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CHAPTER I 

INTRODUCTION 

Modern compilers use syntax-directed parsing algorithms such as 11(1) and 
LALR(l). These algorithms have simplified the task of parsing programs greatly, 
but they have the undesirable property of stopping at the first syntax error in 
a program. This behavior is not acceptable because the program may contain 
several syntax errors, all of which should be reported to the programmer when the 
progr~m is compiled. Therefore, researchers have developed syntax-error recovery 
schemes which allow syntax-directed parsers to recover from a syntax error and to 
continue parsing the program. Unfortunately, the syntax-error recovery schemes 
that have been developed are either costly in time or space, or fail to provide 
"good" error recovery for all errors. This dissertation presents a new syntax-error 
recovery scheme, for LR(k) parsers and their variants, which is less costly than 
similar schemes and can provide "good" error recovery on a wide range of errors. 

1.1 LITERATURE REVIEW 

The literature on syntax-error recovery schemes is quite extensive. A large, but 
now dated, bibliography is provided by Ciesinger [7] and a relatively current survey 
of the field is provided by Hammond and Rayward-Smith [16]. 

In the literature, the terms "error recovery", "error repair", "error correc
tion", and "error handling" are given different, often conflicting, definitions by 
various authors. In this dissertation, the terms "error recovery scheme" and "error 
handling scheme" are taken to be synonymous and are used for any scheme that 
places a syntax-directed parser in a state that allows it to continue parsing after 
a syntax error is encountered. The terms "error repair scheme" and "error correc
tion scheme" are also taken to be synonymous and are used for any error recovery 
scheme that operates by explicitly constructing a repair to the text of the program. 

This review focuses on syntax-error recovery schemes that apply to LR( k) 
parsers and their variants and the reader is assumed to be familar with the theory of 
LR(k) parsing as presented in a standard text such as Aho, Sethi, and Ullman [4]. 
In this section, the configuration of an LR( k) parser is represented, using Aho, 
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Sethi, and Ullman's notation, by 

where the s/s are the states on the parse stack, the X/s are the terminal and non
terminal symbols which correspond to the states, and the ak 's are the unconsumed 
input tokens. 

For a configuration in which an LR( k) parser detects an error, the location 
of a, is called the parser-defined error locatton. The parser-defined error locations 
may not be the actual location of the error because an LR( k) parser may not 
detect that a program is erroneous until after the point at which the error actually 
occurred. For example, in this PASCAL code fragment 

... ; I=JTHEN ... 

the error is the omission of an "IF" before the "I". However, an LR( k) parser 
will not detect an error until it encounters the "=". Thus, the parser-defined error 
location is at the "=" while the actual error location is at the "I". 

For the purposes of this dissertation, syntax-error recovery schemes can be 
classified into two major categories: ad hoc schemes based on pragmatic princi
ples; and least-cost schemes based on the minimum distance model for determining 
the location and nature of errors. These two classes of schemes both operate by 
determining the location and nature of the error and then restarting the parser 
in a state which enables it to continue parsing as if the erroneous section of the 
program text had been transformed into a correct section of program text. The 
primary difference between ad hoc schemes and least-cost schemes is that ad hoc 
schemes use heuristics, that depend on the grammar describing the language and 
the parsing algorithm, to determine the location and nature of an error; while 
least-cost schemes apply the mininum distance correction model which determines 
the location and nature of an error independently of any grammar for the language 
or any parsing algorithm. 

The minimum distance correction model of syntax errors is the only model of 
syntax errors that has been studied. In the minimum distance correction model, 
errors are considered to be the result of the insertion, deletion, or substitution of 
tokens in the program. A more powerful model, that more accurately describes the 
process by which syntax errors enter into the text of a program, would be helpful 
to the development of error recovery schemes. The development of such a model 
is a tremendous task since it requires an understanding of the mental processes of 
programmers. In addition, the difficulties encountered in applying the minimum 
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distance model to the problem of syntax error recovery make it seem doubtful that 
a more powerful model could be applied in practice. 

Both the ad hoc and least-cost schemes can be further subdivided. The ad 
hoc schemes can be broken into combinations of three basic schemes: local repair 
schemes, phrase-level schemes, and forward move schemes. The least-cost schemes 
can be subdivided into three distinct types: globally least-cost, locally least-cost, 
and regionally least-cost. The remainder of this section examines these six types 
of syntax-error recovery schemes. 

1.1.1 Local Repair Schemes 

Local repair schemes are based on the observation that most errors are single token 
errors. Ripley and Druseikis [26) report that 88 percent of all errors in their sample 
of PASCAL programs are single token insertions, deletions, or replacements. 

A local repair scheme is a syntax-error recovery scheme where the insertion, 
deletion, or replacement of a single token is allowed as a repair. A simple lo
cal repair scheme considers single token repairs only at the parser-defined error 
location. 

Local repair schemes can generate a large number of possible repairs so various 
methods are used to select a single repair, One method is to assign insertion, 
deletion, or replacement costs to each token and choose the repair with the lowest 
cost. A simple local repair scheme with this method is used by Sippu and Soisalon
Soininen [28) to augment their phrase-level scheme. 

One local repair scheme, which is also a method for selecting among possible 
repairs, consists of attempting to parse a few tokens beyond a repair. If this parse 
check does not encounter another error, the repair is considered successful. Of 
course, when there is more than one repair that passes the parse check, some 
additional method must be used to select the repair. The parse check method is 
used by Graham, Haley, and Joy [14). 

Another local repair scheme, takes into account the fact that the parser-defined 
error location may not be the actual error location. If no repair is successful at the 
parser-defined error location, then repairs are tried at previous locations. These 
previous locations may be at previous tokens if already parsed tokens are retained 
by the parser, or they may be locations on the parse stack. This scheme is used in 
conjunction with the parse check method by Feyock and Lazarus [12), and Burke 
and Fisher [ 6). 

Finally, another local repair scheme is Burke and Fisher's scope recovery 
scheme [6] which attempts to insert a sequence of scope closers instead of just 
trying single token repairs. The scope closers are a language dependent set of 
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token sequences such as "END", "END IF" and "END RECORD" that close recursive 
constructs in the language. Since omitting a scope closer is an error that is usu
ally detected long after it's location has been shifted onto the parse stack, scope 
recovery is tried at all locations that precede the parser defined error location. 

The major drawback of local repair schemes is that they can be expected to 
fail for some errors. Thus local repair schemes must always be used in conjunction 
with some other error recovery scheme. 

1.1.2 Phrase-Level Schemes 

Phrase-level schemes do not attempt to repair any errors. Instead they attempt 
to place the parser in a state where it can continue parsing at a point beyond the 
error location. While phrase-level schemes can be used alone; good examples are 
Wirth's follow set scheme [31] and YACC's syntax-error recovery scheme [17]; they 
are most often used in conjunction with local repair schemes. 

Some phrase-level schemes are based on the idea of isolating an error phrase 
and reducing it to a nonterminal. For example, given a configuration 

where a parser-defined error is detected at a, and an error recovery that places the 
parser in the configuration 

where A is a nonterminal symbol, then the error phrase 

has been reduced to the nonterminal A. Other phrase-level schemes simply change 
the error configuration to 

where X 1 is not required to be a nonterminal symbol. These schemes do not 
attempt to interpret the error recovery as the reduction of an error phrase to a 
nonterminal. They just pop the stack and delete input tokens until parsing can 
continue. 

Phrase-level schemes that operate by reducing an error phrase to a nontermi
nal have been developed by Leinius [18], Peterson [25], and Sippu and Soisalon
Soininen [28]. Other phrase-level schemes have been developed by Burke and 
Fisher [6]; Feyock and Lazarus (12]; and Graham, Haley, and Joy [14]. 
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The error recovery chosen by any phrase-level scheme is dependent on the 
order in which the stack states and input tokens are.searched for a possible recovery. 
Sippu and Soisalon-Soininen introduce a very useful notation for describing search 
orders. Let (j, k) denote the segment 

of the configuration 

The following search order denotes a search that checks the whole stack from top 
to bottom for a state which can shift the current input token before deleting an 
input token: 

(r,n,O) (r,n- 1,0) 
(r,n,l) (r,n- 1,1) 

(m,n) (r,n -1,n) 

(0,0) 
(0,1) 

(O,n) 

Sippu and Soisalon-Soininen's notation for search orders in phrase-level schemes 
helps in classifying other phrase-level schemes, even when they have complicated 
search procedures. For instance, Burke and Fisher's secondary recovery [6] has 
many features such as parse checking possible recoveries and checking for the pos
sibility of inserting scope closers. In addition, they do not use the concept of 
reducing an error phrase, but instead simply remove states from the parse stack 
until one is found that allows parsing to resume with the current token. However, 
when their secondary recovery scheme is examined, it is seen that they search for 
an error phrase in the following order: 

(m,O) 
(r,n- 1, 0) 
(m-1,1) 

(m,1) 
(m-2,0) 
(m-2,1) 

(m-1,n) (m-2,n) 

(m,n) 
(0,0) 
(0,1) 

(O,n) 

Another example of a phrase-level scheme that has an unusual search order is 
YACC's syntax-error recovery scheme. This scheme is similar to the scheme used 
by Graham, Haley, and Joy [14] as the basis for their second level recovery scheme. 
In this scheme, the states on the stack are popped until one is found that has a 
shift on the special token error (these states are added by extra productions in 
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the grammar) and then the shift is performed. Next, the input tokens are skipped 
until one is found that is shiftable in the current state. This scheme corresponds 
to a search order of 

(m,-) (m-1,-) ... (0,-) 

which pops the stack independently of the input tokens; followed by a search order 
of 

( m', 0) ( m', 1) . . . ( m', n) 

where m' is the value of m determined by the first search. 
While the search order notation is useful for describing phrase-level schemes, 

it also highlights a weakness of phrase-level schemes. The search order is fixed. If 
multiple recoveries are possible, the recovery selected will be the one which occurs 
first in the search order. 

Another problem with phrase-level schemes is that they do not handle single 
token errors well. This problem with single token errors can be alleviated by 
using a local repair scheme in conjuction with a phrase-level scheme. But, Sippu 
and Soisalon-Soininen (28] report that a simple local repair scheme often chooses 
an inappropriate repair which causes extraneous errors to be generated. Burke 
and Fisher [6]; Feyock and Lazarus [12]; and Graham, Haley, and Joy [14] have 
apparently overcome this problem by using local repair schemes that parse check 
the repairs. 

In general, researchers do not report the worst-case time complexity of their 
syntax-error recovery algorithms. However, Burke and Fisher's scheme, which is 
the most recent and powerful phrase-level scheme, is reported by Burke [5] to have 
a worst-case time complexity of O(n5 ). 

1.1.3 Forward Move Schemes 

Forward move schemes are the result of attempts to extend the Graham-Rhodes 
method [13] for precedence parsers to LR(k) parsers. The Graham-Rhodes method 
for precedence parsers continues parsing after an error is detected until a reduc
tion that involves the error is called for, or another error is encountered. When 
a reduction that involves the error is called for, the error phrase is repaired by 
modifying it to match the right-hand side of some production in the grammar and 
then performing the corresponding reduction. Of course, for LR( k) parsers, pars
ing beyond the parser defined error location is difficult since whenever an error is 
detected the parser is in a state that cannot lead to a shift of the next input token. 

The problem of parsing beyond the parser-defined error location for LR(k) 
parsers has been solved by Druseikis and Ripley [10], Mickunas and Modry [22], 
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and Pennello and DeRemer [24]. All of these solutions involve restarting the parser 
at the parser-defined error location in a state that can shift the next input token. 
There may be several such states so separate parses must be carried out in parallel 
for each state. Pennello and DeRemer only carry out the parallel parses as long as 
the next action for each parse. is the same. 

Once the foward move has been carried out Michunas and Modry, and Pennello 
and DeRemer repair the single token error and reduce the error phrase so the parser 
can continue. Druseikis and Ripley do not attempt a repair or a reduction. Instead, 
they start another forward move at the point at which the previous forward move 
stopped. This allows the parser to continue and detect some subsequent errors, 
but it also lets other errors remain undetected because left context information is 
lost when a foward move is started. 

Mickunas and Modry, and Pennello and DeRemer use single token repairs at 
the parser-defined error location in an attempt to find a repair that allows the 
parser to enter one of the states used to start the forward move. Mickunas and 
Modry recursively invoke their recovery scheme if another error is encountered 
during the forward move. Pennello and DeRemer restart the forward move at the 
location of any subsequent errors and then attempt to concatenate the pieces of 
the forward move together during the selection of repairs. For both schemes, if all 
repairs fail at the current error .location then the entire forward move process is 
repeated at the previous location. 

Forward move schemes share a common. goal with the reduction oriented 
phrase-level schemes; both classes of schemes attempt to reduce an error phrase to 
a nonterminal. However, forward move schemes attempt to do this by recognizing 
and repairing single token errors in the error phrase, while phrase-level schemes 
just attempt to isolate the error phrase. Forward move schemes have the advantage 
that the right end of the error phrase is determined by contextual information; and 
it is not determined by a static search order. 

Forward moye schemes carry out a large number of parallel parses. Pennello 
and DeRemer show how their parallel forward moves can be combined into a single 
deterministic forward move by adding additional states to the LR(k) parser which 
are used during a forward move. This increases the efficiency of their forward 
moves at the cost of larger parse tables. They report the size of their parse tables 
for PASCAL increased by 55 percent. 

While no worst-case time complexities are reported for foward moves schemes, 
it is clear that they are essentially backtracking schemes and are guided by heuris
tics. Thus, their time complexity should be at worst O(cn). In fact, Graham, Haley, 
and Joy [14) cite the poor performance of forward moves schemes as motivation 
for their development of a phrase-level scheme. 
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1.1.4 Globally Least-Cost Schemes 

Globally least-cost schemes result from the straight forward application of the 
minimum distance model of errors to the problem of syntax-error recovery. These 
schemes are called globally least-cost because in principle they examine the entire 
program text when recovering from an error. 

In the mininum distance model, a program is considered to be a string of 
tokens, and a (programming) language is simply a set of strings. The distance 
between two strings is the number of changes needed to transfrom one string into 
the other string, where a change is the insertion, deletion, or replacement of a token. 
The distance between a string and a language is the minimum of the distances 
between the string and each of the strings in the language. This minimum distance 
criterion allows the number of ~rrors in a string for a language to be defined as the 
distance of the string from the language. 

The minimum distance criterion can easily be extended to a least-cost criterion 
by assigning an insertion and deletion cost for each token and a replacement cost 
for every pair of tokens. The use of differing costs for the insertion, deletion, or 
replacement of different symbols allows a least-cost scheme to be tuned to reflect 
some pratical features of syntax errors. For example, it is unlikely that a reserved 
word is misused in a program so the deletion cost for reserved words should be 
high. 

While the minimum distance criterion determines the number of errors in 
a string, it does not fix their location. The following PASCAL code fragment 
illustrates this problem: 

... IF A = 0 THEN BEGIN A := B ; ELSE ... 

This fragment contains only one error, but it could be corrected either to 

... IF A = 0 THEN A : = B ; ELSE ... 

or to 

... IF A= 0 THEN BEGIN A := B ; END ELSE 

To fix the location of errors in a string when more than one set of changes is 
possible, a rule for choosing the locations of the errors is needed. One rule, which 
accommodates the left to right bias of most parsing algorithms, is to choose a set 
of changes that places the errors at locations farthest to the right in the string. 
Under this rule, in the previous example, the second change would be preferred. 

While the number and location of errors can be determined, there still may 
be several possible changes. For example, in the erroneous code fragment 
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... A := B C ; ... 

it is obvious that an operator must be inserted between "B" and "C", but there are 
many possible operators that could be inserted. 

Global least-cost recovery schemes have been developed by Aho and Peter

son [2]; Lyon [19]; and Mauney [20]. These schemes are, in fact, strongly related 
to each other and they can all be viewed as extensions of Early's algorithm [11] 
for parsing arbitrary context free grammars (Mauney's algorithm is actually an 
extension of the Graham-Harrison-Ruzzo algorithm [15] which is closely related to 
Early's algorithm). All of these algorithms have a worst-case time complexity of 
V(n3 ), where n is the length of the program. 

Mauney reports that his algorithm readily acheives poor running times in 
practice. The other globally least-cost algorithms suffer from this defect as well. 
In fact, both Early's algorithm and the Graham-Harrison-Ruzzo algorithm are 
more costly than they need to be for syntax-error recovery because they proceed 
breadth-first (carrying all parses forward simultaneously) instead of depth-first 
(carrying only one parse forward at a time). The situation is made worse because 
globally least-cost recovery schemes can be interpreted as adding, to the grammar 
being used for parsing, error productions which represent the insertion, deletion or 
replacement of a token. The resulting grammar is highly ambiguous; just the type 
of grammar for which Early's algorithm and the Graham-Harrison-Ruzzo algorithm 
exhibit their worst-case running times. 

The problems of these globally least-cost recovery schemes are illustrated in 
Chapter 2 where a parse of a string using Lyon's globally least-cost recovery scheme 
is presented. 

1.1.5 Locally Least-Cost Schemes 

Given the the poor run times of the globally least-cost schemes, one would hope 
that the situation could be improved by making some simplifying assumptions. 
Locally least-cost schemes arise from the assumption that the parser-defined error 
location and the actual error location are the same. Locally least-cost schemes 
are similar to local repair schemes except that locally least-cost schemes do not 
limit themselves to a single token repair. Thus, they always find a repair at the 
parser-defined error location. 

The major drawback of a locally least-cost scheme is the limited quality of error 
recovery it can achieve since it uses only a small amount of context in selecting a 
repair. For example, consider the following PASCAL code fragment . 

.. . ; A := B C ... 
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A correct prefix parser will detect a syntax error on reading "C", but there are 
several possible recoveries: 

... ' A := B + c 

... ' A := B c 

... ' A := B [ c 

... ' A := B ( c 

However, because a locally least-cost scheme uses only the limited amount of in
formation that exists at the point the error is detected, it will always make the 
same recovery in this circumstance. It could make a better recovery if it used more 
information such as the next input token: 

... ; A := B c 

... ; A := B c := 

... ; A := B c ] 

... ; A := B c ) 

Another reason the quality of locally least-cost schemes is limited is that 
changes are allowed only at the point where the error is detected, but this point 
may not be the point at which the error exists. For example, given the PASCAL 
code fragment: 

... ; I=JTHEN ... 

an LR(k) parser will not detect an error until the "=" is read, since "I" could be 
the beginning of an assignment statement. Therefore, locally least-cost recovery 
replaces "=" with ": =" and a second, spurious error is found when the "THEN" is 
read. 

1.1.6 Regionally Least-Cost Schemes 

Regionally least-cost schemes attempt to address the weakness of locally least-cost 
error recovery by allowing changes in the region of the program surrounding the 
parser defined error location. Regionally least-cost schemes are very similar to 
forward move schemes in that both can look at regions of the program text. The 
primary difference between the two is that regionally least-cost schemes choose the 
least-cost parse after carrying out all possible parses of the region allowing for the 
insertion, deletion, and replacement of tokens (pruning of the parses is possible 
due to the least-cost criterion). 
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Regionally least-cost schemes have been developed by Mauney (20] and Tai (29]. 
Mauney's scheme is a globally least-cost scheme, based on the Graham-Harrison
Ruzzo algorithm, modified to work within a region; but it still has a worst-case 
time complexity of CJ( d3 ) where dis the length of the region. Tai's scheme is based 
on pattern matching and is only suitable for very small regions since the number 
of patterns increases rapidly with the size of the region. 

One issue for regionally least-cost schemes is the determination of the region 
size. Mauney and Fischer (21] resolve this issue by defining a Moderate Phrase
Level Uniqueness (MPLU) property for tokens. They show that a regionally least
cost repair scheme can use the first MPL U token after the error location as the end 
marker for the region. If the least-cost repair of the region does not delete the end 
marker, then a larger region will not improve the recovery unless it contains addi
tional errors. For a large PASCAL program, they report that the mean distance 
between MPL U tokens is less than lf tokens. 

The quality of syntax-error recovery provided by a regionally least-cost scheme 
should be as good or better than that provided by a forward move scheme over 
the same region. This follows from the observation that if a regionlly least-cost 
scheme considers the same tokens as a forward move scheme, then it should select 
the same or a better repair than the forward move scheme because it is not limited 
to single token repairs. 

Also, the quality of the syntax-error recovery provided by a regionally least
cost scheme should be as good or better than that provided by a phrase-level 
scheme; if the actual error phrase is in the region. This is because phrase-level 
schemes are restricted to a fixed search order when locating an error phrase, while 
a regionally least-cost scheme is driven only by the context of the error and the 
cost of repairs. 

Regionally least-cost schemes have the potential to be superior syntax-error 
recovery schemes; however, they currently suffer from running times similar to 
those for globally least-cost schemes. Mauney notes that the O(n3 ) worst-case 
time complexity of his algorithm is achieved in practice because it uses a breadth
first search. The algorithm examines most of the possible repairs in the region 
before finding the least-cost repair. Mauney points out that a depth-first search 
would greatly increase the speed of a regionally least-cost algorithm for most errors 
encountered in practice. 

1.2 SUMMARY OF RESULTS 

In this dissertation, a new regionally least-cost syntax-error recovery scheme is 
developed for LR( k) parsers. This scheme is a based on a new globally least-cost 
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algorithm, called the Least-Cost LR(k) Early's Algorithm. Unlike other globally 
least-cost error recovery schemes, the new globalleast-cqst error recovery scheme 
is not based directly on Early's algorithm or the related Graham-Harrison-Ruzzo 
algorithm and it uses a depth-first search. The algorithm's worst-case time com
plexity is O(n5 ) which makes its worst-case performance superior to forward move 
schemes and the same as the most powerful phrase-level schemes. Furthermore, 
the depth-first nature of the algorithm enables it to perform linearly for correct 
input. 

The Least-Cost LR(k) Early's Algorithm is developed in three steps. First, a 
new algorithm, related to Early's algorithm, is developed. This algorithm is called 
the LR( k) Early's Algorithm because it uses the states of an LR( k) parser instead 
of LR(k) items. The LR(k) Early's Algorithm has the same space complexity as 
Early's algorithm, but its time complexity is O(n4 ). The LR(k) Early's Algorithm 
shares the same breadth-first bias as Early's algorithm and the Graham-Harrison
Ruzzo algorithm. 

Second, the Depth-First LR(k) Early's Algorithm is developed to overcome 
the breadth-first bias of the LR(k) Early's Algorithm. This algorithm allows a 
single parse to be pursued; and backtracks to try alternate parses only if the need 
arises. The Depth-First LR(k) Early's Algorithm has the same space complexity 
as the LR(k) Early's Algorithm, but its time complexity is O(n5 ). 

Third, the Depth-First LR(k) Early's Algorithm is used as the basis for the 
development of the Least-Cost LR(k) Early's Algorithm. This algorithm finds the 
globally least-cost repair of a string. Its time complexity is 0( n 5 ). However, for 
an LR(k) grammar its time complexity is O(n) for correct inputs. 

Finally, the application of the Least-Cost LR( k) Early's Algorithm to region
ally least-cost error recovery is discussed. 

1.3 ORGANIZATION OF DISSERTATION 

This dissertation is organized into six chapters. Chapter 1 is this introduction. 
Chapter 2 presents theoretical background. Chapter 3 develops the LR( k) Early's 
Algorithm. Chapter 4 develops the Depth-First LR(k) Early's Algorithm. Chapter 
5 develops the Least-Cost LR(k) Early's Algorithm. Chapter 6 is a summary and 
also discusses directions for future research. 
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CHAPTER II 

THEORECTICAL BACKGROUND 

In this chapter, the necessary background material for formal language the
ory, least-cost editing of strings, LR( k) parsing theory, and Early's algorithm is 
presented. 

2.1 FORMAL LANGUAGE THEORY 

This section presents the terminology and notation for the formal language theory 
used in this paper. For further details, the reader is referred to Aho and Ullman [1] 
from which this material is derived. 

An alphabet is a finite set of symbols; a string is a sequence of symbols from 
an alphabet; and a language is a set of strings from an alphabet. The empty 
string is denoted by e. The concatenation of two strings, z and y, is denoted by 
the juxtaposition of z and y, zy. The length of a string z is denoted by JreJ. A 

substring of z that contains the ith thru jth symbols of z is denoted by Z 1:r 

The operator EBk concatenates the first k characters from two strings z andy 
and is defined as follows: 

z EBk y = (zy)I:k• 

The operator EBk is extended to pairs of languages by the following definition: 

If :E denotes an alphabet then :E* denotes the set of strings over :E; :E+ denotes 
the set of nonempty strings over :E; and :Ek denotes the set of strings of length k 
over :E. For convenience, {a }k is written as ak. 

A context-free grammar (CFG) is a quadruple (N, :E, P, S) where N is an 
alphabet of nonterminal symbols, :E is an alphabet of terminal symbols, P is a set 
of product'tons and is a subset of N x (N U :E)*, and S is a symbol of N called 
the start symbol. A production is written as A --+ a, where A is a nonterminal 
symbol from Nand a is a string of symbols from (N U :E)*. The productions in P 
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are numbered, starting with one. If p is the number of a production, A -+ a, then 
LHS(p) = A and RHS(p) = a. 

For a CFG G, a relation =? can be defined on strings from (N U :E)* as follows: 
If aA,B E (N U :E)* and there exists a production A -+ ; E P then aA,B =? a;,B 
and it is said that aA,B directly derives a;,B. The transitive and reflexive closure 
of =? is denoted by ~ and if a ~· ,B then it is said that a derives ,B. A sequence 
ao =? a 1 =? · · · =? an is called a derivation from a 0 to an of length n. Finally, the 
language generated by G is the set of all strings of terminal symbols that can be 
derived from S. 

Throughout this dissertation, the notational conventions of Aho and Ull
man [1] for terminal symbols, nonterminal symbols, and strings of terminal or 
nonterminal symbols are followed. The lower case letters at the beginning of the 
alphabet; a, b, c, ... ; represent terminal symbols. The upper case letters at the be
ginning of the alphabet; A, B, C, ... ; represent nonterminal symbols. The upper 
case letters at the end of the alphabet; V, W, X, ... ; represent terminal or nontermi
nal symbols. The lower case letters at the end of the alphabet; v, w, x, ... ;represent 
strings ofterminal symbols. The lower case Greek letters; a, ,B, ... ;represent strings 
of terminal or nonterminal symbols. 

2.2 LEAST-COST EDITING OF STRINGS 

This section presents the formal machinery for the concept of the least-cost edit of 
a string. Much of this material is taken from [30]. 

Defimtton 2.2.1 (Edit Operatwn} Given an alphabet :E, a, b E (:E U e) and 
ab =f. e, an edit operation (a ~ b) denotes the replacement of a with b except, 
when a = e, it denotes the insertion of b and, when b = e, it denotes the deletion 
of a. 

Defimtton 2.2.2 (Set of Edit Operattons} Given two alphabets Ll and :E, Ll is 
called a set of edit operations for :E if ~ = {(a ~ b) I a, b E :E U E and ab =f. e }. 

Definition 2.2.3 (Edit Sequence) Given a set of edit operations Ll, a string 
S E Ll * is called an edit sequence. 

Definztion 2.2.4 (Editing a Strmg) Given an set of edit operations Ll for :E, 
an edit sequence, S E ~*,is said to edit x E :E* toy E :E*, denoted x ~ y, if either 

S = x = y = e or S =(a~ b)S', x =ax', y =by', and x' ~ y'. 
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Defimtwn 2.2.5 (Edit. Cost Functwn for Edtt Operatwns} Given a set of edit 
operations .Ll, a function W : Ll -+ N, where N is the set of nonnegative integers, is 
an edit cost function if W((a ~---+a))= 0 for all a E ~'and if W((a ~---+b))+ W((b ~---+ 
c))~ W((a ~---+c)) for any a, b, c E ~. 

Definitwn 2.2.6 (Edtt Cost Functwn for Edit Sequences} If W : Ll -+ N is 
an edit cost function and S E .Ll* then W(S) = W((a ~---+ b))+ W(S') where 
S =(a~---+ b)S' and W(c) = 0. 

Requiring the edit cost function W to satisfy the triangle inequality guarantees 
that a lower cost edit can not result from applying edit operations to the result of 
previous edit operations. This constraint is necessary since an edit sequence can 
not apply an edit operation to the result of a previous edit operation. 

In order to guarantee that for any a:, y E ~* there exists an edit sequence S 
such that x ~ y, it is assumed for the remainder of this paper that Ll = { (a ~---+ 
b) I for any a, b E (~ U c)}. This assumption is not a major constraint since 
W((a ~---+b)) can be set to an arbitrarily large value which will effectively prohibit 
the use of (a ~---+ b) in a least-cost edit. 

Defimtion 2.2. 7 (Least Cost Edit of a Strmg mto a Language) If L is a lan
guage over ~ and x E ~*, then the least cost edit of x into L is given by an edit 
sequenceS such that W(S) =min( {W(T) I a:~ y andy E L} ). 

Finally, the following lemmas describe the effects of concatenating edit se
quences and their strings. 

LEMMA 2.2.1 If x' 

W(S") = W(S' S"). 

Proof: Let 

and 

s' s" 
~ y' and x 11 ~ y" then a:' a:" s's" 

~ 

S /1 ( II b")( II b") ( II b" ) = al I-+ 1 a2 I-+ 2 • • • an" I-+ n11 • 

Then, 

I b1 b1 b' Y = 1 2 • • • n'' 

y'y" and W(S') + 
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and 
II b11 b11 b11 

Y = 1 2 • • • n 11 

so 

I II b' b' b' b11 b11 b11 Y Y = 1 2 • • • n 1 1 2 • • • n 11 ' 

and 

S'S11 ( ' b' )( ' b' ) ( ' b' )( " b11 )( " b") ( II b" ) = a1 1--+ 1 a2 1--+ 2 • • • an' 1--+ n' a1 1--+ 1 a2 1--+ 2 • • • an11 1--+ n1 • 

s's" Therefore, x'x11 "-'+ y'y". Furthermore, W(S') + W(S") = W(S'S") since 

n' 

W(S') = 2:: W((a~ ~---+ b:)) 
1=1 

n" 

W(S") = 2:: W((a~' ~---+ b;')) 
1=1 

and 
n' n" 

W(S'S") = 2:: W((a; ~---+ b~)) + 2:: W((a;'~--+ b;')). 

I 

LEMMA 2.2.2 If x ~ y and x = x'x" then there exzsts y', y", S', and S" such 
s' s" that x' "-'+ y', x" "-'+ y 11 , y = y' y 11 and S = S' 8 11 • 

Proof: Let 

where x = a1a2 ••• an andy= bib2 ... bn. Now, for any x' and x", where x'x" = x, 
there exists k such that 0 :::; k :::; n and 

and 

Let 



and 

S" = (ak+l t--t bk+t)(ak+2 t--t bk+2) ... (an t--t bn), 

y' = blb2 ... bk 

0 · s' s" bvwusly, S = S'S" andy= y'y". Futhermore, x' ~ y' and x" ~ y". 1 
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LEMMA 2.2.3 If a;~ y andy = y'y" then there exzsts x', x", S', and S" such 
s' s" 

that x' ~ y', x" ~ y" 1 a; = x' x" and S = S' S". 

Proof: Let 
S = ( a1 t--t bt)( a2 t--t b2) ... (an t--t bn) 

where a; = a1a2 ... an and y = b1b2 ... bn. Now, for any y' and y", where y'y" = y, 
there exists k such that 0 :::; k :::; n and 

y' = blb2 ... bk 

and 

Let 

and 
II 

x = ak+1ak+2···an. 
s' s" Obviously, S = S' S" and x = x'x". Futhermore, x' ~ y' and x" ~ y". 1 

s' s" T LEMMA 2.2.4 If x' ~ y', x" ~ y" and W(S' S") = min( {W(T) I x'x" ~ 

y'y"}) then W(S') = min( {W(T) I x' ~ y'}) and W(S") = min( {W(T) I x" ~ 
y"}). 

Proof: The lemma is proved by contradiction. It is assumed that there exists an edit 
sequenceS such that x' ~ y' and W(S) < W(S'), or x" ~ y" and W(S) < W(S"). 
The argument for either case is the same so let x' ~ y' and W(S) < W(S'). But, 

S II 

then x'x" ~ y'y" and W(SS") < W(S'S"); which is a contradiction. 1 
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2.3 LR(k) PARSING THEORY 

This section reviews the principle definitions and results of LR( k) parsing theory; 
establishes the notation and terminology used in this dissertation; and lays the 
ground work for the development of the LR( k) Early's Algorithm. For further 
details about LR( k) parsing theory, the reader is referred to Aho and Ullman [1 J 

from which most of the material in this section is derived. 

2.3.1 The LR(k) Parser 

The LR( k) parsing algorithm presented here is a nondeterministic parser when 
its grammar is not LR( k). No proofs of any properties of this nondeterministic 
parser are provided as the nondeterministic parser is used only to motivate some 
of the discussion of the LR(k) Early's Algorithm. For more details on the theory 
of nondeterministic LR( k) parsing, the reader is referred to Sippu and Soisalon
Soininen [27], which uses a different approach than is used here, and to Dehnert [8] 
from which this material is derived. 

Algorithm 2.3.1 is the LR(k) parser. The LR(k) parser uses a set of states 
denoted by Q. Lower case letters q,r,s, ... are used to represent elements of Q. 
The initial state of the LR( k) parser is represented by 0. The distinguished final 
state of Q is represented by f. The LR( k) parser accepts its input string by halting 
in f. 

Associated with each q E Q are two functions: fq which is called the parsing 
action function; and gq which is called the goto function. The function fq maps 
strings from (:EU{$} )k to sets with elements ofthe form shift, reduce 1, reduce 2, 

... or reduce !PI, where reduce p means to reduce using the pth production of P. 
The function 9q maps symbols from (NU:E) to elements of {RIR ~ Q and IRI ::; 1}. 
The functions fq and gq must meet the following three restrictions for the states 0 
and f: 

• fJ(u) = 0 for all u E (:E U {$})k; 

• 9J(X) = 0 for all X E (N U :E); and 

• 0 ¢ 9q(X) for all q E Q and X E (N U :E). 

These restrictions are required so that some of the proofs in this dissertation may 
be carried out. It should be noted that these restrictions are satisfied by the LR( k) 
parsers used in practice. 

One feature of Algorithm 2.3.1 is that it allows an LR(k) parser to use an 
almost arbitrary Q, jq, and 9q· Consequently, the results ofthis dissertation may be 
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ALGORITHM 2.3.1 The LR(k) Parser 

Let G be a reduced CFG (N, :E, P, S) and Q be a set of states as described pre
viously. The input for all copies of the algorithm is w E :E*. The output from a 
copy of the algorithm is a sequence of production numbers which represents a right 
parse of w for G, if the algorithm halts in the final state f. Three variables are 
used: q is the current state; i is the current position in the input string; and a: is 

' ' ' 

a string of states which is the current stack of the parser. The algorithm proceeds 
as follows: 

I. Create the initial copy of the algorithm; set i = 1; set q = 0; set a: to 0; and 
append $k+1 tow. 

II. Repeat this step as long as fq( w,.,+k-l) contains at least one element. If 
fq( w,:,+k-l) contains more than one element, create a new copy of the current 
algorithm for each additional element beyond the first one. Then, for each 
element, perform whichever of the following two cases applies in the copy of 
the algorithm for that element: 

A. If shift E fq(w) then if gq(wm) is empty, halt; otherwise, let i = i + 1, 
q = gq( w,,,), a: = aq. 

B. If reduce p E fq(w) then let m = \RHS(p)\ and perform whichever of 
the following two cases applies for m: 

1. m > \a:\: Let r = O:(lnl-m):(lal-m)• If 9r(LHS(p)) is empty, halt; 
otherwise, let q = 9r(LHS(p)) and a:= a:l:(lal-m)q· 

2. m s; \a:\: If g0 (LHS(p)) is empty, halt; otherwise, let q = g0 (LHS(p)) 
and a:= a:1:1q. 

applied to any of the optimized LR(k) parsers which are used in practice. However, 
this flexibility requires the restrictions on the functions fq and gq and the addition 
of step II.B.2 to Algorithm 2.3.1. This step handles stack underflows and preserves 
the property that 0 is always the bottom state of the stack. 

The actions of an LR( k) parser are described in terms of their affects on the 
configuratzons of the parser. A configuration of the LR( k) parser is an ordered pair 
(a:, W 1:n) where w,.n is the input remaining to be parsed and a: is the stack of the 
parser with a:lal·lal the top of the stack and a:1.1 the bottom of the stack. When 
the input remaining to be parsed is not of any interest, a configuration is denoted 
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by(a, ... ). 
A move of the LR(k) parser is the application of either step II.A, a shift, or 

step II.B, a reduction, to a configuration of the parser. A move results in a new 
configuration of the parser and is written as (a,w,:n) 1- (/3,wi·n) in which 1- is read 
as moves directly to. Thus, the moves a parser' can make form a relation on the 

+ 
configurations of the parser. The transitive closure of this relation is denoted by 1-

* 
and the transitive and reflexive closure of this relation is denoted by 1-. A sequence 

l 

of moves of length l is denoted by 1-. 
A special notation 

* 
(alq,w,.n) 1- (aq/,W1:n) 

is used through out this paper to denote a sequence of moves 

where lf3tl > jaqj for 1 ~ l ~ m. Such a sequence of moves by the LR(k) parser has 
the property that none of the states in aq is removed from the stack. Futhermore, 
none of the moves in the sequence depend on the states in a. Thus, if 

* ( al q, w,.n) 1- ( aqr, Wt:n) 

and 
* 

(f31r, Wt·n) 1- (f3r8, W1:n) 

then 
* 

( al q, w,.n) 1- ( aqr8, Wrn)· 

2.3.2 LR( k) States and Parsing Functions 

While the LR(k) parser and the notation for describing its actions have been intro
duced, the set Q and the parsing functions fq and gq have not been defined for a 
context-free grammer G. The following definitions introduce the basic concepts of 
LR(k) parsing theory and lead to the definition of Q, Jq, and gq for a context-free 
grammar G. 

Dejimtzon 2.3.1 Given a CFG G = (N, I:., P, S), G is called a reduced CFG if 
for each X E (NUl:.) there exists a derivationS~ wXy ~ wxy where w,x,y E I:.. 
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Definition 2.3.2 Given a reduced CFG G = (N, ~' P, S), 

FIRSTk(a) ={:vI a~ xf3 and lxl = k or a~ :v and lxl < k}. 

Defimtzon 2.3.3 Given a reduced CFG G = (N, ~' P, S), a derivation S ~ 

ao ~ a1 ~ · · · ~ an is called a Mght'f!lost derzvatwn and is denoted S r~• an, 
if, for each step a, ~ a,+l in the derivation, the rightmost nonterminal A in a:, is 
replaced using a production A ---+ f3 to obtain a,+l. 

Dejimtwn 2.3.4 Given a reduced CFG G = (N, ~, P, S), if S r~· a then a is 
called a rzght sententzal form of G. 

Definit'ton 2.3.5 Given a reduced CFG G = (N, ~' P, S) and a string 1 E 
(N U u)*, then 1 is a vzable prefix of G, if there exists a rightmost derivation 

rTQ • rTQ • S :::::;> aAw :::::;> af31(32w and 1 = af31· 

Dejimtwn 2.3.6 Given a reduced CFG G = (N, ~' P, S), then (A---+ {31 • {32 , u] 
is an LR(k) item (for k and G), if A ---+ (31{32 is a production in P and u E 
(u:=l ~~ E!h $k). 

Dejimtion 2.3. 7 Given a reduced CFG G = (N, ~; P, S), a viable prefix af3t 
for G, and an LR(k) item [A---+ (31 · (32,u] for G, then [A---+ f3t · (32,u] is a valid 
item for af31 , if there is a rightmost derivation S r~· aAw r~· af31(32w such that 
u = FIRSTk(w) EBk $k. 

Dejimtzon 2.3.8 Given a reduced CFG G = (N, ~' P, S) and a viable prefix a 

of G, vp (a) is the set of all valid LR( k) items for a and the collection of sets of 
valid LR( k) ztems is { vka (I) Iris a v.iable prefix of G}. 

Definitwn 2.3.9 Given a reduced CFG G = (N, ~' P, S), the augmented gram
mar derived from G is G' = (S' UN,~' {S'---+ S$} UP, S'), where S' and$ are not 
in (N U ~). 
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The previous definition uses the production S' -+ S$ to augment the grammar 
instead of the more standard S' -+ S. This is done so that the resulting LR( k) 
parser will 'shift' on the end marker $ and enter a unique final state. The existence 
of a unique final state simplifies subsequent algorithms and proofs. This trick is 
borrowed from Early [11]. 

Defimtwn 2.3.10 Given a reduced CFG G = (N,lJ,P,S), the collection, Q, 
of sets of valid LR( k) items for its augmented grammar G' is called the canonical 
collection of sets of LR( k) items for G. 

Defimtion 2.3.11 Given a reduced CFG G = (N,lJ,P,S) and the canonical 
collection Q of sets of LR(k) items for G, the function GOTO maps Q X (N U lJ) 
to Q such that GOTO(V'kG(a),X) = VkG(aX). 

The next definition is unusual in LR( k) parsing theory. It is the standard 
definition for a consistent set of items but the set is called a deterministic set of 
items. The term deterministic is used here to emphasize that a set of items lacking 
this property can still be used by the nondeterministic LR( k) parser. Dehnert [8] 
shows that a right parse can still be generated under these circumstances. 

Defimtzon 2.3.12 Given a reduced CFG G = (N, lJ, P, S), the set of valid 
LR( k) items for a viable prefix ~ of G is deterministzc if there do not exist two 
items [A -+ ·a, u] and [ B -+ (31 • (32(33 , v] in the set such that lf321 ::S 1, lf3211f331 = lf331, 
(32 E lJ*, and u E (FIRSTk(f32(33v) EBk $k). 

The following definition defines a LR( k) grammar in a nonstandard way. In
stead of the traditional definition, an LR( k) grammar is defined in terms of a 
canonical collection of deterministic sets of LR( k) items. This approach is the op
posite of Aho and Ullman's [1] in which this definition is proved as a theorem. The 
definition is used here to emphasize the validity of those 'aspects of LR( k) parsing 
theory that apply to non-LR( k) grammars. 

Definitwn 2.3.13 A reduced CFG G = (N, lJ, P, S) is called an LR(k) gram
mar, if each set of items in its canonical collection of sets of LR( k) items is deter
ministic. 

Defimtwn 2.3.14 Given a reduced CFG G = (N, lJ, P, S), the canomcalLR(k) 
parser for G is an LR(k) parser for which Q is the the canonical collection of LR(k) 
items for G; 0 is the set ofitems which contains [S'·-+ S$,$k]; f is the set ofitems 
which contains [S'-+ S$·, $k]; gq(X) = GOTO( q, X); and fq is defined as follows: 



S' -t E 
E-tE+T 
E-tT 
T-tT*F 
T-F 
F- (E) 
F-a 

Figure 1: Example Grammar 

• shift E fq(u), if [A- {31 • a{32 ,v] E q and u E (FIRST~r(a{32v) E9k $k) 
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• reduce i E fq(u), if [A- f3·,u] E q and A- {3 is the ith production in P. 

Note that the canonical LR( k) parser for an LR( k) grammar is deterministic 
but, in general, a canonical LR(k) parser is nondeterministic. Of course, if the 
theory is restricted to LR(k) grammars, all the results from Aho and Ullman [1] 
apply to LR( k) parsers as they are defined here. 

To illustrate the construction of the canonical collection of sets of LR(1) items 
and parsing functions for an LR(1) grammar, the grammar in Figure 1 is used. 
The canonical collection: of sets of LR( 1) items and the GOTO function for the 
grammar are given in Figure 2 and Figure 3. 

Each set of items in the canonical collection of sets of items corresponds to a 
state of the canonical LR(1) parser for the grammar. Except for the initial and 
final state, each state is labeled with the unique symbol that precedes the "·" in the 
set of items for the state. These symbols are also subscripted in order to provide 
a unique identifier for each state. 

To illustrate the actions of the LR( 1) parser, 

is used as the input string. The rightmost derivation of this input string is given in 
Figure 4. The configurations of the parser as it parses the input strings are given 
in Figure 5. 
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0: [S' --t ·E$, $] (1: [F --t (·E),$] (2: [F --t (·E),)] 
[E--t·E+T,$] [F --t (·E),+] [F --t (·E),+] 
[E --t ·T, $] [F --t (·E),*] [F --t (·E),*] 
[E --t ·E + T,+] [E --t ·E + T, )] [E --t ·E + T, )] 
[E --t ·T,+] [E --t ·T, )] [E --t ·T, )] 

· [T --t ·T * F,$] [E --t ·E + T,+] [E --t ·E + T, +] 
[T --t ·F, $] [E --t ·T, +] [E --t ·T, +] 
[T --t ·T * F,+] [T --t ·T * F, )] [T --t ·T * F, )] 
[T --t ·F, +] [T --t ·F, )] [T --t ·F, )] 
[T --t ·T * F, *] [T --t ·T * F, +] [T --t ·T* F,+] 
[T --t ·F, *] [T --t ·F, +] [T --t ·F, +] 
[F --t ·(E),$] [T --t ·T * F, *] [T --t ·T * F, *] 
[F --t ·a,$] [T --t ·F, *] [T --t ·F, *] 
[F --t ·(E),+] [F --t ·(E),)] [F --t ·(E),)] 
[F --t ·a,+] [F --t ·a,)] [F --t ·a,)] 
[F --t ·(E),*] [F --t ·(E),+] [F --t ·(E),+] 
[F --t ·a,*] [F --t ·a,+] [F --t ·a,+] 

[F --t ·(E),*] [F --t ·(E),*] 
al: [F --t a·,$] [F --t ·a,*] [F --t ·a,*] 

[F --t a·,+] 
[F --t a·,*] *1: [T --t T * ·F,$] *2: [T --t T * ·F, )] 

[T --t T* ·F,+] [T --t T * ·F,+] 
a2: [F--ta·,)J [T --t T* ·F,*] [T --t T * ·F,*] 

[F --t a·,+] [F --t ·(E),$] [F --t ·(E),)] 
[F --t a·,*] [ F --t ··a,$] [F --t ·a,)] 

[F --t ·(E),+] [F --t ·(E),+] 
h: [F --t (E)·,$] [F --t ·a,+] [F --t ·a,+] 

[F --t (E)·,+] [F --t ·(E),*] [F --t ·(E),*] 
[F --t (E)·,*] [F --t ·a,*] [F --t ·a,*] 

)2: [F --t (E)·,)] Fl: [T --t F·, $] F2: [T --t F·, )] 
[F --t (E)·,+] [T --t F·,+] [T --t F·, +] 
[F --t (E)·,*] [T --t F·, *] [T --t F·, *] 

Figure 2: Sets of Valid LR(k) Items for Example Grammar 
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F3: [T ~ T * F·,$] +1: [E ~ E + ·T,$] +2: [E ~ E + ·T, )] 
[T~T*F·,+] [E ~ E + ·T,+] [E ~ E + ·T,+] 
[T~T*F·,*] [T ~ ·T * F,$] [T ~ ·T* F,)] 

[T~·F,$] [T ~ ·F, )] 
F.t: [T ~ T * F·, )] [T ~ ·T * F,+J [T~·T*F,+] 

[T~T*F·,+J [T ~ ·F,+] [T ~ ·F,+] 
[T~T*F·,*] [T ~ ·T * F, *] [T ~ ·T * F, *] 

[T~ ·F,*] [T ~ ·F,*] 
T1: [E ~ T·,$] [F ~·(E),$] [F ~·(E),)] 

[E ~ T·,+] [F~·a,$] [F ~·a,)] 
[T ~ T · *F, $] [F ~·(E),+] [F ~·(E),+] 
[T ~ T · *F, +] [F~·a,+] [F ~·a,+] 
[T ~ T · *F,*] [F ~·(E),*] [F ~·(E),*] 

[F~·a,*] [F ~ ·a,*] 
T2: [E ~ T·, )] 

[E ~ T·,+] E1: [F ~ (E·), $] f: [S' ~ E$·, $] 
[T ~ T · *F, )] [F ~ (E·), +] 
[T ~ T · *F,+] [F ~ (E·),*] 
[T ~ T · *F, *] [E ~ ·E + T,)J 

[E~ ·E+T,+] 
T3: [E ~ E + T·,$] 

[E ~ E + T·,+J E2: [F ~ (E·), )] 
[T ~ T · *F,$] [F ~ (E·), +] 
[T ~ T · *F,+] [F ~ (E·), *] 
[T ~ T · *F, *] [E ~ ·E + T,)J 

[E ~ ·E + T,+] 
T4: [E ~ E + T·, )] 

[E ~ E +T·,+] E3: [S'~E·$,$] 
[T ~ T · *F, )] [E ~ E · +T,$] 
[T ~ T · *F,+] [E ~ E · +T,+] 
[T ~ T · *F,*] 

Figure 2: continued 
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I GOTO II a I ( I ) I * I + I F I T I E I $ I 
0 a1 (1 F1 T1 E3 

a1 
a2 
(1 a2 (2 F2 T2 E1 
(2 a2 (2 F2 T2 E2 

h 
h 
*1 a1 (1 F3 
*2 a2 (2 F4 

+1 a1 (t F1 T3 
+2 a2 (2 F4 T-t 
F1 
F2 
F3 
F4 
T1 *1 
T2 *2 
T3 *1 
T4 *2 
E1 h +2 
E2 h +2 
E3 +1 f 

Figure 3: GOTO Function for the Example Grammar 
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E :::::} T 

:::::} T*F 
=} T *(E) 
:::::} T * (E + T) 
:::::} T * (E + T *F) 
:::::} T*(E+T*a) 
:::::} T*(E+F*a) 
:::::} T*(E+a*a) 
:::::} T*(T+a*a) 
:::::} T*(F+a*a) 
:::::} T*(a+a*a) 
:::::} F*(a+a*a) 
:::::} a*(a+a*a) 

Figure 4: Derivation of Input String 



0 
Oat 
OFt 
OTt 
OTt*t , 
OTt*t(t 
OTt *t(tat 
OTt*t(tFt 
OTt *t(tTt 
OTt *t(tEt 
OTt*t(tEt+2 
OTt*t(tEt +2 a2 
OTt*t(tEt +2 F2 
OTt*t(tEt +2 T4 
OTt *t(tEt +2 T4*2 
OTt *t(tEt +2 T4*2a2 , 
OTt*t(tEt +2 T4*2F4 
OTt*t(tEt +2 T4 
OT1 *t(tEt 
OTt*t(tEth 
OTt*tFa 
OTt 
OEa 
OEaf 

a* (a+ a* a)$ 
*(a+ a* a)$ 
*(a+ a* a)$ 
*(a+ a* a)$ 
(a+ a* a)$ 
a+ a* a)$ 

+a* a)$ 
+a* a)$ 
+a* a)$ 
+a* a)$ 

a* a)$ 
*a)$ 
*a)$ 
*a)$ 
a)$ 

)$ 
)$ 
)$ 
)$ 
$ 
$ 
$ 
$ 

Figure 5: Configurations for the Input String 
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2.3.3 The Explicitly Advancing LR( k) Parser 

This section presents a modification of the standard LR( k) parser that emphasizes 
the role of lookahead in the parser. The modified LR(k) parser is called the ex
plicitly advancing LR(k) parser and is Algorithm 2.3.2. The explicitly advancing 
LR( k) parser is important to the development of the Least-Cost LR( k) Early's 
Algorithm in Chapter 5. 

The explicitly advancing LR( k) parser is best described by the difference be
tween its configurations and those of the standard LR( k) parser. For the standard 
LR(k) parser, a configuration of the parser is written as (a,w,:n), where a is the 
stack and w,.n is the remaining input. Implicit in this configuration is the fact 
that w,.,+k-l is the k symbols of lookahead used by the LR(k) parser. For the ex
plicitly advancing LR( k) parser, the equivalent configuration would be written as 
(a, u, Wz+k·n), where a is the stack, u is the lookahead, and Wa+k:n is the remaining 
input which has not been scanned. 

Since the lookahead component of the input is made explicit in the explicitly 
advancing LR(k) parser, there must a parsing action which causes the parser to 
scan an input symbol and add it to the lookahead. This parsing action is called an 
advance and the corresponding move is written as (a, u, aw) 1- (a, ua, w ). When 

a 

a move is required to be an advance, it is written as (a, u, :e) 1- (a, v, y ). When a 
sequence of zero or more moves are required to be advances, they are written as 

a• 
(a,u,:e) 1- (a,v,y). 

The explicitly advancing LR( k) parser uses the same set of states, Q, and the 
same go to function, gq, as the standard LR( k) parser. It also accepts its input 
string by halting in the distinguished final state f just like the standard LR( k) 
parser. However, the parsing action function, /q, is extended so that it maps 

k 

strings from U(~ U $)'instead of just from(~ U $)k. This is achieved by defining 

k-1 

fq( u) = {advance} for any q, expect f, and all u E U (~ U $)'. 
1=0 

With the addition of advances, the same notation for describing a sequence of 
moves is used for the explicitly advancing LR(k) parser as is used for the LR(k) 
parser. 

It is obvious that the explictly advancing LR( k) parser and the LR( k) parser 
for a grammar accept the same strings since for any sequence of moves in one there 
is a corresponding sequence of moves in the other. 



30 

ALGORITHM 2.3.2 The Exphctly Advanczng LR(k) Parser 

Let G be a reduced CFG (N, ~' P, S) and Q be a set of states as described pre
viously. The input for all copies of the algorithm is z E ~*. The output from a 
copy of the algorithm is a sequence of production numbers which represents a right 
parse of z for G, if the algorithm halts in the final state f. 
Three variables are used: i keeps track of the current position in the input string; 
q is the current state; and w stores the k symbollookahead string. The algorithm 
proceeds as follows: 

I. Create the initial copy of the algorithm; set i = 0; set q = 0; initialize the 
stack to 0; let w = Ej and append $k to z. 

II. Repeat this step as long as / 9 ( w) contains at least one element. If / 9 ( w) 
contains more than one element, create a new copy of the current algorithm 
for each of the additional elements. Then, for the element for which this copy 
of the algorithm ~as created, perform whichever of the following three cases 
applies. 

A. If advance E / 9 ( w) then let i = i + 1, w = wz,,1 • 

B. If shift E / 9( w) then, if g9 ( w) is empty, halt. Otherwise let q = g9 ( w1,1), 
push q onto the stack, and let w = w2,k• 

C. If reduce p E f 9(w) then let m = [RHS(p)[, l =the number of states 
on the stack, and perform whichever of the following two cases applies 
form: 

1. If m > l then pop m states from the stack and let r be the top state 
left on the stack. Then, if 9r(LHS(p)) is empty, halt; otherwise, let 
q = 9r(LHS(p)) and push q onto the stack. 

2. If m ~ l then pop all the states from the stack until 0 is the only 
state left on the stack. Then, if g0 (LHS(p)) is empty, halt; other
wise, let q = g0 (LHS(p)) and push q onto the stack. 
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2.4 EARLY'S ALGORITHM 

This section presents Early's algorithm (Algorithm 2.4.1) in order to provide back
ground and motivation for the development of the LR( k) Early's Algorithm. The 
form of the algorithm presented here is that of Early [11), but the notation and 
method used are from Aho and Ullman [1]. 

Early's algorithm solves the problem of recognizing strings in the language 
generated by an arbitrary CFG. It does so by pursuing possible derivations of 
the string as it proceeds through a left to right scan of the string. All possible 
derivations of the string from the start symbol are not pursued because some 
grammars produce an infinite number of derivations for a particular string. The 
multiple derivations are kept track of on n + 2 parse lists I 0 , It, ... , In, In+l where 
n is the length of the string w to be parsed. Parse list I 1 _ 1 is the state of the 
parse before w1 :1 is parsed and the parse list I 1 is the state of the parse after wn 
is parsed. Parse list In+l is needed because Early's algorithm also 'scans' the end 
of string symbol $ in order to simplify its test for successful termination. 

Each parse list I 1 is a set of entries of the form [i,A--+ a· ,B,u], where i is 
the number of a parse list, A--+ a,B E P, and u E (E U $)k. The second and third 
components of an entry form an LR( k) item. This is not accidental and is a result 
of the approach Early [11] used to develop the algorithm. 

An entry on a parse list is used to track the attempted derivation of a substring 
of the input string. The critical property of entries is that an entry [i, A--+ a· {3, u] 
is on a parse list I1 if and only if S ='* 1Ao, 1 ='* w 1:n and a ='* w,+l:r This 
property can be viewed as the loop invariant that Algorithm 2.4.1 is designed to 
maintain. 

Algorithm 2.4.1 starts by placing the entry [0, S' --+ ·S$, $k] on I0 • The algo
rithm terminates when all the parse lists have been processed. The input string is 
in the language generated by G if and only if [0, S' --+ S$·, $k] is on In+l (this is 
the only entry that can possibly be on In+I)· 

To illustrate the actions of Early's algorithm, the grammar from Figure 1 and 
the input string 

a*(a+a*a) 

are used. Figure 6 shows the parse lists calculated by Early's algorithm. 
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ALGORITHM 2.4.1 Early's Algorzthm 

I. Let n = lwl, j = 0, Wn+l:n+k+l = $k+1, and place [0, S' ~ ·S$, $k] on 10• 

II. While j :::; n, perform the following steps: 

A. Perform the following steps until no new entries are added to Ij: 

1. Let [i, A~ a· B{3, u] be an entry on 13 • For each B ~;in P and 
each v E FIRSTk(f3u), add the entry [j,B ~ ·;,v] to 13 , if it is not 
already on the parse list. 

2. Let [i, A~;·, u] be an entry on 11 with u = w3+1:J+k• For each entry 
[l, B ~a· A{3, v] on a parse list J,, add the entry [l, B ~ aA · {3, v] 
to 11 , if it is not already on the parse list. 

B. For each [i,A ~a· a{3,u] on 11 such that a= w 3+1:J+l' add the entry 
[i, A~ aa · {3, u] to 13+11 if it is not already on the parse list. 

C. Let j = j + 1. 



Iu 
[O,S'---t ·E$,$] 
[0, E ---t ·E + T, $] 
[O,E ---t ·T,$] 
[0, E ---t ·E + T, +] 
[0, E ---t ·T, +] 
[0, T ---t ·T * F, $] 
[O,T ---t ·F,$] 
[0, T ---t ·T * F, +] 
[0, T ---t ·F, +] 
[0, T ---t ·T * F, *] 
[O,T ---t ·F,*] 
[0; F ---t ·(E),$] 
[0, F ---t ·a,$] 
[0, F ---t ·(E),+] 
[0, F ---t ·a, +] 
[0, F ---t ·(E),*] 
[0, F ---t ·a,*] 

Jl 
[0, F ---t a·, $] 
[0, F ---t a·,+] 
[O,F ---t a·,*] 
[0, T ---t F·, $] 
[0, T ---t F·, +] 
[0, T ---t F·, *] 
[O,E ---t T·,$] 
[O,E ---t T·,+] 
[0, T ---t T · *F, $] 
[0, T ---t T · *F, +] 
[0, T ---t T · *F, *] 

Figure 6: Parse List for Early's Algorithm 
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12 
[O,T-T*·F,$] 
[O,T- T* ·F,+] 
[0, T - T * · F, *] 
[2, F- ·(E),$] 
[2,F- ·a,$] 
[2, F- ·(E),+] 
[2,F- ·a,+] 
[2, F- ·(E),*] 
[2,F- ·a,*] 

13 
[2, F- (·E),$] 
[2,F- (·E),+] 
[2,F- (·E),*] 
[3,E- ·E + T,)] 
[3,E- ·T,)] 
[3,E- ·E + T,+] 
[3,E- ·T,+] 
[3,T- ·T * F,)] 
[3,T- ·F,)] 
[3,T- ·T * F,+] 
[3,T- ·F,+] 
[3,T- ·T * F,*] 
[3,T- ·F,*] 
[3, F- ·(E),)] 
[3,F- ·a,)] 
[3, F- ·(E),+] 
[3,F- ·a,+] 
[3, F- ·(E),*] 
[3,F- ·a,*] 
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I4 
[3, F -t a·,$] 
[3,F -t a·,+] 
[3,F -t a·,*] 
[3,T-tF·,$] 
[3,T -t F·,+] 
[3, T -t F·, *] 
[3,E -t T·,$] 
[3,E -t T·,+] 
[3, T -t T · *F, $] 
[3, T -t T · *F, +] 
[3,T -t T · *F,*] 
[2,F-t(E·),$] 
[2,F -t (E·),+) 
[2,F -t (E·),*] 
[3, E -t E · +T, )] 
[3,E -t E · +T,+] 

Is 
[5, F -t a·,)] 
[5,F-ta·,+] 
[5,F -t a·,*] 
[5, T -t F·, )] 
[5,T -t F·,+] 
[5,T-tF·,*] 
[3, E -t E + T·, )) 
[3,E -t E + T·,+] 
[5,T-tT·*F,)] 
[5,T -t T · *F,+] 
[5, T -t T · * F, * J 

Is 
[3, E -t E + ·T, )) 
[3, E -t E + ·T, +] 
[5, T -t ·T * F, )) 
[5, T -t ·F, )) 
[5,T -t ·T* F,+] 
[5, T -t ·F, +] 
[5,T-t·T*F,*] 
[5, T -t ·F, *] 
[5, F -t ·(E),)] 
[5, F -t ·a,)] 
[5, F -t ·(E),+] 
[5, F -t ·a,+] 
[5, F -t ·(E),*] 
[5,F -t ·a,*] 

I7 
[5,T -t T * ·F,)] 
[5, T -t T * ·F, +] 
[5, T -t T * ·F, *] 
[7,F -t ·(E),)] 
[7,F -t ·a,)] 
[7, F -t ·(E),+] 
[7, F -t ·a,+] 
[7, F -t ·(E),*] 
[7,F -t ·a,*] 
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Is 
[7, F ---+a·,)] 
[7,F---+ a·,+] 
[7, F ---+a·,*] 
[5, T ---+ T * F·, )] 
[5, T---+ T * F·, +] 
[5, T ---+ T * F·, *] 
[3, E ---+ E + T·, )] 
[3, E---+ E + T·, +] 
[3, T ---+ T · *F, )] 
[3, T---+ T · *F, +] 
[3, T ---+ T · *F, *] 
[2,F---+ (E·),$] 
[2,F---+ (E·),+] 
[2,F---+ (E·),*] 
[3, E ---+ ·E + T, )] 
[3, E ---+ ·E + T, +] 

Ig 
[2,F---+ (E)·,$] 
[2, F ---+ (E)·,+] 
[2, F ---+(E)·,*] 
[0, T---+ T * F·, $] 
[0, T---+ T * F·, +] 
[0, T---+ T * F·, *] 
[O,E---+ T·,$] 
[0, E ---+ T·, +] 
[0, T ---+ T · *F, $] 
[0, T---+ T · *F, +] 
[0, T ---+ T · *F, *] 
[0, S' ---+ E · $, $] 
[0, E ---+ E · +T, $] 
[0, E---+ E · +T, +] 

Ito 
[O,S'---+ E$·,$] 
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2.5 LYON'S ALGORITHM 

Early's algorithm can be extended to perform globally least-cost syntax-error re
covery. One such extension is Lyon's algorithm [19]. Algorithm 2.5 and Algo
rithm 2.5.2 are Lyon's algorithm but its form has been changed from Lyon's pre
sentation so that it more closely resembles the form of Early's algorithm presented 
in this dissertation. 

Figure 7 gives the parse lists produced by Lyon's algorithm for the input string 
a * a$ when no lookahead is used and the cost of all edit operations is one. The 
lookahead component of the entries is replaced with a cost variable. This variable 
contains th~ cost of the edits of the input string that lead to the addition of the 
entry to its parse list. It is important to note that an entry with a lower cost 
replaces a similar entry with a higher cost when the entry is added to a parse list. 

In Figure 7, a double bar is used to separate the entries that would be present if 
Early's algorithm were used. The additional entries are added by Lyon's algorithm. 
The large increase in the number of entries, for a string with no syntax errors, 
illustrates the performance problems caused by the breadth-first nature of Early's 
algorithm when it is used for globally least-cost error recovery. 



ALGORITHM 2.5.1 Lyon's Algonthm 

I. Let n = JwJ, j = O, Wn+l·n+k+l = $k+1, and place [O,S'--+ ·S$,0] on I0 • 

II. While j ::::; n, perform the following steps: 

38 

A. While there are unscanned entries of the form [l, A --+ a · (3, c] on I 3 , 

where l -=f. j, scan such an entry by applying Algorithm 2.5.2 to ([l, A--+ 
a· (3,c],j). 

B. Let l = j - 1. 

C. While l ;::: 0 perform the following steps: 

1. While there are unstable entries of the form [l, A--+ a·, c] on I 3 , sta
bilize a least-cost, unstable entry [l, A --+ a·, c] using the following 
steps: 

1. For each entry [i, B --+ 8 · Au, d] on Ic, add the entry [i, B --+ 
8Au·, c + d +min( {W(T) I E ~ u }] to Ir 

11. While there ate unscanned entries of the form [ l, A --+ a· f3, c] on 
In where l -=f. j, scan such an entry by applying Algorithm 2.5.2 
to ([l, A--+ a· (3, c],j). 

2. For each A E N find a least-cost entry of the form [l, A --+ a·, c] on 
I 3 and and perform the following steps: 

1. For each entry [i, B --+ 8 ·Au, d] on I~, add [i, B --+ 8A · u, c + d] 
to Ir 

11. While there are unscanned entries of the form [l, A--+ a·/3, c] on 
I3 , where l =J. j, scan such an entry by applying Algorithm 2.5.2 
to ([l, A--+ a· (3, c],j). 

3. Let l = l - 1. 

D. For each entry [l, A --+ a· B/3, c] on 13 and each B --+ 8 E P, add the 
entry [j, B --+ ·8, OJ to Ir 

E. While there are unscanned entries of the form [j, A --+ a · (3, c] on Ill 
perform the following steps for such an entry: 

1. Apply Algorithm 2.5.2 to ([j,A--+ a·f3,c],j). 
2. If f3 = B8, for each B--+ 1 E P, add [j,B--+ ·1,0] to I3 • 

F. Let j = j + 1. 
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ALGORITHM 2.5.2 The Scanner for Lyon's Algorzthm 

Scan ([l, A--+ a· (3, c],j) by applying the following steps to it: 

I. If f3 = e, wJ+1:1+1 =/=- $ and d = W((w1+1:J+l 1--t e)) then add the entry 
[l, A--+ a·, c + d] to JJ+l· 

II. If f3 = bO and b = Wj+l·J+l then add the entry [l, A--+ ab. o,c] to Jj+l· 

III. If f3 = bO, b =/=- w1+1:1+1, w1+l·J+l =/=- $, b =/=-$and d = W((wJ+l:J+l 1--t b)) then 
add the entry [l, A --+ ab · o, c + d] to 11+1 • 

IV. If f3 = Xo, w1+1:J+l =/=- $, d = W((w1+1.1+1 1--t e)) and for ally E :E* there does 
not exist a derivation X ~ w1+1:J+l y then add the entry [l, A--+ a· X 6, c + d] 
to 11+1 • 

V. If f3 = Xo, d = min({W(T) I X ~ x and e ~ x}) and for ally E :E* 
there does not exist a derivation X ~ w1+1:J+IY then add the entry [l, A--+ 
aX · o, c + d] to 11 • 



Io 
[0,5'--+ ·E$,0J 
[0, E --+ ·E + T, OJ 
[0, E --+ ·T, OJ 
[0, T--+ ·T * F,O] 
[0, T --+ ·F, OJ 
[0, F--+ ·(E), 0] 
[0, F --+ ·a, OJ 
[0, F --+ (·E), 1 J 

Jl 
[0, F --+ a·, OJ 
[0, T --+ F·, OJ 
[O,E--+ T·,OJ 
[0, T --+ T · *F, OJ 
[0, S' --+ E · $,OJ 
[O,E--+ E · +T,OJ 
[0, F--+ ·(E), 1J 
[0, F--+ (·E), 1J 
[O,T--+ T * F·,2J 
[O,E--+ E + T·,2J 
[O,F--+ (E·),2J 
[0, F--+ (E)·, 3J 
[1, E--+ ·E + T,OJ 
[1, E--+ E · +T, 1J 
[1,E--+ E + ·T,2] 
[1, E--+ E + T·, 3J 
[1, E --+ ·T, OJ 
[1, E --+ T·, 1J 
[1, T --+ ·T * F, OJ 
[1,T--+ T · *F, 1J 
[1,T--+ ·F,O] 
[1, T--+ F·, 1J 
[1,F--+ ·(E), OJ 
[1,F--+ (·E),1J 
[1,F--+ (E·),2] 
[1, F--+ (E)·, 3] 
[1, F--+ ·a, 0] 
[1, F--+ a·, 1] 

12 
[0, T --+ T * ·F, OJ 
[2,F--+ ·(E),O] 
[2, F --+ ·a, 0] 
[O,E--+E·+T,1J 
[O,E--+ E+ ·T,1J 
[O,E--+ E + T·,2] 
[0, F --+ ·(E), 2] 
[0, F --+ (·E), 2J 
[O,F--+ (E·),2] 
[0, F --+ (E)·, 3J 
[0, S' --+ E · $, 1] 
[1, E --+ ·E + T, 1J 
[1,E--+E·+T,1] 
[1,E -t E + ·T,2J 
[1,E-+ E + T·,3] 
[1, E -+ ·T, 1] 
[1,E-+ T·,1] 
(1,T-t·T*F,1] 
[1,T-+T·*F,1] 
[1, T -+ ·F, 1J 
[1, T -+ F·, 1J 
[1, F --+ ·(E), 1] 
[1, F--+ (·E), 1] 
[1, F--+ (E·), 2] 
[1,F--+ (E)·,3] 
[1, F -+ ·a, 1J 
[1, F --+a·, 1] 
[0, T --+ T · *F, 1 J 
[2,F--+ (·E),1] 
(2, E--+ ·E + T,O] 
[2, E --+ ·T, OJ 
[2, T --+ ·T * F, OJ 
[2, T --+ ·F, OJ 

Figure 7: Parse Lists for Lyon's Algorithm 
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[2, F ---+ a·, OJ 
[2,T---+ F·,OJ 
[2, E ---+ T·, OJ 
(2, T ---+ T · *F, OJ 
[2, E ---+ E · +T, OJ 
(0, T ---+ T * F·, OJ 
[0, S' ---+ E · $,OJ 
[0, E ---+ E · +T, 0] 
[0, F ---+ a·, 2J 
(O,T---+ F·,2J 
[0, E ---+ T·, 2J 
(0, T ---+ T * F·, 4J 
[0, E ---+ E · +T, 2J 
(0, E ---+ E + ·T, 2J 
(0, E ---+ E + T·, 3J 
(0, F ---+ ·(E), 3] 
[0, F ---+ (·E), 3] 
[O,F---+ (E·),3] 
[0, F ---+ (E)·, 3] 
[0, S' ---+ E · $, 2J 
[1, E ---+ E · +T, 2] 
[1, E ---+ E + ·T, 2] 
[1, E ---+ E + T·, 4] 
[1, E ---+ T·, 2J 
[1, T ---+ T · *F, 2] 
[1, T ---+ T * ·F, 3J 
[1, T ---+ F·, 2J 
[1, F ---+ ·(E), 2] 
[1, F ---+ (·E), 2] 
[1,F---+ (E·),3] 
[1, F ---+ (E)·, 3J 
[1,F---+ a·, 1J 

[2, F---+ ·(E), 1J 
[2,F---+ (·E),1] 
[2,F---+ (E·),2] 
[2, F---+ (E)·, 3J 
[2, T ---+ T * F·, 2] 
[2, E ---+ E + T·, 2J 
[3, E ---+ ·E + T, OJ 
[3, E---+ E · +T, 1] 
[3, E ---+ E + ·T, 2] 
(3, E ---+ E + T·, 3J 
[3, E ---+ · T, OJ 
(3,E---+ T·,1] 
[3, T ---+ ·T * F, OJ 
[3, T---+ T · *F, 1J 
[3, T ---+ T * ·F, 2J 
(3, T ---+ T * F·, 3J 
[3, T ---+ ·F, OJ 
[3, T---+ F·, 1J 
[3,F---+ ·(E), OJ 
[3,F---+ (·E), 1J 
[3,F---+ (E·),2] 
[3,F---+ (E)·,3J 
[3, F ---+ ·a, OJ 
(3, F---+ a·, 1J 

Figure 7: continued 
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(0, S' ---+ E$·, 1J 
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CHAPTER III 

THE LR(k) EARLY'S ALGORITHM 

In this chapter, a new algorithm, the LR(k) Early's Algorithm, is presented. 
This algorithm is similar to Early's algorithm but, unlike Early's algorithm, it 
makes use of the states of an LR(k) parser. The LR(k) Early's Algorithm is shown 
to simulate the nondeterminisitic LR( k) parser. Also, the LR( k) Early's Algorithm 
is shown to have a time complexity of O(n4 ) in general, where n is the length of 
the input string. 

3.1 THE ALGORITHM 

The idea behind the LR( k) Early's Algorithm can be seen in the illustrations of 
the LR( 1) parser and Early's algorithm in Chapter 2. For these illustrations, the 
grammar in Figure 1 is used to compute the canonical collection of LR(1) items 
(i.e. the states of the LR(1) parser) given in Figure 2. This grammar is also used 
with the input string 

a*(a+a*a) 

to illustrate the configurations of the LR( k) parser in Figure 5 and the parse lists 
computed by Early's algorithm in Figure 6. 

A strong relationship exists between the states and configurations of the LR( k) 
parser in Figures 2 and 5 and the contents of the parse lists in Figure 6. The entries 
on the parse lists can be grouped so that, looking at only their second and third 
components, they correspond to the LR(1) items in the states of the LR(1) parser. 
Figure 8 shows this correspondence. Additionally, the states which correspond to 
entries on a parse list also appear on the top of the stack in configurations of the 
LR(1) parser which correspond to the same position in the input string. Thus, it 
appears that it may be possible to use the states of an LR(k) parser in an algorithm 
similar to Early's algorithm. 



Io 
[O,S'-+ ·E$,$] 
[O,E-+ ·E+T,$] 
(0, E -+ ·T, $] 
[O,E-+ ·E +T,+] 
[0, E -+ ·T, +] 
(0, T -+ ·T * F, $] 
[0, T -+ ·F, $] 
[O,T-+ ·T * F,+J 
[O,T-+ ·F,+] 0 
[O,T-+·T*F,*] 
[O,T-+·F,*] 
[0, F -+ ·(E),$] 
[0, F -+ ·a,$] 
[0, F -+ ·(E),+] 
[0, F-+ ·a,+] 
[O,F-+ ·(E),*] 
[0, F-+ ·a,*] 

11 
[O,F-+ a·,$] } a

1 [O,F-+ a·,+] 
[0, F-+ a·,*] 
[O,T-+ F·,$] } 
[0, T-+ F·, +] F1 

[0, T-+ F·, *] 
[0, E -+ T·, $] 
[0, E -t T·, +] 
[0, T -+ T · *F, $] T1 

[0, T -+ T · *F, +] 
[0, T -t T · *F, *] 

Figure 8: Parse Lists for Early's Algorithm 
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/2 
[0, T -+ T * ·F, $] 
[O,T-+ T* ·F,+] 
[O,T-+ T * ·F,*] 
[2,F-+ ·(E),$] 
[2, F -+ ·a,$] *1 

[2, F-+ ·(E),+] 
[2, F-+ ·a,+] 
[2, F-+ ·(E),*] 
[2, F-+ ·a,*] 

/3 
[2, F -+ (·E),$] 
[2,F-+ (·E),+] 
[2,F-+ (·E),*] 
[3,E-+ ·E + T, )] 
[3, E -+ ·T, )] 
[3,E-+ ·E + T,+] 
[3, E-+ ·T, +] 
[3, T -+ ·T * F, )] 
[3, T -+ ·F, )] 
[3,T-+ ·T* F,+] (t 
[3,T-+ ·F,+] 
[3, T -+ ·T * F, *] 
[3, T-+ ·F, *] 
[3, F -+ ·(E),)] 
[3, F -+ ·a,)] 
[3, F -+ ·(E),+] 
[3, F -+ ·a,+] 
[3, F-+ ·(E),*] 
[3, F-+ ·a,*] 

Figure 8: continued 
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14 
[3, F --+ a·,$] } 
[3, F--+ a·,+] a1 
[3, F--+ a·,*] 
[3,T--+ F·,$] } 
[3, T--+ F·, +] F1 

[3, T--+ F·, *] 
[3, E --+ T·, $] 
[3, E--+ T·, +] 
[3, T --+ T · *F, $] T1 
[3,T-+T·*F,+] 
[3,T-+T·*F,*] 
[2, F--+ (E·), $] 
[2, F--+ (E·), +] 
[2,F-+(K·),*] E1 
[3,E--+ ·E + T,)] 
[3, E--+ ·E + T, +] 

16 
[5,F--+ a·,)] } 
[5,F--+ a·,+] a2 

[5,F--+ a·,*] 
[5, T--+ F·, )] } 
[5, T--+ F·, +] F2 
[5, T--+ F·, *] 
[3, E--+ E + T·, )] 
[3,E-+E+T·,+] 
[5, T --+ T · *F, )] T4 
[5,T--+ T · *F, +] 
[5, T --+ T · *F, *] 

Is 
[3, E --+ E + ·T, )] 
[3,E--+ E + ·T,+] 
[5, T --+ ·T * F, )] 
[5, T --+ ·F, )] 
[5, T--+ ·T * F, +] 
[5, T --+ ·F, +] 
[5, T --+ ·T * F, *] 
[5, T --+ ·F, *] 
[5, F--+ ·(E),)] 
[5, F--+ ·a,)] 
[5, F--+ ·(E),+] 
[5, F--+ ·a,+] 
[5,F--+ ·(E),*] 
[5, F --+ ·a,*] 

17 
[5, T --+ T * ·F, )] 
[5, T--+ T * ·F, +] 
[5, T--+ T * ·F, *] 
[7, F--+ ·(E),)] 
[7, F--+ ·a,)] 
[7, F--+ ·(E),+] 
[7, F--+ ·a,+] 
[7, F--+ ·(E),*] 
[7, F--+ ·a,*] 

Figure 8: continued 
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18 
[7,F-ta·,)]} 
[7, F -t a·,+] a2 

[7, F -t a·,*] 
[5, T -t T * F·, )] } 
[5, T -t T * F·, +] F4 

[5,T-tT*F·,*] 
[3,E -t E + T·, )] 
[3,E -t E + T·,+] 
[3, T -t T · *F, )] } T4 

[3, T -t T · *F, +] 
[3,T -t T · *F,*] 
[2,F -t (E·),$] 
[2, F -t (E· ), +] 
[2,F -t (E·),*] } E1 
[2, E -t ·E + T, )] 
[2,E -t ·E + T,+] 

110 

1g 
[2, F -t (E)·,$] } 
[2, F -t (E)·,+] h 
[2,F -t (E)·,*] 
[O,T-tT*F·,$]} 
[0, T -t T * F·, +] F3 

[0, T -t T * F·, *] 
[0, E -t T·, $] 
[O,E -t T·,+] 
[0, T -t T · *F, $] } T1 
[0, T -t T · *F, +] 
[0, T -t T · *F, *] 
[O,S'-tE·$,$] } 
[O,E-tE·+T,$] E3 

[O,E -t E · +T,+] 

[0, S' -t E$·, $] } f 

Figure 8: continued 
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Another point of view, which aids in the development of the LR(k) Early's 
Algorithm, is that of simulating the nondeterministic LR( k) parser. A major con
cern in such a simulation is the maintenance of the parse stack for each copy of 
the LR(k) parser. Thus, if the LR(k) Early's Algorithm is going to be viewed as 
simulating the LR( k) parser, it must have a means of "linking" states together into 
a stack. 

The result of these considerations is Algorithm 3.1.1, the LR( k) Early's Al
gorithm. This algorithm uses n + 2 parse lists 10 , 11, ••• , In and In+l just like 
Early's algorithm. However, the entries on the parse list are ordered triples [q, i, r] 
where q and r are states of the LR(k) parser and i is the number of a parse list. 
The entry [q, i, r] on a parse list 13 is interpreted as meaning that the simulated 
LR(k) parser is in a configuration (a:qr,w3+1:n+k+t) and that, in additon, the entry 
corresponding to the configuration in which q was on top of the stack is found on 
parse list J,. 

Algorithm 3.1.1 also uses a set T and n + 2 pend·mg lists H0 , H1 , ••• , Hn and 
Hn+l that do not correspond to any data structures in Early's algorithm. These 
data structures are required to handle the subtleties introduced by reductions of 
empty productions in the LR( k) parser. 

Algorithm 3.1.1 operates by simulating the nondeterministic LR(k) parser. 
The simulation of shifts by step II.A.2 of Algorithm 3.1.1 is straightforward, but 
the simulation of reductions by step II.A.3 requires some explanation. When an 
entry [q,i,r) is on parse list 13 and reduce p E fr(w), Algorithm 3.1.1 must 

simulate a reduction using the pth production. When Algorithm 3.1.1 simulates a 
reduction, it must take into account the possibility that [q,i,r] is part of different 
stacks for several copies of the LR( k) parser and be careful to apply the reduction 
to all the copies. To do this, Algorithm 3.1.1 constructs the sets R0 , Rll ... , Rm 
where m = IRHS(p)l. These sets contain elements of the form ([q,i,r],j) where 
[q, i, r] is an entry and j is the number ofthe parse list on which the entry is found. 
The sets are constructed so that R1 contains all the entries which correspond to 
states that are the zth state below the top of the stack in some configuration when 
the reduction is applied. Thus, the entries in Rm correspond to the possible states 
on top of the stack after m states have been popped from the stack. Algorithm 3.1.1 
simulates the effect of the r~duction for each of the entries in Rm so that it simulates 
all the copies of the LR( k). parser. 

Like Early's algorithm, Algorithm 3.1.1 avoids infinite looping by not adding 
duplicate entries to parse lists and not placing such entries on the pending lists. 
However, step II.A.3.iii of Algorithm 3.1.1 can not use this method since a re
duction by an empty production initiates a sequence of reductions (possibly only 
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ALGORITHM 3.1.1 LR(k) Early's Algorithm 

I. Set j = 0; place [0, 0, 0] on parse list 10 ; place [0, 0, OJ on pending list H0 ; 

initialize T to contain the state pair (0, 0); and append $k+1 to w. 

II. While j ::::; n, perform the following steps: 

A. While pending list H3 is not empty, remove an entry [q,i,r] from the 

front of H3 and perform the following steps: 

1. If i =f. j then remove all state pairs from T. 

2. If shift Efr(w3+l:J+k) and there exists s E 9r(w3+1:J+k) then if the 
entry [r,j,s] is not on parse list 13+1 , add [r,j,s] to Ii+l and to the 
rear of pending list H3+1 • 

3. For each reduce p E fr(w3+1:J+k) perform the following steps: 

i. Let m = IRHS(p)l and let the sets Ro, R1, ... , Rm be defined as 
follows: 

• R0 = {([q,i,r],j)} where [q,i,r] is the entry from Hi 

• for 0 < l S m, R1 = {([q,i,r],o) I [q,i,r] E Io and, for somes 
and n, ([r,o,s],n) E Rt-d 

n. For each s E 9r(LHS(p)) and ([q,i,r],o) E Rm for which i < j: 
if the entry [ r, o, s] is not already on parse list Ij then add [ r, o, s] 
to 13 and add [r, o, s] to the rear of pending list Hj. 

iii. For each s E 9rJLHS(p)) and ([q, i, r], o) E Rm for which i = j: 
if the entry [ r, o, s] is not already on parse list Ij, add [ r, o, s] to 
13 ; and, if the state pair (r,s) is not on T, add [r,o,s] to the 
front of pending list H3 and add ( r, s) to T. 

B. Let j = j + 1. 

the reduction itself) that take place independent of the input and of the previous 

contents of the stack. Even if the resulting entries are already on the parse list, 
the sequence of reductions must be simulated since it may eventually pop part of 

the stack from before the sequence. Entries from such a reduction sequence are 
added to the front of H3 so that the reduction sequence is completely simulated at 

once. This allows the set T of state pairs to be used to guard against an infinite 
loop by keeping track of the states that have followed each other on the top of the 
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I a II I2 I3 
[0, 0,0] [O,O,ai] [TI, 1, *I] [*I,2,(t] 

[O,O,FI] 
[O,O,TI] 

I4 Is Is I7 
[(h 3, ai] [EI,4, +2] [+2,5,a2J [T4, 6, *2] 
[(I, 3, FI] [+2,5,F2J 
[(I, 3, TI] [+2, 5, T4] 
[(113, EI] 

Is Ig IlO 
[*2, 7, a2] [EI,8,)I] [E3, 9, !] 
[*2, 7,F4] [*112, F3] 
[+2, 5, T4] [O,O,TI] 
[(1,3, EI] [0, 0, E3] 

Figure 9: Parse Lists for LR(k) Early's Algorithm 

stack. When a pair of states is found to repeat itself, the loop can be avoided by 
not adding the entry to H1 • 

The parse lists generated by Algorithm 3.1.1 for the grammar in Figure 1 and 
the input string 

are given in Figure 9. As one would expect, for each parse list the states in the 
third component of the entries correspond to the states identified in Figure 8 on 
the parse lists for Early's algorithm. This correspondence is why the name LR( k) 
Early's Algorithm is given to Algorithm 3.1.1. 

As presented, Algorithm 3.1.1 only constructs parse lists. However, it is shown 
in the next section that [?,?, f] is on parse list In+l if and only if the input string 
is accepted by the LR(k) parser. Also, Algorithm 3.1.1 does not show how a right 
parse is obtained for the input string. In principle, a right parse can be extracted 
from the parse lists in the same way a right parse can be extracted from the parse 
lists for Early's algorithm, but the issue is not explored in this dissertation. 
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3.2 PROOFS OF CORRECTNESS AND COMPLETENESS 

This section presents two theorems which, taken together, show that the LR(k) 
Early's Algorithm and the LR(k) parser accept the same strings when they use the 
same set of states, Q, and functions fq and 9q· The first theorem shows that for 
every entry [q,i,r] the LR(k) Early's Algorithm places on a parse list 11 , there is 
a corresponding sequence of moves 

* + 
(0, WI:n+k+l) f- ( alq, Wz+I·n+k+l) f- ( aqr, W1+1:n+k+l) 

that can be made by the LR( k) parser. This property is called correctness since it 
guarantees that any string accepted by Algorithm 3.1.1 is accepted by the LR(k) 
parser; which is to say that Algorithm 3.1.1 correctly simulates the LR(k) parser. 

The second theorem shows that for every sequence of moves 

* + 
(O,wl:n+k+l) f- (alq,wz+l:n+k+I) f- (aqr,WJ+!:n+k+l) 

that can be made by the LR(k) parser, Algorithm 3.1.1 places the entry [q,i,r] on 
the parse list Ir This property is called completeness since it guarantees that any 
string accepted by the LR(k) parser is accepted by Algorithm 3.1.1; which is to 
say that the LR(k) Early's Algorithm completely simulates the LR(k) parser. 

Algorithm 3.1.1 uses the pending lists, H1 , to hold entries waiting to be pro
cessed by the algorithm. The following lemma establishes that entries added to 
the pending list are eventually processed. 

LEMMA 3.2.1 (All Entries on H1 Are Processed) Every entry added to a pend
mg ltst H1 zs eventually processed by step II.A of Algorzthm 3.1.1. 

Proof: An entry can remain unprocessed only if an unbounded number of entries 
can be added to a pending list H1 • The lemma is proved by showing the number of 
entries which can be added to a pending list H1 is bounded. Note that the number 
of entries [q, i, r] on 11 is bounded since q, i, and r are all bounded and no step of 
Algorithm 3.1.1 allows duplicates to be added to 11 • 

Only four steps can add an entry to a pending list: steps I, II.A.2, II.A.4.i, and 
II.A.4.ii. Step I adds just one entry to a pending list. The number of entries added 
to a pending list by step II.A.2 is bounded because it only adds entries which can 
also be added to their parse lists. 

Steps II.A.4.i and II.A.4.ii add a bounded number of entries to a pending list 
when they are invoked. Also, they are invoked a bounded number of times for 
entries [q, i, r] on 11 for which i < j because there are only a bounded number of 
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such entries that can be added to Ir Since step II.A.4.i is invoked only for i < j, 
only a bounded number of entries are added to H1 by it. 

Step II.A.4.ii only adds entries [q, i, r] for which i = j to H1 • Step A is 
organized so that only a bounded number of entries are added by step II.A.4.ii 
between the processing of entries for which i f. j. Only steps II.A.2 and I.A.4.i 
can add entries for which i f. j and the number of entries added by these steps is 
bounded. Therefore, the total number of entries added to H1 by step II.A.4.ii is 
bounded. 1 

Then next lemma shows a technical property of the initial state for Algo
rithm 3.1.1. · 

LEMMA 3.2.2 (0 is the Unique Initial State) If [q, i, r] zs on 11 and r - 0 
then q = 0, i = 0, and j = 0. 

Proof: The definition of an LR(k) parser does not allow 0 E g8 (X) for any s or X. 
Thus, only step I of Algorithm 3.1.1 could add [q, i, 0] to a parse list. 1 

The following definition facilitates the use of induction in the proofs of com
pleteness and correctness for Algorithm 3.1.1 

Definition 3.2.1 (Ordered List of Entrzes) An ordered list of entries is a se
quence of entries and their parse lists 

[qb ill r 1] on 111 

[qz, tz, rz] on 112 

given in an order in which they can be added to their parse lists by step II of 
Algorithm 3.1.1 during an execution of Algorithm 3.1.1. 

The entry [0, 0, 0] on 10 is not on any ordered list of entries since it is not added 
to its parse list by step II of Algorithm 3.1.1. No particular ordering of entries is 
required other than an order in which the entries could be added to their parse 
lists by Algorithm 3.1.1. 

THEOREM 3.2.1 (Algorithm 3.1.1 Correctly Simulates the LR(k) Parser) 
Given the same Q, fq and gq for Algorithm 3.1.1 and the LR{k} parser, tf an entry 
[r, i, s] zs added to parse lzst 11 (except for [0, 0, OJ on 10 } by Algorithm 3.1.1 then 
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the LR(k) parser can make the sequence of moves 

~ + 
(0, Wl:n+k+l) f- ( alr, Wz+l:n+k+I) f- ( ars, WJ+l:n+k+d· 

Proof: The theorem is proved by induction on an ordered list of entries, using the 
theorem as the induction hypothesis. The induction proceeds in two steps: 

• first, the theorem is proved for the first entry on an ordered list of entries; 
and 

• second, the theorem is proved for the Nth entry on the ordered list of entries, 
assuming it holds for all entries that precede the Nth entry. 

For the first induction step, the first entry ~n the ordered list of entries must be 
added by applying step II.A of Algorithm 3.1.1 to the entry [0, 0, OJ on / 0 • Likewise, 
the first move of the LR( k) parser must be from the configuration ( 0, w1 :n+k+ I). 
Thus, if step II.A.2 adds an entry [O,O,.s] to / 1 then the shift (O,w1:n+k+l) f
(Os, w2:n+k+d can be made by the LR(k) parser; and if step II.A.3.ii or step II.A.3.iii 
adds an entry [0, 0, s] to 10 then the reduction 

can be made by the LR(k) parser. 
For the second induction step, the theorem is assumed to hold for all entries 

on the ordered list of entries that precede the Nth entry. Let the Nth entry be 
[r, i, .s] on Ir Since the Nth entry is added by step II.A of Algorithm 3.1.1, this 
step must have been applied to an entry [qm-hlm-l,qm] from Htm, where m is a 
convenient index which will be specified later. Since [qm-1, lm_1, qm] is on Htm, 
the entry [qm_1, lm-h qm] must be on ltm and must precede the entry [r, i, .s] in the 
order. Therefore, the LR(k) parser can make the sequence of moves 

* 
(O,wl:n+k+I) ~ (aqm,Wfm+l:n+k+d· 

There are two cases to consider: 

• step II.A.2 adds [r,i,s] to 11 and Algorithm 3.1.1 is simulating a shift by the 
LR( k) parser; or 

• step II.A.3 adds [r, i, s] to 11 and Algorithm: 3.1.1 is simulating a reduction 
by the LR(k) parser. 
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In the first case, step II.A.2 adds [r, i, s] to I 1 and Algorithm 3.1.1 is simu
lating a shift by the LR(k) parser. Thus, lm = i = j- 1, Qm = r, and the shift 
(a:r,w,+l:n+k+I) f- (ars,w1+I:n+k+d can be made by the LR(k) parser. Therefore, 
the LR( k) parser can make the sequence of moves 

* + 
(O,wl:n+k+I) f- (a:lr,Wz+I·n+k+I) f- (ars,w1+I:n+k+d· 

In the second case, step II.A.3 adds [r, i, s] to I 1 and Algorithm 3.1.1 is simulat
ing a reduction by the LR( k) parser. The entry [qm-l, lm-I, qm], where lm = j, must 
call for a reduction oflength m. Step II.A.3.i constructs the sets Ru, Rb R2, ••• , Rm. 
Each of these sets must have at least one member so let these members be 

([qm-I,lm-1,qm],lm) E Ro, 
([qm-2,lm-2,Qm-I],lm-1) E Rll 

' ([qo, lo, qi], li) E Rm-b 
([q-llLI,qo],lu) E Rm 

where q0 = r and l0 = i. The reduction must be one of three possible types, each 
of which must be considered separately: 

• a reduction by an empty production (i.e. m = 0); 

• a reduction by a non-empty production which does not cause the stack to 
underflow (i.e. m > 0 and Qx f. 0 for 0 < x :::; m ); or 

• a reduction by a non-empty production which causes the stack to underflow 
(i.e. m > 0 and Qx = 0 for some x where 0 < x :::; m ). 

For the first type of reduction, an empty production is used so m = h = 0. 
Thus, lm = lo = i = j, Qm = q0 = r, and the reduction 

can be made by the LR(k) parser. Therefore, the LR(k) parser can make the 
sequence of moves 

* + 
(O,wl:n+k+d f- (a:lr,w,+I:n+k+l) f- (ars,w;+I·n+k+I)· 

For the second type of reduction, a non-empty production is used and the 
stack does not underflow so m > 0 and Qx f. 0 for 0 < x :::; m. This implies the 
entries [qx+I, lx+I, qx] on he for 0 < x :::; m are entries on the ordered list of entries 
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and that these entries precede [r, i, s] on Ir Applying the induction hypothesis to 
each of these entries, the LR( k) parser can make the sequences of moves: 

* + 
(O,wl:n+k+l) f- (aulr,wl+l:n+k+l) f- (alrql,wlt:n+k+t) 

* + 
(O,wl:n+k+d f- (adq!,Wlt:n+k+d f- (alqlq2,Wt2 :n+k+l) 

* + 
(O,wl:n+k+d f- (am-dqm-bWtm-t:n+k+d f- (am-lq~-lqm,Wrn+k+l)· 

As a result, the LR( k) parser can make the sequence of moves 

* + 
(O,wl:n+k+l) f- (aulr,wt+l:n+k+l) f- (aorql ... qm,W1+l:n+k+d· 

Also, step II.A.3 calls for a reduction of length m so the reduction 

can be made by the LR(k) parser. Therefore, the LR(k) parser can make the 
sequence of moves 

* + 
( 0, W1 :n+k+l) f- ( ao lr, wt+l·n+k+l) f- ( aor s, w J+l :n+k+l). 

For the third type of reduction, a non-empty production is used and the stack 
underflows so m > 0 and qx = 0 for some a:: where 0 < a:: ~ m. Let e be the greatest 
such a::. Since 1 ~ e, r = qe = 0. Recursively applying Lemma 3.2.2 shows that, for 

0 ~a::~ e, ([qx-lllx-ll qx], lx) = ([0, 0, 0], 0). If e = m then there is only the state 0 
on the stack when the reduction is made and qm = q0 = 0 and lm = lu = i = j = 0. 
Therefore, the LR( k) parser can make the sequence of moves 

* + 
(0, Wl:n+k+l) f- (0, W1+l:n+k+l) f- (Os, W1+l:n+k+l ). 

If e < m there are some states (but not enough) on the stack when the 

reduction is applied. For e < a:: ~ m, [qx+blx+ll qx] on h,, is an entry in the order 
that precedes [ r, i, s] on 11 • Applying the induction hypothesis to each of these 
entries, the LR(k) parser can make the sequences of moves: 

* + 
(O,wl:n+k+t) f- (aelqe,Wz+l:n+k+t) f- (aeqeqe+l,wle+t·n+k+t) 

* + 
(0, Wl:n+k+d f- ( ae+dqe+ll Wte+t"n+k+l) f- ( ae+lqe+lqe+2' Wte+2:n+k+d 

* + 
(O,wl·n+k+t) f- (am-dqm-!,Wlm-t n+k+d f- (am-lqm-lqm,Wrn+k+d· 
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Since qe = 0 and 0 is never pushed onto the stack, ae =e. As a result, the LR(k) 
parser can make the sequence of moves 

* + + 
(O,w!:n+k+d f-- (O,wz+I:n+k+I) f-- (Oiqe+J,Wle+t+l:n+k+I f-- (Oqe+l ... qm,WJ+!:n+k+I)• 

Also, step II.A.3 calls for a reduction of length m so the reduction 

(Oqe+l .. . qm,WJ+!·n+k+I) f-- (Os,w3+1:n+k+l) 

can be made by the LR( k) parser. Therefore, the LR( k) parser can make the 
sequence of moves 

* + 
(0, WJ·n+k+!) f-- (0, Wz+l:n+k+I) f-- (Os, WJ+!:n+k+I). 

I 

THEOREM 3.2.2 (Algorithm 3.1.1 Completely Simulates the LR(k) Parser) 
Given the same Q, /q, and 9q for the LR(k) parser and Algorithm 3.1.1, if these
quence of moves 

L M+t 
(O,wl:n+k+I) f-- (alr,w,+l:n+k+d f-- (ars,w3+l:n+k+I) 

can be made by the LR(k) parser, where L ~ 0 and M ;=:: 0, then Algonthm 3.1.1 
wtll add the entry [r, i, s] to parse hst Ir 

Proof: The theorem is proved by induction on the sum of Land M. The induction 
proceeds in three steps: · 

• first, the theorem is proved for L + M = 0; 

• second, the theorem is proved for L = N and M - O, assuming it holds 
whenever L + M < N; and 

• third, the theorem is proved for L + M = N when M > 0, assuming it holds 
whenever L + M < N. 

If the parameter space formed by L and M is imagined as an infinite table with L 
as the row number and M as the column number, then the steps of the induction 
can be viewed as proving the theorem diagonal by diagonal, using the diagonals 
that run from the lower left to upper right sides of the table. 

For the first induction step, L + M = 0 and the theorem can be written as 
follows: 
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If (0, wl:n+k+l) f- (Os, w1+l:n+k+t) then [0, 0, s] is added to I1 • 

The move (0, w1·n+k+l) f- (Os, w1+l:n+k+l) can be either a shift, in which case j = 1, 
or a reduction, in which case j = 0. When [0, 0, 0] from H0 is processed by step II.A 
of Algorithm 3.1.1, if the move is a shift then step II.A.2 of Algorithm 3.1.1 will add 
[0, 0, s] to I 1 • Likewise, if the move is a reduction then step II.A.3 of Algorithm 3.1.1 
will add [O,O,s] to I 0 • 

For the second induction step, L = N, M = 0 and the theorem is assumed to 
be true for L + M < N. Since M = 0, the theorem can be written as follows: 

N 

If (O,wl:n+k+t) f- (alr,w,+l:n+k+d f- (ars,wj+l:n+k+l), where N 2 0, 
then the entry [r, i, s] is added to parse list I 1 • 

If N = 0 then this induction step degenerates to the first induction step. Therefore, 
only the case of N > 0 needs to be considered. When N > O, lal 2 1 since no 
move of the LR( k) parser can push 0 onto the stack and no move of the LR( k) 
parser can pop 0 from the stack .. Since lal 2 1, a= (3q. Furthermore, the sequence 
of moves 

* + 
{O,wl:n+k+l) f- ({3/q, ... ) f- ({3qr,wz+l:n+k+l) 

is less than N in length so [q, ? , r] must be on I 1 and must also be on H1 at some 
point during the execution of Algorithm 3.1.1. 

The move (ar,wz+l:n+k+l) f- (ars,w1+l:n+k+d can be either a shift, in which 
case j = i + 1, or a reduction of an empty production, in which case j = i. When 
[q, ?,r] is processed by step II.A of Algorithm 3.1.1, if the move is a shift then 
step II.A.2 of Algorithm 3.1.1 will add [r, i, s] to I 1 • Likewise, if the move is a 
reduction of an empty production then step II.A.3 of Algorithm 3.1.1 will add 
[r,i,s] to I 1 • 

For the third induction step, M > 0, L + M =Nand the theorem is assumed 
to hold for L + M < N. Since M > 0, the theorem can be written as follows: 

L Mtl 

If {O,wl:n+k+t) f- (alr,wz+l:n+k+l) f- (ars,w1+l:n+k+l), where L 2 0 
and M > 0, then the entry [ q, i, r J is added to parse list I1 • 

To show that the entry [?, ? , r J is on In there are two cases to consider: 

• a= €. 

• a= {3t. 
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In the first case, a = e implies that r = 0 and that, using Lemma 3.2.2 i = 0 and 
[?,?, r] = [0, O, OJ. In the second case, a = f3t and the induction hypothesis can be 
applied to the sequence of moves 

L-:c :z: 

(0, Wl:n+k+l) f- (f31t, .. . ) f- (f3tr, W!+l:n+k+d, 

to show that [?,?, r] is on I~" 
Since a move of the LR( k) parser can add at most one symbol to the stack, 

the sequence of moves 

lll+t 

(air, W1+l:n+k+t) f- ( ar.s, w1+1:n+k+t) 

can be written as 

+ 
(alr,wl+l·n+k+l) f- (arlqi,Wi 1+1:n+k+l) 

+ 
f- (arqdq2,Wi2 +1:n;t-k+I) 
+ 
f-
+ 
f- (arq1q2 · · ./qm-l,wlm-t+l:n+k+t) 
+ 
f- ( arq1 q2 ... qm, W j+ 1 :n+k+l ) 

f- ( ar.s, w1+1:n+k+l) 

where 0 < m::; M. The move (arq1q2 ... qm,w1+1:n+k+l) f- (ar.s,w1+1:n+k+d is 
either a reduction that pops m states off the stack or, if a = e, possibly a reduction 
which underflows the stack. Any proper subsequence of the sequence of moves 

+ 
(air, wl+l:n+k+I) f- ( ar.s, WJ+l:n+k+I) 

has length less than N so [r, i, q1] is on It 1 , [qt, l2, q2] is on It, ... , and [qm-17 lm-1, qm] 
is on I 1 • 

While [ r, i, q1], [ q17 l2 , q2], ••• , and [ qm_ 1 , lm_1 , qm] are on their respective parses 
lists when Algorithm 3.1.1 terminates, they must also be on them when step II.A 
removes [qm_1 , lm_1 , qm] from Hj. Since Algorithm 3.1.1 processes parse lists in 
increasing order, this will be the case whenever lx < j. 

To see that this is also the case when lx = j, let o be the smallest index for 
which lx = j. Since no step of Algorithm 3.1.1 adds an entry to a parse list which 
precedes the parse list being processed, lx = j for o ::; X ::; m. Furthermore, all the 
moves in the sequence 

+ 
(alq0 ,W1+1:n+k+l) f- (aqoqo+l·· .qm,WJ+l:n+k+I) 
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must be reductions. Let this sequence of reductions be 

where the number of reductions is t and q0 = q~ and qm = q~. 
Examining step II.A shows that, when an entry (q~-uj,q~] is removed from 

H3 , [q~,j,q~+1] is added to H3 and 13 ; unless (q~,q~+l) is on T, in which case 
(q~,j,q~+ 1 ] must already be on Ir If (q~,q~+l) in on T then the parser must be 
looping thru a sequence of moves 

Algorithm 3.1.1 follows this loop only once because the loop does not terminate. If 
the LR( k) parser is nondeterministic, it may follow the loop an arbitrary number 
of times and then possibly exit the loop. However, Algorithm 3.1.1 does not need 
to follow the loop more than once since the first iteration of the loop will add 
[q~,j, q~+l] to H3 and when [q~,j, q~+l] is processed any configuration which leads 
to an exit from the loop will be found and followed by Algorithm 3.1.1. The 
following sequence of moves illustrates this case: 

In this case, step II.A of Algorithm 3.1.1 will skip all but the first iteration of the 
loop, add the entry [q~,j, q~+2 ] to H3 and continue beyond the loop. 

From the preceding examination of step II.A, it is clear that [r, i, q1], (qlll2 , q2], 

... , and (qm-1, lm-b qm] are on their respective parses lists when the entry [qm-lllm-1, 
qm] is added to Hr Therefore, when (qm-lllm-ll qm] is removed from H3 and pro
cessed by step II.A.3 of Algorithm 3.1.1, 

((qm-lllm-ll qm],j) E Ro, 
((qm-2l lm-ll qm-1], lm_t) E Rll . . , 
([r,i,q1],lt) to Rm-1 and 
((?, ?,r],i) to Rm. 
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Furthermore, if a= E, which implies([?, ?,r],i) = ([0,0,0],0), then step II.A.3.i 
also adds ([0, 0, OJ, 0) to Rx for x > m. Thus, either step II.A.3.ii or step II.A.3.iii 
of Algorithm 3.1.1 will attempt to add [r, i, s] to the pending list Hn which implies 
[r, i, s] is on 11 when Algorithm 3.1.1 terminates. 1 

3.3 RUN TIME ANALYSIS 

In this section, the time and space complexities of Algorithm 3.1.1 are shown to 
be O(n4 ) and O(n2 ) respectively. During the analysis of the algorithm it becomes 
evident that, to achieve these bounds, the sets Ru, R1 , ••• , Rm in step II.A.2 of 
Algorithm 3.1.1 must be computed very carefully. In fact, the changes required 
to efficiently compute these sets are so great that two different algorithms for 
implementing step II.A.2 are presented in this section. 

To analyze the complexity of Algorithm 3.1.1, the method of Aho and Ull
man [3] is used. In this method, the time complexity of an algorithm is determined 
by counting the number of prim'ttive operations performed by the algorithm a.s a. 
function of the size of the algorithm's input. A primitive operation is any sequence 
of machine instructions that is performed in a constant amount of time by a. ran
dom access computer on an appropriate data structure in its memory. Examples 
of primitive operations are: 

• accessing an element in an array. 

• inserting a item at the head (or tail) of a list. 

• accessing the next item on a list. 

Extending this definition, a primitive operation is also any sequence of machine 
instructions that is performed in an amount of time that is bounded by a bound 
that is independent of the size of the input. An example of such a primitive 
operation f01; Algorithm 3.1.1 is evaluating fq or gq for a.n argument, because the 
time to evaluate these functions depends only on the size of the grammar and is 
independent of the length of the input string. From the definition of a primitive 
operation, it follows that the time complexity of any primitive operation is 0(1). 

The space complexity of an algorithm is determined in the same manner as 
time complexity. The size of the data structures used by the algorithm are ana
lyzed for their dependence on the size of the input. The space complexity of data 
structures with sizes that are independent of the size of the input is 0( 1). 
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The input to Algorithm 3.1.1 is the string w to be parsed. The size of this 
input is the string's length, which is denoted by n. Some data structures, such 
as the parse lists, depend directly on n. It is implicitly assumed that n is known 
when these data structures are allocated, so that a position in the input string 
can be used in 0(1) time as an index into these data structures. This assumption 
presents no real difficulties, since the value of n can always be determined in O(n) 
time by scanning the input string before starting the algorithm. 

The parse lists, pending lists and set T are the primary data structures used 
by Algorithm 3.1.1. The parse lists are organized as an array of parse lists and 
each parse list 11 is IQI + 1 (initially empty) linked lists of entries. One list is 
used for entries (q, i, r] for which i = j. The other IQ !lists are used for entries 
[q,i,r] for which i =f. j; these lists are indexed by rand an entry (q,i,r] is stored on 
the rth list. The pending lists are organized as an. array of pending lists and each 
pending list is an (initially empty) linked list of entries. The set T is organized as 
a two-dimensional bit map and is indexed by state in each dimension. 

The space complexity of Algorithm 3.1.1 is easy to determine. There are O(n) 
parse lists and 0( n) pending lists. Each parse list can have at most 0( n) entries 
because duplicate entries are not allowed and the only component of an entry that 
depends on the length of the input is the parse list number and it is bounded by 
n + 1. Also, each pending list can have at most 0( n) entries. This can be seen 
by examining step II.A of Algorithm 3.1.1 and noting that an entry [q, i, r] can be 
added to H1 under only two conditions: 

1. i =f. j and [q, i, r] is not already on Ir 

2. i = j and [q, i, r] has not been added to H1 since the last entry [s, l, t] for 
which l =f. j was removed from H1 • 

The first condition limits the number of entries [q, i, r] added to H 1 under it to 
0( n ). This in turn also limits the number of entries added under the second 
condition to O(n) also. Thus, the space complexity of Algorithm 3.1.1 is O(n2 ). 

To analyze the time complexity of Algorithm 3.1.1, the following general 
scheme for counting primitive operations is used: 

• each primitive operation is charged to an entry, parse list, or some other 
object used by the algorithm. 

• the primitive operations charged to objects are determined by examining 
Algorithm 3.1.1 step-by-step. 

• the number of primitive operations for each class of objects is obtained by 
summing the primitive operations charged to the objects in the class. 
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• the number of primitive operations for the algorithm is obtained by summing 
the primitive operations charged to each class of objects. 

Beginning the analysis of the time complexity of Algorithm 3.1.1, one should 
note that the first step of the algorithm implicitly assumes the parse lists, pending 
lists, and set T are initialized. Given the organization of parse lists, pending lists, 
and set T, they can be initialized in 0( n) primitive operations which are charged 
to the algorithm obJect (a convenient object used only for the purpose of charging 
primitive operations to the algorithm as a whole). 

For step I of Algorithm 3.1.1, the 0(1) primitive operations for initializing j 
are charged to the algorithm, object. The 0(1) primitive operations for creating 
the initial entry and adding it to the first parse list and pending list are charged 
to the entry. 

For step II of Algorithm 3.1.1, the O(n) primitive operations for checking j 
against n for each iteration of the loop are charged to the algorithm object. Also, 
for step II.B of Algorithm 3.1.1, the O(n) operations for incrementing j for each 
iteration of the loop are charged to the algorithm object. 

For step II.A of Algorithm 3.1.1, the 0(1) primitive operations for initializing 
the loop to process the entries on the pending list are charged to the pending list. 
For each iteration of the loop, t~e 0(1) primitive operations for obtaining an entry 
and subsequently advancing to the next entry are charged to the obtained entry. 
In general, an entry may be obtained 0( n) times since an entry [ q, i, r] on lj, for 
which i = j may be added to H3 a total of 0( n) times. 

For step II.A.1 of Algorithm 3.1.1, the 0(1) primitive operations for emptying 
the set T are charged to the entry being processed. 

For step II.A.2 of Algorithm 3.1.1, the 0(1) primitive operations for evaluating 
fr and 9r are charged to the entry being processed. 

For steps II.A.2, II.A.3.ii, and II.A.3.iii, the 0( n) primitive operations for 
checking if an entry [q, i, r] to be added is already on parse list 13 are charged to 
the entry being processed. The check requires 0( n) primitive operations because 
the number, of entries on the rth list of a parse list is 0( n) when i =/= j and each 
entry must be checked. The 0(1) primitive operations for adding an entry to its 
parse list are charged to the entry itself. 

For steps II.A.2, II.A.3.ii, and II.A.3.iii, the 0(1) primitive operations for 
adding an entry to its pending list are charged to the entry itself. In general, an 
entry may be added to its pending list O(n) times since an entry [q,i,r] on 13 for 
which i = j may be added to H3 0( n) times. 

For step II.A.3 of Algorithm 3.1.1, the 0(1) primitive operations for evaluating 
fr are charged to the entry being processed. 
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ALGORITHM 3.3.1 Calculate the Rt 's 

Let (q,i,r] on 11 be the entry for which the R,'s are to be calculated for the action 
reduce p. 

I. Let l = 1, m = IRHS(p)l, and Ro = {([q,i,r],j)}. 

II. While l :::; m, perform the following steps: 

A. Initialize Rt and get the first element ([t, h, ?], ?) from R1_ 1• 

B. While R1_ 1 is not exhausted, perform the following steps: 

1. Get the first entry [s,o,v] from parse list h. 
2. While h is not exhausted, perform the following step: 

1. If v = t then add the element ([s, o,v]), h) toRt, if the element 
is not already in R1• 

n. Get the next entry [s, o, v] from parse list h. 
3. Get the next element ([t,h, ?), ?) from Rt-I· 

For steps II.A.3.i, II.A.3.ii, and II.A.3.iii of Algorithm 3.1.1, the primitive 
operations must be carefully determined. Algorithm 3.3.1 is a straight forward 
implementation of step II.A.3.i in which each set Rt is represented by a linked 
list of elements. Algorithm 3.3.1 suffers from poor space and time complexities 
because the number of elements that can be in a set R1 is CJ(n2) and the algorithm 
has loops which access each element in each R1• Fortunately, Algorithm 3.3.1 can 
be improved by using the 'sets B_ 1 , B0 , B1 , ... , Em which are defined as follows: 

B-1 - {(r,j)} 
Bo {( q, i)} 
Bt {(s,o) J ([s,o,v],h) E Rt} 

The Bt 's can be calculated recursively using the following formula, obtained by 
substitution from the formula for the Rt's. 

Bt ={(s,o) I [s,o,v] E Ih and (v,h) E B,_I} 

The set Rm can be replaced in steps II.A.3.ii and II.A.3.iii of Algorithm 3.1.1 
because of the following simple relationship 

Bt-l= {(v,h) I ([s,o,v],h) E R,}. 
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ALGORITHM 3.3.2 Calculate the B 1 's 

Let [q, i, r] on JJ be the entry for which the Bt's are to be calculated for the action 
reduce p. 

I. Let l = 1, m = jRHS(p)j, E_ 1 = (r,j), and E 0 = (q,i). 

II. While l < m, perform the following steps: 

A. Initialize Et and get the first element (t, h) from Bt-l· 

B. While Bt-l is not exhausted, perform the following steps: 

1. Get the first entry [s,o,v] on h. 
2. While h is not exhausted, perform the following steps: 

1. If v = t then add the element ( s, o) to Et, if it is not already in 
Bt. 

n. Get the next entry [s,o,v] on h. 
3. Get the next element (t,h) from Bt-l· 

C. Let l = l + 1. 

This relationship follows immediately from the recursive formula for the Rt's. 
Thus, step II.A.3.i of Algorithm 3.1.1 can compute the B1's and steps II.A.3.ii 
and II.A.3.iii can use Bm-l instead of Rm. 

Algorithm 3.3.2 computes the sets B_1 , E 0 , ••• , Bm-l and is very similar to 
Algorithm 3.3.1. However, the number of elements that can be in a set Bt is O(n), 
so Algorithm 3.3.2 has better time ,and space complexities than Algorithm 3.3.1. 

For Algorithm 3.3.2, the sets B0 , B1 , ••• , Bm are organized as an array of 
sets and each set is an (initially empty) linked list of elements. Each set can 
have at most 0( n) elements because the elements are not duplicated and the only 
component of an element that is not bounded independently of n is the parse list 
number and it is bounded by n + 1. The number of sets is 0(1), so the space 
complexity of Algorithm 3.3.2 is O(n) and the space complexity of Algorithm 3.1.1 
is not increased. 

The time complexity of Algorithm 3.3.2 is not determined directly. Instead, 
the primitive operations used in the steps of Algorithm 3.3.2 are charged to the 
objects of Algorithm 3.1.1 since Algorithm 3.3.2 is step II.A.3.i of Algorithm 3.1.1. 

For step I of Algorithm 3.3.2, its 0(1) primitive operations are charged to the 
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entry being processed. 
The loop in step II of Algorithm 3.3.2 is executed at most 0(1) times since 

m, the length of a production, is independent of n. The 0(1) primitive operations 
for the loop termination test in step II are charged to the entry being processed by 
step II.A of Algorithm 3.1.1. Likewise, the 0(1) primitive operations for steps II.A 
and II.C are charged to the entry being processed by step II.A of Algorithm 3.1.1. 

The loop in step II.B of Algorithm 3~3.2 is executed at most 0( n) times 
since B1 has 0( n) elements. Thus, the 0( n) primitive operations for the loop 
termination test in step II.B are charged to the entry being processed by step II.A of 
Algorithm 3.1.1. Likewise, the 0( n) primitive operations for steps II.B.l and II.B.3 
are charged to the entry being processed by step II.A of Algorithm 3.1.1. 

The loop in step II.B.2 of Algorithm 3.3.2 is executed at most 0( n) times 
since h has O(n) elements. Step II.B.2 is also nested inside the loop formed by 
step II. B. Thus, the 0( n 2) primitive operations for the loop termination test in 
step II.B.2 are charged to the entry being processed by step II.A of Algorithm 3.1.1. 
Likewise, the O(n2 ) primitive operations for step II.B.2.ii are charged to the entry 
being processed by step II.A of Algorithm 3.1.1. 

Step II.B.2.i of Algorithm 3.3.2 takes 0( n) primitive operations since it must 
check all the elements in B1• Step II.B.2.i is also nested within the loops formed by 
steps II.B and II.B.2. Therefore, the O(n3 ) primitive operations for step II.B.2.i 
are charged to the entry being processed by step II.A of Algorithm 3.1.1. 

Returning to Algorithm 3.1.1 and examining step II.A.3.ii, there are 0(1) 
elements in gr and O(n) elements in Bm-l for which i i- j. So the actions of 
this step are performed 0( n) times. Likewise, for step II.A.3.iii, there are 0( 1) 
elements in gr and 0(1) elements in Bm-l for which i = j. So the actions of this 
step are performed 0(1) times. Furthermore, for step II.A.3.iii, checking for ( q, r) 
on T and adding (q,r) toT takes only 0(1) primitive operations. 

All the primitive operations of Algorithm 3.1.1 have been charged to the ob
jects used by the algorithm: ·Now the number of primitive operations for each 
class of objects can be calculated. Considering the entries first, each entry has the 
following number of primitive operations charged to it: 

• 0(1) when the entry is added to its parse list in Algorithm 3.1.1. 

• 0( n) when the entry is processed up to 0( n) times in step II. A of Algo
rithm 3.1.1. 

• 0(1) when the set Tis emptied in step II.A.1 of Algorithm 3.1.1. 

• 0(1) when fr and gr are evaluated in step II.A.2 of Algorithm 3.1.1. 
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• O(n) when the check for a duplicate entry is made in step II.A.2 of Algo
rithm 3.1.1. 

• 0( n) when the entry is added up to 0( n) times to the pending list m 
steps II.A.2, A.3.ii, or II.A.3.iii of Algorithm 3.1.1. 

• 0(1) when fr is evaluated in step II.A.3 of Algorithm 3.1.1. 

• 0( 1) when the entry causes the execution of steps I, II, II. A, and II.C of 
Algorithm 3.3.2. 

• O(n) when the entry causes the execution of steps II.B, II.B.1, and II.B.3 of 
Algorithm 3.3.2. 

• O(n2) when the entry causes the execution of steps II.B.2 and II.B.2.ii of 
Algorithm 3.3.2. 

• O(n3 ) when the entry causes the execution of step II.B.2.i of Algorithm 3.3.2. 

• O(n2 ) when the check for a duplicate entry is made O(n) times in step A.3.ii 
or II.A.3.iii of Algorithm 3.1.1. 

• 0( n) when the check for a duplicate state pair is made 0( n) times in step 
II.A.3.iii of Algorithm 3.1.1. 

Thus, the total number of primitive operations charged to an entry is O(n3 ). The 
number of primitive operations for all the entries is 0( n 5 ) since the number of 
entries is O(n2 ). 

No primitive operations are charged to the parse lists. The number of primitive 
operations charged to a pending list are as follows: 

• 0(1) when the loop in step II.A of Algorithm 3.1.1 is initialized. 

• 0(1) when the loop in step II.A of Algorithm 3.1.1 is terminated. 

Since the number of parse lists is 0( n), the total number of primitive operations 
for all the parse lists is O(n). 

Finally, the number of primitive operations charged to the algorithm object 
are as follows: 

• 0( n) for the initialization of Algorithm 3 .1.1 in step I. 

• O(n) for the loop test and increment in steps II and II.B of Algorithm 3.1.1. 
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Thus the total time charged to the algorithm object is 0( n ). 
Summing the number of primitive operations for the entries, the parse lists, 

pending lists, and the algorithm object shows the time complexity of Algorithm 3.1.1 
is O(n5 ). 

Using a trick from Early's algorithm, the time complexity of Algorithms 3.1.1 
and 3.3.2 can be improved at the expense of increasing their best-case times. The 
trick is to store the B, 's as n lists where the ith list contains all the ( q, i) elements. 
The time to initialize a set B, is increased to 0( n) but the time to check for a 
duplicate element is decreased to 0( n ). 

For Algorithm 3.3.2, this change means that step II. A takes 0( n) primitive 
operations to initialize B, and step II.B.2.i takes only 0(1) primitive operations. 
Step II.B.2.i is nested within two loops that are each executed O(n) times while 
step II.A is not. Thus, this change reduces the time complexity of Algorithm 3.3.2 
to O(n2 ) and the time complexity of Algorithm 3.1.1 to O(n4 ). 

The draw back of this trick is that it forces the time complexity of Algo
rithm 3.3.2 to be O(n2 ) regardless of the grammar being used. This is not always 
desirable. The use of this trick by Early creates a similar situation for Early's 
algorithm. 

The O(n4 ) time complexit'y of Algorithm 3.1.1 is greater than the O(n3 ) time 
complexity of Early's algorithm under the same conditions. Further analysis of 
Algorithm 3.1.1 might provide a lower upper bound on its time complexity. How
ever, the time complexity of Algorithm 3.1.1 is not important to the goal of this 
dissertation since Algorithm 3.1.1 is just a step towards a more efficient syntax er
ror recovery algorithm for LR(k) parsers. In the next chapter, a depth-first version 
of Algorithm 3.1.1 is developed and it is shown to have O(n) time and O(n) space 
complexities for LR( k) grammars. 



67 

CHAPTER IV 

THE DEPTH-FIRST LR(K) EARLY'S ALGORITHM 

In this chapter, a depth-first version of the LR( k) Early's Algorithm is pre
sented. This algorithm is similar to the LR( k) Early's Algorithm, but it does not 
process all the entries on a parse list before preceding to the next parse list. In
stead, entries on the parse lists may be processed in any order. The algorithm is 
depth first because it can allow an individual parse of the input string to be sim
ulated completely before any other parse is simulated. Conceptually, this ability 
corresponds to similar abilities of depth-first search algorithms for graphs. 

4.1 THE ALGORITHM 

The Depth-First LR(k) Early's Algorithm, Algorithm 4.1.1, uses the same 
n + 2 parse lists 10 , It, ... , In+ 2 as Algorithm 3.1.1. In addition, the format of the 
entries on the parse lists is the same. However, the pending lists H0 , Hh ... , Hn+L 
are combined into one pending list, H. An entry placed on H has its associated 
parse list number in an ordered pair ([q,i,r],j). Unlike Algorithm 3.1.1, entries 
are added to their parse list only after they are removed from H. 

The use of the pending list, H, allows entries to be processed by Algo
rithm 4.1.1 in an order that is independent of the order of the parse lists. In 
fact, if the pending list, H, is treated as a stack then a depth-first (one complete 
parse at a time) simulation of the nondeterministic LR( k) parser is achieved. 

Like Algorithm 3.1.1, Algorithm 4.1.1 operates by simulating the nondeter
ministic LR(k) parser. The simulation of shifts by step II.B.l.i of Algorithm 4.1.1 
operates in a manner similar to step II.A.2 of Algorithm 3.1.1. For reductions, Al
gorithm 4.1.1, unlike Algorithm 3.1.1, applies a reduction to only some of the copies 
of the nondeterministic LR( k) parser that can reach a configuration which calls for 
the reduction. This is because Algorithm 4.1.1, unlike Algorithm 3.1.1, may not 
have simulated the moves for all copies of the nondeterministic LR( k) parser up to 
the configuration where the reduction occurs. Instead, Algorithm 4.1.1 must de
fer the application of the reduction to other copies of the nondeterministic LR( k) 
parser until the moves of those copies reach the configuration where the reduction 
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ALGORITHM 4.1.1 Depth First LR(k) Early's Algonthm 

I. Place ([0, O, OJ, 0) on the list H and append $k+1 tow. 

II. While His not empty, perform the following steps: 

occurs. 

A. Remove an entry ([q,i,r],j) from H. 

B. If the entry [q, i, r] is not already on the parse list 11 , add the entry to 
its parse list and perform the following steps: 

1. If there were not any entries of the form [?, ? , r J on the parse list 
when [q, i, r] was added then perform each of the following steps: 

1. If shift E fr( WJ+1:J+k) and there exists s E g, ( w1+1:J+d then 
add ([r,j,s],j + 1) to H if it is not already on H. 

11. If there exists reduce p E fr(w1+1:J+k) then let G1(r) = Gj{r)U 
{(IRHS(p)l,p,j) I reduce p E fr(w1+1:J+k)}. 

2. If Gy(r) is not empty, perform the following steps: 

1. Let m = max({h I (h,p,o) E G1(r)}). 

11. Use Algorithm 4.1.2 to compute B_1, Bu, ... , Bm-1· 

111. For each (h,p, l) E G1 (r) and for each (s, o) E Bh_ 1 for which 
there exists t E 9r(LHS(p)), add ([s,o,t],l) to H if it is not 
already on H. 

Deferred application of reductions is complicated by the fact that duplicate 
entries for a parse list are processed. Elimination of duplicate entries guarantees 
that Algorithm 4.1.1 will terminate. However, two copies of the nondeterministic 
LR( k) parser can reach configurations with the same state on top of the stack 
at the same position in the input string. And "blind" elimination of duplicate 
entries would stop the simulation of one of the copies when the stacks for the two 
configurations are not the same. Subsequent moves for the stopped copy might 
include a reduction which causes the copy to enter a configuration with a different 
state on top of the stack than the corresponding configuration for the stopped copy. 
In this case, the simulation of the stopped copy should continue. The mechanism 
for applying deferred reductions addresses this issue. 

The deferred application of reductions is handled by propagating information 
about a reduction backwards down the stack so that the effect of the reduction on 
the stack can be maintained. A copy of the nondeterministic LR{ k) parser may 
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ALGORITHM 4.1.2 Calculate Bt 's 

Let [q, i, r] on Ij be the entry for which the Bt's are to be calculated and let m be 
as given in Algorithm 4.1.1. 

I. Let l = 1, B-1 = {(r,j)}, B0 = {(q,i)}, and let G.(q) = G.(q) U {(n,p,k) I 
(n + 1,p,k) E GAr) and n > 0}. 

II. While l < m, perform the following steps: 

A. Initialize B1 and get an element (t,h) from B1_ 1 • 

B. While B1_ 1 is not exhausted, perform the following steps: 

1. Get an entry [s, o, v] on Ih. 
2. While Ih is not exhausted, perform the following steps: 

1. If v = t then add the element (s, o) to B,, if it is not al
ready in B,, and let Go(s) = Go(s) U {(n,p,k) I (n + 1,p,k) E 
Gh(t) and n > 0}. 

n. Get another entry ( s, o, v] on I h. 

3. Get another element ( t, h) from B1-1· 

C. Let l = l + 1. 

enter a configuration with. the same state on top of the stack at the same position 
in the input string as a previous configuration that was affected by the reduction. 
When the entry corresponding to this configuration is added to its parse list the 
effect of the reduction can be applied. 

The deferred reduction information is stored in a set G3 (r) for each possible 
stater on top of the stack at each input position j. The elements of G3 (r) are 
ordered triples ( h, p, l); where pis the _number of the production used in the reduc
tion, his an integer between 0 and IRHS(p)l, and lis the number of the parse list 
on which the entry resulting from the reduction is to be placed. The integer h is 
used to indicate how many more states must be popped from the stack before the 
reduction can be applied. 

The deferred application of reductions is achieved by examining GAr) when
ever an entry [q,i,r] is added to·a parse list JJ" Also, when [q,i,r] corresponds to 
a configuration from which a reduction normally is made, step II.B.l.ii of Algo
rithm 4.1.1 adds deferred reduction information to G 3 ( r) so that the deferred re-



70 

duction mechanism also triggers the simulation of normal reductions. When G3 (r) 
is not empty, reductions are simulated by step II.B.2 of Algorithm 4.1.1 which 
is similar to step II.A.3 of Algorithm 3.1.1. In particular, step II.B.2.ii executes 
Algorithm 4.1.2 which computes the sets B_1 , B0 , B1 , ••• , Bm-l and propagates 
deferred reduction information down the stack. 

4.2 PROOF OF CORRECTNESS 

This s~ction shows that Algorithm 4.1.1 correctly simulates an LR(k) parser when 
the algorithm and the parser use the same sets of states, Q, and functions /q and 
9q· The simulation is correct, if for every entry [q, i, r] that Algorithm 4.1.1 places 
on a parse list 13 , there is a corresponding sequence of moves 

* + 
(O,wl:n+k+I) f- (adq,w,+I·n+k+I) f- (aqr,w3+1:n+k+d 

that can be made by the LR( k) parser. 
Algorithm 4.1.1 uses the pending list, H, to hold entries waiting to be pro

cessed by the algorithm. The following lemma establishes that entries added to the 
pending list eventually are processed by the algorithm. This guarantees that Al
gorithm 4.1.1 terminates. It also guarantees that if ([q, i, r],j) is added to H then 
[q, i, r] is on 13 when Algorithm 4.1.1 terminates since step II.B of Algorithm 4.1.1 
will add the entry to its parse list unless it is already on it. 

LEMMA 4.2.1 (Every Entry Added to the Pending List is Processed) If 
([r,i,s],j) is added to the pending lzst, H, then ([r,i,s],j) is eventually processed 
by step II.A of Algorzthm 4.1.1. 

Proof: Since step II.A of Algorithm 4.1.1 removes entries from the pending list, 
H, until the list is exhausted, there only two things that can cause an entry on the 
list not to be processed: 

• an infinite number of distinct entries are placed on H; or 

• a single entry is placed on H an infinite number'of times. 

An infinite number of distinct entries cannot be placed on H because the values 
of r, i, s and j are bounded. Also, a single entry cannot be on H more than once 
since, before an entry is added to H, the entry is checked to determine it is not 
already on the list. 1 

The next lemma establishes a technical property of the initial state 0 for 
Algorithm 4.1.1. 
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LEMMA 4.2.2 (0 is the Unique Initial State) If r 
[0, 0, 0] on Io. . 

0 then [q, i, rJ on 11 ts 

Proof: The definition of an LR( k) parser does not allow 0 E g8 (X) for any s or 
X. Any entry ([q,i,rJ,j) added to the pending list, H, by either step II.B.l.ii or 
II.B.3.ii of Algorithm 4.1.1 may have r E gs(X) for some s and X. Only step I, 
which adds ([0,0,0],0) to H, can add an entry ([q,i,rJ,j) for which r = 0. Thus, 
r = 0 implies [q, i, rJ on 11 is [0, 0, OJ on Io. 1 

As in the proofs of correctness and completeness for Algorithm 3.1.1, the 
concept of a sequence in which entries can be added to their parse lists is important 
and leads to the following definition. 

Definztwn 4.2.1 (Ordered L;st of Entrtes} An ordered list of entrzes is a com
plete list of entries and their parse lists 

(q1,i1,r1J on 111 

[q2,i2,r2] on 112 

given in a sequence in which they can be added to their parse lists by step II.B of 
Algorithm 4.1.1 during an execution of Algorithm 4.1.1. 

The entry [0, 0, OJ on 10 is not on any ordered list of entries since it is not 
added to its parse list by step II.B of Algorithm 4.1.1. 

Closely related to the concept of ordering a list of entries is the notion that, 
regardless of any specific ordering, an entry or an entry from a set of entries must 
be added to its parse list before another entry can be added to a parse list. 

Definition 4.2.2 (Direct Precursor} Given two entries[?, ?,r] on 11 and [r,j,sJ 
on h the entry [?, ? , r J on 11 is said to be a direct precursor of the entry [r, j, sJ on 

ft. 

The following lemma shows that every entry has a precursor which is on a 
parse list when the entry is itself added to its parse list by Algorithm 4.1.1. 

LEMMA 4.2.3 (Every Entry Has a Direct Precursor) Ifthe entry [q,i,rJ zs on 
11 then there zs an entry [?, ? , q] on a parse lzst 11 • 
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Proof: The lemma is trivially true for the entry [0, 0, OJ on I 0 • For all other entries, 
the lemma is proved by induction on an ordered list of entries, using the lemma as 
the induction hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for the first entry on the ordered list of entries; 
and 

• second, the lemma is proved for the Nth entry on the ordered list of entries, 
assuming it holds for all entries before the Nth entry on the ordered list of 
entries. 

For the first induction step, let [q, i, rJ on I 1 be the first entry on the ordered list 
of entries. This entry is added to its parse list by step II.B of Algorithm 4.1.1 
so ([q,i,rJ,j) must have been on H. The entry ([q,i,rJ,j) must be added to H 
while either step II.B.l.i or step II.B.2.iii of Algorithm 4.1.1 is processing [0, 0, OJ 
on I 0 • The entry [0, 0, OJ on I 0 is the only entry on any parse list when it is 
processed. Examining steps II.B.l.i and II.B.2 and Algorithm 4.1.2 shows that 
[q, i, rJ = [0, O, rJ and [0, O, OJ is a precursor for the entry. 

For the second induction step, the lemma is assumed to hold for all entries 
before the Nth entry on the ordered list of entries. Let the Nth entry be [q, i, rJ on 
I 1 • This entry is added to its parse list by step II.B of Algorithm 4.1.1 so ([q,i,rJ,j) 
must have been on H. Therefore, there are two cases to consider: 

• step II.B.l.i adds ([q, i, rJ,j) to H and Algorithm 4.1.1 is simulating a shift 
by the LR( k) parser; or 

• step II.B.2.iii adds ([q, i, rJ,j) to H and Algorithm 4.1.1 is simulating a re
duction by the LR(k) parser. 

In the first case, step II.B.l.i adds ([q,i,rJ,j) to Hand this step must be processing 
an entry [?,?, qJ on I,. 

In the second case, step II.B.2.iii adds ([q, i, rJ,j) to H. This implies that 
(q,i) E Bm_1 for some m ~ 0. Examining Algorithm 4.1.2 shows that if (q,i) E 
Bm_1 then, when m = 0, [?, ?,qJ is on I, and, when m > 0, [q,i, ?] is on I7. Since 
[q, i, ?J on I? precedes [q, i, r] on I1 on the ordered list of entries, the induction 
hypothesis can be applied to show that there must be an entry [?,?, qJ on I, when 
m > 0. Thus, regardless of the value of m, there is an entry [?,?, qJ on I,. 1 

The next two lemmas establish precursor relationships that can be inferred 
among entries on their parse lists at key points during the execution of Algo
rithm 4.1.1. 
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LEMMA 4.2.4 If Algorzthm 4.1.2 zs applied to [qblb qu] on It0 and ( qm, lm) E 
Bm-1 then there e:czsts 

[qm+I, lm+1, qm] on Itm 
[qm,lm,qm-d onJ,m-1 

Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for m = 0 and m = 1; and 

• second, the lemma is proved for m = N, where N > 1, assuming it holds 
when m = N -1. 

For the first induction step, m = 0 or m = 1. Examination of step I of 
Algorithm 4.1.2 shows that ( q0 , l0 ) E B_1 or ( qllli) E Bo only if (qb lil qo] is on It0 • 

For the second induction step, m = N, where N > 1, and the lemma is 
assumed to hold form = N- 1. If (qN,lN) E BN-1 then step II.B.l.i of Al
gorithm 4.1.2 must have added (qN,lN) to BN-1 and there must be an entry 
[qN,lN,qN-d on ItN-t and an element (qN-t,lN-d E BN-2· Since (qN-t,lN-d E 
B N _ 2 , the induction hypothesis can be applied to show that there exists 

[qN, lN, qN-d on ftN-1 
[qN-b [N-b qN-2] on ftN-2 

[q2,l2,q1) on lt1 • 

Applying Lemma 4.2.3 to [qN, lN, qN_1] on ltN_1 shows that [qN+b lN+I, qN] is on 
ftN• I , 

LEMMA 4.2.5 If(h,p,lm) E Gth(qh), there e:czsts 

[qh-1, lh-1, qh] on lth 
[qh, lh, qh+I] on lth+1 
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Proof: The lemma is proved by induction on m - h, using the lemma as the 
induction hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved form- h = 0; and 

• second, the lemma is proved for m- h = N, where N > 0, assuming it holds 
for m - h = N - 1. 

For the first induction step, m - h = 0. Thus, h = m = jRHS(p)l. Ex
amination of step II.B.l.ii of Algorithm 4.1.1 shows that it adds (h,p,lh), where 
h = m = jRHS(p)j, to Gth(qh) only if [qm-hlm-hqm] on ltm and reduce p E 
fqm(wtm+l:lm+k)· No other step of either Algorithm 4.1.1 or Algorithm 4.1.2 can add 
an element (h,p, lh) to Gth(qh) for which h = jRHS(p)l, particularly step II.B.2.i 
of Algorithm 4.1.2. 

For the second induction step, m- h = N, where N > 0, and the lemma is 
assumed to hold when m- h:::; N -1. An element (h,p, lm) for which m- h = N 
and N > O, can be added by step I or step U.B.l.ii of Algorithm 4.1.2. If either 
step I or step II.B.2.i of Algorithm 4.1.2 adds ( h, p, lm) to Gth ( qh) then there is an 
entry [qh, lh, qh+l] on lth+t and (h + l,p, lm) E Gth+t (qh+I)· Applying the induction 
hypothesis to (h + 1,p, lm) E Gth+t (qh+l), for which m- h = N -1, there must be 

[%, lh, qh+I] on lth+t 
[qh+l, lh+l, qh+2] on lth+2 

where reduce p E fqm(wtm+Hm+k)· Also, Lemma 4.2.3 shows that there is an entry 
[ qh-l, lh-l, qh] on lth. Thus, there exists 

[%-h lh-h qh] on lth 
[qh, lh, qh+I] on lth+t 

[qm-1' lm-l' qm] on ltm 

where reduce p E fqm(wtm+I·lm+k)· I 

THEOREM 4.2.1 (Algorithm 4.1.1 Correctly Simulates the LR(k) Parser) 
Given the same Q, fq, and gq for Algorzthm 4.1.1 and the LR(k) parser, zf an 
entry [r,i,s] zs added to parse lzst 11 (except for [0,0,0] on 10 ) by Algonthm 4.1.1 
then the LR(k) parser can make the sequence of moves 
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* + 
(0, Wt·n+k+l) f- ( alr, wt+l·n+k+d f- ( ars, W1+1:n+k+d· 

Proof: The theorem is proved by induction on any ordered list of entries, using the 
theorem as the induction hypothesis. The induction proceeds in two steps: 

• first, the theorem is proved for the first entry on the ordered list of entries; 
and 

• second, the theorem is proved for the N~h entry on the ordered list of entries, 
assuming it holds for all e~tries that precede the Nth entry. 

·For the first induction step, let the first entry on the ordered list of entries be 
[q,i,r] on Ir Step II.B of Algorithm 4.1.1 ad~s [q,i,r] to I 1 so ([q,i,r],j) must 
have been on H. Either step II.B.l.i or step II.B.2.iii of Algorithm 4.1.1 must have 
added ([q,i,r],j) to H while processing [0,0,0] on I0 • Likewise, the first move of 
the LR(k) parser must be from the configuration (0, w1:n+k+d· Thus, if step II.B.l.i 
adds ([q, i, r], j) = ([0, 0, r], 1) to H then the shift (0, Wt:n+k+l) f- (Or, W2:n+k+d can 
be made by the LR(k) parser; and if step II.B.2.iii adds ([q,i,r),j) = ([O,O,rj,O) 
to H then the reduction (O,w1:n+k+t) f- (Or,w1:n+k+t) can be made by the LR(k) 
parser. 

For the second induction step, the theorem is assumed to hold for all entries 
on the ordered list of entries that precede the Nth entry. Let the Nth entry be 
[r, i, s] on I 1 • Since [r, i, s] is added to I 1 by step II.B of Algorithm 4.1.1, ([r, i, s],j) 
must have been on H. There are two cases to consider: 

• step II.B.l.i adds ([r, i, s],j) to H and Algorithm 4.1.1 is simulating a shift 
by the LR( k) parser; or 

• step II.B.2.iii adds ([r, i, s],j) to H and Algorithm 4.1.1 is simulating a re
duction by the LR(k) parser. 

In either case, the step involved must have been applied to an entry 
[qh-~,lh-llqh] on Ith where his a convenient index which will be specified later. 
Since [qh-h lh-il q11 ] on Ith precedes [r, i, s] on I1 on the ordered list of entries, the 
LR( k) parser can make the sequence of moves 

* 
(0, Wt:n+k+t) f- ( aqh, Wth+l:n+k+d· 

In the first case, step II.B.l.i adds ([r, i, s],j) to H and Algorithm 4.1.1 is 
simulating a shift by the LR(k) parser. Thus, lh = i = j- 1, qh = r, and the shift 
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(ar,Wj:n+k+I) f- (ars,w1+I·n+k+I) can be made by the LR(k) parser. Therefore, 
the LR( k) parser can make the sequence of moves 

* 
(O,w1:n+k+I) f- (alr,w1 .n+k+I) f- (ars,w1+1:n+k+I)· 

In the second case, step II.B.2.iii adds ([r, i, s],j) to H and Algorithm 4.1.1 is 
simulating a reduction by the LR( k) parser. When [ qh_1, lh_1, qh] on I1h is processed 
there must be 

and 

where q0 = r and [0 = i. Here, h has been chosen for convenience as the index into 
the B/s. Applying Lemma 4.2.4, there must be 

[qo, lu, q1] on l11 

[qi, l11 q2] on h2 , 

'. 

Applying Lemma 4.2.5, there must also be 

[q~, lh, qh+I] on I1h+t 

[qh+h lh+I, qh+2] on I1h+ 2 

[qm-2, lm-2, qm-d on Ilm-l 

[qm-1, lm-ll qm] on I1m 

where lm = j, m = !RHS(p)l and reduce p E fqm(wlm+I:lm+k)· The reduction must 
be one of three possible types 1 each of which must be ~onsidered separately: 

• a reduction by an empty production (i.e. m = 0); 

• a reduction by a non-empty production which does not cause the stack to 
underflow (i.e. m > 0 and qx =/= 0 for 0 < :.c ::S m ); or 

• a reduction by a non-empty production which causes the stack to underflow 
(i.e. m > 0 and qx = 0 for some :.c where 0 < :.c ::S m ). 
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For the first type of reduction, an empty production is used so m = h = 0. 
Thus, lm = lo = i = j, qm = q0 = r, and the reduction 

can be made by the LR( k) parser. Therefore, the LR( k) parser can make the 
sequence of moves 

* 
(0, W1·n+k+I) f- (air, W;+I·n+k+t) f- ( ars, W;+1·n+k+d· 

For the second type of reduction, a non-empty production is used and the 
stack does not underflow so m > 0 and qx f. 0 for 0 < x :::; m. This implies that 
the entries [ qx_1, lx-ll qx] on h,,, for 0 < x :::; m, are entries on the ordered list of 
entries and that these entries precede [r, i, s] on I; on the ordered list. Applying 
the induction hypothesis to each of these entries, the LR( k) parser can make the 
sequences of moves: 

* + 
(O,w!·n+k+1) f- (aolr,w,+l:n+k+I) f- (aorq1,Wt 1+I:n+k+t) 

* + 
(O,w1·n+k+t) f- (adqbWi 1+I·n+k+I) f- (a1q1q2,Wt2+1:n+k+t) 

* + 
(0, W1·n+k+d f- ( am-dqm-1, W[m--t +1·n+k+d f- ( am-1 qm-1qm, WJ+1:n+k+d 

As a result, the LR( k) parser can make the sequence of moves 

* + 
(O,w1:n+k+I) f- (aolr,w,+I·n+k+I) f- (aorq1 ... qm,W1+I·n+k+I)· 

Also, step II.B.2.iii calls for a reduction of length m so the reduction 

can be made by the LR( k) parser. Therefore the LR( k) parser can make the 
sequence of moves 

* + 
(0, W1:n+k+t) f- ( aulr, w,+1·n+k+t) f- ( aors, W;+1:n+k+t). 

For the third type of reduction, a reduction by non-empty production is used 
and the stack underflows so m > 0 and qx = 0 for some :z: where 0 < :z: :::; 0. Let e 
be the greatest such :z:. Since 1 :::; e, r = qe = 0. Recursively applying Lemma 4.2.2 
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shows that, for 0 < a: ::::; e, ([q:~:-bl:~:-!7 q:~:], l:~:) = ([0, 0, 0], 0). If e = m then there 
is only the state 0 on the stack when the reduction is made and qm = q0 = 0 and 
lm = l0 = i = j = 0. Therefore, the LR(k) parser can make the sequence of moves 

* + 
(O,w1:n+k+I) f- (O,w1:n+k+I) f- (Os,w1:n+k+I)· 

If e < m there are some states (but not enough) on the stack when the 
reduction is applied. For e < a: ::::; m, [q:~:-bl:~:_ 1 , q:~:] on h, is an entry that precedes 
[r, i, s] on 13 on the ordered list of entries. Applying the induction hypothesis to 
each of these entries, the LR(k) parser can make the sequences of moves: 

* + 
(O,w1:n+k+I) f- (aelqe,Wle+I·n+k+I) f- (a:eqeqe+I,Wle+t+l:n+k+I) 

* + 
( O, W1·n+k+I) f- ( O:e+I I qe+I, Wte+l +I:n+k+I) f- ( O:e+1 qe+I qe+2' Wte+2+l:n+k+l) 

* + 
(O,w1:n+k+I) f- (a:m-dqm-I,Wlm-t+I:n+k+I) f- (a:m-lqm-1qm,WJ+l:n+k+I)· 

Since qe = 0 and 0 is never pushed onto the stack, O:e =e. As a result, the LR(k) 
parser can make the sequence of moves 

* + 
(O,w1·n+k+I) f- (O,w1:n+k+I) f- (Oqe+Iqe+2 · • .qm,WJ+l:n+k+I)· 

Also, step II.B.2.iii calls for a reduction of length m so the reduction 

( Oqeqe+I .. · qm, W J+l :n+k+I ) f- ( Os, W 1+ 1 :n+k+I ) 

can be made by the LR( k) parser. Therefore the LR( k) parser can make the 
sequence of moves 

* + 
(O,w1:n+k+1) f- (O,w1·n+k+d f- (Os,w1+I:n+k+I)· 

I 

4.3 PROOF OF COMPLETENESS 

This section shows that Algorithm 4.1.1 completely simulates the LR(k) parser. 
The simulation is complete if for every sequence of moves 

* + 
( 0' w1·n+k+l) f- (a: I q' Wz+l ·n+k+l) f- ( aqr' w J+ 1 :n+k+I) 
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that can be made by the LR(k) parser, Algorithm 4.1.1 places the entry [q, i, r] on 
the parse list I 1 • 

The next two lemmas establish reduction information that can be inferred from 
the entries on their parse lists at key points ,during the execution of Algorithm 4.1.1. 

LEMMA 4.3.1 If Algorzthm 4.1.2 zs apphed to [q11 111 qo] on I10 and there exists 

[qm+t, lm+t, qm] on I1m 

[qm,lm,qm-1] on hm-1 

then, for m 2: 01 

(qm,lm) E Bm-1· 

Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for m = 0 and m = 1; and 

• second, the lemma is proved for m = N when N > 1, assuming it holds when 
m=N-1. 

For the first induction step, m = 0 or m = 1. Examination of step I of 
Algorithm 4.1.2 shows that (q0 ,l0 ) E B_1 and (q1,l1) E Bo. 

For the second induction step, m = N where N > 1 and the lemma is assumed 
to hold for m = N - 1. The induction hypothesis can be applied to 

[qN, lN, qN-1] on I1N-l 

[qN-ll lN-b qN-2] on I1N-2 

[q2 , 12 , q1] on I1 1 

to show (qN-h lN_1) E BN_2 • Since (qN-h lN-1) E BN-2 and [qN+l! lN+t, qN] on 
Ilm step II.B.l.i of Algorithm 4.1.2 adds (qN,lN) E BN-1· 1 

LEMMA 4.3.2 Ifm > 0, h > 0, m+h = JRHS(p)J, reduce P E fqm(wlm+l:lm+k), 
and there exists 

[qo, lo, qt] on h 
[ql, It, q2] on I12 
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then 

Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved form = 1; and 

• second, the lemma is proved form= N, assuming it holds when m < N. 

For the first induction step, m = 1. The entry [q0, l0 , q1] is on I 11 so it 
must have been processed by step II.B.l.ii of Algorithm 4.1.1. Since reduce p E 
/q1 (Wt1+I:t1 H), step II.B.l.ii adds (h + 1,p,li) to Gt1 (qi). Thus, step II.B.2.ii exe
cutes Algorithm 4.1.2 and step I of Algorithm 4.1.2 adds (h,p,l!) to Gt0 (q0 ) since 
h > 0. 

For the second induction step, m = N and the lemma is assumed to hold for 
m < N. Since m = N there are N entries 

[qo, lo, ql] on ILL 
[ qllll, q2] on It2 

Let k be the index of the entry [qk-l, lk_1 , qk] on Itk which is the last of these entries 
to be processed by step II.B of Algorithm 4.1.1. There must be (h + k,p,lm) E 

Gtk ( qk) when [ qk-l, h-h qk] on hk is processed by step II.B since the induction 
hypothesis can be applied to the N - k entries 

[qk, lk, qk+l] on It"+L 
[qk+l, lk+ll qk+2] on It,.+ 2 

[qN-l,lN-bqN] on ItN• 

Since (h+k,p,lm) E G1k(qk) when [qk_ 1,lk_1 ,qk] on It,. is processed by step II.B.2.ii 
of Algorithm 4.1.1, Algorithm 4.1.2 is executed. Step I of Algorithm 4.1.1 initializes 
B-1 to (qk,lk) and Bo to (qk-l,lk-d and adds (h + k- 1,p,lm) to Gt~e_ 1 (qk-d 
The loop in step II of Algorithm 4.1.2 must iterate through at least the sequence 
o = 1, 2, ... , k - 1 and it has the following property: 

If (qx,lx) E Bo_1, (n + l,p,lm) E Gt,.(qx), and [q:r-blx-hqr] is on It,, 
then (qx-hlx_ 1) is added to Bo and (n,p,lm) is added to Gt.,_ 1 (qx-1)· 



81 

Therefore, Algorithm 4.1.2 must add (h,p, lm) to Gt0 (qo). 1 

THEOREM 4.3.1 (Algorithm 4.1.1 Completely Simulates the LR(k) Parser) 
Given the same Q, Jq, and gq for the LR(k) parser and Algonthm 1,.1.1, if these
quence of moves 

L J\f+l 

(O,wl:n+k+I) f-- (alr,wz+l:n+k+l) f-- (ars,w1+1:n+k+I) 

can be made by the LR(k) parser, where L 2: 0 and M 2: 0, then Algonthm 1,.1.1 
adds the entry [r, i, s] to parse l-tst IJ' 

Proof: The .theorem is proved by induction on the sum' of L and M. The induction 
proceeds in three steps: 

• first, the theorem is proved for L + M = 0; 

• second, the theorem is proved for L = N and M = 0, assuming it holds 
whenever L + M < N; and 

• third, the theorem is proved for L + M = N when M > 0, assuming it holds 
whenever L + M < N. 

The parameter space formed by L and M is an infinite table with L as the row 
number and Mas the column number, so the steps of the induction can be viewed 
as proving the theorem diagonal by diagonal, using the diagonals that run from 
the lower left to upper right sides of the table. 

0 

For the first induction step, L + M = 0 and the theorem can be written as 
follows: 

If (O,wl·n+k+I) f-- (Os,w1+1:n+k+l) then [O,O,s] is added to Ir 

The move (0, w1:n+k+l) f-- (Os, w1+1:n+k+l) can be either a shift, in which case j = 1, 
or a reduction, in which case j = 0. When ([0, 0, 0], 0) is processed by step II.B 
of Algorithm 4.1.1, if the move is a shift, then step II.B.l.i of Algorithm 4.1.1 
adds ([O,O,s],1) to H. Likewise, if the move is a reduction, then step II.B.2.iii of 
Algorithm 4.1.1 adds ([0, 0, s], 0) to H. 

For the second induction step, L = N, M = 0, and the theorem is assumed to 
hold for L + M < N. Since M = 0, the theorem can be written as follows: 

N 

If (0, w1:n+k+l) f-- ( ar, W 1+1:n+k+d f-- ( ars, w1+1·n+k+I), where N 2: 0, 
then the entry [r,i,s] is added to parse list Ir 
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If N = 0 then this induction step degenerates to the first induction step. Therefore, 
only the case of N > 0 needs to be considered. Since the length of the sequence of 
moves 

N-1 

( 0, Wl·n+k+ I) f- (,8, W? ·n+k+ I) f- ( ar, W z+l :n+k+ 1 ) 

is less than N, the induction hypothesis can be applied to show that there must 
be an entry [?,?, r] on Izo 

The move (ar,w,+l·n+k+t) f- (ars,w1+1·n+k+d can be one of three types of 
moves: 

• a shift (shift E fr(Wz+l·z+k)); 

• a reduction by an empty production (reduce p E fr(wl+la+k) and IRHS(p)l = 
0); or 

• a reduction by a non-empty production which causes the stack to underflow 
(reduce p E fr(w,+l:z+k) and IRHS(p)j > 0). 

For any of the three types of moves, s E 9r(wz+h+k)· 
For a shift, shift E fr ( w,+ l:t+k) and j = i + 1. When [?, ? , r] on I, is processed, 

step II.B.l.i of Algorithm 4.1.1 adds ([r, i, s],j) to H. 
For a reduction by an empty production, reduce p E fr( w,+la+k), 

!RHS(p)! = 0, and i = j. When[?, ?,r] on I, is processed: step II.B.l.ii adds (O,p,j) 
to G1(r); step II.B.l.i of Algorithm 4.1.1 adds ([r, i, s],j) to H; step II.B.2.ii exe
cutes Algorithm 4.1.2 which adds (r,i) to B_1 ; and step II.B.2.iii adds ([r,i,s],j) 
to H. 

For a reduction by a non-empty production which underflows the stack, 
reduce p E fr(wz+l:z+k), !RHS(p)J > 0 and i = j. This implies a= e, [?,?,r] = 
[0,0,0], and i = j = 0 since no move of the LR(k) parser can add 0 to the stack. 
But this also implies N = 0 so this type of move need not be considered any 
further. 

For the third induction step, L + M = N, M > 0, and the theorem is assumed 
to hold for L + M < N. Since M > 0, the theorem can be written as follows: 

L Af+l 
If (O,wl:n+k+l) f- (alr,w 1+l:n+k+l) f- (ars,w1+1:n+k+l) where L 2:: 0 
and M > 0 then [r, i, s J is added to parse list Ir 

The sequence of moves 

M+t 

( alr, Wz+l·n+k+l) f- ( ars, W1+1·n+k+t) 
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can be written as 

+ 
(air, Wz+l·n+k+I) f- ( ar I ql, Wit +l:n+k+t) 

+ 
f- (arqdq2,Wl2+l·n+k+l) 
+ 
f-
+ 
f- (arq1q2 · · .lqm-l,wlm-1+l·n+k+I) 
+ 
f- (arqlq2 · · · qm,Wlm+l·n+k+I) 

f- ( ars, w1+l:n+k+l) 

where 1::; m::; M, since a move of the LR(k) parser can add at most one symbol 
to the stack and r is not allowed to be popped from the stack by any of the M + 1 
moves. The reduction (arqlq2···qm,Wlm+l:n+k+I) f- (ars,w1+1:n+k+l) must be a 
reduction that pops m states off the stack, or, if a = € and r = 0, a reduction 
which possibly pops more than m states and underflows the stack. Also, the 
reduction implies lm = j and that there exists s E 9r(ILHS(p)l) and reduce p E 
fQm ( W!m+l:n+k+l ). 

Any proper subsequence of the sequence of moves 

+ 
(alr,wz+l:n+k+l) f- (ars,w1+l:n+k+l) 

has a length less than N so, applying the induction hypothesis, there must be 

[r, i, q1] on h 
[ql, l1, q2] on Jb 

[qm-1, lm-1, qm] on Ilm· 

These entries may be processed by step II.B in any order so let [qh-l, lh-l, %] on 
Ith be the last entry processed by step II.B. If h = m, then step II.B.l.ii adds 
(IRHS(p)l,p,j) to Gqh(lh)· If h < m, applying Lemma 4.3.2 for 

shows that 

[qm-2, lm-2, qm-1J on Itm-1 

[qm-l,lm-l,qm] on Itm 
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when the entry is processed by step II.B.2.iii. Applying Lemma 4.2.3 to [r, i, q1] on 
lt1 shows there must be[?, ?,r] on I. and applying Lemma 4.3.1 for 

shows that 

[?, ?,r] on I. 
[r, i, qt] on lt1 

[qblb q2] on lt2 

' : 

(r, i) E B(!RHS(P)I-(m-h))-1 

when t,fle entry is processed by step II.B.2.iii. Therefore, step II.B.2.iii of Algo
rithm 4.1.1 adds ([r, i, s],j) to Hand Lemma 4.2.1 guarantees that [r, i, s] is added 
to 13 • 1 

4.4 RUN TIME ANALYSIS 

This section is divided into two parts: the first part shows that Algorithm 4.1.1, 
unlike Algorithm 3.1.1, has CJ(n5 ) time complexity and CJ(n2 ) space complexity; 
the second part shows that for LR( k) grammars the time and space complexities 
are CJ(n). The increased time complexity of Algorithm 4.1.1 over Algorithm 3.1.1 
is due to the operations on the sets G,(r) which maintain the deferred reduction 
information. However, for LR(k) grammars the time and space complexities of 
Algorithm 4.1.1 are CJ(n). 

4.4.1 CJ(n5 ) Time and CJ(n2 ) Space Complexities 

The time and space complexities of Algorithm 4.1.1 are shown to be CJ(n5 ) and 
CJ(n2 ) respectively. The analysis is performed using the same techniques introduced 
in Chapter 3. 

The input to Algorithm 4.1.1 is the string w to be parsed. The size of this 
input is the string's length, which is denoted by n. Some data structures, such as 
the parse lists, depend directly on n. It is implicitly assumed that n is known when 
these data structures are allocated so that a position in the input string can be 
used in 0(1) time as an index into these data structures. This assumption presents 
no difficulties, since the value of n can be determined in CJ( n) time by scanning 
the input string before starting the algorithm. 
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The parse lists, the pending list, the sets B,, and the sets G,(q) are the primary 
data structures used by Algorithm 4.1.1. The parse lists are organized as an array 
of parse lists and each parse list 11 is IQI (initially empty) linked lists of entries 
[q,i,r]. The IQilists are indexed by r and an entry [q,i,r] is stored on the rth 
list. The pending list, H, is organized as an array of n + 2 (initially empty) lists 
of ordered pairs, ([q,i,r],j), where the lists are indexed by j. The sets B, are 
organized as an array of sets, where the sets are indexed by i. The sets G,(q) are 
organized as a two-dimensional array of sets, where the sets are indexed by i and 
q. 

The space complexity of Algorithm 4.1.1 is simple to determine. There are 
O(n) parse lists. Each parse list can have at most O(n) entries since duplicate 
entries are eliminated by step II.B and the parse list number of an entry is the 
only component of an entry that depends on the length of the input and it is 
bounded by n + 2. There is one pending list, H, and it can have at most CJ(n2) 

entries since duplicated ordered pairs are not added to the list. There are only 
0( n) sets B, and each set has at most CJ( n) elements. Finally, there are CJ( n) sets 
G1(q) and the only component of the elements of these sets that is not bounded 
independently of n is the parse list number which is bounded by n + 2. Thus, the 
space complexity of Algorithn;I 4.1.1 is CJ(n2 ). 

The analysis of the time complexity of Algorithm 4.1.1 is determined by ex
amining each step of the algorithm. Algorithm 4.1.1 implicitly assumes the parse 
lists, the pending list, H, and sets G,(q) are initialized. Given the organization of 
parse lists, the pending list, H, and the sets G,(q), they can be initialized in CJ(n) 
primitive operations which are charged to the algorithm object. (Recall that the 
algorithm object is simply a bookkeeping convention). 

For step I of Algorithm 4.1.1, the 0(1) primitive operations for creating the 
initial entry and adding it to the pending list, H, are charged to the entry. 

For step II of Algorithm 4.1.1, the 0(1) primitive operations for checking the 
pending list, H, to determine if it is empty are charged to the algorithm object, if 
H is empty, or to the entry obtained in step II.A, if the list is not empty. 

For step II.A of Algorithm 4.1.1, the 0(1) primitive operations for obtaining 
an entry are charged to the corresponding entry on the parse list. In general, an 
entry may be obtained CJ(n2) times since an entry ([q,i,r],j) may be added to the 
pending list, H, a total of 0(1) times for each entry pr<:>cessed by steps II.B.l.i or 
II.B.2.iii. 

For step II.B of Algorithm 4.1.1, the CJ(n) primitive operations for checking if 
an entry [q, i, r] is already on parse list 11 are charged to the corresponding entry on 
the parse list. The check requires CJ( n) primitive operations because the number 
of entries on the rth list of a parse list is CJ( n ). The CJ( 1) primitive operations for 



86 

adding an entry to its parse list are charged to the entry itself. 
For step II.B.1 of Algorithm 4.1.1, the 0(1) primitive operations for checking 

to see if the rth list of a parse list is empty is charged to the entry being processed. 
For step II.B.l.i of Algorithm 4.1.1, the 0(1) primitive operations for evaluat

ing fr and 9r are charged to the entry being processed. Also, the O(n2 ) primitive 
operations for adding an entry to the pending list, H, are charged to the entry 
being processed. 

For step II.B.l.ii of Algorithm 4.1.1, the 0(1) primitive operations for evalu
ating fr are charged to the entry being processed. The 0( n) primitive operations 
for adding 0(1) elements to the set GAr) are charged to the entry being processed. 

For step II.B.2 of Algorithm 4.1.1, the 0(1) primitive operations for checking 
to see if G 1 ( r) is empty are charged to the entry being processed. 

For step II.B.2.i of Algorithm 4.1.1, the O(n) primitive operations for finding 
the maximum value of h for elements in G,(q) are charged to the entry being 
processed. 

For step II.B.2.ii of Algorithm 4.1.1, Algorithm 4.1.2 is executed. The time 
complexity of Algorithm 4.1.2 is determined indirectly. The primitive operations 
used in the steps of Algorithm 4.1.2 are charged to the objects of Algorithm 4.1.1. 

The time complexity of Algorithm 4.1.2 is more easily analyzed if the union 
operations on the sets G,( q) are explicilty performed. Algorithm 4.4.1 reflects this 
change. Also, Algorithm 4.4.1 optimizes the application of the inner most union 
operation for the sets G,(q) by moving it out of the loop in step IV.C.3 of the 
algorithm. 

For Algorithm 4.4.1, the sets B0 , Ell ... , Bm are organized as an array of 
sets and each set is an (initially empty) linked list of elements. Each set can have 
at most O(n) elements because the elements are not duplicated and parse list 
number of an element is the only component of an element that is not bounded 
independently of n and it is bounded by n + 1. The number of sets is 0( 1) 
and the space complexity of Algorithm 4.4.1 is 0( n) so the space complexity of 
Algorithm 4.1.1 is not increased. 

For step I of Algorithm 4.4.1, its 0(1) primitive operations are charged to the 
entry being processed. ' 

Step II and III.B of Algorithm 4.4.1 take 0( n) primitive operations to scan all 
the elements in G,(q). Thus 0(1) primitive operations for either step II or III.B 
are charged to each element scanned. 

For step III of Algorithm 4.4.1, the 0(1) primitive operations for checking the 
set G1 (r) to see if it is exhausted are charged to the set, if G1 (r) is exhausted, or 
to the entry obtained in step II or step III.B, if the set is not exhausted. The loop 
in step III of Algorithm 4.4.1 is executed at most 0( n) times; once for each of the 
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CJ(n) elements in Gir). 
Step III.A of Algorithm 4.4.1 takes CJ(1) primitive operations for each ele

ment in G1 (q) since each element must be checked to avoid adding a duplicate. 
Also, step III. A is nested within the loop formed by step III. Therefore, the CJ( n) 
primitive operations are charged to each element of G1 (q). 

The loop in step IV of Algorithm 4.4.1 is executed at most CJ(1) times since 
m, the length of a production, is independent of n. The CJ(1) primitive operations 
for the loop termination test in step IV are charged to the'·entry being processed by 
step II.B of Algorithm 4.1.1. Likewise, the CJ(1) primitive operations for step IV.D 
are charged to the entry being processed by step II.B of Algorithm 4.1.1. 

Step IV.A of Algorithm 4.4.1 takes CJ(1) primitive operations. Step IV.A is 
nested within the loop formed by step IV, which causes it to be repeated CJ(1) 
times. Therefore, the CJ( 1) primitive operations for step IV .A are charged to the 
entry being processed by step II.B of Algorithm 4.1.1. 

Step IV.B of Algorithm 4.4.1 takes CJ(1) primitive operations. Step IV.B is 
nested within the loop formed by step IV, which causes it to be repeated CJ(1) 
times. Therefore, the CJ(l) primitive operations for step IV .A are charged to the 
entry being processed by step II.B of Algorithm 4.1.1. 

The loop in step IV.C of Algorithm 4.4.1 is executed at most CJ(n) times 
since B1 has CJ( n) elements. Thus, the CJ( n) primitive operations for the loop 
termination test in step IV.C are charged to the entry being processed by step II.B 
of Algorithm 4.1.1. Likewise, the CJ(n) primitive operations for step IV.C.6 are 
charged to the entry being processed by step II.B of Algorithm 4.1.1. 

Step IV.C.1 of Algorithm 4.4.1 takes CJ(n) primitive operations. Step IV.C.1 
is nested within the loops formed by steps IV and IV.C, which causes it to be 
repeated CJ( n) times. Therefore, the CJ( n 2 ) primitive operations for step IV.C.1 
are charged to the entry being processed by step II.B of Algorithm 4.1.1. 

Step IV.C.2 of Algorithm 4.4.1 takes CJ(1) primitive operations. Step IV.C.2 
is nested within the loops formed by steps IV and IV.C, which causes it to be 
repeated CJ( n) times. Therefore, the CJ( n) primitive operations for step IV. C .2 are 
charged to the entry being processed by step II.B of Algorithm 4.1.1. 

The loop in step IV.C.3 of Algorithm 4.4.1 is executed at most CJ(n) times 
since Ih has CJ(n) elements. Also, step IV.C.3 is nested inside the loops formed 
by steps IV and IV.C, which causes it to be repeated CJ(n) times. Therefore, the 
CJ(n2 ) primitive operations fo~ the loop termination test in step IV.C.3 are charged 
to the entry being processed by step II.B of Algorithm 4.1.1. Likewise, the CJ( n 2 ) 

primitive operations for step IV.C.3.iii are charged to the entry being processed by 
step II.B of Algorithm 4.1.1. 
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ALGORITHM 4.4.1 Calculate Bt 's 

Let [q,i,r] on 11 be the entry for which the Bt's are to be calculated and let m be 
as given in Algorithm 4.1.1. 

I. Let l = 1, B_1 = {(r,j)} and B0 = {( q, i)}. 

II. Get an element (n + l,p,a::) from Gi(r) where n > 0. 

III. While GAr) is not exhausted, perform the following steps: 

A. Add (n,p,x) to Gz(q) if it is. not already in Gz(q). 

B. Get another element (n + 1,p,a::) from Gh(t) where n > 0. 

IV. While l < m, perform the following steps: 

A. Initialize Bt. 

B. Get an element (t,h) from B1_ 1 • 

C. While B1_ 1 is not exhausted, perform the following steps: 

1. Empty the set T. 
2. Get an entry [8, o, v] on h. 
3. While h is not exhausted, perform the following steps: 

i. If v = t then add ( 8, o) to Bt if it is not already in B,. 

ii. If v = t then add (8, o) toT if it is not already in T. 

iii. Get another entry [8, o, v] on Ih. 

4. Get an element (n + 1,p,a::) from Gh(t) where n > 0. 

5. While Gh(t) is not exhausted, perform the following steps: 

1. Get an element ( 8, o) from T. 
u. While T is .not exhausted, perform the following steps: 

a. Add ( n, p, a::) to Go( 8) if it is not already in Go( 8 ). 
b. Get another element (8,o) from T. 

111. Get another element (n + 1,p,a::) from Gh(t) where n > 0. 

6. Get another element ( t, h) from Bt-l· 

D. Let l = l + 1. 
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Step IV.C.3.i of Algorithm 4.4.1 takes O(n) primitive operations since it must 
check all the elements in Bt. Also, step IV.C.3.i is nested within the loops formed by 
steps IV, IV.C and IV.C.3, which causes it to be repeated O(n2 ) times. Therefore, 
the O(n3 ) primitive operations for step IV.C.3.i are charged to the entry being 
processed by step II.B of Algorithm 4.1.1. 

Step IV.C.3.ii of Algorithm 4.4.1 takes O(n) primitive operations since it must 
check all the elements in T. Also, step IV.C.3.ii is nested within the loops formed by 
steps IV, IV.C and IV.C.3, which causes it to be repeated O(n2 ) times. Therefore, 
the O(n3 ) primitive operations for step IV.C.2.ii are charged to the entry being 
processed by step II.B of Algorithm 4.1.1. 

Steps IV.C.4 and IV.C.5.iii of Algorithm 4.4.1 take O(n) primitive operations 
to scan the set Ga(s). Also, steps IV.C.4 and IV.C.5.iii are nested within the 
loops formed by steps IV and IV.C, which causes it to be repeated O(n) times. 
Therefore, 0( n) primitive operations for scanning each element 0( n) times are 
charged to each element scanned. 

For step IV.C.5 of Algorithm 4.4.1, checking to see if Gh(t) is exhausted 
takes 0( 1) primitive operations. Step IV .0.5 is nested within the loops formed 
by steps IV and IV.C, which causes it to be repeated O(n) times. Therefore, the 
0( n) primitive operations for checking Gh ( t) to see if it is exhausted are charged to 
Gh(t), if it is exhausted, or to the element obtained in step IV.C.4 or step IV.C.5.iii, 
if the set is not exhausted. The loop in step IV.C.5 of Algorithm 4.4.1 is executed 
at most O(n) times; once for each of the O(n) elements in Gh(t). 

Step IV.C.5.i of Algorithm 4.4.1 takes 0(1) primitive operations. 
Step IV.C.5.i is nested within the loops formed by steps IV, IV.C and IV.C.5, 
which causes it to be repeated O(n2 ) times. Therefore, the O(n2 ) primitive oper
ations for step IV.C.5.i are charged to the entry being processed by step II.B of 
Algorithm 4.1.1. 

The loop in step IV.C.5.ii of Algorithm 4.4.1 is executed at most O(n) times 
since T has O(n) elements. Step IV.C.5.ii is nested inside the loops formed by 
steps IV.C and IV.C.5, which causes it to be repeated O(n2 ) times. Therefore, 
the O(n3 ) primitive operations for the loop termination test in step IV.C.5.ii are 
charged to the entry being processed by step II.B of Algorithm 4.1.1. Likewise, 
the O(n3 ) primitive operations for step IV.C.5.ii.b are charged to the entry being 
processed by step II.B of Algorithm 4.1.1. 

Step IV.C.5.ii.a of Algorithm 4.4.1 takes 0(1) primitive operations for each 
element in Go( s) since each element must be checked to avoid adding a dupli
cate. Step IV.C.5.ii.a is also nested within the loop formed by step IV.C, IV.C.5, 
and IV.C.5.ii, which causes it to be repeated O(n3 ) times. However, Ga(s) can 
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only be accessed 0(1) times within the loop formed by step IV.C.5.ii since T can 
contain only one element (s,o). Therefore, O(n2 ) primitive operations are charged 
to each element of Go(s). 

Returning to Algorithm 4.1.1 and examining step II.B.2.iii, there are O(n) 
elements in G1 (r), 0(1) elements in 9n and O(n) elements in Bh-l· Therefore, the 
actions of this step are performed O(n2) times and this step can add O(n2 ) entries 
to the pending list, H. The O(n3 ) primitive operations for adding O(n2 ) entries 
to the pending list, H, are charged to the entry being processed. 

Now that all the steps of Algorithm 4.1.1 have been examined, the number of 
primitive operations charged to each class of objects can be calculated. Consider
ing the entries first, each entry has the following number of primitive operations 
charged to it: 

• O(n2 ) when the entry is added to the pending list, H, O(n2 ) times in Algo
rithm 4.1.1. 

• O(n2 ) when the entry is removed from the pending list, H, O(n2 ) times by 
step II.A of Algorithm 4.1.1. 

• 0(1) when the entry is added to its parse list by step II.B of Algorithm 4.1.1. 

• O(n3 ) when the check for a duplicate entry is made O(n2 ) times by step II.B 
of Algorithm 4.1.1. 

• 0( 1) when the rth list of a parse list is checked for entries in step II.B .1 of 
Algorithm 4.1.1. 

• 0(1) when fr and 9r are evaluated in step II.B.l.i of Algorithm 4.1.1. 

• O(n2 ) when the check for a duplicate entry on the pending list, H, is made 
in step II.B.l.i of Algorithm 4.1.1. 

• 0(1) when fr is evaluated in step II.B.l.ii of Algorithm 4.1.1. 

• O(n) when 0(1) elements are added to G1 (r) in step II.B.l.ii of Algo
rithm 4.1.1. 

• 0(1) when GAr) is checked for elements in step II.B.2 of Algorithm 4.1.1. 

• O(n) when the maximum value of h for the elements of G,(q) is calculated 
in step II.B.2.i of Algorithm 4.1.1. 
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• 0(1) when the entry causes the execution of step I of Algorithm 4.4.1. 

• 0(1) when the entry causes the execution of steps IV and IV.D of Algo
rithm 4.4.1. 

• O(n) when the entry causes the execution of step IV.A of Algorithm 4.4.1. 
I ' 

• 0(1) when the entry causes the execution of step IV.B of Algorithm 4.4.1. 

• O(n) when the entry causes the execution of steps IV.C, IV.C.6, and II.B.3 
of Algorithm 4.4.1. 

• O(n2 ) when the entry caus,es the execution of step IV.C.1 of Algorithm 4.4.1. 

• O(n) when the entry causes the execution of step IV.C.2 of Algorithm 4.4.1. 

• O(n2 ) when the entry causes the execution of steps IV.C.3 and IV.C.3.iii of 
Algorithm 4.4.1. 

• O(n3 ) when the entry causes the execution of step II.C.3.i of Algorithm 4.4.1. 

• O(n3 ) when the entry causes the execution of step II.C.3.ii of Algorithm 4.4.1. 

• O(n2 ) when the entry causes the execution of step II.C.5.i of Algorithm 4.4.1. 

• O(n3 ) when the entry causes the execution of steps IV.C.5.ii and 
IV.C.5.ii.b of Algorithm 4.4.1. 

• O(n3 ) when the check ,for a duplicate entry on the pending list, H, is made 
0( n 2 ) times in step II.B.2.iii of Algorithm 4.1.1. 

Thus, the maximum number of primitive operations charged to an entry is 0( n 3 ). 

The number of primitive operations for all the entries is O(n5 ) since the number 
of entries is 0( n 2). 

The number of primitive operations charged to the elements of a set G,(q) are 
as follows: 

• O(n2 ) when the element is scanned by step II or III.B of Algorithm 4.4.1 for 
O(n2 ) entries. 
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• O(n3 ) when the element is scanned by step IV.C.4 or IV.C.5.iii of Algo
rithm 4.4.1 for O(n2 ) entries. 

• O(n3 ) when the element is obtained in step IV.C.5 of Algorithm 4.4.1 for 
0( n 2 ) entries. 

• O(n") when the element is scanned by step IV.C.5.ii.a of Algorithm 4.4.1 for 
O(n2 ) entries. 

Thus, the maximum number of primitive operations charged to elements of a set 
Gz(q) is O(n4 ). The number of primitive operations for all elements of sets G1 (q) 
is O(n6 ) since the number of elements is O(n2 ). 

The number of primitive operations charged to the sets G1(q) are as follows: 

• O(n2 ) for step III of Algorithm 4.4.1 when the set G1 (q) is empty. 

• O(n3 ) for step IV.C.5 of Algorithm 4.4.1 when the set Gh(t) is empty. 

Thus, the maximum number of primitive operations charged to a set G1 (q) is O(n3 ). 

The number of primitive operations for all the sets G1(q) is O(n4 ) since the number 
of sets is O(n). 

No primitive operations are charged to the parse lists, the pending list, H, or 
the sets B 1 • Finally, the number of primitive operations charged to the algorithm 
object are as follows: 

• O(n) for the initialization of Algorithm 4.1.1 in step I. 

• 0(1) when the pending list, H, is empty in step II of Algorithm 4.1.1. 

Thus, the maximum time charged to the algorithm object is O(n). 
Summing the number of primitive operations for the entries, the parse lists, 

pending list, the sets G1(q) and their elements, and the algorithm object shows the 
time complexity of Algorithm 4.1.1 is O(n6 ). 

Using a trick similar to those in Chapter 3, the time complexity of Algo

rithms 4.1.1 can be improved at the expense of increasing its best-case times. The 
trick is to store the sets G1 ( q) as n lists where the ith list contains all the ( h, p, i) 
elements. The time to initialize a set G,(q) is increased to O(n) but the time to 
perform step IV.5.ii.a is reduced to O(n:.~). This trick reduces the time complexity 
of Algorithm 4.1.1 to O(n5 ). 

The drawback of this trick is that it forces the time complexity of Algo
rithm 4.1.1 to be O(n2 ) regardless of the grammar being used. This is not always 
desirable. For example, the next section shows that for LR( k) grammars the time 
complexity of Algorithm 4.1.2 is 0( n) without this trick. 
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4.4.2 0( n) Time and Space for LR( k) Grammars 

Since the development of Algorithm 4.1.1 is motivated by the desire to find an 
efficient least-cost syntax error recovery scheme for LR( k) parsers, the time and 
space complexities of Algorithm 4.1.1, when the canonical states and functions fq 
and gq for an LR( k) grammar are used, are of particular interest. 

To determine the time and space complexities of Algorithm 4.1.1 for an LR(k) 
grammar, additional analysis ofthe algorithm is required. Two properties of canon
ical LR( k) parsers for LR( k) grammars are crucial to this analysis: 

• the canonical LR( k) parser is deterministic, and 

• the canonical LR( k) parser does not enter an infinite loop for any input string. 

However, the next lemma does not depend on any special properties of LR( k) 
grammars. It shows the relationship between the order in which entries are added 
to their parse lists and the order in which configurations can appear in a sequence 
of moves by the LR( k) parser. 

LEMMA 4.4.1 Given the same Q, fq, and gq for Algonthm 4.1.1 and for the 
canonical LR{k) parser for an LR(k) grammar, ~f[q,h,r] on It precedes [s,i,t] on 
! 1 in an ordered list of entries then the canomcal LR(k) parser can make a sequence 
of moves 

* + 
(O,wl:n+k+I) 1- (alq,wh+I:n+k+d 1- (a:qr,Wt+l:n+k+I) 

in wh~ch the subsequence 

+ 
(,8/s,w,+l:n+k+l) 1- (,Bst,w1+I:n+k+d 

does not occur for any ,8. 

Proof: The theorem is proved by induction on an ordered list of entries, using the 
theorem as the induction hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for the first entry on the ordered list of entries; 
and 

• second, the lemma is proved for the Nth entry on the ordered list of entries, 
assuming it holds for all entries that precede the Nth entry. 
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For the first induction step, let the first entry on the ordered list of entries 
be [q,i,r] on 11 • Step II.B of Algorithm 4.1.1 adds [q,i,r] to 11 so ([q,i,r],j) 
must have been on the pending list, H. Either step II.B.l.i or step II.B.2.iii of 
Algorithm 4.1.1 must have added ([q,i,r],j) to H while processing [0,0,0] on 
10 • Likewise, the first move of the LR( k) parser must be from the configuration 
(0, Wt·n+k+I ). Thus, if step ILB.l.i adds ([q, i, r], j) = ([0, 0, r], 1) to H then the shift 
{0, w 1:n+k+I) f- (Or, w 2:n+k+I) can be made by the LR(k) parser; and if step II.B.2.iii 
adds ([ q, i, r] ,j) = ( [0, 0, r], 0) to H then the reduction {0, Wt·n+k+I) f- (Or, Wt:n+k+I) 

can be made by the LR(k) parser. For either move of the LR(k) parser, there are 
no proper subsequences so, trivially, the lemma holds. 

For the second induction step, the lemma is assumed to hold for all entries on 
the ordered list of entries that precede the Nth entry. Let the Nth entry be [r, i, 8] 
on 11 • Since [r,i,s] is added to 11 by step II.B of Algorithm 4.1.1, ([r,i,8],j) must 
have been on the pending list, H. There are three cases to consider: 

• step II.B.l.i adds ([r,i,8],j) to H, simulating a shift; 

• step II.B.2.iii adds ([r,i,8],j) to H, simulating a reduction by an empty 
production; or 

• step II.B.2.iii adds ([r,i,s],j) to H, simulating a reduction by a non-empty 
production. 

For any ofthe cases, the step involved must have been applied to an entry [qh-I, lh-1, 
qh] on 11h, where his a convenient index which will be specified later. 

In the first case, step II.B.l.i adds ([r,i,s],j) to Hand Algorithm 4.1.1 is 
simulating a shift by the LR(k) parser. Thus, lh = i = j -1, qh = r, and, applying 
Theorem 4.2.1, the LR(k) parser can make the sequence of moves 

* 
(O,Wt:n+k+t) f- (alr,Wj:n+k+I) f- (ars,w1+I:n+k+I)· 

For this case, the lemma is proved by assuming it does not hold for the Nth 

entry [r, i, 8 J on 11 and showing that this assumption leads to a contradiction. If 
[r',i1,81] on ]3 , is an entry on the ordered list of entries which follows [r,i,s] on 13 

and for which the lemma does not hold, the sequence of moves 

+ 
(,Bir';w,'+I:n+k+d f- (,Br181,w3'+I·n+k+I) 

must be embedded in the sequence of moves 

* (0, Wt·n+k+t) f- (air, w1:n+k+l) f- ( ar8, w1+I·n+k+I ). 
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The lemma holds for [Qh-blh_ 1,r] on I 1_ 1 since it precedes [r,i,s] on lj on the 
ordered list of entries. Any entry on the ordered list of entries that follows [r, i, s] 
on I 1 also follows [qh_ 1,lh_1,r] on I 1_ 1. Therefore, the sequence of moves 

+ 
(f31r', wt'+1:n+k+l) f- (f3r' s', W11+1:n+k+l) 

can not be embedded in the sequence of moves 

* + 
(O,w1:n+k+l) f- (81Qh-1,wlh_ 1 :n+k+l) f- (8qh-1T,W1:n+k+l) 

and, letting a = 8qh-b it must end with the move 

(air, Wrn+k+1) f- ( ars, w1+1:n+k+l ). 

Thus, (f3r' s', w1'+1·n+k+l) = ( ars, w1+1:n+k+1) which implies that f3 = a, r' = r, 
s' = s, j' = j and i' =/:- i since [r,i,s] is distinct from [r,i',s]. 

The entry [r,i',s] must be added to I 1 by step II.B of Algorithm 4.1.1 so 
([r,i',s],j) must have been on the pending list, H, and ([r,i',s],j) must have been 
added to H while step II.B was processing an entry [q~,-ul~,-uq~,] on I1~,, where 
h' is a convenient index which will be specified later. There are three types of 
moves step II.B could be simulating while processing [q~'-u l~'-u q~,] on I1~,: 

• a shift, 

• a reduction by an empty production, or 

• a reduction by a non-empty production. 

The first type of move is a shift so l~, = i' = j - 1, q~, = r, and the sequence 
of moves corresponding to [r, i', s] on 11 is 

* 
(0, Wl:n+k+l) f- (air, Wz':n+k+t) f- ( ars, W1+1:n+k+l ). 

However, i' = j -1 implies i' = i and [r,i',s] = [r,i,s] which is a contradiction. 
The second type of move is a reduction by an empty production so lh' = i' = j, 

q;,, = r, and the sequence of moves corresponding to [r, i', s] on Ij is 

However, this sequence of moves does not end with the move 
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which is a contradiction. 
The third type of move is a reduction by a non-empty production so the 

sequence of moves corresponding to [r, i', s] on 11 is 

+ 
(alr,w,'+l:n+k+t) f- (arq~ ... q~, ... q:n,,w1+t:n+k+t) f- (ars,w1+t:n+k+d· 

However, this sequence of moves does not end with the move 

which is a contradiction. 
In the second case, where step II.B.2.iii adds ([r,i,s),j) to H, Algorithm 4.1.1 

is simulating a reduction by an empty production for the LR(k) parser. Thus, 
lh = i = j, qh = r, and, applying Theorem 4.2.1, the LR(k) parser can make the 
sequence of moves 

* 
(O,wl:n+k+l) f- (alr,w1+1:n+k+I) f- (ars,w1+t:n+k+l)· 

For this case, the lemma is proved by showing the assumption that the lemma 
does not hold for the Nth entry [r, i, s] on 11 leads to a contradiction. If [r', i', s'] 
on Ii' is an entry on the ordered list of entries for which the lemma does not hold 
then it must follow [r, i, s] on Ij and the sequence of moves 

(,8lr1, W1'+t:n+k+l) ~ (,Br' s', Wj'+l:n+k+l) 

must be embedded in the sequence of moves 

* (0, Wt:n+k+l) f- (air, WJ+t:n+k+t) f- ( ars, W1+t:n+k+d· 

The lemma holds for [qh-h lh-b r] on 11 since it precedes [r, i, s] on lj on the ordered 
list of entries. Any entry on the ordered list of entries that follows [r, i, s] on lj 
also follows [qh-t,lh-b r] on IJ' Therefore, the sequence of moves 

can not be embedded in the sequence of moves 

* + 
(0, Wt·n+k+t) f- ( 61%-17 W[h_ 1 .n+k+I) f- (6qh-11', WJ+l:n+k+l) 

and, letting a:= 6qh_1 , it must end with the move 

( aqh, Wth:n+k+l) f- ( ars, w1+1:n+k+l ). 
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Thus, (,Br1s1,w3'+l:n+k+I) = (ars,w3+l.n+k+I) which implies that ,8 = a, r' = r, 
s1 = s, j' = j and i1 =/:. i since [r,i,s] is distinct from [r,i1,s]. 

The entry [ r, i 1, s J must be added to 13 by step II.B of Algorithm 4.1.1 so 
([r,i1,s],j) must have been on the pending list, H, and ([r,i1,s],j) must have been 
added to H while step II.B was processing an entry [q~'-ul~,-u q~,] on !1~, where h1 

is a convenient index which will be specified later. There are three types of moves 
step II.B could be simulating while processing [q~,-ulh'-l;qh,] on !1~,: 

• a shift, 

• a reduction by an empty production, or 

• a reduction by a non-empty production. 

The first type of move is a shift so lh' = i1 = j - 1, qh' = r, and, the sequence 
of moves corresponding to [r, i 1, s] on 13 is 

However, this sequence does not end with the move 

which is a contradiction. 
The second type of move is a reduction by an empty production so lh' = i1 = j, 

qh' = r, and the sequence of moves corresponding to [r, i1, s] on 13 is 

( alr, w3+l:n+k+I) f- ( ars, w3+I:n+k+l ). 

However, i1 = j implies i1 = i and [r, i1, s] = [r, i, s] which is a contradiction. 
The third type of move is a reduction by a non-empty production so the 

sequence of moves corresponding to [r, i1, s] on 13 is 

+I I I ) ( ) ( alr, Wa'+l:n+k+l) f- ( arql ... qh' ... qm'' WJ+l:n+k+l f- ars, WJ+l:n+k+l • 

However, this sequence of moves does not end with the move 

( ar, w 3+1:n+k+l) f- ( ars, w3+l:n+k+I) 

which is a contradiction. 
In the third case, where step II.B.2.iii adds ([r, i, s],j) to H, Algorithm 4.1.1 

is simulating a reduction by a non-empty production for the LR(k) parser. Thus, 
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(h,p,j) E Gth(%), (r,i) E Bh-h and, applying Theorem 4.2.1, the LR(k) parser 
can make the sequence of moves 

* 
(O,wl·n+k+d f- (air,w,+l·n+k+l) 

+ 
f- ( arql q2 . · · qm, W J+ 1 :n+k+I) 

f- ( ars, w1+I:n+k+l) 

where m = !RHS(p)j and reduce p E fqm(wJ+1:J+k)· 
For this case, the lemma is proved by assuming it does not hold for the Nth 

entry [r, i, s] on ! 1 and showing that this assumption leads to a contradiction. If 
[r', i', s'] on f 1 , is an entry on the ordered list of entries which follows [r, i, s] on ! 1 

and for which the lemma does not hold, the sequence of moves 

+ 
(/31 r'' w•'+1 n+k+l) f- (j3r' 8 1

' w J' + 1·n+k+I) 

must be embedded in the sequence of moves 

* + 
(0, W1·n+k+I) f- (air, W1+1:n+k+l) f- ( ars, W1+l:n+k+d· 

Applying Lemma 4.2.4 and Lemma 4.2.5, there must be entries 

[r, i, q1] on ft 1 

[ q1, l1, q2] on h 

[qm-2, lm-2, qm-1] on ltm-1 
(qm-1, lm-l, qm] on 11 

which precede [r, i, s J on !1 in the ordered list of entries. The lemma holds the 
entries [qx_ 1 ,lx-l!qx] on h,, for 1 5; :v 5; m since they precede [r,i,s] on 11 on the 
ordered list of entries. Any entry on the ordered list of entries that follows [r, i, s] 
on 11 also follows [qx_1 , lx-b qx] on ltx for 1 5; :v 5; m. Therefore, the sequence of 
moves 

+ 
(j31r',wz'+1:n+k+I) f- (j3r's',wJ'+l:n+k+d 

can not be embedded in the sequence of moves 

* 
(O,wl·n+k+I) f- (8/r,w,+l·n+k+I) 

+ 
f- (6rlqbwh+l:n+k+I) 
+ 
f- ( 6rqdq2, Wt2 +1·n+k+t) 

+ 
f- (8rqlq2···qm,WJ+l:n+k+1) 



99 

and, letting a= 8, it must end with the move 

Thus, (,Br's',wJ'+l:n+k+I) = (ars,wJ+l:n+k+l) which implies that (J = a, r' = r, 
s' = s, j' = j and i' =/= i since [r,i,s] is distinct from [r,i',s]. 

The entry [r, i', s] must be added to 11 by step II.B of Algorithm 4.1.1 so 
([r,i',s],j) must have been on the pending list, H, and ([r,i',s],j) must have been 
added to H while step II.B was processing an entry [q~'-lllh'-ll q~,] on It~,, where 
h' is a convenient index which will be specified later. There are three types of 
moves step II.B could be simulating while processing [q~'-;-ulh'-ll q~,] on J,~,: 

• a shift, 

• a reduction by an empty production, or 

• a reduction by a non-empty production. 

The first type of move is a shift so lh' = i' = j - 1, qh' = r, and, the sequence 
of moves corresponding to [ r, i', s) on 11 is 

However, this sequence of moves does not end with the move 

which is a contradiction. 
The second type of move is a reduction by an empty production so lh' = i' = j, 

qh' = r, and the sequence of moves corresponding to [r, i', s] on Ij is 

However, this sequence of moves does not end with the move 

which is a contradiction. 
The third type of move is a reduction by a non-empty production so the 

sequence of moves corresponding to [r, i', s] on 11 is 



---------------
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This sequence can end with the move 

only if m' - m and rqi ... qh' ... q:n, = rq1q2 ••• qm. However, this implies that 
either 

* 
( a/r, Wr'+l:n+k+t) /- ( alr, Wr+l:n+k+l) 

or 
* 

(alr,wr+1:n+k+I) 1- (alr,w•'+1·n+k+l)· 

Either of these two sequences of moves is possible only if i' = i which is a contra
diction. 1 

The next two lemmas show that, for LR(k) grammars, jB,j and jG,(q)j are 
always less than or equal to one. 

LEMMA 4.4.2 (jB,j ::; 1) Given the same Q, fq, and gq for Algorithm 1,.1.1 
and for the canonical LR(k) parser for an LR(k) grammar, if step II.B.2.ii of 
Algorithm 1,.1.1 computes B_1 , B 0 , ••• , Bm-l then, for -1 ::; i ::; m- 1, jB,j ::::; 1. 

Proof: When step II.B.2.ii of Algorithm 4.1.1 computes B_1 , B0 , ••• , Bm_1 , step II.B 
must be processing an entry [qh-blh-b qh] on Ith for which 

Here, h has been chosen as a convenient index. Since [ qh-blh- h qh] IS on lth, 
Lemma 4.2.3 can be applied repeatedly to show that there must be 

[ qo, lo, qt] on lt1 

[ q17l1, q2] on lt2 

which precede [qh-t, lh-h q,.] on Ith in an ordered list of entries. Furthermore, 
Lemma 4.3.1 shows that there must be 

( qh, lh) E B_t 
(qh-l,lh_t) E Bo 



Applying Lemma 4.2.5, there must also be 

[qh, lh, qh+I] on lth+t 
[qh+I,lh+I,qh+2] on lth+ 2 

[qm-2,lm-2,qm-1] on ltm-l 
[qm-l,lm-l,qm] on ltm 
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where lm = j, m = jRHS(p)j and reduce p E /qm(wlm+I:lm+k)• Applying Theo
rem 4.2 .1 shows that the canonical LR( k) parser can make the sequence of moves 

* 
(O,wl:n+k+d f-

+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-

f-

(a. I qo, Wt0+I:n+k+l) 

( a.qo I ql, Wt 1 +I:n+k+I) 

( a.qoql · · .1 qh-(•+1)' Wth-(•+t)+l:n+k+I) 

( a.qoql · · · qh-(t+I) lqh-n Wth_,+I:n+k+I) 

( a.qoql · · · qh-(•+1)%-t · · .lqh-1, Wth_ 1 +I:n+k+d 

( a.qoql · · · qh-(t+I)qh-t · · · qh-dqh, Wth+I:n+k+I) 

( a.qoql · • • qh-(t+l)qh-• • • · %-lqh · • ./qm, WJ+I:n+k+I) 

( a.qos, WJ+l:n+k+I ). 

The lemma is proved by assuming there are two distinct entries 
(qh-(t+I}llh-(z+I)) and (q~-(t+l)'l~-(•+1)) in Bu and showing that this assumption 
leads to a contradiction. Note that i must be greater than zero since examining 
Algorithm 4.1.2 shows that B_1 = {(qh,lh)} and Bo = {(qh-t,lh_I)}. Lemma4.2.3 
can be applied to (q~-(t+l),l~-(z+l)) in B, to show that there must be entries 

[q~, l~, q~] on 11 ~ 
[q~, l~, q~] on It~ 



-------- - ---
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which precede [qh-l, lh-l, qh] on lth in the ordered list of entries. Applying Theo
rem 4.2.1 shows that the canonical LR(k) parser can make the sequence of moves 

* 
(0, Wl·n+k+l) f-

+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-
+ 
f-

f-

((31 q~, Wfb+l:n+k+l) 

(f3qolq;, Wfi +l:n+k+l) 

((3q~q~ • ' ./ q~-(t+l)' W[h-(•+1)+1:n+k+t) 

((3q~q~ • • • q~-(1 +1) lqh_., W[h_,+l:n+k+l) 

((3q~q~ • • • q~-(•+l)qh-t • • ./qh-b W[h_ 1 +l:n+k+l) 

((3q~q~ · · · q~-(•+l)qh-• • • • qh-llqh, Wth_ 1 +l·n+k+l) 

((3q~q~ • .. q~-(z+l)qh-1 • • .qh-lqh • • ./qm,WJ+l:n+k+t) 

(f3q~s, w J+l·n+k+l) · 

Since the canonical LR( k) parser for LR( k) grammars IS deterministic, the 
two sequences of moves 

* + 
(O,wl·n+k+l) f- (alqu,Wfo+l:n+k+t) f- (aqos,w3+I:n+k+t) 

and 
* + 

(0, Wl:n+k+l) f- ({3/q~, Wfb+l:n+k+t) f- ((3q~s, WJ+l:n+k+t) 

must be subsequences of one larger sequence of moves. However, 

[qh-(z+2)' lh-(z+2)' qh-(t+l)] on lth-(•+ 1 ) and [q~-(1+ 2 ), l~-(1+2), q~-(•+1)] on lt~-<•+ 1 ) pre
cede [qh-lllh-b qh] on lth on the ordered list of entries. Therefore, applying Lemma 
4.4.1, the sequences of moves 

* + 
( O, Wl-n+k+l) f- (a I qh-(z+2), W[h-(•+ 2)+1·n+k+l) f- ( aqh-(z+2) qh-(•+lb Wth-(•+ 1 )+1·n+k+l) 

and the sequence of moves 

* + 
(0, Wl·n+k+l) f- ({3/q~-(•+2)' Wf~-(•+ 2 )+1 n+k+l) f- ((3q~-(•+2)q;~-(•+ 1 )' Wf~-(•+t)+l·n+k+l) 



have the property that the sequence of moves 

+ 
(51qh-t,W[h-t+l:n+k+l) 1- (5%-lqh,Wth+l:n+k+l) 

is not contained in either sequence. But the sequence of moves 

* + 
(O,wl·n+k+l) 1- (alqo,Wto+l·n+k+l) 1- (aqos,wi+l:n+k+l) 

and the sequence of moves 

* + 
(0, Wl·n+k+l) f- (j3/q~, Wtb+l:n+k+l) f- (j3q~s, WJ+l:n+k+d 
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cannot be subsequences of a larger sequence of moves without this property being 
violated which is a contradiction. 1 

LEMMA 4.4.3 (IG,(q)l :::; 1) Gwen the same Q, /q 1 and gq for Algorzthm 4.1.1 
and the canonzcal LR{k) parser for an LR{k) grammar, 

for all 0 :S i :::; n and q E Q. 

Proof: The lemma is proved by assuming there are two distinct entries (h,p,j) and 
(h',p',j') in G1h(qh), and showing that this assumption leads to a contradiction. 
Since the proof is the same if the roles of h and h' are reversed, h is assumed to be 
greater than h'. Applying Lemma 4.2.5 to (h,p,j) in Gth(qh), there must be 

[q," lh, qh+l] on Ith+t 
[qh+l, lh+l, qh+2] on Ith+2 

[qm-2, lm-2, qm-d on Itm-t 
[qm-l,lm-bqm] on Itm 

where lm = j, m - IRHS(p)l and reduce p E fqm(Wtm+l:lm+k)· Also, applying 
Lemma 4.2.5 to (h',p',j') in Gth(qh) and letting qh' = qh and lh' = lh, there must 
be 

[qh'' zh,, q~'+ll on lt~'+t 
[q~'+l, l~'+l, qh'+2] on It~,+2 
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where l~, = j', m' = IRHS(p')l and reduce p' E /q' (wt' +I:l' +k)· Since [qh, lh, qh+I] 
m 1 'f'' m 1 

is on Ith+t, Lemma 4.2.3 can be applied repeatedly to snow that there must be en-
tries 

(qu, lu, ql] on h 
[q1 , lb q2] on Jb 

[qh-2, lh-2, qh-1] on I,h-t 
[qh-t,lh-t,qh] on lth 

which precede [qh, h, qh+t] on lth+t in an ordered list of entries. Applying Theo
rem 4.2.1 shows that the canonical LR(k) parser can make the sequence of moves 

* 
(0, Wt·n+k+l) f-- ( a/qo, Wfo+l•n+k+l) 

+ 
f-- (aqolq1JWl 1+I:n+k+t) 
+ 
f--
+ 
f-- (aqoql. · ·1%-h',wlh-h'+l:n+k+I) 

~ 
+ 
f-- ( aquql · · · qh-h' · · ./qm, WJ+l:n+k+t) 

f-- ( aqos, w3+l:n+k+d· 

Also, applying Theorem 4.2.1 shows that the canonical LR(k) parser can make the 
sequence of moves 

* 
(0, WI·n+k+l) f--

+ 
f- ( aqo I q1, Wt 1 +l:n+k+l) 
+ 
f--
+ 
f--
+ 
f--
+ 
f--
+ 
f--
+ 
f--
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+ 
1- (aqoql · · · qh-h' · · · qh'q~, · · ./q:n,,wJ'+l:n+k+I) 

1- (aquqt ... qh-h's',w11+1:n+k+I)· 

Since the canonical LR( k) parser for LR( k) grammars is deterministic, the 
two sequences of moves must be subsequences of one larger sequence of moves. 
Furthermore, this larger sequence of moves must~ have the sequence of moves 

embedded in the sequence of moves 

+ 
(alqo,wlo+t·n+k+t) 1- (aqoB,W1+t:n+k+t)· 

This must be the case since, if the configuration ( aqoqt ... qx, W!.,+t:n+k+l) appears 
more than once in the sequence of moves, the canonical LR( k) parser will enter an 
infinite loop when w is its input. Thus, the only possible sequence of moves is 

* 
(0, Wt:n+k+I) 1-

+ 
1-
+ 
1-
+ 
1-
+ 
1-
+ 
1-
+ 
1-
+ 
1-
+ 
1-
1-
* 1-

+ 
1-
+ 
1-
+ 
1-

( aqo I ql, W[ 1 +l:n+k+l) 

( aqoql · · · qh-h' · · ./ qh', W[h,+l:n+k+l) 

( aqoqt ... qh-h' · ·. qh'lq~'+l, Wfh'+t +l:n+k+l) 

(aqoQl···qh-h'· .. qh'q~, · .. /q:n,,wJ'+l:n+k+I) 

(aqoql. · .lqh-h's',wJ'+l·n+k+l) 

( aqoql · · · qh-h'l qh-(h'-1)' W[h-(h'-l)+l:n+k+l) 
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+ 
f- (aqoql. · ./qm,wJ+l:n+k+I) 

f- ( aq0 s, Wj+I-n+k+d· 

However, the configuration ( aqoq1 .. ~qh, Wth+l:n+k+d appears twice in this sequence 
of moves which implies the canonical LR( k) parser will enter an infinite loop when 
w is its input. This situation can be avoided only if h = h' = 0 and m = m' = 0, but 
this implies j = j' = lh and that fqm ( Wtm+l:lm+k) contains two different reductions. 
This is a contradiction since the canonical LR( k) parser for an LR( k) grammar is 
deterministic. 1 

Now, showing O(n) space complexity for LR(k) grammars is straightforward. 
It is well known that the canonical LR( k) parser for an LR( k) grammar makes only 
0( n) moves when either accepting or rejecting an input string. Since the addition 
of an entry to the pending list, H, in Algorithm 4.1.1 corresponds to a move by the 
canonical LR(k) parser, there are only O(n) entries on the pending list, H, and 
on the parse lists. Furthermore, Lemma 4.4.2 shows that the sets B, only require 
0(1) space and Lemma 4.4.3 shows that the sets G,(q) only require O(n) space. 
Therefore, the space complexity of Algorithm 4.1.1 is O(n) for LR(k) grammars. 

Showing 0( n) time complexity for LR( k) grammars is also straightforward. 
Together, Lemma 4.4.2 and Lemma 4.4.3 guarantee that step II.B.2.iii adds only 
one entry to the pending list, H. Also, duplicate entries will not occur because 
the canonical LR(k) parser for an LR(k) grammar does not loop. This also al
lows checks for duplicate entries to be eliminated from the algorithm. Finally, 
Lemma 4.4.2 and Lemma 4.4.3 imply that Algorithm 4.4.1 has an 0(1) time com
plexity. This can be seen by noting that all the loops depend upon the sizes of 
these sets, except for the loop in step II.B.2 of the algorithm which scans h· But 
each parse list Ih is organized as IQI parse lists where entries of the form [q,i,r] 
are stored on the rth list. Thus, the loop in step II.B.2 only needs to examine the 
tth list and this list can contain at most one entry since each entry on it implies 
an element is in B1_ 1• Combining the preceding points shows that Algorithm 4.1.1 
has 0( n) time complexity for LR( k) grammars when the canonical LR( k) parser 
is used. 
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CHAPTER V 

THE LEAST-COST LR(k) EARLY'S ALGORITHM 

In this chapter, the Least-Cost LR(k) Early's Algorithm is developed, proved 
correct, and analyzed to determine its time and space complexities. The Least
Cost LR(k) Early's Algorithm is a modification of the Depth-First LR(k) Early's 
Algorithm which finds a least-cost edit of a string such that the resulting string is 
in the language accepted by the underlying LR( k) parser. 

5.1 THE ALGORITHM 

The Least Cost LR(k) Early's Algorithm, Algorithm 5.1.1, can be viewed as be
ing derived from the Depth-First LR(k) Early's Algorithm. From this point of 
view, there are three basic differences between the two algorithms. First, Algo
rithm 5.1.1 simulates an explicitly-advancing LR(k) parser instead of a standard 
LR(k) parser. Second, Algorithm 5.1.1 edits the input string as it is scanned and 
simulates multiple parsers, each of which uses a different edit as its input string. 
Third, Algorithm 5.1.1 computes the cost of the edits required to produce an entry 
on a parse list. 

These differences are reflected by the change in the format of an entry from 
an ordered triple to an ordered septuple [q,u,i,c,d,r,v], where q and rare states 
of the LR(k) parser, u and v are lookahead strings, i is the number of a parse 
list, and c and dare non-negative integers, called the cost components. The looka
head strings, u and v must be present in each entry because a lookahead string 
is an explicit part of any configuration for an explicitly-advancing LR(k) parser. 
The first cost component, c, is the cost of the edits applied up to the point at 
which an explicitly-advancing LR(k) parser is in a configuration (aq,u, z,+l:n+lr+l ). 

The second cost component, d, is the cost of the edits applied during the moves 
from ( aq, u, Za+t:n+k+t) to ( aqr, v, Z;+t,n+k+t)· Together, the two cost components 
represent the total cost of reaching the configuration (aqr,w,z1+1:n+k+t)· 

Because Algorithm 5.1.1 simulates explicitly-advancing LR( k) parsers, it uses 
n + k + 2 parse lists, 10 , 11 , ••. , In+k+l, instead of the n + 2 parse lists used by 
Algorithm 4.1.1. This change arises because; unlike Algorithm 4.1.1, where an 
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ALGORITHM 5.1.1 Least-Cost LR(k) Early's Algorithm 

I. Place [0, e, 0, 0, 0, 0, e] on / 0 ; place ([0, e, 0, 0, 0, 0, e], 0) on the pending list, 
H; and append $k+1 to z. 

II. While H is not empty, perform the following steps: 

A. Remove an entry ([q, v, i, c, d, r, w],j) with the least c + d from H. 

B. If lwl < k then perform the following steps: 

1. Add ([q,v,i,c,d,r,wzJ+1:1+1],j + 1) to H. 

2. If z1+1,1+1 -:/:- $ then let b = W((z1+1:j+1 ~---+ e)) and add ([q, v, i, c, d+ 
b,r,w],j + 1) to H. 

3. If z1,1 =/:.$then for each a E (!;- {zJ+1:J+d), let b = W((e ~---+a)) 
and add ([q,v,i,c,d+ b,r,wa],j) to H. 

4. If ZJ+1:J+1 =f. $ then for each a E (:E - {zJ+1:1+1} ), let b = 
W((zJ+1:1+1 ~---+a)) and add ([q,v,i,c,d+ b,r,wa],j + 1) to H. 

C. If lwl = k then, if there is not an entry [q, v, i,?,?, r, w] on 11 , add 
[q, v, i, c, d, r, w] to lj and perform the following steps: 

1. If there was not an entry [?,?,?,?,?, r, w] on ! 1 before 
[q,v,i,c,d,r,w] was added then perform the following steps: 

1. If shift E fr(w) and s E 9r(w1:I) then add ([r,w,j,c + 
d,O,s,w2:k],j) to H. 

11. For each reduce p E fr(w), let G1 (r,w) = G1 (r,w) U 
{(IRHS(p)I,O,p,w,j) I reduce p E /r(w)}. 

2. If Gj(r,w) is not empty then perform the following steps: 

1. Let m = max({h I (h,b,p,w,o) E Gj{r,w)}). 
11. Use Algorithm 5.1.2 to compute B-1, Bo, .. . , Bm-1· 
m. For each (h,b',p,u,l) E G1 (r,w), (s,t,o,a,b) E Bh-1 and :v E 

9r(LHS(p)), add ([s,t,o,a,b+ b',:v,u],l) to H. 

entry [q,i,r] on !1 uses the lookahead string z1+1:J+k+li Algorithm 5.1.1 uses the 
lookahead string v for an entry [ q, u, i, c, d, r, v] on ! 1 and none of the symbols in 
z1+1:n+k+l have been scanned. The extra parse lists, In+2, In+3, ... , In+k+1 are 
needed so the k end markers that terminate the string can be scanned. 
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ALGORITHM 5.1.2 Calculate Bt 's 

Let [q, v, i, c', d', r, w] on I; be the entry for which the Bt's are to be calculated and 
let m be as given in Algorithm 5.1.1. 

I. Let l = 1, B_1 = {(r,w,j,c'+d',O)}, Bo = {(q,v,j,c',d')}, and let G,(q,v) = 
G,,v(q)U{(n,b+d',p,w,k) I (n+l,b,p,w,k) E Gj(r,w) andn > 0}. 

II. While l < m perform the following steps: 

A. Initialize Bt and get an element ( s', u', h', a', b') from Bt-l· 

B. While Bt-l is not exhausted perform the following steps: 

1. Get an entry [s, Ut, ht, c1-1, dt- 1,8t-h Ut-1] on h~. 

2. While h~ is not exhausted perform the following steps: 

1. If 81 8t-l and u' Ut-l then add the element 
(8t,UL,ht,ct- 11 b' + dt-d to B1, if it is not already in Bt, and let 
Ghl(8t,Ui) = Ghl(8l,ul)U{(n,b+dt-bP,W,k) I (n+l,b,p,w,k) 
E Gh1_ 1 ( 8t-l, u1-d and n > 0}. 

n. Get another entry [8, Ut, ht, cl-h dl-l,sl-h u1_1] on h1. 
3. Get another element (8',u',h',a',b') from Bl-l· 

C. Let l = l + 1. 

The impact of lookahead strings on Algorithm 5.1.1 is pervasive. This is 
because the same configuration may be reached using different edits of the input 
string and the states must be associated with their lookaheads so that the proper 
stack linkage is maintained when step 11.0.2 simulates a reduction. In general, 
where ever a state occurs in Alogirthm 4.1.1, a paired state and lookahead string 
occurs in Algorithm 5.1.1. For example, G;(r,w) has a lookahead string as an 
additional argument and the elements of the B, 's contain a lookahead string paired 
with a state. 

Once the impact of lookahead strings and cost components are taken into 
account, Algorithm 5.1.1 is almost identical to Algorithm 4.1.1. The major change 
is the additon of step II.B which simulates advances using each of the possible 
edits of the next input symbol. Specifically, step II.B.1 simulates the advance 
action of the explicitly-advancing LR(k) parser. Steps II.B.2 thru II.B.4 simulate 
the effect of editing the input string and then advancing using the result of the 
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edit; where step II.B.2 simulates deleting z1+l:J+l, step II.B.3 simulates inserting 
a before z1+1:J+b and step II.B.4 simulates replacing z1+ 1:1+ 1 with another symbol 
a. It is important to note that steps II.B.2 thru II.B.4 do not edit $k+1 since it is 
the end marker and is not actually part of the input string. 

In actual practice, Algorithm 5.1.1 would not execute until the pending list is 
exhausted. Instead, it would execute until an entry of the form [q, u, i, c, d, J, $] is 
added to In+k+l· This allows the algorithm to terminate as soon as the least-cost 
parse of the edited input string is found. 

5.2 EXAMPLE EXECUTIONS 

The advantages of Algorithm 5.1.1 can be seen using two examples. Both of 
these examples assume that Algorithm 5.1.1 terminates when an entry of the form 
[q, u, i, c, d, J, $] is added to In+k+l· In the first example, the parse lists generated 
by Algorithm 5.1.1, using the grammar in Figure 1 and the input string 

a*(a+a*a) 

are given in Figure 10. Comparing Figure 10 to Figure 9 on page 49 shows that, if 
the input string is syntactically correct, the Least-Cost LR(k) Early's Algorithm 
generates parse tables that have the same number of entries as the parse tables 
generated by the LR(k) Early's Algorithm, when the differences between the LR(k) 
parser and explicitly-advancing LR(k) parser are taken into account. 

In the second example, the Least-Cost LR(k) Early's Algorithm is compared 
to Lyon's algorithm, assuming the cost of all single token edits is one. The parse 
lists generated by Algorithm 5.1.1, using the grammar in Figure 1 and the input 
string 

a*a+ 

are given in Figure 11. For this example, step II.B of Algorithm 5.1.1 is assumed to 
have been changed so that only tokens that are valid lookaheads can be edited into 
the lookahead string for an entry. This change makes the algorithm comparable to 
Lyon's algorithm. The change is not used in this dissertation because it needlessly 
complicates the proofs of correctness and completeness for the algorithm. 

Comparing Figure 11 to Figure 7 on page 40 shows that the Least-Cost LR(k) 
Early's Algorithm can avoid much of the useless work performed by Lyon's algo
rithm. The Least-Cost Early's Algorithm only examines the possible single token 
edits since a single token edit can repair the input string. Lyon's algorithm ex
amines many multiple token edits even though it is given the syntactically correct 



Io 
[0, E, 0, 0, 0, 0, E] 

I3 
[TI, *, 2, 0, 0, *I,() 

I6 
[E1 , +, 5, 0, 0, +2 , a] 

Ig 
[*2 , a, 8, 0, 0, a2, )] 
[*2 , a, 8, 0, 0, F4 , )] 

[ +2, a, 6, 0, 0, T4, )] 
[+z, a, 6, 0, 0, EI, )] 

It 
[0, E, 0, 0, 0, 0, a] 

I4 
[*I,(, 3, O, O, (17 a] 

Ir 
[+2, a, 6, 0, 0, a2 , *] 
[+z, a, 6, 0, 0, F2 , *] 
[+z, a, 6, 0, 0, T4, *] 

Iw 
[E1 , ), 9, 0, 0, )I,$] 
[*ll(,3,0,0,F3 ,$] 
[0, a, 1, 0, 0, TI, $] 
[0, a, 1, 0, 0, E3, $] 

Iz 
[0, a, 0, 0, 0, a1, *] 
[O,a,O,O,O,FI,*] 
[0, a, 0, 0, 0, TI, *] 

Is 
[(1, a, 4, 0, 0, a 1, +] 
[(I, a, 4, 0, 0, F11 +] 
[( 1 , a, 4, 0, 0, T17 +] 
[(lla,4,0,0,EI,+] 

Is 
[T4, *, 7, 0, 0, *z, a] 

In 
[E3 , $, 10, 0, 0, j, $] 

Figure 10: Parse Lists for First Example 

input string 
a* a. 
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For the syntax error used in the example, the Least-Cost LR( k) Early's Algorithm 
would do even better if entries with the same cost were assumed to be removed 
from the pending list in last-in-first-out order. 

These two examples demonstrate the inherent advantages of the Least-Cost 
LR( k) Early's Algorithm over other globally least-cost error recovery schemes: 

• no extra work is done for correct input; and 

• only edits which cost the same or less than the least-cost repair are examined. 



Io 
[0, e, 0, 0, 0, 0, e) 
[0, e, 0, 0, 1, 0, (] 

It 
[0, e, 0, 0, 0, O, a] 
[0, e, 0, 0, 1, 0, (] 
[0, (, 0, 1, 0, (17 a] 
[0, a, 1, 0, 1, a1, +] 
[0, a, 1, 1, O, F17 +] 
[0, a, 1, 1, 0, T1 , +] 
[0, a, 1, 1, 0, E3, +] 

/2 
[0, a, 0, 0, 0, a1, *] 
[0, a, 0, 0, 0, F17 *] 
[0, a, 0, 0, 0, T1 , *] 
[0,(,1,1,0,(t,*) 
[ ( 1 , a, 1 , 1, 0, a 2 , *) 
[( 1 , a, 1, 1, 0, F2 , *] 
[(17 a, 1, 1, 0, T2, *] 
[ E3, +, 1, 1, 0, + t , *) 
[0, a, 0, 0, 1, a17 +] 
[0, a, 0, 1, 0, F1 , +] 
[0, a, 0, 1, 0, T17 +] 
[0, a, 0, 1, 0, E3 , +] 
[T17 *, 2, 0, 1, *t, (] 

Figure 11: Parse Lists for Second Example 

5.3 PROOF OF CORRECTNESS 
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This section shows that Algorithm 5.1.1 correctly simulates an explicitly-advancing 
LR(k) parser for edits of the input string, when the algorithm and the parser use 
the same sets of states, Q, and functions fq and 9q· The simulation is correct if for 
every entry [q,u,i,c,d,r,v] that Algorithm 5.1.1 places on a parse list 11 , there is 
a corresponding sequence of moves 

(0, e, yy') ~ ( alq, u, y') ~ ( aqr, v, e) 

that can be made by the explicitly-advancing LR(k) parser and there exist edit 

sequences SandS' such that Zt:z ~ y, Za+t:J ~ y', W(S) = c and W(S') =d. 
Algorithm 5.1.1 uses the pending list, H, to hold entries waiting to be pro

cessed by the algorithm. The following lemma establishes that entries added to 
the pending list are eventually processed. 

LEMMA 5.3.1 (Every Entry Added to the Pending List is Processed) If 
([q,u,i,c,d,r,v],j) is added to the pendmg l'tst, H, then 'tt will eventually be pro
cessed by step II. C of Algonthm 5.1.1. 



I3 
(TI, *, 2, 0, 0, *I, a] 
[T2, *, 2, 1, 0, *2, a] 
[0, a, 0, 1, 0, all a] 
[E3, +, 2, 1, 0, +I, a] 
[Til*, 2, 0, 1, *1, (] 
[*I,(, 2, 1, O, (Il a] 
[*I, a, 3, 0, 1, a1, *] 
[*I, a, 3, 1, 0, F3 , *] 
[ 0, a, 1, 1, 0, TI , *] 

Is 
[E3 , $, 5, 1, 0, J, $] 

I4 
[*lla,3,0,0,at,+] 
[*b a, 3, 0, 0, F3, +] 
[0, a, 1, 0, 0, Til+] 
[0, a, 1, 0, 0, E3, +] 
[*2 , a, 3, 1, 0, a 2 , +] 
[*2, a, 3, 1, 0, F4, +] 
[(1! a, 1, 1, 0, T2, +] 
[(I, a, 1, 1, 0, EI, +] 
[+I, a, 3, 1, 0, a1, +] 
[+t,a,3,1,0,FI,+] 
[+t,a,3,1,0,T3,+] 
[0, a, 0, 1, 0, E3, +] 
[(1, a, 3, 1, 0, a2, +] 
[(t, a, 3, 1, 0, F2, +] 
[(Il a, 3, 1, 0, T2, +] 
[(Il a, 3, 1, 0, E1 , +] 
[*I, (, 3, 1, 0, (1, +] 
[*ll a, 3, 0, 1, ai, *] 
[*t,a,3,1,0,F3,*] 
[0, a, 1, 1, 0, Th *] 
[Th *, 3, 1, 0, *I,+) 
[E3,+,4,0,1,+I,a] 

Figure 11: continued 

Is 
[E3, +, 4, 0, 0, +I,$] 
[EI, +,4, 1, 0, +I,$) 
(Tt, *, 4, 1, 0, *I,$) 
[*t, a, 3, 0, 1, at,$] 
[*I, a, 3, 1, 0, F3 , $] 
[0, a, 1, 1, O, T1, $) 
[0, a, 1, 1, 0, E3 , $] 
[+I, a, 4, 0, 1, a I, $] 
[+I, a,4, 1, 0, F17 $] 
[+I, a, 4, 1, 0, T3 , $] 
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Proof: A entry can remain unprocessed only if Algorithm 5.1.1 adds an unbounded 
number of entries to the pending list, H. The lemma is proved by showing that the 
number of entries added to H is bounded. There are four steps that add entries to 
the pending list: step I; step II.B; step II.C.l.i; and step II.C.2.iii. 

Before analyzing the steps that add entries to H, the number of entries on 
a parse list I 3 must be shown to be bounded. Step II.C does not add duplicate 
entries of the form [q,u,i, ?, ?,r,v] to I3 , where lvl = k. Therefore, the number of 
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entries on 13 is bounded since q, u, i, r, v and j are all bounded. 

Proceeding with the analysis of the steps that add entries to H, note that 
step I only adds one entry. Step II.C.l.i adds a bounded number of entries, 
([q,u,i,c,d,r,v],j) where !vi < k, since it adds at most one such entry for each 
entry of the form [q,u,i, ?, ?,r,v] on 13 where !vi= k. 

Examining step II.B shows that it adds a bounded number of entries for each 
entry it processes. Step II.B only processes entries ([q,u,i,c,d,r,v],j) for which 
lvl < k. The only other steps which can add these entries are step I and step II.C.l.i 
and it has already been shown that the number of entries added by these steps 
is bounded. Furthermore, when step II.B processes an entry ([q,u,i,c,d,r,v],j), 
either jv I or j is increased in the resulting entry. Both lv I and j are bounded so 
the total number of entries added by step II.B is bounded. 

The number of entries added by step II.C.2.iii is bounded by 

IG1 (r,v)l· rrfax(jB,I). 
•=1 

The elements of IGAr,v)l are of the form (h,b',p,u,l). The values of h, p, u and 
l are bounded. Furthermore, the possible values of b' are bounded since b' is the 
sum of a bounded number of d's from entries of the form [q,u,i,c,d,r,v] where 
lvl = k. Therefore, IGAr,v)l is bounded. 

The elements of jB,I are of the form (s, t, o, a, b). The values of s, t and o 
are bounded. The possible values of a are bounded since a must be from an entry 
[ q, u, i, a, d, r, v] where lv I = k. The possible values of b are bounded since b is the 
sum of a bounded number of d's from entries of the form [ q, u, i, c, d, r, v] where 
lvl = k. Therefore, jB,j is bounded. 

Since IGAr,v)l and jB,j are bounded, the number of entries added by step 
II.C.2.iii is bounded. Each of the steps - step I, step II.B, step II.C.l.i, and 
step II.C.2.iii - which add entries to the pending list, H, has been shown to add 
a bounded number of entries for each entry it processes. Therefore, the number of 
entries added to H is bounded. 1 

As in the proofs of correctness and completeness for Algorithm 4.1.1, the 
concept of a sequence in which entries can be added to their parse lists is important 
and leads to the following definition. 

Definztzon 5. 3.1 (Ordered Lzst of Entries} An ordered list of entries is a list of 



entries and their parse lists 

[q1 ,u1,i17 c1 ,d11 r 1,v1] on I 31 

[q2,u2,i2,c2,d2,r2,v2] on I 32 
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where rx f. 0 for 1 ~ :v ~ N and the entries are given in a sequence in which 
they can be added to their parse lists by step II.C of Algorithm 5.1.1 during an 
execution of Algorithm 5.1.1. 

Entries of the form [0, e, 0, 0, d, 0, u] on I3 are not on any ordered list of entries. 
They are excluded because [0, e, 0, 0, 0, 0, e] is not added to its parse list by step II.C 
of Algorithm 5.1.1. 

Closely related to the concept of ordering a list of entries is the notion that, 
regardless of any specific ordering, an entry or an entry from a set of entries must 
be added to its parse list before another entry can be added to some other parse 
list. This notion is captured in the following definition. 

Definition 5.3.2 {Direct Precursor) Given two entries [?, ?, ?, ?, ?,q,u] on I1 

and [q, u, i, c, d, r, v] on Ij, the entry [?,?,?,?,?, q, u] on I 1 is said to be a direct 
precursor of the entry [q,u,i,c,d,r,v] on IJ" 

For Algorithm 5.1.1, the exact order in which entries are added to their parse 
lists or to the pending list, H, is critical to proving properties of the algorithm. The 
exact order is important because it affects the calculation of the cost components 
of the entries. The following definition defines a predecessor/successor relationship 
between entries on H. This relationship captures the idea of one entry being added 
to H due to the processing of another entry. 

Definition 5.3.3 {Direct Predecessor) If step II.B or II.C processes an entry 
([q,u,h,a,b,r,v],l) and adds ([s,w,i,c,d,t,y],j) to H then ([q,u,h,a,b,r,v],l) is 
called the direct predecessor of ([s, w, i, c, d, t, y], j) and ([s, w, i, c, d, t, y],j) is called 
the direct successor of ([q,u,h,a,b,r,v],l). 

The direct predecessor/successor relationship is denoted by 1=, the transitive 
+ 

closure of the relationship is denoted by 1=, and the reflexive and transitive closure 
* 

of the relationship is denoted by I=· By convention, ([0, e, 0, 0, 0, 0, e], 0) is a direct 
predecessor of itself. The predecessor/successor relationship is extended to entries 
on their parse lists with the following definition. 



Defindion 5.3.4 {Direct Predecessor of an Entry on a Parse List) 
If [q,u,h,a,b,r,v] is on It, [s,w,i,c,dn,t,yn] is added to I 1n and 

([q,u,h,a,b,r,v],l) I= ([s,w,i,c,dllt,y1],ji) 
I= ([s,w,i,c,d2,t,y2],}2) 

I= 
J= ([s,w,i,c,dn,t,yn],jn) 
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where IYxl < k for 1::; a:< n then [q,v,h,a,b,r,v]onit is called the direct 
predecessor of [s, w, i, c, dn, t, Yn] on I1n and [s, w, i, c, dn, t, Yn] on I1n is called the 
direct successor of [ q, u, h, a, b, r, v] on I,. 

For entries on their parse lists, the predecessor/successor relationship is de
noted as 

([q,u,h,a,b,r,v] on It) I= ([s,w,i,c,d,t,y] on I1 ). 

By convention, [0, E, O, O, 0, 0, €] on I 0 is a direct predecessor of itself. Note that an 
entry has a unique predecessor and no entry is a predecessor of itself, except for 
[0, E, O, 0, 0, 0, €] on I 0 • 

The following lemma establishes that step II.B of Algorithm 5.1.1 simulates 
the advance moves of an explicitly-advancing LR(k) parser for some edit of the 
input string. 

LEMMA 5.3.2 (Step II.B Simulates Advances) If([q,u,i,c,d,r,vw],j), where 
lvwl = k, is added by step II.B of Algorzthm 5.1.1 to the pending list, H, then ez
ther step I or step II. C.1.i of Algorithm 5.1.1 adds an entry ([q, u, i, c, 0, r, v], i) to 
H where lvl < k, 

+ 
([q,u,i,c,O,r,v],i) I= ([q,u,i,c,d,r,vw],j), 

and the explicztly-advanczng LR(k) parser can make the sequence of moves 

a• 

( ar, v, w) 1- ( ar, vw, €) 

for some edit sequence S such that d = W(S) and Z1+t:1 ~ w. 

Proof: When step II.B processes an entry ([q,u,i,c,d,r,v],i), it adds an entry 
([q,u,i,c,d + b,r,va],j) to the pending list, H, for which (zt+l'J f-+ a), b = 
W((zt+l=J f-+ a)), and Ivai > lvl or j > i. Thus, if step II.B adds an entry 

I 

([q,u,i,c,b' + L bx,r,a1a2 ... at],j,) 
x=l 



117 

to H, it must be processing an entry 

1-1 
([q, u, z, c, b' + L bx, r, a1a2 ... at-l],Jt-l) 

x=l 

for which it-l ::; }t, (z11 _ 1 +1:11 14 at) and bt = W((~11_ 1 +1:j1 14 at)). 
Let ([q,u,i,c,d,r,vw],j) be ([q,u,i,c,b' + .E~=1 bx,r,va1a2 ••• at],jt) where 

w = a1 ••• at. In general, there is a sequence of entries 

([q, u, i, c, b', r, v],jo) I= ([q,u,i,c,b' + bbr,va1],ji) 

I= 
1-1 

I= ([q,u,i,c,b' + L bx,r,val·· .at-l],it-d 
x=l 

l 

I= ([q,u,i,c,b' + L bx,r,val ... at],jt) 
x=l 

where ([q,u,i,c,b',r,v],j0 ) is the only entry in the sequence not added to H by 
step II.B. For 1 ::; :v ::; l, it must be that ix-1 ::; ix, (z1.,_1 +1·J., 14 ax), and 
bx = W((z1.,_1 +1:1., 14 ax)). Here, ax may be e and lva1 .•. atl = k even though l 
may be greater than k. 

Since ([q,u,i,c,b',r,v],j0 ) is processed by step II.B, lvl < k, the only other 
steps that can add entries of the form ([q, u, i, c, b', r, v] ,j0 ), where I vi < k, are step I 
and step II.C.i. Entries added by these steps have the form ([q,u,i,c,O,r,v],j0 ). 

Therefore, b' = 0 and there exists an edit sequence 

for which W(S) = d = .E~=1 bx. Finally, inspection of the explicitly-advancing 
LR( k) parser shows that for any state r the parser can always make the sequence 
of moves 

a• 
( ar, v , w) f- ( ar, vw, e) 

where lvl < k and lvwl = k. 1 

The next lemma establishes a technical property of the initial state for Algo
rithm 5.1.1. 

LEMMA 5.3.3 (0 is the Unique Initial State) If [q,u,i,c,d,r,v] M on 11 and 
r = 0 then q = 0, u = e, i = 0, c = 0, 

([O,e,O,O,O,O,e] on 10 ) I= ([O,e,O,O,d,O,v] on 11 ), 



118 

and the expltcitly-advanczng LR(k) parser can make the sequence of moves 

a• 

(O,e,v) f- (O,v,e) 

for some edit sequence S such that d = W(S) and z1:3 ~ v. 

Proof: The definition of an LR( k) parser does not allow 0 E 9s (X) for any 8 or X. 
Thus, only step I or step II.B of Algorithm 5.1.1 can add ([q,u,i,c,d,O,vw],j) to 
H. If step I adds the entry, the lemma must be true since the only entry added by 
step I is ([0, E, 0, 0, 0, 0, e], 0). 

If step II.B adds ((q, u, i, c, d, O, vw], j) to H then, applying Lemma 5.3.2, either 
step I or step II.C.l.i must add ([q,u,i,c,O,O,v],l) to H, where 

+ 
([q,u,i,c,O,O,v],l) I= ([q,u,i,c,d,O,vw],j), 

and the explicitly-advancing LR( k) parser must be able to make the sequence of 
moves 

a• 

(ar,v,y) f- (ar,vw,E) 

for some edit sequenceS such that d = W(S) and Zl+I:J ~ w. Again, the definition 
of an LR(k) parser does not allow 0 E 9s(X) for any 8 or X so ([q,u,i,c,O,O,v],l) 
can not be added by step II.C.l.i of Algorithm 5.1.1. The only entry added by 
step I is ([0, E, 0, 0, 0, 0, e], 0). Therefore, q = O, u = E, i = 0, c = 0, v = E, l = O, 
a= E, and 

+ 
([0, E, 0, 0, 0, 0, e], 0) I= ([0, E, 0, 0, d, 0, w],j). 

I 

The following lemma shows that every entry has a direct precursor which is 
on a parse list when the entry is itself added to its parse list by Algorithm 5.1.1. 

LEMMA 5.3.4 (Every Entry has a Direct Precursor) If there zs an entry 
[q,u,i,c,d,r,v] on a parse lzst 11 then there Man entry[?,?,?,?, ?,q,u] on parse 
list 11 • 

Proof: The lemma is trivially true for entries of the form [0, E, 0, 0, d, 0, v] on Iu. 
For all other entries, the lemma is proved by induction on an ordered list of entries, 
using the lemma as the induction hypothesis. The induction proceeds in two steps: 

• first, the lem~a is proved for the first entry on the ordered list of entries; 
and 
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• second, the lemma is proved for the Nth entry on the ordered list of entries, 
assuming it holds for all entries before the Nth entry on the ordered list of 
entries. 

For the first induction step, let [r, v, i, c, d, 8, w] on Ij be the first entry on 
the ordered list of entries. Since the first entry must be added to its parse list by 
step II.C of Algorithm 5.1.1, ([r,v,i,c,d,8,w],j) must have been on H. Step I or 
step II.C.l.i did not add ([r,v,i,c,d,8,w],j) to H since if one of these steps adds 
([r,v,i,c,d,8,w],j) then lvl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r, v, i, c, d, 8, w],j) to H, or 

• step II.C.2.iii adds ([r,v,i,c,d,8,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r, v, i, c, d, 8, w],j) to H 
so, applying Lemma 5.3.2, either step I or II.C.l.i of Algorithm 5.1.1 must add 
([r,v,i,c,0,8,w1:tl,i) to H where t < k. Step I could not add ([r,v,i,c,0,8,w 1.t],i) 
since that implies 8 = 0 and entries for which 8 = 0 are not on an ordered list of 
entries. Therefore, step II.C.l.i must add ([r, v, i, c,,O, 8, w1:t], i) to H. Examining 
step II.C.l.i shows this step must be processing an entry [q, u, l, a, b, r, v] on I, which 
is a direct precursor of [r,v,i,c,d,8,w] on Ir 

In the second case, step II.C.2.iii adds ([r, v, i, c, d, 8, w],j) to H. Step II.C.2.iii 
must be processing an entry [0, E, 0, 0, b, 0, u] on It since this is the only kind of entry 
that is not on an ordered list of entries. Examining steps II.C.l.ii and II.C.2 of 
Algorithm 5.1.1 shows that [r,v,i,c,d,8,w] = [O,u,l,c,d,8,v] and [O,E,O,O,b,O,u] 
on It is a precursor for the entry. 

For the second induction step, the lemma is assumed to hold for all en
tries before the Nth entry on the ordered list of entries. Let the Nth entry be 
[r, v, i, c, d, 8, w] on Ir Since the Nth entry is added to its parse list by step II.C of 
Algorithm 5.1.1, ([r, v, i, c, d, 8, ~],j) must have been on Hand lwl = k. Step I and 
step II.C.1.i did not add ({r, v, i, c, d, 8, w],j) to H since if one of these steps adds 
([r,v,i,c,d,8,w],j) then lwl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r, v, i, c, d, 8, w],j) to H, or 

• step II.C.2.iii adds ([r,v,i,c,d,8,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,c,d,8,w],j) to 
H. Applying Lemma 5.3.2, either step I or step II.C.l.i of Algorithm 5.1.1 adds 
([r,v,i,c,0,8,W1:t],i) to H where t < k. Step I could not add ([r,v,i,c,0,8,Wi·t],i) 
since that implies 8 = 0 and that [r,v,i,c,d,8,W] on I 1 is not on the ordered list 
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of entries. Therefore, step II.C.l.i adds ([r,v,i,c,O,s,w1:t],i) to H. Examining 
step II.C.l.i shows this step must be processing an entry [q,u,l,a,b,r,v] on I, 
which is a direct precursor of [r, v, i, c, d, s, w] on Ir 

In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) 
to H. This implies that (r,v,i,c,b) E Brn-1 for some m ~ 0. Examining Algo
rithm 5.1.2 shows that if (r,v,i,c,b) E Brn_1 then, when m = 0, [?, ?, ?, ?, ?,r,v] is 

I d h 0 [ . ? ? ? ?] . I s· [ . ? ? ? ?] I on ,an ,w enm>, r,v,t,.,.,.,. 1son ?. 1nce r,v,t,.,.,.,. on 7 pre-
cedes [r, v, i, c, d, s, w] on IJ on the ordered list of entries, the induction hypothesis 
can be applied to show that there must be an entry [?,?,?,?,?, r, v] on I, when 
m > 0. Thus, regardless of the value of m there is an entry[?,?,?,?, ?,r,v] on I,. 
I 

The next two lemmas establish precursor relationships that can be inferred 
among entries on their parse lists at key points during the execution of Algo
rithm 5.1.1. 

LEMMA 5.3.5 If Algorithm 5.1.2 tS applied to [qt, u1, lt, co, du, qu, uo] on Ito 
and 

then there e:c'tst 

:1 0 rn-1 ) tJm-
:.s: - O , L d, E Brn-1 

'tj ffi > 1=U 

[qrn+ll Urn+b lrn+b Crn, drn, qrn, Urn] on Itm 
[qrn, Urn, lrn, Crn-1l drn-1' qrn-b Urn-d on Itm-1 

Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved form= 0 and m = 1; and 

• second, the lemma is proved for m = N, where N > 1, assuming it holds 
when m = N -1. 

For the first induction step, m = 0 or m = 1. Examination of step I of 
Algorithm 5.1.2 shows that {(q0 ,u0 ,l0 ,c0 +d0 ,0)} E B-1 or {(q1,ui,l1lco,du)} E Bu 

only if [qt,ubli,co,du,qo,uo] is on Ito· 
For the second induction step, m = N, where N > 1, and the lemma is as

sumed to hold when m = N -1. If (qN, UN, lN, c', d') E BN-1 then step II.B.2.i of Al
gorithm 5.1.2 added ( qN, uN, lN, c', d') to BN_1 and there was an entry 
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[qN, UN, lN, c', dN-1, qN-1, UN-1] on IN-1, and an element (qN_ 1, UN_ 1, lN_1, CN_1, d'
dN-1) E BN-2 where c' = CN-1· Since (qN-1,uN-t,lN-1,cN-t,d1 - dN_t) E BN_2 , 

the induction hypothesis can be applied to show that there exist 

[qN,uN,lN,cN-1,dN-1,qN-huN-1] on J,N-t 
[qN-b UN-1, [N-1, CN-2, dN-2, qN-2, UN-2] on ftN_ 2 

N-2 N-1 
where d'- dN -1 = L dzo Therefore, d' = L dzo Finally, applying Lemma 5.3.4 to 

t=O t=O 

[qN,UN, [N, CN-b dN-t, qN-1, UN-1] on JN-1 shows that [qN+t,UN+b [N+1, CN, dN, qN, 
uN] is on ltN· 1 

m 

LEMMA 5.3.6 If(h, L dx,p,um,lm) E Gth(qh,uh) then there exist 
x=h+1 

[qh, uh, lh, ch+h dh+l, qh+b uh+l] on lth+t 
[ qh+l, Uh+l, [h+l, Ch+2, dh+2, qh+2, Uh+2l on fth+ 2 

where reduce p E fqm(um) and 'm = IRHS(p)l. 

Proof: The lemma is proved by induction on m - h, using the lemma as the 
induction hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved form- h = 0; and 

• second, the lemma is proved form- h = N, where N > 0, assuming it holds 
for m - h = N - 1. 

For the first induction step, m-h = 0. Thus, h = m = IRHS(p)l. Examination 
of step II.C.l.ii of Algorithm 5.1.1 shows that it adds (IRHS(p)I,O,p,um,i) to 
Gtm(qm,um) only if [qm-1,um-1,lm-bCm,dm,qm,um] is on ltm and reduce P E 
fqm(um)· No other step of either Algorithm 5.1.1 or Algorithm 5.1.2, particularly 
step II.B.2.i of Algorithm 5.1.2, can add an element (h,O,p,um,lm) to Gtm(qm,um) 
for which h = IRHS(p)l. 
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For the second induction step, m- h = N, where N > 0, and the lemma 
IS assumed to hold form- h < N- 1. An element (h,d',p,urn,lrn) for which 
m- h = N and N > 0 can only be added by step I or step II.B.2.i of Algo
rithm 5.1.2. Step I or step II.B.2.i adds (h,d',p,urn,lrn) to Gth(qh,uh) only if there 
is an entry [qh, uh, lh, ch+l, dh+h qh+h uh+l] on lth+t and (h+ 1, d'- dh+l,p, Urn, lrn) E 
Gth+t (qh+l, uh+I)· Applying the induction hypothesis to (h + 1, d'- dh+l ,p, urn, lrn), 
for which m- h = N- 1, there must be " 

[qh,uh,lh,ch+l,dh+l,qh+l,uh+l] on lth+t 
[qh+l, uh+h lh+h ch+2' dh+2' qh+2' uh+2] on lth+ 2 

rn rn 
where reduce p E fqm(urn) and d'- dh+l = L dx. Thus, d' = L dx. Fur-

x=h+2 x=h+l 
thermore, applying Lemma 5.3.4 to [qh, uh, lh, ch+l, dh+l, qh+ll uh+l] on Ith+t shows 
that there exists [qh_ 1 ,uh-1llh-l,ch,dh,qh,uh] on lth· 1 

THEOREM 5.3.1 Gwen the same Q, fq, and 9q for Algorithm 5.1.1 and the 
explicitly-advancing LR(k) parser, if an entry [r, v, i, c, d, s, w] is added to a parse 
list 13 , where s =J=. 0, then the explicitly-advancing LR(k) parser can make the 
sequence of moves 

* + a• 
(O,e,yy') I- (alr,v,y') I- (ars, ?, ... )I- (ars,w,e) 

for which there exist edit sequences S and S' such that zl'l ~ y 1 Z1+1:J 

W(S) = c and W(S') =d. 

s' 
~ y', 

Proof: The theorem is proved by induction on any ordered list of entries, using the 
theorem as the induction hypothesis. The induction proceeds in two steps: 

• first, the theorem is proved for the first entry on an ordered list of entries; 
and 

• second, the theorem is proved for the Nth entry on an ordered list of entries, 
assuming it holds for all entries before the Nth entry. 

For the first induction step, let [r, v, i, c, d, s, w] on 13 be the first entry on 
the ordered list of entries. Since the first entry must be added to its parse list by 
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step II.C.2 of Algorithm 5.1.1, ([r, v, i, c, d, 8, w],j) must have been on H. Step I 
and step II.C.l.i did not add ([r,v,i,c,d,8,w],j) to H since if one of these steps 
adds ([r,v,i,c,d,8,w],j) then lwl < k. Therefore, there are only two cases to 
consider: 

• step II.B adds ([r, v, i, c, d, 8, w],j) to H, or 

• step II.C.2.iii adds ([r,v,i,c,d,8,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,c,d,8,w],j) to 
H so, applying Lemma 5.3.2, either step I or II.C.l.i of Algorithm 5.1.1 adds 
([r,v,i,c,0,8,w1:t],i) to H. Furthermore, the explicitly-advancing LR(k) parser 
can make the move 

a• 

(a8,Wt:t,Wt+1-k) 1- (a8,w,e) 

and there exists an edit sequenceS' such that Z 1:3 ~ Wt+l:k and d = W(S'). Step I 
could not add ([r,v,i,c,0,8,w1:t],i) since that implies 8 = 0 and entries for which 
8 = 0 are not on an ordered list of entries. Therefore, step II.C.l.i must add 
([r,v,i,c,0,8,w 1.t],i) to H. Examining step II.C.l.i shows this step must also be 
processing an entry [q, u, l, a, b, r, v] on J, for which shift E /r( v) and 8 E 9r( v ). 
Thus, w1:t = v2:k, c = a + b and the LR( k) parser is able to make the move 

Furthermore, lvl = k and r must be 0 since [q,u,l,a,b,r,v] is not on the ordered 
list of entries. Applying Lemma 5.3.3, [q, u, l, a, b, r,v] = [0, e, 0, 0, b, 0, v] and the 
explicitly-advancing LR(k) parser can make the sequence of moves 

a• 

(0, e,v) 1- (O,v, e) 

for which there exists an edit sequence S such that z1:1 ~ v and b = W(S). 
Therefore, the explicitly-advancing LR(k) parser can make the sequence of moves 

* a• 
(0, e, VWt+l:k) 1- (0, v, Wt+l:k) 1-(08, WI·t, Wt+l:k) 1- (08, w, e) 

where z1:1 ~ v, z,.3 ~ Wt+l'k, c = W(S), and d = W(S'). 
In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,i,c,d,8,w],j) 

to H. This step must be processing an entry [q,._lluh-blh-t,Ch,dh,qh,uh] on 
11h where his an arbitrary index chosen for convenience. Furthermore, examining 
step II.C.2.iii shows that 8 E 9r(LHS(p)). Also, when the entry 
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and an 
( q0 , u 0 , 10 , c', d') E Bh-l 

where c = c', d = b + d', q0 = r, u0 = v, and 10 = i. Applying Lemma 5.3.5, there 
must be 

where c' = { 

must also be 

[qo, uo, lo, c17 d17 q17 ui] on lt1 

[q17 u 17 l1,c2,d2,q2,u2] on lt2 

h 
co+du ifh=O 
c1 if h > 0 

and d' = L dx. Applying Lemma 5.3.6, there 
x=l 

[qh,uh,lh,ch+l,dh+l,qh+lluh+l] on lth+t 

[qh+l, uh+h lh+h ch+2' dh+2' qh+2' uh+2] on lth+ 2 

[qrn-2, Urn-2, lrn-2, Crn-1, drn-17 qrn-l, Urn-1] on ftm-t 

[qrn-17 Urn-h lrn-17 Crn, drn, qrn, Urn] On ftm 

rn 
where Urn= w, lrn = j, m = IRHS(p)l reduce p E fqm(w), and b = L dx. 

x=h+l 
Note qrn must be 0 since if qrn =1- 0 then [qrn-l,Urn-l,lrn-l,crn,drn,qrn,urn] would 

precede ([r,v,~i,c,d,s,w],j) in the order which contradicts the assumption that 
([r,v,i,c,d,s,w],j) is the first entry in the order. Applying Lemma 5.3.3 recur
sively to [qrn-l,urn-hlrn-l,crn,drn,qrn,urn], shows that, for 0 ~ x < m, qx = 0, 
Ux = e, Cx = 0, and dx = 0. Furthermore, Crn = 0 and the explicitly-advancing 
LR( k) parser can make the sequence of moves 

a• 

(O,e,w) 1- (O,w;e) 

for which there exists an edit sequenceS such that z1.J ~Urn and drn = W(S). 
Since, for 0 ~ x < m, iuh I = k and ux = e, h must equal m. Also, the 

explicitly-advancing LR( k) parser can make the move 

(0, w, e) 1- (Os, w, e) 
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since reduce p E fqm(w) and s E 9r(LHS(p)). Therefore, the explicitly-advancing 
LR( k) parser can make the moves 

a* 

(O,E,w) f- (O,w,E) f- (Os,w,E) 

where z1:3 ~ w, c = 0, and d = W(S). 
For the second induction step, the theorem is assumed to be true for all entries 

on the ordered list of entries that precede the Nth entry. Let the Nth entry be 
[r, v, i, c, d, s, w] on Ir Since the Nth entry is added to its parse list by step II.C of 
Algorithm 5.1.1, ([r,v,i,c,d,s,w],j) must have been on Hand lwl = k. Step I and 
step II.C.l.i did not add ([r,v,i,c,d,s,w],j) to H since if one of these steps adds 
([r,v,i,c,d,s,w],j) then lwl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r,v,~,c,d,s,w],j) to H, or 

• step 11.0.2.iii adds ([r,v,i,c,d,s,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r, v, i, c, d, s, w],j) to H 
and Algorithm 5.1.1 simulates an advance. Applying Lemma 5.3.2, either step I 
or step II.C.l.i of Algorithm 5.1.1 adds ([r,v,i,c,O,s,w1:t],i) to H. Furthermore, 
the explicitly-advancing LR( k) parser can make the move 

a• 

(as,w1:t,Wt+l:k) f- (as,w,e") 

and there exists an edit sequenceS' such that z,.3 ~ Wt+l:k and d = W(S'). Step I 
could not add ([r,v,i,c,O,s,w 1.t],i) since that implies s = 0 and [r,v,i,c,d,s,w] on 
13 is not an entry in the order. Therefore, step II.C.l.i adds ([r,v,i,c,O,s,wt:tl,i) 
to H and Algorithm 5.1.1 simulates a shift. Examining step II.C.l.i shows this 
step must be processing an entry [q, u, l, a, b, r, v] on J, for which shift E /r( v) and 
s E 9r(v). Thus, w 1.t = v2:k, c =a+ band the explictly advancing LR(k) parser is 
able to make the move 

(/31r,v,E) f- (f3rs,w1:t,E). 

If r = 0, Lemma 5.3.3 shows that [q,u,l,a,b,r,v] - [O,E,O,O,b,O,v] and the 
explicitly-advancing LR(k) parser can make the moves 

a• 
(O,E,v) f- (O,v,E) 

for which there exists an edit sequence S such that z1 :r ~ v and b - W(S). 
Therefore, the explicitly-advancing LR(k) parser can make the moves 

* a• 
(0, e, VWt+l:k) f- (0, v, Wt+l·k) f- (Os, W1·t' Wt+l:k) f- (Os, w, e) 
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s s' where ZJ., "-"+ v, z,+1:1 "-"+ Wt+ 1:k, c = b = W(S), and d = W(S'). 
If r "I 0 then [ q, u, l, a, b, r, v] is an en try on the ordered list of entries that pre

cedes ([r,v,i,c,d,8,W],j). Applying the induction hypothesis to [q,u,l,a,b,r,v], 
the explicitly-advancing LR(k) parser can make the moves 

* 
(0, e,y) f-- (8r,v, e) 

and there exists an edit sequenceS such that z1a ~ y and a+b = W(S). Therefore, 
the explicitly-advancing LR(k) parser can make the moves 

* a• 
(O,e,ywt+H) f-- (8/r,v,wt+H) f-- (8rB,Wt:t~Wt+l-k) f-- (8rB,w,e) 

s s' 1 where z1:• "-"+ y, z,+l-J ~ Wt+l:k, c =a+ b = W(S), and d = W(S ). 
In the second case of the second induction step, step II.C.2.iii of Algorithm 5.1.1 

adds ([r,v,i,c,d,8,w],j) to Hand Algorithm 5.1.1 simulates a reduction. Step 
II.C.2.iii must be processing an entry [qh-l,uh-t,lh-hch,dh,qh,uh] on Ith where h 
is an aritrary index choosen for convenience. Furthermore, examining step II.C.2.iii 
shows 8 E Ur(LHS(p )). Also, when [qh_ 1, uh-1, lh-b ch, dh, qh, uh] is processed there 
must be 

and 
( qo, uo, lu, c', d') E Bh-1 

where c = c', d = b + d', q0 = r, u0 = v, and 10 = i. Applying Lemma 5.3.5, there 
must be 

[q0 , u0 , l0 , c1 , d 1l q1, u 1] on lt1 

[q1,u1,ll,c2,d2,q2,u2] on lt2 

h ' {co+do ifh=O dd' ~d A 1' L 531 h w ere c = c1 if h > 0 an = ~ x. pp ymg emma . . , t ere 

must also be 

[qh,uh,lh,ch+1,dh+1,qh+1,uh+l] on Ith+l 

[ qh+!, uh+1, lh+1, ch+2, dh+2, qh+2' uh+2] on lth+2 

[qm-2, Um-2' lm_z, Cm-1, dm-1, qm-1, Um-1] On ftm-1 

[qm-l,Um-1,lm-1,Cm,dm,qm,um] on Itm 
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rn 
where Urn = w, lrn = j, m = IRHS(p)l, reduce p E /qm(w), and b = L dx. The 

x=h+l 
reduction must be one of three possible types of reductions, each of which must be 
considered seperately: 

• a reduction by an empty production (m = 0); · 

• a reduction by a non-empty production which does not cause the stack to 
underflow (m > 0 and qx =J 0 for 0 < :z: S m); or 

• a reduction by a non-empty production which causes the stack to underflow 
( m > 0 and qx = 0 for some :z: where 0 < :z: S m ). 

For the first type of reduction, an empty production is used so m = h = 0. 
Thus lrn = 11 = i = j, qrn = q0 = r, Urn = u0 = w = v, and the reduction 

( ar, v, e) 1- ( ar s , w, e) 

can be made by the explicitly-advancing LR(k) parser. Ifr = 0, Lemma 5.3.3 shows 
that [qh-l,uh-l,lh-l,ch,dh,r,v] = [O,e,O,O,b,O,v] and the explicitly-advancing 
LR( k) parser can make the sequence of moves 

a• 

(O,e,v) 1- (O,v,e) 

for which there exists an edit sequence S such that Z1a ~ v and b = W(S). 
Therefore, the explicitly-advancing LR(k) parser can make the sequence of moves 

* a• 
(0, e, v) 1- (0, v, e) 1- (Os, v, e) 1- (Os, v, e) 

for which there exists an edit sequence S such that Z1a ~ v, c = b = W(S) and 
d = 0. 

Ifr =J 0 then [qh-buh-l,lh-l,ch,dh,r,v] precedes ([r,v,i,c,d,s,w],j) on the 
ordered list of entries. Applying the induction hypothesis to [qh-1, uh-1, lh-11 ch, dh, 
r,v], the explicitly-advancing L;R(k) parser can make the moves 

* a• 
(O,e,y) 1- (or,v,e) 1- (or,v,e) 

and there exists an edit sequence S such that z1., ~ y and Ch + dh - W(S). 
Therefore, the explicitly-advancing LR( k) parser c~n make the moves 

* a• 
(O,e,yw) 1- (81r,w,e) 1- (ors,w,e) 1- (ors,w,e) 
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where Zt:3 ~ yw, c = ch + dh = W(S), and d = 0. 
For the second type of reduction, a non-empty production is used and the 

stack does, not underflow so m > 0 and qx =J. 0 for 0 < :z: ~ m. This implies, for 
0 < :z: ~ m, that [ qx-b U:r-1, lx-1, Cx, dx, qx, Ux] on It., is an entry on the ordered 
list of entries and that these entries precede [r, v, i, c, d, s, w] on 13 • Applying the 
induction hypothesis to each entry, the explicitly-advancing LR( k) can make the 
sequences of moves 

* + 
(O,e,y1YD f- (aolqo,uo,YD f- (aoqoqbube) 

* + 
(0, e, Y2Y~) f- ( atlqb ub y~) f- ( a1q1q2, u2, e) 

* + 
(O,e,ymy:n) f- (am-Ilqm-1,um-1,Y:n) f-· (am-1qm-1qm,Um,e). 

Also, there exist edit sequences Sx and S 1 x' for 1 ~ :z: ~ m, such that z1.t.,_1 ~ Yx, 

Zt.,_ 1+t:l., ~ Y1x, W(Sx) = ex, and W(S1x) = dx. As a result, the explicitly
advancing LR(k) parser can make the moves 

L t S S Sl Sl Sl Sl d 1 1 1 1 Th s s' 1 
e = b = 1 2··· m,an Y =Y1Y2···Ym• en,z1:a"-'+Yt,Za+1:J"-'+Y, 

c1 = W(S), and b+ d1 = W(S1). Since reduce p E fqm(um), qo = r, uo = v, lo = i, 
Um = w, lm = j, and the explicitly-advancing LR(k) parser can make the moves 

(aorq1q2 ... qm,w, e) f- (a0rs,w, e). 

Therefore, the explicitly-advancing LR( k) parser can make the moves 

I * I + 
(O,e,y1y) f- (aolr,v,y) f- (aurs,w,e) 

where there exist edit sequences S and S1 such that Z1:1 ~ Yb Za+t·J ~ y1, c = 
W(S), and d = W(S1). 
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For the third type of reduction, an non-empty production is used and the 
stack underflows so m > 0 and qx # 0 for some x where 0 < x S m. Let e be 
the greatest such x. Since 1 S e, r = q0 = 0. Recursively applying Lemma 5.3.1 
shows that, for x < e, qx = 0, Ux = e, lx = 0 and Cx = 0. Also, for x < e, 
[qx-h Ux-b lx-h ex, dx, qXl ux] on lx is not processed by step II.C of Algorithm 5.1.1 
since Ux = E. Therefore, h 2: e. Furthermore, dx = 0 for x < 0 since [0, e, 0, 0, 0, e] 
on 10 is the only entry on a parse list that is not processed by step II.C. 

Since qe = 0, Lemma 5.3.1 shows there exists an edit sequence S such that 
z1.1 ~ v, de = W(S), and the explicitly-advancing LR(k) parser can make the 
moves 

a• 
(O,e,v) 1- (O,v,e). 

If e = m then there is only the state 0 on the stack when the reduction is made 
and h = m, q0 = qm = r = 0, uT'l = v = w, Cm = 0, and de = dm. Also, since 
reduce p E fqm(um) and s E 9r(LHS(p)), the explicitly-advancing LR(k) parser 
can make the moves 

(O,w, e) 1- (Os,w, e). 

Therefore, if m = 0, the explicitly-advancing LR(k) parser can make the moves 

* + a• 
(O,e,y) 1- (O,e,y) 1- (Os,w,e) 1- (Os,w,e) 

where there exists an edit sequence S such that z1.1 ~ w, c = de = W(S), and 
d = 0. 

If e < m, there are some states (but not enough) on the stack when the 
reduction is applied. For o < x S m, [qx-b Ux-1, lx-ll Cn dx, qx, ux] on It,, is an 
entry that precedes [r, v, i, c, d, s, w] on 11 on the ordered list of entries. Applying 
the induction hpothesis to each of these entries, the explicitly-advancing LR(k) 
parser can make the sequences of moves 

* + 
(0, E,Ye+lY1 e+l) 1- ( aelqe, Ue, Y1e+d 1- ( aeqeqe+ll Ue+ll t:) 

* + 
(0, e, Ye+ZY1 e+2) 1- ( ae+llq,+l 'Ue+l 'Y~+Z) 1- ( ae+lqe+l qe+2, Ue+2, t:) 

* + 
(O,e,ymy:n) 1- (am-dqm-l,Um-hY1m) 1- (am-lqm-lqm,Um,E). 

Also, there exist edit sequences s~ for e < X s m such that Zlx-t+H, ~ Y1x and 
W(S'x) = dx. Furthermore, since qe = 0 and 0 is never pushed onto the stack, 
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ae = e. As a result, the expicitly-advancing LR(k) parser can make the sequence 
of moves 

~ ( Oqe+ll qe+2' Ue+2' Y~+3 • · • Y:n) 
+ 
1-
+ 
1- (Oqe+l ... qm, Um, e). 

L t Sl - sl sl sl d I - I I I Th s' I s· e - e+l e+2... ml an y - y e+!Y e+2 •• • y m' en, Zz+l:J ......... y. Ince 
reduce p E fqm(um), s E 9r(LHS(p)), qu = r, Uu = e, lu = i, Um = w, and lm = j, 
the explicitly-advancing LR( k) parser can make the :q1ove 

(Oqe+l qe+2 ... qm, Um, e) 1- (Os, w, e). 

Therefore, the explicitly-advancing LR( k) parser can make the moves 

* + a• 
(O,e,vy1) 1- (O,e,vy1) 1- (Os,w,e) 1- (Os,w,e) 

where there exists an edit sequence SS1 such that z1:3 ;::: vy1, c = 0, and d = 
b + d1 = W(SS1). I 

5.4 PROOF OF COMPLETENESS 

This section shows that Algorithm 5.1.1 completely simulates the explicitly
advancing LR(k) parser. Since Algorithm 5.1.1 is a least-cost algorithm, the defini
tion of completeness for it differs from the definition used for the earlier algorithms 
in this dissertation. The simulation is complete for an input z if for every sequence 
of moves 

I * I + (O,e,yy) 1- (alr,v,y) 1- (ars,w,e) 

that can be made by the LR( k) parser for which there exist edit sequences S and 

S1 such that ZI:a ~ y, Za+l:J ~ y1, W(S) = c, W(S1) = d, and 

c + d =min ( { H!(T) I z1 :3 ~ t such tha.t (0, e, t) ~ ( ars, w, e)}) , 
Algorithm 5.1.1 adds the entry [r, v, i, c1, d1, s, w] to parse list 13 where c1 +d1 = c+d. 
This property is considered a completeness result since it shows that there is an 
entry on a parse list for each least-cost edit of a prefix of the input string, if the 
edit generates a prefix of some string in the language accepted by the explicitly
advancing LR(k) parser. 
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5.4.1 Consistent Ordered Lists of Entries -

To show that Algorithm 5.1.1 is complete, it must first be shown that if an entry 
[r, v, i, c, d, s, w] is on [3 then there is an entry [q, u, l, a, b, r, v] on J, for which 
c = a+ b. Ordered lists of entries with this property are said to be consistent. The 
term consistent is used because Algorithm 5.1.1 is designed to have this property 
and the lack of it would be an inconsistency. 

To show that any ordered list of entries is consistent, it is convenient to first 
prove the property for a subset of an ordered list of entries and then expand the 
property to the entire list. For this purpose, the following definition introduces the 
concept of a prefix of an ordered list of entries. 

Defimtzon 5.4.1 (Prefix of an Ordered Ltst of Entnes) Given an ordered list 
of entries 

[r11 i 17 v1, c11 d11 shwd on 131 

[r2,i2,v2,c2,d2,s2,w2] on 132 

[rN, iN, VN, eN, dN, sN, WN] on I 3N 

a prefix of the ordered list of entries is any list of entries 

where n:::; N. 

[r1 ,i17 v1,c1 ,d1 ,st,w1] on 131 

[r2,i2,v2,c2,d2,s2,w2] on 112 

The following two definitions formally define the concept of a consistent or
dered list of entries. 

Defimt'ton 5.4.2 (A Conststent Prefix of an Ordered List of Entnes) A prefix 
of an ordered list of entries 

[r1 , v1 , i 1 , c1 , d1 , s 1 , w!] on 111 

[r2 ,v2 ,i2 ,c2 ,d2 ,s2 ,w2 ] on 132 

is said to be consistent if for each entry [r,, Vt, i,, q, d,, St, wt) on h there exists an 
entry [q, u, l, a, b, r1, v1] on 1,1 for which c1 = a+ b and 

+ 
([q,u,l,a,b,rl,vl] on 1,1) f= ([rhv,i,,c~,d,,s~,wl] on 111 ). 
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Definztwn 5.4.3 {A Conszstent Ordered Lzst of Entries) An ordered list of en
tries 

[r1,ibv1,c11 d11 s 11 w1] on Ij1 

[r2,i2,v2,c2,d2,s2,w2] on Ih 

[rN, iN, VN, eN, dN, sN, wN] on I 3N 

is consistent if it is a consistent prefix of itself. 

The following lemma shows that a consistent sequence of predecessor entries 
exists when step II.C.2 of Algorithm 5.1.1 is executed for an entry from a consistent 
prefix of an ordered list of entries. 

LEMMA 5.4.1 For a cons'tstent prefix of an ordered list of entnes, zf Algo
rzthm 5.1. 2 zs applzed to an entry [ q1, Ut, l1, c0 , d0 , qo, u 0 ] on !10 m the prefix and 

then there exzsts 

[qm+1,um+l,lm+1,cm,dm,qm,um] on !1m 

[qm,Um,lm,Cm-lldm-1,qm-bUm-1] on Itm-1 

such that, when m > 0, ex = Cx+I + dx+I for 0 :::; x < m and 

([qm+bUm+1,lm+bcm,dm,qm,Um] on Ilm) 
+ 
I= ([qm, Urn, lm, Cm-b dm-1' qm-b Um-1] on Itm-1) 
+ 
I= 
+ I= ([q2, u2, l2, Ct, dt, qb ui] on ItJ 
+ I= ([qh u~, l11 Co, do, qo, uo] on l10 ). 

Proof: The lemma is proved by induction on the m, using the lemma as the 
induction hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for m = 0 ancl' m = 1; and 
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• second, the lemma is proved form= N, where N > 1, assuming it holds for 
m=N-1. 

For the first induction step, m = 0 or m = 1. Examination of step I of 
Algorithm 5.1.2 shows that {( qo, uo, lo, Co+ du, 0)} E B-1 and {( qll u1 ,lr, c0 , du, 0)} 
E B0 • Since the prefix of the ordered list of entries is consistent, there exists an 
entry [q2, u 2, 12, ell dl! q1 , ui] on fzt for which c0 = c1 + d1 and 

+ . 
([q2,u2,l2,chdhqbui] on It1) f= ([qbuhl!,co,du,qo,uo] on It0 ). 

For the second induction step, m = N, where N > 1, and the lemma is as
sumed to hold form= N- 1. If (qm,um,lm,cm-1,d') E BN-1 then step II.B.l.i 
of Algorithm 5.1.2 added (qm,um,lm,cm-I,d') to BN-1 and there is an entry 
[qN, uN, lN, cN-1! dN-b qN-b uN-1] on IN-I and an element 
(qN-l,uN-l,lN-l!c',d'- dN-d E BN-2· Since (qN-l!uN-l!lN-llc',d'- dN-d E 
BN_2 , the induction hypothesis can be applied to show that there exist 

(qN,UN,lN,CN-!,dN-hqN-bUN-1] on ItN_1 
[qN-1! UN-h [N-h CN-2, dN-2, qN-2, UN-2] on J,N_2 

such that, when N- 1 > O, Cx = Cx-1 + dx-1 for 0 Sa: < N- 1 and 

([qN-2,UN-2,lN-2,cN-1,dN-!,qN-1!UN-1] on ItN_ 1 ) 

+ 
f= ([qN-b uN-1, lN-1, CN-2, dN-2, qN-2, UN-2J on ItN_2 ) 

+ 
f= 
+ f= ([q2,u2,l2,bbc1lq1 ,u1] on fzt) 
+ f= ([qbuhl1,co,do,qo,uo] on It0 ) 

N-2 N-1 
where c' = CN_ 1 + dN_ 1 and d'- dN_ 1 = L d .. Therefore, d' = L d'" Further-

z=o z=O 

more, since the prefix is consistent, there must also be an entry [qN+l! uN+lllN+1, eN, 

dN,qN,uN] on ItN for which cN-1 = CN + dN and 

([qN+1,uN+blN+l!cN,dN,qN,uN] on ItN) 
+ I= ([qN,uN,lN,cN-bdN-1,qN-1!uN-d on I1N-1). 
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I 

Using the previous lemma, all ordered lists of entries can be shown to be 
consistent. 

LEMMA 5.4.2 (All Ordered Lists of Entries are Consistent) For any ordered 
list of entnes, zf [r, v, i, c, d, 8, w] zs on ! 3 then there exz8ts an entry [q, u, l, a, b, r, v] 
on 12 for whzch c = a + b and 

+ 
([q,u,l,a,b 1r,v] on I,) I= ([r,v,i,c,d,8,w] on !1 ). 

Proof: If 8 = 0, the lemma is proved by applying Lemma 5.3.3 which shows that 
[r,v,i,c,d,8,w] = [O,E,O,O,d,O,w] and 

[O,E,O,O,O,O,E]F [O,E,O,O,d,O,w). 

If 8 =/= 0, the lemma is proved by induction on an ordered list of entries, using the 
lemma as the induction hypothesis. The induction proceeds iu two steps: 

• first, the lemma is proved for the first entry 011 the ordered list of eutries; 
aud 

• second, the lemma is proved for the Nth eutry on the ordered list of eutries, 
assumiug it holds for all entries before the Nth entry (which says that the 

entries before the Nth entry form a consistent prefix of the ordered list of 
entries). 

For the first induction step, let [r, i, v, c, d, 8, w] on 11 be the first entry on 
the ordered list of entries. Since the first entry must be added to its parse list by 
step ILC of Algorithm 5.1.1, ([r,v,i,c,d,8,W],j) must have been on H. Step I and 
step II.C.l.i did not add ([r, v, i, c, d, 8, w] ,j) to H since if one of these steps added 
([r,v,i,c,d,s,w],j) then lwl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r,v,i,c,d,8,w],j) to H, or 

• step II.C.2.iii adds ([r,v,i,c,d,s,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) to 
H so, applying Lemma 5.3.2, either step I or II.C.l.i of Algorithm 5.1.1 adds 
([r,v,i,c,O,s,w1 t],i) to H, where 

+ 
([r,v,i,c,0,8,w 1.t],i) I= ([r,v,i,c,d,s,w],j). 
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Step I can not add ([r,v,i,c,O,s,w1.t],i) since that implies that s = 0 and entries 
for which s = 0 are not on the ordered list of entries. Therefore, step II.C.l.i 
must add ([r,v,i,c,O,s,w1:t],i) to H. Examining step II.C.l.i shows this step is 
processing an entry [q, u, l, a, b, r, v] on I, for which c = a+ b. Furthermore, 

([q,u,l,a,b,r,v] on I,) I= ([r,v,i,c,d,s,w] on I;). 

In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) 
to H. Step II.C.2.iii of Algorithm 5.1.1 must be processing an entry of the form 
[0, e, 0, 0, b, 0, u] on It since this is the only form of entry that is not on the ordered 
list of entries. When, [0, e, O, 0, b, O, u] is processed, step II.C.2.iii must be simulating 
one of two types of reductions: 

• a reduction by an empty production, or 

• a reduction by a non-empty production. 

For a reduction by an empty production, u = v, c = b, d = 0 and 

([O,e,O,O,c,O,v] on I,) I= ([O,v,i,c,O,s,w] on / 3 ). 

For a reduction by a non-empty production, u = v = e, c = 0, d =band 

([O,e,O,O,d,O,v] on I,) I= ([O,e,O,O,d,s,w] on I;). 

For the second induction step, the lemma is assumed to hold for all en
tries before the Nth entry on the ordered list of entries. Let the Nth entry be 

[r, v, i, c, d, s, w] on JJ' Since the Nth entry is added to its parse list by step II.C of 
Algorithm 5.1.1, ([r,v,i,c,d,s,w],j) m~st have been on Hand jwj = k. Step I and 
step II.C.l.i did not add ([r, v, i, c, d, s, w],j) to H since if one of these steps adds 
([r, v, i, c, d, s, w], j) then lwl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r, v, i, c, d, s, w],j) to H, or 

• step II.C.2.iii adds ([r, v, i, c, d, s, w], j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) to H 
and Algorithm 5.1.1 simulates an advance. Applying Lemma 5.3.2, either step I or 
step II.C.l.i of Algorithm 5.1.1 must add ([r, v, i, c, 0, s, w1·t], i) to H where t < k 
and 

+ 
([r,v,i,c,O,s,w 1:t],i) f= ([r,v,i,c,d,s,w],j). 
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Step I could not add ([r,v,i,c,O,s,wl't],i) since that implies s = 0 and that 
[r,v,i,c,d,s,w] on 1~ is not on the ordered list of entries. Therefore, step II.C.l.i 
adds ([r,v,i,c,O,s,w1:t],i) to H, simulating a shift. Examining step II.C.l.i shows 
this step must be processing an entry [q, u, l, a, b, r, v] on I, for which c = a+ b. 
Furthermore, 

([q,u,l,a,b,r,v] on I,) I= ([r,v,i,c,d,s,w] on I,). 

In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r, v, i, c, d, s, w],j) 
to H. This step must be processing an entry [qh_ 1 ,uh-l,lh-l,ah,bh,qh,uh] on I1h 
where his an arbitrary index chosen for convenience. Therefore 

([qh-l,uh-l,lh-l,ah,bh,qh,uh] on I1h) I= ([r,i,v,c,d,s,w] on I 1 ). 

Furthermore, when [%-!7 uh-l, lh-1! ah, bh, qh, uh] is processed, there must be s E 
Br(LHS(p)) and 

and 
(qo,uo,lo,a',b') E Bh-1 

where m = jRHS(p)j c = a', d = b' + b", q0 = r, u0 = v, and 10 = i. Applying 
Lemma 5.4.1, there are 

where 

[q-17 U-1, Lll ao, bo, qo, uo] on I10 

[qo, uo, lo, all b1, q1, ut] on I11 

([q-l,u-l,Lbao,bo,qo,uo] on Itt) 
+ I= ( [ qo, Uo, lu, a17 b17 q17 u1] on I11 ) 

+ 
I= 
+ I= ([qh-1,uh-hhh-l,ah,bh,qh,uh] on Ith_ 1 ) 

h 

a' = a0 + b0 and b' = L bx. Therefore, c = ao + bo and 
x=l 

+ 
([q-llu-l,Ll,ao,bu,r,v] on I,) I= ([r,i,v,c,d,s,w] on I1 ). 

I 
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5.4.2 Monotonically Increasing Ordered Lists of Entries 

Besides completeness, another important property of ordered lists of entries must 
be demonstrated before Algorithm 5.1.1 can be shown to be complete. This prop
erty is that all entries are added to their parse lists in order of increasing cost. The 
following two definitions define the idea of a monotonically increasing ordered list 
of entries. 

Definitzon 5.4.4 (Monotomcally Increasing Prefix of Ordered List of Entries) 
A prefix of an ordered list of entries 

[rll vll ill ell dll sll wt] on 111 

[r2 , v2 , i 2 , c2 , d2 , 8 2 , w2] on !12 

is monotonically increasing if Ct + dt ~ c1+1 + dt+l for 1 ~ l < n. 

Definition 5.4.5 (Monotonically Increasmg Ordered List of Entries) 
An ordered list of entries 

[rll Vt, ill c1, d1, 81! w1J on lj1 

[r2 ,v2,i2 ,c2,d2 ,82 ,w2) on 112 

is monotonically increasing if it is a monotonically increasing prefix of itself. 

The next two lemmas show that, the monotonically increasing property is 
equivalent to the property that the sum of the cost components of any entry is 
greater than or equal to the sum of the cost components of any of its predecessors. 

LEMMA 5.4.3 For a monotomcally increasing prefix of an ordered list of en
tries, if 

+ 
([q,u,h,a,b,r,v] on J,) I= ([8,w,j,c,d,t,y] on I,) 

then a + b ~ c + d. 

Proof: If [q,u,h,a,b,r,v] = [8,w,j,c,d,t,y] and i = l then the lemma is trivally 
proved. Otherwise, [q,u,h,a,b,r,v] on J, must occur before [8,w,j,c,d,t,y] on It 
on the ordered list of entries. This implies a+ b :::; c +d. 1 



LEMMA 5.4.4 Given a prefix of an ordered list of entries, 

[rt, vll i17 Ct, d1, sll Wt] on lj1 

[r2,v2,i2,c2,d2,s2,w2] on 112 

'tf q + dt :S Cm + dm whenever 

+ 
([rt,Vt,il,C{,dt,St,Wl] on f 11 ) F ([rm,Vm,im,Cm,dm,Sm,Wm] On f 3m) 

then the prefix 'tS m9notomcally mcreasmg. 
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Proof: Let [rt,it,V{,C[,d{,St,Wt] on JJ! and [rm,im,Vm,Cm,dm,sm,Wm] on Jim be 
any two entries on the prefix of the ordered list of entries for which l < m. When 
[rt, i17 v, c1, d1, s1, wt] on 111 is removed from H in step II.A of Algorithm 5.1.1, either 
([rm, im, Vm, Cm, dm, Sm,Wm],jm) or a predecessor of ([rm, im,Vm, Cm, dm, Sm, Wm],jm) 
is on H since [rt, i,, v, c,, d,, s,, wt] on lj1 precedes [rm, im, Vm, Cm, dm, Sm, Wm] on 13m 

on the ordered list of entries. Therefore, Ct + d, :S Cm + Cm· 1 

The importance of monotonically increasing ordered lists of entries is demon
strated in the following lemma which shows that for monotonically increasing or
ders the duplicate entry elimination performed by step II.C of Algorithm 5.1.1 only 
discards higher cost entries. 

LEMMA 5.4.5 For a monotonically mcreasing ordered list of entries, 'tf 
([r,v,i,c,d,s,w],j) is on H, lwl = k, c + d = min({W(T) I Zt:1 ~ y}) and 
the explic'ttly-advancmg LR(k) parser can make the sequence of moves 

* + a• 
(O,e,y) r- (alr,v, ... ) r- (ars, ?, ... ) r- (ars,w,e) 

then [r,v,i,c,d,s,w] is added to 11 or there zs already an entry [r,v,i,c',d',s,w] 
on 11 where c' + d' = c + d. 

Proof: Lemma 5.3.1 guarantees that ([r,v,i,c,d,s,w],j) will eventually be pro
cessed by step II.C of Algorithm 5.1.1. When ([r,v,i,c,d,s,w],j) is processed, if 
there is no entry [r, v, i, c', d', s, w] on 11 then the lemma is proved. If there is an 
entry [ r, v, i, c', d', s, w] on 11 then there are three cases to consider: 

• first, c' + d' = c + d; 
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• second, c' + d' < c + d; or 

• third, c' + d' > c + d. 

For the first case, c' + d' = c + d and the lemma is trivally proved. The other two 
cases can not occur since assuming that they do occur leads to contradictions. 

For the second case, c' + d' < c +d. Applying Theorem 5.3.1, there must exist 
an edit sequence T' such that c' +d' = W(T'), z1:1 ~ y' and the explicitly-advancing 
LR( k) parser can make the sequence of moves 

* + a• 
(O,e,y') 1- (alr,v, . .. ) 1- (ar8, ?, ... ) 1- (ars,w,e). 

However, this implies that c+d #min( {W(T) I z1:1 ~ y}) which is a contradiction. 
For the third case, c' + d' > c +d. When ([r,v,i,c',d',8,W],j) is removed 

from H in step II.C of Algorithm 5.1.1, ([r,v,i,c,d,8,w],j) or a predecessor of 
([r,v,i,c,d,8,w],j) is on H. Therefore, c' + d' < c + d, which is a contradition. 1 

The following lemma shows that all orders are monotonically increasing. 

LEMMA 5.4.6 (An Ordered List of Entries is Monotonically Increasing) If 
([q,u,h,a,b,r,v] on J,) f= ([8,w,j,c,d,t,:v] on 11) then a+ b < c+ d. 

Proof: When 8 = 0, the lemm~ is proved by applying Lemma 5.3.2. When 8 # 0, 
the lemma is proved by examining the ways in which an entry ([r,v,i,c,d,s,w],j) 
can be added to the list of entries to be parsed. Step I and step II.C.l.i can not 
add ([r,v,i,c,d,8,W],j) to H since if one of these steps adds ([r,v,i,c,d,s,w],j) 
then lwl < k. Therefore, there are only two cases to consider: 

• step II.B adds ([r, v, i, c, d, 8, w], j) to H, or 

• step II.C.2.iii adds ([r,v,i,c,d,8,w],j) to H. 

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) to H 
so, applying Lemma 5.3.2, either step I or II.C.l.i of Algorithm 5.1.1 must add 
([r,v,i,c,O,s,w1:t],j') to Hand 

.+ 
([r,v,i,c,O,s,wl-t],j') f= ([r,v,i,c,d,8,W],j). 

Step I could not add ([r,v,i,c,O,s,w1.t],j') to H since that implies 8 = 0. Therefore, 
step II.C.l.i must have added ([r, v, i, c, 0, 8, w 1.t],j') to H. Examining step II.C.l.i 
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shows this step must be processing an entry [ q, u, h, a, b, r, v] on J, for which c = a+b 
and 

([q, u, h, a, b, r, v] on J,) I= ([r, v, i, c, d, s, w] on 11 ). 
~ 

Since d 2 0, a + b S c + d. 
In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) 

to H. Step II.C.2.iii must have been processing an entry [qh-ll Uh-h lh-b ah, bh, qh, 
uh] on fth where 

Furthermore, examining step II.C.2.iii shows that when [qh-t,Uh-l,lh-l,ah,bh,qh, 
uh] was processed, there must have been (h,b",p,w,j) E Gth(qh,uh) and an (q0 ,u0 , 

lu,a',b') E Bh-1, where m = IRHS(p)j c = a', d = b' + b", q0 = r, u0 = v, and 
lu = i. It is important to note that h has been arbitrarily chosen as a convenient 
index for the entry [qh_1 ,uh-l,lh-l,ah,bh,qh,uh] on I,h. Applying Lemma 5.4.1, 
there are 

[q-b u_bl_ll ao, bo, qo, uo] on l1 1 

[qo, uo, lo, ah b1, qt, Ut] on lt1 

[qh-2,uh-2,lh-2,ah-t,bh-1,qh-1,uh-1] on I,h_1 

h 

where a'= ao + bo, b' = L hx, and ah + bh =a'+ b'. Since c =a', b = b' + b" and 
x=l 

b" 2 0, ah + bh S c + d and the lemma is proved for this case. 1 

5.4.3 Completeness 

Since it has been established that all ordered lists of entries are consistent and 
monotonically increasing, the argument that Algorithm 5.1.1 is complete can pro
ceed. The next two lemmas establish that step II.B completely simulates sequences 
of advances for the explicitly-advancing LR( k) parser. 

LEMMA 5.4.7 (Step II.B Simulates Edit Operations) If ([q,u,i,c,d,r,v],l), 
where iv I < k, ts on the pendmg ltst, H, and there extsts an edit operation 
(zt+l:J+l ~--+ a), where l - 1 S j S l, b = W((zl+l'J+l ~--+ a)), and ivai S k, 
then ([q,u,i,c,d+ b,r,va],j + 1) zs added to H. 

Proof: Applying Lemma 5.3.1, ([q,u,i,c,d,r,v],l) is processed by step II.B of 
Algorithm 5.1.1. There are three types of edit operations to consider: 
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• an insertion (j = l- 1 and Jal = 1), 

• a deletion (j =land a= E), and 

• a replacement (j = l and lal = 1). 

For an insertion, j = l- 1 and Jal = 1. When ([q, u, i 7c, d, r, v], l) is processed, 
step II.B.3 of Algorithm 5.1.1 adds ([q,u,i,c,d + b,r,va],j + 1) to H. Note that 
step II.B.3 is optimized to exclude the insertion of a before another a since this 
can never result in a least-cost edit. 

For a deletion, j = l and a = E. When ([q, u, i, c, d, r, v], l) is processed, 
step II.B.2 of Algorithm 5.1.1 adds ([q, u, i, c, d + b, r, va],j + 1) to H. 

For a replacement, j =land Jai = 1. When ([q,u,i,c,d,r,v],l) is processed, 
step II.B.1 or step II.B.4 of Algorithm 5.1.1 adds ([q,u,i,c,d+ b,r,va],j + 1) to 
H. I 

LEMMA 5.4.8 (Simulation of Advances is Complete) If ([q,u,i,c,d,r,v],h), 
where Jvl < k, is on the pending list, H, and there exists an edit sequence S 
su(:h that zh+l=J ~ y, d' = W(S), and jvyJ ='k then ([q,u,i,c,d+ d',r,vy],j + 1) 
zs added to H. 

Proof: Let 
S = (a1 1-+ bt)(a2 1-+ b2) ... (an 1-+ bn) 

where Zh+l:J - a1 a2 ... an and y = b1 b2 ... bn. Also, let lo = h, ln = j, and 
let 10 , l1, ••• , ln be a sequence of integers where, for 1 ~ x ~ n, Zt.,_1 +l :l., = am 
h ~ lx < j and lx- 1 ~ lx-1 S lx. Finally, let dx = W((ax 1-+ bx)) which implies 

n 

that L dx = W(S). 
x==l 
Applying Lemma 5.3.1 and Lemma 5.4. 7 to ([q, u, i, c, d, r, v], h) shows that 

([q, u, i, c, d + d1 , r, vb1], 11) is added to H. Repeated application of Lemma 5.3.1 
and Lemma 5.4. 7 show that the entries 

are added to H. 1 

([q, u, i, c, d + d1 , r, vb1], lt) 
([q,u,i,c,d+ d1,r,vb1b2],l2) 

n 

([q, u, i, c, d + L dx, r, vb1b2 ... bnJ, zn) 
x==l 
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The following lemma establishes an important property for least-cost edits of 
prefixes of the input string. 

LEMMA 5.4.9 If there exzst edit sequences S and S' such that z1:z 

Zz+l:J ~ y', W(S) = C1 W(S') = d, 

c + d = min ( { W ( T) I z1 :3 ~ t such that ( 0, e, t) ~ ( a:r s, w, e)}) 

and the explicitly-advancmg LR{k) parser can make the sequence of moves 

* * (O,e,yy') 1- (alr,v,y') 1- (ars,w,e) 

then 

c =min ({ W(T) I Z!:z ~ t such that (O,e,t); (ar,v, e)}). 

s 
""'-+ y' 

Proof: The lemma is proved by contradiction. Assume there exists an edit sequence 
s" S" such that z1:z ""'-+ y" and W(S") =band for which b < c and 

* (O,e,y") 1- (ar,v,e).' 

Then the explicitly-advancing LR( k) parser can make the sequence of moves 

* * 
(O,e,y"y') 1- (alr,v,y') 1- (ars,w,e) 

and b + d < c + d, which is a contradiction. 1 

The next two lemmas establish reduction information that can be inferred from 
the entries on their parse lists at key points during the execution of Algorithm 5.1.1. 

LEMMA 5.4.10 If Algorithm 5.1.2 is applied to [qhuhlt,co,du,q0 ,uo] on Ito 
and there extst 

then, form > 0, 

[qm+t,Um+l,lm+l,cm,dm,qm,Um] on ftm 

[qm,um,lm,Cm-l,dm-l,qm-hUm-1] on ftm-1 
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Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved for m = 1; and 

• second, the lemma is proved form= N when N > 1, assuming it holds when 
m=N-1. 

For the first induction step, m = 1. Examination of step I of Algorithm 5.1.2 
shows that ( q0 , u 0 , l0 , c0 , d0 ) is added to B 0 • 

For the second induction step, m = N where N > 1 and the lemma is assumed 
to hold for m = N - 1. The induction hypothesis can be applied to 

[qN,uN,lN,cN-1,dN-1,qN-buN-1] on ItN-l 

[qN-11 uN-11lN-1, cN-21 dN-2, qN-2, UN-2] on ItN_2 

N-2 

to show that (qN-h UN-1, lN-1, CN-2, L dr) E BN-2· Since 
t=O 

N-2 
(qN-11 UN-11 lN-1, CN-2, I: d,) E BN-2 

z=U 

and [qN+l, uN+1, lN+ll eN, dN, qN, uN] on ItN' examining step II.B.l.i of Algorithm 
5.1.2 shows that 

I 

N-1 

(qN,uN,lN,cN-1, L dz) E BN-1· 
t=O 

LEMMA 5.4.11 If m > O, h > O, m + h = IRHS(p)l, reduce p E fqm(um) 1 

and there ex1.st 

then 

[qo,uo,lo,c1,dbqllu1] on lt1 

[q1 , u 11 l1 , c2 ,'d2 , q2 , u 2] on lt2 

m 

(h, L dx,P 1 Um,lm) E Gt0 (qo,uo). 
x=1 
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Proof: The lemma is proved by induction on m, using the lemma as the induction 
hypothesis. The induction proceeds in two steps: 

• first, the lemma is proved form= 1; and 

• second, the lemma is proved for m = N, assuming it holds when m < N. 

For the first induction step, m = 1. The entry [q0 , u0 , l0 , c1 , d1 , q1, ul] is on lt1 so 
it must have been processed by step II.C.l.ii of Algorithm 5.1.1. Since reduce p E 
fq 1 (ul), step II.C.l.ii adds (h + 1,0,p,u1,li) to Gt1 (q1,u1 ). Thus, step II.C.2.ii 
executes Algorithm 5.1.2 and step I of Algorithm 5.1.2 adds (h, d17 p, ur, l!) to 
Gt0 (qo,uo) since h > 0. 

For the second induction step, m = N and the lemma is assumed to hold for 
m < N. Since m = N, there are N entries 

[qo,uo,lo,clld1,qllu1] on lt 1 

[qt, Ut, lll c2, d2, q2, u2] on lt2 

(qN-b UN-b [N-t, CN, dN, qN, UN] on ltN' 

Let k be the index of the entry [qk_ 1,uk-blk-I,ck,dk,qk,uk] on h. which is the 
last of these entries to be processed by step II.B of Algorithm 5.1.1. There must 
be 

N 

(h + k, L dx,p,um,lm) E G,,.(qk,uk) 
x=k+1 

when [qk-l, uk_1, lk-ll ck, dk, qk, uk] on It,. is processed by step II.B since the induc
tion hypothesis can be applied to the N - k entries 

N 

[qk, uk, lk, Ck+b dk+l, qk+b uk+1] on ltk+l 
[qk+I,uk+blk+1,ck+2,dk+2,qk+2,uk+2] on 1,~<+2 

Since (h + k, L dx,p,um,lm) E Gt~c(qk,uk) when [qk-1,uk-1,lk-1,Ck,dk,qk,uk] 
x=k+1 

on lt~c is processed by step II.B.2.ii of Algorithm 5.1.1, step I of Algorithm 5.1.1 
initializes B_1 to (qk,uk,lk,Ck + dk,O) and B0 to (qk-1,uk-1,lk-1,ck,dk) and adds 

N 

(h+k-1, L dx,p, urn, lm) to Gtk-t (qk_1, uk-d The loop in step II of Algorithm 5.1.2 
x=k 

must iterate through at least the sequence o = 1, 2, ... , k-1 and it has the following 
property: 
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If (qx,Ux,lx,a,b) E Bo-ll (n + 1, L dnp,um,lm) E Gt.,(qx), and 
z=x+! 

[qx-!,Ux-!,lx-!,Cx,dx,qx,ux] is on It., then (qx-!,ux-!,lx-!,Cx,b + dx) 
N 

is added to Ba and (n,Ldnp,um,lm) is added to G,.,_1 (qx-l,ux-1)· 

N 

Therefore, Algorithm 5.1.2 must add (h,'Ldx,p,um,lm) to Gt0 (q0 ). 1 
x=l 
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THEOREM 5.4.1 G~ven the same Q, /q, and gq for the explicitly-advancing 
LR(k) parser and Algorzthm 5.1.1, ~1 the sequence of moves 

'a• L J\f+l a• 

(O,e,yy') f- (0, ?, ... ) f- (a.lr,v,y') f- (a.rs, ?, ... ) f- (a.rs,w,e) 

can be made by the explicitly-advanczng LR{k} parser, where L ~ 0, M ~ 0, lvl = k 
or lv I = 0, lw I = k, and there ex~st edzt sequences S and S' such that z 1:1 ~ y, 

z1+1:1 ~ y', W(S) = c, W(S') = d, and 

c + d =min ( { W(T) I z1.1 ~ t such that (0, e, t); (a.rs,w, e)}) 

then Algorzthm 5.1.1 adds the entry [ r, v, i, c', d', s, w] to parse list Ii where c' + d' = 
c+d. 

Proof: The theorem is proved by induction on the sum of Land M. The induction 
proceeds in three steps: 

• first, the theorem is proved for L + M = 0; 

• second, the theorem is proved for for L = N and M = O, assuming it holds 
whenever L + M < N; and 

• third, the theorem is proved for for L + M = N, assuming it holds whenever 
L+M < N. 

If the parameter space formed by L and M is seen as an infinite table with L as 
the row number and M as the column number, the steps of the induction can be 
viewed as proving the theorem diagonal by diagonal, using the diagonals that run 
from the lower left to upper right sides of the table. 

For the first step of the induction, L + M = 0 and the theorem can be written 
as follows: 



If the explicitly-advancing LR(k) parser can make the sequence of 
moves 

a* a* 

(0, E,vy') f- (O,v,y') f- (Os, ?, ... ) f- (Os,w, €) 

where !vi = k, !Y'! = k and there exist edit sequences S and S' such 

that Z1:z ~ v, Zz+l:J ~ y', W(S) = c, W(S') = d and 

c + d =min ( { W(T) I z1:1 ~ t such that (0, E,t) ~ (Os,w,E)}) 

then [0, v, i, c', d', s, w] is added to 11 where c' + d' = c +d. 
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Since the explicitly-advancing LR( k) parser can make the sequence of advances 

a• 

(0, F, vy') f- (0, v, y') 

and step I of Algorithm 5.1.1 places ([0, E, 0, 0, O, 0, €]), 0) on H, applying Lemma 
5.4.7 shows that ([O,E,O,O,c,O,v],i) is added to H. Lemma 5.4.9 shows that 

c =min ({w(T) I z1:1 ~ t such that (O,E,t) ~ (O,v,E)}) 

so Lemma 5.3.1, Lemma 5.3.3 and Lemma 5.4.5 show that [0, €, 0, 0, c, 0, v] is on J,. 
When ([0, €, 0, 0, c, 0, v]), i) is processed by step II.C, Algorithm 5.1.1 should 

simulate the move 
(0, v, y') f- (Os,?, .. . ) 

which can be made by the explictly-advancing LR(k) parser. This move can be 
one of three types of moves: 

• a shift (shift E fo(v)), 

• a reduction by an empty production (reduce p E f0 (v) and IRHS(p)j = 0), 
or 

• a reduction by a non-empty production (reduce p E / 0 (v) and !RHS(p)j > 
0). 

For each of the three types of moves, s E g0 ( v ). 
For a shift, shift E / 0 ( v ). Therefore, w = v 2:kY' and jy'j = 1. Examining 

step II.C.l.i shows that ([0, v, i, c, 0, s, v2:k], i) is added to H. Applying Lemma 5.4. 7 
shows that ([O,v, i, c, d, s, w],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show 
that [0, v, i, c', d', s, w] is added to 11 where c' + d' = c +d. 
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For a reduction by an empty production, reduce p E fu(v), jRHS(p)j = 0 
and j = i. Therefore, w = v, y' = E and d = 0. Examining step II.C.2 shows 
that ([O,v,i,c,O,s,v],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show that 
[0, v, i, c', d', s, w] is added to 11 where c' + d' = c. 

For a reduction by a non-empty production, reduce p E fu(v), IRHS(p)j > 0, 
v = e, and i = 0. Therefore, y' = E and d = 0. Examining step II.C.2 shows 
that ([0, e, 0, O, c, s, v],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show that 
[O,v,i,c',d',s,w] is added to 11 where c' + d' =c. 

For the second induction step, M = 0, L = N, and the theorem is assumed to 
hold for L + M < N. Since M = 0, the theorem can be written as follows: 

If the explicitly-advancing LR(k) parser can make the sequence of 
moves 

a"' N a"' 

(O,e,yy') f- (0, ?, ... ) f- (alr,v,y') f- (ars, ?, ... ) f- (ars,w,e) 

where jvj = k, jy'j = k and there exist edit sequences S and S' such 

that Z1:1 ~ y, Za+l:J ~ y', W(S) = c, W(S') = d and 

then [r, v, i, c', d', s, w] is added to 11 where c' + d' = c +d. 

If N = 0 then this induction step degenerates to the first induction step. Therefore, 
only the case of N > 0 needs to be considered. Since the length of the sequence of 
moves 

a* N-1 a• - a• 

(O,e,yy') f- (0, ?, ... ) f- (a,?, ... ) f- (a,?, ... ) f- (ar, ?, ... ) f- (ar,v,y') 

is less than N, the induction hypothesis and Lemma 5.4.9 can be applied to show 
that there must be an entry[?,?, ?,a,b,r,v] on I, where c =a+ b = W(S). 

When([?,?, ?,a,b,r,v]),i) is processed by step II.C, Algorithm 5.1.1 should 
simulate the move 

(aIr, v, y') f- ( ar s, ? , ... ) 

which can be made by the explictly-advancing LR(k) parser. This move can be 
one of two types of moves: 

• a shift (shift E fr ( v)), or 

• a reduction by an empty production (reduce p E fr(v) and IRHS(p)j = 0). 
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For either of the two types of moves, s E gr ( v ). 
For a shift, shift E fr( v ). Therefore, w = v2:kY1 and IY'I = 1. Examining step 

II.C.2.i shows that ([r,v,i,c,O,s,v2:k],i) is added to H. Applying Lemma 5.4.7 
shows that ([r,v,i,c,d,s,w],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5 
show that [r, v, i, c', d', s, w] is added to 11 where c' + d' = c +d. 

For a reduction by an empty production, reduce p E fr(v), IRHS(p)l = 0 and 
j = i. Therefore, w = v, y' = E and d = 0. Examining step II.C.l.ii and step II.C.2 
shows that ([r, v, i, c, 0, s, w],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show 
that [r,v,i,c',d',s,w] is added to 11 where c' + d' =c. 

For the third induction step, M > 0, M + L = N, and the theorem is assumed 
to hold for M + L < N. Since M > 0, the theorem can be written as follows: 

If the explicitly-advancing LR( k) parser can make the sequence of 
moves 

a• L M+l 

(O,E,yy') 1- (0, ?, ... ) 1- (a:lr,v,y 1) 1- (ars,w,E) 

where L ~ 0, M > 0, lvl = k, lwl = k, and there exist edit sequences 

S and S1 such that zl:& ~ y, Za+I·J ~ y', W(S) = c, W(S1) = d, and 

c + d =min ( { W(T) I z1:1 ~ t and (0, E, t) ~ ( a:rs, w, e)}) 
then [r, v, i, c1, d1, s, w] is added to 11 where c' + d1 = c +d. 

Since a move of the explicitly-advancing LR( k) parser can add at most one symbol 
to the stack and r is not allowed to be popped from the stack by any of the M + 1 
moves in the sequence of moves 

M+l 

(a: I r, v, y1) 1- ( a:r s, w, e), 

this sequence of moves can be written as 

(I II 1)1-+( I II I) a: r, v, Y1Y2 · .. Ym a:r qll u1, Y2Y3 • .. Ym 
+ 
1- ( a:rqd Q2, u2, y~y14 .. . y:n) 
+ 
1-
+ 
1- (a:rq1q2 · · · qm-21qm-b Um-1, Y:n) 
+ 
1- (arqlq2 ... qm-tlqm,Um,E) 

1- (ars,w,E) 

where 1 < m < M and luxl k for 1 < x < m. This implies that Urn = w, 
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y' = y~y~ ... y:n and S' = s~ s~ ... s:n such that, for 1 ~ X ~ m, s~ is an edit 

sequence for which Zl.,_ 1 +l:l., ~ y~ where lo = i, lm = j and lx_1 < lx for 1 ~ x ~ m. 

and 

Let bx = W(S~), a1 = c and ax+l = W(SS~S~ ... S~). Then 

x-1 

ax= c + L bt 
z=1 

m 

Applying Lemma 5.4.9, 

ax+ bx = min ({w(T) I ZH., ~ t and (O,e,t); (arq1q2 ... qx,ux,e)}) 

The reduction 
(cxrq1q2···qm,w,e) f- (ars,w,e) 

must be a reduction that pops m states off the stack or, if a = E and r = 0, a 
reduction which possibly pops more than m states and underflows the stack. Also, 
the reduction implies that there exists s E 9r(!LHS(p)j) and reduce p E fqm(w). 

+ 
Any proper subsequence of the sequence of moves ( ar, v, y') f- ( ar s, w, e) has length 
less than N so, applying the induction hypothesis, there must be 

[r,v,i,a~,b~,q1,u1] on Jlt 
[q1 ,ulll1 ,a~,b~,q2,u2] on lt2 

where a~+ b~ = ax+ bx for 1 ~ x ~ m. Applying Theorem 5.3.1, b~ - W(S~) 

where S~ is an edit sequence for which Zt.,_1 +l:l., ~ y~ and 

+ 
(f3rq1q2 · · ./qx-1' Ux-ll Y~) f- (f3rq1q2 · • • qx, Ux, E). 

Furthermore, a~ = W(T~) where T~ is an edit sequence for which z1:t.,_1 ~ t~ and 

* 
(O,e,t~) f- (f3rq1q2···qx-11Ux-1,e). 

Therefore, b~ = bx and ax = a~ since if b~ f. bx then either ax + b~ or a~ + bx is less 
than ax+ bx, which is not possible. 
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The entries [qx-17 Ux-17 lx-h ax, bx, qx, ux] on h. may be processed by step II.C 
in any order so let [qh-h uh-h lh_1, a~, b~, qh, uh] on Ith be the last entry processed 
by step II.C. If h = m, examining step II.C.l.ii shows that 

when the entry [qh-h uh-h lh-h ah, bh, qh, uh] on Ith is processed by step II.C.2.iii. 
If h < m, applying Lemma 5.4.10 for the entries 

[qh,uh,lh,ah+hbh+l,qh+huh+l] on I,h; 1 

[ qh+l, uh+l, lh+l, ah+2, bh+2, qh+2, uh+2] on Ith+2 

shows that 
m 

(IRHS(p)l- (m- h), L bx,p,w,j) E G,h(qh,uh)· 
x=h+l 

when the entry [qh_1 ,uh_1,lh-hah,bh,qh,uh] on I,h is processed by step II.C.2.iii. 
Applying Lemma 5.4.2 to [r,v,i,abb1,q1,u1] on It 1 shows that there is an entry 
[?, ?, ?,ao,bo,r,v] on I, for which a1 = ao + b0 • Furthermore, if m > IRHS(p)l then 
[?, ?, ?,a0 ,b0 ,r,v] = [O,e,O,O,b0 ,0,v]. Applying Lemma 5.4.11 to 

[?, ?, ?,ao,b0 ,r,v] on I. 
[r,v,i,abbhqbu1] on It1 

[qb u1, lb a2, b2, q2, u2] on It2 

shows that if m = IRHS(p)l then 

h 

(r,v,i,ab L bx) E B(IRHS(p)l-(m-h))-1 
x=1 

and that if m > IRHS(p)l then 

h 

(0, e, 0, o, L bx) E B(IRHS(p)l-(m-h))-1· 
x=O 

In either case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,i,c,d,s,w],j) to Hand 
Lemma 5.3.1 and Lemma 5.4.5 show that [r,v,i,c',d',s,w] is added to I 3 where 
c' + d' = c + d. 1 
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5.5 RUN TIME ANALYSIS 

The run time analysis in this section is simplified by the fact that Algorithm 5.1.1 
is a modified version of Algorithm 4.1.1. The analysis of Algorithm 5.1.1 time and 
space complexities is performed by comparing the two algorithms and drawing on 
the results for Algorithm 4.1.1. 

Two major results are presented in this section. The first result shows that 
Algorithm 5.1.1 has O(n5 ) time complexity and O(n4 ) space complexity and the 
second result shows that for LR( k) grammars and a bounded stack size the time 
and space complexity is O(n). 

5.5.1 O(n5 ) Time and O(n4 ) Space Complexities 

Since Algorithm 5.1.1 is a modified version of Algorithm 4.1.1, its time and space 
complexities can be determined from a comparison of the two algorithms. Entries 
in Algorithm 5.1.1 have two cost components and two lookahead strings that are 
not present in entries for Algorithm 4.1.1. However, none of the operations af~ 

fected by this change have their time or space complexity increased over those in 
Algorithm 4.1.1. This is because the maximum length of the lookahead strings is 
0(1) and nothing is done with the cost components other than adding them in 
conjunction with other operations on the entries. 

Step II.B of Algorithm 5.1.1 is a completely new step but it does not increase 
the algorithm's time complexity over Algorithm 4.1.1. This is because the function 
of step II.B is to fill the lookahead string for an entry and there are at most 0( 1) 
different possible lookaheads. Thus the costs of executing step II.B can be charged 
to the corresponding entry which was processed by step I or step II.C.l.i. 

The space complexity of Algorithm 5.1.1 is increased over Algorithm 4.1.1 by 
the elimination of duplicate checking for the pending list, H, in steps II.C.l.i 
and II.C.2.iii. The pending list may contain as many as 0( n 4 ) entries since 
step II.C.2.iii may add O(n2 ) entries for each entry it processes. The time com~ 
plexity is not affected because any particular entry can still only be added 0( 1) 
times for each entry processed by step II.C.l.i or step II.C.2.iii. 

Step II.A of Algorithm 5.1.1 has been changed from Algorithm 4.1.1 so that 
it removes a least-cost entry. This change could potentially increase the time 
complexity of the removal or insertion operations but a simple reorganization of 
the pending list can be used to avoid an increase. The pending list is organized as 
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an array of m + 1 lists where m = max( {W(( a ~----+ b)) I (a ~----+ b) E ~} ). When a 
entry ([q, u, i, c, d, r, v],j) is added to the pending list, it is added to the list indexed 
by ( c + d) mod ( m + 1 ). Thus, the number of primitive operations for adding an 
entry to the pending list is still 0(1). 

For removing entries from the pending list, an auxiliary variable, l, is used to 
index the pending list. The index l is initialized to 0 in step I of the algorithm. 
When a least-cost entry is to be removed from the pending list, the first entry 
on the list indexed by l is removed. If the list indexed by l is empty then l is 
incremented by 1 mod ( m + 1) and the next list is checked. This process continues 
until an entry is found or the pending list is determined to be empty. Examination 
of Algorithm 5.1.1 and the proofs of its correctness show that the entries on the 
list indexed by l will always be least-cost entries since m = max( {W((a ~----+ b)) I 
(a~----+ b) E ~} ). Thus, the number of primitive operations for removing an entry 
from the pending list is 0(1). 

The comparison of Algorithm 5.1.1 and Algorithm 4.1.1 shows that the only 
impact of the changes is to increase the space complexity because the pending list 
may grow to O(n4 ) entries. 

5.5.2 O(n) Time and Space for LR(k) Grammars 

Since Algorithm 4.1.1 and Algorithm 5.1.1 are both simulating an (explicitly
advancing) LR(k) parser, The results for Algorithm 4.1.1 when an LR(k) grammar 
is used carry directly over to Algorithm 5.1.1 when there are no errors in the input 
string. However, for Algorithm 5.1.1 it is desirable to consider the effect of leaving 
the test for duplicate entries in step II.C. 

Checking for duplicate entries only increases the time complexity if there are 
0( n) entries on a parse list Ir An entry [q, u, i, c, d, r, v] on 11 implies that the 
LR( k) parser can make the sequence of moves 

* 
( alq, w,+I,n+k+I) 1- ( aqr, w1+1,n+k+I)· 

Since the LR( k) parser is deterministic for an LR( k) grammar, 0( n) entries on a 
parse list implies that there must be 0( n) states on the parse stack for the LR( k) 
parser at some point during the parse of the input string. 
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In actual pratice, LR( k) parsers are mostly used with stacks of bounded size, 
even when the grammar contains right-recursive productions. Given the constraint 
of a bounded stack, Algorithm 5.1.1 has 0( n) time complexity for input strings 
with no errors even though duplicate checking is left in step II.C. 

5.6 REGIONALLY LEAST-COST ERROR RECOVERY 

This section shows how Algorithm 5.1.1 can be used for regionally least-cost error 
recovery in LR( k) parsers. The practical advantage of Algorithm 5.1.1 's depth-first 
search over breadth-first searches is also_ discussed. The discussion in this section is 
limited to LR(k) parsers, but these results can be extended to LALR(k) or SLR(k) 
parsers. 

In practice, an LR( k) parser operates normally until it encounters an error 
in its input string. The parser then invokes its syntax-error recovery algorithm. 
Once the parser recovers from the error, it continues parsing from the configuration 
generated by the syntax-error recovery algorithm. This style of parser operation is 
the one assumed when Algorithm 5.1.1 is used as a syntax-error recovery algorithm. 

For regionally least-cost error recovery, one issue is how far beyond the parser
defined error location to extend the region. One approach is to always use a fixed 
number of tokens. Another approach is to use Mauney and Fischer's [21] MPL U 
symbols as markers for the end of the error recovery regions. Algorithm 5.1.1 is 
flexible enough to be used with either of these approaches. 

Another issue that any syntax-error recovery algorithm must address is that 
the location in the input string at which the parser detects an error may be beyond 
the actual error location. There are several ways to deal with this issue during error 
recovery: 

• ignore it and only allow changes. to the unparsed input; 

• retain the previously scanned input and allow it to be changed; and 

• allow the stack (as a representation of parsed input) to be changed. 

Once again, Algorithm 5.1.1 is flexible enough to be used with any of these ap
proaches. 
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Assuming for the moment that repairs can only be made to the unparsed 
input, Algorithm 5.1.1 can be straightforwardly applied to any configuration in 
which an LR( k) parser detects an error. Let the configuration be 

and let l, where l 2:: j + 1, be the location of the end of the error recovery region. 
Then m + l- j + 1 parse lists 10 , Ib .•• , Im+l-J are required and the input string 
for Algorithm 5.1.1 is Zm+l:m+I-J = Wj+l:l· 

The first m + 1 parse lists are used to record the stack so that reductions 
can be performed. Each parse list I" for 0 < i < m, is initialized with an entry 
[q,_ 1,e,i -1,0,0,qne]. Note that by convention q0 = 0. Parse list 10 is initialized 
with the entry [0, e, 0, 0, 0, 0, e]. The pending list, H, is initialized with the entry 
([qm-l,e,m -1,0,0,qm,e],m). 

When Algorithm 5.1.1 is used for syntax-error recovery, step II.B needs to be 
changed so that tokens are not added to the lookahead string for an entry unless 
the resulting lookahead string is valid for the entry's state. Entries with invalid 
lookaheads are troublesome during error recovery and their generation can easily 
be avoided. This change does not affect the correctness of Algorithm 5.1.1. 

Once initialized with the starting configuration, Algorithm 5.1.1 is started 
and allowed to execute normally. Note that it is assumed that the pending list, 
H, is processed in first-in last-out order for entries with the same costs. This gives 
Algorithm 5.1.1 its depth-first search capability. 

Step II of Algorithm 5.1.1 needs to be changed to allow for a new termination 
condition: 

If the last entry processed was ([q,u,h,c,d,r,v],i) and i = m + l- j 
then halt; otherwise perform the following steps: 

This termination condition uses the parse list Im+l-J as a sentinel to detect the 
completion of a least-cost edit of the region. If an entry is added to Im+t-1 then the 
entry corresponds to an edit of the region. Since entries are added to their parse 
lists in order of increasing cost, the first entry added to Im+l-J must correspond to 
a least-cost edit of the region. 

If an entry [q,u,h,c,d,r,v] is added to Im+t-1 and V!v!:!vl "/= Wt·l or lvl < k then 
the selection of w1•1 as the end of the region is questionable. However, this presents 
no difficulities for Algorithm 5.1.1 because additional parse lists can be added to 
expand the region and the execution of the algorithm can be continued. 
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Once Algorithm 5.1.1 halts, the edit of the region must be recovered and the 
parser placed in its new configuration. The recovery of the edit of the region 
requires that Algorithm 5.1.1 be modified to maintain a pointer in each entry. 
This pointer is used to point to the predecessor of the entry. Step II.C.l.i and 
step II.C.2.iii must be modified to properly initialize this pointer. Step II.B must 
be modified to copy this pointer to all successors of the entries it processes. 

Using the entry [q, u, h, c, d, r, v] on Im+l-n the predecessor pointers are fol
lowed back to the entry [qm_2 , e, m- 2, 0, 0, qm_ 1 , c] on lm_1 , reversing the pointers 
along the way so that they point to each entry's successor. Then the successor 
pointers are followed forward, simulating the moves of the parser to create the new 
configuration. The edits can be reconstructed during the simulation by comparing 
the lookaheads for each entry with the actual input string. 

The advantages of the depth-first capabilities of Algorithm 5.1.1 for simple, 
single token errors can be seen easily from the above description. Suppose the 
error is a single token error which occurs at the parser defined error location. 
Algorithm 5.1.1 will attempt single token repairs at the error location. The first 
single token repair that parses to the end of the region will terminate the algorithm 
and no time will be wasted on the remaining repairs. If a single token repair can 
only be parsed part way through the region then Algorithm 5.1.1 will attempt to 
repair the "second" error as long as the cost of the two repairs does not exceed 
the cost of trying an alternate single token repair at the original error location. 
Any time a repair enables Algorithm 5.1.1 to correctly parse the rest of the region, 
Algorithm 5.1.1 will effectively stop trying alternatives. Thus, Algorithm 5.1.1 
attempts to quickly find a least-cost repair for the 'region and only backtracks to 
consider alternatives when continuing forward leads to higher-cost repairs. 

For more powerful syntax-error recovery, Algorithm 5.1.1 can also be used to 
alter contents of the stack when repairing the region. The full details for such a 
use of the algorithm are not presented here, but the general approach is outlined. 
This approach takes advantage of the fact that each state on the stack corresponds 
to a symbol in a viable prefix for the grammar and that the stack may be changed 
as long as it remains a viable prefix. The symbol corresponding to a state q on the 
stack is denoted q. 

Altering the stack requires the LR( k) parser to compute and record the fol-
lowing information for each stack position, i, during normal parsing: 

• the number of tokens derived from q,, denoted O(i); 

• the first k tokens derived from iJ., denoted T( i); and 

• the cost to delete the tokens that are derived from fin denoted D( i). 
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This'information can be easily collected by the parser and should not greatly affect 
its efficiency. 

As before, the starting configuration is 

However, the input string, z, for Algorithm 5.1.1 is allowed to contain the non
terminal symbols q,. Actually, each nonterminal ij, which derives k or less tokens 
is expanded and replaced in z by its tokens. The following definitions aid in the 
initialization of the parse lists for Algorithm 5.1.1: 

E(") = { T(i) if C(i)::; k 
t q. if c ( i) > k 

z-1 

L(i) = L IE(i)l 
x=U 

1-1 

M(i) = L IT(i)l 
x=O ' 

z = E(1)E(2) ... E(m) . 

y = T(1)T(2) ... T(m) 

h _ { L(i + 1) if C(i + 1)::; k 
I- L(i) ' if C(i + 1) > k 

Uz = Ylll(z)+I:.IH(z)+k· 

Finally, let m' = L(m) and Zm'+l:m'+l-J = Wj+I:l· 

Using the input string z, m' + l- j + 1 parse lists 10 , 11 , ••• , Im'+l-J are required. 
The first m' + 1 parse lists record the stack and allow edits to the stack to be 
performed. Parse list Iho is initi~ized with the entry [0, e, 0, 0, 0, 0, u0 ]. Each parse 
list Ih, for 0 < i < m is initialized with an entry (q1-tU1-t,h1_ 1 ,0,0,q,,u,]. All 
of these entries have their predecessor pointer initialized appropriately since the 
predecessor pointers will now be followed back to an entry [0, e, 0, 0,?, 0, ?] when 
Algorithm 5.1.1 halts. As before, this initialization of the parse lists allows the 
stack to be used for reductions as the unparsed input is processed. 

The pending list, H, is initialized with the entry [q~,e,O,O,O,q0,e] along with, 
for 0 < i < m+ 1, the entries ([q1-t,U1-t,h1-t,O,O,q.,e],L(i)). Again, all of these 
entries have their predecessor pointer initialized. These entries allow edits to be 
made at any point in the stack. 
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Algorithm 5.1.1 must be modified to deal with the nonterminal symbols present 
in z. This also forces the algorithm to incorporate nonterminal symbols into its 
lookahead strings. In general, whenever a lookahead string contains a nonterminal 
symbol, iin the k symbols in T( i) are substituted for the nonterminal symbol when 
the lookahead is used. If ij, is not the first symbol in a lookahead string, the extra 
symbols added by T(i) are ignored. Note that the treatment of nonterminals in 
lookahead strings has the effect of only allowing one nonterminal in a lookahead 
string and this nonterminal is always the last symbol in the lookahead string. 

Steps II.B.1 thru II.B.4 of Algorithm 5.1.1 must be changed to make sure 
that they are only applied to terminal symbols when the lookahead string does 
not contain nonterminal symbols. Two new steps need to be added to step B -
one step for deleting nonterminals; and one step for "scanning" a nonterminal. 
Note that replacing nonterminals is not supported and that inserting before a 
nonterminal is the same operation as inserting before a terminal. 

The new step for deleting a nonterminal is step II.B.5 and is written as follows, 
assuming that an entry ([q, u, h, c, d, r, v ], l) is being processed: 

5. If z1+1:J+l = ij,, for any i such that 0 < i :::; m, and v E :E* then add 
( [ q, u, h, c, d + D ( i), r, v] , l + 1) to H. 

This step simulates the deletion of a nonterminal, if the lookahead string does 
not contain any nonterminals. The requirement that the lookahead string not 
contain any nonterminals prevents the nonterminal from entering the lookahead 
string before it is deleted. 

The new step for scanning a nonterminal is step II.B.6 and is written as follows, 
assuming that an entry ([q,u,h,c,d,r,v],l) is being processed: 

6. If z1+1.1+1 = ij., for 0 <iSm, then add ([q,u,h,c,d,r,vij,],l) to H. 

This step simulates the scanning of a nonterminal symbol. Unlike step B.1 which 
scans a terminal symbol, the entry is not advanced to the next parse list. 
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Also, step C.l.i of Algorithm 5.1.1 must be modified to correctly "shift" 
nonterminal symbols. The step is rewritten as follows, assuming that an entry 
( [ q, u, h, c, d, r, v], l) is being processed: 

1. If shift E fr( v) then perform one of the following steps: 
" 

a. Ifv1.1 E I: and s E 9r(Vt:I) then add ([r,v,l,c+ d,O,s,v2:k],l) 
to H. 

b. If V1:1 E N and s E 9r( VI:I) then add ((r, v, l, c+ d, 0, s, e], l + 1) 
to H. ' 

With all of these modifications, Algorithm 5.1.1 can edit both the stack and 
the unparsed input in the region. The termination condition for Algorithm 5.1.1 re
mains the same. Finally, the reconstruction of the edits and the :final configuration 
follow the same procedure as outlined previously. 
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CHAPTER VI 

CONCLUSION 

6.1 SUMMARY 

This dissertation develops a regionally least-cost error recovery scheme with a 
worst-case time complexity comparable to other error recovery schemes, such as 
Burke and Fisher's [6], and Pennello and DeRemer's [24], which are limited to less 
powerful repairs. This regionally least-cost error recovery scheme improves upon 
Mauney's [20] scheme through its ability to perform a depth-first search of the 
error's region and thus offers a greatly increased efficiency for simple single token 
repairs. 

During the course of the development of this improved regionally least-cost 
error recovery scheme, three major algorithms were developed. The first is the 
LR(k) Early's Algorithm. This algorithm is essentially Early's algorithm changed 
to use the LR(k) states instead of LR(k) items. The LR(k) Early's Algorithm is 
important in its own right since in practice use of the LR( k) states reduces the 
number of entries that must be allocated and manipulated. However, the worst
case time complexity of the algorithm is O(n4 ) as opposed to O(n3 ) for Early's 
algorithm. 

The second algorithm developed is the Depth-Fi~st LR(k) Early's Algorithm. 
This algorithm also uses the LR(k) states but it allows entries to be added to their 
parse lists in any order (including depth-first) consistent with the parses of the 
input string. In general, the worst-case time complexity of the algorithm is 0( n 5 ), 

but it is only 0( n) for LR( k) grammars and a bounded stack. The Depth-First 
LR( k) Early's Algorithm is the only general parsing method known to the author 
that can perform in a depth-first manner with a worst-case time complexity less 
than 0( en). 
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The third algorithm is the Least-Cost LR( k) Early's Algorithm. The algorithm 
extends the Depth-First LR( k) Early's Algorithm so that it performs the least
cost edit of its input string. This extension maintains the same worst-case time 
complexity. The Least-Cost LR( k) Early's Algorithm is the only globally least-cost 
algorithm known to the author which can be shown to have a time complexity of 
O(n) for a syntactically correct input string for an LR(k) grammar. 

6.2 FUTURE WORK 

The development of the Least-Cost LR(k) Early's Algorithm has opened the door 
to many additional inquiries. In addition to the theoretical time complexity results 
presented here, the algorithm's performance in actual practice should be measured 
against a suitable benchmark. The actual quality of error recovery should also be 
studied. 

More theoretical results for the worst-case time complexity of the algorithm~ 
would be useful. For example, it is desirable to know the worst-case time com
plexities for erroneous strings when the grammar used is left-linear or right-linear, 
regular, or LR(k). 

Finally, the algorithms developed in this dissertation of syntax-error recovery 
may offer improvements in other areas where Early's algorithm has been used, such 
as parsing extensible languages and pattern matching. 
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