonrtool.

By testing the analytié models developed in this
research against others reportéd in the literature
using a simulation model to generate a decision
maker'é jﬁdgment of pairwise comparisons which
includes simulated judémental error. The testing
phase will include setting up the hypotheses,
computihgjthe test stafistié, drawing conclusions.
By comparing and analyzing the quality of the
weights produced by the three proposed models with
three models reported in the literature that use

variations of eigen-vector methods: Saaty's Eigen-



vector Method, Cogger and Yu's Eigenweight Vector
Method, and Takeda, et al.'s Graded Eigenvector
Method. The testing critéria is to be based on
the Euclidean distance meésuré and city block
distance measure.

4., By developing a comprehehsive and flexible
interactive computer program to ease the task of

data input, model optimiiation, statistical test.
Contribution

This research develops nevw weighting procedures
employing the minimization of judgmental error and the
refinement of decision maker's inconsistency using pairwise
comparisons and linear programming, and compares the new
procedures to other existiné methodologies. This research
contributes to minimizing judgmental error unlike other
subjective methods. Thls research also contributes to
refining the decision maker's 1ncohsistency, unlike other
wveighting procedures, by using éll dais in pairwvise combari—
sons when estimating weights. Thlis refining procedure is
very simple when compared to the methods of enumerating all
possible index orders or eliciting additional sets of
wveights from a decision maker. This research also provides
an additional benefit by making available to both decision
makers and researchers an interactive computer mode that

facilitates easy and accurate input.



CHAPTER 1II

LITERATURE REVIEW
Introduction

This chapter reviews developments in the literature
relevant to the research objective which was presented in
Chapter I. The extensive literature on weight

determination methods using subjedgiggwgpprggghes has been

reviewed. The subjective approaches use decision maker's
decomposed judgments on criteria, rather than using the
levels of criteria. The deéision maker's judgments are
often unrepresentative of true importance. Furthermore,
judgmental error is seldom ¢onsiqered systematically.
Various subjective methods exist. This chapter is divided
into seven sections according to these methodologies which
are: (1) Ranking, (2) Rating, (3) Point allocation, (4)
Unit weighting, (5) Successive paired comparison, (6)
Indifference trade-off, and (7) Eigen-vector methods.
These methods are extracted from the surveys of Eckenrode
(1965), Huber (1974i, Cook and Stewart (1975), Hobbs

(1980), and Takeda, et al. (1987).



Ranking

Using the ranking methodology (Eckenrode, 1965),
declision makers order the criteria from the most important
to the least important. Weights from these methods are on
an ordinal scale of measurement, as ratios of weights are
arbitrarily fixed. With ordinal scales only the ordering
of phenomena is significant. The differences in numbers or
their ratios are not considered important. Jopling (1974)
and Watson (1974) make applications of the ranking method

in a power plant siting study.

Rating

The rating method asks decision makers to rate on,
say, a scale of 0 to 10, according to the importance of
each criterion. Theoretically valid weights are not
assured because a decision maker's definition of importance
may have little to do with the relative value of the
criteria. Eckenrode (1965) emphasizes the attractiveness
of the ease of use of this method. Groups often apply this
method assisted by Delphi technique (Delbecqg et al, 1975)

(Voelkexr, 1977).
Point Allocation

In the point allocation method, the decision maker is
asked to distribute a fixed number of points among the

various criteria so as to reflect their relative
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importance. This straightforward method was suggested as a
good method by Hoffman (1960) and Schoemaker and Waid
(1982), even though this method lacks formal theory.
Similar point allocation methods have been advocated by
Moore and Baker (1969) in various scoring models for

evaluating engineering and R&D projects.

Unit Weighting

The unit weighting method standardizes the criteria in
order to cause them to exhibit equal mean and variance, and
then adds them together into a composite score.

Einhorn and Hogarth (1975) declare that the unit
weighting method is a viable methodology for predictive
purposes. They illustrate several reasons to support their
declaration. The reasons are that unit weights are not
estimated from the data and therefore do not consume
degrees of freedom, and unit weights are free from
judgmental error so that unit weights cannot reverse the
true relative weights of the criteria. 1In addition to
Einhorn and Hogarth's work, there have been a number of
empirical studies by Trattner (1963), Lehman (1971),
Fischer (1972), and Beckwith and Lehman (1973) that have
shown that the unit weighting method is a good procedure
for predictive purposes. Schmidt (1971, 1972) and Claudy
(1972) have used simulation techniques in their works with

the results generally showing that the unit welighting
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scheme performs quite well compared to regression. But
Schoemaker and Waid (1982) do not agree with these results.
They declare that the unit weighting method is clearly
inferior relative to other methods such as linear
regression, eilgen-vector method and point allocation method
after finishing their experiment on college admission.

" The use of the unit weighting method is desirable when the
problem has many criteria and it is really difficult for
the decision maker to figure out the relative importance of
each criterion. Schoemaker and Waid's college admission
problem has just four criteria. On the other hand, other
researchers' problems have more than twelve criteria. This

is the main reason of drawing different conclusions.
Successive Paired Comparison

This method proposed by Churchman and Ackoff (1954)
uses two stages to determine the importance or weight of
the criteria. First, the decision maker ranks criteria in
order of importance as in the ranking méthod. The decision
maker tentatively assigns the value 1 to the most important
criterion and values between 0 and 1 to the other criteria
in order of importance. The second stage systematically
checks to see if those welghts are consistent with trade-
offs that the decision maker is willing to make. This is
done via a number of guestions and a question and answver
scheme that asks the decision maker to decide whether the

criterion with value of 1 is more important than all other
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criteria combined. If so, the decision maker may need to
consider an increase in the value of the most important
criterion; VC(1), so that VC(l) is greater than the sum of
all other values of criteria. If not, the deéision maker
needs to adjust the value of the most impo?tant criterion,
VC(1l), so that VC(l) is less than the sum of ail other
criteria values. fhe decision maker then decides whether
the second mosf important criterion is m&re important than
the sum of all iower—valued criteria. The decision maker
continues this process until n-1 criteria have been so
evaluated. Any inconsistencies between a choice and the
values assigned by the decisio; maker must be resolved by
changing a choice, the values, or both. This can be very
difficult and time consuming when there are many criteria.
This method assures that\the weights are valid because the
decision maker checks the weights against acéeptable trade-
offs. Stimson (1969) appiies this methodology for solving
a public health problem,anq Davidson (1974) for solving a

regional planning problem.’
Indifference Trade-off

The indifference trade-off method (Huber, 1974),
assures theoretically valid weights by determining if the
decision maker will or will not trade-off one criterion
value for another. Enough questions as to acceptable

trade-offs are asked ln order to solve for a unique set of



weights. Consistency checks are especially important here
as a decision maker w;ll probably be very inconsistent on
the first try because fhe decision makers usualiy will not
think systematically ébout the trade-offs they are willing
to make. In answering these questions, decision makers are
forced to focus on their values of the criteria which is a
desirable characteristic of this method. This technique
has been applied iﬁ several site selection studies by

Keeney and Nair (1977) and Keeney (1979).
Eigen-vector Methods

The eigen-vector method developed by Saaty (1977)
requires pairwise coméarisons 6f criteria in terms of
relative importance. He explicitly assumes that the
decision maker is consistent in the comparisons.

Ai1 212 .+ Ain
dAz2a A22 .. Ad2n

. . (2.1)

(@]
n

Ana anz s s ann

The decision maker constructs the nxn pairwise comparison
matrix of C' as can be seen in (2.1). In such a matrix,
ais is the relgtive strength or importance of criterion i
compared to criterion j. The decision maker's enforcement
of asi=1/a.s due to the assumption of consistency makes
mathematical analysis easier (Saaty, 1980) (Belton, 1986).

However this is not, 1n general, congruent with human

13
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perception (Cogger and Yu, 1985). Even though Saaty's
eigen-vector method has a rigid consistency assumption,
hundreds of applications have been made to MCDM problems
bécause its weigth are reasonably good and easy to use
(Schoemaker and Waid, 1982). Saaty's weights are
determined by normalizing the eigen—vectot assoéiated with
the maximum eigenvalue of the ratio matrix.

Cogger and Yu (1985) developed the New Eigenweight
Vector Method. ?his method ig‘based on Saaty's original
eigen-vector method. These individualszrecognized that
stable and internally consistent estimates of weights may
be difficult to obtain since humans have perceptions and
judgments which are subjectito change due to their
psychological states and various information inputs. Based
on this argument, they assume that the decision maker is
not necessarily consistent in the comparisons. To reflect
the inconsistency of cﬁmparisdns they derive weights from
all the index orde;sﬂof the criteria. QFrom the mat;ix of
(2.1), thé relation ais=1/ass may not hoid in this case.

The weights are estimated in recursive fashion by

Wn-a1 = an—;,n‘Wn . (2.2)
Wn-2 = (an—z,n—1Wn—1 + an—z,an) / 2 (2.3)
Wa = (Qaa2W=2 + QasWas + ... + @ainWn) / (n-1) (2.4)

From (2.2) through (2.4), Wi ls obtained from the average

of (Ax,x+1 Wix+r, dx,k+2 We+z, ... , @r,n Wn). Once Wn is
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estimated, Wn-1 can be estimated in (2.2) with one step,
then Wn-2 can be estimated in ;2.3) with two steps, etc.
Thus, in estimating n element weight vector W, the ratlo
estimate an-1,n is most important, am-z.n-1 and an-=z.n are
second most important, etc. This indicates that the index
order of the criteria can affect the estimate of W. Thus
Cogger and Yu emphasize the need to enumerate all index
orders of the criteria. Cogger and Yu's weights are the
geometric mean of the weights from all possible index order
combinations of the criteria.

Saaty's eigen-vector method explicitly requires
consistency in the pairwise comparisons. This assumption
mnakes mathematical analysis easler, but is not always
congruent with human perception as mentioned earlier.
Cogger and Yu (1985) refine this consistency assumption by
allowing decision maker's inconsistency and obtaining
weights for all the possible index orders. They also
emphasize that this makes computation less difficult when
compared to Saaty's method. However, enumerating all
possible index orders is not an easy task. Cogger and Yu's
method produces three different index orders for a problem
having three criteria, twelve for a problem having four
criteria, and n!/2 for a problem having n criteria. The
number of different index orders increases dramatically as
the number of criterla increases. One more very important

flaw of the Cogger and Yu method to be pointed out is that
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their weight is the geometric mean of the welghts from all
possible index orders. An index order of 360 must be
enumerated when the problem has six criteria. A severe
underflow problem is encountered when multiplying the
numbers which are less than 1.0 360 times. The mathematics
prohibits the calculation of the geometric mean when the
problem has more than five criteria.

Takeda, et al. (1987) developed the Graded Eigenvector
Method which generalizes the methods of Saaty (1977), and
Cogger and Yu (1985). It differs from that of Saaty by
allowing the solution to reflect the decision maker's
inconsistencies revéaled by the estimates in the reciprocal
portion of the matrix. It also differs from the Cogger and
Yu procedure by choosing a specific index order rather than
enumerating all possible index orders. The Graded
Eigenvector Method is another version that attempts to
refine Saaty's consistency assumption by allowing decision
maker's inconsistency. To accomplish this refinement, the
following form for a C' matrix ils used instead of (2.1).

a1 Bizdiz Biszdiz ... Bindan
dz2 fz3dz3 ... B2ndzn

c' = . . (2.5)
. An-1n

Ann -

n
where B15>0 and £ Bis=1 for each i=1,2,...,n-2. After
j=i+1



modifying equations (2.2) through (2.4), the weights can be

estimated in recursive:fashion by

Wn-2 = dn-1,n Wea
Wn—-2 = (Bn—z,n-lan—z,n—1Wn—1 + Bn—z,nan—z,an)
Wa = (BaizaizWz + Baza1aWa + ... + BandainWn)

However, the tasks of providing a set of weights, B.s,
vhich is the normalized values of D(i,j) for i=1,2,...,n-2,
and j=i+1,...,n, in addition to providing the values of
pairwise comparisons, ais, are not easf from the decision
maker's view point. D(i,3) represents the decision maker's
confidence, or degree of knowledge when comparing criterion
i with criterion j. |

Cogger and Yu (1985) and Takeda, et al. (1987) have
tried to refine the Saaty's consistency assumption by
allowing decision maker's inconsistency’in pairwvise
comparisons. Cogger -and Yu resolve this problem by getting
the geometric mean of wéigﬁté from all possible index
orders. In the case of Takeda, et al., they elicit an
additional sets of weiéhts,’ﬁxs,,from the decision maker to
avoid enumerating all possible index orders. They refine
and generalize soﬁe aspects of the problem, but add

elements of complexity to their approaches.

17
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Conclusion

This chapter presents a survey of the literature
relative to the research objeétiveﬂdétailed in Chapter I.
As summarized in Table 2.1, this sqrvey has concentrated on
several features §f the weighting methods such as
theoretical validation, simplicity, allowahce for decision
maker's inconsistency and minimization of judgmental error.
Comparing the ﬁethods to each other using several important
features illustrated in Table 2.1, the first four methods
share one good feature which is simplicity of use. The
successive paired comparison method and the indifference
trade-off method have a,theorét}cal background but none of
the other features.\ Saaty's eigen-vector method has two
good features which are theoretical validation and
simplicity of use. The,methods‘of Cogger and Yu and
Takeda, et al. have theorétical validation, simplicity of
use, and allowance for decision maker's inconsistency.

From this éummary, eigen-vector ﬁethods’have relatively
better features compared to other methods. The development
of the new weighting methods which have more than three
good features can be considered at this point.
Particularly, the feature of the minimization of the
decision maker'sujudqmental error is a new concept for
estimating weights using subjective approaches. Also, it
is desirable for methods to be developed for reflecting

decision maker's inconsistency more systematically than the
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Cogger and Yu's method and the Takeda, et al.'s method.
The research goal and objectives to be pursued was
contributed to reflect the need of these new concepts.

A summary of weightinq methods shown in this Chapter
and a chronological summary for each method are provided in

Table 2.2 and Table 2.3 respectively.

TABLE 2.1

SUMMARY OF FEATURES OF VARIOUS WEIGHTING METHODS

Method TV sou= AOQI=> MJE*
Ranking No Yes No No
Rating No Yes No No
Point Allocation - No Yes No No
Unit Weighting No Yes No No
Successive paired
Comparison Yes No No No
Indifference '

Trade-off Yes No No No
Eigen-vector
Saaty Yes Yes : No No
Cogger and Yu - Yes © Yes Yes - No
Takeda et al. Yes Yes Yes No
1 Theoretical Validation
2 Simplicity of use
3 Allowance of Inconsistency
4 Minimization of Judgmental Error .
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TABLE 2.2

SUMMARY OF VARIOUS WEIGHTING METHODS

Methods

Ranking

Rating

Point Allocation

Unit Weighting

Successive Paired Comparison

Indifference Trade-oftf

Eigen-vector

Saaty (1977,

Authors
Eckenrode (1965)
Jopling (1974)
Watson (1974)

Eckenrode (1965)
Delbecqg et al. (1975)
Voelker (1977)

Hoffman (1960)
Moore and Baker (1969)
Schoemaker and Waid (1982)

Trattner (1963)
Lehman (1971)

Schmidt (1971,
Claudy (1972)

Fischer (1972)
Beckwith and Lehmann (1973)
Einhorn and Hogarth (1975)

1972)

Schoemaker and Waid (1982)
Churchman and Ackoff (1954)
Stimson (1969)

Davidson (1974)

Huber (1974)

Keeney and Nair (1977)

Keeney (1979)

1980))
Schoemaker and Waid (1982)
Cogger and Yu (1985)
Belton (1986)

Takeda et al. (1987)




TABLE 2.3

CHRONOLOGICAL SUMMARY OF WEIGHTING METHODS

Method \ Year 54 60 63 65 69 71 72 73 74 75 77 79 82 85 87

-

Ranking b4 xx;

Rating X X X

Point Allocation %x X x’
. . . I ]

Unit Weighting I X XX XXX X X X|

Successive Paired—

Comparison X X X

Indifference I

Trade-off [x

Eigen-vector Ix X X x‘

21



CHAPTER III

MODEL DEVELQPMENT
Introduction

From the literature review. in Chapter II, seven
different weighting methods have been reviewed. None of
the methods meet all the desirable characteristics such as
theoretical validation, refineménﬁ of decision makef's
inconsistency, minimization of judgmental error, guality,
and simplicity. 1In this chapter, three new weighting
methods which appear to meet the desirable characteristics
will be developed. Severai assumptions and notations have

been made for developing the weight determination models.
Assumptions

The basic assumptidns which are utilized in developing
the models are as follows:

1) The pairwise comparisons, with possible error
between two criteria, are made by a single decision maker
or by multiple decision makers on the basis/of some global
objective.

2) The methodology imposes no requirement that the

paired comparisons satisfy the reciprocal property.

22
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3) Measurements on each of the n criteria are ratio
scaled.

4) Inconsistency in human Jjudgment is uniformly
distributed on the interval (.5, 1.5) for a simulation run
used to analyze the results from a single decision maker.
Inconsistency for a second decision maker's judgment lis
uniformly distributed on the interval (.3, 1.7) for

analyzing the results from the two decision maker problem.
Notation

To facilitate the development of the mathematical
models to be presented, the following notation is

introduced and will be used throughout the research.

i=1,2,...,n wvhere n is the number of criteria.
r =1,2,...,R vhere R is the number of
replications for a simulation run.

Vi

a composite value of the suitability of
alternative k.
Xix = the level of criterion i for alternative k.
Wis = the ratio of Wi and Wy which is Wi/Ws.
We = true welght of criterion 1i.
Wi¢®? = an estimated weight of criterion i at the r*®=»
replication.
W = true weight vector.
W' = estimated weight vector.

decision maker's estimated value of Wais.

Aaz



d13g = A1 values estimated by decision maker qg.
€13 = possible judgmental error when Wiy is
estimated. This is a uniform random variable
on the interval (.5, 1.5) with mean of one.
e:1 = aggregated judgmental error for criterion i.
C = matrix constructed from true weights.
C' = matrix consisting of pairwise comparisons of
criteria obtained from a decision makér.
C'q = a C' matrix constructed from decision maker q.
C'ave = matrix of the averages of the C'g,.
C: = represents the criterion 1i.
C1>Cs = represents that qriterion i is more important
than criterion j.
D(i,j) = represents decision maker's confidence, or
degree of knowledge when comparing criterion i
with criterion j.
fi3 = normalized values qf D(i,j) for i=1,2,...,n-1
and j=i+l,...,n.
f1 = denotes a set of relations (i,j) for all
i,j3=1,2,...,n except i=j such that criterion i
is more important than criterion j in a
pairwise comparison.
22 = denotes a set of relations (m,n) for all
m,n=1,2,...,n except m=n such that criterion m

is "how much" more (amn>l), oOr less (amn<l),
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or equally (amn=1) important than criterion n
in a pailrvise comparison.

represents the aggregated judgmental error for
all (i,J) in Qa.

represents the aggreqafed judgmental error for
all (m,n) in Q=.

integer variables taking either 0 or 1.

integer variables taking either 0 or 1. M = a

large number greater than ﬁax(a;a) for all

NC

Ho
Ha

| 18%

de

d!k

d'e

i,’=1,2,...,n.

number of criteria.

probability of Type I error.

probability of Type II error.

null hypothesis.

alternative hypothesis.

population mean of the differences between the
true welight vector and estimated welght vector
from model k. \

difference between the trﬁe weight vector and
the estimated weight vector to be detected
vhere £ identiflies the measure of goodness of
fitvused such as 1 for a Euclidean distance
measure and 2 for a city block distance
measure.

ds value calculated from model k.

average of dzx.
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Re = least significant ranges.

p = number of between models.
ge = significant studentized ranges for Duncan's

new multiple-range test.

fe = error degree of freedomn.

S8a = standard error of a between models' mean.

The New Models for Estimating Weights Using
Pairwise Comparison Matrix from a Single

Decision Maker

The weighting methods to be developed are based on
palrwise comparisons constructed from a single decision
maker, and optimized via linear programming for the purpose
of minimizing the judgmental error. Pairwlise comparisons
used in these models were developed by Hay (1958) and
revised by Buel (1960). Pairwise comparison is the process
of comparing one criterion against another, with never more
than two criteria involved in each comparison. This
simplifica-tion of comparisons usually promotes greater
accuracy.

The models developed in this research are of a linear
form which allows linear programming to be utilized as an
optimization tool. 1In addition, linear programming has the
capability of producing solutions in a reasonable amount of

time with readlily available softwvare.
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Model 1 Development

For constructing a pairwise comparison matrix, denote
the criteria by Ci, C2, ..., Cn and their true weights by
Wi, W2, .+e., Wn. In this ideal case, the relations between
the weights W. and the judgments a.s are simply given by

Wa o
—— a:.j (3-1)

Wi
for all i,J=1,2,...,n. The results of pairwise comparisons

may be represented by a matrix C as‘follows:

Cl. 02 e o Cl'l
Ca Wa/Wa Wa/W2 ... Wa/Wn
Cz2 W2/Wa W2/W2 ... Wa2/Wn
C = . . . . (3.2)
Cn Wn/wl ‘Wn/Wz s o0 e Wn/Wn

This matrix has positive entries everywhere, 1l's on the
main diagonal, and satisfies the reclprocal property. This
matrix C satisfies the cardinal consistency property
ai1s*asx = aix and ls called consistent. This property says
that if any row of C is given, the rest of the entries can
be determined from this relatldn. However, 1t would be
unrealistic to require these relations to hold in the
general case.

Now suppose that the scale is not known, and that the
entries in the matrix are estimates of the ratios. 1In this

case the cardinal consistency relation above may not hold,



28

and an ordinal relatlon of the form Wi>Ws, Wa>Wi implying
Wi>Wie may not hold. As a reallstic representation of the
situation in pairwise comparisops,‘it'is likely that
inconsistency in judgments may occur. Despite their best
efforts, people's feelings and prefereﬁces éré often
inconsistent ahd‘intransitive‘(Takeda, et al., 1987).

The only parameters in this model are the W.. These
parameters are estimated from a decision maker's judgments,
ai1s, which are equal to W./Ws when the true weights are
known. When the judgments, aias, aie obtained from é
decision maker, they may not be equal to W./Ws because W.
is never known. To conétruct é pairwise comparisons
matrix, a decision maker is asked to decide how much
criterion I 1s more important tﬁan criterion J for all
i,3=1,2,...,n except 1=3, These questions ére needed for -
assurance of theoreticai validation. After making n(n-1)
comparisons, the resultslmay be represented by a matrix as
shown by (3.3). This matrix has positivelentries'
everywhefe, 1's on the main diagonal buf doeg\not
necessarily satisfy the reciprocal property. That is, ais
is not necessarily equal tb l/ast; In addition, the matrix
C' does not necessarily satisfy the cardinal consistency

property either.

C1 Cz e e 0 Cn

Ca Ax1xr A12 ... a1n
Ca2 dz1 a22 ... az2n
c' = . . . . (3.3)

Cn dnil @n2 +.. dnn
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As mentioned earlier, the relation in (3.1) holds when
C is equal to C'. Using this relation, the W. can be

written as follows:

Wi = asaWa
Wi = Q12W2
+ Wi = al.)an
n
n¥s = L aisWy (3.4)
j=1 "~ , .

But in the general case, the relatién (3.4) may not hold
because a decision maker's judgmental error is included in
the ais. This occurs due to factors such as lack of
knowledge, personal experience; interest, Eafigue, state of
mind, etc.

Consequently, instgad of the ideal case relations of
(3.4), the more realisfic reaiizations for the general case
can be considered to take the form

nwa E aiaWa (3.5)

ARV

for 1=1,2,...,n. To make the relation (3.5) an equality,

an unrestricted variable, e., 13 added to (3.5) as follows:

«

n
nwa, = E as1a3Wsy + €ea (3.6)
ji=1 .
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More explicitly,

(Aza-n)Wa+t ArzWat,...+ dinWntea =0
azaWat(aza-n)Wa+...+ " aznWn +ea =0

. . . ‘ . (3.7)
anaWait anZW:f.-.+(ann_n)Wn fen;o

As given, these simultaneous lineaiyequations have\the
trivial solution of W.=0 and e.=0 for all i. For this
trivial solution all the V., where k identifies the ‘
alternative, turn out to be zero (see equétion (1.1)). The
trivial solution does not convey any useful infprmation so
that the model should preclude ité selection. To prevent
triviality, an equatioﬁ of the form EWi=h for all I where h
is any positive number, preferably 1 for standardizing the
unit of measurement, can be added to (3.7) without any loss

of generality. Now the system can be written as follows:

(ara-n)Wa+t drazaWa+t+.,.+ . AinWnter =0

dzaWait(azz2-n)Wa+...+ aznWn +e=2 =0
(3.8)

an1w1+ an2W2+-o;+kann—n)an ’ v +en=0

Wa+t Wat...+ Wn =1

With the addition of the normalization constraint, the
system (3.8) now assures the existence of the solution, and
the weights can be calculated from (3.8) by minimizing the

sum of judgmental error as shown below.
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Mathematical Statement of Model 1

n
Minimize & es
i=1

Subject to
n

L Aai1a9Ws - nWa. + es. = 0 for i=1,2,...,n
=1 '

s
X
7Y
I
'—I

Ws =2 0 for all j
&1 1s unrestricted.
This mathematical model can be“solved via linear

programming.

Model 2 Development

The second model derived from relations (3.3) and
(3.6) is to be considered. Addifional information can be
extracted from the C' matrix (3.3). The first type of
information is "which‘critefion is more 1mpoitant than
which criterion". At most n(n-1) relations of é;zC: are
available. One understands that aiszl directly implies
that CizCy. Let fRa denofe a set of relations (i,]J) such
that criterion i is more lmporﬁant than criterion j in a
pairwvise comparison. Ci2Cs implies that WizWs because the
decision maker determines that criterion i is more
important than or equally important to criterion j. This

relation, however, may not hold for some of the pairs



32

because of the possibility of the various sources of error.
Y13 1s introduced to ldentify and aggregate the various

sources of error. Using (3.6),

nwWis = nWy
n n
==> L aaxWk + €1 2 L aasxWx + ey
k=1 k=1
n .
==> L (Qaix—Asx)Wi + Y13 2 0 (3.9)
k=1

for all (i,Jj) in Qa.

The second type‘of information extracted from (3.3) is
which criterion is "hpw much" more, or less, or equally
important than whichrcriteriop. This "how much" term is
denoted by awmn in a pairwise comparison. At most n(n-1)
terms 0f WmzamnWn OF WmsamnWn are avallable. If amn =
1l/anm, then either amm oOC any‘can be used. Let &=z denote a
set of relations (m,n) in a pairwise comparison. Gm, is
introduced to identlfy and aggregate the various sources of

error. Then

Wm - @mnWn + 6“? 2 0 vhen amn 2,} (3.10)
and

8mnWn - Wm + 0mn =2 0 When amn < 1 (3.11)

for all (m,n) in f=. Using (3.9), (3.10), and (3.11), the

second model is completed as follows:



Mathematical Statement of Model 2
Minimize E (¥Y13+0mn)

all (i,J) in @2

all (m,n) in Q=

Subject to

L =

k=1
W — @mnWn + 0mn 2 0 if amn=1

Amn¥Wn — Weo + Omn 2 0 iE VamnSl
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(Qax—asx )Wk + Yos 2 0 for all (i,j) in fa

wvhere Wi20 for all k, and ¥:3 and 6mn are unrestricted for

all (i,J) in ®a1 and (m,n) in 22. This mathematical model

can be optimized via linear programming.

Model 3 Development

The third model to be considered is
alternative objective function. Instead
amount of possible error, minimizing the
violations of equations for all (i,3j) in

in 2 is considered. This consideration

model 2 with an
of minimizing the
number of

f21 and ali (m,n)

is based on the

reasoning that even though the sum of Y.35 and dm~n might be

minimized, the number of violations of equations for all

(i,3) in 2. and all (m,n) in 22 might increase. This model

can be formulated as follows:



34

Mathematical Statement of Model 3
Minimize L (I1a+Jmn)

all (i,J) in Qa

all (m,n) in Q=2

Subject to

(2ax—AQ3x )W + MIay = 0 for all (i,J) in Qa1
1

L 3 =

k

Wm - 83mnWn + MImn 2 0 if amnz2l

AmnWn - Wo + MImn = 0 if énnsl

n

Z We =1

k=1
wvhere Wxz20 for all k, M is a large number greater than
max(ais) for all i,j=1,2,...,n, I and J are 0 or 1 integer
variables. The above model can be solved by a mixed

integer programming code.

Procedures for Estimating Weights Using
Pairwise Comparison Matrices from

Multiple Decision Makers

There are a number of circumstances in which it is
desirable to reflect the judgment of several decision
makers on a single analysis. It is a reasonable assumption
that multiple decision makers work to accomplish some
common objective even though they have different
backgrounds.

The procedures for estimating weights from multiple

decision makers consider the opinions of decision makers by



utilizing pairwise comparison matrices constructed by the
decision makers. The procedures are appropriate in
situations where the decision makers cannot be presumed
nearly identical in their pairwvise comparison judgment.
They are also appropriate when the purpose of analysis is
the prediction of a composite which, in some sense,
represents the aggregate behavior of the decision makers.
Two procedures for estimating weights from multiple
decision makers are suggested below. The results of the

simulation run will be reported in Chapter V.

Estimating Weights after Averaging
Palrwise cComparison Matrices

Each decision maker constructs a pairwise comparison
matrix. The procedure of constructing a pairwise
comparison matrix is exactly the same as explained in the
previous section. The only difference is that the number
of palrwise comparison matrices equals the number of
decision makers. From each decision maker, pairvise
comparison matrix (C'q) is constructed by the decision

maker q as shown in (3.12) where

Ca Ca ... Cn
Ca ¢ Adilg Al2g s+ Qaing
Ca2 dzig 222 s+ d2ng
Claq = . . T . (3.12)

I
Cn L anlq an2q ) annq 4

q=1,2,...,N stands for the index of the decision maker.
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After constructing N C'g matrices, the averages of the C'q
1 N
C'avq = - = C'q are
N g=1

which calculated by the formula

obtained as shown in (3.13). The weights can be estimated

using (3.13) as an input data to any models developed in

previous section.

CJ. C2 e Cn
N N N
Ci r Caiig/N faizq/N ... Laina/N 7
g=1 q=1 q=1
N N N
C'-vq = Ca, Eazlq/N Eazzq/N . Eaznq/N (3.13)
qg=1 g=1 g=1
N N N
Cn - Ea@nig/N Eanza/N ... Zanna/N -
q=1 q=1 q=1

Averaqing Individual Weights of
Decision Makers

The C'q matrix shown in (3.12) is constructed by the

decision maker q. The weights can be estimated using C'q

pairwise comparison matrix. N weight vectors, one for each

decision maker, can be calculated. The weights for a given

problem are then estimated by averaging the N individual

weights.



CHAPTER IV

USING THE INTERACTIVE COMPUTER PROGRAM
Introduction

This chapter illustrates the use of an interactive
computer program which permits easy utilization of the
wveighting methods presented in the previous chapter. The
actual FORTRAN program is documented and appears in
Appendix A. It has been implemented on an IBM 3081D.

The entire program is 1ntéractive, and the user is
prompted for all nécessary inputs by the computer. Many
typical and/or often-used vélues,of inputs are
preprogrammed, but can be easily*modified when necessary.
Only when a set of inputs has beén checked by the program
and verified by the user does the program continue.

Integer values are usuallf entered withbut a decimal
point; however, a decimal ﬁay be included. With the
prompting and verification featu;e, the input mechanism is
virtually self-explanatory. It does require that the user
understand the terms being input and fﬁeir mathematically
feasible range.

In the remainder of this chapter, actual interactive

output 1s interspersed with comments and explanations. All

317
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computer outputs shown are automatically generated by the
computer except for the input values which follow a
question mark (?). These question marks remind the user to

enter the input values.
Interactive Program Development

An interactive routine is designed such that the
decision maker and/or the researcher can iteratively
provide information for constructing a‘pgirwise comparison
matrix which is used to achieye satisfactory weights.
Figure 4.1 illustrates the components of the interactive
computer model. The inputs to’the computer model and the
output expected from the computer model are given as

follows:

INPUTS : 1. Number of decision makers,
2. Number of criteria, and
3. ais values of pairwise comparisons.

OUTPUT : Weights.

Since existing codes are not designed for interactive
mode and simulation purposes, available linear programming
and mixed integer programming codes (Kuester and Mize,

1973) are modified to meet the special purposes.



a4 values

~ INPUT
eNumber of Decision Makers
eNumber of Criteria

l

PROBLEM FORMULATION
eModel 1: LP '
eModel 2: LP
*Model 3: MIP:

EVALUATION OF WEIGHTS
*Model 1: LP
eModel 2: LP
eModel 3: MIP
*Model 4
*Model 5
*Model 6

PRINT
eEstimated

Weights//

ACCEPT

NO

CHANGE INPUT

?

Figure 4.1. Flowchart for Interactive Model

39
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Overview

The interactive computer program provides the
capability of interactively entering pairwise comparisons
data from a decision maker(s) for use in any of the models
of this research. \It also provides the«caquility of
choosing anyjmodel of the three methods developed in
Chapter III in-addition to the three eigen-vector methods.
The program begipsAby presenting the main option menu
(M.1). The user has entered a "1", indicating a desire to
enter the input data of pairwisehcomparisons matrix for

estimating weight.

kkkkkkkkkkkkkkkkkkkkkkkk

%k ok MAIN MENU =~ *%x
Rkkkkkhkhkkkkkkkkkkkkkkkkk

1. INPUT PAIRWISE COMPARISONS, ‘ (M.1)
2. EXIT THE PROGRAM. ‘

=> ENTER THE OPTION NUMBER!

Lol S ||

Input Pairwise Comparisons

After option 1 (Input Pairwise Comparisons) is
selected, the user is asked to enter Ehe number of decision
makers. Then the program prints the number of decision
makers entered for verification by the user shown as

follows.
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=> ENTER THE NUMBER OF DECISION MAKERS!

= ed )

YOU HAVE 1 DECISION MAKER(S). IS THIS NUMBER CORRECT?

=> ENTER 1=YES, 2=NO. <<<
1

«J |l

Only after the user confirms tﬁe validity of the input does
the program continue. After this verification, the program
prompts the user to enter the number of criteria. After
the number of criteria is entered; the program prints the

input data for verification by the user as follows.

=> ENTER THE NUMBER OF CRITERIA!

W oeJ i

YOU HAVE 3 CRITERIA. IS THIS NUMBER CORRECT?

=> ENTER 1=YES, 2=NO. <XX

= oed i

After the number of decision makers and the number of
criteria have been entered and conflrmed, a value of
relative importance between criterioﬁ‘i and criterion j is

requested iteratively and is illustrated as follows.

*x** THIS INPUT IS FOR DECISION MAKER 1! **x%

==> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN
CRITERION 2 ?

1.03
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==> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN
CRITERION 3 ?

W e

.67

==> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN
CRITERION 1 ?

O

.55

==> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN
CRITERION 3 7 ) :

?
2

==> BY HOW MUCH 1S CRITERION 3 MORE IMPORTANT THAN
CRITERION 1

-J

O

.21
==> BY HOW MUCH IS CRITERION 3 MORE IMPORTANT THAN
CRITERION 2 ?

?
0.5

Communication with the decision maker(s) is needed to
provide input for this kind of pairwise comparisons. Upon
completion of entering pairwise comparisons data, the
program prints these input data for verification by the

user shown below.

REKRKER KRR AR R R R R Ak Rk kR Rk Rk hhkkk &k

k%% YALUES RECEIVED FROM DECISION MAKER 1 **%
KAKKKI KR IR I AR RRRK IR kR Rk k kA k kR Rk kkkkkkk k%

1 1.03 3.67
0.55 1 2
0.27 0.5 1

*%% ARE THESE DATA CORRECT ? **x%

=> ENTER 1=YES, 2=NO. <<<

[ S RLSC R [}
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If the user desires to correct any input data, then a
selection of "2" is entered and the program prompts the
user for entering a row index number, a column index
number, and a corrected value of relative importance. The
prompts and responses to correct input data are illustrated

in (M.2).

k%% THIS INPUT IS FOR DECISION MAKER 1! %%

=> ENTER ROW INDEX NUMBER!

ol O I ||

=> ENTER COLUMN INDEX NUMBER! (M.2)

vl

=> ENTER CORRECTED VALUE OF RELATIVE IMPORTANCE!

=0 |l
<o
w

k% DO YOU NEED TO CHANGE MORE? **x*

=> ENTER 1=YES, 2=NO. <<<

[ SV ]

The program then prompts "DO YOU NEED TO CHANGE MORE?". 1If
the user needs to change more, a selection of "1" ls
entered and the procedure of (M.2) is repeated. 1If a
selection of "2" is made, then the newv pairwise comparisons

matrix is displayed for user confirmation as shown below.
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XS R R R AR R R R A A R A R R R R R R R YT Y ]

*%% VALUES RECEIVED FROM DECISION MAKER 1 *#*x
KKK KRR KRR KK KKK A KRR AR R KRR IR KRR KRR Rk k%

1 1.83 3.67
0.55 1 2
0.27 0.5 1

*** ARE THESE DATA CORRECT ? **x%

=> ENTER 1=YES, 2=NO. <<<

ol

Upon completion of the entering of input data for the
pairwise comparisoﬁs natrix, the program prompts for the
model option. 1If the user desires to use model 1 to
estimate weights of a given problem, then the user responds

with a selection of "1v.

2333332333233 2333233221

*kx* MODEL AVAILABILITY **%
KKK KRR KRKK KA IR R KRR KRk kkkk

1. MODEL
2. MODEL
3. MODEL
4. MODEL
5. MODEL
6. MODEL

VU e W

==> ENTER THE MODEL NUMBER!

? 1

The estimation of the weights for given pairwise
comparisons matrix is performed aftter making the selection
of model. Upon completlion, the program prints the

estimated welights as shown below.



RERRRKRRRRRRRRRR R R AR AL AR A

*%** ESTIMATED WEIGHTS **%
2 T

W(l) = 0.55
W(2) = 0.3
W(3) = 0.15

%% DO YOU WANT TO GO BACK TO THE MAIN MENU? **%*

=> ENTER 1=YES, 2=NO. <KX

el
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I1f the user wants to solve another problem, a selection of

1" is needed for the main menu. If the user needs to exit

the program, a selection of "2" is needed. The user can

repeat the procedure until he/she has no need of it.
Summary

The features of the inﬁeractive computer program
this research have been illuétrated in this chapter.
exaﬁple is given for describing the capability of the
program. The interactive feature and its convenience

this computer program a useful tQpl for communicating

of

An

make

with

decision makers and for estimating the weights to a given

problem.



CHAPTER V

RESULTS, COMPARISON, AND ANALYSIS

'

Introduction

This chapter reports the results of the testing of the
models developed in this research. It‘includes comparing
the results of the three modéls developed in this research
with the three eigen-vector methods reviewed earlier;
Saaty's eigen-vector method, Cogger and Yu's eigenweight
vector method, andlfakeda, et al.'s graded eigenvector
method. N |

Simulation wasmused to éompare the three models
developed in this research with the three eigen-vector
methods. These three eiegﬂ—Vector methods are utilized for
comparisons because the weights of these three eigen-vector
methods are estimated from a paiiwise1comparison matrix-as
is done for the three models devélopéd in this research.

Takeda, et al. (1987) also uséd(simulation in their
comparative study of their method with Saaty's method and
Cogger and Yu's méthod using eight decision making settings
involving up to five criteria shown in Table 5.1. The
resulting choices in the order of generating better
solutions wére Takeda, et al.'s method, Cogger and Yu's

method, and Saaty's method.

46
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TABLE 5.1

SUMMARY OF EIGHT DECISION MAKING SETTING PROBLEMS
USED BY TAKEDA, ET AL.

Problem - W D(i,3)"

1 (0.15,0.55,0.3) ‘ D(1,2)=0.9, D(1,3)=0.6,
D(2,3)=0.3

2 (0.3,0.15,0.55) © D(1,2)=0.9, D(1,3)=0.6,
" D(2,3)=0.3

3 (0.55,0.3,0.15) D(1,2)=0.9, D(1,3)=0.6,
D(2,3)=0.3

4 (0.55,0.3,0.15) D(1,2)=0.9, D(1,3)=0.8,
D(2,3)=0.6

5 (0.2,0.4,0.1,0.3) D(1,2)=0.7, D(1,3)=0.9,

. D(1,4)=0.8, D(2,3)=0.7,

| D(2,4)=0.6, D(3,4)=0.4

6 (0.2,0.4,0.1,0.3) D(1,2)=0.8, D(1,3)=0.7,

\ D(1,4)=0.9, D(2,3)=0.4,

D(2,4)=0.6, D(3,4)=0.5

7 (0.2,0.4,0.1,0.3) D(1,2)=0.7, D(1,3)=0.6,

'D(1,4)=0.8, D(2,3)=0.5,

D(2,4)=0.6, D(3,4)=0.3

8 (0.25,0.3,0.15,0.1,0.2) D(1,2)=0.6, D(1,3)=0.7,

D(1,4)=0.8, D(1,5)=0.6,

D(2,3)=0.7, D(2,4)=0.6,

D(2,5)=0.6, D(3,4)=0.5,

D(3,5)=0.8, D(4,5)=0.3

*decision maker's confidence when comparing criterion i
with criterion j.
A critical cholce in Takeda, et al.'s simulation study
vas the modeling of inconsistency of human judgment which
vas treated as random variation. The statistical model

that they selected for simulating of human judgment was

A1g9 = Wag€ag {5.1)
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where W.y was assumed to have a true value and £.:5 was
assumed to be a uniformly distributed random variable on
the interval (.5, 1.5) with a mean of one. The pairwise
comparison matrix, C', for:estimating veights using the six

methods mentioned above is generated using (5.1).
Measurement of Goodness of Fit

In order to quantify the desirability of various
methods under the same conditions, two different measures
of 'goodness of fit' will be uséd. The first measure is
essentially an error term based on an Euclidean distance
measure, dik, between the parameter values and the
estimated values yhilé the second measure is an error term
based on a city block disﬁanqe measure, dzx. The Euclidean
distance measure implies,the shortest diétance between two
points and the city block distance measure implies a longer
distance between two\points in a geometric sense (Zeleny,

1982). These are given by;

1 R n %
daix = — T [ L (Wi — Wat=2)2 ] (5.2)
R r=1 i=1 :
and
1 R n i
dax = - & = IW:. - WL(:’I (5.3)
R r=1l i=1

where k represents the weighting method such as 1 for the

Model 1, 2 for the Model 2, 3 for the Model 3, 4 for the
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Saaty's method, 5 for the Cogger and Yu's method, and 6 for
the Takeda, et al.'s method,

r is the replication number, r=1,2,...,R,

i is the criterion number, i=1,2,...,n,

Ws is the true weight of criterion i, and

Wa¢=? is the estimated weight of criterion i at the

re» replication.
Deciding the Number of Replications

In order to determine the significance between the
true weights and the estimated weights from model k based
on Euclidean distance measure of goodness of fit (the same
procedure can be applied to city bldck distance measure of
error), it 1s necessary to show that a distance between the
true weight vector and the estimated weight vector is
significant when Type I error is o« and Type II error is B.
o refers the probability of falsely rejecting the null
hypothesis rather than accepting it and B refers the
probability of falsely accepting the null hypothesis rather
than rejecting it. The appropriate formula (Steel and
Torrie, 1980) for determining R when the hypothesis
alternatives are one sided, is given by (5.4)

(ZutZa)?® o2

R = (5.4)
de?
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where de is a difference between the true weight vector and
the estimated weight vector, ﬁ identifies the measure of
goodness of fit used such as 1 for a Euclidean distance
measure and 2 for a city block distance,measure, and o2 is
the variance of these differences. Since R is likely to
be a fractional value, the nexf higher intéger_value will
be used for R. This formula has obvious difficﬁlty. o2 is
rarely known and so it must be estimatéd. If o2 is
underestimated, the number of replications, R, is too
small; if 02 is overestimated, then R is too large. 1In
this research, to overcome thié»problem, a pilot study was
used to estimate o*. The calculated variances of the
differences between the true weiéht vector and the
estimated weight vector, uéing a sample size of 30, for the
six models are shown in Table 5.2. NC represents the
number of criteria. The decisioﬁ¥making settings used for
obtaining the results bf Table 5.2 are W=(.55,.3,.15) for
NC=3, W=(.2,.4,.1,.3) for NC=4, and W=(.25,.3,.15,.1,.2)
for NC=5. When the number of criteria is three {NC=3) and
the Euclidean distance\measure is used, the maximum
estimated variance of differences is';00221. This maximum
value was used for conservative purposes . as an estimated
variance in order to determine the appropriéte number of
replications for the simulation run of NC=3. The number of.
replications for the simulation runs was determined by

(5.4) and reported in Table 5.3.
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TABLE 5.2
ESTIMATED VALUES OF 02 WHEN N=30
Model NC=3 ~ NC=4 NC=5

(k) Var(daix)Var(dax) Var(dax)Var(dax) Vgr(dln)Var(dzk)

1 .00072 .00170 .00094 .00271 .00044 .00135
2 .00221 .00485  .00162 .00405 .00229 .00707
3 .00147 .00325 .00140 .00355 .00203 .00659
4 .00064 .00213 .00048 .00156 .00038 .00134
5 .00097 .00227 .00052 .00118 .00038 .00118
6 .00199 .00546 .00079 .00216 .00060 .00224
MAX .00221 .00546 .00162 ,60405 .00229 .00707
TABLE 5.3
NUMBER OF REPLICATIONS FOR SIMULATION RUN
WHEN «=8=0.025
Number of criteria NC=3 NC=4 NC=5
goodness of fit*® E- c E c . E o
des values used 0.05 0.08 0.045 0.07 0.04 0.07
Number of replication 16 16 15 15 24 25

*E stands for Euclidean distance measure and C stands for
city block distance measure.

Experimental Design

The experimental design for the simulation is
summarized in Figure 5.1. This experimenf will be repeated
for each of eight decision making settings introduced by
Takeda, et al. (1987) which were shown in Table 5.1. At
each replication, the C' matrix is generated from equation

(5.1) and the six methods are applied in order to estimate
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Construct C matrix for each of
eight decision making settings

At it" replication

Generate -C' matrix
from asy = Wig€as

‘Calculate Qex usiﬁg for
each of six methods

Model 1 Model 2 Model 3 ‘Mod'l 4 «Model 5| | Model6

dlll dzll dlzl d22" dl3L d23" dl‘l d241 dlS" d251 d:.sidzs“

Repeat R replications

Obtain the averages of
dex from (5.2) and (5.3)

Decide the significance of dex

Figure 5.1. Summary of Experimental Design for Simulation



53

their own weight vector. Then, the distance measures are
calculated by using the two different measures of goodness
of fit. Repeating R times, the averages of distance
measures are obtained using (5.2) and (5.3). The
statistical test for determining which method is superior
can be carriednout. For the statistical tesf to determine
the significance of the difference between models, the
hypotheses are set up as fqllowé;

Null Hypothesis (He): Mo = Uz = U3 = Ha = Us = Ne

Alternative Hypothesis (Ha): At least one is different

Mo

(dexx - d'2)2 / 5

k=1

o}
1]

Test Statistiq
Sp2

Critical Region Reject Ho if

.o

F > F(dfn,dfd,a)

wvhere Ui, k=1,2,...,6 15 the population mean of the
differences between the true weight vector and the
estimateduweightxvector from model k. ‘d;k is calculated
from equation (5.2) and {(5.3). d'z is the average of dex
for k=1,2,...,6. Sp? is pooled sample variance.

Duncan's newvw multlple range test (1955) is used to
f£ind out which model is different from whlch model when

null hypothesis, Heo, is rejected.
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Results, Comparison, and Analysis

In this section, the results of the simulations are
presented, compared, and analyzed’in order to decide if one
or more methods are betféx than the others. Eight decision
setting problems introduced by Takeda, et al. (1987) and
shown in Table 5.1 were used for the simulafion,run.

The structure of the tables (see Table 5.4 for
example) reporting the simulatiop results is as follows.

In the table heading, the true weight vector W is given
first. Second, the decision maker's confidence, or degree
of knowledge when comparing criterion i with criterion j
represented by D(i,Jj) for Takeda, et‘al.'s method is given.
Third, the number of £epli§ations, R, for detecting a
particular difference is repOrfed. Fourth, the seed number
used for generating uniform random numbers is given. The
uniform random numbers'were;genérated from fhe RANF
introduced by Chandler (1970).

The average of weights, averages of differenées‘
between true weight vector and éstimated weight vector, and
the variation of those differences are then reported for
the three models, develbped in Chapter III which are repre-
sented by Model 1, Model 2, and Model 3 respectively. The
solution given by Saaty's approach is represented by Model
4, the solution obtained from Cogger and Yu's method is
represented by Model 5, and the Graded Eigenvector Method

developed by Takeda, et al. is represented by Model 6.
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Table 5.4, based on R=16, Indicates that the estimated
wveight vectors from Model 1 and Model 5 are preferred over
the others based on the calculated d‘;(and d'=.

In Table 5.5 and Table 5.6, the F §alue is obtained in
order to determine the existence of a statistical
significance between models by dividing the between models'
mean square by the within models' mean square. The
calculated F value is compared with the fabular F value for
5 and 90 degreés of freedom to decide’whether,to accept the
null hypothesis of no difference between population means
or the alternative hypothesis of a difference. The tabular
F value for 5 and 90 degrees of freedom is 2.33 at the 5
percent of significance level. Since calculated F does not
exceed 5 percent tabular F, the experiment prqvides no
evidence of real differences between models for both

measures.

TABLE 5.4

" SIMULATION RESULTS BASED ON W=(0.15,0.55,0.3),
p(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3 :
R=16, NC=3, SEED=0

Model W' d'sa ocara? d'= Car=2?
1l (.1627,.5256,.3117) .0435  .0007 .0684 .0017
2 (.1532,.5851,.2617) .0672 .0015 .1029 .0033
3 (.1567,.5791,.2642) .0685 .0014 .1049 .0030
4 (.2512,.4316,.3172) .1607 .0015 .2464 .0036
5 (.1470,.5568,.2962) .0323 .0002 .0499 .0006
6 (.1469,.5552,.2979) .0780 .0016 .1216 .,0040
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TABLE 5.5

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.4

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0103 0021 1.7826
Within Models 90 .1035 .0012

Total 95 .1138

TABLE 5.6

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.4

Source of Variation df Sum of Square Mean Square F
Between Models 5 . .0240 .0048 1.7752
Within Models 90 . .2430 .0027

Total 95 .2670

Table 5.7, differs froﬁ Table 5.4 only in the true
veight vector, and also’ indicates that Model 1 and Model 5
are the preferred solution methods based on d'. and d'z.
1f one had to rank the models in the order of generating a
better weight vector to come behind Model 1 and Model 5
based on calculated d'a and d'=z, it would be Model 2, Model

3, Model 6, and Model 4 respectively.



TABLE 5.7

SIMULATION RESULTS BASED ON W=(0.3,0.15,0.55),
D(1,2)=0.9, D(1,3)=0.6,

D(2,3)=0.3

RélG, NC=3, SEED=0
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Model A d'a Cara® d'= Car=22
1 (.3087,.1679,.5234) .0462 .0007 .0702 .0019
2 (.2418,.1513,.6069) .0849 .0018 .1305 .0038
3 (.2428,.1559,.6013) .0872 .0018 .1333 .0039
4 (.3921,.1189,.4890) .1199 .0016 .1901 .0042
5 (.2968,.1539,.5493) .0449 .0007 .0686 .0016
6 (.2980,.1552,.5468) .0874 .001e6 .1373 .0042

In Table 5.8 and Table 5.9, the F value is obtained in

order to determine the existence of a statistical

significance between models by dividing the between models'

mean square by the vithin models' mean square.

calculated F does not exceed 5 percent tabular F, the

Since

experiment provides no evidence of real differences between

models for both measures.

TABLE 5.8

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.7

Source of Variation df Sum of Square‘ Mean Square F
Between Models 5 .0041 .0008 0.5985
Within Models 90 .1230 .0014

Total 95 .1271
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TABLE 5.9

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF -TABLE 5.7

Source of Variation 4Af Sum of Square Méan Square F
Between Models 5 .0106 .0021 0.6490
Within Models 90 .2940 .0033

Total 95 .3046

Table 5.10 and Table 5.13 yield Model 1 and Model 5
again as best models based on thé calcﬁlated d'a and d4'2,
but a somewhat different result on the other models. The
reasons are most likély due té‘the different values of
D(i,J) used in Model 6 and diffeient seed number used in
all models. 1In this case, Model 6, Model 3, Model 2, and
Model 4 is the order of geﬁerating*better weight vectors
hehind model 1 and Model 5. Again the comparison is based
on the calculated d'ys and d4'=. But, from statistjcal point
of view, there is no evidence of any differences between
models as can be seen in Table 5.11, Table 5.12, Table

5.14, and Table 5.15.
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TABLE 5.10

SIMULATION RESULTS BASED ON W=(0.55,0.3,0.15),
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3
R=16, NC=3, SEED=472

Model W . d":. Cara? d'= Car2?
1 (.5555,l2825,.1620) ,0380 .0003 .0599 .0008
2 (.5890,.2589,.1521) .0786 .0015 .1208 .0035
3 (.5846,.2607,.1547) .0742 .0013 .1146 .0033
4 (.4377,.3770,.1853) .1430 .0006 .2253 .0018
5 (.5481,.3015,.1504) .0431 .0007 .0686 .0019
6 (.5480,.3014,.1506) .0594 ,0016 .0928 .0038
" TABLE 5.11
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA ' OF TABLE 5.10
Source of Variation df Sum of Square Mean Square F
Between Models 5 .0072 .0015 1.5000
within Models 90 . .0900 .0010
Total 95 .0972
TABLE 5.12
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE[5.10
Source of Variation df Sum of Square Mean Square F
Between Models 5 .0179 .0036 1.4185

Within Models 90 .2265 .0025

Total 95 .2444
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TABLE 5.13

SIMULATION RESULTS BASED ON W=(0.55,0.3,0.15),
. D(1,2)=0.9, D(1,3)=0.8, D(2,3)=0.3
R=16, NC=3, SEED=0

Model w! d's  Cara® d's Car2?
1 (.5536,.2831,.1633) .0450 - .0007 .0699 .0018
2 (.5833,.2654,.1513) .0745 .0015 .1141 .0032
3 (.5826,.2608,.1566) .0736 .0013 .1118 .0028
4 (.4324,.3795,.1881) .1498 .0008  .2365 .0028
5 (.5412,.3083,.1505) .0449 .0010 .0709 .0024
6 (.5406,.3069,.1525) .0675 .0023  .1039 .0053
TABLE 5.14

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.13

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0075 .0015 1.1538
Within Models 90 .1140 .0013

Total 95 . .1215
. TABLE 5.15-

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.13

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0188 .0038 1.2361
Within Models 90 .2745 .0031

Total 95 .2933
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Table 5.16, Table 5.19, and Table 5.22 present
simulation results for the case of NC=4 criteria weights.
Utilizing the same true weight vector, differing values of
D(i,Jj) and seed number are used for generating a pairwise
comparison matrix and a simulation run.

Table 5.16, again, indicates that model 1 and Model 5
are superior to the other models having smaller values of
d'a and d'2. Model 4, which generated the worst weight
vector in case of NC=3, becomes fourth when NC=4. There is
no differences between models from statistical view point
as shown in Table 5.17 and Table 5.18 since calculated F
values do not exceed the tabular F value, 2.33 for 5 and 84

degrees of freedom.

TABLE 5.16

SIMULATION RESULTS BASED ON W=(0.2,0.4,0.1,0.3),

D(1,2)=0.7,D(1,3)=0.9, D(1,4)=0.8,D(2,3)=0.7,
D(2,4)=0.6,D(3,4)=0.4, R=15, NC=4, SEED=0

Model W d'ys Cara? d'z Car=22
1 (.2088, .3888,.1038,.2986) .0410 .0007 .0681 .0019
2 (.1515, .4585,.1017,.2883) .1178 .0016 .1916 .0042
3 (.1580,.4532,.1029,.2859) .1173 .0011 .1903 .0032
4 (.2006,.3845,.1055,.3094) .0673 .0008 .1165 .0024
5 (.2020, .4127,.0940,.2913) .0421 .0007 .0677 .0014
6 (.2059,.4106,.0880,.2955) .0622 .0006 .1038 .0017
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TABLE 5.17

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.16

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0061 ‘ .0012 1.3269
Within Models 84 .0769 .0009

Total 89 .0830
TABLE 5.18

ANALYSIS OF VARIANCE FOR CiTY BLOCK ‘DISTANCE
MEASURE DATA OF TABLE 5.16

Source of Variatioﬁ df Sum of Square Mean Square F
Between Models ~ 5  .0157 .0031 1.2745
Within Models 84 .2071 .0025

Total 89 .2444

Table 5.19 uses the samé true weight vector but
different D(i,Jj) and seed number used from those in Table
5.16. On the average, the models can be ranked from better
to worse solutions as Model 1, Mode1‘5, Model 6, Modei 4,
Model 3, and Model 2. No statistical differences are
indicated between models as shown in Table 5.20 and Table

5.21.
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63

SIMULATION RESULTS BASED ON w=(0.2,0.4,0.1,0.3),
D(1,2)=0.8,D(1,3)=0.7, D(1,4)=0.9,D(2,3)=0.4,
D(2,4)=0.6,D(3,4)=0.5, R=15, NC=4, SEED=40

Model w! d'a Oa:a® d's OCar22
1 (.2029,.3806,.1009,.3156) .0460 .0003 .0808 .0008
2 (.1532,.4400,.1006,.3062) .0992 .0013 .1645 .0038
3 (.1574,.4538,.1039,.2849) .0974 .0012 .1601 .0030
4 (.2190,.3522,.1172,.3116) .0743 .0007 .1320 .0026
5 (.2062,.3869,.1064,.3005) .0488 .0003 .0817 .0009
6 (.2182,.3854,.1122,.2842) .0677 .0006 .1148 .001le
TABLE 5.20
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.19
Source of Variation df Sum of Square Mean Square F
Between Models 5 .0026 .0005 0.7153
Within Models 84 .0616" .0007
Total 89 .0642
TABLE 5.21
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.19
Source of Variation df Sum of Square Mean Square F
Between Models 5 .0067 .0013 0.6360
Within Models 84 L1771 .0021

Total 89 .1845
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Table 5.22, the same true weight vector but different
D(i,J) and seed number used from Table 5.16 and Table 5.19,
indicates thét Model 1. is ranked first based on the
calculated d's and d'=. If one had to pick a method to
come in second place behind Model 1 based on smaller Qalues
of d'. and d'2, it would be Model 5. Model 6 would be
picked third, Model 4 fourth, Médel 2 fiffh, and Model 3
would be sixth.

Table 5.23 and Table 5.24 indicate no statistical
significance between models since the calculated F values
do not exceed 5 percent tabular Fﬂvalue for 5 and 84

degrees of freedon.

TABLE 5.22

SIMULATION RESULTS BASED ON W=(0.2,0.4,0.1,0.3),
D(1,2)=0.7,D(1,3)=0.6,D(1,4)=0.8, D(2,3)=0.5,
D(2,4)=0.6,D(3,4)=0.3, R=15, NC=4, SEED=921

Model W' d'y Cara1® d'2 Ca:=2?
1 (.2033,.3328,.1092;.3047) .0419 " .,0008 .0700 .0021
2 (.1449,.4532,.1040,.2979) .1034 .0033 .1721 .0079
3 (.1479,.4583,.1040,.2898) .1115 .0067 .1812 .0142
4 (.1914,.3790,.1246,.3050)" .0669 .0004 .1171 .0011
5 (.1952,.4065,.1046,.2937) .0454 .0004 .0769 .0012
6 (.2010,.4045,.1048,.2897) .0614 .0005 .1035 .0013
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TABLE 5.23

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.22

Source of Variation df Sum of Square Mean Square F
Between Models 5 . .0043 .0009 0.4262
Within Models 84 .1693 .0020

Total 89 .1736
TABLE 5.24

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.22

Source of Variation df Sum of Square Mean Square F
Between Models 5 L0111 .0022 0.4791
Within Models 84 .3892 .0046

Total 89 .4003

Table 5.25, based on R=25 and NC=5, yields quite
similar results to those in Table 5.22 except Model 4 is
now in third place and Model 3 i§ in fiftﬁ place.: No
statistical significance between models is detected. As
shown in Table 5.26 and Table 5.27; Ehe calculated F values
do not exceed 5 percent tabular F value, 2.29, for 5 and

144 degrees of freedom.
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TABLE 5.25

SIMULATION RESULTS BASED ON W=(.25,.3,.15,.1,.2),
p(1,2)=0.6, D(1,3)=0.7, D(1,4)=0.8, D(1,5)=0.6,
p(2,3)=0.7,0(2,4)=0.6,D(2,5)=0.6,D(3,4)=0.5,
D(3,5)=0.8,D(4,5)=0.3, R=25, NC=5, SEED=0

Model ‘W! ’ d's Cara? d'= Car2?
1 (.2520,.2878,.1507,.1038,.2057) .0381 .0005..0671 .0015
2 (.2560,.3705,.0927,.1003,.1805) .1211 .0021 .2173 .0059
3 (.2541,.3714,.0939,.0999,.1807) .1198 .0019 .2157 .0053
4 (.2429,.3036,.1481,.1041,.2014) .0519 .0004 .0955 .0014
5 (.2461,.3058,.1473,.0981,.2027) .0401 .0004 .0725 .0011
6 (.2498,.3114,.1424,.0979,.1985) .0578 .0006 .1074 .0023

TABLE . 5.26

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.25

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0075 .0015 1.5186
Within Models 144 .1416 .0010

Total 149 .1491
TABLE 5.27

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.25

Source of Variation df Sum of Square Mean Square F
Between Models 5 .0239 .0048 1.6406
Within Models 144 .4199 .0029

Total 149 .4438.
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Even though there were no statistical evidences of
significance between models indicated, Model 1 has been
ranked the first, baséd on smallest values of the
calculated d'a and d'=2, for all,the decision making setting
problens except‘prqblems 1l and 2 as summarized in Table
5.28. The largest problem used by Takeda, etral. (1987)
has five criteria. What if the problem size is larger than
five-criteria problem? Additional simulation runs were
made for the problems of NC=7 and NC=9‘shown in Table 5.29
after eliminating two wdrst mbdéls’based on largest values

of d's and d'z which were Model 2 and Model 3.

. TABLE 5.28

SUMMARY OF THE SIMULATION RESULTS FOR EIGHT
DECISION MAKING SETTING PROBLEMS

Decision Making Number of First Ranked
Setting Problem Criteria Model

1 3 Model 5

2 3 Model 5

3 3 Model 1

4 3 Model 1

5 4 Model 1-

6 4 Model 1

7 4 Model 1

8 5 Model 1

The true weight vectors, W, aie provided by this author.
The decision maker's confidence, D(i,3j), when comparing
criterion i with criterion j for the Model 6 is generated
by (0,1) uniform random numbers since it is not available

from previous work.
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TABLE 5.29

PROBLEM DESCRIPTIONS FOR ADDITIONAL SIMULATION RUN

i W D(i,J)

7 (.2,.12,.15,.1,.2,.05,.18) (0,1) Uniform
9 (.2,.12,.08,.1,.17,.05,.15,.1,.03) Random Numbers

Table 5.30, Table 5.33, and Table 5.36 indicate that
the weights from Model 1 are the best ones bésed on the
calculated values of d'lrand d'2. Model 6 would be picked
second, Model 4 third. No weighps can be calculated from
Model 5. As explained in Chapter II, a weight from Model
5, due to Cogger and Yu (1985), is the geometric mean of
all the weights gengrated ffom‘the possible index orders.
An index order of 2520 must be énumerated wvhen NC=7. A
severe underflow problem ié,encoﬁntered when multiplying
the numbers which are less than 110 2520 times. At this
point, mathematics of this technique prohibits the
calculation of the geometric mean when the problem has more
than five Critéria.

Table 5.31, Table 5.32, Tab1e45.34, Table 5.35, Table
5.37, and Table 5.38 indicate that statistical significance
between models exists since all calculatele values exceed
5 percent tabular F value, 2.39, for 2 and 74 degrees of

freedom.
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TABLE 5.30

SIMULATION RESULTS BASED ON W=(:2,.12,.15,.1,.2,.05,.18),
D(i,j)* IS GENERATED FROM (0,l1) UNIFORM
RANDOM NUMBERS, R=25, NC=7, SEED=3211

Model A d'ys 0ara? Ad'z OCar=22?

1l (.2024,.1212,.1502,.1016,.1891,

.0538,.1817) ' .0293 .0002 .0601 .0007
4 (.0874,.1298,.0831,.2303,.1435, ]
.1534,.1725) .2310 .0007 .5149 .0037

5 No Weights Estimated
6 (.2012,.1227,.1441,.0983,.1964,
.0460,.1913) .0590 .0003 .1232 .0010

*D(1,2)=.68,D(1,3)=.62,D(1,4)=.97,D(1,5)=.82,D(1,6)=.81,
D(1,7)=.53,D(2,3)=.67,D(2,4)=.95,D(2,5)=.40,D(2,6)=.73,
D(2,7)=.64,D(3,4)=.65,D(3,5)=.40,D(3,6)=.83,D(3,7)=.85,
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05,
D(6,7)=.54,

TABLE 5.31

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.30

Source of Variation df Sum of Square Mean Square F
Between Models 2 .0237 -~ .0119 29.6454
Within Models 12 .0288 - .0004

Total 74 .0525
TABLE 5.32

ANALYSIS OE VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.30

Source of Variation df Sum of Square Mean Square F
Between Models 2 .1214 .0607 33.7272
Within Models 72 .1296 .0018

Total 74 .2510
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Duncan's (1955) new multlple-range test 13 uzed to s
which model is different from which model since Ho 1is
rejected. This test consists 0of computing the least
significant ranges, Rp, by Eg. 5.5 and applying it to

differences between all pairs of means.
Rp = Qu(p,fe) Sa , (5.5)

wvhere g« is obtained from significant studentized ranges
for new multiple-range test (Steel and Torrie, 1980), p is
the number of between models, Ee-is error df, and Sa is the
standard error of a between models' mean.

For the Buclidean distance measure data of Table 5.30,

the values for Duncan's test are summarized as follows:

p 2 3
dwx(p,72) 2.83 2.98 (5.6)
Rp 0.0113 - 0.0119

A summary of the test results, using d'ax for k=1,4,6,

follows.
Model 1 Model 6 Model 4
.0293 .0590 .2310

Duncan's test indicates that the average distance between
the true weight vector and estimated weight vector from
Model 1 is different from those from the other two models.
The same test result occurs for the city block distance

mneasure.
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TABLE 5.33

SIMULATION RESULTS BASED ON W=(.2,.12,.15,.1,.2,.05,.18),
D(i,J)" IS GENERATED FROM (0,1) UNIFORM
RANDOM NUMBERS, R=25, NC=7, SEED=4444

Model W' 4 d'a Gd"‘lz d'z Ccarz?®

1 (.2034,.1239,.1513,.1013,.1911,

.0522,.1768) .0303 .0002 .0606 .0007
4 (.0930,.1162,.0791,.2390,.1373, .
.1592,.1762) .2337 .0006 .5227 .0037

5 No Weights Estimated
6 (.1980,.1185,.1449,.1008,.2112,

.0485,.1781) .0518 .0004 .1080 .0013

*D(1,2)=.68,D(1,3)=.62,D(1,4)=.97,D(1,5)=.82,D(1,6)=.81,
p(1,7)=.53,D(2,3)=.67,D(2,4)=.95,D(2,5)=.40,D(2,6)=.73,
D(2,7)=.64,D(3,4)=.65,D(3,5)=.40,D(3,6)=.83,D(3,7)=.85,
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05,
D(6,7)=.54,

TABLE 5.34

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.33

Source of Variation df Sum of Square Mean Square F
Between Models 2 .0250 .0125 31.2173
Within Models 72 .0288 .0004

Total 74 .0538 *
TABLE 5.35

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.33

Source of Variation df Sum of Square Mean Square F
Between Models 2 .1293 .0646 34.0140
Within Models 72 .1368 .0019

Total 74 .2661
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Duncan's new multiple-range test is applied to see
wvhich model is dlifferent from which model since Ho is
rejected. A summary of the test results, using d'ix for
k=1,4,6 in Table 5.33 and (5.6), follows.

Model 1 Model 6 Model 4

.0303 .0518 .2337
Duncan's test indicates that the average distance between
the true weight vector and estimated weight vector from
Model 1 is different from those from the other two models.

The same test result is made for the city block distance

measure.

TABLE 5.36

SIMULATION RESULTS BASED ON W=(.2,.12,.15,.1,.2,.05,.18),
D(i,3)* IS GENERATED FROM (0,1) UNIFORM
RANDOM NUMBERS, R=25, NC=7, SEED=5678

Model w' ) d'ys ca:2?® d'za Ca:r=2?

1 (.2047,.1208,.1517,.0999,.1881, .0528,.1820)
.0288 .0002 .0584 .0006 4 \
(.0904,.1207,.0831,.2274,.1452, .1595,.1737)
.2281 .0005 .5123 .0035 A

5 No Weights Estimated 6 (.1924,.1210,.1531,.1037,.1956,
.0499,.1843) .0532 .0003 .1095 .0011

*D(1,2 68,D(1,3)=.62,D(1,4)=.97,D(1,5)=.82,D(1,6)=.81,

)=.
D(1,7)=.53,D(2,3)=.67,D(2,4)=.95,D(2,5)=.40,D(2,6)=.73,
D(2,7)=.64,D(3,4)=.65,D(3,5)=.40,D(3,6)=.83,D(3,7)=.85,
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05,

)=.

D(6,7 54,
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TABLE 5.37

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.36

Source of Variation df Sum of Square Meén Square F
Between Models \2 .0236 ~.o0l18 35.4529
Within Models 72 .0240 .0003

Total 74 .0476

TABLE 5.38

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.36

Source of Variation df Sum of Square Mean Square F
Between Models C 2 .1236 .0618 35.6619
Within Models 72 ©.1248 .0017

Total 74 , .2484

Duncan's new multiple-range test is applied to see
vhich model is different from which model since Ho is
rejected. A summary of the'test'results, using d'aix for
k=1,4,6 in Table 5.36 and (5.6), follows.

Model 1 Model 6 Model 4

.0288 .0532 .2281
puncan's test indicates that the average distance between
the true weight vector and estimated weight vector from
Model 1 is different from those from the other two models.

The same test result occurs for the city block distance

neasure.
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Additional simulation runs were made using NC=9
problem after eliminating Model 4 and Model 5 from further
considerations since Model 4 was determined as worst model
by Duncan's new multiple-range test and as mentioned
before, no weights can be estimated from Model 5 when the
number of criteria is more than five.

Table 5.39, Téble 5.42, and Table 5.45 indicate that
the weights from Model 1 are better than the weights from
Model 6 based on smaller values of the calculated d'a and
d'z2. The same F test was applied in order to determine the
existence of a statistical significance between two models.

As indicated in Table 5.40 and Table 5.41, no
statistical differences between two models are detected
since calculated F values do‘not exceed the 5 pércent

tabular F value, 2.84, for 1 and 48 degrees of freedonm.

TABLE 5.39

SIMULATION RESULTS BASED ON W=(.2,.12,.08,.1,.17,.05,.15,
.1,.03), D(i,J)" 1S GENERATED FROM (0,1) UNIFORM
RANDOM NUMBERS, R=25, NC=9, SEED=6156

Model w! d'a Tarar? d'= Car2?

1 (.2020,.1209,.0809,.1014,.1566,

.0514,.1513,.1033,.0322) .0252 .0003 .0535 .0009
6 (.2006,.1218,.0796,.1003,.1669, .. .
.0481,.1542,.0990,.0295) .0464 .0003 .1088 .0011

~D(1,2)=.47,D(1,3)=.17,D(1,4)=.64,D(1,5)=.50,D(1,6)=.89,
p(1,7)=.72,D(1,8)=.92,D(1,9)=.55,D(2,3)=.75,D(2,4)=.69,
p(2,5)=.37,D(2,6)=.28,D(2,7)=.71,D(2,8)=.17,D(2,9)=.20,
D(3,4)=.09,D(3,5)=.03,D(3,6)=.49,D(3,7)=.77,D(3,8)=.63,
D(3,9)=.98,D(4,5)=.71,D(4,6)=.77,D(4,7)=.23,D(4,8)=.88,
D(4,9)=.74,D(5,6)=.09,D(5,7)=.96,D(5,8)=.31,D(5,9)=.20,
D(6,7)=.80,D(6,8)=.33,D(6,9)=.58,D(7,8)=.13,D(7,9)=.25,
D(8,9)=.14,
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TABLE 5.40

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.39

Source of Variation df Sum of Square Mean Square F
Between Models 1 .0002 .0002. 0.7491
Within Models 48 .0144 .0003

Total . 49 .0146
TABLE 5.41

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.39

Source of Variation df Sum of Square Mean Square F
Between Models 1 . .0015 .0015 1.5290
wWithin Models 48 .0480 .0010

Total 49 - .0495
"TABLE 5.42

SIMULATION RESULTS BASED ON W=(.2,.12,.08,.1,.17,.05,.15,
.1,.03), D(i,j)* IS GENERATED FROM (0,1) UNIFORM
RANDOM NUMBERS, R=25, NC=9, SEED=7312

Model w' da'a Car1? d'=2 Car22

1 (.2013,.1206,.0804,.1012,.1641,

.0511,.1499,.0994,.0320) - ,0202 .0000 .0467 .0002
6 (.2051,.1227,.0792,.0994,.1626, ‘

.0482,.1484,.1043,.0301) .,0507 .0003 .1163 .0013
“D(1,2)=.47,D(1,3)=.17,D(1,4)=.64,D(1,5)=.50,D(1,6)=.89,
D(1,7)=.72,D(1,8)=.92,D(1,9)=.55,D(2,3)=.75,D(2,4)=.69,
D(2,5)=.37,0(2,6)=.28,D(2,7)=.71,D(2,8)=.17,D(2,9)=.20,
D(3,4)=.09,D(3,5)=.03,D(3,6)=.49,D(3,7)=.77,D(3,8)=.63,
D(3,9)=.98,D(4,5)=.71,D(4,6)=.77,D(4,7)=.23,D(4,8)=.88,
D(4,9)=.74,D(5,6)=.09,D(5,7)=.96,D(5,8)=.31,D(5,9)=.20,
p(6,7)=.80,D(6,8)=.33,D(6,9)=.58,D(7,8)=.13,D(7,9)=.25,
D(8,9)=.14,
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Table 5.43 and Table 5.44 indicate that there is some
statistical differences between two models since calculated

F values exceed the 5 percent tabular F value, 2.84, for 1

and 48 degrees of freedon.

TABLE 5.43

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5,42

Source of Variation df Sum of Square Mean Square F
Between Models 1 .0005 .00047 3.1008
Within Models 48 .0072 .00015

Total 49 .0077
TABLE 5.44

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.42

Source of Variation df Sum of Square Mean Square F
Between Models 1 .0024 .00240 - 3.2294
Within Models 48 .0360 .00075

Total 49 .0384
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TABLE 5.45

SIMULATION RESULTS BASED ON W=(.2,.12,.08,.1,.17,.05,.15,
.1,.03), D(1,3)* IS GENERATED FROM (0,1) UNIFORM
RANDOM NUMBERS, R=25, NC=9, SEED=8866

Model w! d'a O'aj:Lz d'z Car22

1 (.1997,.1222,.0804,.1031,.1630,"

.0502,.1491,.1009,.0314) .0240 .0001 .0513 .0004
6 (.2034,.1151,.0778,.1014,.1707,
.0546,.1412,.1046,.0312) - .0496 .0002 .1144 .0009

*D(1,2)=.47,D(1,3)=.17,D(1,4)=.64,D(1,5)=.50,D(1,6)=.89,
D(1,7)=.72,D(1,8)=.92,D(1,9)=.55,D(2,3)=.75,D(2,4)=.69,
D(2,5)=.37,D(2,6)=.28,D(2,7)=.71,D(2,8)=.17,D(2,9)=.20,
D(3,4)=.09,D(3,5)=.03,D(3,6)=.49,D(3,7)=.77,D(3,8)=.63,
D(3,9)=.98,D(4,5)=.71,D(4,6)=.77,D(4,7)=.23,D(4,8)=.88,
D(4,9)=.74,D(5,6)=.09,D(5,7)=.96,D(5,8)=.31,D(5,9)=.20,
D(6,7)=.80,D(6,8)=.33,D(6,9)=.58,D(7,8)=.13,D(7,9)=.25,
D(8,9)=.14, :

TABLE 5.46

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.45

Source of Variation df Sum of Square Mean Square F
Between Models 1 .0003 .00033 2.1845
Within Models 48 .0072 .00015

Total 49 .0075 '

Table 5.47 indicates that there is some statistical
differences between the two models since calculated F
values exceed the 5 percent tabular F value, 2.84, for 1

and 48 degrees of freedom.
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TABLE 5.47

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.45

Source of Variation -df Sum of Square Mean Square F
Between Models 1 ~.0020 .00200 3.0628
Within Models 48 .0312 .00065

Total ] 49 .0332

Finally, Model 1 should be‘selected if one had to pick
a best methodology ta estimate yeight. There were no
statistical significance indicated when the number of
EIiteria is less than or equal to five, but practically
speaking, Model 1 vas aIQays ranked number one except in
decision making setting problém 1 and 2 as shown in Table
5.28. When the number of criteria is more than five, the
differences calculated frbﬁ the true weight and the
estimated weight from Model 1 are‘significantly different
from those of the other methods. This significance implies
that the weight estimatedvfrom Model 1 is better than the
others‘based on F test and Duncan's new multiple-range
test. The second best methodoldgy wvould be Model 6 if the
number of criteria is six or more. Fsr the small size
problems which have less than six criteria, then Model 5 is
the reéommended second choice. There were no statistical
significances indicated between Model 5 and Model 6 when

the number of criteria is less than or equal to five, but
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the weights from Mode1‘5 were always better than those from

Model 6 based on smaller values of d's and d'=.
Discussions on Multiple Decision Makers

In order to compare the two procedures introduced in
Chapter III for estimating weights under the situation of
having multiple decision makers, three of the decision
making setting problems and measurements of goodness of fit
are used. Estimating weights uSing Claveg matrix (3.15)
obtained by averaging N pairwise cémparison matrices was
the first procedure. Estimatiﬁg weights by averaging the N
individual weights calculated from N C'g matrix (3.12) was
the second procedufe.

For this study, Mode; 1, which is determined as a best
model in this research, is used fbr calculating the average
and the variance of the differenqes between the true weight
vector and the estimated weiéht vectors from the two
procedures. It is assumed that two decision makers are
involved in this problem. It is also assﬁmed that the
variation of the decision makers' judgment follows a
uniform distribution (0.5,‘1.5) and (0.3, 1.7)
respectively. The decision making settings used in this
comparison are W=(.55;.3,.15) for NC=3, wW=(.2,.4,.1,.3) for
NC=4, and Ww=(.25,.3,.15,.1,.2) for NC=5. Table 5.48, based
on N=30 replications, indicates that procedure 1 generates

better weights all the time, regardless of the decision
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making setting problems, based on smaller values of the

calculated d'as and d'=.

TABLE 5.48
SIMULATION RESULTS FOR TWO DECISION MAKERS
WHEN N=30
NC=3 NC=4 NC=5

Pﬁ'

d's 0ar1? d'2 Tar2?2 d'y Cara? d'2 0a22 d'10a123d'20a:=22

1l .065 .002 .100 .004 .069 .003 .117 .007 .070.002 .124.005
2 .076 .002 .117 .003 .077 .003 .130..007 .082.002 .145.005

*P stands for procedures, 1 for procedure 1 and 2 for
procedure 2.

The F test is appliéd in order to determine the
existence of a statistical difference between thé two
procedures. As can be seén in the following Tables, no
statistical differenqesaare indicated since calculated F
values do not exceed 5 percent tabular F value, 2.79, for 1

and 58 degrees of freedomn.

TABLE 5.49

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=3

Source of Variation df Sum of Square Mean Square F
Between Models 1l .00006 .00006 0.0303
Within Models 58 .11600 .00200

Total 59 .11606
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TABLE 5.50

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=3

Source of Variation df Sum of Square Mean Square F
Between Models ‘1 .00003 .00003 0.0107
Within Models 58 - .17400 .00300

Total 59 .17403
TABLE 5.51

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=4

Source of Variation df Sum of Square Mean Square F
Between Models 1 .00007 .00007 0.0360
Within Models 58 . .11600 .00200

Total 59 .11607
TABLE 5.52

ANALYSIS OF. VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=4

Source of Variation d4f Sum of Sguare. Mean Square F
Between Models 1 .00014 .00014 0.0413
Within Models 58 .20300 .00350

Total 59 .20314




TABLE 5.53

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=5

82

Source of Variation df Sum of Square Mean Square F
Betwveen Models 1 .00008 .00008 0.0121
Within Models 58 .40600 .00700

Total 59 .40608
TABLE 5.54
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.48 WHEN NC=5

Source of Variation df Sum of Square Mean Square F
Between Models 1 .00022 .00022 0.0441
Within Models 58 .29000 .00500

Total .59 .29022




CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMEMDATIONS

This chapter summarizes all the steps carried out in
order to fulfill the goal and objectives of this research.
Conclusions from this research are then provided. Finally,
recommendations for future work and possible extensions of

this research are outlined.
summary

Chapter I of this research provides the problem
statement. Introduétion of the background of various
weighting methods is givén. The research goal which
involves several objectives is then identified. An
extensive literature survey of various weighting methods is
given in Chapter II. Chapter III develops the new
weighting methods employing the minimization of judgmental
error and the refinement of decision maker's inconsistency
using palrwise comparisons and linear programming. This
research contributes the idea of considering the
minimization of a decision maker's judgmental error unlike
other subjective approaches. This research also
contributes to refining a decision maker's inconsistency by

using all a.s in pairwise comparisons when estimating

83
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weights. A comprehensive, interactive computer program has
been developed and describéd in Chapter 1IV. This aspect
provides benefits to both decision makers and researchers.
This interactive feature of the program will be a great
asset in communicating with decision makers. The results
of simulation for the purpose of comparison and analysis
are provided in Chapter V.

In order to fulfill the research goal and objectives,

the following accomplishments have been achieved:

1. Three analytical models based on the minimizatibn
of a decision maker's judgmental error and
refinement of a decision maker's inconsistency have
been developed. These three models use the same
pairwise comparison matrix as used in various
eigen-vector methods.

2. Two procedures of estimating weights under the
situation of having multiple decision makers have
been illustrated. These procedures use the same
pairwise comparison matrices as mentioned before.

3. An interactive and comprehensive computer program
has been developed and designed. This program
implements six weight estimation methods of the
(1) Proposed Model 1,‘(2) Proposed Model 2, (3)
Proposed Model 3, (4) Saaty's Method, (5) Cogger

and Yu's Method, and (6) Takeda, et al.'s Method.
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Conclusions and Recommendations

Based on the results obtained in this research, the
best model pf estimating weights by using a pairwise
comparison matrix is the Model 1 developed in the research.

The results of this research are interesting~and
encouraging. The Model 1 developed in thié research
estimates weights for MCDM settings more accurately based
on the Euclidean distance measure and the city block
distance measure than those obtained by the three eigen-
vector methods. This is directLy due to the effects of the
minimization of a decision maker's judgmental error and the
refinement of a decision maker's inconsistency.

Possible further work with respect to weight
estimating methods using a péirﬁise comparison matrix is as
follows:

1. The intention of adding more constraints to Model 2
and Model 3 was to iﬁprove the quality of the
weights. But, adding these constrainfs made the
results worse. Finding a better constraining
method can be an extension of this research.

2. Two averaging procedukes héve been used to estimate
weights for multiple decision makers. Another
method, for instance, aigmin s Wi/W3 < @idmasx,
wvhere assmin 1S the minimum value of asiaqg, and
di1smmx 13 the magimum value of aisq, g9=1,2,...,N,

may be considered in an extension to this research.
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CRERRRR AR AR AR RN AR IR AR ARARARARR AR AR R A AR AR SR I AR b kb h Ak d S

*
PURPOSE: *
THIS COMPUTER PROGRAM IS DESIGNED FOR ESTIMATING *
WEIGHTS USING THREE PROPOSED MODELS INTRODUCED IN *
CHAPTER III UNDER THE INTERACTIVE MODE BETWEEN *
DECISION MAKERS AND RESEARCHERS. *
*

%

T

AUTHOR: KOOK JIN NAM
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMEN
OKLAHOMA STATE UNIVERSITY *
X
DISSERTATION ADVISER: DR. M. PALMER TERRELL *
%
KREEERERKR KKK KRR RREE AR KRR AK KRR KRR AR ARk kkk
*

DEFINITION OF VARIABLES:

ZERO OTHERWISE

PCTTOL -- TOLERANCE AS FRACTION OF OBJECTIVE
FUNCTION FOR CONTINUOUS SOLUTION (MAY BE
LEFT AT ZERO)

*

%

IC -- NUMBER OF CRITERIA %
X

IMODEL -- MODEL INDICATOR; 1 FOR MODELl, 2 FOR *
MODEL 2, ETC %

*

ND -- NUMBER OF DECISION MAKERS *
13

CW -~ CALCULATED 'WEIGHT VECTOR *
*

ISIZE -- INTERMEDIATE STORAGE AREA WHICH IS *
NZRLVR* (2*N-NZR1VR+1)/2 OR AS LARGE AS  *

POSSIBLE *

*

NZR1VR -- NUMBER OF INTEGER VARIABLES *
*

SOLMIN -- ESTIMATE OF OBJECTIVE FUNCTION IF KNOWN, *
*

*

*

*

*

*

*

*

BOUNDS; SIZE = N - 1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaQaaoaaaaaaaaoaaaaaaaoaaaan

M -- TOTAL NUMBER OF ROWS
N -- TOTAL NUMBER OF COLUMNS WHICH IS EQUAL TO*
THE SUM OF X AND Y VARIABLES PLUS 1 FOR *
RIGHT HANDSIDE *
x
NM1 -- DO LOOP PARAMETERS: NM1L = N - 1 *
*
UPBND -- VECTOR OF INTEGER VARIABLE'S UPPER *
*
*
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C IROW -- VECTOR OF CONSTRAINT TYPES; SIZE = M - 1l:%
c +1>=BI, 0=BI, -1<=BI *
C . *
o ITEMP -- COLUMN OF COEFFICIENTS BEING READ IN *
c ROW I INCLUDING OBJECTIVE ROW *
C *
C VAL -- COEFFICIENT VALUE OF CDLUMNS SPECIFIED BY¥
C ITEMP FOR ROW I *
C o %
o ATAB -— INITIAL WORKING TABLEAU, N BY M ARRAY *
C *
C***********************'k********k***********k*************
ot

C*%% THIS COMPUTER PROGRAM DESIGNED FOR RUNNING

o] INTERACTIVELY

o]

DOUBLE PRECISION UPBND(37), TPVAL(31), BTMVL(31),
*ATAB(34,36), VAL(31), TBSAV(33,36), SAVTAB(34,645),
*T(36), CC(10,10,10), CW(1l0 ), 2C(5,5)

DOUBLE PRECISION SOLMIN, PCTTOL, TLRNCE, YVECT,
*ATAB11l, AMAX, RTIO, ALFA, ARTIO, ADELT, ZOPT, ATAB1l2,
¥X1, AMAX2, AMAX3, ALW, AUP, RTIO2, DIFFl, DIFF2,
*DIFF, SVALW, ANDCT4, DABS ,

COMMON IROW (33), ITBROW (33), ISVROW (33,30), KSVN
*(31), ICOL (36), ITBCOL (36), IVAR (36)

COMMON ISVRCL (30), ICORR (30), ISVN (30)

NI = 5

NO = 6

o]
C*** PROMPT THE MAIN MENU
C .
731 WRITE(NO,10)
10 FORMAT(1H1,12X,24(1H*),/,13X, ' k%% MAIN MENU
kxxx' /. 13X,
*24(1H*),/,/,5X,'1. INPUT PAIRWISE COMPARISONS,',/,
* 5X,'2. EXIT THE PROGRAM.',/,/,
* 5X,'==> ENTER THE OPTION NUMBER|')
c

READ(NI,*) MENU
GO TO (60,730) MENU
WRITE(NO,11)

11 FORMAT(/,5X,'??? ENTERED NUMBER ERROR ??? TRY IT
*AGAIN| ') ]
GO TO 731

60 WRITE(NO,12)

12 FORMAT(1H1,/,5X,'==> ENTER THE NUMBER OF DECISION
*MAKERS | ')
READ(NI,*) ND
WRITE(NO,13) ND 13 FORMAT(/,/,5X,'YOU HAVE ',12,
*DECISION MAKER(S). IS THIS NUMBER CORRECT?',/,
* 5X, '==> ENTER 1=YES, 2=NO. <<<')
READ(NI,*) INQUR
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IF(INQUR.EQ.2) GO TO 60
732 WRITE(NO,14)
14 FORMAT(1H1,/,5X,'==> ENTER THE NUMBER OF CRITERIA|')
READ(NI,*) IC
WRITE(NO,15) IC 15 FORMAT(/,/,5X,'YOU HAVE ',12,'
*CRITERIA. IS THIS NUMBER CORRECT?'
x ,/,+5X,'==> ENTER 1=YES, 2=NO. <<<')
READ(NI,*) INQUR
IF(INQUR.EQ.2) GO TO 732
DO 733 K = 1, ND
WRITE(NO,50) K
50 FORMAT(1H1,/,5X,'*** THIS IS FOR DECISION MAKER',I2,'
*!')
DO 16 I = 1, IC
DO 17 J = 1, IC
IF(I.EQ.J) GO TO 18
WRITE(NO,735) I, J
735 FORMAT(1H1,/,5X,'==> BY HOW MUCH IS
*CRITERIA',I2, 'MORE IMPORTANT THAN CRITERIA',I2,' ?')
READ(NI,*) AMOUNT
CC(K,I,J) = AMOUNT
GO TO 17
18 CC(K,I,J) = 1.0
17 CONTINUE
16 CONTINUE
c
C*** ECHO PRINT OUT INPUT DATA
c
28 WRITE(NO,20) K
20 FORMAT(1H1,5X,39(1H*),/,5X, '*** VALUES RECEIVED FROM
*DECISION MAKER',I2,' *%%' / SX 39(1H*),/,/)
DO 21 I =1, IC
21 WRITE(NO,*) (CC(K,I,J),Jd=1,IC)
WRITE(NO, 22) '
22 FORMAT(/,/,5X,'*** ARE THESE DATA CORRECT? *x%',
% /,5X,'==> ENTER 1=YES, 2=NO. <<<')
READ (NI, *) INQUR
IF(INQUR.EQ.1) GO TO 733
27 WRITE(NO,55)
55 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEX|')
READ(NI,*) K1
WRITE(NO, 23) '
23 FORMAT(/,5X,'==> ENTER ROW INDEX NUMBER]|')
READ(NI,*) I
WRITE(NO, 24)
24 FORMAT(/,5X,'==> ENTER COLUMN INDEX NUMBER|"')
READ(NI,*) J
WRITE(NO,25) 25 FORMAT(/,5X,'==> ENTER CORRECTED
*VALUE OF RELATIVE IMPORTANCE|')
READ (NI, *)CC(K1,I,J)
WRITE(NO, 26)
26 FORMAT(/,5X,'*** DO YOU NEED TO CHANGE MORE? *%*!',
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* /5%,
READ(NI,*) I
IF(INQUR.EQ.
GO TO 28
CONTINUE
WRITE(NO, 30)

93

'==> ENTER 1=YES, 2=NO. <<<')
NQUR
l) GO TO 27

30 FORMAT(1H1,5X,26(1H*),65X, '*** MODEL AVAILABILITY

40

701

706
705
704

703

711

710
709

708
Ck%x*

707

Chxx

8903
8010

kkx' /,5X,26(

/
/
/
/
/
READ(NI,*) I
X1 =1.0
GO TO (701,7
IF(ND.GE.2)
DO 704 I =1
DO 705 J =1

% % Ok % X %

1H*),/,/,5X,'1l. MODEL 1',

/,5X,'2. MODEL 2',

,5X,'3. MODEL 3',

,5X,'4. MODEL 4°',

,5X,'5. MODEL 5',

,5X,'6. MODEL 6°',

,5X,'==> ENTER THE MODEL NUMBER|"')
MODEL

02,702,750,751,752), IMODEL
GO TO 703

,- IC

, IC

IF(I.EQ.J) GO TO 706

GO TO 705
c(r,J) =1.0
CONTINUE
CONTINUE
GO TO 707
DO 708 I
DO 709 J

1
1

nou

1,1,3)

, IC
, IC

IF(I.EQ.J) GO TO 710

sl =20.0
DO 711 K = 1

, ND

S1 = S1 + CC(K,I,J)

CONTINUE
C(1,J) = 81
GO TO 709
c(r,Jg) = 1.0
CONTINUE
CONTINUE

/ FLOAT(ND)

INPUT PARAMETERS M = TOTAL NO. OF ROWS, N = TOTAL

NO. OF COLS.
M = IC+2

N = 2*%IC+1
NZR1VR = IC

READ MATRIX
DO 8903 I
DO 8903 J
ATAB(I,J)
DO 8010 J
ATAB(1,J)

NZR1VR = NO. OF INTEGER VARIABLES

LEMENTS
M
N

0
IC+1

E
1
1
0
2
1.0

e N e NN



8011

8022
8021
8020

8030

J = 2

DO 8011 I = 2, IC+1l
ATAB(I,J) = 1.0
J=J+1 ,

DO 8020 I = 2, IC+l

DO 8021 J = NZR1VR+2, N

IF((I-1).EQ.(J-IC-1)) GO TO 8022
ATAB(I,J) = C(I-1,J-IC-1)

GO TO 8021
ATAB(I,J)
CONTINUE
CONTINUE
DO 8030 J
ATAB(M,J)
ATAB(M,1)

1.0-FLOAT(IC)

NZR1VR+2, N
1.0
1'0

"GO TO 712

702

716
715
714

713

721

720
719

718
Ckk%

717
8044

Chk%

722

IN=0

IF(ND.GE.2) GO TO 713
DO 714 I = 1, IC

DO 715 J = 1, IC
IF(I.EQ.J) GO TO 716
c(1,J) = cC(1,1,J)

GO TO 715

c(1,J) = 1.0

CONTINUE

CONTINUE

GO TO 717

DO 718 I = 1, IC
DO 719 J = 1, IC
IF(I.EQ.J) GO TO 720

sl = 0.0

DO 721 K = 1, ND

S1 = S1 + CC(K,I,J)
CONTINUE ‘
C(I,J) = S1 / FLOAT(ND)
GO TO 719

c(1,J) = 1.0

CONTINUE

CONTINUE

INPUT PARAMETERS M = TOTAL NO. OF ROWS, N = TOTAL
NO. OF COLS. NZR1VR = NO. OF INTEGER VARIABLES

DO 8044 I = 1, IC-1

IN = IN + I \

M = 3*IN+3

N 3*IN+IC+1

NZR1VR = 3*IN

READ MATRIX ELEMENTS

DO 722 I = 1, M
DO 722 J =1, N
ATAB(I,J) = 0.0

94
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8024

8023

8026

724
723
8027

725

726

727
728
8029
8028

729

8031

712

95

I =1

12 = 1

DO 8444 J = 2, NZR1VR+1
ATAB(I,J) = 1.0

I =1 +1

DO 723 II =1, ICc-1

DO 724 J = II+l, IC
IF(C(II,J).GE.1.0) GO TO 8023 '
DO 8024 K NZR1VR+2, N
ATAB(I,K) C(J,12) - C(II,12)
I2 = I2 + 1

CONTINUE

I =1 +1

12 = 1

IF(I.GT.(IN+1)) GO TO 8027

GO TO 8022
DO 8026 K
ATAB(I,K)
12 = 12 + 1

CONTINUE

I =1+1

I2 = 1 :

IF(I.GT.(IN+1)) GO TO 8027

CONTINUE

CONTINUE :

DO 8028 II = NZR1VR+1, NZR1VR+IC-1

DO 8029 J = II+l, NZRLVR+IC
IF(C(II-NZR1VR,J-NZR1VR).GE.1.0) GO TO 725
ATAB(I,II+I2) = -1.0 .
ATAB(I,I2+J) = C(II-NZR1VR,J-NZR1lVR)

NZR1VR+2, N
C(II,I2) - C(J,I2)

GO TO 726
ATAB(I,II+I2) = 1.0
ATAB(I,I2+J) = -C(II-NZR1VR,J-NZR1VR)

IF(C(J-NZR1VR,II-NZR1VR).GE.1.0) GO TO 727
ATAB(I+IN,II+I2) = C(J-NZR1VR,II-NZR1VR)
ATAB(I+IN,I2+J) = -1.0

GO TO 728 S ,
ATAB(I+IN,II+I2) = -C(J-NZR1VR,II-NZR1VR)
ATAB(I+IN,I2+J) = 1.0

I =141

CONTINUE

CONTINUE

DO 729 J = NZRLVR+2, N

ATAB(M,J) = 1.0
I2 = 2

DO 8031 J = 2,
ATAB(I2,J) = 1.
I2 = 12 + 1
ATAB(M,1) = 1.0
INITIALIZATION
ISIZE = 645
INDCT7=1

NZR1VR+1
0
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72

74
Ckkk

786

787

788
Ch%*

o
c
90

8015

8016
901
903

1

Ck*

96

KSVN(1)=1
INDCTR=1
ICNTR=0

I0UTl1 = 0
I1ROW=1000
ADELT = 5.0E-7

READ AND WRITE PROBLEM IDENTIFICATION: PUT 1 IN COL.
1

IOUT2 = INITIAL WORKING TABLEAU
IOUT3=CONTINUOUS SOLUTION TABLEAU

I0uT2 = 1
IoUT3 =1
IPACK = 0

SOLMIN=UPPER BOUND ON OBJ. FUNCTION FOR INTEGER
SOLUTION ,

PCTTOL=INPUT TOLERANCE AS FRACTION OF OBJECTIVE
FUNCT. FOR CONT. SOLUTION SET EACH ZERO FOR
UNKNOWN PROBLEM.

SOLMIN = 0.0 \

PCTTOL = 0.0

DO 72 I=1,N

T(I)=0.

NM1=N-1

IF(SOLMIN)786,787,786

INPUT UPPER BOUND ON OBJECTIVE FUNCTION
TLRNCE=SOLMIN

PCTTOL=-1.

GO TO 90

ITOL=1

SOLMIN = 1E35

IF(PCTTOL)90,788,90

PCTTOL=.1

INPUT UPPER BOUNDS ON VARIABLES (ZERO MEANS NO UPPER
BOUND) |

IF(IMODEL.EQ.1) GO TO 901

DO 8015 I = 1, NZRLVR

UPBND(I) = 1.0

CONTINUE

DO 8016 I = NZR1VR+1l, NM1

UPBND(I) = 0.0

CONTINUE

GO TO 1

DO 903 I

UPBND(I)
IROW(1)=0
IROW (M) =0
CONSTRAINT TYPES: ( +1, = 0, ' -1 )

1, NM1
0.0



8017
Ck*

Ck*kx

9520

9521
9523

953
954
450
955

96

98
Ckk%

981

982

322
Ck*kx

985

99
Chkk

100
102
451

1022
1023

1025
103

Ck%%

DO 8017 I = 2, M-1
IROW(I) = +1

MATRIX FORMAT: PACKED = 1, UNPACKED

IF ( M .LT. 2) GO TO 450

PRINT INPUT TABLEAU FOR ERROR CHECK
DO 954 I=2,M

IF (IROW(I))953,9521,9521
DO 9523 J=2,N
ATAB(I,J)=-ATAB(I,J)

GO TO 954
ATAB(I,1)=-ATAB(I,1)
CONTINUE

CONTINUE

DO 98 I=2,N
IF(UPBND(I-1))96,96,98
UPBND (I-1) = 1E3
CONTINUE

COMPUTE NO. OF Y VECTORS
YVECT=UPBND(1)+1.

IF ( NZR1VR .LT. 2) GO TO 322
DO 982 I=2,NZR1VR
YVECT=YVECT* (UPBND(I)+1.)
CONTINUE

SET SOLUTION VECTOR OF VARIABLES EQUAL TO ZERO

AND SAVE ORIGINAL UPPER BOUNDS
DO 99 I=2,N
IVAR(I-1)=0

0

97

INITIALIZE ROW AND COLUMN IDENTIFIERS,+K=VARIABLE NO.

K, ZERO = ZERO SLACK, -K = POSITIVE SLACK

IF ( M .LT. 2) GO TO 451
DO 102 I=2,M
IF(IROW(I))100,102,100
IROW(I)=1-1I

CONTINUE

CONTINUE
ATAB11=ATAB(1,1)

ICOL(1l) = 0

DO 103 J=2,N
IF(ATAB(1,J))1022,1025,1025
DO 1023 I=1,M

ATAB(I, 1)—ATAB(I 1)+ATAB(I, J)*UPBND(J 1)

ATAB(I,J)=-ATAB(I,J)
ICOL(J)=1000+J—1

GO TO 103
ICOL(J)=J-1
CONTINUE

GO TO 254



aQaan

112

115
117

120

452
Ch%%

aaan

130

132

133

135
136

137
140

143

145
Chxx

150
Ck%

152
153

157
160

165
175
180

190
Ckkx

98

START DUAL LP
CHOOSE PIVOT ROW, MAXIMUM POSITIVE VALUE IN CONSTANT
COLUMN

AMAX = 0.0

IF ( M .LT. 2) GO TO 452

DO 120 I=2,M

IF(ATAB(I,1))120,120,115"
IF(ATAB(I,1)-AMAX)120,120,117

AMAX=ATAB(I,1)

IPVR=I

CONTINUE

CONTINUE

IF NO POSITIVE VALUE, LP FINISHED (PRIMAL FEASIBLE)
IF(AMAX) 265,265,130

CHOOSE PIVOT COLUMN, ALGEBRAICALLY MAXIMUM RATIO
A(1,J)/A(PIVOTROW FOR A (PIVOTROW,J) NEGATIVE. IF NO
NEGATIVE A(PIVOTROW,J) PROBLEM INFEASIBLE

AMAX = -1E35

IF(N-2)143,132,132

IPVC=0

DO 140 J=2,N

IF(ATAB(IPVR,J))133,140,140

RTIO=ATAB(1l,J)/ATAB(IPVR,J)

IF(RTIO-AMAX) 140, 137 135

AMAX=RTIO

IPVC=J

GO TO 1460

IF(ATAB(IPVR,J) ATAB(IPVR IpVC))13s6, 140 140

CONTINUE

IF(IPVC)150,143, 150

GO TO (145,435, 542 610,665), INDCTR
GO TO 999

CARRY OUT PIVOT STEP
ALFA=ATAB(IPVR, IPVC)

UPDATE TABLEAU'

DO 180 J=1,N

IF (ATAB(IPVR,J))152,180,152
IF(J-IPVC)153,180,153
ARTIO=ATAB(IPVR,J)/ALFA

DO 175 I=1,M
IF(ATAB(I,IPVC))157,175,157
IF(I-IPVR)160,175,160
ATAB(I,J)=ATAB(I,J)-ARTIO*ATAB(I,IPVC)
IF (DABS (ATAB(I,J))-ADELT) 165, 165, 175
ATAB(I,J) = 0.0

CONTINUE

CONTINUE

DO 190 J=1,N
ATAB(IPVR,J)=ATAB(IPVR,J)/ALFA



Chkx

195
196

197
198

Chkx

200

205
207

210
240

2505
Chxx

251
252
253

2535
Ckxx

254

255
256
258
260
453

265
Ckx%
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EXCHANGE ROW AND COLUMN IDENTIFIERS
ISV=IROW(IPVR)
IROW(IPVR)=ICOL(IPVC)

IF PIVOT ROW WAS ZERO SLACK, SET MODIFIED PIVOT
COLUMN ZERO.

DO 196 I=1,M
ATAB(I,IPVC)=ATAB(I,N)
ICOL(IPVC)=ICOL(N)

N=N-1

GO TO 200

DO 198 I=1,M
ATAB(I,IPVC)=-ATAB(I, IPVC)/ALFA
ICOL (IPVC)=18V
ATAB(IPVR,IPVC)=1./ALFA

COUNT PIVOTS

ICNTR=ICNTR+1
IF(IROW(IPVR)+1000)210 205,210

po 207 J=1,N

ATAB(IPVR, J) ATAB(M,J)
IROW(IPVR)=IROW(M)

M=M-1

IF(IOUT1)240,2505,240

CONTINUE o

GO TO (254,251,252,253,2535),INDCTR

IF SEEKING INTEGER SOLUTION, TEST OBJECTIVE FUNCTION
AGAINST CURRENT SOLUTION
IF(ATAB(1,1)-TLRNCE)254, 435,435
IF(ATAB(1,1)-TLRNCE)254,542,542
IF(ATAB(1,1)-TLRNCE)254,610,610
IF(ATAB(1,1)-TLRNCE)254,665,665

IF CONSTANT COLUMN OF ZERO SLACK ROW IS NEG., REVERSE
SIGNS OF ENT

IF ( M .LT. 2) GO TO 453
DO 260 K = 2, M
IF(IROW(K))260,255,260
IF(ATAB(K,1))256,260,260
DO 258 L=1,N
ATAB(K,L)=-ATAB(K,L)
CONTINUE

CONTINUE

GO TO NEXT PIVOT STEP

GO TO 112

CONTINUE

IF ANY BASIS VARIABLE EXCEEDS ITS UPPER BOUND,
COMPLEMENT IT, AND PIVOT ON CORRESPONDING ROW
IF ( M .LT. 2) GO TO 454

DO 275 1=2,M
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IF(IROW(I))275,275,266
266 J=IROW(I)
IF(J-1000)268,268,267
267 J=J-1000
268 IF(UPBND(J)+ATAB(I,1))269,275,275
269 IF(ADELT+UPBND(J)+ATAB(I,1))270,274,274
270 ATAB(I,1)=-ATAB(I,1)-UPBND(J)
DO 271 K=2,N
271 ATAB(I,K)=-ATAB(I,K)
IPVR=I
IF(J-IROW(I))272,273,272
272 IROW(I)=J
GO TO 130
273 IROW(I)=IROW(I)+1000
GO TO 130.
274 ATAB(I,1)=-UPBND(J)
275 CONTINUE
454 CONTINUE

Ch%%
C TRUE END OF LINEAR PROGRAMMING .
c SET SOLUTION VECTOR VALUES FOR BASIC VARIABLES

IF ( M .LT. 2) GO TO 455
DO 280 I=2,M
IF(IROW(I))280,280,277

277 IF(IROW(I)-1000)279,279,278

278 J=IROW(I)-1000
T(J)=UPBND(J)+ATAB(I,1)
GO TO 280

279 J=IROW(I)
T(J)=-ATAB(I,1)

280 CONTINUE

455 CONTINUE

Cxx% (
Cc SET SOLUTION VECTOR VALUES FOR NON-BASIC VARIABLES IN
c COMPLEMENTED

DO 285 I=2,N 4
IF(ICOL(I))285,285,282

282 IF(ICOL(I)-1000)284,284,283

283 J=ICOL(I)-1000
T(J)=UPBND(J)
GO TO 285

284 J=ICOL(I)
T(J)=0.

285 CONTINUE ‘ ,
GO TO (286,437,548,615,670), INDCTR

Chk%%
c FIRST TIME,WRITE CONTINUOUS SOLUTION TABLEAU
C IF REQUESTED

286 ZOPT =DABS( ATAB(1,1))
IF(IMODEL.EQ.3) GO TO 290

GO TO 999
Ch%x



c

Cc

C DETERMINE WHETHER PROBLEM FITS‘IN MEMORY , AND IF SO
C WHETHER TO SAVE ALL INTERMEDIATE TABLEAUS OR ONLY SOME

c
c

290

292

293

294
*k ok

301

302
303
304
305

306
310
456

& %%

295
2917

298
299
300

3001

3002
3003
3004
3005
3006

3007

3008
3009
3010

315

k%%

COMPUTE ABSOLUTE TOLERANCE
ATAB12=ATAB(1,1)

ATAB1l =DABS (ATAB1l - ATAB(1,1))
IF(PCTTOL)294,293,292
TLRNCE=PCTTOL*ATAB11+ATABL2

GO TO 294

TLRNCE

= 1E35

CONTINUE

DETERMINE WHETHER CONTINUOUS. SOLUTION IS MIXED

INTEGER SOLUTION

IF ( M .LT. 2) GO TO 456

DO 310 I1=2,M
IF(IROW(I))310,310,302
IF(IROW(I)-1000)303,303,304 .
IF(IROW(I)-NZR1VR)305,305,310 .
IF(IROW(I)-1000-NZR1VR)305,305,310

AJOl1
AJO2
AJO3

wonou

ATAB(I,1)
ADELT
X1

IF(AMOD(-AJO1,AJ03)-AJO2) 310,310,306

IF(1.0-AMOD(-AJO1,AJ03)-AJO2) 310,310,295

CONTINUE
CONTINUE
GO TO 999

IF(N-NZR1VR) 297,297,298

ISVLOC=(N* (N+1))/2

GO TO 299 L
ISVLOC=(NZR1VR* (2*N-NZR1VR+1))/2
IF(ISIZE-ISVLOC)3001,3001,300
I1ROW=0

GO TO 315

NONBSC=0

DO 3006 J=2,N
IF(ICOL(J))3006,3006,3002
IF(ICOL(J)-1000)3003,3004,3004
IF(ICOL(J)-NZR1VR)3005,3005,3006
IF(ICOL(J)-1000-NZR1VR)3005,3005,3006
NONBSC=NONBSC+1

CONTINUE

IF(N-NZR1VR)3007,3007,3008
ISVLOC=N+( (N-NONBSC) * (N-NONBSC+1)) /2
GO TO 3009

ISVLOC=N+( (NZR1VR-NONBSC) * (N-NONBSC+N-NZR1VR+1))/2

IF(ISIZE-ISVLOC)3010,3010,315
GO TO 999
CONTINUE

BEGIN

INTEGER PROGRAMMING
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400
402

Chk%

405
406
407
408
4082

4085
Ckx%%

Ch%x

4087

Ch%%

409
4095

410
Cx*x%

4100
4101

4105
411
412
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Il=1
AMAX = -X1
KSVN(I1+1)=KSVN(Il)

CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED
TRY NONBASIC VARIABLES FIRST, CHOOSING ONE WITH
LARGEST SHAD PRICE

DO 4085 I=2,N

IF(ICOL(I))4085,4085,405
IF(ICOL(I)-1000)406,407,407
IF(ICOL(I)-NZR1VR)408,408,4085
IF(ICOL(I)-1000-NZR1VR)408,408,4085

IF (AMAX-ATAB(1,1))4082,4085,4085

ISVI=I

AMAX=ATAB(1,I)

CONTINUE

IF NONE LEFT, TRY BASIC VARIABLES
IF ( AMAX + X1) 4087, 420, 4087

VARIABLE CHOSEN
IVAR(I1)=ICOL(ISVI)
BTMVL(I1l)=-1.
ISVRCL(I1l)=ISVI
ICORR(I1)=0

VAL (Il) = 0.0

IF OBJECTIVE FUNCTION VALUE + SHADOW PRICE EXCEEDS
TOLERANCE, INDICATE UPWARD DIRECTION INFEASIBLE
IF(ATAB(1,1)+ATAB(1,ISVI)-TLRNCE)410,409,409
TPVAL(I1)=1000.

IF(I1-1)4101,4101,4095

ISVN(I1)=0

GO TO 4132

TPVAL(Il)=1.

IF(I1-1)4100,4101,4100

SAVE ENTIRE TABLEAU OR ONLY COLUMN CORRESPONDING TO
CURRENT NONBASIC VARIABLE, DEPENDING ON SIZE OF PROB
AND 2ND DIM OF SAVTAB

IF(I1-I1ROW)4132,4101,4101

L=KSVN(I1)

DO 412 J=1,M

ISVROW(J,I1)=IROW(J)

DO 411 K=1,N

I=L+K-1

IF(J-1)4105,4105,411

SAVTAB(M+1,I)=ICOL(K)

SAVTAB(J,I)=ATAB(J,K)

CONTINUE

ISVN(I1)=N

KSVN(I1+1)=L+N
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4132 ICOL(ISVI)=ICOL(N)
DO 4135 J=1,M
4135 ATAB(J,ISVI)=ATAB(J,N)
N=N-1
GO TO 5000
CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED FROM
AMONG BASIC VARIABLES IN CURRENT TABLEAU
420 CONTINUE
IF(I1-I1ROW)4204,600,4205
4204 I1ROW=I1
4205 INDCT7=1
421 AMAX = -X1
IF ( M .LT. 2) GO TO 457
DO 425 12=2,M
IF(IROW(IZ))425 425, 422
422 IF(IROW(I2)- 1000)423 424,424
423 IF(IROW(I2) NZRlVR)424l 4241 425
424 IF(IROW(I2)-1000-NZR1VR)4241,4241,425
4241 AMAX2 1.0E35
AMAX3 -1.0E35
AJO = -ATAB(I2,1) + ADELT
ALW AINT(AJO)
AUP=ALW+1.
IF(N-1)426,426,4240
4240 DO 4246 13=2,N
IF(ATAB(I2, 13))4244 4246, 4242 4242
RTIO=ATAB(1,I3)/ATAB(I2, 13)
IF(RTIO—AMAX2)4243,4246,4246
4243 AMAX2=RTIO
GO TO 4246
4244 RTIO2=ATAB(1, I3)/ATAB(IZ I3)
IF(RTIO2- AMAX3)4246 4246,4245
4245 AMAX3=RTIO2
4246 CONTINUE
IF ( AMAX3 + 1E34) 430, 430, 4247
4247 IF (AMAX2 - 1E34) 4248, 429, 429
4248 DIFF1 =DABS (AMAX2 * (ATAB(IZ 1) + ALW))
DIFF2 =DABS (AMAX3 * (ATAB(I2,l1) + AUP))
DIFF =DABS (DIFF1l - DIFF2)
IF(DIFF-AMAX)425,425,4249
4249 AMAX=DIFF
SVALW=ALW
ISVI2=12
IF(DIFF1-DIFF2)4251, 4251 4252
4251 ANDCT4=0.
GO TO 425
4252 ANDCT4=1.
425 CONTINUE
457 CONTINUE
ALW=SVALW
I12=I8VI2
VAL(I1l)=ALW+ANDCT4



4255

Ckx%

426
427

Ckkx

429

4295

4296

Chxx

430

431
Ck%x

432

438

4385
439

433

434
Ckx%
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BTMVL(I1l)=VAL(I1l)-1.
TPVAL(I1l)=VAL(Il1l)+1.
GO TO 432

IF NO. OF COLS=1 AND RIGHT HAND SIDE=0, DONT GO TO LP
IF (DABS( ATAB(I2,1) + ALW) - ADELT) 427, 427, 5100
BTMVL (I1)=-1. :

TPVAL(I1)=1000.

VAL(I1)=ALW ,

IVAR(IL)=IROW(I2)

IROW(I2)=0 ‘

GO TO 5000

CONSTRAINING VARIABLE IN LOWER DIRECTION INFEASIBLE
BTMVL(I1)=-1. .
IF (DABS ( ATAB(I2,1) + ALW) - ADELT ) 4295, 4295,
: 4296
ANDCT4=0.
VAL(I1)=ALW+ANDCT4
GO TO 4255
TPVAL(I1)=ALW+2.
ANDCT4=1. ‘
GO TO 431

CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE
TPVAL(I1)=1000.

BTMVL(I1l)=ALW-1.

ANDCT4=0.

VAL(I1)=ALW+ANDCT4

SAVE ENTIRE TABLEA

JSVN=N :

L=KSVN(I1l) ‘

DO 439 I3=1,M
ISVROW(I3,I1)=IROW(I3)

DO 439 I4=1,N »

I16=L+I4-1
IF(I3-1)4385,4385,439
SAVTAB(M+1,16)=ICOL(I4)
SAVTAB(I3,16)=ATAB(I3,I4)
ISVN(I1l)=N

KSVN(Il+l)=L+N
ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
ISVRCL(I1)=I2
IVAR(I1)=IROW(I2)

ICORR(I1l)=1

IROW(I2)=0

IF (DABS ( ATAB(I2,1)) - ADELT) 433, 433, 434
ATAB (I2,1) = 0.0

INDCTR=2

RETURN TO CARRY OUT LP



435
4352

4355
Cxxx
437

5000

5050

5051
Chk%

5100
5115
5120
5151

5152
5153
516

517
Cx%%

518
5181
5182
5183

5185

5190

5191
5192
5196
5193

5194
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IF(IOUT1)240,254,240
INFINITE RETURN
IF(ANDCT4)4355,4352,4355
BTMVL(I1)=-1.

GO TO 5120
TPVAL(I1)=1000.

GO TO 5120

FINITE RETURN

GO TO 5000

TEST FOR ANY INTEGER VARIABLES LEFT TO BE CONSTRAINED
IF(I1-NZR1VR)5050,550,550

INCREMENT POINTER AND RETURN TO CONSTRAIN NEXT
INTEGER VARIABLE

I1=I1+1

IF(IOUT1)5051,402,5051

GO TO 402

DECREMENT POINTER AND CONSTRAIN CURRENT VARIABLE TO
CURRENT VALUE + OR - 1

I1=I1-1

IF(I1)995,995,5120 .
IF(IVAR(I1)-1000)5151,5151,5152

K=IVAR(IL)

GO TO 5153

K=IVAR(I1)-1000

12=ISVRCL(I1) 5155 IF(BTMVL(I1))516,517,517
IF(TPVAL(I1)-UPBND(K))518,518,5100
IF(TPVAL(I1)-UPBND(K))530,530,525

TOP END FEASIBLE

INDCTS5=1
IF(ICORR(I1))5198,5182,5198
IF(I1-I1ROW)5183,5198,5198
INDCT8=1
IF(11-1)5185,5198,5185
INDCT5=4

IsVIl=Il-1

I1=1

GO TO 5198

DO 5194 13=1,ISVIl
I4=ISVRCL(I3)
ICOL(I4)=ICOL(N)

DO 5193 J=1,M
IF(VAL(I3)-1.)5193,5191,5192
ATAB(J,1)=ATAB(J,1)+ATAB(J,I4)
GO TO 5196
ATAB(J,1)=ATAB(J,1)+VAL(I3)*ATAB(J,I14)
INDCT8=2
ATAB(J,14)=ATAB(J,N)

N=N-1

CONTINUE



2195

Chx*

5198

5197
5199
5205

521

522

5225
523

5235
Chkx%

525
526

Ck%%

530
531

532
533
534

535
536

Chkx

I1=I5VIl+1l
INDCTS5=1
GO TO 521

RETRIEVE SAVED TABLEAU

N=ISVN(Il)

L=KSVN(I1)

DO 5199 I3=1,M

IROW(I3)=ISVROW(I3,I1)

DO 5199 I4=1,N

I6=L+I4-1

IF(I3-1)5197,5197,5199
ICOL(I4)=SAVTAB(M+1,16)
ATAB(I3,I4)=SAVTAB(I3,I6)

GO TO (521,526,531,5190),INDCTS
VAL(I1)=TPVAL(Il)
TPVAL(I1)=TPVAL(I1l)+1. .
IF(ICORR(I1))541,522,541 .

DO 523 13=1,M ‘
ATAB(I3,1)=ATAB(I3,1)+(VAL(I1)*ATAB(I3,1I2))
IF (DABS ( ATAB(I3,l1)) - ADELT) 5225, 5225, 523
ATAB(I3,1)=0. : ,
ATAB(I3,I2)=ATAB(I3,N) -
ICOL(I2)=ICOL(N)

N=N-1
IF(ATAB(1,1)-TLRNCE)5235,5100,5100
IF(I1-I1ROW)650,5415,5415

BOTTOM END FEASIBLE
INDCTS=2 }

GO TO 5198
VAL(I1)=BTMVL(I1) -
BTMVL (I1)=BTMVL(I1)-1.
GO TO 541

BOTH ENDS FEASIBLE
INDCTS=3

GO TO 5198

AMAX2 = 1.0E35

AMAX3 = -1.0E35

DO 536 I3=2,N
IF(ATAB(I2,13))534,536,532
RTIO=ATAB(1,I3)/ATAB(I2,I3)
IF(RTIO-AMAX2)533,536,536
AMAX2=RTIO

GO TO 536
RTIO2=ATAB(1,I3)/ATAB(I2,I3)
IF(RTIO2-AMAX3)536,536,535
AMAX3=RTIO2

CONTINUE
IF(AMAX2-1.E35)538,537,537

106



537

538
Ckk%

539

540

541

5412
5415

Cxx%

5472
543
544
545

Ckx%

546
547

Cxxx
548

550

Chk%

554
555
557
560

600
605

Chkk%

BOTTOM END INFEASIBLE
BTMVL (I1)=-1.

GO TO 521

IF (AMAX3+1.E35)539,539, 540

TOP END INFEASIBLE

TPVAL(I1)=1000.

GO TO 526

DIFF1 =DABS ( AMAXZ * (ATAB(I2,1) + BTMVL (Il1)))
DIFF2 =DABS ( AMAX3 * (ATAB(I2, l) + TPVAL (Il1)))
IF(DIFF1-DIFF2)526,526,521

ATAB(I2,1)=ATAB(I2, l)+VAL(Il)

IROW(IZ)=0

IF (DABS ( ATAB(I2,1)) - ADELT) 5412, 5412, 5415
ATAB(I2,1)=0. o

INDCTR=3

IF(IOUT1)240,2505,240

INFINITE RETURN
GO TO (544,547,543), INDCTS
IF(TPVAL(I1)-VAL(I1l)-1.)545,544,545
TPVAL(I1)=1000.

GO TO 5120
IF(VAL(I1)-BTMVL(I1)-1.)546,547,546

CONTINUE
BTMVL(Il)=-1.
GO TO 5120

FINITE RETURN

GO TO 5000

FEASIBLE INTEGER SOLUTION OBTAINED
TLRNCE=ATAB(1,1)

SOLMIN=1.

WRITE CURRENT BEST MIXED INTEGER SOLUTION
ZoPT =DABS( ATAB( 1,1))

DO 560 I = 1, NZR1VR
IF(IVAR(I))554 560,554
IF(IVAR(I)- 1000)555 555, 557
J=IVAR(I)

T(J)=VAL(I)

GO TO 560

J=IVAR(I)-1000
T(J)=UPBND(J)-VAL(I)
CONTINUE

GO TO 5115

GO TO (605,4205),INDCT7
INDCTR=4
IF(I0UT1)240,254,240

INFINITE RETURN
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610

Ckxx

615
Ckx%

650

655

660

Ckxx

665

Chk*

aQan

670

675
680

Chxx

995
996
997

9972
99173

999
19

750

GO TO 5100

FINITE RETURN
INDCT7=2

IF USING SECOND SOLUTION METHOD, SAVE TABLEAU
MODIFIED FOR NONZERQ VALUE OF NONBASIC VARIABLE IN
TBSAV

DO 655 I=1,M

ITBROW(I)=IROW(I)

DO 655 J=1,N

TBSAV(I,J)=ATAB(I,J)

DO 660 J=1,N

ITBCOL(J)=ICOL(J)

JSVN=N

INDCTR=5

IF(IOUT1)240,254,240

INFINITE RETURN
GO TO (544,5120),INDCTS8
FINITE RETURN

IF USING SECOND SOLUTION METHOD, RETRIEVE MODIFIED
TABLEAU FROM TBSAV, AS THIS CORRESPONDS TO SAVED
COLUMNS FOR Il LESS THAN I1ROW

N=JSVN

DO 675 I=1,M

IROW(I)=ITBROW(I)

DO 675 J=1,N

ATAB(I,J)=TBSAV(I,J)

DO 680 J=1,N

ICOL(J)=ITBCOL(J)

GO TO 5000

OUTPUT FINAL SOLUTION.
IF(ITOL)996,999,996

IF(SOLMIN-1.E35)999,997,997

ITOL=ITOL+1
TLRNCE=FLOAT(ITOL)*PCTTOL*ATAB11+ATAB12

N=ISVN(1)

DO 9972 I=1,M

IROW(I)=ISVROW(I,1)

DO 9972 J=1,N

ATAB(I,J)=SAVTAB(I,J)

DO 9973 K=1,N

ICOL (K)=SAVTAB(M+1,K)

GO TO 400

DO 19 I = 1, IC

CW(I) = T(NM1-IC+I)

GO TO 9999

CALL EIGENP(N,NM,A,T,EVR,EVI,VECR,VECI,INDIC,IMAX)
GO TO 9999
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751 CALL MODELS5(IC,TW,NMRUNS,C)

GO TO 9999

752 CALL MODEL6(IC,TW,NMRUNS,R,C)

9999 WRITE(NO,31)

31 FORMAT(1H1,5X,25(1H¥*),/,5X, '*** ESTIMATED WEIGHTS
xkx' %/, 5X,25(1H%*),/,/) \
WRITE(NO,736) (CW(I) I=1, IC)

736 FORMAT(2X,5F12.6) | o

WRITE(NO, 32)
32 FORMAT(/,SX,'*** DO YOU WANT TO GO BACK TO MAIN MENU?
kxkk%! / 5X '==> ENTER 1=YES, 2=NO <<<')
READ (NI, *) INQUR
IF(INQUR.EQ.2) GO TO 730
WRITE(NO,33)
33 FORMAT(1H1,/,5X,'*** VALUES USED ARE AS FOLLOWS:',/)
DO 734 K = 1, ND ,
WRITE(NO,51) K
51 FORMAT(/,5X,'FOR ',I2,'TH DECISION MAKER',/)
DO 34 I =1, IC
34 WRITE(NO,*) (CC(K,I,J),J=1,IC)

734 CONTINUE

WRITE(NO, 35)
35 FORMAT(/,/,5X,'*** FOR SENSITIVITY ANALYSIS OR
*RELECTING THE CHANGES OF MIND OF DECISION MAKER **%!')

41 WRITE(NO,52)

52 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEX|')
READ(NI,*) K1 ‘
WRITE(NO, 36)

36 FORMAT(/,5X,'==> ENTER ROW INDEX NUMBER]| ')
READ(NI,*) I
WRITE(NO,37) o

37 FORMAT(/,5X,'==> ENTER COLUMN INDEX NUMBER| ')
READ(NI,*) J
WRITE(NO,38) 38 FORMAT(/,5X,'==> ENTER CORRECTED
*VALUE OF RELATIVE IMPORTANCE|')
READ(NI,*)CC(K1,I,J)

WRITE (NO, 39)

39 FORMAT(/,5X,'*** DO YOU NEED TO CHANGE MORE? **%!',
* /,5X,'==> ENTER 1=YES, 2:NO. <<<')
READ(NI,*) INQUR
IF(INQUR.EQ.1) GO TO 41
WRITE(NO, 42) K1 -

42 FORMAT(1H1,/,5X,'*** VALUES CHANGED FROM ',I2,
*DECISION MAKER ARE AS FOLLOWS:',/)

DO 43 I = 1, IC
43 WRITE(NO,*) (CC(K1,I,J),J=1,IC)

WRITE(NO, 44)
44 FORMAT(/,/,5X,'*** ARE THESE DATA CORRECT? ***!',
% /,5X,'==> ENTER 1=YES, 2=NO. <<<')

READ(NI,*) INQUR
IF(INQUR.EQ.1) GO TO 40
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GO TO 41
730 STOP
END
c
C**********************************************************
o
SUBROUTINE EIGENP(N, NM, A, T, EVR, EVI, VECR, VECI,
x INDIC, IMAX)
o
C**********************************************************
o
DOUBLE PRECISION D1,D2,D3,PRFACT
INTEGER I,IVEC,J,K,K1,KON,L,L1,M,N,NM, IMAX
REAL ENORM,EPS,EX,R,R1,T DIMENSION A(NM,1),
*VECR (NM,1),VECI(NM,1), EVR(NM),EVI(NM), INDIC(NM)
DIMENSION IWORK(100), LOCAL(100), PRFACT(100),
*SUBDIA(100), WORKL(100), WORK2(100),WORK(100)
IF(N.NE.1)GO TO 1

EVR(1) = A(1,1)

EVI(1) = 0.0

VECR(1,1) = 1.0

VECI(1,1) = 0.0

INDIC(1) = 2

GO TO 25
c -

1 CALL SCALE(N,NM,A,VECI,PRFACT,ENORM)

C ,

C THE COMPUTATION OF THE EIGENVALUES OF THE NORMALIZED
C MATRIX
EX = EXP(-T*ALOG(2.0))

o
CALL HESQR(N, NM, A, VECI, EVR, EVI, SUBDIA, INDIC,
% EPS, EX, IMAX)
o
J =N
I =1
LOCAL(1) =1
IF(J.EQ.1)GO TO 4
2 IF(ABS(SUBDIA(J-1)).GT.EPS)GO TO 3
I =1+ 1
LOCAL(I) = 0
3J=J-1
LOCAL(I) = LOCAL(I) + 1
IF(J.NE.1)GO TO 2
o
C THE EIGENVECTOR PROBLEM
4 K =1
KON = 0
L = LOCAL(1)
M = N

DO 10 I = 1, N
IVEC = N-I+1
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IF(I.LE.L)GO TO 5

K = K+1
M = N-L
L = L+LOCAL(K)

5 IF(INDIC(IVEC).EQ.0)GO TO 10
IF(EVI(IVEC).NE.0.0)GO TO 8

TRANSFER OF AN UPPER HESSENBERG MATRIX OF THE ORDER M
FROM THE ARRAYS VECI AND SUBDIA INTO THE ARRAY A.
DO 7 K1 = 1,M ‘
DO 6 L1 = K1,M
6 A(K1,L1) = VECI(K1,Ll)
IF(K1.EQ.1)GO TO 7
A(K1,K1-1) = SUBDIA(K1-1)
7 CONTINUE '

THE COMPUTATION OF THE REAL EIGENVECTOR IVEC OF THE
UPPER-HESSENBERG MATRIX CORRESPONDING TO THE REAL
EIGENVALUE EVR(IVEC)

CALL REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI, IWORK,
% WORK, INDIC, EPS, EX)

GO TO 10

THE COMPUTATION OF THE COMPLEX EIGENVECTOR IVEC OF THE
UPPER HESSENBERG MATRIX CORRESPONDING TO THE COMPLEX
EIGENVALUE EVR(IVEC)+I*EVI(IVEC). IF THE VALUE OF KON IS
NOT EQUAL TO ZERO THEN THIS COMPLEX EIGENVECTOR HAS
ALREADY BEEN FOUND FROM ITS CONJUGATE.
8 IF(KON.NE.O)GO TO 9
KON =1

CALL COMPVE(N, NM, M, IVEC, A, VECR, VECI, EVR, EVI,
% INDIC, IWORK, SUBDIA, WORKl, WORK2, WORK,
x - EPS, EX)

GO TO 10
9 KON = 0
10 CONTINUE

DO 12 I ’
DO 11 J = I,
A(I,J) = 0.0
11 a(J,I) = 0.0
= 1.0

) GO

non
-
=z =

12 A(I,I)

M = N-2

DO 14 K = 1,M
L = K+1

DO 14 J= 2,N
D1 = 0.0
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14
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17

18

19

20

21

22

PO 13 1 = L,N

D2 = VECI(I,K)

DL = D1 + D2*A(J,I)

DO 14 I = L,N

A(J,I) = A(J,I)-VECI(I,K)*Dl

KON = 1
DO 24 I = 1,N
L =0

IF(EVI(I).EQ.0.0)GO TO 16
L =1
IF(KON.EQ.0)GO TO 16

KON = 0

GO TO 24

DO 18 J = 1,N

D1 = 0.0

D2 = 0.0

DO 17 K = 1,N

D3 = A(J,K)

D1 = D1+D3*VECR(K,I)

IF(L.EQ.0)GO TO 17

D2 = D2+D3*VECR(K,I-1)
CONTINUE

WORK(J) = D1/PRFACT(J)
IF(L.EQ.0)GO TO 18 :
SUBDIA(J) =D2/PRFACT(J)
CONTINUE

IF(L.EQ.1)GO TO 21

D1 = 0.0

DO 19 M = 1,N

D1 = DL1+WORK(M)**2

D1 = DSQRT(D1)

DO 20 M = 1,N
VECI(M,I) = 0.0
VECR(M,I) = WORK(M)/D1l
EVR(I) = EVR(I)*ENORM
GO TO 24

KON = 1

EVR(I) = EVR(I)*ENORM

EVR(I-1) = EVR(I)

EVI(I) = EVI(I)*ENORM

EVI(I-1) = -EVI(I)

R =0.0

DO 22 J = 1,N

Rl = WORK(J)**2 + SUBDIA(J)**2
IF(R.GE.R1)GO TO 22

R = R1
L =J
CONTINUE

D3 = WORK(L)
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c

23
24

25

R1 = SUBDIA(L)
DO 23 J = 1,N
D1 = WORK(J)

D2 = SUBDIA(J)

VECR(J,I) = (D1*D3+D2*R1)/R
VECI(J,I) = (D2*D3-D1*R1l)/R
VECR(J,I-1) = VECR(J,I)
VECI(J,I-1) = -VECI(J,I)
CONTINUE

RETURN

END
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C

SUBROUTINE SCALE(N,NM,A,H,PRFACT,ENORM)

DOUBLE PRECISION COLUMN,FACTOR,FNORM, PRFACT Q,ROW
INTEGER I,J,ITER,N, NCOUNT NM

REAL BOUNDl BOUNDZ ENORM

DIMENSION A(NM,1),H(NM,1),PRFACT (NM)

DO 21 =1,N
pDO1J =1,N
H(I,J) = A(I,J)
PRFACT(I) = 1.0
BOUND1 = .75
BOUND2 = 1.33
ITER = 0
NCOUNT = 0

DO 8 I = 1,N
COLUMN = 0.0
ROW = 0.0

DO 4J = 1,N

IF(I.EQ. J)GO TO 4 :
COLUMN = COLUMN+ABS(A(J 1))
ROW = ROW+ABS(A(I,J))
CONTINUE
IF(COLUMN.EQ.0.0)GO TO 5
IF(ROW.EQ.0.0)GO TO 5 '
Q = COLUMN/ROW
IF(Q.LT.BOUND1)GO TO 6
IF(Q.GT.BOUND2)GO TO 6
NCOUNT = NCOUNT+1

GO TO 8

FACTOR = DSQRT(Q)

DO 7 J = 1,N
IF(I.EQ.J)GO TO 7
A(I,J) = A(I,J)*FACTOR

A(J,1) A(J,I)/FACTOR



CONTINUE

PRFACT(I) = PRFACT(I)*FACTOR
CONTINUE

ITER = ITER+1

IF(ITER.GT.30)GO TO 11
IF(NCOUNT.LT.N)GO TO 3

FNORM = 0.0

DO 9°I = 1,N

DO 9 J = 1,N

Q = A(I,J)

FNORM = FNORM+Q*Q
FNORM = DSQRT(FNORM)
DO 10 I = 1,N

DO 10 J = 1,N

A(I,J) = A(I,J)/FNORM
ENORM = FNORM

GO TO 13

DO 12 I = 1,N
PRFACT(I) = 1.0

DO 12 J = 1,N

A(I,J) = H(I,J)
ENORM = 1.0

RETURN

END

SUBROUTINE HESQR(N, NM, A, H,
INDIC, EPS,
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c
9
10
c
11
12
c
13
C
c
*
Cc
c
1
c
1
2
3

DOUBLE PRECISION S,SR,SR2,X,Y,Z.

INTEGER I,J,K,L,M,MAXST,M1,N,

REAL EPS,EX,R,SHIFT,T

DIMENSION A(NM,1), H(NM,1),
SUBDIA(NM),

IF(N-2)14,1,2

SUBDIA(l) = A(2,1)
GO TO 14

M = N-2

DO 12 K = 1,M

L = K+1

S =0.0

DO 3 I =L,N
H(I,K) = w(I,K)

S = S+ABS(A(I,K))

IF(S.NE.ABS(A(K+1,K)))GO TO 4

EVR(NM),
INDIC(NM)

NM,NS, IMAX

EVI(NM),



7

SUBDIA(K) = A(K+1,K)
H(K+1,K) = 0.0

GO TO 12

SR2 = 0.0

DO 51 = L,N

SR = A(I,K)

SR = SR/S

A(I,K) = SR

SR2 = SR2+SR*SR

SR = DSQRT(SR2)
IF(A(L,K).LT.0.0)GO TO 6
SR = -SR 1
SR2 = SR2-SR*A(L,K)
A(L,K) = A(L,K)-SR
H(L,K) = H(L,K)-SR*S
SUBDIA(K) = SR*S

X = S*DSQRT(SR2)

DO 7 I = L,N

H(I,K) = H(I,K)/X
SUBDIA(I) = A(I,K)/SR2

C PREMULTIPLICATION BY THE MATRIX PR.

8

9

DO 9 J = L,N

SR = 0.0

DO 8 I = L,N

SR = SR+A(I,K)*A(I,J)

DO 9 I =L,N : 4
A(I,J) = A(I,J)-SUBDIA(I)*SR

ool

(Ve

C POSTMULTIPLICATION BY THE MATRIX PR.

10

11
12

13
c

14

15
C

po 11 J = 1,N

SR = 0.0

po 10 1 = L,N

SR = SR+A(J,I)*A(I,K)

po 111 =L,N -
A(J,I) = A(J,I)-SUBDIA(I)*SR
CONTINUE

DO 13 K = 1,M

A(K+1,K) = SUBDIA(K)

SUBDIA(N-1) = A(N,N-1)

EPS = 0.0

po 15 K = 1,N

INDIC(K) = 0

IF(K.NE.N)EPS = EPS+SUBDIA(K)**2
PO 15 I = K,N '
H(K,I) = A(K,I)

EPS EPS+A(K,I)**2

EPS EX*SQRT(EPS)

SHIFT = A(N,N-1)

IF(N.LE.2)SHIFT = 0.0

IF(A(N,N).NE.0.0)SHIFT = 0.0
=0

IF(A(N-1,N).NE.O.Q)SHIFT .0
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16

17

18

19
20

21

22

IF(A(N-1,N-1).NE.0.0)5HIFT = 0.0
M =N

NS = 0

MAXST = N*10

DO 16 I =
DO 16 K =
IF(A(I-1,K
CONTINUE
DO 17 I = 1,N
INDIC(I)
EVR(I) =
EVI(I) =
vi

2,N
I,N -
) .NE.0.0)GO TO 18

’
=1
A(I,I)
0.0
IF(K)37,34,19

IF(ABS(A(M,K)).LE.EPS)GO TO 34
IF(M-2.EQ.0)GO TO 35

I =1I-1
IF(ABS(A(K,I)).LE.EPS)GO TO 21
K =1

IF(K.GT.1)GO TO 20
IF(K.EQ.M1)GO TO 35

S = A(M,M)+A(M1,M1)+SHIFT
SR = A(M,M)*A(M1,M1)-A(M, Ml)*A(Ml M)+0.25*SHIFT**2
A(K+2,K) = 0.0 :

A(K,K)*(A(K,K)—S)+A(K,K+1)*A(K+1,K)+SR

X =
Y = A(K+1,K)*(A(K,K)+A(K+1,K+1)-8)
R = DABS(X)+DABS(Y)

IF(R.EQ.0.0)SHIFT=A(M,M-1)
IF(R.EQ.0.0)GO TO 21

Z = A(K+2,K+1)*A(K+1,K)
SHIFT = 0.0

NS = NS + 1

DO 33 I = K,Ml
IF(I.EQ.K)GO TO 22

A(III_].)

A(I+1,I-1)

0.0

I+2.GT.M)GO TO 22
A(I+2,I-1)

= DABS(X)+DABS(Y)+DABS(Z)
SR2.EQ.0.0)GO TO 23

X/SR2

X
Y
Z
IF
Z

SR
IF
X

H~NH~Hunnuniu

116



23

24

25

26

27

28

29

30

31

32

33

34

Y/SR2

Z/SR2

DSQRT (X*X+Y*Y+Z*7)
IF(X.LT.0.0)GO TO 24

S = -8

IF(I.EQ.K)GO TO 25
A(I,I-1) = S*SR2
IF(SR2.NE.0.0)GO TO 26
IF(I+3.GT.M)GO TO 33
GO TO 32

0NN K
nwn

SR = 1.0-X/S
S = X-8
X =Y/S
Y = Z/8

DO 28 J = I,M

S = A(I,J)+A(I+1,J)*X
IF(I+2.GT.M)GO TO 27
S = S+A(I+2,J)*Y

S = S*SR o
A(I,J) = A(I,J)-S

A(I+1,J) = A(I+1,J)-S*X

IF(I+2.GT.M)GO TO 28
A(I+2,J) = A(I+2,J)-S*Y
CONTINUE

L = I+2

IF(I.LT.M1)GO TO 29

L =M

DO 31 J = K,L

S = A(J,I)+A(J,I+1)*X
IF(I+2.GT.M)GO TO 30

S = S+A(J,I+2)*Y

S = S*SR

A(J'I) = A(J'I)"S
A(J,I+1) = A(J,I+1)~-s*X
IF(I+2.GT.M)GO TO 31
A(J,I+2) = A(J,I+2)-8S*Y
CONTINUE

IF(I+3.GT.M)GO TO 33

S = -A(I+3,I+2)*Y*SR
A(I+3,I) = S

A(I+3,I+1)
A(I+3,I+2)
CONTINUE

S*X

IF(NS.GT.MAXST)GO TO 37
GO TO 18

EVR(M) = A(M,M)
EVI(M) = 0.0
INDIC(M) = 1

SXY+A(LI+3,I+2)
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M K
GO TO 18

0.5%(A(K,K)+A(M,M))
0.5%(A(M,M)-A(K,K))
S S*S+A(K,M)*A(M,K)
INDIC(K) = 1
INDIC(M) = 1
IF(S.LT.0.0)GO TO 36
T = DSQRT(S)
EVR(K) R-T
EVR (M) R+T
EVI(K) 0.0
EVI (M) 0.0
M = M-2
GO TO 18
36 T = DSQRT(-8)
EVR(K)
EVI(K)
EVR (M)
EVI (M)
M = M-2
GO TO 18

35 R
S

37 TMAX = 0.0
DO 38 I =1, N
IF(EVR(I).LT.TMAX) GO TO 38
TMAX = EVR(I)
IMAX =1
38 CONTINUE
RETURN
END
C
CRXAKAKRI KKK KKK KRR KKK KKK KRR KA KRR AR AR KRRk R AR ARk Rk Rk Rk Rk kX
c
SUBROUTINE REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI,
* IWORK, WORK, INDIC, EPS, EX)
g**********************************************************
o
DOUBLE PRECISION S,SR
INTEGER I,IVEC,ITER,J,K,L,M,N,NM,NS
REAL BOUND,EPS,EVALUE,EX,PREVIS,R,R1,T
DIMENSION A(NM,1), VECR(NM,1), EVR(NM), EVI(NM),

1 IWORK(NM), WORK(NM), INDIC(NM)
Cc
VECR(1,IVEC) = 1.0
IF(M.EQ.1)GO TO 24
Cc

EVALUE = EVR(IVEC)
IF(IVEC.EQ.M)GO TO 2
K = IVEC+1



W IN

A n

10
11

12

13

R = 0.0

DO 1 I = K,M
IF(EVALUE.NE.EVR(I))GO TO 1
IF(EVI(I).NE.0.0)GO TO 1

R = R+3.0

CONTINUE

EVALUE = EVALUE+R*EX
DO 3 K = 1,M

A(K,K) = A(K,K)-EVALUE
K = M-1

DO 8 I = 1,K

L = I+l

IWORK(I) = 0
IF(A(I+1,I).NE.0.0)GO TO 4
IF(A(I,I).NE.0.0)GO TO 8
A(I,I) = EPS

GO TO 8
IF(ABS(A(I,I)).GE.ABS(A(I+1,I)))G0O TO 6
IWORK(I) = 1

DO 5J =1I,M

R = A(I,J)

A(I,J) = A(I+1,J)

A(I+1,J)= R

R = -A(I+1,I)/A(I,I)
A(I+1,I) =R

DO 7 J = L,M

A(I+1,J)= A(I+1,J)+R*A(I,J)
CONTINUE ;
IF(A(M,M).NE.0.0)GO TO 9
A(M,M) = EPS

DO 11 I = 1,N
IF(I.GT.M)GO TO 10
WORK(I)= 1.0

GO TO 11

WORK(I) = 0.0
CONTINUE

BOUND = 0.01/(EX*FLOAT(N))
NS = 0 ‘
ITER = 1
0.0
0151 = 1,M
M-I+1

WORK (J)
J.EQ.M)GO TO 14
J+l

13 K = L,M

= WORK(K)
S-SR*A(J,K)

W~~anin

nmununoubk-nqouX

nwmo 'y
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WORK(J) = 5/A(J,7)
T = ABS(WORK(J))
IF(R.GE.T)GO TO 15

R=T

CONTINUE

DO 16 I = 1,M
WORK(I) = WORK(I)/R
R1 = 0.0 |

DO 18 I = 1,M

T = 0.0

DO 17 J = I,M

T = T+A(I,J)*WORK(J)
T = ABS(T)
IF(RL.GE.T)GO TO 18
Rl = T

CONTINUE

IF(ITER.EQ.1)GO TO 19
IF(PREVIS.LE.R1)GO TO 24
DO 20 I = 1,M
VECR(I,IVEC) = WORK(I)
PREVIS = R1 .
IF(NS.EQ.1)GO TO 24
IF(ITER.GT.6)GO TO 25
ITER = ITER+1 .
IF(R.LT.BOUND)GO TO 21
NS =1

K = M-1

DO 23 I = 1,K

R = WORK(I+1)
IF(IWORK(I).EQ.0)GO TO 22
WORK(I+1) = WORK(I)+WORK(I+1)*A(I+1,I)
WORK(I) = R ,

GO TO 23
WORK (I+1)
CONTINUE
GO TO 12

WORK(I+1)+WORK(I)*A(I+1,I)

INDIC(IVEC) = 2
IF(M.EQ.N)GO TO 27
J = M+l

DO 26 I = J,N
VECR(I,IVEC) = 0.0
RETURN

END
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c

c

SUBROUTINE COMPVE(N, NM, M, IVEC, A, VECR, H, EVR,

1

EVI, INDIC, IWORK, SUBDIA, WORKL,
WORK2, WORK, EPS, EX)

Chikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkxkkhkkkkkkkkkkkkkkxk

Cc

O W

DOUBLE PRECISION D,D1

INTEGER I,Il,I2,ITER,IVEC,J,K,L,M,N,NM,NS

REAL B,BOUND,EPS,ETA,EX,FKSI,PREVIS,R,S,U,V

DIMENSION A(NM,1), VECR(NM,1), H(NM,1), EVR(NM),
EVI(NM), INDIC(NM), IWORK(NM), SUBDIA(NM),
WORK1(NM), WORK2(NM), WORK(NM)

FKSI = EVR(IVEC)
ETA = EVI(IVEC)

IF(IVEC.EQ.M)GO TO 2

K = IVEC+l -
R = 0.0
DO 1 I =K,M

IF(FKSI.NE.EVR(I))GO TO 1
IF(ABS(ETA) .NE.ABS(EVI(I)))GO TO 1

R = R+3.0
CONTINUE
R = R¥*EX

FKSI = FKSI+R
ETA = ETA+R

2.0*FKSI

[47]
nonn

FKSI*FKSI+ETA*ETA

A(J,I) = A(J,I)+R*H(J,I+1)

IF(I.EQ.1)GO TO 7
R*SUBDIA(I-1)

A(I+1,I-1) =
DO 8 J = I,M

A(I+1,J) = A(I+1,J)+R*H(I,J)
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15

16

17
18

19

20

21

CONTINUE

K = M-1

DO 18 I = 1,K

I1 = I+1

I2 = I+2

IWORK(I) = 0

IF(I.EQ.K)GO TO 10
IF(A(I+2,1).NE.0.0)GO TO 11
IF(A(I+1,I).NE.0.0)GO TO 11
IF(A(I,I).NE.0.0)GO TO 18
A(I,I) = EPS

GO TO 18

IF(I.EQ.K)GO TO 12

IF(ABS(A(I+1,I)).GE.ABS(A(I+2,1I)))GO TO 12
IF(ABS(A(I,I)).GE.ABS(A(I+2,I)))GO TO 16

L = I+2
IWORK(I) = 2
GO TO 13

IF(ABS(A(I,I)).GE.ABS(A(I+1,1I)))GO TO 15

L = I+1
IWORK(I) =1

DO 14 J = I, M

R = A(I,J)

A(I,J) = A(L,J)

A(L,J) = R

IF(I.NE.K)GO TO 16

12 = I1

DO 17 L = I1,1I2

R = -A(L,I)/A(I,I)
A(L,I) = R

DO 17 J = Il,M

A(L,J) = A(L,J)+R*A(I,J)
CONTINUE
IF(A(M,M).NE.0.0)GO TO 19
A(M,M) = EPS

DO 21 I =1,N
IF(I.GT.M)GO TO 20
VECR(I,IVEC) = 1.0
VECR(I,IVEC-1) = 1.0
GO TO 21
VECR(I,IVEC) = 0.0
VECR(I,IVEC-1) = 0.0
CONTINUE

BOUND = 0.01/(EX*FLOAT(N))
NS = 0

ITER = 1

DO 22 I = 1,M
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» 23

24

25
26
217

28

29
30
31

32

33
34
35

WORK(I)

H(I,I)-FKSI

DO 27 I = 1,M

D = WORK(I)*VECR(I,IVEC)

IF(I.EQ.1)GO TO 24

D = D+SUBDIA(I-1)*VECR(I-1,IVEC)

L = I+1

IF(L.GT.M)GO TO 26

DO 25 K = L,M

D = D+H(I,K)*VECR(K,IVEC)
VECR(I,IVEC-1) = D-ETA*VECR(I,IVEC-1)
CONTINUE

K = M-1

DO 28 I = 1,K

L = I+IWORK(I)

R = VECR(L,IVEC-1)

VECR(L,IVEC-1) = VECR(I,IVEC-1)

VECR(I,IVEC-1) = R

VECR(I+1,IVEC-1) = VECR(I+1,IVEC-1)+A(I+1,I)*R
IF(I.EQ.K)GO TO 28 ' ‘
VECR(I+2,IVEC-1) = VECR(I+2,IVEC-1)+A(I+2,I)*R
CONTINUE :

11=1,M

= M-I+1

= VECR(J,IVEC-1)
F(J.EQ.M)GO TO 30

= J+1

0 29 K = L,MA

D1 = A(J,K) .

D = D-D1*VECR(K,IVEC-1)
VECR(J,IVEC-1) = D/A(J,J)
CONTINUE

DO 351 =1,M

D WORK(I)*VECR(I IVEC- l)

IF(I EQ.1)GO TO 32

D = D+SUBDIA(I-1)*VECR(I-1,IVEC-1)

L = I+l

IF(L.GT.M)GO TO 34

DO 33 K = L,M

D = D+H(I, K)*VECR(K IVEC-1) ’
VECR(I, IVEC) = (VECR(I IVEC) D)/ETA
CONTINUE

Ve SONOHKH

'0
0361 =1,M
ECR(I,IVEC)**2+VECR(I,IVEC-1)**2
E

F(R.LE.S)GO TO 36

n=HTO 0

e~
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36

37

38

39
40

41

42

43

44

45
46

47
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L =1

CONTINUE

U = VECR(L,IVEC-1)
V = VECR(L,IVEC)

DO 37 I = 1,M

B = VECR(I,IVEC)

R = VECR(I,IVEC-1)
VECR(I,IVEC) = (RX*U+B*V)/S
VECR(I,IVEC-1) = (B*U~-R*V)/S

0.0
0411 = 1,M

WORK (I)*VECR(I,IVEC-1)-ETA*VECR(I,IVEC)
WORK (I ) *VECR(I, IVEC)+ETA*VECR(I, IVEC-1)
I.EQ.1)GO TO 38
R+SUBDIA(I-1)*VECR(I-1,IVEC-1)
U+SUBDIA(I-1)*VECR(I-1,IVEC)

I+1 ,

IF(L.GT.M)GO TO 40

DO 39 J = L,M
R = R+H(I,J)*VECR(J,IVEC-1)
U = U+H(I,J)*VECR(J,IVEC)
U = R*R+U*U

IF(B.GE.U)GO TO 41
B=U
CONTINUE

IF(ITER.EQ.1)GO TO 42

IF(PREVIS.LE.B)GO TO 44
DO 43 I = 1,N

-~

r'c:w-—nt:';octn
]

WORK1(I) = VECR(I,IVEC)
WORK2(I) = VECR(I,IVEC-1)
PREVIS = B

IF(NS.EQ.1)GO TO 46
IF(ITER.GT.6)GO TO 47

ITER = ITER+1
IF(BOUND.GT.SQRT(S))GO TO 23
NS =1

GO TO 23

DO 45 1 = 1,N
VECR(I,IVEC) = WORK1(I)
VECR(I,IVEC-1) = WORKZ(I)
INDIC(IVEC 1) =
INDIC(IVEC) = 2

RETURN

END
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g**********************************************************

¢ SUBROUTINE MODELS5(IC, TW, NMRUNS, C)

g*********************#************************************

¢ INTEGER ITEMP, ITEMP1l, ITEMP2, IC, II(5), IT, NMRUNS,
REAL TN, TN2, TW(5), W(5), W1(5), W2(5), W3(5),

1 CYW(5), €(5,5), TT
DO 100 I = 1, IC
II(I) =1
W(I) = 0.0
W1(I) = 0.0
W2(I) = 1.0
W3(I) = 0.0
100 CONTINUE
c
c CALCULATE THE WEIGHT VECTORS AFTER GENERATING ALL
C POSSIBLE INDEX ORDERS
o
IF(IC.EQ.5) GO TO 300
IF(IC.EQ.4) GO TO 200
DO 103 J =1, 3
IF(J.EQ.1) GO TO 104
ITEMP = II(1l) ‘
II(l1) = 1I1(2)
II1(2) = II(3)
II(3) = ITEMP
104 W(II(3)) = 1.0
W(II(2)) = C(II(2),II(3)) * W(II(3))
W(II(l)) = ,
L(C(II(1),ITI(2))*W(II(2))+C(II(1),II(3))*W(II(3)))/2.0
TT = TT+1.0
TN = 0.0
DO 109 I = 1, IC
109 TN = TN + W(II(I))
DO 105 I = 1, IC
105 W1(I) = W(I) / TN
DO 106 I = 1,.1IC
106 W2(I) = W2(I)*W1(I)
103 CONTINUE
400 TN2 = 0.0
c R
c CALCULATE GEOMETRIC MEAN OF ALL WEIGHT VECTORS
c

DO 107 I = 1,IC
W3(I) = W2(I) ** (1.0/TT)
107 TN2 = TN2 + W3(I)
DO 108 I = 1, IC
108 CYW(I) = W3(I) / TN2
WRITE(6,*) (CYW(I),I=1,IC)



200

202

204

1

1

209
207
208
203
201

300

302

304

GO TO 500
DO 201 I = 1, IC
IF(I.EQ.1) GO TO 202
II(1)

I1(2)

I1(3)

I1(4)

ITEMP

DO 203 J = 1, IC
IF(J.EQ.1) GO TO 204
ITEMP = II(2)
II(2) = II(3)

II(3) = II(4)

II1(4) = ITEMP
IF(J.EQ.4) GO TO 203
W(II(4)) 1.0 \
W(II(3))
W(IIC(2))

-

-

—

[y

~
muwnunn

I n nn

nnn

W(II(1l))

TT
TN

TT+1.0

0.0

DO 209 K = 1, IC
TN = TN + W(II(K))
DO 207 K = 1, IC
W1(K) = W(K) / TN
DO 208 K = 1, IC

nen i

W2(K) = W2(K)*WLl(K)
CONTINUE

CONTINUE

GO TO 400

DO 301 I = 1, IC

IF(I.EQ.1) GO TO 302
ITEMP1 = II(1)

II(1) = II(2)
I1(2) = II(3)
II1(3) = II(4)
II(4) = II(5)
II(5) = ITEMP1

DO 303 J = 1, IC
IF(J.EQ.1) GO TO 304

ITEMP = II(2)
II(2) = II(3)
II(3) = II(4)
II(4) = II(5)
II(5) = ITEMP

IF(J.EQ.IC) GO TO 303
DO 305 K = 1,4
IF(K.EQ.1) GO TO 306
ITEMP = II(3)

II(3) = II1(4)

C(II(3),II(4)) * W(II(4))
(C(II(2),II(3))*W(II(3))+C(II(2),II(4)) *
W(II(4)))s/2.0,
(C(II(1),II(2))*W(II(2))+C(II(1),II(3)) *
W(II(3)) + C(II(1),II(4))*W(II(4)))/3.0
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II(4) = LII(5)
II(5) = ITEMP
IF(K.EQ.4) GO TO 305

306 W(II(5)) = 1.0
W(II(4)) = C(II(4),II(5)) * W(II(5))
W(II(3)) = (C(II(3),II(4))*W(II(4))+C(II(3),II(5)) *
1 W(II(5)))/2.0
W(II(2)) = (C(II(2),II(3))*W(II(3))+C(II(2),II(4)) *
1 W(II(4)) + C(II(2),II(5))*W(II(5)))/3.0
W(II(1)) = (C(II(1),II(2))*W(II(2))+C(II(1),II(3)) *
1 W(II(3)) + C(II(1),II(4))*W(II(4)) + 2
2 C(II(1),II(5)) * W(II(5)))/4.0
TT = TT+1.0 A
TN = 0.0
DO 309 L = 1, IC

309 TN = TN + W(II(L))

DO 307 L = 1, IC
307 W1(L) = W(L) / TN
DO 308 L = 1, IC
308 W2(L) = W2(L)*W1(L)
305 CONTINUE :
303 CONTINUE
301 CONTINUE
GO TO 400
500 RETURN
END
c
c***‘k*************************r*****************************
c
SUBROUTINE MODEL6(IC, TW, NMRUNS, C)
g**********************************************************
o
INTEGER IC,IT,NMRUNS ,
REAL TN1, TN2, TW(5), R(5,5), C(5,5), W(5), TAKW(S5)

c 'CALCULATE THE WEIGHTS
TN2 = 0.0
DO 106 I = IC, 1, -1
W(I) = 0.0

IF(I.EQ.IC) GO TO 108
DO 107 J = I+l1, IC '
W(I) = W(I) + C(I,J) * W(J)

107 CONTINUE
GO TO 110

108 W(I) = 1.0

110 TN2 = TN2 + W(I)

106 CONTINUE
DO 109 I = 1, IC
TAKW(I) = W(I) / TN2

109 CONTINUE
RETURN
END
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