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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Many hydrologic models have been developed in the last three decades. This 

rapid development has taken place with the advent of digital computers. Hydrologic 

models are being applied to a wide variety of decisions for both structural and 

non-structural designs in water resources systems. However, modeling is not without 

problems. A great deal of uncertainty exists in hydrologic modeling due to inherent 

variability, model error and parameter error. 

Inherent variability is obvious because processes being modeled are stochastic 

in nature. Formulations of probability models for some of the hydrologic processes 

explain the presence of uncertainty in hydrologic models. Simplification of the 

complex hydrologic processes leads to model error. Inadequate structure of the model 

reflects our lack of complete knowledge about the various natural processes 

occurring in a watershed. Another source of error in modeling is parameter error. 

Uncertain parameters yield uncertain model predictions. 

Parameter estimation is an important but difficult aspect of hydrologic 

modeling. The parameters of a model are not always directly related to measurable 

watershed characteristics. Therefore, they are estimated as a function of model 

prediction and observed data generally by a curve fitting procedure. Since model 

parameters are inferred as a function of observed data which are stochastic in 

nature, the parameter estimates should be treated as random variables (Haan,1989). 

1 
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Uncertainty is introduced into parameters during the calibration process due to 

model structure, data used for estimation, objective function chosen, fitting 

criterion, parameter interaction and misspecification of the error model. This 

randomness or uncertainty in parameters can be characterized by probability density 

functions. Knowledge of parameter uncertainty can be used to estimate the 

uncertainty of the model predictions. Model predictions should be analyzed in a 

probabilistic manner instead of as point estimates. 

Objectives 

The objectives of this study were to : 

I. Evaluate the impact of various error distributions in rainfall and 

streamflow on parameter estimates. 

2. Evaluate parameter estimation techniques in the presence of errors 

in input data. 

Scope of Study 

The USGS Precipitation Runoff Modeling Systems (PRMS) was selected for 

this study. The model was run in the daily mode to yield daily runoff predictions. 

From preliminary studies, three of the more sensitive parameters SMAX, REMX and 

SCI were selected. Four years of data (1974-1977) from Chickasha R-6 watershed 

(Oklahoma) were used for this study. 

Initially the three parameters were optimized to find representative values for 

the watershed. This set of parameters was assumed to be the true values. Then four 

years of precipitation data were routed through PRMS to generate an error-free 

runoff sequence. Errors from a particular distribution were introduced separately 

into each value of rainfall and generated runoff records. Error distributions 

considered for this study were normal, lognormal, double exponential, and uniform 
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distributions without correlation and normal distribution with correlated errors. 

Parameters were estimated using the three series of data sets : error-free rainfall 

and contaminated runoff, contaminated rainfall and error-free runoff, and both 

contaminated rainfall and runoff records. In each case, 100 different simulations 

were made. Estimation techniques employed for this study were the method of 

absolute errors, ordinary least squares and maximum likelihood techniques. The 

source of parameter uncertainty was evaluated from the spread of the parameters 

about their true value. Uncertainty in parameters was characterized by determining 

their probability density function. The Kolmogorov-Smirnov test was used to 

determine the significance of these distributions. Estimation techniques were 

evaluated according to their ability to estimate the parameters with low variations. 

These processes were repeated for each error distribution and parameter estimation 

technique. 



CHAPTER II 

REVIEW OF LITERATURE 

Introduction 

This research is concerned with parameter estimation in hydrologic modeling. 

Accordingly, this chapter deals with previous research on parameter estimation and 

its difficulties. Initially, a model classification is provided to formulate a model in 

perspective to its parameter estimation. Sources of parameter uncertainties are then 

discussed. Finally, a review of the state of the art in parameter estimation is 

provided. Theory on parameter estimation techniques is described in detail in the 

succeeding chapter. 

Mathematical statements are used to formulate a problem in engineering 

systems. Generally, a solution can be obtained by mathematical techniques if the 

mathematical representation of the problem is well founded. However, all physical 

problems can not be completely expressed in mathematical statements due to a lack 

of understanding of these processes. Therefore, an abstract representation of the real 

system known as a 'model' is developed and an approximate solution of the real 

problem is sought. In the field of hydrology, three types of models have been used to 

represent hydrologic problems, namely : physical, analog and mathematical 

(Clarke,1973; Chow, Maidment and Mays,1988). The current trend is towards 

mathematical models based on theory and experiments. The above model 

classification with terms physical, analog and mathematical can not be taken 

literally. Mathematical expressions are also used extensively in both analog and 

4 



physical models. Mathematical models are basically digital simulation models 

programmed on digital computers. 

Physical Model 

5 

Physical models are scale models which represent the real system in a reduced 

scale such as hydraulic model of a spillway. There have been several attempts to 

build small laboratory scale models to study the rainfall-runoff process. Mamisao 

(1952), Amorocho and Orlob (1961), Chery (1966) and Lynch and Sopper (1974) were 

among those in surface water hydrology who utilized physical models to conduct 

studies of the response of a watershed. However, great difficulty has been 

encountered in transfering the results of those studies to natural watersheds. 

Analog Model 

Analog models use another system whose physical structure is quite different 

from that of the real system but whose response can be related to that of the real 

system. This task became easier with the development of analog computers. Riley, 

Chadwick and Israelson (1967) developed an electric analog computer to simulate the 

response of a small watershed in Southern Arizona. Analog models were 

specifically built for a given watershed and they were not transferable to other 

watersheds. 

Mathematical Model 

Mathematical models represent the behavior of the system in mathematical 

form by linking the input and output through a set of equations. They are widely 

used due to the availability of computers and diverse capabilities of modeling 

techniques. Mathematical models are classified in various ways. Some of the terms 

found in hydrologic literature are deterministic, stochastic, analytic, synthetic, 
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empirical, parametric, conceptual, lumped, distributed, statistical, numerical, 

regression etc. The following model classification is used based on their concept of 

development. 

Theoretical vs. Empirical 

Theoretical models are entirely derived from basic physical laws such as 

conservation of mass, conservation of energy, laws of thermodynamics etc. There 

exists no completely theoretical operational model in hydrology. Empirical models 

are based on observation. Relationships between measured input and output are 

established through transformation functions. In general, transformation functions 

are not required to have any physical meaning. All hydrological models contain 

empirical relations. There is very little clear distinction between these two classes 

of models. Clarke (1973) defined them as conceptual and empirical. Sorooshian and 

Dracup (1978) classified them as synthetic vs. analytic in comparison to theoretical 

vs. empirical. 

Deterministic vs. Stochastic 

In the second level, models are classified based on randomness of the process. 

Stochastic models represent at least one of the processes by a probability distribution 

function. On the other hand, in deterministic models the random bcha vi or of the 

variables is ignored and the process is considered to follow a definite law of 

certainty. Thus, with a given input, a deterministic model always produces the same 

output. 

Lumped vs. Distributed 

The third model subdivision is based on the distribution of model input 

variables and/or parameters. Distributed models consider the spatial variability of 
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input variables or model parameters while lumped models use average values 

representing the entire system being modeled. Parameters used in lumped models are 

thus not a true measure of the underlying physical system. Such approximations 

limit the accuracy of model predictions. None of the existing rainfall-runoff models 

are completely distributed models. They are all lumped models to some extent with 

varying degrees of lumping. 

Time-Variant vs. Time-Invariant 

The time of input application affects the input-output relationship of time

variant system. The input-output relationship of time-invariant systems have no 

dependency on the time of input application. In hydrology, most of the systems are 

time-variant, but in most of the models, these variations are not considered for the 

sake of simplicity. 

Model Formulation 

Classification of hydrologic models has already been discussed. Regardless 

of how models are classified, they can generally be represented as (Haan,l989) : 

0 = [_(1._ P, t) + ~ (I) 

where 0 is a matrix of hydrologic response to be modeled, [_ is a collection 

of functional relationships, !_is a matrix of inputs, ~is a vector of parameters, t is 

time, and e is a matrix of errors. Response in 0 may range from a single number such 

as a peak flow or a runoff volume to a continuous record of flow, soil water content, 

evapotranspiration, and other quantities. Model classification depends on the nature 

of f . 

The distinction between !_and ~is not always clear. Generally !Jepresents 

inputs, some of which are time varying such as rainfall, temperature, land use, etc. 

while E_represents coefficients particular to a watershed that must be estimated by 
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some means. 

The error term, ~. represents the difference between what is actually 

/\ 

observed, 0 , and what the model predicts, 0 

/\ 

o = f....CL.~, t) (2) 

/\ 

e = 0- 0 (3) 

Thus e is a function of both I and P . The vector e can be eliminated from 

the Eqn. 1, provided the following conditions are satisfied. 

1. The f must be an exact representation of the watershed response. 

2. The true values of the parameters ~ are known. 

3. The independent variables are error-free. 

4. The dependent variables can be expressed directly as a function of 

inputs L and the parameters ~. 

None of the above conditions can be fully satisfied to achieve a perfect fit of 

the model. The stochastic part will always be present in a model. As already 

indicated, models contain empirical equations and thus can not be exact. It is 

impossible to know the exact value of the parameters because errors will be 

introduced into the parameters during measurement of observed data. The strict 

physical meaning of the parameters is lost due to the empirical nature of the model 

equations. Finally, it is not always possible to express dependent variables in terms 

of inputs and parameters in a deterministic form. 

The major contributing sources of uncertainties in rainfall-runoff models are 

discussed in the following sections. 

Precipitation Errors 

The U.S. National Weather Service (NWS) collects and publishes precipitation 

data in the United States. There are about 12,000 locations over which rainfall data 
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have been compiled (Riggs, 1985). 

The most common error in precipitation is due to its spatial variation. 

Precipitation is usually measured from a few points in a large watershed and an 

average value is assumed to be representative of the entire basin. Often, 

measurements are available from a single gage and the gage may not be centrally 

located or may even be located some distance from the watershed. Erroneous 

precipitation records used for parameter estimation result in non-optimal 

parameters. Studying the effect of spatial variability of rainfall, Dawdy and 

Bergmann (1969) concluded that it has a substantial effect on the parameters of 

rainfall-runoff models. Aitken (1972) also reported the presence of random and 

systematic error in rainfall and runoff records. However, Kuczera (1982) found 

that bias due to these random errors in rainfall with a monthly coefficient of 

variation of 12 percent was of secondary importance in comparison to parameter 

uncertainty. 

Another major source of error in precipitation records is due to 

malfunctioning of rain gages. Jackson and Aron (1971) attributed these rain gage 

errors to clock and/or weighing device malfunctions. Error caused by clock 

malfunction can be of significant importance, specifically in studies involving the 

temporal distribution of rainfall and runoff. 

Evapotranspiration Errors 

Evapotranspiration is calculated using pan evaporation or air temperature 

data. The U.S. National Weather Service collects these data in the United States. 

While calculating potential evapotranspiration, errors are introduced by empirical or 

semiempirical equations. However, the effect of these errors has been found not to 

be severe, especially during the periods of major storms (Ibbitt, 1972). 
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Streamflow Errors 

The U.S. Geological Survey (USGS) is the responsible agency for collecting 

streamflow measurements in the United States. The U.S.D.A. also publishes 

streamflow records on their experimental watersheds. Jackson and Aron (1971) 

attributed the following causes for streamflow errors: 

1. Instrument errors m the velocity measuring equipment. 

2. Instrument errors in the stage measuring equipment. 

3. Errors due to procedures used in mea~uring the velocity profile and 

average velocity. 

4. Errors due to preparation of rating tables from a finite set of 

measurements. 

5. Errors due to assuming steady flow past the gage site. 

In traditional parameter estimation problems, uncertainties in the input 

vectors are neglected. It is assumed that mainly streamflow contributes to the error 

term. This may be a reasonable assumption concerning evapotranspiration, but 

assuming precipitation is measured without error is certainly questionable. This 

assumption has been made in a majority of nonlinear estimation problems, 

irrespective of its justification. Troutman (I 982) showed how erroneous 

precipitation data results in biased parameter estimates in rainfall-runoff modeling. 

However, Ibbitt (1972) reported that the errors in precipitation data were taken care 

of by storage action of the model over several time intervals. His observation may be 

model specific. Since parameters of rainfall-runoff models are estimated through 

curve fitting techniques, errors in input precipitation are bound to affect the 

estimates. Studying the influence of precipitation errors on parameter estimates is 

one of the objectives of this research. 
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Parameter Interaction 

Parameter interaction is another source of uncertainty in hydrologic modeling. 

In the presence of parameter interaction, it is difficult to obtain unique parameter 

estimates. Interdependence of parameters results in nonoptimal convergence of 

automatic search techniques (Johnston and Pilgrim, 1976; Sorooshian et. al., 1983). 

Parameter correlation can be studied by examining the behavior of the sum of 

squares error function (Mandeville et. al., 1970). With correlation between two 

parameters, this function gives a series of concentric circles on a plane. This 

indicates equal sensitivity in each parameter. When model parameters are 

interdependent, the resulting parameter response surface is elliptical rather than 

circular. The axis of the ellipse inclines to the parameter direction. A simple scale 

change is not enough to transform the elliptic pattern to circular contours because 

hydrologic models are highly nonlinear and the presence of threshold parameters 

create discontinuities in the error function surface. To overcome this problem, 

Gupta and Sorooshian ( 1983) recommended appropriate reparameterization of the 

model. This approach is doubtful for a conceptual rainfall-runoff model because 

these models are approximations of natural processes occurring in a watershed. Due 

to shortcomings of a model component, other components of the model are forced to 

compensate for the model inadequacy. Thus to some degree parameter interaction is 

always present. The method of principal components can be used to treat the 

collinearity problem in the regression model. Haan and Allen (1972) compared 

principal component and multiple regression in the context of discarding insensitive 

variables. 
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Parameter Estimation The State of the Art 

Parameter estimation in rainfall-runoff models is not a simple task. 

Traditional criterion of minimizing the sum of squares between observed and 

predicted values seem to be a straight forward numerical procedure. But difficulties 

encountered in parameter estimation in rainfall-runoff modeling has been cited 

extensively in hydrologic literature (Dawdy and Thompson,l966; Pickup,l973; 

Johnston and Pilgrim,l976 and others). 

Dawdy and O'Donnell (1965) were among the earliest researchers to apply an 

automatic technique for evaluating parameters of a conceptual model. The fitting 

technique was an iterative trial and error search method developed by Rosenbrock 

(1960). The least squares criterion was used as the objective function. They evaluated 

the fitting technique based on its ability to obtain true parameter values starting 

from erroneous initial parameter values. 

In the field of operations research, a series of powerful automatic fitting 

techniques were developed during the late 1960s. Beard (1967) investigated these 

computer based procedures for finding optimal values of parameters for a 

hydrologic model. lbbitt and O'Donnel (1971) conducted a comprehensive study that 

compared nine different optimization techniques using simple least squares 

criterion. The optimization techniques used for their study were : Beard's 

univariate search technique, Rosenbrock's search technique, a modified version of 

Rosenbrock's technique, Powell's direct search method, Fletcher and Powell's 

method, Barnes' least squares method and Karnopp's random search method. They 

found that the modified version of the Rosenbrock's method showed relative 

superiority over the others. Nash and Sutcliffe (1970) also reported the use of the 

modified Rosenbrock's technique with simple least squares as the fitting criterion to 

investigate the performance of a simple conceptual model. They observed that 
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models containing few independent parameters provided better estimates of runoff 

volume. 

Chapman (1970) was a pioneer among Australian hydrologists to conduct 

research in the area of automatic parameter estimation. He utilized fitting 

criterion other than the simple least squares. The other criterion used was the 

logarithmic transformation of observed and estimated flows before optimization. He 

concluded that the logarithmic transformation gave three times more weight on the 

threshold storms than to the larger storms. He further concluded that the fitting 

criterion would have little effect on the optimal values of the parameters if the 

model is a realistic simulation of the catchment response. If there exists no errors 

in the model formulation as well as in the hydrological data, his observation would 

be true. 

Jackson and Aron (1971) reported an extensive and interesting review of 

parameter estimation techniques in hydrology. They investigated the source of input 

error and concluded that erroneous input had significant effect on the estimated 

parameters. 

Subjectivity in the selection of an objective function can not be denied. A few 

researchers have recently tried to deal with this problem. Johnston and Pilgrim 

(1976) conducted a comparative study of various objective functions while using the 

Boughton model (an Australian model). The objective functions were functions of 

various power settings of the deviation of observed and generated flows. They 

found that squaring the deviation (simple least squares) provided a better objective 

function than other power settings. 

Diskin and Simon (1977) studied the effects of twelve objective functions on 

parameter estimation for a hydrologic simulation model. Different objective 

functions estimated twelve different optimal parameter sets with optimal 

parameters being optimal only in the context of the selected objective function. 
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They argued for considering more than one objective function in the optimization 

procedure. Two reasons were cited for this. First, the best function for a given 

application is not known in advance. Second, optimization procedures using a 

number of objective functions are less likely to concentrate on local minimum 

associated with one objective function. Although it seems plausible that one 

objective function will estimate the parameters and the others can be used to 

measure model performance; the computational cost involved acts as a deterrent for 

practical application. Of course, it is interesting to note that they acknowledge the 

random nature of parameters by considering more than one objective function. 

Most of the research described so far analyzed parameter estimation problems 

from a mathematical rather than statistical point of view. However, more recently 

some researchers have adopted a statistical framework for parameter estimation, 

considering a parameter as a random variable (rv) with a probability density 

function (pdf). Sorooshian and Dracup (1980) considered the stochastic nature of 

model residuals for parameter estimation and showed that a stochastically proper 

objective function yielded improved parameter estimates. Troutman (1985) discussed 

extensively errors in rainfall-runoff modeling and observed that errors should be 

considered random variables characterized by pdfs. Therefore parameter estimation 

should be based on probabilistic structure of the errors. Haan (1989) made an 

interesting and extensive review of parameter uncertainty in_ hydrologic modeling. 

He suggested that both model and parameter evaluation should rely on statistical 

considerations. 

Concluding Remarks 

The form of the distribution of the error term (Eqn. 1) is important since the 

estimated parameters are thought to be affected by it. Normality assumption of 

_errors has been used extensively in hydrologic literature. The normality assumption 
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is rarely appropriate. With the normality assumption for the error term in nonlinear 

models, estimated parameters can also be approximated by the normal distribution 

which in turn facilitates estimating confidence intervals on the estimates. There is 

very little reference to the effect of other error distributions on parameter estimates 

and their distributions. There is a need to evaluate the performance of various 

estimation techniques with respect to the distribution of errors. Very few researchers 

have tried to evaluate the performance of various estimation techniques in rainfall

runoff modeling. When they do they adhered to normality assumptions. For example, 

Sorooshian (1980) used a very simple two parameter model for this kind of study. 

Application of this approach to conceptual operational rainfall-runoff modeling is 

rare. Instead of rationalizing for a particular method, one should use the parameter 

estimation technique that works better in the context of the chosen error 

distribution. This is the main theme of this dissertation. From the literature review, 

it is obvious that uncertain parameters result from input data errors, model 

structure, parameter interaction and estimation techniques. Variability in the 

parameters can be characterized by the pdf. Once pdfs of parameters are known, 

uncertain model output should be analyzed in a statistical framework. 



CHAPTER III 

PARAMETER ESTIMATION TECHNIQUES 

Introduction 

Parameter estimation is the process of deriving model parameters for a 

particular application. It is the most important requirement for a model before it 

can be applied to a watershed for a planning, design or operational purpose. It has 

already been stated that hydrologic models represent the complex natural processes 

in a simplified way. Therefore, all the model parameters are not always related to 

the physical watershed characteristics. Only very few parameters can be obtained 

directly from field measurement. The remaining parameters are sought through 

indirect ways from the model results. Kuczera (1982) classified the approaches 

currently employed for parameter estimation into three groups: 

a. priori one 

b. curve fitting and 

c. mixed approach 

The simplest procedure is priori one in which model parameters are evaluated 

from measurable watershed characteristics, published tables and charts. Watershed 

drainage area, channel specific capacity, and Manning's n are some examples. 

Curve fitting is the process of fitting the model functions (in terms of its 

parameters) to data with some arbitrary criteria. This includes trial and error 

calibration, least squares, absolute value difference, method of moments and 

maximum likelihood. In most cases a mixed approach is used combining both priori 

16 
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one and curve fitting techniques. 

Generally, an objective function of the error term is optimized to obtain the 

optimal parameter set. Specifying an objective function, the user tries to produce 

residuals having certain statistical properties so the parameters can be regarded 

optimal. A general form of an objective function can be written as 

n 

O.F. = n-1 L [Yt·f(Xi;~J e (4) 
i=1 

where e is any positive number, Y. is a nx1 vector of observations, X. is a 
---t --1. 

nxk rna trix of inputs and ~ is an mx 1 vector of parameters. 

For most rainfall-runoff models this equation has no closed form solution. 

One has to apply numerical techniques to estimate P. 

The method of moments and Bayesian analysis are rarely used for parameter 

estimation in conceptual rainfall-runoff models. The method of moments is used to 

estimate distribution parameters of hydrologic random variables. However, its 

efficiency is very poor because most of the hydrologic variables are from skewed 

distributions. Bayesian analysis has been used to quantify parameter uncertainty in 

the paramete:cs of flood frequency models (Davis et al., 1972, Vicens et al., 1975, 

Wood, 1976, Wood and Rodriguez Iturbe, 1975, Bodo and Unny, 1976, Edwards, 1988 

and others). To apply Bayesian analysis, one must have prior information about the 

parameters that can be expressed in probabilistic terms. This prior distribution is 

then used to determine the posterior density that characterizes the parameter 

uncertainty. Misspecification of the prior probability density of the parameters may 

result in erroneous analysis. The method of least squares, method of absolute errors 

and maximum likelihood techniques are discussed in the following sections because 

they are widely used in rainfall-runoff models. 
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Method of Least Squares 

Least Squares (LS) is the most widely used method for estimating parameters 

in hydrologic models. Parameters are estimated by minimizing the error sum of 

squares between the observed and model predicted values. When e= 2 in Eqn. 4, the 

least squares objective function results. 

n 

O.F. 
-1 = n 

l [~- ~;B]2 (5) 

i=l 

Solution of the above equation depends on whether the model is linear or 

nonlinear in the parameters. 

Linear Models 

A linear model may be written m vector notation as 

/\ 

Y. 
1 

X.P + 6 
--]_- 1 

(6) 

where 6 is the residual of the ith prediction. Estimation of P from the least 
1 

squares criterion results in the following objective function: 

(7) 

Minimization of Eqn. 7 results in the well known linear normal equations, 

given by 

(8) 

Now the estimation of P is easily accomplished by 

(9) 
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Least Squares Assumptions 

Non-singularity of X T X is necessary to obtain ~from Eqn. 9. Up to this point, 

no other assumptions have been postulated about the nature of the residuals. If 

some assumptions about the stochastic nature of the residuals are made, the ~will 

possess some statistically appealing characteristics. The assumptions made about 

the residuals are: 

1. The residuals have mean zero. 

2. The variance of the residual is constant. 

3. The residuals are statistically independent of each other. 

The above assumptions are known as the least squares assumptions. If these 

assumptions are obeyed, then the least squares estimates are unbiased and minimum 

variance estimators. Draper and Smith (1966) show that confidence interval and 

statistical hypothesis tests may be conducted easily if it may further be assumed that 

4. The residuals are normally distributed, i.e. N(O, ch. 

Nonlinear Models 

So far the least squares criterion in the context of the linear models has been 

discussed. However, rainfall-runoff models are highly nonlinear in their 

parameters and can not be specified in the form of Eqn. 6. The least squares 

criterion can still be used for parameter estimation however. The objective function 

to be minimized in this case assumes the form of 

(10) 

The resulting normal equation given by Draper and Smith ( 1966) is in the 

nonlinear form 
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n 

\ { [ a(X.;~J } L [Xt-f(~;~J : P=P 0 
1=1 

(11) 

There is no general closed form solution of the nonlinear normal equations. 

One is required to use a numerical approach to estimate P. There is an abundance of 

literature describing methods for estimating .E_ by solution of systems of nonlinear 

equations (Bard 1974; Beck and Arnold 1977; and others). 

Again, the stochastic nature of the residuals dictate the quality of the estimate 

A 

.E_. Draper and Smith (1966) reported that if the residuals obey assumptions 1-4 listed 

A 

earlier, the nonlinear least squares estimate .E_may be regarded as identical to the 

maximum likelihood estimate of P. Thus the least squares estimates have the same 

optimal properties as the maximum likelihood estimates; specifically, unbiasedness, 

minimum variance and asymptotic efficiency. 

Violation of the Least Squares Assumptions 

The least squares assumptions are very strong assumptions and often are not 

satisfied by the residuals of hydrologic models (Clarke 1973; and Sorooshian and 

Dracup 1980). Clarke (1973) aptly noted that parameters of hydrologic models are 

optimized using the least squares criterion, regardless of its justification. As a 

result, the parameter estimates are not statistically optimal in various aspects; 

namely, 

1. If the residuals have nonzero mean, parameter estimates are biased. 

2. If the variance of the residuals depend on the response, the resulting 

parameter estimates don't have minimum variance. 

3. If the residuals are correlated, both bias and non-minimum variance are 

introduced into the estimates. 
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Violation of least squares assumptions can be checked by construction of 

residual plots and analysis of runs of the residuals (Draper and Smith, 1966). If any 

of these assumptions are violated, the calibration procedures should be modified 

(Beck and Arnold, 1977). Power transformations (Box and Hill, 197 4) are often 

employed for this purpose. Sorooshian and Dracup (1980) discuss application of the 

above transformations for correlated and heteroscedastic errors in hydrologic 

models. 

Method of Absolute Errors 

An absolute value objective function can be obtained by putting ~1 in Eqn. 4. 

Unlike least squares, parameters are estimated by minimizing the sum of absolute 

errors. 

n 

O.F. n -l ~ I ~- f(~; E2l (12) 

i=l 

Absolute error optimization can easily be transformed into a linear 

programming problem with the desired constraint, such as linearity, inequality and 

nonnegativity. It is specially helpful in hydrologic modeling where some parameters 

can not assume a negative value (nonnegativity constraint). Linear programming 

techniques are advantageous because well established algorithms and computer codes 

are available. Instead of linear programming, the above objective function can also 

be solved by numerical techniques. 

The method of absolute error estimation was recognized by Fourier in the 

1820s. For brevity and to contrast with least squares, Fischer (1961) coined the term 

"Method of Least Lines" for this procedure. Method of least lines has been used in 

deriving unit hydrograph ordinates by various hydrologist (Eagleson et al. 1966; 

Deininger 1969; Singh 1976; Mays and Coles 1980 and others). Fischer (1961) 
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reported that the optimality for the method of least squares namely random 

sampling and the normality assumption often don't exist. In this circumstance least 

squares gives undue weight to extreme observations. It is just as logical to minimize 

the sum of absolute errors in this instance. 

Method of Maximum Likelihood 

The maximum likelihood technique is based on the structure of the residuals 

of the model. The residuals are assumed to come from a known density function. 

However, the parameters of the density function are not known. The parameter 

estimates are obtained by maximizing the distribution taken as a function of the 

model parameters. This function is called the likelihood function (Mood et al.,1974). 

By definition, a maximum likelihood estimate is an estimate that has a maximum 

possibility of being near to a true parameter value (Freund, 1962). 

With the normality assumption regarding the errors with mean zero and 

autocovariance matrix COY, the likelihood function is 

L({~,COV) = (211}-n/2 ICOVI-l/2 

EXP [-o.5(Q - Q )T coY-1 (Q Q )] 
mes comp mes - comp (13) 

where COY is nxn nonsingular autocovariance matrix, ICOYI is determinant 

of COY, COY-I is inverse matrix of COY, Q is a vector of measured daily runoff 
mes 

volume and Q is a vector of computed daily runoff volume. comp 

Taking the natural logarithm of the above equation results in the Log 

Likelihood function 

Ln L(P,COY) -~ Ln(211}-; Ln I COY 1 

(14) 
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This logarithmic function is simpler than the likelihood function and is 

maximized to get the parameters. If the following assumptions regarding the 

autocovariance matrix are made, i.e., the residuals are serially independent with 

constant variance of J, it can be shown that maximization of Eqn.l4 is same as 

minimization of the simple least squares criterion. 

{ 

2 
E(et.et )= u for s=O 

T +s 
COV=E(e.e )= 

- E(efet+s)=O for s"fO 
(15) 

Simple least squares may not be appropriate when the above assumption is 

violated. Violations of least squares assumptions may occur in various ways which 

have been discussed earlier. 

Elements of the COY matrix are required in order to maximize Eqn. 14 with 

respect to the unknown parameters. The elements of the COY matrix can not be 

obtained directly because streamflows are a single realization over time. Indirectly, 

the elements can be evaluated along with the other parameters .if we have knowledge 

about the autocorrelation process of the residuals. A first order autoregressive 

process is frequently used for hydrologic time series. 

(16) 

where I pi <1 is the first lag serial autocorrelation coefficient for the 

residuals and V t is a random component. The random vector (V t) is assumed to 

come from a multivariate normal distribution with mean zero and variance J 
v 

Sorooshian and Dracup (1980) utilized the following autocovariance matrix for 

stationary correlated residuals. 



24 

2 n-1 
p p p 

n-2 2 
p p 0' 

COY v 
( 17) -2 

n-3 1- p 
p 

1 

This covariance matrix is known as a "Steady state" autocovariance and has 

been utilized by Goldberger (1964), Box and Jenkins (1970) and Johnson (1972). With 

further simplification of the Eqn. 14, Sorooshian and Dracup (1980) formulated the 

following objective function for Maximum Likelihood Estimation (MLE) 

MAX 
p 0' 

v 
MLE 

p 
n 

- ::Ln(2 ~ -2 

2n 
1 uv 
::-Ln-- -
2 1-l 

(18) 

Unknown parameters are obtained by maximizing Eqn. 18. The advantage of 

2 
MLE is that u and p can also be evaluated along with other unknown model 

v 

parameters. 

The first term of Eqn. 18 can be regarded as a constant for a particular 

application. For a large data set ( large n), the 2nd term is insignificant. The third 

term can also be neglected as it contains the square of a very small number ( 1 ). 

Thus, Eqn. 18 reduces to the form 

(19) 

Maximization of a negative function is the same as minimization of its 

positive function value. Therefore 
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n 

p 
MIN 

0' 
v 

MLE 
p 

= ~ l [<Q( P Qt)mes -(Q( P Qt)compJ 2 
(20) 

2 uvt=2 

It is evident from Eqn. 20 that when the residuals are uncorrelated, i.e., p=O, 

maximum likelihood estimation is equivalent to the least squares objective function. 

Properties of Estimates 

To make any kind of comparison as to which parameter estimation technique 

is best, we must know some desirable properties of the estimates. These properties 

can then be used to describe the performance of various estimation techniques. Thus, 

the concept of unbiasedness, minimum variance, consistency, efficiency and 

sufficiency of the estimates will be discussed briefly. Detailed mathematical· 

treatment of these properties can be found in the literature (Mood et al.,l974; 

Haan,l977; and Beck and Arnold,l977) . 

. Unbiasedness 

In reality, the true values of the parameters are unknown and have to be 

estimated from the sample realizations. Intuitively, the best technique is one which 

gives estimates that are in some sense close to the true values. Unbiasedness is a 

1\ 

measure of the closeness of the estimate. An estimate P of a parameter Pis said to be 

1\ 1\ 

unbiased if E(P ) = P. If bias exists, it is given by E(P) - P. Unbiasedness does not 

1\ 

mean that the specific estimate P is equal to P. It only means that the average of 

A 

many independent estimate for P will equal P. 

Consistency 

A 

An estimate Pis obtained by a calibration procedure. Therefore, the estimate 
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will have sampling variability and will depend on the particular input data used in 

the calibration period. A different calibration period would result in a different 

A A 

estimate of P. P is said to be a strongly consistent estimator of P if the difference 

A 

between P and P grows smaller as the calibration period grows larger. Consistency is 

an asymptotic property since a sufficiently large sample is almost certain to produce 

estimates close to the true values if the estimates are consistent. 

Efficiency 

Another measure of the closeness of an estimate to its true value is its variance. 

A 

Different estimation techniques will lead to estimate P with different variances. The 

A 

best estimate is the one with minimum variance. Because if P is unbiased and has a 

A 

minimum variance, P is concentrated near P and have a better chance of being close 

A 

to true value than those with a larger variance. An estimator P is called the most 

efficient estimator for P if it is unbiased and has a variance which is smaller than 

any other unbiased estimator for P. 

Sufficiency 

All the information from a sample which is relevant should be used to estimate 

A A 

P. In this case, P is called the sufficient estimator for P. 

The concepts of unbiasedness and minimum variance are small sample 

properties; on the other hand, consistency is an asymptotic (large sample) property. 

Troutman (1985) stated that it is not usually possible to obtain estimators with 

unbiasedness and minimum variance in a nonlinear modeling context. Consistency of 

estimates is however suitable to assess optimality of a particular estimation 

technique. Sufficient estimators in rainfall-runoff modeling are perhaps 
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nonexistent. Only 10 to 35 percent of annual rainfall is transformed to runoff 

volumes. Thus, it is doubtful that estimation of all model parameters solely from a 

runoff record is sufficient. Kuczera (1983) showed that improved parameters can be 

obtained by augmenting the estimate other time series such as water table data in 

parameter estimation of rainfall-runoff model. 



CHAPTER IV 

RAINFALL-RUNOFF MODEL AND 

WATERSHED DESCRIPTION 

Description of Rainfall-Runoff Model 

The model used for this study was the USGS Precipitation Runoff Modeling 

Systems (PRMS) which is a physically based, highly nonlinear computer model. 

PRMS can be used to simulate daily flow, storm peaks and volumes, and sediment 

yields. All components of the model are based on either physical laws or empirical 

relationships. This model can be regarded as a distributed model in the sense that the 

watershed can be divided into various homogeneous units, based on hydrologic 

conditions. The sum of the responses of all units, weighted on a unit area basis, 

produces the total system response from the watershed. 

PRMS can operate on either a daily or storm time scales. The daily mode 

simulates hydrologic components as daily averages. Streamflow is computed as a 

mean daily flow. On the other hand, the storm mode simulates hydrologic processes 

at intervals shorter than a day. In this study, PRMS was run in the daily mode to 

yield daily runoff predictions. As such, the following sections will deal the model 

structure and input in relation to the daily mode only. Detailed description of the 

model can be found in Leavesley et a1.(1983). 

28 



29 

Model Input 

Model input can be classified into two groups - input hydrologiC data and 

input parameters. 

Input hydrologic data includes daily rainfall and minimum and maximum 

daily air temperature. Daily streamflow data are required for optimization purposes 

only. If snowmelt is considered, daily solar radiation data are required as input. 

Daily minimum and maximum air temperature are used to estimate evaporation. 

Instead of air temperature data, pan evaporation data can also be utilized directly. 

Input parameters include quantitative data on vegetation, soils and 

hydrologic characteristics of the watershed. Some parameters can be directly 

obtained from measurable watershed characteristics, while others are estimated 

during calibration. 

Model Structure 

PRMS conceptualizes the watershed system as a series of reservoirs called the 

impervious zone, soil zone, subsurface zone and groundwater reservoir. The output 

from these reservoirs combine to generate the total system response. The impervious 

zone reservoir has no infiltration capacity. Once the maximum retention storage 

capacity of this reservoir is satisfied, surface runoff can occur. The soil zone 

reservoir extends to the predominant rooting depth and has a maximum retention 

capacity of SMAX which occurs at field capacity. This zone is divided into two 

layers. The upper layer is the recharge zone having a maximum retention capacity of 

REMX. Losses from the recharge zone occur through evaporation and transpiration. 

The lower zone of soil reservoir loses water through transpiration only. Once SMAX 

is satisfied, the excess water recharges the subsurface and groundwater reservoirs. 

Streamflow is the sum of the surface runoff, subsurface flow and groundwater flow. 
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The model is shown schematically in Figure 1. 

A brief description of the hydrologic processes used in the model is presented 

in the following paragraphs. 

Surface Runoff 

Daily surface runoff is computed using a contributing area concept. The 

percentage of an HRU (hydrologic response unit) contributing to surface runoff can 

be computed as a nonlinear function of antecedent soil moisture and rainfall. The 

contributing area (CAP) is computed from 

CAP = SCN * 10( SCI * SMIDX ) (21) 

where SCN and SCI are coefficients , SMIDX is the sum of the current 

available water in the soil zone (SMA V) plus one-half of the daily net precipitation 

(PTN) and CAP is the contributing area as a decimal fraction of total HRU area. 

SRO = CAP * PTN (22) 

where PTN is the daily net precipitation (inch). 

Total precipitation (PPT) is reduced through interception storage and 

throughfall available from the predominant vegetation. Therefore net daily 

precipitation (PTN) is a function of the cover density and storage available for the 

vegetation on an HRU. It is computed by 

PTN = [ PPT * ( 1 - COVDN ) + (PTF * COVDN )] (23) 

where PPT is the total daily precipitation received on an HRU (inch), 

COVDN is the seasonal cover density and PTF is the precipitation falling through 

the canopy (inch). 

Daily flow from impervious areas is computed using total daily precipitation 

(PPT). Impervious area is assigned a maximum retention storage capacity (RETIP). 

Once RETIP is satisfied, the remaining PPT becomes runoff. 



Ev-..o.,..apiratian 

Ev8pOI'etian 
SUbliMetian 

SublifMtiCift 

, .... 
Tran-.»iretian 

TrMapiretian 

Air ........... 
INPUTS 

Precipi ... iCift 

lna.ception 

Through fell 

Snowmelt 

Soler 
redietion 

Eveporation 

Surface runoft (SAS) 

~ioua zane 
reservoir 

LO*er zone 

Soil zone 

Soil zone 
re...voir 

Surface runoft (SAS 

/ .... :~~~--· ,----...II"L----

---··- I I ~;';" I --flow (RASI ~ 
Neb.,.. (SEP) Ground-weter ~ 

red\arge (GAO) 

Ground-weter flow (BAS) 

Ground-weter sink (SNit) 

~ 
Figure 1. F1ow diagram for PRMS 

Stre.nflow 

w ..... 



32 

Evapotranspiration 

Evapotranspiration (ET) is one of the most important processes of the 

hydrologic cycle. It influences the spatial and temporal distribution of soil water as 

well as the antecedent hydrologic conditions. There are various empirical methods to 

estimate ET using pan evaporation, air temperature and solar radiation data. In 

this study , air temperature data are used to calculate ET as they are readily 

available for the watershed. The Hamon formulation (Hamon, 1961) is used to 

estimate daily potential evapotranspiration (PET) as a functi'on of daily mean air 

temperature and possible hours of sunshine. PET is computed by 

PET = CTS(MO) * DYL 2 * VDSA T (24) 

where CTS is a coefficient for month MO , DYL is possible hours of 

sunshine, in units of 12 hours and VDSAT is the saturated water-vapor density at the 

d '1 . . I 3 a1 y mean au temperature m g m . 

Federer and Lash (1978) proposed the following equation to compute VDSAT. 

VDSAT * VPSAT 
= 216·7 TAVC+273.3 (25) 

where VPSAT is the saturated vapor pressure in mb at T A VC and TAVC 

is the daily mean air temperature, 0c. 

VPSA T is calculated as an exponential function of daily mean air 

temperature (Murray,l967) 

VPSAT = 6.108 * EXP ( 17.26939 * TA ~~~~7.3 ) (26) 

Actual evapotranspiration (AET) is computed as a function of the available 

water to satisfy PET. With nonlimiting availability of water, AET equals PET. 

Interception storage and retention storage on impervious areas are used first to 

·satisfy PET. Remaining PET demand then is fulfilled from the soil zone storage. 

AET is computed for the soil zone as a function of the ratio of currently available 
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water to its maximum available water holding capacity. AET computed for the 

recharge zone is used first to fulfill PET, any remaining demand is met by AET from 

the lower zone of soil reservoir. This concept of AET -PET computations for sand, 

loam and clay soils as a function of the soil-water ratio was introduced by Zahner 

(1967). 

Infiltration 

Computations of infiltration depend on the form of the precipitation input. 

When daily rainfall occurs on a snowfree HRU, infiltration is computed as the 

difference between the net precipitation and surface runoff. For snowmelt, 

infiltration is nonlimiting until the soil reaches field capacity. Once field capacity is 

reached, a user-defined daily infiltration capacity (SRX) controls the daily 

infiltration volume. Snowmelt in excess of SRX contributes to surface runoff. All 

infiltration in excess of SMAX is routed to the subsurface and groundwater 

reservoirs. 

Subsurface Flow 

The source of subsurface flow is the soil water in excess of field capacity. 

Inflow to the subsurface reservoir occurs when the excess soil water is greater than 

the daily recharge rate (SEP) to the groundwater reservoir. Subsurface flow is 

calculated using a reservoir routing system. For the subsurface flow system, the 

continuity of mass equation is expressed as 

RAS = INFLOW -
d(RES) 

dt 

where RAS is the rate of outflow from the subsurface reservoir 

(27) 

(inch/ ~t), INFLOW is the rate of inflow to the subsurface reservoir (inch/ ~t), and 

RES is the storage volume in the subsurface reservoir (in). 
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RAS is again expressed as a nonlinear function of RES using the relationship 

RAS = RCF * RES + RCP * RES2 (28) 

where RCF and RCP are routing coefficients. 

These two equations are combined to solve for RES. Once RES is known, 

subsurface flow RAS is computed from the continuity equation. For daily flow 

simulation, at equals 24 hours. 

Groundwater Flow 

Inflow to the groundwater reservoir occurs from both the soil zone and the 

subsurface reservoir. Inflow from the soil zone occurs when field capacity is 

exceeded and is limited by a maximum daily recharge rate (SEP). Recharge from the 

subsurface reservoir to the groundwater reservoir (GAD) is computed by the 

relationship 

GAD RES 
RSEP * REXP * RESMX (29) 

where RSEP is a daily recharge coefficient , RES is the current storage in 

the subsurface reservoir (in), RESMX and REXP are coefficients. 

Baseflow (BAS) is computed by 

BAS= RCB * GW (30) 

where RCB is the reservoir routing coefficient and GW is the groundwater 

reservoir storage (acre-in). 

Loss of water from the groundwater reservoir to points beyond the area of 

interest is treated using a groundwater sink. Daily accretion to the sink (SNK) is 

computed by 

SNK = GSNK * GW (31) 

where GSNK is a seepage constant. 
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Watershed Description 

The model was applied to Chickasha R-6 watershed located in the Washita 

River Basin of Southwest Central Oklahoma. The Chickasha R-6 watershed is about 

9 miles northeast of Chickasha in Grady County, Oklahoma. This is an USDA-ARS 

watershed that is 27 acres (11 hectares) in area. Average slope of the watershed is 

about 3 percent. Figure 2 is a topographic map of the watershed. The watershed was 

selected because of its uniformity in land use and soils. 

The Chickasha R-6 is a native grassland watershed. Approximately 42% of 

the area supports a cover of short grasses consisting primarily of buffalo grass and 

blue grama grass. The remainder of the area is covered with mild-tall grasses 

consisting mainly of little bluestem. 

USDA-ARS (1966) describes the soils of this watershed. They are 53 percent 

Grant silt loam, 42 percent Renfrow silt loam and 5 percent Kingfisher silt loam. 

Hydrologic data have been monitored in this watershed since 1966. Four years of 

data (1974-1977) were used in this study. 
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Figure 2. Topographic Map for Chickasha R-6 Watershed 

36 



CHAPTER V 

METHODOLOGY 

Monte Carlo experiments used to evaluate the parameter estimation 

techniques are described in this chapter. This research heavily draws on random data 

generation. Therefore, data generation techniques are presented first followed by a 

discussion of the general procedure. 

Random Error Generation 

The integral of a probability density function (pdf) between - 00 and oo is 

uniformly distributed over the interval (0, 1). The procedure used to generate a 

random observation, e, from a pdf is to: 

I. Select a random number R from a uniform distribution in the 
u 

interval (0, 1). 

2. Set R equal to the integral, and 
u 

3. Solve for e. 

This process is known as the inverse transform of the pdf (Haan, 1977). Many 

computer routines are available to generate random numbers in the interval (0, I). 

An analytic integration of the probability distribution functions is not always 

possible and numerical methods are often applied instead. 

Normal Distribution 

Pdf of a normal random variable, e is given by 

37 
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2 
P (e) =(2 7r(l)·l/2 EXP -(e- f for - oo < e < oo 

e 2u 
(32) 

An analytic inverse transform can not be found for normal distribution. So the 

following procedures are used to generate a normal random variable. 

1. Generate a random number, R , from the standard normal n 

distribution based on a procedure given by Wolfe and Koelling (1983). 

2. Generate a normal observation from the relationship 

e u R + J.l. n 
(33) 

where p. and u are the mean and standard deviation of normal distribution 

of e. 

In this study, p.was taken as the error-free rainfall or runoff value and uwas 

varied from 10% to 30% of the error-free value. Random normal errors thusly 

generated were added to rainfall and runoff data respectively. These contaminated 

data were then used for parameter estimation. 

Lognormal Distribution 

Generation of lognormal random variables is based on a numerical method 

developed for normal deviate generation. If Y= ln(X) is normally distributed with 

mean li and variance u1
2, then X is lognormally distributed with mean p. and 

variance J. This property is used for lognormal data generation. 

First a normal deviate is generated based on Eqn. 33 and p.and u, the mean 

and standard deviation of logarithmically transformed data. They are estimated 

from the mean and standard deviation of untransformed data using the relationship 

from Chow (I 954). 
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(34) 

a: = Ln (C 2 + I) (35) 1 v 

where JL is the mean of the untransformed data and C is the coefficient 
v 

of variation of the untransformed data. A random Y is generated from a normal 

distribution with mean 'i. and variance u12 and transformed to e from the 

relationship 

e EXP(Y) (36) 

where e is the lognormally distributed error. 

For a particular data point, e is added to the error-free value, 'i. to obtain the 

contaminated observation. C was varied from 0.1 to 0.3. 
v 

Uniform Distribution 

The cumulative distribution function of a uniform random variable e is 

~ P e(e) = ( /3- a) for ~ < e < f3 

Deriving e from Eqn. 37, the following relationship is obtained. 

e= ~+(/3- ~) * p (E) 
e 

(37) 

(38) 

A random uniform variate is determined by selecting a number P (e) in the 
e 

interval (0, 1) and calculating e from Eqn. 38. Estimates for ~and f3 are 

-
~= e - \f3s (39) 

A 

f3= e + \f3s (40) 

The standard deviation s was varied from 0.1 to 0.3 of error-free value. 
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Double Exponential Distribution 

Cumulative distribution of a double exponential variable, e is given by 

1 '-lei\ 
P (e) = -EXP .!...:.l..:::IL e 2 f3 

( 41) 

Now e can be generated as 

e = - {3 * Ln ( 2P (e)) 
e 

(42) 

The mean of e is zero and the variance is 2 /}. 

A random number P (e) in the interval (0, 1) is selected and e is determined e 

from Eqn. 42. 

Correlated Errors 

An autoregressive AR(l) model was used for correlated errors. 

(43) 

where pis the correlation between two errors one time interval apart and 

v t is a normally distributed random component N(O, J). In this study crranged from 

0.1 to 0.3. Correlation coefficients, pused were 0.3, 0.5 and 0.8. Random component 

v twas generated as discussed in the normal distribution section. Here two successive 

errors were correlated. For day 2, error from day 1 and the random component v1 

constituted the total error. The error for a particular data point was only the random 

component if the previous value of rainfall or runoff was zero. Errors were not 

added to zero values of rainfall or runoff. Correlation was introduced into the 

second and subsequent value of rainfall or runoff for nonzero sequences only. 

Listings for the computer programs used for generation of random numbers 

from various distributions are given in Appendix A. 
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General Procedure 

The model used in this research was the USGS PRMS model. Hydrologic data 

(1974 - 1977) records were taken from Chickasha R-6 watershed in Oklahoma. A 

small watershed (27 acres) was selected so it could be regarded as a homogeneous unit 

on its hydrologic characteristics. Although the model has watershed partitioning 

capability, only one hydrologic unit (HRU) was considered to facilitate 

interpretation of the results. Description of the model and watershed were given in 

chapter IV. 

In this study, PRMS was run in the daily mode to yield daily runoff 

predictions. PRMS has more than 50 parameters but all of them are not sensitive in 

the daily mode. From preliminary runs, three of the more sensitive parameters 

SMAX, REMX and SCI, were selected. A brief explanation of these parameters is 

given in Table 1. Additional model inputs were daily maximum and minimum air 

temperature, daily rainfall, and daily streamflow for optimization purposes. 

Initially the model was run in the optimization mode using the observed flow 

data to find representative values for the three parameters. This set of parameters 

(Table 1) was assumed to be true values for the watershed. To study the effect of 

data errors on parameter estimation, an error-free standard for making comparisons 

must be available. Therefore, four years of rainfall and air temperature data were 

routed through PRMS to generate a synthetic runoff sequence that can be viewed as 

error-free for the optimized parameters in Table 1. Obviously this set of parameter 

values should perfectly fit the model to this simulated data. 

Parameter estimation techniques employed for this study were the method of 

least squares (OLS), method of absolute errors (MAE) and maximum likelihood 

techniques (MLE). Detailed description of these methods were presented in Chapter 
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TABLE 1 

PARAMETERS OF THE PRMS MODEL 

No Variable Typical value Description 

SMAX 6.93 inch Maximum available water 
holding capacity of the 
active soil zone. 

2 REMX 2.00 inch Maximum storage capacity 
of the recharge zone. 

3 SCI 0.45 Coefficient in 
nonlinear relationship 
between contributing 
area and soil moisture. 



III. All three methods exactly recovered the true parameter values when both 

rainfall and runoff data were error-free. 
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Errors were introduced separately into each value of the rainfall and synthetic 

runoff records. Error distribution considered were normal, lognormal, double 

exponential, uniform distribution and autoregressive errors. For any particular data 

point, the error was selected from a distribution whose mean was the error-free 

value and whose coefficient of variation was some percentage of the error-free 

value. Coefficient of variation was varied from 10% to 30%. For correlated error, p 

was set to 0.3, 0.5 and 0.8. For example, a 20% normal error in runoff equals a 

random number from the normal distribution whose mean is the error-free runoff 

value and whose standard deviation is 20% of the error-free value. In this study such 

an error is termed as a 20 percent error. Obviously the actual error varied randomly 

according to the distribution. Errors were not added to zero values. Errors in 

temperature input were assumed to be negligible and hence those data sets were not 

con tam ina ted. 

Three error situations were analyzed. The first series of tests used error free 

rainfall data and a contaminated runoff record. In the second scenario, only 

precipitation records were contaminated. The last type of test used error 

contaminated rainfall and runoff records to estimate the parameters. In each case, 

100 different, independent simulations were made. For each simulation the 

parameters were estimated using the Rosenbrock (1960) optimization scheme. The 

parameters converged within 100 iterations although it generally took many fewer 

iterations than this. These procedures were repeated for each error distribution and 

parameter estimation technique. There were altogether 105 combinations of these 

experiments, each having 100 independent optimizations of the parameter set. 



CHAPTER VI 

RESULTS AND DISCUSSIONS 

This chapter describes the results of the Monte Carlo simulations and analysis 

used to evaluate the three parameter estimation techniques under various error 

scenarios. The performance of the estimation techniques is discussed in the first 

section. Parameter correlations are then presented. Following the discussion of 

parameter interaction, parameter distributions are discussed. Finally an analysis of 

uncertainty of model output resulting from uncertain parameters is presented. 

Estimation Technique Evaluation 

The summary of the 105 Monte Carlo experiments are presented in Table 2, 4, 

6, 8, and 10. For each case, the mean and standard deviation (SD) of the parameters 

are shown. Each row in these Tables is based on 100 independent observations 

obtained from Monte Carlo studies. The error model used for rainfall (R) and 

streamflow (Q) are given in column 1 and 2. Information regarding the error 

distribution is given in the upper part of the tables. Column 3 contains the 

estimation techniques used in this study. They were ordinary least squares (OLS), 

method of absolute error (MAE) and maximum likelihood estimation (MLE). The 

remaining columns contain the mean and SD of the parameters SMAX, REMX and 

SC 1 respectively. 

The performance of the three estimation techniques in the context of a given 

error model is discussed in the following sections. The estimator SD describes the 

spread of the estimates around their average value. The mean of the estimator 

44 
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provides its bias from the true mean. The mean squared error (MSE) statistic is the 

most common measure of overall accuracy of the estimators. The MSE describes the 

variance of the estimates around their true value. MSE can also be shown as a 

measure of both estimator bias and variance (Mood et al.,l974). Consequently the 

estimation technique which provides estimates with minimum MSE is judged to be 

better than the other techniques. The equation used to calculate MSE is 

MSE = BIAS2 + VARIANCE (44) 

Estimated BIAS and MSE statistics of the parameters resulting from different 

estimation techniques for each error model are shown separately. Table 3, 5, 7, 9 and 

II contain these results. Error models are shown in column 1 and column 2 of these 

tables. Column 3 presents the objective function used for parameter optimization. 

The remaining six columns show the BIAS and MSE statistics for SMAX, REMX, and 

SCI respectively. Distributions of the error models are given at the top of each table. 

Parameter estimation techniques were compared for each error model presented on a 

particular table. These tables could not be compared among themselves because 

different amounts of errors were introduced by various error models. The 

magnitudes of the statistics vary from table to table. A specific discussion of each 

table is given in the following paragraphs. 

Normal Distribution 

The most widely used error model in hydrologic investigations is the normal 

distribution. In this study, the results for normal errors are shown in Table 2 and 

Table 3. Notice that the mean of the estimates are biased. The magnitude of the 

imposed error affects the population of the best fit parameters. The estimator bias 

and standard deviation (SD) increase with increasing error levels. Interestingly, the 

error contaminated precipitation data increased the variance of the parameters more 

than the same degree of contamination in the runoff record. The parameter REMX 
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TABLE 2 

SUMMARY STATISTICS OF SMAX, REMX AND SC1, 1 

---------------------------------------------------------------------------------------------------------------
% Err. Obj. SMAX REMX SC1 
R Q fn. MEAN SD MEAN SD MEAN SD 

---------------------------------------------------------------------------------------------------------------

Normal Distribution of Errors 

0 0 6.930 2.000 0.450 

0 10 OLS 6.942 0.227 1.992 0.172 0.450 5.254E-3 
0 10 MAE 6.890 0.182 2.028 0.135 0.451 4.444E-3 
0 10 MLE 6.942 0.225 1.997 0.176 0.450 5.311E-3 

0 20 OLS 6.974 0.513 2.070 0.426 0.449 1.494E-2 
0 20 MAE 6.874 0.294 2.073 0.270 0.451 1.115E-2 
0 20 MLE 6.972 0.522 2.074 0.372 0.449 1.489E-2 

0 30 OLS 7.261 0.711 2.113 0.511 0.443 2.012E-2 
0 30 MAE 6.993 0.478 2.089 0.335 0.448 1.746E-2 
0 30 MLE 7.231 0.660 2.097 0.502 0.443 l.777E-2 

10 0 OLS 7.075 0.624 2.062 0.526 0.448 1.652E-2 
10 0 MAE 6.903 0.356 2.079 0.353 0.449 1.446E-2 
10 0 MLE 7.082 0.621 2.039 0.532 0.448 1.642E-2 

20 0 OLS 7.228 1.165 2.243 0.713 0.431 2.939E-2 
20 0 MAE 6.973 0.755 2.214 0.548 0.432 2.670E-2 
20 0 MLE 7.175 1.179 2.241 0.711 0.434 2.847E-2 

30 0 OLS 7.078 1.248 2.310 0.824 0.414 4.298E-2 
30 0 MAE 7.028 1.110 2.245 0.668 0.406 4.357E-2 
30 0 MLE 7.023 1.220 2.278 0.824 0.417 3.979E-2 

10 10 OLS 7.063 0.664 2.031 0.542 0.448 1.785E-2 
10 10 MAE 6.880 0.372 2.074 0.397 0.448 1.583E-2 
10 10 MLE 7.046 0.656 2.039 0.553 0.449 1.896E-2 

---------------------------------------------------------------------------------------------------------------
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TABLE 3 

BIAS AND MEAN SQUARED ERROR OF THE PARAMETERS, 1 

----------------------------------------------------------------------------------------------------------
% Err. Obj. SMAX REMX SCI 
R Q fn. BIAS MSE BIAS MSE BIAS MSE 

----------------------------------------------------------------------------------------------------------

Normal Distribution of Errors 

0 10 OLS 0.012 0.0517 -0.008 0.0297 0.000 2.7619E-05 
0 10 MAE -0.040 0.0349 0.028 0.0190 0.001 2.0388E-05 
0 10 MLE 0.012 0.0505 -0.003 0.0310 0.000 2.8216E-05 

0 20 OLS 0.044 0.2655 0.070 0.1861 -0.001 2.2447E-04 
0 20 MAE -0.056 0.0894 0.073 0.0784 0.001 1.2503E-04 
0 20 MLE 0.042 0.2743 0.074 0.1439 -0.001 2.2280E-04 

0 30 OLS 0.331 0.6146 0.113 0.2735 -0.007 4.5961E-04 
0 30 MAE 0.063 0.2324 0.089 0.1200 -0.002 3.1075E-04 
0 30 MLE 0.301 0.5254 0.097 0.2612 .-0.007 3.6324E-04 

10 0 OLS 0.145 0.4098 0.062 0.2800 -0.002 2.7602E-04 
10 0 MAE -0.027 0.1277 0.079 0.1307 -0.001 2.1096E-04 
10 0 MAE 0.152 0.4084 0.039 0.2845 -0.002 2.7484E-04 

20 0 OLS 0.298 1.4456 0.243 0.5678 -0.019 1.2096E-03 
20 0 MAE 0.043 0.5719 0.214 0.3461 -0.018 1.0478E-03 
20 0 MLE 0.245 1.4511 0.241 0.5632 -0.016 1.0827E-03 

30 0 OLS 0.148 1.5785 0.310 0.7752 -0.036 3.1287E-03 
30 0 MAE 0.098 1.2417 0.245 0.5057 -0.044 3.8164E-03 
30 0 MLE 0.093 1.4963 0.278 0.7569 -0.033 2.6920E-03 

10 10 OLS 0.133 0.4588 0.031 0.2951 -0.002 3.2172E-04 
10 10 MAE -0.050 0.1410 0.074 0.1628 -0.002 2.5500E-04 
10 10 MLE 0.116 0.4442 0.039 0.3068 -0.001 3.6152E-04 

----------------------------------------------------------------------------------------------------------
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was overestimated most of the time. On the other hand, bias in SMAX and SCI are 

consistently in different directions i.e. overpredictions of SMAX is associated with 

underestimates of SCI and visa-versa. This suggests there may be correlation 

between them. Another interesting point for normal error is that MAE produced 

the estimates with minimum variance and MSE for each set of data along with a 

relatively small bias. MAE was superior to other techniques because MSE statistics 

for each parameter estimated by MAE were smaller than the others (Table 3). 

Performance of OLS and MLE is not significantly different from each other in all 

cases. This follows because, as was shown in the Chapter III, for normal error, 

minimization of OLS is same as the maximization of MLE. 

Lognormal Distribution 

Table 4 contains the results for lognormal error. It is evident that the 

estimated mean value of the parameters is little affected by the error imposed. The 

standard deviation of the estimated parameters however, increase dramatically as 

the size of the error increases. Again the contaminated precipitation increased the 

variance of the parameters more than the contaminated runoff record. Bias of the 

estimates from mixed error scenarios are similar to either error contaminated 

rainfall or runoff data, but variations of the parameter are generally higher when 

both rainfall and runoff are contaminated. Like normal errors, MAE provides the 

better estimates in the presence of lognormal errors. MSE statistic for each parameter 

estimated by MAE was smaller (Table 5). Performance of MLE and OLS was 

similar. 

Double Exponential Distribution 

The results for the double exponential error are presented in Table 6 and Table 

7. Biases of the estimates are higher in all sets of the data. This is because the 
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TABLE 4 

SUMMARY STATISTICS OF SMAX, REMX AND SCI, 2 

---------------------------------------------------------------------------------------------------------------
% Err. Obj. SMAX REMX SCI 
R Q fn. MEAN SD MEAN SD MEAN SD 
---------------------------------------------------------------------------------------------------------------

Lognormal Distribution of Errors 

0 0 6.930 2.000 0.450 

0 10 OLS 6.962 0.248 2.031 0.209 0.451 6.569E-3 
0 10 MAE 6.917 0.133 2.034 0.126 0.454 3.321E-3 
0 10 MLE 6.958 0.243 2.040 0.227 0.451 6.647E-3 

0 20 OLS 6.996 0.483 2.148 0.415 0.451 1.109E-2 
0 20 MAE 6.874 0.257 2.066 0.229 0.451 9.955E-3 
0 20 MLE 6.975 0.485 2.149 0.392 0.452 1.100E-2 

0 30 OLS 7.028 0.684 2.187 0.532 0.448 1.893E-2 
0 30 MAE 6.850 0.415 2.097 0.333 0.448 1.596E-2 
0 30 MLE 7.039 0.677 2.190 0.543 0.448 1.848E-2 

10 0 OLS 6.984 0.479 2.079 0.501 0.450 1.508E-2 
10 0 MAE 6.893 0.281 2.136 0.417 0.448 1.300E-2 
10 0 MLE 6.977 0.493 2.067 0.502 0.450 1.675E-2 

20 0 OLS 7.205 1.146 2.152 0.657 0.434 3.677E-2 
20 0 MAE 7.104 0.710 2.186 0.534 0.431 2.902E-2 
20 0 MLE 7.213 1.131 2.161 0.648 0.434 3.425E-2 

30 0 OLS 7.107 1.420 2.203 0.800 0.417 5.018E-2 
30 0 MAE 6.925 0.986 2.224 0.648 0.414 4.814E-2 
30 0 MLE 7.096 1.359 2.171 0.792 0.417 4.877E-2 

10 10 OLS 6.970 0.514 2.056 0.485 0.450 1.541E-2 
10 10 MAE 6.903 0.307 2.160 0.408 0.449 1.302E-2 
10 10 MLE 6.983 0.516 2.060 0.482 0.450 1.576E-2 

---------------------------------------------------------------------------------------------------------------
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TABLE 5 

BIAS AND MEAN SQUARED ERROR OF THE PARAMETERS, 2 

----------------------------------------------------------------------------------------------------------
% Err. Obj. SMAX REMX SCI 
R Q fn. BIAS MSE BIAS MSE BIAS MSE 

----------------------------------------------------------------------------------------------------------

Lognormal Distribution of Errors 

0 10 OLS 0.032 0.0625 0.031 0.0448 0.001 4.3796E-05 
0 10 MAE -0.013 0.0179 0.034 0.0169 0.004 2.7029E-05 
0 10 MLE 0.028 0.0597 0.040 0.0529 0.001 4.4817E-05 

0 20 OLS 0.066 0.2377 0.148 0.1945 0.001 1.2326E-04 
0 20 MAE -0.056 0.0692 0.066 0.0570 0.001 l.OOIOE-04 
0 20 MLE 0.045 0.2376 0.149 0.1760 0.002 1.2323E-04 

0 30 OLS 0.098 0.4773 0.187 0.3186 -0.002 3.6315E-04 
0 30 MAE -0.080 0.1789 0.097 0.1205 -0.002 2.5836E-04 
0 30 MLE 0.109 0.4703 0.190 0.3312 -0.002 3.4783E-04 

10 0 OLS 0.054 0.2320 0.079 0.2573 0.000 2.2739E-04 
10 0 MAE -0.037 0.0803 0.136 0.1921 -0.002 1.7219E-04 
10 0 MLE 0.047 0.2447 0.067 0.2560 0.000 2.8051E-04 

20 0 OLS 0.275 1.3889 0.152 0.4541 -0.010 1.5987E-03 
20 0 MAE 0.174 0.5350 0.186 0.3197 -0.019 1.2187E-03 
20 0 MLE 0.283 1.3593 0.169 0.4464 -0.016 1.4423E-03 

30 0 OLS 0.177 2.0478 0.203 0.6812 -0.033 3.6264E-03 
30 0 MAE -0.005 0.9720 0.224 0.4699 -0.036 3.6065E-03 
30 0 MLE 0.166 1.8733 0.171 0.6562 -0.033 3.4613E-03 

10 10 OLS 0.040 0.2657 0.056 0.2380 0.000 2.3745E-04 
10 10 MAE -0.027 0.0947 0.160 0.1923 -0.001 1.7068E-04 
10 10 MLE 0.053 0.2689 0.060 0.2358 0.000 2.4866E-04 

----------------------------------------------------------------------------------------------------------
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TABLE 6 

SUMMARY STATISTICS OF SMAX, REMX AND SCI, 3 

---------------------------------------------------------------------------------------------------------------
%Err. Obj. SMAX REMX SCI 
R Q fn. MEAN SD MEAN SD MEAN SD 

---------------------------------------------------------------------------------------------------------------

Double Exponential Distribution of Errors 

0 0 6.930 2.000 0.450 

0 10 OLS 6.7I7 O.I63 1.958 0.045 0.448 5.2I9E-3 
0 IO MAE 6.930 0.082 2.002 0.052 0.450 3.704E-3 
0 IO MLE 6.654 0.627 1.958 0.043 0.448 5.282E-3 

0 20 OLS 6.766 0.277 1.923 O.I64 0.449 7.313E-3 
0 20 MAE 6.899 O.I74 2.020 0.132 0.451 7.620E-3 
0 20 MLE 6.769 0.278 I.922 0.164 0.449 7.400E-3 

0 30 OLS 6.836 0.453 1.885 0.225 0.449 l.134E-2 
0 30 MAE 6.838 0.265 2.026 0.151 0.453 l.337E-2 
0 30 MLE 6.8I3 0.422 1.889 0.218 0.450 l.166E-2 

IO 0 OLS 7.333 0.539 2.I11 0.4I4 0.440 l.883E-2 
IO 0 MAE 7.0I4 0.287 2.074 0.391 0.444 1.228E-2 
10 0 MLE 7.333 0.537 2.152 0.717 0.439 l.891E-2 

20 0 OLS 7.186 0.742 2.247 0.567 0.428 3.193E-2 
20 0 MAE 6.973 0.623 2.I50 0.440 0.432 2.800E-2 
20 0 MLE 7.I63 0.704 2.234 0.550 0.430 2.82IE-2 

30 0 OLS 6.843 l.OIO 2.279 0.608 0.418 3.520E-2 
30 0 MAE 6.846 0.890 2.333 0.577 0.421 3.997E-2 
30 0 MLE 6.857 0.992 2.3I6 0.611 0.4I7 3.560E-2 

IO 10 OLS 7.370 0.598 2.088 0.426 0.44I l.965E-2 
10 10 MAE 7.035 0.283 2.071 0.370 0.446 1.164E-2 
30 10 MLE 7.325 0.569 2.085 0.432 0.441 1.9I8E-2 

---------------------------------------------------------------------------------------------------------------
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TABLE 7 

BIAS AND MEAN SQUARED ERROR OF THE PARAMETERS, 3 

----------------------------------------------------------------------------------------------------------
%Err. Obj. SMAX REMX SCI 
R Q fn. BIAS MSE BIAS MSE BIAS MSE 

----------------------------------------------------------------------------------------------------------

Double Exponential Distribution of Errors 

0 IO OLS -0.2I3 0.07I8 -0.042 0.0038 -0.002 3.2082E-05 
0 10 MAE 0.000 0.0067 0.002 0.0027 0.000 1.3807E-05 
0 10 MLE -0.276 0.4689 -0.042 0.0036 -0.002 3.3187E-05 

0 20 OLS -O.I64 O.I037 -0.077 0.0330 -0.00 I 5.5I73E-05 
0 20 MAE -0.031 0.03I3 0.020 0.0177 0.001 5.9757E-05 
0 20 MLE -O.I61 O.I033 -0.078 0.0329 -O.OOI 5.7004E-05 

0 30 OLS -0.094 0.2I37 -0.1I5 0.0640 -0.00 I 1.2945E-04 
0 30 MAE -0.092 0.0784 0.026 0.0233 0.003 1.8591E-04 
0 30 MLE -O.II7 O.I915 -0.111 0.0601 0.000 1.3618E-04 

10 0 OLS 0.403 0.4530 0.111 0.1834 -0.010 4.5865E-04 
10 0 MAE 0.084 0.0895 0.074 0.1586 -0.006 1.8566E-04 
10 0 MLE 0.403 0.4501 0.152 0.5370 -0.011 4.7010E-04 

20 0 OLS 0.256 0.6155 0.247 0.3823 -0.022 1.5076E-03 
20 0 MAE 0.043 0.3903 0.150 0.2162 -0.018 1.0940E-03 
20 0 MLE 0.233 0.5498 0.234 0.3570 -0.020 1.2I61E-03 

30 0 OLS -0.087 1.0278 0.279 0.4474 -0.032 2.2950E-03 
30 0 MAE -0.084 0.7987 0.333 0.4437 -0.029 2.4331E-03 
30 0 MLE -0.073 0.9902 0.316 0.4729 -0.033 2.3369E-03 

IO 10 OLS 0.440 0.5511 0.088 0.1893 -0.009 4.7088E-04 
10 10 MAE 0.105 0.0910 0.071 0.1419 -0.004 1.5070E-04 
10 10 MLE 0.395 0.4795 0.085 0.1933 -0.009 4.4708E-04 

----------------------------------------------------------------------------------------------------------
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double exponential distribution introduced larger error to the data. Regarding the 

effect of precipitation on parameter variance, trends similar to lognormal and 

normal error is observed. Errors in the rainfall affects the parameter more than the 

errors in the runoff. Again MAE performed better than the OLS and MLE, 

producing lower MSE statistic most of the error situations (Table 7). 

Uniform Distribution 

Table 8 and Table 9 show the results for the uniform distribution of errors. 

Notice that all the estimates are biased. Biases are specially higher for the 

parameter SMAX. For runoff error, SMAX was underestimated while 

overestimation of SMAX occurred in precipitation error. Effect of precipitation 

error on the parameter variations is more severe than the runoff error. Again 

overall performance of MAE is better than those of either OLS or MLE based on 

MSE statistic in Table 9. 

Correlated Error 

In this case an autoregressive {AR(I)} model is used for the errors. The 

results are shown in Table 10. Three different autocorrelation coefficients were used 

in the error model: p= 0.3, 0.5 and 0.8. Estimates for precipitation errors were based 

on 25 simulations instead of 100. Due to larger variations in parameters and slow 

convergence of the solution, only 25 simulations were run in these cases. Correlated 

errors introduced a large amount of error in the data. Therefore, performance of all 

the estimation techniques are not as good as the other error models. Estimates are 

severely affected by errors in data, specially in the case of precipitation errors. 

This is because formulation of objective function neglects the errors in precipitation 

data. Overall performance of MLE was better than OLS and MAE because MLE 

resulted in smaller MSE statistics (Table 11) for most of the error scenarios. The 
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TABLE 8 

SUMMARY STATISTICS OF SMAX, REMX AND SCI, 4 

---------------------------------------------------------------------------------------------------------------
% Err. Obj. SMAX REMX SCI 
R Q fn. MEAN SD MEAN SD MEAN SD 

---------------------------------------------------------------------------------------------------------------

Uniform Distribution of Errors 

0 0 6.930 2.000 0.450 

0 10 OLS 6.698 0.235 1.958 0.090 0.446 6.599E-3 
0 10 MAE 6.846 0.199 2.034 0.134 0.451 5.877E-3 
0 10 MLE 6.692 0.241 1.963 0.091 0.447 8.077E-3 

0 20 OLS 6.774 0.364 1.944 0.601 0.443 1.271E-2 
0 20 MAE 6.822 0.379 1.979 0.221 0.449 1.391E-2 
0 20 MLE 6.761 0.359 1.894 0.255 0.444 1.248E-2 

0 30 OLS 6.798 0.561 1.868 0.390 0.443 1.986E-2 
0 30 MAE 6.773 0.498 2.042 0.671 0.448 2.029E-2 
0 30 MLE 6.781 0.542 1.871 0.378 0.443 1.993E-2 

10 0 OLS 7.393 0.679 2.009 0.559 0.448 1.696E-2 
10 0 MAE 7.139 0.492 1.935 0.516 0.448 1.958E-2 
10 0 MLE 7.398 0.671 2.006 0.562 0.448 1.715E-2 

20 0 OLS 7.385 1.067 2.150 0.780 0.438 3.453E-2 
20 0 MAE 7.286 0.901 1.988 0.603 0.432 3.756E-2 
20 0 MLE 7.379 1.058 2.142 0.778 0.438 3.528E-2 

30 0 OLS 7.138 1.379 2.188 0.867 0.423 4.709E-2 
30 0 MAE 7.226 1.129 2.068 0.748 0.414 4.523E-2 
30 0 MLE 7.193 1.338 2.121 0.835 0.426 5.032E-2 

10 10 OLS 7.322 0.772 1.948 0.571 0.448 2.221E-2 
10 10 MAE 7.121 0.529 1.924 0.522 0.449 2.124E-2 
10 10 MLE 7.287 0.711 1.967 0.570 0.449 2.102E-2 

---------------------------------------------------------------------------------------------------------------
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TABLE 9 

BIAS AND MEAN SQUARED ERROR OF THE PARAMETERS, 4 

----------------------------------------------------------------------------------------------------------
%Err. Obj. SMAX REMX SCI 
R Q fn. BIAS MSE BIAS MSE BIAS MSE 

----------------------------------------------------------------------------------------------------------

Uniform Distribution of Errors 

0 10 OLS -0.232 0.1091 -0.042 0.0099 -0.004 5.9555E-05 
0 10 MAE -0.084 0.0464 0.034 0.0192 0.001 3.5034E-05 
0 10 MLE -0.238 0.1145 -0.037 0.0096 -0.003 7.6795E-05 

0 20 OLS -0.156 0.1571 -0.056 0.3646 -0.007 2.0768E-04 
0 20 MAE -0.108 0.1556 -0.021 0.0492 -0.001 1.9498E-04 
0 20 MLE -0.169 0.1572 -0.106 0.0764 -0.006 1.9810E-04 

0 30 OLS -0.132 0.3320 -0.132 0.1697 -0.007 4.4926E-04 
0 30 MAE -0.157 0.2728 0.042 0.4515 -0.002 4.1589E-04 
0 30 MLE -0.149 0.3161 -0.129 0.1595 -0.007 4.4462E-04 

10 0 OLS 0.463 0.6745 0.009 0.3121 -0.002 2.9132E-04 
10 0 MAE 0.209 0.2857 -0.065 0.2706 -0.002 3.8590E-04 
10 0 MLE 0.468 0.6692 0.006 0.3162 -0.002 2.9826E-04 

20 0 OLS 0.455 1.3446 0.150 0.6310 -0.012 1.3412E-03 
20 0 MAE 0.356 0.9379 -0.012 0.3642 -0.018 1.7459E-03 
20 0 MLE 0.449 1.3202 0.142 0.6258 -0.012 1.3841E-03 

30 0 OLS 0.208 1.9451 0.188 0.7863 -0.027 2.9679E-03 
30 0 MAE 0.296 1.3618 0.068 0.5637 -0.036 3.3413E-03 
30 0 MLE 0.263 1.8596 0.121 0.7121 -0.024 3.0891E-03 

10 10 OLS 0.392 0.7498 -0.052 0.3283 -0.002 4.9774E-04 
10 10 MAE 0.191 0.3162 -0.076 0.2786 -0.001 4.5222E-04 
10 10 MLE 0.357 0.6333 -0.033 0.3262 -0.001 4.4401E-04 

----------------------------------------------------------------------------------------------------------
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TABLE 10 

SUMMARY STATISTICS OF SMAX, REMX AND SCI, 5 

---------------------------------------------------------------------------------------------------------------
%Err. Obj. SMAX REMX SCI 
R Q fn. MEAN SD MEAN SD MEAN SD 

---------------------------------------------------------------------------------------------------------------

Correlated Errors 

0 0 6.930 2.000 0.450 

Correlation = 0.3 

0 10 OLS 8.089 0.309 1.616 0.059 0.503 5.900E-3 
0 10 MAE 8.550 0.287 1.588 0.067 0.498 7.117E-3 
0 10 MLE 7.871 O.I89 1.615 0.069 0.504 5.223E-3 

IO 0 OLS 7.091 0.760 3.447 0.072 O.I74 9.889E-3 
IO 0 MAE 7.0I1 0.233 3.462 0.077 0.172 6.997E-3 
10 0 MLE 7.068 0.773 3.450 0.076 0.175 1.036E-3 

10 10 OLS 3.647 0.742 1.887 0.939 0.335 4.999E-2 
10 10 MAE 3.661 0.842 3.186 0.528 0.327 4.992E-2 
IO 10 MLE 4.048 1.375 1.834 0.911 0.320 5.180E-2 

Correlation = 0.5 

0 10 OLS 7.966 0.220 1.601 0.037 0.505 5.498E-3 
0 IO MAE 8.502 0.257 1.573 0.051 0.499 6.979E-3 
0 10 MLE 7.846 0.162 1.601 0.036 0.504 4.976E-3 

10 0 OLS 5.9I3 1.889 3.319 0.545 0.204 5.617E-2 
10 0 MAE 7.353 0.318 3.477 0.052 0.165 7.859E-3 
10 0 MLE 7.122 0.397 3.422 O.I57 O.I68 9.574E-3 

Correia tion = 0.8 

0 30 OLS 8.224 0.624 I.599 0.2IO 0.505 1.586E-2 
0 30 MAE 8.740 0.635 1.577 0.169 0.497 1.377E-2 
0 30 MLE 7.703 0.379 1.694 0.222 0.507 1.530E-2 

10 0 OLS 6.97I 0.338 3.437 O.I25 0.161 5.632E-3 
10 0 MAE 7.160 0.330 3.452 0.088 0.158 6.675E-3 
10 0 MLE 6.881 0.399 3.445 0.122 0.163 6.733E-3 

---------------------------------------------------------------------------------------------------------------
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TABLE 11 

BIAS AND MEAN SQUARED ERROR OF THE PARAMETERS, 5 

----------------------------------------------------------------------------------------------------------
%Err. Obj. SMAX REMX SCI 
R Q fn. BIAS MSE BIAS MSE BIAS MSE 

----------------------------------------------------------------------------------------------------------

Correlated Errors 
Correlation = 0.3 

0 10 OLS 1.159 1.4383 -0.384 0.1512 0.053 2.8544E-03 
0 10 MAE 1.620 2.7073 -0.412 0.1744 0.048 2.3259E-03 
0 10 MLE 0.941 0.9208 -0.385 0.1528 0.054 2.9110E-03 

10 0 OLS 0.161 0.6041 1.447 2.0984 -0.276 7.6274E-02 
10 0 MAE 0.081 0.0609 1.462 2.1440 -0.278 7.7166E-02 
10 0 MLE 0.138 0.6171 1.450 2.1080 -0.275 7.5901E-02 

10 10 OLS -3.283 11.3319 -0.113 0.8953 -0.115 1.5701 E-02 . 
10 10 MAE -3.269 11.3955 1.186 1.6856 -0.123 1.7597E-02 
10 10 MLE -2.882 10.1971 -0.166 0.8571 -0.130 1.9635E-02 

Correlation = 0.5 

0 10 OLS 1.036 1.1216 -0.399 0.1603 0.055 3.0883E-03 
0 10 MAE 1.572 2.5364 -0.427 0.1849 0.049 2.4497E-03 
0 10 MLE 0.916 0.8650 -0.399 0.1606 0.054 2.9300E-03 

10 0 OLS -1.017 4.6036 1.319 2.0370 -0.246 6.3918E-02 
10 0 MAE 0.423 0.2799 1.477 2.1830 -0.285 8.1173E-02 
10 0 MLE 0.192 0.1942 1.422 2.0474 -0.282 7.9841E-02 

Correia tion = 0.8 

0 30 OLS 1.294 2.0632 -0.401 0.2050 0.055 3.2436E-03 
0 30 MAE 1.810 3.6786 -0.423 0.2076 0.047 2.4080E-03 
0 30 MLE 0.773 0.7416 -0.306 0.1429 0.057 3.5288E-03 

10 0 OLS 0.041 0.1161 1.437 2.0794 -0.289 8.3437E-02 
10 0 MAE 0.230 0.1614 1.452 2.1169 -0.292 8.5309E-02 
10 0 MLE -0.049 0.1616 1.445 2.1019 -0.287 8.2644E-02 

----------------------------------------------------------------------------------------------------------



desired degree of overall correlation in the data set could not be achieved due to 

large number of zero values in the data set. 

Concluding Remarks 

58 

It is evident from the above discussion that the magnitude of the imposed error 

affects the population of the best fit parameters. One can expect this variation to 

be transferred to variations in the model output. In a practical sense, the result 

means that the probability of a parameter value deviating from its true value by 

some amount,5, increases as the magnitude of random errors in the input data 

increases. In practice the independent variables are assumed to be error-free, a 

questionable assumption. The magnitude of the errors investigated in this study is 

relatively small. A 20 percent error in precipitation, for example, would be a large 

error for a point measurement; however, for an estimate on a watershed scale an 

error of this magnitude could easily be exceeded. Often precipitation records from 

a single gage in a watershed, or even from a location some miles from the watershed, 

must be used to estimate precipitation. Under these conditions, considerable error in 

rainfall is not only possible, but is likely. Troutman (1982) showed that runoff 

predication errors were inflated using erroneous precipitation data. However these 

results are in contrast to the observation by Ibbitt (1972). He reported that there 

were no significant variation among the parameters using erroneous (10% normal) 

precipitation, runoff and pan evaporation data. This may be because he utilized 

only 60 data points to estimate the 9 parameters of the model. Further his 

observation may be model specific. 

The MAE was found to be superior under all the error distribution assumption 

except in the case of correlated errors. The watershed considered for this study was 

small (27.2 acres) and its annual water yield was around 2". Higher values dominates 

the OLS objective function. MAE performed better in the normal errors perhaps 
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because of the low flow values. Performance of MLE is similar toOLS in the normal 

error case because correlation among the data set was low. Poor performance of MLE 

with non-normal errors was because of the misspecification of the error model. The 

MLE objective function was based on the assumption of correlated normal errors. 

Performance of MAE is obvious in non-normal error cases. It was in agreement 

with the observations found in literature. MLE worked better in the correlated 

error case as its objective function took care of the correlations among the residuals. 

However due to many no flow situations, the desired degree of correlation could not 

be achieved. As a result, OLS and MAE perhaps worked well in individual 

correlated error situations. 

Independence of the errors rather than the distribution seems more important 

for the quality of the estimates. The magnitude of MSE was smaller for each of the 

independent error situations regardless of the error distributions. However, in the 

presence of the correlated errors, the quality of the estimates was very poor. 

Violation of the assumption of uncorrelated errors contributed significant errors in 

the parameter estimates. 

Parameter Interaction 

Tables 12 through 16 contain the correlations among the parameters. In each 

table, the rows represent the results obtained from 100 independent data sets for a 

particular estimation technique and error model used in column 1 and 2. Column 3 

represents the objective functions used in this study, namely ordinary least squares 

(OLS), method of absolute errors (MAE) and maximum likelihood estimation (MLE). 

The remaining columns ( 4 through 6) show the correlations among the parameters. 

For example, p (SM,SC) in the column 5 represents the correlation between SMAX 

and SCI. Information regarding the error distribution is given in the upper part of 

the tables. 
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Normal Distribution 

Table 12 shows the correlations obtained when errors were taken randomly 

from the normal distribution. Notice that the correlations in the column 5 are 

consistently high for every set of data. Thus the parameters SMAX and SCI are 

correlated. p for SMAX and SCI varied from -0.207 to -0.697. The correlations 

between SMAX and REMX (column 4) and between REMX and SCI (column 6) are 

neither consistently high nor consistently low, suggesting there is no strong 

correlation structure among them. Henceforth, the parameter REMX is considered 

independent. The correlation between SMAX and SCI is not surprising as they are 

functionally related in the model. 

Lognormal Distribution 

Table I3 represents the parameter correlations when the error models are from 

lognormal distribution. Irrespective of the error variances and estimation 

techniques, correlations between SMAX and SCI are consistently higher, ranging 

from -0.008 to -0.697. There is very little interaction either between SMAX and 

REMX or between REMX and SCI. 

Double Exponential Distribution 

Correlation results for double exponential error models are presented in Table 

14. The correlation between SMAX and REMX ranged from -0.021 to -0.334. This 

range for REMX and SCI lies between -0.014 and -0.307. On the other hand, 

correlation between SMAX and SCI varies from -0.088 to -0.703, indicating higher 

interaction between these two parameters. They are inversely related because the 

correlation coefficients are negative. 
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TABLE 12 

CORRELATIONS OF SMAX, REMX AND SCI, 1 

-----------------------------------------------------------------------------------------------------------
% Error Objective 
R Q function p (SM,RE) p (SM,SC) p (RE,SC) 

-----------------------------------------------------------------------------------------------------------

Normal Distribution of Errors 

0 10 OLS -0.220 -0.483 0.141 
0 10 MAE -0.040 -0.399 -0.027 
0 10 MLE -0.286 -0.488 0.211 

0 20 OLS 0.071 -0.684 -0.178 
0 20 MAE 0.165 -0.419 -0.186 
0 20 MLE 0.080 -0.697 -0.224 

0 30 OLS 0.201 -0.635 -0.317 
0 30 MAE 0.218 -0.526 -0.174 
0 30 MLE 0.141 -0.548 -0.284 

10 0 OLS -0.110 -0~377 -0.152 
10 0 MAE -0.106 -0.399 -0.046 
10 0 MLE -0.096 -0.395 -0.128 

20 0 OLS 0.236 -0.478 -0.193 
20 0 MAE 0.262 -0.576 -0.177 
20 0 MLE 0.267 -0.496 -0.251 

30 0 OLS -0.018 -0.320 -0.084 
30 0 MAE 0.134 -0.543 0.006 
30 0 MLE 0.036 -0.207 0.090 

10 10 OLS -0.078 -0.408 -0.091 
10 10 MAE -0.014 -0.405 -0.150 
10 10 MLE -0.075 -0.437 -0.162 

-----------------------------------------------------------------------------------------------------------
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TABLE 13 

CORRELATIONS OF SMAX, REMX AND SCI, 2 

-----------------------------------------------------------------------------------------------------------
% Error Objective 
R Q function p (SM,RE) p (SM,SC) p (RE,SC) 

-----------------------------------------------------------------------------------------------------------

Lognormal Distribution of Errors 

0 10 OLS -0.173 -0.530 0.101 
0 10 MAE 0.175 -0.008 -0.083 
0 10 MLE -0.143 -0.536 0.071 

0 20 OLS 0.006 -0.610 -0.039 
0 20 MAE 0.283 -0.536 -0.221 
0 20 MLE 0.058 -0.595 -0.064 

0 30 OLS 0.005 -0.648 -0.249 
0 30 MAE 0.318 -0.573 -0.292 
0 30 MLE -0.022 -0.640 -0.237 

10 0 OLS 0.257 -0.335 -0.215 
10 0 MAE 0.275 -0.305 -0.116 
10 0 MLE 0.233 -0.413 -0.202 

20 0 OLS 0.207 -0.519 -0.101 
20 0 MAE 0.113 -0.480 -0.111 
20 0 MLE 0.176 -0.484 -0.112 

30 0 OLS 0.080 -0.345 -0.079 
30 0 MAE 0.134 -0.327 -0.023 
30 0 MLE 0.083 -0.311 -0.024 

10 10 OLS 0.103 -0.322 -0.038 
10 10 MAE 0.185 -0.268 -0.070 
10 10 MLE 0.054 -0.312 -0.031 

-----------------------------------------------------------------------------------------------------------



% Error 
R Q 

0 10 
0 10 
0 10 

0 20 
0 20 
0 20 

0 30 
0 30 
0 30 

10 0 
10 0 
10 0 

20 0 
20 0 
20 0 

30 0 
30 0 
30 0 

10 10 
10 10 
10 10 

TABLE 14 

CORRELATIONS OF SMAX, REMX AND SCI, 3 

Objective 
function p (SM,RE) p (SM,SC) 

Double Exponential Distribution of Errors 

OLS -0.334 -0.488 
MAE 0.127 -0.558 
MLE -0.117 -0.164 

OLS -0.189 -0.415 
MAE -0.037 -0.539 
MLE -0.216 -0.425 

OLS -0.180 -0.351 
MAE 0.027 -0.703 
MLE -0.194 -0.391 

OLS -0.207 -0.546 
MAE -0.301 -0.510 
MLE -0.097 -0.532 

OLS -0.090 -0.490 
MAE -0.219 -0.483 
MLE -0.166 -0.418 

OLS -0.093 -0.018 
MAE -0.074 -0.374 
MLE -0.116 -0.088 

OLS -0.046 -0.583 
MAE -0.162 -0.398 
MLE -0.021 -0.558 
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p (RE,SC) 

-0.038 
-0.307 
-0.033 

-0.190 
-0.175 
-0.134 

-0.114 
-0.202 
-0.180 

-0.081 
-0.107 
-0.014 

-0.299 
-0.206 
-0.233 

-0.206 
-0.150 
-0.116 

0.043 
-0.130 

0.036 
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Uniform Distribution 

Table 15 shows the results for uniform error models. Again SMAX and SCI 

are correlated because coefficients range from -0.238 to -0.620. These values are 

smaller for SMAX and REMX and for REMX and SCI. Thus the parameter REMX 

is statistically independent of both SMAX and SCI. Correlation between SMAX 

and SCI are not affected by the error variances, estimation techniques and error 

scenarios, i.e. whether rainfall, runoff or both are erroneous. 

Correia ted Errors 

The results for the correlated error scenarios are given in table 16. 

Correlation coefficients used for error models are 0.3, 0.5 and 0.8. Notice that all 

three coefficients are higher in comparison to normal, lognormal, double exponential 

and uniform error models. This is perhaps due to large amounts of error introduced 

by the correlated error models. Correlation between SMAX and SCI varies from 

-0.568 to -0.973. On the other hand, correlations between SMAX and REMX are 

neither high nor low for every set of data. The same can be said about the 

correlation between REMX and SC 1. 

Concluding Remarks 

From the correlation study, it can be concluded that SMAX and SCI are 

correlated. There is low interaction between SMAX and REMX and REMX and SCI 

as indicated by their low correlation coefficients. Error models do not have any 

influence on this result except for the correlated error cases. Larger correlations in 

Table 16 can perhaps be attributed to the large amounts of error produced by the 

AR(I) models. The estimation techniques also did not affect the correlation results 

because interaction between SMAX and SCI are inherent in the model structure. 
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TABLE 15 

CORRELATIONS OF SMAX,REMX AND SCI, 4 

-----------------------------------------------------------------------------------------------------------
% Error Objective 
R Q function p (SM,RE) p (SM,SC) p (RE,SC) 

-----------------------------------------------------------------------------------------------------------

Uniform Distribution of Errors 

0 10 OLS -0.054 -0.412 -0.244 
0 10 MAE -0.073 -0.401 -0.125 
0 10 MLE -0.044 -0.305 -0.232 

0 20 OLS -0.081 -0.336 0.045 
0 20 MAE 0.123 -0.503 -0.154 
0 20 MLE 0.169 -0.306 -0.059 

0 30 OLS 0.155 -0.420 -0.092 
0 30 MAE 0.259 -0.363 -0.137 
0 30 MLE 0.237 -0.393 -0.070 

10 0 OLS -0.022 -0.404 -0.251 
10 0 MAE -0.025 -0.561 -0.181 
10 0 MLE -0.020 -0.411 -0.262 

20 0 OLS -0.136 -0.357 -0.213 
20 0 MAE -0.187 -0.490 0.028 
20 0 MLE -0.121 -0.355 -0.225 

30 0 OLS -0.260 -0.252 -0.082 
30 0 MAE 0.098 -0.442 -0.148 
30 0 MLE -0.202 -0.238 0.052 

10 10 OLS -0.092 -0.620 -0.054 
10 10 MAE -0.125 -0.570 -0.052 
10 10 MLE -0.048 -0.598 -0.144 



TABLE 16 

CORRELATIONS OF SMAX, REMX AND SCI, 5 

% Error 
R Q 

Correlation = 0.3 

0 10 
0 10 
0 10 

10 0 
10 0 
10 0 

10 10 
10 10 
10 10 

Correlation = 0.5 

0 10 
0 10 
0 10 

10 0 
10 0 
10 0 

Correlation = 0.8 

0 30 
0 30 
0 30 

10 0 
10 0 
10 0 

Objective 
function 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

OLS 
MAE 
MLE 

p (SM,RE) p (SM,SC) 

Correlated Errors 

0.394 -0.751 
0.432 -0.649 

-0.283 -0.717 

0.220 -0.952 
-0.273 -0.614 

0.218 -0.954 

-0.592 -0.973 
-0.352 -0.968 

0.114 -0.911 

-0.404 -0.686 
0.261 -0.598 

-0.666 -0.568 

0.244 -0.998 
-0.190 -0.864 

0.188 -0.973 

-0.017 -0.754 
-0.151 -0.623 
-0.167 -0.825 

0.216 -0.834 
0.073 -0.665 
0.102 -0.881 
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p (RE,SC) 

-0.289 
-0.374 

0.271 

-0.278 
0.356 

-0.282 

0.547 
0.327 
0.106 

-0.071 
-0.400 
-0.058 

-0.226 
0.115 

-0.264 

-0.104 
-0.036 
-0.113 

-0.116 
-0.129 
-0.049 
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SMAX and SCI are inversely related to each other because of the negative· 

correlation coefficients. For uncertainty analysis, the joint distribution of SMAX 

and SCI should be considered to preserve correlation and distributional properties 

between them. 

Parameter Distributions 

Normal and lognormal distributions were tested for the parameters SMAX, 

REMX and SCI. Tables 17 through 21 summarize the results and give the values for 

the maximum deviation, Dl and D2, between the fitted and empirical normal and 

lognormal distributions respectively. The Kolmogorov-Smirnov test (Haan, 1977) was 

used as a criterion of acceptance or rejection of the proposed distribution. Critical 

value of Kolmogorov-Smirnov test statistic was 0.14 at 5% significance level. 

Hypothesis that the parameter is from a proposed distribution was accepted when 

the maximum deviation was less than the critical value of the Kolmogorov-Smirnov 

test, and visa-versa. In these tables, column 1 and 2 represent the error models. 

Column 3 contains the objective functions used in this study. D 1 and D2 values for 

each parameter are given in the remaining columns. 

Parameter SMAX 

Figure 3 through 6 illustrate the distribution of the parameter SMAX. 

Although the normal distribution was not rejected, the lognormal distribution was 

found to more accurately describe SMAX. Deviations D2 were smaller than Dl 

most of the times. With correlated errors and contaminated precipitation, neither 

the normal nor lognormal distribution can be accepted for SMAX. Nevertheless 

deviations D2 were smaller than Dl in this case also. The distribution of the error 

did not have any impact on the resulting distribution of the parameters. The various 

estimation techniques also did not affect the distribution of SMAX. SMAX can be 
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TABLE I7 

KOLMOGOROV -SMIRNOV TEST STATISTICS, I 

------------------------------------------------------------------------------------------------------------
% Error Obj. SMAX REMX SCI 
R Q fn. DI D2 DI D2 DI D2 
------------------------------------------------------------------------------------------------------------

Normal Distribution of Errors 

0 10 OLS 0.062 0.069 O.II4 O.II8 0.052 0.054 
0 IO MAE O.I50 O.I55 O.II4 0.099 0.08I 0.080 
0 IO MLE 0.068 0.075 O.I3I O.I22 0.067 0.069 

0 20 OLS 0.089 0.076 0.088 O.I70 0.095 0.105 
0 20 MAE 0.078 0.075 O.II8 0.093 O.I47 O.I52 
0 20 MLE 0.087 0.074 0.090 0.087 O.IOO O.I09 

0 30 OLS 0.083 0.067 O.IIO 0.096 0.072 0.082 
0 30 MAE 0.086 0.073 O.I2I 0.096 O.I23 O.I33 
0 30 MLE 0.079 0.06I 0.098 0.088 0.056 0.06I 

IO 0 OLS 0.079 0.065 O.I07 0.060 O.II7 0.125 
IO 0 MAE 0.075 0.07I O.I22 0.130 O.I55 O.I62 
10 0 MLE 0.076 0.063 O.I22 0.072 0.08I 0.089 

20 0 OLS O.I09 0.096 0.094 0.089 0.073 0.087 
20 0 MAE O.I22 0.099 0.060 0.082 O.I05 O.I22 
20 0 MLE O.I32 0.109 0.094 0.082 0.056 0.068 

30 0 OLS 0.08I 0.053 0.083 O.II2 0.07I 0.084 
30 0 MAE O.I5I O.I35 0.088 0.074 0.094 O.II5 
30 0 MLE 0.093 0.068 0.092 O.I06 0.069 0.068 

IO IO OLS 0.072 0.07I 0.079 0.059 O.II1 0.119 
10 10 MAE 0.092 0.08I 0.093 0.084 O.I57 O.I65 
IO 10 MLE 0.070 0.063 0.078 0.05I O.II8 O.I26 

------------------------------------------------------------------------------------------------------------
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TABLE 18 

KOLMOGOROV -SMIRNOV TEST STATISTICS, 2 

------------------------------------------------------------------------------------------------------------
% Error Obj. SMAX REMX SCI 
R Q fn. Dl D2 Dl D2 Dl D2 
------------------------------------------------------------------------------------------------------------

Lognormal Distribution of Errors 

0 10 OLS 0.066 0.071 0.118 0.097 0.060 0.060 
0 10 MAE 0.056 0.057 0.127 0.121 0.366 0.329 
0 10 MLE 0.078 0.085 0.126 0.105 0.079 0.077 

0 20 OLS 0.083 0.072 0.094 0.087 0.066 0.067 
0 20 MAE 0.109 0.116 0.108 0.089 0.091 0.087 
0 20 MLE 0.081 0.070 0.094 0.082 0.066 0.066 

0 30 OLS 0.096 0.092 0.094 0.108 0.091 0.082 
0 30 MAE 0.070 0.063 0.134 0.155 0.103 0.110 
0 30 MLE 0.090 0.085 0.095 0.095 0.093 0.084 

10 0 OLS 0.063 0.076 0.081 0.072 0.082 0.076 
10 0 MAE 0.089 0.081 0.042 0.056 0.097 0.102 
10 0 MLE 0.047 0.059 0.076 0.065 0.081 0.074 

20 0 OLS 0.093 0.064 0.062 0.082 0.096 0.083 
20 0 MAE 0.092 0.090 0.074 0.057 0.074 0.083 
20 0 MLE 0.101 0.074 0.070 0.065 0.066 0.060 

30 0 OLS 0.093 0.062 0.078 0.092 0.082 0.078 
30 0 MAE 0.105 0.083 0.118 0.097 0.105 0.130 
30 0 MLE 0.092 0.070 0.064 0.086 0.099 0.097 

10 10 OLS 0.045 0.039 0.046 0.076 0.077 0.083 
10 10 MAE 0.060 0.056 0.091 0.068 0.111 0.116 
10 10 MLE 0.066 0.052 0.038 0.077 0.076 0.081 

----------------·--------------------------------------------------------------------------------------------
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TABLE 19 

KOLMOGOROV-SMIRNOV TEST STATISTICS, 3 

------------------------------------------------------------------------------------------------------------
% Error Obj. SMAX REMX SCI 
R Q fn. D1 D2 Dl D2 Dl D2 
------------------------------------------------------------------------------------------------------------

Double Exponential Distribution of Errors 

0 10 OLS 0.079 0.077 0.300 0.316 0.138 0.135 
0 10 MAE 0.106 0.108 0.113 0.119 0.193 0.191 
0 10 MLE 0.348 0.439 0.290 0.307 0.127 0.123 

0 20 OLS 0.107 0.102 0.367 0.384 0.089 0.086 
0 20 MAE 0.066 0.071 0.123 0.137 0.248 0.242 
0 20 MLE 0.107 0.102 0.358 0.374 0.087 0.084 

0 30 OLS 0.104 0.095 0.307 0.320 0.128 0.121 
0 30 MAE 0.077 0.088 0.134 0.121 0.198 0.190 
0 30 MLE 0.109 0.100 0.314 0.327 0.133 0.126 

10 0 OLS 0.118 0.112 0.078 0.068 0.175 0.184 
10 10 MAE 0.128 0.132 0.091 0.088 0.169 0.176 
10 10 MLE 0.120 0.121 0.165 0.076 0.182 0.191 

20 0 OLS 0.058 0.059 0.070 0.045 0.159 0.167 
20 0 MAE 0.112 0.096 0.057 0.053 0.151 0.156 
20 0 MLE 0.078 0.069 0.073 0.056 0.145 0.155 

30 0 OLS 0.093 0.124 0.088 0.074 0.110 0.124 
30 0 MAE 0.112 0.134 0.074 0.055 0.121 0.140 
30 0 MLE 0.078 0.106 0.101 0.086 0.121 0.135 

10 10 OLS 0.130 0.116 0.109 0.084 0.202 0.214 
10 10 MAE 0.080 0.081 0.078 0.088 0.141 0.148 
10 10 MLE 0.109 0.098 0.116 0.084 0.211 0.225 

------------------------------------------------------------------------------------------------------------
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TABLE 20 

KOLMOGOROV -SMIRNOV TEST STATISTICS, 4 

------------------------------------------------------------------------------------------------------------
% Error Obj. SMAX REMX SCI 
R Q fn. D1 D2 D1 D2 Dl D2 
------------------------------------------------------------------------------------------------------------

Uniform Distribution of Errors 

0 10 OLS 0.140 0.136 0.263 0.276 0.085 0.087 
0 10 MAE 0.106 0.110 0.167 0.153 0.094 0.097 
0 10 MLE 0.143 0.139 0.277 0.291 0.099 0.096 

0 20 OLS 0.099 0.090 0.339 0.237 0.055 0.061 
0 20 MAE 0.069 0.064 0.121 0.138 0.085 0.092 
0 20 MLE 0.109 0.099 0.158 0.189 0.045 0.050 

0 30 OLS 0.102 0.102 0.085 0.126 0.111 0.118 
0 30 MAE 0.077 0.065 0.225 0.155 0.099 0.108 
0 30 MLE 0.107 0.108 0.090 0.130 0.087 0.096 

10 0 OLS 0.074 0.056 0.058 0.072 0.106 0.101 
10 0 MAE 0.045 0.053 0.138 0.113 0.119 0.121 
10 0 MLE 0.068 0.051 0.071 0.065 0.110 0.104 

20 0 OLS 0.079 0.073 0.061 0.082 0.101 0.086 
20 0 MAE 0.104 0.095 0.116 0.065 0.067 0.077 
20 0 MLE 0.080 0.081 0.074 0.079 0.082 0.070 

30 0 OLS 0.099 0.133 0.105 0.105 0.033 0.047 
30 0 MAE 0.106 0.077 0.100 0.093 0.064 0.084 
30 0 MLE 0.109 0.081 0.091 0.091 0.060 0.063 

10 10 OLS 0.061 0.054 0.077 0.071 0.110 0.101 
10 10 MAE 0.068 0.070 0.120 0.088 0.123 0.116 
10 10 MLE 0.068 0.051 0.071 0.065 0.110 0.104 

------------------------------------------------------------------------------------------------------------
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TABLE 21 

KOLMOGOROV -SMIRNOV TEST STATISTICS, 5 

------------------------------------------------------------------------------------------------------------
% Error Obj. SMAX REMX SCI 
R Q fn. Dl D2 Dl D2 Dl D2 

------------------------------------------------------------------------------------------------------------

Correlated Errors 
Correlation = 0.3 

0 10 OLS 0.129 0.120 0.277 0.267 0.097 0.099 
0 10 MAE 0.116 0.111 0.291 0.280 0.215 0.212 
0 10 MLE 0.050 0.053 0.237 0.241 0.074 0.075 

10 0 OLS 0.367 0.357 0.235 0.238 0.456 0.459 
10 0 MAE 0.151 0.144 0.364 0.366 0.258 0.262 
10 0 MLE 0.368 0.358 0.258 0.259 0.417 0.423 

10 10 OLS 0.323 0.385 0.295 0.228 0.319 0.292 
10 10 MAE 0.358 0.417 0.350 0.369 ' 0.374 0.366 
10 10 MLE 0.405 0.344 0.283 0.202 0.335 0.372 

Correia tion = 0.5 

0 10 OLS 0.113 0.107 0.218 0.221 0.110 0.112 
0 10 MAE 0.100 0.101 0.204 0.198 0.188 0.186 
0 10 MLE 0.131 0.132 0.276 0.274 0.050 0.048 

10 0 OLS 0.307 0.342 0.370 0.407 0.301 0.276 
10 0 MAE 0.217 0.220 0.338 0.339 0.256 0.249 
10 0 MLE 0.202 0.201 0.311 0.317 0.176 0.172 

Correlation = 0.8 

0 30 OLS 0.090 0.075 0.199 0.172 0.173 0.164 
0 30 MAE 0.113 0.100 0.213 0.190 0.137 0.133 
0 30 MLE 0.088 0.097 0.306 0.285 0.184 0.177 

10 0 OLS 0.152 0.145 0.307 0.312 0.174 0.170 
10 0 MAE 0.286 0.277 0.318 0.320 0.195 0.207 
10 0 MLE 0.181 0.195 0.364 0.364 0.199 0.189 

------------------------------------------------------------------------------------------------------------
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represented by a lognormal distribution. 

Parameter REMX 

Based on Kolmogorov-Smirnov test at 5o/o significance level both the normal 

and lognormal distributions can be assigned (Tables 17 through 21). Figures 7 

through 10 depict the distribution of REMX. Irrespective of error distributions, D2 

values were consistently lower than Dl in most of the samples. Therefore, Lognormal 

distribution was selected to approximate the parameter REMX. 

Parameter SCI 

DI and D2 values for SCI (Tables 17 through 21) are similar for all the error 

models. Both the normal and lognormal distributions can either be accepted or 

rejected. Figures 11 through I5 show the distribution of SCI. The lognormal 

distribution is assigned to SCI because of its interaction with parameter SMAX. 

Concluding Remarks 

The parameters SMAX, REMX and SCI can be approximated by either normal 

or lognormal distribution. However, the lognormal distribution seems to be a better 

approximation. Since SMAX and SCI were found to be correlated, a bivariate 

lognormal distribution would be appropriate to preserve their correlation structure. 

The distribution of the error model had no impact on the resulting distribution of 

the parameters. It was also observed that the estimation techniques had very little 

effect on the distribution of parameters. The error variance did not influence the 

form of the parameter distribution but changed its distributional parameters 

depending on degree of error variations. 
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Uncertainty Analysis 

The uncertainty analysis in this section was based on 100 Monte Carlo 

simulations of the PRMS model. For each iteration, parameters were selected from 

lognormal distributions. Distributions were specified by their true values as mean 

with a 20% coefficient of variations (CV). A correlation coefficient of -0.5 was 

assumed between SMAX and SCI. Listing of the computer program for bivariate 

generation of lognormally distributed pairs of SMAX and SCI is given in the 

Appendix C (Matalas, 1967 and Haan, 1977). REMX was drawn from a univariate 

lognormal distribution. Generated parameters and mean annual runoff values were 

also included in the Appendix C. 

Table 22 shows the summary statistics of the generated data. It is evident 

that the distributional properties of the parameters were maintained during the 

generation process. Based on average parameter values, the mean annual runoff 

was 2.06 cfs days. However considering the parameters as random variables 

resulted in mean annual runoff of 2.12 cfs days with a standard deviation of 1.07 cfs 

days (Table 22). Thus 20% variations in the parameters was translated to a 36% 

coefficient of variation of model output. The result of this error analysis is in 

agreement with previous research. O'Neill et al. (1980) showed prediction errors 

were 10 times greater than parameters error. 

Both normal and lognormal distributions were tested to describe the 

cumulative probability distribution of the mean annual runoff. Table 23 shows the 

maximum deviations of the mean annual runoff from both the above distributions. 

The critical value of the Kolmogorov-Smirnov test statistic, K is 0.14 at 5% 

significance level. The mean annual runoff is best described by a normal 

distribution. Figure 16 shows the probability distribution of the annual runoff 

values. Now probabilities can be assigned to various runoff estimates. A 90% 



TABLE 22 

STATISTICAL SUMMARY OF GENERA TED DATA 

SMAX REMX SCI 

(in) (in) 

Minimum 3.940 1.160 0.230 

Maximum 9.700 3.100 0.710 

Mean 6.803 1.993 0.456 

SD 1.263 0.397 0.080 

cv 0.186 0.199 0.166 

J(SMAX,SCI) = - 0.46 in generated data 

MEAN 
RUNOFF 
(cfs days) 

0.560 

4.190 

2.120 

0.764 

0.360 
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TABLE 23 

KOLMOGOROV -SMIRNOV TEST STATISTICS FOR 
MEAN ANNUAL RUNOFF 

DISTRIBUTION D 

Normal 0.083 

Lognormal 0.054 

D maximum deviation from the distribution 

K the critical value of the K-S test 

89 

K 

0.140 

0.140 
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confidence interval on the mean flow is between 0.87 cfs days and 3.37 cfs days. 

Small errors on the parameters can lead to significant uncertainty in model 

predictions. In this example, uncertainty in the model parameters was transformed 

to almost two times more uncertainty in the model output. Thus point estimates of 

model output is not enough to convey the complete information. At minimum, at 

least the standard deviation of the model output should be provided. Nevertheless, 

a probability study would help to describe the complete picture. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Summary 

Hydrologic models are not yet developed to the extent that all the parameters 

are physically measurable. As such, parameters are estimated using observed data, 

either directly or indirectly that can be considered as random data or data having a 

random component. Thus parameters may be considered as random variables 

characterized by probability density functions. Parameter estimation and model 

application should recognize the probabilistic nature of estimated model parameters. 

The objectives of this study were (1) to evaluate the impact of various error 

distributions in rainfall and streamflow on parameter estimates and (2) to evaluate 

parameter estimation techniques in the presence of errors in input data. 

The USGS Precipitation Runoff Modeling Systems (PRMS) was used in this 

research. Hydrologic data for four years (1974-1977) from Chickasha R-6 watershed 

was utilized. The watershed is located in the Washita river basin of Southcentral 

Oklahoma. The model contains more than 50 parameters. Three of the more sensitive 

parameters, SMAX, REMX and SCI, were chosen for this investigation. 

Representative values for the parameters were found from the initial run of 

the model. This set of parameters was assumed to be true values for the watershed. 

Then four years of rainfall and air temperature data were used in PRMS to generate 

an error-free runoff sequence. 

Parameter estimation techniques considered for this study were the ordinary 

92 
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least squares (OLS), method of absolute errors (MAE) and maximum likelihood 

technique (MLE). All these three methods exactly recovered the true parameter 

values when both rainfall and runoff data were error-free. 

The error models used for this research were normal, lognormal,double 

exponential, uniform and correlated errors. Errors were introduced separately into 

each value of rainfall and runoff. Error contaminated data were then used for 

parameter estimation. There were altogether 105 combinations of Monte Carlo 

simulations for 5 error models and three parameter estimation techniques. 

Errors in precipitation caused more uncertainty in parameters thari the error 

contaminated runoff records. This observation was true for all the error models. 

Variations in the parameters also increased with an increasing level of errors in the 

data. For mixed errors, parameter variances were higher than the corresponding 

level of error in either rainfall or in runoff records. 

Parameter variances and biases were used to evaluate the estimation 

techniques. Performance of an estimation technique was judged based on its ability 

to produce estimates with lower variance and bias than any other method. MSE was 

an indicator of this. The method of absolute errors performed better in all the error 

models except the correlated error situation. MAE is known to perform better in 

non-normal errors. However, its superiority over OLS in normal error case was 

perhaps due to low flow sequences. Generally high flow values dominate the OLS 

objective function. Performance of OLS and MLE were similar for error models 

other than the correlated error. MLE performed better in correlated error case 

because its objective function was based on the error structure of the model 

residuals. Due to long zero flow sequence, the desired degree of correlation could not 

be achieved in the data. As a result, MAE and OLS also worked well for correlated 

error model. 
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Parameters SMAX and SCI were found to be highly correlated. There were 

very little interaction between SMAX and REMX and between REMX and SCI. 

Correlation between SMAX and SCI results from their functional relationship in the 

model. 

The distrib.ution of the error model did not influence the resulting 

distribution of the parameters. Parameter SMAX, REMX and SCI were 

approximated with lognormal distribution. Since SMAX and SCI were correlated a 

bivariate lognormal distribution was used to preserve their correlated structure. 

Uncertainty in the model predictions was analyzed using Monte Carlo 

simulations. Parameters were generated from lognormal distributions maintaining 

their distributional properties. Then 100 independent model outputs of mean annual 

flow were generated. The mean annual runoff was found to be normally 

distributed. Another observation was the higher uncertainty in model predictions 

than the uncertainty in the model parameters. 

Conclusions 

Based upon the results of this research the following conclusions can be 

drawn. 

I. Errors in the precipitation records introduced more uncertainty to 

parameter estimates than errors in runoff data. 

2. Parameter uncertainty also increased with increasing level of errors in the 

data used for optimization. 

3. The method of absolute errors was found superior for all the error models 

excluding the correlated errors. Better estimates were in the context of lower bias 

and variance. 

4. Maximum likelihood technique was superior in the correlated error model. 
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5. Performances of the ordinary least squares and maximum. likelihood 

techniques were similar in normal as well as non-normal error models. 

6. The distribution of the error model had no impact on the resulting 

distribution of the parameters except for the parameter REMX in the presence of 

uniform and double exponential errors. 

7. Smaller uncertainty in the parameters caused larger uncertainty in the 

model predictions. 

8. Violation of the assumption of uncorrelated errors introduced significant 

errors in estimated parameters. 

Recommendations for Further Research 

The following topics are suggested for future investigation. 

I. The results of this study may be model specific. Therefore similar studies 

should be conducted for other rainfall-runoff models. 

2. Superiority of the method of absolute errors for non-normal error models is 

obvious. However for the normal error model, MAE performed better than OLS 

perhaps due to low flow sequences. For future study, larger watersheds with high 

flow values should be considered to substantiate this point. 

3. More studies on the impact of parameter distributions on estimated flow 

distributions should be conducted. 
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10 FtE~ ********************************************************************** 
20 FtE~ GENEFtA TION OF NOFt~AL FtANDO~ EFtFtOFt 
30 FtE~ ********************************************************************** 
40 RE~ INPUT NA~E OF INPUT AND OUTPUT FILE 
50 REM INPUT ST ANDAFtD DEVIATION OF EFtFtOFt ,S. 
60 FtE~ OUTPUT FILE IS CO~PA TIBLE TO PFt~S DAILY MODE 
70 DIM D1(500),D9(500),Dl0(500),D11(500),D2(500),D3(500) 
80 DI~ D4(500),D5(500),D6(500),D7(500),D8(500) 
90 FtANDO~IZE 
100 PFtiNT "ENTER THE N A~E OF INPUTFILE::" :INPUT IFN$ 
110 ~$=IFN$ 
120 OPEN "I",#l,~$ 
130 PFtiNT "ENTEFt THE NA~E OF OUTPUT FILE ::", :INPUT OFN$ 
140 N$=0FN$ : OPEN "0",#2,N$ 
150 PFtiNT "STANDAFtD DEVIATION FOFt EFtFtOFt:", :INPUT S 
160 1=0 
170 RE~ READ INPUT DATA FRO~ FILE AND ADD EFtFtOFt 
180 IF EOF(l) THEN 780 
190 INPUT#1,D1,D2,D3,D4,D5,D6,D7,D8,D9,Dl0,D11 
200 J=J+1 
210 IF D4=0 THEN 250 
220 M=D4 : SD= S*D4 
230 GOSUB 850 
240 D4= FtNOFt : M=O : SD=O 
250 IF D5=0 THEN 290 
260 ~=D5 : SD= S*D5 
270 GOSUB 850 
280 D5=FtNOFt : M=O : SD=O 
290 IF D6=0 THEN 330 
300 ~=D6 : SD= S*D6 

. 310 GOSUB 850 
320 D6=RNOFt : M=O : SD=O 
330 IF D7=0 THEN 370 
340 M=D7 : SD= S*D7 
350 GOSUB 850 
360 D7=RNOR :~=0 :SD=O 
370 IF D8=0 THEN 410 
380 ~=D8 :SD= S*D8 
390 GOSUB 850 
400 D8=FtNOFt :~=0 : SD=O 
410 IF D9=0 THEN 450 
420 ~=D9 : SD= S*D9 
430 GOSUB 850 
440 D9=FtNOFt :~=0 :SD=O 
450 IF DlO=O THEN 490 
460 M=D10 : SD= S*D10 
470 GOSUB 850 
480 D10=FtNOFt :~=0 :SD=O 
490 IF D 11 =0 THEN 550 
500 ~=D1l : SD= S*D11 
510 GOSUB 850 
520 Dll=FtNOFt :M=O :SD=O 
530 PFtiNT 



540 REM WRITE DATA TO OUTPUTFILE IN PRMS FORMAT 
550 ON D3 GOTO 560,560,560,600 
560 PRINT #2,USING "3CKSA.FLOW ####";D1; 
570 PRINT #2,USING "##";D2,D3; 
580 PRINT #2, USING "####.##";D4,D5,D6,D7 ,D8,D9,D 1 O,D 11 
590 GOTO 770 
600 ON D2 GOTO 700,610,700,740,700,740,700,700, 740,700,740,700 
610 IF D1=1976 THEN 660 
620 PRINT #2,USING "3CKSA.FLOW ####";D1; 
630 PRINT #2,USING "##";D2,D3; 
640 PRINT #2, USING "####.##";D4,D5,D6,D7 
650 GOTO 770 
660 PRINT #2,USING "3CKSA.FLOW ####";D1; 
670 PRINT #2,USING "##";D2,D3; 
680 PRINT #2,USING "####.##";D4,D5,D6,D7,D8 
690 GOTO 770 
700 PRINT #2,USING "3CKSA.FLOW ####";D1; 
710 PRINT #2, USING "##";D2,D3; 
720 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9,D10 
730 GOTO 770 
740 PRINT #2,USING "3CKSA.FLOW ####";D1; 
750 PRINT #2,USING "##";D2,D3; 
760 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9 
770 GOTO 180 
780 CLOSE #1 
790 CLOSE #2 
800 END 
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810 REM ********************************************************************* 
820 REM 
830 REM SUBROUTINE : NORMAL DISTRIBUTION GENERA TOR 
840 REM 
850 REM ********************************************************************* 
860 IF NRN = 1 THEN 960 
870 R1=2*RND-1 
880 R2=2*RND-1 
890 S=R1 "2+R2"2 
900 IF S>= 1 THEN 870 
910 RNN1=R1 *SQR((-2*LOG(S))/S) 
920 RNN2=R2*SQR((-2*LOG(S))/S) 
930 RNOR=M+RNN1*SD 
940 NRN =NRN + 1 
950 RETURN 
960 RNOR=M+RNN2*SD 
970 NRN=O 
980 RETURN 
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10 FtE~ ********************************************************************** 
20 FtE~ GENEFtA TION OF LOGNOFtMAL FtANDO~ EFtFtOFt 
30 FtEM ********************************************************************** 
40 FtE~ PFtOGFtA~ FtEADS FFtO~ A FILE AND ADD FtANDO~ EFtFtOFt 
50 FtE~ INPUT INPUT AND OUTPUT FILE N A~ES, SD OF EFtFtOFt, S 
60 FtE~ OUTPUT FILE FOFt~A T IS CO~PA TIBLE TO PFtMS DAILY MODE 
70 DIM D1(500),D9(500),D10(500),D11(500),D2(500),D3(500), 
80 DI~ D4(500),D5(500),D6(500),D7(500),D8(500) 
90 PFtiNT "ENTEFt THE NAME OF INPUTFILE::" :INPUT IFN$ 
100 ~$="b:"+IFN$ 
110 OPEN "1",#1,~$ 
120 PFtiNT "ENTEFt THE NA~E OF OUTPUT FILE ::",:INPUT OFN$ 
130 N$="b:"+OFN$ : OPEN "0",#2,N$ 
140 PFtiNT "ST ANDAFtD DEVIATION OF EFtFtOFt:",: INPUT S 
150 J=O 
160 FtE~ FtEAD DATA AND ADD LOGNOFt~AL EFtFtOFt 
170 IF EOF(l) THEN 780 
180 INPUT# 1 ,D 1,D2,D3,D4,D5,D6,D7 ,D8,D9,D 1 O,D 11 
190 J=J+1 
200 FtANDO~IZE 
210 IF D4=0 THEN 2SO 
220 ~=.5*(LOG(D4"'2/(S"'2+1))) : SD=(LOG(S"'2+1))"'.5 
230 GOSUB 840 
240 D4= EXP(FtNOFt) : ~=0 : SD=O 
250 IF D5=0 THEN 290 
260 ~= .5*(LOG(D5"2/(S"'2+1))) : SD=(LOG(S"2+1))"'.5 
270 GOSUB 840 
280 D5=EXP(FtNOFt): ~=0 : SD=O 
290 IF D6=0 THEN 330 
300 M=.5*(LOG(D6"'2/(S"'2+1))) : SD=(LOG(S"2+1))".5 
310 GOSUB 840 
320 D6=EXP(FtNOFt) : M=O : SD=O 
330 IF D7=0 THEN 370 
340 ~=.5*(LOG(D7"2/(S"'2+ 1))) : SD=(LOG(S"2+ 1 ))" .5 
350 GOSUB 840 
360 D7=EXP(FtNOFt) : M=O :SD=O 
370 IF D8=0 THEN 410 
380 ~=.5*(LOG(D8"2/(S"2+ 1))) :SD=(LOG(S"2+ 1 ))"'.5 
390 GOSUB 840 
400 D8=EXP(FtNOFt) :~=0 : SD=O 
410 IF D9=0 THEN 450 
420 ~=.5*(LOG(D9"2/ (S"2+ 1))) : SD=(LOG(S"2+ 1 ))" .5 
430 GOSUB 840 
440 D9=EXP(FtNOFt) :~=0 :SD=O 
450 IF D 1 0=0 THEN 490 
460 M=.5*(LOG(D10"2/(S"2+ 1 ))) : SD=(LOG(S"2+ 1))".5 
4 70 GO SUB 840 
480 D10=EXP(FtNOFt) :~=0 :SD=O 
490 IF D11=0 THEN 550 
500 M=.5*(LOG(D11 "'2/(S"2+1))) : SD=(LOG(S"2+1))".5 
510 GOSUB 840 
520 D11=EXP(FtNOFt) :M=O :SD=O 
530 PFtiNT 



540 REM PRINT DATA TO OUTPUT FILE IN PRMS FORMAT 
550 ON D3 GOTO 560,560,560,600 
560 PRINT #2, USING "3CKSA.FLOW ####";D I; 
570 PRINT #2,USING "##";D2,D3; 
580 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9,DIO,Dll 
590 GOTO 770 
600 ON D2 GOTO 700,6I0,700,740,700,740,700,700,740, 700,740,700 
6IO IF DI=I976 THEN 660 
620 PRINT #2,USING "3CKSA.FLOW ####";DI; 
630 PRINT #2,USING "##";D2,D3; 
640 PRINT #2,USING "####.##";D4,D5,D6,D7 
650 GOTO 770 
660 PRINT #2,USING "3CKSA.FLOW ####";DI; 
670 PRINT #2,USING "##";D2,D3; 
680 PRINT #2,USING "####.##";D4,D5,D6,D7,D8 
690 GOTO 770 
700 PRINT #2,USING "3CKSA.FLOW ####";DI; 
7IO PRINT #2,USING "##'';D2,D3; 
720 PRINT #2, USING "####.##";D4,D5,D6,D7 ,D8,D9,D I 0 
730 GOTO 770 
740 PRINT #2,USING "3CKSA.FLOW ####";DI; 
750 PRINT #2,USING "##";D2,D3; 
760 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9 
770 GOTO I70 
780 CLOSE #I 
790 CLOSE #2 
800 END 
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8IO REM ********************************************************************* 
820 REM SUBROUTINE : NORMAL DISTRIBUTION GENERA TOR 
830 REM ********************************************************************* 
840 REM SUBROUTINE FOR NORMAL DISTRIBUTION 
850 IF NRN=I THEN 950 
860 Rl=2*RND-l 
870 R2=2*RND-I 
880 S=RI "'2+R2"'2 
890 IF S>= I THEN 860 
900 RNNI=RI *SQR((-2*LOG(S))/S) 
9I 0 RNN2=R2*SQR(( -2*LOG(S))/S) 
920 RNOR=M+RNNI*SD 
930 NRN=NRN+I 
940 RETURN 
950 RNOR=M+RNN2*SD 
960 NRN=O 
970 RETURN 
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10 FtE11 ********************************************************************** 
20 FtE11 GENEFtA TION OF DOUBLE EXPONENTIAL FtAND011 EFtFtOFt 
30 FtE11 ********************************************************************** 
40 FtE11 PFtOGFtA11 FtEADS FFt011 A FILE AND ADD FtAND011 EFtFtOFt 
50 FtE11 INPUT INPUT AND OUTPUT FILE NA11ES, SD OF EFtFtOFt, S. 
60 FtE11 OUTPUT FILE FOFt11AT IS C011PATIBLE TO PFt11S DAILY MODE 
70 DI11 Dl(500),D9(500),DI0(500),Dll(500),D2(500),D3(500), 
80 DI11 D4(500),D5(500),D6(500),D7(500),D8(500) 
90 FtAND011IZE 
100 PFtiNT "ENTEFt THE NA11E OF INPUTFILE::",:INPUT IFN$ 
110 11$=1FN$ 
120 OPEN "I",#l,M$ 
130 PFtiNT "ENTEFt THE NA11E OF OUTPUT FILE ::",:INPUT OFN$ 
140 N$=0FN$ : OPEN "0",#2,N$ 
150 PFtiNT "STANDAFtD DEVIATION OF EFtFtOFt:",: INPUT S 
160 1=0 
170 FtEM FtEAD DATA AND ADD DOUBLE EXPONENTIAL EFtFtOFt 
180 IF EOF( 1) THEN 860 
190 INPUT#l,Dl,D2,D3,D4,D5,D6,D7,D8,D9,Dl0,Dll 
200 J=J+l 
210 IF D4=0 THEN 260 
220 B= S*D4/SQFt(2) 
230 GOSUB 920 
240 D4=DFt+DE : B=O : DE=O 
250 IF D4 < 0 THEN D4=0 
260 IF D5=0 THEN 310 
270 B= S*D5/SQFt(2) 
280 GOSUB 920 
290 D5=D5+DE : B=O : DE=O 
300 IF D5 < 0 THEN D5=0 
310 IF D6=0 THEN 360 
320 B= S*D6/SQFt(2) 
330 GOSUB 920 
340 D6=D6+DE : B=O : DE=O 
350 IF D6 < 0 THEN D6=0 
360 IF D7=0 THEN 410 
370 B= S*D7 /SQFt(2) 
380 GOSUB 920 
390 D7=D7+DE : B=O : DE=O 
400 IF D7 < 0 THEN . D7=0 
410 IF D8=0 THEN 460 
420 B= S*D8/SQFt(2) 
430 GOSUB 920 
440 D8=D8+DE : B=O : DE=O 
450 IF D8 < 0 THEN D8=0 
460 IF D9=0 THEN 510 
470 B= S*D9/SQFt(2) 
480 GOSUB 920 
490 D9=D9+DE : B=O : DE=O 
500 IF D9 < 0 THEN D9=0 
510 IF DlO=O THEN 560 
520 B= S*DlO/SQFt(2) 
530 GOSUB 920 



540 D10=D10+DE : B=O : DE=O 
550 IF D10 < 0 THEN D10=0 
560 IF D 11 =0 THEN 630 
570 B= S*Dl1/SQR(2) 
580 GOSUB 920 
590 D11=D11+DE: B=O: DE=O 
600 IF D11 < 0 THEN D11=0 
610 PRINT 
620 REM WRITE TO OUTPUT FILE IN PRMS FORMAT 
630 ON D3 GOTO 640,640,640,680 
640 PRINT #2,USING "3CKSA.FLOW ####";D1; 
650 PRINT #2,USING "##";D2,D3; 
660 PRINT #2, USING "###.###";D4,D5,D6,D7 ,D8,D9,D 1 O,D 11 
670 GOTO 850 
680 ON D2 GOTO 780,690,780,820,780,820,780,780,820, 780,820,780 
690 IF D1=1976 THEN 740 
700 PRINT #2,USING "3CKSA.FLOW ####";D1; 
710 PRINT #2, USING "##";D2,D3; 
720 PRINT #2,USING "###.###";D4,D5,D6,D7 
730 GOTO 850 
740 PRINT #2,USING "3CKSA.FLOW ####";D1; 
750 PRINT #2,USING "##";D2,D3; 
760 PRINT #2,USING "###.###";D4,D5,D6,D7,D8 
770 GOTO 850 
780 PRINT #2,USING "3CKSA.FLOW ####";D1; 
790 PRINT #2,USING "##";D2,D3; 
800 PRINT #2,USING "###.###";D4,D5,D6,D7,D8,D9,D10 
810 GOTO 850 
820 PRINT #2,USING "3CKSA.FLOW ####";D1; 
830 PRINT #2,USING "##";D2,D3; 
840 PRINT #2,USING "###.###";D4,D5,D6,D7,D8,D9 
850 GOTO 180 
860 CLOSE #1 
870 CLOSE #2 
880 END 
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890 REM ********************************************************************* 
900 REM SUBROUTINE: 
910 REM DOUBLE EXPONENTIAL DUSTRIBUTION GENERATOR 
920 REM ********************************************************************* 
930 M=RND 
940 DE=-B*(LOG(2*M)) 
950 RETURN 
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10 FtE11 ********************************************************************** 
20 FtE11 GENEFtATION OF UNIFOFt11 FtAND011 EFtftOFt 
30 FtE11 ********************************************************************** 
40 FtE11 PFtOGFtA11 FtEADS Fft011 A FILE AND ADD FtAND011 EFtftOFt 
50 FtE11 INPUT INPUT AND OUTPUT FILE NA11ES, SD OF EFtftOFt, S. 
60 FtE11 OUTPUT FILE FOFt11A T IS C011PA TIBLE TO Pft11S DAILY 110DE 
70 DI11 DI(500),D9(500),DI0(500),Dll(500),D2(500),D3(500), 
80 DI11 D4(500),D5(500),D6(500),D7(500),D8(500) 
90 FtAND011IZE 
100 PFtiNT "ENTEFt THE NA11E OF INPUTFILE::" :INPUT IFN$ 
11 0 11$=IFN$ 
120 OPEN "I",#l,11$ 
130 PFtiNT "ENTEFt THE NA11E OF OUTPUT FILE ::", :INPUT OFN$ 
140 N$=0FN$ : OPEN "0",#2,N$ 
150 PFtiNT "STANDAFtD DEVIATION OF EFtftOFt:",: INPUT S 
160 J=O 
170 FtE11 FtEAD DATA AND ADD FtAND011 EFtftOFt 
180 IF EOF(l) THEN 860 
190 INPUT# I ,D I ,D2,D3,D4,D5,D6,D7 ,D8,D9,D I O,D II 
200 J=J+l 
21 0 IF D4=0 THEN 260 
220 B= S*D4*SQFt(3) : A=-B 
230 GOSUB 890 
240 D4=DR+DE : B=O : A=O 
250 IF D4 < 0 THEN D4=0 
260 IF D5=0 THEN 310 
270 B= S*D5*SQFt(3) : A=-B 
280 GOSUB 890 
290 D5=D5+DE : B=O : A=O 
300 IF D5 < 0 THEN D5=0 
310 IF D6=0 THEN 360 
320 B= S*D6*SQFt(3) : A=-B 
330 GOSUB 890 
340 D6=D6+DE : B=O : A=O 
350 IF D6 < 0 THEN D6=0 
360 IF D7=0 THEN 410 
370 B= S*D7*SQFt(3) : A=-B 
380 GOSUB 890 
390 D7=D7+DE : B=O : A=O 
400 IF D7 < 0 THEN D7=0 
410 IF D8=0 THEN 460 
420 B= S*D8*SQFt(3) : A=-B 
430 GOSUB 890 
440 D8=D8+DE : B=O : A=O 
450 IF D8 < 0 THEN D8=0 
460 IF D9=0 THEN 51 0 
470 B= S*D9*SQFt(3) : A=-B 
480 GOSUB 890 
490 D9=D9+DE : B=O : A=O 
500 IF D9 < 0 THEN D9=0 
510 IF D10=0 THEN 560 
520 B= S*D10*SQFt(3) : A=-B 
530 GOSUB 890 



540 D10=D10+DE : B=O : A=O 
550 IF D10 < 0 THEN D10=0 
560 IF D11=0 THEN 630 
570 B= S*D11 *SQR(3) : A=-B 
580 GOSUB 890 
590 D11=D11+DE : B=O : A=O 
600 IF D11 < 0 THEN D11=0 
610 PRINT 
6-20 REM WRITE TO OUTPUT FILE IN PRMS FORMAT 
630 ON D3 GOTO 640,640,640,680 
640 PRINT #2,USING "3CKSA.FLOW ####";D1; 
650 PRINT #2,USING "##";D2,D3; 
660 PRINT #2,USING "###.###";D4,D5,D6,D7,D8,D9,D10,Dl1 
670 GOTO 850 
680 ON D2 GOTO 780,690,780,820,780,820,780,780,820, 780,820,780 
690 IF D1=1976 THEN 740 
700 PRINT #2,USING "3CKSA.FLOW ####";D1; 
710 PRINT #2,USING "##";D2,D3; 
720 PRINT #2,USING "###.###";D4,D5,D6,D7 
730 GOTO 850 
740 PRINT #2,USING "3CKSA.FLOW ####";D1; 
750 PRINT #2,USING "##";D2,D3; 
760 PRINT #2,USING "###.###";D4,D5,D6,D7,D8 
770 GOTO 850 
780 PRINT #2,USING "3CKSA.FLOW ####";D1; 
790 PRINT #2,USING "##";D2,D3; 
800 PRINT #2,USING "###.###";D4,D5,D6,D7,D8,D9,Dl0 
810 GOTO 850 
820 PRINT #2,USING "3CKSA.FLOW ####";D1; 
830 PRINT #2,USING "##";D2,D3; 
840 PRINT #2,USING "###.###";D4,D5,D6,D7,D8,D9 
850 GOTO 180 
860 CLOSE #1 
870 CLOSE #2 
880 END 
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890 REM ********************************************************************* 
900 REM SUBROUTINE: UNIFORM DISTRIBUTION GENERA TOR 
910 REM ********************************************************************* 
920 M=RND 
930 DE =A+(B-A)*M 
940 RETURN 
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10 FtE~ *********************************************************************** 
20 FtE~ GENEFtA TION OF COFtltELA TED NOFt~AL EFtltOFt 
30 FtE~ *********************************************************************** 
40 FtE~ PFtOGFtA~ FtEADS FFtO~ A FILE AND ADD FtANDO~ EFtltOFt 
50 FtE~ INPUT FILE NA~ES,SD OF EFtltOFt, S,AND COFtltELATION, Ft. 
60 FtE~ OUTPUT FILE FOFt~AT IS CO~PATIBLE TO Plt~S DAILY ~ODE 
70 DI~ D1(500),D9(500),D10(500),D11(500),D2(500),D3(500), 
80 DI~ D4(500),D5(500),D6(500),D7(500),D8(500),E(500) 
90 FtANDO~IZE 
100 ,E11=.001 
110 PFtiNT "ENTEFt THE NA~E OF INPUTFILE::",: INPUT IFN$ 
120 ~$=IFN$ 
130 OPEN "I",#1,~$ 
140 PFtiNT "ENTEFt THE NA~E OF OUTPUT FILE ::", :INPUT OFN$ 
150 N$=0FN$ : OPEN "0",#2,N$ 
160 PFtiNT "STANDAFtD DEVIATION OF EFtltOFt:", : INPUT S 
170 PFtiNT "COFtltELATION OF EFtltOFt :", : INPUT Ft 
180 J=O 
190 IF EOF(l) THEN 880 
200 FtE~ FtEAD DATA AND ADD COFtltELA TED FtANDO~ EFtltOFt 
210 INPUT# 1 ,D 1 ,D2,D3,D4,D5,D6,D7 ,D8,D9,D 1 O,D 11 
220 J=J+1 
230 IF D4=0 THEN 270 
240 ~=D4 : SD= S*D4 
250 GOSUB 910 
260 E4= Ft*E11+FtNOFt : D4=D4+E4 : ~=0 : SD=O : GOTO 280 
270 E4=0 
280 IF D5=0 THEN 320 
290 ~=D5 : SD= S*D5 
300 GOSUB 910 
310 E5= Ft*E4+FtNOFt : D5=D5+E5 : ~=0 : SD=O : GOTO 330 
320 E5=0 
330 IF D6=0 THEN 3 70 
340 ~=D6 : SD= S*D6 
350 GOSUB 910 
360 E6= Ft*E5+FtNOFt : D6=D6+E6 : ~=0 : SD=O : GOTO 380 
370 E6=0 
380 IF D7=0 THEN 420 
390 ~=D7 : SD= S*D7 
400 GOSUB 910 
410 E7= Ft*E6+FtNOFt : D7=D7+E7 : M=O : SD=O : GOTO 430 
420 E7=0 
430 IF D8=0 THEN 470 
440 ~=D8 :SD= S*D8 
450 GOSUB 910 
460 E8= Ft *E7+FtNOFt : D8=D8+E8 : ~=0 : SD=O : GOTO 480 
470 E8=0 
480 IF D9=0 THEN 520 
490 ~=D9 : SD= S*D9 
500 GOSUB 910 
510 E9= Ft*E8+FtNOFt : D9=D9+E9 : ~=0 : SD=O : GOTO 530 
520 E9=0 
530 IF D10=0 THEN 570 



540 M=D10 : SD= S*DlO 
550 GO SUB 910 
560 ElO= R*E9+RNOR :DlO=DlO+ElO :SD=O : M=O :GOTO 580 
570 ElO=O 
580 IF D 11 =0 THEN 630 
590 M=D11 : SD= S*Dl1 
600 GOSUB 910 
610 Ell= R*E10+RNOR :D1l=Dl1+Ell : M=O :SD=O :GOTO 650 
620 PRINT 
630 E11=0 
640 REM WRITE TO OUTPUT FILE IN PRMS FORMAT 
650 ON D3 GOTO 660,660,660,700 
660 PRINT #2,USING "3CKSA.FLOW ####";D1; 
670 PRINT #2, USING "##";D2,D3; 
680 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9,D10,D11 
690 GOTO 870 
700 ON D2 GOTO 800,710,800,840,800,840,800,800,840,800, 840, 800 
710 IF 01=1976 THEN 760 
720 PRINT #2,USING "3CKSA.FLOW ####";D1; 
730 PRINT #2,USING "##";D2,D3; 
7 40 PRINT #2, USING "####.##";D4,D5,D6,D7 
750 GOTO 870 
760 PRINT #2,USING "3CKSA.FLOW ####";D1; 
770 PRINT #2,USING "##";D2,D3; 
780 PRINT #2,USING "####.##";D4,D5,D6,D7,D8 
790 GOTO 870 
800 PRINT #2,USING "3CKSA.FLOW ####";D1; 
810 PRINT #2,USING "##";D2,D3; 
820 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9,D10 
830 GOTO 870 
840 PRINT #2,USING "3CKSA.FLOW ####";D1; 
850 PRINT #2,USING "##";D2,D3; 
860 PRINT #2,USING "####.##";D4,D5,D6,D7,D8,D9 
870 GOTO 190 
880 CLOSE #1 
890 CLOSE #2 
900 END 
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910 REM ********************************************************************* 
920 REM SUBROUTINE : NORMAL DISTRIBUTION GENERA TOR 
930 REM ********************************************************************* 
940 IF NRN = 1 THEN 1 040 
950 R1=2*RND-1 
960 R2=2*RND-1 
970 S=Rl"'2+R2"'2 
980 IF S>=1 THEN 950 
990 RNN1=R1 *SQR((-2*LOG(S))/S) 
1000 RNN2=R2*SQR(( -2*LOG(S))/S) 
1010 RNOR=M+RNN1*SD 
1020 NRN=NRN+1 
1030 RETURN 
1040 RNOR=M+RNN2*SD 
1050 NRN=O 
1060 RETURN 
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Generated parameter files are stored in a 5.25"x5.25" floppy disc. Each file 
contains 100 set of independent parameter values. There are altogether 105 files 
for different error combinations and estimation techniques. File names are 
identified by the code name for error distribution, percentage of error standard 
deviation, source of error and estimation technique respectively. Each file has the 
extension "DAT". 

Error distribution code: 

N - Normal. 
L - Lognormal 
DE - Double Exponential 
UF - Uniform 
AR - Autoregressive 

Error standard deviation code: 

10 - 10% of error free value 
20 - 20% of error free value 
30 - 30% of error free value 

Source of error code: 

P - Precipitation 
Q - Streamflow 

Estimation technique code: 

L - Least squares. 
A - Absolute errors 
M - Maximum likelihood 

For example a file "DElOQA.DAT" indicates that double exponential (DE) 
error of 10% (10) in streamflow (Q) was used to estimate the parameters by absolute 
error estimation technique (A). 
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10 FtE~ ****************************************************************** 
20 FtE~ GENEFtA TION OF BIV AFtiA TE COFtFtELA TED LOGNOFt~ALL Y 
30 FtE~ DISTFtiBUTED FtANDO~ V AFtiABLES. 
40 FtE~ ****************************************************************** 
50 FtE~ N IS NO OF OBSEFt VA TIONS TO BE GENEFtA TED. 
60 FtE~ ~EAN 1 AND ~AN2,~EANS OF V AFtiABLE 1 AND 2. 
70 FtE~ SD1,SD2 AFtE SD OF V AFtiABLES 1 AND 2. 
80 FtE~ Ft IS COFtFtELA TION BETWEEN THE V AFtiABLES. 
90 DI~ XFtND(200), X(2,200), Z(2,200),V1(200),V2(200) 
100 PFtiNT "INPUT ~EAN1 AND ~EAN2" 
110 INPUT ~EAN1,~EAN2 
120 PFtiNT "SD1 AND SD2 FOFt OFtiGINAL DATA" 
130 INPUT SD1 ,SD2 
140 PFtiNT "INPUT THE COFtFtELA TION COEFFICIENT" 
150 INPUT Ft 
160 SD1=LOG((SD1/~EAN1)"'2+1) 
170 SD1=SQFt(SD1) 
180 SD2=LOG((SD2/~EAN2)"'2+ 1) 
190 SD2=SQFt(SD2) 
200 ~EAN 1 =LOG(~EAN 1 )-SD 1 "'2/2 
210 ~EAN2=LOG(~EAN2)-SD2"'2/2 
220 A1=EXP(SD1"'2)-1 
230 A2=EXP(SD2"'2)-1 
240 A3=SD 1 *SD2 
250 Ft=LOG(l+Ft*SQFt(A1 *A2))/ A3 
260 PFtiNT "THE NU~BEFt OF OBSEFt VA TIONS" 
270 INPUT N 
280 FtE~ EIGENVALUES 
290 L1=1+Ft 
300 L2=1-Ft 
310 FtE~ THE A ~A TFtiX 
320 A(1,1)=1/SQFt(2) 
330 A(2,1)=A(1,1) 
340 A(1,2)=A(1,1) 
350 A(2,2)=-A(1,1) 
360 FtE~ GENEFtATION OF Z VALUES 
370 ~EAN=O 
380 SD=SQFt(L1) 
390 GOSUB 640 
400 FOFt 1=1 TO N 
410 Z(l,I)=XFtND(I) 
420 NEXT I 
430 SD=SQFt(L2) 
440 GOSUB 630 
450 FOFt I= 1 TO N 
460 Z(2,1)=XFtND(I) 
470 NEXT I 
480 FtE~ TFtANSFOFt~ATION TO X VALUES 
490 FOFt 1=1 TO N 
500 X(l,I)=Z(l,I)* A(1,1 )+Z(2,1)* A(1,2) 
510 V1(1)=EXP(X(1,I)*SD1+~EAN1) 
520 X(2,1)=Z( 1 ,I)* A( 1 ,2)+Z(2,1)* A(2,2) 
530 V2(1)=EXP(X(2,I)*SD2+~EAN2) 
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540 NEXT I 
550 PRINT "ENTER DISK FILE NAME TO STORE DATA" 
560 INPUT F$ -
570 OPEN "0",#1,F$ 
580 FOR I=1 TO N 
590 PRINT #1, I,V1(I),V2(I) 
600 NEXT I 
610 CLOSE #1 
620 END 
630 REM ***SUBROUTINE: NORMAL DISTRIBUTION GENERA TOR*** 
640 RANDOMIZE TIMER 
650 FOR I=1 TO N 
660 IF NRN=1 THEN 770 
670 R1=2*RND-1 
680 R2=2*RND-1 
690 S=R1"2+R2"2 
700 IF S>=1 THEN 670 
710 RNN 1 =R 1 *SQR(( -2*LOG(S))/S) 
720 RNN2=R2*SQR((-2*LOG(S))/S) 
7 30 XRND(I)=MEAN + RNN 1 *SD 
740 NRN=NRN+1 
750 IF I>=N THEN 810 
760 GOTO 800 
770 XRND(I)=MEAN+RNN2*SD 
780 NRN=O 
790 IF I>=N THEN 810 
800 NEXT I 
810 RETURN 
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Generated Parameters and Mean Annual Runoff 

SMAX REMX SCI Runoff 
(in) (in) (cfs days) 

6.42 1.40 0.44 1.95 
5.60 1.40 0.49 2.14 
8.88 1.56 0.37 1.78 
6.53 1.89 0.41 1.56 
4.62 2.13 0.47 1.34 
6.25 2.96 0.47 2.00 
7.53 1.49 0.51 3.28 
7.81 2.01 0.44 2.28 
8.30 2.01 0.53 3.61 
7.36 1.82 0.55 3.59 
5.58 2.06 0.47 3.47 
7.32 1.99 0.49 2.74 
7.15 1.83 0.32 0.87 
6.42 1.98 0.48 2.28 
8.05 1.56 0.35 1.33 
5.30 2.74 0.48 1.75 
5.50 1.62 0.48 1.88 
5.35 1.71 0.53 2.32 
7.06 2.14 0.48 2.50 
5.88 1.54 0.41 1.41 
7.53 1.82 0.53 3.44 
9.22 I. 71 0.33 1.35 
5.03 1.60 0.51 1.97 
9.70 2.13 0.23 0.56 
8.09 2.21 0.43 2.18 
7.86 2.08 0.36 1.36 
6.16 2.08 0.49 2.26 
8.87 3.02 0.38 1.68 
9.01 2.46 0.33 1.22 
7.52 1.55 0.61 4.19 
6.63 2.70 0.48 2.29 
7.80 1.64 0.43 2.21 
8.72 2.35 0.33 1.18 
8.30 1.69 0.42 2.25 
6.41 1.59 0.37 1.21 
6.86 1.58 0.47 2.38 
7.81 2.42 0.43 2.09 
7.48 1.73 0.39 1.64 
8.01 1.89 0.42 2.11 
6.59 2.23 0.41 1.57 
6.20 1.69 0.49 2.34 
8.20 1.92 0.35 1.32 
5.84 1.83 0.44 1.60 
4.05 1.61 0.46 1.03 
7.55 2.00 0.46 2.44 
4.58 1.66 0.47 1.37 
4.88 1.68 0.68 3.38 
5.01 1.98 0.65 3.22 
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Generated Parameters and Mean Annual Runoff 

SMAX REMX SCI Runoff 
(in) (in) (cfs days) 

5.00 1.96 0.63 3.02 
8.36 1.41 0.44 2.63 
5.82 1.72 0.49 2.12 
7.95 2.02 0.46 2.56 
7.25 2.05 0.47 2.45 
6.77 2.63 0.37 1.20 
5.83 2.01 0.49 2.07 
3.94 2.05 0.47 1.00 
5.64 2.13 0.38 0.99 
6.69 2.54 0.42 1.65 
5.22 1.96 0.71 3.82 
7.13 2.00 0.48 2.55 
8.76 1.69 0.45 2.84 
4.98 2.55 0.48 1.59 
6.13 1.16 0.58 3.58 
6.72 1.83 0.43 1.82 
7.49 1.43 0.55 3.77 
4.43 2.56 0.53 1.80 
8.96 2.24 0.42 2.33 
6.03 2.40 0.40 1.30 
6.63 1.94 0.44 1.88 
6.73 1.88 0.45 2.02 
9.07 1.70 0.46 3.08 
9.47 1.36 0.45 3.30 
7.19 1.91 0.52 3.16 
6.09 2.11 0.41 1.40 
7.23 1.59 0.41 1.77 
6.56 2.07 0.43 1.77 
5.41 2.27 0.49 1.87 
6.59 _1.38 0.44 2.01 
5.89 2.14 0.52 2.45 
6.88 1.98 0.44 1.97 
7.36 2.02 0.40 1.68 
7.69 2.33 0.45 2.29 
6.90 2.32 0.40 1.53 
6.09 2.28 0.58 3.28 
6.33 2.90 0.37 1.14 
7.83 1.46 0.41 2.02 
6.21 2.33 0.39 1.28 
6.78 2.46 0.43 1.80 
7.72 3.10 0.44 2.05 
5.74 1.81 0.43 1.50 
7.99 1.77 0.44 2.40 
7.41 2.35 0.46 2.33 
5.37 2.51 0.45 1.48 
7.43 2.50 0.50 2.78 
6.61 1.89 0.40 1.48 
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Generated Parameters and Mean Annual Runoff 

SMAX REMX SCI Runoff 
(in) (in) (cfs days) 

5.85 1.88 0.36 0.92 
6.59 2.40 0.52 2.80 
6.42 1.90 0.49 2.39 
5.72 1.52 0.51 2.34 
6.62 2.21 0.52 2.80 
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