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CHAPTER I 

INTRODUCTION 

Problem Formulation 

Many dynamical systems, such as the vibration of a beam and 

plate structure with large deflections, may be modeled by nonlinear 

differential equations. Approximate solutions to the nonlinear 

differential equations based on perturbation methods (Nayfeh and 

Mook, 1979) have proven very successful in predicting strong 

nonlinear responses of such systems when the excitation consists of 

a single frequency. However, when the excitation is random, such as 

Gaussian white noise, it has thus far not been possible to simply and 

accurately estimate the system response if the system nonlinearity 

is not very weak. Since Booton (1953) and Caughey (1953, 1963) 

independently extended the equivalent linearization method (Krylov 

and Bogoliubov, 1943) to statistical linearization, the techniques 

have been widely used for dynamic analysis. This is especially true 

for the Gaussian linearization approach and controller design of 

stochastic externally excited nonlinear systems and have been well 

documented (Nigam, 1983). However, in the application of the 

Gaussian linearization method to externally excited systems, the 

accuracy in predicting the stationary output variance is usually 

1 
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within twenty percent (Spanos, 1981), and the predicted results are 

always underestimated. To improve the accuracy of the mean square 

response, the Gaussian linearization method has been extended to a 

non-Gaussian linearization method for a nonlinear system under 

stochastic external excitation (Beaman and Hedrick, 1980). Through 

this improved linearization method, the accuracy of the predicted 

mean square response is improved. However, since a non-Gaussian 

probability density function is assumed for the system response 

coordinates, much more computing effort is needed in obtaining the 

mean square response than that of Gaussian linearization. Closure 

techniques are also used to solve the response of a nonlinear system 

to an external random excitation. In applying these techniques, 

differential equations or algebraic equations in the stationary case 

for certain response moments are derived which contain higher 

moments. When more equations for the higher moments are derived, 

even higher moments are involved. Usually, this ever growing 

process is truncated by a closure assumption that higher moments 

are related to lower moments in a way which is governed by the 

assumed probability distribution of the response coordinates. The 

Gaussian closure technique is relatively simple but its results are 

not as good as those of a non-Gaussian closure technique. Although 

the non-Gaussian closure technique produces better prediction, it is 

a highly mathematically oriented method which is not readily 

applied to engineering problems without some length of derivation 

(Crandall, 1980). Researchers of this and similar techniques often 

produce an expanded Taylor series of their prediction and compare it 
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with another Taylor series directly derived from the solution of a 

corresponding Fokker-Pianck-Kolmogorov (FPK) equation to compare 

accuracy. However, all of these series are of little practical use 

because of their slow convergence property. Recently, Menh (1987) 

proposed a method which solves the mean square response through 

direct integration of the system response spectral function, which 

is obtained through a successive approximation method. Miles 

(1989) proposed a method which allows the linearized system 

natural frequency to be a random variable. Both of these methods do 

not make the nonlinear system response solution any simpler. The 

former requires a sophisticated mathematical derivation while the 

latter requires iterative integration simulation to find a constant k 

for its adjustment of moments relation. Meanwhile, in case where a 

nonlinear system is subjected to both parametric and external 

excitations, most of the techniques mentioned above will not 

produce accurate predictions since the state multiplicative terms 

result in non-Gaussian probability distributions even for linear 

systems. Therefore, methods documented by Ibrahim (1985), 

proposed by Young and Chang (1987) and by Bruckner and Lin (1987) 

will be of importance. However, these methods are sophisticated in 

general, and cannot be applied easily. 

Research Objective 

The objective of the present research is to develop practical 

and concise methodologies which include several interconnected 
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methods, such as the maximum linear classification (MLC) method, 

the new extended statistical linearization (NESL) method, and the 

equivalent Gaussian distribution (EGO) method to deal with nonlinear 

systems which are subjected to random parametric and external 

excitations. The developed methods and their application to control 

system design are expected to be simple and accurate. 

Scope of Study 

The primary concept of the MLC method revolves around the 

idea that a nonlinear system possesses both a linear dynamic 

mechanism and a nonlinear dynamic mechanism. With certain 

measure, if the maximum linear dynamic mechanism is classified, 

the system then can be solved by using the theory developed for 

linear stochastic systems. This method differs from the 

linearization methods in that the classified nonlinear dynamic 

mechanism is not discarded. Instead, it is used as a system natural 

feedback to correct the predicted system response. The MLC method 

is derived in chapter 2. A random externally excited Duffing 

oscillator is selected to illustrate the application of the developed 

method. With the same simplicity the method is then extended to 

solve linear or nonlinear systems subjected to both random 

parametric and external excitations. Two examples of these 

systems are also illustrated. The primary concept of the NESL 

method developed around the idea that linearizing a nonlinear 

system by minimizing the conventional L2 norm, i.e., the mean square 

error, may not be an optimal or a suboptimal linearization in that 
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the predicted system response from the corresponding linearized 

system may not be the best, although its computation property is 

rather ideal for most of the smooth nonlinear functions. Hence, 

proper selection of the minimizing norms, may lead to linearizations 

which offer better response predictions or offer considerable good 

response predictions for systems which has non-smooth type of 

nonlinearities such as the dead area, that Gaussian linearization by 

minimizing the mean square error proves to be difficult because that 

the involved symbolic error function can not be explicitly written in 

a closed form. The NESL method is derived in chapter 3. And some 

typical examples are followed to illustrate the basic content of this 

method. The equivalent Gaussian distribution method is mainly 

discussed in chapter 4. This method is an error controllable 

approximation to the conventional Gaussian linearization method, in 

which a limited number of uniform distribution probability functions 

are used to replace the Gaussian distribution Through this 

substitution, the integration difficulty occurred in the statistical 

linearization by minimizing the mean square error is avoided. With 

the development of this method, the NESL method can be further 

extended because that the required L2 linearization can be easily 

realized regardless of the difficulty of integration. Chapter 5 

discusses the application aspects of the methods introduced in the 

previous chapters. Controller design for a nonlinear stochastic 

system by using these methods are discussed and several examples 

are given in this chapter. Chapter 6, the last chapter, shows the 

results and conclusions of the developed research. 



CHAPTER II 

MAXIMUM LINEAR ClASSIFICATION METHOD 

How to accurately predict nonlinear stochastic system 

response without evoke the sophisticated Fokker-Pianck-Kolmogorov 

(FPK) equation has been a problem that challenges the researchers in 

this field for many years. In this chapter, the maximum linear 

classification method which is designed to attack on this problem is 

to be introduced 

Linear System Response 

Before deriving the maximum linear classification(MLC) 

method a brief discussion on mean variance response of a linear 

system subjected to a random excitation is of importance. 

For a typical second order linear system with external 

excitation 

I11X +ex+ k0x = f(t) ( 1 ) 

where m is the system mass, c is the system damping factor, k0 is 

the spring rate, and f(t) is the random excitation, its mean square 

6 



response may be obtained through the following integration 

(Newland, 1984) 

l{x2] = [ IG(rof S~ro)dro 

where G(ro) is the complex frequency response which can be 

expressed as 

G(ro)= 1 
- m ro2+ i c ro + ko 

(2) 

(3) 

S~ro) is the spectral density of the random excitation process which 

can be expressed as 

(4) 

where 

R~1:) =E[f{t}f(t + 1:)] (5) 

For zero mean Gaussian white noise excitation 

(6) 

and 

7 
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S~ro) = Qo loo B('t) e-icot d't = Qo 
2x 2x 

-co 

(7) 

The corresponding system mean square response becomes 

(8) 

In the application of the statistical linearization technique, only the 

parameter k0 is adjusted with the system nonlinearity to correct (8) 

for the mean square response prediction of a corresponding nonlinear 

system. However, in the development of the maximum linear 

classification method, both Q0 and k0 are to be adjusted for the 

purpose of nonlinear system mean square response prediction. 

Maximum Linear Classification 

Consider the response displacement x(t) and velocity x(t) 

excited by a random process f(t) in a nonlinear oscillator with the 

equation of motion 

X+ ex+ WaX+ H(x) = f(t) (9) 

where H(x) is a nonlinear restoring force. For simplicity H(x) is 

assumed to be smooth and well behaved such that a stationary 

solution to (9) is guaranteed when the excitation f(t) is zero mean 



Gaussian white noise and its autocorrelation function R~t} can be 

expressed by a delta-function as in (6). Solving the corresponding 

FPK equation one obtains the mean square response 

[ x2exp{- <t-r [ <ifo~ + H( ~)]d~ r 
&x2] =---------- ( 1 0) 

[ exp{-Q.r [ <ifo~ + H( ~)]ct~ }dx 

which can be evaluated through a numerical routine. The purpose 

here is not to follow the numerical calculation of (1 0), but to find a 

concise expression for the mean square response I{x2], which is 

manually tractable and still maintains almost the same prediction 

precision that (1 0) possesses for a considerable range of system 

nonlinearity. 

Write (9) into the following form 

x +ex+ (w~ + k)x = f(t)- {H(x)- kx} ( 11 ) 

9 

Mathematically, there is no difference between (9) and (11 ). 

However, physically, (11) can be interpreted as a linear system 

excited by an external process f(t) with a negative nonlinear 

feedback, H(x}-kx. If k is selected in such a way that the nonlinear 

feedback, H(x)-kx, is statistically minimized in some measure, the 

left-hand-side of (11 ), the linear dynamic mechanism of the system, 

is maximized. With this treatment, the system can still be 
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considered as a system dominated by the linear mechanism. In the 

stationary case, equation (8) may still be used to predict the mean 

square response. But the system excitation intensity is no longer Q0 • 

Instead, it consists of the effects of the external excitation, f(t), 

and the minimized nonlinear term, (H(x)-kx). 

To maximize the linear dynamic mechanism of (11 ), one 

approach is to statistically minimize the mean square value of the 

nonlinear term, {H{x)-kx) with respect to k. This may be 

accomplished by setting 

a 
-ft(H(x)- kxf] = 0 
iJk 

This yields 

2E[xH{x)]- 2k&x2] = 0 

which gives the well-known result 

k =~xH{x)] 
I{x2] 

Substituting (14) into (11) gives 

X.+ ex+ (cifo + ~xH{x)]} x = f(t}- (H(x)- ~xH(x)] x) 
I{x2] I{x2] 

( 1 2) 

( 1 3) 

( 14) 

( 1 5) 

Using the general property for Gaussian white noise excitation 



E{f(t}q(x)] = 0 (1 6) 

where ~x) is an arbitrary differentiable function, and assuming 

Gaussian response, the autocorrelation function of the right-hand­

side of (15), RRHs(t), in the stationary case may be written as 

RRHs(t) = ~(f(t) -(H(x(t)))- ft~~x)] x(t)){f(t + t) -(H(x(t + t)))- ft~~)] x(t + t))] 

= QJ){t) + RJt) 

where 

RJt) = E[H(x(t))H(x(t + t))]- ft~~x)]( E[x{t)H(x(t + t))] + E[x(t + t}H{x(t))]) 

· (E(xH{x))f E[x(t)x(t + t)] 
(fix~f 

Let 

RH{t) = E[H(x(t))H(x(t + t))] 

Rx(t) = E[x(t)x{t + t)] 

RxH(t) = E[x(t)H(x(t + t))] 

( 1 7) 

( 1 8) 

( 19) 

(20) 

(21) 

(18) may be written in a simpler form for further derivation i.e., 

(22) 
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In most cases, Re('t) may not be white, since x(t) can be a band limited 

or narrow band random process. As a result, Re('t) can not be written 

as a delta function with a constant intensity. However, if the 

frequency range of the response coordinate, x(t) is not very narrow, 

using a delta function, B('t), and an equivalent intensity Ox to 

approximate the autocorrelation function, Re('t), the response 

prediction of (15) will be greatly simplified. To find Ox, we 

construct the following function 

l!J 

J~ JJ2~r RJ*mdt-2~r Ox~t~trdro 
2 

and let 

~=0 
aQx 

to obtain 

(23) 

(24) 

(25) 

where Se(ro) is the power spectrum density function of Re('t), 13 is a 

positive constant. If 13 is chosen in such a way that: 
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(25) may be approximated as 

(26) 

= 2_1I{ I{H2(x)] _ (JtxH{x)]f) 
13\ J3Lx2] 

Hence, RRHs(t) may be approximated as 

RRHs(-r) ... Qo()(-r) + <b()(-r) = Qo(){-r) (27) 

where Q0 is the corrected system excitation intensity. In examining 

(25), (26) and (27), one may conclude that Ox has a dimension of 

(acceleration)2/frequency which is consistent with the dimension of 

Q0 • Using Q0 to replace Q0 in (8) gives the following mean square 

response prediction equation 

(28) 

Equation (28) appears to be a sophisticated equation which involves 
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higher moments of the response coordinates. However, through the 

previous discussion the modified system is dominated by the linear 

dynamic mechanism and its output should be approximately Gaussian. 

Using the Gaussian moments relation, (28) can be easily reduced to a 

manually tractable form for a given nonlinear function H(x). 

Comparing (28) with the commonly used statistical linearization 

equation 

(29) 

one would find that (28) provides additional information in the 

numerator. Under certain conditions, for example, when the 

nonlinearity is very weak such that the additional information in 

(28) can be discarded, it then reduces to that obtained using 

statistical linearization. 

In actual calculation of (28), ~ should be determined. ~cannot 

be too small to maintain the approximation given in (26). But it 

cannot be too large such that the correction information offered in 

(28) becomes trivial. This implies that f3 is a function of the natural 

frequency of the linearized mechanism and its bandwidth. Consider 

these factors, f3 is chosen in such a way that (25) covers ten times 

the natural frequency of the linear mechanism, i.e., 

(30) 



15 

This method can also be used to deal with systems which have 

both stochastic parametric and external excitations. For simplicity, 

assume that the parametric excitation is only associated with the 

displacement term. In this case the system subjected to both 

parametric and external excitations may be expressed as 

x +ex+ cifox + ( 1 + ~(t))H(x) = W{t) (31) 

where ~(t) and W(t) are two independent zero mean Gaussian processes. 

In this case, the system can be interpreted as an externally excited 

nonlinear system with a stochastic excitation and a nonlinear 

natural feedback which has a random gain factor (see Fig. 1 ). 

Considering the stationary response, the input to the externally 

excited system of Fig. 1 may be considered as W(t)- ~(t) ·Nonlinear term. 

Hence, (28) may still be used to calculate the mean square response 

of a system with both parametric and external excitation if new 

information is added to the intensity term of the external 

excitation, Q0 , in (28). Following the same development as given in 

(23) and (25), the combined external excitation may be expressed as 

(32) 

where cr~ is the mean square value of the external excitation, and a~ 

is the mean square value of the parametric excitation, ~(t). 

Substituting (32) into (28), one obtains 



(33) 

(33) is the mean square response prediction equation for a system 

subjected to both stochastic parametric and external excitations. 

Like the externally excited system, if, after maximum 

16 

classification, the nonlinear system with both parametric and 

external excitations can still be considered as a system in which the 

linear dynamic mechanism dominates, the Gaussian moments 

relation may still be used to reduce equation (33). However, if 

maximum linear classification does not lead to the linear dynamic 

mechanism domination, the Gaussian moments relations may not be 

used. This issue has been addressed by Chang and Young (1989). An 

interesting point worth mentioning is that (33) actually is an 

integrated mean square prediction equation for systems subjected to 

parametric and/or external excitation. For example, when ~ = 0, 

(33) reduces to an equation that predicts the mean square response 

of an externally excited system. 

Applications of the Maximum Linear 

Classification Method 

In this section several examples will be given to show the 

simplicity and validity of the MLC method. 



Application 1Q. ~Puffing Oscillator 

with External Excitation 

Puffing's equation is given by 

x + ~x + cifo(x + ex3) = f{t) (34) 

where ro0 is the resonant frequency of the oscillator when the 

nonlinear coefficient, E, is zero, ~ is the damping factor, and f{t), is 

taken to be a zero mean, stationary Gaussian random process. 

Comparing (34) with (9), one obtains 

H(x) = ecifox3 (35) 

Statistically minimizing (ecifoX3 -kxf yields 

(36) 

which gives 

(37) 

Writing (34) in the same form as (11) and substituting (37) gives 

(38) 

17 
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From (27) we can further write 

(39) 

Hence, the mean square response prediction equation for the Duffing 

oscillator may be written in the following form: 

(40) 

Under the Gaussian response assumption and using the Gaussian 

moments relations (Papoulis, 1984) 

(40) reduces to 

flx2] = Qo + 12ne2(flx2]P/~ 
2~~(1 + 3eflx2]) 

where, 
1 

~ = 20ro0 (1 + 3eflx2]E" 

(n an even integer) 

Comparing (42) with the Gaussian linearization result 

( 41) 

(42) 

(43) 

(44) 



it is clear that (42) reduces to (44) when the E2 term is discarded. 

In other words, the Gaussian linearization technique is a special 

case of the MLC method when the higher term QE2), is neglected. 

Take ~ = 1, cifo = 1, and Q0 = 1. (42) then yields 

(45) 

19 

(45) is a nonlinear algebraic equation which can be solved 

iteratively. Because its fast convergence property, for zero initial 

condition it takes only several steps to converge to the right 

answer. Fig. 2 shows the iteration solution process between (42) 

and (44), i.e., between MLC method and Gaussian linearization method 

for E = 25. MLC takes 7 steps to converge with little oscillation. But 

Gaussian linearization takes 18 steps to converge with much 

oscillation and poor accuracy. 

ForE= t• zero initial condition, 7 steps iteration of (45) yields: 

I{x2]1E = l = 0.3370 
2 

(46) 

ForE= 10, zero initial condition, 8 steps iteration of (45) 

yields: 

&x2] IE= 10 = 0.1236 ( 4 7) 

ForE= 20, zero initial condition, 9 steps iteration of (45) 
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yields: 

flx2]1 = 0.09372 
E = 20 

(48) 

Figures 3-5, show the results obtained from (45)-(48), the results 

from (1 0) by solving the FPK equation, the results from 1 000-run 

Monte-Carlo simulations, and the results utilizing Gaussian 

linearization. Fig. 6 shows the mean square response, fi:x2], vs. the 

external excitation intensity of the MLC method, the Gaussian 

linearization method, and the exact solution by solving the FPK 

equation for E = i. It is obvious from these results that MLC method 

offers much better prediction than that of Gaussian linearization, 

especially when E becomes large. For example, when E = 20, 

prediction error by MLC method is neglectable (0.7%). But the 

Gaussian linearization has as much as 12% error. 

Application 1Q. .a Linear Oscillator Subjected 1Q. .!iQ1h 

Parametric .a.rui External Excitation 

Consider a second-order linear oscillator with stochastic 

parametric and external excitations 

X+ (~o +~')X+ (Jlo + Jl'} X= w' (49) 

where ~o and Jlo are constants. ~', Jl', and w' are independent zero­

mean Gaussian white noise processes with covariances 

& ~'('t) ~'(t + 't)] =~I O('t), (50) 
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flJ.L1(t) Jl1(t + 't)] = ()~, O('t), (51) 

fl w'{t) w'{t + 1:)) =a;, 0{1:). (52) 

With a diffusion correction term, (49) can be written as 

" (r 1 _2) ' I Y' • I X+ ~0 - 2 ~, X+J.10 X=W -~X-JlX (53) 

When the response is stationary, the external excitation, w 1 , the 

velocity feedback, ~'x, and the displacement feedback, J.L'x, may all be 

taken as the external excitation to the linear system described on 

the LHS of (44) (Young and Chang, 1987). Comparing (53) with (31) 

and noting 

&xx] =0 (54) 

we obtain 

(55) 

Since the oscillator is linear, direct application of (33) gives 

(56) 

Using the equation given by Crandall (1980) 



(57) 

and comparing (56) with (57), one obtains 

(58) 

A little algebraic manipulation among (55), (57), and (58) leads to 

(59) 

This result is exactly the same as that obtained by solving the 

equivalent FPK equation (Young and Chang, 1987). 

Application 1Q. a Puffing Oscillator Subjected 1Q. .b.QJh 

Parametric .a.w1 External Excitations 

A Puffing oscillator incorporating both parametric and 

external excitations is expressed as 

(60) 
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where c and ro0 have been previously defined, e is a small parameter, 

Jlo is a constant, and J...L' and w' are independent zero mean Gaussian 

processes with covariances ElJ...L'{t)J...L'(t + t)] = cr~,8(t) and 

Ef w'{t)w'(t + t)] = cr;,8(t). Comparing (60) with (31 ), one obtains 



and 

H(x) = ECO~Jlox3 

~( t) = J.l'( t) 
J.lo 

23 

(61) 

(62) 

Hence, after maximum linear classification of the system, the mean 

square prediction equation for (60) is 

(63) 

Assuming a Gaussian moments relation, (63) can be reduced to 

For c = 1, ro~ = 1, cr;, = 1, J.lo = 1, and c? = 1, (64) yields 

(65) 

for E = j, zero initial conditions, after 5 steps iteration (65) 

converges and 



fix2]1£=l = 0.3993 (66) 
3 

for E = ~, after 5 steps iteration (65) converges and gives 

fix2]j E=l = 0.4192 (67) 
5 

for E = j, after 5 steps iteration (65) converges and yields 

f!x2] 1 £ =l = 0.4334 
7 

(68) 
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Figures 7, 8, and 9 show the comparison between this 

prediction and that of 1 000-run Monte Carlo simulations. These 

results can also be obtained by using the method proposed by Young 

and Chang (1987). However, the present method requires much less 

computational effort. Specifically, no associated FPK equation is 

required to be solved to yield a corresponding integration equation 

which then must be solved iteratively. 

Summary and Discussions 

A new approach termed the maximum linear classification 

(MLC) method to predict the stationary mean square response of a 

nonlinear system subjected to random excitation has been 

introduced. In this method, the linear dynamic mechanism of the 

nonlinear system is maximized, and the corresponding minimized 

system nonlinear dynamic mechanism is taken as a natural system 

feedback which in the stationary case produces additional excitation 

to the system linear dynamics. Through a Duffing oscillator 
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example, the stationary mean square prediction using this approach 

has been compared with those of the FPK exact solution, those of 

1 000-run Monte-Carlo simulations, and those of the Gaussian 

linearization technique. The present approach has an advantage over 

the other techniques of dealing with the nonlinear stochastic 

systems in that, while retaining the simplicity of the Gaussian 

linearization method, it offers more accurate prediction results for 

a given system nonlinearity. When the higher orders of c:, o(c:2), in the 

prediction equation are omitted, which corresponds to the weak 

nonlinear case, MLC can be reduced to the Gaussian linearization 

method. Moreover, this new approach can also be used to deal with 

systems subjected to both stochastic parametric and external 

excitations while still retaining tractability of the solution. 

Through a linear oscillator and a nonlinear oscillator both subjected 

to parametric and external excitations, it has been demonstrated 

that the new approach offers very good mean square prediction. 

However, when the system is lightly damped, such that the response 

coordinate x(t) becomes a narrow band random process which results 

in the approximation of (23}-(27) becoming invalid, or when the 

system nonlinearity becomes large such that the assumption of the 

domination of the linear dynamic mechanism is no longer valid, this 

method may not produce desirable results. However, due to the 

retention of the nonlinear correcting terms, this method 

consistently extends the range of useful prediction for 

parametrically and/or externally excited nonlinear systems while 

retaining the ease of use of classical linearization methods. 
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CHAPTER Ill 

NEW EXTENDED STATISTICAL LINEARIZATION 

As stated in the summary of the previous chapter that when 

system nonlinearity becomes very large and the maximized linear 

dynamic mechanism can not dominate the system, the MLC method 

may fail to give good response prediction. To cope with this 

situation and some other situations, such as that the system 

nonlinearity is not a smooth function, the new extended statistical 

linearization method is to be derived in this chapter. This method 

basically deals with different minimizing measures. Therefore, a 

brief discussion of norms is of importance. 

Brief Review of Norms 

For many purposes it is necessary to be able to associate with 

any vector a single nonnegative scalar that in a sense provides a 

measure of its magnitude. The length definition in a Hilbert space or 

the norms of a vector are possible choices. 

Definition: It is said that N(x) is a norm of a vector x, in a space 

Hn, if N(x) = llxll for x c f:Pl, satisfies 

35 
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1. llxll ~ 0 (llxll = 0, for x = 0 only) 

2. llcxll = lei 11x11 (c a scalar) 

3. llx + Yll ~ llxll + IIYII (triangle inequality) 

It is easy to prove that the following definitions of norm satisfy 

the above definition: 

1. L1 Norm 

2. L2 Norm 

3. L Norm 
00 

n 

llxll1 = L lxil 
i = 1 

llxllz = (.t xr \} 
1= 1 r 

llxlloo = max lxi I 
l~i~n 

All the norms are equivalent in the following sense 

c1 llxll i ~ llxll j ~ Cz llxll i 

where c1, c2 are constants and c1, c2 > 0. 

The statistical linearization problem can be interpreted as the 

problem of finding a minimum norm for the vector 

H(x) - kx 

in a Hilbert space through adjusting the value of k, where H(x) is the 

system nonlinearity. The commonly used statistical linearization 

technique adjusts k to k* such that 

min IIH(x) - kxll2 = IIH(x) - k*xll2 

This actually is the technique of minimizing the L2 norm. However, 

other norms can be minimized, resulting in different values for k* in 



37 

general. These norms are comparable to each other because of the 

norm equivalent property. In the process of finding k*, if a Gaussian 

distribution for the response coordinates is assumed, the method is 

then called Gaussian linearization. 

Improved Statistical Linearization 

Since Gaussian linearization by minimizing the mean square 

error always gives an underestimate of the system mean square 

response to a Duffing oscillator (Crandall, 1986), one would think 

that Gaussian linearization always provides an underestimate. 

However, this is not the case. If, instead of using L2 for the 

linearization, other norms are used for the purpose, the results will 

be different. 

Consider the Duffing oscillator with displacement x(t) and 

velocity x(t) excited by a zero mean Gaussian white noise 

(69) 

where s is the damping factor, roo is the natural frequency of the 

system when the nonlinear coefficient e is zero, and f(t) is the 

Gaussian process with Rt('t) = Q0 8('t). Under the Gaussian response 

assumption, linearization by minimizing the mean square error 

function 

(70) 



leads to the following linearized system 

x + ~x + (cifo + Ek2)x = f{t) 

where 

(71) 

(72) 

The associated mean square response prediction equation is 

(73) 

Beaman and Hedrick (1980) have pointed out that when E becomes 

large, prediction from (73) will have 15% relative error and the 

prediction is always lower than that of the exact solution. In this 

paper, the Duffing oscillator (69) is to be linearized first by 

minimizing the L1 norm, or 

(7 4) 
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Under the Gaussian response assumption (74) can be further written 

as 

(75) 

where 
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p{x) = 1 exp (-l._L) y 21t F[x2J 2 I{x2] 
(76) 

Using the Leibnitz differentiation rule 

1

b(t) 1b(t) 
d - a db(t) da(t) 
dt h(t, t) dt - - h(t, t) dt +Cit h (t, t) I 't = b(t)-ili h(t, t) I 't = a(t) 

a(t) a(t) dt 

(77) 

in; 

~E[ I e I]= 2t x exnLl_R__\nx- {oo x exnf_.l_R__) dx 
dk1 Y21t F[x2] r\ 2 flx2]f )n; r\ 2 flx2] 

0 

= 2e " Jirx2T {t - 2exJ_t _h_)} = 0 ·v ~ r\ 2 flx2] 
(78) 

Solving for k1 

(79) 

Hence, the linearized system is 

(80) 

where k1 is given by (79). The associated mean square response 
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prediction equation is 

flx2] = Qo 
2~(cifo + £ln(4) E[x2]) 

(81) 

comparing (81) with (63), and then comparing with exact solutions 

by solving a corresponding FPK equation, one will find predictions by 

(81) are always overestimated. This implies that whether the 

linearized system results in an underestimate or overestimate is 

not due to Gaussian linearization, but rather a function of the 

minimizing norms. The coefficient, ki, in the linearized system will 

depend on the norm, Li, to which the minimizing procedure is applied. 

This simply suggests that the linear coefficient ki is a random 

variable which depends on the choice of the minimizing scheme. For 

mathematical simplicity, mean square error, or the L2 norm, is 

commonly chosen to be minimized, but, here the statistical absolute 

error, or the L1 norm, is chosen with different result. To reduce the 

linearization error caused by different minimizing schemes, the 

expected value of ki should be used for the linearization, i.e., the 

nonlinear system (69) should be linearized as 

X+ ~X+ (cifo + £F{kJ) X= f(t) (82) 

where ki is obtained through minimizing 

(83) 

However, to determine E[ki], a large amount of mathematical 

manipulation is required, which may make (82) impractical. As a 
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trade-off, instead of using E[ki], we use the average of k1 and k2 for 

the linearization. Hence, the linearized system becomes 

x+~x+(~+ek)x==f(t) (84) 

where 

k == i {k1 + k2) == 3 + ~n(4) E{x2] == 2.193 E[x2] (85) 

The corresponding mean square prediction equation is 

(86) 

Consider the case when e becomes large. (73) and (85) reduce to the 

following equations respectively: 

Linearization with k2 (87) 

Linearization with k .Bfx2] == 0.6753 e-} 19; (88) 
'V 2~ 

Comparing with the exact solution (Crandall, 1980) 

.Bfx2] == 0.6760 e{ /9; ( 8 9) 
'V 2~ 

we find that the relative error for linearization with k2 is 15o/o while 

the relative error for linearization with k is 0.1 0°/o. The extended 

statistical linearization technique proposed by Beaman and Hedrick 

with fourth order cumulant expansion gives 
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(90) 

which has a relative error of 5.8%. 

Gaussian linearization with (84) and (85) produces the best 

prediction for the Duffing oscillator which has larger nonlinearity 

among all the listed statistical linearization techniques. In fact, in 

this case, the prediction offered by (88) is even better than the 

prediction given by a sixth order non-Gaussian closure technique 

(Crandall, 1980) which has 2.7% relative error. Meanwhile, some 

numerical results shown in Figures 10-12, also indicate that using 

the average of k1 and k2 for the prediction equation, the NESL 

technique offers much better mean square response prediction than 

that of minimizing the mean square alone. Figure 10 shows the mean 

square response predictions by Monte Carlo simulation, solving the 

exact FPK equation, conventional linearization of minimizing the 

mean square error, and the present NESL method of linearization. 

The parameters used for this numerical presentation are ~ = 1, ro0 = 1, 

E =50, and Q0 = 1. The relative prediction error for NESL is only 1.0%, 

while for that Gaussian linearization is 13%. Notice that E =50 

which implies that the system has a very strong nonlinearity. Figure 

11 shows the mean square response predictions by solving the exact 

FPK equation, by conventional Gaussian linearization, and by the 

present approach vs. the external excitation intensity for the same 

oscillator. In this simulation, the nonlinearity coefficient E is still 

50. Figure 12 shows the mean square response predictions vs. the 

nonlinearity coefficient E for the same oscillator with unit external 
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excitation strength. For small £, the advantage of the present 

approach is not clear. However, as £ becomes large, for example £ > 

5, it is clear that the result from the NESL method is essentially the 

exact solution as obtained by solving the corresponding FPK 

equation. Similar results may be obtained by using the extended 

linearization method given by Beaman and Hedrick. However, since 

higher, at least fifth, cumulant expansion is required, much more 

mathematical computation effort will be involved. 

For a more general nonlinear oscillator 

x +ex + cifox + EH(x) = f(t) (91) 

where H(x) is any single valued nonlinear odd function, the 

corresponding linearized system coefficient through minimizing the 

mean square error, fle2] =E[(£H{x)-£K2Xf], is 

k _ ~xH(x)] 
2- flx2] (92) 

To linearize (91) by minimizing the absolute error we assume 

and x0 is the only solution to (93) on the interval (0, oo ). 

Let 

T { Xo) = H(xo) 
Xo 

From (93) we have 

(93) 

(94) 



(95) 

where T-1 ( k1) denotes the inverse function of T( x0 ) • The absolute 

error which is to be minimized thus can be expressed as 

44 

In this equation, there are two sets of signs. In actual calculation, if 

H(x)- k1x;::: 0 is satisfied on the interval [0, T -1 ( kl)], the first set of 

signs, i.e., the '+' and '-' respectively is selected. Otherwise '-' and 

'+' is chosen respectively. Using the Leibnitz differential rule (77) 

to minimize (96), let aE[ I e I] = o which gives 
ak1 

Simplification of (97) yields 

(98) 

solving (98) we have 

T- 1 (kl) = -v'tn(4) Flx2] (99) 

Taking the inverse transformation of (99) and comparing the result 
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with (94), we obtain 

kt = H(-v'In(4)E(x2]} 
-v'In(4)E(x2] 

( 1 00) 

and 

k = 1 /H(-v'In(4) E(x2]) + E[xH(x)] \ 
2 \ -v'In(4)E(x2] flx2] J 

( 1 01) 

Application Examples 

It is seen from this derivation that actual calculation of k1 is 

very simple. It needs only a substitution of argument to the system 

nonlinear function. Therefore, the main calculation of the NESL 

method is still around the computation of k2 . This is why the NESL 

method is almost as simple as the conventional Gaussian 

linearization while maintaining much better precision. This 

property is shown in the following examples. 

Example 1: 

Assuming H(x) = x3 + ~xs, E = 20, c = 1, ro~ = 1, and unit intensity 

excitation, from (92) (1 00), and (1 01) we have 



Referring to (85), (86), (72), and (73), we obtain the mean square 

response prediction equation using k as 

~(In~))l + 3}[I{x2]3 + E(In(4) + 3) (I{x2])2 + 2&x2] -1 = 0 (1 05) 

Using k2 the response prediction equation is given by 

(1 06) 

Solving (1 05) and (1 06) respectively, and choosing the smallest 

positive solutions which are the closest ones to the exact FPK 

solutions among all the solutions of (1 05) and (1 06) respectively, 

we obtain 

linearization with k2 , 

linearization with k, 

E[x2] = 0.08041 

E[x2] = 0.09304 

(1 07) 

(1 08) 

Fortunately, we can calculate the response prediction by solving 

exact FPK equation which gives 

1~ x2ex~-~x; + ~ + ~~}] dx 

flx2] = - = 0.09238 ( 1 09) 

L ex~ -~x; + ~ + ~~)] dx 
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Comparing these results, we find that the relative prediction error 

for linearization with k is 0.71 °/o, while the relative prediction error 
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for linearization with k2 is 13%. This implies that, for this system, 

linearization with k is 18 times more accurate than by that obtained 

by using k2 alone. In fact when linearization by minimizing the 

mean square error produces considerable error, linearization by 

using k provides good prediction. This may be observed through the 

following example. 

Example 2: 

Assuming H(x) = x5 , with E = 20, c = 1, ro~ = 1, unit intensity 

excitation, we obtain a system with very strong nonlinearity. 

Following the steps developed in the previous discussion, we obtain 

exact FPK solution: fix2] = 0.1432, 

solution by using k: fix2] = 0.1298, 

solution by using k1: I{x2] = 0.1986, 

solution by using k2: I{x2] = 0.1092 

Obviously, in this case, conventional Gaussian linearization produces 

as much as 24 % prediction error, while linearization by averaging k1 

and k2 offers better results which has only 9.3 % prediction error. 

The NESL method can also be extended to deal with nonlinear 

systems with both parametric and external excitations. The basic 

idea for this extension is as follows: 

To linearize the parametrically and externally excited nonlinear 

system into a parametrically and externally excited linear 

system with the NESL method and then, using the techniques 
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developed in chapter 2 to deal with the linearized system to find 

system response. 

In order to do so, let us assume that the nonlinear system with 

both parametric and external excitations may be expressed as: 

x + (~o + ~·) x + (J.lo + J.l') H(x) = w' ( 11 0) 

where ~0 and J.lo are constants, ~ ', J.l' and w' are independent zero mean 

Gaussian random processes, and H(x) is the system nonlinear term. 

The system is linearized in the Sl1me way as that of a externally 

excited nonlinear system, i.e., by setting the absolute error and mean 

square error function and minimizing them to find k1 and k2 and then 

averaging them to find k. When this process is finished the 

linearized system can be expressed as 

( 111 ) 

where k is given by (1 01 ). This is a linear system with parametric 

and external excitations. In chapter 2 we have shown how the MLC 

method is used to deal with this kind of systems. Re-examining 

equation (59), we obtain the mean square response prediction 

equation for (111) as 

( 112) 
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where the nomenclature is the same as those used in chapter two. 

Noting that k is a function of fix2], (112) actually is an algebraic 

equation. Solving this equation we can obtain the mean square 

prediction. A Duffing type of nonlinear system is taken as an 

example to show the details of how the NESL method works with the 

parametrically and externally excited nonlinear systems. 

Example 3: 

A duffing oscillator with parametric and external excitations 

is described by 

( 113) 

where I{!l'(t) !l'(t + 1:)] = cr~~(){1:), I{~ '(t) ~'(t + 1:)] = crt()(1:), and 

I{ w '(t) w'(t + 1:)] = crw~()('t) . The linearized system is exactly expressed by 

(111) and the mean square response prediction equation by (112), 

where 

( 114) 

= ln(4~ + 3 E[x2] = 2.913 E[x2] 

substituting (114) into (112), the response prediction equation , and 



rearranging, we have 

( 11 5) 

while the corresponding equation by minimizing the mean square 

error is 

( 116) 

50 

Choosing llo = 5.0, ~0 = 1.0, crl = 5.0, crr,~ = 0.0, and cr) = 0.5, solving (115) 

and (116) respectively for the smallest positive solutions we obtain 

Etx2] = 0.1671 (with NESL) ( 117) 

fix2] = 0.1461 (with Conventional Guassian) ( 118) 

These results are compared with the 1 000-run Monte Carlo 

simulation to (113) in Fig. 13. From this figure, it is seen that the 

conventional Gaussian linearization offers lower mean square 

response prediction, and the NESL method offers better prediction 

with little bias. 

Summary and Discussion 

An approach, termed the new extended statistical linearization 

method to predict the stationary mean square response of a 
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nonlinear system subjected to random parametric and external 

excitations has been introduced. In this method, the linearized 

system is obtained through averaging the results of different LP 

norms, mainly, the result of minimizing the absolute error(L1 norm) 

and the result of minimizing mean square error(L2 norm). Through a 

Duffing oscillator example, and three other examples the stationary 

mean square prediction using this approach has been compared with 

those of the FPK exact solution, those of Monte Carlo simulation, 

those of fourth cumulant expansion, and those of conventional 

Gaussian linearization technique. The results from this method 

indicate that whether a response prediction is underestimated or 

overestimated is mainly decided by the minimizing norm LP' not by 

Gaussian linearization. The present approach has an advantage over 

the other techniques in that, while retaining the simplicity of the 

Gaussian linearization method, it offers much more accurate 

response prediction for an oscillator which contains a strong system 

nonlinearity. 
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and Varying Excitation Intensity Qo 
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CHAPTER IV 

EQUIVALENT GAUSSIAN DISTRIBUTION 

AND ITS APPLICATION 

When system nonlinearity cannot be expressed as a polynomial 

or simple functions, statistical linearization by minimizing the 

mean square error may become difficult. This is because that the 

involved integration cannot be analytically obtained unless 

numerical routines especially iterative numerical routines are used. 

Therefore, nonlinear system linearization by using the NESL method 

introduced in the previous chapter may become difficult due to that 

the determination of the required integrations, which are functions 

of the linearized system coefficient ki, becomes complicated. To 

solve this problem, and to make the statistical linearization of this 

type of nonlinear systems becomes simple for the applied engineers 

the method of equivalent Gaussian distribution is introduced. The 

idea of this method is that the difficult integral associated with any 

Gaussian linearization is mainly resulted from the product of the 

nonlinear function and the Gaussian distribution probability density 

function. If instead using the Gaussian distribution probability 

density function, a limited number of uniform distribution functions 

which approximate the Gaussian distribution in certain sense are 

used in the integration, the linearization will become very simple as 

long as the nonlinear functions associated with the nonlinear system 
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are integrable. In the following sections this method will be 

developed in detail. 

Equivalent Gaussian Distribution 

The area covered by ±3crx for a Gaussian distribution 

probability density function 

( 119) 

is 

f30x 2 
- 1 _.L.L 

~Ox - f1it e 2 0x2 dx 
3 1t ax 

Ox 

( 1 20) 

= 99.74°/o 

If N uniform distribution functions 

{ an x c [-(n+ I) L1crx, (n+ 1) L1ax] 
Pn {x) = 

0 elsewhere 
forn =0, l, ... ,N-1 

( 121) 

where an and N are constants, and 

( 122) 

are used to approximate the Gaussian distribution probability 

density function p(x) over the internal [-3crx, 3crxl. it requires 

57 



N -1 

L 2an(n+l)~O"x= <l>l:rx (123) 
n=O 

To find proper an a mean square error cost function is constructed 

as follows: 

(124) 

For given N, let 

for n=O, 1, 2, ... , N-1 (125) 

We have 
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ft.crx [I am_ p(x)l dx + fzoox [I am - p(x)l dx + · · · + 1- (•N-1 - p(x)) dx - ~!>.ax A~ 0 
~ ~ ~ ~ ~~ 

0 .... ~ 

(126) 

Examining (125), the set of equations, and rearranging, we obtain 

for n=O, 1, ... , N-1 ( 1 27) 

(126) actually consists of N individual equations. Sum up all these 

equations and compare the results with (123) and (119), we have 

(128) 

Substituting (128) into (127) yields 

ao 1 -1 0 r p(x)dx 
a1 1 -1 

=-1- 1 -1 ( 129) 
aN-2 ~crx 1 -1 

r~ aN-1 0 1 p(x)dx 
{N-1),\~ 

(129) can be calculated when the number of uniform distribution 

functions are specified. The rule of thumb is N = 4-10. For example, 

let N = 6, from (122), we have 

~crx = 3~x = 0.5crx ( 130) 



60 

Substituting (130), (120) into (129) yields 
ao 1 -1 0 0.191462 0.083158 
a1 1 -1 0.149883 0.116070 
a2 =_2_ 1 -1 0.091848 =_L 0.095582 ( 131) a3 O'x 1 -1 0.044057 O'x 0.054974 
li4 1 -1 0.016570 0.023360 
as 0 1 0.004860 0.009720 

Hence, combination of (121) and (131) becomes the actual equivalent 

Gaussian distribution for N = 6. Obviously, if this function is used 

for the purpose of linearization, all the integration difficulty caused 

by the real Gaussian distribution involvement will be eliminated. 

Statistical Linearization with Equivalent 

Gaussian Distribution 

For a nonlinear system 

(132) 

where H(x) is the system nonlinearity, Gaussian Linearization 

requires to solve the following equation 

k =E{xH(x)] 
Ffx2] 

( 133) 

The key problem in solving this equation lies in that the 

hardness of the numerator integration, 

I{xH{x)] ~ f xH(x)p(x)dx (134) 



highly depends on the form of H(x). For example, if H(x) takes on a 

polynomial form, the integration is very easy. However, if it is Vx 
or some other hard limiter form, such as the backlash, the 

integration (134) will become difficult. 
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This situation can be changed by using the equivalent Gaussian 

distribution probability density function given by (131) 

Let 

•l(x) = { xH(x)dx ( 135) 

Substituting (121) instead of (119) into (134) yields 

N-1 1(n+l}tlcr 

= L an xH(x)dx 
n=O ~n+l)Mx 

N-1 

= L aJG>{(n+l)~crx)-G>{-(n+l)~crx)] ( 136) 
n=O 

If H(x), the system nonlinearity is an odd function, (136) can be 

further reduced to 

N-1 

I{xH(x)] = 2 L anG{(n+ 1 ~crx} ( 137) 
n=O 

Hence, statistical linearization procedure by using this method can 
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be summarized as follows: 

1. Select N, the number of uniform distribution functions needed 

among 4 - 10 and determine the increment ~ax by using (122). 

2. Calculate the uniform distribution coefficients ao, a1 , .... , an -1 

by using (129). 

3. Figure out the system nonlinear function H(x) and compute the 

integration Q(x) specified by (135). 

4. Find k by solving the following equation. 

(138) 

In fact, N can be predetermined and the coefficients ao. a1 , ... 

aN-1 can be precalculated and made into table. Therefore, with this 

preparation, linearization can be directly carried out from step 3. 

Linearization Application Examples 

In this section, several examples are given to show the 

simpleness and consistence of this method the corresponding 

Gaussian linearization development is also shown unless appropriate 

Example I 

The nonlinear system is given as 

X+ ex+ sign(x) VfXT = f{t) (139) 

Select N=6, ~ax and ao. a1, ... a5 are given by (130) and (131). The 



linearization will directly begin with step 3. Examining (139) an 

odd function and 

H{x) = { 

is an odd function and 

x;;::o 

x:s;O 
(140) 

( 141) 

= .~ (0.083158 X 0.52.5 + 0.11607 X 1.02·5 + 0.095582 X 1.52·5 
5 Y O"x 

+ 0.054974 X 2.02·5 + 0.023360 X 2.52·5 + 0.009720 X 3.02·5 

= 0.870/V O"x (142) 

Direct Gaussian linearization requires to solve the following 

integration 

(143) 

Let -fl.= t, after transformation 

(144) 
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The integral can be numerically evaluated, which gives 

k = 0.860/~ ( 1 4 5) 

The relative linearization error produced by the equivalent Gaussian 

distribution method for this particular problem is only 1 %. 

Example 2 

A pendulum subjected to external stochastic excitation may be 

expressed as: 

(146) 

where f(t) is a zero mean Gaussian process. To statistically 

linearize this system, select N=6, ~ax = 0.5ax. Starting from step 3, 

we have 

<l(x) = f xH(x)dx = f x sin x dx = sin x - xcos x (14 7) 

Noting sin x is a odd function and using step 4, we obtain 

5 
= .2_ L an( sin (0.5{n+ 1 Px)- 0.5{n+ 1 )ax cos (0.5{n+ 1 Px)) 

O'x n=O 
(148) 

where [ao. a1, ... , asF is given by (131 ). 

On the other hand, direct linearization by using Gaussian 
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distribution requires to solve 

(149) 

which is not manually tractable. 

find a explicit solution for it. 

With <rx2 unknown, it is difficult to 

Example 3 

The system expression is given as 

x +ex + N (x) = f(t) 

where 

N(x) = { ~ 
-a 

x)O 
x=O 
x<O 

( 1 50) 

( 1 51) 

and f(t) is a zero mean Gaussian random process. Select N=6, ~<rx = 

O.S<rx· Using Step 3, we have 

<l(x)= f xH(x):lx= f axdx=tx2 

Using step 4 we obtain 

= _2_ (0.083158 X 0.25 + 0.11607 X 1.0 + 0.095582 X 2.25 
<rx 
+ 0.054974 X 4.0 + 0.023360 X 6.25 + 0.009720 X 9.0] 

(152) 



= 0.805 a I O"x 

Direct integration by Gaussian distribution gives 

="[I ..JL = 0.7979 a/ O"x 
Y 1t O"x 

Obviously, the relative linearization error 

_I 0.8053 - o.7979l _ 1m 
e- 0.7979 - 10 

Example 4 

The Duffing oscillator is described by 

x +ex+ ro~x(l + J.Lo x2) = f(t) 
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(153) 

(154) 

( 155) 

(156) 

where f(t) is a zero mean Gaussian random process. Comparing this 

equation with (132), we know H(x) = ro2x3. Select N=6, ilcrx = 0.5crx. 

Using Step 3, we have 

<ll(x) = f xH(x)dx = f x 4 dx = t x 5 (157) 

Using step 4 we obtain 
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2 5 JS = 2_m_ L, aJo.5{n+1).1cr 
5 O"x2 n=O 

= 25ro6 [0.083158 X 0.5 S + 0.11607 X 1.0 5 + 0.095582 X 1.5 5 
O"x 

+ 0.05497 4 X 2.0 5 + 0.023360 X 2.5 5 + 0.009720 X 3.0 5] 

= 2.90 CO 2 O"x2 ( 158) 

Direct integration by Gaussian distribution gives 

= 3.0 O"x2 ( 159) 

Summary and Discussion 

The equivalent Gaussian probability density function 

introduced here is developed into an approximate statistical 

linearization method to deal with the nonlinear systems. In this 

method integration difficulties involved in the classical Gaussian 

statistical linearization method are overcome because the Gaussian 

probability density functions associated with the required integral 

is replaced by several uniform distribution functions which are 

derived by minimizing a cost function. The developed method is 

summarized into four steps which is very convenient for engineering 

application. The usefulness of this method is demonstrated through 

several examples where appropriate comparisons with classical 
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Gaussian linearization method are also provided. This method is 

simple in nature. And its precision can be improved by using larger 

N, i.e., by using more uniform distribution functions to represent the 

Gaussian distribution. However, examples given in this paper show 

that with only a few {N=6) uniform distribution probability 

functions, very good accuracy can be achieved. 



CHAPTERV 

CONTROLLER DESIGN USING THE 

METHODOLOGIES OF MLC, 

NESL, AND EGO 

Introduction 

Using the technique of MLC, NESL, and EGO discussed in chapter 

2, chapter 3, and chapter 4, it is possible to approximately analyze 

the response of nonlinear stochastic systems subjected to both 

parametric and external excitations without resorting to simulation. 

However, in practical engineering fields, very important objective is 

not only to analyze but also to improve the nonlinear system 

response by synthesizing a controller for the system. Techniques 

based on the conventional Gaussian statistical linearization for the 

controller synthesis are well documented and their weakness of 

producing unstable controlled system variance due to the variance 

underestimate property for a backlash type nonlinear system has 

been pointed out by Beaman and Hedric(1980). In this chapter, the 

techniques developed in previous chapters will be applied to the 

controller synthesis of nonlinear stochastic systems. 
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Controller Design of Nonlinear 

Stochastic Systems 

It is well known that for a deterministic linear system, its 

dynamic behavior is determined by the system eigenvalues. For a 
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nonlinear stochastic system, it is almost impossible to use the 

eigenvalue definition to describe the system dynamic behavior. This 

is because that when a nonlinear system works in different area of 

its possible domain, it will, in general, have different dynamic 

behavior which can not be depicted by one set of eigenvalues. 

However, with statistical linearization, the eigenvalues of the 

corresponding linearized system can be used to predict the average 

response of the nonlinear stochastic systems. Therefore, the 

eigenvalue placement techniques either by using root locus or by 

using state space are applicable directly to the statistical 

linearized systems and indirectly to the corresponding nonlinear 

stochastic systems for the controller synthesis purposes. 

In the following, several examples will be given to shown how 

the controllers for the nonlinear stochastic systems are 

implemented. 

Example 1: 

Consider the control of a Duffing type nonlinear stochastic 

system 

.. . 2 3 
X + CX + ro0 X + EX = U + f (160) 
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where f is a white noise process with zero mean and unit intensity 

O"f2 = 1, u is a controller input to be determined, c is the system 

damping factor, and ro0 2 is the system natural frequency when the 

system nonlinear coefficient e becomes zero. Assume c = 1, ro 0 2 = 1, 

and e = 20, (160) becomes: 

x + x + x + 20x3 = u + f ( 161) 

The control tasks are better mean response and smaller mean square 

response when control effort is put in. 

Design: 

We begin the design by first linearizing the system. Since the 

system nonlinearity given in (161) is very strong, we choose NESL 

method to linearize the system. 

Comparing (161) with (91) of NESL, we have H(x) = x3. Using 

(1 01) of NESL, we obtain 

k = ¥1n(4) + 3)E(x2] = 2.193 E[x2] (162) 

The linearized system with no control signal thus can be written as: 

x + x + ( 1 + 43.86 E(x2]) x = f (163) 

The corresponding mean square response prediction equation can be 

expressed as: 



(MLC method) (164) 

or 

Ffx2]- a(-
- 2 ( 1 + 43.86 E[x2}) 

(NESL method) (165) 

Solving them for the predicted mean square response with af2= 1 , 

yields 

E[x2] = 0.0937 

E[x2] = 0.0960 

(MLC) 

(NESL) 

Substituting (166) or (167) into (163) we obtain 

x + x + x + 5.110x = u + f 

(166) 

(167) 

( 168) 
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The exact mean square response to the original system, which can be 

found by solving the Fokker-Pianck-Kolmogorov, is E[x2] = 0.0944. 

Figure 14 shows the estimated mean response and that a 500 run 

Monte Carlo simulation. The fluctuation of the simulated curve is 

due to the relatively limited number of Monte Carlo iterations. 

Our purpose now is to determine u(x,x) as a linear feedback 

controller. 

( 169) 

Which will make the system respond on the average better than the 



uncontrolled case, i.e., better mean response without much 

overshoot, and smaller mean square response. 

Let x = x1, x = x2. The linear feedback controlled system is 

(170) 
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The corresponding statistically linearized version of this system is 

[*1]-[ 0 
x2 11 - 43.86 E[x2] - 1 

1 

h-1 
( 171) 

In order to get good performance, it is necessary to specify the 

desired eigenvalues for (171 ). Theoretically, the desired 

eigenvalues can be any number one likes to choose. However, from 

practical perspective, it is well known that it takes considerable 

amount of effort to drive a system faster than its natural structure 

frequency. Therefore, before specifying the desired eigenvalues, it 

is also necessary to find out the eigenvalues of the open loop 

system. 

From (168) we obtain the open loop eigenvalues 

"-1 2 = -0.50 ± 2.20i 
' 

( 172) 

The natural frequency of the uncontrolled system structure is 2.20. 

For the reason discussed above, the closed loop control system 

eigenvalues will be chosen as 

"-1 2 = -1.76 ± 1.76i 
' 

(173) 
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Which have a 20% lower structural frequency than that of the open 

loop system and a damping ratio of 0.707 which is an optimal value 

of frequency domain analysis. 

For unit input noise intensity, it is now possible to select 11 and 

12 by considering the eigenvalues of the closed-loop stationary gain 

matrix 

A-[ 0 
l1 - 1 - 43.86 E[x2] 

1 

h-1 l (174) 

The associated characteristic equation of this matrix is IA.I-AI = 0, 

i.e., 

A.2 + (1- h)A + (1 + 43.86 E{x2] -II)= 0 (175) 

Construct the desired characteristic equation from (173) to yield 

A_2 + 3.52A. + 6.20 = 0 (176) 

Now, matching the coefficients of (175) with those of the desired 

polynomial (176), one obtains the controller gains 

l1 = -5.20 + 43.86 E[x2] 

12 = -2.52 (177) 

Substituting (177) into (170) and using the mean square prediction 

equation of the MLC method with O'f2 = 1, one obtains 
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1 + 2401t (.fix2])3 
1 

&x2] = ( 6.20 + 16.14 E[x2]~ 
7.04 { 6.20 + 16.14 E[x2]) 

( 178) 

Two steps iteration of (178) with zero initial value for E[x2] makes 

it converge to 

E[x2] = 0.0217 (179) 

Substituting (179) into (177), yields 

( lt ) = (-4.25) 
12 -2.52 

(180) 

This is the required feedback controller gain vector. Figure 15 and 

16 shows the mean, and mean square response vs. time. Comparing 

the controlled with that of the uncontrolled case, we find the 

system dynamical behavior has been improved a lot. There is not 

much overshoot in the mean response and the mean square response 

is 4 times more less. However, this is only a special case in which 

the input noise intensity is a unit. In general, for different noise 

input intensity, the statistically linearized system (163) will be 

different. Therefore, the associated eigenvalues, will be different. 

Consider this effect and solve (163) for the eigenvalues to yield. 

A.t, 2 = -0.5 ±,.Jo.75 + 43.86 E[x2] i ( 181) 
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Following the same design principle, we specify the desired closed­

loop eigenvalues as 

A.t, 2 = -0.8 -J0.75 + 43.86 E(x2] ± 0.8 -Jo.75 + 43.86 E(x2] i (182) 

Obviously, such a specification allows us to obtain 20% lower 

structural frequency and 0.707 damping ratio. 

For different values of the input noise intensity, it is now 

possible to choose the control gain l1 and 12 by considering the 

eigenvalues of the closed-loop stationary gain matrix (174). The 

corresponding characteristic equation is still expressed by (175). 

The desired characteristic equation constructed by using (182) is 

A. 2 + 1.6 ,Y 0.75 + 43.86 F{x2]u 'A+ 1.28 (0.75 + 43.86 E{x 2]J = 0 ( 1 83) 

Note E[x2]u instead of E[x2], being used in (183). By doing so, we try 

to indicate that the desired eigenvalues are designed based on the 

uncontrolled or the open-loop system. Therefore, E[x2]u should be 

obtained from the uncontrolled system. But E[x2] is used in (175). 

This implies that E[x2] should be calculated by using the parameters 

of the controlled system or the closed-loop system. 

Matching the coefficients of (175) with those of (183) one 

obtains the controller gain expressions as 

It = 0.04 + 43.86 (I{x2] - 1.28E[x2]u} 

lz = 1 - 1.6 -Jo.75 + 43.86 E[x2]u (184) 
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where E[x2]u and E[x2] are unknowns which must be found before 

actual control can be performed. Since MLC method offers very fast 

convergency expressions for mean square prediction, by using it we 

have 

(185) 

(186) 

For given O"f2, solving (185) to yield E[x2]u, substituting the obtained 

E[x2]u into (184) then into (186), and solving it one obtains E[x2]. 

With E[x2]u and E[x2] available, one can solve for 11 and 12 by using 

(184). For example, let O"f2 = 0.5. Using (185) eight steps iteration 

with zero initial condition yields: 

E[x2]u = 0.0618 (187) 

Substituting (187) into (184), then into (186) we obtain 

0_5 + 2407t (fix2]p 
1 

Bfx2] _ (4.429 + 16.14 E[x2]f 
- 5.952 (4.429 + 16.14 E[x2]) 

( 188) 
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Three steps iteration of (188) with zero initial condition yields 

E[x2] = 0.0179 (189) 

Substituting (187) and (189) into (174), we obtain the desired gain 

values 

11 = -2.64 

12 = -1.976 ( 190) 

This implies that with these position and velocity feedback 

control, the system statistical dynamical behavior will be described 

by (183), and its mean square response will be more than three 

times less than its original system. 

Fig. 17 and 18 shown the time domain simulation of the 

controlled and uncontrolled system which are in good agreement 

with the theoretical analysis. 

Example 2: 

Consider the control of a stochastic system with backlash 

nonlinearity 

x +ex + B(x) = u + f ( 191) 

where B(x) is the backlash nonlinearity which can be expressed as 

ax 

B(x)= { 0 
X >0 

lxl < ~ 
ax + ~-a x <0 

(192) 

f is a white noise process with zero mean and intensity O"f2, c is the 
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system damping factor, and u is a controller input to be determined. 

Design: 

First of all the system given in (191) is to be statistically 

linearized by using the NESL method. Since there are two kinds of 

linearization, the L1 linearization and the L2 linearization involved 

in the NESL method. We are going to separately perform these 

linearization individually and then combine them into one. 

L 1 statistical linearization: 

Since B(x) consists of three parts of piecewise linear function, 

we should determine which of these three will intersect the 

linearized function k1 x on the internal (o,oo). Examining Fig. 19, one 

can quickly figure it out that the required intersection occurs in 

part 1. Therefore, using the theory developed in Chapter 3, we have 

the corresponding nonlinear function 

H(x) = part I of B(x) 

=ax- ~-a (193) 

Using the NESL method, we obtain the coefficient of L1 statistical 

linearization as 

kt = H(.Jin(4} E[x2]) 
.Jin(4} E[x2] 



-a(l ~ ) 
- - -v'In{4) E(x2] 

(194) 

L2 linearization: 

This is the conventional statistical linearization of 

minimizing the mean square error. The well known linearization 

equation is: 

k _ E[xB(x)] 
2 - flx2]u 

= &~2). r xB{x~x)dx 
= _2 -1 00 

(ax2 - ~-ax) p(x)dx 
flx2]u !J. 

( 195) 

80 

Where p(x) is the assumed Gaussian probability density function for 

the response coordinate x. The integration in (195) consists two 

parts in which the first part is a symbolic error-function 

integration. Analytical solutions to this integration is almost 

impossible unless Taylor series expression or point-to-point 

numerical iteration routines are used. However, these techniques 

are not very efficient. In order to find k2 efficiently, we will use 

the EGO method proposed in chapter 4. Following the procedure given 

in chapter 4, we can select N = 6. The required parameters for 

carrying out this method ~ax and ai (i=O, I, ... ,5), therefore, are 

given by (130) and (131). Since B(x) is an odd function and 



«.xJ = r xB(x) = f ( ax2-d·ax)ctx 

~·a A3 = --x2 + ax3 + _ao_ 
2 3 6 

we have 

Substituting (130) and (131) into (197) yields 

kz =-~·a ± an[0.5(n+1)]3 + 2a-v'~xz]u ± an[0.5(n+1)]3 
n=O n=O 

Combine (194) and (193), we obtain the linearized system 

coefficient 

( 196) 

(198) 

ku =¥kl+kz)=Jl.005-0.626 ~ 2 +0.064 ~3 
3) (199) 

u\ .J&x ]u fix2]u2 

Hence, the statistically linearized system can be expressed as 

x+cx +kux =f (200) 
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Which has the following eigenvalues 

(201) 

Following the same design philosophy as that of the previous 

example, we specify the desired closed-loop eigenvalues as 

A1,2=-0.8~ku-~ ±0.8~ku-~ i (202) 
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This eigenvalue assignment makes the closed-loop system has 20% 

lower structural frequency and 0.707 damping ration. The desired 

characteristic equation thus can be expressed as 

(203) 

Let 

(204) 

The linear feedback controlled system can be expressed as 

X.+ (c- h)x + B{x)- 11x = f (205) 

The statistically linearized version of this system, then, can be 

expressed as 

x + (c - l2}X + (k - l1)x = f (206) 
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With its characteristic equation as 

(207) 

where 

k = 1.005 - 0.626 . ~ + 0.064 i ~ ~3 ) 

'V .q_x2J flx2]~ 
(208) 

Matching the coefficients of (203) and (207), we obtain 

(209) 

Noting that the backlash, ~. compared with other parameters are 

very small, neglecting the higher order term of it in (199) and (208), 

and substituting k and ku into (209) we have 

l1 =- 0.28a- 0.626~a ( 1 1.28 ) + 1.28 C2 

-J&x2T .JF[ X 2 ]u 4 

(21 0) 

l1 and l2 can be calculated when the related parameters are 

specified. For example, letting c = 1, a = 20, ~ = 0.1, and O"f2 = 1, 



(21 0) becomes 

11 =- 5.48 - 1.252 ( 1 - 1.28 ) 
~ -Jftx2]u 

12 = 1- 1.6 v 19.8- 1.252 
-Jftx2]u 
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(211) 

Using the NESL method to find the mean square response of the open 

loop and closed loop system: 

and 

Ffx2]u = _1_ = 1 
2 ku 40 (1.005 _ 0.0626 ) 

-Jftx2]u 

fix2] = 1 = 0.5 
2 (c- hXk -11} ( 1.252 fJ_ 2.05 19.8 -~~ 

-Jfix2]u 

Solving them we have 

E[x2]u = 0.03683 

E[x2] = 0.00504 

Substituting (214) into (211) we have 

11 = -14.77 

12 = -4.83 

(212) 

(213) 

(214) 

(215) 
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With (215) as the feedback gain, the statistical dynamical 

response of the controlled system will be improved. Fig. 20 and 21 

show the simulation results of the mean and the variance responses 

of the controlled system by present design, by neglecting the 

backlash nonlinearity, and those of uncontrolled system, 

respectively. Obviously, the present approach gives much better 

prescription of the controlled nonlinear system. 

Summary and Discussion 

A practical approach of controller design for nonlinear 

stochastic systems has been presented in this paper. This approach 

uses the methods MLC, NESL, and EGO, which are developed for 

solving nonlinear systems, combined with the eigenvalue placement 

techniques to design proper feedback controller for a nonlinear 

stochastic system. Two examples have been given in this paper to 

demonstrate the usefulness of this method. Through these examples, 

it is seen that controller design with this method does not require 

much sophisticated calculation. 
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Figure 19 Backlash Nonlinearity B(x) 
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CHAPTER VI 

CONCLUSIONS 

In the previous chapters the nonlinear methodologies which 

consist of the method of maximum linear classification (MLC), the 

method of new extended statistical linearization (NESL), and the 

method of equivalent Gaussian distribution (EGD) along with their 

applications to control system design have been developed for 

simple and accurate predictions of stationary mean square response 

and effective controller design of nonlinear systems excited by both 

stochastic parametric and external excitations. In the development 

of the MLC method, the linear dynamic mechanism buried in a 

nonlinear system is maximized to construct the main body of the 

response prediction equation. The system nonlinear mechanism, not 

like in the conventional linearization technique being discarded, is 

minimized and retained to provide correction information to the 

prediction equation. Very good agreement exists between the 

results obtained using this approach and the exact solutions of 

Fokker-Pianck-Kolmogorov equation or the Monte-Carlo simulation 

for parametrically and externally excited systems with considerable 

strong nonlinearities. When the higher orders of e, o(e2), in the 
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prediction equation are omitted, which corresponds to the weak 

nonlinear case, MLC can be reduced to the Gaussian linearization 

method. Moreover, this new approach can also be used to deal with 

systems subjected to both stochastic parametric and external 

excitations while still retaining tractability of the solution. 
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Through a linear oscillator and a nonlinear oscillator both subjected 

to parametric and external excitations, it has been demonstrated 

that the new approach offers very good mean square prediction. 

However, when the system is lightly damped, such that the response 

coordinate x(t) becomes a narrow band random process which results 

in the approximation of (23)-(27) becoming invalid, or when the 

system nonlinearity becomes large such that the assumption of the 

domination of the linear dynamic mechanism is no longer valid, this 

method may not produce desirable results. However, due to the 

retention of the nonlinear correcting terms, this method 

consistently extends the range of useful prediction for 

parametrically and/or externally excited nonlinear systems while 

retaining the ease of use of classical linearization methods. In 

chapter 3, the NESL method is introduced. In this method the 

concept of averaging the results of different minimizing measures 

are discussed and utilized to produce more accurate prediction of 

system mean square response. For the sake of simplicity, this 

method actually is accomplished by averaging the linearization 

coefficient of L1 minimization and L2 minimization. Mathematical 
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derivation developed in this chapter indicates that the L1 

minimization required in using the NESL method is not as difficult 

as it is generally thought to be when the the Leibnitz differentiation 

rule is utilized. Especially, in case that the linearized function has 

only one intersection with the nonlinear function of the system on 

(0, oo), the L1 minimization procedure is much simpler than that of 

the L2 minimization. Through a Duffing oscillator example, the 

stationary mean square prediction using this approach has been 

compared with those of the FPK exact solution, those of Monte-Carlo 

simulation, those of fourth cumulant expansion, and those of 

conventional Gaussian linearization technique. The results from this 

method indicate that whether a response prediction is 

underestimated or overestimated is mainly decided by the 

minimizing norm LP, not by Gaussian linearization. The present 

approach has an advantage over the other techniques in that, while 

retaining the simplicity of the Gaussian linearization method, it 

offers much more accurate response prediction for an oscillator 

which has very strong system nonlinearity and is subjected to both 

parametric and external excitations. However, there are some cases 

in which the solution to a nonlinear stochastic system requires the 

results of certain integrals which are very difficult to solve unless 

iterative routines are utilized. To alleviate this problem the method 

of equivalent Gaussian probability density function is introduced in 

chapter 4. In this method integration difficulties involved in the 
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classical Gaussian statistical linearization method are overcome 

because the Gaussian probability density functions associated with 

the required integral is replaced by several uniform distribution 

functions which are derived by minimizing a cost function. The 

developed method is summarized into four steps which is very 

convenient for engineering application. The usefulness of this 

method is demonstrated through several examples where appropriate 

comparisons with classical Gaussian linearization method are also 

provided. This method is simple in nature. And its precision can be 

improved by using larger N, i.e., by using more uniform distribution 

functions to represent the Gaussian distribution. However, examples 

given in this chapter show that with only a few (N=6) uniform 

distribution probability functions, very good accuracy can be 

achieved. Finally, in chapter 5, a practical approach of controller 

design for nonlinear stochastic systems has been presented. This 

approach uses the methods MLC, NESL, and EGO, which are developed 

for solving nonlinear systems, combined with the eigenvalue 

placement techniques to design proper feedback controller for a 

nonlinear stochastic system. Two examples have been given in this 

chapter to demonstrate the usefulness of this method. Through 

these examples, it is seen that controller design with this method 

does not require much sophisticated calculation. With the 

development of these methods, an effective effort is successfully 

tried to bridge the gaps between the linear and nonlinear random 



system theory, and between the external and the parametric 

excitation theories. This bridgework provides useful and practical 

means for the prediction and control design of nonlinear systems 

subjected to both random parametric and external excitations. 
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APPENDIX 

COMPUTER PROORAM USED FOR THE RESEARCH 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c + COMPUTER ALGORITHMS FOR MONTE CARLO SIMULATION 

c + NOTE: THIS PROGRAM IS A MODIFICATION OF MONTE 

c + CARLO PROGRAM GIVEN IN ECEN 5783. 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

C++++++++++++++++++ MAIN PROGRAM ++++++++++++++++++++++++++++ 

c IMPORTANT: THE USER MUST FURNISH A SUBROUTINE NAMED SYSEQN 

c FOR THE SIMULATION OF RANDOM RESPONSE. 

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

implicit real*8 (a-h,o-z) 

dimension x(2),dx(2),xavg(2, 180),xvar(2, 180) 

common /blk1 /xmean,sig,ix,uprev,xnorm,eps 

common /blk2/mtot,xnum,xavg,xvar 

common /blk3/kutta,dt,nx,x,dx 

common /blk4/ynorm,ymean,siy 

common /blk5/qwc,qwy 

common /blk6/x20,x02 

common /blk7/pmuc,dr 
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c ++++++++++++++++++SYSTEM PARAMETERS++++++++++++++++++++++ 
c + pmuc: spring consatant. dr: damping coefficient. 

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

write(6, 11) 

11 format(1 x,'read pmuc and damping ratio') 

read(5, *)pmuc,dr 

c +++++++ SET PARAMETERS FOR MONTE CARLO LOOPS ++++++++++++++ 

c + nx: no. of states. lt*dt*mtot: simulation time. lt*dt 

c + is the time step for print. dt: time step. num: Monte 

c + Carlo run. ix,uprev: initial values for random generator. 

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

print* ,'input iteration number:' 

read*,num 

nx=2 

lt=8 

mtot=150 

dt=0.0125 

ix=31571 

uprev=0.1 

c +++++++++++++++ DEFINE GAUSSIAN WHITE NOISE +++++++++++++++ 
c + xmean: mean value of external noise. ymean: mean 

c + value of parametric noise. qwc: variance of external 

c + noise. qwy: variance of parametric noise. 
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C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
print* ,'input x1 0, x20:' 

read* ,xx1 ,xx2 

xmean=O.O 

ymean=O.O 

write(6,66) 

66 format(1x,'read external and spring noise intensity') 
read(5, *)qwc,qwy 

c ++++++++++++++++ CLEAR "xavg and xvar" ++++++++++++++++++++ 

do 10 i=1 ,nx 

do 20 j=1 ,mtot 

xavg(i,j)=O.O 

xvar(i,j)=O.O 

20 continue 

10 continue 

xnum=num 

c + CONVERT CONTINUOUS GAUSSIAN WHITE NOISE TO DISCRETE ONE + 

sig=sqrt(qwc/dt) 

siy=sqrt( qwy /dt) 

c +++++++++++++++++++ MONTE CARLO LOOPS +++++++++++++++++++++ 

do 30 i=1 ,num 

X(1 )=XX1 

X(2)=XX2 



c PERFORM INTEGRATIONS AND ACCUMULATE 

c DATA FOR MTOT INTERVALS 

do 40 j=1 ,mtot 
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c + INTEGRATIONS WITHIN SUBINTERVALS BETWEEN ACCUMULATIONS 

do 50 1=1 ,It 

call randg 

call rungk 

50 continue 

c ++++++++ACCUMULATE SUMMED AND SUM-SQUARED VALUES+++++++ 

do 70 ni=1 ,nx 

xavg (ni ,j) =xavg( n i ,j)+x(n i) 

xvar( n i ,j)=xvar( n i ,j) +X (n i) *x ( n i) 

70 continue 

40 continue 

30 continue 

c ++++ PERFORM STATISTICAL COMPUTATIONS FOR++++ 

c ++++ ESTIMATES AND PRINT OUT ++++ 

call statcp 

open ( un it=9, file=' sysctr .d') 

write(9,65) 

65 f o r m a t ( 1 h 1 ,/II I I I I I I/) 

write(9,75) pmuc,dr,qwc,qwy 

75 format(1 Ox,'pmu=' ,f8.2,'dr=' ,f8.2,'exn=' ,f8.2,'inn=' ,f8.2) 

write (9, 55) 



55 format(2x, 't', 11 x, 'xavg(1 )', 7x, 'xavg(2)', 7x, 'xvar( 1 )' 

$1 ,7x,'xvar(2)',/) 

do 80 i=1 ,mtot 

write(9 ,85) i*dt* lt,xavg ( 1, i) ,xavg(2, i) ,xvar( 1, i) ,xvar(2, i) 

85 format(2x, f5.2,4(2x, f12.6)) 

80 continue 

stop 

end 
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c ++++++++++++++++++SUBROUTINE SYSEQN +++++++++++++++++++++ 

c + DYNAMICAL SYSTEM EQUATIONS WITH RANDOM EXCITATIONS 

c + NOTE: THE GIVEN EXAMPLE IS A DUFFING OSCILLATOR. 

c + x(1 ),x(2): states. xnorm,ynorm: noise terms. 

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine syseqn 

implicit real*8 (a-h,o-z) 

dimension x(2),dx(2) 

common /blk1/xmean,sig,ix,uprev,xnorm,eps 

common /blk3/kutta,dt,nx,x,dx 

common /blk4/ynorm,ymean,siy 

common /blk7/pmuc,dr 

c pmu=pmuc+ynorm 

dx(1 )=x(2) 

dx(2)=-3.52*x(2)-5.25*x(1 )-20*x(1 )*x(1 )*x(1 )+xnorm 

return 

end 
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c ++++++++++++++++++++ SUBROUTINE RANDG +++++++++++++++++++ 
c + MULTIPLICATIVE PSEUDO-RANDOM NUMBER GENERATOR 

c + XNORM AND YNORM ARE GAUSSIANL Y DISTRIBUTED. 

c + U IS UNIFORMLY DISTRIBUTED. 

c + THE BOX-MULLER TRANSFORMATION IS USED TO CONVERT 

c + FROM UNIFORM TO GAUSSIAN DISTRIBUTION. 

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine randg 

implicit real*8 (a-h,o-z) 

common /blk1 /xmean,sig, ix, up rev ,xnorm 

common /blk4/ynorm,ymean,siy 

iy=1366853*ix 

iyp=iy/214 748364 7 

ix=iy-iyp*214 748364 7 

ax=ix 

U=ax/2147483647. 

if(u) 5,5,6 

5 U=-U 

6 continue 

ix=iy 

aaa=-2.0*dlog(uprev) 

y=sqrt(aaa)*sig 

Z=sq rt( aaa) * s iy 

xnorm=y*cos(6.28318*u)+xmean 

ynorm=z*sin(6.28318*u)+ymean 

uprev=u 

return 

end 



c +++++++++++++++++SUBROUTINE STATCP ++++++++++++++++++++ 
c + UNBIASED ESTIMATES OF THE MEAN AND VARIANCE 

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine statcp 

implicit real*8 (a-h,o-z) 

dimension xavg(2, 180),xvar(2, 180),x(2),dx(2) 

common /blk2/mtot,xnum,xavg,xvar 

common /blk3/kutta,dt,nx,x,dx 

b1 =1.0/xnum 

b2=1.0/(xnum-1.0) 

do 10 i=1 ,mtot 

do 20 j=1 ,nx 

xavg(j, i) =xavg(j, i)*b1 

xvar(j, i) =b2* (xvar(j, i)-xn u m*xavg (j, i)*xavg (j, i)) 

20 continue 

10 continue 

return 

end 
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c ++++++++++++++++++ SUBROUTINE RUNGK ++++++++++++++++++++++ 
c + FOURTH-ORDER RUNGE-KUTTA INTEGRATION 

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine rungk 

implicit real*8 (a-h,o-z) 

dimension x(2),dx(2),xa(2),dxa(2) 

common /blk1 /xmean ,sig,ix, up rev ,xnorm 

common /blk3/kutta,dt,nx,x,dx 

call syseqn 



10 hdt=O.S*dt 

do 20 i=1 ,nx 

xa(i)=x(i) 

dxa(i)=dx(i) 

X (i) =X (i)+ hdt*dx( i) 

20 continue 

call syseqn 

30 do 40 i=1 ,nx 

dxa(i)=dxa(i)+dx(i)+dx(i) 

x( i)=xa( i)+hdt*dx(i) 

40 continue 

call syseqn 

50 do 60 i=1 ,nx 

dxa(i) =dxa( i) +dx (i)+dx(i) 

x (i) =xa( i) +dt*dx( i) 

60 continue 

call syseqn 

70 vdt=dt*O .1666667 

do 80 i=1 ,nx 

x(i) =xa(i)+vdt* ( dxa( i)+dx( i)) 

80 continue 

100 continue 

return 

end 

108 



VITA 

Xiaojian Tao 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: METHODOLOGIES FOR THE RESPONSE OF NONLINEAR 
SYSTEMS SUBJECTED TO STOCHASTIC PARAMETRIC 
AND EXTERNAL EXCITATIONS AND THEIR APPLICATION 
TO CONTROL SYSTEM DESIGN 

Major Field: Mechanical Engineering 

Biographical: 

Personal Data: Born in Xinjiang, China, January 29, 1959, the 
son of Tianbai Tao and Guanghui Zhao. 

Education: Graduated from Gaoquan High School, Xinjiang, 
China, in September, 1976; received Bachelor of Science 
Degree in Mechanical Engineering from Chengdu 
University of Science and Technology in January, 1982; 
received Master of Science degree from Nanjing Institute 
of Technology in July, 1986; completed requirements for 
the Doctor of Philosophy degree at Oklahoma State 
University in December, 1990. 

Professional Experience: Research Associate, Mechanical 
Engineering, Nanjing Institute of Technology, September, 
1983 to June 1986; Teaching Assistant, Mechanical and 
Aerospace Engineering, Oklahoma State University, 
August, 1987 to December, 1989; Research Assistant, 
January, 1988 to Present. 


