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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Let Y(x) be a random variable with distribution 

function P(Y(x) ~ y) = F(y,elx) and expectation of Y(x) 

given by 

00 

M(x) = J y BF(y!x). 
-oo 

Assume that neither the distribution function nor the 

(1) 

expectation of the random variable is known. Consider the 

problem of sequentially selecting the values of x, the 

design levels, in order to efficiently estimate the entire 

function M(x). From the estimate of M(x), any root, L, of 
p 

the equation M(x) = p can then be estimated. Figure 1 on 

page 2 depicts the situation graphically. 

Sequential approximation methods have beeen applied in 

several areas of research. One area in which sequential 

approximation methods are frequently applied is sensitivity 

analysis. In sensitivity tests, each specimen is assumed to 

have a critical threshold. The specimen will respond only 

if a stress greater than its critical threshold is applied. 

Dixon and Mood (1948) and Neyer (1989) present examples of 

sequential approximation methods for use in explosives 

research. 

1 
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p ----------

X 

Figure 1. Sequential Approximation 



Cochran and Davis (1964) and Davis (1971) study 

sequential approximation methods for estimating the LD50 in 

bioassays. These authors demonstrated the superiority of 

3 

sequential methods to traditional nonsequential designs. In 

their simulation study with a fixed sample size, the 

sequential methods produced lower mean square errors than 

the nonsequential designs. When estimating the LD50 with a 

specified standard error, they noted an important advantage 

of the sequential methods. Fewer animals would be required 

for an experiment using the sequential methods than with the 

nonsequential designs. Other areas of application include 

entomology, reliability and educational testing. 

Other authors have considered the problem of estimating 

a single root of the function M(x). As previously 

mentioned, Dixon and Mood (1948) developed the Up and Down 

method for use in sensitivity analysis. For example, the 

sensitivity of explosive material can be defined as the 

impact needed to detonate the material. Weights are dropped 

from various heights onto samples of the explosive material 

and the response, explosion or no explosion, is recorded. 

The Up and Down method requires a starting height, X , and a 
1 

step size, ~. Based on the previous responses, the 

procedure successively generates the height to drop the 

weight for the next experiment. Successive observations (Y 
n 

= 0 represents "no explosion" and Y = 1 represents an 
n 

"explosion") are taken at heights X , determined by the rule 
n 

X X + ~ 
n+l n 

if Y = 0 and 
n 

(2) 
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X = X - ll 
n+l n 

if y = 1 ' 
n 

where ll is the predetermined positive step size. 

Label the heights used in the experiment, from lowest 

to highest, by h = o, 1, 2, etc .. Let B denote the lowest 

height used in the experiment (the height corresponding to 

h=O). Let n be the number of explosions at height level h, 
h 

and let N be the total number of explosions. The estimate 

of L , the height at which 50 percent of the samples will 
.5 

detonate, is given by 

/\ 

L = B + ll·[(l/N) E hnh- (1/2)]. 
.5 

( 3) 

Wetherill (1963} noted the effectiveness of the procedure 

for small or medium sample sizes is highly dependent upon 

the choice of starting value X and step size fl. 
1 

Robbins and Monro (1951) suggested estimating the 

single root L with the updating rule 
p 

X 
n+l 

X - A (Y - p} 
n n n 

where y is the response associated with X , p is a single 
n n 

predetermined constant, and A is a fixed sequence of 
n 

(4} 

positive constants. Thus, the step size from X to X is 
n n+l 

not a single fixed constant, as it is in the Up and Down 

method. The term X serves as the estimator of L after 
n+l P 

n updates. Under the following conditions on M(x) and {A}, 
n 

Robbins and Monro demonstrated that X converges to L in 
n p 

a) M(x) is a nondecreasing function; M(L) = p; M' (L) > o. 
p p 

b) 3 a positive constant C such that P[IY(x) I ~ CJ = 
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c 
Jc 8H(ylx> = 1 for all x. 

c) A is a sequence of type 1/n {There exists positive 
n 

constants, d and d , such that [d jn] :S A :S [d jn]). 
1 2 1 n 2 

Blum (1954) and Goodsell and Hanson (1976) provided 

conditions for which X converges to L almost surely. 
n p 

Using {A } = A 1 n, for some positive constant A, Chung 
n 

(1954) and Sacks (1958) defined criteria under which Vn(X-
n 

L ) is asymptotically normal with mean L and variance, 
p p 

var { vn ( x - L ) } = A 2 • 0'2 1 (2 ·A· M' ( L ) - 1) , ( 5) 
n p p 

where 0'2 = var(Yix=LP) and M'(LP) = (aM(x)jax) lx=L. Chung 
p 

(1954) also showed that the asymptotic variance of Xn is 

-1 • minimized when An= (n·M'(LP)) . Thus, aRM procedure w1th 

-1 A = (n·M' (L ) ) represents an optimal RM process. Note 
n P 

that M'(L) is the slope of the tangent line of the 
p 

expectation curve at the root L . 
p 

In practice M'(L) is usually unknown. Thus, an 
p 

educated guess of M'(L) must be made prior to the 
p 

experiment. Wetherill (1963) demonstrated that a poor guess 

of M' (L ) and the starting value X will make the RM 
p 1 

procedure (4) inefficient for small and medium sample sizes. 

Venter (1967) and Anbar (1977) showed that the 

desirable properties of the RM procedure are maintained if 

M'(L) is replaced by a strongly consistent estimator. 
p 

Venter's procedure involves taking two observations, Y and 

Y', at X - W and X + W , where {W } is a sequence of 
n n n n n 

constants converging to zero. Anbar (1977) suggested 



estimating M' (L ) by 
p 

n-1 
- 2 

- xn-1) / L (xi- xn-1)' 
m 

the slope of the least squares line through 

(x ,y(x )), .•. , (x ,y(x )) forsomem(n) <n. m(n) m(n) n-1 n-1 

The design levels are generated by the rule 

-1 
X = X - (n·b ) (Y - p) . n+1 n n n 

Anbar then proved b --!.:..!..:..-> M' (L ) X __ !.:..!..:..-> L , and 
n p 1 n p 

6 

(6) 

(7) 

that v'n (X - L ) has the same asymptotic distribution as the 
n p 

optimal RM process. 

Wu (1985) suggested estimating the root L from an 
p 

estimate of the entire function M(x). He noted that a 

smooth nonparametric estimate of M(x) was not feasible 

without a large number of observations. Therefore, to 

produce his estimators, he used a parametric form, H(xle), e 

= (e , ... ,e)' for the expectation of Y. Wu proposed the 
1 k 

following updating rule: 

A (n) 
1) Find an efficient estimate B for e based on the n 

observations [ (y , X ) n). ( 8) 
1 1 1 

A 

2) Define the estimated expectation function H (x) = 
A (n) 

H(xle ) and choose x n+1 
"' n 

such that H (x ) = p. n n+l After 

n updates, x provides n+1 an estimate of L . 
p 

A (n) 
He suggested using the maximum likelihood estimator, e , 

as the efficient estimator of e at each update. Using a one 

parameter logit expectation, for a binary random variable Y, 

Wu demonstrated that his procedure is equivalent to a 

Robbins-Monro process. Thus, X from (8) converges to L 
n p 
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almost surely, regardless of the true distribution of Y. 

Using a two parameter logit expectation, Wu was unable to 

prove consistency. However, assuming consistency, he showed 

that a first order approximation to his procedure is 

asymptotically equivalent to the optimal RM procedure. 

These procedures are sequential since they generate the 

th n design level based on the previous n - 1 design levels 

and responses. One approach, however, is to select a fixed 

total number of observations for the experiment. If a 

sequential stopping rule is desired, then one can be 

constructed based on the asymptotic variance of the 

estimator. Freedman (1970) introduced stopping rules for 

the Up and Down method based on Bayesian decision theory. 

The case of a fixed total number of observations is 

considered in this paper. 

Note that procedures (4), (7), and (8) were developed 

to estimate a single root of the expectation M(x). With the 

exception of Wu's procedure, no attempt was made to estimate 

the entire function M(x). Even though M(x) was estimated at 

each stage in Wu's procedure, the purpose was to provide an 

estimate of a single L , not the entire curve M(x). 
p 

In Chapter II of this thesis, a new sequential 

approximation method called SAM is proposed. The objective 

of the new procedure is to provide estimates of any number 

of roots, L , of M(x) = p. In Chapter III, SAM is studied 
p 

in detail for binary data applications. conditions under 

which SAM's estimates are consistent are provided. Using 



the two parameter logit expectation, SAM is shown to be 

asymptotically equivalent (in first order) to a two 

dimensional RM process • The results of a simulation study 

are presented in Chapter IV. 

8 



CHAPTER II 

A NEW SEQUENTIAL APPROXIMATION METHOD (SAM) 

The Procedure 

As in Wu's procedure (8), to produce root estimators, a 

parametric model, G(xle) = J yg(ylx,e) ay, is used for the 

expectation function of Y. Select k unique constants 

p , ... ,p, where k is the dimension of the vector of 
1 k 

parameters' e = ( e ' ••. 'e ) I. The updating rule for SAM is: 
1 k 

1) Calculate the MLE of e using g(ylx,e) as the density 

function of Y; e<n>= e[(y ,x )]<n,k) where (i,j) = 
lj lj (1,1) 

(1,1) to (n,k) refers to the k observations that 

(9) 

that are taken at each of the n updates of the process. 

2) Define the estimated expectation after the dh update of 

the process as 

and choose the next k dimensional design point (x , 
n+l,l 

A 

... ,x ) such that G(x ) = p for j = 1, ... ,k. 
n+1,k n+1,j j 

After n updates, x 
n+1,j 

provides an estimate of L , 
pj 

for j = 1, ... , k. In general, estimates of any root, Lp*' 

9 



of the equation M(x) 

a c£ <n> > = •• 
n p* p 

* "(n) 
= p , are provided by L • , where 

p 

Note that both the design levels, x , and the 
1' J 

responses, y , are random variables. However, the joint 
1' J 

probability density function, g(x ,y , ... ,x ,y ), is 1,1 1,1 n,k n,k 

10 

simply the product of the conditional probability densities 

of Y , given x . That is, 
1,j i,j 

n k 

g(x1,1'Y1,1' · · · ,xn,k'Yn,k) = TL 1!1g(y1,Jjxi,J) · (10) 

To see this, note 

g ( x1' 1 I y 1,1 I ••• I X n, k I y n, k) = (11) 

g(y , ... ,y jx ,y , ... ,y ,x , ... ,x )· n,1 n,k 1,1 1,1 n-1,k n,1 n,k 

P(x , ... ,x jx ,y , ... ,x ,y )· ... n,1 n,k 1,1 1,1 n-1,k n-1,k 

g(y , ..• ,y jx , ... ,x )·P(x , ... ,x ). 1,1 1,k 1,1 1,k 1,1 1,k 

The random variables Y , ... ,Y , given the design levels 
n, 1 n,k 

x , ... ,x , are assumed to be independent random n,1 n,k 

variables. Also, g(y1,Jix1, 1 ,yl. 1 ,. •• ,x1_1 ,k,yi-l,k' 

x , ... ,x ) = g(y lx ) . Since i,l i,k i,j l,j 

P(xi,t' · · · ,xl,klxt,1'Yt,t' · · · ,xl-t,k'yl-t,k) = 1 and 

x , ... ,x are fixed values, (11) simplifies to the 
1,1 l,k 

result in (10). Therefore, in the maximum likelihood 

n k 

calculations, the likelihood function is n n g(y .lx .,e), 
l,J l,j 

1 j 

considered as a function of e. 

SAM uses MLEs to calculate the next design levels. 

However, when only a few observations have been taken, MLEs 

may not exist. Therefore, some other procedure is needed to 
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produce the initial design levels until the MLEs exist. Two 

methods for producing the initial design levels are given in 

the simulation study of Chapter IV. In the first, an 

initial set of five design levels is chosen. A total of ten 

responses are observed at these levels. The second method 

starts with a Robbins-Monro procedure and switches to SAM's 

updating rules when the MLEs first exist. Two other 

possibilities for producing the initial design levels are 

the modified binary search presented by Neyer (1989) and the 

two dimensional Robbins-Monro process proposed by Moser and 

Fei (1989a). 

For k = 1, SAM (9) is equivalent to the MLE version of 

Wu's procedure (8), provided H(xiB> = G(xiB). However, for 

k > 1, the two procedures differ. At the ~~ update, SAM 

generates knew design levels , x , ... , x , while n+l,l n+l,k 

Wu's procedure generates a single level, x . n+l 

Figure 2 on the following page is a graphical display 

of SAM's updating rule. A sketch of the estimated 
A 

expectation curve after n updates, G (x), is given. The 
n 

dotted lines highlight the next k design levels 
A 

(xn+l,l' •.. ,xn+l,k), the solutions to Gn(x) = pJ, j = 

1 I • • • I k. 

The difference between SAM and Wu's procedure is also 

apparent in Figure 2. The design levels in Wu's procedure 

will be grouped around a single point, L . Using SAM, the 
p 

design levels will be in k separate groups, around L , L 1 

••• 1 and L . 
pk 

pl p2 
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Pk 

P2 -

P1 

Xn+l,k 

X 

Figure 2. SAM 
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SAM's updating rule requires the choice of k unique 

constants p , p , ... , p . One approach is to base the 
1 2 k 

"(n) 
selection of p 1 , p 2 , ••• , pk on Var(LP* ). This variance is 

a function of M(x). Since M(x) is unknown, a different 

criteria must be used to select p 1 , p 2 , ••• , Pk· 

For a given set of values p , p , •.. , p , and for any 
1 2 k 

• pen, where n is the range space of G(xle), let 

2 
*2 • ["(n) J u = 11m E L • - L • , 
n n->oo p p 

(12) 

where the expectation is calculated with respect to the 

density function g(ylx,e). The value u*2 is a function of 
n 

• • 2 • 
p , p , ... ,p , denoted by u (p ,p , ... ,p ) . The selection 

1 k n 1 k 

of p , p , •.. , p will be based on the function 
1 2 k 

u • 2 (p •, p , ... , p ) . If £}hl is a consistent estimator of L • 
n 1 k p* p 

I ~ and g(y x,e) is the true density function of Y, then u 
n 

" represents the asymptotic variance of L . 
p* 

Two different criteria for selecting p ,p , ... ,p 
1 2 k 

are 

now presented. The first approach is to choose the 

p ,p , ... ,p that minimize 
1 2 k 

J *2 
(j (U 1 P 1 • • • 1 p ) • ¢ ( U) ' 8U 

* n 1 k 

(13) 

n 
• • • where ¢ ( · ) is a measure on p e n ~ n . The space n can be 

• interpreted as the range of interest for p , with ¢ ( · ) 

indicating the level of interest in any L . If all roots, 
p* 

• • L •' p e n , are of equal interest, then ¢ ( ·) is a 
p 
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• • Unl.form(Q ) density function. The p ,p , ... , p that 
1 2 k 

minimize (13) will be referred to as the average minimum 

p ,p , ... , p with respect to¢(·). 
1 2 k 

A second approach is to choose the set p , ... , p that 
1 k 

• *2 * • • minimizes the max1.mum (]' (p , p , ... , p ) for p e Q • That 
n 1 k 

is, select the p, p , •.. , p that minimize 
1 2 k 

*2 
~up * (]' 

p e Q 

• (p , p , ... , p ) . 
1 k 

(14) 

The p , •.. , p that minimize (14) will be referred to as the 
1 k 

minimax p , ... , p . In Chapter III, the average minimum and 
1 k 

minimax values of p, p are derived when G(x!e) is the two 
1 2 

parameter legit model. 

Bounded and Alternate Versions of SAM 

For small sample sizes, estimates of e from SAM (9) or 

WU (8), and estimates of M'(L) from Anbar (6) are extremely 
p 

variable. Thus, the changes in the design levels from the 

nth to the (n+1) st update can be extremely large. Wu ( 1985) 

has shown that bounded versions of these procedures, which 

limit the step size from X to X , improve their 
n n+1 

performance for small to medium sample sizes. The following 

is a bounded version of SAM. Let d ,j = 1, ... ,k, be the 
n,j 

solution to X = X - (d 1 n) · (Y - p ) , where 
n+l, j n, j n, j n, j j 

X is the solution of G (x) = p. The (n+1,j)th design 
n+l n J 

point is then defined by 
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• X = X - (d I n) · (Y - p ) 1 n+1, j n, j n, j n, j j (15) 

• where d = max[o 1min(d 1 o )] and o < o. n,j 1 n,j 2 1 2 
A 

Instead of using the solutions of G (x) = p as the 
n J 

next design levels, the bounded version first checks the 

step sizes from X to X n,J n+1,J If the step sizes are not 

within the bounds determined by o1, o2 and n, then the step 

size bound is used to calculate X n+1,J Note that using o1 

= -oo and o = oo is equivalent to the unbounded version of 
2 

SAM (8). 

Using the bounded version of SAM (15), the step size, 

I X - X I, is bounded above by I (o I n) · (Y - pJ) I· n+1,j n,j 2 nj 

Note that as n increases, the maximum allowable step size 

decreases. If Y is a binary random variable with p = .2 1 k 

th = 2 and o = 50, at the 10 update the maximum step size is 
2 

15· (Y - .2) I· This becomes 1 if Y = 0, and 4 if 10,j 10,j 

Y = 1. At the 30th update, the step size is bounded by 10,j 

11.6· (Y - .2) I. This bound is .32 is Y = 0 and 1.28 30,j 30,j 

if y = 1. 30, j 

Instead of observing k responses at each update, the 

following adaptation to SAM may be used. At the (i+1)st 

• IA(11) update, choose X to be the solut1on of G(x e ' ) = 
1+1' 1 

A ( 1 1) 
p1, where e ' is the MLE of e based upon the previous i 

A ( 1) 
updates (e in the previous notation). After observing 

A 

the response Y at level X , recalculate e using 1+1,1 1+1,1 

(Y1,11x1,1) I ••• , (Yi,klxl,J<) and (y1+1,1'xt+1,1). Denote 

this estimator by e<i, 2>. Choose X to be the solution 1+1,2 

to G(xle 0 ' 2>) = p 2. Continue this process to produce all k 
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design levels of the (i+l)st update. 

The difference between this version of SAM and (9) is 

that updated parameter estimates are calculated after each 

observation, instead of after every k observations. This 

version has the advantage of using all information to 

calculate each new design level. However, it is often easier 

to run an experiment with fewer updates, observing several 

responses at a time. Thus, for the remainder of this paper, 

the original version of SAM (9) will be used. The asymptotic 

results in Chapter III follow for either version of SAM. 



CHAPTER III 

SAM FOR BINARY DATA 

Introduction 

In Chapter II, a new sequential approximation method, 

SAM, was proposed. In this Chapter, SAM will be studied 

when Y is a binary random variable. If Y is a binary random 

variable, then M(x) = P(Y = 1lx> and L 
p 

. th th 1s e p 

percentile of M(x). To use SAM's updating rule, a 

parametric model, G(xle), must be selected. Wu (1985) 

suggested using the legit model for binary data when M(x) is 

unknown. Thus, without prior knowledge of M(x), G(xle> is 

chosen to be the two parameter legit model. When G(xle) is 

the two parameter legit model, SAM (9) is referred to as the 

legit version of SAM. 

The consistency of SAM's estimates is discussed in the 

first section of this chapter. Three theorems are presented 

giving conditions for the consistency of SAM's estimators. 

An example of SAM's updating rule, using the two parameter 

legit model, is presented next. The legit version of SAM is 

then shown to be asymptotically equivalent (in first order) 

to a two dimensional RM procedure. Two approaches for 

selecting the constants p 1 and p2 used in the legit version 

17 



18 

of SAM are also presented. The chapter concludes with a 

discussion of the asymptotic variances and biases of 

estimators from the RM procedure and the legit version of 

SAM. 

Consistency 

Using a one parameter legit expectation for H(xle), Wu 
A 

(1985) demonstrated that L from his procedure (8) is a 
p 

consistent estimator of L . SAM and Wu's procedure are the 
p 

same when using one parameter expectations, provided H(xle) 
A 

= G(xle). Thus L from SAM, using the one parameter legit 
p 

expectation, is also a consistent estimator of L . This 
p 

result holds regardless of the true expectation, M(x). 

Using a model other than the one parameter legit for H(xle), 

Wu was unable to prove consistency. 

It is known that under the standard regularity 

conditions with independent observations, MLEsare both 

consistent and asymptotically normal. Due to the dependence 

of the random variables, Y1 j, Y2 J, ••• , YnJ' it is difficult 

to demonstrate the consistency of SAM's or Wu's estimators 

using a general k parameter expectation. As previously 

mentioned, when H(xle> is the two parameter legit model, Wu 

was not able to provide a rigorous proof of the consistency 

of his estimators. However, using the results of Dubins and 

"(n) 
Freedman (1965), Wu demonstrated that if e from (8) 



• converges almost surely to a constant e 
A 

then L from (8) 
p 

converges to L almost surely. Theorem 1 applies the work 
p 

of Dubins and Freedman (1965) to SAM's estimators. 

Theorem 1. Let x ,y , ... ,x ,y be a sequence of 
1,1 1,1 n,2 n,2 
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design levels of binary responses from SAM (9), where G(xle) 

is the two parameter legit expectation. Assume that the 

MLEs ( e <n> e <n>) converge almost surely to a constant 
I 1 f 2 I 

'II • • (8 ,e), e ~ 0. Also assume that M(x) is a strictly 
1 2 2 

increasing function of x. Then £ <n> and £ <n> from SAM ( 9) 
p1 p2 

converge almost surely to L and L , respectively. 
p1 p2 

The proof is given in Appendix A. Note that Theorem 1 

A • 

does not claim that Lp*' p ~ p1 ,p2 , is a consistent 

• estimator of L . The estimator of any L p ~ p p is p* p* I 1 1 2 1 

a function of G(xle ,e) (see the paragraph following (9)). 
1 2 

A A 

If G(xle) ~ M(x), then L 
pl 

and L are still consistent 
p2 

estimators of L and L respectively, although L in 
p1 p2 p* 

• general (p ~ p , p ) may not be a consistent estimator of 
1 2 

L •. 
p 

A 

As mentioned at the beginning of this section, L from 
p 

SAM, when G(xle) is the one parameter legit expectation, is 

a consistent estimator of L . The following theorem extends 
p 

this consistency result to one parameter binary expectations 

other than the legit model. It does not require the 

assumption that the MLEs converge almost surely to a 

constant. However, it requires the strong assumption that 
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the parametric model used in SAM is the true expectation of 

Y. That is, G(xle> = M(x). 

Theorem 2. Let Y be a binary random variable depending 

upon the level of another variable x. Let G(xle) = M(xle) = 

E(Yix,e), where e is a single unknown parameter. Consider 

the following conditions: 

1) M(xle) is continuous in e, 

2 ) 3 o , o e R such that o < 8M/ ae < o . 
1 2 1 2 

If conditions 1) and 2), along with the standard regularity 

conditions on the distribution of Y (given in Appendix B), 

"' are satisfied, then the estimatot- L produced by SAM (9) 
p 

converges in probability to L . 
p 

The one parameter logit and probit models are examples 

of expectations which satisfy these conditions. The proof 

is based in the results of Crowder (1975), and is given in 

Appendix B. 

By placing certain restrictions on the bounded version 
A A A 

of SAM (15), it will now be shown that L ,L , ... ,L 
p1 p2 pk 

converge almost surely to L ,L , ... ,L . In (15), replace 
pl p2 pk 

• • d with d to produce the. updating rule 
n,j n-l,j 

• X = X - (d / n) · (Y - p ) (16) 
n+1,j n,j n-l,j n,j j 1 

• • where d = max { o , m1n ( d , o ) } , d is the 
n-1,j 1 n-1,j 2 n-1,j 

solution to X = X - [d /(n-1)) · (Y - p) and 
n, J n-1, j n-1, j n-1, j j 

A 

X is the solution to G (x) = p . 
n,j n-1 j 

The difference 

between (15) and (16) is that the step size factor in (16), 

• d , is based only upon x ,y , ... ,x , instead of 
n-1,j 1,1 1,1 n,k 



X ,y , •.• ,X ,y . 
1,1 1,1 n,k n,k 

Theorem 3. Let Y be a binary random variable with a 

strictly increasing expectation function, M(x). Let 

x , y , •.• x , y be a sequence of design levels and 
1,1 1,1 n,k n,k 

responses from (16), with 0 < o1 < o2 • Then X 
n+l,j 

converges to L , j = 1,2, ••• ,k, almost surely. 
pj 

The proof follows from application 2 of Robbins and 

Siegmund (1971). Two points regarding Theorem 3 should be 
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noted. By using d• in place of d• , ( 16) fails to use 
n-1, j n, j 

the latest information in calculating the step sizes. Thus, 

it is not recommended above the updating rule in (15). The 

• use of d was simply to satisfy the conditions of 
n-l,j 

Robbins and Siegmund (1971). • To apply their results, d 
n-1,j 

in ( 16) must be a function of x , y , .•• , x only (not 
1,1 1,1 n,j 

including y ). This does not say that Theorem 3 does not 
n,j 

• • hold us1ng d • An extension of their work, however, would 
n,j 

be needed for that result. 
1\ 

Secondly, Theorem 3 states that L converges to L , 
p j p j 

for j = 1, •.• ,k. Thus we have consistent estimators fork 

roots, L , ... , L . As in Theorem 1, this does not prove 
p p 

1 k 
/\ . 

the consistency of L for p E {p , ... ,p } . 
p* 1 k 

The estimate 
1\ • 

of any L is the solution to G (x) = p , which depends upon 
p* n 

1\ 

the selected model, G(x!B). For LP* to converge to LP* for 

• any p, the model used by SAM, G(x!B), must be the true 

expectation of Y, M(x). 
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In this section, three theorems have been presented. 

Each provides restrictions under which SAM's estimators are 

consistent. At this time, a rigorous proof, using less 

restrictive conditions, of the consistency of SAM's 

estimates has not been developed. However, these three 

theorems provide significant progress toward this goal. 

An Example: The Two Parameter Logit Model 

Let Y be a binary random variable with expectation 

M(x). Consider using SAM's updating rule (9), with G(xle) 

given by the two parameter logit model. That is, let 

(17) 

Since the logit model is symmetric, let p = p and p = 1 - p 
1 2 

for some o < p < 112. At the nth update, SAM (9) consists 

of observing y and y at the two design levels, x 
n,l n,2 n,l 

and x 
n,2 

The next two design levels, X 
n+l,l 

are then generated by 

X = el(n) - [ ln{ ( 1-p) IP} I e2(n)] and 
n+l,l 

X 
n+1,2 

= e(n) 
1 

+ [ ln { ( 1-p) IP} I e ~n>] 

and X 
n+l, 2 1 

(18) 

where the maximum likelihood estimates e(n) and e<nl are 
1 2 

determined by the normal equations 

n 2 n 2 

I I Y1J 
1=1 J=1 

= L L (1 + exp{-e2 (x1J- e 1 )})-1 

l=lj=l 

(19) 



For example, consider the following set of ten 

observations. 

Design Level Response Design Level Response 

2.0 0 4.0 0 

2.0 0 4.5 1 

3.0 0 4.75 0 

3.0 1 5.0 1 

4.0 0 5.0 1 

Using the Newton Raphson method to solve the normal 

equations (19), the MLEs of e 
1 

and e 
2 

A (5) 
are e 

1 
= 4.250 and 
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A (5) e = 1.144. By (18), using p = .2, the next design levels 
2 

are 

X = e<5 > - [ln{ (1-.2)1 .2} I eA(5 )] 
6,1 1 2 

= 4.250 - [ 1.386 1 1.144] = 3.038, 

and 

X = e< 5 ) + [ln{(1-.2)1.2} I e< 5 >] 
6,2 1 2 

= 4.250 + [ 1.386 1 1.144] = 5.462. 

Figure 3 on the following page depicts the estimated 
/\ 

expectation curve, G5 (x), after the initial ten 

observations. The design levels for the next experiment, 

3.038 and 5.462, are emphasized with the dotted lines. 

The responses, y and y , are then observed when 
6,1 6,2 

the experiment is run at levels 3.038 and 5.462, 

respectively. 

/\ (6) 
and e = .936. 

2 

If y = 1 and y 
6,1 6, 2 

/\ (6) 
= 1, then e 

1 
= 3.836 

The design levels of the 7th update are 
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x = 2.354 and x = 5.318. 
7,1 7,2 

Table 1 presents the designs 

th levels and responses through the 12 update. 

TABLE 1 

AN EXAMPLE 

Update Level 1 Response 1 Level 2 Response 2 

1 2.0 0 4.0 0 

2 2.0 0 4.5 1 

3 3.0 0 4.75 0 

4 3.0 1 5.0 1 

5 4.0 0 5.0 1 

6 3.04 1 5.46 1 

7 2.35 0 5.32 1 

8 2.62 0 5.06 1 

9 2.79 0 4.91 0 

10 2.92 0 5.33 1 

11 3.04 1 5.20 0 

12 2.60 0 5.70 1 

8 (12) = 4.138 , 8 (12) = 1.003 
1 2 

A 

Using the final estimated expectation function, G (x) 
12 

= G (X I e (12 ) e (12)) estimates of the 1 , 2 , (p.) th t '1 percen 1 e can 

• be constructed for any p e (0,1). From (17),the solution, 

£ (12) 
p* , 

A * of G (x) = p is 
12 

Thus, the final estimate of the 75th percentile, L. 75 , is 
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L = 4.138- ln[1/3]·(1.003)-1 = 5.233 . 
. 75 

In Appendix E, the codes and descriptions of programs 

designed to assist a researcher in using SAM's updating rule, 

with the two parameter logit model, are given. 

Equivalence of the Logit Version of SAM 

and a Two Dimensional RM Procedure 

Consider using the two parameter logit model (17) for 

G(xle) in SAM (9) and for H(x!e) in wu (8). Wu (1985), 

assuming the consistency of (8), proved that a first order 

approximation to his procedure is asymptotically equivalent 

to the optimal RM procedure. Using linear approximations to 

the two parameter logit model around L and L , a 
p1 p2 

similar result for SAM is now presented. 

Since the logit model is symmetric, let p = p and p = 
1 2 

1-p for some o < p < 1/2. Consider the following 

approximation to G(x!e): 

near L (j=1) 
p 

( 1 + exp { -e ( x - e ) } ) -1 - p + ( x - L ) · i\ 
2 1 p p 

( 20) 

near L (j=2) (21) 
1-p 

( 1 + exp { -e ( x - e ) } ) -1 ~ ( 1 - p) + ( x - L ) · i\ , 
2 1 1-p 1-p 

where i\ = i\ = e 2p ( 1-p) are the tangent slopes of G (xI e 1 , 
p 1-p 

e ) at L and L , respectively. Since i\. = i\ , drop the 
2 p 1-p p 1-p 

subscripts and denote both by i\.. From Figure 4 on the 
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following page, the approximation is valid for x near L 
1,1 p 

and x near L 
1,2 1-p 

Substitute L = L + {2p(1-p) ·ln[ (1-p)IPJ} I 1\. into 
1-p p 

(21) to obtain 

near L 
1-p 

-1 ( 1 + exp ( -e ( x - e ) ) ) ~ 
2 1 

(1- p) + (x- L )·/\.- 2p(1-p)·ln[(1-p)IPJ 
p 

Applying (20) and (22) to the likelihood equations (19) 

yields 
n 

"' { 1\. • (x - L ) + 1\. • (X - L ) + 
L 11 12 p p 
1 

and 

n 

n 

1 - 2p(1-p) ·ln[ (1-p)IPJ} = I: {Y11+ Y12 } 

1 

2 2 I: { 1\. • (x11 + x ) - 1\. • L (x + x ) + px + 
12 p 11 12 11 

n 

Estimators of 1\. and L are then obtained by solving 
p 

( 23) , 

A 

1\. = 
n 

n 2 n 2 

(I: I: (x1J- xn>2)-1· (I: I: y1J<x1J- xn> -
1=1 j=1 1=1 j=1 

n 

{(112) - p- (1-p)·ln[(1-p)IP]}I;(x12- x 11 )) 

1 

( 22) 

(23) 

( 24) 

( 25) 

n 2 A 

( L L {Y1J- X 1J·/\.n} - n{1 - 2p(1-p) ·ln( (1-p)IPJ) 
1=1 j=1 

n 2 

n 

A (n) 
"' "' x 1 2n, and the superscript on L and L L 1 j p 

1=1j=1 

-where x 

subscript on ~ denote the nth update. Substituting (24) 
n 
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into (25) produces 

£.<n> = £.<n-1)_ (2ni )-1 ((y - p) oK + 
p p n n1 1 

( 26) 

(y - (1-p))oK- (i )-1 oK )' 
n2 2 n 3 

where 
n 2 n 2 

r r (Xi J - X n1) 2 I 
i=1J=1 

- 2 L L (X - X ) t 
ij n 

1=1 j=1 

c~1 J~1 {XiJ- (1/2) (Xn1+ Xn2) }2 - ((n-1)/2)(x- x ) 2 ) 
n2 n1 

I 
and 

K3 = (1/2) (1-2p-2poln[(1-p)/p]) [1 + 
(x - x )o[(x -

n1 n i 2 

r r ex i- x, t 
i J J 

Assuming the consistency of SAM (9), as n -----> oo x -----> ' nl 

L and X -----> L 
p n2 1-p 

Therefore, as n -----> oo, K ----> 2, 
1 

K ----> o, and K ----> 0, and from (26), 
2 3 

X 
n+1,1 

= £.<n> 
p 

By similar arguments, 

/\ (n) 
X = L 

n+1,2 1-p 

= L (n-1) 
p 

= L (n-1) 
1-p 

"' 1 - (no A ) - ( y - p) 
n nl 

/\ 1 
- (no A ) - (y - ( 1-p) ) 

n n2 

A 

(27) 

(28) 

By Theorem 4 in Appendix c, A converges almost surely to 
n 

c = {2p(1-p) ln[ (1-p)/PJI(L - L). 
L 1-p p 

Therefore, (27) and 

(28) are (first order) asymptotically equivalent to two 

• • -1 1ndependent RM procedures, both w1th An = (nocL) . From 

Sacks ( 1958) , with o-2 = lim Var(Yix> 
X->L 

p 

Var(Yix), 

= lim 
X->L 

1-p 
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[ L (n) l [ 
P ~ ASN LLPP L (n) 

p 

If M 1 ( L ) = M 1 ( L ) = c , then ( 2 7 ) and ( 2 8 ) are 
p 1-p L 

asymptotically optimal RM procedures. If the true 

expectation is given by the two parameter logit model, then 

M 1 (L ) = M 1 (L ) = e p (1-p) = c , and (29) becomes 
p 1-p 2 L 

[ L~n) l L (n) 

1-p 

/'-' ASN [ :· l 1-p 

If M(x) is not the two parameter logit model, then 

-1 • (nc ) may not be opt1.mal. The difference between the 
L 

(30) 

logit version of SAM and the optimal RM procedures at p and 

1-p can be characterized by the ratios c 1 M1 (L ) and c 1 
L p L 

M1 {L ), respectively. Ratio values of 1 indicate that the 
1-p 

logit version of SAM is asymptotically equivalent to two 

optimal RM processes. The ratio value is a function of the 

true expectation, M(x), and the value of p. In Table 2, 

ratios are provided for four models of M(x) (the logit, 

probit, skewed logit, and loglog) with values of (p,1-p) 

equal to (.2,.8). These four models are presented in 

equation (57) of Chapter IV. A complete discussion of the 

models is given by Moser and Fei (1989b). 
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TABLE 2 

RATIOS c I M' (L ) AND c I M' (L ) 
L p L 1-p 

Skewed 
M(x) Legit Probit Log it Log log 

p = .2 1.0 .94 .85 .92 

1-p = .a 1.0 .94 1.12 .51 

From Table 2, the legit version of SAM is optimal if 

the true expectation, M(x), is legit and nearly optimal when 

M(x) is probit. SAM's legit version is also nearly optimal 

at p = .2 when M(x) is loglog. 

The first order asymptotic equivalence of the legit 

version of SAM and the two RM processes does not depend on 

the assumption p = 1 - p . The results of this section 
2 1 

hold for any 0 < p1 < p 2 < 1. A sketch of the proof is 

given below. 

Let p 1 , p 2 , o < p 1 < p 2 < 1, be the two constants used 

in SAM (9). Consider the following approximation to 

G(xje ,e): 
1 2 

near L (j=l) 
p1 

near L (j=2) 
p2 

-1 
(1 + exp{-e (x - e)}) 

2 1 

where A = e p ( 1-p ) and A = 8 2p 2 ( l-p2 ) • 
p 2 1 1 p 

1 2 

the two parameter legit model (16), 

( 31) 

(32) 

Note that for 



Substitute (33) and (34} into (32) to obtain 

near L 
p2 

( 1 + exp ( -e ( x - e ) ) ) -l ~ 
2 1 

p + (X - L ) ·c'A -
2 p1 p1 

where c' = p (1-p ) 1 p (1-p ) . Solving the likelihood 
2 2 1 1 
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(33) 

(34) 

(35} 

equations (19) with the linear substitutions (31) and (35) 

yields 

l [c- 2 o- 2 jn(2c- 1 M' (L )-1) 0 ] 
L 1 1 L1 p 

1 

-2 2 - 1 , o c <r fn ( 2 c M' ( L ) -1) 
L2 2 L 2 p 2 

(36) 

where o-2 = lim Var(Yjx) for i = 1,2, 
1 X->L 

pi 

c 
Ll 

= p (1-p ) {ln[ (1-p )/p ] - ln[ (1-p)/p ] } / (L - L ) 
1 1 1 1 2 2 p2 p1 

and 

L ) . As before, these are optimal RM procedures if M' (L ) 
pl p1 

= c and M' (L ) = c . If M(x) is the two parameter log it 
L1 p2 L2 

model, then (36) simplifies to 

l rv ASN [ ::: l [ 

2 -1 ] { ne p ( 1-p ) } o 
2 1 1 

2 -1 o { ne p ( 1-p ) } 
2 2 2 

. (37} 
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Selecting p , p Using the Two Parameter Logit 
1 2 

Model (Symmetric Case) 

In Chapter II, average minimum and minimax criteria for 

selecting p , ... , p in SAM were presented. These two 
1 k 

approaches are now used to derive p , p using the two 
1 2 

parameter logit model (17). 

• • • Let [a ,1- a], 0 <a < 1/2, define the range of 

• interest for p . That is, the range of interest of the 

roots L. is the interval [L ,L .J. Since the logit 
p a* 1-a 

model is symmetric over the range of interest, let p= p and 
1 

p 2= 1 - p. The problem reduces to selecting a single value 

p by the two different approaches . 

• Let p be a particular value in the range of interest, 

• • [a ,1-a ]. From (9) and (17), the estimator£<:> is the 
p 

solution top*= (1 + exp{-eCnl(X- e<nl)})-1 • Since 
2 1 

G(xle1 ,e2 ) from (17) is completely determined by LP and 

L , the estimator, 
1-p 

~(n) 
L 

p* 

~(n) 
L., can be obtained by 

p 

r·£<n> + c1-r> .£<n> , 
p 1-p 

( 38) 

• • where r = (1/2) + ln{(1-p )/p} j 2·ln{(1-p)/p}. From (30) 

and (38), when the true expectation is the two parameter 

A (n l 
logit model, the asymptotic variance of L. is 

p 

*2 • 
<Tn (p ,p) 

• • 2 

( 
(ln{p /(1-p ) }) 

= (2ne~p ( 1-p) r 1 1 + 2 

(ln{p/ (1-p)}) 
) . (39) 

The minimax solution is the value of p that minimizes 
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*2 • • • • 
the maximum CTn (p ,p) for p e [a , 1-a ] . Note that for any 

given value of p, 

*2 • 
max CTn (p ,p) 

*2 • = CT (a ,p) ( 40) 
n 

p* E [ a • , 1 - a • ] 

*2 • 
That is, the maximum value of CT (p ,p) occurs at the 

n 

• • boundaries of the interval (a, 1- a]. Thus, the problem 

reduces to finding the p that minimizes 

• • 2 
(ln{a /(1-a ) }) 

2 ) ( 41) 
(ln{p/(1-p)}) 

Column 2 of Table 3 gives optimal minimax values of p for 

• • var1.ous a • 

consider the average minimum approach of Chapter II. 

. . . . . 
Let¢(·) be the Un1.form[a, 1-a] dens1.ty funct1.on. This is 

equivalent to assigning equal interest to each root, L., p 
p 

• • e [a, 1-a ]. By (13) and (39), the average minimum 

solution is the value of p that minimizes 

• 
1-a 

(ln{u/(1-u)}) 
2 

• 

f. (2p(1-p>r1(1 + 
(ln{p/ ( 1-p) }) 2 

) au . (42) 

a 

Column 3 of Table 3, labelled Avg-min, gives the average 

minimum values of p for various choices of a·. 



TABLE 3 

MINIMAX AND AVERAGE MINIMUM P 

• a 
.05 
.10 
.15 
.20 
.25 
.30 
.40 

Minimax p 

.13 

.15 

.17 

.19 

.21 

.23 

.30 

Avg-min p 

.19 

.20 

.22 

.24 

.26 

.28 

.34 
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Figure 5 on the next page graphically demonstrates the 

difference between the average minimum and minimax 

approaches. 
*2 • 

Each value of p produces a different ~ (p ,p) 
n 

• *2 • • curve. In Figure 5, the funct1on ~ (p ,p) 1s graphed for 
n 

both p = .15 and p = .2. 
*2 • 

The curve ~ (p , .15) has a 
n 

• • *2 • 
smaller max1mum for p e [ .1,. 9] than the curve ~ (p , . 2) . 

n 

*2 • 
However, the area under the~ (p ,.2) curve is smaller. 

n 

Thus, between these two possibilities, p = .15 is the 

minimax solution and p = .2 is the average minimum solution. 

As presented in Table 3, these are the minimax and average 

• • minimum solut1ons (when a = .1) over all values of p, o < p 

< 1/2. 

To obtain the results in Table 3, the two parameter 

*2 • 
legit model was used for G(xje). Thus, ~ (p ,p) was 

n 

-1 
calculated using G(xje) = (1 + exp{-e2 (x-e1 ) }) • If a 

different model is chosen for G(xje), then the minimax and 

average minimum values of p would change. Moser and Fei 

(1989b), consider the selection of p 1 and p2 using four 
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p = .15 

"\ 

p = .20 

0 AM 1-AM 1 

Figure 5. Minimax and Average Minimum p 
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different models (legit, probit, loglog, skewed legit) for 

G<xle). Their discussion is based on a different method (a 

two dimensional Robbins Monro process). However, it is 

applicable to SAM because of the asymptotic equivalence of 

SAM and two independent RM processes. 

The average minimum and minimax rules for p , ... , p are 
1 k 

not only applicable to SAM, but are also valid for selecting 

p , ... , p for k independent RM procedures. For instance, 
1 k 

Wetherill (1963) considered running two independent optimal 

RM procedures, 

xcu = xc 1 > - (n·M' (L) )-1 • (ycu - p) 
n+1 n p n 

(43) 

(2) (2) ( M I ( L ) ) -1 ( ( 2) X = X - n· · y -
n+1 n 1-p n 

(1-p)) , 

to obtain estimates of L and L for the legit model (17). 
p 1-p 

Using these two estimates, an estimate of any root could be 

obtained from (38). He then demonstrated that the choice of 

p = .2 minimizes the product 

( 1) (2) A (1) 
(. 5) · (x + x ) and "' = [x + 

n n 2 n 

A A A 

Var ( 1' ) • Var ("' ) , where "' = 
1 2 1 

(2) 
x ] j [2·ln(p/(l-p)]. 

n 

A 

L = 
.5 

From Table 3, a value of p = .2 is approximately the average 

minimum and minimax solution when the range of interest is 

(.1,.9) and (.2,.8), respectively. 

Wetherill also demonstrated that the nonsequential 

design that minimizes the product of the asymptotic 

variances of the parameter estimates is to divide the design 

levels equally into two groups at L and L . Since 
.176 .824 

L and L are unknown before the experiment, using a 
.176 .824 

sequential procedure to obtain design levels approaching 

these values is intuitively appealing. 
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Selecting p , p Using the Two Parameter Logit 
1 2 

Model (General Case) 

In the previous section, the average minimum and 

minimax criteria were used to derive p and p using the 
1 2 

logit model. • • • The range of interest for p was [a , 1-a ] , 0 

• < a < 1/2. In many applications, however, the range of 

• • interest of p 1s not symmetric about .5. For instance, a 

researcher may be interested in estimating L and L , 
.95 .99 

the 95th and 99th percentiles of M (x), respectively. Let 

[a ,a], 0 < a < a < 1, be the range of interest (where a 2 1 2 1 2 

is not necessarily 1- a). In this section, the minimum 
1 

avarage and minimax criteria will be used to select p and 
1 

p , where p is not necessarily 1 - p . The two parameter 
2 2 1 

logit model is again used for G(xle). 

As a generaliation of equation (38), the estimate of 

• A A 

any L can be obtained from L and L by 
p p1 p2 

"' "' "' 
L* = r' ·L + (1 - r') · L (44) 

p p1 p2 

where 
• • ln { ( 1-p ) /P } - ln{ (1-p )/p) 

r' 2 2 
= 

ln{ (1-p )/p } 
2 2 

- ln{ (1-p )/p } 
1 1 

The average minimum approach will be considered first. 

Assume that the roots from La to Li. are of equal interest. 
1 2 

Therefore, let¢(·) be the Uniform[a ,a] density function. 
1 2 

Using (13), (37), and (44), assuming that M(x) is the two 

parameter logit model, the average minimum solution is the 
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I [ r' 2 
--~---:-- + p . (1-p ) 

(1- r') 2 

p ·(1-p) ( 45) 

a 
1 

1 1 2 2 

For a range of interest on p* of [.95,.99] (that is 

[a1 ,a2 ] = [.95,.99]), the expression (45) was calculated for 

a grid of (p1 ,p2 ) values (p1 = .025 to .925 by .025, p2 = 

p + .05 to .975 by .025). The pair that produced the 
1 

smallest value of (45) was (p1 ,p2 ) = (.15,.85). This 

results is somewhat surprising. Since the range of interest 

is in the upper tail, the minimum average p1 and p 2 may be 

expected to be shifted toward the upper tail. Intuitively, 

using (p , p ) = ( .15, . 95) is a more appropriate choice than 
1 2 

(p1,p2) = ( .05, .85). 

To understand why (.15 1 .85) is the average minimum 
A 

(p1 ,p2 ), recall that by (44) 1 LP* is a linear function of 
A A 

(r'L + (1-r')L ). 
p1 p2 

Also, the asymptotic 

A 

variance of L decreases as p approaches . 5. When (p , p ) = 
p 1 2 

( .05,.85) is used to estimate L e (L L ) the value 
p* . 95 I , 99 I 

of r' from (44) satisfies (1-r') > r'. Thus, more weight is 
A 

placed on L , which has a smaller variance than L 
.85 .05 

A 

When (p ,p) = ( .15, .95), more weight is placed on L , 
1 2 .95 

1\ A 

which has a larger asymptotic variance than L (and L ) . 
. 15 . 85 

Asymptotically, therefore, using (p , p ) = (. 05, . 85) is 
1 2 

superior to using (p , p ) = (. 15, . 95) . It is important to 
1 2 

note that pairs (p ,p), such as (.2,.8) and (.15,.95), 
1 2 

produced only slightly larger values for (45) than the 
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average minimum solution of (.05,.85). 

The minimax solution in this general case is the pair 
*2 • • 

(p , p ) that minimizes the maximum u (p , p , p ) for p e 
1 2 n 1 2 

• max [ r' 2 

p . ( 1-p ) + (1-r') 2 

p . ( 1-p ) ] ( 46) 
p e [a ,a ] 

1 2 
1 1 2 2 

When [a1 ,a2 ) = [.95,.99], the minimax pair, using the 

program described above, was found to be (p , p ) = 
1 2 

(.075,.875). This is similar to the average minimum pair, 

(p ,p) = (.05,.85). 
1 2 

Estimating roots in the tails of a binary distribution 

with a small number of samples is a difficult task. As 

shown by Silvapulle (1981) and discussed in the first 

section of Chapter IV, MLEs do not exist when the responses 

are all O's or all 1's, or when there is no overlapping in 

the responses. No overlapping in the responses occurs when 

the smallest design level with a response of 1 (0) is 

greater than the largest design level with a response of 0 

(1). If all of the design levels fall in the upper tail of 

the distribution, then it is fairly likely that all of the 

responses will be 1's. Even if both 1's and O's are 

observed, it is very possible that no overlap in the 

responses has occurred. If the design levels are in both 

tails, but not spread throughout the distribution, then it 

is again likely that no overlapping of the responses has 

occurred. In both of these situations, MLEs do not exist. 
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* The average minimum pair (p , p ) for estimating L • , p 
1 2 p 

e [.95,.99] was found to be (.05,.85). Based on the 

discussion of the previous paragraph, (.05,.85) may not be a 

good choice of (p ,p ) for small or medium sample sizes. 
1 2 

The simulation study below was designed to determine which 

• pairs, (p , p ) , perform well in estimating L *, p e 
1 2 p 

[.95,.99] for small and medium sized samples. 

The performance of SAM was studied using the following 

four pairs of (p , p ) : 
1 2 

( • 2 , • 8 ) , ( • 0 5 , • 8 5 ) , ( • 15 , • 9 5 ) , and 

(.4,.9). Each SAM procedure was given the same initial set 

of ten observations (as in Initial Procedure 1 of Chapter 

IV). A two parameter legit model (81 = o, e2 = 1) was used 

to generate the binary responses. The vMSEs of £ (n) , L (n) , 
.5 .9 

"' (n) "' (n) 
L_ 95 , and L_ 99 are reported in Table 4 on the following 

page. 

The average minimum solution for a range of interest 

• on p of [.95,.99] was found to be (p ,p) = (.05,.85). 
1 2 

this simulation study, (p ,p) = (.05,.85) generated the 
1 2 

In 

smallest MSEs for estimating L . For estimating L , the 
.99 .95 

pairs (.05,.85) and (.2,.8) produced the lowest MSEs. 

However, for estimating L and L , (.05,.85) did not 
.5 .9 

perform as well as using (p1 ,p2 ) = (.2,.8). Using (.2,.8) 

compared reasonably well to the other choices in every 

situation. 
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TABLE 4 

MONTE CARLO VMSE FOR ESTIMATING L 
p* 

USING SAM 

(pl, p2) 

• p I n (.2,.8) (.05,.85) (.15,.95) (.4,.9) 

.5 n = 10 .5339 .6099 .5705 .5395 
15 .4645 .5836 .5651 .4807 
20 .3940 .5107 .4254 .3871 
30 .3178 .4263 .3789 .3177 

.9 n = 10 1.1174 1. 2510 1.2344 1.1861 
15 .9897 1. 0214 1.0332 .9810 
20 .8171 .8488 .8465 .8173 
30 .6692 .7071 .7115 .6542 

.95 n = 10 1. 3626 1. 4954 1. 4821 1.4656 
15 1. 2554 1. 2196 1. 2644 1.2393 
20 1.0253 1. 0439 1.0616 1.0546 
30 .8446 .8624 .8835 .8456 

.99 n = 10 1.7267 1. 7102 1.7615 1. 7835 
15 1.6914 1.5413 1.6244 1.6698 
20 1.4358 1.3728 1.4060 1.4836 
30 1.2360 1.1782 1.1955 1. 2649 

Asymptotic Variance and Bias 

In this section, the asymptotic variances of estimators 

from the legit version of SAM are presented. To study the 

robustness of SAM, the asymptotic variances and biases are 

also derived when the true expectation of Y, M(x), is not 

the two parameter legit model. The derivation depends upon 

the first order equivalence of the legit version of SAM and 

a two dimensional RM procedure. Thus, the discussion begins 

by introducing the two dimensional RM process. Consider 

estimating L using two independent RM procedures (with n 
p* 



observations each), one to estimate L and the other to 
p 

estimate L , both 
1-p 

• -1 using the opt1.mal n·A = M' (L ) 
n P 

-1 • M' (L ) • Us1.ng the two 
1-p 

parameter legit model, an 

estimate of any root L• can be constructed as in (38). 
p 

= 

First, consider the case where the expectation of Y, 

M(x)1 is the two parameter legit model. By (5) and (38), 
A 

the asymptotic variance of L. obtained from the two 
p 

independent RM procedures is 

• • 2 
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2 -1 [ {2ne2p(1-p)} 1 + ln{p/(1-p~} ]· (47) 
ln{p/(1-p)} 

Earlier in this chapter, a first order approximation to SAM 

was shown to be asymptotically equivalent to two independent 

RM procedures. Therefore, the expression in (47) is also 
A 

the asymptotic variance of L. from the legit version of 
p 

. * . SAM. For the sample s1.zes and values of p used 1.n the 

simulation study of Chapter IV, (47) is evaluated and 

presented in the last row of Tables 8 and 9. 

When the true expectation of Y, M(x), is not the two 

parameter legit model, then estimators from either procedure 

may be biased. Recall that the consistency of X from the 
n 

RM procedure (4) is not dependent upon the true expectation 
A A 

of Y. Thus, the consistency of L and L from both the 
p 1-p 

two independent RM procedures and SAM (by the first order 

asymptotic equivalence) holds regardless of M(x). However, 

• • the estimate of any root L for p ~ p, 1-p, us1.ng (38), is 
p* 

based on the two parameter legit model. If M(x) is not the 

two parameter legit model, then the constant, r', used in 



(38) will be incorrect, and a biased estimate will be 

produced. 
A 

Thus, even though L 
p 

A 

and L 
1-p 

are consistent 

44 

estimators of Land L , the estimator of any other L. may 
p 1-p p 

not be consistent. 

To generalize the above discussion, consider running 

two independent RM procedures to estimate L., as 
p 

before. However, use p = p1 for one procedure and p = p2 , 

p 2 > p 1 for the other, with p2 not necessarily 1-p1 • 

Estimate L. with 
p 

A A A 

L • = k ·L 
P a P1 

+ ( 1-k ) · L 
a p ' 

2 

where k is a constant determined by a selected model, 
a 

G•(xle). For instance, if G•(xle) is the two parameter 

logit model, then from (44) 

k = 
a 

• • ln{ (1-p2 )/p2 } - ln{ (1-p )/p ) 

Let k be the corresponding constant for the true 
t 

/\ /\ 

(48) 

(49) 

expectation of Y. Since L 
pl 

-----> L and L -----> L , 
pl p2 p2 

/\ 

L. converges to k ·L + (1-k) ·L . 
p a p1 a p2 

The bias of L • is 
p 

then (k - k ) (L 
t a p 

2 

Consider using the two 

independent RM procedures with p = .2, p = .8 and the two 
1 2 

• parameter logit model for G (xle). Table 5 presents the 

A * biases of L., p = .25,.5,.75, when M(x), the true 
p 

expectation of Y, follows one of three different models. The 

probit, skewed logit and loglog models used in Table 5 are 

described in equation (57) of Chapter IV. 
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TABLE 5 

• p 

Model .25 .5 .75 

Probit (B = -.25,82= 2) .0202 0 -.0202 
1 

Skewed Logit (e = 
1 

-1 e = ' 2 • 7) .0289 .1158 .0376 

Log log (e = o e = .5) -.0976 -.2912 -.1118 
1 ' 2 

1\ 

By (36), these biases are also appropriate for L. from the 
p 

logit version of SAM. 

Fei (1989) and Moser and Fei (1989b) both present 

detailed discussions of the asymptotic variance and biases 

of L. from using two independent RM procedures. Formulas 
p 

and calculations are presented for the logit, probit, skewed 

logit and loglog models. The following development of the 
1\ 

mean square error (MSE) of L follows their approach. 
p* 

The optimal values for n·A for the two independent RM 
n 

-1 -1 procedures are M' (L ) and M' (L ) . Let A <a> and A <a> 
p1 p2 1 2 

be the corresponding values using G•(xiB). If A <a>* 
1 

M' (L ) - 1 or A~a>* M' (L ) - 1 , then the RM procedures will 
pl p2 

not be optimal. Using (5) and (48), the asymptotic variance 
1\ 

of L. using the two independent RM procedures is 
p 

(1/n) · (k2p (1-p )A<a> 2 (2A<a> ·M' (L ) - 1)-1 + 
a 1 1 1 1 p 

1 

(1-k) 2p (1- )A<a> 2 (2A<a> ·M' (L ) 
2

- 1)-1 ) • 
a 2 p2 2 2 p 

(50) 
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If A (a)= M 1 ( L ) -l 
1 p I 

A<a>= M' (L )-1 = p, 
2 p I p1 P2 = 1 - P 1 and 

1 2 

M(x) is the two parameter logit model, then equation (50) 

simplifies to the expression presented in (47). 

(a) th • Let L be the p percent1.le of the selected model, 
p 

• "' "' G (xle). Recall that L , L from the two RM procedures 
pl p2 

converge to L , 
pl 

L respectively, regardless of the 
p2 

• "' "' selected model G (xle). Since the convergence of L , L 
p1 p2 

"' is independent of the true expectation of Y, L , 
p1 

converge to L (a) 
p1 

I 
L (a). Thus, 

p2 
in this notation, 

L (a)) "' = (L I L ) . Consider the MSE of L •' p2 p1 p2 p 

"' "' 2 MSE ( L ) = E { L - L } = 
p• p* p* 

Now, "' L • converges to k · L + 
P a P1 

(1-k ) ·L = L<a> 
a P p* • 

"' the MSE of L. converges to 
p 

"' MSE (L ) 
p* 

= V ( L ) + ( L <a>- L ) 2 
ar P* P* p* 

"' "' = Var (k L + ( 1-k ) L ) + (k a p 1 a p 2 a 

"' 

2 

"' L also 
p2 

( L (a) , 

p1 

(51) 

Therefore, 

(52) 

Note that the MSE of L. includes both a variance term and a 
p 

bias term. Note that the bias term of (52) is the square of 

the biases listed in Table 5. Using p = .2 and p = .8, 
1 2 

"' Table 6 presents the MSEs of L. under the four models used 
p 

for M(x) in the simulation study of Chapter IV. In each 

case, the two parameter logit model was used to construct 
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the estimators. 

TABLE 6 

ROBBINS-MONRO, SAM ASYMPTOTIC MSEs 

True Model: 

Logit Log log Skewed Lo9:it Probit 

MSE: 
A 5.085 17.222 5.609 6.664 L + .0095 + .0007 + .0004 

• 25 n n n n 

A 3.125 7.039 4.606 4.095 L + .0851 + .0134 
.5 n n n n 

A 5.088 5.686 9.381 6.664 L + .0133 + .0014 + .0004 
.75 n n n n 

These values are calculated and presented in the last 

row of the appropriate simulation tables of Chapter IV 

(Tables 8- 15}. Consult Moser and Fei (1989b} for a more 

detailed discussion of the MSE values. 



CHAPTER IV 

SIMULATION STUDY 

The setup 

In the first three chapters, asymptotic properties of 

the various procedures have been presented. Under certain 

conditions, Robbins-Monro, Anbar, SAM, and Wu's procedures 

are asymptotically equivalent. In this chapter, a 

simulation study is performed to compare the procedures for 

small and medium binary data samples. The procedures will 

be evaluated on their ability to estimate a single root, L , 
p 

and multiple roots. 

(8) 

Recall that Robbins-Monro's (4), Anbar's (7), and Wu's 

procedures were designed to estimate a single root, L , 
p 

of M(x) = p. Two methods of extending these procedures to 

estimate any number of roots are considered. First, two 

independent versions of the same procedure (either two 

independent Robbins-Monro, two independent Anbar, or two 

independent Wu procedures) can be run to obtain estimates of 

L and L . Then, using the two parameter logit model, an 
pl p2 

estimate of any L can be obtained from (44). Based on the 
p* 

results in Chapter III, p = .2 and p = .8 are used in this 
1 2 

48 
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simulation study. 

As a second extension, Anbar's and Wu's procedures can 

be run as designed (estimating L ) and the slope estimator 
.5 

in combination with i can be used to estimate any L• . 
. 5 p 

For Anbar's procedure, again using the two parameter legit 

model, 

~ ( n l ~ (n) • • 
L • = L + ( 1 1 4 · b ) · 1 n { p I ( 1-p ) } 

p .5 n 
(53) 

where b is given in (6) with m(n) = 1. For Wu's procedure, 
n 

A(n) = LA(n) 
L • p .5 

(54) 

The RM procedure is not extended by the second method since 

a slope estimator is never calculated from the data during 

the process. 

As mentioned in Chapter II, bounded versions of 

sequential approximation procedures have been found to 

improve their performance for small to medium sample sizes. 

The following truncated versions of the procedures, in which 

the step size from X to X is bounded, are used in this n n+l 

study. For Anbar's procedure the updating rule is 

X = X - (h In) (Y - p) 1 n+l n n n (55) 

• -1 where h = max{o 1 mln(o 1 b ) } 1 o ~ o < o . Wu defined the 
n 1 2 n 1 2 

following truncated version of (8). Let d be the solution 
n 

of xn+l = xn - (dnln). (Yn- p) I where xn+1 = e:nl_ (1 I 
"'(n) st 
8 2 )·ln{(1-p)lp}. The (n+1) design point is chosen by 

the rule 
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(56) 

• where d = max[~ ,min(d ,~ ) ] , for o ~ ~ < ~ 2 . The truncated 
n 1 n 2 1 

version of SAM is given in Chapter II by (15). 

The following six basic procedures, all with a total of 

2·n design points, are considered: 

1) SAM-~ 
2 

2) RM-w 

3) AN1-~ 
2 

4) AN2-~ 
2 

5) WU1-~ 
2 

procedure (15) with upper bound ~ , where 
2 

L is estimated by (38); 
p* 

two independent versions of procedure (4), 

with n updates each, one with p=.2 and the 

other with p=.8, both with A= wjn, where 
n 

L • is estimated by (38); 
p 

procedure (55) with p = .5, where L. is 
p 

estimated by (53); 

two independent versions of procedure (55) 

using p = .2 and p = .8, with n updates 

each, where L. is estimated by (38); 
p 

procedure (56) with p = .5, where L. is 
p 

estimated by (54); 

6) WU2(~) --two independent versions of procedure (56) 
2 

using p = .2 and p = .8, with n updates 

each, where L is estimated by (38). 
p* 

Since SAM, WU1, and WU2 require the existence of MLEs 

at each update, a starting procedure is needed to generate 

the design levels until MLEs exist. Two different initial 
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procedures are considered. The first has five fixed initial 

design levels (a total of 10 intitial observations), and 

samples for which MLEs do not exist are discarded. The 

second uses a Robbins-Monro procedure to generate initial 

design levels until MLEs exist. 

Silvapulle (1981) provided existence conditions for 

MLEs from binary distributions. Let x;ax(min) = 

max(min) {x1J:y1J= 1} and x~ax(min) = max(min) {x1J:y1J= 0}. 

For the two parameter logit model, if 

1) + + (x- ,£ ) (X ,X ) " * "· mln max mln max 

2) 
+ + 

X < X = X < X . or 
mln mln max max 

3) 
+ + 

X < X = X < X 
mln mln max max 

then the MLEs of 8 1 and e2 exist and are unique. Thus, for 

existence and uniqueness of MLEs, there must be some 

1 · f th If MLEs ex1'st at the nth over app1ng o e responses. 

update, then they exist at each subsequent update. 

Therefore, once the existence conditions have been 

satisfied, design levels can be calculated by SAM's and Wu's 

updating rules for every future update. 

In order to evaluate the robustness of the procedures, 

four different parametric models for the expectation M(x) 

are used to generate the binary responses. 

(57) 
logit: 1 I ( 1 + exp ( -e ( x-e ) ) 

2 1 

with e 1 = o , e 2 = 1 

probit: ~ { (x-e ) j e } 
1 2 

withe =-.25, e =2 
1 2 
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log-log: 1- exp[-exp{a (x-a )}] 
2 1 

with a = o a = . 5 1 I 2 

with a = -1 1 I 

Regardless of the true model, the MLEs in SAM, WU1, and WU2 

were calculated using the two parameter logit model. In the 

simulation program, all procedures use the same set of 

random numbers for each set of trials. 

Recall that the optimal A for the RM procedure (4) is 
n 

-1 A = (n·M' (L ) ) • For the models in this simulation study 
n P 

(57), Table 7 presents the optimal values of n·A when p = 
n 

. 2 , • 5 , and . 8 . 

__£_ 

.2 

.5 

.8 

Logit 

6.25 

4.00 

6.25 

TABLE 7 

OPTIMAL n·A 

Probit 

7.14 

5.03 

7.14 

n 

Model 

Log log 

11.24 

5.78 

6.25 

Initial procedure 1 

Skewed Logit 

6.45 

4.88 

8.46 

In the first initial design, ten binary observations 

are generated at five fixed design levels. If the MLEs 
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exist, the starting values for each procedure are calculated 

using e ( 10) e (lO). 
1 , 2 For example, the design levels at the 

th 11 update for SAM, RM, AN2, and WU2 are x = 8 (10)-

11' 1 1 

"' ( 1 0) -1 "' ( 10) ( e ) ·ln { ( 1-. 2) 1. 2 } and x = e + 
2 11,2 1 

(e"< 10>)-1 ·ln{(1-.2)1.2}. For AN1 and WU1, the 11th design 
2 

level is x 
11 

B '10 > • Once the starting levels have been 
1 

obtained, the individual procedures are used to calculate 

design levels for the remaining updates. If the MLEs do 

not exist for the initial sample of ten observations, or if 

e '10> !> 0, then the sample is discarded. Two sets of ten 
2 

initial design levels are used: 

Set 1: Levels L ,L ,L ,L ,L with 1,2,4,2, and 1 
.1 .3 .5 .7 .9 

observations, respectively ; 

Set 2: Levels L ,L ,L ,L ,L with 1,2,4,2, and 1 
• 3 • 46 • 56 • 66 • 8 

observations, respectively. 

Upper bounds of ~ = 10, 50, and 100, and a lower bound 
2 

of ~ 1= o were selected. The larger values of ~ 2 allow 

larger steps from X to X at each update. A total of 500 
n n+1 

samples are generated, including the discarded samples. The 

A 2 )1/2 A MSE is calculated by (t(L - L ) 1 n' , where L • is the 
~ ~ p 

. • th 
estimate from the given procedure, L. 1s the true (p) 

p 

percentile from the appropriate model (57), and the 

summation is over the n' nondiscarded samples. 
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Results of Initial Procedure 1 

Tables 8 - 15 present the MSEs for the four different 

models using each set of design levels. Each table provides 

"' "' the MSEs of L and L 
.5 .75 

The MSEs from SAM for estimating L are less than 
.75 

those from any other procedure in almost every situation. 

In a few situations, WU1 or WU2 produced MSEs of similar 

size as SAM. For estimating L , SAM's only competition 
.5 

comes from WU1. In general, WU1 has smaller MSEs when n = 

15 and n = 20. This advantage does not hold, for larger (n 

= 30) sample sizes, where the MSEs for WU1 and SAM are 

similar in size. These patterns hold for all four of the 

models used to generate the binary responses. 

SAM, WU1, and WU2 use a logit model to calculate the 

new design levels at each update. However, they generally 

continued to outperform AN1, AN2, and RM, even when a skewed 

model (such as the loglog or skewed logit) generated the 

binary responses. One exception to this rule occured for 

the loglog model with initial set 2. For n = 10 and n = 15, 

AN2 (o 2= 10) and RM-6 produced MSEs of similar size as WU1 

and SAM for estimating L • 
. 5 

For estimating L with the RM procedures, RM-6 is 
.5 

superior to RM-1 and RM-36. For estimating L , both RM-6 
. 75 

and RM-36 produce lower MSEs than RM-1. Several times, the 

MSEs from the RM-1 procedure increased when more 

observations were taken. From Table 7, RM-6 is closer to 
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the optimal RM procedure than RM-1 or RM-36 in each 

situation. 

Note that SAM's performance is not affected greatly by 

the choice of bounds. WU1 and WU2 also remain fairly stable 

over the various bounds. On occasion, WU1 and WU2 performed 

poorer when the bounds were too restrictive (o = 10). For 
2 

AN1 and AN2, the the tighter bounds were often superior. 

Recall that AN1 and WU1 are designed to estimate a 

single root (L in this study). By choosing the design 
.5 

levels around L and L instead of a single value, AN2 and 
.2 .a 

WU2 were constructed to provide better estimates of the 

roots throughout the entire curve, M(x). As expected, WU1 

outperformed its counterpart (WU2) in estimating L . 
. 5 

However, WU2 did not always prove to be better in estimating 

L For small sample sizes, WU1 even produced better L 
.75 .75 

estimates than WU2. AN2 proved to be superior to AN1 for 

estimating both L and L . 
. 5 .75 

In order to compare the simulation and asymptotic 

lt th t t " " f "(n) f th resu s, e asymp o 1c var1ance o L rom e RM 
p* 

procedure is presented in the last row of each table. The 

asymptotic values were derived in the last section of 

Chapter III. Due to the first order asymptotic equivalence 

of SAM and the RM process, these values will also be the 

"(n) asymptotic variances of L from SAM. 
p* 

For the legit model, the MSEs from SAM's L estimator 
.5 

were very similar to their asymptotic value for all sample 

sizes. For L , the MSEs were similar for n = 20 and n = 
.75 
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30. Note that the MSEs from SAM proved to be fairly similar 

to the asymptotic value for the other three models as well. 
A 

The asymptotic variances of L from WU1 and AN1 are less 
.5 

than for SAM and RM. However, the simulation results show 

that they approach their asymptotic values much more slowly 

than SAM. 

The number of discarded samples was not small. It 

ranged from 136 to 157 of the 500 samples. By selecting the 

initial design levels in a different manner, the proportion 

of discarded samples could be reduced. The results of this 

section are based on those samples for which MLEs existed 

after ten initial observations. 

Initial Procedure 2 

In the second initial procedure, a RM procedure is used 

to generate the initial design levels. Three values of n·A 
n 

(1, 6, and 36) and three starting design levels (design 

levels for the first update) are used. From Table 7, the 

n·A values of 1 and 36 represent over and underestimates of 
n 

the asymptotically optimal values, respectively. The 

initial step sizes using n·A = 36 will be much larger than 
n 

using n·A = 1. 
n 

For SAM, AN2, and WU2, two independent RM procedures, 

one with p = .2 and the other with p = .8, are used to 

calculate the initial design levels. Thus, two starting 



• p 

N 

RM-1 
RM-6 
RM-36 

AN1-10 
AN1-50 
AN1-100 

AN2-10 
AN2-50 
AN2-100 

WU1-10 
WU1-50 
WU1-100 

WU2-10 
WU2-50 
WU2-100 

SAM-10 
SAM-50 
SAM-100 

Asympt. 
RM 

TABLE 8 

MONTE CARLO vMSEs FOR ESTIMATING L 

10 

.7208 

.6168 

.9419 

.7878 

.7508 

.7664 

.6153 

.6120 

.6129 

.6124 

.5062 

.5095 

.6389 

.6259 

.6227 

.5344 

.5263 

.5169 

.5590 

MODEL: LOG IT e = o 1 I 

INITIAL SET 1 

e = 1 
2 

(143 discarded samples) 

.s 
15 20 30 10 15 

.7819 .7318 .7221 1.1939 1. 2 4 00 

.5996 .5098 .4560 1.0393 • 9813 

.8078 .6935 .6245 1. 2308 1.0378 

.6065 .5367 .4240 1.3565 1.0993 

.6232 .5342 .4383 1.0625 1.1168 

.6316 .5436 .4458 1. 0649 1.1474 

. 5874 .4900 .4444 1. 0123 .9124 

.5765 .4875 .4359 1.0625 .9370 

.5774 .4872 .4399 1. 0649 .9415 

.4052 .3618 .3071 .8972 .6885 
• 4184 .3654 .2972 .8182 .7141 
. 4180 .3648 .2993 .8385 .7075 

.5643 .4690 .3859 1. 04 B 6 .8799 

.5173 .4490 .3626 .8870 .6512 

.5159 .4577 .3735 .8785 .6399 

.4749 .4182 .3329 .7351 .6505 

p* 

.75 

20 

1.2819 
.9629 
.9297 

.9967 
1.0025 
1. 0061 

.8282 

.8299 

.8328 

.. 6775 
.6738 
.6733 

.7639 

.5471 

.5644 

.5524 
.4621 .4047 • 3189 • 7271 .6445 .5370 
.5159 .3901 .3158 . 7292 .6361 .5355 

.4564 .3953 .3227 . 713 3 .5824 .5044 

57 

30 

1.2135 
.7847 
.7787 

. 7977 

. 7217 

.7428 

.6929 

. 7133 

. 7266 

.6063 

.5969 

.6094 

.5698 

.4719 

.4940 

.4429 

.4403 

.4393 

. 4118 



• p 

N 

RM-1 
RM-6 
RM-36 

AN1-10 
AN1-50 
AN1-100 

AN2-10 
AN2-50 
AN2-100 

WU1-10 
WU1-50 
WU1-100 

WU2-10 
WU2-50 
WU2-100 

SAM-10 
SAM-50 
SAM-100 

Asympt. 
RM 

TABLE 9 

MONTE CARLO v'MSEs FOR ESTIMATING L • 
p 

10 

.5493 

.5730 

.5777 

1. 0454 
1.0722 
1.1581 

• 5017 
.6242 
.6482 

.5762 

.3795 

.3748 

.5640 

.7562 

.7682 

.5372 

.4800 

.4828 

.5590 

MODEL: LOG IT B = 0 1 I 

INITIAL SET 2 

B = 1 
2 

{150 discarded samples) 

.5 .75 

15 20 30 10 15 20 

.6101 .5925 .5319 1.1449 1.1865 1.1609 

.6454 .6474 .5972 1.1803 1.2414 1.2431 

.6521 .6580 .6098 1.1868 1.2512 1.2581 

.7121 .7026 • 5771 1.3625 1.1251 1. 0900 

.7564 • 7181 .5934 1.3949 1.1979 1.0872 

.8254 .7569 .6102 1.4729 1.2677 1.1257 

.4953 .4467 .3926 .9938 .9059 .7889 

.5801 .5442 .4804 1.1026 .9659 .8657 

.6113 .5792 .4976 1.1225 1. 0006 .8944 

.3384 .2978 .3629 .8001 .6635 .6662 

.3356 .2963 .3622 .6522 .6617 .6669 

.3387 .2933 • 3614 . 6513 .6710 .6641 

.5416 .4819 .4521 1.0134 .8974 .7545 

.5787 .4872 .4305 .9328 .7172 .5855 

.5857 • 5092 • 4184 .9587 .7439 .6091 

.4417 .3759 .3181 .7870 .6744 .5475 

.4349 .3867 .3038 .7259 .6149 .5406 

.4512 .3861 .3033 .7255 .6181 .5421 

.4564 .3953 .3227 . 713 3 .5824 .5044 

58 

30 

1.1871 
1.2897 
1.3081 

.9636 

.9459 

.9856 

.7299 

.7650 

.7823 

.7299 

. 7226 

.7176 

.6629 

.5225 

.5071 

. 4 4 77 

.4405 

.4479 

. 4 118 
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TABLE 10 

MONTE CARLO vMSEs FOR ESTIMATING L 
p* 

MODEL: PROBIT e = -. 25 e = 2 
1 2 

INITIAL SET 1 

(139 discarded samples) 

• p .5 .75 

N 10 15 20 30 10 15 20 30 

RM-1 • 8111 .8668 .8303 .7979 1. 3636 1.4078 1.4344 1.3624 
RM-6 .8442 .9240 .9044 .8893 1. 4 060 1.4776 1.5310 1.4827 
RM-36 .8499 .9342 .9179 .9063 1.4135 1. 4899 1. 5482 1. 504 6 

AN1-10 .9651 .7779 .6465 .5251 1. 5058 1.2937 1.1453 .9782 
AN1-50 .9176 .8020 .6447 .5391 1.8273 1.4725 1.1821 .9066 
AN1-100 .9569 .8187 .6655 .5406 1.8224 1.5167 1.1971 .9324 

AN2-10 .6812 .6298 .5513 .4693 1.1290 .9939 .8919 .7246 
AN2-50 • 7148 .6227 .5487 .4643 1.2296 1. 003 J .9165 .7374 
AN2-100 .7225 .6315 .5563 .4694 1.2578 1.0250 .9396 .7592 

WU1-10 .7194 .4931 .4350 .3762 1. 5836 1.2919 1.2858 1.1997 
WU1-50 .6116 .5079 .4454 .3692 .9509 . 8777 .8096 .7248 
WU1-100 .6169 .5100 .4454 .3693 .9740 .8714 .8169 . 7290 

WU2-10 .7017 ~6136 .5247 .4392 1.1819 . 9877 .8445 .6223 
WU2-50 .7456 .6135 .5255 .4278 .9968 . 7359 .6390 . 5641 
WU2-100 .7633 .5997 .5221 .4353 1.0355 .7225 .6335 .5800 

SAM-10 .6171 • 5513 .4812 .3795 . 9135 .7502 .6290 .5064 
SAM-50 .6238 .5321 .4561 .3621 .9095 .7574 .6237 .5052 
SAM-100 .6202 .5327 .4556 .3636 .9174 .7571 .6194 .5078 

Asympt. 
RM .6399 .5225 .4525 .3695 .8163 .6665 .5772 .4713 
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TABLE 11 

MONTE CARLO vMSEs FOR ESTIMATING L 
p* 

MODEL: PROBIT e = -. 25 e = 2 
1 2 

INITIAL SET 2 

(136 discarded samples) 

.. 
p .5 .75 

N 10 15 20 30 10 15 20 30 

RM-1 .9779 .9812 .9100 .8299 1.5199 1.5745 1.4460 1.3994 
RM-6 .8483 .7726 .6223 .5042 1. 3196 1. 2216 1.0076 .8547 
RM-36 1. 0555 .9070 .7819 .6506 1.3166 1.1022 1. 004 7 .8165 

AN1-10 1.1936 .9158 .8657 .6756 1. 6098 1. 4 068 1. 3526 1.1863 
AN1-50 1. 2072 .9568 .8805 .6946 1. 7557 1. 5716 1.3653 1.1733 
ANl-100 1. 2724 .9996 .9109 .7156 1. 8099 1. 58 3 4 1.3973 1. 2411 

AN2-10 .8003 .6950 .5605 .4613 1.2431 1.0689 .8657 .7037 
AN2-50 .8277 .6870 .6161 .5444 1.3289 1. 0810 .9448 .7781 
AN2-100 1. 0418 .8207 .7247 .6616 1.6301 1.2570 1.1371 .9128 

WU1-10 .6612 .4409 .3818 .4216 . 9212 .8084 .7977 .7921 
WU1-50 .5010 .4354 .3744 .4856 • 7775 .7891 .7838 .8749 
WUl-100 .5058 .4427 .3809 .6118 .7798 .8160 .7896 .9774 

WU2-10 .8958 .8624 .7048 .6387 1.3887 1.3521 1.0888 .9618 
WU2-50 1. 0220 .9011 .7320 .6700 1.3769 1.2661 .9852 .9134 
WU2-100 1. 0934 .9027 .7539 .6694 1.4526 1.2812 .9990 .9168 

SAM-10 .5566 .5044 .4455 .3681 .8410 .7697 .6500 .5174 
SAM-50 .5510 .4948 .4489 .3550 .7907 .8433 .6530 .5208 
SAM-100 .5664 .4980 .4379 .3624 .7807 .7505 .6520 .5305 

Asympt. 
RM .6399 .5225 .4525 .3695 .8163 .6665 .5772 .4713 
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TABLE 12 

MONTE CARLO vMSEs FOR ESTIMATING L 
p* 

MODEL: SKEWED LOGIT e = -1 e = . 7 
1 2 

INITIAL SET 1 

(143 discarded samples) 

• p .5 .75 

N 10 15 20 30 10 15 20 30 

RM-1 .8358 .• 8821 .8435 .8269 1.2323 1.2595 1.2869 1. 2226 
RM-6 .7191 .6757 .6004 .5265 1.0577 .9792 . 9314 .8042 
RM-36 1. 0957 .9116 .8006 .7100 1. 4913 1.2428 1. 1017 .9585 

AN1-10 .9061 .7971 .6466 .5171 1.3772 1.2685 1.1203 .9350 
AN1-50 .9391 .8077 .6534 • 5274 1. 7308 1.4107 1.1928 .9037 
AN1-100 1. 0090 .8182 .6580 .5293 1.8041 1.4443 1.2318 .9031 

AN2-10 .7055 .6541 .5796 .5065 1.0363 . 9212 .8528 . 7417 
AN2-50 .7288 .6666 .5933 .5207 1.1726 1.0295 .9659 .8352 
AN2-100 .7379 .6716 .5968 .5351 1.2135 1.0373 .9688 .8670 

WU1-10 .6578 .4998 .4264 .3647 1.0059 .8942 .8396 .7542 
WU1-50 .6110 .5129 .4524 .3629 .9473 .8984 .8620 .7431 
WUl-100 .6083 .5167 .4790 .3572 .9576 . 8964 .8605 .7365 

WU2-10 .7382 .6538 .5936 • 4731 1.0858 .9335 .8572 .6648 
WU2-50 .8198 .6498 .5816 • 4715 1.1366 .8451 .7903 .6700 
WU2-100 .8338 .6347 .5875 .4755 1.1924 .8341 .7975 .6805 

SAM-10 • 6321 .5828 .4958 • 414 7 .8772 .8673 .7189 .5863 
SAM-50 .6483 .5799 .4882 .4054 .8629 .8639 .6975 .5978 
SAM-100 .6385 .5811 .4852 • 4135 .8695 .8543 .7022 .6045 

Asympt. 
RM .6787 .5541 .4799 .3918 .9685 .7908 .6849 .5592 



• p 

N 

RM-1 
RM-6 
RM-36 

AN1-10 
AN1-50 
AN1-100 

AN2-10 
AN2-50 
AN2-100 

WU1-10 
WU1-50 
WU1-100 

WU2-10 
WU2-50 
WU2-100 

SAM-10 
SAM-50 
SAM-100 

Asympt. 
RM 

TABLE 13 

MONTE CARLO vMSEs FOR ESTIMATING L • p 

MODEL: SKEWED LOGIT 8 = -1 8 = . 7 
1 2 

INITIAL SET 2 

(136 discarded samples) 

.5 .75 

10 15 20 30 10 15 20 

1. 0013 1. 0332 .9373 .8649 1.4682 1.5397 1.3767 
1. 0312 1. 0820 1.0054 .9485 1. 5099 1. 6089 1.4741 
1. 0365 1.0906 1.0176 .9634 1. 5172 1. 6208 1.4913 

1. 3032 1. 0093 .9081 .7075 1.6796 1.4855 1.4012 
1. 3260. 1. 0304 .9339 .7214 1.8162 1.6120 1.4432 
1. 3578 1. 0608 .9435 .7290 1.9127 1. 6671 1.4272 

.8384 .7551 .5987 .4983 1.2177 1.0979 .8664 

.9956 .8386 .7038 .5799 1. 5615 1.2692 1. 0709 
1.1452 .9449 .7842 .7330 1.7349 1.3767 1.2120 

.7567 .4313 .3727 .3129 1.0227 . .9412 .8874 

.4824 .4173 .3615 .3071 .8263 .8335 .8215 

.4925 .5349 .3663 • 3110 .8293 .9466 .8188 

.8675 .7738 .6353 • 54 34 1. 2 54 4 1.1140 .8953 

.8946 .7624 .6591 .5617 1. 2081 1. 04 3 0 .8637 

.9739 .7667 .6861 .5604 1. 3024 .9957 .8544 

.5799 .5716 .4603 .3833 .9857 . 8113 . 7014 

.5875 .5239 .4576 .3852 .8557 . 7913 .6907 

.5712 .5286 .4589 .3847 .8448 .7869 .6930 

.6787 .5541 .4799 .3918 .9685 .7908 .6849 

62 

30 

1.3399 
1. 4 602 
1.4817 

1.2245 
1.2214 
1.2757 

.7457 

.8861 
1. 0283 

.8657 

.8021 

.8020 

.7566 

.7562 

.7018 

.6032 

.5887 

.5976 

.5592 
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TABLE 14 

MONTE CARLO VMSEs FOR ESTIMATING L 
p* 

MODEL: LOGLOG e = 0 e = • 5 
1 2 

INITIAL SET 1 

(144 discarded samples) 

• p .5 .75 

N 10 15 20 30 10 15 20 30 

RM-1 .9190 .9885 .9624 .9067 1.5460 1. 54 29 1. 6181 1. 5439 
RM-6 .9526 1. 0464 1. 0390 1. 0025 1.5916 1.6178 1.7216 1.6757 
RM-36 .9585 1.0566 1. 0528 1.0199 1. 5994 1. 6308 1.7397 1. 6990 

ANl-10 1. 0087 .8072 .7437 • 6114 1. 554 3 1.3606 1.3097 1. 1300 
ANl-50 1. 0212 .8629 .7693 .6602 2.2065 1.6957 1.4913 1.1618 
AN1-100 1. 0953 .8960 .7739 .6672 2. 1372 1. 7189 1.4929 1.1573 

AN2-10 .7598 .7289 .6348 .5444 1.2426 1.0586 .9326 . 714 3 
AN2-50 .7735 .7047 .6286 .5620 1.2594 1.0121 .8547 . 6711 
AN2-100 .7933 .7056 .6298 .5607 1.3197 1. 0239 .8655 .6769 

WU1-10 .7983 .5804 .5226 .4312 1.8197 1. 4 150 1.5318 1.4156 
WU1-50 • 7112 .5788 • 5313 • 4311 1. 07 8 5 .8857 .9624 .7863 
WU1-100 .7150 .5788 .5423 .4316 1. 0788 .8994 .9858 .7745 

WU2-10 .8002 .7600 .6433 .6050 1.2664 1.0651 .9243 .7059 
WU2-50 .8649 .7592 .6732 .6176 .8756 .6777 .5783 .5190 
WU2-100 .8441 .7351 .6879 .6152 .9246 .6581 .5829 .5183 

SAM-10 .7191 .6703 • 6131 .5301 .9303 .6960 .6321 .4946 
SAM-50 .7315 .6694 .6171 .5204 .9173 .7067 .6299 .5010 
SAM-100 .7326 .6787 • 6143 .5182 .9172 .7075 .6301 .4993 

Asympt. 
RM .8390 .6850 .5932 .4844 .7540 .6157 .5332 .4353 
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TABLE 15 

MONTE CARLO vMSEs FOR ESTIMATING L • p 

MODEL: LOG LOG 8= 0 8= .5 
1 2 

INITIAL SET 2 

(157 discarded samples) 

• p .5 .75 

N 10 15 20 30 10 15 20 30 

RM-1 .7921 .7330 .7789 .7074 1. 3210 1.3215 1.3121 1.2341 
RM-6 .7052 .6152 .5842 .4969 1.1567 1.0553 .9405 .7891 
RM-36 1. 0948 1.0186 .9063 .7814 1.1586 1. 0124 .8459 . 7148 

ANl-10 .8878 .7117 .6467 .5485 1. 4 560 1.3061 1.2510 1.1514 
ANl-50 .9047 .7588 .6794 .5928 1. 6918 1.4569 1. 2483 1 .1305 
ANl-100 1. 0124 .7917 .7080 .5957 1. 8664 1.4939 1.2726 1. 14 64 

AN2-10 .6975 .6086 .5852 .5058 1.1160 .9815 .8429 .6811 
AN2-50 .8725 .7367 .7105 .6285 1.2706 1.0673 .9335 .7318 
AN2-100 1. 0576 .8493 .7890 .7031 1.5837 1.2899 1. 1069 .8596 

WU1-10 .7029 .5318 .4431 .3760 .9573 .9214 .7994 .7555 
WU1-50 .6680 .5985 .5650 .6278 .9098 .8807 .8957 .9746 
WUl-100 .7765 .6028 .5726 .5201 1.0111 .8875 .9002 .8788 

WU2-10 .7600 • 7136 .6807 • 6131 1.1344 .9944 .8187 .6335 
WU2-50 1. 0386 .8117 .7560 .6526 .9885 .7453 .6047 .5698 
WU2-100 1. 0193 .8425 .7669 .6524 1.1010 .8634 .6767 .5534 

SAM-10 .7091 .6341 .5344 .4541 .7755 .7251 .5897 .4506 
SAM-50 .7265 .6387 • 5777 .4767 .8548 . 8019 .6178 .4768 
SAM-100 .7633 .6599 .5561 .5022 .8257 .7054 . 6071 .4777 

Asympt. 
RM .8390 .6850 .5932 .4844 .7540 .6157 .5332 .4353 
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levels (x and x ) are needed for these procedures. For 
1,1 1,2 

ANl and WUl, a single RM procedure with p = .5 generates the 

initial design levels, and a single starting level (x1 ) is 

required. Three different sets of starting levels, 

(L ,L , L ), are used 
.3 .35 .4 

in this study. The first and third values of each triple 

are the starting levels for SAM, AN2, and WU2. The middle 

value is the starting level for ANl and WUl. 

The updates at which the six procedures switch from the 

initial RM procedure to their own updating rules are given 

below. 

ANl the first n ~ 10 such that b (6) is nonzero 
n 

AN2 each of the two independent Anbar processes is 

started separately at the first n ~ 5 such that b 

is nonzero. 

WUl the first n ~ 10 such that the MLEs exist 

WU2 each of the two independent Wu procedures is 

started separately at the first n ~ 5 such that 

the MLEs exist 

SAM -- the first n ~ 5 such that the MLEs from the two 

combined independent RM initial procedures exist 

An upper bound of o = 100 and a lower bound of o = .05 is 
2 1 

used for all procedures. The MSE, the average of (L -
p* 

L ) 2 over the 500 samples, is again used to compare the 
p* 

procedures. 

n 



Results of Initial Procedure 2 

Tables 16 - 24 contain the MSEs for the legit and 

loglog models at each of the three starting levels. The 
A A 

MSEs of both L and L are given in Tables 16 - 21. The 
.5 .75 

A 

MSEs of L were also obtained in each situation, and are 
.25 

presented seperately in Tables 22 - 24. The results for 
A A 

L and L are fairly similar. Thus, the conclusions in 
.25 . 75 

the discussion below for L hold also for L , except 
.75 .25 

when mentioned specifically. 
A 

For estimating L , SAM consistently produced the 
.75 

lowest MSEs of any procedure. Note that SAM was superior 

66 

for both the legit and loglog models. An exception occurred 

with starting values (L , L , L ) . With n·A = 1 , the 
. 3 . 35 .4 n 

RM-1 procedure produced the lowest MSEs of any procedure. 

However, for estimating L in this situation, the RM-1 
.25 

produced larger MSEs than SAM, except when n = 10. 

The comparisons between the two Wu procedures and 

between the two Anbar procedures differed from initial 

procedure 1. Using initial procedure 2, WU2 proved to be 

superior to WU1 for estimating L . In initial procedure 
.75 

1, the initial design levels for the procedures are evenly 

spread throughout the distribution. With initial procedure 

2, however, procedures such as WU1 and AN1 may have their 

initial design levels in one section of the distribution. 

This would make the procedure less efficient in estimating 

L and L for small sample sizes. However, the MSEs 
.75 .25 



from AN2 for estimating L were not always better than 
.75 

ANl. 
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For estimating L , no one procedure performed the best 
.5 

in all situations. In various situations, estimates from 

WU2, AN2, and SAM all produced the lowest MSEs of any 

procedure. In most cases, these three were superior to AN2 

WU2 and RM. Regardless of the model, WUl produced the 
~ 

lowest MSEs for L when n·A = 36. Using the larger step 
.5 n 

size and spreading out the initial design levels appeared to 

help the WUl procedure. For starting values 

(L ,L ,L ), SAM-generally produced the lowest MSEs 
. 5 . 813 . 95 

when n·An = 1, while ANI produced the lowest when n·An = 6. 

For the other starting levels with n·A* 36, no clear 
n 

pattern emerged. 

The RM procedure worked well only in specific 

situations. With starting values (L L , L ) and n·A = 
.1 . 7 • 4 n 

1, the RM procedure performed very well. Using n·A = 1 does 
n 

not allow the design levels to change very quickly. Thus, 

when the starting levels are close to the true values, the 

RM-1 procedure performs well. When the initial starting 

levels are not good, however; RM-1 did not perform well. 

Using the near optimal RM-6 was preferable to RM-1 in these 

situations. When n = 10, the RM procedures occasionally 
~ 

produced L MSEs of similar size as SAM and WUl. This 
.5 

could be a result of the instability of parameter estimates 

for very small sample sizes. 

For a given model, as n increased to 30, SAM produced 
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fairly constant MSEs. That is, the MSEs produced by SAM 

were very similar regardless of the starting levels and 

values of n·A. For the logit model with n = 30, SAM 
n 

A A 

produced MSEs for L and L near .33 and .45, 
.5 .75 

respectively. Using initial procedure 1, the MSEs for SAM 

in this situation were near .32 and .44. 

The time at which the procedures switched from the 

initial RM procedure to their own updating rules is a random 

variable. For SAM, the average number of updates until MLEs 

existed ranged from 5.23 to 8.51 . The smaller averages 

occurred when the near optimal constant n·A = 6 was used in 
n 

the initial RM design. The larger averages resulted when 

n·"A = 1 and the loglog model was used to generate the 
n 

binary responses. 

Analysis of the MSEs 

In this section, the differences between SAM's and Wu's 

MSEs (Tables 8 - 24) are studied. Least significant 

differences for the MSEs produced by SAM and WU1 are 

derived. 

For SAM, using the first order asymptotic results of 

Chapter III (equation (29)), 

£ ~ N (L , c -2p ( 1-p) j n ( 2 c -1M' ( L ) - 1) ) and 
p p L L p 

(58) 

£ "-N(L , c- 2 p(1-p) jn(2c- 1 M'(L ) - 1)) 1 1-p 1-p L L 1-p 



N 

n·A = 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A = n 

RM 
AN1 
AN2 
WUl 
WU2 
SAM 

n·A = n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

TABLE 16 

MONTE CARLO v'MSEs FOR ESTIMATING L • 
p 

MODEL: LOGIT 8 = 0 8 = 1 
1 2 

STARTING LEVELS (.5, .813, .95) 

• p - .5 p .75 

10 15 20 30 10 15 20 

1 

.9676 .8996 .8895 .8380 .8581 .7825 .7633 
1. 2232 .9122 .7995 .6128 1. 6577 1.4059 1.2209 

.9569 .8482 .8016 .7524 1.2411 1.1660 1.1057 

.6897 .5711 .5312 .4417 1. 5677 1. H23 1.2834 

.9212 .8369 .8013 .6949 .9515 .8141 .7947 

.6324 .5005 .4324 .3242 .8276 .6915 .5772 

6 

.6727 .5246 .4707 .3947 1. 02 3 7 .8478 .7060 

.5733 .4508 .3831 .3057 .9178 .7306 .6733 

.7406 .6325 .5747 .4939 1.1699 1. 002 3 .8787 

.5761 .4529 • 3922 .3148 1.0027 .8724 .7887 

.7237 .6035 .5332 .4585 1.1134 .9238 .7536 

.6692 .4803 • 4178 • 3314 .9190 .6912 .5807 

36 

1. 2003 .9396 .7655 .5803 1.5008 1.2514 1.0327 
.7784 .5207 .4161 .3129 1.1845 1.0191 .9334 
.9666 .7456 .6461 .4749 1.2344 .9836 .8087 
.6731 .4992 .4139 .3877 1.6660 .8786 .7308 

1.0500 .7066 .5587 .3890 1.2568 .8920 .6365 
.8293 .5383 .4462 • 3471 .9893 .6643 .5252 

69 

30 

.6978 
1.0132 

.9083 
1.1706 

. 6172 

.4533 

. 5917 

.6326 

.7231 

.7559 

.6086 

.4781 

.7801 

.9078 

.6276 

.6971 

. 4 826 

. 4 553 
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TABLE 17 

MONTE CARLO VMSEs FOR ESTIMATING L 
p* 

MODEL: LOGIT 8 = 0 8 = 1 
1 2 

STARTING LEVELS (.1, .4, .7) 

• p = .5 p .75 

N 10 15 20 30 10 15 20 30 

n·A = 1 
n 

RM .5163 .4954 .4561 .4466 .6219 .6239 .5563 .5469 
AN1 .5815 .5453 .5050 .4347 .8882 1.0334 . 9145 .8282 
AN2 .5671 .5560 .5438 .5715 .6279 .6517 .6079 .6410 
WU1 .4543 .4231 .4019 .3522 1.5726 1.0297 1. 03 58 .8926 
WU2 .5331 .5090 .4705 .4636 .6074 .6063 .5412 .5535 
SAM .5627 .4811 .4010 .3291 .6242 • 606"3 .4896 .4256 

n·A = 6 
n 

RM .6292 .5122 .4715 • 3726 • 8112 .7003 .5910 .4816 
AN1 .5569 .4599 .4200 .3189 .7678 .6239 .6251 .5659 
AN2 .6967 .6327 .5659 .4754 .8918 .8252 .7230 .6098 
WU1 .5518 .4689 .4052 .3448 1.1704 .9188 .9048 .8500 
WU2 .6870 .5611 .5442 .4545 .7951 .6953 .6455 .5645 
SAM .5894 .4553 .4018 .3199 .7223 .6102 .5193 .4241 

n·A = 36 
n 

RM 1.1532 .9262 .7626 .5725 1.4708 1.2369 1.0169 .7939 
AN1 .7902 .5182 • 4147 .3083 1. 2395 1.0375 . 9738 .8981 
AN2 .9949 .7358 .6427 .4741 1. 3887 1.0653 .8582 .6432 
WU1 .6216 .4539 .3778 .3179 1.5324 .8841 .6584 .5803 
WU2 .9661 .6710 .5284 .3868 1.2915 .8657 .6749 .5225 
SAM .8232 .5763 .4468 .3470 1.0027 .7068 .5555 .4735 
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TABLE 18 

MONTE CARLO VMSEs FOR ESTIMATING L 
p* 

MODEL: LOGIT 8 = 0 8 = 1 
1 2 

STARTING LEVELS (.3, .35, .4) 

• p = .5 p .75 

N 10 15 20 30 10 15 20 30 

n·A ... 1 
n 

RM .4299 .4006 .3810 .3279 • 4114 .3850 .3705 .3502 
ANI .6625 .6380 .5806 .4893 .8330 1.3193 .8740 .8202 
AN2 .8924 .8927 .8735 .7830 .7929 .8I23 .8709 .7892 
WU1 .5078 .4661 .3888 .366I 1.4422 1. I002 1. 0522 .9294 
WU2 .6354 .4667 .4730 .3900 • 6171 . 4872 . 5413 .4888 
SAM .5766 .4162 .3881 .3198 • 6918 .5550 .5046 .4354 

n·A = 6 
n 

RM .6457 .5022 .4714 .3877 .9415 .7864 .6576 .5536 
ANI .5724 .4712 .4I48 .3305 .8016 . 6324 .5923 .5384 
AN2 .7600 .6037 .5906 .487I 1.1323 . 9677 .9160 .7309 
WU1 .5786 .4857 .4098 .3448 1.0900 .8797 .8431 .7576 
WU2 .7774 .5921 .5455 .4539 1. 04 4 0 .8546 .7053 .5903 
SAM .6318 .4869 .4262 .3244 .7354 .6229 .5697 .4277 

n·A = 36. 
n 

RM 1.1413 .9157 • 7740 .5629 1.4851 1.2462 1.0373 .7768 
ANI .7944 .52I2 • 4148 .3075 1.2405 1. 04 59 . 9715 .8935 
AN2 .8638 .6345 • 5727 .4456 1.2799 .9612 .7894 .6069 
WU1 .608I .458I .3740 .3IJO 1. 4 300 .8428 .6436 .5921 
WU2 .9671 .66I6 • 5011 .3642 1.2215 .8660 .6461 .4703 
SAM .7726 .5237 .4489 .3316 .9005 .6536 .5599 . 4511 



N 

n·A = 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A = 
n 

RM 
ANI 
AN2 
WUl 
WU2 
SAM 

n·A = 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

TABLE 19 

MONTE CARLO vMSEs FOR ESTIMATING L • 
p 

MODEL: LOGLOG 8 = 0 8 = . 5 
1 2 

STARTING LEVELS (.5, .813, .95) 

• • p = .5 p 

10 15 20 30 10 15 

1 

.9484 .8739 .8633 .7965 1.4461 1.3541 
1. 4208 1.1946 1. 0672 .8321 2.2488 2.0361 
1. 0767 1. 0077 .9729 .9226 1.8137 1.7403 
1.0810 .8048 .7602 .6245 2.3629 2.1073 

.9614 .8348 .7609 .6815 1. 553 5 1.3540 

.8685 .6750 .5911 .5007 1. 3554 1.0951 

6 

.9016 .7892 .7258 .6586 1.1937 1.0962 

.8201 .6573 .5779 .4533 1.2772 1.1285 
1. 0813 .9433 .8901 • 7731 1.5134 1.3727 

.8643 .6863 .5902 .4993 1.5742 1.3641 
1. 0353 .9105 .8634 .7751 1.4433 1.2668 

.9152 .7495 .6352 .5567 1. 3553 1.1099 

36 

1. 2669 1.1305 .9521 .8245 1.8381 1.5493 
1. 0013 • 7514 .5942 .4611 1.5146 1.3379 
1. 2060 1. 0429 .9738 .8021 1. 7766 1.5001 

.8641 .6530 .5465 .4355 1.8460 1.3205 
1.1235 .9286 .7527 .6275 1.5240 1.1260 
1.0561 .8667 .6991 .5488 1.3163 1.0588 

72 

.75 

20 30 

1.3346 1.2442 
1.7992 1.4677 
1.6522 1.4014 
2.0123 1.8210 
1. 2354 1.1070 

.9636 .7929 

.9690 .8589 
1.0329 .9662 
1.2857 1.0807 
1.3061 1. 2363 
1.1562 .9929 

.9378 .8135 

1.3352 1.1209 
1.1676 1.1028 
1.3353 1.1040 
1. 2011 1.0561 

.9748 . 8130 

.8990 .7575 
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TABLE 20 

MONTE CARLO vMSEs FOR ESTIMATING L 
p* 

MODEL: LOGLOG e = 0 e = . 5 
1 2 

STARTING LEVELS (.1, .4, .7) 

• • p = .5 p = .75 

N 10 15 20 30 10 15 20 30 

n·A ... l 
n 

RM 1.1269 1.1035 1. 0570 1. 0528 1. 2906 1.2820 1.2131 1.1982 
AN1 .7483 .6790 .6482 .5567 1.3702 1.4685 1.6135 1.3051 
AN2 1.1559 1.1328 1. 0576 .9977 1.2884 1.2933 1.1920 1. 1793 
WU1 .5964 .5849 .5265 .5069 2.0399 1. 6280 1.6166 1.4759 
WU2 1.1342 1.1008 1. 0493 1. 0179 1.2750 1.2631 1.1848 1.1648 
SAM .9890 .8397 .7012 .5785 1.1509 1.0287 .8383 .7088 

n·A = 6 
n 

RM .8992 .7984 .6936 .6435 1.2227 1.1696 .9687 .8828 
AN1 .7933 .6855 .5913 .4875 1. 2080 1. 0712 .9930 .9099 
AN2 1. 0324 .9294 .8061 .7582 1.3161 1. 2959 1. 1104 1.0582 
WU1 .8312 .6819 .6094 .5148 1. 6961 1.4106 1. 4 350 1.2961 
WU2 .9464 .8494 .7348 .7022 1.1634 1. 102 9 .9267 .9046 
SAM .8583 .7611 .6556 • 5456 1.1125 .9875 .8297 .7126 

n·A = 36 
n 

RM 1. 2803 1.1148 .9804 .8161 1.7679 1.5598 1. 3536 1.1340 
AN1 .9916 .7451 .5985 .4486 1.7171 1.4616 1. 3160 1.2263 
AN2 1. 2637 1. 0472 .9719 .7738 1. 7385 1.4355 1.2739 1. 04 77 
WU1 .8169 .6027 .5293 .4264 1.6243 1. 0958 1.0444 .9988 
WU2 1.1372 .9064 .7691 .6687 1.5968 1.2062 1.0556 .8668 
SAM 1.1669 .8888 . 7154 .5697 1.3360 1.0808 .9337 .7362 



N 

n·A = n 

RM 
AN! 
AN2 
WU1 
WU2 
SAM 

TABLE 21 

MONTE CARLO v'MSEs FOR ESTIMATING L • 
p 

MODEL: LOGLOG e = 0 e = . 5 
1 2 

STARTING LEVELS (.3, .35, .4) 

• p = .5 p .75 

10 15 20 30 10 15 20 

1 

.7066 .6833 .6480 .6400 .5604 .5240 .5227 

.9196 .8516 .7718 .6520 1.2484 2.5337 1.5865 
1. 5434 1. 3937 1. 3246 1. 0978 1.1141 1.1135 1.1726 

.7236 .7069 .6443 .5909 2.0421 1.6148 1.5053 
1.1139 .7228 .6440 .5380 .8997 .7083 .7192 

.8331 .5928 .5743 .5047 1. 07 31 .8258 .7945 

n·A = 6 n 

RM .9096 .7821 • 7477 .6737 1. 3688 1.2190 1.0873 
AN1 .8075 .6567 .5939 .4658 1.2273 1. 0416 1.0339 
AN2 1.1536 .9696 .9632 .7809 1. 5869 1.4481 1.3994 
WU1 .8108 .6775 .6014 .4835 1.6731 1.4099 1.4068 
WU2 1. 0434 .8632 .8473 • 7221 1.5264 1.3526 1. 2299 
SAM .8823 .6973 .6077 .5097 1.1967 .9610 .8746 

n·A = 36 
n 

RM 1. 2981 1.1426 .9788 .8051 1.8149 1.5441 1.3558 
AN1 .9954 .7438 .6008 .4506 1.7321 1.4625 1. 3255 
AN2 1.4404 1.1207 1.0144 .7557 1.7413 1.4326 1.2691 
WU1 .8217 .6124 .5255 .4247 1. 64 06 1. 0710 1.0124 
WU2 1.1856 .9032 .7613 .6485 1.4704 1.1196 .9642 
SAM .9955 .7727 .6775 .5394 1.1724 1.0337 .8909 

74 

30 

.5045 
1.2384 
1.0704 
1. 3977 

.6858 

. 7257 

.9375 

.9204 
1.1659 
1. 2497 
1.0333 

. 7149 

1.1161 
1.2449 
1.0521 

.9805 

.8224 

.7157 



N 

n·A = 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A = n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A = n 
RM 
AN1 
AN2 
WU1 
WU2 
SAM 

TABLE 22 

MONTE CARLO vMSE FOR ESTIMATING L 
.25 

STARTING LEVELS: (.5, .813, .95) 

LOG IT e= o, B= 1 LOG LOG e= o, e= 
1 2 1 2 

10 15 20 30 10 15 20 

1 

1.1268 1. 0689 1. 0570 1. 0237 .8449 .7869 .7807 
1. 2547 .9646 .8018 .6215 1. 4685 1. 2786 1. 0222 
1. 0963 1.0084 .9638 .9844 .8012 .7076 .7144 

.7273 .5978 .6061 .5866 1.1015 .7542 .8273 
1. 0993 1. 0413 1.0008 .9391 .8010 .7367 .7045 

.8695 .7264 .6680 .4952 1. 0379 .8329 .7470 

6 

.8190 .6270 .6032 .4866 1.0579 .8061 .7647 

.7373 .6401 .6411 .5593 1. 0493 .8898 .8281 

.8917 .7746 .7397 .6267 1.1564 .9169 .8865 

.9926 .8956 .7881 .7185 1.4348 1.2682 1.1313 

.7600 .6492 .6215 .5589 1. 0584 .8548 .8439 

.7026 .5911 .5300 .4337 .8464 .7386 .6194 

36 

1.5931 1.1894 1. 0162 .7706 1.3626 1. 154 5 .9582 
1.1791 .9875 .9074 .8523 1. 6177 1.4814 1.3738 
1.4456 1. 0889 .9323 .7187 1. 0717 .8553 .7436 
1. 6580 .8726 .7131 .6264 2.2801 1.5156 1. 2455 
1.4050 .8764 .7560 .5259 1.3337 1.0901 .8080 
1. 0156 .6835 .6021 . 4513 1.0866 .8932 .7207 

75 

.5 

30 

.7418 

.7346 

.8103 

.6181 

.6970 

.5866 

.6974 

.7192 

.7614 
1.0266 

.7870 

.5352 

.7907 
1.2521 

.6282 

.9331 

.6089 

.5488 



N 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

TABLE 23 

MONTE CARLO vMSE FOR ESTIMATING L 
.25 

STARTING LEVELS: (.1, .4, .7) 

LOG IT 8 = o, 8= 1 LOG LOG 8= o, 8= 
2 1 2 1 

10 15 20 30 10 15 20 

= 1 

.4990 .4716 .4556 .4330 .6734 .6451 .6208 
1.1866 1. 2198 1. 0902 1. 0269 1. 6242 1. 6501 1. 6795 . .7104 .6665 .7305 .7666 1. 0572 .9666 1.0215 
1. 6893 1. 3160 1. 2499 1.1337 2.6911 2.0854 1.9594 

.5907 .5613 .5319 .5160 .8121 .7733 .6812 

.7154 .6334 .5300 .4343 .9571 .7663 .6217 

= 6 

.8982 .7489 .7003 .5355 1. 0680 .8418 .7313 

.7503 .6545 .5759 .5139 1.1948 1.0420 .8513 
1. 04 77 .9669 .8409 .7257 1. 3816 1.1839 1.0031 
1.1836 .9882 .9081 .8755 1.8005 1. 4046 1. 3015 

.9614 .7967 .7586 .5800 1.2031 .9839 .8657 

.7817 .6553 .5855 .4632 .9384 .8277 .7241 

= 36 

1. 5564 1.1777 1. 0117 .7597 1.4183 1.1059 .9750 
1.1645 .9750 .9544 .8536 1. 7061 1.5724 1.4786 
1.2994 .9565 .8053 .6356 1.4965 1. 2582 1.0655 
1. 5460 .9169 .7175 .6231 2.0142 1.2082 .9724 
1.2495 .8342 .6738 .5059 1. 0924 .8423 .7020 
1. 0016 .7201 .5741 .4601 1.2227 .9092 .7121 

76 

.5 

30 

.6117 
1.4218 
1. 0289 
1. 7532 

.6554 

.5121 

.5616 

.7795 

.8193 
1.1618 

.6567 

.5622 

. 7613 
1. 3964 

.8394 

.8708 

.5747 

.5665 



N 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

n·A 
n 

RM 
AN1 
AN2 
WU1 
WU2 
SAM 

TABLE 24 

MONTE CARLO VMSE FOR ESTIMATING L 
.25 

STARTING LEVELS: (.3, .35, .4) 

LOG IT B= o, e = 1 LOG LOG e = o, e = 
1 2 1 2 

10 15 20 30 10 15 20 

= 1 

.8961 .8073 .7755 .7419 1. 3309 1. 2376 1.1893 
1. 2605 1. 5418 1.1532 1. 0771 1. 7769 2.6936 1.7967 
1.3334 1. 2959 1. 2075 1.1166 2.4649 2.1663 1.9818 
1. 7436 1. 4 712 1. 3369 1.2133 2.9345 2.3625 2.0877 
1. 0369 .7854 .7339 .5976 1. 8223 1.1401 .9773 

.9578 .7452 .6471 .5355 1. 4227 .9218 .8015 

= 6 

.8972 .7434 .6818 .5138 .8972 .7434 .6818 

.8028 .6693 .5874 .5200 .8028 .6693 .5874 
1. 0591 .8760 .7871 .6765 1. 0591 .8760 .7871 
1.1488 .9938 .8706 .8114 1.1488 .9938 .8706 
1. 0273 .7917 .7390 .5709 1.0273 .7917 .7390 

.8392 .6699 .5666 .4636 .8392 .6699 .5666 

= 36 

1. 5148 1.1366 1.0101 .7570 1. 514 8 1.1366 1.0101 
1.1624 .9773 .9501 .8451 1.1624 .9773 .9501 
1.1888 .9484 .7961 .6276 1.1888 .9484 .7961 
1.4624 .8916 .7172 .6395 1. 4624 .8916 .7172 
1. 2581 .8275 .6508 .4976 1. 2581 .8275 .6508 
1. 0023 .7082 .6004 .4595 1. 0023 .7082 .6004 

77 

. 5 

30 

1.1457 
1. 4 782 
1. 6276 
1.8928 

.7720 

.6704 

. 5138 

.5200 

.6765 

.8114 

. 5709 

.4636 

.7570 

.8451 

.6276 

.6395 

.4976 

.4595 
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where c = 2p(1-p) ln[ (1-p)/pJ/(L - L). When the true 
L 1-p p 

expectation, M(x), is the two parameter logit model, (58) 

reduces to 

(59) 

L ,....., N L , { ne p ( 1-p) } - . A ( 2 1) 
1-p 1-p 2 

Thus, using (38) and (58), when M(x) is the two parameter 

logit model, 

L •"""' N( L •' p p 
2 -1 2 ) { ne 2p ( 1-p) } { 1-2 r+ 2 r } , (60) 

• • where r = (1/2) + {ln[(1-p )/P] j 2·ln[(1-p)/p]}. 

The square of the values in Tables 8 - 24 are averages 

• • • of n (n = n' for initial procedure 1 and n = 500 for 
A 2 

initial procedure 2) individual mean squares, ( L • - L •) . 
p p 

Define the random variableS= (L*- L.) 2 • Using (60), 
p p 

. • 2 -1 2 2 asymptotJ.cally, S = S·{1-2r+2r} ·{ne2p(1-p)} ~ x1 • This 

implies the asymptotic variance of Sis 2·(1-2r+2r2 ) 2/ 

(ne2p(1-p)) 2 • By the central limit theorem, an average of 
2 

• n of these random variables is approximately normal with a 

2 2/ • 2 2 variance of 2 · ( 1-2r+r ) n (ne2p ( 1-p)) . 
A 

The same approach can be followed for L from WU1, 
.5 

using the asymptotic equivalence of Wu's procedure and the 

optimal RM process. Tables 25 and 26 give the asymptotic 

• • standard errors of SAM's and WU1's MSEs for n = 365 and n = 

500, respectively, when M(x) is given by the two parameter 

logit model. 
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TABLE 25 

• ASYMPTOTIC (MSE) STANDARD ERRORS (n = 365) 

n 
• 

__E_ 10 15 20 30 

SAM .5 .0231 .0154 .0116 .0077 

.75 .0377 .0251 .0188 .0126 

WU1 .5 .0148 .0099 .0074 .0049 

TABLE 26 

• ASYMPTOTIC (MSE) STANDARD ERRORS (n = 500) 

n 
• 

__E_ 10 15 20 30 

SAM .5 .0198 .0132 .0099 .0066 

.75 .0322 .0215 .0161 .0107 

WU1 .5 .0126 .0084 .0063 .0042 

These values have been developed assuming the true 

expectation is the two parameter logit. Thus, they are 

appropriate for comparing SAM and WU1's MSEs in Tables 8, 9, 

16, 17 and 18. If M(x) differs from the two parameter 
A 

logit, then L. may be biased. Moser and Fei (1989b) 
p 

provide a detailed discussion of the biases and MSEs for a 

two dimensional Robbins Monro process. 

The above results are based upon asymptotic theory. 

However, small to medium sample sizes were used in the 

simulation study. A second approach to estimating the 

variance of the MSEs is to use the simulation results. 
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During the simulation study, the sample standard deviation 
A 2 

of S = (L.- L.) was calculated for each procedure. 
p p 

Table 27 contains the standard errors of s from initial 

procedure 1 when the legit model was used to generate the 

binary responses. 

TABLE 27 

• SIMULATION STANDARD ERRORS (n = 365) 

n 
• Procedure _E_ 10 15 20 30 

SAM .5 .0247 .0178 .0143 .0084 

.75 .0532 .0348 .0253 .0137 

WU1 .5 .0230 .0194 .0112 .0065 

.75 .0764 .0618 .0462 .0268 

In every case, the difference between the asymptotic 

(Table 25) and simulation standard errors (Table 27) is 

smaller for SAM than for WU1. Using the simulation standard 

• • errros from Table 27, denoted by s I v'n and s I v'n , 
s~ ~1 

the least significant difference between MSEs from SAM and 

WU1 can be constructed. For example, the least significant 

( 1 2 2 ) 1/2 differences for the MSEs, z I · --· ( s + s ) , are 
0: 2 * SAM WU 1 n 

given in Table 28. 



TABLE 28 

LEAST SIGNIFICANT DIFFERENCE FOR SAM AND 

p 

.5 

.75 

• WU1 MSEs (n = 365, a = .05) 

10 

.0662 

.1825 

15 

.0516 

.1390 

n 

20 

.0356 

.1032 

30 

.0208 

.0600 

The least significant differences of Table 28 are now 
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used to compare the MSEs produced by SAM and WU1 in Tables 8 

and 9. Tables 8 and 9 present the MSEs from each procedure 

for four sample sizes and three upper bounds. Thus, in each 

table, there are 12 comparisons between SAM and WU1's MSEs 
A A 

for L and 12 for L 
.5 .75 

(For each sample size (n=10, 15, 

20, 30), the MSE of SAM-10 is compared with the MSE of 

WU1-10, SAM-50 is compared with WU1-50, and SAM-100 is 

compared with WU1-100) In Table 29, the results of these 

comparisons over both tables are presented. The number of 

times that each procedure produced a MSE significantly lower 

(a = .05) than the other procedure is given for each sample 

size. Note that for each sample size, there are a total of 
A A 

six L comparisons and six L comparisons (three from 
.5 .75 

each table). 



TABLE 29 

NUMBER OF SIGNIFICANT DIFFERENCES 

n 

10 15 20 30 
A 

L 
.5 

WU1 2 5 4 0 

SAM 1 0 0 3 

Neither 3 1 2 3 
A 

L 
.75 

WU1 0 0 0 0 

SAM 1 0 6 6 

Neither 5 6 0 0 

It is clear that SAM produces significantly (a = .05) 
A 

lower L MSEs for the larger sample sizes (n = 20, 30) . 
• 75 

For estimating L , WU1 produces significantly lower MSEs 
.5 
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when n = 15, 20. However, WU1's advantage did not hold for 

n = 10, 30. 



CHAPTER V 

CONCLUSIONS 

SAM provides a new approach to estimating multiple 

roots of an expectation function. A parametric model is 

used to produce SAM's estimators, although the true 

expectation is assumed unknown. To produce estimators for 

binary data, SAM, with the two parameter legit model, is 

recommended. A first order approximation to the legit 

version of SAM was shown to be asymptotically equivalent to 

a two dimensional Robbins-Monro process. Under certain 

restrictions, SAM's estimators were proven to be consistent. 

In the binary data simulation study, SAM performed well 

compared to other sequential approximation methods. SAM 

performed particularly well when estimating multiple roots. 

SAM was relatively unaffected by the choice of bounds on the 

step size and designs used to generate the initial levels. 

Criteria for selecting the values of P I 0 0 0 I P 1 k 
to use 

in SAM were presented in Chapter II. For the two parameter 

legit model, using p = .2 and p = .8 is recommended. The 
1 2 

pair (p , p ) = (. 2, . 8) was found to be either optimal (in 
1 2 

the minimum average sense) or near optimal in the situations 

discussed in Chapter II. Also, using (p ,p) = (.2,.8), SAM 
1 2 
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performed well for estimating multiple roots in the 

simulation study. 

In order to use SAM's updating rule, MLEs must exist. 

84 

Therefore, some procedure other than SAM must be used for 

the initial updates. Two methods for obtaining the initial 

design levels have been presented in this paper. The first 

approach is to select an initial set of design levels and 

observe a fixed number of samples at these levels (initial 

procedure 1). If MLEs do not exist after these initial 

observations, then more design levels would have to be 

selected. A second approach is to use a RM procedure, then 

switch to SAM when the MLEs exist. If little information 

about the location of the roots of M(x) is available prior 

to the experiment, then the second approach is recommended. 
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APPENDIX A 

PROOF OF THEOREM 1 

Theorem 1. Let x ,y , ... ,x ,y be a sequence of 
1,1 1,1 n,k n,k 

design levels and binary responses from SAM (9), where 

G(xle ,e ) is the two parameter logit expectation. Assume 
1 2 

that the MLE, (e~n>, e~nl) , converges almost surely to a 

constant, • • • (e e), e-:t:. o. 
1 2 2 

Also, assume that M(x) is an 

increasing function of x. L"' (n) "'(n) Then and L from SAM 

converge almost surely to L 
p1 

"' "' 

p1 p2 

and L , respectively. 
p2 

Proof: Since (e1 ,e2 ) converges almost surely to 

• • ( e , e ) , x and x converge almost surely to 
1 2 n+1,1 n+1,2 

( 9) 

• * . constants x and x , respect1vely. It will be demonstrated 
1 2 

• that x 
1 

* and x 
2 

From SAM ( 9) I G (X I e (n) e (n) ) = 
n+1, 1 1 1 2 

---> oo, this implies 

and 

From (19), the normal equations are 
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i = 1,2. As n 

p . 
2 

( 61) 



n 2 n 2 
(1/n) ·I: I: G(x 1e ,e) = (1/n) ·I: I: y1j 1j 1 2 1 j 1 j 

n 2 n 2 
( 1/n) · L L x1J·G(x1Jie1,e2) = (1/n) ·I: I: X ·y 1 j 1 j 

1 j 1 j 

From (61), the left hand sides of the normal equations 

• • converge almost surely to (p + p ) and (x p + x p ) , 1 2 1 1 2 2 

respectively. From the convergence of the MLEs and 

Theorem 1 of Dubins and Freedman (1965), 

1 n 2 • • 
-·" " Y ---> M(x1) + M(x2) almost surely. n L L 1J 

1 j 

Thus, the likelihood equations imply 

• • = M(x ) + M(x ) 
1 2 

• Solving these equations yields x = 
1 

and 

• and x = 
2 
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(62) 

(63) 

(64) 

Q.E.D. 



APPENDIX B 

PROOF OF THEOREM 2 

Theorem 2. Let Y be a binary random variable with 

expectation M(x). Assume that M(x) = G(x!e), where e is a 

single unknown parameter. That is, the model, G(xle), used 

in SAM is the true expectation of Y. The design levels, 

are assumed to be such that 0 < K < p = M(x ) < K < 1, 
1 1 1 2 

X. I 
1 

for some constants K , K . Assume the standard regularity 
1 2 

conditions on the distribution of Y (given below) hold. If 
A 

the following conditions are also satisfied, then L from 
p 

SAM converges to L in probability. 
p 

1) M(xle) is continuous in e. 

2) 3 o1 , o2 e R, such that o1 < BM(x,e) I ae < o2 , v e in 

some neighborhood of the true value of e, e , and V x e 
0 

(K1, K2) 

3) a2M(x,e) I ae2 is bounded v e in some neighborhood 

of the true value of e, e , and v x e (K , K ) 
0 1 2 

Regularity Conditions: from Serfling (1981), 

Let® be an open interval in R and f(y) be the p.m.f. of 

Y. 
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a) For each e e e, the derivatives 

alog f(y;e) 

ae 
exist, all y; 

b) For each e e e there exists functions g(y), h(y) 0 I 

and H(y) such that for e in a neighborhood N(e0 ) the 

relations 

I 81:: f (y ;e) I ~ g (y)' I a2lo:e; (y ;e) I ~ h (y) ' and 

la3 log f(y;e) I <_ 

ae 3 
H(y) 

hold, all y, and 

L g(y) < oo, L h(y) < oo, E{H(y)} < oo for e e N(e0 )j 

c) For each e e e, 

0 < E [(a 1 o~ e f ( y , e ) ) 2] < oo • 

proof: 

Let x , ... , x and y , ••. , y be the design levels and 
1 n 1 n 

A 

responses from SAM (9). By Section 5 of Wu (1985), L 
p 

A 
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converges to L in probability, if the MLE, e, converges to 
p 

A 

e in probability. To prove e converges to e , the results 
. 0 

of Crowder (1975) are used. Following Crowder's notation, 

' 

n 

1 (e)= L ln{P(y=llx ,y ... ,y )} 
n 1 1 1 1-1 

1 

n 

= L ( y 1 ·ln { p 1 } + ( 1-y 1 ) ·ln { 1-p 1 } ) , 

1 

n 

1 (e) = a1 (e) jae 
n n 

yl - pi 
= [ (Bp 1jae) ·-----

1 pl(l-pl) 

(65) 

(66) 
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I I n 

( yi-pi 
1 (e) = I: . [ (a2p jae2 ) ·p · (1-p ) 

n p (1-p ) i i i 
1 i i 

( ap i;ae) 2 
(67) 

(apijae) 2· (1-2·pi>] ) - ' p (1-p ) i i 

n 

E( 
(ap i;ae) 2 

) B = E(-l"(e)) = I: . (68) 
n 

1 p (1-p ) i i 

A 

By equation (2.3) of Crowder (1975), e converges in 
n 

probability to e, if 3 ~ > 0 and a sequence {v } tending to 
n 

infinity, such that (69) 

2 
0 } -----> 1 as n ---> oo, 

• when 1e - e 0 1 = o ~ ~. 

To show (69) holds, a lower bound for the expression 

-B-1/ 2·1 11 (e*) Will be derived. 
n 

• Define pi = • M(x , e ) . By 
i 

the continuity of M(x,e), for all c > o, 3 ~such that IPi-

• pi I< c. Define 01' (o1' < 01) to be the lower bound of 

• • (Bpi ;ae) = (aM(xre> ;ae) le=e· , for e e (e0 - ~' e0+ ~). 

Now, -11 Ice·) ·B-1/2 = 
n 

n (ap7Jae) 2 

* * pi. ( 1-p i) 

• 

T-T 
1 2 T , where 

3 

yi-p i [ 2 • 2 • • 
T2 = I:--.--~.-· (a pijae) ·pi (1-pi) 

p . ( 1-p ) 

n 

1 
i i 

(ap i;ae) 2 

p . (1-p ) 
i i 

( 70) 
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• • Sl.nce (Bpi 1 ae) > o1,, 

(71) 

1 1 

(72) 
1 

[ 
2 • 2 • • 

• • · (a p 1 ae ) · p ( 1-p ) 
2(1- )2 i i 1 

pi pi 

n • By Theorem C of Serfling (1980,p. 27), (1/n)·E (yi- Pi)·q1 
1 

----> 0, in probability. Also, A can be chosen small enough 

'r/ i. Therefore, 

(73) 

(ap 1lae) 2 ) 
The random variable ( is bounded, therefore, its 

p . (1-p ) 
1 1 

expectation is bounded by a positive upper bound, say o . 
3 

Thus, 

T ~ (n·o ) 1/ 2 (74) 
3 3 

Using (70), (71), (72), and (74), as n ----> oo, 

n·(4·o 2 -o2 ) ( 3·o 2 
1' 1' 1') = vn ------ ----> 00 • 

(n·o ) 1/2 0 1/2 
3 3 

A sequence {v } tending to infinity can now be chosen to 
n 

satisfy (69). 

A 

Therefore, e 
n 

For example, let {v } 
n 

---> e 
0 

A 

and L ----> L 
p p 

3·o 2 

= vn·(-1') 2·o 1 n · 
3 

in probability. 

Q.E.D. 



APPENDIX C 

PROOF OF THEOREM 4 

Theorem 3. Assuming (x ,x ) from SAM (9) converge almost 
n, 1 n,2 

"' surely to (L ,L ), A as defined in (24) converges almost 
p 1-p n 

surely to cL = 2p(1-p) ·ln[ (1-p)/p] I (L1_P - LP). 

Proof: 

Unless otherwise specified, the summations in this 

proof on i run from 1, ... ,n, and for j run from 1 to 2. 

Rewrite (24) as 

• where A = 
n 

"' . A = A 
n n 

* c · [ (x - x ) 
12 11 

- 2 [[(x - x ) 
1 j n 

• x = IT x I 2 · n , and c = 
n 1 j 

(75) 

(1/2) - p- p(1- p)·ln{(1-p)/p}. Let o: = (1-2p)/(L - L) 
1-p p 

denote the slope of the line through (L ,p) and (L ,1-p). 
p 1-p 

Assuming x -~~~~> L and x -~~~~> L , the second term 
n,1 p n,2 1-p 

• on the right hand side of (75) converges to 2·c ·o: I (1-2p), 

since 

* * c ·[ (x - x ) 
i 2 i 1 a. s. -----> 

c n· (L - L ) 
1-p p 

- 2 [[(x - x ) 
i j n 

2 
n (L - L ) I 2 

1-p p 

(76) 
• = 2·c ·o: I (1-2p). 
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By Theorem 1 of Lai and Wei (1982) and Theorem 2 of Wei 

(1985), the first term of the right hand side side of (75), 

• A , converges almost surely to a if the eigenvalues, ~' of 
n 

satisfy 

1. ~ (n) ----> c:o a. s. 1 
min 

2. log~ (n) = o(~ (nl) a.s •• 
max mln 

However, conditions 1 and 2 are satisfied since 

- 2 li(x - x ) iJ n 
i J 

= [(x - x ) 2 + [(x - x ) 2 + n(x - x )2 + n(x - x )2 
i 1 n1 12 n2 n1 n n2 n 

l i 

= OCn) 

n 

where x = L x j n , j=1, 2. Therefore, 
n J i J 

Since 

• A 
a. s. -----> a 

n 

• a{1- [2c/ (1-2p)} = 2p(1-p)·ln[(l-p)/p) 
L - L 

1-p p 

(77) 

(78) 

(79) 

( 80) 

(76) and (79) imply Q.E.D. 



APPENDIX D 

SAS CODE FOR THE SIMULATION STUDY 

The following is the SAS code (SAS Institute, Inc.) 

used in the simulation study for initial procedure 1. The 

program actually produced the MSEs for each procedure in the 

n = 20 column of Table 9. The other values were generated 

by changing the sample size n and the formulas used to 

generate the binary responses. 

DATA ONE; 
***********************************************************; 
** INITIALIZE VARIABLES **; 
** N = #updates, M = # iterations **; 
***********************************************************; 

N =20; M = 500; MODEL= 1 LOGIT 1 ; SETUP= 2; 
DISCARD1 = 0; DISCARD2 = O; DISCARD3 = 0; 
FILE PRINT; PUT 1 SETUP 1 SETUP N M MODEL; 
MSEW1_1 = 0; MSEW1_2 = O; MSEW1_3 = 0; 
MSESM_1 = O; MSESM_2; MSESM_3 = 0; 
MSEW2_1 = 0; MSEW2_2 = O; MSEW2_3 = 0; 
MSEA1_1 = 0; MSEA1_2 = O; MSEA1_3 = O; 
MSEA2_1 = O; MSEA2_2 = 0; MSEA2_3 = O; 
MSERM 1 = 0; MSERM 2 = O; MSERM 3 = 0; 
MSW1_1 = 0; MSW1_2 = O; MSW1_3 = 0; 
MSSM_1 = 0; MSSM 2 = O; MSSM_3 = O; 
MSW2_1 = 0; MSW2 2 = 0; MSW2_3 = 0; 
MSA1_1 = 0; MSA1 2 = 0; MSA1_3 = 0; 
MSA2_1 = 0; MSA2 2 = 0; MSA2_3 = 0; 
MSRM_1 = 0; MSRM 2 = 0; MSRM_3 = 0; 
W1ADET 1 = 0; W1ADET 2 = 0; W2DET 1 = 0; W2DET_2 = 0; 
W1ADET_3 = 0; W1ADET_4 = 0; W2DET_3 = O; 
W1BDET_1 = 0; W1BDET_2 = 0; W1BDET_3 = 0; 
SMDET 1 = 0; SMDET 2 = 0; SMDET_3 = 0; 
ARRAY X {42} X1-X42; ARRAY U {40} U1-U40; 
ARRAY Y {40} Y1-Y40; 
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***********************************************************: 
*** START LOOP FOR 1000 SAMPLES ***; 
***********************************************************: 

DO L = 1 TO M; 
DO I= 1 TO (2*N); 

U{I} = RANUNI(35671); 
END; 

***********************************************************; 
*** INITIAL 10 POINTS (LOGIT MODEL) ***; 
************************************************************: 

IF SETUP=1 THEN DO; 
X{1} = -2.1972246; X{2} = -.8472978; X{3} = -.8472978; 
X{4} O; X{5} = O; X{6} = 0; X{7} = O; 
X{8} = .8472978; X{9} = .8472978; X{10} = 2.1972246; 

END; 
IF SETUP=2 THEN DO; 

X{1} = -.8472978; X{2} = -.1603426; X{3} = -.1603426; 
X{4} = .241162; X{5} = .241162; X{6} = .241162; 
X{7} = .241162; X{8} = .5007752; X{9} = .5007752; 
X{10} = 1.3862944; 

END; 
ALPHA = .25; BETA = .5; CHK = 0; 
SUMX = O; SUMY = 0; SUMXX = O; SUMXY = 0; 

************************************************************: 
*** LS SLOPE CALCULATIONS ***; 
*** GENERATE 10 Y VALUES, ***; 
*** AND CHECK SILVAPULLES CONDITIONS ***: 
************************************************************; 

XOMIN = 50; X1MIN = 50; 
XOMAX = -50; X1MAX = -50; 
DO I = 1 TO 10; 

PROB = 1 / (1 + EXP(-X{I})); 
IF U{I} LT PROB THEN Y{I} = 1; ELSE Y{I} = O; 
SUMX = SUMX + X{I}; SUMXX = SUMXX + X{I}*X{I}; 
SUMY = SUMY + Y{I}; SUMXY = SUMXY + X{I}*Y{I}; 
IF Y{I} = 0 THEN DO; 

IF X{I} GT XOMAX THEN XOMAX = X{I}; 
IF X{I} LT XOMIN THEN XOMIN = X{I}; END; 

IF Y{I} = 1 THEN DO; 
IF X{I} GT X1MAX THEN X1MAX = X{I}; 
IF X{I} LT X1MIN THEN X1MIN = X{I}; END; 

END; 
*** CONDITION 1 ***; 

IF X1MAX GT X1MIN AND XOMIN LT XOMAX AND X1MAX GT XOMIN 
AND X1MIN LT XOMAX THEN CHK = 1; 

*** CONDITION 2 ***; 
IF XOMIN = XOMAX AND X1MIN LT XOMIN AND XOMAX LT X1MAX 
THEN CHK = 1; 

*** CONDITION 3 ***; 
IF X1MIN = X1MAX AND XOMIN LT X1MIN AND X1MAX LT XOMAX 
THEN CHK = 1; 
IF CHK = 0 THEN DO; 

DISCARD1 = DISCARD1 + 1; GO TO OK; 
END; 
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************************************************************; 
*** CALCULATE MLE'S ***; 
************************************************************; 

G1=0; G2=0; 
DO J = 1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK1; 
H11 = 0; H12 = 0; H22 = 0; 
G1 = 0; G2 = O; 
DO I = 1 TO 10; 

Z =ALPHA+ BETA*X{I}; 
IF ABS(Z) GT 15 THEN DO; 

PRED=1; GO TO DE3; 
END; 
PRED = EXP(Z) / (1 + EXP(Z)); 

DE3: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{I}*PRED*(1-PRED); 
H22 = H22 - X{I}*X{I}*PRED*(1-PRED); 
G1 = G1 + (Y{I} - PRED); 
G2 = G2 + (X{I}*Y{I}- X{I}*PRED); 

END; 
IF (H11*H22) - (H12**2) LT .001 THEN DO; 

DISCARD3 = DISCARD3 + 1; GO TO OK; 
END; 
DET = (H11*H22) - (H12**2); 
HINV11 = H22 / DET; 
HINV22 = H11 / DET; 
HINV12 = -(H12 / DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
***********************************************************; 
*** CALCULATE STARTING VALUES ***; 
***********************************************************; 
OK1: IF BETA LE 0 THEN DO; 

*i 
*; 

DISCARD2 = DISCARD2 + 1; GO TO OK; 
END; 
XL= (LOG(.25) -ALPHA) / BETA; 
XM = -ALPHA I BETA; 
XU = (LOG(4) - ALPHA) / BETA; 
IF XL LT -5 THEN XL = -5; IF XU GT 5 THEN XU = 5; 
IF ABS(XM) GT 5 THEN XM = SIGN(XM)*5; 
P20 = 1 I (1 + EXP(-XL)); P50 = 1 I (1 + EXP(-XM)); 
P80 = 1 / (1 + EXP(-XU)); ALPH =ALPHA; 
BET = BETA; ALPHAN= -ALPHA/BETA; BETAN=BETA; 
XBAR = SUMX / 10; 
LSBETA = (SUMXY - XBAR*SUMY) / (SUMXX - (SUMX**2)/10); 
C = LOG(3) / LOG(.25); 

*; 
***********************************************************; 
*** ROBBINS MONRO PROCEDURE (2 INDEP PROCS) ****; 
***********************************************************; 
*** RUN FOR EACH RM CONSTANT C ***i 



DO RMC = 1, 6, 36; 
X{11} = XL; 
P20 = 1 I (1 + EXP(-XL)); 
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***********************************************************; 
*** 1RST PROCESS (RUN AT P = 20) ***; 
***********************************************************; 

DO I = 11 TO (N+5); 
*** GENERATE THE Y'S ***; 

IF U{I} LT P20 THEN Y{I} = 1; ELSE Y{I} = 0; 
*** CALCULATE NEXT X'S ***; 

X{I + 1} = X{I} - RMC*(Y{I} - .2) I I; 
IF X{I + 1} GT 5 THEN X{I + 1} = 5; 
IF X{I + 1} LT -5 THEN X{I + 1} = -5; 
P20 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR P = 20 

*" ' 
XRM20F = X{N+6}; 

***; 

***********************************************************; 
*** 2ND PROCESS (RUN AT P = 80) ***; 
***********************************************************; 

X{11} = XU; 
P80 = 1 I (1 + EXP(-XU)); 
DO I= 11 TO (N+5); 

*** GENERATE THE Y'S ***; 
IF U{I} LT P80 THEN Y{I} = 1; ELSE Y{I} = O; 

*** GENERATE NEXT X'S ***; 
X{I + 1} = X{I} - RMC*(Y{I} - .8) I I; 
IF X{I + 1} GT 5 THEN X{I + 1} = 5; 
IF X{I + 1} LT -5 THEN X{I + 1} = -5; 
P80 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR P = 80 ***; 

XRM80F = X{N+6}; 
***; 
***********************************************************; 
*** GENERATE FINAL ESTIMATE ***; 
*** FROM 2 INDEP ESTIMATES, AND ***; 
*** UPDATE THE MEAN SQUARE ERROR ***; 
***********************************************************; 

XRM50F = (.5)*(XRM20F + XRM80F); 
XRM75F = (.5)*((1 - C)*XRM80F + (1 + C)*XRM20F); 
IF RMC = 1 THEN DO; MSERM_1 = MSERM_1 + XRM50F**2; 

MSRM 1 = MSRM 1 + (XRM75F- LOG(3))**2; 
END; 
IF RMC = 6 THEN DO; MSERM 2 = MSERM_2 + XRM50F**2; 

MSRM 2 = MSRM 2 + (XRM75F- LOG(3))**2; 
END; 
IF RMC = 36 THEN DO; MSERM_3 = MSERM 3 + XRM50F**2; 

MSRM 3 = MSRM 3 + (XRM75F- LOG(3))**2; 
END; 

END; 
*; 
*; 
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*i 
**********************************************************; 
*** ANBAR'S PROCEDURE (2 INDEP PROCS) ***; 
**********************************************************; 
*** RUN FOR EACH UPPER BOUND ***i 
DO UB = 10, 50, 100; 

X{11} = XL; 
P20 = 1 I (1 + EXP(-XL)); P80 = 1 I (1 + EXP(-XU)); 
SUMXYA = SUMXY- (.2)*SUMX; SUMYA = SUMY- 2; 
SUMXXA = SUMXX; SUMXA = SUMX; 

**********************************************************; 
*** 1RST POINT (RUN AT P = 20) ***; 
**********************************************************; 

DO I= 11 TO (N+S); 
*** GENERATE THE Y'S ***; 

IF U{I} LT P20 THEN Y{I} = 1; ELSE Y{I} = 0; 
*** CALCULATE THE NEW LS SLOPE ***; 

SUMXA = SUMXA + X{ I}; 
SUMYA = SUMYA + (Y{I}-.2); 
SUMXYA = SUMXYA + X{I}*(Y{I}-.2); 
SUMXXA = SUMXXA + X{I}*X{I}; 
XBARA = SUMXA I I ; 
BETAAN = (SUMXYA-XBARA*SUMYA) I (SUMXXA-(SUMXA**2)II); 

*** CHECK THE BOUNDS ON LS SLOPE ***; 
IF BETAAN NE 0 THEN DSTAR = 1 I BETAAN; 
IF BETAAN = 0 OR (1IBETAAN) GT UB THEN DSTAR=UB; 
IF BETAAN LT 0 THEN DSTAR=UB; 

*** GENERATE NEXT X'S ***; 
X{I + 1} = X{I} - DSTAR*(Y{I} - .2)II; 
IF X{I + 1} GT 5 THEN X{I + 1} = 5; 
IF X{I + 1} LT -5 THEN X{I + 1} = -5; 
P20 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR P = 20 

*. ' 
XAN20F = X{N+6}; 

***; 

**********************************************************; 
*** 2ND PROC (RUN AT P = 80) ***; 
**********************************************************; 

X{11} = XU; 
P20 = 1 I (1 + EXP(-XL)); P80 = 1 I (1 + EXP(-XU)); 
SUMXYA = SUMXY- (.8)*SUMX; SUMYA = SUMY- 8; 
SUMXA=SUMX; SUMXXA = SUMXX; 
DO I = 11 TO (N+S); 

*** GENERATE THE Y'S 

*** 
IF U{I} LT P80 THEN Y{I} = 1; ELSE Y{I} = O; 

CALCULATE THE NEW LS SLOPE 
SUMXA = SUMXA + X{ I}; 
SUMYA = SUMYA + (Y{I}-.8); 
SUMXYA = SUMXYA + X{I}*(Y{I}-.8); 
SUMXXA = SUMXXA + X{I}*X{I}; 
XBARA = SUMXA I I; 

***; 

***• , 

BETAAN = (SUMXYA-XBARA*SUMYA) I (SUMXXA-(SUMXA**2)II); 
*** CHECK THE BOUNDS ON LS SLOPE ***; 



IF BETAAN NE 0 THEN DSTAR = 1 I BETAAN; 
IF BETAAN = 0 OR (1IBETAAN) GT UB THEN DSTAR=UB; 
IF BETAAN LT 0 THEN DSTAR=UB; 
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*** GENERATE NEXT X'S ***; 
X{I + 1} = X{I} - DSTAR*(Y{I} - .8)II; 
IF X{I + 1} GT 5 THEN X{I + 1} = 5; 
IF X{I + 1} LT -5 THEN X{I + 1} = -5; 
P80 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR 80 ***; 

XAN80F = X{N+6}; 
***; 
**********************************************************; 
*** GENERATE FINAL ESTIMATE ***; 
*** FROM 2 INDEP ESTIMATES, AND ***; 
*** UPDATE THE MEAN SQUARE ERROR ***; 
**********************************************************; 

XANSOF = (.5)*(XAN20F + XAN80F); 
XAN75F = (.5)*((1 - C)*XAN80F + (1 + C)*XAN20F); 
IF UB = 10 THEN DO; MSEA1 1 = MSEA1 1 + XAN50F**2; 

MSA1 1 = MSA1 1 + (XAN75F - LOG(3))**2; 
END; 
IF UB = 50 THEN DO; MSEA1_2 = MSEA1_2 + XAN50F**2; 

MSA1 2 = MSA1 2 + (XAN75F- LOG(3))**2; 
END; 
IF UB = 100 THEN DO; MSEA1_3 = MSEA1 3 + XAN50F**2; 

MSA1_3 = MSA1_3 + (XAN75F- LOG(3))**2; 
END; 

END; 
*; 
*; 
*; 
**********************************************************; 
*** WU'S PROCEDURE (2 INDEP PROCS) ***; 
**********************************************************; 
*** RUN FOR EACH UPPER BOUND ***; 
DO UB = 10, 50, 100; 

ALPHA = ALPH; BETA = BET; X{11} = XL; 
P20 = 1 I (1 + EXP(-XL)); PSO = 1 I (1 + EXP(-XM)); 
P80 = 1 I (1 + EXP(-XU)); 

**********************************************************; 
*** 1RST POINT (RUN AT P = 20) ***; 
**********************************************************; 

DO I = 11 TO (N+S); 
*** GENERATE THE Y'S ***; 

IF U{I} LT P20 THEN Y{I} = 1; ELSE Y{I} = 0; 
*** CALCULATE THE NEW MLE'S ***; 

G1=0; G2=0; 
DO J=1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK2; 
H11 = O; H12 = 0; H22 = O; 
G1 = O; G2 = O; 
DO K=1 TO I; 

Z =ALPHA+ BETA*X{K}; 



IF ABS(Z) GT 15 THEN DO; 
PRED=1; GO TO CK1; 

END; 
PRED = EXP(Z) I (1 + EXP(Z)); 

CK1: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{K}*PRED*(1-PRED); 
H22 = H22- X{K}*X{K}*PRED*(1-PRED); 
G1 = G1 + (Y{K}- PRED); 
G2 = G2 + (X{K}*Y{K}- X{K}*PRED); 

END; 
IF ABS((H11*H22) - (H12**2)) LT .001 THEN DO; 

DSTAR=O; GO TO CKL1; 
END; 
DET = (H11*H22) - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
*** CHECK THE BOUNDS ON BETAWU (SLOPE) 
OK2: X{I+1} = (LOG(.25) - ALPHA)IBETA; 

DSTAR = (X{I} - X{I+1})*I I (Y{I} - .2); 
IF DSTAR GT UB THEN DSTAR=UB; 
IF DSTAR LT (-UB) THEN DSTAR=(-UB); 
IF BETA LT 0 THEN DSTAR=UB; 

*** GENERATE NEXT X'S 
CKL1: X{I + 1} = X{I}- (DSTARII)*(Y{I}- .2); 

IF X{I+1} GT 5 THEN X{I+1}=5; 
IF X{I+1} LT -5 THEN X{I+1}=-5; 
P20 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR P = 20 

XWU20F = X{N+6}; 
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***; 

***i 

***i 

*; 
**********************************************************; 
*** 2ND POINT (RUN FOR P = 80) ***i 
**********************************************************; 

X{11} = XU; ALPHA = ALPH; BETA = BET; 
DO I= 11 TO (N+5); 

*** GENERATE THE Y'S ***; 
IF U{I} LT P80 THEN Y{I} = 1; ELSE Y{I} = 0; 

*** CALCULATE THE NEW MLE'S ***; 
G1=0; G2=0; 
DO J=1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK3; 
H11 = O; H12 = O; H22 = O; 
G1 = O; G2 = O; 
DO K=1 TO I; 

Z =ALPHA+ BETA*X{K}; 
IF ABS(Z) GT 15 THEN DO; 

PRED=1; GO TO CK2; 
END; 
PRED = EXP(Z) I (1 + EXP(Z)); 



CK2: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{K}*PRED*(1-PRED); 
H22 = H22 - X{K}*X{K}*PRED*(1-PRED); 
G1 = G1 + (Y{K}- PRED); 
G2 = G2 + (X{K}*Y{K}- X{K}*PRED); 

END; 
IF ABS((H11*H22) - (H12**2)) LT .001 THEN DO; 

DSTAR=O; GO TO CKL2; 
END; 

DET = (H11*H22) - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
*** CHECK THE BOUNDS ON BETAWU (SLOPE) 

OK3: X{I+1} = (LOG(4) - ALPHA)IBETA; 
DSTAR = (X{I} - X{I+1})*I I (Y{I} - .8); 
IF DSTAR GT UB THEN DSTAR=UB; END; 
IF DSTAR LT (-UB) THEN DSTAR=(-UB); 
IF BETA LT 0 THEN DSTAR=UB; 

*** GENERATE NEXT X'S 
CKL2: X{I + 1} = X{I} - (DSTARII)*(Y{I} - .8); 

IF X{I+1} GT 5 THEN X{I+1}=5; 
IF X{I+1} LT -5 THEN X{I+1}=-5; 
P80 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE FOR 80 

XWU80F = X{N+6}; 

103 

***; 

***; 

***; 

***i 
****************************************************************; 
*** GENERATE FINAL ESTIMATE ***; 
*** FROM 2 INDEP ESTIMATES, AND ***; 
*** UPDATE THE MEAN SQUARE ERROR ***; 
****************************************************************; 

XWU1F50 = (.5)*(XWU20F + XWU80F); 
XWU1F75 = (.5)*((1 - C)*XWU80F + (1 + C)*XWU20F); 
IF UB = 10 THEN DO; MSEW1 1 = MSEW1 1 + XWU1F50**2; 

MSW1 1 = MSW1 1 + (XWU1F75- LOG(3))**2; 
END; 
IF UB = 50 THEN DO; MSEW1 2 = MSEW1_2 + XWU1F50**2; 

MSW1 2 = MSW1 2 + (XWU1F75- LOG(3))**2; 
END; 
IF UB = 100 THEN DO; MSEW1_3 = MSEW1_3 + XWU1F50**2; 

MSW1 3 = MSW1 3 + (XWU1F75- LOG(3))**2; 
END; 

END; 
*i 
*i 
*i 
**********************************************************; 
*** ANBAR'S PROCEDURE (2N POINTS AT P = .5) ***; 
**********************************************************; 



*• , 
*** RUN FOR EACH UPPER BOUND 
DO UB = 10, 50, 100; 

X{11} = XM; P50 = 1 I (1 + EXP(-XM)); 
SUMXYA = SUMXY; SUMXA = SUMX; SUMYA = SUMY; 
SUMXXA = SUMXX; XBARA=O; 
DO I = 11 TO (2*N); 
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***; 

*** GENERATE THE Y'S ***; 
IF U{I} LT P50 THEN Y{I} = 1; ELSE Y{I} = 0; 

*** CALCULATE THE NEW LS SLOPE ***; 
SUMXA = SUMXA + X{ I}; 
SUMYA = SUMYA + (Y{I}- .5); 
SUMXYA = SUMXYA + X{I}*(Y{I}- .5); 
SUMXXA = SUMXXA + X{I}*X{I}; 
XBARA = SUMXA I I; 
BETAAN = (SUMXYA-XBARA*SUMYA) I (SUMXXA-(SUMXA**2)II); 

*** CHECK THE BOUNDS ON BETAAN (LS SLOPE) ***; 
IF BETAAN NE 0 THEN DSTAR = 1 I BETAAN; 
IF BETAAN = 0 OR DSTAR GT UB THEN DSTAR=UB; 
IF DSTAR LT 0 THEN DSTAR=O; 
IF BETAAN LT 0 THEN DSTAR=UB; 

*** GENERATE NEXT X'S ***; 
X{I + 1} = X{I} - DSTAR*(Y{I} - .5)II; 
IF X{I + 1} GT 5 THEN X{I + 1} = 5; 
IF X{I + 1} LT -5 THEN X{I + 1} = -5; 
P50 = 1 I (1 + EXP(-X{I + 1})); 

END; 
*** GENERATE FINAL ESTIMATE ***; 

XAN50F = X{2*N + 1}; 
IF BETAAN LE 0 OR (1IBETAAN) GT UB THEN BSTAR = 1IUB; 

ELSE BSTAR=BETAAN; 
XAN75F = X{2*N+1} + LOG(3)1(4*BSTAR); 
IF XAN75F GT 5 THEN XAN75F = 5; 

*** UPDATE MEAN SQUARE ERROR ***; 
IF UB = 10 THEN DO; MSEA2_1 = MSEA2_1 + XAN50F**2; 

MSA2 1 = MSA2 1 + (XAN75F- LOG(3))**2; 
END; 
IF UB = 50 THEN DO; MSEA2 2 = MSEA2_2 + XAN50F**2; 

MSA2 2 = MSA2 2 + (XAN75F- LOG(3))**2; 
END; 
IF UB = 100 THEN DO; MSEA2_3 = MSEA2_3 + XAN50F**2; 

MSA2 3 = MSA2 3 + (XAN75F- LOG(3))**2; 
END; 

END; 
*; 
*; 
*; 
**********************************************************; 
*** SAM PROCEDURE ***; 
**********************************************************; 
*** GET STARTING VALUES AND ***; 
*** RUN FOR EACH UPPER BOUND ***; 
DO UB = 10, 50, 100; 

X{11} = XL; X{12} = XU; 



ALPHA = ALPH; BETA = BET; 
P20 = 1 I (1 + EXP(-XL)); P80 = 1 I (1 + EXP(-XU)); 
DO I= 1 TO (N- 5); 
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*** GENERATE THE Y'S ***; 
IF U{10 + 2*I - 1} LT P20 THEN Y{10 + 2*I - 1} = 1; 

ELSE Y{10 + 2*I - 1} = 0; 
IF U{10 + 2*I} LT P80 THEN Y{10 + 2*I} = 1; 

ELSE Y{10 + 2*I} = O; 
*** CALCULATE THE NEW MLE'S ***; 

G1=0; G2=0; 
DO J=1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK5; 
H11 = O; H12 = O; H22 = 0; 
G1 = O; G2 = O; 
DO K=1 TO (10 + 2*I); 

Z =ALPHA+ BETA*X{K}; 
IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO CK3; END; 
PRED = EXP(Z) I (1 + EXP(Z)); 

CK3: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{K}*PRED*(1-PRED); 
H22 = H22 - X{K}*X{K}*PRED*(1-PRED); 
G1 = G1 + (Y{K}- PRED); 
G2 = G2 + (X{K}*Y{K}- X{K}*PRED); 

END; 
IF ABS((H11*H22) - (H12**2)) LT .001 THEN DO; 

DSTAR=O; DSTAR2=0; GO TO CKL3; 
END; 
DET = (H11*H22) - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
*** CHECK THE BOUNDS ON SLOPE (BETASM) ***; 
OK5: X{10+2*(I+1)-1} = (LOG(.25) - ALPHA)IBETA; 

X{10+2*(I+1)} = (LOG(4) - ALPHA)IBETA; 
DSTAR = (X{10+2*I-1} -

X{l0+2*(I+1)-1})*(10+2*I-1)I(Y{10+2*I-1} - .2); 
DSTAR2 = (X{l0+2*I} -

X{10+2*(I+1)})*(10+2*I) I (Y{10+2*I}- .8); 
IF DSTAR GT UB THEN DSTAR=UB; 
IF DSTAR LT (-UB) THEN DSTAR=(-UB); 
IF DSTAR2 GT UB THEN DSTAR=UB; 
IF DSTAR2 LT (-UB) THEN DSTAR=(-UB); 
IF BETA LT 0 THEN DO; DSTAR=UB; DSTAR2=UB; END; 

*** GENERATE NEXT X'S ***; 
CKL3: X{10+2*(I+1)-l} = X{10+2*I-1} -

(DSTARI(10+2*I-1))*(Y{10+2*I-1}-.2); 
X{10+2*(I+1)} = X{10+2*I}-

(DSTAR21(10+2*I))*(Y{10+2*I}-.8); 
IF X{10+2*(I+1)-1} GT 5 THEN X{10+2*(I+1)-1} = 5; 
IF X{10+2*(I+1)} GT 5 THEN X{10+2*(I+1)} = 5; 
IF X{10+2*(I+1)-1} LT -5 THEN X{10+2*(I+1)-1} = -5; 



IF X{10+2*(I+1)} LT -5 THEN X{10+2*(I+1)} = -5; 
P20 = 1 I (1 + EXP(-X{10 + 2*(I + 1) - 1})); 
P80 = 1 I (1 + EXP(-X{10 + 2*(I + 1)})); 

END; 
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*** CALCULATE FINAL ESTIMATE ***; 
IF (1IBETA) GT UB OR BETA LE 0 THEN BSTAR = 1IUB; 

ELSE BSTAR = BETA; 
XSMF50=-ALPHA I BETA; 
XSMF75 = XSMF50 + (LOG(3)IBSTAR); 
IF XSMF75 GT 5 THEN XSMF75 = 5; 

*** UPDATE MEAN SQUARED ERROR ***; 
IF UB = 10 THEN DO; MSESM 1 = MSESM 1 + (XSMF50**2); 

MSSM 1 = MSSM 1 + (XSMF75 - LOG(3))**2; 
END; 
IF UB =50 THEN DO; MSESM 2 = MSESM_2 + (XSMF50**2); 

MSSM 2 = MSSM 2 + (XSMF75- LOG(3))**2; 
END; 
IF UB = 100 THEN DO; MSESM_3 = MSESM_3 + (XSMF50**2); 

MSSM_3 = MSSM 3 + (XSMF75- LOG(3))**2; 
END; 

END; 
*; 
*i 
*; 
**********************************************************; 
*** WU'S PROCEDURE (2N AT ONE POINT) ***; 
**********************************************************; 
*** RUN FOR EACH UPPER BOUND ***; 
DO UB = 10, 50, 100; 

ALPHA = ALPH; BETA = BET; 
X{11} = XM; P50 = 1 I (1 + EXP(-XM)); 
DO I = 11 TO 2*N; 

*** GENERATE THE Y'S ***; 
IF U{I} LT P50 THEN Y{I} = 1; ELSE Y{I} = 0; 

*** CALCULATE THE NEW MLE'S ***; 
G1=0; G2=0; 
DO J=1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK4; 
H11 = 0; H12 = 0; H22 = 0; 
G1 = 0; G2 = 0; 
DO K=1 TO I; 

Z =ALPHA+ BETA*X{K}; 
IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO CK4; END; 

PRED = EXP(Z) I (1 + EXP(Z)); 
CK4: H11 = H11 - PRED*(1-PRED); 

H12 = H12 - X{K}*PRED*(1-PRED); 
H22 = H22 - X{K}*X{K}*PRED*(1-PRED); 
G1 = G1 + (Y{K}- PRED); 
G2 = G2 + (X{K}*Y{K}- X{K}*PRED); 

END; 
IF ABS((H11*H22) - (H12**2)) LT .001 THEN DO; 

DSTAR=O; GO TO CKL4; 
END; 
DET = (H11*H22) - (H12**2); 



HINV11 = H22 / DET; 
HINV22 = H11 / DET; 
HINV12 = -(H12 / DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
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*** CHECK THE BOUNDS ON SLOPE (BETAWU) ***; 
OK4: X{I+1} = -ALPHA/BETA; 

DSTAR = (X{I} - X{I+1})*I / (Y{I} - .5); 
IF DSTAR GT UB THEN DSTAR=UB; 
IF DSTAR LT (-UB) THEN DSTAR=(-UB); 
IF BETA LT 0 THEN DSTAR=UB; 

*** GENERATE NEXT X'S 
CKL4: X{I + 1} = X{I}- (DSTAR/I)*(Y{I}- .5); 

IF X{I+1} GT 5 THEN X{I+1} = 5; 
IF X{I+1} LT -5 THEN X{I+1} = -5; 
PSO = 1 / (1 + EXP(-X{I + 1})); 

END; 

***; 

*** GENERATE FINAL ESTIMATE ***; 
XWU2F50 = X{2*N+1}; 
IF BETA LE 0 OR (1/BETA) GT UB THEN BSTAR=1/UB; 

ELSE BSTAR=BETA; 
XWU2F75 = X{2*N+1} + (LOG(3)/BSTAR); 
IF XWU2F75 GT 5 THEN XWU2F75=5; 

*** UPDATE MEAN SQUARE ERROR ***; 
IF UB = 10 THEN DO; MSEW2_1 = MSEW2_1 + XWU2F50**2; 

MSW2 1 = MSW2 1 + (XWU2F75- LOG(3))**2; 
END; 
IF UB = 50 THEN DO; MSEW2_2 = MSEW2_2 + XWU2F50**2; 

MSW2 2 = MSW2 2 + (XWU2F75- LOG(3))**2; 
END; 
IF UB = 100 THEN DO; MSEW2_3 = MSEW2_3 + XWU2F50**2; 

MSW2 3 = MSW2 3 + (XWU2F75- LOG(3))**2; 
END; 

END; 
OK: END; 
**********************************************************; 
*** CALCULATE FINAL MSEs ***; 
**********************************************************; 
PUT'-------------------------------------------------'; 
PUT'-------------------------------------------------'; 
PUT 'DISCARDS ARE ' DISCARD1 DISCARD2 DISCARD3; 
PUT'-------------------------------------------------'; 
MSERM_1 = MSERM 1 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSERM_2 = MSERM_2 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSERM 3 = MSERM 3 / (M- DISCARD1- DISCARD2- DISCARD3); 
MSRM_1 = MSRM_1 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSRM_2 = MSRM_2 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSRM_3 = MSRM_3 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
PUT 'MSES FOR RM P=SO ARE 1 MSERM_1 MSERM_2 MSERM_3; 
PUT 'MSES FOR RM P=75 ARE ' MSRM_1 MSRM_2 MSRM_3; 
PUT'-------------------------------------------------'; 
MSEA2_1 = MSEA2_1 / (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSEA2 2 = MSEA2 2 / (M- DISCARD1- DISCARD2- DISCARD3); 



MSEA2 3 = MSEA2 3 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSA2_1 = MSA2_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSA2_2 = MSA2_2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSA2_3 = MSA2_3 I (M- DISCARD1- DISCARD2- DISCARD3); 
PUT 1 MSES FOR AN-2 P=50 ARE 1 MSEA2 1 MSEA2 2 MSEA2 3; 
PUT 1 MSES FOR AN-2 P=75 ARE 1 MSA2_l MSA2_2-MSA2_3;-
PUT 1

-------------------------------------------------
1

; 

MSEW1_1 = MSEW1_1 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSEW1_2 = MSEW1_2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSEW1 3 = MSEW1 3 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSW1_1 = MSW1_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSW1_2 = MSW1_2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSW1 3 = MSW1 3 I (M- DISCARD1- DISCARD2- DISCARD3); 
PUT 1 MSES FOR-WU1 P=50 ARE 1 MSEW1 1 MSEW1 2 MSEW1 3; 
PUT 1 MSES FOR WU1 P=75 ARE 1 MSW1_l MSW1_2-MSW1_3;-
PUT 1

-------------------------------------------------
1

; 

MSEA1_1 = MSEA1_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSEA1_2 = MSEA1_2 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSEA1 3 = MSEA1 3 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSA1 1 = MSA1 1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSA1=2 = MSA1=2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSA1_3 = MSA1_3 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
PUT 1 MSES FOR AN-1 P=50 ARE 1 MSEA1 1 MSEA1 2 MSEA1 3; 
PUT 1 MSES FOR AN-1 P=75 ARE 1 MSA1_l MSA1_2-MSA1_3;-
PUT 1

-------------------------------------------------
1

; 

MSESM_1 =MSESM_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSESM_2 =MSESM_2 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSESM 3 =MSESM 3 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSSM_1 =MSSM_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSSM_2 =MSSM_2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSSM_3 =MSSM_3 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
PUT 1 MSES FOR SM P=50 ARE 1 MSESM_1 MSESM_2 MSESM_3; 
PUT 1 MSES FOR SM P=75 ARE 1 MSSM_1 MSSM_2 MSSM_3; 
PUT 1

-------------------------------------------------
1

; 
MSEW2 1 = MSEW2_1 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSEW2_2 = MSEW2_2 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSEW2_3 = MSEW2 3 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSW2_1 = MSW2_1 I (M- DISCARD1- DISCARD2- DISCARD3); 
MSW2_2 = MSW2_2 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
MSW2_3 = MSW2_3 I (M - DISCARD1 - DISCARD2 - DISCARD3); 
PUT 1 MSES FOR WU-2 P=50 ARE 1 MSEW2_1 MSEW2_2 MSEW2_3; 
PUT 1 MSES FOR WU-2 P=75 ARE 1 MSW2_1 MSW2_2 MSW2_3; 
PUT 1

-------------------------------------------------
1

; 
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APPENDIX E 

USER PROGRAMS 

Four programs have been written to assist a researcher 

in using SAM. The two parameter legit model is used for 

G(xle). Also, (.2,.8) is chosen for (p ,p). 
1 2 

In this 

appendix, a brief description of each program along with the 

SAS codes are presented. 

INITIAL 

SAM's updating rule requires that MLEs exist. Thus, 

some procedure is needed to generate the initial design 

levels. The program INITIAL uses the Two Dimensional RM 

procedure of Moser and Fei (1989a) to calculate design 

levels until MLEs exist. The first step in this procedure 

is to observe the responses at the initial estimates of the 

th th . 20 and 80 percent1les. New design levels are then 

calculated using the updating rules of the Two Dimensional RM 

procedure. Conditions for the existence of MLEs are checked 

at each update. If the MLEs exist for the data, a message 

is produced instructing the user to switch to SAM's updating 

rules (and to the program NEXTSAM). 
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MLECHECK 

The program MLECHECK is designed for when a researcher 

already has an initial set of data, but has not used SAM. 

The program MLECHECK reads an askii data set and 

determines whether the MLEs of 8 1 and e2 exist. The user 

enters the name of the dataset (extension and filename). 

The dataset should contain three variables, the observation 

number, design level, and response, in column format. For 

example, with the data in the example of Chapter III, 

1 2.0 0 

2 4.0 0 

3 2.0 0 

4 4.5 1 

5 3.0 0 

6 4.75 0 

7 3.0 1 

8 5.0 1 

9 4.0 0 

10 5.0 1 

If the MLEs exists, then a message is produced instructing 

the user to run the program NEXTSAM, to obtain the next 

design levels. If the MLEs do not exist, design levels to 

help obtain existence are suggested. A warning is given if 
A 

the MLEs exist and the slope estimate, e , is negative. 
2 

When the program was run with the above data, a message "MLE 

exists, run NEXTSAM program" was produced on the screen. 
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NEXT SAM 

The program, NEXTSAM, calculates the design levels 

using SAM's updating rules. Prior to using NEXTSAM for the 

first time, the user should verify that MLEs exist for the 

set of data (using INITIAL or MLECHECK). The user enters 

upper and lower bounds on the design levels, as well as 

initial estimates of the 20th and 80th percentiles. The 

upper and lower bounds should be chosen such that a response 

almost always occurs at the upper bound and almost never at 

the lower bound. A graph of the estimated expectation 
A 

curve, G (x), is produced along with the design levels for 
n 

the next update. Figure 3 on page 24 is an example of the 

graph produced by NEXTSAM. 

SAMSUMM 

The final program, SAMSUMM, presents a summary of the 

study. In an askii file named by the user, the data, final 
A A 

estimates of the parameters, and L, L, ••• , 
1 2 

A 

L , with their 
9 

estimated standard errors and 95 % confidence limits, are 
A 

presented. A final graph of G (x), along with the 
n 

parameter estimates, is also produced. Figure 6 on pages 

134 and 135 presents the output of SAMSUMM for the data of 

Table 1 (on page 2 5). 

* INITIAL.SAS *. I 

***********************************************************; 
* NOTE: EXISTENCE OF MAXIMUM LIKELIHOOD ESTIMATES IS *; 
* REQUIRES IN ORDER TO USE SAM. THIS PROGRAM USES A TWO *; 
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* DIMENSIONAL ROBBINS-MONRO PROCEDURE TO GENERATE THE IN- *i 
* ITIAL DESIGN LEVELS UNTIL MLEs EXIST. ONCE EXISTENCE IS *; 
* OBTAINED, THE PROGRAM NEXTSAM.SAS CAN BE USED TO GENER- *i 
*ATE THE NEXT DESIGN LEVELS. ONCE MLEs EXIST, THEY EXIST *i 
* AT EACH FUTURE UPDATE (NO NEED TO RERUN THIS PROGRAM) *; 

* *; 
IMPORTANT: THE DATA FILE MUST BE ORDERED SO THAT THE *; 

* LAST TWO OBSERVATIONS ARE THE PREVIOUS ESTIMATES OF THE *; * 
* 20th AND 80th PERCENTILES, RESPECTIVELY. 

* 
*. , 
*. , 

***********************************************************; 
**** FILL IN THE FOLLOWING INFORMATION ****; 
**** ****i 
**** (SEE SAMHELP.DOC FOR MORE DETAILS) ****; 
***********************************************************; 
DATA INFO; 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 

* 

ENTER THE NAME OF THE FILE CONTAINING THE DATA 
(INCLUDE DIRECTORY OF FILE IE. 'A:\SAMDAT.DAT' 

FILENAME DT1 'A:\TEST2.DAT'; 

ENTER LOWER AND UPPER BOUNDS FOR THE DESIGN POINTS 
(IF A . IS ENTERED, THEN A FORMULA BASED ON L20 

AND LBO WILL BE USED) 

LG = 10; UG = 400; 

ENTER INITIAL LD20 AND LDSO ESTIMATE 

LD20EST = 60; LDSOEST = 100; 

OPTIONAL: ENTER LDSO AND SLOPE ESTIMATE (IF . IS 
ENTERED FOR THE LD20 AND LD 80 ESTIMATES) 

LDSO = .; SLP = .; 

********************************************************; 
* NO CHANGES NEEDED BEYOND THIS POINT *; 
********************************************************; 

IF LD20EST = . THEN LD20EST = LDSO - (1.3863 I SLP); 
IF LDSOEST = . THEN LDSOEST = LDSO + (1.3863 I SLP); 
SLP = (2*LOG(4)) I (LDSOEST- LD20EST); 
LD50EST=(LD20EST+LD80EST)12; 
IF LG =.THEN LG=(.5)*(LD20EST+LD80EST)-(LOG(50)/SLP); 
IF UG =.THEN UG=(.5)*(LD20EST+LD80EST)+(LOG(50)/SLP); 
CALL SYMPUT('LD20EST',LD20EST); CALL SYMPUT('LG',LG); 
CALL SYMPUT('LD80EST',LD80EST); CALL SYMPUT('UG',UG); 

DATA DAT; INFILE DT1; 
KEEP X Y; 
INPUT OBS X Y; 

PROC MEANS NOPRINT DATA=DAT N MAX MIN; 
VAR X; OUTPUT OUT=STATS N=NUM MAX=MX MIN=MN; 

DATA STATS; SET STATS; 

*i 
*i 
*i 
*i 

* i 
*; 
*i 
*i 
*; 

*; 
*; 
*i 

*i 
*i 
*i 
*i 

*. , 



LENGTH NUMC $ 10; NUMC = NUM; NUMC = LEFT(NUMC); 
NUMX = 'X 1 1 ITRIM(NUMC); NUMY = 1 Y1 1 ITRIM(NUMC); 
LNGX = LENGTH(NUMX); LNGC = LENGTH(NUMC); 
CALL SYMPUT ( I NUMX I I NUMX) ; CALL SYMPUT ( I NUMY I 'NUMY) ; 
CALL SYMPUT( 1 MX 1 ,MX); CALL SYMPUT( 1 MN',MN); 
CALL SYMPUT('NUM',NUM); FILE PRINT; 

PROC TRANSPOSE DATA=DAT OUT=TRANS; 
VAR X Y; 

DATA DATx; SET TRANS; 
ARRAY X {&NUM} Xl-&NUMX; KEEP X1-&NUMX DUM; 
IF _NAME ='X'; DUM=1; 
Xl=COL1; X2=COL2; X3=COL3; X4=COL4; X5=COL5; X6=COL6; 
X7=COL7; X8=COL8; X9=COL9; XlO=COLlO; Xll=COLll; 
X12=COL12; X13=COL13; X14=COL14; X15=COL15; X16=COL16; 
X17=COL17; X18=COL18; X19=COL19; X20=COL20; 
IF &NUM GT 20 THEN DO; 
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X21=COL21; X22=COL22; X23=COL23; X24=COL24; X25=COL25; 
X26=COL26; X27=COL27; X28=COL28; X29=COL29; X30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

X31=COL31; X32=COL32; X33=COL33; X34=COL34; X35=COL35; 
X36=COL36; X37=COL37; X38=COL38; X39=COL39; X40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

X4l=COL41; X42=COL42; X43=COL43; X44=COL44; X45=COL45; 
X46=COL46; X47=COL47; X48=COL48; X49=COL49; X50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

X51=COL51; X52=COL52; X53=COL53; X54=COL54; X55=COL55; 
X56=COL56; X57=COL57; X58=COL58; X59=COL59; X60=COL60; 

END; 
DATA DATY; SET TRANS; 

ARRAY Y {&NUM} Yl-&NUMY; KEEP Yl-&NUMY DUM; 
IF NAME = 1 Y'; DUM=1; 
Yl=COLl; Y2=COL2; Y3=COL3; Y4=COL4; Y5=COL5; Y6=COL6; 
Y7=COL7; Y8=COL8; Y9=COL9; YlO=COLlO; Y11=COL11; 
Yl2=COL12; Y13=COL13; Yl4=COL14; Y15=COL15; Y16=COL16; 
Y17=COL17; Y18=COL18; Y19=COL19; Y20=COL20; 
IF &NUM GT 20 THEN DO; 

Y2l=COL21; Y22=COL22; Y23=COL23; Y24=COL24; Y25=COL25; 
Y26=COL26; Y27=COL27; Y28=COL28; Y29=COL29; Y30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

Y31=COL31; Y32=COL32; Y33=COL33; Y34=COL34; Y35=COL35; 
Y36=COL36; Y37=COL37; Y38=COL38; Y39=COL39; Y40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

Y41=COL41; Y42=COL42; Y43=COL43; Y44=COL44; Y45=COL45; 
Y46=COL46; Y47=COL47; Y48=COL48; Y49=COL49; Y50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

Y5l=COL51; Y52=COL52; Y53=COL53; Y54=COL54; Y55=COL55; 
Y56=COL56; Y57=COL57; Y58=COL58; Y59=COL59; Y60=COL60; 

END; 
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DATA DAT; MERGE DATX DATY: 

*" I 

BY DUM: DROP DUM; 

DATA ONE; SET DAT: 
***********************************************************; 
*** INITIALIZE VARIABLES 
***********************************************************; 

N = &NUM; CHK=O; DNE=O; 
ARRAY X {&NUM} X1-&NUMX: ARRAY Y {&NUM} Y1-&NUMY; 
IF N LE 3 THEN GO TO FEI: 

ALPHA = .25; BETA = .5; 
***********************************************************; 
*** CHECK SILVAPULLES CONDITIONS 
***********************************************************; 

XOMIN = 1000; X1MIN = 1000; 
XOMAX = -1000; X1MAX = -1000; 
DO I = 1 TO N; 

IF Y{I} = 0 THEN DO; 
IF X{I} GT XOMAX THEN XOMAX = X{I}; 
IF X{I} LT XOMIN THEN XOMIN = X{I}; END; 

IF Y{I} = 1 THEN DO; 
IF X{I} GT X1MAX THEN X1MAX = X{I}; 
IF X{I} LT X1MIN THEN X1MIN = X{I}; END; 

END; 
*** CONDITION 1 ***; 

IF X1MAX GT X1MIN AND XOMIN LT XOMAX AND X1MAX GT XOMIN 
AND X1MIN LT XOMAX THEN CHK = 1; 

*** CONDITION 2 ***; 
IF XOMIN = XOMAX AND X1MIN LT XOMIN AND XOMAX LT X1MAX 

THEN CHK = 1; 
*** CONDITION 3 ***i 

IF X1MIN = X1MAX AND XOMIN LT X1MIN AND X1MAX LT XOMAX 
THEN CHK = 1; 

LENGTH TYP1 $ 20 TYP2 $ 35 TYP3 $ 40 WARN1 $ 35 WARN2 $ 
25 SUGX1C $ 15 SUGX2C $ 15 ANDM $ 3 SGXT3 $ 16; 

IF CHK = 1 THEN DO; 
***********************************************************; 
*** IF MLEs EXIST ***; 
*** RESCALE THE DATA ***; 
***********************************************************; 

*• I 

*** 
* . , 

RANG = &MX - &MN; MID = (&MX + &MN) I 2; 
DO I = 1 TO &NUM; 

X{I} = (X{I} - MID)*(8/RANG); 
END; 

CALCULATE MLE'S 

G1=0; G2=0; FLGDET = O; FLGNEG = 0; FLG=O; 
DO J = 1 TO 10; 

***i 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK1; 
H11 = O; H12 = 0; H22 = O; 
G1 = O; G2 = 0; 
DO I = 1 TO N; 

Z =ALPHA+ BETA*X{I}; 



IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO DE3; END; 
PRED = EXP(Z) / (1 + EXP(Z)); 

DE3: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{I}*PRED*(1-PRED)~ 
H22 = H22- X{I}*X{I}*PRED*(1-PRED); 
G1 = G1 + (Y{I}- PRED); 
G2 = G2 + (X{I}*Y{I}- X{I}*PRED); 

END~ 

IF (H11*H22) - (H12**2) LT .001 THEN DO; 
PUT 'DET NEAR ZERO'; DET=1; GO TO OK1; END; 

DET = (H11*H22) - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
OK1: FILE PRINT; 
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BETA=BETA*BI(&MX- &MN); ALPHA=(-ALPHAIBETA) + ((&MX + 
&MN)I2); 

*" I 

*** 
*. I 

*** 

ALPHA = -ALPHA*BETA; 

END OF CALCULATE MLE'S 

TYP1 = 'MLE EXISTS'; 
TYP2 ='RUN NEXTSAM PROGRAM'; TYP3 =' '; 
SUGX1 = .; SUGX2 = .; 
WARN1 =I '; WARN2 =I 1 ; 

LBSLP = (2.77 I (&LD80EST- &LD20EST)) I 20; 
IF BETA LE LBSLP THEN DO; 

TYP2 ='WARNING: NEGATIVE OR SMALL SLOPE'; 
FLGNEG = 1; GO TO RSC; 

END; 
IF DET = 1 THEN DO; 

TYP2 = 'WARNING: DETERMINANT NEAR ZERO'; 
FLGDET = 1; GO TO RSC; 

END; 
RETURN DATA TO ORIGINAL SCALE 

RSC: DO V=1 TO &NUM; 
X{V} = X{V}*((&MX- &MN)I8) + ((&MX + &MN) I 2); 

END; 
IF FLGNEG=1 OR FLGDET=1 THEN GO TO FEI~ 

DNE=2; GO TO SP1; END; 

***i 

***i 

ELSE DO; 
***********************************************************; 
*** IF MLEs DO NOT EXIST 
***********************************************************; 

*" I 

PUT 'MLE DOES NOT EXIST'; DNE=1; 

* CALCULATE DESIGN POINTS USING TWO-DIMENSIONAL RM PROCEDURE 
*" I 

FEI: PUT 'ENTERED FEI'; 
IF X{N} LE X{N-1} THEN DO; 

SUGX1 = .; SUGX2 =.;PUT 'ERROR IN DATA'; 



*. I 

*** 
*• I 

WARN1 ='ERROR IN ORDER OF DATA'; 
WARN2 ='ESTIMATE OF L20 >LBO'; FLG = 1; 

GO TO ERR; END; 
ANHAT = (X{N}- X{N-1}) / (.4436*N); 
SUGX1 = X{N-1}- ANHAT*(Y{N-1}- .2); 
SUGX2 = X{N} - ANHAT*(Y{N} - .8); 
IF SUGX1 LT &LG THEN SUGX1 = &LG; 
IF SUGX2 GT &UG THEN SUGX2 = &UG; 
IF N LE 3 THEN DO; 

TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 = I I; 

TYP3 = '2-DIMENSIONAL RM DESIGN LEVELS:'; 
GO TO SP1; END; 

FIND REASON FOR NONEXISTENCE ***: 

IF XOMAX = -1000 THEN DO; * NO ZERO RESPONSES *; 
*PUT 'ENTERED 1'; 

TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='ALL RESPONSES ARE ONES'; 
TYP3 = '2-DIMENSIONAL RM DESIGN LEVELS:'; 

END; 
IF X1MAX = -1000 THEN DO; * ALL ZERO RESPONSES *; 

*PUT 'ENTERED 2'; 
TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='ALL RESPONSES ARE ZEROES'; 
TYP3 = '2-DIMENSIONAL RM DESIGN LEVELS:'; 

END; 
* NO OVERLAP IN THE RESPONSES 

IF XOMAX LE X1MIN OR XOMIN GE X1MAX THEN DO; 
IF XOMAX=-1000 OR X1MAX=-1000 THEN GO TO SP1; 

*PUT 'ENTERED 3' XOMIN XOMAX X1MIN X1MAX; 
TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='NO OVERLAP IN THE RESPONSES'; 
TYP3 = '2-DIMENSIONAL RM DESIGN LEVELS:'; 

END; 
END; 
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*. I 

*** 
***: 
*** 

END: MLEs DO NOT EXIST SECTION ***; 

PREPARE MESSAGE ***; 
***; 
SP1: SUGX1 = ROUND(SUGX1 1 .01); SUGX2 = ROUND(SUGX2 1 .01); 

SUGX1C = SUGX1; SUGX2C = SUGX2 ; ANDM='AND'; 
SUGX1C = LEFT(SUGX1C); SUGX2C = LEFT(SUGX2C); 
IF DNE=2 THEN SGXT3 = 1 '; 

ELSE SGXT3 = TRIM(SUGX1C) I I' 'I IANDMI I I 'I ISUGX2C; 
ERR: IF FLG = 1 THEN DO; 

TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='UNABLE TO CALCULATE LEVELS'; 

END; 
CALL SYMPUT('TYP1',TYP1); CALL SYMPUT('TYP2',TYP2); 
CALL SYMPUT('TYP3',TYP3); CALL SYMPUT('SGXT3',SGXT3); 
CALL SYMPUT('WARN1',WARN1); CALL SYMPUT('WARN2',WARN2); 

GOPTIONS DEVICE = HERCULES; 



PROC GSLIDE; 
TITLE J=C H=.55 IN 'SAM'; 
NOTE J=L H=.35 IN I 1 ; 

NOTE J=L H=.35 IN "&TYP1"; 
NOTE J=L H=.15 IN I '; 

NOTE J=L H=.35 IN "&TYP2"; 
NOTE J=L H=.15 IN I '; 

NOTE J=L H=.35 IN "&TYP3"; 
NOTE J=L H=.15 IN I '; 

NOTE J=L H=.35 IN "&SGXT3"; 
NOTE J=L H=.15 IN I '; 

NOTE J=L H=.25 IN "&WARN1"; 
NOTE J=L H=.1 IN I '; 

NOTE J=L H=.25 IN "&WARN2"; 
RUN; QUIT; 

* MLECHECK 

* NOTE : EXISTENCE OF MAXIMUM LIKELIHOOD ESTIMATES IS 
* REQUIRED IN ORDER TO USE SAM. THIS PROGRAM CHECKS FOR 
* EXISTENCE OF MLEs. If MLEs EXIST, THEN THE PROGRAM 
* NEXTSAM.SAS CAN BE USED TO GENERATE THE NEXT DESIGN 
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*. ' 
*. ' *. ' *. ' *. ' * LEVELS. IF MLEs EXIST AT A GIVEN UPDATE THEN THEY EXIST *; 

* AT EACH FUTURE UPDATE (NO NEED TO RERUN THIS PROGRAM) . *. ' *. ' * 
***********************************************************; 
**** FILL IN THE FOLLOWING INFORMATION ****; 
**** --------------------------------- ****; 
**** (SEE SAMHELP.DOC FOR MORE DETAILS) ****; 
***********************************************************; 
DATA UNO; 
* ENTER THE NAME OF THE FILE CONTAINING THE DATA 
* (INCLUDE DIRECTORY OF FILE IE. 'A:\SAMDAT.DAT' 

* 
* 
* 

* 

* 

FILENAME DT1 'A:\TEST.DAT'; 
ENTER LOWER AND UPPER BOUND FOR THE DESIGN POINTS 
(IF A • IS ENTERED, THEN A FORMULA BASED ON L20 
AND L80 WILL BE USED) 

LG = O; UG = 150; 
ENTER INITIAL LD20 AND LD80 ESTIMATE 

LD20EST = 60; LD80EST = 100; 

********************************************************; 
* NO CHANGES NEEDED BEYOND THIS POINT *; 
********************************************************; 

SLPEST = (2*LOG(4)) / (LD80EST- LD20EST); 
IF LG = • THEN LG = (.5)*(LD20EST+LD80EST) -

(LOG(SO)/SLPEST); 
IF UG = • THEN UG = (.5)*(LD20EST+LD80EST) + 

(LOG(SO)/SLPEST); 
CALL SYMPUT('LG',LG); CALL SYMPUT('UG',UG); 

* . ' *. ' 
*. ' *. ' *. ' 
*. ' 
*. ' 



CALL SYMPUT('LD20EST',LD20EST); CALL 
SYMPUT('LD80EST',LD80EST); 

FILE PRINT; 
DATA OAT; INFILE DTl; 

KEEP X Y; 
INPUT OBS X Y; 

PROC MEANS NOPRINT DATA=DAT N MAX MIN; 
VAR X; OUTPUT OUT=STATS N=NUM MAX=MX MIN=MN; 

DATA STATS; SET STATS; 
LENGTH NUMC $ 10; NUMC = NUM; NUMC = LEFT(NUMC); 
NUMX ='X' I ITRIM(NUMC); NUMY = 'Y'I ITRIM(NUMC); 
LNGX = LENGTH(NUMX); LNGC = LENGTH(NUMC); 
CALL SYMPUT('NUMX',NUMX); CALL SYMPUT('NUMY',NUMY); 
CALL SYMPUT('MX',MX); CALL SYMPUT('MN',MN); 
CALL SYMPUT('NUM',NUM); 

PROC TRANSPOSE DATA=DAT OUT=TRANS; 
VAR X Y; 

DATA DATX; SET TRANS; 
ARRAY X {&NUM} Xl-&NUMX; KEEP Xl-&NUMX DUM; 
IF _NAME_= 'X'; DUM=l; 
Xl=COLl; X2=COL2; X3=COL3; X4=COL4; X5=COL5; X6=COL6; 
X7=COL7; X8=COL8; X9=COL9; X10=COL10; Xll=COLll; 
Xl2=COL12; Xl3=COL13; Xl4=COL14; Xl5=COL15; Xl6=COL16; 
Xl7=COL17; Xl8=COL18; X19=COL19; X20=COL20; 
IF &NUM GT 20 THEN DO; 
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X2l=COL21; X22=COL22; X23=COL23; X24=COL24; X25=COL25; 
X26=COL26; X27=COL27; X28=COL28; X29=COL29; X30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

X3l=COL3l; X32=COL32; X33=COL33; X34=COL34; X35=COL35; 
X36=COL36; X37=COL37; X38=COL38; X39=COL39; X40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

X4l=COL41; X42=COL42; X43=COL43; X44=COL44; X45=COL45; 
X46=COL46; X47=COL47; X48=COL48; X49=COL49; X50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

X5l=COL51; X52=COL52; X53=COL53; X54=COL54; X55=COL55; 
X56=COL56; X57=COL57; X58=COL58; X59=COL59; X60=COL60; 

END; 
DATA DATY; SET TRANS; 

ARRAY Y {&NUM} yl-&NUMY; KEEP Yl-&NUMY DUM; 
IF NAME = 'Y'; DUM=l; 
Yl=COLl; Y2=COL2; Y3=COL3; Y4=COL4; Y5=COL5; Y6=COL6; 
Y7=COL7; Y8=COL8; Y9=COL9; YlO=COLlO; Yll=COLll; 
Yl2=COL12; Yl3=COL13; Y14=COL14; Y15=COL15; Yl6=COL16; 
Y17=COL17; Yl8=COL18; Y19=COL19; Y20=COL20; 
IF &NUM GT 20 THEN DO; 

Y2l=COL21; Y22=COL22; Y23=COL23; Y24=COL24; Y25=COL25; 
Y26=COL26; Y27=COL27; Y28=COL28; Y29=COL29; Y30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

Y31=COL31; Y32=COL32; Y33=COL33; Y34=COL34; Y35=COL35; 
Y36=COL36; Y37=COL37; Y38=COL38; Y39=COL39; Y40=COL40; 
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END; 
IF &NUM GT 40 THEN DO; 

Y41=COL41; Y42=COL42; Y43=COL43; Y44=COL44; Y45=COL45; 
Y46=COL46; Y47=COL47; Y48=COL48; Y49=COL49; Y50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

Y51=COL51; Y52=COL52; Y53=COL53; Y54=COL54; Y55=COL55; 
Y56=COL56; Y57=COL57; Y58=COL58; Y59=COL59; Y60=COL60; 

END; 
DATA DAT; MERGE DATX DATY; 

BY DUM; DROP DUM; 
*** RESCALE THE DATA 
DATA DAT; SET DAT; 

*" ' 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
RANG= &MX - &MN; MID= (&MX + &MN) I 2; 
DO I = 1 TO &NUM; 

X{I} = (X{I}- MID)*(S/RANG); 
END; 

DATA ONE; SET DAT; 

***i 

***********************************************************; 
*** INITIALIZE VARIABLES 
***********************************************************; 

N = &NUM; CHK=O; DNE=O; 
FILE PRINT; 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
ALPHA = .25; BETA = .5; 

************************************************************ 
*** CHECK SILVAPULLES CONDITIONS 
************************************************************ 

XOMIN = 1000; X1MIN = 1000; 
XOMAX = -1000; X1MAX = -1000; 
DO I = 1 TO N; 

IF Y{I} = 0 THEN DO; 
IF X{I} GT XOMAX THEN XOMAX = X{ I}; 
IF X{I} LT XOMIN THEN XOMIN = X{ I}; END; 

IF Y{I} = 1 THEN DO; 
IF X{I} GT X1MAX THEN X1MAX = X{ I}; 
IF X{I} LT X1MIN THEN X 1M IN = X{I}; END; 

END; 
*** CONDITION 1 ***i 

IF X1MAX GT X1MIN AND XOMIN LT XOMAX AND X1MAX GT XOMIN 
AND X1MIN LT XOMAX THEN CHK = 1; 

*** CONDITION 2 ***i 
IF XOMIN = XOMAX AND X1MIN LT XOMIN AND XOMAX LT X1MAX 

THEN CHK = 1; 
*** CONDITION 3 ***; 

IF X1MIN = X1MAX AND XOMIN LT X1MIN AND X1MAX LT XOMAX 
THEN CHK = 1; 

LENGTH TYP1 $ 20 TYP2 $ 30 TYP3 $ 40 WARN1 $ 35 WARN2 $ 
25 SUGX1C $ 15 SUGX2C $ 15 ANDM $ 3; 

IF CHK = 1 THEN DO; 
***********************************************************; 
*** CALCULATE MLE'S 
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***********************************************************: 
G1=0; G2=0; 
DO J = 1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO OK1; 
H11 = O; H12 = O; H22 = O; 
G1 = O; G2 = O; 
DO I = 1 TO N; 

Z =ALPHA+ BETA*X{I}; 
IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO DE3; END; 
PRED = EXP(Z) I (1 + EXP(Z)); 

DE3: H11 = H11- PRED*(1-PRED); 
H12 = H12- X{I}*PRED*(1-PRED); 
H22 = H22- X{I}*X{I}*PRED*(1-PRED); 
G1 = G1 + (Y{I}- PRED); 
G2 = G2 + (X{I}*Y{I}- X{I}*PRED); 

END; 
IF (H11*H22) - (H12**2) LT .001 THEN DO; 

PUT 'DET NEAR ZERO'; DNE=1; GO TO OK1; END; 
DET = (H11*H22} - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1} + (HINV12*G2}); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)}; 

END; 
OK1: FILE PRINT; 

BETA=BETA*SI(&MX- &MN}; ALPHA=(-ALPHAIBETA) + ((&MX + 
&MN)I2); 

ALPHA = -ALPHA*BETA; 
*i 
***********************************************************: 
*** END OF CALCULATE MLE'S 
***********************************************************: 
*• ' TYP1 = 'MLE EXISTS'; 

TYP2 ='RUN NEXTSAM PROGRAM'; TYP3 = ' '; 
SUGX1 = .; SUGX2 = .; 
WARN1 = I '; WARN2 =' ': 
IF BETA LE 0 THEN DO; 

TYP2 ='WARNING: NEGATIVE OR ZERO SLOPE'; 
TYP3 ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 
SUGX1 = &LD20EST; SUGX2 = &LD80EST; 

END; 
IF ONE = 1 THEN DO; 

TYP2 ='WARNING: DETERMINANT NEAR ZERO'; 
TYP3 ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 
SUGX1 = &LD20EST; SUGX2 = &LD80EST; 

END; 
GO TO SP1; END; 

ELSE DO; 
PUT 'MLE DOES NOT EXIST'; DNE=1; 

*** RETURN XOMIN ETC. TO ORIGINAL SCALE ***; 
I* 

DO V=1 TO &NUM; 



*I 

*** 

X{V} = X{V}*((&MX- &MN)I8) + ((&MX + &MN) I 2); 
END; 

IF XOMIN NE 1000 THEN 
XOMIN = XOMIN*((&MX- &MN)I8) + ((&MX + &MN) I 2) ; 

IF XOMAX NE -1000 THEN 
XOMAX = XOMAX*({&MX- &MN)I8) + {{&MX + &MN) I 2) ; 

IF X1MIN NE 1000 THEN 
X1MIN = X1MIN*({&MX- &MN)I8) + {(&MX + &MN) I 2) ; 

IF X1MAX NE -1000 THEN 
X1MAX = X1MAX*((&MX- &MN)I8) + ((&MX + &MN) I 2) ; 

END - RETURN XOMIN ETC. TO ORIGINAL SCALE 
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***; 
************ ***********; 
* CALCULATE SUGGESTED DESIGN POINTS FOR WHEN NO MLE EXISTS*; 
************ ***********; 

IF XOMAX = -1000 THEN DO; * NO ZERO RESPONSES *i 
TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='ALL RESPONSES ARE ONES'; 
TYP3 ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 
SUGX1 = X1MIN- (.5)*(X1MIN- &LG); 
SUGX2 = X1MIN- {.1)*{X1MIN- &LG); 
IF X1MIN LE &LG THEN DO; 

WARN1 = 'THE LOWER BOUND MAY BE TOO LARGE'; 
WARN2 ='ENTER A NEW LOWER BOUND'; 
SUGX1 = &LG- (113)*(&LD80EST- &LD20EST); 
SUGX2 = &LG; 

END; END; 
IF X1MAX = -1000 THEN DO; * ALL ZERO RESPONSES *; 

TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='ALL RESPONSES ARE ZEROES'; 
TYP3 ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 
SUGX1 = XOMAX + (.1)*(&UG- XOMAX); 
SUGX2 = XOMAX + (112)*(&UG- XOMAX); 
IF XOMAX GE &UG THEN DO; 

WARN1 ='THE UPPER BOUND MAY BE TOO SMALL'; 
WARN2 ='ENTER A NEW UPPER BOUND'; 
SUGX1 = &UG; 
SUGX2 = &UG + (113)*(&LD80EST- &LD20EST); 

END; END; 
IF XOMAX LE X1MIN THEN DO; * NO OVERLAP IN RESPONSES 

(1s HIGHER) *i 
IF XOMAX=-1000 OR X1MAX=-1000 THEN GO TO SP1; 
SUGX1 = XOMAX + (113)*(X1MIN- XOMAX); 
SUGX2 = XOMAX + {213)*(X1MIN- XOMAX); 
IF XOMAX = X1MIN THEN DO; 

SUGX1 = XOMAX- (.1)*(&LD80EST- &LD20EST); 
SUGX2 = XOMAX + (.1)*(&LD80EST - &LD20EST); 

END; 
TYP1 = 'MLE DOES NOT EXIST'; 
TYP2 ='NO OVERLAP IN THE RESPONSES'; 
TYP3 ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 

END; 
IF XOMIN GE X1MAX THEN DO;* NO OVERLAP IN RESPONSES 

(Os HIGHER) *; 



IF XOMAX=-1000 OR X1MAX=-1000 THEN GO TO SPl; 
SUGXl = XlMAX + (1/3)*(XOMIN - XlMAX); 
SUGX2 = XlMAX + (2/3)*(XOMIN- XlMAX); 
IF XOMIN = XlMAX THEN DO; 

SUGXl = XlMAX- (.l)*(&LD80EST- &LD20EST); 
SUGX2 = XlMAX + (.l)*(&LD80EST- &LD20EST); 

END; 
TYPl = 'MLE DOES NOT EXIST'; 
TYP2 ='NO OVERLAP IN THE RESPONSES'; 
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TYPJ ='WE RECOMMEND THE FOLLOWING DESIGN POINTS'; 
END; 

END; 
SPl: SUGXl = ROUND(SUGXl,.Ol); SUGX2 = ROUND(SUGX2,.01); 

SUGX1C = SUGXl; SUGX2C = SUGX2 ; ANDM='AND'; 
SUGXlC = LEFT(SUGXlC); SUGX2C = LEFT(SUGX2C); 
SGXTJ = TRIM(SUGXlC) I I' 'I IANDMI I' 'I ISUGX2C; 
IF DNE NE 1 AND BETA GT 0 THEN SGXTJ =' '; 
CALL SYMPUT('TYPl',TYPl); CALL SYMPUT('TYP2',TYP2); 
CALL SYMPUT('TYPJ',TYPJ); CALL SYMPUT('SGXTJ',SGXTJ); 
CALL SYMPUT('WARN1',WARN1); CALL SYMPUT('WARN2',WARN2); 

GOPTIONS DEVICE = HERCULES; 
PROC GSLIDE; 

TITLE J=C H=.55 IN 'SAM'; 
NOTE J=L H=.35 IN I '; 

NOTE J=L H=.35 IN 11 &TYP1 11 ; 

NOTE J=L H=.15 IN I '; 

NOTE J=L H=.35 IN 11 &TYP2"; 
NOTE J=L H=.15 IN I '; 

NOTE J=L H=.35 IN 11 &TYP3 11 ; 

NOTE J=L H=.15 IN ' '; 
NOTE J=L H=.35 IN 11 &SGXT3 11 ; 

NOTE J=L H=.15 IN I '; 

NOTE J=L H=.25 IN 11 &WARN1 11 ; 

NOTE J=L H=.l IN I '; 

NOTE J=L H=.25 IN 11 &WARN2 11 ; 

RUN; QUIT; 

* NEXT SAM 

* NOTE: THIS PROGRAM GENERATES THE NEXT DESIGN POINTS 
* USING SAM GIVEN A SET OF DATA FOR WHICH MAXIMUM 

*. , 

*. , 
*. , 

* LIKELIHOOD ESTIMATES EXIST. THE PROGRAM MLECHECK.SAS *; 
* SHOULD BE RUN TO CHECK FOR MLEs BEFORE USING THIS 
* PROGRAM. 

* 
DATA UNO; 

*. , 
*. , 
*. , 

********************************************************: 
* FILL IN THE FOLLOWING INFORMATION *; 
********************************************************: 
* ENTER NAME OF FILE CONTAINING THE DATA *: 
* (INCLUDE PATH NAME ie. 'C:\SAMDAT.DAT') *: 



filename dat1 1 A:\TEST3.DAT 1 ; 

ENTER LOWER AND UPPER BOUND FOR THE DESIGN POINTS *. , * 
* 
* 

(WE SUGGEST A FORMULA BASED ON L20 LBO) *; 
(THESE WILL BE USED IF YOU LEAVE THE SPACES BLANK) *; 

LG = O; UG = 300; 

* 

* 
* 

ENTER LD20 AND LDSO ESTIMATE 
LD20EST = 150; LDSOEST = 200; 

ARE THE LAST TWO POINTS ESTIMATES GENERATED BY SAM 
(ENTER 1 SAM HAS BEEN PREVIOUSLY RUN, 0 OTHERWISE 

FRST = 0; 

*. , 

*. , 
*. , 

********************************************************; 
* NO CHANGES NEEDED BEYOND THIS POINT *; 
********************************************************; 
CALL SYMPUT('FRST',FRST); CALL SYMPUT('LG',LG): 
CALL SYMPUT( 1 UG',UG); CALL SYMPUT('LD20EST',LD20EST); 
CALL SYMPUT('LD80EST',LD80EST); 
DATA OAT; INFILE DATl; KEEP X Y; 

INPUT OBS X Y; 
PROC MEANS NOPRINT DATA=DAT N MAX MIN; 

VAR X; OUTPUT OUT=STATS N=NUM MAX=MX MIN=MN; 
DATA STATS; SET STATS; 

LENGTH NUMC $8; NUMC = NUM; NUMC = LEFT(NUMC); 
NUMX ='X' I ITRIM(NUMC); NUMY = 'Y'I ITRIM(NUMC); 
CALL SYMPUT ( I NUMX I , NUMX) ; CALL SYMPUT ( I NUMY I , NUMY) ; 
CALL SYMPUT ( 'MX' ,MX) ; CALL SYMPUT ( 'MN' ,MN) ; 
CALL SYMPUT( 'NUM' ,NUM); 

PROC TRANSPOSE DATA=DAT OUT=TRANS; 
VAR X Y; 

DATA DATX; SET TRANS; 
ARRAY X {&NUM} X1-&NUMX; KEEP X1-&NUMX DUM; 
IF NAME = 'X'; DUM=1; 
X1=COL1; X2=COL2; X3=COL3; X4=COL4; X5=COL5; X6=COL6; 
X7=COL7; X8=COL8; X9=COL9; X10=COL10; X11=COL11; 
X12=COL12; X13=COL13; X14=COL14; X15=COL15; X16=COL16; 
X17=COL17; X18=COL18; 
IF &NUM GT 18 THEN DO; 
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X19=COL19; X20=COL20; X21=COL21; X22=COL22; X23=COL23; 
X24=COL24; X25=COL25; X26=COL26; X27=COL27; X28=COL28; 
X29=COL29; X30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

X31=COL31; X32=COL32; X33=COL33; X34=COL34; X35=COL35; 
X36=COL36; X37=COL37; X38=COL38; X39=COL39; X40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

X41=COL41; X42=COL42; X43=COL43; X44=COL44; X45=COL45; 
X46=COL46; X47=COL47; X48=COL48; X49=COL49; X50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

X51=COL51; X52=COL52; X53=COL53; X54=COL54; X55=COL55; 
X56=COL56; X57=COL57; X58=COL58; X59=COL59; X60=COL60; 

END; 
DATA DATY; SET TRANS; 

ARRAY Y {&NUM} Y1-&NUMY; KEEP Y1-&NUMY DUM; 



IF _NAME_= 'Y'; DUM=l; 
Yl=COLl; Y2=COL2; Y3=COL3; Y4=COL4; Y5=COL5; Y6=COL6; 
Y7=COL7; Y8=COL8; Y9=COL9; YlO=COLlO; Yll=COL11: 
Y12=COL12; Y13=COL13; Y14=COL14; Y15=COL15; Y16=COL16; 
Y17=COL17; Y18=COL18; 
IF &NUM GT 18 THEN DO: 
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Y19=COL19; Y20=COL20; Y21=COL21; Y22=COL22; Y23=COL23; 
Y24=COL24: Y25=COL25: Y26=COL26: Y27=COL27; Y28=COL28; 
Y29=COL29; Y30=COL30; 

END; 
IF &NUM GT 30 THEN DO: 

Y31=COL31; Y32=COL32; Y33=COL33; Y34=COL34; Y35=COL35; 
Y36=COL36: Y37=COL37; Y38=COL38; Y39=COL39: Y40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

Y41=COL41; Y42=COL42; Y43=COL43; Y44=COL44; Y45=COL45; 
Y46=COL46; Y47=COL47; Y48=COL48; Y49=COL49; Y50=COL50; 

END: 
IF &NUM GT 50 THEN DO; 

Y51=COL51; Y52=COL52; Y53=COL53; Y54=COL54; Y55=COL55; 
Y56=COL56; Y57=COL57; Y58=COL58; Y59=COL59; Y60=COL60; 

END; 
DATA OAT MERGE DATX DATY; 

BY DUM; DROP DUM; 
*** RESCALE THE DATA ***; 
DATA OAT; SET OAT; 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
RANG= &MX - &MN; MID = (&MX + &MN) I 2; 
DO I = 1 TO &NUM; 

X{I} = (X{I}- MID)*(8 I RANG); 
END; 

*** 
DATA ONE; SET OAT; 

***i 

********************************************************** 
*** INITIALIZE VARIABLES 
********************************************************** 
****i 

N = &NUM; CHK=O; DNE=O; FILE PRINT; 
UB=50*((&LD80EST- &LD20EST)I2.77)*(8I(&MX- &MN)); 
SLPBD = (2.77 I (&LD80EST- &LD20EST)) I 25; 
ARRAY X {&NUM} Xl-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 

ALPHA = .25; BETA = .5; 
********************************************************** 
***i 
*** CHECK SILVAPULLE'S CONDITIONS 
***; 
********************************************************** 
***i 

XOMIN = 50; X1MIN = 50: 
XOMAX = -50; X1MAX = -50; 
DO I = 1 TO N: 

IF Y{I} = 0 THEN DO; 
IF X{I} GT XOMAX THEN XOMAX = X{I}; 
IF X{I} LT XOMIN THEN XOMIN = X{I}; END; 



IF Y{I} = 1 THEN DO; 
IF X{I} GT X1MAX THEN X1MAX = X{I}; 
IF X{I} LT X1MIN THEN X1MIN = X{I}; END; 

END; 
*** CONDITION 1 
***i 

IF X1MAX GT X1MIN AND XOMIN LT XOMAX AND X1MAX GT 
XOMIN AND 

X1MIN LT XOMAX THEN CHK = 1; 
*** CONDITION 2 
***i 
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IF XOMIN = XOMAX AND X1MIN LT XOMIN AND XOMAX LT X1MAX 
THEN CHK = 1; 

*** CONDITION 3 
***i 

IF X1MIN = X1MAX AND XOMIN LT X1MIN AND X1MAX LT XOMAX 
THEN CHK = 1; 

IF CHK = 0 THEN DO; 
PUT 'MLE DOES NOT EXIST'; DNE=1; 

* ENDSAS; GO TO OK2; 
END; 

********************************************************** 
***i 
*** CALCULATE MLE'S 
***i 
********************************************************** 
***i 

OK1; 

G1=0; G2=0; 
DO J = 1 TO 10; 

IF (G1**2 + G2**2) LT .0001 AND J NE 1 THEN GO TO 

H11 = 0; H12 = 0; H22 = O; 
G1 = 0; G2 = 0; 
DO I = 1 TO N; 

Z =ALPHA+ BETA*X{I}; 
IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO DE3; END; 
FRED= EXP(Z) / (1 + EXP(Z)); 

DE3: H11 = H11 - PRED*(1-PRED); 

*** 
***; 

H12 = H12- X{I}*PRED*(1-PRED); 
H22 = H22- X{I}*X{I}*PRED*(1-PRED); 
G1 = G1 + (Y{I} - PRED); 
G2 = G2 + (X{I}*Y{I}- X{I}*PRED); 

END; 
IF (H11*H22) - (H12**2) LT .001 THEN DO; 

PUT 'DET NEAR ZERO'; DNE=1; GO TO OK; END; 
DET = (H11*H22) - (H12**2); 
HINV11 = H22 I DET; 
HINV22 = H11 I DET; 
HINV12 = -(H12 I DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
RESCALE THE DATA BACK TO NORMAL 



OK1: BETA=BETA*8I(&MX- &MN) ~ ALPHA=(-ALPHA I BETA)+((&MX 
+ &MN)I2); 

ALPHA = -ALPHA*BETA; 
DO V = 1 TO &NUM; 

X{V} = X{V}*((&MX- &MN)I8) + ((&MX + &MN)I2); 
END; 

* USE FRST TO DECIDE HOW TO CALCULATE NEXT DESIGN POINTS 
*" ' * IE. USE DSTAR OR JUST THE MLES WITH NO STEP SIZE BOUND 
*" ' 
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********************************************************** 
***; 
*** 
*** 

CALCULATE STARTING VALUES 
NOT USING STEP SIZE BOUNDS 

***~ 
********************************************************** 
***; 

IF &FRST=O THEN DO; 
IF BETA LE SLPBD THEN BETA = SLPBD~ 

* IF BETA GT &UBBETA THEN BETA = &UBBETA~ 
XSMF50=-ALPHA I BETA; 
XSMF80 = XSMF50 + (LOG(4)IBETA); 
XSMF20 = XSMF50- (LOG(4)IBETA); 
IF XSMF80 GT &UG THEN XSMF80 = &UG; 
IF XSMF20 LT &LG THEN XSMF20 = &LG; 
IF XSMF50 GT &UG THEN XSMF50=&UG; IF XSMF50 LT &LG THEN 

XSMF50=&LG; 
GO TO OK; 

END; 
********************************************************** 
***; 
*** USING STEP SIZE BOUNDS 
***; 
********************************************************** 
***~ 

IF &FRST=1 THEN DO; 
IF BETA LE SLPBD THEN BETA = SLPBD; 

* IF BETA GT &UBBETA THEN BETA = &UBBETA; 
XSMF20 = (LOG(.25) - ALPHA)IBETA; 
XSMF80 = (LOG(4) - ALPHA)IBETA; 

DSTAR=(X{N-1} - XSMF20)*NI(Y{N-1} - .2); 
DSTAR2 = (X{N} - XSMF80)*N I (Y{N} - .8); 

IF DSTAR GT UB THEN DSTAR=UB; 
IF DSTAR LT (-UB) THEN DSTAR=-UB; 
IF DSTAR2 GT UB THEN DSTAR=UB; 
IF DSTAR2 LT (-UB) THEN DSTAR=-UB; 
IF BETA LT 0 THEN DO~ DSTAR=UB;DSTAR2=UB; END; 

********************************************************** 
***; 
*** GENERATE NEXT X'S 
***; 
********************************************************** 
***i 

XSMF20 = X{N-1}-(DSTARIN)*(Y{N-1}-.2)~ 



XSMF80 = X{N}-(DSTAR2/N)*(Y{N}-.8); 
XSMF50 = -ALPHA/BETA; 
IF XSMF20 GT &UG THEN 
IF XSMF80 GT &UG THEN 
IF XSMF20 LT &LG THEN 
IF XSMF80 LT &LG THEN 

END; 

XSMF20 
XSMF80 
XSMF20 
XSMF80 

= &UG; 
= &UG; 
= &LG; 
= &LG; 

OK: R1 = ROUND(XSMF50,.01); R2 = ROUND(XSMF20,.01); 
R3 = ROUND(XSMF80,.01); ALPHAN =-ALPHA/ BETA; 
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LG2 = ALPHAN- (LOG(75) /BETA); UG2 = ALPHAN + (LOG(75) / 
BETA); 
BYN = (UG2 - LG2) / 300; OFS = (UG2 - LG2) / 75; 
CALL SYMPUT('BYN',BYN); CALL SYMPUT('OFS',OFS); 
CALL SYMPUT('L50',XSMF50); CALL SYMPUT('L50RND',R1); 
CALL SYMPUT('LG2',LG2); CALL SYMPUT('UG2',UG2); 
CALL SYMPUT('L20',XSMF20); CALL SYMPUT('L80',XSMF80); 
CALL SYMPUT('L20RND',R2); CALL SYMPUT('L80RND',R3); 
CALL SYMPUT('ALPHAN',ALPHAN); CALL SYMPUT('BETA',BETA); 
OK2: CALL SYMPUT('DNE',DNE); 
* PUT 'ALPHA BETA L50 AND NEXT DESIGN POINTS ARE 'ALPHA 

BETA XSMF50 XSMF20 XSMF80; 
*: 
*i 

GOPTIONS DEVICE = HERCULES; 
DATA BOX; 

LENGTH FUNCTION$ 8.; XSYS='2'; YSYS='2'; 
FUNCTION= 'MOVE'; X=&L20; Y=O; OUTPUT; 
FUNCTION= 'DRAW'; X=&L20; Y=.2; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION= 'MOVE'; X=&LG2; Y=.2; OUTPUT; 
FUNCTION= 'DRAW'; X=&L20; Y=.2; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION= 'MOVE'; X=&LBO; Y=O; OUTPUT; 
FUNCTION= 'DRAW'; X=&LBO; Y=.8; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION= 'MOVE'; X=&LG2; Y=.8; OUTPUT; 
FUNCTION= 'DRAW'; X=&LBO; Y=.B; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION 'MOVE'; X=(&L80 + &OFS); Y=.5; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= 'NEXT DESIGN POINTS:'; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L80 + &OFS); Y=.375; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= "&L20RND"; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L80 + &OFS); Y=.25; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= "&LBORND"; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L50- &OFS); Y=.7; OUTPUT; 
FUNCTION= 'LABEL'; SIZE=1.5; POSITION= '4'; 

TEXT= 'LD50 ESTIMATE'; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L50- &OFS); Y=.575; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION= '4'; 

TEXT= "&L50RND"; COLOR='BLUE'; OUTPUT; 
DATA POINTS; 
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DO X=&LG2 TO &UG2 BY &BYN; LOGIT=1/(1 + 
EXP(-&BETA*(X-&ALPHAN))); 

OUTPUT; END; 
PROC GPLOT DATA=POINTS; 

TITLE1 H=2.75 F=ITALIC J=C U=1 'SAM'; 
AXIS1 LABEL= (H=.2 F=DUPLEX '') 

ORDER=O TO 1 BY .2 VALUE=(T=1 H=.1 ' 1 H=1.7 T=2 
'2' T=3 H=.1 I I T=4 H=.1 I I H=1.7 T=5 '.8' 
T=6 H=. 1 I I ) ; 

AXIS2 LABEL= (H=1 f=DUPLEX 'X'); 
SYMBOL C=R !=JOIN V=NONE; 
PLOT LOGIT*X / VAXIS=AXIS1 HAXIS=AXIS2 ANNOTATE=BOX; 

RUN; QUIT; 

* SAMSUMM *. I 

***********************************************************; 
*** ENTER THE FOLLOWING INFORMATION ****; 
*** ****; 
* ENTER THE NAME OF THE DATASET CONTAINING THE 
* OBSERVATIONS IN QUOTES (INCLUDE THE PATH AND FILENAME 
* IE. 'A:\SAMDAT.DAT') 

FILENAME DAT1 'A:TEST3.DAT'; 
* ENTER THE NAME OF THE OUTPUT FILE (IT WILL CONTAIN THE 
* SUMMARY STATSTICS) USE THE SAME FORMAT AS ABOVE 

FILENAME SUMOUT 'A:SUMOUT'; 

*. I 

*. I 

*. , 

*. , 
*. , 

* *; 
***********************************************************; 
*** NO CHANGES NEEDED BEYOND THIS POINT ***; 
***********************************************************; 
* *; 
DATA DAT; INFILE DAT1; 

KEEP X Y; 
INPUT OBS X Y; 

PROC MEANS NOPRINT DATA=DAT N MAX MIN; 
VAR X; OUTPUT OUT=STATS N=NUM MAX=MX MIN=MN; 

DATA STATS; SET STATS; 
LENGTH NUMC $ 8; NUMC = NUM; NUMC = LEFT(NUMC); 
NUMX ='X' I ITRIM(NUMC); NUMY = 'Y'I ITRIM(NUMC); 
CALL SYMPUT('NUMX',NUMX); CALL SYMPUT('NUMY',NUMY); 
CALL SYMPUT('MX',MX); CALL SYMPUT('MN',MN); 
CALL SYMPUT( 'NUM' ,NUM); 

PROC TRANSPOSE DATA=DAT OUT=TRANS; 
VAR X Y; 

DATA DATX; SET TRANS; 
ARRAY X {&NUM} X1-&NUMX; KEEP X1-&NUMX DUM; 
IF NAME ='X'; DUM=1; 
X1=COL1; X2=COL2; X3=COL3; X4=COL4; X5=COL5; X6=COL6; 
X7=COL7; X8=COL8; X9=COL9; X10=COL10; X11=COL11; 
X12=COL12; X13=COL13; X14=COL14; X15=COL15; X16=COL16; 
X17=COL17; X18=COL18; X19=COL19; X20=COL20; X21=COL21; 



X22=COL22; X23=COL23; X24=COL24; 
IF &NUM GT 20 THEN DO; 
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X21=COL21; X22=COL22; X23=COL23; X24=COL24; X25=COL25; 
X26=COL26; X27=COL27; X28=COL28; X29=COL29; X30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

X31=COL31; X32=COL32; X33=COL33; X34=COL34; X35=COL35; 
X36=COL36; X37=COL37; X38=COL38; X39=COL39; X40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

X41=COL41; X42=COL42; X43=COL43; X44=COL44; X45=COL45; 
X46=COL46; X47=COL47; X48=COL48; X49=COL49; X50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

X51=COL51; X52=COL52; X53=COL53; X54=COL54; X55=COL55; 
X56=COL56; X57=COL57; X58=COL58; X59=COL59; X60=COL60; 

END; 
DATA DATY; SET TRANS; 

ARRAY Y {&NUM} Y1-&NUMY; KEEP Y1-&NUMY DUM; 
IF NAME = 'Y'; DUM=1; 
Y1=COL1; Y2=COL2; Y3=COL3; Y4=COL4; Y5=COL5; Y6=COL6; 
Y7=COL7; Y8=COL8; Y9=COL9; Y10=COL10; Y11=COL11; 
Y12=COL12; Y13=COL13; Y14=COL14; Y15=COL15; Y16=COL16; 
Y17=COL17; Y18=COL18; Y19=COL19; Y20=COL20; 
IF &NUM GT 20 THEN DO; 

Y21=COL21; Y22=COL22; Y23=COL23; Y24=COL24; Y25=COL25; 
Y26=COL26; Y27=COL27; Y28=COL28; Y29=COL29; Y30=COL30; 

END; 
IF &NUM GT 30 THEN DO; 

Y31=COL31; Y32=COL32; Y33=COL33; Y34=COL34; Y35=COL35; 
Y36=COL36; Y37=COL37; Y38=COL38; Y39=COL39; Y40=COL40; 

END; 
IF &NUM GT 40 THEN DO; 

Y41=COL41; Y42=COL42; Y43=COL43; Y44=COL44; Y45=COL45; 
Y46=COL46; Y47=COL47; Y48=COL48; Y49=COL49; Y50=COL50; 

END; 
IF &NUM GT 50 THEN DO; 

Y51=COL51; Y52=COL52; Y53=COL53; Y54=COL54; Y55=COL55; 
Y56=COL56; Y57=COL57; Y58=COL58; Y59=COL59; Y60=COL60; 

END; 
DATA DAT; MERGE DATX DATY; 

BY DUM; DROP DUM; 
PROC PRINT DATA=DAT; TITLE 'TRANSPOSED DATASET'; 
*** RESCALE THE DATA 
***i 
DATA DAT; SET DAT; 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
RANG = &MX - &MN; MID = (&MX + &MN) I 2; 
DO I = 1 TO &NUM; 

X{I} = (X{I} - MID)*(8/RANG); 
END; 

PROC PRINT DATA=DAT; TITLE 'RESCALED DATASET'; 
DATA ONE; SET DAT; 
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***********************************************************; 
*** INITIALIZE VARIABLES 
***********************************************************; 

N = &NUM; CHK=O; DNE=O; 
FILE PRINT; 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
ALPHA = .25; BETA = .5; 

***********************************************************; 
*** CHECK SILVAPULLES CONDITIONS 
***********************************************************; 

XOMIN = 50; X1MIN = 50; 
XOMAX = -50; X1MAX = -50; 
DO I = 1 TO N; 

IF Y{I} = 0 THEN DO; 
IF X{I} GT XOMAX THEN XOMAX = X{I}; 
IF X{I} LT XOMIN THEN XOMIN = X{I}; END; 

IF Y{I} = 1 THEN DO; 
IF X{I} GT X1MAX THEN X1MAX = X{I}; 
IF X{I} LT X1MIN THEN X1MIN = X{I}; END; 

END; 
*** CONDITION 1 ***; 

IF X1MAX GT X1MIN AND XOMIN LT XOMAX AND X1MAX GT XOMIN 
~D 

X1MIN LT XOMAX THEN CHK = 1; 
*** CONDITION 2 ***i 

IF XOMIN = XOMAX ~D X1MIN LT XOMIN ~D XOMAX LT X1MAX 
THEN CHK = 1; 

*** CONDITION 3 ***i 
IF X1MIN = X1MAX AND XOMIN LT X1MIN ~D X1MAX LT XOMAX 

THEN CHK = 1; 
IF CHK = 1 THEN GO TO SP1; 

PUT 'MLE DOES NOT EXIST'; DNE=1; 
CALL SYMPUT{'DNE',DNE); GO TO OK; 

***********************************************************; 
*** CALCULATE MLE'S 
***********************************************************; 
SP1: G1=0; G2=0; 

DO J = 1 TO 10; 
IF (G1**2 + G2**2) LT .0001 ~D J NE 1 THEN GO TO OK1; 
H11 = 0; H12 = O; H22 = 0; 
G1 = 0; G2 = O; 
DO I = 1 TO N; 

Z =ALPHA+ BETA*X{I}; 
IF ABS(Z) GT 15 THEN DO; PRED=1; GO TO DE3; END; 
PRED = EXP(Z) / (1 + EXP(Z)); 

DE3: H11 = H11- PRED*(1-PRED); 
H12 = H12 - X{I}*PRED*(1-PRED); 
H22 = H22- X{I}*X{I}*PRED*(1-PRED); 
G1 = G1 + (Y{I}- PRED); 
G2 = G2 + (X{I}*Y{I}- X{I}*PRED); 

END; 
IF (H11*H22) - (H12**2) LT .001 THEN DO; 

PUT 'DET NEAR ZERO'; DNE=1; GO TO OK; END; 
DET = (H11*H22) - (H12**2); 



HINV11 = H22 / DET; 
HINV22 = H11 / DET; 
HINV12 = -(H12 / DET); 
ALPHA= ALPHA- ((HINV11*G1) + (HINV12*G2)); 
BETA =BETA - ((HINV12*G1) + (HINV22*G2)); 

END; 
OK1: FILE PRINT; 
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*** RESCALE DATA AND ESTIMATES TO NORMAL ***; 
BETA= BETA*8/(&MX- &MN); ALPHA= (-ALPHA/BETA) + 

((&MX + &MN)/2); 
ALPHA = -ALPHA*BETA; 
DO V=1 TO &NUM; 

X{V} = X{V}*((&MX- &MN)/8) + ((&MX + &MN) I 2); 
END; 
ALPHAN =-ALPHA/BETA; CALL SYMPUT('ALPHAN',ALPHAN); 
LG2 = ALPHAN- (LOG(75)/BETA); UG2 = ALPHAN + 

(LOG(75)/BETA); 
BYN = (UG2-LG2)/300; OFS = (UG2-LG2)/75; 
CALL SYMPUT('BYN',BYN); CALL SYMPUT('OFS',OFS); 
CALL SYMPUT('ALPHA',ALPHA); CALL SYMPUT('BETA',BETA); 
CALL SYMPUT('LG2',LG2); CALL SYMPUT('UG2',UG2); 
SYMPUT('BETAR',BETAR); 

OK: CALL SYMPUT('DNE',DNE); 
*: 
*: 
DATA TWO; SET ONE; 

ARRAY X {&NUM} X1-&NUMX; ARRAY Y {&NUM} Y1-&NUMY; 
LENGTH ALPHAC $ 10 BETAC $ 10; 
ALPHA= ROUND(&ALPHA,.001); BETA= ROUND(&BETA,.001); 

FILE PRINT; PUT 'ALPHA AND BETA ARE ' ALPHA BETA; 
FILE SUMOUT; NUM = &NUM; 
ALPHAC = ALPHA; BETAC = BETA; 
ALPHAC = LEFT(ALPHAC); BETAC = LEFT(BETAC); 

**** PRINT DATASET *****; 
PUT @30 'DESIGN POINTS' @48 'RESPONSE' OVERPRINT 

@30 I I @48 I 1 ; 

PUT ; 
DO J=1 TO NUM; 

PUT @32 X{J} 6.2 @50 Y{J} 2.; 
END; 

**** CALCULATE ESTIMATES AND STANDARD ERRORS *****; 
SUM1=0; SUM2=0; 
DO I=1 TO NUM; 

PI= (1 + EXP(-&BETA*(X{I}- &ALPHAN)))**(-1); 
SUM1 = SUM1 + PI*(1- PI); 
SUM2 = SUM2 + (X{I}**2)*PI*(1 - PI); 

END; 
SEALPHA = SQRT(1 / (n*SUM1)); SEBETA = SQRT(1 / (n*SUM2)); 
PUT I '; 

PUT @30 'ALPHA= I ALPHA 6.3 I BETA = I BETA 6.3; 
PUT @30 'WITH STANDARD ERRORS OF ' SEALPHA 8.3 SEBETA 8.3; 
PUT I '; 

PUT @16 'PERCENTILE' @30 'ESTIMATE' @40 'S.E.' @50 'LOWER 
95%' @60 'UPPER 95%' OVERPRINT @16 I I @30 



1 ________ 1 @40 I I @50 I I ---------
@60 I I; PUT I I; 

DO PS = .1 TO .9 BY .1; 
LPS = &ALPHAN- (LOG((1-PS)IPS)I&BETA); 
C = LOG(PSI(1-PS)) I LOG(114); 
TERM1 = 1 I (.16*&NUM*(&BETA**2)); 
VARLPS = (TERM114)*((1+C)**2 + (1-C)**2); 
SELPS = SQRT(VARLPS); 
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* BUILD MINI T-TABLE TO CALCULATE THE APPROPRIATE T-VALUE *; 
IF NUM LE 8 THEN TTAB = 2.5; 
IF NUM GT 8 AND NUM LE 11 THEN TTAB = 2.228; 
IF NUM GT 11 AND NUM LE 14 THEN TTAB = 2.145; 
IF NUM GT 14 AND NUM LE 17 THEN TTAB = 2.120; 
IF NUM GT 17 AND NUM LE 20 THEN TTAB = 2.093; 
IF NUM GT 20 AND NUM LE 25 THEN TTAB = 2.069; 
IF NUM GT 25 AND NUM LE 30 THEN TTAB = 2.048; 
IF NUM GT 30 AND NUM LE 40 THEN TTAB = 2.031; 
IF NUM GT 40 AND NUM LE 60 THEN TTAB = 2.010; 
IF NUM GT 60 AND NUM LE 120 THEN TTAB = 1.99; 
IF NUM GT 120 THEN TTAB = 1.96; 

* END MINI T-TABLE (t .025 one sided values) * . I 

LCL = LPS - TTAB*SELPS; UCL = LPS + TTAB*SELPS; 
IF LCL LT 0 THEN LCL=O; 
PUT @18 PS @30 LPS 6.2 @38 SELPS 6.2 @50 LCL 6.2 
@60 UCL 6.2; PUT ; 

END; 
L80 = &ALPHAN + (LOG(4)I&BETA); L50RND = ROUND(&ALPHAN,.01); 
CALL SYMPUT( 1 ALPHAC 1 ,ALPHAC); CALL SYMPUT( 1 BETAC',BETAC); 
CALL SYMPUT( 1 L80 1 ,L80); CALL SYMPUT( 1 L50RND 1 ,L50RND); 
*i 
*i 
GOPTIONS DEVICE = HERCULES; 
DATA BOX; 

LENGTH FUNCTION$ 8.; XSYS='2'; YSYS= 1 2 1 ; 

FUNCTION= 'MOVE'; X=&ALPHAN; Y=O; OUTPUT; 
FUNCTION= 'DRAW'; X=&ALPHAN; Y=.5; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION= 'MOVE'; X=&LG2; Y=.5; OUTPUT; 
FUNCTION= 'DRAW'; X=&ALPHAN; Y=.5; COLOR='BLUE'; LINE=20; 

OUTPUT; 
FUNCTION= 'MOVE'; X=(&L80 + &OFS); Y=.5; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= 'FINAL ESTIMATES:'; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L80 + &OFS); Y=.375; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= "ALPHA= &ALPHAC"; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&L80 + &OFS); Y=.25; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION='6'; 

TEXT= "BETA= &BETAC"; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&ALPHAN- &OFS); Y=.7; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION= '4'; 

TEXT= 'LD50 ESTIMATE'; COLOR='BLUE'; OUTPUT; 
FUNCTION= 'MOVE'; X=(&ALPHAN- &OFS); Y=.575; OUTPUT; 
FUNCTION= 'LABEL'; SIZE= 1.5; POSITION= '4'; 



TEXT= 11 &L50RND"; COLOR='BLUE'; OUTPUT; 
DATA POINTS; 

DO X=&LG2 TO &UG2 BY &BYN; LOGIT = 1/(1 + 
EXP(-&BETA*(X-&ALPHAN))); OUTPUT; 

END; 
PROC GPLOT DATA=POINTS; 

TITLEl H=2.5 F=ITALIC J=C U=l 'SAM'; 
AXIS LABEL= (H=.2 F=DUPLEX ' ') 
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ORDER=O TO 1 BY .2 VALUE= (T=l H=.l ' 'H=1.7 T=2 '.2' 
T=3 H=.l ' 'T=4 H=.l ' 'H=1.7 T=5 '.8' T=6 
H= .1 ' I) ; 

AXIS2 LABEL= (H=l F=DUPLEX 'X'); 
SYMBOL C=R I=JOIN V=NONE; 
PLOT LOGIT*X / VAXIS=AXISl HAXIS=AXIS2 ANNOTATE=BOX; 

RUN;QUIT; 
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.B 

.6 
• <4.14 

FINAL PARAMETER 

ESTIMA TE.S: 
.... 

ALPHA • -4.15 

BETA • 1.003 
.2 

1 2 3 6 7 

X 

Figure 6. SAMSUMM Output 



DESIGN POINTS 

2.00 
4.00 
2.00 
4.50 
3.00 
4.75 
3.00 
5.00 
4.00 
5.00 
3.04 
5.46 
2.35 
5.32 
2.62 
5.06 
2.79 
4.91 
2.92 
5.33 
3.04 
5.20 
2.60 
5.70 

ALPHA = -4.150 

PERCENTILE ESTIMATE 

10 1.95 

20 2.76 

30 3.29 

40 3.73 

50 4.14 

60 4.54 

70 4.98 

80 5.52 

90 6.33 

RESPONSE 

0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
1 
1 
0 
1 
0 
1 
0 
0 
0 
1 
1 
0 
0 
1 

BETA = 1.003 

S.E. LOWER 95% 

0.67 0.55 

0.51 1.70 

0.42 2.42 

0.37 2.96 

0.36 3.39 

0.37 3.77 

0.42 4.11 

0.51 4.47 

0.67 4.93 

Figure 6 (continued) 

135 

UPPER 95% 

3.34 

3.81 

4.16 

4.51 

4.88 

5.32 

5. 85 

6.57 

7.72 
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