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PREFACE 

Real programs tend to have the following features: 

(1) code redundancies are concentrated in basic blocks and 

in loops; (2) redundant statements involve mostly lexically 

identical expressions; and (3) each distinct program 

statement is used in few sections of a program. These 

characteristics imply that high quality object code can be 

produced by applying code improvement procedures to small 

segments of a program rather than to an entire program. 

This study addresses a well known problem in computer 

science - the optimization of a compiler generated 

intermediate code to produce an equivalent code with less 

redundant statements. There are two aspects to this work: 

(1) the development of a region relative code improvement 

technique for programs with structured control flow graph; 

and (2) the unification of common subexpression, code 

hoisting, and code sinking optimization problems. The 

purpose of the study is to develop a one-pass intermediate 

code optimization method with the capability to recognize 

both local and global redundancies in a program region. 

The methods developed for redundant statement detection 

are (1) representation of statements with an operand 

dependence graph, (2) modelling of variable reaching 

iii 
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definitions with operand version numbers, and (3) extension 

of the notion of partial redundancy to include statements on 

disjoint control flow paths. Algorithms for many code 

optimization procedures and their worst case time complexity 

bounds are presented. 
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CHAPTER I 

INTRODUCTION 

The Problem 

Compilers for high-level languages employ general 

schemes when translating a source program into machine code. 

The code produced is usually inefficient with respect to 

both code size and to running time when compared to an 

input/output equivalent hand-written assembly program. 

Algorithms for improving the quality of compiler generated 

code have been developed [2, 6, 12, 27, 36]. However, the 

algorithms are applied separately causing these code 

improvement algorithms to interact creating a phase ordering 

problem. In order to generate very efficient code, a 

compiler may have to apply these algorithms several times. 

The usual approach to compiler intermediate code 

optimization consists of two separate steps. In the first 

step, a compiler removes the inefficiencies in each basic 

block by detecting and eliminating common subexpressions, 

evaluating expressions with constant operands, and by 

deleting useless instructions. These block specific 

optimizations constitute the local code optimization step. 

1 
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In the second step, a compiler increases the window of 

instructions examined for improvement by combining 

statements from many basic blocks. The program optimization 

techniques which combine many basic blocks are called global 

program optimization algorithms. To perform this step of 

the optimization, a compiler requires global information 

about both definitions and uses of program variables. 

Global information gathering is called global data flow 

analysis. There is no single data flow analysis technique 

that can capture all the information that an optimizing 

compiler uses for global code improvement. As a result, a 

compiler performs separate flow analysis for each global 

code optimization problem. 

For instance, in order to eliminate globally redundant 

expressions among basic blocks, a compiler determines the 

expressions available at the entry and exit points of each 

block. If an expression computed in a block, B, is found in 

the pool of available expressions, then a compiler can 

delete the expression from block B. The search for 

available expressions takes time; there is no mechanism to 

avoid useless searches. Repeated scanning of the 

intermediate code increases the running time of optimizing 

compilers. 

A characteristic of code improvement methods based on 

information propagation is that different techniques are 

used to detect redundant statements. For instance, value 

numbers [12] and directed acyclic graphs [2] are employed 
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to implement local code optimization algorithms, while bit 

vectors and equivalence relations are used for global code 

optimization problems. The use of different implementation 

techniques to model a code optimization procedure (feasible 

at both the local and global levels) increases both the size 

and complexity of optimizers. In order to reduce the size 

of optimizing compilers, only a small number of the well 

known code improvement transformations are applied in many 

compilers. 

This study develops an intermediate code optimization 

method for structured program flow graphs using a directed 

graph representation of program statements. A structured 

program flow graph is a program flow graph with the 

following properties. 

1. there is no jump into the middle of a conditional 

structure; 

2. there is no jump into the middle of a loop; 

3. every loop has a unique point outside that loop to 

which control transfers upon loop termination; 

4. there is no overlap of control structures; 

s. every conditional structure has a common join (the 

next statement executed after control leaves a 

conditional structure); and 

6. every backward jump to the beginning of a loop is 

contained in that loop. 

The goals of this study include: 

1. to develop a uniform method for characterjzing 



redundancy and a uniform mechanism for specifying 

the data flow and control flow constraints for the 

various optimization problems; 

2. to develop an optimization procedure which can 

detect and eliminate a number of local and global 

redundancies in a single pass; and 

3. to keep the cost of optimization proportional to 

the actual number of potential redundancies. 

Literature Review 

Basic Block Optimizations 

4 

Aho and Ullman [2] describe an elegant method for 

improving straight line sections of a program based on 

representing the instructions of a block with a directed 

acyclic graph (DAG). The optimizations performed with a DAG 

include common subexpression elimination, dead code 

elimination, scalar propagation, and constant folding [1]. 

The leaf nodes of a DAG represent initial values, while 

interior nodes of a DAG contain the operation symbols and 

identifiers for storing the results of operations. An 

advantage of the DAG method is that block specific 

information used in global data flow analysis problems are 

determined by traversing the DAGs of a block. However, the 

DAG method can improve individual basic block only. 

Cocke and Schwartz [12] present the value number method 

for optimizing a basic block. Their algorithm associates 



value numbers to expressions and variables used within a 

block, such that variables and expressions having the same 

value are assigned a common value number. The data 

structure for value numbering is a hash table of available 

expressions in a block. 

Recursive Descent 

Wulf, et al. [39] describe a method which integrates 

parsing with the detection of feasible optimizations in a 

program. Detection of redundancies is possible during 

parsing because the syntax of the source language, BLISS 

does not allow goto statements. As a result, control 

environments (basic blocks, conditional structures, and 

loops) are well defined. Feasible optimizations such as 

linear code motion (code hoisting and code sinking), common 

subexpressions, and loop invariants are identified and 

marked without eliminating the redundancies. 

5 

Two distinct approaches are used to recognize 

redundancies: (1) a congruent expressions table contains 

equivalence classes of lexically identical expressions which 

compute the same value; and (2) an ordering relation defined 

on basic block statements partitions each block statements 

into three subsets called prologue, epilogue, and postlogue. 

At the join of a conditional control structure, the mutual 

intersection of prologue sets of linear blocks in that 

conditional structure yields hoistable code and the mutual 

intersection of postlogue sets identifies sinkable code. 
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The notable feature of the recursive descent approach 

is that it demonstrates that most of the common code 

optimization procedures can be performed in one pass over an 

intermediate code without examining the entire program. The 

problem with recursive descent is that it cannot be applied 

to programming languages with the goto construction. 

Data Flow Analysis 

Data flow analysis is the most widely used technique 

for eliminating global redundancies in compiler generated 

code. Global program optimization by data flow analysis 

consists of two separate steps: analysis and optimization. 

In the analysis step, a system of data flow equations for 

the type of code optimization problem is solved to obtain 

information reaching the beginning and end of each flow 

graph node. The optimization step uses the information 

obtained from flow analysis to remove redundancies (if any) 

from each flow graph node (basic block). 

For each global optimization problem, the intermediate 

text is scanned twice (once during analysis and once during 

optimization). Since the intermediate code is usually 

maintained in secondary storage, enormous time is spent on 

I/0. An optimization procedure may be applied several times 

in order to discover more redundancies. 

Each data flow analysis procedure has O(N2) complexity, 

where N is the number of nodes in a program flow graph. 

Because the data flow analysis step is the dominant cost, 
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most research on data flow analysis based methods is focused 

on reducing the number of iterations. There are three 

approaches to reducing the number of iterations. 

One iteration reduction scheme uses a data flow 

analysis procedure which converges to a fixed point in only 

a few iterations. Properties such as reducibility [19] and 

topological ordering [18] are used to determine the order in 

which information is propagated. Flow analysis algorithms 

based on interval analysis [5] and the iterative analysis of 

Hecht and Ullman [18] are representative methods. 

Another approach to improving the efficiency of data 

flow analysis procedure is incremental flow analysis [34]. 

Incremental flow analysis avoids complete recalculation of 

data flow sets after each optimization procedure by 

isolating the region of a program affected by an 

optimization. The concept is attractive, but the process is 

complex. Incremental flow analysis is an on-going research 

and the procedure is not understood well enough to be 

included in compilers. Incremental flow analysis increases 

the complexity of an optimizer and also requires more 

storage for data flow analysis bit vectors. 

The third iteration reduction approach is ordering of 

optimization procedures to avoid negative phase ordering 

problems. Phase ordering problems exist because the 

optimization procedures are not completely independent. One 

optimization procedure may create a redundancy eliminated by 

another optimization procedure. By suitable ordering of 



optimization procedures, many redundant computations can be 

eliminated in a single application of a code optimization 

procedure. 

A major problem with data flow analysis based methods 

is that the cost of redundancy detection is dependent on 

program length and number of nodes in a flow graph but not 

on the number of potential redundancies in a program. This 

makes data flow analysis technique unsuitable for 

optimization procedures where loop unrolling is performed, 

as both the number of statements and the number of basic 

blocks increase. 

8 

Another problem with data flow analysis is that it 

assumes every distinct statement is equally likely in each 

basic block. Hence, equal length data flow bit vectors are 

used in each basic block to represent data flow information. 

Basic blocks usually have few statements which means the 

data flow bit vector for a block is usually sparse. 

A third problem is that two sets of optimization 

procedures are implemented with data flow analysis based 

methods, one set of algorithms remove local (intrablock) 

redundancies and the other set of procedures eliminate 

global redundancies. 

Global Value Numbers 

Rosen, Wegman and Zadeck [33] develop a method which 

extends the value number method to eliminate global 

redundancies. The sequence of steps necessary to optimize a 



9 

program using their technique include 

1. convert a program to static single assignment (SSA) 

form; 

2. assign ranks to computations; 

3. move computations backward and forward; 

4. eliminate redundant computations in rank order; 

5. apply question propagation to move computations out 

of a loop; and 

6. reconvert program to original non-SSA form. 

The global value number approach is an improvement over 

data flow analysis in that it applies the same mechanisms 

(movement of computations and question propagation) to 

detect global redundancies. However, the global value 

number method has the following drawbacks: 

1. too many variables are created during SSA 

transformation; 

2. uses too many tables (there is one hash table for 

each flow graph node and a moveable computation 

table for each edge of the directed acyclic graph 

of a flow graph) to hold intermediate code 

statements; 

3. redundant statements with different ranks cannot be 

detected in the same optimization pass; and 

4. the algorithm has a worst case time complexity 

O(N3), where N is the number of nodes in a flow 

graph. 



Program Dependence Graph 

Ferrante, Ottenstein, and Warren developed an 

intermediate program form called program dependence graph 

(PDG) for applying various intermediate code improvement 

procedures to a program [15]. There are four steps in the 

construction of a PDG: 

1. construction of the DAG representation of each 

basic block; 

10 

2. computation of reaching definition information for 

each variable used in a basic block; 

3. linking of each use of a variable with that 

variable's possible definition points. These 

definition-use edges constitute the data dependence 

edges; and 

4. linking of each statement with the predicate(s) 

which control the execution of that statement. 

After constructing a PDG, many compiler optimizations are 

carried out by a graph walk of the relevant sections of a 

program, but only one optimization procedure can be 

performed at a time. 

One advantage of the PDG is that data flow information 

update is performed directly on the dependence graph after 

each optimization procedure. However, the PDG requires more 

space than data flow analysis methods and incurs 

considerable cost when searching for feasible optimizations 

in an intermediate code. Moreover, since the PDG is an 



intermediate form, it cannot be easily integrated into 

compilers employing common intermediate forms. 

Operand Dependence Graph Based Method 

11 

A code optimizer should have two important attributes: 

(1) the time complexity of redundancy elimination should be 

proportional to the number of potentially redundant 

statements in a program; and (2) the optimizer can perform 

several optimization procedures in one pass over an 

intermediate code. These two characteristics, if present in 

a code optimizer will improve the efficiency of a code 

optimizer. The second attribute reduces the number of 

passes over the intermediate code during code optimization 

phase of program compilation. To the best of the author's 

knowledge, the BLISS optimizing compiler [39] is the only 

optimizer that performs most local and global code 

optimizations in one optimization pass. However, the time 

complexity of redundancy detection is not proportional to 

the number of redundant statements. 

The work presented in this dissertation develops code 

optimization technique in which both of these attributes are 

present. A number of approaches are developed and combined 

to produce the desired qualities at a moderate cost. These 

approaches include rigorous control structure analysis, use 

of operand version numbers, definition of a unifying concept 

of partial redundancy, and the representation of the 

intermediate code of a program with a factoring graph called 
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the operand dependence graph. 

Control structure analysis involves the identification 

of loop and non-loop sections of a program, the computation 

of forward reachability, predominance, and post-dominance 

relations, and the assignment of path weights called fork 

width and join width to each node of a program flow graph. 

The predominance relation among flow graph nodes is used to 

define a topological ordering on flow graph nodes such that 

processing the nodes in topological order preserves the 

precedence constraint imposed by control flow. Control 

structure analysis is described in detail in chapter III. 

Program operands (identifiers and constants) are 

assigned version numbers which distinguish instances of 

the same operand. A version number is a nonnegative integer 

assigned to an operand at a reference or at a definition 

point. The version numbers of operands are propagated 

through forward edges (non-looping arcs) of a flow graph in 

a manner similar to reaching definitions, but without 

setting up and solving a system of data flow equations. 

When the nodes of a flow graph are processed in topological 

order, the version number of a program operand is 

monotonically increasing along any forward control flow 

path. Version number related issues are discussed in 

chapter IV. 

The search for redundant statements in an intermediate 

code is confined to optimization regions. An optimization 

region is either a loop with all the loops nested within 



that loop or an acyclic structure preceding or following a 

loop. This restriction is adequate to detect most 

redundancies in a program since most optimizations are 

performed in basic blocks and in program loops. Each 

program region is represented with a directed graph -- the 

operand dependence graph. 
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The operand dependence graph structure exposes 

lexically identical expressions which should be analyzed for 

various forms of redundancy, such as common subexpression 

elimination, code hoisting, and code sinking. A feature of 

operand dependence graph which enhances the detection of 

potential redundancies is the fact that lexically identical 

expressions and operands from different basic blocks 

(whether equivalent in value or not) can be represented with 

the same graph node. In this way, the operand dependence 

graph factors out those statements which may be redundant in 

a program. The operand dependence graph facilitates the 

detection of loop invariant statements and the recognition 

of loop induction variables because the loop statements 

which may be loop optimization candidates are connected with 

graph edges. Chapter VI describes issues related to operand 

dependence graph representation. 

The operand version numbering technique and the operand 

dependence graph representation technique are used to define 

a concept of partial redundancy which includes both 

statements on a common execution path and statements on 

disjoint execution paths. With this unifying concept of 
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partial redundancy, common subexpressions, code hoisting, 

and code sinking candidates are identified with the same 

mechanism, thus avoiding separate search procedures to 

identify candidate statements for each type of optimization 

problem. In chapter VII, individual code optimization 

procedures are discussed and chapter VIII describes a 

technique for removing simple recurrences in a loop. 

The main contributions of this study are: 

1. use of operand version numbers to model variable 

reaching definitions; 

2. use of the path cover concept to check path 

constraints of various code otpimization 

problems; 

3. use of a uniform mechanism to detect common 

subexpressions, hoistable code, and sinkable 

code; and 

4. a method for eliminating simple linear recurrence 

array references from sequentially executed loop. 



CHAPTER II 

INTERMEDIATE CODE FORM 

Introduction 

The operand dependence graph based code optimization 

method can be integrated into a compiler employing common 

intermediate forms such as quadruples, triples, statement 

trees, and/or directed acyclic graphs (DAGs). Because of 

the implementation strategy for an operand dependence 

graph, a program's intermediate code is represented as a 

sequence of distinct statement table (DST) locations. 

A DST is a hash table of distinct intermediate code 

statements in a program. The sequence of DST locations 

specify the intermediate program in sequential execution 

order. 

Operand Rank and Operand Order 

Without defining an order for operands of intemediate 

code operations, the number of distinct intermediate code 

statements in a program may increase when an order is not 

specified for operands of commutative operations. For 

instance "a + b" and "b + a" will be treated as distinct if 

distinctness is based solely on lexical patterns. The 

15 



approach used to avoid entering equivalent statements into 

the DST is to assign a rank to each operand (constant, 

temporary, or declared variable). 

16 

The rank of an operand is a unique number assigned to an 

operand by some ranking rule. A rank assignment rule 

adopted for the operand dependence graph is to assign a 

number which reflects the order in which tokens are entered 

into a symbol table. Operands of commutative intermediate 

code operations are rearranged so that operands are in 

increasing rank order. This operand ordering rule preserves 

the result of numerical computations. A source level 

expression such as a + b + c will be translated into one of 

these equivalent computations (a + b) + c, (b + a) + c, 

c + (a+ b), or c + (b +a). 

Structure of a DST Entry 

An intermediate code statement in the DST consists of 

four fields: 

1. A generalized n-tuple which represents an abstract 

language operation. 

2. An ordered set of dependent operands. 

3. Temporary name generated for that statement if the 

statement is an expression. 

4. Operand dependence graph node for the statement. 

A layout of the fields of an intermediate code statement in 

a DST is shown below. 
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N-TUPLE I D-OPERAND I TN I ODG-NODE 

N-TUPLE: Abstract language operation. 

D-OPERAND: Dependent operands set. 

TN: Temporary name. 

ODG-NODE: Operand dependence graph node. 

An n-tuple (n >= 0) consists of an operator name and a 

list of the n operands on which a specified operator will be 

applied. The use of a generalized n-tuple makes it possible 

to represent operations with more than two operands (such as 

procedure calls) with a single statement. 

The dependent operands field (D-OPERAND) contains the 

set of variables which affects that n-tuple. Let s be an 

n-tuple of the form a, o1 , ... ,On, where a is an operation 

symbol and 01, . . . , On are the n operands for the operation 

a. The algorithm for computing the elements of D-OPERAND 

follows. 

D-OPERAND = m; 

If Oi is a source variable or a temporary, then 

D-OPERAND = D-OPERAND U {Oi} 

The C program fragment below serves as an example to 

illustrate the operand dependence graph based intermediate 

code form. 

float a, b, c, x1, x2, temp; 

if(b * b - 4 * a * c > 0) { 
temp= sqrt(b * b- 4 *a* c); 
x1 (-b +temp) I (2 *a); 
x2 = (-b- temp) I (2 *a); } 
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A listing of the variables and constants in increasing rank 

order is a, b, c, xl, x2, temp, 4, 0, 2. The sequence of 

three address statements corresponding to the fragment is 

sl: tl = b * b 
s2: t2 = 4 * a 
s3: t3 = t2 * c 
s4: t4 tl - t3 
s5: if t4 > 0 go to s7 
s6: go to s23 
s7: tl = b * b 
sa: t2 = 4 * a 
s9: t3 = t2 * c 
slO: t4 = tl - t3 
sll: ts = sqrt t4 
sl2: temp . - ts .-
sl3: t6 = -b 
Sl4: t7 t6 + temp 
sl5: ta = 2 * a 
sl6: t9 = t7 I ta 
sl7: xl . - t9 .-
sl8: t6 = -b 
Sl9: tlO = t6 - temp 
s20: ta = 2 * a 
s21: tll = tlO I ta 
s22: x2 . - tll .-
s23: 

The distinct statement table and the sequence of distinct 

statement table indexes corresponding to the intermediate 

code is depicted in Figure 1. 

Array Indexing Representation 

An array object is represented with two components: a 

base and an indexing vector. Array base is the constant 

component of the expression for calculating an element's 

address, while an indexing vector specifies the stride for 

each dimension of an array. 



N-TUPLE 

o. * b, b 
1. * a, 4 
2. * C, t2 
3. - t1, t3 
4. > t4, 0 goto s7 
5. goto s23 
6. sqrt t4 
7 . : = temp, t5 
8. - b 
9. + temp, t6 
10. * a, 2 
11. 1 t1, t8 
12. : = X1, t9 
13. - t6, temp 
14. I t10, t8 
15. := x2, t11 

D-OPERAND 

{b) 
{a} 
{C, t2} 
{t1, t3} 
{t4} 
{} 
{t4} 
{t5} 
{b) 
{temp, t6} 
{a} 
{t7, t8) 
{t9} 
{t6, temp} 
{t10, t8} 
{t11} 

TN 

t1 
t2 
t3 
t4 

t5 

t6 
t7 
t8 
t9 

tlO 
t11 
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ODG-NODE 

Sequence of intermediate code statements = 0, 1, 2, 3, 4, 5, 
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 8, 13, 10, 14, 15. 

Figure 1. Distinct Statement Table Representation 
of a Program Fragment 

If A is an n-dimensional array declared with dimensions 

d1 , ... , dn, stored in row major order and if A[s1 ] ... [sn] 

is an element specification, where s 1 , ... ,snare subscript 

expressions, then the address of A[s1 ] ... [sn] is given by 

the expression 

addr(A) - (L1 * d2 * ... * dn * w + •.. + Ln * w) (1) 

+ s 1 * d2 * ... * dn * w + •.• + Sn * w (2) 

where addr(A) is the address of the first byte of the 

storage area for elements of A; w is the amount of storage 

required to store one element of A; and L1 , ... , Ln are the 

lower bounds on subscript values for the respective 

dimensions. The base component of A is given by expression 



(1) and the indexing vector for A is the sequence of 

constant factors of terms in expression (2) and is defined 

as 

(d 2 * * dn * w, d3 * ... * dn * w, ... , w). (3) 
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Expression (2) for array element address calculation is a 

vector dot product operation. Thus, (2) can be rewritten as 

(d2 * * dn * w, ... , w) • (s1 , ... , sn) (4) 

To model array indexing operation by means of vector dot 

product, two intermediate code operators are introduced. 

The first operator called INDEX denotes the dot product 

operation and takes as operands an indexing vector and a 

subscript vector. The second operator CREATE-VECTOR 

converts a sequence of subscript expressions for an array 

element into a subscript vector. 

Suppose A and B are arrays stored in row major order. 

A and B are indexing equivalent if A and B have the same 

indexing vector. In a formal sense, two arrays A and B are 

indexing equivalent if 

1. A and B have the same number of dimensions; 

2. Element size of A equals element size of B; 

3. Only the size of their first dimensions may differ. 

Indexing equivalent arrays reference a common indexing 

vector. A unique tag which serves as the name of an 

indexing vector is assigned to each distinct indexing vector 

in a procedure. 
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Application to Loop Optimization 

In procedural languages, array dimensions once specified are 

invariant throughout the life time of a procedure 

invocation. Therefore, the indexing vector component of a 

dot product operation is invariant in a procedure. 

The optimization of a program loop requires multiple 

passes over the body of a loop in order to obtain the 

information necessary for performing loop specific code 

improvements such as loop invariant motion and strength 

reduction of loop induction variables. Since most sources 

of loop code improvements are due to linearizing subscript 

expressions of multi-dimensional arrays, modelling array 

indexing operations with vector dot product exposes most 

loop invariants and induction variables without searching 

loop statements. 

Structured Variable Transformation 

To accommodate structured variables in an operand 

dependence graph, the fields of each structured variable are 

renamed with internal unique names generated by a compiler. 

A source level reference to a structure member in a 

statement is translated to reference the unique internal 

name for that field. An implementation strategy for mapping 

source level field names to internal names is a synonym 

table. Each structured variable has its own synonym table. 

By renaming the members of a structured variable, the scalar 



components of a structure become amenable to data flow 

analysis. 

Summary 
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The intermediate code form for an operand dependence 

graph based program representation consists of a distinct 

statement table for the distinct intermediate code 

statements in a program and a sequence of distinct statement 

table indexes which specifies the intermediate code program. 

Array indexing operation is represented as a dot product 

operation and a renaming transformation is applied to 

structured variables to simplify the handling of structure 

members. 



CHAPTER III 

CONTROL STRUCTURE ANALYSIS 

Introduction 

The optimization of compiler generated code depends 

upon the accurate knowledge of the control structure within 

a program. For a "gotoless" language such as Bliss [39], 

the control structure of a program can be deduced from the 

programming language syntax. When processing a program 

written in a language which permits "goto" statement, 

control flow analysis is necessary to identify the control 

structures of a program. In this section, control structure 

analysis issues relevant to an operand dependence graph 

based code optimization method are discussed. 

Structured Program Flow Graph (SPFG) 

The first step in control flow analysis is the 

construction of a program flow graph from the set of linear 

(basic) blocks of a program's intermediate code. 

Definition 1. A program flow graph is a connected rooted 

directed graph, G = (N, A, r), where N is a finite set of 

basic blocks (also called nodes), A is a subset of N x N, 

and r is the initial basic block (the block where program 
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execution begins). A directed edge (nl, n2) connects two 

nodes nl and n2, if n2 can be executed immediately following 

the execution of the last statement of nl. 

Let n be a node of G = (N, A, r), the immediate 

successors of n, denoted succ[n], is defined as 

{xI (n, x) E A}. Similarly, { y I (y, n) E A} form the 

immediate predecessor set of n, denoted pred[n]. 

Definition 2. A reducible program flow graph is a program 

flow graph G = (N, A, r), such that the backedges of G are 

unique[l9]. 

Definition 3. A structured program flow graph is a 

reducible flow graph in which every loop has a unique loop 

exit. 

Definition 4. A single exit program flow graph is a 

structured program flow graph G = (N, A, r, e), where N, A, 

and r are as defined above, and e is a unique node such that 

there exists a path from every node to e. 

Henceforth in this work, any reference to a flow graph 

implies a single exit structured program flow graph 

(SESPFG). Figure 2 is an example of a SESPFG. 

Dominance and Forward Reachability Relations 

A depth first search procedure as described in [22] is 

applied to a program flow graph to identify its backedges. 

Each node, n of a flow graph is labeled with a unique 

positive number, d i INI, such that the label on n is 

the reverse of the order in which n is last visited during 



25 

depth first search. The unique label, d assigned to a node 

is called the depth first number (DFN) of that node. For 

each node, n, of a SESPFG, G = (N, A, r, e), let DFN[n] 

denote the depth first number of n. 

Figure 2. Single Exit Structured Flow Graph 

Two fundamental properties [19] of reducible flow 

graphs are (1) backedges are unique and (2) if (b, h) is a 

backedge, then DFN[h] i DFN[b]. 

Let B = { (b, h) I DFN[b] ~ DFN[h] } be the set of backedges 

of a program flow graph. 

Definition s. The acyclic program flow graph of a reducible 

flow graph is G' = (N, A- B, r, e). 
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Definition 6. Suppose G = (N, A, r) is a program flow graph 

and suppose further that d and n are any two nodes of G. d 

predominates n if and only if (iff) every path from the 

initial node r to n always includes d. 

Definition 7. If G is a SESPFG, G = (N, A, r, e), then the 

graph R(G) = (N, E, e, r) is a reverse flow graph of G, 

where E = { (x, y) I (y, x) E A ). 

Definition 8. Let n and p be nodes of a PFG, G = (N, A, r, 

e). Node p post-dominates n iff pis a predominator of n in 

R(G). 

If p post-dominates n in G, then whenever control transfers 

to n, control eventually will transfer to p. Post-dominance 

information of a flow graph is used to determine the exit or 

join point of a control structure. 

Both predominance and post-dominance relations can be 

represented with dominance trees. The predominance and 

post-dominance trees of the flow graph in Figure 2 are shown 

in Figure 3. 

Definition 9. Suppose nl and n2 are any two nodes of a PFG, 

G = (N, A, r, e). Node n2 is forward reachable from n1 if 

either: 

1. there is a path which includes n1 in the acyclic flow 

graph G' of G, from the initial node r to n2; or 

2. nl is inside a while-do control structure and n2 is 

forward reachable (by condition 1) from the exJt node of 

the while-do loop containing n1. 



(a) (b) 

Figure 3. (a) Predominance Tree 
(b) Post-dominance Tree 
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Forward reachability as defined is a reflexive, transitive, 

and antisymmetric relation. Thus, forward reachability is a 

partial order. If n2 is forward reachable from nl, then nl 

and n2 lie on some common execution path. 

Suppose nl and n2 are distinct nodes of a structured 

program flow graph G = (N, A, r, e), then nl and n2 are 

disjoint if nl is not forward reachable from n2 and n2 is 

not forward reachable from nl. 

Ordering of Nodes 

Code optimization based on the operand dependence graph 

technique depends on the identification of a processing 

order for the nodes of a program flow graph. A suitable 

node processing order must preserve any precedence 

constraint imposed by control flow. The node processing 

order developed for the operand dependence graph is called 



predominated-inverse-post-dominated (PIPD) order. 

Let T(G) be the predominator tree of a program flow 

graph, G = (N, A, r, e), such that the children of each 

parent node are ordered from left to right by increasing 

depth first number. The PIPD ordering of flow graph nodes 

is the preorder traversal listing of T(G). 

Let nl and n2 be distinct nodes of a flow graph in 

which the nodes are listed in a PIPD order. Some 

characteristics of PIPD order are: 

1. If nl predominates n2, then nl precedes n2 in a PIPD 

order listing of nodes. 

2. If there is a forward path from nl to n2, then nl 

precedes n2 in a PIPD order listing of nodes. 
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3. The exit node, e of a single exit flow graph is the last 

node in a PIPD order listing of nodes. 

4. The initial node r of a flow graph is the first node in a 

PIPD order listing of nodes. 

5. a node and its predominees are contiguous in a 

PIPD order listing of nodes. 

6. If n2 post-dominates nl, then n2 succeeds nl in a 

PIPD order listing of nodes. 

The first four properties are due to the antisymmetric and 

transitive properties of the predominance and forward 

reachability relations. The fifth characteristic is a 

property of preorder traversal of trees. In a preorder tree 

traversal, the root of a subtree is visited first, then the 

children of that subtree are visited next in a left to right 
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order. The sixth property is due to the preorder traversal 

of predominance tree and the ordering of children nodes in a 

predominance tree. 

Definition 10. Suppose n is a node of a program flow graph. 

The index (position) of n in a PIPD order listing of nodes 

is called the linear order number (LON) of n. 

Assuming an indexing origin of one, if each node in a 

PIPD order listing of nodes is replaced with its LON, the 

resulting list is a sequence of first INI positive integers 

in increasing order. Thus, PIPD order is a total (linear) 

ordering. From now on, any reference to linear (total) 

order in the text refers to PIPD order. 

Loop Identification 

Linear ordering of nodes simplifies the task of finding loop 

sections of a structured program flow graph. In a 

structured program flow graph, a loop has a unique entry 

(header) node. A loop header node is a loop node that 

predominates every other node of a loop. Since a node and 

its predominees are contiguous in a linear order listing of 

nodes, the flow graph nodes constituting the body of a loop 

are contiguous. 

Suppose B(G) is the set of backedges of a reducible 

flow graph G. Suppose further that (b, h) is an element of 

B(G). Define [h] = {x I (x,h) is in B(G)}. The last 

element of [h] is the element with the largest linear order 

number. The immediate post-dominator of the last element of 
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[h] is the exit node of the loop whose header is h. 

Given a back edge (b, h) and [h] of a structured program 

flow graph G, let the last element of [h] be g. Suppose the 

LONs of h and g are S and T respectively. The loop region 

whose header node is h is the set { n I S i LON[n] < T ), 

where LON[n] represents the linear order number of n. 

The nodes in [h] are called looping nodes. 

Each node of a structured program flow graph is assigned 

a region tag subject to the following constraints: 

1. The region tag of a node that does not belong to any loop 

is zero; 

2. In a nested loop, the nodes which constitute the body of 

an inner loop have the same region tag; and each inner 

loop has a distinct region tag; 

3. If a loop has no inner loops, the header node and the 

nodes belonging to that loop have the same region tag; 

4. The region tags of nodes in a parent loop are less than 

the region tag of any loop contained in that parent. 

Flow Graph Transformation 

After program loops have been identified, any loop 

whose program flow subgraph has the structure shown in 

Figure 4(a) is transformed to the subgraph of Figure 4(b). 

This transformation converts a while-do loop into a do-while 

loop without changing a program's semantics. 

The while-do loop to do-while loop conversion both 

increases the number of movable loop invariant statements 



and ensures that moved loop invariants are executed only 

when a loop's body is executed. Following loop 

transformation, the predominance and post-dominance trees 

are updated to include the new nodes and edges added to a 

flow graph. A new PIPD ordering is obtained from the 

modified predominance tree. 

(a) while-do loop 

(b) equivalent do-while 

Figure 4. While-do Loop to Do-while Loop Conversion 

Node Classification 
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To keep track of transitions from one control 

environment to another control environment, flow graph nodes 

are typed. Five types of nodes are distinguished: join of a 

conditional control structure, loop header, loop exit, end 

of loop marker, and ordinary node. A node is classified a 



32 

join node, if 

1. it has at least two immediate predecessors in the DAG of 

a flow graph; 

2. it is not a loop header; 

3. it is not a loop exit node; and 

4. the immediate predecessors are disjoint. 

A flow graph node is a loop header node if it is a 

destination of a backedge, and a node is a loop exit if it 

is the unique node to which control transfers upon loop 

termination. An end of loop marker node is the first non­

loop node following the last node of a program loop in a 

PIPD ordering of nodes. If a node is both a loop exit and 

an end of loop marker, then that node is classified as end 

of loop marker. If a node is not a join, loop header, end 

of loop marker, or loop exit, then that node is an ordinary 

node. 

During the processing of intermediate code statements, 

special operations are initiated when certain node types are 

encountered. For instance, when a join node is about to be 

processed, any potentially hoistable or sinkable code in the 

preceding control environment is analyzed for forward code 

motion or backward code motion optimization. If the next 

flow graph node to be processed is an end of loop marker, 

loop specific optimizations such as loop invariant statement 

detection, loop invariant code motion, and loop induction 

variable simplification are performed before continuing with 

statement processing. By assigning type tags to flow graph 



nodes, the necessary code improvement operations can be 

initiated at a control environment boundary. 

Path Covers 
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Code optimization problems can be grouped into two 

categories based on their path constraints. One class of 

code optimization problems requires the information of 

interest to be present along all paths leading to a point. 

The second class of problems require that the information of 

interest occur in at least one path to a point. Forward 

reachability information of a flow graph node is sufficient 

to check the path constraint of class two problems. In this 

section, the notion of a path cover is introduced as 

an approach for checking all-path data flow constraint 

directly. 

Definition 11. Let {n1, ... , nk} (k > 1) be a subset of the 

nodes of a flow graph. Suppose m is a flow graph node such 

that there exits a forward path from each node in 

{n1, ... , nk} tom. {n1, ... , nk} is a path cover form, if 

every path from the initial node of a flow graph to m must 

include a node from {n1, ... , nk}. 

This type of path cover is called a node path cover problem. 

When k = 1, {n1} is a path cover for m if n1 = m or n1 is a 

predominator of m. 

In Figure 2 (page 25), the subset of nodes which are path 

covers for node B9 are {B1}, {B2, B8}, {B3, B7, B8}, {B6, 

B7, B8}, {B4, B5, B7, B8}, and {B9}. 
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Definition 12. Let f be a fork node of a program flow graph 

DAG and let m be the immediate post-dominator of f. 

Define SCOPE[f, m] = { n I f predominates nand n != m ). 

The set SCOPE[f, m] specifies the scope of a conditional 

control structure whose header node and join node are f and 

m, respectively. The definition of SCOPE[f, m] excludes the 

join node m from SCOPE[f, m]. Every node in SCOPE[f, m] 

with the exception of f is control dependent on f. That 

means the execution of any node in SCOPE[f, m] - {f} depends 

on the truth value of the predicate at f. Based on this 

definition of a conditional control environment, the subsets 

{B3, B4, BS}, {B2, B3, B4, BS, B6, B7}, and {B1, B2, B3, B4, 

BS, B6, B7, B8} are control environments of the flow graph 

in Figure 2. 

Definition 13. Suppose {n1, ... , nk} is a subset of nodes 

of a program flow graph. A common predominator of 

{n1, ... , nk} is a node which predominates every node in 

that set. Suppose f is a common predominator of {n1, ... , 

nk}. Node f is the least common predominator of {n1, . . . , 
nk} if every common predominator of the nodes in the set 

also predominates f. 

Definition 14. Suppose {n1, ... , nk} is a subset of nodes 

of a program flow graph. A common post-dominator of 

{n1, . . . , 
the set. 

nk} is any node which post-dominates every node in 

Suppose j is a common post-dominator of {n1, ..• , 

nk}. Node j is the least common post-dominator of the nodes 

in the set if every post-dominator of {n1, ... , nk} 
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post-dominates j. 

Definition 15. Suppose {n1, ... , nk} is a subset of the 

nodes belonging to some conditional control structure c. 

Let f be the least common predominator of {n1, ... , nk}. 

Suppose the immediate post-dominator of f is m. The set 

{n1, ... , nk} is a conditional environment cover for the 

conditional control structure C if every path from f to m 

must include a node from {n1, ... , nk). 

The concept of a conditional control environment cover 

provides a method for checking node path covers. To reduce 

the amount of computation involved in node path cover 

analysis, the lemmas below are used. 

Lemma 1. Suppose {n1, ... , nk} is a subset of the nodes of 

a flow graph. Let m be a flow graph node such that there 

exists a forward path from each node in {n1, ... , nk} tom. 

Let the least common predominator of {n1, ... , nk} be f. If 

{n1, ..• , nk} is a path cover form, then f predominates m. 

Proof. Node f is a path cover for each node in {n1, 

... , nk). Iff does not predominate m, then there exists at 

least one forward path from the initial node of a flow graph 

tom which does not pass through f. Therefore {n1, .•. , nk} 

is not a path cover form. Hence, if {n1, ... , nk} is a path 

cover for m, then the least common predominator of the nodes 

in the covering set predominates m. 

Lemma 2. Suppose {n1, ... , nk} is a subset of the nodes of 

a flow graph. Let m be some flow graph node for which m is 

D 
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forward reachable from each node in the subset to 

m. Let the least common post-dominator of {n1, ... , nk} be 

j. If {n1, ... , nk} is a path cover form, then j 

predominates m. 

Proof. Every path from each node of {n1, ... , nk} tom 

must pass through j because j is a common join of paths 

originating from the nodes in the subset. If {n1, ... , nk} 

is a path cover for m, then j is also a path cover for m. 

Suppose {n1, ... , nk} is not a path cover form, then there 

exists a forward path from the initial node of a flow graph 

to m which does not pass through any node in the subset. 

Therefore, if {n1, ... , nk} is a path cover form, the least 

common post-dominator of {n1, •.. , nk} is a predominator of 

m. D 

By lemmas 1 and 2, {B4, BS} is not a path cover for 

node B9 (Figure 2) because B9 can be reached from B8 and B7 

without passing through B4 orBS. Notice that {B3}, {B4, 

BS}, and {B3, B4, BS} are path covers for B6. The subset 

{B3, B4, B5} is a union of the covering sets {B3} and {B4, 

BS}. This example illustrates that it is not necessary to 

examine every node in a potential path cover set in order to 

deduce whether a subset of nodes is a path cover for some 

node or control environment. Every input set to a path 

cover problem has an equivalent subset of essential nodes 

called a minimal set. 

Definition 16. Let {n1, ... , nk} be a subset of the nodes 

of a flow graph. A minimal set for {n1, ... , nk} is a 
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subset {b1, ... , bs} of {n1, ... , nk} such that ifni 

(1 i_i i k) 8 {b1, ... , bs}, then {b1, ... , bs} does not 

contain any node ni predominates or ni post-dominates. 

Lemma 3. Suppose {b1, ... , bs} is a minimal set for {n1, 

... , nk} . The subset of nodes {b1, . . . , bs} is a control 

environment cover iff {n1, ... , nk} is a control environment 

cover. 

Proof. Obvious from the definition of a minimal set. 

Lemmas 1 and 2 state necessary conditions for a set of nodes 

to cover every path to a given node, while lemma 3 states 

that the path cover problem can be decided with a smaller 

set containing non-redundant elements. 

Path Cover Analysis 

The notion of a path cover has been defined without an 

effective procedure for deciding whether a set of nodes is 

either a path cover for a given node or a control 

environment. In order to specify a precise method for 

determining path covers, the concept of fork-width and 

join-width of a node are introduced. 

D 

Definition 17. Let f be a fork node of the DAG of a program 

flow graph and let d be the immediate post-dominator of f. 

The path-width of the conditional structure SCOPE[f, d] is 

the number of acyclic paths from f to d. 

McCabe[25] states that the number of independent paths 

(cyclomatic complexity) of a structured program is the 

number of predicates plus one. In a structured program flow 
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graph, a conditional structure induces a subflow graph on a 

program flow graph. If McCabe's cyclomatic complexity 

measure is applied to a control structure with loop 

backedges removed (DAG of control structure), then the 

cyclomatic complexity of that control structure is equal to 

the path-width of that control structure. The path-width of 

a control structure gives the number of alternate paths in 

that control structure. 

Definition 18. Let f be a fork node in the DAG of a flow 

graph and let j be the immediate post-dominator of f. The 

fork-width of f is a positive number, o with the following 

constraint: 

1. there exist o nodes predominated by f; 

2. the o nodes form a minimal set for the conditional 

environment SCOPE[f, j]; and 

3. every path from f to j must include one of the o nodes. 

Definition 19. Suppose j is a node with two or more 

immediate predecessors in a flow graph DAG and d is the 

immediate predominator of j. The join-width of j is a 

positive integer o, such that 

1. there exist o nodes predominated by d; 

2. the o nodes form a minimal set for the conditional 

environment SCOPE[d, j]; and 

3. every path from d to j must include one of the o nodes; 

The value o and the value o are related to the path-width of 

the conditional environment SCOPE[f, j] or SCOPE[d, j] as 

the case may be. This fact is stated in the next lemma. 



Lemma 4. Suppose f is a fork node in the DAG of a program 

flow graph. The fork-width of f < path-width of the 

conditional structure originating at f. 
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Proof. Let o be the fork-width of node f. o is the 

cardinality of a minimal set of the control structure whose 

head is f. 

o > 1 because the path-width of a fork node > 1. Suppose 

o > 1. Then the minimal set contains mutually disjoint 

nodes. Since fork nodes create disjointedness, there are at 

most q nodes in the minimal set, where q is the number of 

fork legs in the control structure headed by f. Each fork 

leg is an alternate path to the join of a conditional 

structure. Hence, o ~ q ~ the number of acyclic paths from 

f to the join of f. Therefore, the fork-width of f < the 

path-width of the control structure originating at f. o 

The fork-width (join-width) of a fork node (join node) 

is not unique. To ensure that a deterministic value is 

calculated for the parameters o and 5, the following 

computation rule is adopted: 

1. The fork-width and join-width of a nested control 

structure should be evaluated in deepest to shallowest 

order; 

2. Fork-width of a node with a unique immediate successor in 

the DAG of a flow graph is one; 

3. Join-width of a node with a unique immediate predecessor 

in the DAG of a flow graph is one; 

4. Let f be a fork node of a flow graph DAG and let j be the 



immediate post-dominator of f. Suppose FWD-SUCC[f, 

pred[j]] denotes 

{n I n E pred[j] and (f predominates nor n E 

succ[f])). 

The fork-width of f is the sum of the join-widths of 

the nodes in FWD-SUCC[f; pred[j]]. 

5. Let j be a node with two or more immediate predecessors 

in a flow graph DAG. The join-width of j is the sum of 

the join-widths of the nodes in pred[j]. 

6. The join-width of the initial node of a flow graph is 

zero. 

7. The fork-width of the exit node of a single exit flow 

graph is zero. 
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The result of applying this computation rule to the flow 

graph in Figure 2 is depicted in Table I. Before computing 

the fork-widths and join-widths of nodes, while-do 

control structures must be transformed to do-while control 

structures. 



TABLE I 

Fork-width and Join-width of the 
Nodes in a Program Flow Graph 

Node Fork-width Join-width 

B1 4 0 
B2 3 1 
B3 2 1 
B4 1 1 
BS 1 1 
B6 1 2 
B7 1 1 
B8 1 1 
B9 0 4 
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Let FORK-WIDTH[n] and JOIN-WIDTH[n] represent the fork-

width and join-width of node n, respectively. Figure 5 is 

an algorithm to determine if a given set of nodes of some 

conditional control structure is a path cover for that 

conditional control structure and the algorithm in Figure 6 

determines whether a subset of nodes is a path cover for 

some node m. 
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ALGORITHM 1: Control Environment Cover Algorithm. 
Input. A minimal set, S containing a subset of the nodes of 

a program flow graph; 
The arrays FORK-WIDTH and JOIN-WIDTH holding the 
fork-widths and join-widths, respectively of a flow 
graph; 
The DAG of a program flow graph; 
Predominance and Post-dominance relations of a 
program flow graph. 

output. TRUE if S is a conditional environment cover; 
FALSE otherwise. 

Method. First partition S into subsets corresponding to 
subconditional structures(steps 1 and 2). Then 
check if each subset of S is a conditional 
environment cover (step 3). Finally, check if the 
subconditional structures combined is a cover for 
the conditional environment S describes. 

1. PartitionS into distinct subsets c 1 , ... , Cz, 
such that members of each subset have the same immediate 
post-dominator. 

2. For each C· compute hi as follows: 
If lcit = 1, then hi := the element of c 1 ; 
Else 

hi := least common predominator of nodes in Ci; 
end for 

If z > 1, then begin 
F := least common predominator of {h1 , 
J := immediate post-dominator of F; 
end 

Else 

• • • I 

F := h1 ; J := immediate post-dominator of h1 ; 
end if 
PATH-COVER := TRUE; 

3. For each ci do 
If lcil > 1, then begin 

PW := 0; 
For each n in Ci do 

if n is a fork node of flow graph 
PW := PW + FORK-WIDTH[n]; 

else PW := PW + JOIN-WIDTH[n]; 
end for 
if PW != FORK-WIDTH[hi], then begin 

PATH-COVER := FALSE; 
exit loop; 

end 
end 

DAG, then 
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Else begin 
let d be the immediate post-dominator of hi; 
if d != J, then 

end 
end for 

if FORK-WIDTH[hi] != JOIN-WIDTH[d], then begin 
PATH-COVER := FALSE; 
exit loop; 

end 

4. if PATH-COVER = TRUE, then begin 
if z > 1, then begin 

SUCC := U FWD-SUCC[hi; pred[J]] 
i = 1, ... , z 

if FWD-SUCC[F; pred[J]] != SUCC, then 
PATH-COVER := FALSE; 

end 
end 

Figure 5. Conditional Control Environment 
Cover Checking Algorithm 

ALGORITHM 2. Node Path Cover Algorithm. 
Input. Same as Algorithm 1. 
Output. Same as Algorithm 1. 
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Method. Combines Algorithm 1 and lemmas 1 and 2. 

PATH-COVER := FALSE; 
if k = 1, then begin 

if (n1 = m) or (n1 predominates m), then 
PATH-COVER := TRUE; 

end 

else begin 
perform steps 1 and 2 of Figure 5; 
if F does not predominate m or 

J does not predominate m, then 
PATH-COVER := FALSE; 

else perform steps 3 and 4 of Figure 5; 
end 

Figure 6. Node Path Cover Analysis 
Algorithm 



As an example of path cover analysis, Figures 5 and 

6 will be applied to determine whether {B4, B5, B7} is a 

conditional control environment cover and a path cover for 

node B9 with respect to the flow graph in Figure 2. First 

{B4, B5, B7} is subjected to conditional environment cover 

analysis. The values of various variables at the end of 

each step of Figure 5 are shown below. 

Step 1 : 
C1 = {B4, B5}; hl = B3; 
C2 {B7}; h2 = B7; 

Step 2: 
F = B2; J = B9; 
PATH-COVER = TRUE; 

Step 3: 
for C1 PW = FORK-WIDTH[B4] + JOIN-WIDTH[B5] 

= 2 = FORK-WIDTH[h1 = B3] 

Step 4: 
pred[J = B9] = {B6, B7, B8} 
SUCC = FWD-SUCC[hl = B3; pred[J = B9]] 

U FWD-SUCC[h2 = B7; pred[J = B9]] 
= {B6} U {B7} = {B6, B7} 

FWD-SUCC[F = B2; pred[J = B9]] = {B6, B7} 
FWD-SUCC[F; pred[J]] = SUCC 
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Since the value of PATH-COVER is TRUE at the end of step 4, 

{B4, B5, B7} is a path cover for the conditional control 

environment enclosing {B4, B5, B7). 

To decide if {B4, B5, B7} is a path cover for B9, 

Figure 6 is used. After performing steps 1 and 2 of Figure 

5, the statement PATH-COVER := FALSE in Figure 6 is executed 

next. At this statement, the value FALSE is assigned to 

PATH-COVER because lemmas 1 and 2 are not satisfied. Hence 

{B4, BS, B7} is not a path cover for B9. 
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Path Analysis and Code Optimization 

The control flow constraints of some code optimization 

problems can be determined by using either a conditional 

environment or a node path cover test procedure. In this 

subsection, the path constraints of common code optimization 

problems are formulated as path cover problems. 

Common Subexpression Elimination 

Suppose E is an expression such as x + y at some 

program point, q. The instance of E at q is redundant if 

( 1 ) X + y always is computed before control transfers to 

point q; and ( 2 ) no statements between the previous 

evaluations of x + y and q has a side effect on either x or 

y. Suppose p1, ... , pk are the most recent program points 

with previous instances of expression E reaching point q, 

then condition (1) is satisfied if {p1, .•. , pk} is a node 

path cover for the point q. 

Code Hoisting 

Suppose E is an expression evaluated in some disjoint blocks 

{B1, ... , Bk} of a conditional control structure, C. Let F 

be the fork node where the conditional structure C 

originates. E can be factored out of {B1, ... , Bk} and 

placed in the fork node, F if (1) every path originating 

from F must include a node from {B1, ... , Bk}; and (2) the 

instances of E in {B1, ... , Bk} use the same value of the 



source operands. The first condition is a conditional 

control environment path cover problem. 

Code Sinking 

Let {B1, ... , Bk} be a set of disjoint nodes of a 

conditional structure, c. Suppose there is an instance of 

some assignment statementS in each of B1, ... , Bk. Let m 

be the merge point of the conditional structure. The 

statementS can be factored out of {B1, ... , Bk} 
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if (1) every path from the immediate predominator of m tom 

must pass through a block in {B1, ... , Bk}; 

(2) the variable assigned to in statement S is not 

referenced in any statement following S in blocks 

B1, ... , Bk; (3) no statement in a block which succeeds a Bi 

(1 i i < k) in the conditional structure containing 

{B1, ..• , Bk} references the variable assigned to inS; and 

(4) the source operands of S are not modified by statements 

followingS in blocks B1, ... , Bk. 

The first condition is satisfied if {B1, ... , Bk} is a path 

cover for the conditional environment enclosing 

{B1, . . . , Bk). 

Loop Invariant Code Motion 

Let G = (N, A, r, e) be a flow graph in which any while-do 

control structure has been transformed to a do-while control 

structure. Suppose E is an expression whose source operands 

are invariant in some program loop, L. Let p be the point 
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where E is located in L and suppose the exit gates of L are 

{B1, ... , Bk; k ~ 1}. E can be moved out of L if pis a 

common predominator of {B1, ... , Bk}. 

Path Analysis Information Representation 

The path analysis questions prevalent in an operand 

dependence graph based code improvement system are: 

Q1. does node n1 predominate n2? 

Q2. Does node n1 post-dominate node n2? 

Q3. Is node n1 forward reachable from node n2? 

Q4. Are nodes n1 and n2 disjoint? 

QS. Is the subset {n1, ... , nk} of flow graph nodes a path 

cover some node m? 

Q6. Is the subset {n1, ... , nk} of nodes a path cover for 

control environment described by {n1, ... , nk}? 

Q7. What is the least common predominator of the subset 

{n1, ... , nk} of node? 

Q8. What is the least common post-dominator of the subset 

{n1, ... , nk} of nodes? 

There are a number of data structures which are 

suitable representations for these path problems. For 

instance, dominance trees and two dimensional tables can be 

used to answer predominance and post-dominance related 

questions. The search time for a dominance tree 

representation is of logarithmic order, while the search 

time for a two dimensional table implementation is 0(1). 

However, a two dimensional table incurs a quadratic space 
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complexity. Both search time efficiency and storage space 

efficiency must be considered in selecting a data structure. 

Each node of a flow graph has an associated path record 

which consists of the following fields: 

1. linear order number of node; 

2. post dominance number of node; 

3. set of predominees of node; 

4. set of post-dominees of node; 

5. fork-width of node; 

6. join-width of node; 

7. set of forward reachable node; 

8. immediate predecessors of node; 

9. immediate successors of node. 

To reduce the storage required for the set type fields of 

path record, the properties of predominance and post­

dominance relations are exploited. 

Let POST-TREE[G] represent the post-dominance tree of a 

flow graph, G = (N, A, r, e). Suppose the children of a 

non-leaf node in POST-TREE[G] are ordered from left to right 

by decreasing linear order number. A preorder listing of 

POST-TREE[G] is the reverse sequence of the preorder 

listing of the predominance tree of G. The position (index) 

of a node in a preorder listing of POST-TREE[G] is called 

the post dominance number (PDN) of that node. 

Suppose the linear order number of some node n is x, then 

the post dominance number of n is INI - x + 1. 
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In a preorder tree traversal, the root of a subtree and 

the descendants of that root are contiguous. Hence, when 

node names either are replaced by LONs in a preorder 

traversal of predominance tree or are replaced by PDNs 

in a preorder traversal of a post-dominance tree, the root 

of that subtree and the descendants of that root form a 

finite sequence of consecutive positive integers. 

Therefore, an ordered pair of positive integers is 

sufficient to specify the subset of predominees 

(post-dominees) of a node. 

Suppose n is a node of a flow graph. The subset of 

nodes n predominates is specified as [x, y], where xis the 

LON of n and y is the LON of the last descendant of n in the 

preorder listing of the predominance subtree rooted at n. 

[X, Y] = { t I Xi t i y ). 

Similarly, the subset of nodes n post-dominates is specified 

as [u, v], where u is the PDN of nand vis the PDN of the 

last descendant of n in the preorder listing of the 

post-dominance subtree rooted at. 

Suppose n is a flow graph node whose predominance 

interval is [x, y]. Let m be some flow graph node whose LON 

is q. n predominates m if 

X < q i y. 

The same relationship holds if x, y, and q are post­

dominance numbers and [x, y] represents post-dominance 

interval of n. The use of intervals requires two 

comparisons to determine if n predominates (post-dominates) 



m and storage for 2INI interval numbers. 

Forward Reachability Set Representation 

The question "is the node nl forward reachable from 

node n2?" is the most frequently asked question in an 

operand dependence graph based code improvement technique. 

Unfortunately forward reachability set of every flow graph 

node may not be represented with a single ordered pair of 

LONs. The reason is because "if-then-else" conditional 

structure introduce disjoint true and false branches. 

Figure 7 illustrates how conditional control structures 

affect the contiguity of forward reachability sets. 
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In Figure 7, nodes Bland B2 corresponds to if 

statements with explicit then and else parts, while node B6 

corresponds to an if statement with then part only. Notice 

that for the if statement with no else part the forward 

reachability of the successors of B6 are contiguous. On the 

otherhand, the forward reachability sets of the successors 

of B2 are not contiguous. Also, there are two break points 

in the forward reachability set of B3. This is due to 

nesting an if-then-else statement within another 

if-then-else statement. 
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Node Processing Order = Bl B2 B3 B4 B5 B6 B7 B8 B9 

Node Forward Reachability Sets 

Bl Bl B2 B3 B4 B5 B6 B7 B8 B9 
B2 B2 B3 B4 B5 B9 
B3 B3 B5 B9 
B4 B4 B5 B9 
B5 BS B9 
B6 B6 B7 B8 B9 
B7 B7 B8 B9 
B8 B8 B9 
B9 B9 

Figure 7. Flow Graph and Forward Reachability Sets 

If there are x ~ 0 break points in a node's forward 

reachability set, then x + 1 ordered pairs of LONs are 

required to specify that node's forward reachability set. 

For example, the forward reachability set of B3 is { [3, 3], 

[5, 5], [9, 9] }. Determining if a node is forward 

reachable from B3 requires three LON interval searches. To 

provide quick response to forward reachability question a 

hybrid representation scheme is proposed. If a node's 



forward reachability set is contiguous, then an ordered 

pair of LONs should be used to specify that node's forward 

reachability set. If a break point exists in the forward 

reachability set of a node, then a bit vector of INI bits 

(one bit per node) should be used to specify that node's 

forward reachability set. 
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Suppose a program has no if-then-else or case 

conditional structure, the forward reachability set of every 

basic block is contiguous. For such a program, there is no 

need to perform either code hoisting or code sinking 

optimization since there are no parallel blocks. 

Summary 

Control structure analysis is the processing of a 

program flow graph to derive structure information about a 

flow graph. The information extracted from a flow graph 

include pre-dominance, post-dominance, and forward 

reachability relations between nodes of a flow graph. 

Predominance and post-dominance relations information are 

used to (1) define a topological order on nodes and to 

identify the extent of control structures. 

The concept of a path cover for a control structure is 

introduced to unify "all-path" code improvement problems. 

Path cover analysis is implemented by assigning path weights 

called fork-width and join-width to flow graph nodes. 



CHAPTER IV 

VARIABLE DEFINITION ANALYSIS 

Introduction 

An assignment of a value to a variable invalidates 

computations performed with previous values of that variable 

along control flow paths leading to a new definition point. 

The association of each variable referencing statement with 

the set of statements which could define the value of that 

variable at a use point has been implemented using use­

definition chains and definition-use chains[l]. 

In order to construct the use-definition chains or 

definition-use chains, reaching definitions data flow 

analysis system of equations is solved. The use of reaching 

definition information to detect feasible global code 

optimizations induces additional processing after applying 

an optimization procedure. Post optimization processing 

includes the recomputation of reaching definitions following 

any optimization procedure which moves code or eliminates 

statements. The code optimization technique developed in 

this work, confines redundant statement detection to program 

regions. Since inter-region redundancies are not removed, 
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computations outside a region do not affect the detection of 

redundant code within that region. 

This chapter describes the method developed to handle 

variable definition and variable reference analysis in an 

operand dependence graph based code optimization technique. 

The method is based on the fact that a definition of a 

variable creates a new version (instance) of that variable. 

Instead of linking a variable's definition point with the 

statements which may reference that value, a unique number 

called a version number is associated with a definition 

instance. 

Operand Version Numbering 

Before processing the initial node of a program flow 

graph, the version number of every variable and constant is 

initialized to zero. Let v be any program variable and let 

VN[v] denote the current version number of v. Suppose S is 

a statement of the form v := exp (exp is some expression). 

After S is processed, VN[v] is incremented by one. Any 

statement T for which there exists a forward path from S to 

T but before another definition statement for v can 

reference the version of v created at S. 

Suppose B is a basic block (flow graph node) and 

suppose v is a variable. Let RVNTOP[v,B] denote the subset 

of versions of v which can reach the top of B via forward 

edges. The top of B means the point preceding the first 

statement in block B. A definition of v in some block P can 
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reach the top of another block B if 

1. B is forward reachable from P; 

2. that definition of v in P is the last definition of 

v in block P; 

3. there are no definitions of v in any block between 

P and B for which there exists a forward path to B. 

A version number marking the definition of the variable 

v in some block P can reach the top of another block B if 

that definition satisfies conditions (1), (2), and (3). If 

v is referenced in B before being defined, then the value of 

v prior to any definition of v in B is one of the 

definitions of v represented by the reaching versions set 

RVNTOP[v,B]. If vis assigned a value in B before any 

statement which references v in B, then the value of v at 

any point in B is the definition of v closest to that point. 

The statements in a block may change the value of a 

subset of a program's variables when that block is executed. 

To describe the effect of a block on the set of variables in 

a program, an ordered triple of version numbers called block 

mutation record (BMR) is maintained for each variable. The 

first component of BMR is called the initial block version 

history (IBVH); the second member of BMR is designated entry 

block version number (EBVN); and the third component is 

called block exit version number (BEVN). The initial block 

version history of v is a representative for the instances 

of v which initially reaches the top of a block and is 

defined as the largest version number in the set RVNTOP[v,B] 



(for some block B). The entry block version number is the 

current version number of v at the top of B. 

The block exit version number of v is the current version 

number of v at any point in block B. 
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Let BMR[v,B] represent the block mutation record of the 

variable v in block B. Suppose BMR[v,B] = (x, y, z). If v 

is not defined in B, then y = z at every point in B. On the 

otherhand, if v is assigned value in B, then z > y following 

the first statement which defines v because VN[v] is 

incremented each time a value is assigned to v. Therefore, 

the relation z ~ y must be true for each variable at every 

point in a block. 

At the top of B, the value of x is the highest version 

number in the reaching versions set RVNTOP[v,B]. Since xis 

a version number, x ~ y at the top of B. Hence, initially 

the relation 

X ~ y ~ Z 

holds. If v is defined in B, then after the definition 

statement the version number of v is incremented and x and z 

are set to the new version number for v. Thus, if v 

receives a new value in a block, then at the end of that 

block, the relation 

y < X = Z 

must be true. 

By examining the version numbers of a variable's BMR at 

the end of a block, it is possible to tell whether a 

variable is invariant in that block. The strength of the 
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version number concept is that it is oblivious to the actual 

program statements which alter the values of variables. The 

expression z - y gives the number of times a variable is 

defined in a basic block. 

Operand Version Propagation 

Suppose v is a variable and S is a statement which 

references the value of v in an operation. The value of v 

used in statement S is one of the definitions of v which 

could reach the program point containing s. Which instance 

of v is used in S depends on the execution path taken to 

reach S. To compute the definitions reaching each node of a 

program flow graph, definitions reaching both the top and 

bottom of a node are required. With the version number 

approach, the definitions reaching the end of a node is 

determined from the values of the initial block version 

history and block exit version number components of 

variables block mutation records. Suppose B is a basic 

block whose block mutation record of some variable v at the 

end of B is (x, y, z). The components of the block mutation 

record for B will satisfy one of the conditions 

X ~ y ~ Z (Rl) 

y < X = Z (R2). 

If condition (Rl) is true, then the definitions of v 

reaching the end of B is the same as the definitions of v 

reaching the top of B. If condition (R2) is satisfied, then 

the definition of v reaching the end of B is the last 
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definition of v in B. 

Let RVNTOP[v,B] and RVNBOT[v,B] denote the versions of 

v reaching the top and end of B, respectively. Suppose 

pred'[B] is the set of immediate predecessors of Bin the 

DAG of a program flow graph, then the equation 

RVNTOP[v,B] = U RVNBOT[v,P] (R3) 
P e; pred ' [ B] 

computes the versions of v reaching the top of B. 

The above equation propagates versions of a variable 

along forward paths. If a program contains a loop, the 

reaching versions equation may produce incomplete solution. 

However, because code optimization is relative to a program 

region, it is not necessary to propagate reaching version 

numbers through loop backedges. Since variable reaching 

version numbers are propagated along forward paths (no 

cycles), the reaching versions analysis problem is 

computable in one iteration of a flow graph. 

Version Analysis Implementation Strategy 

Three types of information are required to analyze the 

definitions and usage patterns of program variables. Two of 

the four required items of information -- block mutation 

record and reaching version numbers already have been 

described. The other information item is a version creation 

point table (VCPT). The VCPT of a variable describes the 

set of program points where that variable may be defined and 

referenced in an intermediate code program. A VCPT entry is 
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a triple consisting of a definition descriptor, a version 

reference string, and a value class. The definition 

descriptor component consists of an intermediate code 

statement identifier, a basic block enclosing intermediate 

code statement, and the version number assigned to that 

definition. The version reference string for a version of a 

variable is a sequence of basic blocks where that instance 

of a variable may be used in an operation. The number of 

repetitions of a basic block in a version reference string 

is equal to the number of block statements where that 

version is referenced. The value class field indicates 

whether that version of a variable is a constant or not. 

The flow graph in Figure 8 is used to illustrate the 

concept of operand version numbers for the variable v. 

Figure 9 shows the version creation point table, block 

mutation record, reaching versions sets, and version 

reference string for each version of v when the flow graph 

nodes are processed in the order B1 , B2 , ... , B9 . 

Properties of Operand Version Numbers 

To derive some properties of operand numbers, it is 

assumed that the statements of a block are processed in 

sequential execution order and that blocks are processed in 

topological order. A fundamental property of operand 

version number is monotonicity. 



Sl: V 
s2: = v 

= v 

Bg 

= v 

= v 

ss: = v 
s6: = v 
s7: v = 

Figure 8. Flow Graph Showing Definitions and 
Refer~nces of a Variable 
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Lemma s. For any program variable v, the version number of 

v is monotonic between every pair of program points. 

Proof. Let Bm and Bn be any two distinct blocks such 

that Brn precedes Bn in topological order. Let the version 

number of v at the end of Brn and at the top of Bn be Xrn and 

Xn, respectively. If there exits some statement S which 

lies in some node Bj between Brn and Bn which may alter the 

value of v, then after S is processed VN[v] is incremented. 

Thus Xm does not reach the top of Bn· Hence, 



Statement Basic Version Reference 

s1 
54 
s7 
sa 

Block Number String 

B1 1 B1 B2 B4 B4 
B3 2 B4 B4 
B4 3 Bg 
Bs 4 B6 B7 Be Bg 

(a) version Creation Point Table and 
Version Reference String for 'v' o 

RVNTOP[v,B1] = ( 0 ) 
RVNTOP[v,B2] - ( 1 ) 
RVNTOP[v,B 3 ] = ( 1 ) 
RVNTOP[v,B4] = ( 1 , 2) 
RVNTOP[v,B5 ] = ( 1 ) 
RVNTOP[v,BG] = ( 4) 
RVNTOP[v,B 7 ] = ( 4) 
RVNTOP[v,Ba] ( 4 ) 
RVNTOP[v,Bg] = ( 3, 4) 

(b) Forward Reaching Definition of 'v' 

Basic Entry Exit 
Block BMR BMR 

B1 ( 0, 0, 0) ( 1 , 0, 1) 
B2 ( 1 , 1, 1) ( 1 , 1, 1) 
B3 ( 1 , 1, 1) ( 2 , 1, 2) 
B4 ( 2, 2, 2) ( 3 , 2, 3) 
Bs ( 1 , 3, 3) ( 4 , 3, 4) 
B6 ( 4 , 4, 4) ( 4 , 4, 4) 
B7 ( 4 , 4, 4) ( 4, 4, 4) 
Be ( 4, 4, 4) ( 4 , 4, 4) 
Bg (4, 4, 4) ( 4 , 4, 4) 

(c) Block Mutation Record of 'v' at 
Entry and Exit Points of Each 
Basic Block of Flow Graph 

Figure 9 0 variable Definition and Reference 
Analysis Data Structures 
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( 1) 

If there does not exist a statement S which may have a side 

effect on v between Bm and Bn, then Xm reaches the top of 

block Bn in which case 

Xn = Xm· ( 2 ) 

Combining (1) and (2) ==> Xn ~ Xm· 

Therefore, the version number of a variable between any pair 

of program points is monotonic. 

Lemma 6. Suppose v is a variable and B is a node of a 

program flow graph. Let the BMR[v,B] = (X1, X2, X3). 

If x 3 = x2 at the end of B, then v is invariant in B. 

Proof. x3 > x2 ==> B contains a statement which 

changes the value of v. 

x3 = x2 ==> value of v is the same at every point in B. 

Therefore, v is invariant in B if x3 = x2 at the end of 

Lemma 7. The BMR of any constant is (0, o, 0). 

Proof. Obvious. 

0 

B. 0 

0 

Definition 20. Let p be a statement point in some block B 

of a program flow graph. Suppose the variable v is a source 

operand of a statement at the point p. The version history 

of v at the point p is the greatest version number of v 

reaching the point p. 

Lemma e. Let B1 and B2 be two disjoint nodes of a program 

flow graph such that B1 and B2 are in the same program 

region. Let v be a program variable referenced in B1 and B2 

at the points P1 and P2 , respectively. Suppose further that 

the version history of v at P1 is x1 and the version history 



of v at P2 is x2 . If x1 = x2 , then the instances of v 

reaching P1 in B1 and the instances of v reaching P2 in B2 

are the same. 
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Proof. Since B1 and B2 are disjoint, there is no 

forward path from either B1 to B2 or from B2 to B1 . 

Therefore, no value of v computed in either B1 or B2 can 

reach the other through a forward path. Suppose x1 = x2 . 

Then the value of v used at P1 is computed outside B1 and 

the value of v used at P2 is defined outside B2 . There must 

exist some flow graph node F such that (1) there is a 

forward path from F to B1 ; (2) there is a forward path from 

F to B2; and (3) F is the least common pre-dominator of B1 

and B2 . F exists since a program flow graph is both 

connected and rooted. The version number of v does not 

change between the end of F and P1 (monotonicity of version 

number). Similarly the version number of v does not change 

between the end of F and P2 . Hence, the value of v at the 

end of F equals the value of v at both P1 and P2 . 

Therefore, x1 = x2 implies the value of v at the disjoint 

points P1 and P2 are the same. o 

Lemma 9. Let {B1 , ... , Bk; k ~ 2} be a set of disjoint 

nodes of a program flow graph. Suppose J is a common post­

dominator of {B1 , ... , Bk} and suppose further that {B1 , 

... , Bk} cover every path to J. Let v be a program variable 

whose block exit version number at each Bi (1 ~ i ~ k) is 

Yi. If the version number of v at the top of J is an 

element of the set (Y1 , •.. , Yk), then the value of v 
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is invariant between the end of each Bi and J. 

Proof. Suppose the version number of v at the top of 

node J is z. Then z ~ Yi; 1 ~ i ~ k (monotonicity of 

version number). Since the nodes are processed according to 

a topological order, node J is processed after B1 , ... , Bk 

have been processed. Moreover, any node forward reachable 

from a Bi but precedes node J is processed before node J. 

If z = Yi (for some i), then by lemma 6, vis invariant in 

every node between Bi (1 ::; i ::; k) and node J. Therefore, if 

the version number of v at the top of J is a member of {Y1 , 

... , Yk}, then v does not change in value between the end of 

each node Bi and node J. o 

Lemma 10. Suppose R[H] is a loop region of a program flow 

graph with header node, H and whose looping nodes are B1 , 

... , Bk ( (Bi, H) is a backedge). Let v be a variable and 

let Xh be the version number of v at the top of H. Suppose 

z1 , ... , zk are the version numbers of vat the end of B1 , 

... , Bk, respectively. The variable vis invariant in R[H] 

if xh = z1 = ... = zk. 

Proof. Version number of v is incremented in L if 

there is a statement which may alter the value of v in L. 

If Xh = z1 = = zk, then v is not assigned any value in 

L. Therefore, vis invariant in L if Xh = Z1 = ... = Zk• D 

Theorem 1. For a structured program flow graph, code 

optimization by regions does not require the computation of 

a fixed point for the set of reaching definitions in a 

program. 
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Proof. In a region relative code optimization 

procedure, only the redundancies within a region are removed 

when that region is processed. By the definition of a 

structured program flow graph in Chapter I, either a control 

structure is completely nested within another control 

structure or it is distinct. Suppose R is a cyclic region 

of a structured program flow graph. we consider two 

possible cases: (1) R does not have an inner loop; or (2) R 

has an inner loop. 

Without loss of generality, suppose R corresponds to 

the high-level control structure 

while (C) do S; end 

The statement sequence 

if (C) then 

S; 

end if 

while (C) do S; end 

( 1 ) 

( 2 ) 

is equivalent to (1). In (2), the first iteration of (1) is 

peeled off. 

Suppose R does not have any inner loops, then the if 

statement in (2) does not contain any loops. Let Cif and 

Cwhile represent the conditional expression C in the if and 

while statements of (2), respectively. Similarly, let Sif 

and Swhile denote the S in the if and while statements of 

(2), respectively. Suppose CSE(C) and CSE(S) are the common 

subexpressions in the conditional expression c and the 

statement sequence S, respectively. Then 



CSE(Cif) = CSE(CWhile) 

CSE(Sif) = CSE(Swhile) 
( 3 ) 
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(3) implies that intraloop common subexpressions is not 

affected by both repeated execution of a loop and by 

definitions reaching a loop from outside that loop. 

Therefore, only defintions generated within a loop influence 

the detection of the common subexpressions contained in that 

loop. 

If R is a nested loop, then there can be two types of 

common subexpressions in an inner loop: intraloop (within an 

inner loop) and interloop (between an inner loop and an 

outer loop). An expression, E, located in an inner loop of 

a nested loop is redundant with respect to computations of 

an outer loop, if the value of E is invariant in that inner 

loop. Determining whether a loop statement is invariant is 

accomplished by checking the definitions in that loop. 

Therefore, the elimination of intraregion redundancies of a 

structured program flow graph can be done without 

propagating reaching definitions through loop backedges. o 

Summary 

This chapter introduced the concept of version numbers 

to simulate variable reaching definitions. The version 

numbers of a variable is monotonic between program points 

when the nodes of a program flow graph are processed 

according to a total ordering. 



CHAPTER V 

INTRAPROCEDURAL ALIAS ANALYSIS 

Introduction 

Redundant statement detection depends on the accurate 

knowledge of potential definition points of program 

variables. If every variable is assigned value through 

direct assignment statements and read statements, then 

variable definition analysis is straight forward. However, 

some programming languages contain constructs that create 

memory aliases (that is two or more names refering to the 

same location). Memory aliasing can inhibit some 

optimizations when alias analysis is not included in a 

global code optimizing compiler. 

There are two levels of alias analysis commonly called 

intraprocedural and interprocedural alias analysis. 

Intraprocedural alias analysis gathers memory aliasing 

relationship within a single procedure, while 

interprocedural alias analysis solves the aliasing problem 

for a collection of procedures making up a program. This 

section describes a method for handling pointer variables in 

an operand dependence graph program representation. The 

technique presented is suitable for a single procedure only. 
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The intraprocedural alias analysis presented is based 

on the following assumptions. 

1. The source language does not permit label variables and 

memory overlap; 

2. The procedure being analyzed does not call another 

procedure; 

3. The procedure being analyzed does not have a procedure 

parameter in its formal parameter list. 

The presentation of pointer analysis is based on the C 

language. 

Pointer Aliasing in C 
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The purpose of pointer alias analysis is to determine 

the subset of variables which may be affected by indirect 

assignment through a pointer and indirect reference 

through pointer dereferencing. To correctly determine the 

aliases in a C program, the indirection level (the number of 

*'s pre-pended to a variable in a declaration statement) of 

a variable must be considered. In the C language, a pointer 

at indirection level L can be used to access data objects at 

indirection level (L- 1), ... , 0. Pointer dereferencing is 

specified by pre-pending a number of *'s to a pointer in an 

expression. 

Suppose B is a node of a program flow graph. Let 

IND-ASSIGN[B] represent sequence of variables whose values 

may be modified in B through a pointer. Let ALIAS-IN[B] and 

ALIAS-OUT[B] contain the set of possible aliases at the top 



of node B and at the bottom of node B, respectively. The 

top of node B is the point before the first statement in 

node B and the bottom of node B is the point following the 

last statement of node B. 

For each node B of a flow graph, the statements 

processed to generate elements of IND-ASSIGN[B], 

ALIAS-IN[B], and ALIAS-OUT[B] are statements of the 

following forms: 

Pl. p = &q 

P2. p = q 

P3. p 

P4. (*)kp = &q 

P5. (*)kp = (*)kq 
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In each of the statement forms, p is a pointer variable and 

q is either a pointer or an ordinary variable depending on 

the context. 

An element of ALIAS-IN[B] or ALIAS-OUT[B] is a triple 

(p, v, v.IL). An alias triple (p, v, v.IL) describes the 

fact that the pointer p is an alias for the variable v 

declared with v.IL levels of indirection. If v is not a 

pointer variable, then v.IL is zero. 

The representation for an element of IND-ASSIGN[B] is a 

triple (SID, p, v), where SID is the identity of the 

intermediate code statement with an indirect assignment to 

the variable v; p is the pointer through which an indirect 

assignment is made; and v is a variable which may be 

affected by the indirect assignment through the pointer p. 



Figure 10 specifies the operations performed for each 

of the statement forms P1, ... , PS while processing basic 

block statements. 

Procedure block-alias(B) 
Parameter. 

B: A basic block. 
For each statement s in B do 

If S is of the form p = &q, then begin 

(1) Delete from ALIAS-OUT[B] all 
triples whose first component is P. 

(2) For each triple of the form 
(q, x, x.IL) such that x.IL > 0 

add (p, x, x.IL) to ALIAS-OUT[B]. 
(3) add (p, q, q.IL) to ALIAS-OUT[B]. 
(4) If p is a pointer to a structure and 

q is a structure variable, then 

end 

for each structure member M of q do 
add (p, sM, M.IL) to ALIAS-OUT[B]; 

I* sM is synonym for q.M *I 

Else if s is of the form p = q, then begin 
I* p and q are pointer variables *I 

(1) Delete from ALIAS-OUT[B] all triples 
whose first component is p. 

(2) For each triple of the form (q, x, x.IL) 
add (p, x, x.IL) to ALIAS-OUT[B]. 

end 

Else if S is of the form p = (*)kq, then begin 
I* p and q are pointer variables *I 

(1) Delete from ALIAS-OUT[B] all triples 
of the form (p, x, x.IL). 
Let p.IL denote the indirection level of p. 

(2) For each triple of the form (q, x, x.IL) 
such that x.IL < p.IL 
add (p, x, x.IL) to ALIAS-OUT[B]; 

(3) p is a pointer to a structure, then 
for each triple of the form (p, x, x.IL) 

add (px, x, x.IL) to ALIAS-OUT[B]; 
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I* px is a pointer created to replace p ->x *I 
end 



Else if s is of the form (*)k p = &q, then begin 
(1) Let L := p.IL - k; 
(2) for each triple of the form (p, x, x.IL) 

such that x.IL > L do 

end 

delete (x, y, y.IL) from ALIAS-OUT[B]; 
add (SID, p, x) to IND-ASSIGN[B]; 
add (x, q, q.IL) to ALIAS-OUT[B]; 
if q.IL > 0, then begin 

for each triple of the form (q, v, v.IL) 
in ALIAS-OUT[B] do 
add (x, v, v.IL) to ALIAS-OUT[B]; 
add (p, v, v.IL) to ALIAS-OUT[B]; 

en do 
end 
else if q is a structured variable, then begin 

if x is a pointer to structure, then 
for each member M of q do 

add (X, SM, sM.IL) to ALIAS-OUT[B]; 
I* sM is synonym for q.M *I 

endo 
end 

end if 
endo 
add (p, q, q.IL) to ALIAS-OUT[B]; 

Else if S is of the form (*)kp = (*)jq, then begin 
(1) Let L := p.IL - k 

R := q.IL- j; 
(2) for each triple of the form (p, x, x.IL) 

such that x.IL = L do 
for each triple of the form (q, y, y.IL) 

such that y.IL = R do 
add (SID, p, X) to IND-ASSIGN[B]; 
if x.IL > 0, then begin 

delete every triple of the form 
(X, Z, z.IL) from ALIAS-OUT[B]; 
add (X, y, y.IL) to ALIAS-OUT[B]; 
add (p, y, y.IL) to ALIAS-OUT[B]; 
if y.IL > 0, then 

for each triple of the form (y, u, u.IL) 
in ALIAS-OUT[B] do 
add (x, u, u.IL) to ALIAS-OUT[B]; 
add (p, u, u.IL) to ALIAS-OUT[B]; 

end for 
end 

end for 
end for 

end 
end if 

end block-alias. 

Figure 10. Alias Processing in a Basic Block 
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Pointer to Structure Transformation 

Let T be a structured type whose members are 

M1 , ... , Mn· Suppose further that no Mi (i = 1, ... , n) is 

a structured type. Suppose p is a pointer to a structure of 

type T. Then the expression p -> Mi (for some i) selects 

field Mi of structure T. Pointer to structure 

transformation converts a program with expressions of the 

form p -> M to an equivalent program without expressions of 

the form p -> M. 

Pointer to structure transformation involves two steps. 

The first step creates an equivalent pointer variable for 

each structure member for which there exists a variable of 

type pointer to some structure. In the second step of the 

transformation, statements and expressions are inserted to 

replace expressions of the form p -> M with the unique 

pointer variable created for the structure member M. The 

pointer to structure transformation procedure steps are: 

1. for each variable, p declared as pointer to some 

structure of type T, generate a sequence of unique names; 

one name for each member of structure of type T. 

2. Suppose ps1 , ... , psn are the names generated in step 1. 

Let the members of structure T be M1 , ... , Mn· 

For i = 1, ... , n do 

Declare psi a pointer to type of Mi. 

3. For each statement of the form p = &v for some variable v 

of type T do 
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Insert the statements 

psi= &vMi (i = 1, ... , n) below p = &v, 

(where vMi is the synonym created for the member v.Mi in 

a structure member renaming transformation). 

4. For each expression of the form p = expr (expr != &v, 

where v is a structured variable) do 

Insert the statements 

psi= expr + disp[Mi] (i = 1, ... , n) below p = expr, 

(where disp[Mi] is the displacement of the member Mi 

within structure T). 

s. Replace each expression of the form p -> Mi with *psi, 

(where psi is the simpler pointer variable created for 

field Mi of structure T). 

6. If p is a formal parameter of a procedure, then insert 

the statements 

psi= p + disp[Mi] (i = 1, ... , n) before the first 

executable statement of a procedure's statement sequence. 

After applying pointer to structure transformation to a 

procedure, every pointer object is either a pointer to a 

scalar or a pointer to an array. A pointer to an array 

object is assumed to point to every array element. The 

pointer to structure transformation will slightly increase 

the number of statements in an intermediate code. 



Alias Analysis Procedure 

Alias analysis consists of three steps, the first of 

which is a pointer to structure transformation. The other 

two steps are node listing generation and the actual 

computation of alias information for each node. 

A node listing for alias analysis is a sequence 

NL = (B1, ... , Bt) of nodes of a program flow graph such 

that 

1. the nodes in a control structure form a subsequence of 

NL; 

2. a subsequence of nodes for a control structure are in 

linear order; 

3. if S is a subsequence of nodes constituting a program 

loop, then (S, S) is a subsequence of NL; 
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4. if B1 and B2 are any two nodes of a flow graph such that 

B1 predominates B2, then B1 precedes B2 in the first 

subsequence of NL with B1 and B2. 

A node listing which satisfies conditions (1) - (4) has 

a maximum length of O((d + 1) INI), where dis the maximum 

depth of a loop and INI is the number nodes of a program 

flow graph. The factor INI for the size complexity of a 

node listing is based on a worst case assumption that the 

number of nodes in a loop is O(INI>· The factor (d + 1) is 

derived from property 3 of a node listing. The sequence of 

flow graph nodes for a loop region is duplicated in a node 

listing to ensure that the alias information reaching the 
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top of a program loop from points outside a loop and from 

points within that loop as a result of repeated execution of 

loop code are included in loop alias computation. A node 

listing for iterative data flow analysis of a reducible flow 

graph requires a node listing of length (d + 2) INI to 

converge [16]. Therefore, a node listing which satisfies 

constriants (1) - (4) saves at least one iteration. Figure 

11 is a procedure for generating node listing. 

Algorithm 3: Node Listing Generator Algorithm 
Input. 

NODE: a linearly ordered set of nodes of a program flow 
graph with loop region information. 

output. 
The sequence NL of flow graph nodes satisfying of the 
characteristics of a node listing. 

Method. 
Append flow graph nodes to NL in linear order. If a loop 
header node is encountered then append the seqence (S,S) 
to NL, where s is a seqence of nodes for the body of that 
loop. 

Procedure Node-list() 
NL := ~; I* a global variable for node listing *I 
x := 1; I* linear order number (LON) *I 
while x i INI do 

NL := NL U NODE[x]; I* NODE[x] is node whose LON= x *I 
if NODE[x] is a loop header, then 

x := Region-list(x); 
else x := x + 1; 

endwhile 
end Node-list. 



(Algorithm 3 continued from previous page) 

Procedure Region-list(x: loop header) 
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y := LON of end of loop marker node of loop whose head is 
x; 

n := x + 1; 
while n < y do 

NL := NL U NODE[n]; 
if NODE[n] is a loop header, then 

n = Region-list(n); I* process nested loop *I 
else n := n + 1; 

endwhile 
for n := x to y do I* duplicate loop subsequence *I 

NL := NL U NODE[n]; 
end for 
NL := NL U NODE[y]; I* append end of loop marker node *I 
return(y + 1); 

end Region-list. 

Figure 11. Node Listing Generator Algorithm 

The algorithm for computing alias information of each 

node is specified in Figure 12. Since the length of a node 

listing is atmost (d + 1) INI, the alias computation 

algorithm has O((d + 1) INI*L + t) complexity, where tis the 

time required for pointer to structure transformation, and L 

is the number of statements in a program. The t term can be 

eliminated if pointer to structure transformation is done 

during parsing. Aliasing information obtained from Figure 

12 is a transitive closure of the alias relation in a 

program. 



Algorithm 4: Alias Analysis Algorithm. 
Input. 

A program flow graph, G = (N, A, r); 
NL: a node listing. 

Output. 
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ALIAS-IN[B], ALIAS-OUT[B], and IND-ASSIGN[B] for each node 
B of a program flow graph. 

Method. 
First initialize ALIAS-IN[B], ALIAS-OUT[B], and 
IND-ASSIGN(B] of each node, B of G to ~. Then 
sequentially process the nodes in NL. For each element, B 
of NL, examine statements of B in sequential execution 
order. If a statement of B is one of the pointer forms 
P1-P5, perform the operations specified in Figure 10 for 
that statement form. Terminate alias computation when 
every element in NL has been processed. 

For each block B of a flow graph do 
ALIAS-IN[B] := ALIAS-OUT[B] := ~; 
IND-ASSIGN(B] := ~; 

end for 
For x := 1 to INLI do /* NL is a node listing */ 

B := NL[x]; /* xth element of node list*/ 
ALIAS-IN[B] = U ALIAS-OUT[C] 

C E pred[B] 
ALIAS-OUT[B] := ALIAS-IN[B] 
IND-ASSIGN[B] := ~; 
Apply Figure 10 on block B; 

end for 

Figure 12. Alias Computation Algorithm 

An Example 

The C program in Figure 13 will serve as an example to 

illustrate the alias analysis technique developed in this 

chapter. Because the program contains the structured 

variable cord, structured variable renaming transformation 

must be applied first. Suppose the (member, synonym) pairs 

created for variable cord is (x_axis, cord_x_axis), (y_axis, 

cord_y_axis), and (next, cord_next). Structure variable 
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renaming transformation replaces the expression 

cord.x axis with cord x axis and the expression cord.y-axis 

with cord-y-axis in statement sa. 

Next, the pointer to structure transformation is 

performed on the program. Let px_axis, py_axis, and pnext 

be the sequence of pointers created to replace uses of the 

pointer p. Suppose hdx_axis, hdy_axis, and hdnext are the 

replacement pointers for the pointer variable hd. After the 

two structure related transformations, the original C 

program is transformed to Figure 14. Since the program is a 

single basic block, the node list is a single node. 

Finally, aliasing information is derived from the 

program. Figure 15 show the contents of ALIAS-OUT[B] and 

IND-ASSIGN[B]. ALIAS-IN[B] is empty. The result of alias 

analysis indicate that px_axis and hdx axis 

are aliases for cord x axis which is equivalent to 

cord.x axis. Similarly, py-axis and hdy_axis are aliases 

for cord_y_axis which shares the same location with 

cord.y-axis. With the alias information known, a code 

optimizer can discover that statements s6, s7, and sa 

compute the same expression. 



main () { 

} 

struct point { 

}; 

short x axis; 
float y-axis; 
struct point *next; 

struct point cord, cord array[50], *hd, **pp1, *p; 
float sum1, sum2, sum3;-
s1: p = &cord; 
s2: pp1 &p; 
s3: hd = *pp1; 
s4: p -> x axix = 5; 
s5: p -> y-axis = 25.0; 
s6: sum1 =-p ->x axis + p ->y axis; 
s7: sum2 = hd ->x axis + hd ->y axis; 
sa: sum3 = cord.x:axis + cord.y:axis; 

Figure 13. C Program 

main() { 

} 

struct point { 

} ; 

short x axis; 
float y-axis; 
struct point *next; 

struct point cord, cord array[50], *hd, **pp1, *p; 
float sum1, sum2, sum3;-
short cord x axis, *px axis, *hdx axis; 
float cord~=axis, *py=axis, *hdy:axis; 
struct point *cord next, **pnext, **hdnext; 
s1: p = &cord; -
s1.1: px axis = &cord y axis; 
s1.2: py-axis = &cord-y-axis; 
s1.3: pnext = &cord next; 
s2: pp1 = &p; -
s 3 : hd = *pp1 ; 
s4: *px axis = 5; 
s5: *py-axis = 25.0; 
s6: suml = *px axis + *py axis; 
s7: sum2 = *hdx axis + *hdy axis; 
sa: sum3 cord-x axis + cord_y_axis; 

Figure 14. C Program After Structure Member and 
Pointer to Structure Transformations 
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ALIAS-OUT = { 
s1: (p, cord, 0), (p, cord x axis, 0), 

(p, cord y axis, 0), (p,-cord next, 1), 
s1.1: (px axTs~ cord x axis, 0),-
s1.2: (py-axis, cord-next, 0), 
s1.3: (pnext, cord next, 1), 
s2: (pp1, p, 1), (pp1, cord, 0), 

(pp1, cord x axis, 0), (pp1, cord_y_axis, 0), 
(pp1, cord-next, 1), 

s3: (hd, cord,-0), (hd, cord x axis, 0), 

} 

(hd, cord y axis, 0), (hd,-cord next, 1), 
(hdx axis~ cord X axis, 0), -
(hdy-axis, cord-y-axis, 0), 
(hdnext, cord_next, 1) 

IND-ASSIGN = { 
(s4, px_axis, cord_x_axis), (s5, py_axis, cord_y_axis) 

} 

Figure 15. Contents of ALIAS-OUT and IND-ASSIGN 
After Alias Analysis 

Summary 
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An alias analysis method which handles both pointers at 

many levels of indirection and structured types has been 

described. A pointer to structure transformation is applied 

to convert pointers to structures to pointers to simpler 

types (scalars and arrays). A node listing derived from a 

total ordering of the nodes of program flow graph is used to 

propagate alias information. 



CHAPTER VI 

OPERAND DEPENDENCE GRAPH 

Introduction 

An operand dependence graph (ODG) is a directed graph 

which exposes the subset of program statements to be 

subjected to code redundancy analysis. The feasible 

optimizations detectable with an operand dependence graph 

include common subexpression elimination, code hoisting, 

code sinking, loop invariant motion, and strength reduction 

of loop induction variables. With the exception of alias 

analysis, the construction of an ODG does not require prior 

computaion of other flow analysis information. 

What is an Operand Dependence Graph? 

An operand dependence graph is a directed graph 

representation of the statements in a program region of a 

structured program flow graph. There is one control node 

for each distinct operand as well as one control node for 

each distinct intermediate code statement in an ODG. Each 

distinct instance of a distinct statement and each distinct 

instance of a distinct operand is represented with an 

instance node. The set of statement instance nodes for a 
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distinct intermediate code statement are linked together 

with the control node for that statement. Similarly, the 

set of instances of a distinct operand and the control node 

for that operand are linked together. The version histories 

of operands are used to distinguish between operand and 

statement instances. 

An operand dependence graph node describing an 

instance of a distinct statement is decorated with the 

flow graph nodes (having a copy of the statement instance 

represented at a node) and an instance signature. 

Definition 21. Suppose S is a distinct intermediate code 

statement. Let v1 , ••. , Vn denote the distinct variable 

source operands in statement S in lexical order. Let p be 

some program point with an instance of statement s. For 

each source variable operand vi, let hi represent the 

version history of vi at program point p. The instance 

signature of the statement S at point p is the n-tuple 

( hl, ... , hn) . 

Two instances of a distinct statement with the same instance 

signatures are said to be similar. In an ODG, instances of 

the same statement with different instance signatures are 

represented with different graph nodes. 

The operand dependence graph of one program region is 

distinct from the operand dependece graph of another program 

region. Within a program region, graph nodes are connected 

by two types of edges. The first edge type called instance 

link connects a control node of a distinct graph object 



(statement or operand) and the instance nodes of that 

object, and the second type of edge called data link 

connects operation instance nodes and operand instance 

nodes. 
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In a formal sense an operand dependence graph 

representation of a program is a triple z = (C, I, E), where 

c is a set of control nodes for the distinct statements and 

the distinct operands in a program region; I is a sequence 

of instance nodes of distinct statements and operands; and E 

is a sequence of edges from the ordered pairs c x I and 

I X I. 

Work Lists 

Code optimization and operand dependence graph 

construction proceed simultaneously. Some redundancy 

analysis cannot be performed on some set of statements until 

the complete control environment surrounding those 

statements is seen. Such statements are buffered for later 

analysis. Five buffers are maintained during graph 

construction to hold program objects (statements and 

operands) which require further processing. These buffers 

and the type of information they contain are described 

below: 

CHQ: is a queue of statements which contains statement 

instances to be analyzed for code hoisting 

optimization. 

CSS: is a stack of statements to be checked for code sinking 



optimization. 

LIQ: is a queue of loop invariant statements. 

BEIQ: is a queue of potential basic loop induction 

expressions. 

LAVQ: is a queue of loop active variables and constants. 

An element of CHQ, CSS, LIQ, or BIEQ is of the form 
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(CN, IN), where CN is a statement control node and IN is a 

statement instance node. A LAVQ entry is an ordered pair of 

operand control node and operand instance node of constants 

and variables active (referenced or defined) in a loop. 

When processing a nested loop, the contents of LAVQ is saved 

at the beginning of an inner loop and restored after the 

body of an inner loop has been procesed. The restoration of 

the LAVQ of a parent loop is a union of the saved LAVQ of a 

parent loop and the LAVQ of an inner loop. 

Essential Node Information 

There are four node types in an operand dependence 

graph intermediate program representation; two of which are 

control nodes of distinct program objects (operations and 

operands) and the remaining two are instance nodes 

of distinct program objects. A control node contains a 

detailed description of either a distinct statement or a 

distinct operand, while an instance node contains 

information necessary for detecting potentially redundant 

code. 



The set of basic fields for each node type are 

described below. 

The field names for statement control node are 

OC: Operation class (store, arith, procedure call, 
string, logical, flow control, etc); 

OP: Operation name; 
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VC: Value class for operation computing a value (float, 
integral, boolean, string, pointer, condition code, etc); 

IN: Current number of distinct instances of a statement in 
program region; 

ILH: Instance list head; 

SON: Source operands control nodes; 

DON: Dependent operands control nodes; 

DEST: Destination operand control node; 

CSS FLAG: An array of flags (one flag per loop nesting 
level) to indicate that an instance of statement has been 
pushed into the css stack; 

CHQ FLAG: An array of flags to indicate when an instance of 
statement has been entered into CHQ queue; 

BIEQ FLAG: An array of flags indicating that an instance of 
statement is in BIEQ queue. 

An operation instance node contains the following 
fields: 

SCN: Control node of statement instance; 

NIP: Next instance pointer; 

OPDS: Operand instance nodes; 

SIN: Statement instance number; 

DEST: Destination operand instance node; 

IOB: Sequence of basic blocks with a non redundant copy of 
statement instance; 

SIG: statement instance signature (vector of operands 
version histories); 



LI FLAG: Flags to indicate whether statement instance is a 
-loop invariant (one flag per nesting level). 

The components of an operand control node include 

DNT: Data node type (array, scalar variable, constant, 
statement label, and procedure name); 

VN: Number of different instances of operand; 

VC: Operand value class (float, integral, char, boolean, 
string, etc); 

ILH: Head of instances list; 
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LAVQ FLAG: Array of loop active variable and constant flags 
(one flag per loop nesting level). 

Lastly, the essential field names of an operand 
instance node are 

NIP: Next instance pointer; 

IVN: Operand instance version number; 

SUCC: Sequence of data link successor nodes; 

LI FLAG: Flags to indicate whether operand instance is 
-invariant in a loop (one flag per loop nesting level). 

Operand Dependence Graph Construction 

To construct an operand dependence graph representation 

of a program region, these general rules must be followed: 

1. Process the flow graph nodes in linear order; 

2. Process the statements of each flow graph node in 

sequential execution order; 

3. Before processing the statements in the initial node of a 

program flow graph, initialize the block mutation record 

of every variable to (0, 0, 0); and at the begining of a 

program region create empty instances of the various 

auxillary data structures (LAVQ, CSS, CHQ, etc); 
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4. Non-redundant instances of lexically identical statements 

in different flow graph nodes with the same statement 

instance signature are represented on a common statement 

instance node; 

s. If the next flow graph node to be processed is a join 

node of a conditional control structure, then examine the 

CHQ queue and the CSS stack for statements. If there 

exists a statement in either CHQ or CSS, then apply the 

necessary code motion detection algorithm on the 

instances of a code motion candidate; 

6. If the next flow graph,node to be processed is an end of 

loop marker, then analyze the statements in that loop to 

recognize loop invariant statements and induction 

variables; 

7. A statement instance is represented by drawing directed 

edges (one edge per distinct source operand) from operand 

nodes to the operation instance node for a statement. 

The operand instance node from which a directed edge is 

drawn to link an operation instance node is the version 

history of that operand with respect to that statement 

instance. If an operation produces a result, then a 

directed edge leaves an operation instance node and 

enters the operand instance node representing the result 

operand. 

8. If there exists a previous instance of the next statement 

to be added to an ODG, then analyze the forward 

reachability relation between the previous statement 
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instances and the new statement to determine the type of 

code redundancy analysis to apply on the duplicate 

statement instances. 

9. After adding a statement which defines a program variable 

to an ODG, assign a new version number to the variable 

assigned to, add a version record into that variable's 

version creation point table, and update the block 

mutation record for that variable. 

10. If a variable is a call-by-reference parameter of a 

procedure call, then assign a new version version number 

to that variable following the call statement and make 

the necessary entries into the version creation point 

table and block mutation record of that variable. 

11. If a statement is an indirect assignment through a 

pointer, then after processing that statement, assign new 

version numbers to every variable that could be affected 

by the indirect assignment. Enter a new version record 

into the version creation point table of each affected 

variable and update the block mutation record of that 

variable. 

Detection of Partial Redundancies 

One distinguishing feature of an operand dependence 

graph program representation is that the detection of 

candidate statements for common subexpression elimination, 

code hoisting, or code sinking redundancy analysis does not 

require separate graph traversals. The concept of partial 



redundancy is used to identify lexically identical 

statements to be subjected to redundancy analysis in a 

program region. 
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Definition 22. Suppose S is a distinct program statement 

and suppose Sp is an instance of statement S at some program 

point p. Let v1 , ... , vn be the sequence of the distinct 

variable source operands in statement s. Suppose Sp is to 

be added to an ODG and suppose further that (hi, • • • I 

the instance signature of the statement instance Sp· 

statement instance Sp is partially redundant with respect to 

previous instances of statement S if for each source 

variable vi, there exists a directed edge from version hi of 

variable vi, 1 < i i n, to a previous instance node of 

statement s. 

There is one major difference between partial 

redundancy as defined here and as defined by Morel and 

Renvoise [27]. The difference is that partial redundancy 

with respect to an ODG includes statements on disjoint 

execution paths as well as statements on a common execution 

path, while Morel and Renvoise restrict partial redundancy 

to statements on a common execution path. This distinction 

makes it possible to detect both common subexpression and 

code motion candidates with the same mechanism in an operand 

dependence graph. In Figure 16, the instance of a + b in 

block B3 is partially redundant with respect to the instance 

in block B2 if block processing order is Bl, B2, B3, B4 and 

a + b in node B4 is partially redundant with respect to the 



a := 
b := 

B1 

B3 

VN[a; B1] = 1 
VN[b; B1] = 1 

= a + b 
b := VN[b; B2] 2 

{B1} 

{B2, B3} 
( 1, 1) 

{B1} := {B2} 

Figure 16. Partial Redundancy Involving 
Disjoint Statement Instances 

[]Operand Instance Node 
Operation Instance Node 

---7'> Data Edge 
••• ? Instance Link 
{ } Instance Occurence Blocks 
( ) Instance Signature 
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instances of a + b in blocks B2 and B3. Figure 17 is an 

example of partial redundancy in which the previous 

instances of a statement and the partially redundant 

instance do not have the same instance signature. 

B2 

az: = 
b2. : = 
= a + b 

B1 

:= {B1) := 

VN[a; B1] 
VN[b; B1] 

B3 

a3: = 
= a + b 

B4 

= 1 
1 

VN[a; B2] 2 
VN[b; B2] = 2 
VN[a; B3] 3 

{B1) := {B2) 

{B4} 
( 3, 2) 

Figure 17. Partial Redundancy Involving 
Statements on Common Execution 
Paths 
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If a partially redundant statement has the same 

instance signature with a previous instance of the same 

statement, then that partially redundant statement is either 

analyzed for common subexpression elimination or for code 

hoisting optimization. The particular analysis to be 

performed depends on the forward reachability relation 

between the basic block containing the most recent previous 

instance of that statement and the basic block with the 

partially redundant instance. The most recent previous 

instance of a statement is the instance which occurs in a 

basic block closest to the basic block with a partially 

redundant instance in block processing order. If a 

partially redundant statement and the most recent previous 

instance of the same statement are in disjoint blocks, then 

the statements are candidates for code hoisting analysis, 

otherwise a partially redundant statement is a checked for 

common subexpression elimination. 

When a partially redundant statement does not have 

identical instance signature with any previous instance of 

the same statement, then that partially redundant statement 

is a common subexpression elimination candidate. The notion 

of partial redundancy does not expose every code sinking 

candidate. For instance, in Figure 17, the instances of 

a + b in blocks B2 and B3 are candidates for code sinking 

optimization but neither is partially redundant with respect 

to the other. However, the search procedure for lexically 

identical statements discovers all code sinking candidates. 
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Before a statement is added to an operand dependence 

graph, the ODG NODE field of a distinct statement record in 

the distinct statement table is checked to determine if a 

previous instance of that statement exists in the current 

graph segment. The ODG NODE field of a statement in the 

distinct statement table holds the address of a statement's 

control node in an ODG. Thus, if the ODG NODE field of a 

distinct statement contains a null value, then a previous 

instance of that statement has not been encountered in the 

program region. 

If the contents of the ODG NODE field of a distinct 

statement record is not a null value, then the list of 

previous instances are searched to determine if current 

statement is partially redundant. The ILH (instances list 

head) of a distinct statement's control node contains the 

node address of the first instance of a statement in an ODG. 

For each previous statement instance node visited, the 

instance signature of that previous instance is compared 

with the instance signature of current statement. If there 

is a match of instance signatures, then the forward 

reachability relation between the basic block with the most 

recent previous instance and the basic block containing the 

current instance is used to decide which redundancy analysis 

procedure to apply. If there is no match of instance 

signatures, but each element of the instance signature of 

the current statement is an element of the instance 

signature of some previous instance of that statement, then 



that current statement instance is a partially redundant 

common subexpression. 
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If a current statement is not partially redundant with 

respect to previous instances of the same statement, then 

the redundancy detection procedure which can be applied to 

the statement instances is that for code sinking. To 

determine if code sinking redundancy analysis is necessary, 

the instance occurrence block field of previous instances of 

statement are examined for a previous statement instance 

which lies on a parallel control flow path relative to 

current statement instance. Partially redundant common 

subexpression candidates are subjected to common 

subexpression redundancy analysis procedure as soon as they 

are discovered, while code hoisting and code sinking 

candidates are placed in either a CHQ queue or CSS stack 

until a conditional control environment join is reached. 

Operand Dependence Graph Characteristics 

Operand dependence graph program representation 

provides two ways of searching a dependence graph. The 

instance links (edges connecting instances of the same 

object) is used to search distinct program objects (operand 

or statement) with multiple instances without visiting 

nonrelated nodes. 

The other means of searching an operand dependence 

graph is by visiting nodes through data links (edges 

connecting operand nodes and statement instance nodes). 
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When the only means of visiting statement nodes is by 

following data links as in [15], the detection of common 

subexpression, code hoisting, and code sinking candidates 

incur considerable cost as both single instance and multiple 

instance statements are examined. Moreover, separate graph 

traversal must be performed for each optimization problem. 

A feature unique to operand dependence graph is that a 

statement instance node can represent several instances of 

the same statement from different basic blocks of a program 

region. The capability to represent several instances of a 

statement which are not necessarily equivalent in value with 

one graph node enhances the detection of partial 

redundancies. In other dependence graphs, equivalent values 

are the only shared nodes. 

Summary 

An operand dependence graph is a directed graph 

representation of the statements belonging to a program 

region. Graph nodes are connected with two types of edges 

called instance link and data link. Instance links connect 

instances of a graph object (statement or operand) and its 

control node while data links connect statements to their 

source and destination operands .. Instance links provide a 

fast means of searching lexically identical statements for 

partial redundancies without examining unrelated graph 

nodes. 



CHAPTER VII 

DETECTION OF FEASIBLE OPTIMIZATIONS 

Introduction 

This chapte~ addresses the issue of recognizing 

feasible optimizations while building an operand dependence 

graph. Each redundancy detection problem can be specified 

with three types of constraints. These constraints have 

been classified into information flow (path problem), 

variable reaching definitions, and variable reference 

constraints. ·The techniques for checking these constraints 

for the various intermediate code optimization problems in 

an operand dependence graph program representation are 

presented in the next several sections. 

Redundant Statement Elimination 

Redundant statement elimination involves the detection 

and removal of a statement instance for which a previous 

active instance of that statement exists along every control 

flow path leading to that statement. A statement instance 

Sp, at some point p, in a program is redundant if 

1. Sp is partially redundant with respect to some 

previous instances of S; 
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2. the set of previous instances of S which renders Sp 

partially redundant is a path cover for the point p; 

and 

3a. either the set of basic blocks where the previous 

instances of s are located and the basic block 

where Sp is located have the same region tag; or 

3b. the set of basic blocks with previous instances of s 

are located in an outer loop of a nested loop and Sp 

is a loop invariant of an inner loop. 

Condition (1) is detected at the time a statement 

instance is added to an operand dependence graph. To check 

the second condition, the minimal set of the set of flow 

graph nodes with active previous instances of s reaching the 

point p along a forward path is formed, then the minimal set 

is subjected to path cover test with respect to the point p. 

The third condition is checked by comparing the region tag 

of the point p and the region tags of previous statement 

instances which renders Sp partially redundant. 

The code fragment below exemplify the necessity of the 

third (3a and 3b) constraint. 

while (q < 5) { 
= p + q 

} 

while (p > 0) { 

p + q 

p = 
} 

while (q < 5) { 
= p + q 

} 

while (x > 0) { 

= p + q 

} 

q = 



In the left code segment, p + q in the inner loop is not 

redundant with respect to the instance in the outer loop. 

The situation is different in the second fragment because 

p + q in the inner loop is a loop invariant. As a result, 

this second instance of p + q is redundant with respect to 

the first instance. Because path cover test is likely to 

involve more operations than comparing region tags, 

condition 3(a) should be checked before checking the path 

cover condition. When condition 3(a) does not apply, 

redundancy analysis of a partially redundant statement 

should be suspended until the rest of the body of an inner 

loop has been processed. 
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The notation (a + b)i denotes the instance of a + b in 

flow graph node Bi and bj means after the assignment to b is 

executed, the version number of the variable b is j. In 

Figure 18, (a + b) 4 is redundant with respect to the 

instances (a + b) 2 and (a + b) 3 . Now consider (a + b) 4 in 

Figure 19. By the definition of partial redundancy, 

(a + b) 4 will not be subjected to redundancy test even 

though in the general sense of partial availability (a + b) 4 

is partially available along the flow graph edge (B3 , B4 ). 

The operand dependence graph has this capability to avoid 

some redundancy checks that are bound to fail. In the case 

of Figure 20, (a + b) 4 is identified as partially redundant, 

but fails the path cover test because there is no active 

previous instance of (a+ b) along the edge (B2, B4 ). 



a := B1 
b := 

Figure 18. A Redundant 
Statement 

99 

Figure 21 illustrates the type of redundant computation 

missed by an operand dependence graph. The problem is due 

to the definition of a program region. Because node B3 is a 

loop, the flow graph is split into three segments {B1 , B2}, 

{B3}, and {B4}. Since redundant statement elimination is 

restricted to a program region, (a + b) 4 cannot be detected 

as a common subexpression. This shortcoming of the region 

relative optimization technique will not affect the 

execution time of the optimized code since most of the 

useful optimizations are performed in program loops. 
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~,BJ] .................. 
Figure 19. A Partially Redundant Statement 

Not Tested For Redundancy 
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B2 B3 

= a +b a2:= 
b2:= b3:= 

= a +b 

••..• ·> 

Figure 20. A Partially Redundant Expression Which 
Fails Full Redundancy Test 



Figure 21. An Inter-region 
Redundancy 

Code Hoisting Optimization 
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Code hoisting optimization or backward code motion is 

applied to lexically identical expressions which occur on 

disjoint control flow paths of a conditional control 

structure. A set of lexically identical expressions in a 

conditional control structure with then and else parts 

can be moved to the fork of that conditional structure if 

(1) the expression instances compute the same value; and (2) 

there exists an instance of that expression on every forward 

path originating from the fork of a conditional control 

structure to the join of that conditional structure. 

In the context of an operand dependence graph program 

representation, the two conditions are met when the 
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expression instances are represented with the same statement 

instance node; a subset of the flow graph nodes with a copy 

of that expression are mutually disjoint; all the mutually 

disjoint flow graph nodes with a copy of that expression 

have the same region tag; and the disjoint flow graph nodes 

with an instance of that expression constitute a control 

environment path cover for the conditional structure. 

Requiring all the flow graph nodes with an instance of a 

backward motion candidate to have the same region tag guards 

against moving an expression from an inner loop to an outer 

loop in a nested loop structure. 

Figures 22 and 23 provide examples of permissible and 

non permissible code hoisting optimization. In Figure 

22(a), the instances (a + b)s and (a + b)g lie on every path 

from B1 (fork of conditional structure) to B1o (join of 

conditional structure); both (a + b)s and (a + b) 9 compute 

the same value; and (a + b)s and (a + b)g are in the same 

control enviroment. The copies of (a + b) in the 

conditional structure can be removed by placing a copy of 

(a + b) in B1 • After code hoisting optimization, Figure 

22(a) is transformed to Figure 22(b). Although the flow 

graph nodes with instances of (a + b) in Figure 23 are 

disjoint and occur on both legs of the fork node B1 , (a + b) 

cannot be moved to B1 because the copies do not belong to 

same control environments. (a + b) 2 is in an outer loop, 

while (a + b) 3 occurs in an inner loop. 



B1 a := 
b := 

22(a) Flow Graph and ODG Before 
Code Hoisting 
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a : = 
b := 
= a +b 

(b) Flow Graph and ODG After 
Code Hoisting 

Figure 22. Hoistable Code 
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v 

a := 
b := 

B3 = a + b 
a : = 

Figure 23. A Non-Hoistable Code 
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The algorithm for code hoisting is specified in Figure 

24. First, post-dominance information of the join of a 

conditional structure is used to select the instances of a 

code hoisting candidate in the same control environment as 

that of a join node. Then the minimal set of the selected 

instances are computed and subjected to conditional 

structure path cover analysis. 

Suppose the flow graph of Figure 25 is applied to the 

code hoisting algorithm (Figure 24). Initially S = {B4 , B8 , 

Bg}, of flow graph nodes with instances of a+ b is computed 

and tested for conditional environment path cover test with 

respect to the fork node B1 . The set S fails the path cover 

test because there are no copies of a + b along the paths 

passing through B2 and B6 . The set S is then partitioned 
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into the subsets c 1 = {Bg, Be} and c 2 = {B4} to process the 

nested conditional structures. The partition c1 is a 

conditional control environment cover for the conditional 

control structure comprising {B7 , Be, Bg}· Therefore, the 

instances of a + b in Be and Bg can be deleted by placing a 

copy of a + b in node B7 . Since nodes B7 and B4 do not have 

the same immediate predominator, node B7 is in its own 

partition. The second loop of the code hoisting algorithm 

terminates as each of the remaining partitions has only one 

element. 

Algorithm 5. Code Hoisting Algorithm 

Input. 
J: Join node of a conditional structure; 
CHQ: list of code hoisting candidates; 
Program flow graph with predominance and post-dominance 
information; 
Operand dependence graph; 
Intermediate code program. 

Output. 
Possibly modified operand dependence graph; 
Possibly transformed intermediate code program. 

Auxiliary. 
S: set of flow graph nodes with copy of code hoisting 

candidate. 
Method. 

For each code motion candidate statement x, select the 
instances of x post-dominated by the join node J. Compute 
the minimal set of the selected instances and check if the 
minimal set of instances lie on every path of the parent 
conditional structure. If the minimal set of instances of 
x pass the path cover test, then move x to fork of parent 
structure. Else analyze any substructure for possible 
code motion. 

While CHQ is not empty do 
Turn-off CHQ FLAG; 
g = de~eue(CHQ); I* ODG node for statement*/ 
S = {B I B is a flow graph node with a copy of 
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statement at ODG node g; J post-dominates B; 
and region tag of B ~ region tag of J}; 

S = minimal set of S; 
If S is a singleton, then stop; 
If S is a path cover for conditional structure, 

then begin 
Let x represent the expression at node g of ODG; 
f := least common predominator of nodes in S; 
Delete each flow graph node n, such that n has a 
copy of x and node f predominates n from the 
instance list of ODG node g and delete statement 
x from flow graph node n; 
Create a copy of x in flow graph node f; 
Insert flow graph node f in the instances list 
of ODG node g; 
End. 

Else begin 
PartitionS into disjoint subsets c1 , ... , C2 , 
such that each Ci contain flow graph nodes with 
the same immediate predominator. 
While there exists a partition, P of S such that 

IPI > 1 do 
If partition P is a control environment cover, 

then begin 
Let x be the expression at ODG node g; 
f := least common predominator of nodes in 
P; 
Delete each flow graph node n, such that n 
has a copy of x and node f predominates n 
from the instance list of ODG node g and 
delete statement x from flow graph node n; 
Create a copy of x in flow graph node f; 
Insert flow graph node f in the instances 
list of ODG node g; 
Place flow graph node f in a partition; 

Endif. 
Delete partition P from set of partitions; 

Endwhile. 
End. 

End if 

End Code-hoisting Algorithm. 

Figure 24. Code Hoisting Algorithm 
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25(a) Control Structure Before Code Hoisting 



a := B1 
b := 

(b) Control Structure After Code Hoisting 

Figure 25. Code Hoisting Candidate in a 
Nested Conditional Structure 
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Code Sinking 

Code sinking optimization procedure (forward code 

motion) moves common code in the then and else branches of a 

conditional structure to the join of that conditional 

structure. Let S be a distinct 

program statement and let C be some conditional control 

structure whose join node is J. Suppose there exists 

instances of S in the then and else branches of C. The 

instances of S in C can be removed and replaced with a 

single instance at the top of the join node J if 

1. the set of points with instances of S inc 

constitute a path cover for J; 

· 2. The statements following the last instance of s on 

each forward path to the join node do not have a 

side effect on any source operands of S; 

3. Any results produced by the last instances of S is 

not referenced in the conditional structure; and 

4. The join node J and every node in the conditional 

structure C have the same region tag. 

The first two conditions a forward code motion 

candidate must satisfy are identical to those for global 

common subexpressions. The third condition prevents moving 

a statement which may generate the input data used in 

another statement and the fourth constraint ensures that the 

statement instances are located in the same control 

environment. To check the third constraint, the effects of 
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a procedure call and pointer aliasing must be considered. 

For a procedure call, the results of a call statement 

includes the value returned by a procedure and the call-by­

reference parameters which may be modified in a called 

procedure. 

In Figure 26, the statements t 1 = a + b and c := t 1 

qualify for code sinking optimization if the statements are 

analyzed in reverse execution order. However, if the 

statement t 1 = a + b is analyzed first, then only c := t 1 

can be moved since t 1 is referenced in the second statement. 

To recognize a + b as a sinkable expression, the statements 

of the conditional structure must be rescanned after moving 

the second statement. Rescanning is avoided by using a 

stack to hold forward code motion candidates. The last-in­

first-out property of a stack ensures that code sinking 

candidates are processed in reverse statement execution 

order. 

Since the first two constraints a code sinking 

candidate must satisfy are identical to those for global 

common subexpressions, common subexpression elimination 

procedure can be used as part of a code sinking procedure. 

A dummy instance of a code sinking candidate is created and 

made to appear to originate from the join of a conditional 

structure. If the dummy instance is fully redundant with 

respect to the instances in a conditional structure, then 

conditions (3) and (4) can be checked to complete the test 

for code sinking. This approach reuses the procedure for 



redundant common subexpressions detection. 

a2 :-
tl = a+b 
cl := t 

26(a) Code Sinking Candidates 

............ 

c 1 ••••••••• 

26(b) Operand Dependence Graph 
Before Code Sinking 
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26(c) Operand Dependence Graph 
After Sinking c := t 
to B4 

26(d) Operand Dependence Graph After 
Sinking t := a + b 

Figure 26. Code Sinking Example 
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The sequence of steps for analyzing a code sinking 

candidate are 
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1. create a dummy instance Sj (J is a join node) of S and 

make Sj appear to be located in the join block J. Use Sj 

to search the operand dependence graph. If Sj is not 

partially redundant, then goto step 6. 

2. Apply redundant statement elimination algorithm on Sj· 

If sj is not fully redundant, then goto step 6; 

If there exits only one previous instance of S which 

renders Sj redundant, then goto step 6. 

3. If there is a data link (edge) from the destination 

operand node of any of the previous instances which 

render Sj redundant to some statement node in the 

conditional structure C, then goto step 6. 

4. If the region tags of the instances inC and the region 

tag of instance Sj are not identical, then goto step 6. 

s. Delete all the instances of S which render Sj redundant 

from the operand dependence graph and from the basic 

blocks where they are located; Insert the dummy instance 

Sj into the operand dependence graph; Make Sj the first 

statement of the join node J. 

6. Turn off CSS-FLAG in the control node for S; 

Stop. 

Constant Folding 

Constant folding is compile-time evaluation of an 

expression whose operand values are constants. To perform 
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constant folding, a compiler must detect the sections of a 

program where a variable takes on constant values. The 

constant folding procedure described in this section is 

based on an exhaustive evaluation scheme. In exhaustive 

evaluation program analysis, an expression is evaluated with 

the set of possible operand values which may be used to 

execute that expression at run-time. Figure 27 illustrates 

the limitation of what Kildall[21] calls simple constant 

folding technique. The classical constant propagation 

framework cannot discover that the expression a + b in 

Figure 27(b) is the unique constant 3 because constant 

propagation is applied to expressions whose variable 

operands have unique constant values at an expression 

evaluation point. 

The information for recognizing potentially constant 

valued expressions are obtained from the dependent operand 

field of a statement record in the distinct statement table 

a . - 1 .-
b := 2 

(a) 

Figure 27. 

a . - 1 a . -.- .-
b . - 2 b . -.- .-

(b) 

Simple and Non-Simple Constant 
Expression 

2 
1 
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and from the field in a variable's version record which 

indicates whether an instance of a variable is a constant or 

not. If the dependent operand field of an arithemetic or a 

logical expression is empty, then the operands used in that 

expression are symbolic constants. Expressions with all 

symbolic constant operands are folded immediately. 

In typical programs, few expressions have constant 

values. Applying constant propagation to an entire program 

as is performed in [21, 37] is unnecessary because only loop 

invariant expressions, nonloop expressions, and expressions 

with symbolic constants can have constant values. To reduce 

the cost of constant folding, these classes of statements 

are the only ones analyzed. 

Constant folding is performed with other optimizations 

while the operand dependence graph representation of a 

program region is being built. The versions of each operand 

reaching an expression's evaluation point is determined and 

from this information, the constant folding procedure enters 

a simple mode or an exhaustive evaluation mode. A simple 

analysis mode is entered when each operand of an expression 

has unique reaching definition at an expression evaluation 

point. The constant folding procedure makes one expression 

evaluation in a simple mode. When any operands of an 

expression has multiple reaching definitions, the constant 

folding procedure goes into an exhaustive evaluation mode. 

To perform exhaustive analysis of a constant folding 

candidate, the flow graph nodes where to evaluate a constant 
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folding candidate are determined first. An evaluation point 

is the first flow graph node on a distinct forward path to 

an expression evaluation point, such that at least one of 

the variable operands has a unique definition which reaches 

the end of that flow graph node. The constant folding 

candidate is not moved to any of the evaluation points, 

rather the evaluation points serves to identify the specific 

operand instances which may be used to execute that 

expression at run-time. After identifying the evaluation 

points, the values of the operands at those points are 

substituted for the operand values and evaluated. If the 

result of the operation is the same at each of the 

evaluation points, then the expression can be folded. 

To apply constant folding to the expression a + b in 

Figure 28, the flow graph nodes with the reaching 

definitions for 8 and b at the top of node B7 are determined 

from the reaching version numbers. 

REACHING-DEF(a; B7 ] = {B2 , B3 , Bs} 

REACHING-DEF(b; B7 ] = {B1 , B4 , Bs} 

Since neither a nor b is defined in node B7 , the reaching 

definitions for a and b are split into two subsets and 

propagated along the immediate predecessors of node B7 . 

Thus REACHING-DEF[a; B7 ] is split into {B2} and {B3 , B5}, 

while REACHING-DEF[b; B7 ] is split into {B1 } and {B4 , Bs}• 

The subsets {B2} (for a) and {B1 } (for b) are propagated to 

B2 and the other two subsets are propagated to B6 . 
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At node B2 , there is a unique definition of a reaching 

the end of B2 . Hence, node B2 is an evlaluation point. The 

definitions of a and b reaching the end of B6 are further 

split into two subsets and propagated to the predecessor 

nodes B4 and Bs where there are definitions of either a or b 

and the process terminates. The nodes B2 , B4 , and Bs are 

the points to evaluate the expression a + b. The value of 

a + b at all the three points is 3. 

Figure 28. Constant Folding Example 



Algorithm 6. Constant Folding Algorithm 
Input. 

OP: 
RD a: 
RD-b: 
FN: 

Operation symbol. 
Reaching definitions of first operand. 
Reaching definitions of second operand. 
Flow graph node where potentially constant 
expression is located. 

OPD_PAIRS: Possible Operand Combinations at run-time 
output. 

VAL: Value of expression if expression is a unique 
constant. 

FLAG: Status flag indicating whether expression is a 
constant. 

Aux I II ary. 
OPD PAIRS: Pairs of flow graph nodes specifying the 

-possible operand instances to be used to 
evaluate a constant folding candidate. 

Method. 

120 

Determine the possible operand instances which could be 
used to compute an expression at execution time. Then 
perform the operation on the possible operand values and 
compare the results. 

Step1. If jRD_al = jRD_bj = 1, then begin 
fold expression; 
If OP is a logical expression for a 

conditional jump, then modify flow graph; 
End 

Step2. Else begin /* enter exhaustive mode */ 
N := 0; I* number of elements in OPD PAIRS */ 
OPD PAIRS := m; 
evai pairs(OPD PAIRS, RD a, RD b, FN, N); 
FLAG-= TRUE; - - -
VAL :=value of expression using OPD-PAIRS[O]; 
While N 1: 0 do 

If VAL 1: value of expression using 
OPD PAIRS[N], then begin 
FLAG : = FALSE; 
N := 0; 
End 

Else N := N - 1; 
End if 

Endo 
If FLAG = TRUE, then begin 

Replace expression with VAL; 
If OP is a logical expression for 

conditional jump, then modify flow graph; 
End if 
End 

End if 
End Constant fold 

Figure 29. Constant Folding Procedure 
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Procedure eval_pairs (e_pairs, rd_a, rd_b, fgn, n) 

e_pairs 

rd a 

rd b 

fgn 

n : 

step1. 

possible definition instances to be used to 
execute a constant folding candidate. 
definitions of first operand reaching the 
flow graph node fgn. 
definitions of second operand reaching the 
flow graph node fgn. 
flow graph node currently checked as an 
evaluation point. 
counts the number of elements in e-pairs. 
auxillary storage for subsets of rd a and 
rd_b respectively. 

If lrd_al = 1, then begin 
For each x E rd b do 

e pairs[n] :=-(fgn, x); 
n-:= n + 1; 
En do 

End 

Else if lrd_bj = 1, then begin 
For each x E rd a do 

End 

e pairs[n] := (x, fgn); 
n-:= n + 1; 
En do 

Else I* at least two definition instances of 
each operand reach node fgn */ 

begin 
For each flow graph dag predecessor, p 

of fgn do 
Ya := {x E rd_a I p is forward reachable 

from x}; 
Yb := {x E rd_b I p is forward reachable 

from x}; 
eval pairs(e pairs, Ya, Yb, p, n); 
Endo- -

End 
End if 

End Eval-pairs. 

Figure 30. Evaluation Points Determination 
Procedure 
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Loop Optimization 

Operand dependence graph is very amenable to the 

detection of loop improvement candidates. A fundamental 

step in loop optimization is the recognition of loop 

invariant variables. With loop invariant variables known, 

loop invariant code motion and induction variable 

simplification optimizations can be performed. 

Loop Invariant Statement Detection 

A loop optimization mode is entered when the next flow 

graph node to be processed is an end of loop marker node. 

The operand dependence graph constructor places constants, 

variables referenced or assigned to in a loop in the 

auxillary storage LAVQ. A variable in LAVQ is invariant if 

that variable's version number at the top of a loop's header 

node and at the top of that loop's end of loop marker node 

are equal. 

A statement in a loop, L is invariant in L if every 

source operand of that statement is (1) a constant; (2) a 

loop invariant variable; or (3) value of an expression 

computed from operands of type (1) and (2). In terms of 

operand dependence graph, a statement is a loop invariant if 

every path to an operation instance node through data links 

originates from class (1) and class (2) operands. 

To discover the set of invariant statements in a loop 

using an operand dependence graph, the graph section 
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representing the statements in that loop are searched 

breadth-first. After recognizing the loop invariant 

statements in L, each invariant is analyzed for loop 

invariant motion optimization. The condition for moving an 

invariant statement out of a loop is that the point where 

that statement is located in a loop must predominate every 

exit gate of a loop. 

The set LAVQ of loop active operands is partitioned 

into segments to efficiently manipulate nested loops. A 

segment of LAVQ consists of all the constants and variables 

active in a loop. A stack of segment pointers point to the 

base of each LAVQ segment. The top element of the stack of 

segment pointers identifies the LAVQ segment for the current 

loop. When control leaves an inner loop, the LAVQ segments 

for the inner loop and the parent loop are merged (in a 

union operation) to obtain the LAVQ segment for the parent 

loop. 

The loop invariant detection procedure (Figure 31) 

traverses a particular path as long as a visited node is 

marked invariant. By visiting the operand dependence graph 

nodes breadth-first, the invariance of a lower level node 

can be determined from predecessor nodes. 



Algorithm 7. Loop Invariant Code Motion Algorihm 
Input. 

LAVQ-SEG: Loop active operands. 
HDR: Loop header node. 
ODG of program region. 
Intermediate code program. 

Output. 
Possibly modified ODG of program region. 
Possibly modified intermediate code program. 

Auxiliary. 
LIQ: Loop invariant statements. 
WORKLIST: Sequence of ODG nodes to be traversed. 

Method. 
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Mark the ODG node of each operand in LAVQ SEG whose 
version number at the top of the loop header node and at 
the top of the end of loop marker node is the same 
"invariant" and enter that operand into WORKLIST. Then 
traverse the ODG segment of program loop breadth-first, 
starting at ODG nodes in WORKLIST. Mark each operation 
node whose operand nodes are marked invariant "invariant", 
append operation node to WORKLIST, and append marked 
statement into LIQ. When WORKLIST is empty, apply loop 
invariant code motion test to each statement in LIQ. 

For each operand, v E LAVQ-SEG do 
If version number of v at top of HDR = current version 

number of v, then begin 
place v into WORKLIST; 
mark the ODG node for v "invariant"; 

end if 
en do 
LIQ = ~; 
While WORKLIST is not empty do 

n := first(WORKLIST); /*removes current first item 
from WORKLIST */ 

For each data link successor, s of n in loop do 
If s is not marked "invariant", then begin 

If s is an operand node and the data link 
predecessors of s are marked "invariant", then 

mark s "invariant" and append s to WORKLIST; 
end 
Else begin /* s is an operation node */ 

If every data link predecessor of s is marked 
"invariant", then begin 
If operation at s is not assignment, then 

begin (marks "invariant"; appends to LIQ; 
appends to WORKLIST;) 

end 
Else begin I* operation is an assignment */ 

If destination operand is assigned to 

end 

once, then (marks "invariant", appends 
to LIQ, appends to WORKLIST;) 



end 
end if 

end for 
end while 

end if 

For each statement, s E LIQ do 
If the location of s predominates every exit gate in 

loop, then move s to loop ~re-header; 
end for 
End (Loop_invariant Code Motion). 

Figure 31. Loop Invariant Detection Procedure 

Induction Variable Optimization 
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An induction variable is a variable whose values form 

an arithmetic or geometric progression while control remains 

in a loop. Knowing the first term and common difference 

(arithmetic) or common ratio (geometric) of a progression, 

the succesive terms of that series can be generated. A tree 

structure called sequence tree is used to represent 

induction variables. 

A sequence tree is a representation for the set of 

induction variables dependent on a single basic induction 

variable. The root of a sequence tree is a basic induction 

variable and the other tree nodes are induction variables 

derived from the value of that root induction variable. A 

sequence tree node (except for the root node), sis a child 

of another sequence tree node, p if the value of p is 

referenced directly in the intermediate code statement for 

computing the value of s. 
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A sequence tree node is a 5-tuple (ind-var, init-val, 

step, type, children), where ind-var, init-val, and type 

fields are the name, initial value, and type (arithmetic or 

geometric progression), respectively of an induction 

variable. The step field is a common difference or common 

ratio depending on the value of type field and the children 

component are pointers to subtree nodes. 

Basic Induction Variable Detection. A variable v is a 

basic induction variable if v is initially live on entry to 

a loop and v is assigned to in a loop through a distinct 

statement of the form v := v ± d, where d is a constant or a 

loop invariant. The operand dependence graph constructor 

identifies potential induction expressions and places them 

in BIEQ (basic induction expression queue). An element of 

BIEQ is a statement of the form t = v ± d, where v is a non­

temporary. 

Determining whether v is a basic induction variable 

involves three checks: (1) the temporary t is assigned to v; 

(2) the operand d is either a constant or a loop invariant; 

and (3) no other loop statement may alter the value of v. 

If the expression t = v ± d and the variable v pass the 

three checks, then v is made the root of a sequence tree 

with the children field initially set to null. 

Other Induction Variables. Having identified a basic 

induction variable, the next step is to find other induction 

variables which derive their values from that basic 

induction variable are determined by depth-first search of 
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an ODG. Suppose v is an induction variable (basic or 

nonbasic). The data link successors of v in the operand 

dependence graph are visited depth-first looking for 

induction variables. Graph search along a path continues as 

long as any new operation node visited is a statement of the 

form 

t v ± d; 

t = v * d; or 

(where dis a loop invariant or a constant). If a statement 

is one of these three forms, then a sequence tree node is 

created for t and the address of the tree node for t is 

added to the children list of tree node v. The field values 

of a sequence tree node for each type of induction variable 

are filled using the template in Figure 32. As an example, 

consider the loop code below. 

$L1: 

$L2: 

i := 3 
CMP i, 1000 
BGT $L2 

t1 i * 4 
t2 i - 1 
t3 = t2 * 4 
t4 = INDEXED LOAD 
ts = i - 2 
t6 = ts * 4 
t7 = INDEXED LOAD 
ts t4 + t7 

f, 

f, 

INDEXED LOAD f, t1, 
t9 = i + 1 
i := t9 
CMP i, 1000 
BLE $L1 

t3 I* f[i - 1] *I 

t6 I* f[i - 2] *I 
I* f[i - 1] + f[i - 2] *I 

ts I* f[i] = I I *I 
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Statement form: t = v ± d 

child= create tree node(); I* returns tree node *I 
child.ind var T= t;-
child.init val := parent.init val ± d; 
if constant(parent.init val, a), then 

fold(child.init val); 
child.step := parent.step; 
child.type := 'AP'; I* arithmetic progression *I 
parent.children := parent.children U {child}; 

End I* t = v ± d *I 

statement form: t = v * d 

child= create tree node(); 
child.ind var != t;-
child.init val := parent.init val * d; 
if constant(parent.init val, a), then 

fold(child.init val); 
child.step := parent.step * d; 
if constant(parent.step, d), then 

fold(child.step); 
child.type := 'AP'; 
parent.children := parent.children U {child); 

End I* t = v * d *I 

Statement form: t = power(d, v) 

child :=create tree node(); 
child.ind var :~ t; -
child.init val := power(d, parent.init val); 
if constant(parent.init val, d), then-

fold(child.init val); 
child.step := power(d, parent.step); 
if constant(parent.step, d), then 

fold(child.step); 
child.type := 'GP'; I* geometric progression *I 
parent.children := parent.children u {child); 

End I* t = power(d, v) *I 

constant(x1 , ... , Xn) =true if each xi is a constant; 
= false otherwise. 

Figure 32. Template for Defining Fields of a 
Sequence Tree Node 
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The operand dependence graph segment relevant to 

identifying the induction variables in the example loop is 

shown in Figure 33. The statements t2 = i - 1; ts = i - 2; 

and t9 = i + 1 are entered into BIEQ as loop statements are 

represented on the ODG, but only t9 = i + 1 meets the 

conditions for basic induction expression. Next the data 

links for node i are traversed depth-first to locate other 

induction variables dependent on i. Figure 34 is a sequence 

tree representation of the induction variables in the 

example loop. 

Figure 33. ODG Segment Showing Loop 
Induction Variables 
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t2, 2, 1, ap 

t3, 8, 4, ap t6, 4, 4, ap 

Figure 34. Sequence Tree of Induction Variable 
Family 

Induction Variable Prunning. After constructing a 

sequence tree for a class of related induction variables, 

the next step is to identify and eliminate non-essential 

induction variables from a loop. This step is called 

induction variable prunning. An induction variable is 

prunnable if that induction variable is referenced only in 

statements which compute other induction variables (except 

basic induction variables). The subset of induction 

variables examined for prunning are those represented at the 

internal nodes of a sequence tree. 

In the running example, the statements t2 = i - 1 and 

ts = i - 2 qualify for prunning because t2 is used only in 

the expression t2 * 4 and ts is referenced in the expression 

ts * 4. Before eliminating a non-essential induction 

variable, the initial and step values of that variable must 
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be preserved since the initial and step values of a child 

sequence tree node are evaluated from the initial and step 

values of a parent node. 

If both the initial and step values of a non-essential 

induction variable are constants, then the values are 

already preserved since they are substituted directly to 

compute the initial and step values of descendant sequence 

tree nodes. However, if either the initial value, the step 

value, or both of a prunning candidate is not a constant, 

then the statement to compute a nonconstant item (initial or 

step value) must be added to a loop's pre-header node. 

After inserting the necessary statements in a loop pre­

header, a non-essential induction variable can be removed. 

Returning to the example loop, the statements t2 = i - 1 and 

ts = i - 2 can be deleted from both the loop and the 

sequence tree. 

Induction Variable Simplification. Induction variable 

simplification is essentially a strength reduction 

procedure. Strength reduction is applied to induction 

variables of the form t = v * d or t = dv, where vis an 

induction variable. Suppose the statement t = v * d is an 

induction expression. Then the expression v * d is replaced 

by introducing two new statements, one in a loop pre-header 

and the second in a loop's body. 

In a loop's pre-header block, the statement 

t = t.init val 

(where t.init val is the expression or constant contained in 
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the initial value field of the sequence tree node fort). 

Let u be the basic induction variable from which the value 

of t is derived. Below each instance of the statement 

u = u ± c in a loop, introduce the statement 

t = t ± t.step 

(t.step is the value of the step field of the sequence tree 

node for t). 

Similarly, if an induction expression is of the form 

dv, the statements 

t = t.init_val; and 

t = t * t.step 

are inserted at a loop's pre-header and in a loop's body (at 

the appropriate points), respectively. After induction 

variable prunning and induction variable simplification 

steps, the example loop is transformed to the version below. 

$L1: 

$L2: 

t1 = 12 
t3 = 8 
t6 = 4 

t4 = INDEXEDLOAD 
t7 = INDEXED LOAD 
ta = t4 + t7 
INDEXEDSTORE f, 
t9 = i + 1 
i . - t9 .-
t1 = t1 + 4 
t3 = t3 + 4 
t6 = t6 + 4 
CMP i, 1000 
BLE $L1 

f, t3 
f, t6 

t1, t8 

Extracting the induction variables and representing 

them with sequence trees has several advantages. One 

advantage is that unnecessary temporaries and statements are 
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not introduced into the intermediate code. In the induction 

variable optimization scheme described in [6, 11], too many 

temporaries are created and requires additional constant 

propagation, scalar propagation, and useless code 

elimination passes to clean up the code. 

A second advantage is that after the graph search to 

detect the set of induction variables, the remaining steps 

of the induction variable optimization procedure do not 

involve further graph walk. Even in the one graph 

traversal, only the relevant parts of a loop (those nodes 

connected to basic induction variables) are visited. With 

the exception of program dependence graph[15] based 

approach, other methods scan every loop statement. 

Thirdly, because the sequence tree is not embeded in 

the operand dependence graph, it can be easily integrated 

into any compiler. ottenstein's[28] method is efficient 

when the intermediate code representation is the program 

dependence graph, but it requires prior applications of 

constant folding, common subexpression elimination, scalar 

propagation, etc. There is no such ordering with the 

operand dependence graph based method. 

Complexity of Code Optimization 

The main distinguishing characteristics of operand 

dependence graph based program analysis are (1) code 

optimization is confined to control structures (straight 

line code segments, if-then-else, and loop); (2) individual 
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statements are analyzed for a particular type of redundancy; 

(3) program analysis and optimization are combined in one 

step; (4) minimal data flow information(reaching version 

numbers) is used to detect redundant statements; and (5) 

optimization decision is based the section of a program 

already processed. 

Information used to detect feasible code optimizations 

are usually propagated through control flow paths. Any 

program has a finite number of parallel paths (paths without 

a common join) determined by the structure of "if" and case 

statements in a program. The maximum number of parallel 

paths in a program is bounded by the number of alternate 

control flow paths in the conditional structures of that 

program. This bound denoted n is called the data flow width 

of a program flow graph. A statement instance at some 

point, p is redundant if there is an active previous 

instance of that statement on each distinct forward path 

leading to p. Thus, to determine if a particular statement 

instance is redundant, at most n previous instances of that 

statement are examined. 

Lemma 11 

If h is the number of expressions analyzed for code hoisting 

and n is the data flow width of a program flow graph, then 

the complexity of code hoisting optimization is O(h*n). 

Proof. The number of disjoint instances of any 

distinct statement with a common instance signature in a 
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conditional structure is at most n. The code hoisting 

algorithm first tries to move code to the highest level of a 

conditional structure. If that attempt fails, then the 

algorithm performs code motion bottom-up (if the condtional 

statement is nested). At most both the highest level motion 

and the nested if analyses are performed on a code motion 

candidate. In the highest level code motion analysis, O(n) 

disjoint instances are processed during path cover test. 

There are (n - 1) "if" statements in a conditional 

structure with n data flow width. Thus, there are (n - 2) 

"if" statements nested within an if structure with (n - 1) 

"if" statements. The nested if analysis part examines two 

disjoint instances per nested "if" statement giving a cost 

of 0(2*n- 4) = O(n). Therefore, the time complexity for 

applying code hoisting optimization on n disjoint instances 

of a statement is O(n + n) = O(n). o 

Lemma 12 

If r is the number of partially redundant expressions 

analyzed for common subexpression elimination and n is the 

data flow width of a program flow graph, then the cost of 

common subexpression elimination is at most O(r*n). 

Proof. There are at most n previous instances of a 

partially redundant statement which reach a common join. It 

takes O(n) to determine whether n program points is a path 

cover for some other point. Thus, the complexity for 

analyzing r partially redundant statements for full 
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redundancy is O(r*n). 

Lemma 13 

Let s be the number of code ~inking candidates subjected to 

code sinking optimization analysis and let n be the data 

flow width of a program flow graph. Then the complexity of 

code sinking analysis is O(s*n). 

D 

Proof. Code sinking optimization and common 

subexpression elimination have the same path cover 

constraint. Replacing r in lemma 12 with s reduces lemma 12 

to lemma 13. o 

Lemma 14 

Suppose f is the number of expressions analyzed for constant 

folding and n is the data flow width of a program flow 

graph. Then the cost of constant folding optimization is 

O(f*n). 

Proof. The constant folding procedure evaluates a 

constant folding candidate with the operand values defined 

on each of the possible paths control may transfer to the 

point where a folding candidate is located. The number of 

different potential definitions of a variable reaching any 

program point is at most n. This implies the number of 

expression evaluations to determine whether an expression is 

a unique constant is O(n). f different expressions will 

require at most O(f*n) expression evaluations. D 
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Let n be the total number of loop statements over all 

program loops. The cost of loop optimization is O(n). 
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Proof. At most O(n) statements are visited during loop 

invariant statements detection and O(n) statements are 

visited during search for induction variables giving a total 

of O(n + n) = O(n). o 

Theorem 2 

Optimizations performed with the operand dependence graph 

are safe. 

Proof. A code optimization procedure is safe if 

nonredundant statements are not eliminated and the optimized 

version of a program does not induce any run-time errors not 

present in the unoptimized code. Three factors ensure the 

safety of any transformation applied to a program in an 

operand dependence graph based implementation: 

(1) predominated-inverse-post-dominated ordering of flow 

graph nodes guarantees that a node is not processed until 

the flow graph nodes which may compute values referenced in 

that block have been processed. Thus, the proper reaching 

definitions are always used to detect redundancies within a 

program region. (2) Path cover constraint is enforced for 

all code optimization problems and loop invariant motion is 

conservative. (3) Code motion related optimizations are not 

performed until either a join or an end of loop marker node 

is seen. These factors prevent premature optimizations. 



138 

Hence, code improvement transformations applied using 

operand dependence graph are safe. 

Theorem 3 

Let P be an unoptimized version of an intermediate code 

program and let P 1 represent the optimized version after 

applying operand dependence graph intermediate code 

improvement procedure on P. Suppose P 1 1 is the resulting 

program after running P 1 through the optimizer. If useless 

code elimination is not applied on P 1 and the regions of P 

are preserved in P 1 , then P 1 1 = P 1 • 

0 

Proof. Since the regions of Pare the same for P 1 , 

any inter-region redundancy in P will not be identified in 

P 1 • Because lexically identical expressions use the same 

temporary name to store the value of that distinct 

expression, redundancies involving expressions using 

intermediate results are recognized in the same optimization 

pass. Therefore, no new intrasegment redundancies are 

discovered in P 1 • 

The induction variables detected in P 1 are the basic 

induction variables and "strength reduced" induction 

variables of P. These set of induction variables will not 

require further simplification. Lastly, statements moved to 

a loop pre-header node will not contain common 

subexpressions since intra-region common subexpressions are 

eliminated before loop invariant code motion and induction 

variable optimizations. Therefore, running P 1 through the 
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optimizer does not change P'. c 

Discussion 

Global program analysis by data flow analysis technique 

is an O(N2) process, where N is the number of nodes in a 

flow graph. Data flow information is represented with bit 

vectors and most of the vectors are usually sparse because 

basic blocks are relatively short. If N is large, then the 

O(N2) cost becomes expensive. Redundancy analysis cost with 

the operand dependence graph is dependent on two factors; 

nesting depth of conditional statements and the number of 

partially redundant statements in a program. 

Studies indicate that most optimizations occur in basic 

blocks [8] and in inner loops of nested loops. This implies 

that for many programs, the number of global redundancies 

will be small. Let L be the length of a program (number of 

statements) and let D be the number of distinct statements 

in a program. Then (L - D) is the number of statements 

which may be analyzed for code hoisting, common 

subexpression elimination, and code sinking. The cost of 

applying duplicate statement reduction optimizations to 

(L - D) statements using an operand dependence graph is 

O(n * (L- D)). In the worst case, (L- D) is O(N) and n is 

N/2, resulting in O(N2) process. For many programs, n and 

(L - D) will be small in which case the cost of redundancy 

elimination is almost linear. 
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Summary 

The concepts (path cover, variable version numbers, 

operand dependence graph, and partial redundancy) developed 

in earlier sections are tied together to detect various 

forms of redundancies in an intermediate text. A uniform 

concept of partial redundancy is used to detect common 

subexpressions, hoistable code, and code sinking candidates. 

The cost of program improvement is proportional to the 

product of the data flow width of a program flow graph and 

the number of partially redundant statements in a program. 

An induction variable optimization procedure which uses 

sequence trees to hold induction variables before committing 

to introducing new statements is developed. 



CHAPTER VIII 

SIMPLE RECURRENCE LOOP OPTIMIZATION 

Simple Recurrence Array Reference 

Many numerical algorithms contain recurrent loops. A 

recurrent loop is a repetition structure in which a value 

computed in some iteration, i is referenced in a later 

iteration, j (j > i). Vectorizing compilers[?, 22] employ 

elaborate algorithms to detect the presence of a recurrence 

in array references to determine when to generate vector 

code. However, sequential code compilers do not include 

recurrence analysis in its suite of optimization procedures. 

This section presents a method for improving sequentially 

executed loop with simple linear recurrence array 

references. 

A loop, L is a simple linear recurrence loop if L has 

an array in which at least two distinct elements of that 

array are accessed in every iteration, such that at least 

one of the elements accessed in the ith iteration of L is 

also referenced (indexed load operand) in the (i+l)th 

iteration. An example of a simple recurrence loop is 

for (i = 3; 
f[i] = 

i ~ 1000; i++) 
f[i-1] + f[i-2]; 

The value of f[i-2] in the next iteration is the value of 
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f[i-1] in the current iteration. Similarly, the value of 

f[i-1] in the next iteration is the value of f[i] in the 

current iteration. 
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Array element access is usually more expensive than the 

access of simple values because of the extra code generated 

to map an element selection expression to a memory location. 

Simple recurrence optimization is the reuse of an array 

element value accessed in the ith execution of a loop and 

referenced in the (i + l)th execution of that loop without 

reloading that element from the array storage. 

An array to be analyzed for simple recurrence 

optimization should possess the following characteristics: 

1. all the subscript expressions used to specify 

element locations are induction variables; 

2. the initial and step values of each induction 

variable are known constants; and 

3. at least two distinct elements of that array are 

accessed in a loop and one of the accesses is an 

indexedload operation. 

Suppose A is an array accessed with two subscript 

expressions, e 1 and e 2 which satisfy properties (1) and (2) 

and suppose further that e1 is an indexedload operand on A. 

The reference A[e1 ] is a simple recurrence optimization 

candidate with respect to the array element A[e2 ] if 

(1) either both e1 and e 2 are increasing sequences of the 

same type or both e 1 and e 2 are decreasing sequences of the 

same type; (2) step value of e1 = step value of e2; 
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(3) the difference between the initial values of e 2 and e1 

is equal to the step value of e 1 ; (4) A[e1 ] and A[e2 ] are 

accessed in every loop iteration; and (5) no statement which 

lies on an acyclic path originating at the loop header block 

to any point where A[e1 ] is referenced for the first time in 

a loop may store into A[e1 ]. 

Let H be the header block of a loop, and let 

. . . , Bk} be the set of loop blocks such that 

{B1 , ... , Bk} x Hare back edges. A loop statement, sis 

executed in every iteration if any forward path from H to 

each of the blocks {B1 , ... , Bk} contains an instance of s. 

Condition (4) for simple recurrence loop optimization is 

satisfied if each forward path from the header block H to 

every node in the set {B1 , ... , Bk} has statements which 

access both A[e1 ] and A[e2]. 

A simple procedure for determining whether the elements 

A[e1 ] and A[e2 ] are both accessed in every iteration 

consists of the following steps. 

step 1. If loop is a single node loop, then condition is 

satisfied; 

Else perform steps 2-4. 

step 2. Compute the sets 

ACCESS_POINT[A, e1 ] 

ACCESS_POINT[A, e2] 

{ n I A[e1 ] is accessed in 
block n} 

= { m I A[e2 ] is accessed in 
block m} 
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Step 3. Compute the composite forward reachability sets 

FR1 = U FWR[n] 
n E ACCESS_POINT[A, e1 ] 

FR2 = U FWR[m] 
m E ACCESS_POINT[A, e 2 ] 

(where FWR[x] = forward reachability set of node x) 

Step 4. Calculate FR1 () FR2 

Compute P = U pred[B·] 
Bi is a looping node. 

Condition (4) is satisfied if 

p .Q FR1 (\ FR2 

and 

either 

or 

Element Update Constraint 

The problem is given an array, A and a subscript 

expression, e for some element of A referenced in a loop; 

can the location A[e] be modified before being referenced? 

To answer this question, these sequence of steps are 

followed. 

The first step is to determine whether there is a store 

into any element of A prior to the reference A[e]. This is 

accomplished by comparing the version history of A at the 

point of the indexedload operation with the version number 

of A at the top of the loop header block. If they are 

equal, then there is no store into A[e]. Suppose the two 

numbers are not equal, then the relationship between the 
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location assigned to and the location referenced is 

determined next. 

If the array A is a call-by-reference parameter and 

interprocedural alias analysis information is not available, 

then it is assumed that any element of A can be assigned to. 

Another worst case assumption is made if the subscript 

expression for an indexedstore is not an induction variable. 

When the subscript operand for an indexedstore 

operation is a loop induction variable, but either the 

initial value of the induction variable or the step value of 

the induction variable is not a numeric constant, the 

destination of the indexedstore is taken to be any element 

location. This situation is illustrated in the loop below. 

for (i = 3; i ~ 1000; i++) { 
f[i-d] = 5; 
f[i] = f[i-1] + f[i-2]; 

} 

The subscript expression i - d is an induction variable, but 

the value of d is not known. If the value of d is one or 

two, then f[i-1] or f[i-2] cannot be a simple recurrence 

reference. 

Suppose the subscript expression for the indexedstore 

into A is an induction variable whose initial and step 

values are known constants, then the indexedstore subscript 

and the indexedload subscript are subjected to mathematical 

analysis to determine if there is a loop iteration in which 

both subscripts are equal. Let s and e represent the 

indexedstore subscript and indexedload subscript, 



respectively. The analysis involves equating the formula 

for calculating s and e and then solve the resulting 

equation for integer solutions. If an integer solution 

exists, then the array reference A[e] cannot be a simple 

recurrence array reference. 
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In order to find solutions to the sequence equation, 

the sequence type of s and the sequence type of e must be 

considered. Three equation classes are distinguished based 

on the sequence type of s and e: (1) both s and e are 

arithmetic sequences; (2) both s and e are geometric 

sequences; and (3) s and e are of different types. 

The nth term, tn of an arithmetic progression is given 

by the formula 

tn = a+ (n-l)d, (n, d ~ 1) 

where a is the first term (initial value), and dis the 

common difference (step value). For a geometric 

progression, the nth term gn is given by 

gn = ~rn-1 (n ~ 1, r > 1) 

where ~ is the first term, and r is the common ratio. 

Suppose both subscripts are arithmetic progressions. 

Let 

and 

a 2 + (n-1)d 2 

be the formulas for their nth terms. The equation 

a 1 + (n-1)d1 = a 2 + (n-1)d2 

has an integer solution if 
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(d2 - d1 ) divides (a1 - a 2 ), 

(a1 - a 2 ) = (d 2 - d 1 ) = 0, 

(a1 = a 2 and n = 1). 

For the case where both subscripts are geometric 

progressions, let 

and 

~2r2n-1 
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be the formulas for the nth term of s and e, respectively. 

The equation 

~1r1n-1 = ~2r2n-1 

has an integer solution if 

(~ 1 = ~ 2 and n 1), 

(~1 - ~2) = (r1 - r2) = 0, or 

(~ 1 divides ~ 2 ) and (r2 divides r 1 ) 

When one of the subscripts is a geometric sequence and 

the other is an arithmetic sequence, the equation 

a + (n-1)d = ~rn-1 

is solved. 

A solution to this equation exists if the following 

conditions are simultaneously satisfied: 

a + d = ~r 

~ divides (a + d) 

r divides (a + d) 

d divides a 

d divides ~ 
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If there does not exist an integer solution to the formed 

equation, then the value of A[e] is not computed in the same 

loop iteration it is referenced. 

Simple Recurrence Elimination 

Given that an array reference A[e1 ] is a simple 

recurrence reference with respect to another element access 

A[e2], the reference A[e1 ] can be eliminated from a loop by 

performing the following steps in the sequence presented. 

Let t 1 denote the temporary into which the element A[e1 ] is 

loaded in an indexedload operation and let t 2 denote the 

value of A[e2 ]. 

step 

Step 

Step 

1 . 
Move the indexedload operation 

t 1 = A[e1 ] 
to the loop pre-header, but below the statement which 
computes the initial value of e1 in the pre-header. 
2. 
Let H be the header node of the loop in question. 
For each block, B such that (B,H) is a backedge do 
If B is a conditional block, then begin 

If A[e1 ] is an operand of the comparison operation 
for the conditional jump, then begin 

(1) Create a new temporary t 3 ; 
(2) Just before the compare operation introduce the 

copy statement t 3 = t1 ; 
(3) Substitute t 3 for t 1 in the comparison statement; 

End if 

End 

Just before the compare statement in block B, 
introduce the copy statement t 1 = t2 

Else just before the unconditional jump statement in B, 
introduce the copy statement t 1 = t 2 
En do 
3 • 
If the only use of e1 in the loop after performing 
step1 and step2 is in the induction statement 
of the form 

e 1 = e ± c, or 
e 1 = e 1 * c, 

then eliminate the induction statement. 
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In many structured programs, a loop has only one 

backedge in which case the copy statement t 1 = t 2 is 

introduced in one loop block. Except when A[e1 ] is an 

operand of a compare statement in a block that contains the 

looping statement, simple recurrence array reference 

elimination reduces the number of statements in a loop. 

Even when the value of A[e1 ] is used to determine loop 

termination, two scalar copy statements will execute faster 

than indexedload and induction variable update operations. 

Moreover, if some of the scalar operands t 1 , t 2 , and t 3 are 

placed in registers, loop execution time will be 

significantly improved. 

Simple Recurrence Analysis 

There are two stages of simple linear recurrence 

analysis. The first stage identifies array variables in a 

loop to be tested for simple recurrence optimization, while 

in the second stage simple recurrence test are performed on 

subscripts of the arrays selected in stage one. 

In the first step, array variables accessed with one 

subscript or not referenced in an expression are removed 

from consideration. Also, arrays accessed with non 

induction variable subscript or accessed with induction 

variables whose initial values or step values are not known 

constants are removed from the list of test candidates. 

An array variable not disqualified in the first phase 

has at least two distinct subscripts which select c' 1 ements 
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of that array. Suppose A is an array for simple recurrence 

test. The second phase of the recurrence test proceeds as 

follows. LetS= {s 1 , ••. , sk}, k ~ 2, be the set of 

subscripts used to access A in a loop. 

Step 1. 

step 

Partition S into two subsets Sa and Sg, such that 

Sa {S 8 Sis is an arithmetic sequence} 

Sg = {S 8 sjs is a geometric sequence}. 

2. 

If Sa is nonernpty and Sa has at least two elements, 

then partition Sa into the subsets I and D, where 

I = {i 8 Sa and i is an increasing sequence} 

D = {d E Sa and d is a decreasing sequence}. 

Step 3. 

If I has at least two elements, then arrange the 

elements of I in increasing initial subscript value 

order. For each pair of adjacent elements s 1 , s 2 in I, 

where s 1 precedes s 2 in I check the following 

conditions: 

(l) s 1 is an indexedload subscript. 

(2) step value of s 1 = step value of s 2 . 

(3) Second value of s 1 = initial value of s 2 . 

(4) A[s1 ] and A[s 2 ] are both accessed in every 

iteration. 

(5) Any indexedstore operation into A which precedes 

the reference A[s1 ] may not store into A[s1 ]. 

(6) If the above conditions are satisfied, then apply 
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simple recurrence elimination procedure on A[s1 ]. 

Step 3b. If D has at least two elements, then arrange 

the elements of D in decreasing initial value order. 

For each adjacent elements of s 1 , s 2 in D, where s 1 

precedes s 2 in D, repeat the six steps performed for I. 

Step 4. 

If Sg has at least two elements, then substitute Sg for 

Sa and repeat step2 and step3. 

The fibonacci-like loop 

for (i = 3; i ~ 1000; i++) 
f[i] = f[i-1] + f[i-2]; 

serves as an example to illustrate the simple recurrence 

removal procedure. First the array f qualifies for simple 

recurrence test. The subscripts i, i - 1, and i - 2 are 

all arithmetic sequences and their initial values and step 

values are constants. 

At the beginning of the second phase of the analysis, 

the setS= {i, (i- 1), (i- 2)} is formed. In Step1, Sis 

partitioned into the subsets 

Sa = S 

sg m 
At step2, Sa is further partitioned into I and D. The D 

subset is empty because the subscripts i, i - 1, and i - 2 

are all increasing sequences. The initial values of i, 

i - 1, and i - 2 are 3, 2, and 1, respectively, and the step 

values of i, i - 1, and i - 3 are 1, 1, and 1, respectively. 

Ordering the subscripts in I in increasing initial value 
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order produces the sequence 

I= { (i- 2), (i- 1), i} 

Next, the adjacent pair (i - 2, i - 1) are subjected to 

the five tests in step3. Since the pair (i - 2, i - 1) pass 

the five tests, simple recurrence elimination procedure can 

be applied to the element f[i- 2]. Let t 1 and t 2 be the 

temporaries for storing the values of f[i- 2] and f[i- 1], 

respectively. The statement 

t1 = f[1] 

is introduced outside the loop and inside the loop the 

statement 

t1 = t2 

is inserted at the end of the loop code. After this 

transformation the loop code becomes 

t1 = f[1] 
for (i = 3; i ~ 1000; i++) { 

t 2 = f[i-1); 
f[iJ = t 2 + t 1 ; 
t1 = t2; 

} 

The remaining pair (i - 1, i) also passes the simple 

recurrence test and f[i - 1] is moved out of the loop. The 

final code after eliminating the recurrence array references 

f[i - 1) and f[i - 2] is 

t1 = f[1); 
t 2 = f[2J; 
for (i = 3; i ~ 1000; i++) { 

t3 = t2 + t1; 
f[i] = t3; 
t1 = t2; 
t2 = t3; 

} 
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Loop Unrolling and Simple Recurrence 

Ordinarily loop unrolling improves the execution time 

of a program loop by reducing the number of times the 

termination condition is tested, but usually at the expense 

of a larger loop code. Under certain circumstances a loop 

can be unrolled to transform a non simple linear recurrence 

loop to an equivalent loop with simple recurrence as the 

example below illustrates. 

for (i = 3; i ~ 1000; i++) 
A[i] = A [i-2] + 5; 

This loop is not a simple linear recurrence loop 

because when i = 4, i - 2 = 2 != 3. If the loop is unrolled 

twice as in 

for (i = 3; i ~ 1000; i+=2){ 
A[i] = A[i-2] + 5; 
A[i+1] = A[i-1] + 5; 

} 

then the array references become simple recurrence 

references. When i = 5, A[i-2] is A[3] (A[3] is defined in 

the first iteration) and A[i-1] is A[4] (A[4] is assigned to 

in the first iteration). Applying simple recurrence array 

reference elimination procedure to the unrolled loop results 

in the loop code below. 

t1 = A[1]; /* A[i-2] */ 
t2 = A[2]; /* A[i-1] */ 
for (i = 3; i ~ 1000; i+=2) { 

t3 = t1 + 5; 
A[i] = t3; 
t4 = t2 + 5 ; (*) 
A[i+1] = t4; 
t1 t3; 
t2 = t4; 

} 
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The condition under which loop unrolling should be 

applied to induce simple recurrence relation is when all the 

conditions for simple recurrence loop are satisfied except 

for the third constraint. To determine how many times to 

unroll a loop, the formula for calculating the nth term of 

the indexedload subscript is used. 

Suppose the subscript expressions which failed the 

simple recurrence test are e1 and e 2 and suppose further 

that e1 precedes e 2 in the sorted order. Assuming e 1 and e 2 

are arithmetic progressions, the equation 

a 1 + (n - 1)d = a 2 

is solved to determine the term (n) of the sequence e1 which 

equals the first term (a2 ) of the sequence e 2 • The minimum 

number of times to unroll a loop to create the maximum 

number of simple recurrences is n - 1. Unrolling the loop n 

or more times does not increase the number of simple 

recurrences, however, it does induce common subexpressions 

among some of the array references. 

Coming back to the example loop 

for (i=3; i ~ 1000; i++) 
A[i] = A[i-2] + 5; 

The formula for the nth term of e1 is 

1 + (n - 1) 

(where a1 = 1, d = 1) 

and the first term of e 2 is 3. 
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Solving the equation 

1 + (n - 1) = 3 

yields n - 1 = 2 or n 3. Thus, if the loop is unrolled 

twice, there will be two simple recurrences. 

Suppose the example loop is unrolled three times, then 

the resulting code is 

} 

for (i=3; i ~ 1000; i+=3) { 
A[i] = A[i-2] + 5; 
A [i+l] = A[i-1] + 5; 
A[i+2] = A[i] + 5; 

Notice that in the third statement of the unrolled loop, the 

element A[i] is referenced creating a common subexpression 

with respect to the first statement, but the number of 

simple recurrences is still two. 

Summary 

An optimization procedure for simple recurrence loops 

is developed for improving sequentially executed loops. 

Simple recurrence detection is a special case of general 

detection of recurrences in a loop. Simple recurrence array 

reference optimization replaces indexedload operations 

involving arrays with scalar copy statements. The 

improvement in loop exeution time comes from the elimination 

of the statements which map subscript expressions to array 

elements memory addresses. 



CHAPTER IX 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

Summary 

This study has demonstrated that an operand dependence 

graph is a viable alternative to current methods of compiler 

code improvement and that common subexpression elimination 

(local and global), code motions, and loop optimizations can 

be performed in a single optimization pass in a region 

relative code optimization scheme. An operand dependence 

graph representation of a program is not sufficient to 

detect feasible optimizations, but it does play a very 

important role - that of highlighting potentially redundant 

statements. Control flow and variable definition information 

(reaching version numbers) are then used to decide complete 

redundancy. In this way, blind searches for feasible 

optimizations can be reduced. 

The concepts of variable version numbers, path cover, 

conditional environment cover, and partial redundancy are 

developed to unify common subexpression, code hoisting, and 

code sinking optimization problems which traditionally 

required different data flow analysis steps. The fact that 

commonalities exist between these code optimization problems 

156 
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has a positive impact on their implementation; these 

optimization procedures can be implemented with a common set 

of program modules, thereby reducing the size of a code 

optimizer. 

Useless Code Elimination 

Useless code cannot be performed in a one-pass 

optimization procedure when program statements are processed 

in normal program execution order. To be able to detect 

redundant assignment to a variable, the definitions and uses 

of that variable must be known. Complete variable 

definition information is not available during operand 

dependence graph construction. In order to add useless code 

detection capability to an operand dependence graph, one of 

two approaches can be used; (1) analyze a program in two 

passes or (2) process the program flow graph in reverse 

topological order. 

With a two-pass optimization approach, the other 

optimizations are performed in one pass. Then in the second 

pass, each variable assignment operation is examined to 

determine if that instance of a variable may be referenced 

in some other statement. Processing the flow graph regions 

in reverse topological order is attractive because useless 

code elimination and the regular optimizations can be 

performed in a one pass. However, there is a small price to 

pay - constant folding opportunities may be missed. In my 

view, useless code detection should be placed in the 



jurisdiction of a code generator because of the strong 

interaction between register allocation and useless code. 

Improvements 
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The partitioning of a control flow graph into control 

regions needs improvement. Currently, all the nodes of a 

program region either belong to a loop structure or an 

acyclic structure. A program region partitioining scheme 

which combines both acyclic and loop structures may enhance 

the detection of some common subexpressions currently 

classified as inter-region common subexpressions. Moreover, 

larger program regions translate to fewer number of distinct 

statement table initializations during the construction of 

an operand dependence graph of a program region. 

Operand dependence graph based code optimization 

restricts redundant computation detection to lexically 

identical expressions. The limitation of this pproach is 

that any redundancy induced by value equivalence cannot be 

detected. Redundancy recognition by value equivalence is 

more general than textual equivalence, but a value 

equivalence technique must maintain equivalence classes of 

equal variables. I am not sure the addition of an 

equivalent variables determination procedure to an operand 

dependence graph will significantly improve code quality, 

since most redundancies are introduced in loops where array 

references are linearized. May be using value numbers 

instead of version numbers will identify both types of 
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redundancies. What impact value numbers will have on 

operand dependence graph construction rules I do not know, 

but the idea is worth exploring. 

Further studies 

The application of operand dependence graph is 

restricted to structured program flow graphs. Although the 

majority of real programs have structured flow graphs, there 

are still some programs with non-reducible control 

structures. It is not known whether an operand dependence 

graph will be effective for non-reducible flow graphs 

without some major modifications. I am inclined to believe 

that at least reaching version numbers will have to be pre­

computed as in reaching definitions to obtain a conservative 

data flow information. 

The known code optimization procedures lack adaptive 

capability. A program without any redundancy and a program 

with redundancies will go through the same code improvement 

stages. There is no mechanism for avoiding fruitless 

searches. An operand dependence graph has elementary 

adaptive mechanism. For instance, first instance of each 

distinct intermediate code statement is not subjected to any 

of the duplicate code (common subexpressions, code hoisting, 

and code sinking) redundancy tests. From a theoretical 

standpoint, the question "does program P in its current form 

have any redundancies?" is unsolvable, but are there 

heuristics that can tell when to avoid optimization passes 



160 

that will not improve object code efficiency? An adaptive 

capability will be useful in programming environments where 

programs under development are constantly modified. 

A performance comparison of operand dependence graph 

based approach with other (data flow analysis, program 

dependence graph, and global value numbers) methods should 

be investigated to gather various statistics such as 

optimizer code size, running times, storage requirements for 

data structures, code size of optimized code, and running 

times of optimized code. This could be a master's thesis 

project. 
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