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CHAPTER I 

INTRODUCTION 

1.1 Definition of the Problem 

Thin and flexible materials such as papers, polymer films, and magnetic media are 

called webs. Those materials are usually manufactured in continuous forms. High 

productivity of webs requires high-speed operation; but the operating speed is limited by 

many factors. One of the most serious obstacles to high speed operation is web flutter 

(vibrations) which causes quality problems or breaks in the web [A1, 2]. The flutter 

problems can be serious in paper machines producing light-weight papers with an operating 

speed higher than 2000 fpm; especially in or near dryer sections where the paper is still 

weak and exposed to high-speed air flows. 

Figure 1 shows a simplified view of paper running in a dryer section. The paper 

w.eb running at speed v is subjected to highly turbulent air flows in both x and y directions. 

The air flow in the x direction (machine direction) is due to the traveling speed of the web; 

while the air flow in the y direction, which has the highest speed near the free edges, is 

caused mainly by the ventilation system. Web flutter has two basic components which can 

appear separately or together: 

(1) The one limiting case is string-mode flutter as shown in Figure 2(a); there is little y­

dependent variation of web deflection and the wide web behaves like a string 

traveling between two rollers. 
\ 

(2) The other extreme is edge flutter as shown in Figure 2(b); ripples travel in they 

direction with the largest amplitude appearing at the free edges. 

1 
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In order to cope with the flutter problems we need to identify the causes and 

mechanisms of the flutter phenomena. But there are arguments concerning the main causes 

of web flutter and the mechanisms are not clearly understood. It is necessary, therefore, to 

carry out fundamental studies on the various possible mechanisms of web flutter and to 

find flutter prediction criteria. 

I 

- ~ y \, ,' ---~ -------
------ z -------

X 

Figure 1 A Schematic of a Running Web and Its Coordinate System 

z i Uy(x,y,z) 
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Center Edge 

(a) String-Mode Flutter (b) Edge Flutter 

Figure 2 Flutter Modes of a Paper Sheet in Dryer Section 



1.2 Areas in Needs of Research 

String-Mode Instability 

The review of previous studies, given in Chapter II, shows that the following are 

areas that need research associated with string-mode instability: 

( 1) Aerodynamic forces acting on the web. The air loading is affected by the flow 

speed, slenderness of the web, and the presence of rollers, enclosure, and adjacent 

web span. 

(2) The velocity profile for x-directional (machine-directional) air flow U x(x,y ,z). 

The main driving force that induces U x is the running motion of the web, but the 

speed proflle is affected by many factors. 

(3) The effect of turbulence of the air flow. 

( 4) The distribution of x -directional tension T x ( x, y) ; the paper slackens near the free 

edges. 

(5) Nonlinear behavior of the web due to large amplitude. 

( 6) Damping of the oscillating web. 

(7) The effect of viscoelasticity of the web material. 

(8) Parametric vibration due to tension fluctuation. 

(9) The effect of nonuniform mass distribution. Does it really cause flutter? 

3 

( 10) The effect of air entrainment between the web and rollers. Air entrainment changes 

the boundary conditions of the web and can be a cause of web excitation. 

Edge Flutter 

Though the edge flutter is also very important and serious, no in-depth study of 

edge flutter has been found in the literature search. Some areas that need research include: 

(1) Aerodynamic forces on the web. Especially, interaction between the web and air 

flow near the free edge is the most difficult aspect of edge flutter. 
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(2) The velocity profile for y-directional (cross-machine-directional) air flow 

U Y ( x, y ,z). U Y is caused mainly by the ventilation system and also by the 

interaction among paper sheet, felts, and rollers. 

(3) The distribution of T x and T Y ( x, y) . T y is caused by T x , air drag, and also by 

the vibration of the web. 

1.3 Objectives and Scope 

The present study is focused on the effects of air-web interaction. The following 

are the major objectives of this study: 

(1) To develop an analytical model of string-mode instability of a web. The effects of 

web speed and x -directional air flow are considered. 

(2) To verify the analytical model through experiments. Experiments are limited to the 

case of a non-traveling web in an air flow. The tests, though limited, are sufficient 

for fundamental study of air-web interaction. 

(3) To find important variables that affect edge flutter and find their effects through 

experiments. Like the string-mode tests, edge flutter tests are limited to the case of 

a non-traveling web. 

( 4) To provide design guides (stability criteria) for preventing or solving flutter 

problems. 

1.4 Methods of Approach 

In order to analyze string-mode instability of a moving web the well known 

analytical model of a "travel~ng threadline" is used. The traveling threadline model is 

generalized by including aerodynamic terms. The generalized threadline model is solved 

for arbitrary values of aerodynamic terms. The aerodynamic force terms of the "swimming 

slender fish" model are used for slender (narrow and long) webs in an infmite air space. 

The finite-difference method is used to evaluate the air loading on a web in an enclosure. 



Wind tunnel tests are carried out for slender paper webs for verification of the 

aerodynamic effects on the string-mode instability. Leading and trailing edges are 

restrained from out-of-plane motion, while the other sides are free. Tension is applied in 

the x direction (flow direction). 

5 

A dimensional analysis is performed to find nondirnensional parameters for edge 

flutter tests. Wind tunnel tests are performed. The trailing edge of the test web is free to 

move while the other three sides are fixed. Tension is applied in the y direction (cross-flow 

direction) by using weights. Stability criteria are provided through experiments and 

dimensional analysis. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Field Studies of Web Flutter 

Most of the field studies of web flutter are concerned about the flutter problems in 

the dryers of paper-making machines. But there have been many arguments concerning the 

causes of web flutter. Vennos & DeCrosta [A2, 5] and many others [A4, 6, 9, 16, 20, 22, 

24, 26, 28-31] attribute the web flutter to the air flows around the web. Studies of the air 

. flowin dryer pocket are found in [A1-8, 10-16]. Some of the suspected causes of web 

flutter in paper machines are: 

( 1) Excessive machine speed 

(2) Air pumping caused by highly permeable dryer fabrics 

(3) Y-directional (cross-machine-directional) air flow U Y in dryer pockets 

( 4) Differences in the y-directional air flow U y on both sides of the web 

(5) Turbulent flow caused by head bolts 

(6) Unbalanced ventilation systems 

(7) Variation of basis weight 

(8) Headbox edge effects 

(9) Uneven sheet shrinkage 

( 10) Tension variation 

( 11) Adhering of the sheet to the cylinder or to the felt 

(12) Felt seam disturbance 

6 



Among them, ( 1 )-( 6) are related with air flow around the web and (7)-(9) are causes of 

nonuniform tension distribution. They do not occur independently; most of them interact 

with each other and some of them are causes of others. 

Proposed or tried methods for preventing web flutter in the dryers of paper 

machines include: 

( 1) Using less permeable felts 

(2) Single felting (uno-run, serpentine felting) 

(3) Making the sheet run between two felts 

(4) Using blow boxes 

(5) Rearranging felt rollers 

( 6) Mounting baffles 

(7) Shrouding the cylinder head bolts 

(8) Mounting support rolls which hold the web in the open draw 

(9) Using lick-up mechanism 

( 10) Mounting wrinkle irons 

( 11) Making the edges slightly heavier than the sheet average 

7 

The causes and preventing methods of web flutter discussed by different authors 

are summarized in Table I, where [A29] and [A30] are for the problems in printing presses 

and all the others are related to paper machines. 



TABLE I 

CAUSES AND CURES OF WEB FLUTTER 

Vennos & Decrosta (1967, 1968) [ A2, 5] 

Cause: Excessive machine speed (>2000 fpm) & highly permeable dryer fabrics 
which cause cross-machine directional air flow in the dryer pocket 

Race, et al. ( 1968) [ A4] 

Cause: Excessive machine speed & high fabric permeability which cause air pumping 
by dryer fabrics 

Cure: Choosing proper felts (proper permeability) 

Kottick (1969) [A6) 

Cause: Excessive air carried by permeable clothing (felt) 

Cure: Air deflector to prevent air build up on clothing 
Fabrics with lower permeability 
Different felt roll configurations 

Cedercreutz (1971) [A9) 

Cause: Excessive machine speed (>2100 fpm) & highly permeable dryer fabrics 
which cause cross-machine directional airstreams in the dryer pocket 

Difference in the cross-machine directional flow speeds on both sides of the 
sheet 

Clipper seam of felt 

Cure: Wrinkle irons or support rolls which hold the sheet in the open draw 
Making the edges slightly heavier than the sheet average 
Using felts with reduced permeability on the edges 
Making the sheet run between two felts 

8 



TABLE I (Continued) 

Mujumdar (1974) [A16] 

Cause: Passage of the felt seam 
Vibration of the dryer rolls 
Eccentricity of the rolls 
Nonuniform web tension in the cross-machine direction 
Unequal flow (and pressure) on both sides of the sheet 
Cross-machine directional air flow induced due to pocket geometry 

Cure: Using new dryer such as the Papridryer 
Mounting suction system 

Smook (1976) [A20] 

Cause: Headbox edge effects 
Dryer pocket air flows 
Dryer clothing seam disturbance 
Nonuniform basis weight 
Nonuniform moisture level 

Edgar (1977) [A21] 

Cure: Single felting (uno-run) with lower permeability 

Sahay (1977) [A22] 

Cause: Excessive machine speed & highly permeable felts & wide web 
which cause pocket air flow 

Cure: Single fabric (uno-run) with low permeability 

Palazzolo (1978) [A24] 

Cure: Serpentine felt arrangement (single felting, uno-run) with low permeability 

9 



TABLE I (Continued) 

Bringman andJamil (1978) [A26] 

Cause: Air pumping 
Adhering of the sheet to the cylinder or to the felt 
Variation of basis weight (nonuniform tension) 
Variation of moisture (nonuniform tension) 
Uneven press loading (nonuniform tension) 
Headbox edge effect (nonuniform tension) 
Uneven sheet shrinkage (nonuniform tension) 
Highly permeable open felts (turbulent flow in dryer pockets) 
Felt seam 
Cylinder head bolts (turbulent flow) 
Pocket ventilation equipment (turbulent flow) 
Unbalanced ventilation system (turbulent flow) 

Cure: Using less permeable felts 
Shrouding the cylinder head bolts 
Making the sheet run in between two felts 
Single felting 

Sahay and Edgar (1980) [A28] 

Cause: Air entrainment 

Cure: Baffles 
Lick-up mechanism 

Meinander and Lindqvist ( 1982) [ A29] 

Cause: Tension fluctuation (parametric vibration) due to asymmetries in the printing 
press 

Cure: Increasing web tension 

Eriksson [ A30] 

Cause: Tension fluctuation (parametric vibration) caused by deformed or eccentric 
rolls 

10 



TABLE I (Continued) 

Hill (1988) [A31] 

Cause: Excessive air pumping 
Over-pressurization of the hood 
Improper control of the dryer steam pressure in uno-run group 
Poor drainage of the dryer in uno-run group 

Cure: Air deflector 
Blow box 
Using thin felt 
Using lick-down transfer in between two different sections 
Using a felt with less permeability 

2.2 Dynamics of a Traveling Threadline 

Linear Vibrations 

11 

Skutsch [B 1] studied the lateral vibrations of a string which travels under constant 

tension at constant speed through two fixed points. By considering a superposition of two 

waves running in opposite directions Skutsch calculated the fundamental resonance 

frequency and derived a formula for determining the free vibration configuration of the 

string. Stamets [B2] studied the dynamic loading of high-speed power chains. It was 

noted that there exists centrifugal force, m v2, on both tight and loose lengths of chain. He 

derived a formula for optimum chain speed. Sack [B3] modified Skutsch's model in order 

to include the effects of fluctuating boundary conditions and the effect of damping. It was 

assumed that the damping is proportional to 011/ot. Mahalingam [B4] studied the vibration 

of power transmission chains. He pointed out that a damping force should be proportional 

to ( 011/ot + v Ofl/Ox). That conclusion is based on the experimental observations which 

showed that the resonance amplitude decreases wjth increase of speed. But there is 
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uncertainty concerning the form of damping force, and no study is found in the literature 

survey on the value of damping coefficient. Archibald and Emslie [B5] derived the 

equation of motion of a moving string using the Hamilton's principle. He discussed 

similar effects as Sack [B3]. Miranker [B6] generalized the problem to include the effect of 

variational velocity. It was shown that the energy of that portion of the string between the 

pulleys is not conserved, but there is a periodic transfer of energy into and out of the 

system. Swope and Ames [B7] applied the method of characteristics to explore the 

vibrations of the threadline under boundary excitation. 

Nonlinear Vibrations 

Zaiser [B8] did pioneering work on nonlinear vibration of a traveling string. His 

equations include the effects of variable displacement, axial velocity, tension and mass. 

Both geometric and material nonlinearities are considered. Mote [B9] analyzed nonlinear 

vibration of a string traveling with constant speed. It was noted that the relationship 

between smallness of displacement and linearity for the stationary string cannot be 

extrapolated to the axially moving string. As the traveling speed increases, the effect of 

tension variation during oscillation becomes increasingly significant and the linear theory 

fails at sufficiently high speed. Bapat and Srininvasan [B 1 0] obtained the same results by 

using the method of harmonic balance. Ames, Lee, and Zaiser [B 11] studied nonlinear 

vibration of a traveling threadline under planar periodic boundary excitation. They 

performed experiments using a threadline which had a diameter of0.125 in. and a mass 

density of 1. 7 x 10- 4 I.b lin . The greatest difficulty was in the measurement of high speed 

tension. A three-dimensional ballooning was observed at low tension. Lee [B13] 

investigated the nonlinear problem using the method of characteristics and discussed the 

effects of transverse impact on a string and traveling force. Studies of nonlinear vibration 

of a traveling string are found also in Shih [B17], which deals with three-dimensional 

problem, and in Kim and Tabarrok [B 18] which is for two-dimensional case. Wickert and 
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Mote [B20] investigated the mechanical energy of an axially moving material and obtained 

three important conclusions: (1) the total mechanical energy of the string is not constant, (2) 

although the system is not conservative the application of the Hamilton's principle is valid, 

and (3) for subcritical transport speeds, the amplitudes of the eigenfunction are constant. 

Parametric Vibrations 

Mahalingam [B4 ], in his study of the lateral vibration of chain drives, showed that 

the governing equation of the chain running under fluctuating tension can be changed to the 

Mathieu form. But no further analysis was done. Naguleswaran and Williams [B 12] 

indicated that it is difficult to obtain a solution which satisfies both the Mathieu type 

equation and boundary conditions. Galerkin's method was used to solve the problem. 

They determined the conditions for stable operation of a belt and verified their theoretical 

results through an experiment. Rhodes [B16] also studied a similar problem analytically 

and experimentally. 

Effect of Elastic Foundation 

Linear [B21] and nonlinear [B 19] behaviors of a threadline traveling on an elastic 

foundation between two eyelets were studied. Both studies show that even though the 

natural frequencies are affected by the elastic foundation, the critical traveling speed for 

instability is not affected at all. 

2.3 Dynamics of a Running Web 

Mujumdar and Douglas [C1] discussed two simple analytical models of web flutter: 

"traveling threadline model" and "flexible membrane model." The effect of surrounding air 

was not considered in the traveling threadline model. It was noted that the web speed v can 

be near the wave speed c in high-speed paper machines and the web flutter problem is 

much different from those encountered in other industries where v <<c. Based on the fact 



that wrinkles occur commonly near the edges at a slight angle to the edge they noted that 

wrinkle might occur in the region of maximum variation in the wave speed, i.e., web 

tension. They implied a possibility of vortex excitation at the edge of paper due to the 

cross-machine-directional air flow. Their discussion of the flexural membrane model is 

based on Binnie [E9] and Komecki [ElO]. The model predicts flutter of webs in a wind. 
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It was confirmed that the adjacent wall, which is parallel to the web, has negligible effect if 

the distance is longer than one half of the wave length. The flexural membrane model does 

not include the effect of open draw length and this fact was pointed as the most serious 

drawback of the model. Soininen [C2, 3] asserted that the tension caused by centrifugal 

force T = mv2, coupled with the variation in basis weight, can induce web flutter. But it is 

uncertain if the variation of basis weight can really cause flutter problem. Pramila [C4, 5] 

studied the threadline model of a running web including aerodynamic effect. His analytical 

model is 

n{ a a) 2 a2TJ - + v- TJ - T-, = F at ax ax- (2.3.1) 

where m is mass per unit area of the web, v is web speed, T is web tension for unit width, 

and F is the lift force per unit area having the form 

( a a 2 
F= -m - +v-) TJ a at ax (2.3.2) 

where m a is the aerodynamic mass of rectangular plate having the same length and width 

as the web. For the aerodynamic mass m a , Pramila used the numerical results of 

Meyerhoff [G 10] and the simplified analytical results of Greenspon [G7]. Meyerhoffs 
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study is for unbaffled plates while Greenspon's model is for baffled plates. The natural 

frequency of Pramila's model is 

f n = ~f [ 1 - ( ; ) 2] (2.3.3) 

where 

(2.3.4) 

Later Pramila [C6] considered the possibility that the fluid particles may slip at the sheet 

surface. The lift force becomes 

(2.3.5) 

By this new formulation the resonant frequency becomes 

f = ~[1- (~)2] 1 
n 2L C J .., 1- (ma/m)[l- (v/c)-] (2.3.6) 

where c = ~ . Practically, calculating the aerodynamic mass of the running web is 

not so simple. Two sides of the web are supported by rollers and the other two edges are 

free; the web may run in an enclosure; and the adjacent span may have strong aerodynamic 

interaction especially when the web runs along serpentine paths. Niemi & Pramila [C7] 

used the fmite-element method to analyze transverse vibration of an axially moving 

membrane. The membrane was considered as a two-dimensional element. The fluid was 



assumed to be inviscid and the effect of air flow was not considered. The added mass of 

the membrane was calculated for various slenderness ratio including the effect of the 

surrounding structural boundaries. 

2.4 Plate Flutter 

16 

Most of the studies of panel flutter are dealing with supersonic problems, while the 

problem under consideration is a subsonic one. Those two, supersonic and subsonic, 

cases have essentially different aspects. The most prominent differences are: ( 1) the Kutta 

condition which is essential in subsonic flow is not required in supersonic case [Dl], and 

(2) at high supersonic Mach numbers the principal aerodynamic pressure is proportional to 

the plate slope while at subsonic flows it is proportional to plate curvature [D23]. 

Extensive reviews on subsonic and supersonic plate instabilities are found in [D5, 6, 8, 18, 

19]. This section is focused on the studies of subsonic flutter. Also, a few studies of 

supersonic flutter which can be related to the web flutter are briefly reviewed. 

Types of Instability 

A plate experiences different kinds of instability depending both on its boundary 

conditions and on the Mach number. This point has been a long debate, and there is still 

disagreement among investigators. 

Subsonic Flutter 

Jordan [D2] discussed the physics underlying panel flutter. He pointed out that we 

cannot use the classical normal-mode approach for the analysis of panel flutter. He argues 

that: (1) according to the normal-mode analysis a thin panel exposed to a subsonic air flow 

is always stable and it becomes unstable as the sonic speed is passed, but (2) in actuality a 

thin panel can flutter in subsonic flow and not in supersonic flow, (3) the point is that a thin 

panel does not exhibit standing wave but flutters forming traveling wave. He showed that 
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the wave reflected at the trailing edge damps out in a short distance and the existence of the 

trailing edge is not very important In order to prove that, he used the expression of 

displacement of a thin panel as 

(2.4.1) 

where b is the logarithmic decrement per wave length and cw is the wave speed. Another 

assumption is that the local aerodynamic force is proportional to the local downwash 

(2.4.2) 

which corresponds to the linear quasi-steady supersonic theory. Another important 

conclusion of Jordan's study is that the critical air speed is the same as the wave speed in 

still air. Greenspon, Goldman, and Jordan [D3] investigated subsonic and supersonic 

flutter of thin panels. They discussed the disagreements among theories concerning the 

possibility of subsonic flutter. Ishii [D9] and Weaver and Unny [Dl6] have examined the 

instability of a two-dimensional panel in a subsonic air flow by first obtaining expressions 

for the generalized pressures associated with uniform, two-dimensional, inviscid flow past 

a panel of finite chord in a rigid surface. Gislason [D 17] conducted an experimental 

investigation of the post-divergence, as well as the onset of divergence, behavior of a flat, 

rectangular panel at low airspeeds. 

Nonlinear Flutter 

Dowell [D 13, 14] studied nonlinear flutter of two-dimensional curved plates. He 

found that the effect of streamwise curvature is detrimental both in lowering the air speed 

and in increasing the flutter amplitude after flutter begins. It is concluded that nonlinear 
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effects may be important when the Mach number, multiplied by the ratio of amplitude to 

plate length, is greater than 0.1. Kuo and Morino [D21] developed a systematic way of 

applying both perturbation methods and harmonic balance methods to nonlinear panel 

flutter problems. 

Effect of Damping 

The effect of damping on panel flutter is briefly discussed by Voss and Dowell 

[D7]. The analysis by Komecki [Dl2] shows that very small external damping acts as a 

destabilizing factor in both subsonic and supersonic flows. 

Effect of Turbulence 

Vaicaitis, Jan, and Shinozuka [D20] investigated the vibration of a simply 

supported plate due to turbulent boundary-layer flows by using a Monte Carlo technique. 

The boundary-layer pressure field was assumed as a homogeneous, multi-dimensional 

Gaussian random process with zero mean. Both subsonic and supersonic flow problems 

were studied. That study was expanded to consider more realistic models of boundary­

layer turbulence and to analyze the case of clamped support conditions [D22]. 

2.5 Membrane Flutter 

Stearman [E2] studied subsonic membrane flutter. He performed wind tunnel tests 

using membrane models made of Mylar polyester film. The membrane has a length of 28 

inches, spans of 5 and 6 inches, and thicknesses of 1, 3, and 7.5 mils. The leading and 

trailing edges of the membrane were restrained from vertical motion while the other two 

edges were free. Tension was applied through the trailing edge; it ranged from 0 to 1.7 

lb/in. Two types of flutter were observed: small amplitude flutter first occurred at lower 

critical flow speed which had a shallow wave-like motion traveling in the streamwise 

direction and then violent flutter occurred at higher critical speed. In between those two 
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critical speeds, there existed a narrow equilibrium zone or boundary. The frrst (lower) 

stability boundary was independent upon membrane mass and is given as 

qd 
T = 1.01 (2.5.1) 

where q is critical dynamic pressure, d is membrane width, and T is tension per unit width. 

The second (higher) stability boundary is dependent on the membrane mass but correlation 

was not obtained. Stearman tried analytical study but failed to explain his experimental 

findings. Ellen [E4] studied approximate solution of supersonic flutter of finite membrane. 

Sundararajan [E6] studied the equilibrium shapes and the stability of a two-dimensional 

membrane supported at its ends and placed above a rigid inclined wall. It was found that 

(1) in a parallel nozzle the membrane experiences static divergence only, and (2) a 

membrane placed in a divergent nozzle experiences static instability or flutter depending on 

the angle of inclination of the membrane and rigid wall. Supersonic membrane flutter was 

studied by Spriggs et al. [E8] by using singular-perturbation methods. Binnie [E9] 

analyzed the stability of infinite membrane in a subsonic air flow using the same method as 

that used by Squire [El ]. Binnie's stability boundary is 

(2.5.2) 

where Uc is critical flow speed, c = ~ , m is areal density of membrane, K is wave 

number, and Pis air density. 

2.6 Flag Flutter 

A flag is a flexible material fixed at its leading edge with the other three edges free 

to move. The physics of flag flutter is very similar to that of edge flutter of web. 
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Fairthorne [F 1] measured the drag of rectangular and triangular flags in a wind tunnel. The 

areal densities of the tested materials ranged from 5. 2 xl 0-5 to 2. 2 x 10-4 Lb I i n 2 • It was 

found that for both rectangular and triangular flags the drag coefficient can be expressed as 

C d = 0.39 ~ s-1.25 + 0.012 (2.6.1) 

where s is the slenderness ratio defined by 

(2.6.2) 

and dis span (width), Sis the surface area of one side, and the drag coefficient is defined 

by 

1 2 
D =-pUC S 2 d (2.6.3) 

Thoma [F2] analyzed average (temporal) tension in an oscillating rope. His result shows 

that 

T + 1m v2 = constant 
2 (2.6.4) 

where m is mass per unit length, v is the velocity of transversal motion, and the upper bar 

indicates time average. From the above formula, we can conclude that, if we neglect the air 

drag, tension at a stationary point of a flag is equal to mv2f2 of its free end/ Hoerner [F4] 

pointed out that the drag of a fluttering flag is considerably higher than that of a stationary 

flat plate in a wind. He explained that the difference is the pressure drag due to flow 

separation, which is caused by flutter, which is caused in turn by flow separation. In his 



21 

analytical study of flag flutter Thoma [F3] noted that the Helmholtz instability does not 

explain the flag flutter, and he described how a flag extracts energy from the air flow. He 

considered an infinitely long membrane oscillating in the form 

11 = c1 cos (x- t) sin (0.05 x- 0.025 t) (2.6.5) 

Sparenberg [F5] studied wave motion of a half infmite membrane placed in an 

incompressible fluid flow. It was concluded that the flutter frequency can be obtained by 

demanding the Kutta condition to be satisfied. Uno [F6] performed flutter tests on flags of 

various materials in a vertical wind tunnel. In order to set up a semi-empirical formula, he 

assumed that the flag has the mode shape 

11 = Ct X Sin ( C2 X + C3 t) (2.6.6) 

where q are constants. Datta and Gottenberg [F7] experimentally studied the stability of a 

long, thin elastic strip hanging vertically in a downward flowing airstream like the test 

models of Uno [F6]. They used the slender body approximation. Air friction and gravity 

effects were considered in the analysis. The equation of motion was solved by Galerkin's 

method. 



CHAPTER III 

THEORIES 

3.1 Dynamics of a Traveling Threadline 

Some fundamentals of traveling threadline problems are discussed. The discussion 

is limited to linear behavior. 

Formulation 

· Natural frequency of a stationary (non-traveling) threadline is 

(3.1.1) 

where n is the order of mode, L is length of the threadline, T is tension, and m is mass per 

unit length. The corresponding mode shape is 

\Pn(x) = sin mrx 
L (3.1.2) 

When a threadline is running in its axial direction the lateral oscillatory behavior of the 

threadline is changed. In deriving the equation of motion of a traveling threadline it is 

assumed that 

( 1) its amplitude is very small, 

(2) there is no damping, 

(3) the effect of surrounding air is negligible, 
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(4) mass of the threadline is uniformly distributed, 

(5) tension is constant, 

( 6) gravity effect is negligible, and 

(7) traveling speed is constant. 

Under the above assumptions, the instantaneous velocity of a small section of a traveling 

threadline is 

(3.1.3) 

where v is the traveling speed of the threadline. The kinetic energy in a segment dx of the 

threadline is 

[ 1] 1 all all -
=-m v2 +(-+v-) dx 2 at ax (3.1.4) 

The potential energy in the same element is 

dU = T(ds- dx) 

(3.1.5) 

According to the Hamilton's principle 
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t2 

~ l ( T - U) dt = 0 
1 

that is 

(3.1.6) 

By performing variation, Eq. (3.1.6) becomes 

(3.1. 7) 

But 

(3.1.8) 

By the above relations, Eq. (3.1.7) can be rewritten 

(3.1.9) 

Integrating by parts yields 
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(3.1.10) 

Since 611 is arbitrary, the integrands in the above equation must be zero. Thus, 

m( ~ + 2 v ~' + v 2 11") - T 11" = 0 

or 

(3.1.11) 

where c2 = Tim. 

Free Vibration of a Traveling Threadline 

Assume a solution of the form 

fJ(x,t) =A ei(wt-KX) (3.1.12) 

where w is the angular speed which represents phase change per unit time, and K is the 

wave number which indicates phase change per unit distance. Substituting Eq. (3.1.12) 

into Eq. (3.1.11) yields the characteristic equation 

(3.1.13) 

By solving the above equation for the wave number K 

(3.1.14) 
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Therefore the lateral deflection of the threadline becomes 

(3.1.15) 

The above expression indicates that TJ(X, t) is a composition of two waves. The first one is 

a wave traveling in the positive x direction with a phase speed of (c + v), while the other 

one is a wave moving in the opposite direction with a phase speed of (c-v). The angular 

frequency w in Eq. (3.1.15) can be solved by considering the boundary conditions, 

TJ(O, t) = 0 and TJ(L,t) = 0 (3.1.16) 

By substituting Eq. (3.1.15) into Eq. (3.1.16) we obtain the natural frequency and free 

vibration shape 

(3.1.17) 

or 

fn = ~~[1- (~)2] 
(3.1.18) 

and 

\Vn(X,t) =COS (Wn t + n ~X ~) sin (n ~X) 
(3.1.19) 
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The frequency equation, as shown in Figure 3, implies that the natural frequency of a 

traveling threadline decreases as the traveling speed increases, and finally becomes zero at 

v=c (3.1.20) 

This is the critical speed of the traveling threadline. 

1.2 

-,.J 
M 1.0 
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= ;;< 
Q,j 0.2 r.. 
~ 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Speed Ratio, vlc 

Figure 3 Natural Frequencies of a Traveling Threadline as a Function 
of Traveling Speed 

The vibration shape of the traveling threadline is shown in Figure 4 ( v/c = 0.1) and in 

Figure 5 (v/c = 0.9). It should be noted that each point along the length has different 

phase, and normal modes do not exist in a traveling threadline. 
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Figure4 Free Vibration of a Traveling Threadline (v/c = 0.1) 
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Figure 5 Free Vibration of a Traveling Threadline (v/c = 0.9) 
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Forced Vibration due to Transverse Excitation 

Assume that one of the two boundaries oscillates so that the boundary conditions 

become 

iw t 
f](O, t) = C 1e 1 and fJ(L,t) = 0 

(3.1.21) 

From the above boundary conditions and Eq. (3.1.15) 

( ( iw 1L) [· x J (- iw 1L) [· x ll C 1 exp c-=\1 exp 1 w 1 ( t - C+\1) - exp c + v exp 1 w 1 ( t + c-=-v) j) 
'1= 

( iw 1L) (-iw 1L) 
exp c - v - exp c + v 

If the other end of the threadline oscillates, then 

iw t 
T](O, t) = 0 and fJ(L,t) = C 2e 2 

Applying the above boundary conditions yields 

( - iw .,L) ( iw .,L) 
exp c + ~ - exp c _-v 

Response of the traveling threadline is the sum of Eq. (3.1.22) and Eq. (3.1.24). 

(3.1.22) 

(3.1.23) 

(3.1.24) 



3.2 Aerodynamic Forces on an Oscillating Web 

In analyzing web flutter the most important and difficult part is the interaction 

between the web and the surrounding air. The surrounding air can appreciably affect the 
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dynamic characteristics of the web and if the air is flowing the interaction becomes much 

more complicated. Aerodynamic forces for various situations are discussed in this section. 

Discussions in this section, along with the study of a traveling string, will provide the basis 

of analytical modeling of string-mode web flutter. 

Radiation Impedance and Air Loading 

The concept of radiation impedance is very useful in studying the interaction 

between the web and stationary air. Radiation impedance is defined as [G 12] 

F z =-
r U (3.2.1) 

where F is the force exerted by the air on one side of the web and u is the out-of-plane 

velocity of the web. Z r is divided by its real and imaginary parts 

(3.2.2) 

where R r is the radiation resistance and Xr is the radiation reactance. If we assume that 

the motion of the surface is harmonic 

(3.2.3) 

then the total aerodynamic force acting on both sides of the vibrating web is 



But 

where Ma and B a are the equivalent mass and damping coefficients respectively. 

Therefore, 

2Xr 
M =­

a W 

Radiation Impedance of an Unbaffled Web 
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(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

The interaction between an unbaffled web (a web having free edges only) and 

stationary air is considered. Radiation impedance, for small Kr (low frequency limit), of 

an unbaffled circular piston is [ G6] 

(3.2.8) 
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where pc0 is the characteristic impedance of the undisturbed air, S is the area of the 

circular piston, K is the wave number, and r is the radius of the piston. If we consider the 

equivalent radius of a rectangular piston which has width d and length L 

r=~ 

then the radiation impedance of a rectangular piston becomes 

( 1 2Ld .1 J¥) Z =peS -K-+I-K-
r o 4 1T 2 1r 

Corresponding added mass and damping coefficients per unit area of the piston are 

But 

Thus 

2Xr pc 0 Kv'id 
rna= _w_S_ = wvn 

2Rr pc0 K2Ld 
ba=-s-= 2n 

m = _1_pv'[d 
a vn 

(3.2.9) 

(3.2.10) 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 
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It should be noted that the damping term is a function of frequency and its low frequency 

limit value is zero. If we define the added-mass coefficient C a by 

(3.2.15) 

then, with the slenderness ratio defined by s = Ud, 

= 0.7180 (3.2.16) 

. 
The above expression is valid only when the slenderness ratio is neither very small nor 

very large. For a slender (d <<L) web [G2] 

(3.2.17) 

A closed form solution of radiation impedance of a rectangular web having arbitrary 

slenderness ratio is very difficult to obtain if not impossible. Numerical data of radiation 

reactance (or added mass) are available for a few values of slenderness ratio [ G 1 0]. 

Because of the analytical difficulties, fluid loading for a rectangular web is usually obtained 

by experimental methods. Available experimental and numerical data along with empirical 

formulae are compared with Eq. (3.2.16) in Figure 6. Empirical formulae are listed below: 

Pabst [Gl] 1 c = 1--
a 2s (3.2.18) 
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Yu [G3] 
c = 1 

a .J1 + 1fs2 (3.2.19) 

Blagov. [G8] Ca = .J 1 (1- 0.425~) 
1+1fs2 1+s (3.2.20) 

Povisky [G8] 
1 

Ca = 1 + 0.8/s (3.2.21) 
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Figure 6 Added-Mass Coefficient of an Unbaffled Rectangular Web 

It is found that the approximation, Eq. (3.2.16), overestimates. Pabst's experimental 

results and Meyerhoffs computational results agree very well. Both Eq. (3.2.18) and Eq. 

(3.2.20) are based on the same experimental data obtained by Pabst, but the latter fits 

better. Blagoveshchensky's formula, Eq. (3.2.20), is recommended. There is one thing 
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that needs to be noted. Keulegan and Carpenter [G4] found that the added-mass coefficient 

of a plate in an oscillating fluid is a function of the Keulegan-Carpenter number defined as 

KC =AT 
d (3.2.22) 

where A is the amplitude of flow oscillation, T is the period of oscillation, and d is the 

width of plate. The change of added mass with the Keulegan-Carpenter number is believed 

to be related to the change of vortices. Therefore, the differences in the experimental data 

might be caused by the differences in the vibration frequency, amplitude, and sizes of the 

tested plates. 

Radiation Impedance of a Baffled Web 

A baffle is an acoustic barrier which is in-plane with the web. The radiation 

impedance of a baffled circular piston is [G9] 

(3.2.23) 

where 

8 = 1- - 1-J (2Kr) 
0 2Kr 1 (3.2.24) 

4J rr/2 
X 0 = 7r sin ( 2 K r cos a) sin 2 a d a 

0 
(3.2.25) 

which, for low frequency limit ( Kr < < 1 ), converges to 



8 Kf 
Xo = 31r 

If again we use the equivalent area, then 

X = ~v!Ld71T 
0 3n 

The added mass becomes 

from which the added-mass coefficient is obtained as 

64 
Ca=-25-v'S 3JT . 

= 1.22-v'S 

Radiation impedance of a rectangular piston is [G9] 

pc Ld [ 2 2 2 2 J 
Zr = 2 ° 2 L S(KL)- d 8(Kd) + iL X(KL)- id X(Kd) 

L - d 
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(3.2.26) 

(3.2.27) 

(3.2.28) 

(3.2.29) 

(3.2.30) 
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where 

2Jz 1-J (z) 
8(z) = 2 8 0 (y) ydy = 1 - 4 ; 

z 0 z (3.2.31) 

2 fz __ti 1J rr/2 ] 
X(Z) = z 2 0

X0 (y)y dy = JTZL1- z 
0
sin (zcos u)du (3.2.32) 

Limit values, for z << 1, are 

X= 8z/9rr 

Therefore, 

(3.2.33) 

The added mass is 

16 ( s2 ) =-pd 1+--
9rr 1 + s (3.2.34) 

from which the added-mass coefficient is obtained as 
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= 0. 721 ( 1 + 1 ~2 s) (3.2.35) 
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Figure 7 Added-Mass Coeffient of a Baffled Rectangular Web 

As shown in Figure 7, the two equations (3.2.29) and (3.2.35) agree well if the 

slenderness ratio is in the range of 

0.5 < s < 2.5 (3.2.36) 

If the slenderness ratio is very small or very large then both equations are invalid. A more 

refined formula which is valid in a wider range of slenderness ratio needs to be obtained. 
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Radiation Impedance for Riru>les Having Short Wavelength 

Consider a traveling wave on a web as shown in Figure 8, where A « d and 

A<< L. Web displacement is assumed as 

(3.2.37) 

then the pressure wave in the upper half space (z > 0) of the air can be written as 

( ) __ i(wt-tcx-k 2 z) 
p x,z,t - pe (3.2.38) 

Figure 8 Coordinate System of a Web with Small Ripples 

The pressure gradient on the web surface is, from Eq. (3.2.38), 

Op(x,O,t) =-. k ( 0 t) az lzpX,, (3.2.39) 

The momentum equation for the air on the web surface is 



ap a2ll 
az + p at2 = 0 

For harmonic motion, Eq. (3.2.40) becomes 

ap . all 
- =-u.~Jp-az at 

Substituting Eq. (3.2.41) into Eq. (3.2.39) yields 

Therefore the radiation impedance becomes 

p(x,O,t) S z = -=--..:.=--~-
r all/at 

wpS 
-~ 

where Sis a reference area. Wave equation for the air is 

2 
2 1 a p v p ---- =0 

c~ at 2 

Assuming harmonic oscillation 

2 w 2 v p =- (-) p 
Co 

2 
=- k p 
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(3.2.40) 

(3.2.41) 

(3.2.42) 

(3.2.43) 

(3.2.44) 
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where C0 and k are sound speed and wave number in the air. Substituting Eq. (3.2.38) 

into Eq. (3.2.44) yields the relationship among wave numbers 

2 k2 k2 K + z = 

From which 

kz = ± .J k 2 - K 2 

Radiation impedance is 

wpS 

(3.2.45) 

(3.2.46) 

If K < k (wave speed on the web c w is higher than the sound speed in the air C0 ), then 

the impedance is purely resistive and the wave energy is dissipated into the far field of the 

air. If K > k (c w < C0 ), then the impedance is purely reactive and 

wpS 

where only negative sign is retained for the pressure wave, expressed by Eq. (3.2.38) and 

Eq. (3.2.46), to be finite at z = oo. Therefore, the added mass becomes 

2Xr 
m =--

a wS 
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From which 

(3.2.47) 

Usually Cw > > C0 , so that the above equation becomes 

pi. 
m =-

a 11' (3.2.48) 

or 

4(i./d) 
Ca = 2 

11' (3.2.49) 

Air Loading of a Slender Web in an Enclosure 

Added mass of a slender web surrounded by an enclosure is considered. The air is 

assumed stationary. The added mass can be calculated by assuming potential flow, 

obtaining the stream-function by the fmite-difference method, summing up the kinetic 

energy in the flow field, and referring it to the web velocity. A set of sample computations 

was carried out for the simple geometry shown in Figure 9. 
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Figure 9 Geometry of Web and Enclosure 

For each set of values of H and B, only a quarter of the enclosed air needs to be 

computed because of symmetry. That quarter was divided into thousands of square cells. 

The governing equation of two-dimensional motion in an incompressible, inviscid fluid is 

that the Laplacian of either the velocity potential or the stream-function is equal to zero; this 

can be changed to a simple finite-difference equation which states that the value of the 

stream-function at any point is equal to the average of the values at the adjacent points. 

tp(i,j)=}[tp(i-1,j) + tp(i+1,j) + tp(i,j-1) + tp(i,j+1)] (3.2.50) 

For computational optimization, the following formula was used [G 13] 

tp(i,j) = (1-w)tp'(i,j) + z [ tp(i-1,j) + tp(i+ l,j) + tp(i,j-1) + tp(i,j+ 1)] (3.2.51) 

where tp'(i,j) indicates the previous value, and w is defined as 

(3.2.52) 

a= cos (rr/m) +cos (rr/n) 



45 

and m and n are the total numbers of increments into which the horizontal and vertical sides 

of the rectangular region are divided. Boundary conditions used were unit velocity at the 

web (Uz = -a~tay = 1), parallel flow at the wall(~= constant), and zero horizontal 

velocity in the (horizontal) plane of the web (U y = a~taz = 0). 

From the resulting stream-function, the velocity components in each cell were then 

calculated relative to the unit vertical velocity of the web, and the total kinetic energy in the 

flow field summed up. Since the nominal velocity of the web was taken as unity, the 

added mass was obtained by setting this kinetic energy equal to 1/2 m 1• The results are 

shown in Figure 10. As expected, Ca approaches 1.0 when the height and width of the 

enclosure are much larger than the web width. For smaller enclosures, both width and 

height affect C a significantly. 
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Air Loading of a Web in an Air Flow 

The air loading of a web subjected to a steady, in-plane (parallel to the web) air 

flow is considered. For supersonic flow cases, depending on the Mach number range of 

interest we can use different expressions of aerodynamic pressure [D5]: (1) linearized 

supersonic theory (M > 1), (2) quasi-steady theory ( M > Vl ), and (3) linear piston 

theory (M >> 1). The piston theory is widely used as a very powerful and convenient tool 

for hypersonic problems. For subsonic cases, the air loading of a rectangular web cannot 

be expressed in such a simple form as for the supersonic case. Fortunately, if the web is 

slender (narrow and long, d << L ), we can use the so called "swimming slender fish" 

model of Lighthill [G5]. This section discusses how the "swimming slender fish" model 

can be expanded for general applications. 

Swimming Slender Fish Model. The lift per unit area of a slender body 

swimming in the negative x direction is [G5] 

n a a 2 F = - -pd(- + U-) TJ 
4 at ax 

2 2 
n a TJ aTJ 2 a TJ 

=- -pd(- + 2U- + U -) 
4 Bt2 ax ax2 

It is seen that Eq. (3.2.53) has the same form as the dynamic terms of a traveling 

(3.2.53) 

threadline. If we include the above aerodynamic terms then the equivalent mass of a 

traveling web becomes 

1r 
m+4pd 



It is known [D4] that the slender body theory for a wing is valid if the aspect ratio is not 

greater than one 

that is 

s = L/d 2:: 1 
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If the above result is applicable to web flutter then we can use the "swimming slender fish" 

model for a wide range of flutter problems. But, for practical applications, we need to 

consider those cases where (1) the web is not slender, i.e., d > L, and (2) the flow field is 

not uniform because of complex geometries and ventilation systems. 

For the case where the swimming fish model is not valid the aerodynamic force can be 

generalized as 

(3.2.54) 

where m 1 , m 2 , and m 3 are the aerodynamic masses associated with transverse, 

Coriolis, and centripetal accelerations respectively, and U is a reference velocity. The 

above form of aerodynamic loading seems proper for a wide range of air-web interaction 

problems. Therefore, our purpose is to determine the (equivalent) aerodynamic masses for 

each case we are interested in. 

Air Loading due to Transverse Acceleration The mass m 1 (or m a ) is 

associated with transverse acceleration. Some limiting cases for evaluating m 1 are: 
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(1) If the span Lis much longer than the web width d (the "slender body" case), the 

midspan section undergoes almost uniform deflection and the air moves largely 

around the edges of the web, then the added mass per unit area of the web due to 

the potential-flow field becomes 

(3.2.55) 

(2) If the web shows higher-mode transverse ripples, with a wave length much shorter 

than the width of the web d, the added mass is 

p/1. 
m =-

1 1£ (3.2.56) 

(3) For comparison, the added mass of an unbaffled rectangular sheet (i.e., having free 

edges all around) moving as a unit is 

m = rr pd 1 (l- 0.425s) 
1 4 -J1+1Js2 l+s2 (3.2.57) 

where s is the slenderness ratio U d, and L > d. 

( 4) On the other hand, the added mass of a baffled rectangular sheet (i.e., surrounded 

by a fixed plate in the same plane) moving as a unit is 

m 1 = 0.96 pdvs (3.2.58) 

This equation is valid only when the slenderness ratio is near one. 
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These limiting cases give us an indication of the magnitude of m 1 . If neither Eq. (3.2.55) 

nor Eq. (3.2.56) can be applied, the added mass of a web should be between the values 

given by Eq. (3.2.57) and Eq. (3.2.58), since the ends are baffled while the edges are free. 

Equations (3.2.57) and (3.2.58) are compared in Figure 11. 
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Figure 11 Added-Mass Coefficient of a Rectangular Web 

When a web is slender and surrounded by a rectangular enclosure, then m 1 is obtained 

from Figure 10. 

Air Loading due to Coriolis Acceleration. The mass m 2 is associated with the 

Corio lis force. The effect of the surrounding air depends not only on the amount of air 

moving, but also on whether it moves with or against the web; if it moves with the web, 



the air adds to the mass, if opposite the web motion, it reduces the effective mass. Two 

limiting cases are: 

(1) If the web is slender (L >>d) and also all the air moves with the web, then 
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(3.2.59) 

(2) If the surrounding air is stationary except for a thin boundary layer, the effective 

mass can be calculated from the integral of the velocity through both upper and 

lower boundary layer thicknesses 

(3.2.60) 

* where b is the displacement thickness defined as 

5 

b * = ± ~ f U(h) dh 
0 (3.2.61) 

where the positive sign corresponds to the air flow flowing in the same direction as 

the running web; while the negative sign is for opposing flow. 

Air Loading due to Centripetal Acceleration. The mass m 3 is associated with the 

centrifugal force due to curvature of the moving web. The effect of the surrounding air 

depends on the amount of air moving with the web. Two limiting cases are: 

(1) If the web is slender (L >>d) and all the air around the web moves with it 

(3.2.62) 
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(2) If the flow field of surrounding air is stationary, and the boundary layer of air 

moving with the web is relatively thin, the added mass can be calculated from the 

integral of the square of the velocity of the air U(h) through both boundary layer 

thicknesses: 

m3 =p (eu + ed (3.2.63) 

where 8 is the momentum thickness defined as 

b 

e = ~J u\h)dh 
v 0 (3.2.64) 

Note that the equations for boundary layer growth on a flat plate are not applicable to a 

moving web, since the leading-edge condition is completely different; new calculations and 

measurements are required. 

3.3 String-Mode Instability 

Instability of a Running Web 

String-mode instability of a web running from one roller to another is considered. 

The coordinate system is shown in Figure 2(a) on page 2. The governing equation of 

motion of the web is 

2 4 a a2 all all 
m(- + v-) ll - T- + D- = F 
~ ~ ~2 ~4 (3.3.1) 
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which is the same governing equation of a traveling threadline except that the bending 

stiffness term and aerodynamic term F are added. The aerodynamic force term is, as 

discussed in Section 3.2, 

The corresponding equation of motion is 

(3.3.2) 

In the above equation, the ( m + m 1) term is the inertia associated with transverse 

acceleration, the ( m + m 2) term is the Coriolis force caused by linear and angular 

motions, and ( m + m 3) term is the centrifugal force caused by curvature of the web. 

Static Instability. The last two terms in Eq. (3.3.2) are restoring forces; the web 

becomes statically unstable (diverges) when these terms vanish. Therefore the critical 

condition for static instability is 

(3.3.3) 

Assume a solution as 

(3.3.4) 

then Eq. (3.3.3) becomes 
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(3.3.5) 

from which 

V div = (3.3.6) 

or in a nondimensional form 

(3.3.7) 

where c = -v'T7ffi, Dr= Dt<2/T, and r 3 = m /m. 

Dynamic Instability: Traveling-Wave Solution. Assume a trial solution to Eq. 

(3.3.2) as 

l 
T] = A ei (wt- KX) 

(3.3.8) 

where the wave number K is assumed real. By substituting Eq. (3.3.8) into the governing 

equation (3.3.2) we get the characteristic equation 

(1 

(m + m 1)w 2 - 2 (m + m 2)v KW + [Cm + m 3) v2 - T]t< 2 - "0t< 4 = 0 (3.3.9) 

or in a nondimensional form 

(3.3.10) 
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The two roots of the characteristic equation are 

V J 2V2 V2 (1 + r 2)(-c) ± (1 + r 2) (c) - (1 + r 1)(1 + r 3)(-c-) + (1 + r 1)(1 +Dr) 
-= KC 

(3.3.11) 

If the two roots are real, then the system is dynamically neutral and the two roots represent 

nondimensional phase speeds. For the web to be (dynamically) unstable the roots should 

have imaginary parts. In that case the real part of the roots is 

(3.3.12) 

which implies that the phase speed is 

(1 + r,,) 
c =w= - v 

w K 1+r1 (3.3.13) 

The critical condition for dynamic instability is obtained by equating the discriminant in Eq. 

(3.3.11) to be zero 

v 
Cc-) nt = 

(3.3.14) 
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The above equation implies that if r 1 = r 2 = r 3 (for the case of a string or a slender web in 

an infinite air field moving with the web) the critical speed is infinite; the system can 

diverge but cannot flutter. If the web is running in a relatively small enclosure so that 

1 < < r 1 and r 2 , r 3 < < r 1 then the critical speed for flutter approaches that of divergence. 

In between those two limiting cases the web has two critical speeds, and the critical speed 

for flutter is always higher than the critical speed for divergence. Practically it may not be 

possible to operate the machinery at a speed higher than the critical speed for divergence. 

But a web can oscillate due to other causes such as tension fluctuation, machinery 

vibration, and air buffeting. 

Dynamic Instability: Modal Solution. Boundary conditions of the web impose 

more restrictions to the solution, leading to a modal solution. Boundary conditions of the 

web are 

11(0, t) = 0, ll(L, t) = 0 (3.3.15) 

For convenience the characteristic equation (3.3.10) can be rewritten as 

(3.3.16) 

Its two roots are 

(3.3.17) 

Therefore the solution becomes 
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(3.3.18) 

The first boundary condition of (3.3.15) yields 

(3.3.19) 

Therefore Eq. (3.3.18) can be simplified as 

. . [ iw(1 + r 2)( ~ ) x] 
11 = 2iA 1 exp (1wt)exp v 2 c · 

1 + D r - ( 1 + r 3) (c) 

(3.3.20) 

By substituting the above equation into the second boundary condition of (3.3.15) 

From which the nth natural frequency becomes 

(3.3.21) 
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The effects of aerodynamic terms are sketched in Figure 12 with Dr = 0, where 

f n ;;; w n /2n . An increase of m 1 reduces f n and causes the intercept at the ordinate to be 

depressed. The critical speed is affected only by the centrifugal inertia; an increase of m3 

reduces the critical speed, causing the intercept at the abscissa to move toward the origin. 

Coriolis inertia distorts the shape of the frequency curve; it acts in different ways depending 

on flow direction. Some examples are shown in Figure 13, again with Dr = 0. As 

shown Figure 13(b), the highest frequency curve is obtained when r 2 =- 1. It should be 

noted that the curves for r 2 = 0 and r 2 = 2 overlap those for r 2 = - 2 and r 2 = - 3 

respectively. 

1.2 

- ml 
~ 
~ 1.0 
"C;j 

= -~= 0.8 

Q .... 
0.6 ~ 

~ 

~ 
..... 

0.4 e.J 

= ~ = C" 
~ 0.2 
"" ~ 

0.0 

0.0 0.2 0.4 0.6 0.8 l.O 1.2 

Speed Ratio, v/c 

Figure 12 Effect of Aerodynamic Terms on the Dynamics of a Web 
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The modal solution becomes 

( vmrx). mrx 
lp nCx,t) =cos w nt + K-z--y- Sill (L) 

(3.3.22) 

where 

The sine term is equivalent to the mode shape of a non traveling string and the cosine term 

incorporates phase difference along the length of the web. K = 1 for a traveling threadline. 

Instability of a Stationary Web in a Wind 

The string-mode instability of a nontraveling web in an air flow is considered. The 

governing equation of motion of a stationary web in a wind is 

(3.3.23) 

Static Instability. The critical air speed for static instability is obtained by letting 

the restoring force term be zero: 

u ~ JT+ DK2 
div m 3 (3.3.24) 

For a slender web in an infinite uniform flow field 

ud. = IV (3.3.25) 
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which is a function of web width but independent of web mass. 

Dynamic Instability: Travelin~-Wave Solution. In the same way as before, the 

characteristic equation is 

or in a nondimensionalized form 

The roots of the characteristic equation are 

w 
KC 

ri¥) ± J(l + r 1)(1 +Dr)- (r 3 + r 1r 3 - r~)(¥) 2 
1 + r 

I 

(3.3.26) 

(3.3.27) 

(3.3.28) 

The system becomes unstable when a root has a non-zero imaginary part. The phase speed 

of wave for a dynamically unstable system is 

The critical flow speed for flutter is obtained by letting the discriminant be zero 

(1 + r 1)(1 + I>r) 

r 3 +r 1 r 3 -r~ 

For a slender web in an infinite uniform flow field 

(3.3.29) 

(3.3.30) 
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(3.3.31) 

or 

unt = Jf (1 + :~)(1 + n;z) (3.3.32) 

Figure 14 shows the effect of mass ratio on the critical flow speed forD= 0. Practically, 

the mass ratio can have fairly high value, and the critical flow speed for flutter is close to 

the wave speed in vacua. 
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Figure 14 Stability Boundaries and Mass Ratio 
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Dynamic Instability: Modal Solution. The characteristic equation (3.3.28) can be 

rewritten as 

The roots of the above equation are 

KC 
w 

Therefore the solution becomes 

[ { u }] 
r 2(c) x 

TJ = exp iw t + U 2 (c) · 
1 + D - r (-) r 3 C 

[ { iw~(z)} {-iw~(~)}] A 1exp U 2 + A 2 exp U .., 
1 + D - r (-) 1 + D - r (-)-r 3 C r 3 C 

(3.3.33) 

(3.3.34) 

The natural frequency is obtained by applying the two boundary conditions (3.3.15). 

(3.3.35) 

The correspondllg mode shape is 
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(3.3.36) 

where 



CHAPTER IV 

EXPERIMENTS 

4.1 String-Mode Instability 

Test Setup 

Flow tests were performed in order to verify the effects of air flow discussed in 

Chapter III. Rectangular paper webs were tested in a subsonic wind tunnel. The 

characteristics of the tested paper webs are such that: 

Basis weight 

Young's modulus 

Thickness 

Dimensions 

1.08 x 10-4 I.h/in2 

9.9 x105 psi 

4 mils 

3"x 10" (AR = 0.30) 

3"x 20" (AR = 0.15) 

6"x 10" (A R = 0.60) 

6"x 20" (A R = 0.30) 

Basis weight and thickness were measured by using precision measuring tools. Young's 

modulus was measured using an axial vibration technique; details are explained in the 

Appendix. 

A schematic of the whole setup is shown in Figure 15. The test section is 24.5 

inches wide and 16.25 inches high. The tested paper webs are narrow enough comparing 

to the tunnel dimensions so that the web can be considered to be in an infinite, uniform 

flow field. The leading and trailing edges are restrained from vertical motion; while the 

other two edges are free to move. 
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Figure 15 A Schematic of the Experimental Setup 

In order to implement the desired boundary conditions of the web, a set of web 
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holder, shown in Figure 16, was used. All the parts were made from thin aluminum plates 

and aligned carefully to minimize any undesirable aerodynamic effects such as asymmetric 

air flow and aero-excitation. The parts at which the web was attached have a streamlined 

shape. The only aerodynamic problem encountered was the drag on the moving part of 

trailing edge holder. This problem was solved by measuring the air drag and modifying the 

tension values. The leading edge is fixed, while the trailing edge can slide in the direction 

of the air flow. Tension is applied through the trailing edge, by using a thin string and a 

pulley mounted downstream of the test section, and a weight. Web tension could be 

changed by changing the weight. The test variables are (1) the width and length of the 

web, (2) tension, and (3) air speed. 
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Figure 16 Setup for String-Mode Flutter Tests 
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Test Results 

Both static divergence (steady deflection of the web) and dynamic instability (flutter 

of the web) were observed. Critical speed for dynamic instability is always higher than that 

of static instability, as expected from theory. As the wind speed is increased from zero the 

paper starts to diverge at a critical flow speed; it bulges out either upward or downward. If 

the flow speed is increased further then the displacement is also increased, and in some 

cases a higher mode (multiple-wave) divergence occurs as shown in Figure 17. 

Stearman's tests show no static instability [E2]. That contradiction raises an important 

question: Can a slender web clamped at its leading and trailing edges experience divergence 

or not? It is believed that the divergence observed in the present tests is not caused by non­

zero angle of attack. The reason is that ( 1) the bulging occurs either upward or downward, 

(2) higher mode divergence would not occur in a skewed air flow, and (3) a hot-wires 

measurement (performed by another group) shows that flow direction does not change in a 

wide range of flow speed. Stearman [E2] controlled his test setup to compensate the 

change of flow direction observed in his wind tunnel. 

U· arr 

U· arr 

(a) Arch Shape Divergence 

(b) Higher Mode Divergence 

Figure 17 Shapes of Bulging 
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At flow speeds higher than the divergence speed a low-speed traveling wave 

occurs. The oscillation frequency and amplitude grow with the flow speed into a 

pronounced flutter, which becomes very violent at higher flow speeds. In some cases 

static divergence is suddenly changed to flutter by a little increase of the flow speed, in 

other cases there is a stable range between static and dynamic instability regions. Stearman 

observed two types of flutter: small-amplitude slow wave and large-amplitude fast wave 

[E2]. He could determine the critical flow speeds for those two types of flutter. In the 

present tests, the small-amplitude slow wave was not always observed. 

Critical flow speeds for static instability and flutter were determined for each set of 

test conditions, i.e., for given web dimensions and tension. Figure 18 shows the stability 

boundaries of static divergence; each data point indicates a critical value of dynamic 

pressure q above which bulging occurs. The compared theoretical curve is 

2 T q = (-)(-) 
1T d ( 4.1.1) 

which is a variation of Eq. (3.3.25) with the effect of bending stiffness neglected. The 

experimental results are higher than the expected values, but they show the same tendency. 

The discrepancy manifests the inaccuracy of the centrifugal inertia term of the slender-body 

theory for the test model which has an arch-shaped deflection. 
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Figure 18 Static Stability Criteria of a Stationary Web in an Air Flow 

The experimental results for flutter are compared with a theoretical curve in Figure 19, 

where the curve is 

2 pd T 
q= (- + -)(-) n 2m d (4.1.2) 

which is from Eq. (3.3.32) neglecting the effect of bending stiffness. The experimental 

values fall below the prediction curve. 
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Figure 19 Dynamic Stability Criteria of a Stationary Web in an Air Flow 

4.3 Edge Flutter 

Test Setup 

In paper machines, dryer felts cause complex, three-dimensional air flows. Also, 

the traveling speed of web and the interaction between the felt and paper web have 

appreciable effects on web dynamics. The experimental model is a non-traveling web in a 

uniform air flow. The test web simulates either edge of paper in a dryer section; the trailing 

edge of the test web is free while the other sides are fixed as shown in Figure 20. Tension 

is applied in the cross-flow direction to simulate machine-directional tension in paper 

machines. 
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Figure 20 Experimental Modeling of Edge Flutter 

In order to implement the test conditions, a web-holding jig, shown in Figure 21 

and Figure 22, was mounted in the same wind tunnel described in Section 4.1. One side of 

the clamp is a slider, at which two weights are connected for tension control. The 

components in contact with the aluminum slider were made of brass for minimal friction. 

In order to obtain uniform tension distribution, the leading edge area of the web has holes 

and parallel cuts and the upstream clamp would be released and fastened again whenever 

tension is changed. Paper webs were used in the first series of experiments, but it was 

very difficult to obtain uniform tension distribution. Later, stretchable plastic materials 

were tested with ease of setting up. Straight lines were drawn on the web, one-inch apart 

in both x and y directions, for better observation of web motions. Material properties and 

test conditions are summarized in Table II. 
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Figure 21 Setup for Edge Flutter Tests 
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Figure 22 Setup for Edge Flutter Tests (Close up View) 
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TABLE II 

MATERIAL PROPERTIES AND TEST CONDmONS 

Paper Plastic 1 Plastic 2 Plastic 3 

m (Lb/in2) 8.2x10 
-5 

3.3x10 
-5 

1. 7x10 
-4 

3.4x10 
-4 

E (psi) 9.9x10 
5 

7.2x103 * 7.2xl03 * 7.2xl03 * 

d (inches) 9 9 9 9 

L (inches) 12, 15, 18 18 18 18 

T (Lb/in) 0.05 - 0.4 0.2- 0.4 0.1 - 0.4 0.05- 0.4 

* From static stress-strain measurements. 

Instrumentation and Test Procedure 

A set of stroboscope, sketched below, was used to figure out flutter pattern, 

vibration frequency, and amplitude. The operation range of the stroboscope is about 20 -

200Hz. Though the measurement was not accurate it was good enough to determine the 

trends of web behavior and the critical air speeds for instability. 

HP3300A Chadwick-Helmuth Strobex Lamp 
Function Generator Strobex 121A 
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Test Results 

General Response Characteristics. As the air speed is increased from zero, the free 

edge of the web starts to vibrate randomly with small amplitude. The amplitude grows with 

flow speed; and above a certain value of air speed (critical speed), the vibration becomes 

steady and violent as indicated in Figure 23. In most cases, the transition occurs so suddenly 

that the critical flow speed could be determined with little uncertainty in spite of the inaccuracy 

of the amplitude measurement. 

Critical Speed 

Small Amplitude 
Random Vibration 

Large Amplitude 
Steady Vibration 

AirSpeed 

Figure 23 Typical Amplitude Response Characteristics of Edge Flutter 

By using a stroboscope, flutter frequency could be measured accurately as far as the 

motion is steady and has single frequency component, which is the case of most runs. 

Once the web becomes unstable (U > U .t), the flutter frequency usually increases with en 
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flow speed. The frequency of vortex, shedded from the web-holding jig, is always much 

higher than the flutter frequency. 

The free edge has the largest amplitude, and the amplitude changes exponentially 

along the flow direction, as shown in Figure 24. Appreciable deflection occurs only in the 

area near the free edge. Traveling-wave type flutter was observed. In some cases where a 

portion of the web had much lower tension than other areas, local flutter was observed in 

that area; again, the wave was traveling. With the light frequency (operation frequency of 

the stroboscope) little lower than the flutter frequency, the wave looked moving 

downstream; while with higher light frequency, the wave looked moving upstream. It 

simply means that the wave was always running downstream with the air flow. 

• The effect of reflected wave was not clearly observed. Usually, when a wave 

encounters a free (or fixed) boundary, the wave is reflected with the same amount of 

deflection (or stress) so that (1) the deflection (or stress) is doubled at the boundary, and 

(2) standing wave appears. The wave observed near the fluttering free edge is much 

different from that It seems that ( 1) the kinetic energy of the free edge is not transferred 

from the upstream waves but induced by the local interaction between the free edge and the 

air, and (2) the reflected wave running against the air flow is damped so heavily that its 

effect could not be observed. It should be noted that the Galerkin's method is not 

applicable for this problem where normal modes do not exist. 
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Unlike the wave traveling in the flow direction, a cross-flow directional wave has 

normal modes (standing waves) as shown in Figure 25. In most cases, zero-node 

deflection was observed along the cross-flow direction; in some cases, higher modes could 

be observed at high flow speeds. 

or 

One-Node Zero-Node Two-Node 
~l 

Tension 

~ 

Tension 

--+ 

Figure 25 Modes of Web Deflection along the Cross-Flow Direction 
(Upstream View of Free Edge) 

y 

Based on the observations, the flutter pattern could be expressed in the form 

A i(wt-cry) (mrx) 
ll = e cos (i 

a .Y nrrx 
ll =A e • sin(wt- crry)cos(-d-) 

where n is an integer; n = 1 for zero-node deflection along the cross-flow direction. 

(4.2.1) 

(4.2.2) 
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Effects of Web Tension. As web tension is increased, the onset of edge flutter is 

delayed as shown in Figure 26. Similar trends were observed in most other cases. 
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Figure 26 Effect of Tension on the Amplitude Response of a Paper Web 
(Setup 1, 9"xl5") 

Critical conditions for instability of paper webs having dimensions of9"x18" are 

plotted in Figure 27. The effect of tension for each setup is clear but the results show much 

scattering. It is believed that the scattering is due to poor adjustment of tension 

distribution. Whenever a new paper web is mounted, tension distribution is changed and it 

was very difficult to obtain uniform tension on paper webs. 
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Figure 27 Effect of Tension on the Stability of Paper Webs (9"xl8") 

Stability boundaries for plastic webs having areal densities of 3.3 x 10 -s, 

1. 7 x 10-4 , and 3.4 x 10-4 lb/ in 2 are shown in Figure 28, Figure 29, and Figure 30 

respectively. All of them have the same size, 9"x 18". By comparing Figure 27 with 

Figure 29, it is seen that the data scattering for plastic webs is much less than for paper 

webs. 
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Figure 30 Effect of Tension on the Stability of a Plastic Web (3.4x 104 Lb/in2) 

Flutter frequency also is very sensitive to web tension as shown in Figure 31. The 

higher the web tension is, the higher its frequency is. It should be noted that the flutter 

frequency depends on flow speed and the web does not have its own natural frequencies. 

No appreciable change of wave length was found during the tests; the frequency change 

means the change of wave speed. 
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Figure 31 Effect of Tension on the Frequency of a Paper Web (Setup 3, 9"x18") 

Effects of Web Sizes. In Figure 32 and Figure 33, stability boundaries of paper 

webs are shown as functions of web length. Though it is difficult to draw any conclusions 

because the data scatter so much and the trend is not clear, it seems that the longer webs 

tend to be more unstable than shorter ones. Flutter frequency is sensitive not only to web 

tension but also to web length as shown in Figure 34. Longer web has lower frequency. 
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In order to obtain a generalized expression of stability criterion, one needs to fmd 

the functional relationship among nondimensional parameters that play important roles in 

edge flutter. Nondimensional parameters are obtained either by Buckingham Pi Theorem 

or by nondimensionalizing the governing equation of the problem if the equation is known 

[Hl, 2]. The folloWing are the physical variables that are considered important in the 

present problem and the nondimensional parameters derived from them: 



!&pendent Variables 

u Critical flow speed 

Flutter frequency 

Independent Variables 

p Air density 

v Kinematic viscosity 

a Sound speed in air 

d Web width 

L Web length 

m . Basis weight (areal density) of web 

D Bending stiffness of web (per unit width) 

T Web tension in cross-flow direction(per unit width) 

Nondimensional Parameters 

u 
Reduced velocity wd 

Ud 
Reynolds number v 

u 
Mach number a 

L 
d Slenderness ratio 

m 
pd Mass ratio 

D 

Td 2 Stiffness parameter 

T 
d2 2 m w Tension parameter 

Dimension 

-1 
T 

Dimension 

ML 
-3 

L2T-1 

LT- 1 

L 

L 

ML 
-2 

ML2T-2 

MT 
-2 
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The meaning and importance of these parameters are as follow: 

( 1) The first parameter, reduced velocity, is one of the most important parameters for a 

variety of flow-induced vibration problems. It represents the ratio of flow speed to 

the speed of structural motion. For convenience, a variation of reduced velocity is 

defined as 

q 
2 , 

pd w-

This new parameter, named pressure parameter, will be used instead of reduced 

velocity in analyzing the experimental data. This parameter, as well as the reduced 

velocity, contains w. For most flow-induced vibration problems, vibration 

frequency can be predicted; that is not the case for edge flutter. This fact may limit 

the application of a stability criterion that contains w . 

(2) The second one, Reynolds number, is the ratio of fluid inertia to viscous force, and 

it gives a measure of boundary layer thickness and transition from laminar to 

turbulent flow [H5]. Reynolds number is a crucial parameter in general fluid 

dynamics problems, but in studying flow-induced vibrations, the effects of 

Reynolds number are usually neglected [H3, 6] and sometimes the requirement of 

Reynolds number cannot be met because of its incompatibility with the reduced 

velocity [H4]. The effect of Reynolds numberis not considered in this study. 

(3) Mach number is the ratio of flow speed to the sound speed; it is a measure of fluid 

compressibility and is important only when its value is high enough, say greater 

than 0.3. For the present study, Mach number is low enough that its effect is 

neglected. 



( 4) Slenderness ratio determines the severity of three-dimensional behavior of web 

motion and air flow. If it is very large or very small then the phenomenon is 

considered two-dimensional. For the present test models, 1.3 < Lid < 2.0. 
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(5) Mass ratio is very important in flow-induced vibration problems; it is believed to be 

crucial in edge flutter phenomenon. 

(6) The forms of the last two parameters are derived from the equation of motion, 

2 2 2 ") J2 a 11 a 11 a a~ 
m-- T -, + n(-+- 11 = f(x,y,t) 

at 2 ax- ax 2 ay 2 (4.2.3) 

where f(x,y,t) represents aerodynamic forces. The stiffness parameter defines the 

relative importance of bending rigidity and tension. 

(7) The last parameter, named tension parameter, contains a dependent variable, flutter 

frequency. The information of critical flow speed is more important than flutter 

frequency for practical purposes. Therefore, by combining it with other 

parameters, the tension parameter can be changed to be 

qd 
T 

The ranges of these parameters are shown in Table III. The stability criterion might be 

expressed as a functional relationship of 

( 4.2.4) 

As already described, the effect of slenderness ratio is not certain, so that its effect is not 

considered Therefore, the stability criterion will be determined in two different forms: 
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(4.2.5) 

and 

qd m D 
T = f( pd ' Td 2 ) (4.2.6) 

TABLE III 

RANGES OF NONDIMENSIONAL PARAMEfERS 

Paper Plastic 1 Plastic 2 Plastic 3 

q 

pd2w2 0.0033-0.040 0.0012-0.0013 0.0062-0.011 0.014-0.035 

qd 
0.42-2.2 0.13-0.22 0.22-0.53 0.24-0.73 T 

m 
pd 0.21 0.085 0.44 0.87 

L 
d 1.3-2 2 2 2 

Stability Criterion (Type 1). As a first step, the relationship between pressure 

parameter and stiffness parameter is checked. Figure 35 shows that relationship for paper 

webs having various dimensions; the relationship is not clear. 
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For plastic webs, those two parameters are closely related as shown in Figure 36. It 

should be noted that (1) Tis the only working variable in the parameter (D/Td2) in Figure 

35, while in Figure 36, both D and Tare changing, (2) including mass term does not affect 

Figure 35 because the mass ratio is constant for paper webs, while Figure 36 will be 

affected. 
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Figure 35 Pressure Parameter vs. Stiffness Parameter for Paper Webs 
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Figure 36 Pressure Parameter vs. Stiffness Parameter for Plastic Webs 

As a second step, correlation among all three parameters is determined. The trial form is 

(4.2.7) 

where A, B, a, and b are unknown constants. The procedure for determining those four 

constants is: 

( 1) Set values of the powers, a and b. 

(2) Obtain an x-y chart of the the two groups of experimental data, one group for paper 

webs and the other for plastics, where 
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(3) Determine the best-fit linear curve for each group of data. 

( 4) Change the values of a and b to fmd ranges of them that make the two curves 

overlap or come close. 

(5) Change a and b within these ranges and find the best-fit linear curve and the 

corresponding correlation coefficient for the whole data set. Repeat it until the 

largest value of correlation coefficient is found. 

After many trials, Figure 37 was obtained with a correlation equation of 

(4.2.8) 

The corresponding correlation coefficient is r = 0.88. In deriving the above equation, one 

data point for paper web, the highest point in Figure 35, was omitted because it deviates so 

much when plotted into Figure 37. 

Stability Criterion (Type 2). The relationship between two parameters (qd IT) 

and (D/ Td 2) was checked; no direct correlation was found as implied by Figure 38 and 

Figure 39. The stability criterion, determined by the same method as for the first one, is 

(4.2.9) 

with a correlation coefficient of r = 0.85. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Web flutter was studied experimentally and analytically. Two different modes of 

web flutter were considered separately: string-mode instability and edge flutter. In string­

mode instability, the web is assumed to behave like a threadline traveling between two 

rollers so that all the points across the direction of running motion have the same deflection. 

In edge flutter, the web behavior near the free edges was considered. For both cases, the 

current study is focused on the effects of air flows. 

5.1 String-Mode Instability 

At the ftrst phase of study, the dynamics of a traveling threadline was considered. 

Then the threadline model was generalized to include the aerodynamic effects. The 

aerodynamic terms, like the inertia terms appearing in a traveling threadline, consist of three 

components: transverse inertia, Coriolis inertia, and centripetal inertia. Closed form 

solutions of natural frequencies and stability criteria were obtained for arbitrary values of 

the aerodynamic terms. 

The successful application of the traveling threadline model of a running web 

depends on the correct application of the three aerodynamic terms. Expressions for 

evaluating the aerodynamic terms were obtained for a number of cases. The [mite­

difference scheme was used to calculate the transverse inertia term for a web in an 

enclosure. 

Wind tunnel tests were performed to verify the analytical expression of the 

aerodynamic forcing terms for a slender (narrow and long) web. The tests were limited to 
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stationary (non-traveling) rectangular webs. The test results were compared with theory. 

Both steady deflection and flutter were observed as expected by the theory. The 

experimental results show the same trends as the slender-body theory, but the experimental 

critical flow speeds for static divergence are higher than the theoretical values, while for the 

flutter case the experimental values fall below the theoretical prediction curve. Except for 

these small discrepancies, the slender-body model appears to represent the physics of the 

instability of a slender web correctly. Therefore this approach seems to be well suited to 

long-span web motions, such as occur in drying ovens etc. 

The importance of the effects of air flow was proved. The surrounding air 

appreciably affect the dynamic characteristics of the traveling web and cause instability. 

5.2 Edge Flutter 

{ 

Wind runnel tests were performed on edge flutter model. It was found that edge 

flutter, like fluid-elastic instability of tube arrays in a cross flow, onsets at a critical flow 

speed and its amplitude grows drastically with flow speed. The actual environments of 

paper webs in a paper machine are much different from our simplified test model. It seems 

safe, however, to conclude that the air flow, without any other suspected causes, can 

induce detrimental edge flutter. 

Only a small portion near the free edge experiences high-amplitude flutter. It seems 

that the mechanism of edge flutter is involved with local interaction between the free edge 

and air flow. The pattern might become different when tension distribution is not uniform; 

slack areas are more vulnerable to flutter than tight areas. 

Unlike common structural vibrations, edge flutter is a traveling-wave type vibration 

which does not have normal modes or natural frequencies. Flutter frequency depends on 

flow speed. This limits the analysis; any analytical method that assumes normal modes is 

not applicable. 
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Without a proper theoretical model, a dimensional analysis was performed to fmd 

out important nondimensional parameters for edge flutter. The experimental results were 

analyzed based on those nondimensional parameters and empirical stability criteria were 

developed. The stability criteria, though they are approximate and tentative, show how 

each variable contributes in edge flutter and give a direction for preventing or solving edge 

flutter problems. The first type criterion, Eq. ( 4.2.8) contains frequency term. If the 

frequency is not known the criterion cannot be used directly. The second criterion, Eq. 

( 4.2.9), implies that the edge flutter can be prevented by increasing web tension, bending 

rigidity, and basis weight. 

The application of the stability criteria are limited within the ranges of 

nondimensional parameters covered in this study; they may not be extrapolated. 
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APPENDIX 

MEASUREMFNT OF YOUNG'S MODULUS OF A 

PAPAERWEB 

A.l Method 

Vibration testing was done to measure the dynamic Young's modulus of a paper 

web. The paper strip was hung on a heavy steel structure and stretched by a weight as 

shown in Figure 41. The whole system is considered as a spring-mass system. The 

natural frequency of up-and-down motion of the weight is a measure of axial stiffness (EA) 

of the paper. Natural frequency of the system is 

where 

f = _1_ fKi 
n 2rr-J W 

FA K=-
L 

Therefore, the Young's modulus can be expressed as 

E = (2rrf )2 LW 
n Ag 

(2rr) 2x 95 2 

= 0.004 x1.25 x386 Wfn 
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(A.l) 

(A.2) 
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= 1940 Wf~ (psi) (A.3) 

Four different weights were used. For each weight, tests were repeated at least ten times to 

obtain reliable results. 

A.2 Test Setup and Instrumentation 

The test setup is shown in Figure 41. A Proximiter (Bently 3115/2800) was used 

to measure the motion of the weight. The signal was observed and analyzed using a 

Digitizing Oscilloscope. The image on the oscilloscope was hard-copied by a ThinkJet 

Printer. 

95" 
Paper 

t = 4 mils 

Proximiter Digitizing Oscilloscope ThinkJ et Printer 

L...---:_ _ ___.r--:_ __ H_P_54_5_o_1A _ _:----;C HP2225A 

Figure 41 Test Setup for EA Measurement of a Paper Web 
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A.3 Results 

Typical records of oscillation are shown in Figure 42. The curves show 

exponentially decaying sinusoidal motions. The results are very consistent and not 

dependent on the magnitude of impact. The natural frequency and corresponding Young's 

modulus for each condition are shown in Table IV. 

When W = 1.45 Lb, the maximum acceleration of the weight for the amplitude of 

1.0 mm is greater than the gravitational acceleration. This will affect the results. 

Therefore, the result for W = 1.45 Lb is uncertain. The dynamic Young's moduli of the 

paper strip are averaged, excluding the data for W = 1.45 Lb. 

E = 9.9 x105 psi (6.8x 109 Pa) (A.4) 

TABLE IV 

EA MEASUREMENT DATA 

W(Lb) T (Lb/in) fn (Hz) E (psi) 

1.45 1.16 18.3 9.4 x10 
5 

2.45 1.96 14.4 9.9 X 10 
5 

3.45 2.76 12.1 9.8 x10 
5 

6.45 5.16 9.0 10 x105 

\)~ 
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Figure 42 Typical Time History of the Axial Vibration of a Paper Web 
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