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CHAPTER 1

INTRODUCTION

Modern compilers use syntax-directed parsing algorithms such as LL(1) and
LALR(1). These algorithms have simplified the task of parsing programs greatly,
but they have the undesirable property of stopping at the first syntax error in
a program. This behavior is not acceptable because the program may contain
several syntax errors, all of which should be reported to the programmer when the
program is compiled. Therefore, researchers have developed syntax-error recovery
schemes which allow syntax-directed parsers to recover from a syntax error and to
continue parsing the program. Unfortunately, the syntax-error recovery schemes
that have been developed are either costly in time or space, or fail to provide
“good” error recovery for all errors. This dissertation presents a new syntax-error
recovery scheme, for LR(k) parsers and their variants, which is less costly than
similar schemes and can provide “good” error recovery on a wide range of errors.

1.1 LITERATURE REVIEW

The literature on syntax-error recovery schemes is quite extensive. A large, but
now dated, bibliography is provided by Ciesinger (7] and a relatively current survey
of the field is provided by Hammond and Rayward-Smith [16].

In the literature, the terms “error recovery”, “error repair”, “error correc-
tion”, and “error handling” are given different, often conflicting, definitions by
various authors. In this dissertation, the terms “error recovery scheme” and “error
handling scheme” are taken to be synonymous and are used for any scheme that
places a syntax-directed parser in a state that allows it to continue parsing after
a syntax error is encountered. The terms “error repair scheme” and “error correc-
tion scheme” are also taken to be synonymous and are used for any error recovery
scheme that operates by explicitly constructing a repair to the text of the program.

This review focuses on syntax-error recovery schemes that apply to LR(k)
parsers and their variants and the reader is assumed to be familar with the theory of
LR(k) parsing as presented in a standard text such as Aho, Sethi, and Ullman [4].
In this section, the configuration of an LR(k) parser is represented, using Aho,



Sethi, and Ullman’s notation, by
(80,X1,81,. . .,Xm,sm | AyyAyppiyeee ,a,,)

where the s,’s are the states on the parse stack, the X,’s are the terminal and non-
terminal symbols which correspond to the states, and the a’s are the unconsumed
input tokens.

For a configuration in which an LR(k) parser detects an error, the location
of a, is called the parser-defined error location. The parser-defined error locations
may not be the actual location of the error because an LR(k) parser may not
detect that a program is erroneous until after the point at which the error actually
occurred. For example, in this PASCAL code fragment

.; I =1J THEN ...

the error is the omission of an “IF” before the “I”. However, an LR(k) parser
will not detect an error until it encounters the “=”. Thus, the parser-defined error
location is at the “=” while the actual error location is at the “I”.

For the purposes of this dissertation, syntax-error recovery schemes can be
classified into two major categories: ad hoc schemes based on pragmatic princi-
ples; and least-cost schemes based on the minimum distance model for determining
the location and nature of errors. These two classes of schemes both operate by
determining the location and nature of the error and then restarting the parser
in a state which enables it to continue parsing as if the erroneous section of the
program text had been transformed into a correct section of program text. The
primary difference between ad hoc schemes and least-cost schemes is that ad hoc
schemes use heuristics, that depend on the grammar describing the language and
the parsing algorithm, to determine the location and nature of an error; while
least-cost schemes apply the mininum distance correction model which determines
the location and nature of an error independently of any grammar for the language
or any parsing algorithm.

The minimum distance correction model of syntax errors is the only model of
syntax errors that has been studied. In the minimum distance correction model,
errors are considered to be the result of the insertion, deletion, or substitution of
tokens in the program. A more powerful model, that more accurately describes the
process by which syntax errors enter into the text of a program, would be helpful
to the development of error recovery schemes. The development of such a model
is a tremendous task since it requires an understanding of the mental processes of
programmers. In addition, the difficulties encountered in applying the minimum



distance model to the problem of syntax error recovery make it seem doubtful that
a more powerful model could be applied in practice.

Both the ad hoc and least-cost schemes can be further subdivided. The ad
hoc schemes can be broken into combinations of three basic schemes: local repair
schemes, phrase-level schemes, and forward move schemes. The least-cost schemes
can be subdivided into three distinct types: globally least-cost, locally least-cost,
and regionally least-cost. The remainder of this section examines these six types
of syntax-error recovery schemes.

1.1.1 Local Repair Schemes

Local repair schemes are based on the observation that most errors are single token
errors. Ripley and Druseikis [26] report that 88 percent of all errors in their sample
of PASCAL programs are single token insertions, deletions, or replacements.

A local repair scheme is a syntax-error recovery scheme where the insertion,
deletion, or replacement of a single token is allowed as a repair. A simple lo-
cal repair scheme considers single token repairs only at the parser-defined error
location.

Local repair schemes can generate a large number of possible repairs so various
methods are used to select a single repair. One method is to assign insertion,
deletion, or replacement costs to each token and choose the repair with the lowest
cost. A simple local repair scheme with this method is used by Sippu and Soisalon-
Soininen [28] to augment their phrase-level scheme.

One local repair scheme, which is also a method for selecting among possible
repairs, consists of attempting to parse a few tokens beyond a repair. If this parse
check does not encounter another error, the repair is considered successful. Of
course, when there is more than one repair that passes the parse check, some
additional method must be used to select the repair. The parse check method is
used by Graham, Haley, and Joy [14]. |

Another local repair scheme, takes into account the fact that the parser-defined
error location may not be the actual error location. If no repair is successful at the
parser-defined error location, then repairs are tried at previous locations. These
previous locations may be at previous tokens if already parsed tokens are retained
by the parser, or they may be locations on the parse stack. This scheme is used in
conjunction with the parse check method by Feyock and Lazarus [12], and Burke
and Fisher [6].

Finally, another local repair scheme is Burke and Fisher’s scope recovery
scheme [6] which attempts to insert a sequence of scope closers instead of just
trying single token repairs. The scope closers are a language dependent set of



token sequences such as “END”, “END IF” and “END RECORD” that close recursive
constructs in the language. Since omitting a scope closer is an error that is usu-
ally detected long after it’s location has been shifted onto the parse stack, scope
recovery is tried at all locations that precede the parser defined error location.

The major drawback of local repair schemes is that they can be expected to
fail for some errors. Thus local repair schemes must always be used in conjunction
with some other error recovery scheme.

1.1.2 Phrase-Level Schemes

Phrase-level schemes do not attempt to repair any errors. Instead they attempt
to place the parser in a state where it can continue parsing at a point beyond the
error location. While phrase-level schemes can be used alone; good examples are
Wirth’s follow set scheme [31] and YACC’s syntax-error recovery scheme [17]; they
are most often used in conjunction with local repair schemes.

Some phrase-level schemes are based on the idea of isolating an error phrase
and reducing it to a nonterminal. For example, given a configuration

(307X1’31a°'-me,3m ‘ QyyQyy1ye - "an)

where a parser-defined error is detected at a, and an error recovery that places the
parser in the configuration

(307X17517' . '7X173]’A,3A l Qytky e 'aan)
where A is a nonterminal symbol, then the error phrase
Xy ooy Xy @ay v oy Gagke

has been reduced to the nonterminal A. Other phrase-level schemes simply change
the error configuration to

(307X1’31""’XJ’81 l a‘z+lc""7a'n)

where X, is not required to be a nonterminal symbol. These schemes do not
attempt to interpret the error recovery as the reduction of an error phrase to a
nonterminal. They just pop the stack and delete input tokens until parsing can
continue.

Phrase-level schemes that operate by reducing an error phrase to a nontermi-
nal have been developed by Leinius [18], Peterson [25], and Sippu and Soisalon-
Soininen [28]. Other phrase-level schemes have been developed by Burke and
Fisher [6]; Feyock and Lazarus [12]; and Graham, Haley, and Joy [14].



The error recovery chosen by any phrase-level scheme is dependent on the
order in which the stack states and input tokens are searched for a possible recovery.
Sippu and Soisalon-Soininen introduce a very useful notation for describing search
orders. Let (j, k) denote the segment

X]+1,8]+1,...,Xm,.9] | AygeoneyBypl—1
of the configuration
(80,X1,31,...,Xm,3m I a,,...,an).

The following search order denotes a search that checks the whole stack from top
to bottom for a state which can shift the current input token before deleting an
input token:

(m,0) (m—1,0) ... (0,0)
(m,1) (m—1.1) ... (0,1)
(myn) (m—1,m) ... (0ym)

Sippu and Soisalon-Soininen’s notation for search orders in phrase-level schemes
helps in classifying other phrase-level schemes, even when they have complicated
search procedures. For instance, Burke and Fisher’s secondary recovery [6] has
many features such as parse checking possible recoveries and checking for the pos-
sibility of inserting scope closers. In addition, they do not use the concept of
reducing an error phrase, but instead simply remove states from the parse stack
until one is found that allows parsing to resume with the current token. However,
when their secondary recovery scheme is examined, it is seen that they search for
an error phrase in the following order:

(m,0) (m,1) ... (m,n)
(m—1,0) (m—2,0) ... (0,0)
(m-1,1) (m-2,1) ... (0,1)
(m—.l;n) (m-2,n) ... (0,n)

Another example of a phrase-level scheme that has an unusual search order is
YACC’s syntax-error recovery scheme. This scheme is similar to the scheme used
by Graham, Haley, and Joy [14] as the basis for their second level recovery scheme.
In this scheme, the states on the stack are popped until one is found that has a
shift on the special token error (these states are added by extra productions in



the grammar) and then the shift is performed. Next, the input tokens are skipped
until one is found that is shiftable in the current state. This scheme corresponds
to a search order of

(m,—-) (m—-1,—) ... (0,-)
which pops the stack independently of the input tokens; followed by a search order
of
(m',0) (m/,1) ... (m/,n)

where m/' is the value of m determined by the first search.

While the search order notation is useful for describing phrase-level schemes,
it also highlights a weakness of phrase-level schemes. The search order is fixed. If
multiple recoveries are possible, the recovery selected will be the one which occurs
first in the search order.

Another problem with phrase-level schemes is that they do not handle single
token errors well. This problem with single token errors can be alleviated by
using a local repair scheme in conjuction with a phrase-level scheme. But, Sippu
and Soisalon-Soininen [28] report that a simple local repair scheme often chooses
an inappropriate repair which causes extraneous errors to be generated. Burke
and Fisher [6]; Feyock and Lazarus [12]; and Graham, Haley, and Joy [14] have
apparently overcome this problem by using local repair schemes that parse check
the repairs.

In general, researchers do not report the worst-case time complexity of their
syntax-error recovery algorithms. However, Burke and Fisher’s scheme, which is
the most recent and powerful phrase-level scheme, is reported by Burke [5] to have
a worst-case time complexity of O(n®).

1.1.3 Forward Move Schemes

Forward move schemes are the result of attempts to extend the Graham-Rhodes
method [13] for precedence parsers to LR(k) parsers. The Graham-Rhodes method
for precedence parsers continues parsing after an error is detected until a reduc-
tion that involves the error is called for, or another error is encountered. When
a reduction that involves the error is called for, the error phrase is repaired by
modifying it to match the right-hand side of some production in the grammar and
then performing the corresponding reduction. Of course, for LR(k) parsers, pars-
ing beyond the parser defined error location is difficult since whenever an error is
detected the parser is in a state that cannot lead to a shift of the next input token.

The problem of parsing beyond the parser-defined error location for LR(k)
parsers has been solved by Druseikis and Ripley [10], Mickunas and Modry [22],



and Pennello and DeRemer [24]. All of these solutions involve restarting the parser
at the parser-defined error location in a state that can shift the next input token.
There may be several such states so separate parses must be carried out in parallel
for each state. Pennello and DeRemer only carry out the parallel parses as long as
the next action for each parse is the same.

Once the foward move has been carried out Michunas and Modry, and Pennello
and DeRemer repair the single token error and reduce the error phrase so the parser
can continue. Druseikis and Ripley do not attempt a repair or a reduction. Instead,
they start another forward move at the point at which the previous forward move
stopped. This allows the parser to continue and detect some subsequent errors,
but it also lets other errors remain undetected because left context information is
lost when a foward move is started.

Mickunas and Modry, and Pennello and DeRemer use single token repairs at
the parser-defined error location in an attempt to find a repair that allows the
parser to enter one of the states used to start the forward move. Mickunas and
Modry recursively invoke their recovery scheme if another error is encountered
during the forward move. Pennello and DeRemer restart the forward move at the
location of any subsequent errors and then attempt to concatenate the pieces of
the forward move together during the selection of repairs. For both schemes, if all
repairs fail at the current error location then the entire forward move process is
repeated at the previous location.

Forward move schemes share a common goal with the reduction oriented
phrase-level schemes; both classes of schemes attempt to reduce an error phrase to
a nonterminal. However, forward move schemes attempt to do this by recognizing
and repairing single token errors in the error phrase, while phrase-level schemes
just attempt to isolate the error phrase. Forward move schemes have the advantage
that the right end of the error phrase is determined by contextual information; and
it is not determined by a static search order.

Forward move schemes carry out a large number of parallel parses. Pennello
and DeRemer show how their parallel forward moves can be combined into a single
deterministic forward move by adding additional states to the LR(k) parser which
are used during a forward move. This increases the efficiency of their forward
moves at the cost of larger parse tables. They report the size of their parse tables
for PASCAL increased by 55 percent. '

While no worst-case time complexities are reported for foward moves schemes,
it is clear that they are essentially backtracking schemes and are guided by heuris-
tics. Thus, their time complexity should be at worst O(c"). In fact, Graham, Haley,
and Joy [14] cite the poor performance of forward moves schemes as motivation
for their development of a phrase-level scheme.



1.1.4 Globally Least-Cost Schemes

Globally least-cost schemes result from the straight forward application of the
minimum distance model of errors to the problem of syntax-error recovery. These
schemes are called globally least-cost because in principle they examine the entire
program text when recovering from an error.

In the mininum distance model, a program is considered to be a string of
tokens, and a (programming) language is simply a set of strings. The distance
between two strings is the number of changes needed to transfrom one string into
the other string, where a change is the insertion, deletion, or replacement of a token.
The distance between a string and a language is the minimum of the distances
between the string and each of the strings in the language. This minimum distance
criterion allows the number of errors in a string for a language to be defined as the
distance of the string from the language.

The minimum distance criterion can easily be extended to a least-cost criterion
by assigning an insertion and deletion cost for each token and a replacement cost
for every pair of tokens. The use of differing costs for the insertion, deletion, or
replacement of different symbols allows a least-cost scheme to be tuned to reflect
some pratical features of syntax errors. For example, it is unlikely that a reserved
word is misused in a program so the deletion cost for reserved words should be
high.

While the minimum distance criterion determines the number of errors in
a string, it does not fix their location. The following PASCAL code fragment
illustrates this problem:

...IF A = 0 THEN BEGIN A := B ; ELSE ...
This fragment contains only one error, but it could be corrected either to

...IF A

O THEN A :=B ; ELSE ...

or to

..IF A = 0 THEN BEGIN A := B ; END ELSE ...

To fix the location of errors in a string when more than one set of changes is
possible, a rule for choosing the locations of the errors is needed. One rule, which
accommodates the left to right bias of most parsing algorithms, is to choose a set
of changes that places the errors at locations farthest to the right in the string.
Under this rule, in the previous example, the second change would be preferred.

While the number and location of errors can be determined, there still may
be several possible changes. For example, in the erroneous code fragment



..A :=BC; ..

it is obvious that an operator must be inserted between “B” and “C”, but there are
many possible operators that could be inserted.

Global least-cost recovery schemes have been developed by Aho and Peter-
son [2]; Lyon [19]; and Mauney [20]. These schemes are, in fact, strongly related
to each other and they can all be viewed as extensions of Early’s algorithm [11]
for parsing arbitrary context free grammars (Mauney’s algorithm is actually an
extension of the Graham-Harrison-Ruzzo algorithm [15] which is closely related to
Early’s algorithm). All of these algorithms have a worst-case time complexity of
O(n?), where n is the length of the program.

Mauney reports that his algorithm readily acheives poor running times in
practice. The other globally least-cost algorithms suffer from this defect as well.
In fact, both Early’s algorithm and the Graham-Harrison-Ruzzo algorithm are
more costly than they need to be for syntax-error recovery because they proceed
breadth-first (carrying all parses forward simultaneously) instead of depth-first
(carrying only one parse forward at a time). The situation is made worse because
globally least-cost recovery schemes can be interpreted as adding, to the grammar
being used for parsing, error productions which represent the insertion, deletion or
replacement of a token. The resulting grammar is highly ambiguous; just the type
of grammar for which Early’s algorithm and the Graham-Harrison-Ruzzo algorithm
exhibit their worst-case running times.

The problems of these globally least-cost recovery schemes are illustrated in
Chapter 2 where a parse of a string using Lyon’s globally least-cost recovery scheme
is presented.

1.1.5 Locally Least-Cost Schemes

Given the the poor run times of the globally least-cost schemes, one would hope
that the situation could be improved by making some simplifying assumptions.
Locally least-cost schemes arise from the assumption that the parser-defined error
location and the actual error location are the same. Locally least-cost schemes
are similar to local repair schemes except that locally least-cost schemes do not
limit themselves to a single token repair. Thus, they always find a repair at the
parser-defined error location.

The major drawback of a locally least-cost scheme is the limited quality of error
recovery it can achieve since it uses only a small amount of context in selecting a
repair. For example, consider the following PASCAL code fragment.

..; A :=BC..
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A correct prefix parser will detect a syntax error on reading “C”, but there are
several possible recoveries:

.
A ]

.
A ]

= e = >
. .l.

o W w w

aaaa

A ..

.
*

However, because a locally least-cost scheme uses only the limited amount of in-
formation that exists at the point the error is detected, it will always make the
same recovery in this circumstance. It could make a better recovery if it used more
information such as the next input token: ‘

. - .
.y y

]
)

.
b

o W w w
QaaaaaQ

== e =

Another reason the quality of locally least-cost schemes is limited is that
changes are allowed only at the point where the error is detected, but this point
may not be the point at which the error exists. For example, given the PASCAL
code fragment:

.; I =7 THEN ...

an LR(k) parser will not detect an error until the “=” is read, since “I” could be

the beginning of an assignment statement. Therefore, locally least-cost recovery
replaces “=” with “:="
read.

and a second, spurious error is found when the “THEN” is

1.1.6 Regionally Least-Cost Schemes

Regionally least-cost schemes attempt to address the weakness of locally least-cost
error recovery by allowing changes in the region of the program surrounding the
parser defined error location. Regionally least-cost schemes are very similar to
forward move schemes in that both can look at regions of the program text. The
primary difference between the two is that regionally least-cost schemes choose the
least-cost parse after carrying out all possible parses of the region allowing for the
insertion, deletion, and replacement of tokens (pruning of the parses is possible
due to the least-cost criterion).
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Regionally least-cost schemes have been developed by Mauney [20] and Tai [29].
Mauney’s scheme is a globally least-cost scheme, based on the Graham-Harrison-
Ruzzo algorithm, modified to work within a region; but it still has a worst-case
time complexity of O(d®) where d is the length of the region. Tai’s scheme is based
on pattern matching and is only suitable for very small regions since the number
of patterns increases rapidly with the size of the region.

One issue for regionally least-cost schemes is the determination of the region
size. Mauney and Fischer [21] resolve this issue by defining a Moderate Phrase-
Level Uniqueness (MPLU) property for tokens. They show that a regionally least-
cost repair scheme can use the first MPLU token after the error location as the end
marker for the region. If the least-cost repair of the region does not delete the end
marker, then a larger region will not improve the recovery unless it contains addi-
tional errors. For a large PASCAL program, they report that the mean distance
between MPLU tokens is less than 11 tokens.

The quality of syntax-error recovery provided by a regionally least-cost scheme
should be as good or better than that provided by a forward move scheme over
the same region. This follows from the observation that if a regionlly least-cost
scheme considers the same tokens as a forward move scheme, then it should select
the same or a better repair than the forward move scheme because it is not limited
to single token repairs.

Also, the quality of the syntax-error recovery provided by a regionally least-
cost scheme should be as good or better than that provided by a phrase-level
scheme; if the actual error phrase is in the region. This is because phrase-level
schemes are restricted to a fixed search order when locating an error phrase, while
a regionally least-cost scheme is driven only by the context of the error and the
cost of repairs. .

Regionally least-cost schemes have the potential to be superior syntax-error
recovery schemes; however, they currently suffer from running times similar to
those for globally least-cost schemes. Mauney notes that the O(n®) worst-case
time complexity of his algorithm is achieved in practice because it uses a breadth-
first search. The algorithm examines most of the possible repairs in the region
before finding the least-cost repair. Mauney points out that a depth-first search
would greatly increase the speed of a regionally least-cost algorithm for most errors
encountered in practice.

1.2 SUMMARY OF RESULTS

In this dissertation, a new regionally least-cost syntax-error recovery scheme is
developed for LR(k) parsers. This scheme is a based on a new globally least-cost
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algorithm, called the Least-Cost LR(k) Early’s Algorithm. Unlike other globally
least-cost error recovery schemes, the new global least-cost error recovery scheme
is not based directly on Early’s algorithm or the related Graham-Harrison-Ruzzo
algorithm and it uses a depth-first search. The algorithm’s worst-case time com-
plexity is O(n®) which makes its worst-case performance superior to forward move
schemes and the same as the most powerful phrase-level schemes. Furthermore,
the depth-first nature of the algorithm enables it to perform linearly for correct
input.

The Least-Cost LR(k) Early’s Algorithm is developed in three steps. First, a
new algorithm, related to Early’s algorithm, is developed. This algorithm is called
the LR(k) Early’s Algorithm because it uses the states of an LR(k) parser instead
of LR(k) items. The LR(k) Early’s Algorithm has the same space complexity as
Early’s algorithm, but its time complexity is O(n*). The LR(k) Early’s Algorithm
shares the same breadth-first bias as Early’s algorithm and the Graham-Harrison-
Ruzzo algorithm.

Second, the Depth-First LR(k) Early’s Algorithm is developed to overcome
the breadth-first bias of the LR(k) Early’s Algorithm. This algorithm allows a
single parse to be pursued; and backtracks to try alternate parses only if the need
arises. The Depth-First LR(k) Early’s Algorithm has the same space complexity
as the LR(k) Early’s Algorithm, but its time complexity is O(n?®).

Third, the Depth-First LR(k) Early’s Algorithm is used as the basis for the
development of the Least-Cost LR(k) Early’s Algorithm. This algorithm finds the
globally least-cost repair of a string. Its time complexity is O(n3). However, for
an LR(k) grammar its time complexity is O(n) for correct inputs.

Finally, the application of the Least-Cost LR (k) Early’s Algorithm to region-
ally least-cost error recovery is discussed.

1.3 ORGANIZATION OF DISSERTATION

This dissertation is organized into six chapters. Chapter 1 is this introduction.
Chapter 2 presents theoretical background. Chapter 3 develops the LR(k) Early’s
Algorithm. Chapter 4 develops the Depth-First LR(k) Early’s Algorithm. Chapter
5 develops the Least-Cost LR(k) Early’s Algorithm. Chapter 6 is a summary and
also discusses directions for future research.
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CHAPTER 1II

THEORECTICAL BACKGROUND

In this chapter, the necessary background material for formal language the-
ory, least-cost editing of strings, LR(k) parsing theory, and Early’s algorithm is
presented.

2.1 FORMAL LANGUAGE THEORY

This section presents the terminology and notation for the formal language theory
used in this paper. For further details, the reader is referred to Aho and Ullman [1]
from which this material is derived.

An alphabet is a finite set of symbols; a string is a sequence of symbols from
an alphabet; and a language is a set of strings from an alphabet. The empty
string is denoted by €. The concatenation of two strings, z and y, is denoted by
the juxtaposition of z and y, zy. The length of a string z is denoted by |z|. A
substring of « that contains the ith thru jth symbols of = is denoted by z,.,.

The operator @, concatenates the first k characters from two strings « and y
and is defined as follows:

T ®ry = (TY)1:k-

The operator @y is extended to pairs of languages by the following definition:
Liy®yLy={w|z €L,y € Ly,and w=2Dry}.

If ¥ denotes an alphabet then X* denotes the set of strings over ¥; ¥* denotes
the set of nonempty strings over ¥; and X* denotes the set of strings of length k
over X. For convenience, {a}* is written as aF.

A context-free grammar (CFG) is a quadruple (N, X, P,S) where N is an
alphabet of nonterminal symbols, ¥ is an alphabet of terminal symbols, P is a set
of productions and is a subset of N x (N U X)*, and S is a symbol of N called
the start symbol. A production is written as A — «, where A is a nonterminal

symbol from N and a is a string of symbols from (/N U X)*. The productions in P
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are numbered, starting with one. If p is the number of a production, A — «, then
LHS(p) = A and RHS(p) = a.

For a CFG G, a relation = can be defined on strings from (N UZX)* as follows:
If aAB € (N UZX)* and there exists a production A — v € P then aAf = ayf3
and it is said that aAQ3 directly derives ay3. The transitive and reflexive closure
of = is denoted by = and if o = [ then it is said that a derives 8. A sequence
oy = a; = +-- = ay is called a derivation from ag to a, of length n. Finally, the
language generated by G is the set of all strings of terminal symbols that can be
derived from S.

Throughout this dissertation, the notational conventions of Aho and Ull-
man [1] for terminal symbols, nonterminal symbols, and strings of terminal or
nonterminal symbols are followed. The lower case letters at the beginning of the
alphabet; a,b,c,...; represent terminal symbols. The upper case letters at the be-
ginning of the alphabet; A, B,C,...; represent nonterminal symbols. The upper
case letters at the end of the alphabet; V, W, X, ...; represent terminal or nontermi-
nal symbols. The lower case létters at the end of the alphabet; v,w, z, ...; represent
strings of terminal symbols. The lower case Greek letters; o, 3, ...; represent strings
of terminal or nonterminal symbols.

2.2 LEAST-COST EDITING OF STRINGS

This section presents the formal machinery for the concept of the least-cost edit of
a string. Much of this material is taken from [30].

Definition 2.2.1 (Edit Operation) Given an alphabet X, a,b € (X U ¢€) and
ab # €, an edit operation (a — b) denotes the replacement of a with b except,
when a = ¢, it denotes the insertion of b and, when b = ¢, it denotes the deletion
of a.

Definition 2.2.2 (Set of Edit Operations) Given two alphabets A and X, A is
called a set of edit operations for X if A = {(a — b) | a,b € T U € and ab # €}.

Definition 2.2.8 (Edit Sequence) Given a set of edit operations A, a string
S € A* is called an edit sequence.

Defination 2.2.4 (Editing a String) Given an set of edit operations A for X,
an edit sequence, S € A*, is said to edit ¢ € X* to y € ¥*, denoted = ~ y, if either
S=z=y=cor S=(ar b)S,z=az,y=>by,and 2’5 y.
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Definition 2.2.5 (Edit'Cost Function for Edit Operations) Given a set of edit
operations A, a function W : A — N, where N is the set of nonnegative integers, is
an edit cost function if W((a — a)) =0 for all a € X, and if W((a — b))+ W((b+—
¢)) > W((a — ¢)) for any a,b,c € X.

Definition 2.2.6 (Edit Cost Function for Edit Sequences) f W : A — N is
an edit cost function and S € A* then W(S) = W((a — b)) + W(S') where
S =(a s b)S and W(e) = 0. \

Requiring the edit cost function W to satisfy the triangle inequality guarantees
that a lower cost edit can not result from applying edit operations to the result of
previous edit operations. This constraint is necessary since an edit sequence can
not apply an edit operation to the result of a previous edit operation.

In order to guarantee that for any z,y € ¥* there exists an edit sequence S
such that = ~» g, it is assumed for the remainder of this paper that A = {(a —
b) | for any a,b € (X U €)}. This assumption is not a major constraint since
W((a ~— b)) can be set to an arbitrarily large value which will effectively prohibit
the use of (a — b) in a least-cost edit.

Definstion 2.2.7 (Least Cost Edit of a String winto a Language) If L is a lan-
guage over ¥ and ¢ € ¥*, then the least cost edit of # into L is given by an edit
sequence S such that W(S) = min({W(T) |z ~> y and y € L}).

Finally, the following lemmas describe the effects of concatenating edit se-
quences and their strings.

LEMMA 2.2.1 If ' < y' and " £ y" then z'z" < y'y" and W(S') +
W(S")y =W(S'S").

Proof: Let
S' = (a} — b})(ay — by)...(a, — by)
and
S" = (a] — bY)(ay — by)...(ann — bu).
Then,

/ )
& =a1a2...a X}
y,=b,1b,2-.-bll,

" n_»n "
' =a,ay...0
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and
y" =bjby...b,
S0
z'z" = aja,...a dlay...alu,
y'y" = b, .. bbby . b,
and

S'S" = (a} > b)(h o B) .. (aly > By )(af o BI)(ah o 8. (al v B,

Therefore, z'z” 5 y'y". Furthermore, W(S") + W(S") = W(S'S") since

W(s") =23 W((e;—¥))

=1

nll

W(s") =2 W((a' —¥))

l=1

and

l Tl”

W(SIS” Z W (a — bl + ZW((G” — b”))

=1

LEMMA 2.2.2 Ifz~> y and ¢ = z'z" then there emsts y', y", S', and S" such
that ' > o', 2" 2, ¥v,y=vyy" and S = S'S".
Proof: Let

S = (a1 = bl)(dg = b2) . .(an = bn)
where ¢ = a,a,...a, and y = bib,...b,. Now, for any =’ and ", where z'z" = =z,
there exists k£ such that 0 < k < n and
(EI =a,a9...0a
and
(8” = Qk4+1Ak+4+2 - - Qn.

Let
= (al lad b])(ag = bg) e (a,k — bk),
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S" = (ar+1 > bet1)(@kr2 — beya) - - (an = bn),
y =bby...b;
and
y" = bpy1bryg .. by

Obviously, S = §’S” and y = y'y”. Futhermore, =’ ,\5,', vy’ and 2" 2, Yy

LEMMA 2.2.3 Ife ~> y and y = y'y" then there emsts z', 2", S', and " such
that ¢’ 5 o, 2" 2 y', z=2z'z" and S = §'S".
Proof: Let , :
S = (al = bl)(az — bz) . ..(an — bn)

where z = aya2...a, and y = b1b,...b,. Now, for any y’ and y”, where y'y" = y,
there exists k& such that 0 < k < n and

y =byby...b

and
y" = bri1bryz .. bn.
Let
S = (a,‘l — by)(ag — by)...(ax — by),
S = (akt+1 — brs1)(@kt2 — by2) ... (an — by),

' =aiay...a;

and

n
T = Qp410k42:--Qn.

. s’ s
Obviously, S = §’S” and = = z'z"”. Futhermore, 2’ ~» 3’ and z” ~» y". §

LEMMA 224 Ifz' 5 o, 2" 5 3" and W(S'S") = min({W(T) | «'z" 5

y'y"}) then W(S') = min({W(T) | 2’ > y'}) and W(S") = min({W(T) | " >
y"}).
Proof: The lemma is proved by contradiction. It is assumed that there exists an edit
sequence S such that @’ ~> y’ and W(S) < W(S’), or " <> y" and W(S) < W(S").
The argument for either case is the same so let ' ~> y’ and W(S) < W(S’). But,
then z'z" %5 y'y" and W(SS") < W(S5'S"); which is a contradiction. y
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2.3 LR(k) PARSING THEORY

This section reviews the principle definitions and results of LR(k) parsing theory;
establishes the notation and terminology used in this dissertation; and lays the
ground work for the development of the LR(k) Early’s Algorithm. For further
details about LR(k) parsing theory, the reader is referred to Aho and Ullman [1]
from which most of the material in this section is derived.

v

2.3.1 The LR(k) Parser

The LR(k) parsing algorithm presented here is a nondeterministic parser when
its grammar is not LR(k). No proofs of any properties of this nondeterministic
parser are provided as the nondeterministic parser is used only to motivate some
of the discussion of the LR(k) Early’s Algorithm. For more details on the theory
of nondeterministic LR(k) parsing, the reader is referred to Sippu and Soisalon-
Soininen [27], which uses a different approach than is used here, and to Dehnert (8]
from which this material is derived.

Algorithm 2.3.1 is the LR(k) parser. The LR(k) parser uses a set of states
denoted by Q. Lower case letters g¢,7,s,... are used to represent elements of Q).
The initial state of the LR(k) parser is represented by 0. The distinguished final
state of @ is represented by f. The LR(k) parser accepts its input string by halting
in f.

Associated with each ¢ € @ are two functions: f, which is called the parsing
action function; and g, which is called the goto function. The function f; maps
strings from (ZU{8})* to sets with elements of the form shift, reduce 1, reduce 2,

... or reduce |P|, where reduce p means to reduce using the pth production of P.
The function g, maps symbols from (NUZX) to elements of { R|R C @ and |R| < 1}.
The functions f, and g, must meet the following three restrictions for the states 0
and f: ‘

o fr(u) =0 for all u € (Z U {$})*;
e gi(X)=0forall X € (NUZX); and
¢ 0¢g,(X)forallge Q and X € (NUX).

These restrictions are required so that some of the proofs in this dissertation may
be carried out. It should be noted that these restrictions are satisfied by the LR(k)
parsers used in practice.

One feature of Algorithm 2.3.1 is that it allows an LR(k) parser to use an
almost arbitrary @, f,, and g,. Consequently, the results of this dissertation may be
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ALGORITHM 2.3.1 The LR(k) Parser

Let G be a reduced CFG (N,X, P, S) and @ be a set of states as described pre-
viously. The input for all copies of the algorithm is w € ¥*. The output from a
copy of the algorithm is a sequence of production numbers which represents a right
parse of w for G, if the algorithm halts in the final state f. Three variables are
used: q is the current state; ¢ is the current position in the input string; and « is
a string of states which is the current stack of the parser. The algorithm proceeds
as follows:

I. Create the initial copy of the algorithm; set 2 = 1; set ¢ = 0; set a to 0; and
append $*t! to w.

II. Repeat this step as long as f,(w,,4k—1) contains at least one element. If
fa(Win4k—1) contains more than one element, create a new copy of the current
algorithm for each additional element beyond the first one. Then, for each
element, perform whichever of the following two cases applies in the copy of
the algorithm for that element:

A. If shift € f,(w) then if g,(w,.) is empty, halt; otherwise, let i = 1 + 1,
g = go(w,,), a = agq.

B. If reduce p € f,(w) then let m = |RHS(p)| and perform whichever of
the following two cases applies for m:

L.m > |a|: Let » = a(aj=m)(ja|-m)- If g-(LHS(p)) is empty, halt;
otherwise, let ¢ = g,(LHS(p)) and a = ay;(jo|-m)q-

2. m < |a|: If go(LHS(p)) is empty, halt; otherwise, let ¢ = go(LHS(p))
and a = a;,.q. '

applied to any of the optimized LR(k) parsers which are used in practice. However,
this flexibility requires the restrictions on the functions f, and g, and the addition
of step II.B.2 to Algorithm 2.3.1. This step handles stack underflows and preserves
the property that 0 is always the bottom state of the stack.

The actions of an LR(k) parser are described in terms of their affects on the
configurations of the parser. A configuration of the LR(k) parser is an ordered pair
(ayw,:n) where w,., is the input remaining to be parsed and « is the stack of the
parser with oy,|o| the top of the stack and ay.4 the bottom of the stack. When
the input remaining to be parsed is not of any interest, a configuration is denoted
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by (a,...).

A move of the LR(k) parser is the application of either step II.A, a shift, or
step II.B, a reduction, to a configuration of the parser. A move results in a new
configuration of the parser and is written as (o, w,;,) - (8, w;.,) in which |- is read
as moves directly to. Thus, the moves a parser can make form a relation on the

+
configurations of the parser. The transitive closure of this relation is denoted by -
and the transitive and reflexive closure of this relation is denoted by -. A sequence

!
of moves of length [ is denoted by I-.
A special notation

(azq’ wl'ﬂ) I— (aq71 w]:n)

is used through out this paper to denote a sequence of moves

(agywyn) F (Bry.- ) F (Bay.o ) F oo B (Bmy--.) F (agy,w,m)

where |8;| > |ag| for 1 < I < m. Such a sequence of moves by the LR(k) parser has
the property that none of the states in aq is removed from the stack. Futhermore,
none of the moves in the sequence depend on the states in a. Thus, if

(alg, wyn) F (agr,win)

and .
(Bir,wip) F (Bré,wym)
then .
(alg,wyn) F (agré,w,.,).

2.3.2 LR(k) States and Parsing Functions

While the LR(k) parser and the notation for describing its actions have been intro-
duced, the set @ and the parsing functions f, and g, have not been defined for a
context-free grammer G. The following definitions introduce the basic concepts of
LR(k) parsing theory and lead to the definition of @, f;, and g, for a context-free
grammar G.

Definstron 2.3.1 Given a CFG G = (N, %, P, S), G is called a reduced CFG if
for each X € (NUZX) there exists a derivation § =& wXy = wzy where w,z,y € I.
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Definition 2.3.2 Given a reduced CFG G = (N, %, P, S),

FIRSTi(a) = {z | @« = 2@ and || = k or a = z and |z| < k}.

Definstion 2.3.8 Given a reduced CFG G = (N,X%, P,S), a derivation S =

ay = a; = -+ = oy is called a rightmost derwation and is denoted S o Qn,
if, for each step @, = ,,; in the derivation, the rightmost nonterminal A in a, is
replaced using a production A — (3 to obtain a,;.

Definstion 2.3.4 Given a reduced CFG G = (N, %, P, S5),if § "2’ & then o is
called a right sentential form of G.

Definition 2.8.5 Given a reduced CFG G = (N,X,P,S) and a string v €
(N U o)*, then v is a vable prefiz of G, if there exists a rightmost derivation

S8 aAw '3 af,fw and v = af.

Definition 2.3.6 Given a reduced CFG G = (N, X, P, S), then [A — 8, - B,,u]
is an LR(k) item (for k and G), if A — (3,0, is a production in P and u €
(Uf=121 @k $k)‘

Defimation 2.3.7 Given a reduced CFG G = (N, X, P, S), a viable prefix af,
for G, and an LR(k) item [A — f; - B5,u] for G, then [A — B, - B, u] is a valid
item for af,, if there is a rightmost derivation S ™ xAw m af1 8w such that
u = FIRST1(w) &;, $*.

Definition 2.3.8 Given a reduced CFG G = (N, X, P, S) and a viable prefix a
of G, Vi€(a) is the set of all valid LR(k) items for a and the collection of sets of
valid LR(k) items is {V,C() | ~is a viable prefix of G}.

Definition 2.8.9 Given a reduced CFG G = (N, X, P, S), the augmented gram-
mar derived from G is G' = (S'U N, %,{S’ — S8} U P, S’), where S’ and § are not
in (NUZX).
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The previous definition uses the production S’ — S$ to augment the grammar
instead of the more standard S’ — S§. This is done so that the resulting LR(k)
parser will ‘shift’ on the end marker $ and enter a unique final state. The existence
of a unique final state simplifies subsequent algorithms and proofs. This trick is
borrowed from Early [11].

Defination 2.3.10 Given a reduced CFG G = (N, X, P, S), the collection, Q,
of sets of valid LR(k) items for its augmented grammar G’ is called the canonical
collection of sets of LR(k) items for G.

Definition 2.8.11 Given a reduced CFG G = (N, X, P,S) and the canonical
collection @ of sets of LR(k) items for G, the function GOTO maps @ x (N U X)
to @ such that GOTO(V,¢(a), X) = V¢(aX).

The next definition is unusual in LR(k) parsing theory. It is the standard
definition for a consistent set of items but the set is called a deterministic set of
items. The term deterministic is used here to emphasize that a set of items lacking
this property can still be used by the nondeterministic LR(k) parser. Dehnert [8]
shows that a right parse can still be generated under these circumstances.

Definition 2.3.12 Given a reduced CFG G = (N, X, P,S), the set of valid
LR(k) items for a viable prefix 4 of G is deterministic if there do not exist two
items [A — -a,u] and [B — B 8205, 7] in the set such that |8,] < 1, |8,||6s| = |Bs,
ﬂg € 2*, and u € (FIRSTk(ﬂzﬂgv) D $k)

The following definition defines a LR(k) grammar in a nonstandard way. In-
stead of the traditional definition, an LR(k) grammar is defined in terms of a
canonical collection of deterministic sets of LR(k) items. This approach is the op-
posite of Aho and Ullman’s [1] in which this definition is proved as a theorem. The
definition is used here to emphasize the validity of those aspects of LR(k) parsing
theory that apply to non-LR(k) grammars.

Definition 2.3.13 A reduced CFG G = (N, 3%, P, S) is called an LR(k) gram-
mar, if each set of items in its canonical collection of sets of LR(k) items is deter-
ministic.

Definstion 2.3.1} Given areduced CFG G = (N, %, P, S), the canonical LR(k)
parser for G is an LR(k) parser for which @ is the the canonical collection of LR(k)
items for G; 0 is the set of items which contains [S’- — S8,8*]; f is the set of items

which contains [$' — $$-,$%]; g,(X) = GOTO(q,X); and f; is defined as follows:
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S'"— F
E—-FE4+T
E—-T
T—->Tx«F
TS F

F—oa

Figure 1: Example Grammar

o shift € f,(u),if [A — B - aBs,v] € g and u € (FIRST(aBrv) &k $¥)
e reduce: € f (u),if [A — B-,u] € gand A — [ is the ;th production in P.

Note that the canonical LR(k) parser for an LR(k) grammar is deterministic
but, in general, a canonical LR(k) parser is nondeterministic. Of course, if the
theory is restricted to LR(k) grammars, all the results from Aho and Ullman (1]
apply to LR(k) parsers as they are defined here.

To illustrate the construction of the canonical collection of sets of LR(1) items
and parsing functions for an LR(1) grammar, the grammar in Figure 1 is used.
The canonical collection of sets of LR(1) items and the GOTO function for the
grammar are given in Figure 2 and Figure 3.

Each set of items in the canonical collection of sets of items corresponds to a
state of the canonical LR(1) parser for the grammar. Except for the initial and
final state, each state is labeled with the unique symbol that precedes the “.” in the
set of items for the state. These symbols are also subscripted in order to provide
a unique identifier for each state. ‘

To illustrate the actions of the LR(1) parser,

ax(a+axa)

is used as the input string. The rightmost derivation of this input string is given in
Figure 4. The configurations of the parser as it parses the input strings are given
in Figure 5.
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aj:

a9:

T —

5> B8 (n
[E— -E+T,$]
[E — -T,$]
[E— -E+T,+]
[E - 'T7 +]

‘T % F, §]
.F,$]

‘T % F, +]
-F, +]

[T — T  F, %]
[T — -F, *|

[F — -(E),$]
[F — -a,$]

[F — «(E),+]
[F - -a, +]

[F — -(E), #]
[F — -a,%]

T -
[T —
[T —

[F — a-,§]
[F — a-,+]

[F — a-, %] %1

[F - a-,)]
[F — a-, +]
[F — a-, %]

[F = (E)+]
[F' = (E) %]

: [F — (E))) Fy:

[F' = (E),+]
[F = (E)-, ]

[F — (-E), 9] (2:
[F—) ('E)’+]
[F — (-E), %]
[E—-E+T,)]
[E — -T,)]

[E —-E+T,+]
[E — -T,+]

[T — T F,)]
[T — -F,)]

[T — -T % F,+]
[T — -F, +]

[T — T % F, x|
[T — -F, ]

[F — (E),)]

[F — 'a'?)]
[F_’ *a, +]

[F — -a, %]

[T — T« -F,$] kgl

[T — T« -F,+]
[T — T * -F, %]
[F —"(E)7$]
[F — -a,§]

[F — -(E),+]
[F - -a, +]
[F_’ ‘a, *]

[T — F-., 8] Fy:

[T — F.,+]
[T — F-, %]
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[F — (-E),)]
[F — (-E),+]
[E—-E+T,))
[E — T, )]
[E— -E+T,+]
[E — T, +]

[T — T F,)]
[T — -F,)

[T — -Tx F,+]
[T — -F,+]

[T — T * F, %
[T — -F, %]
(F— (5),)
(F— a,)

[F — -a,+]
(F— (),
[F—" 'a’v*]

[T — T *-F,)]
[T — T *-F,+]
[T — T * -F, %]
[F — -(E),)]
[F — -a,)]
[F—’ '(E)’+]
[F — ‘a,+]

[F — -a, %

[T — F-,)
[T — F-,+]

Figure 2: Sets of Valid LR(k) Items for Example Grammar
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T3:

T4:

: [T —>TxF.8

[T — TxF-,+]
[T — T« F-, «]

[T —Tx*F.))]
[T - Tx*F-, +]
[T — T * F-, %]

[E— E+T-)
[E—>E+T- +]
[T — T - +F,)]
[T — T-xF,+]
[T — T - +F, ]

: [E— E+-T,9]

T — -TxF,$§]
T — -F,$]

T — T x F,+]
T — -F,+]
T — -T % F, %
T — -F, %

F - (E),$)
F — .a,$]

F — (E),+]
F — .a,+]

F - (E),4

—A A I e e e e —— —— —— ——

[F - (E')a‘H
[E— -E+T,)]
[E - -E+T,+]

: [S"— E-§,8]

[E — E-+T,8]
[E— E-+T,+]

Figure 2: continued

+2:

f:
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[GOTOJa [([) [* [+ |F [T [E [8]
0 a | (4 F, | T, | Ey

ay

as
(1 ap (2 F, | Ty | E,
(2 ) (2 Fz Tz Ez
)
)2
*1 ay (1 Fy
*2 g (2 , Fy
+1 a1 | (1 F | T3
+2 as | (2 Fy | T,
Fy
F,
F3
Fy
T, *1
T, *2
T !
T, *9
E, ) )
E, )2 ~+2
E; +1 f

Figure 3: GOTO Function for the Example Grammar
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Figure 5: Configurations for the Input String
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2.3.3 The Explicitly Advancing LR(k) Parser

This section presents a modification of the standard LR(k) parser that emphasizes
the role of lookahead in the parser. The modified LR(k) parser is called the ex-
plicitly advancing LR(k) parser and is Algorithm 2.3.2. The explicitly advancing
LR(k) parser is important to the development of the Least-Cost LR(k) Early’s
Algorithm in Chapter 5.

The explicitly advancing LR(k) parser is best described by the difference be-
tween its configurations and those of the standard LR(k) parser. For the standard
LR(k) parser, a configuration of the parser is written as (@, w,n), where a is the
stack and w,., is the remaining input. Implicit in this configuration is the fact
that w,.1x-1 is the k symbols of lookahead used by the LR(k) parser. For the ex-
plicitly advancing LR(k) parser, the equivalent configuration would be written as
(o, U, W, 1kn ), where a is the stack, u is the lookahead, and w, ., is the remaining
input which has not been scanned.

Since the lookahead component of the input is made explicit in the explicitly
advancing LR(k) parser, there must a parsing action which causes the parser to
scan an input symbol and add it to the lookahead. This parsing action is called an
advance and the corresponding move is written as (a,u,aw) F (a,ua,w). When

a
a move is required to be an advance, it is written as (o, u,2) F (a,v,y). When a
sequence of zero or more moves are required to be advances, they are written as

i
(ayu,z) F (a,v,y).

The explicitly advancing LR(k) parser uses the same set of states, ¢}, and the
same goto function, g,, as the standard LR(k) parser. It also accepts its input
string by halting in the distinguished final state f just like the standard LR(k)
parser. However, the parsing action function, f,, is extended so that it maps

k
strings from | J(Z U $)" instead of just from (X U §)*. This is achieved by defining
1=0
k-1

f,(u) = {advance} for any g, expect f, and all w € | J(Z U §)".

With the addition of advances, the same notation (i).'or describing a sequence of
moves is used for the explicitly advancing LR(k) parser as is used for the LR(k)
parser.

It is obvious that the explictly advancing LR(k) parser and the LR(k) parser
for a grammar accept the same strings since for any sequence of moves in one there
is a corresponding sequence of moves in the other.
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ALGORITHM 2.3.2 The Ezplictly Advancing LR(k) Parser

Let G be a reduced CFG (N, X, P,S) and @ be a set of states as described pre-
viously. The input for all copies of the algorithm is z € ¥*. The output from a
copy of the algorithm is a sequence of production numbers which represents a right
parse of z for G, if the algorithm halts in the final state f.

Three variables are used: i keeps track of the current position in the input string;
q is the current state; and w stores the k symbol lookahead string. The algorithm
proceeds as follows:

I. Create the initial copy of the algorithm; set : = 0; set ¢ = 0; initialize the
stack to 0; let w = ¢; and append $* to z.

II. Repeat this step as long as f,(w) contains at least one element. If f,(w)
contains more than one element, create a new copy of the current algorithm
for each of the additional elements. Then, for the element for which this copy
of the algorithm was created, perform whichever of the following three cases
applies.

A. If advance € f,(w) thenlet i =7+ 1, w = wz,,.

B. If shift € f,(w) then, if g,(w) is empty, halt. Otherwise let ¢ = gq(w, 1),
push g onto the stack, and let w = wy .

C. If reduce p € f,(w) then let m = [RHS(p)|, I = the number of states
on the stack, and perform whichever of the following two cases applies
for m:

1. If m > [ then pop m states from the stack and let » be the top state
left on the stack. Then, if g,(LHS(p)) is empty, halt; otherwise, let
q = 9,(LHS(p)) and push g onto the stack.

2. If m < I then pop all the states from the stack until 0 is the only
state left on the stack. Then, if g,(LHS(p)) is empty, halt; other-
wise, let ¢ = go(LHS(p)) and push g onto the stack.
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2.4 EARLY’S ALGORITHM

This section presents Early’s algorithm (Algorithm 2.4.1) in order to provide back-
ground and motivation for the development of the LR(k) Early’s Algorithm. The
form of the algorithm presented here is that of Early [11], but the notation and
method used are from Aho and Ullman [1].

Early’s algorithm solves the problem of recognizing strings in the language
generated by an arbitrary CFG. It does so by pursuing possible derivations of
the string as it proceeds through a left to right scan of the string. All possible
derivations of the string from the start symbol are not pursued because some
grammars produce an infinite number of derivations for a particular string. The
multiple derivations are kept track of on n + 2 parse lists I, [1,...,I,,I,+1 where
n is the length of the string w to be parsed. Parse list I,_, is the state of the
parse before w,,, is parsed and the parse list I, is the state of the parse after w,.,
is parsed. Parse list I,,;; is needed because Early’s algorithm also ‘scans’ the end
of string symbol § in order to simplify its test for successful termination.

Each parse list I, is a set of entries of the form [¢,A — a - §,u|, where 7 is
the number of a parse list, A — a3 € P, and u € (X U $)*. The second and third
components of an entry form an LR(k) item. This is not accidental and is a result
of the approach Early [11] used to develop the algorithm.

An entry on a parse list is used to track the attempted derivation of a substring
of the input string. The critical property of entries is that an entry [i,4 — -5, u]
is on a parse list I, if and only if § = A6, v = w;,, and a = W,41,,. This
property can be viewed as the loop invariant that Algorithm 2.4.1 is designed to
maintain.

Algorithm 2.4.1 starts by placing the entry [0,5’ — -S8$,$%] on I,. The algo-
rithm terminates when all the parse lists have been processed. The input string is
in the language generated by G if and only if [0,5' — 58.,8%] is on I, (this is
the only entry that can possibly be on I,,,;).

To illustrate the actions of Early’s algorithm, the grammar from Figure 1 and
the input string

a*(a+axa)

are used. Figure 6 shows the parse lists calculated by Early’s algorithm.
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ALGORITHM 2.4.1 Early’s Algorithm

I Let n = |w|, 7 =0, Wny1:nsks1 = $¥11, and place [0, 5" — -S8,8*] on I,.
II. While j < n, perform the following steps:

A. Perform the following steps until no new entries are added to I;:

1. Let [¢,A — a- B@,u] be an entry on I,. For each B — «v in P and
each v € FIRSTy(Bu), add the entry [j, B — -v,v] to I,, if it is not
already on the parse list.

2. Let [4, A — v-,u] be an entry on I, with v = w,41,,+%. For each entry
(l,B— a-AB,v]on a parse list I,, add the entry [[,B — aA-3,v]
to I,, if it is not already on the parse list.

B. For each [i,A — a-af,u] on I, such that a = w,4;,;41, add the entry
[t,A — aa-B,u] to I,;,, if it is not already on the parse list.

C. Letj=j+1.



[0, 5" —

[0,E — -
[0,E —
0,E —
[0,E —
[0, T —
[0,T —
0,T —
0, T —
[0, T —
0, T —
[0, F —
[0,F —
[0,F —
[0,F —
[0,F —
[0, F —

Figure 6:
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Iy I

— -E$§,§] [0,F — a-,§]
-E+T,$] [0,F — a-,+]
T, 8] [0, F — a-, %]
-E+T,+] [0,T — F-,$§]
T, +] 0, T — F-,+]
T % F, §) 0,T — F-, %

-F, §] [0,E — T-,$]
T % F,+] [0,E — T-,+]
Fy+] 0,7 — T - xF,$]
T x F, % [0,T — T - F,+]
-F, %] [0, — T - *F, %]
-a, §]

'(E),"']

*a, +]

‘@, *|

Parse List for Early’s Algorithm
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I3
2,F — (-E),+]
2,F — (-E), ]
3,E—- -E+T,)
[3,E—>-T,)]
3,E — -E+T,+]
[3,E—>-T,+]

3, T — -T % F,)]
3, T — -F,)]
[3,T—>-T*F,+]
3, T — -F,+]
[3,T—>-T*F,*]
[31T_’F,*]

—— — —



3,T - T -xF, x|
[2’F - (E)as]
2,F — (E-),+]
[2,F — (E-),*]
3, E — E - +T,)]
3,E — E-+T,+]

Is
5, F — a-,)]
[57F'—’a"a+]
[5aF_"a'7*]
[5,T — F-,)]
5, T — F-,+]
[5aT_’F'a*]
B,E—E+T-)]
B3,E - E+T-,+]
5, T — T -xF,)]
5, T —» T -%F,+]
[5,T — T - xF, %]

I
3,E — E+-T,)]
3,E — E+-T,+]
[6,T — -T x F,)]
6, T — -F,)]
[5,T — T * F,+]
[55T_"Fa+]
[5,T — T x F, %]
(5, T — -F,x]

(5, F — «(E),)]
(5, F — -a,)]
(5, F — «(E),+]
(6, F — -a,+]
(5, F — +(E), *]
[5,F—"aa*]

I
[5,T — T % -F,)]
5, T - T *-F,+]
[5,T — T x - F, |
(7, F — «(E),)]

nF o)
[7,
[
(7,
[

7,
T F ( ) %]
7,

F—)u,*]

35



3,T —» T -xF,)]
[37T - T'*F’+]
3,7 — T - *F, |
2,F — (E-),$]

2, F — (E-),+]
2, F — (B,
B,E — -E+T,)
BE — -E +T,+]

IIO

36

Iy

0,7 —» T -xF,$§|
0,7 —» T -%F,+]

[0,S" — E$-,8]
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2.5 LYON’S ALGORITHM

Early’s algorithm can be extended to perform globally least-cost syntax-error re-
covery. One such extension is Lyon’s algorithm [19]. Algorithm 2.5 and Algo-
rithm 2.5.2 are Lyon’s algorithm but its form has been changed from Lyon’s pre-
sentation so that it more closely resembles the form of Early’s algorithm presented
in this dissertation.

Figure 7 gives the parse lists produced by Lyon’s algorithm for the input string
a * a$ when no lookahead is used and the cost of all edit operations is one. The
lookahead component of the entries is replaced with a cost variable. This variable
contains the cost of the edits of the input string that lead to the addition of the
entry to its parse list. It is important to note that an entry with a lower cost
replaces a similar entry with a higher cost when the entry is added to a parse list.

In Figure 7, a double bar is used to separate the entries that would be present if
Early’s algorithm were used. The additional entries are added by Lyon’s algorithm.
The large increase in the number of entries, for a string with no syntax errors,
illustrates the performance problems caused by the breadth-first nature of Early’s
algorithm when it is used for globally least-cost error recovery.
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ALGORITHM 2.5.1 Lyon’s Algorithm

I. Let n = |w|, § =0, Wni1nsrs1 = $*7, and place [0, 5’ — -58,0] on I,.
II. While j < n, perform the following steps:

A. While there are unscanned entries of the form [[,A — a - f3,c] on I,,
where [ # j, scan such an entry by applying Algorithm 2.5.2 to ([{, A —

a- ﬂa C],j)-
B. Let { =7 - 1.
C. While [ > 0 perform the following steps:

1. While there are unstable entries of the form [{, 4 — a-,¢] on I,, sta-
bilize a least-cost, unstable entry [{, A — a-,c| using the following
steps:

i. For each entry [¢,B — § - Ao,d] on I, add the entry [i,B —
§Ac-,c+d+ min({W(T) | e~ o}] to I,.

ii. While there are unscanned entries of the form [[,4 — a-0,c] on
I,, where | # j, scan such an entry by applying Algorithm 2.5.2
to (l,A — a-0,¢],7)-

2. For each A € N find a least-cost entry of the form [I,4 — a-,c] on
I, and and perform the following steps:

i. For each entry [, B — §- Ao,d] on I}, add [{,B — 6 A-0,c+d]
to I,.

ii. While there are unscanned entries of the form [{,4 — a8, c] on
I,, where | # j, scan such an entry by applying Algorithm 2.5.2
to ([l’A —a- ﬁ’c]aj)-

3. Letl=1-1.

D. For each entry [[,A — o - B@,c] on I, and each B — § € P, add the
entry [j, B — -6,0] to I,.

E. While there are unscanned entries of the form [j,4A — a - 8,¢c] on I,,
perform the following steps for such an entry:

1. Apply Algorithm 2.5.2 to ([j,4 — a-B,¢], 7).
2. If B = Bé, for each B — v € P, add [j, B — +v,0] to I,.

F. Let =5+ 1.
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ALGORITHM 2.5.2 The Scanner for Lyon’s Algorithm
Scan ([l,A — a-f8,¢|,) by applying the following steps to it:

LIUB =¢ wyry # % and d = W((wy41,,41 — €)) then add the entry
l,A— a,c+d] to I,4.

II. If B = b6 and b = wjy.,4; then add the entry [I,4A — ab-§,¢c| to [;44.

III. Ifﬁ = b&, b 7é Wyt1:34+1y Wrt1-34+1 # $, b # $ and d = W((w1+1:J+1 [l b)) then
add the entry [[,A — ab-§,c+d] to I,44.

IV. IfB = X6, w1541 # 8, d = W((w;41541 — €)) and for all y € X* there does
not exist a derivation X = w,,;,,.,1y then add the entry [, A — a-X$,c+d]
to IJ+1.

V.If 8 = X6, d = min({W(T) | X S zand e > z}) and for all y € T*
there does not exist a derivation X = w,;;,,+1y then add the entry [I,A —
aX - 8,c+d] to I,.



I,
0,F — a-,0]
0,7 — F-,0]
0,E —T-0]

T —T-xF,0]
OS’—->E$ 0]
0,E — E-+T,0]

I,
0,7 — T «-F,0]
2,F — «(E),0]
2, F — -a,0]

[

[

[

[0,

[

[
0,7 > (B),1
0,F — (E) 1
[0, T — T x F-,2]
0,E - E+T-2]
0,F — (B2
0,F — (E)-,3]
[l,E —-E+T,0
(,E > E-+T,1]
[,LE— E+.T,2]
[,E—->E+T-,3]
[1,E — -T,0]
[1,E - T-,1]
[1,T — -T % F,0]
[1T—->T «F, 1]
[1,
1,
1,
1,
1,
[1,
1,
1,

0,E— E-+T,1]
[0,E — E 4+ -T,1]
[0,E - E+T-2]
0,F — «(E),2]
0F—»(E)2]
0,F — (B,
0.F — (E).3]
0,5 — E-$§,1]
L,E— -E+1T,1]
LE— E-+T,1]
\E — E +T.2]
1,E - E+T-3]
1,E - -T,1]

1,E - T-1]

1,T — - T*Fl]
1,T — T .%F,1]
T — -F,1]

T — F. l]

s
(')’2]
1,F — (E)-,3]
1,F — -a,l]

1,F —a-1]

0, T —» T -xF,1]
2,F — (-E),1]
2,E — -E+T,0]
2,E — -T,0]

2,T — .Tx F,0]
9, T — -F, 0]

[
[
[
[
[
[

1,
1,
1, F
LF —
1L,LF —

1,
[
[
[
[
[
L,
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Figure 7: Parse Lists for Lyon’s Algorithm



0,T — T« F-, 0]
0,5 — E-§,0]
0,E - E-+T,0]

0,E — T-,2]

0,T — T« F-, 4]
0,E - E-+T,2]
0,E — E +-T,2]
0,E — E+T-3]

2,E - E+T-2]
3,E — -E+T,0]
3,E — E-+T,1]
3,E — E+-T,2]
3,E —> E+T-,3]
3, E — -T,0]

3,E —T-,1]

3,T — -T x F,0]
3,T — T-«F,1]
3,T - Tx-F,2]
3,T - TxF.3

Figure 7: continued

I,
0,5 — ES$-,1]

41
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CHAPTER III

THE LR(k) EARLY’S ALGORITHM

In this chapter, a new algorithm, the LR(k) Early’s Algorithm, is presented.
This algorithm is similar to Early’s algorithm but, unlike Early’s algorithm, it
makes use of the states of an LR(k) parser. The LR(k) Early’s Algorithm is shown
to simulate the nondeterminisitic LR(k) parser. Also, the LR(k) Early’s Algorithm
is shown to have a time complexity of O(n') in general, where n is the length of
the input string.

3.1 THE ALGORITHM

The idea behind the LR(k) Early’s Algorithm can be seen in the illustrations of
the LR(1) parser and Early’s algorithm in Chapter 2. For these illustrations, the
grammar in Figure 1 is used to compute the canonical collection of LR(1) items
(i.e. the states of the LR(1) parser) given in Figure 2. This grammar is also used
with the input string

a*x(a+axa)

to illustrate the configurations of the LR(k) parser in Figure 5 and the parse lists
computed by Early’s algorithm in Figure 6.

A strong relationship exists between the states and configurations of the LR(k)
parser in Figures 2 and 5 and the contents of the parse lists in Figure 6. The entries
on the parse lists can be grouped so that, looking at only their second and third
components, they correspond to the LR(1) items in the states of the LR(1) parser.
Figure 8 shows this correspondence. Additionally, the states which correspond to
entries on a parse list also appear on the top of the stack in configurations of the
LR(1) parser which correspond to the same position in the input string. Thus, it
appears that it may be possible to use the states of an LR(k) parser in an algorithm
similar to Early’s algorithm.
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Iy I
S" — -E$, 9] ) [0,F — a-,$]
E— E+T,$) [0, F — a-,+] }a1
E - .T,9§) [0, F — a-, %]
E— -E+T,+] [0,T — F-,9§]
E — T,+] [OsT—’F'a+] Fy
T — .Tx*F,$§] [0,T — F-, % }
T — -F,$§] [0,E — T-,9]
T — -T x F,+] [0,E — T-,+]
T — -F,+] 0 0, T - T -xF,8$ ;T
T — -T  F, %] 0,7 —» T «F,+]
T'—’F’*] [O’T—')T*F’*]
F — -a,$§]
’F_"(E)"H
aF_)'a”"H
, F'o -a, %] )

Figure 8: Parse Lists for Early’s Algorithm



I,

0,7 —» T* F,$] )

0,T —» T -F, +]
[0,T — T - F, %]
[2,F - (E)?$]
[29F - 'a"$]
2,F — «(E),+]
2, F — -a,+]
2, F — -(E), ]
2,F — -a,%]

*1

I
2,F — (-E), $]
2,F — (E)9 +]
2, F — (-E), %]
3, E — -E+T,)
3, E — -T,)]
B3, E - -E+T,+]
B3, E — -T,+]
3, T — -T'x F,)]
[3aT — -F, )]
[3,T — -T'x F,+]
[35T — -F, +]
3, T — -T * F, ]
3,T — -F, x|
3, F — «(E),)]
(3, F — -a,)]
3, F — «(E),+]
(3, F — -a,+]
3, F — «(E),*]
[3, F — -a,*]

Figure 8: continued

\

~

44



3,T_’T*F,$] T,

2,F — (E)’$]

2,F — (E),*] El

(5, F — a-,+]

(6, F — a-, ]
[5,T — F-,)]
[5,T'—)F',+] Fg
[5,T — F-, %] }
3,E > E+T-,)]
3,E - E+T-, +]
[6,T — T - F,)] T,
5, T — T - %F,+]

[6, T — T - *F, x|

[5,F — a-,)] }

Is

I;
5T — T x-F,)] )
5T — T x-F,+|

[

f

[T, F — '(E) )]
7, F — - a,)]
[7
7
[
[

F — (E),*]

—

7F—>a,*] )

Figure 8: continued

? +2

*2
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Ig
[7,F — a-,)] }
[7aF - a"a'l']
(7, F — a-,*]
5.T — T % F-.)

5,7 — T * F-, +] }F4

(5, T — T * F-, %]
3,E—-E+T-) )
3,E - E+T-,+]
3, T — T - *F,)]
3, T — T - xF,+]
3, T » T «F,*] |
[2,F — (E-),$] )
2F—’( ')"l']
2,F — (E-), ]

[
[
2,E —-E+T,)
2,E — E-I-T—}—]

T,

E,

I
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Iy

,T —Tx*F-,+] }Fg

T—>T*F,$] T1

[0,5" — E$-,§] }f

Figure 8: continued
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Another point of view, which aids in the development of the LR(k) Early’s
Algorithm, is that of simulating the nondeterministic LR(k) parser. A major con-
cern in such a simulation is the maintenance of the parse stack for each copy of
the LR(k) parser. Thus, if the LR(k) Early’s Algorithm is going to be viewed as
simulating the LR(k) parser, it must have a means of “linking” states together into
a stack.

The result of these considerations is Algorithm 3.1.1, the LR(k) Early’s Al-
gorithm. This algorithm uses n + 2 parse lists Iy, Iy, ..., I, and I,y just like
Early’s algorithm. However, the entries on the parse list are ordered triples [g,1, 7]
where q and r are states of the LR(k) parser and i is the number of a parse list.
The entry [g,%,7] on a parse list I, is interpreted as meaning that the simulated
LR(k) parser is in a configuration (aqr, w,{1:n+k+1) and that, in additon, the entry
corresponding to the configuration in which ¢ was on top of the stack is found on
parse list I,.

Algorithm 3.1.1 also uses a set T and n + 2 pending lists Hy, Hy, ..., H, and
H, ., that do not correspond to any data structures in Early’s algorithm. These
data structures are required to handle the subtleties introduced by reductions of
empty productions in the LR(k) parser.

Algorithm 3.1.1 operates by simulating the nondeterministic LR(k) parser.
The simulation of shifts by step II.A.2 of Algorithm 3.1.1 is straightforward, but
the simulation of reductions by step II.A.3 requires some explanation. When an
entry [g,%,7] is on parse list J, and reduce p € f,(w), Algorithm 3.1.1 must

simulate a reduction using the pth production. When Algorithm 3.1.1 simulates a
reduction, it must take into account the possibility that [g,i,r] is part of different
stacks for several copies of the LR(k) parser and be careful to apply the reduction
to all the copies. To do this, Algorithm 3.1.1 constructs the sets Ry, Ry,...,Rn
where m = |RHS(p)|. These sets contain elements of the form ([g,%,7],7) where
[¢,7,7] is an entry and j is the number of the parse list on which the entry is found.
The sets are constructed so that R; contains all the entries which correspond to
states that are the I*! state below the top of the stack in some configuration when
the reduction is applied. Thus, the entries in R,, correspond to the possible states
on top of the stack after m states have been popped from the stack. Algorithm 3.1.1
simulates the effect of the reduction for each of the entries in R,, so that it simulates
all the copies of the LR(k) parser.

Like Early’s algorithm, Algorithm 3.1.1 avoids infinite looping by not adding
duplicate entries to parse lists and not placing such entries on the pending lists.
However, step II.A.3.iii of Algorithm 3.1.1 can not use this method since a re-
duction by an empty production initiates a sequence of reductions (possibly only
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ALGORITHM 3.1.1 LR(k) Early’s Algorithm

I. Set j = 0; place [0,0,0] on parse list I,; place [0,0,0] on pending list Hy;
initialize T' to contain the state pair (0,0); and append $**! to w.

II. While j < n, perform the following steps:

A. While pending list H, is not empty, remove an entry [q,%,7] from the
front of H, and perform the following steps:

1. If i # j then remove all state pairs from T'.

2. If shift € f,(w,;1,+k) and there exists s € g,(w,11,,+k) then if the
entry [r,j,s] is not on parse list I,,;, add [r, 7, s] to I;; and to the
rear of pending list H,,,. ‘

3. For each reduce p € f,(w;11:+k) perform the following steps:

i. Let m = |RHS(p)| and let the sets Ry, Ry, ..., Ry be defined as

follows:
e Ry, = {([q,,7],7)} where [q,%,7] is the entry from H;
e for 0 <! <m, R, = {([g,%,7],0) | [¢,%,7] € I, and, for some s
and n, ([r,0,8],n) € Ri_}

ii. For each s € g,(LHS(p)) and ([g,%,7],0) € R for which 7 < j:
if the entry [r, o, 5] is not already on parse list I; then add [r, o, 3]
to I, and add [r, o, s] to the rear of pending list H;.

iti. For each s € g,(LHS(p)) and ([g,?,7],0) € R, for which i = j:
if the entry [r, 0, 5] is not already on parse list I;, add [r,0, 8] to
I,; and, if the state pair (r,s) is not on T, add [r,0,s] to the
front of pending list H, and add (r,s) to T.

B. Let j = j + L.

the reduction itself) that take place independent of the input and of the previous
contents of the stack. Even if the resulting entries are already on the parse list,
the sequence of reductions must be simulated since it may eventually pop part of
the stack from before the sequence. Entries from such a reduction sequence are
added to the front of H, so that the reduction sequence is completely simulated at
once. This allows the set T of state pairs to be used to guard against an infinite
loop by keeping track of the states that have followed each other on the top of the
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I I I, I
[0’070] [0’0,0'1] [Tla]-’*l] [*1,27(1]
[O’O’Fl]
[07 O,Tl]

I, I I I;
[(1’ 3, al] [El )4, +2] ["‘2, 9, ‘7'2] [T4, 6, *2]
[(1’37 Fl] [+2)57 FZ]

[(1’37 Tl] [""2)57 T4]
[(1’37 El]
I8 I9 IlO

[*27 7, a’2] [E1,8,)1] [ES’Q,f]
[*27 7’F4] [*1,27 F3]

[+2,5,T4]  [0,0,T1]
[(173’ El] [0’07E3]

Figure 9: Parse Lists for LR(k) Early’s Algorithm

stack. When a pair of states is found to repeat itself, the loop can be avoided by
not adding the entry to H,.

The parse lists generated by Algorithm 3.1.1 for the grammar in Figure 1 and
the input string

a*x(a+axa)

are given in Figure 9. As one would expect, for each parse list the states in the
third component of the entries correspond to the states identified in Figure 8 on
the parse lists for Early’s algorithm. This correspondence is why the name LR(k)
Early’s Algorithm is given to Algorithm 3.1.1.

As presented, Algorithm 3.1.1 only constructs parse lists. However, it is shown
in the next section that [?,?, f] is on parse list I, if and only if the input string
is accepted by the LR(k) parser. Also, Algorithm 3.1.1 does not show how a right
parse is obtained for the input string. In principle, a right parse can be extracted
from the parse lists in the same way a right parse can be extracted from the parse
lists for Early’s algorithm, but the issue is not explored in this dissertation.
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3.2 PROOFS OF CORRECTNESS AND COMPLETENESS

This section presents two theorems which, taken together, show that the LR(k)
Early’s Algorithm and the LR(k) parser accept the same strings when they use the
same set of states, ¢, and functions f, and g,. The first theorem shows that for
every entry [q,?,7] the LR(k) Early’s Algorithm places on a parse list I, there is
a corresponding sequence of moves

* +
(0, Wiingkt1) (@lq, Wip1ntks1) F (agr, Wyt linthsl)

that can be made by the LR(k) parser. This property is called correctness since it

guarantees that any string accepted by Algorithm 3.1.1 is accepted by the LR(k)

parser; which is to say that Algorithm 3.1.1 correctly simulates the LR(k) parser.
The second theorem shows that for every sequence of moves

* +
(0,w1:n+k+1) l'‘(C‘ﬁlqa'wz+1:n+k+1) + (aqra w]+l:n+k+l)

that can be made by the LR(k) parser, Algorithm 3.1.1 places the entry [g,,7] on
the parse list I,. This property is called completeness since it guarantees that any
string accepted by the LR(k) parser is accepted by Algorithm 3.1.1; which is to
say that the LR(k) Early’s Algorithm completely simulates the LR(k) parser.

Algorithm 3.1.1 uses the pending lists, H,, to hold entries waiting to be pro-
cessed by the algorithm. The following lemma establishes that entries added to
the pending list are eventually processed.

LEMMA 3.2.1 (All Entries on H, Are Processed) Every entry added to a pend-
wng hst H, 1s eventually processed by step II.A of Algorithm 3.1.1.

Proof: An entry can remain unprocessed only if an unbounded number of entries
can be added to a pending list H,. The lemma is proved by showing the number of
entries which can be added to a pending list H, is bounded. Note that the number
of entries [q,1,7] on I, is bounded since g, %, and r are all bounded and no step of
Algorithm 3.1.1 allows duplicates to be added to I,.

Only four steps can add an entry to a pending list: steps I, II.A.2, II.A.4.i, and
II.A.4.ii. Step I adds just one entry to a pending list. The number of entries added
to a pending list by step II.A.2 is bounded because it only adds entries which can
also be added to their parse lists.

Steps II.A.4.i and II.A.4.ii add a bounded number of entries to a pending list
when they are invoked. Also, they are invoked a bounded number of times for
entries [g,,7] on I, for which i < j because there are only a bounded number of
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such entries that can be added to I,. Since step II.A.4.i is invoked only for ¢ < j,
only a bounded number of entries are added to H, by it.

Step II.A.4.i only adds entries [g,%,7] for which ¢ = j to H,. Step A is
organized so that only a bounded number of entries are added by step II.A.4.i
between the processing of entries for which ¢ # j. Only steps II.A.2 and I.A.4.i
can add entries for which 7 # 7 and the number of entries added by these steps is
bounded. Therefore, the total number of entries added to H, by step II.A.4.ii is
bounded. §

Then next lemma shows a technical property of the initial state for Algo-
rithm 3.1.1.

LEMMA 3.2.2 (0 is the Unique Initial State) If [g,%,7] ts on I, and r = 0
then¢=0,1=0, and 7 = 0.

Proof: The definition of an LR(k) parser does not allow 0 € g,(X) for any s or X.
Thus, only step I of Algorithm 3.1.1 could add [g,7,0] to a parse list. y

The following definition facilitates the use of induction in the proofs of com-
pleteness and correctness for Algorithm 3.1.1

Definition 3.2.1 (Ordered List of Entries) An ordered list of entries is a se-
quence of entries and their parse lists

[qlailyrl] on IJ1
[q277'2yr2] on IJ;;

[QNaiN7TN] on I]N

given in an order in which they can be added to their parse lists by step II of
Algorithm 3.1.1 during an execution of Algorithm 3.1.1.

The entry [0, 0,0] on I; is not on any ordered list of entries since it is not added
to its parse list by step II of Algorithm 3.1.1. No particular ordering of entries is
required other than an order in which the entries could be added to their parse
lists by Algorithm 3.1.1.

THEOREM 3.2.1 (Algorithm 3.1.1 Correctly Simulates the LR(k) Parser)
Given the same Q, f, and g, for Algorithm 3.1.1 and the LR (k) parser, if an entry
[r,1,3] 15 added to parse hst I, (exzcept for [0,0,0] on I,) by Algorithm 3.1.1 then
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the LR (k) parser can make the sequence of moves

* +
(O,wl:n+k+1) - (alr, wz+1:n+k+l) F (ars,w1+l:n+k+1)-

Proof: The theorem is proved by induction on an ordered list of entries, using the
theorem as the induction hypothesis. The induction proceeds in two steps:

o first, the theorem is proved for the first entry on an ordered list of entries;
and

e second, the theorem is proved for the N th entry on the ordered list of entries,
assuming it holds for all entries that precede the N th entry.

For the first induction step, the first entry on the ordered list of entries must be
added by applying step II.A of Algorithm 3.1.1 to the entry [0, 0, 0] on I,. Likewise,
the first move of the LR(k) parser must be from the configuration (0,w1.ntk+1)-
Thus, if step II.A.2 adds an entry [0,0,s] to I; then the shift (0,winiks1) F
(08, woin+k+1) can be made by the LR(k) parser; and if step II.A.3.ii or step II.A.3.iii
adds an entry [0,0, s] to I, then the reduction

(Oa 'w1:n+k+1) F (037w1:n+k+1)

can be made by the LR(k) parser.

For the second induction step, the theorem is assumed to hold for all entries
on the ordered list of entries that precede the NV th entry. Let the N th entry be
[r,i,8] on I,. Since the Nth entry is added by step II.A of Algorithm 3.1.1, this
step must have been applied to an entry [gm_1,lm—-1,qm] from H;_, where m is a
convenient index which will be specified later. Since [gm-1,lm—1,qm] is on H;_,
the entry [gm-1,lm-1,gm| must be on I;  and must precede the entry [r,%,s] in the
order. Therefore, the LR(k) parser can make the sequence of moves

*
(0’w1:n+k+l) }_ (anawlm+1:n+k+1)-
There are two cases to consider:

o step II.A.2 adds [r,1,s] to I, and Algorithm 3.1.1 is simulating a shift by the
LR(k) parser; or

o step II.A.3 adds [r,%,s] to I, and Algorithm 3.1.1 is simulating a reduction
by the LR(k) parser.
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In the first case, step II.A.2 adds [r,7,s] to I, and Algorithm 3.1.1 is simu-
lating a shift by the LR(k) parser. Thus, l,, =7 =37 — 1, g = 7, and the shift
(o, Wit1intki1) F (@08, W, 114841 ) can be made by the LR(k) parser. Therefore,
the LR(k) parser can make the sequence of moves

* +
(0, wypngktr) F (@lPy Woprmgksr) F (ars,w)t1miks1)-

In the second case, step II.A.3 adds [r,%, s] to I, and Algorithm 3.1.1 is simulat-
ing a reduction by the LR(k) parser. The entry [¢n—1,lm—1,qm], where ,,, = 7, must
call for a reduction of length m. Step II.A.3.i constructs the sets Ry, R, R,, ..., R,,.
Each of these sets must have at least one member so let these members be

([qm—l,lm—laqm]vlm) € RO’
([Qm-—-2’lm—27 qm—l]alm—l) € R17

cen,
([90, L0, 1], 11) € Rpn—1,
([Q—-lal—h‘IO],lU) € Rm

where gy = r and [, = 7. The reduction must be one of three possible types, each
of which must be considered separately:

¢ a reduction by an empty production (i.e. m = 0);

e a reduction by a non-empty production which does not cause the stack to
underflow (i.e. m > 0 and ¢, # 0 for 0 < ¢ < m); or

e a reduction by a non-empty production which causes the stack to underflow
(i.e. m > 0 and g, = 0 for some z where 0 < z < m).

For the first type of reduction, an empty production is used so m = h = 0.
Thus, l,, =ly =i =7, ¢gm = qo = 7, and the reduction

(ar, wt+1:n+k+l) F (ars,w1+l:n+k+1)
can be made by the LR(k) parser. Therefore, the LR(k) parser can make the
sequence of moves
¢ * +
(O)wlm+k+l) }_ (al'r, wz+1:n+k+1) ]— (ars7w1+1'n+k+1)-

For the second type of reduction, a non-empty production is used and the
stack does not underflow so m > 0 and ¢, # 0 for 0 < £ < m. This implies the
entries [¢y41,0:41,9:) on I;, for 0 < ¢ < m are entries on the ordered list of entries
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and that these entries precede [r,%,s] on I,. Applying the induction hypothesis to
each of these entries, the LR(k) parser can make the sequences of moves:

+
(0’ Wiin+k+1 ) aolr, Wyt1:in+k+1 ) F (aqul s Wi, in+k+1 )
+

- (
(0, Wintk+1) F (01lqu, Wipmtk+1) F (@1¢192, Wiyintkt1)

* +
(O,wl:n+k+1) i— (am—lzqm—lawlm_1:n+k+1) F (am—IQrﬁ—lqm’wJ'n+k+1)°

As a result, the LR(k) parser can make the sequence of moves

* +
(0,w1:n+k+1) - (aul'f',wz+1:n+k+1) F (aorq1 e Qmaw1+1:n+k+1)-

Also, step II.A.3 calls for a reduction of length m so the reduction

(0107‘41 oo Qm,wj+l-n+lc+1) = (aUrsan+l'n+k+l)
can be made by the LR(k) parser. Therefore, the LR(k) parser can make the
sequence of moves

: +
(O,w1:n+k+1) = (aolr,wz+1-n+k+1) = (0507‘3,1"]+1:n+k+1)-

For the third type of reduction, a non-empty production is used and the stack
underflows so m > 0 and g, = 0 for some z where 0 < < m. Let e be the greatest
such ¢. Since 1 < e, 7 = g, = 0. Recursively applying Lemma 3.2.2 shows that, for
0<z<e,([goo1sle-1,9z),lz) = ([0,0,0],0). If e = m then there is only the state 0
on the stack when the reduction is made and ¢, =gy =0and [,, =y =1=73=0.
Therefore, the LR(k) parser can make the sequence of moves

* +
(0, wl:n+k+1) - (07w1+1:n+k+1) = (037w1+1:n+k+1)-

If e < m there are some states (but not enough) on the stack when the
reduction is applied. For e < ¢ < m, [gz11,ls41,9z] Oon I;, is an entry in the order
that precedes [r,i,s] on I,. Applying the induction hypothesis to each of these
entries, the LR(k) parser can make the sequences of moves:

* +
(07w1:n+k+1) F (aelqea wz+1:n+k+1) F (aeqeqe+lawle+1.n+k+1)

* +
(Oa wl:n+k+l) F (ae+lzqe+1,wle+1'n+k+1) F (ae+1qe+IQe+2aw1e+2:n+k+l)

* +
(0,’w1-n+k+1) F (am—lzqm—lawlm_L n+k+1) = (am—lqm—lqmaw1~n+k+1)-



55

Since g. = 0 and 0 is never pushed onto the stack, a. = €. As a result, the LR(k)
parser can make the sequence of moves

* + +
(0,’w1:n+k+1) + (O,wt+1:n+k+1) - (OIQe+17wle+1+1:n+k+1 F (OQe+1 cee qm,w_1+1:n+k+1)'

Also, step II.A.3 calls for a reduction of length m so the reduction

(OQe+1 "-qrn,w1+1'n+k+1) F (Os,w,+1m+k+1)

can be made by the LR(k) i)a,rser. Therefore, the LR(k) parser can make the
sequence of moves .

* +
(O’wl'n+k+1) F (0,w1+1:n+k+1) + (03’w1+1:n+k+1)'

THEOREM 3.2.2 (Algorithm 3 1.1 Completely Simulates the LR(k) Parser)
Given the same Q, f,, and g, for the LR(k) parser and Algorithm 3.1.1, if the se-
quence of moves

L M+1
(07w1:n+k+1) F (az"'ywz+1:n+k+1‘) - (arsaw1+1:n+k+1)

can be made by the LR (k) parser, where L > 0 and M > 0, then Algorithm 3.1.1
will add the entry [r,1,s] to parse hst I,.

Proof: The theorem is proved by induction on the sum of L and M. The induction
proceeds in three steps:

o first, the theorem is proved for L + M = 0;

¢ second, the theorem is proved forv L = N and M = 0, assuming it holds
whenever L + M < N; and

e third, the theorem is proved for L + M = N when M > 0, assuming it holds
whenever L + M < N.

If the parameter space formed by L and M is imagined as an infinite table with L
as the row number and M as the column number, then the steps of the induction
can be viewed as proving the theorem diagonal by diagonal, using the diagonals
that run from the lower left to upper right sides of the table.

For the first induction step, L + M = 0 and the theorem can be written as
follows:
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If (0, wimsk+1) F (08,w,41:n4k+1) then [0,0,s] is added to I,.

The move (0, w1ntk+1) F (08, W)+ 1:n+k+1) can be either a shift, in which case j = 1,
or a reduction, in which case j = 0. When [0, 0, 0] from H, is processed by step II.A
of Algorithm 3.1.1, if the move is a shift then step II.A.2 of Algorithm 3.1.1 will add
[0,0, 5] to I;. Likewise, if the move is a reduction then step II.A.3 of Algorithm 3.1.1
will add [0,0, s] to I.

For the second induction step, L = N, M = 0 and the theorem is assumed to
be true for L + M < N. Since M = 0, the theorem can be written as follows:

N
If (Oawlzn+k+1) - (alr,wz+1:n+k+1) - (araawj+1:n+k+1), where N > 0,
then the entry [r,7,s] is added to parse list I,.

If N = 0 then this induction step degenerates to the first induction step. Therefore,
only the case of N > 0 needs to be considered. When N > 0, |a| > 1 since no
move of the LR(k) parser can push 0 onto the stack and no move of the LR(k)
parser can pop 0 from the stack. Since |a| > 1, @ = Bq. Furthermore, the sequence
of moves

x +
(07 'wl:n+lc+1) + (ﬂlq, .. ) + (Iqu’ 'w:+1:n+k+1)

is less than N in length so [g,?,7] must be on I, and must also be on H, at some
point during the execution of Algorithm 3.1.1.

The move (ar,w,y1mik+1) b (@r8, W 41:mik+1) can be either a shift, in which
case j =1 + 1, or a reduction of an empty production, in which case j = i. When
[¢,?,7] is processed by step II.A of Algorithm 3.1.1, if the move is a shift then
step II.A.2 of Algorithm 3.1.1 will add [r,z,s] to I,. Likewise, if the move is a
reduction of an empty production then step II.A.3 of Algorithm 3.1.1 will add
[r,3,3] to I,. |

For the third induction step, M > 0, L+ M = N and the theorem is assumed
to hold for L + M < N. Since M > 0, the theorem can be written as follows:

L M+1
If (Oa‘wl:n+k+1) F (alr, wt+1:n+k+1) F (047‘3,11’]+1:n+k+1), where L > 0

and M > 0, then the entry [q,7,7] is added to parse list I,.
To show that the entry [?,?,7] is on I,, there are two cases to consider:

® @ = €.

o a=pft.
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In the first case, @ = € implies that » = 0 and that, using Lemma 3.2.2 i = 0 and
[?,?,7] = [0,0,0]. In the second case, @ = St and the induction hypothesis can be
applied to the sequence of moves

L—=z T
(07w1:n+k+1) - (leta L ) I— (ﬂt’l‘, wz+1:n+k+l),

to show that [?,?,7] is on I,.
Since a move of the LR(k) parser can add at most one symbol to the stack,
the sequence of moves

M+1
(azr,wz+1:n+k+1) l— ((11‘3,10]+1,n+k+1)

can be written as

(alr, ’w,+1~n+k+1) (aTZQ1,wll+1:n+k+1)

(arqgilqs, wl;+1m+k+1)

(0”‘91fh .- -qu—lawlm_1+1:n+k+1)

(arql q2..-9m, wj+1:n+k+l)

(OL'I"S, Wy41in+k+1 )

T T+ T+ T+ T+ T+

where 0 < m < M. The move (arqigs ... qm,Wytimtk+1) = (OF8, W, 1miksr) 18
either a reduction that pops m states off the stack or, if & = €, possibly a reduction
which underflows the stack. Any proper subsequence of the sequence of moves

+
(alr, wz+1:n+k+1) F (ama Wyt1intk+1 )

has length less than N so [r,7,q:]is on Ij,, [q1,02,q2] ison Iy, . . ., and [gm—1;lm~1,qm)
is on I,. ,
While [r,7,q1], [q1,02,42], - - -, and [gm—1, lm—1,gm] aTe on their respective parses
lists when Algorithm 3.1.1 terminates, they must also be on them when step II.A
removes [gm-1,dm—1,qm] from H;. Since Algorithm 3.1.1 processes parse lists in
increasing order, this will be the case whenever [, < j.

To see that this is also the case when [, = j, let o be the smallest index for
which [, = j. Since no step of Algorithm 3.1.1 adds an entry to a parse list which
precedes the parse list being processed, [, = j for 0 < # < m. Furthermore, all the
moves in the sequence :

+
(azqo, w]+l:n+k+1) - (aqoqo+1 «++qm, w]+1:n+k+1)
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must be reductions. Let this sequence of reductions be

v I
(aUQO’wJ+1:n+k+1) - (QIQUqlan+1:n+k+1)

|_

.7 !
+ (at‘Io‘h qcawj+1:n+k+1)

where the number of reductions is ¢ and ¢, = ¢, and ¢, = g;.

Examining step II.A shows that, when an entry [¢._,,7,q.] is removed from
H), [q.,7,9,,,] is added to H, and I,; unless (q},q,,,) is on T, in which case
(4,7, q,,1] must already be on I,. If (¢},q.,,) in on T then the parser must be
looping thru a sequence of moves

+
(ﬂq:,nq;+1’ Wytiimtk+1 ) = (6q:’cq:z+l s Wytlin+k+1 )

Algorithm 3.1.1 follows this loop only once because the loop does not terminate. If
the LR(k) parser is nondeterministic, it may follow the loop an arbitrary number
of times and then possibly exit the loop. However, Algorithm 3.1.1 does not need
to follow the loop more than once since the first iteration of the loop will add
(957 9%41) to H, and when [g},7,q.,,] is processed any configuration which leads
to an exit from the loop will be found and followed by Algorithm 3.1.1. The
following sequence of moves illustrates this case:

('quqx+l’ Wyttmiks1) b (Be,4. Azt qzqa:+l s Wyt 1ntk+1)
- ('quqz+1qzqz+quqx+l y Wyt1: n+k+l)
- (ﬂ qa:+1q.1,'qz+1qa:q.1;+l q:l,'q:c+27 Wyt ntk+1)

In this case, step II.A of Algorithm 3.1.1 will skip all but the first iteration of the
loop, add the entry [q},7,4.,,] to H, and continue beyond the loop.
From the preceding examination of step II.A, it is clear that [r,1, q], [q1, 2, ¢2),
.-y and [gm-1,lm_1,qm] are on their respective parses lists when the entry [gm—1,lm—1,
¢m) is added to H,. Therefore, when [gm—1,lm-1,¢m] is removed from H, and pro-
cessed by step II.A.3 of Algorithm 3.1.1,

([qm 1y m—l’qm]’]) € RO,
([qm--2’ m-— 1’qm--1], m— 1) € Rly

([r,z, QI]all) to R,,—; and
([?,?,T],i) to R,.
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Furthermore, if @ = €, which implies ([?,7,7],7) = ([0,0,0],0), then step II.A.3.i
also adds ([0,0,0],0) to R, for £ > m. Thus, either step II.A.3.ii or step II.A.3.iii
of Algorithm 3.1.1 will attempt to add [r, 1, s] to the pending list H,, which implies
[r,1,8] is on I, when Algorithm 3.1.1 terminates. g

3.3 RUN TIME ANALYSIS

In this section, the time and space complexities of Algorithm 3.1.1 are shown to
be O(n*) and O(n?) respectively. During the analysis of the algorithm it becomes
evident that, to achieve these bounds, the sets Ry, Ri,..., R, in step II.A.2 of
Algorithm 3.1.1 must be computed very carefully. In fact, the changes required
to efficiently compute these sets are so great that two different algorithms for
implementing step II.A.2 are presented in this section.

To analyze the complexity of Algorithm 3.1.1, the method of Aho and Ull-
man [3] is used. In this method, the time complexity of an algorithm is determined
by counting the number of primstive operations performed by the algorithm as a
function of the size of the algorithm’s input. A primitive operation is any sequence
of machine instructions that is performed in a constant amount of time by a ran-
dom access computer on an appropriate data structure in its memory. Examples
of primitive operations are:

e accessing an element in an array.
e inserting a item at the head (or tail) of a list.
e accessing the next item on a list.

Extending this definition, a primitive operation is also any sequence of machine
instructions that is performed in an amount of time that is bounded by a bound
that is independent of the size of the input. An example of such a primitive
operation for Algorithm 3.1.1 is evaluating f, or g, for an argument, because the
time to evaluate these functions depends only on the size of the grammar and is
independent of the length of the input string. From the definition of a primitive
operation, it follows that the time complexity of any primitive operation is O(1).

The space complexity of an algorithm is determined in the same manner as
time complexity. The size of the data structures used by the algorithm are ana-
lyzed for their dependence on the size of the input. The space complexity of data
structures with sizes that are independent of the size of the input is O(1).
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The input to Algorithm 3.1.1 is the string w to be parsed. The size of this
input is the string’s length, which is denoted by n. Some data structures, such
as the parse lists, depend directly on n. It is implicitly assumed that n is known
when these data structures are allocated, so that a position in the input string
can be used in (1) time as an index into these data structures. This assumption
presents no real difficulties, since the value of n can always be determined in O(n)
time by scanning the input string before starting the algorithm.

The parse lists, pending lists and set T' are the primary data structures used
by Algorithm 3.1.1. The parse lists are organized as an array of parse lists and
each parse list I, is |@Q| 4+ 1 (initially empty) linked lists of entries. One list is
used for entries [gq,7,7] for which 7 = j. The other |Q| lists are used for entries
[g,,7) for which ¢ # j; these lists are indexed by r and an entry [g,1,7] is stored on
the » list. The pending lists are organized as an array of pending lists and each
pending list is an (initially empty) linked list of entries. The set T is organized as
a two-dimensional bit map and is indexed by state in each dimension.

The space complexity of Algorithm 3.1.1 is easy to determine. There are O(n)
parse lists and O(n) pending lists. Each parse list can have at most O(n) entries
because duplicate entries are not allowed and the only component of an entry that
depends on the length of the input is the parse list number and it is bounded by
n + 1. Also, each pending list can have at most O(n) entries. This can be seen
by examining step II.A of Algorithm 3.1.1 and noting that an entry [g,7,7] can be
added to H, under only two conditions:

1. 7 # j and [g,%,7] is not already on I,.

2. i = j and [q,%,7] has not been added to H, since the last entry [s,l,t| for
which ! # j was removed from H,.

The first condition limits the number of entries [g,%,7] added to H, under it to
O(n). This in turn also limits the number of entries added under the second
condition to O(n) also. Thus, the space complexity of Algorithm 3.1.1 is O(n?).

To analyze the time complexity of Algorithm 3.1.1, the following general
scheme for counting primitive operations is used: ‘

e each primitive operation is charged to an entry, parse list, or some other
object used by the algorithm.

e the primitive operations charged to objects are determined by examining
Algorithm 3.1.1 step-by-step.

e the number of primitive operations for each class of objects is obtained by
summing the primitive operations charged to the objects in the class.
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o the number of primitive operations for the algorithm is obtained by summing
the primitive operations charged to each class of objects.

Beginning the analysis of the time complexity of Algorithm 3.1.1, one should
note that the first step of the algorithm implicitly assumes the parse lists, pending
lists, and set T" are initialized. Given the organization of parse lists, pending lists,
and set T, they can be initialized in O(n) primitive operations which are charged
to the algorithm object (a convenient object used only for the purpose of charging
primitive operations to the algorithm as a whole).

For step I of Algorithm 3.1.1, the O(1) primitive operations for initializing j
are charged to the algorithm object. The (1) primitive operations for creating
the initial entry and adding it to the first parse list and pending list are charged
to the entry.

For step II of Algorithm 3.1.1, the O(n) primitive operations for checking j
against n for each iteration of the loop are charged to the algorithm object. Also,
for step II.B of Algorithm 3.1.1, the O(n) operations for incrementing j for each
iteration of the loop are charged to the algorithm object.

For step II.A of Algorithm 3.1.1, the O(1) primitive operations for initializing
the loop to process the entries on the pending list are charged to the pending list.
For each iteration of the loop, the O(1) primitive operations for obtaining an entry
and subsequently advancing to the next entry are charged to the obtained entry.
In general, an entry may be obtained O(n) times since an entry [g,%,7] on I;, for
which ¢ = j may be added to H, a total of O(n) times.

For step II.A.1 of Algorithm 3.1.1, the O(1) primitive operations for emptying
the set T are charged to the entry being processed.

For step II.A.2 of Algorithm 3.1.1, the O(1) primitive operations for evaluating
fr and g, are charged to the entry being processed.

For steps II.A.2, II.A.3.ii, and II.A.3.iii, the O(n) primitive operations for
checking if an entry [q,7,7] to be added is already on parse list I, are charged to
the entry being processed. The check requires O(n) primitive operations because
the number of entries on the r*" list of a parse list is O(n) when 7 # j and each
entry must be checked. The O(1) primitive operations for adding an entry to its
parse list are charged to the entry itself.

For steps II.A.2, II.A.3.ii, and II.A.3.ii, the O(1) primitive operations for
adding an entry to its pending list are charged to the entry itself. In general, an
entry may be added to its pending list O(n) times since an entry [g,%,7] on I, for
which ¢ = j may be added to H, O(n) times.

For step I1.A.3 of Algorithm 3.1.1, the O(1) primitive operations for evaluating
fr are charged to the entry being processed.



62

ALGORITHM 3.3.1 Calculate the R;’s

Let [g,3,7] on I, be the entry for which the R;’s are to be calculated for the action
reduce p.

I. Let | =1, m = |RHS(p)|, and Ry = {([g,?,7],7)}-
II. While ! < m, perform the following steps:

A. Initialize R; and get the first element ([¢, k,?],?) from R,_;.
B. While R;_,; is not exhausted, perform the following steps:

1. Get the first entry [s, 0,v] from parse list Ij.
2. While I} is not exhausted, perform the following step:

i. If v = ¢ then add the element ([s,0,v]),h) to Ry, if the element
is not already in R;.

il. Get the next entry [s,o0,v| from parse list Ij.
3. Get the next element ([¢,4,?],?) from Ry_;.

For steps II.A.3.i, II.A.3.ii, and II.A.3.iii of Algorithm 3.1.1, the primitive
operations must be carefully determined. Algorithm 3.3.1 is a straight forward
implementation of step II.A.3.i in which each set R; is represented by a linked
list of elements. Algorithm 3.3.1 suffers from poor space and time complexities
because the number of elements that can be in a set R; is O(n?) and the algorithm
has loops which access each element in each R,;. Fortunately, Algorithm 3.3.1 can
be improved by using the sets B_;, By, By, ..., B, which are defined as follows:

B, = {(Ta])}
By, = {(q’z)}
B = {(s,0) | ([s,0,v], k) € Ri}

The B;’s can be calculated recursively using the following formula, obtained by
substitution from the formula for the R;’s.

B, ={(s,0) | [s,0,v] € I;, and (v,h) € Bi_1}

The set R,, can be replaced in steps II.A.3.ii and II.A.3.ii of Algorithm 3.1.1
because of the following simple relationship

Bi_y = {(v,h) | ([s,0,v],h) € R;}.

Il
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ALGORITHM 3.3.2 Calculate the B,’s

Let [g,7,7] on I, be the entry for which the B,’s are to be calculated for the action
reduce p.

I. Let I =1, m = |RHS(p)|, B-1 = (r,7), and By = (g,2)-
II. While ! < m, perform the following steps:

A. Initialize B; and get the first element (t,h) from By_;.
B. While B;_; is not exhausted, perform the following steps:

1. Get the first entry [s,0,v] on I;.
2. While I} is not exhausted, perform the following steps:
i. If v = ¢ then add the element (s,0) to By, if it is not already in
B,
ii. Get the next entry [s,o0,v] on Ij.
3. Get the next element (¢,4) from Bj_;.

C. Let I=1+1.

This relationship follows immediately from the recursive formula for the R,’s.
Thus, step II.A.3.i of Algorithm 3.1.1 can compute the B,’s and steps II.A.3.ii
and II.A.3.iii can use B,,_; instead of R,,.

Algorithm 3.3.2 computes the sets B_;, By, ..., B,_; and is very similar to
Algorithm 3.3.1. However, the number of elements that can be in a set B; is O(n),
so Algorithm 3.3.2 has better time and space complexities than Algorithm 3.3.1.

For Algorithm 3.3.2, the sets By, By, ..., B,, are organized as an array of
sets and each set is an (initially empty) linked list of elements. Each set can
have at most O(n) elements because the elements are not duplicated and the only
component of an element that is not bounded independently of n is the parse list
number and it is bounded by n + 1. The number of sets is O(1), so the space
complexity of Algorithm 3.3.2 is O(n) and the space complexity of Algorithm 3.1.1
is not increased.

The time complexity of Algorithm 3.3.2 is not determined directly. Instead,
the primitive operations used in the steps of Algorithm 3.3.2 are charged to the
objects of Algorithm 3.1.1 since Algorithm 3.3.2 is step I1.A.3.i of Algorithm 3.1.1.

For step I of Algorithm 3.3.2, its O(1) primitive operations are charged to the
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entry being processed.

The loop in step II of Algorithm 3.3.2 is executed at most (1) times since
m, the length of a production, is independent of n. The (1) primitive operations
for the loop termination test in step II are charged to the entry being processed by
step II.A of Algorithm 3.1.1. Likewise, the O(1) primitive operations for steps II.A
and II.C are charged to the entry being processed by step II.A of Algorithm 3.1.1.

The loop in step II.B of Algorithm 3.3.2 is executed at most O(n) times
since B; has O(n) elements. Thus, the O(n) primitive operations for the loop
termination test in step I1.B are charged to the entry being processed by step II.A of
Algorithm 3.1.1. Likewise, the O(n) primitive operations for steps II1.B.1 and II.B.3
are charged to the entry being processed by step II.A of Algorithm 3.1.1.

The loop in step II.B.2 of Algorithm 3.3.2 is executed at most O(n) times
since I, has O(n) elements. Step II.B.2 is also nested inside the loop formed by
step IL.B. Thus, the O(n?) primitive operations for the loop termination test in
step I1.B.2 are charged to the entry being processed by step II.A of Algorithm 3.1.1.
Likewise, the O(n?) primitive operations for step II.B.2.ii are charged to the entry
being processed by step II.A of Algorithm 3.1.1.

Step IL.B.2.i of Algorithm 3.3.2 takes O(n) primitive operations since it must
check all the elements in B;. Step I1.B.2.iis also nested within the loops formed by
steps II.B and II.B.2. Therefore, the O(n®) primitive operations for step II.B.2.i
are charged to the entry being processed by step II.A of Algorithm 3.1.1.

Returning to Algorithm 3.1.1 and examining step II.A.3.ii, there are O(1)
elements in g, and O(n) elements in B,,_; for which 7 # j. So the actions of
this step are performed O(n) times. Likewise, for step II.A.3.iii, there are O(1)
elements in g, and O(1) elements.in B,,_; for which ¢ = j. So the actions of this
step are performed (1) times. Furthermore, for step II.A.3.iii, checking for (g,)
on T and adding (g,7) to T' takes only O(1) primitive operations.

All the primitive operations of Algorithm 3.1.1 have been charged to the ob-
jects used by the algorithm. ' Now the number of primitive operations for each
class of objects can be calculated. Considering the entries first, each entry has the
following number of primitive operations charged to it:

e O(1) when the entry is added to its parse list in Algorithm 3.1.1.

e O(n) when the entry is processed up to O(n) times in step II.A of Algo-
rithm 3.1.1.

e O(1) when the set T is emptied in step II.A.1 of Algorithm 3.1.1.

e O(1) when f, and g, are evaluated in step II.A.2 of Algorithm 3.1.1.
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e O(n) when the check for a duplicate entry is made in step II.A.2 of Algo-
rithm 3.1.1.

o O(n) when the entry is added up to O(n) times to the pending list in
steps II.A.2, A.3.i, or II.A.3.iii of Algorithm 3.1.1.

e O(1) when f, is evaluated in step II.A.3 of Algorithm 3.1.1.

e O(1) when the entry causes the execution of steps I, II, I.A, and II.C of
Algorithm 3.3.2.

e O(n) when the entry causes the execution of steps II.B, II.B.1, and II.B.3 of
Algorithm 3.3.2.

e O(n?) when the entry causes the execution of steps II.B.2 and II.B.2.ii of
Algorithm 3.3.2. |

e O(n®) when the entry causes the execution of step II.B.2.i of Algorithm 3.3.2.

e O(n?) when the check for a duplicate entry is made O(n) times in step A.3.ii
or II.A.3.iii of Algorithm 3.1.1.

e O(n) when the check for a duplicate state pair is made O(n) times in step
IT.A.3.ii of Algorithm 3.1.1.

Thus, the total number of primitive operations charged to an entry is O(n®). The
number of primitive operations for all the entries is O(n°) since the number of
entries is O(n?).

No primitive operations are charged to the parse lists. The number of primitive
operations charged to a pending list are as follows:

e O(1) when the loop in step II.A of Algorithm 3.1.1 is initialized.
e O(1) when the loop in step II.A of Algorithm 3.1.1 is terminated.

Since the number of parse lists is O(n), the total number of primitive operations
for all the parse lists is O(n).

Finally, the number of primitive operations charged to the algorithm object
are as follows:

e O(n) for the initialization of Algorithm 3.1.1 in step L

e O(n) for the loop test and increment in steps II and II.B of Algorithm 3.1.1.
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Thus the total time charged to the algorithm object is O(n).

Summing the number of primitive operations for the entries, the parse lists,
pending lists, and the algorithm object shows the time complexity of Algorithm 3.1.1
is O(n®).

Using a trick from Early’s algorithm, the time complexity of Algorithms 3.1.1
and 3.3.2 can be improved at the expense of increasing their best-case times. The
trick is to store the B,’s as n lists where the i‘? list contains all the (g,7) elements.
The time to initialize a set B, is increased to O(n) but the time to check for a
duplicate element is decreased to O(n).

For Algorithm 3.3.2, this change means that step II.A takes O(n) primitive
operations to initialize B, and step 1I.B.2.i takes only O(1) primitive operations.
Step II.B.2.i is nested within two loops that are each executed O(n) times while
step II.A is not. Thus, this change reduces the time complexity of Algorithm 3.3.2
to O(n?) and the time complexity of Algorithm 3.1.1 to O(n*).

The draw back of this trick is that it forces the time complexity of Algo-
rithm 3.3.2 to be O(n?) regardless of the grammar being used. This is not always
desirable. The use of this trick by Early creates a similar situation for Early’s
algorithm. |

The O(n*) time complexity of Algorithm 3.1.1 is greater than the O(n?) time
complexity of Early’s algorithm under the same conditions. Further analysis of
Algorithm 3.1.1 might provide a lower upper bound on its time complexity. How-
ever, the time complexity of Algorithm 3.1.1 is not important to the goal of this
dissertation since Algorithm 3.1.1 is just a step towards a more efficient syntax er-
ror recovery algorithm for LR(k) parsers. In the next chapter, a depth-first version
of Algorithm 3.1.1 is developed and it is shown to have O(n) time and O(n) space
complexities for LR(k) grammars.
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CHAPTER IV
THE DEPTH-FIRST LR(K) EARLY’S ALGORITHM

In this chapter, a depth-first version of the LR(k) Early’s Algorithm is pre-
sented. This algorithm is similar to the LR(k) Early’s Algorithm, but it does not
process all the entries on a parse list before preceding to the next parse list. In-
stead, entries on the parse lists may be processed in any order. The algorithm is
depth first because it can allow an individual parse of the input string to be sim-
ulated completely before any other parse is simulated. Conceptually, this ability
corresponds to similar abilities of depth-first search algorithms for graphs.

4.1 THE ALGORITHM

The Depth-First LR(k) Early’s Algorithm, Algorithm 4.1.1, uses the same
n + 2 parse lists Iy, Iy,...,I,12 as Algorithm 3.1.1. In addition, the format of the
entries on the parse lists is the same. However, the pending lists Hy, Hy,..., H,,
are combined into one pending list, H. An entry placed on H has its associated
parse list number in an ordered pair ([g,7,7],7). Unlike Algorithm 3.1.1, entries
are added to their parse list only after they are removed from H.

The use of the pending list, H, allows entries to be processed by Algo-
rithm 4.1.1 in an order that is independent of the order of the parse lists. In
fact, if the pending list, H, is treated as a stack then a depth-first (one complete
parse at a time) simulation of the nondeterministic LR(k) parser is achieved.

Like Algorithm 3.1.1, Algorithm 4.1.1 operates by simulating the nondeter-
ministic LR(k) parser. The simulation of shifts by step II.B.1.i of Algorithm 4.1.1
operates in a manner similar to step I1.A.2 of Algorithm 3.1.1. For reductions, Al-
gorithm 4.1.1, unlike Algorithm 3.1.1, applies a reduction to only some of the copies
of the nondeterministic LR(k) parser that can reach a configuration which calls for
the reduction. This is because Algorithm 4.1.1, unlike Algorithm 3.1.1, may not
have simulated the moves for all copies of the nondeterministic LR(k) parser up to
the configuration where the reduction occurs. Instead, Algorithm 4.1.1 must de-
fer the application of the reduction to other copies of the nondeterministic LR(k)
parser until the moves of those copies reach the configuration where the reduction
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ALGORITHM 4.1.1 Depth First LR(k) Early’s Algorithm

I. Place ([0,0,0],0) on the list H and append $**! to w.
II. While H is not empty, perform the following steps:

A. Remove an entry (v[q,li,r],j) from H.

B. If the entry [q,7,7] is not already on the parse list I,, add the entry to
its parse list and perform the following steps:

1. If there were not any entries of the form [?,?,7] on the parse list
when [g,7,7] was added then perform each of the following steps:

i. If shift € f,(w,+1,4%) and there exists s € g, (w,41,y+1) then
add ([r,7,s],7 + 1) to H if it is not already on H.

ii. If there exists reduce p € f,(w,+1,,4«) thenlet G,(r) = G;(r)U
{(IRHS(p)|,p,7) | reduce p € fr(w;+1:5+k)}-
2. If G,(r) is not empty, perform the following steps:

i, Let m = max({h | (h,7,0) € G,(r)})

ii. Use Algorithm 4.1.2 to compute B_y, By,...,Bpn_1.

iii. For each (h,p,l) € G,(r) and for each (s,0) € By_, for which
there exists ¢ € g,(LHS(p)), add ([s,0,¢],I) to H if it is not
already on H. :

occurs.

Deferred application of reductions is complicated by the fact that duplicate
entries for a parse list are processed. Elimination of duplicate entries guarantees
that Algorithm 4.1.1 will terminate. However, two copies of the nondeterministic
LR(k) parser can reach configurations with the same state on top of the stack
at the same position in the input string. And “blind” elimination of duplicate
entries would stop the simulation of one of the copies when the stacks for the two
configurations are not the same. Subsequent moves for the stopped copy might
include a reduction which causes the copy to enter a configuration with a different
state on top of the stack than the corresponding configuration for the stopped copy.
In this case, the simulation of the stopped copy should continue. The mechanism
for applying deferred reductions addresses this issue.

The deferred application of reductions is handled by propagating information
about a reduction backwards down the stack so that the effect of the reduction on
the stack can be maintained. A copy of the nondeterministic LR(k) parser may
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ALGORITHM 4.1.2 Calculate B;’s

Let [g,%,7] on I; be the entry for which the B;’s are to be calculated and let m be
as given in Algorithm 4.1.1.

I Let I =1, By = {(r,j)}, Bo = {(¢,9)}, and let G.(q) = G.(q) U {(n,p,k) |
(n+1,p,k) € G,(r) and n > 0}.

II. While ! < m, perform the following steps:

A. Initialize B; and get an element (¢, k) from B;_;.
B. While B;_; is not exhausted, perform the following steps:

1. Get an entry [s,o0,v] on Ij.
2. While I}, is not exhausted, perform the following steps:

i. If v = ¢t then add the element (s,o0) to By, if it is not al-
ready in By, and let Go(s) = Go(s) U {(n,p,k) | (n + 1,p,k) €
Gi(t) and n > 0}.
ii. Get another entry [s,0,v] on I.
3. Get another element (t,h) from B;_;.

C. Letl=1+1.

enter a configuration with the same state on top of the stack at the same position
in the input string as a previous configuration that was affected by the reduction.
When the entry corresponding to this configuration is added to its parse list the
effect of the reduction can be applied.

The deferred reduction information is stored in a set G,(r) for each possible
state r on top of the stack at each input position j. The elements of G,(r) are
ordered triples (h,p,l); where p is the number of the production used in the reduc-
tion, h is an integer between 0 and |[RHS(p)|, and [ is the number of the parse list
on which the entry resulting from the reduction is to be placed. The integer A is
used to indicate how many more states must be popped from the stack before the
reduction can be applied.

The deferred application of reductions is achieved by examining G,(r) when-
ever an entry [g,%,7] is added to'a parse list I,. Also, when [g,%,7] corresponds to
a configuration from which a reduction normally is made, step II.B.L.ii of Algo-
rithm 4.1.1 adds deferred reduction information to G,(r) so that the deferred re-
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duction mechanism also triggers the simulation of normal reductions. When G,(r)
is not empty, reductions are simulated by step II.B.2 of Algorithm 4.1.1 which
is similar to step II.A.3 of Algorithm 3.1.1. In particular, step II.B.2.ii executes
Algorithm 4.1.2 which computes the sets B_;, By, By,...,B,_; and propagates
deferred reduction information down the stack.

4.2 PROOF OF CORRECTNESS

This section shows that Algorithm 4.1.1 correctly simulates an LR(k) parser when
the algorithm and the parser use the same sets of states, @, and functions f, and
gq- The simulation is correct, if for every entry [gq,7,7] that Algorithm 4.1.1 places
on a parse list I,, there is a corresponding sequence of moves

* +
(Oaw1:n+k+1) + (alq,wz+1-n+k+1) + (049"', w;+1:n+k+1)

that can be made by the LR(k) parser.

Algorithm 4.1.1 uses the pending list, H, to hold entries waiting to be pro-
cessed by the algorithm. The following lemma establishes that entries added to the
pending list eventually are processed by the algorithm. This guarantees that Al-
gorithm 4.1.1 terminates. It also guarantees that if ([g,7,7],7) is added to H then
lg,%,7] is on I, when Algorithm 4.1.1 terminates since step II.B of Algorithm 4.1.1
will add the entry to its parse list unless it is already on it.

LEMMA 4.2.1 (Every Entry Added to the Pending List is Processed) If
([ry1,8],7) is added to the pending hst, H, then ([r,3,s],7) ts eventually processed
by step II.A of Algorithm 4.1.1.

Proof: Since step II.A of Algorithm 4.1.1 removes entries from the pending list,
H, until the list is exhausted, there only two things that can cause an entry on the
list not to be processed:

e an infinite number of distinct entries are placed on H; or

o a single entry is placed on H an infinite number of times.

An infinite number of distinct entries cannot be placed on H because the values
of 7, i, s and j are bounded. Also, a single entry cannot be on H more than once
since, before an entry is added to H, the entry is checked to determine it is not
already on the list. y

The next lemma establishes a technical property of the initial state 0 for
Algorithm 4.1.1.
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LEMMA 4.2.2 (0 is the Unique Initial State) If » = 0 then [g,i,7] on I, is
[0,0,0] on I,.

Proof: The definition of an LR(k) parser does not allow 0 € g,(X) for any s or
X. Any entry ([g,7,7],7) added to the pending list, H, by either step II.B.1.ii or
I1.B.3.ii of Algorithm 4.1.1 may have r € g,(X) for some s and X. Only step I,
which adds ([0,0,0],0) to H, can add an entry ([g,3,7],7) for which » = 0. Thus,
r = 0 implies [g,7,7] on I, is [0,0,0] on ;. §

As in the proofs of correctness and completeness for Algorithm 3.1.1, the
concept of a sequence in which entries can be added to their parse lists is important
and leads to the following definition.

Definstion 4.2.1 (Ordered List of Entries) An ordered list of entries is a com-
plete list of entries and their parse lists

[QH":I""I] on [,
[‘Z2,i2,7‘2] on In

[QN,iN,TN] on I,,

given in a sequence in which they can be added to their parse lists by step II.B of
Algorithm 4.1.1 during an execution of Algorithm 4.1.1.

The entry [0,0,0] on I, is not on any ordered list of entries since it is not
added to its parse list by step II.B of Algorithm 4.1.1.

Closely related to the concept of ordering a list of entries is the notion that,
regardless of any specific ordering, an entry or an entry from a set of entries must
be added to its parse list before another entry can be added to a parse list.

Definition 4.2.2 (Direct Precursor) Given two entries {?,?,7] on I, and [r, j, 3]
on I;, the entry [?,?,7] on I, is said to be a direct precursor of the entry [r, j,s]| on
I

The following lemma shows that every entry has a precursor which is on a
parse list when the entry is itself added to its parse list by Algorithm 4.1.1.

LEMMA 4.2.3 (Every Entry Has a Direct Precursor) If the entry [g,%,7] 15 on
I, then there 1s an entry [?,7,q] on a parse hst I,.
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Proof: The lemma is trivially true for the entry [0,0,0] on I,. For all other entries,
the lemma is proved by induction on an ordered list of entries, using the lemma as
the induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for the first entry on the ordered list of entries;
and

e second, the lemma is proved for the N*® entry on the ordered list of entries,
assuming it holds for all entries before the N! entry on the ordered list of
entries.

For the first induction step, let [g,%,7] on I, be the first entry on the ordered list
of entries. This entry is added to its parse list by step II.B of Algorithm 4.1.1
so ([g,?,7],7) must have been on H. The entry ([g,,7],j) must be added to H
while either step II.B.1.i or step II.B.2.iii of Algorithm 4.1.1 is processing [0, 0, 0]
on Iy. The entry [0,0,0] on I, is the only entry on any parse list when it is
processed. Examining steps II.B.1.i and II.B.2 and Algorithm 4.1.2 shows that
(g,2,7] = [0,0,7] and [0,0,0] is a precursor for the entry.

For the second induction step, the lemma is assumed to hold for all entries
before the N* entry on the ordered list of entries. Let the N entry be [g,1,7] on
I,. This entry is added to its parse list by step II.B of Algorithm 4.1.1 so ([g,1,7],7)
must have been on H. Therefore, there are two cases to consider:

e step II.B.1.i adds ([q,%,7],7) to H and Algorithm 4.1.1 is simulating a shift
by the LR(k) parser; or

o step II.B.2.iii adds ([g,7,7],j) to H and Algorithm 4.1.1 is simulating a re-
duction by the LR(k) parser.

In the first case, step I1.B.1.i adds ([g,%,7],7) to H and this step must be processing
an entry [?7,7,¢] on I,.

In the second case, step II.B.2.ii adds ([g,%,7],7) to H. This implies that
(¢,2) € By for some m > 0. Examining Algorithm 4.1.2 shows that if (q,7) €
By, then, when m = 0, [?,?,q] is on I, and, when m > 0, [g,%,?] is on I. Since
l[g,2,7] on I precedes [q,i,7] on I, on the ordered list of entries, the induction
hypothesis can be applied to show that there must be an entry [?,7,q] on I, when
m > 0. Thus, regardless of the value of m, there is an entry [?,?,q] on I,. a

The next two lemmas establish precursor relationships that can be inferred
among entries on their parse lists at key points during the execution of Algo-
rithm 4.1.1.
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LEMMA 4.2.4 If Algorithm 4.1.2 1s applied to [qi,11,qy] on I}y and (gm,lnm) €
B,._1 then there exists
[@m+15 lmt1s Gm] on I,
[qmalman—l] on .Ilm_l

(g2, 02,q1) on Ij,.

Proof: The lemma is proved by induction on m, usilig the lemma as the induction
hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m = 0 and m = 1; and

e second, the lemma is proved for m = N, where N > 1, assuming it holds
when m = N — 1.

For the first induction step, m = 0 or m = 1. Examination of step I of
Algorithm 4.1.2 shows that (go,lo) € B_; or (g1,11) € By only if [g1,1;, o] is on I,.

For the second induction step, m = N, where N > 1, and the lemma is
assumed to hold for m = N — 1. If (gn,In) € Bn-1 then step IL.B.1.i of Al
gorithm 4.1.2 must have added (gn,In) to By_; and there must be an entry
[gn,Inyqn-1] on Ij,_, and an element (gn-1,In-1) € Bn_2. Since (gn-1,In-1) €
By _,, the induction hypothesis can be applied to show that there exists

[qNalN’QN—l] on IIN._1
[gn—-1,IN-1,qn—2] on I}, _,

[QZ’ ly, 91] on [j,.

Applying Lemma 4.2.3 to [qn,In,qn_1] on I;,_, shows that [gni1,In+1,9n] s on
Iiy.a |

LEMMA 4.2.5 If (h,p,lm) € Gi,(qn), there exssts

[qh—-l,lh—laqh] on Ilh
lghsthyghya] o0 Iy,

[qm—ly lm—l ] qm] on Ilm

where reduce p € f, (wi,414,.+k) and m = |RHS(p)|.
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Proof: The lemma is proved by induction on m — h, using the lemma as the
induction hypothesis. The induction proceeds in two steps:

e first, the lemma is proved for m — A = 0; and

e second, the lemma is proved for m — h = N, where N > 0, assuming it holds
form—-h=N-—1.

For the first induction step, m — h = 0. Thus, A = m = |RHS(p)|. Ex-
amination of step II.B.1.ii of Algorithm 4.1.1 shows that it adds (k,p,s), where
h = m = |RHS(p)|, to Gi,(gn) only if [gm-1,lm-1,9m] on I, and reduce p €
Jam (Wi 4120, +k)- No other step of either Algorithm 4.1.1 or Algorithm 4.1.2 can add
an element (h,p,l;) to Gy, (qn) for which b = |RHS(p)|, particularly step II.B.2.i
of Algorithm 4.1.2.

For the second induction step, m — h = N, where N > 0, and the lemma is
assumed to hold when m —h < N — 1. An element (h,p,!,) for which m —h = N
and N > 0, can be added by step I or step II.B.1.ii of Algorithm 4.1.2. If either
step I or step II.B.2.i of Algorithm 4.1.2 adds (k,p,l,») to Gi,(gn) then there is an
entry [gn, I, ghy1] on I, and (A +1,p,1n) € Gi,,, (gh+1)- Applying the induction
hypothesis to (h +1,p,ln) € Gi,,,(qh41), for which m — h = N — 1, there must be

[qh, lh’ qh+1] on Ilh+1
[gh+15lhs1, Ghaa] on L.,

[Qm—la lm—l ) Qm] on Ilm

where reduce p € f,,.(wi,.+14..+k)- Also, Lemma 4.2.3 shows that there is an entry
[gh—1,1h—1,qn) on I;,. Thus, there exists

[Qh—l,lh—l,Qh] on Ilh
[qhalhv Qh+1] on Ilh+1

[qm—17 lm—l ] qm] on Ilm

where reduce p € f,_ (Wi, 4141 +k)-

THEOREM 4.2.1 (Algorithm 4.1.1 Correctly Simulates the LR(k) Parser)
Given the same Q, f,, and g, for Algorithm 4.1.1 and the LR(k) parser, of an
entry [r,1,s| 1s added to parse lst I, (ezcept for [0,0,0] on I,) by Algorithm 4.1.1
then the LR(k) parser can make the sequence of moves
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* +
(0, wl-n+k+1) t (Oél”‘,wz+1-n+k+1) t (ar‘s’w1+1:n+k+l)-

Proof: The theorem is proved by induction on any ordered list of entries, using the
theorem as the induction hypothesis. The induction proceeds in two steps:

o first, the theorem is proved for the first entry on the ordered list of entries;
and |

e second, the theorem is proved for the N*'" entry on the ordered list of entries,
assuming it holds for all entries that precede the N th entry.

For the first induction step, let the first entry on the ordered list of entries be
lg,%,7] on I,. Step IL.B of Algorithm 4.1.1 adds [g,7,7] to I, so ([g,%,7],7) must
have been on H. Either step II.B.1.i or step II.B.2.iii of Algorithm 4.1.1 must have
added ([q,,7],7) to H while processing [0,0,0] on I,. Likewise, the first move of
the LR(k) parser must be from the configuration (0, w;.n4k+1). Thus, if step II.B.1.i
adds ([g,%,7],7) = ([0,0,7],1) to H then the shift (0, w1:ntk+1) F (07, Wointkt1) can
be made by the LR(k) parser; and if step II.B.2.iii adds ([g,%,7],7) = ([0,0,7],0)
to H then the reduction (0,w;.n4k41) F (07, Winik+1) can be made by the LR(k)
parser.

For the second induction step, the theorem is assumed to hold for all entries
on the ordered list of entries that precede the N*'! entry. Let the N'! entry be
[r,1,8] on I,. Since [r,7, 3] is added to I, by step II.B of Algorithm 4.1.1, ([r,1, s], )
must have been on H. There are two cases to consider:

e step II.B.1.i adds ([r,%,s],7) to H and Algorithm 4.1.1 is simulating a shift
by the LR(k) parser; or

e step II.B.2.ii adds ([r,3,s],5) to H and Algorithm 4.1.1 is simulating a re-
duction by the LR(k) parser.

In either case, the step involved must have been applied to an entry
[qh_l,l},_l,qh] on Ij, where h is a convenient index which will be specified later.
Since [gh—1,0n-1,qn] on I;, precedes [r,i,s] on I, on the ordered list of entries, the
LR(k) parser can make the sequence of moves

*
(0, wl:n+k+1) F (ath, Wi, +1:n+k+1 )

In the first case, step II.B.1.i adds ([r,1,s],7) to H and Algorithm 4.1.1 is
simulating a shift by the LR(k) parser. Thus, I, =1 =j — 1, g, = 7, and the shift
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(ar,wj:n+k+1) F (ars,w;+1ntk+1) can be made by the LR(k) parser. Therefore,
the LR(k) parser can make the sequence of moves

*
(0, Winikt1) (@, Wyntksr) (P8, Wy p1ingksr)-

In the second case, step I1.B.2.iii adds ([r,1,s],j) to H and Algorithm 4.1.1 is
simulating a reduction by the LR(k) parser. When [g4_1,!s_1,qx] on I;, is processed
there must be '

(h7paj) € Glh(Qh)
and

(g0, 1) € Bh_1

where g, = r and l, = 1. Here, h has been chosen for convenience as the index into
the B,’s. Applying Lemma 4.2.4, there must be

[qO’l()’ QI] on Ill»
[q1’ll, q2] on Ilz

[Qh—Za lh—2, %—1] on Ilh_1 .

Applying Lemma 4.2.5, there must also be

[Qh,lh,Qh+1] on Ilh+1
[Qh+1,lh+17 Qh+2] on I’h+2

[qm-2a lm—27 Qm—l] on Ilm_L
[qm—l’ lm—l) Qm] on Ilm

where l,, = j, m = |RHS(p)| and reduce p € f, .(wi,.+1:+k). The reduction must
be one of three possible types, each of which must be considered separately:

e a reduction by an empty production (i.e. m = 0);

¢ a reduction by a non-empty production which does not cause the stack to
underflow (i.e. m > 0 and g, # 0 for 0 < 2 < m); or

e a reduction by a non-empty production which causes the stack to underflow
(i.e. m > 0 and g, = 0 for some z where 0 < z < m).
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For the first type of reduction, an empty production is used so m = h = 0.
Thus, l,, =ly =1 =7, ¢m = @ = r, and the reduction

(ar,wj+l n+k+1) F (ar37w1+1:n+k+1)

can be made by the LR(k) parser. Therefore, the LR(k) parser can make the
sequence of moves

*
(0,w1-n+k+1) t (0117‘, Wyt1ntkt+1) (a”,w1+1-n+k+1)-

For the second type of reduction, a non-empty production is used and the
stack does not underflow so m > 0 and g, # 0 for 0 < # < m. This implies that
the entries [g,_1,l,_1,9;] on I;,, for 0 < z < m, are entries on the ordered list of
entries and that these entries precede [r,7,s] on I, on the ordered list. Applying
the induction hypothesis to each of these entries, the LR(k) parser can make the
sequences of moves:

*
(Oa wl-n+k+1) = 0407'<h,‘w11+1:n+k+1)

E3

i_

+
QolTy Wyt 1intk+1)
(0, wintry1) )

(
:

(
(a11q1, Wi, 41-ntk+1 (19192, Wiy 4 1:ntk+1)

* +
(Oawl'n+k+1) I_ (am—llqm—l’wlm_1+l'n+k+1) I— (am—lqm—lqm,w]+1:n+k+l)

As a result, the LR(k) parser can make the sequence of moves

* +
(Oawl:n+k+1) = (aol"',wz+1-n+k+1) F (aorqy - - -Qm1w1+1'n+k+1)'
Also, step II.B.2.iii calls for a reduction of length m so the reduction
(aoﬂh <o qm,w]+1'n+k+1) + (a0r37w1+1:n+k+1)

can be made by the LR(k) parser. Therefore the LR(k) parser can make the
sequence of moves

* +
(0, wiintki1) F (0l?y Wiprngktr) B (0078, Wy p1imthsr )

For the third type of reduction, a reduction by non-empty production is used
and the stack underflows so m > 0 and g, = 0 for some z where 0 < z < 0. Let e
be the greatest such z. Since 1 < e, r = g, = 0. Recursively applying Lemma 4.2.2



78

shows that, for 0 < z < e, ([gr-1,lz-1,9z),lz) = ([0,0,0],0). If e = m then there
is only the state 0 on the stack when the reduction is made and ¢,, = go = 0 and
lm =1y =1 =7 =0. Therefore, the LR(k) parser can make the sequence of moves

* +
(0’w1:n+k+l) = (Oawl:n+k+1) F (Osywl:n+k+l)-

If e < m there are some states (but not enough) on the stack when the
reduction is applied. For e < # < m, [gs-1,ls-1,¢s) on I;, is an entry that precedes
[r,1,8] on I, on the ordered list of entries. Applying the induction hypothesis to
each of these entries, the LR(k) parser can make the sequences of moves:

, , . +

(0, Wiintkt1) F (Celges Wiot1nth+1) F (QeeGet1s Wiy +1ntkt1)
I_.

+
(Oawl'n+k+1) (Ote+1lqe’+1,wte+1+1:n+k+1) = (ae+1qe+1qe+27wle+2+1:n+k+1)

* +
(0, wl:n+k+1) F (am—lIQm—lawlm_1+1:n+k+1) F (am—lqm—lqm7w1+1:n+k+l)'

Since g, = 0 and 0 is never pushed onto the stack, o, = €. As a result, the LR(k)
parser can make the sequence of moves

* +
(0, wl'n+k+l) F (07 wl:n+k+1) F (Oqe+IQe+2 v qmawj+1:n+k+1)~
Also, step II.B.2.iii calls for a reduction of length m so the reduction

(Oqeqe+l oo qm, w]+1:n+lc+1) Iy (037w1+1:n+k+1)

can be made by the LR(k) parser. Therefore the LR(k) parser can make the
sequence of moves

* +
(0, wimtkt1) F (0, Wingks1) F (08, W) 1mths1)-

4.3 PROOF OF COMPLETENESS

This section shows that Algorithm 4.1.1 completely simulates the LR(k) parser.
The simulation is complete if for every sequence of moves

* +
(07w1'n+k+1) t (alq, wz+1-n+k+1) - (aqra w1+1=n+k+1)
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that can be made by the LR(k) parser, Algorithm 4.1.1 places the entry [g,%,7] on
the parse list I,.

The next two lemmas establish reduction information that can be inferred from
the entries on their parse lists at key points during the execution of Algorithm 4.1.1.

LEMMA 4.3.1 If Algorithm 4.1.2 1s apphed to [q1,1,qo] on I}, and there ezists

[Qm+1alm+1a qm] on I,
[Qm’ lmaqm—l] on Ilm—1

[45,12,41] on It1

then, for m > 0,
(qm’lm) € Bm—l-

Proof: The lemma is proved by induction on m, using the lemma as the induction
hypothesis. The induction proceeds in two steps:

e first, the lemma is proved for m = 0 and m = 1; and

e second, the lemma is proved for m = N when N > 1, assuming it holds when
m=N —1.

For the first induction step, m = 0 or m = 1. Examination of step I of
Algorithm 4.1.2 shows that (qy,lo) € B_; and (q1,!1) € Bo.

For the second induction step, m = N where N > 1 and the lemma is assumed
to hold for m = N — 1. The induction hypothesis can be applied to

[qulN,QN—l] on IIN_l ‘
[‘IN—ulN—qu—z] on IzN_z

(g2, 12,q1] on I,

to show (gn-1,In-1) € Bn_2. Since (gnv-1,In-1) € Bn—2 and [gn41,IN41,9n] on
I, step IL.B.1.i of Algorithm 4.1.2 adds (gn,In) € Bn-1-1

LEMMA 4.3.2 Ifm >0, h > 0, m+h = |RHS(p)|, reduce p € fo,. (Wi +14m+k),
and there ezists
(90,10, q1] on I,
[qlalla QZ] on Ilz

[qm—ly lm—-l, Qm] on Ilm
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then
(h7p7 lm) € Glo(qo)'

Proof: The lemma is proved by induction on m, using the lemma as the induction
hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m = 1; and
e second, the lemma is proved for m = N, assuming it holds when m < N.

For the first induction step, m = 1. The entry [qy,lo,q:] is on I;, so it
must have been processed by step II.B.1.ii of Algorithm 4.1.1. Since reduce p €
Ja (Wi, 414, +), step ILB.1.i adds (b + 1,p,1;) to Gi,(g1). Thus, step II.B.2.ii exe-
cutes Algorithm 4.1.2 and step I of Algorithm 4.1.2 adds (h,p,[;) to Gi,(qo) since
h > 0. .

For the second induction step, m = N and the lemma is assumed to hold for
m < N. Since m = N there are N entries

[‘10,10, ‘h] on Ill
[‘11,11,'12] on Ilz

[qN-la lN—la qN] on IlN-

Let k be the index of the entry [gr—1, k-1, gx] on I;, which is the last of these entries
to be processed by step II.B of Algorithm 4.1.1. There must be (h + k,p,ln) €
Gi,(qx) when [ge—1,lk—1,qx] on I;, is processed by step IL.B since the induction
hypothesis can be applied to the N — k entries

[qk’lkaqk+1] on Ilk+1
[@k+15 let15 Q2] o0 I,

[qN—l,lN—lv QN] on I[N.

Since (h+k,p,1m) € G, (gx) when [@k—1, k-1, gk] on I, is processed by step I1.B.2.ii
of Algorithm 4.1.1, Algorithm 4.1.2 is executed. Step I of Algorithm 4.1.1 initializes
B_; to (gk,lx) and By to (gk—1,lk-1) and adds (h + k — 1,p,ln) to Gi,_,(gk-1)
The loop in step II of Algorithm 4.1.2 must iterate through at least the sequence
o0=1,2,...,k —1 and it has the following property: ‘

If (gzy0z) € Boey, (n+1,p,ln) € Gi,(gs), and [gr—1,{s-1,4-] is on I,
then (g,_1,l,—1) is added to B, and (n,p,l,,) is added to Gi,_, (gz-1)-
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Therefore, Algorithm 4.1.2 must add (k,p,1.) to Gi,(go)-

THEOREM 4.3.1 (Algorithm 4.1.1 Completely Simulates the LR(k) Parser)
Given the same @, f,, and g, for the LR(k) parser and Algorithm 4.1.1, if the se-
quence of moves

L M+1
(O,wl:n+k+1) - (O’,l’l‘,w,+1m+k+1) - (arsaw1+1:n+k+1)

can be made by the LR (k) parser, where L > 0 and M > 0, then Algorithm 4.1.1
adds the entry [r,1, s] to parse hst I,.

Proof: The theorem is proved by induction on the sum of L and M. The induction
proceeds in three steps:

e first, the theorem is proved for L + M = 0;

e second, the theorem is proved for L = N and M = 0, assuming it holds
whenever L + M < N; and

e third, the theorem is proved for L + M = N when M > 0, assuming it holds
whenever L+ M < N.

The parameter space formed by L and M is an infinite table with L as the row
number and M as the column number, so the steps of the induction can be viewed
as proving the theorem diagonal by diagonal, using the diagonals that run from
the lower left to upper right sides of the table.

For the first induction step, L + M = 0 and the theorem can be written as
follows:

If (0, w1 niks1) F (08,w,41:n1k41) then [0,0,s] is added to I,.

The move (0, wintkt+1) F (08, W, 41:n+k+1) can be either a shift, in which case j = 1,
or a reduction, in which case j = 0. When ([0,0,0],0) is processed by step IL.B
of Algorithm 4.1.1, if the move is a shift, then step II.B.1.i of Algorithm 4.1.1
adds ([0,0,s],1) to H. Likewise, if the move is a reduction, then step I1.B.2.iii of
Algorithm 4.1.1 adds ([0,0,s],0) to H.

For the second induction step, L = N, M = 0, and the theorem is assumed to
hold for L + M < N. Since M = 0, the theorem can be written as follows:

N
If (0, wimiks1) F (or, Wpimiks1) F (ors, wypintks1), where N > 0,
then the entry [r,1, s| is added to parse list I,.
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If N = 0 then this induction step degenerates to the first induction step. Therefore,
only the case of N > 0 needs to be considered. Since the length of the sequence of
moves

-1

(Oawl-n+k+1) + (ﬂ’w?'n+k+1) + (ar’wz+1:n+k+l)

is less than NNV, the induction hypothesis can be applied to show that there must
be an entry [?,?,7]| on I,.

The move (ar,w,41nt+k+1) F (ars,w,41nik+1) can be one of three types of
moves:

o a shift (shift € f.(wit144k));

e areduction by an empty production (reduce p € f,(w,41.+«) and |[RHS(p)| =
0); or

¢ a reduction by a non-empty production which causes the stack to underflow
(reduce p € f,(w,4144«) and |[RHS(p)| > 0).

For any of the three types of moves, s € g,(W,4144k)-
For a shift, shift € f,(w,+1.4%) and j =i+1. When [?,?,7] on I, is processed,
step IL.B.1.i of Algorithm 4.1.1 adds ([r,7,s],7) to H.

For a reduction by an empty production, reduce p € [f(Wit1a+k)s
|RHS(p)| = 0, and 7 = j. When [?,?,7] on I, is processed: step II.B.1.ii adds (0, p, j)
to G,(r); step II.B.1.i of Algorithm 4.1.1 adds ([r,3,s],j) to H; step II.B.2.ii exe-
cutes Algorithm 4.1.2 which adds (r,7) to B_;; and step I1.B.2.iii adds ([r,1, s],7)
to H.

For a reduction by a non-empty production which underflows the stack,
reduce p € fr(Witin4k), |RHS(p)| > 0 and ¢ = j. This implies a = ¢, [?,7,7] =
[0,0,0], and 2 = 7 = 0 since no move of the LR(k) parser can add 0 to the stack.
But this also implies N = 0 so this type of move need not be considered any
further.

For the third induction step, L+ M = N, M > 0, and the theorem is assumed
to hold for L + M < N. Since M > 0, the theorem can be written as follows:

L AM+1
If (0, wiintks1) F (217, Woprimiks1) F (@rs,wit1intktr) where L > 0

and M > 0 then [r,1,s] is added to parse list I,.
The sequence of moves

M41
(azr,wz+l'n+k+1) F (ars’w1+1-n+k+1)
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can be written as

(alr, wz+1.n+k+1) (OLTIQ1 ) w11+1:n+k+1)

(arqy 192, Wiy 41 ntkt1)

(arqqu .. -2qm—17wlm-1+1'n+k+1)

(a""h q2 ---9m, wlm+1'n+k+1)

(0”‘3, Wit1lintk+1 )

T T4+ T+ T+ T+ T+

where 1 < m < M, since a move of the LR(k) parser can add at most one symbol
to the stack and r is not allowed to be popped from the stack by any of the M +1
moves. The reduction (arqigz...qm, Wi, +1:mt+k+1) F (OPS, Wy 41:n1k+1) must be a
reduction that pops m states off the stack, or, if @ = € and » = 0, a reduction
which possibly pops more than m states and underflows the stack. Also, the
reduction implies I, = j and that there exists s € g,(|LHS(p)|) and reduce p €

fam (Wit 1inshr)-
Any proper subsequence of the sequence of moves
+
(@, Wipimtk1) F (P8, Wystintks1)
has a length less than NN so, applying the induction hypothesis, there must be

[raiaQI] on Ih
[ql,l1a42] on I,

[Qm—ly lm—la Qm] on Ilm-

These entries may be processed by step II.B in any order so let [gh—1,lxn-1,qn] on
I, be the last entry processed by step II.B. If A = m, then step II.B.l.ii adds
(|RHS(p)|,p,7) to Gy, (Ix). If A < m, applying Lemma 4.3.2 for

[qha lh’ Qh+]] on Ilh.‘.l

[qm—2,lm—2,qm—l] on I,
[qm—l’lm—la qm] on Ilm

shows that
(lRHS(p)I - (m - h),p,j) € GQh(lh)
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when the entry is processed by step II.B.2.iii. Applying Lemma 4.2.3 to [r,1,q,] on
I;, shows there must be [?,?,7] on I, and applying Lemma 4.3.1 for

7,7,7] on I,
[T,i, ql] on Ill
(q1,01,g2) on I,

[qh—2alh—27Qh—l] on Il,,_l

shows that
(ryi) € B(|RHS(p)|-(m—h))—1

when the entry is processed by step II.B.2.iii. Therefore, step II.B.2.iii of Algo-
rithm 4.1.1 adds ([r,%,3s],j) to H and Lemma 4.2.1 guarantees that [r,%,s] is added
to I,. g

44 RUN TIME ANALYSIS

This section is divided into two parts: the first part shows that Algorithm 4.1.1,
unlike Algorithm 3.1.1, has O(n®) time complexity and O(n?) space complexity;
the second part shows that for LR(k) grammars the time and space complexities
are O(n). The increased time complexity of Algorithm 4.1.1 over Algorithm 3.1.1
is due to the operations on the sets G,(r) which maintain the deferred reduction
information. However, for LR(k) grammars the time and space complexities of
Algorithm 4.1.1 are O(n).

44.1 O(n®) Time and O(n?) Space Complexities

The time and space complexities of Algorithm 4.1.1 are shown to be O(n®) and
O(n?) respectively. The analysis is performed using the same techniques introduced
in Chapter 3. »

The input to Algorithm 4.1.1 is the string w to be parsed. The size of this
input is the string’s length, which is denoted by n. Some data structures, such as
the parse lists, depend directly on n. It is implicitly assumed that n is known when
these data structures are allocated so that a position in the input string can be
used in O(1) time as an index into these data structures. This assumption presents
no difficulties, since the value of n can be determined in O(n) time by scanning
the input string before starting the algorithm.
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The parse lists, the pending list, the sets B,, and the sets G,(q) are the primary
data structures used by Algorithm 4.1.1. The parse lists are organized as an array
of parse lists and each parse list I, is |@| (initially empty) linked lists of entries
[g,%,7]. The |Q| lists are indexed by r and an entry [q,%,7] is stored on the r't
list. The pending list, H, is organized as an array of n + 2 (initially empty) lists
of ordered pairs, ([g,7,7],7), where the lists are indexed by j. The sets B, are
organized as an array of sets, where the sets are indexed by 7. The sets G,(q) are
organized as a two-dimensional array of sets, where the sets are indexed by 7 and
q.

The space complexity of Algorithm 4.1.1 is simple to determine. There are
O(n) parse lists. Each parse list can have at most O(n) entries since duplicate
entries are eliminated by step II.B and the parse list number of an entry is the
only component of an entry that depends on the length of the input and it is
bounded by n + 2. There is one pending list, H, and it can have at most O(n?)
entries since duplicated ordered pairs are not added to the list. There are only
O(n) sets B, and each set has at most O(n) elements. Finally, there are O(n) sets
G,(q) and the only component of the elements of these sets that is not bounded
independently of n is the parse list number which is bounded by n + 2. Thus, the
space complexity of Algorithm 4.1.1 is O(n?).

The analysis of the time complexity of Algorithm 4.1.1 is determined by ex-
amining each step of the algorithm. Algorithm 4.1.1 implicitly assumes the parse
lists, the pending list, H, and sets G,(g) are initialized. Given the organization of
parse lists, the pending list, H, and the sets G,(gq), they can be initialized in O(n)
primitive operations which are charged to the algorithm object. (Recall that the
algorithm object is simply a bookkeeping convention).

For step I of Algorithm 4.1.1, the O(1) primitive operations for creating the
initial entry and adding it to the pending list, H, are charged to the entry.

For step II of Algorithm 4.1.1, the (1) primitive operations for checking the
pending list, H, to determine if it is empty are charged to the algorithm object, if
H is empty, or to the entry obtained in step II.A, if the list is not empty.

For step II.A of Algorithm 4.1.1, the O(1) primitive operations for obtaining
an entry are charged to the corresponding entry on the parse list. In general, an
entry may be obtained O(n?) times since an entry ([g,%,7],7) may be added to the
pending list, H, a total of O(1) times for each entry processed by steps II.B.1.i or
I1.B.2.ii.

For step II.B of Algorithm 4.1.1, the O(n) primitive operations for checking if
an entry [q,1,7] is already on parse list /, are charged to the corresponding entry on
the parse list. The check requires O(n) primitive operations because the number
of entries on the r*! list of a parse list is O(n). The O(1) primitive operations for
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adding an entry to its parse list are charged to the entry itself.

For step II.B.1 of Algorithm 4.1.1, the O(1) primitive operations for checking
to see if the 7" list of a parse list is empty is charged to the entry being processed.

For step II.B.1.i of Algorithm 4.1.1, the O(1) primitive operations for evaluat-
ing f, and g, are charged to the entry being processed. Also, the O(n?) primitive
operations for adding an entry to the pending list, H, are charged to the entry
being processed.

For step II.B.1.ii of Algorithm 4.1.1, the O(1) primitive operations for evalu-
ating f, are charged to the entry being processed. The O(n) primitive operations
for adding O(1) elements to the set G,(r) are charged to the entry being processed.

For step II.B.2 of Algorithm 4.1.1, the O(1) primitive operations for checking
to see if G,(r) is empty are charged to the entry being processed.

For step II.B.2.i of Algorithm 4.1.1, the O(n) primitive operations for finding
the maximum value of h for elements in G,(q) are charged to the entry being
processed. ‘

For step I1.B.2.ii of Algorithm 4.1.1, Algorithm 4.1.2 is executed. The time
complexity of Algorithm 4.1.2 is determined indirectly. The primitive operations
used in the steps of Algorithm 4.1.2 are charged to the objects of Algorithm 4.1.1.

The time complexity of Algorithm 4.1.2 is more easily analyzed if the union
operations on the sets G,(g) are explicilty performed. Algorithm 4.4.1 reflects this
change. Also, Algorithm 4.4.1 optimizes the application of the inner most union
operation for the sets G,(g) by moving it out of the loop in step IV.C.3 of the
algorithm.

For Algorithm 4.4.1, the sets By, By, ..., B,, are organized as an array of
sets and each set is an (initially empty) linked list of elements. Each set can have
at most O(n) elements because the elements are not duplicated and parse list
number of an element is the only component of an element that is not bounded
independently of n and it is bounded by n + 1. The number of sets is O(1)
and the space complexity of Algorithm 4.4.1 is O(n) so the space complexity of
Algorithm 4.1.1 is not increased.

For step I of Algorithm 4.4.1, its O(1) primitive operations are charged to the
entry being processed. '

Step II and III.B of Algorithm 4.4.1 take O(n) primitive operations to scan all
the elements in G,(g). Thus O(1) primitive operations for either step II or III.B
are charged to each element scanned.

For step III of Algorithm 4.4.1, the O(1) primitive operations for checking the
set G,(r) to see if it is exhausted are charged to the set, if G,(r) is exhausted, or
to the entry obtained in step II or step IIL.B, if the set is not exhausted. The loop
in step III of Algorithm 4.4.1 is executed at most O(n) times; once for each of the
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O(n) elements in G,(r).

Step III.A of Algorithm 4.4.1 takes O(1) primitive operations for each ele-
ment in G,(q) since each element must be checked to avoid adding a duplicate.
Also, step III.A is nested within the loop formed by step III. Therefore, the O(n)
primitive operations are charged to each element of G,(g).

The loop in step IV of Algorithm 4.4.1 is executed at most O(1) times since
m, the length of a production, is independent of n. The O(1) primitive operations
for the loop termination test in step IV are charged to the entry being processed by
step II.B of Algorithm 4.1.1. Likewise, the O(1) primitive operations for step IV.D
are charged to the entry being processed by step II.B of Algorithm 4.1.1.

Step IV.A of Algorithm 4.4.1 takes O(1) primitive operations. Step IV.A is
nested within the loop formed by step IV, which causes it to be repeated O(1)
times. Therefore, the O(1) primitive operations for step IV.A are charged to the
entry being processed by step II.B of Algorithm 4.1.1.

Step IV.B of Algorithm 4.4.1 takes (O(1) primitive operations. Step IV.B is
nested within the loop formed by step IV, which causes it to be repeated O(1)
times. Therefore, the O(1) primitive operations for step IV.A are charged to the
entry being processed by step II.B of Algorithm 4.1.1.

The loop in step IV.C of Algorithm 4.4.1 is executed at most O(n) times
since B; has O(n) elements. Thus, the O(n) primitive operations for the loop
termination test in step IV.C are charged to the entry being processed by step I1.B
of Algorithm 4.1.1. Likewise, the O(n) primitive operations for step IV.C.6 are
charged to the entry being processed by step II.B of Algorithm 4.1.1.

Step IV.C.1 of Algorithm 4.4.1 takes O(n) primitive operations. Step IV.C.1
is nested within the loops formed by steps IV and IV.C, which causes it to be
repeated O(n) times. Therefore, the O(n?) primitive operations for step IV.C.1
are charged to the entry being processed by step II.B of Algorithm 4.1.1.

Step IV.C.2 of Algorithm 4.4.1 takes O(1) primitive operations. Step IV.C.2
is nested within the loops formed by steps IV and IV.C, which causes it to be
repeated O(n) times. Therefore, the O(n) primitive operations for step IV.C.2 are
charged to the entry being processed by step II.B of Algorithm 4.1.1.

The loop in step IV.C.3 of Algorithm 4.4.1 is executed at most O(n) times
since I, has O(n) elements. Also, step IV.C.3 is nested inside the loops formed
by steps IV and IV.C, which causes it to be repeated O(n) times. Therefore, the
O(n?) primitive operations for the loop termination test in step IV.C.3 are charged
to the entry being processed by step II.B of Algorithm 4.1.1. Likewise, the O(n?)
primitive operations for step IV.C.3.iii are charged to the entry being processed by
step II.B of Algorithm 4.1.1.
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ALGORITHM 4.4.1 Calculate B;’s

Let [g,%,7] on I, be the entry for which the B;’s are to be calculated and let m be
as given in Algorithm 4.1.1.

I. Let =1, By = {(r,7)} and By = {(g,7)}.
II. Get an element (n + 1,p,z) from G;(r) where n > 0.
III. While G,(r) is n01‘: exhausted, perform the following steps:

A. Add (n,p,z) to G,(q) if it is not already in G,(q).
B. Get another element (n + 1,p, z) from Gj(t) where n > 0.

IV. While [ < m, perform the foilowing steps:

A. Initialize B,.
B. Get an element (¢, k) from B;_;.
C. While B,_, is not exhausted, perform the following steps:

1. Empty the set T'.
2. Get an entry [s,o0,v] on I.
3. While I}, is not exhausted, perform the following steps:
i. If v =t then add (s,0) to B if it is not already in Bj.
ii. If v =t then add (s, o) to T if it is not already in T.
iii. Get another entry [s,0,v] on ;.
4. Get an element (n + i,p,:n) from Gj(t) where n > 0.
5. While Gj(t) is not exhausted, perform the following steps:
i. Get an element (s,0) from T'.
ii. While T is not exhausted, perform the following steps:
a. Add (n,p,z) to G,(s) if it is not already in G,(s).
b. Get another element (s, o) from T
iii. Get another element (n + 1,p,z) from Gx(t) where n > 0.
6. Get another element (¢,k) from B;_;.

D. Let I=1+1.



89

Step IV.C.3.i of Algorithm 4.4.1 takes O(n) primitive operations since it must
check all the elements in B;. Also, step IV.C.3.iis nested within the loops formed by
steps IV, IV.C and IV.C.3, which causes it to be repeated O(n?) times. Therefore,
the O(n®) primitive operations for step IV.C.3.i are charged to the entry being
processed by step II.B of Algorithm 4.1.1.

Step IV.C.3.ii of Algorithm 4.4.1 takes O(n) primitive operations since it must
check all the elementsin T'. Also, step IV.C.3.iiis nested within the loops formed by
steps IV, IV.C and IV.C.3, which causes it to be repeated O(n?) times. Therefore,
the O(n®) primitive operations for step IV.C.2.ii are charged to the entry being
processed by step II.B of Algorithm 4.1.1.

Steps IV.C.4 and IV.C.5.iii of Algorithm 4.4.1 take O(n) primitive operations
to scan the set G,(s). Also, steps IV.C.4 and IV.C.5.ii are nested within the
loops formed by steps IV and IV.C, which causes it to be repeated O(n) times.
Therefore, O(n) primitive operations for scanning each element O(n) times are
charged to each element scanned.

For step IV.C.5 of Algorithm 4.4.1, checking to see if Gj(t) is exhausted
takes O(1) primitive operations. Step IV.C.5 is nested within the loops formed
by steps IV and IV.C, which causes it to be repeated O(n) times. Therefore, the
O(n) primitive operations for checking Gi(t) to see if it is exhausted are charged to
Gh(t), if it is exhausted, or to the element obtained in step IV.C.4 or step IV.C.5.iii,
if the set is not exhausted. The loop in step IV.C.5 of Algorithm 4.4.1 is executed
at most O(n) times; once for each of the O(n) elements in G(t).

Step IV.C.5.i of Algorithm 4.4.1 takes (O(1) primitive operations.
Step IV.C.5. is nested within the loops formed by steps IV, IV.C and IV.C.5,
which causes it to be repeated O(n?) times. Therefore, the O(n?) primitive oper-
ations for step IV.C.5.i are charged to the entry being processed by step IL.B of
Algorithm 4.1.1.

The loop in step IV.C.5.ii of Algorithm 4.4.1 is executed at most O(n) times
since T has O(n) elements. Step IV.C.5.i is nested inside the loops formed by
steps IV.C and IV.C.5, which causes it to be repeated O(n?) times. Therefore,
the O(n3) primitive operations for the loop termination test in step IV.C.5.ii are
charged to the entry being processed by step II.B of Algorithm 4.1.1. Likewise,
the O(n®) primitive operations for step IV.C.5.ii.b are charged to the entry being
processed by step II.B of Algorithm 4.1.1.

Step IV.C.5.ii.a of Algorithm 4.4.1 takes O(1) primitive operations for each
element in G,(s) since each element must be checked to avoid adding a dupli-
cate. Step IV.C.5.ii.a is also nested within the loop formed by step IV.C, IV.C.5,
and IV.C.5.ii, which causes it to be repeated O(n3) times. However, G,(s) can
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only be accessed O(1) times within the loop formed by step IV.C.5.ii since T can
contain only one element (s,0). Therefore, O(n?) primitive operations are charged
to each element of G,(s).

Returning to Algorithm 4.1.1 and examining step II.B.2.iii, there are O(n)
elements in G,(r), O(1) elements in g,, and O(n) elements in By,_;. Therefore, the
actions of this step are performed O(n?) times and this step can add O(n?) entries
to the pending list, H. The O(n?®) primitive operations for adding O(n?) entries
to the pending list, H, are charged to the entry being processed.

Now that all the steps of Algorithm 4.1.1 have been examined, the number of
primitive operations charged to each class of objects can be calculated. Consider-
ing the entries first, each entry has the following number of primitive operations
charged to it:

e O(n?) when the entry is added to the pending list, H, O(n?) times in Algo-
rithm 4.1.1.

e O(n?) when the entry is removed from the pending list, H, O(n?) times by
step II.A of Algorithm 4.1.1.

e O(1) when the entry is added to its parse list by step II.B of Algorithm 4.1.1.

e O(n3) when the check for a duplicate entry is made O(n?) times by step II.B
of Algorithm 4.1.1. -

e O(1) when the 7} list of a parse list is checked for entries in step IL.B.1 of
Algorithm 4.1.1.

e O(1) when f, and g, are evaluated in step II.B.1.i of Algorithm 4.1.1.

¢ O(n?) when the check for a duplicate entry on the pending list, H, is made
in step II.B.1.i of Algorithm 4.1.1.

o O(1) when f, is evaluated in step IL.B.1.ii of Algorithm 4.1.1.

¢ O(n) when O(1) elements are added to G,(r) in step II.B.L.ii of Algo-
rithm 4.1.1.

e O(1) when G,(r) is checked for elements in step II.B.2 of Algorithm 4.1.1.

e O(n) when the maximum value of h for the elements of G,(g) is calculated
in step II.B.2.i of Algorithm 4.1.1.
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O(1) when the entry causes the execution of step I of Algorithm 4.4.1.

O(1) when the entry causes the execution of steps IV and IV.D of Algo-
rithm 4.4.1.

O(n) when the entry causes the execution of step IV.A of Algorithm 4.4.1.
0(1) when the entry causes the execution of step IV.B of Algorithm 4.4.1.

O(n) when the entry causes the execution of steps IV.C, IV.C.6, and I1.B.3
of Algorithm 4.4.1.

O(n?) when the entry causes the execution of step IV.C.1 of Algorithm 4.4.1.
O(n) when the entry causes the execution of step IV.C.2 of Algorithm 4.4.1.
O(n?) when the entry causes the execution of steps IV.C.3 and IV.C.3.iii of
Algorithm 4.4.1.

O(n?®) when the entry causes the execution of step II.C.3.i of Algorithm 4.4.1.
O(n3) when the entry causes the execution of step II.C.3.ii of Algorithm 4.4.1.
O(n?) when the entry causes the execution of step II.C.5.i of Algorithm 4.4.1.
O(n®) when the entry causes the execution of steps IV.C.5.ii and

IV.C.5.ii.b of Algorithm 4.4.1.

O(n®) when the check for a duplicate entry on the pending list, H, is made
O(n?) times in step II.B.2.iii of Algorithm 4.1.1.

Thus, the maximum number of primitive operations charged to an entry is O(n?).
The number of primitive operations for all the entries is O(n®) since the number
of entries is O(n?).

The number of primitive operations charged to the elements of a set G,(q) are

as follows:

e O(n?) when the element is scanned by step II or III.B of Algorithm 4.4.1 for
O(n?) entries.
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e O(n®) when the element is scanned by step IV.C.4 or IV.C.5.ii of Algo-
rithm 4.4.1 for O(n?) entries.

e O(n®) when the element is obtained in step IV.C.5 of Algorithm 4.4.1 for
O(n?) entries.

e O(n') when the element is scanned by step IV.C.5.ii.a of Algorithm 4.4.1 for
O(n?) entries.

Thus, the maximum number of primitive operations charged to elements of a set
G.(g) is O(n*). The number of primitive operations for all elements of sets G,(g)
is O(n®) since the number of elements is O(n?).

The number of primitive operations charged to the sets G,(g) are as follows:

e O(n?) for step III of Algorithm 4.4.1 when the set G,(g) is empty.
e O(n?) for step IV.C.5 of Algorithm 4.4.1 when the set Gp(t) is empty.

Thus, the maximum number of primitive operations charged to a set G,(g) is O(n?).
The number of primitive operations for all the sets G,(g) is O(n*) since the number
of sets is O(n).

No primitive operations are charged to the parse lists, the pending list, H, or
the sets B,. Finally, the number of primitive operations charged to the algorithm
object are as follows:

e O(n) for the initialization of Algorithm 4.1.1 in step I.
e O(1) when the pending list, H, is empty in step II of Algorithm 4.1.1.

Thus, the maximum time charged to the algorithm object is O(n).

Summing the number of primitive operations for the entries, the parse lists,
pending list, the sets G,(g) and their elements, and the algorithm object shows the
time complexity of Algorithm 4.1.1 is O(n®).

Using a trick similar to those in Chapter 3, the time complexity of Algo-
rithms 4.1.1 can be improved at the expense of increasing its best-case times. The
trick is to store the sets G,(q) as n lists where the ' list contains all the (k,p,1)
elements. The time to initialize a set G,(g) is increased to O(n) but the time to
perform step IV.5.ii.a is reduced to O(n®). This trick reduces the time complexity
of Algorithm 4.1.1 to O(n®).

The drawback of this trick is that it forces the time complexity of Algo-
rithm 4.1.1 to be O(n?) regardless of the grammar being used. This is not always
desirable. For example, the next section shows that for LR(k) grammars the time
complexity of Algorithm 4.1.2 is O(n) without this trick.
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4.4.2 O(n) Time and Space for LR(k) Grammars

Since the development of Algorithm 4.1.1 is motivated by the desire to find an
efficient least-cost syntax error recovery scheme for LR(k) parsers, the time and
space complexities of Algorithm 4.1.1, when the canonical states and functions f,
and g, for an LR(k) grammar are used, are of particular interest.

To determine the time and space complexities of Algorithm 4.1.1 for an LR(k)
grammar, additional analysis of the algorithm is required. Two properties of canon-
ical LR(k) parsers for LR(k) grammars are crucial to this analysis:

o the canonical LR(k) parser is deterministic, and
e the canonical LR(k) parser does not enter an infinite loop for any input string.

However, the next lemma does not depend on any special properties of LR(k)
grammars. It shows the relationship between the order in which entries are added
to their parse lists and the order in which configurations can appear in a sequence
of moves by the LR(k) parser.

LEMMA 4.4.1 Given the same Q, f,, and g, for Algorithm 4.1.1 and for the
canonical LR (k) parser for an LR(k) grammar, +f [q, h,7] on I; precedes [s,i,t] on
I, in an ordered list of entries then the canonical LR (k) parser can make a sequence
of moves

* +
(O)wl:n+k+1) F (azqywh+1:n+k+1) |— (aqr, wl+1:n+k+1)
wn which the subsequence

+
(/stvwz+1:n+k+l) - (:B'gt’w1+l:n+k+1)

does not occur for any (.

Proof: The theorem is proved by induction on an ordered list of entries, using the
theorem as the induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for the first entry on the ordered list of entries;
and

e second, the lemma is proved for the N entry on the ordered list of entries,
assuming it holds for all entries that precede the N*‘" entry.
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For the first induction step, let the first entry on the ordered list of entries
be [g,%,7] on I,. Step IL.B of Algorithm 4.1.1 adds [g,?,7] to I, so ([g,%,7],7)
must have been on the pending list, H. Either step II.B.l.i or step II.B.2.ii of
Algorithm 4.1.1 must have added ([g,?,7],7) to H while processing [0,0,0] on
I,. Likewise, the first move of the LR(k) parser must be from the configuration
(0, wyntk+1). Thus,if step IL.B.1.iadds ([g,%,7],5) = ([0,0,7],1) to H then the shift
(0, wintk+1) F (0P, Waintk+1) can be made by the LR(k) parser; and if step I11.B.2.iii
adds ([g,%,7],7) = ([0,0,7],0) to H then the reduction (0, w1.ntk+1) F (07, W1.ntkt1)
can be made by the LR(k) parser. For either move of the LR(k) parser, there are
no proper subsequences so, trivially, the lemma holds.

For the second induction step, the lemma is assumed to hold for all entries on
the ordered list of entries that precede the N*" entry. Let the N'! entry be [r,1, s]
on I,. Since [r,t,s] is added to I, by step II.B of Algorithm 4.1.1, ([r,%, s],) must
have been on the pending list, H. There are three cases to consider:

e step II.B.1.i adds ([r,%,s],7) to H, simulating a shift;

o step II.B.2.ii adds ([r,%,s],7) to H, simulating a reduction by an empty
production; or

e step II.B.2.ii adds ([r,3,s],j) to H, simulating a reduction by a non-empty
production.

For any of the cases, the step involved must have been applied to an entry [gh—1, /-1,
gn] on I;,, where h is a convenient index which will be specified later.

In the first case, step II.B.1.i adds ([r,7,s],7) to H and Algorithm 4.1.1 is
simulating a shift by the LR(k) parser. Thus, I, =7 =j—1, g, = r, and, applying
Theorem 4.2.1, the LR(k) parser can make the sequence of moves

%*
(0,w1m+k+1) F (al"‘, wj:n+k+1) - (0‘7‘3,1”1+1m+k+1)-

For this case, the lemma is proved by assuming it does not hold for the N}
entry [r,7,s] on I, and showing that this assumption leads to a contradiction. If
[7/,4',s'] on I, is an entry on the ordered list of entries which follows [r,1,s] on I,
and for which the lemma does not hold, the sequence of moves

) +
(ﬂlr', Wy 4 1:n+k+1 ) + (ﬂr'a', Wyl 41ntk+1 )

must be embedded in the sequence of moves

*
(0, Winskt1) F (@17, Wyngitr) (08, wyp1nphtr)-
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The lemma holds for [gh—1,lh—1,7] on I,_; since it precedes [r,%,s] on I; on the
ordered list of entries. Any entry on the ordered list of entries that follows [r,z, s]
on I, also follows [gs_1,l,_1,7] on I,_;. Therefore, the sequence of moves

+
(B, wyprmiksr) B (BT wyri1imtke)

can not be embedded in the sequence of moves

* +
(0, wimtk+1) F (81gh—1, Wi, imtk+1) F (8Gh17y Wynikt1)
and, letting o = 8gp,_;, it must end with the move

(alr, w]'ﬂ+k+1) + (arsa Witiin+k+1 )

Thus, (B7's',wyy1mik+1) = (ars, W, 1:mtk+1) Which implies that 8 = a, ' = 7,
s’ =s,j =7 and ' # i since [r,1, s] is distinct from [r,7/, s].

The entry [r,7,s] must be added to I, by step II.B of Algorithm 4.1.1 so
([r,7',s],7) must have been on the pending list, H, and ([r,?’, s],) must have been
added to H while step II.B was processing an entry [gj/_;,li/_;, g5 on Iy, where
k' is a convenient index which will be specified later. There are three types of
moves step II.B could be simulating while processing [g}/_;,l}_1,q}/] on Iy :

¢ a shift,
¢ a reduction by an empty production, or
¢ a reduction by a non-empty production.
The first type of move is a shift so I}, =1’ = j — 1, g;, = 7, and the sequence
of moves corresponding to [r,?,s] on I, is
(0, Wimtkt1) li (alr, wt':n+k+1) - (ars’w1+1:n+k+1)'

However, 7' = j — 1 implies 3’ = 2 and [r,?/, 5] = [r,1, s] which is a contradiction.
The second type of move is a reduction by an empty production so I}, =i’ = j,
g, = r, and the sequence of moves corresponding to [r,7’,s] on I; is

(alr, w]+1:n+k+1) - (ar‘s’ Wj41intk+1 )
However, this sequence of moves does not end with the move

(al'r', w]'n+k+1) - (ar83w1+1'n+k+1)
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which is a contradiction.
The third type of move is a reduction by a non-empty production so the
sequence of moves corresponding to [r,7/,s] on I, is

+
! / !
(alr7w1’+l:n+k+1) F (ar‘h cocGpres Qm’,w1+1:n+k+1) + (ars’wJ+1:n+k+1)'
However, this sequence of moves does not end with the move

(ar, w1=n+k+1) F (ars, w1+1:n+k+1)

which is a contradiction.

In the second case, where step I1.B.2.iii adds ([r,1, s],7) to H, Algorithm 4.1.1
is simulating a reduction by an empty production for the LR(k) parser. Thus,
lh =1 =7, ¢» =r, and, applying Theorem 4.2.1, the LR(k) parser can make the
sequence of moves

(O,wl:n+k+1) F (0417‘, w_]+1:n+k+1) - (a?‘-’aw1+1:n+k+1)-

For this case, the lemma is proved by showing the assumption that the lemma
does not hold for the N*! entry [r,1,s] on I, leads to a contradiction. If [r',7,s']
on I; is an entry on the ordered list of entries for which the lemma does not hold
then it must follow [r,%,s] on I; and the sequence of moves

+
(ﬁ“‘l, wz’+1:n+k+1) F (ﬂr’sla wj’+1:n+k+1)

must be embedded in the sequence of moves

*
(0, wWingrs1) b (al"',w1+1:n+k+1) F (a"'saw1+1:n+k+1)'

The lemma holds for [gh—1,h—1,7] on I, since it precedes [r,%, 3] on I; on the ordered
list of entries. Any entry on the ordered list of entries that follows [r,z,s] on I;
also follows [gh_1,lh-1,7] on I,. Therefore, the sequence of moves

+
(ﬂlr’1w1’+1:n+k+1) - (ﬁr,'s,aw_]’+1:n+k+l)

can not be embedded in the sequence of moves

* +
(0, wyngkt1) F (81gn—1, Wi, _, mtk+1) F (8Ghe1Ty Wy 1imtht1)

and, letting o = 8q;,_;, it must end with the move

(aqiu Wi in+k+1 ) - (ars, Wytimn+k+1 )
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Thus, (Br's',wyt1mik+1) = (@r8, W,41.n4k+1) Which implies that 8 = a, ' = r,

s’ =s,j =7 and ¢’ # i since [r,1, s] is distinct from [r,7/, 5].

The entry [r,i,s] must be added to I, by step IL.B of Algorithm 4.1.1 so
([ry4',8],7) must have been on the pending list, H, and ([r,?, s],j) must have been
added to H while step II.B was processing an entry [gh/_;,lh_1,qh/] on Iy, where b’
is a convenient index which will be specified later. There are three types of moves
step I1.B could be simulating while processing [g}_;,l4_,qk] on I :

o a shift,
¢ a reduction by an empty production, or
e a reduction by a non-empty production.

The first type of move is a shift so I}, = = j — 1, ¢y = r, and, the sequence
of moves corresponding to [r,%/,s] on I, is

(alr, Wyntk+1) (arsaw1+1:n+k+1)~
However, this sequence does not end with the move

(OLI'I‘, Wyt1in+k+1 ) t (ars, Wytimntk+1 )

which is a contradiction.
The second type of move is a reduction by an empty production so I}, = ¢’ = j,
gi = 7, and the sequence of moves corresponding to [r,7',s] on I, is

(alr, Wyt1mtks1) F (0P8, Wit iiniktr)-
However, 1 = j implies 4’ = 7 and [r,?’, 8] = [r,1, s] which is a contradiction.
The third type of move is a reduction by a non-empty production so the
sequence of moves corresponding to [r,?,s] on I, is

+
(alr, wz’+1:n+k+1) F (arq; s q;;’ oo q:n”w_7+1:n+k+1) k- (a'rs’w]+1:n+k+l )'

However, this sequence of moves does not end with the move

(ar, Wyt intks1) F (@08, Wyt tintkt1)

which is a contradiction.
In the third case, where step II.B.2.iii adds ([r,1,s],5) to H, Algorithm 4.1.1
is simulating a reduction by a non-empty production for the LR(k) parser. Thus,
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(h,p,7) € Gi,(qn), (r,1) € Bn_y, and, applying Theorem 4.2.1, the LR(k) parser
can make the sequence of moves

(Oawl'n+k+1) (alr,w,+1-n+k+1)

:
+
F (erqi2 - - - Gmy Wyttinsks1)

+ (ars’w1+1:n+k+1)
where m = |RHS(p)| and reduce p € f, (w,41,+%)-

For this case, the lemma is proved by assuming it does not hold for the N*h
entry [r,%,s] on I, and showing that this assumption leads to a contradiction. If
[#',7,8] on I, is an entry on the ordered list of entries which follows [r,1,s] on I,
and for which the lemma does not hold, the sequence of moves

+
(B, wirgr nak1) B (Br's', Wi rngnin)

must be embedded in the sequence of moves

* +
(0’w1'n+k+1) }_ (alrawz+1:n+k+1) = (ar57w1+1:n+k+l)'
Applying Lemma 4.2.4 and Lemma 4.2.5, there must be entries

[rai"h] on I,

[ql’lla QZ] on Ilz

[qm—2,lm-—2a qm—I] on Ilm—l

[gm-1,Im-1,¢m] on I,
which precede [r,7,s] on I, in the ordered list of entries. The lemma holds the
entries [¢y—1,l;-1,¢;] on I;, for 1 < # < m since they precede [r,7,s] on I, on the
ordered list of entries. Any entry on the ordered list of entries that follows [r,1, s]
on I, also follows [g;_1,ls-1,¢z] on Ij, for 1 < @ < m. Therefore, the sequence of
moves .

(ﬂzr,vw:’+l:n+k+1) + (ﬂr,3,7w1'+1:n+k+1)

can not be embedded in the sequence of moves

(O,w1.,,+k+1) n (5?T,wz+1-n+k+1)

+

+ (‘STIQI7wll+1:n+k+l)

+

o (6rqilge, Wiyt 1ntk+1)

+

F (57“11QZ <o Qm)w]+1:n+k+l)
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and, letting o = §, it must end with the move

(arq1q2 v Gm, wlm+1:n+k+1) - (ar.s, Wit1mtk+1 )

Thus, (878’ ,w,i1mik+1) = (@r8, W 41:mek41) Which implies that 8 = a, ' = 7,

s’ = s, j' = j and ¢’ # i since [r,1, 5] is distinct from [r,7, 5.

The entry [r,7',s] must be added to I, by step IL.B of Algorithm 4.1.1 so
([r,, 5],7) must have been on the pending list, H, and ([r,4', s],7) must have been
added to H while step II.B was processing an entry [gh/_q,hi_y, k] on Iy, where
h' is a convenient index which will be specified later. There are three types of
moves step IL.B could be simulating while processing [ghs_y, ljs_1, gi] on Ir :

e a shift,
¢ a reduction by an empty production, or
o a reduction by a non-empty production.

The first type of move is a shift so I, =i = j — 1, ¢}, = r, and, the sequence
of moves corresponding to [r,4',s] on I, is

(P, Wynpkt1) F (ars, wyp1inthtr)-
However, this sequence of moves does not end with the move

((X’l"qlq2 s qmaw1+l:n+k+l) - (ars, w]+1:n+k+1)

which is a contradiction.
The second type of move is a reduction by an empty production so I}, =i’ = j,
g, = 7, and the sequence of moves corresponding to [r,7’,s] on I; is

(azr,w1+1:n+k+l) F (ars, Wyt timtk+1 )
However, this sequence of moves does not end with the move

(04""11‘12 s oo Gm, wlm+1:n+k+1) |‘ (ar37w1+l:n+k+1)

which is a contradiction.
The third type of move is a reduction by a non-empty production so the
sequence of moves corresponding to [r,i’,s] on I, is

+ i
(al'r, w,/+1.n+k+1) + (arq; e q;l: e q:nl, w_]+1:n+k+l) = (a’rs, Wyt1:n+k+1 ).
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This sequence can end with the move

(arqiqs - - - Gony Wit 1intkt1) F (Q78, Wit 1intkt1)
only if m' = m and rq{...q}... ¢ = Tq1q2...¢m. However, this implies that
either .
(edry Worgtintkr) (@7, Wagtintktr)
or .
(ory Wit tinkg1) B (@l Wogrnprsr).

Either of these two sequences of moves is possible only if 7' = ¢ which is a contra-
diction. y

The next two lemmas show that, for LR(k) grammars, |B,| and |G,(q)| are
always less than or equal to one.

LEMMA 4.4.2 (|B,| < 1) Given the same @, f,, and g, for Algorithm 4.1.1
and for the canonical LR(k) parser for an LR(k) grammar, if step IL.B.2.ii of
Algorithm 4.1.1 computes B_1, By,...,Bn_1 then, for -1 <i1<m -1, |B,| < 1.

Proof: When step I1.B.2.ii of Algorithm 4.1.1 computes B_,, By, ..., B;,_1, step II.B
must be processing an entry [gn—1,lh-1,gs] on I, for which

(‘h,P,j) € G!h (qh)'

Here, h has been chosen as a convenient index. Since [gnh—1,ln-1,qx] is on I,
Lemma 4.2.3 can be applied repeatedly to show that there must be

[(IO,IO, QI] on Ill
[qlvll’ q2] on Ilz

(gh-2,lh—2,qn—1) on Ij, _,

which precede [gy_1,h_1,q1] on Ij, in an ordered list of entries. Furthermore,
Lemma 4.3.1 shows that there must be

(ql'nlh) S B—l
(gh-1,ln-1) € By

(g0, 1) € Bh-1.
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Applying Lemma 4.2.5, there must also be

[ghy lhy qnea] o0 Iy,
[@h+15 Ih+1, Qria) On L.,

[Qm—2ylm-2’ qm—l] on Ilm_L
[qm—l’lm—lqu] on Il,-,l

where I, = j, m = |RHS(p)| and reduce p € f, (wi,.+14,.+x). Applying Theo-
rem 4.2.1 shows that the canonical LR(k) parser can make the sequence of moves

(0, wimphs1) (alqos Wigt1:ntk+1)

(aqUquvwll+1:n+k+1)

(aqoq1 .- -IQh—(z+1),wt,._(,+1)+1:n+k+1)

(aqO(II oo Qh—(z+1)zqh—n wlh—.+1:n+k+1)

(a%‘h «e s Gh—(24+1)9h—2 - - -IQh—l,'wlh_1+1:n+k+1)

(aquh « o+ Qh—(14+1)qh—2 -« - Gh-1 Lqh, wlh+1:n+k+1)

(aqul R qh—(z+1)‘1h—z eeeqn-14n - . -zqm7w]+1:n+k+1)
(0“103, Wyt+1m+k+1 )-

T T+ T+ T+ T+ T+ T+ T+ T+ T+ T

The lemma is proved by assuming there are two distinct entries
(gh—(:41) lh-(+1)) and (q;l—(z-{-l)’l;l——(t-{-l)) in B,, and showing that this assumption
leads to a contradiction. Note that i must be greater than zero since examining
Algorithm 4.1.2 shows that B_; = {(gn,(n)} and By = {(gn-1,ln-1)}. Lemma 4.2.3
can be applied to (‘1;1—(:+1),l;1—(;+1)) in B, to show that there must be entries

(90, 10, q1] on I
{q{al’hq’i’] on Il;

.

[q;;—(z+2)’ l;:—-(1+2)’ Q;z—(z-l-l)] on Il;_(,+l)
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which precede [gx_1,lh-1,qn] on I, in the ordered list of entries. Applying Theo-
rem 4.2.1 shows that the canonical LR(k) parser can make the sequence of moves

(0, wl'n+k+1) (IBI(I(I)awl{)+1:n+k+l)

(ﬁquq,n wl'l+1:n+k+1)

(,BQ{)Q{ . 'zq;l—(l-f-l), wlh_(,+1)+1:n+k+1)

(,Bqtl)‘ﬁ e q;;—(z+1) zqh—n wlh_‘+1:n+k+1)

(Bgody - - - QL_(,+1)Qh—z e lGho1y Wiy 4 1ingkr1)

(Bog; - - - q;;—(:“)%—. e Qo1 1Ghy Wi, 4 Lokt 1)

(Baod: - - q;l—(!+1)qh—l e Qn=1Gh - 1qms Wyt Linthe+1)
(B0, Wyt 1ontk41)-

T T+ T+ T+ T+ 7T+ T+ T+ T+ T+ Tx

Since the canonical LR(k) parser for LR(k) grammars is deterministic, the
two sequences of moves

* +
(Oawl-n+k+1) F (a2q07wlo+1:n+k+1) - (OLQOSaw1+1:n+k+1)

and .

(0, Wiinkr1) b (,qu:nwl(’)+1:n+k+l) - (IBQ(I)S)wJ+1:n+k+1)
must be subsequences of one larger sequence of moves. However,
[9h-+2) In=o+2)s Gh—(1)] 0 T, a0 [Gh_ (o y0)s B i2)) T )] O Tt _ ) PTe-
cede [gh-1,lh-1,gn] on I;, on the ordered list of entries. Therefore, applying Lemma
4.4.1, the sequences of moves

- +
(Oawl'n+k+1) + (azqh—(z+2)’wlh_(,+2)+l'n+k+1) t (aqh—(t+2)9h—(t+l)awlh—(;+1)+1'n+k+l)

and the sequence of moves

* +
(0, Winpktr) I (ﬁzq;l—(z+2)’wl;l_('+2)+1 ntk+1) (ﬁqz—(wz)‘h, wl;_(,+l)+1-n+k+1)

! )
h—(1+1)
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have the property that the sequence of moves

+
(51‘1h-1,wlh_1+1:n+k+1) = (5%-1(1h,wlh+1:n+k+1)

is not contained in either sequence. But the sequence of moves
%

+
(0, wymkt1) F (090 Wigt1ntk+1) - (QQoS, Wit 1impk+1)

and the sequence of moves

* +
(0, win+kt1) F (B 146,wtg+1:n+k+1) F (8408 Wyt1m+k+1)

cannot be subsequences of a larger sequence of moves without this property being
violated which is a contradiction. j

LEMMA 4.4.3 (|G.(q)| < 1) Guwen the same Q, f,, and g, for Algorithm 4.1.1
and the canonical LR (k) parser for an LR (k) grammar,

1G.(g)l =1
forall0 <i<nand q€ Q.

Proof: The lemma is proved by assuming there are two distinct entries (k,p,j) and
(h',p',3') in Gi,(gn), and showing that this assumption leads to a contradiction.
Since the proof is the same if the roles of h and A’ are reversed, h is assumed to be
greater than h/. Applying Lemma 4.2.5 to (h,p,j) in Gi,(gn), there must be

[Qh,lh, Qh+1] on Ilh+1
(gh+1>lht1>Ghe2] o0 Iy,

[qm—-Za lm—21 qm—l] on Ilm—L
[qm—lalm—laqm] on I,

where I, = j, m = |RHS(p)| and reduce p € f,,.(Wi,+1:4.+k)- Also, applying
Lemma 4.2.5 to (h',p',') in Gi,(gr) and letting g = g4 and Iy = l;, there must
be

’
[qh” lh” qh’+l] on Il;;'+1

/ ’ /
[gh 41> thr 1> Thiga] om0 I’Lq.z

/ ! /
[qm’—Z’ lm’—27 qm’—l] on I’Im/_l

! ! /
[qm’—l’lm’—l’qm’] on Il:n’
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wherel),, = j',m' = |RHS(p')| and reduce p’ € fy (wr t1a ,1x). Since [gr,lh, qnyi]
ison [j,,, , Lemma 4.2.3 can be applied repeatedly to show that there must be en-
tries

(90, Lo, q1] on I,

[q1a ll) qZ] on Ilg

(@h—(h'+1)s th—(h141)s Go—n] 00 I, _,

[qh—Z,lh—Z,qh—l] on Ilh_l
[gh—15ln-1,qn) on I,

which precede [gn,ln,gn41] on Ij,,, in an ordered list of entries. Applying Theo-
rem 4.2.1 shows that the canonical LR(k) parser can make the sequence of moves

(0, Wintkt1) (lqos Wig41ntk+1)

(O‘QOl‘ha wll+1:n+k+1)

(aqoq1 -« lGn-hty wlh_h/+1:n+k+1)

+ T+ T+ T+ T+ T

v oo Qheht « Gy Wyt 1intrkt1)
F (aqos, wJ+l:n+k+1)-

T
—
Q
2
K
[

Also, applying Theorem 4.2.1 shows that the canonical LR(k) parser can make the
sequence of moves

(0, Wyntkt1) (alqus Wig+1:n+k+1)

(aQO l q1, wll+1:n+k+1 )
(04%‘11 e -Iqh—h',wlh_,,,+1:n+k+1)

(aq0q1 - - qhpr - - -I‘Jh',wl,,,+1:n+k+1)

/
(agoq1 .- qh—hs - - qnt 1t y15 wlh,+1+1:n+k+1)

T+ T+ T+T+ T+ T+ T+ T=x
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+
F o (agoqi -« Ghh « - QuQhs + + Aty Wyr b 1ntht1 )
- (aqul o qh—h’s,aw3’+1:n+k+1)-

Since the canonical LR(k) parser for LR(k) grammars is deterministic, the
two sequences of moves must be subsequences of one larger sequence of moves.
Furthermore, this larger sequence of moves must' have the sequence of moves

+
/
(aq0q1 .. -IQh—h'wlh_h,+1:n+k.+1) - (aq0q1 «++qh—h'8 ,wj'+1:n+k+1)

embedded in the sequence of moves

+
(al‘IO,wlo+1-n+lc+1) = (CYQOS,WJ+1:n+k+1)-

This must be the case since, if the configuration (aqoqi . .. gz, Wi +1:n+k+1) appears
more than once in the sequence of moves, the canonical LR(k) parser will enter an
infinite loop when w is its input. Thus, the only possible sequence of moves is

(O,wl:n+k+1) (aquawlo+1-n+k+1)

(@qolq1, Wi +1:m4k+1)
(2q0qs - - -1qh—n', wl,,_,,,+1:n+k+1)

(o1 - - - Gt +  -1Gn! Wiy 4 1:n4kt1)

/
(@goq1 - - - Gh—ht - + - Gn' 1qhr 41> wlh/+1+1:n+k+l)

(aqOQI ce+Gh—h!--- Qh’qa’ . 'zq:n” w1’+1:n+k+1)
(aQOQI .. -Iqh—h’s’,wy’+1'n+k+1)

T T+ T+ T+ T+T+ T+T+ T+ Tx

(aqﬂql e qh—p’ zqh—(h’—l), wlh_(hl_1)+1!ﬂ+k+1)

(0qoqy - - 1qhs Wip+1n+k+1)

T+ T4+ T+ Tx
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+
F o (agoq1 -+ 1qmy Wyt 1intkr1)
}_.

(aCIUSa wj+1'n+k:+1)-

However, the configuration (agoqi .. Ign, Wi, +1:n+k+1) 8ppears twice in this sequence
of moves which implies the canonical LR(k) parser will enter an infinite loop when
w is its input. This situation can be avoided only if A = A’ = 0 and m = m/ = 0, but
this implies j = j' = I, and that f,, (wi,+1:4,.+k) contains two different reductions.
This is a contradiction since the canonical LR(k) parser for an LR(k) grammar is
deterministic. g

Now, showing O(n) space complexity for LR(k) grammars is straightforward.
It is well known that the canonical LR(k) parser for an LR(k) grammar makes only
O(n) moves when either accepting or rejecting an input string. Since the addition
of an entry to the pending list, H, in Algorithm 4.1.1 corresponds to a move by the
canonical LR(k) parser, there are only O(n) entries on the pending list, H, and
on the parse lists. Furthermore, Lemma 4.4.2 shows that the sets B, only require
O(1) space and Lemma 4.4.3 shows that the sets G,(g) only require O(n) space.
Therefore, the space complexity of Algorithm 4.1.1 is O(n) for LR(k) grammars.

Showing O(n) time complexity for LR(k) grammars is also straightforward.
Together, Lemma 4.4.2 and Lemma 4.4.3 guarantee that step II.B.2.iii adds only
one entry to the pending list, H. Also, duplicate entries will not occur because
the canonical LR(k) parser for an LR(k) grammar does not loop. This also al-
lows checks for duplicate entries to be eliminated from the algorithm. Finally,
Lemma 4.4.2 and Lemma 4.4.3 imply that Algorithm 4.4.1 has an O(1) time com-
plexity. This can be seen by noting that all the loops depend upon the sizes of
these sets, except for the loop in step II.B.2 of the algorithm which scans I,. But
each parse list I}, is organized as |Q| parse lists where entries of the form [g,7,7]
are stored on the rt" list. Thus, the loop in step II.B.2 only needs to examine the
t*h list and this list can contain at most one entry since each entry on it implies
an element is in B;_;. Combining the preceding points shows that Algorithm 4.1.1
has O(n) time complexity for LR(k) grammars when the canonical LR(k) parser
is used.
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CHAPTER V

THE LEAST-COST LR(k) EARLY’S ALGORITHM

In this chapter, the Least-Cost LR(k) Early’s Algorithm is developed, proved
correct, and analyzed to determine its time and space complexities. The Least-
Cost LR(k) Early’s Algorithm is a modification of the Depth-First LR(k) Early’s
Algorithm which finds a least-cost edit of a string such that the resulting string is
in the language accepted by the underlying LR(k) parser.

5.1 THE ALGORITHM

The Least Cost LR(k) Early’s Algorithm, Algorithm 5.1.1, can be viewed as be-
ing derived from the Depth-First LR(k) Early’s Algorithm. From this point of
view, there are three basic differences between the two algorithms. First, Algo-
rithm 5.1.1 simulates an explicitly-advancing LR(k) parser instead of a standard
LR(k) parser. Second, Algorithm 5.1.1 edits the input string as it is scanned and
simulates multiple parsers, each of which uses a different edit as its input string.
Third, Algorithm 5.1.1 computes the cost of the edits required to produce an entry
on a parse list.

These differences are reflected by the change in the format of an entry from
an ordered triple to an ordered septuple [g,u,1,c¢,d,r,v], where ¢ and r are states
of the LR(k) parser, u and v are lookahead strings, i is the number of a parse
list, and c and d are non-negative integers, called the cost components. The looka-
head strings, v and v must be present in each entry because a lookahead string
is an explicit part of any configuration for an explicitly-advancing LR(k) parser.
The first cost component, c, is the cost of the edits applied up to the point at
which an explicitly-advancing LR(k) parser is in a configuration (g, ¥, Z,+1mtk+1)-
The second cost component, d, is the cost of the edits applied during the moves
from (g, u, 2,1 1:nt+k+1) to (@qr, v, 2,41 nik+1). Together, the two cost components
represent the total cost of reaching the configuration (agr,w, z,41:ntk+1)-

Because Algorithm 5.1.1 simulates explicitly-advancing LR(k) parsers, it uses
n + k + 2 parse lists, Iy, Iy, ..., I, k11, instead of the n + 2 parse lists used by
Algorithm 4.1.1. This change arises because; unlike Algorithm 4.1.1, where an
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ALGORITHM 5.1.1 Least-Cost LR(k) Early’s Algorithm

I. Place [0,€,0,0,0,0,¢] on I,; place ([0,€,0,0,0,0,e¢], 0) on the pending list,
H; and append $k+1 to z.

II. While H is not empty, perform the following steps:

A. Remove an entry ([g,v,1,¢,d,r,w],j) with the least ¢ + d from H.
B. If |w| < k then perform the following steps:

1. Add ([g,v,3,¢,d,r,wz,11.541],7 + 1) to H.
2. If 2,41 ;41 # $ then let b = W((2;41:j+1 — €)) and add ([q,v,3,¢c,d+
b,r,w],j +1) to H.
3. If z,, # § then for each a € (¥ — {zj41,54+1}), let b = W((e — a))
and add ([q,v,?,¢,d + b,r,wa},j) to H.
4. If z,44,41 # $ then for each a € (¥ — {z,41y41}), let b =
W((z;41:;541 — @)) and add ([g,v,%,¢,d + b,r,wa],j + 1) to H.
C. If |w| = k then, if there is not an entry [g,v,?,?,7,7,w] on I,, add
[q,v,2,¢,d,7,w] to I; and perform the following steps:
1. If there was not an entry [?,7,7,7,7,7,w] on I, before
(¢,v,1,¢c,d,7,w| was added then perform the following steps:
i. If shift € f.(w) and s € g,(wy;) then add ([r,w,j,c +
d,0,s,waxl,7) to H.
ii. For each reducep € f.(w), let G,(r,w) = G,(r,w) U
{(IRHS(p)|,0,p,w, ) | reduce p € f(w)}.
2. If Gj(r,w) is not empty then perform the following steps:
i. Let m = max({h | (h,b,p,w,0) € G;(r,w)}).
ii. Use Algorithm 5.1.2 to compute B_y, By,...,Bm_1.
iti. For each (h,b,p,u,l) € G,(r,w), (s,t,0,a,b) € By_; and z €
g-(LHS(p)), add ([s,t,0,a,b+ &', z,u],l) to H.

entry [q,%,7] on I, uses the lookahead string z;(1;;4%+1; Algorithm 5.1.1 uses the
lookahead string v for an entry [g,u,1,c,d,7,v] on I, and none of the symbols in
Z,+1:n+k+1 have been scanned. The extra parse lists, Ini2, Ints, -- .y Intky1 are
needed so the k end markers that terminate the string can be scanned.
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ALGORITHM 5.1.2 Calculate B;’s

Let [g,v,1,c/,d’,r,w] on I, be the entry for which the B,’s are to be calculated and
let m be as given in Algorithm 5.1.1.

I. Let =1, B_; = {(r,w,J,+d,0)}, Bo = {(g,v,4,¢,d')}, and let G,(g,v) =
G.o(9)U{(n,b+d,p,w,k) | (n+1,b,p,w, k) € G;(r,w) and n > 0}.

II. While I < m perform the following steps:

A. Initialize B; and get an element (s',%',h’,d,b') from B,_,.
B. While B;_; is not exhausted perform the following steps:

1. Get an entry [s,,ul,hl,cl_l,d,_l,sl_l,u,_l] on Ih"
2. While I is not exhausted perform the following steps:

i.If ¢ = s_; and v = wu_; then add the element
(s1,uiy hiyci—1,b' + di—1) to By, if it is not already in Bj, and let
Gr(s1,w) = Gu(si,w) U{(n,b+di_1,p, w, k) | (R +1, b,p,w k)
€ Gp,_,(81-1,w-1) and n > 0}.
ii. Get another entry [s;,ui, hi,yci—1,dj—1,81-1,w—1] on Ip.
3. Get another element (s',u/,h',a’,¥’) from B;_;.

C. LetI=1+1.

The impact of lookahead strings on Algorithm 5.1.1 is pervasive. This is
because the same configuration may be reached using different edits of the input
string and the states must be associated with their lookaheads so that the proper
stack linkage is maintained when step II.C.2 simulates a reduction. In general,
where ever a state occurs in Alogirthm 4.1.1, a paired state and lookahead string
occurs in Algorithm 5.1.1. For example, G,(r,w) has a lookahead string as an
additional argument and the elements of the B,’s contain a lookahead string paired
with a state.

Once the impact of lookahead strings and cost components are taken into
account, Algorithm 5.1.1 is almost identical to Algorithm 4.1.1. The major change
is the additon of step II.B which simulates advances using each of the possible
edits of the next input symbol. Specifically, step II.B.1 simulates the advance
action of the explicitly-advancing LR(k) parser. Steps II.B.2 thru II.B.4 simulate
the effect of editing the input string and then advancing using the result of the
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edit; where step II.B.2 simulates deleting 2,4:,4+1, step I1.B.3 simulates inserting
a before z,,,.;,.1, and step II.B.4 simulates replacing z,,1.,+1 with another symbol
a. It is important to note that steps II.B.2 thru II.B.4 do not edit $**! since it is
the end marker and is not actually part of the input string.

In actual practice, Algorithm 5.1.1 would not execute until the pending list is
exhausted. Instead, it would execute until an entry of the form [q,u,1,¢,d, f,$] is
added to I, ;. This allows the algorithm to terminate as soon as the least-cost
parse of the edited input string is found.

5.2 EXAMPLE EXECUTIONS

The advantages of Algorithm 5.1.1 can be seen using two examples. Both of
these examples assume that Algorithm 5.1.1 terminates when an entry of the form
(g,u,%,¢,d, f,8] is added to I,,;4,;. In the first example, the parse lists generated
by Algorithm 5.1.1, using the grammar in Figure 1 and the input string

a*(a+axa)

are given in Figure 10. Comparing Figure 10 to Figure 9 on page 49 shows that, if
the input string is syntactically correct, the Least-Cost LR(k) Early’s Algorithm
generates parse tables that have the same number of entries as the parse tables
generated by the LR(k) Early’s Algorithm, when the differences between the LR(k)
parser and explicitly-advancing LR(k) parser are taken into account.

In the second example, the Least-Cost LR(k) Early’s Algorithm is compared
to Lyon’s algorithm, assuming the cost of all single token edits is one. The parse
lists generated by Algorithm 5.1.1, using the grammar in Figure 1 and the input
string

a* a+

are given in Figure 11. For this example, step II.B of Algorithm 5.1.1 is assumed to
have been changed so that only tokens that are valid lookaheads can be edited into
the lookahead string for an entry. This change makes the algorithm comparable to
Lyon’s algorithm. The change is not used in this dissertation because it needlessly
complicates the proofs of correctness and completeness for the algorithm.
Comparing Figure 11 to Figure 7 on page 40 shows that the Least-Cost LR(k)
Early’s Algorithm can avoid much of the useless work performed by Lyon’s algo-
rithm. The Least-Cost Early’s Algorithm only examines the possible single token
edits since a single token edit can repair the input string. Lyon’s algorithm ex-
amines many multiple token edits even though it is given the syntactically correct
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Io I1 IZ
[0,¢,0,0,0,0, € 0,¢,0,0,0,0,q] [0,a2,0,0,0,a,*]
[Oaa"OaOaOyFla*]
[07 a, Oa 0’ 07 Tla *]
I3 Iy I;
[Tla*a270’0a*1a(] [*1a(a370a07(1aa‘] [(1,a,4,0,0,a1,+]
[(lva"4a0’ Oa Fla +]
[(110'74’0’0,Tla+]

[(1’ a’a4’ 0’0, Ela "I']

Ie I7 IS
[E17+a570,07+27a] [+27a,670’0a aZ’*] [T4’*77,0707 *2’0']
[+2, a, 67 0’ 0, FZ, *]
[+27 a, 67 07 Oa T4’ *]
Ig I10 Ill

[*270"8,0,070'2’)] [Ela)agaovo’)la$] [E3’$’1070’0’fs $]
[*270"8’070’F4s)] [*1,(73a0707F3s$]
[+2’aa6’0a0aT4s )] [0,a,1,0,0,T,$]
[+2,(1«,6,0,0,E1,)] [0,@,1,0,0,E3,$]

Figure 10: Parse Lists for First Example

input string
axa.
For the syntax error used in the example, the Least-Cost LR(k) Early’s Algorithm
would do even better if entries with the same cost were assumed to be removed
from the pending list in last-in-first-out order.
These two examples demonstrate the inherent advantages of the Least-Cost
LR(k) Early’s Algorithm over other globally least-cost error recovery schemes:

e no extra work is done for correct input; and

e only edits which cost the same or less than the least-cost repair are examined.
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Iy I I,

1
[0,¢,0,0,0,0,¢] [0,¢0,0,0,0, ] [0,a,0,0,0,a,,%]
[0,€,0,0,1,0,(] [0,¢,0,0,1,0,(] [0,4,0,0,0, Fy, ]
[0,(,0,1,0,(y,a] [0,a,0,0,0, Ty, %]
[O,a,l,O,l,a1,+] [Oa(’lvlaﬂ’(la*]
[O’a’l’laOaFla-l'] [(1)“)1’190""2,*]
[Oaaa171a09T1a+] [(laaalalaOaF29*]
[O’a'9 lalaO,E3’+] [(17“71’1’0aT2a*]
[EB’ +,1,1,0,+1, *]
[OaaaOaO,l,ah'H
[0,a,0,1,0, Fy, +]
[070"0)1’0’ T17+]
[070'70’ l)O’ESa +]
[Tl’*a2’0a 1,*1,(]

Figure 11: Parse Lists for Second Example

5.3 PROOF OF CORRECTNESS

This section shows that Algorithm 5.1.1 correctly simulates an explicitly-advancing
LR(k) parser for edits of the input string, when the algorithm and the parser use
the same sets of states, @), and functions f, and g,. The simulation is correct if for
every entry [q,u,1,c,d,r,v] that Algorithm 5.1.1 places on a parse list I,, there is
a corresponding sequence of moves

* +
(0,6,99") F (alq,u,y") F (agr,v,€)

that can be made by the explicitly-advancing LR(k) parser and there exist edit
sequences S and S’ such that z;, ~> y, Zit1y £ y', W(S) =cand W(S') =d.

Algorithm 5.1.1 uses the pending list, H, to hold entries waiting to be pro-
cessed by the algorithm. The following lemma establishes that entries added to
the pending list are eventually processed.

LEMMA 5.3.1 (Every Entry Added to the Pending List is Processed) If
(lgyu,2,¢,d,7,v],7) is added to the pending hst, H, then 1t will eventually be pro-
cessed by step I1.C of Algorithm 5.1.1.
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[Tl,*,Z,0,0,*l,a] [*1,a,3,0,0,a1,+] [E3a+’470a0,+17$
[T27*a2,1a0a*2aa'] [*1,0,,3,0,0,F3,+] [E1’+’4’1’0a+1,$
[0,2,0,1,0,4a,,a] [0,a,1,0,0,T;, +] [T1,%,4,1,0, %, 8]
[E3,+,2,1,0,-|—1,a] [O,G,I,0,0,E;;,-I-] [*1,a,3,0,1,a1,$]
[Tl’*azvo,l’*la(] [*23“’7371a05a27+] [*17“73’170,F3’$]
[*17(’27170’(1,‘7‘] [*2’aa3a1a07F4,+] [Oaa,171a07T1,$]
[*1,(1,3,0,1,(11,*] [(1,0,1,1,0,T2,+] [0,@,1,1,0,E3,$]
[*1,(1,3,1,0,F3,*] [(1,‘1,1’1’0,E1’+] [+1aaa4’0a17a1’$]
0,a,1,1,0,T, %] [+1,a,3,1,0,a;,+] [+1,@,4,1,0, F1, §)
[+1,a"3’170,Fl,+] [+1,aa471a07T3’$]
[+laa" 3, 170aT3’ +]
[0,&,0, 1) Oa E37 +]
[(la a,3,1,0,a,, +]
[(1’ a"37 1’ 0, F2, +]
[(1)“73’ 1,0,15, +]
[(laa"3a 1’01E1’ +]
[*1, (,37 1’0’(17+]
[*la a,3,0, 17‘7‘17*]
[*1’a737 1a07F3, *]
[0,(1, 17 1,0’ Tl, *]
[Tl, *, 37 ]-’ Oa *1,y +]
[ES’ +a470a 1’ +1, a‘]
I
[ES, $757 1,07fa $]
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Figure 11: continued

Proof: A entry can remain unprocessed only if Algorithm 5.1.1 adds an unbounded
number of entries to the pending list, H. The lemma is proved by showing that the
number of entries added to H is bounded. There are four steps that add entries to
the pending list: step I; step I1.B; step II.C.1.i; and step II.C.2.iii.

Before analyzing the steps that add entries to H, the number of entries on
a parse list I, must be shown to be bounded. Step II.C does not add duplicate
entries of the form [g,u,7,?,?,7,v] to I,, where |v| = k. Therefore, the number of
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entries on I, is bounded since g, u, i, 7, v and j are all bounded.

Proceeding with the analysis of the steps that add entries to H, note that
step I only adds one entry. Step II.C.1.i adds a bounded number of entries,
(lg,%,1,¢,d,7,v],j) where |v| < k, since it adds at most one such entry for each
entry of the form [g,u,%,7,7,7,v] on I, where |v| = k.

Examining step II.B shows that it adds a bounded number of entries for each
entry it processes. Step II.B only processes entries ([q,u,3,c,d,r,v],j) for which
|v| < k. The only other steps which can add these entries are step I and step II.C.1.i
and it has already been shown that the number of entries added by these steps
is bounded. Furthermore, when step II.B processes an entry ([g,u,1,c,d,r,v], ),
either |v| or j is increased in the resulting entry. Both |v| and 7 are bounded so
the total number of entries added by step II.B is bounded.

The number of entries added by step I1.C.2.iii is bounded by

1G,(r,v)| - m3x(|B.)).

The elements of |G,(r,v)| are of the form (k,¥,p,u,l). The values of h, p, u and
[ are bounded. Furthermore, the possible values of & are bounded since b is the
sum of a bounded number of d’s from entries of the form [q,u,1,c,d,r,v] where

|v| = k. Therefore, |G,(r,v)| is bounded.

The elements of |B,| are of the form (s,t,0,a,b). The values of s, ¢t and o
are bounded. The possible values of a are bounded since a must be from an entry
l¢,u,1,a,d,r,v] where |v| = k. The possible values of b are bounded since b is the

sum of a bounded number of d’s from entries of the form [q,u,1,c¢,d,r,v| where
|v| = k. Therefore, |B,| is bounded.

Since |G,(r,v)| and |B,| are bounded, the number of entries added by step
I1.C.2.ii is bounded. Each of the steps — step I, step II.B, step II.C.1.i, and
step II.C.2.iii — which add entries to the pending list, H, has been shown to add

a bounded number of entries for each entry it processes. Therefore, the number of
entries added to H is bounded. j

As in the proofs of correctness and completeness for Algorithm 4.1.1, the
concept of a sequence in which entries can be added to their parse lists is important
and leads to the following definition.

Definstion 5.3.1 (Ordered List of Entries) An ordered list of entries is a list of
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entries and their parse lists

[91,1‘1,21,01,‘11,7'1,121] on I,1
[Q2au2,12, Cz,dz,rz,vz] on IJ2

lgn,un,iN, N, AN, TN, UN] on Iy,

where 7, # 0 for 1 < z < N and the entries are given in a sequence in which
they can be added to their parse lists by step II.C of Algorithm 5.1.1 during an
execution of Algorithm 5.1.1.

Entries of the form [0,¢€,0,0,d,0,u] on I, are not on any ordered list of entries.
They are excluded because [0,¢€,0,0,0,0, €] is not added to its parse list by step II.C
of Algorithm 5.1.1.

Closely related to the concept of ordering a list of entries is the notion that,
regardless of any specific ordering, an entry or an entry from a set of entries must
be added to its parse list before another entry can be added to some other parse
list. This notion is captured in the following definition.

Definition 5.8.2 (Direct Precursor) Given two entries (?,7,7,7,7,q,u] on I,
and [q,u,1,c,d,7,v] on I;, the entry [?,7,7,?,?,q,u] on I, is said to be a direct
precursor of the entry [q,u,1,c,d,r,v] on I,.

For Algorithm 5.1.1, the exact order in which entries are added to their parse
lists or to the pending list, H, is critical to proving properties of the algorithm. The
exact order is important because it affects the calculation of the cost components
of the entries. The following definition defines a predecessor/successor relationship
between entries on H. This relationship captures the idea of one entry being added
to H due to the processing of another entry.

Definition 5.3.8 (Direct Predecessor) If step II.B or II.C processes an entry
(lg,u,h,a,b,7,v],1) and adds ([s,w,1,c,d,t,y],7) to H then ([q,u, h,a,b,r,v],1) is
called the direct predecessor of ([s,w, 1, ¢,d, t,y],j) and ([s,w,3,¢,d,t,y],7)is called
the direct successor of ([g,u, h,a,b,r,v],l). -

The direct predecessor/ successor relationship is denoted by =, the transitive

+
closure of the relationship is denoted by |=, and the reflexive and transitive closure

of the relationship is denoted by |=. By convention, ([0,¢,0,0,0,0,¢|,0) is a direct
predecessor of itself. The predecessor/successor relationship is extended to entries
on their parse lists with the following definition.
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Defination 5.3.4 (Direct Predecessor of an Entry on a Parse List)
If [g,u,h,a,b,7,v] is on I, [s,w,1,¢,dn,t,ys] is added to I, and

([q’uahaa,ba""v]’l) l= ([3,w,i,C,d1,t,y1],j1)
l: ([s’wai’c,d2at,y2],j2)

=
‘= ([siwai,cadn’tayn],jn)

where |y,| < k for 1 < z < n then [g,v,h,a,b,7,v] on I; is called the direct
predecessor of [s,w,%,c,dn,t,y,] on I, and [s,w,%,c,d,,t,y,) on I, is called the
direct successor of [q,u, h,a,b,r,v] on I.

For entries on their parse lists, the predecessor/successor relationship is de-
noted as

(lg, u, A, a,b,r,b] on I)) &= ([s,w,1,¢,d,t,y] on I,).

By convention, [0,€,0,0,0,0,¢] on Iy is a direct predecessor of itself. Note that an
entry has a unique predecessor and no entry is a predecessor of itself, except for
[0,€,0,0,0,0,¢| on I,.

The following lemma establishes that step II.B of Algorithm 5.1.1 simulates
the advance moves of an explicitly-advancing LR(k) parser for some edit of the
input string.

LEMMA 5.3.2 (Step II.B Simulates Advances) If([g,u,%,c,d,r,vw],j), where
lvw| = k, is added by step II.B of Algorithm 5.1.1 to the pending list, H, then e:-
ther step I or step II.C.1.i of Algorithm 5.1.1 adds an entry ([q,u,1,¢,0,7,v],1) to
H where |v| < k,

+
([q, u,i’c, O’T’ U]’i) ‘= ([q7u’i’c’ d’ r’ vw],j)7

and the explicitly-advancing LR (k) parser can make the sequence of moves

*

(ar,v,w) s (ar,vw,€)
for some edit sequence S such that d = W(S) and 2,11, 5 w.

Proof: When step II.B processes an entry ([g,u,%,c,d,r,v),7), it adds an entry
([g,u,%,¢,d + b,7,va],j) to the pending list, H, for which (2,41, — a), b =
W((z,41;, — @)), and |va| > |v| or j > 4. Thus, if step I.B adds an entry

{
([q,u,i,c, b+ Z by 7,010 .. -al]vjl)

r=1
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to H, it must be processing an entry

-1
([qauaz,ca b + Z by,7, 010, . .. lll—l],jl—l)
r=1

for which ji_; < i, (2,_, 41,5 — @) and by = W((z,_, 415, — a1)).
Let ([g,u,3,c,d,r,vw],j) be ([g,u,3,¢,b' + TL_; beyr,va1as...a1],7) where
w = ay...a;. In general, there is a sequence of entries

([q’uai,ca blvra ’U],jo) ’= ([qauaiaca bl + blvr,'va'l],jl)

=

-1
l= ([qauai7c9bl + Z bmra vay ... al—l],jl-—l)

=1

!
E (lgyusiye,b + > byyryvas ... ad, i)

r=1

where ([g,u,%,c,b,7,v],jo) is the only entry in the sequence not added to H by
step II.B. For 1 < z < [, it must be that j,—1 < ju, (2,._,415. — @z), and
b; = W((2;,_,+1:, — az)). Here, a, may be € and |va,...a;| = k even though [
may be greater than k.

Since ([g,u,1,¢,b,7,v],70) is processed by step II.B, |v| < k, the only other
steps that can add entries of the form ([g,u,?,¢,b',7,v], jo), where |v| < k, are step I
and step II.C.i. Entries added by these steps have the form ([g,u,1,c,0,r,v], jo).
Therefore, b’ = 0 and there exists an edit sequence

S = (zJo+1:J1 = a’l)(z.]1+1:]2 = ag)... (le—1+1=]l > ap)

for which W(S) = d = Y!_, b,. Finally, inspection of the explicitly-advancing
LR(k) parser shows that for any state » the parser can always make the sequence

of moves

*

(ar,v,w) F (ar,vw,€)
where |v| < k and |vw| = k. y
The next lemma establishes a technical property of the initial state for Algo-
rithm 5.1.1.

LEMMA 5.3.3 (0 is the Unique Initial State) If [q,u,%,c,d,r,v] 15 on I, and
r=0theng=0,u=¢1=0,c=0,

([0,€,0,0,0,0,¢ on Iy) = ([0,¢,0,0,d,0,v] on I,),
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and the explcitly-advancing LR (k) parser can make the sequence of moves

*

(0,€,v) F (0,v,¢€)
for some edit sequence S such that d = W(S) and 2., ~> v.

Proof: The definition of an LR(k) parser does not allow 0 € g,(X) for any s or X.
Thus, only step I or step II.B of Algorithm 5.1.1 can add ([q,u,%,c,d,0,vw],j) to
H. If step I adds the entry, the lemma must be true since the only entry added by
step Iis ([0,¢,0,0,0,0,€],0).

If step II.B adds ([q, u, 1, ¢, d,0,vw], 7) to H then, applying Lemma 5.3.2, either
step I or step II.C.1.i must add ([g,u,?,c,0,0,v],l) to H, where

+
([Qau7iaca0,07v]’l) }= ([q’uai’cvd, O,U‘U)],j),

and the explicitly-advancing LR(k) parser must be able to make the sequence of
moves

*

(or,v,y) F (ar,vw,€)

for some edit sequence S such that d = W(S) and 241, ~» w. Again, the definition
of an LR(k) parser does not allow 0 € g,(X) for any s or X so ([g,u,,¢,0,0,v],)
can not be added by step II.C.1.i of Algorithm 5.1.1. The only entry added by
step I is ([0,¢,0,0,0,0,€],0). Therefore, g =0, u=¢,1=0,c=0,v=¢1=0,
a = ¢, and

+
([07 E’ 0’0’ 0’0’ E], 0) i= ([0’ 670’07d’ O’w]’j)'

The following lemma shows that every entry has a direct precursor which is
on a parse list when the entry is itself added to its parse list by Algorithm 5.1.1.

LEMMA 5.3.4 (Every Entry has a Direct Precursor) If there 1s an entry
[g,u,1,¢,d,7,v] on a parse kst I, then there 1s an entry [?,7,7,7,7,q,u] on parse
list I,.

Proof: The lemma is trivially true for entries of the form [0,¢,0,0,d,0,v] on I.
For all other entries, the lemma is proved by induction on an ordered list of entries,
using the lemma as the induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for the first entry on the ordered list of entries;
and
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e second, the lemma is proved for the N'" entry on the ordered list of entries,
assuming it holds for all entries before the N*! entry on the ordered list of
entries.

For the first induction step, let [r,v,i,¢,d,s,w] on I; be the first entry on
the ordered list of entries. Since the first entry must be added to its parse list by
step I1.C of Algorithm 5.1.1, ([r,v,1,¢,d, s,w],j) must have been on H. Step I or
step II.C.1.i did not add ([r,v,3,¢,d,s,w],j) to H since if one of these steps adds
([ryv,1,¢,d,8,w],7) then |v| < k. Therefore, there are only two cases to consider:

e step II.B adds ([r,v,1,c,d,s,w],) to H, or
o step II1.C.2.iii adds ([r,v,1,¢,d,s,w],7) to H.

In the first case, step IL.B of Algorithm 5.1.1 adds ([r,v,%,¢,d,s,w],j) to H
so, applying Lemma 5.3.2, either step I or II.C.1.i of Algorithm 5.1.1 must add
([ryv,%,¢,0,8,wy,),7) to H where t < k. Step I could not add ([r,v,1,c,0,s,w;.¢,7)
since that implies s = 0 and entries for which s = 0 are not on an ordered list of
entries. Therefore, step 11.C.1.i must add ([r,v,?,¢,0,s,w1y4),%) to H. Examining
step I1.C.1.i shows this step must be processing an entry [q,u,[,a,b,r,v] on I, which
is a direct precursor of [r,v,1,c,d,s,w] on I,.

In the second case, step II.C.2.iii adds ([r,v,?,¢,d, s,w], ) to H. Step I1.C.2.iii
must be processing an entry [0,¢,0,0,b,0,u] on I; since this is the only kind of entry
that is not on an ordered list of entries. Examining steps II.C.1.ii and II.C.2 of
Algorithm 5.1.1 shows that [r,v,1,¢,d,s,w] = [0,u,l,¢,d, s,v] and [0,¢,0,0,b,0,u|
on I; is a precursor for the entry.

For the second induction step, the lemma is assumed to hold for all en-
tries before the N'" entry on the ordered list of entries. Let the N th entry be
[ryv,1,¢,d,s,w] on I,. Since the Nth entry is added to its parse list by step II.C of
Algorithm 5.1.1, ([r,v,1,c,d, s,w], ) must have been on H and |w| = k. Step I and
step II.C.1.i did not add ({r,v,?,¢,d,s,w],j) to H since if one of these steps adds
([ryv,i,c,d,8,w],7) then |w| < k. Therefore, there are only two cases to consider:

e step II.B adds ([r,v,1,c¢,d,s,w],j) to H, or
e step II.C.2.iii adds ([r,v,?,c¢,d,s,w],j) to H.

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,1,c,d,s,w],7) to
H. Applying Lemma 5.3.2, either step I or step II.C.1.i of Algorithm 5.1.1 adds
([ryv,3,¢,0,8,wy),) to H where t < k. Step I could not add ([r,v,%,¢,0,s,w,.¢,7)
since that implies s = 0 and that [r,v,%,¢,d,s,w] on I, is not on the ordered list
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of entries. Therefore, step II.C.1.i adds ([r,v,1,¢,0,8,w;,2) to H. Examining
step II.C.1.i shows this step must be processing an entry [q,u,l,a,b,7,v] on I,
which is a direct precursor of [r,v,1,¢,d,s,w] on I,.

In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,1,¢,d, s,w],J)
to H. This implies that (r,v,7,¢,b) € By,_; for some m > 0. Examining Algo-
rithm 5.1.2 shows that if (r,v,1,¢,b) € By, then, when m =0, [?,7,7,7,7,r,v] is
on I, and, when m > 0, [r,v,%,7,7,?,?] is on I+. Since [r,v,?,7,7,7,7] on I pre-
cedes [r,v,1,c,d,s,w] on I, on the ordered list of entries, the induction hypothesis
can be applied to show that there must be an entry [?,7,7,2,7,7,v] on I, when
m > 0. Thus, regardless of the value of m there is an entry [?,7,7,?,?,7,v] on I,.
1

The next two lemmas establish precursor relationships that can be inferred
among entries on their parse lists at key points during the execution of Algo-
rithm 5.1.1.

LEMMA 5.3.5 If Algorithm 5.1.2 s applied to [q1,u1,l1,co,du,qu,uo] on I,

and .
(qm,umylm’{ Co+d0 me =0 Z dz) S Bm—l

Cm—-1 me >0 ’ =0
then there exist

[Qm+17um+1alm+1,cm,dm’Qm7um] on Ilm
[qmaumalm’cm—l,dm—th—hum—-l] on Ilm_1

(g2, u2,12,b1,¢1,q1,21] on I

Proof: The lemma. is proved by induction on m, using the lemma as the induction
hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m = 0 and m = 1; and

e second, the lemma is proved for m = N, where N > 1, assuming it holds
when m = N — 1.

For the first induction step, m = 0 or m = 1. Examination of step I of
Algorithm 5.1.2 shows that {(go, o, lo, co+do,0)} € B_; or {(q1,u1,11,¢c0,do)} € By
only if [Q1,u1,l1,co,du,QO,uO] is on Ii,.

For the second induction step, m = N, where N > 1, and the lemma is as-
sumed to hold when m = N—1. If (qv,un,In,c',d") € By_; then step I1.B.2.i of Al-
gorithm 5.1.2 added (gn,un,ln,c,d’) to By_; and there was an entry
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lansun, In, ¢ dN_1,qn—1,un—1] on In_1, and an element (qn_1,un_1,IN_1,Cn1,d —
dn-1) € By_; where ¢ = cy_y. Since (gn-1,un-1,IN-1,¢cN-1,d' — dNn_1) € Bn_o,
the induction hypothesis can be applied to show that there exist

lansun, Inyen—1,dN-1,qn-1,uN—1] o0 Ipy_,
[QN—la UN-1,IN—1,EN—2, AN 2, AN =2, uN—2] on IIN_2

[QZau% ly, by, ¢, QIaul] on Ih

N-2 N-1
whered' —dy_; = Z d,. Therefore, d' = Z d,. Finally, applying Lemma 5.3.4 to
1=0 1=0
lan,un, In, eN-1,dN_1,qNn-1,un—1]) on In_; shows that [gn i1, un41, INt1senydn, g,
un|is on Ij,. g

LEMMA 5.3.6 If (h, D> duyP,Um,lm) € Gi,(qh,us) then there exist
rz=h+1

[@hs uhy lhy Chits A1y Ghars Unga] o0 Iy
[@h+15 Uht15 tht1s Cht2s Bhi2, Ght2s Uns2] OD n,.,

[Qm—l sy Um—1, lm—l) Cms dm) dm; um] on Ilm

where reduce p € f, (u,) and m = |RHS(p)|.

Proof: The lemma is proved by induction on m — h, using the lemma as the
induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m — h = 0; and

e second, the lemma is proved for m — h = N, where N > 0, assuming it holds
form—-h=N —1.

For the first induction step, m—h = 0. Thus, h = m = |RHS(p)|. Examination
of step II.C.1.ii of Algorithm 5.1.1 shows that it adds (|RHS(p)|,0,p,um,?) to
Gl (gmsUm) only if [gm—1,%m—1,Im—15Cmy@mydm,Um] is on I;, and reduce p €
Jam(2m). No other step of either Algorithm 5.1.1 or Algorithm 5.1.2, particularly
step I1.B.2.i of Algorithm 5.1.2, can add an element (k,0,p,Um,lm) to Gi,,(gm,%m)
for which h = |RHS(p)|.
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For the second induction step, m — h = N, where N > 0, and the lemma
is assumed to hold for m — h < N — 1. An element (h,d',p,um,ln) for which
m —h = N and N > 0 can only be added by step I or step II.B.2.i of Algo-
rithm 5.1.2. Step I or step I1.B.2.i adds (h,d’, p, Um,Ilm) to Gy, (gn,us) only if there
is an entry [gh, uh, lhy Chi15 dht1y Ght1, Uhs1] OD Ilh+1 and (h+1,d' —dpy1,p, Uy lm) €
Giuy. (ght1,8ht1). Applying the induction hypothesis to (b+1,d —dpi1,P, Um, L),
for which m — h = N — 1, there must be (

[Qh, Uh, lh’ Ch+1y dh+1, dh+1, uh+1] on Il,,H
[@h+15 Uht1s Iht1y Chi2s Bht2y Ghias Unta] o0 Iy,

[Qm—l’um—-la Im—1,Cmydm, qmaum] on Ilm

m m
where reduce p € f, (un) and d' — dpyq = Z d;. Thus, d' = Z d;. Fur-
r=h+2 r=h+1
thermore, applying Lemma 5.3.4 to [gn,un, lh; Cht1s @hs1s Qht1s Unta) on I, shows
that there exists [gn_1,%p—1,lh—1,Chydhyqn, un) o0 I}, §

THEOREM 5.3.1 Gwen the same Q, f,, and g, for Algorithm 5.1.1 and the
explicitly-advancing LR (k) parser, if an entry [r,v,1,c,d, s,w] is added to a parse
list I,, where s # 0, then the ezplicitly-advancing LR (k) parser can make the
sequence of moves

* + a*
(0,e,yy") F (alryv,¥) F (ars,?,...) F (ars,w,€)

]

for which there ezist edit sequeﬁces S and S’ such that z;., > y, 2,41, > Y,

W(S)=c and W(S') =d.

Proof: The theorem is proved by induction on any ordered list of entries, using the
theorem as the induction hypothesis. The induction proceeds in two steps:

o first, the theorem is proved for the first entry on an ordered list of entries;
and

e second, the theorem is proved for the NV th entry on an ordered list of entries,
assuming it holds for all entries before the N th entry.

For the first induction step, let [r,v,%,¢,d,s,w] on I, be the first entry on
the ordered list of entries. Since the first entry must be added to its parse list by
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step II.C.2 of Algorithm 5.1.1, ([r,v,1,c¢,d, s,w],j) must have been on H. Step I
and step II.C.1.i did not add ([r,v,1,¢,d,s,w],j) to H since if one of these steps
adds ([r,v,1,c,d,s,w],j) then |w| < k. Therefore, there are only two cases to
consider:

e step IL.B adds ([r,v,?,¢,d,s,w],j) to H, or
o step I1.C.2.iii adds ([r, v,i,c, d,s,w],j) to H.

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,%,c,d,s,w],j) to
H so, applying Lemma 5.3.2, either step I or II.C.1.i of Algorithm 5.1.1 adds
([r,v,7,¢,0,8,w14],2) to H. Furthermore, the explicitly-advancing LR(k) parser
can make the move

*

a
(a‘g? Wity wt+1'k) = (as, w, E)

and there exists an edit sequence S’ such that z,, A Weyrk and d = W(S'). Step I
could not add ([r,v,3,c,0,s,w;.],?) since that implies s = 0 and entries for which
s = 0 are not on an ordered list of entries. Therefore, step II.C.1.i must add
([ryv,%,¢,0,8,w1.],2) to H. Examining step II.C.1.i shows this step must also be
processing an entry [q,u,l,a,b,7,v] on I, for which shift € f.(v) and s € g.(v).
Thus, wy,; = vy, ¢ = a + b and the LR(k) parser is able to make the move

(Bir,v,€) F (Brs,wy., €).

Furthermore, |v| = k and r must be 0 since [g,u,!,a,b,7,v] is not on the ordered
list of entries. Applying Lemma 5.3.3, [¢,u,l,a,b,7,v] = [0,€,0,0,b,0,v] and the
explicitly-advancing LR(k) parser can make the sequence of moves

(0’ evv) (}1— (0"”, 5)

for which there exists an edit sequence S such that z;, ~» v and b = W(S).
Therefore, the explicitly-advancing LR(k) parser can make the sequence of moves

*

(anath+1:k) - (O’U’wt+1:k) }—‘(Osvwl-ta wt+1:k) F (Os’wve)

where 2, ~> v, 2,, 5 Wiprky ¢ = W(S), and d = W(S5').

In the second case, step I1.C.2.iii of Algorithm 5.1.1 adds ([r,v,1,c,d, s, w],J)
to H. This step must be processing an entry [gn—1,%n—1,lh—1,Chydh,qn,usn] on
I;, where h is an arbitrary index chosen for convenience. Furthermore, examining
step II.C.2.iii shows 'that s € g, (LHS(p)). Also, when the entry
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(gh—1,%h-1,lh-1,Ch,dn, qn, un| was processed, there must have been an

(h’ b’paw’j) € Glh(qh’uh)

and an
(qO’ u‘O,lO’ c,,d,) € Bh-—l

wherec=c,d=b+d, qo =7, up = v, and l, = i. Applying Lemma 5.3.5, there
must be

[40,u0,10,61,d1,q1,u1] on I,

[qlaul’lla C2, dz,q:a,‘llq] on Ilg

[qh-2’ Up—2, lh—Z’ Ch—1, dh—-l yqh—1, uh—l] on Ilh_l

where ¢ = { @7 do ifh=0 and d' = i d,. Applying Lemma 5.3.6, there
Cq ifh>0 a:=1x‘ Y

must also be

(@hs Uhy Ihs Cht1s Bhgrs Qhgrs Unga) o0 Iy,
[‘Ih+1 s Uh41, lh+1 s Ch4-2 dh+2, dh+2, uh+2] on Il,,+,

[Qm-—Z, um—2’lm—2, cm—l,dm—l, Qm-laum—l] on Ilm_l
[qm—l,um—l,lm—lacm1dm’qm')um] on Ilm

where up, = w, I, = j, m = |[RHS(p)| reduce p € f, (w),and b= Y d,.
r=h+1

Note g,, must be 0 since if g, # 0 then [gm—1,%m—1,lm-15Cmsm s Gm, U] Wwould
precede ([r,v,i,c,d,s,w],7) in the order which contradicts the assumption that
([ryv,3,c,d,8,w],7) is the first entry in the order. Applying Lemma 5.3.3 recur-
sively t0 [gm—1s%m—1lm—15Cmsdmsqm,Um], shows that, for 0 < z < m, ¢, = 0,
Uy = € ¢; = 0, and d, = 0. Furthermore, ¢,, = 0 and the explicitly-advancing
LR(k) parser can make the sequence of moves

(0,6,w) F (0,w,¢)

for which there exists an edit sequence S such that z;., ~> u,, and dp, = W(S).
Since, for 0 < z < m, |uy| = k and u, = €, h must equal m. Also, the
explicitly-advancing LR(k) parser can make the move

(0,w,€) - (0s,w,€)
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since reduce p € f, (w) and s € g,(LHS(p)). Therefore, the explicitly-advancing
LR(k) parser can make the moves

(0,€,w) F (0,w,€) F (0s,w,¢€)
where 2., ~> w, ¢ = 0, and d = W(S).

For the second induction step, the theorem is assumed to be true for all entries
on the ordered list of entries that precede the N th entry. Let the N th entry be
[r,v,%,¢,d,s,w] on I,. Since the Nth entry is added to its parse list by step II.C of
Algorithm 5.1.1, ([r,v,%,¢,d, s, w], j) must have been on H and |w| = k. Step I and
step I1.C.1.i did not add ([r,v,%,c,d,s,w],j) to H since if one of these steps adds
([ryv,i,¢,d,8,w],7) then |w| < k. Therefore, there are only two cases to consider:

e step I.B adds ([r,v,1,¢,d,s,w],7) to H, or
e step I1.C.2.iii adds ([r,v,1,c,d,s,w],j) to H.

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,3,c,d,s,w],j) to H
and Algorithm 5.1.1 simulates an advance. Applying Lemma 5.3.2, either step I
or step II.C.1.i of Algorithm 5.1.1 adds ([r,v,%,¢,0,s,w1.],2) to H. Furthermore,
the explicitly-advancing LR(k) parser can make the move

*

a
(a8, Wi, Weyr:k) F (s, w,€)

and there exists an edit sequence S’ such that z,., A Wiy and d = W(S'). Step I
could not add ([r,v,%,c,0, s, w;.¢],%) since that implies s = 0 and [r,v,?,¢,d,s,w] on
I, is not an entry in the order. Therefore, step I1.C.1.i adds ([r,v,%,c,0,s,w;.],7)
to H and Algorithm 5.1.1 simulates a shift. Examining step II.C.1.i shows this
step must be processing an entry {q,u,[,a,b,r,v] on I, for which shift € f.(v) and
s € gr(v). Thus, w4 = vax, ¢ = a + b and the explictly advancing LR(k) parser is
able to make the move
(Bir,v,€) | (Brs,wsy, ).

If » = 0, Lemma 5.3.3 shows that [g,u,l,a,b,7,v] = [0,¢,0,0,b,0,v] and the
explicitly-advancing LR(k) parser can make the moves

(0,6,v) F (0,v,¢)

for which there exists an edit sequence S such that z,, 5 vand b = W(S).
Therefore, the explicitly-advancing LR(k) parser can make the moves

*

(0,5, ‘th+1:k) = (07v7wt+l'k) F (Osawl'tawt+1:k) + (03, w,e)
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where z;., > v, z,,1,, < Wiy, ¢ = b=W(S), and d = W(S5').

If » # 0 then [g,u,l,a,b,7,v] is an entry on the ordered list of entries that pre-
cedes ([r,v,7,¢,d,s,w],j). Applying the induction hypothesis to [g,u,!,a,bd,r,v],
the explicitly-advancing LR(k) parser can make the moves

(0,€,) li (6r,v,€)

and there exists an edit sequence S such that z;,, 5 y and a+b = W(S). Therefore,
the explicitly-advancing LR(k) parser can make the moves

(0, &, yweprk) F (81ry vy weprk) B (878, Wiy Werk) F (78, w,€)
where z;,, ~> ¥, 2,41, £ Wipik, ¢ = a + b= W(S), and d = W(S').

In the second case of the second induction step, step 1I.C.2.iii of Algorithm 5.1.1
adds ([r,v,%,¢,d,s,w],j) to H and Algorithm 5.1.1 simulates a reduction. Step
I1.C.2.iii must be processing an entry [gh—1,%h—1,lh-1,Chydh, gn,un) on Ij, where h
is an aritrary index choosen for convenience. Furthermore, examining step I1.C.2.iii
shows s € g,(LHS(p)). Also, when [gn_1,%k—1,h—1,Ch, @, Gn, us] i5 processed there
must be ’

(ha b,p,w,j) € Glh(qmuh)

and
(QOs U,y lU’ 6’7 d,) € Bh—l

where c=c,d=b+d', qo = r, up = v, and ly = ¢. Applying Lemma 5.3.5, there
must be

[QO’U'U, lo,cy,dy,q1, ul] on Ill

[QI’ uy, ly, ¢, dz, g2, uZ] on Ilz

[@h-2, Uh—2ylh-2y Ch—1, Bh—1, qh—1,Un—1] o0 I, _,

Cg+d0 ifh=0

/!
“’herec—{cl iR >0

h
and d' = ) _d,. Applying Lemma 5.3.1, there
=1
must also be
[Qh,uh7lh7ch+1’dh+1, gh+41y Uh+1] on Ilh+1
[‘Ih+1 s Uh15 Lht1s Cht2s dhi2s Ins2s Uh+2] on Ilh+2

[Qm-—z,um—Z,lm—Zacm—l,dm-—l’Qm—laum—l] on [, _,
{Qm—l,um—lalm-laCmadmanaum] on I,
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where um = w, l, = j, m = |RHS(p)|, reduce p € f,, (w),and b= ) d,. The
r=h+1
reduction must be one of three possible types of reductions, each of which must be

considered seperately:
¢ a reduction by an empty production (m = 0);

e a reduction by a non-empty production which does not cause the stack to
underflow (m > 0 and g, # 0 for 0 < z < m); or

e a reduction by a non-empty production which causes the stack to underflow
(m > 0 and g, = 0 for some z where 0 < z < m). -

For the first type of reduction, an empty production is used so m = h = 0.
Thus I, =1, =i =j,q¢n =q =7, Um = Up = w = v, and the reduction

(ar,v,€) F (ars,w,€)

can be made by the explicitly-advancing LR(k) parser. If » = 0, Lemma 5.3.3 shows
that [ga—1,%h—1,lh-1,Ch,dn,7,v] = [0,€,0,0,b,0,v] and the explicitly-advancing
LR(k) parser can make the sequence of moves

(0,€,v) T— (0,v,¢€)

for which there exists an edit sequence S such that z, S vand b = W(S).
Therefore, the explicitly-advancing LR(k) parser can make the sequence of moves

(0,€,v) Ii (0,v,€) - (0s,v,€) T— (0s,v,¢€)

for which there exists an edit sequence S such that zy, ~» v, ¢ = b = W(S) and
d=0.

If » # 0 then [gy_1,un—1,ln—1,Ch,dn,r,v] precedes ([r,v,1,c,d,s,w],7) on the
ordered list of entries. Applying the induction hypothesis to [gn_1,up—1,lh—1,Ch, dn,
r,v], the explicitly-advancing LR(k) parser can make the moves

* a*

(0,e,y) F (6r,v,€) F (é7,v,¢€)

and there exists an edit sequence S such that z., ~ y and cp + dp, = W(S).
Therefore, the explicitly-advancing LR(k) parser can make the moves

(0,€,yw) F (81r,wy€) - (678, w,€) F (6rs,w,€)
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where 2., ~» yw, ¢ = i, + dp = W(S), and d = 0.

For the second type of reduction, a non-empty production is used and the
stack does not underflow so m > 0 and g, # 0 for 0 < z < m. This implies, for
0 < ¢ < m, that [g—1,%z-1,lz-1,Czydz, gz, uz| on Ij, is an entry on the ordered
list of entries and that these entries precede [r,v,1,c,d, s, w| on I,. Applying the
induction hypothesis to each entry, the explicitly-advancing LR(k) can make the
sequences of moves

* +

(0,€6,3197) F (c0lqo, %0,y1) F (20q0q1, U1, €)
* +

(Oa €, y2y;) - (alqu’ulayé) - (aIQIQZ,'U‘ZaE)

* +
(O,Ea ymy:n) l— (am—lzqm—lvum—-l,y:n) l_ (am—lqm—lqm’uma E)-

Also, there exist edit sequences S, and S’,, for 1 < z < m, such that 2z, _, 25 Yu,

2, 1, & Y W(Sz) = ¢, and W(S';) = d;. As a result, the explicitly-
advancing LR(k) parser can make the moves

0,6, 91919295 ¥'m) (0190, %05 Y1¥5Y5 -+ - - Yrn)
(anOIql’ulay;y:,i e y:n)

(090q1192, %2, Y3 + - - Ypn)

T+ T+ T+ T+ Tx

(anOQI «eeqm-1 IQmaum’ E)‘

s!

Let $=5,,5=5.5%...8nm,andy =y ,¢'5...9y',,- Then, 21, 5y, Ziv1y ~ Y
¢, = W(S),and b+d = W(S'). Since reduce p € f,,.(vm), o =7, uo = v, lp = 1,
Uy = w, |, = j, and the explicitly-advancing LR(k) parser can make the moves

(20rq1qz -+ - Gmy W, €) F (aors, w, €).

Therefore, the explicitly-advancing LR(k) parser can make the moves

* +
(0,€,413y") F (aolr,v,¥y") F (awrs, w,€)

where there exist edit sequences S and S’ such that z;, o Y1y Zug1y Syl e =

W(S), and d = W(S’).
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For the third type of reduction, an non-empty production is used and the
stack underflows so m > 0 and ¢, # 0 for some ¢ where 0 < ¢ < m. Let e be
the greatest such z. Since 1 < e, r = ¢y = 0. Recursively applying Lemma 5.3.1
shows that, for z < e, ¢, = 0, u, = ¢, [, = 0 and ¢, = 0. Also, for z < e,
[z-1,Uz—1,lz—1,Cr,ds, gz, Us) On I is not processed by step II.C of Algorithm 5.1.1
since u, = €. Therefore, h > e. Furthermore, d, = 0 for z < 0 since [0,¢,0,0,0, €]
on I, is the only entry on a parse list that is not processed by step II.C.

Since ¢, = 0, Lemma 5.3.1 shows there exists an edit sequence S such that
21, > v, dg = W(S), and the explicitly-advancing LR(k) parser can make the
moves

*

(0,¢,v) d (0,v,¢€).

If e = m then there is only the state 0 on the stack when the reduction is made
and h =m, g =¢, =7=0, 4, =v =w, ¢, =0, and d. = d,,. Also, since
reduce p € f, (u,) and s € g.(LHS(p)), the explicitly-advancing LR(k) parser
can make the moves

(0, w,¢€) F (0s,w,e€).

Therefore, if m = 0, the explicitly-advancing LR(k) parser can make the moves

* + a*
(O,G,y) + (O,G,y) F (Os’w,e) - (Os’w’e)

where there exists an edit sequence S such that 2., ~> w, ¢ = d, = W(S), and
d=0.

If e < m, there are some states (but not enough) on the stack when the
reduction is applied. For o < & < m, [gz_1,%s—1)le—1)Crydzy Gz, Uz) ON [}, is an
entry that precedes [r,v,1,c,d,s,w] on I, on the ordered list of entries. Applying
the induction hpothesis to each of these entries, the explicitly-advancing LR(k)
parser can make the sequences of moves

* +
(07€a ye+1y,e+1) }— (aez‘Je,ueayle-}-l) l— (aeque+1a'u'e+1’ G)

+
(Oaﬁa y8+2yle+2) F (ae+13qP+1,ue+1syé+z) F (Otet1Get1Get2) Yet2s €)

* +
(Oa €, ymy:n) }— (am—lem—laum—lay,m) l_ (am-—IQm—1Qm,um, 6)-

Also, there exist edit sequences S’ for e < & < m such that z,_, 4114, 23 ¢/, and
W(S';) = d,. Furthermore, since g. = 0 and 0 is never pushed onto the stack,
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a. = €. As a result, the expicitly-advancing LR(k) parser can make the sequence
of moves :
(0, Ue, yé+1yé+2y,’3+3 ces y:n) (que+17ue+17 yé+2yé+3 coe y:n)

(Oqe+1 1get2s Uet2s yé+3 .. y:n)

T+ T+ T+ T+

(0ges1 - - - Gms Um, €).

Let S' = 51194 ..W.S'm, and ¥ = Yo 1Y ern - Y- Tl}en, Zig1y < y'. Since
reduce p € f, (un), s € g-(LHS(p)), g =7, up =€, l) =%, up, = w, and [, = j,
the explicitly-advancing LR(k) parser can make the move

(0Get1Ges2 -+ - Gmy Um, €) F (08, w, €).

Therefore, the explicitly-advancing LR(k) parser can make the moves

* + a*
(0,e,vy') F (0,€,vy") F (0s,w,€) F (0s,w,€)

where there exists an edit sequence S5’ such that z,, g5 vy, ¢c =0, and d =
b+d =W(SS).

\

5.4 PROOF OF COMPLETENESS

This section shows that Algorithm 5.1.1 completely simulates the explicitly-
advancing LR(k) parser. Since Algorithm 5.1.1 is a least-cost algorithm, the defini-
tion of completeness for it differs from the definition used for the earlier algorithms
in this dissertation. The simulation is complete for an input z if for every sequence
of moves

* +
(0,&9y") F (air,v,3') F (ars,w,e)
that can be made by the LR(k) parser for which there exist edit sequences S and
S’ such that zy, ~> y, 241, > ¥, W(S) = ¢, W(S') = d, and

+
¢+ d = min ({IV(T) | 2., ~> t such that (0,€,t) F (ar.s,w,e)}) ,

Algorithm 5.1.1 adds the entry [r,v,1,c,d’, s, w] to parse list I, where ¢'+d' = c+d.
This property is considered a completeness result since it shows that there is an
entry on a parse list for each least-cost edit of a prefix of the input string, if the
edit generates a prefix of some string in the language accepted by the explicitly-
advancing LR(k) parser.
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5.4.1 Consistent Ordered Lists of Entries -

To show that Algorithm 5.1.1 is complete, it must first be shown that if an entry
[ryv,1,¢,d,s,w] is on I, then there is an entry [g,u,l,a,b,r,v] on I, for which
¢ = a+b. Ordered lists of entries with this property are said to be consistent. The
term consistent is used because Algorithm 5.1.1 is designed to have this property
and the lack of it would be an inconsistency.

To show that any ordered list of entries is consistent, it is convenient to first
prove the property for a subset of an ordered list of entries and then expand the
property to the entire list. For this purpose, the following definition introduces the
concept of a prefix of an ordered list of entries.

Definstion 5.4.1 (Prefiz of an Ordered List of Entries) Given an ordered list

of entries
[P1,%1,v1,€1,d1, 81,wy) on I,
[7'2, 12,V2,C2, d2’ 82, 'UJZ] on IJ2

[rnyin, UNyCN, ANy SN, wN] on Iy
a prefix of the ordered list of entries is any list of entries

[rl,zlavlacladhslvwl] on IJl
[Tz,iz,vz, C, da, 32,w2] on IJz

[PryBny Uny Cny @ny Sny Wn| on I,
where n < N.

The following two definitions formally define the concept of a consistent or-
dered list of entries.

Defination 5.4.2 (A Consistent Prefiz of an Ordered List of Entries) A prefix
of an ordered list of entries

[rlvvlazlachdlasl,wl] on IJ]_
[7‘2,1]2,12,62,(12,82,11)2] on IJz

[Py Vnyny Cny @ny Snywp) on I,

is said to be consistent if for each entry [ri, v, 2, ci,di, 81, wi] on I, there exists an
entry [q,u,l,a,b,7,v] on I, for which ¢, = a + b and

+
([g,uy1,a,b,7,v1) on 1) = ([re, viy %05 €1y diy 81, wy) on ).
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Definitron 5.4.3 (A Consistent Ordered List of Entries) An ordered list of en-

tries
[rl,zl,vl’cl,d]_, 31,w1] on I]l.

[7'2a7«2a1)2,02,d2,32,w2] on Ij2

[TNaiNavNacNadN’sN,wN] on IJN

is consistent if it is a consistent prefix of itself.

The following lemma shows that a consistent sequence of predecessor entries
exists when step II.C.2 of Algorithm 5.1.1 is executed for an entry from a consistent
prefix of an ordered list of entries.

LEMMA 5.4.1 For a consistent prefiz of an ordered list of entries, 1f Algo-
rithm 5.1.2 1s apphed to an entry [q,ui, 1y, co, do, 9o, uo] on I, wn the prefiz and

m-1
(Qmaumevcm + dm, Z dz) € By
1=0
then there exists
[Qm+1’um+1,lm+17cm7dma Qmaum] on Ilm
[Qm, Um,y lm7 Cm—1y dm—l ydm—1, um—l] on Ilm_l

[q2au2,12ablaclaq1,u1] on Ill

such that, when m > 0, ¢, = ¢,y + dyyy for 0 <z <m and

([Qm+1,um+1,lm+1,cm, dm,qm,um] on Ilm)
+
I= ([qm,um,lm7cm—1,dm—1,qm—laum*l] on Ilm._l)

(Ig2s w2, b2y c1, d1, g1yuq] on 1)

T+ T+ T+

([ql’ul, ll, cUadU’ qo, uO] on Ilo)-

Proof: The lemma is proved by induction on the m, using the lemma as the
induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m =0 and m = 1; and
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e second, the lemma is proved for m = N, where N > 1, assuming it holds for
m=N —1.

For the first induction step, m = 0 or m = 1. Examination of step I of
Algorithm 5.1.2 shows that {(go, %o, lo, co + do,0)} € B_; and {(q1,u1, 1, co,do,0)}
€ By. Since the prefix of the ordered list of entries is consistent, there exists an
entry (gq, u2,ly, ¢;,d;,q1,u;] on I;, for which ¢y = ¢, + d; and

+ ' B
([qZ,uZ’IZ,clvdlaql’ul] on Ill) }: ([qlau’lall,CO,doaqoauO] Ofl Ilo)-

For the second induction step, m = N, where N > 1, and the lemma is as-
sumed to hold for m = N — 1. If (gm,Um,lm;Cm—1,d) € By_y then step II.B.1.i
of Algorithm 5.1.2 added (gm,%m,lm,Cm-1,d") to By_; and there is an entry
[qN’uNy lN, CN-1, dN—la QN—l)uN—l] on IN—] and an element
(gv-1,un—-1,In-1,¢,d — dy_1) € By_,. Since (gn-1,un-1,IN-1,¢sd —dn_y) €
By _,, the induction hypothesis can be applied to show that there exist

[qNauNalNycN—th—l)qN—l,uN—-l] on IIN__l

[qN—h UN-1,IN-1,CN=2, dN_2,qN-2, uN—z] on IIN_2

[q27u27l2,b1a claqhul] on Il1

such that, when N —-1>0,¢c, =c,_; +dy_y for 0 <z < N —1 and
([qN—ZyuN—%lN-ZacN—l)dN—-la QN-—lauN—l] on IlN_l)

([QN—lauN—lle—laCN—Z,dN—Z’QN—ZauN—Z] on IIN_Z)

([QZ7u2,12, bl’claqlaul] on Ih)

T+ T+ T+ T+

([QI’ul’ lls Co, d07 QO’uO] on Ilo)

N-=2 N-1
where ¢/ = cy_1 +dy_q and d' —dy_1 = Z d,. Therefore, d' = Z d,. Further-
=0 1=0

more, since the prefix is consistent, there must also be an entry [gn41, un+1,IN415CN,
dn,qn,un] on Ij, for which ¢y_q = cy +dy and

([QN+1,U/N+1, Iny1yen,dn, QNqu] on IlN)

+
'= ([qN’uNle7cN—17dN—-1,qN—-lyuN-l] on IlN_l)-
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Using the previous lemma, all ordered lists of entries can be shown to be
consistent.

LEMMA 5.4.2 (ALl Ozdered Lists of Entries are Consistent) For any ordered
list of entries, of [r,v,1,c,d,s,w| 1s on I, then there exists an entry [g,u,l,a,b,7,v]
on I, for which ¢ =a + b and

+
(lg,u,l,a,b,7,v] on I,) = ([r,v,1,¢,d,s,w] on I,).

Proof: If s = 0, the lemma is proved by applying Lemma 5.3.3 which shows that
[ryv,%,¢,d,8,w] = [0,¢,0,0,d,0,w] and

[0,€,0,0,0,0,€ = [0,€,0,0,d,0,w].

If s # 0, the lemma is proved by induction on an ordered list of entries, using the
lemma as the induction hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for the first entry on the ordered list of entries;
and

e second, the lemma is proved for the N th entry on the ordered list of entries,
assuming it holds for all entries before the NV th entry (which says that the

entries before the NtE entry form a consistent prefix of the ordered list of
entries).

For the first induction step, let [r,i,v,¢,d,s,w] on I, be the first entry on
the ordered list of entries. Since the first entry must be added to its parse list by
step II.C of Algorithm 5.1.1, ([r,v,3,¢,d, s,w],j) must have been on H. Step I and
step II.C.1.i did not add ([r,v,1,c¢,d, s,w],j) to H since if one of these steps added
([ryv,3,¢,d,3,w],7) then |w| < k. Therefore, there are only two cases to consider:

e step II.B adds ([r,v,1,¢,d,s,w},j) to H, or
o step II.C.2.iii adds ([r,v,i,c,d,s,w],j) to H.

In the first case, step IL.B of Algorithm 5.1.1 adds ([r,v,i,¢,d,s,w],7) to
H so, applying Lemma 5.3.2, either step I or II.C.1.i of Algorithm 5.1.1 adds
([ryv,3,¢,0,8,w; ¢,2) to H, where

+ . .
([r,v,i,c,O,s, wl-t]’i) |= ([’ravﬂwc,da 5aw]a])'
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Step I can not add ([r,v,1,c,0,s,w;.,?) since that implies that s = 0 and entries
for which s = 0 are not on the ordered list of entries. Therefore, step II.C.1.i
must add ([r,v,%,c,0,s,w;4],7) to H. Examining step II.C.1.i shows this step is
processing an entry [g,u,l,a,b,r,v] on I, for which ¢ = a + b. Furthermore,

([g,u,l,a,b,7,v] on I,) = ([r,v,1,¢,d, s, w] on I;).

In the second case, step II1.C.2.iii of Algorithm 5.1.1 adds ([r,v,1%,c¢,d,s,w],J)
to H. Step II.C.2.ii of Algorithm 5.1.1 must be processing an entry of the form
[0,€,0,0,b,0,u] on I; since this is the only form of entry that is not on the ordered
list of entries. When [0, €,0,0,b,0,u] is processed, step II.C.2.iii must be simulating
one of two types of reductions:

e a reduction by an empty production, or
e a reduction by a non-empty production.

For a reduction by an empty froduction, u=v,c=0b,d =0 and
([0,€,0,0,¢,0,v] on 1,) = ([0,v,1,¢,0,s,w] on I,).

For a reduction by a non-empty production, u =v =¢,¢=0,d = b and
([0,€,0,0,d,0,v] on I,) = ([0,¢€,0,0,d,s,w] on Ij).

For the second induction step, the lemma is assumed to hold for all en-
tries before the N*® entry om the ordered list of entries. Let the N th entry be
[r,v,%,¢,d,8,w] on I,. Since the Nth entry is added to its parse list by step II.C of
Algorithm 5.1.1, ([r,v,1,c¢,d, s, w],j) must have been on H and |w| = k. Step [ and
step I1.C.1.i did not add ([r,v,1,c¢,d,s,w],j) to H since if one of these steps adds
([ryv,i,c,d,s,w],7) then |w| < k. Therefore, there are only two cases to consider:

e step II.B adds ([r,v,1,c¢,d,s,w|,5) to H, or
o step I11.C.2.ii adds ([r,v,%,c,d,s,w],j) to H.

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,i,¢,d,s,w],7) to H
and Algorithm 5.1.1 simulates an advance. Applying Lemma 5.3.2, either step I or
step I1.C.1.i of Algorithm 5.1.1 must add ([r,v,%,¢,0,5,w:.¢|,2) to H wheret < k
and '

’ +
([Tav7i5c,0a s’wl:t],i) }= ([r,v,i,c,d,s,w],]).
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Step I could not add ([r,v,%,c,0,s,w;.),?) since that implies s = 0 and that
[ryv,1,¢,d,s,w] on I, is not on the ordered list of entries. Therefore, step II.C.1.i
adds ([r,v,1%,c,0,8,w,,],?) to H, simulating a shift. Examining step II.C.1.i shows
this step must be processing an entry [q,u,l,a,b,7,v] on I, for which ¢ = a + b.
Furthermore,

(lg,u,l,a,b,7,v] on L) = ([r,v,1,¢,d,s,w] on 1,).

In the second case, step 1I.C.2.iii of Algorithm 5.1.1 adds ([r,v,3,¢,d,s,w],7)
to H. This step must be processing an entry [gn—1,%n—1,lh—1,@h,bn,qn, us} on I,
where h is an arbitrary index chosen for convenience. Therefore

([Qh—l,uh—l,lh—l,ah,bh, Qh,uh] on Ilh) }: ([r,i,v,c, d737w] on IJ)
Furthermore, when [gn_1,%n—-1,lh-1, @h,On, qn, un] is processed, there must be s €
9-(LHS(p)) and _
(hs b”,p,’LU,j) € Glh(qh7uh)
and
(o, u0,lo,a’,b") € Bry

where m = |[RHS(p)| ¢ = a’,d = b + V", ¢ = 7, wp = v, and [, = 7. Applying
Lemma 5.4.1, there are

[g-1,u-1,1-1, @0, bo, g0, uo] on i,

90, %0, Lo, @1, 01,91, w1] on I,

[gh—2,Uh—2sth—2y@h_1,bn—1,qn—1,Un-1] OD I}, _,

where

([Q—l’ U_1, l—-la o, b07 qo, uO] on Ill)

+
l: ([quanl()yal’bl’ql,ul] on Ill)
+

=

+
‘= ([Qh—lyuh—lahh—laah,bthh,uh] on Ilh-—L)

h
a =ay+byand ¥ = E b,. Therefore, ¢ = ay + by and

r=1

+
(lg=1,%-1,1-1,a0,b0,myv] on I,) = ([r,%,v,¢,d,s,w] on I,).
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5.4.2 Monotonically Increasing Ordered Lists of Entries

Besides completeness, another important property of ordered lists of entries must
be demonstrated before Algorithm 5.1.1 can be shown to be complete. This prop-
erty is that all entries are added to their parse lists in order of increasing cost. The
following two definitions define the idea of a monotonically increasing ordered list
of entries.

Definition 5.4.4 (Monotonically Increasing Prefiz of Ordered List of Entries)
A prefix of an ordered list of entries

[P1,v1,81,¢1,d1,81,w] on I,
[7'2,1)2,12,62,(12,32,11)2] on IJ2

[Tnavnainy Cnydn,sn,'wn] on Ijn
is monotonically increasing if ¢; + d; < 141 + diyq for 1 <1 < n.

Definition 5.4.5 (Monotonically Increasing Ordered List of Entries)
An ordered list of entries

[1‘1,111,11,61,611,81,1111] on Ijl
[r2av2yz2yc2’d2’52,w2] on IJ2

[rn,uNyiNy CNy ANy SN, W] on Iy
is monotonically increasing if it is a monotonically increasing prefix of itself.
The next two lemmas show that the monotonically increasing property is

equivalent to the property that the sum of the cost components of any entry is
greater than or equal to the sum of the cost components of any of its predecessors.

LEMMA 5.4.3 For a monotonically increasing prefiz of an ordered list of en-
tries, if
: +
([Qau’ h,aab’r,v] on It) t'—- (['va’j’ ¢, dat’y] on Il)
thena+b<c+d.
Proof: If [q,u,h,a,b,r,v] = [s,w,],c,d,t,y] and ¢ = [ then the lemma is trivally

proved. Otherwise, [q,u,k,a,b,7,v] on I, must occur before [s,w,j,c,d,t,y] on I;
on the ordered list of entries. This implies a + b < c+d. y
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LEMMA 5.4.4 Given a prefiz of an ordered list of entries,

[P1,v1,81,¢1,d1, 81, wq) on I
[7‘2,1}2,12,62,(12,32,11]2] on IJZ

[Prs Unsiny Cny @y Sy Wy on I,

if ¢ + di < ¢y + d,, whenever

+ ‘
([r1, vy, ety diy sty wi] on 1) = ([Pmy Umoy Tmy Cmoy @my Smy W] o0 1, )

then the prefiz 1s monotonically increasing.

Proof: Let [ry,u1,vi,cr,di,s1,w] on I, and [Pmy%m;VUm, Cmydmy SmyWm] on I be
any two entries on the prefix of the ordered list of entries for which | < m. When
(71, %1, w15 €15 diy 81, wy] on I, is removed from H in step II.A of Algorithm 5.1.1, either
([Pmsms Ums Cmy @my 8my Win]y Jm ) OF @ predecessor of ([P, tmy Vmy Cmy @my Smy Win)y Im)
is on H since [ry, 1,1, ¢1,d1, 81, wi) on I; precedes [P, 2myVmy Cmy @my Smy W] on I,
on the ordered list of entries. Therefore, ¢; + di < ¢ + Cm- 1

The importance of monotonically increasing ordered lists of entries is demon-
strated in the following lemma which shows that for monotonically increasing or-
ders the duplicate entry elimination performed by step II.C of Algorithm 5.1.1 only
discards higher cost entries.

LEMMA 5.4.5 For a monotonically increasing ordered list of entries, if
([ryv,3,¢,dy8,w],5) s on H, jw| = k, ¢ +d = min({W(T) | 21, ~ y}) and
the ezplicitly-advancing LR (k) parser can make the sequence of moves

* + a*
(0,6,9) F (alryv,...) F (ars,?,...) F (ars,w,¢)

then [r,v,1,¢,d,s,w] is added to I, or there 1s already an eniry [r,v,3,c,d', s, w]
on I, where ¢ +d' =c+d.

Proof: Lemma 5.3.1 guarantees that ([r,v,?,c,d,s,w],j) will eventually be pro-
cessed by step II.C of Algorithm 5.1.1. When ([r,v,?,¢,d, s,w],j) is processed, if
there is no entry [r,v,3,c,d’,s,w] on I, then the lemma is proved. If there is an
entry [r,v,1,c,d’,s,w] on I, then there are three cases to consider:

o first, ' +d =c+d;
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e second, ¢’ +d' < c+d; or
e third, ¢/ +d' > ¢+ d.

For the first case, ¢’ + d' = ¢ + d and the lemma is trivally proved. The other two
cases can not occur since assuming that they do occur leads to contradictions.

For the second case, ¢’ +d' < ¢+d. Applying Theorem 5.3.1, there must exist
an edit sequence T" such that ¢'+d’ = W(T"), z;., ~ y' and the explicitly-advancing
LR(k) parser can make the sequence of moves '

* + a*
(0,6,9') F (alr,v,...) F (ars,?,...) F (ars,w,e).

However, this implies that c-+d # min({W(T) | 21, ~ y}) which is a contradiction.

For the third case, ¢ +d' > ¢+ d. When ([r,v,1,c,d’,8,w],7) is removed
from H in step II.C of Algorithm 5.1.1, ([r,v,3,c,d,s,w],j) or a predecessor of
([ryv,3,¢,d,8,w],7) is on H. Therefore, ¢’ +d' < c + d, which is a contradition. g

The following lemma shows that all orders are nionotonica]ly increasing,.

LEMMA 5.4.6 (An Ordered List of Entries is Monotonically Increasing) If
(lgyu, hya,b,7,v] on 1) = ([s,w, ], c,d,t,z] on I;) thena + b < c+d.

Proof: When s = 0, the lemma is proved by applying Lemma 5.3.2. When s # 0,
the lemma is proved by examining the ways in which an entry ([r,v,3,¢,d,s,w],j)
can be added to the list of entries to be parsed. Step I and step II.C.1.i can not
add ([r,v,1,c,d,s,w],j) to H since if one of these steps adds ([r,v,1,¢,d,s,w],J)
then |w| < k. Therefore, there are only two cases to consider:

e step I11.B adds ([r,v,1,¢,d,s,w],j) to H, or
o step II.C.2.iii adds ([r,v,1%,c,d,s,w],j) to H.

In the first case, step II.B of Algorithm 5.1.1 adds ([r,v,3,¢,d,s,w],j) to H
so, applying Lemma 5.3.2, either step I or II.C.1.i of Algorithm 5.1.1 must add
([ryv,1,¢,0,8,w1.],7') to H and

4
([rv'v’ivcaoasawl't]ajl) I= (['r,'v,z,c, da"a"’])])'

Step I could not add ([r,v,3,c,0, s, wy.],7') to H since that implies s = 0. Therefore,
step II.C.1.i must have added ([r,v,1,¢,0,s,w;.,j’) to H. Examining step II.C.1.i
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shows this step must be processing an entry [q,u, k,a,b,r,v] on I, for which ¢ = a+b
and

([g,u,h,a,b,7,v] on I,) = ([r,v,?,¢,d,s,w] on I,).

Sinced > 0,a+b<c+d.

In the second case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,1,c,d,s,w],J)
to H. Step I1.C.2.iii must have been processing an entry [gh—1,%n—1,lh—1,@n,bn, qn,
up) on I;, where

([gh-1,%h-1,lh-1, @hs bn, gh, un] on I,) = (3, v,¢,d, s, w] on I;).

Furthermore, examining step II.C.2.iii shows that when [gh—1,%n—1,lh—1,an, b, qn,
up) was processed, there must have been (h,b",p,w, ) € Gi,(qn,ur) and an (gy, uo,
ly,a',b') € Bp_1, where m = |RHS(p)| ¢ = o', d = b +b", g0 = 7, uo = v, and
ly = . It is important to note that h has been arbitrarily chosen as a convenient
index for the entry [gn_1,%n—1,n—1,@h,Dn,qn,us) on Ij,. Applying Lemma 5.4.1,
there are

[q=1,%—-1,0-1, a0, bo, go, uo] on I,
[qO’uO’l()aa'l’bl’QIaul] on Ill

(@h—25Uh—2ylh—2y @h—1,bh—1,qn—1,Un—1] OD I}, _,

h
where a’ = ap + by, b' = me, and ap, + b, =a' + V. Sincec=a', b =b'+b" and

=1
b" >0, ap + by < c+ d and the lemma is proved for this case.

5.4.3 Completeness

Since it has been established that all ordered lists of entries are consistent and
monotonically increasing, the argument that Algorithm 5.1.1 is complete can pro-
ceed. The next two lemmas establish that step II.B completely simulates sequences
of advances for the explicitly-advancing LR(k) parser.

LEMMA 5.4.7 (Step II.B Simulates Edit Operations) If ([q,u,1,¢,d,r,v],1),
where |v| < k, 1s on the pending hst, H, and there exists an edit operation
(zi41941 — a), where | =1 < 7 < I, b = W((2141.541 — @a)), and |va| < k,
then ([q,u,%,¢,d + b,7,val,7 + 1) s added to H.

Proof: Applying Lemma 5.3.1, ([g,u,%,c,d,r,v],l) is processed by step IL.B of
Algorithm 5.1.1. There are three types of edit operations to consider:
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e an insertion (j =!— 1 and |a| = 1),
e a deletion (j = and a =€), and
e a replacement (7 = [ and |a| = 1).

For an insertion, j = ! —1 and |a| = 1. When ([g,%,?,¢,d,r,v],l) is processed,
step II.B.3 of Algorithm 5.1.1 adds ([g,u,3,c,d + b,r,val,j + 1) to H. Note that
step II.B.3 is optimized to exclude the insertion of a before another a since this
can never result in a least-cost edit.

For a deletion, j = [ and a = e. When ([g,%,?,¢,d,7,v],l) is processed,
step II.B.2 of Algorithm 5.1.1 adds ([q,u,?,c,d + b,7,va],j + 1) to H.

For a replacement, j = [ and |a| = 1. When ([g,u,1,c,d,r,v],l) is processed,
step II.B.1 or step II.B.4 of Algorithm 5.1.1 adds ([q,u,3,c,d + b,r,va],j + 1) to
H.,

LEMMA 5.4.8 (Simulation of Advances is Complete) If ([gq,u,1,c,d,r,v],k),
where |v| < k, is on the pending list, H, and there exists an edit sequence S
such that zpyq, ~> y, d = W(S), and |vy| = k then ([q,u,%,¢,d + d',7,vy],j + 1)
18 added to H.

Proof: Let
S = (a1 — bl)(a2 — bg) . .(an — bn)

where zp11,, = a1a3...a, and y = biby...b,. Also, let [y = h, [, = j, and
let ly,l;,...,1, be a sequence of integers where, for 1 < =z < n, z__ 114, = 4z,
h<l,<jandl,—1<1I,_; <l,. Finally, let d, = W((a, — b)) which implies

that »_ d, = W(S).

r=1

Applying Lemma 5.3.1 and Lemma 5.4.7 to ([g,u,?,c,d,7,v],h) shows that
([g,u,2y¢,d + d;,7,vby],1;) is added to H. Repeated application of Lemma 5.3.1

and Lemma 5.4.7 show that the entries

([qauai,c, d+ dlvra")bllall)
([qvu,i7ca d + d177'77)b1b2]7lz)

([g,w,2yc,d + Z dgy7,vbiby ... by, 10)

r=1

are added to H. j
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The following lemma establishes an important property for least-cost edits of
prefixes of the input string.

LEMMA 5.4.9 If there exist edit sequences S and S’ such that z, ~> vy,
zz+1:] ’f’) y’y W(S) =c W(SI) = d7
¢+ d =min ({W(T) | 21., ~> t such that (0,¢,t) . (ars,w,e)})

and the explicitly-advancing LR (k) parser can make the sequence of moves

(0,€,3y") I: (alryv,y) ; (ars,w,¢)
then .
¢ = min ({W(T) | 21, ~o> t such that (0,¢,t) - (ar,v,s)}) :

Proof: The lemma is proved by contradiction. Assume there exists an edit sequence
S" such that z;, ~» y” and W(S") = b and for which b < ¢ and

(0,¢e,3") li (ar,v,€).

Then the explicitly-advancing LR(k) parser can make the sequence of moves

(0,e,9"y") Ft (alryv,y’) Pt (ars,w,¢)

and b+ d < ¢+ d, which is a contradiction. §

The next two lemmas establish reduction information that can be inferred from
the entries on their parse lists at key points during the execution of Algorithm 5.1.1.

LEMMA 5.4.10 If Algorithm 5.1.2 is applied to [q1,u, !y, coydo, goyuo] on I,
and there exist

[Qm+1’um+1’lm+1’cmadm’qmaum] on Ilm
[Qm’umalm’cm—lydm—l,Qm—l,um—l] on Ilm_L

[Q2, U, 12, bla Ci, ql,ul] on IIL

then, for m > 0,
m—1
(qnnum,lm,cm—la Z dz) € Bm—-l'

1=0
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Proof: The lemma is proved by induction on m, using the lemma as the induction
hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m = 1; and

e second, the lemma is proved for m = N when N > 1, assuming it holds when

m=N —1.

For the first induction step, m = 1. Examination of step I of Algorithm 5.1.2
shows that (go, uo, l, co,do) is added to Bj.

For the second induction step, m = N where N > 1 and the lemma is assumed
to hold for m = N — 1. The induction hypothesis can be applied to

lgnyun, INyen-1, AN -1, gN-1,uN—1] on Ty,
[QN—l, UN-1,IN_1,EN=2, AN -2, qN -2, uN-z] on Ij, _,

[QZa'L"Z’lZ’bI’cl’QI,uI] on Ih

N-2
to show that (gv-1,un-1,IN-1,cN-2, Z d,) € Bn_». Since
1=0
N-2
(av-1,uNn-1,IN-1,6N=2, Y di) € BN_2

=0

and (gn41,uN41,IN11,6N8,dN, qv, un] on Ij,, examining step II.B.1.i of Algorithm

5.1.2 shows that
N-1

(qNauNalN,cN—la Z dz) € BN—I-
=0

LEMMA 5.4.11 If m > 0, h > 0, m + h = |RHS(p)|, reduce p € f, (um),
and there exist
[qO,Uo,lo,C1,d1,Q1,U1] on I,
[q1,%1, 1, C2,da, o, u0] om T,

[Qm—la Um-1, lm—l »Cm) dm’ dm, um] on Ilm
then

(h, Z dz, p, um,lm) € Glo(QOau0)°

=1
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Proof: The lemma is proved by induction on m, using the lemma as the induction
hypothesis. The induction proceeds in two steps:

o first, the lemma is proved for m = 1; and

e second, the lemma is proved for m = N, assuming it holds when m < N.

For the first induction step, m = 1. The entry [go, o, lo, ¢1,d1,91,%1] is on I}, so
it must have been processed by step II.C.1.ii of Algorithm 5.1.1. Since reduce p €
fa(u1), step II.C.1.ii adds (h + 1,0,p,u;,1;) to Gy, (g1,u1). Thus, step II.C.2.i
executes Algorithm 5.1.2 and step I of Algorithm 5.1.2 adds (h,dq,p,u1,l;) to
Gi,(gos o) since h > 0.

For the second induction step, m = N and the lemma is assumed to hold for
m < N. Since m = N, there are N entries

[qO"l"OaIOacl’dl,QIaul] on It1
[ql,ulvll’c%d?’qhuﬂ] on I’g

[gv—1,uN-1,IN-1,cN,dN,gN,uN] OD I}y,

Let k be the index of the entry [gr—1,%k—1,lk—1,Ck, Dk, qk, uk] on Ij, which is the
last of these entries to be processed by step II.B of Algorithm 5.1.1. There must
be

N
(h + k, Z dmp,umalm) € Gl;,(‘]k’uk)
r=k+1
when [ge_1, %k—1,lk—1, Ckydk, Qr, ug] on Ij, is processed by step II.B since the induc-
tion hypothesis can be applied to the N — k entries

[Qk, Uk, lk7 Ck41, dk+1 y Gk+1, uk+1] on Ilk+1
(G415 Uk15 lot1y Chas dk+2v, k42, Ukt2] on Iy,

[qN—lauN—th—lacNa dN,‘]N"U'N] on IIN-

N

Since (b + k, Y. doyPyUmsim) € Gi,(qk,ue) when [ge—1,%k—1,lk—1, Ck, Dk, Gh, U]
r=k+41
on I;, is processed by step II.B.2.ii of Algorithm 5.1.1, step I of Algorithm 5.1.1

initializes B_; to (qk,uk,lk,ck + dk,0) and By to (gk—1,Uk—1, k-1, Ck, dr) and adds
N
(h+k—1,3" duy Py thmy Im) to G, _, (@k—1,uk—1) The loop in step II of Algorithm 5.1.2

=k
must iterate through at least the sequence 0 = 1,2,...,k—1 and it has the following
property:
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N
If (Qxau:cal:c’a’b) € B,_1, (n + 1, Z dzapvumalm) € Gl:(q:c)y and
1=x+1
[q:c—laua:—-lalm—lac:cadzaqa:,ua:] iS on Il,, then (q:v—lsur—lal:c—lacz,b + da:)

N
is added to B, and (n,Z dyy Py Uy L) is added to Gi,_, (gr—i1,Uz—1)-

1=

N
Therefore, Algorithm 5.1.2 must add (k, Y dz, P, Um, Im) to Gi,(g0)- 1

r=1

THEOREM 5.4.1 Gwen the same Q, f,, and g, for the ezplicitly-advancing
LR(k) parser and Algorithm 5.1.1, if the sequence of moves

*

‘a* L 1 a
(0,e,99") F (0,7,...) F (air,v,¥) gy (ars,?,...) F (ars,w,€)

can be made by the ezplicitly-advancing LR (k) parser, where L > 0, M > 0, |[v| = k
or [v| =0, |w| = k, and there exist edit sequences S and S’ such that z,,, ~> vy,

Zit1y 3 Yy, W(S)=¢c, W(S') =d, and
¢+ d =min ({W(T) | 21., ~ t such that (0,€,t) F (ar.s,w,e)})

then Algorithm 5.1.1 adds the entry [r,v,1,c,d’, s, w| to parse list I; where ¢'+d' =
c+d.

Proof: The theorem is proved by induction on the sum of L and M. The induction
proceeds in three steps:

o first, the theorem is proved for L + M = 0;

e second, the theorem is proved for for L = N and M = 0, assuming it holds
whenever L + M < N; and

e third, the theorem is proved for for L + M = N, assuming it holds whenever
L+M<N.

If the parameter space formed by L and M is seen as an infinite table with L as
the row number and M as the column number, the steps of the induction can be
viewed as proving the theorem diagonal by diagonal, using the diagonals that run
from the lower left to upper right sides of the table.

For the first step of the induction, L + M = 0 and the theorem can be written
as follows:
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If the explicitly-advancing LR(k) parser can make the sequence of
moves

(0,¢,vy") E (0,v,y") - (0s,7,...) F (0s,w,€)
where |v| = k, |y/| = k and there exist edit sequences S and S’ such
that 21, ~> v, Z414, < y', W(S)=r¢, W(S') =d and

¢+ d=min ({W(T) | 21., ~ t such that (0,€,t) . (03,w,e)})

then [0,v,1,c/,d’, s,w] is added to I, where ¢’ + d' = ¢ + d.

Since the explicitly-advancing LR(k) parser can make the sequence of advances

*

(0,¢,vy") F (0,v,7')

and step I of Algorithm 5.1.1 places ([0,¢,0,0,0,0,¢]),0) on H, applying Lemma
5.4.7 shows that ([0,¢,0,0,c,0,v],7) is added to H. Lemma 5.4.9 shows that

¢ = min ({W(T) | 21:, ~> ¢ such that (0, €,t) F (O,U,E)})

so Lemma 5.3.1, Lemma 5.3.3 and Lemma 5.4.5 show that [0,¢,0,0,¢,0,v] is on I,.
When ([0,€,0,0,c,0,v]),%) is processed by step II.C, Algorithm 5.1.1 should
simulate the move
(0,v,9y") F (0s,7?,...)

which can be made by the explictly-advancing LR(k) parser. This move can be
one of three types of moves:

e a shift (shift € fy(v)),

e a reduction by an empty production (reduce p € fy(v) and |[RHS(p)| = 0),
or

e a reduction by a non-empty production (reduce p € fy(v) and |RHS(p)| >
0).

For each of the three types of moves, s € gy(v).

For a shift, shift € fy(v). Therefore, w = vy.xy’ and |y’| = 1. Examining
step I1.C.1.i shows that ([0, v,?,¢,0, s,v2.],?) is added to H. Applying Lemma 5.4.7
shows that ([0,v,1,¢,d,s,w],j)is added to H. Lemma 5.3.1 and Lemma 5.4.5 show
that [0,v,1,c/,d’,s,w] is added to I, where ¢ +d' = c +d.
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For a reduction by an empty production, reduce p € fy(v), |RHS(p)| = 0
and j = 1. Therefore, w = v, ¥’ = € and d = 0. Examining step II.C.2 shows
that ([0,v,%,¢,0,s,v],7) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show that
0,v,1,c,d’,s,w] is added to I, where ¢’ + d’ = c.

For a reduction by a non-empty production, reduce p € fy(v), |RHS(p)| > 0,
v = ¢, and ¢ = 0. Therefore, y' = ¢ and d = 0. Examining step 1I.C.2 shows
that ([0,¢,0,0,c,s,v],7) is added to H. Lemma 5.3.1 and Lemma 5.4.5 show that
0,v,3,c,d',s,w] is added to I, where ¢’ + d' = c.

For the second induction step, M = 0, L = N, and the theorem is assumed to
hold for L + M < N. Since M = 0, the theorem can be written as follows:

If the explicitly-advancing LR(k) parser can make the sequence of
moves

*

(0,€,yy") F (0,7,...) ﬁ (alryv,y) F (ars,?,...) - (ars,w,€)

where |v| = k, |y'| = k and there exist edit sequences S and S’ such
that 21, ~> ¥, 241y, > ' W(S) = ¢, W(S') = d and

¢+ d = min ({W(T) | 2., ~> t and (0, ¢,t) F (ars,w,e)})

then [r,v,1,c,d’, s,w] is added to I, where ¢’ +d' = c+d.

If N = 0 then this induction step degenerates to the first induction step. Therefore,
only the case of N > 0 needs to be considered. Since the length of the sequence of
moves

*

0,6,99) F (0,7,...) F (a,7,..) F (&,2,...) F (e, 7,...) F (a0,

is less than N, the induction hypothesis and Lemma 5.4.9 can be applied to show
that there must be an entry {?,7,?,a,b,7,v] on I, where ¢ = a + b = W(S).
When ([?,7,7,a,b,7,v]),1) is processed by step II.C, Algorithm 5.1.1 should
simulate the move
(alr,v,y) F (ars,?,...)
which can be made by the explictly-advancing LR(k) parser. This move can be
one of two types of moves:

e a shift (shift € f,.(v)), or

e a reduction by an empty production (reduce p € f.(v) and |RHS(p)| = 0).
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For either of the two types of moves, s € g.(v).

For a shift, shift € f,(v). Therefore, w = vo4y’ and |y’'| = 1. Examining step
I1.C.2.i shows that ([r,v,?,¢,0,5,v5.4],1) is added to H. Applying Lemma 5.4.7
shows that ([r,v,1,c,d,s,w],j) is added to H. Lemma 5.3.1 and Lemma 5.4.5
show that [r,v,1,c,d’,s,w| is added to I, where ¢ +d' = ¢+ d.

For a reduction by an empty production, reduce p € f,.(v), |[RHS(p)| = 0 and
j = 1. Therefore, w = v, y' = e and d = 0. Examining step II.C.1.ii and step I1.C.2
shows that ([r,v,7,¢,0,s,w],7)is added to H. Lemma 5.3.1 and Lemma 5.4.5 show
that [r,v,7,c,d’,s,w] is added to I, where ¢ + d’' = c.

For the third induction step, M > 0, M + L = N, and the theorem is assumed
to hold for M + L < N. Since M > 0, the theorem can be written as follows:

If the explicitly-advancing LR(k) parser can make the sequence of

moves
I+

a* M+1
(0,e,3y") F (0,7,...) - (alr,v,y’) F (ars,w,e)
where L > 0, M > 0, |v| = k, |w| = k, and there exist edit sequences
S and S’ such that 2y, ~> Y, Zy41., 5 y', W(S)=r¢c, W(5') =d, and
¢+ d = min ({W(T) | 21., ~> t and (0, ¢,t) u (ar.s,w,e)})
then [r,v,i,c,d’,s,w] is added to I, where ¢/ + d' =c+ d.

Since a move of the explicitly-advancing LR(k) parser can add at most one symbol
to the stack and r is not allowed to be popped from the stack by any of the M +1
moves in the sequence of moves

M41
(alryv,y') F (ars,w,e),

this sequence of moves can be written as

(alry v, Y195 - - Yrn) (arlgi, w1, Yays - - - Yi)

(arqiige, u2,y3y'4 ... ym)

(argiga - - - Gm-21dm—1,Um—1,Yo)

(arqiqz -« - Gm—11qmy, Um, €)

(ars,w,€)

T T+ T+T+ T+ T+

where 1 < m < M and |u,| = k for 1 < ¢ < m. This implies that u, = w,
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¥ =yiy,...y,, and S’ = §1S5,...5], such that, for 1 < z < m, S, is an edit

sequence for which z;__ 114, 35 y. wherely = 14,0, =jandl,_; <l forl <z < m.

Let b, = W(S.), a; = c and a,4; = W(S5515,...S5,). Then
z—1
a, =c+ Z b,
=1

and

Applying Lemma 5.4.9,

a; +b, = min ({W(T) | 214, ~> t and (0, ¢, t) li (arqigs .. .q,,u,,e)})
The reduction
(arqiqz - .- gm,w,€) F (ars,w,¢)

must be a reduction that pops m states off the stack or,if «a = e and r = 0, a
reduction which possibly pops more than m states and underflows the stack. Also,
the reduction implies that there exists s € g.(JLHS(p)|) and reduce p € f, (w).

Any proper subsequence of the sequence of moves (ar,v,y’) - (ars,w, €) has length
less than IV so, applying the induction hypothesis, there must be

AR
[ravazsaubpqlaul] on Ill
Y,
[q1au1allaa2ab2’q2su2] on Ilz
Y
[qm-—l,um—lslm——lvam’bmaqm’um] on Ilm

where a’ + b, = a, + b, for 1 < z < m. Applying Theorem 5.3.1, b, = W(S,)

. . . Sz
where S” is an edit sequence for which z,_, 114, ~> ¥, and

+
(:qulq2 . -zqz—laum—lyy;:) }— (,ququ coogpyUgy E).

= ¢ and
z—1 > T an

Furthermore, a!, = W(T.) where T, is an edit sequence for which z,,

(0’ €, t;) + (Igrqlq2 ceoQr—1yUz—1, 6).

Therefore, b/, = b, and a, = a, since if b, # b, then either a, + b}, or aj + b, is less
than a, + b, which is not possible.
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The entries [g;— 1, %z—1,lz—1, 8z, bz, gz, ) on I, may be processed by step II.C
in any order so let [gh_1,%n—1,lh—1,a}, b}, gn, ur] on I;, be the last entry processed
by step II.C. If h = m, examining step II.C.1.ii shows that

(IRHS(]))' - (m - h),O,pawaj) € Glh(qm uh)

when the entry [gh_1,%n—1,lh—1,@h,bn, gn,ur] on I;, is processed by step II.C.2.iii.
If h < m, applying Lemma 5.4.10 for the entries

[qh, Up, lha Apy1, bh+1 s qh+1, uh+1] on Ilh+1
[qh+1 sy Uh41, lh+1 yQhi2, bh+2y qh+2, uh+2] on Ilh+2

[qm—l yUm—1, lm—l, Ay bm7 dm, um] on Ilm

shows that

(IRHS(p)l - (m - h)7 Z bxapaw’j) € Glh(thuh)-
r=h+1
when the entry [gh_1,%n_1,lh-1,@n,br,gn,us] on I, is processed by step II.C.2.iii.
Applying Lemma 5.4.2 to [r,v,%,a1,b1,9;,u;] on I;, shows that there is an entry
(7,7,7,a0,b0,7,v] on I, for which a; = ao + by. Furthermore, if m > |[RHS(p)| then
7,?,?,a0,b0,7,v] = [0,¢,0,0,by,0,v]. Applying Lemma 5.4.11 to

?,?7,?,a0,b0,7,v] on I,
[r,v,z, a1, bi, ql?"'l] on I,
(91521, 11, a2, b, g2, us] on I,

[Qh-—la Uh-1, lh—l, Qp,y bh, qh, Uh] on Ilh

shows that if m = |RHS(p)| then

h
(7" v,1,a1, Z bw) € B(|RHS(P)|—('"“"))'1

r=1

and that if m > |RHS(p)| then

h
(0,€,0,0,>_ b:) € B(rats(p)|—(m—h))-1-
r=0
In either case, step II.C.2.iii of Algorithm 5.1.1 adds ([r,v,?,¢,d,s,w],7) to H and
Lemma 5.3.1 and Lemma 5.4.5 show that [r,v,1,c,d’,s,w] is added to I, where
d+d =c+d.
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5.5 RUN TIME ANALYSIS

The run time analysis in this section is simplified by the fact that Algorithm 5.1.1
is a modified version of Algorithm 4.1.1. The analysis of Algorithm 5.1.1 time and
space complexities is performed by comparing the two algorithms and drawing on
the results for Algorithm 4.1.1.

Two major results are presented in this section. The first result shows that
Algorithm 5.1.1 has O(n®) time complexity and O(n*) space complexity and the
second result shows that for LR(k) grammars and a bounded stack size the time
and space complexity is O(n).

5.5.1 O(n®) Time and O(n') Space Complexities

Since Algorithm 5.1.1 is a modified version of Algorithm 4.1.1, its time and space
complexities can be determined from a comparison of the two algorithms. Entries
in Algorithm 5.1.1 have two cost components and two lookahead strings that are
not present in entries for Algorithm 4.1.1. However, none of the operations af-
fected by this change have their time or space complexity increased over those in
Algorithm 4.1.1. This is because the maximum length of the lookahead strings is
O(1) and nothing is done with the cost components other than adding them in
conjunction with other operations on the entries.

Step II.B of Algorithm 5.1.1 is a completely new step but it does not increase
the algorithm’s time complexity over Algorithm 4.1.1. This is because the function
of step II.B is to fill the lookahead string for an entry and there are at most O(1)
different possible lookaheads. Thus the costs of executing step II.B can be charged
to the corresponding entry which was processed by step I or step II.C.1.i.

The space complexity of Algorithm 5.1.1 is increased over Algorithm 4.1.1 by
the elimination of duplicate checking for the pending list, H, in steps II.C.1.i
and II.C.2.iii. The pending list may contain as many as (O(n®) entries since
step II.C.2.iii may add O(n?) entries for each entry it processes. The time com-
plexity is not affected because any particular entry can still only be added O(1)
times for each entry processed by step I1.C.1.i or step II.C.2.iii.

Step II.A of Algorithm 5.1.1 has been changed from Algorithm 4.1.1 so that
it removes a least-cost entry. This change could potentially increase the time
complexity of the removal or insertion operations but a simple reorganization of
the pending list can be used to avoid an increase. The pending list is organized as
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an array of m + 1 lists where m = max({W((a — b)) | (a — b) € A}). When a
entry ({g,u,1,¢,d,7,v],7)is added to the pending list, it is added to the list indexed
by (¢ + d) mod (m + 1). Thus, the number of primitive operations for adding an
entry to the pending list is still O(1).

For removing entries from the pending list, an auxiliary variable, [, is used to
index the pending list. The index [ is initialized to 0 in step I of the algorithm.
When a least-cost entry is to be removed from the pending list, the first entry
on the list indexed by ! is removed. If the list indexed by [ is empty then [ is
incremented by 1 mod (m + 1) and the next list is checked. This process continues
until an entry is found or the pending list is determined to be empty. Examination
of Algorithm 5.1.1 and the proofs of its correctness show that the entries on the
list indexed by [ will always be least-cost entries since m = max({W((a — b)) |
(a — b) € A}). Thus, the number of primitive operations for removing an entry
from the pending list is O(1).

The comparison of Algorithm 5.1.1 and Algorithm 4.1.1 shows that the only

impact of the changes is to increase the space complexity because the pending list
may grow to O(n*) entries.

5.5.2 O(n) Time and Space for LR(k) Grammars

Since Algorithm 4.1.1 and Algorithm 5.1.1 are both simulating an (explicitly-
advancing) LR(k) parser, The results for Algorithm 4.1.1 when an LR(k) grammar
is used carry directly over to Algorithm 5.1.1 when there are no errors in the input
string. However, for Algorithm 5.1.1 it is desirable to consider the effect of leaving
the test for duplicate entries in step II.C. '

Checking for duplicate entries only increases the time complexity if there are
O(n) entries on a parse list I,. An entry [q,u,t,¢,d,r,v] on I, implies that the
LR(k) parser can make the sequence of moves

*
(alq,w,+1,n+k+1) = (0“1"', w.7+1,n+k+1)-

Since the LR(k) parser is deterministic for an LR(k) grammar, O(n) entries on a
parse list implies that there must be O(n) states on the parse stack for the LR(k)
parser at some point during the parse of the input string.
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In actual pratice, LR(k) parsers are mostly used with stacks of bounded size,
even when the grammar contains right-recursive productions. Given the constraint
of a bounded stack, Algorithm 5.1.1 has O(n) time complexity for input strings
with no errors even though duplicate checking is left in step II.C.

5.6 REGIONALLY LEAST-COST ERROR RECOVERY

This section shows how Algorithm 5.1.1 can be used for regionally least-cost error
recovery in LR(k) parsers. The practical advantage of Algorithm 5.1.1’s depth-first
search over breadth-first searches is also discussed. The discussion in this section is
limited to LR(k) parsers, but these results can be extended to LALR(k) or SLR(k)

parsers.

In practice, an LR(k) parser operates normally until it encounters an error
in its input string. The parser then invokes its syntax-error recovery algorithm.
Once the parser recovers from the error, it continues parsing from the configuration
generated by the syntax-error recovery algorithm. This style of parser operation is
the one assumed when Algorithm 5.1.1 is used as a syntax-error recovery algorithm.

For regionally least-cost error recovery, one issue is how far beyond the parser-
defined error location to extend the region. One approach is to always use a fixed
number of tokens. Another approach is to use Mauney and Fischer’s [21] MPLU
symbols as markers for the end of the error recovery regions. Algorithm 5.1.1 is
flexible enough to be used with either of these approaches.

Another issue that any syntax-error recovery algorithm must address is that
the location in the input string at which the parser detects an error may be beyond
the actual error location. There are several ways to deal with this issue during error
recovery:

e ignore it and only allow changes to the unparsed input;
e retain the previously scanned input and allow it to be changed; and
e allow the stack (as a representation of parsed input) to be changed.

Once again, Algorithm 5.1.1 is flexible enough to be used with any of these ap-
proaches.
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Assuming for the moment that repairs can only be made to the unparsed
input, Algorithm 5.1.1 can be straightforwardly applied to any configuration in
which an LR(k) parser detects an error. Let the configuration be

(0q1q2 oo o QmyWyt1:g+ky Witk+1in+k+1 )

and let [, where [ > j + 1, be the location of the end of the error recovery region.
Then m + [ — j + 1 parse lists Iy, Iy,..., 4, are required and the input string
for Algorithm 5.1.1 is Zm41imtiey = Wjt1d-

The first m + 1 parse lists are used to record the stack so that reductions
can be performed. Each parse list I,, for 0 < 7 < m, is initialized with an entry
(¢i-1,€,2 — 1,0,0,q,,¢]. Note that by convention g, = 0. Parse list I, is initialized
with the entry [0,¢,0,0,0,0,¢]. The pending list, H, is initialized with the entry
(lgm-1,6,m —1,0,0, gm, el,m).

When Algorithm 5.1.1 is used for syntax-error recovery, step I1.B needs to be
changed so that tokens are not added to the lookahead string for an entry unless
the resulting lookahead string is valid for the entry’s state. Entries with invalid
lookaheads are troublesome during error recovery and their generation can easily
be avoided. This change does not affect the correctness of Algorithm 5.1.1.

Once initialized with the starting configuration, Algorithm 5.1.1 is started
and allowed to execute normally. Note that it is assumed that the pending list,
H, is processed in first-in last-out order for entries with the same costs. This gives
Algorithm 5.1.1 its depth-first search capability.

Step II of Algorithm 5.1.1 needs to be changed to allow for a new termination
condition:

If the last entry processed was ([g,u,h,c,d,r,v],t) and i = m +1—j
then halt; otherwise perform the following steps:

This termination condition uses the parse list I,,1;-, as a sentinel to detect the
completion of a least-cost edit of the region. If an entry is added to I,,4;—, then the
entry corresponds to an edit of the region. Since entries are added to their parse
lists in order of increasing cost, the first entry added to I,,;—, must correspond to
a least-cost edit of the region.

If an entry [g,u, h,c,d,r,v] is added to Iti—; and vjyj;jy| # Wi oF |v| < k then
the selection of wy; as the end of the region is questionable. However, this presents
no difficulities for Algorithm 5.1.1 because additional parse lists can be added to
expand the region and the execution of the algorithm can be continued.
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Once Algorithm 5.1.1 halts, the edit of the region must be recovered and the
parser placed in its new configuration. The recovery of the edit of the region
requires that Algorithm 5.1.1 be modified to maintain a pointer in each entry.
This pointer is used to point to the predecessor of the entry. Step II.C.1.i and
step II.C.2.iii must be modified to properly initialize this pointer. Step II.B must
be modified to copy this pointer to all successors of the entries it processes.

Using the entry [q,u,h,c,d,r,v] on I4i—,, the predecessor pointers are fol-
lowed back to the entry [g,n_2,€,m —2,0,0,¢,,—1,€| on I,,_;, reversing the pointers
along the way so that they point to each entry’s successor. Then the successor
pointers are followed forward, simulating the moves of the parser to create the new
configuration. The edits can be reconstructed during the simulation by comparing
the lookaheads for each entry with the actual input string.

The advantages of the depth-first capabilities of Algorithm 5.1.1 for simple,
single token errors can be seen easily from the above description. Suppose the
error is a single token error which occurs at the parser defined error location.
Algorithm 5.1.1 will attempt single token repairs at the error location. The first
single token repair that parses to the end of the region will terminate the algorithm
and no time will be wasted on the remaining repairs. If a single token repair can
only be parsed part way through the region then Algorithm 5.1.1 will attempt to
repair the “second” error as long as the cost of the two repairs does not exceed
the cost of trying an alternate single token repair at the original error location.
Any time a repair enables Algorithm 5.1.1 to correctly parse the rest of the region,
Algorithm 5.1.1 will effectively stop trying alternatives. Thus, Algorithm 5.1.1
attempts to quickly find a least-cost repair for the region and only backtracks to
consider alternatives when continuing forward leads to higher-cost repairs.

For more powerful syntax-error recovery, Algorithm 5.1.1 can also be used to
alter contents of the stack when repairing the region. The full details for such a
use of the algorithm are not presented here, but the general approach is outlined.
This approach takes advantage of the fact that each state on the stack corresponds
to a symbol in a viable prefix for the grammar and that the stack may be changed
as long as it remains a viable prefix. The symbol corresponding to a state g on the
stack is denoted g.

Altering the stack requires the LR(k) parser to compute and record the fol-
lowing information for each stack position, ¢, during normal parsing:

e the number of tokens derived from g,, denoted C(z);
e the first k tokens derived from §,, denoted T'(z); and

e the cost to delete the tokens that are derived from g,, denoted D(3).
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This information can be easily collected by the parser and should not greatly affect
its efficiency.
As before, the starting configuration is

(OQIQ2 so o Qmy Wyt1g4+ky Wytk+1n+k+1 )

However, the input string, z, for Algorithm 5.1.1 is allowed to contain the non-
terminal symbols §,. Actually, each nonterminal §, which derives k or less tokens
is expanded and replaced in z by its tokens. The following definitions aid in the
initialization of the parse lists for Algorithm 5.1.1:

N[ TG) HCE) <k
Mﬂ—{@ if C(i) > k

()= Y |EG)|

z=0

MG) = ¥ 170)

2z = E(1)E(2)... E(m)
y = T(1)T(2)...T(m)

h_{MﬁH)HC@+D§k
*TLGE) HCGE+1) >k

Uy = YM()+1:M(2)+k-

Finally, let m’' = L(m) and zp/41:m/4i—; = Wjg1a-

Using the input string 2, m/+1—j+1 parse lists Iy, I1,. .., In4i—, are required.
The first m' + 1 parse lists record the stack and allow edits to the stack to be
performed. Parse list I, is initialized with the entry [0,¢,0,0,0,0,u,]. Each parse
list I, for 0 < 42 < m is initialized with an entry [g_1%—1,hi-1,0,0,q,u,]. All
of these entries have their predecessor pointer initialized appropriately since the
predecessor pointers will now be followed back to an entry [0,¢,0,0,7,0,?] when
Algorithm 5.1.1 halts. As before, this initialization of the parse lists allows the
stack to be used for reductions as the unparsed input is processed.

The pending list, H, is initialized with the entry [qy, €,0,0,0, go, €] along with,
for 0 < i < m + 1, the entries ([g,—1,%,—1, h,-1,0,0,q,,€], L(3)). Again, all of these
entries have their predecessor pointer initialized. These entries allow edits to be
made at any point in the stack.
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Algorithm 5.1.1 must be modified to deal with the nonterminal symbols present
in z. This also forces the algorithm to incorporate nonterminal symbols into its
lookahead strings. In general, whenever a lookahead string contains a nonterminal
symbol, g,, the k symbols in T'(7) are substituted for the nonterminal symbol when
the lookahead is used. If §, is not the first symbol in a lookahead string, the extra
symbols added by 7T'(7) are ignored. Note that the treatment of nonterminals in
lookahead strings has the effect of only allowing one nonterminal in a lookahead
string and this nonterminal is always the last symbol in the lookahead string.

Steps II.B.1 thru II.B.4 of Algorithm 5.1.1 must be changed to make sure
that they are only applied to terminal symbols when the lookahead string does
not contain nonterminal symbols. Two new steps need to be added to step B —
one step for deleting nonterminals; and one step for “scanning” a nonterminal.
Note that replacing nonterminals is not supported and that inserting before a
nonterminal is the same operation as inserting before a terminal.

The new step for deleting a nonterminal is step II.B.5 and is written as follows,
assuming that an entry ([g,u, h,c,d,r,v],{) is being processed:

5. If z,11.y+1 = G, for any 7 such that 0 < 7 < m, and v € ¥* then add
(lg,u, h,c,d + D(3),r,v],1+ 1) to H.

This step simulates the deletion of a nonterminal, if the lookahead string does
not contain any nonterminals. The requirement that the lookahead string not
contain any nonterminals prevents the nonterminal from entering the lookahead
string before it is deleted.

The new step for scanning a nonterminal is step I1.B.6 and is written as follows,
assuming that an entry ([g,u, h,c,d,r,v],1) is being processed:

6. If z,11,41 = G, for 0 < i < m, then add ([q,u, h,¢c,d,7,vq],1) to H.

This step simulates the scanning of a nonterminal symbol. Unlike step B.1 which
scans a terminal symbol, the entry is not advanced to the next parse list.
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Also, step C.1.i of Algorithm 5.1.1 must be modified to correctly “shift”
nonterminal symbols. The step is rewritten as follows, assuming that an entry
(lgyu,hyc,d,r,v],l) is being processed:

1. If shift € f,(v) then perform one of the following steps:
a. If v, € ¥ and s € g,(vy,1) then add ([r,v,l,c+ d,0,5,v24],1)
to H.
b. If v;.; € N and s € g,(vy.1) then add ([r,v,l,c+d,0,s,¢],1+1)
to H. /

With all of these modifications, Algorithm 5.1.1 can edit both the stack and
the unparsed input in the region. The termination condition for Algorithm 5.1.1 re-
mains the same. Finally, the reconstruction of the edits and the final configuration
follow the same procedure as outlined previously.
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CHAPTER VI
CONCLUSION

6.1 SUMMARY

This dissertation develops a regionally least-cost error recovery scheme with a
worst-case time complexity comparable to other error recovery schemes, such as
Burke and Fisher’s [6], and Pennello and DeRemer’s [24], which are limited to less
powerful repairs. This regionally least-cost error recovery scheme improves upon
Mauney’s [20] scheme through its ability to perform a depth-first search of the
error’s region and thus offers a greatly increased efficiency for simple single token
repairs.

During the course of the development of this improved regionally least-cost
error recovery scheme, three major algorithms were developed. The first is the
LR(k) Early’s Algorithm. This algorithm is essentially Early’s algorithm changed
to use the LR(k) states instead of LR(k) items. The LR(k) Early’s Algorithm is
important in its own right since in practice use of the LR(k) states reduces the
number of entries that must be allocated and manipulated. However, the worst-
case time complexity of the algorithm is O(n*) as opposed to O(n3) for Early’s
algorithm.

The second algorithm developed is the Depth-First LR(k) Early’s Algorithm.
This algorithm also uses the LR(k) states but it allows entries to be added to their
parse lists in any order (including depth-first) consistent with the parses of the
input string. In general, the worst-case time complexity of the algorithm is O(n®),
but it is only O(n) for LR(k) grammars and a bounded stack. The Depth-First
LR(k) Early’s Algorithm is the only general parsing method known to the author
that can perform in a depth-first manner with a worst-case time complexity less

than O(c").
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The third algorithm is the Least-Cost LR(k) Early’s Algorithm. The algorithm
extends the Depth-First LR(k) Early’s Algorithm so that it performs the least-
cost edit of its input string. This extension maintains the same worst-case time
complexity. The Least-Cost LR(k) Early’s Algorithm is the only globally least-cost
algorithm known to the author which can be shown to have a time complexity of
O(n) for a syntactically correct input string for an LR(k) grammar.

6.2 FUTURE WORK

The development of the Least-Cost LR(k) Early’s Algorithm has opened the door
to many additional inquiries. In addition to the theoretical time complexity results
presented here, the algorithm’s performance in actual practice should be measured
against a suitable benchmark. The actual quality of error recovery should also be
studied.

More theoretical results for the worst-case time complexity of the algorithm
would be useful. For example, it is desirable to know the worst-case time com-
plexities for erroneous strings when the grammar used is left-linear or right-linear,
regular, or LR(k).

Finally, the algorithms developed in this dissertation of syntax-error recovery
may offer improvements in other areas where Early’s algorithm has been used, such
as parsing extensible languages and pattern matching.
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