
INVESTIGATION OF AN OBJECT ORIENTED

MODELING ENVIRONMENT FOR THE

GENERATION OF SIMULATION

MODELS

By

TERRENCE GILBERT ~EAUMARIAGE

Bachelor of Science
Rochester Institute of Technology

Rochester, New York
May, 1984

Master of Science
Oklahoma State University

Stillwater, Oklahoma
May, 1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1990

itLe~.H ..)
!C)')c) }'

f;j!(<,j_

rnp-oi

t..""

Oklahoma State Univ. Library

C 0 P Y R I G H T

oy

TERRENCE GILBERT BEAUMARIAGE

May, 1990

137:.i560

INVESTIGATION OF AN OBJECT ORIENTED

MODELING ENVIRONMENT FOR THE

GENERATION OF SIMULATION

MODELS

Thesis Approved:

14 I 1'1. ·~
TheSiS~visor

Dean of·the Graduate College-

ii

ACKNOWLEDGMENTS

Although I know that words will truly not be adequate,

I am unfortunately limited to them as the means to express

my appreciation to all of the individuals with whom I have

interacted during my doctoral studies. First and most of

all, I would like to thank my major professor, Dr. Joe H.

Mize, for all of the time and effort that he invested in my

research and education. Dr. Mize has certainly acted as my

mentor, "a loyal friend and advisor". Without his guiding

influence, I am certain that my graduate career would not

have been as rewarding nor would this research activity have

been possible. I hope that I can provide similar

inspiration to students during ,my career in academia.

I would also like to thank each of the members of my

committee members for their impact on my education and

research. Dr. Charles M. Bacon introduced the concepts of

artificial intelligence, expert systems,, and alternative

programming methodologies in a formalized manner and

suggested ways to improve upon my original research

proposal. Dr. Kenneth E. Case provided an example of what

an excellent educator is, a goal that I shall strive for,

along with guiding my interests into industrial applications

of statistical and quality control concepts. Dr. Allen c.

iii

Schuermann increased my knowledge in the area of real time

programming and the internal operation of microcomputers,

along with providing advice on the verification of the

prototype Object Oriented Modeling system developed in this

research. Dr. M. Palmer Terrell provided my first

opportunity to work on funded research, got me to finally

understand the concepts behind linear programming, and

formally introduced multi-criteria decision making, which

led to my use of an Analytic Hierarchy Process model as a

simulation environment evaluation technique.

As a group, I would like to thank the faculty and staff

of the Oklahoma State University (OSU) School of Industrial

Engineering and Management (IE&M). The IE&M faculty

consistently act as successful, professional role models for

their graduate students to strive to emulate. They make the

task of having a successful academic department and a

challenging graduate program seem simple, when, in fact, it

is not. The IE&M staff were a pleasure to interact with,

truly were interested in the well-being of the students, and

acted effectively as an extension of the faculty.

For assistance in accomplishing this research, I would

specifically like to acknowledge the input provided by the

individuals who, along with myself, generated the simulation

evaluation pairwise weights. Chuda Basnet, Cern Karacal, Dr.

Mize, and I spent the better part of three days in early

August, 1989 working as a group through the evaluation

iv

model. This involved understanding the model, critiquing

the decision decomposition approaches, and providing the

final weights used in the evaluation portion of this

research. This input was critical because the participants

needed to have a strong understanding of the topic of

simulation along with both traditional and object oriented

programming.

For their direct contributions to this research, I

would like to thank those individuals who participated in

the many discussions held in the Center for Computer

Integrated Manufacturing (CIM Center). Chuda Basnet, Phil

Farrington, and Cern Karacal were involved, along with Dr.

Mize and myself, in each of these discussions. During

various time periods, Dr. Jose Pablo Nunc, Dr. Manjunath

Kamath, Dr. Silvanus Udoka, Laura Raiman, and David Pratt

also participated in these meetings.

Of particular importance to my graduate studies were

the many other graduate students at osu. The level of

camaraderie and constructive competition present among this

group was exceptional. By working together on school tasks

and socializing together outside the office,· life was both

more productive and enjoyable.

To this point, I have discussed the individuals having

a personal impact on my graduate studies. Another group

that must be mentioned and to whom I would like to express

my sincere appreciation are those organizations providing

v

funding during my graduate career. First of all, three

years of support were provided from the National Science

Foundation (NSF) in the form of an NSF Graduate Fellowship.

The AT&T Foundation provided significant financial and

equipment support for the CIM Center at osu, under whose

auspices much of this work was performed and through which I

received a research assistantship. The IE&M department

directly provided support for the first year of graduate

study, in the form of research and teaching assistantships.

Additional support was received in the form of an Institute

of Industrial Engineers Gilbreth Memorial Fellowship, the

osu Rapp Distinguished Graduate Fellowship, and an Alpha Pi

Mu Fellowship.

Finally, I would like to acknowledge the support

provided by members of my family. My wife, Kim,

consistently encouraged my classroom and research efforts

and prevented me from being discouraged throughout this time

period. She, as an Industrial Engineering student, was a

resource from which I could receive professional, as well as

emotional, support. Lastly, I want to thank my parents for

making me what I am today, for providing me with a strong

sense of responsibility and ambition, for tolerating me as

an active child and as a rebellious high school student, and

for maintaining their faith in my potential. My family

continued to believe in my ability even when I had trouble

doing so.

vi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. STATEMENT OF THE PROBLEM 3

III. BACKGROUND bF THE STUDY . 7

IV.

Introduction
Simulation Methodology Research
Menu Driven Simulation Generators
Simulation Environments . . •
Object Oriented Programming:

A Brief Introduction . . .
Application of Object oriented

Concepts to Modeling
simulation Evaluation Strategies
Approach in this Research
Summary

GOALS, OBJECTIVES, AND ASSUMPTIONS OF
THE RESEARCH • •

7
8

16
19

24

28
34
36
36

38

V. RESEARCH PLAN AND PROCEDURES 42

VI. DEVELOPMENT OF A PROTOTYPE OBJECT ORIENTED
MODELING (OOM) ENVIRONMENT 46

Conceptual Design of a Prototype Object
Oriented Modeling {OOM) Environment . . . 46

OOM Simulation Object Linking and Model
Building Procedures 76

Smalltalk Class Implementation 97
Target System Simulation Model

Representation 116

VII. SIMULATION ENVIRONMENT EVALUATION PROCEDURES .• 137

Introduction . • • . . •
Simulation Evaluation Criteria .
Analytic Hierarchy 'Process (AHP)

0 137
0 139

Decision Model Development 145
Evaluation of Modeling Environments 172
Summary 200

vii

Chapter

VIII. FUTURE RESEARCH DIRECTIONS IN OOM .

IX.

Introduction
Appropriate Areas for Research and

Environment Extension
Phased Research Plan

CONCLUSIONS AND RECOMMENDATIONS • .

BIBLIOGRAPHY •
APPENDIXES (*)

APPENDIX A - Smalltalk Simulation Classes

APPENDIX B - Simulation System Validation

APPENDIX C - AHP Model Analysis Calculation
Sheets

Page

• • • 201

. 201

• • 202
• • . 208

• • 212

• • 216

(*) Available in the School of Industrial Engineering and
Management Library at Oklahoma State University.

viii

LIST OF TABLES

Table Page

1. Comparison of Languages for Discrete-Event
Simulation . . ., 37

2. Node 1-1 Lower Level Connections Pairwise
Comparisons . • • . • ~ • • . • • . • 17 3

3. Node 2-1 Lower Level Connections Pairwise
Comparisons • . . • •· . , • 17 4

4. Node 2-2 Lower Level Connections Pairwise
Comparisons . . . • • . • • . • • 17 4

5. Node 2-3 Lower Level Connections Pairwise
Comparisons . • • . . • • . • • • • . • 17 5

6. Node 2-4 Lower Level Connections Pairwise
Comparisons' . • • . • . • . • . • • • • . • . • 17 5

7. Node 3-1 Lower Level Connections Pairwise
Comparisons • • . . • • • . . . • 17 6

8. Node 3-2 Lower Level Connections Pairwise
Comparisons ...••.•..••....... 176

9. Node 3-3 Lower Level Connections Pairwise
Comparisons • . . • • • • • • . 177

10. Node 3-4 Lower Level Connections Pairwise
Comparisons • • • • . . • • . . • . . 177

11. Node 3-5 Lower Level Connections Pairwise
Comparisons •...••......•••..• 178

12. Node 3-6 Lower Level Connections Pairwise
Comparisons . • • • 17 9

13. Node 3-7 Lower Level Connections Pa~rwise
Comparisons • • . • • . • • . • 180

14. Node 3-8 Lower Level Connections Pairwise
Comparisons • . • • • • • 180

ix

Table Page

15. Node 3-9 Lower Level Connections Pairwise
Comparisons • . . • • 181

16. Node 3-10 Lower Level Connections Pairwise
Comparisons 181

17. Node 3-11 Lower Level Connections Pairwise
Comparisons 182

18. Node 3-12 Lower Level Connections Pairwise
Comparisons 182

19. Node 3-13 Lower Level Connections Pairwise
Comparisons 183

20. Node 4-1 Lower Level Connections Pairwise
Comparisons 183

21. Node 4-2 Lower Level Connections Pairwise
Comparisons . . . • . . • 184

22. Node 4-3 Lower Level Connections Pairwise
Comparisons • . . . 184

23. Node 4-4 Lower Level Connections Pairwise
Comparisons . ." . • • . • . . • 185

24. Node 4-5 Lower Level Connections Pairwise
Comparisons . • . '. 185

25. Node 4-6 Lower Level Connections Pairwise
Comparisons 186

26. Node 4-7 Lower Level Connections Pairwise
Comparisons 186

27. Node 4-8 Lower Level Connections Pairwise
Comparisons • 187

28. Node 4-9 Lower Level Connections Pairwise
Comparisons • 187

29. Node 4-10 Lower Level Connections Pairwise
Comparisons 188

30. Node 4-11 Lower Level Connections Pairwise
Comparisons 188

31. Node 4-12 Lower Level Connections Pairwise
Comparisons 189

X

Table Page

32. Node 4-13 Lower Level Connections Pairwise
Comparisons 189

33. Node 4-14 Lower Level Connections Pairwise
Comparisons 190

34. Node 4-15 Lower Level Connections Pairwise
Comparisons 190

35. Node 4-16 Lower Level Connections Pairwise
Comparisons 191

36. Node 4-17 Lower Level Connections Pairwise
Comparisons 191

37. Node 4-18 Lower Level Connections Pairwise
Comparisons 192

38. Node 4-19 Lower Level Connections Pairwise
Comparisons 192

39. Node 4-20 Lower Level Connections Pairwise
Comparisons 193

40. Simulation Evaluation Final Priorities . . . 193

xi

Figure

1.

LIST OF FIGURES

Incremental Improvement to a Simulation
Language (in this case the "SLAM family")

Page

10

2. Henrikson's Proposed Simulation Environment . 21

3. Future Architecture for a Simulation Environment,
Proposed by Reilly et al. (1985), Multiple
Versions of the Build~r and Analyzer Implied 22

4. Expert Architecture for a Simulation
Environment • . . • • . 24

5. A Suggested Architecture for an Object Oriented
Simulation Environment 32

6. Simulation ·Classes for Ulgen and Thomasma's
{1987) OOM system 33

7. Electronics Kitshop Diagram 43

8. High Level Structure of the OOP Simulation
Subtree . . . , • 49

9. A Diagram of the Structure of the Simulation
Processing Classes 50

10. The Random Generato,r Subtree

11. A Diagram of the Structure of the Simulation
Element Classe~ (as Developed for the Target

57

System) . • • 62

12. Electronics Kitshop Diagram (Repeat of Fig. 7) 63

13.

14.

The Complete Prototype OOM Simulation
Environment •

Hypothetical Physical System Targeted for
Simulation Modeling . •

xii

72

78

Figure

15. Potential Organization of the Major Elements
of an OOM Model for the Hypothetical System
(Work flow items and other peripheral ,items

Page

are not shown) • • . . 79

16. A Pictoral Representation of the Relationship
Between Work Stations and Between Work Flow
Items and Work Stations, as Provided by
Routing Information 83

17.

18.

19.

Communication Methods to Subelements

Pseudo-code OOM Simulation Model

One Set of Simulation Output for the OOM
simulation Model of the Example System .

20. Object Oriented Electronics Kitshop Diagram
(Note that the office area is not considered

85

87

91

as part of the manufacturing model) . • . . 117

21. Complete Target System OOM Representation 121

22. Work Order Routings 122

23. Target system Simulation Model output . . . 130

24. standard Format of an AHP Decision Model 147

25. AHP Simulation Language Evaluation Model .. 154

26. Time Phased Plan for Further Research .•. . 210

xiii

CHAPTER I

INTRODUCTION

The principal focus of this research is to explore the

applicability and benefits of an Object Oriented Programming

(OOP) environment for simulation model development.

Reusable simulation objects within an OOP environment along

with the procedures and software to guide their use will be

developed and used to build a simulation model (as proof of

concept). Appropriate measures for the evaluation of the

effectiveness of this approach will be designed and used to

compare this new development with traditional simulation

approaches. Briefly, this research shall provide the

conceptual development of an Object Oriented Modeling (OOM)

environment, implement a usable prototype of this

environment, and use the proposed effectiveness measures to

compare the new environment with previously available

approaches to simulation.

This research topic was chosen to further develop the

author's skills within the interest areas of simulation,

computer applications in manufacturing system development,

and artificial intelligence. The literature applicable to

simulation methodologies shows interest in several different

directions including animation, menu driven model

1

2

development, and simulation modeling within an object

oriented environment, all with the intention of improving

the capabilities (explainability, ease of use, etc.} of

simulation sof~ware. At this point the research on OOM

described in the literature is fragmented and of a

preliminary nature, but the number of articles and different

topics and approaches discussed indicate that this is an

area of great interest for simulation methodology

development, both for improving the underlying paradigm used

in simulation model development and for achieving advanced

capabilities such as real time animation, interactive

simulation, and graphical (programming free} model

development. The evaluation and comparison of OOM features

(through the design and implementation of a prototype OOM

system} to traditional moqeling approaches should provide

greater impetus for .the development of commercial OOM

capabilities and for simulation practitioners to pursue the

use of the new and beneficial approaches to modeling.

The availability of the advanced development

environment present in the Smalltalk V programming system in

conjunction with the application oriented discussions

pursued in the Center for Computer Integrated Manufacturing

result in a favorable environment within which to pursue

this research activity •.

CHAPTER II

STATEMENT OF THE.PROBLEM

In the past, development of simulation models was an

extremely time consuming activity.· The modeler had to

transfer the processing elements of simulation (~inked

lists, etc.) from algorithmic descriptions into a general

purpose computer language. This i~volved a large amount of

effort in the form of redundant software development and

unique software design on the part of the simulation

modeler. Once implemented and applied to the project of

interest, these models (and the modeling effort represented)

were seldom reusable. As the field developed further,

simulation languages such as GApP IV, having generic code

for timing, statistics collection, etc., were developed and

made commercially available. Simulation models were written

in general purpose computer languages and used generic

functions and subroutines available in the ,specialized

language to perform common simulation operations. The bulk

of the simulation model development effort was spent in

writing the code specific to the model of the system of

interest. Although the modeling effort was reduced, the

resulting models remained a single use effort.

More recent developments in the field of simulation are

3

4

higher level languages specialized for simulation and

implementing a process orientation. These languages provide

for a further decrease in the model development effort by

providing standardized abstract modeling elements which are

used as building blocks for models. These building blocks

are specialized for a specific model by supplying parameter

values describing the element's functions and activities

within the model. For relatively straight forward modeling

situations (those systems whose elements' activities

coincide with the modeling elements available), this

approach results in a much reduced level of modeling effort.

The model building blocks are reusable and easily

understood. These languages, with the addition of model

building preprocessing software (graphical model definition)

and model animation capabilities (TESS and CINEMA being well

known examples), represent the current state of the art in

simulation technology.

Along with the technical developments in simulation

have come changes in the way in which the technique of

simulation is used within business. In the past, simulation

was used as a planning and diagnostic aid in manufacturing

system design for relatively large, expensive projects.

Part of the reason for this limited use was the requirement

that a modeler have a significant level of expertise in the

use of computers and general computer languages. Because of

this, simulation modeling was an expensive and time

consuming activity and individuals capable of developing

5

models were in short supply. As the computer skills and

experience of manufacturing engineers improved, simulation

models became a more common experimental tool used in

smaller manufacturing projects. In addition to use as a

manufacturing system planning and design tool, simulation is

currently being used for produqtion planning and shop floor

scheduling. This involves testing a variety of input

conditions on up to date factory models for satisfactory

output results.

As simulation applications have changed, so has the

nature of the factory floor. WQere once a production system

was made up of a relatively static design, current

manufacturing systems are dynamic, constantly changing

organisms containing ~ large number of detailed
' '

interactions. In addition, manufacturing systems in the

future will be required to be reconfigurable to be

responsive to dynamic changes in the environment. The

effects of these trends on simulation modeling are the

requirements that a simulation model be easily updated and

highly modular (changes to'a model should be localized).

In brief, the requirements of a simu·lation environment

for advanced manufacturing systems are: high level of

software reusability, software modularity, the ability to

implement large, detailed models, low level of abstraction

(modeling elements should relate to system elements in

design form and simulation function), a graphical

6

interactive development environment, and ease of analysis of

results.

The purpose of this research into Object Oriented

Modeling is to show the applicability of OOP languages and

concepts to simulation modeling and to measure and

demonstrate the benefits derived from the use of OOP in the

design and implementation of an OOM environment.

Achievement of a prototype OOM.environment should allow the

researcher to illustrate the ability of the approach to

fulfill many of the still unsatisfied needs of advanced

manufacturing system simulation modeling.

CHAPTER III

BACKGROUND OF THE STUDY

This chapter presents a review of the research being

performed in the areas of simulation methodology and

environments. After a brief introduction, a general

discussion on the research areas which hold promise for

improving simulation methodology is presented. Next,

sections describing specific appr~aches taken in menu driven

simulation and simulation environments are described.

Finally, the object oriented framework and diverse areas of

applicability are discussed, along with the applicability of

object oriented concepts to simulation methodology

development.

Introduction

Models are descriptions of systems [Pritsker (1986)].
-~ #'"""'- _,,__.. v-n---• ~ -.- ~ - ~-- ' ~~ ',_ •,.A ; '...,_f ~"'' •I ~·'' ...,,- ..-~ Jl"~,

Models may be physical, mathematical, or graphical in nature

and are primarily useful in describing, desig?~ng, and

Humanp develop models to allow better

communication of a system, to understand complex systems

under study, to conceptualize and analyze systems which do

not yet exist, etc. A simulation model is an abstract,

mathematical model of a system of interest which is

7

dynam~cal_ly "exer_cised" through the use of a computer

[Zeigler (1976)]. Therefore, in order to perform a

simulation modeling experiment, an analyst must be able to

translate a representation of a system (a model) into

information that a computer is able to understand and

manipulate [Zeigler (1976)]. The main goal of simulation

modeling is the development of a model that represents the

8

real system correctly and with the appropriate amount detail

to allow design and analysis experimental results to be

extrapolated from the simulation model to the real system.

Of course, related goals are present and are of great

importance.

Given that we are in a world in which resources and

time are finite quantities, a major goal in simulation is

that the development of a model and its translation into
~ c

computer terms can be performed in an efficient manner.

Considering this from a life cycle cost viewpoint, we desire

the ability to implement simulation models which satisfy

current and future needs with a minimum cost. Because of

this desire and because of the information on complex

systems which can be gained, simulation methodology is an

area experiencing continuing research activity with the

objective being the improvement of simulation modeling

capabilities.

Simulation Methodology Research

As briefly stated in Chapter II, the research

9

developments in the area of simulation have gone through an

extended evolutionary process. Early simulation modeling

was performed through the use of general purpose computer

languages. This method proved effective and illustrated the

value of simulation modeling to the public and private

sectors. Unfortunately, models were so expensive and

difficult to design and maintain that simulation was a

technique reserved for use within large scale, expensive

projects. Rather than discard simulation, research into

improving the systems available for simulation modeling

(simulation languages, simulation environments, etc.) was

undertaken. The research was driven from two directions:

needs (the needs of simulation analysts, the complexity of

new systems [manufacturing, vehicles, etc.], the limited

resources available, etc.) and abilities (developments in

the areas of computers, software, etc.).

~he development of the most commonly available

simulation languages (SLAM II [Pritsker and Associates,

Inc., 1988], SIMAN [Systems Modeling Corp., 1988], etc.) was

driven primarily by the need of simulation analysts for an

easier, more efficient method of model translation and

representation. As justification for this statement,

consider that these languages, which have been available for

roughly five to twenty years (in one form or another), were

developed using standard hardware (time-sharing, mainframe

computers) and software {Assembly code, Fortran) available

for a long period of time (within the time frame of the

10

existence of computers). Also note, specifically

considering the "SLAM family of languages" [Pritsker, 1986],
. -

that this development occurred in an evolutionary fashion
.

within relatively constant hardware and software

environments (time-sharing, batch simulation runs, Fortran

language).

refinements
GASP -->--> GASP I~>

Q-GERT --->

refinements
SLAM --> SLAM tsome hard

ware changes
II > TESS -->

Figure 1. Incremental Improvement to a Simulation
Language (in this case the "SLAM family")

This discussion is applicable until the late 1970's and

early 1980's when the effects, of the microcomputer and

personal computer era were felt. Researchers in the

hardware area worked to greatly extend the capabilities of

computers and peripherals in facets directly impacting

users. It was this hardware (and resulting software)

- research and development activity that really made the full

capabilities of computers broadly available to the current

and potential users of that period. These new abilities

allow system software developers to conceive of and deliver . - -
greater functionality and ease of use which leads to the

more productive application of computers~ Consider the

11

following list of recent computer oriented topics discussed

in the literature: graphics, animation, artificial

intelligence concepts (sudden resurgence of interest), and

software development environment concepts. A large number

of literature sources discussing the application and

benefits of these approaches to simulation methodology is

available.

Being so closely related, it is appropriate to consider

the impact of graphics and animation on simulation together.

Wyvill (1985) presents the three basic ways in which

graphicsjanimation can positively impact simulation:

" - To enhance the simulation results

- To facilitate the debugging and production of
simulation programs

To provide an interactive dialogue with a running
simulation"

systems implementing some or all of these improvements

include, but are not limited to, ANDES and SIMSEA [Wyvill

(1985)], TESS [Pritsker and Associates, Inc., 1988], Cinema

[Systems Modeling Corp., 1988], and SIMFACTORY [CACI, Inc.,

1988]. SIMSEA uses graphics to enhance the results of

simulation by providing animated output of simulation

results in the form of simple stick figures or simple icons.

ANDES uses graphics capabilities to aid in debugging and

program development. The underlying mechanism of the

simulation along with the simulation results have been

animated. The analyst is able to observe an executing

12

simulation model from different perspectives which include:

the status of an entire model and the status of a $pecific

model element. TESS (an acronym for The Extended Simulation

Support System), a further improvement to the "SLAM family,"

"supports the model entry, simulation, statistical analysis,

and result presentation tasks required in a simulation

project" [Standridge, et al. (1987)]. TESS provides the

analyst with the ability to interactively specify a model in

the SLAM II language through graphics screens supporting

icons and menu driven input. Simulation results (concurrent

or playback mode) can be displayed through an animated model

of the system. A newly released product, SLAMSYSTEM

[Pritsker and Associates, Inc., 1988], combines the ability

to build models through an interactive graphical model

builder with the ability to produce graphical animation

without programming as parts of an entire simulation

environment. Among other features, the system has the

ability to graphically display the simulation results from

alternative models on a single graph. Cinema, associated

with the SIMAN simulation language, [Kilgore and Healy

(1987)] and SIMFACTORY from CACI provide capabilities which

are roughly similar to those found in TESS.

The application of artificial intelligence concepts

within simulation modeling has been discussed by Sathi et

al. (1987), Khoshnevis et al. (1988), Khoshnevis and Austin

(1987), Khoshnevis and Chen (1987) and (1986), Ford et al.

(1987), and Murray and Sheppard (1987). The simulation

13

technology being developed at Carnegie Group, Inc. [Sathi et

al. (1987)] "augments simulation expertise by infusing

Artificial Intelligence techniques into the Simulation Life

cycle. _It is a problem solving shell which uses simulation,

statistical expertise, and domain specific knowledge" to

assist in the solution of manufacturing system problems.

This development employs several different embedded expert

systems to assist the analyst in the most complicated and

time consuming tasks (model building, model execution, and

model analysis). The software systems described by

Khoshnevis and various co-authors apply rule based and

structured knowledge approaches (expert system and knowledge

based system technology) to provide assistance to the

simulation modeler in the development of systems dynamics

and discrete event simulation models. These systems are

structured in the form of preprocessor shells with an

established simulation language (DYNAMO, SLAM II, and

SIMNET) as the kernal. NATSIM is composed of a natural

language processing system, a system analyzer, and a program

generator. The natural language processing system, called

PHRAN, takes a natural language description of a system as

input, analyzes this input through a comparison to standard

patterns in an associated knowledge base and produces a

structured form of the input for use by the system analyzer

(SA). "The SA uses an extensive knowledge base of system

dynamics • • . to generate a language independent complete

model description" [Khoshnevis et al. (1988)]. This

14

description is processed by a DYNAMO Program Generator to

produce a model translated into the DYNAMO language. EZSIM,

a discrete simulation modeling tool, "uses a combination of

graphics and [a] menu driven user interface" along with a

language specific knowledge base to act as a front end to an

existing simulation language (SIMNET or SLAM in the current

version) [Khoshnevis et al. (1988)]. The software systems

discussed by Ford et al. (1987) and Murray and Sheppard

(1987) have basically the same capabilities and structure as

that described for the systems developed by Khoshnevis.

Reilly et al. (1985) have adopted Henrikson's (1983)

conceptual framework for a simulation environment (discussed

in detail later) and attempted to complement it through

"emphasizing the role of AI techniques" within the

architecture of the system. These AI techniques are

knowledge based approaches implemented in LISP and OPS5 (a

rule based expert system builder written in LISP) to assist

the user in model building, model execution, and analysis of

the simulation statistical results.

Another area of computer research impacting simulation

methodology is the recent implementation and use of software

development environments. A software development

environment can be defined as a collection of tools that are

well-integrated and interact synergistically in support of

all phases of software development [Reilly et al. (1985)].

First developed for use on artificial intelligence platforms

15

(commonly known as LISP machines), these environments

provide the user with immediate access to features such as a

language supporting text editor (special features of the

text editor may enhance use with a particular language), an

interpreter (for quick checking of a piece of code),

debugging aids linking the interpreter to an editor, and a

compiler (for speed of operation on completed software).

Two examples of these with which the author is familiar are

the Golden Common LISP (GCLISP) [Gold Hill Computers (1987)]

and Smalltalk/V environments [Digitalk, Inc. {1986)]. The

editor in GCLISP keeps track of open parentheses (a major

syntatic feature of LISP) to assist the programmer during

the development of complex code. When the user completes a

function, the GCLISP interpreter is used to check the syntax

and to quickly verify the operation of the code. There is

also on line help embedded within the environment.

Smalltalk/V provides a window based approach to a software

development environment. The user is able to access and

modify all code available in the system, to add new code to

the system, and to interactively test and debug new code.

Smalltalk allows the user to suspend interac~ion with one

activity, perform a task associated with another feature in

the system, and resume the previously suspended activity.

When one contrasts this with the previous software

development activities:. edit, compile, link, and repeat to

correct errors, all performed in a non-integrated

environment, the productivity benefits which can be gained

16

are apparent. The application of software environment

concepts to the development of a complete simulation

modeling (which is basically advanced software development)

system is the direction in which most simulation research is

leading (in an incremental fashion).

The key factor linking simulation methodology research

together is the desire to improve the productivity and

efficiency of the human modeler. This improvement can be

considered to be felt over the long term in several areas.

Most obvious is to facilitate an increase in the speed with

which a simulation model for ,a specific system is developed,

validated and verified, and put to use in the modeling

study. Less obvious, but potentially more important are the

results of simulation research which allow modelers to

conceptualize and implement models of systems or elements of

systems which, previously, had been either infeasible to

model (due to complexity, expense, lack of understanding,

etc.) or not even considered for model implementation.

Menu Driven Simulation Generators

As mentioned previously~ one approach to simulation

research has been to pursue the application of artificial

intelligence, knowledge based systems, etc. to simulation

software. This approach can result in the implementation of

a complex environment (to be considered in the next section)

or a system of lesser sophistication. The latter, which

will be discussed here and shall be referred to as menu

17

driven simulation generation, is to develop a menu and/or

graphics driven preprocessor supported through some type of

knowledge base specific to a target simulation language to

assist the user in the building of a simulation model.

Endesfelder and Tempelmeier (1987) discuss their

implementation of such a system for the generation of SIMAN

simulation models. Called the SIMAN Module Processor (SMP),

the system has a knowledge base composed of predefined,

standardized modules of SIMAN code. "The SMP inputs

predefined, filed modules, interprets them in relation to

interactively specified data (e.g. problem-specific

parameters) and produces a syntactically correct SIMAN

simulation model" [Endesfelder arid Tempelmeier (1987)]. The

filed modules used by the SMP must be defined in a special

syntax which is matched to the structure of SIMAN language

elements and statements. "The SMP parses all program lines

contained in a module [supplied from the knowledge base] and

recognizes from the first small letter that an input is

required. Capitals, numbers, and the special characters

I I , , I : I and 1 ; 1 are adapted unchanged." The SMP allows the

user to select a module for incorporation into a model from

the modules available in the current library file. The SMP

reads the module line by line and requests needed data

(signaled by lower case text) by prompting the user. The

user can select multiple modules and when the model is

completed, the SIMAN simulation files are produced

automatically. Another system having similar

18

characteristics, but specifically oriented to the modeling

of flexible manufacturing systems has been described by

Haddock (1988).

EZSIM, a system described by Khoshnevis and Chen

(1987), is a simulation generator having SLAM (or SIMNET) as

the target language. The system is written in Golden Common

LISP and is composed of three principle segments: user

interface, expert system, and program generator. The user

interface uses a combination of menus and a natural language

interface. An initial menu provides a choice of 11 nodes to

include within a model. The user specifies the nodes which
'

will be used in the model and the'nodes which follow (entity

flow direction) them. Upon completion of this input, the

expert system analyzes the nodes chosen for the model

through the use of its stored data and requests, either

through a menu format or through a natural language

interface, that the user provide missing information. Once

the current model information is developed to the point that

it passes the testing of the, expert system, the program

generator segment of EZSIM is initiated. This segment

produces the SLAM source code file. :Khoshnevis and Austin

(1987) have also developed a similar system which analyzes

user input for the g~neration of continuous simulation

models in the DYNAMO language.

oren and Aytac (1985) describe their implementation of

a simulation generator titled MAGEST (Modeling Advisor for

19

GEST [General system Theory Implementor] programs) . MAGEST

has the capability to use two types of knowledge: 1)

knowledge on the GEST language and 2) incremental knowledge

obtained from user programs, which it uses to perform the

following functions:

"- To assist the user to specify
- Models,
- Parameter sets, and
- Experimentations

- To perform checks for
- completeness,
- correctness, and
- compatibility, and

- To certify GEST programs which pass the above
checks." [Oren and Aytac (1985)]

MAGEST is composed of an executive control routine, a model

template generator, a certification and advisor program, and

the GEST translator. The model template generator generates

a template of the structure and keywords for a GEST program

and additional information is added through the use of the

MAGEST certification and advisor program. The result is

passed to the GEST translator which produces the necessary

statements in the SIMSCRIPT II.5 language for execution of

the simulation model.

Simulation Environments

Also mentioned in the introductory section to this

chapter was the concept of a software development

environment. A simulation environment is defined as "a

collection of tools that are well-integrated and interacting

20

synergistically in support of all phases of the modeling

process" [Reilly et al. (1985)]. Henrikson (1983) presented

his view of an integrated simulation environment in an

article whose purpose was "to identify significant

improvements that will be made in simulation software in the

next 10 years." Henrikson states that "most of the current

research in programming systems is being conducted in other

problem contexts" and, therefore, simulationists "must look

outside the discipline of simulation for most of our

examples" for trends and features to implement in simulation

systems. Henrikson proposes the architecture ,for a

simulation environment that is illustrated in Figure 2.

The software components of the proposed environment include

the following:

1) Model Editor
2) Input Preparation Subsystem - distribution fitting,

etc.
3) Statistics Collection Definition Facility - used to

define how and what observations will be collected
4) Experimental Design Facility
5) Output Definition Facility
6) Program Editor - syntax directed editor for

simulation source program
7) Compiler
8) Run-Time Support - interactive debugging, real time

simulation monitoring

These components will operate within an integrated

environment by interacting with the user at separate points

through specialized formats or languages and through

accessing complete data stored in a comprehensive knowledge

base. Although such a system is not yet within reach,

incremental research continues in all areas and will make

this environment feasible at some time in the future.

MODEL
DESIGN
LANG.

I
...

T
I I

INPUT
DEFN.
LANG.
+RAW
DATA
I
...

STATISTICS COLLECTION SOURCE
SPECIFICATION LANG. CODE
I I

OBJECT
CODE

•.---------------, .A..-----------.•

LANG.+OUTPUT SPECS. REPRESENTATION
I I
... ...

EXPERIMENTAL DESIGN I~ INTERMEDIATE

-------,--------.--1 I
T
I I

T T

21

MODEL
EDITOR

STATISTICS COLLECTION
DEFINITION FACILITY

PROGRAM
EDITOR

RUN-TIME
SUPPORT

I
...

T
I I

INPUT PREPARA
TION SUBSYSTEM

I
...

T
I

I
...

T
I I

EXPERIMENTAL DESIGN
FACILITY + OUTPUT
DEFINITION FACILITY

I
...

I
T T
I I

KNOWLEDGE BASE

T
I

T
I

Figure 2. Henrikson's Proposed Simulation
Environment [Henrikson (1983))

Reilly et al. (1985) adopt and extend Henrikson's

T
I

proposed environment by suggesting potential architectures

to be implemented over a distributed processing

architecture. They distill the many segments of the

proposed environment down to four primary components:

builder, model executor, record keeper, and results

analyzer. From an initial implementation in a similar

format on AT&T 3B2 computers, the researchers expect the

system to evolve into the form shown in Figure 3. The

software systems shown within the computer elements of

22

Figure 3 are: S - a graphics and data analysis system, GGC -

multiple world view simulation package, SAS - statistical

analysis software, LISP,and PROLOG- symbolic processing

languages, ASP - fully interactive language compiler,

PSL/PSA - knowledge base development language.

An artificial intelligence approach to a simulation

environment described by Sathi et al. (1987) appears to be

the most complete environment implemented and operating to

date. The system "is a problem solving shell which uses

0

0

0

Builder
AI Workstation

LISP
PROLOG

ASP

0

0

0

Record Keeper
Know,ledge Engine

PB.Machine
PSL/PSA

ASP

Model Executor
supercomputer

I

GGC
SLAM

ASP

0

0

0

Results Analy
Graphics Workstat

s
SAS
ASP

0

0

0

Figure 3. Future Architecture for a Simulation
Environment, Proposed by Reilly et
al. (1985), Multiple Versions of
the Builder and Analyzer Implied

zer
ion

23

simulation, statistical expertise, and domain-specific

knowledge to solve real world problems." The control

architecture of the system has three major components which

consist of: dynamic planner, embedded experts, and a

suggested plan display. The dynamic planner functions to

produce (through a rule-based generation process) and

maintain a suggested plan for each model used for solving

the simulation problem under consideration. The planner

produces the plan at the beginning of model specification

and dynamically updates the plan as changes are made or

various steps in the plan are accomplished. The embedded

experts include three basic systems: model building expert,

model execution expert, and model analysis expert. These

experts, which control the modeling activities, are

hierarchically organized and communicate with each other to

facilitate the performance of necessary actions and transmit

the current model status. Figure 4 illustrates the

structure of the experts and the responsibilities of each

one. The suggested plan display provides the user with the

ability to drive the simulation development procedure by

choosing from the menu of suggested activities. A unique

feature found in this environment is the automated analysis

of simulation model results through the use of a knowledge

based expert. This expert uses goals and constraints

supplied by the user to evaluate the large quantity of data

from a simulation and provide the user with a summary of the

model's performance.

I
Model Building

Expert

- Requirement
Analysis

Product Costing
Cap. Util.

Purchase
Scheduler Eval.
Shop Floor Cont.
Evaluation

- Automated
Model Completion

- Completeness
Analysis

- Consistency
Analysis

Simulation
Expert

Has- assistants

Model Execution
Expert

- Model Chronicling
(abstract views)

- Model Stability
Analysis

- Experiment Design
- Initialization

Analysis

24

I
Model Analysis

Expert

-Experiment Eval.
and Alternative
Generation

Product Costing
Cap. Util.

Purchase
Scheduler Eval.
Shop Floor Cont.
Evaluation

-statistics
Explanation

-Data Filtering
Situation Anal.

Figure 4. Expert Architecture for a Simulation
Environment [Sathi et al. (1987)]

Object Oriented Programming:

A Brief Introduction

Due to the fact that OOP is such a new area in software

development, it is appropriate to present a concise

introduction to the major features included within the OOP

paradigm. The principal idea associated with OOP is that

all items (e.g., variables) in the system are treated as

"objects." An object is a class or instance of a class and

a particular class may have multiple different instances

operating at any one time. The definition for a class

25

defines the data which may be stored within the class, the

manner in which the data is stored, and the procedures which

may perform operations on the data. " ••. the underlying

notion of the object is to organize and store pieces of

information relating to a single_concept into a single

location" [Shannon (1987)]. Smalltalkj the original and

purest OOP language, contains four key concepts which result
' '

in making systems understandable, modifiable, and reusable

[Wilson (1987)]. These concepts are: encaps~lation, message

passing, late bind~ng, and inheritance.

Encapsulation means that an object's data and

procedures are enclosed within a tight boundary, one which

cannot be broken by other objects. An object may have

within it several data storage locations. The values stored

are only directly accessible by the procedures that have

been defined as part of the object's claf?S structure. All

other access to this data (by other objects) is forced to

occur through channels provided by procedures attached to

the object itself.

Message passing is a necessary result of encapsulation.

It is the only way in which-objects can communicate with

each other because the data stored within an object is not

shared or available to the procedures of other objects. In

order for one object to affect the internal condition of

another object, the first object must tell the second object

to use one of its (the second object) procedures on itself.

26

This is performed by sending a message (somewhat comparable

with procedure calling).

Binding refers to the process in which a procedure and

the data on which it is to operate are related. Traditional

languages use early binding, in which binding is determined

by the programmer and is performed when the code is written.

Declaring variables to be integer, real, logical, etc., is

an example of the type of early binding done in traditional

programming. Dynamic or late binding delays the binding

process until the software is actually running. When an

object receives a message (a procedure call), the OOP system

searches the object's class to find the method to perform.

This use of late binding gives OOP a great deal of

flexibility in several ways. First, it is possible for the

data type of a variable to change during run time. Another

consideration is that different classes can have the same

named procedures with different code found in each object.

For example, the procedures to access the value of an

element of an array and the character in a position of a

string have the same name and very different software

implementations, one for class Array and another for class

String. Finally, the majority of classes defined in the OOP

environment are independent of data type. An instance of

the Array class can store many different types of objects at

the same time.

The fourth feature, inheritance, provides for software

27

reusability. OOP classes are defined in a hierarchical tree

structure. Because of inheritance, each class inherits the

methods and data storage structure of all of its

superclasses. Code which is identical for multiple classes

in the same subtree is written and tested once and stored in

one position in the tree. Also, consider that when it

becomes time to change a particular method, it is only

necessary to change the method once and all uses of the

method will reflect the change.

Let us consider how these four features provide the

benefits claimed for OOP. First, understandability is

achieved because each object represents one concept and all

data and methods which are part of the object function to

implement characteristics of the concept (the object). A

software object is the implementation of one complete

concept and is, therefore, easier to grasp and implement.

Modifiability is achieved because an object has all of the

data and procedures associated with it tightly grouped

together in one unit. When i.t becomes necessary or

desirable to alter the data structure of an object, there is

no need to search through all of the methods in the system

because all methods which directly access the data structure

and are designed to work with the specific data structure

are defined as part of the object.

Reusability of code is achieved in two ways. The first

way is through inheritance of code from superclasses to

28

subclasses. The second way is through the ability to

include objects as components in further software

development or as a building block in the definition of

another class. The concept of a Software-IC, introduced by

Cox (1986), illustrates this reusability in a conceptually

simple manner. A Software-IC "is a package of programming

effort that is independent of the specific job at hand and

highly reusable in future jobs." "Programmers no longer

build entire programs from raw materials, the bare

statements and expressions of a programming language.

Instead they produce reusable software components by

assembling components of other programmers. These

components are called Software-IC's to emphasize their

similarity with the integrated silicon chip" [Cox (1986)].

Application of Object Oriented

Concepts to .Modeling

The single most important benefit which will·be gained

from the development of OOM is the ability for manufacturing

people to think of modeling in terms of the objects to be

modeled and their interactions. "Manufacturing-related

people think of systems in terms of parts, machines or

'objects•; programming people think in terms of 'programs',

'data•, etc." [Adiga, 1986]. "Conventional approaches to

discrete simulation allow the developer a procedural level

of modularity" while "Object oriented methodologies achieve

an object level of modularity" [Ghaznavi-Collins and Thelen

29

(1988)]. Adelsberger et al. (1986) state:

The philosophy of object-oriented programming is a
simple one, and directly supports the simulation
problem solving approach, especially for systems that
deal with the explicit passage of time andjor changes
of objects in time. This can be summarized as follows:

(1) The user first creates or defines objects that
correspond to real world objects, and represent
modular components of the real world.

(2) The behavior of the simulation model's objects
describe the behavior of the real world objects
and how these objects will behave/perform in
response to various inputs.

(3) Objects act on each other by passing messages
describing both functional and relational
actions. Messages passed between objects are
carriers for all interaction between objects .

... The object oriented approach is especially valuable
in that it provides a close correspondence between
simulated objects and real world objects a complex
hierarchy of objects with inherited properties and
behavior rivaling real world situations may be
modeled.

Briefly, the development of a basic OOM system involves the

programming of classes to represent simulation processing

objects (which perform tasks to make the simulation run,

i.e. time advance, next event triggering), simulation

element objects (which provide system element specific event

codes and element data storage), and simulation entity

objects (which represent the routings and other data on

items to be processed) [adapted from Nyen (1987)].

The literature relating research on the application of

the object concept to simulation modeling is composed of two

distinct classes. The first of these classes describes what

shall be referred to as an OOM-like approach to simulation,

while the second class consists of actual OOM systems. This

30

COM-like approach to modeling is characterized by the

development of a library of submodels which may be mildly

altered and reused in multiple simulation models [Terrell

and Bussey (1973), Terrell et al. (1975), Terrell and Chen

(1977a, 1977b), Higdon (1988), Gordon et al. (1987), and

Schroer and Tseng (1987)]. This approach was actually taken

somewhat farther in several of the previously described menu

driven modeling approaches in which'standard modules (from a

library) were altered by software rather than by'the user in

the process of model building. By grouping a set of

modeling statements together to develop a high level

component, we get the ability to treat this software

component as an object (not quite equivalent to the OOP

concept) and perform modeling with these modules from a

higher level. Higdon (1988) describes this approach used in

practice for the modeling of·conveyors, AS/RS, and AGV's

within the GPSS simulation language. Of course, this

procedure does not allow the user to achieve some of the

features of the OOM procedure (specifically inheritance or

encapsulation and the associated benefits). Schroer and

Tseng (1987) describe their implementation of three

simulation modules in the GPSS language. The three modules

include an assembly station segment, a manufacturing cell

segment, and an inventory transfer segment. These modules

are made specific by the assignment of parameters through

matrix values and combined to form complete system models.

True OOM implementations having a range of features

31

have been described in a number of articles. Knapp (1987)

describes a system called SimTalk, the Smalltalk Simulation

Environment which "adds queueing support, statistics

gathering, simulation oriented graphics, and an interactive

user interface." Objects are simulated through the use of

concurrent processes which have timing controlled through

the application of semaphore operations. SimTalk, a class

defined in the OOM environment, contains a simulated clock,

a time queue (for time synchronization of multiple

processes), and controls creating, suspending, resuming, and

terminating processes. In order to model objects in this

system, the user is required to define a subclass of the

class SimTalkObject. The simulated activities of an object

must be defined through a single method, "actions," which

executes the appropriate event code when triggered by using

a case structure. Bezivin (1987) describes another system

named SimTalk which supports similar features and processes

(the use of concurrent processes,and semaphore

sychronization operations) in distributed simulation

environments by applying the TimeLock algorithm.

Researchers at Texas A&M University [Adelsberger et al.

(1987)] describe the features available in the simulation

environment under development. These features include:

- programming free object creation
- interactive system operation
- rich run time support having displays, experimental

designs and statistical displays
- goal directed simulation
- graphic display during model building and simulation

32

The major segments of the environment are shown in Figure 5

and are listed as follows:

- Graphics Drivers
- Data Base Editor
- Intelligent Assistant

- Menu driven
- Graphics interface ,
- System driven Natural Language Dialogue
-Template Interface'with defaults.
- Specification language input
- Knowledge (Rule) based interpreter
- Configuration Managemeat
- Knowledge Acquisition interface

- Conflict resolution and diagnostics
- validation/consistency
- own rule based database

- Run time Monitor
- Statistical Packages
- Goal Driven Experimental Design Driver
- Output Processing for Po,9t Propessing
- Interactive Help Environment
- Validation of Experimental Results

[Adelsberger et al. (1986))

~ people know
ledge

---+-problem/ ---1
domain know.

NLP Model/ Object Editor
View _('rule based)

Graphics Inter;...
Model face Model Editor
Edit Template & (rule based)
Activity Menu

Experimental
Specification Frame Editor
Language (rule based)

Dialogue driver
Simula-

tion Run-time Run-time Run-time Men-
Activity Display Simulator iter & Conflict

and Output Detection

DBMS

Figure 5. A Suggested Architecture for an Object
Oriented Simulation Environment
[Adelsberger et al. (1986)]

33

An application written in Smalltalk-80 (Ulgen and

Thomasma (1987) and Thomasma and Ulgen (1987)] in OOM has

been developed into a high level graphically supported

simulation system. The system consists of the classes shown

in the hierarchy in Figure 6.

I
Simulator Part Event StationarySimulattonObject

I I
Workstation storageFacility Router Source Sink

Figure 6. Simulation Classes for Ulgen and Thomasma's
(1987) OOM System

The descriptions of the classes as provided by Ulgen and

Thomasma (1987) are as follows:

Class simulator schedules the events of the simulation,
initializes the simulation time, sets the speed of the
simulation, and may produce the trace of'the
simulation. Class Event simply associates a time with
something to be done. The remaining classes in the
framework are designed to represent the real
manufacturing system objects. Class Source represents
the source point for parts in the system. Class Sink
represents the point where the parts leave the system.
Class Workstation represents processors in the system
including machines, robots, servers, etc. Class
StorageFacility describes objects such as buffer
storages, conveyors, etc. Class Router represents part
diverters and points where routing decisions are made.
Finally, class Part represents workpieces in the
system.

34

The user builds simulation models by interactively

specifying parameter values for instances of the classes and

linking these instances together and then running the

simulation. The Workstations are prompted to begin an event

method through a case structured "doit" method, similar to

the previously described "actions" method used by Knapp

(1987). In contrast to Knapp, Ulgen and Thomasma use a

centrally controlled time advance procedure more closely

akin to the typical approach used in traditional languages.

Other simulation systems developed include: a system to

provide performance models for computer systems [Pazirandeh

and Becker (1987)], a computer system architecture modeling

system [Ghaznavi-Collins and Thelen {1988)], a simulator for

a defense related autonomous land vehicle [Glicksman

(1986)], and a manufacturing OOM system [Nyen (1987)].

Simulation Evaluation Strategies

A limited number of references dealing with evaluation

methods of simulation languages were found. Schriber (1987)

provides a listing of desirable simulation software features

including:

1) Model Input Flexibility
a) Textual Definition
b) Graphics Definition
c) Digitizing
d) CAD Interfacing

2) Supportive Syntax
3) Modularity
4) Modeling Flexibility
5) Modeling Conciseness
6) Macro Capability and Hierarchical Modeling

35

7) Material Handling Modules
8) Standard Statistics Generation
9) Data Analysis

10) Animation
11) Interactive Model Debugging
12) Micro/Mainframe Capability
13) Vendor Support
14) Reasonable Cost
15) Education [Schriber (1~87)]

This list provides a good starting point from which to

develop absolute or relative measures with which to compare

simulation languages and environments.

Grant and Weiner (1987) pr0vide a description of high

level factors used to evaluate graphically animated

simulation systems. These factors are specifically oriented

to the graphics/animation capabilities of the systems

considered. Wallace_ (1987) describes the development of a

simulation model complexity measure called the control and

transformation metric. · This metric is concerned with the

complexity of a specific model in comparison to another

model within a particular world view. The metric is able to

measure the complexity of a given model developed in

different world views.

Banks and Carson (1984) provid~ an evaluation of five

different modeling systems using fourteen features having a

yesjno or lowjmediumjhigh·scale. Some of the features

included in the evaluation are: ease of learning, ease of

conceptualizing a problem, and computer runtime. This

provides a good basis for comparing environments on

intangible characteristics. The evaluation table is

36

reproduced in Table 1 on page 37.

Approach in this Research

The OOM system which will be developed will have

features highly similar to the basic aspects of the system

implemented by Ulgen and Thomasma. One major difference is

that event code execution will not be triggered from a case

structured method. Rather, a general approach to directly

linking simulation element objects will be used. In

addition, hierarchically related object models for different

equipment will be developed, in contrast to the general,

abstract objects implemented by Ulgen and Thomasma.

Summary

This chapter has reviewed the many activities currently

being undertaken in simulation methodology research. In

addition, evaluation strategies proposed in the literature

have been presented. Finally, the approach which will be

taken in this research has been related to these items found

in the literature. The next chapter presents specific goals

and objectives for the development and evaluation of an

Object Oriented Modeling system.

TABLE 1

COMPARISON OF LANGUAGES FOR DISCRETE EVENT
SIMULATION [BANKS AND CARSON (1984)]

Criteria

Ease of learning
Ease of conceptualizing a problem
Systems oriented toward
Modeling approach

Event-scheduling
Process-interaction
Continuous

Support
Random sampling built in
Statistics-gathering capability
List-processing capability
Ease of getting standard report
Ease of designing special report
Debugging aids

Computer runtime
Documentation for learning language

and for reference
Self-documenting code

FORTRAN

Good
Poor
No neb

Noc
Poor
Poor
Poor
Fair
Fair
Exc. e

V.Good

Language

GASP SIMSCRIPT II.S

Good Good
Fair Good
All All

Yes Yes
No Yes
Yes Yes

Yes Yes
Exc. Exc.
Good Exc.
Exc. Fair
Good Exc.
Good Exc.
Good Good
V.Good Fair

Good Good

GPSS V

Exc.
Exc. a
Queueing

No
Yes
No

Nod
Good
Faird
Exc.
Poord
Faird
Poord
V.Good

SLAM

Exc.
Exc. a

All

Yes
Yes
Yes

Yes
Exc.
Good
Exc.
Good
Good
Good
V.Good

Exc. Good
Cost

Poor
Lowf Low High Low(GPSS/H,high) Med.

~ For queueing models, the block diagram (network) conceptualization is excellent.
FORTRAN is not oriented toward system simulation. The programmer develops any desired orientation and takes any desired modeling approach.

c Several scientific subroutine libraries (e.g., IMSL) have FORTRAN routines for random variate generation.
d GPSS/H is much improved over GPSS V in these respects.
e FORTRAN will be fast assuming that the model is programmed in the most efficient manner.
f Usually available at most computer installations.

w
-...]

CHAPTER IV

GOALS, OBJECTIVES, .AND ASSUMPTIONS

OF THE RESEARCH

The overall goal of the research is to investigate an

Object oriented Modeling environment through the development

of OOP classes and procedures for their use which result in

a simulation environment that can be shown superior to
' '

currently available simulation methodology. To achieve this

goal, the following objectives are proposed:

1. Object class development. A hierarchical

organization of classes necessary for system

simulation will be developed.

The major functional·classes within the OOM

environment must be determined and described. Once

the functions of these objects have been defined,

the class hierarchy ca:n·be planned•and implemented

to take advantage of inheritance. Broad classes are

(1) simulation processing objects, which function to

accomplish the scheduling and initiation of events,

collection of certain statistics (those not

internally related to a particular object in the

system, but related to overall system performance),

38

39

controlling output, etc., and (2) simulation element

objects, which provide the ability to model and

track an object's status, implement the event codes

for specific objects modeled, calculate applicable

internal statistics, etc. The simulation element

objects which will be implemented shall consist of

those needed to model a real system chosen

specifically as a prototype development target.

Further, model building procedures for the use

of available objects within ·a simulation model must

be specified and tested for compatibility with the

simulation object designs.

2. Develop measures which allow the comparison of

pertinent aspects of modeling environments.

In order to judge the impact of the new

paradigm of OOM, a determination of the important

features in modern simulation environments must be

made. Using this information, valid measures

relating to ease of modeling, degrees of detail,

etc. will be developed. These measures will

probably take both intangible (non~numeric,

qualitative) and tangi.ble (n~meric, quantitative)

forms. An example of an intangible measure would be

the degree of abstraction required in building the

simulation model. A tangible measure might be the

amount of time it takes for a working model to be

40

developed.

Another manner in which the analysis procedure

may be designed is through the use of the

structured, multicriteria technique known as the

Analytic Hierarchy Process {AHP). Building upon the

significant features determined previously, the

decision process of choosing the "best" simulation

environment shall be modeled hierarchically and

solved through the AHP weighting process.

3. Evaluate the effectiveness of the new simulation

environment.

In order to measure the benefits of an OOM

approach, a comparison between the prototype OOM

system and traditional approaches to simulation will

be made through the application of the environment

measures of performance. During the prototype

stage, at which this eva-luation will be performed, a

large portion of this step shall be composed of a

convincing analysis in the form of a logically

consistent argument. Additionally, rating

comparisons shall be gathered from knowledgeable

individuals and used within the previously developed

decision model during the application of the AHP

analysis procedure.

4. Explore ways to expand the functionality of the

developed environment. Conceptualize a

41

comprehensive framework for conducting a long-term

research program to bring about the fruition of the

OOM environment.

The author views this research as one portion

of an on-going program composed of multiple

contiguous phases. Each phase will build additional

features and understanding onto the foundation

provided by previous phases. The fulfillment of

this objective will provide future directions for

further research.·

The principle assumption made in this project is that

the research of an OOM environment shall be oriented towards

the simulation of manufacturing systems. This is not

intended to imply that knowledge gained here will not be

applicable to other systems, on the contrary, it quite

probably will be broadly·applicable. However, this research

project will specifically consider OOM applied to discrete

part manufacturing.

CHAPTER V

RESEARCH PLAN AND PROCEDURES

To achieve the goals and objectives outlined in Chapter

IV of this research proposal, the research·will be performed

through several different chronologically ordered phases as

presented below.

Phas~ I

Conceptual and functional specification of the object

classes needed to implement an OOM environment of sufficient

magnitude to evaluate the effectiveness of the approach. As

a target system, a portion of the manufacturing operations

of an electronics manufacturer, specifically the electronics

kitshop, has been chosen. Figure 7 presents a diagram of

the physical layout of this system. Components enter the

system as 11 selects 11 , which are directly applied to kits;

bulk parts, which are preformed prior to inclusion in kits;

and reeled parts, which are sequenced before being applied

to kits. Kits which exit the kitshop,are composed of the

appropriate grouping of selects, preformed bulk parts, and

sequenced reels. The work stations include one sequencing

machine, ten kitting stations, and fifteen preform

operation stations. There are WIP storage locations for

42

Ill

43

selects, preformed bulk parts, partially completed kits, and

sequenced reels. Approximately ten different kits are

produced within the kitshop and processing times for three

representative kit types have been generated.

Entrance
and Exit

+

Office

Area

Receiying Sequenced Reels WIP
and

Shipping Final Kitting

Gravity feed racks Seq.
(hold partially Mach
completed kits) ine

Kitting Stations

Selects
and Bulk Bulk Parts Preform Stations
Parts WIP

Figure 7. Electronics Kitshop Diagram

Phase II

W I P

Pre-

formed

Bulk

Parts

Determination of the. object linking and model building

procedures based upon the functional specifications from

Phase I· Alterations of Phase I results may occur.

44

Phase III

Implementation of the Phase I functional design within

the general software environment (Smalltalk) with

consideration given to the message passing capabilities

needed for the linking procedures.

Phase IV

Application of the developed clas'ses within g_

simulation model. This shall result in the demonstration of

the achievement of one portion of _the pverall research goal,

the implementation of an OOM environment.

Phase V

Conceptualization and formal development of criteria Qy:

which to measure the. features of simulation environments.

In order to compare environments in Phase VI of this

research, measures of performance allowing valid comparisons

of simulation environments must be designed and tested.

Features which would generally be called intangible shall

also be considered. Each of these features shall be used in

the AHP hierarchy development which will also be completed . . .

within this phase.

Phase VI

Application of the developed criteria in the

measurement and comparison of the new environment and other

commonly used environments (which will be selected prior to

45

measurement and comparison). During this phase, the

measures designed in Phase V will be applied to the

simulation environments chosen for the study. This analysis

shall be composed of two parts, {1) a coherent argument

providing a logically consistent comparison of the

environments and {2) the completion of the AHP analysis for

the hierarchical model developed in Phase V. Conclusions

drawn from this comparison should allow the researcher to

determine the benefits and disbenefits of an object oriented

approach to simulation modeling.

Phase VII

Development of the long term framework providing future

directions for this area of research. At the conclusion of

the previous phases,·a prototype OOM environment will have

been achieved. In order to gain the full benefits of the

OOP paradigm, additional functionality should be added in

the future. By providing a planned approach to the

improvement of the OOM system, this increase in

functionality can be made in a coherent and efficient

manner.

CHAPTER VI

DEVELOPMENT OF A PROTOTYPE OBJECT

ORIENTED MODELING (OOM)

ENVIRONMENT

This chapter presents the steps taken in the design and

implementation of an OOM environment and describes the

features and capabilities of the resulting implementation.

Introduction

Conceptual Design of a Prototype

Object Oriented Modeling

(OOM) Environment

The development of a prototype simulation modeling

system in an Object Oriented Programming (OOP) environment

involves the design and implementation of a system composed

of two Qroad classes of objects. These two classifications

of objects are simulation processing objects and simulation

element objects. Simulation processing objects are abstract

objects providing the software functions which allow the

background simulation processing tasks, such as: time

advance, event triggering, entity creation, list processing,

etc., to be performed. Simulation element objects, which

provide the reusable simulation model building blocks, are

46

/

implemented in such a way that their actions model the

activities of actual elements making up the system of

interest. The following sections provide a detailed

discussion of both of these types of objects.

47

Prior to pursuing this discussion, it is appropriate to

define certain concepts relating,to the human component of

the OOM environment. It is feasible to conceive of three

types of human interaction with the OOM environment: 1)

Model Developer, ~) Class Developer, and 3) Environment

Controller. The Model Developer is the person who will use

the already implemented simulation classes in the

construction of simulation models. It is assumed that the

Model Developer is familiar with the system of interest, the

basic concepts behind the technique of simulation, and the

manner in which OOM models are constructed. The Class

Developer is the title for an individual who has the

privilege and responsibility of extending the modeling

environment through the definition of new simulation element

object classes. This person must have a significant level

of knowledge on the Smalltalk environment and language and

on the inter-simulation element communication procedures

used. Finally, the Environment Controller has "software

quality control" responsibility., The need for

implementation of new simulation element classes must first

be approved by this individual and, upon completion, the

conceptual and software implementations must be approved

before the new class(es) are used. The Environment

48

Controller must have broad knowledge of the system within

which OOM is used and of the Smalltalk language and

environment. As might be expected, the boundary lines

separating these individuals and tasks are not rigidly

drawn, but remain flexible. It is quite feasible that all

of these tasks could reside within the responsibilities of

one person or each task could be handled collectively by a

group of people, depending upon the size of the organization

and the extent of simulation modeling activities. In the

following discussion, these terms and concepts will be used

when the human interaction is mentioned.

Overall Structure

The overall structure of the'simulation classes which

shall be added to the OOP hierarchical tree is represented

in Figure 8. Note that the simulation class.es are grouped

together within the class tree under a placeholding class

called SimObject. This class serves as a top level location

for the provision of global simulation functions and

information storage locations. A major objective in the

design of the simulation system classes is to develop the

classes and communication procedures between classes which

will allow instances of classes to be generally reusable and

system models to be reconfigurable. This reusable type of

design is needed to take advantage of the OOP benefits of

modularity and the loose coupling between objects due to

message passing. In order to achieve this type of design,

49

the class definitions must be written in such a way that the

system object interconnection information can be supplied as

parameters, routings, or values of instance variables to

~--~----~1~1 --~~~~
I

Simulation Processing
Object Classes

Simulation Element
Object Classes

Figure 8. High Level Structure of the OOP
Simulation Subtree

newly created instances of previously defined classes. The

methods which are defined. for the classes will be written in

such a manner that this general+y specified linking

information is accessed through the instance variable

locations or through responses to message requests. This

approach to class design is referred to as the "b,asis for

reusability".

50

Simulation Processing Objects

The simulation processing objects make up one portion

of the simulation subtree (see Figure 9). The classes

defining these objects are implemented by combining

instances of other classes found within the software

environment through the development of appropriate

procedures. These procedures link the functions and methods

of the other classes to provide the features needed within

the new classes.

I Object

I I I I I I

I
.

Simobject
I

I
I I I

Cal en- jcreatorl Queue system Random Tracked
dar Class Statis- Generator Numbers

I
tics Col

I
List I Routing I Terminator! Routing

I I . . .
Storage Operation . . .
Object I I I I Class

I Flow Time Entity Obs Work Flow Work
Collection Collection Item Order

Event
Storage
Object

jobs Tracked Numberj jTime Tracked Numberj Class

Figure 9. A Diagram of the Structure of the Simulation
Processing Classes

The principal class present among the processing

objects is the class called the "Calendar" class. The

Calendar class provides several capabilitiesjmethods which

include the ability to:

1) Control the addition of events to and removal of
events from the pending event list.

51

2) Provide the means with-which events are triggered at
their scheduled times.

3) Update the simulation world time as events continue
to be processed.

4) Provide the simulation'world time to requesting
objects.

5) Trigger all objects in the simulation model software
system to produce output at specified times and at
the end of the simulation execution.

6) Trigger all objects in the system to clear their
statistics data locations (to remove transient
effects from the simulation results).

7) Maintain statistics on the event list.

The information maintained within the Calendar object

includes the current simulated time, the event list

pointers, event list statistical data, and the list of

objects in the simulation model. The Calendar object

provides the structure through which all communication

between other system level objects within the simulated

system occurs. All system level objects within the OOM

model communicate indirectly with each other and directly

with the Calendar object. Sublevel objects contained within

the system level objects communicate hierarchically with the

objects which contain them and with the objects that they

52

contain (communication between objects is discussed in

Section 6.2). The Calendar object acts as the controller of

system level interaction for the entire model run.

Calendar Class summary:

Function:
The object within the simulation model which acts as the
controller of the activities occurring within the model.

Data storage:
- Current simulated time value
- Event list pointers and information
- Event list statistical information
- System element list

Actions:
- Maintain and update the event list
- Clear system statistics at desired times
- Trigger production of output
- Collection of event list statistics

Another class definition needed is the Creator class.

Instances of the Creator class have one capability, the

ability to create a new instance of an entity or work flow

item class or to trigger a group of creations by the Work

Order Class. An instance of the Creator class schedules the

creation activity on the calendar and performs the creation

activity when the event is initiated by the calendar. After

creating a new work flow item object(s) and scheduling the

next creation event, the Creator passes the work flow

item(s) on to the next object (based on routing information)

in the system.

Creator Class Summary:

Function:
This class provides the manner in which all types of
entities or work flow items (objects processed through
the system) can be created and delivered to the system.

Data storage:
- Intercreation interval
- Type of object to create or message to execute

Actions:
- Creation of entities at appropriate times
- Scheduling of the next creation
- Transferring entities to th.e simulated system

Work flow items enter the simulation system from

Creator instances and exit the system through Terminator

instances. The Terminator class defines objects which

provide a sink for work flow items passing through and

exiting the system. In addition to performing this

53

function, instances of the Terminator class collect data on

the time work flow items spend in the system.

Terminator Class Summary:

Function:
This class provides a structure for the removal of work
flow items from the system along with total flow time
data collection.

Data storage:
- statistical information locations

Actions:
- Accept the arrival of work flow items and process

their information
- Terminate work flow items or entities from the

simulation

Another simulation proc~ssing class needed within the

OOM system is the Queue class. This class provides one

building block which may be used to construct specific

simulation element classes. The class is defined with the

procedures to store other objects within an ordered linked

list, to remove objects from the front of the queue, to

search the queue for specific objects, to notify an

54

associated Work In Process (WIP) Aggregator (discussed

below) of its changes, and to collect and output statistics

on its own activities. When a new simulation element class

needing queueing features must be defined, the class

developer simply uses an instance of the Queue class as a

component of the new simulation element and programs the

correct internal interaction mechanism.

Queue Class Summary:

Function:
Provide the complete implementation of a "queue" within
a single, reusable building block. The queue is a
passive object intended to be incorp'orated as an
internal component of other active objects.

Data storage:
- Queue maintenance data
- Reference to the optional queue aggregator (see below)
- Statistical information

Actions:
- Addition and removal of objects to/from the queue,

according to the specified queue discipline
- Notification to the queue aggregator of changes

Collection of queue size and work flow item time in
queue statistics

Two classes needed as building blocks to support the

functions of other classes are the List Storage class and

the Event Storage class. The List Storage class provides

the structure for the building blocks wh~ch are used to

construct the linked list portion of the Queue class. This

class provides support for successor qnd predecessor

pointers and a pointer to the object which is being stored.

The Event storage class inherits the features of the List

Storage class and adds the ability to store an event code

and an event time. Obviously, instances of this class are

55

used to construct the event list within the Calendar object.

List Storage Class Summary:

Function:
To provide a subcomponent or building block for
the construction of linked lists (queues).

Data storage:
- Linked list pointers
- Stored object pointer
- Time of entry to queue marker

Actions:
- Set and return pointer and time of entry values

Event Storage Class Summary (in addit~on to above):

Function:
Provide subcomponent support for construction of a
scheduled event list ordered on the event time.

Data storage:
- Event initiation code
- Scheduled event time

Actions:
- Set and return event code and time

Another group of classes provided as building blocks

(like the Queue) useful for simulation element construction

are the Tracked Number, Observation Tracked Number, and Time

Tracked Number classes. These classes are used to collect

all statistics in the simulation environment and provide the

ability to collect observation or time based data, calculate

statistics from these observations, and print the statistics

in a standard output format.

Tracked Number Class Summary:

Function:
Provide inheritable data storage and methods for the
Observation and Time Tracked Number classes.

Data storage:
- current value

- Cumulated value and cumulated squared values.
- Minimum and maximum values
- Time of last initialization

Actions:
- Set initial values
- Return current value

Observation Tracked Number Class Summary (in addition to
above):

Function:
Add to Tracked Number features to allow observation
based data to be collected and processed.

Data storage:
- Number of values collected

Actions:

56

- Update all statistics collection locations based on a
new observation.

- Calculate statistics on current observations
- Print statistics according to a standard output format

Time Tracked Number Class summary (in addition to above):

Function:
Add to Tracked Number features to allow time based data
to be collected and processed.

Data storage:
- Time of the last change
-Number of value changes·made

Actions:
- Update all statistics collection locations based on a

new value and the current time.
- Calculate statistics on current observations
- Print statistics according to a standard output format

The generation of random numbers requires the

definition of a subtree providing the class definitions

needed for several probability distributions. This subtree,

shown in Figure 10, is composed of a root class, Random

Generator, which has the ability to store a seed value and

to generate the zero - one uniform random variables commonly

needed to produce samples from typical probability

57

distributions, along with several subclasses. In addition

to features needed to support random variate generation by

its subclasses, the Random Generator class has methods which

allow it to generate samples from probability,distributions

when provided with the distribution sp~cific parameter

values as arguments within messages. As ~~bclasses to

Random Generator, classes with the methods and instance

variable storage locations (for parameters) needed for the

generation of samples from specific distributions such as

Exponential, Normal, Uniform, etc., are defined. These

classes use the features inherited from the Random

Discrete
Uniform

..--------L----,....-----. -store seed numbers
Random Generator -Generate U(0,1) random

variates
-Generate other random

samples

-store distribution
parameter values

-Generate specific
random variates

Log Triangular · Weibull
normal

Figure 10. The Random Generator Subtree

58

Generator class and augment them with features specific to

their distribution, providing an alternate method for the

generation of samples (as opposed to methods attached to the

Random Generator class).

Random Generator Class Summary:

Function:
Provide a mechanism through which samples from
probability distributions may be generated.

Data storage:
- Current seed value
- Parameter values as required by specific distributions

implemented (among the subclasses)

Actions:
- Set and return seed and parameter values (among

the subclasses)
- Generation of a random sample from a distribution (at

both Random Generator class and subclasses)

Another group of classes needed within the simulation

processing objects is the System Statistics Collection

classes. These classes provide the ability to perform the

collection of overall system data during simulation

execution. There are two types of system statistics which

need to be collected in simulation, 1) flow times between

two points and 2) specific observations of entity

attributes. As such, two collection classes are implemented

to allow these statistics to be gathered. One class

provides for the marking of work flow items and later

collection of flow time observations and the second class

functions to collect specific observations.

System Statistics Collection Class Summary:

Function:
Provide a mechanism through which overall system
statistical observations may be made.

Data storage:
- Collected information on the observations
- Model connections linking information

Actions:
- Gather observations as entities pass through
- Print results as required

The Work Flow Item class is a simulation processing

59

object class which is needed to provide a structure for the

representation of work flow item types and attributes,

specification of routing data, and provision for flow time

marking. Instances of this class are passive objects which

provide required data in response to queries from active

system objects.

Work Flow Item Class Summary:

Function:
Provides for the representation of parts (flow items to
be processed) or entities and their data flowing through
a simulated system.

Data storage:
- Work flow item creation times and flow time markers
- Work flow item routing and processing time information
- Work flow item type and work order designation

Actions:
- The ability to set and return the various internally

stored values.

Two classes highly related to the work flow items are

the Routing and Routing Operation classes. The Routing

class defines the structure and capabilities needed for the

representation of processing routings which are attached to

instances of the Work Flow Item class. The Routing

Operation class defines building blocks which are combined

into a routing.

Routing Class summary:

Function:
Provide for the representation of routing information
attached to work flow items.

Data storage:
- Routing operations

Actions:
- Provide copies of itself
- Add new operations including operation location,

processing and setup times

60

- Return and remove the first operation on the operation
list

Routing Operation Class Summary:

Function:
Provide for the storage of information on a single
routing operation within the routing.

Data storage:
- Simulation processing object access code
- Processing and setup time generation code

Actions:
- Set and retrieve access code and processing and setup

time generation codes

The Work Order Class is a class of objects designed to

operate in conjunction with the Creator class in the

creation of complete jobs for processing systems. As such,

instances of the Work Order Class are instantiated with the

information needed to allow the creation of all Work Flow

Items which typically are released as part of a single work

order. A Creator object triggers the method attached to the

Work Order Class which creates new Work Flow Item instances

and initializes the item labels, creation time, and routing

information for each of the new Work Flow Items. The new

Work Flow Items are returned to the Creator object which

releases them into the system.

Work Order Class Summary:

Function:

61

Provide for the instantiation and initialization of all
Work Flow Items needed to make up a complete Work Order.

Data storage:
- Labels, routings, and processing time specifiers for

each Work Flow Item
- Current Work Order number (at the class level)

Actions:
- Create new Work Flow Items
- Initialize new Work Flow Items according to the data

storage
- Return items to the Creation object

The OOM classes discussed to this point are of a highly

abstract nature and represent the objects or concepts which

must be explicitly accomplished to make simulation work.

The simulation element objects, covered in the next section,

round out the capabilities of the OOM environment by

representing the concrete elements present in the system(s)

of interest.

Simulation Element Objects

The simulation element classes are a group of

subclasses of the simulation root class, SimObject (see

Figure 11). Once again, this allows the classes to inherit

features defined at the SimObject level and needed commonly

among all of the simulation classes (available through

inheritance). Each simulation element class is set up to

62

have all event and internal processing methods (load,

unload, measure of performance calculation, etc.)

implemented as part of the class definition along with the

I Object I
I

I I I I I

I I
. . . .

SimObject
I

I
I I I J I

Basic I Delayer I Multiple Queue. Single Queue WIP
Human Multiple Server Multiple Server Aggre-
Worker Processing Processing gator

I
Delayer with Mu'ltiple Queue

Operation Multiple Server
Assembly

Figure 11. A Diagram of the Structure of the Simulation
Element Classes (as Developed for the Target
System)

I .
. .

appropriate internal instance variables needed to keep track

of the statistical data and state of the object. Instances

of the simulation element classes are used as building

blocks in the construction of the simulation model. As

mentioned previously, the simulation element classes which

have been developed are those determined necessary to

implement a model of the chosen target system. This target

system is an electronics kitshop (described in Chapter 5).

Figure 12 represents a rough sketch of the layout of the

kitshop.

r+
Entrance
and Exit

Office

Area

Receiving
and

Shipping

Selects
and Bulk
Parts WIP

Sequenced Reels WIP

Final Kitting W I P

Gravity Feed Racks Seq. Pre-
(hold partially Mach
completed kits) ine formed

Kitting Stations Bulk

Parts

Bulk Parts Preform Stations

63

Figure 12. Electronics Kitshop Diagram (Repeat of Figure 7)

The major components of this system (through which kits are

processed) are as follows:

Receiving -Incoming selects and bulk parts are verified
and paper work is generated and the parts enter the
Selects (plastic tubed chips) and Bulk Parts WIP
locations. Incoming HICS (hybrid integrated circuits)
are sent to the Sequenced Reels WIP location.

WIP Storage locations - The WIP locations within the
kitshop system function primarily as centralized
queueing centers. The Selects and Bulk Parts WIP
location acts as a queueing system for the kitting
stations and the bulk parts preform stations. The

64

Preformed Bulk Parts WIP provides queueing for the
kitting stations and the sequencing machine, while the
Gravity feed racks and the Sequenced reels and HICS
WIP locations are queueing systems for the final
kitting operation.

Sequencing machine - This operation uses reeled parts
waiting in the Selects and Bulk Parts WIP location and
produces sequenced reels, which queue into the
Sequenced Reels WIP location.

Bulk parts preform - The bulk preform stations process
parts waiting in the Selects and Bulk Parts WIP and
transfer the result to the Preformed Bulk Parts WIP.

Kitting stations - Kitting stations combine selects and
preformed bulk parts into partially completed kits
which enter the gravity feed racks.

Final kitting - This operation combines partial kits,
sequenced reels, and HICS into the completed outgoing
kit.

Shipping - Shipping is an auditing and data collection
point before parts enter the manufacturing system.

The simulation model representation of this system

requires several different types of objects including work

orders and parts (with special representation of each of the

different part types), single queue- multiple server

processing stations, multiple queue - multiple server

assembly stations, multiple queue - multiple server

processing stations, WIP aggregators, and humans, plus the

simulation processing objects (described previously),

including a calendar, creators, terminators, and system

statistic collectors (as desired).

The workorders and parts in the simulation are actually

instances of class Work Flow Item with specific instance

variable values. Workorders (different from the Work Order

65

Class) are a special type of work flow item which function

as the basic product unit around which other consumed work

flow items are aggregated. Consider that in the system

being modeled, multiple parts and part types are combined to

result in a single unit, the complete workorder kit. In

order to facilitate the required processing, the workorder

objects provide focal work flow items around which disjoint

kitting operations will be linked~ The workorder objects

are routed in order through each station or processor at

which an assembly operation occurs. Upon exit from an

assembly point, the workorder object is routed further in

the system (it represents the assembled collection) while

work flow items representing parts which were assembled onto

the workorder are routed to specific Terminator objects.

Note that this allows flow time statistics to be collected

on the assembled work flow items as well as the entire

workorder. Other work flow items in the system include

selects, bulk parts, and reeled parts. Each of these

different part types is represented by work flow item

objects with the appropriate instance variable values and

transfer through the system as mentioned previously.

Workorder and parts summary:

Function:
Instances of the Work Flow Item class which represent
workorders and parts in the simulated system. The
workorder type of object (a member of the Work Flow Item
class with special instance variable values) guides the
overall routing of the output item(s) of interest
through multiple assembly points.

Data storage:
- Assembly and processing points routing for the

66

finished product
- Part type label and time of system arrival

Actions:
- Provides access to the information on the routing
- Responds to requests for flow time statistics

gathering and observation statistics gathering

The bulk parts preform stations are set up as multiple

servers processing work flow items from a single queue of

waiting items. Therefore, an OOM class which allows this

type of station (single queue, multiple server processing

station) to be represented was implemented. The station

is able to accept the arrival of new work flow items,

determine an available server from among those allocated,

schedule the service operation, and transfer the part to the

next processing station. In addition, the station must keep

statistics on its operation and provide for their output as

requested.

Single Queue, Multiple Server Processing Station Summary:

Function:
To represent a single queue, multiple server station
within a simulation model.

Data storage:
- Number of servers allocated
- status and statistics on each parallel server

allocated
- Maintain a reference to the internal queue

Actions:
- Accept a new work flow item
- Schedule processing of work flow items
- Transfer work flow items to other objects upon

completion of processing
- Collect utilization statistics and produce output

The kitting and final kitting operations within the

kitshop system are set up as multiple servers which assemble

67

work flow items (of the same work order) from multiple

queues. The OOM class used to represent this station must

be able to accept the arrival of new work flow items, place

the items in the appropriate queue based on item type, match

items from among the different queues, determine an

available server from among those allocated, schedule the

service operation, and transfer the parts to the next

proces~ing station. Statist~cs on these.activities must.b~

kept and produced as output when required.

Multiple Queue, Multiple Server Assembly Station summary:

Function:
Provide for the simulation representation of an assembly
station having multiple queues and servers.

Data storage:
- Number of servers allocated

Number of queues allocated
status and statistics on each parallel server
allocated
Maintain references to the internal queues

Actions:
- Accept new work flow items and segregate by type

Match work flow items from queues based on work order
number
Schedule processing of work flow items
Transfer work flow items to other objects upon
completion of processing
Collect utilization statistics and produce output

The receiving and shipping functions are primarily

information processing activities performed by one or two

individuals on two separate queues of work orders. As an

appropriate object to model this situation, a multiple queue

- multiple server processing station representation is

required. The OOM class used to represent this station must

be able to accept the arrival of new work flow items, place

68

the items in the appropriate queue based on entry to or exit

from the system, determine an available server from among

those allocated and the queue from which items should be

served, schedule the service operation, and transfer the

parts to the next processing station. For exiting work flow

items, the next step is to transfer to an instance of the

Terminator class. Entering items are sent to the next

processing station on their particular routing.

Multiple Queue, Multiple Server Processing Station Summary:

Function:
Provide for the simulation representation of a
processing station having multiple input ports (queues),
multiple output ports, and multiple servers.

Data storage:
- Number of servers allocated
- Status and statistics on each parallel server

allocated
- Maintain references to the internal queues

Actions:
- Accept new work flow items and segregate to the

appropriate queue
Determine the queue from which items should be removed
for processing
Schedule processing of work flow items
Transfer work flow items to other objects (either into
or out of the system) upon completion of processing
Collect utilization statistics and produce output

One of the most difficult aspects of the system which

has been chosen for prototype modeling is that the WIP is

stored in centralized locations·and, yet, is waiting for

service from different assembly or processing stations.

This is an example of a physical grouping of material into

centralized locations and a logical grouping of material

within the same physical location into separate queues. As

69

was discussed, the work stations already described shall

have direct access and control of their own queues, however,

a WIP Aggregator class has been implemented to gather

statistics on the queued material as it appears in the

physical system. The queues associated with a specific WIP

Aggregator have pointers to the WIP Aggregator with which

they are associated. When changes occur in a queue, the

queue notifies its specific WIP Aggregator object which then

collects statistics on all queues associated with it. This

setup provides the capability to represent as a unit the

simulated information from a centralized WIP storage

location (in the real system) modeled as a distributed WIP

storage system (in the simulation model).

WIP Aggregator Class Summary:

Function:
This object provides the capability to track the
aggregate contents of multiple work flow item queues
which occupy the same physical location in the real
system.

Data storage:
- Statistical information

Actions:
- Collection of information from associated queues
- Output of results

One class needed for the specific conditions of the

target system is the Delayer class. This class allows an

unlimited number of work flow items to delay for a specified

(on the routing) period of time. Basically, work flow items

enter a Delayer instance and are scheduled to arrive at

their next destination in some amount of delay time

70

generated as a random variable. The Delayer With Operation

class provides the ability to perform some operation on the

work flow item in addition to providing a delay capability.

Delayer Class Summary:

Function:
This class provides the capability to delay ~ work flow
item for a specified (by the processing time on the
routing) period of time.

Data storage:
- Number of delayed work flow items

Actions:
-Transfer workflow items through a qelay
- Print statistics on the number of delayed items

Delayer With Operation Class Summary (in addition to above):

Function:
Add the ability 'of performing an operation to the
Delayer class.

Data storage:
- Operation specification 'context

Actions:
- Perform operation on work flow items

A simple class representing' the cycle of rest and work

exhibited by the human workers in the system,completes the

list of simulation element classes. The Basic Human Worker

class defines, an object which switches between ac;:tive and

inactive using times based on statistical distributions

specified by the model builder. The class provides the

ability to signal the work station when switching its status
c '

and responds to status queries an<;l is used ,as a subcomponent

of top level system elements.

Basic Human Worker Class Summary:

Functions:
Represents a simple active/inactive human.

Data storage:
- Machine or station which contains the object as a

subcomponent and index of the object within the
station implementation (for multi-server stations)

- Status information

Actions:
- Switching between active/inactive
- Notifying the containing object of a status switch
- Responding to status queries

Simulation Model Operation

The major classes needed to develop a working

simulation for the target system have been described.

71

Figure 13 illustrates a large portion of the entire

simulation class subtree. The following sections describe,

in high level terms, the manner in which the objects will

cooperate with one another during the simulation activity.

Time Advancement. The Calendar object in an OOP

simulation system handles.time advancement. Time advance

occurs by having the calendar object loop through a portion

of a method to find the next event on the calendar. This

event initiation method then sets the new value of the

current time instance variable.and triggers the next event

to occur by executing the event initiation code retrieved

from the event list. This sequence of activities is

performed repeatedly until no further events are scheduled

or the specified simulation run length has been achieved

(designated by the end of execution event).

Object

I I I I I

I
.

SimObject
.

I
I I I I I

Cal en- jcreatorl Queue System Random Tracked Basic Multiple Queue
dar Class Statis- Generator Numbers Human . Multiple Ser-

I
tics Col Worker ver Processing

I I
List ~Routing I Terminator I Routing

I I I Single Queue . . . WIP
Storage Operation . . . Aggre Delayer Multiple Ser-
Object I I gator ver Processing
Class

I Flow Time Entity Obs Work Flow Work ~ Collection Collection Item Order
Event Delayer wj Multiple Queue

Storage I Operation Multiple Ser-
Object

jobs Tracked
ver Assembly

Class Number Time Tracked Number

Figure 13. The Complete Prototype OOM Simulation Environment

73

Entity Creation and Flow. As mentioned earlier, a

special class of object, the Creator object, is used to

implement new instances of entities and trigger their

arrival to the simulation element instances which are part

of the model. This creation will be initiated when a

creation event on the calendar list becomes the next event

to be processed. Each instance of the Creator class is

instantiated with the ability to create one specific type of

object or group of objects. The calendar uses the

information stored on the event list to tell the appropriate

Creator object when to create an entity. The Creator object

will create a new instance of a Work Flow Item (or group of

Work Flow Items) and use its internal routing information to

schedule the arrival event with the correct time delay on

the calendar. Another creation event can be scheduled as

part of the same method. During normal time advance

operation (either with zero or nonzero time advance), the

calendar object will arrange for the arrival event to be

processed at the correct simulation model component object.

The travel of Work Flow Items through the model is

completely controlled by the routing information contained

within instance variables attached to the Work Flow Item

object. When a departure event at an element of the model

is processed, it retrieves the routing information provided

by the routing attached to the Work Flow Item object. An

arrival event to the next simulation model element listed on

the routing is sent to the Calendar object for scheduling on

'
~

74

the event list. This arrival event contains the pointer to

the Work Flow Item object which is being transferred. In

general, the flow of entities among the elements in the

simulation model is performed through controlled use of the

relationship information stored in the routing that is a

portion of the Work Flow Item object.

Event Initiation and Scheduling. Events are initiated

by the calendar ob.ject while it continues to monitor the

event list. The calendar uses the information on the list

to access the correct method attached to the element object

and pass along the Work Flow Item identifier. As part of

its activities, the simulation element object might pass an

event creation message (to schedule the end of service) to

the calendar object to add the appropriate event to its

list. When the calendar method has completed its event list

addition, control returns to the simulation element instance

method, from which control will return to the calendar event

initiation method. Basically what happens is that a

hierarchy of messages to different methods is established.

Execution is returned to methods in reverse order when a

method which makes no call to another method is encountered.

Each event is initiated by the calendar object, processed

through all needed methods, and finally execution control is

returned to the calendar object which then retrieves the

next event on the calendar list.

Statistics Collection. There are two areas of

75

statistics collection which need to be addressed: 1)

simulation element activity and 2) entity measures.

Statistics collection for simulation element objects in the

model is performed by the objects themselves. statistics

collection is either handled by a separate method attached

to each simulation element object or by statements within

event methods attached to the object. The method or

statements are executed by the other methods attached to the

simulation element to update statistics at each change in

the simulation element status. This interaction between the

methods is designed into the simulation element objects when

the object itself is designed, not when it is included in

the simulation model by the user. At the end of the

simulation, the calendar object instructs each simulation

element to access the values of the statistics instance

variables, perform calculations to result in the output

statistics of interest (average utilization, utilization

standard deviation, etc.) and print these output statistics

according to the format specified by the output method

attached to the simulation element class.

Statistics collection for the entities (system

statistics) is be handled by having Systems Statistics

Collection objects (mentioned previously) as part of the

simulation model. These objects are designed in such a way

that they address one observation of interest on each Work

Flow Item which they process. These classes are able to

retrieve the specific observation of interest from the Work

76

Flow Item object. Entity arrival and departure from these

objects are handled similarly to previous descriptions (see

Entity Creation and Flow).

Summary

This discussion may lead one to the conclusion that an

OOP simulation system will be a very complex package. This

perception is not really correct. Actually, the

interaction, which will be handled by the OOP environment,

is the complex part. By using the inheritance and

encapsulation features in the OOP environment, the

development of the software needed should be much easier

than would typically be the case in a traditional computer

language. Once the basic units are developed (a library of

simulation element objects and the set of simulation process

elements) and standard procedures for element interactions

are determi~ed, the design and use of simulation models

within the OOM environment should be relatively

straightforward and efficient.

Introduction

OOM Simulation Object Linking and

Model Building Procedures

The description of OOM classes provided in the previous

section was made from a perspective internal to the classes

and largely ignored the manner in which instances of classes

will connect with one another. In order to build simulation

77

models, the objects in the simulation environment must

communicate together in a way that supports generalized

linking and the techniques used to provide this linkage must

be understood.

The Structure of Object Oriented Models

A simulation model imbedded in an OOM environment is

made up of a group of interconnected objects which work

together to simulate the activities of the physical system

modeled. These objects may represent machines, work items,

queues, etc. Because one of the major objectives in the

development of an OOM environment is to support the

(desirable) reusability of simulation elements, a model

structure must be designed which allows separately developed

simulation objects to exist and function correctly together

in any simulation model. A hierarchical organization (for

the communication links between objects in a model) of

simulation model objects is proposed based on the following

characteristics: 1) the "stand alone" nature of objects

allows an object to be linked to a set of necessary (for

correct functioning) objects and to be unaffected by the

presence or absence of other objects in the system and 2) a

hierarchical organization assumes that linkages between

system components are vertical (there are no horizontal

links between subtrees in a hierarchical system). The first

feature allows a hierarchical structure to be used, and the

second feature supports reusability of simulation objects.

An illustration of this approach and the reasoning

behind it is exhibited through the use of the hypothetical

system pictured in Figure 14 and the corresponding OOM

simulation model for the system illustrated in Figure 15.

78

work
items->
enter

work
order

created

inspection -i ~ work
delay r-> assembly-1 >-it7ms

ex1.t

L---->i machine-2 ~>

Figure 14. Hypothetical Physical System Targeted for
Simulation Modeling

The illustrative system shown in Figure 14 is a simple

system consisting of two processing machines, an inspection

station, and an assembly station. Work items enter at

machines-1 and -2, are processed, are transferred to the

inspection station, and then are transferred to the assembly

station. The work items are matched and assembled at the

assembly station after which they exit the system.

Basically, this system should be representable in a

simulation model by four separate top level simulation

79

--- communication paths jcalendarj
material flow 1 1 1 1

1

r---- ___ _j L -----,
work
item 1>--------~ ~
input

> I ----~------>------~--~ >output

I

work
item
list

I

work
item
list

>

~~
~~
work
item
list

>

2

I I

work work
item item 4
list list

/\

levels

Additional Communication - All objects in the simulation
system can communicate (send and receive messages)
with the calendar without regard to intervening model
levels.

Figure 15. Potential Organization of the Major Elements
of an OOM Model for the Hypothetical
System (Work flow items and other
peripheral items are not shown.)

element objects: 1) machine-1, '2) mac~ine-2, 3) an

inspection station, and 4) an assembly station. These four

elements are shown in Figure 15 at level 2. The operation

of the simulation model is as follows: Level 1 in Figure 15

contains the calendar instance for the model. The calendar

maintains control of the execution of the simulation model

80

and coordinates the interaction of level 2 model elements.

It receives messages to schedule event occurrences from the

objects located at level 2 (the system element level) and

initiates messages (from information on the event calendar)

to trigger the start of event processing by the objects in

level 2. The objects in level 2 interact directly with

those in level 3 which are subcomponents of the

corresponding level 2 objects. Level 3 objects maintain

direct links to those objects in level 4. Direct

communication from g particular object is limited to other

objects that exist either one level higher or one level

lower in the same subtree of the model structure.

Interaction between objects separated by more than one

hierarchical level or on the same level of the hierarchy

occurs indirectly through an intermediate object or

controller. (The only relaxation of these restrictions is

that the calendar is accessible to all components of the

simulation system.) The calendar acts as the controller for

communication between system element level (level 2) objects

in the model. The two major types of communication

occurring in the model, communication between elements and

communication within elements (between elements and

subelements), are discussed in later sections.

Let us c0nsider in more detail the construction of the

simulation model as illustrated in Figure 15. Machine-1 (on

the left hand side) has communication paths linking it to

the calendar, which is above it in the model hierarchy, and

81

to its subcomponents, the queue and current work item, which

are below it in the model hierarchy. Notice that the

hierarchical orientation of machine-1 to the calendar and to

its subcomponents makes machine-1 capable of functioning

independently of other components (present in other model

subtrees) in the simulation system. The queue (a component

of machine-1) has communcation paths linking it to machine-1

and to its internal work item list. In a similar manner,

all objects are linked to other objects dependent on their

location in the hierarchy. This ~ of linkage makes

objects strictly dependent on the presence of s specific set

of other objects in the system (those with which direct

interaction must occur) and completely unaffected Qv the

presence or absence of objects outside this specific set.

In the case of machine-1, the set of required objects

consists of the calendar, the internal queue, and the

current work item. The design of a simulation class ensures

that internal objects (queue, etc.) are available because

these internal objects are set up whenever a new instance of

the simulation class is created.

Element Level Object Linking

(Communication Between

Elements)

The communication between objects representing elements

of the modeled system is principally driven through the

scheduling of event occurrences on the event list in the

82

calendar. The transfer of work flow items between these top

level elements is specified by the routings defined for the

work flow items. As work flow items are processed through

the simulated system, the elements in the model retrieve

transfer information from the routing contained within the

work flow item. This routing information provides a

sequential list of all of the objects {physical system

elements along with system stati'stics collection elements)

that a work flow item must visit, the event code needed to

trigger the transfer of the work flow items between

elements, and the ·specification of the setup time,

processing time, etc. at each element. This structure is

illustrated in Figure 16 (based on the example situation

illustrated in Figures 14 and 15).

In this conceptualization, system element objects exist

in the model as separate "entities", with incomplete linking

among themselves. This incomplete linking is completed by

the information specified in the routing of the work flow

item. The elements of the system accept new work flow

items, process the items through the execution of internal

activities {internal to the elements themselves) and the

scheduling of internal events (which require time advance

and occur through the calendar object), and schedule

external events, such as work flow item· t~ansfer {which may

or may not require time advance), on the event list. By

scheduling and initiating events, the calendar supervises

many intra-element (those requiring time advance) and all

One type of work flow item and its routing:

~-----<----------<-- -<-routing
wfi type
etc.

Routing Simulation Entry link
seq num element event code

> 1 machine-! part-arriv

2 inspection part-arriv

3 assembly-! part-arv-1

. . .

. . .

Proc time Setup time
specifier specifier

proc time setup time

proc time setup time

proc time setup time

. . . .
Work stations present in the simulated system:

machine-!

inspection assembly-!

machine-2

Another type of work flow item and its routing:

~-----<----------<-- -<-routing
wfi type
etc.

Routing Simulation Entry link
seq num element event code

> 1 machine-2 part-arriv

2 inspection part-arriv

3 assembly-! part-arv-2

.

Proc time Setup time
specifier specifier

proc time setup time

proc time setup time

proc time setup time

. . . .

83

etc.

.

.

etc.

.

.
Figure 16. A Pictorial Representation of the

Relationship Between Work Stations and
Between Work Flow Items and Work Stations,
as Provided by Routing Information

84

inter-element activities at level 2 in the model hierarchy.

Subelement Level Object Linking

(Communication within

Elements)

Moving down a level in the simulation model hierarchy,

model elements themselves (level 2 in Figure 15) are

constructed of multiple subelements (objects at level 3 in

Figure 15) which are linked together to construct the model

element by the instance methods defined for the class. As

an example, consider a machine composed of a queue and

several status variables. A work flow item arriving to the

machine will enter service if the machine is idle or enter

the queue if the machine is busy. The machine instance

methods directly check the status variables and send work

flow items either directly to the machine or to the queue if

the machine is busy. As activities occur at the element

level (such as the work flow item arrival just discussed),

messages are sent to the subelements to perform functions

(work flow item storage or retrieval by the queue) as part

of the representation of the complete element's actions.

Drawing on a portion of the,example used in the previous

explanation, Figure 17 (based on Figures 14, 15, and 16)

illustrates this concept of hierarchical communication

linkages.

Assume, for the sake of discussion, (1) that the

processing station (machine-!) has just completed (through

85

< calendar <

(1) (4)

machine-1
processing >
station

< q >

(2) (5)

>- work flow item queue
<--<- routing

wfi type, etc.
(3)

Routing Simulation Entry link Proc time Setup time
seq num element event code. specifier specifier etc.

> 2 inspection part-arriv proc time setup time

3 assembly-1 part-arv-1 proc time setup time

. 0 . 0 0 0 0 .
Figure 17. Communication Methods to Subelements

time advance) the process'ing of a work flow item. The

processing station class passes a message (2) to its work

flow item subelement in order to get the transfer

information from its routing. The work flow item retrieves

the needed information (3) from the routing (which is a

subelement of the work flow item) and provides it as a

response to the proc~ssing station reques~. Using this

information, the processing station object transfers the

work flow item to its next station by scheduling the arrival

86

event on the calendar (4) (as described previously). The

processing station methods would next check the internal

queue(s) for waiting jobs (5). All communication between an

element and its subelements occurs in a similar hierarchical

manner within the OOM environment.

Construction of OOM Based Simulation

Models

There are several steps to follow in the construction

of a simulation model in the prototype Smalltalk OOM

environment.

These are as follows:

1) Set up temporary variables which will provide element
level (human interaction level) symbols for the
element level objects used in the system.

2) Set up a new Calendar class instance.

3) Create instances of classes as needed for the
representation of the physical system being modeled
and set the temporary variables to point to these
instances. Also create instances for terminators and
system statistics collection objects.

4) Set up Creator instances for each work flow item type
or work order type which will be traveling through the
system. This involves specifying (1) the work order
and the routings (in terms of the temporary variables
mentioned above) through all objects (including
statistics collection, material handling, etc.) which
the work flow items will be visiting (in sequential
order) and (2) processing times at each location.

5) Set up the list of system elements to include all
objects in the system from which output is desired.

6) Schedule any special initial events onto the event
list. These might include intermediate results
output, clearing of statistics at special times,
initial work flow item arrivals, etc.

7) Start the execution of the simulation model by

87

messaging the calendar object.

As an example of this procedure, consider the pseudo-code

model implementation shown in Figure 18 for the system shown

in Figure 14. Each of the specific actions described above

is illustrated in this figure. Note that during step 3 of

Figure 18 each top level simulation element is automatically

set up with the appropriate internal components.

Steps

1 Local variables (calendar, machine!, machine2,
inspection, assembly,
creatl, terml, term2,
workOrder routing!, routing2)

2 calendar = Calendar new
3 machine! = Simple machine new

machine2 = Simple machine new
inspection = Simple machine new
assembly = Assembly station (2 queue) new
terml = Terminator new (Final assembly term)
term2 = Terminator new (Assembled WFI term)

4 routing! = Routing new with operations:
(machine!, 'a processing time', etc.)
(inspection, 'a processing time', etc.)
(assembly at queue 1, 'a processing time',

etc.)
(terml)

routing2 = Routing new with operations:
(machine2, 'a processing time', etc.)
(inspection, 'a processing time' , etc.)
(assembly at queue 2, etc.)
(term2)

workOrder = WorkOrder new ('part 1', routing!)
('part 2', routing2)

creatl = Creator new (workOrder)
time-between-creations ('a time specifier')

5 calendar set system elements: (calendar, machine!,
machine2, inspection, assembly, terml, term2)

6 calendar schedule (creatl create) at o
calendar schedule (calendar end) at 480

7 calendar event processor

Figure 18. Pseudo-code OOM Simulation Model

88

As described, following the seven model development

steps results in the creation of all needed model objects,

in the specification of linking information (routings), and

in setting initial events and beginning simulation

processing. Once processing is completed, output is

generated by each system level object according to the

internally defined methods.

As a final, concrete illustration of this process, the

actual Smalltalk implementation of the example simulation

model is as follows:

" Step 1: Set up top level instance variables.
" !calendar machine! machine2
inspection assembly

"
"

creatl terml term2
workOrder routing! routing21

Step 2: Set up a new Calendar class instance.

calendar:= Calendar new.
"

"

Step 3: Set up instances of classes to represent the
physical system being modeled. Create instances
for terminators.

machinel:= SQueueMServerProc newWithName: 'Machine 1
Station'

andSize: 1.
machine2:= SQueueMServerProc newWithName: 'Machine 2

Station'
andSize: 1.

inspection:= SQueueMServerProc newWithName: 'Inspection
Station'

andSize: 1.
assembly:= MQueueMServerAssem newWithName: 'Assembly

Station'
andservers: 1
andQueues: 1.

terml:= Terminator newWithName: 'Final Assembly Terminator'.
term2:= Terminator newWithName: 'Assembled WFis Terminator'.

89

II

Step 4: Set up routings and creators.
II

routing1:= Routing new.
routing1 addOperation: machine1 key: nil

processingTime: [:rg I rg uniformHigh: 5 low: 3]
setupTime: nil;

addOperation: inspection key: nil
processingTime: [:rg I rg uniformHigh: 2 low: 1]
setupTime: nil;

addOperation: assembly key: 'workOrderQueue'
processingTime: [:rg I rg uniformHigh: 2 low: 1]
setupTime: nil;

addOperation: term1 key: nil.

routing2:= Routing new.
routing2 addOperation: machine2 key: nil

processingTime: [:rg I rg uniformHigh: 4 low: 2]
setupTime: nil;

addOperation: inspection key: nil
processingTime: [:rg I rg uniformHigh: 2 low: 1]
setupTime: nil;

addOperation: assembly key: 1
processingTime: [:rg I rg uniformHigh: 2 low: 1]
setupTime: nil;

addOperation: term2 key: nil.

workOrder:= WorkOrder newWorkOrderType: 'Work Order 1 1 •

WorkOrder setWorkOrderNumber: 1.
workOrder addComponentWFI:'par~ 1' andCWFIRouting: routing1;

addComponentWFI:'part 2 1 andCWFIRouting: routing2.

creat1:= wocreator newWithWorkOrder: workOrder
timeBetweenCreationsGenerator:

(Uniform newHigh: 8 low: 3).
II

II

Step 5: Set the list of system elements to provide for
output from all important items.

calendar addToListOfSystemElements: machine1;
addToListOfSystemElements: machine2;
addToListOfSystemElements: inspection;
addToListOfSystemElements: assembly;
addToListOfSystemElements: term1;
addToListOfSystemElements: term2.

II

II

Step 6: Schedule initial events (WFI arrival and end of
simulation execution).

calendar schedule: [creat1 create] at: o.
calendar schedule: [calendar end] at: 480.

90

"
Step 7: Start the simulation model executing.

"
calendar eventinitiator.

The output produced as the result of executing the

simulation model is structured to present all information on

each object as a coherent uni~. Figure 19 contains the

output of one run of the simulation model just presented.

If we look at the object named Machine 1 Station, for

example, we see that ~he information provided includes

station processing times statistics, station utilization

statistics, and internal queue statistics (length and time

in queue). A similar output format is followed for each

object in the system with outp~t str~ctured to consider its

particular composition (number of servers, number of queues,

etc.).

summary

This discussion has provided a basis for the choice of

a hierarchical orientation for the construction of OOM

simulation models. In addition, it has illustrated the ease

with which OOM simulation models may 'be 'constructed, a

product of the hierarchical orientation. A simple example

system was used as a basis for dis'cussion throughout the

section concluding with the construction and execution of an

OOM model for the example.

Calendar Statistics

Event List Length Information
Time of initialization = o.oo
Current Time = 480

91

Avg Value Std Dev curr Value Min Value Max Value No. Changes

12.0634 1.1332 9.0000 1.0000 16.0000 2500

<<< 0 >>>

Machine 1 Station (a Single Queue, Multiple Server .•.

Processing Times Information
Time of initialization = o.oo
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

87 3.9595 0.5700 3.8554 3~0204 4.9619

Cell upper Percentage
limit of obser.
[---------+---------+---------+---------+--------+
[

3.00(0.0000
[

3.20[***** 0.1149
[

3.40(***** 0.1149
[

3.60[**** 0.0805
[

3.80[** 0.0460
[

4.00[********* 0.1954
[

4.20[*** 0.0690
[

4.40[****** 0.1379
[

4.60[** 0.0460
[

4.80(***** 0.1034
[

5.00[**** 0.0920
[
[0.0000

Figure 19. One Set of Simulation Output for the OOM
Simulation Model of the Example System

92

Cell upper Percentage
limit of obser.
[---------+---------+---------+---------+--------+
[

3.00[0.0000
[

3.40[*********** 0.2299
[

3.80[****** 0.1264
[

4.20[************* 0.2644
[

4.60[********* 0.1839
[

5.00[********* 0.1954
[
[0.0000

Utilization Information
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.7177 0.4501 0.0000 0.0000 1.0000 91

Queue Length Statistics
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev curr Value Min Value Max Value No. Changes

0.888d 1.3993 0.0000 0.0000 6.0000 91

Time In Queue Statistics
Time of initialization= 0.00
Current Time = 480

Total Obs. Avg Obs. Std· Dev Last Obs. Min Obs. Max Obs.

45 9.4724 7.6877 1.9348 0.0817 28.5310

Figure 19. (Continued)

93

Cell upper Percentage
limit of obser.
[---------+---------+---------+---------+--------+
[

4.00[*************** 0.3111
[

5.00[0.0000
[

6.00[** 0.0444
[

7.00[** 0.0444
[

8.00[*** 0.0667
[

9.00[*** 0.0667
[

10.0[**** 0.0889
[

11.0[** 0.0444
[

12.0[0.0000
[

13.0[** 0.0444
[

14.0[** 0.0444
[
[************ 0.2444

<<< 0 >>>

Machine 2 Station (a Single Queue, Multiple Server ...

Processing Times Information,
Time of initialization = o.oo
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

87 2.9893 0.6079 2.0346 2.0346 3.9698

Utilization Information
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev curr Value Min Value Max Value No. Changes

0.5418 0.4982 0.0000 0.0000 1.0000 125

Figure 19. (Continued)

Queue Length Statistics
Time of initialization
Current Time

= 0.00
= 480

94

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.5571 1.1899 0.0000 0.0000 5.0000 57

Time In Queue Statistics
Time of initialization = 0.00
Current Time = 480

Total Obs. Avg Obs

28 9.5506 7.8853 0.6096 0.0027 28.0752

<<< 0 >>>

Inspection Station (a Single Queue, Multiple Server •..

Processing Times Information
Time of initialization= 0.00
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

174 1.4815 0.2988 1.7842 1.0017 1.9962

Utilization Information
Time of initialization
Current Time

= 0.00
= 480

Avg Value std Dev curr Value Min Value Max Value No. Changes

0.5358 0.4987 1.0000 0.0000 1.0000 214

Queue Length Statistics
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.1081 0.3168 0.0000 0.0000 2.0000 139

Time In Queue Statistics
Time of initialization = o.oo
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

69 0.7523 0.4151 0.4826 0.0026 1.7148

<<< 0 >>>

Figure 19. (Continued)

95

Assembly Station (a Multiple Queue, Multiple Server ••.

Processing Times Information
Time of initialization = 0.00
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

86 1.4960 0.2906 1.3149 1.0006 1.9909

Utilization Information
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev curr Value Min Value Max Value No. Changes

0.2680 0.4429 0.0000 0.0000 1.0000 173

Workorder Queue Information

Queue Length Statistics
Time of initialization
Current Time

= 0.00
= 480

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.0164 0.1269 0.0000 0.0000 1.0000 173

Time In Queue Statistics
Time of initialization = 0.00
current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

86 0.0914 0.3721 0.0000 0.0000 1.9330

Queue Number 1 Statistics

Queue Length Statistics
Time of initialization
current Time

= 0.00
= 480

Avg Value Std Dev curr Value Min Value Max Value No. Changes

0.5393 0.7547 1.0000 0.0000 3.0000 174

Time In Queue Statistics
Time of initialization = 0.00
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

86 2.9955 2.6445 1.3033 0.0000 11.8705

<<< 0 >>>

Figure 19. (Continued)

96

Final Assembly Terminator (a Terminator Object)

Time In System Statistics
Time of initialization = 0.00
Current Time = 480

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

86 13.0306 7.8713 6.9090 6.2509 36.1407

Cell upper Percentage
limit of obser.
[---------+---------+------~--+---------+--------+
[

5.00[0.0000
[

7.00[****** 0.1279
[

9.00[********************** 0.4535
[

11.0[* 0.0233
[

13.0[* 0.0349
[

15.0[* 0.0233
[

17.0[**** 0.0930
[

19.0[* 0.0349
[

21.0[** 0.0465
[

23.0[* 0.0349
[

25.0[* 0.0349
[
[**** 0.0930

<<< 0 >>>

Assembled WFis Terminator (a Terminator Object)

Time In System Statistics
Time of initialization= 0.00
Current Time = 480

Total Obs. Avg Obs. Std Dev L'ast Obs. Min Obs. Max Obs.

86 13.0306 7.8713 6.9090 6.2509 36.1407

<<< 0 >>>

Figure 19. (Concluded)

97

Smalltalk Class Implementation

In the first section of this chapter, the different OOP

classes needed within the prototype OOM system were

described in terms of the functions each must support to

effectively simulate the operation of objects in the system.

In the second section, the concepts used to design the

simulation model structure and specification methods were

described. In addition, the impact of the application of

these concepts on.the simulation model top level appearance

was illustrated through the complete development of a

simulation model of a simple system. For the sake of

brevity, this section shall discuss in some detail the

implementation of several representative simulation

processing objects, including, Calendar, Work Flow Item,

Routing, Random Generator, and one simulation element

object, the Multiple-Queue, Multiple-Server Processing

Station. This discussion is intended to guide the reader to

the development of a basic understanding of the structure of

the simulation software. The Smalltalk implementations of

each of these classes are available for detailed examination

in Appendix A along with all of the other class

implementations.

Any OOP class definition provides information on four

specific elements about the class. These include: 1) Class

variable names, 2) Instance variable names, 3) Class

methods, and 4) Instance methods. Class variables are data

98

storage locations which are allocated once and are

associated with a class. Instance variables are data

storage locations which are allocated uniquely for each

instance of a class. Instances of the same class will have

the same instance variable allocations, but, most probably,

will have different values stored in their own locations.

Class methods are methods available to the class itself.

These methods typically manipulate class variables and

provide for the creation of new instances of a class.

Instance methods are methods available to instances of a

class. These methods will have direct access to the data

associated with the class instance receiving a message.

Other instances from the same class are unaffected by

variable value changes made during an instance method

execution. The remaining text in this section discusses in

detail each of these four aspects of the five classes

discussed.

Specific Simulation Processing Objects

As mentioned previously, the Calendar object in a

simulation run acts as the central processor or controller

for the operation of the dynamic simulation model. As such,

understanding of the implementation of the Calendar class is

an important conceptual and operational requirement. The

definition of the Calendar class provides the following

breakout:

Data storage

Class variable names:

Instance variable names:

calendarHead
calendarTail
current Time
debug
listLength
listOfSystemElements

99

The instance variables, calendarHead and calendarTail,

provide references to the first entry and last entry in the

event list, which is implemented as a doubly linked list.

currentTime is a storage location for the value of the

current simulated time. The variable debug takes the values

true and false. When debug is set to true, the simulation

operation will halt after the execution of each event. This

feature allows the simulation analyst to use Smalltalk

inspector windows to completely debug the operation of an

object or model. listLength is a storage location which

tracks statistics on the length of the event calendar.

listOfSystemElements stores references to elements in the

simulation model in an OrderedCollection instance (a class

definition already available in Smalltalk). When the

simulation is completed, this list of elements is used to

prompt each object in the system for output.

Software methods (boldface items are arguments):

Class methods:

1) new

100

2) newEndTime: aTime

The class method new creates a new instance of the

Calendar class (with all instance data storage allocated)

and calls the initialize instance method (see below) to set

initial values. It then returns the pointer to the new,

initialized Calendar instance as the result of its

operation. The newEndTime: method performs a similar

activity with the addition of automatically scheduling the

end of simulation event at the requested time.

Instance methods:

1) addToListOfSystemElements: newElement
2) arrayExecute: anArray
3) clearstatistics
4) contextExecute: acontext
5) end
6) eventinitiator
7) getTime
8) initialize
9) output

10) printResults
11) removeEvent: anEvent
12) schedule: anObject at: intervalTime
13) setDebug: aBoolean
14) setListOfSystemElements: anOrderedCollection
15) setTime: newTime

The addToListOfSystemElements: method provides the

calendar object with the ability to add new objects to the

system element list. The two methods arrayExecute: and

contextExecute: handle the two types of event specification

methods (events are specified either in the form of an Array

or as a Context, two classes in Smalltalk). clearStatistics

is a method which is typically scheduled to execute at some

specific time (to remove the effects of a system warm up

period) by the model developer. The method collects

101

references to all statistics collection objects in the

simulation model and requests each of these objects to

reinitialize itself. The end method removes all events from

the calendar and causes the simulation execution to end.

This method can also be scheduled by the model developer to

execute at some simulated future time. eventinitiator is

the method which controls the execution of events during the

simulation run. It repeatedly loops through the process of

removing the first event from the calendar and causing it to

execute. When no further events are on the calendar, this

method calls for simulation execution output. getTime

simply returns the current value of simulated time to the

calling object. initialize sets initial calendar instance

variable values during the calendar instance creation

activity. output prompts each system simulation element

listed in the model element list (the instance variable

listOfSystemElements) to produce statistical results on its

activities. This method operates by assuming that classes

used in the simulation model have been constructed with a

class specific printResults method which will print the

appropriate results for each object. The printResults

method outputs statistics on the calendar's operation during

the simulation execution. The removeEvent method uses an

event specifier (array or context format) to exactly match

and remove an event from the calendar list. When an event

is to be placed on the calendar list, the method

schedule:at: is used. Arguments needed are the event

102

specifier and an interval of time until the event should

occur. The setDebuq: method sets the value of the debug

instance variable used to control the occurrence of

inspection halts in simulation execution.

setListOfSystemElements: and setTime: are lower level

methods used for model experimentation and not typically

executed during a_ standard model run. From this discussion,

one can see that ~hese capabilities provide for a full

featured basis for the major_simulatio~ component, the

calendar. The Smalltalk code, fully commented, provides the

maximum amount of detail and is available in Appendix A.

Dropping down from the high level calendar object, one

of the lower level simulation processing objects is the

Work Flow Item class. Instances of this class represent

work items in the simulated system and contain the data and

methods needed to emulate their passive operation. The

definition of the Work Flow Item class provides the

following breakout:

Data storage

Class variable names:

Instance variable names:

creationTime
wfiLabel
workOrderType
workOrderNumber
routing
flowTimeMarkers

103

The creationTime instance variable is set equal to the

simulated time of creation for each Work Flow Item instance

allocated. The storage of this value allows the time in

system statistics to be collected for each work flow item

passing through the system. The wfiLabel storage location

is merely a character string label used to specify the type

of item represented by the work flow item instance.

workOrderType is an instance variable which stores a string

indicating the type of work order with which a particular

work flow item is associated. workOrderNumber is an integer

set during the work order creation operation and is provided

to allow for matched assembly of work flow items from the

same work order. The workOrderNumber is unique to the group

of work flow items from each work order created during a

simulation execution. The routing instance variable stores

a reference to the routing used by the work flow item to

guide its progress through the simulated system. Note that

the Routing class will be discussed in detail next.

flowTimeMarkers is a storage location pointing to a

Dictionary instance (a general Smalltalk class). This

dictionary functions to allow subsystem flow times to be

monitored and collected. As a work.flow item passes through

a flow time collection object (another simulation class) for

the first time, it is sent a message to add a

flowTimeMarkers entry with ~he key being the flow time

collection object itself and the storage value being the

current simulated time. On the second pass through the flow

104

time collection object this marked time entry is removed and

used to calculate an observation of subsystem flow time.

Software methods (boldface items are arguments):

Class methods:

1) new

The new method functions to allocate memory space for

the representation of a new work flow item. In addition, it

sends a message to the new work flow item to initialize

itself through the use of the initialize instance method.

Instance methods:

1) > aWF:I
2) floWTimeMark: anobject
3) getCreationTime
4) getFlowTimeMark: anobject
5) getNextAccessCode: anobject
6) getProcessingT'ime
7) getSetupTime
8) getWFILabel
9) getWorkOrderNumber

10) getWorkOrderType
11) initialize
12) operationCompleted
13) routingEmpty
14) setRouting: aRoutingobject
15) setWFILabel: astring
16) setWorkOrderNumber: aNumber
17) setWorkOrderTiPe: astring

The > instance method is used when a work flow item is

placed into a queue. At this point in the COM system

development the FIFO queue discipline is the only one

supported. This method returns a Boolean false, which

forces a newly entering work flow item to be placed at the

end of the current queue. flowTimeMark: is the method

used by flow time collection objects during the first pass a

105

work flow item makes through the collection object. As

mentioned previously, it provides for the addition of a

marked time dictionary entry in the flowTimeMarkers instance

variable. getFlowTimeMark: is the method which handles the

second pass of a work flow item through a flow time

collection object. It retrieves the time marker, removes

the entry from the time marker dictionary, and returns the

time marker to the flow time collection object.

getCreationTime simply returns the value of the creationTime

instance location to the calling object. The method

getNextAccessCode: is used by a simulation element object,

which has just finished processing a work flow item, to

retrieve the designator for the next processing location for

the work flow item. This designator is used to set up the

arrival event, on the calendar, of the work flow item to the

simulation model element. getProcessingTime returns to the

calling object, generally an element object, a Context which

specifies the processing time in the form of some random

variable distribution. The element object will use this

Context to generate a specific processing time value. In a

similar manner, the getSetupTime instance method operates to

provide a specific setup time value for an element object to

use. The methods getWFILabel, getWorkOrderNumber, and

getWorkOrderType return the string and numeric values for

the previously described instance variables. initialize is

used to set the value for the creationTime instance variable

and to set up a new, empty Dictionary instance in the

106

flowTimeMarkers instance variable. The operationcompleted

method is used by element objects to prompt a work flow item

to remove the first routing operation from its routing.

Note that this first routing operation is the one which

refers to the element object currently controlling the work

flow item. routingEmpty is a method which tests for an

empty routing list and returns a Boolean true or false.

setRouting:, setWFILabel:, setWorkOrderNumber:, and

setWorkOrderType: are all methods which set the work flow

item's appropriate instance variable values to the passed

argument.

Mentioned many times previously, the Routing class

defines the structure of routing objects which specify the

path a work flow item will take through a simulated system

and which are subcomponents of work flow items. The

components of the class specification are:

Data storage

Class variable names:

Instance variable names:

listOfOperations

The only instance variable for this class,

listOfOperations, is an OrderedCollection instance which

stores each routing operation of a work flow item. Each

routing operation contained in this list specifies the

element object name and access code, processing time

107

distribution, and setup time distribution.

Software methods (boldface items are arguments):

Class methods:

1) new

The new method functions to allocate memory for a new

routing instance and to initialize the listOfOperations

instance variable to an empty OrderedCollection.

Instance methods:

1) addOperation: anobject key: aKeyValue
2) addOperation: anObject key: aKeyValue

processingTime: acontext setupTime: aContext
3) addOperation: acontext processingTime: acontext

setupTime: acontext
4) at: aNumber
5) copyOperation: aRoutingOperation

processingTime: acontext setupTime: acontext
6) copyRouting
7) removeFirst
8) setListOfOperations: anOrderedCollection

The first three methods listed, addOperation:key:,

addOperation:key:processingTime:setupTime:, and

addOperation:processingTime:setupTime: function to create a

new operation specification and add this operation to the

routing list. The addOperation:key: method creates a new

operation with the element object name and access code, but

without processing and setup time specifiers. The

addOperation:key:processingTime:setupTime: method creates a

similar operation specification but with processing and

setup time specifiers. Both of these two methods use the

object reference and key passed as arguments to prompt a

simulation model object for the appropriate arrival event

108

initiation access code. In this way, the model developer is

not required to know the form of the arrival event code for

each simulation element object because the element itself

will supply the information in response to a standard

message. In contrast to these two methods, the first

argument for the addOperation:processingTime:setupTime

method is required to be the completed access code for the

appropriate simulation model object. The at: method returns

the routing operation located at the argument specified

position in the routing list.

copyOperation:processingTime:setupTime: is an internally

used method (called from copyRouting) which simply copies

the contents of a routing operation into another memory

location. The copyRouting method is used to completely copy

an entire routing. This method is used when a work order is

created and the routings for each of the parts in the work

order must be recreated and attached to the work flow items.

removeFirst is used to completely remove the first operation

from a routing and is typically executed when a simulation

system element has completed processing of a work flow item.

setListOfOperations: is an environment development method

used to set the listOfOperations instance variable to a

completed OrderedCollection list (for experimentation during

model development).

One capability alluded to and critical for stochastic

simulation is fulfilled through the Random Generator class.

The Random Generator class forms the root of a subtree in

109

the class hierarchy which provides fo~ the generation of

random variable observations. The structure of this class

is as follows:

Data storage

Class variable names:

LastSeed

Default seed numbers for random variable observation

generation are themselves generated through a separate

linear congruential generator. The value of the Lastseed

class variable itself acts as the seed for simulation

element seed number generation. In this manner, the model

developer does not need to specify seed values for each of

the various simulation model components. As new seeds are

generated and assigned, the value of Lastseed is assigned to

the most recent one generated~

Instance variable names:

seed

The seed instance variable is used by a Random

Generator instance as the basis for the random number stream

that it can produce. The storage allocation is also

inherited by descendents of the Random Generator class which

use it in a similar manner.

Software methods (boldface items are arguments):

Class methods:

getLastSeed
new
new: aseedValue

110

setLastSeed: aSeedValue

The getLastSeed and setLastSeed: class methods

accomplish the activities of retrieving and setting the

Lastseed value for the requestor. The new and new: methods

provide for the allocation of a new Random Generator

instance. With the new method, the seed value for the newly

created instance is generated using the LastSeed value.

With the new: method, the seed value for the Random

Generator instance is provided as an argument.

Instance methods:

1) bernoulliMean:
2) discreteUniformHigh: aNumber low: aNumber
3) exponentialLambda: aNumber
4) initializeSeed
5) lognormalMu: aNumber sigma: aNumber
6) normalMu: aNumber sigma: aNumber
7) setSeed: aseedValue
8) triangularHigh: aNumber low: aNumber mode: aNumber
9) uniformHigh: aNumber low: aNumber

10) weibullAlpha: aNumber beta: aNumber
11) zeroOneUniformRV

The methods bernoulliMean:, discreteUniformHigh:low:,

exponentialLambda:, lognormalMu:sigma:, normalMu:sigma:

triangularHigh:low:mode:, uniformHigh:low:, and

weibullAlpha:beta: all provide an instance of the Random

Generator class with the ability (via the inverse transform

method) to generate an observation from the particular

distribution. Notice that the necessary parameter values

must be supplied as part of the message. initializeseed is

the method used when a new Random Generator instance seed

value is to be generated from the class variable, LastSeed.

setSeed: is used when a specific seed value has been

111

supplied as an argument. zeroOneUniformRV uses a linear

congruential generator and a seed value to generate a (0,1)

uniform random variable. This method is typically called by

the previously mentioned random number generation methods

during the random variable generation process. Note that

this method is also available to instances of subclasses of

Random Generator, which are also able to produce random

variable observations.

Specific Simulation Element Object

One of the moderately complex simulation element

objects implemented is the Multiple-Queue, Multiple-Server

Processing Station (MQMSPS) class. This class emulates

a system component which has one or more prioritized queues

of parts which wait for simple processing (ie. no assembly

or matching takes place). In addition, there can be one or

more identical, parallel servers which have the ability to

take breaks or break down according to some distribution.

Each of these servers is represented by an instance of

another type of class, the Basic Human Worker class. The

class structure is:

Data storage

Class variable names:

Instance variable names:

queues
name
randomGenerator

input Code
partsBeingWorkedOn
workerstatus
busystatus
procTimes
numberOfServers
numberOfQueues
endOfServiceEvents

112

As discussed, the instance variables for a simulation

element object provide the data and status storage which

allows the element object to simulate the desired system

component. queues is the instance variable location which

stores the OrderedCollection list of the one or more queues

associated with the station. name contains the character

string which will be used to identify results output

produced after the simulation execution. The variable

randomGenerator stores the reference to the Random Generator

instance used by the simulation element for processing time

observation generation. inputCode is initialized at MQMSPS

creation to the partially completed arrival event access

code. For the MQMSPS class, this access code is an array

with the first element being the instance itself and the

second element being the method designator

#partArrival:withPart:withCallingObj. Notice that when the

event is actually placed on the calendar that a work flow

item and a calling object will be provided to complete the

event execution request. partsBeingWorkedOn is another

OrderedCollection instance which maintains the reference to

work flow items undergoing processing (busy server) at each

of the multiple servers or to 11 nil 11 when a particular server

is idle. workerstatus is an OrderedCollection instance in

113

which each element is a reference to the Basic Human Worker

instance representing the corresponding parallel server.

This data allows for communication from the top level MQMSPS

object to its Basic Human Worker subcomponents. The

instance variable busystatus is a statistics collection

location (a Time Tracked Number) which is used to collect

the utilization information for the station. procTimes is

another statistics collection instance variable (an

Observation Tracked Number) which is used to collect as

observations the processing times for all work flow items

handled by the MQMSPS instance. numberOfServers and

numberOfOueues are simply numbers indicating the number of

servers and queues allocated to an instance of the MQMSPS

class. endOfServiceEvents is an OrderedCollection, with

each element corresponding to a parallel server, of all end

of service events currently on the calendar. This

information is used to halt processing of work flow items

when a parallel server goes inactive (such as for human rest

activities or machine breakdowns). When an activity has

been halted, the remaining processing time is stored in this

instance variable.

Software methods (boldface items are arguments):

Class methods:

1) newseed: aseedValue withName: astring
andServers: aNumber andQueues: aNumber

2) newWithName: astring andServers: aNumber
andQueues: aNumber

The newSeed:withName:andServers:andQueues: is a method

which sets up a new instance of the MQMSPS class by using

114

the information provided in the arguments. This information

includes a specific seed value for the object's random

generator instance, an identifier string, and the numbers of

servers and queues. newWithName:andServers:andOueues: is a

similar method except the seed value for the random

generator is produced using the LastSeed value at the Random

Generator class.

Instance methods:

1) checkEvent: aServerNumber
2) checkQueue: aserverNumber
3) getFirstPart
4) initializeseed: aseedValue andservers: aNumber

andQueues: aNumber
5) initializeservers: aNumber andQueues: aNumber
6) partArrival: aQueueKey withPart: aWFI

withCallingObj: anObjeot
7) partDeparture: aserverNumber
8) printResults
9) returnLinksOnKey: aQueueKey

10) setName: astring
11) setWIPAggregator: aWIPAgg atQueueNumber: aQueueKey

The checkEvent: method is used by Basic Human Worker

instances within the MQMSPS to signal the station that they

are transitioning from active to inactive. This results in

the removal from the calendar of a pending end of service

event and calculation and storage of the remaining

processing time. In the meantime, the Basic Human Worker

has scheduled an inactive to active transition time on the

calendar and the checkgueue: method is used to signal the

MQMSPS that the server is returning to active status. This

method either restarts a halted process, pulls a new work

flow item from the queues, or leaves the server idle.

The getFirstPart method is used to correctly remove work

115

flow items from the prioritized queues and returns the

removed work flow item's reference to the calling method.

The two methods, initializeSeed:andServers:andQueues: and

initializeServers:andQueues:, are called by the previously

mentioned class methods to correctly initialize a new MQMSPS

instance. partArrival:withPart:withCallingObj: is the

arrival event method. Note that the first parameter in the

message is the queue key. This value tells the MQMSPS

instance which prioritized queue the arriving part must

enter. partDeparture: is the end of service event method

and the argument is the number of the server which has

completed processing. Notice that this information is

entered on the event list by the MQMSPS object at the time

service is initiated. printResults is the method needed for

each simulation element object. This version of the method

has been design specifically for instances of the MQMSPS

class and prints out all of,the statistical results of a

simulation execution. The method, returnLinksOnKey:, is

accessed during the routing construction phase of model

execution. This method returns the appropriate arrival

event access code to the calling location for inclusion in a

work flow item routing. setName: merely sets the value of

the name instance variable equal to the string argument

contained in the message. setWIPAggregator:atQueueNumber:

allows the model developer to associate each of the one or

more queues in a MQMSPS instance with a WIP Aggregator

instance. The function of a WIP Aggregator is to combine

116

the time based and observation based statistical

characteristics of one or more queues into one object. This

allows the model developer to treat one system WIP location

as a composite of queues for different stations and still

get information on the modeled WIP location as one unit.

Summary

This coverage of representative classes from the

Smalltalk prototype simulation environment was intended to

provide a basis with which the reader might peruse and

understand the code listed in Appendix A. The next section

illustrates the use of the developed classes in the

construction of a simulation model for the target system

(see chapters V and VI).

Target System Simulation

Model Representation

As mentioned several times previously, the target

system for OOM model development is an electronics

manufacturer kitting operation. The diagram for the system

can be seen in Figures 7 and 12. Items which are processed

through the system enter as a collection of parts (selects,

bulk, and reels) and paper work which must be prepared and

checked for the assembly operation. Figure 20 is how a

simulation modeler would view the system as a collection of

separate, yet interacting, objects. The numbers 1 through 9

have been added to the figure to provide links with the

discussion of the simulation element objects needed to model

Entrance
and Exit

++---------~ ~----------------------~~
Receiving Sequenced Reels WIP 191

and · ·
Shipping

1 1 1 ~--------~~ Final Kitting 8

Office

Area
Selects

Gravity Feed Racks Seq.
(hold partially ~ Mach
completed kits) 16 ine

Kitting stations

W I P

Pre-

formed

Bulk

Parts

and Bulk ~
Parts WIPj2

Bulk Parts Preform Stations

117

Figure 20. Object Oriented Electronics Kitshop Diagram
(Note that the office area is not considered
as part of the manufacturing model)

the system. The system element objects are as follows:

1) Receiving and Shipping - Because there are two

queues of items to be processed (incoming and outgoing) and

an assembly operation is not performed, the service activity

of this station shall be represented by a Multiple-Queue,

Multiple-Server Processing Station. In addition, the amount

of WIP located in this are~ (contents of the two queues)

shall be tracked through the use of a WIP Aggregator.

2) Selects and Bulk Parts WIP - Parts in this area are

waiting for processing by two separate stations, kitting and

118

bulk parts preform. Therefore, a WIP Aggregator shall be

used to collect data on the amount of WIP contained in the

location (in the two separate simulation queues).

3) Bulk Parts Preform stations - These stations are

parallel servers performing a processing (not assembly)

activity. There is one queue of work flow items waiting for

processing (associated with 2 above). These characteristics

allow the stations to be represented through the use of

a Single-Queue, Multiple-Server Processing Station.

4) Kitting Stations - These work stations perform the

majority_of the kitting operat~on. _At t~ese
IV }·O 76 (;.,_~

components of the kit, preformed bulk parts,

s.tations, three\
% (;(;)

selects, and

work order paperwork, are matched together and checked for

completeness. In order to represent this portion of the

system, a Multiple-Queue, Multiple-Server Assembly Station

shall be used. This simulation element object provides for

the "assembly" of work flow items in the simulation by

matching work order numbers.

5} WIP for Preformed Bulk Parts - As another WIP

location containing multiple queues (unsequenced reels and

preformed bulk parts) this system object shall be

represented in the model through the use of a WIP

Aggregator.

6} Gravity Feed Racks - This WIP location contains

partially completed kits waiting in one queue for the final

119

kitting operation. For the sake of uniformity, this queue

shall also be represented in the model as a WIP Aggregator.

7) Sequencing Machine - There is one sequencing

machine in the system. This processing station takes reels

of unsequenced axially leaded components and combines the

components in the correct order to yield sequenced reels

ready for the insertion activity (outside the boundaries of

this target system). A single-Queue, Multiple-Server

Processing Station provides the ability-to simulate this

system activity.

8) Final Kitting - In this operation, a human worker

combines the partial kits from the gravity feed racks with

the waiting sequenced reels to result in the fully completed

kit. This operation requires the ability to match work

order items from two queues, therefore, a Multiple-Queue,

Multiple-Server Assembly Station shall be used.

9) Sequenced Reels WIP - This WIP location is

associated with one queue in the system, that of the

sequenced reels waiting for final kitting. A WIP Aggregator

shall again be used in the simulation model.

In developing the simulation model for this system,

this basic set of ten objects shall be augmented with the

necessary simulation processing objects to result in the

complete simulation model. Note that this set of element

objects simulate the activities in the kitting system while

120

the simulation processing objects will allow for the

creation, termination, and routing of work flow items.

Let us now consider the simulation processing objects

which must be added to complete the model. First of all,

there must be a way to generate arrivals to the system.

This function shall be provided through the use of a creator

for each work order type processed through the facility (3

representative types). Next, of couree, we must provide for

the termination of work flow items by including Terminators

in the model. In order to provide information on each work

order type, a Work Order instance must be created along with

a Routing instance for each work flow item that is part of

the work order. Finally, a Calendar object must be provided

for the simulation model.

In the case of the target system, the following types

and quantities of processing objects are needed:

1) Calendar - One required.

2) Work Order Creator -- One for each work order type,
three total.

3) Work Order - One for each work order type, three
total.

4) Routing - One for each work flow item type for each
work order type. With the work flow item types
of: work order paperwork, bulk parts, selects, and
reels for each work order type, twelve are
necessary.

5) Terminator - One for each work flow item type in the
system, four total.

The complete OOM representation is illustrated in Figure 21.

Work Order Information

work order
type 1

work order
type 2

work order
type 3

routing 1
paperwork

routing 1
paperwork

routing 1
paperwork

jcreator11

!!Receiving and Shippingll

routing 2
selects

routing 2
selects

routing 2
selects

lcreator21

calendar

II Bulk Parts Preform stations II

IKitting Stations!

II Sequencing Machine II

IIFinal Kittingll

routing 3
bulk parts

routing 3
bulk parts

routing 3
bulk parts

routing 4
reels

routing 4
reels

routing 4
reels

jcreator31

wip aggregator 1
rec. and ship.

wip aggregator 2
selects & bulk

wip aggregator 3
preformed bulk

wip aggregator 4
gravity racks

wip aggregator 5
sequenced reels

121

terminator 1
paperwork

terminator 2
selects

terminator 3
bulk parts

terminator 4
reels

Figure 21. Complete Target System OOM representation

Using this information along with work order routing

(depicted in Figure 22) and processing times information,

WORK ORDER COMPONENTS

Routing number 1 2
work order

Item name paperwork selects

Receiving
and Shipping-

Bulk Parts Pre
form Stations

Sequencing
Machine

!Final Kittingl

!Terminators I

3

bulk

Figure 22. Work Order Routings

4

reels

and the OOM development steps, the following OOM model

122

implementation was created (note that time units are stated

in hours):

123

"
Electronics Kitshop Simulation Model

Step 1: Set up top level instance variables.
" I calendar

creator1 "Creator for Type 1 Work Orders"
creator2 "Creator for Type 2 Work Orders"
creator3 "Creator for Type 3 Work Orders"

workOrder1 w1r1 w1r2 w1r3 w1r4 "Info for Type 1 WO"
workOrder2 w2r1 w2r2 w2r3 w2r4 "Info for Type 2 WO"
workOrder3 w3r1 w3r2 w3r3 w3r4 "Info for Type 3 WO"

woTerm "Terminator for work order paperwork"
selects Term "Terminator for selects"
bulkTerm "Terminator for bulk parts"
reels Term "Terminator for reels"

wipAgg1 "WIP Aggregator for Receiving and Shipping Queues"

I
"
"

wipAgg2 "WIP Aggregator for Selects and Bulk Parts WIP"
wipAgg3 "WIP Aggregator for Preformed Bulk Parts WIP"
wipAgg4 "WIP Aggregator for Gravity Feed Racks"
wipAggS "WIP Aggregator for Sequenced Reels WIP"

m1 "MQMSP Station representing Receiving and Shipping"
m2 "SQMSP Station representing Bulk Parts Preform"
m3 "MQMSA Station representing Kitting"
m4 "SQMSP Station representing Sequencing"
m5 "MQMSA Station representing Final Kitting"

Step 2: Set up a new Calendar class instance.

calendar:= Calendar new.

"
Step 3: Set up instances of classes to represent the

physical system being modeled. Create instances
for terminators.

"
wipAgg1:= WIPAggregator newWithName: 'Rec. and Ship WIP'.

wipAgg2:= WIPAggregator newWithName: 'Selects and Bulk WIP'.

wipAgg3:= WIPAggregator newWithName: 'Bulk Preform WIP'.

wipAgg4:= WIPAggregator newWithName: 'Gravity Racks WIP'.

wipAggS:= WIPAggregator newWithName: 'Sequenced Reels.WIP'.

m1:= MQueueMServerProc newwithName: 'Receiving and Shipping'
andServers: 1 andQueues: 2.

m1 setWIPAggregator: wipAgg1 atQueueNumber: 1.
m1 setWIPAggregator: wipAgg1 atQueueNumber: 2.

m2:= SQueueMServerProc newWithName: 'Bulk parts preform'
andSize: 6.

m2 setWIPAggregator: wipAgg2.

m3:= MQueueMServerAssem newWithName: 'Kitting Stations'
andServers: 5 andQueues: 2.

m3 setWIPAggregator: wipAgg2 atQueueKey: 1.
m3 setWIPAggregator: wipAgg3 atQueueKey: 2.

m4:= SQueueMServerProc newWithName: •sequencing Station'
andSize: 1.

m4 setWIPAggregator: wipAgg3.

m5:= MQueueMServerAssem newWithName: 'Final Kitting'
andServers: 1 andQueues: 1.

124

m5 setWIPAggregator: wipAgg4 atQueueKey: •workOrderQueue•.
m5 setWIPAggregator: wipAgg5 atQueueKey: 1.

bulkTerm:= Terminator newWithName: 'Bulk Parts Terminator•.

selectsTerm:= Terminator newWithName: 'Selects Terminator•.

reelsTerm:= Terminator newWithName: 'Reels Terminator•.

woTerm:= Terminator newWithName: 'WorkOrders Terminator•.
II

II

Step 4: Set up routings and creators.

Note that each work order is set up with routings for
work order paperwork, selects, bulk, and reels in that
order.
First work order type

workOrder1:= WorkOrder newWorkOrderType: •wo Type 1'.

w1r1:= Routing new. "Work Order Paperwork Routing"
w1r1

addOperation: m1 key: 1
processingTime: [:rg I rg triangularHigh: 0.5 low: 0.167

mode: 0.25]
setupTime: [];

addOperation: m3 key: 'workOrderQueue'
processingTime: (:rg I rg triangularHigh: 3.1 low: 0.6

mode: 1.2]
setupTime: [];

addOperation: m5 key: •workOrderQueue'
processingTime: [:rg I rg triangularHigh: 0.7 low: 0.167

mode: 0.5]
setupTime: [];

addOperation: m1 key: 2
processingTime: [:rg I rg triangularHigh: 0.33 low: o

mode: 0.167]
setupTime: [];

addOperation: woTerm key: nil.

w1r2:= Routing new. "Selects Routing"
w1r2

addOperation: m3 key: 1;
addOperation: selectsTerm key: nil.

w1r3:= Routing new. "Bulk Routing"
w1r3

addOperation: m2 key: nil
processingTime: [:rg I rg triangularHigh: 3.0 low: 1.0

mode: 2.0]
setupTime: [];

addOperation: m3 key: 2;
addOperation: bulkTerm key: nil.

w1r4:= Routing new. "Reels Routing"
w1r4

addOperation: m4 key: nil
processingTime: [:rg I rg triangularHigh: 0.6 low: 0.3

mode: 0.4]
setupTime: (] ;

addOperation: m5 key: 1;
addOperation: reelsTerm key: nil.

workOrder1
addComponentWFI:
addComponentWFI:
addComponentWFI:
addComponentWFI:

•workOrder•
•selects•
'bulk'
•reels'

andCWFIRouting: w1r1;
andCWFIRouting: w1r2;
andCWFIRouting: w1r3;
andCWFIRouting: w1r4.

creator1:= WOCreator newWithWorkOrder: workOrder1
timeBetweenCreationsGenerator:
(Uniform newHigh: 2.0 low: 0).

II

Second work order type
II

workOrder2:= WorkOrder newWorkOrderType: •wo Type 2 1 •

w2r1:= Routing new. "Work Order Paperwork Routing"
w2r1

addOperation: ml key: 1

125

processingTime: [:rg I rg triangularHigh: 0.5 low: 0.167
mode: 0.25]

setupTime: [];
addOperation: m3 key: •workOrderQueue•

processingTime: [:rg I rg triangularHigh: 3.1 low: 0.7
mode: 1. 4]

set upTime: [] ;
addOperation: m5 key: •workOrderQueue•

processingTime: (:rg I rg triangularHigh: 0.8 low: 0.26
mode: 0.55]

setupTime: (];

addOperation: m1 key: 2
processingTime: (:rg I rg triangularHigh: 0.33 low: 0

mode: 0.167]
setupTime: (];

addOperation: woTerm key: nil.

w2r2:= Routing new. "Selects Routing"
w2r2

addOperation: m3 key: 1;
addOperation: selectsTerm key: nil.

w2r3:= Routing new. "Bulk Routing"
w2r3

addOperation: m2 key: nil
processingTime: (:rg I rg triangularHigh: 5.0 low: 1.8

mode: 2. 6]
setupTime: (];

addOperation: m3 key: 2;
addOperation: bulkTerm key: nil.

w2r4:= Routing new. "Reels Routing"
w2r4

addOperation: m4 key: nil

126

processingTime: [:rg I rg triangularHigh: 0.45 low: 0.2
mode: 0.27)

setupTime: (];
addOperation: m5 key: 1;
addOperation: reelsTerm key: nil.

work0rder2
addComponentWFI:
addComponentWFI:
addComponentWFI:
addComponentWFI:

•workOrder'
•selects•
'bulk'
•reels'

andCWFIRouting: w2rl;
andCWFIRouting: w2r2;
andCWFIRouting: w2r3;
andCWFIRouting: w2r4.

creator2:= WOCreator newWithWorkOrder: workOrder2
timeBetweenCreationsGenerator:
(Uniform newHigh: 3.0 low: 1.0).

II

Third work order type
II

work0rder3:= WorkOrder newWorkOrderType: •wo Type 3 1 •

w3r1:= Routing new. "Work Order Paperwork Routing"
w3r1

addOperation: m1 key: 1
processingTime: [:rg I rg triangularHigh: 0.5 low: 0.167

mode: 0.25]
setupTime: (];

addOperation: m3 key: •workOrderQueue•
processingTime: (:rg I rg triangularHigh: 3.8 low: 0.9

mode: 1. 5)
setupTime: (];

127

addOperation: m5 key: 'workOrderQueue'
processingTime: [:rg I rg triangularHigh: 0.5 low: 0.15

mode: 0.3]
setupTime: (];

addOperation: m1 key: 2
processingTime: [:rg I rg triangularHigh: 0.33 low: 0

mode: 0.167]
setupTime: (];

addOperation: woTerm key: nil.

w3r2:= Routing new. "Selects Routing"
w3r2

addOperation: m3 key: 1;
addOperation: selectsTerm key: nil.

w3r3:= Routing new. "Bulk Routing"
w3r3

addOperation: m2 key: nil
processingTime: [:rg I rg triangularHigh: 5.0 low: 1.4

mode: 3.0]
setupTime: (];

addOperation: m3 key: 2;
addOperation: bulkTerm key: nil.

w3r4:= Routing new. "Reels Routing"
w3r4

addOperation: m4 key: nil
processingTime: (:rg I rg triangularHigh: 0.65 low: 0.3

mode: 0.5]
setupTime: (];

addOperation: m5 key: 1;
addOperation: reelsTerm k~y: nil.

work0rder3
addComponentWFI:
addComponentWFI:
addComponentWFI:
addComponentWFI:

'workOrder'
'selects'
'bulk'
'reels'

andCWFIRouting: w3r1;
andCWFIRouting: w3r2;
andCWFIRouting: w3r3;
andCWFIRouting: w3r4.

creator3:= WOCreator newWithWorkOrder: work0rder3
timeBetweenCreationsGenerator:

"

"

(Uniform newHigh: 9.0 low: 1.0).

Step 5: Set the list of system elements to provide for
output from all important items.

calendar addToListOfSystemElements: m1;
addToListOfSystemElements: m2;
addToListOfSystemElements: m3;
addToListOfSystemElements: m4;
addToListOfSystemElements: m5;
addToListOfSystemElements: wipAgg1;
addToListOfSystemElements: wipAgg2;
addToListOfSystemElements: wipAgg3;

"

"

addToListOfSystemElements: wipAgg4;
addToListOfSystemElements: wipAgg5;
addToListOfSystemElements: woTerm;
addToListOfSystemElements: selectsTerm;
addToListOfSystemElements: bulkTerm;
addToListOfSystemElements: reelsTerm.

step 6: Schedule initial events (WFI arrival, clear
statistics, and end of simulation execution.

calendar schedule: [creator1 create] at: O;
schedule: [creator2 create] at: O;
schedule: [creator3 create] at: 0 ;.

"

"

schedule: [calendar clearStatistics] at: 90;
schedule: [calendar end] at: 360.

Step 7: Start the simulation model execution.

calendar eventinitiator.

128

The results of executing this model in the Smalltalk V

environment is shown in Figure 23. Note that as the purpose

of the target system model development was proof of concept

on a real world example, an analysis of the results of this

model was not performed. On the other hand, verification of

the developed simulation software and validation of the OOM

conceptual approach to simulation model generation have been

addressed. Verification of the object oriented simulation

software was performed through the close scrutiny and

testing (debugging and tracing) of the simulation classes

during the software implementation phase. An additional

measure of modeling construct verification was achieved

through the successful completion of the validation process.

The validation process for the OOM.conceptual approach

involved the development and validation of two separate OOM

models, the first one being for the standard M/M/1 queueing

129

system and the second one being for a simplified

representation of the target system. The analysis presented

in Appendix B validates the OOM M/M/1 queueing model by

comparing the results of several simulation runs to the

analytical solution for the M/M/1 queueing system. The

validation of the simplified target system OOM model was

performed by comparing the results of the OOM model to the

results of a model of the sam~ system in a commonly used

simulation language, SLAM II. The simplified target system

was designed so that it would be completely representable in

the network portion of SLAM and would have a high face

validity in both simulation representations. These OOM and

SLAM models were executed and an analysis of the results

was performed. This analysis involved the use of t tests

to compare the values of key measures of performance from

both models. The comparisons indicate that the results of

the OOM execution are not distinguishable from those of the

SLAM model. This successfully validates the conceptual

organization of the OOM prototype environment for the

generation of discrete simulation models of manufacturing

systems. The complete comparison and additional discussion

is contained in Appendix B.

130

Calendar Statistics

Event List Length Information
Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

41.0603 4.3184 42.0000 31.0000 50.0000 27160
<<< 0 >>>

Receiving and Shipping (a Multiple Queue, Multiple Server
Processing Object)

Processing Times Information
Time of initialization = 90.00
Current Time = 360

Total Cbs. Avg Cbs. Std Dev Last Cbs. Min Cbs. Max Cbs.

891 0.2355 0.1026 0.4236 0.0149 0.4848
Utilization Information

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev curr Value Min Value Max Value No. Changes

0.7761 0.4169 1.oooo o.oooo 1.oooo 429
Queue Number 1 Statistics
Queue Length Statistics

Time of initialization= 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.4301 0.6637 2.0000 0.0000 4.0000 809
Time In Queue Statistics

Time of initialization = 90.00
Current Time = 360

Total Cbs. Avg Cbs. Std Dev Last Cbs. Min Cbs. Max Cbs.

403 0.2878 0.2508 0.0821 0.0010 1.3225
Queue Number 2 Statistics
Queue Length Statistics

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

2.4360 2.6557 1.0000 0.0000 13.0000 786
Time In Queue Statistics

Time of initialization = 90.00
Current Time = 360

Total Cbs. Avg Cbs. Std Dev Last Cbs. Min Cbs. Max Cbs.

392 1.6758 1.5267 0.5892 0.0076 7.3455
<<< 0 >>>

Figure 23. Target System Simulation Model Output

Bulk parts preform (a Single Queue, Multiple Server
Processing Object)

Processing Times Information
Time of initialization = 90.00
Current Time = 360

131

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

449 2.4319 0.7587 1.7425 1.1248 4.9235
Utilization Information

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

4.0251 2.070~ 6.0000 0.0000 6.0000 1758
Queue Length Statistics

Time of initialization - 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.3126 0.7057 o.oooo 0.0000 5.0000 361
Time In Queue Statistics

Time of initialization = 90.00
current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. ·Max Obs.

180 0.4689 0.4426 0.0093 0.0009 2.3535
<<< 0 >>>

Kitting Stations (a Multiple Queue, Multiple_Server
Assembly Object)

Processing Times Information
Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

446 1.7014 0.5472 1.9649 0.7127 3.5233
Utilization Information

Time of initialization= 90.00
Current Time = 360

Avg Value Std Dev ~urr Value Min Value Max Value No. Changes

2.8208 1.6646 3.0000 0.0000' 5.0000 1717
Workorder Queue Information
Queue Length Statistics

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev curr Value Min Value Max Value No. Changes

4.1262 1.3307 3.0000 1.0000 9.0000 893

Figure 23. (Continued)

Time In Queue Statistics
Time of initialization
Current Time

Total Obs. Avg Obs. Std Dev

= 90.00
= 360
Last Obs.

132

Min Obs. Max Obs.

446 2.4980 1.0148 3.0048 0.3735 6.1190
Queue Number 1 Statistics
Queue Length Statistics

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

5.1655 1.5366 6.0000 2.0000 11.0000 896
Time In Queue Statistics

Time of initialization= 90.00
current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

446 3.1244 1.0029 3.4188 1.1248 7.0219
Queue Number 2 Statistics
Queue Length Statistics

Time of initialization= 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.0676 0.2912 0.0000 0.0000 2.0000 893
Time In Queue Statistics

Time of initialization = 90.00
current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

446 0.0409 0.1475 0.0000 0.0000 1.3581
<<< 0 >>>

Sequencing Station (a Single Queue, Multiple Server
Processing Object)

Processing Times Information
Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

447 0.3983 0.0872 0.5571 0.2098 0.6106
Utilization Information

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.6579 0.4744 1.0000 0.0000 1.0000 457

Figure 23. (Continued)

Avg

Queue Length Statistics
Time of initialization
Current Time

= 90.00
= 360

133

Value Std Dev Curr Value Min Value Max Value No. Changes

0.6492 0.8662 2.0000 0.0000 5.0000 667
Time In Queue Statistics

Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

332 0.5276 0.3988 0.0664 0.0031 1.9580
<<< 0 >>>

Final Kitting (a Multiple Queue, Multiple Server Assembly
Object)

Processing Times Information
Time of initialization= 90.00
current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 0.4731 0.1193 0.5433 0.1857 0.7631
Utilization Information

Time of initialization= 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.7804 0.4140 1.0000 0.0000
Workorder Queue Information
Queue Length Statistics

Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value

1.0000 1119

Max Value No. Changes

2.5440 2.3314 3.0000 0.0000 9.0000 894
Time In Queue Statistics

Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 1.5378 1.2918 1.0874 0.0000 4.7321
Queue Number 1 Statistics
Queue Length Statistics

Time of initialization= 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

9.6732 2.5441 9.0000 5.0000 16.0000 893

Figure 23. (Continued)

Time In Queue Statistics
Time of initialization
Current Time

Total Obs. Avg Obs. Std Dev

= 90.00
= 360
Last Obs.

134

Min Obs. Max Obs.

445 5.8480 1.7123 6.4547 2.1160 11.7644
<<< 0 >>>

Rec. and Ship WIP (a WIP Aggregator Object)

WIP Size Statistics
Time of initialization= 90.00
current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

2.8661 2.7668 3.0000 0.0000 13.0000 1594
Time In WIP Statistics

Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

795 0.9722 1.2894 0.0821 0.0010 7.3455
<<< 0 >>>

Selects and Bulk WIP (a WIP Aggregator Object)

WIP size Statistics
Time of initialization = 90. 0·0
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

5.4782 2.0977 6.0000 2.0000 16.0000 1256
Time In WIP Statistics

Time of initialization= 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

626 2.3609 1.4891 0.0093 0.0009 7.0219
<<< 0 >>>

Bulk Preform WIP (a WIP Aggregator Object)

WIP Size Statistics
Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes

0.7168 0.9445 2.0000 0.0000 5.0000 1559

Figure 23. (Continued)

Time In WIP Statistics
Time of initialization
Current Time

Total Obs. Avg Obs. Std Dev

= 90.00
= 360

Last Obs.

135

Min Obs. Max Obs.

778 0.2486 0.3718 0.0664 0.0000 1.9580
<<< 0 >>>

Gravity Racks WIP (a WIP Aggregator Object)

WIP Size Statistics
Time of initialization = 90.00
Current Time = 360

Avg Value Std Dev Curr Value Min Value Max Value No. Changes
------- ----------

2.5440 2.3314 3.0000 0.0000 9.0000 894
Time In WIP Statistics

Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 1.5378 1.2918 1.0874 o.oooo 4.7321
<<< 0 >>>

Sequenced Reels WIP (a WIP Aggregator Object)

WIP Size Statistics
Time of initiali~ation ~ 90.00
Current Time, = 360

Avg Value Std Dev Curr 'Value Min Value Max Value No. Changes

9.6732 2.5441 9.0000 5.0000 16.0000 893
Time In WIP Statistics

Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 5.8480 1.7123 6.4547 2.1160 11.7644
<<< 0 >>>

WorkOrders Terminator (a Terminator Object)
--

Time In System Statistics
Time of'initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 8.9428 2.6758 7.6722 3.5861 16.1805
<<< 0 >>>

Figure 23. (Continued)

136

Selects Terminator (a Terminator Object)

Time In System statistics
Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

448 5.1737 1.2679 6.2658 2.6510 9.1533
<<< 0 >>>

Bulk Parts Terminator (a Terminator Object)

Time In System Statistics
Time of initialization = 90.00
Current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.
----~--

448 5.1737 1.2679 6.2658 2.6510 9.1533
<<< 0 >>>

Reels Terminator (a Terminator Object)

Time In system statistics
Time of initialization = 90.00
current Time = 360

Total Obs. Avg Obs. Std Dev Last Obs. Min Obs. Max Obs.

445 7.2739 1.8192 7.1673 3.5040 13.0759

<<< 0 >>>

Figure 23. (Concluded)

CHAPTER VII

SIMULATION ENVIRONMENT EVALUATION

PROCEDURES

. I I

This chapter describes the simulation environment

evaluation approach developed and utilized as part of the

research. This includes sections on the criteria developed

andjor chosen, discussion of these criteria in relation to

the environments considered, and the desigp and execution of

the Analytic Hierarchy Process [Saaty, 1988] decision model.

Introduction

As the simulation evaluation strategies discovered

during the literature review were analyzed, the re,searcher

was struck by an encompassing theme present in all of these

resources. This theme can be basically summarized through

the following two steps:

1) (a) Evaluate simulation systems through tangible

considerations (measurable, quantitative

characteristics) as a group of disjoint criteria,

(b) Evaluate simulation systems through intangible

considerations (non-measurable, qualitative) as a group

of disjoint criteria, or

(c) Evaluate simulation systems through both tangible

137

and intangible considerations as a group of disjoint

criteria.

138

2) Upon completing one of choices la, lb, or lc, the

result shall be a group of distinct, possibly

conflicting, conclusions based on the different

criteria considered. The final conclusion (choice of a

simulation strategy to pursue) is then made through the

analyst's intuitive, unstructured combination of the

multiple conclusions.

This approach to simulation system evaluation is

deficient. A significant problem with the approach is that

the limited structure for the evaluation process dead ends

with a group of conclusions (typically conflicting) rather

than a single, final conclusion. An important segment of

the comparison and decision making process, namely, the

combination of the multiple conclusions into one final

conclusion is left as an undefined and unstructured, and

therefore, unrepeatable process. Through the use of the

Analytic Hierarchy Process (AHP) as a method for structuring

the multi-criteria decision problem, it is shown that this

shortcoming can be rectified.

In addition to the decision structure, a set of

alternatives P!Oviding feasible solutions to the problem

must also be determined. In this case, due to the nature of

the research, which is to develop a model or procedure for

the comparison of simulation environments, a representative

I', I I

139

set of environments shall be considered. This set shall be

composed of 1) traditional, special purpose simulation

systems and 2) OOP simulation systems. We may consider

systems such as SLAM and SIMAN as examples of the first

alternative. The second alternative shall be represented by

the OOP simulation system developed as a portion of this

research.

This portion of the research strives to evaluate

simulation systems through the use of both tangible and

intangible features within an orga~izing structure made up

of an Analytic Hierarchy Process decision model.

S~mulation System Evaluation

Criteria

As with any situation in which a comparison between

elements of a set of alternatives is required, a group of

criteria and any nece~sary constraints must be determined.

In the context considered here, in which a specific

situation (a system to model, a set of hardware to utilize,

etc.) is not part of the comparison process, it is

inappropriate to factor specific constraints into the

comparison. Therefore, the main focus of this section is to

discuss the criteria which aresignificant in measuring

the suitability of simulation systems.

The first step taken in developing a list, of

appropriate criteria was to address the various publications

140

in the area of simulation evaluation. For the most part,

criteria from these sources consisted of intangible features

but several publications addressed tangible measurements.

In a preliminary, consolidated format, the low level

criteria considered in one or more of these sources are:

General aspects

- Modeling flexibility
- Simulation language learning time
- Ease,of model development
- Managed model complexity
- Easily understood simulation models
- Self documenting code
- Modeling in multiple levels of detail
- Reusable model code
- Simple model modification
- Incremental model implementation
- Similarity between models and systems of interest
- The availability of flexible, easy-to-use modules for

modeling transporters,.AGVS, conveyors, AS/RS,
cranes, and robots ·

- Modeling approaches supported (event, process,
continuous)

- Debugging aids (interactive debugger, on-line help)
- Standard output reports but allow for tailored

reports
- Support for high quality graphical displays
- Model execution speed
- size of simulation model allowed

Statistical aspects

- Ability to model probability distributions, large
variety of standard distributions

- Allow distributions based on observed shop floor data
- Multiple stream random number generator
- Allow for multiple independent replications

(different random numbers starting from the same
state)

- Warm up period provisions

As one can observe, this list provides a rather complete

collection of features which might be considered when

comparing simulation systems. These criteria

141

form the nucleus around which the AHP model (discussed in

the next section) has been developed.

After using these criteria as a starting point and

remaining aware of the desire to structure an AHP model, it

was determined that the appropriate overriding simulation

evaluation aspects with which we are concerned are the

following: 1) Simulation modeler effectiveness, 2)

Usefulness and value of the simulation model, 3) Simulation

environment performance considerations, and 4) Simulation

language developer effectiveness. Thinking about each of

these in turn starting with simulation modeler

effectiveness, we see that this area is impacted by a

significant numbe.r of the low level criteria from the

previous list including:

- Modeling flexibility
- Simulation language learning time
- Ease of model development
- Managed model complexity
- Modeling in multiple levels of detail
- Reusable model code
- simple model modification
- Incremental model implementation
- Similarity between models and systems of interest
- The availability of flexible, easy-to-use modules for

modeling transporters, AGVS, conveyors, AS/RS,
cranes, and robots

- Modeling approaches supported (event, process,
continuous)

- Debugging aids (interactive debugger, on-line help)
- Standard reports but allow for tailored reports
- Ability to model probability distributions, large

variety of standard distributions
- Allow distributions based on observed shop floor data

Multiple stream random number generator
- Allow for multiple independent replications

(different random numbers starting from the same
state)

- Warm up period provisions

142

These characteristics have an impact on the amount of effort

the modeler must expend, on the validity of the modeler's

models, and on the ability to correctly ascertain system

measures of performance.

The second top level aspect, the usefulness and value

of the simulation model, is also impacted by many of the

same low level criteria in the list:

- Modeling flexibility
- Managed model complexity
- Easily understood simulation models
- Self documenting code
- Modeling in multiple levels of detail
- Reusable model code
- Simple model modification
- Incremental model implementation
- Similarity between models and systems of interest
- Modeling approaches supported (event, process,

continuous)
- Standard reports but allow for tailored reports
- Support for high quality graphical displays
- Ability to model probability distributions, large

variety of standard distributions
- Allow distributions based on observed shop floor data

These criteria impact the usefulness of the simulation model

by making model alteration and reuse simpler and less error

prone, by allowing the models to be easier to maintain by

successive analysts and to ex~lain and sell to decision

makers, and by improving the validity of completed models.

The third top level aspect, simulation environment

performance, are covered ~y a much smaller set of listed

criteria made up by:

- Model execution speed
- Size of simulation model' allowed

We note that these criteria are concerned with the highly

143

tangible characteristics most commonly used in simulation

environment comparisons.

The fourth and last top level aspect, the simulation

language developer effectiveness, is one which is not

commonly considered, and yet, is critical to the future

success of a particular simulation system. Consider for a

moment the dynamic character of any piece of software and it

is apparent that the effectiveness of the software developer

is of great importance. Both traditional and OOM simulation

environments are changing software systems which receive new

abilities through the efforts of the simulation language

developers. Lower level criteria (not mentioned

in the previous list) which impact this consideration

include:

- Base language features
- Software modularity
- Software reusability

The four top level considerations just described, 1)
-

Simulation modeler effectiveness, 2) Usefulness and value of

the simulation model, 3) Simulation environment performance

considerations, and 4) Simulation language developer

effectiveness, form the basis for an AHP decision model

developed and described in the next section of this chapter.

By separating these characteristics into more manageable

pieces and addressing the lower level characteristics

(listed roughly before) directly to the simulation

alternatives, a structured evaluation approach is achieved.

144

In addition to these criteria used in the AHP model,

several novel approaches to the task of tangible model

comparison were considered before being discarded as

infeasible. One approach discussed was to create three

separate systems of interest, small, medium, and large, and

to record for comparison the discrete steps or amount of

time taken while modeling each of the systems in the two

simulation language alternatives. This evaluation approach

was discarded as being invalid for several reasons. First,

it would be necessary to have a fully fleshed out OOM system

for the modeling exercise. Only in this manner could a fair

comparison to an established language be made. Secondly, in

order to carry out the experiment in a valid manner, a group

of modelers equally familiar with both evaluation

alternatives would be necessary. This was impossible to

accomplish in any reasonable time limit (less than 3 years)

due to the fact that an overwhelming majority of current

simulation practitioners have a background in procedural

languages and traditional simulation environments (SLAM,

SIMAN, GPSS, etc.). Finally, a comparison between

simulation approaches based on some small number of test

cases (systems of modeling interest) would be weakly

defensible at best, because it would be difficult to avoid

choosing a test case which was not easier to model in one

language than another. For these three reasons, this

approach, although intuitively attractive, was discarded as

being presently unmanageable and invalid.

145

Analytic Hierarchy Process (AHP)

Decision Model Development

The Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a methodology

developed by Dr. T. L. Saaty in the mid-1970's as a "multi-

objective, multi-criterion, decision making system employing

a pairwise c~mparison procedure to arrive at a scale of

preferences among sets of alternatives" [Saaty and Ramanujam

(1983)]. The methodology deals with complex decision

problems by providing a systematic approach to performing

the required mental processes through the modeling of any

problem as a hierarchy of interrelated elements.

Applications of the methodology have appeared in several

fields: economics and planning, energy policy making,

health, conflict resolution, etc.

The AHP procedure is presented in detail through a

general description and through its use in the simulation

environment evaluation in a later section of this chapter.

The AHP is made up of four steps: [Zahedi (1986)]

1) The decision hierarchy must be set up by breaking
the decision problem into a hierarchy of
interrelated decision elements.

2) The input data which is made up of pairwise
comparisons of the decision elements must be
determined.

3) The eigenvalues and eigenvectors of the matrices are
used to estimate the relative weights of the
decision elements.

4) The relative weights of the decision elements are
aggregated to result in a set of ratings for
decision alternatives.

146

During step 1, the decision problem must be broken down

into a hierarchy of interrelated decision elements.

At the top of the hierarchy lies the most macro
decision objective, such as the objective of making the
best decision (or selecting the best alternative). The
lower levels of the hierarchy contain attributes
(objectives} which contribute to the quality of the
decision. Details of these attributes increase at the
lower levels of the hierarchy. The last levels of the
hierarchy contain decision alternatives or selection
choices. (Zahedi (1986)]

A generalized hierarchical structure as described is

illustrated in Figure 24.

Once the complete hierarchy model is defined, the

analyst may proceed with step 2 of the AHP which is the

determination of the pairwise comparison matrices.

The judgment phase of the AHP requires the following
scale of absolute values (not ordinals) to express
judgments in making paired comparisons: 1, equal
(weight); 3, moderate; 5, strong; 7, very strong; 9,
extreme; 2, 4, 6, 8 for compromise; reciprocals for the
inverse comparison; and decimal refinements between, if
it is desirable to obtain a predetermined set of final
priorities. (Saaty (1987)]

During the judgment phase, the analyst must carry out

the comparisons.

The elements in the second level are arranged in a
matrix, and judgements are elicited as to the relative
importance of each criterion when compared to every
other criterion on that level. ~Saaty (1987)]

The generalized question here is as follows: For the best

problem solution, which second level criterion is considered

more important and in how strong a manner? In particular,

Level 1

Level 2

Level 3

Level k

Decision
Attribute

1

More ,detailed
decision
attribute

Decision
Alternative

1

Decision
Problem

Objective

Decision
Attribute

2

.

Decision
Alternative

2

Decision
Attribute

n

More detailed
decision
attribute

Decision
Alternative

m

Figure 24. Standard Format of an AHP Decision Model
[adapted from Z'ahedi (1986)]

147

for the evaluation of a simulation environment: For the best

choice of a simulation system, which criterion is more

important and how strongly do we favor it? In creating the

pairwise comparison matrices, the following procedure is

used:

A criterion X represented on the left is compared with
respect to a criterion Y represented on the top of the
matrix. If X is more important than Y, then a

148

numerical value greater that one is used in the (X,Y)
position. If Y is more important than X, then the
reciprocal of this value is used. The reciprocal of
whatever value is entered in the (X,Y) position
automatically is entered in the (Y,X) position. [Saaty
(1987)].

In a like manner, the elements in the next level down in the

hierarchy are subjected to pairwise comparisons. At each

level, there will be n(i-1) (the number of elements at level

i-1) pairwise comparison matrices with n(i) rows and columns

each (fewer if an incomplete hierarchy is being evaluated).

Each time the analyst is trying to answer (through the

appropriate assignment of relative weights) the question

"How important is this element at level i versus this other

element at level i in satisfying or facilitating the element

at level i-1 for which the comparison matrix is now being

built?"

Step 3 of the AHP consists of solving the pairwise

compari~on matrices for the eigenvalues and eigenvectors in

order to estimate the relative weights of the decision

elements.

The paired comparisons produce a ratio scale of weights
of the relative importance or priorities of the
criteria. Ratio scales are a strong class of numbers
whose ratios remain the-same when each of them is
multiplied by a constant •••• Ratio scales make it
possible not only to rank alternatives, but also to
allocate resources in proportion to the values in an
appropriate fashion. [Saaty (1987)]

The manner in which the ratio scales are derived from the

pairwise comparison matrices is as follows:

The argument for the solution methodology [Saaty] is as
follows. If the evaluator could know the actual
relative weights of n elements (at one level of the

149

hierarchy with respect to one level higher), the matrix
of pairwise comparisons would be:

1

2

A = 3

n

1

w{1) jw{1)

W {2) /W(1)

w{3) jw(1)

w(n) jw(1)

2 3

w(1)/w(2) w(1)/w(3)

w(2)/w(2) w(2)/w(3)

W (3) /W (2) W {3) /W {3)

w(n)jw(2) w(n)jw(3)

n

w(1)/w{n)

w(2)/w(n)

w(3)/w(n)

w{n)jw{n)

In this case, the relative weights could be trivially
obtained from each one of the n rows of matrix A. In
other words, matrix A has rank 1; and the following
holds:

A * W = n * W

where W = {w{1), w{2), ••• , w{n))T is the vector of
actual relative weights, and n is the number of
elements. In matrix algebra, n and W are called the
eigenvalue and the right eigenvector of matrix A.

AHP posits that the evaluator does not know W and,
therefore, is not able to produce the pairwise relative
weights of matrix A accurately. Thus, the observed
matrix A contains inconsistencies. The estimation of W
{denoted as W) could be obtained similarly to [the
above equation) from:

i * 'W = lambda {max)
A * w,

where~ is the observed matrix of pairwise comparisons,
lambda{max) is the large~t eigenvalue of~' and~ is
its right eigenvector. W constitutes the estimation of
w. [Zahedi {1986)) '

Lambda{max) may be considered the estimation of
n in [the above equation). Saaty has shown that
lambda{max) is always greater than or equal to n. The
closer the value of cpmputed lambda{max) is to n, the
more consistent are the observed values of~. This
property has led to the constructi~n of the consistency
index (CI) as:

CI = {lambda(max) - n) I (n - 1)

and of the consistency ratio (CR) as:

150

CR = {CI I ACI) * 100,

where ACI is the average index of randomly generated
weights [for a matrix of similar size]. As a rule of
thumb, a CR value of 10 percent or less is considered
acceptable. Otherwise, it is recommended that~ be
re-observed to resolve inconsistencies in pairwise
comparisons. [Zahedi {1986)]

The estimation of W can be achieved through several

different methods, of which one is:

Divide the elements of each column by the sum of that
column (i.e., normalize the column) and then.add the
elements in each resulting row and divide this sum by
the number of elements on the row. This is a process
of averaging over the normalized columns. [Saaty
{1988)]

The final step of the AHP is the aggregation of the

relative weights into measures of the solution alternatives.

These final priorities are attained by weighting the

relative values through the hierarchy and summing the totals

for each decision alternative and normalizing the results

(to sum to 1). More formally,

the composite relative weight vector of elements at the
kth level with respect to that of the first
level may be computed from:

k
C[1,k] =1TB(i),

i=2

where C[1,k] is the vector of composite weights of
elements at level k with respect to the element on
level 1, and B(i) is the n(i-1) by n(1) matrix with
rows consisting of estimated ~vectors. n(i)
represents the number of elements at level i and is the
same as n in [previous equation] but is subscripted to
show that it belongs to level i. [Zahedi {1986)]

The benefits of the AHP applied to decision problems in

general, and simulation environment evaluation in

151

particular, are several. The hierarchical approach to

modeling decision problems can be a beneficial procedure

because it ensures that all decision elements are explicitly

considered. The modeling process allows the analyst to

fully refine the problem situation. In addition, the

developed model allows the problem considerations to be

effectively communicated to others affected by the analysis.

AHP Simulation Evaluation Decision Model

The development of the AHP model was an extremely time

consuming and highly thought-intensive process. In general,

the researcher came up with a preliminary structure and

utilized the knowledge of the evaluation group to validate

and adjust the model structure and linkages. The evaluation

group consisted of four individuals, Dr. Joe H. Mize

(Regents Professor in Industrial Engineering), Cem Karacal

(Ph.D. candidate in Industrial Engineering), Chuda Basnet

(Ph.D. candidate in Industrial Engineering), and the author.

It should be pointed out that the.decision hierarchy design

was a thoroughly iterative process. In fact, the final

decision model presented in this section re~resents a

significant revision of an earlier hierarchy. This

prototype hierarchy had 4 levels and was in the

prioritization stage when the evaluation group determined

that there was a need to reconsider the node definitions in

the third level due to perceived lateral dependency among

nodes. The reevaluation and alteration was performed using

152

this prototype hierarchy as the design foundation. Upon

completion, the final hierarchy represented a significant

change over the prototype hierarchy, including a reduction

in the number of level 2 nodes and the addition of another

intermediate attribute level. This adjustment was made with

extreme care being taken to avoid any lateral dependency

between nodes in the levels. Also, the redesign was

effective because it took advantage of the partially

completed first prioritization session, which indicated the

location of problems in the prototype hierarchy when

difficulties in setting pairwise evaluations were

encountered.

The final AHP decision model developed for the

comparison of simulation environments uses the four top

level attributes listed in the second section of Chapter

VII: 1) Simulation modeler effectiveness, 2) Usefulness and

value of the simulation model, 3) Simulation environment

performance considerations, and 4) Simulation language

developer effectiveness, as the partition for level 2 in the

hierarchy. Level 3 of the AHP model is composed of thirteen

detailed attributes relat,ing directly to level 2 above and

to level 4, composed of 20 highly detailed attributes,

below. The attributes listed in levels 3 and 4 were

distilled andjor synthesized from those discussed in Section

2 of this chapter. The linkages between levels 2, 3, and 4

have been specified only when a lower level node has a

possibility of affecting the achievement of an upper level

153

characteristic. Level 5 in the AHP model is composed of the

two decision alternatives, traditional simulation systems

and OOP simulation systems. Figure 25 graphically depicts

the structure of the decision model.

The definitions of each of the nodes in the decision

model and the discussion of the linkages between the nodes

are as follows:

Level 1 - Problem Statement

1-1) Simulation Approach. The problem area that we are

concerned with is 'the choice of the best simulation

approach. The viewpoint from which this decision shall be

made is that of a combined simulation system user and

developer. In addition, the pairwise comparison weights for

this decision problem are assigned from the viewpoint of a

company which has a committed, long term effort to utilize

simulation as a system planning tool (This coincides with

the new orientation of simulation models as multiple use

efforts).

Level ~ = Major Considerations

2-1) Simulation language developer effectiveness in

simulation language extension. This important criterion in

the decision problem addresses the ability of developers to

extend the simulation language capabilities through the

addition of significant new features. This person or task

within the structure of the simulation system involves the

Level 1

(Choice of Best Simulation System)

Level 2

Level 3

Level 4

Level 5

(Traditional Simulation System) (OOP Simulation System)

Figure 25. AHP Simulation Language Comparison Model

155

implementation of significant changes and additions to the

entire software system, not merely software development for

the creation of a specific new simulation model. Level 3

attributes are evaluated pairwise in their impact on

increasing the effectiveness of the simulation language

developer.

Upward links - 1-1

As could be anticipated, each of the nodes at level 2,

2-1 through 2-4, will be linked to the single top level

node, 1-1, to allow the interrelationships accounted for in

the lower linkages to factor into the final decision.

2-2) simulation model developer effectiveness/Model

development effort. This area in the decision problem is

concerned with the effectiveness of the efforts of

simulation model developers (how effective are their

efforts). The person or task associated with simulation

model development is involved in the use of currently

available constructs and the implementation of reasonably

simple new constructs (new base code) within the development

of useful simulation models. Level 3 attributes are

evaluated pairwise in their impact on increasing the model

developer effectiveness andjor decreasing the model

development effort required for a given system.

Upward links - 1-1

2-3) Model effectiveness. This area of the decision

problem concerns the ability of a developed model to fulfill

156

its various needs (provide measures of system performance,

facilitate presentation of results, meet future modeling

extensions, alteration, and reuse needs, etc.} within the

system planning, implementation, and operation task. Level

3 attributes are evaluated pairwise on their importance

toward increasing model effectiveness.

Upward links - 1-1

2-4) Performance considerations. This system aspect

addresses basic hardware related performance measures

(memory size, execution speed, etc.}. Level 3 attributes

impacting this criterion are compared pairwise on how

important they are in system performance as a whole.

Upward links - .1-1

Level ~ - Detailed Criteria

3-1) Full featured base language. This criterion

considers the features of the base language in providing a

foundation from which to build software. The pairwise

comparison of features is completed based on their relative

importance for inclusion in a base language.

Upward links - 2-1,2-2

This node has upward'links to two of the nodes in level

2, namely simulation language developer effectiveness and

simulation model developer effectiveness, because both of

these tasks involve some effort in base language coding.

157

3-2) Software life cycle management and change control

features. This aspect considers the impact of specific

features in level 4 on the ability to control software

changes throughout the growth of a software system.

Specifically, because our concept of a simulation

environment is that of a growing, changing system, we must

consider software change management to be an important

capability. Attributes in level 4 are evaluated against one

another in their ability to increase the manageability of

software changes.

Upward links - 2-1

Primary, long-term changes to the simulation system are

the purview of the simulation language developer. Only

through this task do environment enhancements become

formalized and widely available. Abilities in software

change management, therefore, have an effect on language

development and negligible effect on the other nodes in

level 2.

3-3) Development support environment. This criterion

refers to the type of environment in which simulation

language and model development is performed. Items which

are considered to have a positive impact include debugging

abilities, code libraries, data structure support, etc. The

items in level 4 which are linked to this node will be

evaluated pairwis·e on their ability to support base language

software implementation.

Upward links - 2-1,2-2

158

Support of base language software development affects

the ability of devel0pers and modelers in accomplishing

their tasks, which to a greater and lesser degree,

respectively, involve the implementation of new code in the

base language.

3-4) Extension and reuse of software development

efforts. This criterion gathers together level 4 features

which affect the ability to extend and re-apply previously

developed base language software~ This attribute greatly

increases the value of developed software.

Upward links - 2-1,2-2

Again, the level 2 nodes which include base language

software development aspects are the language and model

developer effectiveness. This ability has no addressable

effect on either model effeetiveness or performance

considerations.

3-5) Simulation language knowledge/learning effort

required. Attributes present in level 4 which impact the

amount of knowledge needed to use a simulation system (and

the effort required to learn the system) are addressed

within this characteristic.

Upward links - 2-2

This consideration has appreciable impact on the

effectiveness of the simulation modeler and no impact on the

other level 2 criteria.

159

3-6) Simulation language features. Different

simulation language abilities (i.e., debugging support,

statistical support, etc.) possess different levels of

importance in supporting simulation modeling. This category

allows the importance of various available features to be

interrelated to one another and related to higher level

effectiveness. The features to which this node is connected

in level 4 are compared pairwise on their importance in

providing a complete simulation environment.

Upward links - 2-2,2-3

Improved simulation language features, represented by

this node in the decision model, can influence both the

modeler and model effectiveness.

3-7) Ability to communicate model structure and

features. Of importance in simulation modeling is the

ability for humans to exchange thoughts on the structure and

features of a model. Level 4 attributes are compared

pairwise on their ability to improve the communicability of

simulation models.

Upward links - 2-2,2-3

Simulation modeler effectiveness ,and model

effectiveness are both improved by an increased ability to

communicate the structure of a simulation model.

3-8) Amount of modeling abstraction required/Degree of

correspondence to the real system. Model abstraction refers

to the degree to which the representation of the system (the

160

simulation model) is conceptually removed from the actual

system. As model abstraction increases, the degree of model

correspondence to the real system decreases. This node

relates specific features (at lower levels) having an effect

on the abstraction required in the modeling process.

Upward links - 2-2,2-3

Because the impact of reductions in modeling

abstraction is to improve the effectiveness of modelers and

models, this criterion is linked to nodes 2 and 3 in the

second level.

3-9) Model extension, alteration, and reuse. This

criterion provides for the comparison of items which impact

the ability of specific models or portions of models to be

used through a change process (extension = minor change,

alteration= moderate change, reuse= significant change).

Upward links - 2-2,2-3

This important characteristic obviously has

considerable impact on the effectiveness of both the modeler

and model effectiveness.

3-10) Provision for high level combination/Model

complexity management. This criterion addresses

the kinds of features for development of higher level

constructs (the grouping of model portions in a way that

supports the conceptual grouping of a system) that are

available and the manner in which new constructs fit

in with the normal simulation model specification mode.

161

Upward links - 2-2,2-3

As provisions for system groupings and the conceptual

ease with which they may be used increases, both modeler

and model effectiveness improve.

3-11) Size of model supported. This memory

characteristic considers how efficiently computer memory is

used in simulation model representation and execution. The

viewpoint addresses the relative size of models which may

exist within a basic PC.

Upward links - 2-4

This attribute links to the performance considerations

criterion in level 2 and directly to the two simulation

alternatives in level 5.

3-12) Basic memory requirements. Another computer

memory consideration, this characteristic addresses the

amount of memory needed to run the simulation environment

for the smallest of models.

Upward links - 2-4

Again, this attribute links to the performance

considerations criterion in level 2 and directly to the two

simulation alternatives in level 5.

3-13) Execution speed. Another performance

consideration is the execution time required for simulation

models of a particular system.

Upward links - 2-4

Again, this attribute links to the performance

162

considerations criterion in level 2 and directly to the two

simulation alternatives in level 5.

Level ~ = Simulation system Attributes

4-1) Graphics/User interface capability. For the

extension of capabilities into new features, particularly

for simulation environment enhancements, support for

graphics or enhanced interfaces within the base language is

important.

Upward links - 3-1,3-3

In addition to being a base language feature (and

linking to node 3-1), this capability also has an effect on

the development support environment (therefore,- the link to

node 3-3).

4-2) Ease of learning the base language. This

attribute is important to consider because both developers

and modelers shall be working to .some degree in the base

language.

Upward links - 3-1,3-2,3-3,3-4

Linkages to level 3 are: base language features (3-1),

software change management (3-2), development support

environment (3-3), and software extension and reuse (3-4).

4-3) Integrated software toolset (prototyping, language

debugging, etc.). This attribute addresses the type of

environment provided by the base language for software

development.

163

Upward links - 3-1,3-2,3-3,3-4,3-9

Level 3 linkages are: base language features (3-1),

software change management (3-2), development support

environment (3-3), software extension and reuse (3-4), and

model extension, alteration, and reuse (3-9).

4-4) Access to stand alone code libraries. The ability

to develop and use complex data types and related software

in the base language as stand alone units is an important

feature. This feature is comparable to software primitive

libraries (in procedural languages) and object oriented

classes (in COP languages).

Upward links - 3-1,3-2,3~3,3-4,3-5,3-9,3-10

Level 3 linkages are: base language features (3-1),

software change management (3-2), development support

environment (3-3), software extension and reuse (3-4),

model extension, alteration, and reuse (3-9), and provision

for high level combination/model complexity management (3-

10) 0

4-5) Code reusability. This attribute refers to the

ability to incorporate portions of already developed base

language software within a stand alone unit. The attribute

is comparable to the inheritance feature in COP systems.

Upward links - 3-2,3-3,3-4,3-5,3-9

The ability to reuse code in this manner influences

software change management (3-2), development support

environment (3-3), software extension and reuse (3-4),

simulation language knowledge/learning effort required

(3-5), and model extension, alteration, and reuse (3-9).

164

4-6) Software modularity. An important attribute for

both base language and model software is addressed by this

node, software modularity. As the modularity of developed

software in the base language and modeling language changes,

many characteristics in level 3 are impacted (defined by the

links).

Upward links - 3-2,3-3,3-4,3-5,3~9,3-10

The impact of software modularity is seen in the level

3 nodes: software change management (3-2), development

support environment (3-3), software extension and reuse

(3-4), simulation language knowledge/learning effort

required (3-5), model extension, alteration, and reuse

(3-9), and provision for high level combination/model

complexity management (3-10).

4-7) High level model language. The presence of a high

level model specification method (either iconic or brief

textual) has become the standard for model implementation.

Therefore, this attribute, the conceptual level of

typical simulation model specification, must be accounted

for in any evaluation.

Upward links - 3-5,3-6,3-7,3-8,3-9,3-10

Characteristics affected by the presence of a high

level specification language are: simulation language

knowledge/learning effort required (3-5), basic simulation

165

language abilities (3-6), ability to communicate model

structure (3-7), modeling abstraction re~iredjdegree of

model correspondence to the real system (3-8), model

extension, alteration, and reuse (3-9), and provision for

high level combination/model complexity management (3-10).

4-8) Structured model development approach. The

ability to implement simulation m9dels in a structured

manner is a positive feature. By increasing the structure

of the model development process, the consistency of

resulting simulation models is increased.

Upward links- 3-5,3-6,3-7,3-8,3-9

Influences of structured model specification include

decreased simulation language knowledge/learning effort

required (3-5), improved basic simulation language abilities

(3-6), an improved ability to communicate model structure

(3-7), reduced modeling abstraction (3-8), and increased

model extension, alteration, and reuse capacity (3-9).

4-9) Output provisions. This simulation system

attribute refers to the level of simulation environment

support for both standard and special results output.

Upward links - 3-5,3-6,3-7

This attribute influences the amount of simulation

language knowledge/learning effort required (3-5) and the

ability to communicate model structure and features (3-7),

and is one basic simulation language ability (3-6).

166

4-10) Model debugging support/verification. This

attribute addresses the features provided for model

debugging and verification and the degree of effectiveness

achieved by these features.

Upward links - 3-5,3-6,3-9,3-10

Simulation environment characteristics which this

attribute affects include: simulation language

knowledge/learning effort required (3-5), basic simulation

language abilities (3-6), model extension, alteration, and

reuse (3-9), and provision for high level combination/model

complexity management (3-10).

4-11) Statistical support. Obviously, provisions

within a simulation environment for the generation and use

of random numbers are necessary and important. This

attribute considers the level of random number

(distributions, separate streams, clearing, etc.) support

provided by the environment.

Upward links - 3-5,3-6

The impact of this simulation attribute is seen at

level 3 in the decision hierarchy in the two

characteristics: simulation language knowledge/learning

effort required (3-5) ·and basic simulation language

abilities (3-6).

4-12) Incorporation of special code implementation and

"packaging" within models/Extension of high level

constructs. This environment feature refers to the ease

with which new base language coding can be included in a

simulation model and how well (conceptually) the new base

code links to the rest of the model.

Upward links - 3-4,3-5,3-6,3-7,3-8,3-9,3-10

167

The ability to package new base language code

seamlessly into models and extend already present high level

constructs is important for the achievement of a number of

characteristics at level 3 of the decision model. These

are: software extension and reuse (3-4), simulation language

knowledge/learning effort required (3-5), basic simulation

language abilities (3-6), ability to communicate model

structure (3-7), modeling abstraction required/degree of

model correspondence to the real system (3-8), model

extension, alteration, and reuse (3-9), and provision for

high level combination/model complexity management (3-10).

4-13) Specialized component support at s high level.

In addition to supporting model development thro~gh high

level constructs, an important consideration is the presence

of a full complement of high level language features. This

attribute specifically considers the simulation of typically

"difficult" equipment (material handling, AGVS, conveyors,

etc.)

Upward links - 3-5,3-6,3-7,3-8,3-9

This attribute has impact in the level 3

characteristics: simulation language~knowledgejlearning

effort required (3-5), basic simulation language abilities

(3-6), ability to communicate model structure (3-7),

168

modeling abstraction required/degree of model correspondence

to the real system (3-8), and model extension, alteration,

and reuse (3-9).

4-14) Provisions for different levels of modeling

detail. In certain mo,deling situations it may be

appropriate to model portions of the system of interest with

a high level of detail and other portions in an aggregate

manner. This attribute refers to the conceptual and actual

ability to achieve this goal within the simulation system.

Upward links- 3-5,3-6,3-7,3-8,3-9,3-10

Level 3 characteristics where this attribute has an

impact include: simulation language knowledge/learning

effort required (3-5), basic simulation language abilities

(3-6), ability to communicate model structure (3-7),

modeling abstraction required/degree of model correspondence

to the real system (3-8), model extension, 'alteration, and

reuse (3-9), and provision for high level combination/model

complexity management (3-10).,

4-15) Access to model code/On-line documentation.

Another environment attribute which is considered in this

evaluation is the ability to access the source code (or some

type of highly detailed documentation) for the simulation

environment.

Upward links - 3-5,3-6

Affected level 3 criteria include the amount of

simulation language knowledge/learning effort required (3-5)

169

and basic simulation language abilities (3-6).

4-16) Modeling approaches supported. Most important in

a simulation system is the presence of a process oriented

specification mode (high level representation). Of

additional importance is the ability to perform modeling in

terms of the other two world v~ews, continuous and discrete

event. This attribute in the decision model accounts for

this ability.

Upward links - 3-5,3-6,3-8

The ability to model sys.tems using multiple

orientations affects level 3 characteristics: simulation

language knowledge/learning effort required (3-5), basic

simulation language abilities (3-6), and modeling

abstraction required/degree of model correspondence to the

real system (3-8).

4-17) Model code read~bility. Although not a primary

concern itself, the readability or understandability of a

simulation model representation scheme influences a number

of aspects in simulation environment effectiveness.

Upward links - 3-5,3-6,3-7

Model language readability has influence in these level

3 criteria: simulation language knowledge/learning effort

required (3-5), basic simulation language abilities (3-6),

and ability to communicate model structure (3-7).

4-18) Information and decision processes modules. Of

recent interest in simulation modeling is support for

structured and non-structured decision support model

components and centralized model database features. This

attribute considers these types of features which may be

supported by a simulation system.

Upward links- 3-5,3-6,3-7,3-8,3-9,3-10

170

The availability of these types of features impacts the

following level 3 nodes: simulation language

knowledge/learning effort required (3-5), basic simulation

language abilities (3-6), ability to communicate model

structure (3-7), modeling abstraction required/degree of

model correspondence to the real system (3-8), model

extension, alteration, and reuse (3-9), and provision for

high level combination/model complexity management (3-10).

4-19) Validation: Model operation correspondence to the

real system. Another consideration in the evaluation of

modeling systems addresses the enhancement of the model

validation process through the degree of model operation

correspondence to the real syst~m. As model operation

becomes conceptually closer to that of the real system, a

number of criteria in level 3 are positively affected.

Upward links- 3-7,3-8,3-10,

The level 3 nodes affected are: ability to communicate

model structure (3-7), modeling abstraction required/degree

of model correspondence to the real system (3-8), and

provision for high level combination/model complexity

management (3-10).

J

171

4-20) Physical component representation correspondence.

In the same manner as model operation correspondence, model

representation correspondence to the real system can improve

model validation and understanding. This attribute refers

to the degree of correspondence between the real system and

model representation (i.e., one-to-one relationship between

modeling elements and real system elements).

Upward links- 3-7,3-8,3-10

The level 3 nodes affected are: ability to communicate

model structure (3-7), modeling abstraction required/degree

of model correspondence to the real system (3-8), and

provision for high level combination/model complexity

management (3-10).

Level .2 - Solution Alternatives

5-l) Traditional, special purpose simulation systems.

This solution alternative represents the standard simulation

system typically used in discrete event modeling, of which,

a number of commercial systems are available.

Upward links - all at level 4 plus 3-11, 3-12, and 3-13

5-2) OOP simulation system. This solution alternative

represents the new OOP simulation system, for which the

prototype system was developed.

Upward links - all at level 4 plus 3-11, 3-12, and 3-13

172

Summary

This section has presented a brief introduction to the

Analytic Hierarchy Process and fully described the structure

of the AHP simulation environment comparison model. In t~e

next section, the pairwise comparison matrices determined

during the AHP model evaluation phase are shown along with the

results of the weight composition process. In addition to

this AHP evaluation, an evaluation discussion of the two

simulation alternatives is also presented.

Evaluation of Modeling

Environments

AHP Decision Model Analysis

In order to complete the analysis of the AHP simulation

environment comparison model, a group of four individuals

(the author, his major advisor, and two other doctoral

students) experienced in simulation, worked through the

prioritization process for the entire decision model. During

this weighting process, the participants were careful to

thoroughly discuss the criteria or attributes being considered

and to agree on the assigned weights. In addition, upon

completion and entry into a previously prepared spreadsheet,

each matrix was addressed to ensure that consistent weights

had been assigned. Two of the weighting matrices were

reevaluated due to an excessive level of inconsistency. The

pairwise priority matrices determined in this manner are

presented in Tables 2 through 39.

173

The prepared AHP calculation spreadsheets calculate the

priorities from each of the completed matrices (in addition

to checking matrix consistency). These priority vectors were

then combined into the appropriate matrices which were

multiplied together to yield the solution alternatives

priority vector which· is listed in Table 40. The AHP

calculation spreadsheets and the weight composition

spreadsheet are contained in Appendix c.

TABLE 2

NODE 1-1 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

1-1 Simulation Approach
Lower level connections:

1) Simulation language developer effectiveness in
simulation language extension, 2-1

2) Simulation ~pdel developer effectiveness/Model
development effort, 2-2

3) Model effectiveness, 2-3
4) Performance considerations, 2-4

Pairwise weights
Col 1 2 3 4

Row
1 1.000 0.250 0.200 5.000
2 4.000 1.000 0.500 7.000
3 5.000 2.000 1. 000' 9.000
4 0.200 0.143 0.111 1. 000

TABLE 3

NODE 2-1 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

2-1 Simulation language developer effectiveness in
simulation language extension
Lower level connections:

1) Full featured base language, 3-1
2) Software life cycle management and change

control features, 3-2
3) Development support environment, 3-3
4) Extension and reuse of software development

efforts, 3-4

Pairwise weights
Col 1 2 3 4

Row
1 1.000 0.333 0.200 0.;333
2 3.000 1.000 0.333 0.500
3 5.000 3.000 1~000 1.000
4 3.000 2.000 1. 000 1.000

TABLE 4

NODE 2-2 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

2-2 Simulation model developer effectiveness/Model development effort
Lower connections:

1) Full featured base language, 3-1
2) Development support environment, 3-3
3) Extention and reuse of software development efforts, 3-4
4) Simulation language knowledge/learning effort required, 3-5
5) Simulation language features, 3-6
6) Ability to communicate model structure and features, 3-7
7) Amount of modeling abstraction required/Degree of correspondence to the real

system, 3-8
8) Model extension, alteration, and reuse, 3-9
9) Provision for high level combination/Model complexity management, 3-10

Pairwise weights
Col 1 2 3 4 5 6 7 8 9

Row
1 1.000 0.200 0.333 0.167 0.143 0.143 0.111 0.200 0.250
2 5.000 1.000 2.000 0.333 0.200 0.200 0.143 0.500 0.500
3 3.000 0.500 1.000 0.200 0.200 0.200 0.143 0.250 0.333
4 6.000 3.000 5.000 1.000 1.000 0.500 0.333 2.000 3.000
5 7.000 5.000 5.000 1.000 1.000 0.333 0.200 2.000 4.000
6 7.000 5.000 5.000 2.000 3.000 1.000 0.333 2.000 4.000
7 9.000 7.000 7.000 3.000 5.000 3.000 1.000 5.000 7.000
8 5.000 2.000 4.000 0.500 0.500 0.500 0.200 1.000 3.000
9 4.000 2.000 3.000 0.333 0.250 0.250 0.143 0.333 1.000

174

I I I

TABLE 5

NODE 2-3 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

2-3 Model effectiveness
Lower level connections:

1) Simulation language features, 3-6
2) Ability to communicate model structure and

features, 3-7

175

3) Amount of modeling abstraction required/Degree
of correspondence to the real system, 3-8

4) Model extension, alteration, and reuse, 3-9
5) Provision for high level combination/Model

complexity management, 3-10
Pairwise weights

Co~ 1 2 ~ 4 5
Row

1 1.000 0.143 0.143 0.143 0.333
2 7.000 1.000 0.500 1.000 5.000
3 7.000 2.000 1.000 2.000 5.000
4 7.000 1.000 0.~00 1.000 4.000
5 3.000 0.200 0.200 0.250 1.000

TABLE 6

NODE 2-4 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

2-4 Performance considerations
Lower level connections:

1) Size of model supported, 3-11
2) Basic memory requirements, 3-12
3) Execution speed, 3-13

Pairwise we,iglits'
Col 1 2 3

Row
1 ·1. 000 ~5. 000 3.000
2 0.200 1.000 0.333
3 0.333 3.000 1.000

TABLE 7

NODE 3-1 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-1 Full featured base language
Lower level connections:

1) Graphics/User interface capability, 4-1
2) Ease of learning the base language, 4-2
3) Integrated software toolset, 4-3
4) Access to stand alone code libraries, 4-4

Pairwise weights
Col 1 2 3 4

Row
1 1.000 3.000 0.250 0.200
2 0.333 1.000 0.125 0.143
3 4.000 8.000 1.000 0.333
4 5.000 7.000 3.000 1.000

TABLE 8

NODE 3-2 LOWER LEVEL CO~NECTIONS PAIRWISE COMPARISONS

3-2 Software life cycle management and change control
features
Lower level connections:

1) Ease of learning the base language, 4-2
2) Integrated software toolset, 4-3
3) Access to stand alone code libraries, 4-4
4) Code reusability, 4-5
5) Software modularity, 4-6

Pairwise weights
Col 1 2 3 4 5

Row
1 1.000 0.111 0.200 0.333 0.143
2 9.000 1.000 5.000 7.000 4.000
3 5.000 0.200 1.000 3.000 0.250
4 3.000 0.143 0.333 1.000 0.167
5 7.000 0.250 4.000 6.000 1.000

176

177

TABLE 9

NODE 3-3 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-3 Development support environment
Lower level connections:

1) Graphics/User interface capabilities, 4-1
2) Ease of learning the base language, 4-2
3) Integrated software toolset, 4-3
4) Access to stand alone code libraries, 4-4
5) Code reusability,, 4-5
6) Software modularity, 4-6

Pairwise weights
Col 1 2 3 4 5 6

Row
1 1. 000 2.000 0.111 0.143 0.250 0.200
2 0.500 1.000 0.111 0.167 0.250 0.200
3 9.000 9.000 1.000 5.000 7.000 5.000
4 7.000 6.000 0.200 1.000 3.000 1.000
5 4.000 4.000 0.143 0.333 1.000 0.333
6 5.000 5.000 0.200 1.000 3.000 1.000

TABLE 10

NODE 3-4 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-4 Extension and reuse of software development efforts
Lower level connections:

1) Ease of learning the· base language, 4-2
2) Integrated software toolset, 4-3
3) Access to stand alone code libraries, 4-4
4) Code reusability, 4-5
5) Software modularity, 4-6 ,
6) Incorporation of special code implementation and

"packaging" within models/Extension of high level
constructs, 4-12

Pairwise weights

Row
Col 1 2 3 4 5 6

1
2
3
4
5
6

1.000
7.000
7.000
6.000
5.000
6.000

0.143 0.143
1.000 0.200
5.000 1.000
3.000 0.200
3.000 0.333
5.000 0.500

0.167 0.200 0.167
0. 333, 0.333 0.200
5.000 3.000 2.000
1.000 1.000 0.500
1.000 1.000 1.000
2.000 1.000 1.000

178

TABLE 11

NODE 3-5 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-5 Simulation language knowledge/learning effort required
Lower level connections:

1) Access to stand alone code libraries, 4-4
2) Code reusability, 4-5
3) software modularity, 4-6
4) High level model language, 4-7
5) Structured model development approach, 4-8
6) Output provisions, 4-9
7) Model debugging support/verification, 4-10
8) Statistical support, 4-11
9) Incorporation of special code implementation and "packaging" within models/Extension

of high level constructs, 4-12
10) Specialized component support at a hi,gh level, 4-13
11) Provision for different levels of model'ing detail, 4-14
12> Access to model code/On-line documentation, 4-15
13) Modeling approaches supported, 4-16,
14) Model code readability, 4-17
15) Information and decision processes ffiodules, 4-18

Pairwise weights
Col 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Row
1 1.00 3.00 1.00 0.11 0.14 0.33 0.20 0.33 1.00 0.14 0.33 0.33 0.50 0.25 0.50
2 0.33 1.00 1.00 0.11 0.14 0.33 0.20 0.20 3.00 0.14 0.50 0.25 0.33 0.20 0.25
3 1.00 1.00 1.00 0.11 0.14 0.33 0.20 0.20 3.00 0.14 0.50 0.25 0.33 0.25 0.20
4 9.00 9.00 9.00 1.00 3.00 5.00 3.00 5.00 9.00 4.00 7.00 7.00 5.00 5.00 3.00
5 7.00 7.00 7.00 0.33 1.00 3.00 1.00 3.00 5.00 0.33 3.00 3.00 3.00 3.00 0.25
6 3.00 3.00 3.00 0.20 0.33 1.00 0.50 1.00 3.00 0.20 0.33 0.33 0.33 0.33 0.20
7 5.00 5.00 5.00 0.33 1.00 2.00 1.00 3.00 5.00 0.20 1.00 0.50 0.33 0.33 0.20
8 3.00 5.00 5.00 0.20 0.33 1.00 0.33 1.00 3.00 0.20 0.33 0.33 0.33 0.33 0.20
9 1.00 0.33 0.33 0.11 0.20 0.33 0.20 0.33 1.00 0.14 0.25 0.20 0.20 0.20 0.14
10 7.00 7.00 7.00 0.25 3.00 5.00 5.00 5.00 7.00 1.00 5.00 4.00 5.00 5.00 2.00
11 3.00 2.00 2.00 0.14 0.33 3.00 1.00 3.00 4.00 0.20 1.00 0.33 0.33 0.33 0.20
12 3.00 4.00 4.00 0.14 '0.33 3.00 2.00 3.00 5.00 0.25 3.00 1.00 1.00 0.50 0.33
13 2.00 3.00 3.00 0.20 0.33 3.00 3.00 3.00 5.00 0.20 3.00 1.00 1.00 0.50 0.20
14 4.00 5.00 4.00 0.20 0.33 3.00 3.00 3.00 5.00 0.20 3.00 2.00 2.00 1.00 0.20
15 2.00 4.00 5.00 0.33 4.00 5.00 5.00 5.00 7.00 0.50 5.00 3.00 5.00 5.00 1.00

179

TABLE 12

NODE 3-6 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-6 Simulation language features
Lower level connections:

1) High Level model Language, 4-7
2> Structured model development approach, 4-8
3) Output provisions, 4-9
4) Model debugging support/verification, 4·10
5) Statistical support, 4·11 ·
6) Incorporation of special code implementation and "packaging" within models/Extension

of high Level constructs, 4·12
7) Specialized component support at a high Level, 4·13
8) Provisions for different Levels of modeling detail, 4-14
9) Access to model code/On-Line documentation, 4·15

10) Modeling approaches supported, 4·16
11) Model code readability, 4·17
12> Information and decision processes modules, 4-18

Pairwise weights
Col 1 2 3 4 5 6 7 8 9 10 11 12

Row
1 1.00 7.00 3.00 1.00 3.00 7.00 3.00 5.00 4.00 4.00 7.00 5.00
2 0.14 1.00 0.33 0.20 0.20 3.00 0.25 1.00 0.50 0.20 1.00 0.33
3 0.33 3.00 1.00 0.33 1.00 5.00 0.50 5.00 3.00 0.50 2.00 2.00
4 1.00 5.00 3.00 1.00 3.00 5.00 3.00 5.00 5.00 2.00 4.00 3.00
5 0.33 5.00 1.00 0.33 1.00 4.00 3.00 5.00 5.00 2.00 5.00 3.00
6 0.14 0.33 0.20 0.20 0.25 1.00 0.20 0.25 0.20 0.14 0.20 0.25
7 0.33 4.00 2.00 0.33 o:33 5.00 1.00 3.00 2.00 0.33 5.00 0.50
8 0.20 1.00 0.20 0.20 0.20 4.00 0.33 1.00 0.33 0.20 0.33 0.20
9 0.25 2.00 0.33 0.20 0.20 5.00 0.50 3.00 1.00 0.20 0.50 0.20
10 0.25 5.00 2.00 0.50 0.50 7.00 3.00 5.00 5.00 1.00 5.00 3.00
11 0.14 1.00 0.50 0.25 0.20 5.00 0.20 3.00 2.00 0.20 1.00 0.33
12 0.20 3.00 0.50 0.33 0.33 4.00 2.00 5.00 5.00 0.33 3.00 1.00

180

TABLE 13

NODE 3-7 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-7 Ability to communicate model structure and features
Lower level connections:

1) High level model language, 4-7
2) Structured model development approach, 4-8
3) Output provisions, 4-9
4) Incorporation of special code implementation and "packaging" within models/Extension

of high level constructs, 4-12
5) Specialized component support at a high level, 4-13
6) Provisions for different levels of modeling detail, 4-14
7) Model code readability, 4-17
8) Information and decision processes modules, 4-18
9) Validation: Model operation correspondence to the real system, 4-19

10) Physical component representation correspondence, 4-20
Pairwise weights

Col 1 2 3 4 5 6 7 8 9 10
Row

1 1.00 6.00 7.00 5.00 3.00 7.00 3.00 2.00 1.00 2.00
2 0.17 1.00 2.00 0.33 0.20 2.00 0.33 0.20 0.14 0.17
3 0.14 0.50 1.00 0.20 0.20 0.50 0.33 0.25 0.17 0.20
4 0.20 3.00 5.00 1.00 0.33 3.00 0.50 0.33 0.14 0.17
5 0.33 5.00 5.00 3.00 1.00 5.00 2.00 1.00 0.33 0.50
6 0.14 0.50 2.00 0.33 o.2o 1.00 0.33 0.20 0.14 0.17
7 0.33 3.00 3.00 2.00 0.50 3.00 1.00 0.25 0.14 0.20
8 0.50 5.00 4.00 3.00 1.00 5.00 4.00 1.00 0.33 0.50
9 1.00 7.00 6.00 7.00 3.00 7.00 7.00 3.00 1.00 2.00
10 0.50 6.00 5.00 6.00 2.00 6,.00 5.00 2.00 0.50 1.00

TABLE 14

NODE 3-8 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-8 Amount of modeling abstraction/Degree of correspondence to the real system
Lower level connections:

1) High level model language, 4-7
2> Structured model development approach, 4-8
3) Incorporation of special code implementation and "packaging" within models

/Extension of high level constructs, 4-12
4) Specialized component support at high level, 4-13
5) Provisions for different levels of modeling detail, 4-14
6) Modeling approaches supported, 4-16
7) Information and decision processes modules, 4-18
8) Validation: Model operation correspondence to the real system, 4-19
9) Physical component representation correspondence, 4-20

Pairwise weights
Col 1 2 3 4 5 6 7 8 9

Row
1 1.000 7.000 6.000 2.000 5.000 3.000 1.000 0.333 0.333
2 0.143 1.000 0.500 0.167 0.333 0.200 0.143 0.125 0.143
3 0.167 2.000 1.000 0.200 0.500 3.000 0.200 0.143 0.200
4 0.500 6.000 5.000 1.000 5.000 1.000 0.250 0.167 0.200
5 0.200 3.000 2.000 0.200 1.000 0.333 0.200 0.143 0.200
6 0.333 5.000 0.333 1.000 3.000 1.000 0.333 0.200 0.200
7 1.000 7.000 5.000 4.000 5.000 3.000 1.000 0.333 1.000
8 3.000 8.000 7.000 6.000 7.000 5.000 3.000 1.000 2.000
9 3.000 7.000 5.000 5.000 5.000 5.000 1.000 0.500 1.000

I I

'f

TABLE 15

NODE 3-9 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-9 Model extension, alteration, and reuse
Lower level connections:

1) Integrated software toolset, 4-3
2> Access to stand alone code libraries, 4-4
3) Code reusability, 4-5
4) Software modularity, 4-6
5) High level model language, 4-7
6) Structured model development approach, 4-8
7) Model debugging support/verification, 4~10
8) Incorporation of special code implementation and "packaging" within models/

Extension of high level constructs, 4-12
9) Special component support at a high level, 4-1,3

10) Provisions for different levels of modeling detail, 4-14
11) Information and decision processes modules, 4-18

Pairwise weights
Col 1 2 3 4 5 6 7 8 9 10 11

Row
1 1.00 0.33 0.33 0.20 0.14 0.13 0.20 0.20 0.20 0.20 0.14
2 3.00 1.00 0.33 0.20 0.14 0.14 0.33 0.33 0.25 0.20 0.14
3 3.00 3.00 1.00 0.20 0.14 0.14 0.33 0.20 0.20 0.33 0.20
4 5.00 5.00 5.00 1.00 0.33 0.50 2.00 3.00 0.50 3.00 0.33
5 7.00 7.00 7.00 3.00 1.00 2.00 4.00 3.00 3.00 5.00 2.00
6 8.00 7.00 7.00 2.00 0.50 1.00 3.00 2.00 0.33 0.33 0.20
7 5.00 3.00 3.00 0.50 0.25 0.33 1.00 0.33 0.20 0.33 0.20
8 5.00 3.00 5.00 0.33 0.33 0.50 3.00 1.00 0.33 1.00 0.20
9 5.00 4.00 5.00 2.00 0.33 3.00 5.00 3.00 1.00 3.00 0.50
10 5.00 5.00 3.00 0.33 0.20 3.00 3.00 1.00 0.33 1.00 0.25
11 7.00 7.00 5.00 3.00 0.50 5.00 5.00 5.00 2.00 4.00 1.00

TABLE 16

NODE 3-10 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-10 Provision for high level combination/Model complexity management
Lower level connections:

1) Access to stand alone code libraries, 4-4
2) Software modularity, 4·6
3) High level model language, 4-7
4) Model debugging support/verification, 4-10
5) Incorporation of special code implementation and "packaging" within models/

Extension of high level constructs, 4-12
6) Provisions for different levels of modeling detail, 4-14
7) Information and decision processes modules, 4-18
8) Validation: Model operation correspondence to the real system, 4-19
9) Physical component representation correspondence, 4-20

Pairwise weights
Col 1 2 3 4 5 6 7 8 9

Row
1 1.000 0.200 0.200 0.333 0.333 0.200 0.250 0.333 0.333
2 5.000 1.000 1.000 3.000 3.000 1.000 3.000 5.000 3.000
3 5.000 1.000 1.000 5.000 2.000 0.333 0.500 3.000 1.000
4 3.000 0.333 0.200 1.000 0.200 0.143 0.200 0.333 0.250
5 3.000 0.333 0.500 5.000 1.000 0.333 0.333 1.000 0.500
6 5.000 1.000 3.000 7.000 3.000 1.000 3.000 4.000 3.000
7 4.000 0.333 2.000 5.000 3.000 0.333 1.000 5.000 5.000
8 3.000 0.200 0.333 3.000 1.000 0.250 0.200 1.000 1.000
9 3.000 0.333 1.000 4.000 2.000 0.333 0.200 1.000 1.000

181

TABLE 17

NODE 3-11 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-11 Size of model supported
Lower level connect'ions:

1} Traditional, special purpose simulation
systems, 5-1

2} OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
0.111

TABLE 18

9.000
1. 000

NODE 3-12 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-12 Basic memory requirements
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2} OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
0.200

5.000
1.000

182

TABLE 19

NODE 3-13 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

3-13 Execution speed
Lower level connections:

1) Traditional, special purpose simulation
. systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
0.143

TABLE 20

7.000
1.000

NODE 4-1 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-1 Graphics 1 User interface capabilities
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
· Col 1 2

Row
1
2

1.000
7 .'ooo

0.143
1.·000

183

TABLE 21

NODE 4-2 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-2 Ease of learning the base language
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
0.200

TABLE 22

5.000
1.000

NODE 4-3 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-3 Integrated software toolset
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.111
2 9.000 > 1. 000

184

TABLE 23

NODE 4-4 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-4 Access to stand alone. code libraries
Lower level connections:

1) Traditional, special p~rpose simulation
systems, 5-1

2)· OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.200
2 5.000 1.·000

TABLE 24

NODE 4-5 LOWER LEVEL CONNECTIONS PAIRWISE· COMPARISONS

4-5 Code reusability ,
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights

Row
Col 1

1
2

1.000
7.000

2

0.143
1.000

185

TABLE 25

NODE 4-6 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-6 Software modularity
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
9.000

TABLE 26

0.111
1.000

NODE 4-7 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-7 High level model language
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
'Col 1 2

Row
1
2

1.000
5.000

0.200
1.000

186

TABLE 27

NODE 4-8 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

' ,

4-8 Structured model developmen~ ~pproach
Lower·level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation sys.~~m, 5-2

TABLE, 28-

NODE 4-9 LOWER LEvEL, CONNECTIONS PAIRWISE COMPARISONS

4-9 output provisions .
Lower level connections:.

1) Traditional, ~pecial purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

187

TABLE 29

NODE 4-10 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-10 Model debugging support/verification
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.333
2 3.000 1.000

TABLE 30

NODE 4-11 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-11 Statistical s4pport
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 · 2

Row
1
2

1.000
1.000

1.000
1.000

188

189

TABLE 31

NODE 4-12 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-12 Incorporation of special code implementation and
"packaging" within models/Extension of high level
constructs
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-i ,

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.200
2 5.QOO 1.000

TABLE 32

NODE 4-13 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-13 Specialized component support at a high level
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
1. 000'

1.000
1.000

190

TABLE 33

NODE 4-14 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-14 Provision for different levels of modeling detail
Lower level connections: ,

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
5.000

TABLE 34

0.200
1.000

NODE 4-15 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-15 Access to model cpde/On-line documentation
Lower level connections:'

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weight~
Col 1 2

Row
1 1.,000 0.200
2 5.000 1.000

TABLE 35

NODE 4-16 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-16 Modeling approaches supported.
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1 ·

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 3.000
2 0.333 1.000

TABLE 36

NODE 4-17 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-17 Model code reaqability
Lower level connections:

1) Traditional, special purpose simulation
systems, §-1

2) OOP simulation system, 5-2

Pairwise weight~
Col 1 2

Row
l.
2

1.000
3.000

0.333
1.000

191

TABLE 37

NODE 4-18 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-18 Information and decision processes modules
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.200
2 5.000 1.000

TABLE 38

NODE 4-19 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

192

4-19 Validation: Model operation correspondence to real
system
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1
2

1.000
5.000

0.200
1.000

TABLE 39

NODE 4-20 LOWER LEVEL CONNECTIONS PAIRWISE COMPARISONS

4-20 Physical component representation correspondence
Lower level connections:

1) Traditional, special purpose simulation
systems, 5-1

2) OOP simulation system, 5-2

Pairwise weights
Col 1 2

Row
1 1.000 0.200
2 5.000 1.000

TABLE 40

SIMULATION EVALUATION FINAL PRIORITIES

Weight

Traditional simulation system 0.242

OOP simulation system 0.758

193

As can be seen from the final priority vector listed in

Table 40, the results of the AHP comparison procedure indicate

that an OOP simulation system is preferable to the traditional

simulation systems which currently dominate modeling

activities.

194

Verbal Environment Comparison

For the sake of continuity, the verbal comparison of the

two simulation approaches shall be pursued using a similar

top level breakdown as was developed for the AHP model.

Namely, the major topics in this discussion are: simulation

language developer effectiveness, simulation modeler

effectiveness, model effectiveness, and performance

considerations.

The difference between software development in

traditional simulation environments and an OOP simulation

environment is caused entirely by the difference between the

new OOP languages and the older procedural languages. As

mentioned in Chapter III, Object Oriented Programming has the

features of encapsulation, message passing, dynamic binding,

and inheritance. These features positively influence software

development in OOP environments as compared to procedural

environments in several ways. First, understandability of

classes is improved because they represent the data and method

implementations of a coherent concept rather than the loose

combination of multiple procedural routines. Secondly, the

four features of OOP improve the ease with which already

developed software systems can be maintained and modified.

By encapsulating the data and methods which use the data,

internal class implementations can be altered while instances

of the class retain the same message passing relationships to

other objects in a software system. Finally, base language

code is reusable through inheritance (definition of new

195

subclasses) and thr0ugh the use of instances of a class as an

internal component of new classes.

In addition to the impact of these key features, the base

language development support environment made up of code

testing capabilities, debugging windows, integrated editing

and compiling along with graphics capabilities and well

developed code libraries (a fleshed out class hierarchy)

significantly improve the ease and speed with which a complex

software application can be conceptualized, implemented, and

tested (and revised and maintained, in later versions).

The impact of OOM on simulation modeler effectiveness is

probably the most important characteristic uncovered in this

research. on the negative side, it was determined that only

after a modeler has a thorough understanding of the simulation

class library and the general structure of the OOP language

is the individual capable of developing models with any amount

of speed and reliability. However, when one considers that

a certain level of learning is required to become adept at

modeling in the traditional simulation environments, we

conclude that this is only a mild drawback.

The most significant positive benefit for the simulation

modeler is the new co~respondence between simulation modeling

objects and real system objects. From experience, one

recognizes that one of the most difficult aspects of

traditional simulation model development is the level of

creativeness which must be utilized. Rather than working with

196

one-to-one relationships (model to real system), the modeler

is faced with the task of modeling real system objects as a

conglomeration of simulation language building blocks which

represent separate activities or characteristics from objects

in the system. Within OOM, the modeler is able to construct

simulation models from a group .of high level building blocks,

each of which are a software representation of a full,

coherent system object. Also, because in traditional

languages new high level constructs cannot be implemented by

the modeler, a degree of creativity is required when modeling

complex systems. Because the actions of traditional

constructs do not always agree with the-activities of objects

in a real system, the modeler is often obliged to work around

the restrictions by creating a ~omplex model network or

dropping down to base language coding (thereby causing

problems in validation, model communication, etc.).

Another benefit of OOM is that objects in a model do not

have direct connections with one· another. Rather, as

described earlier, the linkages between objects are defined

by the structure of the routings for work flow items passing

through the system model. In traditional simulation

languages, model building blocks are linked together in order

to provide for the routing of the entities transiting the

system. This also results in direct relationships between the

various model components. Because of the existence of these

direct relationships, and because traditional model constructs

only represent a portion of system objec-ts, all of the

197

building blocks in traditional environments have strict

interrelationship rules which must be followed for their

appropriate combination. In OOM, because objects must be and

are designed as self sufficient entities, these

interconnection rules are non-existent. Rather, the modeler

must simply be sure to use class instances which have the

internal characteristics needed to model the system components

of interest.

Another problem with the use of the high level portion

of traditional simulation environments is that although these

languages may be extremely well documented, not all of the

characteristics of high level constructs may be presented in

the documentation. Where differences in modeler assumptions

or understanding and laRguage implementations occur, there is

the distinct possibility of modeling or results interpretation

errors. In the case of OOM, in addition to the ability to

thoroughly document a simul~tion class, a modeler always

retains the ability to peruse the software representation of

a class in order to obtain an exact understanding of the

object's operation.

Due to the fact that models are more communicable,

modeler effort is reduced when previously written models,

possibly authored by another individual, must be understood,

reused, andjor updated. As object oriented models are easier

to understand regarding both components and linkages, the

model learning effort is reduced and the degree of uncertainty

is decreased. For models written in traditional environments,

198

a greater amount of time and effort must be expended toward

understanding archived models and the degree of uncertainty

may still be significant.

Model effectiveness is also affected significantly by OOM

characteristics. OOM models are much easier to alter and

maintain than models in traditional languages. This is due

to three characteristics of OOM. First, the 'components of OOM

models are encapsulated and do not share memory allocation.

Therefore, there is little concern for the duplication of

object parameter values (entity file numbers, etc.) that there

is in traditional modeling. Secondly, because object oriented

models are constructed of independent objects and are devoid

of direct interobject linkages, new model components can be

added or deleted and routings quickly changed without

effecting the model structure significantly. Finally, because

the OOM models themselves are significantly easier to

understand, the effort required to understand available

model files is less than that required for comparable

traditional simulation models.

As discussed previously, OOM models are implemented in

a manner which improves their communicability. In addition

to improving the simulation modeler effectiveness, this

characteristic improves the model effectiveness as well

because it increases the ease with which model results can be

related to the real system, and thereby, "sold" to decision

makers.

199

From the standpoint of performance considerations, the

OOM environment is not as capable as the traditional

simulation environment. First of all, the amount of time

needed to execute an OOM model is roughly six times longer.

This statement is made from experience in the validation

activities in which a SLAM model and an OOM model of the same

system were executed repeatedly on the same hardware. Reasons

for this characteristic are: 1) OOP languages are not

typically as efficient in their execution as procedural

languages and 2) A significant amount of memory allocation and

deallocation (object creation and garbage collection) is

involved in the execution of OOM models. Another deficiency

of the OOM system is that it is not as efficient in its use

of computer memory as the traditional systems. The object

oriented environment was not able to contain the same size

model (large numbers of work flow items) in the given memory.

In addition, the base amount of memory necessary for the

prototype system is higher than for traditional modeling

environments. These attributes are not perceived as strong

drawbacks because of the continued increases in computer

processing speeds and the continued reductions in the cost of

computer memory.

From this discussion, which is based on the researcher's

experience with procedural languages, traditional simulation

languages, object oriented programming, ahd the prototype OOM

environment, the conclusion is reached that OOM is the next

step in the continuing progression towards improved simulation

200

capabilities.

Summary

There are several important outcomes of this chapter.

First, an AHP model structure appropriate for the comparison

of simulation environments has been described. Also, the

pairwise comparison matrices determination and the weight

composition process and results have been presented. Next,

a textual comparison of the two,simulation alternatives was

performed. The final result of the comparison activities is

the conclusion that an Object Oriented Modeling approach to

simulation is superior to traditional simulation environments.

CHAPTER VIII

FUTURE RESEARCH DIRECTIONS

IN OOM

This chapter describes the development plan which has

been created to facilitate the coherent expansion of object

oriented simulation capabilities. The material covered

includes the research and development activities which are

planned and a time phased plan indicating the order and

timing for these efforts.

Introduction

The determination of the conceptual organization of an

OOM environment and the implementation of a prototype OOM

system were two significant phases in this research project.

However, these two steps in themselves are not sufficient to

ensure the continuation and success of this modeling

paradigm. The prototype OOM system· is just that, a

prototvpe system. This prototype contains only the basic

conceptual and implementational structure necessary to

establish an object oriented, discrete event simulation

capability. It is the intention of the researcher to use

this initial structure as the conceptual core around which

additional simulation modeling and data management

201

202

capabilities will be added. The remainder of this chapter

has been divided into discussions of appropriate avenues of

effort and the time phased research plan.

Appropriate Areas for Research and

Environment Extension

The following areas are those top level groupings which

the researcher feels should be addressed in improvements to

the developed OOM simulation system.

1) Random number generation features

2) Simulation element and processing object classes and
class abilities

3) Measures of performance capabilities

4) Model data management

5) Support for continuous simulation

6) Improved modeler interface capabilities, both for
model input and results output

These are listed roughly in order of increasing conceptual

and implementation difficulty as perceived by the author. A

discussion on each of these areas is presented in the rest

of this section.

Although the complete structure for random number

generation has been designed and the capability for

generating a significant number of distributions has been

provided in the prototype system, several distributions have

not been supplied. The generating methods for these

distributions, which include the Poisson and Erlang, and the

method for generating observations from a user supplied

discrete probability function are not currently present.

With a limited amount of effort the necessary class and

method definitions will be added to the system.

As completed, the OOM prototype system has certain

203

basic simulation element and processing object classes. An

important, necessary step in expanding the environment

features is to improve this class library by: 1) Enhancing

the operation of current classes and 2).Adding additional

classes. Enhancements which will be added to existing

classes include:

- Provision for the handling of more queue ordering
disciplines by the QueueObject class

- Provision for multiple executions of the same model

- Completing the implementa'tion of the setup time
specification and use by simulation element objects,
including monitoring of idle, busy, and setup time
statistics

- Provision for the storage and manipulation of
attribute values associated with instances of the
Work Flow Item class

- Provision for information access links between
simulation element objects and information flow
objects (see below)

- Provision for alternate processing locations
specified in the Routing class (for systems where
alternate routings may be applicable)

- Provision for the interaction between simulation
element objects representing processing stations and
simulation element objects representing material
handling entities (e.g., a central material handling
robot interacting with the several machines in a
manufacturing cell)

- Event scheduling and initiation based on day and time
tracking (e.g., Monday, 10:03am)

- Provision for dynamic system operation based on day

204

and time of day (e.g., work order arrivals occur at a
different rate during the day rather than at night)

The benefits of these improvements will be to allow more

complete and correct system modeling without dropping into

general purpose language coding and without "tricking" a

certain system operation within a network representation.

Additional classes which will be added to the simulation

subtree are numerous and include:

- Classes representing the basic types of material
handling equipment such as fork lifts, automatic
guided vehicle systems, material handling robots,
conveyors, etc.

- Classes which are used to group interacting sets of
items together (e.g., machine and material handling
objects) to qllow complete coordination of mutual
activities

- Classes representing information flow elements which
interact with simulated machine elements for work
flow item processing

- Classes representing inspection stations having the
ability to arrange rework routings for rejected work
flow items

- Processing classes providing the capability to
perform decision processes regarding parameters of
simulated system compone~ts

Another portion of changes which will be performed on the

OOM system addresses performance issues. Specifically, the

execution time of object oriented models is long when

compared to that for traditional systems. Although the

author does not feel that slow execution time makes OOM

infeasible, it appears advisable to attempt to improve

execution time. From OOM experimentation, it is obvious

that a large amount of overhead memory management is

occurring due to allocation and deallocation of memory for

205

transient objects (queue storage locations and work flow

items). A potential remedy which will be pursued is to

"pre-allocate" space for a modeler specified number of these

objects, retain this space on a "next available storage

location" list, and, thereby, virtually eliminate this

repetitive activity. The effect of the implementation of

this remedy should be to significantly reduce model

execution times.

Another area which will be addressed in further OOM

research is the ability to have additional performance

measures monitored during simulation execution. A principle

measure which will be researched and possibly implemented is

the tracking of cost data associated with storing,

servicing, or processing work flow items. By having a

library of simulation objects with cost data for specific

machines attached, the simulation analyst or decision maker

can determine the economic impact of routing options and

work schedule changes. A second characteristic of systems

to be considered is the quality of product which has been

processed through multiple operations at multiple stations.

As with cost data, it would be desirable to have a library

of simulation objects with output quality modeling

information for specific machines attached. Using these

simulation objects, a designer or manufacturing planner will

be able to determine the ability of a certain manufacturing

plan or manufacturing system to fulfill specified output

quality requirements.

206

From the discussion in the last paragraph, the reader

can observe that one long range goal for this OOM

environment is to develop a simulation system which answers

questions in a number of previously unaddressed areas. In

order to meet this capability, a large amount of data shall

need to be input, tracked, maintained and analyzed. In

order to facilitate this data management without forcing

potentially cumbersome links to external data base packages,

an internal object oriented data management capability will

be developed. This data management will be designed and

implemented with the specific objective of assisting the

simulation modeler and analyst in the intelligent use and

maintenance of data which is directly applicable to

simulation modeling endeavors. By providing current system

status, cost, and quality information in an organized format

and having background links from this information to

specific simulated service or manufacturing system

components, the objective of simulation directed data

management can be achieved.

The current OOM system provides the ability to perform

discrete event simulation on systems of independent software

objects. One of the enhancements mentioned above involves

the grouping of sets of top level objects together to allow

non-independent object interactions to be carried out

successfully. Using this as a conceptual basis for event or

timing synchronization, a further OOM system research area

is the development of a continuous simulation capability

207

(either differential or difference equation based continuous

simulation) which can co-exist with discrete event modeling

elements.

The prototype OOM system has the input and output

methods commonly available in traditional simulation

systems, namely model text files for input and results text

files for output. At the prototype level" this was

sufficient for all modeling tasks because the OOM system

capabilities are limited and easily understood by modelers.

once the improvements to the OOM system just mentioned are

added, without providing user assisting interface

capabilities the environment will have the potential to

overwhelm all but the most dedicated user. In ,order to

avoid this significant problem, it will be necessary to

greatly improve upon the basic windowing system provided

with Smalltalk by applying it specifically to the simulation

modeling and analysis functions. Requirements in this area

consist of:

- Iconic model and work flow item routing construction
possibly driven from a 2-D location grid

-Menu driven specification of model parameters (e.g.,
choice of processing and setup time distributions)

- Graphic window presentation of simulation results
(e.g., graphing queue length or queue waiting time
versus time)

In addition to the "incremental" interface improvements, a

significant need exists for a top level simulation executive

controller which will provide both runtime and model

development support and integrate the data management

208

functions mentioned previously. The incremental

improvements just mentioned will be integrated with other

model development and simulation runtime features within

this controller. A runtime interface improvement will be a

top level runtime executive which provides the ability to

halt the execution of a model and view the status of system

components in a structured manner. Research and

experimentation will also address the feasibility of

providing system optimization features within the runtime

executive controller. Also integrated, a structured on-line

help capability will utilize methods and data attached to

classes in the simulation library to provide information

upon request to the developer or modeler. This information

might include class usage recommendations, class capability

descriptions, andjor class operation documentation.

The following section presents a first cut at an

obviously dynamic timed research plan.

Phased Research Plan

The activities described in the previous section are

grouped according to the following classifications:

1) Random number generation features

2) Simulation element and processing object classes and
class abilities

3) Measures of performance capabilities

4) Model data management

5) Support for continuous simulation

6) Improved modeler interface capabilities, both for
model input and results output

The timing plan for these further research activities is

illustrated in Figure 26 and addresses each of these six

209

groups and any possible interaction and dependency. Random

number generation enhancement (1) has no interaction with

the other efforts and will be, therefore, pursued

separately. This project is scheduled to be started and

completed in one month (as shown on Figure 26), April 1990.

The extension of simulation element and processing

object classes and class abilities will involve adjustments

to currently available classes and the definition of new

classes within the conceptual context already defined for

the OOM environment. Because the conceptual basis for OOM

will not be altered, this activity is relatively independent

of the other research projects. It is scheduled to consume

approximately three months of work (5/90 - 7/90, inclusive).

The next two projects, measures of performance

improvements and model data management features, are

interrelated and the research and developmental effort for

the two will overlap in timing significantly. Measures of

performance improvements will involve two months of up front

work to provide the conceptual basis for the implementation

of the discussed concepts. After this approach is

determined, the model data management project will begin

and the implementation for both projects will use the

requirements of measures of performance improvements to

)

Year 1990 1991
Month \------------------------------~--~

Proj \ 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 IHI
2 1: ~I

3 1: :I
4 1: :I
5 1: :I
6 1:

Start and end of a research activity are specified by the symbols II= and ~~, respectively.

Figure 26. Time Phased Plan for Further Research

211

drive some of the concepts and implemented capabilities of

the data management effort.

Towards the end of the fourth project (data

management), the continuous simulation capability

development will begin. This overlap will be necessary

because the interaction between objects within a

continuously simulated system will be significantly greater

than among objects in a discrete event system.

Approximately six months of time will be consumed in the

design and implementation of this simulation capability.

A very long task timed to begin upon completion of

the previous five is the constru?tion of a window and

graphics based simulation user interface. This interface

will integrate all previously defined software features

together within a single application providing guidance

through model construction, data ma,nagement, and results

interpretation. Because this is anticipated to be of

extremely long duration, Figure 26 shows this. project

continuing on beyond the end of 1991.

I •
I

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

The goal of this research was to investigate the

feasibility and benefits of an Object Oriented Modeling

environment. To achieve this goal, four research objectives

were established (also see Chapter IV). The first part of

this chapter discusses the conelusions from this research in

the context of these objectives.

The first of the research objectives was to develop a

set of object oriented classes which provide the ability to

generate simulation models. In order to fulfill this

objective, several tasks had to be performed. First, the

methods of simulation model operation and representation

had to be conceptualized. Next, this conceptual

organization had to be applied to the implementation of

object oriented classes providing the ability to create a

model of a demonstration target system. The resulting

simulation system was then tested against an accepted

standard to provide validation of the operation of the

software. Finally, information from the target system was

combined with the simulation classes to result in a

completed simulation model, thus successfully completing the

first research objective.

212

213

The second objective of the research was to develop an

approach which would allow the comparison of modeling

environments. In order to accomplish this, criteria for

comparing simulation modeling environments were developed.

Using these criteria, the decision problem, choosing the

best simulation environment, was addressed through the

application of the Analytic Hierarchy Process. The AHP

provides a theoretical and practical framework for

decomposing decision problems involving multiple

quantitative and qualitative criteria into manageable units.

For the problem of interest, namely comparison of simulation

environments, a rather large AHP model was created. This

involved the determination of an appropriate scheme for

decision process decomposition along with the linkages

between elements in the decision model. Thus the second

research objective was successfully completed.

The third objective of the research, evaluation of an

Object Oriented Modeling system for simulation modeling, was

performed using two approaches. The first approach involved

the application of the AHP decision model in the comparison

of the new OOM system to traditional simulation systems. In

order to complete this evaluation, a group of simulationists

experienced in both of the alternatives provided the many

pairwise comparisons required by the Analytic Hierarchy

Process and the developed model. These comparisons were

manipulated to result in a final set of weights indicating

the preferable simulation approach. The conclusion

214

resulting from this AHP model application is that a

simulation environment constructed following the object

oriented programming paradigm represents an improvement over

the currently available traditional simulation systems. The

second approach to the simulation environment problem was to

use the developed criteria as the basis for a logical,

textual comparison of the two simulation alternatives. The

conclusion from this unstructured, multicriteria discussion

agrees with the results from the AHP analysis, thus

successfully completing the third research objective.

The fourth and final research objective was to create a

plan stating the timing and areas of activity for a sequence

of project phases leading to an expanded OOM environment.

The developed prototype environment provides the basic

features required to be considered a viable simulation

modeling alternative. Only by increasing the available

features into new areas will the OOM approach gain

acceptance and wide use. Included within the developed

framework for expansion are improvements in random number

generation, increases in the number and scope of reusable

classes for modeling, measures of performance enhancements,

features for simulation model data management, incorporation

of continuous simulation, and development of a top level

user interface and execution controller. This phased

research plan represents the accomplishment of the fourth

research objective.

215

The final recommendations from this research are simple

and to the point:

1) Current simulation modeling software is excellent
and has met and continues to meet the needs of many
applications, however, object oriented programming
provides a framework for simulation software
implementation which allows improvements in the
accomplishment of these traditional modeling tasks.

2) Future modeling environments will need to support
interaction across a broad range of users and
developers and provide a significant level of
functionality.

Characteristics and features of these future

environments must significantly support the efforts of the

manufacturing engineer, who may have limited knowledge of

simulation and the simulation environment, and the efforts

of the simulation model and simulation environment

developers, who will have more complete technical knowledge

of simulation and the simulation environment. Simulation

environments must begin to allow for the creation of models

composed of multiple levels (physical processes, information

processes, decision processes, etc.), along with acting as a

"simulation workbench" supporting the analyst. The AHP

analysis conducted as part of this research shows that an

Object Oriented Modeling approach to simulation provides a

robust environment which is able to achieve this expanded

modeler functionality while providing a framework within

which significant software modifications can be performed.

3) Simulation modeling within an object oriented
implementation should be pursued both by simulation
package developers and simulation system users.

BIBLIOGRAPHY

Abed, s. Y., T. A. Barta, and K. L. McRoberts. "A
Qualitative Comparison of Three Simulation Languages:
GPSS/H, SLAM, SIMSCRIPT." Computers and Industrial
Engineering, Vol. 9, No. 1, pp. 35-43.

Abed, S. Y., T. A. Barta, and K.· L. McRoberts. "A
Quanitative Comparison of Three Simulation Languages:
GPSS/H, SLAM, SIMSCRIPT." Computers and Industrial
Engineering, Vol. 9, No. 1, pp. 45-66.

Adelsberger, H. H., U. W. Pooch, R. E. Shannon, and G. N.
Williams. "Rule Based Object Oriented Simulation
Systems." Intelligent Simulation Environments,
Proceedings of the Conference on Intelligent Simulation
Environments, The Society for Computer Simulation: san
Diego, CA, 1986, pp. 107-112.

Adiga, s. "Software Modelling of Manufacturing systems: A
Case for an Object-Oriented Programming Approach."
Working Paper, Department of Industrial Engineering and
Operations Research, University of California,
Berkeley, CA, 1986.

Alexander, J. M. and Saaty, T. L•, The Forward and Backward
Processes of Conflict Analysis, Behavioral Science,
1977, Vol. 22, pages 87-98.

Alexander, J. M. and Saaty·, T. L., Stability Analysis of the
Forward-Backward Process: Northern Ireland Case Study,
Behavioral Science, 1977, Vol. 22, pages 375-382.

Armstrong, F. B. and s. Sumner. "The Project Approach to
Simulation Language Comparison." Proceedings of the
1988 Winter Simulation Conference, Atlanta, GA, 1988,
pp. 636-645.

Banks, J. and J. s. Carson. Discrete-Event System
Simulation. Prentice-Hall: Englewood Cliffs, NJ, 1984.

Bezivin, J. "Timelock: A Concurrent Simulation Technique
and its Description in Smalltalk-80." Proceedings of
the 1987 Winter Simulation Conference, Atlanta, GA,
1987, pp. 503-506.

216

CACI, Inc. Promotional material, Industrial Engineering,
November, 1988, pp. 1.

217

Cammarata, s., B. Gates, and J. Rothenberg. "Dependencies
and Graphical Interfaces in Object-oriented Simulation
Languages." Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA, 1987, pp. 507-517.

Corbin, M. J. and G. F. Butler. "Object oriented simulation
in FORTRAN." Tools for the Simulation Profession,
1989, The Society for Computer Simulation: San Diego,
CA, 1988, pp. 29-43.

Cox, B. Object Oriented Programming: An EvolutionakY
Approach. Addison-Wesley: Reading, MA, 1986.

Cox, B. and B. Hunt. "Objects, Icons, and Software-IC's."
Byte, August, 1986, pp. 161-176.

curry, G. L., B. L. Deuermeyer, and R. M. Feldman.
"cdf/BOSS: A Language and MicroComputer Implementation
for Discrete Simulation." computers & Industrial
Engineering, Vol. 15, Nos. 1-4, pp. 104-112.

Digitalk, Inc.
Handbook.

Smalltalk/V Tutorial and Programming
Digitalk, Inc.: Los Angeles, CA, 1986.

Doman, A. "Object-Prolog: Dynamic Object-oriented
Representation of Knowledge." Artificial Intelligence
and Simulation: The Diversity of Applications, The
Society for Computer Simulation: San Diego, CA, 1988,
pp. 83-88.

Elmaghraby, A. s. and v. Jagannathan. "An Expert System for
Simulationists." Artificial Intelligence, Graphics,
and Simulation, The Society for Computer Simulation:
San Diego, CA, 1985, pp. 106-109.

Endesfelder, T. and H. Tempelmeier. "The SIMAN Module
Processor - A Flexible Software Tool for the Generation
of SIMAN Simulation Models." simulation in CIM and
Artificial Intelligence Techniques, The Society for
Computer Simulation: San Diego, CA, 1987, pp. 38-43.

Eversheim, W. "Graphic Interactive Simulation for the
Planning of Manufacturing Systems." Journal of
Manufactu~ing Systems, Vol. 6, No. 2, pp. 151-156.

Farnsworth, K. D., v. B. Norman, and T. A. Norman.
"Integrated Software for Manufacturing Simulation."
Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 195-201.

Ford, D. R., B. J. Schroer, and R. Daughtrey. "An
Intelligent Modeling System for simulation
Manufacturing Processes." Proceedings of the 1987
Winter Simulation Conference, Atlanta, GA, 1987, pp.
525-529.

218

Ghaznavi-Collins, I. and D. Thelen. "An Object Oriented
Approach toward System Architecture Simulation." AI
Papers. 1988, Proceedings of the Conference on AI and
Simulation, The Society for Computer Simulation: San
Diego, CA, 1988, pp. 103-107.

Glicksman, J. "A Simulator Environment for an Autonomous
Land Vehicle." Intelligent Simulation Environments,
Proceedings of the Conference on Intelligent Simulation
Environments, The Society for Computer Simulation: San
Diego, CA, 1986, pp. 53-57.

Gold Hill Computer~. Golden Common LISP Operating Guide,
Version 1.1. Gold Hill Computers: Cambridge, MA, 1987.

Goldberg, A. SMALLTALK-80: The Interactive Programming
Environment. Addison-Wesley: Reading, MA, 1984.

Gordon, R. F., E. A. MacNair, K. J. Gordon, and J. F.
Kurose. "A Visual Programming Approach to
Manufacturing Modeling." Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA, 1987, pp. 465-471.

Grant, J. w. and s. A. Weiner. "Factors to Consider in
Choosing a Graphically Animated Simulation System."
Simulation: Modeling Manufacturing .§. Service Systems,
Industrial Engineering and Management Press: Norcross,
GA, 1987.

Griesmeyer, J. M. "Generalized Simulation Environment for
Factory Systems." Tools for the Simulation Profession
1989, The Society for Computer Simulation: San Diego,
CA, 1988, pp. 20-29.

Haddock, J. "A Simulation Generator for Flexible
Manufacturing Systems Design and Control." IIE
Transactions, Vol. 20, No. 1, pp. 22-31.

Henriksen, J. o. "The Integrated Simulation Environment
(Simulation Software of the 1990's)." Operations
Research, Vol. 31, No. 6, 1983, pp. 10§3-1072.

Higdon, J. "Planning a New Material Handling System."
Industrial Engineering, November, 1988, pp. 55-59.

219

Hilton, M. L. "A Multi-level Event Scheduling Mechanism for
Supporting Intelligent Objects." Artificial
Intelligence and Simulation: The Diversity of
Applications, The Society for Computer Simulation: San
Diego, CA, 1988, pp. 127-130.

Hitchens, M. w. "Simulation: The Key to Automation Without
Risk." CAD/CAM Technology, Vol. 3, No. 3, pp. 15-17.

Kachitvichyanukul, V. "Simulation Environment of the 1990's
(Panel)." Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA, 1987, pp. 455-460.

Kaehler, T. and D. Patterson. "A Small Taste of Smalltalk."
Byte, August, 1986, pp. 145-159.

Karian, z. A. "Software Review: GPSS/PC." Byte, October,
1985, pp. 295-301.

Khoshnevis, B. and A. Chen. "An Automated Simulation
Modeling System based on AI Techniques." Simulation and
AI, Proceedings of the Conference on AI and Simulation,
The Society for Computer Simulation: San Diego, CA,
19871 PP• 87-91.

Khoshnevis, B. and A. Chen. "An Expert Simulation Model
Builder." Intelligent Simulation Environments,
Proceedings of the Conference on Intelligent Simulation
Environments, The _Society for Computer Simulation: San
Diego, CA, 1986, pp. 129-132.

Khoshnevis, B. and A. Chen. "EZSIM: An Automated Simulation
Model Building System." Working Paper, Department of
Industrial and Systems Engineering, University of
Southern California.

Khoshnevis, B. and W. M. Austin. "An Intelligent Interface
for System Dynamics Modeling." Simulation and AI,
Proceedings of the Conference on AI and Simulation, The
Society for Computer Simulation: San Diego, CA, 1987,
pp. 81-86. <

Khoshnevis, B., w. M. Austin, A. Chen, and Q. Chen.
"Intelligent Simulation Environments for Systems
Modeling." 1988 International Industrial Engineering
Conference Proceedings, Institute of Industrial
Engineers, Orlando, FL, 1988, pp. 25-29.

Kilgore, R. A. and K. J. Healy. "Animation Design with
cinema." Proceedinos of the 1987 Winter Simulation
Conference, Atlanta, GA, 1987, pp. 261-268.

220

Kimbler, D. L. and B. A. Watford. "Simulation Program
Generators: A Functional Perspective." Artificial
Intelligence and Simulation: The Diversity of
Applications, The Society for Computer Simulation: San
Diego, CA, 1988, pp. 133-136.

King, C. U., and E. L. Fisher. "Object-Oriented Shop-Floor
Design, Simulation and Evaluation." 1986 Fall
Industrial Engineering Conference Proceeding;,
Institute of Industrial Engineers, Boston, MA, 1986,
pp • 131-13 7 •

King, C. U., s. s. Adams, and E. L. Fisher. "Representation
of Manufacturing Entities." Intelligent Manufacturing:
Proceedings from the First International Conference on
Expert Systems and the Leading Edge in Production
Planning and Control, Charleston, sc, 1987, pp. 77-91.

Knapp, V. E. "The Smalltalk Simulation Environment, Part
II." Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA, 1987, pp. 146-151.

Kreutzer, W. "A Modellers•s Workbench - Simulation based on
the Desktop Methphor." Artificial Intelligence and
Simulation: The Diversity of Applications, The Society
for Computer Simulation: San Diego, CA, 1988, pp. 43-
48.

Kreutzer, w. System Simulation: Programming Styles and
Languages. Addison-Wesley: Reading, MA, 1986.

Kumar, A. and s. Y. w. su. "Object Manipulation in an
Object-oriented Semantic Association Model (OSAM*)."
Manufacturing International '88, Atlanta, GA, 1988.

Law, A. M. and s. W. Haider. "Selecting Simulation Software
for Manufacturing Applications: Practical Guidlines &
Software Survey." Industrial Engineering, May, 1989,
pp. 33-46.

Law, A. M. and w. D. Kelton. Simulation Modeling and
Analysis. McGraw-Hill: New York, NY, 1982.

McGinnis, L. F. and M. Goetschalckx. "An Engineering
Workstation for Computer Aided Engineering of Material
Handling Systems." Manufacturing International 1 88,
Atlanta, GA, 1988, pp. 137-142.

Meyer, B. "Bidding Farewell to Globals." Journal of
Obiect-Oriented Programming, Vol. 1, No. 3, pp 73-76.

221

Miller, J. A., O. R. Weyrich, Jr., and D. Suen. "A Software
Engineering Oriented Comparison of Simulation
Languages." Tools for the Simulation Profession 1989,
The Society for Computer Simulation: San Diego, CA,
1988, pp. 97-104.

Moseng, B. "The Process Planner's Work Place Today and
Tommorrow." Robotics ,i Computer-Integrated
Manufacturing, Vol. 1, No. 3/4, pp. 237-244.

Murray, K. J. and s. V. Sheppard. "Automatic Model
Synthesis: Using Automatic Programming and Expert
Systems Techniques toward Simulation Modeling."
Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 534-543. ·

Myler, H. R. "Object-Oriented Training Simulation." AI
Papers. 1988, Proceedings of the Conference on AI and
Simulation, The Society for Computer Simulation: San
Diego, CA, 1988, pp. 156-16Q.

Nyen, P. A. "A Comprehensive Environment to Object Oriented
simulation of Manufacturing Systems." Simulation in
CIM and Artificial Intelligence Techniques, The Society
for Computer Simulation: San Diego, CA, 1987, pp. 21-
25.

O'Keefe, R. M. "What is Visual Interactive Simulation? (and
is there a Methodology for doing it right?)."
Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 461- .464.

Oren, T. I., B. P. Zeigler, and M. S. Elzas, editors.
Simulation and Model-Based Methodologies: An
Integrative View. Springer-Verlag: Berlin, West
Germany, 1984.

oren, T., and K. Aytac. "Architecture of MAGEST: A
Knowledge-based Modeling and Simulation System."
Simulation in Research and Development, Elsevier
Science Publishers: North-Holland, 1985, pp. 99-109.

Pazirandeh, M. and J. Becker. "Object Oriented Performance
Models with Knowledge-Based Diagnostics." Proceedings
of the 1987 Winter Simulation Conference, Atlanta, GA,
1987, pp. 518-524.

Pritsker, A. A. B.
third edition.

Introduction to Simulation and SLAM II,
John Wiley & Sons: New York, 1986.

Pritsker and Associates, Inc. Promotional material,
Industrial Engineering, November, 1988, pp. 16a-16d.

222

Reilly, K., W. T. Jones, and P. Dey. "The Simulation
Environment Concept Artificial Intelligence
Perspectives." Artificial Intelligence and Simulation,
The Society for Computer Simulation: San Diego, CA,
1985, pp. 29-34.

Rembold, U. and P. Levi. "The Factory of the 90s. 11

Computers in Mechanical Engineering, March/April, 1988,
pp. 26-28 and MayjJune, 1988, pp. 30-37.

Robinson, J. T. and P. J. Otaduy. "An Object-oriented
Simulation Package for Power Plants." Artificial
Intelligence and Simulation: The Diversity of
Applications, The Society for Computer Simulation: San
Diego, CA, 1988, pp. 55-58.

Saaty, T. L., Concepts, Theory, and Techniques: Rank
Generation, Preservation, and Reversal in the Analytic
Hierarchy Decision Process, Decision Sciences, 1987,
Vol. 18, pages 157-177.

Saaty, T. L. Decision Making: The Analytic Hierarchy
Process. RWS Publications: Pittsburgh, PA, 1988.

Saaty, T. L. and Ramanujam, v., An Objective Approach
to Faculty Promotion and Tenure by the Analytic
Hierarchy Process, Research in Higher Education, 1983,
Vol. 18, Number 3, pages 311-331.

Sathi, N. , M. Fox, V. Baskara'n, and J. Bouer. 11 An
Artificial Intelligence Approach to the Simulation Life
Cycle." A Technical Brief, Carnegie Group, Inc.,
Pittsburgh, PA, 1987.

Schriber, T. J. "The Nature and Role of Simulation in the
Design of Manufacturing Systems." Simulation in CIM
and Artificial Intelligence Techniques, The Society for
Computer Simulation: San Diego, CA, 1987, pp. 5-18.

Schroer, B. J. and F. T. Tseng. "Modeling Complex
Manufacturing Systems using Simulation." Proceedings
of the 1987 Winter Simulation Conference, Atlanta, GA,
1987, pp. 677-682.

Shannon, R. E. "Models and Artificial Intelligence."
Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 16-24.

Shannon, R. E. Systems Simulation: The Art and Science.
Prentice-Hall: Englewood Cliffs, NJ, 1975.

Software Survey: Simulation. The Engineering Software
Report, October, 1986, pp. 3-7.

223

Standridge, c. R., A. A. B. Pritsker, and c. w. Stein. "A
Tutorial in TESS(tm): The Extended Simulation Support
System." Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA, 1987, pp. 238-246.

stauffer, R. N.
Questions."
17.

"Graphic Simulation Answers Preproduction
CAD/CAM Technology, Vol. 3, No. 3, pp. 11-

Stroustrup, B. The C++ Programming Language. Addison
Wesley: Reading, MA, 1986.

Systems Modeling Corp. Promotional material, Industrial
Engineering, January, 1989, back cover.

Terrell, M. P., Principle Intestigator. NSF Final Report
Grant GK-43583, "Modular Systems Analysis and Design
for Utility Simulation Modeling of Constant Speed,
Discretely Spaced, Recirculating Conveyor Systems", May
30, 1977.

Terrell, M. P. and T. Chen. "The Development and
Application of a Utility Simulation Program for Design
and Analysis of Complex Conveyor systems Using
SIMSCRIPT II.5. 11 Abstracts for the International
Symposium on Extremal and Systems Analysis, September,
1977a, pp. 166-167.

Terrell, M. P. and T. Chen. "The Study and Development of a
Utility Simulation Model for, Conveyor System Analysis
Using SIMSCRIPT II.5. 11 Proceedings of the First
International Conference on Mathematical Modeling,
August, 1977b, pp. 669-680.

Terrell, M. P. and L. Bussey. "A Model for Analyzing
Closed-Loop Conveyor Systems with Multiple Work
stations." Proceedings of the 1973 Winter Simulation
Conference, San Francisco, CA, 1973.

Terrell, M. P., R. Gourley, and T. Chen. "The Development
of a General Purpose Conveyor systems Simulation Model
Utilizing a Modular Format." Proceedings of the 1975
Summer Computer Simulation Conference, San Francisco,
CA, 1975.

Tesler, L. "Programming Experiences." Byte, August, 1986,
pp. 195-206.

Thomas, D. "The Time/Space Requirements of Object-Oriented
Programs." Journal of Object Oriented Programming,
March/April, 1989, pp. 71-73.

224

Thomasma, T. and 0. M. Ulgen. "Modeling of a Manufacturing
Cell using a Graphical Simulation System Based on
Smalltalk-80. 11 Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA, 1987, pp. 683-691.

Ulgen, 0. M. and T. Thomasma. "A Graphical Simulation
System in Smalltalk-80. 11 Simulation in CIM and
Artificial Intelligence Techniques, The Society for
Computer Simulation: San Diego, CA, 1987, pp. 53-58.

Unger, B., A. Dewar, J. Cleary, and G. Birtwistle. "A
Distributed Software Prototyping and Simulation
Environment: JADE. •• Intelligent Simulation
Environments, Proceedings of the Conference on
Intelligent Simulation Environments, The Society for
Computer Simulation: San Diego, cA, 1986, pp. 63-71.

Vesterager, J., K. E. Wichmann, R. E. Young, and J. Heide.
"Simulation Uses in CIM Development. •• Simulation in
CIM and Artificial Intelligence Techniques, The Society
for Computer Simulation: San Diego, CA, 1987, pp. 95-
100.

Wales, F. J. and P. A. Luker. "An Environment for Discrete
Event Simulation. •• Intelligent Simulation Environments,
Proceedings of the Conference on Intelligent Simulation
Environments, The Society for Computer Simulation: San
Diego, CA, 1986, pp. 58-62.

Wallace, J. c. "The Control and Transformation Metric:
Toward the Measurement 'of Simulation Model Complexity."
Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 597-603.

Wilson, R. "Object-oriented languages reorient programming
techniques." Computer Design, November 1, 1987, pp.
52-62.

Wyvill, B. "Current Trends in Graphics and Animation.••
Ar,tificial Intelligence, Graphics, and Simulation, The
Society for Computer Simulation: San Diego, CA, 1985,
pp. 49-5J.

Zahedi, F., The Analytic Hierarchy Process- A survey of the
Method and its Applications, Interfaces, July-August
1986, Vol. 16, Number 4, pages 96-108.

Zeigler, B. P. Multifacetted Modelling and Discrete Event
Simulation. Academic Press: London, 1984.

Zeigler, B. P. Theory of Modelling and Simulation. Robert
E. Krieger Publishing Co.: Malabar, FL, 1976.

)__
VITA

Terrence Gilbert Beaumariage

Candidate for the Degree of

Doctor of Philosophy

Thesis: INVESTIGATION OF AN OBJECT ORIENTED MODELING
ENVIRONMENT FOR THE GENERATION OF SIMULATION MODELS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data:
Born in Washington, Pennsylvania, July 10, 1961,
the son of Gilbert and Karoline Beaumariage.

Education:
High School - Canon-McMillan Senior High,

Canonsburg, Pennsylvania. Graduated as
Salutatorian, May, 1979.

Undergraduate - Rochester Institute of Technology,
Rochester, New York. Received a Bachelor of
Science degree with Highest Honors in
Industrial Engineering, May 19, 1984.

Graduate - Oklahoma State University, Stillwater,
Oklahoma. Received a Master of Science
degree in Industrial Engineering, May, 1987.
Completed requirements for the Doctor of
Philosophy (majoring in Industrial
Engineering) in May, 1990 .'

Professional Experience:
Assistant Professor, Department of Industrial and

Management Systems Engineering, Arizona State
University, August, 1989 to present.

Teaching Assistant, School of Industrial
Engineering and Management, Oklahoma State
University, September, 1988 to December, 1988
and September, 1984 to May, 1985.

Research Assistant, School of Industrial
Engineering and Management, Oklahoma State
University, September, 1984 to August, 1989.

Professional Experience (continued):
Material Handling Engineer, Telex Computer

Products, Tulsa, Oklahoma, May, 1987 to
August, 1987.

Manufacturing Engineer, IBM Entry Systems
Division, Austin, Texas, May 1985 to August
1985.

Manufacturing Engineer, IBM Federal Systems
Division, Owego, New York, December 1983 to
February 1984.

Cost Engineer, IBM Federal systems Division,
owego, New York, June,, 1983 to August, 1983
and December, 1982 to February, 1983.

Assistant Engineer, O'Donnell and Associates,
Inc., Pittsburgh, Pennsylvania, June, 1982 to
August, 1982.

Assistant Engineer, Rochester Products Division of
General Motors, Rochester, New York,
December, 1981 to February, 1982 and June,
1981 to August, 1981.

Professional Activities:
Institute of Industrial Engineers
American Society for Quality Control (Certified

Quality Engineer)
National Society for Professional Engineers
Arizona Society for Professional Engineers
American Society for Engineering Education
Society for Computer Simulation
Registered Engineering Intern (Oklahoma)

Honor Societies and Awards:
Alpha Pi Mu Industrial Engineering Honor Society

(Arizona State University Chapter Faculty
Advisor)

Phi Kappa Phi Honor Society
Tau Beta Pi Engineering Honor Society
National Science Foundation Graduate Fellowship
Alpha Pi Mu Scholarship
IIE Gilbreth Memorial Fellowship
RIT Outstanding Undergraduate Scholar
National Merit Scholar

