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CHAPTER I 

INTRODUCTION 

The quality of the environment continues to be a worldwide concern. The 

protection of air, water and biota from degr~ation due to the input of man-intr<Xluced 

chemicals has been the focus of considerable research. Much of this research has 

concentrated on the fate and transport of chemicals in surface waters, ground waters and 

soil systems. In particular, the focus has often been on pesticides and nutrients originating 

from agricultural practices and the plethora of organic and inorganic compounds introduced 

to the environment from .Jld_ustrial activities such as land disposal and wastewater 

discharge. The effort to reduce surface-water discharges has led to an increase in land 

disposal, thus adding to adverse ,i,mpacts to soil and ground water from .existing municipal 

and industrial landfills as well as previously unregulated and often now-abandoned 

hazardous waste disposal sites. The importance of ground water as a vital resource is of 

increasing concern to scientists as well as the general public. 

Research has explored the transport and fate of compounds associated with 

sediments in surface water, and with soil and geologic materials beneath the surface of the 

land. One area of interest has been the sorption of neutral organic compounds to sediments 

and soils. Of particular concern is that these typically sparingly solubl~, high molecular 
' 

weight compounds sorb strongly to soils, are persistent, and are transported greater 

distances in the environment than would be expected. Several researchers have proposed 

that transport of these hydrophobic organic compounds is facilitated through binding to 

other materials in the water such as colloids, macromolecules, microorganisms, cosolvents 

and dissolved organic matter. This type of transport mechanism would help to explain why 
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compounds with a high affinity for soil sorption are being detected much farther 

downgradient than predicted, since some of the compound could be sorbed arid some could 

be moved through facilitatCd transport. 

The purpose of this study is to evaluate the sorption of three hydrophobic organic 

compounds (HOCsj to three soils in the presence and absence of dissolved organic matter 

(DOM) over a range of en~ironm.ental pH values. 'The materials used are HOCs covering a 

range of very low solubility. The soils have varying soil properties and two t)'pes of OOM 

were added in increasing concentrations. The objectives of this study are to correlate the 

effects of HOC binding to OOM with soil sorption, soil properties, compound properties, 

aqueous pH and organic matter type and concentration. The results should help 

environmental scientists better understand and predict the fate of HOCs in aqueous systems 

containing both dissolved organic carbon and soil or sediment . 



CHAPTER IT 

REVIEW OF THE LITERA1URE 

Introduction 

Chemical contaminants are found throughout the aqueous environment in surface 

waters, ground waters, ~s and in rain, snow and fog. Sources of contaminants in the 

environment are numerous. Agricultural sources of contaminants include feedlots and 

pesticide and fertilizer appli~ation. Industrial contaminant sources such as industrial 

landfills, illegal dumping, and land treatment of industrial wastes also impact the 

environment Municipal sources of conta.miDant input to the environment include lanclfllls, 

rapid infiltration basins for sewage effluent disposal, and land treatment of sewage sludge. 

Contaminants can also fmd their way to surface and ground waters via aerial distribution 

and deposition from atmospheric emissions by industry and automobiles, and through 

volatilization of chemicals from treated cropland. 

The fate and transport of contaminants in aqueous environments depend on a 

variety of physical and chemical characteristics of the contaminant and the environmental 

system to which the contaminant is input (Seiber, 1987). These contaminant factors 
- I' ; 

include compound-related properties such as solubility, volatility, bioconcentration and 

biotransformation potential, and photodegradation. System properties include the solution 

pH, the type and composition of the soil and the indigenous microbial population 

(Callahan, et al, 1979). 

Environmental contaminants can be classified as either inorganic or organic 

compounds. Substantial research has focused on inorganic contaminants such as metals, 

3 



raclionuclides and non-metal inorganics (nitrates, sulfur dioxide, sulfate). Recently, 

concern has increased regarding the dominant organic compounds found in the 

environment such as hydrocarbons, insecticides, nematicides, herbicides and industrial 

solvents. Hundreds of these compounds have been identified in various ground waters 

(Dunlap, et al, 1984). 

The organic contaminants can be divided into polar or charged compounds, and 
' ' 

4 

nonpolar or uncharged compounds. The focus of this literature review will be on the 

nonpolar compounds, especially those of low solubility, and their interaction with soil and 

water. These low solubility, nonpolar compounds are known as hydrophobic organic 

compounds (HOCs) and are generally high molecular weight compounds lacking charged 

functional groups. Many herbicides and pesticides are classified as HOCs. 

Solubility of Hydrophobic Organic Compounds 

Mechanisms of Solyation 

The mechanisms govenling the aqueous solubility of HOCs and that of inorganic 

and polar organic compounds differ. Inorganic compounds are generally solvated by 

dissociation into ions. On the other hand,. interactions between charged portions or 

functional groups and water molecules are responsible for the solvation of polar organic 

molecules. These interactions are dependent on water molecules being slightly polar. 

Solvation of HOCs,_ which are sparingly soluble in water and nonionic or nonpolar, 

can be described using various models.· These models generally depend on thermodynamic 

approaches involving fugacity, activity coefficient, and surface area of the solute. 

Fu~acity Model 

The solvation of a HOC is often considered in terms of its fugacity using the 

Raoult's law convention in which the fugacity of the compound is equal to the mole 
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fraction of the compound in water multiplied by its aqueous activity coefficient and its 

reference fugacity at the system temperature. The reference fugacity for solid compounds 

is the extrapolated liquid fugacity, i.e., below the triple point of the compound (Hildebrand 

and Scott, 1964; MacKay, 1977). In systems where the solvent has a relatively high 

molecular weight, Chiou and Manes (1986) recommend the use of the Flory-Huggins 
' . 

model which uses the volume fraction rather than the mole fraction of the compound in 

solution for estimating compound solubility. 

CavitY Model 

Another model used to describe solvation ofHOCs is known as the "hole" or 

"cavity" model. This is a conceptual model involving two steps. In the first step of this 

model, a hole or cavity must be made to accommodate the solute molecule in the solvent by 

displacement of the solvent molecules. In the. second step, the compound interacts with the 

solvent once placed in the cavity (Belfort, 1981). The energy necessary to develop the 

cavity is thought to be the main determinant of solubility for both polar and nonpolar 

solutes (Amidon, et al, 1974; Yalkowsky~ et al, 1975). This energy is dependent on the 

hydrocarbonaceous molecular surface area of the nonpolar solute and the solute-solvent 

surface tension. Thus, the larger the HOC molecule, the greater the energy required to 

create a cavity and solvate the HOC. This results in the low solubilities observed for HOCs 

and helps explain their strong tendency to leave the solution and to be sorbed at liquid-solid 

interfaces. In otherwords, HOCs tend. tO be sol~ophobic, in terms of solvent-solute 

interactions (Woodburn, et al, 1986). 

Factors Affectin& Solubility 

Regardless of which model is used to describe solvation, the solubilities of HOCs 

are related to several factors including temperature, molecular weight, polarity, and octanol

water partition coefficient. Other components in solution such as dissolved ions, 



cosolvents, and dissolved organic matter (DOM) are also known to influence HOC 

solubility. 

Temperature. Molecular Wei~ht. and Polarity 
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An increase in temperature has been shown to increase the solution concentration of 

HOCs (Bowman and Sans, 1979; Bigger and Riggs, 1974). Compounds with low 

molecular weight and high polarity (ionic species or charged functional groups) are more 

soluble than high molecular weight, nonpolar compounds (Seiber, 1987). 

Octanol-Water Partition Coefficient 

The solubility of a·compound has been shown to be inversely correlated in a linear 

fashion to its log octanol-water partition coefficient (log Kow). Numerous researchers 

including Chiou, et al (1979), Chiou and Schmedc1ing (1982), Griffm and Chou (1980), 

Karickhoff (1981), Miller, et al (1985), Chiou and Freed (1977) and Marple, et al (1986) 

have described this relationshiJ?. Leo, et al ( 1971) related solubiij.ties of compounds in 

various solvents and presented an extensive compilation of their results. Hounslow (1983) 

summarized the results of several investigators relating solubility to Kow· Isnard and 

Lambert (1989) report and discuss at least 18 correlations between solubility (S) and log 

Kow· Salient equations describing these relationships are given below. 

Chiou, et al ( 1977) related Kow values covering six orders of magnitude with 
i ' 

solubility values over a range of eight o~ders of magnitude using: 

log Kow = 5.00 - 0.670 log S 

where, Kow = octanol-water partition coefficiet;lt 

S = aqueous solubility (J.unoles/1). , 

Also, Doucette and Andren (1987) reported a correlation between the total 

molecular surface area (TSA) of HOCs to Kow using: 

log Kow = 0.0238 (TSA)- 0.142 
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Solubility and Kow have also been related to HOC bioconcentration in fish (Kenaga 

and Goring, 1980; Thurman, 1985). Also, Chiou, et al (1977) presented: 

log (BF) = 3.41- 0.508log S 

where, BF = bioconcentration factor in rainbow trout 

S = aqueous solubility in J..Lmolesn. 

Bisolutes. Impurities and Dissolved lons 

Other components in a solution can also affect the solubility of HOCs. Bowman 

and Sans (1979) repOrt lowered solubilities of insecticides when equilibraied together in 

solution as bisolutes compared to their individual solubilities in separate solutions. 

Solubilities were also lowered when individual.insecticide compounds were found to 

contain impurities (Bowman and Sans, 1979). In addition, as the ionic strength of the 

solution increases, the aqueous solubility of HOCs decreases (Thurman, 1985). 

Cosolyents 

The effects of cosolvents, such ~s acetone and methanol, on HOC solubility have 

been investigated by several researchers (Yalkowsky, et al, 1976; Fu and Luthy 1985, 

1986a, 1986b; Amidon, et al, 1974; Munz and Roberts, 1986; Tewari, et al~ 1982; 

Bowman and Sans, 1979). In general~ a direct correlation between the fraction of organic 

solvent present in solution and an increase in solute solubility concentration was found. 

That is, there appears to be a semi-lograrithmic increase in solubility with an increase in 

solvent volume (Fu and Luthy, 1986a). This effect has been proposed as a means in which 

transport of HOCs may be enhanced at hazardous waste sites where solvents and HOCs 

may both be present. 
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Dissolved Dtianic Matter 

Dissolved organic matter (DOM) such as humic and fulvic acids has also been noted 

to increase the solubility ofHOCs in aqueous solution. Wershaw, et al (1969) showed that 

DOM lowered the surface tension of water and caused the solubility of DDT to increase 20 

times in a solution containing 0.5% sodium humate .. Ogner and Schnitzer (1970) and 

Matsuda and Schnitzer (1971) reported fulvic acid solubilwng hydrophobic dialkyl 
' . 

phthalates and suggested that OOM co~d mediate HOC mobilization and transport. 

Leachate from a landfill and river water containing DdM were sh~wri by Griffm and Chou 

(1980) to increase the solubility ofHOCs from 7.5 to 200 times greater than i:he solubility 

of the compounds in deionized water. Chiou, et al ( 1986) showed that DOM increases 

HOC solubility and that there was no competition between solutes for binding to DOM 

This solubility enhancement effect was related in 'a linear fashion to the solute's solubility in 

pure water and its Kow· ~e partitioning of th~ HOCs into the OOM was shown to 

increase as the solute's solubility decreased. The partitioning was also shown to increase 

as the solute's Kow increased. The effect was attributed to be controlled by the OOM 

molecular size, molecular struc~, and polarity. Chiou, et al (1987) went on to calculate 

partition coefficients on a dissolved organic carbon (DOC) basis and stated that these 
" -, ' ~ ' ' 

partition coefficients are variable, ~ primarily dq>endent on the molecular composition 

and polarity of the OOM, and that OOM molecular size was a secondary determinant The 

observ~ ~nhancement of the HOC solubility was expres~ed using: 

* . Sw _= Sw(l + XK<iom) 

or, 

Sw * = Sw(l + XKdod 

where, Sw* =apparent water solubility in a solution containing OOM. 

Sw = apparent '!Vater solubility in pure water. 

X = concentration of OOM or DOC in g/rnl water. 



Koom =partition coefficient based on DOM. 

Kooc = partition coefficientbased on OOC. 
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Chiou, et al ( 1986) also showed that the effect of DOM on increasing the 

solubility of HOCs increased with an increase in OOM concentration. This effect was 

approximately four times more pronounced for humic acids than for fulvic acids, and about 

five to seven times greater for soil organic matter sources than for river-derived humics. 
' ' ' 

The increase in effectiveness of various OOM sources at enhancing HOC solubility was 

attributed to their greater molecular size and lower polarity allowing for a larger 
' ' 

intramolecular nonpolar environment into which the HOCs could partition (Chiou, 1986). 

'' In addition, the effect was found to be the greatest for the most hydrophobic compounds 

(i.e., the least water soluble) and had no effect on compounds whose solubilities were 

greater than 1 mg/1. Chiou, et al (1987) later report that the solubility enhancement effect 

was greater for commercially supplied humic acids (Aldrich and Fluka-Tridom) than for 
' . 

humic acids prepared by the researchers. They attributed this effect to the relatively greater 

carbon content and lower oxygen content or't.he commercial humic acids. 

Sorption and Binding of Compounds 

factors Affectin& So(ption and Bindine · 

Numerous researchers have investigated the reactions of inorganic and organic 

compounds in soil and water. These investigations have generally centered on sorption to 

soil and soil fractions, and the. binding of com~unds to components in water such as DOM 

and colloids. The sorption and binding of compounds are dependent on the properties of 

the compounds, the soil properties, the aqueous solution properties and sorption and 

binding mechanisms. 
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Compound PrQperties 

The properties of a compound which influence sorption and binding include charge, 

polarity, number and character of functional groups, and molecular weight and solubility. 

Unlike inorganic and ionic organic compounds, HOCs are nonpolar, nonionic, and are not 

charge dependent. Therefore, HOCs are generally unaffected by processes involving 

electrical forces. Thus, the principal compound properti~s which directly influence HOC 

sorption and binding are solubility and molecular'weight. As previously discussed, the 

HOCs are relatively high in molecular weight and have very low solubilities. These 

properties tend to make them hydrophobic and lipophilic. The solubility of a compound 

has also been shown to have an inverse linear correlation to Kow. bioconcentration factor, 

and sorption to organic carbon sorbents. 

Soil Properties 

"' 

Soil properties and .their influence on sorption of HOCs is a keen area of research. 

General soil properties which influence compound sorption are soil particle charge, ion 
I ' 

exchange capacity, expanding lattice structures of clays, soil organic matter (SOM) content, 

pH and surface area. 

Agronomists concerned with the efficacy and persistence of pesticides have 

investigated a variety of sorption properties of soil. Recently, environmental researchers 

have also turned their attention toward soil properties which influence the Il}obility and 

sorption of HOCs in soils. The soil properties~ investigated #lclude soil texture or particle 

size, clay minerology, surface area, ion-exchange capacity, soil solution ratio (solids 

concentration), water saturation and percent soil organic matter (SOM). 

Texture. Surface Area and Mineralw. 'A considerable amount of variability of 

sorption of organic compounds to soils has been noted (Elabd, et al, 1986; Wood, et al, 

1987; Gauthier, et al, 1987; Schrap and Opperhuizen, 1989). Overall, sorption ofHOCs 
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has been shown to be poorly correlated with whole soil texture or with individual soil size 

fractions (Jones, et al, 1989; Khan, et al, 1979; Means, et al, 1980 and 1982; Karickhoff, 

1981). However, Nekedi-Kizza, et al (1983) found less sorption variation among the silt 

and clay sized fractions of a soil than for sand. Karickhoff, et al (1979) state that the 

differences in sorption to clay and silt sized fractions of soils are due to the differences in 

the organic carbon content of these material~. · 

Clay mineralogy affects ion exchange capacity and surfac;e area. Clay mineralogy 

has also been shown to influence sorption of ionic organic compounds (Karickhoff and 

Brown, 1978). However, the research of Hassett, et al (1980) reported no correlation 

between clay minerology and sorption of HOCs. 

Surface area is related to soil texture with silt and clay having greater total su~ace 

area than sand. Surface area was not shown to be well cQrrelated to organic compound 

sorption in a study of the Borden aquifer by MacKay, et al (1986). 

Exchan&e Capacity and Soil pH. Cation exchange capacity (CEC) and pH of a soil 

are important influences on ionic compound sorption (Karickhoff and Brown,_ 1978). 

However, for neutral compounds such as HOCs, variations in CEC and soil pH have not 

been shown to affect sorption (Means, et al, 1980 and 1982; Hassett, et al, 1980). 

Moisture Content. Although the present study evaluates sorption of HOCs to 

saturated soils, the effects of soil moisture content on the sorption of organic vapors to 

unsatur~ted soils has recently been investigated. Chiou and Shoup (1985) and Chiou, et a1 

(1988) have shown that as the relative humidity is increased the SOrPtion ofHOCs to soils 

is decreased, until at a relative humidity of approximately 90%, the sorption capacities of 

the organic compounds approaches those found in aqueous solutions (i.e., saturated 

conditions). Sorption in unsaturated soils has also been shoWn to be related to water 

content by Wood, et al (1987) and Lambert (1966). 
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Soil Or~anic Matter. Numerous researchers have shown soil organic matter (SOM) 

to be the most directly correlated and predominant soil property affecting the sorption of 

HOCs. Early researchers, such as Goring (1962) and later Lambert, et al (1965) and 

Lambert (1966, 1967, and 1968) established that soil organic matter is "the most 

representative index of soil sorption equilibria" (Lambert, 1967). Lambert also indicated 

that SOM behaves in a similar fashion to a water-immiscible organic solvent used in a 

solvent extraction procedure for isolating HOCs. Lambert suggested that HOCs should 
' \ 

partition between water and SOM in a correlative fashion to HOCs partitioning between an 

organic solvent and water. 

Karickhoff (1984) also stresses the importance of SOM content in the sorption of 

HOCs. Karickhoff states that for large, nonpolar organic compounds containing more than 

10 carbon atoms, sorption· is controlled by organic matter, and that sorption to the mineral 
' ' 

fraction alone is "insignificant in natural sediments". 

The partitioning of a HOC between water and SOM has been described by Hamaker 

and Thompson (1972) on a soil organic carbon basis using: 

where, 

K 
Koc=oc 

Koc =equilibrium partition coefficient-normalized on an organic carbon basis. 

K = equilibrium partition coefficient between whole soil and water. 

OC = percent organic carbon in the soil. 

. Then, Chiou, et al (1979) showed a relationship between Koc and solubility (S) for 

HOCs covering more than seven orders of magnitude in solubility and four orders of 

magnitude in Koc as follows: 

log Koc = 3.80 - 0.557 log S 

where, 

S = solubility in Jlmoles/1. 
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The discussion and equations above were cited to establish that Koc can be directly 

related to S. In addition, Kow has previously been shown to be directly related to S, also. 

For example, the relationship between Koc and K0w as given by Kenaga and Goring 

(1980) for 45 organic compounds-is: 

log Koc = 1.377 + 0.544 log K0 w 

Other pertinent relationships between K0w, Koc and S as described by various 

researchers are compiled in Appendix A. Although the results of the researchers cited 

imply that the K0w, Koc and S relationships are independent of SOM source, other research 

shows that there are slight variances in sorption from one soil organic to another for the 

same compound. Garbarini and Lion ( 1986) indicate that the type of organic and its 

oxygen content are important in sorption ofTCE. Schrap and Opperhuizen (1989) suggest 

that all sorption studies use at least one refere~ce sorbate so that variances in SOM sorption 

found by different researchers can be more appropriately compared. Gauthier, et al (1987) . 

suggest that variances in Koc for p~rene are due to aromaticity differences in 14 organic 

matter samples investigated. However, despite the differences, the KOC, values for an 

organic compound sorbed to various soils ·and sediments are generally found to be within a 

factor of two to ten (Gschwend and Wu, 1985; Roy and Griffin, 1985). 

Other research has shown that the close relationships between Kow, Koc and S 

break down for soils and sediments with very low OC. Banerjee, et al (1985) suggest that 

for SOM contents less than 0.2%, sorption is not controlled by OC. Southworth and 

Keller (1986) show that SOM influence is mitlimal at OC contents less than 0.1 %, and 

MacKay, et al (1986) showed poor sorption correlations to Borden aquifer sand containing 

0.018% oc. 
Different fractions of SOM have been also investigated in an effort to identify HOC 

sorption variations with SOM fractions. Shin, et al (1970) removed sequential fractions of 

SOM using ether, alcohol, hot water, HCl, and H2D2 digestion. These researchers found 
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that DDT sorption increased when lipoidal materials were removed; that sorption was 

greater as the organic matter humification increased; and that sorption to SOM dominates 

over sorption to the mineral fraction of the soil. Kozak, et al (1983) investigated the 

sorption of prometryn and metolachlor to a whole soil; to a humic extracted fraction of the 

soil (humic and fulvic acids); an.d to the humin and mineral fractions of the soil. These 

researchers showed that the preference for sorption to the various fractions was, in 

increasing order, mineral, humin, whole soils and humic extr,actables (humic and fulvic 

acids). 

Aqueous PrQperties Affectin~ Sotption and Bindin& 

The sorption and binding of nonpolar, neutral HOCs are affected by several 

aqueous properties. These properties include solution pH and ionic strength, soil-solution 

ratio, microorganisms and macromolecules, cosolvents and dissolved organic matter. 

Solution pH and Ionic Strem~th. Lowered solution pH has been shown by 

Tramonti, et al (1986) to increase lindane sorption. Increased ionic strength of solution has 

been shown by Karickhoff (1979) to have little effect on HOC sorption. However, 

Tramonti, et a1 (1986) and Traina, et al (1989) showed decreased sorption with increased 

ionic strength. 

Soil-Solution Ratio. The concentration of solids or adsorbent in a soil solution (i.e. 

the soil-solution ratio) has also been investigated. Although O'Connor and Connolly 

(1980) showed effects of variances in sorption with different solids concentrations, 

Karickhoff, et al (1979) and Bowman and Sans (1985) convincingly showed that sorption 

was independent of solids concentration. Bowman and Sans (1985) suggested that 

previously reported solids concentration effects might be attributed to incomplete spinning 

down of solids in the centrifugation process and/or to experimental errors. 
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Hydmphobic Sm:ption 

Sorption can also be thought of in terms of the sorbate having a very low affinity 

for the solvent (Weber, 1972). HOCs are large, uncharged, nonpolar, low solubility 

molecules having low affmities for water (i.e, they have weak solute-solvent interactions). 

This disliking of water results in HOCs having an affinity for sorption at a solid-liquid 

interface. This type of sorption is commonly referred to as hydrophobic sorption. Hassett, 

et al (1980) also describes hydrophobic sorption as result of weak solute-solvent (i.e., 

solvophobic) interactions rather than being attributed to strong sorbate-solute interactions. 

Hydrophobic sorption is not related to increases in enthalphies (Chiou, et al, 1979) 

as are ionic or polar compound sorption, but perhaps to increases in entropy as structured 

water shells surrounding organic solutes are destroyed (Horvath and Melander, 1978; 

Hamaker and Thompson, 1972). Hydrophobic sorption is highly correlated to SOM 

content and increases as the HOCs increase in molecular weight, molecular volume, and 

carbon atom content. Hydrophobic sorption decreases with increases in compound polarity 

and solubility. 

Many researchers have described hydrophobic sorption as a partitioning of the 

solute between water and SOM (Chiou, et al, 1983; Gschwend and Wu, 1985; Karickhoff, 

1984). Chiou, et al (1983) also showed that this type of sorption is noncompetitive for 

binary HOC solutes. Hydrophobic sorption to hydrophobic portions of SOM is also 

described by Khan (1978) as the primary mechanism of sorption for organochlorine 

insecticides, such as DDT, DDD, and Dieldrin. Khan (1978) states that water molecules 

would not compete with the nonpolar HOC molecules for sites on the hydrophobic portions 

of SOM and that the primary sites for sorption could be lipids. 
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Vander Waal's Bondin& 

Another mechanism contributing to HOC sorption is van der Waal's-London 

bonds. These bonds are additive and result from short range dipole-dipole interactions 

established instantaneously by fluctuations in electron distributions in a molecule's electron 

orbitals. These interactions are weak and decrease in an inverse relationship to the sixth 

power as intermolecular distances increase (Jury, 1986). Although weak, the additive 

nature of these bonds is considered important in sorption of large molecules such as HOCs 

(Khan, 1978; Pussemier, et al, 1989). 

Intraor~:anic Matter Diffusion 

Research has also included investigations of rate-controlled, reversible and non~ 

equilibrium sorption. This has led to the notion that b~ding of HOCs to OM is actually a 

partitioning process into the OM, or intraparticle diffusion, which is rate controlled and 

partially reversible. Rate-controlled sorption of organic compounds, ·which has been 

described as a short initial phase ·Of rapid uptake followed by a longer period of slow 

uptake, has been reported by Wu and Gschwend (1986), Khan (1973), Miller and Weber 

(1986), Rao, et al (1979), and Bouchard, et al (1988). Reversibility has been investigated 

by Karickhoff (1984), Bowman and Sans (1985), van Genuchten, et al (1977) and 

Wauchope and Myers (1985). 

Recently, investigations by Brusseau and Rao (1989a), Nkedi-Kizza, et al (1989), 

Brusseau and Rao (1989b) and Brusseau, et al (1989) hav~ led to the conclusion that 

observations of HOC rate-limiting and non-equilibrium sorption are due to HOC diffusion 

into the organic matter. This mechanism is termed intraorganic matter diffusion (IOMD). 

The IOMD approach is in agreement with the partition model as postulated by Chiou, et al 

(1983), and the rate-controlling aspects of the model could help explain reduced travel 
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times of HOCs in aquifers and increased flushing times required for contaminant removal 

(Brusseau and Rao, 1989b ). 

Other Mechanisms 

Other types of binding mechanisms proposed for the nonpolar HOCs are charge 

transfer bonds, entropy generation and magnetic ~teractions (Jury, 1986; Khan, 1978; 

Hamaker and Thompson, 1972). These are considered minor mechanisms for HOC 

binding, however, when compared to hydrophobic bonding, van der Waal's-London 

bonds and IOMD binding. 

Organic Matter 

Description and Characterization 

The importance of organic matter in controlling the fate of HOCs in the environment 

necessitates an understanding of humic and fulvic materials. Decayed organic matter can be 

classified as non-humic and humic organic substances. The non-humic organics have 
' 

recognizable chemical and physical chara9teristics and include waxes, fats, amino acids, 

peptides, carbohydrates and proteins. The ~on-humic fraction tends to be readily attacked 

by microorganisms and thus non-humic compc)nents have relatively short half lives. The 

humic fraction has no readily defmed physical and chemical characteristics, has .longer half

lives, is chemically complex, has molecular weights up to several hundred thousanc;t, and 

tends to be hydrophilic in character (Schnitzer, 1978). 

The humic fraction can be further subc;livided into three subgroups on an 

operationally-defmed basis (Schnitzer, 1978). The portion of the humic fraction that is 

soluble in both acid and base is known as fulvic acid. The portion which is soluble in base 

but is insoluble in acid below a pH of two is called. humic acid 'The fraction which is 

neither soluble in acid or base is called humin. These distinctions are somewhat arbitrary 



and the nomenclature given to the humic and fulvic acids derive from weak acidic 

functional groups contained in these materials (Stewart, 1982). 
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Humic and fulvic acids are found throughout the environment in soils, sediments, 

surface waters, ground waters, and oceans. When found in soils and sediments, these 

organic materials are known as soil organic matter (SOM). Humic and fulvic materials 

found in aqueous environments are called dissolved organic matter (DOM). The 

characteristics of humic and fulvic acids are discussed below. 

Fulvic acids (FA) have molecular weights between 1,000 and 30,000. They are 

described as open, flexible, linear polyelec~lytes composed of highly pxidized aromatic 

rings with a large number of side chains whose building blocks are benzene-carboxylic and 

phenolic acids held together by hydrogen bonds, van der Waal's bonds, and pi-bonding 

(Schnitzer, 1978; Stevenson, 1982). The flexible, open structure ofF A can react to 

changes in pH and ionic strength which allows FA to trap organic and inorganic 

contaminants (Schnitzer, 1978). FA has a greater oxygen content than humic acid but 

lower carbon and nitrogen content The number of oxygen-containing functional groups 

(such as carbonyl, carboxyl, hydroxyl and carboxylate) ofF A is also greater. Also, FA 

has more aliphatic carbon and less aromatic carbon than HA (Steelink, 1977). 

Humic acids (HA) can have -much greater molecular weights than FA ranging from 

10,000 to 100,000 or greater. HA, like FA, also has a flexible structure composed of 

aromatic rings and nitrogen in cyclic forms and in peptide chains (Stevenson, 1982). 

Proposed structures for HA and FA are s~own on Figure~ 1 and 2, respectively. 

The insoluble humin fraction is believed to be tightly bound to soil minerals. The 

humin fraction is composed of HA, FA, and nonsoluble plant and microbial residues. 

Genesis of Humics 

The formation of humic substances is a process that involves the enzymatic 

degradation, metabolism, polymerization and condensation of plant and animal remains by 



HC=O 
I (Sugorl 

(HC-OH)4 
I " 

COOH COOH COOH HC=O , 

HO 
OH OH 

Figure 1. Proposed Partial Structure of Humic Acid (Stevenson, 1982 ). 

OH 

COOH 

COOH 



OH OH 

OH 

4 C......._ c 
0 7 OH·- II'OH 
: ·-- 0 
I 

Figure 2. Proposed Partial Structure ofFulvic Acid (Schnitzer, 1978). 

N 
N 



23 

microorganisms (Stevenson, 1982). Low molecular weight compounds such as lignin and 

cellulose are used to start the process, which through condensation and polymerization 

reactions produces large, high molecular weight humic materials. Humic substances are 

typically considered very heterogeneous since the original source of the organic matter can 

vary as well as the reactions, processes, and intermediate products (Stevenson, 1982). 

Chan&es with Time and l&ptb 

The organic matter in soils adjusts to chariges in the environment and land use 

activity establishing new equilibrium condition~ in a few years to tens of years. Although 

the non-humic soil fraction or soil biomass in the upper or A hOrizon of a soil can 'turn over 
,-

every few years, the humin and humic fractions can have mean resident times greater than 

1000 years. Fulvic acid is generally much less long_ lived with mean resident times in the 

400-year to 500-year range (Stevenson, 1982). 

The lower soil horizons, however, such as the B horizon and buried horizons, can 

have SOM resident times in the 700-year to 8400-year range compared to upper horizons in 

the 500-year range (Stevenson, 1982). Once leached to the lower soil horizons, the 

organic matter is apparently more isolated from degradative processes occurring in the 

upper horizons, resulting in longer residence times. The lower soil horizons also contain 

less organic matter than the upper horizon {Thurman, 1985). 

In addition, the ratio of humic to fulvic acids generally increase with an increase in 

depth (Kononova, 1966). Stevenson (1985) suggests that the upper soils selectively retain 

the humic fraction while letting the fulvic fraction move downward preferentially in a 

chromatographic fashion resulting in the hig~er HAlF A ratios observed with depth. 

Retention of Or&anic Matter b.y Clays 

HA and FA are typically found associated with the clay fraction of a soil 

(Stevenson, 1985). Organic matter can be retained by clay through several mechanisms. 
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First, insoluble polymeric complexes ofHA and FA can be formed. Also, polymeric 

complexes ofHA and FA can be bound together by divalent and trivalent cations such as 

Ca+2, Fe+3 and Al+3. A sche~tic diagram of a clay-humate complex in soil is given as 

Figure 3. Binding can also be accomplished through ion exchange, hydrogen bonding, 

and van der W aal's bonding. Organic matter can al~o be held in interlayers of expanding 

clays, and bound by coordination and anion exchange to hydrous oxides (Stevenson, 

1982). 

However, the most likely mechanism of organic matter retention by clays, 

according to Stevenson (1985), is the formation of a clay-metal-humus complex. This 

occurs when the negative charge on the clay is neutralized by polyvalent metal cations 

bound to the humus. The acidic group on the humus is neutralized as well, thus linking the 

organic matter to the clay yia a salt bridge. Although the charge on the clay is occluded 

from ion exchange with ionic species in solution, the bound organic matter can provide 

active sites for ion exchange as well as hydrophobic sites for hydrophobic sorption 

(Stevenson, 1982). 

Retention of Contaminants by Orianic Matter 

As previously discussed, organic matter has the ability to sorb or bind a variety of 

inorganic and organic compounds. The mechanisms of HOC binding have been addressed 

thus far mainly in terms of solute-solvent interactions and have been primarily attributed to 

hydrophobic bonding and van der Waal's bonding. However, the interactions between 

HOC solutes and organic matter as the sorbent are also important. These interactions are 

thought to depend primarily on the physical shaPe of the organic matter as determined by its 

chemical properties, such as charged functional groups, and the characteristics of the 

aqueous solution, such as pH ~d ionic strength.' 
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Figure 3. Proposed Schematic Diagram of a Soil Cay-Humate Complex. Polvalent Positively 
Charged Cations are Represented by M (Stevenson, 1985). 
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DevelQpment of Hydrophobic Interiors 

Humic and fulvic acids have been described by Khan and Schnitzer (1972) and 

Schnitzer (1978) as having cross-linked, open flexible structures with cavities capable of 

retaining HOCs in the internal voids of an organic structure analogous to a molecular sieve. 

This structure is affected by pH and ionic strength. Schnitzer (1978) shows dramatic 

photographs of HA and FA as solution pH is increased. At low pH values the organic 

molecules occur as elongated fibers. Then, as the pH is raised, the fibers mesh into a 

sponge-like structure, and then to a flattened, sheet-like structure' at high-pH. These 

reactions are attributed to the repulsion of carboxyl and hydroxyl functional groups as they 

become ionized at higher pH values. These repulsive electrostatic forces are greater than 

the attractive forces, such as van der Waal's bonding, pi bonding and hydrogen bonding, 

which dominate at lower pH values, causing the organic molecule to uncoil and flatten out 

into lamellae punctured b~ vario~ sizes of voids (Schnitzer, 1978). 

Ghosh and Schnitzer (1980) showed that at high pH and low ionic strength, HA 

and FA molecules uncoil and behave like flexible, linear colloids. However, at lowered pH 

and increased ionic strength, these materials b-egan to coil, forming rigid spherocolloids and 

aggregations of spherocolloids. At high organic matter concentrations (>3500 mg/1), the 

HA and FA acted as spherocolloids at all pH and ionic strengths. Figure 4 summarizes 

these results. The effect of concentration was attributed to a lack of available space in the 

concentrated solution to allow for uncoiling. The pH effect was expl~ed by electrostatic 

repulsion of ionized functional groups at higher pH values as de~cribed above. The effect 

of ionic strength could be attributed to repulsive forces of cations attached to the ion 

exchange sites of the organic functional groups on the humic molecules. 

Thus, pH and dissolved ions can result in the formation of coiled, uncharged humic 

molecules with hydrophobic interiors. These hydrophobic portions of the humic molecules 

have the potential to bind HOCs. 
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Deyelqpment of Micelles 

Humic substances have also been described as having surfactant properties. 

Wershaw, et al (1969) showed that HA reduces surface tension of water and solubilizes 

DDT. Thurman (1985) describes humic molecules as having hydrophobic and hydrophilic 

ends. In the aqueous phase, Thurman suggests that these molecules could align themselves 

is such a way that the hydrophilic end is oriented toward water molecules and the 

hydrophobic (or lypophilic) end oriented with the hydrophobic portions of other humic 

molecules. These humic-derived surfactants are noted to cause foaming in streams 

(Thurman, 1985). Thurman also indicates tQ.at this foaming of the humic substances forms 

micelles which are "capable of dissolving oils and other hydrophobic constituents." 

Wershaw (1986) presents a model fo~ micelle formation by humic substances as a 

mechanism for the bindi.J:lg of HOCs. In this model, humic materials are thought of as 

amphiphiles which have hydrophilic and hydrophobic portions. The amphiphiles are 

bound together into aggregates through hydrogen bonding, pi bonding, and hydrophobic 

bonding. These aggregates are oriented in such a way as to form a structure having 

charged hydrophilic exterior surfaces and hydrophobic interiors in a fashion similar to 

membranes or micelles. Tanford_(1980) describes self-aggregation of a.nlphiphilic 

molecules into micelles or membranes as ,the orientation of polar portions of the ,molecules 

facing out toward the water. The hydrophobic tails of the amphiphilic molecules then join 

to form an internal, solvent-filled cavity cap~ble of dissolving hydrocarbons ~d 

hydrophobic substances within them (tanfo~d, 1980). 

Although less homogeneous than biological membranes, Wershaw (1986) indicates 

that humic micelles and membranes could react in a number of sorption and binding 

reactions. The exterior of the micelles would be negatively charged due to ionized carboxyl 

and hydroxyl functional groups. These would allow humus sorption to clays through 

cation exchange and clay-metal-humate reactions as well as allow sorption of ionic 
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contaminants from solution. At the same time, the solvent-like interior of the micelle could 

allow incorporation of HOCs into the micelle. 

Partitionin& into Hydrophobic Interiors and Micelles 

The Wershaw micelle model is in a~ment with and provides support for the 

mechanism described by Chiou, et al (1983) in which HOC binding is described as a 

liquid-liquid type of partitioning of the HOC from water into the soil humic matter. Chiou, 

et al ( 1986) also propose that HOCs are, in effect, partitioning into HA and FA micelles, 

resulting in apparent increased aqueous solubility. 

Linking the Wershaw (1986) model ofnucelles with the pH-inducedspherocolloid 

model of Ghosh and SGhnitzer (1980) would provide additional meChanisms for the 

formation of hydrophobic interiors in HA ~d FA, spherocolloid molecules or micelles. 

This in tum would allow partitioning of HOCs into the hydrophobic core of these 

molecules. Enhanced formation of hydroph~oic interiors due to lowered solution pH 

would also help to explain the results of some researchers which indicate that nonionizable, 

nonpolar HOCs bind to a somewhat greater degree to humic materials at lowered pH than at 
' ' 

higher pH values (frarnonti, et al, 1986). The p;:utition model would also explain the lack 

of HOC bisolute competition descri\>ed by Chiou, et al (1983) since specific binding sites 
' 

would not be necessary if HOCs are indeed bound by partitioning into a nonpolar solvent 

such as the interior or cores of HA, FA or humin micelles, membranes or amphiphiles. 

Dissolved ~anic Matter and Its Effects 

Dissolved organic matter is present in almost all aquatic environments and is 

frequently referred to in terms of dissolved organic carbon (DOC). Dissolved organic 

carbon concentrations can range from 0.1 to·8 mg/1 in ground water, from 0.5 to 1.2 mg/1 
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in the ocean, from 0.1 to 15 mg/1 in surface water and. up to 50 mg/1 in swamps (Choppin 

and Allard, 1985). 

Dissolved organic matter has been shown to participate in a number of reactions. 

For instance, DOM has been shown by Schnitzer (1978) and Stevenson (1982) to have 

polyelectrolyte properties and can, depending on pH, affect the flocculation of clays in 

suspension (Thuiman, 1985). Surfactant properties and HOC solubility enhancement 
' ' 

properties as previously discussed are other DOM effects. OOM has also been shown to 

inhibit the bioavailability 'and toxicity of metals and organics to fish. and other aquatic biota 

(McCarthy, 1989; Carlberg, et al, 1986; Zitko, et al, 1973). 

In the purification of drinking water by activated carbon, Jain and Snoeyink (1973) 

and Snoeyink, et a1 (1977) have shown that OOM can reduce the sorption capacity and bed 

life of activated carbon columns for HOCs by preferentially adsorbing the larger OOM 

molecules over the smaller HOC molecules. 

However, Koeleian and Curl (1989) showed no competition between HOC and 

OOM sorption to a natura.l kaolinite clay. Chiou, et al (1983) showed no competition 

between HOC bisolutes when bound to SOM~ This implies that OOM which is generally 

hydrophilic in character should not be competitive with hydrophobic organic compounds in 

sorption to soils. In fact, if DO¥ was bound by a soil, HOCs would have an enhanced 

medium into which they could partition (Koeleian and Curl, 1989). Furthermore, Chiou, 

et al (1986) also showed no interference or competition in the solubility enhancement 

effects of OOM binding bisolutes in soluti~, and they conCluded that .this further 

strengthens the concept that OOM constitutes an organic solvent-like phase into which 

HOCs can partition. 
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Facilitated Transport 

Research has recently turned to enhanced or facilitated transport of contaminants in 

surface waters, ground waters and in soils. Several researchers have proposed that 

transport of HOCs is facilitated via colloids, cosolvents, macromolecules, microorganisms, 

sewage effluent and OOM. An overview of the literature pertaining to these transport 

media is provided in order to establish the concept and importanc~ of facilitated transport 

which lead to consideration of OOM as a potential mechanism for facilitated transport. 

Colloids 

Colloids are characterized as particles with a diameter in the range of 0.001 to 1.0 

J.Lffi (Thurman, 1985). Colloids have been described by Lopez~Avila and Hites (1980), as 
' ' 

the transport mechanism of numerous organic compounds found in a river downstream 

from the wastewater outfall of a chemical manufacturing plant. These researchers found 

that the compounds with the highest Kow were strongly bound to river colloids and were 

found transported the farthest distance downstream from the plant 

Means and Wijay~tne (1982 and 1984) showed that estuarine colloids bind 

organic compounds and that the sorption is porrelated to the organic carbon content of the 

colloids. Wijayaratne and Means (1984) also indicate that herbicide sorption to organic, 

estuarine colloids was 10 to 35 times greater than sorption to soil or sediment organic 

matter. 

Soil particulate colloids have also b~n shown to transport through macropores in 

the soil (Pilgrim and Huff, 1983). McCarthy and Zachara (1989) suggest that mobile 
. ' 

colloids in soil and ground water could be i.n:lportant transport mechanisms in contaminant 

migration and indic"'te that additional research in this area is needed. 
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Cosolvents 

The effect of cosolvents on HOC solubility has been previously discussed. A 

number of researchers have shown that in soils, HOC sorption and attenuation decrease in 

a semi-logarithmic fashion as the. percent cosolvent in the solution increases (Fu and Luthy, 

1986b and 1985; Woodburn, et al, 1989; Rao, et al, .1985; Nkedi-Kizza, et al, 1987; 

Walters and Guiseppi-Elie, 1988). This effect increases as the hydrophobicity of the 

compounds increase (Munz and Roberts, 1986). 

Macromolecules 

Macromolecules have been shown by Enfield and Bengtsson (1988) and Harvey, et 

al ( 1989) to move faster than the average ground-water velocity and could be capable of 

transporting bound HOCs more rapidly and farther distances than expected. 

Macromolecules can move at a rate greater t.qan the average ground-water velocity since, 

due to their size, their transport is limited to channels and the secondary pore structure of 

the porous matrix. Macrc;>molecules are not able to move through the intergranular pore 

space (McCarthy and Zachara, 1989). 

Microorganisms 

Microorganisms have been shown to bind HOCs (Bell and Tsezos, 1987; 

Karickhoff, 1984). Microorganisms have also.been shown to be transported considerable 

distances in ground water (Smith, et al, 1985; Keswick, et al, 1982; Harvey, et al, 1989). 

Thus, there exists the potential for facilitated transport of HOCs via microorganisms. 

Municipal Sewage 

Sewage effluent has not been investigated as a medium for transport facilitation, per 

se. However, Bouwer, et al (1984) showed trace organic compounds entering ground 
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water beneath a sewage effiuent rapid infiltration site. Tomson, et a1 (1981) showed 

greater movement than was expected of numerous trace organic compounds to ground 

water beneath the same site. Boyle and Fuller (1987) have shown facilitated transport of 

zinc through soils using municipal solid waste leachate. Hassett and Anderson (1979 and 

1982) have investigated the effects of HOC interactions with the OOM associated with 

sewage effluents in rivers, and showed ,that OOM extracted from sewage and natural water 

reduced the sorption of HOCs to the particulate matter in sewage and rivers. Hassett and 

Anderson (1982) also indicated that river particulates are less effective at sorption than 

sewage particulates. 

Sewage sludge can affect SOM, metal attenuation, and the potential for contaminant 

migration. Sewage sludge applied to land has been shown tO affect the elemental content of 

soil humic acid beneath the sludge and the sorption of trace metals by the sludge (Senesi, et 

al, 1989). Dudley, et a1 (1987) have shown copper and nickel to be associated with the 

soluble organic components in sludge-amended soils. , 

Dissolved Or:anic Matter 

Facilitated transport of contaminants by dissolved organic matter such as HA and 

FA has been investigated by few researchers: The OOM can be considered a third 

component in a system containing soil or sedirrient and a HOC. Most of this research has 

been done on interactions of OOM with inorganic compounds. Very little research has 

been completed on enhanced transport ofHOCs by OOM. 

Investigations of OOM interactions with inorganic compounds include the work by 

Hering and Morel (1988) who showed that humic acid binds copper and calcium in a 

noncompetitive fashion. Allard, e~ al (1989) have shown that sorption of americium onto 

alumina in the presence of humic materials to be enhanced or decreased depending on the 

pH of the solution. Inskeep (1989) has shown that OOM inhibits the sorption of sulfate to 
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containing functional groups of the OOM. 
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Early observations in the sorption and transport of HOCs in the presence of OOM 

were reported by Ballard (1971 ). Ballard showed that DDT was leached through a forest 

soil after urea was added to the soil to raise the pH which consequently solubilized and 

dispersed the humic materials in· the soil. The solution which leached through the soil was 

then collected and analyzed. DDT was found to be primarily associated with dissolved 

humic acid (91%) and to a lesser degree with fulvic acid (9%) in the leachate (Ballard, 

_1971). Also, Wershaw~ et al (1969) showed that DDT c~ be solubilized by sodium 

humate and Poirrier, et al (1972) showed that coloring colloids in natural waters can bind 

DDT at high concentration and thus provide a transport mechanism. Landrum, et al (1984) 

evaluated the movement ofHOCs through a Sep-Pac C-18 cartridge in the presence of 

dissolved Aldrich humic acid: The Sep-Pac was found to retain unbound HOCs while 

allowing humic-bound HOCs to pass through the column. Thus, OOM was found to 

facilitate HOC transport through the .columri (Landrum, et al, 1984 ). 

Previous HOC-Soil-OOM Jnyystisations 

Although numerous resem.:chers have investigated the sorption of HOCs to SOM, or 

investigated the binding of HOCs to DOM, scant literature has been found in which all 

three components were intentionally investigated in the same system at the same time. A 

three-component system s:uc~ as this would be expected in the environment. The following 

investigations by Caron, et al (1985) and West, et al (1984) are examples in which soil, 

HOC and OOM were all present simultaneously in the experiments. 

Caron, et al (1985) investigated the effects of sorption of DDT and lindane to a river 

sediment in the presence and absence of humic acid in the aqueous phase. The HA used 

had previously been extracted from the same river sediment source and was added to batch 

shaker reactors at a concentration of 6.95 mg/1 DOC. The batch samples contained either 
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radiolabelled DDT or lindane and were equilibrated for 24 hours. In the absence of the 

DOC, lindane, which has a relatively high solubility compared to DDT, showect a lower 

partition coefficient to the sediment than did the much less soluble DDT, as would be 

expected. The dissolved HA showed no effect on lindane sorption or solubility 

enhancement as would also be expected by the work of Chiou, et al (1986) and Kile and 

Chiou (1989). However, DDT was affected by the DOC in solutio~ which considerably 

lowered the amount of DDT sorbed to the- ~ediment and increased the amount remaining in 

solution. This effect was attributed to binding of DDT to the DOC and thus the humic

bound DDT was then no longer able to be sorped by the sediment (Caron, et al, 1985). 

These researchers concluded that DOC could have an important effect on the transport of 

HOCs in aqueous systems where sediment organic carbon content is low and the DOC 

concentration is relatively high: 

West, et al (1984) investigated the transport of hexachlorobenzene (HCB) in a low

carbon soil column experiment in the presence and absence of a dissolved ground water 

humic material. Initial experiments showed that the HCB would bind strongly to the 

dissolved humic material. Later experiments showed that the humic material (9.0 mg/1 

DOC) by itself would move through the soil column in a conservative or non-adsorbing 

fashion. However, the HCB (20 J.Lg/1 influent concentration) by itself was severely 

retarded in the column, and maximum effluent concentrations never exceeded 0.05 J.Lg/1. 

Then, when the humic material and HCB w~re ririxed together in the feed solution prior to 

input to the soil column, the humic-bound portion of the HCB moved through the column 

relatively unimpeded, eluting at approXimately the same time as the humic material at a 

concentration of 0. 92 j..Lg/1. It was concluded that the humic-bound portion of the HCB 

underwent mediated transport due to the DOC, while the freely dissolved portion of the 

HCB, which was not bound to the dissolved humic material, sorbed strongly to the soil. 
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Present HOC-Soil-DOM Inyesti&ation 

Although the authors discussed above show mediated transport in a three

component system (DOC, soil-and HOC), the experimental conditions investigated were 

somewhat limited. For instance, in both cases only one soil was chosen for investigation. 

Also, at most two HOCs were compared in a single experiment (Caron, et al1985). These 

compounds (DDT and lindane) which are at opposite extremes of the solubility range of 

HOCs. Chiou, et al (1986) has since sho~ no solubility enhancement effects on any of 

the compounds they tested (including lindane) which had an aqueous solubility greater than 

1 mg/1. Kile and Chiou _(1989) have further refmed the concept of OOM solubility 

enhancement and state that for the solubility increase of an HOC to be significant the :OOC 

concentration in solution must be at least two orders of magnitude greater than the solubility 

of the HOC in pure water. Finally, Caron, et al (1985) and West, et al (1984) performed 

their experiments at one pH and not over the range of environmental pH values. They also 

only investigated one dissolved organic matter each at a single DOC concentration in their 

three-component systems. 

The purpose of the present study is to further investigate the potential of using 
' ' 

DOM as a mediating factor for facilitating t:railsport in three-component systems. The 

investigation extends previous research in several ways. First, an appropriate range of 

environmental solution pH conditions is incorporated. Also, three soils collected from 

various soil horizons and possessing differing soil properties and SOM contents were 

used. In addition, two different dissolved organic matter sources were employed. OOM 

concentrations covering the environmental range of DOC concentration found in ground 

waters and most surface waters were also investigated. Finally, three environmentally 

significant organochlorine HOCs were used. The HOCs were selected so that their 

solubilities would span an appropriate range in which enhanced solubility due to 

environmental concentrations of DOC could be effective. 
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MA'fERIJ\J..S AND METIIODS 

IntrOduction 

Experiments in this study were designed to observe the sorption of nonionic, 

hydrophobic organic compounds (HOCs) on three soils at three different pH values in the 

presence of increasing concentrations of dissolved organic matter (OOM) in solution. 

Experiments were conducted utilizing aqueous slurries of soil and water shaken in batch 

reactors. Various combinations of soil, DOM and HOCs were added to the batch reactors, 

shaken until equilibrium was attained and then centrifuged.' Aliquots of the supernatant 

were then extracted with hexane and analyzed by gas chromatography. The batch 

experiments, procedures and materials used are described below .in detaiL 

Reagents 

The reagents, and the HOC and DOM compounds used in this study are listed along 

with their sources in Table I. All reagents were used as received. 

The HOCs used are common and persistent insecticides found throughout the 

environment and were selected for use as representatives of low solubility, nonionic 

hydrophobic solutes. These compounds were noi only chosen due to their environmental 

significance and persistence, but also for their physical characteristics as listed in Table IT. 

Among the physical characteristics desired of the model solutes selected were high 

molecular weight, nonionic compounds with a range of low solubilities and having 

relatively low vapor pressures, medium to high octanol-water partition coefficients <Kow), 
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Reagent 

p,p' -DDT 

p,p' -ODD 

Dieldrin 

Humic Acid, 
Sodium Salt 

FulvicAcid 

Acetone 

Hexanes 

TABLE I 

REAGENTS USED IN STUDY 

Alternate Narne(s) CAS• Registry Number Source 

1,1, 1-Trichloro-2,2-bis( 4-chlorophenyl)-ethane 50-29-3 Aldrich 
1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane 

IDE 
1, 1-Dichlor0-2,2-bis( 4-chlorophenyl)-ethane 72-54-8 Aldrich 
2,2-Bis( 4-chlorophenyl)-1, 1-dichloroethane 

Octalox 
1,2,3,4, 10,10-Hexachioro-6, 7-epoxy-l,4,4a, 60-57-1 Fisher 
5,6, 7 ,8,8a-octahydroexo-1 ,4-endro-5,8-
dirnethanonaphthalene 

Aldrich Humic Acid Aldrich 

International Humic Substances Society (IHSS) IHSS 
Standard Soil Fulvic Acid (1S102 F) 

Fisher 99.5% 

Fisher Certified Pesticide 

achemical Abstracts Service 

Purity or Grade 

99+% 

99+% 

99+% 

Technical Grade 

Research Standard 

Residue Analysis 

w 
00 



HOC M.W.• 

p,p' -DDT 354.49 

p,p' -DDD 320.05 

Dieldrin 380.95 

SCallahan, et al, 1979. 
bBiggar and Riggs, 1974. 
cHenry, et al, 1989. 

TABLEll 

CHARACfERISTICS OF MODEL SOLUTES 

M.P.8(°C) V.P.•(torr) 

107- 109 7.3 X 1Q-7 
(at 30°C) 

109- 112 10.2 x 10-1 
(at 30°C) 

175- 176 1.8 x 10-1 
(at 20°C) 

Solubility in Water 
at 25°C (ppb )a,b LogKow 

5.5-25 5.98 - 6.36a,c 

20-90 5.99- 6.088 

i95-200 -5.15C 
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and a high potential for s~rption to soils. These characteristics were considered desirable 

for the following reasons. 

The nonionic nature of the compounds was selected to evaluate the sorption of 

uncharged nonpolar compounds (as opposed to polar or ionic compounds). The 

characteristic of low vapor pressure was desirable to minimize the potential for volatile 

losses during the experiments. The low solubility and medium to high octanol-water 

partition coefficients are characteristics of compounds with the propensity for sorption to 

soils and the potential to bind to DOM. A range in both solubility and Kow was chosen to ,. 

evaluate the variation in sorption and binding. with variation in these characteristics. 

Other considerations for the selection of these compounds as model solutes were of 

a practical nature. These included favorable potential for using microextraction procedures 

on small sample volumes and the use of similar gas chromatography procedures for extract 

analysis. 

Soils 

Soils selected for use in this study were native Oklahoma soils collected and 

provided by Dr. Brian Carter, Department of Agronomy, Oklahoma State University. The 

soils were chosen so that a variations in soil organic matter;texture and horizon could be 

evaluated. The Mullhall soils are described as fme-loamy, siliceous, thet:nUc Udic 

Paleustolls and the Navina soils are fme-loamy mixed thermic Udic Argiustolls (Henley, et 

al, 1987). 

The methods used to characterize the properties of the soils chosen for use are listed 

in Table ill. The soils were received in an air-dried condition. They were then sieved 

through a 40 mesh sieve (0.425 rn:m openings) to remove rootlets and stored in air-tight 

containers until used. 



TABLE ill 

METHODS USED 1U ANAL Y"ZE 
SOILS USED IN STUDY 

Property I Characteristic Method I Reference 

Soil Name (type locality) 

ID used in experiments 

Soil Horizon 

Depth Sampled (em) 

Land Use 

Organic Matter (%) 

Organic Carbon(%) 

Soil Class (Texture) 

Sand(%) 

Silt(%) 

Clay(%) 

Soil pH 

Water Content(%) 

CEC (meq/100 g) 

AEC (meq/100 g) 

Clay Mineralogy 

Carter/ a 

Carter I a 
-carter/ a 

Carter/ a 

Walkley-Black I b 

% Organic Matter+ 1. 72 I a,c 

Carter/ a 

WetSieve/b 

WetSieve/b 

Stoke's Law I b 

50:50 Soil: Water Solution I b 

103"C I b 

BaCl2 I b,c,d 

BaCl2 I b,c,d 

XRD I a,b,c 

8Dr. Brian Carter, Dept. of Agronomy, OSU (1989). 
bU.S.D.A., S.C.S (1987). 
cpage, et al(1982). 
dQillrnan (1979). 
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Batch Reactors 

The batch reactors use9- in all sorption experiments consisted of 40 m1 hypo vials. 

These vials are commonly used in the collection of water samples for volatile organic 

analyses. The vials used were obtained from Supelco, Inc. and are clear, borosilicate glass 

with dimensions of 29 x 81 mm. The vials were capped with open-top screw caps lined 

with Teflon-faced silicon septa. The vials were analytically cleaned as outlined in 

Appendix B prior to each use. 

Experimental Descriptions and Procedures 

The experiments performed in this study fall under several general categories. 

These are soil characterization, preliminary 'tests, sorption isotherms and DOM 

experiments. Detailed explanations of these experiments and their procedures are given 

below. 

Soil Characterization 

Soils were characterized following the methods of analysis previously listed in 

Table ill. The reader is directed to the:references listed in the table for detailed soil 

characterization procedures. 

Preliminary Tests 

, A variety of preliminary tests were necessary prior to performing the sorption 

isotherm and DOM experiments. These tests were run to establish soil-solution ratios, 

equilibrium times, OOM sorption potential and organic carbon contents. 

Since preliminary test results of soil-solution and equilibrium time experiments 

were to be used in a qualitative rather than quantitative fashion~ typically only single 

samples were run in these tests. However, duplicate samples were run on the DOM 
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sorption screening experiments. Triplicate samples were run on all subsequent isotherm 

and OOM experiments. 

Soil-Solution Ratio Screenin~s 

The soil-solution ratio screenings were performed to determine the amount of soil 

necessary to sorb 70% to 90% of the HOCs from solution after taking into account any 

losses, such as glassware sorption, found in the control vials. The 70% to 90% adsorption 

range was chosen so that a majority, but not all, of the HOC would be removed from 

solution by the soils when there was no OOM in 'Solution. Thus; when OOM was added to 

the vials in subsequent OOM experiments, any decrease or increase in HOC concentration 

in solution, i.e., any difference in HOC sorbed to the soil due tQ the addition of the OOM, 

would be apparent. 

First, for the soil-solution ratio screenings various masses of air-dried soils were 

weighed on a Mettler AE-160 model digital balance ( 0.0000 g digital display) and then 

added to the reactor vials. Although air-dried soil mass was used in weighing out soils in 

the experiments, results of the subsequent isotherm and OOM experiments were adjusted to 

reflect moisture-free soil mass. The masses of the various soils used in these screening 

trials are listed in Table N. 

Next, separate test solutions of the HOCs were prepared in distilled, deionized 

water. The water used in all experiments was purified prior, to use by passing through a 

Gelman Sciences Water-I model deionizer fitted with a deionizer/activated-carbon filter 

cartridge. Distilled water was produced using a Barnstead A-1015 model electric 

distillation unit to supply water for use in the deionizer. A complete description of the 

preparation of the HOC test solutions and HOC gas chromatograph standards is given in 

Appendix B. 

Then, the HOC solutions were pipetted into the reactor vials. The vials were 

securely capped and placed horizontally on a two-speed reciprocating shaker (Eberbach 
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TABIEN 

EXP~ALCONDniTONSFORSO~SOLUTION 
RATIO SCREENING TRIALS 

g g g 
Soil a Soilb Soilc Description 

0 0 0 Blank Control Vials 

0.05 0.15 0.10 - MA Soil Screening Vials 
0.10 0.30 0.20 MA Soil Screening Vials 
0.25 0.60 0.40 MA Soil Screening Vials 
0.50 1.00 0.60 MA Soil Screening Vials 

2.00 1.00 MA Soil Screening Vials 
2.00 MA Soil Screening Vials 

0.05 0.15 0.10 MB Soil Screening Vials 
0.10 0.30 0.20 MB Soil Screening Vials 
0.25 0.60 OAO MB Soil Screening Vials 
0.50 1.00 0.60 MB Soil Screening Vials 

2.00 1.00 MB Soil Screening Vials 
2.00 MB Soil Screening Vials 

0.05 0.15 0.10 NB Soil Screening Vials · 
0.10 0.30 0.20 NB Soil Screening Vials 
0.25 0.60 0.40 NB Soil Screening Vials 
0.50 LOO 0.60 NB Soil Screening Vials 

2.00 1.00 NB Soil Screening Vials 
2.00 ·NB Soil Screening Vials 

avials used for screening DDT (35 ml solution, 25 ppb.) 
bVials used for screening DDD (30 ml solution, 90 ppb.) 
cvials used for screening Dieldrin (30 ml solution, 90 ppb.) 
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Corp. model6010). Although adverse reactions of the HOCs with light was not expected, 

the vials were covered with a black cloth as a precautionary measure. The viais were then 

shaken overnight at 180 oscillations per minute (low setting on shaker). Ambient 

laboratory temperatures were recorded to be 23°C ± 2°C for all experiments. 

Mter shaking, the vials were centrifuged on an International Equipment Co. model 

Centra-7 centrifuge at 1200 rpm for one hour. The centrifuges~ and duration were 

determined using the following equation by Roy, et a1 (1987) for tqe spinning down of soil 

particles with a 0.1 J.Lm radius and an average density of 2.65 g/cm (Freem and Cherry, 

1979). 

t = 3.71 X 108 1n (RbfRt) 
(rpm)2 

where, 

t = centrifuge time, minutes. 

rpm = revolutions per minute. 

Rb = distance from the center of the centrifuge rotor to the bottom of the 

centrifuge tube (or reactor vial), c1.11. 

Rt = distance from the center of the centrifuge rotor to the top of the solution in 

the centrifuge tube (or reactor vial),, em. 

In these experiments, the centrifuge speed was found to be limited to 1200 rpm to 

prevent vial breakage. Thus, the time needed to centrifuge the samples was determined to 

be one hour. Note that this procedure removes 0.1 Jlffi diameter particles which is well 

within the colloid particle range of 0.001 to 1.0 Jlin (Thurman, 1985) and considerably less 

than the maximum diameter of 3:9 Jlin for clay particles (Freeze and Cherry, 1979). 

Mter centrifuging, aliquot~ of the clear supernatant solutions were removed with a 

pipette for HOC extraction using a modified microextraction technique described in Keith 

(1981). This technique is advantageous since it allows relatively small sample aliquots (10 
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to 100 ml) to be extracted with 0.2 to 5 ml of solvent. The microextraction method was 

chosen for these experiments since the total sample volume was never more than 35 rnl. 

The extractions were performed by pipetting 5 to 8 m1 of the DDT solutions or 2 to 

4 m1 ofDDD or Dieldrin solutions into separate 12 m1 screw-top test tubes. The amount of 

HOC solution extracted depended on the sensitivity of detection of the GC for the 

compounds and the initial concentration of the HOCs. Larger volumes of the solutions 

were needed as the experiments progressed because of decreasing sensitivity of the GC 

detector with age. Initial concentrations of DDT were 25 ~gil, and 90 ~gil for DDD and 

Dieldrin. Thus a larger DDT solution volume was needed for extraction than for DDD or 

Dieldrin. 

Next, 2 m1 of hexane was added to each test tube.' Teflon tape was used .to cover 

the test tube opening and then the screw cap was seeurely emplaced. The tubes were 

shaken horizontally on the reciprocating shaker at 280 oscillations per minute (high setting) 

for 10 minutes. After shaking, the solvent J'hase was allowed to separate from the water 

phase with the test tubes standing in a vertical position. The solvent phase was then 
' 

withdrawn with 5.25-inch, disposable, borosilicate glass pipettes and transferred to 1.5-ml 

storage vials. The storage vials used were 12 x 35 mm in dimension with an open-top 

screw caps and Teflon-faced silicone septums (Wheaton Scientific). The sample extracts 

were then stored at less than 4°C until analyzed 

In addition to the supernatant samples collected from the reactor vials, duplicate 

samples of the initial HOC test solutions used to fill the reactOr vials were collected before 

and after filling these vials. This was done to quantify the initial concentration of the 

solution used to fill the reactor vials and to ·account for potential losses through 

volatilization while filling the vials. The losse~ during filling of the vials was found to be 

nominal, and the extraction efficiency was found to be approximately 85% to 105%. All 

data gathered during the study were subsequently corrected using the extraction efficiencies 

generated for the individual experiments. 
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Equilibrium Time Screenings 

The screenings for equilibrium times were performed to determine how much 

shaking time was needed in order for the systems to reach equilibrium with respect to HOC 

sorption. Table V lists the experimental conditions for· the equilibrium time screenings. 

Shaking time for DDT from the equilibrium screening trials was established at 8 

hours and at 24 hours for DDD and Dieldrin. These times allowed for equilibrium as well 

as a practical working working schedule for subsequent isotherm and DOM experiments. 

pH Acljustment Screenin&s 

In order to achieve soil-solution pH values in the range of 4, 7 and 10 after 24 

hours of shaking, additional screening tests were performed on the soils to determine the . . 

amount of hydrochloric acid or sodium hydroxide that was necessary to adjust the initial 

HOC test solutions. Also, additional screeiring tests showed that the acid and base had no 

apparent adverse effects, such as hydrolyis reactions, on the HOCs in the test solutions 

since the HOC concentrations remained constant throughout these screening tests. The 

hydrogen ion activity (pH) of splutions used in experiments was measured using a Fisher 

Accumet model 900 pH meter equipped with a Fisher model E-58 combination electrode 

probe. 

DO~ Sorption Screenin&s 

Finally, screening tests were run to evaluatewh~ther the DOM used in the OOM 

experiments might sorb to the soils. In order to accomplish this goal a series of DOM 

sorption tests were performed. First, concentrated solutions of humic acid (HA) and fulvic 

acid (FA) were prepared so that the OOM could be added to the reactor vials in a volumetric 

fashion. The HA concentrate was prepafed by placing 1.00 g of HA sodium salt in a 100 

ml volumetric flask and fllling with deionized water. This produced a 10,000 mg/1 HA 



DDT a 

VialiD g 
Prefix Soild 

A 0 

A 0 
A 0 
A 0 
A 0 
A 0 
A 

MA 0.15 
MA ().15 
MA 0.15 
MA 0.15 
MA 0.15 
MA 

MB 0.30 
MB 0.30 
MB 0.30 
MB 0.30 
MB 0.30 
MB 

TABI.EV 

EXPERIMENTAL CONDmONS FOR EQUILIBRIUM 
TIME SCREENING TRIALS 

DDDb Dieldrinc 
Hours g Hours g Hours 

Shaken Soild Shaken Soild Shaken 

0 0 0 0 0 

1 0 1 0 1 
6 0 2 0 2 
12 0 --4 0 7.75 
24 0 11 0 17.25 
48 0 18 0 24 -o 39 0 48.5 

1 - 0.20 1 0.30 1 
6 0.20 2 0.30 2 
12 0.20 4 0.30 7.75 
24 0.20 11 0.30 17.25 
48 0.20 18 0.30 24 

0.20 39 0.30 48.5 

1 0.40 1 0.60 1 
6 0.40 2 0.60 2 
12 0.40 4 0.60 7.75 
24 0.40 11 0.60 17.25 
48 0.40 18 0.60 24 

0.40 39 0.60 48.5 

Description 

Blank Control Vials 

Blank Control Vials 
Blank Control Vials 
Blank Control Vials 
BlaDk Control Vials 
Blank Control Vials 
Blank Control Vials 

MA Soil Screening Vials 
MA Soil Screening Vials 
MA Soil Screening Vials 
MA Soil Screening Vials 
-MA Soil Screening Vials 
MA Soil Screening Vials 

MB Soil Screening Vials 
MB Soil Screening Vials 
MB Soil Screening Vials 
MB Soil Screening Vials 
MB Soil Screening Vials 
MB Soil Screening Vials .p. 

CXl 



DDT• 
VialiD g Hours 
Prefix Soild Shaken 

NB 0.30 1 
NB 0.30 6 
NB 0.30 12 
NB 0.30 24 
NB 0.30 48 
NB 

8DDT: 35 m1 solution, 25 ppb. 
hDDD: 30 m1 sQlution, 90 ppb. 
cDieldrin: 30 m1 solution, 90 ppb. . 

g 
Soild 

0.40 
0.40 
0.40 
0.40 
0.40 
0.40 

TABLE V (Continued) 

DDDb Dieldrinc 
Hours g Hours 

Shaken Soild Shaken Description 

1 0.60- 1 NB Soil Screening Vials 
,2 0.60 2 NB Soil Screening Vials 
4 0.60 7.75. NB Soil Screening Vials 
11 0.60 17.25 NB Soil Screening Vials 
18 0.60 24 NB Soil Screening Vials 
39 0.60 48.5 NB Soil Screening Vials 

dThe g soil used was determined in previous soil-solution ratio screening trials to sorb 60-80% of the particular HOC in solution. 
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stock concentrate. Then, FA concentrate was prepared by placing 0.10 g ofF A in a 10 m1 

volumetric flask and filling with 0.1 N sodium hydroxide solution. The basic 'solution was 

used to ensure complete dissolution of the FA as recommended by the supplier 

(MacCarthy, 1989). This produced a 10,000 mg/1 FA stock concentrate. These DOM 

stock concentrates were used in all subsequent experiments involving dissolved organic 

matter. 

The OOM sorption screeni~g tests were first run using HA as the OOM source. 

The experimental conditions for the HA sorption screeing tests are listed in Table VI. The 

concentrated HA solution was added in various amounts to reactor vials using a microliter 

syringe. The HA solution was then allowed to air, dry. This was done so that premature 

potential reactions could be avoided when the soil was added to the vials next. Then, the 

reactor vials were filled with distilled, deionized water, shaken for 24 hours and 

centrifuged as previously described. It should be noted that the dried organic matter was 

immediately resolubilized upon addition of the water. 

The supernatant was analyze~ for DOM concentrati9n using UV adsorbance at 254 

11m. This is a wavelength for measuring' OOM concentration in solution employed by 

previous researchers for investigations of humic and fulvic acids (DeHaan, 1983; West, et 

al, 1984). The UV analyses were perfromed using a Spectronic 1201 spectrophotometer 

manufactured by Milton Roy Co. The spectrophotometer was calibrated using humic and 

fulvic acid standard solutions prepared in" the same range as the test solutions using the 

concentrated stock solutions previously described. 

No HA sorption, was noted for any of the soils and the screening trials were then 

repeated with a FA solution. However, due to the limited quantities of MA and MB soil 

and the extremely limited and very expensive supply ofthe FA only the NB soil was tested 

with the FA as a OOM source. Again, no sorption was detected. The experimental 

conditions for the FA sorption screening trials are listed in Table Vll. 



TABLE VI 

EXPERlMENTAL CONDmONS FOR HA 
SORYTION SCREENING TRIALS 

ViaiiD J1} of 10,000 mg/1 mg/IHA mg/IHAOC g 
Prefix HA stock concentrate added• = addedb = added Soil Description 

HA 0 0 0 0 Blank Control Vials 

HA 0.75 0.25 "0.042 0 HA Vials 
HA 1.50 0.50 0.083 0 HA Vials 
HA 3.00 1.00 0.166 o_ HA Vials 
HA 7.50 2.50 0.415 0 HA Vials 
HA 15.00 5.00 0.830 0 HA Vials 
HA 30.00 10.00 1.660 '0 _ HA Vials 
HA 75.00 25.00 4 . .150- 0 HA Vials 
HA 150.00 50.00 8.300 0 HA Vials 
HA 225.00 75.00 12.450 0 HA Vials 

MA,MBorNB 0 0 0 0.30 MA, MB or NB Soil Control Vials 

MA,,MBorNH 0.75 0.25 0.042 0.30 MA, MB- or NB Soil Test Vials 
MA,MBorNB 1.50 0.50 0.083 0.30 MA~ MB or NB Soil Test Vials 
MA,MBorNB 3.00 1.00 0.166 0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 7.50 2.50 0.415 0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 15.00 5.00 0.830 0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 30.00 10.00 1.660 0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 75.00 25.00 4.150 '0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 150.00 50.00 8.300 0.30 MA, MB or NB Soil Test Vials 
MA,MBorNB 225.00 75.00 12.450 0.30 MA, MB or NB Soil Test Vials 

•HA is 16.6% organic carbon. VI 

b30 ml of distilled, deionized water added to each reactor vial. ...... 



TABLEVll 

EXPERIMENfAL CONDffiONS FOR FA 
SORPTION SCREENING TRIALS 

ViaiiD p.l of 10,000 mg/1 mg/IFA mg/IFAOC g 
Pre tilt FA stock concentrate added8 = addedb = added Soil Description 

FA 0 0 0 0 Blank Control Vials 

NB 0 0 0 0.30 NB Soil Control Vials 

NB 0.25 0.083 0.042 0.30 NB Soil Test Vials 
NB 0.50' 0.167 0.084 0.30 NB Soil Test Vials 
NB . 1.00 0.333 . 0.167 0.30 NB Soil Test Vials 
NB 2.50 0.833 0.417 0.30 NB Soil Test Vials 
NB 5.00 1.67 0.835 .. 0.30 NB Soil Test Vials 
NB 10.00 3.33 '1.665 0.30 NB Soil Test Vials 
NB 25.00 8.33 4.165 0.30 NB Soil Test Vials 
NB 50.00 16.67 8.335 0.30 NB Soil Test Vials 
NB 75.00- 25.00 12.500 0.30 NB Soil Test Vials 

8FA is 50% organic carbon .. 
bJO ml of distilled, deionized water added to each reactor vial. 
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DOC Detennination 

As can be seen from Tables VI and Vll the OOM for HA and FA were added to 

reactor vials on an approximately equal organic carbon basis. Although the stock 

concentrates for each of the OOMs was 10,000 mg/1 the' organic carbon content was 

different for each material. The lliSS FA is a reference standard and was reported by the 

supplier as having 50% organic carbon (M~Carthy, 1989) and almost no ash content 

(0. 79% ). The HA sodium salt as supplied by Aldrich Chemical Co. on the other hand is a 

technical grade reagent and has been noted to have considerable ash content ranging up to 

approximately 60% (Carter and Suffet, 1982). Carter apd Suffet (1982) found the organic 

matter (OM) content of the Aldrich HA used in their experiments to be about 40%. 

In order to better quantify the organic matter content of the Aldrich HA salt used in 

the present experiments a loss-on-ignition s~reening trial was performed at 400oC for 24 

hours on several samples following the procedures outlined by Ball (1964), Davies (1974), 

and Page, et al ( 1982). This resulted in an organic matter content of approximately 31% in 

the Aldrich HA. Page, et al (1982}recommends dividing the OM content by a factor of 

1.72 to 2.00 to convert OM to organic carbon (OC). An average conversion value of 1.87 

was used to yield approximately 16.6% OC in the Aldrich HA used in these experiments. 

Thus, the value of 16.6% OC was 'used as the OC of the HA in all subsequent 

experiments and calculations. This allowed organic carbon to be added to all HA and FA 

experiments on an approximately equal carbon basis. 

Sorption Isotherm Tests 

Isotherm tests were performed on the soils without OOM addition to provide 

adsorption constants for the HOCs. Constant soil masses were cidded to the reactor vials 

· and HOC solutions covering a range of concentrations were then added to the vials. 

Isotherm tests were run in triplicate and experimental conditions are given in Table VTII. 



TABIEVIll 

EXPERIMENTAL CONDmONS FOR SORPTION 
ISOTIIERM TESTS 

DDI DDD DI~ldrin 
VialiD Cone. g Cone. g Cone. g 
Prefix (mg/1)8 Soil (mg/l)b Soil (mg/l)b Soil Description 

I 5 0 10 0 10 0 Blank Isotherm Control Vials 
I 10 0 30 0 30 0 Blank Isotherm Control Vials 
I 15 0 50 0 50 0 Blank Isotherm Control Vials 
I 20 0 70 0 70 0 Blank Isotherm Control Vials 
I 25 0 90 0 " 90 0 Blank Isotherm Control Vials 

MA 5 0.15 10 0.20 10, :_ 0.30 MA Soil Test Vials 
MA 10 0.15 30 0.20 30 0.30 MA Soil Test Vials 
MA 15 0.15 :so 0.20 50 0.30 MA Soil Test Vials 
MA 20 '0.15 70 0.20 

-
70 0.3'0- MA Soil Test Vials 

MA 25 0.15 90 0.20 90 0.30 MA Soil Test Vials 

MBorNB 5 0.30 10 0.40 10 0.60 ,MB and NB Soil Test Vials 
MBorNB 10 0.30 30 0.40 30 0.60 MB and NB Soil Test Vials 
MBorNB 15 0.30 50 0.40 50 0.60 MB and NB Soil Test Vials 
MBorNB 20 0.30 70 0.40 70 0.60 MB and NB Soil Test Vials 
MBorNB 25 0.30 90 0.40 90 0.60 MB and NB Soil Test Vials 

a35 ml solution. 
b3Q ml solution. 



All experimental procedures for shaking, centrifuging and extraction are as previously 

described. 

OOM Experiments 
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The focus of this study was the DOM experiments. In order to evaluate the effect 

of DOM on the sorption of HOCs to soils, the following experiments were performed. 

Each HOC at a set concentration was run with each soil at an approximate pH of 4, 7 and 

10. In addition, OOM (HA or FA) was added to different reactor vials in increasing 

amounts up to an organic carbon concentration of about· 12.5 mg/1 (approximately 75 mg/1 

HA or 25 mg/1 FA). The details of the ex~rimental conditions are presented in Tables IX 

to XI which show the amount of soil and water added to each vial as well as the OOM and 

HOC concentrations used. All experimental procedures regarding reactor vial preparation, 

addition and drying of HA or FA concentrates, weighing and addition of soils, addition of 

HOC solution, shaking, centrifuging, and extracting HOCs were as described in previous 

sections of this chapter. All OOM experi,ments were performed in triplicate. 

Batch reactor vials were divided into various classes for the OOM experiments 

based on their experimental function. The~e classes are described below. 

Soil Test Reactor Vials: These vials. contained water, an HOC, a soil and eitherHA 

or FA as OOM. These vials were intended to show the effects of sorption of HOCs to soils 

in the presence ofOOM. 

Soil Control Reactor Vials: These vials contained water, an HOC and a soil. The 

soil control vials provided a measure of the sorption of the HOCs in the absence of DOM. 

HA and FA Reactor Vials: These vials contained water, a HOC and either HA or 

FA. These vials were intended to indicated the effect of DOM on the HOCs in the absence 

of soil. 



ml of 10,000 mg/1 
VialiD g HA stock concentrate 
Prefix Soil added to vialb = 

HAorFA 0 0 

HAorFA 0 17.5 
HAorFA 0 35.0 
HAorFA 0 87.5 
HAorFA 0 .175.0 
HAorFA 0 262.5 

MA 0.15 0 

MA 0.15 17.5 
MA 0.15 35.0 
MA 0.15 87.5 
MA 0.15 175.0 
MA 0.15 262.5· 

TABLE IX 

EXPERIMENTAL CONDffiONS FOR DDTa 
OOM EXPERIMENTS CONDUCTED 

AT pHs 4, 7 AND 10 

ml of 10,000 mg/1 
mg/1 HA mg/1 HA OC FA stock concentrate mg/1 FA 
addedC = added added to viald = addedC 

0 0' 0 0 

5.0 0.83 5.5 1.57 
10.0 1.66 11.0 3.14 
25.0 4.15 27.5 7.86 
50.0 8.30 55.0 15.71 
75.0 12.45 82:5' 23.57 

0 0 0 0 

5.0 0.83 5.5 1.57 
10.0 1.66 11.0 3.14. 
25.0 4.15 27.5 7.86 
50.0 8.30 55.0 15.71 
75.0 12.45 82.5 23.57 

mg/IFAOC 
= added , Description 

0 Blank Control Vials 

0.875 HA or FA Vials 
1.570 HA or FA Vials 
3.930 ' HA or FA Vials 
7.855 HAorFA Vials 

11.785 HA or FA Vials 

0 MA Soil Control Vials 

0.785 MA Soil Test Vials 
. 1.570·. MA Soil Test Vials 
3.930 MA Soil Test Vials 
7.855 MA Soil Test Vials 

11.785 MA Soil Test Vials 



TABLE IX (Continued) 

VialiD 
ml of 10,000 mg/1 

g HA stock concentrate mg/1 HA mg/1 HA OC 
Preftx Soil added to viaJb = addedc = added 

MBorNB 0.30 0 0 0 

MBorNB 0.30 ' 17.5 5.0 0.83 
MBorNB 0.30 35.0 10.0 1.66 
MBorNB 0.30 87.5 25.0 4.15 
MBorNB 0.30 175.0 50.0. 8.30 
MBorNB 0.30 262.5 75.0 12.45 

. 
•Initial DDT concentration in reactor vials was 25 ppb. 
hHA is 16.6% OC. . 
c35 ml of DDT solution added to each vial. 
dfA is 50% OC. 

ml of 10,000 mg/1 
FA stock concentrate mg/1 FA 

added to viaJd = adcJedC 

0 0 

5.5 1.57 
11.0 3.14 
27.5 7.86 
55.0 15.71 
82.5 23.57 

mg/IFAOC 
= added Description 

0 MB or NB Soil Control Vials 

0.785 MB or NB Soil Test Vials 
1.570 MB or NB Soil Test Vials 
3.930 MB or NB Soil Test Vials 
7.855 MB or NB Soil Test Vials 

1,1.785 MB or NB Soil Test Vials 



TABLE X 

EXPERIMENTAL CONDmONS FOR DDoa 
OOM EXPERIMENTS CONDUCI'ED 

AT pHs 4, 7 AND 10 

ml of 10,000 mg/1 ml of 10,000 mg/1 
VialiD g HA stock concentrate mgll HA mg/1 ~ OC FA stock concentrat~· mg/1 FA mgllFAOC 
PrefiX Soil added to vialb = addedC = added added to viald = addedC = added DescriE!!on 

HAorFA 0 0 0 0 '0 0 0 Blank Control Vials 

HAorFA 0 15.0 5.0 0.83 5.0 1.67 0.835 HA or FA Vials 
HAorFA 0 30.0 10.0 1.66 9.5 3.17 1.585 HA or FA Vials 
HAorFA 0 75.0 25.0 4.15 23.5 7.83 3.915 HA or FA Vials 
HAorFA 0 150.0 50.0 8.30 47.0 15.67 7.8_35 HA or FA Vials 
HAorFA 0 225.0 75.0 12.45. 70.5 23.50 11.750 HA or FA Vials 

MA 0.20. 0 0 0 0 0 0 MA Soil Control Vials 

MA 0.20 15.0 5.0 0.83 5.0 '1.67 0.835' MA Soil Test Vials 
MA 0.20 '30~0 10.0 1.66 9.5 3.17 ' 1.585 MA Soil Test Vials 
MA 0.20 75.0 25.0 4.15 23.5 7.83- 3.915 MA Soil Test Vials 
MA 0.20 150.0 50.0 8.30 47.0 15.67 7.835 MA Soil Test Vials 
MA 0.20 225.0 75.0 12.45 70.5 23.50 11.750 MA Soil Test Vials 



TABLE X (Continued) 

ml of 10,000 mg/1 
VialiD g HA stock concentrate mg/1 HA mg/1 HA OC 
Prefix Soil added to vialb c = addedC = added 

MBorNB 0.40 0 0 0 

MBorNB 0.40 1'5.0 5.0 0.83 
MBorNB 0.40 30.0 10.0 1.66 
MBorNB 0.40 75.0 25.0 4.15 
MBorNB 0.40 150.0 50.0 8.30 
MBorNB 0.40 225.0 75.0 12.45 

8lnitial DDD concentration in reactor vials was 90 ppb. 
bHA is 16.6% OC. · 
c30 ml of DDD solution added to each vial. 
dfA is 50% OC. 

ml of 10,000 mg/1 
FA stock concentrate mg/1 FA 

added to viald = addedC 

0 0 

5.0 1.67 
9.5 3.17 

23.5 7.83 
47.0 15.67 
70.5 23.50 

mg/lFAOC 
= added DescriEtion 

0 MB or NB Soil Control Vials 

0.835 MB or NB Soil Test Vials 
1.585 MB or NB Soil Test Vials 
3.915 MB or NB Soil Test Vials 
7.835 MB or NB Soil Test Vials 

11.750 MB or NB Soil Test Vials 



ml of 10,000 mg/1 
VialiD g HA stock concentrate 
Prefix SoiL added to vialb = 

HAorFA 0 0 

HAorFA 0 15.0 
HAorFA 0 30~0 
HAorFA 0 75.0 
HAorFA 0 150.0 
HAorFA 0 225.0 

MA 0.30 ·0 

MA 0.30 15.0 
MA 0.30 30.0 
MA 0.30 75.0 
MA 0.30 150.0 
MA 0.30 225.0 

TABLE XI 

EXPERIMENTAL CONDIDONS FOR DIELDRIN8 

OOM EXPERJMENTS CONDUCTED 
AT PHS 4,7 AND 10 

ml of 10,000 mg/1 
mg/1 HA mg/1 HA OC FA stock concentrate mg/1 FA 
addedC = added added to viald = addedC 

0 0 0 0 

5.0 0.83 5.0 1.67 
10.0 1.66 9.5 3.17 
25.0' 4.15 23.5 7.83' 
50.0 8.30 47.0 15.67 
75.0 12.45 70.5 23.50 

0 0 0 0 

5.0 0.83 5.0 1.67 
10.0 1.66 9.5 3.17 
25.0 4.15 23.5 7.83 
50.0 8.30 47.0 15.67 
75.0 12.45 70.5 23.50 

mg/IFAOC 
= added Descri~on 

0 Blank Control Vials 

0.835 HA or FA Vials 
1.585 HA or FA Vials 
3.915 HAorFA Vials 
7.835 HA or FA Vials 

11.750 HA or FA Vials 

0 MA Soil Control Vials 

0.835 MA Soil Test Vials 
1.585 MA Soil Test Vials 
3.915 MA Soil Test Vials 
7.835. MA Soil Test Vials 

11.750 MA Soil Test Vials 

0\ 
0 



TABLE XI (Continued) 

ml of 10,000 mg/1 
VialiD g HA stock concentrate mg/1 HA mg/1 HA OC 
Prefix Soil added to vialb = acfdedC = added 

MBorNB 0.60 0 0 0 

MBorNB 0.60 15.0 5.0 0.83 
MBorNB 0.60 30.0 10.0 1.66 
MBorNB 0.60 75.0 25.0 , 4.15 
MBorNB 0.60 150.0 50.0 8.30 
MBorNB 0.60 225.0 75.0 12.45 

aJnitial Dieldrin cOricentration in reactQI' yials was 90 ppb. 
bHA is 16.6% OC. 
c30 ml of Dieldrin solution a&ied to each vial. 
dFA is 50% OC. 

ml of 10,000 mg/1 
FA stock concentrate mg/IFA 

added to viald = addedC 

0 0 

5.0 1.67 
9.5 3.17 

23.5 7.83 
47.0 15.67 
70.5 23.50 

mg/IFAOC 
= added Description 

0 MB or NB Soil Control Vials 

0.835 MB or NB Soil Test Vials 
1.585 MB or NB Soil Test Vials 
3.915 MB or NB Soil Test Vials 
7.835 MB or NB Soil Test Vials 

11.750 MB or NB Soil Test Vials 
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Blank Control Reactor Vials: These vials contained water and a HOC only. These 

vials were intended to indicate the losses of HOCs due to the combined potential effects of 

volatilization and glassware sorption in the absence of DOM and soil. 

The terms soil test vials, soil control vials, HA or FA vials, and blank control vials 

will be used hereafter as shorthand descriptorS of the reactor vials and their contents as 

outlined above. 

Analysis of HOCs in Sample Extracts 

The amount of HOCs sorbed to the various soils was determined by difference in 

the liquid phase after taking control losses into account. The HOC sample extracts were 

analyzed following chromat9graphic conditions suggested in Method 608 for 

organochlorine pesticide analyses (Federal Register, 1984). A Perkin-Elmer Sigma 2000 

model gas chromatograph equipped with a nickel63 electron-capture detector was utilized. 

A Supelco, Inc. glass column ( 6 feet in length with 2 mm inner diameter and 0.25 - inch 
~ ' 

outer diameter) packed with three percent SP-2100 on 100/120 Supelcoport support was 
' ' 

employed for compound separation. The carrier gas (supplied by Big Three Industries, 

Grand Prarie, Texas) was 95% argon and 5% methane (on a mole percent basis) flowing, at 

a rate of 60 m1 per minute. The injector temperature was 290°C, the detector temperature 

was 350°C, and the oven temperature was maintained isothermally at 240°C. A Perkin

Elmer LCI-100 integrator was used to produce chromatograms and to calculate elution 

times and peak areas. The gas chromatograph was calib11lted with standard curves at least 

once a day using HOC standard solutions prepared as described in Appendix B. 



CHAPTER IV 

'RESULTS AND DISCUSSION 

Soil Characterization 

The results of the analyses conducted to characterize the three soils used in the 

experiments are tabuhited in Table XII. Review of Table XII provides a variety of 
' -

observations and correlations regarding the various soil properties. The first observation is 

that the soil organic carbon content (SOC) decreases with the depth of sampling (i.e., soil 

horizon depth). This observation is in agreement with that of Thurman (1985) regarding 

decreased SOC with soil depth. A plot of SOC versus maximum depth of collection is 

shown on Figure 5. The organic carbOn (OC) percentage& of the MB and NB soils are 

noted to be similar. However, they are less th~ the MA soil OC content. 

Soil texture was another property selected for evaluation of similarities and 

differences of HOC sorption. The MA and NB soils have a similar clay content while the 

MA and MB soils have similar silt contents. The sand content varies among the soils. 

The soil pH results show that all of these soils are acidic. Addition of 0.1 N 

hydrochloric acid directly to the soils ,showed no reaction, confirming acidic soils lacking 

carbonates (Carter, 1989). This result is typical of acidic soils m central Oklahoma. 

The water content of the air-dried soils varied. There appeared to be no correlation 

between water content and other properties among the soils. 

The exchange capacities of the soils can be correlated to clay and silt content, and to 

clay mineralogy. That is, the soils with the greater clay and silt fractions, and larger 

vermiculite and smectite contents tend to also have greater CEC and AEC (Carter, 1989). 
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Property I Characteristic 

Soil Name (type locality) 

ID used in experiments 

Soil Horizon 

Depth Sampled (em) . 

Land Use 

Organic Matter(%) 

Organic Carbon (%) 

Soil Class (texture) 

Sand(%) 

Silt(%) 

Clay(%) 

Soil pH 

Water Content (% by weight) 

CEC (meq/100 g) 

CEC (meq/100 g) 

AEC (meq/100 g) 

TABLEXll 

PROPERTIES, CHARACfERISTICS AND METHODS 
USED 10 ANAL'YZE SOILS USED IN STUDY 

Soils 

MA MB NB 

Mulhall Mulhall Navina 

MA MB NB 

A , Bt2 BA 

0-16 43-66 35-45 

Pasture Pasture Fallow/Wheat 

1.76 1.43 1.52 

1.023 0.831 0.884 

Sandy Loam Clay Loam Loam 

58.2 35..4 42.5 

28.6 31.8 43.2 

13.2 32.8 14.2 

6.0. 5.8 5.1 

0.645 2.378 1.114 

8.45 10.55 4.75 

10.20 20.90 11.40 

0.05 0.19 0.06 

Method I Reference 

Carter I, a 

Carter/ a 

Carter/ a 

Carter/ a 
Walkley-Black/ b 

% Organic Matter+ 1. 72 I a,c 

Carter/ a 

Wet Sieve/ b 

Wet Sieve/ b 

Stoke's Law I b 

50:50 Soil: Water Solution I b 

103°C I b 

BaCl2/ b,c,d 

Ammonium Acetate I e 

BaCh/ b,c,d 0\ 
~ 



TABLE Xll (Continued) 

Property I Characteristic MA 

Clay Mineralogy t: 

Quartz *** 
Kaolinite *** 
Dlite .. -. 
Hydrated Interlayer Vermiculite (HIV) trace 

Smectite/HIV none 

8Dr. Brian Carter, Dept. of Agronomy, OSU (1989). 
bU.S.D.A , S.C.S. (1987). 
cpage, et al(1982). · 
dGillman (1979). 
echapman ( 1965). 

Soils 

MB 

*** 
*** 
** 

none 

* 

NB Method I Reference 

XRDI a,b,c 

*** 
** 
** 

none· 

* 

tTbe * symbol in the X-Ray Diffraction (XRD) interpertation represents a relative or qualitative abundance of clay minerals 
present in the sample. 
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The cation exchange capacity (CEC) and anion exchange capacity (AEC) were 

found to be the greatest for the MB soil followed by NB and MA. Overall, exchange 
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capacity values are somewhat low due to the minor quantities of vermiculite and smectite 

clay minerals present in the s~ples. Comparison of the ammonium acetate and barium 

chloride CEC results shows that the ammonium acetate method yielded slightly greater 

exchange capacities than the barium chloride' methOd. Although chosen because it allows 

for a concurrent d~termination of CEC and AEC, the barium chloride method has been 

shown to typically yield minor to noticeably lower exchange capacities compared to other 

methods (Gillman, 1979; Page, 1972; Carter, 1989). 

The clay mineralogies of the soils used iri this study are similar. The clay 

mineralogies are dominated by quartz, kalonite and illite with minor or trace amounts of 

vermiculite and smectite. 

Prelimi~ary Tests 

Soil-So}ution Ratio Screenings 

The soil-solution rati~ screenings allowed the amount of each soil needed to sorb 

approximately 70 to 90% of each JIOC (after control losses were taken into account) to be 
!> 

determined. The MB and NB soils sorbed "HOCs less than the MA soil probably as the 

result of their lower soil organic matter contents. Thus, in order to sorb an appropriate 

amount of a compcmnd, more soil was required per vial for the MB and NB soils. than for 

the MA soils for a given HOC. 

The least soluble HOCs were sorbed more readily than the more soluble HOCs. 
> 

Therefore, less soil was required for the DDT tests than for DDD or Dieldrin tests. In 

addition, the DDT tes! sQlution concentration_ of'25 J.tgll was less than the 90 J.tgll solution 

concentration used for the DDD and Dieldrin experiments. The DDT and DDD stock 

solutions were made at their maximum reported solubilities to enhance their analytical 
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detection potential. The Dieldrin was more easily detected, however, and was arbitrarily 

added at the same concentration as the DDD. The greater solution concentrations of DDD 

and Dieldrin also necessitated greater amounts of soil to be used in the DDD and Dieldrin 

tests. The amount of each soil found to sorb 70 to 90% of the model HOCs is listed in 

Table XIII. 

Equilibrium Time Screenin~s 

' 
The screening tests for the equilibrium times were performed to establish shaking 

times for the batch reactors. The experimental conditions for these tests are outlined in 
r- I I 

Table V of the preceding chapter. 

The sorption of all ~OCs was very raJ?id with the majority of the uptake occurring 

within the first few hours of shaking. The uptake rate then -tailed off and diminished to a 

minor uptake rate. This sorption behavior is typical of organic compound uptake as 

described by Wu and Gschwend (1986), Khan-(1973), Miller and Weber (1986), Rao, et 

a1 (1979), and Bouchard, et a1 (1988). Figure 6is a typical equilibrium-time uptake-curve 

for the present study where the percent compound remaining in solution versus time is 

shown. 

Roy, et al (1987) indicate that equilibriu~ in batch adsorption studies is achieved 
' ' 

when there is no more than a 5% chm1:ge in solution concentration in any subsequent 24-

hour period. DDT, being more hydrophobic than DDD or Dieldrin, reached the equilibrium 

conditions suggested by- Roy, et a1 ( 1987) 'slightly faster than the latter two compounds. 

Actual shaking times for the experiments were based on a practical working schedule after 

equilibrium was achieved. Thus, the equilibrium time for DDT was established at 8 hours, 

and the equilibrium time established for DDD and Diel~n was 24 hours. 



HOC 

DUI' 

DDD 

Dieldrin 

TABLE XIII 

RESULTS OF SOll.rSOLUTION RATIO SCREENING 

Grams of Soil Necessary to Sorb 70 to 90% of HOC 

MA 

0.15 

0.20 

0.30 

MB 

0.30 

0.40 

0.60 

NB 

0.30' 

0.40 

0.60 
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DOM Sorption Screenin&s 

Screening tests were performed to indicate possible sorption of HA or FA to the 

soils. These tests are described in Tables VI and VTI of Chapter ill. 
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UV spectrophotometry at 254 nm showed that the OOM concentration in the control 

reactor vials (soil and water at pH 4, 7, and 10) of the DOM sorption screening tests· 

increased slightly at all pH yalues. This increase was probably due to minor solubiliza~on 

of fulvic and/or humic material from the naturally.,occurrihg organic matter present in the 

soils. The average increase of ~M in solution for all the soils over the entire pH range 

used was approximately 4%. The increase ofOOM in solution was considered minor. 

Since the OOM concentration in solution increased at all pH values in the control 

vials, it was decided to run the OOM sorption tests (OOM added to vials) at neutral pH 
' . 

' ' 

only. This was done to conserve the limited supplies of soils and OOM. 

UV spectrophotometry showed no decrease in OOM in solution over the entire 

concentration range of OOM added to the soil test vials and control reactor vials. Thus, no 

sorption of either HA or FA to the soils was. apparent in these tests. In addition, an 

increase in OOM concentration was observed in the control vials which supports the 

conclusion that no HA or FA was sorbed by the soils. 

Sorption Isotherm Tests 

Isotherm tests were performed on the soils in the absence of DOM. at neutral pH in 

order to establish HOC adsorption.constants. The experimental conditions for these tests 

are described in the previous chapter. During the isotherm tests, a loss of the HOCs from 

solution in the control reactor vials (no· soil) was observed for all compounds used Since 

the vapor pressures of the compounds are very low, the losses were considered to be due 

to hydrophobic sorption to glassware. The losses in the controls varied depending on the 

initial HOC concentration, and ranged from 39% to 75% for DDT, 13% to 62% for DDD, 
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and 15% to 31% for Dieldrin. As a result, the total sorption observed in the vials 

containing soil had the control losses subtracted in order to determine the actual sorption to 

the soils. The isotherm data collected for the HOCs and soils used in this study are 

tabulated in Appendix C. 

Lan&muir Isotherms 

Adsorption isotherm data are often described graphically usin~ Langmuir or 

Freundlich isotherm plots (Montgomery, 1985). The Langmuir isotherm relates the mass 

of solute sorbed per mass of adsorbent (q) to the equilibrium concentrati~n of the solute in 

solution (C). The Langmuir isotherm is depicted graphically as an arithmetic plot of q 

versus C. Langmuir isotherms for the adsorption data given in Appenidx C are shoWn on 

Figures 7 to 9. These isotherms were based on the micrograms of the HOCs sorbed per 

gram of soil organic carbon (SOC). 

As can be seen on Figures 7 and 8, the isotherm plots for DDT and DDD show 

normal or L-type Langmuir curves (Houns1ow, 1983). The L-type curves are typically 

linear near the origin. Theri, as adsorption sites become filled and the solute concentration 

is increased the curve becomes convex; When all adsorption sites are filled, the sorption 

capacity of the sorbent is exceeded and the curve becomes horizontal (Montgomery, 1985). 

The data points for DDT and DDD on Figures 7 and 8 follow the typical L-type Langmuir 

curve but appear to decrease slightly after the maximum sorption capacity is reached. 

However, this decrease was only a:bout 10% at most. The decrease was considered 

relatively minor and may have been due to laboratory error. Additional data points could 

not be generated in order to confrrm the possible decrease in sorption with increasing solute 

concentration since the reported solubility limits of the compounds had been reached at the 

fifth data point. 

Figure 9 shows the Langmuir plot for the Dieldrin isotherm data. These data plot in 

a linear fashion for all of the soils tested. There is no apparent curvature of these isotherm 
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lines since the sorption capacity of the soils was not exceeded, as appeared to be the case 

for the DDT and DDD isotherms. This may be due to the fact that Dieldrin is more soluble 

than DDT or DDD and did not sorb sufficiently to exceed the sorption capacity 'of the soils. 

Figure 9 is also a L-type Langmuir curve. The data in this case simply plot in the linear 

portion of the L-type curve and do not extend into the convex or horizontal portion of the 

L-type curve. 

Inspection of Figures 7 to 9 shows that for a given HOC, the isotherm data plots 

for the MB and NB soils are below the MA soU isotherm plots. This difference may be 

explained by the variability of soil organic matter of different soils. Soil organic matter 

(SOM) has been previously discussed in the literature reyiew as being diverse in origin and 

composition from one source to another. The partitioning of organic compounds to SOM 

has also been shown to vary due to differen~s in SOM composition (Garbarini and Lion, 

1986; Gauthier, et al, 1987). The isotherm results for the thr~ soils and compounds used 

in the present study are an example of this variability. In addition, as previously described 

in the literature review, Gschwend and Wu (1985) and Roy and Griffin (1987) point out 

that this variability may be as great as an order of magnitude in partitioning for the sorption 

of an organic compound to a variety of different soils. Finally, the isotherm data for the 

MB and NB soils plot near each other for DDT and DDD but show more variability for 

Dieldrin. This result may be dtie to differing interactions between the different HOCs and 

the organic matter of the various soils. 

Freundlich Isotherms 

The Freundlich adsorption isotherm is an empirically-derived relationship between 

the mass of solute sorbed per mass of adsorbent (q) and the equilibrium concentration of 

the solute in solution (C). The Freundlich isotherm is often used by researchers to describe 

the sorption of compounds to soils. The Freundlich isotherm is a log-log plot of q versus 

C. The q and C parameters are related by the following expression. 



where, 
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q = Kclln 

q = Jlg of solute sorbed per g of sorbent. 

C = Jlg of solute remaining in solution per ml (or g at dilute solutions) of water at 

equilibrium. 

K = intercept at log l concentration (i.e., at 0). K is the Freundlich distribution or 

partition coefficient between the sol~te sorbed and the solute remaining in 

solution, and gives a rough measure. of the sorption capacity of the sorbent 

(Weber, 1972). When the so~bent is represented by soil organic carbon, K 

becomes Ksoc· 

n = slope of the line. 

Figures 10 to 12 show the Freundlich isotherm data plots for the HOCs sorbed to 

the three soils. These isotherms were based on the micrograms of HOC sorbed per gram 

of soil organic carbon (SOC). The isotherms for DDT and DDD show a linear increase in 

sorption (q) as the equilibrium ~oncentration (C) increases. This linearity continues up to 

the point that the soils become saturated with these compounds. At saturation, the isotherm 

lines become horizontal as was also noted for the Langmuir isotherm plots. The linear 

portion of the Freundlich isotherm plots can be used up to the saturation point to calculate 

the isotherm constants, K and n, described in the Freundlich equation. Figure 12 shows 

that the Dieldrin isotherm data are linear throughout since the sorption capacities of the soils 

were not exceeded. 

The Freundlich partition coefficients to soil organic carbon (Ksoc), slopes (n), and 

coefficients of determination (r2) of the isotherms are given in Table XIV for sorption of 

the HOCs to the SOC mass of the three soils. The slope (n) is a change in mass sorbed to a 

gram of SOC per change in the equilibrium concentration of the HOC. The slope can be 

considered a rough measure of how intensly a compound sorbs to a sorbent (Weber, 

1972). The adsorption intensity is an indicator of the energy of sorption (Freundlich, 
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C?mpound Solubility 
and Soil (J.Lg/1) 

DDT 5.5-25 
MA 
MB 
NB 

DDD 20-90 
MA 
MB 
NB 

Dieldrin 195-200 
MA 
MB 
NB 

TABLE XIV 

FREUNDLICH ISOTIIERM COEFFICIENTS FOR 
HOCSORY.nONTOSOILS 

Freundlich Freundlich 
logK8oc log Ksoc 

log Kow reported a this study 

5.98-6.36 5.12-5.55 
5.00 
4.92 
4:88 

5.99-6.08 
5.16 
4.94 
4.93 

-5.15 -4.1 
4.50 
4.36 
4.23 

n r2 

0.49 0.99 
0.61 0.81 
0.66 1.00 

0.69 (b) 
().64 (b) 
0.71 (b) 

0.85 1.00 
0.81 0.99 
0.80 0.99 

3Soil organic carbon partition values (Ksoc) from previously reported investigations (Henry, et al, 1989; Hamaker 
and Thompson, 1972). 

bNot determined due to limited data. 



82 

1926) and is independent of the partition coefficient. Thus, one compound may lose more 

energy when adsorbed (i.e., have a greater n value) than another and still have a lower 

sorption capacity to a particular sorbent than a compound with a smaller n value. Table 

XN shows that the slope is greatest for Dieldrin and least for DDT. The coefficient of 

determination (r2) shows good overall correlations between q and C for DDT and Dieldrin. 

The r2 value for DDD was not determined since the number of data points on the sloping 

portion of the isotherm plot were limited. 

Table XN also shows the Freundlich Ksoc values determined for the HOCs used in 

this study, and for' DDT and Dieldrin as reported by previous researchers for sorption to 

other soils (Henry, et al, 1989; Hamaker and Thompson, 1972). The results of the present 

study indicate that the Ksoc value for DDT is slightly lower, and that the Ksoc value for 

Dieldrin is slightly higher than the results for the previous studies using different soils. 
' 

The differences in the Ksoc values are, however, within an order of magnitude of each 

other as found by Roy and,Grif~m (1987) for partition variability to different soils, and are 

probably due to differences in SOM composition as previously discussed. 
' ' 

The log Ksoc values shown in Table' XIV can be used to compare sorption results 

with various system properties. For ~xample, Ksoc is well correlated with Kow, and 

inversely related to compound solubility (S) as previously pointed out by Karickhoff, et al 

( 1979) and Chiou, et al ( 1979). In addition,, Kow is also well correlated to S as shown by 

Chiou, et al (1977). These researchers, along with Banerjee, et al (1982), Chiou and 

Schmedding (1982), Isnard and Lambert (1989), Kenaga and Goril}g (1980), and Means, 

et al (1980), show that although relationships between Ksoc• Kow and S can vary 

somewhat, they tend to be within general agreement of each other for a large number of 

organic compounds and different soil types. 

Chiou, et al (1979) showed that Ksoc is related to S using the equation log Ksoc = 

3.80 - 0.557 log S using numerous organic compounds and soils. A bivariate plot of log 

Ksoc for all three soils used in the present study versus logS is shown on Figure 13. This 
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plot can be described using a single line drawn through the data for all three soils. The 

resulting equation is log Ksoc = 4.367- 0.499log S (with r2 = 0.533). 
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Next, relating Ksoc to Kow, Kenaga and Goring (1980) found that log Ksoc = 

1.377 + 0.544log Kow for sorption of 45 organic compounds to a variety of soils. The 

Kow and Ksoc data for the present study are plot~ on Figure 14 and yield the relationship 

log Ksoc = 1.180 + 0.620 log Kow (with r2 = 0.860). The differences in the S, Kow and 

Ksoc relationships developed in the present study and those found for previous researchers 

are probably due to the limited number of HOCs and soils being tested in this study. 

Ksoc is also well correlated with the percentage soil organic carbon content as 

demonstrated by Hamaker and Thompson (1972). In addition, Ksoc is well correlated with 

soil sample depth (i.e., soil horizon). Bivcuiate plots of Ksoc versus soil organic carbon 

content, and Ksoc versus soil depth are shown on Figures 15 and 16, respectively, for the 

soils used in this study. As can be seen by Figure 15, log Ksoc increases as the percent 

organic carbon increases. Figure 16 shows· that log Ksoc decreases with a decrease in soil 

depth. 

As previously noted, the Ksoc values for a particular HOC have been shown to be 
' 

similar for the MB and NB soils. These two soils also consistently have lower Ksoc values 

than the MA soil. However, the Ksoc values found for all of the soils were reported with 

respect to the organic carbon cqntent of the soils. That is, q in the Freundlich equation 

represents the HOC mass sorbed per mass SOC on an equal organic carbon basis for all of 

the soils. Thus, on an equal' carbon basis, the difference between the Ksoc values observed 

for the A-horizon and B-horizon soils, and the similarity of the Ksoc values for the two B

horizon soils used in these experiments, may be due to differences in the soil organic matter 

composition with depth. For instance, the fulvic acid percentage of soil organic matter has 

been noted to increase with depth (Kononova, 1966; Stevenson, 1985). Fulvic acids have 

also been shown to bind HOCs to a lesser degree than humic acids (Chiou, et al, 1986). 

Although not measured in the soils used in this study, differences in the fulvic-hurnic ratio 
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may account for the observed differences in Ksoc values for the A-horizon and B-horizon 

soils. 

The Ksoc values found for this study are poorly correlated with all other soil 

properties given in Table Xll. This conclusion is in agreement with the observations of 

Karickhoff, et al (1979), Karickhoff (1981), Means, et al (1980 and 1982), and Hassett, et 

al ( 1980) who indicate that soil organic matter is the most important determinant for 

sorption of HOCs. 

Dissolved Organic Matter Experiments 

The OOM experiments consisted of a series of tests in which the effects of OOM on 

the sorption of HOCs to soil were evaluated over a range of solution pH values. The soil 

test reactor vials contained a constant mass of soil, a HOC and increasing concentrations of 

a OOM in solution at a pH of 4, 7 or 10. It should be noted that the organic carbon fraction 

ofDOM is known as dissolved organic caroon (DOC), and that the organic matter used in 

the experiments was added on a DOC content basis for consistency. 

As with the isotherm tests, the control reactor vials used in the OOM experiments 

showed noticeable losses. These losses were attributed to glassware sorption. The losses 

were variable depending on the system pH, the HOC used, and the concentration of DOM 

in the vial. The average loss for DDT nln.ged frOm 31% for the vials containing the 
' -

maximum OOM concentration used to 62% for the vials containing no DOMin solution. 

Similarly, the losses found for DDD ranged from 33% to 67%~ and 21% to 23% for 

Dieldrin. The sorption in the soil test reactor vials was corrected using the appropriate 

controls, as was done in the isotherm tests, so ,that sorption to the soils would not be 

overestimated. The losses for the control vials are tabulated in Appendix C. 

The results of the OOM experiments were also adjusted_so that evaluation of 

sorption to the three soils could made on an equal soil organic carbon basis. The mass of a 
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HOC sorbed (C') can be found by subtracting the equilibrium mass of the HOC in solution 

(C) from the initial mass of the compound added to the vial (C0). 

Next, the mass sorbed was normalized with respect to the initial mass by dividing 

C' by C0 • Then, C'/C0 was divided by the mass of soil organic carbon (i.e., the sorbent) 

in the soil test vial. This procedure provides a way for sorption to the different soils to be 

evaluated on an equal soil organic carbon ·basis. Thus, sorption to the SOC is represented 

as C'/C0 per J,lg SOC. 

Next, the equilil>rium mass of compound remaining in solution (C) was also 

normalized by dividing by the initial mas~ (C0 ). :then, C/C0 was divided by the J.Lg of 

solution in the vial. A dilute solution of HOC is assumed, therefore, one milliliter of 

solution equals approximately one gram of mass .. The equilibrium mass is thus represented 

as C/C0 per J.Lg of solution. 

Finally, C'/C0 per J.Lg SOC was divided by C/C0 per J.Lg of solution to yield a 

distribution coefficient (K'soc). The distribution coefficient, K'soc• represents the partition 

between the mass of compound sorbed and the mass of compound in solution at 

equilibrium. This relationship can be written as the following equation: 

K' _ C'/C0 per J.lg SOC 
soc-

C/C0 per J.lg solution 

It should be noted that the K'soc values represent single-point distribution 

coefficients at equilibrium for the OOM experimental results, and should not be confused 

with the Freundlich Ksoc values, which repres~nt the approximate sorption capacity of the 

sorbents desCribed in the isotherm results. The K'soc data for the DOM experiments are 

compiled in Appendix C. ~ 
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DDT Experiments 

Humic Acid 

The soil test reactor vials contained DDT at a concentration of 25 J.Lg/1 and HA 

ranging in concentration from 0 to 12.45 mg/1 as dissolved organic carbon (DOC) at a 

solution pH of 4, 7 or 10. The effects ofHA added to the vials are shown on Figures 17 to 

19. These figures show that HA affects the partition of DDT differently depending on the 

soil used, the pH of the solution, and the concentration of the HA. 

Review of Figures 17 to 19 also sh<;>ws that, m general, as the DOC concentration 
' ' 

increases, the K'soc values at first increase to a mioo.rnum and then begin to decrease. This 

observation may be explained as follows. At 0 mg/1 HA concentration the sorption to the 

glassware in the control vials was usually at its maximum. Then, as HA was added, the 

glassware sorption in the control vials dec~as~ rapidly due to DDT binding to the IX>C in 

solution. Chiou, et al ( 1986) showed that DDT solubility increases as the DOC 

concentration increases. Thus, the DOC also appeared to increase the solubility of DDT 

and reduced sorption to the glassware in the present study. Then in the soil test reactor 

vials, as DOC was added, the glassware sorption of DDT was inhibited by the HA as in the 

controls. Since more of the DDT was made available in solution by the HA, a greater 

amount of the DDT could be sorbed by the soil. Thus, the greatest partition to the soil 

occurs at low concentrations of DOC due to a redistribution of the DDT by the HA. 

However, at greater concentrations ofHA the DOC appears to outcompete the soil for 

binding of the· available DDT in solution. This results in a lower partition coefficient 

(K.'soc). Therefore, at DOC ~~:>ncentrations above approximately 2 to 4 mg/1 of Aldrich 

HA, DDT sorption is reduced and could potentially be made available for transport. 

However, at pH 10 and 0 mg/1 DOC, the MB and NB soils were noted to be at their 

maximum K'soc value as shown on Figure 17. Additional DOC at low concentrations did 

not initially increase the partition coefficient as found for the other examples, but steadily 
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decreased the K'soc as the DOC concentration was increased. Apparently, at pH 10 the MB 

and NB soils exhibit maximum sorption at 0 mg/1 DOC and redistribution of DDT by 

increasing concentrations of DOC results in more of the DDT being bound in solution. 

The effect of pH on the ability of HA to decrease the K'soc of DDT to the soils can 

be evaluated by observing the maximum and minimum K'soc values for each soil at the 

different pH values. The difference betw~n the maximum and minimum K'soc values is 

greatest at pH 4 and least at pH 10 for all soils. This may be due to changes in the humic 

molecules in solution as the pH is lowered. The spherocolloid model of Ghosh and 

Schnitzer (1980) and the observations of Schnitzer (1978) showed that lowered solution 

pH resulted in a coiling of the humic molecules in solution. This c~iling in tum could lead 

to an increase in the formation of hydrophobic interiors of the humic molecules as 

discussed in the literature review. Therefore, a greater binding of DDT to the :OOM in 

solution could take place at lower pH values resulting in larger decreases.in K'soc than at 

higher pH values. Thus, at pH 4. the HA in solution appears to be more effective in 

competing with the soil for binding of DOT than at higher pH values. . . 
Figures 17 to 19 also show that,. in g~neral, the MA soil has a greater partition 

coefficient than the MB or NB soils, as was previously shown in the isotherm tests. In 

addition, Figures 17 and 18 show that the~ and NB partition coefficients are plotted 

relatively close· together as found in the isotherm tests. At pH 4, however, Figure 19 

shows that the plot of the MB soil results are closer to those of the MA soil than to the NB 

soil. The lower pH apparently slightly enhances the ability ofthe S9M of the MB soil to 

bind DDT. The greater adsorption to the MB soil at the lower pH value can possibly be 

explained by the variability of SOM composition from soil to soil and the potential for 

slightly differing reactions for these soils as the pH is changed 
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Fulyic Acid 

The soil reactor vials for the FA tests contained 25 Jlg/1 DDT and FA ranging from 0 

to 11.79 mg/1 as DOC at solution pHs of 4, 7 and 10. It should be noted that although 

every attempt possible was ~ to add the FA to the vials in precisely the same 

concentrations as the HA concentrations, ~e actual FA concentrations were slightly 

different than the HA concentrations. The effects ofF A on sorption of DDT at the three pH 

values investigated are·shown on Figtires 20 to 22. 

The effect ofF A in solution shows no definitive trends for the K' soc values, and 

appears to have little if any effect on inhibiting DDT sorption to SOC. , Chiou, et al (1986) 

showed that dissolved FAs had much less effect on solubility enhancement of DDT when 

compared to dissolved HAs. Little or no effect of FA in solution was observed in the 

present study on the sorption of DDT to the SOC since the sorption potential of the soil 

organic carbon appears to be myeh greater than the binding potential of the FA in solution. 

The K'soc data plotted on Figures 20 to 22 are almost horizontal arid show relatively · 

little variability. The difference between the maximum and minimum K'soc value for any 

line shown on these figures averages 2.5% ± 0.78%. This is considerably lower than the 

variability shown for the HA tests which averaged a maximum difference in K'soc values of 

10.6% ± 4.0%. Therefore, FA appear:; to have little effect on DDT partitioning in these 

experiments. Although the K'soc values might appear to be increasing slightly for the MA 

and NB soils at pH 4 and for the NB soil at pH 7, the increases are minor and are within 

the variability shown in this experiment 

As with the HA experiments previously described, the partition of DDT to the MA 

soil was greater than partition to the MB or ~B soils for all pH values. Also, the soils 

generally plotted near each other, except for the MA soil at pH 7 which showed a slight 

initial increase in K;soc as the DOC concentration increased. This increase then leveled off· 

at a point approximately 3% greater than its initial K'soc value throughout the maximum 
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DOC concentration added. The overall greater K'soc values for the MA soil at pH 7 may be 

due to variability in soil organic matter composition and variable interactions as previously 

discussed. 

DDD Experiments 

Humic Acid 

The soil reactors for the DDD experiments contained 90 J.Lg/1 DDO and HA ranging 

from 0 to 12.45 mg/1 as the DOC, and a solution pH of 4, 7 or 10. The results of DOM in 

solution on the sorption of DDD to the three soils is shown on Figures 23 to 25. 

Review of Figures 23 to 25 shows that as -the DOC concentration is increased, the 

partition coefficient for DDD at first increases to a maximum and then decreases as the HA 

continues to be added at greater concentrations. This is similar to the effects observed for 

DDT in the presence ofHA The initially-low concentrations ofOOC apparently reduces 

the sorption of DDD on the glassware and thus allows greater sorption to take place on the 

soil. Then as the HA concentration continues to be inc~ased, the DOC in solution 

outcompetes the soil for binding DDD and the K'soc values decrease. Thus, at OOC 

concentrations above approximately. 2 mg/1 of Aldrich HA, sorption of DDD is reduced and 

its transport could potentially be facip.tated by the humic material in solution. 

The effect of pH on the ability of the HA to decrease the partition coefficient can be 

evaluated by observing the maximum drop in K'soc values as the DOC concentration is 

increased The maximum ·decrease in· K'soc values observed for all of the soils is at pH 4 

and least at pH 10. The DOC is more effective at binding DDD in solution at the lower pH 

value possibly due to the coiling of the humic molecules as previously discussed in light of 

the Ghosh and Schnitzer (1980) research. 

Finally, Figures 23 to 25 show that the K'soc values for the MA soil are 

consistently greater than the K'soc values for the MB and NB soils. Also, the plots of the 
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MB and NB soil data are relatively close to each other except at pH 4 where the MB soil 

data are slightly greater than the NB soil data. These differences show the variability of 

different soil organic matter to bind HOCs under changing conditions. Since all SOM has 

different origins and composition, variable reactions under changing conditions would 

seem reasonable. Jn addition, the variability is relatively small and well within the order of 

magnitude of partitioning variation as described by Roy and Griffin (1987) for sorption of 

organic compounds to various soils. 

Fulvic Acid 

The FA experiments were conducted under the same conditions as those for the HA 

experiments described above. However, the FA concentration ranged from 0 to 11.75 mg/1 

as DOC. The results of these tests are shown on Figures 26 to 28. 

As with the DDT experiments, the effects of FA on the sorption of DDD were not 

as pronounced as the effects of HA. As can be seen on Figures 26 to 28, the initial 

concentrations ofF A appeared to redistribute the DDD and allow for greater sorption to the 

soil. However, the effects after this initial redistribution were slightly different at the three 

different solution pH values tested. At pH 10 the partition coefficient decreased slightly 

with an increase in OOC concentration. At pH 7 the K'soc values also decreased slightly as 

more DOC was added. At pH 4 the K'soc in~reased slightly as DOC was added. This 

result may be due to FA being more effective at redistributing the DDD at pH 4. However, 

the increase was only about 2.5% and is considered minor. 

Overall, the effects ofF A on DDD partitioning are moderate when compared to the 

HA experiments. The maximum change between any K'soc value for any plot shown on 

Figures 26 to 28 averaged 4.56% ± 1.12%. This is considerably less than the change for 

the plots of the HA experiments with DDD which showed an average maximum change for 

the K'soc values of 10.55% ± 2.83%. 
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Finally, the MA soil K'soc values for the FA experiment with DDD were 

consistently greater than the MB and NB soil values. The MB and NB soil data results 

were relatively close to each other for all pH values. The variability of the partition 

coefficients for the three soils is considered to be due to differences in soil organic matter 

composition as discussed previously. 

Dieldrin Eweriments 

Humic Acid 

The Dieldrin experimental vials contained 90 J,lgll Dieldrin. The HA concentration 

ranged from 0 to 12.45 mg/1 as DOC, and'the solution pH was either 4, 7 or 10. The 

results of HA in solution on the sorption of Dieldrin to the three soils are shown on Figmes 

29 to 31. 

The partition of Dieldrin to the three_soils is less than the partition of DDD or DDT 

to the same soils. These results fit the conceptual models ofKarickhoff, et al (1979) and 

Chiou, et al (1986) where ~ore soluble HOCs~ such as Dieldrin, are sorbed by SOM and 

bound by OOM to a lesser degree than les~ soluble HOCs, such as DDD or DDT. The 

effect of HA on Dieldrin parti~on ~oefficit:mts is also much less than the effect of HA on 

DDT and DDD partitioning. The average maximum change in K'soc values for the plots 

shown on Figures 29 to 31 was 4.94% ± 1.85%. This is considerably lower than the 

maximum averc~ge change in K'soc; values found using HA with DDT and DDD (10.60% ± 

4.03% and 10.55% ± 2.83%, respectively). 

However, Figures 29 to 31 do show some trends as HA was added to the vials . 
. · 

The Dieldrin was redistributed between the glassware and the soil by the HA at lower 

humic concentrations of C;tpproximately 2 to 4 mgll DOC .. This redistribution of the HOC is 
. . 

similar to, but not as pronounced as, that observed for DDT and DDD. The HA apparently 

is more effective at binding DDT and DDD than at binding Dieldrin as discussed 
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previously. After the initial redistribution of the Dieldrin, the addition of increasing 

amounts of HA caused a slight to moderate decrease in the K'soc values. These effects are 

greatest for the pH 4 experiments. Increased coiling of the HA molecules in solution at the 

lower pH might be responsible for more Dieldrin remaining in solution resulting in the 

greater drop in K'soc values observed. As with previous results, the K'soc values found 

for the MA soil were greater than those found for the MB and NB soils. Also, the MB and 

NB soil K'soc values were noted to be similar. 

Fulvic Acid 

The FA experiments were performed in the same fashion as the HA experiments 

described above. The FA in the vials ranged in concentration from 0 to 11.75 Jlg/1 as DOC. 

The results of these experiments are shown on Figures 32 to 34. 

Review of Figures 32 to 34 shows that FA does not affect the partitioning of 

Dieldrin to any of the soils tested. The average maximum change in K'soc values for the 

plots shown in these figures is 1.76% ± 0.77%. This is the lowest change observed for 

any of the experiments and indicates that FA in. solution does not effect Dieldrin 
I ~ ' ' 

partitioning. Chiou, et al (1986) fouild that FA increased the solubility ofHOCs m~h less 

than HA, and that the effect of FA on HOC s.olubility diminished as the Kow of the HOCs 

used decreased. Dieldrin has a lower Ko~ than DDT or DDD, and thus the observation of 

the present study that FA has no effect on Dieldrin partitioning is reasonable. In other 

words, the FA in solution cannot compete with the soil organic matter for oinding of 

Dieldrin. 

The K'soc values were found to be greater in, all instances for the MA soil than for 

the MB and NB soils. Also, the plots of the MB and NB soil data were generally near each 

other. However, at pH 10 the MB soil data were observed to be slightly greater than the 

NB soil data. Finally, the K'soc value for the MA soil at pH 7 for the maximum DOC 

concentration was the only point which showed a noticeable increase or decrease of all the 
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plots observed for this FA experiment. This point is thought to be an aberration since all of 

the other points on this line, as well as all of the other graphs in this FA experiment, show 

almost no variation and plot nearly horizontally. 

Summary of Isotherm Experimental Results 

The results of the isotherm tests have been summarized in Table XIV. Soil organic 

carbon was found to be the dominant factor in sorption of the three HOCs to the three soils, 

investigated. The Freundlich log Ksoc values were found to be well correlated with 

solubility and octanol-water partition coefficients. Also, the Freundlich Ksoc values were 

similar to previously-reported values for soiption of DDT and Dieldrin to other soils. 

The Freundlich Ksoc values for the present study were ~oted to vary slightly among 

the soil types with the MA soil always having greater log Ksoc values than the MB or NB 

soils. The sorption results for the MB and NB soils were often similar. Since the 

Freundlich Ksoc values were calculated on an equal soil organic carbon basis, the 

differences in sorption between the soils is considered attributable to changes in the organic 

matter sorption potential of the individual soils (Garbarini and Lion~ 1986; Gauthier, et al, 

1987). The Freundlich Ksoc values were.shown to decrease with the soil collection depth. 

Previous investigations have shown that changes in soil organic matter with depth generally 

include a higher percentage of fulvic acid comprising the total soil organic matter 

(Kononova, 1966; Stevenson, 1985)~ Fulvic acid has also been shown to sorb HOCs less 

than humic acid (Chiou, et al, 1986). Therefore, the differences in sorption to the various 

soils might be attributable to differences in soil organic composition with depth. 

Finally, the sorption of the three HOCs followed the order of DDT.= DDD > 

Dieldrin. This is also the order the Kow values for these compounds, and in an inverse 

order of their solubilities. 
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Summary of DOM Experimental Results 

Results of the sorption of the three HOCs to the three soils in the presence of HA 

and FA at three different solution pH values have been shown in Figures 17 to 34. Review 

of these figures shows that pH influences the sorption of the HOCs. In general, as the pH 

is lowered, the partition to the soils in the presence of HA or FA in solution is decreased 

slightly. This effect is most likely due to increased coiling of the humic molecules in 

solution at lower pH values (Ghosh and S~hnitzer, 1980; Schnitzer, 1978), and the 

resulting potential for the formation of hydrophobic interiors as t:~te molecules coil. These 

hydrophobic interiors might then allow greater partitioning of the HOC:s to the DOM. 
'' 

The choice of HOC used also influenced the effect that dissolved organic carbon in 

solution had on the partition of a particular HQC. DDT and ODD showed the most 

noticeable changes in K'soc values while Dieldrin showed very little effect. Sorption and ,, ' 

binding of HOCs by humic and fulvic acids is decreased as the solubility of the HOC used 

is increased (Karickhoff, et al, 1979; Chiou, et al, 1986). Since DDT and DOD have lower 

solubilities than Dieldrin, it seems reasonable, that DDT and DOD showed more pronounced 

effects due to DOC in solution than did Dieldrin. 

The type and concent;ration of dissolved organic matter in solution was also very 

important in determining the effect of HOC partitioning between the soils and the solution. 

The Aldrich humic acid showed much more prpnounced effects than did the rnss fulvic 

acid. Fulvic acids have been shown in previous research to bind and sorb HOCs to a lesser 

degree than humic_ acids (Chiou, et al, 198~). The results of the present study are in 

agreement with this observation. The' concentration of the :oc>C was also found to be 

important. In general, the decrease in the partition to the soil was found to be greater as the 

DOC concentration increased. Thus, dissolved organic matter may provide a mechanism 

which could facilita~ transport of Ho<;:s in the environment. 

Finally, the soil type also influenced the degree of partitioning. As was found for 

the isotherm tests, the MA soil generally sorbed greater amounts of the HOCs than did the 
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MB and NB soils. These differences were within an order of magnitude as typically found 

by previous researchers for the sorption of organic compounds to various soils (Gschwend 

and Wu, 1985; Roy and Griffm, 1987). Variability of partitioning is considered due to 

differences in individual soil organic matter composition (Gorbarini and Lion, 1986; 

Gauthier, et al, 1987). 

The present study was performed to investigate the effect of OOM on the sorption 

ofHOCs at different solution pH values in a three-component system (HOC-soil-OOM). 

The significance of this research is that the DOC in the experiments was used at 

concentrations found naturally ,in the environment (Thurman, 1985) and was shown to 

inhibit the sorption of HOCs over an envi!onmental range of solution pH values. In 

addition, the HOCs U:Sed had solubilities in an appropriate range at which naturally

occuring concentrations of DOC might act' as sorption ,inhibitors. That is, the HOC 

solubilities were at least two orders of magnitude less than the DOC concentration used 

(Kile and Chiou, 1989)~ In the past, research has focused on two-component systems 

containing either HOCs and soil? or HOCs and OOM. Having all three components in the 

system simultaneously is much more realistic, however. 

The works of Caron, et al ( 1985) and West, et al ( 1984), as previously discussed in 

the literature review, did iric~rate three-component systems. However, the research in 

each case was limited to one OOM source at a single concentration. In addition, the studies 

were conducted at one pH value. Also, although between these two studies, a total of three 

different organic compounds were chosen for investigation, only two of the compounds 

were in the appropriate solubility range as described by Kile and Chiou (1989) in which 

naturally-occuring concentrations of:OOM might potentially inhibit sorption. 

Thus, the present study is an expanded and much more 'realistic evaluation of 

sorption of HOCs in the presence of OOM. ,The results of this study indicate that OOM can 

have an effect on HOC sorption such that less sorption occurs than would have been 

predicted by simply using the Kow - Ksoc relationships developed by previous investigators 
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in the absence of OOM. The influence of OOM could allow HOCs, which are known to be 

highly sorptive, and thus thought immobile, to be transported along with the DOM through 

soils to the ground water, through ground-water systems, and in surface waters. This 

facilitated transport could be significant and allow mobilization of HOCs much farther than 

previously expected. This transport mechanism may help explain the occUITence of highly 

sorptive organic compounds observed in surface-water and ground-water systems far from 

their sources. 

Although built on related research performed over many years, the concept of 
' " 

facilitated transport has been developed ahd investigated primarily in the 1980s. 

Experiments in three-compon~nt systems have been reported infrequently, however. The 

current study supports and expands upon this previous research, and provides results 

which environmental scientists can use to better understand and predict the fate of HOCs in 

aqueous systems containing both dissolved organic matter and soil or sediment 



CHAPTERV 

CONCLUSIONS 

The results of this study verified or confirmed the results of previous research as 

well as providing additional results and conclusions for three-component (HOC-soil-DOM) 

systems. The verifications and conclusions drawn from this study are presented below. 

• Confirmation was mad~ that the sorption of hydrophobic organic compounds varies with 

different soils. 

• The percentage of soil organic carbon in the soil was verified as the dominant soil factor 

controlling sorption of hydrophobic organic compounds. 

• Soil organic carbon content decrease with depth was confirmed. 

• The organic carbon of lower soil horizons appears to sorb hydrophobic organic 

compounds to a lesser degree than upper soil horizons. 

• It was confirmed that hydrophobic organic compounds with lower solubilities or higher 

octanol-water partition coefficients sorb to·soils to a greater extent than those compounds 

with higher solubilities or low~r octanol-water partition coefficients. 

• That the sorption of hydrophobic organic compounds to soil organic matter can be 

estimated using pre-existin~ knowledge of the compound's .solubility and octanol-water 

partition coefficient was corroborated .. 

• Dissolved organic matter in solution was shown to bind hydrophobic organic compounds 

in solution and inhibit the sorption of these compounds to soils. 

• The type of dissolved organic matter· in solution was shown to determine the degree of 

inhibition of hydrophobic organic compound sorption to soils. 
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• Inhibition of hydrophobic organic compound sorption to soils was shown to increase as 

the dissolved organic matter concentration in solution increased. 

• Slightly greater inhibition of sorption by dissolved organic matter was shown to take 

place at lower solution pH values than at higher pH values. 

• Humic acid was shown to inhibit sorption of hydrophobic organic compounds to soils to 

a greater extent than fulvic acid 

• Inhibition of hydrophobic organic compound sorption by dissolved organic matter could 

mediate or facilitate the transport of these compounds in soils, ground waters and surface 

waters resulting in--faster travel times and greater transport distances than would have 

been expected without the dissolved organic matter. 

• The dissolved organic matter content of natural systems should be incorporated into 

models which are used to predict the fate and transport of hydrophobic organic 

compounds in the environment. 



CHAPTER VI 

RECOMMENDATIONS FOR FUTURE WORK 

The potential for dissolved organic matter to bind HOCs in solution and thus inhibit 

the sorption of hydrophobic organic compounds to soils has been demonstrated. Binding 

of these compounds has the potential to influence their fate and transport. Therefore, the 

following recommendations for future work are made. 

• Use radiolabelled compounds in future sorption inve,stigations'and measure the activity in 

the soil at equilibrium in order to accurately quantity the mass of a target compound 

sorbed. 

• Pre-equilibrate the hydrophobic ,organic compound with the dissolved organic matter in 

solution to evaluate any potential effects on sorption during subsequent,exposure to soil. 

• Use dialysis tubing to separate the truly bound hydrophobic organic compound 

component from that which simply dissolved in solution. 

• Use at least one reference target compound, soil and dissolved organic matter source so 

that comparison of results with other researchers can be accomplished. 

• Use fulvic and humic acid derived from the same soil that is to be used as the sorbent in 

order to evaluate the effects of similar organic matter sources on the inhibition of 

hydrophobic organic compound sorption. 

• Expand the number of soils, d~ssolved organic matter sources and compounds tested in 
!_. ' 

order to develop a larger data base with which to draw conclusions and refine 

correlations. 

• Use soil columns and field experiments in addition to batch studies in order to scale up 

the investigation and to calculate retardation coefficients. 

121 
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• Investigate the effects of municipal sewage effluent as a dissolved organic matter source 

and its potential for facilitating transport of hydrophobic organic compounds. 

• Investigate the potential for dissolved organic matter to mediate the desorption of 

hydrophobic compounds bound to soils using batch and/or column studies. 

• Reevalute existing models regarding the fate and transport of hydrophobic organic 

compounds in order to include the potential for dissolved organic matter to inhibit 

sorption and facilitate transport of these compounds. 
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APPENDIX A 

PERTINENT RELATIONSHIPS BETWEE1~ OCTANOL-, r 

WATERP ARTITION COEFFICIENTS, SOLUBll.lTY 

AND S01L ORGANIC CARBON 

PARTITION COEFFICIENTS 
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Researcher(s) 

Banerjee, et al (1982) 

Chiou and Schmedding (1982) 

Isnard and Lambert (1989) 

Karickhoff, et al (1979) 

Karickhoff (1981) 

Kenaga and Goring (1980) · 

Page, et al (1982) 

Chiou, et al (1979) 

Means, et al ( 1980) 

TABLE XV 

RELATIONSHIPS BETWEEN Kow, S, AND Koc AS 
DESCRIBED BY VARIOUS RESEARCHERS 

Relationship 

log Kow = 5.2 - 0.68 log S 
log K0w = 6.5- 0.89log S- 0.015 (mp) 

log K0 w = -0.862log S + 0.710 

Comments 

S =aqueous solubility (Jlllloles/1) 
mp = melting point of compound 

S is in moles/1; used 36 HOCs covering 6 
orders of magnitude of solubility 

l~g Kow = 3.15- 0.72log S- 0.018 (log S)2 Sis in mmoles/1; used 300 Kow and S values 
reported in literature 

log Koc = -0.54 log S + 0.44 

log Koc = -0.197 - 0.594 log S 

log Koc = 3.64 ~- 0.55 log S 

SOC = 0.58 (SOM) 

log Ksom = 4.040 - 0.557 log S 

log Koc = 4.070 - 0.82 log S 

Sis mole fraction solubility; used HOCs with 
solubilities ranging from 1 ppb to 1,000 ppm 

Redefinition of the equation above to account 
for the crystal energy of the compound 

·Sis in mg/1; used 106 organic compounds 

SOC = soil organic carbon content, 
SOM =_soil organic matter content 

S is in J..Lmoles/1; used HOCs covering more 
than 7 orders of magnitude in solubility and 4 
orders of magnitude in Koc 

Sis in mg/ml ....... 
w 
00 



TABLE XV (Continued) 

Researcher(s) Relationship 

Karickhoff, et al (1979) log Koc = 1.00 log Kow- 0.21 

Karickhoff (1981) log Ksoc = 0. 989 log Kow - 0.346 

Briggs (1981) log Kom = 0.52 log Kow + 0. 78 

Schwarzenbach and Westall (1981) log K = 0. 72 log Kow + log SOC + 0.49 

Comments 

S is mole fraction solubility; used HOCs with 
solubilities ranging from 1 ppb to 1,000 ppm 

Redefinition of the equation above to account 
for the cry~tal energy of the compound 

Kom = partition on an. organic matter basis 
(see Page, et al, 1982 for OM-OC 
conversion) 

Showed that this relationship holds for 
sorption to soils with an OC content greater 
than 0.1% 
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Laboratory Apparatus Cleaning Procedure 

All laboratory apparatus coming in direct contact with samples or HOCs were 

composed of glass, stainless steel or Teflon. This was done to avoid potential phthalate 

ester contamination which is commonly associated with plastic product use. All equipment 

was thoroughly cleaned prior to each use by the following procedure. 

• Hot water rinse. 

• Warm water washing in Micro brand surfactant using a scrub brush. 

• Thorough tap water rinse. 

• Distilled water rinse. 

• Deionized water rinse. 

• Oven drying. 

• Hexane rinse. 

• Oven drying. 

This procedure proved effective and neither cross-contamination with HOCs or 

phthalate ester interference was encountered. 

Preparation of HOC Test Solutions and 
Gas Chromatography Standards 

Test solutions of the HOCs (DDT, DDD and Dieldrin) were prepared by adding 

known volumes of an initial pesticide stock concentrate to one liter of deionized water. The 

initial pesticide stock solution concentrates were prepared by weighing 1.0 mg of DDT or 

5.0 mg ofDDD or Dieldrin and placing in separate 10 m1 volumetric flasks. The flasks 

were then filled with acetone to dissolve the pesticide. The stock solution concentrates 

were then used to prepare test solutions in water for use in the batch tests as well as for 
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preparing standard solutions in hexane for use as gas chromatography standards. Steps for 

pesticide solution preparation are given in Table XVI. 



.Step Solution Type 

DDT Solutions 
1 Stock Concentrate 

2 Test Solution 

3 GC Standard 

4 GC Standard 

5 GC Standard 

DDD and Dieldrin Solutions 

1 Stock Concentrate 

2 Test Solution 

3 GC Standard . 

4 GC Standard 

5 . GC Standard 

TABlE XVI 

HOC TEST SOLUTION PREPARATION 

Description 

Weigh 1.0 mg DDT and place in 10 m1 volumetric flask. Fill with acetone. Yields 
100,000 J.lg/1 stock concentrate solution. Store in 1.5 ml storage vials at 4°C. 

Put 250 J.ll of the 100,000 J.lg/l stock concentrate in 1000 ml of deionized water. Stir 

and use immediately. Yields 25 J.lg/1 test solution. 
Put 25 J.ll of stock concentrate in 10 m1 volumetric flask. Fill with hexane. Yields 250 

J.lg/1 GC standard solution. Store at 4°C in 1.5 ml vials. 

Put 2 ml of the 250 J.lg/1 GC standard in 10 ml of hexane. Yit?lds 50 J.!.g/1 standard 
solution. Store as above. 
Put-2 ml of the 50 J.lg/1 GC standard in 10 m1 of hexane. Yields 10 J.Lg/l GC standard 
solution. Store as above: 

Weigh 5.0 mg DDD or Dieldrin and place in seperate 10 ml volumetric flask. Fill with 
acetone. Yields 500,000 J.lg/1 stock concentrate solution. Store at 4°C in 1.5 m1 vials. 

Put 180 J.ll of the 500,000 J.Lg/1 stock concentrate in 1000 ml of deionized water. Stir 

and use immediately. Yields 90 J.lg/1 test solution. 

Put 5 J.1l of stock concentrate in 10 m1 volumetric flask. Fill with hexane. Yields 250 

J.lg/l GC standard solution. Store at 4°C in 1.5 ml vials. 

Put 2 ml of the 250 J.lg/1 GC standard in 10 ml of hexane. Yields 50 J.Lg/1 standard 
solution. Store as above. 
Put 2 ml of the 50 J.lg/l GC standard in 10 ml of hexane. Yields 10 mJ.lg/1 GC standard. 
Store as above. 
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TABLEXVTI 

SORPTION ISOTHERM RESULTS FOR DDT 

Sorbentas Initial DDT Equilibrium DDT Change in Mass Sorbed, 
Soil Organic Concentration, Concentration, Compound Concentration, (q = x/m) 
Carbon, rn Co c X q 

{rng/1) . {Jlg/1) (~g/1) {Jlg/1) (~g/g) 

MASoil 
43.43 5.0 0.343 4.657 107.23 
43.43 10.0 0.657 '9.343 215.13 
43.43 15.0 0.800 14.200 326.96 
43.43 20.0 1.229 18.771 432.21 
43.43 25.0 1.629 23.371 538.13 

MB S2il 
69.43 5.0 -0.314a 4.686 67.49 
69.43 10.0 . 0.400 9.600 138.27 
69.43 15.0 0.629 14.371 206.99 
69.43 20.0 1.000 19.000 273.66 
69.43 25.0 1.457 23.543 339.09 

NB S2il 
74.86 5.0 -0.314a 4.686 62.59 
74.86 10.0. ',0.429 9.571 127.85 
74.86 15.0 0.629 14.371 191.97 
74.86 20.0 '1.029 18.971 253.42 
74.86 25.0 1.514 23.486 313.73 

aN ear Detection limit. 
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TABLEXVTII 

SORPTION ISOTHERM RESULTS FOR DDD 

Sorbentas Initial DOD Equilibrium DDD Change in Mass Sorbed, 
Soil Organic Concentration, Concentration, Compound Concentration, (q = xlrn) 
Carbon, rn Co c X q 

(rng/1) (J.lgll) (J.lg/1) . (J.lg/1) (J.Lg/g) 

MASQil 
67.67 - 6.533 -o.5ooa 6.033 89.153 
67.67 Z2.567 2.800 19.767 292.109 
67.67 24.433 4.167 20.266 299.483 
67.67 28.267 6.267 22.000 325.107 
67.67 30.600 10.567 20.033 296.040 

MBSQil 
108.33. 6.533 .... o.sooa 6.033 55.691 
108.33 22.567 3.133, 19.434 179.396 
108.33 24.433 5.267 19.166 176.922 
108.33 28.267 10.400 17.867 164.931 
108.33 30.600 13.467' 17.133 158.156 

NB SQil 
116.67 6.533 0.500 6.033 51.710 
116.67 22.567 2.700 - 19.867 170.284 
116.67 24.433 4.500 19.933 170.849 
116.67 28.267 8~033 20.234 173.429 
116.67 30.600 12.200 18.400 157.710 

aN ear Detection limit. 
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TABLE XIX 

SORPTION ISOTHERM RESULTS FOR DIELDRIN 

Sorbentas Initial Dieldrin Equilibrium Dieldrin Change in Mass Sorbed, 
Soil Organic Concentration, Concentration, Compound Concentration, (q = x/m) 
Carbon, m Co c X q 

(mg/1) (JJ.g/1) (J.Lg/1) (J.Lg/1) (J.Lg/g) 

MASoil. 
101.67 9.967 2.700 7.267 71.476 
101.67 ·. 29.767 9.033 20.734 203.934 
101.67 52.467 16.100 36.367 357.696 
101.67 72.867 25.000 47.867 470.808 
101.67 88.983 31.267 57.716 567.680 

MB SQil 
162.33 9.967 3.300 6.667 62.758 
162.33 29.767 12.433'· 17.334 163.170 
162.33 52.467 22.000 30.467 286.794 
162.33 72.867 33.000 39.867 375.279 
162.33 88.983 38.867 50.116 471.755 

NB SQil 
174.67 9.967 2.867 7.100 40.648 
174.67 29.767 ' 11.433 18.334 104.964 
174.67 52.467 20.967 ' 31.500 180.340 
174.67 72.867 30.867 42.000 240.453 
174.67 88.983 35.'800 53.183 304.477 



HOC 
and pH 

WI 
pH10 
pH7 
pH4 

Wll 
pH 10 
pH7 
pH4 

Di"ldrin 
pH10 
pH7 
pH4 

TABLE XX 

C'/C0 TO GLASSWARE IN THE CONTROL 
REACTOR VIALS IN THE PRESENCE 

OF HUMIC ACID 

DOC in Vials a 

0 29.05 58.10 145.25 290.50 
0 0.83 1.66 4.15 8.30 

0.480 0.432 0.277 0.185 0.022 
0.791 0.498 0.111 0.111 0.060 
0.863 0.421 0.~70 0.336 0.361 

0.694 . 0.310 0.218 0.174 0.132 
0.625 0.314 0.192 0.158 0.087 
0.720 0.148 0.152 0.113 0.143 

0.293 0.264 0.384 0.463 0.426 
0.342 . ' 0.421 0.427 0.512 0.473 
0.361 0.40p 0.436 0.368 0.301 
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435.75 
12.45 

0.000 
0.056 
0.394 

0.101 
0.097 
0.181 

0.345 
0.464 
0.308 

aupper value is total DOC in vial in J.Lg. Lower value is DOC concentration in 
mg/1. 



HOC 0 
and pH 0 

DID: 
pH 10 0.467 
pH7 0.536 
pH4 0.604 

DDD 
pH 10 0.719 
pH7 0.522 
pH4 0.725 

Di~ldrin 
pH 10 0.084 
pH7 0.107 
pH4 0.157 

TABLE XXI 

C'/C0 TO GLASSWARE IN THE CONTROL 
REACTOR VIALS IN THE PRESENCE 

OF FUL VIC ACID 

DOCiil Vialsa 

29.05 58:10 145.25 290.50 
0.79 1.57 3.93 . 7.86 

0.448 0.463 0.349 0.389 
0.563 0.487 0.487 0.472 
0.546 0:540 0.590 0.556 

0.701 0.695 0.722 0.716. 
0.477 0.292 0.307 0.304 
0.719 0 . .669 0.656 0.617 

' 0.080 0.055 0.074 0.050 
0.102 0.083 0.073 0.080 

.. 0.135 0.120 0.125 0:104 
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435.75 
11.79 

0.405 
0.476 
0.543 

0.716 
0.321 
0.580 

0.060 
0.064 
0.092 

3Upper value is total DOC in vial in Jlg. Lower value is DOC concentration in 
mgll. 
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TABLE XXII 

LOG K'soc FOR DDT IN THE PRESENCE 
OF HUMIC ACID 

DOC in Vialsa 

Soil 0 29.05 58.10 145.25 290.50 435.75 
and pH 0 0.83 1.66 4.15 8.30 12.45 

MASQil 
pH 10 4.668 4.661 4.707 4.757 4.605 4.481 
pH7 4.475 4.972 4.905 4.848 4.719 4.650 
pH4 4.149 5.002 4.849 4.624 4.577 4.537 

MB SQil 
pH10 4.563 4.413 4.468 4.389 ,4.422 4.320 
pH7 4.271 4.549 4.736 4.603 4.487 4.422 
pH4 4.385 4.986 4.756 4.639 4.548 4.387 

NB SQil 
pH 10 4.594 4.466 4.476 4.335 4.295 4.241 
pH7 4.130 4.521 4.697 4.500 4.400 4.410 
pH4 4.299 4.800 4.627 4.402 4.184 4.051 

, ' 

aupper value is total DOC in vial in J.Lg. Lower value is DOC concentration in 
mg/1. 
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TABLE XXIII 

LOG K'soc FOR DDT IN THE PRESENCE 
OF FUL VIC ACID 

DOC in Vialsa 

Soil 0 27.54 55.09 137.72 275.44 413.16 
and pH 0 0.88 L57 3.93 7.86 11.79 

MASoil 
pH 10 4.972 4.976 4.9.82 5.059 4.978 5.011 
pH7 5.182 5.136 5.216 5.265 5.279 5.259 
pH4 5.120 5.132 5.169 5.119 5.089 5.150 

MB SQil 
pH 10 5.001 4.982 4.890 5.037 ·4.851 4.869 
pH7 5.076 5.028 5.097 4.932 4.974 4.936 
pH4 4.873 4.976 4.966 5.036 5.008 4.987 

NB Soil 
pH 10 4.812 4.890 4.793 4.909 4.894 4.799 
pH7 4.847 4.868 4.853 4.859 . 4.843 4.938 
pH4 4.909 4.903 4.850 4.843 4.899 4.989 

aupper value is total DOC in vi.al in jlg. Lower value is DOC concentration in 
mg/1. 



Soil 0 
and pH 0 

MASQil 
pH 10 4.238 
pH7 4.445 
pH4 4.568 

MB SQil 
pH 10 3.948 
pH7 4.070 
pH4 4.076 

NB SQil 
pH 10 3.830 
pH7 4.109 
pH4 4.058 

TABLE XXIV 

LOG K'soc FOR DDD IN THE PRESENCE 
OF HUMIC ACID 

IX>C in Vials1 

24.90 49.80 124.50 
0.83 1.66 4.15 

4.780 4.736 4.626 
4.749 4.731 4.602 
4.963 4.869 4:734 

4.424 4.389 4.340 
4.379 4.392 4.277 
4.755 4.761 4.556 

4.379 4.391 4.326 
4.457 4.416 4.264 
4.654 4.557 4.486 
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249.00 373.50 
8.30 12.45 

4.623 4.532 
4.567 4.497 
4.587 4.433 

4.320 4.276 
4.265 4.222 
4.409 4.250 

4.285 4.264 
4.287 4.204 
4.292 4.189 

1Upper value is total DOC in vial in Jlg. Lower value is DOC concentration in 
mg/1. , 



Soil 0 
and pH 0 

MASQil 
pH10 4.154 
pH7 4.602 
pH4 4.339 

MB SQil 
pH 10 3.631 
pH7 4.199 
pH4 3.899 

NB SQil 
pH10 3.695 
pH7 4.298 
pH4 3.980 

TABLE XXV 

LOG K'soc FOR DDD IN THE PRESENCE 
OF FUL VIC ACID 

DOC in Vialsa 

25.04 47.58 117.69 
0.84 1.59 3.92 

4.202 4.218 4.107 
4.654 4.789 4.810 
4.381 4.461 4.497 

3.730 3.801 3.616 
4.180 4.376 4.348 
3.956 4.111 4.108 

3.747 3.844 3.749 
4.325 4.478 4.442 
3,.998 4.106 4.123 
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235.38 353.06 
7.84 11.75 

4.145 4.102 
4.780 4.763 
4.537 4.583 

3.720 3.581 
4.300 4.326 
4.133 4.189 

3.734 3.641 
4.417 4.363 
4.197 4.243 

aupper value is total DOC in vial in J..Lg. Lower value is DOC concentration in 
mg/1. 



Soil 0 
and pH 0 

MASoil 
pH 10 3.960 
pH7 3.982 
pH4 4.132 

MB Soil 
pH 10 3.502 
pH7 3.557 
pH4 3.732 

NB SQil 
pH 10 3.635 
pH7 3.617 
pH4 3.739 

TABLE XXVI 

LOG K'soc FOR DIELDRIN IN THE 
PRESENCE OF HUMIC ACID 

lXX:: in Vialsa 

29.05 .58.10 145.25 
0.83 1.66 4.15 

3.930 4.021 4.072 
4.058 4.062 4.136 
4.179 4.193 4.100 

3.479 3.671 3.744 
3.735 3.633 3.790 
3.790 3.823 3.741 

3.502 3.615 3.696 
3.712 3.717 3.827 
3.743 3.764 3.693 
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290.50 435.75 
8.30 12.45 

4.043 3.978 
4.096 4.078 
3.961 3.860 

3.723 3.649 
3.765 3.776 
3.650 3.664 

3.681 3.567 
3.789 3.798 
3.616 3.632 

aupper value is total DOC in vial in ~g. Lower value is DOC concentration in 
mg/1. 



Soil 0 
and pH 0 

MASQil 
pH10 4.031 
pH7 4.113 
pH4 4.133 . 

MB SQil 
pH 10 3.793 
pH7 3.724 
pH4 3.768 

NB SQil 
pH 10 3.620 
pH7 3.819 
pH4 3.806 

TABLE :XXVII 

LOG K'soc FOR DIELDRIN IN THE 
PRESENCE OF FUL VIC ACID 

:OCX: in Vialsa 

29.05 58.10 145.25 
0.83 1.66 4.15 

4.027 4.058 4.043 
4.131 4.169 4.180' 
4.148 4.122 4.154 

3.784 3.789 3.737 
3.727 3;766 3.766 
3.824 3~837 3.856 

3.655 3.657 3.637 
3.754 3.797 3.779 
3.829 3.855 3.852 
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290.50 435.75 
8.30 12.45 

4.079 4.067 
4.159 4.267 
4.192 4.181 

3.753 3.743 
3.767 3.762 
3.836 3.853 

3.669 3.669 
3.767 3.771 
3.812 3.862 

aupper value is total DOC in vial in J.lg. Lower value is DOC concentration in 
mg/1. 
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