SYNTHESES OF POTENTIAL METABOLITES OF ETHYL

(E)-4-[2-(3,4-DIHYDRO-4,4-DIMETHYL-2H-1-BENZO-

PYRAN-6-YL)-1-PROPENYL]BENZOATE, 4-[(ALL-E)-

2-METHYL-4-(2,6,6-TRIMETHYL-3-THIA-1-
CYCLOHEXEN-1-YL)-1,3-BUTADIENYL]-
BENZOIC ACID AND CERTAIN
DERIVATIVES

BY
PRASANNA SAKHARAM SUNTHANKAR
Bachelor of Science
University of Bombay
Bombay, India
1983
Master of Science
University of Bombay
Bombay, India
1985

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSOPHY

December, 1991

Dhosifis
19910
s968\%

SYNTHESES OF POTENTIAL METABOLITES OF ETHYL
(E)-4-[2-(3,4-DIHYDRO-4,4-DIMETHYL-2H-1-BENZO-
PYRAN-6-YL)-1-PROPENYL]BENZOATE, 4-[(ALL-E)-
2-METHYL-4-(2,6,6-TRIMETHYL-3-THIA-1-
CYCLOHEXEN-1-YL)-1,3-BUTADIENYL]-
BENZOIC ACID AND CERTAIN
DERIVATIVES

Thesis approved:

ACKNOWLEDGMENTS

I would like to express deep gratitude to my advisor, Dr. K. D. Berlin for his intelligent guidance, inspiration, and interest in my research. I would like to thank Dr. H . A. Mottola, Dr. R. Essenberg, and Dr. C. M. Adams for serving on my graduate advisory commitee. I am also grateful to Dr. R. A. Bunce for accepting the request to work on my advisory commitee at such a short notice

I wish to thank Greg, Mahika, Marwan and Shankar for their friendly advice, useful suggestions and all the help in the laboratory. I would like to thank John, Francis, Stan and Satish for helping me in my research.

I am grateful to Dr. E. C. Nelson and Lori Thorne for carrying out metabolic studies with our compounds and also allowing us to use their HPLC. I would like to thank Dr. W. T. Ford for allowing us to use his UV spectrophotometer.I would like to thank Department of Chemistry for the financial support and for providing an atmosphere conducive to research..

I am very much indebted to my parents whose love, understanding, encourgement, and inspiration has helped me throughout the course of this research. Special thanks to my brother, Hemant, and to Geeta, Karan and Neha for their love and support. Thanks are due to a special friend Sanjay for his encourgement and advice.

Finally, I would like to express my love and appreciation to my wife Sharmila for her support and understanding.

TABLE OF CONTENTS

Chapter Page
I. HISTORICAL 1
Introduction 1
Degradative Biopathways and Metabolism 5
Mode of Action 6
Pharmacology and Toxicity 8
Summary 15
II. RESULTS AND DISCUSSION. 16
Synthetic Methodology 21
Syntheses Of New Heteroarotinoids 33
Suggestion For Future Work 42
III. EXPERIMENTAL 45
General Information 45
Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)- 3-hydroxy-1-propenyl]benzoate (37) 46
Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)- 1-propenal]benzoate (38) 47
Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)- 2-propanoic acid]benzoate (39) 48
Ethyl 3-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]- crotonate (41) 48
3-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]- crotonic Acid (42) 49
4-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]- Δ^{2}-butanolide (43) 50
3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-carboxylic Acid (44) 51
4-[(all-E)-2-Methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl)- 1,3-butadienyl]benzoic Acid (45) 52
5-[(all-E)-2-Methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl)- 1,3-butadienyl]-1,3-benzodioxazole (46) 53
Ethyl 4-[(all-E)-2-Methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl)- 1,3-butadienyl]benzenesulfonate (47) 53
Ethyl 3-Mercaptocrotonate (48) 54
2,6-Dimethyl-1-ethoxycarbonyl-3-thia-1,5-heptadiene (49) 55
3,7-Dimethyl-4-thiaocta-2,6-diene-1-ol (50) 56
6,7-Dimethyl-7-thiaundecane-3,5,9-triene-2-one (51) 56
4 -Thia- β-Ionone (52) 57
4-Thia- β-Ionol (53) 57
Chapter Page
4-Thia- β-cyclogernyltriphenylphosphonium Bromide (54) 58
2-Methyl-4-phenoxy-2-butanol-1,2'-14 C_{2} (58*) 58
4,4-Dimethylchroman-9,1014 $C_{2}\left(59^{*}\right)$ 59
4,4-Dimethylchroman-6-yl Methyl Ketone-9,10,11-14 C_{2} (40*) 59
$\alpha, 4,4$-Trimethylchroman-6-methanol-9,10,11-14C (60*) 60
[1-(4,4-Dimethylchroman-6-yl)ethyl]triphenylphophonium Bromide- 9,10,11-14 C_{3} (61*) 61
Ethyl (E) 4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)- 1-propenyl]benzoate-9,10,11,20-14 $C_{4}\left(\mathbf{2 8}^{*}\right)$ 61
Ethyl p-Toluate-14 $C=0$ (63*) 62
Ethyl 4-Formylbenzoate- ${ }^{14}$ C(O)OEt (64*) 63
Methyl 4-(Carboxymethylmercapto)butyrate (77) 63
2-Carbomethoxythiacyclohexan-3-one (78) 64
Attempted Alkylation of 78 65
Methyl 4-Chloro-2,2-dimethylbutyrate (80) 65
Methyl 2,2-Dimethyl-4-(carbomethoxymethylmercapto)- butyrate (81) 66
2-Carbomethoxy-4,4-dimethylthiacyclohexan-3-one (82) 67
Attempted Reaction of 82 with N-Phenyltrifluoromethane- sulfonimide 67
4,4-Dimethylthiacyclohexan-3-one (83) 68
Attempted Alkylation of 4,4-Dimethylthiacyclohexan-3-one 68
Methyl 4-Bromomethylbenzenesulfonate (89) 69
Ethyl 4-Triethylphosphonomethylbenzenesulfonate (91) 70
4-Cyano-4-trimethylsiloxy-3,4-dihydro-2H-1-benzopyran (101) 70
4-Cyano-3,4-dihyro-2H-1-benzopyran (102) 70
4-Cyano-4-methyl-3,4-dihydro-2H-1-benzopyran (103) 71
4-Cyano-4-methyl-3,4-dihydro-2H-1-benzopyran-6- methyl Ketone (104) 72
BIBLIOGRAPHY 142

LIST OF TABLES

Table Page
I. Therapeutic Indices of Various Retinoids 10
II. Retinoid Inhibition of Mouse Epidermal ODC Induction and Tumor Promotion by TPA 11
III. Retinoid Activity In TOC Assay 13
IV. UV Data Of Selected Stilbene Derivatives and Some Heteroarotinoids 25

LIST OF FIGURES

Figure Page

1. Some Oxidative Pathways of all trans-Retinoic Acid (3) 5
2 Etretinate (10) and Its Metabolites Isolated From the Bile of the Rat and Isolated from Human Urine 6
2. Structures Of Heteroarotinoid 28 and Potential Metabolites of Heteroarotinoid 28 16
3. Structures of New Potential Metabolites 40-44 from 28 via Chain Cleavage 17
4. Structures of New Heteroarotinoids 45-47 With a Long Side Chain 17
5. Intermediates in The Syntheses of New Heteroarotinoids 48-55 19
6. Labelled Heteroarotinoids 28* and Synthetic Intermediates. 20
7. Preparation of Heteroarotinoid 28* 29
8. HPLC Profile of (a) Section of Bile and (b) Standard Metabolites 31
9. HPLC Profile of Bile Sample Spiked With Standards (a) 37 and (b) 70 32
10. Growth Curve for Retinoic Acid (3, Control) and Heteroarotinoid 28 (Test Rat Fame) 34
11. Preparation of Intermediates 48-54 38
12. Conversion of $\mathbf{1 0 0}$ to $\mathbf{1 0 4}$ 43
13. Suggested Syntheses of $\mathbf{9 7 - 9 9}$ 44

LIST OF PLATES

Plate Page
I. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 8}$ 73
II. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 8}$ 74
III. IR Spectrum of 28 75
IV. UV Spectrum of 28 76
V. ${ }^{1} \mathrm{H}$ NMR Spectum of 37 77
VI. ${ }^{13}$ C NMR Spectrum of 37 78
VII. IR Spectrum of 37 79
VIII. UV Spectrum of 37 80
IX. ${ }^{1}$ H NMR Spectrum of 38 81
X. ${ }^{13}$ C NMR Spectrum of 38 82
XI. IR Spectrum of $\mathbf{3 8}$ 83
XII. UV Spectrum of $\mathbf{3 8}$ 84
XIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 39 85
XIV. ${ }^{13}$ C NMR Spectrum of 39 86
XV. IR Spectrum of 39 87
XVI. UV Spectrum of $\mathbf{3 9}$ 88
XVII. IR Spectrum of 40 89
XVIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 41 90
XIX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 41 91
XX. IR Spectrum of 41 92
XXI. ${ }^{1}$ H NMR Spectrum of 42 93
Plate Page
XXII. ${ }^{13}$ C NMR Spectrum of 42 94
XXIII. IR Spectrum of 42 95
XXIV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 43 96
XXV. ${ }^{13}$ C NMR Spectrum of 43 97
XXVI. IR Spectrum of $\mathbf{4 3}$ 98
XXVII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 44 99
XXVIII. ${ }^{13}$ C NMR Spectrum of 44 100
XXIX. IR Spectrum of 44 101
XXX. ${ }^{1} \mathrm{H}$ NMR Spectrum of 45 102
XXXI. ${ }^{13}$ C NMR Spectrum of 45 103
XXXII. IR Spectrum of 45 104
XXXIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 46 105
XXXIV. ${ }^{13} \mathrm{C}$ NMR spectrum of 46 106
XXXV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 47 107
XXXVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 47 108
XXXVII. IR Spectrum of 47 109
XXXVIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 48 110
XXXIX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 48 111
XXXX. IR Spectrum of 48 112
XXXXI. IR Spectrum of 49 113
XXXXII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 49 114
XXXXIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 49 115
XXXXIV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 51 116
XXXXV. IR Spectrum of 51 117
XXXXVI. IR Spectrum of 52 118
XXXXVII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 52 119
Plate Page
XXXXVIII. IR Spectrum of 53 120
IL. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 3}$ 121
L. IR Spectrum of $\mathbf{5 4}$ 122
LI. ${ }^{1} \mathrm{H}$ NMR Spectrum of 54 123
LII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 55 124
LIII. ${ }^{13}$ C NMR Spectrun of 55 125
LIV. IR Spectrum of 58* 126
LV. IR Spectrum of 60^{*} 127
LVI. IR Spectrum of 64* 128
LVII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 87 129
LVIII. IR Spectrum of 101 130
LIX. ${ }^{1} \mathrm{H}$ NMR Spectrum of 101 131
LX. ${ }^{13}$ C NMR spectrum of 101 132
LXI. IR Spectrum of 102 133
LXII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 102 134
LXIII. ${ }^{13}$ C NMR Spectrum of 102 135
LXIV. IR Spectrum of $\mathbf{1 0 3}$ 136
LXV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 103 137
LXVI. ${ }^{13}$ C NMR Spectrum of 103 138
LXVII. IR Spectrum of 104 139
LXVIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 104 140
LXIX. ${ }^{13}$ C NMR Spectrum of 104 141

CHAPTER I

HISTORICAL

Introduction

Vitamin A (retinol, 1) is stored in the liver as retinyl palmitate and is essential for the growth and development of higher life forms and functions in many different ways within an organism. ${ }^{68}$ In mammals, vitamin A is essential for vision [converted to retinal (2)] reproduction and the regulation of differentiation and proliferation of a very wide range of epithelial tissues. ${ }^{64}$ Retinoic acid (3) can substitute for retinol in vitamin A deficient animals in growth promotion and cell differentiation. ${ }^{13}$

Retinol (1)

Retinal (2)

all-trans-Retinoic Acid (3)

13-cis-Retinoic Acid (4)

The term "retinoids" is applied to naturally occurring vitamin A derivatives, such as retinol, retinal, and retinoic acid, as well as to synthetic compounds having structural similarities regardless of whether they possess biological activity. ${ }^{19,67}$ Since the late 1960's, a number of structurally-modified retinoids (synthetic retinoic acid derivatives) have been made with the focus to improve on the ratio of toxic effects (e.g. hypervitaminosis A) to the therapeutic activity compared to retinoic acid. ${ }^{53}$ Retinoic acid (3) consists of three main sections: a lipophilic part at one end connected via a polyunsaturated chain as a spacer to a hydrophilic group at the other end as shown below.

all-trans-Retinoic Acid (3)

Different synthetic retinoids have been prepared by making alterations in one or more parts of the basic retinoic acid skeleton. For example, the hydrophilic $\mathrm{CO}_{2} \mathrm{R}$ group has been replaced by a phosphoric ester group as in 5 and sulfonic ester group as in 6.40

The oxygen-containing metabolites from 3, namely 7-9, are a group of compounds in which the cyclohexenyl ring (lipophilic part) has been altered. $38,58,59$ Keto acid 9 has been shown to be teratogenic. ${ }^{77}$

Aromatization of the cyclohexenyl ring leads to compounds like Etretinate (10) and Motretinid (11). 48 A number of arotinoids (retinoids with an aryl ring as in 13 and 14)
have been synthesized ${ }^{12}$ and have exhibited anticancer activity in several assays but they are toxic. ${ }^{45}$

Structure 12 illustrates the closeness of these arotinoids to retinoic acid (3). It shows how the polyene side of the retinoic acid is condensed into an aromatic ring structure, thus

making fixed conformations at these bonds and more planar structures.
Another class of synthetic retinoids are the heteroarotinoids ${ }^{18,41,70,76}$ (retinoids consisting of an aryl ring and the heteroatom incorporated in one of the rings as shown below in 15) which have also shown anticancer activity with reduced toxicity in several assays. This area is in a time of rigorous development. Several members of $\mathbf{1 5}$ have exhibited reduced toxicity compared to retinoic acid (3). ${ }^{18,70}$

$$
\begin{aligned}
& \mathrm{X}=\mathrm{O}, \mathrm{~S}, \mathrm{~N}-\mathrm{CH}_{3} \\
& \mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \\
& \mathrm{n}=1,2
\end{aligned}
$$

Degradative Biopathways and Metabolism

Many oxidative pathways for retinoic acid (3) have been suggested from in vitro and in vivo studies. ${ }^{24}$ The major oxidation sites are: (1) the oxidation of the cyclohexenyl ring at $\mathrm{C}(4)$, (2) the oxidation of one of the methyl groups on the ring and on the side chain, and (3) shortening of the side chain as shown below (Figure 1).

18

3

17

Figure 1. Some Oxidative pathways of all trans-retinoic acid (3): (a) Reference 25;
(b) Reference 49; (c) Reference 33; (d) Reference 31; (e) Reference 56;
(f) Reference 32

Among synthetic retinoids, Etretinate (10) is the most widely studied. Many oxidative metabolites have been isolated and characterized from the bile of rats and from human urine as shown below. ${ }^{34,35}$ The major metabolites in humans are 22-24 (Figure 2).

Figure 2. Etretinate (10) and Its Metabolites 19-21 Isolated From the Bile of the Rat ${ }^{33}$ and 22-24 Isolated From Human Urine ${ }^{23}$

Mode of Action

The important functions of vitamin A (1) are exerted in the control of normal differentiation of epithelial tissues, in bone remodeling to maintain growth, and in reproduction. ${ }^{21,50,78,79}$ Although the biological and biochemical responses to retinoids have been studied intensively in a variety of different cell systems, ${ }^{36,64,68}$ the mechanism of action is still not fully understood. It is presently clear that retinoids play an important role in the control of cell differentiation and in the inhibition of carcinogenesis. ${ }^{19,68}$

It is possible that retinoids may exhibit their responses via more than one independent mechanism. There is enough evidence to support the idea that retinoic acid (3) influences genomic expression by activating or repressing specific genes. ${ }^{26}$ Retinoids are believed to affect the expression of these genes at a transcriptional or post-transcriptional level. ${ }^{23}$

Chytil and Ong ${ }^{10,11}$ have proposed that the cellular retinoic acid binding proteins and cellular retinol binding proteins (CRABP and CRBP, respectively) may be involved in the mechanism of action which is reminiscent of that for steroid hormones which act via specific receptors that bind to specific sites in the chromatin thereby altering gene expression. There are conflicting results regarding an exact mechanism of action and the involvement of specific cellular binding proteins. Some studies show that cells which lack CRABP do not respond to retinoids ${ }^{74}$ whereas other studies show that cells devoid of any CRABP respond to retinoids. ${ }^{22,43}$ Recently, several laboratories ${ }^{28,54,65}$ have identified nuclear retinoic acid receptors (RAR's), which belong to a family of receptors that include the receptors for steroids hormones, thyroid hormones and vitamin D_{3}. It was shown that these receptors have a high affinity for retinoic acid (3). These receptors have a molecular weight of approximately 50,000 and are largely associated with nucleus. ${ }^{51}$

Retinoic acid receptors appear to act as ligand responsive transcriptional factors and likely mediate the action of the retinoids on proliferation and differentiation. ${ }^{37}$ Three human retinoic acid receptors have been cloned, namely RAR α^{54} (steroid hormone), RAR β (found in human hepatocellular carcinoma) ${ }^{5}$ and RAR $\gamma .^{42}$ Recently, another retinoic acid receptor $(\mathrm{RXR} \alpha)$ has been cloned ${ }^{46}$ which is substantially different from primary sequence from the previously described RAR's. Thus, possibly CRABP transports retinoic acid (3) to the nucleus and $\mathbf{3}$ is then transferred to the nuclear retinoic acid receptor (RAR'S). This pathway represents the retinoic acid-dependent, transacting enhancer factor that interacts with a specific sequence in the DNA (see outline below) thereby inducing changes in the rate of transcription of specific genes.

Pharmacology and Toxicity

It is known that retinoids influence cellular differentiation by modifying gene expression. 66 Depending upon the concentration present in the target tissue, retinoids either induce or adversely affect the normal biochemical expression of differentiation and morphogenesis. ${ }^{71}$ Clinically the most important retinoids are, to date, 13-cis-retinoic acid (4) (Isotretinoin, Accutane, Roaccutan), which has high clinical effectiveness in severe, treatment-resistant modulystic acne, ${ }^{75}$ and Etretinate (10, Tigason, Tegison) or Acritretin (Neotigeson, Soriatane) which give significant clinical improvement in severe forms of psoriasis, particularly generalized pustular psoriasis. ${ }^{29}$ Side effects from the oral treatment of 13-cis-retinoic acid (4) include abdominal pain, cheilitis, conjunctivitis, xerosis and others. ${ }^{44}$ Etretinate (10) gives some of the same symptoms as natural retinoids but also poses two additional problems: (1) there are increasing reports of abnormalities in liver function and (2) marked teratogenic properties have been observed, apparently due to the long half-life of this drug after chronic therapy. ${ }^{44}$

It is difficult to test for the effectiveness or the adverse effect of retinoids since the dermatological diseases in which retinoids have shown major effectiveness do not occur in animals. The mouse papilloma system is the useful model, although the skin disorders are not perfectly comparable, but there are a number of features and morphological analogies to skin diseases in human.

A retinoid is considered active when the average diameter of the papillomas per group is reduced by $50 \% .{ }^{4}$ This is done by measuring papillomas directly. In addition to the effectiveness, a test is performed to determine the dose levels which produce a defined
degree of retinoid side effects (hypervitaminosis A). Since various retinoids are pharmacologically active at different doses and cause side effects at different doses, it is necessary to have a parameter that allows comparision of a large number of retinoids. This parameter is called as therapeutic index (T. I.) and is defined as

$$
\text { T.I. }=\frac{\text { Minimal toxic dose causing hypervitaminosis } \mathrm{A}}{\mathrm{ED}_{50} \text { papilloma regression }}
$$

The higher the T.I. value, the better the range between these two values and thus the more potent the retinoids (Table I). Table II shows the structures of selected natural and synthetic retinoids (arotinoids and heteroarotinoids) and their activity in the ornithine decarboxylase (ODC) assay. It gives the ID_{50} values (amount of retinoid required to inhibit by 50% the induction of ODC in mouse dorsal epidermis treated with a tumor promoter TPA). The ED_{50} is defined in Table III. All trans-retinoic acid (3) and 13-cisretinoic acid (4) are used as controls. Modification of the ring to give pentamethyl sustituted cyclohexyl ring derivatives showed a good activity (26 Table II). In the benzoic acid series ($\mathbf{1 3}$ and 14, Table II), both acids demonstrated good activities, ${ }^{45}$ but the corresponding esters were found to be less active. When the phenyl ring of compound 14 was replaced by a furan ring ($\mathbf{2 7}$, Table II), ether 27 was found to be completely inactive, probably due to instability of the ester in the epidermus. ${ }^{16}$ The heterocyclic derivatives of 13 (28 and 29) have a heteroatom at the $C(5)$ position where oxidative metabolism normally occurs. ${ }^{57}$ Benzothiopyran derivative 29 was found to be more active than benzopyran derivative 28. ${ }^{18,76}$ The percentage of inhibition as compared to control is calculated as follows:

TABLE I
THERAPEUTIC INDICES OF VARIOUS RETINOIDS 53
Antipapilloma
effect $(\mathrm{mg} / \mathrm{kg})$

TABLE II

RETINOID INHIBITION OF MOUSE EPIDERMAL ODC INDUCTION AND TUMOR PROMOTION BY TPA

Retinoid	ODC Assay $I D_{50}(\mathrm{nmol})$	Antipapilloma Assay ID50(nmol)	Reference
Control			

Conformationally Restricted

Heteroarotinoids
(252.00

3.00

18

The hamster tracheal organ culture (TOC) bioassay has been extremely valuable for providing information on retinoid structure-activity relationship. ${ }^{68}$ A number of synthetic retinoids have been examined in the TOC bioassay. In this bioassay, an organ culture system is employed that has the capacity for metabolizing the compounds, and thus the activity exhibited by retinoids may be due to the metabolites of that particular retinoid and not the retinoid itself. ${ }^{77}$ Introduction of two methyl groups at the $\mathbf{C}(4)$ position of the retinoic acid (3) (such as 26, Table III) blocks oxidative metabolism at this position and the activity drops by $50 \% .62$ Acid 13 exhibited the highest activity of any retinoid screened in the TOC bioassay. ${ }^{18}$ Removal of the two methyl groups from the $\mathrm{C}(5)$ position of $\mathbf{1 3}$ led to acid $\mathbf{3 2}$ which showed less activity, thus suggesting the importance of the lipophilic moiety at that end. ${ }^{62}$ The benzoic acid derivative 14 (Table III), with the polyene side chain partially replaced by an aryl ring, has only 5% of the activity of retinoic acid (3) at 100 fold higher concentration. ${ }^{52}$ Ester 30 (Table III) of acid $\mathbf{1 4}$ has similar activity. In contrast, shifting the $\mathrm{CO}_{2} \mathrm{Et}$ group from the para to the meta position (31, Table III) abolished the activity. ${ }^{18}$ The activity increased when the phenyl ring in 14 was replaced by a thiophen ring ($\mathbf{3 5}$, Table III), whereas when it was replaced by a furan ring (27, Table III), the activity diminished. In the case of heteroarotinoids, the introduction of benzopyran (33, Table III) reduced the ED_{50} by over 1 log unit, compared to that of acid 13, whereas in the case of the less polar thiobenzopyran (29 , Table III), the activity was reduced by 60%. The activity increased when the phenyl ring of acids 14 or 32 was replaced by a thiophene ring as in acid 35.

The main hindrance to clinical utility of presently available retinoids is their toxicity. ${ }^{35}$ Thus, prolonged use of retinoids as chemopreventive or therapeutic agents is limited by their toxic side effects. Differences in metabolic degradation, distribution and the in vivo storage of various retinoids can lead to differences in toxicity which is one of the important reasons for synthesizing new analogues. ${ }^{9}$ The main symptoms of the hyper-

TABLE III
RETINOID ACTIVITY IN TOC ASSAY

Retinoid Structure	TOC Assay			
	Conc. M	Active Total Culture \%	$\mathrm{ED}_{50}{ }^{\text {a }}, \quad \mathrm{R}$	Reference
	10^{-10}	86	1×10^{-11}	62
	10^{-10}	86	2×10^{-11}	62
	10^{-8}	100	2×10^{-12}	18
	10^{-8}	100	2×10^{-10}	52
	10^{-10}	88	2×10^{-11}	62
	10^{-8}	46	$>1 \times 10^{-8}$	16
	10^{-9}	100	5×10^{-11}	18

TABLE III (Continued)

	TOC Assay			
Retinoid	Conc. M	Active Total Culture $\%$	ED $_{50}{ }^{\mathrm{a}}$,	Reference
Structure				

10^{-10}
29
$>1 \times 10^{-8}$
62

$10^{-8} \quad 100$
3×10^{-11}
62
32

10^{-9}
100
2×10^{-10}
62,76
33

10^{-9}
100
5×10^{-11}
19
34

10^{-8}
100
1×10^{-10}
62
${ }^{\text {a }}$ The activities are given as ED_{50}; the estimated dose of retinoid required to reverse keratinization in 50% of the organ culture.
vitaminosis A syndrome in man involve changes in the skin such as cheilitis, desquamation pruntis, pigmentation and hair loss. ${ }^{9}$ Other side effects include pain in the bones, joints and muscles as well as hepatic dysfunctions. Teratogenicity has been observed in animals and recently in humans exposed to 13 -cis-retinoic acid (4). ${ }^{20}$

Summary

In conclusion retinoic acid (3) plays an important role in cell differentiation and growth promotion. ${ }^{4,13}$ Recent studies have indicated that $\mathbf{3}$ is teratogenic and toxic in high doses. ${ }^{53}$ It is evident that incorporation of the heteroatom into the retinoid skeleton does not reduce the activity by a wide range. More importantly, the heteroarotinoids are much less toxic than potent arotinoid TTNPB (13). ${ }^{18,70}$ Studies have also shown that more planar structures with ability to bind to receptors is probably a very important feature for more optimum retinoid activity. ${ }^{77}$

CHAPTER II

RESULTS AND DISCUSSION

We have developed methodologies to synthesize several new heteroarotinoids and potential metabolites of heteroarotinoid 28. Heteroarotinoid 28 and possible metabolites are shown in Figures 3 and 4.

Figure 3. Structures of Heteroarotinoid 28 and Potential Metabolites of Heteroarotinoid 28

40

42

44

Figure 4. Structures of New Potential Metabolites 40-44 From 28 via Chain Cleavage.

Figure 5. Structures of New Heteroarotinoids 45-47 with a Long Side Chain

A new group of heteroarotinoids with a long side chain was also prepared (Figure 5).

The compounds 36-44 can be classified as potential oxidative metabolites of ethyl (E)-4-[2-(3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-1-propenyl]benzoate (28). Heteroarotinoid $\mathbf{2 8}$ had been synthesized in our laboratory and had been shown to possess good activity in several bioassays. ${ }^{19,76}$

The potential metabolites 36-44 can further be classified into two groups, namely that obtainable from the oxidation of the allylic methyl group at $\mathrm{C}(12)$, as in compounds 36-39 (Figure 3), and those in which the side chain has undergone oxidative cleavage as in compounds 40-44 (Figure 4). The products prepared as potential metabolites of $\mathbf{2 8}$ are, to some degree, reminiscent of those observed from trans-retinoic acid (3) and from the clinically-approved, synthetic arotinoid Etretinate (10) (see pages 5 and 6). It has been documented that retinoic acid (3) undergoes oxidative metabolism ${ }^{32}$ and some of the in vivo metabolites were found to be active whereas some were apparently produced for the purpose of excretion. ${ }^{53}$

Figure 5 shows the structures of new and novel heteroarotinoids which have a longer polyene side chain (compared to that in 28) and thus are possibly closer mimics of retinoic acid (3). A sulfur atom has been sustituted for $\mathrm{C}(4)$ in the cyclohexenyl ring of the retinoic acid (3), and a small part of the polyene side chain was condensed into an aromatic ring. These compounds were made by multi-step syntheses starting from commercially available reagents. The intermediates in the syntheses are shown in Figure 6.

48

51

53

49

50

52

54

Figure 6. Intermediates in the Syntheses of New Heteroarotinoids 48-55

In order to investigate the potential metabolites obtainable from 28, it was decided to prepare labelled heteroarotinoid 28*. Figure 7 shows labelled compound $\mathbf{2 8}^{*}$ and the intermediates for the syntheses (* carbon atoms denote a ${ }^{14} \mathrm{C}$ label introduced into $\mathbf{2 8}^{*}$). In collaboration with Dr. Nelson and co-workers in the Biochemistry Department, a current investigation is underway to determine the pharmacokinetics and the major metabolites formed in vivo in rats given compound 28*.

58*

40*

61^{*}

64*

Figure 7. Labelled Heteroarotinoid $\mathbf{2 8}^{*}$ and Synthetic Intermediates.

Synthetic Methodology

The ester 28 was synthesized according to Scheme I and as reported in the literature. ${ }^{76}$ Pure 28 was obtained as white crystalline solid (95% ethanol), mp $72-73^{\circ} \mathrm{C}$ ($\mathrm{lit}^{76} \mathrm{mp} 72.5$ $73.5^{\circ} \mathrm{C}$).

SCHEME I

The approach to obtain potential metabolites 36-39 (page 16) utilized the parent compound 28 as starting material. Compounds 36-39 could be envisioned as accessible via successive oxidation of the allylic methyl at the $\mathrm{C}(12)$ first to hydroxymethyl derivatives 36 and 37, then to aldehyde 38, and finally to carboxylic acid 39. Of course, isomeric aldehyde Z-65 and acid Z-66 are conceivable from the procedures but were not

observed.
A literature search and some previous experience in the area of oxidation of this type of heterocyclic system suggested that SeO_{2} might be the the reagent of choice for the oxidation of the $C(12)$ methyl group to the corresponding hydroxymethyl group. Indeed, that was the case as illustrated below. Both isomers 36 and 37 formed but, surprisingly, the major product isolated was the E-isomer 37 in which the two phenyl rings were syn to each other.

This could be explained on the basis of the mechanism ${ }^{63}$ of oxidation with SeO_{2} which involves a [2,3]-sigmatropic shift in one of the intermediates as shown below. Small quantities of the allylic alcohol 36 (Z-isomer), along with some aldehyde 38, were also detected. An oxidation experiment was carried out using 3 equivalents of the SeO_{2} in boiling 95% ethanol with 28. Although allylic alcohol 37 was obtained in fair yield (31%), increasing the reaction times or the number of equivalents of SeO_{2} did not change
the yield of 37 .

The E-isomer 37 was purified on a 4 mm silica gel plate (Chomatotron) using a gradient elution with hexanes:ethyl acetate $(8: 2 ; 7: 3)$ as eluents. Ester 37 was obtained as a thick, yellow-colored oil but all measures to convert it to a solid failed. The elemental analysis of the oil showed the presence of trace amounts of water which were retained even after prolonged heating under vacuum $\left(110^{\circ} \mathrm{C}, 10 \mathrm{~mm} \mathrm{Hg}\right)$. However ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and the mass spectral analyses confirmed the stucture of 37.

The E-isomer 37 was used as starting material for preparation of aldehyde 38. Treatment of 37 with activated $\mathrm{MnO}_{2}{ }^{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave the corresponding aldehyde 38 (76\%) which was isolated as a yellow-colored solid melting at $157-158^{\circ} \mathrm{C}$. Again in this reaction, the major product isolated was isomer 38 in which the two phenyl groups were syn to each other.

Carboxylic acid 39 was obtained by direct oxidation of aldehyde 38 as shown. Various oxidizing reagents were employed in attempts to effect this latter conversion, including the conventional use of moist $\mathrm{Ag}_{2} \mathrm{O}^{47}$ and $\mathrm{NiO}_{2}{ }^{7}$, but the best results were obtained when the unusual reagents shown were employed. Teatment of aldehyde 38 with $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{NaClO}_{2}$ in t-butanol gave acid 39 in a yield of 82%. Since ClO_{2} (the oxidant generated in this reaction) and Cl^{-}are formed in situ, resorcinol was added as a scavenger to limit further oxidation. ${ }^{2}$

Confirmation of all the products was established by UV, mass, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral analyses. A comparison of the UV maxima of stilbene and some of its derivatives, along with some arotinoids and heteroarotinoids, is given in Table IV. As can be seen from the Table, the E-isomers have a maxima with higher ε values at long wavelengths whereas the Z-isomers have a maxima with higher ε value at shorter wavelengths. Thus, it is implied that the E-isomers have greater conjugation and are probably more nearly planar.

Another class of potential metabolites are 40-44 (page 17) in which the side chain of the parent compound 28 has undergone a C-C cleavage concommitant with some oxidation. The approach to these compounds originated from the 4,4-dimethylchroman 40 which had been an intermediate in the synthesis of compound $\mathbf{2 8}^{76}$ and could itself be a metabolite. Condensation of 40 with triethyl phosphonoacetate (67) using NaH/THF yielded the α, β-unsaturated ester 41 isolated as a thick oil. The oil was purified on a silica gel plate (Chromatotron). Saponification of ester 41 with 4.3% alcoholic KOH gave, after

TABLE IV

UV DATA OF SELECTED STILLBENE DERIVATIVES AND SOME HETEROAROTINOIDS

TABLE IV (Continued)

Compound	Conjugation band	Lower-wavelength band		.
	$\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \times 10^{4}\right)$	$\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \times 10^{4}\right)$	Solvent	

$$
310.0(1.60) \quad 245.0(2.20) \quad \mathrm{EtOH}
$$

284.0 (1.16)
240.0 (1.41)

95\% EtOH

$$
330.0(0.37) \quad 286.0(1.47) \quad 95 \% \text { EtOH }
$$

330.0 (0.66) 286.0 (1.28)
$95 \% \mathrm{EtOH}$
${ }^{\text {a Suzuki, H. Bull. Chem. Soc. Jpn. 1960, 33, 379-388, 396-405. }}$
bMethyl (E) 4-[2-(3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl-1-propenyl]benzoate (28a) (reference 27).
cMethyl (Z) 4-[2-(3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl-1-propenyl]benzoate (28b) (reference 27)

neutralization, acid 42. Acid 42 was obtained as a white solid after recrystallization (alcohol:water, $1: 1$). This acid retained traces of water in the crystals even after drying under vacuum for several hours. The mass spectral analysis, along with ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, confirmed the structure of the acid 42 unambiguously.

Another interesting metabolite, which has a structure similar to the metabolites 18 (page 5) and 23 (page 6) obtained from trans-retinoic acid (3) and Etretinate (9), respectively, is that which contains a butyrolactone ring, namely 43. One method for the synthesis of this general type of system has been described by Corey and co-workers. ${ }^{12}$ In our example,
conversion of $\mathbf{4 0}$ to the homologated α, β-unsaturated aldehyde was the key initial step. Reaction of ketone 40 with (triphenylphosphoranylidene)acetaldehyde (68, Aldrich) did not generate the homologated aldehyde 69. A comprehensive literature search revealed an obscure example in the field of steroid chemistry wherein an unsaturated ester was converted to a lactone using $\mathrm{SeO}_{2} .{ }^{15}$ Treatment of α, β-unsaturated ester 41 with SeO_{2} in boiling benzene resulted in the formation of lactone 43 in a one-pot reaction. The Δ butanolide derivative $\mathbf{4 3}$ is likely formed via initial oxidation of the allylic methyl group to a hydroxymethyl function which undergoes lactonization with concommitant loss of ethanol. After workup, lactone 43 was obtained as a thick oil which solidified upon trituration. Purification (95% ethanol) of the lactone gave a yellow-colored, crystalline solid melting at $133-134^{\circ} \mathrm{C}$, identified by spectral analyses (see Experimental).

Carboxylic acid 44 was obtained as a white solid when methyl ketone 40 was treated with household bleach "Clorox" $(5.25 \% \mathrm{NaOCl})$ mixed with 95% ethanol. The yield of 44 was 67%. The simplicity of this method is an asset.

In order to study the metabolism of the compound 28 in rats, it was decided to synthesize labeled 28^{*} incorporating a ${ }^{14} \mathrm{C}$ label at certain positions so as to facilitate a determination of the pattern of cleavage in vivo. Stratigically positioned ${ }^{14} \mathrm{C}$ atoms or markers could also help in identification of metabolites via comparison with labelled compounds synthesized as potential metabolites. The synthesis of 28^{*} with ${ }^{14} \mathrm{C}$ label at four different carbon atoms was achieved as illustrated (Figure 8).

Methyl 3-phenoxypropionate (57) was prepared from commercially available 3-phenoxypropionic acid (56). Treatment of 57 with two equivalents of $\mathrm{H}_{3}{ }^{14} \mathrm{CMg}$-I [prepared from $\mathrm{H}_{3}{ }^{14} \mathrm{CI}\left({ }^{14} \mathrm{C}, 2.5 \mathrm{mg}, 1 \mathrm{mCi}, 56.6 \mathrm{mCi} / \mathrm{mmol}\right.$ sp.act., ICN$)$ and Mg] gave the corresponding labelled tertiary alcohol 58*. Cyclialkylation of alcohol 58* in presence of anhydrous aluminum chloride in nitromethane produced 4,4-dimethylchroman 59* with the ${ }^{14} \mathrm{C}$ label at the gem-dimethyl groups. Acetylation of $\mathbf{5 9}^{\boldsymbol{*}}$ was effected with $\mathrm{H}_{3} \mathrm{C}^{14} \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left(1 \mathrm{mCi}, 50 \mathrm{mCi} / \mathrm{mmol}\right.$, sp. act., ICN) and AlCl_{3} to yield methyl ketone
40^{*}. Reduction of $\mathbf{4 0}$ * with LiAlH_{4} resulted in formation of secondary alcohol $\mathbf{6 0 *}$ with labels at three carbons. Phosphorylation of the alcohol with triphenylphosphine hydrobromide gave the phosphonium salt 61*.

Figure 8. Preparation of Heteroarotinoid 28* (a) $\mathrm{MeOH}, \mathrm{H}^{+}, \mathrm{C}_{6} \mathrm{H}_{6}$, heat, Dean-Stark;
(b) ${ }^{14} \mathrm{CH}_{3} \mathrm{MgI}$, Ether; (c) $\mathrm{AlCl}_{3}, \mathrm{CH}_{3} \mathrm{NO}_{2}$; (d) $\mathrm{H}_{3} \mathrm{C}^{14} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$,
$\mathrm{AlCl}_{3}, \mathrm{H}_{3} \mathrm{CNO}_{2}$; (e) LiAlH_{4}, Ether; (f) $\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{HBr}, \mathrm{MeOH}$, Ether;
(g) n-BuLi, Ether, $4-\mathrm{OHC}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{14} \mathrm{CO}_{2} \mathrm{Et}\left(64{ }^{*}\right)$

The ${ }^{14} \mathrm{C}$-labelled phosphonium salt was then mixed with some cold phosphonium salt, and the mixture was used in the Wittig condensation. In this final step, the anion generated from phosphonium salt 61^{*} was treated with ethyl 4-formylbenzoate [64*, ${ }^{14} \mathrm{C}(\mathrm{O}) \mathrm{OEt}$] at $-78^{\circ} \mathrm{C}$, and then the reaction was allowed to warm and stir for 24 h at room temperature. Purification of a yellow-colored oil obtained was achieved on a Chromatotron (4 mm silica
gel plate) using 200 mL of hexanes:ethyl acetate (9:1) as eluent. The bands with highest R_{f} values (0.75 and 0.7) were collected, and the solvent was evaporated to give a colorless oil. A solution of this oil in 95% ethanol was refrigerated to give the target labelled heteroarotinoid $\mathbf{2 8}^{*}$. The specific activity was determined on a $10 \mu \mathrm{~L}$ aliquot of a solution (prepared by dissolving 7.3 mg of $\mathbf{2 8}^{*}$ in 4 mL of HPLC grade methanol) via the use of a TRI-CARB liquid scintillation analyzer. The specific activity of $\mathbf{2 8}^{*}$ was $0.15 \mathrm{mCi} / \mathrm{mg}$ or $4.28 \times 10^{-5} \mathrm{mCi} / \mathrm{mmol}$. An average count of 6043.8 DPM (disintegrations $/$ minute) was obtained. This low activity must result from losses at one of more steps. Some use of $\mathbf{2 8} \boldsymbol{*}$ was possible by Dr. Nelson although reliance on UV spectral analysis to detect $\mathbf{2 8}^{*}$ was excellent at $10^{-4} \mathrm{M}$ and even lower concentrations.

Aldehyde 64^{*}, used in the last step to prepare 28^{*} was synthesized from commercially available p-toluic acid- ${ }^{14} \mathrm{C}=\mathrm{O}\left(62^{*}, 0.5 \mathrm{mCi}, 4.5 \mathrm{mCi} / \mathrm{mmol} \mathrm{sp}\right.$. act., Sigma). Esterification of 62^{*} with ethanol in presence of concentrated sulfuric acid, while removing the water as an azeotrope with benzene, gave ethyl p-toluate- ${ }^{14} \mathrm{C}=\mathrm{O}\left(63^{*}\right)$. Oxidation of ester $\mathbf{6 3}^{*}$ with CrO_{3} in acetic acid/acetic anhydride produced ethyl 4-formy-1 benzoate ${ }^{14} \mathrm{C}=\mathrm{O}\left(64^{*}\right) .{ }^{78}$

We, in collaboration with Dr. Nelson of the Biochemistry Department, were able to identify certain metabolites from the bile of rats injected with 28. Identification of metabolites from 28 was done by comparing HPLC and the mass spectral profiles, as well as the UV spectra, with those obtained for synthesized potential metabolites. As can be seen from one region of the HPLC profile of bile and the HPLC profile of the standards, (Figure 9), two peaks appear at about the same T_{R} value (75 and 79 min) which two bands

Figure 9. HPLC Profile of (a) Section of Bile and (b) Standard Metabolites [C18 reverse phase (Whatman, ODS-3, $0.47 \times 23.5 \mathrm{~cm}$), flow rate $1 \mathrm{~mL} / \mathrm{min}$, at $22^{\circ} \mathrm{C}$ and 1600 psi , with 0.01 M HOAc:MeOH (7:3)]

Figure 10. HPLC Profile of Bile Sample Spiked With Standards (a) 37 and (b) 70 [C18 reverse phase (Whatman, ODS-3, $0.47 \times 23.5 \mathrm{~cm}$), flow rate $1 \mathrm{~mL} / \mathrm{min}$, at $22^{\circ} \mathrm{C}$ and 1600 psi , with $\left.0.01 \mathrm{M} \mathrm{HOAc}: \mathrm{MeOH}(7: 3)\right]$
correspond to ester 37 and the acid 70, respectively (Figures 9 and 10). This was furthur confirmed by spiking the HPLC sample of bile with the standard compounds, and, as expected the peak height increased (Figure 10). Additional evidence for the presence of the compounds was obtained by comparison of the molecular ion in the mass spectra. The $\mathrm{MH}^{+\bullet}$ peak, in the case of ester 37 , was seen at $367 \mathrm{~m} / \mathrm{z}$, whereas that in case of acid 70 was seen at $323 \mathrm{~m} / \mathrm{z}$ in both the standards and the fragments obtained from the bile.

Another interesting study undertaken in collaboration with Dr. Nelson was to determine the nutritional value of heteroarotinoid 28 in comparison with that of retinoic acid (3). In this study, the gain in weight of rats whose diets were supplemented with or without ester 28 or retinoic acid (3) was monitored over a period of 95 days. The rats were maintained initially on a vitamin A deficient diet until their weight plateaued. From this day (day 0), the rats were fed with diets supplemented with retinoic acid (3 , in the case of control rats) or with compound 28 (in the case of test rats). As can be seen from the graphs (Figure 11), growth with ester 28 paralleled that induced by trans-retinoic acid (3). Thus 28 could have some nutritional value and should be investigated more extensively.

Syntheses Of New Heteroarotinoids

In recent years the main objective of the researchers in the field of retinoids has been to synthesize compounds which would be close mimics of trans-retinoic acid (3), would exhibit good activity at low dose levels, and would be less toxic compared to 3 . It has been shown with heteroarotinoids that the incorporation of a sulfur atom to replace C (4) reduces toxicity while maintaining good activity in several assays. ${ }^{69}$ We have prepared new heteroarotinoids 45-47 (page 17) which substitutes a sulfur atom for $C(4)$ and may alter metabolism at that position. ${ }^{24}$ Part of the side chain has also been condensed into an

Figure 11. Growth Curve For Retinoic Acid (3, Control Rat) and Heteroarotinoid 28 (Test Rat Fame)
aromatic ring thus restricting rotation along those bonds and possibly making the structure more planar. A retro-synthetic approach to the basic skeleton for this compound can be envisioned as follows.

An important intermediate in this multi-step synthesis was the thiaionone 52. With the thiaionone 52 in hand, conversion was effected to the corresponding alcohol 53, which, upon phosphorylation, could yield the phosphonium salt 54. Phosphonium salt 54 could then be condensed with various aldehydes under Wittig reaction conditions to give the target heteroarotinoids 45-47.

A viable starting material for intermediate ketone 52 was 2,4,4-trimethylthiacyclo-
hexan-3-one (73) which could be converted to 74. One possible route to ketone 52 from 73 is as indicated below. As 2,4,4-trimethylthiacyclohexan-3-one (73) was not

commercially available, a synthesis was developed, an initial approach is shown below as $75+76 \rightarrow 77 \rightarrow 78 \rightarrow 79 \rightarrow 73.80$

Condensation of methyl 4-chlorobutyrate (75) with methyl thioglycolate (76) gave diester 77. Cyclization of 77 under Dieckmann conditions using NaOMe gave thia β-keto ester 78 which was saponified and decarboxylated to thiacyclohexan-3-one (79). However, all attempts to alkylate thiacyclohexan-3-one (79) or β-keto ester 78 failed. In all cases either the starting material or a complex mixture was obtained from which no pure product could be isolated.

Another approach to 73 was to condense methyl 2,2-dimethyl-4-chlorobutyrate (80) with methyl thioglycolate (76) which gave the corresponding diester 81 (68%).

Dieckmann cyclization of 81 with NaH gave β-keto ester 82 (53\%). Saponification and decarboxylation of 82 was effected with concentrated sulfuric acid to give 4,4-dimethylthiacyclohexan-3-one (83) (80\%). Unfortunately, all attempts to generate 73 via monomethylation of $\mathbf{8 3}$ failed.

It was decided to follow the multi-step approach of Huisman and co-workers ${ }^{3}$ to prepare 4-thiaionone (52). The synthetic pathway (Figure 11) illustrates the methodology. Ethyl acetoacetate (84), on treatment with dry $\mathrm{H}_{2} \mathrm{~S}$ gas and dry HCl gas at -50 to $-60^{\circ} \mathrm{C}$, gave ethyl 3-mercaptoacetoacetate (48,62\%). Ethyl 3-mercaptoacetoacetate was obtained as a mixture of cis- and trans-isomer of the thioketo tautomer as illustrated. Treatment of 48 with freshly prepared $\mathrm{NaOEt} / \mathrm{EtOH}$ produced the corresponding sodium salt which was condensed with 4-bromo-2-methyl-2-butene (85 , Aldrich) in benzene to afford 2,6-dimethyl-1-ethoxycarbonyl-3-thiahepta-1,5-diene $(\mathbf{4 9}, 65 \%)$ as a mixture of isomers. This ethyl ester was also obtained as a mixture of isomers which distilled under reduced pressure over a wide temperature range $\left(75-125^{\circ} \mathrm{C} / 0.4 \mathrm{~mm} \mathrm{Hg}\right)$. This mixture of isomers was used in the next reaction without further separation. Reduction of the mixture of isomers of 49 with LiAlH 4 in ether at $-30^{\circ} \mathrm{C}$ gave the corresponding primary alcohol 50.

Alcohol 50 was used without purification as it appeared to undergo some type of structural rearrangement reactions upon standing. Oppenauer oxidation of 50 with $\mathrm{Al}\left[\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$, followed by in situ condensation with acetone, resulted in the formation of pseudo 4-thiaionone (51). Cyclization of 51 to 4 -thiaionone (52) was carried out using concentrated sulfuric acid in nitromethane at $-15^{\circ} \mathrm{C}$.

Figure 12. Preparation of Intermediates 48-54. (a) $\mathrm{H}_{2} \mathrm{~S} / \mathrm{HCl} /-50^{\circ} \mathrm{C}$; (b) NaOEt ;
$\mathrm{EtOH} / 2,2$-dimethyl-4-bromo-2-butene, (85); (c) LAH/Ether/-15 ${ }^{\circ} \mathrm{C}$;
(d) $\mathrm{Al}\left[\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$ /acetone/benzene/ Δ; (e) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{CNO}_{2} /-15^{\circ} \mathrm{C}$;
(f) $\mathrm{LAH} / E t h e r ;$ (g) $\mathrm{PPh}_{3} \cdot \mathrm{HBr} / \mathrm{MeOH} /$ Ether

4-Thiaionone (52) was present predominantly in the trans form as shown. Reduction of 52 with LiAlH_{4} in ether afforded the corresponding secondary alcohol 53.

Phosphorylation with triphenylphosphine hydrobromide produced phosphonium salt 54 as a thick oil. This oil was then triturated with ether to give a yellow-colored solid. All compounds in this sequence, especially the phosphonium salt, were found to be extremely hygroscopic.

Phosphonium salt 54 was used in a Wittig reaction with different aldehydes. In one reaction, the anion generated with n-BuLi from salt 54 was condensed with ethyl 4formylbenzoate (64) at $-78^{\circ} \mathrm{C}$ which, after 24 h of stirring at room temperature and workup, resulted in the formation of a yellow-colored oil. Chromatography of the oil on a 4 mm silica gel plate (Chromatotron), using hexane:ethyl acetate (9:1) as eluent, gave ethyl ester 86 but as a mixture of isomers. This isomeric mixture of esters was saponified and, after

neutralization, gave a yellow-colored solid which was crystallized (95% ethanol) to give carboxylic acid 45 as light yellow solid.

In order to study the effects on activity by different hydrophilic groups at the chain terminus, it was decided to use a highly polarized aldehyde in the Wittig condensation. Commercially available piperonal (87) was treated with the anion generated from the
phosphonium salt 54. After workup, the oil obtained was separated on a 4 mm silica gel plate using hexane:ether (9.5:0.5). Heteroarotinoid 46 was obtained as a mixture of isomers and all efforts to separate these failed.

The last target heteroarotinoid 47 was prepared by a Wadsworth-Emmons modification in the condensation step. 4-Thiaionone (52) was condensed with the anion of methyl 4diethylphosphonomethylbenzenesulfonate (55) to yield 47 (9\%) as a crystalline solid. Sulfonate 47 permits a structure-activity assessment of the influence by $\mathrm{SO}_{3} \mathrm{Et}$ versus $\mathrm{CO}_{2} \mathrm{Et}$.

Phosphonate 55 was prepared from methyl 4-methylbenzenesulfonate (88) by initial allylic bromination to give methyl 4-bromomethylbenzenesulfonate (89) which participated in a Michaelis-Arbuzov reaction involving triethyl phosphite (90). In this latter reaction both a rearrangement and a transesterification occurred since the product isolated was the triethyl sulfonate 55. Sulfonate 55 was a viscous, yellow-colored oil which was purified on the Chromatotron using hexane:ethyl acetate (8:2) as eluent.

Another Wittig reaction of salt 54 was attempted with 4-methylthiobenzaldehyde (91). Rather than the expected thio ether 92, two major products were isolated. One was triphenylphosphine (93) in addition to a crystalline solid tentatively identified as 94 . IR analysis showed the presence of the para-sustituted aromatic ring. The ${ }^{1} \mathrm{H}$ NMR spectrum of 94 had signals for five methyl groups at $\partial 0.9,1.3-1.45,1.5-1.8$ and 2.5 , which are not in the exact region expected for 92. One can envision an intramolecular thermochemical cycloaddition reaction as shown to produce 94. Theoretically, one might

expect a trans arrangement of the $\mathrm{C}-\mathrm{CH}_{3}$ (bridgehead) and the $\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SCH}_{3}$ via a disrotatory closure.

Ether 94 may be structurally related to certain natural products. Interesting systems 95 and 96 were recently published ${ }^{39}$ and are relatives of 94.

95

96

Suggestions For Future Work

We have prepared possible metabolites of 28 in which the side chain has undergone oxidation. Another site in $\mathbf{2 8}$ where oxidation can occur is at the gem-dimethyl position in the benzopyran ring. As can be seen from the metabolites obtained from trans-retinoic acid (3) and Etretinate (10), the methyl groups on the ring undergo oxidation to a hydroxymethyl group and a carboxylic acid. Thus, as shown below compounds, 97-99 are likely metabolites from ester 28.

$\mathrm{X}=\mathrm{O}, \mathrm{S}$

Figure 13. Conversion of $\mathbf{1 0 0}$ to 104: (a) TMSCN/KCN/18-C-6/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{TMSCl} / \mathrm{NaI} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{Hexane} /$ Water; (c) $\mathrm{NaH} / \mathrm{THF} / \mathrm{CH}_{3} \mathrm{I}$;
(d) $\mathrm{AlCl}_{3} / \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{NO}_{2}$

A possible route to these compounds is shown (Figure 13). Commercially available chromanone $100,(X=O)$, upon treatment with TMSCN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in formation of cyanohydrin 101. Treatment of 101 with NaI in the presence of TMSCl and acetonitrile gave 4-cyanobenzopyran (102). ${ }^{61}$ Methylation of 102 under normal conditions formed 103. Acetylation of 103 gave $104(X=O)$ which, by selective reduction with Dibal-H at low temperature, should yield keto aldehyde 105 (Figure 14). Reduction of 105 with LAH could result in formation of diol 106, which, upon regioselective phosphorylation, should give phosphonium salt 107. This latter reaction has also been done in our lab in 5-membered heteroarotinoid family. ${ }^{27}$ A Wittig reaction with the anion of 107 and ethyl 4-formylbenzoate (64) should yield ester 97. Oxidation of 97 to aldehyde 98 and then to 99 should follow under mild conditions. To date, we have been able to obtain $104(\mathrm{X}=\mathrm{O})$ via this reaction sequence.

c

$$
X=0, S
$$

Figure 14. Suggested Syntheses of 97-99: (a) DIBAL-H, $-78^{\circ} \mathrm{C}$-RT; (b) LAH, Ether, RT (c) $\mathrm{PPh}_{3} \cdot \mathrm{HBr}, \mathrm{MeOH}$; (d) n - BuLi , Ether, $-78^{\circ} \mathrm{C}$, Ethyl 4-Formylbenzoate (64); (e) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{EtOH}$

CHAPTER III

EXPERIMENTAL

General Information. Melting points were obtained on a Thomas-Hoover melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 681 as KBr pellets or as films. All NMR spectra were taken on an Varian XL-300 spectrometer (with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ being observed at 299.94 and 75.43 MHz , respectively) and on an XL-400 spectrometer (with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ being observed at 399.95 and 100.57 MHz , respectively), on solutions with DCCl_{3}. Data are reported as follows: chemical shift (in δ values or $\mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet), coupling constant (in Hz), and assignment. Mass spectral data were recorded on a VG analytical instrument model ZAB-2SE. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. Preparative chromatography was performed using Chromatotron (on silica gel PF_{254} containing gypsum, model 7924T, Harrison Research Inc., 840 moana Court, Palo Alto, CA 94306). TLC was performed on silica gel (Kodak chromatogram sheets, 132181 silica gel with fluoroscent indicator).

Syntheses were executed, unless otherwise indicated, under an atmosphere of N_{2}. The following reagents were obtained commercially and used without further purification: glacial acetic acid (Dupont), n-BuLi (Aldrich), t-butanol (Fischer), SeO_{2} (Alfa), NaH (60%, dispersion in mineral oil, Aldrich), 15 -crown-5 ether (Aldrich), triethyl phosphonoacetate (Aldrich), ethyl acetoacetate (Aldrich), $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ (Aldrich), $\mathrm{CH}_{3} \mathrm{I}\left({ }^{14} \mathrm{C}\right.$, ICN), $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl}\left[{ }^{14} C(\mathrm{O}), \mathrm{ICN}\right]$, p-toluic acid $\left[{ }^{14} C(\mathrm{O}) \mathrm{OEt}\right.$, Sigma], methyl thioglycolate (Aldrich), methyl 4-chlorobutyrate (Aldrich), 1-bromo-2-chloroethane (Lancaster), methyl
p-toluenesulfonate (Aldrich), piperonal (Aldrich), N-bromosuccinimde (Alfa), potassium hydroxide (85%, Baker), and sodium hydroxide (97%, Baker). The following compounds required distillation prior to use: nitromethane (bp $100^{\circ} \mathrm{C}$), THF (bp $\left.65^{\circ} \mathrm{C}\right)$, and acetic anhydride (bp $138^{\circ} \mathrm{C}$).

Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6yl)-3-hydr-oxy-1-propenyl]benzoate (37). A $100-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To the suspension of 1.29 g (11.6 $\mathrm{mmol})$ of $\mathrm{SeO}_{2}{ }^{6}$ in 95% alcohol (30 mL) was added $1.35 \mathrm{~g}(3.85 \mathrm{mmol})$ of ethyl $(E)-4-[2-$ (3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-1-propenyl]benzoate (28). ${ }^{76}$ The reaction mixture was boiled for 24 h . The new mixture was then cooled to room temperature, and black elemental Se was separated by gravity filtration. The residue was washed with 95% alcohol (10 mL). Evaporation (rotary evaporator) of the alcohol gave a residue which was dissolved in ether $(50 \mathrm{~mL})$. The ether layer was washed with water (1 x 20 mL), saturated $\mathrm{NaHCO}_{3}(1 \times 20 \mathrm{~mL})$, and finally with brine ($1 \times 30 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated (rotary evaporator) to a light brown oil. Purification of this oil was accomplished by chromatography using the Chromatotron with a 4 mm silica gel plate. Gradient elution was effected using 100 mL of hexanes:ethyl acetate (95:5), 100 mL of hexanes:ethyl acetate (9.0:1.0), 100 mL of hexanes:ethyl acetate (8.0:2.0), and finally with 250 mL of hexanes:ethyl acetate (75:25). Different fractions (1 to 20) of 20 mL each were collected. Fractions 16,17 and 18 were combined, and the solvent was evaporated to afford $0.44 \mathrm{~g}(31.2 \%)$ of a very thick brown colored oil of ester 37. IR (neat) $3650-3120,1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV (EtOH) $\lambda_{\max } 284.2 \mathrm{~nm}\left(\varepsilon 1.16 \times 10^{4}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.15[\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}(9,10)], 1.35[\mathrm{t}, 3 \mathrm{H}, \mathrm{H}(22)], 1.61[\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}]$, $1.80[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 4.18[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)], 4.30[\mathrm{q}, 2 \mathrm{H}, \mathrm{H}(21)], 4.47$ [s,2H, H(12)], 6.67-7.8 [m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\mathrm{C}=\mathrm{CH}]{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 14.2$ [C(22)], 30.4 [C(4)],
$30.4[\mathrm{C}(9,10)], 37.3[\mathrm{C}(3)], 60.7[\mathrm{C}(21)], 63.1[\mathrm{C}(2)], 63.1[\mathrm{C}(12)]$; Ar- C and vinylic- C : $117.3,124.6,127.9,128.2,128.9,129.1,129.2,132.0,141.7,143.8,153.4 ; 166.4$ [C(20)]. Unfortunately compound 37 retained trace amounts of water even after drying under vacuum for several hours. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C}, 75.38 ; \mathrm{H}, 7.15$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.49$; H, 7.15; Found: C, 74.10; H, 7.29 . Mass spectral data calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$: 366.1831 ; Found: 366.1831 .

Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-2-propenal]benzoate (38). A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To 0.04 g (0.11 mmol) of ethyl (E)-4-[2-(4,4-dimethyl-3,4-dihydro-2H-1-benzopyran-6-yl)-3-hydroxy-1-propenyl]benzoate (37) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.15 \mathrm{~g}(2.2 \mathrm{mmol})$ of activated $\mathrm{MnO}_{2} .{ }^{1}$ The reaction mixture was stirred at room temperature for 24 h and was then filtered. The residue was washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate and washing were concentrated (rotary evaporator) to yield 0.03 g (76%) of a yellow-colored solid 38 . The solid was crystallized (95% alcohol) to give yellow-colored crystals of ester $38, \mathrm{mp} 157-158^{\circ} \mathrm{C}$. IR (KBr) $1725(\mathrm{C}=\mathrm{O}), 1680 \mathrm{~cm}^{-1} ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max } 286.8 \mathrm{~nm}\left(\varepsilon 1.48 \times 10^{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta$ $1.15[\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}(9,10)], 1.3$ [t, $3 \mathrm{H}, \mathrm{H}(22)], 1.8[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 4.15[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)]$, $4.30[\mathrm{q}, 2, \mathrm{H}, \mathrm{H}(21)], 6.72-7.85[\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $-\mathrm{C}=\mathrm{CH}(13)], 9.7[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(12)]$; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 14.2 [C(23)], 30.5 [C(4)], 30.8 [C(9,10)], 37.3 [C(3)], 61.1 [C(21)], 63.1 [C(2)]; Ar-C and vinylic- C : 117.4, 124.0, 128.1, 128.4, 129.4, 130.2, 131.0, 132.0, 138.7, 143.0, 154.0; 165.8 [C(20)], 194.0 [C(12)]. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 75.80 ; \mathrm{H}, 6.64$; Found: C, $75.64 ; \mathrm{H}, 6.72$. Mass spectral data calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right): 364.1668$; Found: 364.1662.

Ethyl (E)-4-[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-2-propanoic acid]benzoate (39). A $50-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer, a condenser, and an addition funnel. To 0.035 g (0.096 mmol) of ethyl (E)-4-[2-(3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-2propenal]benzoate (38) and $0.012 \mathrm{~g}(0.11 \mathrm{mmol})$ of resorcinol in t-butanol (5 mL) was added a solution of $0.079 \mathrm{~g}(0.87 \mathrm{mmol})$ of NaClO_{2} and $0.093 \mathrm{~g}(0.672 \mathrm{mmol})$ of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in water $(10 \mathrm{~mL}) .{ }^{2}$ The reaction mixture was stirred at room temperature for 24 h. Evaporation (rotary evaporator) of the solvent gave a residue to which was added water $(25 \mathrm{~mL})$, and the new solution was cooled (ice bath). This cold solution was acidified with $6 \mathrm{MHCl}(1 \mathrm{~mL})$ to pH 1 (litmus). The aqueous solution was extracted with ether (3×25 $\mathrm{mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the solvent was evaporated (rotary evaporator) to give 0.03 g (82%) of a yellow-colored oil. Crystallization was induced by scratching to give a solid. Recrystallization (absolute alcohol) of the solid gave yellow crystals of ester 39, mp 197-198 ${ }^{\circ} \mathrm{C}$. IR (KBr) 36002850, $1740(\mathrm{C}=\mathrm{O}), 1680 \mathrm{~cm}^{-1}$; UV (EtOH) $\lambda_{\max } 286.2 \mathrm{~nm}\left(\varepsilon 1.28 \times 10^{4}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.18[\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}(9,10)], 1.36[\mathrm{t}, 3 \mathrm{H}, \mathrm{H}(22)], 1.82[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 4.21[\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{H}(2)], 4.33$ [q, $2 \mathrm{H}, \mathrm{H}(21)]$, 6.79-7.89 [m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\mathrm{C}=\mathrm{CH}(13)] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 14.2$ [C(22)], $30.5[\mathrm{C}(4)], 30.8[\mathrm{C}(9,10)], 37.4[\mathrm{C}(3)], 61.0[\mathrm{C}(21)], 63.1$ [C(2)]; Ar-C and vinylic- C; 117.3, 126.0, 128.5, 128.9, 129.3, 130.3, 130.4, 131.9, 133.8, 139.2, 140.3, 153.7; 166.0 [C(20)], 172.7 [C(12)]. Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 72.61 ; H, 6.36 ; Found: C, 72.36; H, 6.64. Mass spectral data calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right): 380.1623$; Found: 380.1625 .

Ethyl 3-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]crotonate

 (41). A $50-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To $0.212 \mathrm{~g}(5.39 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ dispersion inmineral oil washed with n-pentane 25 mL) in dry THF (10 mL) was added dropwise a mixture of $1.0 \mathrm{~g}(4.9 \mathrm{mmol})$ of 4,4-dimethylchroman-6-yl methyl ketone (40), ${ }^{76} 1.21 \mathrm{~g}$ (5.39 mmol) of triethyl phosphonoacetate (67), and 0.10 g (0.454 mmol) of $15-\mathrm{crown}-5$ in THF (10 mL) over a period of 10 min . The reaction mixture was stirred at room temperature for 24 h . It was then boiled for 2 h and allowed to cool to room temperature over a period of 24 h . This reaction mixture was acidified with glacial acetic acid (1 mL) to pH 6. Then a saturated solution of $\mathrm{NaCl}(50 \mathrm{~mL})$ was added and the organic layer separated. The aqueous layer was extracted with ether ($2 \times 30 \mathrm{~mL}$), and the combined extracts and the organic layer were washed with water $(3 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated (rotary evaporator) to give 1.03 g of reddish brown oil. The oil was purified by chromatography on the Chomatotron with a 4 mm silica gel plate using 50 mL of hexanes:ethyl acetate (95:5) and 200 mL of hexanes:ethyl acetate (9.0:1.0). Ester 41 was obtained as a thick oil ($0.52 \mathrm{~g}, 38.7 \%$). IR (neat) $1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max } 298.2 \mathrm{~nm}\left(\varepsilon 1.39 \times 10^{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta$ $1.32[\mathrm{t}, 3 \mathrm{H}, \mathrm{H}(16)], 1.35\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.84[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 2.55[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}(12)]$, $4.19[\mathrm{q}, 2 \mathrm{H}, \mathrm{H}(15)], 4.20[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)], 6.08[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(13)], 6.76[\mathrm{~d}, \mathrm{~J}=8.50 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}(8)], 7.21[\mathrm{dd}, \mathrm{J}=8.47 \mathrm{~Hz}, \mathrm{~J}=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(7)], 7.40[\mathrm{~d}, \mathrm{~J}=2.33 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(5)] ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 14.3$ [C(16)], 17.7 [C(12)], 30.6 [C(14)], 30.9 [C(9,10)], 37.4 [C(3)], 59.6 [C(15)], 63.6 [C(2)], 114.9 [C(8)], 116.9 [C(13)], 125.0 [C(5)], 125.3 [C(7)], 131.4 [C(6)], 134.0 [C(4a)], 154.6 [C(11)], 155.4 [C(8a)], 167.0 [C(14)]. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 74.43; H, 8.08; Found: C, $74.46 ; \mathrm{H}, 8.00$. Mass spectral data calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$: 274.1569 ; Found: 274.1566

3-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]crotonic Acid (42).

A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To $52 \mathrm{mg}(0.19 \mathrm{mmol})$ of ethyl 3-[3,4-dihydro-4,4-
dimethyl-2H-1-benzopyran-6-yl]crotonate (41) in 2 mL of absolute ethanol was added 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and 1 mL of $35 \%(\mathrm{w} / \mathrm{v}) \mathrm{KOH}$. The solution was boiled for 5 h and then allowed to cool to the room temperature. It was further cooled in an ice bath $\left(0-5^{\circ} \mathrm{C}\right)$ and was then neutralized with $6 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$. A white solid formed and was filtered and washed with cold water. This solid was recrystallized [absolute alcohol/water (1:1)] to afford $35 \mathrm{mg}(74.8 \%)$ of acid 42, mp $126-128^{\circ} \mathrm{C}$. IR (KBr) 3500-3010, 1670 ($\mathrm{C}=\mathrm{O}$) cm^{-1}; UV (EtOH) $\lambda_{\max } 291.6 \mathrm{~nm}\left(\varepsilon 1.30 \times 10^{4}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.2[\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{H}(9,10)], 1.7$ [m, $2 \mathrm{H}, \mathrm{H}(3)], 2.4[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}(12)], 5.9[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(13)], 6.6-7.3[\mathrm{~m}, 3 \mathrm{H}$, Ar-H]; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 18.1$ [C(12)], 30.6.[C(4)], 36.9 [C(9,10)], 37.3 [C(3)], $63.2[\mathrm{C}(2)], 114.1[\mathrm{C}(8)], 117.1$ [C(13)], 125.2 [C(5)], 125.5 [C(7)], 131.5 [C(6)], 133.8 [$\mathrm{C}(4 \mathrm{a})$], 155.0 [$\mathrm{C}(11)$], 158.4 [C(8a)], 172.3 [C(14)]. Acid 42 retained traces of water even after drying under vacuum for prolonged period. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{C}, 73.15, \mathrm{H}, 7.37$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.51, \mathrm{H}, 7.35$; Found: C, 72.42; $\mathrm{H}, 7.43$. Mass spectral data calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: m / z\left(\mathrm{M}^{+\cdot}\right)$: 246.1256; Found: 246.1260.

4-[3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl] $\Delta^{\mathbf{2}}$-butenolide (43).

 A $50-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To $0.2 \mathrm{~g}(0.75 \mathrm{mmol})$ of ethyl 3 -[3,4-dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl]crotonate (41) in dry benzene (25 mL) was added 0.41 g (3.70 mmol) of $\mathrm{SeO}_{2} .{ }^{15}$ The reaction mixture was boiled for 20 h . After cooling the mixture to room temperature, the deposited metallic Se was separated by gravity filtration through a cotton plug. Water (25 mL) was added to the filtrate and the organic layer separated. The aqueous layer was extracted with ether ($2 \times 25 \mathrm{~mL}$), and the combined extracts and organic layer were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated (rotaryevaporator) to a thick yellow oil. Crystallization was induced by scratching to give 0.18 g (98.2%) of a yellowish, orange solid. The solid was recrystallized (95% alcohol) to give yellow crystals of 43, mp $133-134^{\circ} \mathrm{C}$. IR (KBr) 1780, 1740 (C=O) cm^{-1}; UV (EtOH) $\lambda_{\text {max }} 308.1 \mathrm{~nm}\left(\varepsilon 2.52 \times 10^{4}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DCCl}_{3}\right) \delta 1.36[\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}(9,10)] 1.86[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}(3)], 4.26[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)], 5.19$ [s, $2 \mathrm{H}, \mathrm{H}(12)], 6.22[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(15)], 6.82$ [d, J = 8.52 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}(8)], 7.22[\mathrm{dd}, \mathrm{J}=8.46 \mathrm{~Hz}, \mathrm{~J}=2.28 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(7)], 7.39[\mathrm{~d}, \mathrm{~J}=2.28 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 30.5 [C(4)], 30.7 [C(9,10)], 36.9 [C(3)], 63.4 [C(2)], 70.9 [C(12)], 110.1 [C(15)], 118.0 [C(11)]; Ar-C: 121.9, 125.3, 125.7, 132.5, 156.8; 164.0 [C(14)]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 73.75$; H, 6.60; Found: C, 73.57; H, 6.65. Mass spectral data calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$: 244.1099; Found: 244.1099.

3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-carboxylic Acid (44). A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To 15 mL of commercially available Clorox solution containing $5.25 \% \mathrm{NaOCl}$ was added $0.3 \mathrm{~g}(1.47 \mathrm{mmol})$ of 4,4 -dimethylchroman- $6-\mathrm{yl}$ methyl ketone (40) ${ }^{76}$ in 95% alcohol (5 mL). The reaction mixture was stirred well and boiled for 1.5 h and then cooled to room temperature. This mixture was first neutralized with a 25% solution of sodium metabisulfite (25 mL) and then with concentrated $\mathrm{HCl}(2$ mL). A white solid formed and was filtered and then washed with cold water (50 mL) until the filtrate was free of acid. Recrystallization (95% alcohol) of the product afforded 0.2 g (67%) of white crystalline solid $44,{ }^{8} \mathrm{mp} 227-229^{\circ} \mathrm{C}$. IR (KBr) 3400-2950, 1680 (C=O) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.37$ [s, $\left.6 \mathrm{H}, \mathrm{H}(9,10)\right], 1.85[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 4.27[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}(2)], 6.83[\mathrm{~d}, \mathrm{~J}=8.62 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(8)], 7.84[\mathrm{dd}, \mathrm{J}=8.67 \mathrm{~Hz}, \mathrm{~J}=2.85 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(7)]$ $8.07[\mathrm{~d}, \mathrm{~J}=2.12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 30.59 [C(4)], $30.75[\mathrm{C}(9,10)]$, 36.97 [C(3)], 63.49 [C(2)]; Ar-C: 117.1, 121.7, 129.5, 129.9, 131.5, 158.5; 171.8
[C(11)]. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 69.87 ; \mathrm{H}, 6.84$. Found: C, $69.79, \mathrm{H}, 6.67$. Mass spectral data calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$: 206.0943; Found: 206.0943.

4-[(All-E)-2-methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl)-1,3-

 butadienyl]benzoic Acid (45). A $100-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer, a rubber septum, and a condenser. To a stirred suspension of $0.5 \mathrm{~g}(0.93 \mathrm{mmol})$ of phosphonium salt 54 in ether (10 mL) was added dropwise $0.1 \mathrm{~mL}(1.0 \mathrm{mmol})$ of $10 \mathrm{M} n$-BuLi solution. The resulting dark red-colored solution was stirred at room temperature for 15 min . This solution was then cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath) and to this was then added ethyl 4 -formylbenzoate (54). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and then allowed to warm to room temperature over a period of 24 h . Precipitated triphenylphosphine was separated and the filtrates were concentrated (rotary evaporator) to a yellow-colored oil. This oil was then transferred to a $50-\mathrm{mL}$, round-bottomed flask and absolute ethanol (10 mL) was added, followed by 0.2 g of KOH in 10 mL of water. The solution was boiled for 90 min and then cooled to room temperature. It was then neutralized with 5% sulfuric acid (15 mL), and then the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined extracts were washed with brine ($3 \times 10 \mathrm{~mL}$), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated (rotary evaporator) to give a yellowcolored solid. This solid was crystallized (95% ethanol) to give $0.8 \mathrm{~g}(12 \%)$ of yellowcolored crystalline solid 47 ($\mathrm{mp} \mathrm{186-187}{ }^{\circ} \mathrm{C}$). IR (KBr) 3500-3250 (OH), 1680 (C=O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.1\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.85[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 1.9\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right]$, 2.1 [s, $3 \mathrm{H}, \mathrm{CH}_{3}$], 2.85 [m, $\left.2 \mathrm{H}, \mathrm{H}(2)\right], 6.45-6.51$ [m, 3 H , vinylic- H], 7.35 [d, 2 H , Ar-H], 8.05 [d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ; 13 \mathrm{C}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 21.23$ [C(9)], 22.02 [C(13)], 23.58 [C(1)], $28.6[\mathrm{C}(7,8)], 33.23$ [C(2)], 38.8 [C(3)], 123.89, 126.81, 129.25, 129.83, 130.08, 130.09, 133, 45, 137.18, 143.44 [Ar-C and vinylic-C]; 170.80 [C(C=O)]. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 72.74, \mathrm{H}, 7.52$; Found: C, 73.13, H, 7.52.
5-[(All-E)-2-Methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl-1,3-

 butadienyl]-1,3-benzodioxazole (46). A $50-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer, a rubber septum and a condenser. To a suspension of $1.5 \mathrm{~g}(2.7 \mathrm{mmol})$ of phosphonium salt 54 in ether (20 mL) was added dropwise 0.35 mL of a solution of 10 M n -BuLi over a period of 10 min . The resulting red-colored solution was stirred at room temperature for 10 min and was then cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath) for 30 min . To the cold solution was added a solution of 0.41 $\mathrm{g}(2.7 \mathrm{mmol})$ of piperonal (86) in ether (10 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then allowed to warm to room temperature over a period of 24 h . Precipitated triphenylphosphine was separated (vacuum filtration), and the filtrates were collected and concentrated (rotary evaporator) to a light yellow-colored oil. This oil was separated on a 4 mm silica gel plate (Chromatotron) using hexane:ethyl acetate (9:1). The first fraction was collected and concentrated to give 0.6 g of triphenylphosphine. The second fraction 100 mL was collected and concentrated to obtain $0.1 \mathrm{~g}(9 \%)$ of thick, lightcolored oil. The proton NMR spectrum of this oil showed the presence of several isomers and all efforts to separate these isomer using different solvent systems on silica gel and alumina TLC plates were unsuccessful. IR (neat) $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta$ 1.1 [s, 3 H, gem- CH_{3}], 1.8 [m, $\left.2 \mathrm{H}, \mathrm{H}(2)\right], 1.9\left[\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}(12)\right], 2.8[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ (3)], $5.9\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}_{-} \mathrm{CH}_{2}-\mathrm{O}\right], 6.2-7.8[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and vinylic- H$]$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$: C, $73.13, \mathrm{H}, 7.37$; Found: C, $79.58 ; \mathrm{H}, 5.72$. Decomposition may occur readily with this compound in view of the unsatisfactory analysis.Ethyl 4-[(All-E)-2-methyl-4-(2,6,6-trimethyl-3-thia-1-cyclohexen-1-yl)-1,3-butadienyl]benzenesulfonate (47). A $100-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To a suspension of 0.03 g (0.71 mmol) of NaH (60% dispersion in mineral oil) in THF (15 mL) was added 0.24 g (0.71 mmol) of ethyl 4-triethylphosphonomethylbenzenesulfonate (91) and 0.01 g
(0.05 mmol) of 15 -crown-5. The resulting solution was stirred at room temperature for 10 min . To this stirred solution was then added $0.1 \mathrm{~g}(0.4 \mathrm{mmol})$ of 4-thiaionone 52 in THF $(10 \mathrm{~mL})$ and the resulting red-colored solution was stirred at room temperature for 48 h . To this was added 1 mL of 6 M acetic acid and 10 mL of water. The resulting aqueous layer was extracted with ether ($3 \times 30 \mathrm{~mL}$), and the combined extracts were washed with brine $(50 \mathrm{~mL})$. The aqueous layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated (rotary evaporator) to give a dark-colored oil. This oil was separated on a 2 mm silica gel plate using hexane:ethyl acetate (95:5). The first fraction (100 mL) was collected and the solvent was evaporated to give $0.03 \mathrm{~g}(15 \%)$ of yellow-colored oil 47. IR (neat) 1550 ($\mathrm{C}=\mathrm{C}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.2\left[2 \mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.4\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right], 1.8[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ (3)] 1.9 [d, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right], 2.1$ [bs, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right], 4.2\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right]$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 64.25; H, 7.19; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}_{2} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}$: C 63.96 ; H 7.19. Found: C, $63.88, H, 7.15$.

Ethyl 3-Mercaptocrotonate (48). A $1000-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer, a condenser and a gas inlet. A solution of $65 \mathrm{~g}(0.50$ mol) of ethyl acetoacetate (84) in 500 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ was cooled from $-50^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$ in a dry ice-chloroform bath (0.5 h). Then $\mathrm{H}_{2} \mathrm{~S}$ gas was bubbled through the solution for 3 h. After addition of the $\mathrm{H}_{2} \mathrm{~S}$ gas, dry HCl gas was bubbled into the system via a steady stream for 4 h . The temperature of the reaction mixture was maintained between $-50^{\circ} \mathrm{C}$ and $-60^{\circ} \mathrm{C}$ (dry ice/chloroform bath)..32 The color of the reaction mixture turned light orange. The reaction mixture was then poured into a mixture of cold water:petroleum ether (1:1, 1000 mL). The organic layer was separated, and the aqueous layer was extracted (petroleum ether, $6 \times 100 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated (rotary evaporator) to give 50 g of a red-colored liquid 48. The liquid was distilled under reduced pressure $\left[\mathrm{bp} 65-70^{\circ} \mathrm{C} / 9 \mathrm{~mm}\left(\mathrm{lit}^{3} \mathrm{bp} 77^{\circ} \mathrm{C} / 12 \mathrm{~mm}\right)\right.$] to obtain 45.0 g (62\%) of isomers 48 (page 38). IR (neat) $2560-2400(\mathrm{~S}-\mathrm{H}), 1750-1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.45(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.2\left(\mathrm{q}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.

2,6-Dimethyl-1-ethoxycarbonyl-3-thia-1,5-heptadiene (49). A $500-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a Y-Claisen adapter bearing a condenser in the one arm and an addition funnel in the other. To freshly cut sodium (5.6 g , $0.24 \mathrm{~mol})$ in 100 mL of absolute alcohol was added another 100 mL of absolute alcohol in a steady stream so as to keep the reaction mixture boiling. After stirring for $0.5 \mathrm{~h}, 22 \mathrm{~g}(0.15$ mol) of ethyl 3-mercaptocrotonate (48) was added over a period of 10 min . The reaction mixture turned light yellow at the end of the addition. After being stirred at the room temperature for 0.5 h , the mixture was concentrated (rotary evaporator) to a light yellow semi-solid and benzene (200 mL) was added. To the stirred solution was added $20 \mathrm{~g}(0.13$ mol) of 4-bromo-2-methyl-2-butene (85) over a period of 10 min , after which time the reaction mixture became clear. This solution was stirred for 1 h at room temperature and then slowly added to cold water (500 mL). The organic layer was separated, and the aqueous layer was extracted (benzene, $6 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water ($4 \times 100 \mathrm{~mL}$), $6 \mathrm{M} \mathrm{HCl}(4 \times 100 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and finally with brine $(100 \mathrm{ml})$. After the organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, the solution was concentrated (rotary evaporator) to give $18.2 \mathrm{~g}(0.085 \mathrm{~mol}, 65 \%)$ of a yellow colored liquid which was distilled under reduced pressure $\left[\mathrm{bp} 75-125^{\circ} \mathrm{C} / 0.4 \mathrm{~mm}\left(\mathrm{lit}^{3} \mathrm{bp} 75\right.\right.$ $123^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}$)] to give a mixture of isomers of 49 . IR (neat) $1740-1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}), $\delta 1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 1.7\left[\mathrm{~d}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.6$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{S}\right), 3.5[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5)], 4.25\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 5.05[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(1)]\left[\mathrm{lit}^{3}\right.$ IR $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$ for corresponding methyl ester].

3,7-Dimethyl-4-thia-octa-2,6-dien-1-ol (50). A 300-mL, two-necked, roundbottomed flask was equipped with a magnetic stirrer, an addition funnel and a condenser. The suspension of $\mathrm{LiAlH}_{4}(5.43 \mathrm{~g}, 0.143 \mathrm{~mol})$ in ether $(70 \mathrm{~mL})$ was cooled in the ice bath $(2 \mathrm{~h})$, and then the temperature was brought to $0^{\circ} \mathrm{C}$. To this cooled suspension was added $18 \mathrm{~g}(0.084 \mathrm{~mol})$ of 2,6-dimethyl-1-ethoxycarbonyl-3-thia-1,5-heptadiene (49) in 10 mL of ether over a period of 15 min . The reaction mixture was stirred at the same temperature for another 2 h . This reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ (in dry ice/acetonitrile bath, 1 h), and water (50 mL), was added followed by $6 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted (cold ether, $5 \times 50 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ at $-30^{\circ} \mathrm{C}$, filtered, and concentrated (rotary evaporator) to give $13 \mathrm{~g}(89 \%)$ of the light yellow colored liquid 50 which was used immediately in the next step. IR (neat) $3550-3200(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1}\left[\right.$ lit 3 IR 3390 (O-H) $\left.\mathrm{cm}^{-1}\right]$.

6,7-Dimethyl-7-thia-undeca-3,5,9-triene-2-one (51). A 2-L, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. A mixture of 3,7-dimethyl-4-thia-octa-2,6-diene-1-ol ($50,13 \mathrm{~g}, 0.075 \mathrm{~mol}$), aluminum isopropoxide $(25 \mathrm{~g}, 0.122 \mathrm{~mol})$ in 450 mL of acetone and 900 mL of benzene was brought to reflux and maintained at reflux for 36 h . The mixture changed from colorless to yellow. The new solution was then allowed to cool to the room temperature (1 h) and was washed with water (2000 mL), until the water washings were neutral, and then with 2000 mL of brine. The organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated (rotary evaporator) to give $12.2 \mathrm{gm}(0.058$ mole, 77%) of a light yellow-colored liquid 51. IR (neat) $1680(\mathrm{C}=0)$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.7\left(\mathrm{~d}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 2.15\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29(\mathrm{bs}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right), 3.45\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.23$ [m, $\left.1 \mathrm{H}, \mathrm{H}(5)\right], 5.25[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(9)], 5.9-6.0$ [m, $1 \mathrm{H}, \mathrm{H}(4)], 7.4-7.45[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)]\left[\mathrm{lit}^{3} \mathrm{UV}\right.$ (cyclohexane) $\left.\lambda_{\max } 328 \mathrm{~nm}\left(\varepsilon 2.86 \times 10^{4}\right)\right]$.

4-Thia-ß-ionone (52). A $300-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a condenser, a magnetic stirrer and an addition funnel. A solution of 30 mL of concentrated sulfuric acid in 40 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was cooled in dry ice/ CCl_{4} bath ${ }^{30}$ and the temperature was brought to $-15^{\circ} \mathrm{C}(30 \mathrm{~min})$. A solution of $12 \mathrm{~g}(0.057 \mathrm{~mol})$ of 4pseudothiaionone (51) in 35 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was added dropwise over a period of 30 min . The color of the reaction mixture became dark red. This red-colored reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for an additional 1.5 h and then poured into 100 mL of ice water. The organic layer was separated and the aqueous layer was extracted (petroleum ether, 8×100 $\mathrm{mL})$. The combined organics were washed with brine ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated (rotary evaporator) to give $8.0 \mathrm{~g}(0.038 \mathrm{~mol}, 67 \%)$ of a light brown colored liquid 52. IR (neat) $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}\left[\mathrm{lit}^{3}\right.$ IR $\left.1660(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right), \delta 1.16\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}\right), 2.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.28(s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) 2.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}\right), 6.1[\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4)], 7.3$ $[\mathrm{d}, \mathrm{J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(3)]$.

4-Thia- β-ionol (53). A $500-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a condenser, a magnetic stirrer and an addition funnel. A suspension of 3.0 g (0.029 mol) of LiAlH_{4} in 100 mL of ether was cooled to $0-5^{\circ} \mathrm{C}$ in an ice bath (30 min). To this cold, stirred suspension was added 4-thia-ß-ionone ($52,8 \mathrm{~g}, 0.038 \mathrm{~mol}$) in 50 mL of ether. The reaction mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 5 h , and then it was poured slowly onto 200 g of ice. Cautiously, 30 mL of 6 M HCl was added to make the solution slightly acidic. The aqueous layer was extracted with ether ($5 \times 100 \mathrm{~mL}$). The combined organics were washed with brine ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated (rotary evaporator) to give 5 g ($0.023 \mathrm{~mol}, 62 \%$) of a reddish brown liquid 53. IR (neat) 3700-$3150(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.05\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.31(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{CH}$), $1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}\right), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}\right)$,
$4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 5.4[\mathrm{dd}, \mathrm{J}=15.87 \mathrm{~Hz}, \mathrm{~J}=6.55 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4))$], 6.04 [d, J = $15.87,1 \mathrm{H}, \mathrm{H}(3)$] [lit ${ }^{3}$ bp $85-90 / 0.1 \mathrm{~mm}$ for β-ionol].

4-Thia-ß-cyclogernyltriphenylphosphonium Bromide (54). A 250-mL, single-necked flask was equipped with a magnetic stirrer and a condenser. To a stirred solution of $5 \mathrm{~g}(0.023 \mathrm{~mol})$ of 4 -thia- $ß$-ionol (53) in methanol was added $14 \mathrm{~g}(0.04 \mathrm{~mol})$ of triphenylphosphine hydrobromide all at once, and the reaction mixture was stirred at room temperature for 24 h . Methanol was evaporated under reduced pressure (rotary evaporator), and the resulting thick, oily slurry was kept under vacuum ($25^{\circ} \mathrm{C} / 10 \mathrm{~mm}$) for 2 h . This oil was triturated with ether (100 mL) to obtain $13 \mathrm{~g}(0.024 \mathrm{~mol})$ of a yellow solid 54. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 0.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.49 (dd, 3 H , $\mathrm{CH}_{3}-\mathrm{CH}$), 1.3 (m, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$), 2.7 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$), 3.2 (bs, $3 \mathrm{H}, \mathrm{CH}_{3}$), $5.0\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}\right), 6.44[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(4)], 6.81[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)], 7.2-8.0(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-$ H).

2-Methyl-4-phenoxy-2-butanol-1,2'-14 C_{2} (58*). A 50-mL three-necked round-bottomed flask was equipped with a magnetic stirrer, a rubber septum and a cold finger. To 0.0698 g (2.91 mmol) of Mg turnings in (0.5 mL) of dry ether was added methyl iodide (${ }^{14} \mathrm{C}, 2.5 \mathrm{mg}, 1 \mathrm{mCi}, 56.6 \mathrm{mCi} / \mathrm{mmol} \mathrm{sp}$. act., ICN) along with 10 mL of dry ether followed by the addition of $0.531 \mathrm{~g}\left(3.74 \times 10^{-3} \mathrm{~mol}\right)$ of $\mathrm{H}_{3} \mathrm{CI}$. After stirring at room temperature for 30 min , the reaction mixture was treated with $0.150 \mathrm{~g}\left(8.32 \times 10^{-4}\right.$ mol) of methyl 3-phenoxypropionate (57) ${ }^{76}$ in 5 mL of dry ether. After 24 h of stirring, the grey-colored reaction mixture was poured onto 20 g of crushed ice. Ether (20 mL) was added followed by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($\sim 40 \mathrm{~mL}$). When the pH of the mixture was made neutral to litmus, the organic layer was separated. Extraction
(ether, $10 \times 10 \mathrm{~mL}$) of the aqueous layer followed. The combined organic layer and extracts were washed with water ($3 \times 10 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL}$), and saturated $\mathrm{NaCl}(20 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtering, the solution was concentrated to give $0.190 \mathrm{~g}\left(9.99 \times 10^{-4} \mathrm{~mol}\right)$ of a light yellow-colored oil. This slightly impure 58* was used in the next step without further purification since all spectral properties were identical to those of the unlabelled material [lit ${ }^{76}$ IR $3620-3140(O-H) \mathrm{cm}^{-1}$ for the unlabelled compound].

4,4-Dimethylchroman-9,10-14 C_{2} (59*). A $25-\mathrm{mL}$, three-necked roundbottomed flask was equipped with a magnetic stirrer, an addition funnel and a condenser. To a suspension of $0.163 \mathrm{~g}\left(1.23 \times 10^{-3} \mathrm{~mol}\right)$ of AlCl_{3} in 2 mL of freshly distilled $\mathrm{H}_{3} \mathrm{CNO}_{2}$ was added $0.170 \mathrm{~g}\left(9.43 \times 10^{-4} \mathrm{~mol}\right)$ of slightly impure 58^{*} in 5 mL of freshly distilled $\mathrm{H}_{3} \mathrm{CNO}_{2}$. After stirring for 24 h at room temperature, the dark red reaction mixture was cooled in an ice-water bath for a few minutes. Treatment with $\mathrm{HCl}(6 \mathrm{M}, \sim 10$ mL) to a pH acidic to litmus produced two layers. Stirring of the mixture continued for 10 min and then ether $(10 \mathrm{~mL})$ was added. Extracts (ether, $10 \times 10 \mathrm{~mL}$) of the aqueous layer, combined with the original organic layer, were washed with water ($5 \times 10 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(4 \times 10 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(15 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was concentrated to a light brown-colored oil $\left(0.160 \mathrm{~g}, 9.86 \times 10^{-4} \mathrm{~mol}\right)$ which was slightly impure 59* via spectral analysis. ${ }^{76}$ This material was used without further purification in the synthesis of $40^{*}\left[1 i t^{76} 74-80^{\circ} \mathrm{C} / 0.7 \mathrm{~mm}\right]$.

4,4-Dimethylchroman-6-yl Methyl Ketone-9,10,11-14C3 (40*). A $25-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer and a cold finger. To $1.57 \mathrm{mg}\left(2 \times 10^{-5} \mathrm{~mol}, 1 \mathrm{mCi}, 50 \mathrm{mCi} / \mathrm{mmol} \mathrm{sp}\right.$. act., ICN$)$ of $\mathrm{H}_{3} \mathrm{C}^{14} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ in 5 mL of freshly distilled $\mathrm{H}_{3} \mathrm{CNO}_{2}$ was added $0.093 \mathrm{~g}\left(1.18 \times 10^{-3} \mathrm{~mol}\right)$ of freshly distilled acetyl
chloride. To this solution was added $0.160 \mathrm{~g}\left(9.86 \times 10^{-4} \mathrm{~mol}\right)$ of the above 4,4dimethylchroman (59*) in 10 mL of freshly distilled $\mathrm{H}_{3} \mathrm{CNO}_{2}$. Slow addition of AlCl_{3} ($0.197 \mathrm{~g}, 1.48 \times 10^{-3} \mathrm{~mol}$) to the stirred solution followed. After stirring at room temperature for 10 h , the solution was cooled (ice-water bath). Cautious addition of of $6 \mathrm{M} \mathrm{HCl}(\mathrm{Ca} 10$ mL) followed until the solution was just acidic to litmus. The combined organic layer and the ether extracts ($10 \times 10 \mathrm{~mL}$) of the aqueous layer were washed with water ($5 \times 10 \mathrm{~mL}$), saturated NaHCO_{3} ($3 \times 10 \mathrm{~mL}$), and saturated $\mathrm{NaCl}(15 \mathrm{~mL})$. After this solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated, a light brown oil $\left(0.165 \mathrm{~g}, 8.08 \times 10^{-4} \mathrm{~mol}\right)$ remained. This slightly impure 40^{*} showed the characteristic IR band for the $\mathrm{C}=\mathrm{O}$ group ($1650 \mathrm{~cm}^{-1}$) along with other spectral properties which confirmed the known structure. ${ }^{76}$ The sample of 40* was used without further purification [lit ${ }^{76}$ IR (neat) $1685-1675(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; lit^{55} $1670(\mathrm{C}=0) \mathrm{cm}^{-1}$]. Since our preparation was slightly impure, the $\mathrm{C}=\mathrm{O}$ values did not match exactly.
$\alpha, 4,4$-Trimethylchroman-6-methanol-9,10,11-14C3(60*). A $50-\mathrm{mL}$, twonecked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To a stirred suspension of $0.042 \mathrm{~g}\left(1.10 \times 10^{-3} \mathrm{~mol}\right)$ of LiAlH_{4} in 2 mL of dry ether was added ketone 40* from above in 5 mL of dry ether. The mixture was held at reflux for 24 h with about 15 mL of ether being added periodically to maintain volume. After the mixture was allowed to cool to room temperature, it was chilled (ice-water). Addition of 6 M HCl was performed until the mixture was slightly acidic to litmus. The combined organic layer and ether $(10 \times 10 \mathrm{~mL})$ extracts were washed with water $(5 \times 10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(20 \mathrm{~mL})$ solution. After the solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, it was filtered and concentrated (rotary evaporator) to a thick brown oil which was slightly impure alcohol 60* as indicated by spectral analysis. ${ }^{80}$ The compound was used directly in the next step [lit ${ }^{76}$ IR (neat) $3640-3140(0-H) \mathrm{cm}^{-1}$ for the unlabelled compound 60].
[1-(4,4-Dimethylchroman-6-yl)ethyl]triphenylphosphonium Bromide9,10,11. ${ }^{14} C_{3}\left(61^{*}\right)$. A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. A mixture of $0.120 \mathrm{~g}\left(5.82 \times 10^{-4} \mathrm{~mol}\right)$ of alcohol 60^{*} in methanol $(25 \mathrm{~mL})$ and $0.230 \mathrm{~g}\left(6.69 \times 10^{-4} \mathrm{~mol}\right)$ of triphenylphosphine hydrobromide ${ }^{4}$ was stirred at room temperature for 24 h . Evaporation (rotary evaporator) of the methanol left a light brown oil which was triturated repeatedly with dry ether ($\sim 25 \mathrm{~mL}$) until a solid formed. Filtration of the mixture provided a fair yield of 61^{*} $\left(0.210 \mathrm{~g}, 3.95 \times 10^{-4} \mathrm{~mol}, 68 \%\right)$. The IR spectrum of this salt 61^{*} [149-153 ${ }^{\circ} \mathrm{C}$ (dec)] was essentially identical to that reported for the unlabelled compound $\left[l i{ }^{7} 76 \mathrm{mp} 149\right.$ $155^{\circ} \mathrm{C}$ (dec)] and thus the former was used immediately in the final condensation to produce 28*.

Ethyl (E)-4[2-(3,4-Dihydro-4,4-dimethyl-2H-1-benzopyran-6-yl)-1-prop-enyl]benzoate-9,10,11,20-14 C_{4} (28*). A $50-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer a condenser and a rubber septum. To a solution of n-butyllithium (1.5 mL of 1.0 molar in hexanes, Aldrich) was added to 0.200 g of phosphonium salt 60* (approximately 0.150 g of labelled material and 0.050 g of cold material) in dry ether (20 mL) over a period of 2 min . The resulting dark red mixture was cooled to $-78^{\circ} \mathrm{C}$ (dry ice-acetone bath), and then $0.085 \mathrm{~g}(0.477 \mathrm{mmol})$ of ethyl $4-$ formylbenzoate [4-OHC- $\mathrm{C}_{6} \mathrm{H}_{4}{ }^{14} \mathrm{CO}_{2} \mathrm{Et}$ (64^{*}) in ether (5 mL) was added. A creamcolored mixture formed, and this was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then was allowed to rise to room temperature with stirring over 24 h . A suspension formed and was filtered. The filtrate and one ether wash (25 mL) of the filtered solid were combined and evaporated (rotary evaporater) to a yellow oil. Chromatography of this oil was effected on a Chromatotron [4 mm plate, silica gel $60 \mathrm{PF}_{254}$ containing gypsum] using 200 mL of hexanes:ethyl acetate ($9: 1$) as eluent. Two bands with the highest R_{f} values (0.75 and
0.70) were collected, and the solvent was evaporated (rotary evaporator) in each case to give colorless oils. The oils appeared to be identical via TLC analysis and were combined and dissolved in a minimum amount of hot absolute ethanol ($\sim 5 \mathrm{~mL}$). The solution stood at room temperature for 1 h , and then it was refrigerated (2 days). A white solid was deposited and this was filtered to obtain 13.2 mg (10%) of 28*. The specific activity was determined on a $10 \mu \mathrm{~L}$ aliquot (prepared by dissolving 7.3 mg of $\mathbf{2 8 *}^{*}$ in 4 mL of HPLC grade methanol) via the use of a TRI-CARB liquid scintillation analyzer (model 1900-CA, Packard Instrument Company, Downers Grove, IL). The specific activity of was 0.15 $\mathrm{mCi} / \mathrm{mg}$ or $4.28 \times 10^{-5} \mathrm{mCi} / \mathrm{mmol}$. An average count of 6043.8 DPM (disintegrations/minutes) was obtained. A mixture melting point determination of this material with an authentic sample of cold $\mathbf{2 8}$ did not show a depression (mp 72-73 ${ }^{\circ}$). ${ }^{76}$

Ethyl \boldsymbol{p}-Toluate- ${ }^{14} \boldsymbol{C}=\boldsymbol{O}$ (63*). A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To a mixture of $0.015 \mathrm{~g}\left(1.10 \times 10^{-4} \mathrm{~mol}, 0.5 \mathrm{mCi}, 4.5 \mathrm{mCi} / \mathrm{mmol} \mathrm{sp}\right.$. act., Sigma) of p-toluic acid${ }^{14} \mathrm{C}=O\left(62^{*}\right)$ and $0.290 \mathrm{~g}\left(2.13 \times 10^{-3} \mathrm{~mol}\right)$ of p-toluic acid was added 10 mL of absolute alcohol and 20 mL of dry benzene along with 1 mL of conc. sulfuric acid. After boiling the solution for 24 h , the near theoretical amount of water was collected via a Dean-Stark trap. Water ($\sim 20 \mathrm{~mL}$) was added to the solution which had been allowed to cool to room temperature. The combined organic layer and ether extracts ($10 \times 10 \mathrm{~mL}$) were washed with water ($3 \times 10 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$, and brine (20 mL). After the solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated (rotary evaporator), a light yellow liquid remained and was used immediately in the next step. The weight of the oil was 0.380 g (quantitative). IR (neat) 1720 [broad] ($\mathrm{C}=0)_{\mathrm{cm}^{-1}[\mathrm{lit}}{ }^{76} \mathrm{IR}$ (neat) 1745 ($\mathrm{C}=\mathrm{O}$) cm^{-1}.

Ethyl 4-Formylbenzoate- ${ }^{14} \mathrm{C}(\mathrm{O})$ OEt (64*). A $25-\mathrm{mL}$, three-necked, roundbottomed flask was equipped with a magnetic stirrer and a condenser. A solution of the oil 63* $\left(0.380 \mathrm{~g}, 2.31 \times 10^{-3} \mathrm{~mol}\right)$ in 5 mL of freshly distilled acetic anhydride and 5 mL of glacial acetic acid was cooled to $0^{\circ} \mathrm{C}$ (ice-water bath). Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{~mL})$ was added along with 0.693 g of CrO_{3} in three equal portions over a period of 30 min . Care was taken to maintain the temperature below $5^{\circ} \mathrm{C}$ during the addition. When the addition was complete, a dark green reaction mixture remained which was stirred for 1 h at $0^{\circ} \mathrm{C}$. Decomposition was effected by slowly pouring the mixture onto crushed ice (25 g) and then adding (very slowly) 50 mL of cold water. A green-colored solution formed, and this was extracted with $\mathrm{HCCl}_{3}(10 \times 10 \mathrm{~mL})$. The extracts were washed with water (3×10 $\mathrm{mL}), 5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 10 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ solution was filtered and concentrated to give 0.385 g of a yellow oil. Water (10 mL), 95% ethanol (10 mL), and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ were added, and the resulting solution was held at reflux for 1 h . After cooling to room temperature, the solution was diluted with water (10 mL) and then extracted with $\mathrm{HCCl}_{3}(10 \times 10 \mathrm{~mL})$. The extracts were washed with water (3 x 15 mL), $10 \% \mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$, and brine (20 mL). When dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was filtered and concentrated (rotary evaporator) to give $0.090 \mathrm{~g}(36.8 \%)$ of 64* which was used in the Wittig reaction with the anion from salt 61* to yield 28*. IR (neat) 1725 [broad] $\mathrm{C}(=\mathrm{O}) \mathrm{OEt}$ and $(\mathrm{HC}=\mathrm{O})$ [lit ${ }^{76} \mathrm{IR}$ (neat) $1740 \mathrm{C}(=\mathrm{O}) \mathrm{OEt}, 1680$ $\left.(\mathrm{HC}=0) \mathrm{cm}^{-1}\right]$.

Methyl 4-(Carboxymethylmercapto)butyrate (77). A $25-\mathrm{mL}$, three-necked, round-bottomed, flask was equipped with a magnetic stirrer, a rubber septum and a condenser. Into this system was placed $\mathrm{MeOH}(5 \mathrm{~mL})$, which was cooled to $0-5^{\circ} \mathrm{C}$ (icewater bath), and then $1.03 \mathrm{~g}(19.1 \mathrm{mmol})$ of NaOMe was added in two portions over a $15-$ min period. Methyl thioglycolate (76, $2.00 \mathrm{~g}, 18.8 \mathrm{mmol}$) was added by syringe to this
cold, stirred solution, and the reaction mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 15 min . Methyl $4-$ chlorobutyrate ($\mathbf{7 5}, 2.50 \mathrm{~g}, 18.24 \mathrm{mmol}$) was added by syringe, and the resulting reaction mixture was stirred at the same temperature for 10 min . It was then allowed to warm to the room temperature over a period of 3 h . The reaction mixture turned cloudy over this period. It was allowed to stand overnight, and solid NaCl precipitated which was filtered (gravity). The residue was washed with $\mathrm{MeOH}(25 \mathrm{~mL})$. The filtrates and washings were combined and evaporated (rotary evaporator) to yield a viscous residue which was dissolved in 20 mL of ether:water (1:1). The organic layer was separated, washed with water ($2 \times 10 \mathrm{~mL}$), dried (MgSO_{4}), filtered, and concentrated (rotary evaporator) to give a colorless liquid 77 ($3.29 \mathrm{~g} \mathrm{87} \mathrm{\%)}$. IR (neat) $1740(\mathrm{C}=0) \mathrm{cm}^{-1}\left[\mathrm{lit}^{80} 1740\right.$ broad ($\mathrm{C}=\mathrm{O}$) $\left.\mathrm{cm}^{-1}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.94[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 2.44[\mathrm{t}, 2 \mathrm{H}, \mathrm{H}(2)], 2.68[\mathrm{t}, 2 \mathrm{H}$, $\mathrm{H}(4)], 3.23$ [s, $2 \mathrm{H}, \mathrm{H}(6)], 3.68[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}(8)], 3.74[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}(9)] ;{ }^{13} \mathrm{C}$ NMR (DCCl 3) ppm 29.93 [C(3)], $31.71[\mathrm{C}(2)], 32.51[\mathrm{C}(4)], 33.09[\mathrm{C}(6)], 51.55[\mathrm{C}(8)], 52.31$ [C(9)], 170.75 [C(1)], 173.27 [C(7)].

2-Carbomethoxythiacyclohexan-3-one (78). A $25-\mathrm{mL}$, two-necked, roundbottomed flask was equipped with a magnetic stirrer, condenser, and an addition funnel. A suspension of $1.05 \mathrm{~g}(0.019 \mathrm{~mol})$ of NaOMe in ether (10 mL) was added with stirring and cooling to $0-5^{\circ} \mathrm{C}$ in ice bath. To this stirred suspension was added $2.00 \mathrm{~g}(0.096 \mathrm{~mol})$ of methyl 4-(carboxymethylmercapto)butyrate (77). The thick, yellow-colored suspension was stirred at $0-5^{\circ} \mathrm{C}$ for 1 h and then was allowed to warm to room temperature over a period of 3 h . Water (10 mL) and glacial acetic acid (4 mL) were slowly added to the reaction mixture. The organic layer was separated, and the aqueous layer was extracted with ether (10 mL). Combined organics were washed with saturated NaHCO_{3} (3×10 $\mathrm{mL})$ and with brine $(10 \mathrm{~mL})$. The organics were dried (MgSO 4), filtered and concentrated (rotary evaporator) to give 1.03 g of the colorless liquid 78. IR (neat) 1740,1720 ($\mathrm{C}=\mathrm{O}$
ester free and hydogen bonded), 1660 ($\mathrm{C}=\mathrm{O}$ ketone) $\mathrm{cm}^{-1}\left[\mathrm{lit} \mathrm{t}^{80} 1745,1715,1645\right.$ ($\mathrm{C}=\mathrm{O}$, ester and ketone) $\left.\mathrm{cm}^{-1}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 2.13[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5)], 2.40[\mathrm{t}, 2 \mathrm{H}, \mathrm{H}(4)]$, 2.81 [t, $2 \mathrm{H}, \mathrm{H}(6)], 3.69$ [s, $1 \mathrm{H}, \mathrm{H}(2)], 3.81$ (s, $3 \mathrm{H}, \mathrm{CH} 3$), 12.1 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$).

Attempted Alkylation of 78. A $100-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer, a condenser and a rubber septum. A suspension of 0.173 $\mathrm{g}(0.007 \mathrm{~mol})$ of NaH (50% dispersion in mineral oil) in 40 mL of dry benzene was cooled to $0-5^{\circ} \mathrm{C}$ (ice bath). To this cold stirred suspension was added $0.270 \mathrm{~g}(0.0014 \mathrm{~mol})$ of 2-carbomethoxythiacyclohexan-3-one (78). A gas was observed to form in the suspension. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 30 min , and then $3.06 \mathrm{~g}(0.027 \mathrm{~mol})$ of $\mathrm{CH}_{3} \mathrm{I}$ was added slowly by syringe. The mixture was stirred at same temperature for 10 min and then allowed to warm to the room temperature over a period of 36 h . It was then cooled in ice bath and $\mathrm{MeOH}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic solutions were dried ($\mathrm{Na}_{2} \mathrm{SO} 4$), filtered and concentrated (rotary evaporator) to give 0.075 g of a yellow colored oil 78. This oil was similar to the starting material as it had IR bands at $1740,1715,1640 \mathrm{~cm}^{-1}$. This reaction was carried out with 4-6 equivalents of $\mathrm{CH}_{3} \mathrm{I}$, but the result was similar in all cases. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 2.13[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5)], 2.40[\mathrm{t}, 2$ H, H(4)], 2.81 [t, $2 \mathrm{H}, \mathrm{H}(6)], 3.69$ [s, $1 \mathrm{H}, \mathrm{H}(2)], 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3)$.

Methyl 4-Chloro-2,2-dimethylbutyrate (80). A $300-\mathrm{mL}$, three-necked, roundbottomed flask was equipped with an addition funnel, rubber septum and a condenser. Freshly distilled diisopropylamine ($10.12 \mathrm{~g}, 0.001 \mathrm{~mol}$) in 50 mL of THF was cooled to $-78^{\circ} \mathrm{C}$ (dry ice-acetone bath), and then 10 mL of a 10 M solution of $n-\mathrm{BuLi}$ was added dropwise by syringe. The resulting yellow-colored solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Methyl isobutyrate $(8.17 \mathrm{~g}, 0.001 \mathrm{~mol}$, Aldrich) was then added over a period of 10 min ,
and stirring was continued at same temperature for 1 h . After this time, $15.0 \mathrm{~g}(0.0015)$ of 1-bromo-2-chloroethane (Lancaster) in 25 mL of THF was added over a period of 15 min . After stirring for an additional 10 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to the room temperature over a period of 24 h . A solid formed and was filtered off. The solid melted at $142-144^{\circ} \mathrm{C}$ and weighed 500 mg ; no further work was done with this solid. It was then cooled in an ice bath, and water (100 mL) was added followed by concentrated $\mathrm{HCl}(25 \mathrm{~mL})$. The organic layer was separated and washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{~mL})$. The combined aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The original organic layer, along with the organic extracts, were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated (rotary evaporator) to give a colorless liquid $\mathbf{8 0}$ which was distilled under vacuum (bp $47-50^{\circ} \mathrm{C} / 8 \mathrm{~mm}, \mathrm{lit}^{8} \mathrm{bp} 80-84^{\circ} \mathrm{C} / 15 \mathrm{~mm}$).

Methyl 2,2-Dimethyl-4-(methoxycarbonylmethylmercapto)butyrate (81). A $50-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To a solution of $1.67 \mathrm{~g}(0.03 \mathrm{~mol})$ of NaOMe in MeOH $(25 \mathrm{~mL})$ was added dropwise $3.29 \mathrm{~g}(0.03 \mathrm{~mol})$ of methyl thioglycolate (76 , Aldrich). The reaction mixture was boiled for 0.5 h and then cooled to the room temperature. In an another $100-\mathrm{mL}$, round-bottomed flask equipped with an addition funnel, condenser and heating mantle was placed a solution of $5 \mathrm{~g}(0.03 \mathrm{~mol})$ of methyl 2,2 -dimethyl-4chlorobutyrate (80) in 25 mL of MeOH . To this was added the earlier reaction mixture of the sodium salt of the methyl thioglycolate (page 37) over a period of 30 min . The new reaction mixture was boiled for 24 h and then was cooled to the room temperature (1 h). The MeOH was evaporated (rotary evaporator). The residue was poured slowly onto ice, and the aqueous solution was acidified with $6 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ to a pH of about 6 . The acidic aqueous solution was extracted with ether ($4 \times 25 \mathrm{~mL}$). The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated (rotary evaporator) to give a light
yellow-colored liquid 81 which was distilled under vacuum (bp $112-115^{\circ} \mathrm{C} / 0.02 \mathrm{~mm}, \mathrm{lit}^{3}$ bp $114-117^{\circ} \mathrm{C} / 0.25 \mathrm{~mm}$). IR (neat) $1740-1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

2-Carbomethoxy-4,4-dimethylthiacyclohexan-3-one (82). A $25-\mathrm{mL}$, twonecked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle and a condenser. To a boiling suspension of 0.344 g of NaH (60% dispersion in mineral oil) in benzene (10 mL) was added $1.0 \mathrm{~g}(0.004 \mathrm{~mol})$ of methyl 2,2-dimethyl-4carboxymethylmercaptobutyrate (81). The reaction mixture was boiled for 4 h . It was then cooled to the room temperature and poured onto ice. The resulting mixture was made acidic with $6 \mathrm{MHCl}(10 \mathrm{~mL})$ to a pH of about 6 . The aqueous layer was extracted (benzene, $4 \times 10 \mathrm{~mL}$), and the combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated (rotary evaporator) to give 0.8 g of an orange-colored liquid 82. Chomatography on a 2 mm silica gel plate (Chomatotron) with 50 mL of hexane:ethyl acetate (9:1), followed by 50 mL of hexane:ethyl acetate (8:2) as eluent, gave several fractions. The first fraction of 50 mL was collected and concentrated to give 0.32 g of a colorless liquid 82. IR (neat) 1730-1645 ($\mathrm{C}=\mathrm{O}$) cm^{-1} [lit ${ }^{3}$ IR 1735-1644 ($\mathrm{C}=\mathrm{O}$) cm^{-1}]; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.2\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right) 2\right], 1.98[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5)], 2.8[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6)], 3.8$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 12.4 [s, $1 \mathrm{H}, \mathrm{OH}$ (enol tautomer)].

Attempted Reaction of 82 with N-Phenyltrifluoromethanesulfonimide. A

 $25-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a magnetic stirrer, condenser and a rubber septum. A solution of $0.110 \mathrm{~g}(0.001 \mathrm{~mol})$ of freshly distilled diisopropylamine in 5 mL of THF was cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath), and 0.11 mL (0.0011 mol) of $n-\mathrm{BuLi}$ (10 M solution in hexane) was added by syringe. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 10 min , and then $0.2 \mathrm{~g}\left(0.99 \times 10^{-3} \mathrm{~mol}\right)$ of thia B-keto ester 82 was added in 5 mL of THF by syringe. The resulting mixture wasstirred at the same temperature for 2 h . After this period, $0.378 \mathrm{~g}(0.0011 \mathrm{~mol})$ of N phenyltrifluoromethanesulfonimide (Aldrich) in 3 mL of THF was added over a period of 5 min . After the addition was complete, the cold bath was removed and the reaction mixture was stirred overnight. Evaporation (rotary evaporator) of the solvent gave a residue which was dissolved in $10 \% \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted with pentane (4×10 $\mathrm{mL})$. Combined extracts were washed with $10 \% \mathrm{HCl}(15 \mathrm{~mL}), 10 \% \mathrm{NaOH}(15 \mathrm{~mL})$ and water (10 mL), after drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the solution was filtered and evaporated (rotary evaporator) to give 0.15 g of white crystalline solid which showed spectral properties similar to N-phenyltrifluoromethanesulfonimide, and the mp of N -phenyltrifuoromethane sulfonimide was $99-101^{\circ} \mathrm{C}$. The mp of the solid was found to be $100-101{ }^{\circ} \mathrm{C}$.

4,4-Dimethylthiacyclohexan-3-one (83). A $50-\mathrm{mL}$, two-necked, roundbottomed flask was equipped with a condenser, a magnetic stirrer and a heating mantle. A solution of $2.00 \mathrm{~g}\left(9.89 \times 10^{-3} \mathrm{~mol}\right)$ of 2-carbomethoxy-4,4-dimethylthiacyclohexan-3-one (82) in 15 mL of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was boiled for 6 h . The yellow solution was first cooled to the room temperature and then slowly neutralized with $10 \% \mathrm{NaOH}$ (ca 20 mL) to pH 7 . The aqueous layer was extracted with ether ($3 \times 25 \mathrm{~mL}$). The combined organics were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and evaporated (rotary evaporator) to give a light yellow colored liquid 83 . IR (Neat) $1705(\mathrm{C}=0) \mathrm{cm}^{-1}\left[\mathrm{lit}^{3} 1705 \mathrm{~cm}^{-1}(\mathrm{C}=0)\right] ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DCCl}_{3}\right) \delta$ $1.15\left[\mathrm{~s}, 6 \mathrm{H},(\mathrm{CH} 3)_{2}\right], 2.2[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6)], 2.8[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5)], 3.2[\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}(2)]$.

Attempted Alkylation of 4,4-Dimethylthiacyclohexan-3-one (83). A 100mL , three-necked, round-bottomed flask was equipped with a magnetic stirrer, a rubber septum and a condenser. A solution of $0.7 \mathrm{~g}\left(6.92 \times 10^{-3} \mathrm{~mol}\right)$ of freshly distilled diisopropylamine in 10 mL of THF was cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath), and to this cooled solution was added 0.7 mL of 10 M solution of $n-\mathrm{BuLi}$ in hexane by syringe. The
resulting yellow-colored solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , and then $0.9 \mathrm{~g}(6.24 \mathrm{x}$ $10^{-3} \mathrm{~mol}$) of 4,4-dimethylthiacyclohexan-3-one (83) in 5 mL of THF was added dropwise by syringe. After stirring for $30 \mathrm{~min}, 0.9 \mathrm{~g}\left(6.37 \times 10^{-3} \mathrm{~mol}\right)$ of $\mathrm{CH}_{3} \mathrm{I}$ in 5 mL of THF was added over a period of 2 min . After the addition was complete, the cold bath was removed, and the reaction mixture was allowed to warm to room temperature over a period of 24 h . After this time, the reaction mixture was cooled in an ice bath and was then quenched with water (10 mL), followed by $6 \mathrm{MHCl}(5 \mathrm{~mL})$ to a pH of about 3 . The aqueous layer was separated and extracted with ether $(3 \times 25 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to give a dark oil, which showed spectral properties similar to the starting ketone $\left[1 \mathrm{li}^{3}\right.$ IR $\left.1705 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})\right]$. Thus it was concluded that the alkylation did not take place. This reaction was repeated with 2-4 equivalents of CH_{3} I, but the end result was the same.

Methyl 4-Bromomethylbenzenesulfonate (89). A $50-\mathrm{mL}$, single-necked, round-bottomed flask was equipped with a magnetic stirrer, a heating mantle, and a condenser. To a boiling solution of $5.0 \mathrm{~g}(0.02 \mathrm{~mol})$ of methyl p-toluene sulfonate (88) in $\mathrm{CCl}_{4}(25 \mathrm{~mL})$ was added a mixture of $4.98 \mathrm{~g}(0.03 \mathrm{~mol})$ of N -bromosuccinimide and 0.01 g of dibenzoyl peroxide over a period of 45 min . The resultng brown-colored solution was boiled for 5 h and then cooled to room temperature. Precipitated succinamide was filtered (vacuum) and washed with 25 mL of CCl_{4}. Combined washings and filtrate were concentrated to give 5.6 g (75%) of white solid. This solid was used without furthur purification in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 3.9\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.5\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\mathrm{Br}), 7.5(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.9(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.

Ethyl 4-triethylphosphonomethylbenzenesulfonate (91). A 150 -mL jacketed flask was equipped with a magnetic stirrer, two condensers, a heating mantle, and toluene
in outer jacket. The mixture of $5.0 \mathrm{~g}(0.02 \mathrm{mmol})$ of crude 89 and $4.74 \mathrm{~g}(0.03 \mathrm{mmol})$ of triethyl phosphite (90) was kept at boiling point of toluene $\left(110^{\circ} \mathrm{C}\right)$ for 6 h . The resulting pink-colored solution was cooled to room temperature and then was separated on a 4 mm silica gel using hexane:ethyl acetate (8:2). The third fraction of 150 mL was collected and solvent was evaporated to give $2.1 \mathrm{~g}(48 \%)$ of light-colored oil 91. IR (neat) $1250 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O})$. The compound was used directly in the preparation of 47.

4-Cyano-4-trimethylsilyloxy-3,4-dihydro-2H-1-benzopyran (101). A 50mL , two-necked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To $1.5 \mathrm{~g}(10 \mathrm{mmol})$ of 4-chromanone (100) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $15 \mathrm{mg}(0.23 \mathrm{mmol})$ of KCN and $15 \mathrm{mg}(0.05 \mathrm{mmol})$ of 18 -crown- 6 ether. This reaction mixture was cooled in an ice bath and then $1.19 \mathrm{~g}(12 \mathrm{mmol})$ of TMSCN was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and was then allowed to warm to room temperature over a period of 24 h . The color changed from light yellow to dark, reddishbrown over this period. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organics were washed with water ($2 \times 20 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and with brine (20 mL). It was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and evaporated (rotary evaporator) to 2.1 g (85%) brown colored liquid. IR (neat) $3110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 0.2[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)\right], 2.4$ [m, $\left.2 \mathrm{H}, \mathrm{H}(3)\right], 4.35$ [m, $\left.2 \mathrm{H}, \mathrm{H}(2)\right], 6.8-7.6$ [m, $\left.4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $1.12\left[\mathrm{C}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3\right)\right], 36.19[\mathrm{C}(2)], 61.2[\mathrm{C}(3)], 117.4[\mathrm{C}(\mathrm{CN})]$; AromaticC 120.6, 120.7, 120.9, 128.6, 131.2, 153.4.

4-Cyano-3,4-dihydro-2H-1-benzopyran (102). A $100-\mathrm{mL}$, two-necked, round-bottomed flask was equipped with a condenser and a magnetic stirrer. To a mixture of $3.91 \mathrm{~g}(36 \mathrm{mmol})$ of $\mathrm{TMSCl}, 1.48 \mathrm{~g}(36 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{CN}$, and $5.39 \mathrm{~g}(36 \mathrm{mmol}) \mathrm{NaI}$ was added $1.5 \mathrm{~g}(6.07 \mathrm{mmol})$ of 4-cyanochroman (101) in 10 mL of hexane. The reaction
mixture was stirred (30 min) and then 0.22 g of water was added. This heterogeneous mixture was stirred at room temperature for 24 h . The color of the aqueous layer changed to dark red. After 24 h , water (10 mL) was added and the organic layer was separated. The aqueous layer was extracted with ether ($3 \times 25 \mathrm{~mL}$), and the combined organics were washed with water ($2 \times 15 \mathrm{~mL}$), $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 25 \mathrm{~mL})$, and brine (30 mL). It was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and evaporated (rotary evaporator) to dark brown-colored liquid. After purification on the Chromatotron with 200 mL of hexanes:ethyl acetate (9:1), 0.7 g (70%) of light yellow colored liquid was obtained. IR (neat) $2220 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 2.4$ [m, $\left.2 \mathrm{H}, \mathrm{H}(3)\right], 4.0[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(4)], 4.3[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)], 6.8-7.4[\mathrm{~m}, 4 \mathrm{H}$, Ar-H]; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 26.1[C(3)], $\left.26.8[\mathrm{C}(4)], 63.5 \mathrm{C}(3)\right] ; 117.7[\mathrm{C}(\mathrm{CN})]$; Aromatic C 115.1, 120.4, 121.2, 129.3, 129.9, 154.0.

4-Cyano-4-methyl-3,4-dihydro-2H-1-benzopyran (103). A $50-\mathrm{mL}$, twonecked, round-bottomed flask was equipped with a magnetic stirrer and a condenser. To the suspension of $0.12 \mathrm{~g}(4.84 \mathrm{mmol})$ of NaH in 10 mL of THF was added 0.7 g of 4cyanochroman (102). The color of the reaction mixture turned dark orange, and after stirring for 15 minutes, 0.68 g of $\mathrm{CH}_{3} \mathrm{I}$ was added by a syringe. The resulting reaction mixture was stirred at room temperature for 24 h . It was cooled in an ice bath (15 minutes), and then water (10 mL) was added followed by 5 mL of $10 \% \mathrm{HCl}(\mathrm{pH} 5)$. The organic layer was separated and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organics were washed with water ($3 \times 25 \mathrm{~mL}$) and brine (40 mL). The organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and evaporated (rotary evaporator) to give dark brown-colored liquid. This liquid was purified on a 4 mm chromatotron plate using 200 mL of hexane:ethyl acetate (9:1) to afford $0.48 \mathrm{~g}(61 \%)$ of a dark colored liquid. IR (neat) $2220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 1.8\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 2.3[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 4.3[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(2)], 6.8-7.5$
[m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 27.7 [C(9)], 32.0 [C(4)], 34.4 [C(3)], 62.2 $[\mathrm{C}(2)], 117.7[\mathrm{C}(\mathrm{CN})]$; Aromatic- $C: 121.3,121.4,123.7,127.7,129.6,153.2$.

4-Cyano-4-methyl-3,4-dihydro-2H-1-benzopyran-6-methyl Ketone (104). A $100-\mathrm{mL}$, three-necked, round-bottomed flask was equipped with a magnetic stirrer, a condenser, and an addition funnel. To $0.9 \mathrm{~g}(5.2 \mathrm{mmol})$ of 4-cyano-4-methyl-3,4-dihydro-2H-1-benzopyran (103) in 25 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was added a solution of 1.73 g (13 mmol) of anhydrous AlCl_{3} and $0.61 \mathrm{~g}(7.8 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ in 10 mL . of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ over a period of 2 min . The color of the reaction mixture changed to dark reddish brown. This reaction mixture was stirred at room temperature for 24 h . It was then cooled in an ice bath for (15 min), and then $6 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added followed by 10 mL of ether. The organic layer was separated and the aqueous layer was extracted with ether ($3 \times 15 \mathrm{~mL}$). The combined organic layer was washed with water ($2 \times 15 \mathrm{~mL}$), saturated NaHCO_{3}, and finally with brine (25 mL). The organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and evaporated (rotary evaporator) to afford a dark brown-colored oil [1.1 g, 57\%]. This oil solidified under vacuum $\left(25^{\circ} \mathrm{C} / 15 \mathrm{~mm}\right)$. IR (neat) 2200,1660 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 1.82[\mathrm{~s}, 3 \mathrm{H}], 2.3[\mathrm{~m}, 2 \mathrm{H}], 2.5[\mathrm{~s}, 3 \mathrm{H}], 4.4[\mathrm{~m}, 2 \mathrm{H}], 6.9$ [d, $\mathrm{J}=8.63 \mathrm{~Hz}, 1 \mathrm{H}], 7.83[\mathrm{dd}, \mathrm{J}=8.66 \mathrm{~Hz}, \mathrm{~J}=2.14 \mathrm{~Hz}, 1 \mathrm{H}], 8.06[\mathrm{~d}, \mathrm{~J}=2.17 \mathrm{~Hz}, 1 \mathrm{H}] ;$ ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 26.3 [C(12)], 27.3 [C(9)], 32.1 [C(4)], 34.1 [C(3)], 62.8 [C(2)], $118.0[\mathrm{C}(\mathrm{CN})$]; Aromatic- $C: 121.5,123.1,128.7,130.6,130.8,157.3 ; 196.2$ [C(11)].

Plate I

${ }^{1}$ H NMR Spectrum of 28

II गएId

Plate IV

${ }^{1}$ H NMR Spectrum of 37

Plate VI

${ }^{13}$ C NMR Spectrum of 37

Plate VIII

Plate X

${ }^{13}$ C NMR Spectrum of 38

Plate XII

${ }^{1} \mathrm{H}$ NMR Spectrum of 39

${ }^{13}$ C NMR Spectrum of 39

Plate XVI

UV Spectrum of 39

${ }^{1} \mathrm{H}$ NMR Spectrum of 41

${ }^{13}$ C NMR Spectrum of 41

Plate XXI

${ }^{1}$ H NMR Spectrum of $\mathbf{4 2}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 42

${ }^{1}$ H NMR Spectrum of 43

АXX みЕІ】

Plate XXVI

${ }^{1}$ H NMR Spectrum of 44

${ }^{13} \mathrm{C}$ NMR Spectrum of 44

${ }^{1}$ H NMR Spectrum Of 45

IXXX ә!eld

Plate XXXIII

${ }^{1}$ H NMR Spectrum of 46

Plate XXXIV

${ }^{13}$ C NMR Spectrum of 46

Plate XXXV

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 7}$

Plate XXXVI

${ }^{13}$ C NMR Spectrum of 47

Plate XXXVIII

${ }^{1} \mathrm{H}$ NMR Spectrum of 48

Plate XXXIX

${ }^{13} \mathrm{C}$ NMR Spectrum of 48

Plate XXXX

Plate XXXXI

Plate XXXXII

${ }^{1} \mathrm{H}$ NMRSpectrum of 49

${ }^{13}$ C NMR Spectrum Of 49

Plate XXXXV

Plate IL

Plate L

${ }^{1} \mathrm{H}$ NMR Spectrum of 54

Plate LII

${ }^{1} \mathrm{H}$ NMR Spectrum of 55

${ }^{13}$ C NMR Spectrum Of 55

Plate LIV

Plate LV

${ }^{1} \mathrm{H}$ NMR Spectrum of 87

Plate LVIII

${ }^{1}$ H NMR Spectrum of 101

Plate LX

${ }^{13}$ C NMR Spectrum of 101

${ }^{13}$ C NMR Spectrum 102

Plate LXIV

${ }^{1}$ H NMR Spectrum of 103

${ }^{13}$ C NMR Spectrum of 103

Plate LXVII

Plate LXVIII

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 0 4}$.

BIBILOGRAPHY

1. Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hames, B. A.; Jansen, A. B. A.; Walker, T. J. Chem. Soc. 1952, 1904-1906.
2. Bal, B, S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron, 1981, 37, 20912094.
3. Bass, J. L.; Davies-Fidder, A.; Huisman, H. O. Tetrahedron 1966, 22, 259-261.
4. Bollag, W. Eur. J. Cancer, 1974, 10, 731-737.
5. Brand, N.; Petkovich, M.; Krust, A.; Chambon, P.; de The, H. D.; Marchio, A.; Tiollais, P.; Dejean, A. Nature (London) 1988, 334, 850-853.
6. Brenbrook, D.; Lernhardt, E.; Pfahl, M. Nature (London) 1988, 333, 669-672.
7. Chan, K. C.; Jewell, R. A.; Nutting, W. H.; Rapoport, H. J. Org. Chem. 1968, 33, 3382- 3385.
8. Chang, J. H. U. S. 4,552,585, 1985; Chem Abstr. 1986, 104, 88570k.
9. Chytil, F. Pharmacol. Rev. 1984, 36, 9-35.
10. Chytil, F.; Ong, D. E. Adv. Nutr. Res. 1983, 5, 13-29.
11. Chytil, F.; Ong, D. E. Fed. Proc. 1979, 38, 2510-2514.
12. Corey, E. J.; Schmidt, G. Tetrahedron Lett., 1980, 21, 731-734.
13. Cunliffe, W. J.; Miller, A. J., Eds., Retinoid Therapy, MTP Press Limited: Lancaster, England, 1984.
14. Curley, R. W.; Ticoras, T. J. J. Org. Chem. 1986, 51, 256-258.
15. Danieli, N.; Mazur, Y.; Sondheimer, F. Tetrahedron, 1966, 22, 3189-3193.
16. Dawson, M. I.; Chan, R.; Hobbs, P. D.; Chao, W.-R.; Schiff, L. J. J. Med. Chem. 1983, 26, 1282-1293.
17. Dawson, M. I.; Hobbs, P. D.; Chan, R. L.; Chao, W.-R.; Fung, V. A. J. Med. Chem, 1981, 24, 583-592.
18. Dawson, M. I.; Hobbs, P. D.; Derdzinski, K.; Chan, R. L.-S.; Gruber, J.; Chao, W.-R.; Smith, S.; Thies, R. W.; Schiff, L. J. J. Med. Chem. 1984, 27, 15161531.
19. Dawson, M. I.; Okamura, W. H., Eds., Chemistry and Biology Of Synthetic Retinoids, CRC Press: Boca Raton, Orlando, Florida, 1990.
20. DeLacruz, E.; Sun, S.; Vangvanichyakorn, K.; Desposito, F. Pediatrics 1984, 74, 428-430.
21. DeLuca, L. M. In Handbook Of Lipid Research, DeLuca, H. F., Ed., Plenum: New York, 1978.
22. Douer, D; Koeffler, H. P. J. Clin . Invest. 1982, 69, 277-283.
23. Evans, R. M. Science 1988, 240, 889-895.
24. Frolick, C. A. In The Retinoids, Sporn, M. B.; Roberts, A. B.; Goodman, D. S., Eds., Academic Press: Orlando, Florida, 1984, Vol 2, pp 177-208.
25. Frolick, C. A.; Roberts, A. B.; Tavela, T. E.; Roller, P. P.; Newton, D. L.; Sporn, M. B. Biochemistry 1979, 18, 2092-2097.
26. Fuchs, E.; Green, H. Cell 1983, 19, 1033-1042.
27. Gale, J. B., Ph. D. Dissertation, Oklahoma State University, 1988.
28. Giguere, V.; Ong, E. S; Segui, P.; Evans, R. M. Nature (London) 1987, 330, 624-629.
29. Gollink, H.; Bauer, R.; Brindely, C. J Am. Acad. Dermatol. 1988, 19, 458-462.
30. Gordon, A. J.; Ford, R. A., Eds., The Chemist's Companion, Wiley: New York, 1972, p. 451
31. Hanni, R.; Bigler, F. Helv. Chim. Acta 1977, 60, 881-887.
32. Hanni, R.; Bigler, F.; Meister, W.; Englert, G. Helv. Chim. Acta 1976, 59, 22212227.
33. Hanni, R.; Bigler, F.; Vetter, W.; Englert, G.; Loeliger, P. Helv. Chim. Acta 1977, 60, 2309-2325.
34. Hanni, R.; Hervouet, D.; Bussinger, A. J. Chromatog. 1979, 162, 615-621.
35. Howard, W. B.; Willhite, C. C. J. Toxicol. Toxin. Rev. 1986, 5, 55-94.
36. Jetten, A. M. In Growth and Maturation Factors Vol 3, Guroff, G., Ed., WileyInterscience: New York, 1985.
37. Jetten, A. M. In Mechanisms of Differentiations, Fischer, P. B., Ed., CRC Press: Boca Raton, Florida, 1991.
38. John, K. V.; Lakshmanan, M. R.; Cama, H. R. Biochem. J. 1967, 103, 539-543.
39. Khan, A. Q.; Sandstrom, J.; Bergquist, K. E.; Cheng, C. Y.; Wang, S. L. J Org. Chem. 1991, 56, 4919-4925.
40. Klaus, M. In Methods In Enzymology, Part A, Vol 189, Packer, L., Ed., Academic Press: New York, 1990 .
41. Klaus, M.; Loeliger, P; (Hoffmann-LaRoche, F. and Co. A.-G.) Ger. Offen. DE 3,316,932 (Cl. C 07D311/58), Nov. 17, 1983, CH Appl. 82/2,956, May 12, 1982; Chem Abstr. 1984, 100, 51468z.
42. Krust, A.; Kastner, P.; Pertkovich, M.; Zelent, A.; Chambon, P. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 5310-5314.
43. Libby, P. R.; Bertram, J. S. Carcinogenesis 1982, 3, 481-484.
44. Lippman, S. M.; Kessler, J. F.; Meyskens, Jr. F. L. Cancer Treatment Reports 1987, 71, 493-515.
45. Loeliger, P; Bollag, W; Mayer, H. Eur. J. Med. Chem. 1980, 15, 9-15.
46. Manglesdorf, D. J.; Ong, E. S.; Dyck, J. A.; Evans, R. M. Nature (London) 1990, 345, 224-229.
47. Marshall, J. A.; Cohen, N. J. Org. Chem. 1965, 30, 3475-3478.
48. Mayer, H.; Bollag, W.; Hanni, R; Ruegg, R. Experimentia 1978, 34, 1105-1119.
49. McCormick, A. M.; Napoli, J. L.; Schnoes, H. K.; DeLuca, H. F. Biochemistry 1978, 17, 4085-4090.
50. Moore, T., Ed., Vitamin A, Elsevier: New York, 1957.
51. Nervi, C.; Grippo, J.; Sherman, M. I.; George, M. D.; Jetten, A. M. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 5854-5858.
52. Newton, D. L.; Henderson, W. R.; Sporn, M. B. Cancer Res. 1980, 40, 34133425.
53. Pawson, B. A.; Ehmann, C. W.; Itri, L. M.; Sherman, M. I. J. Med. Chem. 1982, 25, 1269-1277.
54. Petkovich, M.; Brand, N. J.; Krust, A.; Chambon, P. Nature (London) 1987, 330, 444-450.
55. Rajadhyaksha, S. N. Ph. D. Dissertation, Oklahoma State University, 1987.
56. Reitz, P.; Wiss, O.; Weber, F. Vitamins and Hormones 1974, 32, 237-249.
57. Roberts, A. B.; Frolik, C. A.; Nichols, M. D.; Sporn, M. B. J. Biol. Chem. 1979, 254, 6303-6309.
58. Rosenberger, M. J Org. Chem. 1982, 47, 1698-1701.
59. Rosenberger, M.; Neukon, C. J. Org. Chem. 1982, 47, 1782-1785. Sporn, M. B.; Dunlop, N. M.; Newton, D. L.; Henderson, W. R. Nature (London) 1976, 263, 110-113.
60. Ruzicka, L.; Seidel, C. F.; Schinz, H.; Tavel, Ch. Helv. Chim. Acta 1948, 31, 257281.
61. Sakai, T.; Miyata, K.; Tsuboi, S.; Takeda, A. Bull. Chem. Soc. Jpn., 1989, 62, 3537-3541.
62. Schiff, L. J.; Moore, S. J.; Dawson, M. I.; Hobbs, P. D.; Chan, R. L. -S.; Derdzinski, K. In In Vitro Models Of Respiratory Epithelium, Schiff, L. J., Ed. CRC Press: Boca Raton, Florida, 1986.
63. Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc., 1972, 94, 7154-7156.
64. Sherman, M. I., Ed., Retinoids and Cell Differentiation, CRC Press: Boca Raton, Florida, 1986.
65. Shrout, B.; Eustache, J.; Bernardon, J. M.; Belg BE 903, 254, 1986; Chem. Abstr. 1986, 105, 19098j. No properties of 44 are given in the abstract and the patent was not available to us.
66. Sporn, M. B.; Roberts, A. B. Cancer Res. 1983, 43, 3034-3039.
67. Sporn, M. B.; Roberts, A. B. Ciba Found. Symp. 113, Neugent, J.; Clark, S., Eds., Pitman: London, 1985.
68. Sporn, M. B.; Roberts, A. B.; Goodman, D. S., Eds., The Retinoids, Vol. 1 and 2. Academic Press: Orlando, Florida, 1984.
69. Spruce, L. W.; Gale, J. B.; Berlin, K. D.; Verma, A. K.; Breitman, T. R.; Ji, X.; van der Helm, D. J. Med. Chem. 1991, 34, 430-439.
70. Spruce, L. W.; Berlin, K. D.; Lindwood, C.; Hill, D., Unpublished results. See also Gale, J. B., Ph. D. Dissertation, Oklahoma State University, 1988.
71. Summerbell, D. J. Embryol. Exp. Morphol. 1983, 78, 269-273.
72. Verma, A. K.; Rice, H. M.; Shapas, B. G.; Boutwell, R. K. Cancer Res. 1978, 38, 793-801.
73. Verma, A. K.; Shapas, B. G.; Rice, H. M.; Boutwell, R. K. Cancer Res. 1979, 39, 419-425.
74. Wang, S.-Y.; Gudas, L. J. J. Biol. Chem. 1984, 259, 5899-5906.
75. Ward, A.; Broden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Drugs, 1983, 26, 9-43.
76. Waugh, K. M.; Berlin, K. D.; Ford, W. T.; Holt, E. M.; Carrol, J. P.; Schomber, P. R.; Thompson, M. D.; Schiff, L. J. Med. Chem. 1985, 28, 116-124.
77. Williams, J. B.; Napoli, J. L. Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 46584661.
78. Wolbach, S. B. In The Vitamins, Selrell, W. H.; Harris, R. W., Eds., Academic Press: New York, 1954.
79. Wolf, G. In Human Nutrition, Vol 3B, Alfin-Slafer, R. B.; Kritchevsky, D.; Eds., Plenum: New York, 1980.
80. Young, T. E.; Heitz, L. J. J. Org. Chem 1973, 38, 1562-1566.

VITA

Prasanna Sakharam Sunthankar
Candidate for the Degree of

Doctor Of Philosophy

Thesis: SYNTHESES OF POTENTIAL METABOLITES OF ETHYL (E)-4-[2-(3,4-DIHYDRO-4,4-DIMETHYL-2H-1-BENZOPYRAN-6-YL)-1-PROPENYL]BENZOATE, 4-[(ALL-E)-2-METHYL-4-(2,6,6-TRIMETHYL-3-THIA-1-CYCLOHEXEN-1-YL)-1,3-BUTADIENYL]BENZOIC ACID AND CERTAIN DERIVATIVES

Major Field: Chemistry
Biographical:

Personal Data: Born in Bombay, India, November 19, 1961; the son of Sakharam V. and Kalan S. Sunthankar.

Education: Graduated from Raja Shivaji Vidyalaya, Bombay, India, June 1977; received the Bachelor of Science Degree in Chemistry from Ramnarain Ruia College, University of Bombay, Bombay, India, February, 1983; received the Master of Science Degree in Organic Chemistry from University of Bombay, Bombay, India, February 1985; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1991.

Professional Experience: Teaching and/or Research Assistant, Department of Chemistry, Oklahoma State University, August, 1986 to August, 1991.

