PERFORMANCE AND ECONOMICS OF AIR STRIPPING TOWER
 WITH OFF-GAS CONTROL BY EITHER GAS-PHASE
 CARBON ADSORPTION OR PLASMA REACTOR
 IN COMPARISON TO LIQUID-PHASE
 CARBON ADSORPTION

BY

HO-SIK YOO
Bachelor of Science Sung Kyun Kwan University Seoul, Korea 1980

Master of Science Oklahoma State University Stillwater, Oklahoma 1987

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for
the Degree of DOCTOR OF PHILOSOPHY December, 1991

Oklahoma State Div Library

PERFORMANCE AND ECONOMICS OF AIR STRIPPING TOWER WITH OFF-GAS CONTROL BY EITHER GAS-PHASE
 CARBON ADSORPTION OR PLASMA REACTOR IN COMPARISON TO LIQUID-PHASE CARBON ADSORPTION

Thesis Approved:

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my major adviser, Dr. John N. Veenstra, for his outstanding guidance, assistance, and friendship throughout my doctoral program. Appreciation is extended to Dr. Marcia H. Bates, Dr. William W. Clarkson, Dr. William F. McTernan, and Dr. Arland H. Johannes for their valuable input and advice. A special thanks goes to the School of Civil Engineering for the financial support I received during my graduate study. My wife, Hae-Ryun, and my son, Sung-Hwan, deserve a deep appreciation for their sacrifice and patience without which this study could not have been completed.

Finally, this study is dedicated to my parents who know the way of true education.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 6
Previous Studies on the Cost Estimations of the AST and GAC Systems 6
AST Design Model 7
Major Operating Variables of AST and Optimization 7
Theories Regarding Adsorption onto GAC: Polanyi Adsorption Theory, D-R Isotherm, and Freundlich Isotherm 10
Temperature and Humidity Effect on Gas-phase Adsorption 12
Multicomponent Adsorption Theory 13
Plasma Reactor 14
III. METHODS 16
Modeling Study 16
Main Program 20
Subroutine MPTAD 30
Subroutine ONDA 31
Subroutine DIFL 31
Subroutine DIFG 32
Subroutine GACBED, GACBEDG 32
Subroutine ET 32
Subroutine SPEQ 33
Subroutine USER 33
Subroutine DENVIS 34
Subroutine GACCOST 34
Subroutine GACCOSTG 36
Subroutine TWCOST 41
Parameter Estimation 42
Methods for Plasma Reactor Study 44
IV. RESULTS AND DISCUSSION 57
Effect of Air Pressure Drop on the Cost of AST 57
Effect of A / W Ratio on the Cost of AST with Gas-Phase GAC 58
Concentration Effect on the Cost and
Chapter Page
Design of All Processes 61
Effect of Water Temperature on AST and
Gas-Phase GAC 62
Effect of Influent Water Flow Rate on theCost of AST with Off-Gas Control andLiquid-Phase GAC System65
Multicomponent Simulation 65
Results of Plasma Study 67
V. CONCLUSIONS 106
VI. SUGGESTIONS FOR FUTURE STUDY 111
SELECTED BIBLIOGRAPHY 112
APPENDIXES 118
APPENDIX A - LIST OF VARIABLES 119
APPENDIX B - EXAMPLE OF INPUT FILE 125
APPENDIX C - SOURCE PROGRAM (FORTRAN 77) 134
Table Page
I. Properties of BPL GAC 12
II. Cost Parameters 37
III. Required Temperature Increase to Obtain 40 \% RH From Saturation 45
IV. Examples of the Parameters Estimated 46
V. GC Method Used in Destruction Test 48
VI. Geometries of the Plasma Reactors 52
VII. Packing Material Used in Experiments 55
VIII. Operating Condition of AST 55
IX. Optimum Gas Pressure Drop and Multiples of Minimum A/W Ratio for Compounds Investigated in Combined System 72
X. Treatment Costs of Combined System Determined at Optimum A / W Ratio and 3.5 Times the Minimum A / W Ratio 73
XI. Compounds and Compound Combinations Investigated 74

LIST OF FIGURES

Figure Page

1. Treatment Flow Diagram 17
2. Flow Chart of Main Program 21
3. Train for TCE Saturation 47
4. Schematic of Plasma Reactor System 50
5. Alternating Current Plasma Reactor 51
6. Schematic of Air Stripping System 54
7. Cost Estimates of AST as a Function of Pressure Drop 75
8. Effect of A / W Ratio on the Cost of AST and Gas-phase GAC 76
9. Effect of Influent Concentration (low range) on the Cost of Treatment Processes 77
10. Effect of Influent Concentration (low range) on the Volume of AST 78
11. Effect of Influent Concentration (high range) on the Cost of Treatment Processes 79
12. Effect of Water Temperature on the Cost of Treatment Processes 80
13. Trichloroethylene 81
14. Tetrachloroethylene 82
15. Toluene 83
16. Chlorobenzene 84
17. Bromoform 85
18. Chloroform 86
19. 1,1,1-Trichloroethane 87
Figure Page
20. Ethylbenzene 88
21. 1,2-Dichlorobenzene 89
22. Cis-1,2-Dichlorobenzene 90
23. Trans-1,2-Dichlorobenzene 91
24. Carbon tetrachloride 92
25. Cost Mapping of the Compounds Studied 93
26. Compounds \#1+\#3 (System A) 94
27. Compounds \#1+\#2+\#3+\#4 (System B) 95
28. Compounds \#1+\#2+\#3+\#4+\#8+\#9 (System C) 96
29. Compounds \#1+\#2+\#3+\#4+\#5 (System D) 97
30. Compounds \#1+\#2+\#3+\#4+\#7 (System E) 98
31. Compounds \#1+\#2+\#3+\#4+\#10 (System F) 99
32. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#1 100
33. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#2 101
34. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#3 102
35. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#1 103
36. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#2 104
37. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#3 105

CHAPTER I

INTRODUCTION

The concern about groundwater quality has increased as a result of the numerous times that various organic pollutants have been discovered in groundwater in the United States. Since groundwater constitutes a large portion of water used, 63% of total water used in Oklahoma and 39\% of United States as a whole (1), the potential health threat to the public is expected. The sources of contamination are diverse, such as underground storage-tanks and pipe line leakages, fertilizers and pesticides applied to land area, land application of municipal and industrial wastes, and oil field brines. The best way to protect groundwater quality will be the prevention of contamination before it occurs. Once groundwater is contaminated, treatment requires a great deal of time and effort.

The Environmental Protection Agency (EPA) reported that the three most frequently detected volatile organic chemicals (VOCs) in groundwater were trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1 trichloroethene (2). This study used TCE as a target contaminant, while many other VOCs were also studied.

There are several technologies commonly used to treat
groundwater contaminated with VOCs. Following are the most common technologies:

Activated Carbon Adsorption: Contaminated groundwater, pumped up through an extraction well, can be subjected to contact with granular or powdered activated carbon. The large surface area of activated carbon intercepts the hazardous constituents from water. Activated carbon is generally known as an effective and reliable means of removing low solubility organics.

Air Stripping: Air stripping is a physical process in which a countercurrent air-water interface causes volatile materials to partition into the gas-phase. An air stripping tower (AST) is packed with various inert material to increase turbulence and surface area.

There are some more alternatives such as biological treatment and membrane processes. Yet, any single method hardly gives a perfect solution which is economically sound and technically feasible for all pollutants. Conventional water treatment consisting of coagulation, sedimentation, and filtration has been reported to be ineffective for reducing VOCs (3, 4).

The studies of Hand et al. (5) showed that two methods, granular activated carbon (GAC) adsorption and packed tower air stripping (AST), are the most viable methods for VOC removal. In the GAC system, however, the adsorbent must be regenerated and the regenerant must be processed to isolate the original adsorbates. This process increases the total
cost of the system. Adsorption is generally a more expensive process than an AST, depending on the contaminant (6, 7).

Therefore, ASTs are often the least cost and most popular method to remove VOCs provided the pollutants are volatile. TCE is a very good candidate for air stripping in this sense. Additional reasons to choose the ASTs are:

* Easy to operate with minimum skill
* Less operation and management (O \& M) cost than carbon adsorption
* Aerating to remove one specific contaminant also reduces concentrations of other VOCs.

There are several types of aerators available to treat contaminated water: packed tower, tray, and spray aeration. Approximately two-thirds of the aerators installed within the United States for VOC control are packed towers (8). Therefore, only packed tower air stripping (AST) was considered in this study.

With all the advantages listed above, however, air stripping does not permanently remove the VOCs from the environment. It removes the VOCs from the liquid-phase and places it in the vapor-phase. So, water pollution is just transferred to air pollution. Regulations concerning the air pollution have become more stringent. Due to the additional cost of off-gas control, it is not clear which process, AST+off-gas control or liquid-phase GAC, is most economical. There is a need for an engineered procedure to
determine the best available technology, or for other innovative off-gas control technology.

There were two objectives in this study:
Objective 1 (First part of the study): Cost is an important consideration in the evaluation of choices among various types of technologies. The first objective of this study was to present a method which allowed preliminary cost estimations of ASTs with off-gas control, and liquid-phase GAC system. The method presented also finds the optimum design and operating condition of the AST systems (AST+offgas control, or AST alone). The optimum, here, means that the combined treatment cost of the air stripping and the off-gas treatment is the minimum.

Gas-phase adsorption onto activated carbon is assumed to be used as the off-gas control because it is currently considered the standard technology. The rationale behind using a gas-phase GAC contactor is that the GAC usage rate is much less than liquid-phase and adsorption kinetics are much faster, thus the required bed volume is smaller than liquid-phase (9). The first part of this study shows the domain of operating conditions and system configuration of AST+gas-phase GAC in which the process is more cost efficient than liquid-phase GAC system. In order to accomplish this task, a computer program was developed by employing or modifying currently accepted models for each process.

Objective 2 (Second part of the study):
It would be ideal if there is a method that incinerates and ultimately disposes of the toxic wastes in an air stream rather than gas-phase adsorption. Recently, plasma reactors (discharge reactors) were tested using electrical energy at the School of Chemical Engineering, Oklahoma State University (OSU) (10). The study was not intended to treat the off-gases from ASTs. The second part of this study investigated the possibility of using a plasma reactor as the off-gas control technology for an AST.

LITERATURE REVIEW

Previous Studies on the Cost Estimations of the AST and GAC Systems

No study has been conducted to develop a method for total system design that allows the optimum design of an AST with off-gas control and a comparison to a liquid-phase GAC system on a cost basis. A few preliminary attempts are seen in the literature. Adams and Clark (11, 12, 13, 14) conducted a series of cost evaluation studies. They (11) presented a cost estimating equation and the parameters for liquid-phase GAC system. Using the cost data of liquidphase GAC systems and a GAC adsorption model, they showed various cost estimates for liquid-phase GAC treatment systems (12). They (13, 14) also estimated the cost of ASTs with GAC off-gas treatment, and compared it to a liquidphase GAC system. However, they did not provide a tool to do the estimation in one model. They treated the system as two separate unconnected units. Without such a tool, optimization of the design and operating conditions of the systems (AST+off-gas control, or AST alone) is almost impossible because of the large number of simulations required. The previous studies also did not investigate the
designs and costs of multicomponent systems. The first objective of this study was to develop a method to optimize the AST+gas-phase GAC processes and to investigate multicomponent systems. In order to accomplish this task, a computer program was developed by employing or modifying currently accepted models for each process. Important aspects of the AST and GAC units (gas and liquid-phase) are discussed below:

AST Design Model

The mass transfer rate of the air stripping process has been successfully predicted by the Onda correlation (15, 16). Using this relationship, David Hand developed a program to design an AST (17). The program (PTAD) was originally written in BASIC language and required the user to input values during program operation. In this study, the design procedure was rewritten in FORTRAN to be consistent with other programs in this study. An input file was prepared for a convenience. Also, the program was modified for multicomponent stripping. The A / W ratios and mass transfer coefficients for all compounds were examined, and the largest values were used for the design of multicomponent system.

Major Operating Variables
of AST and Optimization

In order to optimize the AST system, the key operating
variables of the AST should be identified. There are three operating variables that are controllable or can be manipulated in ASTs, air-to-water (A/W) ratio, gas pressure drop, and water loading rate. These three variables are correlated with each other. If any two of the three variables are arbitrarily selected, the remaining one variable is determined automatically. For example, any combination of A / W ratio and pressure drop produces a specific water loading rate as shown in the generalized pressure drop correlation generated by Eckert (18).

In this study, the A / W ratio and the pressure drop were varied over a wide range of possible designs to find the optimum combination of the three major variables of the AST. At the same time, water flow rate was also varied such that the new combination of the all variables (the major variables of AST and water flow rate) is made. The optimum combination of the variables was determined by considering the total cost which included both capital and operating costs.

As the A / W ratio increases, the tower volume decreases. Then, the operating cost of the tower will increase due to increased blower power requirements while the capital cost will decrease. The volume of the off-gas will increase resulting in an increased capital cost for off-gas treatment. The increase in off-gas volume and decrease in contaminant concentration will decrease VOC loading per unit carbon and increase the carbon usage rate of the gas-phase

GAC contactor.
As the gas pressure drop increases, the tower volume decreases also. The operating cost of the tower will increase as the capital cost will decrease.

Any variable or parameter that has an effect on the design of an AST also affects the gas-phase GAC in this study, and vice versa, because the optimum design of each process is determined from the total cost of the two processes. For example, variation in the Henry's constant (parameter) seems to have nothing to do with the design of gas-phase GAC. However, it perturbs the configuration and cost of air-stripping, thus yielding a new set of design parameters for both processes. That is, because the combined system of AST and gas-phase GAC unit is designed as a package, best design is whatever yields lowest total cost for whole system.

The model used in this study describes an integrated system (AST+gas-phase GAC). Because of many processes and input variables involved, the total system is not easily expressed as a mathematical equation. In other words, the cost could not be written in equation form as a function of each variable. Therefore, many formal optimization techniques may not be applicable in this system. So, the optimization of the system was conducted using the enumeration technique which entails running the key operating variables independently in small increments and determining the least total cost in the range examined. The
range for each variable examined (A/W ratio and pressure drop) was bounded by values considered to be in the normal range. The exact values of these bound are set out in the method section.

There should be an optimum combination of the operating variables that minimize the over all costs of the ASTs and off-gas treatment system. This study tried to find the optimum condition under a given treatment objective.

Theories Regarding Adsorption onto GAC:
Polanyi Adsorption Theory, Dubinin-Radushkevich Isotherm, and Freundlich Isotherm

The first part of this study uses some existing models for GAC adsorption. The adsorption in the models was described by the Dubinin-Radushkevich ($D-R$) isotherm in gasphase GAC $(9,19,20,21)$, and by the Freundlich isotherm in liquid-phase GAC. The $D-R$ isotherm was based on the Polanyi theory. Also, the Freundlich isotherm can be explained by the Polanyi theory.

Polanyi theory is described by Manes (22). Polanyi theory assumes a fixed-pore volume within a GAC. The fixed volume $\left(W_{0}\right)$ is the maximum space available for adsorption. The force of attraction depends on the component's proximity to the surface of the GAC. The adsorption potential (E) is defined as the free energy that is needed to remove any adsorbate from the adsorption site to the solvent. The
correlation curve between the space volume adsorbed (W) and adsorption potential per molar volume (E/V) for a specific GAC is known as the Polanyi plot. The corresponding equation is:

$$
\ln W=A(E / V)^{B}+\ln C
$$

in which; $A, B, C=$ constants

$$
C=W_{0}
$$

Dubinin and Radushkevich developed an equation ($D-R$ equation) to describe single-component gas-phase adsorption equilibria which was based on the Polanyi potential theory (23). The Freundlich isotherm is a special case of the Polanyi theory where $B=1$ so that a straight line is plotted, whereas the $D-R$ equation predicts a slight curvature. The $D-R$ equation was used to correlate the gasphase isotherms of several VOCs in the following form (9, 19, 20, 21):

$$
q=\left(W_{0} * \rho * 10 E 6 / M W\right) * \exp \left(-B /\left(\beta^{2}\right) *(R * T * \ln (P s / P P))^{2}\right)
$$

in which; $q=$ solid-phase concentration of VOC ($\mu \mathrm{mol} / \mathrm{g}$ carbon)
$W_{0}=$ maximum adsorption space of the adsorbent ($\mathrm{cm}^{3} / \mathrm{g}$ carbon)
$B=$ microporosity constant of the adsorbent (moll/cal)
$p=1$ iquid density of pure adsorbate ($\mathrm{g} / \mathrm{cm}^{3}$) MW = molecular wight of the adsorbate $\beta=$ affinity coefficient of the adsorbate (dimensionless)
Ps = vapor pressure of the adsorbate (mmHg) $P P=$ partial pressure of the adsorbate (mmHg) $\mathrm{R}=$ gas constant ($1.987 \mathrm{cal} / \mathrm{mol}{ }^{\circ} \mathrm{K}$) $\mathrm{T}=$ temperature (${ }^{\circ} \mathrm{K}$)

Rasmuson determined the values of 0.46 and $3.37 E-8$ for W_{0} and B using toluene and the Calgon's BPL carbon (20, 21). With the values of W_{0} and B for the carbon, and R known, the
equation becomes:

$$
q=(0.46 \mathrm{E} 6 * \rho / \mathrm{MW}) \exp \left(-1.33 \mathrm{E}-7 *(\mathrm{~T} / \beta * \ln (\mathrm{Ps} / \mathrm{PP}))^{2}\right)
$$

No significant differences in GAC capacity for VOCs were expected for the commercially available GACs with the highest VOC capacity (9). The Calgon's BPL GAC has been the industrial standard gas-phase GAC for several years (24) and used in this simulation. Table I shows the properties of the BPL carbon (24).

TABLE I
PROPERTIES OF BPL GAC

Average Diameter; 0.3715 cm
Apparent Density; $0.85 \mathrm{~g} / \mathrm{cm}^{3}$
Density of Carbon; $2.1 \mathrm{~g} / \mathrm{cm}^{3}$
Particle Void Fraction; 0.595

Temperature and Humidity Effect on Gas-Phase Adsorption

At a high relative humidity, many of the small pores of GAC will be filled with condensed water, thus decreasing the effective dry surface. By heating the air to lower the
relative humidity, more dry surface will be available for gas-phase adsorption. However, the $D-R$ equation also shows that heating will have an adverse effect on adsorption capacity by increasing the temperature and vapor pressure. A study shows that the opposite effects of relative humidity and temperature balance out at $40-50 \%$ relative humidity (9, 24); thus maximum capacity is determined. In this study, off-gas from the AST was assumed to be heated to obtain 40 \% relative humidity (RH) for maximum capacity.

Multicomponent Adsorption Theory

It is unlikely that any natural waters are contaninated by single-solute organics. The Ideal Adsorbed Solution Theory (IAST) has been used successfully in predicting multicomponent system behavior (25, 26,27). The IAST model assumes thermodynamic equivalence of the spreading pressure (π) of each solute at equilibrium. The spreading pressure, π, is defined as the difference between the interfacial tension of the pure solvent-solid interface and that of the solution-solid interface at the same temperature (25). The IAST provides a convenient way for predicting multicomponent equilibrium because it only requires single-solute equilibrium data for each compound. With the Freundlich isotherm equation to describe single-solute adsorption, the solution to the IAST becomes simplified. Crittenden et al. (26) discuss the derivation of the solution. Using the IAST, Crittenden et al. (28) developed an equilibrium column
model (ECM) to evaluate multicomponent competition in a fixed-bed adsorption column rather than assuming additive adsorption. This model did a reasonable job in finding the most poorly adsorbing solute, and calculating the overshoot concentration of the solute (28). The overshoot concentration is caused by competitive adsorption in an activated carbon particle. A higher effluent concentration of the weaker adsorbing solute, than the inlet concentration, may be observed when the stronger adsorbing solute deprives the weaker adsorbing solute of a site for adsorption in an initially saturated zone. The highest possible effluent concentration, attained by weaker adsorbing solutes, is generally referred to as the overshoot concentration. The computer program for ECM is presented in Association of Environmental Engineering Professors (AEEP) computer software manual (17) and was used in this study (Subroutine ET).

Plasma Reactor

In general, plasmas can be thought of as an ionized gas mixture. Gases are normally good electrical insulators. Under the influence of an applied electric field of sufficient strength, however, gas molecules can be ionized. Electric conduction then takes place and an electrical discharge occurs.

The plasma reactor utilizes electrical energy to create a relatively low temperature plasma (electric discharge) in
a reactor cavity. The ionized species and electrons are accelerated to high speed by electromagnetic energy. When organic materials flow into the plasma, their chemical bonds are broken by collision with electrons, causing dissociation to occur. The resulting fragments then recombine along the pathways to form simple reaction products.

The use of a plasma reactor to destroy volatile organic compounds has been tried. Some studies (29, 30, 31) were done to investigate the destruction of methane in a plasma reactor. Sheinson et al., (29) showed increasing methane destruction with increasing power input in a plasma reactor. They also found the existence of an optimum frequency for the alternating current that yields maximum power input. Robert et al., (32) studied the reactions of chlorinated hydrocarbons including $T C E$ with water vapor or molecular hydrogen in a low-pressure microwave plasma. Tsai (10) reported a high destruction efficiency of TCE using the identical plasma reactors to those used in this study. All the previous studies have not been intended to treat the off-gases from an air stripping system. This study investigated the possibility of using a plasma reactor as the off-gas control technology for an AST.

CHAPTER III

METHODS

The AST was assumed to be equipped with either of the following two off-gas control devices:

* Gas-phase adsorption onto activated carbon
* Plasma reactor

Figure 1 shows the treatment flow diagram which was considered in this study. The methods used in the modeling study, for all systems except the plasma reactor, were explained first. The method regarding the plasma reactor will follow.

Modeling Study

In order to accomplish the first objective, a computer program was developed by adopting many existing models which were then modified and used as subroutines to a main program. The program consisted of seven preexisting subroutines (MPTAD, ONDA, DIFL, DIFG, ET, SPEQ, and USER), five new subroutines (GACBED, GACBEDG, DENVIS, GACCOST, GACCOSTG, and TWCOST), and a new main program. The new subroutines and main program were developed for this study.

The program includes design models of an AST and a gasphase GAC unit in one model such that two of the major

Figure 1. Treatment Flow Diagram
operating variables of the $A S T, A / W$ ratio and gas pressure drop, vary automatically until the least total cost of the AST and gas-phase GAC system is determined. The configuration and operating condition at the point where the least cost occurs is considered the optimum. Then, an AST with off-gas control is ready for a fair comparison to a liquid-phase GAC system. The design model of the liquidphase GAC unit is also included in the program so that one run of the program calculates the designs and costs of all unit processes.

The design of gas or liquid-phase GAC unit was not fully optimized in the program due to limited data. The major limitation is the lack of knowledge on the relationship between cost and the regeneration cycle of the GAC bed (time required to saturate a fresh GAC bed). Current cost data are just simply correlated with the GAC bed volume such that a large bed costs more and a small bed costs less. The GAC bed volume is a linear function of the empty bed contact time (EBCT) at a predetermined superficial velocity. Ideally, EBCT is an arbitrary variable that may be varied to find the optimum value. With the current cost data, the cost of a GAC contactor simply decreases by decreasing EBCT, thus making a shallower contactor. As the EBCT decreases, however, regeneration must be done more frequently, which will increase the costs due to the carbon loss and increased handling costs (GAC loss is not varied by the frequency of regeneration in this study because a fixed
percentage of spent carbon is always assumed to be lost in regeneration).

In this study, the depth of the GAC beds (gas and liquid-phase) was predetermined as the product of superficial fluid velocity and EBCT that are to be selected by the program user. The user-defined depth was checked against the minimum depth for the treatment objectives to avoid an immediate breakthrough. Accordingly, optimization of ASTs is based on the predetermined depth of gas-phase GAC bed. For this reason, the EBCT was fixed to 15 minutes for liquid-phase and 1.5 sec for gas-phase GAC unit throughout this study. A practical EBCT for liquid-phase GAC is one that ranges from 7.5 to 30 minutes (33). For gas-phase GAC, EBCT of 1.5 sec produces a bed depth of 1.5 ft at a superficial velocity of $60 \mathrm{ft} / \mathrm{minute}(\mathrm{fpm})$. Adams and Clark (13) used a bed depth for gas-phase GAC ranging from 0.5 to 4 ft . Superficial velocity of gas-phase GAC contactors are recommended not to exceed 100 fpm , and preferably be around $60 \mathrm{fpm}(30.48 \mathrm{~cm} / \mathrm{sec})(34)$. In this study, a value of 30.48 $\mathrm{cm} / \mathrm{sec}$ was used.

The cross-sectional bed area of gas-phase GAC is varied according to the superficial fluid velocity, A / W ratio of the AST, and the design water flow rate to the AST. In liquid-phase GAC, the bed area is determined by the superficial fluid velocity and the design water flow rate. The gas or liquid-phase GAC system was only partially optimized, again limited by the cost vs regeneration cycle
data, by selecting the most economical type of GAC contactor and regeneration method from various types that will be explained later.

The individual parts of the program are explained below:

Main Program

Figure 2 shows the flow chart of the main program. Data input and parameter estimation: The main program reads in all input data from the data file or estimates necessary parameters such as vapor pressure and the Henry's constant, if user does not have values for these terms. The Henry's constant can be estimated using vapor pressure and solubility of a compound. Density of the gas was estimated using the ideal gas law. Viscosity of the gas was expressed as a function of temperature. Density and viscosity of water were estimated in a subroutine. Diffusivities of gas and liquid were estimated in a subroutine also. All calculations regarding air were based on pure air because a target compound constituted a negligible portion of the total mass or volume of the off-gas from AST.

Simulation: The main program also manipulates subroutine programs as often as needed. The main program varied A / W ratio and air pressure drop for the ASTs, and water flow rate for all processes. The A / W ratio and air pressure drop are two of the three major operating variables of AST as explained in Chapter II. Water flow rate is not a

Figure 2. Flow Chart of Main Program

Figure 2. (Continued)

In gaC bed desiga, liquid or gas-phase, only surface area and carbon usage rate vill increase linearly as the iafluent nater flon increases (for each A / R ratio, in case of ASI + gas-plase GAC syster).

> Simple arithnetic aultiplication of bed surface area and carbon usage rate for all systen sises

11: iteration for 10 different systen sises (10 nater flor rates)
2: iteration for 50 differeat A / P ratios
13: iteration for 150 different air pressure drops of aSf

Figure 2. (Continued)
major variable and can be selected arbitrarily because it is one of the predetermined design variables. In this simulation, the water flow rates were varied to see the effect on the cost. From now on, three variables in simulation refer to the two major operating variables and water flow rate.

The main program can use 10 water flow rates, $50 \mathrm{~A} / \mathrm{W}$ ratios, and 150 pressure drops, which will cover all ranges commonly used in design. That means that the program may be executed as many as 75,000 times internally for each run. Generally, air pressure drop should be selected between 50 and $200 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}(35)$. The pressure drop was varied from 50 to $200 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$ in step size of 1 (actually 151 pressure drops). The A / W ratio was varied from 1.1 to 6.0 times the minimum A / W ratio in step size of 0.1 . The air pressure drop and the A / W ratio are selected by the model while flow rate can be user specified.

This study varied one variable and stopped at the optimum point (least cost), then, varied another variable. Finally, the main program determined the best combination of the three variables, A / W ratio, pressure drop, and water flow rate, resulting in the least total cost of the system (AST+off-gas control, or AST alone).

Each iteration of the program segments will be explained.
[1] Design and cost calculation of the AST.
The dimensions of the tower were calculated in the
subroutine MPTAD. The cost was estimated in the subroutine TWCOST. Three variables were varied in this part, which were water flow rate, A / W ratio, and pressure drop.

Any combination of the A / W ratio and pressure drop produces a specific water loading rate from the generalized pressure drop correlation (18). Under a specific water loading rate, cross-sectional area is a linear function of the water flow rate. Accordingly, flow rate (million gal /day, mgd) determines only the cross-sectional area when A/W ratio and pressure drop are predetermined. If the flow rate doubles, the area will increase two times. Therefore, it seems that the air stripping design subroutine does not have to be iterated for varying water flow rate (keep the tower height constant and vary the cross-sectional area and tower volume linearly). However, the simulation should find the optimum pressure drop for each A / W ratio. The optimum value should be such that the total cost, including capital and 0 \& M, of the tower is the minimum. The total cost of stripping is not a linear function of the tower volume or cross-sectional area. The pressure drop has effects not only on the cross-sectional area but also on the break power of the blower. As a result, the optimum pressure drop is not a constant value for varying water flow rates. Therefore, tower design should be iterated for all water flow rates. For any combination of these variables, the cost was estimated in the subroutine TWCOST, and the results were stored for later use.

There is no effect of varying pressure drop on the offgas composition or volume. Therefore, this parameter was not used in the program to optimize the gas-phase GAC unit. It affects only the design of the AST. The cost of an AST at each water flow rate and A / W ratio was determined at its own optimum pressure drop.

The water flow rate and A / W ratio of the AST affect the cost of both processes, AST and gas-phase GAC. In any case, the cost of the AST can not be settled until the cost of the off-gas treatment is determined unless the off-gas control is not required. So, the costs of the AST for all A/W ratios were calculated and stored for the later determination.
[2] Preparation for design and cost estimation of the off
-gas treatment device
In the first part of this study, only a GAC contactor was designed as the off-gas treatment device. The plasma reactor was just evaluated based on the power cost determined from the experiments.

Under a specific superficial velocity, the crosssectional area of gas-phase GAC contactor is a linear function of gas flow rate which is a linear function of water flow rate to the $A S T$ at given A / W ratio. Accordingly, water flow rate to the AST determines only the crosssectional area of the gas-phase GAC contactors. Therefore, the design subroutines for the gas-phase GAC contactors do not have to be iterated for varying water flow rate (keep
the tower height constant and vary the cross-sectional area and tower volume linearly). The total cost of the GAC contactor is, however, not a linear function of the tower volume or cross-sectional area. Accordingly, the cost subroutines of the gas-phase GAC contactors were iterated for all water flow rates.

The effluent gas-phase concentration from the stripping tower was calculated in terms of $\mu \mathrm{g} / \mathrm{l}$. This unit can be converted to ppm (volume/volume) by the following relationship that was derived from the ideal gas law:

1 ppm in air $=(1 / 0.08205) * M W *(P / T) \mu g / l$ in air $1 \mathrm{\mu g} / 1$ in air $=(0.08205 / \mathrm{MW}) *(\mathrm{~T} / \mathrm{P}) \mathrm{ppm}$ in air
in which; $M W=$ molecular weight
$P=$ pressure of the mixture in atm $T=$ temperature of the mixture in ${ }^{\circ} K$

The concentration and volumetric flow rate were adjusted with temperature for the gas-phase GAC contactor. For power cost estimation of the plasma reactor, the effluent concentration and volumetric flow rate from the AST was assumed to be directed to the plasma reactor without any adjustment.
[3] Power cost of the plasma reactor
Only the A / W ratio, among three variables used in the simulation (A/W ratio, air pressure drop, and water flow rate), had an effect on the unit power cost of the plasma reactor. So, the A / W ratio was varied.
[4] Preparation for the gas-phase GAC bed design
The subroutine SPEQ estimates the Freundlich isotherm parameters for the gas-phase GAC. The subroutine ET
determines the most poorly adsorbing solute, and calculates the overshoot concentration of the solute for a multicomponent system. Carbon usage rate was calculated in this subroutine.
[5] Determination of mass transfer zone (MTZ) length of the gas-phase GAC unit

This part of the main program makes sure that design bed depth fully covers the MTZ lengths of the gas-phase GAC designs. The overshoot concentration from the subroutine ET was the inlet concentration to this part. There is only one MTZ length for all flow rates under a predetermined inlet concentration and superficial velocity. The inlet concentration was varied by varying the A / W ratio. So, each A/W ratio had its own MTZ length.

The MTZ length was usually shorter than calculated design length of the GAC bed in this study. Otherwise, the program prompts the user to increase the EBCT. MTZ length was determined in the subroutine USER.
[6] Design of the gas-phase GAC contactor
The bed dimensions (length and width) for the GAC contactor were calculated by using the subroutine GACBEDG. The bed length is determined as the product of superficial fluid velocity and EBCT that are to be selected by program user. The system A / W ratio has an effect on the design of the GAC unit and was varied. As the water flow rate increases, the bed cross-sectional area and the GAC usage rate increase linearly at given A / W ratio. Therefore,
simple arithmetic calculations were done for the varying water flow rate.
[7] Gas-phase GAC contactor cost
Cost is not a linear function of water flow rate. Two variables were varied. These were water flow rate and the A/W ratio. All costs determined from all combinations of variables were stored. The costs of the AST and the gasphase GAC contactor were summed and stored.
[8] Finding the least cost of the combined system
(AST+gas-phase GAC unit) for varying A/W ratio. For all water flow rates, an optimum A / W ratio was determined. The optimum ratio was such that the combined (AST+gas-phase GAC unit) cost was the minimum.
[9] Design of liquid-phase GAC contactor and determination of mass.transfer zone (MTZ) length

The main program also estimates the design and cost of liquid-phase GAC system in order to determine the best choice between the liquid-phase GAC and AST+gas-phase GAC. In the liquid-phase GAC contactor, the inlet concentration is not varied, which is not necessarily the case for the gas-phase GAC. So, there is only one MTZ length for all flow rates under a predetermined inlet concentration and superficial velocity. Accordingly, the MTZ length was calculated once. The subroutine ET was used to handle multicomponent system.

The bed dimensions (length and width) were calculated by using the subroutine GACBED. The bed length was
determined as the product of superficial fluid velocity and EBCT that are to be selected by program user. As water flow rate increases, the bed cross-sectional area and GAC usage rate increase linearly as explained in the gas-phase GAC part. Therefore, simple arithmetic calculations were done for varying water flow rate.
[10] Liquid-phase GAC contactor cost
Since cost is not a linear function of water flow rate, the water flow rate was varied. All calculated costs were stored.
[11] Print out of results
Results from the process design and cost calculations were stored in an output file and printed as needed.

Subroutine MPTAD

This program was originally developed by David Hand to design an AST (17) and modified in this study as explained in Chapter II. This subroutine calculates the minimum A / W ratio. The A / W ratio is examined for all compounds in the influent water. To meet the treatment objective, the largest A / W ratio required by any compound was used to design the tower. The tower diameter is determined for the largest ratio. This subroutine calls the subroutine ONDA to calculate the mass transfer coefficient, $K_{L} a$. The tower height is determined using the calculated $K_{L} a$ value. The tower height is also examined for all compounds. The highest one is selected for the tower design. Power
consumptions of the blower and pump are calculated in terms of kilowatt hours (KWH). Brake power was calculated for the blower using the equation presented by Reynolds (36) and Metcalf \& Eddy, Inc. (37). Break power calculation for the pump accounts for raising the total water flow to the top of the packing.

Tower dimensions reported are the tower height and total (effective) surface area of single tower. For an actual design, the total surface area can be divided by number of towers desired in parallel with due consideration given to the appropriate length/diameter ratio.

Subroutine ONDA

This subroutine calculates the overall mass transfer coefficient and wetted surface area for the subroutine MPTAD. This subroutine was a part of the program, PTAD, developed by David Hand (17).

Subroutine DIFL

Liquid diffusivity was calculated by this subroutine by using either molecular weight (MW), or viscosity of liquid and molal volume of a target compound. If the MW of the compound is greater than 1000, the liquid diffusivity is calculated using the Polson correlation (38). If MW is less than 1000, the Hayduk and Laudie correlation is used (39). This subroutine was a part of the program, PTAD, developed by David Hand (17).

Gas diffusivity was calculated by this subroutine using the Wilke-Lee modification of the Hirschfelder-Bird-Spotz method. The equation was taken from Treybal (40; p31). This subroutine was a part of the program, PTAD, developed by David Hand (17).

Subroutine GACBED, GACBEDG

These subroutines calculate the dimensions of the carbon bed, and the regeneration cycle. The dimensions are reported as unit height and total (effective) surface area of all beds combined. For actual design, the total surface area should be divided by number of beds in parallel desired with due consideration given to appropriate length/diameter ratio.

Subroutine ET

This subroutine determines the most poorly adsorbing solute, and calculates the overshoot concentration of the solute for the multicomponent system. Carbon usage rate was calculated in this subroutine. The IAST was used to describe multicomponent equilibria. For single component raw water, this model returns back to simple Freundlich isotherm. The original program was obtained from the AEEP manual (17).

This subroutine was obtained from Crittenden et al. (24). This program uses the Dubinin-Radushkevich (D-R) equation to estimate the Freundlich isotherm parameters for the gas-phase because the subroutines ET and USER use the Freundlich isotherm parameters to describe the adsorption equilibrium.

Subroutine USER

This subroutine calculates the length of MTZ to make sure that the GAC contactor fully contains the MTZ. This subroutine works for both liquid and gas-phase GAC contactors. This subroutine is a simplified version of the Homogeneous Surface Diffusion Model for carbon adsorption. The original program was obtained from the AEEP manual (17) and slightly modified for this study. The modification includes the calculation of the length of MTZ which was considered a function of the target concentration. This subroutine uses the Freundlich isotherm parameters to describe the adsorption equilibrium. The Freundlich isotherm parameters are not readily available for gas-phase components and are not constant with varying component concentration. Therefore, the parameters required for the gas-phase were estimated using the subroutine SPEQ. Normally, the MTZ length was very short in gas-phase adsorption such that normal GAC bed depth covers the MTZ.

Therefore, possible errors involved in the estimation of the Freundlich parameters are insignificant.

Subroutine DENVIS

This subroutine calculates the density and viscosity of water for the desired operating temperature. The equations from the CRC Handbook (41) were used for the density (41; pg. F-5) and for the viscosity (41; pg. F-37).

Subroutine GACCOST

The Drinking Water Research Division (DWRD) of US Environmental Protection Agency (EPA) has collected a vast amount of cost data for GAC treatment systems. Using this data, DWRD developed the following cost estimating equation (11):

$$
Y=a+(b)(\text { VAR })^{c}\left(d^{\Sigma}\right)
$$

in which; $Y=$ the base construction cost or specified $O \& M$ requirement.

VAR $=$ process design or operating variable. $a, b, c, d=p a r a m e t e r s$ determined from nonlinear regression.
$z=0$ or 1 used to adjust the cost function for a range of VAR values.

The values of $a, b, c, d, a n d z$ have been developed for several technologies used in GAC treatment such as various types of contactors and regeneration systems. The equation parameters are tabulated in the paper presented by Adams and

Clark (11). Using these data, subroutine GACCOST was written for this study.

Construction costs (CC) in the Adams and Clark equation were expressed in 1983 dollars. The Engineering News Record (ENR) Construction Cost Index (CCI) was used (CC*current CCI/380) to update to January 1990 in this simulation. The base year is 1967. Annual capital costs were estimated by multiplying CC by the capital recovery factor (CRF) (11): CRF $=I(1+I)^{N} /\left[(1+I)^{N}-1\right]$
in which; $I=$ interest rate, 10\%
$\mathrm{N}=$ payback period, 20 years.
Maintenance material costs (MM) were expressed in terms of 1983 dollars per year in the estimates presented by Adams and Clark (11). Major cost of the MM will be caused by replacement of equipment. The Marshall and Swift equipment cost index (ECI) was used to update the MM to January 1990 in this simulation (MM * current ECI/761).

Three types of contactors and four types of regeneration systems were available for cost estimates. Cost estimations were done for all types of contactors and regeneration systems, and the least-cost processes were selected for each different case and sent to the main program. The alternative types of contactor were:
[1] Package pressure GAC contactor
[2] Conventional steel pressure GAC contactor
[3] Conventional concrete gravity GAC contactor
[1] Infrared reactivation
[2] Fluidized bed reactivation
[3] Multihearth reactivation
[4] Disposal and Replacement with virgin carbon In option [4], disposal of used carbon is done by incineration. Since Adams and Clark (11) did not give a formula for the replacement option (they just presented a graph), an equation was developed for interpolating the graph as shown in the source program in Appendix C.

All units were designed with extra capacity (30%) to accommodate a surge flow. The $C C$ of all types of contactors and GAC storage units were based on the total effective design volume of the GAC contactor while the MM was determined using the actual utilized portion of the volume. GAC was assumed to be 95% saturated before each regeneration. This saturation may be achieved through serial or parallel operation.

Table II shows the cost parameters used in this study. These parameters were used by Adams and Clark (11) except the natural gas price. The cost estimating methods and parameters for the GAC systems are well explained by Adams and Clark (11), and are consistent with those used in this study unless otherwise specified.

Subroutine GACCOSTG

The study of the Drinking Water Research Division (DWRD) of USEPA did not include data for gas-phase

TABLE II
COST PARAMETERS
System Operation of GAC Contactor = 70 \%
Reactivator Uptime $=75$ \%
GAC Loss per Regeneration $=12$ \%
Liquid-phase GAC Price $=\$ 0.9 / 1 \mathrm{~b}$ at $100,000 \mathrm{lb}$
Gas-phase BPL Carbon Price,
Calgon Co. $=\$ 2.0 / 1 \mathrm{~b}$ at $20,000 \mathrm{lb}$
Labor Rate $=\$ 15 / \mathrm{hr}$
Electric Rate $=\$ 0.08 / \mathrm{Kwh}$
Natural Gas Price $=\$ 0.003 /$ std.cu.ft.
Process Water Price $=\$ 0.35 / 1000 \mathrm{gal}$
*: Peters and Timmerhaus (1990)
adsorption and regeneration (11). So, the cost model of the liquid-phase GAC contactor was modified for gas-phase. The modifications included the following:

* Pumping energy requirement was dropped in the gas-phase. Instead, the energy requirement for an air blower was added. Brake power calculation for the blower was based on the equation presented by Reynolds (36) and Metcalf \& Eddy, Inc. (37).
* The gas-phase GAC contactor did not include the construction and energy cost of the backwash pumping system.
* An air heating cost was included to decrease the relative humidity to 40\%.
* The conventional concrete gravity contactor was not included as a gas-phase contactor.
* The initial GAC cost was included in the package contactor. However, the GAC price was based on a liquid-phase GAC. So, the price difference between a liquid-phase and gas-phase carbon was added for the gas -phase contactor.
* In the virgin carbon replacement option, the GAC price was based on a liquid-phase GAC. So, the price difference was added for the gas-phase contactor. In order to calculate the blower power requirement, pressure drop through the GAC bed should be calculated. A pressure drop correlation is available only for packed tower air stripping (18). Such a correlation has not been developed
for the gas-phase GAC contactor, and the packed tower correlation cannot be applied to a GAC contactor because the correlation was developed for counter current flow of water and air. The Ergun equation was used in this study. The Ergun equation calculates the pressure drop using various parameters of the bed and fluid (42). The fluid parameters such as viscosity and density will be constant throughout bed, in case of a non-compressible fluid like water. There would be a little compression of air at the inlet of a bed. However, the effect on the viscosity and density of gas is ignored here and the constant operating pressure is assumed throughout the bed.

In order to obtain the optimum condition for adsorption, off-gas from the AST was assumed to be heated to obtain 40 \% relative humidity (RH). The off-gas was assumed to be 100% saturated and isothermal at the top of AST with the influent water due to the large contact area between the air and water. This assumption gave a slightly conservative estimation of heating cost because the maximum heat requirement was used to lower the $R H(100 \%->40 \%)$. A natural gas-fired heater was assumed to be used.

The following parameters were also adjusted for the elevated temperature in the main program.

* Operating temperature of the gas-phase GAC contactor
* Vapor pressure of the compound
* Density and viscosity of the off-gas from the AST
* Off-gas flow rate from the AST
* Influent gas-phase concentration to the GAC contactor
* Gas-phase diffusivity of the compound

Heat capacity ($C p$) of the air was estimated from the
ideal gas law (43; p3.122):

$$
\begin{aligned}
& \text { Cp of } \mathrm{N}_{2}^{2}=6.50+0.001 \mathrm{~T} \\
& \mathrm{Cp} \text { of } \mathrm{O}^{2}=8.27+0.000258 \mathrm{~T}-187700 / \mathrm{T}^{2} \\
& \mathrm{Cp} \text { of air }=0.79\left(\mathrm{Cp} \text { of } \mathrm{N}^{2}\right)+0.21\left(\mathrm{Cp} \text { of } \mathrm{O}^{2}\right)
\end{aligned}
$$

in which; $T={ }^{\circ} K$
$\mathrm{Cp}=\mathrm{cal} / \mathrm{deg}-\mathrm{mol}$
1 mole of air $=29 \mathrm{~g}$
The middle point of the temperature range, from initial temperature to temperature required to obtain $40 \% \mathrm{RH}$, was used for the T to estimate the $C p$ of N^{2} and O^{2}.

Example: $T=17^{\circ} \mathrm{C}\left(300^{\circ} \mathrm{K}\right)$, for $10^{\circ} \mathrm{C} \rightarrow 24^{\circ} \mathrm{C}$.
Heating cost of the air was estimated using the following informations.

```
1 cal = 0.00397 Btu
Typical heating value of natural gas = 1050 btu/cuft
``` (43; p9.12)

Steam regeneration may be another alternative for the gas-phase GAC. Steam regeneration was not included in this study because the performance of the process and the disposal method of the spent steam have not been well established. The regenerated bed should be dried to remove condensed water. The drying gas should be treated also.

The estimated cost of the gas-phase adsorption system may be a little conservative because a lower cost is expected for the contactor and regeneration system of the gas-phase GAC. For example, dewatering and drying of a saturated bed for regeneration is not required for gas-phase GAC .

This subroutine calculates the various costs of the ASTs. A specific formula is not readily available for this purpose. Therefore, the following equations were developed for the curves given in Gumerman's report (44):
```

For packed tower (44; p460, 466, 467);
CC= 10.**(2.480708+0.699403*LOG(TV*100./PTOP))
MM = 10.**(3.71184-.951171*LOG(TV )
+.20046*(LOG(TV))**2.)
LABOR = 10.**(1.84073-.399972*LOG(TV)
+.121128*(LOG(TV))**2.)

```

For administration, laboratory, and maintenance building (44; p469, 472, 473);
```

CC = 10.**(4.3617+.633898*LOG(FLOWL*100./PTOP)
-.0380989*(LOG(FLOWL*100./PTOP))**2 .)

```
MM \(=10 . * *(3.29564+.293344 *\) LOG (FLOWL)
 +.0639727*(LOG(FLOWL))**2.)
Labor \(=10 . * *(3.17059+.68173 *\) LOG (FLOWL)
 -. 105693*(LOG(FLOWL))**2.)
\(\mathrm{BE}=10 . * *(4.7412+.638106 *\) LOG (FLOWL)
 -. \(0357398 *(\) LOG (FLOWL)) **2.)
in which; \(C C=\) construction cost, \(\$ /\) year \(M M=\) maintenance material, \$/year Labor = hr/year \(\mathrm{BE}=\) Building energy, \(\mathrm{KWH} /\) year \(\mathrm{TV}=\) Tower Volume; \(\mathrm{ft}^{3}\) PTOP \(=\) Percent operation of packed tower, \% FLOWL \(=\) Plant capacity, MGD

The construction cost (CC) of tower did not include pump cost. So, the following equation was developed for the curves presented by Peters and Timmerhaus (45; p527, Figure 14.41):
\[
\begin{aligned}
\text { PUMP }= & 10 . * *(5.42915-1.46769 * \text { LOG (} 2298.25 * \text { BPW*100. } \\
& \text { /PTOP })+.237617 *(\text { LOG(2298.25*BPW*100. } \\
& \text { /PTOP)) } * * 2 .)
\end{aligned}
\]
in which; \(B P W=\) pump break power requirement, KW.
Costs for contractor profit, \(5 \%\), and engineering and
legal fees, \(10 \%\), were added to the construction cost reported in Gumerman's report (44), in order to keep an equal basis with the other processes in this study. These additions produced a 15 \% higher construction cost than the cost reported. Construction contingencies factor and special site work were included in the original report. Tower volume was designed such that \(70 \%\) of the design capacity was utilized for average water flow. Gumerman's report was based on the cost of October 1978 dollars. So, the \(C C\) was adjusted to January 1990 using the \(C C I\), and the MM was adjusted using the ECI. Annual capital costs were estimated by multiplying the \(C C\) by the capital recovery factor (CRF).

\section*{Parameter Estimation}

The following parameters should be estimated externally by the program user. The value of the affinity coefficient, \(\beta\), is determined from the ratio of a specific physical property to that of the reference compound. The ratio of polarizability can be used to calculate \(\beta\) (21).
\[
\begin{aligned}
& \beta=a / a_{\text {ref }} \\
& a=\left(n^{2}-1\right) M W /\left(\left(n^{2}+2\right) p\right) \quad \text { (Lorentz-Lorenz Equation) } \\
& n=\text { refractive index }
\end{aligned}
\]

Values for refractive index, \(n\), were taken from the Handbook of Organic Chemistry (46). If the value was not available, it was evaluated by the summation of the atomic and structural contributions (43; p3.240).

Henry's constants of many of the compounds are reported in the literature as a function of temperature (47, 48, 49, 50). The reported values will be more realistic than those estimated using vapor pressure and solubility. The Henry's constants used in this work were adjusted to the water temperature.

Vapor pressure was estimated using the Antoine equation (51): Vapor pressure in \(m \mathrm{mHg}=10.0 * *\left(A-B /\left(T^{\circ} C+C\right)\right)\) The constants, \(A, B\) and \(C\) were not readily available for many compounds. In order to determine the three unknowns, three pairs of temperature-vapor pressure points were selected from Perry's Handbook (43) so that the three temperatures cover the temperature range of interest. By solving the three simultaneous equations, the constants for the Antoine equation were determined.

Molal volumes of the target compounds were determined using Le Bas method (52).

PSDFR (pore to surface diffusion flux ratio) was reported in previous studies (12, 53) to be 3.72 for many compounds (aliphatic hydrocarbons). Therefore, 3.72 was used as the PSDFR for liquid-phase adsorption. In the gasphase, a value of 16.0 was used as the PSDFR. This value was taken from the example data in the AEEP manual (17).

Off-gas from the AST was assumed to be heated to obtain 40 \% relative humidity. The required temperature increase, listed in Table III, was read from a psychrometric chart. Table IV shows the examples of the parameters estimated.

\section*{Methods for Plasma Reactor Study}

In order to investigate the possibility of using a plasma reactor as the off-gas control technology for an AST, laboratory experiments were conducted.

First, TCE destructive tests were done on a bench scale. These tests were designed to determine the destruction efficiency of the plasma reactor. A saturation device (Figure 3) similar to that employed by the EPA (54) was used to prepare TCE-contaminated air. In the initial tests, highly contaminated air with TCE (9000 ppm) was created and used as a feed stream to the plasma reactor. Grab samples of the feed and effluent were taken during test runs and analyzed on an electron capture gas chromatograph in the School of Civil Engineering, OSU. Destruction efficiencies of TCE based on peak area were \(92.0 \%\) and 93.8 \% for the two tests with only a trace of by-products showing up on the chromatograms. In the initial destruction tests, the GC method given in Table \(V\) was used.

After taking those two data points, TCE destructive tests were not continued as part of this study. Later, TCE destructive tests were conducted in the School of Chemical Engineering, \(O S U\), and high destruction efficiencies (>95\%)

\section*{TABLE III}

\section*{REQUIRED TEMPERATURE INCREASE TO OBTAIN 40 \% RH FROM SATURATION}

Sat. Temp. Temp. of \(40 \% \mathrm{RH}\) Required Increase \(\left({ }^{\circ} \mathrm{C}\right)\)
(\({ }^{\circ} \mathrm{C}\))
(\({ }^{\circ} \mathrm{C}\))
\begin{tabular}{lll}
0 & 12.9 & 12.9 \\
2 & 15.3 & 13.3 \\
4 & 17.4 & 13.4 \\
6 & 20.0 & 14.0 \\
8 & 22.2 & 14.2 \\
10 & 24.4 & 14.4 \\
12 & 26.4 & 14.4 \\
14 & 28.9 & 14.9 \\
16 & 31.2 & 15.2 \\
18 & 33.5 & 15.5 \\
20 & 35.6 & 15.6 \\
22 & 37.7 & 15.7 \\
24 & 40.0 & 16.0 \\
26 & 42.2 & 16.3
\end{tabular}

TABLE IV
EXAMPLES OF THE PARAMETERS ESTIMATED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Compound & A & B & C & Hc & Y.V. & 8 & I & \(1 / n\) \\
\hline Prichloroethylene & 5.3976 & 631.94 & 154.59 & \(0.1907^{18}\) & 0.1071 & 0.816 & \(196.6{ }^{26}\) & 0.4163 \\
\hline Tetrachloroethylene & 9.5406 & 1694.6 & 245.29 & 0.3569 & 0.1280 & 0.976 & \(650.6{ }^{26}\) & 0.4579 \\
\hline Toluene & 6.7624 & 1254.5 & 211.31 & \(0.1190^{49}\) & 0.1182 & 1.000 & \(348.0{ }^{12}\) & 0.365 \\
\hline Chlorobenzene & 5.9570 & 1004.3 & 180.41 & \(0.08977^{49}\) & 0.1169 & 1.059 & \(381.0{ }^{12}\) & 0.31 \\
\hline Bronofori & 4.9134 & 659.45 & 134.0 & 0.009944 & 0.0995 & 0.963 & \(161.0{ }^{61}\) & 0.5629 \\
\hline Chlorofora & 5.9000 & 647.54 & 164.61 & 0.07594 & 0.0923 & 0.694 & 30.411 & 0.5325 \\
\hline 1,1,1-trichloroethane & 13.08 & 5926.8 & 514.91 & \(0.3516^{48}\) & 0.1145 & 0.841 & 29.714 & 0.495 \\
\hline Bthylbenzene & 11.612 & 4616.7 & 409.12 & \(0.1332^{49}\) & 0.1404 & 1.15 & 507.012 & 0.53 \\
\hline 1,2-dichlorobenzene & 6.886 & 1584.8 & 210.14 & 0.06015 & 0.1398 & 1.157 & 865.12 & 0.38 \\
\hline Cis-1,2-dichloroethylene & 6.9264 & 1143.0 & 222.51 & \(0.07645^{50}\) & 0.0862 & 0.651 & 30.512 & 0.59 \\
\hline Trans-1,2-dichloroethylene & 6.967 & 1116.3 & 224.95 & \(0.1876{ }^{48}\) & 0.0862 & 0.662 & 38.511 & 0.39 \\
\hline Carbon tetrachloride & 8.4565 & 2079.7 & 299.1 & \(0.6058^{48}\) & 0.1132 & \(0.694^{*}\) & \(50.1{ }^{14}\) & 0.594 \\
\hline
\end{tabular}

> K = liquid-phase Freundlich isotherm parameters for F-400 type GAC, (\(\mu \mathrm{mol} / \mathrm{g}\)) (l/ umol)
> \(1 / n=\) liquid-phase Freundlich isotherm parameters for F-400 type GAC, dimensionless
> \(A, B, C=C o n s t a n t s\) for Antoine equation, dimensionless, determined from temperature -vapor pressure relationships

Hc (at \(\left.10^{\circ} \mathrm{C}\right)=\) Henry's constant, dimensionless
\(\beta=\) affinity coefficient, dimensionless
M.V. = molal volume, \(\mathrm{m}^{3} / \mathrm{kg}\)-mol
* = Estimated refractive index is very close to that of chloroform. So, the reported data of chloroform was used to estimate the \(\beta\).

Figure 3. Train for TCE Saturation

TABLE V
GC METHOD USED IN DESTRUCTION TEST
```

GC Column; 3 % SP-1000 on 100/120 Supelcoport
Detector; Electron Capture Detector
Oven Temp.; 75 C
Run Time; 3 min
Injector Temp.; 100 C
Detector Temp.; 275 C
Carrier Gas (5 % Methane + 95 % Argon); 60 cc/min

```
were obtained (10). The results from the tests (10) were used in this study for the cost calculations of the plasma reactors.

Second, electrical characteristics and power requirements of plasma reactor were estimated. In the second phase, feed gas to the plasma reactor was supplied from a pilot scale AST. In this stage, TCE was not added to the feed water of the AST. Therefore, a TCE-free off-gas was fed to the plasma reactor. The only reason for using pilot-scale AST was to generate large quantities of off-gas with the appropriate temperature and humidity.

The plasma reactor part of the experimental apparatus is shown in Figure 4. The apparatus includes a power source (California Instruments Model 161 T oscillator with a range of 0 to 120 volts and frequency generation of 40 to 5000 \(\mathrm{Hz})\), transformer (Jefferson Electric with a maximum secondary voltage of 7500 V), high voltage test probe, and the reactor. The reactors were constructed using pyrex glass and consisted of coaxial glass tubes (Figure 5). The inside of the inner tube and outside of the outer tube were coated with inorganic silver paint that acted as an electrode. The geometries of the various reactors are given in Table VI. The length of all the reactors was 37.5 cm with a 20.2 cm long effective discharge zone. For the measurement of the secondary voltage, a Simpson AC high voltage probe was used in conjunction with a Simpson 620 multimeter. The primary power input (total power input to

Figure 4. Schematic of Plasma Reactor System

Figure 5. Alternating Current Plasma Reactor

\section*{TABLE VI \\ GEOMETRIES OF THE PLASMA REACTORS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Reactor} & \multicolumn{4}{|c|}{Diameter} & \multirow[t]{2}{*}{Gap} & \multirow[t]{2}{*}{\begin{tabular}{l}
Diameter \\
Ratio
\end{tabular}} \\
\hline & Inner & Tube & Outer & Tube & & \\
\hline & D1 & D2 & D3 & D4 & (D3-D2)/2 & (D3/D2) \\
\hline & (cm) & (cm) & (cm) & (cm) & (cm) & \\
\hline \#1 & 1.27 & 1.50 & 2.19 & 2.50 & 0.345 & 1.460 \\
\hline \#2 & 1.55 & 1.80 & 2.19 & 2.50 & 0.195 & 1.217 \\
\hline \#3 & 1.77 & 2.00 & 2.64 & 3.00 & 0.320 & 1.320 \\
\hline
\end{tabular}
plasma reactor) was measured by General Electric wattmeter. Gas flow rate to the reactor was measured using a calibrated rotameter.

The pilot scale air stripping column was connected to the plasma reactor. A schematic of the air stripping system is shown in Figure 6. The air stripping tower was composed of a glass column with an inside diameter of 7.52 cm (3 in) and a length of \(1.83 \mathrm{~m}(6 \mathrm{ft})\). The tower consists of three sections, a \(1.4 \mathrm{~m}(4 \mathrm{ft})\) high center piece, open at both ends, and two \(0.35 \mathrm{~m}(1 \mathrm{ft})\) long end pieces each sealed at one end. The inlet and outlet ports for the gas and liquid streams and the manometer ports were placed in the end pieces. The three pieces were connected with two \(88 \mathrm{~mm}(3\) in) diameter stainless steel clamps containing Teflon gaskets. The column was packed with a ceramic packing material. The packing height was 1 m . Information on the packing material (40) is given in Table VII. Operating condition of AST is given in Table VIII.

The experimental procedures for the non-destructive tests was:
1. The AST was turned on and the water and air flow rates were set to \(1 \mathrm{l} / \mathrm{min}\) and \(30 \mathrm{l} / \mathrm{min}\) respectively. These flow rates were kept constant throughout the experiment.
2. A small portion of the off-gas flow from the AST was separated from the main flow using a T-connection. The amount of the slip stream (\(2 \mathrm{l} / \mathrm{min}\)) was adjusted by using a control valve to obtain the desired flow rate.

Figure 6. Schematic of Air Stripping System

\section*{TABLE VII}

PACKING MATERIAL USED IN EXPERIMENTSName: Intalox SaddlesSize: 0.25 inch
Packing Factor: 725
Porosity: 0.75
Specific Surface: \(984 \mathrm{~m}^{2} / \mathrm{m}^{3}\) or \(300 \mathrm{ft}^{2} / \mathrm{ft}^{3}\)
TABLE VIII
OPERATING CONDITION OF AST
Water (TCE-free) Flow Rate: 1 l/min
Water Temperature: \(22^{\circ} \mathrm{C}\)
Air Flow Rate: 30 1/min
Air Temperature: \(24^{\circ} \mathrm{C}\)
Pressure Drop across the Tower: \(80 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}\)

The branch stream was directed to the top port of the reactor and exited from the bottom. The off-gas from the reactor and AST was vented to a hood.
3. The supply power was turned on and the primary voltage was set.
4. The frequency was varied from 60 Hz to 1000 Hz with a 100 Hz increment. The secondary voltage and primary power input (watts) were recorded for each frequency. There were some fluctuations in all the gage-readings at the frequency that is nearest to breakdown (optimum frequency). About 10 minutes was allowed to pass to establish steady state conditions.
5. With the same reactor, the steps 3 and 4 were repeated for three different primary voltages.
6. Tests were continued for other reactors.
7. For reactor \#3, tests were repeated for the different flow rates (1 to \(12 \mathrm{l} / \mathrm{min}\)) to the reactor.

\section*{CHAPTER IV}

\section*{RESULTS AND DISCUSSION}

The results of modeling study are explained first. The results regarding the plasma reactor will follow. All tables and figures are appended at the end of this chapter. The results reported in this study are in the form of a limited sensitivity analysis of the model. The sensitivity analysis was considered to be limited in that most of the results reported on the integrated model used TCE as a representative compound.

\section*{Effect of Air Pressure Drop \\ on the Cost of AST}

Air pressure drop of the AST was varied, while all other variables were held constant, to see the effect on the cost of AST. Figure 7 shows the results for TCE. This figure is typical of those generated using other contaminants. The pressure drop had a minor effect on the cost. The cost variation was minimal (0.3 cents between the minimum and the maximum values in the range of \(40-200 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}\) pressure drop). The treatment option in Figure 7 is the AST without off-gas treatment because the varying pressure drop has no effect on the off-gas composition or volume, but has
effect on the design of the AST. The \(A / W\) ratio was fixed at 1.5 times the minimum which was close to the determined optimum value. The procedure for determining the optimum value of the multiplier (i.e. 1.5) for the minimum A/W ratio will be explained in the next section. The lowest range of the pressure drop was extended to \(40 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}\) to see the curve more clearly. All other simulations were conducted with the lowest bound of \(50 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}\) because the original pressure drop correlation generated by Eckert (18) was valid from 50 \(\mathrm{N} / \mathrm{m}^{2} / \mathrm{m}\).

The optimum pressure drops determined for the optimum A/W ratio in the combined systems are shown in Table IX. The least cost appears in the range of \(50-62 \mathrm{~N} / \mathrm{sq} . \mathrm{m} / \mathrm{m}\). The raw water temperature was fixed at \(10^{\circ} \mathrm{C}\) unless otherwise specified. Groundwater temperature ranges from \(3^{\circ} \mathrm{C}\) to \(19^{\circ} \mathrm{C}\) at a depth of about 100 ft in the United States (55).

Effect of \(A / W\) Ratio on the Cost
of AST with Gas-Phase GAC

The operating \(A / W\) ratio is calculated as a multiple of the minimum \(A / W\) ratio, below which the treatment objective will not be achievable. The minimum \(A / W\) ratio is expressed as follows (56):

Minimum \(A / W\) ratio \(=(\mathrm{Ci}-\mathrm{Ce}) /(\mathrm{Hc} * \mathrm{Ci})\)
in which; \(\mathrm{Ci}=\) influent concentration
\(C e=e f f l u e n t\) concentration
Hc = dimensionless Henry's constant

The minimum value is multiplied by a certain constant that produces the most economical tower design. It has been suggested that about 3.5 times the minimum \(A / W\) ratio gives the least cost design for the AST process (56). Figure 8 illustrates the effect of the \(A / W\) ratio on the cost. However, if off-gas control is considered, the least cost occurs at about 1.7 times the minimum \(A / W\) ratio. The cost of an AST alone decreases continuously until the \(A / W\) ratio reaches 3 to 4 times the minimum because the tower volume is inversely proportional to the \(A / W\) ratio; thus capital cost of the AST decreases. Beyond 3 to 4 times the minimum, operating costs will offset the decreasing capital cost. As the \(A / W\) ratio increases, off-gas volume increases. The increase in off-gas volume and decrease in contaminant concentration will increases carbon consumption and the frequency of regeneration. Therefore, as the ratio increases, the cost of gas-phase GAC contactor increases constantly. The balance point is about 1.7 times the minimum as seen in the Figure 8. At the ratio of 1.7 , the total cost is 22.5 cents \(/ 1000 \mathrm{gal}\). At the ratio of 3.5 , the total cost increases \(8.4 \%\) resulting in 24.4 cents/1000 gal. This difference exists in the total cost of AST + gas-phase GAC system designed by the integrated model versus the two processes designed independently and coupled together. The cost differences determined for various compounds are shown in Table \(X\). Without considering the system to be designed as a package, an AST with off-gas control is not in a proper
design and is not ready for a fair comparison to liquidphase GAC. All simulation in this study used the optimum A/W ratios that were determined for each different case. The optimum A/W ratios determined for various compounds are shown in Table IX. A range of 1.2 to 2.1 times the minimum A/W ratio resulted in the least cost AST with gas-phase GAC system. Figures 7 and 8 demonstrate the individual effect of the two variables, air pressure drop and \(A / W\) ratio, on the cost. In these figures only, the named variable was changed while all the other Figures (9-31) were generated using the optimum combination of the two variables. For instance in figure 9 , only the influent concentration of TCE was varied. The model then calculated the optimum design and operating conditions for each system shown in the figure. Each optimum design and operating condition has a total cost that is calculated by the model. This cost, which represents the least total cost for any system, is then plotted against the one variable that was varied. In this manner, the effect of the one variable that was varied can be seen on all systems.

In Figures 9-31, the 'AST' means the AST system without off-gas control option, and the AST system was run with 3.5 times the minimum \(A / W\) ratio and the optimum air pressure drop. The 'AST in combined system' means the AST part in the AST+gas-phase GAC system, and the system was run with the optimum \(A / W\) ratio and the optimum air pressure drop.

\section*{Concentration Effect on the Cost and Design of All Processes}

The plots similar to Figure 8 were generated to show the effect of higher influent concentrations on the cost of the total system. For instance, at an influent concentration of 500 ppb the optimum \(A / W\) ratio was 1.8 times the minimum and the cost at the combined system was 30.8 cents \(/ 1000 \mathrm{gal}\) whereas the cost at a multiplier of 3.5 was 33.5 cents/ 1000 gal. This represents a total cost increase of \(8.7 \%\) between the multipliers 1.8 and 3.5 . Using an initial concentration of 1000 ppb the optimum \(A / W\) ratio was 1.7 times the minimum and the cost of the combined system was 37.3 cents \(/ 1000\) gal while the cost at a multiple of 3.5 was 40.8 cents/1000 gal; a cost increase of \(9.3 \%\). As illustrated by this example calculation for TCE, along with the data shown in Figure 8, total cost for the combined system increases as the influent concentration to the AST increases. However, this cost increase is not in the form of a linear relationship due to the large number of variables taken into account in developing the best design and least cost option for each particular situation. Also, the total cost differential between the optimum multiple determined by this algorithm and those normally consider the best (i.e. 3.5) increases as the influent concentration to the AST increases. Again, this increase is not linear. In order to illustrate the effect of influent concentration on the AST and GAC systems, Figure \(9-11\) were constructed. The
influent liquid-phase concentration was varied from 10 ppb to 1000 ppb TCE in Figures 9 and 10 , and from 100 ppb to 35000 ppb TCE in Figure 11. The 35000 ppb (35 ppm) represents one of extreme groundwater contamination (57). Air stripping without off-gas control was shown to be the least cost option. The effluent concentration, \(C e\), is the liquid-phase concentration coming out of the AST or liquidphase GAC.

Off-gas control using gas-phase GAC costs more than air stripping itself in the high concentration range as shown in Figure 9 (\(>500 \mathrm{ppb}\)). However, the combined cost of the two processes is less expensive than liquid-phase adsorption using GAC, and this tendency does not change over the concentration range examined.

If off-gas treatment is required, the cost and tower volume of the AST should be increased in order to save more in the off-gas treatment. That is why the cost and tower volume of the AST in a combined system (AST+gas-phase GAC) is higher than the AST without off-gas control as set out in Figures 9-12. The cost of plasma will be discussed at the end of this chapter. The tower volume was largely influenced by the influent concentration as set out in Figure 10.

> Effect of Water Temperature on AST and Gas-Phase GAC

Increased water temperature has a positive effect on
the vapor pressure of a solute in water, thus making the solute more volatile. Increased water temperature also has various effects on the coefficients used for design of an AST along with the vapor pressure. It decreases surface tension, viscosity, density of water in the calculation of the specific wetted packing area in the Onda correlation, thus yielding a larger specific interfacial area (a) for mass transfer, and overall mass transfer coefficient (\(K_{L} a\)). Also, increased temperature has a positive effect on gas and liquid diffusivity thus increasing individual mass transfer coefficients and \(K_{L} a\).

Increased temperature effects on Henry's constant have been studied by various researchers. Kavanaugh and Trussell (58) used a Van't Hoff-type equation to model the relationship of Henry's law constant to temperature. This equation showed a two-fold increase in the Henry's law constant for every \(10^{\circ} \mathrm{C}\) rise in water temperature for most of the volatile compounds investigated. Munz and Roberts (48) found the increase of Henry's constant to be a factor of approximately 1.6 , for eight VOCs, for each \(10^{\circ} \mathrm{C}\) rise in water temperature between 10 to \(30^{\circ} \mathrm{C}\).

By increasing the Henry's constant, increased water temperature increases \(K_{\mathrm{L}}\) a again. The overall increased removal rate of contaminants by air stripping, because of increased water temperature, has been reported many times (59, 60).

In the case of gas-phase GAC, however, the temperature
has the opposite effect. The \(D-R\) equation shows that increased temperature and vapor pressure have an adverse effect on adsorption capacity of gas-phase GAC.

Thus, there is a positive effect of increased water temperature on air stripping but a negative effect on removal by gas-phase GAC. There has been no information reported in the literature regarding the gross effect of the temperature on the performance of the coupled system.

Figure 12 shows the results of this phase of the study. Figure 12 shows that the gas-phase GAC cost decreases as the water temperature increases. This is contradictory to the theory. However, the TCE concentration in the off-gas increases as the water temperature increases, due to decreased \(A / W\) ratio to achieve same percent removal as at a lower temperature, i.e., due to decreased off-gas volume. Therefore, increased GAC usage rate caused by high temperature is disguised by decreased GAC usage rate caused by decreased off-gas volume. Moreover, as the off-gas volume decreases at high water temperature, the volume of the gas-phase GAC bed decreases, which reduces the capital cost of the gas-phase GAC system. As a whole, the cost of gas-phase GAC part of the combined system decreases \(18.1 \%\) as the water temperature increases from \(0^{\circ} \mathrm{C}\) to \(26^{\circ} \mathrm{C}\). Of course, the AST cost decreased as the water temperature increases, 20.6 \% for the AST alone, and \(20.2 \%\) for the AST in the combined system. The total cost of the combined system decreased \(19.4 \%\) as the water temperature increased.

\author{
Effect of Influent Water Flow Rate on the Cost of AST with Off-Gas Control and Liquid-Phase \\ GAC System
}

Figures 13-24 show the effect of influent water flow rate on the cost of air stripping with off-gas control and liquid-phase GAC for various compounds. In other words, the figures show system-size dependence of treatment costs. Table XI shows the compounds studied. Individual inlet concentrations were set at 100 ppb for all compounds, and the effluent concentrations were set at 5 ppb . As the flow rate to the treatment system increases, that is, as the system capacity increases, the unit cost decreases as set out in Figures 13-24. In all cases except bromoform, the AST was the more economical choice as compared to liquidphase GAC even with AST off-gas control.

Multicomponent Simulation

Figure 25 shows the simulation results of individual and multicomponent systems. All letters and numbers with Figure 25 are identified by compound in Table XI. The X and Y-axis represent the treatment costs if the compound or the multicomponent systems in the figure are treated by the corresponding treatment options: The X-axis is for AST+gasphase GAC and the \(Y\)-axis is for liquid-phase GAC. The data for Figure 25 was taken from Figures 13-24 at a flow rate of 1 mgd.

The multicomponent system B is composed of four compounds. These four compounds are positioned in the same area, bottom left, in Figure 25. That is, these compounds can be more easily treated than others in the figure under either treatment option. When compounds \#5, \#7, and \#10 were added to system \(B\), these new combinations became systems \(D, E\), and \(F\) respectively. When the cost of these three systems are compared to system \(B\), the cost and design of a multicomponent system is highly dependent on the least strippable or least adsorbable component. Examples of the controlling compound are compound \#5 in system D, \#7 in system E, \#10 in system F.

The multicomponent systems \(A, B\), and \(C\) do not include a compound as difficult to remove as ones appearing in the systems \(D\), E., and \(F\). All components in multicomponent systems \(A, B\), and \(C(1,2,3,4,8,9)\) are positioned at about the same area in the figure. Even without a controlling compound, an appreciable amount of cost increase is observed in multicomponent systems \(A, B\), and \(C\), probably due to increased GAC usage rate caused by competitive adsorption and desorption among the components.

The diagonal line in the figure divides the range of economical treatment option. Any compound or multicomponent system in the upper left side of the diagonal line may be treated more economically using the AST + gas-phase GAC system. The liquid-phase GAC system will be preferred by the compounds or multicomponent systems in the bottom right
side of the diagonal line. In all cases, except bromoform and multicomponent system \(D\) which contains bromoform, the AST + gas-phase GAC system was the more economical choice as compared to liquid-phase GAC.

Figures 26-31 show system-size dependence of the cost of the 6 multicomponent systems (systems A-F).

\section*{Results of Plasma Study}

The plasma reactor was connected to the AST to investigate the characteristics of the total system with respect to power, frequency, and voltage. A series of breakdown tests with TCE-free air (non-destructive tests) were performed to determine the breakdown voltages and frequencies of the plasma reactors. Here, breakdown means that the flowing gas is ionized so that a plasma status is established in the reactor cavity. Breakdown could be easily identified because of an audible noise from the reactor and because of the sudden increase in power input to the system. In darkness, a blue-colored glow could be seen during breakdown.

The frequency of the current was varied from 60 Hz to 1000 Hz in 100 Hz increments. Figures 32, 33, and 34 show the variations in secondary voltage with frequency at different primary voltages for the various reactors. The voltage remains fairly constant until a noticeable increase of voltage is observed at breakdown frequency followed by a gradual decrease. As the primary voltage increases from 20

V to 60 V , the frequency that draws maximum secondary voltage decreases in all reactors.

The total power input for the reactors is shown in Figures 35,36 , and 37 . The word, total, is used here because the net power input to sustain the plasma will be a portion of the total power. The other remaining portion of the total power will be dissipated in other electrical devices such as the frequency generator and transformer. The net power input to the plasma reactor was not measured due to the lack of available measuring devices. The total power input to the plasma reactor is actually what the reactor electrical cost is based on. Total power input reaches a maximum immediately after plasma is established. Total power input to the system is dependent on frequency. As the frequency increases, the power input remains fairly constant until a steep increase up to a maximum is observed followed by a gradual decrease. All three reactors showed the same trend. As the previous study (10) showed in the destructive tests, the maximum power input yielded the maximum conversion of the target contaminant. Therefore, the frequency that draws the maximum power input may be called the optimum frequency. The optimum frequency was dependent on the reactor design and the primary voltage applied (Figures 35,36 , and 37). As the primary voltage increases from 20 V to 60 V , the optimum frequency decreases in all reactors. The optimum frequency roughly coincides with the frequency that draws maximum secondary voltage in

Figures 32, 33 , and 34 . The system can be tuned by varying the frequency to obtain higher power input. This is in agreement with the previous studies (10, 29, 31). A higher primary voltage increases secondary voltage and total power input for all reactors.

Volumetric flow rate of the feed gas determines the residence time of the gas in the discharge zone. Flow rates were varied from \(1 /\) min to \(12 \mathrm{l} / \mathrm{min}\) in reactor \#3. Power input did not change as the flow rates changed at each frequency (\(60-1000 \mathrm{~Hz}\)) and at each primary voltage (\(20 \mathrm{~V}, 40\) V , and 60 V). That is, the shape of the Figure 37 did not change at varying flow rate. There were some fluctuations in power input at the optimum frequency as the flow rate increased. This power fluctuation over time was a typical phenomenon of the plasma even at constant flow rates. Since it was shown that increased flow rate did not draw more power to the system, increased flow rate reduced the power demand by the reactor per unit volume of carrier gas. This fact explains the decreased conversion efficiency at increased flow rate in the previous study (10).

The power cost of the plasma reactor was calculated and compared to the total cost of other processes. Capital cost, by-products removal cost, and \(O\) \& \(M\) cost were not included in the plasma reactor evaluation. A total power input of 130 W and an air flow rate of \(7 \mathrm{l} / \mathrm{min}\), the highest flow rate in the destruction tests (10), were used during cost estimation. The previous study (10) showed that the
percentage removal was maintained at a high value (>95\%) and did not decrease until a very high concentration of TCE (15 kppm) was introduced into the reactor. Even uncontaminated air required the same amount of power to maintain the plasma (10). The gas-phase concentration, ppb or ppm, was expressed on a volume/volume basis and not a weight/weight basis in all figures presented in this study. At an \(A / W\) ratio of 20:1 with \(100 \%\) removal of TCE, a liquid concentration of \(35 \mathrm{mg} / 1\) becomes a gas concentration of 1.75 \(\mathrm{mg} / \mathrm{l}\) or \(310 \mathrm{ppm}(35 / 20 \mathrm{mg} / \mathrm{l}=1.75 \mathrm{mg} / \mathrm{l}=1750 \mu \mathrm{~g} / \mathrm{l}=310\) ppm). The unit conversion between \(\mu \mathrm{g} / \mathrm{l}\) and ppm in the gasphase was discussed in the main program.

Figure 11 shows that a plasma reactor is an expensive process in spite of the fact that the cost represents only electric power cost. Moreover, this price should be added to that of the air stripping process to obtain a total system cost. The \(A / W\) ratio used in the \(A S T+p l a s m a\) reactor system was 1.5 times the minimum, which was also favorable to the plasma reactor by generating a smaller amount of offgas.

The cost of a gas-phase or liquid-phase GAC contactor was highly dependent on contaminant concentration while that of plasma was not. Therefore, plasma reactors will have an advantage at high contaminant concentrations. The off-gas concentration from an AST, however, will not exceed 500 ppm (volume/volume) when the influent liquid concentration to the tower is 35 ppm (weight/weight).

It may be too early, to conclude that the plasma reactor is not suitable as an off-gas control for ASTs. The experiments were not conducted on a fully optimized design. Also, scaling up may increase the power efficiency that is actually transferred to the plasma reactor.

TABLE IX

\section*{OPTIMUM GAS PRESSURE DROP AND MULTIPLES OF MINIMUM A/W RATIO FOR COMPOUNDS INVESTIGATED IN COMBINED SYSTEM}
\begin{tabular}{lcc}
\hline Compound Name & \begin{tabular}{c}
Pressure \\
\((\mathrm{N} / \mathrm{sq} \cdot \mathrm{m} . / \mathrm{m})\).
\end{tabular} & \begin{tabular}{c}
Multiples of \\
Minimum A/W Ratio
\end{tabular} \\
\hline Trichloroethylene & 60 & 1.7 \\
Tetrachloroethylene & 54 & 2.1 \\
Toluene & 62 & 1.7 \\
Chlorobenzene & 62 & 1.7 \\
Bromoform & 50 & 1.3 \\
Chloroform & 59 & 1.3 \\
1,1,1-Trichloroethane & 50 & 1.8 \\
Ethylbenzene & 62 & 1.8 \\
1,2-Dichlorobenzene & 60 & 1.7 \\
Cis-1,2-Dichlorobenzene & 57 & 1.2 \\
Trans-1,2-Dichlorobenzene & 50 & 1.2 \\
Carbon tetrachloride & 50 & 1.6 \\
\hline
\end{tabular}
\begin{tabular}{lrl}
Individual & Ci; & 100 ppb \\
Individual & Ce; & 5 \\
ppb \\
Water flow rate; & 1 & MGD
\end{tabular}

\section*{TABLE X}

\section*{TREATMENT COSTS OF COMBINED SYSTEM DETERMINED AT OPTIMUM A/W RATIO AND 3.5 TIMES THE MINIMUM \\ A/W RATIO}
\begin{tabular}{lccc}
\hline Compound Name & \begin{tabular}{c}
At Optimum \\
A/W Ratio
\end{tabular} & \begin{tabular}{c}
At \begin{tabular}{c}
3.5 Times \\
Minimum \\
A/W Ratio
\end{tabular}
\end{tabular} & Difference
\end{tabular}

Individual Ci; 100 ppb
Individual Ce; 5 ppb
Water flow rate; 1 MGD
Air pressure drop; optimum for each case

\section*{TABLE XI}

\section*{COMPOUNDS AND COMPOUND COMBINATIONS INVESTIGATED}
\begin{tabular}{cl}
\hline Compound No. & Compound name \\
\hline 1 & Trichloroethylene \\
2 & Tetrachloroethylene \\
3 & Toluene \\
4 & Chlorobenzene \\
5 & Bromoform \\
6 & Chloroform \\
7 & \(1,1,1-\) Trichloroethane \\
8 & Ethylbenzene \\
9 & \(1,2-D i c h l o r o b e n z e n e\) \\
10 & Cis-1,2-Dichlorobenzene \\
11 & Trans-1,2-Dichlorobenzene \\
12 & Carbon tetrachloride \\
& \\
A & Compound \(1+\) Compound 3 \\
C & \(1+2+3+4\) \\
D & \(1+2+3+4+8+9\) \\
E & \(1+2+3+4+5\) \\
F & \(1+2+3+4+7\) \\
& \(1+2+3+4+10\) \\
\hline
\end{tabular}

Figure 7. Cost Estimates of AST as a Function of Pressure Drop

Figure 8. Effect of A/W Ratio on the Cost of AST and Gas-phase GAC

Figure 9. Effect of Influent Concentration (low range) on the Cost of Treatment Processes

Figure 10. Effect of Influent Concentration (low range) on the Volume of AST

Figure 11. Effect of Influent Concentration (high range) on the Cost of Treatment Processes

Figure 12. Effect of Water Temperature on the Cost of Treatment Processes

Figure 13. Trichloroethylene

Figure 14. Tetrachloroethylene

Figure 15. Toluene

Figure 16. Chlorobenzene

Figure 17. Bromoform

Figure 18. Chloroform

Figure 19. 1,1,1-Trichloroethane

Figure 20. Ethylbenzene

Figure 21. 1,2-Dichlorobenzene

Figure 22. Cis-1,2-Dichlorobenzene

Figure 23. Trans-1,2-Dichlorobenzene

Figure 24. Carbon tetrachloride

Figure 25. Cost Mapping of the Compounds Studied

Figure 26. Compounds \#1+\#3 (System A)

Figure 27. Compounds \#1+\#2+\#3+\#4 (System B)

Figure 28. Compounds \#1+\#2+\#3+\#4+\#8+\#9 (System C)

Figure 29. Compounds \#1+\#2+\#3+\#4+\#5 (System D)

Figure 30 . Compounds \#1+\#2+\#3+\#4+\#7 (System E)

Figure 31. Compounds \(\# 1+\# 2+\# 3+\# 4+\# 10\) (System F)

Figure 32. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#1

Figure 33. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#2

Figure 34. Effect of Frequency and Primary Voltage on Secondary Voltage for Reactor \#3

Figure 35. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#1

Figure 36. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#2

Figure 37. Effect of Frequency and Primary Voltage on Total Power Input for Reactor \#3

\section*{CHAPTER V}

\section*{CONCLUSIONS}

A coupled computer algorithm was developed for optimum design and preliminary cost estimation of air stripping towers (ASTs) with a granular activated carbon (GAC) adsorption system as an off-gas treatment. The computer program also includes subroutines for the design of liquidphase GAC systems. The newly developed algorithm consisted of seven preexisting subroutines (MPTAD, ONDA, DIFL, DIFG, ET, SPEQ, and USER), five new subroutines (GACBED, GACBEDG, DENVIS, GACCOST, GACCOSTG, and TWCOST), and a new main program.

The optimization was done by determining the best combination of the operating and design variables, and process selections resulting in the least total cost of the systems (AST + gas-phase GAC, or AST alone). The method works for either single or multicomponent systems for ASTs and GAC processes (gas-phase and liquid-phase). This model allows a comparison between an optimized AST + gas-phase GAC and an optimized liquid-phase GAC system.

This is a total integrated model for the optimum design and cost estimation of an AST with off-gas carbon treatment. The least cost design takes into account the operating
conditions in both unit processes and optimizes the overall design. This model can be used for designing either new systems as it is, or for retrofitting existing systems by running only a portion of the program.

The first phase of this study consisted of development and evaluation of a model of an AST + gas-phase GAC system. The specific findings are summarized below:
1. The integrated model predicted the least total cost for the AST + gas-phase GAC system to occur in the range of 1.2 to 2.1 times the minimum \(A / W\) ratio. This range was established for the 12 compounds used in this study. However, since the model contains a large number of general system or cost parameters that the user must input, the established range may not be absolute but held for the input variables selected in this study. Previous investigations have suggested 3.5 times the minimum \(A / W\) ratio to be the best design for an AST (56). A comparison between the AST designed alone and that coupled to a gas-phase GAC system which was designed by the integrated model showed the AST system to be physically as well as operationally different. For instance, with TCE, the total cost difference between the AST + gas-phase GAC system designed by the integrated model versus the two processes designed independently and coupled together was \(8.4 \%\). The integrated model produced the lower cost.
2. The integrated model was designed to be more realistic in what the unit processes could handle as input
streams. It was constructed to handle multicomponent systems in both the AST and carbon units. An analysis of the data showed the cost to treat a multicomponent system was highly dependent on the least strippable component in the air stripper or the least adsorbable component in the liquid-phase GAC adsorption.
3. The integrated model evaluation of the effect of water temperature on system cost showed that as the water temperature increased the total system cost of the coupled system decreased. The model showed the cost of each unit process involved in the coupled system to follow this same trend. This drop in cost for the gas-phase GAC system with increasing temperature is contradictory to existing theory. However, the effect of increased temperature on the AST reduces the off-gas volume to be treated by gas-phase GAC, thereby reducing the cost of the gas-phase GAC and total system.
4. The cost of AST was shown to be only a minor function of air pressure drop. For the twelve compounds evaluated in this study, the pressure drop yielding the least cost for the AST system appeared in the range of 50-62 \(\mathrm{N} / \mathrm{m}^{2} / \mathrm{m}\).
5. Even when off-gas treatment is required, the integrated model showed the AST to generally be a less expensive treatment process for VOCs than a liquid-phase GAC system. This confirms the results of previous studies of Adams and Clark (13). Of the 12 compounds evaluated in this
study, only bromoform showed liquid-phase GAC to be less expensive, at flow rates greater than 0.2 MGD , than the combined system.

The integrated model represents a step forward in the design and cost evaluation of an AST with off-gas control using GAC. Instead of designing the units independently, the coupled system is now designed as a package. The current model is by no means perfect. The following are weaknesses that exist in this model.
1. As the \(A / W\) ratio decreases as recommended by this study, the tower becomes very tall. Physically, this can be solved by putting towers in series. However, this may not be suitable for the cost data used in this study. To remedy this, more field cost data are needed.
2. Due to the lack of data, gas-phase GAC cost data were obtained from liquid-phase GAC systems. Real gas-phase GAC cost data are needed to verify the cost estimation.

As part of this research a preliminary evaluation of plasma reactors was conducted to investigate their potential as a feasible and economical off-gas control technology for an AST. This portion of the study involved experiments conducted on bench scale plasma reactors. The majority of these experiments dealt with the power drawing characteristics of various plasma reactors. However, a limited number of destruction tests were conducted using TCE. The specific findings of this portion of the study are
summarized below:
1. The total power demanded by the plasma reactor did not increase as the air flow rate to the unit increased from 1 to \(12 \mathrm{l} / \mathrm{min}\). Therefore, the amount of power per unit volume of air decreased as flow rate increased. This phenomenon may explain the drop in TCE destruction efficiency observed by Tsai (10) as the flow rate to the plasma increased.
2. For heavily contaminated air streams, the plasma reactor is a more economical treatment technically than a gas-phase GAC system. However, the breakpoint is at concentrations much higher than those normally seen in the air exhaust stream from an AST. Therefore, this evaluation showed the plasma reactor to be an expensive process for off-gas control for an AST. This result is based on power costs.
3. Destruction tests conducted on an air stream containing 9000 ppm TCE showed the plasma reactor was capable of greater than \(90 \%\) destruction efficiency. This work is in agreement with the results obtained by Tsai (10)
4. Studies conducted to investigate the electrical characteristics of the plasma reactors showed that an optimum frequency for the alternating current exists for maximum power input. Also, the optimum frequency is dependent on the reactor (i.e. geometry) and the primary voltage applied. These results are similar to those observed in previous investigations (10, 31).

\section*{CHAPTER VI}

\section*{SUGGESTIONS FOR FUTURE STUDY}

The following suggestions are made for future study.
1. This report did not account for naturally occurring organic matter such as humic and fulvic acids due to the lack of a proper model. Depending on the water source, the background organics may reduce the liquid-phase GAC capacity. Future studies should consider this effect.
2. Laboratory work may be conducted to verify the prediction of the multicomponent model.
3. A sensitivity analysis, with model input variables, could be conducted on the model output. The sensitivity analysis may include the effect of individual model uncertainty on the overall cost and design.
4. Further investigations may be done on a more optimized and scaled up design of the plasma reactor to increase its power efficiency.
5. Further studies should include more detailed aspects of plasma reactor such as by-product formation and the effects of temperature and humidity.
6. Evaluation of the total cost of the plasma reactor system including capital cost, \(O \& M\) cost, and power cost should be done.
1. Murray, C.R. and E.B. Reeves, Estimated Use of Water in the United States in 1975 , U.S.G.S. Circ. 765, 39 pp., 1977.
2. Westrick, J.J., J.W. Mello, and R.F. Thomas, The Groundwater Supply Survey, J. American Water Works Association, 76(5), 52-59, 1984.
3. Seeger, D.R., C.J. Slocum, and A.A. Stevens, GC/MS Analysis of Purgeable Contaminants in Source and Finished Drinking Water, Proc. 26th Ann. Conf. on Mass Spectrometry and Applied Topics, St. Louis, Mo, May, 1978.
4. Wood, P.R. and J. DeMarco, Effectiveness of Various Adsorbents in Removing Organic Compounds from Water-Part 1-Removing Purgeable Halogenated Organics, Activated Carbon Adsorption of Organics from the Aqueous Phase. Vol. 2. Ann Arbor Science Publishers, Inc., Ann Arbor, Mich, 1980.
5. Hand, D.W., J.C. Crittenden, J.M. Miller, and J.L. Gehin, Performance of Air Stripping and GAC for SOC and VOC Removal from Ground Water, Project Summary, EPA/600/S2-88/053, Jan., 1989
6. Environmental Science and Engineering Inc., Techniques and Costs for the Removal of VOCs From Potable Water Supplies, ESE Draft Report No. 84-912-0300, Gainesville, FL, 1985.
7. Clark, R.M. and R.G. Eilers, Treatment of Drinking Water for Organic Chemical contamination: Cost and Performance, Proceedings, Atlantic Workshop on Organic Chemical Contamination of Ground Water, AWWA/IWSA, Nashville, Tennessee, December, 1982.
8. Love, O.T., Jr., W.A. Feige, J.K. Carswell, R.J. Miltner, and C.A. Fronk, Aeration to Remove Volatile Organic Compounds from Ground Water, Draft Report, Drinking Water Research Division, USEPA, Cincinati, Ohio, Aug., 1984.
9. Crittenden J.C., R.D. Cortright, B. Rick, S.R. Tang, and D. Perram, Using GAC to Remove VOCs From Air

Stripper Off-Gas, J. American Water Works Association, p73-84, May, 1988.
10. Tsai, V., Conceptual Design and Performance Analysis of Frequency-Tuned Capacitive Discharge Reactors, Ph.D. Dissertation, Chemical Engineering, Oklahoma State University, 1990.
11. Adams, J.Q. and R.M. Clark, Cost Estimates for GAC Treatment Systems, J. American Water Works Association, p35-42, Jan., 1989.
12. Adams, J.Q., R.M. Clark, and R.J. Miltner, Controlling Organics with GAC: A Cost and Performance Analysis, J. American Water Works Association, p132-140, April, 1989.
13. Adams, J.Q. and R.M. Clark, Evaluating the Costs of Packed-Tower Aeration and GAC for Controlling Selected Organics, J. American Water Works Association, p49-57, Jan., 1991.
14. Clark, R.M. and J.Q. Adams, Evaluation of BAT for VOCs in Drinking Water, J. of Environmental Engineering, Vol. 117, No 2, p247-268, March/April, 1991.
15. Staudinger, J., W.R. Knocke, and C.W. Randall, Evaluating the Onda Mass Transfer Correlation for the Design of Packed-Column Air Stripping, J. American Water Works Association, p73-79, Jan., 1990 .
16. Lamarche, P. and R.L. Droste, Air-Stripping Mass Transfer Correlations for Volatile Organics, J. American Water Works Association, p78-89, Jan., 1989 .
17. Association of Environmental Engineering Processors, Computer Software Manual, First edition, June 1986.
18. Eckert, J.S., How Tower Packing Behave, Chemical Engineering, p70-76, April 14, 1975.
19. Reucroft, P.J., W.H. Simpson, and L.A. Jonas, Sorption Properties of Activated Carbon, J. Phys. Chem., 75:23:3526(1971).
20. Rasmuson, A.C., Adsorption Equilibrium on Activated Carbon of Mixtures of Solvent Vapors, Fundamentals of Adsorption, Proceedings of the Engineering Foundation Conference (A. Meyers and G. Belfort, editors), Engrg. Fdns., New York, 1984.
21. Crittenden, J.C., T.J. Rigg, D.L. Perram, S.R. Tang, and D.W. Hand, Predicting Gas-Phase Adsorption Equilibria of Volatile Organics and Humidity, J. of Environmental Engineering, p560-573, Jun., 1989 .
22. Manes, M., The Polanyi Adsorption Potential Theory and Its Application to Adsorption From Water Solution Onto Activated Carbon, Activated Carbon Adsorption, Vol. 1 (I.H. Suffet and M.J. McGuire, editors), Ann Arbor Sci. Publ., Ann Arbor, Mich, 1980.
23. Dubinin, M.M., and L.V. Radushkevich, Dokl. Akad. Nauk. SSSR, 55, 331-338 (in Russian), 1947.
24. Crittenden, J.C., et al., An Evaluation of The Technical Feasibility of The Air Stripping Solvent Recovery Process, Vol 1, AWWA Research Foundation, Jun., 1987.
25. Radke, C.J. and J.M. Prausnitz, Thermodynamics of Multi -Solute Adsorption from Dilute Liquid Solutions, J. AIChE, Vol. 18, p761-768, July, 1972.
26. Crittenden, J.C., et al., Prediction of Multicomponent Adsorption Equilibria Using Ideal Adsorbed Solution Theory, Environ. Sci. Technol., Vol. 19, p1037-1043, 1985.
27. Weber, W.J. Jr. and E.H. Smith, Simulation and Design Models for Adsorption Processes, Environ. Sci. Technol., Vol. 21, No. 11, 1987.
28. Crittenden, J.C., et al., Evaluating Multicomponent Competitive Adsorption in Fixed Beds, J. of Environmental Engineering, Vol. 113, p1363-1375, Dec., 1987.
29. Sheinson, T.S., N.S. Smyth, M.A. Piatt and R.A. Wills, Plasma Induced Destruction of Hydrocarbons, In Proceedings of the International Congress on Hazardous Materials Management, Chatanooga, Tennessee, June 8-12, 1987.
30. Fraser, M. E., D. A. Fee and R. S. Sheinson, Decomposition of Methane in an AC Discharge, Plasma Chemistry and Plasma Processing, \(\underline{5}\) (2), 163-173, 1985.
31. Piatt, M.A., Methane Destruction in an Alternating Current Plasma Reactor, Master Thesis, Chemical Engineering, Oklahoma State University, 1988.
32. Robert, B.B., Joseph W.Bozzell, Reaction of Chlorocarbons to HCl and Hydrocarbon in a Hydrogen-Rich Microwave-Induced Plasma Reactor, J. Environ. Sci. Technol., Vol. 23, No.6, 1989.
33. Kawamura, S., Integrated Design of Water Treatment Facilities, John Wiley \& Sons, Inc., 1991.
34. Stenzel, M.H., and U.S. Gupta, Treatment of Contaminated Groundwater with Granular Activated Carbon and Air Stripping, J. of the Air Pollution Control Association, p1304-1309, v 35, No 12, Dec, 1985.
35. Cummins, M.D. and J.J. Westrick, USEPA, Office of Drinking Water, Technical Support Division, Cincinnati, Ohio, Packed Column Air Stripping Preliminary Design Procedure, Presented at 1986 WPCF Conference, Post Conference Workshop on Hazardous Waste, Los Angeles, CA, October 9-10, 1986.
36. Reynolds, T.D., Unit Operations and Processes in Environmental Engineering, p360, Brooks/Cole Engineering Division.
37. Metcalf \& Eddy Inc., Wastewater Engineering Treatment/Disposal/Reuse, McGraw-Hill, p510, First Edition, 1972 .
38. Polson, A., Some Aspects of Diffusion in Solution and a Definition of a Colloidal Particle, J. Phys. Coll. Chem., Vol. 54, p649, 1950.
39. Hayduk, W. and H. Laudie, Prediction of Diffusion Coefficients for Non-electrolytes in Dilute Solutions, J. AIChE, Vol. 28, p611, 1974.
40. Treybal, R.E., Mass-Transfer Operations, 3rd ed., McGraw-Hill, New York, 1980.
41. CRC Handbook of Chemistry and Physics, 66th ed.
42. McCabe, W.L., J.C. Smith, Unit Operations of Chemical Engineering, p149, Third ed., McGraw-Hill, 1976.
43. Perry, R.H. and C.H. Chilton, Chemical Engineer's Handbook, 5th ed., McGraw-Hill Co., NY.
44. Gumerman, R.C., R.L. Culp, and S.P. Hansen, Estimating Water Treatment Costs, Vol. 2, Cost Curves Applicable to 1 to 200 mgd Treatment Plants, EPA -600/2-79-162b, Aug. 1979.
45. Peters, M.S. and K.D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4 th ed., McGraw-Hill, 1990.
46. Dean, J.A., Handbook of Organic Chemistry, McGraw-Hill, New York, 1987.
47. Shukla, H.M., R.E. Hicks, Process Design Manual for Air Stripping of Organics, EPA-600/2-84-139, Aug., 1984 .
48. Munz, C., P.V. Roberts, Air-Water Phase Equilibrium of Volatile Organic Solutes, J. American Water Works Association, 79 (5), 62-69, 1987.
49. Kittikul, P., Study of Temperature Effects on Air Stripping of Volatile and Slightly-Volatile Organics From Water, Doctoral dissertation, Oklahama State University, Stillwater, Oklahoma, 1987.
50. Gossett, J.M., Measurement of Henry's Law Constant for \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) Chlorinated Hydrocarbons, Environ. Sci. Technol., Vol. 21, No. 2, p202-208, 1987.
51. Himmelblau, David M., Basic Principles and Calculations in Chemical Engineering, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1967.
52. Le Bas, G., The Molecular Volumes of Liquid Chemical Compounds, Longmans, Green, New York, 1915.
53. Dobrzelewski, M., Correlations for the Determination of Surface Diffusivities of Organic Chemicals Adsorbed onto Granular Activated Carbon, Master's thesis, Michgan Tech. Univ., Houghton, Michigan, 1985.
54. Brad, B.B., Field Validation of EPA Reference Method 23, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Research Triangle Park, NC, EPA 600/4-83-024, June, 1983.
55. Johnson Division, UOP Inc., Ground Water and Wells, Fourth Printing, 1975.
56. Hand, D.W., J.C. Crittenden, J.L. Gehin, and B.W. Lykin Jr., Design and Evaluation of an Air-Stripping Tower for Removing VOCs From Groundwater, J. American Water Works Association, p87-97, Sep., 1986.
57. Council on Environmental Quality, Contamination of

Groundwater by Toxic Organic Chemicals, U.S. Govt. Printing Office, Washington, DC, 1981.
58. Kavanaugh, M.C., R.R. Trussell, Design of Aeration Towers to Strip Volatile Contaminants from Drinking Water, J. American Water Works Association, 72 (12), 684-692, 1980.
59. Veenstra, J. N., P. Kittikul, R. Pakanati, and M. A. Weinert, Study of Temperature Effects on Air Stripping of Volatile Organics From Water, Presented at the American Water Works Association Annual Conf., Denver, CO, 1986.
60. Lamarre, B.L., F. McCarry, E.L. Stover, Design, Operation and Results of Pilot Plant for Removal of Contaminants from Groundwater, Proceedings of the third National Symposium on Aquifer Restoration and Groundwater Monitoring, Columbus, Ohio, May, 1893.
61. Crittenden, J.C., P. Luft, and D.W. Hand, Prediction of Multicomponent Adsorption Equilibria in Background Mixtures of Unknown Composition, Water Res., Vol 19, No 12, p1537-1548, 1985.

APPENDIXES

\section*{APPENDIX A}

\section*{LIST OF VARIABLES}

From Main Program
\(A, B, C\); constants for Antoine equation COMPOUND; name of the compound
CS; the solubility of the compound, ug/l
VP; vapor pressure of coumpound at TEMPC, ming YNHC; flag for Henry's constant
TCOST; total yearly cost of air stripping, \$/year
TGAL; unit cost of air stripping, cents/1000-gal
DCOST; total yearly cost of discharge reactor, \$/year
DGAL; unit cost of discharge reactor, cents/1000-gal
CCOST; total yearly cost of liquid-phase GAC, \$/year
CGAL; unit cost of liquid-phase GAC, cents/1000-gal
CCOSTG; total yearly cost of gas-phase GAC, \$/year
CGALG; unit cost of gas-phase GAC, cents/1000-gal
TCGALG; TGAL+CGALG
TCGALOP; TGAL+CGALG of optimum \(A / W\) ratio
AWOPT; the index of the optimum A/W ratio

\section*{From MPTAD}

TAREA; total tower cross sectional area, sq.m.
AT; specific surface area of the packing, sq. m. per cu. m.
AW; wetted surface area of the packing, \(m * * 2 / m * * 3\)
BP; blower brake power, kw
BPW; brake power for the pump, kw
CE; effluent conc. desired, ug/l
CEA; effluent conc. actual, ug/l
CF; packing factor
CI; influent conc., ug/l
DGKGM3; density of air, kg/m**3, DGGCM3 * TEMPKG/TEMPK * 1000
DGGCM3; density of air at the elevated temperature, g/ca**3
DIFLL; liquid diffusivity, sq. m./sec.
DIFCM2L (cm**2/sec) \(=\) DIFLL \(* 10000.0\)
DIFGG; gas-diffusivity of the compound, \(m * * 2 / s e c\) DIFCM2G (cm**2/sec) = DIFGG * 10000.0
DIFGGG; gas-diffusivity at the elevated temperature, m**2/sec
DP; nominal packing size, cm
DT; tower diameter, m.
DWGCM3; density of water, g/cm**3
DWKGM3 \(=\) DWGCM3*1000.0, \(\mathrm{kg} / \mathrm{m} * * 3\)
EAB; energy of molecular attraction
EFF; blower (fan*motor) efficiency, \%
EFFW; pump efficiency, \%
\(\mathrm{F}(\mathrm{KT} / \mathrm{EAB})\); collision function
FR; Froude number
G; gravitational constant
GM; air loading rate, gas phase mass flux, kg/sq.m-sec
HC; Henry's constant, dimensionless form
HLL; tower length, m
INCREM; increment of XMPL
K; boltzmann's constant
KLA; overall mass transfer coefficient, sec.**(-1)
LM; liquid-phase mass flux

MA; molecular weight of the air, ma, 28.95
ML; water loading rate, \(\mathrm{kg} / \mathrm{sq} . \mathrm{m}-\mathrm{sec}\)
MW; molecular weight of the compound
\(N\); constant equal to . 283
NFLOWL; number of flow rates for simulation
NVQ; number of air to water ratio for simulation
P1; inlet air pressure to blower, Pa
P 2 ; outlet air pressure from blower, Pa
PACKING; name and type of packing to be used
PRESATM; operating pressure, atm
PRESHG \(=\) PRESATM*760.0
PRESD; desired air pressure drop across the tower, \(\mathrm{Pa} / \mathrm{m}\).
PRESE; pressure drop due to tower inlet, outlet, packing support plate, Pa
PT; absolute pressure, assumed to be 1 atm or \(101,325 \mathrm{~N} / \mathrm{sq}\). m .
QMG; mass flow rate of air
FLOWL; water flow rate, ngd or \(m * * 3 / \mathrm{sec}\)
SFLOWL; starting water flow rate for simulation, mgd
SXMPL; starting XMPL
R; gas constant, 286.7
RAB; mol. separation at collision, nm
\(R A B=(R A+R B) / 2\), where \(R B=1.18 * V B * * .33\)
\(R A=.3711 \mathrm{~nm}\) For air
RE; Reynolds number
RECE; removal efficiency
ST; surface tension of water, kg/sec**2
STC; critical surface tension of the packing, N/m
TEMPAIRC; inlet air temp., deg C
TEMPC; water temperature, deg \(C\)
TEMPK \(=\) TEMPC +273.0
TEMPKB; boiling pt. temp of the compound, deg \(K\)
TV; tower volune, cu.m.

(can be determined from the Lebas method).
VGAS; superficial gas velocity of tower, m/sec
VGKGMS; air viscosity, kg/m-sec
VGGCMS; air viscosity at the elevated temperature, g/cm-sec
\(V Q\); the calculated value of the air to water ratio
VWGCMS; water viscosity at DW, g/cm-sec
VWKGMS \(=\) VWGCMS \(/ 10.0, \mathrm{~kg} / \mathrm{m}-\mathrm{sec}\)
VQMIN; minimum air to water ratio
WE; weber number
XMPL; some multiple of VQMIN to acheive the desired operating air to water ratio

From GACBED, GACBEDG

CMASS; total amount of carbon in bed, kg
CARUSE; carbon usage rate, kg/day
BDEPTH; bed depth, m
BAREA; bed area, m**2
BVOL \(=\) BDEPTH*BAREA
LIFE; bed life (regeneration cycle), days
VPG; vapor pressure of the coumpound at the elevated temp, \(\quad \mathrm{mHg}\)
```

TEMPUPG; increase in temp to lower relative humidity, deg C
TEMPKG; elevated temperature, deg K
FLOWG; air flow rate, mgd or m**3/sec
FLOWGG; air flow rate at the elevated temp, mgd or m**3/sec
QB; equilbrium concentration on the carbon in D-R equation,
PP = (CONC/MW * 22.4 / 1.0E+6)*PRESHG
QB = 0.46E+6* DENL/MW*EXP(-1.33E-7*(TEMPKG/BETA*ALOG(VPG/PP))**2)

```

\section*{From SPEQ}

DENL; liquid (compound) density, g/cc
TEMPC; system temperature, \(\operatorname{deg} C\), assumed to be equal to inlet water temperature
BETA; affinity coefficient

From USER

VSW; liquid superficial velocity, cm/sec
DIA; carbon particle diameter, cm
RHOB; bulk bed density, gm/cm**3
RHOP; apparent particle density, gm/cm**3
EPOR; void fraction of the particle
EBED; void fraction of the bed \(=1.0-\) RHOB/RHOP
PSDFR; pore surface diffusion flux ratio
EBCT; enpty bed contact time of interest, min.
SEBCT; starting empty bed contact time for simulation, min.
NEBCT; number of empty bed contact time for simulation
TAU; packed bed contact time
CI; the initial conc. of the compound, ug/l
CIM; CI/MW, umole/l
CIOS; overshooting concentration of CI
\(C E\); the effluent conc. of the compound, ug/l
CEM; CE/MW, unole/l
KK; Freundlich iso. cap., (umol/gn)(l/umol)**NN
NN; Freundlich isotherm exponent, \(1 / n\), dimensionless
KF; film transfer coefficient, cm/sec
DS; surface diffusion coefficient, cm**2/sec
DG; solute distribution parameter
BI; biot number
SC; Schmidt number
STM; the minimum Stanton number
ETMIN; the minimum EBCT, sec
ETLEN; the length of the minimum EBCT, cm
T95; throughput at \(95 \%\) of the MTZ
TEI; throughput at (CEM/CIM)*100\% of the MTZ
ETMTZ; the EBCT of the MTZ, sec
EMTZL; the length of the MTZ, cm
\(Q\); equilbrium concentration on the carbon, \(Q=K K * C I M * * N N\), umole/g-carbon
PC; partition coefficient (distribution parameter)
From GAS-PHASE USER;
CIG; the initial conc. of the compound in gas-phase, ug/l

CIGG; initial concentration at the elevated temperature CIGGOS; overshooting concentration of CIGG
VSG; air superficial velocity, cm/sec
VGGCMS; viscosity of air, (gm/cm-sec) at the elevated temperature
DGGCM3; density of air, (gm/cm**3) at the elevated temperature
From Cost calculations (GACCOST, GACCOSTG, TWCOST)
CONTAC; least cost contactor selected for liquid phase
CONTACG; least cost contactor selected for gas phase
REGEN; least cost regeneration selected for liquid phase
REGENG; least cost regeneration selected for gas phase
CCOST; total system cost for liquid phase carbon adsorption, \$/year
CCOSTG; total system cost for gas phase carbon adsorption, \$/year
CCOST; unit cost for liquid phase carbon adsorption, cents/1000gal -water
CCOSTG; unit cost for gas phase carbon adsorption, cents/1000gal-water
GACOP; percentage operation of GAC contactor, \%
INTEREST; interest, \%
PAYBACK; pay back period, years
UPTIME; reactivator uptime, \(\%\)
CAPITAL; capital cost of the system
GACPR; GAC price, \(\$ / 1 \mathrm{lb}\)
LOSS; GAC regeneration and handling losses; \%
LABOR; labor rate, \(\$ / \mathrm{hr}\)
ELECT; electric rate, \(\$ / \mathrm{kwh}\)
FUEL; fuel oil price, \(\$ /\) gal
NGAS; natural gas price, \$/standard cu.ft.
WATER; process water price, \(\$ / 1000 \mathrm{gal}\)
PROFIT; contractor profit factor, \%
SITE; special site work factor, \(\%\)
FEE; engineering fees factor, \(\%\)
CONTIN; construction contingencies factor, \%
PACKAGE; package pressure GAC contactors
STEEL; conventional steel pressure GAC contactors
CONCRETE; conventional gravity GAC contactors
BWASH; back wash pumping CC
STORAGE; GAC storage CC
CP; heat capacity of air, cal/g-deg C
HEAT; air heating cost, \(\$ /\) year
VIRGIN; virgin GAC replacement with disposal of spent GAC, \$/year
INFRA; infrared reactivation
FLUID; fluidized reactivation
HEARTH; multihearth reactivtion
HAREA; total effective hearth area, caruse/(45lb/sqft/day)
PRESDG; gas-phase pressure drop through carbon bed, Pa
PTOP; percentage operation of packed tower, \%
CRF; capital recovery factor
ECI; Marshall and Swift equipment cost index
CCI; engineering news record construction cost index
From ET
BVF; bed void fraction

C; liquid phase concentration, ug/l
CH ; working character
CHAR; name of the components
CO; initial concentrations, ug/l
DEN; bulk density of adsorbent, g/cm**3
DGX; dimensionless group \(X\) : used to find strongest component
DGY; dimensionless group Y: used to find strongest component
FCN; subroutine that sets up the non-linear equations
FNORM; output: sum of the residuals
I; counter
IAST; subroutine to account for competitive effects
IER; output: error parameter
ITMAX; maximum number of iterations
IX; used to keep track of strongest component
J; counter
K; counter
L; counter for error fixing
M; counter
MW; molecular weight
\(N\); number of components total
NN; number of components in a zone
NS; NSIG input
NSIG; number of digits of accuracy desired in the computed root
OATS; bed volunes fed
PAR; parameter set
\(\operatorname{PAR}(1\) to \(N\)); Freundlich \(K\) values
\(\operatorname{PAR}(10\) to \(10+\mathrm{N})\); Fruendlich N values
\(\operatorname{PAR}(20\) to \(20+\mathrm{N})\); initial concentrations
\(\operatorname{PAR}(30)\); velocity of the wave, VW, cm/s
PAR(35); velocity of flow, VF, cm/s
\(\operatorname{PAR}(40\) to \(40+\mathrm{I})\); calculated liquid concentrations
\(\operatorname{PAR}(60\) to \(60+1)\); \(Q\) 's of the previous wave
\(\operatorname{PAR}(80\) to \(80+1)\); C's of the previous wave
\(Q\); solid phase concentration, ug/g
QAVE; average \(Q\) in zone
SSTC; single solute treatment capacity, mg C/L water
SUM; used to calculate VW and OATS
VF; velocity of flow, cm/s
VW; velocity of wave, \(\mathrm{cm} / \mathrm{s}\)
WK; work vector: LENGTH \(=\mathrm{N} *(3 * \mathrm{~N}+15) / 2\)
X ; one dimensional solid-phase concentration, un/g
XK; Freundlich K's (um/g)*((L/um)**1/N
XN; Fruendlich \(1 / n\) 's
ZSQ; common block
\(Z Z\); variable used to calculate initial Q's
ZZZ; dimensionless bed length

\section*{APPENDIX B}

EXAMPLE OF INPUT FILE
* Do not change any format of this data file.
* Always include decimal point for the number except integer format isspecified. In case of integer input, never use decimal point.
Data entry for Air Stripping Tower
PACKING; name and type of packing to be used ;INTALOX SADDLES
DP; nominal packing size, cu ;7.62
CF; packing factor ;16.0
STC; critical surface tension of packing, \(N / m\) ; 0.033
AT; specific surface area of the packing,
sq. . per cu. m. ; 89.0
PRESATM; operating pressure, atm ; 1.0
TEMPC; water temperature, deg \(C\) ; 10.0
SFLOWL; starting water flow rate, mgd ;0.1
TEMPAIRC; inlet air temp., deg \(C\) ; 20.0
EFF; blower efficiency, \% (effic. of fan*motor) ; 35.0
EFFW; pump efficiency, \% ; 70.0
NFLOWL; (integer) ;10
Data entry for Gas-phase Carbon Adsorption
VSG; air superficial velocity, cm/sec ; 30.48
TEMPUPG; required temp increase, C, RF;100\%->40\% ;14.4
DIAG; carbon particle diameter, \(c\) m ;0.3715
RHOBG; bulk bed density, gm/cm**3 ;0.555
RHOPG; apparent particle density, gm/cm**3 ;0.85
EPORG; void fraction of the particle ;0.595
EBCTG; empty bed contact time, sec. ;1.5
Data entry for Liquid-phase Carbon Adsorption
RHOB; bulk bed density, gm/cm**3 ; 0.470
DIA; carbon particle diameter, cm ;0.0513
RHOP; apparent particle density, gm/cm**3 ;0.8034
EPOR; void fraction of the particle ;0.641
VSW; water superficial velocity, cm/sec ;0.3396
EBCT; empty bed contact time, min. ;15.
Data entry for cost calculation
GACOP; percentage operation of GAC contactor, \% ; 70 .
UPTIME; reactivator uptime, \% ; 75.
LOSS; GAC regeneration and handling losses; \% ; 12 .
INTEREST; interest, \% ; 10 .
PAYBACK; pay back period, years ; 20 .
GACPR; GAC price, \(\$ / 1 \mathrm{l}\) ; . 9
LABOR; labor rate, \$/hr ; 15.
ELECT; electric rate, \$/kwh ; . 08
NGAS; natural gas price, \$/std.cu.ft. ; . 003
WATER; process water price, \$/1000gal ; . 35
PROFIT; contractor profit factor, \(\%\) ; 5 .
SITE; special site work factor, \(\%\) ; 5
FEE; engineering fees factor, \% ; 10
CONTIN; construction contingencies factor, \(\%\) ;10.
GACPRG; GAC price for gas phase, \$/lb ;2.
ECI; Marshall and Swift Equipment Cost Index ;904.
CCI; ENR Construction Cost Index ;435.
PTOP; percentage operation of aeretion tower, \% ; 70 .
NCOMPOUND; No. of compounds (integer, Maximum; 9) ; 9

(1) COMPOUND; name of the compound MW; molecular weight of the compound Constants for Anotine equation, \(A\) A
B C ;154.59
YNHC; Do you have a value of the Henry's constant in dimensionless form ? (Y/N) ;Y
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.1907
CI; influent conc., ug/l ;100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, \({ }^{\wedge} 3 / \mathrm{kg}-\mathrm{mol}\)
(can be determined from the Lebas method). ; 0.1071
TEMPBK; boiling pt. temp of the compound, deg K ;359.7
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ;16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;0.816
DENL; liquid (compound) density, g/cc ;1.4642
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ;196.6
1/N; ;0.4163
PSDFR; pore surface diffusion flux ratio ;3.72

(2) COMPOUND; name of the compound MW; molecular weight of the compound Constants for Anotine equation, A

A C
;TET. CH. ETHYLENE ;165.83 ;7.5406 ;1694.6 ;245.29

YNHC; Do you have a value of the Henry's
constant in dimensionless form ? (Y/N) ;
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.3569
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, \(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\)-mol(can be determined from the Lebas method). ; 0.128
TEMPBK; boiling pt. temp of the compound, deg \(K\);394.1
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ; 95.0
PSDFRG; pore surface diffusion flux ratio ; 16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;0.976
DENL; liquid (compound) density, g/cc ;1.6227
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 650.6
1/N; ;0.4579
PSDFR; pore surface diffusion flux ratio ; 3.72

(3) COMPOUND; name of the compound ;TOLUENE
MW; molecular weight of the compound ;92.14
Constants for Anotine equation, A ;6.7624
B ;1254.5
C ;211.31YNHC; Do you have a value of the Henry'sconstant in dimensionless form? (Y/N); Y
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.1190
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, m^3/kg-mol(can be determined from the Lebas method). ;0.1182
TEMPBK; boiling pt. temp of the compound, deg \(\mathrm{K} ; 383.6\)
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ; 95.0
PSDFRG; pore surface diffusion flux ratio ; 16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;1.0
DENL; liquid (compound) density, g/cc ;0.8669
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 348.0
1/N; ;0.365
PSDFR; pore surface diffusion flux ratio ; 3.72
***************************木木**
(4) COMPOUND; name of the compound ;CHLOROBENZENE
MW; molecular weight of the compound ;112.56
Constants for Anotine equation, \(A\) ; 5.957
B ;1004.3
C ;180.41
YNHC; Do you have a value of the Henry'sconstant in dimensionless form ? (\(\mathrm{Y} / \mathrm{N}\));
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.08977
CI; influent conc., ug/l ;100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, \({ }^{\wedge} 3 / \mathrm{kg}-\mathrm{mol}\)
(can be determined from the Lebas method). ;0.1169
TEMPBK; boiling pt. temp of the compound, deg \(K\) ;405.0
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ; 16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;1.059
DENL; liquid (compound) density, g/cc ;1.047
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 381.0
1/N; ;0.31
PSDFR; pore surface diffusion flux ratio ;3.72
**(5) COMPOUND; name of the compound;BROMOFORM
MW; molecular weight of the compound ;252.73
Constants for Anotine equation, \(A\) ;4.9134
B ;657.45
C ; 134.0YNHC; Do you have a value of the Henry'sconstant in dimensionless form ? (\(\mathrm{Y} / \mathrm{N}\));
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.009944
CI; influent conc., ug/l ;100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, \(\mathrm{m}^{\wedge} 3 / \mathrm{kg}-\mathrm{mol}\)(can be determined from the Lebas method). ;0.0995
TEMPBK; boiling pt. temp of the compound, deg K ;422.5
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ;16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;0.963
DENL; liquid (compound) density, g/cc ;2.8899
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 161.0
1/N; ;0.5629
PSDFR; pore surface diffusion flux ratio ;3.72

(6) COMPOUND; name of the compound ;CHLOROFORM
MW; molecular weight of the compound ;119.38
Constants for Anotine equation, A ; 5.7
B ;647.54
C ;164.61
YNHC; Do you have a value of the Henry's constant in dimensionless form ? (\(\mathrm{Y} / \mathrm{N}\)) ;
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.07594
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, m \(3 / \mathrm{kg}\)-mol (can be determined from the Lebas method). ;0.0923
TEMPBK; boiling pt. temp of the compound, deg K ;334.7
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ;16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ; 0.694
DENL; liquid (compound) density, g/cc ;1.4832
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 30.4
1/N; ;0.5325
PSDFR; pore surface diffusion flux ratio ; 3.72

(7) COMPOUND; name of the compound ; 1,1,1-T.CH. ETHANE
MW; molecular weight of the compound ;133.4
Constants for Anotine equation, A ; 13.08
B ;5926.8
C ; 514.91
YNHC; Do you have a value of the Henry's
constant in dimensionless form ? (\(\mathrm{Y} / \mathrm{N}\)) ;
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.3516
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, m^3/kg-mol
(can be determined from the Lebas method). ;0.1145
TEMPBK; boiling pt. temp of the compound, deg \(K\) ; 347.1
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ; 16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ;0.841
DENL; liquid (compound) density, g/cc ;1.339
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ;29.7
1/N; ;0.495
PSDFR; pore surface diffusion flux ratio ;3.72

(8) COMPOUND; name of the compound;ETHYLBENZENE
MW; molecular weight of the compound ; 106.17
Constants for Anotine equation Constants for Anotine equation, \(A\) ;11.612
B \(\quad ; 4616.7\)C ;409.12YNHC; Do you have a value of the Henry'sconstant in dimensionless form ? (Y/N); Y
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless form ;0.1332
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, \(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\)-mol (can be determined from the Lebas method). ;0.1404
TEMPBK; boiling pt. temp of the compound, deg \(K\) ; 409.2
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ; 95.0
PSDFRG; pore surface diffusion flux ratio ;16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient ; 1.15
DENL; liquid (compound) density, g/cc ;0.867
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 507.0
1/N; ;0.53
PSDFR; pore surface diffusion flux ratio ; 3.72

(9) COMPOUND; name of the compound MW; molecular weight of the compound ;1,2-DICH.BENZENE B C;147.0

A
Constants for Anotine equation, \(A\)C; 1584.8;210.14
YNHC; Do you have a value of the Henry'sconstant in dimensionless form ? (Y/N); Y
(If no, answer \#1. If yes, answer \#2.)
\#1. CS; the solubility of the compound, ug/l ;
\#2. HC; Henry's constant in dimensionless for ;0.06015
CI; influent conc., ug/l ; 100.0
CE; effluent conc. desired, ug/l ; 5.0
VB; molal volume of the compound, mi \(3 / \mathrm{kg}\)-mol(can be determined from the Lebas method). ;0.1378
TEMPBK; boiling pt. temp of the compound, deg \(K\) ;453.5
Compound data regarding Gas-phase Carbon Adsorption
RECEG; desired removal, \% ;95.0
PSDFRG; pore surface diffusion flux ratio ; 16.0
Data entry for subroutine SPEQ
BETA; affinity coefficient;1.157
DENL; liquid (compound) density, g/cc ; 1.3048
Compound data regarding Liquid-phase Carbon Adsorption
K; Freundlich isotherm parameter ; 865.0 1/N; ;0.38
PSDFR; pore surface diffusion flux ratio ;3.72
End of input file

\section*{APPENDIX C}

SOURCE PROGRAM (FORTRAN 77)
C
C MAIN PROGRAM
C

 IMPLICIT REAL (A-Z)
 CHARACTER*40 PACKING, COMPOUND(20), CPD, CONTAC1, CONTACG1,REGEN1,
 \& REGENG1, \(\operatorname{CONTAC}(10), \operatorname{CONTACG}(10,100), \operatorname{REGEN}(10), \operatorname{REGENG}(10,100)\)
 CHARACTER*1 YNHC
 DIMENSION HC(20), MW(20), VB(20), TEMPKB(20),CI(20), CE(20), CIGG(20),
 \& \(\operatorname{CEA}(20,100), \operatorname{CEA1}(20), \operatorname{RECEG}(20), \operatorname{VPG}(20), \operatorname{PSDFR}(20), \operatorname{PSDFRG}(20)\),
 \& \(\operatorname{BETA}(20), \operatorname{DENL}(20), \mathrm{KK}(20), \mathrm{NN}(20), \operatorname{DIFLL}(20), \operatorname{DIFGG}(20), \operatorname{DIFGG}(20)\),
 \& VQ(100),TAREA(10,100), \(\operatorname{HLL}(10,100), \operatorname{TV}(10,100), \operatorname{TGAL}(10,100)\),
 \& \(\operatorname{TCGALG}(10,100), \operatorname{TCGALOP}(10), \operatorname{DGAL}(100), \operatorname{ETMING}(100), \operatorname{ETMTZG}(100)\),
 \& EMTZLG(100), CARUSEG(100), BAREAG(100), PRESD(10,100), LIFEG(100),
 \& \(\operatorname{CGALG}(10,100), \operatorname{CGAL}(10), \operatorname{KKG}(20), \operatorname{NNG}(20)\)
 INTEGER NFLOWL, NVQ, I , J, K, L, LL(100) , LLL,II(100) ,JJ, AWOPT(10),
 \& NCOMPOUND
C FROM SUBROUTINE ET
 INTEGER M
 DOUBLE PRECISION BVF,DEN
 EXTERNAL FCN
 COMMON /ZSQ/ BVF,DEN,M
 OPEN (UNIT = 7, FILE = 'MVOC. DAT', FORM = ' PORMATTED',
 \& ACCESS \(=\) 'SEQUENTIAL', STATUS \(=\) 'OLD')
 OPEN (UNIT \(=8\), FILE \(=\) 'MVOC.OUT', STATUS = 'UNKNOWN')

C DATA ENTRY OR ESTIMATION FOR EACH PROCESS

C AIR STRIPPING TOWER
 READ (UNIT=7, FMT=100, END=10) PACKING,DP,CF,STC,AT, PRESATM,
 \& TEMPC,SFLOWL, TEMPAIRC, EFF, EFFW,NFLOWL
 PRESHG \(=\) PRESATM*760.0
 TEMPK \(=\) TEMPC +273.0
C GAS-PHASE CARBON ADSORPTION
 READ (UNIT=7, FMT=200, END=10) VSG,TEMPUPG,DIAG,RHOBG,
 \&
 RHOPG, EPORG, EBCTG
 TEMPKG \(=\) TEMPK + TEMPUPG
 \(\mathrm{CP}=(.79 *(6.50+0.001 *(\) TEMPK + TEMPUPG \(/ 2))+..21 *(8.27+0.000258 *\)
 (TEMPK+TEMPUPG/2.) \(-187700 . /(\) TEMPK + TEMPUPG/2.)**2.))/29.
C LIQUID-PHASE CARBON ADSORPTION
 READ (UNIT=7, FMT=110, END=10) RHOB,DIA,RHOP, EPOR,VSW,EBCT

C Calculation of the compound vapor pressure using Antoine equation:
C Vapor pressure should be in \(m \mathrm{nHg}\) to use the subroutine SPEQ and
C the equation for Henry's constant, which are all that need vapor
C pressure in this program. Following formula gives vapor pressure in
C \(\quad \mathrm{m} H \mathrm{Hg}\) while LN formula gives it in bar. Accordingly, A,B,C values are
C different in the two formulae.
C Following formula needs TEMPC while LN formula does TEMPK.
\(V P=10.0 * *(A-B /(T E M P C+C))\)
READ (UNIT=7, FMT=130, END=10) YNHC
IF ((YNHC .EQ. 'N') .OR. (YNHC .EQ. 'n')) THEN READ (UNIT=7, FMT=140, END=10) CS \(\mathrm{HC}(\mathrm{I})=(16034 . * \mathrm{MW}(\mathrm{I}) * V P) /(\mathrm{CS} *\) TEMPK \()\) READ (UNIT=7, FMT \(=140\), END=10) CI(I) GOTO 20
ELSE
READ (UNIT=7, FMT=150, END=10) HC(I)
ENDIF
READ (UNIT=7, FMT=160, END=10) CI (I)
READ (UNIT=7, FMT=170, END=10) CE(I), VB(I), TEMPKB(I)
READ (UNIT=7, FMT=180, END=10) RECEG(I), PSDFRG(I)
\(\operatorname{VPG}(\mathrm{I})=10.0 * *(\mathrm{~A}-\mathrm{B} /(\mathrm{TEMPC}+\mathrm{TEMPUPG}+\mathrm{C}))\)
READ (UNIT=7, FMT=180, END=10) BETA(I), DENL(I)
READ (UNIT=7, FMT=190, END=10) KK(I), NN(I), PSDFR(I)
CONTINUE
CLOSE (UNIT=7)
CALCULATION OF DENSITY AND VISCOSITY OF AIR
C Before the elevation of temperature.
DGKGM3 \(=(28.964 *\) PRESATM \() /(.08216 * T E M P K)\)
VGKGMS \(=1.7 \mathrm{E}-7\) * TEMPK**. 818
```

C At the elevated temperature (Units are different also.)
DGGCM3 = (28.964*PRESATM)/(.08216*TEMPKG * 1000.0)
VGGCMS = 1.7E-6 * TEMPKG**.818
CALL DENVIS (DWGCM3,VWGCMS,TEMPC)
DWKGM3 = DWGCM3*1000.0
VWKGMS = VWGCMS/10.0
DO 17 I = 1, NCOMPOUND
CALL DIFL(DIFLL(I),MW(I),VB(I),VWKGMS)
CALL DIFG(DIFGG(I),MW(I),VB(I),TEMPKB(I ),TEMPK)
CALL DIFG(DIFGGG(I),MW(I),VB(I),TEMPKB(I),TEMPKG)
17 CONTINUE
ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
C SIMULATION
ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
C DESIGN AND COST ESTIMATION OF AIR STRIPPING TOWER
C Vary the plant capacity, mgd.
DO 40 I = 1,NFLOWL
FLOWL = SFLOWL * I
C Vary the air to water ratio to find the optimun value.
NVQ = 30
SXMPL = 1.1
INCREM = . 1
DO 40 J = 1,NVQ
XMPL = SXMPL + (J-1.) * INCREM
C Initialization.
TGAL(I,J) = 10000.
SPRESD = 50.
DO 45 K = 1,151
PRESD1 = SPRESD + K-1.
CALL MPTAD(VQ(J),TAREA(I,J),HLL(I,J),TV(I,J),CEA1,II(J),JJ,
\& DWKGM3,VWKGMS,TEMPC,CI,CE,HC,XMPL,PRESD1,DGKGM3,
\& CF,FLOWL,TEMPAIRC,EFF,PRESATM,EFFW,AT,STC,DP,VGKGMS,
\& DIFLL,DIFGG,BP,BPW,NCOMPOUND)
DO 46 L=1,NCOMPOUND
CEA(L,J)=CEA1 (L)
CONTINUE
CALL TWCOST(TCOST,TV(I,J),BP,BPW,PTOP,FLOWL,LABOR,ELECT,

```
 \& PROFIT, FEE, ECI, CCI ,CRF)
 TGAL1 \(=(\) TCOST \(* 1000) /.(\) FLOWL*1.0E+6*365.) \(* 100\).
 IF (TGAL1 . LT. TGAL(I, J)) THEN
 TGAL(I,J) = TGAL1
 \(\operatorname{PRESD}(\mathrm{I}, \mathrm{J})=\operatorname{PRESD} 1\)
 ELSE
 GOTO 40
 ENDIF
45 CONTINUE
40 CONTINUE

C If off gas treatment is not required,
 IF (RECEG(1) .EQ. 0.0) THEN
C Find the least cost of tower for varying air to water ratio.
 DO \(47 \mathrm{I}=1\), NFLOWL
 \(\operatorname{TCGALOP}(\mathrm{I})=10000.0\)
 DO \(47 \mathrm{~J}=1\), NVQ
 IF (TGAL(I,J) .LE. TCGALOP(I)) THEN
 \(\operatorname{TCGALOP}(\mathrm{I})=\operatorname{TGAL}(\mathrm{I}, \mathrm{J})\)
 AWOPT(I) \(=\mathrm{J}\)
 ENDIF
47 CONTINUE
 GOTO 48
 ENDIF

\section*{}
C COST CALCULATION FOR DISCHARGE REACTOR
DO \(50 \mathrm{~J}=1, \mathrm{NVQ}\)
C Starting flow rate, mgd
FLOWG = SFLOWL*VQ(J)
C Best result of Mr. Tsai's experiment will be used (7L/min; 130w; 95\%)
C Unit price is independent of flow rate.
\(\mathrm{KW}=\) FLOWG/22.82688*1114.2857
\(\mathrm{KWH}=\mathrm{KW} * 365 . * 24\).
DCOST \(=\) KWH*ELECT DGAL(J) \(=(\) DCOST*1000.)/(SFLOWL*1.0E+6*365.) * 100.
50 CONTINUE
ССС
C ************** GAS-PHASE GAC DESIGN **************
DO \(51 \mathrm{~J}=1, \mathrm{NVQ}\)

C Flow rate at the elevated temperature.
FLOWG \(=\) SFLOWL*VQ(J)
FLOWGG = FLOWG*TEMPKG/TEMPK
DO \(55 \mathrm{~K}=1\), NCOMPOUND
C Determination of the effluent gas concentration in ug/l
C CEA is used in multiple component instead of CE. CIG \(=(\mathrm{CI}(\mathrm{K})-\mathrm{CEA}(\mathrm{K}, \mathrm{J})) / \mathrm{VQ}(\mathrm{J})\)

C Concentration at the elevated temperature.
CIGG(K) \(=\) CIG*FLOWG/FLOWGG
CALL SPEQ(KKG(K),NNG(K),CIGG(K),DENL(K),MW(K), PRESHG,
\& TEMPKG, BETA(K),VPG(K))
55 CONTINUE
CALL ET(FCN,CPD,CIGGOS,CUSEG,NCOMPOUND,RHOBG,RHOPG,VSG, \& COMPOUND, KKG,NNG,CIGG,MW)

C Identification of the limiting compound
DO \(56 \mathrm{~L}=1\), NCOMPOUND
IF (CPD .EQ. COMPOUND(L)) THEN
LL(J) \(=\mathrm{L}\) GOTO 60 ENDIF
56 CONTINUE
60 CONTINUE
C Desired effluent concentration of the limiting compound CEGGOS \(=\) CIGGOS * (100. \(-\operatorname{RECEG}(\operatorname{LL}(\mathrm{J}))\)) \(/ 100\).

C Mass transfer zone length of gas-phase GAC.
FLAG \(=0.0\)
CALL USER(ETMING(J), ETMTZG(J), EMTZLG(J), RHOBG,RHOPG, \& CIGGOS, CEGGOS,MW(LL(J)), KKG(LL(J)),NNG(LL(J)), VGGCMS, VSG, DIAG, \& DGGCM3, EPORG, PSDFRG(LL(J)), DIFGGG(LL(J)), FLAG)

C Actual design
CALL GACBEDG(CARUSEG(J), BAREAG(J), BDEPTHG,LIFEG(J),CUSEG, \& FLOWGG,VSG,EBCTG,RHOBG)

\section*{51 CONTINUE}

\section*{}

C GAS-PHASE GAC COST
DO \(52 \mathrm{I}=1\), NFLOWL FLOWL \(=\) SFLOWL * I
DO \(52 \mathrm{~J}=1\), NVQ FLOWGG \(=\) FLOWL*VQ(J)*TEMPKG/TEMPK
```

CARUSEG1 = CARUSEG(J) * I
BAREAG1 = BAREAG(J) * I
BVOLG = BDEPTHG*BAREAG1
CMASSG = BVOLG * RHOBG * 1000.0

```

CALL GACCOSTG(CCOSTG,CONTACG1,REGENG1,BAREAG1, \& BVOLG, FLOWGG, CARUSEG1,CMASSG,LIFEG(J),DGGCM3,TEMPUPG,CP, \& GACOP,UPTIME, LOSS, GACPR,GACPRG, LABOR, ELECT, NGAS, \& WATER, PROFIT, SITE, FEE, CONTIN, ECI , CCI, CRF, \& RHOBG,RHOPG,DIAG,VGGCMS,VSG, BDEPTHG, PRESATM,TEMPKG,EFF)

CONTACG(I, J) \(=\) CONTACG1
REGENG(I,J) = REGENG1
CGALG(I,J) \(=(\) CCOSTG*1000.)/(FLOWL*1.0E+6*365.) * 100.
\(\operatorname{TCGALG}(\mathrm{I}, \mathrm{J})=\operatorname{TGAL}(\mathrm{I}, \mathrm{J})+\operatorname{CGALG}(\mathrm{I}, \mathrm{J})\)
52 CONTINUE
 C Find the least cost for varying air to water ratio.

DO \(53 \mathrm{I}=1\),NFLOWL
\(\operatorname{TCGALOP}(\mathrm{I})=10000.0\)
DO \(54 \mathrm{~J}=1\), NVQ
IF (TCGALG(I,J) .LE. TCGALOP(I)) THEN
TCGALOP(I) \(=\) TCGALG(I,J) AWOPT(I) \(=\mathrm{J}\)
ENDIF
54 CONTINUE
IF (BDEPTHG*100. .LT. 2.*EMTZLG(AWOPT(I))) THEN
PRINT *, 'Bed depth is not enough for gas-phase GAC where;'
PRINT *, ',
PRINT *, \(\quad\) Raw water flow \(=\) ', SFLOWL*I
PRINT *, ' EBCT = ', EBCTG
PRINT *, ',
PRINT *, 'Increase EBCT!'
STOP
ENDIF
53 CONTINUE
 48 CONTINUE

C ************** LIQUID-PHASE GAC DESIGN *************
CALL ET(FCN,CPD,CIOS,CUSE,NCOMPOUND,RHOB,RHOP,VSW,
\& COMPOUND, KK, NN, CI , MW)

C Identification of the limiting compound
DO \(66 \mathrm{~L}=1\),NCOMPOUND
IF (CPD .EQ. COMPOUND(L)) THEN
LLL=L
GOTO 68
ENDIF
```

66 CONTINUE
68 CONTINUE
C Mass transfer zone length of liquid-phase GAC.
FLAG = 1.0
CALL USER(ETMIN,ETMTZ,EMTZL,RHOB,RHOP,CIOS,CE(LLL),
\& MW(LLL),KK(LLL),NN(LLL),VWGCMS,VSW,DIA,DWGCM3,EPOR,
\& PSDFR(LLL),DIFLL(LLL),FLAG)
CALL GACBED(CARUSEL, BAREAL,BDEPTH,LIFE,CUSE,
\& SFLOWL,VSW,EBCT,RHOB)
IF (BDEPTH*100. .LT. 2.*EMTZL) THEN
PRINT *,'Bed depth is not enough for liquid-phase GAC where;'
PRINT *, ',
PRINT *, , EBCT = ', EBCT
PRINT *, ',
PRINT *, 'Increase EBCT!'
STOP
ENDIF
ссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссС
C LIQUID-PHASE GAC COST
DO 57 I = 1,NFLOWL
FLOWL = SFLOWL * I
CARUSE = CARUSEL * I
BAREA = BAREAL * I
BVOL = BDEPTH*BAREA
CMASS = BVOL * RHOB * 1000.0
CALL GACCOST(CCOST,CONTAC1,REGEN1,BVOL,FLOWL,CARUSE,
\& CMASS,LIFE,GACOP,UPTIME,LOSS,GACPR,LABOR,ELECT,NGAS,
\& WATER,PROFIT,SITE,FEE,CONTIN,ECI,CCI,CRF)
CONTAC(I) = CONTAC1
REGEN(I) = REGEN1
CGAL(I) = (CCOST*1000.)/(FLOWL*1.0E+6*365.) * 100.
57 CONTINUE

```

``` C PRINT OUT RESULTS СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
C RESULTS OF AIR STRIPPING TOWER.
```

```
DO 70 I = 1,NFLOWL
```

DO 70 I = 1,NFLOWL
WRITE (8,*) '***'
WRITE (8,*) , '
WRITE (8,*) 'FLOW RATE, MGD = ', SFLOWL * I
WRITE (8,*) , ,

```
```

 WRITE (8,*) 'RESULTS OF CALCULATIONS FOR PACKED TOWER'
 WRITE (8,*)
 WRITE (8,*) 'The calculated value of the air to water ratio = ',
 \& VQ(AWOPT(I))
WRITE (8,*) 'The multiple of minimum air to water ratio =',
\& 1.1+(AWOPT(I)-1.)*INCREM
WRITE (8,*) 'Pressure drop across the tower, sq.m./m. =',
\& PRESD(I,AWOPT(I))
WRITE (8,*) 'Total tower cross sectional area, sq.m. = ',
\& TAREA(I,AWOPT(I))
WRITE (8,*) 'Tower length in meters =',
\& HLL(I,AWOPT(I))
WRITE (8,*) 'Total tower volume in cu.m. =',
\& TV(I,AWOPT(I))
WRITE (8,*) , ,
WRITE (8,*)'Air flow rate and tower diameter has been determined
\&by ',COMPOUND(JJ)
WRITE (8,*)'Tower length has been determined by ',
\& COMPOUND(II(AWOPT(I)))
WRITE (8,*) , '
WRITE (8,*)'CALCULATION OF REMOVAL EFFICIENCIES OF ALL COMPONENTS'
WRITE (8,*) 'FOR A GIVEN TOWER DESIGN.'
DO 80 J = 1, NCOMPOUND
IF ((VB(J) .LT. .015) .OR. (VB(J) .GT. .5)) THEN
WRITE (8,*) , ,
WRITE (8,*) 'Your system does not match the accuracy ranges of'
WRITE (8,*) 'the equations to get DIFL of', COMPOUND(J)
WRITE (8,*) 'Anyway VB has been used to get the DIFL.'
ENDIF
WRITE (8,*) , '
WRITE (8,*) 'Name of the compound = ', COMPOUND(J)
WRITE (8,*) 'Influent conc. in ug/l = ', CI(J)
WRITE (8,*) 'Effluent conc. desired in ug/l = ', CE(J)
WRITE (8,*) 'Actual effluent conc. in ug/1 =,', CEA(J,AWOPT(I))
WRITE (8,*) 'Removal efficiency in % = ',
\& (1.-CEA(J,AWOPT(I))/CI(J))*100

```

\section*{CONTINUE}
```

C RESULTS OF GAS-PHASE CARBON ADSORPTION

```
```

 WRITE (8,*) , ,
    ```
    WRITE (8,*) , ,
    WRITE (8,*) 'RESULTS OF CALCULATIONS FOR GAS-PHASE CARBON ADSORPTI
    WRITE (8,*) 'RESULTS OF CALCULATIONS FOR GAS-PHASE CARBON ADSORPTI
&ON'
&ON'
    WRITE (8,*) ' ,
    WRITE (8,*) ' ,
    WRITE (8,*) 'Minimum EBCT, (sec.) = ',ETMING(AWOPT(I))
    WRITE (8,*) 'Minimum EBCT, (sec.) = ',ETMING(AWOPT(I))
    WRITE (8,*) 'EBCT of the MTZ, ETMTZ, (sec) = ',ETMTZG(AWOPT(I))
    WRITE (8,*) 'EBCT of the MTZ, ETMTZ, (sec) = ',ETMTZG(AWOPT(I))
    WRITE (8,*) 'The length of the MTZ, EMTZL, (cm.) =',
    WRITE (8,*) 'The length of the MTZ, EMTZL, (cm.) =',
& EMTZLG(AWOPT(I))
& EMTZLG(AWOPT(I))
    WRITE (8,*) 'The first component to elute = ',
```

 WRITE (8,*) 'The first component to elute = ',
    ```
\& COMPOUND(LL(AWOPT(I)))
WRITE (8,*) 'Carbon usage rate, \(\mathrm{kg} /\) day \(=\) ', CARUSEG(AWOPT(I))*I WRITE \((8, *)\) 'Bed depth, \(\mathbf{m}=\) ', BDEPTHG WRITE ( \(8, *\) ) 'Total bed area, \(\quad\) **2 \(=\) ', BAREAG(AWOPT(I)) \(*\) I WRITE (8,*) 'Bed life (regeneration cycle), days =',
\& LIFEG(AWOPT(I))
\(\operatorname{WRITE}(8, *)\), ,
WRITE (8,*) 'RESULTS OF CALCULATIONS FOR LIQUID-PHASE CARBON ADSOR \&PTION'
\(\operatorname{WRITE}(8, *)\),
WRITE ( \(8, *\) ) 'Minimum EBCT, (sec) \(=\) ', ETMIN
WRITE \((8, *)\) 'EBCT of the MTZ, ETMTZ, (sec) \(=\) ', ETMTZ
\(\operatorname{WRITE}(8, *)\) 'The length of the MTZ, EMTZL, \((\mathrm{cm})=\)., EMTZL
WRITE ( \(8, *\) ) 'The first component to elute \(=\) ', COMPOUND(LLL)
WRITE (8,*) 'Carbon usage rate, kg/day = ', CARUSE*I
WRITE \((8, *)\) 'Bed depth, \(=\) ', BDEPTH
WRITE \((8, *)\) 'Total bed area, \(\quad * * 2=\), , BAREA*I
WRITE \((8, *)\) 'Bed life (regeneration cycle), days \(=\) ', LIFE

C RESULTS OF COST CALCULATION
```

 WRITE (8,*)',
 WRITE (8,*) 'RESULTS OF COST CALCULATION'
 WRITE (8,*),'
 WRITE (8,*) 'Least cost contactor selected for liquid-phase;'
 WRITE (8,*) CONTAC(I)
 WRITE (8,*) ',
 WRITE (8,*) 'Least cost regeneration selected for liquid-phase;'
 WRITE (8,*) REGEN(I)
 WRITE (8,*)',
 WRITE (8,*) 'Least cost contactor selected for gas-phase;'
 WRITE (8,*) CONTACG(I,AWOPT(I))
 WRITE (8,*) ,
 WRITE (8,*) 'Least cost regeneration selected for gas-phase;'
 WRITE (8,*) REGENG(I, AWOPT(I))
 WRITE (8,*) ,'
 WRITE (8,*) 'Liquid-phase carbon adsorption, cents/1000gal = ',
 & CGAL(I)
 WRITE (8,*)',
 WRITE (8,*) 'Gas-phase carbon adsorption, cents/1000gal-water = ',
 & CGALG(I,AWOPT(I))
 WRITE (8,*),
 WRITE (8,*) 'Packed tower air stripping, cents/1000gal =',
 \& TGAL(I,AWOPT(I))
C RESULTS OF DISCHARGE REACTOR
C WRITE (8,*) , '
C WRITE (8,*) 'Plasma reactor, cents/1000gal-water = ',

```
70 CONTINUE

C This part is for a temporary use.
C
C VARIABLE \(=\) FLOWL
C
C WRITE \((8, *)\) 'UNIT COSTS'
C DO \(1010 \quad \mathrm{I}=1\), NFLOWL
C \(\quad \mathrm{J}=\mathrm{AWOPT}\) ( I )
C WRITE \((8,900)\) SFLOWL*I, TGAL(I, 25), TGAL(I, J), CGALG(I, J),
C \& TCGALG(I,J),CGAL(I)
C1010 CONTINUE
C WRITE (8,*) ,
C
C WRITE (8,*) 'TOTAL REACTOR VOLUMES'
C DO 1020 I=1, NFLOWL
C \(\quad \mathrm{J}=\mathrm{AWOPT}(\mathrm{I})\)
C \(\operatorname{WRITE}(8,900)\) SFLOWL*I,TV(I, 25),TV(I,J), BDEPTHG*BAREAG(J)*I,
C \&
BDEPTH*BAREAL*I
C1020 CONTINUE

    CLOSE (UNIT=8)
100 FORMAT (9(/),54X,A25, 3(/,54X,F20.10), /, 7(/,54X,F20.10),
    \& \(/, 54 \mathrm{X}, \mathrm{I} 20\) )
    FORMAT (2(/), 6(/,54X, F20.10))
110 FORMAT (2(/), 6(/,54
115 FORMAT (/, 54X, I20)
120 FORMAT (/, 54X, A25,4(/,54X,F20.10))
130 FORMAT (/, 54X, A1)
140 FORMAT (3(/), 54X, F20.10)
150 FORMAT (5(/), 54X, F20.10)
160 FORMAT (/, 54X, F20.10)
170 FORMAT (54X, F20.10, /, 2(/,54X,F20.10))
180 FORMAT (2(/), 2(/,54X, F20.10))
190 FORMAT (2(/), 3(/,54X, F20.10))
200 FORMAT (2(/), 7(/,54X, F20.10))
320 FORMAT (2(/), 18(/,54X, F20.10))
900 FORMAT (6(1X, E11.5))

STOP
END
СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
SUBROUTINE MPTAD (VQ, TAREA, HLL, TV, CEA, II , JJ, DWKGM3, + VWKGMS , TEMPC, CI , CE, HC, XMPL, PRESD, DGKGM3,CF, FLOWL, TEMPAIRC, EFF, + PRESATM, EFFW, AT, STC, DP, VGKGMS, DIFLL, DIFGG, BP, BPW, NCOMPOUND)

\section*{}

C
C This subroutine was originally developed by Dr. David W. Hand and
```

C Dr. John C. Crittenden at Michigan Technological University.
C The following modifications were made for this study.
C
C Original program
* Written in BASIC
* Handles single component system
Modification
* Written in FORTRAN 77
* Handles multicomponent system
C
C For the development of equations, see 'Design and Evaluation of
C an Air-Stripping Tower for Removing VOCs From Groundwater',
C J. AWWA, p87-97, September, 1986.
C
СС
IMPLICIT REAL (A-Z)
DIMENSION CI(20),CE(20),CEA(20),HC(20),DIFLL(20),DIFGG(20),KLA(20)
INTEGER I,II,JJ,NCOMPOUND
C Conversion of the unit of the variable (mgd --> cu.m/gec)
FLOWL = FLOWL / 22.82688
C VQM, HL; Dummy variables to find maximum values of VQMIN \& HLL
C among all compounds.
C Initialization.
VQM = 0.0
HL = 0.0
C CALCULATION OF DESIGN PARAMETERS FOR ALL COMPOUNDS
C Calculation of the minimum air to water ratio, VQMIN, of each
C compound.
C VQMIN is calculated from the following equation.
C VQMIN = (CI - CE)/(HC*CI)
DO 10 I = 1,NCOMPOUND
VQMIN = (CI(I)-CE(I))/(HC(I)*CI(I))
IF (VQMIN .GT. VQM) THEN
JJ=I
VQM=VQMIN
ENDIF
CONTINUE
VQMIN=VQM
C CALCULATION OF A REASONABLE VALUE OF THE AIR TO WATER RATIO
VQ = XMPL*VQMIN
C DETERMINATION OF THE TOWER DIAMETER

```
```

 FF=ALOG(PRESD)/2.3025851
 AO = -6.6599 + 4.3077*FF - 1.3503*(FF**2.) + . 15931*(FF**3.)
 A1 = 3.0945 - 4.3512*FF + 1.624*(FF**2.) - . 20855*(FF**3.)
 A2 = 1.7611 - 2.3394*FF + . 89914*(FF**2.) - .11597*(FF**3.)
 EE = -1.*ALOG(VQ*(((DGKGM3/DWKGM3) - ((DGKGM3/DWKGM3)**2.))**.5))
 & /2.3025851
 MM = 10.***(A0 + A1*EE + A2*(EE**2.))
 GM = ((MM*DGKGM3*(DWKGM3-DGKGM3))/(CF*(VWKGMS**.1)))**.5
 VQM = VQ*(DGKGM3/DWKGM3)
 ML = GM/VQM
 FLOWLM = FLOWL*DWKGM3
 TAREA = FLOWLM/ML
 C DT = (4.*TAREA/3.1415926)**.5
FLOWG = FLOWL*VQ
C DETERMINATION OF THE MASS TRANSFER COEFFICIENT, KLa
C AND CALCULATION OF THE TOWER LENGTH
DO 20I = 1,NCOMPOUND
CALL ONDA(KLA(I),TEMPC,ML,AT,VWKGMS,DWKGM3,STC,DP,GM,
+ VGKGMS,DGKGM3,HC(I),DIFLL(I),DIFGG(I))
CSS = (1./(VQ*HC(I)))*(CI(I)-CE(I))
HTU = FLOWL/(TAREA*KLA(I))
NTU = ((CI (I)-CE(I))/(CI (I)-CSS-CE(I)))*ALOG((CI (I)-CSS)/CE(I))
HLL = HTU*NTU
IF (HLL .GT. HL) THEN
II=I
HL=HLL
ENDIF
20 CONTINUE
HLL=HL
TV = TAREA*HLL
C CALCULATION OF REMOVAL EFFICIENCIES OF OTHER COMPONENTS
C FOR A GIVEN TOWER DESIGN.
DO 30 I=1, NCOMPOUND
RR = VQ*HC(I)
QWA = FLOWL/TAREA
BB = (HLL*KLA(I)*(RR-1.))}/(\mathrm{ QWA*RR)
CEA(I) = (CI (I)*(RR-1.))}/(\mathrm{ RR*(EXP(BB))-1.)
30 CONTINUE
C BRAKE POWER CALCULATION FOR BLOWER (BP) AND PUMP (BPW)

```
```

VGAS = FLOWG/TAREA

```
```

VGAS = FLOWG/TAREA

```

PRESE \(=275 . * V G A S * * 2\).
RG \(=286.7\)
\(\mathrm{NN}=.283\)
P1 = PRESATM*101330.
\(\mathrm{P} 2=\mathrm{PRESD} * H L L+\mathrm{P} 1+\mathrm{PRESE}\)
QMG = FLOWG*DGKGM3
\(\mathrm{BP}=((\mathrm{QMG} * \mathrm{RG} *(\mathrm{TEMPAIRC+273)}) /.(1000 . * \mathrm{NN} * E F F / 100))\).
\& *((P2/P1)**NN -1.)
BPW \(=(\) DWKGM3*FLOWL*HLL*9.8)/(1000.*EFFW/100.)
C CONVERSION BACK TO THE ORIGINAL UNIT
FLOWL \(=\) FLOWL * 22.82688

RETURN
END
СССССССССссСССССССССССсССССССССССССССССсССССССССССССССССССССССССССССС
SUBROUTINE ONDA (KLA, TEMPC,ML, AT, VWKGMS, DWKGM3, STC, \(+\quad\) DP,GM, VGKGMS , DGKGM3, HC, DI FLL , DI FGG )
 C

C This subroutine was a part of the program, PTAD, C developed by Dr. David Hand.

C
C This program will use the ONDA et.al. correlation to calculate C the overall mass transfer coefficient. The ONDA correlation \(C\) includes both the liquid and gas phase mass transfer resistances. C This correlation has been shown to be valid for liquid loading rates C between . 8 And \(43 \mathrm{~kg} / \mathrm{m} * * 2-\mathrm{sec}\), gas loading rates between . 014 And 1.7 C kg/m**2-sec, and packing sizes between 10 and 50 mm .

C The liquid-phase mass transfer coefficient; KL C The gas-phase mass transfer coefficient; KG \(C\) The wetted surface area; AW

IMPLICIT REAL (A-Z)
\(S T=7.558301 \mathrm{E}-2-(1.3143 * 10 . * *(-4)) * T E M P\).
\(1-(4.7616 * 10 . * *(-7)) *.(\) TEMPC**2.)
RE \(=\) ML/(AT*VWKGMS \()\)
FR \(=(\mathrm{AT} *(\mathrm{ML} * * 2)) /.(\mathrm{DWKGM} 3 * D W K G M 3 * 9.810001)\)
WE \(=(\) ML**2. \() /(\) DWKGM3*AT*ST \()\)
\(\mathrm{AW}=\mathrm{AT} *(1 .-\operatorname{EXP}(-1.45 *((\mathrm{STC} / \mathrm{ST}) * * .75) *(\mathrm{RE} * * .1) *(\mathrm{FR} * *(-.05))\)
1 *(WE**.2)))
```

 KL=(.0051*((ML/(AW*VWKGMS))**(2./3.))*((VWKGMS/(DWKGM3*DIFLL))**
 \& (-.5))*((AT*DP/100.)**.4))/((DWKGM3/(VWKGMS*9.810001))**(1./3.))
KG = 5.23*((GM/(AT*VGKGMS))**.7)*((VGKGMS/(DGKGM3*DIFGG))
\& **(1./3.))*((AT*DP/100.)**(-2.))*AT*DIFGG
RL = 1./(KL*AW)
RG = 1./(KG*AW*HC)

```
\(R T=R L+R G\)
\(K L A=(1 . /(R L+R G))\)
RETURN
END

\section*{ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС}

SUBROUTINE DIFL (DIFLL,MW,VB, VWKGMS)

\section*{СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС} C
C This subroutine was a part of the program, PTAD, C developed by Dr. David Hand.
C
C The liquid-diffusivity (DIFLL) of compounds will be calculated \(C\) by this subroutine.
\(C\) If the molecular weight (MW) of the compound is greater than 1000 , \(C\) DIFLL is calculated from the following equation:
C DIFLL \(=2.74 * 10 * *(-5) *(\mathrm{MW}) * *(-1 / 3)\)
C If MW is less than 1000 the following equation can be used:
C DIFLL \(=13.26 * 10 * *(-5) /(V W K G M S * * 1.14 * V B * * .589)\)
\(C\) This equation is only valid for VB values between
C \(\quad .015\) And \(0.5 \mathrm{M} * * 3 / \mathrm{kg}\)-mol

\section*{IMPLICIT REAL (A-Z)}

IF (MW .GT. 1000.) THEN
DIFLL \(=2.74 * 10 . * *(-5)\).\(* MW ** (-1 . / 3\).
ELSE
DIFLL \(=1.326 \mathrm{E}-4 /((\mathrm{VWKGMS} * 1000) * * 1.14 *.(\mathrm{VB} * 1000) * * .589) /\).10000 .
ENDIF
RETURN
END

\section*{СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС}

SUBROUTINE DIFG (DIFGG,MW,VB,TEMPKB,TEMPK)
 C
C This subroutine was a part of the program, PTAD, C developed by Dr. David Hand.
C
C The gas-diffusivity (DIFGG) of compounds will be calculated
\(C\) by this subroutine.
C The correlation to be used is the WILKE-LEE modification of
C HIRSCHFELDER-BIRD-SPOTZ method. This correlation is taken from
C TREYBAL (1980) and is given by the following equation:
C DIFGG \(=(10 * *-4 *(1.084-.249 *((1 / M A+1 / M B) * * .5) * T E M P K * *(3 / 2)\)
C \(\quad *((1 / \mathrm{MA}+1 / \mathrm{MB}) * * .5)) /(\mathrm{PT} *((\mathrm{RAB}) * * 2) * \mathrm{~F}(\mathrm{KT} / \mathrm{EAB}))\)
C PT is assumed to be 1 atm, or \(\mathrm{PT}=101,325 \mathrm{~N} / \mathrm{sq} . \mathrm{m}\)
\(C R A B=(R A+R B) / 2\), where \(R B=1.18 * V B * * .33\) And \(R A=.3711 \mathrm{~nm}\) for air.

\section*{IMPLICIT REAL (A-Z)}
```

 MA = 28.95
 RB = 1.18*(VB**.33333)
 RA =.3711
 RAB = (RA+RB)/2.
 EKB= 1.21*TEMPKB
 EKA = 78.6
 EKEAB = (EKB*EKA)**. }
 TKEAB = TEMPK/EKEAB
 EE = ALOG(TKEAB)/2.303
 YVAL = 10.**(-.14329 -.48343*(EE) +.1939*(EE**2) +.13612*(EE**3)
 1 -.20578*(EE**4) +.083899*(EE**5) -.011491*(EE**6))
SQM = (1./MA + 1./MW)**.5
PT = 101325.
DIFGG =(.0001*(1.084 - (.249*SQM))*(TEMPK**1.5)*SQM)
1 /(PT*RAB*YVAL*RAB)

```

\section*{RETURN}

END

\section*{}

SUBROUTINE GACBEDG(CARUSEG, BAREAG,BDEPTHG,LIFEG,CUSEG, + FLOWGG,VSG,EBCTG,RHOBG)

\section*{СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС}

IMPLICIT REAL (A-Z)
C Calculation of the carbon usage rate in \(\mathrm{kg} /\) day for the starting
C water flow rate: \(100 \%\) saturation can be achieved through
C serial operation, but a safety factor of \(5 \%\) will be used
C (95\% saturation) because it is a regenerated carbon and
C 100\% saturation is not achieved generally.
CARUSEG \(=\) CUSEG*FLOWGG*3.785 * 100./95.
C CONVERSION OF THE UNIT OF THE VARIABLE (MGD --> CU.M/SEC)
FLOWGG = FLOWGG / 22.82688
C CALCULATE THE BED DIMENSIONS AND LIFE
BDEPTHG \(=(\) VSG \(*\) EBCTG \() / 100\).
BAREAG \(=\) FLOWGG*1.0E+2/VSG
BVOLG \(=\) BDEPTHG*BAREAG
CMASSG \(=\) BVOLG * RHOBG * 1000.0
LIFEG \(=\) CMASSG/CARUSEG
C CONVERSION BACK TO THE ORIGINAL UNIT
FLOWGG \(=\) FLOWGG \(* 22.82688\)
RETURN

END
```

ссссссССССССсссССССССССССССсСС
SUBROUTINE SPEQ(KKG,NNG,CIG,DENL,MW,PRESHG,TEMPK,BETA,VP)
СсСССсСссссСС
C
C This subroutine is a part of the original program, SPEQ, that was
C developed by Mr. Randy D. Cortright at Michigan Technological
C University.
C
ссСССС
IMPLICIT REAL (A-Z)
INTEGER I,MAX
C Initialize the values for the numerical intergration.
C the values of CONC and H were multiplied by 10 to reduce
C computation time with negligible differences in the resulting
C KKG and NNG (less than 1% error and 10 times faster).
NA}=0.
QA = 0.0
SUM = 0.0
CONC = 1.0E-8
H=1.0E-8
EXC = 1.0E-6
I = 1
MAX = 10
30 IF (CONC .LE. CIG) THEN
C
C CALCULATE THE SURFACE LOADING AT THE gAS CONC
C
PP = (CONC/MW * 22.4 / 1.0E+6)*PRESHG
QB = 0.46E+6* DENL/MW*EXP(-1.33E-7*(TEMPK/BETA*ALOG(VP/PP))**2)
C
C CALCULATE THE value of
C
NB = 1.0/(2.66E-7 * ALOG(VP/PP) * (TEMPK/BETA)**2)
C
C TRAPEZOID RULE
C
SUM = SUM + ((QB - QA)/2.0) * (NB+NA)
NA = NB
QA = QB
C
C INCREMENT THE GAS CONC
C
IF (I .LE. MAX) THEN
I = I + 1
CONC = CONC + H
GOTO 30

```
```

 ELSE
 C
MAX = MAX + MAX
IF (CONC .GT. EXC) THEN
H = H * 10.0
EXC = EXC * 10.0
ENDIF
CONC = CONC + H
I = I + 1
GOTO 30
END IF
ELSE
C HERE, NNG IS ACTUALLY 1/NNG.
NNG = QA/SUM
KKG = QA/((CONC/MW)**NNG)
ENDIF
RETURN
END

```

\section*{}
```

SUBROUTINE GACBED(CARUSE, BAREA, BDEPTH,LIFE,CUSE, \& FLOWL,VSW,EBCT,RHOB)
ссСсссссссccc
IMPLICIT REAL (A-Z)
C Calculation of the carbon usage rate in $\mathrm{kg} /$ day for the starting
C flow rate. A safety factor of 5% will be used (95% saturation). CARUSE $=$ CUSE*FLOWL*3.785 * 100./95.
C CONVERSION OF THE UNIT OF THE VARIABLE (MGD --> CU.M/SEC) FLOWL = FLOWL / 22.82688
C CALCULATE THE BED DIMENSIONS AND LIFE
BDEPTH $=($ VSW $*$ EBCT $* 60.0) / 100.0$
BAREA $=$ FLOWL*1.0E+2/VSW
BVOL $=$ BDEPTH*BAREA
CMASS $=$ BVOL $*$ RHOB $* 1000.0$
LIFE $=$ CMASS/CARUSE
C CONVERSION BACK TO THE ORIGINAL UNIT
FLOWL $=$ FLOWL * 22.82688
RETURN
END

```

```

SUBROUTINE USER(ETMIN, ETMTZ, EMTZL,RHOB,RHOP,CI,CE,MW, KK,NN,

```
\& VWGCMS,VSW,DIA,DWGCM3,EPOR,PSDFR,DIFLL,FLAG)

\section*{}

C
C This subroutine was developed by Dr. David W. Hand, Dr. John C.
C Crittenden, and Mr. Randy D. Cortright at Michigan Technological
C University.
C

IMPLICIT REAL (A-Z)
EBED \(=1.0-\) RHOB/RHOP
C
C CALC. THE EQUILBRIUM CONCENTRATION ON THE CARBON AND IN THE LIQUID
C HERE, NN IS ACTUALLY 1/NN.
C
\(\mathrm{CIM}=\mathrm{CI} / \mathrm{MW}\)
CEM \(=\mathrm{CE} / \mathrm{MW}\)
\(Q=\) KK*CIM**NN
C
C CALCULATE THE LIQUID DIFFUSIVITY. Here, cm**2/sec will be used.
C
DIFCM2L \(=\) DIFLL * 10000.0
C
C CALCULATE THE REYNOLDS AND SCHMIDT NUMBERS.
C (EBED in the gas-phase Reynolds equation was missing.)
RE \(=(\) DIA*VSW*DWGCM3 \() /(\) VWGCMS*EBED \()\)
SC = (VWGCMS/(DWGCM3*DI FCM2L))

C CALCULATE THE MASS (FILM) TRANSFER COEFFICIENT. This part is the
C only difference between gas and liquid phase calculation.
C \(F L A G=1.0\) for liquid-phase, FLAG \(=0.0\) for gas-phase.
IF (FLAG .EQ. 1.) THEN
\(\mathrm{KF}=(2.4 * \mathrm{VSW}) /((\mathrm{RE} * * .66) *(\mathrm{SC} * * .58))\)
ELSE
\(\mathrm{KF}=(\mathrm{DIFCM} 2 \mathrm{~L} / \mathrm{DIA}) *(2.0+1.1 *\) RE**0.6 * SC**0.333333)
ENDIF
C CALCULATE THE PORE AND SURFACE DIFFUSION COEFFICIENT
DS \(=(\) EPOR*DIFCM2L*CIM*PSDFR \() /(1000.0 *\) RHOP*KK*CIM**NN \()\)
C CALCULATE THE PARTITION COEFFICIENT (DISTRIBUTION PARAMETER)
```

PC = (RHOP * Q * (1.0 - EBED) * 1000.0) / (EBED * CIM)

```

C
C CALCULATE THE BIOT NUMBER
C
\[
\mathrm{BI}=(\mathrm{KF} * \mathrm{DIA} / 2.0 *(1.0-\mathrm{EBED})) /(\mathrm{PC} * \mathrm{DS} * \mathrm{EBED})
\]

C CALCULATE THE MINIMUN STANTON NUMBER AND THE EBCT MINIMUM C
```

 STM = STMIN(BI,NN)
 ETMIN = (STM * DIA/2.0) / (KF * (1.0 - EBED))
    ```

C CALCULATE THE THROUGHPUT FOR (CEM/CIM)*100\% AND 95 PERCENT
C BREAKTHRU AND FIND THE EBCT FOR THE MASS TRANSFER ZONE
```

CALL TPUT(NN,BI,AO,A1,A2,A3,A4)
T95 = A0 + A1 * (0.95**A2) + A3/(1.01 - 0.95**A4)
TEI = A0 + A1 * (CEM/CIM)**A2 + A3/(1.01 - (CEM/CIM)**A4)
ETMTZ = ETMIN * (T95 - TEI)
EMTZL = ETMTZ * VSW
RETURN
END

```

ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС C
C Function STMIN, subroutines TPUT and T1-T10 are parts of \(C\) the subroutine USER.
C
ССсСССССССССССССсССССССССССССССССССССССССССССССССССССССССССССССССССССС
C
C FUNCTION STMIN FOR FINDING THE MINIMUN STANTON NUMBER REQUIRED
C FOR CONSTANT PATTERN
C
REAL FUNCTTION STMIN(BI,N)
IMPLICIT REAL (A-Z)
INTEGER I,J,M
DIMENSION FN(10),A01(10),A11(10),A02(10)
DATA (FN(I), I \(=1,10) / 0.05,0.10,0.20,0.30,0.40,0.50,0.60,0.70\),
\$ 0.80,0.90/
DATA (A01(I),I = 1,10)/2.10526E-2,2.10526E-2,4.21053E-2,
\$ \(\quad 1.05263 \mathrm{E}-1,2.31579 \mathrm{E}-1,5.26316 \mathrm{E}-1\),
\$ 1.15789,1.78947,3.68421,6.31579/
DATA (A11(I), \(\mathrm{I}=1,10) / 1.98947,2.18947,2.37895,2.54737,2.68421\),
\$ 2.73684,3.42105,7.10526,13.1579,56.8421/
DATA (A02(I), \(I=1,10) / 0.22,0.24,0.28,0.36,0.50,0.80,1.50,2.50\),
\$ 5.00,12.00/
C
C
C
\(M=10\)
IF ( (BI . GE. 0.5) .AND. (BI .LE. 10.0)) THEN \(\mathrm{J}=1\)
10 IF(J . LE. M) THEN

IF ((N .GE. FN(J)) .AND. (N .LT. FN(J+1))) THEN \(A 0=A 01(J)+(A 01(J+1)-A 01(J)) *((N-F N(J)) /\)
(FN(J+1) - FN(J)))
\(A 1=A 11(J)+(A 11(J+1)-A 11(J)) *((N-\operatorname{FN}(J)) /\)
\$
STMIN \(=\mathrm{AO} * \mathrm{BI}+\mathrm{A} 1\)
```

 GO TO 30
 ELSE
 J = J + 1
 GO TO 10
 END IF
 ELSE
 WRITE (8,*)' THE VALUE OF 1/N IS OUT OF RANGE FOR STMIN'
 ENDIF
 ELSEIF (BI .GT. 10.0) THEN
 J = 1
 IF(J .LE. M) THEN
 IF ((N .GE. FN(J)) .AND. (N .LT. FN(J+1))) THEN
 A0 = A02(J) + (A02(J+1)-A02(J)) * ((N - FN(J))/
 $
 (FN(J+1) - FN(J)))
 STMIN = AO * BI
 GO TO 30
 ELSE
 J = J + 1
 GO TO 20
 END IF
 ELSE
 WRITE (8,*)' THE VALUE OF 1/N IS OUT OF RANGE FOR STMIN'
 ENDIF
 ELSE
 WRITE (8,*)' THE VALUE OF THE BIOT NUMBER IS OUT OF RANGE'
 WRITE (8,*)' BIOT NUMBER = ',BI
 ENDIF
 30 RETURN
END

```

```

 SUBROUTINE TPUT(N,BI,A0,A1,A2,A3,A4)
 C
C SUBROUTINE TPUT TO FIND THE CONSTANTS TO FIND EBCTMIN.
C
REAL N
IF (N . LT. 0.075) THEN
CALL T1(BI, A0, A1, A2, A3, A4)
ELSEIF((N .GE. 0.075) .AND. (N .LT. 0.15)) THEN
CALL T2 (BI, A0, A1, A2, A3, A4)
ELSEIF((N .GE. 0.15) .AND. (N .LT. 0.25)) THEN
CALL T3(BI, A0, A1, A2, A3, A4)
ELSEIF((N . GE. 0.25) .AND. (N .LT. 0.35)) THEN
CALL T4(BI, A0, A1, A2, A3, A4)
ELSEIF((N .GE. 0.35) .AND. (N .LT. 0.45)) THEN
CALL T5(BI, A0, A1, A2, A3, A4)
ELSEIF((N .GE. 0.45) .AND. (N .LT. 0.55)) THEN

```
```

 CALL T6(BI,A0,A1,A2,A3,A4)
 ELSEIF((N .GE. 0.55) .AND. (N .LT. 0.65)) THEN
 CALL T7(BI,A0,A1,A2,A3,A4)
 ELSEIF((N .GE. 0.65) .AND. (N .LT. 0.75)) THEN
CALL T8(BI,A0,A1,A2,A3,A4)
ELSEIF((N .GE. 0.75) .AND. (N .LT. 0.85)) THEN
CALL T9(BI, A0,A1, A2,A3,A4)
ELSEIF((N .GE. 0.85) .AND. (N .LT. 1.00)) THEN
CALL T10(BI,A0,A1,A2,A3,A4)
ELSE
WRITE (8,*)' THE VALUE OF 1/N IS OUT OF RANGE'
ENDIF
RETURN
END

```

\section*{}

SUBROUTINE T1(BI, A0, A1, A2, A3, A4)
IF (BI .LT. 1.25) THEN
\(A 0=-5.447214\)
\(A 1=6.598598\)
\(\mathrm{A} 2=0.026569\)
\(\mathrm{A} 3=0.019384\)
\(A 4=20.45047\)
ELSEIF((BI .GE. 1.25) .AND. (BI .LT. 3.0)) THEN
\(\mathrm{AO}=-5.465811\)
\(A 1=6.592484\)
\(\mathrm{A} 2=0.025290\)
\(\mathrm{A} 3=0.004988\)
\(\mathrm{A} 4=0.503250\)
ELSEIF((BI .GE. 3.0) .AND. (BI .LTT. 5.0)) THEN
\(A 0=-5.531155\)
\(\mathrm{A} 1=6.584935\)
\(\mathrm{A} 2=0.023580\)
\(\mathrm{A} 3=0.009019\)
\(\mathrm{A} 4=0.273076\)
ELSEIF( (BI .GE. 5.0) .AND. (BI .LT. 7.0)) THEN
\(\mathrm{AO}=-5.606508\)
\(A 1=6.582188\)
\(\mathrm{A} 2=0.022088\)
\(\mathrm{A} 3=0.013126\)
\(\mathrm{A} 4=0.214246\)
ELSEIF((BI .GE. 7.0) .AND. (BI .LT. 9.0)) THEN
\(A 0=-5.606500\)
\(A 1=6.504701\)
\(\mathrm{A} 2=0.020872\)
\(\mathrm{A} 3=0.017083\)
\(\mathrm{A} 4=0.189537\)
ELSEIF((BI .GE. 9.0) .AND. (BI .LT. 12.0)) THEN
\(\mathrm{A} 0=-5.664173\)
\(A 1=6.456597\)
\(\mathrm{A} 2=0.018157\)
```

 A3 = 0.019935
 A4 = 0.149314
 ELSEIF((BI .GE. 12.0) .AND. (BI .LT. 19.5)) THEN
AO = -0.662780
A1 = 1.411252
A2 = 0.060709
A3 = 0.020229
A4 = 0.143293
ELSEIF((BI .GE. 19.5) .AND. (BI .LT. 62.5)) THEN
AO = -0.662783
A1 = 1.350940
A2 = 0.031070
A3 = 0.020350
A4 = 0.129998
ELSEIF(BI .LT. 62.5) THEN
AO = 0.665879
A1 = 0.711310
A2 = 2.987309
A3 = 0.016783
A4 = 0.361023
ENDIF
RETURN
END
СС
SUBROUTINE T2(BI,A0,A1,A2,A3,A4)
IF(BI .LT. 1.25) THEN
AO = -1.919873
A1 = 3.055368
A2 = 0.055488
A3 = 0.024284
A4 = 15.311766
ELSEIF((BI .GE. 1.25) .AND. (BI .LT. 3.0)) THEN
AO = -2.278950
A1 = 3.393925
A2 = 0.046838
A3 = 0.004751
A4 = 0.384675
ELSEIF((BI .GE. 3.0) .AND. (BI .LT. 5.0)) THEN
AO = -2.337178
A1 = 3.379926
A2 = 0.043994
A3 = 0.008650
A4 = 0.243412
ELSEIF((BI .GE. 5.0) .AND. (BI .LT. 7.0)) THEN
AO = -2.407407
A1 = 3.374131
A2 = 0.041322
A3 = 0.012552
A4 = 0.196565
ELSEIF((BI .GE. 7.0) .AND. (BI .LT. 9.0)) THEN
A0 = -2.477819
A1 = 3.370954

```
```

 A2 = 0.038993
 A3 = 0.016275
 A4 = 0.176437
 ELSEIF((BI .GE. 9.0) .AND. (BI .LT. 13.0)) THEN
 A0 = -2.566414
 A1 = 3.370950
 A2 = 0.035003
 A3 = 0.019386
 A4 = 0.150788
 ELSEIF((BI .GE. 13.0) .AND. (BI .LT. 23.0)) THEN
 AO = -2.567201
 A1 = 3.306341
 A2 = 0.020940
 A3 = 0.019483
 A4 = 0.136813
 ELSEIF((BI .GE. 23.0) .AND. (BI .LT. 65.0)) THEN
 AO = -2.568618
 A1 = 3.241783
 A2 = 0.009595
 A3 = 0.019610
 A4 = 0.121746
 ELSEIF(BI .GE. 65.0) THEN
 AO = -2.568360
 A1 = 3.191482
 A2 = 0.001555
 A3 = 0.019682
 A4 = 0.110113
 ENDIF
 RETURN
 END
 ССсСССССССССССССССССССССсСС
SUBROUTINE T3(BI,A0,A1,A2,A3,A4)
IF (BI .LT. 1.25) THEN
A0 = -1.441000
A1 = 2.569000
A2 = 0.060920
A3 = 0.002333
A4 = 0.371100
ELSEIF((BI .GE. 1.25) .AND. (BI .LT. 3.0)) THEN
AO = -1.474313
A1 = 2.558300
A2 = 0.058480
A3 = 0.005026
A4 = 0.241265
ELSEIF((BI .GE. 3.0) .AND. (BI .LT. 5.0)) THEN
AO = -1.506696
A1 = 2.519259
A2 = 0.055525
A3 = 0.008797
A4 = 0.187510
ELSEIF((BI .GE. 5.0) .AND. (BI .LT. 7.0)) THEN
AO = -1.035395

```
```

 A1 = 1.983018
 A2 = 0.069283
 A3 = 0.012302
 A4 = 0.167924
 ELSEIF((BI .GE. 7.0) .AND. (BI .LT. 9.0)) THEN
 AO = -0.169192
 A1 = 1.077521
 A2 = 0.144879
 A3 = 0.015500
 A4 = 0.168083
 ELSEIF((BI .GE. 9.0) .AND. (BI .LT. 11.5)) THEN
 AO = -1.402932
 A1 = 2.188339
 A2 = 0.052191
 A3 = 0.018422
 A4 = 0.133574
 ELSEIF((BI .GE. 11.5) .AND. (BI .LT. 19.0)) THEN
 AO = -1.369220
 A1 = 2.118545
 A2 = 0.039492
 A3 = 0.018453
 A4 = 0.127565
 ELSEIF((BI .GE. 19.0) .AND. (BI .LT. 62.5)) THEN
 AO = -1.514159
 A1 = 2.209450
 A2 = 0.017937
 A3 = 0.018510
 A4 = 0.118517
 ELSEIF(BI .GE. 62.5) THEN
AO = 0.680346
A1 = 0.649006
A2 = 2.570086
A3 = 0.014947
A4 = 0.369818
ENDIF
RETURN
END
ССС
SUBROUTINE T4(BI,A0,A1,A2,A3,A4)
IF (BI .LT. 1.25) THEN
A0 = -1.758696
A1 = 2.846576
A2 = 0.049530
A3 = 0.003022
A4 = 0.156816
ELSEIF ((BI .GE. 1.25) .AND. (BI .LT. 3.0)) THEN
A0 = -1.657862
A1 = 2.688895
A2 = 0.048409
A3 = 0.005612
A4 = 0.140937
ELSEIF ((BI .GE. 3.0) .AND. (BI .LT. 5.0)) THEN

```
```

 AO = -0.565664
 A1 = 1.537833
 A2 = 0.084451
 A3 = 0.008808
 A4 = 0.139086
 ELSEIF ((BI .GE. 5.0) .AND. (BI .LT. 7.0)) THEN
AO = -0.197077
A1 = 1.118564
A2 = 0.117894
A3 = 0.011527
A4 = 0.135874
ELSEIF ((BI .GE. 7.0) .AND. (BI .LT. 9.0)) THEN
AO = -0.197070
A1 = 1.069216
A2 = 0.119760
A3 = 0.013925
A4 = 0.132691
ELSEIF ((BI .GE. 9.0) .AND. (BI .LT. 12.5)) THEN
AO = -0.173358
A1 = 1.00000
A2 = 0.120311
A3 = 0.015940
A4 = 0.133973
ELSEIF ((BI .GE. 12.5) .AND. (BI .LT. 25.0)) THEN
AO = -0.173350
A1 = 0.919411
A2 = 0.071768
A3 = 0.014156
A4 = 0.086270
ELSEIF ((BI .GE. 25.0) .AND. (BI .LT. 67.5)) THEN
AO = 0.666471
A1 = 0.484570
A2 = 1.719440
A3 = 0.013444
A4 = 0.259545
ELSEIF (BI .GE. 67.5) THEN
AO = 0.696161
A1 = 0.516951
A2 = 2.054587
A3 = 0.012961
A4 = 0.303218
ENDIF
RETURN
END
ССС

```

SUBROUTINE T5 (BI, A0, A1, A2, A3, A4)
```

IF (BI ,LT. 1.25) THEN

```
    \(\mathrm{A} 0=-0.534251\)
    \(\mathrm{A} 1=1.603834\)
    \(A 2=0.094055\)
    \(A 3=0.004141\)
    \(A 4=0.137797\)
```

ELSEIF ((BI .GE. 1.25) .AND. (BI .LT. 3.0)) THEN
$A 0=-0.166270$
$\mathrm{A} 1=1.190897$
$A 2=0.122280$
$A 3=0.006261$
$\mathrm{A} 4=0.134278$
ELSEIF((BI .GE. 3.0) .AND. (BI .LT. 5.0)) THEN
$A 0=-0.166270$
$A 1=1.131946$
$A 2=0.115513$
$A 3=0.008634$
$A 4=0.126813$
ELSEIF((BI .GE. 5.0) .AND. (BI .LT. 7.5)) THEN
$\mathrm{A} 0=-0.166270$
A1 $=1.089789$
$\mathrm{A} 2=0.112284$
$A 3=0.010463$
$A 4=0.124307$
ELSEIF ((BI .GE. 7.5) .AND. (BI .LT. 10.5)) THEN
$A 0=0.491912$
$A 1=0.491833$
$A 2=0.487414$
$A 3=0.011371$
$\mathrm{A} 4=0.147747$
ELSEIF ((BI . GE. 10.5) .AND. (BI .LT. 13.5)) PHEN
$A 0=0.564119$
$A 1=0.419196$
$A 2=0.639819$
$A 3=0.011543$
$A 4=0.149005$
ELSEIF ((BI . GE. 13.5) .AND. (BI .LT. 20.0)) THEN
$A 0=0.640669$
$\mathrm{A} 1=0.432466$
$A 2=1.048056$
$A 3=0.011616$
$\mathrm{A} 4=0.212726$
ELSEIF ((BI . GE. 20.0) .AND. (BI .LT. 62.5)) THEN
$\mathrm{AO}=0.672353$
$A 1=0.397007$
$A 2=1.153169$
$\mathrm{A} 3=0.011280$
$\mathrm{A} 4=0.216883$
ELSEIF (BI .GE. 62.5) THEN
$A 0=0.741435$
$\mathrm{A} 1=0.448054$
$\mathrm{A} 2=1.929879$
$A 3=0.010152$
$A 4=0.306448$
ENDIF
RETURN
END

```
```

 IF(BI .LT. 2.25) THEN
 \(\mathrm{A} 0=-0.040800\)
 \(A 1=1.099652\)
 \(A 2=0.158995\)
 \(A 3=0.005467\)
 \(\mathrm{A} 4=0.139116\)
 ELSEIF((BI .GE. 2.25) .AND. (BI .LT. 7.00)) THEN
$A 0=-0.040800$
$A 1=0.982757$
$A 2=0.111618$
$A 3=0.008072$
$A 4=0.111404$
ELSEIF ((BI . GE. 7.0) .AND. (BI .LT. 12.0)) THEN
$A 0=0.094602$
$A 1=0.754878$
$A 2=0.092069$
$A 3=0.009877$
$\mathrm{A} 4=0.090763$
ELSEIF ((BI .GE. 12.0) .AND. (BI .LT. 19.5)) THEN
$A 0=0.023000$
$A 1=0.802068$
$A 2=0.057545$
$A 3=0.009662$
$\mathrm{A} 4=0.084532$
ELSEIF ((BI . GE. 19.5) .AND. (BI .LT. 62.5)) THEN
$A 0=0.02300$
$A 1=0.793673$
$A 2=0.039324$
$A 3=0.009326$
$A 4=0.082751$
ELSEIF (BI .GE. 62.5) THEN
$A 0=0.529213$
$A 1=0.291801$
$A 2=0.082428$
$A 3=0.008317$
$A 4=0.075461$
ENDIF
RETURN
END
ССсСССССССССССССССССССССССС
SUBROUTINE T7(BI, A0, A1, A2, A3, A4)
IF (BI .LT. 1.25) THEN
$A 0=0.352536$
$A 1=0.692114$
$A 2=0.263134$
$A 3=0.005482$
$\mathrm{A} 4=0.121775$
ELSEIF ((BI . GE. 1.25) .AND. (BI .LT. 4.0)) THEN
$A 0=0.521979$
$A 1=0.504220$
$A 2=0.327290$
$A 3=0.005612$

```
```

 A4 = 0.128679
 ELSEIF((BI .GE. 4.0) .AND. (BI .LT. 10.0)) THEN
 AO = 0.676253
 A1 = 0.334583
 A2 = 0.482297
 A3 = 0.005898
 A4 = 0.138946
 ELSEIF((BI .GE.10.0) .AND. (BI .LT. 32.0)) THEN
 AO = 0.769531
 A1 = 0.259497
 A2 = 0.774068
 A3 = 0.005600
 A4 = 0.165513
 ELSEIF((BI .GE. 32.0) .AND. (BI .LT. 75.0)) THEN
 AO = 0.849057
 A1 = 0.215799
 A2 = 1.343183
 A3 = 0.004725
 A4 = 0.223759
 ELSEIF(BI .GE. 75.0) THEN
 AO = 0.831231
 A1 = 0.227304
 A2 = 1.174756
 A3 = 0.004961
 A4 = 0.212109
 ENDIF
 RETURN
 END
 ССС
SUBROUTINE T8(BI,A0,A1,A2,A3,A4)
IF(BI .LT. 2.25) THEN
AO = 0.575024
A1 = 0.449062
A2 = 0.278452
A3 = 0.004122
A4 = 0.121682
ELSEIF((BI .GE. 2.25) .AND. (BI .LT. 8.0)) THEN
A0 = 0.715269
A1 = 0.307172
A2 = 0.442104
A3 = 0.004371
A4 = 0.138351
ELSEIF((BI .GE. 8.0) .AND. (BI .LT. 18.5)) THEN
A0 = 0.787940
A1 = 0.243548
A2 = 0.661599
A3 = 0.004403
A4 = 0.162595
ELSEIF((BI .GE. 18.5) .AND. (BI .LT. 62.5)) THEN
A0 = 0.829492
A1 = 0.204078
A2 = 0.784529

```
```

 A3 = 0.004050
 A4 = 0.179003
 ELSEIF(BI .GE. 62.5) THEN
 AO = 0.847012
 A1 = 0.190678
 A2 = 0.931686
 A3 = 0.003849
 A4 = 0.183239
 ENDIF
 RETURN
 END
    ```

```

 SUBROUTINE T9(BI,A0,A1,A2,A3,A4)
 IF(BI .LT. 2.25) THEN
 A0 = 0.708905
 A1 = 0.314101
 A2 = 0.357499
 A3 = 0.003276
 A4 = 0.119300
 ELSEIF((BI .GE. 2.25) .AND. (BI .LT. 9.0)) THEN
 AO = 0.784576
 A1 =0.239663
 A2 = 0.484422
 A3 = 0.003206
 A4 = 0.134987
 ELSEIF((BI .GE. 9.0) .AND. (BI .LT. 57.0)) THEN
 AO = 0.839439
 A1 = 0.188966
 A2 = 0.648124
 A3 = 0.003006
 A4 = 0.157697
 ELSEIF(BI .GE. 57.0) THEN
 AO = 0.882747
 A1 = 0.146229
 A2 = 0.807987
 A3 =0.002537
 A4 = 0.174543
 ENDIF
 RETURN
 END
    ```

```

SUBROUTINE T10(BI,A0,A1,A2,A3,A4)
IF(BI .LT. 2.25) THEN
AO = 0.865453
A1 = 0.157618
A2 = 0.444973
A3 = 0.001650
A4 = 0.148084
ELSEIF((BI .GE. 2.25) .AND. (BI .LT. 10.0)) THEN
A0 = 0.854768

```
```

 A1 = 0.171434
 A2 = 0.495042
 A3 = 0.001910
 A4 = 0.142251
 ELSEIF((BI .GE. 10.0) .AND. (BI .LT. 58.0)) THEN
 AO = 0.866180
 A1 =0.163992
 A2 = 0.573946
 A3 = 0.001987
 A4 = 0.157594
 ELSEIF(BI .GE. 58.0) THEN
A0 = 0.893192
A1 = 0.133039
A2 = 0.624100
A3 = 0.001740
A4 = 0.164248
ENDIF
RETURN
END

```

\section*{}
```

SUBROUTINE DENVIS(DWGCM3,VWGCMS,TEMPC)

```
SUBROUTINE DENVIS(DWGCM3,VWGCMS,TEMPC)
ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС C
C Subroutine DENVIS is used to obtain the density and viscosity C of water.
C
```



```
\[
\mathrm{D} 1=999.83952+16.945176 * T E M P C-7.9870401 \mathrm{E}-3 * \text { TEMPC } * * 2-46.170461 \mathrm{E}-6
\]
\[
\& * \text { TEMPC } * * 3+105.56302 \mathrm{E}-9 * \text { TEMPC } * * 4-280.54253 \mathrm{E}-12 * \text { TEMPC } * * 5
\]
\[
\mathrm{D} 2=1 .+16.87985 \mathrm{E}-3 * \mathrm{TEMPC}
\]
DWGCM3 \(=(\mathrm{D} 1 / \mathrm{D} 2) / 1000\).
IF (TEMPC .LE. 20.) THEN
VWGCMS \(=(10 . * *(1301 . /(998.333+8.1855 *(\) TEMPC-20. \()+\)
\& .00585*(TEMPC-20.)**2.)-1.30233))/100.
ELSE
VWGCMS \(=(10 . * *((1.3272 *(20 .-T E M P C)-.001053 *(\) TEMPC-20. \() * * 2) /\).
\& (TEMPC+105.))*1.002)/100.
ENDIF
RETURN
END
```


СС

```
SUBROUTINE TWCOST(TCOST,TV,BP, BPW, PTOP, FLOWL, LABOR, ELECT,

IMPLICIT REAL (A-Z)
DIMENSION \(\mathrm{Y}(5)\), ADMIN(4)
INTEGER I

C CONVERSION OF THE UNIT OF THE VARIABLE (M**3 —-> FT**3)
\[
T V=T V * 35.318
\]

C VARIABLE \(=\) PACKED TOWER VOLUME
C
C \(Y(1)=C C, Y(2)=M M, Y(3)=L A B O R\)
C \(Y(4)=\) BLOWER ENERGY, \(Y(5)=\) PUMP ENERGY
C \(Y(1), Y(2)\), and \(Y(3)\) were developed for the curves given in
C Gumerman's report; p460, p466, and p467.
C Gumerman, R.C., R.L. Culp, and S.P. Hansen, 'Estimating Water
C Treatment Costs, Vol. 2, Cost Curves Applicable to 1 to 200 mgd
C Treatment Plants, EPA-600/2-79-162b, Aug. 1979.
```

Y(1) = 10.**(2.480708+0.699403*ALOG10(TV*100./PTOP))
Y(2) = 10.**(3.71184-.951171*ALOG10(TV) +. 20046*(ALOG10(TV))**2.)
Y(3) = 10.**(1.84073-.399972*ALOG10(TV)+.121128*(ALOG10(TV))**2.)
Y(4) = BP*365.*24.
Y(5) = BPW*365.*24.

```

C ADMINISTRATION, LABORATORY AND MAINTENANCE BUILDING
C VARIABLE = FLOW RATE, MGD
C
C \(\operatorname{ADMIN}(1)=\mathrm{CC}, \operatorname{ADMIN}(2)=\mathrm{MM}, \operatorname{ADMIN}(3)=\mathrm{LABOR}\)
C \(\operatorname{ADMIN}(4)=\) BUILDING ENERGY
C Following equations were developed for the curves given in
C Gumerman's report p469, p472, and p473.
```

 ADMIN(1) = 10.**(4.3617+.633898*ALOG10(FLOWL*100./PTOP)
 & -.0380989*(ALOG10(FLOWL*100./PTOP))**2.)
 ADMIN(2) = 10.**(3.29564+.293344*ALOG10(FLOWL)
 & +.0639727*(ALOG10(FLOWL))**2.)
 ADMIN(3) = 10.**(3.17059+.68173*ALOG10(FLOWL)
 & -.105693*(ALOG10(FLOWL))**2.)
 ADMIN(4) = 10.**(4.7412+.638106*ALOG10(FLOWL)
 & -.0357398*(ALOG10(FLOWL))**2.)
    ```
        DO \(5 \mathrm{I}=1,4\)
        \(Y(I)=Y(I)+\operatorname{ADMIN}(I)\)
    CONTINUE

C PROFIT AND FEES FOR CONSTRUCTION COST
C Contingencies and site work (miscellaneous) were included in the
C original report.
AUXIL \(=\) PROFIT + FEE
```

 AUXIL = 1. + AUXIL/100.
 Y(1) = Y(1)*AUXIL*CCI/259.
 C Following equations were developed for the curve given in
C 'Plant Design and Economics for Chemical Engineers', 4th ed.,
C McGraw-Hill, p527, figure 14-41, 1990.
PUMP = 10.**(5.42915-1.46769*ALOG10(2298.25*BPW*100./PTOP)
\& +.237617*(ALOG10(2298.25*BPW*100./PTOP))**2.)
Y(1) = Y(1) + PUMP*ECI/904.
C Conversion to \$
Y(1) = Y(1)*CRF
Y(2) = Y(2)*ECI/545.
Y(3) = Y(3)*LABOR
DO 10 I = 4,5
Y(I) = Y(I)*ELECT
CONTINUE
C CALCULATION OF TOTAL YEARLY COST
TCOST = Y(1) + Y(2) + Y(3) + Y(4) + Y(5)
C CONVERSION BACK TO THE ORIGINAL UNIT
TV = TV / 35.318
RETURN
END
СсСС
SUBROUTINE GACCOST(CCOST,CONTAC,REGEN,BVOL,FLOWL,CARUSE,
\& CMASS,LIFE,GACOP,UPTIME,LOSS,GACPR,LABOR,ELECT,NGAS,
\& WATER,PROFIT,SITE,FEE,CONTIN,ECI,CCI,CRF)
СсССсССС
C
C Data used in this subroutine was obtained from 'Cost Estimates for
C GAC Treatment Systems', J.Q. Adams and R.M. Clark, J. AWWA, p35-42,
C Jan., 1989.
C

```

```

 IMPLICIT REAL (A-Z)
 DIMENSION A(37),B(37),C(37),D(37),Y(37)
 INTEGER I
 CHARACTER*40 CONTAC,REGEN
 DATA A/16125,3*0,100,256,766.6,100100,3*0,1115,1460,93700,0,15150,
 + 0,540,1160,47200,20400,700000,49245,500,0,2920,1038000,0,
+ 15600,2920,111110,144000,354600,12250,0,2920,648400/
DATA B/7632,2983,203.2,47817.6,34.2,248.6,.00224,155.6,12,47817.6,
+ 1000,7.33,12.6,1999.1,12,350,19127,23.6,.3,21.8,9.7,148.4,

```
```

+ 346.5,25,956,69,8131.7,43.8,830.2,210.2,1084,198330.4,6387,
+ 312.1,4456.6,282,287714.9/
DATA C/.523,.4289,1.12,1,.601,.2104,2.491,.997,1,1,.813,1,.698,
+ . 712,1,.916,1,.753,1.068,.933,1.1,.933,.988,.753,.397,.5,
+ .494,1,.353,.4,1,.434,.755,.649,.401,.7,.899/
DATA D/37*1/

```

C CONVERSION OF THE UNITS OF THE VARIABLES
```

BVOL = BVOL * 35.318
CARUSE = CARUSE * 2.2046
CMASS = CMASS * 2.2046

```

C Filter surface area for this cost calculation was based on a
C hydraulic loading rate of \(12.22 \mathrm{~m} /\) hour. So the area of liquid-
\(C\) phase GAC will be recalculated for this purpose.
FAREA \(=\) FLOWL/22.82688*3600./12.22*10.764
IF (BVOL . GT. 400) \(\mathrm{D}(1)=1.102\)
IF (BVOL .LT. 3000) \(D(8)=.958\)
IF (BVOL .GT. 5000) D(14)=1.027
IF (FAREA . LT. 7000) D(19)=1.152
C VARIABLE = GAC CONTACTOR VOLUME
```

I = 1
Y(I) = A(I) + B(I) * (BVOL*100./GACOP)**C(I) * D(I)
I = 8
Y(I) = A(I) + B(I) * (BVOL*100./GACOP)**C(I) * D(I)
I = 14
Y(I) = A(I) + B(I) * (BVOL*100./GACOP)**C(I) * D(I)
I = 21
Y(I) = A(I) + B(I) * (BVOL*100./GACOP)**C(I) * D(I)
I = 5
Y(I) = A(I) + B(I) * BVOL**C(I) * D(I)

```

C VARIABLE \(=\) GAC CONTACTOR TOTAL CROSS SECTIONAL AREA
```

I = 2
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 3
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 6
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 7
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 9
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
DO 10 I = 11,13
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
CONTINUE
I = 15
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)

```
```

I}=1
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 18
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)
I = 19
Y(I) = A(I) + B(I) * FAREA**C(I) * D(I)

```

C VARIABLE \(=\) TOTAL EFFECTIVE HEARTH AREA, CARUSE/(45LB/SQFT/DAY) HAREA \(=\) CARUSE \(/ 45.0\)
\[
I=32
\]
\[
\mathrm{Y}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) *(\text { HAREA*100./UPTIME }) * * C(I) * D(I)
\] DO \(20 \mathrm{I}=33,37\)
                            \(Y(I)=A(I)+B(I) *\) HAREA**C(I) * D(I) CONTINUE

C VARIABLE \(=\) FLOW RATE
C PUMPING ENERGY REQUIREMENT
        \(I=4\)
        \(Y(I)=A(I)+B(I) * F L O W L * * C(I) * D(I)\)
        \(I=10\)
            \(Y(I)=A(I)+B(I) * F L O W L * * C(I) * D(I)\)
\(I=17\)
            \(Y(I)=A(I)+B(I) *\) FLOWL**C(I) * D(I)

C VARIABLE \(=\) CARBON USAGE RATE
        \(I=22\)
            \(\mathrm{Y}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) *(\) CARUSE*100./UPTIME)**C(I) * \(\mathrm{D}(\mathrm{I})\)
D0 \(30 I=23,31\)
            \(Y(I)=A(I)+B(I) * C A R U S E * * C(I) * D(I)\)

30 CONTINUE \(I=27\)
        \(\mathrm{Y}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) *(\) CARUSE*100./UPTIME)\(* * C(I) * \mathrm{D}(\mathrm{I})\)

C VARIABLE \(=\) BACKWASH PUMP CAPACITY (SET MAX \(=18 \mathrm{GPM} / \mathrm{SQ}\) FT)
```

I = 20
Y(I) = A(I) + B(I) * 18.**C(I) * D(I)

```

C PROFIT, SITE WORK, FEES, AND CONTINGENCIES FOR CONSTRUCTION COST
```

AUXIL = PROFIT + SITE + FEE + CONTIN
AUXIL = 1. + AUXIL/100.
Y(1) = Y(1)*AUXIL
Y(8) = Y(8)*AUXIL
Y(14) = Y(14)*AUXIL
Y(20) = Y(20)*AUXIL
Y(21) = Y(21)*AUXIL
Y(22) = Y(22)*AUXIL
Y(27) = Y(27)*AUXIL
Y(32) = Y(32)*AUXIL

```

C CONVERSION TO \$

C CALCULATION OF PRICE FOR EACH UNIT
IF (FAREA . LE. 50.0) THEN
PACKAGE \(=\mathrm{Y}(1)+\mathrm{Y}(2)+\mathrm{Y}(4)+\mathrm{Y}(5)+\mathrm{Y}(6)\)
ELSE
C FAREA should be less than 200. Otherwise this may not be valid. PACKAGE \(=\mathrm{Y}(1)+\mathrm{Y}(3)+\mathrm{Y}(4)+\mathrm{Y}(5)+\mathrm{Y}(7)\)
ENDIF
C CC OF BACKWASH, \(Y(20)\), will be added for conventional contactor.
C initial GAC cost also will be added for conventional contactor. STEEL \(=\mathrm{Y}(8)+\mathrm{Y}(9)+\mathrm{Y}(10)+\mathrm{Y}(11)+\mathrm{Y}(12)+\mathrm{Y}(13)+\mathrm{Y}(20)+\) CMASS*GACPR*CRF CONCRETE \(=\mathrm{Y}(14)+\mathrm{Y}(15)+\mathrm{Y}(16)+\mathrm{Y}(17)+\mathrm{Y}(18)+\mathrm{Y}(19)+\mathrm{Y}(20)\)
\&

STORAGE \(=Y(21)\)
```

 CLOSS = CMASS*LOSS*365./LIFE*GACPR
 CWATER = CARUSE*28.5*365./1000.0*WATER
 CLABOR = CARUSE*0.4*365./1000.0*LABOR
 INFRA = Y (22)+Y(23)+Y(24)+Y(25)+Y(26)+CLOSS+CWATER+CLABOR
 FLUID = Y(27)+Y(28)+Y(29)+Y(30)+Y(31)+CLOSS+CLOSS+CWATER+CLABOR
 HEARTH = Y(32)+Y(33)+Y(34)+Y(35)+Y(36)+Y(37)+CLOSS+CLOSS+CWATER
 & +CLABOR
 C Virgin GAC replacement with disposal of spent GAC by incineration.
C Formula for this option was developed for the curve given by J.
C Adams and R. Clark (figure 6).
C Here, ALOG is the Natural logarithm, Ln, not the ALOG10.
IF (CARUSE .LT. 273.97) THEN
VIRGIN = CARUSE*365.*(1.9-.27639202*ALOG(1+5.9207397
\& *(3.65E-3*CARUSE))+.17468663*(3.65E-3*CARUSE)) + CLABOR
ELSE IF (CARUSE .LT. 1095.89) THEN
VIRGIN = CARUSE*365.*(1.5299251-.10618521*ALOG(.99916691
\& *(3.65E-3*CARUSE))+.010547582*(3.65E-3*CARUSE)) + CLABOR
ELSE IF (CARUSE .LT. 2000.0) THEN
VIRGIN = CARUSE*365.*(1.50366667-7.1783333E-5*CARUSE)+CLABOR
C From now on, flat line is assumed.
ELSE
VIRGIN = CARUSE*365.*1.3601+CLABOR
ENDIF
VIRGIN = VIRGIN * ECI/761.
C SELECTION OF THE MOST ECONOMICAL PROCESS FOR ADSORPTION AND
C REGENERATION
IF (PACKAGE .EQ. AMIN1(PACKAGE,CONCRETE,STEEL)) THEN
CON = PACKAGE
CONTAC = 'PACKAGE PRESSURE GAC CONTACTORS'
ELSE IF (STEEL .EQ. AMIN1(PACKAGE,CONCRETE,STEEL)) THEN
CON = STEEL
CONTAC = 'CONVENTIONAL STEEL PRESSURE GAC CONTACTORS'
ELSE
CON = CONCRETE
CONTAC = 'CONVENTIONAL CONCRETE GRAVITY GAC CONTACTORS'
ENDIF
IF (INFRA .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN
REG = INFRA
REGEN = 'INFRARED REGENERATION'
ELSE IF(FLUID .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN
REG = FLUID
REGEN = 'FLUID-BED REGENERATION'
ELSE IF(HEARTH .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN
REG = HEARTH
REGEN = 'MULTIHEARTH REGENERATION'
ELSE
REG = VIRGIN
REGEN = 'VIRGIN GAC REPLACEMENT WITH DISPOSAL'
ENDIF

```

C CALCULATION OF TOTAL YEARLY COST

CCOST \(=\) CON + STORAGE + REG
C CONVERSION BACK TO THE ORIGINAL UNITS
BVOL \(=\) BVOL \(/ 35.318\)
CARUSE \(=\) CARUSE \(/ 2.2046\)
CMASS \(=\) CMASS / 2.2046
RETURN
END
СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
SUBROUTINE GACCOSTG(CCOST, CONTAC,REGEN, BAREAG, BVOLG, FLOWGG, CARUSE, CMASS, LI FE, DGGCM3, TEMPUPG,CP, \& GACOP, UPTIME, LOSS, GACPR, GACPRG, LABOR, ELECT, NGAS, \& WATER, PROFIT,SITE, FEE, CONTIN, ECI, CCI, CRF, \& RHOBG, RHOPG, DI AG, VGGCMS, VSG, BDEPTHG, PRESATM,TEMPKG, EFF)
 C
C Data used in this subroutine was obtained from 'Cost Estimates for C GAC Treatment Systems', J.Q. Adams and R.M. Clark, J. AWWA, p35-42, C Jan., 1989.
C
СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС


C High surface loading rate will be allowed for the gas-phase GAC.
C So, design bed area (BAREA) will be used
\(C\) (Just need unit conversion).
C CONVERSION OF THE UNITS OF THE VARIABLES

BAREAG \(=\) BAREAG \(* 10.764\)
BVOLG \(=\) BVOLG * 35.318
CARUSE \(=\) CARUSE * 2.2046
```

CMASS = CMASS * 2.2046

```
```

IF (BVOLG .GT. 400) D(1)=1.102

```
IF (BVOLG .LT. 3000) D(8)=.958
IF (BVOLG .GT. 5000) D(14)=1.027
IF (BAREAG .LT. 7000) D(19)=1.152

C VARIABLE \(=\) GAC CONTACTOR VOLUME
```

I = 1
Y(I) = A(I) + B(I) * (BVOLG*100./GACOP)**C(I) * D(I)
I}=
Y(I) = A(I) + B(I) * (BVOLG*100./GACOP)**C(I) * D(I)
I = 21
Y(I) = A(I) + B(I) * (BVOLG*100./GACOP)**C(I) * D(I)
I}=
Y(I) = A(I) + B(I) * BVOLG**C(I) * D(I)

```

C VARIABLE \(=\) GAC CONTACTOR TOTAL CROSS SECTIONAL AREA
        \(\mathrm{I}=2\)
            \(Y(I)=A(I)+B(I) * B A R E A G * * C(I) * D(I)\)
        \(I=3\)
            \(Y(I)=A(I)+B(I) * B A R E A G * * C(I) * D(I)\)
        \(I=6\)
            \(Y(I)=A(I)+B(I) * B A R E A G * * C(I) * D(I)\)
        \(I=7\)
            \(Y(I)=A(I)+B(I) * B A R E A G * * C(I) * D(I)\)
        \(I=9\)
            \(\mathrm{Y}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) *\) BAREAG**C(I) * \(\mathrm{D}(\mathrm{I})\)
        DO \(10 \mathrm{I}=11,13\)
            \(Y(I)=A(I)+B(I) * B A R E A G * * C(I) * D(I)\)
        CONTINUE
    C VARIABLE = TOTAL EFFECTIVE HEARTH AREA, CARUSE/(45LB/SQFT/DAY)
        HAREA \(=\) CARUSE/45.0
        \(\mathrm{I}=32\)
            \(\mathrm{Y}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) *(\) HAREA* 100./UPTIME \() * * \mathrm{C}(\mathrm{I}) * \mathrm{D}(\mathrm{I})\)
        DO \(20 \mathrm{I}=33,37\)
        \(Y(I)=A(I)+B(I) *\) HAREA**C(I) * D(I)
        CONTINUE
    C VARIABLE \(=\) Flow rate
    \(C \quad B P=\) air blower break power requirement, (instead of pumping
    \(C\) energy requirement in liquid-phase GAC).
    C Ergun equation to get the pressure drop through the bed
C \(\quad 10.764=\) unit ajustment of BAREAG
EBEDG \(=1.0-\) RHOBG/RHOPG
D1 \(=(150 . *(1 .-\) EBEDG \()) /(\) DIAG* ( (FLOWGG/22.82688*100.*DGGCM3) \(/\)
\& (BAREAG/10.764*VGGCMS)))
D2 = (DGGCM3*VSG**2.*BDEPTHG*(1.-EBEDG)*10.)/(DIAG*EBEDG**3.) PRESDG \(=(\mathrm{D} 1+1.75) * \mathrm{D} 2\)

C BRAKE POWER CALCULATION FOR BLOWER (BP) IN KW.
VGAS \(=\) VSG/100.
PRESE \(=275 . * V G A S * * 2\).
\(\mathrm{RG}=286.7\)
NN \(=.283\)
P1 = PRESATM*101330.
\(\mathrm{P} 2=\mathrm{PRESDG}+\mathrm{P} 1+\mathrm{PRESE}\)
QMG \(=\) FLOWGG/22.82688*DGGCM3*1000.
\(\mathrm{BP}=((\) QMG*RG*TEMPKG)\(/(1000 . *\) NN*EFF/100.) )
\& *((P2/P1)**NN -1.)

C BLOWER ENERGY REQUIREMENT, IN KWH/YEAR
\(Y(4)=B P * 365 . * 24\).
\(Y(10)=Y(4)\)
C VARIABLE \(=\) CARBON USAGE RATE
```

 I = 22
 Y(I) = A(I) + B(I) * (CARUSE*100./UPTIME)**C(I) * D(I)
 DO 30 I = 23,31
 Y(I) = A(I) + B(I) * CARUSE**C(I) * D(I)
 30 CONTINUE
I = 27
Y(I) = A(I) + B(I) * (CARUSE*100./UPTIME)**C(I) * D(I)

```

C VARIABLE \(=\) BACKWASH PUMP CAPACITY (SET MAX \(=18 \mathrm{GPM} / \mathrm{SQ} \mathrm{FT}\) )
```

$I=20$
$Y(I)=A(I)+B(I) * 18, * * C(I) * D(I)$

```

C PROFIT, SITE WORK, FEES, AND CONTINGENCIES FOR CONSTRUCTION COST
AUXIL \(=\) PROFIT + SITE + FEE + CONTIN
AUXIL \(=1 .+\) AUXIL/100.
\(Y(1)=Y(1) * A U X I L\)
\(Y(8)=Y(8) * A U X I L\)
\(Y(20)=Y(20) * A U X I L\)
\(Y(21)=Y(21) * A U X I L\)
\(Y(22)=Y(22) * A U X I L\)
\(Y(27)=Y(27) * A U X I L\)
\(Y(32)=Y(32) * A U X I L\)
C CONVERSION TO \$
\(\mathrm{Y}(1)=\mathrm{Y}(1) * \mathrm{CRF} * \mathrm{CCI} / 380\).
DO \(40 \mathrm{I}=2,4\)
\(\mathrm{Y}(\mathrm{I})=\mathrm{Y}(\mathrm{I}) *\) ELECT
40 CONTINUE \(\mathrm{Y}(5)=\mathrm{Y}(5) * \mathrm{ECI} / 761\).
    \(\mathrm{Y}(6)=\mathrm{Y}(6) *\) LABOR
    \(Y(7)=Y(7) *\) LABOR
    \(Y(8)=Y(8) * C R F * C C I / 380\).
    DO \(50 \mathrm{I}=9,11\)
        \(Y(I)=Y(I) * E L E C T\)
    CONTINUE
    \(Y(12)=Y(12) * E C I / 761\).
    \(Y(13)=Y(13) *\) LABOR
    \(Y(20)=Y(20) * C R F * C C I / 380\).
    \(Y(21)=Y(21) * C R F * C C I / 380\).
    \(Y(22)=Y(22) * C R F * C C I / 380\).
    \(Y(23)=Y(23) *\) ELECT
    \(Y(24)=Y(24) * E L E C T\)
    \(Y(25)=Y(25) * E C I / 761\).
    \(Y(26)=Y(26) *\) LABOR
    \(Y(27)=Y(27) * C R F * C C I / 380\).
    \(Y(28)=Y(28) *\) ELECT
    \(Y(29)=Y(29) * E C I / 761\).
    \(Y(30)=Y(30) *\) LABOR
    \(Y(31)=Y(31) *\) NGAS
    \(Y(32)=Y(32) * C R F * C C I / 380\).
    \(Y(33)=Y(33) *\) ELECT
    \(Y(34)=Y(34) *\) ELECT
    \(Y(35)=Y(35) * E C I / 761\).
    \(Y(36)=Y(36) *\) LABOR
    \(Y(37)=Y(37) *\) NGAS
C CALCULATION OF PRICE FOR EACH UNIT
IF (BAREAG .LE. 50.0) THEN
PACKAGE \(=Y(1)+Y(2)+Y(4)+Y(5)+Y(6)\)
ELSE
C Barea should be less than 200. Otherwise this may not be valid. PACKAGE \(=Y(1)+Y(3)+Y(4)+Y(5)+Y(7)\)
ENDIF
C Initial GAC cost is included in package contactor. However,
\(C\) the GAC price was based on liquid-phase GAC. So, the difference
\(C\) will be added for gas-phase contactor.
PACKAGE \(=\) PACKAGE + CMASS* \((\) GACPRG-GACPR \() *\) CRF
C Gas-phase does not include backwash pumping CC
\(C\) Therefore \(Y(20)\) will not be added to conventional contactor.
\(C\) The amount of \(Y(20)\) will be subtracted from package contactor
C which contains backwash pump.
C Process energy requirements are also for backwash pumping.
C So, \(Y(9)\) will not be added to conventional contactor and will be
C subtracted from package contactor.
PACKAGE \(=\) PACKAGE \(-Y(9)-Y(20)\)
C Initial GAC cost also will be added for conventional contactor.
```

 STEEL = Y(8)+Y(10)+Y(11)+Y(12)+Y(13)+CMASS*GACPRG*CRF
 STORAGE = Y(21)
 CLOSS = CMASS*LOSS*365./LIFE*GACPRG
 CWATER = CARUSE*28.5*365./1000.0*WATER
 CLABOR = CARUSE*0.4*365./1000.0*LABOR
 INFRA = Y(22)+Y(23)+Y(24)+Y(25)+Y(26)+CLOSS+CWATER+CLABOR
 FLUID = Y(27)+Y(28)+Y(29)+Y(30)+Y(31)+CLOSS+CLOSS+CWATER+CLABOR
 HEARTH = Y(32)+Y(33)+Y(34)+Y(35)+Y(36)+Y(37)+CLOSS+CLOSS+CWATER
 &
 +CLABOR
 C Virgin GAC replacement with disposal of spent GAC by incineration.
 C Formula for this option was developed for the curve given by J.
 C Adams and R. Clark (figure 6).
 C Here, ALOG is the Natural logarithm, Ln, not the ALOG10.
 IF (CARUSE .LT. 273.97) THEN
 VIRGIN = CARUSE*365.*(1.9-.27639202*ALOG(1+5.9207397
 & *(3.65E-3*CARUSE))+.17468663*(3.65E-3*CARUSE)) + CLABOR
 ELSE IF (CARUSE .LT. 1095.89) THEN
 VIRGIN = CARUSE*365.*(1.5299251-.10618521*ALOG(.99916691
 &
 *(3.65E-3*CARUSE))+.010547582*(3.65E-3*CARUSE)) + CLABOR
 ELSE IF (CARUSE .LT. 2000.0) THEN
 VIRGIN = CARUSE*365.*(1.50366667-7.1783333E-5*CARUSE)+CLABOR
 C From now on, flat line is assumed.
 ELSE
 VIRGIN = CARUSE*365.*1.3601+CLABOR
 ENDIF
 VIRGIN = VIRGIN * ECI/761.
 C The GAC price is based on liquid-phase GAC in virgin carbon
 C replacement. So, the difference will be added for gas-phase
 contactor.
 VIRGIN = VIRGIN + CARUSE*365.*(GACPRG-GACPR)
 C SELECTION OF THE MOST ECONOMICAL PROCESS FOR ADSORPTION AND
 C REGENERATION
    ```
    IF (PACKAGE .EQ. AMIN1(PACKAGE,STEEL)) THEN
        CON = PACKAGE
        CONTAC = 'PACKAGE PRESSURE GAC CONTACTORS'
    ELSE
        CON = STEEL
        CONTAC \(=\) 'CONVENTIONAL STEEL PRESSURE GAC CONTACTORS'
    ENDIF
    IF (INFRA .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN
            REG = INFRA
            REGEN = 'INFRARED REGENERATION'
        ELSE IF(FLUID. .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN
            REG = FLUID
            REGEN = 'FLUID-BED REGENERATION'

ELSE IF(HEARTH .EQ. AMIN1(INFRA,FLUID,HEARTH,VIRGIN)) THEN REG = HEARTH REGEN \(=\) 'MULTIHEARTH REGENERATION'
ELSE
REG \(=\) VIRGIN
REGEN \(=\) 'VIRGIN GAC REPLACEMENT WITH DISPOSAL'
ENDIF
C CALCULATION OF TOTAL YEARLY COST
C Gas-phase adsorption shows that optimum relative humidity is \(40 \%\).
C So, air will be heated.
C heat capacity of air \(=\mathrm{CP}\), cal/g-deg \(C\)
C 1 cal \(=0.00397\) Btu
\(C\) typical heating value of natural gas \(=1050 \mathrm{Btu} / \mathrm{cuft}\)
HEAT \(=\) FLOWGG/22.82688*1.0E+6*DGGCM3*CP*TEMPUPG*0.00397
\& *86400.*365./1050.*NGAS
\(Y(38)=\) HEAT
```

 CCOST = CON + STORAGE + REG + HEAT
    ```

C CONVERSION BACK TO THE ORIGINAL UNITS
BAREAG \(=\) BAREAG \(/ 10.764\)
BVOLG \(=\) BVOLG / 35.318
CARUSE \(=\) CARUSE / 2.2046
CMASS \(=\) CMASS / 2.2046
RETURN
END

\section*{ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС}

SUBROUTINE ET (FCN, CPD, SCIOS , SCUSE , N, SRHOB, SRHOP, SVSW, COMPOUND, + SXK,SXN,SCI ,SMW)

C
C This subroutine was developed by Mr. Thomas F. Speth, Dr. John C.
C Crittenden, and Dr. David W. Hand at Michigan Technological
C University.
C
ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
```

 IMPLICIT DOUBLE PRECISION (A-H, O-Z)
 CHARACTER*40 COMPOUND(20),CHAR(20),CH,CPD
 DOUBLE PRECISION MW(20)
 DIMENSION XN(20),XK(20),CO(20,20),C(20,20),Q(20,20),VW(20)
 $,OATS(20),WK(200),X(20),PAR(100),CI (20)
 C Variables in single precision in main program
REAL SCIOS,SCUSE,SRHOB,SRHOP,SVSW,SXK(20),SXN(20),SCI (20),SMW(20)
C EXTERNAL FCN
COMMON /ZSQ/ BVF,DEN,M

```

C Conversion to double precision

\section*{RHOB \(=\) SRHOB}

RHOP=SRHOP
VSW=SVSW
DO \(5 \mathrm{I}=1\), N
\(X K(I)=S X K(I)\)
XN(I) \(=\operatorname{SXN}(I)\)
\(\mathrm{CI}(\mathrm{I})=\mathrm{SCI}(\mathrm{I})\)
MW (I) \(=\) SMW (I)
\(\operatorname{CHAR}\) (I) \(=\) COMPOUND (I)
CONTINUE
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{CO}(\mathrm{I}, 1)=\mathrm{CI}(\mathrm{I}) / \mathrm{MW}(\mathrm{I})\)
XN(I) \(=1.0 \mathrm{DO} / \mathrm{XN}(\mathrm{I})\)
CONTINUE
\(B V F=1.0 D 0-\) RHOB \(/\) RHOP
VF=VSW/BVF
DEN=RHOP*1000.0D0

DO \(20 \quad \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{VW}(\mathrm{I})=0.0 \mathrm{DO}\)
\(\operatorname{PAR}(60+I)=0.0 D 0\)
\(\operatorname{PAR}(80+I)=0.0 D 0\)
20
CONTINUE
C
C
C
DO \(100 \mathrm{~J}=1, \mathrm{~N}\)
\(\mathrm{L}=0\)
\(\mathrm{M}=\mathrm{J}\)
NS \(=9\)
\(\mathrm{NN}=\mathrm{N}+1-\mathrm{J}\)
\(\mathrm{ZZ}=1.0 \mathrm{D} 0\)
NSIG=NS
SUM \(=0.0 \mathrm{DO}\)
C
C CALCULATE INITIAL GUESSES OF Q's
C
21 DO \(22 \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{Q}(\mathrm{I}, \mathrm{J})=\mathrm{ZZ} * \mathrm{XK}(\mathrm{I}) * \mathrm{CO}(\mathrm{I}, \mathrm{J}) * *(1.0 \mathrm{DO} / \mathrm{XN}(\mathrm{I}))\) CONTINUE
22
C
C PUT Q INTO ONE-DIMENSIONAL FORM
C
DO \(24 \mathrm{I}=1\), N
\(X(I)=Q(I, J)\)
CONTINUE
```

C
C SET IAST PARAMETERS
C
DO 26 I=1,NN
X(I) =X (M-1+I)
PAR(I)=XK(M-1+I)
PAR(10+I)=XN(M-1+I)
PAR(20+I)=CO(M-1+I,J)
PAR (60+I)=PAR (60+M-1+I)
PAR (80+I)=PAR(80+M-1+I)
CONTINUE
PAR (30)=VW(J-1)
PAR (35)=VF
ITMAX=100
C
CALL ZSPOW(FCN,NSIG,NN,ITMAX,PAR,X,FNORM,WK,IER)
C
C
C
IF (IER .EQ. 129 .OR. IER .EQ. 131) THEN
IF (L .EQ. 0) THEN
ZZ=2.0D0*ZZ
L=L+1
GOTO 21
ENDIF
IF (L .EQ. 1) THEN
ZZ=3.0D0*ZZ
L=L+1
GOTO }2
ENDIF
IF (L .EQ. 2) THEN
ZZ=ZZ/20.0D0
L=L+1
GOTO 21
ENDIF
IF (L .EQ. 3) THEN
PRINT *, 'THERE IS A PROBLEM WITH THE INITIAL CONCENTRATIONS
\$THAT THE PROGRAMS FIXING ROUTINE DID NOT HELP. ZONE=',J
ENDIF
ENDIF
C
IF (IER .EQ. 130) THEN
NSIG=NSIG-1
IF (NSIG .LT. 0) THEN
PRINT *, 'THE NUMBER OF SIGNIFICANT FIGURES HAS DROPPED BELOW
\$ZERO. THERE ARE NO RESULTS FOR ZONE ',J
ENDIF
GOTO 21
ENDIF
SET X TO TWO-DIMENSIONAL OUTPUT FOR PRINT OUT
IF (M .GT. 1) THEN
DO }30\quad\textrm{I}=1,\textrm{M}-

```
\[
Q(I, J)=0.0 \mathrm{DO}
\]

\section*{CONTINUE}

ENDIF
Do \(31 \mathrm{I}=1\), NN
\(\mathrm{Q}(\mathrm{I}+\mathrm{M}-1, \mathrm{~J})=\mathrm{X}(\mathrm{I})\)
CONTINUE
CONTINUE

ENDIF
DO \(34 \mathrm{I}=1\), NN
\(\mathrm{C}(\mathrm{I}+\mathrm{M}-1, \mathrm{~J})=\operatorname{PAR}(40+\mathrm{I})\)
CONTINUE

DGX \(=0.0 \mathrm{DO}\)
DO \(35 \mathrm{I}=\mathrm{M}, \mathrm{N}\)
DG=DEN*Q(I,J)/(C(I,J)*BVF)
IF (DG .GT. DGX) THEN
DGX=DG
\(\mathrm{I} X=\mathrm{I}\)
ENDIF
CONTINUE
```

CH=CHAR(IX)

```
    CHAR (IX) \(=\) CHAR (J)
    \(\operatorname{CHAR}(\mathrm{J})=\mathrm{CH}\)
\[
\begin{aligned}
& \operatorname{XXN}=\operatorname{XN}(I X) \\
& \operatorname{XN}(I X)=X N(J) \\
& \operatorname{XN}(J)=\operatorname{XXN}
\end{aligned}
\]
    \(\mathrm{CO}(\mathrm{IX}, \mathrm{K})=\mathrm{CO}(\mathrm{J}, \mathrm{K})\)
    \(\mathrm{CO}(\mathrm{J}, \mathrm{K})=\mathrm{XCO}\)
C
\[
\begin{aligned}
& X C=C(I X, K) \\
& C(I X, K)=C(J, K)
\end{aligned}
\]
```

 C(J,K)=XC
 C
XQ=Q(IX,K)
Q(IX,K)=Q(J,K)
Q (J,K)=XQ
CONTINUE
C
C
SET C's AND Q's FOR NEXT ZONE
C
DO 38 I=1,N
PAR(60+I)=Q(I,J)
PAR(80+I)=C(I,J)
CONTINUE
38
C
C CALCULATE VELOCITY OF THE WAVE FOR ZONE J
IF (J .EQ. 1) THEN
VW(J)=VF*BVF*CO(1,J)/(Q(1,J)*DEN+C(1,J)*BVF)
ENDIF
IF (J .GE. 2) THEN
SUM=(Q(J,1)*DEN+BVF*C(J,1))*VW(1)
ENDIF
IF (J .GT. 2) THEN
DO 40 K=2,J-1
SUM=SUM+((Q(J,K)*DEN+BVF*C(J,K))*(VW(K)-VW(K-1)))
CONTINUE
ENDIF
IF (J .GE. 2) THEN
VW(J)=(BVF*VF*CO(J,J)-SUM+(Q(J,J)*DEN+BVF*C(J,J))*VW(J-1)
\$)/(Q(J,J)*DEN+BVF*C(J,J))
ENDIF
C
C
C
DO 50 I=J+1,N
CO(I,J+1)=C(I,J)
50 CONTINUE
DO 60 I=1,J
CO(I,J+1)=0.0D0
CONTINUE
C
100 CONTINUE
C
C CALCULATE BED VOLUMES FED
C
DO 110 I=1,N
C*****CAUTION; C(I,J) --> C(I,1)*************************
SUM=(Q(I, 1)*DEN+C(I,J)*BVF)*VW (1)
IF (I .GE. 2) THEN
DO 105 K=2,I
SUM=SUM+(Q(I,K)*DEN+C(I ,K)*BVF)*(VW(K)-VW(K-1))
CONTINUE
ENDIF
OATS(I)=SUM/(CO(I,I)*VW(I))

```
```

110 CONTINUE
C
C PUT INTO ug/L UNITS
C
DO 200 J=1,N
DO 200 I=1,N
C(I,J)=C(I,J)*MW(I)
200 CONTINUE
CPD=CHAR(N)
CIOS=C(N,N)
C CARBON USE RATE
CUSE=DEN*1000.0D0/OATS(N)
C Conversion back to single precision
SCIOS=CIOS
SCUSE=CUSE
RETURN
END
C
C
C SUBROUTINE FCN
C THIS SUBROUTINE WILL SET UP THE EQUATIONS THAT WILL BE USED IN
C THE ZSPOW SUBROUTINE.
C
C
SUBROUTINE FCN(X,F,NN,PAR)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(NN),F(NN),PAR(100)
COMMON /ZSQ/ BVF,DEN,M
QT=0.0D0
QNQ=0.0D0
DO 1010 I=1,NN
QT=QT+X(I)
QNQ=QNQ+PAR(10+I)*X(I)
1010 CONTINUE
C
C CALCULATE F(I)
C
IF (M . EQ. 1) THEN
DO 1020 I=1,NN
F(I)=-PAR(20+I)+X(I)/QT*(QNQ/PAR (10+I)/PAR(I))**PAR(10+I)
1020 CONTINUE
ENDIF
IF (M .GT. 1) THEN
DO 1030 I=1,NN
F(I)=-X(I)/QT*(QNQ/PAR(10+I)/PAR(I))**PAR (10+I) +((X (I) -PAR (60+I)
\$)*DEN*PAR (30))/((PAR (35)-PAR (30))*BVF)+PAR (80+I)

```
```

1030 CONTINUE
ENDIF
C
C CALCULATE LIQUID CONCENTRATION
C
IF (M .EQ. 1) THEN
DO 1040 I=1,NN
PAR(40+I)=X(I)*(QNQ/(PAR(10+I)*PAR(I)))**PAR(10+I)/QT
1040 CONTINUE
ENDIF
IF (M .GT. 1) THEN
DO 1050 I=1,NN
PAR(40+I)=((X(I)-PAR(60+I))*DEN*PAR(30))/((PAR(35)-PAR(30))
\$*BVF)+PAR(80+I)
1050 CONTINUE
ENDIF
RETURN
END

```

VITA

HO-SIK YOO

\author{
Candidate for the Degree of \\ Doctor of Philosophy
}

Thesis: PERFORMANCE AND ECONOMICS OF AIR STRIPPING TOWER WITH OFF-GAS CONTROL BY EITHER GAS-PHASE CARBON ADSORPTION OR PLASMA REACTOR IN COMPARISON TO LIQUID-PHASE CARBON ADSORPTION

Major Field: Civil Engineering
Biographical:
Personal Data: Born in Seoul, Korea, June 20, 1958, the son of K. H. and S. D. Yoo.

Education: Graduated from Pai Chai High School, Seoul, Korea, in February, 1976; received Bachelor of Science Degree in Civil Engineering from Sung Kyun Kwan University in February, 1980; received Master of Science Degree from Oklahoma State University in December, 1987; completed requirements for the Doctor of Philosophy Degree at Oklahoma State University in December, 1991.

Professional Experience: Army Officer, Lieutenant, Korea, March, 1980, to June, 1982; Civil Engineer, Dae Woo Co., Seoul, Korea, July, 1982, to October, 1985; Research Assistant, School of Civil Engineering, Oklahoma State University, August, 1988, to May, 1991; Teaching Assistant, School of Civil Engineering, Oklahoma State University, January, 1989, to December, 1991.

Membership in Professional Society: American Water Works Association; Water Pollution Control Federation; American Society of Civil Engineers; The Korean Scientists and Engineers Association in America.```

