NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL
ERROR AND REFINING INCONSISTENCY FOR
MULTIPLE CRITERIA DECISION
MAKING PROBLEMS
by
KOOK JIN NAM
Bachelor of Science Korea Military Academy Seoul, Korea 1975

Master of Science
Naval Postgraduate School
Monterey, California 1984

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for
the Degree of DOCTOR OF PHILOSOPHY

May, 1990

Ahusio
19901
NITHn
cop. 2

PREFACE

The objective of this study is to develop new weighting methods for use in solving multiple criteria decision making problems.

I wish to express sincere appreciation to my major adviser, Dr. M. Palmer Terrell, for his guidance, assistance, and encouragement throughout this research and during my doctoral studies. Appreciations also to my committee members, Dr. Michael H. Branson, Dr. Kenneth E. Case, Dr. Joe H. Mize, and Dr. William D. Warde, for their interest and assistance.

I also wish to thank the School of Industrial Engineering and Management at Oklahoma State University for financial support.

Thanks are extended to Republic of Korean Army Headquarters for their financial and moral support, and for giving me the opportunity to fulfill this study.

Finally, I wish to dedicate this dissertation to my parents, Mr. and Mrs. Hyodeok Nam, my wife, Eunja Kim, and my children Bomi and Jaeho, for their prayers, sacrifice, understanding, encouragement, and love.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
The General Problem 1
statement of the Problem. 2
Introduction 2
Theoretical Validation, Quality, and Simplicity 2
Consistency Assumptions and Inconsistency 4
Minimization of Judgmental Error 5
Summary of Research Goal and Objectives 5
Research Goal. 6
Objectives 6
Contribution. 7
II. LITERATURE REVIEW. 8
Introduction 8
Ranking 9
Rating. 9
Point Allocation. 9
Unit Weighting 10
Successive Paired Comparison 11
Indifference Trade-off. 12
Eigen-vector Methods. 13
Conclusion. 18
III. MODEL DEVELOPMENT. 22
Introduction 22
Assumptions 22
Notation. 23
The New Models for Estimating Weights using Pairwise Comparison Matrix from a single Decision Maker. 26
Model 1 Development. 27
Model 2 Development. 31
Model 3 Development. 33
Procedures for Estimating Weights usingPairwise Comparison Matrices fromMultiple Decision Makers34
Estimating Weights after Averaging Pairwise Comparison Matrices 35
Averaging Individual Weights of Decision Makers 36
IV. USING THE INTERACTIVE COMPUTER PROGRAM 37
Introduction. 37
Interactive Program Development 38
Overview. 40
Input Pairwise Comparisons 40
Summary 45
V. RESULTS, COMPARISON, AND ANALYSIS 46
Introduction. 46
Measurement of Goodness of Fit. 48
Deciding the Number of Replications 49
Experimental Design 51
Results, Comparison, and Analysis 54
Discussions on Multiple Decision Makers 79
VI. SUMMARY, CONCLUSIONS. AND RECOMMENDATIONS 83
Summary 83
Conclusions and Recommendations 85
BIBLIOGRAPHY. 86
APPENDIX - INTERACTIVE PROGRAM LISTING 89

LIST OF TABLES

Table Page
2.1 Summary of Features of Various Weighting Methods 19
2.2 Summary of Various Weighting Methods 20
2.3 Chronological Summary of Weighting Methods 21
5.1 Summary of Eight Decision Making Setting Problems Used by Takeda, et al 47
5.2 Estimated Values of σ^{2}, When $N=30$ 51
5.3 Number of Replications for Simulation Run When $\alpha=\beta=0.025$ 51
5.4 Simulation Results Based on $W=(0.15,0.55,0.3)$, $D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16$, NC=3, Seed=0 55
5.5 Analysis of Variance for Euclidean Distance Measure Data of Table 5.4 56
5.6 Analysis of Variance for City Block Distance Measure Data of Table 5.4. 56
5.7 Simulation Results Based on $W=(0.3,0.15,0.55)$, $D(1,2)=0.9, \quad D(1,3)=0.6, \quad D(2,3)=0.3, R=16$, NC=3, Seed=0 57
5.8 Analysis of Variance for Euclidean Distance Measure Data of Table 5.7. 57
5.9 Analysis of Variance for City Block Distance Measure Data of Table 5.7. 58
5.10 Simulation Results Based on $W=(0.55,0.3,0.15)$, $D(1,2)=0.9, D(1,3)=0.6, D(2,3)=0.3, R=16$, NC=3, Seed=472 59
5.11 Analysis of Variance for Euclidean Distance Measure Data of Table 5.10 59
5.12 Analysis of Variance for City Block Distance Measure Data of Table 5.10 59
5.13 Simulation Results Based on $W=(0.55,0.3,0.15)$, $D(1,2)=0.9, D(1,3)=0.8, \quad D(2,3)=0.6, R=16$, NC=3, Seed=0 60
5.14 Analysis of Variance for Euclidean Distance Measure Data of Table 5.13 60
5.15 Analysis of Variance for City Block DistanceMeasure Data of Table 5.1360
5.16Simulation Results Based on $W=(0.2,0.4,0.1,0.3)$$D(1,2)=0.7, D(1,3)=0.9, D(1,4)=0.8, D(2,3)=0.7$,$D(2,4)=0.6, D(3,4)=0.4, R=15, N C=4$, Seed $=0$.61
5.17 Analysis of Variance for Euclidean Distance Measure Data of Table 5.16 62
5.18 Analysis of Variance for City Block Distance Measure Data of Table 5.16 62
5.19 Simulation Results Based on $W=(0.2,0.4,0.1,0.3)$ $D(1,2)=0.8, D(1,3)=0.7, D(1,4)=0.9, D(2,3)=0.4$, $D(2,4)=0.6, D(3,4)=0.5, R=15, N C=4$, Seed=40 63
5.20 Analysis of Variance for Euclidean Distance
5.21Measure Data of Table 5.1963
Analysis of Variance for City Block Distance Measure Data of Table 5.19 63
5.22
Simulation Results Based on $\mathrm{W}=(0.2,0.4,0.1,0.3)$$D(1,2)=0.7, D(1,3)=0.6, D(1,4)=0.8, D(2,3)=0.5$,$D(2,4)=0.6, D(3,4)=0.3, R=15 ; N C=4$, Seed=921.64
5.23 Analysis of Variance for Euclidean Distance Measure Data of Table 5.22 65
5.24 Analysis of Variance for City Block Distance Measure Data of Table 5.22 65
5.25 Simulation Results Based on $W=(.25, .3, .15, .1, .2)$, $D(1,2)=0.6, D(1,3)=0.7, D(1,4)=0.8, D(1,5)=0.6$, $D(2,3)=0.7, D(2,4)=0.6, D(2,5)=0.6, D(3,4)=0.5$, $D(3,5)=0.8, D(4,5)=0.3, R=25, N C=5$, seed $=0$ 66
5.26
Analysis of Variance for Euclidean DistanceMeasure Data of Table 5.2566
5.27 Analysis of Variance for City Block Distance Measure Data of Table 5.25 66
5.28 Summary of the Simulation Results for Eight Decision Making Setting Problems 67
5.29 Problem Descriptions for additional Simulation Run 68
5.30 Simulation Results Based on $W=(.2, .12, .15, .1, .2$, .05,.18), $D(i, j) *$ is Generated from Uniform Random Numbers, $\mathrm{R}=25, \mathrm{NC}=7$, Seed=3211. 69
5.31 Analysis of Variance for Euclidean Distance Measure Data of Table 5.30 69
5.32 Analysis of Variance for City Block Distance Measure Data of Table 5.30. 69
5.33 Simulation Results Based on $W=(.2, .12, .15, .1, .2$, .05,.18), $D(i, j)^{*}$ is Generated from Uniform Random Numbers, $R=25, N C=7$, Seed $=4444$ 71
5.34 Analysis of Variance for Euclidean Distance Measure Data of Table 5.33 71
5.35 Analysis of Variance for City Block Distance Measure Data of Table 5.33 71
5.36 Simulation Results Based on $W=(.2, .12, .15, .1, .2$, .05,.18), D(i,j)* is Generated from Uniform Random Numbers, $R=25, N C=7$, Seed=5678. 72
5.37 Analysis of Variance for Euclidean Distance Measure Data of Table 5.36 73
5.38 Analysis of Variance for City Block Distance Measure Data of Table 5.36 73
5.39 Simulation Results Based on $W=(.2, .12, .08, .1, .17$, .05,.15,.1,.03), D(i,j)* is Generated from Uniform Random Numbers, $R=25, N C=9$, Seed=6156. 74
5.40 Analysis of Variance for Euclidean Distance Measure Data of Table 5.39 75
5.41 Analysis of variance for City Block Distance Measure Data of Table 5.39 75
5.42 Simulation Results Based on $W=(.2, .12, .08, .1, .17$, .05,.15,.1,.03), $D(i, j) *$ is Generated from Uniform Random Numbers, $R=25, N C=9$, Seed=7312. 75
5.43 Analysis of Variance for Euclidean Distance Measure Data of Table 5.42 76
5.44 Analysis of Variance for City Block Distance
Measure Data of Table 5.42. 76
5.45 Simulation Results Based on $W=(.2, .12, .08, .1, .17$, .05,.15,.1,.03), $D(i, j) *$ is Generated from Uniform Random Numbers, $R=25$, $N C=9$, Seed=8866. 77
5.46 Analysis of Variance for Euclidean Distance
Measure Data of Table 5.45 77
5.47 Analysis of Variance for City Block Distance
Measure Data of Table 5.45. 78
5.48 Simulation Results for Two Decision Makers When $\mathrm{N}=30$80

5.49 Analysis of Variance for Euclidean Distance
Measure Data of Table 5.48 When $\mathrm{NC}=3$. 80
5.50 Analysis of Variance for City Block Distance
Measure Data of Table 5.48 When NC=3 81
5.51 Analysis of Variance for Euclidean Distance
Measure Data of Table 5.48 When NC=4..... 81
5.52 Analysis of Variance for City Block Distance Measure Data of Table 5.48 When NC=4 81
5.53 Analysis of Variance for Euclidean Distance
Measure Data of Table 5.48 When $\mathrm{NC}=5$. . . . 82
5.54 Analysis of Variance for City Block Distance Measure Data of Table 5.48 When NC=5 82

LIST OF FIGURES

FigurePage4.1 Flowchart for Interactive Model 39
5.1 Summary of Experimental Design for Simulation. 52

CHAPTER I

INTRODUCTION

The General Problem

Weighting procedures have been used since the beginning of human life. Humans use some kind of weighting procedure, implicitly or explicitly, whenever they have need to allocate resources among a set of activities or to select the most important activity.

In recent history, many researchers have contributed their efforts for developing methods of weight determination. In general, weight determination methods are concerned with determining the preference of decision makers. Because of the nature of this problem and its breadth of application, an interdisciplinary interest has been developed in this area. In particular, the problem has been studied by economists, engineers, environmentalists, management scientists, mathematicians, operations researchers, statisticians, system analysts, urban planners, etc.

The importance of generating better weights for multiple criteria decision making (MCDM) problems continues to be of much interest to researchers and decision makers
alike. The research interest in this area stems from both its simplicity of use in additive models and its applicability to problems in many diverse fields.

Statement of the Problem

Introduction

One of the purposes of deriving weights is for their use in additive models. Due to their simplicity, additive weight methods have great appeal in MCDM problems (Frazelle, 1985). It is important to study the weighting determination procedures closely and determine and understand the strengths and the weaknesses of the procedures. Research effort and direction can be motivated through such an analysis.

Theoretical Validation, Quality,
and simplicity

Many techniques for MCDM problems use weights to combine attributes into a single sum that indicates value or suitability. The most frequently applied multiple criteria decision rule is the weighting summation or linear model:

$$
\begin{equation*}
V_{k}=\sum_{i=1}^{n} W_{1} X_{1 k} \tag{1.1}
\end{equation*}
$$

Where $V_{k}=$ value of the suitability of alternative $k ;$

```
Xik = the level of criterion i for alternative k;
W1 = the true weight of criterion i.
```

Many researchers have contributed their efforts to the development of better methods for determining the values of Wi. As a result of these researchers' effort, many methodologies have been developed from simple methodologies such as the ranking method, rating method, point allocation method, or unit weighting method to more sophisticated methodologies such as successive paired comparison method, indifference trade-off method, and eigen-vector method. Although the relatively easy models such as ranking method, rating method, point allocation method, and unit weight method are simple to use, they do lack formal theory. To be a theoretically valid model, the decision maker's tradeoff should be reflected when comparing the criteria to each other (Fischer, 1977) (Hobbs, 1979). Theoretically the most defensible methods are those such as successive paired comparison methods and indifference trade-off methods, but they are the most complicated methods to use. Unfortunately, there is no guarantee that a theoretically valid method generates more superior weights than those generated using theoretically invalid methods (Einhorn and Hogarth, 1975). The purpose of the research to be presented in this paper is to contribute to the development of new methods which are theoretically valid, more superior in their use compared to other methods, and more easy to use.

Consistency Assumptions and Inconsistency

Since weights are difficult to estimate directly, researchers estimate these weights by using ratios of one criterion to another obtained through interaction with the decision maker. The comparisons used to construct the ratios may or may not be consistent. The necessary judgment used in making comparisons is dependent on many factors, such as personal experience, learning, situations, the state of mind, etc. The consistency assumption for comparisons is very critical. For instance, the main difference of various eigen-vector methods (more completely discussed in the literature review) developed by Saaty (1977), Cogger and Yu (1985), Takeda, Cogger, and Yu (1987) is the assumption of consistency. Saaty (1977) assumes that decision makers are consistent in their comparisons. Other researchers, however, do not agree with this consistency assumption because they believe most decision makers are going to be somewhat inconsistent, even after repeated attempts to alert them to their inconsistencies and attempts to refine the estimated reciprocal portion of the matrix. with this argument, they have devoted their research efforts to refining decision makers'
inconsistencies in pairwise comparisons.
It does not really matter which eigen-vector method is used when the response of the decision maker is consistent in the pairwise comparisons, because they will give the
same solution. This aspect demonstrates a need for developing methods which refine decision makers' inconsistencies in an appropriate and better way.

Minimization of Judgmental Error

Minimization of judgmental error is a new and important concept when estimating weights using subjective approaches. Due to a decision maker's inconsistency, knowledge, interest, state of mind, fatigue, and other factors, the weights will include possible error. However, none of the subjective approaches account for or consider this error (Schmitt and Levine, 1977). Minimizing this error term when estimating weights is very important.

The research to be presented will contribute to resolving these problem issues of the decision maker's inconsistency and judgmental error and thus lead to an improved model(s) for estimating weights. Now that the general problem area and issues have been discussed, Chapter II will summarize in additional detail the pertinent literature related to the topic.

Summary of Research Goal and Objectives

Based on the above discussion, the research goal is stated as follows:

Research Goal

To develop new weighting methods for use in solving MCDM problems based on the minimization of a decision maker's judgmental error and the refinement of a decision maker's inconsistency.

This research goal will be reached by achieving the following objectives:

Objectives

1. By developing three new analytical models based on minimizing the sum of a decision maker's judgmental error using all aıs of a pairwise comparison matrix for refinement of a decision maker's inconsistency, utilizing linear. programming as an optimization tool.
2. By testing the analytic models developed in this research against others reported in the literature using a simulation model to generate a decision maker's judgment of pairwise comparisons which includes simulated judgmental error. The testing phase will include setting up the hypotheses, computing the test statistic, drawing conclusions.
3. By comparing and analyzing the quality of the weights produced by the three proposed models with three models reported in the literature that use variations of eigen-vector methods: Saaty's Eigen-
vector Method, Cogger and Yu's Eigenweight Vector Method, and Takeda, et al.'s Graded Eigenvector Method. The testing criteria is to be based on the Euclidean distance measure and city block distance measure.
4. By developing a comprehensive and flexible interactive computer program to ease the task of data input, model optimization, statistical test.

Contribution

This research develops new weighting procedures employing the minimization of judgmental error and the refinement of decision maker's inconsistency using pairwise comparisons and linear programming, and compares the new procedures to other existing methodologies. This research contributes to minimizing judgmental error unlike other subjective methods. This research also contributes to refining the decision maker's inconsistency, unlike other weighting procedures, by using all afs in pairwise comparisons when estimating weights. This refining procedure is very simple when compared to the methods of enumerating all possible index orders or eliciting additional sets of weights from a decision maker. This research also provides an additional benefit by making available to both decision makers and researchers an interactive computer mode that facilitates easy and accurate input.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter reviews developments in the literature relevant to the research objective which was presented in Chapter I. The extensive literature on weight determination methods using subjective approaches has been reviewed. The subjective approaches use decision maker's decomposed fudgments on criteria, rather than using the levels of criteria. The decision maker's judgments are often unrepresentative of true importance. Furthermore, judgmental error is seldom considered systematically. Various subjective methods exist. This chapter is divided into seven sections according to these methodologies which are: (1) Ranking, (2) Rating, (3) Point allocation, (4) Unit weighting, (5) Successive paired comparison, (6) Indifference trade-off, and (7) Eigen-vector methods. These methods are extracted from the surveys of Eckenrode (1965), Huber (1974), Cook and Stewart (1975), Hobbs (1980), and Takeda, et al. (1987).

Ranking

Using the ranking methodology (Eckenrode, 1965), decision makers order the criteria from the most important to the least important. Weights from these methods are on an ordinal scale of measurement, as ratios of weights are arbitrarily fixed. With ordinal scales only the ordering of phenomena is significant. The differences in numbers or their ratios are not considered important. Jopling (1974) and Watson (1974) make applications of the ranking method in a power plant siting study.

Rating

The rating method asks decision makers to rate on, say, a scale of 0 to 10 , according to the importance of each criterion. Theoretically valid weights are not assured because a decision maker's definition of importance may have little to do with the relative value of the criteria. Eckenrode (1965) emphasizes the attractiveness of the ease of use of this method. Groups often apply this method assisted by Delphi technique (Delbecq et al, 1975) (Voelker, 1977).

Point Allocation

In the point allocation method, the decision maker is asked to distribute a fixed number of points among the various criteria so as to reflect their relative
importance. This straightforward method was suggested as a good method by Hoffman (1960) and Schoemaker and Waid (1982), even though this method lacks formal theory. Similar point allocation methods have been advocated by Moore and Baker (1969) in various scoring models for evaluating engineering and R\&D projects.

Unit Weighting

The unit weighting method standardizes the criteria in order to cause them to exhibit equal mean and variance, and then adds them together into a composite score.

Einhorn and Hogarth (1975) declare that the unit weighting method is a viable methodology for predictive purposes. They illustrate several reasons to support their declaration. The reasons are that unit weights are not estimated from the data and therefore do not consume degrees of freedom, and unit weights are free from judgmental error so that unit weights cannot reverse the true relative weights of the criteria. In addition to Einhorn and Hogarth's work, there have been a number of empirical studies by Trattner (1963), Lehman (1971), Fischer (1972), and Beckwith and Lehman (1973) that have shown that the unit weighting method is a good procedure for predictive purposes. Schmidt (1971, 1972) and Claudy (1972) have used simulation techniques in their works with the results generally showing that the unit weighting
scheme performs quite well compared to regression. But Schoemaker and Waid (1982) do not agree with these results. They declare that the unit weighting method is clearly inferior relative to other methods such as linear regression, eigen-vector method and point allocation method after finishing their experiment on college admission. The use of the unit weighting method is desirable when the problem has many criteria and it is really difficult for the decision maker to figure out the relative importance of each criterion. Schoemaker and Waid's college admission problem has just four criteria. On the other hand, other researchers' problems have more than twelve criteria. This is the main reason of drawing different conclusions.

Successive Paired Comparison

This method proposed by Churchman and Ackoff (1954) uses two stages to determine the importance or weight of the criteria. First, the decision maker ranks criteria in order of importance as in the ranking method. The decision maker tentatively assigns the value 1 to the most important criterion and values between 0 and 1 to the other criteria in order of importance. The second stage systematically checks to see if those weights are consistent with tradeoffs that the decision maker is willing to make. This is done via a number of questions and a question and answer scheme that asks the decision maker to decide whether the criterion with value of 1 is more important than all other
criteria combined. If so, the decision maker may need to consider an increase in the value of the most important criterion; $V C(1)$, so that $V C(1)$ is greater than the sum of all other values of criteria. If not, the decision maker needs to adjust the value of the most important criterion, VC(1), so that $V C(1)$ is less than the sum of all other criteria values. The decision maker then decides whether the second most important criterion is more important than the sum of all lower-valued criteria. The decision maker continues this process until n-1 criteria have been so evaluated. Any inconsistencies between a choice and the values assigned by the decision maker must be resolved by changing a choice, the values, or both. This can be very difficult and time consuming when there are many criteria. This method assures that the weights are valid because the decision maker checks the weights against acceptable tradeoffs. Stimson (1969) applies this methodology for solving a public health problem and Davidson (1974) for solving a regional planning problem.

Indifference Trade-off

The indifference trade-off method (Huber, 1974), assures theoretically valid weights by determining if the decision maker will or will not trade-off one criterion value for another. Enough questions as to acceptable trade-offs are asked in order to solve for a unique set of
weights. Consistency checks are especially important here as a decision maker will probably be very inconsistent on the first try because the decision makers usually will not think systematically about the trade-offs they are willing to make. In answering these questions, decision makers are forced to focus on their values of the criteria which is a desirable characteristic of this method. This technique has been applied in several site selection studies by Keeney and Nair (1977) and Keeney (1979).

Eigen-vector Methods

The eigen-vector method developed by Saaty (1977) requires pairwise comparisons of criteria in terms of relative importance. He explicitly assumes that the decision maker is consistent in the comparisons.

$$
C^{\prime}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{2.1}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

The decision maker constructs the nxn pairwise comparison matrix of C^{\prime} as can be seen in (2.1). In such a matrix, $a_{1,}$ is the relative strength or importance of criterion i compared to criterion j. The decision maker's enforcement of $a_{y 1}=1 / a_{1 y}$ due to the assumption of consistency makes mathematical analysis easier (Saaty, 1980) (Belton, 1986). However this is not, in general, congruent with human
perception (Cogger and $Y u, 1985$). Even though Saaty's eigen-vector method has a rigid consistency assumption, hundreds of applications have been made to MCDM problems because its weights are reasonably good and easy to use (Schoemaker and Waid, 1982). Saaty's weights are determined by normalizing the eigen-vector associated with the maximum eigenvalue of the ratio matrix.

Cogger and $Y u(1985)$ developed the New Eigenweight Vector Method. This method is based on Saaty's original eigen-vector method. These individuals recognized that stable and internally consistent estimates of weights may be difficult to obtain since humans have perceptions and judgments which are subject to change due to their psychological states and various information inputs. Based on this argument, they assume that the decision maker is not necessarily consistent in the comparisons. To reflect the inconsistency of comparisons they derive weights from all the index orders of the criteria. From the matrix of (2.1), the relation $a_{1,}=1 / a_{y 1}$ may not hold in this case. The weights are estimated in recursive fashion by

$$
\begin{align*}
W_{n-1} & =a_{n-1, n} W_{n} \tag{2.2}\\
W_{n-2} & =\left(a_{n-2, n-1} W_{n-1}+a_{n-2, n} W_{n}\right) / 2 \tag{2.3}\\
& \vdots \\
& \vdots \\
W_{1} & =\left(a_{12} W_{2}+a_{13} W_{3}+\ldots+a_{1 n} W_{n}\right) /(n-1) \tag{2.4}
\end{align*}
$$

From (2.2) through (2.4), W_{k} is obtained from the average of $\left(a_{k, k+1} W_{k+1}, a_{k, k+2} W_{k+2}, \ldots, a_{k, n} W_{n}\right)$. Once W_{n} is
estimated, Wn-i can be estimated in (2.2) with one step, then W_{n-2} can be estimated in (2.3) with two steps, etc. Thus, in estimating n element weight vector W, the ratio estimate $a_{n-1, n}$ is most important, $a_{n-2, n-1}$ and $a_{n-2, n}$ are second most important, etc. This indicates that the index order of the criteria can affect the estimate of W. Thus Cogger and $Y u$ emphasize the need to enumerate all index orders of the criteria. Cogger and Yu's weights are the geometric mean of the weights from all possible index order combinations of the criteria.

Saaty's eigen-vector method explicitly requires consistency in the pairwise comparisons. This assumption makes mathematical analysis easier, but is not always congruent with human perception as mentioned earlier. Cogger and $Y u$ (1985) refine this consistency assumption by allowing decision maker's inconsistency and obtaining weights for all the possible index orders. They also emphasize that this makes computation less difficult when compared to Saaty's method. However, enumerating all possible index orders is not an easy task. Cogger and yu's method produces three different index orders for a problem having three criteria, twelve for a problem having four criteria, and n!/2 for a problem having n criteria. The number of different index orders increases dramatically as the number of criteria increases. One more very important flaw of the cogger and $Y u$ method to be pointed out is that
their weight is the geometric mean of the weights from all possible index orders. An index order of 360 must be enumerated when the problem has six criteria. A severe underflow problem is encountered when multiplying the numbers which are less than 1.0360 times. The mathematics prohibits the calculation of the geometric mean when the problem has more than five criteria.

Takeda, et al. (1987) developed the Graded Eigenvector Method which generalizes the methods of saaty (1977), and Cogger and Yu (1985). It differs from that of Saaty by allowing the solution to reflect the decision maker's inconsistencies revealed by the estimates in the reciprocal portion of the matrix. It also differs from the Cogger and Yu procedure by choosing a specific index order rather than enumerating all possible index orders. The Graded Eigenvector Method is another version that attempts to refine Saaty's consistency assumption by allowing decision maker's inconsistency. To accomplish this refinement, the following form for a C^{\prime} matrix is used instead of (2.1).

$$
C^{\prime}=\left[\begin{array}{rrrr}
a_{11} & \beta_{12} a_{12} & \beta_{13} a_{13} & \cdots
\end{array} \beta_{1 n a_{1 n}} \begin{array}{rrrr}
& a_{22} & \beta_{23} a_{23} & \cdots \tag{2.5}\\
& & \beta_{2 n} & \\
& & & \\
& & & \\
& & & \\
& & a_{n n}
\end{array}\right]
$$

where $\beta_{1 y}>0$ and $\sum_{j=i+1}^{n} \beta_{1 y=1}$ for each $i=1,2, \ldots, n-2$. After $j=i+1$
modifying equations (2.2) through (2.4), the weights can be estimated in recursive fashion by

```
\(W_{n-1}=a_{n-1, n} W_{n}\)
\(W_{n-2}=\left(\beta_{n-2, n-1} a_{n-2, n-1} W_{n-1}+\beta_{n-2, n} a_{n-2, n} W_{n}\right)\)
    \(W_{1}=\left(\beta_{12} a_{12} W_{2}+\beta_{13} a_{13} W_{3}+\ldots+\beta_{1 n} a_{1 n} W_{n}\right)\)
```

However, the tasks of providing a set of weights, $\beta_{1,}$, which is the normalized values of $D(i, j)$ for $i=1,2, \ldots, n-2$, and $j=i+1, \ldots, n$, in addition to providing the values of pairwise comparisons, $a_{1} y$, are not easy from the decision maker's view point. $D(i, j)$ represents the decision maker's confidence, or degree of knowledge when comparing criterion i with criterion j.

Cogger and $Y u(1985)$ and Takeda, et al. (1987) have tried to refine the Saaty's consistency assumption by allowing decision maker's inconsistency in pairwise comparisons. Cogger and Yu resolve this problem by getting the geometric mean of weights from all possible index orders. In the case of Takeda, et al., they elicit an additional sets of weights, $\beta_{1 y}$, from the decision maker to avoid enumerating all possible index orders. They refine and generalize some aspects of the problem, but add elements of complexity to their approaches.

This chapter presents a survey of the literature relative to the research objective detailed in Chapter I. As summarized in Table 2.1, this survey has concentrated on several features of the weighting methods such as theoretical validation, simplicity, allowance for decision maker's inconsistency and minimization of judgmental error. Comparing the methods to each other using several important features illustrated in Table 2.1, the first four methods share one good feature which is simplicity of use. The successive paired comparison method and the indifference trade-off method have a theoretical background but none of the other features. Saaty's eigen-vector method has two good features which are theoretical validation and simplicity of use. The methods of Cogger and $Y u$ and Takeda, et al. have theoretical validation, simplicity of use, and allowance for decision maker's inconsistency. From this summary, eigen-vector methods have relatively better features compared to other methods. The development of the new weighting methods which have more than three good features can be considered at this point. Particularly, the feature of the minimization of the decision maker's judgmental error is a new concept for estimating weights using subjective approaches. Also, it is desirable for methods to be developed for reflecting decision maker's inconsistency more systematically than the

Cogger and Yu's method and the Takeda, et al.'s method. The research goal and objectives to be pursued was contributed to reflect the need of these new concepts.

A summary of weighting methods shown in this Chapter and a chronological summary for each method are provided in Table 2.2 and Table 2.3 respectively.

TABLE 2.1
SUMMARY OF FEATURES OF VARIOUS WEIGHTING METHODS

Method	TV ${ }^{2}$	SOU ${ }^{2}$	AOI^{3}	MJE ${ }^{4}$
Ranking	No	Yes	No	No
Rating	No	Yes	No	No
Point Allocation	No	Yes	No	No
Unit Weighting	No	Yes	No	No
Successive paired Comparison	Yes	No	No	No
Indifference Trade-off	Yes	No	No	No
```Eigen-vector Saaty Cogger and Yu Takeda et al.```	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes   Yes   Yes	$\begin{array}{r} \text { No } \\ \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$

1 Theoretical Validation
2 Simplicity of use
3 Allowance of Inconsistency
4 Minimization of Judgmental Error

TABLE 2.2
SUMMARY OF VARIOUS WEIGHTING METHODS

Methods	Authors
Ranking	Eckenrode (1965)   Jopling (1974)   Watson (1974)
Rating	Eckenrode (1965)   Delbecq et al. (1975)   Voelker (1977)
Point Allocation	Hoffman (1960)   Moore and Baker (1969)   Schoemaker and waid (1982)
Unit Weighting	Trattner (1963)   Lehman (1971)   Schmidt (1971, 1972)   Claudy (1972)   Fischer (1972)   Beckwith and Lehmann (1973)   Einhorn and Hogarth (1975)   Schoemaker and Waid (1982)
Successive Paired Comparison	Churchman and Ackoff (1954)   Stimson (1969)   Davidson (1974)
Indifference Trade-off	Huber (1974)   Keeney and Nair (1977)   Keeney (1979)
Eigen-vector	```Saaty (1977, 1980)) Schoemaker and Waid (1982) Cogger and Yu (1985) Belton (1986) Takeda et al. (1987)```

TABLE 2.3
CHRONOLOGICAL SUMMARY OF WEIGHTING METHODS


Rating


Point Allocation


Unit Weighting


Indifference
Trade-off


Eigen-vector

$\qquad$

## CHAPTER III

MODEL DEVELOPMENT

Introduction

From the literature review in Chapter II, seven different weighting methods have been reviewed. None of the methods meet all the desirable characteristics such as theoretical validation, refinement of decision maker's inconsistency, minimization of judgmental error, quality, and simplicity. In this chapter, three new weighting methods which appear to meet the desirable characteristics will be developed. Several assumptions and notations have been made for developing the weight determination models.

## Assumptions

The basic assumptions which are utilized in developing the models are as follows:

1) The pairwise comparisons, with possible error between two criteria, are made by a single decision maker or by multiple decision makers on the basis of some global objective.
2) The methodology imposes no requirement that the paired comparisons satisfy the reciprocal property.
3) Measurements on each of the $n$ criteria are ratio scaled.
4) Inconsistency in human judgment is uniformly distributed on the interval (.5, 1.5) for a simulation run used to analyze the results from a single decision maker. Inconsistency for a second decision maker's judgment is uniformly distributed on the interval (.3, 1.7) for analyzing the results from the two decision maker problem.

## Notation

To facilitate the development of the mathematical models to be presented, the following notation is introduced and will be used throughout the research.

```
 i = 1,2,...,n where n is the number of criteria.
 r = 1,2,\ldots.,R where R is the number of
 replications for a simulation run.
 Vk}= a composite value of the suitability of
 alternative k.
 Xik = the level of criterion i for alternative k.
 W1y = the ratio of W1 and Wy which is W W / Wy.
 W_ = true weight of criterion 1.
W_(x) = an estimated weight of criterion i at the rem
 replication.
 W = true weight vector.
 W' = estimated weight vector.
 a&y = decision maker's estimated value of W1y.
```

```
 a&ya}=\mp@subsup{a}{1y}{}\mathrm{ values estimated by decision maker q.
 \varepsilon1y = possible judgmental error when W1y is
 estimated. This is a uniform random variable
 on the interval (.5, 1.5) with mean of one.
 e_ = aggregated judgmental error for criterion i.
 C = matrix constructed from true weights.
 C' = matrix consisting of pairwise comparisons of
 criteria obtained from a decision maker.
 C'a = a C' matrix constructed from decision maker q.
 C'avg = matrix of the averages of the C's.
 C1 = represents the criterion i.
C1>Cy = represents that criterion i is more important
 than criterion j.
D(i,j) = represents decision maker's confidence, or
 degree of knowledge when comparing criterion i
 with criterion j.
 \beta,y = normalized values of D(i,j) for i=1,2,\ldots,n-1
 and j=i+1,\ldots,n.
 \Omega_ = denotes a set of relations (i,j) for all
 i,j=1,2,\ldots,n except i=j such that criterion i
 is more important than criterion j in a
 pairwise comparison.
 \Omega2}=\mathrm{ denotes a set of relations (m,n) for all
 m,n=1,2,...,n except m=n such that criterion m
 is "how much" more (amn>1), or less (amn<l),
```

or equally ( $a_{m n}=1$ ) important than criterion $n$ in a pairwise comparison.
$\gamma_{1 y}=$ represents the aggregated judgmental error for all (i,j) in $\Omega_{1}$.
$\delta_{m n}=$ represents the aggregated judgmental error for all $(m, n)$ in $\Omega_{2}$.
$I_{1 y}=$ integer variables taking either 0 or 1.
$J_{\mathbf{m n}}=$ integer variables taking either 0 or $1 . \quad \mathrm{M}=\mathrm{a}$ large number greater than $\max \left(a_{1 y}\right)$ for all
$i, j=1,2, \ldots, n$.
$\mathrm{NC}=$ number of criteria.
$\alpha=$ probability of Type I error.
$\beta=$ probability of Type II error.
Ho = null hypothesis.
$H_{2}=$ alternative hypothesis.
$\mu_{k}=$ population mean of the differences between the true weight vector and estimated weight vector from model k.
$d_{z}=$ difference between the true weight vector and the estimated weight vector to be detected where $f$ identifies the measure of goodness of fit used such as 1 for a Euclidean distance measure and 2 for a city block distance measure.
$\mathrm{d}_{\mathrm{f}}=\mathrm{d}_{\mathrm{z}}$ value calculated from model k .
$d^{\prime} e=$ average of $\mathrm{d}_{\mathrm{z}}$.

```
Rp}= least significant ranges.
 p = number of between models.
q\alpha}= significant studentized ranges for Duncan'
 new multiple-range test.
fe = error degree of freedom.
Sa = standard error of a between models' mean.
```

The New Models for Estimating Weights Using
Pairwise Comparison Matrix from a Single
Decision Maker

The weighting methods to be developed are based on pairwise comparisons constructed from a single decision maker, and optimized via linear programming for the purpose of minimizing the judgmental error. Pairwise comparisons used in these models were developed by Hay (1958) and revised by Buel (1960). Pairwise comparison is the process of comparing one criterion against another, with never more than two criteria involved in each comparison. This simplifica-tion of comparisons usually promotes greater accuracy.

The models developed in this research are of a linear form which allows linear programming to be utilized as an optimization tool. In addition, linear programming has the capability of producing solutions in a reasonable amount of time with readily available software.

## Model 1 Development

For constructing a pairwise comparison matrix, denote the criteria by $C_{1}, C_{2}, \ldots, C_{n}$ and their true weights by $W_{1}, W_{2}, \ldots, W_{n}$. In this ideal case, the relations between the weights $W_{1}$ and the judgments $a_{1}$ are simply given by

$$
\frac{W_{1}}{W_{1}}=a_{13}
$$

for all $i, j=1,2, \ldots, n$. The results of pairwise comparisons may be represented by a matrix $C$ as follows:

$$
C=\begin{gather*}
 \tag{3.2}\\
C_{1} \\
C_{2} \\
\cdot \\
\cdot \\
C_{n}
\end{gather*}\left[\begin{array}{cccc}
C_{1} & C_{2} & \cdots & C_{n} \\
W_{1} / W_{1} & W_{1} / W_{2} & \cdots & W_{1} / W_{n} \\
W_{2} / W_{1} & W_{2} / W_{2} & \cdots & W_{2} / W_{n} \\
\cdot & \cdot & & \dot{c} \\
\dot{W_{n}} / W_{1} & W_{n} / W_{2} & \cdots & W_{n} / W_{n}
\end{array}\right]
$$

This matrix has positive entries everywhere, l's on the main diagonal, and satisfies the reciprocal property. This matrix $C$ satisfies the cardinal consistency property $a_{1 y} \boldsymbol{a}_{y k}=a_{1 k}$ and is called consistent. This property says that if any row of $C$ is given, the rest of the entries can be determined from this relation. However, it would be unrealistic to require these relations to hold in the general case.

Now suppose that the scale is not known, and that the entries in the matrix are estimates of the ratios. In this case the cardinal consistency relation above may not hold,
and an ordinal relation of the form $W_{1}>W_{1}, W_{1}>W_{k}$ implying $W_{1}>W_{k}$ may not hold. As a realistic representation of the situation in pairwise comparisons, it is likely that inconsistency in judgments may occur. Despite their best efforts, people's feelings and preferences are often inconsistent and intransitive (Takeda, et al., 1987).

The only parameters in this model are the $\mathbb{W}_{1}$. These parameters are estimated from a decision maker's judgments, asy, which are equal to $W_{1} / W_{y}$ when the true weights are known. When the judgments, $a_{1 y}$, are obtained from a decision maker, they may not be equal to $W_{1} / W_{1}$ because $W_{1}$ is never known. To construct a pairwise comparisons matrix, a decision maker is asked to decide how much criterion i is more important than criterion $j$ for all $1, \mathrm{~J}=1,2, \ldots, \mathrm{n}$ except $1=\mathrm{J}$. These questions are needed for assurance of theoretical validation. After making $n(n-1)$ comparisons, the results may be represented by a matrix as shown by (3.3). This matrix has positive entries everywhere, 1 's on the main diagonal but does not necessarily satisfy the reciprocal property. That is, $a_{1}$, is not necessarily equal to $1 / a_{y}$. . In addition, the matrix $C^{\prime}$ does not necessarily satisfy the cardinal consistency property either.

$$
C^{\prime}=\begin{gather*}
C_{1}  \tag{3.3}\\
C_{2} \\
\cdot \\
C_{n}
\end{gather*}\left[\begin{array}{cccc}
C_{1} & C_{2} & \ldots & C_{n} \\
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

As mentioned earlier, the relation in (3.1) holds when $C$ is equal to $C^{\prime}$. Using this relation, the $W_{1}$ can be written as follows:

$$
\begin{align*}
W_{1} & =a_{11} W_{1} \\
W_{1} & =a_{12} W_{2} \\
& \vdots \\
+W_{1} & =a_{1 n} W_{n} \\
n W_{1} & =\sum_{j=1}^{n} a_{1, W_{1}} \tag{3.4}
\end{align*}
$$

But in the general case, the relation (3.4) may not hold because a decision maker's judgmental error is included in the aıs. This occurs due to factors such as lack of knowledge, personal experience, interest, fatigue, state of mind, etc.

Consequently, instead of the ideal case relations of (3.4), the more realistic realizations for the general case can be considered to take the form

$$
\begin{equation*}
n W_{1} \underset{ }{\stackrel{\rangle}{\approx}} \underset{j=1}{n} a_{1, t} \tag{3.5}
\end{equation*}
$$

for $i=1,2, \ldots, n$. To make the relation (3.5) an equality, an unrestricted variable, $e_{1}, 1 s$ added to (3.5) as follows:

$$
\begin{equation*}
n W_{1}=\sum_{j=1}^{n} a_{1} W_{1}+e_{1} \tag{3.6}
\end{equation*}
$$

More explicitly,

$$
\begin{array}{cccc}
\left(a_{11}-n\right) W_{1}+ & a_{12} W_{2}+\ldots+ & a_{1 n} W_{n}+e_{1} & \\
a_{21} W_{2}+\left(a_{22}-n\right) W_{2}+\ldots+ & a_{2 n} W_{n} & +e_{2} & =0 \\
\cdot & \cdot & \vdots &  \tag{3.7}\\
a_{n 1} W_{1}+ & a_{n 2} W_{2}+\ldots+\left(a_{n n}-n\right) W_{n} & +e_{n}=0
\end{array}
$$

As given, these simultaneous linear equations have the trivial solution of $W_{1}=0$ and $e_{1}=0$ for all i. For this trivial solution all the $V_{k}$, where $k$ identifies the alternative, turn out to be zero (see equation (1.1)). The trivial solution does not convey any useful information so that the model should preclude its selection. To prevent triviality, an equation of the form $\Sigma W_{1}=h$ for all $i$ where $h$ is any positive number, preferably 1 for standardizing the unit of measurement, can be added to (3.7) without any loss of generality. Now the system can be written as follows:

$$
\begin{array}{ccccc}
\left(a_{12}-n\right) W_{1}+ & a_{12} W_{2}+\ldots+ & a_{1 n} W_{n}+e_{1} & =0 \\
a_{21} W_{1}+\left(a_{22}-n\right) W_{2}+\ldots+ & a_{2 n} W_{n} & +e_{2} & & =0 \\
\cdot & \cdot & \vdots & &  \tag{3.8}\\
a_{n 2} W_{1}+ & a_{n 2} W_{2}+\ldots+\left(a_{n n}-n\right) W_{n} & +W_{n}=0 \\
W_{1}+ & W_{2}+\ldots+ & W_{n n} & & =1
\end{array}
$$

With the addition of the normalization constraint, the system (3.8) now assures the existence of the solution, and the weights can be calculated from (3.8) by minimizing the sum of judgmental error as shown below.

Mathematical Statement of Model 1
Minimize $\sum_{i=1}^{n} e_{i}$

Subject to

$$
\sum_{j=1}^{n} a_{1} y_{1}-n W_{1}+e_{1}=0 \text { for } i=1,2, \ldots, n
$$

$$
\sum_{j=1}^{n} W_{y}=1
$$

$$
\begin{aligned}
& W_{y} \geq 0 \text { for all } j \\
& e_{1} \text { is unrestricted. }
\end{aligned}
$$

This mathematical model can be solved via linear programming.

Model 2 Development

The second model derived from relations (3.3) and (3.6) is to be considered. Additional information can be extracted from the $C^{\prime}$ matrix (3.3). The first type of information is "which criterion is more important than which criterion". At most $n(n-1)$ relations of $C_{1} \geq C_{s}$ are available. One understands that $a_{1} y \geq 1$ directly implies that $C_{1} \geq C_{y}$. Let $\Omega_{1}$ denote a set of relations (i,j) such that criterion $i$ is more important than criterion $j$ in a pairwise comparison. $C_{1} \geq C_{y}$ implies that $W_{1} \geq W_{y}$ because the decision maker determines that criterion is more important than or equally important to criterion j. This relation, however, may not hold for some of the pairs
because of the possibility of the various sources of error. $\gamma_{15}$ is introduced to identify and aggregate the various sources of error. Using (3.6),

$$
\begin{align*}
& n W_{1} \geq n W_{y} \\
\Rightarrow & \sum_{k=1}^{n} a_{1 k} W_{k}+e_{1} \geq \sum_{k=1}^{n} a_{y k} W_{k}+e_{y} \\
\Rightarrow & \sum_{k=1}^{n}\left(a_{1 k}-a_{y k}\right) W_{k}+\gamma_{1 y} \geq 0
\end{align*}
$$

for all (i,j) in $\Omega_{1}$.
The second type of information extracted from (3.3) is which criterion is "how much" more, or less, or equally important than which criterion. This "how much" term is denoted by $a_{m n}$ in a pairwise comparison. At most $n(n-1)$ terms of $W_{m} \geq a_{m n} W_{n}$ or $W_{m s a_{m n}} W_{n}$ are available. If $a_{m n}=$ $1 / a_{n m}$, then either $a_{m n}$ or $a_{n m}$ can be used. Let $\Omega_{2}$ denote a set of relations ( $m, n$ ) in a pairwise comparison. $\delta_{m n}$ is introduced to identify and aggregate the various sources of error. Then

$$
\begin{equation*}
W_{m}-a_{m n} W_{n}+\delta_{m n} \geq 0 \text { when } a_{m n} \geq 1 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m n} W_{n}-W_{m}+\delta_{m n} \geq 0 \text { when } a_{m n} \leq 1 \tag{3.11}
\end{equation*}
$$

for all ( $m, n$ ) in $\Omega_{2}$. Using (3.9), (3.10), and (3.11), the second model is completed as follows:

Mathematical Statement of Model $\underline{2}$
Minimize $\Sigma\left(\gamma_{1, y}+\delta_{m n}\right)$
all (i,j) in $\Omega_{2}$
all $(m, n)$ in $\Omega_{2}$
Subject to

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(a_{i k}-a_{y k}\right) W_{k}+\gamma_{1 y} \geq 0 \text { for all }(i, j) \text { in } \Omega_{1} \\
& W_{m}-a_{m n} W_{n}+\delta_{m n} \geq 0 \text { if } a_{m n} \geq 1 \\
& a_{m n} W_{n}-W_{m}+\delta_{m n} \geq 0 \text { if } a_{m n \leq 1} \\
& n \\
& \sum_{k=1}^{n} W_{k}=1
\end{aligned}
$$

where $W_{k} \geq 0$ for all $k$, and $\gamma_{1 y}$ and $\delta_{m n}$ are unrestricted for all ( $1, j$ ) in $\Omega_{1}$ and $(m, n)$ in $\Omega_{2}$. This mathematical model can be optimized via linear programming.

## Model 3 Development

The third model to be considered is model 2 with an alternative objective function. Instead of minimizing the amount of possible error, minimizing the number of violations of equations for all (i,j) in $\Omega_{1}$ and all (m,n) in $\Omega_{2}$ is considered. This consideration is based on the reasoning that even though the sum of $\gamma_{1 y}$ and $\delta_{m n}$ might be minimized, the number of violations of equations for all ( $i, j$ ) in $\Omega_{2}$ and all $(m, n)$ in $\Omega_{2}$ might increase. This model can be formulated as follows:

Mathematical Statement of Model 3
Minimize $\quad \Sigma\left(I_{1}{ }^{\prime}+J_{m n}\right)$ all $(i, j)$ in $\Omega_{1}$ all $(m, n)$ in $\Omega_{2}$

Subject to

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(a_{1 k}-a_{y k}\right) W_{k}+M I_{1 y} \geq 0 \text { for all }(i, j) \text { in } \Omega_{1} \\
& W_{m}-a_{m n} W_{n}+M J_{m n} \geq 0 \text { if } a_{m n} \geq 1 \\
& a_{m n} W_{n}-W_{m}+M J_{m n} \geq 0 \text { if } a_{m n \leq 1} \\
& \sum_{k=1}^{n} W_{k}=1
\end{aligned}
$$

where $W_{k} \geq 0$ for all $k, M$ is a large number greater than $\max \left(a_{1, y}\right)$ for all $i, j=1,2, \ldots, n, I$ and $J$ are 0 or 1 integer variables. The above model can be solved by a mixed integer programming code.

> Procedures for Estimating Weights Using Pairwise Comparison Matrices from Multiple Decision Makers

There are a number of circumstances in which it is desirable to reflect the judgment of several decision makers on a single analysis. It is a reasonable assumption that multiple decision makers work to accomplish some common objective even though they have different backgrounds.

The procedures for estimating weights from multiple decision makers consider the opinions of decision makers by
utilizing pairwise comparison matrices constructed by the decision makers. The procedures are appropriate in situations where the decision makers cannot be presumed nearly identical in their pairwise comparison judgment. They are also appropriate when the purpose of analysis is the prediction of a composite which, in some sense, represents the aggregate behavior of the decision makers. Two procedures for estimating weights from multiple decision makers are suggested below. The results of the simulation run will be reported in Chapter $V$.

## Estimating Weights after Averaging

Ralrwise Comparison Matrices

Each decision maker constructs a pairwise comparison matrix. The procedure of constructing a pairwise comparison matrix is exactly the same as explained in the previous section. The only difference is that the number of pairwise comparison matrices equals the number of decision makers. From each decision maker, pairwise comparison matrix ( $C^{\prime}$ a) is constructed by the decision maker $q$ as shown in (3.12) where

$$
C_{a}^{\prime}=\begin{gather*}
C_{1}  \tag{3.12}\\
C_{2} \\
\cdot \\
C_{n}
\end{gather*}\left[\begin{array}{cccc}
C_{1} & C_{2} & \cdots & C_{n} \\
a_{119} & a_{12 q} & \cdots & a_{1 n 9} \\
a_{219} & a_{22 a} & \cdots & a_{2 n a} \\
\cdot & \cdot & & \dot{\cdot} \\
a_{n i q} & a_{n 29} & \cdots & a_{n n a}
\end{array}\right]
$$

$\mathrm{q}=1,2, \ldots, \mathrm{~N}$ stands for the index of the decision maker.

After constructing $N C^{\prime}$ a matrices, the averages of the $C^{\prime}$ a which calculated by the formula $C^{\prime}$ avo $=\frac{1}{N} \sum_{q=1}^{N} C^{\prime}$ a are obtained as shown in (3.13). The weights can be estimated using (3.13) as an input data to any models developed in previous section.

Averaging Individual Weights of Decision Makers

The c'a matrix shown in (3.12) is constructed by the decision maker $q$. The weights can be estimated using C'a pairwise comparison matrix. $N$ weight vectors, one for each decision maker, can be calculated. The weights for a given problem are then estimated by averaging the $N$ individual weights.

## USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

This chapter illustrates the use of an interactive computer program which permits easy utilization of the weighting methods presented in the previous chapter. The actual FORTRAN program is documented and appears in Appendix A. It has been implemented on an IBM 3081D.

The entire program is interactive, and the user is prompted for all necessary inputs by the computer. Many typical and/or often-used values of inputs are preprogrammed, but can be easily modified when necessary. Only when a set of inputs has been checked by the program and verified by the user does the program continue.

Integer values are usually entered without a decimal point; however, a decimal may be included. With the prompting and verification feature, the input mechanism is virtually self-explanatory. It does require that the user understand the terms being input and their mathematically feasible range.

In the remainder of this chapter, actual interactive output is interspersed with comments and explanations. All
computer outputs shown are automatically generated by the computer except for the input values which follow a question mark (?). These question marks remind the user to enter the input values.

Interactive Program Development

An interactive routine is designed such that the decision maker and/or the researcher can iteratively provide information for constructing a pairwise comparison matrix which is used to achieve satisfactory weights. Figure 4.1 illustrates the components of the interactive computer model. The inputs to the computer model and the output expected from the computer model are given as follows:

INPUTS : 1. Number of decision makers,
2. Number of criteria, and
3. $a_{1}$ values of pairwise comparisons.

OUTPUT : Weights.

Since existing codes are not designed for interactive mode and simulation purposes, available linear programming and mixed integer programming codes (Kuester and Mize, 1973) are modified to meet the special purposes.


Figure 4.1. Flowchart for Interactive Model

## Overview

The interactive computer program provides the capability of interactively entering pairwise comparisons data from a decision maker(s) for use in any of the models of this research. It also provides the capability of choosing any model of the three methods developed in Chapter III in addition to the three eigen-vector methods. The program begins by presenting the main option menu (M.1). The user has entered a "1", indicating a desire to enter the input data of pairwise comparisons matrix for estimating weight.

```

*** MAIN MENU ***

```

1. INPUT PAIRWISE COMPARISONS,
(M.1)
2. EXIT THE PROGRAM.
==> ENTER THE OPTION NUMBER!
?
1

## Input Pairwise Comparisons

After option 1 (Input Pairwise Comparisons) is selected, the user is asked to enter the number of decision makers. Then the program prints the number of decision makers entered for verification by the user shown as follows.

```
==> ENTER THE NUMBER OF DECISION MAKERS!
?
1
```

```
YOU HAVE 1 DECISION MAKER(S). IS THIS NUMBER CORRECT?
==> ENTER 1=YES, 2=NO. <<<
? 1
```

Only after the user confirms the validity of the input does the program continue. After this verification, the program prompts the user to enter the number of criteria. After the number of criteria is entered, the program prints the input data for verification by the user as follows.

```
==> ENTER THE NUMBER OF CRITERIA!
?
3
```

YOU HAVE 3 CRITERIA. IS THIS NUMBER CORRECT?
==> ENTER 1=YES, 2=NO. <<<
?
1

After the number of decision makers and the number of criteria have been entered and confirmed, a value of relative importance between criterion $i$ and criterion $j$ is requested iteratively and is illustrated as follows.

```
*** THIS INPUT IS FOR DECISION MAKER 1! ***
 ==> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN
 CRITERION 2 ?
?
1.03
```

```
=> BY HOW MUCH IS CRITERION 1 MORE IMPORTANT THAN
 CRITERION 3 ?
?
3.67
==> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN
 CRITERION 1 ?
?
0.55
=> BY HOW MUCH IS CRITERION 2 MORE IMPORTANT THAN
 CRITERION 3?
?
2
==> BY HOW MUCH IS CRITERION 3 MORE IMPORTANT THAN
 CRITERION 1 ?
?
0.27
==> BY HOW MUCH IS CRITERION 3 MORE IMPORTANT THAN
 CRITERION 2 ?
?
0.5
```

Communication with the decision maker(s) is needed to provide input for this kind of pairwise comparisons. Upon completion of entering pairwise comparisons data, the program prints these input data for verification by the user shown below.

```

*** VALUES RECEIVED FROM DECISION MAKER 1 ***

1 1.03 3.67
0.55 1 2
0.27 0.5 1
*** ARE THESE DATA CORRECT ? ***
==> ENTER 1=YES, 2=NO. <<<
?
2
```

If the user desires to correct any input data, then a selection of "2" is entered and the program prompts the user for entering a row index number, a column index number, and a corrected value of relative importance. The prompts and responses to correct input data are illustrated in (M.2).

```
*** THIS INPUT IS FOR DECISION MAKER 1! ***
==> ENTER ROW INDEX NUMBER!
?
1
==> ENTER COLUMN INDEX NUMBER!
?
2
==> ENTER CORRECTED VALUE OF RELATIVE IMPORTANCE!
?
1.83
```

*** DO YOU NEED TO CHANGE MORE? ***
$\Rightarrow=>$ ENTER 1=YES, $2=$ NO. <<<
?
2

The program then prompts "DO YOU NEED TO CHANGE MORE?". If the user needs to change more, a selection of "1" is entered and the procedure of (M.2) is repeated. If a selection of "2" is made, then the new pairwise comparisons matrix is displayed for user confirmation as shown below.
*********************************************
*** VALUES RECEIVED FROM DECISION MAKER 1 *** *********************************************
$1 \quad 1.83 \quad 3.67$
$0.55 \quad 1 \quad 2$
$0.27 \quad 0.51$
*** ARE THESE DATA CORRECT ? ***
==> ENTER 1=YES, 2=NO. <<<
?
1

Upon completion of the entering of input data for the pairwise comparisons matrix, the program prompts for the model option. If the user desires to use model 1 to estimate weights of a given problem, then the user responds with a selection of "1".
$* * * * * * * * * * * * * * * * * * * * * * * * * *$
$* * * M O D E L ~ A V A I L A B I L I T Y ~ * ~ * ~ * ~$
$* * * * * * * * * * * * * * * * * * * * * * * * * *$

1. MODEL 1
2. MODEL 2
3. MODEL 3
4. MODEL 4
5. MODEL 5
6. MODEL 6

## ==> ENTER THE MODEL NUMBER! <br> ? 1

The estimation of the weights for given pairwise comparisons matrix is performed after making the selection of model. Upon completion, the program prints the estimated weights as shown below.

```

*** ESTIMATED WEIGHTS ***
***********女*****女*****女*
W(1) = 0.55
W(2) = 0.3
W(3) = 0.15
```

```
*** DO YOU WANT TO GO BACK TO THE MAIN MENU? ***
```

*** DO YOU WANT TO GO BACK TO THE MAIN MENU? ***
==> ENTER 1=YES, 2=NO. <<<
==> ENTER 1=YES, 2=NO. <<<
?
?
1

```
1
```

If the user wants to solve another problem，a selection of ＂1＂is needed for the main menu．If the user needs to exit the program，a selection of＂2＂is needed．The user can repeat the procedure until he／she has no need of it．

## Summary

The features of the interactive computer program of this research have been illustrated in this chapter．An example is given for describing the capability of the program．The interactive feature and its convenience make this computer program a useful tool for communicating with decision makers and for estimating the weights to a given problem．

## CHAPTER V

RESULTS, COMPARISON, AND ANALYSIS

## Introduction

This chapter reports the results of the testing of the models developed in this research. It includes comparing the results of the three models developed in this research with the three eigen-vector methods reviewed earlier; Saaty's eigen-vector method, Cogger and Yu's eigenweight vector method, and Takeda, et al.'s graded eigenvector method.

Simulation was used to compare the three models developed in this research with the three eigen-vector methods. These three eiegn-vector methods are utilized for comparisons because the weights of these three eigen-vector methods are estimated from a pairwise comparison matrix as is done for the three models developed in this research.

Takeda, et al. (1987) also used simulation in their comparative study of their method with Saaty's method and Cogger and Yu's method using eight decision making settings involving up to five criteria shown in Table 5.1. The resulting choices in the order of generating better solutions were Takeda, et al.'s method, Cogger and Yu's method, and Saaty's method.

TABLE 5.1
SUMMARY OF EIGHT DECISION MAKING SETTING PROBLEMS USED BY TAKEDA, ET AL.

Problem	W	$D(i, j) *$
1	(0.15,0.55,0.3)	$\begin{aligned} & D(1,2)=0.9, \quad D(1,3)=0.6, \\ & D(2,3)=0.3 \end{aligned}$
2	(0.3,0.15,0.55)	$\begin{aligned} & D(1,2)=0.9, \quad D(1,3)=0.6, \\ & D(2,3)=0.3 \end{aligned}$
3	$(0.55,0.3,0.15)$	$\begin{aligned} & D(1,2)=0.9, \quad D(1,3)=0.6, \\ & D(2,3)=0.3 \end{aligned}$
4	$(0.55,0.3,0.15)$	$\begin{aligned} & D(1,2)=0.9, \quad D(1,3)=0.8, \\ & D(2,3)=0.6 \end{aligned}$
5	$(0.2,0.4,0.1,0.3)$	$\begin{array}{ll} D(1,2)=0.7, & D(1,3)=0.9, \\ D(1,4)=0.8, & D(2,3)=0.7, \\ D(2,4)=0.6, & D(3,4)=0.4 \end{array}$
6	$(0.2,0.4,0.1,0.3)$	$\begin{array}{ll} D(1,2)=0.8, & D(1,3)=0.7, \\ D(1,4)=0.9, & D(2,3)=0.4, \\ D(2,4)=0.6, & D(3,4)=0.5 \end{array}$
7	$(0.2,0.4,0.1,0.3)$	$\begin{array}{ll} D(1,2)=0.7, & D(1,3)=0.6, \\ D(1,4)=0.8, & D(2,3)=0.5, \\ D(2,4)=0.6, & D(3,4)=0.3 \end{array}$
8	$(0.25,0.3,0.15,0.1,0.2)$	$\begin{array}{ll} D(1,2)=0.6, & D(1,3)=0.7, \\ D(1,4)=0.8, & D(1,5)=0.6, \\ D(2,3)=0.7, & D(2,4)=0.6, \\ D(2,5)=0.6, & D(3,4)=0.5, \\ D(3,5)=0.8, & D(4,5)=0.3 \end{array}$

*decision maker's confidence when comparing criterion i with criterion $j$.

A critical choice in Takeda, et al.'s simulation study was the modeling of inconsistency of human judgment which was treated as random variation. The statistical model that they selected for simulating of human judgment was

$$
\begin{equation*}
a_{1 y}=W_{1 y} \varepsilon_{1 y} \tag{5.1}
\end{equation*}
$$

where $W_{1 y}$ was assumed to have a true value and $\varepsilon_{1 y}$ was assumed to be a uniformly distributed random variable on the interval (.5, 1.5) with a mean of one. The pairwise comparison matrix, $C^{\prime}$, for estimating weights using the six methods mentioned above is generated using (5.1).

## Measurement of Goodness of Fit

In order to quantify the desirability of various methods under the same conditions, two different measures of 'goodness of fit' will be used. The first measure is essentially an error term based on an Euclidean distance measure, dik, between the parameter values and the estimated values while the second measure is an error term based on a city block distance measure, $d_{2 k}$. The Euclidean distance measure implies the shortest distance between two points and the city block distance measure implies a longer distance between two points in a geometric sense (Zeleny, 1982). These are given by;

$$
\begin{equation*}
d_{1 k}=\frac{1}{R} \sum_{r=1}^{R}\left[\sum_{i=1}^{n}\left(W_{1}-W_{1}(x)\right)^{2}\right]^{1 / 2} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{2 k}=\frac{1}{R} \sum_{r=1}^{R} \sum_{i=1}^{n}\left|W_{i}-W_{1}(x)\right| \tag{5.3}
\end{equation*}
$$

where $k$ represents the weighting method such as 1 for the Model 1, 2 for the Model 2, 3 for the Model 3, 4 for the

Saaty's method, 5 for the Cogger and Yu's method, and 6 for the Takeda, et al.'s method,
$r$ is the replication number, $r=1,2, \ldots, R$,
$i$ is the criterion number, $i=1,2, \ldots, n$,
$W_{1}$ is the true weight of criterion 1 , and
$W_{1}(x)$ is the estimated weight of criterion $i$ at the $r^{t h}$ replication.

Deciding the Number of Replications

In order to determine the significance between the true weights and the estimated weights from model $k$ based on Euclidean distance measure of goodness of fit (the same procedure can be applied to city block distance measure of error), it is necessary to show that a distance between the true weight vector and the estimated weight vector is significant when Type $I$ error is $\alpha$ and Type II error is $\beta$. a refers the probability of falsely rejecting the null hypothesis rather than accepting it and $\beta$ refers the probability of falsely accepting the null hypothesis rather than rejecting it. The appropriate formula (Steel and Torrie, 1980) for determining $R$ when the hypothesis alternatives are one sided, is given by (5.4)

$$
R=\frac{\left(Z_{\alpha}+Z_{\beta}\right)^{2} \sigma^{2}}{d_{\varepsilon^{2}}^{2}}
$$

where $d_{f}$ is a difference between the true weight vector and the estimated weight vector, $f$ identifies the measure of goodness of fit used such as 1 for a Euclidean distance measure and 2 for a city block distance measure, and $\sigma^{2}$ is the variance of these differences. Since $R$ is likely to be a fractional value, the next higher integer value will be used for R. This formula has obvious difficulty. $\sigma^{2}$ is rarely known and so it must be estimated. If $\sigma^{2}$ is underestimated, the number of replications, $R$, is too small; if $\sigma^{2}$ is overestimated, then $R$ is too large. In this research, to overcome this problem, a pilot study was used to estimate $\sigma^{2}$. The calculated variances of the differences between the true weight vector and the estimated weight vector, using a sample size of 30 , for the six models are shown in Table 5.2. NC represents the number of criteria. The decision making settings used for obtaining the results of Table 5.2 are $W=(.55, .3, .15)$ for $\mathrm{NC}=3, \mathrm{~W}=(.2, .4, .1, .3)$ for $\mathrm{NC}=4$, and $\mathrm{W}=(.25, .3, .15, .1, .2)$ for $N C=5$. When the number of criteria is three ( $N C=3$ ) and the Euclidean distance measure is used, the maximum estimated variance of differences is .00221 . This maximum value was used for conservative purposes as an estimated variance in order to determine the appropriate number of replications for the simulation run of $N C=3$. The number of replications for the simulation runs was determined by (5.4) and reported in Table 5.3.

TABLE 5.2

$$
\text { ESTIMATED VALUES OF } \sigma^{2} \text { WHEN } N=30
$$

Model	$N C=3$		$N C=4$		$N C=5$	
$(k)$	$\operatorname{Var}\left(d_{1 k}\right) \operatorname{Var}\left(d_{2 k}\right)$	$\operatorname{Var}\left(d_{1 k}\right) \operatorname{Var}\left(d_{2 k}\right)$	$\operatorname{Var}\left(d_{1 k}\right) \operatorname{Var}\left(d_{2 k}\right)$			
1	.00072	.00170	.00094	.00271	.00044	
2	.00221	.00485	.00162	.00405	.00229	
3	.00147	.00325	.00140	.00355	.00203	
4	.00064	.00213	.00048	.00156	.000359	
5	.00097	.00227	.00052	.00118	.00038	
6	.00199	.00546	.00079	.00216	.00060	
MAX	.00221	.00546	.00118			

TABLE 5.3
NUMBER OF REPLICATIONS FOR SIMULATION RUN WHEN $\alpha=\beta=0.025$

| Number of criteria | NC=3 |  | NC=4 |  | NC=5 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| goodness of fit* | E | C | $E$ | $C$ | $E$ | $C$ |
| de values used | 0.05 | 0.08 | 0.045 | 0.07 | 0.04 | 0.07 |
| Number of replication | 16 | 16 | 15 | 15 | 24 | 25 |

*E stands for Euclidean distance measure and $C$ stands for city block distance measure.

## Experimental Design

The experimental design for the simulation is summarized in Figure 5.1. This experiment will be repeated for each of eight decision making settings introduced by Takeda, et al. (1987) which were shown in Table 5.1. At each replication, the $C^{\prime}$ matrix is generated from equation (5.1) and the six methods are applied in order to estimate


Figure 5.1. Summary of Experimental Design for Simulation
their own weight vector. Then, the distance measures are calculated by using the two different measures of goodness of fit. Repeating $R$ times, the averages of distance measures are obtained using (5.2) and (5.3). The statistical test for determining which method is superior can be carried out. For the statistical test to determine the significance of the difference between models, the hypotheses are set up as follows:

Null Hypothesis ( $H_{0}$ ): $\mu_{2}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{3}=\mu_{6}$ Alternative Hypothesis ( $\mathrm{H}_{2}$ ): At least one is different


Test Statistic
: $\mathrm{F}=$

$$
S_{P}{ }^{2}
$$

Critical Region : Reject Ho if

$$
F>F(d f n, d f d, \alpha)
$$

where $\mu_{k}, k=1,2, \ldots, 6$ is the population mean of the differences between the true weight vector and the estimated weight vector from model $k$. dek is calculated from equation (5.2) and (5.3). $d^{\prime} \pm$ is the average of $d_{\text {ex }}$ for $k=1,2, \ldots, 6 . S_{p^{2}}$ is pooled sample variance.

Duncan's new multiple-range test (1955) is used to find out which model is different from which model when null hypothesis, $H o$, is rejected.

Results, Comparison, and Analysis

In this section, the results of the simulations are presented, compared, and analyzed in order to decide if one or more methods are better than the others. Eight decision setting problems introduced by Takeda, et al. (1987) and shown in Table 5.1 were used for the simulation run.

The structure of the tables (see Table 5.4 for example) reporting the simulation results is as follows. In the table heading, the true weight vector $w$ is given first. Second, the decision maker's confidence, or degree of knowledge when comparing criterion $i$ with criterion $j$ represented by $D(i, j)$ for Takeda, et al.'s method is given. Third, the number of replications, $R$, for detecting a particular difference is reported. Fourth, the seed number used for generating uniform random numbers is given. The uniform random numbers were generated from the RANF introduced by Chandler (1970).

The average of weights, averages of differences between true weight vector and estimated weight vector, and the variation of those differences are then reported for the three models, developed in Chapter III which are represented by Model 1, Model 2 , and Model 3 respectively. The solution given by Saaty's approach is represented by Model 4, the solution obtained from Cogger and Yu's method is represented by Model 5 , and the Graded Eigenvector Method developed by Takeda, et al. is represented by Model 6.

Table 5.4, based on $R=16$, indicates that the estimated weight vectors from Model 1 and Model 5 are preferred over the others based on the calculated $d^{\prime} 1$ and $d{ }^{\prime}$.

In Table 5.5 and Table 5.6, the $F$ value is obtained in order to determine the existence of a statistical significance between models by dividing the between models' mean square by the within models' mean square. The calculated $F$ value is compared with the tabular $F$ value for 5 and 90 degrees of freedom to decide whether to accept the null hypothesis of no difference between population means or the alternative hypothesis of a difference. The tabular $F$ value for 5 and 90 degrees of freedom is 2.33 at the 5 percent of significance level. Since calculated $F$ does not exceed 5 percent tabular $F$, the experiment provides no evidence of real differences between models for both measures.

TABLE 5.4
SIMULATION RESULTS BASED ON $W=(0.15,0.55,0.3)$,

$$
D(1,2)=0.9, D(1,3)=0.6, \quad D(2,3)=0.3
$$

$$
\mathrm{R}=16, \quad \mathrm{NC}=3, \quad \text { SEED }=0
$$

Model	$W^{\prime}$	$d^{\prime} I_{1}$	$\sigma_{d} I_{1}{ }^{2}$	$d^{\prime}{ }_{2}$	$\sigma_{d \cdot z^{2}}$
1	$(.1627, .5256, .3117)$	.0435	.0007	.0684	.0017
2	$(.1532, .5851, .2617)$	.0672	.0015	.1029	.0033
3	$(.1567, .5791, .2642)$	.0685	.0014	.1049	.0030
4	$(.2512, .4316, .3172)$	.1607	.0015	.2464	.0036
5	$(.1470, .5568, .2962)$	.0323	.0002	.0499	.0006
6	$(.1469, .5552, .2979)$	.0780	.0016	.1216	.0040

TABLE 5.5
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.4

| Source of Variation df | Sum of Square | Mean Square | F |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Between Models | 5 | .0103 | .0021 | 1.7826 |
| Within Models | 90 | .1035 | .0012 |  |
| Total | 95 | .1138 |  |  |

TABLE 5.6
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.4

Source of Variation	df	Sum of	Square	Mean Square	F
Between Models	5	.0240	.0048	1.7752	
Within Models	90	.2430	.0027		
Total	95	.2670			

Table 5.7, differs from Table 5.4 only in the true weight vector, and also indicates that Model 1 and Model 5 are the preferred solution methods based on d'ı and d'z. If one had to rank the models in the order of generating a better weight vector to come behind Model 1 and Model 5 based on calculated $d^{\prime} ュ$ and $d{ }^{\prime}$, it would be Model 2, Model 3, Model 6, and Model 4 respectively.

TABLE 5.7

$$
\begin{gathered}
\text { SIMULATION RESULTS BASED ON } W=(0.3,0.15,0.55), \\
D(1,2)=0.9, D(1,3)=0.6, \quad D(2,3)=0.3 \\
R=16, N C=3, \operatorname{SEED}=0
\end{gathered}
$$

Model	$W^{\prime}$	$d^{\prime} I^{\prime}$	$\sigma_{a \cdot I^{2}}$	$d^{\prime} z_{2}$	$\sigma_{a \cdot z^{2}}$
1	$(.3087, .1679, .5234)$	.0462	.0007	.0702	.0019
2	$(.2418, .1513, .6069)$	.0849	.0018	.1305	.0038
3	$(.2428, .1559, .6013)$	.0872	.0018	.1333	.0039
4	$(.3921, .1189, .4890)$	.1199	.0016	.1901	.0042
5	$(.2968, .1539, .5493)$	.0449	.0007	.0686	.0016
6	$(.2980, .1552, .5468)$	.0874	.0016	.1373	.0042

In Table 5.8 and Table 5.9, the $F$ value is obtained in order to determine the existence of a statistical significance between models by dividing the between models' mean square by the within models' mean square. Since calculated $F$ does not exceed 5 percent tabular $F$, the experiment provides no evidence of real differences between models for both measures.

TABLE 5.8
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.7

| Source of Variation df | Sum of | Square | Mean Square | F |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0041 | .0008 | 0.5985 |
| Within Models | 90 | .1230 | .0014 |  |
| Total | 95 | .1271 |  |  |

TABLE 5.9

ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.7

| Source of Variation df | Sum of Square | Mean Square | F |  |
| :--- | ---: | ---: | :--- | :---: | :---: |
| Between Models | 5 | .0106 | .0021 | 0.6490 |
| Within Models | 90 | .2940 | .0033 |  |
| Total | 95 | .3046 |  |  |

Table 5.10 and Table 5.13 yield Model 1 and Model 5 again as best models based on the calculated $d^{\prime} I_{2}$ and $d^{\prime} z^{\prime}$ but a somewhat different result on the other models. The reasons are most likely due to the different values of $D(i, j)$ used in Model 6 and different seed number used in all models. In this case, Model 6, Model 3 , Model 2 , and Model 4 is the order of generating better weight vectors behind model 1 and Model 5. Again the comparison is based
 of view, there is no evidence of any differences between models as can be seen in Table 5.11, Table 5.12, Table 5.14, and Table 5.15.

TABLE 5.10
SIMULATION RESULTS BASED ON $W=(0.55,0.3,0.15)$, $D(1,2)=0.9, \quad D(1,3)=0.6, \quad D(2,3)=0.3$

$$
R=16, N C=3, \quad S E E D=472
$$

Model	$W^{\prime}$	$d^{\prime} I_{2}$	$\sigma_{a \cdot 1^{2}}$	$d^{\prime} z_{2}$	$\sigma_{a \cdot z^{2}}$
1	$(.5555, .2825, .1620)$	.0380	.0003	.0599	.0008
2	$(.5890, .2589, .1521)$	.0786	.0015	.1208	.0035
3	$(.5846, .2607, .1547)$	.0742	.0013	.1146	.0033
4	$(.4377, .3770, .1853)$	.1430	.0006	.2253	.0018
5	$(.5481, .3015, .1504)$	.0431	.0007	.0686	.0019
6	$(.5480, .3014, .1506)$	.0594	.0016	.0928	.0038

TABLE 5.11
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.10

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0072 | .0015 | 1.5000 |
| Within Models | 90 | .0900 | .0010 |  |
| Total | 95 | .0972 |  |  |

TABLE 5.12

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.10

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0179 | .0036 | 1.4185 |
| Within Models | 90 | .2265 | .0025 |  |
| Total | 95 | .2444 |  |  |

TABLE 5.13

$$
\begin{gathered}
\text { SIMULATION RESULTS BASED ON } W=(0.55,0.3,0.15), \\
D(1,2)=0.9, \mathrm{D}(1,3)=0.8, \mathrm{D}(2,3)=0.3 \\
\mathrm{R}=16, \mathrm{NC}=3, \mathrm{SEED}=0
\end{gathered}
$$

Model	$W^{\prime}$	$d^{\prime} 1$	$\sigma_{a \cdot 1^{2}}$	$d^{\prime} z_{2}$	$\sigma_{a \cdot z^{2}}$
1	$(.5536, .2831, .1633)$	.0450	.0007	.0699	.0018
2	$(.5833, .2654, .1513)$	.0745	.0015	.1141	.0032
3	$(.5826, .2608, .1566)$	.0736	.0013	.1118	.0028
4	$(.4324, .3795, .1881)$	.1498	.0008	.2365	.0028
5	$(.5412, .3083, .1505)$	.0449	.0010	.0709	.0024
6	$(.5406, .3069, .1525)$	.0675	.0023	.1039	.0053

TABLE 5.14
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.13

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0075 | .0015 | 1.1538 |
| Within Models | 90 | .1140 | .0013 |  |
| Total | 95 | .1215 |  |  |

TABLE 5.15
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.13

Source of Variation	df	Sum of Square	Mean Square	F
Between Models	5	.0188	.0038	1.2361
Within Models	90	.2745	.0031	
Total	95	.2933		

Table 5.16, Table 5.19, and Table 5.22 present simulation results for the case of $N C=4$ criteria weights. Utilizing the same true weight vector, differing values of $D(i, j)$ and seed number are used for generating a pairwise comparison matrix and a simulation run.

Table 5.16, again, indicates that model 1 and Model 5 are superior to the other models having smaller values of d'ı and d'z. Model 4, which generated the worst weight vector in case of $N C=3$, becomes fourth when $N C=4$. There is no differences between models from statistical view point as shown in Table 5.17 and Table 5.18 since calculated $F$ values do not exceed the tabular $F$ value, 2.33 for 5 and 84 degrees of freedom.

TABLE 5.16
SIMULATION RESULTS BASED ON $W=(0.2,0.4,0.1,0.3)$, $D(1,2)=0.7, D(1,3)=0.9, D(1,4)=0.8, D(2,3)=0.7$, $D(2,4)=0.6, D(3,4)=0.4, R=15, N C=4$, SEED $=0$

Model	$W^{\prime}$	$d^{\prime} I_{1}$	$\sigma_{d \cdot 1}{ }^{2}$	$d^{\prime}{ }_{2}$	$\sigma_{d \cdot 2^{2}}$
1	$(.2088, .3888, .1038, .2986)$	.0410	.0007	.0681	.0019
2	$(.1515, .4585, .1017, .2883)$	.1178	.0016	.1916	.0042
3	$(.1580, .4532, .1029, .2859)$	.1173	.0011	.1903	.0032
4	$(.2006, .3845, .1055, .3094)$	.0673	.0008	.1165	.0024
5	$(.2020, .4127, .0940, .2913)$	.0421	.0007	.0677	.0014
6	$(.2059, .4106, .0880, .2955)$	.0622	.0006	.1038	.0017

TABLE 5.17
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.16

| Source of Variation | df | Sum of Square | Mean Square | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0061 | .0012 | 1.3269 |
| Within Models | 84 | .0769 | .0009 |  |
| Total | 89 | .0830 |  |  |

TABLE 5.18
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.16

| Source of Variation | df | Sum of square | Mean Square | $F$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0157 | .0031 | 1.2745 |
| Within Models | 84 | .2071 | .0025 |  |
| Total | 89 | .2444 |  |  |

Table 5.19 uses the same true weight vector but different $D(i, j)$ and seed number used from those in Table 5.16. On the average, the models can be ranked from better to worse solutions as Model 1, Model 5, Model 6, Model 4, Model 3, and Model 2. No statistical differences are indicated between models as shown in Table 5.20 and Table 5. 21.

TABLE 5.19

$$
\begin{aligned}
& \text { SIMULATION RESULTS BASED ON } W=(0.2,0.4,0.1,0.3), \\
& D(1,2)=0.8, D(1,3)=0.7, D(1,4)=0.9, D(2,3)=0.4, \\
& D(2,4)=0.6, D(3,4)=0.5, R=15, N C=4, \operatorname{SEED}=40
\end{aligned}
$$

Model	$W^{\prime}$	$d^{\prime} I_{2}$	$\sigma_{a} I^{2}$	$d^{\prime} 2$	$\sigma_{a \cdot z^{2}}$
1	$(.2029, .3806, .1009, .3156)$	.0460 .0003	.0808	.0008	
2	$(.1532, .4400, .1006, .3062)$	.0992	.0013	.1645	.0038
3	$(.1574, .4538, .1039, .2849)$	.0974	.0012	.1601	.0030
4	$(.2190, .3522, .1172, .3116)$	.0743	.0007	.1320	.0026
5	$(.2062, .3869, .1064, .3005)$	.0488	.0003	.0817	.0009
6	$(.2182, .3854, .1122, .2842)$	.0677	.0006	.1148	.0016

TABLE 5.20

## ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.19

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0026 | .0005 | 0.7153 |
| Within Models | 84 | .0616 | .0007 |  |
| Total | 89 | .0642 |  |  |

TABLE 5.21

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.19

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0067 | .0013 | 0.6360 |
| Within Models | 84 | .1777 | .0021 |  |
| Total | 89 | .1845 |  |  |

Table 5.22, the same true weight vector but different $\mathrm{D}(\mathrm{i}, \mathrm{j})$ and seed number used from Table 5.16 and Table 5.19, indicates that Model 1 is ranked first based on the calculated $d^{\prime} ı$ and $d^{\prime} z$. If one had to pick a method to come in second place behind Model 1 based on smaller values of d'ı and d'z, it would be Model 5. Model 6 would be picked third, Model 4 fourth, Model 2 fifth, and Model 3 would be sixth.

Table 5.23 and Table 5.24 indicate no statistical significance between models since the calculated $F$ values do not exceed 5 percent tabular $F$ value for 5 and 84 degrees of freedom.

TABLE 5.22
SIMULATION RESULTS BASED ON $W=(0.2,0.4,0.1,0.3)$, $D(1,2)=0.7, D(1,3)=0.6, D(1,4)=0.8, D(2,3)=0.5$, $D(2,4)=0.6, D(3,4)=0.3, R=15, N C=4, \operatorname{SEED}=921$

Model	$W^{\prime}$	$d_{1}^{\prime}$	$\sigma_{d \cdot 1}{ }^{2}$	$d^{\prime} 2$	$\sigma_{d} \cdot 2^{2}$
1	$(.2033, .3828, .1092 ; .3047)$	.0419	.0008	.0700	.0021
2	$(.1449, .4532, .1040, .2979)$	.1034	.0033	.1721	.0079
3	$(.1479, .4583, .1040, .2898)$	.1115	.0067	.1812	.0142
4	$(.1914, .3790, .1246, .3050)$	.0669	.0004	.1171	.0011
5	$(.1952, .4065, .1046, .2937)$	.0454	.0004	.0769	.0012
6	$(.2010, .4045, .1048, .2897)$	.0614	.0005	.1035	.0013

TABLE 5.23
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.22

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0043 | .0009 | 0.4262 |
| Within Models | 84 | .1693 | .0020 |  |
| Total | 89 | .1736 |  |  |

TABLE 5.24
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.22

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0111 | .0022 | 0.4791 |
| Within Models | 84 | .3892 | .0046 |  |
| Total | 89 | .4003 |  |  |

Table 5.25, based on $R=25$ and $N C=5$, yields quite similar results to those in Table 5.22 except Model 4 is now in third place and Model 3 is in fifth place. No statistical significance between models is detected. As shown in Table 5.26 and Table 5.27, the calculated $F$ values do not exceed 5 percent tabular $F$ value, 2.29 , for 5 and 144 degrees of freedom.

TABLE 5.25
SIMULATION RESULTS BASED ON $W=(.25, .3, .15, .1, .2)$, $D(1,2)=0.6, D(1,3)=0.7, D(1,4)=0.8, ~ D(1,5)=0.6$, $D(2,3)=0.7, D(2,4)=0.6, D(2,5)=0.6, D(3,4)=0.5$, $D(3,5)=0.8, D(4,5)=0.3, R=25, N C=5, \operatorname{SEED}=0$

Model	$1 W^{\prime}$	$\mathrm{d}^{\prime}$	$\sigma_{\text {a }} 1^{2}$	$\mathrm{d}^{\prime} 2$	$\sigma_{\text {d }} \cdot 2^{2}$
	$(.2520, .2878, .1507, .1038, .2057)$	. 0381	. 0005	. 0671	. 0015
	(.2560, .3705,.0927,.1003,.1805)	. 1211.	. 0021	. 2173	. 0059
	(.2541, . $3714, .0939, .0999, .1807$ )	. 1198	. 0019	. 2157	. 0053
	$(.2429, .3036, .1481, .1041, .2014)$	. 0519	. 0004	. 0955	. 0014
	(.2461, . $3058, .1473, .0981, .2027$ )	. 0401	. 0004	. 0725	. 0011
6 (	(.2498, . $3114, .1424, .0979, .1985$ )	. 0578	. 0006	. 1074	. 0023

TABLE 5.26

## ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.25

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0075 | .0015 | 1.5186 |
| Within Models | 144 | .1416 | .0010 |  |
| Total | 149 | .1491 |  |  |

TABLE 5.27

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.25

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 5 | .0239 | .0048 | 1.6406 |
| Within Models | 144 | .4199 | .0029 |  |
| Total | 149 | .4438 |  |  |

Even though there were no statistical evidences of significance between models indicated, Model 1 has been ranked the first, based on smallest values of the calculated $d^{\prime} ı$ and $d^{\prime} 2$, for all the decision making setting problems except problems 1 and 2 as summarized in Table 5.28. The largest problem used by Takeda, et al. (1987) has five criteria. What if the problem size is larger than five-criteria problem? Additional simulation runs were made for the problems of $\mathrm{NC}=7$ and $\mathrm{NC}=9$ shown in Table 5.29 after eliminating two worst models based on largest values of $d^{\prime} ı$ and $d^{\prime} 2$ which were Model 2 and Model 3.

TABLE 5.28
SUMMARY OF THE SIMULATION RESULTS FOR EIGHT DECISION MAKING SETTING PROBLEMS

Decision Making   Setting Problem	Number of   Criteria	First Ranked   Model
1	3	Model 5
2	3	Model 5
3	3	Model 1
4	3	Model 1
5	4	Model 1
6	4	Model 1
7	4	Model 1
8	5	Model 1

The true weight vectors, $W$, are provided by this author. The decision maker's confidence, $D(i, j)$, when comparing criterion $i$ with criterion $j$ for the Model 6 is generated by $(0,1)$ uniform random numbers since it is not available from previous work.

TABLE 5.29
PROBLEM DESCRIPTIONS FOR ADDITIONAL SIMULATION RUN

$i$	$W$	$D(i, j)$
7	$(.2, .12, .15, .1, .2, .05, .18)$	$(0,1)$ Uniform
9	$(.2, .12, .08, .1, .17, .05, .15, .1, .03)$	Random Numbers

Table 5.30, Table 5.33, and Table 5.36 indicate that the weights from Model 1 are the best ones based on the calculated values of $d^{\prime} ı$ and $d^{\prime}$. . Model 6 would be picked second, Model 4 third. No weights can be calculated from Model 5. As explained in Chapter II, a weight from Model 5, due to Cogger and $Y u$ (1985), is the geometric mean of all the weights generated from the possible index orders. An index order of 2520 must be enumerated when $N C=7$. A severe underflow problem is encountered when multiplying the numbers which are less than 1.02520 times. At this point, mathematics of this technique prohibits the calculation of the geometric mean when the problem has more than five criteria.

Table 5.31, Table 5.32, Table 5.34, Table 5.35, Table 5.37, and Table 5.38 indicate that statistical significance between models exists since all calculated $F$ values exceed 5 percent tabular $F$ value, 2.39, for 2 and 74 degrees of freedom.

TABLE 5.30
SIMULATION RESULTS BASED ON $W=(.2, .12, .15, .1, .2, .05, .18)$, D(i,j)* IS GENERATED FROM (0,1) UNIFORM RANDOM NUMBERS, $\mathrm{R}=25$, $\mathrm{NC}=7$, SEED=3211

Model	el W'	$d^{\prime}{ }^{\prime}$	$\sigma_{a} \cdot 1^{2}$	$d^{\prime}=$	$\sigma_{\text {a }} 2^{2}$
1 (.2024,.1212,.1502,.1016,.1891,					
	. $0538, .1817)$	. 0293	. 0002	. 0601	. 0007
$4(.0874, .1298, .0831, .2303, .1435$, 010 .					
	. $1534, .1725$ )	. 2310	. 0007	. 5149	. 0037
5 No Weights Estimated					
6 (.2012,.1227,.1441,.0983,.1964,					
	.0460,.1913)	. 0590	. 0003	. 1232	. 0010
${ }^{*} D(1,2)=.68, D(1,3)=.62, D(1,4)=.97, D(1,5)=.82, D(1,6)=.81$,					
$D(1,7)=.53, D(2,3)=.67, D(2,4)=.95, D(2,5)=.40, D(2,6)=.73$,					
$D(2,7)=.64, D(3,4)=.65, D(3,5)=.40, D(3,6)=.83, D(3,7)=.85$,					
$D(4,5)=.96, D(4,6)=.92, D(4,7)=.81, D(5,6)=.93, D(5,7)=.05$,					

TABLE 5.31

## ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.30

Source of Variation	df	Sum of	Square	Mean Square	F
Between Models	2	.0237	.0119	29.6454	
Within Models	72	.0288	.0004		
Total	74	.0525			

TABLE 5.32
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE
MEASURE DATA OF TABLE 5.30

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 2 | .1214 | .0607 | 33.7272 |
| Within Models | 72 | .1296 | .0018 |  |
| Total | 74 | .2510 |  |  |

Duncan's (1955) new multiple-range test is used to see which model is different from which model since $\mathrm{Ho}_{\mathrm{o}}$ is rejected. This test consists of computing the least significant ranges, $R_{p}$, by Eq. 5.5 and applying it to differences between all pairs of means.

$$
\begin{equation*}
R_{p}=q_{\alpha}(p, f e) S_{a} \tag{5.5}
\end{equation*}
$$

where $q_{\infty}$ is obtained from significant studentized ranges for new multiple-range test (Steel and Torrie, 1980), p is the number of between models, $f e$ is error $d f$, and $S a$ is the standard error of a between models' mean.

For the Euclidean distance measure data of Table 5.30, the values for Duncan's test are summarized as follows:

$p$	2	3
$q_{x}(p, 72)$	2.83	2.98
$R_{D}$	0.0113	0.0119

A summary of the test results, using d'ık for $k=1,4,6$, follows.

$$
\begin{array}{ccc}
\text { Model } 1 & \text { Model } 6 & \text { Model } 4 \\
.0293 & .0590 & .2310
\end{array}
$$

Duncan's test indicates that the average distance between the true weight vector and estimated weight vector from Model 1 is different from those from the other two models. The same test result occurs for the city block distance measure.

TABLE 5.33
SIMULATION RESULTS BASED ON $W=(.2, .12, .15, .1, .2, .05, .18)$, D(i,j)* IS GENERATED FROM $(0,1)$ UNIFORM RANDOM NUMBERS, $R=25, N C=7$, SEED $=4444$


TABLE 5.34

## ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.33

Source of Variation	df	Sum of	Square	Mean Square	F
Between Models	2	.0250	.0125	31.2173	
Within Models	72	.0288	.0004		
Total	74	.0538			

TABLE 5.35

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.33

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 2 | .1293 | .0646 | 34.0140 |
| Within Models | 72 | .1368 | .0019 |  |
| Total | 74 | .2661 |  |  |

Duncan's new multiple-range test is applied to see which model is different from which model since Ho is rejected. A summary of the test results, using d'1x for $k=1,4,6$ in Table 5.33 and (5.6), follows.

Model 1	Model 6	Model 4
.0303	.0518	.2337

Duncan's test indicates that the average distance between the true weight vector and estimated weight vector from Model 1 is different from those from the other two models. The same test result is made for the city block distance measure.

TABLE 5.36
SIMULATION RESULTS BASED ON $W=(.2, .12, .15, .1, .2, .05, .18)$, D(i,j)* IS GENERATED FROM $(0,1)$ UNIFORM RANDOM NUMBERS, $R=25, N C=7, S E E D=5678$
Model $W^{\prime} \quad d^{\prime} 1 \sigma_{d \cdot 1}{ }^{2} d^{\prime}=\sigma_{d \cdot}{ }^{2}$
$1(.2047, .1208, .1517, .0999, .1881, .0528, .1820)$ .0288 .0002 .0584 .00064
(. $0.904, .1207, .0831, .2274, .1452, .1595, .1737$ )
.2281 . 0005 . 5123 . 0035
5 No Weights Estimated 6 (.1924,.1210,.1531,.1037,.1956, .0499,.1843) .0532 . 0003 . 1095 . 0011

* $D(1,2)=.68, D(1,3)=.62, D(1,4)=.97, D(1,5)=.82, D(1,6)=.81$, $D(1,7)=.53, D(2,3)=.67, D(2,4)=.95, D(2,5)=.40, D(2,6)=.73$, $D(2,7)=.64, D(3,4)=.65, D(3,5)=.40, D(3,6)=.83, D(3,7)=.85$, $D(4,5)=.96, D(4,6)=.92, D(4,7)=.81, D(5,6)=.93, D(5,7)=.05$, $D(6,7)=.54$,

TABLE 5.37
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE
MEASURE DATA OF TABLE 5.36

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 2 | .0236 | .0118 | 35.4529 |
| Within Models | 72 | .0240 | .0003 |  |
| Total | 74 | .0476 |  |  |

TABLE 5.38
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.36

Source of Variation	df	Sum of Square	Mean	Square	F
Between Models	2	.1236	.0618	35.6619	
Within Models	72	.1248	.0017		
Total	74	.2484			

Duncan's new multiple-range test is applied to see which model is different from which model since Ho is rejected. A summary of the test results, using d'ık for $\mathrm{k}=1,4,6$ in Table 5.36 and (5.6), follows.

Model 1	Model 6	Model ${ }^{4}$
.0288	.0532	.2281

Duncan's test indicates that the average distance between the true weight vector and estimated weight vector from Model 1 is different from those from the other two models. The same test result occurs for the city block distance measure.

Additional simulation runs were made using NC=9 problem after eliminating Model 4 and Model 5 from further considerations since Model 4 was determined as worst model by Duncan's new multiple-range test and as mentioned before, no weights can be estimated from Model 5 when the number of criteria is more than five.

Table 5.39, Table 5.42, and Table 5.45 indicate that the weights from Model 1 are better than the weights from Model 6 based on smaller values of the calculated d'ı and $d^{\prime} z$. The same $F$ test was applied in order to determine the existence of a statistical significance between two models.

As indicated in Table 5.40 and Table 5.41 , no statistical differences between two models are detected since calculated $F$ values do not exceed the 5 percent tabular $F$ value, 2.84 , for 1 and 48 degrees of freedom.

TABLE 5.39
SIMULATION RESULTS BASED ON $W=(.2, .12, .08, .1, .17, .05, .15$, .1,.03), D(i,j)* IS GENERATED FROM $(0,1)$ UNIFORM RANDOM NUMBERS, $R=25$, $N C=9$, $\operatorname{SEED}=6156$

Model	$1 W^{\prime}$	$d^{\prime}{ }^{1}$	$\sigma_{a} \cdot{ }^{2}$	$\mathrm{d}^{\prime} 2$	$\sigma_{d} \cdot 2^{2}$
	. $0514, .1513, .1033, .0322)$	. 0252	. 0003	. 0535	. 0009
61	(.2006, .1218,.0796,.1003,.1669,				
	.0481,.1542,.0990,.0295)	. 0464	. 0003	. 1088	. 0011

[^0]TABLE 5.40

## ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.39

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .0002 | .0002 | 0.7491 |
| Within Models | 48 | .0144 | .0003 |  |
| Total | 49 | .0146 |  |  |

TABLE 5.41

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.39

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .0015 | .0015 | 1.5290 |
| Within Models | 48 | .0480 | .0010 |  |
| Total | 49 | .0495 |  |  |

TABLE 5.42
SIMULATION RESULTS BASED ON $W=(.2, .12, .08, .1, .17, .05, .15$, .1,.03), $D(i, j)^{*}$ IS GENERATED FROM $(0,1)$ UNIFORM RANDOM NUMBERS, $R=25 ; N C=9$, SEED $=7312$


Table 5.43 and Table 5.44 indicate that there is some statistical differences between two models since calculated $F$ values exceed the 5 percent tabular $F$ value, 2.84 , for 1 and 48 degrees of freedom.

TABLE 5.43
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.42

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .0005 | .00047 | 3.1008 |
| Within Models | 48 | .0072 | .00015 |  |
| Total | 49 | .0077 |  |  |

TABLE 5.44
ANALYSIS OF VARIANCE FOR GITY BLOCK DIETANCE MEASURE DATA OF TABLE 5.42

Source of Variation	df	Sum of	Square	Mean Square	$F$
Between Models	1	.0024	.00240	3.2294	
Within Models	48	.0360	.00075		
Total	49	.0384			

TABLE 5.45
SIMULATION RESULTS BASED ON $W=(.2, .12, .08, .1, .17, .05, .15$, $.1, .03), D(i, j) *$ IS GENERATED FROM $(0,1)$ UNIFORM RANDOM NUMBERS, $R=25, ~ N C=9, ~ S E E D=8866$


TABLE 5.46
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.45

Source of Variation	df	Sum of square	Mean	square	$F$
Between Models	1	.0003	.00033	2.1845	
Within Models	48	.0072	.00015		
Total	49	.0075			

Table 5.47 indicates that there is some statistical differences between the two models since calculated $F$ values exceed the 5 percent tabular $F$ value, 2.84 , for 1 and 48 degrees of freedom.

TABLE 5.47
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .0020 | .00200 | 3.0628 |
| Within Models | 48 | .0312 | .00065 |  |
| Total | 49 | .0332 |  |  |

Finally, Model 1 should be selected if one had to pick a best methodology to estimate weight. There were no statistical significance indicated when the number of criteria is less than or equal to five, but practically speaking, Model 1 was always ranked number one except in decision making setting problem 1 and 2 as shown in Table 5.28. When the number of criteria is more than five, the differences calculated from the true weight and the estimated weight from Model 1 are significantly different from those of the other methods. This significance implies that the weight estimated from Model 1 is better than the others based on $F$ test and Duncan's new multiple-range test. The second best methodology would be Model 6 if the number of criteria is six or more. For the small size problems which have less than six criteria, then Model 5 is the recommended second choice. There were no statistical significances indicated between Model 5 and Model 6 when the number of criteria is less than or equal to five, but
the weights from Model 5 were always better than those from Model 6 based on smaller values of $d^{\prime} 1$ and $d^{\prime} z$.

## Discussions on Multiple Decision Makers

In order to compare the two procedures introduced in Chapter III for estimating weights under the situation of having multiple decision makers, three of the decision making setting problems and measurements of goodness of fit are used. Estimating weights using C'avg matrix (3.13) obtained by averaging $N$ pairwise comparison matrices was the first procedure. Estimating weights by averaging the $N$ individual weights calculated from $N$ C'a matrix (3.12) was the second procedure.

For this study, Model 1, which is determined as a best model in this research, is used for calculating the average and the variance of the differences between the true weight vector and the estimated weight vectors from the two procedures. It is assumed that two decision makers are involved in this problem. It is also assumed that the variation of the decision makers' judgment follows a uniform distribution ( $0.5,1.5$ ) and ( $0.3,1.7$ ) respectively. The decision making settings used in this comparison are $W=(.55, .3, .15)$ for $N C=3, W=(.2, .4, .1, .3)$ for $\mathrm{NC}=4$, and $\mathrm{W}=(.25, .3, .15, .1, .2)$ for $\mathrm{NC}=5$. Table 5.48, based on $N=30$ replications, indicates that procedure 1 generates better weights all the time, regardless of the decision
making setting problems, based on smaller values of the


TABLE 5.48
SIMULATION RESULTS FOR TWO DECISION MAKERS WHEN $\mathrm{N}=30$

P	$\mathrm{NC}=3$				$\mathrm{NC}=4$				$\mathrm{NC}=5$	
	$d^{\prime} 1$	$\sigma_{\text {di }}{ }^{2}$	$\mathrm{d}^{\prime} 2$	$\sigma_{\text {a }} 2^{2}$	$\mathrm{d}^{\prime}$	$\sigma_{\text {d }} \cdot{ }^{2}$	$\mathrm{d}^{\prime} 2$	$\sigma_{\text {a }} \cdot{ }^{2}$	$\mathrm{d}^{\prime} \mathrm{I}_{\text {der }}$	$\mathrm{d}^{\prime}{ }_{2} \sigma_{a} \cdot 2^{2}$
1	. 065	. 002	. 100	. 004	. 069	. 003	. 117	. 007	. 070.002	. 124.005
2	. 076	. 002	. 117	.003	. 077	. 003	. 130	. 007	. 082.002	. 145.005

The $F$ test is applied in order to determine the existence of a statistical difference between the two procedures. As can be seen in the following Tables, no statistical differences are indicated since calculated $F$ values do not exceed 5 percent tabular $F$ value, 2.79, for 1 and 58 degrees of freedom.

TABLE 5.49
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.48 , WHEN NC=3

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .00006 | .00006 | 0.0303 |
| Within Models | 58 | .11600 | .00200 |  |
| Total | 59 | .11606 |  |  |

TABLE 5.50

## ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE

MEASURE DATA OF TABLE 5.48 WHEN NC=3	Source of Variation	df	Sum of Square	Mean Square	$F$
Between Models	1	.00003	.00003	0.0107	
Within Models	58	.17400	.00300		
Total	59	.17403			

TABLE 5.51
ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.48 WHEN NC=4

| Source of Variation | df | Sum of Square | Mean Square | $F$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .00007 | .00007 | 0.0360 |
| Within Models | 58 | .11600 | .00200 |  |
| Total | 59 | .11607 |  |  |

TABLE 5.52
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.48 WHEN NC=4

| Source of Variation | df | Sum of Square | Mean Square | $F$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .00014 | .00014 | 0.0413 |
| Within Models | 58 | .20300 | .00350 |  |
| Total | 59 | .20314 |  |  |

TABLE 5.53

> ANALYSIS OF VARIANCE FOR EUCLIDEAN DISTANCE MEASURE DATA OF TABLE 5.48 WHEN NC $=5$

| Source of Variation | df | Sum of Square | Mean Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .00008 | .00008 | 0.0121 |
| Within Models | 58 | .40600 | .00700 |  |
| Total | 59 | .40608 |  |  |

TABLE 5.54
ANALYSIS OF VARIANCE FOR CITY BLOCK DISTANCE MEASURE DATA OF TABLE 5.48 WHEN NC=5

| Source of Variation | df | Sum of Square | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Models | 1 | .00022 | .00022 | 0.0441 |
| Within Models | 58 | .29000 | .00500 |  |
| Total | 59 | .29022 |  |  |

## CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMEMDATIONS

This chapter summarizes all the steps carried out in order to fulfill the goal and objectives of this research. Conclusions from this research are then provided. Finally, recommendations for future work and possible extensions of this research are outlined.

Summary

Chapter $I$ of this research provides the problem statement. Introduction of the background of various weighting methods is given. The research goal which involves several objectives is then identified. An extensive literature survey of various weighting methods is given in Chapter II. Chapter III develops the new weighting methods employing the minimization of judgmental error and the refinement of decision maker's inconsistency using pairwise comparisons and linear programming. This research contributes the idea of considering the minimization of a decision maker's judgmental error unlike other subjective approaches. This research also contributes to refining a decision maker's inconsistency by using all aıy in pairwise comparisons when estimating
weights. A comprehensive, interactive computer program has been developed and described in Chapter IV. This aspect provides benefits to both decision makers and researchers. This interactive feature of the program will be a great asset in communicating with decision makers. The results of simulation for the purpose of comparison and analysis are provided in Chapter $V$.

In order to fulfill the research goal and objectives, the following accomplishments have been achieved:

1. Three analytical models based on the minimization of a decision maker's judgmental error and refinement of a decision maker's inconsistency have been developed. These three models use the same pairwise comparison matrix as used in various eigen-vector methods.
2. Two procedures of estimating weights under the situation of having multiple decision makers have been illustrated. These procedures use the same pairwise comparison matrices as mentioned before.
3. An interactive and comprehensive computer program has been developed and designed. This program implements six weight estimation methods of the (1) Proposed Model 1, (2) Proposed Model 2, (3) Proposed Model 3, (4) Saaty's Method, (5) Cogger and Yu's Method, and (6) Takeda, et al.'s Method.

## Conclusions and Recommendations

Based on the results obtained in this research, the best model of estimating weights by using a pairwise comparison matrix is the Model 1 developed in the research.

The results of this research are interesting and encouraging. The Model 1 developed in this research estimates weights for MCDM settings more accurately based on the Euclidean distance measure and the city block distance measure than those obtained by the three eigenvector methods. This is directly due to the effects of the minimization of a decision maker's judgmental error and the refinement of a decision maker's inconsistency.

Possible further work with respect to weight estimating methods using a pairwise comparison matrix is as follows:

1. The intention of adding more constraints to Model 2 and Model 3 was to improve the quality of the weights. But, adding these constraints made the results worse. Finding a better constraining method can be an extension of this research.
2. Two averaging procedures have been used to estimate weights for multiple decision makers. Another method, for instance, $a_{1 y m i n} \leq W_{1} / W_{y} \leq a_{1 y m a x}$, where $a_{1 y m i n}$ is the minimum value of $a_{1=a}$ and $a_{1 y m a x}$ is the maximum value of $a_{1 y a} q=1,2, \ldots, N$, may be considered in an extension to this research.

Beckwith, N. E. and Lehmann, D. R. "The Importance of Differential Weights in Multiple Attribute Models of Consumer Attitude", Journal of Marketing Research, 10, (1973), 141-145.

Belton, V. "A Comparison of the Analytic Hierarchy Process and a Simple Multi-attribute Value Function", European Journal of operational Research, 26 , (1986), 7-21.

Buel, W. D. "A Simplification of Hay's Method of Recording Paired Comparison", Journal of Applied Psychology, 44, 5, (1960), 347-348.

Chandler, J. P. Technical Writing: RANF--Uniformly Distributed Psuedo-Random Numbers, Stillwater, Oklahoma State University, 1970.

Churchman, C. W. and Ackoff, R. L. "An Approximate Measure of value", Operations Research, 2, (1954), 172-191.

Claudy, J. G. "A Comparison of Five Variable Weighting Procedures", Educational and Psychological Measurement, 32, (1972), 311-322.

Cogger, K. O. and Yu, P. L. "Eigenweight Vector and LeastDistance Approximation for Revealed Preference in Pairwise Weights Ratios", Journal of Optimization Theory and Applications, 46, 4, (August, 1985), 483491.

Cook, R. L. and Stewart, T. R. "A Comparison of Seven Methods for Obtaining Subjective Descriptions of Judgmental Policy", Organizational Behavior and Human Performance, 13, (1975), 31-45.

Davidson, F. "Dimensions of Utility in a Regional Planning Context", Decision Science, 5, 1, (1974), 91-101.

Delbecq, A. L., Van de Ven, A. H. and Gustafson, D. H. "Group Techniques; Nominal Group and Delphi Processes", Glenview, III.: Scott, Foresman and Co., 1975.

Eckenrode, R. T. "Weighting Multiple Criteria", Management Science, 12, 3, (1965), 180-192.

Einhorn, H. J. and Hogarth, R. M. "Unit Weighting for Decision Making", Organizational Behavior and Human Performance, 13, 2, (1975), 171-192.

Fischer, G. W. "Four Methods for Assessing Multi-attribute Utilities: An Experimental Validation", Engineering Psychology Laboratory, University of Michigan, 1972.

Fischer, G. W. "Convergent Validation of Decomposed Multiattribute Utility Assessment Procedures for Risky and riskless Decisions", Organizational Behavior and Human Performance, 18, (1977), 295-315.

Frazelle, E. "Suggested Techniques Enable Multi-Criteria Evaluation of Material Handing Alternatives", Industrial Engineering, (February, 1985), 42-48.

Hay, E. N. "A Simple Method of Recording Paired Comparisons", Journal of Applied Psychology, 42, 2, (1958), 139-140.

Hobbs, B. F. "Analytical Multiobjective Decision Methods for Power Plant Siting", Unpublished manuscript, Brookhaven National Laboratory, Division of Regional Studies, Upton, N.Y., September, 1979.

Hobbs, B. F. "A Comparison of Weighting Methods in Power Plant siting", Decision Science, 11, (1980), 725-737.

Hoffman, P. J. "The Paramorphic Representation of Clinical Judgement", Psychological Bulletin, 57, (1960), 116131.

Huber, G. P. "Methods for Quantifying Subjective Probabilities and Multi-attribute Utilities", Decision Science, 5, 3, (1974), 430-458.

Jopling, D. "Plant Site Evaluation using Numerical Rankings", Power Engineering, (March, 1974), 56-59.

Keeney, R. L. "Evaluation of Proposed Storage sites", operations Research, 27, 1, (1979), 48-64.

Keeney, R. L. and Nair, K. "Nuclear Siting using Decision Analysis", Energy Policy, 5, 3, (1977), 223-231.

Kuester, J. L. and Mize, J. H. Optimization Techniques with FORTRAN, New York: McGraw-Hill, 1973.

Lehman, D. R. "Television Show Preference: Application of a Choice Model", Journal of Marketing Research, 8, (1971), 47-55.

Saaty, T. L. "A Scaling Method for Priorities in Hierarchical Structures", Journal of Mathematical Psychology, 15, 3, (1977), 234-281.

Saaty, T. L. The Analytic Hierarchy process, New York: McGraw-Hill, 1980 .

Schmidt, F. L. "The Relative Efficiency of Regression and simple Unit fredictor weighte in applied differential Psychology", Educational and Psychological Measurement, 31, (1971); 699-714.

Schmidt, F. L. "The Reliability of Differences Between Linear Regression Weights in Applied Differential Psychology", Educational and Psychological Measurement, 32, (1972), 879-886.

Schmitt, N. and Levine, R. L. "Statistical and Subjective Weights: Some Problems and Proposals", Organizational Behavior and Human Performance, 20, (1977), 15-30.

Schoemaker, P. J. H. and Waid, C. C. "An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models", Management Science, 28, 2, (1982), 182-196.

Steel, R. G. D. and Torrie, J. H. Principles and Procedures of Statistics: A Biometrical Approach, New York: McGraw-Hill, 1980.

Stimson, D. H. "Utility Measurement in Public Health Decision Making", Management Science, 16, 2, (1969), 17-30.

Takeda, E., Cogger, K. O., and Yu, P. L. "Estimating Criterion Weights using Eigenvectors: A Comparative Study", European Journal of Operations Research, 29, (1987), 360-369.

Trattner, M. H. "Comparison of Three Methods for Assembling Aptitude Test•Batteries", Personnel Psychology, 16, (1963), 221-232.

Voelker, A. H. "Facility Siting: An Application of the Nominal Group process(ORNL/NUREG/TM-81)", Oak Ridge, Tenn.: Oak Ridge National Laboratory, 1977.

Watson, J. "Proposed Methodology of Siting Nuclear Power Plants in France (MTR-6772)", McLean, Va.: MITRE Corporation, 1974.

Zeleny, M. Multiple Criteria Decision Making, New York: McGraw-Hill, 1982.



```
 IF(INQUR.EQ.2) GO TO 60
 732 WRITE(NO,14)
 14 FORMAT(1H1,/,5X,'==> ENTER THE NUMBER OF CRITERIA|')
 READ(NI,*) IC
 WRITE(NO,15) IC 15 FORMAT(/,/,5X,'YOU HAVE ', I2,'
 *CRITERIA. IS THIS NUMBER CORRECT?'
 * ,/,5X,'==> ENTER 1=YES, 2=NO. <<<')
 READ(NI,*) INQUR
 IF(INQUR.EQ.2) GO TO 732
 DO 733 K = 1, ND
 WRITE(NO,50) K
 50 FORMAT(1H1,/,5X,'*** THIS IS FOR DECISION MAKER',I2,'
 *!')
 DO 16 I = 1, IC
 DO 17 J = 1, IC
 IF(I.EQ.J) GO TO 18
 WRITE(NO,735) I, J
 735 FORMAT(1H1,/,5X,'==> BY HOW MUCH IS
 *CRITERIA',I2,'MORE IMPORTANT THAN CRITERIA',I2,' ?')
 READ(NI,*) AMOUNT
 CC(K,I,J) = AMOUNT
 GO TO 17
 18 CC(K,I,J)=1.0
 17 CONTINUE
 16 CONTINUE
C
C*** ECHO PRINT OUT INPUT DATA
C
 28 WRITE(NO,20) K
 20 FORMAT(1H1,5X,39(1H*),/,5X,'*** VALUES RECEIVED FROM
 *DECISION MAKER',I2,' ***',/,5X,39(1H*),/,/)
 DO 21 I = 1, IC
 21 WRITE(NO,*) (CC(K,I,J),J=1,IC)
 WRITE(NO, 22)
 22 FORMAT(/,/, 5X,'*** ARE THESE DATA CORRECT? ***',
 * /,5X,'==> ENTER 1=YES, 2=NO. <<<')
 READ (NI,*) INQUR
 IF(INQUR.EQ.1) GO TO 733
 27 WRITE(NO,55)
 55 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEX|')
 READ(NI,*) K1
 WRITE(NO, 23)
 23 FORMAT(/,5X,' = => ENTER ROW INDEX NUMBER|')
 READ(NI,*) I
 WRITE(NO, 24)
 24 FORMAT(/,5X,'==> ENTER COLUMN INDEX NUMBER|')
 READ(NI,*) J
 WRITE(NO, 25) 25 FORMAT(/,5X,'==> ENTER CORRECTED
 *VALUE OF RELATIVE IMPORTANCE|')
 READ (NI,*)CC(K1,I,J)
 WRITE(NO, 26)
 26 FORMAT(/,5X,'*** DO YOU NEED TO CHANGE MORE? ***',
```

```
 * \(\quad /, 5 \mathrm{X},{ }^{\prime}==>\) ENTER \(1=Y E S, 2=\) NO. <<<')
 READ(NI,*) INQUR
 IF(INQUR.EQ.1) GO TO 27
 GO TO 28
 733 CONTINUE
 WRITE (NO, 30)
 30 FORMAT(1H1,5X,26(1H*),5X,'*** MODEL AVAILABILITY
 ***',/,5X,26(1H*),/,/,5X,'1. MODEL 1',
 * \(/, 5 \mathrm{x}, \mathrm{'}^{\prime 2}\). MODEL 2',
 * /,5X,'3. MODEL 3',
 * /,5X,'4. MODEL 4',
 * /,5X,'5. MODEL 5',
 * /,5x,'6. MODEL 6',
 /,5X,'==> ENTER THE MODEL NUMBER|')
 READ(NI,*) IMODEL
\(40 \mathrm{X1}=1.0\)
 GO TO (701,702,702,750,751,752), IMODEL
 701 IF(ND.GE.2) GO TO 703
 DO \(704 \mathrm{I}=1\), IC
 DO \(705 \mathrm{~J}=1\), IC
 IF(I.EQ.J) GO TO 706
 \(C(I, J)=C C(1, I, J)\)
 GO TO 705
 \(706 \mathrm{C}(\mathrm{I}, \mathrm{J})=1.0\)
 705 CONTINUE
 704 CONTINUE
 GO TO 707
 703 DO \(708 \mathrm{I}=1\), IC
 DO \(709 \mathrm{~J}=1\), IC
 IF (I.EQ.J) GO TO 710
 S1 \(=0.0\)
 DO \(711 \mathrm{~K}=1\), ND
 S1 \(=\mathrm{Si}+\mathrm{CC}(\mathrm{K}, \mathrm{I}, \mathrm{J})\)
 711 CONTINUE
 \(C(I, J)=S 1 / F L O A T(N D)\)
 GO TO 709
 \(710 \mathrm{C}(\mathrm{I}, \mathrm{J})=1.0\)
 709 CONTINUE
 708 CONTINUE
C***
\(C\) INPUT PARAMETERS \(M=\) TOTAL NO. OF ROWS, \(N=T O T A L\)
C NO. OF COLS. NZRIVR = NO. OF INTEGER VARIABLES
 707 M = IC+2
 \(\mathrm{N}=2 * \mathrm{IC}+1\)
 NZRIVR = IC
C***
C READ MATRIX ELEMENTS
 DO \(8903 \mathrm{I}=1\), M
 DO \(8903 \mathrm{~J}=1\), N
 \(8903 \mathrm{ATAB}(\mathrm{I}, \mathrm{J})=0.0\)
 DO \(8010 \mathrm{~J}=2\), IC+1
 \(8010 \operatorname{ATAB}(1, J)=1.0\)
```

```
 J = 2
 DO 8011 I = 2, IC+1
 ATAB(I,J) = 1.0
 8 0 1 1 ~ J ~ = ~ J ~ + ~ 1 ~
 DO 8020 I = 2, IC+1
 DO 8021 J = NZRIVR+2, N
 IF((I-1).EQ.(J-IC-1)) GO TO 8022
 ATAB(I,J) = C(I-1,J-IC-1)
 GO TO 8021
 8022 ATAB(I,J) = 1.0-FLOAT(IC)
 8 0 2 1 ~ C O N T I N U E ~
 8020 CONTINUE
 DO 8030 J = NZR1VR+2, N
 8030 ATAB(M,J) = 1.0
 ATAB(M,1) = 1.0
 GO TO }71
 702 IN=0
 IF(ND.GE.2) GO TO }71
 DO 714 I = 1, IC
 DO 715 J = 1, IC
 IF(I.EQ.J) GO TO 716
 C(I,J) = CC(1,I,J)
 GO TO }71
 716 C(I,J) = 1.0
 715 CONTINUE
 714 CONTINUE
 GO TO }71
 713 DO 718 I = 1, IC
 DO 719 J = 1, IC
 IF(I.EQ.J) GO TO 720
 S1 = 0.0
 DO 721 K = 1, ND
 S1 = S1 + CC(K,I,J)
 721 CONTINUE
 C(I,J) = S1 / FLOAT(ND)
 GO TO 719
 720 C(I,J) = 1.0
 7 1 9 \text { CONTINUE}
 718 CONTINUE
C***
C INPUT PARAMETERS M = TOTAL NO. OF ROWS, N = TOTAL
C NO. OF COLS. NZRIVR = NO. OF INTEGER VARIABLES
 717 DO 8044 I = 1, IC-1
 8044 IN = IN + I
 M = 3*IN+3
 N = 3*IN+IC+1
 NZR1VR = 3*IN
C***
C READ MATRIX ELEMENTS
 DO 722 I = 1, M
 DO 722 J = 1, N
 722 ATAB(I,J) = 0.0
```

```
 I =1
 I2 = 1
 DO 8444 J = 2, NZR1VR+1
8444 ATAB(I,J) = 1.0
 I = I + 1
 DO 723 II = 1, IC-1
 DO 724 J = II+1, IC
 IF(C(II,J).GE.1.0) GO TO 8023
 DO 8024 K = NZR1VR+2, N
 ATAB(I,K) = C(J,I2) - C(II,I2)
 I2 = I2 + 1
 8024 CONTINUE
 I = I + 1
 I2 = 1
 IF(I.GT.(IN+1)) GO TO 8027
 GO TO 8022
8023 DO 80026 K = NZRIVR+2, N
 ATAB(I,K) = C(II,I2) - C(J,I2)
 I2 = I2 + 1
8026 CONTINUE
 I = I + 1
 I2 = 1
 IF(I.GT.(IN+1)) GO TO 8027
 724 CONTINUE
 723 CONTINUE
8 0 2 7 \text { DO 8028 II = NZR1VR+1, NZR1VR+IC-1}
 DO }8029\textrm{J}=II+1, NZR1VR+I
 IF(C(II-NZRIVR,J-NZRIVR).GE.1.0) GO TO 725
 ATAB(I,II+I2) = -1.0
 ATAB(I,I2+J) = C(II-NZR1VR;J-NZR1VR)
 GO TO }72
 725 АТАВ(I,II+I2) = 1.0
 ATAB(I,I2+J)= -C(II-NZR1VR,J-NZR1VR)
 726 IF(C(J-NZRIVR,II-NZRIVR).GE.1.0) GO TO }72
 ATAB(I+IN,II+I2)=C(J-NZR1VR,II-NZR1VR)
 ATAB(I+IN,I2+J) = -1.0
 GO TO 728
 727 ATAB(I+IN,II+I2) = -C(J-NZRIVR,II-NZRIVR)
 ATAB(I+IN,I2+J) = 1.0
 728 I = I + 1
 8029 CONTINUE
 8028 CONTINUE
 DO 729 J = NZR1VR+2, N
 729 АТАВ(M,J) = 1.0
 I2 = 2
 DO 8031 J = 2, NZRIVR+1
 ATAB(I2,J) = 1.0
 8031 I2 = I2 + 1
 ATAB(M,1) = 1.0
C INITIALIZATION
 712 ISIZE = 645
 INDCT 7=1
```

```
 KSVN(1)=1
 INDCTR=1
 ICNTR=0
 IOUT1 = 0
 I 1ROW=1000
 ADELT = 5.0E-7
C***
C READ AND WRITE PROBLEM IDENTIFICATION: PUT 1 IN COL.
C 1
C***
C IOUT2 = INITIAL WORKING TABLEAU
C IOUT3=CONTINUOUS SOLUTION TABLEAU
 IOUT2 = 1
 IOUT3 = 1
 IPACK = 0
C***
C SOLMIN=UPPER BOUND ON OBJ. FUNCTION FOR INTEGER
 SOLUTION
C PCTTOL=INPUT TOLERANCE AS FRACTION OF OBJECTIVE
 FUNCT. FOR CONT. SOLUTION SET EACH ZERO FOR
 UNKNOWN PROBLEM.
 SOLMIN = 0.0
 PCTTOL = 0.0
 73 DO 72 I=1,N
 72 T(I)=0.
 NM1=N-1
 74 IF(SOLMIN)786,787,786
C***
C INPUT UPPER BOUND ON OBJECTIVE FUNCTION
 786 TLRNCE=SOLMIN
 PCTTOL=-1.
 GO TO 90
 787 1TOL=1
 SOLMIN = 1E35
 IF(PCTTOL) 90,788,90
 788 PCTTOL=.1
C***
C INPUT UPPER BOUNDS ON VARIABLES (ZERO MEANS NO UPPER
C BOUND)
 90 IF(IMODEL.EQ.1) GO TO 901
 DO 8015 I = 1, NZR1VR
 UPBND(I) = 1.0
 8015 CONTINUE
 DO 8016 I = NZR1VR+1, NM1
 UPBND(I) = 0.0
 8 0 1 6 ~ C O N T I N U E ~
 GO TO 1
 901 DO 903 I = 1, NM1
 903 UPBND(I) = 0.0
 1 IROW(1)=0
 IROW (M) =0
C** CONSTRAINT TYPES: (+1, = 0, ' -1)
```

```
 DO 8017 I = 2, M-1
 8017 IROW(I) = +1
C** MATRIX FORMAT: PACKED = 1, UNPACKED = 0 .
 IF (M .LT. 2) GO TO 450
C***
C PRINT INPUT TABLEAU FOR ERROR CHECK
 9520 DO 954 I=2,M
 IF(IROW(I))953,9521,9521
 9 5 2 1 ~ D O ~ 9 5 2 3 ~ J = 2 , N
 9523 ATAB(I,J)=-ATAB(I,J)
 GO TO 954
 953 ATAB(I,1)=-ATAB(I,1)
 954 CONTINUE
 450 CONTINUE
 955 DO 98 I=2,N
 IF(UPBND(I-1))96,96,98
 96 UPBND (I-1) = 1E3
 98 CONTINUE
C***
C COMPUTE NO. OF Y VECTORS
 981 YVECT=UPBND(1)+1.
 IF (NZR1VR .LT. 2) GO TO 322
 DO 982 I=2,NZR1VR
 982 YVECT=YVECT*(UPBND(I)+1.)
 322 CONTINUE
C***
C SET SOLUTION VECTOR OF VARIABLES EQUAL TO ZERO
C AND SAVE ORIGINAL UPPER BOUNDS
 985 DO 99 I=2,N
 99 IVAR(I-1)=0
C***
C
C K, ZERO = ZERO SLACK, -K = POSITIVE SLACK
 IF (M .LT. 2) GO TO 451
 DO 102 I=2,M
 IF(IROW(I))100,102,100
 100 IROW(I)=1-I
 102 CONTINUE
 451 CONTINUE
 ATAB11=ATAB(1,1)
 ICOL(1) = 0
 DO 103 J=2,N
 IF(ATAB(1,J))1022,1025,1025
 1022 DO 1023 I=1,M
 ATAB(I,1)=ATAB(I,1)+ATAB(I,J)*UPBND(J-1)
 1023 ATAB(I,J)=-ATAB(I,J)
 ICOL(J)=1000+J-1
 GO TO 103
 1025 ICOL(J)=J-1
 103 CONTINUE
 GO TO 254
C***
```

```
C START DUAL LP
C CHOOSE PIVOT ROW, MAXIMUM POSITIVE VALUE IN CONSTANT
C COLUMN
 112 AMAX = 0.0
 IF (M .LT. 2) GO TO 452
 DO 120 I=2,M
 IF(ATAB(I,1))120,120,115
 115 IF(ATAB(I,1)-AMAX)120,120,117
 117 AMAX=ATAB(I,1)
 IPVR=I
 120 CONTINUE
 452 CONTINUE
C***
C IF NO POSITIVE VALUE, LP FINISHED (PRIMAL FEASIBLE)
 IF(AMAX) 265,265,130
C CHOOSE PIVOT COLUMN, ALGEBRAICALLY MAXIMUM RATIO
C A(1,J)/A(PIVOTROW FOR A (RIVOTROW,J) NEGATIVE. IF NO
C NEGATIVE A(PIVOTROW,J) PROBLEM INFEASIBLE
 130 AMAX = -1E35
 IF(N-2)143,132,132
 132 IPVC=0
 DO 140 J=2,N
 IF(ATAB(IPVR,J))133,140,140
 133 RTIO=ATAB(1,J)/ATAB(IPVR,J)
 IF(RTIO-AMAX)140,137,135
 135 AMAX=RTIO
 136 IPVC=J
 GO TO 140
 137 IF(ATAB(IPVR,J)-ATAB(IPVR,IPVC))136,140,140
 140 CONTINUE
 IF(IPVC)150,143,150
 143 GO TO (145,435,542,610,665),INDCTR
 145 GO TO 999
C***
C CARRY OUT PIVOT STEP
 150 ALFA=ATAB(IPVR,IPVC)
 UPDATE TABLEAU
 DO 180 J=1,N
 IF(ATAB(IPVR,J))152,180,152
 152 IF(J-IPVC)153,180,153
 153 ARTIO=ATAB(IPVR,J)/ALFA
 DO 175 I=1,M
 IF(ATAB(I,IPVC))157,175,157
 157 IF(I-IPVR) 160,175,160
 160 ATAB(I,J)=ATAB(I,J)-ARTIO*ATAB(I,IPVC)
 IF(DABS(ATAB(I,J))-ADELT) 165, 165, 175
 165 ATAB(I,J) = 0.0
 175 CONTINUE
 180 CONTINUE
 DO 190 J=1,N
 190 ATAB(IPVR,J)=ATAB(IPVR,J)/ALFA
C***
```

```
C EXCHANGE ROW AND COLUMN IDENTIFIERS
 ISV=IROW (IPVR)
 IROW(IPVR)=ICOL(IPVC)
C***
C IF PIVOT ROW WAS ZERO SLACK, SET MODIFIED PIVOT
C COLUMN ZERO.
 195 DO 196 I=1,M
 196 ATAB(I,IPVC)=ATAB(I,N)
 ICOL (IPVC)=ICOL (N)
 N=N-1
 GO TO 200
 1 9 7 \text { DO 198 I=1,M}
 198 ATAB(I,IPVC)=-ATAB(I,IPVC)/ALFA
 ICOL (IPVC)=ISV
 ATAB(IPVR,IPVC)=1./ALFA
C***
C COUNT PIVOTS
 200 ICNTR=ICNTR+1
 IF(IROW(IPVR)+1000)210, 205,210
 205 DO 207 J=1,N
 207 ATAB(IPVR,J)=ATAB(M,J)
 IROW(IPVR)=IROW(M)
 M=M-1
 210 IF(IOUT1) 240,2505,240
 240 CONTINUE
 2505 GO TO (254,251,252,253,2535), INDCTR
C***
C IF SEEKING INTEGER SOLUTION, TEST OBJECTIVE FUNCTION
C AGAINST CURRENT SOLUTION
 251 IF(ATAB(1,1)-TLRNCE) 254,435,435
 252 IF(ATAB(1,1)-TLRNCE) 254,542,542
 253 IF(ATAB(1,1)-TLRNCE) 254,610,610
 2535 IF(ATAB(1,1)-TLRNCE)254,665,665
C***
C IF CONSTANT COLUMN OF ZERO SLACK ROW IS NEG., REVERSE
C SIGNS OF ENT
 254 IF (M .LT. 2) GO TO 453
 DO 260 K = 2, M
 IF(IROW(K)) 260, 255,260
 255 IF(ATAB(K,1))256, 260,260
 256 DO 258 L=1,N
 258 ATAB (K,L)=-ATAB(K,L)
 260 CONTINUE
 453 CONTINUE
C GO TO NEXT PIVOT STEP
 GO TO 112
 265 CONTINUE
C***
C IF ANY BASIS VARIABLE EXCEEDS ITS UPPER BOUND,
C COMPLEMENT IT, AND PIVOT ON CORRESPONDING ROW
 IF (M .LT. 2) GO TO 454
 DO 275 I=2,M
```

```
 IF(IROW(I))275,275,266
 266 J=IROW(I)
 IF(J-1000)268,268,267
 267 J=J-1000
 268 IF(UPBND(J)+ATAB(I,1))269,275;275
 269 IF(ADELT +UPBND(J) +ATAB(I,1))270,274,274
 270 ATAB(I,1)=-ATAB(I,1)-UPBND(J)
 DO 271 K=2,N
 271 ATAB(I,K)=-ATAB(I,K)
 IPVR=I
 IF(J-IROW(I))272,273,272
 272 IROW(I) =J
 GO TO 130
 273 IROW(I) = IROW (I) +1000
 GO TO 130
 274 ATAB(I, 1)=-UPBND(J)
 275 CONTINUE
 454 CONTINUE
C***
C TRUE END OF LINEAR PROGRAMMING
C SET SOLUTION VECTOR VALUES FOR BASIC VARIABLES
 IF (M .LT. 2) GO TO 455
 DO 280 I=2,M
 IF(IROW(I)) 280, 280,277
 277 IF(IROW(I)-1000)279,279,278
 278 J=IROW(I)-1000
 T(J)=UPBND (J) +ATAB(I, 1)
 GO TO 280
 279 J=IROW(I)
 T(J)=-ATAB(I, 1)
 280 CONTINUE
 455 CONTINUE
C***
C SET SOLUTION VECTOR VALUES FOR NON-BASIC VARIABLES IN
C COMPLEMENTED
 DO 285 I=2,N
 IF(ICOL(I)) 285,285,282
 282 IF(ICOL(I) -1000)284,284,283
 283 J=ICOL (I) -1000
 T(J)=UP BND (J)
 GO TO 285
 284 J=ICOL (I)
 T(J)=0.
 285 CONTINUE
 GO TO (286,437,548,615,670),INDCTR
C***
C FIRST TIME,WRITE CONTINUOUS SOLUTION TABLEAU
C IF REQUESTED
 286 ZOPT = DABS(ATAB(1,1))
 IF(IMODEL.EQ.3) GO TO 290
 GO TO 999
C***
```

```
C COMPUTE ABSOLUTE TOLERANCE
 290 ATAB12=ATAB(1,1)
 ATAB11 =DABS (ATAB11 - ATAB(1,1))
 IF(PCTTOL)294,293,292
 292 TLRNCE=PCTTOL*ATAB11+ATAB12
 GO TO 294
 293 TLRNCE = 1E35
 294 CONTINUE
C***
C
C INTEGER SOLUTION
 IF (M .LT. 2) GO TO 456
 301 DO 310 I=2,M
 IF(IROW(I)) 310, 310,302
 302 IF(IROW(I)-1000)303,303,304
 303 IF(IROW(I)-NZRIVR)305,305,310
 304 IF(IROW(I)-1000-NZRIVR) 305,305,310
 305 AJO1 = ATAB(I,1)
 AJO2 = ADELT
 AJO3 = X1
 IF(AMOD(-AJO1,AJO3)-AJO2) 310,310,306
 306 IF(1.0-AMOD(-AJO1,AJO3)-AJO2) 310,310,295
 310 CONTINUE
 456 CONTINUE
 GO TO 999
C***
C DETERMINE WHETHER PROBLEM FITS IN MEMORY, AND IF SO
C WHETHER TO SAVE ALL INTERMEDIATE TABLEAUS OR ONLY SOME
 295 IF(N-NZRIVR)297,297,298
 297 ISVLOC=(N*(N+1))/2
 GO TO 299
 298 ISVLOC=(NZR1VR*(2*N-NZR1VR+1))/2
 299 IF(ISIZE-ISVLOC) 3001,3001,300
 300 I1ROW=0
 GO TO 315
 3001 NONBSC=0
 DO 3006 J=2,N
 IF(ICOL(J))3006,3006,3002
 3002 IF(ICOL(J)-1000)3003,3004,3004
 3003 IF(ICOL(J)-NZR1VR) 3005,3005,3006
 3004 IF(ICOL(J)-1000-NZR1VR)3005,3005,3006
 3005 NONBSC=NONBSC+1
 3006 CONTINUE
 IF(N-NZRIVR) 3007, 3007,3008
 3007 ISVLOC=N+((N-NONBSC)*(N-NONBSC+1))/2
 GO TO 3009
 3008 ISVLOC=N+((NZR1VR-NONBSC)*(N-NONBSC+N-NZR1VR+1))/2
 3009 IF(ISIZE-ISVLOC) 3010,3010,315
 3010 GO TO 999
 315 CONTINUE
C***
C BEGIN INTEGER PROGRAMMING
```

```
 400 I1=1
 402 AMAX = -X1
 KSVN(I1+1)=KSVN(I1)
C***
C CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED
C TRY NONBASIC VARIABLES FIRST, CHOOSING ONE WITH
C LARGEST SHAD PRICE
 DO 4085 I=2,N
 IF(ICOL(I) 4085,4085,405
 405 IF(ICOL(I)-1000)406,407,407
 406 IF(ICOL(I)-NZR1VR)408,408,4085
 407 IF(ICOL(I)-1000-NZRIVR)408,408,4085
 408 IF(AMAX-ATAB(1,I))4082,4085,4085
 4 0 8 2 ~ I S V I = I ~
 AMAX=ATAB(1,I)
 4085 CONTINUE
C***
C IF NONE LEFT, TRY BASIC VARIABLES
 IF (AMAX + X1) 4087, 420, 4087
C***
C VARIABLE CHOSEN
 4087 IVAR(I1)=ICOL(ISVI)
 BTMVL(I1)=-1.
 ISVRCL(II)=ISVI
 ICORR(II)=0
 VAL (I1) = 0.0
C***
C IF OBJECTIVE FUNCTION VALUE + SHADOW PRICE EXCEEDS
C TOLERANCE, INDICATE UPWARD DIRECTION INFEASIBLE
 IF(ATAB(1,1)+ATAB(1,ISVI)-TLRNCE) 410,409,409
 409 TPVAL(I1)=1000.
 IF(I1-1)4101,4101,4095
 4095 ISVN(I1)=0
 GO TO 4132
 410 TPVAL(I1)=1.
C***
 IF(I1-1)4100,4101,4100
C SAVE ENTIRE TABLEAU OR ONLY COLUMN CORRESPONDING TO
C CURRENT NONBASIC VARIABLE, DEPENDING ON SIZE OF PROB
C AND 2ND DIM OF SAVTAB
 4100 IF(I1-I1ROW)4132,4101,4101
 4101 L=KSVN(I1)
 DO 412 J=1,M
 ISVROW(J,I1)=IROW(J)
 DO 411 K=1,N
 I=L+K-1
 IF(J-1)4105,4105,411
 4105 SAVTAB(M+1,I)=ICOL(K)
 4 1 1 ~ S A V T A B (J , I) = A T A B (J , K)
 412 CONTINUE
 ISVN(I1)=N
 KSVN(I1+1)=L+N
```

```
 4132 ICOL(ISVI)=ICOL(N)
 DO 4135 J=1,M
 4135 ATAB(J,ISVI)=ATAB(J,N)
 N=N-1
 GO TO 5000
C CHOOSE NEXT INTEGER VARIABLE TO BE CONSTRAINED FROM
C AMONG BASIC VARIABLES IN CURRENT TABLEAU
 420 CONTINUE
 IF(I1-I 1ROW) 4,204,600,4205
 4204 IIROW=I1
 4205 [NDCT7=1
 4 2 1 ~ A M A X ~ = ~ - X 1 ~
 IF (M .LT. 2) GO TO 457
 DO 425 I2=2,M
 IF(IROW(I2))425,425,422
 422 IF(IROW(I2)-1000)423,424,424
 423 IF(IROW(I2)-NZR1VR)4241,4241,425
 424 IF(IROW(I2)-1000-NZR1VR)4241,4241,425
 4241 AMAX2 = 1.0E35
 AMAX3 = -1.0E35
 AJO = - ATAB(I2,1) + ADELT
 ALW = AINT(AJO)
 AUP=ALW+1.
 IF(N-1)426,426,4240
 4240 DO 4246 I 3=2,N
 IF(ATAB(I2,I3))4244,4246,42424242
 RTIO=ATAB(1,I3)/ATAB(I2,I3)
 IF(RTIO-AMAX2)4243,4246,4246
 4243 AMAX2=RTIO
 GO TO 4246
 4244 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
 IF(RTIO2-AMAX3)4246,4246,4245
 4245 AMAX3=RTIO2
 4246 CONTINUE
 IF (AMAX3 + 1E34) 430, 430, 4247
 4247 IF (AMAX2 - 1E34) 4248, 429, 429
 4248 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + ALW))
 DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + AUP))
 DIFF =DABS (DIFF1 - DIFF2)
 IF(DIFF-AMAX)425,425,4249
 4249 AMAX=DIFF
 SVALW=ALW
 ISVI2=I2
 IF(DIFF1-DIFF2)4251,4251,4252
 4251 ANDCT4=0.
 GO TO 425
 4252 ANDCT4=1.
 425 CONTINUE
 457 CONTINUE
 ALW=SVALW
 I2=ISVI2
 VAL(I 1)=ALW+ANDCT4
```

```
 BTMVL(I1)=VAL(I1)-1.
 4255 TPVAL(I1)=VAL(I1)+1.
 GO TO 432
C***
C IF NO. OF COLS=1 AND RIGHT HAND SIDE=0, DONT GO TO LP
 426 IF (DABS(ATAB(I2,1) + ALW) - ADELT) 427, 427, 5100
 427 BTMVL(I1)=-1.
 TPVAL(I1)=1000.
 VAL(I1)=ALW
 IVAR(I1)=IROW(I2)
 IROW(I2)=0
 GO TO 5000
C***
C CONSTRAINING VARIABLE IN LOWER DIRECTION INFEASIBLE
 429 BTMVL(I1)=-1.
 IF (DABS (ATAB(I2,1) + ALW) - ADELT) 4295, 4295,
 * 4296
 4295 ANDCT4=0.
 VAL (I 1) =ALW + ANDCT 4
 GO TO 4255
 4296 TPVAL(I1)=ALW+2.
 ANDCT4=1.
 GO TO 431
C***
C CONSTRAINING VARIABLE IN UPPER DIRECTION INFEASIBLE
 430 TPVAL(I1)=1000.
 BTMVL(I1)=ALW-1.
 ANDCT4=0.
 431 VAL(II)=ALW+ANDCT4
C***
C SAVE ENTIRE TABLEAU
 432 JSVN=N
 L=KSVN(I1)
 438 DO 439 I 3=1,M
 ISVROW(I3,I1)=IROW(I3)
 DO 439 I 4=1,N
 I6=L+I4-1
 IF(I 3-1)4385,4385,439
 4385 SAVTAB(M+1,I6)=ICOL(I4)
 439 SAVTAB(I3,I6)=ATAB(I3,I4)
 ISVN(I1)=N
 KSVN(I1+1)=L+N
 ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
 ISVRCL(I1)=I 2
 IVAR(I1)=IROW(I 2)
 ICORR(I 1)=1
 IROW(I2)=0
 IF (DABS (ATAB(I2,1)) - ADELT) 433, 433, 434
 433 ATAB (I2,1) = 0.0
 434 INDCTR=2
C***
C RETURN TO CARRY OUT LP
```

```
 IF(IOUT1)240,254,240
C INFINITE RETURN
 435 IF(ANDCT4)4355,4352,4355
 4352 BTMVL(I1)=-1.
 GO TO 5120
 4355 TPVAL(I1)=1000.
 GO TO 5120
C***
C FINITE RETURN
 437 GO TO 5000
C TEST FOR ANY INTEGER VARIABLES LEFT TO BE CONSTRAINED
 5000 IF(II-NZR1VR)5050,550,550
C INCREMENT POINTER AND RETURN TO CONSTRAIN NEXT
C INTEGER VARIABLE
 5050 I 1=I1+1
 IF(IOUT1)5051,402,5051
 5051 GO TO 402
C***
C DECREMENT POINTER AND CONSTRAIN CURRENT VARIABLE TO
C CURRENT VALUE + OR - 1
 5100 I1=I1-1
 5115 IF(I1)995,995,5120
 5120 IF(IVAR(I1)-1000)5151,5151,5152
 5151 K=IVAR(II)
 GO TO 5153
 5152 K=IVAR(I1)-1000
 5153 I2=ISVRCL(I1) 5155 IF(BTMVL(I1))516,517,517
 516 IF(TPVAL(I1)-UPBND(K))518,518,5100
 517 IF(TPVAL(I1) - UPBND(K))530,530,525
C***
C TOP END FEASIBLE
 518 INDCT5=1
 5181 IF(ICORR(I1))5198,5182,5198
 5182 IF(I1-I1ROW)5183,5198,5198
 5183 INDCT8=1
 IF(I1-1)5185,5198,5185
 5185 INDCT5=4
 ISVI1=I1-1
 I 1=1
 GO TO 5198
 5190 DO 5194 I 3=1,ISVI1
 I4=ISVRCL(I 3)
 ICOL(I4)=ICOL(N)
 DO 5193 J=1,M
 IF(VAL(I3)-1.)5193,5191,5192
 5191 ATAB(J,1)=ATAB(J,1)+ATAB(J,I4)
 GO TO 5196
 5192 ATAB(J,1)=ATAB(J,1)+VAL(I3)*ATAB(J,I4)
 5196 INDCT8=2
 5193 ATAB(J,I4)=ATAB(J,N)
 N=N-1
 5194 CONTINUE
```

```
 5195 I1=ISVII+1
 INDCT5=1
 GO TO 521
C***
C RETRIEVE SAVED TABLEAU
 5198 N=ISVN(I1)
 L=KSVN(I1)
 DO 5199 I3=1,M
 IROW(I3)=ISVROW(I3,I1)
 DO 5199 I4=1,N
 I6=L+I 4-1
 IF(I 3-1)5197,5197,5199
 5197 I COL(I 4)=SAVTAB (M+1,I6)
 5199 ATAB(I 3,I4)=SAVTAB(I 3,I6)
 5205 GO TO (521,526,531,5190),INDCT5
 521 VAL(I1)=TPVAL(I1)
 TPVAL(I1)=TPVAL (I1)+1.
 IF(ICORR(I1))541,522,541
 522 DO 523 I 3=1,M
 ATAB(I3,1)=ATAB(I3,1)+(VAL(I1)*ATAB(I3,I2))
 IF (DABS (ATAB(I3,1)) - ADELT) 5225, 5225, 523
 5225 ATAB(I3,1)=0.
 523 ATAB(I3,I2)=ATAB(I3,N)
 ICOL(I2)=ICOL(N)
 N=N-1
 IF(ATAB(1,1)-TLRNCE) 5235,5100,5100
 5235 IF(I1-I1ROW)650,5415,5415
C***
C BOTTOM END FEASIBLE
 525 INDCT5=2
 GO TO 5198
 526 VAL(II)=BTMVL(I1)
 BTMVL(II)=BTMVL(I1)-1.
 GO TO 541
C***
C BOTH ENDS FEASIBLE
 530 INDCT5=3
 GO TO 5198
 531 AMAX2 = 1.0E35
 AMAX3 = -1.0E35
 DO 536 I 3=2,N
 IF(ATAB(I2,I3))534,536,532
 532 RTIO=ATAB(1,I3)/ATAB(I2,I3)
 IF(RTIO-AMAX2)533,536,536
 533 AMAX2=RTIO
 GO TO 536
 534 RTIO2=ATAB(1,I3)/ATAB(I2,I3)
 IF(RTIO2-AMAX3)536,536,535
 535 AMAX3=RTIO2
 536 CONTINUE
 IF(AMAX2-1.E35)538,537,537
C***
```

```
C BOTTOM END INFEASIBLE
 537 BTMVL(II)=-1.
 GO TO 521
 538 IF(AMAX3+1.E35)539,539,540
C***
C TOP END INFEASIBLE
 539 TPVAL(I 1)=1000.
 GO TO 526
 540 DIFF1 =DABS (AMAX2 * (ATAB(I2,1) + BTMVL (I1)))
 DIFF2 =DABS (AMAX3 * (ATAB(I2,1) + TPVAL (I1)))
 IF(DIFF1-DIFF2)526,526,521
 541 ATAB(I2,1)=ATAB(I2,1)+VAL(I1)
 IROW(I2)=0
 IF (DABS (ATAB(I2,1)) - ADELT) 5412, 5412, 5415
 5412 ATAB(I2,1)=0.
 5415 INDCTR=3
 IF(IOUT1)240,2505,240
C***
C INFINITE RETURN
 542 GO TO (544,547,543),INDCT5
 543 IF(TPVAL(I1)-VAL(I1)-1.)545,544,545
 544 TPVAL(I1)=1000.
 GO TO 5120
 545 IF(VAL(I 1)-BTMVL(I 1)-1.) 546,547,546
C***
 546 CONTINUE
 547 BTMVL(II)=-1.
 GO TO 5120
C***
C FINITE RETURN
 548 GO TO 5000
C FEASIBLE INTEGER SOLUTION OBTAINED
 550 TLRNCE=ATAB(1,1)
 SOLMIN=1.
C***
C WRITE CURRENT BEST MIXED INTEGER SOLUTION
 ZOPT =DABS(ATAB(1,1))
 DO 560 I = 1, NZR1VR
 IF(IVAR(I)) 554,560,554
 554 IF(IVAR(I)-1000) 555,555,557
 555 J=IVAR(I)
 T(J)=VAL (I)
 GO TO 560
 557 J=IVAR(I)-1000
 T(J)=UPBND(J)-VAL(I)
 560 CONTINUE
 GO TO 5115
 600 GO TO (605,4205), INDCT7
 605 INDCTR=4
 IF(IOUT1)240,254,240
C
 INFINITE RETURN
```

```
 610 GO TO 5100
C***
C FINITE RETURN
 615 INDCT7=2
C***
C IF USING SECOND SOLUTION METHOD, SAVE TABLEAU
C MODIFIED FOR NONZERO VALUE OF NONBASIC VARIABLE IN
C TBSAV
 6 5 0 ~ D O ~ 6 5 5 ~ I = 1 , M
 ITBROW(I)=IROW(I)
 DO 655 J=1,N
 655 TBSAV(I,J)=ATAB(I,J)
 DO 660 J=1,N
 660 ITBCOL(J)=ICOL(J)
 JSVN=N
 INDCTR=5
 IF(IOUT1)240,254,240
C***
C INFINITE RETURN
 665 GO TO (544,5120),INDCT8
C FINITE RETURN
C***
C IF USING SECOND SOLUTION METHOD, RETRIEVE MODIFIED
C TABLEAU FROM TBSAV, AS THIS CORRESPONDS TO SAVED
C COLUMNS FOR II LESS THAN IIROW
 670 N=JSVN
 DO 675 I=1,M
 IROW(I)=ITBROW(I)
 DO 675 J=1,N
 675 ATAB(I,J)=TBSAV(I,J)
 DO 680 J=1,N
 680 ICOL(J)=ITBCOL(J)
 GO TO 5000
C***
C OUTPUT FINAL SOLUTION.
 995 IF(ITOL)996,999,996
 996 IF(SOLMIN-1.E35)999,997,997
 997 ITOL=ITOL+1
 TLRNCE=FLOAT(ITOL)*PCTTOL*ATAB11+ATAB12
 N=ISVN(1)
 DO 9972 I=1,M
 IROW(I)=ISVROW(I,1)
 DO 9972 J=1,N
 9972 ATAB(I,J)=SAVTAB(I,J)
 DO 9973 K=1,N
 9973 ICOL(K)=SAVTAB(M+1,K)
 GO TO 400
 999 DO 19 I = 1, IC
 19 CW(I) = T(NM1-IC+I)
 GO TO 9999
 750 CALL EIGENP(N,NM,A,T,EVR,EVI,VECR,VECI,INDIC,IMAX)
 GO TO 9999
```

751 CALL MODEL5(IC,TW,NMRUNS,C)
GO TO 9999
752 CALL MODEL6(IC,TW,NMRUNS,R,C)
C
9999 WRITE(NO,31)
31 FORMAT(1H1,5X,25(1H*), /,5X,'*** ESTIMATED WEIGHTS ***', */,5X,25(1H*),/,/)
WRITE(NO, 736) (CW(I), I=1,IC)
736 FORMAT ( $2 \mathrm{X}, 5 \mathrm{~F} 12.6$ )
WRITE(NO, 32)
32 FORMAT(/,5X,'*** DO YOU WANT TO GO BACK TO MAIN MENU?
****', /,5X,' $=$ => ENTER $1=$ YES, $2=$ NO <<<')
READ (NI,*) INQUR
IF(INQUR.EQ.2) GO TO 730
WRITE(NO, 33)
33 FORMAT(1H1;/,5X,1*** VALUES USED ARE AS FOLLOWS:',/) DO $734 \mathrm{~K}=1$, ND
WRITE(NO,51) K
51 FORMAT(/,5X,'FOR ',I2,'TH DECISION MAKER',/)
DO 34 I = 1, IC
34 WRITE(NO,*) (CC(K,I,J),J=1,IC)
734 CONTINUE
WRITE (NO, 35)
35 FORMAT(/,/,5X,'*** FOR SENSITIVITY ANALYSIS OR *RELECTING THE CHANGES OF MIND OF DECISION MAKER ***')
41 WRITE (NO,52)
52 FORMAT(/,5X,'==> ENTER DECISION MAKER INDEX|')
READ (NI,*) K1
WRITE (NO, 36)
36 FORMAT(/,5X,' $==>$ ENTER ROW INDEX NUMBER|')
READ(NI,*) I
WRITE(NO, 37)
37 FORMAT(/,5X,'==> ENTER COLUMN INDEX NUMBER|') READ (NI,*) J
WRITE(NO,38) 38 FORMAT(/,5X,'==> ENTER CORRECTED
*VALUE OF RELATIVE IMPORTANCE|') READ (NI,*)CC(K1,I,J)
WRITE (NO, 39)
39 FORMAT $/$, 5X,'*** DO YOU NEED TO CHANGE MORE? ***', * $/, 5 \mathrm{X}, \mathrm{\prime}==$ ENTER $1=Y E S, 2=$ NO. <<<') READ(NI,*) INQUR
IF (INQUR.EQ.1) GO TO 41
WRITE(NO,42) K1
42 FORMAT(1H1,/,5X,'*** VALUES CHANGED FROM ',I2,'TH *DECISION MAKER ARE AS FOLLOWS:',/)
DO $43 \mathrm{I}=1$, IC
$43 \operatorname{WRITE}(\mathrm{NO}, *)(\mathrm{CC}(\mathrm{K} 1, \mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{IC})$
WRITE(NO,44)
44 FORMAT $/ / / / 5 \mathrm{X}, 1 * * *$ ARE THESE DATA CORRECT? ***', * $/, 5 \mathrm{X}, 1==>$ ENTER 1=YES, 2=NO. <<<')

READ(NI,*) INQUR
IF(INQUR.EQ.1) GO TO 40

```
 GO TO 41
 730 STOP
 END
C
C**
C
 SUBROUTINE EIGENP(N, NM, A, T, EVR, EVI, VECR, VECI,
 * INDIC, IMAX)
C
C**
C
 DOUBLE PRECISION D1,D2,D3,PRFACT
 INTEGER I,IVEC,J,K,K1,KON,L,L1,M,N,NM,IMAX
 REAL ENORM,EPS,EX,R,R1,T DIMENSION A(NM,1),
 *VECR(NM,1),VECI(NM,1), EVR(NM),EVI(NM), INDIC(NM)
 DIMENSION IWORK(100), LOCAL(100), PRFACT(100),
 *SUBDIA(100), WORK1(100), WORK2(100), WORK(100)
 IF(N.NE.1)GO TO 1
 EVR(1) = A(1,1)
 EVI(1) = 0.0
 VECR(1,1) = 1.0
 VECI(1,1) = 0.0
 INDIC(1) = 2
 GO TO 25
C
 1 CALL SCALE(N,NM,A,VECI,PRFACT,ENORM)
C
C THE COMPUTATION OF THE EIGENVALUES OF THE NORMALIZED
C MATRIX
 EX = EXP(-T*ALOG(2.0))
C
 CALL HESQR(N, NM, A, VECI, EVR, EVI, SUBDIA, INDIC,
 *
 EPS, EX, IMAX)
C
 J = N
 I = 1
 LOCAL(1) = 1
 IF(J.EQ.1)GO TO 4
 2 IF(ABS(SUBDIA(J-1)).GT.EPS)GO TO 3
 I = I + 1
 LOCAL(I) = 0
 3 J = J - 1
 LOCAL(I) = LOCAL(I) + 1
 IF(J.NE.1)GO TO 2
C
C THE EIGENVECTOR PROBLEM
 4 K = 1
 KON = 0
 L = LOCAL(1)
 M = N
 DO 10 I = 1, N
 IVEC = N-I+1
```

```
 IF(I.LE.L)GO TO 5
 K = K+1
 M = N-L
 L = L+LOCAL(K)
 5 IF(INDIC(IVEC).EQ.O)GO TO 10
 IF(EVI(IVEC).NE.0.0)GO TO 8
C
C TRANSFER OF AN UPPER HESSENBERG MATRIX OF THE ORDER M
C FROM THE ARRAYS VECI AND SUBDIA INTO THE ARRAY A.
 DO 7 K1 = 1,M
 DO 6 L1 = K1,M
 6 A(K1,L1) = VECI (K1,L1)
 IF(K1.EQ.1)GO TO 7
 A(K1,K1-1) = SUBDIA(K1-1)
 7 CONTINUE
C
C THE COMPUTATION OF THE REAL EIGENVECTOR IVEC OF THE
C UPPER-HESSENBERG MATRIX CORRESPONDING TO THE REAL
C EIGENVALUE EVR(IVEC)
C
 CALL REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI, IWORK,
 *
C
 GO TO 10
C
C THE COMPUTATION OF THE COMPLEX EIGENVECTOR IVEC OF THE
C UPPER HESSENBERG MATRIX CORRESPONDING TO THE COMPLEX
C EIGENVALUE EVR(IVEC)+I*EVI(IVEC). IF THE VALUE OF KON IS
C NOT EQUAL TO ZERO THEN THIS COMPLEX EIGENVECTOR HAS
C ALREADY BEEN FOUND FROM ITS CONJUGATE.
 8 IF(KON.NE.O)GO TO 9
 KON = 1
C
 CALL COMPVE(N, NM, M, IVEC, A, VECR, VECI, EVR, EVI,
 * INDIC, IWORK, SUBDIA, WORK1, WORK2, WORK,
 *
 ERS, EX)
C
GO TO 10
\(9 \mathrm{KON}=0\)
10 CONTINUE
C
DO \(12 \mathrm{I}=1, \mathrm{~N}\)
DO \(11 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
\(\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0\)
\(11 \mathrm{~A}(\mathrm{~J}, \mathrm{I})=0.0\)
\(12 \mathrm{~A}(\mathrm{I}, \mathrm{I})=1.0\)
IF (N.LE.2)GO TO 15
\(\mathrm{M}=\mathrm{N}-2\)
DO \(14 \mathrm{~K}=1, \mathrm{M}\)
\(\mathrm{L}=\mathrm{K}+1\)
DO \(14 \mathrm{~J}=2, \mathrm{~N}\)
\(\mathrm{D} 1=0.0\)
```

```
 DO 13 I = L,N
 D2 = VECI (I,K)
 13 D1 = D1 + D2*A(J,I)
 DO 14 I = L,N
 14 A(J,I) = A(J,I)-VECI(I,K)*D1
C
 15 KON = 1
 DO 24 I = 1,N
 L = 0
 IF(EVI(I).EQ.0.0)GO TO 16
 L = 1
 IF(KON.EQ.O)GO TO 16
 KON = 0
 GO TO 24
 16 DO 18 J = 1,N
 D1 = 0.0
 D2 = 0.0
 DO 17 K = 1,N
 D3 = A(J,K)
 D1 = D1+D3*VECR(K,I)
 IF(L.EQ.0)GO TO 17
 D2 = D2+D3*VECR(K,I-1)
 17 CONTINUE
 WORK(J) = D1/PRFACT(J)
 IF(L.EQ.0)GO TO 18
 SUBDIA(J) =D2/PRFACT(J)
 18 CONTINUE
C
 IF(L.EQ.1)GO TO 21
 D1 = 0.0
 DO 19 M = 1,N
 19 D1 = D1+WORK(M)**2
 D1 = DSQRT(D1)
 DO 20 M = 1,N
 VECI (M,I) = 0.0
 20 VECR(M,I) = WORK(M)/D1
 EVR(I) = EVR(I)*ENORM
 GO TO 24
C
 21 KON = 1
 EVR(I) = EVR(I)*ENORM
 EVR(I-1) = EVR(I)
 EVI(I) = EVI(I)*ENORM
 EVI(I-1) = -EVI(I)
 R = 0.0
 DO 22 J = 1,N
 R1 = WORK(J)**2 + SUBDIA(J)**2
 IF(R.GE.R1)GO TO 22
 R = R1
 L = J
22 CONTINUE
 D3 = WORK(L)
```

```
 R1 = SUBDIA(L)
 DO 23 J = 1,N
 D1 = WORK(J)
 D2 = SUBDIA(J)
 VECR(J,I) = (D1*D 3 +D 2*R1)/R
 VECI (J,I) = (D2*D3-D1*R1)/R
 VECR(J,I-1) = VECR(J,I)
23 VECI (J,I-1) = - VECI (J,I)
24 CONTINUE
C
 25 RETURN
 END
C
C
 SUBROUTINE SCALE(N,NM,A,H,PRFACT,ENORM)
C
C**
C
 DOUBLE PRECISION COLUMN,FACTOR,FNORM,PRFACT,Q,ROW
 INTEGER I,J,ITER,N,NCOUNT,NM
 REAL BOUND1, BOUND2, ENORM
 DIMENSION A(NM,1),H(NM,1),PRFACT(NM)
C
 DO 2 I = 1,N
 DO 1 J = 1,N
 1 H(I,J)=A(I,J)
 2 PRFACT(I) = 1.0
 BOUND1 = .75
 BOUND2 = 1.33
 ITER = 0
3 NCOUNT = 0
 DO 8 I = 1,N
 COLUMN = 0.0
 ROW = 0.0
 DO 4 J = 1,N
 IF(I.EQ.J)GO TO 4
 COLUMN = COLUMN+ABS(A(J,I))
 ROW = ROW+ABS(A(I,J))
 4 CONTINUE
 IF(COLUMN.EQ.0.0)GO TO 5
 IF(ROW.EQ.0.0)GO TO 5
 Q = COLUMN/ROW
 IF(Q.LT.BOUND1)GO TO 6
 IF(Q.GT.BOUND2)GO TO 6
5 NCOUNT = NCOUNT+1
 GO TO 8
6 FACTOR = DSQRT(Q)
 DO 7 J = 1,N
 IF(I.EQ.J)GO TO 7
 A(I,J)=A(I,J)*FACTOR
 A(J,I) = A(J,I)/FACTOR
```

7 CONTINUE

## PRFACT(I) = PRFACT(I)*FACTOR

8 CONTINUE
ITER = ITER+1
IF(ITER.GT. 30)GO TO 11
IF(NCOUNT.LT.N)GO TO 3
C
FNORM $=0.0$
DO 9 I $=1, N$
DO $9 \mathrm{~J}=1, \mathrm{~N}$
$Q=A(I, J)$
9 FNORM = FNORM+Q*Q
FNORM = DSQRT(FNORM)
DO $10 \mathrm{I}=1, \mathrm{~N}$
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$10 \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{I} ; \mathrm{J}) /$ FNORM
ENORM = FNORM
GO TO 13
C
11 DO 12 I = 1,N
$\operatorname{PRFACT}(I)=1.0$
DO $12 \mathrm{~J}=1, \mathrm{~N}$
$12 \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{H}(\mathrm{I}, \mathrm{J})$
ENORM $=1.0$
C
13 RETURN
END
C


C
SUBROUTINE HESQR(N; NM, A, H, EVR, EVI, SUBDIA,

* INDIC, ERS, EX, IMAX)

C


C
DOUBLE PRECISION S,SR,SR2,X,Y,Z
INTEGER I,J,K,L,M,MAXST,M1,N,NM,NS,IMAX
REAL EPS,EX,R,SHIFT,T
DIMENSION A(NM,1), H(NM,1), EVR(NM), EVI(NM),
1 SUBDIA(NM), INDIC(NM)
C
IF(N-2)14,1,2
$1 \operatorname{SUBDIA}(1)=A(2,1)$
GO TO 14
$2 \mathrm{M}=\mathrm{N}-2$
DO $12 \mathrm{~K}=1, \mathrm{M}$
$\mathrm{L}=\mathrm{K}+1$
$\mathrm{S}=0.0$
DO 3 I $=\mathrm{L}, \mathrm{N}$
$H(I, K)=w(I, K)$
$3 \mathrm{~S}=\mathrm{S}+\mathrm{ABS}(\mathrm{A}(\mathrm{I}, \mathrm{K}))$
IF(S.NE.ABS (A(K+1,K)))GO TO 4

```
 SUBDIA(K) = A(K+1,K)
 H(K+1,K) = 0.0
 GO TO 12
 4 SR2 = 0.0
 DO 5 I = L,N
 SR = A(I,K)
 SR = SR/S
 A(I,K) = SR
 5 SR2 = SR2+SR*SR
 SR = DSQRT(SR2)
 IF(A(L,K).LT.O.O)GO TO 6
 SR = -SR
 6 SR2 = SR2-SR*A(L,K)
 A(L,K) = A(L,K)-SR
 H(L,K) = H(L,K)-SR*S
 SUBDIA(K) = SR*S
 X = S*DSQRT(SR2)
 DO 7 I = L,N
 H(I,K) = H(I,K)/X
 7 SUBDIA(I) = A(I,K)/SR2
C PREMULTIPLICATION BY THE MATRIX PR.
 DO 9 J = L,N
 SR = 0.0
 DO }8\textrm{I}=\textrm{L},\textrm{N
 8 SR = SR+A(I,K)*A(I,J)
 DO 9 I = L,N
 9A(I,J) = A(I,J)-SUBDIA(I)*SR
C POSTMULTIPLICATION BY THE MATRIX PR.
 DO 11 J = 1,N
 SR = 0.0
 DO 10 I = L,N
 10 SR = SR+A(J,I)*A(I,K)
 DO 11 I = L,N
 11A(J,I) = A(J,I)-SUBDIA(I)*SR
 12 CONTINUE
 DO 13 K = 1,M
 13A(K+1,K) = SUBDIA(K)
C
 SUBDIA(N-1) = A(N,N-1)
 14 EPS = 0.0
 DO 15 K = 1,N
 INDIC(K) = 0
 IF(K.NE.N)EPS = EPS+SUBDIA(K)**2
 DO 15 I = K,N
 H(K,I) = A(K,I)
 15 EPS = EPS+A(K,I)**2
 EPS = EX*SQRT(EPS)
C
 SHIFT = A(N,N-1)
 IF(N.LE.2)SHIFT = 0.0
 IF(A(N,N).NE.0.0)SHIFT = 0.0
 IF(A(N-1,N).NE.0.0)SHIFT = 0.0
```

$\operatorname{IF}(\mathrm{A}(\mathrm{N}-1, \mathrm{~N}-1), \mathrm{NE}, 0.0)$ SHIFT $=0.0$
$\mathrm{M}=\mathrm{N}$
$N S=0$
MAXST $=\mathbf{N} * 10$
C
DO $16 \mathrm{I}=2, \mathrm{~N}$
DO $16 \mathrm{~K}=\mathrm{I}, \mathrm{N}$
IF(A(I-1,K).NE.O.0)GO TO 18
16 CONTINUE
DO 17 I $=1, N$
INDIC(I) $=1$
$\operatorname{EVR}(I)=A(I, I)$
$17 \mathrm{EVI}(\mathrm{I})=0.0$
GO TO 37
C
$18 \mathrm{~K}=\mathrm{M}-1$
$M 1=K$
$\mathrm{I}=\mathrm{K}$
C
IF (K) 37, 34, 19
$19 \operatorname{IF}(A B S(A(M, K))$.LE.EPS $)$ GO TO 34
IF(M-2.EQ.0)GO TO 35
20 I = I-1
IF(ABS (A(K,I)).LE.EPS)GO TO 21
$K=I$
IF(K.GT.1)GO TO 20
21 IF(K.EQ.M1)GO TO 35
C

C
$S=A(M, M)+A(M 1, M 1)+S H I F T$
SR $=A(M, M) * A(M 1, M 1)-A(M, M 1) * A(M 1, M)+0.25 * S H I F T * * 2$
$A(K+2, K)=0.0$
$X=A(K, K) *(A(K, K)-S)+A(K, K+1) * A(K+1, K)+S R$
$Y=A(K+1, K) *(A(K, K)+A(K+1, K+1)-S)$
$\mathrm{R}=\mathrm{DABS}(\mathrm{X})+\mathrm{DABS}(\mathrm{Y})$
IF(R.EQ.0.0)SHIFT=A(M,M-1)
IF(R.EQ.O.0)GO TO 21
$Z=A(K+2, K+1) * A(K+1, K)$
SHIFT $=0.0$
NS $=N S+1$
C

C
DO $33 \mathrm{I}=\mathrm{K}, \mathrm{M} 1$
IF(I.EQ.K)GO TO 22
$X=A(I, I-1)$
$Y=A(I+1, I-1)$
$\mathrm{Z}=0.0$
IF(I+2.GT.M)GO TO 22
$Z=A(I+2, I-1)$
22 SR2 = DABS (X) +DABS (Y) +DABS (Z)
IF(SR2.EQ.0.0)GO TO 23
$X=X / S R 2$

```
 Y = Y/SR2
 Z = Z/SR2
23S = DSQRT(X*X+Y*Y+Z*Z)
 IF(X.LT.0.0)GO TO 24
 S = -S
24 IF(I.EQ.K)GO TO 25
 A(I,I-1) = S*SR2
25 IF(SR2.NE.0.0)GO TO 26
 IF(I+3.GT.M)GO TO 33
 GO TO 32
26 SR = 1.0-X/S
 S = X-S
 X = Y/S
 Y = Z/S
C
DO \(28 \mathrm{~J}=\mathrm{I}, \mathrm{M}\)
 S = A(I,J)+A(I+1,J)*X
 IF(I+2.GT.M)GO TO 27
 S = S+A(I + 2,J)*Y
 27 S = S*SR
 A(I,J) = A(I,J)-S
 A(I+1,J)=A(I+1,J)-S*X
 IF(I+2.GT.M)GO TO 28
 A(I+2,J) = A(I+2,J)-S*Y
 28 CONTINUE
C
 L = I+2
 IF(I.LT.M1)GO TO 29
 L = M
 29 DO 31 J = K,L
 S = A(J,I)+A(J,I+1)*X
 IF(I+2.GT.M)GO TO 30
 S = S+A(J,I+2)*Y
 30 S = S*SR
 A(J,I) = A(J,I)-S
 A(J,I+1)=A(J,I+1)-S*X
 IF(I+2.GT.M)GO TO 31
 A(J,I+2)=A(J,I+2)-S*Y
 31 CONTINUE
 IF(I+3.GT.M)GO TO 33
 S = -A(I+3,I+2)*Y*SR
 32 A(I+3,I)=S
 A(I+3,I+1)=S*X
 A(I+3,I+2)=S*Y+A(I+3,I+2)
 33 CONTINUE
C
 IF(NS.GT.MAXST)GO TO 37
 GO TO 18
C
 34 EVR(M) = A(M,M)
 EVI(M) = 0.0
 INDIC(M) = 1
```

```
M = K
GO TO 18
C
 35 R = 0.5*(A(K,K)+A(M,M))
 S = 0.5*(A(M,M)-A(K,K))
 S = S*S+A(K,M)*A(M,K)
 INDIC(K) = 1
 INDIC(M) = 1
 IF(S.LT.0.0)GO TO 36
 T = DSQRT(S)
 EVR(K) = R-T
 EVR(M) = R+T
 EVI(K) = 0.0
 EVI(M) = 0.0
 M = M-2
 GO TO 18
 36 T = DSQRT(-S)
 EVR(K) = R
 EVI(K) = T
 EVR(M) = R
 EVI(M) = -T
 M = M-2
 GO TO 18
C
 37 TMAX = 0.0
 DO 38 I = 1, N
 IF(EVR(I).LT.TMAX) GO TO 38
 TMAX = EVR(I)
 IMAX = I
 38 CONTINUE
 RETURN
 END
C
C**
C
 SUBROUTINE REALVE(N, NM, M, IVEC, A, VECR, EVR, EVI,
 *
 IWORK, WORK, INDIC, ERS, EX)
C
C
C
 DOUBLE PRECISION S,SR
 INTEGER I,IVEC,ITER,J,K,L,M,N,NM,NS
 REAL BOUND,EPS,EVALUE,EX,PREVIS,R,R1,T
 DIMENSION A(NM,1), VECR(NM,1), EVR(NM), EVI(NM),
 1
 IWORK(NM), WORK(NM), INDIC(NM)
C
 VECR(1,IVEC) = 1.0
 IF(M.EQ.1)GO TO 24
C
 EVALUE = EVR(IVEC)
 IF(IVEC.EQ.M)GO TO 2
 K = IVEC+1
```

```
 R=0.0
 DO 1 I = K,M
 IF(EVALUE.NE.EVR(I))GO TO 1
 IF(EVI(I).NE.0.0)GO TO I
 R=R+3.0
 1 CONTINUE
 EVALUE = EVALUE+R*EX
 2 DO 3 K = 1,M
 3 A(K,K) = A(K,K)-EVALUE
C
 K = M-1
 DO 8 I = 1,K
 L = I+1
 IWORK(I) = 0
 IF(A(I+1,I).NE.0.0)GO TO 4
 IF(A(I,I).NE.O.0)GO TO 8
 A(I,I) = EPS
 GO TO 8
 4 IF(ABS(A(I,I)).GE.ABS(A(I+1,I)))GO TO 6
 IWORK(I) = 1
 DO 5 J = I,M
 R = A(I,J)
 A(I,J) = A(I+1,J)
5 A(I+1,J)=R
6 R = -A(I+1,I)/A(I,I)
 A(I+1,I) = R
 DO 7 J = L,M
7A(I+1,J)=A(I+1,J)+R*A(I,J)
8 \text { CONTINUE}
IF(A(M,M).NE.O.O)GO TO 9
A(M,M) = EPS
C
 9 DO 11 I = 1,N
 IF(I.GT.M)GO TO 10
 WORK(I)= 1.0
 GO TO 11
 10 WORK(I) = 0.0
 11 CONTINUE
C
 BOUND = 0.01/(EX*FLOAT(N))
 NS = 0
 ITER = 1
C
 12R=0.0
 DO 15 I = 1,M
 J = M-I+1
 S = WORK(J)
 IF(J.EQ.M)GO TO 14
 L = J+1
 DO 13 K = L,M
 SR = WORK(K)
13 S= S-SR*A(J,K)
```

14 WORK (J) $=5 / A(J, J)$
T = ABS (WORK (J))
IF(R.GE.T)GO TO 15
$\mathrm{R}=\mathrm{T}$
15 CONTINUE
C
DO $16 \mathrm{I}=1, \mathrm{M}$
16 WORK(I) $=$ WORK(I)/R
C
R1 $=0.0$
DO 18 I $=1, M$
$T=0.0$
C
DO $17 \mathrm{~J}=\mathrm{I}, \mathrm{M}$
$17 \mathrm{~T}=\mathrm{T}+\mathrm{A}(\mathrm{I}, \mathrm{J}) *$ WORK (J)
$T=\operatorname{ABS}(T)$
IF(R1.GE.T)GO TO 18
R1 = T
18 CONTINUE
IF(ITER.EQ.1)GO TO 19
IF(PREVIS.LE.R1)GO TO 24
19 DO 20 I = 1, M
$20 \operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})=$ WORK(I)
PREVIS = R1
IF(NS.EQ.1)GO TO 24
IF(ITER.GT.6)GO TO 25
ITER = ITER +1
IF(R.LT.BOUND)GO TO 21
NS $=1$
C
$21 \mathrm{~K}=\mathrm{M}-1$
DO $23 \mathrm{I}=1, \mathrm{~K}$
$R=\operatorname{WORK}(I+1)$
IF(IWORK (I).EQ.O)GO TO 22
WORK (I+1) = WORK(I)+WORK(I+1)*A(I+1,I)
WORK (I) $=R$
GO TO 23
22 WORK (I+1) = WORK(I+1)+WORK(I)*A(I+1,I)
23 CONTINUE
GO TO 12
C
24 INDIC(IVEC) $=2$
25 IF(M.EQ.N)GO TO 27
$\mathrm{J}=\mathrm{M}+1$
DO 26 I $=\mathrm{J}, \mathrm{N}$
$26 \operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})=0.0$
27 RETURN
END

C


C
SUBROUTINE COMPVE(N, NM, M, IVEC, A, VECR, H, EVR, 1 2 EVI, INDIC, IWORK, SUBDIA, WORK1, WORK2, WORK, EPS, EX)

C
 C

DOUBLE PRECISION D,D1
INTEGER I, I1,I2,ITER,IVEC,J,K,L,M,N,NM,NS
REAL B,BOUND,EPS,ETA,EX,FKSI,PREVIS,R,S,U,V
DIMENSION A(NM,1), VECR(NM,1), H(NM,1); EVR(NM),
1
2 EVI(NM), INDIC(NM), IWORK(NM), SUBDIA(NM), WORK1(NM), WORK2(NM), WORK(NM)

C
FKSI = EVR(IVEC)
ETA = EVI(IVEC)
C
IF(IVEC.EQ.M)GO TO 2
$K=$ IVEC +1
$\mathrm{R}=0.0$
DO $1 \mathrm{I}=\mathrm{K}, \mathrm{M}$
IF(FKSI.NE.EVR(I))GO TO 1
IF(ABS(ETA).NE.ABS(EVI(I)))GO TO 1
$\mathrm{R}=\mathrm{R}+3.0$
1 CONTINUE
$\mathrm{R}=\mathrm{R} * E X$
FKSI = FKSI + R
ETA $=E T A+R$
C
$2 \mathrm{R}=\mathrm{FKSI} * \mathrm{FKSI}+E T A * E T A$
S = 2.0*FKSI
$\mathrm{L}=\mathrm{M}-1$
DO $5 I=1, M$
DO $4 \mathrm{~J}=\mathrm{I}, \mathrm{M}$
$D=0.0$
$A(J, I)=0.0$
DO $3 \mathrm{~K}=\mathrm{I}, \mathrm{J}$
$3 \mathrm{D}=\mathrm{D}+\mathrm{H}(\mathrm{I}, \mathrm{K}) * \mathrm{H}(\mathrm{K}, \mathrm{J})$
$4 \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{D}-\mathrm{S} * \mathrm{H}(\mathrm{I}, \mathrm{J})$
$5 \mathrm{~A}(\mathrm{I}, \mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I})+\mathrm{R}$
DO $9 \mathrm{I}=1$, L
$R=$ SUBDIA $(I)$
$A(I+1, I)=-S * R$
II = I +1
DO $6 \mathrm{~J}=1, \mathrm{II}$
$6 \mathrm{~A}(\mathrm{~J}, \mathrm{I})=\mathrm{A}(\mathrm{J}, \mathrm{I})+\mathrm{R} * \mathrm{H}(\mathrm{J}, \mathrm{I}+1)$
IF(I.EQ.1)GO TO 7
$A(I+1, I-1)=R * S U B D I A(I-1)$
7 DO 8 J $=I, M$
$8 \mathrm{~A}(\mathrm{I}+1, \mathrm{~J})=\mathrm{A}(\mathrm{I}+1, \mathrm{~J})+\mathrm{R} * \mathrm{H}(\mathrm{I}, \mathrm{J})$

## 9 CONTINUE

C
$K=M-1$
DO $18 \mathrm{I}=1, \mathrm{~K}$
I1 $=\mathrm{I}+1$
I2 $=I+2$
IWORK (I) $=0$
IF(I.EQ.K)GO TO 10
IF(A(I+2,I).NE.0.0)GO TO 11
10 IF(A(I+1,I).NE.0.0)GO TO 11
IF(A(I,I).NE.0.0)GO TO 18
$A(I, I)=E P S$
GO TO 18
C
11 IF(I.EQ.K)GO TO 12
IF(ABS (A(I+1,I)). GE.ABS(A(I+2,I)))GO TO 12
IF(ABS (A(I,I)).GE.ABS(A(I+2,I)))GO TO 16
$\mathrm{L}=\mathrm{I}+2$
IWORK (I) $=2$
GO TO 13
$12 \operatorname{IF}(A B S(A(I, I)) . G E . A B S(A(I+1, I))) G O T O 15$
$\mathrm{L}=\mathrm{I}+1$
IWORK (I) = 1
C
13 DO $14 \mathrm{~J}=\mathrm{I}, \mathrm{M}$
$R=A(I, J)$
$A(I, J)=A(L, J)$
$14 \mathrm{~A}(\mathrm{~L}, \mathrm{~J})=\mathrm{R}$
15 IF(I.NE.K)GO TO 16
I2 $=$ I 1
16 DO $17 \mathrm{~L}=\mathrm{I} 1, \mathrm{I} 2$
$R=-A(L, I) / A(I, I)$
$A(L, I)=R$
DO $17 \mathrm{~J}=\mathrm{I} 1, \mathrm{M}$
$17 A(L, J)=A(L, J)+R * A(I, J)$
18 CONTINUE
IF(A(M,M).NE.O.0)GO TO 19
$A(M, M)=E P S$
C
19 DO 21 I = 1,N
IF(I.GT.M)GO TO 20
$\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})=1.0$
$\operatorname{VECR}(I, I V E C-1)=1.0$
GO TO 21
$20 \operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})=0.0$
$\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC}-1)=0.0$
21 CONTINUE
C

```
 BOUND \(=0.01 /(E X * F L O A T(N))\)
 NS \(=0\)
 ITER = 1
 DO \(22 \mathrm{I}=1, \mathrm{M}\)
```

22 WORK(I) $=\mathrm{H}(\mathrm{I}, \mathrm{I})-\mathrm{FKS}$ I
C
23 DO 27 I $=1, M$
D = WORK (I)*VECR (I, IVEC)
IF (I.EQ.1)GO TO 24
$D=\operatorname{D}+\operatorname{SUBDIA}(\mathrm{I}-1) * \operatorname{VECR}(\mathrm{I}-1, I \operatorname{VEC})$
$24 \mathrm{~L}=\mathrm{I}+1$
IF(L.GT.M)GO TO 26
DO $25 \mathrm{~K}=\mathrm{L}, \mathrm{M}$
$25 \mathrm{D}=\mathrm{D}+\mathrm{H}(\mathrm{I}, \mathrm{K}) * \operatorname{VECR}(\mathrm{~K}, \mathrm{IVEC})$
26 VECR(I,IVEC-1) = D-ETA*VECR(I,IVEC-1)
27 CONTINUE
C
$K=M-1$
DO $28 \mathrm{I}=1, \mathrm{~K}$
L = I +IWORK (I)
$\mathrm{R}=\operatorname{VECR}(\mathrm{L}, \mathrm{IVEC}-1)$
$\operatorname{VECR}(\mathrm{L}, \operatorname{IVEC}-1)=\operatorname{VECR}(\mathrm{I}, \operatorname{IVEC}-1)$
$\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC}-1)=\mathrm{R}$
$\operatorname{VECR}(\mathrm{I}+1, \mathrm{IVEC}-1)=\operatorname{VECR}(\mathrm{I}+1, \operatorname{IVEC}-1)+\mathrm{A}(\mathrm{I}+1, \mathrm{I}) * \mathrm{R}$
IF (I.EQ.K)GO TO 28
$\operatorname{VECR}(\mathrm{I}+2, \operatorname{IVEC}-1)=\operatorname{VECR}(\mathrm{I}+2, \operatorname{IVEC}-1)+\mathrm{A}(\mathrm{I}+2, \mathrm{I}) * \mathrm{R}$
28 CONTINUE
C
DO $31 \mathrm{I}=1, \mathrm{M}$
$\mathrm{J}=\mathrm{M}-\mathrm{I}+1$
$\mathrm{D}=\operatorname{VECR}(\mathrm{J}, \operatorname{IVEC}-1)$
IF(J.EQ.M)GO TO 30
$\mathrm{L}=\mathrm{J}+1$
DO $29 \mathrm{~K}=\mathrm{L}, \mathrm{M}$
D1 $=A(J, K)$
29 D = D-D1*VECR(K,IVEC-1)
$30 \operatorname{VECR}(\mathrm{~J}, \operatorname{IVEC}-1)=\mathrm{D} / \mathrm{A}(\mathrm{J}, \mathrm{J})$
31 CONTINUE
C
DO $35 \mathrm{I}=1, \mathrm{M}$
$D=$ WORK (I)*VECR (I, IVEC-1)
IF(I.EQ.1)GO TO 32
$\mathrm{D}=\mathrm{D}+\operatorname{SUBDIA}(\mathrm{I}-1) * \operatorname{VECR}(\mathrm{I}-1$, IVEC -1$)$
$32 \mathrm{~L}=\mathrm{I}+1$
IF(L.GT.M)GO TO 34
DO $33 \mathrm{~K}=\mathrm{L}, \mathrm{M}$
$33 \mathrm{D}=\mathrm{D}+\mathrm{H}(\mathrm{I}, \mathrm{K}) * \operatorname{VECR}(\mathrm{~K}, \mathrm{IVEC}-1)$
$34 \operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})=(\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC})-\mathrm{D}) / E T A$
35 CONTINUE
C

```
\(\mathrm{L}=1\)
\(S=0.0\)
DO \(36 \mathrm{I}=1, \mathrm{M}\)
\(R=\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC}) * * 2+\operatorname{VECR}(\mathrm{I}, \mathrm{IVEC}-1) * * 2\)
IF (R.LE.S) GO TO 36
\(S=R\)
```

```
 L = I
 36 CONTINUE
 C
 U = VECR (L,IVEC-1)
 V = VECR(L, IVEC)
 DO 37 I = 1,M
 B = VECR(I, IVEC)
 R = VECR(I,IVEC-1)
 VECR(I,IVEC) = (R*U+B*V)/S
 37 VECR(I,IVEC-1) = (B*U-R*V)/S
C
\(B=0.0\)
DO \(41 \mathrm{I}=1, \mathrm{M}\)
\(\mathrm{R}=\) WORK (I)*VECR (I, IVEC-1)-ETA*VECR (I, IVEC)
\(U=\) WORK (I)*VECR (I, IVEC) +ETA*VECR (I , IVEC-1)
IF(I.EQ.1)GO TO 38
\(R=R+S U B D I A(I-1) * \operatorname{VECR}(I-1, I \operatorname{VEC}-1)\)
\(U=U+S U B D I A(I-1) * \operatorname{VECR}(I-1, I V E C)\)
\(38 \mathrm{~L}=\mathrm{I}+1\)
IF (L.GT.M)GO TO 40
DO \(39 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
\(R=R+H(I, J) * \operatorname{VECR}(J, I V E C-I)\)
\(39 \mathrm{U}=\mathrm{U}+\mathrm{H}(\mathrm{I}, \mathrm{J}) * \operatorname{VECR}(\mathrm{~J}, \mathrm{IVEC})\)
\(40 \mathrm{U}=\mathrm{R} * \mathrm{R}+\mathrm{U} * \mathrm{U}\)
IF (B.GE.U)GO TO 41
\(B=U\)
41 CONTINUE
IF (ITER.EQ.1)GO TO 42
IF (PREVIS.LE.B)GO TO 44
42 DO \(43 \mathrm{I}=1, \mathrm{~N}\)
WORK1 (I) = VECR (I, IVEC)
43 WORK2 (I) = VECR (I, IVEC-1)
PREVIS = B
IF (NS.EQ.1)GO TO 46
IF (ITER.GT.6)GO TO 47
ITER = ITER + 1
IF (BOUND.GT.SQRT(S))GO TO 23
NS \(=1\)
GO TO 23
C
44 DO \(45 \mathrm{I}=1, \mathrm{~N}\)
VECR (I, IVEC) = WORK1 (I)
\(45 \operatorname{VECR}(\mathrm{I}, \mathrm{IVEC}-1)=\mathrm{WORK} 2(\mathrm{I})\)
46 INDIC(IVEC-1) \(=2\)
INDIC(IVEC) \(=2\)
47 RETURN
END
```

```
C
C***
C
 SUBROUTINE MODEL5(IC, TW, NMRUNS, C)
C
C**
C
 INTEGER ITEMP, ITEMP1, ITEMP2, IC, II(5), IT, NMRUNS,
 REAL TN, TN2, TW(5), W(5), W1(5), W2(5), W3(5),
 1 CYW(5), C(5,5), TT
 DO 100 I = 1, IC
 II(I) = I
 W(I) = 0.0
 W1(I) = 0.0
 W2(I) = 1.0
 W3(I) = 0.0
 100 CONTINUE
C
C CALCULATE THE WEIGHT VECTORS AFTER GENERATING ALL
C POSSIBLE INDEX ORDERS
C
 IF(IC.EQ.5) GO TO 300
 IF(IC.EQ.4) GO TO 200
 DO 103 J = 1, 3
 IF(J.EQ.1) GO TO 104
 ITEMP = II(1)
 II(1) = II(2)
 II(2) = II(3)
 II(3) = ITEMP
 104 W(II(3)) = 1.0
 W(II(2)) = C(II(2),II(3)) * W(II(3))
 W(II(1)) =
 1(C(II(1),II(2))*W(II(2))+C(II(1),II(3))*W(II(3)))/2.0
 TT = TT+1.0
 TN = 0.0
 DO 109 I = 1, IC
 109 TN = TN + W(II(I))
 DO 105 I = 1, IC
 105 W1(I) = W(I) / TN
 DO 106 I = 1,.IC
 106 W2(I) = W2(I)*W1(I)
 103 CONTINUE
 400 TN2 = 0.0
C
 CALCULATE GEOMETRIC MEAN OF ALL WEIGHT VECTORS
 DO 107 I = 1,IC
 W3(I) = W2(I) ** (1.0/TT)
107 TN2 = TN2 + W3(I)
 DO 108 I = 1, IC
108 CYW(I) = W3(I) / TN2
 WRITE(6,*) (CYW(I),I=1,IC)
```

```
 GO TO 500
200 DO 201 I = 1, IC
 IF(I.EQ.1) GO TO 202
 ITEMP = II(1)
 II(1) = II(2)
 II(2) = II(3)
 II(3) = II(4)
 II(4) = ITEMP
202 DO 203 J = 1, IC
 IF(J.EQ.1) GO TO 204
 ITEMP = II(2)
 II(2) = II(3)
 II(3) = II(4)
 II(4) = ITEMP
 IF(J.EQ.4) GO TO 203
204 W(II(4)) = 1.0
 W(II(3)) = C(II(3),II(4)) * W(II(4))
 W(II(2)) = (C(II(2),II(3))*W(II(3))+C(II(2),II(4)) *
 1 W(II(4)))/2.0
 W(II(1)) = (C(II(1),II(2))*W(II(2))+C(II(1),II(3)) *
 1 W(II(3)) + C(II(1),II(4))*W(II(4)))/3.0
 TT = TT+1.0
 TN = 0.0
 DO 209 K = 1, IC
209 TN = TN + W(II(K))
 DO 207 K = 1, IC
207 W1(K) = W(K) / TN
 DO 208 K = 1, IC
208 W2(K) = W2(K)*W1(K)
203 CONTINUE
201 CONTINUE
 GO TO 400
300 DO 301 I = 1, IC
 IF(I.EQ.1) GO TO 302
 ITEMP1 = II(1)
 II(1) = II(2)
 II(2) = II(3)
 II(3) = II(4)
 II(4) = II(5)
 II(5) = ITEMP1
302 DO 303 J = 1, IC
 IF(J.EQ.1) GO TO 304
 ITEMP = II(2)
 II(2) = II(3)
 II(3) = II(4)
 II(4) = II(5)
 II(5) = ITEMP
 IF(J.EQ.IC) GO TO 303
304 DO 305 K = 1,4
 IF(K.EQ.1) GO TO 306
 ITEMP = II(3)
 II(3)= II(4)
```

```
 II(4)=II(5)
 II(5)= ITEMP
 IF(K.EQ.4) GO TO 305
 306 W(II(5)) = 1.0
 W(II(4)) = C(II(4),II(5)) *W(II(5))
 W(II(3))=(C(II(3),II(4))*W(II(4))+C(II(3),II(5))*
 1 W(II(5)))/2.0
 W(II(2))=(C(II(2),II(3))*W(II(3))+C(II(2),II(4))*
 1 W(II(4)) + C(II(2),II(5))*W(II(5)))/3.0
 W(II(1))=, (C(II(1),II(2))*W(II(2))+C(II(1),II(3))*
 1 W(II(3))+C(II(1),II(4))*W(II(4)) + 2
 2 C(II(I),II(5)) *W(II(5)))/4.0
 TT = TT+1.0
 TN = 0.0
 DO 309 L = 1, IC
 309 TN = TN + W(II(L))
 DO 307 L = 1, IC
 307 W1(L) = W(L) / TN
 DO 308 L = 1, IC
 308 W2(L) = W2(L)*W1(L)
 305 CONTINUE
 303 CONTINUE
 301 CONTINUE
 GO TO 400
 500 RETURN
 END
C
C**
C
 SUBROUTINE MODEL6(IC, TW, NMRUNS, C)
C
C**
C
 INTEGER IC,IT,NMRUNS
 REAL TN1, TN2, TW(5), R(5,5), C(5,5),W(5), TAKW(5)
 CALCULATE THE WEIGHTS
 TN2 = 0.0
 DO 106 I = IC, 1, -1
 W(I) = 0.0
 IF(I.EQ.IC) GO TO 108
 DO 107 J = I+1, IC
 W(I) = W(I) + C(I,J) * W(J)
 107 CONTINUE
 GO TO 110
 108 W(I) = 1.0
 110 TN2 = TN2 + W(I)
 106 CONTINUE
 DO 109 I = 1, IC
 TAKW(I) = W(I) / TN2
109 CONTINUE
 RETURN
 END
```

VITA

Kook Jin Nam
Candidate for the Degree of
Doctor of Philosophy

Thesis: NEW WEIGHTING PROCEDURES MINIMIZING JUDGMENTAL ERROR AND REFINING INCONSISTENCY FOR MULTIPLE CRITERIA DECISION MAKING PROBLEMS

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Taegu City, Republic of Korea, October 25, 1951, the son of Mr. and Mrs. Hyodeok Nam.

Education: Graduate from Kyesung High School, Taegu, Republic of Korea, in January, 1971; received Bachelor of Science degree in Ordnance Engineering from Korea Military Academy, Seoul, Republic of Korea, in March, 1975; received Master of science degree in Operations Research from U.S. Naval Postgraduate School, Monterey, California, in September, 1984; completed requirements for the Doctor of Philosophy degree in Industrial Engineering at Oklahoma State University, Stillwater, Oklahoma, in May, 1990.

Professional Experience: Platoon leader in 21st Infantry Division, Republic of Korea Army(ROKA), August, 1975 to June, 1977; Platoon leader in Seoul Security Command, June, 1977 to May, 1978; Company commander, in 9th Infantry Division, ROKA, June, 1978 to February, 1981; Company commander, in Joint Security Area, Panmunjum, Korea, March, 1981 to February, 1982; Graduate student in U.S. Naval Postgraduate School, Monterey, California, September, 1982 to September, 1984; Staff officer in ROKA Headquarters, Seoul, Korea, October, 1984 to July, 1986; Teaching Assistant, School of Industrial Engineering and Management, Oklahoma State University, August, 1987 to December, 1989.


[^0]:    ${ }^{\prime} D(1,2)=.47, D(1,3)=.17, D(1,4)=.64, D(1,5)=.50, D(1,6)=.89$, $D(1,7)=.72, D(1,8)=.92, D(1,9)=.55, D(2,3)=.75, D(2,4)=.69$, $D(2,5)=.37, D(2,6)=.28, D(2,7)=.71, D(2,8)=.17, D(2,9)=.20$, $D(3,4)=.09, D(3,5)=.03, D(3,6)=.49, D(3,7)=.77, D(3,8)=.63$, $D(3,9)=.98, D(4,5)=.71, D(4,6)=.77, D(4,7)=.23, D(4,8)=.88$, $D(4,9)=.74, D(5,6)=.09, D(5,7)=.96, D(5,8)=.31, D(5,9)=.20$, $D(6,7)=.80, D(6,8)=.33, D(6,9)=.58, D(7,8)=.13, D(7,9)=.25$, $D(8,9)=.14$,

