
AN OPERAND DEPENDENCE GRAPH METHOD

FOR CODE OPTIMIZATION

By

JONATHAN M. ASURU
"

Bachelor of Science
University of Lagos

Lagos
1979

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1990

Oklahoma State Univ. Library

C 0 P Y R I G H T

by

Jonathan Maduabughci Asuru

May, 1990

1.375558

AN OPERAND DEPENDENCE GRAPH METHOD

FOR CODE OPTIMIZATION

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

PREFACE

Real programs tend to have the following features:

(1) code redundancies are concentrated in basic blocks and

in loops; (2) redundant statements involve mostly lexically

identical expressions; and (3) each distinct program

statement is used in few sections of a program. These

characteristics imply that high quality object code can be

produced by applying code improvement procedures to small

segments of a program rather than to an entire program.

This study addresses a well known problem in computer

science - the optimization of a compiler generated

intermediate code to produce an equivalent code with less

redundant statements. There are two aspects to this work:

(1) the development of a region relative code improvement

technique for programs with structured control flow graph;

and (2) the unification of common subexpression, code

hoisting, and code sinking optimization problems. The

purpose of the study is to develop a one-pass intermediate

code optimization method with the capability to recognize

both local and global redundancies in a program region.

The methods developed for redundant statement detection

are (1) representation of statements with an operand

dependence graph, (2) modelling of variable reaching

iii

iv

definitions with operand version numbers, and (3) extension

of the notion of partial redundancy to include statements on

disjoint control flow paths. Algorithms for many code

optimization procedures and their worst case time complexity

bounds are presented.

I wish to express my sincere gratitude to individuals

who assisted me directly to bring this endeavor to fruition.

My special thanks goes to Dr. George E. Hedrick, my major

adviser for his direction and encouragement. I will like to

thank my other committee members, Dr. J. Friske, Dr. K. M.

George, and Dr. M. E. zamadzadeh for their helpful

suggestions and comments on the draft of the thesis. I will

also express my appreciation to Margaret Brown for typing

part of this manuscript. I am very grateful to my wife,

Agatha and to my daughter, Awuri for their support,

patience, and encouragement.

Chapter

I.

II.

III.

IV.

v.

TABLE OF CONTENTS

Page

INTRODUCTION . . 1

The Problem 1
Literature Review 4
Operand Dependence Graph Based Method . 11

INTERMEDIATE CODE FORM

Introduction
Operand Rank and Operand Order.
structure of a DST Entry.
Array Indexing Representation
Structured Variable Transformation.
Summary

CONTROL STRUCTURE ANALYSIS .

Introduction
Structured Program Flow Graph .
Ordering of Nodes • .
Path Covers • .
Path Analysis and Code Optimization • .
Path Analysis Information Representation ..
Summary

VARIABLE DEFINITION ANALYSIS .

Introduction. • • . ..
Operand Version Numbering
Properties of Operand Version Numbers .
Surruna ry

INTRAPROCEDURAL ALIAS ANALYSIS .

Introduction•.
Pointer Aliasing in c
Pointer to Structure Transformation .
Alias Analysis Procedure.
Surrunary . • . . . • . • • . . • . .

v

15

15
15
16
18
21
22

23

23
23
27
33
45
47
52

53

53
54
59
66

67

67
68
72
74
80

Chapter

VI.

VII.

VIII.

IX.

vi

Page

OPERAND DEPENDENCE GRAPH . . . • . 81

Introduction. 81
What is an Operand Dependence Graph 81
Work Lists. . • 8 3
Essential Node Information. 84
Operand Dependence Graph Construction . 86
Summary 95

DETECTION OF FEASIBLE OPTIMIZATIONS .. 96

Introduction. • . . . 96
Redundant Statement Elimination . . • . 96
Code Hoisting Optimization. 102
Code Sinking. 111
Constant Folding. 115
Loop Optimization 122
Complexity of Code Optimization . . 133
Summary . . . • . . . • 140

SIMPLE RECURRENCE LOOP OPTIMIZATION. 0 141

Simple Recurrence Array Reference . . . 141
Simple Recurrence Elimination 148
Simple Recurrence Analysis 149
Loop Unrolling and Simple Recurrence. . 153
Summary • 155

SUMMARY, CONCLUSION, AND RECOMENDATIONS. 0 0 156

Summary 15 6
useless Code Elimination. 157
Improvements. 158
Further studies 0 0 0 0 0 0 159

REFERENCES . • 0 161

LIST OF TABLES

Table Page

I. Fork-width and Join-width of the Nodes in a
Program Flow Graph. . • • • . 41

vii

LIST OF FIGURES

Figure

1. Distinct Statement Table Representation of a
Program Fragment.

2. Single Exit Structured Flow Graph

3. Predominance Tree Post-dominance Tree .

4. While-do Loop to Do-while Loop Conversion .

5. Conditional Control Environment Cover Checking
Algorithm

6. Node Path Cover Analysis Algorithm ..

Page

19

25

27

31

42

43

7. Flow Graph and Forward Reachability Sets. . 51

8. Flow Graph Showing Definitions and References of a
Variable. 6 0

9. variable Definitions and Reference Analysis Data
structure 61

10.

11.

Alias Processing in a Basic Block .

Node Listing Generator Algorithm ..

12. Alias Computation Algorithm .

13. C Program

70

75

76

79

14. C Program After Structure Member and Pointer to
Structure Transformations 79

15. Contents of ALIAS-OUT and IND-ASSIGN After Alias
Analysis. so

16. Partial Redundancy Involving Disjoint Statement
Instances • 90

11. Partial Redundancy Involving Statements on Common
Execution Paths • 91

viii

ix

Figure Page

18. A Redundant Statement 99

19. A Partially Redundant Statement not Tested for
Redundancy. • 100

20. A Partially Redundant Expression Which Fails Full
Redundancy Test 101

21. An Inter-region Redundancy. . . 102

22. Hoistable Code. 104

23. A Non-Hoistable Code. . . 106

24. Code Hoisting Algorithm 10 7

25. Code Hoisting Candidate in a Nested Conditional
Structure 109

26. Code Sinking Example. 113

27. Simple and Non-Simple Constant Expression .. . 116

28. Constant Folding Example .. . 119

29. Constant Folding Procedure .. . 120

30. Evaluation Points Determination Procedure . . 121

31. Loop Invariant Detection Procedure •.•. . 124

32. Template for Defining Fields of a Sequence Tree
Node. • 128

33. ODG Segment Showing Loop Induction Variables. . 129

34. Sequence Tree of Induction Variable Family 130

CHAPTER I

INTRODUCTION

The Problem

Compilers for high-level languages employ general

schemes when translating a source program into machine code.

The code produced is usually inefficient with respect to

both code size and to running time when compared to an

input/output equivalent hand-written assembly program.

Algorithms for improving the quality of compiler generated

code have been developed [2, 6, 12, 27, 36]. However, the

algorithms are applied separately causing these code

improvement algorithms to interact creating a phase ordering

problem. In order to generate very efficient code, a

compiler may have to apply these algorithms several times.

The usual approach to compiler intermediate code

optimization consists of two separate steps. In the first

step, a compiler removes the inefficiencies in each basic

block by detecting and eliminating common subexpressions,

evaluating expressions with constant operands, and by

deleting useless instructions. These block specific

optimizations constitute the local code optimization step.

1

2

In the second step, a compiler increases the window of

instructions examined for improvement by combining

statements from many basic blocks. The program optimization

techniques which combine many basic blocks are called global

program optimization algorithms. To perform this step of

the optimization, a compiler requires global information

about both definitions and uses of program variables.

Global information gathering is called global data flow

analysis. There is no single data flow analysis technique

that can capture all the information that an optimizing

compiler uses for global code improvement. As a result, a

compiler performs separate flow analysis for each global

code optimization problem.

For instance, in order to eliminate globally redundant

expressions among basic blocks, a compiler determines the

expressions available at the entry and exit points of each

block. If an expression computed in a block, B, is found in

the pool of available expressions, then a compiler can

delete the expression from block B. The search for

available expressions takes time; there is no mechanism to

avoid useless searches. Repeated scanning of the

intermediate code increases the running time of optimizing

compilers.

A characteristic of code improvement methods based on

information propagation is that different techniques are

used to detect redundant statements. For instance, value

numbers [12] and directed acyclic graphs [2] are employed

3

to implement local code optimization algorithms, while bit

vectors and equivalence relations are used for global code

optimization problems. The use of different implementation

techniques to model a code optimization procedure (feasible

at both the local and global levels) increases both the size

and complexity of optimizers. In order to reduce the size

of optimizing compilers, only a small number of the well

known code improvement transformations are applied in many

compilers.

This study develops an intermediate code optimization

method for structured program flow graphs using a directed

graph representation of program statements. A structured

program flow graph is a program flow graph with the

following properties.

1. there is no jump into the middle of a conditional

structure;

2. there is no jump into the middle of a loop;

3. every loop has a unique point outside that loop to

which control transfers upon loop termination;

4. there is no overlap of control structures;

s. every conditional structure has a common join (the

next statement executed after control leaves a

conditional structure); and

6. every backward jump to the beginning of a loop is

contained in that loop.

The goals of this study include:

1. to develop a uniform method for characterjzing

redundancy and a uniform mechanism for specifying

the data flow and control flow constraints for the

various optimization problems;

2. to develop an optimization procedure which can

detect and eliminate a number of local and global

redundancies in a single pass; and

3. to keep the cost of optimization proportional to

the actual number of potential redundancies.

Literature Review

Basic Block Optimizations

4

Aho and Ullman [2] describe an elegant method for

improving straight line sections of a program based on

representing the instructions of a block with a directed

acyclic graph (DAG). The optimizations performed with a DAG

include common subexpression elimination, dead code

elimination, scalar propagation, and constant folding [1].

The leaf nodes of a DAG represent initial values, while

interior nodes of a DAG contain the operation symbols and

identifiers for storing the results of operations. An

advantage of the DAG method is that block specific

information used in global data flow analysis problems are

determined by traversing the DAGs of a block. However, the

DAG method can improve individual basic block only.

Cocke and Schwartz [12] present the value number method

for optimizing a basic block. Their algorithm associates

value numbers to expressions and variables used within a

block, such that variables and expressions having the same

value are assigned a common value number. The data

structure for value numbering is a hash table of available

expressions in a block.

Recursive Descent

Wulf, et al. [39] describe a method which integrates

parsing with the detection of feasible optimizations in a

program. Detection of redundancies is possible during

parsing because the syntax of the source language, BLISS

does not allow goto statements. As a result, control

environments (basic blocks, conditional structures, and

loops) are well defined. Feasible optimizations such as

linear code motion (code hoisting and code sinking), common

subexpressions, and loop invariants are identified and

marked without eliminating the redundancies.

5

Two distinct approaches are used to recognize

redundancies: (1) a congruent expressions table contains

equivalence classes of lexically identical expressions which

compute the same value; and (2) an ordering relation defined

on basic block statements partitions each block statements

into three subsets called prologue, epilogue, and postlogue.

At the join of a conditional control structure, the mutual

intersection of prologue sets of linear blocks in that

conditional structure yields hoistable code and the mutual

intersection of postlogue sets identifies sinkable code.

6

The notable feature of the recursive descent approach

is that it demonstrates that most of the common code

optimization procedures can be performed in one pass over an

intermediate code without examining the entire program. The

problem with recursive descent is that it cannot be applied

to programming languages with the goto construction.

Data Flow Analysis

Data flow analysis is the most widely used technique

for eliminating global redundancies in compiler generated

code. Global program optimization by data flow analysis

consists of two separate steps: analysis and optimization.

In the analysis step, a system of data flow equations for

the type of code optimization problem is solved to obtain

information reaching the beginning and end of each flow

graph node. The optimization step uses the information

obtained from flow analysis to remove redundancies (if any)

from each flow graph node (basic block).

For each global optimization problem, the intermediate

text is scanned twice (once during analysis and once during

optimization). Since the intermediate code is usually

maintained in secondary storage, enormous time is spent on

I/0. An optimization procedure may be applied several times

in order to discover more redundancies.

Each data flow analysis procedure has O(N2) complexity,

where N is the number of nodes in a program flow graph.

Because the data flow analysis step is the dominant cost,

7

most research on data flow analysis based methods is focused

on reducing the number of iterations. There are three

approaches to reducing the number of iterations.

One iteration reduction scheme uses a data flow

analysis procedure which converges to a fixed point in only

a few iterations. Properties such as reducibility [19] and

topological ordering [18] are used to determine the order in

which information is propagated. Flow analysis algorithms

based on interval analysis [5] and the iterative analysis of

Hecht and Ullman [18] are representative methods.

Another approach to improving the efficiency of data

flow analysis procedure is incremental flow analysis [34].

Incremental flow analysis avoids complete recalculation of

data flow sets after each optimization procedure by

isolating the region of a program affected by an

optimization. The concept is attractive, but the process is

complex. Incremental flow analysis is an on-going research

and the procedure is not understood well enough to be

included in compilers. Incremental flow analysis increases

the complexity of an optimizer and also requires more

storage for data flow analysis bit vectors.

The third iteration reduction approach is ordering of

optimization procedures to avoid negative phase ordering

problems. Phase ordering problems exist because the

optimization procedures are not completely independent. One

optimization procedure may create a redundancy eliminated by

another optimization procedure. By suitable ordering of

optimization procedures, many redundant computations can be

eliminated in a single application of a code optimization

procedure.

A major problem with data flow analysis based methods

is that the cost of redundancy detection is dependent on

program length and number of nodes in a flow graph but not

on the number of potential redundancies in a program. This

makes data flow analysis technique unsuitable for

optimization procedures where loop unrolling is performed,

as both the number of statements and the number of basic

blocks increase.

8

Another problem with data flow analysis is that it

assumes every distinct statement is equally likely in each

basic block. Hence, equal length data flow bit vectors are

used in each basic block to represent data flow information.

Basic blocks usually have few statements which means the

data flow bit vector for a block is usually sparse.

A third problem is that two sets of optimization

procedures are implemented with data flow analysis based

methods, one set of algorithms remove local (intrablock)

redundancies and the other set of procedures eliminate

global redundancies.

Global Value Numbers

Rosen, Wegman and Zadeck [33] develop a method which

extends the value number method to eliminate global

redundancies. The sequence of steps necessary to optimize a

9

program using their technique include

1. convert a program to static single assignment (SSA)

form;

2. assign ranks to computations;

3. move computations backward and forward;

4. eliminate redundant computations in rank order;

5. apply question propagation to move computations out

of a loop; and

6. reconvert program to original non-SSA form.

The global value number approach is an improvement over

data flow analysis in that it applies the same mechanisms

(movement of computations and question propagation) to

detect global redundancies. However, the global value

number method has the following drawbacks:

1. too many variables are created during SSA

transformation;

2. uses too many tables (there is one hash table for

each flow graph node and a moveable computation

table for each edge of the directed acyclic graph

of a flow graph) to hold intermediate code

statements;

3. redundant statements with different ranks cannot be

detected in the same optimization pass; and

4. the algorithm has a worst case time complexity

O(N3), where N is the number of nodes in a flow

graph.

Program Dependence Graph

Ferrante, Ottenstein, and Warren developed an

intermediate program form called program dependence graph

(PDG) for applying various intermediate code improvement

procedures to a program [15]. There are four steps in the

construction of a PDG:

1. construction of the DAG representation of each

basic block;

10

2. computation of reaching definition information for

each variable used in a basic block;

3. linking of each use of a variable with that

variable's possible definition points. These

definition-use edges constitute the data dependence

edges; and

4. linking of each statement with the predicate(s)

which control the execution of that statement.

After constructing a PDG, many compiler optimizations are

carried out by a graph walk of the relevant sections of a

program, but only one optimization procedure can be

performed at a time.

One advantage of the PDG is that data flow information

update is performed directly on the dependence graph after

each optimization procedure. However, the PDG requires more

space than data flow analysis methods and incurs

considerable cost when searching for feasible optimizations

in an intermediate code. Moreover, since the PDG is an

intermediate form, it cannot be easily integrated into

compilers employing common intermediate forms.

Operand Dependence Graph Based Method

11

A code optimizer should have two important attributes:

(1) the time complexity of redundancy elimination should be

proportional to the number of potentially redundant

statements in a program; and (2) the optimizer can perform

several optimization procedures in one pass over an

intermediate code. These two characteristics, if present in

a code optimizer will improve the efficiency of a code

optimizer. The second attribute reduces the number of

passes over the intermediate code during code optimization

phase of program compilation. To the best of the author's

knowledge, the BLISS optimizing compiler [39] is the only

optimizer that performs most local and global code

optimizations in one optimization pass. However, the time

complexity of redundancy detection is not proportional to

the number of redundant statements.

The work presented in this dissertation develops code

optimization technique in which both of these attributes are

present. A number of approaches are developed and combined

to produce the desired qualities at a moderate cost. These

approaches include rigorous control structure analysis, use

of operand version numbers, definition of a unifying concept

of partial redundancy, and the representation of the

intermediate code of a program with a factoring graph called

12

the operand dependence graph.

Control structure analysis involves the identification

of loop and non-loop sections of a program, the computation

of forward reachability, predominance, and post-dominance

relations, and the assignment of path weights called fork

width and join width to each node of a program flow graph.

The predominance relation among flow graph nodes is used to

define a topological ordering on flow graph nodes such that

processing the nodes in topological order preserves the

precedence constraint imposed by control flow. Control

structure analysis is described in detail in chapter III.

Program operands (identifiers and constants) are

assigned version numbers which distinguish instances of

the same operand. A version number is a nonnegative integer

assigned to an operand at a reference or at a definition

point. The version numbers of operands are propagated

through forward edges (non-looping arcs) of a flow graph in

a manner similar to reaching definitions, but without

setting up and solving a system of data flow equations.

When the nodes of a flow graph are processed in topological

order, the version number of a program operand is

monotonically increasing along any forward control flow

path. Version number related issues are discussed in

chapter IV.

The search for redundant statements in an intermediate

code is confined to optimization regions. An optimization

region is either a loop with all the loops nested within

that loop or an acyclic structure preceding or following a

loop. This restriction is adequate to detect most

redundancies in a program since most optimizations are

performed in basic blocks and in program loops. Each

program region is represented with a directed graph -- the

operand dependence graph.

13

The operand dependence graph structure exposes

lexically identical expressions which should be analyzed for

various forms of redundancy, such as common subexpression

elimination, code hoisting, and code sinking. A feature of

operand dependence graph which enhances the detection of

potential redundancies is the fact that lexically identical

expressions and operands from different basic blocks

(whether equivalent in value or not) can be represented with

the same graph node. In this way, the operand dependence

graph factors out those statements which may be redundant in

a program. The operand dependence graph facilitates the

detection of loop invariant statements and the recognition

of loop induction variables because the loop statements

which may be loop optimization candidates are connected with

graph edges. Chapter VI describes issues related to operand

dependence graph representation.

The operand version numbering technique and the operand

dependence graph representation technique are used to define

a concept of partial redundancy which includes both

statements on a common execution path and statements on

disjoint execution paths. With this unifying concept of

14

partial redundancy, common subexpressions, code hoisting,

and code sinking candidates are identified with the same

mechanism, thus avoiding separate search procedures to

identify candidate statements for each type of optimization

problem. In chapter VII, individual code optimization

procedures are discussed and chapter VIII describes a

technique for removing simple recurrences in a loop.

The main contributions of this study are:

1. use of operand version numbers to model variable

reaching definitions;

2. use of the path cover concept to check path

constraints of various code otpimization

problems;

3. use of a uniform mechanism to detect common

subexpressions, hoistable code, and sinkable

code; and

4. a method for eliminating simple linear recurrence

array references from sequentially executed loop.

CHAPTER II

INTERMEDIATE CODE FORM

Introduction

The operand dependence graph based code optimization

method can be integrated into a compiler employing common

intermediate forms such as quadruples, triples, statement

trees, and/or directed acyclic graphs (DAGs). Because of

the implementation strategy for an operand dependence

graph, a program's intermediate code is represented as a

sequence of distinct statement table (DST) locations.

A DST is a hash table of distinct intermediate code

statements in a program. The sequence of DST locations

specify the intermediate program in sequential execution

order.

Operand Rank and Operand Order

Without defining an order for operands of intemediate

code operations, the number of distinct intermediate code

statements in a program may increase when an order is not

specified for operands of commutative operations. For

instance "a + b" and "b + a" will be treated as distinct if

distinctness is based solely on lexical patterns. The

15

approach used to avoid entering equivalent statements into

the DST is to assign a rank to each operand (constant,

temporary, or declared variable).

16

The rank of an operand is a unique number assigned to an

operand by some ranking rule. A rank assignment rule

adopted for the operand dependence graph is to assign a

number which reflects the order in which tokens are entered

into a symbol table. Operands of commutative intermediate

code operations are rearranged so that operands are in

increasing rank order. This operand ordering rule preserves

the result of numerical computations. A source level

expression such as a + b + c will be translated into one of

these equivalent computations (a + b) + c, (b + a) + c,

c + (a+ b), or c + (b +a).

Structure of a DST Entry

An intermediate code statement in the DST consists of

four fields:

1. A generalized n-tuple which represents an abstract

language operation.

2. An ordered set of dependent operands.

3. Temporary name generated for that statement if the

statement is an expression.

4. Operand dependence graph node for the statement.

A layout of the fields of an intermediate code statement in

a DST is shown below.

17

N-TUPLE I D-OPERAND I TN I ODG-NODE

N-TUPLE: Abstract language operation.

D-OPERAND: Dependent operands set.

TN: Temporary name.

ODG-NODE: Operand dependence graph node.

An n-tuple (n >= 0) consists of an operator name and a

list of the n operands on which a specified operator will be

applied. The use of a generalized n-tuple makes it possible

to represent operations with more than two operands (such as

procedure calls) with a single statement.

The dependent operands field (D-OPERAND) contains the

set of variables which affects that n-tuple. Let s be an

n-tuple of the form a, o1 , ... ,On, where a is an operation

symbol and 01, . . . , On are the n operands for the operation

a. The algorithm for computing the elements of D-OPERAND

follows.

D-OPERAND = m;

If Oi is a source variable or a temporary, then

D-OPERAND = D-OPERAND U {Oi}

The C program fragment below serves as an example to

illustrate the operand dependence graph based intermediate

code form.

float a, b, c, x1, x2, temp;

if(b * b - 4 * a * c > 0) {
temp= sqrt(b * b- 4 *a* c);
x1 (-b +temp) I (2 *a);
x2 = (-b- temp) I (2 *a); }

18

A listing of the variables and constants in increasing rank

order is a, b, c, xl, x2, temp, 4, 0, 2. The sequence of

three address statements corresponding to the fragment is

sl: tl = b * b
s2: t2 = 4 * a
s3: t3 = t2 * c
s4: t4 tl - t3
s5: if t4 > 0 go to s7
s6: go to s23
s7: tl = b * b
sa: t2 = 4 * a
s9: t3 = t2 * c
slO: t4 = tl - t3
sll: ts = sqrt t4
sl2: temp . - ts .-
sl3: t6 = -b
Sl4: t7 t6 + temp
sl5: ta = 2 * a
sl6: t9 = t7 I ta
sl7: xl . - t9 .-
sl8: t6 = -b
Sl9: tlO = t6 - temp
s20: ta = 2 * a
s21: tll = tlO I ta
s22: x2 . - tll .-
s23:

The distinct statement table and the sequence of distinct

statement table indexes corresponding to the intermediate

code is depicted in Figure 1.

Array Indexing Representation

An array object is represented with two components: a

base and an indexing vector. Array base is the constant

component of the expression for calculating an element's

address, while an indexing vector specifies the stride for

each dimension of an array.

N-TUPLE

o. * b, b
1. * a, 4
2. * C, t2
3. - t1, t3
4. > t4, 0 goto s7
5. goto s23
6. sqrt t4
7 . : = temp, t5
8. - b
9. + temp, t6
10. * a, 2
11. 1 t1, t8
12. : = X1, t9
13. - t6, temp
14. I t10, t8
15. := x2, t11

D-OPERAND

{b)
{a}
{C, t2}
{t1, t3}
{t4}
{}
{t4}
{t5}
{b)
{temp, t6}
{a}
{t7, t8)
{t9}
{t6, temp}
{t10, t8}
{t11}

TN

t1
t2
t3
t4

t5

t6
t7
t8
t9

tlO
t11

19

ODG-NODE

Sequence of intermediate code statements = 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 8, 13, 10, 14, 15.

Figure 1. Distinct Statement Table Representation
of a Program Fragment

If A is an n-dimensional array declared with dimensions

d1 , ... , dn, stored in row major order and if A[s1] ... [sn]

is an element specification, where s 1 , ... ,snare subscript

expressions, then the address of A[s1] ... [sn] is given by

the expression

addr(A) - (L1 * d2 * ... * dn * w + •.. + Ln * w) (1)

+ s 1 * d2 * ... * dn * w + •.• + Sn * w (2)

where addr(A) is the address of the first byte of the

storage area for elements of A; w is the amount of storage

required to store one element of A; and L1 , ... , Ln are the

lower bounds on subscript values for the respective

dimensions. The base component of A is given by expression

(1) and the indexing vector for A is the sequence of

constant factors of terms in expression (2) and is defined

as

(d 2 * * dn * w, d3 * ... * dn * w, ... , w). (3)

20

Expression (2) for array element address calculation is a

vector dot product operation. Thus, (2) can be rewritten as

(d2 * * dn * w, ... , w) • (s1 , ... , sn) (4)

To model array indexing operation by means of vector dot

product, two intermediate code operators are introduced.

The first operator called INDEX denotes the dot product

operation and takes as operands an indexing vector and a

subscript vector. The second operator CREATE-VECTOR

converts a sequence of subscript expressions for an array

element into a subscript vector.

Suppose A and B are arrays stored in row major order.

A and B are indexing equivalent if A and B have the same

indexing vector. In a formal sense, two arrays A and B are

indexing equivalent if

1. A and B have the same number of dimensions;

2. Element size of A equals element size of B;

3. Only the size of their first dimensions may differ.

Indexing equivalent arrays reference a common indexing

vector. A unique tag which serves as the name of an

indexing vector is assigned to each distinct indexing vector

in a procedure.

21

Application to Loop Optimization

In procedural languages, array dimensions once specified are

invariant throughout the life time of a procedure

invocation. Therefore, the indexing vector component of a

dot product operation is invariant in a procedure.

The optimization of a program loop requires multiple

passes over the body of a loop in order to obtain the

information necessary for performing loop specific code

improvements such as loop invariant motion and strength

reduction of loop induction variables. Since most sources

of loop code improvements are due to linearizing subscript

expressions of multi-dimensional arrays, modelling array

indexing operations with vector dot product exposes most

loop invariants and induction variables without searching

loop statements.

Structured Variable Transformation

To accommodate structured variables in an operand

dependence graph, the fields of each structured variable are

renamed with internal unique names generated by a compiler.

A source level reference to a structure member in a

statement is translated to reference the unique internal

name for that field. An implementation strategy for mapping

source level field names to internal names is a synonym

table. Each structured variable has its own synonym table.

By renaming the members of a structured variable, the scalar

components of a structure become amenable to data flow

analysis.

Summary

22

The intermediate code form for an operand dependence

graph based program representation consists of a distinct

statement table for the distinct intermediate code

statements in a program and a sequence of distinct statement

table indexes which specifies the intermediate code program.

Array indexing operation is represented as a dot product

operation and a renaming transformation is applied to

structured variables to simplify the handling of structure

members.

CHAPTER III

CONTROL STRUCTURE ANALYSIS

Introduction

The optimization of compiler generated code depends

upon the accurate knowledge of the control structure within

a program. For a "gotoless" language such as Bliss [39],

the control structure of a program can be deduced from the

programming language syntax. When processing a program

written in a language which permits "goto" statement,

control flow analysis is necessary to identify the control

structures of a program. In this section, control structure

analysis issues relevant to an operand dependence graph

based code optimization method are discussed.

Structured Program Flow Graph (SPFG)

The first step in control flow analysis is the

construction of a program flow graph from the set of linear

(basic) blocks of a program's intermediate code.

Definition 1. A program flow graph is a connected rooted

directed graph, G = (N, A, r), where N is a finite set of

basic blocks (also called nodes), A is a subset of N x N,

and r is the initial basic block (the block where program

23

24

execution begins). A directed edge (nl, n2) connects two

nodes nl and n2, if n2 can be executed immediately following

the execution of the last statement of nl.

Let n be a node of G = (N, A, r), the immediate

successors of n, denoted succ[n], is defined as

{xI (n, x) E A}. Similarly, { y I (y, n) E A} form the

immediate predecessor set of n, denoted pred[n].

Definition 2. A reducible program flow graph is a program

flow graph G = (N, A, r), such that the backedges of G are

unique[l9].

Definition 3. A structured program flow graph is a

reducible flow graph in which every loop has a unique loop

exit.

Definition 4. A single exit program flow graph is a

structured program flow graph G = (N, A, r, e), where N, A,

and r are as defined above, and e is a unique node such that

there exists a path from every node to e.

Henceforth in this work, any reference to a flow graph

implies a single exit structured program flow graph

(SESPFG). Figure 2 is an example of a SESPFG.

Dominance and Forward Reachability Relations

A depth first search procedure as described in [22] is

applied to a program flow graph to identify its backedges.

Each node, n of a flow graph is labeled with a unique

positive number, d i INI, such that the label on n is

the reverse of the order in which n is last visited during

25

depth first search. The unique label, d assigned to a node

is called the depth first number (DFN) of that node. For

each node, n, of a SESPFG, G = (N, A, r, e), let DFN[n]

denote the depth first number of n.

Figure 2. Single Exit Structured Flow Graph

Two fundamental properties [19] of reducible flow

graphs are (1) backedges are unique and (2) if (b, h) is a

backedge, then DFN[h] i DFN[b].

Let B = { (b, h) I DFN[b] ~ DFN[h] } be the set of backedges

of a program flow graph.

Definition s. The acyclic program flow graph of a reducible

flow graph is G' = (N, A- B, r, e).

26

Definition 6. Suppose G = (N, A, r) is a program flow graph

and suppose further that d and n are any two nodes of G. d

predominates n if and only if (iff) every path from the

initial node r to n always includes d.

Definition 7. If G is a SESPFG, G = (N, A, r, e), then the

graph R(G) = (N, E, e, r) is a reverse flow graph of G,

where E = { (x, y) I (y, x) E A).

Definition 8. Let n and p be nodes of a PFG, G = (N, A, r,

e). Node p post-dominates n iff pis a predominator of n in

R(G).

If p post-dominates n in G, then whenever control transfers

to n, control eventually will transfer to p. Post-dominance

information of a flow graph is used to determine the exit or

join point of a control structure.

Both predominance and post-dominance relations can be

represented with dominance trees. The predominance and

post-dominance trees of the flow graph in Figure 2 are shown

in Figure 3.

Definition 9. Suppose nl and n2 are any two nodes of a PFG,

G = (N, A, r, e). Node n2 is forward reachable from n1 if

either:

1. there is a path which includes n1 in the acyclic flow

graph G' of G, from the initial node r to n2; or

2. nl is inside a while-do control structure and n2 is

forward reachable (by condition 1) from the exJt node of

the while-do loop containing n1.

(a) (b)

Figure 3. (a) Predominance Tree
(b) Post-dominance Tree

27

Forward reachability as defined is a reflexive, transitive,

and antisymmetric relation. Thus, forward reachability is a

partial order. If n2 is forward reachable from nl, then nl

and n2 lie on some common execution path.

Suppose nl and n2 are distinct nodes of a structured

program flow graph G = (N, A, r, e), then nl and n2 are

disjoint if nl is not forward reachable from n2 and n2 is

not forward reachable from nl.

Ordering of Nodes

Code optimization based on the operand dependence graph

technique depends on the identification of a processing

order for the nodes of a program flow graph. A suitable

node processing order must preserve any precedence

constraint imposed by control flow. The node processing

order developed for the operand dependence graph is called

predominated-inverse-post-dominated (PIPD) order.

Let T(G) be the predominator tree of a program flow

graph, G = (N, A, r, e), such that the children of each

parent node are ordered from left to right by increasing

depth first number. The PIPD ordering of flow graph nodes

is the preorder traversal listing of T(G).

Let nl and n2 be distinct nodes of a flow graph in

which the nodes are listed in a PIPD order. Some

characteristics of PIPD order are:

1. If nl predominates n2, then nl precedes n2 in a PIPD

order listing of nodes.

2. If there is a forward path from nl to n2, then nl

precedes n2 in a PIPD order listing of nodes.

28

3. The exit node, e of a single exit flow graph is the last

node in a PIPD order listing of nodes.

4. The initial node r of a flow graph is the first node in a

PIPD order listing of nodes.

5. a node and its predominees are contiguous in a

PIPD order listing of nodes.

6. If n2 post-dominates nl, then n2 succeeds nl in a

PIPD order listing of nodes.

The first four properties are due to the antisymmetric and

transitive properties of the predominance and forward

reachability relations. The fifth characteristic is a

property of preorder traversal of trees. In a preorder tree

traversal, the root of a subtree is visited first, then the

children of that subtree are visited next in a left to right

29

order. The sixth property is due to the preorder traversal

of predominance tree and the ordering of children nodes in a

predominance tree.

Definition 10. Suppose n is a node of a program flow graph.

The index (position) of n in a PIPD order listing of nodes

is called the linear order number (LON) of n.

Assuming an indexing origin of one, if each node in a

PIPD order listing of nodes is replaced with its LON, the

resulting list is a sequence of first INI positive integers

in increasing order. Thus, PIPD order is a total (linear)

ordering. From now on, any reference to linear (total)

order in the text refers to PIPD order.

Loop Identification

Linear ordering of nodes simplifies the task of finding loop

sections of a structured program flow graph. In a

structured program flow graph, a loop has a unique entry

(header) node. A loop header node is a loop node that

predominates every other node of a loop. Since a node and

its predominees are contiguous in a linear order listing of

nodes, the flow graph nodes constituting the body of a loop

are contiguous.

Suppose B(G) is the set of backedges of a reducible

flow graph G. Suppose further that (b, h) is an element of

B(G). Define [h] = {x I (x,h) is in B(G)}. The last

element of [h] is the element with the largest linear order

number. The immediate post-dominator of the last element of

30

[h] is the exit node of the loop whose header is h.

Given a back edge (b, h) and [h] of a structured program

flow graph G, let the last element of [h] be g. Suppose the

LONs of h and g are S and T respectively. The loop region

whose header node is h is the set { n I S i LON[n] < T),

where LON[n] represents the linear order number of n.

The nodes in [h] are called looping nodes.

Each node of a structured program flow graph is assigned

a region tag subject to the following constraints:

1. The region tag of a node that does not belong to any loop

is zero;

2. In a nested loop, the nodes which constitute the body of

an inner loop have the same region tag; and each inner

loop has a distinct region tag;

3. If a loop has no inner loops, the header node and the

nodes belonging to that loop have the same region tag;

4. The region tags of nodes in a parent loop are less than

the region tag of any loop contained in that parent.

Flow Graph Transformation

After program loops have been identified, any loop

whose program flow subgraph has the structure shown in

Figure 4(a) is transformed to the subgraph of Figure 4(b).

This transformation converts a while-do loop into a do-while

loop without changing a program's semantics.

The while-do loop to do-while loop conversion both

increases the number of movable loop invariant statements

and ensures that moved loop invariants are executed only

when a loop's body is executed. Following loop

transformation, the predominance and post-dominance trees

are updated to include the new nodes and edges added to a

flow graph. A new PIPD ordering is obtained from the

modified predominance tree.

(a) while-do loop

(b) equivalent do-while

Figure 4. While-do Loop to Do-while Loop Conversion

Node Classification

31

To keep track of transitions from one control

environment to another control environment, flow graph nodes

are typed. Five types of nodes are distinguished: join of a

conditional control structure, loop header, loop exit, end

of loop marker, and ordinary node. A node is classified a

32

join node, if

1. it has at least two immediate predecessors in the DAG of

a flow graph;

2. it is not a loop header;

3. it is not a loop exit node; and

4. the immediate predecessors are disjoint.

A flow graph node is a loop header node if it is a

destination of a backedge, and a node is a loop exit if it

is the unique node to which control transfers upon loop

termination. An end of loop marker node is the first non­

loop node following the last node of a program loop in a

PIPD ordering of nodes. If a node is both a loop exit and

an end of loop marker, then that node is classified as end

of loop marker. If a node is not a join, loop header, end

of loop marker, or loop exit, then that node is an ordinary

node.

During the processing of intermediate code statements,

special operations are initiated when certain node types are

encountered. For instance, when a join node is about to be

processed, any potentially hoistable or sinkable code in the

preceding control environment is analyzed for forward code

motion or backward code motion optimization. If the next

flow graph node to be processed is an end of loop marker,

loop specific optimizations such as loop invariant statement

detection, loop invariant code motion, and loop induction

variable simplification are performed before continuing with

statement processing. By assigning type tags to flow graph

nodes, the necessary code improvement operations can be

initiated at a control environment boundary.

Path Covers

33

Code optimization problems can be grouped into two

categories based on their path constraints. One class of

code optimization problems requires the information of

interest to be present along all paths leading to a point.

The second class of problems require that the information of

interest occur in at least one path to a point. Forward

reachability information of a flow graph node is sufficient

to check the path constraint of class two problems. In this

section, the notion of a path cover is introduced as

an approach for checking all-path data flow constraint

directly.

Definition 11. Let {n1, ... , nk} (k > 1) be a subset of the

nodes of a flow graph. Suppose m is a flow graph node such

that there exits a forward path from each node in

{n1, ... , nk} tom. {n1, ... , nk} is a path cover form, if

every path from the initial node of a flow graph to m must

include a node from {n1, ... , nk}.

This type of path cover is called a node path cover problem.

When k = 1, {n1} is a path cover for m if n1 = m or n1 is a

predominator of m.

In Figure 2 (page 25), the subset of nodes which are path

covers for node B9 are {B1}, {B2, B8}, {B3, B7, B8}, {B6,

B7, B8}, {B4, B5, B7, B8}, and {B9}.

34

Definition 12. Let f be a fork node of a program flow graph

DAG and let m be the immediate post-dominator of f.

Define SCOPE[f, m] = { n I f predominates nand n != m).

The set SCOPE[f, m] specifies the scope of a conditional

control structure whose header node and join node are f and

m, respectively. The definition of SCOPE[f, m] excludes the

join node m from SCOPE[f, m]. Every node in SCOPE[f, m]

with the exception of f is control dependent on f. That

means the execution of any node in SCOPE[f, m] - {f} depends

on the truth value of the predicate at f. Based on this

definition of a conditional control environment, the subsets

{B3, B4, BS}, {B2, B3, B4, BS, B6, B7}, and {B1, B2, B3, B4,

BS, B6, B7, B8} are control environments of the flow graph

in Figure 2.

Definition 13. Suppose {n1, ... , nk} is a subset of nodes

of a program flow graph. A common predominator of

{n1, ... , nk} is a node which predominates every node in

that set. Suppose f is a common predominator of {n1, ... ,

nk}. Node f is the least common predominator of {n1, . . . ,
nk} if every common predominator of the nodes in the set

also predominates f.

Definition 14. Suppose {n1, ... , nk} is a subset of nodes

of a program flow graph. A common post-dominator of

{n1, . . . ,
the set.

nk} is any node which post-dominates every node in

Suppose j is a common post-dominator of {n1, ..• ,

nk}. Node j is the least common post-dominator of the nodes

in the set if every post-dominator of {n1, ... , nk}

35

post-dominates j.

Definition 15. Suppose {n1, ... , nk} is a subset of the

nodes belonging to some conditional control structure c.

Let f be the least common predominator of {n1, ... , nk}.

Suppose the immediate post-dominator of f is m. The set

{n1, ... , nk} is a conditional environment cover for the

conditional control structure C if every path from f to m

must include a node from {n1, ... , nk).

The concept of a conditional control environment cover

provides a method for checking node path covers. To reduce

the amount of computation involved in node path cover

analysis, the lemmas below are used.

Lemma 1. Suppose {n1, ... , nk} is a subset of the nodes of

a flow graph. Let m be a flow graph node such that there

exists a forward path from each node in {n1, ... , nk} tom.

Let the least common predominator of {n1, ... , nk} be f. If

{n1, ..• , nk} is a path cover form, then f predominates m.

Proof. Node f is a path cover for each node in {n1,

... , nk). Iff does not predominate m, then there exists at

least one forward path from the initial node of a flow graph

tom which does not pass through f. Therefore {n1, .•. , nk}

is not a path cover form. Hence, if {n1, ... , nk} is a path

cover for m, then the least common predominator of the nodes

in the covering set predominates m.

Lemma 2. Suppose {n1, ... , nk} is a subset of the nodes of

a flow graph. Let m be some flow graph node for which m is

D

36

forward reachable from each node in the subset to

m. Let the least common post-dominator of {n1, ... , nk} be

j. If {n1, ... , nk} is a path cover form, then j

predominates m.

Proof. Every path from each node of {n1, ... , nk} tom

must pass through j because j is a common join of paths

originating from the nodes in the subset. If {n1, ... , nk}

is a path cover for m, then j is also a path cover for m.

Suppose {n1, ... , nk} is not a path cover form, then there

exists a forward path from the initial node of a flow graph

to m which does not pass through any node in the subset.

Therefore, if {n1, ... , nk} is a path cover form, the least

common post-dominator of {n1, •.. , nk} is a predominator of

m. D

By lemmas 1 and 2, {B4, BS} is not a path cover for

node B9 (Figure 2) because B9 can be reached from B8 and B7

without passing through B4 orBS. Notice that {B3}, {B4,

BS}, and {B3, B4, BS} are path covers for B6. The subset

{B3, B4, B5} is a union of the covering sets {B3} and {B4,

BS}. This example illustrates that it is not necessary to

examine every node in a potential path cover set in order to

deduce whether a subset of nodes is a path cover for some

node or control environment. Every input set to a path

cover problem has an equivalent subset of essential nodes

called a minimal set.

Definition 16. Let {n1, ... , nk} be a subset of the nodes

of a flow graph. A minimal set for {n1, ... , nk} is a

37

subset {b1, ... , bs} of {n1, ... , nk} such that ifni

(1 i_i i k) 8 {b1, ... , bs}, then {b1, ... , bs} does not

contain any node ni predominates or ni post-dominates.

Lemma 3. Suppose {b1, ... , bs} is a minimal set for {n1,

... , nk} . The subset of nodes {b1, . . . , bs} is a control

environment cover iff {n1, ... , nk} is a control environment

cover.

Proof. Obvious from the definition of a minimal set.

Lemmas 1 and 2 state necessary conditions for a set of nodes

to cover every path to a given node, while lemma 3 states

that the path cover problem can be decided with a smaller

set containing non-redundant elements.

Path Cover Analysis

The notion of a path cover has been defined without an

effective procedure for deciding whether a set of nodes is

either a path cover for a given node or a control

environment. In order to specify a precise method for

determining path covers, the concept of fork-width and

join-width of a node are introduced.

D

Definition 17. Let f be a fork node of the DAG of a program

flow graph and let d be the immediate post-dominator of f.

The path-width of the conditional structure SCOPE[f, d] is

the number of acyclic paths from f to d.

McCabe[25] states that the number of independent paths

(cyclomatic complexity) of a structured program is the

number of predicates plus one. In a structured program flow

38

graph, a conditional structure induces a subflow graph on a

program flow graph. If McCabe's cyclomatic complexity

measure is applied to a control structure with loop

backedges removed (DAG of control structure), then the

cyclomatic complexity of that control structure is equal to

the path-width of that control structure. The path-width of

a control structure gives the number of alternate paths in

that control structure.

Definition 18. Let f be a fork node in the DAG of a flow

graph and let j be the immediate post-dominator of f. The

fork-width of f is a positive number, o with the following

constraint:

1. there exist o nodes predominated by f;

2. the o nodes form a minimal set for the conditional

environment SCOPE[f, j]; and

3. every path from f to j must include one of the o nodes.

Definition 19. Suppose j is a node with two or more

immediate predecessors in a flow graph DAG and d is the

immediate predominator of j. The join-width of j is a

positive integer o, such that

1. there exist o nodes predominated by d;

2. the o nodes form a minimal set for the conditional

environment SCOPE[d, j]; and

3. every path from d to j must include one of the o nodes;

The value o and the value o are related to the path-width of

the conditional environment SCOPE[f, j] or SCOPE[d, j] as

the case may be. This fact is stated in the next lemma.

Lemma 4. Suppose f is a fork node in the DAG of a program

flow graph. The fork-width of f < path-width of the

conditional structure originating at f.

39

Proof. Let o be the fork-width of node f. o is the

cardinality of a minimal set of the control structure whose

head is f.

o > 1 because the path-width of a fork node > 1. Suppose

o > 1. Then the minimal set contains mutually disjoint

nodes. Since fork nodes create disjointedness, there are at

most q nodes in the minimal set, where q is the number of

fork legs in the control structure headed by f. Each fork

leg is an alternate path to the join of a conditional

structure. Hence, o ~ q ~ the number of acyclic paths from

f to the join of f. Therefore, the fork-width of f < the

path-width of the control structure originating at f. o

The fork-width (join-width) of a fork node (join node)

is not unique. To ensure that a deterministic value is

calculated for the parameters o and 5, the following

computation rule is adopted:

1. The fork-width and join-width of a nested control

structure should be evaluated in deepest to shallowest

order;

2. Fork-width of a node with a unique immediate successor in

the DAG of a flow graph is one;

3. Join-width of a node with a unique immediate predecessor

in the DAG of a flow graph is one;

4. Let f be a fork node of a flow graph DAG and let j be the

immediate post-dominator of f. Suppose FWD-SUCC[f,

pred[j]] denotes

{n I n E pred[j] and (f predominates nor n E

succ[f])).

The fork-width of f is the sum of the join-widths of

the nodes in FWD-SUCC[f; pred[j]].

5. Let j be a node with two or more immediate predecessors

in a flow graph DAG. The join-width of j is the sum of

the join-widths of the nodes in pred[j].

6. The join-width of the initial node of a flow graph is

zero.

7. The fork-width of the exit node of a single exit flow

graph is zero.

40

The result of applying this computation rule to the flow

graph in Figure 2 is depicted in Table I. Before computing

the fork-widths and join-widths of nodes, while-do

control structures must be transformed to do-while control

structures.

TABLE I

Fork-width and Join-width of the
Nodes in a Program Flow Graph

Node Fork-width Join-width

B1 4 0
B2 3 1
B3 2 1
B4 1 1
BS 1 1
B6 1 2
B7 1 1
B8 1 1
B9 0 4

41

Let FORK-WIDTH[n] and JOIN-WIDTH[n] represent the fork-

width and join-width of node n, respectively. Figure 5 is

an algorithm to determine if a given set of nodes of some

conditional control structure is a path cover for that

conditional control structure and the algorithm in Figure 6

determines whether a subset of nodes is a path cover for

some node m.

42

ALGORITHM 1: Control Environment Cover Algorithm.
Input. A minimal set, S containing a subset of the nodes of

a program flow graph;
The arrays FORK-WIDTH and JOIN-WIDTH holding the
fork-widths and join-widths, respectively of a flow
graph;
The DAG of a program flow graph;
Predominance and Post-dominance relations of a
program flow graph.

output. TRUE if S is a conditional environment cover;
FALSE otherwise.

Method. First partition S into subsets corresponding to
subconditional structures(steps 1 and 2). Then
check if each subset of S is a conditional
environment cover (step 3). Finally, check if the
subconditional structures combined is a cover for
the conditional environment S describes.

1. PartitionS into distinct subsets c 1 , ... , Cz,
such that members of each subset have the same immediate
post-dominator.

2. For each C· compute hi as follows:
If lcit = 1, then hi := the element of c 1 ;
Else

hi := least common predominator of nodes in Ci;
end for

If z > 1, then begin
F := least common predominator of {h1 ,
J := immediate post-dominator of F;
end

Else

• • • I

F := h1 ; J := immediate post-dominator of h1 ;
end if
PATH-COVER := TRUE;

3. For each ci do
If lcil > 1, then begin

PW := 0;
For each n in Ci do

if n is a fork node of flow graph
PW := PW + FORK-WIDTH[n];

else PW := PW + JOIN-WIDTH[n];
end for
if PW != FORK-WIDTH[hi], then begin

PATH-COVER := FALSE;
exit loop;

end
end

DAG, then

(Continued from page 42)

Else begin
let d be the immediate post-dominator of hi;
if d != J, then

end
end for

if FORK-WIDTH[hi] != JOIN-WIDTH[d], then begin
PATH-COVER := FALSE;
exit loop;

end

4. if PATH-COVER = TRUE, then begin
if z > 1, then begin

SUCC := U FWD-SUCC[hi; pred[J]]
i = 1, ... , z

if FWD-SUCC[F; pred[J]] != SUCC, then
PATH-COVER := FALSE;

end
end

Figure 5. Conditional Control Environment
Cover Checking Algorithm

ALGORITHM 2. Node Path Cover Algorithm.
Input. Same as Algorithm 1.
Output. Same as Algorithm 1.

43

Method. Combines Algorithm 1 and lemmas 1 and 2.

PATH-COVER := FALSE;
if k = 1, then begin

if (n1 = m) or (n1 predominates m), then
PATH-COVER := TRUE;

end

else begin
perform steps 1 and 2 of Figure 5;
if F does not predominate m or

J does not predominate m, then
PATH-COVER := FALSE;

else perform steps 3 and 4 of Figure 5;
end

Figure 6. Node Path Cover Analysis
Algorithm

As an example of path cover analysis, Figures 5 and

6 will be applied to determine whether {B4, B5, B7} is a

conditional control environment cover and a path cover for

node B9 with respect to the flow graph in Figure 2. First

{B4, B5, B7} is subjected to conditional environment cover

analysis. The values of various variables at the end of

each step of Figure 5 are shown below.

Step 1 :
C1 = {B4, B5}; hl = B3;
C2 {B7}; h2 = B7;

Step 2:
F = B2; J = B9;
PATH-COVER = TRUE;

Step 3:
for C1 PW = FORK-WIDTH[B4] + JOIN-WIDTH[B5]

= 2 = FORK-WIDTH[h1 = B3]

Step 4:
pred[J = B9] = {B6, B7, B8}
SUCC = FWD-SUCC[hl = B3; pred[J = B9]]

U FWD-SUCC[h2 = B7; pred[J = B9]]
= {B6} U {B7} = {B6, B7}

FWD-SUCC[F = B2; pred[J = B9]] = {B6, B7}
FWD-SUCC[F; pred[J]] = SUCC

44

Since the value of PATH-COVER is TRUE at the end of step 4,

{B4, B5, B7} is a path cover for the conditional control

environment enclosing {B4, B5, B7).

To decide if {B4, B5, B7} is a path cover for B9,

Figure 6 is used. After performing steps 1 and 2 of Figure

5, the statement PATH-COVER := FALSE in Figure 6 is executed

next. At this statement, the value FALSE is assigned to

PATH-COVER because lemmas 1 and 2 are not satisfied. Hence

{B4, BS, B7} is not a path cover for B9.

45

Path Analysis and Code Optimization

The control flow constraints of some code optimization

problems can be determined by using either a conditional

environment or a node path cover test procedure. In this

subsection, the path constraints of common code optimization

problems are formulated as path cover problems.

Common Subexpression Elimination

Suppose E is an expression such as x + y at some

program point, q. The instance of E at q is redundant if

(1) X + y always is computed before control transfers to

point q; and (2) no statements between the previous

evaluations of x + y and q has a side effect on either x or

y. Suppose p1, ... , pk are the most recent program points

with previous instances of expression E reaching point q,

then condition (1) is satisfied if {p1, .•. , pk} is a node

path cover for the point q.

Code Hoisting

Suppose E is an expression evaluated in some disjoint blocks

{B1, ... , Bk} of a conditional control structure, C. Let F

be the fork node where the conditional structure C

originates. E can be factored out of {B1, ... , Bk} and

placed in the fork node, F if (1) every path originating

from F must include a node from {B1, ... , Bk}; and (2) the

instances of E in {B1, ... , Bk} use the same value of the

source operands. The first condition is a conditional

control environment path cover problem.

Code Sinking

Let {B1, ... , Bk} be a set of disjoint nodes of a

conditional structure, c. Suppose there is an instance of

some assignment statementS in each of B1, ... , Bk. Let m

be the merge point of the conditional structure. The

statementS can be factored out of {B1, ... , Bk}

46

if (1) every path from the immediate predominator of m tom

must pass through a block in {B1, ... , Bk};

(2) the variable assigned to in statement S is not

referenced in any statement following S in blocks

B1, ... , Bk; (3) no statement in a block which succeeds a Bi

(1 i i < k) in the conditional structure containing

{B1, ..• , Bk} references the variable assigned to inS; and

(4) the source operands of S are not modified by statements

followingS in blocks B1, ... , Bk.

The first condition is satisfied if {B1, ... , Bk} is a path

cover for the conditional environment enclosing

{B1, . . . , Bk).

Loop Invariant Code Motion

Let G = (N, A, r, e) be a flow graph in which any while-do

control structure has been transformed to a do-while control

structure. Suppose E is an expression whose source operands

are invariant in some program loop, L. Let p be the point

47

where E is located in L and suppose the exit gates of L are

{B1, ... , Bk; k ~ 1}. E can be moved out of L if pis a

common predominator of {B1, ... , Bk}.

Path Analysis Information Representation

The path analysis questions prevalent in an operand

dependence graph based code improvement system are:

Q1. does node n1 predominate n2?

Q2. Does node n1 post-dominate node n2?

Q3. Is node n1 forward reachable from node n2?

Q4. Are nodes n1 and n2 disjoint?

QS. Is the subset {n1, ... , nk} of flow graph nodes a path

cover some node m?

Q6. Is the subset {n1, ... , nk} of nodes a path cover for

control environment described by {n1, ... , nk}?

Q7. What is the least common predominator of the subset

{n1, ... , nk} of node?

Q8. What is the least common post-dominator of the subset

{n1, ... , nk} of nodes?

There are a number of data structures which are

suitable representations for these path problems. For

instance, dominance trees and two dimensional tables can be

used to answer predominance and post-dominance related

questions. The search time for a dominance tree

representation is of logarithmic order, while the search

time for a two dimensional table implementation is 0(1).

However, a two dimensional table incurs a quadratic space

48

complexity. Both search time efficiency and storage space

efficiency must be considered in selecting a data structure.

Each node of a flow graph has an associated path record

which consists of the following fields:

1. linear order number of node;

2. post dominance number of node;

3. set of predominees of node;

4. set of post-dominees of node;

5. fork-width of node;

6. join-width of node;

7. set of forward reachable node;

8. immediate predecessors of node;

9. immediate successors of node.

To reduce the storage required for the set type fields of

path record, the properties of predominance and post­

dominance relations are exploited.

Let POST-TREE[G] represent the post-dominance tree of a

flow graph, G = (N, A, r, e). Suppose the children of a

non-leaf node in POST-TREE[G] are ordered from left to right

by decreasing linear order number. A preorder listing of

POST-TREE[G] is the reverse sequence of the preorder

listing of the predominance tree of G. The position (index)

of a node in a preorder listing of POST-TREE[G] is called

the post dominance number (PDN) of that node.

Suppose the linear order number of some node n is x, then

the post dominance number of n is INI - x + 1.

49

In a preorder tree traversal, the root of a subtree and

the descendants of that root are contiguous. Hence, when

node names either are replaced by LONs in a preorder

traversal of predominance tree or are replaced by PDNs

in a preorder traversal of a post-dominance tree, the root

of that subtree and the descendants of that root form a

finite sequence of consecutive positive integers.

Therefore, an ordered pair of positive integers is

sufficient to specify the subset of predominees

(post-dominees) of a node.

Suppose n is a node of a flow graph. The subset of

nodes n predominates is specified as [x, y], where xis the

LON of n and y is the LON of the last descendant of n in the

preorder listing of the predominance subtree rooted at n.

[X, Y] = { t I Xi t i y).

Similarly, the subset of nodes n post-dominates is specified

as [u, v], where u is the PDN of nand vis the PDN of the

last descendant of n in the preorder listing of the

post-dominance subtree rooted at.

Suppose n is a flow graph node whose predominance

interval is [x, y]. Let m be some flow graph node whose LON

is q. n predominates m if

X < q i y.

The same relationship holds if x, y, and q are post­

dominance numbers and [x, y] represents post-dominance

interval of n. The use of intervals requires two

comparisons to determine if n predominates (post-dominates)

m and storage for 2INI interval numbers.

Forward Reachability Set Representation

The question "is the node nl forward reachable from

node n2?" is the most frequently asked question in an

operand dependence graph based code improvement technique.

Unfortunately forward reachability set of every flow graph

node may not be represented with a single ordered pair of

LONs. The reason is because "if-then-else" conditional

structure introduce disjoint true and false branches.

Figure 7 illustrates how conditional control structures

affect the contiguity of forward reachability sets.

50

In Figure 7, nodes Bland B2 corresponds to if

statements with explicit then and else parts, while node B6

corresponds to an if statement with then part only. Notice

that for the if statement with no else part the forward

reachability of the successors of B6 are contiguous. On the

otherhand, the forward reachability sets of the successors

of B2 are not contiguous. Also, there are two break points

in the forward reachability set of B3. This is due to

nesting an if-then-else statement within another

if-then-else statement.

51

Node Processing Order = Bl B2 B3 B4 B5 B6 B7 B8 B9

Node Forward Reachability Sets

Bl Bl B2 B3 B4 B5 B6 B7 B8 B9
B2 B2 B3 B4 B5 B9
B3 B3 B5 B9
B4 B4 B5 B9
B5 BS B9
B6 B6 B7 B8 B9
B7 B7 B8 B9
B8 B8 B9
B9 B9

Figure 7. Flow Graph and Forward Reachability Sets

If there are x ~ 0 break points in a node's forward

reachability set, then x + 1 ordered pairs of LONs are

required to specify that node's forward reachability set.

For example, the forward reachability set of B3 is { [3, 3],

[5, 5], [9, 9] }. Determining if a node is forward

reachable from B3 requires three LON interval searches. To

provide quick response to forward reachability question a

hybrid representation scheme is proposed. If a node's

forward reachability set is contiguous, then an ordered

pair of LONs should be used to specify that node's forward

reachability set. If a break point exists in the forward

reachability set of a node, then a bit vector of INI bits

(one bit per node) should be used to specify that node's

forward reachability set.

52

Suppose a program has no if-then-else or case

conditional structure, the forward reachability set of every

basic block is contiguous. For such a program, there is no

need to perform either code hoisting or code sinking

optimization since there are no parallel blocks.

Summary

Control structure analysis is the processing of a

program flow graph to derive structure information about a

flow graph. The information extracted from a flow graph

include pre-dominance, post-dominance, and forward

reachability relations between nodes of a flow graph.

Predominance and post-dominance relations information are

used to (1) define a topological order on nodes and to

identify the extent of control structures.

The concept of a path cover for a control structure is

introduced to unify "all-path" code improvement problems.

Path cover analysis is implemented by assigning path weights

called fork-width and join-width to flow graph nodes.

CHAPTER IV

VARIABLE DEFINITION ANALYSIS

Introduction

An assignment of a value to a variable invalidates

computations performed with previous values of that variable

along control flow paths leading to a new definition point.

The association of each variable referencing statement with

the set of statements which could define the value of that

variable at a use point has been implemented using use­

definition chains and definition-use chains[l].

In order to construct the use-definition chains or

definition-use chains, reaching definitions data flow

analysis system of equations is solved. The use of reaching

definition information to detect feasible global code

optimizations induces additional processing after applying

an optimization procedure. Post optimization processing

includes the recomputation of reaching definitions following

any optimization procedure which moves code or eliminates

statements. The code optimization technique developed in

this work, confines redundant statement detection to program

regions. Since inter-region redundancies are not removed,

53

54

computations outside a region do not affect the detection of

redundant code within that region.

This chapter describes the method developed to handle

variable definition and variable reference analysis in an

operand dependence graph based code optimization technique.

The method is based on the fact that a definition of a

variable creates a new version (instance) of that variable.

Instead of linking a variable's definition point with the

statements which may reference that value, a unique number

called a version number is associated with a definition

instance.

Operand Version Numbering

Before processing the initial node of a program flow

graph, the version number of every variable and constant is

initialized to zero. Let v be any program variable and let

VN[v] denote the current version number of v. Suppose S is

a statement of the form v := exp (exp is some expression).

After S is processed, VN[v] is incremented by one. Any

statement T for which there exists a forward path from S to

T but before another definition statement for v can

reference the version of v created at S.

Suppose B is a basic block (flow graph node) and

suppose v is a variable. Let RVNTOP[v,B] denote the subset

of versions of v which can reach the top of B via forward

edges. The top of B means the point preceding the first

statement in block B. A definition of v in some block P can

55

reach the top of another block B if

1. B is forward reachable from P;

2. that definition of v in P is the last definition of

v in block P;

3. there are no definitions of v in any block between

P and B for which there exists a forward path to B.

A version number marking the definition of the variable

v in some block P can reach the top of another block B if

that definition satisfies conditions (1), (2), and (3). If

v is referenced in B before being defined, then the value of

v prior to any definition of v in B is one of the

definitions of v represented by the reaching versions set

RVNTOP[v,B]. If vis assigned a value in B before any

statement which references v in B, then the value of v at

any point in B is the definition of v closest to that point.

The statements in a block may change the value of a

subset of a program's variables when that block is executed.

To describe the effect of a block on the set of variables in

a program, an ordered triple of version numbers called block

mutation record (BMR) is maintained for each variable. The

first component of BMR is called the initial block version

history (IBVH); the second member of BMR is designated entry

block version number (EBVN); and the third component is

called block exit version number (BEVN). The initial block

version history of v is a representative for the instances

of v which initially reaches the top of a block and is

defined as the largest version number in the set RVNTOP[v,B]

(for some block B). The entry block version number is the

current version number of v at the top of B.

The block exit version number of v is the current version

number of v at any point in block B.

56

Let BMR[v,B] represent the block mutation record of the

variable v in block B. Suppose BMR[v,B] = (x, y, z). If v

is not defined in B, then y = z at every point in B. On the

otherhand, if v is assigned value in B, then z > y following

the first statement which defines v because VN[v] is

incremented each time a value is assigned to v. Therefore,

the relation z ~ y must be true for each variable at every

point in a block.

At the top of B, the value of x is the highest version

number in the reaching versions set RVNTOP[v,B]. Since xis

a version number, x ~ y at the top of B. Hence, initially

the relation

X ~ y ~ Z

holds. If v is defined in B, then after the definition

statement the version number of v is incremented and x and z

are set to the new version number for v. Thus, if v

receives a new value in a block, then at the end of that

block, the relation

y < X = Z

must be true.

By examining the version numbers of a variable's BMR at

the end of a block, it is possible to tell whether a

variable is invariant in that block. The strength of the

57

version number concept is that it is oblivious to the actual

program statements which alter the values of variables. The

expression z - y gives the number of times a variable is

defined in a basic block.

Operand Version Propagation

Suppose v is a variable and S is a statement which

references the value of v in an operation. The value of v

used in statement S is one of the definitions of v which

could reach the program point containing s. Which instance

of v is used in S depends on the execution path taken to

reach S. To compute the definitions reaching each node of a

program flow graph, definitions reaching both the top and

bottom of a node are required. With the version number

approach, the definitions reaching the end of a node is

determined from the values of the initial block version

history and block exit version number components of

variables block mutation records. Suppose B is a basic

block whose block mutation record of some variable v at the

end of B is (x, y, z). The components of the block mutation

record for B will satisfy one of the conditions

X ~ y ~ Z (Rl)

y < X = Z (R2).

If condition (Rl) is true, then the definitions of v

reaching the end of B is the same as the definitions of v

reaching the top of B. If condition (R2) is satisfied, then

the definition of v reaching the end of B is the last

58

definition of v in B.

Let RVNTOP[v,B] and RVNBOT[v,B] denote the versions of

v reaching the top and end of B, respectively. Suppose

pred'[B] is the set of immediate predecessors of Bin the

DAG of a program flow graph, then the equation

RVNTOP[v,B] = U RVNBOT[v,P] (R3)
P e; pred ' [B]

computes the versions of v reaching the top of B.

The above equation propagates versions of a variable

along forward paths. If a program contains a loop, the

reaching versions equation may produce incomplete solution.

However, because code optimization is relative to a program

region, it is not necessary to propagate reaching version

numbers through loop backedges. Since variable reaching

version numbers are propagated along forward paths (no

cycles), the reaching versions analysis problem is

computable in one iteration of a flow graph.

Version Analysis Implementation Strategy

Three types of information are required to analyze the

definitions and usage patterns of program variables. Two of

the four required items of information -- block mutation

record and reaching version numbers already have been

described. The other information item is a version creation

point table (VCPT). The VCPT of a variable describes the

set of program points where that variable may be defined and

referenced in an intermediate code program. A VCPT entry is

59

a triple consisting of a definition descriptor, a version

reference string, and a value class. The definition

descriptor component consists of an intermediate code

statement identifier, a basic block enclosing intermediate

code statement, and the version number assigned to that

definition. The version reference string for a version of a

variable is a sequence of basic blocks where that instance

of a variable may be used in an operation. The number of

repetitions of a basic block in a version reference string

is equal to the number of block statements where that

version is referenced. The value class field indicates

whether that version of a variable is a constant or not.

The flow graph in Figure 8 is used to illustrate the

concept of operand version numbers for the variable v.

Figure 9 shows the version creation point table, block

mutation record, reaching versions sets, and version

reference string for each version of v when the flow graph

nodes are processed in the order B1 , B2 , ... , B9 .

Properties of Operand Version Numbers

To derive some properties of operand numbers, it is

assumed that the statements of a block are processed in

sequential execution order and that blocks are processed in

topological order. A fundamental property of operand

version number is monotonicity.

Sl: V
s2: = v

= v

Bg

= v

= v

ss: = v
s6: = v
s7: v =

Figure 8. Flow Graph Showing Definitions and
Refer~nces of a Variable

60

Lemma s. For any program variable v, the version number of

v is monotonic between every pair of program points.

Proof. Let Bm and Bn be any two distinct blocks such

that Brn precedes Bn in topological order. Let the version

number of v at the end of Brn and at the top of Bn be Xrn and

Xn, respectively. If there exits some statement S which

lies in some node Bj between Brn and Bn which may alter the

value of v, then after S is processed VN[v] is incremented.

Thus Xm does not reach the top of Bn· Hence,

Statement Basic Version Reference

s1
54
s7
sa

Block Number String

B1 1 B1 B2 B4 B4
B3 2 B4 B4
B4 3 Bg
Bs 4 B6 B7 Be Bg

(a) version Creation Point Table and
Version Reference String for 'v' o

RVNTOP[v,B1] = (0)
RVNTOP[v,B2] - (1)
RVNTOP[v,B 3] = (1)
RVNTOP[v,B4] = (1 , 2)
RVNTOP[v,B5] = (1)
RVNTOP[v,BG] = (4)
RVNTOP[v,B 7] = (4)
RVNTOP[v,Ba] (4)
RVNTOP[v,Bg] = (3, 4)

(b) Forward Reaching Definition of 'v'

Basic Entry Exit
Block BMR BMR

B1 (0, 0, 0) (1 , 0, 1)
B2 (1 , 1, 1) (1 , 1, 1)
B3 (1 , 1, 1) (2 , 1, 2)
B4 (2, 2, 2) (3 , 2, 3)
Bs (1 , 3, 3) (4 , 3, 4)
B6 (4 , 4, 4) (4 , 4, 4)
B7 (4 , 4, 4) (4, 4, 4)
Be (4, 4, 4) (4 , 4, 4)
Bg (4, 4, 4) (4 , 4, 4)

(c) Block Mutation Record of 'v' at
Entry and Exit Points of Each
Basic Block of Flow Graph

Figure 9 0 variable Definition and Reference
Analysis Data Structures

61

62

(1)

If there does not exist a statement S which may have a side

effect on v between Bm and Bn, then Xm reaches the top of

block Bn in which case

Xn = Xm· (2)

Combining (1) and (2) ==> Xn ~ Xm·

Therefore, the version number of a variable between any pair

of program points is monotonic.

Lemma 6. Suppose v is a variable and B is a node of a

program flow graph. Let the BMR[v,B] = (X1, X2, X3).

If x 3 = x2 at the end of B, then v is invariant in B.

Proof. x3 > x2 ==> B contains a statement which

changes the value of v.

x3 = x2 ==> value of v is the same at every point in B.

Therefore, v is invariant in B if x3 = x2 at the end of

Lemma 7. The BMR of any constant is (0, o, 0).

Proof. Obvious.

0

B. 0

0

Definition 20. Let p be a statement point in some block B

of a program flow graph. Suppose the variable v is a source

operand of a statement at the point p. The version history

of v at the point p is the greatest version number of v

reaching the point p.

Lemma e. Let B1 and B2 be two disjoint nodes of a program

flow graph such that B1 and B2 are in the same program

region. Let v be a program variable referenced in B1 and B2

at the points P1 and P2 , respectively. Suppose further that

the version history of v at P1 is x1 and the version history

of v at P2 is x2 . If x1 = x2 , then the instances of v

reaching P1 in B1 and the instances of v reaching P2 in B2

are the same.

63

Proof. Since B1 and B2 are disjoint, there is no

forward path from either B1 to B2 or from B2 to B1 .

Therefore, no value of v computed in either B1 or B2 can

reach the other through a forward path. Suppose x1 = x2 .

Then the value of v used at P1 is computed outside B1 and

the value of v used at P2 is defined outside B2 . There must

exist some flow graph node F such that (1) there is a

forward path from F to B1 ; (2) there is a forward path from

F to B2; and (3) F is the least common pre-dominator of B1

and B2 . F exists since a program flow graph is both

connected and rooted. The version number of v does not

change between the end of F and P1 (monotonicity of version

number). Similarly the version number of v does not change

between the end of F and P2 . Hence, the value of v at the

end of F equals the value of v at both P1 and P2 .

Therefore, x1 = x2 implies the value of v at the disjoint

points P1 and P2 are the same. o

Lemma 9. Let {B1 , ... , Bk; k ~ 2} be a set of disjoint

nodes of a program flow graph. Suppose J is a common post­

dominator of {B1 , ... , Bk} and suppose further that {B1 ,

... , Bk} cover every path to J. Let v be a program variable

whose block exit version number at each Bi (1 ~ i ~ k) is

Yi. If the version number of v at the top of J is an

element of the set (Y1 , •.. , Yk), then the value of v

64

is invariant between the end of each Bi and J.

Proof. Suppose the version number of v at the top of

node J is z. Then z ~ Yi; 1 ~ i ~ k (monotonicity of

version number). Since the nodes are processed according to

a topological order, node J is processed after B1 , ... , Bk

have been processed. Moreover, any node forward reachable

from a Bi but precedes node J is processed before node J.

If z = Yi (for some i), then by lemma 6, vis invariant in

every node between Bi (1 ::; i ::; k) and node J. Therefore, if

the version number of v at the top of J is a member of {Y1 ,

... , Yk}, then v does not change in value between the end of

each node Bi and node J. o

Lemma 10. Suppose R[H] is a loop region of a program flow

graph with header node, H and whose looping nodes are B1 ,

... , Bk ((Bi, H) is a backedge). Let v be a variable and

let Xh be the version number of v at the top of H. Suppose

z1 , ... , zk are the version numbers of vat the end of B1 ,

... , Bk, respectively. The variable vis invariant in R[H]

if xh = z1 = ... = zk.

Proof. Version number of v is incremented in L if

there is a statement which may alter the value of v in L.

If Xh = z1 = = zk, then v is not assigned any value in

L. Therefore, vis invariant in L if Xh = Z1 = ... = Zk• D

Theorem 1. For a structured program flow graph, code

optimization by regions does not require the computation of

a fixed point for the set of reaching definitions in a

program.

65

Proof. In a region relative code optimization

procedure, only the redundancies within a region are removed

when that region is processed. By the definition of a

structured program flow graph in Chapter I, either a control

structure is completely nested within another control

structure or it is distinct. Suppose R is a cyclic region

of a structured program flow graph. we consider two

possible cases: (1) R does not have an inner loop; or (2) R

has an inner loop.

Without loss of generality, suppose R corresponds to

the high-level control structure

while (C) do S; end

The statement sequence

if (C) then

S;

end if

while (C) do S; end

(1)

(2)

is equivalent to (1). In (2), the first iteration of (1) is

peeled off.

Suppose R does not have any inner loops, then the if

statement in (2) does not contain any loops. Let Cif and

Cwhile represent the conditional expression C in the if and

while statements of (2), respectively. Similarly, let Sif

and Swhile denote the S in the if and while statements of

(2), respectively. Suppose CSE(C) and CSE(S) are the common

subexpressions in the conditional expression c and the

statement sequence S, respectively. Then

CSE(Cif) = CSE(CWhile)

CSE(Sif) = CSE(Swhile)
(3)

66

(3) implies that intraloop common subexpressions is not

affected by both repeated execution of a loop and by

definitions reaching a loop from outside that loop.

Therefore, only defintions generated within a loop influence

the detection of the common subexpressions contained in that

loop.

If R is a nested loop, then there can be two types of

common subexpressions in an inner loop: intraloop (within an

inner loop) and interloop (between an inner loop and an

outer loop). An expression, E, located in an inner loop of

a nested loop is redundant with respect to computations of

an outer loop, if the value of E is invariant in that inner

loop. Determining whether a loop statement is invariant is

accomplished by checking the definitions in that loop.

Therefore, the elimination of intraregion redundancies of a

structured program flow graph can be done without

propagating reaching definitions through loop backedges. o

Summary

This chapter introduced the concept of version numbers

to simulate variable reaching definitions. The version

numbers of a variable is monotonic between program points

when the nodes of a program flow graph are processed

according to a total ordering.

CHAPTER V

INTRAPROCEDURAL ALIAS ANALYSIS

Introduction

Redundant statement detection depends on the accurate

knowledge of potential definition points of program

variables. If every variable is assigned value through

direct assignment statements and read statements, then

variable definition analysis is straight forward. However,

some programming languages contain constructs that create

memory aliases (that is two or more names refering to the

same location). Memory aliasing can inhibit some

optimizations when alias analysis is not included in a

global code optimizing compiler.

There are two levels of alias analysis commonly called

intraprocedural and interprocedural alias analysis.

Intraprocedural alias analysis gathers memory aliasing

relationship within a single procedure, while

interprocedural alias analysis solves the aliasing problem

for a collection of procedures making up a program. This

section describes a method for handling pointer variables in

an operand dependence graph program representation. The

technique presented is suitable for a single procedure only.

67

The intraprocedural alias analysis presented is based

on the following assumptions.

1. The source language does not permit label variables and

memory overlap;

2. The procedure being analyzed does not call another

procedure;

3. The procedure being analyzed does not have a procedure

parameter in its formal parameter list.

The presentation of pointer analysis is based on the C

language.

Pointer Aliasing in C

68

The purpose of pointer alias analysis is to determine

the subset of variables which may be affected by indirect

assignment through a pointer and indirect reference

through pointer dereferencing. To correctly determine the

aliases in a C program, the indirection level (the number of

*'s pre-pended to a variable in a declaration statement) of

a variable must be considered. In the C language, a pointer

at indirection level L can be used to access data objects at

indirection level (L- 1), ... , 0. Pointer dereferencing is

specified by pre-pending a number of *'s to a pointer in an

expression.

Suppose B is a node of a program flow graph. Let

IND-ASSIGN[B] represent sequence of variables whose values

may be modified in B through a pointer. Let ALIAS-IN[B] and

ALIAS-OUT[B] contain the set of possible aliases at the top

of node B and at the bottom of node B, respectively. The

top of node B is the point before the first statement in

node B and the bottom of node B is the point following the

last statement of node B.

For each node B of a flow graph, the statements

processed to generate elements of IND-ASSIGN[B],

ALIAS-IN[B], and ALIAS-OUT[B] are statements of the

following forms:

Pl. p = &q

P2. p = q

P3. p

P4. (*)kp = &q

P5. (*)kp = (*)kq

69

In each of the statement forms, p is a pointer variable and

q is either a pointer or an ordinary variable depending on

the context.

An element of ALIAS-IN[B] or ALIAS-OUT[B] is a triple

(p, v, v.IL). An alias triple (p, v, v.IL) describes the

fact that the pointer p is an alias for the variable v

declared with v.IL levels of indirection. If v is not a

pointer variable, then v.IL is zero.

The representation for an element of IND-ASSIGN[B] is a

triple (SID, p, v), where SID is the identity of the

intermediate code statement with an indirect assignment to

the variable v; p is the pointer through which an indirect

assignment is made; and v is a variable which may be

affected by the indirect assignment through the pointer p.

Figure 10 specifies the operations performed for each

of the statement forms P1, ... , PS while processing basic

block statements.

Procedure block-alias(B)
Parameter.

B: A basic block.
For each statement s in B do

If S is of the form p = &q, then begin

(1) Delete from ALIAS-OUT[B] all
triples whose first component is P.

(2) For each triple of the form
(q, x, x.IL) such that x.IL > 0

add (p, x, x.IL) to ALIAS-OUT[B].
(3) add (p, q, q.IL) to ALIAS-OUT[B].
(4) If p is a pointer to a structure and

q is a structure variable, then

end

for each structure member M of q do
add (p, sM, M.IL) to ALIAS-OUT[B];

I* sM is synonym for q.M *I

Else if s is of the form p = q, then begin
I* p and q are pointer variables *I

(1) Delete from ALIAS-OUT[B] all triples
whose first component is p.

(2) For each triple of the form (q, x, x.IL)
add (p, x, x.IL) to ALIAS-OUT[B].

end

Else if S is of the form p = (*)kq, then begin
I* p and q are pointer variables *I

(1) Delete from ALIAS-OUT[B] all triples
of the form (p, x, x.IL).
Let p.IL denote the indirection level of p.

(2) For each triple of the form (q, x, x.IL)
such that x.IL < p.IL
add (p, x, x.IL) to ALIAS-OUT[B];

(3) p is a pointer to a structure, then
for each triple of the form (p, x, x.IL)

add (px, x, x.IL) to ALIAS-OUT[B];

70

I* px is a pointer created to replace p ->x *I
end

Else if s is of the form (*)k p = &q, then begin
(1) Let L := p.IL - k;
(2) for each triple of the form (p, x, x.IL)

such that x.IL > L do

end

delete (x, y, y.IL) from ALIAS-OUT[B];
add (SID, p, x) to IND-ASSIGN[B];
add (x, q, q.IL) to ALIAS-OUT[B];
if q.IL > 0, then begin

for each triple of the form (q, v, v.IL)
in ALIAS-OUT[B] do
add (x, v, v.IL) to ALIAS-OUT[B];
add (p, v, v.IL) to ALIAS-OUT[B];

en do
end
else if q is a structured variable, then begin

if x is a pointer to structure, then
for each member M of q do

add (X, SM, sM.IL) to ALIAS-OUT[B];
I* sM is synonym for q.M *I

endo
end

end if
endo
add (p, q, q.IL) to ALIAS-OUT[B];

Else if S is of the form (*)kp = (*)jq, then begin
(1) Let L := p.IL - k

R := q.IL- j;
(2) for each triple of the form (p, x, x.IL)

such that x.IL = L do
for each triple of the form (q, y, y.IL)

such that y.IL = R do
add (SID, p, X) to IND-ASSIGN[B];
if x.IL > 0, then begin

delete every triple of the form
(X, Z, z.IL) from ALIAS-OUT[B];
add (X, y, y.IL) to ALIAS-OUT[B];
add (p, y, y.IL) to ALIAS-OUT[B];
if y.IL > 0, then

for each triple of the form (y, u, u.IL)
in ALIAS-OUT[B] do
add (x, u, u.IL) to ALIAS-OUT[B];
add (p, u, u.IL) to ALIAS-OUT[B];

end for
end

end for
end for

end
end if

end block-alias.

Figure 10. Alias Processing in a Basic Block

71

72

Pointer to Structure Transformation

Let T be a structured type whose members are

M1 , ... , Mn· Suppose further that no Mi (i = 1, ... , n) is

a structured type. Suppose p is a pointer to a structure of

type T. Then the expression p -> Mi (for some i) selects

field Mi of structure T. Pointer to structure

transformation converts a program with expressions of the

form p -> M to an equivalent program without expressions of

the form p -> M.

Pointer to structure transformation involves two steps.

The first step creates an equivalent pointer variable for

each structure member for which there exists a variable of

type pointer to some structure. In the second step of the

transformation, statements and expressions are inserted to

replace expressions of the form p -> M with the unique

pointer variable created for the structure member M. The

pointer to structure transformation procedure steps are:

1. for each variable, p declared as pointer to some

structure of type T, generate a sequence of unique names;

one name for each member of structure of type T.

2. Suppose ps1 , ... , psn are the names generated in step 1.

Let the members of structure T be M1 , ... , Mn·

For i = 1, ... , n do

Declare psi a pointer to type of Mi.

3. For each statement of the form p = &v for some variable v

of type T do

73

Insert the statements

psi= &vMi (i = 1, ... , n) below p = &v,

(where vMi is the synonym created for the member v.Mi in

a structure member renaming transformation).

4. For each expression of the form p = expr (expr != &v,

where v is a structured variable) do

Insert the statements

psi= expr + disp[Mi] (i = 1, ... , n) below p = expr,

(where disp[Mi] is the displacement of the member Mi

within structure T).

s. Replace each expression of the form p -> Mi with *psi,

(where psi is the simpler pointer variable created for

field Mi of structure T).

6. If p is a formal parameter of a procedure, then insert

the statements

psi= p + disp[Mi] (i = 1, ... , n) before the first

executable statement of a procedure's statement sequence.

After applying pointer to structure transformation to a

procedure, every pointer object is either a pointer to a

scalar or a pointer to an array. A pointer to an array

object is assumed to point to every array element. The

pointer to structure transformation will slightly increase

the number of statements in an intermediate code.

Alias Analysis Procedure

Alias analysis consists of three steps, the first of

which is a pointer to structure transformation. The other

two steps are node listing generation and the actual

computation of alias information for each node.

A node listing for alias analysis is a sequence

NL = (B1, ... , Bt) of nodes of a program flow graph such

that

1. the nodes in a control structure form a subsequence of

NL;

2. a subsequence of nodes for a control structure are in

linear order;

3. if S is a subsequence of nodes constituting a program

loop, then (S, S) is a subsequence of NL;

74

4. if B1 and B2 are any two nodes of a flow graph such that

B1 predominates B2, then B1 precedes B2 in the first

subsequence of NL with B1 and B2.

A node listing which satisfies conditions (1) - (4) has

a maximum length of O((d + 1) INI), where dis the maximum

depth of a loop and INI is the number nodes of a program

flow graph. The factor INI for the size complexity of a

node listing is based on a worst case assumption that the

number of nodes in a loop is O(INI>· The factor (d + 1) is

derived from property 3 of a node listing. The sequence of

flow graph nodes for a loop region is duplicated in a node

listing to ensure that the alias information reaching the

75

top of a program loop from points outside a loop and from

points within that loop as a result of repeated execution of

loop code are included in loop alias computation. A node

listing for iterative data flow analysis of a reducible flow

graph requires a node listing of length (d + 2) INI to

converge [16]. Therefore, a node listing which satisfies

constriants (1) - (4) saves at least one iteration. Figure

11 is a procedure for generating node listing.

Algorithm 3: Node Listing Generator Algorithm
Input.

NODE: a linearly ordered set of nodes of a program flow
graph with loop region information.

output.
The sequence NL of flow graph nodes satisfying of the
characteristics of a node listing.

Method.
Append flow graph nodes to NL in linear order. If a loop
header node is encountered then append the seqence (S,S)
to NL, where s is a seqence of nodes for the body of that
loop.

Procedure Node-list()
NL := ~; I* a global variable for node listing *I
x := 1; I* linear order number (LON) *I
while x i INI do

NL := NL U NODE[x]; I* NODE[x] is node whose LON= x *I
if NODE[x] is a loop header, then

x := Region-list(x);
else x := x + 1;

endwhile
end Node-list.

(Algorithm 3 continued from previous page)

Procedure Region-list(x: loop header)

76

y := LON of end of loop marker node of loop whose head is
x;

n := x + 1;
while n < y do

NL := NL U NODE[n];
if NODE[n] is a loop header, then

n = Region-list(n); I* process nested loop *I
else n := n + 1;

endwhile
for n := x to y do I* duplicate loop subsequence *I

NL := NL U NODE[n];
end for
NL := NL U NODE[y]; I* append end of loop marker node *I
return(y + 1);

end Region-list.

Figure 11. Node Listing Generator Algorithm

The algorithm for computing alias information of each

node is specified in Figure 12. Since the length of a node

listing is atmost (d + 1) INI, the alias computation

algorithm has O((d + 1) INI*L + t) complexity, where tis the

time required for pointer to structure transformation, and L

is the number of statements in a program. The t term can be

eliminated if pointer to structure transformation is done

during parsing. Aliasing information obtained from Figure

12 is a transitive closure of the alias relation in a

program.

Algorithm 4: Alias Analysis Algorithm.
Input.

A program flow graph, G = (N, A, r);
NL: a node listing.

Output.

77

ALIAS-IN[B], ALIAS-OUT[B], and IND-ASSIGN[B] for each node
B of a program flow graph.

Method.
First initialize ALIAS-IN[B], ALIAS-OUT[B], and
IND-ASSIGN(B] of each node, B of G to ~. Then
sequentially process the nodes in NL. For each element, B
of NL, examine statements of B in sequential execution
order. If a statement of B is one of the pointer forms
P1-P5, perform the operations specified in Figure 10 for
that statement form. Terminate alias computation when
every element in NL has been processed.

For each block B of a flow graph do
ALIAS-IN[B] := ALIAS-OUT[B] := ~;
IND-ASSIGN(B] := ~;

end for
For x := 1 to INLI do /* NL is a node listing */

B := NL[x]; /* xth element of node list*/
ALIAS-IN[B] = U ALIAS-OUT[C]

C E pred[B]
ALIAS-OUT[B] := ALIAS-IN[B]
IND-ASSIGN[B] := ~;
Apply Figure 10 on block B;

end for

Figure 12. Alias Computation Algorithm

An Example

The C program in Figure 13 will serve as an example to

illustrate the alias analysis technique developed in this

chapter. Because the program contains the structured

variable cord, structured variable renaming transformation

must be applied first. Suppose the (member, synonym) pairs

created for variable cord is (x_axis, cord_x_axis), (y_axis,

cord_y_axis), and (next, cord_next). Structure variable

7a

renaming transformation replaces the expression

cord.x axis with cord x axis and the expression cord.y-axis

with cord-y-axis in statement sa.

Next, the pointer to structure transformation is

performed on the program. Let px_axis, py_axis, and pnext

be the sequence of pointers created to replace uses of the

pointer p. Suppose hdx_axis, hdy_axis, and hdnext are the

replacement pointers for the pointer variable hd. After the

two structure related transformations, the original C

program is transformed to Figure 14. Since the program is a

single basic block, the node list is a single node.

Finally, aliasing information is derived from the

program. Figure 15 show the contents of ALIAS-OUT[B] and

IND-ASSIGN[B]. ALIAS-IN[B] is empty. The result of alias

analysis indicate that px_axis and hdx axis

are aliases for cord x axis which is equivalent to

cord.x axis. Similarly, py-axis and hdy_axis are aliases

for cord_y_axis which shares the same location with

cord.y-axis. With the alias information known, a code

optimizer can discover that statements s6, s7, and sa

compute the same expression.

main () {

}

struct point {

};

short x axis;
float y-axis;
struct point *next;

struct point cord, cord array[50], *hd, **pp1, *p;
float sum1, sum2, sum3;-
s1: p = &cord;
s2: pp1 &p;
s3: hd = *pp1;
s4: p -> x axix = 5;
s5: p -> y-axis = 25.0;
s6: sum1 =-p ->x axis + p ->y axis;
s7: sum2 = hd ->x axis + hd ->y axis;
sa: sum3 = cord.x:axis + cord.y:axis;

Figure 13. C Program

main() {

}

struct point {

} ;

short x axis;
float y-axis;
struct point *next;

struct point cord, cord array[50], *hd, **pp1, *p;
float sum1, sum2, sum3;-
short cord x axis, *px axis, *hdx axis;
float cord~=axis, *py=axis, *hdy:axis;
struct point *cord next, **pnext, **hdnext;
s1: p = &cord; -
s1.1: px axis = &cord y axis;
s1.2: py-axis = &cord-y-axis;
s1.3: pnext = &cord next;
s2: pp1 = &p; -
s 3 : hd = *pp1 ;
s4: *px axis = 5;
s5: *py-axis = 25.0;
s6: suml = *px axis + *py axis;
s7: sum2 = *hdx axis + *hdy axis;
sa: sum3 cord-x axis + cord_y_axis;

Figure 14. C Program After Structure Member and
Pointer to Structure Transformations

79

ALIAS-OUT = {
s1: (p, cord, 0), (p, cord x axis, 0),

(p, cord y axis, 0), (p,-cord next, 1),
s1.1: (px axTs~ cord x axis, 0),-
s1.2: (py-axis, cord-next, 0),
s1.3: (pnext, cord next, 1),
s2: (pp1, p, 1), (pp1, cord, 0),

(pp1, cord x axis, 0), (pp1, cord_y_axis, 0),
(pp1, cord-next, 1),

s3: (hd, cord,-0), (hd, cord x axis, 0),

}

(hd, cord y axis, 0), (hd,-cord next, 1),
(hdx axis~ cord X axis, 0), -
(hdy-axis, cord-y-axis, 0),
(hdnext, cord_next, 1)

IND-ASSIGN = {
(s4, px_axis, cord_x_axis), (s5, py_axis, cord_y_axis)

}

Figure 15. Contents of ALIAS-OUT and IND-ASSIGN
After Alias Analysis

Summary

80

An alias analysis method which handles both pointers at

many levels of indirection and structured types has been

described. A pointer to structure transformation is applied

to convert pointers to structures to pointers to simpler

types (scalars and arrays). A node listing derived from a

total ordering of the nodes of program flow graph is used to

propagate alias information.

CHAPTER VI

OPERAND DEPENDENCE GRAPH

Introduction

An operand dependence graph (ODG) is a directed graph

which exposes the subset of program statements to be

subjected to code redundancy analysis. The feasible

optimizations detectable with an operand dependence graph

include common subexpression elimination, code hoisting,

code sinking, loop invariant motion, and strength reduction

of loop induction variables. With the exception of alias

analysis, the construction of an ODG does not require prior

computaion of other flow analysis information.

What is an Operand Dependence Graph?

An operand dependence graph is a directed graph

representation of the statements in a program region of a

structured program flow graph. There is one control node

for each distinct operand as well as one control node for

each distinct intermediate code statement in an ODG. Each

distinct instance of a distinct statement and each distinct

instance of a distinct operand is represented with an

instance node. The set of statement instance nodes for a

81

82

distinct intermediate code statement are linked together

with the control node for that statement. Similarly, the

set of instances of a distinct operand and the control node

for that operand are linked together. The version histories

of operands are used to distinguish between operand and

statement instances.

An operand dependence graph node describing an

instance of a distinct statement is decorated with the

flow graph nodes (having a copy of the statement instance

represented at a node) and an instance signature.

Definition 21. Suppose S is a distinct intermediate code

statement. Let v1 , ••. , Vn denote the distinct variable

source operands in statement S in lexical order. Let p be

some program point with an instance of statement s. For

each source variable operand vi, let hi represent the

version history of vi at program point p. The instance

signature of the statement S at point p is the n-tuple

(hl, ... , hn) .

Two instances of a distinct statement with the same instance

signatures are said to be similar. In an ODG, instances of

the same statement with different instance signatures are

represented with different graph nodes.

The operand dependence graph of one program region is

distinct from the operand dependece graph of another program

region. Within a program region, graph nodes are connected

by two types of edges. The first edge type called instance

link connects a control node of a distinct graph object

(statement or operand) and the instance nodes of that

object, and the second type of edge called data link

connects operation instance nodes and operand instance

nodes.

83

In a formal sense an operand dependence graph

representation of a program is a triple z = (C, I, E), where

c is a set of control nodes for the distinct statements and

the distinct operands in a program region; I is a sequence

of instance nodes of distinct statements and operands; and E

is a sequence of edges from the ordered pairs c x I and

I X I.

Work Lists

Code optimization and operand dependence graph

construction proceed simultaneously. Some redundancy

analysis cannot be performed on some set of statements until

the complete control environment surrounding those

statements is seen. Such statements are buffered for later

analysis. Five buffers are maintained during graph

construction to hold program objects (statements and

operands) which require further processing. These buffers

and the type of information they contain are described

below:

CHQ: is a queue of statements which contains statement

instances to be analyzed for code hoisting

optimization.

CSS: is a stack of statements to be checked for code sinking

optimization.

LIQ: is a queue of loop invariant statements.

BEIQ: is a queue of potential basic loop induction

expressions.

LAVQ: is a queue of loop active variables and constants.

An element of CHQ, CSS, LIQ, or BIEQ is of the form

84

(CN, IN), where CN is a statement control node and IN is a

statement instance node. A LAVQ entry is an ordered pair of

operand control node and operand instance node of constants

and variables active (referenced or defined) in a loop.

When processing a nested loop, the contents of LAVQ is saved

at the beginning of an inner loop and restored after the

body of an inner loop has been procesed. The restoration of

the LAVQ of a parent loop is a union of the saved LAVQ of a

parent loop and the LAVQ of an inner loop.

Essential Node Information

There are four node types in an operand dependence

graph intermediate program representation; two of which are

control nodes of distinct program objects (operations and

operands) and the remaining two are instance nodes

of distinct program objects. A control node contains a

detailed description of either a distinct statement or a

distinct operand, while an instance node contains

information necessary for detecting potentially redundant

code.

The set of basic fields for each node type are

described below.

The field names for statement control node are

OC: Operation class (store, arith, procedure call,
string, logical, flow control, etc);

OP: Operation name;

85

VC: Value class for operation computing a value (float,
integral, boolean, string, pointer, condition code, etc);

IN: Current number of distinct instances of a statement in
program region;

ILH: Instance list head;

SON: Source operands control nodes;

DON: Dependent operands control nodes;

DEST: Destination operand control node;

CSS FLAG: An array of flags (one flag per loop nesting
level) to indicate that an instance of statement has been
pushed into the css stack;

CHQ FLAG: An array of flags to indicate when an instance of
statement has been entered into CHQ queue;

BIEQ FLAG: An array of flags indicating that an instance of
statement is in BIEQ queue.

An operation instance node contains the following
fields:

SCN: Control node of statement instance;

NIP: Next instance pointer;

OPDS: Operand instance nodes;

SIN: Statement instance number;

DEST: Destination operand instance node;

IOB: Sequence of basic blocks with a non redundant copy of
statement instance;

SIG: statement instance signature (vector of operands
version histories);

LI FLAG: Flags to indicate whether statement instance is a
-loop invariant (one flag per nesting level).

The components of an operand control node include

DNT: Data node type (array, scalar variable, constant,
statement label, and procedure name);

VN: Number of different instances of operand;

VC: Operand value class (float, integral, char, boolean,
string, etc);

ILH: Head of instances list;

86

LAVQ FLAG: Array of loop active variable and constant flags
(one flag per loop nesting level).

Lastly, the essential field names of an operand
instance node are

NIP: Next instance pointer;

IVN: Operand instance version number;

SUCC: Sequence of data link successor nodes;

LI FLAG: Flags to indicate whether operand instance is
-invariant in a loop (one flag per loop nesting level).

Operand Dependence Graph Construction

To construct an operand dependence graph representation

of a program region, these general rules must be followed:

1. Process the flow graph nodes in linear order;

2. Process the statements of each flow graph node in

sequential execution order;

3. Before processing the statements in the initial node of a

program flow graph, initialize the block mutation record

of every variable to (0, 0, 0); and at the begining of a

program region create empty instances of the various

auxillary data structures (LAVQ, CSS, CHQ, etc);

87

4. Non-redundant instances of lexically identical statements

in different flow graph nodes with the same statement

instance signature are represented on a common statement

instance node;

s. If the next flow graph node to be processed is a join

node of a conditional control structure, then examine the

CHQ queue and the CSS stack for statements. If there

exists a statement in either CHQ or CSS, then apply the

necessary code motion detection algorithm on the

instances of a code motion candidate;

6. If the next flow graph,node to be processed is an end of

loop marker, then analyze the statements in that loop to

recognize loop invariant statements and induction

variables;

7. A statement instance is represented by drawing directed

edges (one edge per distinct source operand) from operand

nodes to the operation instance node for a statement.

The operand instance node from which a directed edge is

drawn to link an operation instance node is the version

history of that operand with respect to that statement

instance. If an operation produces a result, then a

directed edge leaves an operation instance node and

enters the operand instance node representing the result

operand.

8. If there exists a previous instance of the next statement

to be added to an ODG, then analyze the forward

reachability relation between the previous statement

88

instances and the new statement to determine the type of

code redundancy analysis to apply on the duplicate

statement instances.

9. After adding a statement which defines a program variable

to an ODG, assign a new version number to the variable

assigned to, add a version record into that variable's

version creation point table, and update the block

mutation record for that variable.

10. If a variable is a call-by-reference parameter of a

procedure call, then assign a new version version number

to that variable following the call statement and make

the necessary entries into the version creation point

table and block mutation record of that variable.

11. If a statement is an indirect assignment through a

pointer, then after processing that statement, assign new

version numbers to every variable that could be affected

by the indirect assignment. Enter a new version record

into the version creation point table of each affected

variable and update the block mutation record of that

variable.

Detection of Partial Redundancies

One distinguishing feature of an operand dependence

graph program representation is that the detection of

candidate statements for common subexpression elimination,

code hoisting, or code sinking redundancy analysis does not

require separate graph traversals. The concept of partial

redundancy is used to identify lexically identical

statements to be subjected to redundancy analysis in a

program region.

89

Definition 22. Suppose S is a distinct program statement

and suppose Sp is an instance of statement S at some program

point p. Let v1 , ... , vn be the sequence of the distinct

variable source operands in statement s. Suppose Sp is to

be added to an ODG and suppose further that (hi, • • • I

the instance signature of the statement instance Sp·

statement instance Sp is partially redundant with respect to

previous instances of statement S if for each source

variable vi, there exists a directed edge from version hi of

variable vi, 1 < i i n, to a previous instance node of

statement s.

There is one major difference between partial

redundancy as defined here and as defined by Morel and

Renvoise [27]. The difference is that partial redundancy

with respect to an ODG includes statements on disjoint

execution paths as well as statements on a common execution

path, while Morel and Renvoise restrict partial redundancy

to statements on a common execution path. This distinction

makes it possible to detect both common subexpression and

code motion candidates with the same mechanism in an operand

dependence graph. In Figure 16, the instance of a + b in

block B3 is partially redundant with respect to the instance

in block B2 if block processing order is Bl, B2, B3, B4 and

a + b in node B4 is partially redundant with respect to the

a :=
b :=

B1

B3

VN[a; B1] = 1
VN[b; B1] = 1

= a + b
b := VN[b; B2] 2

{B1}

{B2, B3}
(1, 1)

{B1} := {B2}

Figure 16. Partial Redundancy Involving
Disjoint Statement Instances

[]Operand Instance Node
Operation Instance Node

---7'> Data Edge
••• ? Instance Link
{ } Instance Occurence Blocks
() Instance Signature

90

instances of a + b in blocks B2 and B3. Figure 17 is an

example of partial redundancy in which the previous

instances of a statement and the partially redundant

instance do not have the same instance signature.

B2

az: =
b2. : =
= a + b

B1

:= {B1) :=

VN[a; B1]
VN[b; B1]

B3

a3: =
= a + b

B4

= 1
1

VN[a; B2] 2
VN[b; B2] = 2
VN[a; B3] 3

{B1) := {B2)

{B4}
(3, 2)

Figure 17. Partial Redundancy Involving
Statements on Common Execution
Paths

91

92

If a partially redundant statement has the same

instance signature with a previous instance of the same

statement, then that partially redundant statement is either

analyzed for common subexpression elimination or for code

hoisting optimization. The particular analysis to be

performed depends on the forward reachability relation

between the basic block containing the most recent previous

instance of that statement and the basic block with the

partially redundant instance. The most recent previous

instance of a statement is the instance which occurs in a

basic block closest to the basic block with a partially

redundant instance in block processing order. If a

partially redundant statement and the most recent previous

instance of the same statement are in disjoint blocks, then

the statements are candidates for code hoisting analysis,

otherwise a partially redundant statement is a checked for

common subexpression elimination.

When a partially redundant statement does not have

identical instance signature with any previous instance of

the same statement, then that partially redundant statement

is a common subexpression elimination candidate. The notion

of partial redundancy does not expose every code sinking

candidate. For instance, in Figure 17, the instances of

a + b in blocks B2 and B3 are candidates for code sinking

optimization but neither is partially redundant with respect

to the other. However, the search procedure for lexically

identical statements discovers all code sinking candidates.

93

Before a statement is added to an operand dependence

graph, the ODG NODE field of a distinct statement record in

the distinct statement table is checked to determine if a

previous instance of that statement exists in the current

graph segment. The ODG NODE field of a statement in the

distinct statement table holds the address of a statement's

control node in an ODG. Thus, if the ODG NODE field of a

distinct statement contains a null value, then a previous

instance of that statement has not been encountered in the

program region.

If the contents of the ODG NODE field of a distinct

statement record is not a null value, then the list of

previous instances are searched to determine if current

statement is partially redundant. The ILH (instances list

head) of a distinct statement's control node contains the

node address of the first instance of a statement in an ODG.

For each previous statement instance node visited, the

instance signature of that previous instance is compared

with the instance signature of current statement. If there

is a match of instance signatures, then the forward

reachability relation between the basic block with the most

recent previous instance and the basic block containing the

current instance is used to decide which redundancy analysis

procedure to apply. If there is no match of instance

signatures, but each element of the instance signature of

the current statement is an element of the instance

signature of some previous instance of that statement, then

that current statement instance is a partially redundant

common subexpression.

94

If a current statement is not partially redundant with

respect to previous instances of the same statement, then

the redundancy detection procedure which can be applied to

the statement instances is that for code sinking. To

determine if code sinking redundancy analysis is necessary,

the instance occurrence block field of previous instances of

statement are examined for a previous statement instance

which lies on a parallel control flow path relative to

current statement instance. Partially redundant common

subexpression candidates are subjected to common

subexpression redundancy analysis procedure as soon as they

are discovered, while code hoisting and code sinking

candidates are placed in either a CHQ queue or CSS stack

until a conditional control environment join is reached.

Operand Dependence Graph Characteristics

Operand dependence graph program representation

provides two ways of searching a dependence graph. The

instance links (edges connecting instances of the same

object) is used to search distinct program objects (operand

or statement) with multiple instances without visiting

nonrelated nodes.

The other means of searching an operand dependence

graph is by visiting nodes through data links (edges

connecting operand nodes and statement instance nodes).

95

When the only means of visiting statement nodes is by

following data links as in [15], the detection of common

subexpression, code hoisting, and code sinking candidates

incur considerable cost as both single instance and multiple

instance statements are examined. Moreover, separate graph

traversal must be performed for each optimization problem.

A feature unique to operand dependence graph is that a

statement instance node can represent several instances of

the same statement from different basic blocks of a program

region. The capability to represent several instances of a

statement which are not necessarily equivalent in value with

one graph node enhances the detection of partial

redundancies. In other dependence graphs, equivalent values

are the only shared nodes.

Summary

An operand dependence graph is a directed graph

representation of the statements belonging to a program

region. Graph nodes are connected with two types of edges

called instance link and data link. Instance links connect

instances of a graph object (statement or operand) and its

control node while data links connect statements to their

source and destination operands .. Instance links provide a

fast means of searching lexically identical statements for

partial redundancies without examining unrelated graph

nodes.

CHAPTER VII

DETECTION OF FEASIBLE OPTIMIZATIONS

Introduction

This chapte~ addresses the issue of recognizing

feasible optimizations while building an operand dependence

graph. Each redundancy detection problem can be specified

with three types of constraints. These constraints have

been classified into information flow (path problem),

variable reaching definitions, and variable reference

constraints. ·The techniques for checking these constraints

for the various intermediate code optimization problems in

an operand dependence graph program representation are

presented in the next several sections.

Redundant Statement Elimination

Redundant statement elimination involves the detection

and removal of a statement instance for which a previous

active instance of that statement exists along every control

flow path leading to that statement. A statement instance

Sp, at some point p, in a program is redundant if

1. Sp is partially redundant with respect to some

previous instances of S;

96

97

2. the set of previous instances of S which renders Sp

partially redundant is a path cover for the point p;

and

3a. either the set of basic blocks where the previous

instances of s are located and the basic block

where Sp is located have the same region tag; or

3b. the set of basic blocks with previous instances of s

are located in an outer loop of a nested loop and Sp

is a loop invariant of an inner loop.

Condition (1) is detected at the time a statement

instance is added to an operand dependence graph. To check

the second condition, the minimal set of the set of flow

graph nodes with active previous instances of s reaching the

point p along a forward path is formed, then the minimal set

is subjected to path cover test with respect to the point p.

The third condition is checked by comparing the region tag

of the point p and the region tags of previous statement

instances which renders Sp partially redundant.

The code fragment below exemplify the necessity of the

third (3a and 3b) constraint.

while (q < 5) {
= p + q

}

while (p > 0) {

p + q

p =
}

while (q < 5) {
= p + q

}

while (x > 0) {

= p + q

}

q =

In the left code segment, p + q in the inner loop is not

redundant with respect to the instance in the outer loop.

The situation is different in the second fragment because

p + q in the inner loop is a loop invariant. As a result,

this second instance of p + q is redundant with respect to

the first instance. Because path cover test is likely to

involve more operations than comparing region tags,

condition 3(a) should be checked before checking the path

cover condition. When condition 3(a) does not apply,

redundancy analysis of a partially redundant statement

should be suspended until the rest of the body of an inner

loop has been processed.

98

The notation (a + b)i denotes the instance of a + b in

flow graph node Bi and bj means after the assignment to b is

executed, the version number of the variable b is j. In

Figure 18, (a + b) 4 is redundant with respect to the

instances (a + b) 2 and (a + b) 3 . Now consider (a + b) 4 in

Figure 19. By the definition of partial redundancy,

(a + b) 4 will not be subjected to redundancy test even

though in the general sense of partial availability (a + b) 4

is partially available along the flow graph edge (B3 , B4).

The operand dependence graph has this capability to avoid

some redundancy checks that are bound to fail. In the case

of Figure 20, (a + b) 4 is identified as partially redundant,

but fails the path cover test because there is no active

previous instance of (a+ b) along the edge (B2, B4).

a := B1
b :=

Figure 18. A Redundant
Statement

99

Figure 21 illustrates the type of redundant computation

missed by an operand dependence graph. The problem is due

to the definition of a program region. Because node B3 is a

loop, the flow graph is split into three segments {B1 , B2},

{B3}, and {B4}. Since redundant statement elimination is

restricted to a program region, (a + b) 4 cannot be detected

as a common subexpression. This shortcoming of the region

relative optimization technique will not affect the

execution time of the optimized code since most of the

useful optimizations are performed in program loops.

100

~,BJ]
Figure 19. A Partially Redundant Statement

Not Tested For Redundancy

101

B2 B3

= a +b a2:=
b2:= b3:=

= a +b

••..• ·>

Figure 20. A Partially Redundant Expression Which
Fails Full Redundancy Test

Figure 21. An Inter-region
Redundancy

Code Hoisting Optimization

102

Code hoisting optimization or backward code motion is

applied to lexically identical expressions which occur on

disjoint control flow paths of a conditional control

structure. A set of lexically identical expressions in a

conditional control structure with then and else parts

can be moved to the fork of that conditional structure if

(1) the expression instances compute the same value; and (2)

there exists an instance of that expression on every forward

path originating from the fork of a conditional control

structure to the join of that conditional structure.

In the context of an operand dependence graph program

representation, the two conditions are met when the

103

expression instances are represented with the same statement

instance node; a subset of the flow graph nodes with a copy

of that expression are mutually disjoint; all the mutually

disjoint flow graph nodes with a copy of that expression

have the same region tag; and the disjoint flow graph nodes

with an instance of that expression constitute a control

environment path cover for the conditional structure.

Requiring all the flow graph nodes with an instance of a

backward motion candidate to have the same region tag guards

against moving an expression from an inner loop to an outer

loop in a nested loop structure.

Figures 22 and 23 provide examples of permissible and

non permissible code hoisting optimization. In Figure

22(a), the instances (a + b)s and (a + b)g lie on every path

from B1 (fork of conditional structure) to B1o (join of

conditional structure); both (a + b)s and (a + b) 9 compute

the same value; and (a + b)s and (a + b)g are in the same

control enviroment. The copies of (a + b) in the

conditional structure can be removed by placing a copy of

(a + b) in B1 • After code hoisting optimization, Figure

22(a) is transformed to Figure 22(b). Although the flow

graph nodes with instances of (a + b) in Figure 23 are

disjoint and occur on both legs of the fork node B1 , (a + b)

cannot be moved to B1 because the copies do not belong to

same control environments. (a + b) 2 is in an outer loop,

while (a + b) 3 occurs in an inner loop.

B1 a :=
b :=

22(a) Flow Graph and ODG Before
Code Hoisting

104

a : =
b :=
= a +b

(b) Flow Graph and ODG After
Code Hoisting

Figure 22. Hoistable Code

105

v

a :=
b :=

B3 = a + b
a : =

Figure 23. A Non-Hoistable Code

106

The algorithm for code hoisting is specified in Figure

24. First, post-dominance information of the join of a

conditional structure is used to select the instances of a

code hoisting candidate in the same control environment as

that of a join node. Then the minimal set of the selected

instances are computed and subjected to conditional

structure path cover analysis.

Suppose the flow graph of Figure 25 is applied to the

code hoisting algorithm (Figure 24). Initially S = {B4 , B8 ,

Bg}, of flow graph nodes with instances of a+ b is computed

and tested for conditional environment path cover test with

respect to the fork node B1 . The set S fails the path cover

test because there are no copies of a + b along the paths

passing through B2 and B6 . The set S is then partitioned

107

into the subsets c 1 = {Bg, Be} and c 2 = {B4} to process the

nested conditional structures. The partition c1 is a

conditional control environment cover for the conditional

control structure comprising {B7 , Be, Bg}· Therefore, the

instances of a + b in Be and Bg can be deleted by placing a

copy of a + b in node B7 . Since nodes B7 and B4 do not have

the same immediate predominator, node B7 is in its own

partition. The second loop of the code hoisting algorithm

terminates as each of the remaining partitions has only one

element.

Algorithm 5. Code Hoisting Algorithm

Input.
J: Join node of a conditional structure;
CHQ: list of code hoisting candidates;
Program flow graph with predominance and post-dominance
information;
Operand dependence graph;
Intermediate code program.

Output.
Possibly modified operand dependence graph;
Possibly transformed intermediate code program.

Auxiliary.
S: set of flow graph nodes with copy of code hoisting

candidate.
Method.

For each code motion candidate statement x, select the
instances of x post-dominated by the join node J. Compute
the minimal set of the selected instances and check if the
minimal set of instances lie on every path of the parent
conditional structure. If the minimal set of instances of
x pass the path cover test, then move x to fork of parent
structure. Else analyze any substructure for possible
code motion.

While CHQ is not empty do
Turn-off CHQ FLAG;
g = de~eue(CHQ); I* ODG node for statement*/
S = {B I B is a flow graph node with a copy of

108

statement at ODG node g; J post-dominates B;
and region tag of B ~ region tag of J};

S = minimal set of S;
If S is a singleton, then stop;
If S is a path cover for conditional structure,

then begin
Let x represent the expression at node g of ODG;
f := least common predominator of nodes in S;
Delete each flow graph node n, such that n has a
copy of x and node f predominates n from the
instance list of ODG node g and delete statement
x from flow graph node n;
Create a copy of x in flow graph node f;
Insert flow graph node f in the instances list
of ODG node g;
End.

Else begin
PartitionS into disjoint subsets c1 , ... , C2 ,
such that each Ci contain flow graph nodes with
the same immediate predominator.
While there exists a partition, P of S such that

IPI > 1 do
If partition P is a control environment cover,

then begin
Let x be the expression at ODG node g;
f := least common predominator of nodes in
P;
Delete each flow graph node n, such that n
has a copy of x and node f predominates n
from the instance list of ODG node g and
delete statement x from flow graph node n;
Create a copy of x in flow graph node f;
Insert flow graph node f in the instances
list of ODG node g;
Place flow graph node f in a partition;

Endif.
Delete partition P from set of partitions;

Endwhile.
End.

End if

End Code-hoisting Algorithm.

Figure 24. Code Hoisting Algorithm

109

25(a) Control Structure Before Code Hoisting

a := B1
b :=

(b) Control Structure After Code Hoisting

Figure 25. Code Hoisting Candidate in a
Nested Conditional Structure

110

111

Code Sinking

Code sinking optimization procedure (forward code

motion) moves common code in the then and else branches of a

conditional structure to the join of that conditional

structure. Let S be a distinct

program statement and let C be some conditional control

structure whose join node is J. Suppose there exists

instances of S in the then and else branches of C. The

instances of S in C can be removed and replaced with a

single instance at the top of the join node J if

1. the set of points with instances of S inc

constitute a path cover for J;

· 2. The statements following the last instance of s on

each forward path to the join node do not have a

side effect on any source operands of S;

3. Any results produced by the last instances of S is

not referenced in the conditional structure; and

4. The join node J and every node in the conditional

structure C have the same region tag.

The first two conditions a forward code motion

candidate must satisfy are identical to those for global

common subexpressions. The third condition prevents moving

a statement which may generate the input data used in

another statement and the fourth constraint ensures that the

statement instances are located in the same control

environment. To check the third constraint, the effects of

112

a procedure call and pointer aliasing must be considered.

For a procedure call, the results of a call statement

includes the value returned by a procedure and the call-by­

reference parameters which may be modified in a called

procedure.

In Figure 26, the statements t 1 = a + b and c := t 1

qualify for code sinking optimization if the statements are

analyzed in reverse execution order. However, if the

statement t 1 = a + b is analyzed first, then only c := t 1

can be moved since t 1 is referenced in the second statement.

To recognize a + b as a sinkable expression, the statements

of the conditional structure must be rescanned after moving

the second statement. Rescanning is avoided by using a

stack to hold forward code motion candidates. The last-in­

first-out property of a stack ensures that code sinking

candidates are processed in reverse statement execution

order.

Since the first two constraints a code sinking

candidate must satisfy are identical to those for global

common subexpressions, common subexpression elimination

procedure can be used as part of a code sinking procedure.

A dummy instance of a code sinking candidate is created and

made to appear to originate from the join of a conditional

structure. If the dummy instance is fully redundant with

respect to the instances in a conditional structure, then

conditions (3) and (4) can be checked to complete the test

for code sinking. This approach reuses the procedure for

redundant common subexpressions detection.

a2 :-
tl = a+b
cl := t

26(a) Code Sinking Candidates

............

c 1 •••••••••

26(b) Operand Dependence Graph
Before Code Sinking

113

~·

26(c) Operand Dependence Graph
After Sinking c := t
to B4

26(d) Operand Dependence Graph After
Sinking t := a + b

Figure 26. Code Sinking Example

114

The sequence of steps for analyzing a code sinking

candidate are

115

1. create a dummy instance Sj (J is a join node) of S and

make Sj appear to be located in the join block J. Use Sj

to search the operand dependence graph. If Sj is not

partially redundant, then goto step 6.

2. Apply redundant statement elimination algorithm on Sj·

If sj is not fully redundant, then goto step 6;

If there exits only one previous instance of S which

renders Sj redundant, then goto step 6.

3. If there is a data link (edge) from the destination

operand node of any of the previous instances which

render Sj redundant to some statement node in the

conditional structure C, then goto step 6.

4. If the region tags of the instances inC and the region

tag of instance Sj are not identical, then goto step 6.

s. Delete all the instances of S which render Sj redundant

from the operand dependence graph and from the basic

blocks where they are located; Insert the dummy instance

Sj into the operand dependence graph; Make Sj the first

statement of the join node J.

6. Turn off CSS-FLAG in the control node for S;

Stop.

Constant Folding

Constant folding is compile-time evaluation of an

expression whose operand values are constants. To perform

116

constant folding, a compiler must detect the sections of a

program where a variable takes on constant values. The

constant folding procedure described in this section is

based on an exhaustive evaluation scheme. In exhaustive

evaluation program analysis, an expression is evaluated with

the set of possible operand values which may be used to

execute that expression at run-time. Figure 27 illustrates

the limitation of what Kildall[21] calls simple constant

folding technique. The classical constant propagation

framework cannot discover that the expression a + b in

Figure 27(b) is the unique constant 3 because constant

propagation is applied to expressions whose variable

operands have unique constant values at an expression

evaluation point.

The information for recognizing potentially constant

valued expressions are obtained from the dependent operand

field of a statement record in the distinct statement table

a . - 1 .-
b := 2

(a)

Figure 27.

a . - 1 a . -.- .-
b . - 2 b . -.- .-

(b)

Simple and Non-Simple Constant
Expression

2
1

117

and from the field in a variable's version record which

indicates whether an instance of a variable is a constant or

not. If the dependent operand field of an arithemetic or a

logical expression is empty, then the operands used in that

expression are symbolic constants. Expressions with all

symbolic constant operands are folded immediately.

In typical programs, few expressions have constant

values. Applying constant propagation to an entire program

as is performed in [21, 37] is unnecessary because only loop

invariant expressions, nonloop expressions, and expressions

with symbolic constants can have constant values. To reduce

the cost of constant folding, these classes of statements

are the only ones analyzed.

Constant folding is performed with other optimizations

while the operand dependence graph representation of a

program region is being built. The versions of each operand

reaching an expression's evaluation point is determined and

from this information, the constant folding procedure enters

a simple mode or an exhaustive evaluation mode. A simple

analysis mode is entered when each operand of an expression

has unique reaching definition at an expression evaluation

point. The constant folding procedure makes one expression

evaluation in a simple mode. When any operands of an

expression has multiple reaching definitions, the constant

folding procedure goes into an exhaustive evaluation mode.

To perform exhaustive analysis of a constant folding

candidate, the flow graph nodes where to evaluate a constant

118

folding candidate are determined first. An evaluation point

is the first flow graph node on a distinct forward path to

an expression evaluation point, such that at least one of

the variable operands has a unique definition which reaches

the end of that flow graph node. The constant folding

candidate is not moved to any of the evaluation points,

rather the evaluation points serves to identify the specific

operand instances which may be used to execute that

expression at run-time. After identifying the evaluation

points, the values of the operands at those points are

substituted for the operand values and evaluated. If the

result of the operation is the same at each of the

evaluation points, then the expression can be folded.

To apply constant folding to the expression a + b in

Figure 28, the flow graph nodes with the reaching

definitions for 8 and b at the top of node B7 are determined

from the reaching version numbers.

REACHING-DEF(a; B7] = {B2 , B3 , Bs}

REACHING-DEF(b; B7] = {B1 , B4 , Bs}

Since neither a nor b is defined in node B7 , the reaching

definitions for a and b are split into two subsets and

propagated along the immediate predecessors of node B7 .

Thus REACHING-DEF[a; B7] is split into {B2} and {B3 , B5},

while REACHING-DEF[b; B7] is split into {B1 } and {B4 , Bs}•

The subsets {B2} (for a) and {B1 } (for b) are propagated to

B2 and the other two subsets are propagated to B6 .

119

At node B2 , there is a unique definition of a reaching

the end of B2 . Hence, node B2 is an evlaluation point. The

definitions of a and b reaching the end of B6 are further

split into two subsets and propagated to the predecessor

nodes B4 and Bs where there are definitions of either a or b

and the process terminates. The nodes B2 , B4 , and Bs are

the points to evaluate the expression a + b. The value of

a + b at all the three points is 3.

Figure 28. Constant Folding Example

Algorithm 6. Constant Folding Algorithm
Input.

OP:
RD a:
RD-b:
FN:

Operation symbol.
Reaching definitions of first operand.
Reaching definitions of second operand.
Flow graph node where potentially constant
expression is located.

OPD_PAIRS: Possible Operand Combinations at run-time
output.

VAL: Value of expression if expression is a unique
constant.

FLAG: Status flag indicating whether expression is a
constant.

Aux I II ary.
OPD PAIRS: Pairs of flow graph nodes specifying the

-possible operand instances to be used to
evaluate a constant folding candidate.

Method.

120

Determine the possible operand instances which could be
used to compute an expression at execution time. Then
perform the operation on the possible operand values and
compare the results.

Step1. If jRD_al = jRD_bj = 1, then begin
fold expression;
If OP is a logical expression for a

conditional jump, then modify flow graph;
End

Step2. Else begin /* enter exhaustive mode */
N := 0; I* number of elements in OPD PAIRS */
OPD PAIRS := m;
evai pairs(OPD PAIRS, RD a, RD b, FN, N);
FLAG-= TRUE; - - -
VAL :=value of expression using OPD-PAIRS[O];
While N 1: 0 do

If VAL 1: value of expression using
OPD PAIRS[N], then begin
FLAG : = FALSE;
N := 0;
End

Else N := N - 1;
End if

Endo
If FLAG = TRUE, then begin

Replace expression with VAL;
If OP is a logical expression for

conditional jump, then modify flow graph;
End if
End

End if
End Constant fold

Figure 29. Constant Folding Procedure

121

Procedure eval_pairs (e_pairs, rd_a, rd_b, fgn, n)

e_pairs

rd a

rd b

fgn

n :

step1.

possible definition instances to be used to
execute a constant folding candidate.
definitions of first operand reaching the
flow graph node fgn.
definitions of second operand reaching the
flow graph node fgn.
flow graph node currently checked as an
evaluation point.
counts the number of elements in e-pairs.
auxillary storage for subsets of rd a and
rd_b respectively.

If lrd_al = 1, then begin
For each x E rd b do

e pairs[n] :=-(fgn, x);
n-:= n + 1;
En do

End

Else if lrd_bj = 1, then begin
For each x E rd a do

End

e pairs[n] := (x, fgn);
n-:= n + 1;
En do

Else I* at least two definition instances of
each operand reach node fgn */

begin
For each flow graph dag predecessor, p

of fgn do
Ya := {x E rd_a I p is forward reachable

from x};
Yb := {x E rd_b I p is forward reachable

from x};
eval pairs(e pairs, Ya, Yb, p, n);
Endo- -

End
End if

End Eval-pairs.

Figure 30. Evaluation Points Determination
Procedure

122

Loop Optimization

Operand dependence graph is very amenable to the

detection of loop improvement candidates. A fundamental

step in loop optimization is the recognition of loop

invariant variables. With loop invariant variables known,

loop invariant code motion and induction variable

simplification optimizations can be performed.

Loop Invariant Statement Detection

A loop optimization mode is entered when the next flow

graph node to be processed is an end of loop marker node.

The operand dependence graph constructor places constants,

variables referenced or assigned to in a loop in the

auxillary storage LAVQ. A variable in LAVQ is invariant if

that variable's version number at the top of a loop's header

node and at the top of that loop's end of loop marker node

are equal.

A statement in a loop, L is invariant in L if every

source operand of that statement is (1) a constant; (2) a

loop invariant variable; or (3) value of an expression

computed from operands of type (1) and (2). In terms of

operand dependence graph, a statement is a loop invariant if

every path to an operation instance node through data links

originates from class (1) and class (2) operands.

To discover the set of invariant statements in a loop

using an operand dependence graph, the graph section

123

representing the statements in that loop are searched

breadth-first. After recognizing the loop invariant

statements in L, each invariant is analyzed for loop

invariant motion optimization. The condition for moving an

invariant statement out of a loop is that the point where

that statement is located in a loop must predominate every

exit gate of a loop.

The set LAVQ of loop active operands is partitioned

into segments to efficiently manipulate nested loops. A

segment of LAVQ consists of all the constants and variables

active in a loop. A stack of segment pointers point to the

base of each LAVQ segment. The top element of the stack of

segment pointers identifies the LAVQ segment for the current

loop. When control leaves an inner loop, the LAVQ segments

for the inner loop and the parent loop are merged (in a

union operation) to obtain the LAVQ segment for the parent

loop.

The loop invariant detection procedure (Figure 31)

traverses a particular path as long as a visited node is

marked invariant. By visiting the operand dependence graph

nodes breadth-first, the invariance of a lower level node

can be determined from predecessor nodes.

Algorithm 7. Loop Invariant Code Motion Algorihm
Input.

LAVQ-SEG: Loop active operands.
HDR: Loop header node.
ODG of program region.
Intermediate code program.

Output.
Possibly modified ODG of program region.
Possibly modified intermediate code program.

Auxiliary.
LIQ: Loop invariant statements.
WORKLIST: Sequence of ODG nodes to be traversed.

Method.

124

Mark the ODG node of each operand in LAVQ SEG whose
version number at the top of the loop header node and at
the top of the end of loop marker node is the same
"invariant" and enter that operand into WORKLIST. Then
traverse the ODG segment of program loop breadth-first,
starting at ODG nodes in WORKLIST. Mark each operation
node whose operand nodes are marked invariant "invariant",
append operation node to WORKLIST, and append marked
statement into LIQ. When WORKLIST is empty, apply loop
invariant code motion test to each statement in LIQ.

For each operand, v E LAVQ-SEG do
If version number of v at top of HDR = current version

number of v, then begin
place v into WORKLIST;
mark the ODG node for v "invariant";

end if
en do
LIQ = ~;
While WORKLIST is not empty do

n := first(WORKLIST); /*removes current first item
from WORKLIST */

For each data link successor, s of n in loop do
If s is not marked "invariant", then begin

If s is an operand node and the data link
predecessors of s are marked "invariant", then

mark s "invariant" and append s to WORKLIST;
end
Else begin /* s is an operation node */

If every data link predecessor of s is marked
"invariant", then begin
If operation at s is not assignment, then

begin (marks "invariant"; appends to LIQ;
appends to WORKLIST;)

end
Else begin I* operation is an assignment */

If destination operand is assigned to

end

once, then (marks "invariant", appends
to LIQ, appends to WORKLIST;)

end
end if

end for
end while

end if

For each statement, s E LIQ do
If the location of s predominates every exit gate in

loop, then move s to loop ~re-header;
end for
End (Loop_invariant Code Motion).

Figure 31. Loop Invariant Detection Procedure

Induction Variable Optimization

125

An induction variable is a variable whose values form

an arithmetic or geometric progression while control remains

in a loop. Knowing the first term and common difference

(arithmetic) or common ratio (geometric) of a progression,

the succesive terms of that series can be generated. A tree

structure called sequence tree is used to represent

induction variables.

A sequence tree is a representation for the set of

induction variables dependent on a single basic induction

variable. The root of a sequence tree is a basic induction

variable and the other tree nodes are induction variables

derived from the value of that root induction variable. A

sequence tree node (except for the root node), sis a child

of another sequence tree node, p if the value of p is

referenced directly in the intermediate code statement for

computing the value of s.

126

A sequence tree node is a 5-tuple (ind-var, init-val,

step, type, children), where ind-var, init-val, and type

fields are the name, initial value, and type (arithmetic or

geometric progression), respectively of an induction

variable. The step field is a common difference or common

ratio depending on the value of type field and the children

component are pointers to subtree nodes.

Basic Induction Variable Detection. A variable v is a

basic induction variable if v is initially live on entry to

a loop and v is assigned to in a loop through a distinct

statement of the form v := v ± d, where d is a constant or a

loop invariant. The operand dependence graph constructor

identifies potential induction expressions and places them

in BIEQ (basic induction expression queue). An element of

BIEQ is a statement of the form t = v ± d, where v is a non­

temporary.

Determining whether v is a basic induction variable

involves three checks: (1) the temporary t is assigned to v;

(2) the operand d is either a constant or a loop invariant;

and (3) no other loop statement may alter the value of v.

If the expression t = v ± d and the variable v pass the

three checks, then v is made the root of a sequence tree

with the children field initially set to null.

Other Induction Variables. Having identified a basic

induction variable, the next step is to find other induction

variables which derive their values from that basic

induction variable are determined by depth-first search of

127

an ODG. Suppose v is an induction variable (basic or

nonbasic). The data link successors of v in the operand

dependence graph are visited depth-first looking for

induction variables. Graph search along a path continues as

long as any new operation node visited is a statement of the

form

t v ± d;

t = v * d; or

(where dis a loop invariant or a constant). If a statement

is one of these three forms, then a sequence tree node is

created for t and the address of the tree node for t is

added to the children list of tree node v. The field values

of a sequence tree node for each type of induction variable

are filled using the template in Figure 32. As an example,

consider the loop code below.

$L1:

$L2:

i := 3
CMP i, 1000
BGT $L2

t1 i * 4
t2 i - 1
t3 = t2 * 4
t4 = INDEXED LOAD
ts = i - 2
t6 = ts * 4
t7 = INDEXED LOAD
ts t4 + t7

f,

f,

INDEXED LOAD f, t1,
t9 = i + 1
i := t9
CMP i, 1000
BLE $L1

t3 I* f[i - 1] *I

t6 I* f[i - 2] *I
I* f[i - 1] + f[i - 2] *I

ts I* f[i] = I I *I

128

Statement form: t = v ± d

child= create tree node(); I* returns tree node *I
child.ind var T= t;-
child.init val := parent.init val ± d;
if constant(parent.init val, a), then

fold(child.init val);
child.step := parent.step;
child.type := 'AP'; I* arithmetic progression *I
parent.children := parent.children U {child};

End I* t = v ± d *I

statement form: t = v * d

child= create tree node();
child.ind var != t;-
child.init val := parent.init val * d;
if constant(parent.init val, a), then

fold(child.init val);
child.step := parent.step * d;
if constant(parent.step, d), then

fold(child.step);
child.type := 'AP';
parent.children := parent.children U {child);

End I* t = v * d *I

Statement form: t = power(d, v)

child :=create tree node();
child.ind var :~ t; -
child.init val := power(d, parent.init val);
if constant(parent.init val, d), then-

fold(child.init val);
child.step := power(d, parent.step);
if constant(parent.step, d), then

fold(child.step);
child.type := 'GP'; I* geometric progression *I
parent.children := parent.children u {child);

End I* t = power(d, v) *I

constant(x1 , ... , Xn) =true if each xi is a constant;
= false otherwise.

Figure 32. Template for Defining Fields of a
Sequence Tree Node

129

The operand dependence graph segment relevant to

identifying the induction variables in the example loop is

shown in Figure 33. The statements t2 = i - 1; ts = i - 2;

and t9 = i + 1 are entered into BIEQ as loop statements are

represented on the ODG, but only t9 = i + 1 meets the

conditions for basic induction expression. Next the data

links for node i are traversed depth-first to locate other

induction variables dependent on i. Figure 34 is a sequence

tree representation of the induction variables in the

example loop.

Figure 33. ODG Segment Showing Loop
Induction Variables

130

t2, 2, 1, ap

t3, 8, 4, ap t6, 4, 4, ap

Figure 34. Sequence Tree of Induction Variable
Family

Induction Variable Prunning. After constructing a

sequence tree for a class of related induction variables,

the next step is to identify and eliminate non-essential

induction variables from a loop. This step is called

induction variable prunning. An induction variable is

prunnable if that induction variable is referenced only in

statements which compute other induction variables (except

basic induction variables). The subset of induction

variables examined for prunning are those represented at the

internal nodes of a sequence tree.

In the running example, the statements t2 = i - 1 and

ts = i - 2 qualify for prunning because t2 is used only in

the expression t2 * 4 and ts is referenced in the expression

ts * 4. Before eliminating a non-essential induction

variable, the initial and step values of that variable must

131

be preserved since the initial and step values of a child

sequence tree node are evaluated from the initial and step

values of a parent node.

If both the initial and step values of a non-essential

induction variable are constants, then the values are

already preserved since they are substituted directly to

compute the initial and step values of descendant sequence

tree nodes. However, if either the initial value, the step

value, or both of a prunning candidate is not a constant,

then the statement to compute a nonconstant item (initial or

step value) must be added to a loop's pre-header node.

After inserting the necessary statements in a loop pre­

header, a non-essential induction variable can be removed.

Returning to the example loop, the statements t2 = i - 1 and

ts = i - 2 can be deleted from both the loop and the

sequence tree.

Induction Variable Simplification. Induction variable

simplification is essentially a strength reduction

procedure. Strength reduction is applied to induction

variables of the form t = v * d or t = dv, where vis an

induction variable. Suppose the statement t = v * d is an

induction expression. Then the expression v * d is replaced

by introducing two new statements, one in a loop pre-header

and the second in a loop's body.

In a loop's pre-header block, the statement

t = t.init val

(where t.init val is the expression or constant contained in

132

the initial value field of the sequence tree node fort).

Let u be the basic induction variable from which the value

of t is derived. Below each instance of the statement

u = u ± c in a loop, introduce the statement

t = t ± t.step

(t.step is the value of the step field of the sequence tree

node for t).

Similarly, if an induction expression is of the form

dv, the statements

t = t.init_val; and

t = t * t.step

are inserted at a loop's pre-header and in a loop's body (at

the appropriate points), respectively. After induction

variable prunning and induction variable simplification

steps, the example loop is transformed to the version below.

$L1:

$L2:

t1 = 12
t3 = 8
t6 = 4

t4 = INDEXEDLOAD
t7 = INDEXED LOAD
ta = t4 + t7
INDEXEDSTORE f,
t9 = i + 1
i . - t9 .-
t1 = t1 + 4
t3 = t3 + 4
t6 = t6 + 4
CMP i, 1000
BLE $L1

f, t3
f, t6

t1, t8

Extracting the induction variables and representing

them with sequence trees has several advantages. One

advantage is that unnecessary temporaries and statements are

133

not introduced into the intermediate code. In the induction

variable optimization scheme described in [6, 11], too many

temporaries are created and requires additional constant

propagation, scalar propagation, and useless code

elimination passes to clean up the code.

A second advantage is that after the graph search to

detect the set of induction variables, the remaining steps

of the induction variable optimization procedure do not

involve further graph walk. Even in the one graph

traversal, only the relevant parts of a loop (those nodes

connected to basic induction variables) are visited. With

the exception of program dependence graph[15] based

approach, other methods scan every loop statement.

Thirdly, because the sequence tree is not embeded in

the operand dependence graph, it can be easily integrated

into any compiler. ottenstein's[28] method is efficient

when the intermediate code representation is the program

dependence graph, but it requires prior applications of

constant folding, common subexpression elimination, scalar

propagation, etc. There is no such ordering with the

operand dependence graph based method.

Complexity of Code Optimization

The main distinguishing characteristics of operand

dependence graph based program analysis are (1) code

optimization is confined to control structures (straight

line code segments, if-then-else, and loop); (2) individual

134

statements are analyzed for a particular type of redundancy;

(3) program analysis and optimization are combined in one

step; (4) minimal data flow information(reaching version

numbers) is used to detect redundant statements; and (5)

optimization decision is based the section of a program

already processed.

Information used to detect feasible code optimizations

are usually propagated through control flow paths. Any

program has a finite number of parallel paths (paths without

a common join) determined by the structure of "if" and case

statements in a program. The maximum number of parallel

paths in a program is bounded by the number of alternate

control flow paths in the conditional structures of that

program. This bound denoted n is called the data flow width

of a program flow graph. A statement instance at some

point, p is redundant if there is an active previous

instance of that statement on each distinct forward path

leading to p. Thus, to determine if a particular statement

instance is redundant, at most n previous instances of that

statement are examined.

Lemma 11

If h is the number of expressions analyzed for code hoisting

and n is the data flow width of a program flow graph, then

the complexity of code hoisting optimization is O(h*n).

Proof. The number of disjoint instances of any

distinct statement with a common instance signature in a

135

conditional structure is at most n. The code hoisting

algorithm first tries to move code to the highest level of a

conditional structure. If that attempt fails, then the

algorithm performs code motion bottom-up (if the condtional

statement is nested). At most both the highest level motion

and the nested if analyses are performed on a code motion

candidate. In the highest level code motion analysis, O(n)

disjoint instances are processed during path cover test.

There are (n - 1) "if" statements in a conditional

structure with n data flow width. Thus, there are (n - 2)

"if" statements nested within an if structure with (n - 1)

"if" statements. The nested if analysis part examines two

disjoint instances per nested "if" statement giving a cost

of 0(2*n- 4) = O(n). Therefore, the time complexity for

applying code hoisting optimization on n disjoint instances

of a statement is O(n + n) = O(n). o

Lemma 12

If r is the number of partially redundant expressions

analyzed for common subexpression elimination and n is the

data flow width of a program flow graph, then the cost of

common subexpression elimination is at most O(r*n).

Proof. There are at most n previous instances of a

partially redundant statement which reach a common join. It

takes O(n) to determine whether n program points is a path

cover for some other point. Thus, the complexity for

analyzing r partially redundant statements for full

136

redundancy is O(r*n).

Lemma 13

Let s be the number of code ~inking candidates subjected to

code sinking optimization analysis and let n be the data

flow width of a program flow graph. Then the complexity of

code sinking analysis is O(s*n).

D

Proof. Code sinking optimization and common

subexpression elimination have the same path cover

constraint. Replacing r in lemma 12 with s reduces lemma 12

to lemma 13. o

Lemma 14

Suppose f is the number of expressions analyzed for constant

folding and n is the data flow width of a program flow

graph. Then the cost of constant folding optimization is

O(f*n).

Proof. The constant folding procedure evaluates a

constant folding candidate with the operand values defined

on each of the possible paths control may transfer to the

point where a folding candidate is located. The number of

different potential definitions of a variable reaching any

program point is at most n. This implies the number of

expression evaluations to determine whether an expression is

a unique constant is O(n). f different expressions will

require at most O(f*n) expression evaluations. D

Lemma 15

Let n be the total number of loop statements over all

program loops. The cost of loop optimization is O(n).

137

Proof. At most O(n) statements are visited during loop

invariant statements detection and O(n) statements are

visited during search for induction variables giving a total

of O(n + n) = O(n). o

Theorem 2

Optimizations performed with the operand dependence graph

are safe.

Proof. A code optimization procedure is safe if

nonredundant statements are not eliminated and the optimized

version of a program does not induce any run-time errors not

present in the unoptimized code. Three factors ensure the

safety of any transformation applied to a program in an

operand dependence graph based implementation:

(1) predominated-inverse-post-dominated ordering of flow

graph nodes guarantees that a node is not processed until

the flow graph nodes which may compute values referenced in

that block have been processed. Thus, the proper reaching

definitions are always used to detect redundancies within a

program region. (2) Path cover constraint is enforced for

all code optimization problems and loop invariant motion is

conservative. (3) Code motion related optimizations are not

performed until either a join or an end of loop marker node

is seen. These factors prevent premature optimizations.

138

Hence, code improvement transformations applied using

operand dependence graph are safe.

Theorem 3

Let P be an unoptimized version of an intermediate code

program and let P 1 represent the optimized version after

applying operand dependence graph intermediate code

improvement procedure on P. Suppose P 1 1 is the resulting

program after running P 1 through the optimizer. If useless

code elimination is not applied on P 1 and the regions of P

are preserved in P 1 , then P 1 1 = P 1 •

0

Proof. Since the regions of Pare the same for P 1 ,

any inter-region redundancy in P will not be identified in

P 1 • Because lexically identical expressions use the same

temporary name to store the value of that distinct

expression, redundancies involving expressions using

intermediate results are recognized in the same optimization

pass. Therefore, no new intrasegment redundancies are

discovered in P 1 •

The induction variables detected in P 1 are the basic

induction variables and "strength reduced" induction

variables of P. These set of induction variables will not

require further simplification. Lastly, statements moved to

a loop pre-header node will not contain common

subexpressions since intra-region common subexpressions are

eliminated before loop invariant code motion and induction

variable optimizations. Therefore, running P 1 through the

139

optimizer does not change P'. c

Discussion

Global program analysis by data flow analysis technique

is an O(N2) process, where N is the number of nodes in a

flow graph. Data flow information is represented with bit

vectors and most of the vectors are usually sparse because

basic blocks are relatively short. If N is large, then the

O(N2) cost becomes expensive. Redundancy analysis cost with

the operand dependence graph is dependent on two factors;

nesting depth of conditional statements and the number of

partially redundant statements in a program.

Studies indicate that most optimizations occur in basic

blocks [8] and in inner loops of nested loops. This implies

that for many programs, the number of global redundancies

will be small. Let L be the length of a program (number of

statements) and let D be the number of distinct statements

in a program. Then (L - D) is the number of statements

which may be analyzed for code hoisting, common

subexpression elimination, and code sinking. The cost of

applying duplicate statement reduction optimizations to

(L - D) statements using an operand dependence graph is

O(n * (L- D)). In the worst case, (L- D) is O(N) and n is

N/2, resulting in O(N2) process. For many programs, n and

(L - D) will be small in which case the cost of redundancy

elimination is almost linear.

140

Summary

The concepts (path cover, variable version numbers,

operand dependence graph, and partial redundancy) developed

in earlier sections are tied together to detect various

forms of redundancies in an intermediate text. A uniform

concept of partial redundancy is used to detect common

subexpressions, hoistable code, and code sinking candidates.

The cost of program improvement is proportional to the

product of the data flow width of a program flow graph and

the number of partially redundant statements in a program.

An induction variable optimization procedure which uses

sequence trees to hold induction variables before committing

to introducing new statements is developed.

CHAPTER VIII

SIMPLE RECURRENCE LOOP OPTIMIZATION

Simple Recurrence Array Reference

Many numerical algorithms contain recurrent loops. A

recurrent loop is a repetition structure in which a value

computed in some iteration, i is referenced in a later

iteration, j (j > i). Vectorizing compilers[?, 22] employ

elaborate algorithms to detect the presence of a recurrence

in array references to determine when to generate vector

code. However, sequential code compilers do not include

recurrence analysis in its suite of optimization procedures.

This section presents a method for improving sequentially

executed loop with simple linear recurrence array

references.

A loop, L is a simple linear recurrence loop if L has

an array in which at least two distinct elements of that

array are accessed in every iteration, such that at least

one of the elements accessed in the ith iteration of L is

also referenced (indexed load operand) in the (i+l)th

iteration. An example of a simple recurrence loop is

for (i = 3;
f[i] =

i ~ 1000; i++)
f[i-1] + f[i-2];

The value of f[i-2] in the next iteration is the value of

141

f[i-1] in the current iteration. Similarly, the value of

f[i-1] in the next iteration is the value of f[i] in the

current iteration.

142

Array element access is usually more expensive than the

access of simple values because of the extra code generated

to map an element selection expression to a memory location.

Simple recurrence optimization is the reuse of an array

element value accessed in the ith execution of a loop and

referenced in the (i + l)th execution of that loop without

reloading that element from the array storage.

An array to be analyzed for simple recurrence

optimization should possess the following characteristics:

1. all the subscript expressions used to specify

element locations are induction variables;

2. the initial and step values of each induction

variable are known constants; and

3. at least two distinct elements of that array are

accessed in a loop and one of the accesses is an

indexedload operation.

Suppose A is an array accessed with two subscript

expressions, e 1 and e 2 which satisfy properties (1) and (2)

and suppose further that e1 is an indexedload operand on A.

The reference A[e1] is a simple recurrence optimization

candidate with respect to the array element A[e2] if

(1) either both e1 and e 2 are increasing sequences of the

same type or both e 1 and e 2 are decreasing sequences of the

same type; (2) step value of e1 = step value of e2;

143

(3) the difference between the initial values of e 2 and e1

is equal to the step value of e 1 ; (4) A[e1] and A[e2] are

accessed in every loop iteration; and (5) no statement which

lies on an acyclic path originating at the loop header block

to any point where A[e1] is referenced for the first time in

a loop may store into A[e1].

Let H be the header block of a loop, and let

. . . , Bk} be the set of loop blocks such that

{B1 , ... , Bk} x Hare back edges. A loop statement, sis

executed in every iteration if any forward path from H to

each of the blocks {B1 , ... , Bk} contains an instance of s.

Condition (4) for simple recurrence loop optimization is

satisfied if each forward path from the header block H to

every node in the set {B1 , ... , Bk} has statements which

access both A[e1] and A[e2].

A simple procedure for determining whether the elements

A[e1] and A[e2] are both accessed in every iteration

consists of the following steps.

step 1. If loop is a single node loop, then condition is

satisfied;

Else perform steps 2-4.

step 2. Compute the sets

ACCESS_POINT[A, e1]

ACCESS_POINT[A, e2]

{ n I A[e1] is accessed in
block n}

= { m I A[e2] is accessed in
block m}

144

Step 3. Compute the composite forward reachability sets

FR1 = U FWR[n]
n E ACCESS_POINT[A, e1]

FR2 = U FWR[m]
m E ACCESS_POINT[A, e 2]

(where FWR[x] = forward reachability set of node x)

Step 4. Calculate FR1 () FR2

Compute P = U pred[B·]
Bi is a looping node.

Condition (4) is satisfied if

p .Q FR1 (\ FR2

and

either

or

Element Update Constraint

The problem is given an array, A and a subscript

expression, e for some element of A referenced in a loop;

can the location A[e] be modified before being referenced?

To answer this question, these sequence of steps are

followed.

The first step is to determine whether there is a store

into any element of A prior to the reference A[e]. This is

accomplished by comparing the version history of A at the

point of the indexedload operation with the version number

of A at the top of the loop header block. If they are

equal, then there is no store into A[e]. Suppose the two

numbers are not equal, then the relationship between the

145

location assigned to and the location referenced is

determined next.

If the array A is a call-by-reference parameter and

interprocedural alias analysis information is not available,

then it is assumed that any element of A can be assigned to.

Another worst case assumption is made if the subscript

expression for an indexedstore is not an induction variable.

When the subscript operand for an indexedstore

operation is a loop induction variable, but either the

initial value of the induction variable or the step value of

the induction variable is not a numeric constant, the

destination of the indexedstore is taken to be any element

location. This situation is illustrated in the loop below.

for (i = 3; i ~ 1000; i++) {
f[i-d] = 5;
f[i] = f[i-1] + f[i-2];

}

The subscript expression i - d is an induction variable, but

the value of d is not known. If the value of d is one or

two, then f[i-1] or f[i-2] cannot be a simple recurrence

reference.

Suppose the subscript expression for the indexedstore

into A is an induction variable whose initial and step

values are known constants, then the indexedstore subscript

and the indexedload subscript are subjected to mathematical

analysis to determine if there is a loop iteration in which

both subscripts are equal. Let s and e represent the

indexedstore subscript and indexedload subscript,

respectively. The analysis involves equating the formula

for calculating s and e and then solve the resulting

equation for integer solutions. If an integer solution

exists, then the array reference A[e] cannot be a simple

recurrence array reference.

146

In order to find solutions to the sequence equation,

the sequence type of s and the sequence type of e must be

considered. Three equation classes are distinguished based

on the sequence type of s and e: (1) both s and e are

arithmetic sequences; (2) both s and e are geometric

sequences; and (3) s and e are of different types.

The nth term, tn of an arithmetic progression is given

by the formula

tn = a+ (n-l)d, (n, d ~ 1)

where a is the first term (initial value), and dis the

common difference (step value). For a geometric

progression, the nth term gn is given by

gn = ~rn-1 (n ~ 1, r > 1)

where ~ is the first term, and r is the common ratio.

Suppose both subscripts are arithmetic progressions.

Let

and

a 2 + (n-1)d 2

be the formulas for their nth terms. The equation

a 1 + (n-1)d1 = a 2 + (n-1)d2

has an integer solution if

or

(d2 - d1) divides (a1 - a 2),

(a1 - a 2) = (d 2 - d 1) = 0,

(a1 = a 2 and n = 1).

For the case where both subscripts are geometric

progressions, let

and

~2r2n-1

147

be the formulas for the nth term of s and e, respectively.

The equation

~1r1n-1 = ~2r2n-1

has an integer solution if

(~ 1 = ~ 2 and n 1),

(~1 - ~2) = (r1 - r2) = 0, or

(~ 1 divides ~ 2) and (r2 divides r 1)

When one of the subscripts is a geometric sequence and

the other is an arithmetic sequence, the equation

a + (n-1)d = ~rn-1

is solved.

A solution to this equation exists if the following

conditions are simultaneously satisfied:

a + d = ~r

~ divides (a + d)

r divides (a + d)

d divides a

d divides ~

148

If there does not exist an integer solution to the formed

equation, then the value of A[e] is not computed in the same

loop iteration it is referenced.

Simple Recurrence Elimination

Given that an array reference A[e1] is a simple

recurrence reference with respect to another element access

A[e2], the reference A[e1] can be eliminated from a loop by

performing the following steps in the sequence presented.

Let t 1 denote the temporary into which the element A[e1] is

loaded in an indexedload operation and let t 2 denote the

value of A[e2].

step

Step

Step

1 .
Move the indexedload operation

t 1 = A[e1]
to the loop pre-header, but below the statement which
computes the initial value of e1 in the pre-header.
2.
Let H be the header node of the loop in question.
For each block, B such that (B,H) is a backedge do
If B is a conditional block, then begin

If A[e1] is an operand of the comparison operation
for the conditional jump, then begin

(1) Create a new temporary t 3 ;
(2) Just before the compare operation introduce the

copy statement t 3 = t1 ;
(3) Substitute t 3 for t 1 in the comparison statement;

End if

End

Just before the compare statement in block B,
introduce the copy statement t 1 = t2

Else just before the unconditional jump statement in B,
introduce the copy statement t 1 = t 2
En do
3 •
If the only use of e1 in the loop after performing
step1 and step2 is in the induction statement
of the form

e 1 = e ± c, or
e 1 = e 1 * c,

then eliminate the induction statement.

149

In many structured programs, a loop has only one

backedge in which case the copy statement t 1 = t 2 is

introduced in one loop block. Except when A[e1] is an

operand of a compare statement in a block that contains the

looping statement, simple recurrence array reference

elimination reduces the number of statements in a loop.

Even when the value of A[e1] is used to determine loop

termination, two scalar copy statements will execute faster

than indexedload and induction variable update operations.

Moreover, if some of the scalar operands t 1 , t 2 , and t 3 are

placed in registers, loop execution time will be

significantly improved.

Simple Recurrence Analysis

There are two stages of simple linear recurrence

analysis. The first stage identifies array variables in a

loop to be tested for simple recurrence optimization, while

in the second stage simple recurrence test are performed on

subscripts of the arrays selected in stage one.

In the first step, array variables accessed with one

subscript or not referenced in an expression are removed

from consideration. Also, arrays accessed with non

induction variable subscript or accessed with induction

variables whose initial values or step values are not known

constants are removed from the list of test candidates.

An array variable not disqualified in the first phase

has at least two distinct subscripts which select c' 1 ements

150

of that array. Suppose A is an array for simple recurrence

test. The second phase of the recurrence test proceeds as

follows. LetS= {s 1 , ••. , sk}, k ~ 2, be the set of

subscripts used to access A in a loop.

Step 1.

step

Partition S into two subsets Sa and Sg, such that

Sa {S 8 Sis is an arithmetic sequence}

Sg = {S 8 sjs is a geometric sequence}.

2.

If Sa is nonernpty and Sa has at least two elements,

then partition Sa into the subsets I and D, where

I = {i 8 Sa and i is an increasing sequence}

D = {d E Sa and d is a decreasing sequence}.

Step 3.

If I has at least two elements, then arrange the

elements of I in increasing initial subscript value

order. For each pair of adjacent elements s 1 , s 2 in I,

where s 1 precedes s 2 in I check the following

conditions:

(l) s 1 is an indexedload subscript.

(2) step value of s 1 = step value of s 2 .

(3) Second value of s 1 = initial value of s 2 .

(4) A[s1] and A[s 2] are both accessed in every

iteration.

(5) Any indexedstore operation into A which precedes

the reference A[s1] may not store into A[s1].

(6) If the above conditions are satisfied, then apply

151

simple recurrence elimination procedure on A[s1].

Step 3b. If D has at least two elements, then arrange

the elements of D in decreasing initial value order.

For each adjacent elements of s 1 , s 2 in D, where s 1

precedes s 2 in D, repeat the six steps performed for I.

Step 4.

If Sg has at least two elements, then substitute Sg for

Sa and repeat step2 and step3.

The fibonacci-like loop

for (i = 3; i ~ 1000; i++)
f[i] = f[i-1] + f[i-2];

serves as an example to illustrate the simple recurrence

removal procedure. First the array f qualifies for simple

recurrence test. The subscripts i, i - 1, and i - 2 are

all arithmetic sequences and their initial values and step

values are constants.

At the beginning of the second phase of the analysis,

the setS= {i, (i- 1), (i- 2)} is formed. In Step1, Sis

partitioned into the subsets

Sa = S

sg m
At step2, Sa is further partitioned into I and D. The D

subset is empty because the subscripts i, i - 1, and i - 2

are all increasing sequences. The initial values of i,

i - 1, and i - 2 are 3, 2, and 1, respectively, and the step

values of i, i - 1, and i - 3 are 1, 1, and 1, respectively.

Ordering the subscripts in I in increasing initial value

152

order produces the sequence

I= { (i- 2), (i- 1), i}

Next, the adjacent pair (i - 2, i - 1) are subjected to

the five tests in step3. Since the pair (i - 2, i - 1) pass

the five tests, simple recurrence elimination procedure can

be applied to the element f[i- 2]. Let t 1 and t 2 be the

temporaries for storing the values of f[i- 2] and f[i- 1],

respectively. The statement

t1 = f[1]

is introduced outside the loop and inside the loop the

statement

t1 = t2

is inserted at the end of the loop code. After this

transformation the loop code becomes

t1 = f[1]
for (i = 3; i ~ 1000; i++) {

t 2 = f[i-1);
f[iJ = t 2 + t 1 ;
t1 = t2;

}

The remaining pair (i - 1, i) also passes the simple

recurrence test and f[i - 1] is moved out of the loop. The

final code after eliminating the recurrence array references

f[i - 1) and f[i - 2] is

t1 = f[1);
t 2 = f[2J;
for (i = 3; i ~ 1000; i++) {

t3 = t2 + t1;
f[i] = t3;
t1 = t2;
t2 = t3;

}

153

Loop Unrolling and Simple Recurrence

Ordinarily loop unrolling improves the execution time

of a program loop by reducing the number of times the

termination condition is tested, but usually at the expense

of a larger loop code. Under certain circumstances a loop

can be unrolled to transform a non simple linear recurrence

loop to an equivalent loop with simple recurrence as the

example below illustrates.

for (i = 3; i ~ 1000; i++)
A[i] = A [i-2] + 5;

This loop is not a simple linear recurrence loop

because when i = 4, i - 2 = 2 != 3. If the loop is unrolled

twice as in

for (i = 3; i ~ 1000; i+=2){
A[i] = A[i-2] + 5;
A[i+1] = A[i-1] + 5;

}

then the array references become simple recurrence

references. When i = 5, A[i-2] is A[3] (A[3] is defined in

the first iteration) and A[i-1] is A[4] (A[4] is assigned to

in the first iteration). Applying simple recurrence array

reference elimination procedure to the unrolled loop results

in the loop code below.

t1 = A[1]; /* A[i-2] */
t2 = A[2]; /* A[i-1] */
for (i = 3; i ~ 1000; i+=2) {

t3 = t1 + 5;
A[i] = t3;
t4 = t2 + 5 ; (*)
A[i+1] = t4;
t1 t3;
t2 = t4;

}

154

The condition under which loop unrolling should be

applied to induce simple recurrence relation is when all the

conditions for simple recurrence loop are satisfied except

for the third constraint. To determine how many times to

unroll a loop, the formula for calculating the nth term of

the indexedload subscript is used.

Suppose the subscript expressions which failed the

simple recurrence test are e1 and e 2 and suppose further

that e1 precedes e 2 in the sorted order. Assuming e 1 and e 2

are arithmetic progressions, the equation

a 1 + (n - 1)d = a 2

is solved to determine the term (n) of the sequence e1 which

equals the first term (a2) of the sequence e 2 • The minimum

number of times to unroll a loop to create the maximum

number of simple recurrences is n - 1. Unrolling the loop n

or more times does not increase the number of simple

recurrences, however, it does induce common subexpressions

among some of the array references.

Coming back to the example loop

for (i=3; i ~ 1000; i++)
A[i] = A[i-2] + 5;

The formula for the nth term of e1 is

1 + (n - 1)

(where a1 = 1, d = 1)

and the first term of e 2 is 3.

155

Solving the equation

1 + (n - 1) = 3

yields n - 1 = 2 or n 3. Thus, if the loop is unrolled

twice, there will be two simple recurrences.

Suppose the example loop is unrolled three times, then

the resulting code is

}

for (i=3; i ~ 1000; i+=3) {
A[i] = A[i-2] + 5;
A [i+l] = A[i-1] + 5;
A[i+2] = A[i] + 5;

Notice that in the third statement of the unrolled loop, the

element A[i] is referenced creating a common subexpression

with respect to the first statement, but the number of

simple recurrences is still two.

Summary

An optimization procedure for simple recurrence loops

is developed for improving sequentially executed loops.

Simple recurrence detection is a special case of general

detection of recurrences in a loop. Simple recurrence array

reference optimization replaces indexedload operations

involving arrays with scalar copy statements. The

improvement in loop exeution time comes from the elimination

of the statements which map subscript expressions to array

elements memory addresses.

CHAPTER IX

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

Summary

This study has demonstrated that an operand dependence

graph is a viable alternative to current methods of compiler

code improvement and that common subexpression elimination

(local and global), code motions, and loop optimizations can

be performed in a single optimization pass in a region

relative code optimization scheme. An operand dependence

graph representation of a program is not sufficient to

detect feasible optimizations, but it does play a very

important role - that of highlighting potentially redundant

statements. Control flow and variable definition information

(reaching version numbers) are then used to decide complete

redundancy. In this way, blind searches for feasible

optimizations can be reduced.

The concepts of variable version numbers, path cover,

conditional environment cover, and partial redundancy are

developed to unify common subexpression, code hoisting, and

code sinking optimization problems which traditionally

required different data flow analysis steps. The fact that

commonalities exist between these code optimization problems

156

157

has a positive impact on their implementation; these

optimization procedures can be implemented with a common set

of program modules, thereby reducing the size of a code

optimizer.

Useless Code Elimination

Useless code cannot be performed in a one-pass

optimization procedure when program statements are processed

in normal program execution order. To be able to detect

redundant assignment to a variable, the definitions and uses

of that variable must be known. Complete variable

definition information is not available during operand

dependence graph construction. In order to add useless code

detection capability to an operand dependence graph, one of

two approaches can be used; (1) analyze a program in two

passes or (2) process the program flow graph in reverse

topological order.

With a two-pass optimization approach, the other

optimizations are performed in one pass. Then in the second

pass, each variable assignment operation is examined to

determine if that instance of a variable may be referenced

in some other statement. Processing the flow graph regions

in reverse topological order is attractive because useless

code elimination and the regular optimizations can be

performed in a one pass. However, there is a small price to

pay - constant folding opportunities may be missed. In my

view, useless code detection should be placed in the

jurisdiction of a code generator because of the strong

interaction between register allocation and useless code.

Improvements

158

The partitioning of a control flow graph into control

regions needs improvement. Currently, all the nodes of a

program region either belong to a loop structure or an

acyclic structure. A program region partitioining scheme

which combines both acyclic and loop structures may enhance

the detection of some common subexpressions currently

classified as inter-region common subexpressions. Moreover,

larger program regions translate to fewer number of distinct

statement table initializations during the construction of

an operand dependence graph of a program region.

Operand dependence graph based code optimization

restricts redundant computation detection to lexically

identical expressions. The limitation of this pproach is

that any redundancy induced by value equivalence cannot be

detected. Redundancy recognition by value equivalence is

more general than textual equivalence, but a value

equivalence technique must maintain equivalence classes of

equal variables. I am not sure the addition of an

equivalent variables determination procedure to an operand

dependence graph will significantly improve code quality,

since most redundancies are introduced in loops where array

references are linearized. May be using value numbers

instead of version numbers will identify both types of

159

redundancies. What impact value numbers will have on

operand dependence graph construction rules I do not know,

but the idea is worth exploring.

Further studies

The application of operand dependence graph is

restricted to structured program flow graphs. Although the

majority of real programs have structured flow graphs, there

are still some programs with non-reducible control

structures. It is not known whether an operand dependence

graph will be effective for non-reducible flow graphs

without some major modifications. I am inclined to believe

that at least reaching version numbers will have to be pre­

computed as in reaching definitions to obtain a conservative

data flow information.

The known code optimization procedures lack adaptive

capability. A program without any redundancy and a program

with redundancies will go through the same code improvement

stages. There is no mechanism for avoiding fruitless

searches. An operand dependence graph has elementary

adaptive mechanism. For instance, first instance of each

distinct intermediate code statement is not subjected to any

of the duplicate code (common subexpressions, code hoisting,

and code sinking) redundancy tests. From a theoretical

standpoint, the question "does program P in its current form

have any redundancies?" is unsolvable, but are there

heuristics that can tell when to avoid optimization passes

160

that will not improve object code efficiency? An adaptive

capability will be useful in programming environments where

programs under development are constantly modified.

A performance comparison of operand dependence graph

based approach with other (data flow analysis, program

dependence graph, and global value numbers) methods should

be investigated to gather various statistics such as

optimizer code size, running times, storage requirements for

data structures, code size of optimized code, and running

times of optimized code. This could be a master's thesis

project.

REFERENCES

1. AHO, A. V., SETHI, R., and ULLMAN, J. D. Compilers:
Principles, Techniques, and Tools. Addison Wesley 1986.

2. AHO, A. v. and ULLMAN, J. D. Optimization of straight
line code. SIAM J. Comput. 1, l(Mar. 1972), 1-19.

3. ALLEN, F. E. Program optimization. Annual Review In
Automatic Programming 5, (1969), 239-307.

4. ALLEN, F. E., CARTER, J., FABRI, J., FERRANTE, J.,
HARRISON, W. H., LOEWNER, P. G., and TREVILLYAN, L. H.
The experimental compiling system. IBM. J. Research
and Development 24, 6(June 1980), 695-715.

5. ALLEN, F. E., and COCKE, J. A program data flow
analysis procedure. Communications ACM 19, 3(March
1976), 137-147.

6. ALLEN, F. E., COCKE, J., and KENNEDY, K. Reduction of
operator strength. Program Flow Analysis: Theory and
Practice, eds (Muchnick and Jones), 1981, 79-101.

7. ALLEN, J. R. Dependence Analysis for Subscripted
Variables and its Application to Program
Transformation. Ph. D. thesis, Dept. Mathematical
Sciences, Rice University, Houston, April 1983.

8. ASURU, J. M. and HEDRICK, G. E. A directed graph for
intermediate program representation. Third Workshop on
Applied Computing, Stillwater, Oklahoma, Mar. 1989, 29-
33.

9. BIEMAN, J. M. Measuring Software Data Dependence
Complexity. Ph.D. thesis, University of Lousiana,
Computer Science Dept., April, 1984.

10. CARTER, L. R. An Analysis of Pascal Programs and
Several Basic Block Optimizations. Ph.D. thesis, Dept.
of Computer Science, University of Colorado, Boulder,
May, 1980.

11. COCKE, J. and KENNEDY, K. An algorithm for reduction
of operator strength. Communications ACM 20, ll (Nov.
1977), 850-856.

161

162

12. COCKE, J. and SCHWARTZ, J. T. Programming Languages
and Their Compilers: Preliminary Notes, Second Revised
Version. Courant Institute of Mathematical Sciences,
New York (1970).

13. COUTANT, D. S. Retargetable high-level alias Analysis.
13th ACM Symposium on Principles of Programming
Languages, (Jan. 1986), 110-118.

14. CYTRON, R., LOWRY, A., and ZADECK, K. Code motion of
control structures in high-level languages. 13th ACM
Annual Symposium on Principles of Programming
Languages, (Jan. 1986), 70-85.

15. FERRANTE, J., OTTENSTEIN, K. J., and WARREN, J. D. The
program dependence graph and its use in optimization.
ACM Trans. Prog. Lang. System 9, 3(July 1987), 319-349.

16. GESCHKE, C. M. Global Program Optimization. Ph. D.
thesis, Dept. of Computer Science, Carnegie-Mellon
University, 1972.

17. HECHT, M. S. Flow Analysis of Computer Programs.
Elsevier North-Holland, 1977.

18. HECHT, M. S. and ULLMAN, J. D. A simple algorithm for
global data flow analysis problems. SIAM J. Comput. 4,
4(1975), 519-532.

19. HECHT, M. s. and ULLMAN, J. D. Characterizations of
reducible flow graphs. J. ACM 21, 3(1974), 367-375.

20. JAIN SUNEEL, and THOMPSON CAROL. An efficient approach
to data flow analysis in a multiple pass global
optimizer. Proceedings of the SIGPLAN'BB Conference on
Programming Language Design and Implementation,
(Atlanta, Georgia, June, 1988), 154-163.

21. KILDALL, G. A. A unified approach to global program
optimization. ACM Symposium on Principles of
Programming Languages, (Boston, MA, Oct. 1973),
194-206.

22. KUCK, D. J., KUHN, R. H., LEASURE, B. and WOLFE, M.
The structure of an advanced vectorizer for pipelined
processors. Proceedings of IEEE Computer Society Fourth
International Computer Software and Applications
Conference, (Chicago, Oct. 1980).

23. LENGAUER, R. and TARJAN, R. E. A fast algorithm for
finding dominators in a flow graph. ACM Trans.
Prog. Lang. and Syst. 1, 1(1979), 121-141.

24. LOWRY, E. S. and MEDLOCK, C. W. Object code
optimization. Communications ACM 12, 1(Jan. 1969),
13-22.

163

25. McCABE, T. J. A complexity measure. IEEE Trans. Soft.
Eng. SE-2, 4(Dec. 1976), 308-320.

26. METCALF, M. Fortran Optimizations. Academic Press,
1982.

27. MOREL, E. and RENVOISE, C. Global optimization by
suppression of partial redundancies. Communication ACM
22, 2(Feb. 1979), 96-103.

28. OTTENSTEIN, K. J. A simplified framework for reduction
In strength. Computer Science Technical Report, TR
85-4d, Michigan Technological University, (June 1988).

29. OTTENSTEIN, K. J. Data-flow Graphs as an Intermediate
Program Form. Ph. D. thesis, Computer Sciences Dept.,
Purdue University, Lafayette, Indiana, Aug. 1978.

30. PITTMAN, T. J. Practical Code Optimization by
Transformational Attribute Grammars Applied to Low­
level Intermediate Code Trees. Ph. D. thesis,
University of California, Santa Cruz, 1985.

31. REIF, J. H. and LEWIS, H. R. Symbolic evaluation and
the global value graph. 4th ACM Symposium on Principles
of Programming Languages and Systems. 104-118, Jan.
1977.

32. REIF, J. H. and TARJAN. R. E. Symbolic program
analysis in almost linear time. SIAM J. Comput. 11,
1(Feb. 1982), 81-93.

33. ROSEN, B. K., WEGMAN, M. N., and ZADECK, F. K. Global
value numbers and redundant computations. 15th ACM
Symposium on Principles of Programming Languages, Jan.
1988, 12-27.

34. RYDER, B. G. and PAUL, M. c. Incremental data flow
analysis. ACM Trans. Prog. Lang. Syst. 10, 1(Jan.
1988).

35. SITES, R. L. The compilation of loop induction
expressions. ACM Trans. Prog. Lang. Syst. 1, 1(July
1979), 50-57.

36. ULLMAN, J. D. Fast algorithms for the elimination of
common subexpressions. Acta Informatica 2, 3(July
1973), 191-213.

164

37. WEGMAN, M. N. and ZADECK, F. K. Constant propagation
with conditional branches. 12th ACM Symposium on
Principles of Programming Languages, Jan. 1985, 291-
299.

38. WEIHL, W. E. Interprocedural data flow analysis in the
presence of pointers, procedure variables and label

variables. Conference Record, 7th ACM Symposium on
Principles of Programming Languages, (Jan. 1980), 83-
94.

39. WULF, W. et al. The Design of an Optimizing Complier.
American-Elsevier 1975.

VITA ~
Jonathan M. Asuru

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN OPERAND DEPENDENCE GRAPH METHOD FOR CODE
OPTIMIZATION

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Rumuoro-Ogbakiri, Rivers,
Nigeria, September 25, 1954, the son of Walson and
Lavender Asuru.

Education: Bachelor of Science degree in Computer
Science from University of Lagos, Nigeria in June,
1979; Master of Science degree in Computing and
Information Sciences from Oklahoma State
University in December, 1985; Completed the
requirements for the Doctor of Philosophy degree
at Oklahoma State University in May, 1990.

Professional Experience: Teaching Assistant and System
Manager, School of Physical Sciences, University
of Port Harcourt, Nigeria, November, 1980 to
August, 1982; Teaching Assistant, Department of
Computing and Information Sciences, Oklahoma State
University, August, 1984 to July, 1989. Assistant
Professor, Department of Computer Science,
University of Tennessee at Chattanooga, August,
1989 to present.

Professional Organization: Member of the Association
for Computing Machinery (ACM).

