
NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL 

ERROR AND REFINING INCONSISTENCY FOR 

MULTIPLE CRITERIA DECISION 

MAKING PROBLEMS 

by 

KOOK JIN.J71AM 

Bachelor of Science 
Korea Milit~~y Academy 

S~oul, Korea 
'1975 

Master ·of Science 
Naval Postgraduate School 

Monterey, California 
' 1984 

Submitted to the Faculty of the 
Graduate College. of the 

Oklahoma State University 
in partial'fulfillment of 

the requirements for 
the, ·Degree ·of 

DOCTOR OF PHILOSOPHY 
May, 1990 





O!dan1.oma State Univ. Library 

NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL 

ERROR AND REFINING INCONSISTENCY FOR 

MULTIPLE CRITERIA DECISION 

MAKING PROBLEMS ' 

Thesis Approved: 

Dean of the Graduate College 

ii 



PREFACE 

The objective of this study is to develop new 

weighting methods for use in solving multiple criteria 

decision making problems. 

I wish to ~xpress sincei~ appreciation to my major 

adviser, Dr. M. Palmer Terrell, for his guidance, 

assistance, and encouragement throughout this research and 

during my doctoral studies. Appreciations also to my 

committee members, Dr. Michael H. Branson, Dr. Kenneth E. 

Case, Dr. Joe H. Mize, and Dr. William D. Warde, for their 

interest and assistance. 

I also wish to,thank the School of Industrial 

Engineering and Management at Oklahoma state University for 

financial support. 

Thanks are extended to Republic of Korean Army 

Headquarters for'their financial and moral support, and for 

giving me the opportunity to fulfill this study. 

Finally, I wish to dedicate this dissertation to my 

parents, Mr. and Mrs~ ,Hyodeok Nam, my wife, Eunja Kim, and 

my children Bomi and Jaeho, for their prayers, sacrifice, 

understanding, encouragement, and love. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1 

The General Problem . . . . . . 1 
Statement of the Problem. . . . . . . 2 

Introduction . . . . • . . . . 2 
Theoretical Validation, Quality, 

and Simplicity . . . . . . . . . 2 
Consistency Assumptions and 

Inconsistency . . . . . . . . . . . 4 
Minimization of Judgmental Error 5 

Summary of Research Goal and Objectives 5 
Research Goal. . . . . . . . . . . 6 
Objectives . . . . . . . . . . . . 6 

Contribution. . . . . 7 

II. LITERATURE REVIEW. 8 

III. 

Introduction ....... . 
Rank in g. . . . . . . . . . 
Rating . ............ . 
Point Allocation. . ....... . 
Unit Weighting. . . . .. 
Successive Paired Comparison ..... . 
Indifference Trade-off. . . . . .. 
Eigen-vector Methods. . . .. . 
Conclusion. . . . . .. . 

MODEL DEVELOPMENT .. 

8 
9 
9 
9 

10 
11 
12 
13 
18 

22 

Introduction. . . . . . . . . . . . 22 
Assumptions . . . . . . . . . . 22 
Notation. . . . . . . . . . . . . . . . 23 
The New Models for Estimating Weights using 

Pairwise Comparison Matrix from a Single 
Decision Maker. . . . . . . . . . 26 

Mode 1 1 Deve 1 opment. . . . . . . . . 2 7 
Model 2 Development. . . . . . . . 31 
Model 3 Development. . . . . . . . . . 33 

Procedures for Estimating Weights using 
Pairwise comparison Matrices from 
Multiple Decision Makers. . . . . . . 34 

iv 



Chapter 

Estimating Weights after Averaging 
Pairwise Comparison Matrices .. 

Averaging Individual Weights of 
Decision Makers ..... . 

Page 

35 

36 

IV. USING THE INTERACTIVE COMPUTER PROGRAM 37 

Introduction ............. . 
Interactive Program Development . 
Overview. . . . . . . . . . . . 
Input Pairwise Comparisons ........ . 
Summary . . . . . . . . . . . . . . . . 

37 
38 
40 
40 
45 

V. RESULTS, CO,MPARISON, AND ANALYSIS. . . . . . 46 

Introduction. . . . . . . . . . . . . . . . 46 
Measurement of Goodness of Fit. . . . . 48 
Deciding the Number of Replications . . . . 49 
Experimental Design . . . . . . . . . . . . 51 
Results, Comparison, and Analysis . . . . . 54 
Discussions on Multiple Decision Makers 79 

VI. SUMMARY, CONCLUSIONS. AND RECOMMENDATIONS. . 83 

Summary . . . . . . . • . . 
Conclusions and Recommendations . 

BIBLIOGRAPHY ..... . 

APPENDIX - INTERACTIVE PROGRAM LISTING. 

v 

83 
85 

86 

89 



LIST OF TABLES 

Table Page 

2.1 summary of Features of Various Weighting 
Methods. . . . . . . . . . . . . . . 19 

2.2 Summary of Various Weighting Methods . . 20 

2.3 Chronological Summary of Weighting Methods . 21 

5.1 Summary of Eight Decision Making Setting 
Problems Used by Takeda, et al . . . . 47 

5.2 

5.3 

Estimated Values of- ~ 2 ,When N=30 . 

Number of Replications for Simulation Run 
When a=B=0.025 ...........•. 

5.4 Simulation Results Based on W=(0.15,0.55,0.3), 
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16, 

51 

51 

NC=3, Seed=.O ; . . .. . . . . . . . . . . . 55 

5.5 Analysis of Variance fo~ Euclidean Distance 
Measure Data, of Table 5. 4. . . . . . . . . 56 

5.6 Analysis of Variance for City Block Distance 
Measure Data of T~ble 5.4. . . . . . . . . 56 

5.7 Simulation Results Based on W=(0.3,0.15,0.55), 
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16, 
NC=3, Seed=O . . . . ~ . . . . . . . . . . 57 

5.8 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.7. . . . . . . . • 57 

5.9 Analysis of Variance for City Block Distance 
Measure Data of Table 5.7. . . . . . . • . 58 

5.10 Simulation Results Based on W=(0.55,0.3,0.15), 
D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16, 
NC=3, Seed=472 . . . . . . . . . . . . . . 59 

5.11 Analysis of variance for Euclidean Distance 
Measure Data of Table 5.10 . . . . . . . . 59 

vi 



Table Page 

5.12 Analysis of variance for City Block Distance 
Measure Data of Table 5.10 . . . . . . . . 59 

5.13 Simulation Results Based on W=(0.55,0.3,0.15), 
D(l,2)=0.9, D(l,3)=0.8, D(2,3)=0.6, R=l6, 
NC=3, Seed=O ..•. o ..•.. -. · .•... , . 60 

5.14 Analysis of- Vari·ance for Euclidean Distance 
Measure Data of Table 5.13 o ...... 0 60 

5.15 Analysis of Variance for City Block Distance 
Measure Data of Table 5.13 . . . . . . . . 60 

5.16 Simulation Results Based on W•(0.2,0.4,0.1,0.3) 
D(l,2)=0.7,D(l,3)=0o9 1 D(l,4)=0.8,D(2,3)=0.7, 
D(2,4)=0.6,D(3,4)=0.4, R~l5, NC=4, Seed=O. 61 

5.17 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.16 . . . . . . . . 62 

5.18 Analysis of Variance· for City Block Distance 
Measure Data of Table 5.16 ..... o . 0 62 

5.19 Simulation Results Based on W=(0.2,0.4,0.1,0.3) 
D(l,2)=0.8,D(l,3)=0.7,D(l,4)=0.9,D(2,3)=0.4, 
D(2,4)=0;6,D(3,4)=0.5, R=l5, NC=4, Seed=40 63 

5.20 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.19 . o o . o . o . 63 

5. 21 Analysis of Var lance. for City Block Distance 
Measure Data of Table 5.19 ..•. o . • . 63 

5.22 Simulation Results Based on W=(Oo2,0o(,Ool,0.3) 
D(l,2)=0o7,D(l,3)=0o6,D(l,4)=0o8,D(2,3)=0.5, 
D(2,4)=0o6,D(3,4)=0o3, R=l5~ NC=4, Seed=921. . 64 

5.23 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.22 . . . . . . . . 65 

5.24 Analysis of Variance for City Block Distance 
Measure Data of Table 5.22 . . . . . . . . 65 

5o25 Simulation Results Based on W=(o25,o3,o15,ol,o2), 
D(l,2)=0.6,D(l,3)=0o7,D(l,4)=0o8,D(l,5)=0.6, 
D(2,3)=0o7,D(2,4)=0.6,D(2,5)=0.6,D(3,4)=0.5, 
D(3,5)=0.8,D(4,5)=0.3, R=25, NC=5, Seed=O. 66 

5.26 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.25 .. o .. o o o 66 

vii 



Table Page 

5.27 Analysis of Variance for c~ty Block Distance 
Measure Data of Table 5.25 ~ . . . . . . . 66 

5.28 Sum~ary of the Simuiation·Results for Eight 
Decision Making Setting Problems ; . . . . 67 

5.29 Problem Descriptions for additional 
Simulation Run ......... . 

' 

5.30 Simulation Results Based on W=(.2,.12,.15,.1,.2, 
.05,.18), D(i,j)* is Generated from Uniform 

68 

Random Numbers, R=25, NC=7, Seed=3211. . . 69 

5.31 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.30 . . . . . . . . 69 

5.32 Analysis of Variance for City Block Distance 
Measure Data of Table. 5.30 . . . . . . . . 69 

5.33 Simulation Results Based on W=(.2,.12,.15,.1,.2, 
.05,.18), D(i,j)* is Generated from Uniform 
Random Numbers, R=25, NC=7, Seed=4444. . . . 71 

5.34 Analysis of· Variance for Euclidean Distance 
Measure Data of Table 5.33 . . . . . . . . 71 

5.35 Analysis of Variance for City Block Distance 
Measure Data of Table 5.33 . . . . . . . . 71 

5.36 Simulation Re~ults Based on W=(.2,.12,.15,.1,.2, 
.05,.18), D(i,j)* is Generated from Uniform 
Random Numbers, R=25, NC=7, Seed=5678. . . . . 72 

5.37 Analysis of variance for Euclidean Distance 
Measure Data of Table 5. 36· . . . . . . . . 7 3 

5.38 Analysis of Variance for City Block Distance 
Measure Data of Table 5.36 . . . . . . . . 73 

5.39 Simulation Results Based on W=(.2,.12,.08,.1,.17, 
.05,.15,.1,.03), D(i,j)*· is Generated from 
Uniform Random Numbers, R=25, NC=9, Seed=6156. 74 

5.40 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.39 . . . . . . . . 75 

5.41 Analysis of variance for City Block Distance 
Measure Data of Table 5.39 . . . . . . . . 75 

viii 



Table Page 

5.42 Simulation Results Based on W=(.2,.12,.08,.1,.17, 
.05,.15,.1,.03), D(i,j)* is Generated from 
Uniform Random Numbers, R=25, NC=9, Seed=7312. 75 

5.43 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.42 . . . . . . . . 76 

5.44 Analysis of Variance for City Block Distance 
Measure Data of Table 5.42 .. ~ . . . . . 76 

5.45 Simulation Results Based on W=(.2,.12,.08,.1,.17, 
.05,.15,.1,.03), D(i~j)* is Generated from 
Uniform Random Numbers, R=t5, NC=9, Seed=8866. 77 

5.46 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.45 . . • . . . . . 77 

5.47 Analysis of Variance for City Block Distance 
Measure Data of Table 5.45 . . . . . . . . 78 

5.48 Simulation Results for Two Decision Makers 
When N=30. . . . . . . . . . . , . • . 80 

5.49 Analysis of Variance for Euclidea~ Distance 
Measure Data of Table 5.48 When NC=3 . . . 80 

5.50 Analysis of Variance for City Block Distance 
Measure Data of Table 5~48 When NC=3 . . . 81 

5.51 Analysis of Variance for Euclidean Distance 
Measure Data of Tabl'e 5. 48 When NC=4 . . . 81 

5.52 Analysis of Variance for City Block Distance 
Measure Data of Table 5.48 When NC=4 . . . 81 

5.53 Analysis of Variance for Euclidean Distance 
Measure Data of Table 5.48 When NC=5 . . . 82 

5.54 Analysis of Variance for City Block Distance 
Measure Data of Table 5.48 When NC=5 . . . 82 

vi iii 



LIST OF FIGURES 

Figure 

4.1 Flowchart for Interactive Model .. . . . . . . . 
' 

Page 

39 

5.1 Summary of Experimental Design for Simulation. . 52 

X 



CHAPTER I ' 

INTRODUCTION 

The General Problem 

Weighting procedures have been used since the 

beginning of human life. Humans use some kind of weighting 

procedure, implicitly or expl~icitly, whenever they have 

need to allocate resources among a set of activities or to 

select the most important activity. 

In recent history, many researchers have contributed 

their efforts for developing methods of weight determina­

tion. In general, w~ight determination methods are 

/ concerned with determining~ the preference of decision 

makers. Because of the nat~re of this problem and its 

breadth of application, an interdisciplinary interest has 

been developed in this area. In particular, the problem 

has been studied by economists, engineers, 

environmentalists, management scientists, mathematicians, 

operations researchers, statisticians, system analysts, 

urban planners, etc. 

The importance of generating better weights for 

multiple criteria decision making (MCDM) problems continues 

to be of much interest to researchers and decision makers 

1 



alike. The research interest in this area stems from both 

its simplicity of use in additive models and its 

applicability to problems in many diverse fields. 

Statement of the Problem 

Introduction 

One of the purposes of deriving weights is for their 

2 

use in additive models. Due_to their simplicity, additive vi' 
weight methods have great appeal in MCDM problems 

(Frazelle, 1985). It is important to study the weighting 

determination procedures closely and determine and 

understand the str~ngths and the weaknesses of the 

procedures. Research effort and direction can be motivated 

through such an analysis. 

Theoretical Validation. Quality, 

and Simplicity 

Many techniques for MCD~ problems use weights ,to 

combine attributes into a single sum that indicates value V 
or suitability. The most frequently applied multiple 

criteria decision rule is- the weighting summation or linear 

model: 

n 
vk = E w~x~k 

i=l 
(1.1) 

where Vk = value of the suitability of alternative k; 



x~k = the level of criterion i for alternative k; 

w~ = the true weight of criterion i. 

3 

Many researchers have contributed their efforts to the 

development of better methods for determining the values of 

w~. As a result of these researchers' effort, many 

methodologies have been developed from simple methodologies 

such as the ~anking method, rating methodL point allocation 

method, or unit weighting method to more sophisticated 

methodologies. such as successive paired compar:i.son method, 

indifference trade-off method, and eiqen-:-vector methoa. 

Although the relatively easy models such as ranking method, 

rating method, point allocation method, and unit weight 

method are simple to use, they do lack formal theory. To 

be a theoretically valid model, the decision maker's trade­

off should be reflected when comparing the criteria to each 

other (Fischer, 1977) (Hobbs, 1979). Theoretically the 

most defensible methods are those such as successive paired 

comparison methods and indifference trade-off methods, but 

they are the most complicated methods to use. Unfortuna­

tely, there is no guarantee that a theoretically valid 

method generates more superior weights than those generated 

using theoretically invalid methods (Einhorn and Hogarth, 

1975). The purpose of the research to be presented in this 

paper is to contribute to the development of new methods 

which are theoretically valid, more superior in their use 

compared to other methods, and more easy to use. 
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Consistency Assumptions and Inconsistency 

Since weights are difficult to estimate directly, 

researchers estimate these weights by using ratios of one 

criterion to another obtained through interaction with the 

decision maker. The comparisons used to construct the 

ratios may or may not be consistent. The necessary 

judgment used in making comparisons is dependent on many 

factors, such as personal experience, learning, situations, 

the state of mind, etc. The consistency assumption for 

comparisons is very critic"al. For instance, the main 

difference of various eigen-vector methods (more completely 

discussed in the literature review) developed by Saaty 

(1977), cogger and Yu (1985), Takeda, Cogger, and Yu (1987) 

is the assumption of consistency. Saaty (1977) assumes 

that decision makers are consistent in their comparisons. 

Other researchers, however, do not agree with this 

consistency assumption because they believe most decision 

makers are going to be somewhat inconsistent, even after 

repeated attempts to alert them to their inconsistencies 

and attempts to refine the estimated reciprocal portion of 

the matrix. With this argument, they have devoted their 

research efforts to refining decision makers' 

inconsistencies in pairwise comparisons. 

It does not really matter which eigen-vector method is 

used when the response of the decision maker is consistent 

in the pairwise comparisons, because they will give the 



same solution. This aspect demonstrates a need for 

developing methods which refine decision makers' 

inconsistencies in an appropriate and better way. 

Minimization ~ Judgmental Error 

5 

Minimization of judgmental error is a new and 

important concept when estimating weights using subjective 

approaches. Due to a decision maker's inconsistency, 

knowledge, interest, state of mind,.fatigue, and other 

factors, the weights will include possible error. However, 

none of the subjective approaches account for or consider 

this error (Schmitt and Levine, 1977). Minimizing this 

error term when estimating weights is very important. 

The research to be presented will contribute to 

resolving these problem issues of the decision maker's 

inconsistency and judgmental error and thus lead to an 

improved model(s) for estimating weights. Now that the 

general problem area and issues have been discussed, 

Chapter II will summarize in additional detail the 

pertinent literature related to the topic. 

summary of Research Goal and Objectives 

Based on the above discussion, the research goal is 

stated as follows: 



Research GQa.L 

To develop new weighting methods for use in solving 

MCDM problems based on the minimizatio.n of a decision 

maker's judgmental error and,the refinement of a 

decision maker's inconsistency~ 

This research goal will be reached by achieving the 

following objectives: 

Obiectives 

6 

1. By developing three new analytical,models based on 

minimizing the.sum ot a decision maker's 

judgmental error using all a~~ of a pairwise 

comparison matrix for refinement of a decision 

maker's inconsistency, utilizing J,J.nea.r,---, 

programming as ~R~Pt~mizatLon tool . 
....._____~_.....,._.., .. ,.,....,..,,...,..,.,_ .... :...,..., -~----~"'~, ..... ~ 

2. By testing the analytic models developed in this 

research against others reported in the literature 

using a simulation model to generate a de~ision 

maker's judgment of pairwise comparisons which 

includes simulated judgmental error. The testing 

phase will include setting up the hypotheses, 

computing the test stati~trc, drawing conclusions. 

3. By comparing and analyzing the quality of the 

weights produced by the three proposed models with 

three models reported 1n the literature that use 

variations of eigen-vector methods: Saaty's Eigen-



vector Method, Cogger and Yu's Eigenweight Vector 

Method, and Takeda, et al.'s Graded Eigenvector 

Method. The testing criteria is to be based on 

the Euclidean distance measure and city block 

distance measure. 

4. By developing a comprehensive and flexible 

interactive computer program to ease the task of 

data input, model optimization, statistical test. 

Contribution 

7 

This research develops new weighting procedures 

employing the minimization of judgmental error and the 

refinement of decision maker's ~nconsistency using pairwise 

comparisons and linear programming, and compares the new 

procedures to other existing methodologies. This research 

contributes to minimizing judgmental error unlike other 

subjective methods. This research also contributes to 

refining the decision maker's inconsistency, unlike.other 

weighting procedures, by using all a~~ in pairwise compari­

sons when estimating weights. This refining procedure is 

very simple when compared to the methods of enumerating all 

possible index order~ or eliciting additional sets of 

weights from a decision maker. This research also provides 

an additional benefit by making available to both decision 

makers and researchers an interactive computer mode that 

facilitates easy and accurate input. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter reviews developments in'the literature 

relevant to the research obje~tive which was presented in 

Chapter I. The extensive literature on weight 

determination methods using subjectl~e"_gpp_rg_a_c;.b~s has been 
----~-----·-- ··-- ~· I 

reviewed. The subjective approaches use decision maker's 

decomposed judgments on criteria, rather than using the 

levels of criteria. The decision maker's judgments are 

often unrepresentative of true importance. Furthermore, 

judgmental error is seldom considered systematically. 

Various subjective method~ e~ist. This chapter is divided 

into seven sections according to these methodologies which 

are: (1) Ranking, (2) Rating, (3) Point allocation, (4) 

Unit weighting, (5) Successive paired comparison, (6) 

Indifference trade-off, and (7) Eigen-vector methods. 

These methods are extracted from the surveys of Eckenrode 

(1965), Huber (1974), cook and stewart (1975), Hobbs 

(1980), and Takeda, et al. (1987). 

8 
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Ranking 

using the ranking methodology (Eckenrode, 1965), 

decision makers order the criteria from the most important 

to the least important. Weights from these methods are on 

an ordinal scale of measurement, as ratios of weights are 

arbitrarily fixed. With ordinal scales only the ordering 

of phenomena is significant. The differences in numbers or 

their ratios are not considered important. Jopling (1974) 

and watson (1974) make applications of the ranking method 

in a power plant siting study. 

Rating 

The rating method asks decision makers to rate on, 

say, a scale of 0 to 10, according to the importance of 

each criterion. Theoretically valid weights are not 

assured because a decision maker's definition of importance 

may have little to do with the relative value of the 

criteria. Eckenrode (1965) emphasizes the attractiveness 

of the ease of use of this method. Groups often apply this 

method assisted by Delphi technique (Delbecq et al, 1975) 

(Voelker, 1977). 

Point Allocation 

In the point allocation method, the decision maker is 

asked to distribute a fixed number of points among the 

various criteria so as to reflect their relative 
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importance. This straightforward method was suggested as a 

good method by Hoffman (1960} and Schoemaker and Waid 

(1982}, even though this method lacks formal theory. 

Similar point allocation methods have been advocated by 

Moore and Baker (1969) in various scoring models for 

eval~ating engineering and R&D projects. 

Unit Weighting 

The unit weighting method standardizes the criteria in 

order to cause them to exhibit equal mean anQ variance, and 

then adds them together into a composite score. 

Einhorn and Hogarth (1975} declare that the unit 

weighting method is a viable methodology for predictive 

purposes. They illustrate several reasons to support their 

declaration. The reasons are that unit weights are not 

estimated from the data and therefore do not consume 

degrees of freedom, and unit weights are free from 

judgmental error so that unit weights cannot reverse the 

true relative weights of the criteria. In addition to 

Einhorn and Hogarth's work, there have been a number of 

empirical studies by Trattner (1963}, Lehman (1971), 

Fischer (1972), and Beckwith and Lehman (1973} that have 

shown that the unit weighting method is a good procedure 

for predictive purposes. Schmidt (1971, 1972} and Claudy 

(1972} have used simulation techniques in their works with 

the results generally showing that the unit weighting 
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scheme performs quite well compared to regression. But 

Schoemaker and Waid (1982) do not agree with these results. 

They declare that the unit weighting method is clearly 

inferior relative to other methods such as linear 

regression, eigen-vector method and point allocation method 

after finishing their experiment on college admission. 
/ 

~ The use of the unit weighting method is desirable when the 

problem has many criteria and it is really difficult for 

the decision maker to figure out the relative importance of 

each criterion. Schoemaker and Waid's college admission 

problem has just four criteria. on the other hand, other 

researchers' problems have more than twelve criteria. This 

is the main reason of drawing different conclusions. 

Successive Paired Comparison 

This method proposed by Churchman and Ackoff (1954) 

uses two stages to determine the importance or weight of 

the criteria. First, the decision maker ranks criteria in 

order of importance as in the ranking method. The decision 

maker tentatively assigns the value 1 to the most important 

criterion and values between 0 and 1 to the other criteria 

in order of importance. The second stage systematically 

checks to see if those weights are consistent with trade-

offs that the decision maker is willing to make. This is 

done via a number of questions and a question and answer 

scheme that asks the decision maker to decide whether the 

criterion with value of 1 is more important than all other 



12 

criteria combined. If so, the decision maker may need to 

consider an increase in the value of the most important 

criterion; VC(1), so that VC(1) is greater than the sum of 

all other values of criteria. If not, the decision maker 

needs to adjust the value of the most importan~ criterion, 

VC(1), so that VC(1) is less than the sum of all other 

criteria values. The decision maker then decides whether 

the second most important criterion is more important than 

the sum of all lower-valued criteria. The decision maker 

continues this process until n-1 criteria have been so 

evaluated. Any inconsistencies between a choice and the 

values assigned by the decision maker must be resolved by 

changing a choice,~ th~ values,. or both. This can be very 

difficult and time consuming when there are many criteria. 

This method assures that the weights are valid because the 

decision maker checks the'welghts against acceptable trade­

offs. Stimson (1969) applies this methodology for solving 

a public health problem.and Davidson (1974) for solving a 

regional planning problem.· 

Indifference Trade-off 

The indifference trade-off method (Huber, 1974), 

assures theoretically valid weights by determining if the 

decision maker will or will not trade-off one criterion 

value for another. Enough questions as to acceptable 

trade-offs are asked in order to solve for a unique set of 



weights. Consistency checks are especially important here 

as a decision maker will probably be very inconsistent on 

the first try because the decision makers usually will not 

think systematical!¥ about the trade-offs they are willing 

to make. In answering these questions, decision makers are 

forced to focus on their values of the criteria which is a 

desirable characteristic of this method. This technique 

has been applied in several site selection studies by 

Keeney and Nair (1977) and Keeney (1979). 

Eigen-vec~or Methods 

The eigen-vector method developed by Saaty (1977) 

requires pairwise comparisons of criteria in terms of 

relative importance. He explicitly assumes that the 

decision maker is consistent in the comparisons. 

[ 
a:L:L a12 a:Ln 

l az:L azz azn 
C' = ( 2 . 1 ) 

an:L an2 ann 

The decision maker constructs the nxn pairwise comparison 

matrix of C' as can be seen in (2.1). In such a matrix, 

a£~ is the relative strength or importance of criterion i 

compared to criterion j. The decision maker's enforcement 

of a~£=1/a£~ due to the assumption of consistency makes 

mathematical analysis easier (Saaty, 1980) (Belton, 1986). 

However thia ia not, in general, congruent with human 

13 



perception (Cogger and Yu, 1985). Even though saaty's 

eigen-vector method has a rigid consistency assumption, 

hundreds of applications have been made to MCDM problems 

because its weights are reason~bly good and easy to use 

(Schoemaker and Waid, 1982). Saaty's weights are 

14 

determined by normalizing the eigen-vector associated with 

the maximum eigenvalue of the ratio matrix. 

Cogger and Yu (1985) developed the New Eigenweight 

Vector Method. This method i~. based on Saaty•s original 

eigen-vector method. These individuals recognized that 

stable and internally consistent estimates of weights may 

be difficult to ob~ain since humans have perceptions and 

judgments which are subject.to change due to their 

psychological states and various information inputs. Based 

on this argument, they assume that the decision maker is 

not necessarily consistent in the comparisons. To reflect 

the inconsistency of comparisons they derive weights frbm 

all the index orders _of the criteria. From the matrix of 

(2.1), the relation as.::s=1/a::ss. may not hold in this case. 

The weights are estimated in recursiv~ fashion by 

Wn-1 = an-J.,n Wn 
Wn-2 = (an-2,~-l.Wn-1 + an-2,nWn) I 2 

( 2 . 2 ) 
( 2 • 3 ) 

From (2.2) through (2.4), wk is obtained from the average 



estimated, Wn-1 can be estimated in (2.2) with one step, 

then Wn-2 can be estimated in (2.3) with two steps, etc. 

Thus, in estimating n element weight vector w, the ratio 

estimate an-1,n is most important, an-2,n-1 and an-2,n are 

second most important, etc. , This indicates that the index 

order of the criteria can affect the estimate of w. Thus 

cogger and Yu emphasize the need to enumerate all index 

orders of the criteria. Cogger and Yu's weights are the 

geometric mean of the weights from all possible index order 

combinations of the criteria. 

Saaty's eigen-vector method explicitly requires 

consistency in the pairwise comparisons. This assumption 

makes mathematical analysis easier, but is not always 

congruent with human perception as mentioned earlier. 

Cogger and Yu (1985) refine this consistency assumption by 

allowing decision maker's inconsistency and obtaining 

weights for all the possible index orders. They also 

emphasize that this makes computation less difficult when 

compared to Saaty's method. However, enumerating all 

possible index orders is not an easy task. Cogger and Yu's 

method produces three different index orders for a problem 

having three criteria, twelve for a problem having four 

criteria, and n!/2 for a problem having n criteria. The 

number of different index orders increases dramatically as 

the number of criteria increases. one more very important 

flaw of the cogger and Yu method to be pointed out is that 

15 
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their weight is the geometric mean of the weights from all 

possible index orders. An index order of 360 must be 

enumerated when the problem has six criteria. A severe 

underflow problem is encountered when multiplying the 

numbers which are less than 1.0 360 times. The mathematics 

prohibits the calculation of the geometric mean when the 

problem has more than five criteria. 

Takeda, et al. (1987) developed the Graded Eigenvector 

Method which generalizes the methods of Saaty (1977), and 

Cogger and Yu (1985). It differs from that of Saaty by 

allowing the solution to reflect the decision maker's 

inconsistencies revealed by the estimates in the reciprocal 

portion of the matrix. It also differs from the Cogger and 

Yu procedure by choosing a specific index order rather than 

enumerating all possible index orders. The Graded 

Eigenvector Method is another version that attempts to 

refine Saaty's consistency assumption by allowing decision 

maker's inconsistency. To accomplish this refinement, the 

following form for a C' matrix is used instead of (2.1). 

[au lh. :za:a.:z 13:a.3a:a.3 l3:a.na:a.n 

l a:z:z 13:z3a:z3 l3:zna:zn 
C' = ( 2 . 5 ) 

an-:Ln 
ann 

n 
where a~~>O and E a~~=1 for each i=1,2, ... ,n-2. After 

j=i+1 



modifying equati~ns (2.2) through (2.4), the weights can be 

estimated in recursive fashion by 

Wn-1 = an-1,n Wn 
Wn-2 = (6n-2,n-1an-z,n-1Wn-1 + Bn-z,nan-2,nWn) 

However, the tasks of provid,ing a set of weights, aL~t 

which is the normalized values of D(i,j) for i=1,2, ... ,n-2, 

and j=i+1, ... ,n, in addition to providing the values of 

pairwise comparisons, aL~, are not easy from the decision 

maker's view point. D(i,j) represents the decision maker's 

confidence, or degree of knowledge when comparing criterion 

i with criterion j. 

Cogger and Yu (1985) and Takeda, et al. (1987) have 

tried to refine the Saaty's consistency assumption by 

allowing decision maker's inconsistency in pairwise 

comparisons. Cogger and Yu resolve this problem by getting 

the geometric mean of weights from all possible index 

orders. In the case of Takeda, et al., they elicit an 

additional sets of weights, aL~, .fro~ the decisidn maker to 

avoid enumerating all possible index orders. They refine 

and generalize some aspects of the problem, but add 

elements of complexity to their approaches. 

17 



18 

Conclusion 

This chapter presents a survey of the literature 

relative to the research objective detailed in Chapter I. 

As summarized in Table 2.1, this survey has concentrated on 

several features of the weighting methods such as 

theoretical validation, simplicity, allowance for decision 

maker's inconsistency and minimization of j.udgmental error. 

Comparing the methods to each other using several important 

features illustrated in Table 2.1, the first four methods 

share one good feature which is simplicity of use. The 

successive paired comparison method and the indifference 

trade-off method ha~e a.theoret~cal background but none of 

the other features. saaty's eigen-vector method has two 

good features which are theoretical validation and 

simplicity of use. The methods of Cogger and Yu and 

Takeda, et al. have theoretical validation, simplicity of 

use, and allowance for decision maker's inconsistency. 

From this summary, eigen-vector methods 'have relatively 

better features compared to other methods. The development 

of the new weighting methods which have more than three 

good features can be considered at this point. 

Particularly, the feature of the minimization of the 

decision maker's judgmental error is a new concept for 

estimating weights using subjective approaches. Also, it 

is desirable for methods to be developed for reflecting 

decisjon maker's inconsistency more systematically than the 
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Cogger and Yu's method and the Takeda, et al.'s method. 

The research goal and objectives to be pursued was 

contributed to reflect the need of these new concepts. 

A summary of weighting methods shown in this Chapter 

and a chronological summary for each method are provided in 

Table 2.2 and Table 2.3 respectively. 

TABLE 2.1 

SUMMARY OF FEATURES OF VARIOUS WEIGHTING METHODS 

Method TV 1 SOU 2 AOI 3 MJE 4 

Ranking No Yes No No 

Rating No Yes No No 

Point Allocation No Yes No No 

Unit Weighting No Yes No No 

successive paired 
Comparison Yes N'o No No 

Indifference 
Trade-off Yes No No No 

Eigen-vector 
Saaty Yes Yes No No 
Cogger and Yu Yes Yes Yes - No 
Takeda et al. Yes Yes Yes No 

1 Theoretical Validation 
2 Simplicity of use 
3 Allowance of Inconsistency 
4 Minimization of Judgmental Error 



TABLE 2.2 

SUMMARY OF VARIOUS WEIGHTING METHODS 

"'' -----··-------------·---- ----·----- --· 
Methods 

Ranking 

Rating 

Point Allocation 

Authors 
---·------- -- ----------·---

Eckenrode (1965) 
Jopling (1974) 
Watson (1974) 

Eckenrode (1965) 
Delbecq et al. (1975) 
Voelker ( 1977) 

Hoffman (1960) 
Moore and Baker (1969) 
Schoemaker and Waid (1982) 

Unit Weighting Trattner (1963) 
Lehman (1971) 
Schmidt (1971, 1972) 
Claudy (1972) 
Fischer (1972) 
Beckwith and Lehmann (1973) 
Einhorn and Hogarth (1975) 
Schoemaker and Waid (1982) 

Successive Paired Comparison Churchman and Ackoff (1954) 
Stimson (1969) 
Davidson (1974) 

Indifference Trade-off Huber (1974) 
Keeney and Nair (1977) 
Keeney (1979) 

Eigen-vector Saaty (1977, 1980)) 
Schoemaker and Waid (1982) 
Cogger and Yu (1985) 
Belton (1986) 
Takeda et al. (1987) 

---·----·----·-------- ----- ---- ---- ------
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TABLE 2.3 

CHRONOLOGICAL SUMMARY OF WEIGHTING METHODS 

---------------- ------ ---------------------------
Method \ Year 54 60 63 65 69 71 72 73 74 75 77 79 82 85 87 

---·--- ------- ----- ---· -- -- -- -----·---- --- --···- ·-- -----

Ranking lx xJ 
. / ___ . ____ ----' 

Rating l X ~-- --------- --- -·-- X ~ 
Point Allocation 

r------·---·-------- -------·---- --· 

L:_ ----~------· ---- ------ --·- ------- ~I 
Unit Weighting 

,------------- ---------~ 

IX XX XXX X X XI 
------ --- --·--·--------- --·----_j 

Successive Paired-
Comparison I~-- ---·---x 

Indifference 
Trade-off 

Eigen-vector 

r l 

l_x ___ x --~J 

,-~---- X X X I 
I ---·· -- ------_I 
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CHAPTER III 

MODEL DEVELOPMENT 

Introdudtion 

From the literature review in Chapter II, seven 

different weighting methods have been reviewed. None of 

the methods meet all the desirable characteristics such as 

theoretical validation, refinement of decision maker's 

inconsistency, minimization of judgmental error, quality, 

and simplicity. In this chapter, three new weighting 

methods which appear to meet the desirable characteristics 

will be developed. Several assumptions and notations have 

been made for developing the weight determination models. 

Assumptions 

The basic assumptions which ar~ utilized in developing 

the models are as follows: 

1) The pairwise compari~ons, with possible error 

between two criteria, are made by a single decision maker 

or by multiple decision makers on the basis of some global 

objective. 

2) The methodology imposes no requirement that the 

paired comparisons satisfy the reciprocal property. 

22 



3) Measurements on each of the n criteria are ratio 

scaled. 
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4) Inconsistency in human judgment is uniformly 

distributed on the interval (.5, 1.5) for a simulation run 

used to analyze the results from a ·single decision maker. 

Inconsistency for a second decision maker's judgment is 

uniformly distributed on the interval (.3, 1.7) for 

analyzing the results from the two decision maker problem. 

Notation 

To facilitate the development of the mathematical 

models to be presented, the following notation is 

introduced and will be used throughout the research. 

i = 1,2, ... ,n where n is the number of criteria. 

r = 1,2, ... ,R where R is the number of 

replications for a simulation run. 

Vk = a composite value of the suitability of 

alternative k. 

x~k = the level of criterion i for alternative k. 

w~~ = the ratio of w~ and w~ which is w~;w~. 

w~ = true weight of criterion 1. 

Ws.<"") = an estimated weight of criterion i at the rth 

replication. 

w = true weight vector. 

W' = estimated weight vector. 

as.~ = decision maker's estimated value of Ws.~. 



aL~q = aL~ values estimated by decision maker q. 

EL~ = possible judgmental error when WL~ is 

estimated. This is a uniform random variable 

on the interval (.5, 1.5) with mean of one. 

eL =aggregated judgmental error for criterion i. 

C = matrix constructed from true weights. 

C' = matrix consisting of pairwise comparisons of 

criteria obtained from a decision maker. 

C'q = a C' matrix constructed from decision maker q. 

C'-~9 = matrix of the averages of the C'q. 

cL = represents the criterion i. 

CL>c~ = represents that criterion i is more important 

than criterion j. 

D(i,j) =represents decision maker's confidence, or 

degree of knowledge when comparing criterion i 

with criterion j. 

BL~ =normalized values of D(i,j) for i=l,2, ... ,n-l 

and j=i+l, ... ,n. 

~1 =denotes a set of relations (i,j) for all 

i,j=1,2, ... ,n except i=j such that criterion i 

is more important than criterion j in a 

pairwise comparison. 

~2 = denotes a set of relations (m,n) for all 

m,n=1,2, ... ,n except m=n such that criterion m 

is "how much" more (amn>l), or less (amn<l), 

24 
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or equally (amn=1) important than criterion n 

in a pairwise comparison. 

Y~~ = represents the aggregated judgmental error for 

all (i,j) in ~1. 

6mn = represents the aggregated judgmental error for 

all (m,n) in n2. 

I~~ = integer variables taking either 0 or 1. 

J-n = integer variables taking either 0 or 1. M = a 

large number greater than max(a~~> for all 

i,j=l,2, ... ,n. 

NC = number of criteria. 

« = probability of Type I error. 

B = probability of Type II error. 

Ho = null hypothesis. 

H1 =alternative hypothesis. 

~k = population mean of the differences between the 

true weight vector and estimated weight vector 

from model k. 

d~ = difference between the true weight vector and 

the estimated weight vector to be detected 

where f identifies the measure of goodness of 

fit used such as 1 for a Euclidean distance 

measure and 2 for a city block distance 

measure. 

d£k = d~ value calculated from model k. 

d'~ =average of d~k· 



Rs;o = least significant ranges. 

p = number of between models. 

q ... = significant studentized ranges for Duncan's 

new multiple-range test. 

fe = error degree of freedom. 

Sc:S = standard error of a between models' mean. 

The New Models for Estimating Weights Using 

Pairwise Comparison Matrix from a Single 

Decision Maker 

26 

The weighting methods to be developed are based on 

pairwise comparisons constructed from a single decision 

maker, and optimized via linear programming for the purpose 

of minimizing the judgmental error. Pairwise comparisons 

used in these models were developed by Hay (1958) and 

revised by Buel (1960). Pairwise comparison is the process 

of comparing one criterion against another, with never more 

than two criteria involved in each comparison. This 

simplifica-tion of comparisons usually promotes greater 

accuracy. 

The models developed in this research are of a linear 

form which allows linear programming to be utilized as an 

optimization tool. In addition, linear programming has the 

capability of producing solutions in a reasonable amount of 

time with readily available software. 
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Model ~ Development 

For constructing a pairwise comparison matrix, denote 

the criteria by C1, C2, ... , Cn and their true weights by 

W1, W2, ... , Wn. In this ideal case, the relations between 

the weights WL and the judgments aL~ are simply given by 

Ws. 
(3.1) 

for all i,j=1,2, ... ,n. The results of pairwise comparisons 

may be represented by a matrix c as follows: 

c1 C:ot Cn 
c1 

[ 
W1/W1 W1/W2 W1/Wn 

1 
c2 W2/W1 W2/W2 W2/Wn 

c = ( 3 • 2 ) 

Cn Wn/W1 Wn/W2 Wn/Wn 

This matrix has positive entries everywhere, l's on the 

main diagonal, and satisfies the reciprocal property. This 

matrix c satisfies the cardinal consistency property 

as.~*a~k = aLk and is called consistent. This property says 

that if any row of c is given, the rest of the entries can 

be determined from this relation. However, it would be 

unrealistic to require these relations to hold in the 

general case. 

Now suppose that the scale is not known, and that the 

entries in the matrix are estimates of the ratios. In this 

case the cardinal consistency relation above may not hold, 



and an ordinal relation of the form w~>wj, Wj>Wk implying 

w~>wk may not hold. As a realistic representation of the 

situation in pairwise comparisons, it 'is likely that 

inconsistency in judgments may occur. Despite their best 

efforts, people's feelLngs and preferences are often 

inconsistent and 'intransitive. (Takeda, et-al., 1987). 

The only parameters in this model are the WL. These 
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parameters are estimated from a ~ecision maker's judgments, 

aL~, which are equal to WL/W~ wheQ the true weights are 

known. When the judgments, a~~, are obtained from a 

decision maker, they may not be equal to WL/W~ because Wl 

is never known. To construct a pairwise comparisons 

matrix, a decision ~aker is asked to decide how much 

criterion i is more important than criterion j for all 

1,j=1,2, ... ,n except i=j. These 'questions are needed for· 

assurance of theoretical validation. After making n(n-1) 

comparisons, the results may be represented by a .matrix as 

shown by (3.3). This matrix has positive entries 

everywhere, l's on the main diagonal but does not 

necessarily satisfy the reciprocal property. That is, a~~ 

is not necessarily equal to 1/a~L· In addition, the matrix 

C' does not necessarily satisfy 'the cardinal consistency 

property either. 

CJ.. c2 . . . Cn 
CJ.. 

[ 
a11 a12 a1n 

] 
c2 a21 a22 a2n 

C' = ( 3. 3) 

Cn an1 an2 ann 
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As mentioned earlier, the relation in (3.1) holds when 

cis equal_ to C'. Using this relation, thew~ can be 

written as follows: 

+ 

w~ = a~1w1 
w~ = a~2w2 

w~ = a~nWn 

n 
nw~ = E a~~w~ 

j=l 
( 3 • 4 ) 

But in the general case, the relation (3.4) may not hold 

because a decision m~ker's judgmental error is included in 

the a~~· This occur~ due to factors such aa lack of 

knowledge, personal experience, interest, fatigue, state of 

mind, etc. 

Consequently, instead of the ideal case relations of 

(3.4), the more realistic realizations for the general case 

can be considered to take the form 

> n 
nw~ ~ E a~~w~ 

< j=l 
( 3 • 5 ) 

for 1=1,2, ••. ,n. To make the relation (3.5) an equality, 

an unrestricted variable, e~, is 'added to (3.5) as follows: 

n 
nw~ = E a~~w~ + e~ 

j=l 
( 3 • 6 ) 



More explicitly, 

(a11-n)W1+ a12W2+ ... + 
a21W1+(a22-n)W2+ ... + 

a1nWn+e1 
a2nWn +e2 

=0 
=0 

( 3 • 7 ) 

As given, these simultaneous linear equations have the 

trivial solution of w~=o and e~=o for all i. For this 

trivial solution all the Vk, where k identifies the 
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alternative, turn out to be zero (see equation (1.1)). The 

trivial solution does not convey any-useful information so 

that the model should preclude its selection. To prevent 

triviality, an equation of the form EW~=h for all i where h 
' 

is any positive number, preferably 1 for standardizing the 

unit of measurement, can be added to (3.7) without any loss 

of generality. Now the system ~an be written as follows: 

(a11-n)W1+ a12W2+ ... + 
a21W1+(a22-n)W2+ ..• + 

a1nWn+e·'1 
a2nWn +e2 

an2W2+ ... +(ann-n)Wn 
W2+ ... + Wn 

=0 
=0 

+en=O 
=1 

( 3 • 8 ) 

With the addition of the normalization constraint, the 

system (3.8) now ~ssures the existence of the solution, and 

the weights can be calculated from (3.8) by minimizing the 

sum of judgmental error as shown below. 



Mathematical Statement Qf Model l 

n 
Minimize E e~_ 

i=1 

Subject to 

n 
E a~~w~- nW~ + e~ = 0 for i=1,2, ... ,n 

j=l 

n 
E w~ = 1 

j=l 

w~ ~ 0 for all j 

e~ is unrestricted. 

This mathematical model can be solved via linear 

programming. 

Model ~ peyelopment 

The second model derived from relations (3.3) and 

(3.6) is to be considered. Additional information can be 

extracted from the C' matrix (3.3). The first type of 

information is "whic~ criterion is mor~ important than 
' 

which criterion". At most n(n-1) relations of c~~c~ are 

available. one understands that a;~~l directly implies 

that c~~c~. Let ~1 denote a set of relations (1,j) such 

that criterion i is more important than criterion j in a 
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pairwise comparison. c~~c~ implies that w~~w~ because the 

decision maker determines that criterion i is more 

important than or equally important to criterion j. This 

relation, however, may not hold for some of the pairs 
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because of the possibility of the various sources of error. 

Y~~ is introduced to identify and aggregate the various 

sources of error. Using (3.6), 

==> 

n 
==> E (a~k-a~k)Wk + Y~~ ~, 0 

k=1 

for all (i,j) in ~1. 

( 3 • 9 ) 

The second type of information extracted,from (3.3) is 

which criterion is "how much" more, or less, or equally 

important than which criterion. This "how much" term is 

denoted by amn in a pairwise comparison. At most n(n-1) 

terms of W.~amnWn or Wm$amnWn are available. If amn = 
1/anm, then e 1 ther amn or anm Ca'n be used. Let ~:z denote a 

set of relations (m,n) in a pairwise comparison. 6mn is 

introduced to identify and aggregate the various sources of 

error. Then 

(3.10) 

and 

(3.11) 

for all (m,n) in ~:z. Using (3.9), (3.10), and (3.11), the 

second model is completed as follows: 



Mathematical Statement ~ Mode~ £ 

Minimize E (Y~~+6mn) 
all (i,j) in ~h 
all (m,n) in a:z 

Subject to 

n 
E (as.~c-a~~c)W~c + Ys.::t 

k=l 

w ... -_amnWn 

a,...nWn -

n 
E W~c = 1 

k=l 

w ... 

+ 6mn ~ 

+ 6mn ~ 

~ 0 for all 

0 if a ... n~l 

0 if amn:Sl 

33 

( i 1 j) in a:~. 

where W~c~O for all k, and Ys.~ and 6mn are unrestricted for 

all (i,j) in ~1 and (m,n) in a:z. This mathematical model 

can be optimized via linear programming. 

Model ~ Development 

The third model to be considered is model 2 with an 

alternative objective function. Instead of minimizing the 

amount of possible error, minimizing the number of 

violations of equations for all (i,j) in a:~. and all (m,n) 

in ~:z is considered. This consideration is based on the 

reasoning that even though the sum of Ys.::t and 6mn might be 

minimized, the number of violations of equations for all 

(i,j) in a:~. and all (m,n) in n:z might increase. This model 

can be formulated as follows: 



Mathematical Statement of Model ~ 

Minimize ~ (I~~+J-n) 
all (i,j) in ~1 
all (m,n) in ~2 

Subject to 

n 
~ <a~k-a~k)Wk + MI~~ ~ 0 for all (i,j) in ~1 

k=1 

n 
~ Wk = 1 

k=1 

where wk~o for all k, M is a large number greater than 

34 

max<a~~> for all i,j=1,2, ... ,n, I and J are 0 or 1 integer 

variables. The above model can be solved by a mixed 

integer programming code. 

Procedures for Estimating Weights Using 

Pairwise Comparison Matrices from 

Multiple Decision Makers 

There are a number of circumstances in which it is 

desirable to reflect the judgment of several decision 

makers on a single analysis. It is a reasonable assumption 

that multiple decision makers work to accomplish some 

common objective even though they have different 

backgrounds. 

The procedures for estimating weights from multiple 

decision makers consider the opinions of decision makers by 
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utilizing pairwise comparison matrices constructed by the 

decision makers. The procedures are appropriate in, 

situations where the decision makers cannot be presumed 

nearly identical in their pairwise comparison judgment. 

They are also appropriate when the purpose of analysis is 

the prediction of a composite which, in some sense, 

represents the aggregate behavior of the decision makers. 

Two procedures for estimating weights from multiple 

decision makers are suggested below. The results of the 

simulation run will be reported in Chapter V. 

Estimating Weights after Averaging 

Pairwise Comparison Matrices 

Each decision maker constructs a pairwise comparison 

matrix. The procedure of constructing a pairwise 

comparison matrix is exactly the"same as explained in the 

previous section. The only difference is that the number 

of pairwise comparison matrices equals the number of 

decision makers. From each decision maker, pairwise 

comparison matrix (C'q) is constructed by the decision 

maker q as shown in (3.12) where 

c1 c2 Cn 
c1 - a11q a12q a1nq 

1 

c2 a21q a22q a2nq 
C'q = (3.12) 

L I 

Cn an1q an2q annq J 

q=1,2, ... ,N stands for the index of the decision maker. 
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After constructing N C'q matrices, the averages of the C'q 

1 N 
which calculated by the formula c•.v~ = r: C'q are 

N q=l 

obtained as shown in (3.13). The weights can be estimated 

using (3.13) as an input data to any models developed in 

previous section. 

cl.. 

C'.v~ = c2 

cl.. 
N 
I:al..l..q/N 

q=l 
N 
r:a21q/N 

q=l 

N 
I!anl..q/N 

q=l 

c2 
N 
r:a12q/N 

q=l 
N 
ria22q/N 

q=l 

N 
Ean2q/N 

q=l 

Averaging Individual Weights of 

Decision Makers 

c ... 
N 
I:al..nq/N 

q=l 
N 
Ea2nq/N (3.13) 

q=l 

The C'q matrix shown in (3.12) is constructed by the 

decision maker q. The weights can be estimated using C'q 

pairwise comparison matrix. N weight vectors, one for each 

decision maker, can be calculated. The weights for a given 

problem are then estimated by averaging the N individual 

weights. 



CHAPTER IV 

USING THE INTERACTIVE COMPUTER PROGRAM 

Introduction 

This chapter illustrates the use of an interactive 

computer program which permits easy utilization of the 

weighting methods presented in the previous chapter. The 

actual FORTRAN program is documented and appears in 

Appendix A. It has been implemented on an IBM 30810. 

The entire program is interactive, and the user is 

prompted for all necessary inputs by the computer. Many 

typical and/or often-used values.of inputs are 

preprogrammed, but can be easily··modified when necessary. 

Only when a set of inputs has been checked by the program 

and verified by the user does the program continue. 

Integer values are usually entered witho.ut a decimal 

point; however, a decimal may be included. With the 

prompting and verification featu~e, the input mechanism is 

virtually self-explanatory. It does require that the user 

understand the terms being input and their mathematically 

feasible range. 

In the remainder of this chapter, actual interactive 

output is interspersed with comments and explanations. All 
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computer outputs shown are automatically generated by the 

computer except for the input values which follow a 

question mark (?). These question marks remind the user to 

enter the input values. 

Inte~active Program Development 

An interactive routine is designed such that the 

decision maker and/or the researcher can iteratively 

provide information for constructing a p'airwise comparison 

matrix which is used to achieve satisfactory weights. 

Figure 4.1 illustrates the components of the interactive 

computer model. The inputs to the computer model and the 

output expected from the computer model are given as 

follows: 

INPUTS 

OUTPUT 

1. Number of decision makers, 

2. Number of criteria, and 

3. a~~ values of pairwise comparisons. 

Weights.-

Since existing codes are not designed for interactive 

mode and simulation purposes, available linear programming 

and mixed integer programming .codes (Kuester and Mize, 

1973) are modified to meet the special purposes. 



I INPUT 
I 

I •Number of Decision Makers 
I •Number of Criteria 
L •as.:~ values 

PROBLEM FORMULATION 
•Model 1: LP 
•Model 2:. LP 
•Model 3: HIP· 

EVALUATION OF WEIGHTS 
•Model 1: LP 
•Model 2: LP 
•Model 3 : ·HIP 
•Model .4 
•Model 5 
•Model 6 

I PRINT 
•Estimated Weights 

Figure 4.1. Flowchart for Interactive Model 
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overview 

The interactive computer program provides the 

capability of interactively entering pairwise comparisons 

data from a decision maker(s) for use in any of the models 

of this research. It also provides the,capability of 

choosing_ any model of the three metho,ds developed in 

Chapter III in-addition to the three eigen-vector methods. 

The program begins by presenting -the main option menu 

(M.l). The user has entered a "1~, indicating a desire to 

enter the input data of pairwise comparisons matrix for 

estimating weight. 

************************ 
*** MAIN MENU *** 
************************ 

1. INPUT PAIRWISE COMPARISONS, 
2. EXIT THE PROGRAM. , 

==> ENTER THE OPTION NUMBER! 
? 
1 

In~ut Pairwise Comparisons 

After option 1: (Input Pairwise Comparisons) is 

( M .1) 

selected, the user is asked to enter the number of decision 

makers. Then the program prints the number of decision 

makers entered for verification by the user shown as 

follows. 
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==> ENTER THE NUMBER OF DECISION MAKERS! 
? 
1 

YOU HAVE 1 DECISION MAKER(S). IS THIS NUMBER CORRECT? 

==> ENTER 1=YES, 2=NO. <<< 
? 1 

Only after the user confirms the validity of the input does 

the program continue. After this verification, the program 

prompts the user to enter the number of criteria. After 

the number of criteria is entered, the program prints the 

input data for verification by the user as follows. 

==> ENTER THE NUMBER OF CRITERIA! 
? 
3 

YOU HAVE 3 CRITERIA. IS THIS NUMBER CORRECT? 

==> ENTER 1=YES, 2=NO. <<< 
? 
1 

After the number ,of decision makers and the number of 

criteria have been entered and confirmed, a value of 

relative importance between criterion ,i and criterion j is 

requested iteratively and is illustr,ted as follows. 

*** THIS INPUT IS FOR DECISION MAKER 11 *** 
==> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN 

CRITERION 2 ? 
? 
1.03 
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==> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN 
CRITERION 3 ? 

? 
3.67 

==> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN 
CRITERION 1 ? 

'? 
0.55 

==> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN 
CRITERION 3 ? 

'? 
2 

==> BY HOW MUCH IS CRITERION 3 MORE IMPORTANT THAN 
CRITERION 1 ? 

? 
0.27 

==> BY HOW MUCH IS CRITERION 3 MORE IMPORTANT THAN 
CRITERION 2 ? 

'? 
0.5 

Communication with the decision maker(s) is needed to 

provide input for this kind of pairwise comparisons. Upon 

completion of entering pairwise comparisons data, the 

program prints these input data for verification by the 

user shown below. 

********************************************* 
*** VALUES RECEIVED FROM DECISION MAKER 1 *** 
********************************************* 

1 
0.55 
0.27 

1. 03 
1 
0.5 

3.67 
2 
1 

*** ARE THESE DATA CORRECT ? *** 

==> ENTER 1=YES, 2=NO. <<< 
'? 
2 
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If the user desires to correct any input data, then a 

selection of "2" is entered and the program prompts the 

user for entering a row index number, a column index 

number, and a corrected value of relative importance. The 

prompts and responses to correct input data are illustrated 

in (M.2). 

*** THIS INPVT IS FOR DECISION MAKER 1! *** 

==> ENTER ROW INDEX NUMBER! 
? 
1 

==> ENTER COLUMN INDEX NUMBER! (M.2) 
? 
2 

==> ENTER CORRECTED VALUE OF RELATIVE IMPORTANCE! 
? 
1.83 

*** DO YOU NEED TO CHANGE MORE? *** 

==> ENTER 1=YES, 2=NO. <<< 
? 
2 

The program then prompts "DO YOU NEED TO CHANGE MORE?". If 

the user needs to change more, a selection of "1" is 

entered and the procedure of (M.2) is repeated. If a 

selection of "2" is made, then the new pairwise comparisons 

matrix is displayed for user confirmation as shown below. 



********************************************* 
*** VALUES RECEIVED FROM DECISION ~AKER 1 *** 
********************************************* 

1 
0.55 
0.27 

1.83 
1 
0.5 

3.67 
2 
1 

*** ARE THESE DATA CORRECT ? *** 

==> ENTER 1=YES, 2=NO. <<< 
? 
1 
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Upon completion of the entering of input data for the 

pairwise comparisons matrix, the program prompts for the 

model option. If the user desires to use model 1 to 

estimate weights of a given problem, then the user responds 

with a selection of "1". 

************************** 
*** MODEL AVAILABILITY *** 
************************** 

1. MODEL 1 
2. MODEL 2 
3. MODEL 3 
4. MODEL 4 
5. MODEL 5 
6. MODEL 6 

==> ENTER THE MODEL NUMBER! 
? 1 

The estimation of the weights for given pairwise 

comparisons matrix is performed after making the selection 

of model. Upon completion, the program prints the 

estimated weights as shown below. 



********************~**** 
*** ESTIMATED WEIGHTS *** 
************************* 

W(l) = 0.55 
W(2) = 0.3 
W(3) = 0.15 

*** DO YOU WANT TO GO BACK TO THE MAIN MENU? *** 

==> ENTER l=YES, 2=NO. <<< 
7 
1 
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If the user wants to solve another problem, a selection of 

"1" is needed for the main menu. If the user needs to exit 

the program, a selection of "2" is needed. The user can 

repeat the procedure until he/she has no need of it. 

Summary 
' 

The features of the interactive computer program of 

this research have been illustrated in this chapter. An 

example is given for describing the capability of the 

program. The interactive feature and its conv:enience make 

this computer program a useful tool for communicating with 

decision makers and for estimating the weights to a given 

problem. 



CHAPTER V 

RESULTS, COMPARISON, AND ANALYSIS 

Introduction 

This chapt~r reports the results of the testing of the 

models developed in this research. It includes comparing 

the results of the three models developed in this research 

with the three eigen-vector methods reviewed earlier; 

Saaty's eigen-vector method, Cogger .and Yu's eigenweight 

vector method, and Takeda, et al.'s graded eigenvector 

method. 

Simulation was .used'to compare the three models 

developed in this research with .the three eigen-vector 

methods. These three eiegn-vector methods are utilized for 

comparisons because the weights of these three eigen-vector 

methods are estimated from a pairwis~ comparison matrix as 

is done for the three models developed in this research. 

Takeda, et al. (1987) also used simulation in their 

comparative study of their method with saaty's method and 

Cogger and Yu's method using eight decision making settings 

involving up to five criteria shown in Table 5.1. The 

resulting choices in the order of generating better 

solutions were Takeda, et al.'s method, Cogger and Yu's 

method, and Saaty's method. 
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TABLE 5.1 

SUMMARY OF EIGHT DECISION MAKING SETTING PROBLEMS 
USED BY TAKEDA, ET AL. 

Problem w D(i,j)* 

1 (0.15,0.55,0.3) 0(1,2)=0.9, ,0(1,3)=0.6, 
D(2,3)=0.3 

2 (0.3,0.15,0.55) 0(1,2)=0.9, D(l,3)=0.6, 
0(2~3)=0.3 

3 (0.55,0.3,0.15) 0(1,2)=0.9, 0(1,3)=0.6, 
0(2,3)=0.3 

4 ( 0 . 55 , 0 . 3 ,- 0 . 15 ) 0(1,2)=0.;9, 0(1,3)=0.6, 
0(2,3)=0.6 

5 (0.2,0.4,0.1,0.3) 0(1,2)=0.7, 0(1,3)=0.9, 
0(1,4)=0.8, D(2,3)=0.7, 
0(2,4)=0.6, 0(3,4)=0.4 

6 (0.2,0.4,0.1,0.3) 0(1,2)=0.8, D(1,3)=0.7, 
0(1,4)=0.9, 0(2,3)=0.4, 
0(2,4)=0.6, 0(3,4)=0.5 

7 (0.2,0.4,0.1,0~3) 0(1,2)=0.7, 0(1,3)=0.6, 
0(1,4)=0.8, D(2,3)=0.5, 
0(2,4)=0.6, 0(3,4)=0.3 

8 (0.25,0.3,0.15,0.1,0.2) 0(1,2)=0.6, D(1,3)=0.7, 
0(1,4)=0.6, 0(1,5):::::0.6, 
0(2,3)=0.7, D(2,4)=0.6, 
0(2,5)=0.6, 0(3,4)=0.5, 
D(3,5)=0.8, 0(4,5)=0.3 

wdecision maker's confidence when comparing criterion i 
with criterion j. 
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A critical choice in Takeda, et'al.'s simulation study 

was the modeling of' inconsistency of human judgment which 

was treated as random variation. The statistical model 

that they selected for simulating of human judgment was 

(5.1) 
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where WL, was assumed to have a true value and ~Lj was 

assumed to be a uniformly distributed random variable on 

the interval (.5, 1.5) with a mean of one. The pairwise 

comparison matrix~ C', for estimating weights using the six 

methods mentioned above is generated using (5.1). 

Measuremept of Goodness of Fit 

In order to quantify the de~irability of various 

methods under the same conditions, two different measures 
' ' 

of 'goodness of fit' will be used. The first measure is 

essentially an error term based on an Euclidean distance 

measure, dik, between the parameter values and the 

estimated values while the second measure is an error term 

based on a city block distan~e measure, d2k• The Euclidean 

distance measure implies the shortest distance between two 

points and the,city block distance measure implies a longer 

distance between two points in a geometric sense (Zeleny, 

1982). These are given by; 

1 R 

[ 
n )* d1k = E E (WL - WL(:)) 2 

R r=l i=l 
( 5 . 2 ) 

and 

1 R n 
d2k = E E IW~ - w~c:)l 

R r=1 i=1 
( 5 • 3 ) 

where k represents the weighting method such as 1 for the 

Model 1, 2 for the Model 2, 3 for the Model 3, 4 for the 
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Saaty's method, 5 for the Cogger and Yu's method, and 6 for 

the Takeda, et al.'s method, 

r is the replication number, r=l,2, ... ,R, 

i is the criterion number, i=1,2, ... ,n, 

w~ is the true weight of criterion i, and 

w~<~) is the estimated weight of criterion i at the 

rth replication. 

Deciding the Number of Replications 

In order to determine the significance between the 

true weights and the estimated weights from model k based 

on Euclidean distance measure of goodness of fit (the same 

procedure can be applied to city block distance measure of 

error), it is necessary to show that a distance between the 

true weight vector and the estimated weight vector is 

significant when Type I error is « and Type II error is a. 
« refers the probability of falsely rejecting the null 

hypothesis rather than accepting it and a refers the 

probability of falsely accepting the null hypothesis rather 

than rejecting it. The appropriate formula (Steel and 

Torrie, 1980) for determining R when the hypothesis 

alternatives are one sided, is given by (5.4) 

R = ( 5 . 4 ) 
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where d~ is a difference between the true weight vector and 

the estimated weight vector, f identifies the measure of 

goodness of fit used such as 1 for a Euclidean distance 

measure and 2 £orca city block distance measure, and ~ 2 is 

the variance of these differences. Since R is likely to 

be a fractional value, the next higher infeger value will 

be used for R. This formula has obvious difficulty. ~2 is 

rarely known and, so it must be estimated. If u 2 is 

underestimated, _the number of replications, R, is too 

small; if u 2 is over~stimated, then R is too large. In 

this research, to overcome thi~, problem, a pilot study was 

used to estimate ~ 2 • The calculated variances of the 

differences betweeri the true weight vector and the 

estimated weight vector, using a sample size of 30, for the 

six models are shown in Table 5;2. NC represents the 

number of criteria. The decisio~ making settings used for 

obtaining the results of Table 5.2 are W=(.55,.3,.15) for 

NC=3, W=( .2, .4, .1, .3) for NC=4, and W=( .25, .3, .15, .1, .2) 

for NC=5. When the number of criteria is three (NC=3) and 

the Euclidean distance measure is used, the maximum 

estimated variance of differences is .00221. This maximum 

value was used for conservative purposes as an e~timated 

variance in order to determine the appropriate number of 

replications for the simulation run of NC=3. The number of, 

replications for the simulation runs was determined by 

(5.4) and reported in Table 5.3. 
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TABLE 5.2 

ESTIMATED VALUES OF C1 2 WHEN N=30 

Model NC=3 NC=4 NC=5 

( k) Var(dJ..k)Var(d2k) Var(dJ..k)Var(d2k) Var(dJ..k)Var(d2k) 

1 
2 
3 
4 
5 
6 

MAX 

Number 

.00072 .00170 .00094 .00271 .00044 .00135 

.00221 .00485 .00162 .00405 .00229 .00707 

.00147 .00325 .00140 .00355 .00203 .00659 

.00064 .00213 .00048 .00156 .00038 .00134 

.00097 .00227 .00052 .00118 .00038 .00118 

.00199 .00546 .00079 .00216 .00060 .00224 

.00221 .00546 .00162 ,.00405 .00229 .00707 

TABLE 5.3 

NUMBER OF REPLICATIONS FOR SIMULATION RUN 
WHEN «=13=0.025 

of criteria NC=3 NC=4 NC=5 

goodness of fit* E c E c .E c 

dt! values used 0~05 0.08 0.045 0.07 0.04 0.07 

Number of replication 16 16 15 15 24 25 

*E stands for Euclidean distance measure and c stands for 
city block distance measure. 

Experimental Design 

The experimental design for the simulation is 

summarized in Figure 5.1. This experiment will be repeated 

for each of eight decision making settings introduced by 

Takeda, et al. (1987) which were shown in Table 5.1. At 

each replication, the C' matrix is generated from equation 

(5.1) and the six methods are applied in order to estimate 
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Construct c matrix for each of I 

I eight decision m~kin~ settin9s I 
I 

dAt ith replication!. 

Generate C' matrix 
from as.:~ = Ws.:;~Es.:;~ ' 

·calculate d:e,k using for 
each of six methods 

r I I I -1 

!Model 11 !Model 21 !Model ,3 !Mod 1 41 Model s!! Model6l 

I I I , I I I 

r 1 
d:L:Ls. d21s. 

I I d:L2s. d22s. 
I I 

d13s. d23s. I l d14s. d24s. 
r 1 r . 1 

d1ss. d2ss. d1ss.d2s 

I Repeat R replications l 
I I 

Obtain the averages of 
d:ek from (5.2) and (5.3) 

[ Decide the significance of ~ 

Figure 5.1. summary of Experimental Design for Simulation 
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their own weight vector. Then, the distance measures are 

calculated by using the two different measures of goodness 

of fit. Repeating R times, the averages of distance 

measures are obtained using (5.2) and (5.3.). The 

statistical test for determining which method is superior 

can be carried out. For the statistical test to determine 

the significance of the difference between models, the 

hypotheses are set up as follows: 

Null Hypothesis (Ho): ~1 = ~2 = ~3 = ~4 = ~5 = ~e 

Alternative Hypothesis (H1): At least one is different 

Test Statistic 

Crltical Region 

F = 

6 
E (d~k - d'~) 2 I 5 

k=l 

Reject Ho if 

F > F(dfn,dfd,«) 

where ~k, k=1,2, •.• ,6 is the population mean of the 

differences between the true weight vector and the 

estimated_welght.vector from model k. d~k is calculated 

from equation (5.2) and (5.3). d'~ is the average of d~k 

for k=1,2, ... ,6. Sp 2 is pooled sample variance. 

Duncan's new multiple-range test (1955) is used to 

find out which.model is different from which model when 

null hypothesis, Ho, is rejected. 
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Results, Comparison, and Analysis 

In this section, the results of the simulations are 

presented, compared, and analyzed in order to decide if one 

or more me.thods are better than· the o~hers. Eight decision 

setting problems introduced by Takeda, et al. (1987) and 

shown in Table 5.1 were used for the simulation run. 

The structure of the tables (see Table 5.4 for 

example) reporting the simulation results is as follows. 

In the table heading, the true weight vectdr w is given 

first. Second, the decision maker's confidence, or degree 

of knowledge when comparing criterion i with criterion j 

represented by D(i,j) for Takeda, et al.'s method is given. 

Third, the number of replications, R, for detecting a 

particular difference is reported. Fourth, the seed number 

used for generating uniform random numbers is given. The 

uniform random numbers were generated from the RANF 

introduced by Chandler (1970). 

The average of weights, averages of differences 

between true weight vector and estimated weight vector, and 

the variation of those differences are then reported for 

the three models, developed in Chapter III which are repre­

sented by Model 1, Model 2, and Model 3 respectively. The 

solution given by Saaty's approach is represented by Model 

4, the solution obtained from Cogger and Yu's method is 

represented by Model 5, and the Graded Eigenvector Method 

developed by Takeda, et al. is represented by Model 6. 
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Table 5.4, based on R=l6, indicates that the estimated 

weight vectors from Model 1 and Model 5 are preferred over 

the others based on the calculated d'1 and d':z. 

In Table 5.5 and Table 5.6, the F value is obtained in 

order to determine the existence of a statistical 

significance between models by dividing the between models' 

mean square by the within models' mean square. The 

calculated F value is compared with the tabular F value for 

5 and 90 degrees of freedom to decide whether .to accept the 

null hypothesis of no difference between population means 

or the alternative hypothesis of a difference. The tabular 

F value for 5 and 90 degrees of freedom is 2.33 at the 5 

percent of significance level. Since calculated F does not 

exceed 5 percent tabular F, the experiment provides no 

evidence of real differences between models for both 

measures. 

Model 

1 
2 
3 
4 
5 
6 

TABLE 5.4 

SIMULATION RESULTS BASED ON W=(0.-15,0.55,0.3), 
0(1,2)=0.9, 0(1,3)=0.6, 0(2,3)=0.3 

R=l6, NC=3, SEED=O 

W' d'' 1 C7<S•~2 d':z 

( .1627, .5256, .3117) .0435 .0007 .0684 
(.1532,.5851,.2617) .0672 .0015 .1029 
( .1567,. 5791,. 2642) .0685 .0014 .1049 
(.2512,.4316,.3172) .1607 .0015 .2464 
( .1470, .5568, .2962) .0323 .0002 .0499 
(.1469,.5552,.2979) .0780 .0016 .1216 

C7c!•22 

.0017 

.0033 

.0030 

.0036 

.0006 

.0040 



TABLE 5.5 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.4 

Source of Variation df Sum of Square Mean Square F 

56 

Between Models 
Within Models 

5 
90 

.0103 

.1035 
.0021 
.0012 

1. 7826 

Total 95 .1.13 8 

TABLE 5.6 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.~ 

Source of Variation df Sum of Square Mean Square F 

Between Models 
Within Models 

Total 

5 
90 

95 

.0240 

.2430 

. 26'70 

.0048 

.0027 
1.7752 

Table 5.7, differs from Table 5.4 only in the true 

weight vector, and also· indicates that Model 1 and Model 5 

are the preferred solution methods based on d'1 and d'2· 

If one had to rank the models ih the order of generating a 

better weight vector to come behind Model 1 and Model 5 

based on calculated ~'1 and d'2, it would be Model 2, Model 

3, Model 6, and Model 4 respectively. 



Model 

1 
2 
3 
4 
5 
6 

TABLE 5.7 

SIMULATION RESULTS BASED ON W=(0.3,0.15,0.55), 
0(1,2)=0.9, 0(1,3)=0.6, 0(2,3)=0.3 

R=16, NC=3, SEED=O 

W' d':a. Cf.s•:L2 d':z 

( .3087, .1679, .5234) c. .0462 .0007 .0702 
( • 2 418 1 • 1513 ,· • 6 0 6 9 ) .0849 .0018 .1305 
(.2428,.1559,.6013) .0872 .0018 .1333 
(. 3921, .1189'. 4890) .1199 .0016 .1901 
(.2968,.1539,.5493) .0449 .0007 .0686 
(. 2980, .1552,. 5468) .0874 .0016 .1373 
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Cf.s•:z2 

.0019 

.0038 

.0039 

.0042 

.0016 

.0042 

In Table 5.8 and Table 5.9, the F value is obtained in 

order to determine the existence of a .statistical 

significance between models by dividing the between models' 

mean square by the within models' mean square. Since 

calculated F does not exceed 5 percent tabular F, the 

experiment provides no evidence of real differences between 

models for both measures. 

TABLE 5.8 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.7 

Source of Variation df Sum of Square Mean Square F 

Between Models 
Within Models 

Total 

5 
90 

95 

.0041 

.1230 

.1271 

.0008 

.0014 
0.5985 



TABLE 5.9 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF-TABLE 5.7 

source of Variation df Sum of Square Mean Square F 
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Between Models 
Within Models 

5 
90 

.0106 

.2940 
.0021 
.0033 

0.6490 

Total 95 .3046 

Table 5.10 and Table 5.13 yield Model 1 and Model 5 

again as best models based on the calculated d'1 and d'2, 

but a somewhat different result on the other models. The 

reasons are most llkel,y due to the different values of 

O(i,j) used in Model 6 and different seed number used in 

all models. In this case, Model 6, Model 3, Model 2, and 

Model 4 is the order of generating better weight vectors 

behind model 1 and Model 5~ Again the comparison is based 

on the calculated d'1 and d'2· But, from statistical point 

of view, there is no evidence of any differences between 

models as can be seen in Table 5.11, Table 5.12, Table 

5.14, and Table 5.15. 



Model 

1 
2 
3 
4 
5 
6 

TABLE 5.10 

SIMULATION RESULTS BASED ON W=(0.55,0.3,0.15), 
0(1,2)=0.9, 0(1,3)=0.6, 0(2,3)=0.3 

R=16, NC=3, SEED=472 

W' d'l. O"c5•l.2 d':z 

(.5555,.2825,.1620) .0380 .0003 .0599 
( .5890, .2589, .1521) .0786 .0015 .1208 
(.5846,.2607,.1547) .0742 .0013 .1146 
( .4377, .3770, .1853) .1430 .0006 .2253 
(.5481,.3015,.1504) .0431 .0007 .0686 
( .5480, .3014, .1506) . 0594 .. 0016 .0928 

TABLE 5.11 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA'OF TABLE 5.10 
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O"c5•22 

.0008 

.0035 

.0033 

.0018 

.0019 

.0038 

Source of Variation df Sum of Square Mean Square F 

Between Models 5 .0072 .0015 1.5000 
Within Models 90 .0900 .0010 

Total 95 .0972 

TABLE 5.12 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.10 

Source of Variation df Su~ of Square Mean Square F 

Between Models 5 .0179 .0036 1.4185 
Within Models 90 .2265 .0025 

Total 95 .2444 



Model 

1 
2 
3 
4 
5 
6 

TABLE 5.13 

SIMULATION RESULTS BASED ON W=(0.55,0.3,0.15), 
0(1,2)=0.9, 0(1,3)=0.8, 0(2,3)=0.3 

R=16, NC=3, SEED=O 

W' d'::~.. 'O"c!l•::L2 d'2 

(.5536,.2831,.1633) .0450 1 • 0007 .0699 
(. 5833,. 2654, .1513) .0745 .0015 .1141 
(. 5826,. 2608, .1566) .0736 . 00,13 .1118 
( .4324, .3795, .1881) .1498 .0008 .2365 
( .5412, .3083, .1505) .0449 .0010 .0709 
( .5406, .3069, .1525) . 06 7 5' .0023 .1039 

TABLE 5.14 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.13 
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O"c!l•22 

.0018 

.0032 

.0028 

.0028 

.0024 

.0053 

Source of Variation df Sum of Square Mean Square F 

Between Models 5 .. 0075 .0015 1.1538 
Within Models 90 .1140 .0013 

Total 95 .],.215 

TABLE 5.15 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.13 

Source of Variation df Sum of Square Mean Square F 

Between Models 5 .0188 .0038 1.2361 
Within Models 90 .2745 .0031 

Total 95 .2933 



61 

Table 5.16, Table 5.19, and Table 5.22 present 

simulation results for the case of NC=4 criteria weights. 

Utilizing the same true weight vector, differing values of 

D(i,j) and seed number are used for generating a pairwise 

comparison matrix and a simulation run. 

Table 5.16, again, indicates that model 1 and Model 5 

are superior to the other models having smaller values of 

d'1 and d'~. Model 4, which generated the worst weight 

vector in case of NC=3, becomes fourth when NC=4. There is 

no differences between models from statistical view point 

as shown in Table 5.17 and Table 5.18 since calculated F 

values do not exceed the tabular F value, 2.33 for 5 and 84 

degrees of freedom. 

Model 

1 
2 
3 
4 
5 
6 

TABLE 5.16 
SIMULATION RESULTS BASED ON W=(0.2,0.4,0.1,0.3), 
0(1,2)=0.7,0(1,3)=0.9, 0(1;4)=0.8,0(2,3)=0.7, 

D(2,4)=0.6,D(3,4)=0.4, R=15, NC=4, SEED=O 

W' d'1 CTe~•1 2 d I 2 O'cS•2 2 

( .2088, .3888, .1038, .2986) .0410 .0007 .0681 .0019 
( .1515, .4585, .1017, .2883) .1178 .0016 .1916 .0042 
( .1580, .4532, .1029, .2859) .1173 .0011 .1903 .0032 
(.2006,.3845,.1055,.3094) .0673 .0008 .1165 .0024 
( .2020, .4127, .0940, .2913) .0421 .0007 .0677 .0014 
(.2059,.4106,.0880,.2955) .0622 .0006 .1038 .0017 



TABLE 5.17 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.16 

Source of Variation df Sum of Square Mean Square F 
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Between Models 5- .0061 .0012 1.3269 
Within Models 84 .0769 .0009 

Total 89 .08~0 

TABLE 5.18 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.16 

Source of Variation df Sum of Square Mean Square F 

Between Models 5 .0157 .0031 1.2745 
Within Models 84 .2071 .0025 

Total 89 .2444 

Table 5.19 uses the same true weight vector but 

different D(i,j) and seed number used from those in Table 

5.16. On the average, the models can be ranked from better 

to worse solutions as Model 1, Model 5, Model 6, Model 4, 

Model 3, and Model 2. No statistical differences are 

indicated between models as shown in Table 5.20 and Table 

5.21. 



Model 

1 
2 
3 
4 
5 
6 
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TABLE 5.19 

SIMULATION RESULTS BASED ON W=(0.2,0.4,0.1,0.3), 
0(1,2)=0.8,0(1,3)=0.7, D(1,4)=0.9,D(2,3)=0.4, 
D(2,4)=0.6,D(3,4)=0.5, R=15, NC=4, SEED=40 

W' d'1. O'"cS•1.2 d':z 

{. 2029, . 3806, .1009, . 3156) .0460 .0003 .0808 
(.1532,.4400,.1006,.3062) .0992 .0013 .1645 
( .1574, .4538, .1039, .2849) .0974 .0012 .1601 
{ .2190, .3522, .1172, .3116) .0743 .0007 .1320 
(.2062,.3869,.1064,.3005) .0488 .0003 .0817 
( .2182, .3854, .1122, .2842) .0677 .0006 .1148 

TABLE 5.20 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.19 

O'"cS•2 2 

.0008 

.0038 

.0030 

.0026 

.0009 

.0016 

Source of Variation df Sum of Square Mean Square F 

Between Models 5 .0026 ,0005 0.7153 
Within Models 84 . 0616, . 0007 

Total 89 .0642 

TABLE 5.21 

ANALYSIS OF VARIANCE FOR. CITY BLOCK DISTANCE 
MEASURE DATA.OF TABLE 5.19 

Source of Variation df sum of Square Mean Square F 

Between Models 5 .0067 .0013 0.6360 
Within Models 84 .1777 .0021 

Total 89 .1845 
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Table 5.22, the same true weight vector but different 

D(i,j) and seed number used from Table 5.16 and Table 5.19~ 

indicates that Model 1. is ranked first based on the 

calculated d 1 1 and d':z· If one had to pick a method to 

come in second place behind Model 1 based on smaller values 

of d'1 and d'2, it would be Model 5. Model 6 would be 

picked third, Model 4 fourth, Model 2 fifth, and Model 3 

would be sixth. 

Table 5.23 and Table 5.24 indicate no statistical 

significance between ~odels sinqe the calculated F values 

do not exceed 5 percent tabular F value for 5 and 84 

degrees of freedom. 

Model 

1 
2 
3 
4 
5 
6 

TABLE 5.22 

SIMULATION RESULTS BASED ON W=(0.2,0.4,0.1,0.3), 
D(1,2)=0.7,D(1,3)=0.6,D(1,4)=0.8, 0(2,3)=0.5, 
D(2,4)=0.6,D(3,4)=0.3~ R=15, NC=4, SEED=921 

W' d'J.. O"c:s•J..2 d':z O"c:s•22 

( .2033, .3828, .1092, .3047) .0419. ~0008 .0700 .0021 
( .1449, .4532, .1040, .2979) .1034 .0033 .1721 .0079 
( .1479, .4583, .1040, .2898) .1115 .0067 .1812 .0142 
( .1914, .3790, .1246, .3050)' .0669 .0004 .1171 .0011 
( .1952, .4065, .1046,.2937) .0454 .0004 .0769 .0012 
(.2010,.4045,.1048,.2897) .0614 .0005 .1035 .0013 



TABLE 5.23 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF' TABLE 5.22 

Source of Variation df sum of Square Mean Square F 
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Between Models 5 .0043 .0009 0.4262 
Within Mod~ls 84 .1693 .0020 

Total 89 .1736 

TABLE 5.24 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF ·TABLE 5.22 

Source of Variation df Sum of, Square Mean Square F 

Between Models 5 .0111 .0022 0.4791 
Within Models 84 ·.3892 .0046 

Total 89 .4003 

Table 5.25, based on R=25 and NC=5, yields quite 

similar results to those in Table 5.22 except Mod~l 4 is 

now in third place and Model 3 is in fifth place. No 

statistical significance between models is detected. As 

shown in Table 5.26 and Table 5.27, the calculated F values 

do not exceed 5 percent tabular F value, ?.29, for 5 and 

144 degrees of freedom. 



Model 

TABLE 5.25 

SIMULATION RESULTS BASED ON W=(.25,.3,.15,.1,.2), 
0(1,2)=0.6, 0(1,3)=0.7, 0(1,4)=0.8, 0(1,5)=0.6, 

0(2,3)=0.7,D(2,4)=0.6,D(2,5)=0.6,D(3,4)=0.5, 
0(3,5)=0;8,0'(4,5.)=0.3, R=25, NC=5, SEEO=O 

W' 
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1 ( .2520, .2878, .1507, .1038, .2057) .0381 .0005:.0671 .0015 
2 ( .2560, .3705, .0927, .1003, .1805) .1211 .. 0021 .2173 .0059 
3 (.2541,.371.4,.0939,.0999,.1807) .1198 .0019 .2157 .0053 
4 (.2429,.3036,.1481,.1041,.2014) .0519 .0004 .0955 .0014 
5 ( .2461, .3058, .1473, .0981, .2027) .0401 .0004 .0725, .0011 
6 (.2498,.3114,.1424,.0979,.19t5) .0578 .0006 .1074 .0023 

TABLE 5.26 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.25 

Source of Variation df Sum of Square ~ean Square F 

Between Models 5 .0075 .0015 1.5186 
Within Models 144 .1416 .0010 

Total 149 .1491 

TABLE 5.27 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.25 

Source of Variation df ~um of Squa~~ Mean Square F 

Between Models 5 .0239 .0048 1.6406 
Within Models 144 .4199 .0029 

Total 149 .4438 
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Even though there were no statistical evidences of 

significance between models indicated, Model 1 has been 

ranked the.first, based on smallest values of the 

calculated d'1 and d'2, for all the decision making setting 

problems except.problems 1 and 2 as summarized in Table 

5.28. The largest problem used by Takeda, et al. (1987) 

has five criteria. What if the problem size is larger than 

five-criteria problem? Additional simulation runs were 

made for the problems of NC=7 and NC=9 shown in Table 5.29 

after eliminating two worst models based on largest values 

of d'1 and d 1 2 which were Model 2 and Model 3. 

TABLE 5.28 

SUMMARY OF THE SI~ULATION RESULTS FOR EIGHT 
DECISION MAKING SETTING PROBLEMS 

Decision Making Number 9£ First Ranked 
Setting Problem Criteria Model 

1 3 Model 5 
2 3 Model 5 
3 3 Model 1 
4 3 Model 1 
5 4 Model 1 
6 4 Model 1 
7 4 Model 1 
8 5 Model 1 

The true weight vectors, W, are provided by this author. 

The decision maker's confidence, D(i,j), when comparing 

criterion i with criterion j for the Model 6 is generated 

by (0,1) uniform random numbers since it is not available 

from previous work. 
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TABLE 5.29 

PROBLEM DESCRIPTIONS FOR ADDITIONAL SIMULATION RUN 

i w D(i,j) 

7 
9 

( .2, .12, .15, .1, .2, .05, .18) 
( .2, .12, .08, .1, .17' .05, .15, .1, .03) 

(0,1) Uniform 
Random Numbers 

Table 5.30, Table 5.33, and Table 5.36 indicate that 

the weights from Model 1 are the best ones based on the 

calculated values of d'~ and d'2· Model 6 would be picked 

second, Model 4 third. No weights can be calculated from 

Model 5. As explained in Chapter II, a weight from Model 

5, due to Cogger and Yu (1985), is the geometric mean of 

all the weights generated from the possible index orders. 

An index order of 2520 must be enumerated when NC=7. A 

severe underflow problem is encounter~d when multiplying 

the numbers which are less than 1.0 2520 times. At this 

point, mathematics of this technique prohibits the 

calculation of the geometric mean when the pro~lem has more 

than five criteria. 

Table 5.31, Table 5.32, Table 5.34, Table 5.35, Table 

5.37, and Table 5.38 indicate that statistical significance 

between models exists since all calculated F values exceed 

5 percent tabular F value, 2.39, for 2 and 74 degrees of 

freedom. 
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TABLE 5.30 

SIMULATION RESULTS BASED ON W=(.2,.12,.15,.1,.2,.05,.18), 
D(i,j)- IS GENERATED FROM (0,1) UNIFORM 

RANDOM NUMBERS, R=25, NC=7, SEED=3211 

Model W' d'l. (jc5•l.2 d 1 2 (jc5"22 

1 (.2024,.1212,.1502,.1016,.1891, 
.0538,.1817) . 029 3• . 0002 .0601 .0007 

4 (.0874,.1298,.0831,.2303,.1435, 
.1534, .1725) .2310 .0007 .5149 .0037 

5 No Weights Estimated 
6 ( .2012, .1227, .1441, .0983, .1964, 

.0460, .1913) .0590 .0003 .1232 .0010 

~D(1,2)=.68,D(1,3)=.62,D(1,4)=.97,D(1,5)=.82,D(1,6)=.81, 

D(1,7)=.53,D(2,3)=.~7,D(2,4)?.95,D(2,5)=.40,D(2,6)=.73, 
D(2,7)=.64,D(3,4)=.65,D(3,5)=.40,D(3,6)=.83,D(3,7)=.85, 
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05, 
D(6,7)=.54, 

TABLE 5.31 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.30 

Source of Variation df sum of square Mean Square F 

Between Models 2 .0237 .0119 29.6454 
Within Models 72 .0288 .0004 

Total 74 .0525 

TABLE 5.32 

ANALYSIS bF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.30 

source of Variation df sum of Square Mean Square F 

Between Models 2 .1214 .0607 33.7272 
Within Models 72 .1296 .0018 

Total 74 .2510 
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Duncan's (1955) new multiple-range test is used to see 

which model is different from which model since Ho is 

rejected. This test consists 'of computing the least 

significant ranges, Rp, by Eq. 5.5 and applying it to 

differences between all pairs of means. 

( 5 • 5 ) 

where q~ is obtained from significant studentized ranges 

for new multiple-range test (Steel and Torrie, 1980), p is 

the number of between models, fe is error df, and sd is the 

standard error of a between models' mean. 

For the Euclidean distance measure data of Table 5.30, 

the values for Duncan's test are summarized as follows: 

p 2 3 

2.83 2.98 ( 5 . 6 ) 

0.0113 0 .. 0119 

A summary of the test results, using d'1k for k=1,4,6, 

follows. 

Model 1 
.0293 

Model 6 
.0590 

Model 4 
.2310 

Duncan's test indicates that the average distance between 

the true weight vector and estimated weight vector from 

Model 1 is different from those from the other two models. 

The same test result occurs for the city block distance 

measure. 
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TABLE 5.33 

SIMULATION RESULTS BASED ON W=(.2,.12,.15,.1,.2,.05,.18), 
D(i,j~- IS GENERATED FROM (0~1) UNIFORM 

RANDOM NUMBERS, R=25, NC=7, SEED=4444 

Model W' d':~. 0'<!!•12 d'2 0'<!!•22 

1 ( .2034, .1239, .1513, .1013, .1911, 
.0522, .1768) .0303 .0002 .0606 .0007 

4 (.0930,.11~2,.0792,.2390,.1373, 
.1592, .1762) .2337 .0006 .5227 .0037 

5 No Weights Estimated 
6 ( .1980, .1185, .1449, .1008, .,2112, 

.0485,.1781) .0518 .0004 .1080 .0013 

•o(1,2)=.68,D(l,3)=.62,D(1,4)=.97,D(l,5)=.82,D(1,6)=.81, 
D(1,7)=.53,D(2,3)=.67,D(2,4)=.95,D(2,5)=.40,D(2,6)=.73, 
D(2,7)=.64,D(3,4)=.65,D(3,5)=.40,D(3,6)=.83,D(3,7)=.85, 
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05, 
D(6,7)=.54, 

TABLE 5.34 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.33 

Source of variation df Sum of ,,square Mean Square F 

Between Models 2 .0250 .0125 31.2173 
Within Models 72 .0288 .0004 

Total - 74 .0538 

TABLE 5 . 3 5 . · 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.33 

Source of Variation df Sum of Square Mean Square F 

Between Models 2 .1293 .0646 34.0140 
Within Models 72 .1368 .0019 

Total 74 .2661 



Duncan's new multiple-range test is applied to see 

which model is different from which model since Ho is 

rejected. A summary of the test results, using d'1k for 

k=1,4,6 in Table 5.33 and (5.6), follows. 

Model 1 
.0303 

Model 6 
.0518 

Model 4 
.2337 

Duncan's test indicates that the average distance between 

the true weight vector and estimated weight vector from 
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Model 1 is different from those from the other two models. 

The same test result is made for the city block distance 

measure. 

TABLE 5. 36 

SIMULATION RESULTS BASED ON W=(.2,.12,.15,.1,.2,.05,.18), 
D(i,j)w IS GENERATED FROM (0,1) UNIFORM 

RANDOM NUMBERS, R~25, NC=7, SEED=5678 

Model W' 

1 ( .2047, .1208, .1517, .0999, .1881, .0528, .1820) 
.0288 .0002 .0584 .0006 4 
( . 0.9 0 4 1 • 12 0 7 1 • 0 8 31 1 • 22 7 4 1 , 14 52 1 , 15 9 5 1 • 1 7 3 7 ) 
.2281 .0005 .5123 .0035 

5 No Weights Estimated 6 (.1924,.1210,.1531,.1037,.1956, 
.0499,.1843) .0532 .0003 .1095 .0011 

wD(1,2)=.68,D(1,3)=.62,D(l,4)=.97,D(1,5)=.82,D(1,6)=.81, 
D(1,7)=.53,D(2,3)=.67,D(2,4)=.95,D(2,5)=.40,D(2,6)=.73, 
D < 2, 1 > =. 6 4, D < 3, 4 > =. 6 5·, D < 3, 5 > =. 4 o, D < 3, 6 > =. s 3, D < 3, 1 > =. 8 5, 
D(4,5)=.96,D(4,6)=.92,D(4,7)=.81,D(5,6)=.93,D(5,7)=.05, 
D(6,7)=.54, 



TABLE 5.37 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.36 

Source of Variation df sum of Square Mean Square F 
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Between Models 2 .0236 .0118 35.4529 
Within Models 72 .0240 .0003 

Total 74 .0476 

TABLE 5.38 

ANALYSIS OF VARIANCE FOR CITY BLOCK ,DISTANCE 
MEASURE DATA OF TABLE 5.36 

Source of Variation df Sum of Square Mean Square F 

Between Models 2 .1236 .0618 35.6619 
Within Models 72 .1248 .0017 

Total 74 .2484 

Duncan's new multiple-range test is applied to see 

which model is different from which model since Ho is 

rejected. A summary of the test results, using d'1k for 

k=1,4,6 in Table 5.36 and (5.6), follows. 

Model 1 
.0288 

Model 6 
.0532 

Model 4 
.2281 

Duncan's test indicates that the average distance between 

the true weight vector and estimated weight vector from 

Model 1 is different from those from the other two models. 

The same test result occurs for the city block distance 

measure. 
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Additional simulation runs were made using NC=9 

problem after elimfnating Model 4 and Model 5 from further 

considerations since Model 4 was determined as worst model 

by Duncan's new multiple-range test and as mentioned 

before, no weights can be estimated from Model 5 when the 

number of criteria is more than five. 

Table 5.39, Table 5.42, and Table 5.45 indicate that 

the weights from Model 1 are better than the weights from 

Model 6 based on smaller values of the calculated d'~ and 

d'2· The same F test was applied in order to determine the 

existence of a statistical significance between two models. 

As indicated ip Table 5.40 and Table 5.41, no 

statistical differences between two models are detected 

since calculated F values do not exceed the 5 percent 

tabular F value, 2.84, for 1 ~nd 48 degrees of freedom. 

TABLE 5.39 

SIMULATION RESULTS BASED ON W=( .2,.12,.08,.1,.17,.05,.15, 
.1,.03), D(i,j)* IS GENERATED FROM (0,1) UNIFORM 

RANDOM NUMBERS, R=25, NC=9~ SEED=6156 . 

----
Model W' d'~ 0"d·~2 d'2 O"c!•22 

1 ( .2020, .1209, .0809, .1014, .1566, 
.0514, .1513, .1033, .0322) .0252 .0003 .0535 .0009 

6 ( .2006, .1218, .0796, .1003, .1669, 
.0481,.1542,.0990,.0295) .0464 .0003 .1088 .0011 

WD(1,2)=.47,D(1,3)=.17,D(1,4)=.64,D(1,5)=.50,D(1,6)=.89, 
D(1,7)=.72,D(1,8)=.92,D(1,9)=.55,D(2,3)=.75,D(2,4)=.69, 
D(2,5)=.37,D(2,6)=.28,D(2,7)=.71,D(2,8)=.17,D(2,9)=.20, 
D(3,4)=.09,D(3,5)=.03~D(3,6)=.49,D(3,7)=.77,D(3,8)=.63, 
D(3,9)=.98,D(4,5)=.71,D(4,6)=.77,D(4,7)=.23,D(4,8)=.88, 
D(4,9)=.74 1 D(5,6)=.09,D(5,7)=.96,D(5,8)=.31,D(5,9)=.20, 
D(6,7)=.80,D(6,8)=.33,D(6,9)=.58,D(7,8)=.13,D(7,9)=.25, 
0(8,9)=.14, 



TABLE 5. 40 

ANALYSIS OF VARIANCE FOR .EUCLIDEAN DISTANCE 
MEASURE DATA 0~ TABLE. 5.39 

Source of Variation df sum of Square Mean Square F 
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Between Models 1 .. 0002 . 0002 0. 7491 
Within Models 48 .0144 .0003 

Total '49 .0146 

TABLE 5.41 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.39 

Source of Variation df Sum of Square Mean Square F 

Between Models 1 .0015 .0015 1.5290 
Within Models 48 .0480 .0010 

Total 49 .0495 

TABLE 5 .· 4 2 

SIMULATION RESULTS BASED ON W=(.2,.12,.08,.1,.17,.05,.15, 
.1,.03), D(i,j)• IS GENERATED FROM (0,1) UNIFORM 

RANDOM NUMBERS, R=25i NC=9, SEED=7312 

Model W' d':~. O'.s•:L2 d':z 0'<5•22 

1 (.2013,.1206,.0804,.1012,.1641, 
.0511, .1499, .0994, .0320) .0202 .0000 .0467 .0002 

6 (.2051,.1227,.0792,.0994,.1626, 
.0482, .1484, .1043, .0301) . 0507 .0003 .1163 .0013 

•o(1,2)=.47,D(1,3)=.17,D(1,4)=.64,D(l,5)=.50,D(l,6)=.89, 
D(1,7)=.72,D(1,8)=.92,D(1,9)=.55,D(2,3)=.75,D(2,4)=.69, 
D(2,5)=.37,D(2,6)=.28,D(2,7)=.71,D(2,8)=.17,D(2,9)=.20, 
D(3,4)=.09,D(3,5)=.03,D(3,6)=.49,D(3,7)=.77,D(3,8)=.63, 
0(3,9)=.98,D(4,5)=,71,D(4,6)=.77,D(4,7)=.23,D(4,8)=.88, 
D(4,9)=.74,D(5,6)=.09,D(5,7)=.96,D(5,8)=.31,D(5,9)=,20, 
0(6,7)=.80,D(6,8)=.33,D(6,9)=,58,D(7,8)=.13,D(7,9)=.25, 
0(8,9)=.14, 
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Table 5.43 and Table 5.44 indicate that there is some 

statistical differences between two models since calculated 

F values exceed the 5 percent tabular F value, 2.84, for 1 

and 48 degrees of freedom. 

TABLE 5.43 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.42 

Source of Variation df Sum of Square Mean Square F 

Between Models 
Within Models 

Total 

1 
48 

49 

.0005 

.0072 

.0077 

TABLE 5.44 

.00047 

.00015 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.42 

3.1008 

source of Variation df sum of Square Mean Square F 

Between Models 1 .0024 .00240 3.2294 
Within Models 48 .0360 .00075 

Total 49 .0384 
----·--
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TABLE 5.45 

SIMULATION RESULTS BASED ON W=(.2,.12,.08,.1,.17,.05,.15, 
.1,.03), D(i,j)* IS GENERATED FROM (0,1) UNIFORM 

RANDOM NUMBERS, R=25, NC=9, SEED=8866 

Model W' d':a. Cfd•:a. 2 d'2 0'<!!1.•22 

1 (.1997,.1222,.0604,.1031,.1630, 
., 

.0502, .1491, .1009, .0314) .0240 .0001 .0513 .0004 
6 (.2034,.1151,.0778,.1014,.1707, 

.0546, .1412, .1046, .0312) .0496 .0002 .1144 .0009 

WD(l,2)=.47,D(l,3)=.17,D(l,4)=.64,D(l,5)=.50,D(l,6)=.69, 
D ( 1 I 7 ) = . 7 2 , D ( 1 ' 6 ) = . 9 2 , D ( 1 I 9 ) = o, 55 ' D ( 2 I 3 ) = . 7 5 I D ( 2 ' 4 ) = . 6 9 I 
D(2,5)=.37,D(2,6)~.28,D(2,7)=.71,D(2 1 8)=.17,D(2,9)=.20, 
D(3,4)=.09,D(3,5)=.03 1 D(3,6)=.49,D(3,7)=.77,D(3,8)=.63, 
D(3,9)=.98,D(4,5)=.7l,D(4,6)=.77,D(4 1 7)=.23,D(4,8)=.88, 
D(4 1 9)=.74,D(5,6)=.09,D(5 1 7)=.96,D(5,8)=.31,D(5,9)=.20, 
D(6,7)=.80,D(6,6)=.33,D(6,9)=.58,D(7,8)=.13,D(7,9)=.25, 
D(8,9)=.14, 

TABLE 5.46 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.45 

Source of Variation df sum of ~quare Mean square F 

Between Models 1 .0003 .00033 2.1845 
Within Models 48 .0072 .00015 

Total 49 . 00.7 5 

Table 5.47 indicates that ther~ is some statistical 

differences between the two models since calculated F 

values exceed the 5 percent tabular F value, 2.84, for 1 

and 48 degrees of freedom. 
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ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.45 

source of Variation ·df sum of Square Mean Square F 
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Between Models 
Within Models 

1 
48 

.0020 

.0312 
.00200 
. 00065 . 

3.0628 

Total 49 . 0332 

Finally, Model 1 should be selected if one had to pick 

a best methodology to estimate weight. There were no 

statistical significance indicated when the number of 

criteria is less than or equal to five, but practically 

speaking, Model 1 was always ranked number one except in 

decision making setting problem 1 and 2 as shown in Table 

5.28. When the number of criteria is more than five, the 

differences calculated from the true weight and the 

estimated weight from ~od~l 1 are significantly different 

from those of the other methods. This significance implies 

that the weight estimated from Model 1 is better than the 

others based on F test and Duncan's new multiple-range 

test. The second best methodolo~y would be Model 6 if the 

number of criteria is six or more. For the small size 

problems which have less 'than six criteria, then Model 5 is 

the recommended second choice. There were no statistical 

significances indicated between Model 5 and Model 6 when 

the number of criteria is less than or equal to five, but 
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the weights from Model 5 were always better than those from 

Model 6 based on smaller values of d'1 and d'2· 

Discussions on Multiple Decision Makers 

In order to compare the two procedures introduced in 

Chapter III for estimating weights under the situation of 

having multiple decision makers, three of the decision 

making setting problems and measurements of gqodness of fit 

are used. Estimating weights using C'•vq matrix (3.13) 

obtained by averaging N pairwise comparison matrices was 

the first procedure. Estimating weights by averaging the N 

individual weights calculated from N C'q matrix (3.12) was 

the second procedure. 

For this study, Model 1~ which is determined as a best 

model in this research, is used for calculating the average 

and the variance of the ~ifferences between the true weight 

vector and the estimated weight vectors from the two 

procedures. It is assumed that two decision makers are 

involved in thls problem. It is also asaumed tha~ the 

variation of the decision makers' judgment follows a 

uniform distribution (0.5, 1.5) and (0.3, 1.7) 

respectively. The decision making settings used in this 

comparison are W=(.55,.3,.15) for NC=3, W=(.2,.4,.1,.3) for 

NC=4, and W=(.25,.3,.15,.1,.2) for NC=S. Table 5.48, based 

on N=30 replications, indicates that procedure 1 generates 

better weights all the time, regardless of the decision 



making setting problems, based on smaller values of the 

calculated d'~ and d'2· 

p* 

TABLE 5.48 

SIMULATION RES<ULTS FOR TWO DECISION MAKERS 
WHEN N=30 

r------------·--------------------------------------
NC=3 NC=4 NC=S 
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1 .065 .002 .100 .004 .069 ',003 .117 .007 .070.002 .124.005 
2 .076 .002 .117 -.003 .077 .003 .130 .• 007 .082.002 .145.005 

----------------------
*P stands for procedures, 1 for procedure 1 and 2 for 

procedure 2. 

The F test is applied in order to determine the 

existence of a statistical difference between the two 

procedures. As can be seen ln the following Tables, no 

statistical differences are indidated since calculated F 

values do not exceed 5 percent tabular F value, 2.79, for 1 

and 58 degrees of freedom. 

TABLE 5.49 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.48 .WHEN NC=3 

Source of Variation df sum of Square Mean Square F 
--------------------------------------------------------------
Between Models 
Within Models 

Total 

1 
58 

59 

.00006 

.11600 

.11606 

.00006 

.00200 
0.0303 



TABLE 5.50 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.48 WHEN NC=3 

Source of Variation df Sum of Square Mean Square F 
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Between Models 1 .00003 .00003 0.0107 
Within Models 58 .17400 .00300 

Total 59 .17403 
--------------------------------

TABLE 5.51 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.48 WHEN NC=4 

Source of Variation df Sum of Square Mean Square F 

Between Models 1 .00007 .00007 0.0360 
Within Models 58 .11600 .00200 

Total 59 .11607 

TABLE 5.52 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.48 WHEN NC=4 

source of variat~on df Sum of Square. Mean Square F 

Between Models 
Within Models 

Total 

1 
58 

59 

.00014 

.20300 

.20314 

.00014 

.00350 
0.0413 



TABLE 5.53 

ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE 
MEASURE DATA OF TABLE 5.48 WHEN NC=5 

Source of Variation df sum of Square Mean Square F 
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Between Models 1 .00008 .00008 0.0121 
Within Models 58 .40600 .00700 

Total 59 .40608 

TABLE 5.54 

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE 
MEASURE DATA OF TABLE 5.48 WHEN NC=5 

Source of Variation df Sum of Square Mean Square F 

Between Models 1 .00022 .00022 0.0441 
Within Models 58 .29000 .00500 

Total 59 .29022 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND RECOMMEMDATIONS 

This chapter summarizes all the steps carried out in 

order to fulfill the goal and objectives of this research. 

Conclusions from this research.are then provided. Finally, 

recommendations for future work and possible extensions of 

this research are outlined. 

summary 

Chapter I of this research provides the problem 

statement. Introduction of the background of various 

weighting methods is given. The research goal which 

involves several objectives is then identified. An 

extensive literature survey of various weighting methods is 

given in Chapter II. Chapter III develops the new 

weighting methods employing the minimization of judgmental 

error and the refinement of decision maker's inconsistency 

using pairwise comparisons and linear programming. This 

research contributes the idea of considering the 

minimization of a decision maker's judgmental error unlike 

other subjective approaches. This research also 

contributes to refining a decision maker's inconsistency by 

using all a~~ in pairwise comparisons when estimating 

83 
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weights. A comprehensive, interactive computer program has 

been developed and described in Chapter IV. This aspect 

provides benefits to both decision makers and researchers. 

This interactive feature of the program will be a great 

asset in communicating with decision makers. The results 

of simulation for the purpose of comparison and analysis 

are provided in Chapter V. 

In order to fulfill the research goal and objectives, 

the following accomplishments have been achieved: 

1. Three analytical models based on the minimization 

of a decision maker's judgmental error and 

refinement of a decision maker's inconsistency have 

been developed. These three models use the same 

pairwise comparison matrix as used in various 

eigen-vector methods. 

2. Two procedures of estimating weights under the 

situation of having multiple decision makers have 

been illustrated. These procedures use the same 

pairwise comparison matrices as mentioned before. 

3. An interactive and comprehensive computer program 

has been developed and designed. This program 

implements six weight estimation methods of the 

(1) Proposed Model 1, (2) Proposed Model 2, (3) 

Proposed Model 3, (4) Saaty's Method, (5) Cogger 

and Yu's Method, and (6) Takeda, et al.'s Method. 
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Conclusions and Recommendations 

Based on the results obtained in this research, the 

best model of estimating weig~ts by using a pairwise 

comparison matrix is the Model 1 developed in the research. 

The results of this research are interesting and 

encouraging. The Model 1 developed in this research 

estimates weights for MCDM settings more accurately based 

on the Euclidean distance measure and the city block 

distance measure than those obtained by the three eigen­

vector methods. This is directly due to the effects of the 

minimization of a decision maker's judgmental error and the 

refinement of a decision maker's inconsistency. 

Possible further work with respect to ·Welght 

estimating methods using a pairwise comparison matrix is as 

follows: 

1. The intention of adding more constraints to Model 2 

and Model 3 was to improve the quality of the 

weights. But, ad~ing these constraints made the 

results worse. Finding a better constraining 

method can be an extension·of this research. 

2. Two averaging procedures have been used to estimate 

weights for multiple decision makers. Another 

method, for instance, a~~m~n s w~;w~ s a~~max, 

where a~~m~n is the minimum value of a~~q, and 

a~~max is the maximum value of a~~q, q=1,2, ... ,N, 

may be considered in an extension to this research. 
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C******************************************************~~** 

c * 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PURPOSE: * 
THIS COMPUTER PROGRAM IS DESIGNED FOR ESTIMATING * 

WEIGHTS USING THREE PROPOSED MODELS INTRODUCED IN * 
CHAPTER III UNDER THE INTERACTIVE MODE BETWEEN * 
DECISION MAKERS AND RESEARCHERS. * 

AUTHOR: KOOK JIN NAM * 
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT 
OKLAHOMA STATE UNIVERSITY * 

DISSERTATION ADVISER: DR. M. PALMER TERRELL 
* 
* 
* 

C********************************************************** 
c * 
C DEFINITION OF VARIABLES: * 
c * 
C IC NUMBER OF CRITERIA * 
c * 
C !MODEL MODEL INDICATOR; 1 FOR MODELl, 2 FOR * 
C MODEL 2, ETC * 
c * 
C ND NUMBER OF DECISION MAKERS * 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

cw 

!SIZE 

NZRlVR 

SOLMIN 

CALCULATED'WEIGHT VECTOR 

INTERMEDIATE STORAGE AREA WHICH IS 
NZR1VR*(2*N-NZR1VR+l)/2 OR AS LARGE AS 
POSSIBLE 

NUMBER OF INTEGER VARIABLES 

* 
* 
* 
* 
* 
* 
* 
* 
* 

ESTIMATE OF OBJECTIVE FUNCTION IF KNOWN, * 
ZERO OTHERWISE * 

PCTTOL -- TOLERANCE AS FRACTION OF OBJECTIVE * 

M 

N 

NMl 

UPEND 

FUNCTION FOR CONTINUOUS SOLUTION (MAY BE * 
LEFT AT ZERO) * 

TOTAL NUMBER OF ROWS 
* 
* 
* 

TOTAL NUMBER OF COLUMNS WHICH IS EQUAL TO* 
THE SUM OF X AND Y VARIABLES PLUS 1 FOR * 
RIGHT HANDSIDE * 
DO LOOP PARAMETERS: NMl = N - 1 

VECTOR OF INTEGER VARIABLE'S UPPER 
BOUNDS; SIZE = N - 1 

* 
* 
* 
* 
* 
* 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IROW 

!TEMP 

VAL 

ATAB 
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VECTOR OF CONSTRAINT TYPES; SIZE = M - 1:* 
+1>=BI, O=BI, -1<=BI * 

* 
COLUMN OF COEFFICIENTS BEING READ IN * 
ROW I INCLUDING OBJECTIVE ROW * 

* 
COEFFICIENT VALUE OF COLUMNS SPECIFIED BY* 
ITEMP FOR ROW I * 

* 
INITIAL WORKING TABLEAU, N·BY M ARRAY * 

* 
C********************************************************** 
c 
C*** THIS COMPUTER PROGRAM DESIGNED FOR RUNNING 
C INTERACTIVELY 
c 

c 

DOUBLE PRECISION UPBND(37), TPVAL(31), BTMVL(31), 
*ATAB(34,36), VAL(31), TBSAV(33,36), SAVTAB(34,645), 
*T(36), CC(10,10,10), CW(10 ), 2C(5,5) 

DOUBLE PRECISION SOLMIN, PCTTOL, TLRNCE, YVECT, 
*ATAB11, AMAX, RTIO, ALFA, ARTIO, ADELT, ZOPT, ATAB12, 
*X1, AMAX2, AMAX3, ALW, AUP, RTI02, DIFFl, DIFF2, 
*DIFF, SVALW, ANDCT4, DABS 

COMMON IROW (33), ITBROW (33), ISVROW (33,30), KSVN 
*(31), ICOL (36), ITBCOL (36), IVAR (36) 

COMMON ISVRCL (30), ICORR (30), ISVN (30) 
NI = 5 
NO = 6 

C*** PROMPT THE MAIN MENU 
c 

c 

731 WRITE(N0,10) 
10 FORMAT(1H1,12X,24(1H*),/,13X,'*** MAIN MENU 

****',/,13X, 
*24(1H*),/,/,5X,'1. INPUT PAIRWISE COMPARISONS,',/, 
* 5X,'2., EXIT THE PROGRAM.',/,/, 
* SX,'==> ENTER THE OPTION NUMBER!') 

READ(NI,*) MENU 
GO TO (60,730) MENU 
WRITE(NO,ll) 

11 FORMAT(/,SX,'??? ENTERED NUMBER ERROR??? TRY IT 
*AGAINI ') 

GO TO 731 
60 WRITE(NO,l2) 
12 FORMAT(lH1,/,5X,'==> ENTER THE NUMBER OF DECISION 

*MAKERSI ') 
READ(NI,*) ND 
WRITE(NO,l3) ND 13 FORMAT(/,/,SX,'YOU HAVE ',I2,' 

*DECISION MAKER(S). IS THIS NUMBER CORRECT?',/, 
* 5X,'==> ENTER l=YES, 2=NO. <<<') 

READ(NI,*) INQUR 



c 

IF(INQUR.EQ.2) GO TO 60 
732 WRITE(N0,14) 
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14 FORMAT(1Hl,/,5X,'==> ENTER THE NUMBER OF CRITERIA!') 
READ(NI,*) IC 
WRITE(N0,15) IC 15 FORMAT(/,/,5X,'YOU HAVE ',I2,' 

*CRITERIA. IS THIS NUMBER CORRECT?' 
* ,/,5X,'==> ENTER 1=YES, 2=NO. <<<') 

READ(NI,*) INQUR 
IF(INQUR.EQ.2) GO TO 732 
DO 733 K = 1, ND 
WRITE(N0,50) K 

50 FORMAT(1H1,/,5X,'*** THIS IS FOR DECISION MAKER',I2,' 
* ! I ) 

DO 16 I = 1, IC 
DO 17 J = 1, IC 
IF(I.EQ.J) GO TO 18 
WRITE(N0,735) I, J 

735 FORMAT(1H1,/,5X,'==> BY HOW MUCH IS 
*CRITERIA',I2,'MORE IMPORTANT THAN CRITERIA',I2,' ?') 

READ(NI,*) AMOUNT 
CC(K,I,J) =AMOUNT 
GO TO 17 

18 CC(K,I,J) = 1.0 
17 CONTINUE 
16 CONTINUE 

C*** ECHO PRINT OUT INPUT DATA 
c 

28 WRITE(N0,20) K 
20 FORMAT(1H1,5X,39(1H*),/,5X,'*** VALUES RECEIVED FROM 

*DECISION MAKER',I2,' ***',/,5X 1 39(1H*),/,/) 
DO 21 I = 1, IC 

21 WRITE(NO,*) (CC(K,I,J),J=1,IC) 
WRITE(N0,22) 

22 FORMAT(/,/,5X,'*** ARE THESE DATA CORRECT?***', 
* /,5X,'==> ENTER 1=YES, 2=NO. <<<') 

READ(NI,*) INQUR 
IF(INQUR.EQ.l) GO TO 733 

27 WRITE(N0,55) 
55 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEXI ') 

READ(NI,*) Kl 
WRITE(N0,23) 

23 FORMAT(/,5X,'==> ENTER ROW INDEX NUMBER!') 
READ(NI,*) I 
WRITE(N0,24) 

24 FORMAT(/,5X,'==> ENTER COLUMN INDEX NUMBER!') 
READ(NI,*) J 
WRITE(N0,25) 25 FORMAT(/,5X,'==> ENTER CORRECTED 

*VALUE OF RELATIVE IMPORTANCE! 1 ) 

READ(NI,*)CC(Kl,I,J) 
WRITE(N0,26) 

26 FORMAT(/,5X,'*** DO YOU NEED TO CHANGE MORE?***', 



* 

733 

/,5X,'==> ENTER 1=YES, 2=NO. <<<') 
READ(NI,*) INQUR 
IF(INQUR.EQ.1) GO TO 27 
GO TO 28 
CONTINUE 
WRITE(N0,30) 

30 FORMAT(1H1,5X,26(1H*),5X,'*** MODEL AVAILABILITY 
***',/,5X,26(1H*),/,/,5X,'1. MODEL 1', 
* /,5X,'2. MODEL 2', 
* /,5X,'3. MODEL 3', 
* /~5X,'4. MODEL 4', 
* /,5X,'5. MODEL 5', 
* /,5X,'6. MODEL 6', 
* /,5X, '==>ENTER THE MODEL NUMBER!') 

READ(NI,*) !MODEL 
40 X1 = 1. 0 

701 

706 
705 
704 

703 

711 

710 
709 
708 

C*** 
c 
c 

707 

C*** 
c 

8903 

8010 

GO TO (701,702,702,750,751,752), !MODEL 
IF(ND.GE.2) GO TO 703 
DO 704 I = 1,- IC 
DO 705 J = 1, IC 
IF(I.EQ.J) GO TO 706 
C(I,J) = CC(1,I,J) 
GO TO 705 
C(I,J) = 1.0 
CONTINUE 
CONTINUE 
GO TO 707 
DO 708 I = 
DO 709 J = 
IF(I.EQ.J) 
Sl = 0.0 

1, IC 
1, IC 
GO TO 710 

DO 711 K = 1, ND 
S1 = S1 + CC(K,I,J) 
CONTINUE 
C(I,J) = S1 I FLOAT(ND) 
GO TO 709 
C(I,J) = 1.0 
CONTINUE 
CONTINUE 

INPUT PARAMETERS M = TOTAL NO. OF ROWS, N = TOTAL 
NO. OF COLS. NZR1VR = NO. OF INTEGER VARIABLES 
M = IC+2 
N = 2*IC+1 
NZR1VR = IC 

READ MATRIX 
DO 8903 I = 
DO 8903 J = 
ATAB(I,J) = 
DO 8010 J = 
ATAB(1,J) = 

ELEMENTS 
1, M 
1, N 
0.0 
2, IC+1 
1.0 
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J = 2 
DO 8011 I = 2, IC+1 
ATAB (I I J) = 1. 0 

8011 J = J + 1 
DO 8b20 I = 2, IC+1 
DO 8021 J = NZR1VR+2, N 
IF((I-1).EQ.(J-IC-1)) GO TO 8022 
ATAB(I,J) = C(I-1,J-IC-1) 
GO TO 8021 

8022 ATAB(I,J) = 1.0-FLOAT(IC) 
8021 CONTINUE 
8020 CONTINUE 

DO 8030 J = NZR1VR+2, N 
8030 ATAB(M,J) = 1.0 

ATAB(M,1) = 1.0 
GO TO 712 

702 IN=O 
IF(ND.GE.2) GO TO 713 
DO 714 I = 1, IC 
DO 715 J = 1, IC 
IF(I.EQ.J) GO TO 716 
C(I,J) = CC(1,I,J) 
GO TO 715 

716 C(I,J) = 1.0 
715 CONTINUE 
714 CONTINUE 

GO TO 717 
713 DO 718 I = 1, , I C 

DO 719 J = 1, IC 
IF(I.EQ.J) GO TO 720 
S1 = 0.0 
DO 721 K = 1, NO 
S1 = S1 + CC(K,I,J) 

721 CONTINUE . 
C(I,J) = S1 I FLOAT(ND) 
GO TO 719 

720 C(I,J) = 1.0 
719 CONTINUE 
718 CONTINUE 

C*** 
c INPUT PARAMETERS M =·TOTAL NO. OF ROWS, N = TOTAL 

NO. OF COLS. NZR1VR = NO. OF INTEGER VARIABLES c 
717 

8044 

C*** 
c 

722 

DO 8044 I = 1, IC-1 
IN = IN + I 
M = 3*IN+3 
N = 3*IN+IC+1 
NZR1VR = 3*IN 

READ MATRIX ELEMENTS 
DO 722 I = 1, M 
DO 722 J = 1, N 
ATAB(I,J) = 0.0 
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I =1 
I2 = 1 
DO 8444 J = 2, NZRlVR+l 

8444 ATAB(I,J) = 1.0 
I = I + 1 
DO 723 II = 1, IC-1 
DO 724 J = II+1, IC 
IF(C(II,J).GE.1.0) GO TO 8023, 
DO 8024 K = NZR1VR+2, N 
ATAB(I,K) = C(J,I2) - C(II,I2) 
I2 = I2 + 1 

8024 CONTINUE 
I = I + 1 
I2 = 1 
IF(I.GT.(IN+1)) GO TO 8027 
GO TO 8022 

8023 DO S026 K = NZR1VR+2, N 
ATAB(I,K) = C(II,I2) - C(J,I2) 
I2 = I2 + 1 

8026 CONTINUE 
I = I + 1 
I2 = 1 
IF(I.GT.(IN+1)) GO TO 8027 

724 CONTINUE 
723 CONTINUE 

8027 DO 8028 II = NZR1VR+1~ NZR1VR+IC-1 
DO 8029 J = II+l, ·NZR1VR+IC 
IF(C(II-NZR1VR,J-NZR1VR).GE.1.0) GO TO 725 
ATAB(I,II+I2) = -1.0 
ATAB(I,I2+J) = C(II-NZR1VR~J-NZR1VR) 
GO TO 726 

725 ATAB(I,II+I2) = 1.0 
ATAB(I,I2+J) = -C(II-NZRlVR,J-NZRlVR) 

726 IF(C(J-NZR1VR,II-NZR1VR).GE.1.0) GO TO 727 
ATAB(I+IN,II+I2) = C(J-NZR1VR,II-NZR1VR) 
ATAB(I+IN,I2+J) = -1.0 
GO TO 728 

727 ATAB(I+IN,II+I2) = -C(J-NZR1VR,II~NZR1VR) 
ATAB(I+IN,I2+J) = 1.0 

728 I = I + 1 
8029 CONTINUE 
8028 CONTINUE 

DO 729 J = NZR1VR+2, N 
729 ATAB(M,J} = 1.0 

I2 = 2 
DO 8031 J = 2, NZR1VR+1 
ATAB (I 2, J) = 1. 0 

8031 I2 = I2 + 1 
ATAB(M,l) = 1.0 

C INITIALIZATION 
712 ISIZE = 645 

INDCT7=1 

95 



C*** 

KSVN(l)=l 
INDCTR=l 
ICNTR=O 
IOUTl = 0 
I1ROW=1000 
ADELT = 5.0E-7 

96 

C READ AND WRITE PROBLEM IDENTIFICATION: PUT 1 IN COL. 
c 1 
C*** 
C IOUT2 = INITIAL WORKING TABLEAU 
C IOUT3=CONTINUOUS SOLUTION TABLEAU 

IOUT2 = 1 
IOUT3 = 1 
!PACK = 0 

C*** 
C SOLMIN=UPPER BOUND ON OBJ. FUNCTION FOR INTEGER 
C SOLUTION 
C PCTTOL=INPUT TOLERANCE AS FRACTION OF OBJECTIVE 
C FUNCT. FOR CONT. SOLUTION SET EACH ZERO FOR 
C UNKNOWN PROBLEM. 

SOLMIN = 0.0 
PCTTOL = 0.0 

73 DO 72 I=1,N 
72 T(I)=O. 

NM1=N-1 
74 IF(SOLMIN)786,787,786 

C*** 
C INPUT UPPER BOUND ON OBJECTIVE FUNCTION 

786 TLRNCE=SOLMIN 
PCTTOL=-1. 
GO TO 90 

787 ITOL=l 
SOLMIN = 1E35 
IF(PCTTOL)90,788,90 

788 PCTTOL=.1 
C*** 
c INPUT UPPER BOUNDS ON VARIABLES (ZERO MEANS NO UPPER 

BOUND) c 
90 IF(IMODEL.EQ.1) GO TO 901 

8015 

8016 

901 
903 

1 

C** 

DO 8015 I = 1, NZR1VR 
UPBND(I) = 1.0 
CONTINUE 
DO 8016 I = NZR1VR+1, .NM1 
UPBND(I) = 0.0 
CONTINUE 
GO TO 1 
DO 903 I = 1, NM1 
UPBND(I) = 0.0 
IROW(1)=0 
IROW(M)=O 

CONSTRAINT TYPES: ( +1, = 0, ' -1 ) 



DO 8017 I = 2, M-1 
8017 IROW(I) = +1 

C** MATRIX FORMAT: PACKED =. 1, UNPACKED = 0 
IF ( M .LT .. 2) GO TO 450 

C*** 
C PRINT INPUT TABLEAU FOR-ERROR CHECK 

9520 DO 954 I=2,M 
IF(IROW(I))953,9521,952l 

9521 DO 9523 J=2,N 
9523 ATAB(I,J)=-ATAB(I,J) 

GO TO 954 
953 ATAB(I;1)=-ATAB(I,1) 
954 CONTINUE 
450 CONTINUE 
955 DO 98 I=2,N · 

IF(UPBND(I-~))96,96,98 

96 UPBND (I-1) = 1E3 
98 CONTINUE 

C*** 
C COMPUTE NO. OF Y VECTORS 

981 YVECT=UPBND(l)+l. 
IF ( NZR1VR .LT. 2) GO TO 322 
DO 982 I=2,NZR1VR 

982 YVECT=YVECT*(UPBND(I)~~.) 
322 CONTINUE 

C*** 
c SET SOLUTION VECTOR OF VARIABLES 

AND SAVE ORIGINAL UPPER BOUNDS c 
985 DO 99 I=2,N . 

IVAR(I-1)=0 

EQUAL TO ZERO 

97 

99 
C*** 
c 
c 

INITIALIZE ROW AND COLUMN IDENTIFIERS,+K=VARIABLE NO. 
K, ZERO = ZERO SLACK, -K = POSITIVE SLACK 

100 
102 
451 

1022 

1023 

1025 
103 

C*** 

IF ( M .LT. 2) GO TO 451 
DO 102 I=2,M 
IF(IROW(I))100,102,100 
IROW(I)=1-I 
CONTINUE 
CONTINUE 
ATAB11=ATAB(1,1) 
ICOL ( 1) = 0 . 
DO 103 J=2,N 
IF(ATAB(1,J))1022,1025,1025 
DO 1023 I=l,M . 
ATAB(I,1)=ATAB(I,1)+ATAB(I,J)*UPBND(J-1) 
ATAB(I,J)=-ATAB(I,J) 
ICOL(J)=1000+J-1 
GO TO 103 
ICOL(J)=J-1 
CONTINUE 
GO TO 254 



98 

C START DUAL LP 
C CHOOSE PIVOT ROW, MAXIMUM POSITIVE VALUE IN CONSTANT 
C COLUMN 

112 AMAX = 0.0 

115 
117 

120 
452 

C*** 
c 

c 
c 
c 

130 

132 

133 

135 
136 

137 
140 

143 
145 

C*** 
c 

150 
C** 

152 
153 

157 
160 

165 
175 
180 

190 
C*** 

IF ( M .LT. 2) po TO 452 
DO 120 I=2,M 
IF(ATAB(I,1))120,120,115 
IF(ATAB(I,1)-AMAX)l20,120,117 
AMAX=ATAB(I,1) 
IPVR=I, 
CONTINUE 
CONTINUE 

IF NO POSITIVE VALUE, LP FINISHED (PRIMAL FEASIBLE) 
IF(AMAX)265,265,130 
CHOOSE PIVOT COLUMN, ALGEBRAICALLY MAXIMUM RATIO 
A(1,J)/A(PIVOTROW FOR A (PIVOTROWiJ) NEGATIVE. IF NO 
NEGATIVE A(PIVOTROW,J) PROBLEM INFEASIBLE 
AMAX = -1E35 
IF(N-2)143,132,132 
II?VC=O 
DO 140 J=2,N 
IF(ATAB(IPVR,J))133,140,140 
RTIO=ATAB(1,J)/ATAB(IPVR,J) 
IF(RTIO-AMAX)140,137,135 
AMAX=RTIO 
II?VC=J 
GO TO 140 
IF(ATAB(IPVR,J)-ATAB(IPVR,IPVC))136,140,140 
CONTINUE , 
IF(IPVC)150,143,150 
GO TO (145,435,54:2,610,665,),INDCTR 
GO TO 999 

CARRY OUT PIVOT STEP 
ALFA=ATAB(IPVR,IPVC) 

UPDATE TABLEAU 
DO 180 J=1,N 
IF(ATAB(IPVR,J))152,180,152 
IF(J-II?VC)153,180,153 
ARTIO=ATAB(IPVR,J)/ALFA 
DO 175 I=1,M 
IF(ATAB(I,IPVC))157,175,157 
IF(I-II?VR)160,175,1~0 
ATAB(I,J)=ATAB(I,J)-ARTIO*ATAB(I,IPVC) 
IF(DABS(ATAB(I,J))-ADELT) 165, 165, 175 
ATAB(I,J) = 0.0 
CONTINUE 
CONTINUE 
DO 190 J=1,N 
ATAB(IPVR,J)=ATAB(IPVR,J)/ALFA 



C EXCHANGE ROW AND COLUMN IDENTIFIERS 
ISV=IROW(IPVR) 
IROW(IPVR)=ICOL(IPVC) 

C*** 
C IF PIVOT ROW WAS ZERO SLACK, SET MODIFIED PIVOT 
C COLUMN ZERO. 

195 DO 196 I=1,M 
196 ATAB(I,IPVC)=ATAB(I,N) 

ICOL(IPVC)=ICOL(N) 
N=N-1 
GO TO 200 

197 DO 198 I=1,M 
198 ATAB(I,IPVC)=-ATAB(I,IPVC)/ALFA 

ICOL(IPVC)=ISV 
ATAB(IPVR,IPVC)=l./ALFA 

C*** 
C COUNT PIVOTS 

200 ICNTR=ICNTR+1 
IF(IROW(IPVR)+1000)210,205,210 

205 DO 207 J=1,N 
207 ATAB(IPVR,J)=ATAB(M,J) 

IROW(IPVR)=IROW(M) 
M=M-1 

210 IF(IOUT1)240,2505,240 
240 CONTINUE , 

2505 GO TO (254,251,252,253,2535),INDCTR 

99 

C*** 
c 
c 

251 
252 
253 

2535 
C*** 
c 

IF SEEKING INTEGER SOLUTION, TEST OBJECTIVE FUNCTION 
AGAINST CURRENT SOLUTION 
IF(ATAB(1,1)-TLRNCE)254,435,435 
IF(ATAB(1,1)-TLRNCE)254,542,542 
IF(ATAB(1,1)-TLRNCE)254,610,610 
IF(ATAB(1,1)-TLRNCE)254,665,665 

c 

c 

254 

255 
256 
258 
260 
453 

265 
C*** 

IF CONSTANT COLUMN OF ZERO 
SIGNS OF ENT 
IF ( M .LT. ,2) GO TO 453 
DO 260 K = 2, M 
IF(IROW(K))260,255,260 
IF(ATAB(K,l))256,260,260 
DO 258 L=l,N 
ATAB(K,L)=-ATAB(K,L) 
CONTINUE 
CONTINUE 
GO TO NEXT PIVOT STEP 
GO TO 112 
CONTINUE 

SLACK ROW IS NEG., REVERSE 

C IF ANY BASIS VARIABLE EXCEEDS ITS UPPER BOUND, 
C COMPLEMENT IT, AND PIVOT ON CORRESPONDING ROW 

IF ( M .LT. 2) GO TO 454 
DO 275 I=2,M 



IF(IROW(I))275,275,266 
266 J=IROW(I) 

IF(J-1000}268,268,267 
267 J=J-1000 
268 IF(UPBND(J)+ATAB(I,1))269,275~275 
269 IF(ADELT+UPBND(J)+ATAB(;,1))270,274,274 
270 ATAB(I,1)=-ATAB(I,1)-UPBND(J) 

DO 271 K;.,2,N 
271 ATAB(I,K)=-ATAB(I,K) 

IPVR=I 
IF(J-IROW(I))272,273,272 

272 IROW(I)=J 
GO TO 130 

273 IROW(I)=IROW(I)+1000 
GO TO 130, 

274 ATAB(I,1)=-UPBND(J) 
275 CONTINUE 
454 CONTINUE 

C*** 
c TRUE END OF LINEAR PROGRAMMING 
c 

277 
278 

279 

SET SOLUTION VECTOR VALUES FOR BASIC VARIABLES 
IF ( M .LT. 2) GO TO 455 
DO 2 8 0 I = 2 I M-
IF(IROW(I))280,2~0,277 
IF(IROW(I)~1000)279,279,278 

J=IROW(I)-1000 
T(J)=UPBND(J}+ATAB(I,1) 
GO TO 280 
J=IROW(I) 
T(J)=-ATAB(I,1) 
CONTINUE 
CONTINUE 

100 

280 
455 

C*** 
c 
c 

SET SOLUTION VECTOR VALUES FOR NON-BASIC V,ARIABLES IN 
COMPLEMENTED 

282 
283 

284 

285 

C*** 
c 
c 

286 

C*** 

DO 285 I=2,N 
IF(ICOL(I))285,285,282 
IF(ICOL(I)-1000)284,284,283 
J=ICOL(I)-1000 
T(J)=UPBND(J) 
GO TO 285 
J=ICOL(I) 
T(J)=O. 
CONTINUE 
GO TO (286,437,548,615,670),INDCTR 

FIRST TIME,WRITE CONTINUOUS 
IF REQUESTED 
ZOPT =DABS( ATAB(1,1)) 
IF(IMODEL.EQ.3) GO TO 290 
GO TO 999 

SOLUTION TABLEAU 



C COMPUTE ABSOLUTE TOLERANCE 
290 ATAB12=ATAB(1,1) 

ATAB11 =DABS (ATAB11- ATAB(1,1)) 
IF(PCTTOL)294,293,292 

292 TLRNCE=PCTTOL*ATAB11+ATAB12 
GO TO 294 

293 TLRNCE = 1E35 
294 CONTINUE 

C*** 
c DETERMINE WHETHER CONTINUOUS SOLUTION IS MIXED 

INTEGER SOLUTION c 

301 

302 
303 
304 
305 

306 
310 
456 

IF ( M .LT. 2) GO TO 456 
DO 310 I=2,M 
IF(IROW(I))310,310,302 
IF(IROW(I)-1000)303,303,304 
IF(IROW(I)-NZR1VR)305,305 1 310 
IF(IROW(I)-1000-NZR1VR)305,305,310 
AJ01 = ATAB(I,1) 
AJ02 = ADELT 
AJ03 = X1 
IF(AMOD(-AJ0~ 1 AJ03)-AJ02) 310,310,306 
IF(1.0-AMOD(~AJ01,AJ03)-AJ02) 310,310,295 
CONTINUE 
CONTINUE 
GO TO 999 

C*** 
C DETERMINE WHETHER PROBLEM FITS IN MEMORY , AND IF SO 
C WHETHER TO SAVE ALL INTERMEDIATE TABLEAUS OR ONLY SOME 

295 IF(N-NZR1VR)297,297,298 
297 ISVLOC=(N*(N+1))/2 

GO TO 299 
298 ISVLOC=(NZR1VR*(2*N-NZR1VR+1))/2 
299 IF(ISIZE-ISVLOC)3001,3001,300 
300 I1ROW=O 

GO TO 315 
3001 NONBSC=O 

DO 3006 J=2,N 
IF(ICOL(J))30Q6,3006,3002 

3002 IF(ICOL(J)-1000)3003,3004,3004 
3003 IF(ICOL(J)-NZR1VR)3005,3005,3006 
3004 IF(ICOL(J)-1000-NZR1VR)3005,3005,3006 
3005 NONBSC=NONBSC+1 
3006 CONTINUE 

IF(N-NZR1VR)3007,3007,3008 
3007 ISVLOC=N+((N-NONBSC)*(N-NONBSC+1))/2 

GO TO 3009 
3008 ISVLOC=N+((NZRlVR-NONBSC)*(N-NONBSC+N-NZRlVR+l))/2 
3009 IF(ISIZE-ISVLOC)3010,3010,315 
3010 GO TO 999 

315 CONTINUE 
C*** 
C BEGIN INTEGER PROGRAMMING 

101 



102 

400 Il=l 
402 AMAX = -Xl 

KSVN(I1+1)=KSVN(I1) 
C*** 
c 
c 
c 

405 
406 
407 
408 

4082 

4085 
C*** 
c 

C*** 
c 

4087 

C*** 
c 
c 

409 

4095 

410 
C*** 

c 
c 
c 

4100 
4101 

4105 
411 
412 

CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED 
TRY NONBASIC VARIABLES FIRST, CHOOSING ONE WITH 
LARGEST SHAD PRICE 
DO 4085 I=2,N 
IF(ICOL(I))4085,4085,405 
IF(ICOL(I)-1000)406,407,407 
IF(ICOL(I)-NZR1VR)408,408,4085 
IF(ICOL(I)-1000-NZR1VR)408,408,4085 
IF(AMAX-ATAB(1,I))4082,4085,4085 
ISVI=I 
AMAX=ATAB(1,I) 
CONTINUE 

IF NONE LEFT, TRY BASIC VARIABLES 
IF ( AMAX + X 1 ) 4 0 8 7 , 4 2 0 1 4 0 8 7 

VARIABLE CHOSEN 
IVAR(I1)=ICOL(ISVI) 
BTMVL(I1)=-1. 
ISVRCL(I1)=ISVI 
ICORR(I1)=0 
VAL (I1) = 0.0 

IF OBJECTIVE FUNCTION VALUE + SHADOW PRICE EXCEEDS 
TOLERANCE, INDICATE UPWARD DIRECTION INFEASIBLE 
IF(ATAB(1,1)+ATAB(1,ISVI)-TLRNCE)410,409,409 
TPVAL(Il)=1000. 
IF(I1-1)4101,4101,4095 
ISVN(I1)=0 
GO TO 4132 
TPVAL(I1)=1. 

IF(I1-1)4100,4101,4100 
SAVE ENTIRE TABLEAU OR ONLY COLUMN CORRESPONDING TO 
CURRENT NONBASIC VARIABLE, DEPENDING ON SIZE OF PROB 
AND 2ND DIM OF SAVTAB 
IF(I1-I1ROW)4132,4101,4101 
L=KSVN(I1) 
DO 412 J=1,M 
ISVROW(J,I1)=IROW(J) 
DO 411 K=1,N 
I=L+K-1 
IF(J-1)4105,4105,411 
SAVTAB(M+1,I)=ICOL(K) 
SAVTAB(J,I)=ATAB(J,K) 
CONTINUE 
ISVN(Il)=N 
KSVN(Il+1)=L+N 



4132 ICOL(ISVI)=ICOL(N) 
DO 4135 J=1,M 

4135 ATAB(J,ISVI)=ATAB(J,N) 
N=N-1 
GO TO 5000 

103 

C CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED FROM 
C AMONG BASIC VARIABLES IN CURRENT TABLEAU 

420 CONTINUE 
IF(Il-I1ROW)4J04,600,4205 

4204 I1ROW=Il 
4205 INDCT7=1 

421 AMAX = -X1 
IF ( M .LT. 2) GO TO 457 
DO 425 I2=2,M 
IF(IROW(I2))425,425,422 

422 IF(IROW(I~)-1000)423,424,424 
423 IF(IROW(I2)-NZR1VR)4241,4241,425 
424 IF(IROW(I2)-1000-NZR1VR)4241,4241,425 

4241 AMAX2 = 1.0E35 
AMAX3 = -1.0E35 
AJO = -ATAB(I2,1) + ADELT 
ALW = AINT(AJO) 
AUP=ALW+l. 
IF(N-1)426,426,4240 

4240 DO 4246 I3=2,N 
IF(ATAB(I2,I3))4244,4246,4242 4242 
RTIO=ATAB(l,I3)/ATAB(I2,I3) 
IF(RTIO-AMAX2)4243,4246,4246 

4243 AMAX2=RTIO 
GO TO 4246 

4244 RTI02=ATAB(1,I3)/ATAB(I2,I3) 
IF(RTI02-AMAX3)4246,4246,4245 

4245 AMAX3=RTI02 
4246 CONTINUE 

IF ( AMAX3 + 1E34) 430, 430, 4247 
4247 IF (AMAX2 ~ 1E34) 4248, 429, 429 
4248 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + ALW)) 

DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + AUP)) 
DIFF =DABS (DIFFl - DIFF2) 
IF(DIFF-AMAX)425,425,4249 

4249 AMAX=DIFF 
SVALW=ALW 
ISVI2=I2 
IF(DIFF1-DIFF2)4251,4251,4252 

4251 ANDCT4=0. 
GO TO 425 

4252 ANDCT4=1. 
425 CONTINUE 
457 CONTINUE 

ALW=SVALW 
I2=ISVI2 
VAL(I1)=ALW+ANDCT4 



BTMVL(Il)=VAL(Il)-1. 
4255 TPVAL(I1)=VAL(I1)+1. 

GO TO 432 
C*** 

104 

C IF NO. OF COLS=l AND RIGHT HAND SIDE=O, DONT GO TO LP 
426 IF (DABS( ATAB(I2,1) + ALW) - ADELT) 427, 427, 5100 
427 BTMVL(I1)=-1. 

C*** 

TPVAL (I 1) =1000. 
VAL(Il)=ALW 
IVAR(I1)=IROW(I2) 
IROW(I2)=0 
GO TO 5000 

C CONSTRAINING VARIABLE IN LOWER DIRECTION INFEASIBLE 
429 BTMVL(I1)=-1. 

IF (DABS ( ATAB(I2,1) + ALW) - ADELT ) 4295, 4295, 
* 4296 

4295 ANDCT4=0. 
VAL(I1)=ALW+ANDCT4 
GO TO 4255 

4296 TPVAL(I1)=ALW+2. 

C*** 

ANDCT4=1. 
GO TO 431 

C CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE 
430 TPVAL(I1)=1000. 

BTMVL(I1)=ALW-1. 
ANDCT4=0. 

431 VAL(I1)=ALW+ANDCT4 
C*** 
C SAVE ENTIRE TABLEAU 

432 JSVN=N 
L=KSVN(I1) 

438 DO 439 I3=1,M 
ISVROW(I3,I1)=IROW(I3) 
DO 439 I4=1,N 
I6=L+I4-1 
IF(I3-1)4385,4385,439 

4385 SAVTAB(M+1,I6)=ICOL(I4) 
439 SAVTAB(I3,I6)=ATAB(I3,I4) 

ISVN(I1)=N 
KSVN(I1+1)=L+N 
ATAB(I2,1)=ATAB(I2,1)+VAL(I1) 
ISVRCL(I1)=I2. 
IVAR(I1)=IROW(I2) 
ICORR(I1)=1 
IROW(I2)=0 
IF (DABS ( ATAB(I2,1)) - ADELT) 433, 433, 434 

433 ATAB (I2,1) = 0.0 
434 INDCTR=2 

C*** 
C RETURN TO CARRY OUT LP 



105 

IF(IOUT1)240,254,240 
C INFINITE RETURN 

435 IF(ANDCT4)4355,4352,4355 
4352 BTMVL(I1)=-1. 

GO TO 5120 
4355 TPVAL(I1)=1000. 

C*** 
c 

437 
c 

5000 
c 
c 

5050 

5051 
C*** 
c 
c 

5100 
5115 
5120 
5151 

5152 
5153 

516 
517 

C*** 
c 

518 
5181 
5182 
5183 

5185 

5190 

5191 

5192 
5196 
5193 

5194 

GO TO 5120 

FINITE RETURN 
GO TO 5000 
TEST FOR ANY INTEGER VARIABLES LEFT TO BE CONSTRAINED 
IF(I1-NZR1VR)5050,550,550 
INCREMENT POINTER AND RETURN TO CONSTRAIN NEXT 
INTEGER VARIABLE 
I1=I1+1 
IF(IOUT1)5051,402,5051 
GO TO 402 

DECREMENT POINTER AND CONSTRAIN CURRENT VARIABLE TO 
CURRENT VALUE + OR - 1 
I1=I1-1 
IF(I1)995,995,5120 
IF(IVAR(I1)-1000)5151,5151,5152 
K=IVAR(I1) 
GO TO 5153 
K=IVAR(I1)-1000 
I2=ISVRCL(I1) 5155 IF(BTMVL(I1))516,517,517 
IF(TPVAL(I1)-UPBND(K))518,518,5100 
IF(TPVAL(I1)-UPBND(K))530,530,525 

TOP END FEASIBLE 
INDCT5=1 
IF(ICORR(I1))5198,5182,5198 
IF(Il-I1ROW)5183,5198,5198 
INDCT8=1 
IF(I1-1)5185,5198,5185 
INDCT5=4 
ISVI1=I1-1 
I1=1 
GO TO 5198 
DO 5194 I3=1,ISVI1-
I4=ISVRCL(I3) 
ICOL(I4)=ICOL(N) 
DO 5193 J=1,M 
IF(VAL(I3)-1.)5193,5191,5192 
ATAB(J,l)=ATAB(J,l)+ATAB(J,I4) 
GO TO 5196 
ATAB(J,1)=ATAB(J,1)+VAL(I3)*ATAB(J,I4) 
INDCT8=2 
ATAB(J,I4)=ATAB(J,N) 
N=N-1 
CONTINUE 



5195 Il=ISVIl+l 
INDCT5=1 
GO TO 521 

C*** 
c 

5198 

5197 
5199 
5205 

521 

522 

5225 
523 

5235 
C*** 

RETRIEVE SAVED TABLEAU 
N=ISVN(I1) 
L=KSVN(I1) 
DO 5199 I3=1,M 
IROW(I3)=ISVROW(I3,I1) 
DO 5199 I4=1,N 
I6=L+I4-1 
IF(I3-1)5197,5197,5199 
ICOL(I4)=SAVTAB(M+1,I6) 
ATAB(I3,I4)=SAVTAB(I3,I6) 
GO TO (521,526,531,5190),INDCT5 
VAL(I1)=TPVAL(I1) 
TPVAL(I1)=TPVAL(I1)+1. 
IF(ICORR(I1))541,522,541. 
DO 523 I3=l,M , 
ATAB(I3,1)=ATAB(I3,1)+(VAL(I1)*ATAB(I3,I2)) 
IF (DABS ( ATAB(I3,1)) - kDELT) 5225, 5225, 
ATAB(I3,1)=0. 
ATAB(I3,I2)=ATAB(I3,N) 
ICOL(I2)=ICOL(N) 
N=N-1 
IF(ATAB(1,1)-TLRNCE)5235,5100,5100 
IF(I1-I1ROW)650,5415,5415 

C BOTTOM END FEASIBLE 
525 INDCT5=2 

GO TO 5198 
526 VAL(I1)=BTMVL(I1) 

BTMVL(I1)=BTMVL(I1)-1. 
GO TO 541 

C*** 
C BOTH ENDS FEASIBLE 

530 INDCT5=3 
GO TO 5198 

531 AMAX2 = 1.0E35 
AMAX3 = -1.0E35 
DO 536 I3=2,N 
IF(ATAB(I2,I3))534,536,532 

532 RTIO=ATAB(1~I3)/ATAB(I2,I3) 
IF(RTIO-AMAX2)533,536,536 

533 AMAX2=RTIO 
GO TO 536 

534 RTI02=ATAB(1,I3)/ATAB(I2,I3) 
IF(RTI02-AMAX3)536,536,535 

535 AMAX3=RTI02 
536 CONTINUE 

IF(AMAX2-l.E35)538,537,537 
C*** 

106 

523 



C BOTTOM END INFEASIBLE 
537 BTMVL(Il)=-1. 

GO TO 521 
538 IF(AMAX3+1.E35)539,539,540 

C*** 
C TOP END INFEASIBLE 

539 TPVAL(I1}=1000. 
GO TO 526 

540 DIFF1 =DABS ( AMAX2 * (ATAB(I2,1) + BTMVL (11))) 
DIFF2 =DABS ( AMAX3 * (ATAB(I2,1) + TPVAL (I1))) 
IF(DIFF1-DIFF2)526,526,5~1 

541 ATAB(I2,1)=ATAB(I2,1)+VAL(I1) 
IROW(I2)=0 
IF (DABS ( ATAB(I2,1)) - ADELT) 5412, 5412, 5415 

5412 ATAB(I2,1)=0. 
5415 INDCTR=3 

IF(IOUT1)240;2505,240 
C*** 
C INFINITE RETURN 

542 GO TO (544,547,543),INDCT5 
543 IF(TPVAL(I1)-VAL(I1)-1.)545,544,545 
544 TPVAL(I1)=1000. 

GO TO 5120 
545 IF(VAL(I1)-BTMVL(I1)-1.)546,547,546 

C*** 
546 CONTINUE 
547 BTMVL(I1)=-1. 

GO TO 5120 
C*** 
C FINITE RETURN 

548 GO TO 5000 
C FEASIBLE INTEGER SOLUTION·OBTAINED 

550 TLRNCE=ATAB(1,1) 
SOLMIN=l. 

C*** 
C WRITE CURRENT BEST MIXED INTEGER SOLUTION 

ZOPT =DABS( ATAB( 1,1)) 
DO 560 I = 1, NZR1VR 
IF(IVAR(I))554,560,554 

554 IF(IVAR(I)-1000)55S,555,557 
555 J=IVAR(I) 

T(J)=VAL(I) 
GO TO 560-

557 J=IVAR(I)-1000 
T(J)=UPBND(J)-VAL(I) 

560 CONTINUE 
GO TO 5115 

600 GO TO (605,4205),INDCT7 
605 INDCTR=4 

IF(IOUT1)240,254,240 
C*** 
C INFINITE RETURN 
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610 GO TO 5100 
C*** 
C FINITE RETURN 

615 INDCT7=2 
C*** 
C IF USING SECOND SOLUTION METHOD, SAVE TABLEAU 
C MODIFIED FOR NONZERO VALUE OF NONBASIC VARIABLE IN 
C TBSAV 

650 DO 655 I=1,M 
ITBROW(I)=IROW(I) 
DO 655 J=1,N 

655 TBSAV(I,J)=ATAB(I,J) 
DO 660 J=l,N 

660 ITBCOL(J)=ICOL(J) 
JSVN=N 
INDCTR=5 
IF(IOUT1)240,254,240 

C*** 
C INFINITE RETURN 

665 GO TO (544,5120),INDCT8 
C FINITE RETURN 
C*** 
c 
c 
c 

670 

675 

680 

C*** 
c 

995 
996 
997 

9972 

9973 

999 
19 

750 

IF USING SECOND SOLUTION METHOD, RETRIEVE MODIFIED 
TABLEAU FROM TBSAV, AS THIS CORRESPONDS TO SAVED 
COLUMNS FOR Il LESS THAN IlROW 
N=JSVN 
DO 675 I=1,M 
IROW(I)=ITBROW(I) 
DO 675 J=l,N 
ATAB(I,J)=TBSAV(I,J) 
DO 680 J=1,N 
ICOL(J)=ITBCOL(J) 
GO TO 5000 

OUTPUT FINAL SOLUTION. 
IF(ITOL)996,999,996 
IF(SOLMIN-1.E35)999,997,997 
ITOL=ITOL+1 
TLRNCE=FLOAT(ITOL)*PCTTOL*ATAB11+ATAB12 
N=ISVN(1) 
DO 9972 I=l,M 
IROW(I)=ISVROW(I,l) 
DO 9972 J=l,N 
ATAB(I,J)=SAVTAB(I,J) 
DO 9973 K=1,N 
ICOL(K)=SAVTAB(M+1,K) 
GO TO 400 
DO 19 I = 1, IC 
CW(I) = T(NM1-IC+I) 
GO TO 9999 
CALL EIGENP(N,NM,A,T,EVR,EVI,VECR,VECI,INDIC,IMAX) 
GO TO 9999 
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c 

751 CALL MODEL5(IC,TW,NMRUNS,C) 
GO TO 9999 

752 CALL MODEL6(IC,TW,NMRUNS,R 1C) 

9999 WRITE(N0,31) 
31 FORMAT(1H1,5X,25(1H*),/,5X 1 '*** ESTIMATED WEIGHTS 

*** 1 1 */,5X 125(1H*),/,/) 
WRITE(N0,736) (CW(I) 1 I=1,IC) 

736 FORMAT(2X 1 5F12.6) 
WRITE(N0,32) 
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32 FORMAT(/,5X, 1 *** DO YOU WANT TO GO BACK TO MAIN MENU? 
****I,/ 1 5X, I==> ENTER 1=Y,ES1 2=NO <<<I) 

READ(NI 1*) INQUR 
IF(INQUR.EQ.2) GO TO 730 
WRITE(N0,33) 

33 FORMAT(1H1,/,5X, 1 *** VALUES USED ARE AS FOLLOWS:',/) 
DO 734 K = 1, ND 
WRITE(N0,51) K 

51 FORMAT(/,5X,'FOR ',I2,'TH DECISION MAKER',/) 
DO 34 I = 1, IC 

34 WRITE(NO,*) (CC(K,I,J),J=1,IC) 
734 CONTINUE 

WRITE(N0,35) 
35 FORMAT(/,/,5X, 1 *** FOR SENSITIVITY ANALYSIS OR 

*RELECTING THE CHANGES ,OF MIND OF DECISION MAKER *** 1 ) 

41 WRITE(N0,52) 
52 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEX! 1 ) 

READ(NI,*) K1 
WRITE(N0,36) 

36 FORMAT(/,SX,'==> ENTER ROW INDEX NUMBER!') 
READ ( N I 1 * ) I , 
WRITE(N0 137) 

37 FORMAT(/,SX, '==>ENTER COLUMN INDEX NUMBERI ') 
READ(NI,*) J 
WRITE(N0,38) 38 FORMAT(/,5X, 1 ==> ENTER CORRECTED 

*VALUE OF RELATIVE IMPORTANCE!') 
READ(NI,*)CC(K1 1I 1J) 
WRITE(N0,39) 

39 FORMAT(/,5X1 '*** DO YOU NEED TO CHANGE MORE? ***' 1 

* / 15X, 1 ==> ENTER 1=YES 1 2=No. <<< 1 ) 

READ(NI,*) INQUR 
IF(INQUR.EQ.1) GO TO 41 
WRITE(N0,42) K1 

42 FORMAT(1Hl,/,5X, 1 *** VALUES CHANGED FROM ',I2,'TH 
*DECISION MAKER ARE AS FOLLOWS:',/) 

DO 43 I = 1, IC 
43 WRITE(NO,*) (CC(K1,I 1J) 1J=1,IC) 

WRITE(N0,44) 
44 FORMAT(/,/,5X,'*** ARE THESE DATA CORRECT?***', 

* /,SX,'==> ENTER l=YES 1 2=NO. <<<') 
READ(NI,*) INQUR 
IF(INQUR.EQ.l) GO'TO 40 



GO TO 41 
730 STOP 

END 
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c 
C********************************************************** 
c 

SUBROUTINE EIGENP(N, NM, A, T, EVR, EVI, VECR, VECI, 
* INDIC, IMAX) 

c 
C********************************************************** 
c 

c 

c 

DOUBLE PRECISION D1,D2,D3,PRFACT 
INTEGER I,IVEC,J,K,K1,KON,L,L1,M,N,NM,IMAX 
REAL ENORM,EPS,EX,R,R1,T DIMENSION A(NM,1), 

*VECR(NM,1),VECI(NM,1), EVR(NM),EVI(NM), INDIC(NM) 
DIMENSION IWORK(100), LOCAL(100), PRFACT(100), 

*SUBDIA(100), WORK1(100), WORK2(100),WORK(100) 
IF(N.NE.1)GO TO 1 
EVR ( 1) = A ( 1, 1) 
EVI ( 1) = 0. 0 
VECR ( 1 , 1 ) = 1. 0 
VECI(1,1) = 0.0 
INDIC(1) = 2 
GO TO 25 

1 CALL SCALE(N,NM,A,VECI,PRFACT,ENORM) 

C THE COMPUTATION OF THE EIGENVALUES OF THE NORMALIZED 
C MATRIX 

c 

c 

c 

EX= EXP(-T*ALOG(2.0)) 

CALL HESQR(N, NM, A, VECI, EVR, EVI, SUBDIA, INDIC, 
* EPS, EX, IMAX) 

J = N 
I = 1 
LOCAL(1) = 1 
IF(J.EQ.1)GO TO 4 

2 IF(ABS(SUBDIA(J-1)).GT.EPS)GO TO 3 
I = I + 1 
LOCAL(!) = 0 

3 J = J - 1 
LOCAL(!) = LOCAL(!) + 1 
IF(J.NE.1)GO TO 2 

C THE EIGENVECTOR PROBLEM 
4 K = 1 

KON = 0 
L = LOCAL(1) 
M = N 
DO 10 I = 1, N 
IVEC = N-I+1 



c 

IF(I.LE.L)GO TO 5 
K = K+1 
M = N-L 
L = L+LOCAL(K) 

5 IF(INDIC(IVEC).EQ:O)GO TO 10 
IF(EVI(IVEC).NE.O.O)GO TO 8 

C TRANSFER OF AN UPPER HESSENBERG MATRIX OF THE ORDER M 
C FROM THE ARRAYS VECI AND SUBDIA INTO THE ARRAY A. 

c 

DO 7 K1 = 1,M 
DO 6 L1 = K1,M 

6 A(K1,L1) = VECI(K1,L1) 
IF(K1.EQ.1)GO TO 7 
A(K1,K1-1) = SUBDIA(K1-1) 

7 CONTINUE 

C THE COMPUTATION OF THE REAh EIGENVECTOR IVEC OF THE 
C UPPER-HESSENBERG MATRIX CORRESPONDING TO THE REAL 
C EIGENVALUE EVR(IVEC) 
c 
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CALL REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI, !WORK, 
* WORK, INDIC, EPS, EX) 

c 
GO TO 10 

c 
C THE COMPUTATION OF THE COMPLEX EIGENVECTOR IVEC OF THE 
C UPPER HESSENBERG MATRIX· CORRESPONDING TO THE COMPLEX 
C EIGENVALUE EVR(IVEC)+I*EVI(IVEC). IF THE VALUE OF KON IS 
C NOT EQUAL TO ZERO THEN THIS COMPLEX EIGENVECTOR HAS 
C ALREADY BEEN FOUND FROM ITS CONJUGATE. 

c 

c 

c 

8 IF(KON.NE.O)GO TO 9 
KON = 1 

CALL COMPVE(N, NM, M, IVEC, A, VECR, VECI, EVR, EVI, 
* INDIC, IWORK, SUBDIA, WORK1, WORK2, WORK, 
* EPS, EX) 

GO TO 10 
9 KON = 0 

10 CONTINUE 

DO 12 I = 1,N 
DO 11 J = I,N 
A(I,J) = 0.0 

11 A(J,I) = 0.0 
12 A(I,I) = 1.0 

IF(N.LE.2)GO TO 15 
M = N-2 
DO 14 K = 1,M 
L = K+1 
DO 14 J= 2,N 
D1 = 0.0 



c 

c 

c 

DO 13 I = L,N 
D2 = VECI(I,K) 

13 01 = 01 + D2*A(J,I) 
DO 14 I = L,N 

14 A(J,I) = A(J,I)-VECI(I,K)*D1 

15 KON = 1 
DO 24 I = 1,N 
L = 0 
IF(EVI(I).EQ.O.O)GO TO 16 
L = 1 
IF(KON.EQ.O)GO TO 16 
KON = 0 
GO TO 24 

16 DO 18 J = 1,N 
D1 = 0.0 
D2 = 0.0 
DO 17 K = l,N 
D3 = A(J,K) 
D1 = D1+D3*VECR(K,I) 
IF(L.EQ.O)GO TO 17 
02 = D2+D3*VECR(K,I-1) 

17 CONTINUE 
WORK(J) = 01/PRFACT(J) 
IF(L.EQ.O)GO TO 18 
SUBDIA(J) =02/PRFACT(J) 

18 CONTINUE 

IF(L.EQ.1)GO,TO 21 
01 = 0.0 
DO 19 M = 1,N 

19 01 = D1+WORK(M)**2 
01 = DSQRT(D1) 
DO 20 M = 1,N 
VECI(M,I) = 0.0 

20 VECR(M,I) = WORK(M)/01 
EVR(I) = EVR(I)*ENORM 
GO TO 24 , 

21 KON = 1 
EVR(I) = EVR(I)*ENORM 
EVR(I-1) = EVR(I) 
EVI(I) = EVI(I)*ENORM 
EVI(I-1) = -EVI(I) 
R = 0.0 
DO 22 J = 1,N 
R1 = WORK(J)**2 + SUBDIA(J)**2 
IF(R.GE.R1)GO TO 22 
R = R1 
L = J 

22 CONTINUE 
03 = WORK(L) 
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c 

c 

R1 = SUBDIA(L) 
DO 23 J = l,N 
01 = WORK(J) 
D2 = SUBDIA(J) 
VECR(J,I) = ,(01*D3+D2*R1)/R 
VECI(J,I) = (D2*D3-D1*Rl)/R 
VECR(J,I-1) = VECR(J,I) 

23 VECI(J,I-1) = -VECI(J~I) 
24 CONTINUE 

25 RETURN 
END 
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C********************************************************** 
c 

SUBROUTINE SCALE(N,NM,A,H,PRFACT,ENORM) 
c 

' 
C***************************************************~****** 
c 

c 

DOUBLE PRECISION COLUMN,FACTOR,FNORM,PRFACT,Q,ROW 
INTEGER I,J,ITER,N,NCOUNT,NM 
REAL BOUNDl,BOUND2,ENORM 
DIMENSION A(NM,1),H(NM,1),PRFACT(NM) 

DO 2 I = 1,N 
DO 1 J = 1,N 

1 H(I,J) = A(I,J) 
2 PRFACT(I) = 1.0 

BOUNDl = .75 
BOUND2 = 1.33 
ITER = 0 

3 NCOUNT = 0 
DO 8 I = l,N 
COLUMN = 0.0 
ROW = 0.0 
DO 4 J = 1,N 
IF(I.EQ.J)GO TO 4 
COLUMN= COLUMN+ABS(A(J,I)) 
ROW= ROW+ABS(A(I,J)) 

4 CONTINUE 
IF(COLUMN.EQ.O.O)GO TO 5 
IF(ROW.EQ.O.O)GO TO 5 
Q = COLUMN/ROW 
IF(Q.LT.BOUND1)GO TO 6 
IF(Q.GT.BOUND2)GO TO 6 

5 NCOUNT = NCOUNT+1 
GO TO 8 

6 FACTOR = DSQRT(Q) 
DO 7 J = l,N 
IF(I.EQ.J)GO TO 7 
A(I,J) = A(I,J)*FACTOR 
A(J,I) = A(J,I)/FACTOR 



c 

c 

c 

c 

7 CONTINUE 
PRFACT(I) = PRFACT(I)*FACTOR 

8 CONTINUE 
ITER = ITER+1 
IF(ITER.GT.30)GO TO 11 
IF(NCOUNT.LT.N)GO TO 3 

FNORM = 0.0 
DO 9'I = 1,N 
DO 9 J = 1,N 
Q = A(I,J) 

9 FNORM = FNORM+Q*Q 
FNORM = DSQRT(FNORM) 
DO 10 I = 1,N 
DO 10 J = 1,N 

10 A(I,J) = A(I~J)/FNORM 
ENORM = FNORM 
GO TO 13 

11 DO 12 I = 1,N 
PRFACT(I) = 1.0 
DO 12 J = 1,N 

12 A(I,J) = H(I,J) 
ENORM = 1.0 

13 RETURN 
END 
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C********************************************************** 
c 

SUBROUTINE HESQR(N~ NM, A,.H, EVR, EVI, SUBDIA, 
* INDIC, EPS, EX, IMAX) 

c 
C*************************W******************************** 
c 

c 

DOUBLE PRECISION S,SR,SR2,X,Y,Z, 
INTEGER I,J,K,L,M,MAXST,M1,N,NM,NS,IMAX 
REAL EPS,EX,R,SHIFT,T 
DIMENSION A(NM,1), H(NM,1), EVR(NM), EVI(NM), 

1 SUBDIA(NM), INDIC(NM) 

IF(N-2)14,1,2 
1 SUBDIA(1) = A(2,1) 

GO TO 14 
2 M = N-2 

DO 12 K = 1,M 
L = K+1 
s = 0.0 
DO 3 I = L,N 
H(I,K) = w(I,K) 

3 S = S+ABS(A(I,K)) 
IF(S.NE.ABS(A(K+1,K)))GO TO 4 



SUBDIA(K) = A(K+1,K) 
H(K+1,K) = 0.0 
GO TO 12 

4 SR2 = 0.0 
DO 5 I = L,N 
SR = A(l,K) 
SR = SR/S 
A (I ,K) = SR 

5 SR2 = SR2+SR*SR 
SR = DSQRT(SR2) 
IF(A(L,K).LT.O.O)GO TO 6 
SR = -SR 

6 SR2 = SR2-SR*A(L,K) 
A(L,K) = A(L;K)-SR 
H(L,K) = H(L,K)-SR*S 
SUBDIA(K) = SR*S 
X = S*DSQRT(SR2) 
DO 7 I = L,N 
H(I,K) = H(I,K)/X 

7 SUBDIA(I) = A(I,K)/SR2 
C PREMULTIPLICATION BY THE MATRIX PR. 

DO 9 J = L,N 
SR = 0.0 
DO 8 I = L,N 

8 SR = SR+A(I,K)*A(I,J) 
DO 9 I = L,N 

9 A(I,J) = A(I,J)-SUBDIA(I)*SR 
C POSTMULTIPLICATION BY THE MATRIX PR. 

c 

c 

DO 11 J = 1,N 
SR = 0.0 
DO 10 I = L,N 

10 SR = SR+A(J,I)*A(I,K) 
DO 11 I = L,N 

11 A(J,I) = A(J,I)-SUBDIA(I)*SR 
12 CONTINUE 

DO 13 K = 1,M, 
13 A(K+1,K) = SUBDIA(K) 

SUBDIA(N-1) = A(N,N-1) 
14 EPS = 0.0 

DO 15 K = 1,N 
INDIC(K) = 0 
IF(K.NE.N)EPS = EP$+SUBDIA(K)**2 
DO 15 I = K,N 
H(K,I) = A(K,l') 

15 EPS = EPS+A(K,I)**2 
EPS = EX*SQRT(EPS) 

SHIFT = A(N,N-1) 
IF(N.LE.2)SHIFT = 0.0 
IF(A(N,N).NE.O.O)SHIFT = 0.0 
IF(A(N-1,N).NE.O.O)SHIFT = 0.0 
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c 

c 

c 

c 

c 

c 

c 

IF(A(N-1,N-1).NE.0.0)SHIFT = 0.0 
M = N 
NS = 0 
MAXST = N*10 

DO 16 I = 2,N 
DO 16 K = I,N 
IF(A(I-1,K).NE.O.O)GO TO 18 

16 CONTINUE 
DO 17 I = 1,N 
INDIC(I) = 1 
EVR ( I ) = A ( I , I ) 

17 EVI(I) = 0.0 
GO TO 37 

18 

19 

20 

21 

K = M-1 
M1 = K 
I = K 

IF(K)37,34,19 
IF(ABS(A(M,K)).LE.EPS)GO .TO 34 
IF(M-2.EQ.O)GO TO 35 
I = I-1 
IF(ABS(A(K,I)).LE.EPS)GO TO 21 
K = I 
IF(K.GT.1)GO TO 20 
IF(K.EQ.M1)GO TO 35 

S = A(M,M)+A(M1,M1)+SHIFT 
SR = A(M,M)*A(M1,M1)-A(M,M1)*A(M1,M)+0.25*SHIF1**2 
A(K+2,K) = 0.0 

X = A(K,K)*(A(K,K)-S)+A(K,K+1)*A(K+1,K)+SR 
Y = A(K+1,K)*(A(K,K)+A(K+1,K+1)-S) 
R = DABS(X)+DABS(Y) 
IF(R~EQ.O.O)SHIFT=A(M,M-1) 
IF(R.EQ.O.O)GO TO 21 
Z = A(K+2,K+1)*A(K+1,K) 
SHIFT = 0.0 
NS = NS + 1 

DO 33 I = K,M1 
IF(I.EQ.K)GO TO 22 

X = A(I,I-1) 
Y = A(I+1,I-1) 
z = 0.0 
IF(I+2.GT.M)GO TO 22 
Z = A(I+2,I-1) 

22 SR2 = DABS(X)+DABS(Y)+DABS(Z) 
IF(SR2.EQ.O.O)GO TO 23 
X = X/SR2 

116 



c 

c 

c 

c 

Y = Y/SR2 
Z = Z/SR2 

23 S = DSQRT(X*X+Y*Y+Z*Z) 
IF(X.LT.O.O)GO TO 24 
s = -s 

24 IF(I.EQ.K)GO TO 25 
A(I,I-1) = S*SR2 

25 IF(SR2.NE.O.O)GO TO 26 
IF(I+3.GT.M)GO TO 33 
GO TO 32 

26 SR = 1·. 0-X/S 
s = x-s 
X = Y/S 
Y = Z/S 

DO 28 J = I,M 
S = A(I,J)+A(I+1,J)*X 
IF(I+2.GT.M)GO TO 27 
S = S+A(I+2,J)*Y 

27 S = S*SR 
A(I,J) = A(I,J)-S 
A(I+1,J) = A(I+1,J)-S*X 
IF(I+2.GT.M)GO TO 28 
A(I+2,J) = A(I+2,J)-S*Y 

28 CONTINUE . 

L = 1+2 
IF(I.LT.M1)GO TO 29 
L = M 

29 DO 31 J = K,L 
S = A(J,I)+A(J,I+1)*X 
IF(I+2.GT.M)GO TO 30 
S = S+A(J,I+2)*Y 

30 S = S*SR 
A(J,I) = A(J,I)-S 
A(J,I+1) = A(J,I+1)-S*X 
IF(I+2.GT.M)GO TO 31 
A(J,I+2) = A(J,I+2)-S*Y 

31 CONTINUE 
IF(I+3.GT.M)GO TO 33 
S = -A(I+3,I+2)*Y*SR 

32 A(I+3,I) = S 
A(I+3,I+1) = S*X 
A(I+3,I+2) = S*Y+A(I+3,I+2) 

33 CONTINUE 

IF(NS.GT.MAXST)GO TO 37 
GO TO 18 

34 EVR(M) = A(M,M) 
EVI (M) = 0. 0 
INDIC(M) = 1 
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c 

c 

c 

M = K 
GO TO 18 

35 R = O.S*(A(K,K)+A(M,M)) 
S = O.S*(A(M,M)-A(K,K)) 
S = S*S+A(K,M)*A(M,K) 
INDIC(K) = 1 
INDIC(M) = 1 
IF(S.LT.O.O)GO TO 36 
T = DSQRT(S) 
EVR(K) = R-T 
EVR(M) = R+T 
EVI ( K) = 0. 0 
EVI ( M) = 0. 0 
M = M-2 
GO TO 18 

36 T = DSQRT(-S) 
EVR(K) = R 
EVI(K) = T 
EVR(M) = R 
EVI(M) = -T 
M = M-2 
GO TO 18 

37 TMAX = 0.0 
DO 38 I = 1, N 
IF(EVR(I).LT.TMAX) GO TO 38 
TMAX = EVR(I) 
IMAX = I 

38 CONTINUE 
RETURN 
END 
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C********************************************************** 
c 

SUBROUTINE REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI, 
* !WORK, WORK, INDIC, EPS, EX) 

c 
C********************************************************** 
c 

c 

c 

DOUBLE PRECISION S,SR 
INTEGER I,IVEC,ITER,J,K,L,M,N,NM,NS 
REAL BOUND,EPS,EVALUE,EX,PREVIS,R,R1,T 
DIMENSION A(NM,l), VECR(NM,1), EVR(NM), EVI(NM), 

1 IWORK(NM), WORK(NM), INDIC(NM) 

VECR(1,IVEC) = 1.0 
IF(M.EQ.1)GO TO 24 

EVALUE = EVR(IVEC) 
IF(IVEC.EQ.M)GO TO 2 
K = IVEC+1 



c 

c 

c 

c 

R = 0.0 
DO 1 I = K,M 
IF(EVALUE.NE.EVR(I))GO TO 1 
IF(EVI(I).NE.O.O)GO TO 1 
R = R+3.0 

1 CONTINUE 
EVALUE = EVALUE+R*EX 

2 DO 3 K = 1,M 
3 A(K,K) = A(K,K)-EVALUE 

K = M-1 
DO 8 I = 1,K 
L = I+1 
IWORK(I) = 0 
IF(A(I+1,I).NE.O.O)GO TO 4 
IF(A(I,I).NE.O.O)GO TO 8 
A(I,I) = EPS 
GO TO 8 

4 IF(ABS(A(I,I)).GE.ABS(A(If1,I)))GO TO 6 
IWORK(I) = 1 
DO 5 J = I,M 
R = A(I,J) 
A(I,J) = A(I+1,J) 

5 A(I+1,J)= R 
6 R = -A(I+1,I)/A(I,I) 

A(I+1,I) = R 
DO 7 J = L,M 

7 A(I+1,J)= A(I+1,J)+R*A(I,J) 
8 CONTINUE 

IF(A(M,M).NE.O.O)GO TO 9 
A(M,M) = EPS 

9 DO 11 I = 1,N 
IF(I.GT.M)GO TO 10 
WORK(!)= 1.0 
GO TO 11 

10 WORK(!) = 0.0 
11 CONTINUE 

BOUND= 0.01/(EX*FLOAT(N)) 
NS = 0 
ITER = 1 

12 R = 0.0 
DO 15 I = 1,M 
J = M-!+1 
S = WORK(J) 
IF(J.EQ.M)GO TO 14 
L = J+1 
DO 13 K = L,M 
SR = WORK(K) 

13 S= S-SR*A(J,K) 
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c 

c 

c 

c 

c 

14 WORK(J) = S/A(J,J) 
T = ABS(WORK(J)) 
IF(R.GE.T)GO TO 15 
R = T 

15 CONTINUE 

DO 16 I = 1,M 
16 WORK(I) = WORK(I)/R 

Rl = 0.0 
DO 18 I = 1,M 
T = 0.0 

DO 17 J = I,M 
17 T = T+A(I,J)*WORK(J) 

T = ABS(T-) 
IF(R1.GE.T)GO TO 18 
Rl = T 

18 CONTINUE 
IF(ITER.EQ.1)GO TO 19 
IF(PREVIS.LE.R1)GO TO 24 

19 DO 20 I = 1,M 
2 0 VECR ( I , I VEC ) = WORK ( I ) , 

PREVIS = Rl 
IF(NS.EQ.1)GO TO 24 
IF(ITER.GT.G)GO TO 25 
ITER = ITER+l 
IF(R.LT.BOUND)GO TO 21 
NS = 1 

21 K = M-1 
DO 23 I = 1,K 
R = WORK(I+1) 
IF(IWORK(I).EQ.O)GO TO 22 
WORK(I+1) = WORK(I)+WORK(I+1)*A(I+1,I) 
WORK(I) = R 
GO TO 23 

22 WORK(I+1) = WORK(I+1)+WORK(I)*A(I+1,I) 
23 CONTINUE 

GO TO 12 

24 INDIC(IVEC) = 2 
25 IF(M.EQ.N)GO TO 27 

J = M+l 
DO 26 I = J,N 

26 VECR(I,IVEC) = 0.0 
27 RETURN 

END 
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c 
C********************************************************** 
c 

SUBROUTINE COMPVE(N, NM, M, IVEC, A, VECR, H, EVR, 
1 EVI, ~NDIC, IWORK, SUBDIA, WORK1, 
2 WORK2, WORK, EPS, EX) 

c 
C*******************************************~************** 
c 

c 

c 

c 

DOUBLE PRECISION D,D1 
INTEGER I,I1,I2,ITER,IVEC,J,K,L,M,N,NM,NS 
REAL B,BOUND,EPS,ETA,EX,FKSI,PREVIS,R,S,U,V 
DIMENSION A(NM,1), VECR(NM,1), H(NM,1)~ EVR(NM), 

1 EVI(NM), INDIC(NM), IWORK(NM), SUBDIA(NM), 
2 WORK1(NM), WORK2(NM), WORK(NM) 

FKSI = EVR(IVEC) 
ETA= EVI(IVEC) 

IF(IVEC.EQ.M)GO TO 2 
K = IVEC+1 
R = 0.0 
DO 1 I = K,M 
IF(FKSI.NE.EVR(I))GO TO 1 
IF(ABS(ETA).NE.ABS(EVI(I)))GO TO 1 
R = R+3.0 

1 CONTINUE 
R = R*EX 
FKSI = FKSI+R 
ETA = ETA+R 

2 R = FKSI*FKSI+ETA*ETA 
S = 2.0*FKSI 
L = M-1 
DO 5 I = 1, M. 
DO 4 J = I,M 
D = 0.0 
A(J,I) = 0.0 
DO 3 K = I,J 

3 D = D+H(I,K)*H(K,J) 
4 A(I,J) = D-S*H(I,J) 
5 A(I,I) = A(I,I)+R 

DO 9 I = 1,L 
R = SUBDIA(I) 
A(I+1,I) = -S*R 
11 = 1+1 
DO 6 J = 1,I1 

6 A(J,I) = A(J,I)+R*H(J,I+1) 
IF(I.EQ.1)GO TO 7 
A(I+1,I-1) = R*SUBDIA(I-1) 

7 DO 8 J = I,M 
8 A(I+1,J) = A(I+1,J)+R*H(I,J) 



c 

c 

c 

c 

c 

9 CONTINUE 

K = M-1 
DO 18 I = 1,K 
11 = 1+1 
I2 = I+2 
IWORK(I) = 0 
IF(I.EQ.K)GO TO 10 
IF(A(I+2,I).NE.O.O)GO TO 11 

10 IF(A(I+1,I).NE.O.O)GO TO 11 
IF(A(I,I).NE.O.O)GO TO 18 
A( I, I) = EPS 
GO TO 18 

11 IF(I.EQ.K)GO TO 12 
IF(ABS(A(I+1,I)).GE.ABS(A(I+2,I)))GO TO 12 
IF(ABS(A(I,I)).GE.ABS(A(I+2,I)))GO TO 16 
L = I+2 
I WORK (I) = 2 
GO TO 13 

12 IF(ABS(A(I,I)).GE.ABS(A(I+1,I)))GO TO 15 
L = I+1 
IWORK(I) = 1 

13 DO 14 J = I,M 
R = A(I,J) 
A(I,J) = A(L,J) 

14 A(L,J) = R 
15 IF(I.NE.K)GO TO 16 

I2 = I 1 
16 DO 17 L = 11,12 

R = -A(L,I)/A(I,I) 
A(L,I) =R 
DO 17 J = I1,M 

17 A(L,J) = A(L,J)+R*A(I,J) 
18 CONTINUE 

IF(A(M,M).NE.O.O)GO TO 19 
A(M,M) = EPS 

19 DO 21 I = 1,N 
IF(I.GT.M)GO TO 20 
VECR(I,IVEC) = 1.0 
VECR(I,IVEC-1) = 1.0 
GO TO 21 

20 VECR(I,IVEC) = 0.0 
VECR(I,IVEC-1) = 0.0 

21 CONTINUE 

BOUND= 0.01/(EX*FLOAT(N)) 
NS = 0 
ITER = 1 
DO 22 I = 1,M 

122 



c 

c 

c 

c 

c 

22 WORK(I) = H(I,I)-FKSI 

23 DO 27 I = 1,M 
D = WORK(I)*VECR(I,IVEC) 
IF(I.EQ.1)GO TO 24 
D = D+SUBDIA(I-1)*VECR(I-1,IVEC) 

24 L = I+1 
IF(L.GT.M)GO TO 26 
DO 25 K = L,M 

25 D = D+H(I,K)*VECR(K,IVEC) 
26 VECR(I,IVEC-1) = D-ETA*VECR(I,IVEC-1) 
27 CONTINUE 

K = M-1 
DO 28 I = 1,K 
L = I+IWORK(I) 
R = VECR(L,IVEC-1) 
VECR(L,IVEC-1) = VECR(I,IVEC-1) 
VECR(I,IVEC-1) = R 
VECR(I+1,IVEC-1) = VECR(I+1,IVEC-1)+A(I+1,I)*R 
IF(I.EQ.K)GO TO 28 
VECR(I+2,IVEC-1) = VECR(I+2,IVEC-1)+A(I+2,I)*R 

28 CONTINUE 

DO 31 I = 1,M 
J = M-I+1 
D = VECR(J,IVEC~1) 
IF(J.EQ.M)GO TO 30 
L = J+1 
DO 29 K = L,M, 
D1 = A(J,K) 

29 D = D-D1*VECR(K,IVEC-1) 
30 VECR(J,IVEC-1) = 0/A(J,J) 
31 CONTINUE 

DO 35 I = 1,M 
D = WORK(I)*VECR(I,IVEC-1) 
IF(I.EQ.1)GO TO 32 
D = D+SUBDIA(I-1)*VECR(I-1,IVEC-1) 

32 L = I+1 
IF(L.GT.M)GO TO 34 
DO 33 K = L,M 

33 D = D+H(I,K)*VECR(K,IVEC-1) 
34 VECR(I,IVEC) = (VECR(I,IVEC)-D)/ETA 
35 CONTINUE 

L = 1 
s = 0.0 
DO 36 I = 1,M 
R = VECR(I,IVEC)**2+VECR(I,IVEC-1)**2 
IF(R.LE.S)GO TO 36 
S = R 
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c 

c 

c 

L = I 
36 CONTINUE 

U = VECR(L,IVEC-1) 
V = VECR(L,IVEC) 
DO 37 I = 1,M 
8 = VECR(I,IVEC) 
R = VECR(I,IVEC-1) 
VECR(I,IVEC) = (R*U+8*V)/S 

37 VECR (I, IVEC-1) = ( B*U-R-*V) /S 

B = 0.0 
DO 41 I = 1,M 
R = WORK(I)*VECR(I,IVEC-1)-ETA*VECR(I,IVEC) 
U = WORK(I)*VECR(I,IVEC)+ETA*VECR(I,IVEC-1) 
IF(I.EQ.1)GO'TO 38 
R = R+SU8DIA(I-1)*VECR(I-1,IVEC-1) 
U = U+SUBDIA(I-l)*VECR(I-l,IVEC) 

38 L = !+1 
IF(L.GT.M)GO TO 40 
DO 39 J = L,M 
R = R+H(I,J)*VECR(J,IVEC-1) 

39 U = U+H(I,J)*VECR(J,IVEC) 
40 U = R*R+U*U 

IF(B.GE.U)GO TO 41 
B = U 

41 CONTINUE 
IF(ITER.EQ.1)GO TO 42 
IF(PREVIS.LE.B)GO TO 44 

42 DO 43 I = 1,N 
WORK1(I) = VECR(I,IVEC) 

43 WORK2(I) = VECR(I,IVEC-1) 
PREVIS = 8 
IF(NS.EQ.1)GO TO 46 
IF(ITER.GT.6)GO TO 47 
ITER = ITER+1 
IF(BOUND.GT.SQRT(S))GO TO 23 
NS = 1 
GO TO 23 

44 DO 45 I = 1,N 
VECR(I,IVEC) = WORK1(I) 

45 VECR(I,IVEC-1) : WORK2(I) 
46 INDIC(IVEC-1) - 2 

INDIC(IVEC) = 2 
47 RETURN 

END 
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c 
C********************************************************** 
c 

SUBROUTINE MODEL5(IC, TW, NMRUNS, C) 
c 
C********************************************************** 
c 

c 

INTEGER !TEMP, ITEMP1, ITEMP2, IC, II~5), IT, NMRUNS, 
REAL TN, TN2, TW(5), W(5), W1(5), W2(5), W3(5), 

1 CYW(5), C(5;5), TT . 
DO 1 0 0 I = 1 , I C 
II(I) =·I 
W(I) = 0.0 
W1(I} = 0.0 
W2(I} = 1.0 
W3(I) = 0.0. 

10 0 CONTINUE . 

C CALCULATE THE WEIGHT VECTORS AFTER GENERATING ALL 
C POSSIBLE INDEX ORDERS 
c 

c 

IF(IC.EQ.5) GO TO 300 
IF(IC.EQ.4} GO TO 200 
DO 103 J = 1, 3 
IF(J.EQ.1) GO TO 104 
!TEMP = II(1) 
II(1) = II(2) 
II(2) = II(3) 
I I ( 3 ) = I TEMP 

104 W(II(3)) = 1.0 
W(II(2)) = C(II(2),II(3)) * W(II(3)) 
W(II(1)) = 

1(C(II(1),II(2))*W(II(2))+C(II(1),II(3))*W(II(3)))12.0 
TT = TT+1.0 
TN = 0.0 
DO 109 I = 1, IC 

109 TN= TN+ W(II(I)) 
DO 105 I = 1, IC 

105 W1(I) = W(I) I TN 
DO 1 0 6 I = 1 , . I C 

106 W2(I) = W2(I)*W1(t) 
103 CONTINUE 
400 TN2 = 0.0 

C CALCULATE GEOMETRIC MEAN OF ALL WEIGHT VECTORS 
c 

DO 107 I = 1,IC 
W3(I) = W2(I) ** (1.01TT) 

107 TN2 = TN2 + W3(I) 
DO 108 I = 1, IC 

108 CYW(I) = W3(I) I TN2 
WRITE(6,*) (CYW(I),I=1,IC) 



GO TO 500 
200 DO 201 I = 1, IC 

IF(I.EQ.1) GO TO 202 
ITEMP = II(1) 
II(1) = II(2) 
II(2) = II(3) 
II(3) = II(4) 
11(4) = !TEMP 

202 DO 203 J = 1, IC 
IF(J.EQ.1) GO TO 204 
ITEMP = II(2) 
11(2) ,; II(3) 
II(3) = II(4) 
II(4) = !TEMP 
IF(J.EQ.4) GO TO 203 

204 W(II(4)) = 1.0 
W(II(3)) = C(II(3),II(4)) * W(II(4)) 
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W(II(2)) = (C(II(2),li(3))*W(II(3))+C(II(2),II(4)) * 
1 W(II(4)))/2.0, 
W(II(1)) = (C(II(1),II(2))*W(II(2))+C(II(1),II(3)) * 

1 W(II(3)) + C(II(1),II(4))*W(II(4)))/3.0 
TT = TT+1.0 
TN = 0.0 
DO 209 K = 1, IC 

209 TN= TN+ W(!I(K)) 
DO 207 K = 1, IC 

207 W1(K) = W(K) I TN 
DO 208 K = 1, IC 

208 W2(K) = W2(K)*Wl(K) 
203 CONTINUE 
201 CONTINUE 

GO TO 400 
300 DO 301 I = 1, IC 

IF(I.EQ.1) GO TO 302 
I TEMP 1 = I I ( 1) 
11(1) = 11(2) 
II(2) = II(3) 
11(3) = II(4) 
II(4) = II(5) 
II(5) = ITEMP1 

302 DO 303 J = 1, IC 
IF(J.EQ.1) GO TO 304 
!TEMP = II(2) 
11(2) = II(3) 
II(3) = II(4) 
11(4) = 11(5) 
I I ( 5 ) = I TEMP 
IF(J.EQ.IC) GO TO 303 

304 DO 305 K = 1,4 
IF(K.EQ.1) GO TO 306 
ITEMP = II(3) 
II(3) = II(4) 



c 

II(4) = II(5) 
11(5) = !TEMP 
IF(K.EQ.4) GO TO 305 

306 W(II(5)) = 1.0 
W(II(4)) = C(II(4),II{5)) * W(II(S)) 
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W(II(3)) = (C(II(3),II(4))*W(II(4))+C(II(3),II(5)) * 
1 W ( I I ( 5 ) ) )'I 2 • 0 
W(II(2)) = (C(II(2),II(3))*W(II(3))+C(11(2),II(4)) * 

1 W(II(4)) + C(II(2)jll(5))*W(II(5)))13.0 
W(II(1)) (C(II(1),II(2))*W(II(2))+C(II(1),II(3)) * 

1 W(II(3)) + C(II(1),II(4))*W(II(4)) + 2 
2 C(II(1),II(5)) * W(II(5)))14.0, 

TT = TT+l. 0 
TN = 0.0 
DO 309 L = 1, IC 

309 TN= TN+ W(II{L)) 
DO 307 L = 1, IC 

307 W1(L) = W(L) I TN 
DO 3 0 8 L = 1, I C 

308 W2(L) = W2(L)*W1(L) 
305 CONTINUE 
303 CONTINUE 
301 CONTINUE 

GO TO 400 
500 RETURN 

END 

C********************************************************** 
c 

SUBROUTINE MODEL6(IC, TW, NMRUNS, C) 
c 
C********************************************************** 
c 

INTEGER IC,IT,NMRUNS 
REAL TN1, TN2, TW(S), R(5,5), C(5,5), W(S), TAKW(5) 

C CALCULATE THE WEIGHTS 
TN2 = 0.0 
DO 106 I = IC, 1, -1 
W(I) = 0.0 
IF(I.EQ.IC) GO TO 108 
DO 10 7 J = I+ 1 I I c : 
W(I) = W(I) + C(I,J) * W(J) 

107 CONTINUE 
GO TO 110 

108 W(I) = 1.0 
110 TN2 = TN2 + W(I) 
106 CONTINUE 

DO 109 I = 1, IC 
TAKW(I) = W(I) I TN2 

109 CONTINUE 
RETURN 
END 
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