
DISTRIBUTED CONTROL OF TENSION IN 

MULTI-SPAN WEB TRANSPORT SYSTEMS 

By 

KEE-HYUN ~HIN 

Bachelor of Science in Engineering 
Seoul National University 

Seoul, Korea 
1981 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1987 

Submitted to the faculty of the Graduate College of 
the Oklahoma State University 

in partial fulfilment of the requirements 
for the degree of 

DOCTOR OF PHILOSOPHY 
May, 1991 





Oklahoma State Univ. Library 

DISTRIBUTED CONTROL OF TENSION IN 

MULTI-SPAN WEB TRANSPORT SYSTEMS 

Thesis Approved: 

. /J ;)U­
'~ 

Dean of the Graduate College 

11 

1 07G69 



ACKNOWLEDGEMENTS 

I wish to express sincere appreciation to Dr. Karl N. Reid for his 

encouragement, understanding, and advice throughout my graduate 

program. Dr. John J. Shelton's encouragement and direction have been 

very helpful. Many thanks also go to Dr. Lawrence L. Hoberock, Dr. Gary 

E. Young, and Dr. Martin Hagan for serving on my graduate committee. 

Their teaching, suggestions, and support were very helpful throughout the 

study. 

I appreciate the support of Mobil Chemical and the efforts of D. 

Gibben in carrying out my experiment. I sincerely appreciate the financial 

support of Miwon Group and Rinnai Korea Corporation during these 

difficult years. 

This thesis would have been impossible without God's abundant grace 

and love. Glory to God! My parents, Young-Kyu Shin and Jin-Joo Hong, 

and my parents in-law, Kee-Duck Yoo and Man-Soon Suh, encouraged and 

supported me all the way and helped me keep the end goal constantly in 

sight. The endless support, love, and prayers of Aeran and Patrick is 

sincerely appreciated. Without friends like Glenna Banks, John and Marius 

Green, Dr. Ron Delahoussaye, Dr. Taejoon Urn, and Bang-Eop Lee, this 

endeavor would not have been as stimulating. I extend a sincere thank-you 

to all of these people. 

111 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1 

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Previous Studies 0. 00 0 00 00 00 0 00 0 0 •• 0 00 0 00 •• 00 •••• 00 00 00. 00 •• 00 •• 00 00 0.. 5 
The Tension Control Problem ..... 00 00 00 •• 00 •• 00.00 00 •• 00. 00 00 0 8 
Objectives 00 ••••••• 00 •• 0 0 •• 00 •• 00 oo• .... 00 •• 00 0, 0 ••••• 00 0 00 •• 00 •••• 00... 13 
Principal Results ... 0 •• 0 00 00 ••• 00 •• 00 00 00 •••••• 0 00 0 00. 0 •••• 00 00 00 0 ••• 0 14 

II. ANALYSES OF PRIMfiVE ELEMENTS ......... oo........... 18 

Analysis of a Free Web Span oooooo······oooooo···oo•••oooo•···· 18 
Effect of Slippage between a Web and a Roller .. .. .. .... 27 
Analysis of a Roller oooooooooo•••oooooo·····•oooooo•····oooooo...... 43 
Effect of Web Cross-Sectional Area Change 

on Change in Tension ... 00 00 00 ••••• 00 •• 00 00.00 •••••• 00 •••••• 00 00. 44 
Effect of Temperature Change on Change in Tension . 52 
Effect of Moisture Change on Change in Tension 0...... 56 
Effect of Viscoelastic Properties on Change in Tension 59 

III. ANALYSIS OF A MULTI-SPAN SYSTEM 
WITH A DANCER ..... oooooo····oo··oo········oo···········oooo··········· 69 

Derivation of a Unified Model for a Multi-Span 
System ... 0 00 0 00. oo· ... 0 00.000 0 •••••• 0 00 0 00 •••••• 0 0 0000 •••••• 000 00 0..... 69 

Analysis of a Multi-Span System Incorporating 
a Dancer Subsystem for Tension Measurement 00 .... 00. 77 

Analysis of a Multi~Span System Incorporating 
a Dancer Subsystem for Minimizing Disturbances 0 0 0 0 81 

IV 



Chapter Page 

IV. ANALYTICAL AND EXPERIMENTAL STUDY OF 
MULTI-SPAN SYSTEMS ............................................... 91 

T~~~:~fer>in a Multi-Span System .................. 91 
Open-Loop Draw Control in Multi-Span Systems ....... 93 
Master Speed Control in Multi-Span Systems ............. 95 
Analytical and Experimental Studies .. . . . . . . . . . . . . . . . . . . . . . . . 99 

V. A COMPUTER-BASED ANALYSIS PROGRAM FOR 
WEB TRANSPORT SYSTEMS (WTS) ............................ 122 

Objective of WTS . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . 122 
Essential Features of WTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
Algorithm Used in WTS ............................... .'..... .. ... 127 
Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 

VI. TENSION CONTROL IN SINGLE-SPAN 
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . 153 

Tension Control in a Single-Span System . . . . . . . . . . . .. . . . . 153 
Tension Control in a Winding Section . . . . . . . . . . . . . . . . . . . . . . . 161 

VII. TENSION CONTROL IN MULTI-SPAN SYSTEMS ......... 171 

Open-Loop Draw Control . . ... . . .. . .. . . .. . .. . . . .. . . . . .. . . . . . . . . . . 172 
Progressive Set-Point Coordination Control ......... ...... 172 
Closed-Loop Control . .. . ... ... . .. . . ... ... . . .. .. . .. . . .. . .. . . .. . .. . . . 173 
Closed-Loop Control Using an Auxiliary 

Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 
Stability of Overall System . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . 191 
Distributed Tension Control System . . . . . . . . . . . . . . . . . . . . . . . . . . 200 
An Example . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . .. . .. . . . . . . 203 

VIII. SUMMARY AND CONCLUSIONS .................................. 214 

Contributions of Most Significance ........................... 217 
Suggestions for Further Study .................................. 219 

v 



Chapter Page 

BffiLIOGRAPHY 222 

APPENDIX A - FORCE BALANCE EQUATION .. . . .. .. ... . .. . . ...... 232 

APPENDIX B- FORCE -VELOCITY RELATION 

APPENDIX C - STRAIN IN A UNIFIED MODEL 

APPENDIX D- NATURAL FREQUENCY OF A SUBSYSTEM 
COMPRISING A DANCER ROLL SEPARATING 

236 

238 

TWO FREE SPANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 

APPENDIX E - TENSION VARIATION IN A WEB SPAN WITH 
NON-UNIFORM THICKNESS ACROSS ITS 
WIDTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 

VI 



LIST OFT ABLES 

Table Page 

1. Parameter Values and System Conditions for Simulation 
in Section 1.3 . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

2. Parameter Values and System Conditions for Simulation 
in Section 2.2 . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . .. . . . . . . . . .. . . . 35 

3. Parameter Values and System Conditions for Simulation 
in Section 2.4 . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . .. . . . 49 

4. Parameter Values and System Conditions for Simulation 
in Section 3.3 . ..... .. . . .. . ...... ... . .. . .. . . ... .. .. .. ... . .. . . .. . .. ... ... 82 

5. System Data Used for Simulation and Experiment ........... 109 

6. Four Types of Systems ................................................ 130 

7. Specifications for a Closed-Loop Control System ........... 159 

Vll 



LIST OF FIGURES 

Figure Page 

1. Slitting and Electrical Treating of a Polypropylene 
Web with Tension Control . . . . . . . .. . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . 2 

2. A Multi-Span Web Transport System with Several Consecutive 
Processing Sections . . . . . . . .. .. .. .. .. . .. . .. . .. .. .. .. . . . .. . . . . .. .. .. . .. . . . 4 

3. A Two-Span Web Transport System ................................. 9 

4. Tension Variation: T 3 • .. . .. .. • • .. • • .. • • • • . .. • .. .. .. .. • • • • • • • • • • .. • .. • .. • • • 12 

5. Some Primitive Elements . . . . . . . .. . .. .. . .. . . .. . .. . . . . .. .. .. .. .. .. . . . . . . .. 19 

6. A Free Web Span .. ............ ......................... ............. .. . ..... 20 

7. An Infinitesimal Element out of a Web Span ...................... 23 

8.a. Concept of Slippage within the Region of Wrap 28 

8.b. Forces and Velocities When Slippage Occurs Throughout 
the Region of Wrap .. . . .. .... .... . .. .. .. . .. . .. .... . . . . . . . . . .. . . . . .. . .. .. 30 

9. One Model of Friction between a Web and a Roller ............ 31 

10. A Single-Span System . .. . .. . .. . . .. ... . .... .. .... . ..... . . .. .... .... .. . .. .. . 33 

11. A Single-Span System: Example 1-A . . ..... .... .. . . . .. . . .. ... . ... . . . 36 

12. Response of~ to a Step Change in w2 for Different% Slip 38 

13. Response of t2 to a Step Change in w2 for Different 
Wrap Angles . . .. . .. . .. . . .. ... ..... .. ... . . . . . ..... . .... .. . .. . .. . . .. . .. . .. . . . 39 

Vlll 



Figure Page 

14. A Two-Span System 40 

15. Responses of t2 and t3 to a Step Change in w2 for the 
Two-Span System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

16. Responses of t2 and t3 to a Step Change in w3 for the 
Two-Span System ....................................................... . 42 

17. A Mass Element out of a Web Span in the Unstretched 
and Stretched Conditions ............................................ .. 45 

18. A Two-Span Web Transport System ................................ . 48 

19. Effect of Web Cross-sectional Area Change on Dynamic 
T . v . t' ens1on ar1a 1on ...................................................... . 51 

20. Temperature Effect on Young's Modulus for Polypropylene 56 

21. A Free Web Span Subject to Motion (Elongation) ............. . 60 

22. Models of Linear Viscoelasticity: (a) Maxwell, (b) Voigt, (c) 
Standard Linear Model ............................................... . 62 

23. Relaxation Functions of (a) Maxwell, (b) Voigt, (c) Standard 
Linear Model ............................................................. . 64 

24. Measured Results of Relaxation of Newsprint .................. .. 68 

25. Stress Relaxation of Crystalline Polypropylene (Extended 
5 %/min. to a Total Strain of 0.5 % on Instron Tester) [20] 68 

26. Some Subsystems ........................................................... . 70 

27. A Multi-Span System Which Includes a Dancer Subsystem .. 71 

28. Performance of the Dancer as a Tension Measurement System 
for ffit = 10 rad/sec and COr= 60 rad/sec ....................... .. 83 

29. Performance of the Dancer as a Tension Measurement System 
for ffit = 20 rad/sec and COr= 20 rad/sec ....................... .. 84 

IX 



Figure Page 

30. Performance of the Dancer as a Tension Measurement System 
for COt = 100 rad/sec and COr= 100 rad/sec ................. .... 85 

31. A Multi-Span Unwinding System Which Includes a Dancer 
Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

32. Tension Variation in a Web Span without a Dancer ............ 88 

33. Performance of the Dancer as a Disturbance Minimizing 
System for COt = 2 rad/sec and COr = 60 rad/sec . . . . . . . . . . . . . . . 89 

34. Performance of the Dancer as a Disturbance Minimizing 
System for co1 = 1 rad/sec and COr = 100 rad/sec . .. . . . . ....... 90 

35. A Two-Span Web Transport System in Section 4.1 92 

36. Master Speed Control: Example 1 97 

37. Master Speed Control: Example 2 98 

38. Polypropylene Processing Line .. . .. . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 99 

39. Block Diagram of Progressive Set-Point Coordination Scheme 
in Open-Loop Speed Control Mode ............................... 101 

40. An Input Used in Control System ..................................... 103 

41. Two-Span System (Processing Sections 1 and 2 from 
Figure 39) . . . . . .. . . . . . . . . . . . . .. . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . 105 

42. Two-Span System: without Set-Point Coordination Scheme 107 

43. Two-Span System: with Set-Point Coordination Scheme ..... 108 

44. Velocity Input Used for Simulation and Experiment 110 

45. Output Tensions from Simulation: without Slippage 
between the Web and the Vacuum Roller . . . . . .. . . . . . . . . . . .. . . . . 111 

46. One-Span System . . . . . .. .. . . . .. . .. . . .. . . . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . 112 

X 



Figure 

47. Tension ~ from Simulation: without Slippage 
between the Web and the Vacuum Roller 

48. Tension~ from Simulation: with Slippage 
between the Web and the Vacuum Roller 

Page 

114 

115 

49. Experimental Set up for Tension Measurement .. .. .. .... .. .. .. .. 117 

50. Output Tension t1 from Experiment: Case 1 118 

51. Output Tension ~ from Experiment: Case 1 119 

52. Output Tension~ from Experiment: Case 2 120 

53. Main Menu ofWTS 124 

54. Sub Menu ofWTS 125 

55. A Data Entry Screen for WTS: with Default Values ........... 126 

56. Flow Chart for WTS ....................................................... 128 

57~ Four Basic Types of Web Transport Systems Used in WTS 131 

58. A Multi-Span Web Transport System in Section 5.3 ........... 132 

59. Unwinding - Rewinding System .. . .. .. .. . .. .. .. .. .. . . . .. .. . . .. .. .. .. .. . 137 

60. Sketch of Unwinding - Rewinding System 138 

61-1.2.3.Data Sheet for Analysis ................................................ 139 

61-4.5. Data Sheet for Analysis: Continued 140 

61-6. Data Sheet for Analysis: Continued 141 

62. Main Menu of WTS :for Example ................................... 142 

63. General Data Entry Screen .. .. .. .. .. .. .. . .. .. .... .... . .. .. .. . .. . .. .. .. .. 143 

XI 



Figure Page 

64. Sub Menu of WTS: forExample 144 

65. Data Entry Screen for Unwinding Roll ............................. 145 

66. Data Entry Screen for Free Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

67. Data Entry Screen for Winding Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 

68. Graphical Presentation of Configured System 

69. Data Entry Screen for Steady - State Analysis 

148 

149 

70. Steady- State Analysis Results ......................................... 150 

71. Data Entry Screen for Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 151 

72. The Result of Dynamic Analysis 152 

73. Schematic Diagram of a Tension Control System 
for a Typical Single-Span System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 

74. Block Diagram of a Closed-Loop Tension Control System 
for the Single-Span System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 

75. Block Diagram for a Closed-Loop Tension Control System 
for the Single-Span System: with PID and with 
Feedforward Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

76. Performances of Closed-Loop Control System with PID 
Control : with and without Feedforward Control ............ 162 

77. Schematic Diagram of a Tension Control System for a 
Winding Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 

78. Tension Outputs for System with a Fixed-Gain PID Controller 167 

79. Schematic Diagram of an Adaptive Tension Control System 168 

80. Block Diagram for an Adaptive PID Control System .......... 168 

Xll 



Figure Page 

81. Tension Outputs for System with PID and 
Adaptive Controller ... :................................................. 170 

82. A Multi-Span Web Transport System ................................ 174 

83. Block Diagram for Closed-Loop Subsystems ..................... 182 

84. A Two-Span Web Transport System ................................. 184 

85. Tension Variation: with Auxiliary and Original Model ....... 189 

86. Differences between the Roller Velocities at the Ends of 
a Web Spab: with Auxiliary and Original Model .. .. .. .. .. .. 190 

87. Readjustment of Local Control .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 199 

88. Structure of Distributed Tension Control System .. .... ...... .. . 200 

89. A Flow Chart of the Distributed Tension Control Algorithm 202 

90. A Multi-Span System: for Example .... .. .. .. .. .. .... .... .... .. .. .. .. . 203 

91. Performance of Distributed Control: Draw Control 

92. Performance of Distributed Control: Draw Control 
with Progressive Set-Point Coordination Scheme 

206 

207 

93. Performance of Distributed Control: with Proposed Method 212 

94. Difference between the Roller Velocities at the Ends of a. 
Web Span: with Proposed Method ................................. 213 

95. Infinitesimal Element of Web in Region of Slip ................. 232 

96. A Model of Friction between a Web and a Roller with only 
Coulomb Friction . .. .. . . .. . . .. . .. . . .. . .. . .. . . .. . .. . .. . . .. . .. . . .. . .. . .. . . . 236 

97. Geometry of the System with a Vertical Displacement of 
the Dancer in Figure 27 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 239 

Xlll 



98. Free Body Diagram of the Dancer Roll: for Force Balance 240 

99. Geometry of the System with an Angular Displacement of the 
Dancer in Figure 27 .. .. .. .. . . .. . .. . . .. .. .. .. .. .. .. .. .. .. .. . . .. . .. . .. . . . 241 

100. Free Body Diagram of the Dancer Roll: for Torque Balance 242 

101. A Dancer Roll Separating Two Free Spans .. .. . .. .. .. . .. . .. .. .. . .. 246 

102. A Lumped-Parameter Model for the Subsystem Shown 
in Figure 101 .............................................................. 247 

103. A Free Web Span with Non-Uniform Thickness in CMD .... 250 

XIV 



A 

b 

c(t) 

NOMENCLATURE 

Cross-sectional area of web 

System matrix of the n-th open-loop auxiliary model 

Cross-sectional area of unstretched web 

Interconnection matrix of open-loop auxiliary model 

System matrix of the n-th closed-loop auxiliary model 

Interconnection matrix of closed-loop auxiliary model 

Constants 

Rotary friction constants of bearing 

Input matrix 

Viscosity 

Constants 

Output matrix 

Constants 

Creep function 

Width of web 

Modulus of elasticity 

XV 



Gn 

gn(t) 

~ 

Hi(t) 

~0 

I 

Relaxed elastic modulus 

Viscosity factor in web 

Steady-state error 

Feedback gain vector 

Effective normal force 

Temperature of web 

Initial temperature of web 

Effective frictional force 

Time dependent forcing function 

Elements in feedback gain F n vector 

Shear modulus 

Feedforward control gains 

Translation of web due to eccentricities of roller or roll 

Feedback control gains 

Moisture of web 

Initial moisture of web 

Thickness of web 

Unit matrix 

Polar moment of inertia of roll or roller 

XVI 



~ Derivative gain of PID controller 

K. 
1 

Integral gain of PID controller 

Kn Constants 

~ Proportional gain of PID controller 

Is: Constants 

k, ks, ksn Spring constant 

kJ.L J.l2cY'J.l 

k(t) Relaxation function 

L, L0 Length of web span 

Lm Length of roll or roller 

M A matrix 

m Mass of roll or roller 

mw Mass of the web per unit length 

p A diagonal matrix 

Q A matrix 

qnm Constants 

R, R0 Radius of roll or roller 

Rb Build-up ratio 

R, Rn Average radius of roll or roller 

Rcn Radius of core of roll 

xvn 



mn 
R 

s 

T 

t 

~0 

vnm 

Average radius of core of roll 

Real vector 

Real matrix 

Real root 

Laplace operator 

Tension (Chapter 2.7) 

Change in web tension from a steady-state operating value 

Reference tension in the n-th subsystem 

Time 

Steady-state operating value for tension 

Tension in web = t00 + T n 

Change in input to a subsystem from a steady-state 

operating value 
Difference between inputs to motor at the ends of the web 

span 

Reference input to a subsystem 

Change in web velocity from a steady-state operating 
value 

Difference between web velocities at the ends of a web 
span 

Velocity of web= Vno + vn 

Steady-state operating value for web velocity 

xvm 



V, Vn 

~n 

o(t) 

8(x) 

Average transport velocity of web 

Change in roller tangential velocity from a steady-state 
operating value 

Tangential velocity of roller = w nO + W n 

Steady-state operating value for roller tangential velocity 

State variables 

Initial values of xn 

Vertical displacement of a dancer 

Outputs 

State variable (angular displacement 9) 

State variable (angular velocity) 

Coefficient of expansion with temperature 

Absolute value of the real part of the eigenvalue of the 
mathematical model of the n-th closed-loop subsystem 

Coefficient of expansion with moisture 

Constants 

Phase angle by which the stress lags the strain due to the 
viscoelastic properties 

Constants 

Unit impulse function 

Kronecker delta function in section 3.6. 

Strain = Eno + E n 

Steady-state operating value of web strain 

XIX 



E m Change in hygroscopic strain 

E t Change in thermal strain 

E i Total change in web strain (Chapter 3) 

E r Change in elastic web strain (Chapter 3) 

Ef Change in thermal web strain (Chapter 3) 

E r Change in hygroscopic web strain (Chapter 3) 

E fct Change in elastic web strain due to the difference between 
web velocities at the ends of a web span. (Chapter 3) 

E rv Change in elastic web strain due to the vertical 
displacement of the dancer roll (Chapter 3) 

E fa Change in elastic web strain due to the angular 
displacement of the dancer roll (Chapter 3) 

J.L Friction coefficient between web and roller 

Jlo Static friction coefficient between web and roller 

J.lno Coulomb friction coefficient between web and roller 

v Poisson's ratio 

9 Angular displacement 

9a Angle for a region of adhesion within a wrap angle 

Ss Angle for a region of slip within a wrap angle 

9w Wrap angle of a web on a roller 

eT Temperature change from a steady-state operating point 

a Normal stress 

XX 



'Y Shear strain 

't Shear stress 

'te External torque applied to the roll 

'te Time of relaxation of load 

'ta Time of relaxation of strain 

ro Circular frequency 

ror Natural frequency associated with rotational inertia and 
effective elastic spring constant of the web entering and 
exiting the dancer roll 

ros Natural frequency associated with web transport system 
without the dancer 

rot Natural frequency associated with translational inertia and 
spring in the dancer 

~ A dummy variable 

~ Damping coefficient 

n Angular velocity 

'¥ Complex modulus of a viscoelastic material 

<l>n Transition matrix of the n-th subsystem 

Subscripts: 

c Reference 

d Disturbance 

0 Steady-state operating condition 

f Friction 

1, J, m, n, 0,1,2,3, ... 

XXI 



mo Moisture 

u Condition in unstretched web 

x,y ,z Cartesian coordinate 

Superscripts: 

e Elastic 

h Hygroscopic (Chapter 3) 

m Integer 

n Integer 

t Thermal (Chapter 3) 

xxn 



CHAPTER I 

INTRODUCTION 

Background 

The term "web" refers to any material in a continuous flexible strip 

form which is either endless or very long compared to its width, and very 

wide compared to its thickness. There are, however, a host of other terms 

for a web in common use, e.g., film, belt, foil, strip, thread, fabric, etc. 

Many types of material are most economically manufactured or 

processed in the form of a web, e.g., paper, plastic film, textiles, thin 

metals, etc. Figure 1 shows schematically a web processing line in an 

Oklahoma plant that involves slitting and electrical treating of a 

polypropylene web. A thick polypropylene web is formed upstream, and is 

stretched in the lateral direction (cross-machine direction, CMD) and 

longitudinal direction ( machine direction, MD) before it reaches the 

entering section shown in Figure 1. The web is slitted in half and trimmed 

at roller #4, and electrically treated at rollers #1 0, #11, and #11 A 

respectively. Rollers #1, #5, #10, #11A, and the mill rolls are driven by 

motors in order to control the velocity/torque of the rollers/rolls for the 

control of longitudinal tension in the various web spans. Rollers #2, #8, 
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ENTERING 
SECTION 

WEB 

#4 
(TRIMMING 

AND 
SLITTING) 

#7A 

#10 

(#1 TREATER) 

#2, #8, #9A, #16 and #18A are rollers 
equipped for tension measurement (load cell) 

Figure 1. Slitting and Electrical Treating of a Polypropylene Web 
with Tension Control 
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A multi-span web transport system (e.g., Figurel) consists of several 

types of mechanical components (e.g., rollers, rolls, measuring devices, 

driving motors, etc.) and web spans. The dynamic characteristics of the 

mechanical components and the physical properties of the web material 

affect the steady-state and dynamic behavior of the web in the longitudinal 

(MD) direction. Tension variations in the web in the longitudinal (MD) 

direction are common. Variations in the physical characteristics of the web 

material in the longitudinal direction (MD) and in the transverse direction 

(CMD), and the high sensitivity of the web material characteristics to 

environmental changes (e.g., temperature, moisture, etc.), make accurate 

control of tension in a moving web more difficult. The trend toward 

thinner webs of material being handled at higher speeds makes problems 

associated with tension variations more critical. 

3 

The web material may have to pass through several consecutive 

processing sections (e.g., cleaning, coating, drying, etc.) in the manufacture 

of an intermediate or final product. An example structure of a multi-span 

web transport system which has three different processing sections is 

shown schematically in Figure 2. Different web tension levels and 

accuracies may be required in the different processing sections. If severe 

tension variations occur, rupture of the material during processing or 

degradation of product quality may occur, resulting in significant economic 

losses due to machine damage and slowed production. Therefore, in order 

to minimize these losses, it is very important to monitor and control the 

tension 1 within the desired limit within each span. 

1. Unless stated otherwise throughout this thesis, the term "tension" refers to the 
longitudinal tension in a web span. 



CLEANING COATING DRYING 

Figure 2. A Multi-Span Web Transport System with Several 
Consecutive Processing Sections 

The advantages of accurate tension control within a moving web 

include [1]: 

(1) avoidance of wrinkles, slack regions, breakage, and lateral 

movement, especially with thin webs and low tension levels, 

(2) minimization of knitting together of two rolls wound from a slit 

web, 

· (3) elimination of air pockets under the web entering blade coaters, 

(4) maintenance of good web contact with dryer drums, 

(5) avoidance of slippage resulting from excess tension at pull rolls 

feeding a web cutter, 

(6) maintenance of proper hardness of wound-up rolls. 

There are two control schemes in general use: the centralized control 

scheme and the distributed (or decentralized) control scheme. In the 

centralized control scheme, all the information about the system model 

("off line" or priori information) and the system response ("on line" or 

measured/estimated information ) are used in the design of a control 

4 
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system. In the distributed control scheme, a subset of the information about 

the system model and the system response is used in the design of a control 

system. 

As the number of processing sections increases, the order of the 

overall system mathematical model increases rapidly. For the high order 

system with a structure which is a cascade of interconnected web spans, the 

distributed control scheme is easy to implement compared to the 

centralized control scheme [25][26]. In this study, the distributed control 

scheme will be adopted in the development of a design method of a tension 

control system for a multi -span web transport system. 

Previous Studies 

A thorough understanding of longitudinal dynamics, as well as the 

structure of the mathematical model of the system, are crucial to designing 

a distributed control system for the control of tension in a multi-span web 

transport system. 

There is quite an extensive literature concerning web tension control 

and mathematical models of web transport systems for tension control [ 1] -

[4], [35], [36], [54]-[59], [66], [67]. Brandenburg [2], Campbell [3], King 

[ 4], and Shelton [ 66] conducted fundamental background studies of the 

longitudinal dynamics of a moving web. Working early in the field, 

Campbell did not consider the tension of the web in the entering span when 

he developed his mathematical model for a web transport system. Thus, his 

model could not predict "tension transfer". In contrast, King, 



Brandenburg, and Shelton considered the tension of the web in the entering 

span when they developed mathematical models for web tension. 

Brandenburg and Shelton assumed that the strain in the web is very small, 

but, King did not. Campbell, King, and Shelton did not take into account 

"non-ideal effects" (e.g., changes in cross-s-ectional area, temperature, and 

moisture in the web; viscoelastic characteristics of the web; slippage 

between the web and rollers, etc.) on tension variations in the development 

of the mathematical models. Brandenburg considered the effects of area­

change resulting from strain change, the effect of temperature change, and 

the effect of register error on strain change. 

6 

Literature concerning the control of web tension includes [5], [26], 

[37], [59] - [61], [66]. The most relevant study related to tension control in 

a multi-span web transport system was reported by W. Wolfermann and D. 

Schroder [5] in 1987. In their technique, optimal output feedback was 

applied to control the speed of driven rollers in a multi-span system. A 

decentral observer which is able to decouple the drives from the web 

forces was designed. This observer reconstructs the web forces acting on 

the driven rollers. The reconstructed web forces are used to improve the 

speed control of the driven rollers. This method leads to considerable 

improvement in the speed responses of the driven rollers in multi-span web 
. . 

transport systems [5]. However, Wolfermann and Schroder used the desired 

"speeds of the driven rollers" rather than the desired "tensions" in the web 

spans for reference inputs in their control system. That is, the web tensions 

were controlled in open loop by the relation of the speeds of the driven 

rollers. This control method cannot reject disturbances due to "tension 

transfer" from adjacent web spans and due to interactions between adjacent 
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web spans through an intermediate driven roller. 

Studies related to the stabilization of an overall distributed closed­

loop control system were conducted by various researchers including M. 

Aoki [6], S. H. Wang and E. J. Davision [7], D. D. Siljak and M. B. 

Vukcevic [8], B.S. Chen and H. C. Lu [9], and M. E. Sezer and 0. Huseyn 

[10]. In each study, local constant or dynamic output feedback or state 

feedback was used to stabilize a certain class of interconnected systems. 

This class of interconnected systems has a particular structure in a manner 

of interconnections of subsystems and providing inputs to subsystems. But 

the structure of interconnections in web transport systems is different from 

those classes of problems studied by [6], [7], [8], [9], [10], and these 

previous methods do not apply. 

In summary, a review of the literature cited above revealed that: 

(1) Mathematical models are needed for certain primitive elements 

and subsystems found in web transport systems which describe the effects 

of moisture, viscoelastic properties of web materials, slippage between the 

web and the roller etc. on tension variation. The availability of these 

models facilitates the design of a distributed system for tension control in 

multi-span systems. 

(2) The fundamental behavior of the web in the multi-span system 

(e.g., tension transfer, interaction between adjacent web spans) was not 

considered in the design of distributed control systems [5]. 

(3) No study on the stability of an overall web transport system with 

closed-loop control has been reported. 
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The Tension Control Problem 

An important control problem in a multi-span web transport system is 

maintaining the precise longitudinal tension level required in each 

processing section, and at same time stabilizing the overall web handling 

system. Two primary techniques are commonly used in web processing 

industries for tension control; they are either open-loop "draw control" or 

closed-loop tension control based on a "progressive set-point coordination" 

scheme. 

In the "draw control" scheme, tension in a web span is controlled in 

an open-loop fashion by controlling the velocities of rollers at either end of 

a free web span. Tension variation is very sensitive to the velocity 

difference between the ends of the web span. For example, a velocity 

difference of 0.1 %of the nominal velocity for a Polypropylene web 

(Young's modulus= 350,000 lbs/in2, thickness = 0.001 inch, width = 120 

inch) results in a tension variation of 42 lbs. Indeed, control of web tension 

using the draw control requires extremely accurate control of the velocities 

of the driven rollers, a requirement which may be very difficult or 

expensive. Also, it will be shown in a later section that when open-loop 

draw control is used, a disturbance from the adjacent web spans cannot be 

rejected. 

In order to illustrate the difficulties of open-loop draw control of 

tension in a multi-span web transport system, consider the two-span system 

shown in Figure 3 below. By assuming no slip between the web and the 

rollers, a linearized mathematical mode,l for the tension T 2 and T 3 can be 



written as shown in equations (1) and (2) (see Chapter 2 for a detailed 

derivation). 

Figure 3. A Two-Span Web Transport System 

All variables shown in Figure 3 are changes from the initial steady-state 

operating conditions. That is, 

where 

and 

~ : Web tension, V 0 : Web velocity 

~0 : Steady-state operating value for web tension 

v00 : Steady-state operating value for web velocity 

9 

T n : Change in web tension from a steady-state operating vaJue 

V n : Change in web velocity from a steady-state operating value. 
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(1) 

(2) 

In equation (1), the tension change T2 is function ofT1, V1, V2• That is, a 

change in the tension in the entering span (e.g., T1 in Figure 3) affects the 

tension in the following span (e.g., T 2 in Figure 3). This behavior is called 

"tension transfer". No matter how accurately the velocities of the rollers 

can be controlled, open-loop draw control cannot provide accurate control 

of tension in a span because of "tension transfer" from the upstream span to 

the downstream span. 

A numerical example will illustrate the effect of tension transfer in 

open-loop draw control. Consider the simple two-span web transport 

system shown in Figure 3. The tangential velocities of the rollers (V n• n= 

1, 2, 3) are assumed to be controlled. Suppose the control purpose is to 

maintain t3 at a certain tension level lower than the initial operating tension 

(t30) by providing the velocity difference, (V 3 - V 2) = - 0.06 ft/min. With 

V 1 = V 3 = 0, equations (1) and (2) were solved with V 2 = 0.06 ft/min as a 

step input to the second roller in Figure 3. The operating conditions and 

parameter values in Table 1 were used for computer simulation. Computer 

simulation results are shown in Figure 4. The tension t3 could not be 

maintained at a certain level below the initial operating tension even though 

the negative velocity difference ( V 3 - V 2 = - 0.06 ft/min) was provided. T 3 

returned to zero due to the tension transfer from the entering span. 



TABLE 1 

PARAMETER VALUES AND SYSTEM CONDffiONS 
FOR SIMULATION IN SECTION 1.3 

System Conditions 

T 0 (0-) = 0.0 (lbf), n = 1 , ... ,4 

V 0 (0-)= 0.0 (ft/sec), n = 0, ... ,4 

Parameter Values 

A = 0.12 (in2) 

E = 350,000 (lbf/in2) 

10 = 94.0 (lbf in sec2), n=0, ... ,4 

L0 = 120 (in), n=1, ... ,2 

Vno = 1,000 (ft/min), n=0, ... ,3 

11 
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5 

In a multi-span web transport system, driven rollers are 

interconnected through a continuous web span. Interaction occurs between 

adjacent web spans. Equations (1) and (2) indicate that a velocity change in 

a particular driven roller (say V 2 in Figure 3) changes not only the tension 

in the upstream span (T2 in Figure 3) but also the tension in the 

downstream span (T 3) with respect to that roller. In order to compensate 

for the unwanted tension change (T 3) in the downstream span, "progressive 

set point coordination" control scheme is commonly used. For example, 



once an input is provided to an upstream driven roller, an input of the 

same magnitude is automatically provided to each of the driven rollers 

which follow downstream. 
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The progressive set-point coordination control scheme is effective for 

the start-up or shut-down of a system. But this is not a desirable scheme for 

a normal operation since it forces tensions in the downstream web spans to 

be automatically changed when the tension only in the upstream web span 

needs to be changed. That is, it is impossible to control the tension in each 

web span independently in a multi-span web transport system using 

progressive set-point coordination. 

Following conclusions were drawn from the study. 

( 1) A disturbance in an upstream span is propagated into the 

downstream span; i.e., tension is transferred. Open-loop draw control may 

not be sufficient in a multi-span system, even with extremely accurate 

control of the tangential velocities of the rollers, because of tension 

transfer. 

(2) futeraction occurs between adjacent web spans. It is impossible to 

control the tension in each web span independently in a multi-span web 

transport system using progressive set-point coordination. 

Objectives 

The objectives of this study were: 

(1) to develop models for the "primitive elements" and "subsystems" 



that occur in multi-span web transport systems, 

(2) to develop a control algorithm that allows precise control of 

tension in multi-span web transport systems, and 

(3) to develop a computer-based analysis and design program for 

multi-span web transport systems (WTS). 

Principal Results 

This thesis concerns itself with aspects of the longitudinal dynamic 

behavior of a straight moving web between parallel cylindrical 

rollers/rolls. 

14 

The concept of a "primitive element" and a "subsystem" was 

introduced to facilitate the modeling and the analysis of web transport 

systems. Steady-state and dynamic models for important primitive elements 

or combinations of primitive elements (subsystems) were also developed. 

The· derivation of open-loop mathematical models for longitudinal 

dynamics and the analysis of non-ideal effects on tension variation were 

carried out. Fundamental analyses of interactions between adjacent web 

spans and between the web and mechanical components were emphasized, 

so that these analysis results can be used in the design of closed-loop 

control systems for multi-span web transport systems. Various non-ideal 

effects (e.g., temperature change, moisture change, viscoelastic properties 

of the web material) on tension variation and the effect of slippage between 

the web and rollers on tension variation were investigated. Results 

indicated that the effect of temperature change on tension variation is 



15 

significant in plastic film and the effect of moisture change is significant in 

paper. The effects of the viscoelastic properties of the web material on 

tension variation were shown to be relatively insignificant if the duration 

time of the web in a processing section is very short (a few seconds). The 

effect of slippage between the web and the roller on tension variation was 

found to be significant. 

The mathematical model for a free span was validated through 

experiments on a production system in an Oklahoma plant. The significant 

effects of slippage between the web and the roller and the effect of 

temperature on tension variation in plastic film were also confirmed 

through experimentation. "Tension transfer" in a multi -span system was 

confirmed through simulation of the derived mathematical model and 

through experiments. 

The derivation of a "unified" open-loop dynamic model for an 

important sub-system which includes a dancer is also a significant result. It 

was assumed that there is no slippage between the web and the dancer roll. 

This model includes the combined effects of slippage, temperature 

variation, and moisture variation. Using the model, a dancer subsystem was 

evaluated as a tension measuring system and as a disturbance minimizing 

system. Typical web material (Polypropylene) characteristics and typical 

web transport system operating conditions were used for the evaluation. 

Conclusions from the evaluation are as follows: 

(a) When the dancer is to be used for tension measurement, the dancer 

should be designed such that: 
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where 

ror is the natural frequency associated with the rotational inertia 

of the dancer roll and the effective elastic spring constant of 

the web entering and exiting the dancer roll, 

ro8 is the natural frequency of the web transport system without 

the dancer, 

ro1 is the natural frequency associated with the translational inertia 

of the dancer roll and the dancer system spring. 

(b) When the dancer is to be used for minimizing the effects of 

disturbances, the dancer should be designed such that: 

where 

Wct is the frequency of the disturbance. 

The most significant contribution of this thesis was the development 

of a method for the design of a distributed tension control system for a 

multi-span web transport system (see Chapter VII). It was demonstrated 

that the asymptotic stability of an overall closed-loop distributed control 

system depends on the gains of the local controllers, the magnitude of the 

local inputs, and the degree of interconnections between subsystems. In 

multi-span web transport systems, a disturbance in an upstream is 

propagated into the downstream span (i.e., tension is transferred), and 



interactions occur between adjacent web spans. The distributed control 

system designed by using the method developed in this study can reject 

disturbances due to the tension transfer and interactions of web spans. 

17 

In a production plant, the tension in a given web span often is 

controlled by using a fixed-gain PID controller. Such a controller fails 

when the system has. time-varying parameters, and when certain types of 

disturbances are present. It was demonstrated that a variable-gain PID 

controller would produce an "optimum" solution for a system with time­

varying parameters (i.e., a winding roll with increasing radius). Further it 

was demonstrated that feedforward control could reject some types of 

disturbances and improve the dynamic performance of the closed-loop 

control system. 

This thesis is also concerned with the development of a computer­

based program for the analysis and design of a web transport system 

(WTS). The functions of WTS include (1) automatic assembly of primitive 

elements into a web transport system (configuration of the system), (2) 

automatic generation of the mathematical model for the configured system, 

(3) steady-state analysis, and (4) dynamic analysis of the configured 

(assembled) system. 



CHAPTER II 

ANALYSES OF PRIMITIVE ELEMENTS 

To facilitate the modeling and analysis of web transport systems, the 

concept of a "primitive element" was established. Examples of primitive 

elements are a free web span, various types of rollers and rolls, a web 

interacting with roller, etc., as shown in Figure 5. A web transport system 

can be thought of as a combination of primitive elements. 

In this chapter, mathematical models will be derived for a free web 

span, a roller, and a web interacting with a roller. Then, non-ideal effects 

(change in cross-sectional area, temperature, and moisture of the web; 

viscoelastic properties of the web; slippage between the web and a roller) 

on tension variation will be investigated by using the mathematical models 

developed. 

Analysis of a Free Web Span 

Strain -Web Velocity Relationship 

The free web span shown in Figure 6 is the most fundamental 

primitive element found in web processing systems. This element is 

18 
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Figure 5. Some Primitive Elements 
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Figure 6. A Free Web Span 
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terminated by a roller(s) (or roll) at each end of the span. A mathematical 

model for the longitudinal dynamic behavior of a free web span is 

developed in this section. The web is assumed to be a continuum. Other 

assumptions are as follows: 

( 1) The length of contact region between the web material and a 

roller is negligible compared to the length of free web span 

between the rollers (i.e., the strain variations in the contact 

region are negligible), 

(2) The thickness of the web is very small compared with the radius 

of rollers over which the web is wrapped, 

(3) There is no slippage between the web material and the rollers, 

( 4) There is no mass transfer between the web material and the 

environment (i.e., no humidification or evaporation), 

(5) The strain in the web is small (much less than unity), 

( 6) The strain is Ul}if~,~ithi!!Jh~~-span, 

(7) The web cross-section in the unstretched state does not vary 

along the web, 

(8) The density and the modulus of elasticity of the web in the 

unstretched state are constant over the cross-section, 

(9) The web is perfectly elastic, 

(1 0) The web material is isotropic, so that (MD) stress prevails. That 

IS, 

ax '¢ 0, ay = az = 0 ' 

(11) The web properties do not change with temperature or 

humidity. 



Under assumption (1), a control volume can be drawn as shown in 

Figure 6. Under the assumption (4), the law of conservation of mass for 

the control volume shown in the Figure 6 can be written as follows: 

;i7 [f' p(x,t)A(x,t)dx J = p 1 (t)A 1 (t)v 1 ( t) - P2(t )A2(t)v2( t ). (3) 
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Considerable mathematical. simplification can be achieved if the mass 

terms (e.g., p(x,t)A(x,t)dx) in equation (3) can be described in the 

unstretched web condition. The web is considered to be unstretched when it 

is free from external forces. From the definition of strain, the relationship 

between the stretched length and unstretched length of the element shown 

in Figure 7 can be written as follows: 

dx = (1 +ex) dxu, ' (4) 

d = (1 +ey) du, (5) 

(6) 

where the subscript u indicates the unstretched state of the web. 

In the infinitesimal element shown in Figure 7, the mass of the 

infinitesimal element is constant. Thus, the following relationship can be 

written. 



z 

y 

Figure 7. An Infinitesimal Element out of 
a Web Span 

dm = p (j ll dx = Pu du hu dxu . 

Combining equations (4) and (7) gives 

P d h = dxu = dxu = 1 
Puduhu dx (1 + cx)dxu 1 + ex 

or since d X h = A and du X hu = Au, 

p(x,t) A(x,t) 

Pu(x,t) Au(x,t) 
= 1 

1 + cx(x,t) 
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(7) 

(8) 

(9) 



With assumption (10), the subscript x in the strain I, ex,which means x­

coordinate will be dropped for simplicity from this point on. Combining 

equations (3) and (9) gives 
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_d_ [fx2 
pu(x,t) Au(x,t) dx] Plu(x,t) Alu(x,t) v1(t) _ P2u(x,t) A2u(x,t) v2(t) 

dt Xl 1 + §!_x,t) 1 + e1 (x,t) 1 + e2(x,t) 

(10) 

Under assumptions (7), (8), and (11), equation (10) can be written as 

Pu Au _d_ 1 dx 
[ 

1 l 
dt f. 1 + e2(x,t) 

Pu Au VI(t) _ Pu Au V2(t). (11) 
1+ e1(x,t) 1+ e2(x,t) 

or 

With assumption (6), equation (12) can be written as 

L_d_[ 1 ] VI(t) 
dt 1 + e2(t) 1 + e1(t) 

By using assumption (5), i.e. for small e: 

1 = 1 -e. 
1+e 

(13) 

(14) 

1. Unless stated otherwise throughout this thesis, the term "strain" refers to the 

longitudinal strain (x-coordinate in Figure 6) in a web span. 
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Considerable mathematical simplification; can be obtained by using equation 

(14) in equation (13) as follows: 

L _d_ [1 - £2(t)] = [1 - Et(t)] Vt(t)- [1 - £2(t)] V2(t). (15) 
dt . 

Rearranging equation (15) gives 

The mathematical model represented by equation (16) is nonlinear. 

The nonlinear equation can be linearized by using the perturbation method. 

Let E = e - eo and V = v - vo. (17) 

Equation (16) must be satisfied at the initial steady-state operating 

condition, i.e., 

0 = -VIO + V20 + £10 VIO - £20 V20· (18) 

The following linearized model results from applying equations (17) and 

(18) with equation (16), and dropping second order terms: 

Ji [E2(t)] =- v20E2(t) + vwE t(t)- [1 - ew] V1(t) + [1 - e2o] V2(t). 
dt L L L L 

(19) 
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Since£ 10 << 1 and, £20 << 1, equation (19) can be written as: 

Jl [e 2(t)] =-~ 2(t) + V10e 1(t)- V 1(t) + V2(t). (20) 
dt L L L L 

Equation (20) represents a linearized dynamic relationship between the 

changes in the web strain within the control volume, e 2(t), and the changes 

in the velocities at the ends of the web span, V 1 (t) and V 2(t). 

Tension - Web Velocity Relationship 

With assumptions (5) through (11), the force-deformation relations 

(Hooke's law) can be written as [14]: 

T1 = AEe 1 and T2 = AEe2, (21) 

where A and E are constants, and T 1 and T 2 are changes in tension from an 

initial steady-state operating value. 

Combining equations (20) and (21) gives: 

Equation (22) is the linearized dynamic model for the free web span. 
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Effect of Slippage between a Web and a Roller 

A web is transported by virtue of the traction between the web and 

driven rollers. When there is enough traction between the web and a driven 

roller or idler, such that there is no slippage, the velocity of the web at the 

point of contact with the roller and the tangential velocity of the roller are 

identical. But, when there is slippage, the velocity of web and the tangential 

velocity of the roller are generally not equal. 

Concept of Slippage within the Region of Wrap 
'51' ?.>'- ~}1)1<\IJ.\,.Ih-<' 

,. ·.· '• ,':,;_.J';\1, . ~~ ',._,,, . ·" "t-
· .• A tJ.·.,rc.•'· 1,1 J<\)o·\1' ''l'}'.~":sJ' (0 rf~oj-.>6• 
d.·,.- "'tf'."· . · ·I .. 

"\ o"'"~'' ,, ~ . 

<;t.i! Consider the region of wrap on a roller as shown in Figure 8.a. If a 

web has the region (9w) of wrap on a roller, a r~ion (Sa) of adhesion is . 

ormally f~rmed at the !>~~i.~&..Qa!1 of the region of wrap; this is ~~· ~b ~0:~1\vg 
followed by a region(98) of sliding or slipping [2]. The tension is consta$ ~.; 't 
throughout the region of adhesion, and the web velocity is equal to the \:1~ f '"'c"t~ 

SQ. e.. W\11~"" ' 
• • • • ', ')l'; ?~ 'l) 

tangential velocity of the surface of the roller. In the region of slip, the L~~ 

tension varies in the transport direction, and the web velocity differs from 

the tangential velocity of the surface of the roller. Slip (creep) occurs in 

this region until the tension of the entering span gradually change to the 

tension of the exiting span. 

It can be shown that in the limit as the region of adhesion approaches 

zero [2], 
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Figure 8.a. Concept of Slippage within the Region of Wrap 

[!3_] = e± f.l.Sw, 

t2 max 

where 

+ :t3>t2 

- : t3 < t2 

Jl : Friction coefficient. 

(23) 
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At this limiting value of tension ratio, the web adheres only at one point at 

the beginning part in the region of wrap on the roller. A further increase 

in the tension ratio will make the web slip throughout the region of wrap 

on the roller. 

Relation between the Velocity of a Web and the Tangential Velocity of a 
Roller 

When the web slips throughout the region of wrap, the forces and 

velocities are as shown in the free body diagram of Figure 8.b. Using the 

free body diagram for the web, the force balance equations in the region of 

wrap lead to the following relations: 

(24) 

(25)1 

Factors affecting the traction between the web and the rollers include 

web velocity, web tension, wrap angle, roller diameter, web width, web 

porosity, web moisture, web thickness, etc. [54][55]. But the mechanism of 

traction between a web and a roller is not well understood and is beyond 

the scope of this study. One possible model of traction between a web and a 

roller combines stiction, Coulomb friction, and viscous friction as shown in 

Figure 92. 

1. 

2 
See Appendix A for derivation 

See Appendix B for case with Coulomb friction only 
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Ff2 - Effective frictional force v0 -Web velocity 
F02 - Effective normal force ~ -Web tension 
w2 - Tangential velocity of roller 
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Figure 8.b. Forces and Velocities When Slippage 
Occurs Throughout the Region of Wrap 
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Velocity Difference 
- Ff20 ( w2 - v 2 ) 

Figure 9. One Model of Friction between a Web 
and a Roller 

The model of friction shown in Figure 9 can be expressed as: 

rc, rr: 
(«) )]") ;f) 
~ I I 

Ff2 = Ff2o sign(w2- v2) + d2(w2- v2) +Fro 8(w2- v2), (26) 

where 

: Slope of friction characteristics 

Ff2o = ~20 Fn2 : Coulomb frictional force 

Fro= ~o Fn2 : Stiction force 

1 for w2 - v2 > 0 

0 

-1 

for w2- v2 = 0 

for w2- v2 < 0 
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li(wz - vz) = I 1 

0 

0 

for w2- v2 = 0 

for w2 - v2 > 0 · 

for w2- v2 < 0 
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Combining equations (24 ), (25), and (26) gives the following relation 

between the velocity of the web and the tangential velocity of the roller: 

v2 = w2- l[1- k~(l- e-~ 9w) - !1] t2, 
C2 12 

(27) 

for t2 > t3 and w 2 > v 2 

where 

k .. = J..l20 ,... Jl . 

Analysis of a Single-Span System with Slippage Between the Web and a 
Roller 

Consider the single-span system shown in Figure 10. It is assumed 

that there is slippage between the web and the downstream roller, i.e.: 

(28) 

Equation (16) describes the longitudinal dynamics of the free span. The 

force -deformation relations can be written as: 

(29) 
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-----------------------· 
Control Volume 

L 
I 

-----------------------· 

Figure 10. A Single-Span System 

(30) 

From equation (27), the slip relation for the case when v2 -::1= w2 and ~ > t3 

IS: 

(31) 

Equations (16) and (28) through (31) describe the dynamic behavior of the 

single-span system in Figure 10 with slippage between the web and 

downstream roller. When there is slippage between the web and the 

downstream roller, the tension t2 is function of t1, t3, w1, and w2. That is, 
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the tension not only is transferred from an upstream span to a downstream 

span, but also from a downstream span to an upstream span when there is 

slippage between the web and the downstream roller. 

Equations (16), (29), and (30) describe the dynamic behavior of the 

single-span system without slippage between the web and the downstream · 

roller (i.e., if v2 = w2 ). When there is no slippage between the web and the 

downstream roller, the tension t2 is function of t1, w1, and w2. That is, the 

tension is only transferred from an upstream span to a downstream span. 

Numerical Examples 

Several examples were solved to illustrate the effect of slippage in 

single-span and two-span systems. 

Example 1-A: Effect of% Slip on Web Tension in a Single-Span System 

The % slip is defined as: 

01 1. tangential velocity of roller - web velocity x 100 -;o S 1p = . 
web velocity 

(32) 

Consider the single-span system shown in Figure 11. It is assumed 

that there is slippage only at the downstream roller; that is, v 1 = w 1 and v 2 

-::~; w2. The dynamic behavior of the system can be described by equations 
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(16), and (28) through (31). The response of tz to a step change in w2 for 

different values of % slip is shown in Figure 12. Parameter values and 

system conditions for simulation are given in Table 2. 

When there is slippage between the web and the downstream 

TABLE2 

PARAMETER VALUES AND SYSTEM CONDITIONS 
FOR SIMULATION IN SECTION 2.2 

Parameter Values 

E = 350,000 lbf/in2, c2 = 2300 lbf-sec/ft, 

L =10ft d = 120 in 

)l = 0.1 h = 0.001 in 

).120 = 0.033 ew = 3.14 rad 

System Conditions 

tl = 42.0 lbf vl = wl = 1000 ft/min 

t2(0-) = 42.0 lbf W2(0-) = 1001 ft/min 

t3(0-) = 42.0 lbf W2(0+) = 1002 ft/min 
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Figure 11. A Single-Span System: Example 1-A 

roller and the tangential velocity of the roller w2 is greater than the web 

velocity v2, a change in the tangential velocity of the downstream roller 

produces a smaller change in the tension ~ than would occur with no­

slippage. 

Example 1-B :Effect of Wrap Angle on Tension~ in the Single-Span 

System 

Figure 13 shows the response of ~ to a step change in w 2 for the same 

system as that of example 1-A but with different wrap angles. Parameter 

values and system conditions for simulation are given in Table 2. The 

example was solved forthe ratio ti~ = 0.9. As the wrap angle gets 

smaller, the % slip between the web and the downstream roller increases 

(see equation (32)). And thus, a change in the tangential velocity of the 

roller produces a smaller change in the tension ~ as the wrap angle gets 

smaller. 
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Example 2-A : Effect of Slippa~e on Web Tension in a Two-Span System 

with Step Input at w2 

Consider a two-span system as shown in Figure 14. It is assumed that 

there is slippage at roller 2. The two-span system shown in Figure 14 can be 

described by equations (34) through (38) as follows: 

L Jl[e2(t)] =- Vt(t) + V2(t) + £t(t) Vt(t) - £2(t) V2(t). (34) 
dt 

(36) 

Responses of~ and t3 to a step change in w2 are shown in Figure 15. 

Parameter values and system conditions are given in Table 2. Figure 15 

shows that a change in the tangential velocity of the roller w2 produces 

smaller tension variations, t2 and t3 than would occur with no-slippage. 
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·v 2 

Figure 14. A Two-Span System 

Example 2-B :Effect of Slippage on Web Tension in a Two-Span System 
with Step Input at w :3. 

Responses of t2 and t3 to a step change in w3 are shown in Figure 16. 

Figure 16 shows that a change in the tangential velocity of the roller w 3 

produces not only a change in tension t3 but also a change in tension t2, 

which would not occur with the case of no slippage at roller #2. This 

means that there is a "tension transfer3" from downstream to upstream 

when there is slippage between the web and the intermediate roller. 

3. See Chapter 4 
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v 1 = w1 = 1000, w2co-) = 1oo1, w2co+) = 1002, v 3 = w3 = 1001 ft/min 

Figure 15. Responses of 12 and t3 to a Step Change in w2 

for the Two-Span System 
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Without Slip 
With Slip Between 

Web and Roller 
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TIME [Sec] 

Parameter values and system conditions: see Table 2 

v 1 = w1 = 1000, w2 = 1001, v 3 = w3, w3(o-) = 1001, w3(o+) = 1002 ft/min 

Figure 16. Responses of ~ and t3 to a Step Change in w 3 

for the Two-Span System 
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Analysis of a Roller 

Tension -Tan~ential Velocity of Roller Relationship 

Another important primitive element is a roller. It is assumed that the 

rollers at both ends of the free span in Figure 6 are driven by motors and 

there is no change in the moment of inertia of any of the rollers. The 

dynamics of the driving motor generally are negligible compared to those 

of the rollers. A relationship between the tension in the web and the 

tangential velocity of the roller at position 2 in Figure 6 can be obtained 

from a torque balance on the roller as follows: 

(38) 

where 

B12 : Rotary friction constant of bearing 

. Jn : Polar moment of inertia of roll 

K2 : Motor constant 

Rn : Radius of roller 

U2 : Change in input to the motor driving the roller at position 2 

W 2 : Change in tangential velocity of the roller. 

The change in the velocity (V 2) of the web in equation (22) and the change 

in tangential velocity of the roller (W 2) in equation (38) are identical when 

no slip occurs between the web and the roller (i.e, V 2 = W 2). 
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Effect of Web Cross-Sectional Area Change on Change in Tension 

As the strain varies in the web material, the cross-sectional area of the 

web may vary from one web span to the next due to Poisson's ratio. The 

importance of this effect is considered below. Assuming that the material is 

isotropic and does not experience temperature changes, the stress-strain 

relationships can be written as [ 14]: 

Ex=~ O'x, 

E y =- ~ V O'x, 

Ez =- ~ V O'x, 

where 

E 

v 

: Young's modulus 

: Poisson's ratio E 

: Stress 

: Strain. 

(39) 

(40) 

(41) 

Now, consider an infinitesimal element of the web as shown in Figure 

17. The cross-sectional area of the web in the stretched condition is 

A = d X h = [ (1 + E y) du][ (1 + E z) hu] 

= du hu (1 + E y + E z + E y E z). (42) 



z 

X 

y 

Unstretched web ~lement 

z 

A 

f 
X 

y ~I 

Stretched web element 

Figure 17. A Mass Element out of a Web Span in the 
Unstretched and Stretched Conditions 
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Since E y E z = 0, equation ( 42) can be written as: 

A := du hu (1 + E y + E z). (43) 

Using equations (40) and (41), equation (43) can be written as: 

A:= du hu (1 - 2 VEx)= Au (1 - 2 VEx). (44) 

The longitudinal tension in the web can be written as: 

T x(t) = A E Ex· (45) 

Combining equations ( 44) and ( 45) gives: 

Tx(t) =A E Ex(t) =Au [1- 2 V Ex(t)] E Ex(t). (46) 

By using equation (20) in section 2.1, the relationship between the 

strain in a web span and web velocities at the ends of the span (see Figure 

6) can be written as: 

The algebraic equation (46) can be solved simultaneously with the 

differential equation ( 4 7) to evaluate the tension variation in a span when 

the change in the cross-sectional area is taken into consideration. 

46 
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A numerical example is solved to show the effect of a change in the 

cross-sectional area of the web on the tension variation. Consider a two­

span web transport system as shown in Figure 18. The cross-sectional areas 

A2 and A3 change with the change in strains e 2 and e 3· By using equations 

( 46) and ( 4 7), the dynamic equations for the two-span system can be 

written as: 

T2(t) = A2u [ 1 - 2 V E 2(t)] E E 2(t). ( 49) 

T3(t) = A3u [ 1 - 2 V E 3(t)] E E 3(t). (51) 

It is assumed that tangential velocities of rollers (V 1, V 2, V 3) are perfectly 

controlled. Equations ( 48) through (51) were solved for the conditions and 

parameters shown in Table 3 for v=0.2 and v=0.4. 

In the steady-state, equations (48) through (51) becomes: 

0 = - Vzo E 2 + V 10 E 1 + V 2 - V 1· 

T2 = A2u [ 1 - 2 V E 2] E E 2 = A2 E E 2 . 

0 =- V3o E 3 + Vzo E 2 + V3 - V2. 

(52) 

(53) 

(54) 
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v1 v2 V3 

T1 T2 T3 T4 

A1 E1 A2 E2 A3 E3 ~ E4 

~ 
L2 .. , .... L3 .., 

~=~o+Tn, Vn = VnO + Vn 

Figure 18. A Two-Span Web Transport System 

(55) 

And, T 1 = A1 E e 1 in the steady state. Solving equations (52) through (55) 

for T 2 and T 3 gives: 

(56) 

(57) 

A1 = Atu [ 1 - 2 V E t]. (58) 

(59) 

(60) 



TABLE 3 

PARAMETER VALUES AND SYSTEM CONDITIONS 
FOR SIMULATION IN SECTION 2.4 

Conditions 

Initial steady-state operating tension t30 = 42 (Lbf) 

Initial steady-state operating velocity v no = 1,000 (ft/min), 

n = 1, 2, 3 

V3 = 0.06 (ft/min),@ t = o+; V3 = o, @ t = o-

Parameter Values 

~u = 0.12 (in2), n = 2, 3 

d = 120 (in) 

E = 350,000 (Lbf/in2) 

L0 = 120 (in), n = 1, 2, 3 

49 



Combining equations (56) and (57) gives: 

(61) 

Assuming T1 = 0, and V1 = V2 = 0, equation (61) can be written as: 

T3 = A3 E (V3- V2), 
V30 

(62) 

where A3 = A3u [ 1 - 2 v E 3] from equation (60). 

Results for the steady-state analysis for two different values of Poisson's 

Ratio are as follows: 

Cross-sectional area Tension Variation ,T3, (lbf) 

Poisson's Ratio (v) 
v = 0.2, v = 0.4 

Constant 2.5199 2.5199 

Varied 2.5189 2.5178 

Figure 19 shows the results of a dynamic analysis for two values of 

Poisson's ratio computed using equations (48) - (51). A step input (i.e., 

v3 = 0.06 (ft/min),@ t= o+; v3 = 0, @ t= o-) was provided to the two 

50 



51 

span system. 

In conclusion, the effect of area change on the tension variation is not 

significant if the magnitude of the tension variation is small. 

Figure 19. Effect of Web Cross-sectional Area Change on 
Dynamic Tension Variation 
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Effect of Temperature Change on Change in Tension 

It is very common for the temperature conditions to differ in the 

various processing sections in a web transport line. Changes in temperature 

affect the strain in the web in two ways [14]: first, by directly producing a 

strain even in the absence of stress (thermal-strain) and, second, by causing 

a modification in the value of the Young's modulus. 

Effect of a Change in Temperature on Strain 

The thermal strain is almost linear in the temperature change of 100 -

200 (°F). For an isotropic material, there is no shear-strain due to thermal 

expansion (contraction), but only pure elongation or contraction [14]. 

Thus, the thermal-strain due to the temperature change, eT, can be written 

as (see Figure 6): 

t t t 
Ex= Ey= Ez= a 8T 

"Jt - "f:t - 'Vt - 0 fXY - yz - 1 zx - ' 

where 

' 

a is the coefficient of linear expansion 

e 1 is the thermal strain 

(63) 

(64) 
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1 is the thermal shear strain 

The subscripts indicate the coordinate. 

The total strain in a rigid body is the sum of the strain due to the stress and 

the temperature. Let E e be the elastic-strain and E t be the thermal- strain. 

Then, the total strain can be written as [ 14]: 

E = Ee + E t. (65) 

It is assumed that uniaxial (MD) stress prevails, that is, Ox * 0, cry = Oz = 0 

(see Figure 6). Assuming there are changes in the temperature within the 

web material, the stress-strain-temperature relationships can be written as 

[14]: 

(66) 

The stress-tension relationship is: 

(67) 

Combining equations (66) and (67) gives: 

(68) 

Recall equation (20) which shows the relationship between the longitudinal 

strain and web velocity for the web span shown in Figure 6. 



Equations (68) and (69) can be used to illustrate the effect of a change in 

temperature on tension variation. 

An example is solved to illustrate the effect of a change in 

temperature on tension in the steady state. In the steady state, assuming 

e 1 = 0, the equation (69) can be written as: 

(70) 

Combining equations (68) and (70) gives: 

(71) 

Example: 

Conditions: web material is polypropylene 

A (cross-sectional area of web)= 0.12 in2 

E (Young's modulus of web material) = 350,000 psi 

v2o ( average web transport speed) = 400 ft/min 
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V2- V1 (velocity difference)= 1 ft/min (0.25 %of V2o) 

ST (temperature change ) = 18.5 OC ( 33.4 Op) 

a (thermal expansion coeff.) = 1.35 x 10- 4 oc- 1 

(in the temperature range of 200- goo C) [15]. 



For these conditions, 

, i.e., velocity difference effect is of the same order as the thermal 

effect. 

In conclusion, change of temperature in a polypropylene web 

significantly affects tension. 

The Effect of a Change in Temperature on·Young's Modulus 
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For many materials (e.g., steel), temperature changes of a few 

hundreds degrees Fahrenheit result in very small changes in Young's 

modulus [14]. But, for some materials (e.g., polypropylene), the Young's 

modulus is reduced by half for temperature increases of less than one 

hundred degrees Fahrenheit (see Figure 11). In order to study the effect of 

Young's modulus for materials on tension variation, recall the 

mathematical model for a web span as shown in equations (68) and (69). 

Once Young's modulus is determined experimentally or statistically as a 

function of temperature for a given web material, equations (68) and (69) 

can be used to predict the change in web tension when there is a 

temperature change within the web span. 
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Effect of Moisture Change on Change in Tension 

Some web processes (e.g., drying, printing) significantly change the 

moisture content of the web material. The effect of moisture on strain in 

the elastic region appears in two ways: (1) by directly producing a strain 

even in the absence of stress (hygroscopic strain), and (2), by causing a 

modification in the values of Young's modulus. 
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Figure 20. Temperature Effect on Young's 
Modulus for Polypropylene 
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The Effect of a Change in Moisture on Strain 

The change in strain due to moisture change is approximately 

proportional (linear) with small changes of moisture in a web material (4-

5 % ). For an isotropic material, there is no shear-strain due to hygroscopic 

effect; there is only pure elongation or contraction. Without considering 

temperature effects, and with the assumption that MD stress prevails, the 

stress-strain-moisture relationship can be written as: 

E 2 = ~ 0'2 + Em , (72) 

where em is longitudinal strain due to moisture absorption (hygroscopic 

strain). 

The total strain in a rigid body at a constant temperature is assumed to be 

the sum of the elastic strain and hygroscopic strain as follows: 

(73) 

where 

e e : Elastic strain 

Em : Hygroscopic strain. 

The stress-tension relationship can be written as [14]: 

(74) 



Combining equations (72) through (74) gives the tension- strain 

relationship: 

(75) 
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Equations (69) and (75) can be solved simultaneously to obtain the tension 

variation, T 2, when there is a moisture change within a web span shown. 

An example is solved to illustrate the effect of moisture change on 

tension variation in a web span. In the steady state, assuming e 1 =0, 

combining equations (70) and (75) gives: 

(76) 

Example: 

Conditions: web material is fine paper 

v2o ( average web transport speed) = 400 ft/min 

V 2 - V 1 ( velocity difference) = 1 ft/min (0.25 % of v2o) 

Moisture change = 3.8 % [32]. 

For these conditions 
V2-V1 m 
---=E ' 

. V2Q 

i.e., velocity difference effect is of the same order as the hygroscopic strain 

effect. 

In conclusion, moisture absorption in a fine paper web significantly 

affects strain, and thus the tension. 
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The Effect of a Chan2e in Moisture on Y oun~'s Modulus 

The effect on the elastic constants for many materials (e.g., steel) 

may be small for moisture changes. But for some material (e.g., paper), 

the modulus of elasticity is very sensitive to the moisture change. Once 

Young's modulus is determined experimentally or statistically as a function 

of moisture, equations (69) and (75) can be used to predict the change in 

web tension when there is a change in the moisture within a web span. 

Effect of Viscoelastic Properties on Change in Tension 

The degree of change in viscoelastic properties varies from one web 

material to another material, and depends highly on the state of the 

material (e.g., degree of moisture content in the material, the temperature 

of material). The viscoelastic properties of a web may be very important 

for both the process operation and the properties of the final product. For 

example, the output rate of a paper machine in general, and newsprint, in 

particular, is most heavily dependent on the viscoelastic properties of the 

wet web under dynamic condition [16]. The stress relaxation in the web due 

to the viscoelastic property of web in the longitudinal direction may also 

affect the tension control in the web transport systems. In this section, the 

effect of viscoelastic properties of web on the longitudinal tension variation 

will be investigated. But the effect of temperature and moisture in material 

on viscoelastic properties of web will not be included in the investigation. 
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Consider a free web span fixed at one end and subjected to a motion 

(elongation) in the direction of the axis at the other end as shown in Figure 

21. Let the elongation at time t be ti(t) and the total tension in the web span 

be T(t). It will be assumed that web material retains linearity between load 

and elongation, but the linear. relationship depends on a third parameter, 

time also. 

For this class of material, the present state of deformation cannot be 

determined completely unless the entire history of loading (elongation) is 

known [17]. The tension T(t) is caused by the total history of the loading up 

(elongation instead of applied force) to the timet. If the function u(t) is 

L 

Tension T(t) 

i==========~-•.., u(t) 

Displacement 

Fixed 

Figure 21. A Free Web Span Subject to 
Motion (Elongation) 

continuous and differentiable, then in a small interval d't at time 't the 

increment of elongation is (du/dt)d't. This increment continues to act on the 

free web span and contributes an element dT(t) to the tension in the web 
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span at the time t, with a proportionality constant k depending on the time 

interval t - 't. Hence, a tension dT(t) at the timet can be written [17]: 

dT(t) = k(t-'t) ~'t) d't. 
dt 

(77) 

Let the origin of the time be taken at the beginning of loading. On 

summing over the entire history, 

T(t) =it k(t-'t) ~'t) d't, 
dt 

0 

where 

~'t) means the value of du/dt evaluated at the t = 't. 
dt 

(78) 

A similar argument, with the role of u and T interchanged, gives: 

u(t) = Jt c(t-'t) ~'t) d't, 
dt 

0 

where 

~'t) means the value of dT/dt evaluated at the t = 't. 
dt 

(79) 

Equations (78) and (79) are the forms of Boltzmann's formulation of the 

constitutive equation [17], in the case of a simple bar, for a material which 

has a linear load-deflection relationship. The function k(t) is called the 

"relaxation function". The function c(t) is called the "creep function". 

These are characteristic functions of the material. Physically, k(t) is the 
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force that must be applied in order to produce an elongation which changes 

at t = 0 from zero to unity and remains unity thereafter. Similarly, c(t) is 

the elongation produced by a sudden application at t = 0 of a constant force 

of magnitude unity; i.e., a unit-step forcing function. 

Three models for the viscoelastic material have been introduced [ 17], 

namely, the Maxwell model, the Voigt model, and the "standard linear" 

model, all of which are composed of combinations of linear springs with 

spring constant k8 and dashpots with coefficient of viscosity b 

(see Figure 22). 

(a) 
ks2 

(c) 

Figure 22. Models of Linear Viscoelasticity: (a) Maxwell, 
(b) Voigt, (c) Standard Linear Model 

The load-deflection relationship for these models are 

Maxwell model: li = I. + T , u(O) = T(O). 
ks b ks 

(80) 

Voigt model: T = k8 u + b li , u(O) = 0. (81) 

u __. 



Standard linear model: 

T + 'te T = ER ( u + to u) ' te T(O) = ER 'to u(O), (82) 

where 

te : time of relaxation of load under the condition of constant 

deflection. 

t 0 : time of relaxation of deflection under condition of constant 

load. 

ER : relaxed elastic modulus (load-deflection relation of spring as 

t ~ oo). 
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The relaxation function can be derived by solving equations (80) -

(82) for T(t) when an elongation u(t) is a unit-step function 1(t) as follows 

[17]. 

Maxwell solid: k(t) = ks e- (k./b) t 1(t), (83) 

Voigt solid: k(t) = b O(t) + ks 1(t), (84) 

Standard linear solid: k(t) = ER [ 1 - (1- ~} e- tlte] 1(t), (85) 

where 

O(t) indicates the unit-impulse function. 

The function k(t) is illustrated in Figure 23. 

For the Maxwell solid, a sudden deformation produces an immediate 

reaction by the spring, which is followed by stress relaxation according to 
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an exponential law expressed by equation (83). The factor b/k8 , with 

dimension of time, may be called a relaxation time: it characterizes the rate 

of force decay. 

For the standard linear solid, a similar interpretation is applicable. 

The constant 'te is the time constant of load relaxation under the condition 

of constant deflection (see equation (85)). As t ~ oo, the dashpot is 

completely relaxed, and the load-deflection relation becomes that of the 

springs, as is characterized by the constant~, "relaxed elastic modulus". 

It is highly possible for a web span to be exposed to the harmonic 

disturbances due to the imperfect roller/roll conditions. It might be 

interesting to obtain the steady-state relationship between load and 

DEFORMATION 

TIME 

(a) 

TENSION 

b 8(t-to) 

DEFORMATION 

TIME 

(b) 

DEFORMATION 

TIME 

(c) 

Figure 23. Relaxation Functions of (a) Maxwell, (b) Voigt, 
(c) Standard Linear Model 



deflection when the web span is forced to perform simple harmonic 

oscillations. It will be convenient to put the beginning of motion at time 

- oo since the lower limit of equation (78) can be replaced by- oo. Using 

complex representation for sinusoidal oscillations, let 

u(t) = UO eirot • 

And let 

t- 't = ~-

Using equation (87) in equation (78) gives: 

T(t) = i~ k(~) ~t- ~) d~. 
dt 

0 

Using equation (86) in equation (88) gives: 

T(t) = f k{l;) i co uo eiro(t~) dl;. 

or 

T(t) = i co uo eirot i- k(l;) e-irol'; <II;. 

(86) 

(87) 

(88) 

(89) 

(90) 
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Since k(t) = 0 when t < 0, the lower limit of the integral in equation (90) 

can be replaced by - oo, then the integration part in equation (90) can be 



written in the conventional form of Fourier transformation : 

k( ro) = L k( 't) e-irot d't. (91) 

Assuming that the Fourier integral exists, T(t) can be written as: 

T(t) fti ro u0 k(ro) eirot. t(92) 
·-. - ~· ' 

Under a periodic forcing function the tension T(t) is also periodic. Let 

T(t) = To eirot, 

then the following input-output ratio can be obtained: 

Th = i ro k(ro). 
uo 

(93) 

(94) 

The ratio To I uo is a complex number, which may be written as 

!~='I'= i ro k(ro) = lro k(ro)l e-io, (95) 

where 

'I' is called the 'complex modulus' of a viscoelastic material [17]. 
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The angle () is of particular interest. It represents the phase angle by which 

the stress lags the strain. The tangent of () is often used as a measure of 

'internal friction' (viscoelasticity) of a linear viscoelastic material. 
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Since 

t ~ _ imaginary part of 'I' an u- , 
real part of 'I' 

(96) 

the internal friction can be easily computed when the Fourier transform of 

the relaxation function is known. 

It might be interesting to investigate the viscoelastic effect on 

longitudinal tension variation. Even though the relaxation curve of web 

material is considered to be exponential from the investigation (see 

equations from (83) to (85)), it can be considered to be linear for some 

web material (e.g., Newsprint, Polypropylene) in order of half a minute 

(see Figures 24 and 25). For example, the relaxation characteristic of 

newsprint was given as follows in [18]: 

T =A (EI E - E2 E t), (97) 

where 

E1 : Young's modulus, E1 =: 5.12 X 105 psi 

E2 : Viscosity factor, 
3 . 

E 2 = 7.11 x 10 psi - sec · 

In equation (97), the magnitude of the viscosity term is only a few percent 

of that of elastic term, because the running time of the web in rotary press 

is usually a few seconds. Thus, the newsprint can be practically dealt with 

as elastic during the transport of the web. 

As shown in this example, when the web transport speed is getting 

higher, the effect of viscoelastic properties on tension variation is 

negligible, and the web material can be considered as being linear. 
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CHAPTER Ill 

ANALYSIS OF A MULTI-SPAN SYSTEM 

WITH A DANCER 

Primitive elements can be combined into subsystems as illustrated in 

Figure 26. Examples of subsystems are an idle roller with two free spans, 

an unwinding roll with a free span, and a winding roll with a free span, 

etc .. Systems can be configured using primitive elements and subsystems. 

An example system is shown in Figure 27. 

Derivation of a Unified Model for A Multi-Span System 

In this section, a "unified" open-loop dynamic model will be derived 

for an important multi-span system which includes a dancer as shown in 

Figure 27. This model includes the combined effects of slippage, 

temperature variation, and moisture variation. The model will be evaluated 

for a typical web material (Polypropylene) and typical web transport 

system operating conditions. The following assumptions were made in the 

derivation of the unified model: 

(1) The vertical displacement of the dancer roll is very small 
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(c) Unwinding Roll with a Free Span (d) Winding Roll with a Free Span 

Figure 26. Some Subsystems 
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Ti : Change in web tension; i = 1, 2, 3, 4 

Vi : Change in web velocity; i = 1, 2, 3 

Wi : Change in tangential velocity of rollers; i = 1, 2, 3 

x2 :Vertical displacement of dancer subsystem 
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Figure 27. A Multi-Span System Which Includes a Dancer Subsystem 
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compared to the length of the web span, 

(2) The change in the wrap angle of the web on the dancer roll due 

to the vertical displacement of the roll is negligible, 

(3) No slippage occurs between the web and the dancer roll, 

( 4) The total elastic strain in the web is a linear combination of (a) 

the elastic strain due to the velocity difference between the two 

ends of the web, (b) the elastic strain due to the vertical 

displacement of the dancer roll, and (c) the elastic strain due to 

the angular displacement of dancer roll, 

(5) The total strain in the web is the linear combination of the total 

elastic strain, the thermal strain, and the hygroscopic strain. 

By using assumption (5), the total strain variations in the web spans 

of the system shown in Figure 27 can be written as: 

where 

E 2(t) = E ~(t) + E ~(t) + E ~(t), 

E 3(t) = E ~(t) + E ~(t) + E ~(t), 

e i(t) : Total change in strain 

e f(t) : Total change in elastic strain 

e f(t) : Total change in thermal strain 

E ret) : Total change in hygroscopic strain 

and i = 2, 3. 

(98) 

(99) 

The total change in elastic strains in the web spans are written as : 

(100) 



where 
. ~ ~ • ~.! ·~ 

(101) 

e~(t) :Change in elastic strain due to the velocity difference 

e fv(t) : Change in elastic strain due to the vertical displacement of 

the dancer roll 

e fa(t) : Elastic strain due to the angular displacement of the dancer 
j 

roll 

and i = 2, 3. 

Dynamic models for web spans 2 and 3 are derived in Appendix 

C1• For web span 2, the model is: 

1 Web span 2 is the web between the driven roller 1 and the dancer roll2. Web span 3 is 

the web between the dancer roll 2 and the driven roller 3. 
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and, for web span 3 the model is: 

where 

b2 

F0 (t) 

Fno 

H0 (t) 

~ 

ks2 

Ln 

M2 

Rn 

Tn 

vn 

: Damping constant in dancer subsystem 

: Temperature of web 

: Initial temperature of web 

: Moisture of web 

: Initial moisture of web 

: Spring constant in dancer subsystem 

: Length of web span 

: Mass of dancer roll 

: Radii of roller/roller 

: Change in web tension from a steady-state operating value 

: Change in web velocity from a steady-state operating value 



v no : Steady-state operating value for web velocity 

x2 : Vertical displacement of dancer roll 

x21 : Vertical velocity of dancer roll; x21 = x2 

y2 :Angular displacement of dancer roll 

y21 : Angular velocity of dancer roll; Y21 = Y2 

a : Coefficient of expansion of web with temperature 

~ : Coefficient of expansion of web with moisture 

9wn : Wrap angle of web on dancer roll 

and the subscript n is integer number, 

and where 

Y2 = Y21· 

(104) 

(105) 

A force balance on the dancer roll taken in the vertical direction gives: 

A torque balance on the dancer roll gives: 

where 

d" B R y21 =- _.t2_Y21 + ~T3- T2), 
dt h h 

Bf2 : Rotary friction constant of bearing in dancer roll 

J2 : Polar moment of inertia of dancer roll. 

(106) 

(107) 
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Torque balances on the driven rollers results in the following 

equations: 

where 

Ben : Rotary friction constant of bearing in dancer roll 

Jn : Polar moment of inertia of dancer roll 

Un : Change in input to motors driving rollers 1 and 3. 

From equation (28), the relationships between the motions of the -web and rollers can be written as follows: 
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Since it assumed that there is no slippage between the dancer roll and the · 

web (assumption (3)), 

(112) 

As_: .. unption (4) results in the following relations for the total elastic 



strains: 

E ~(t) = E 2(t) - a {F2(t) - F2ol - ~ {H2(t) - H2ol. (113) 

E~(t)=E3(t)-a {F3(t)-F3o}- ~ {H3(t)-H3o}. (114) 

From Hooke's law, 

T2(t) =ABE ~(t), 

T3(t) =ABE ~(t). 

(115) 

(116) 
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The unified model for the multi-span system in Figure 27 comprises 

equations (102) through (116). This unified model can be used to develop a 

mathematical model for a high order multi-span system which has more 

than one dancer. The following sections summarize results of analyses of 

systems which incorporate a dancer (1) for tension measurement and (2) 

for minimizing disturbances. 

Analysis of a Multi-Span System fucorporating 

a Dancer Subsystem for Tension Measurement 

The purpose of this section is to find guidelines for the selection or 

design of the dancer for tension measurement. The study is focused on how 



much the dancer disturbs the system in which tension is to be measured. 

Consider a multi-span system which incorporates a dancer subsystem for 

tension measurement as shown in Figure 27. The following assumptions 

were made for the analysis. 

(1) No variation of web temperature or moisture, 

(2) No slippage between the web and the rollers, 

(3) No change in the tangential velocity of driven roller 1 

(i.e., W 1 = 0.0). 

atural frequencies due to the translational inertia (COt) and the 

rotational inertia (cor) are as follows 1: 

ro,= ~- (117) 

(118) 

Dynamic Model 
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With assumption (3), the change in tangential velocity of roller 1 is: 

W 1(t) = 0.0 or w1 =constant. (119) 

The tangential velocity of roller 2 is: 

(120) 

1 See Appendix D for the derivation 



Equation (109) can be used for the tangential velocity of roller 3. 

With assumption (2), the relations between the web velocities and 

roller velocities are: 

Vt(t)=Wt(t), 

V2(t) = W2(t), 

V 3(t) = W3(t). 

(121) 

(122) 

(123) 

With assumption (1), equations (102) and (107) reduce to the 

following: 

and 
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Equations (113) and (114) for the total elastic strains reduce to: 

E ~(t) = E 2(t). 

E ~(t) = E 3(t). 

(126) 

(127) 

Equations (115) and (116) can be used to calculate tensions T2 and 

T 3• The dynamic model for the analysis of the multi-span system using a 

dancer subsystem for tension measurement comprises equations (103) 

through (106), (109), (115), (116), (119), and (120) through (127). 

Examples 

The dynamic model for the multi-span system shown in Figure 27 

was simulated with step input to the motor driving roller 3 and with 
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"" '\ . I,~ 

different combinations of OOt (frequency due to the translational inertia of 'i.E'Jt. 1 0 

the dancer) and roli (frequency due to the rotational inertia of the dancer). 

A typical web material (polypropylene) and typical web transport system 

operating conditions were used for the simulation (see Table 4 ). The 

conditions were chosen such that the natural frequency and the open-loop 

damping coefficient of the system without a dancer subsystem were ros = 

6.5 rad/sec and ~ = 0.2 respectively. 

Typical results of the simulation are shown in Figures 28, 29, and 

30. Figure 28 shows a case when OOt = 10 rad/sec and OOr = 60 rad/sec. In 

this case, the dynamic tensions T 2 and T 3 are lightly damped without the 

dancer subsystem, and are well damped with the dancer subsystem in 

IIi 
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operation. Figures 29 and 30 shows cases when rot > 3ro8 and ror > 3ro8• In 

these cases, the presence (or absence) of the dancer subsystem has little 

effect on the step responses T 2 and T 3. That is, the dancer subsystem is 

effective for tension measurement. 

Based on a number of simulations, it was concluded that the dancer 

subsystem is useful for tension measurement, if it is designed such that: 

rot > 3ros and ror > 3ros, 

where ro - A f v3o Bn + A E Rj : natural frequency of the 
s - 'V (L2+L3)J3 (L2+L3)J3 

system without a dancer subsystem. 

Analysis of a Multi-Span System Incorporating a 

Dancer Subsystem for Minimizing Disturbances 

The purpose of this section is to find guidelines for the selection or 

design of the dancer for minimizing disturbances. The study is focused on 

how much the dancer reduces the effect of disturbances in the system. 

Consider the multi-span system in Figure 31 which incorporates a dancer 

subsystem for disturbance minimization. The following assumptions are 

made for the analysis: 

(1) No variation of web temperature or moisture, 

(2) No slippage between .the web and the rollers, 

(3) No change in the tangential velocity of driven roller 1 

(i.e., W 1 = 0.0). 



TABLE 4 

PARAMETER VALUES AND SYSTEM CONDffiONS 
FOR SIMULATIONS IN SECTION 3.3 

Parameter Values 

where 

A = 0.12 in2 c2 = 2300 lbf -sec/ft 

d = 120 in E = 350,000 lbf/in2, 

h = 0.001 in K. 
1 = 0.4 lbf-ft/volt, i = 1, 3 

L . 
1 = 10 ft, i = 2, 3 ~ = 5.0 in., i = 1, 2, 3 

viO = 1000 ft/min, i = 1, 2, 3 Jl = 0.1 

Jl20 = 0.033 9w2 = 3.14 Rad 

L2 : Web span between roller 1 and dancer roll 

L3 : Web span between dancer roll and roller 3 

System Conditions 

Ti = 0 lbf, i = 1, 4 . 

t2(0-) = 0 lbf 
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Input u 3 = Input to motor driving roller 3 

U3(0-) = 0, 

Conditions ~ = 0. 2, 

U3(0+) = 1.0 Volt 

COs = 6.5 rad/sec, 

COr = 60 rad/sec 

1.6 T2 and T3 W/0 Measurement System 

1.6 

co1 = 10 rad/sec, 

,......, .... 1.4 
T2 and T3 W/ Measurement System 

.ll 
_J ...... 
c: 
0 

:;:; 
0 ·c 
0 
> 
c: 

.Q 
Ill 
c 
Ill 
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0.6 

0.4 

0.2 j 

/ 
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\i 

0 
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I 

/ 
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Driven Roller Driven Roller 

2 3 4 

Time (Sec] 

Figure 28. Performance of the Dancer as a Tension Measurement System 

for COt = 10 rad/sec and COr = 60 rad/sec 
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Input u 3 = Input to motor driving roller 3 

U3(0-) = 0, U3(0+) = 1.0 Volt 

Conditions ~ = 0.2, ros = 6.5 rad/sec, OOt = 20 rad/sec, OOr = 20 rad/sec 

2 

1.6 T2 and T3 W/0 Measurement System 

1.6 '\ T 2 W/ Measurement System 

r .y 
T 3 W Measurement System 

r--1 1.4 1.: .._ I .1:J {: 
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Figure 29. Performance of the Dancer as a Tension Measurement System 

for OOt = 20 rad/sec and O>r = 20 rad/sec 



Input u 3 = Input to motor driving roller 3 

U3(o-) = 0, 

Conditions ~ = 0. 2, 

U3(0+) = 1.0 Volt 

008 = 6.5 rad/sec, 

ror = 1 00 rad/sec 

2 

1.8 T2 and T3 W/0 Measurement System 

1.6 \ 
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ffit = 100 rad/sec, 

I Driven Roller 

I I Driven Roller 

0.4 I v, T2 T3 VI 

--+ 

0.2 w, 

D 
0 2 3 4 

lime [Sec] 

Figure 30. Performance of the Dancer as a Tension Measurement System 

for OOt = 100 rad/sec and 00r = 100 rad/sec 
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Dynamic Model 

Equations (103) through (106), (109), (115), (116), (119), and (120) 

through (127) serve as the dynamic model for the system shown in Figure 

31. It is of interest to evaluate the dancer subsystem as an effective means 

of minimizing the disturbance due to an eccentric unwinding roll, i.e., 

(128) 

Example 

The dynamic model for the multi-span system shown in Figure 31 

was simulated with a sinusoidal input (V 1) to the system and with different 

combinations of COt (frequency due to the translational inertia of the 

dancer) and COr (frequency due to the rotational inertia of the dancer). 

A typical web material (polypropylene) and typical web transport system 

operating conditions were used for the simulation (see Table 4 ). The 

conditions were chosen such that the natural frequency and the open-loop 

damping coefficient of the system without a dancer subsystem were OOs = 
6.5 rad/sec and ~ = 0.2 respectively. A sinusoidal input V 1 shown in 

equation (128) was provided to the multi-span system. 

Typical results of the simulation are shown in Figures 32, 33, and 

34. Figure 32 shows the case when the system does not have the dancer 

subsystem. Transient responses were shown for a couple of seconds of 



period before the sinusoidal outputs reach to their steady-state values in 

Figure 32. Figures 33 and 34 shows cases when OOt < ros/3 and ror > 3ro8• 
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In these cases, the presence of the dancer subsystem has great effect on the 

sinusoidal responses T 2 and T 3• That is, the dancer subsystem is excellent in 

minimizing the effect of disturbances. 

Based on a number of simulations, it was concluded that the dancer 

subsystem is useful for minimizing the effect of disturbances, if it is 

designed such that: 

If rod < 008, then OOt > 3008, OOr < !rod 
3 

If rod > 008, then OOt > 3rod, OOr < lros 
3 

where rod is the frequency of the disturbance. 

Unwinding Roll Driven Roller 

Figure 31. A Multi-Span Unwinding System Which Includes a Dancer 
Subsystem 



88 

Input V 1 (t) = V dO sin( rodt), V dO= 0.01 ft/sec, rod = 20 rad/sec. 
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Figure 32. Tension Variation in a Web Span without a Dancer 
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Input V 1 (t) = V dO sin( rodt), v dO = 0.01 ft/sec, rod = 20 rad/sec 

Conditions ~ = 0. 7, IDs = 6.5 rad/sec, ffit = 2 rad/sec 

IDr = 60 rad/sec. 
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_J 
~ 

1: 
0 
~ 
0 

0 ·c 
0 
> 
c: 
.2 -1 Ll) 

Unwinding Roll Driven Roller 

c 
41 
1-

-2 

-3 

-4 
0 2 3 4 5 

lime [Sec] 

Figure 33. Performance of the Dancer as a Disturbance Minimizing System 

for ffit = 2 rad/sec and IDr = 60 rad/sec 
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Input V 1 (t) = V dO sin( rodt), V dO = 0.01 ft/sec, rod = 20 rad/sec 

Conditions ~ = 0. 7, IDs = 6.5 rad/sec, Olt = 1 rad/sec 

Olr = 100 rad/sec. 
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Figure 34. Performance of the Dancer as a Disturbance Minimizing System 
for rot = 1 rad/sec and Olr = 100 rad/sec 



CHAPTER IV 

ANALYTICAL AND EXPERIMENTAL STUDY 

OF MULTI-SPAN SYSTEMS 

This chapter presents results of (1) analyses of the interactions 

between adjacent web spans in two-span web transport systems and (2) 

experimental studies on an existing web processing plant. 

Tension Transfer in a Multi-Span System 

Consider the two-span system shown in Figure 35. By using the 

equation (22), the linearized mathematical models for web spans 2 and 3 

can be written as: 

(129) 

(130) 

In equation (129), the tension change T2 is function ofT1, V1, and V2. That 

is, a change in the tension in the entering span (T 1) affects the tension in the 
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Figure 35. A Two-Span Web Transport System in Section 4.1 

following span (T 2). This effect is called "tension transfer". All variables 

shown in Figure 35 are changes from the initial steady-state operating 

conditions. That is, 

tn = ~0 + Tn, 

where 

T n : Change in web tension from a steady-state operating value 

~ : Web tension 

~0 : Steady-state operating value for web tension 

V 0 : Change in web velocity from a steady-state operating value 

V 0 :Web velocity 

v nO : Steady-state operating value for web velocity. 
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An example will illustrate the effect of tension transfer. Suppose that the 

two-span system in Figure 35 is operating in the steady state such that 

V10 = V2o = v30' 

vl = v2 = v3, 

Tl =T2=T3. 

Now suppose that t1 is increased by an amount T1• A solution of equation 

(129) for the final steady-state value ofT 2 gives 
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That is, a change in t1 results in an equal change in t2• Similarly, a solution 

of equation (130) indicates that 

Open-Loop Draw Control in Multi-Span Systems 

In many web handling plants, an attempt is made to control web 

tension in a span by controlling the difference between the velocities of 

rollers at the ends of the span. This open-loop tension control approach is 

termed "draw control". Based on the results of the previous section, open­

loop draw control cannot result in an accurate tension control in a span if 



tension disturbances occur upstream of that span. That is, a tension 

disturbance will propagate "downstream" due to tension transfer. An 

example will illustrate this limitation of open-loop draw control. 

Suppose that the two-span system in Figure 35 is operating in the 

steady state such that 

VI = Vz = V3, 

Tl = T2 = T3. 
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Now suppose that v2 is increased by an amount V 2 while V 1 = V 3 = 0. 

Equation (129) can be solved to determine the change in tz from the initial 

value of tzo The result is 

That is, if v 2 is increased by V 2, tz is increased by T 2. Accurate control of 

t2 depends on accurate control of v2• 

It might be expected in the example above that an increase in v 2 also 

would result in a decrease in t3. That is, a steady-state analysis using 

equation (130) with T 2 = 0 and V 3 = 0 gives the result 

But, Tz ::t 0. A simultaneous solution of equations (129) and (130) for 



steady-state operation, with V 1 = V 3 = 0, and T 1 = 0, gives the result 

But, since T 2 = Ali V 2. T 3 = 0. That is, the expected decrease in T 3 is 
V20 

offset by an increase due to T 2• 
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In conclusion, even if the velocities of the rollers are controlled 

accurately, simple open-loop draw control cannot provide accurate control 

of the tensions in the various spans of a multi-span system if there are 

ter: on disturbances. 

Master Speed Control in Multi-Span Systems 

"Master speed control" is commonly used in multi-span web 

transport systems. In "master speed control", the velocity of a selected 

driven roller is set at a predefined constant value ("master speed"). 

Generally, a feedback control system is employed to produce accurate 

control of the velocity of the selected driven roller. In this case, the 

velocity of the output shaft of the motor driving the selected roller is 

measured and compared continuously with a reference or "set point". 

Other driving motors may be "slaved" to the "master". The velocities of 

the remaining driven rollers in the multi-span system may be varied in 

order to create the necessary velocity differences with respect to the 

"master speed" and to produce the desired tension levels in the various web 

spans. This approach is a form of open-loop draw control. As explained in 
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the previous section, tension control can only be achieved in the absence of 

tension disturbances and with accurate control of the velocities of the 

driven rollers. 

In master speed control, selection of the driven roller for master 

speed is very important since the tension is transferred from an upstream 

span into downstream spans. Two numerical examples are presented below 

to illustrate the importance of the location ofthe driven roller selected for 
,.\~ ~ ~:· ... ·.·: 

"master speed". 

Example 1. 

Consider the two-span system shown in Figure 36. The location of 

the roller for "master speed" (V 3) is downstream relative to the locations 

of the rollers for variable speeds (V 1 and V 2). Equations (129) and (130) 

can be used for the linearized mathematical models for web spans 2 and 3. 

It is assumed that V 3 = 0 for master speed. 

Suppose that it is desired to maintain t3 at a certain tension level 

lower than the initial operating tension (t30) by using V 2. A simultaneous 

solution of equations (129) and (130) for steady-state operation with V1 = 

V 3 = 0, and T 1 = 0 in the previous section can be used. That is, the 

expected decrease in T 3 was offset by an increase due to T 2. 

In conclusion, when the location of the driven roller for "master 

speed" (V 3) is downstream relative to the driven roller for variable speed 

(V 2) as shown in Figure 36, the "master speed control" does not provide 

proper control even with accurate control of the velocities of the driven 

rollers. 
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MAS1ER SPEED 

... 

VARIABLE SPEED VARIABLE SPEED 

Figure 36. Master Speed Control: Example 1 

Example 2. 

Consider the two-span system as shown in Figures 37. The location 

of the roller for "master speed" (V 2) is upstream relative to the location of 

the roller for variable speed (V 3). Equations (129) and (130) can be used 

for the linearized mathematical models for web spans 2 and 3 again. It is 

assumed that V 2 = 0 for master speed. 

Suppose the two-span in Figure 37 is operating in the steady state 

such that 

Vw = V2o = V3o' 

v 1 = v 2 = v 3 = 0, 

T 1 =T2 =T3 =0. 
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MASTER SPEED 

VARIABLE SPEED VARIABLE SPEED 

Figure 37. Master Speed Control: Example 2 

Now suppose that v3 is increased by an amount v3 while VI= v2 = 0. 

Equation (130) can be solved to determine the change in t3 from the initial 

value of t30. The result is 

That is, if v3 is increased by V3, t3 is increased by T3. 

In conclusion, when the location of the roller for "master speed" (V 2) 

is upstream relative to the roller for variable speed (V 3), the "master speed 

control" does provide proper control with accurate control of the velocities 

of the driven rollers. 

In summary, the location of the driven roller for "master speed" 

should be upstream in a web span and the location of roller for variable 

speed should be downstream in the web span for the proper control of 

tension. 
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Analytical and Experimental Studies 

Description of the System 

Analytical and experimental studies were conducted on a 

Polypropylene processing line in the Mobil Chemical plant at Shawnee, 

Oklahoma. Figure 38 is a schematic of the relevant portion of the line. The 

web is spread in the machine direction (MD) and in the cross machine 

direction (CMD) before it reaches the entering section. 

ENTERING 
SECTION 

WEB 

#4 
{TRIMMING 

AND 
SLITTING) 

#7A 

{#1 TREATER) 

#2, #8, #9A, #16 and #18A are rollers equipped for tension 

measurement (load cell) 

Figure 38. Polypropylene Processing Line 
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The "TDO" chain feeds the web to the trimming and slitting section. The 

web speed can be detennined by measuring the TDO chain speed at the 

location of roller 1. The edges are trimmed off and the web is slit in half at 

roller 4. Roller 5 is a vacuum roller. Rollers 10 and 11A are treater 

rollers. The web is electrically treated to improve its surface characteristics 

and then wound into mill rolls. 

An Avtron model PDC-5 digital control system is used to control 

tensions in the processing sections upstream from the mill rolls. Rollers 1, 

5, 10 and 11A are driven in order to control web tension. Other rollers are 

idle rollers. The web tensions are measured at rollers 2, 8, 9A, 16, and 

18A. The PDC-5 control system has both open-loop tension control (draw 

control) and closed-loop tension control modes. The open-loop tension 

control mode was used for the analytical and experimental studies. 

The system shown in the Figure 38 was divided into two processing 

sections based on the locations of the driven rollers 1, 5, and 10 to facilitate 

the analytical and experimental studies. Processing section 1 is the web 

between rollers 1 and 5, processing section 2 is the web between rollers 5 

and 10. A block diagram of the open-loop tension control system is shown 

in Figure 39. Load cells are used for monitoring tensions in the open-loop 

tension control mode. A distributed control strategy is used and is termed 

"progressive set-point coordination". For example, Set Point 1 is the sum 

of Set Point 0 and Local Input 0. That is, a change in Set Point 0 is 

progressively fed through the system. Likewise, a change in Local Input 0 

is progressively fed through the system. This strategy is used (1) to provide 

smooth startup and shutdown of the line and (2) to reduce the effects of 

disturbances (slack or tighten web) from upstream processing sections. 
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TOO CHAIN VACUUM #11REA1ER 

DRIVER ROLLER ROLLER 

__.. SECTION 1 SECTION2 

To T3 

Tl T2 
LOADCELL1 LOADCELL2 

DRNE DRNE DRNE 
~ (SCR) ~ (SCR) 

~ (SCR) ou ou 
~~ I:I.l< ou 

~~ 
I:I.l< j:l..Q ~~ rni:I.l C"ni:I.l 

tf PID tf PID rni:I.l PID tf 

LOCAL REF. LOCALREF. · 

SET POINT 0 SET POINT 1 SET POINT 2 
(MAS1ER 

SPEED) 
LOCAL INPUT 0 . LOCAL INPUT 1 LOCAL INPUT 2 

Figure 39. Block Diagram of Progressive Set-Point Coordination 
Scheme in Open-Loop Speed Control Mode 
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All variables shown in Figure 39 are changes from the initial steady-state 

operating conditions. That is, 

T 0 : Change in web tension from a steady-state operating value 

1n :Web tension 

1oo : Steady-state operating value for web tension 

V 0 : Change in web velocity from a steady-state operating value 

v 0 : Web velocity 

v nO : Steady-state operating value for web velocity 

n : 1, 2, 3. 

A velocity change in a particular driven roller (e.g., the vacuum roller) 

changes not only the tension in the upstream span but also the tension in the 

downstream span with respect to that roller. The progressive set point 

coordination feature results in a compensation for the tension change in the 

downstream span. For example, an increase in Local Input 1 results in an 

increase in the velocity of the vacuum roller, and therefore an increase in 

the tension in the span immediately upstream of the vacuum roller and a 

decrease in the tension in the span immediately downstream of the vacuum 

roller (and all successive spans). But, in this case, the control strategy 

results in an increase in Set Point 2 and therefore no steady-state change in 

the tension in the spans downstream of the vacuum roller. 

The PDC-5 digital control system installed in the Polypropylene 
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process line also has a built-in function to provide a smooth ramp input at 

the Master Speed Input or at the Local Inputs; this gradually increasing 

input minimizes the potential for web breakage during line startup or 

following changes in any input(s). The approximate shape of the input used 

in the control system is shown in Figure 40. 

Speed 
(ft/sec) 

0 

s = 0.0278 ft/sec2 

3 Time (sec) 

Figure 40. An Input Used in Control System 

Analytical Study 

Two cases of analytical studies were conducted using the 

Polypropylene processing line described above. 

Case 1 : Analytical study on tension transfer. 

Case 2 : Analytical study on slippage between the web and the 

vacuum roller. 

First of all, some assumptions were made for the mathematical modeling of 

the system. Since the "TDO" chain feeds the web in the entering span and 
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the velocity of "TDO" chain is locked with roller 1, it was assumed that 

there was no slippage between the web and roller 1. The roller 5 is a 

vacuum roller to prevent slippage between the web and the roller. But, in 

the experiment, it was found out that there was slippage between the web 

and the vacuum roller. Even though a mathematical model for a system 

with slippage was developed in section 2.2, it was with the assumption that 

the model for the traction between the web and the roller was known. But, 

the model for the traction between the web and the roller in the 

Polypropylene processing line is not known. Thus, the analytical study will 

be carried out without considering slippage between the web and the 

vacuum roller for case 1 and with slippage for case 2 (using %slip, see 

equation (32) for% slip). The angle of wrap in the #1 treater roller was 

more than 270 degrees. It was assumed that there was no slippage between 

the web and roller 10 in the Figure 38. It was also assumed that load cells 

did not disturb the system. Since the length of the web span from the slitter 

roller to the vacuum roller is short (10 % of the length of web span in 

processing section 1 ), it was assumed that the strain in processing section 1 

was uniform along the machine direction. The velocity of each driven 

roller in the Figure 38 is assumed to be controlled by PDC-5 speed control 

system. Thus, the dynamics of rollers was neglected. The effect of 

viscoelastic properties of web on tension variation is neglected based on the 

analysis in Chapter II. An average temperature within a processing section 

was used to select an appropriate Young's modulus for the web material 

(Polypropylene). With assumptions made above, the system shown in 

Figure 39 can be simplified further into a two-span system as shown in 

Figure 41. 
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100 
CHAIN 

VACUUM 
ROLLER 

#I TREATER 
ROLLER 

Figure 41. Two-Span System (Processing Sections 1 and 2 
from Figure 39) 

Case 1 : Analytical study on tension transfer. A linearized 

mathematical model for the system shown in Figure 41 can be written as 

follows: 

1 

Processing section 1: 

Tl == Al El E 1, (132) 

where A 1 :Cross-sectional area of web excluding edges to be 

trimmedl. 

Processing section 2: 

..d. [E2(t)] ==- Y20.e2(t) + .Y..illt t(t)- Vl(t) + V2(t). (133) 
dt L2 L2 L2 L2 

See Appendix E for the analysis of non-uniform thickness web across its width 
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(134) 

Because of the progressive set-point coordination scheme used in the 

control system, it was impossible to provide only one input in the two-span 

system for testing since an input in an upstream section is automatically fed 

to the following section. An example will be solved to provide an 

understanding of the system with complicated inputs and interactions 

between web spans. 

Consider the two-span system shown in Figure 42-a. Assume that the 

progressive set-point coordination scheme is not installed. It was assumed 

that T1(0-) = T2(0-) = T3(0·) = 0. With the velocity inputs for each roller 

given in Figure 42-b, T 1 and T 2 might be expected to change as shown in 

Figure 42 - c and d. But, because of tension transfer from T 1, the actual 

change in tension T 2 will be as shown in Figure 42-e. 

In the actual control system with progressive set-point coordination 

sche~e, an input is automatically provided to the #1 treater roller when an 

input is provided to the vacuum roller (see Figure 43). It was also assumed 

that T1(0-) = T2(0-) = T3(0-) = 0. A computer simulation of the 

mathematical model (equations (131) through (134)) was carried out with 

the inputs (see Figure 44) to the vacuum roller and the #1 treater roller. It 

was assumed that there was no slippage between the web and the vacuum 

roller. System data used in simulation are given in Table 5. Output tensions 

from the simulations are shown in Figure 45. 
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VACUUM 
ROLLER 

#I TREATER 
ROLLER 

(a) Two-Span System Without Set-Point Coordination Scheme 

Vo 

TIME 

TIME 

(c) 

TIME 

(b) Velocity Inputs to System 

T2 FROM 
INTUITION 

(d) 

Outputs from System 

Figure 42. Two-Span System: 
without Set-Point Coordination Scheme 

TIME 
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(b) Velocity Inputs to System 

Figure 43. Two-Span System: 

with Set-Point Coordination Scheme 
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TABLE 5 

SYSTEM DATA USED FOR SIMULATION AND EXPERIMENT 

Section 1 (Ll) 190.8 
Length of Span Section 2 (L2) 290.4 

(inch) 
Section 3 (L3) 224.4 

Edge 5.5 

Width of Web Section 1 
Middle Part 263 

(inch) 
Section 2,3 126 

Section 1 
Edge 0.00625 

Thickness of Web Middle Part 0.00125 
(inch) 

Section 2,3 0.00125 

Initial mo Chain (VOO) 459.1 

Operating Speed Vacuum Roller (V10) 459.1 
(ft/min) 

#1 Treater Roller(V20) 454.0 

Average 
Section 1 67.0 

Temperature Section 2 46.3 
(Centigrade) 

Section 3 35.0 

Young's Modulus Section 1 116,000 
of Section 2 258,000 Polypropylene 

(psi) Section 3 304,000 

* Room Temperature : 31 (Centigrade) 
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#1 treater tension~ might be expected to stay unchanged since the velocity 

inputs were provided to both the vacuum roller and #1 treater roller 

according to the set point coordination scheme. But, ~ was actually 

changed from its steady-state operating value due to the tension transfer 

from upstream. 

Case 2 : Analytical study on slippage between the web and the vacuum 

roller. Consider the section 2 in Figure 39 as shown in Figure 46. 

VACUUM ROLLER #1 TREA1ER ROLLER 

Figure 46. One-Span System 

The mathematical model for the system shown in Figure 46 is: 

_d._ [E2(t)] =- V2QE2(t) + VIQE I(t)- VI(t) + V2(t). (135) 
ili ~ ~ ~ ~ 

A computer simulation of the mathematical model (equations (135) and 

(136)) was carried out with the input (see Figure 44) to the #1 treater 
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roller to investigate the effect of slippage: (1) without slippage between the 

web and the vacuum roller, and (2) with slippage. The same data as that of 

case 1 was used for simulation. The simulation result without slippage 

between the web and the vacuum roller is shown in Figure 47. That is, it 

was assumed that tangential velocity of the vacuum roller is equal to the 

web velocity at 453ft/min. When there was 0.16% slip (see equation (32) 

for % slip, tangential velocity of the vacuum roller = 453 ft/min and the 

web velocity= 453.75 ft/min) between the web and the vacuum roller, 

output tension ~ from the simulation is shown in Figure 48. The new 

steady-state value of~ with slippage was about 62lbs lower than that 

without slippage between the web and the vacuum roller (see Figure 47). 

The effect of slippage between the web and the vacuum roller was 

significant. 

Experimental Study 

Two cases of experimental studies were conducted using the 

Polypropylene processing line. 

Case 1 : Experimental study on tension transfer. 

Case 2 : Experimental study on slippage between the web and the 

vacuum roller. 

The MetraByte DAS-16 AID board was used for data conversion 

with an IBM AT compatible computer. The LABTECK NOTEBOOK (a 

data acquisition software package for an ffiM PC/XT/AT or compatible 

computers, developed by the Laboratories Technology Corp.) was used in 
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conjunction with MetraByte DAS-16 for the data acquisition. The measured 

data was filtered using the Chebyshev Digital Filter built in the MatLab 

(interactive scientific and engineering computation package from the 

MA Til WORKS Inc.). 

Case 1 :Experimental study on tension transfer. An experimental 

study was carried out with an input shown in Figure 44 and the tensions 

were measured as shown in Figures 49. 

The measured tensions are shown in Figures 50 and 51. As predicted 

from the simulation of the mathematical model, it was confirmed that the 

ten~irm variation T1 was transferred to affect the tension variation T2• The 

actual tension variation was much lower than that predicted from 

simulation of mathematical model without slippage (see Figure 45). It was 

observed during the experiment that there was a difference between the 

web velocity and the tangential velocity of the vacuum roller, i.e., slippage 

between the web and the vacuum roller. 

In conclusion, the mathematical model developed for the existing 

Polypropylene web processing line could predict tension transfer from 

upstream into downstream. The experimental study supported the 

prediction from mathematical model qualitatively. 

Case 2 : Experimental stu.dy on slippage between the web and the 

vacuum roller. Another experiment was carried out to determine the effect 

of the slippage between the web and the vacuum roller on tension variation. 

The tension~ was measured from the Polypropylene processing system 

when the input (Figure 44) was provided to the #1 treater roller. The 

result is shown in Figure 52. The experimental result was fairly close to 
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Figure 49. Experimental Set up for Tension Measurement 
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the simulation result when the slippage between the web and the vacuum 

roller was considered (see Figure 48). 
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In conclusion, the predicted tension from simulation was fairly close 

to the measured tension when the slippage between the web and the vacuum 

roller was taken into consideration in the simulation. Indeed, it was found 

that the effect of slippage between the web and the roller on tension 

variation is significant. 



CHAPTER V 

A COMPUTER-BASED ANALYSIS PROGRAM 

FOR WEB TRANSPORT SYSTEMS (WTS) 

Objective of WTS 

A computer-based analysis program for multi-span web transport 

systems (WTS) was developed by the author. The objective of WTS is to 

assist engineer and designer in the calculation of steady-state and dynamic 

longitudinal tension variations in multi -span web transport systems for 

different system configurations and operating conditions. 

Essential Features of WTS 

WTS is an interactive program which runs on IBM XT, AT, or 386 

personal computers or other equivalent computers that run under the Disk 

Operating System (DOS) 2.0 or higher. WTS is a fully menu-driven 

program featuring a "Main Menu" (see Figure 53) and a "Sub Menu" (see 

Figure 54). Prior to using WTS, the user identifies the physical property 

data and operating conditions and sketches the system configuration using 

122 
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the primitive elements shown in Figure 5. 

To initiate use of WTS, the user selects the "Configure System" 

option from the "Main Menu". The user then inputs the system 

configuration through the "Sub Menu". That is, the user selects the 

primitive elements (subsystem) froni the "Sub Menu" one by one starting at 

the upstream end of the previously synthesized system. The user inputs the 

physical property data through a separate data screen for each primitive 

element (subsystem). A typical data screen is shown in Figure 55. WTS 

automatically builds a mathematical model for the configured system using 

an algorithm to be discussed next section and the data provided by the user. 

The user then can select the "Confirm Configuration" option from the 

"Main Menu" for confirmation of the configured system. WTS 

automatically presents the configured system in a graphical form on the 

computer screen. 

The "Steady-State Analysis'! option must be selected from the "Main 

Menu" before the "Dynamic Analysis" option is selected. The results of 

steady-state analysis are used in the dynamic analysis. The user inputs 

operating conditions (e.g., tangential velocities of driven rollers, tension 

value for at least one web span) for the steady-state analysis. The user also 

inputs one or more voltage step inputs to the motors driving roller/rolls 

for the dynamic analysis. The steady-state and dynamic analysis for the 

configured system can be repeated as many times as the user wants. 

A flow chart for WTS is shown in Figure 56. The essential features 

of WTS are as follows. 

(1) Configure system: WTS assembles primitive elements selected by 
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a user into a system and automatically generates a mathematical model of 

the assembled system using models for the primitive elements drawn from 

WTS library. 

(2) Confirm configuration: the configured system is presented on the 

computer screen in a graphical form. 

(3) Steady-state analysis: the configured system is analyzed to 

determine the steady-state web tensions for user-selected system parameters 

and operating conditions. The results are presented on the computer screen 

in a tabular form. 

(4) Dynamic analysis: the mathematical model of the configured 

system is used to determine the dynamic response to a step change in one or 

more input variables. The results are presented on the computer screen in a 

graphical form. 

The hardware requirements, instructions for use of WTS, and an 

example for each feature are given in the WTS User's Guide [79]. WTS 

Version 1.0 is available from Web Handling Research Center at Oklahoma 

State University. Later versions will be released once they have been fully 

evaluated. 

Algorithm Used in WTS 

The concept that a web transport system is composed of several 

primitive elements was vital for the development of WTS. This concept 

allowed WTS to have simple and effective procedures for the 
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configuration, graphical presentation, and mathematical modeling of a web 

transport system. If a group of primitive elements and subsystems is stored 

in the computer, a web transport system can be configured simply by 

combining these primitive elements and subsystems in the desired order. 

In WTS, there are a "library" of subroutines for primitive elements 

and subsystems; there is one set of subroutines for each primitive element 

(or subsystem). When a primitive element (or subsystem) is selected for 

configuration, the corresponding set of subroutines will collect necessary 

physical property data about the primitive element (or subsystem). As the 

user configures the system, WTS keeps track of the number of the web 

spans, the number of the primitive elements, and the order that the 

primitive elements were selected. These data are used in the graphical 

representation and the automatic generation of the mathematical model of 

the configured system. 

Each set of subroutines for a primitive element (or subsystem) also 

includes a subroutine for the graphic model of that element (or subsystem). 

Graphic models of primitive elements are drawn at designated positions on 

the screen to present the configured system. The position of the primitive 

element (or subsystem) depends on the order that the primitive ele~p.ents 

(subsystems) were selected in the process of configuring a system. 

Web transport systems were classified into four basic types of 

configurations to facilitate the automatic assembly of the system 

configuration and the automatic generation of the mathematical model of 

the assembled system. The first primitive element of the system is assumed 

to be either an unwinding roll or a driven roller and the last primitive 
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element is assumed to be either a driven roller or a winding roll. System 

types can be classified based on the first primitive element at the upstream 

end of the system and the last primitive element at the downstream end of 

the system. Four types of systems may occur as detailed in the Table 6 

below and illustrated in Figure 57. 

TABLE 6 

FOUR TYPES OF SYSTEMS 

Classification First element Last element 

Type 1 unwind wind 

Type 2 unwind driven 

Type 3 driven driven 

Type 4 driven wind 

The total number of primitive elements relates to the the number of free 

web spans in the system as follows: 

Number of Primitive Elements= 2 N8 + 1, 

where N s is the number of spans. 

(137) 
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Automatic Assembly of Primitive Element into a System and Automatic 
Generation of the System Mathematical Model 

132 

An algorithm for the automatic assembly of primitive elements into a 

system and automatic generation of mathematical models was developed by 

the author through the study of mathematical models of the web transport 

systems. Consider the multi-span web transport system shown in Figure 58. 

vn -2 vn-1 

T ;,-2 n-1 

where 

and 

un+1 

T n : Change in web tension from a steady-state operating value 

foo : Steady-state operating value for web tension 

U n : Change in input to the motor 

uno: Steady-state operating value for input to the motor 

V n : Change in web velocity from a steady-state operating value 

v no: Steady-state operating value for web velocity. 

Figure 58. A Multi-Span Web Transport System in Section 5.3 
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Usually, motors are used to change the tangential velocities of rollers in 

order to control the web tension in each processing section. Rollers with 

vertical bar mean that these rollers are driven by motors. The n-th 

subsystem is defined as the combination of the n-th span and the roller at 

the right end of the span in Figure 58. 

The mathematical model describing the longitudinal dynamics of the 

n-th subsystem can be written in a state space form using equations (22) 

and (38) as follows. 

where 

A :Cross-sectional area of web 

Vno AE 

An : System matrix; An = Ln Ln 
_ R~ _ Brn 

In In 

Bn : Input matrix; Bn = 0 

Rn Kn 
In 

Brn: Rotary friction constant of bearing 

E : Young's modulus of web 

In : Polar moment of inertia of roll 

Ln : Length of web span 

~ : Radius of roller 

Xn : State vector; Xn = [ ~ :J 

(138) 
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It was assumed in the above mathematical model that the changes in tension 

in the entering and exiting spans were zero. It was also assumed that there 

is no slippage between the web and the rollers. 

The user inputs the number of spans when he configures a system. 

Then the number of primitive elements can be obtained using equation 

(137). As the user selects the primitive elements one by one starting at the 

upstream end of the previously synthesized system, WTS keeps track of the 

order of the primitive elements selected. The mathematical model of each 

primitive element is called one by one from WTS library according to this 

order to assemble primitive elements into a system and to generate the 

mathematical model of the assembled system. The system matrix of the 

mathematical model of the assembled web transport system has a unique 

structure. The elements around the diagonal of the system matrix have 

non-zero values and the rest of elements have zero values. The user also 

inputs the physical data for each primitive element. Once the number of the 

primitive elements, the order a primitive is selected, and physical property 

data for primitive elements are known, the system matrix can be easily 

obtained by calculating the non-zero elements of the system matrix by 

using equation (138). The algorithm for the automatic assembly of 

primitive elements and generation of mathematical models is summarized 

as follows. 

(1) Get the total number of web spans (Ns) from the user. 

(2) Calculate the total number of primitive elements (subsystems) 

using the equation (137). 
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(3) Keep track of the order of the primitive elements selected by the 

user. 

( 4) Get the physical property data and the dimension of the primitive 

elements (subsystems) from the user. 

(5) Calculate the elements of the system matrix (An) and input 

vector (Bn) by using equation (138). 

Inputs and Outputs 

Input data for the configuration, steady-state analysis, and dynamic 

analysis can be entered through data entry screens. The input data can be 

changed easily or corrected on the data entry screen. Units for parameter 

values used in the simulation are shown at the bottom of each data entry 

screen. 

Inputs to the WTS are : 

Number of web spans 
Young's modulus 
Thickness of web 
Width of web 
Lengths of web spans 
Web transport speed 
Radii of rollers/rolls 
Moments of inertia of rollers/rolls 
Viscous friction coefficients in bearings 
External restraining torque applied to unwinding roller (if 



Outputs 

there is an unwinding roller in the system) 
Input voltages to the driving motors 
Torque Constants of the Motors 
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Steady-state operating tension (at least in one span of the system). 

The WTS has three kinds of outputs: graphical representation of the 

configured web transport system, steady-state analysis output, and dynamic 

analysis output. The steady-state analysis output contains the steady-state 

values of the system states (velocities of rollers/rolls, tensions), and the 

dynamic analysis output is composed of plots of dynamic responses of the 

system output variables. 

An Example 

This section demonstrates how to design and analyze a web transport 

system by following the procedure in the WTS User's Guide [79]. Consider 

an one-span system comprising an unwinding roll, a free span, and a 

winding roll as shown in Figure 59. 

The default values of WTS given on pages 16 and 17 of WTS User's 

Guide [79] will be used for this example. 
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Free Span 

Unwinding Roll Winding Roll 

Figure 59. Unwinding- Rewinding System 

o (Identify the ·data and Operating conditions. ) 

No. of Spans= 1, Thickness of Web= 0.001 (in), Radii of Unwinding 

and Winding Rolls = 20 (in), Inertia of Rolls = 1504 (Lbf-in-sec-sec), 

Friction Coefficient of Bearings = 0.002 (Lbf-sec I in), Length of Span = 

120 (in), Width of Web= 60 (in), Young's Modulus= 350,000 (Lbf I (in­

in)), Initial Tangential Velocity of Rolls = 1,000 (ft I min), Initial Tension 

in Free Span = 0 (Lbf), External Restraining Torque at Unwinding Roll = 

0.0 (Lbf-ft), Step Input in Voltage to Driving Motor= 1 (volts), Motor 

Constant= 4 (Lbf-ft I volt). 
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0 

L = 120 

Free Span 

Unwinding Roll Winding Roll 

Figure 60. Sketch of Unwinding - Rewinding System 

0 ··••?rep~l"~} a·······d~t~·she~t for·· ··arhllysis• ··usijjg•·itlte .. slallda!"cJ <. f()rltt shown in figUI"e 6. · · · · · · · · · · · ·. · · · · · · · · · · · · · · · · · .·.·.·.·.·. · · · · ·· ·· · · · · · · · .·.·. · .·.·.··. · · · 
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1. General Data 

Description Data Unit 

Number of Spans 1 Integer 

Thickness of Web 0.001 m 

2. Unwinding Roll 

Description Data Unit 

Radius of Roll 20 m 

Inertia of Roll 1504 Lbf-in-sec-sec 

Friction Coeff. 
0.002 Lbf-sec I in of Bearing 

3. Free Span 

Description Data Unit 

Lengh of Span 120 m 

Width of Web 60 m 

Young's 
350000 Lbf I (in-in) Modulus 

Figure 61-1.2.3. Data Sheet for Analysis 
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4. Winding Roll 

Description Data Unit 

Radius of Roll 20 in 

Inertia of Roll 1504 Lbf-in-sec-sec 

Friction Coeff. 
0.002 Lbf-sec I in of Bearing 

5. Steady State Analysis 

Description Initial Tangential Velocity Unit 

1st Roll(er) 1000 ft I min 

2nd Roll(er) 1000 ft I min 

Description Initial Tension Unit 

Entering Span 0 Lbf 

1st Span 0 

Figure 61-4.5. Data Sheet for Analysis: Continued 



6. Dynamic Analysis 

' ; Description External Restraining Torque Unit 

1st Roll 0.0 Lbf-ft 

Description Step Input in Voltage 
Unit 

Motor Unit 
·to Driving Motor Constant 

2nd Roll 1 Volts 4 Lbf-ft I volt 

Figure 61-6. Data Sheet for Analysis: Continued 

o (Boot the colllputery 

o If hard disk is ~yaihtble, enter the hard dis~ / 
directory intO whic.h iWTS has· been···· copied using · 
the £.1> .~oJ1lman.a. < 
()r if hard disk is.J1ot a-vailable, place WTS l)isk 
ii1Drive A.>MakeDrive A the default drive··· By 
fjrpirig A: arid pressing RETURN····key. . .. ··· 

. .·.· .. · ..... · .·... ..·.· .. 

0 Type WTS and ]>ress RETURN key to start the 
program./ /··· 

The Main Menu will appear. 
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Web Transport System 

Main Menu 

I.''F.··.·.····.··.~·.· ... ··.•· " "·. · ·.·.·.c··.·.··.· .. ·.·."'.·.·.···.··.·.·.'·.·n·.·.·.·.··· .... , ...... ·· ··.·.······ "'.·.·.··.s · • ••· ··t····.·· .. ·.··.•.··.········.·. · .. I ·.·. . ···• · · ··• . on 1gure ys em 

F2 Confirm Configuration 

F3 Static Analysis 

F4 Dynamic Analysis 

F5 Exit 

Figure 62. Main Menu of WTS: for Example 
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o Select Fl tor. CONFIGURE SYSTEM >and then 

0 

:-press ::~~~ Rlt"!J.rltl'r ~~y; > • • •• • · · · · · ·· · ·· 

The general data entry screen will appear. 

Web Handling Research Center 

General Data 

Number of Spans 

Thickness of Web 

I t 
0.00.._1 ---

Figure 63. General Data Entry Screen 

PressENIJ key to leave· thegeneraldata entry···· 
screen~ < .· .. · .... ·····•·• ..... ··.··· ..... >G 
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The Sub-Menu will appear. 

Web Transport System 

Sub-Menu 

F2 Free Span 

F3 Driven Roller 

F4 Idle Roller 

FS Dancer-Type Device 

F6 Winding Roll 

F7 Return to Main Menu 

Figure 64. Sub Menu ofWTS: for Example 
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The data entry screen will appear. 

Web Handling Research Center 

Unwinding Roll : 1-st Element 

Radius of Roll I ;to 

Inertia of Roll 1504.0--­

Friction Coeff. of Bearing 0.00 ... 2---

Figure 65. Data Entry Screen for Unwinding Roll 

o (Press END ·key• to Jeave··the data·· entry· screen.) 

The Sub-Menu will re-appear. 

145 



o ·. S~~~~t·····F2<fd.t :}?r-~e•• Span••:•••afia·••·tlteri••• )lress·••.··th·~·······•••••••• . !!~!YJ!I! ··~~!· > .. · ..... · . · .. ·.·.·.··· ·.· .. ·. .·.·.·.···.· ... ·.·.· ·.·.·· .. · ... ·. . . . . ... ··.·.··.·.·.·.·.·.·.····· 

The data entry screen will appear. 

Web Handling Research Center 

Free Span : 

Length of Span 

Width of Web 

Young_s Modulus 

2-nd Element 

l···1·.·.··2.··· >o·.·.·.·.··.····.'· 
. " ..... . ·.-:-:-: 

60----

350000--

Figure 66. Data Entry Screen for Free Span 

o (Press>ENn··key to leave the data entry screen.) 

The Sub-Menu will re-appear. 
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0 

The data entry screen will appear. 

Web Handling Research Center 

Winding Roll : 3-rd Element 

Radius of Roll l2o····· 

Inertia of Roll 1504.0'---

Friction Coeff. of Bearing 0.002"-----

Figure 67. Data Entry Screen for Winding Roll 

o (Press END keyqto ···leave the data entry · screen.) 

The Main Menu will re-appear . 

.. ·········· .. ... . .. ·. 

o Select.F2 for.(~O}'WIRlVf C()NFIGURA1'ION 
and then press the RETURN key. 

. . . ····· . . .. .... . •···-- .· 
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Hit Any Key to Continue 

Free Span 
~I 

Unwinding Winding 

General Data 
No. of Spans 1 

Thick. of Web (in) 0.001 

Element Data 

Description 1st Elem Sect. 1 

Young's Modulus (psi) 350000 

Width of Web (in) 60.0 

Length of Span (in) 120.0 

R. of Roll(er):Ru/Rd/Rw(in) 20.0 20.0 

Iner. of Roll(er)(Lb*in*s*s) 1504.0 1504.0 

Friction Coeff.(Lb*Sec/in) 0.002 0.002 

Figure 68. Graphical Presentation of Configured System 
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The Main Menu will re-appear. 

0 ~~~1:~~~~. ~flJlJI~~~~~~~~~~·1:1~.~·:~ 
·-·-· .. ·.·.-. ·.·.·.-.... ·.·.· .. ·.·.·.·.·.· .. · .. ·.·.·.·.·.· .. -.·.-.·.-· .. -... ·.-.·.·-.·,··.·--- -.·.·.·.·.· ... -.-.-.- ...... ',',_ .. · ... -.·.·,·,·-·.·.··.·---·.-· ...... ·.·.·.·.·.·.·· '··.·.····.;-:-·-·.-.· .. 

The data entry screen will appear. 

Web Handling Research Center 

Data Input for Static Analysis 

Initial Tangential Velocity at: Initial Tension at: 

1st R o II ( er) IL!I.!O~O o~. ::=::::=:::J Entering Span 0---

2nd Roll(er) 1 000 __ _ 1st Span o __ _ 

Initial Tension is required at one section only 

Figure 69. Data Entry Screen for Steady-State Analysis 



o C·••Ptess•••·••END•••••·key•·•••o••••·•te~ve the.••••·data·•·•e11try•· screen.) 

The results of steady-state analysis will appear. 

Web Handling Research Ceter 

Static Analysis 

Roll(er) Tangential Velocity (ft I min) 

1st Roll(er) 

2nd Roll(er) 

1000.0000000 

1000.0000000 

Web Tension (Lbf) 

Entering Span : 0.0000000 

1st Span : 0.0000000 

Figure 70. Steady-State Analysis Results 
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o (Press•·•••• ally · ltey::••to••cfintinue•••••WTS .. ) 

The Main Menu will appear. 

o S~l~ci F4·••••tar••n¥NA.M:fc•••••A:NALYSIS>~ria·•·•thel1.T . pre~§ tli~ i{E.'["(Jf{N' key+•: · · .· · · ·.· 

The data entry screen will appear. 

Web Handling Research Center 

Data Input for Dynamic Analysis 

External Restraining Torque t...:l 0~·:..:;0:..=::::::::::::::::::::::::...~ 
at Unwinding Roll (1st Roll) 

Step Input in Voltage Motor Constant 
to Driving Motor 

2nd Roll(er) 1----
4 ___ _ 

Figure 71. Data Entry Screen for Dynamic Analysis 
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The results of the dynamic analysis will appear as follows. 

5.0 

4.0 

--..0 
-l 

c: 3.0 
.Q ...... 
. £Q .... 

C'C! 
> 
c: 2.0 
0 
en 
c: 
~ 

1.0 

Tension Variations from Initial Steady­
State Operating Value 

Initial Steady -State Tension (Lbtl 
T10: 0.0 

I 

I 

f\ I 
I ! 

I 

,Fvv--t I 

v 

v 

Legend 

-T1 

0.0 
0.0 2.5 5.0 

Time (sec) 

7.5 10.0 

Hit Any Key to Continue 

Figure 72. The Result of Dynamic Analysis 

o (Press any key ·.to continue WTS.) 

The Main Menu will appear. 
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CHAPTER VI 

TENSION CONTROL IN SINGLE-SPAN SYSTEMS 

It was pointed out in Chapters I and IV that open-loop draw control 

may not produce accurate control of the web tension in a moving web. In 

this chapter, techniques for producing higher accuracy through closed-loop 

tension control in a moving web are discussed. Examples are presented to 

illustrate the use of a fixed-gain PID controller with feedforward 

controller for time invariant single-span web transport systems and a 

variable-gain PID controller for a time varying web transport system 

(winding section). The ability of these control strategies to overcome 

different types of disturbances is discussed. 

Tension Control in a Single-Span System 

Consider a schematic diagram of a closed-loop tension control 

system shown in Figure 73 for a single-span system. Suppose that the 

tension t2 is to be controlled accurately. Two well-known approaches for 

implementing the controller are: (1) a fixed gain PID controller and (2) a 

fixed-gain PID controller with a feedforward element. An example is 

solved below to illustrate the advantages and disadvantages of these two 
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\' 
1 

v 2 

MillOR 

Figure 73. Schematic Diagram of a Tension Control System 
for a Typical Single-Span System 

appr.oaches. 
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Equations (22) and (38) constitute the linearized mathematical model 

for the open-loop system. For the case when v2 = w2 (i.e., no slippage 

occurs between the web and rollers) the dynamic model is given by the 

following equations: 

dV2 _ Bt2y R~ (T T) R2K U - - - - 2 + - 3 - 2 + - 2 2, 
dt h J2 h 

(140) 



where 

• 

K2 : Motor constant 

T n : Change in web tension from a steady-state operating value 

~ :Web tension;~= ~0 + Tn 

~0 : Steady-state operating value for web tension 

U2 : Change in input to motor from a steady-state operating value 

V n : Change in web velocity from a steady-state operating value 

v 0 : Total web velocity; v n = v nO + V n 

v00 : Steady-state operating value for web velocity. 

PID Control 
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A closed-loop tension control system employing a PID controller is 

represented by the block diagram shown in Figure 7 4. 

From the block diagram shown in Figure 74, the closed-loop transfer 

function can be written as follows: 

(141) 

For simplicity, it is assumed that T1 = V1 = T3 = 0. In this case the closed­

loop transfer function reduces to: 



T3 
GT3 (s) .. -

T 2ref + \r T .. . G (s) . Gp(s) + -.1'"\ 2 . - ,,., c -
,~ 

-
-·~ ~-

Lj--(-Tt 
G Tt (s) .. -

vt .. Gv (s) - 1 

Gc(s) = Kp + ~i + Kcts : PID controller 

G (s) = .1 K AER2 
P ~ 2 LJ2 ' 

G (s) = .1 AER~ 
T3 ~ LJ2 

G (s) = .1 AE(s + Bf2) 
Vl ~ L h 

Figure 74. Block Diagram of a Closed-Loop Tension 
Control System for the Single-Span System 
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or 

where 

and 

_!2_ = bzs2 + b1s + bo = bzs2 + b1s + bo 
T2rer s3 +a2s2 + a1s + ao F(s) 

ao = ~oKi, 

a1 =no+ ~oKp , 

a2 = <Xt + ~oKd , 

bo = ~oKi 

bt = ~oKp 

bz = ~oKd 
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(142) 

(143) 

Suppose the specifications for the second order closed-loop tension 

control system are given in terms of a steady-state error (i.e., ess = 0), a 

damping coefficient (s), and a natural frequency (ron). The characteristic 

equation of the closed-loop tension control system derived is the third 

order (see equation (143)). The third order characteristic equation of the 

desired closed-loop tension control system can be rewritten in terms of s 
and ron as follows [24]. 

F(s) = (s + r)(s2 + 2sron + ro~) = 0, (144) 

where 

kr > 10. 



The gains of the PID controller can be obtained by comparing terms in 

equations (143) and (144). That is, 

(145) 

(146) 

(147) 
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Using equations (145) through (147), a PID controller can be designed for 

given system parameter values and specifications for the closed-loop 

tension control system. 

A PID controller was designed for the closed-loop tension control 

system assuming that T 1 = V 1 = T 3 = 0. An example was solved to 

demonstrate the performance of the closed-loop tension control system 

with the PID control when a disturbance T3 = 0.001 lbf is introduced. The 

desired specifications for the closed-loop tension control system are given 

in Table 7. The desired step response was obtained by simulating equation 

(143) and is shown in Figure 76. T2rer(t) = 0@ t = o- and T2rer(t) = 1.0 lbf 

@ t = O+. The parameter values and system conditions used for the 

simulations are given in Table 1. The simulation results are shown in 

Figure 76 (curve for T3 = 0.001). The transient performance of the closed­

loop tension control system with a PID controller was not satisfactory 

when the disturbance T 3 was introduced. 



TABLE 7 

SPECIFICATIONS FOR A CLOSED-LOOP 
TENSION CONTROL SYSTEM 

Steady-State Error 
Damping Coeff. of qlosed-Loop System 
Natural Frequency of Closed-Loop System 

PID Control with Feedforward 

ess = 0 
~ =0.7 
IDn = 10 
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Simple PID control of tension in the span does not result in rejecting 

disturbances due to v~, Tt, and T3. A PID controller with an additive 

feed-forward control element will reject the disturbance T3 under the 

assumption that T 3 is measurable. But, the feedforward control cannot be 

implemented for disturbances T 1 and V 1• When feedforward controllers 

were designed for T 1 and V 1, feedforward controllers were noncausal. 

Figure 75 is a block diagram of a closed-loop tension control system with a 

feedforward feature. 

With the feedforward control feature in addition to the PID 

controller, the output of the closed-loop system can be written as the 

follows when T 1 and V 1 are assumed to be zero. 
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(148) 

T3 
GT3(s) 

Gff(s) 

T 2ref + 
+ 

+ 
G (s) __. GP(s) c + 

Figure 75. Block Diagram of a Closed-Loop Tension Control 
System for the Single-Span System: with PID and 
Feedforward Control 

Since the feedforward controller Grr can be designed such that: 

(149) 

the disturbance, T 3, can be rejected. 

A PID controller with feedforward control feature was designed for 
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the closed-loop tension control system assuming that T1 = V1 = 0. An 

example was solved to demonstrate the performance of the closed-loop 

control system with PID and feedforward control. The desired 

specifications for the closed-loop tension control system are given in Table 

7. The parameter values and system conditions used for the simulations are 

given in Table 1. T2rer(t) = 0@ t = o- and T2rer = 1.0 lbf. A disturbance T3 

(0.001 lbf) was introduced to the closed-loop system. The simulation result 

is shown in Figure 76 (curve for T3 = 0.001 lbf). The disturbance T3 was 

rejected when the feedforward controller was added to the PID controller. 

In summary, a fixed-gain PID controllers with and without 

feedforward feature were designed for a single-span system. The tension in 

the single-span system can be properly controlled by using the fixed-gain 

PID controller when disturbances are not considered. Feedforward control 

can be used to reject some types of disturbances and to improve the 

dynamic performance. 

Tension Control in a Winding Section 

The purpose of this section is to illustrate an important application 

where a fixed-gain PID controller may be an improper choice. The 

application involves a time-varying parameter and lends itself well to the 

use of a variable-gain PID controller. 
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2 

~ 1.6 
PID without Feedforward 

...... ....... 
~N 

§ .... 
~ 

1.2 

"5 
> 
§ 

0.8 PID with Feedforward 

·v.~ 
c:: 
~ 0.4 

0 
0 0.2 0.4 0.6 0.8 1 

Time [sec] 

Figure 76. Performances of Closed-Loop Control Systems with 
PID Control: with and without Feedforward Control 
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A schematic diagram of a tension control system for a winding 

section is shown in Figur~ 77. Equation (141) is the transfer function for 

the system in Figure 77 when PID control is used. For the simplified case 

when T1 = V1 = T3 = 0, efluation (143) also represents the system in Figure 

77. Unlike in the previous example, the radius of roll, R2, are time­

varying. Therefore the parameters a2, al, and ao in the system 

characteristic equation are time varying. 

The polar moment of inertia of the winding roll can be expressed as 

a function of the radius of the roll if the density of roll is known. A "build­

up :,atio" Rb is defined as: 

where 

R2 = Radius of winding roll, 

Rc2 = Initial radius of winding roll. 

The system parameters ao, a1, and ~o in equation (143) can be rewritten as 

functions of the build-up ratio, Rb, as follows. 

(150) 

(151) 



J3o = K2 AER2o _l_ , 
U2o R6 

(152) 

where J20 represents the initial moment of inertia when Rb = 1.0. 

v 1 

DRIVEN ROlLER 

SENSOR 

WINDING ROLL 

MOTOR 

Figure 77. Schematic Diagram of a Tension Control System 
for a Winding Section 
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An example was solved to demonstrate the performance of the 

closed-loop tension control system with a fixed-gain PID controller when 

the parameters a2, a1, and a0 in the system characteristic equation are time 

varying. The desired specifications for the closed-loop tension control 

system are given in Table 7. The desired step response was obtained by 
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simulating equation (143) and is shown in Figure 78. The parameter values 

and system conditions used for the simulations are given in Table 1. 

Equation (143) with system parameters a.o, ah and f3o in equations (150) 

through (152) were used for the simulation. T 2ret<t) = 0 @ t = o- and T 2ref = 
1.0 lbf@ t = O+. The simulation result is shown in Figure 78. Since the 

parameters change as the build-up ratio changes, the fixed-gain PID 

controller designed in the previous section cannot meet the desired 

specifications any more in the winding section (see Figure 78). 

A simple adaptive control technique may be used to overcome the 

deficiency of the fixed-gain PID controller. The idea of the simple adaptive 

control technique is to continuously update the gains of a PID controller 

(variable-gain PID controller) according to the change of the time-varying 

parameter, build-up ratio. A schematic diagram of an variable-gain tension 

control system is shown in Figure 79. A block diagram for the adaptive 

control system is shown in Figure 80. 

Equations (145) through (147) that were used to design the fixed­

gain PID controller in the previous section can be used to design a 

variable-gain PID controller for the winding section. The gains (Ki, KP' 

Kd) of the variable-gain PID controller can be calculated as follows: 

(153) 

(154) 

(155) 



166 

and 

ao = v20Bt2 _1_ + AER~o _1_ , 
U2o R~ Lho RG · 

(156) 

(157) 

(158) 

J2o represents the initial moment of inertia when Rb = 1.0. ao, a 1, and ~0 

are functions of the build-up ratio and, therefore, are functions of time. As 

the radius of the roll is continuously updated through measurement, the ao, 
<Xb and ~o in equations (153) through (155) are calculated from equations 

(156) through (158). Then, the variable-gain PID controller can be 

designed from equations (153) through (155). The objective of the 

algorithm is to continuously position the poles of the closed-loop transfer 

function in the specified locations in the left half s-plane as one or more 

system parameters are changing with time. 

An example was solved to illustrate the performance of a variable­

gain PID controller for tension control in a winding section. It was 

assumed that T1 =T3 = V1 = 0. The desired specifications for the closed­

loop tension control system are given in Table 7. The desired step response 

was obtained by simulating equation (143) and is shown in Figure 81. The 

parameter values and the system operating conditions used for the 

simulation are given in Table 1. T2rec(t) = 0@ t = o- and T2rec(t) = 1.0 lbf 

@; ; = o+. 
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Figure 78. Tension Outputs for System with a 
Fixed-Gain PID Controller 
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DRIVEN ROLLER 

WINDING ROLL 

MOTOR 

Figure 79. Schematic Diagram of an Adaptive Tension 
Control System 

SPECIFICATIONS r. ADAPTATION 
4 

MECHANISM IDENTIFICATION 

+ i 
t 2ref + ADAPTIVE .. .. PID ... PLANT - ..... ,/ . -

- CONTROLLER 

LOAD CELL 

t2 

Figure 80. Block Diagram for an Adaptive PID Control System 
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Outputs are step response,T2, for the build-up ratios Rb = 1.5, 1.75. The 

outputs from the tension control system with a variable-gain PID controller 

is compared with the outputs for the case with a fixed-gain PID controller 

in Figure 81. As shown in Figures 81, the step response of the model 

system with variable-gain PID controller satisfies the desired specifications 

very accurately, but the fixed-gain PID controller is not capable of 

providing adequate performance except at one fixed value of build-up 

ratio, Rb = 1.0. 

In summary, a variable-gain PID controller was designed for the 

tension control in a winding section. The variable-gain PID controller 

produced a desired solution for a system with a time-varying parameter 

(i.e., a winding roll with increasing radius). 

The idea used for the adaptive control in the winding section is also 

called as the gain scheduling approach. An advantage of this approach 

compared with other adaptive control techniques is its simplicity. This 

approach is easy to implement and shows promise for applications where 

the time-varying parameter is easily measured. However, the weakness of 

this approach is that it is not robust against measurement noise or 

unmodeled disturbances. 
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CHAPTER Vll 

TENSION CONTROL IN MULTI-SPAN SYSTEMS 

A web may have to pass through several consecutive processing 

sections (e.g., cleaning, coating, drying, etc.) in the manufacture of an 

intermediate or final product. Different web processing sections may 

require different conditions, e.g., different tension levels. A typical control 

problem in a multi-span web transport system is maintaining the required 

longitudinal tension level in each processing section, and at same time 

stabilizing the overall web transport system. Some type of distributed 

control is required. Two primary techniques are used in the web 

processing industries for the distributed control ,of tension: they are open­

loop "draw control" and "progressive set-point coordination" control 

(open-loop and closed-loop). 

The problem with open-loop control of tension is that disturbances 

are not rejected and precise control may not be achieved. The progressive 

set-point coordination control forces tensions in the downstream web spans 

to be automatically changed when the tension in an upstream web span is 

changed. In order to overcome these deficiencies, a method for designing a 

closed-loop distributed control system for the control of web tension in a 

multi-span web transport system is developed in this chapter. 
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Open-Loop Draw Control 

In open-loop "draw control", tension in a web span is controlled by 

controlling the velocities of rollers at either end of the web span. Control 

of web tension using draw control requires extremely accurate control of 

the roller velocities, a requirement which may be very difficult or 

expensive (see section 1.3). Also, when open-loop draw control is used, a 

disturbance from an adjacent web span cannot be rejected no matter how 

accurately the web velocity is controlled (see section 1.3). 

Progressive Set-Point Coordination Control 

In progressive set-point coordination control, once an input is 

provided to an upstream driven roller, an input of the same magnitude is 

automatically provided to each of the driven rollers which follow 

downstream (see section 1.3). Progressive set-point coordination control is 

effective for the start-up or shut-down of a system. But, it is not a desirable 

technique for normal operation of a multi-span web transport system. This 

technique forces tensions in the downstream web spans to be automatically 

changed when the tension in an upstream web span is changed. That is, 

unwanted disturbances are automatically introduced to downstream web 

spans when there is an input to an upstream processing section. The 

problem with the progressive set-point coordination control was fully 

analyzed through the simulation of models and experimental studies in 
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section 4.3. 

Closed-Loop Control 

In order to overcome deficiency of open-loop draw control and 

progressive set-point coordination control, a method for designing a 

closed-loop distributed control system for the control of web tension in a 

multi-span web transport system is developed in this section. The objectives 

of the control system are to produce the desired performance in each 

subsystem and to guarantee stability of the overall system in the presence of 

interactions between adjacent web spans. 

Multi-span web transport systems generally can be simplified as 

shown in Figure 82. Usually, motors are used to change the tangential 

velocities of the rollers in order to control the web tension in each 

processing section. un denotes the change in the input to the n-th driving 

motor, V n denotes the change in the tangential velocity of the n-th driven 

roller, and T n denotes the change in the longitudinal tension in the n-th 

span. 

The system shown in the Figure 82 can be considered as a set of 

interconnected subsystems. Each subsystem consists of a web span and a 

driven roller at the right end of the web span. The n-th subsystem will be 

called as s0 • 

By using equations (22) and (38), a linearized mathematical model for 

the n-th subsystem, S0 , can be written as [11]; 



T n-2 

v n-2 

T n-1 

Figure 82. A Multi-Span Web Transport System 

dTn = _ Vno Tn + Vn-1 o Tn_1 + AEcv y ) - n- n-1 · 
dt Ln Ln Ln 
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UD+l 

(159) 

(160) 

The problem is to design controls Un, n= l, ... ,N, such that these controls 

together guarantee precise control of tension in each subsystem and the 

stability of the overall system. N is the total number of subsystems. 

The mathematical model for the n-th subsystem given in equations 

(159) and (160) can be rewritten in a more compact form as shown below: 



Yn = CnXn, 

where 

-~ 
Ln 

Ali 
Ln 

An= 
_ R~ _ Bfu 

Jn Jn 

Bn= 
0 

' 
Rn Kn 
Jn 

[
Vn-1 0 AEI 

Ann-1 = ~n ~n , Ann+1 = 
0 
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(161) 

(162) 

' Cn =( 1 0] 

0 

0 

An and Bn are the system matrix and the input vector, respectively. The 

matrix An n-1 and An n+1 are called "interconnection matrices". All pairs 

(An, Bn) are controllable, and all pairs (An, Cn) are observable in the above 

equations. 

The problem is to design a set of local controllers for the subsystems 

of distributed system. Each local controller includes feedback and 

feedforward control. Feedforward control may be used to reject some 

types of disturbances as discussed in section 6.1. Each local controller has 

the form of: 



U n = - F n Xn - Gn Xn+ 1 ' 

where n = 1 , ... , N. 

F n and G0 are the gains for the feedback and the feedforward control 

respectively. 
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The pole assignment technique is quite commonly used for controller 

design. This technique may be used in the design of a local controller for· 

each subsystem in a multi-span web transport system. It must be assumed 

that all the states are accessible by either measurement or estimation. Only 

states and inputs of corresponding subsystem and adjacent subsystems are 

used in designing local controllers. 

Closed-Loop Control Using an Auxiliary Dynamic Model 

Derivation of an Auxiliary Dynamic model 

Coupling between the equations which describe the longitudinal 

dynamics of the web in a multi -span system, complicates the design of a 

distributed control system. In this section, the describing equations will be 

modified such that they are decoupled. The set of modified equations will 

be referred to the "auxiliary dynamic model". 

Using equations (159) and (160), the mathematical models for the 

subsystems S0 _1 and s0 can be written as: 

dTn-1 _ Vn-IOT + Vn-20 T + AE(V y ) - - n-1 n-2 n-1 - n-2 · 
dt Ln-1 Ln-1 Ln-1 

(163) 
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-=--dV.:...un.:.L-1 ~ V + R;_1 (T T ) + Rn-1 K u - = - n-1 n - n-1 n-1 n-1 · 
dt In-1 In-1 In-1 

(164) 

dT n = -YnfrT + Yn:il T ~V V ) n n 1 + n - n-1 · 
dt Ln Ln - Ln 

(165) 

(166) 

Observing the mathematical models in equation (165) reveals that the 

velocity difference (V0 - V0 _1) between the ends of the n-th span can be 

used as a control variable, instead of the individual velocities. An 

"auxiliary dynamic model" may be derived from the mathematical model 

of the system by introducing a new state variable (V 0 0 _1 = V 0 - V 0 _1). 

The auxiliary dynamic model can be derived as follows. 

Let 

vn n-1 = vn- vn-1' 

where n =1, ... ,N. 

Using equation (167) in equation (165) yields: 

dTn _ Vno T + Vn-10 T AEy -- - n n-1 +- n n-1 · 
dt Ln Ln Ln 

(167) 

(168) 

The tension in the n-th span depends only on the velocity difference (V0 0 _1) 

instead of the absolute tangential velocities (V0 and V0 _1) of the rollers in 



the n-th subsystem. And substituting equation (167) into equation (166) 

yields: 

d(Vn-1 + Vn n-1) _ Brn(V + y ) + R~ (T T ) ---'-----=.:....=------'c:....:.:....;~ - - . n-1 n n-1 - n+1 - n 
dt Jn Jn 

(169) 

Subtracting equation (164) from (169) gives: 

(170) 

+ [ R~ T (R~ + R~-1 )T + R~-1 T ] - n+1 - - -- n -- n-1 
Jn Jn Jn-1 Jn-1 

Rn K U Rn-1K U + - n n - - n-1 n-1 · 
Jn Jn-1 

By using equation (167), V0 _1 in equation (170) can be written as: 

vn-1 = vn-2 + vn-1 n-2 

= vn-3 + vn-2n-3 + vn-1 n-2 

N-1 

= V0 + L vii-I . 
i=l 

(171) 
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179 

where V 0 is the tangential velocity of the driven roller under master speed 

control, Vi i-1 is the change in the velocity difference associated with the i­

th span, and N is the total number of spans (subsystems) in a multi-span 

system. 

And in equation (170), let the input difference (U0 0 _1) between then­

th and (n-1 )-th subsystem: 

Rn K U Rn-1K u = - n n - -- n-1 n-1 · 
Jn Jn-1 

(172) 

Substituting equations (171) and (172) in equation (170) gives: 

N-1 
dVn n-1 = _l!fu_y n n-1 - (!!m.- Brn-1 )(Vo + L Vi i-1) 

dt Jn Jn Jn-1 i=1 

+ [ R~ T (R~ + R~-1 )T + R~-1 T ] - n+1 - - - n -- n-1 
Jn Jn Jn-1 Jn-1 

+ Unn-1 · (173) 

Equations (168) and (173) constitute the "auxiliary dynamic model" for 

the n-th subsystem. The input difference un n-1 in equation (172) is defined 

as the "auxiliary control". 
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Design of Local Controllers Usini the Auxiliary Model 

In this section, a procedure for designing each local controller in the 

distributed control system is developed. The advantage of using the 

auxiliary dynamic model in the design of the distributed control system 

will be illustrated using a numerical example. 

To simplify the problem, it is assumed that J0 = J, R0 = R, Brn= Br, 

and K0 = 1 for n=1, ... ,N in equation (173). Then, the auxiliary model for 

the n-th subsystem s0 , represented by equations (168) and (173), can be 

rewritten in a compact form as: 

Yn = CnXn, (175) 

where 

[ Tn l Xn= ' 
Vnn-1 

Bn = [ ~ ] , Cn = [ 1 0 ] 

, An n-1 = 

Ann+1 =[ O 
R2 
J 

0 

0 
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The block diagram for the closed-loop subsystems shown in Figure 83 can 

be obtained using equations (167), (168), and (172) through (175). The 

block diagram shows the structures of two closed-loop subsystems (second 

and third subsystems) which use the auxiliary dynamic models in the design 

of local controllers. The purpose is to design local controls U0 , n=1, .. N, 

such that Y0 , n=l, .. ,N can be controlled at the desired level within given 

performance specifications and such that the overall system is stable. 

Auxiliary controlS U0 0 _1, n= l, ... ,N, which were defined in equation 

(172) may be designed using the auxiliary dynamic model represented by 

equations (168) and (173) and the specifications for each subsystem. The 

control for each subsystem is calculated from equation (172) as follows: 

Un = _ln_ (Un n-1 + Rn-1 Kn-1 Un-1). 
RnKn In-1 

(176) 

Feedforward control may be used in the design of local controller to reject 

some types of disturbances as discussed in section 6.1. Each local controller 

incorporates both feedback and feedforward control. Let the auxiliary local 

control be: 

Un n-1 = Hn(Unc- FnXn- GnXn+l), 

where un n-1 is the auxiliary control for the n-th subsystem 

unc is the reference input for n-th subsystem 

F 0 is the feedback gain vector for the n-th subsystem 

(177) 

G0 is the feedforward gain vector for the n-th subsystem 

H0 is the overall gain for the local controller. 
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Substituting equation (177) into equation (174) gives: 

Xn = AnXn +An n-lXn-1 +An n+tXn+l + BnHnUnc , (178) 

where 

An = An - BnHnFn , 

An n+l =An n+l- BnHnGn . 

An n+l in equation (178) can be factored by Bn and Hn as: 

(179) 

By using equation (178), On can be selected such that 

An n+l = 0 . (180) 

Hn and F n can be selected by the pole placement technique such that the 

closed-loop local subsystem meets the performance specifications. 

Examples for the Design of Local Controllers 

To illustrate the advantage of using the auxiliary dynamic model, 

simple numerical examples in the design of a distributed control system 

were solved for a two-span web transport system. Two cases were 

considered. 
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Case 1: Using the auxiliary dynamic model. 

Case 2: Using the original mathematical model. 

Consider the two-span system as shown in Figure 84. The control U1 is 

considered as the master speed control and assumed to be controlled 

perfectly to guarantee no velocity variance in v 1, i.e. V 1 = 0.0. 

Figure 84. A Two-Span Web Transport System 

184 

Assume that desired closed-loop transfer functions for subsystems sn, 

n=2,3, were given as: 

Y n = 100 Unc , for n = 2, 3 , 
s2 + 14 s + 100 

(181) 
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And U2c = T 2ref = 0, and U3c = T 3ref = 0.0 . 

Case 1: Using the auxiliary dynamic model. 

The auxiliary dynamic model for the two-span system shown in Figure 84 

IS: 

(182) 

(183) 

where 

Xn = [ T n ] , Bn = [ O ] , Cn = [ 1 0 ] 
Vn n-1 1 

_ Vno AE Vn-1 0 0 
An= Ln Ln , An n-1 = Ln 

R2 _!k R2 -2- 0 
J J J 

An n+1 = 
0 0 

R2 0 
J 

and n = 2, 3. 

The operating conditions and parameter values used for the design are 

given in Table 1. 

When xn-1 and xn+1 are assumed zero, the closed-loop transfer 

function for the n-th subsystem can be obtained using equations (178) 
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through (180) as: 

Yn = ao Unc, n =2,3 , 
s2 + a1 s + ao 

(184) 

where 

ao =!no. (!!r+ Hnf~) + ~2 &:_+Hnf~), 
Ln J Ln J 

Equating equation (183) and (184) allows us to select Hn and Fn. First of 

all, by using equation (178), Gn can be selected as: 

Gn ~Jt[~2 0], n~2,3. (185) 

The designed controls for local subsystems are: 

Hn = 0.02381 , n = 2,3 . (186) 

Fn = [ -1.0661 517.8496], n = 2, 3 · (187) 

With Hn and Fn from equations (186) and (187), the auxiliary control can 

be obtained by using equation (177) as : 



With the auxiliary control U0 0 _1, the local control can be obtained as 

follows using equation (176). 

U _ Jn (U + Rn-1 U ) n -- n n-1 -- n-1 , 
Rn In-1 

n= 2, 3. 
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It was assumed that K0 = 1.0, n= 2, 3. The performance of the controller 

designed based on the auxiliary dynamic model were determined for a step 

change in u1 (i.e., U1(0-) = 0, U1(0+) = 0.1 for this example). 

Case 2: Using the original model. 

The original mathematical model for the system shown in Figure 84 

IS: 

(188) 

Y n = CnXn , n = 2, 3, (189) 

where 

x.=[~:J· Bn = ; ] , Cn = [ 1 0] 

_ VnQ .Ali 
[Vn-10 AEI I 

]-
An= Ln Ln , Ann-1 = ~n ~n , Ann+1 = 

0 0 
_ R2 _ Br R2 

J J 0 
J 

With original mathematical model represented by equations (188) and 



(189), the control for the n-th subsystem can be given as: 

Following similar procedures as those of case 1, 

And 

Gn = _L [ R 0 ] , n = 2, 3 , 
Hn 

Hn = 0.4475 , n = 2, 3 

Fn = [ -0.138 517.8496] , n = 2, 3 . 

(190) 

(191) 

(192) 

(193) 

The performance of the controller designed based on the original 

model were determined for a step change in u1 (i.e., u 1 co-)= 0, 

U 1 (0+) = 0.1 for this example). 

188 

The solutions for the examples are given in Figures 85 and 86. When 

the auxiliary model is used in the controller design, control signals (U2, 

U 3) are generated such that they induce necessary velocity difference 

between rollers just enough for the required tension variations in the web 

span. 

In conclusion, when the auxiliary model was used in the control 

design, a change in control, U 1 (from 0.0 to 0.1) did not affect the closed­

loop system performance in T 2 and T 3, whereas it did in the case when the 

original model was used in the design of control system. 
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One disadvantage of using velocity difference as a control variable 

for tension control is that the magnitude of velocity difference is very 

small, and so measurement must be very accurate. 

Stability of Overall System 
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A set of local controllers to be designed for the distributed tension 

control system should guarantee not only the required performance 

specifications for each subsystem but also the stability of the overall 

combined system. The problem of designing local controllers in the 

distributed control system was considered in section 7 .3. In this section the 

problem of stability of the overall system will be considered when all 

closed-loop subsystems are combined. 

Practically, it is almost impossible to completely reject disturbances 

from adjacent subsystems when each local controller is designed for a 

multi-span system. Even though each subsystem is designed to be stable, the 

stability of the overall closed-loop multi-span system is not generally 

guaranteed since the subsystems are coupled through the continuous web. 

The basic idea is to find the eigenvalues of the closed-loop local controllers 

in the overall system which reduce the effect of interactions between 

subsystems to the minimum. The concept of global BIBO (bounded-input 

bounded-output) stability where, whenever the input and the initial 

conditions are bound, the output is guaranteed to be bounded [28] will be 

used to develop a stability condition for the combined overall web 

transport system. An essential tool in establishing BIBO stability 
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mathematically is the use of inequalities. The Bellman-Gronwall inequality 

[29] will be employed to treat the problem of overall system stability in the 

proposed study. And it is necessary to define the norm of a real vector in 

order to use the Bellman-Gronwall inequality. 

Let R n denote the n -dimensional vector space. If a certain norm of a 

real vector X e R0 is defined as II X II, then the induced matrix norm II A II 

of a matrix A e R mn is defmed as [30]: 

II AXIl 
II A II= sup II X II = sup II AX II = sup II AX II . 

x:;tO IIXII=l IIXII<l 
X ERn 

Selecting the definition of II X II as : 

IIX II= L I Xi I' 
i 

(absolute sum) 

where xi, i=1,2, ... ,n denotes the elements of the vector. 

The corresponding induced norm is given by: 

II A II= max { L I aij I} (column sum) 
j 

(194) 

(195) 

(196) 

where aij• i = 1, 2, .. ,m, j = 1, 2, ... ,n denotes the entry of the matrix A. 

Now, consider the mathematical model for the n-th closed-loop 

subsystem developed in section 7.3 (equation 178) again: 
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Xn = AnXn +An n-lXn-1 +An n+lXn+l + BnHnUnc , (197) 

where 

Define the transition matrix of the n-th closed-loop subsystem as: 

<l>n(t) = exp ( Ant ) . (198) 

Then, the solution for equation (197) can be written as : 

Xn(t) = <l>n(t} Xno + L <l>n(t -h}[Bn HnUnc(h) +An n-!Xn-J(h) +An n+IXn+!(h)] dh 

(199) 

The problem is to find the control law represented as : 

(200) 

where n=1,2, ... ,N such that the combined system is asymptotically stable. 

The eigenvalues of the An = An - BnHnFn can be selected by using the 

pole placement technique in the left half of the s-plane so that the transition 

matrix satisfies the following inequality: 

II <l>n(t) II ::; ~n exp ( - ant ) , for an> 0 and Pn > 0 . (201) 
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where - an denotes the negative real part of eigen value nearest to the j m­

axis of the n-th closed-loop subsystem matrix An • 

Performing norm to both sides of equation (199) gives: 

II Xn(t) II = II <I>n(t) IIIIXno II 

+ L II <l>n(t -h) II [11 B. II II H. II II Unc(h) II+ II Ann-1 1111 Xn_,(h) II+ II Ann+! 1111 Xn+l(h) 11] dh 

(202) 

Assume that the reference inputs for the subsystem are bounded, and let 

II Unc(t) II ~ 8nc II Xn(t) II , (203) 

where 8nc is a positive constant. Equations (199) and (201) make this 

assumption possible. 

Substituting equations (201) and (203) into equation (202) gives: 

II Xn(t) II = ~n exp ( - <Xn t ) IIXno II 

+ L J3.exp[-a,(t -h)] [11Bn1111fl.llli.c IIXn(h)ll + 11Ann-11111Xn-l(h)ll +II Ann+! IIIIXn+l(h)ll] dh 

(204) 

Aggregating N equations of equation (204 ), the inequality of the combined 

system is formed as: 



X(t)s:MXo+ L MP(t-h)QX(h) db' 

where 

X = [ II X1 II , ... , II XN II ]T 

Xo =[II X1,0 II, ... , II XN,o II JT 

M = diag { fh, .... ~N } 

P(t) = diag( exp (- a1 t ), ... , exp (-aNt)} 

Q= 

and 

0 

0 

0 

0 

0 

QN-2 N-3 QN-2 N-2 QN-2 N-1 

0 

0 

q21 = IIAztll , Q22 = IIBziiiiHzll fuc, Q23 = IIA23II 

0 

0 

0 

<lNN 

(205) 

QN-2 N-3 = IIAN2N311, <lN-2 N-2 = IIBN-21111HN-211 ~-2 c. <lN-2 N-1 = IIAN-2 N-111 

QN-1 N-2 = IIAN-1 N-211, QN-1 N-1 = IIBN-11111HN-111 ON-1 c ' QN-1 N = IIAN-1 N II 

QNN-1 = IIANN-111, <INN= IIBNIIIIHNII ONe • 

Applying the norm operation to equation (205) yields: 
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II X(t) II ,:; II M 1111 P(t) 1111 Xo II+ r II M 1111 P(t -h) 1111 Q IIIIX(h) II dh 

(206) 

Using the definition of the induced norm operation gives: 

II M II =max { ~t.····~N } = ~max, (207) 

\ 

II P(t) II = max { exp ( - a 1 t ), ... , exp ( - <XN t ) } = exp ( -<Xmm t ), (208) 

II Q II = m~x {11 Bj 1111 Hj II Bjc +II Aj-l j II+ II Aj+lj 11}, (209) 
J 

where j = 1, ... ,N, and II Aot II = 0 , II AN+l N II = 0. 

Note that II Aj-1 j II = 0, j = 1, ... , N in the closed-loop system since 

feedforward control gain Gn was designed such that An n+l = 0, n = 1, ... , 

N in equation (197). 

Substituting equations (207) and (208) into (206) yields: 

II X(t) II,:; ~max exp(- <Xmin t) II Xo II+ r ~max exp [- <Xm;n( t - h )]II Q IIIIX(h) II dh 

(210) 

Multiplying both sides of equation (210) by exp( <Xmin t) gives: 
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exp( 1Xmin t)ll X(t) II s 13max II Xo II+ f flmax II Q II exp ( llmin h) IIX(h) II db 

(211) 

Using the Beilman-Gronwall Lemma [29] in equation (211) gives: 

or 

exp( !lmin t)ll X(t) II S 13max II Xo II exp [ f l3max II Q II dh] . 

(212) 

exp( <Xmin t)ll X(t) II~ ~max II Xo II exp [~max II Q II t] . (213) 

Multiplying both sides of equation (213) by exp(- <Xmin t) gives: 

II X(t) II~ ~max II Xo II exp [- (<Xmin- ~max II Q II) t] . (214) 

Thus, in order to have the combined system asymptotically stable in 

equation (214), the following condition should be met: 

<Xmin >~max II Q II, (215) 

where 

II Q II =m~x{11Bj1111Hjll Ojc+11Aj-tj11+11Aj+tj11}, j = 1, ... ,N, and 
J 

II AOI II = 0 , II AN+l N II = 0 . 

From the stability condition represented in inequality (215), it is interesting 
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to note that the asymptotic stability of the overall closed-loop system 

depends on the local control (an, H0 ), the magnitude of local inputs, and the 

degree of interconnections between subsystems, II Aij II. 

In summary, a set of local controls in the distributed control system 

represented in equations (176) and (177) asymptotically stabilizes the 

combined overall system if the control parameters H0 , F0 , 0 0 , n = 1, ... ,N 

are selected such that: 

(1) Reference input Unc , n = 1, ... ,N are bounded, 

(2) II <l>n(t) II s; ~n exp (- CXn t ) , for CXn :2: 0 and ~n :2: 0 , n = 1 , ... , N 

where - cxn denotes the negative real part of eigenvalue of the n-th closed­

loop subsystem matrix An nearest to the j co-axis, 

(3) Let amin = m_in {aj} ' and f3max = m~x {J3j}, then 
J J 

amin > f3max II Q II, where II Q II= m!lx {11 Bj 1111 Hj II Ojc +II Aj-lj II+ II Aj+lj 11}, 
J 

j = 1, ... ,Nand IIAotii=O, IIAN+tNII=O. 

The dominant pole of the required closed-loop subsystem an can be 

selected as shown in (2) in the above summary. But, also note that the local 

controls may be readjusted further to the left in the left-half of the s-plane 

according to the magnitude of inputs and gains of a local controller, and 

the degree of interconnections between subsystems as shown in (3) and in 

Figure 87. The feedforward control was used to reject disturbances from 

adjacent subsystems, which makes it possible to reduce the feedback control 

effort to overcome the interaction at each subsystem. 
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Figure 87. Readjustment of Local Control 
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Once the set of local controllers is designed such that they together 

meet the stability condition (3) above, the stability of the overall system is 

guaranteed even though there is a small change of control in one of 

subsystems as far as the magnitude of change in control does not violate the 

stability condition (215). 

The auxiliary model can be seen as a different representation of the 

original mathematical model for the same physical system by introducing a 

new state variable for the velocity difference between two rollers at both 

ends of a web span. Thus, even though the stability condition (215) was 

derived using the auxiliary model, it still holds with the original 

mathematical model. 



Distributed Tension Control System 

The structure of the distributed tension control system is shown in 

Figure 88. 

1------, 
I 

,------------, r------------~ -_ .... ,-----. 
I 

Auxiliary Auxiliary Auxiliary I 
I 

Controller Controller Controller I 
I 

Distributed 
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~ 

, Un n-1 
~ 

, Un+1 
Controller 

I Calculate Un, n=1 , ... ,N I I 
I 

n 
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Yn-1 Yn Yn+1 
n-1 th ..... nth ..... n +1 th ...... ........ 

Subsystem Subsystem Subsystem 

~ , ~ , ~ , 
Measurement 

Figure 88. Structure of Distributed Tension Control System 



The algorithm of the proposed method for the design of a distributed 

tension control system can be summarized as follows: 
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(1) Derive an auxiliary dynamic model from the mathematical model 

for a unit process by defining a new state variable based on the relative 

velocity of the ends of the web span. 

(2) Design auxiliary local controls which meet the required closed­

loop performance specifications of subsystems assuming there are no 

interactions. 

(3) Combine closed-loop subsystems into a composite system and 

check whether the set of local controllers designed together meet the 

stability condition for the overall system. If the local controls meet the 

stability condition then go to ( 4 ), otherwise go to the step (2). 

( 4) Design local controllers using auxiliary controls and the control 

in the corresponding up-stream subsystem. 

A flow chart of the algorithm is shown in Figure 89. 

Even though the proposed method of designing the distributed control 

system was initially developed for the tension control in the multi-span web 

transport system, this approach can be applied to the control design for the 

class of the large-scale system in which the subsystems are interconnected. 

An example will be presented to illustrate an application of the proposed 

method of design in section 7 .6. 



No 

Obtain Auxiliary Model For Each 
Subsystem Sn 

Design Local Controls, Fn, Gn, Hn 
Based On Spec. ,n=1, ... ,N 

Calculate ~ n In Equation 201, 
Find ~max And <Xmin 
For n = 1, ... , N 

Calculate II Q.ll In Eqn. 215 

Check Stability Condition Using 
Eqn. 215 

Calculate Local Control Using Eqn's 
176 and 177 

Figure 89. A Flow Chart of the Distributed 
Tension Control Algorithm 
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An Example 

A method for designing a closed-loop distributed system for the 

control of web tension in a multi-span web transport system is developed in 

sections 7.1 through 7.4. The algorithm of the method for the design of 

distributed control system was summarized in section 7.5. The purpose of 

this section is (1) to show an application of the method to the design of a 

distributed control system and (2) to compare the performance of the 

distributed control system designed by using the proposed method with the 

performances of existing distributed control systems through computer 

simulation. Consider a multi-span web transport system which consists of 

four web spans as shown in Figure 90. The control purpose is to have T 2 = 

1.0 @ t= oo without disturbing tensions in other web spans or stability of 

the overall system. Parameter values and conditions of the system used are 

in Table 1. 

Figure 90. A Multi-Span System: for Example 
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It is assumed that all four spans have the same length, and all rollers 

have same moment of inertia, same radius, same frictional coefficient in 

the related bearing. 

Draw Control 

Wolfermann and Schroder [5] suggested an application of decoupling 

and state space control of the speed of the driven roller to improve the 

performance of draw control. In this example, the tangential velocity of 

roller is even assumed to be controlled perfectly. 

Using equation (22), the mathematical model for the draw control 

system can be written as: 

(216) 

(217) 

(218) 

(219) 
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It was found that 0.0238 ft/min of velocity difference at both ends of 

web span produced 1.0 lb of steady-state tension variation with the system 

described by equations (216) through (219). A step velocity input (only in 

v2 i.e., V2 = 0.0238 ft/min) from a steady-state operating condition (1000 

ft/min) was provided to the draw control system in order to achieve T 2(t) = 

1.0 lb @ t = oo. Parameter values and conditions of system for simulation 

are in Table 1. Results from computer simulation is shown in Figure 91. 

As shown in Figure 91, there were significant unwanted transient tension 

variations (T 3 and T 4) due to the interactions among web spans. 

Draw Control with Progressive Set-Point Coordination Scheme 

Open-loop draw control with a progressive set-point coordination 

scheme is a common distributed control strategy for multi-span web 

transport systems in the field. In this example, the tangential velocity of 

roller is also assumed to be controlled perfectly. The mathematical model 

represented by equations (216) -(219) is still valid, but the set-point for the 

control of roller velocity in the second span (e.g., v2) is automatically 

propagated to the downstream. That is, a step input in v2 ( V 2 = 0.0238 

ft/min) to achieve T 2(t) = 1.0 lb@ t = oo will cause V 3 = V 4 = 0.0238 

ft/min. The results from computer simulation are shown in Figure 92. As 

shown in Figure 92, there were significant unwanted steady-state tension 

variations (T 3 and T 4) due to the interactions and propagation of 

disturbances from upstream. 
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!to = 0 lbs fori = 0 .. .4, T 0 = T 5 = o lb 

Desired Tension Values: Tides= 0 fori= 1,3,4, and T2des = llb 
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Figure 91. Performance of Distributed Control: Draw Control 



c 
.S? -0 ·c 
0 
> 

207 

Y.o = 0 lbs for i = 0 ... 4, To = T 5 = 0 lb 

Desired Tension Values: Tides = 0 for i = 1 ,3,4, and T 2des = 1 lb 

v. c 
0 , 
c 
u .... ., ' ~ ' ., ' ., ' '• ' ., 
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Time( Sec) 

Figure 92. Performance of Distributed Control: Draw Control 

with Progressive Set-Point Coordination Scheme 
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Distributed Control System Proposed 

All four subsystems are assumed to have the same desired closed-loop 

behavior for the given system shown in Figure 90 as: 

Y 0 = 100 Unc , for n=1, ... ,4, 
s2 + 14 s + 100 

(220) 

where y n is output tensions and unc is the reference input tensions. 

Input tensions, Unc' n = 1 , ... ,4 are assumed to be : 

U lc = 0.0 lbf. 

U2c = 1.0 lbf 

u3c = 0.0 lbf 

u4c = 0.0 lbf 

8nc=1.0, n=1, ... ,4. 

Following the algorithm shown in Figure 89: 

(1) Derive auxiliary model [use equation (174) for n=1, ... ,4] , 

(2) Design F0 , H0 , G0 [use equations (176)- (179)] , 

H0 = 0.02381, for n=1, .. ,4, 

F0 = [-1.0661, 517.8496], forcn=1, ... ,4, 

1 R 2 Gn =- [- 0 ], for n=1, ... ,4 , 
Hn J 



(3) Calculate ~max and <Xmin [use equation. (201)] , 

~max= 589.399 and <Xmin = 7 ' 

(4) Calculate II Q II [use equation (215)] , 

II Q II = 1.6928 , 

(5) Check stability condition [see equation. (215)] , 

~max II Q II:: 997.735 > <Xmin = 7 . 
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The set of local controllers(F 0 , G0 , H0 ) designed does not meet the 

stability condition [inequality equation (215)]. Thus the local controller 

gains was readjusted. And the poles in desired transfer function was moved 

farther left in the left-half s-plane to find a control set which together meet 

the stability condition for the overall system. 

Let the new poles be moved to -25 and -4000. Then, the revised 

desired behavior to be tried became: 

Y - 100000 u n- DC • 

s2 + 4025 s + 100000 

(1) Derive auxiliary model [use equation (174) For n=1, ... ,4] , 

(2) Design Fn, Hn, Gn [ use equations (176)- (179)] with 10 % steady state 

error , 

H0 = 21.4286, for n=1 , .. ,4 , 

F0 = [1.0345 , 187.755 ], for n=1, ... ,4, 

G0 = _L [ R 2 0 ], for n=1, ... ,4 , 
Hn J 

(3) Calculate ~max and <Xmin [use equation (201)] , 



~max ::1.06 and <lmin =25 ' 

(4) Calculate II Q II [use equation (215)] , 

II Q II:: 23.1176, 

(5) Check stability condition [see equation. (215)] , 

~max II Q II:= 24.5 < <lmin = 25 . 

This set of local controllers (F 0 , 0 0 , H0 ) designed meets the stability 

condition [inequality (215)] . 
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Simulation results are shown in Figures 93 and 94. When local 

controllers together meet the stability criteria (see inequality (215)), 

tensions were controlled as intended as shown in Figures with 10% of the 

steady state error. Since the stability condition for this example was so 

strict in the design of local controllers, 10% of the steady-state error was 

forced in designing the set of local controllers which meets the stability 

condition (see inequality (215)). 

It is interesting to see that velocity differences, V 21 and V 32 (see 

Figure 94), are negative values even though tension T 2 and T 3 (see Figure 

94) are positive. It is hard to imagine negative velocity difference between 

the ends of a span for positive tension variation in the "draw control". But 

the negative velocity differences V 21 and V 32 in this example are the results 

of control effort to compensate the tension disturbances due to the tension 

transfer from the upstream span. 

In conclusion, the proposed design method has the capability to design 

a stable distributed control system for a class of web transport system. And 

the distributed control system designed based on the author's proposed 

method outperformed the draw control system with and without 
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progressive set-point coordination scheme. 

Disadvantages of the proposed method are that the design method is 

iterative, and it is not easy to find a set of local controllers which meet the 

stability condition when the number of subsystems is growing. 
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CHAPTER VITI 

SUMMARY AND CONCLUSIONS 

Because of limited previous understanding of longitudinal behavior of 

the moving web, broad topics related to the problem of tension control 

have been dealt with in this thesis. The concept of a primitive element was 

established (see Chapter 2). Primitive elements and multi-span systems 

were analyzed. Design methods of the tension control systems were 

developed for single-span systems and for multi-span systems. A computer­

based analysis program for web transport systems (WTS) was also 

developed to help a web handling system engineer/designer analyze the 

open-loop steady-state and dynamic longitudinal tension variations in 

multi-span web transport systems. 

In Chapter IT, mathematical models for primitive elements were 

derived, and non-ideal effects on tension variations were analyzed. It was 

found that the effect of cross-se~tional area change of web due to Poisson's 

ratio on tension variation is negligible if the magnitude of strain is small. It 

was also found that the effect of temperature change on tension variation is 

significant in plastic film and the effect of moisture variation is significant 

in paper. The effect of the viscoelastic properties of the web on tension 

variation was found to be negligible when the web transport speed is high, 
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and thus, the duration time of the web within a web span is short (less than 

half a minute). The effect of slippage between the web and a roller on 

tension variation was studied. A mathematical relation between the velocity 

of the web and the tangential velocity of a roller was derived when there is 

slippage. When there is slippage between the web and a roller, the tension 

is transferred not only from upstream to downstream, but also from 

downstream to upstream across the roller. A change in the tangential 

velocity of the roller (W 2• Figure 14) produces smaller degree of dynamic 

interaction between~ and t3 (see Figure 15) than would occur with no­

slippage. 

In Chapter III, a "unified" open-loop dynamic model was derived for 

an important multi-span system that includes a dancer. This model includes 

the combined effects of slippage, temperature variation, and moisture 

variation. The model was evaluated for a typical web material 

(Polypropylene) and typical web transport system operating conditions. By 

using the unified model developed, the dancer was evaluated as a tension 

measuring system or a disturbance minimizing system. Guidelines for 

designing a dancer were obtained for either a tension measuring system or 

a disturbance minimizing system. 

In Chapter IV, the interaction between web spans in multi-span web 

transport systems was analyzed by using the mathematical model 

developed. It was found that the tension is transferred from an upstream 

span down to the following web span. Adjacent web spans interact through 

the intermediate roller. These interactions, tension transfer and interaction 

of adjacent web spans through the intermediate roller, were confirmed 

through experimental work at a Polypropylene web processing system. 
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In Chapter V, a computer-based analysis program for web transport 

systems (WTS) was developed. WTS has features of (1) automatic assembly 

of primitive elements into a system or a subsystem, (2) automatic 

generation of a mathematical model of the assembled system, (3) steady­

state and dynamic analysis of the configured system (assembled system), ( 4) 

graphical presentation of the configured system and analysis output, (5) 

user friendly interfaces. 

In Chapter VI, a fixed-gain PID controller for a typical single-span 

system (time-invariant system) and a variable-gain PID controller for a 

winding section (time-varying system) were designed to overcome 

disturbances and produce accurate tension control in the appropriate span. 

It was demonstrated that the feedforward scheme would reject certain 

disturbances. A fixed-gain PID controller with feedforward feature was 

shown to be adequate for a time-invariant unit process. A variable-gain 

PID controller produced a desired solution for a system with a time­

varying parameter (i.e., a winding roll with increasing radius). 

In Chapter Vll, a method for the design of a distributed system for 

the tension control in multi-span systems was developed. A new concept of 

an "auxiliary dynamic model" was introduced in the design of the 

distributed control system. The auxiliary dynamic model was derived from 

the original mathematical model by introducing a new state variable. This 

new state variable denotes the relative velocity between the ends of a web 

span. The auxiliary dynamic model is used to design an "auxiliary control" 

for each local controller, which makes it possible to maintain the desired 

tension level in each web span and to guarantee the stability of the overall 
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system. A stability condition was derived for the design of a closed-loop 

distributed control system for a multi-span web transport system. It was 

found that the asymptotic stability of the overall closed-loop system 

depends on the gains of local controllers, the magnitude of local inputs, and 

the degree of interconnections. 

Contributions of Most Significance 

The most significant contribution of this thesis is the development of 

a method for the design of a distributed control system for the tension 

control in multi-span web transport systems (Chapter Vll). A stability 

condition derived for the design of a distributed control system says that 

the asymptotic stability of an overall closed-loop system depends on the 

gains of local controllers, the magnitude of local inputs, and the degree of 

interconnections between subsystems. The distributed control system 

designed by using the method developed in this study could reject 

disturbances from adjacent web spans due to the tension transfer and 

interactions of web spans. 

The derivation of a "unified" open-loop dynamic model for an 

important system that includes a dancer is also a significant result. It was 

assumed that there is no slippage between the web and the dancer roll. This 

model includes the combined effects of slippage, temperature variation, and 

moisture variation. By using the model, a dancer was evaluated as a tension 

measuring system and a disturbance minimizing system. A typical web 

material (Polypropylene) and typical web transport system operating 



218 

conditions were used for the evaluations. Conclusions from the evaluation 

are as follows: 

(a) When the dancer is used for tension measurement, the dancer should 

be designed such that: 

COt > 3C08 and COr > 3cos 

where 

COr is the natural frequency associated with the rotational inertia 

of the dancer roll and the effective elastic spring constant of 

the web entering and exiting the dancer roll, 

COs is the natural frequency of the system, 

COt is the natural frequency associated with the translational inertia 

of the dancer roll and the dancer system spring. 

(b) When the dancer is used for minimizing the effects of disturbances on 

tension in a web span, the dancer should be designed such that: 

where 

COr< lrod 
3 
1 COr < .A...(J) s 
3 

COct is the frequency of the disturbance. 

Various non-ideal effects (e.g., temperature change, moisture change, 

viscoelastic properties of web) on tension variation and the effect of 

slippage between the web and rollers on tension variation were 

investigated. Results indicate that the effect of temperature change on 
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tension variation was significant in plastic film and the effect of moisture 

change was significant in paper. The effects of viscoelastic properties of 

web turned out to be not significant on the tension variation if the duration 

time of web in a processing section is very short (a few seconds). The 

effect of slippage between the web and the roller on tension variation was 

found to be significant. 

The interactions between web spans were studied through the 

computer simulations of the derived mathematical model and 

experimentally confirmed. The significant effects of slippage between the 

web and the roller, and the effect of temperature on tension variation in 

plastic film were confirmed in experimentation. 

Finally, the development of a computer-based analysis program for 

web transport systems (WTS) is another significant contribution from a 

practical point of view. WTS allows an extensive numerical simulation of 

several versions of the system, which provides critical information about 

steady-state and dynamic system behavior without constructing a real 

verswn. 

Suggestions for Further Study 

This thesis concerned itself with aspects of steady-state and dynamic 

longitudinal behavior of a straight moving web between parallel cylindrical 

rollers or rolls. Further research is necessary in the area of steady-state 

and dynamic behavior of a non-straight moving web (e.g., moving web 

with slack part of web or slack edges) and a moving web between non-
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parallel cylindrical roller or rolls. 

The analysis of the effects of the uncertainties owing to the 

imperfection of the mathematical model on tension variation should be 

studied. For example, the Young's modulus of the web material might have 

uncertainty in its value. The effects of temperature, moisture, and 

viscoelastic properties of the web on tension variations have been analyzed 

individually, but these effects together may increase the degree of 

imperfection in the mathematical model. 

The design method for a distributed control system developed in 

Chapter VII needs to be improved. The method requires highly accurate 

measurement of the web velocity. The performance of the control system 

designed by using this method is very sensitive to the noise in the velocity 

of the web. An observer to estimate the web velocity using the 

measurement of tension might be a solution, since tension variation is much 

less sensitive to the noise in measurement. 

There were some limitations in the experimental work for the 

validation of mathematical model in this thesis since an existing web 

production line was used. More thorough experimental work using a 

dedicated experimental set-up is necessary in order to develop and validate 

a more complete mathematical model with non-ideal effects for various 

operating conditions and web materials. 

WTS needs to be extended to include more features of system analysis 

(e.g., closed-loop analysis), system optimization, and expert system. 

Furthermore, all the analyses and design in this thesis were carried 

out in the linear continuous region. The areas of nonlinear and discrete 
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analysis and design require additional study. 

Register is the relative position of the impression made by a press unit 

to the position of the first press unit on the final copy [27]. The area of 

print register control was not covered but might be interesting. 

Finally, all the analysis and design were based on the assumption that 

the web span can be assumed as being one-dimensional. The area of two­

dimensional analysis and design remains wide open to future researchers. 
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APPENDIX A 

FORCE BALANCE EQUATION 

Consider an infinitesimal element of web in region of slip as shown in 

Figure 95. The forces and angles in the region of slip are shown. 

~ 2 

Figure 95. Infinitesimal Element of Web in Region of Slip 
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Force balance equations can be written as: 

(ta + dte) sin .dft + te sin dft- dFn2 = 0 . 
2 2 

(ta + dta) cosdft- ta cosdft- dF2 = 0 . 
2 ' 2 

Angle conditions are: 

For de << 1, sin .dft .::::: .dft , cos .dft .::::: 1 . 
2-2 2-

From equation (221), since dta de = 0 
2 

dFn2 = ta de .J 

Using angle conditions, equation (222) can be simplified as: 

dF2 = dta. 

Frictional force can be written as: 

From equations (224) and (225) 
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(221) 

(222) 

(223) 

(224) 

(225) 



234 

dte = J.L dFn2 . (226) 

Combining equations (226) and (223) gives: 

(227) 

Integrating equation (227) gives: 

ft2 {a 
• d~ = ), J.L dS , (228) 

or the tension in the web at location e 

(229) 

Combining equations (229) and (223) gives: 

(230) 

Integrating equation (230) gives: 

or 
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When es = ew' 



APPENDIX B 

FORCE VELOCITY RELATION 

A model of friction between a web and roller with only Coulomb 

friction is shown Figure 96. 

Frictional Force 

Fno~-------------

Velocity Difference 
--------1 -Fno ( w 2 - v 2) 

Figure 96. A Model of Friction between a Web and 
a Roller with only Coulomb Friction 
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In conclusion, t2 is not affected by w2 when there is only Coulomb friction; 

w 2 cannot be used as a control variable for tension control. 
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APPENDIX C 

STRAIN IN A UNIFIED MODEL 

Recall the multi-span system shown in Figure 27. The elastic strain 

due to the velocity difference in the first web span can be written as: 

When the dancer has a vertical displacement of x2, the geometry of 

the multi-span system is shown in Figure 97. Elastic strain due to the 

vertical displacement of the dancer can be written as: 

(237) 
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Length of Entering Span L 2 Length of Exiting Span L 3 

__..... 

where 

Figure 97. Geometry of the System with a Vertical Displacement of 

the Dancer in Figure 27 

(238) 

8w2 : Wrap angle in dancer 

x2 : Vertical displacement of dancer from the equilibrium point. 

A free body diagram of the dancer roll is shown in Figure 98. The 

following equations can be written from the force balance on the roll. 
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Figure 98. Free Body Diagram of the Dancer Roll: for Force Balance 

where t0 = ~0 + T 0 , n = 2, 3. 

or let x21 = :X2 

(239) 

· b2 ks2 T2 + T 3 · 9w2 X21 = --X21 - X2 - Sill- , 
M2 M2 M2 2 

(240) 

where x21 = x2 is the vertical velocity of dancer. 
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When the dancer has a angular displacement of 82, the geometry of 

the multi-span system is shown in Figure 99. Elastic strain due to the 

angular displacement of the dancer can be written as: 

where 

Length of Entering Span L 2 Length of Exiting Span L3 

Angular Displacement 92 

Figure 99. Geometry of the System with an Angular 

Displacement of the Dancer in Figure 27 

82 : Angular disp. of roll . 

(241) 

(242) 
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A free body diagram of the dancer roll is shown in Figure 100. 

Torque balance in roll can be written as: 

Polar Moment of Inertia J 2 

Angular Displacement 92 

Figure 100. Free Body Diagram of the Dancer Roll: for Torque Balance 

.. . 
JzB2 +~Bt292 = R2(T3 -T2) , 

where 

Or let Y2 = 82 . 
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Y2 = Y21 , (243) 

(244) 

and 

W2 = R2Y21 • (245) 

Thermal Strain 

(246) 

(247) 

where 

a : Coefficient of expansion with temperature. 

Hygroscopic Strain 

(248) 

(249) 

where 

~ : Coefficient of expansion with moisture. 
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Combining equations (98)- (101) and (235)- (249) gives total strain 

in spans 2 and 3 as: 

(250) 

where 
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Similarly 

(251) 



APPENDIX D 

NATURAL FREQUENCY OF A SUBSYSTEM COMPRISING A 

DANCER ROLL SEPARATING TWO FREE SPANS 

Consider a dancer roll seperating two free. spans shown in Figure 101. 

, 
• 
I 
' . ~ , 
' ; .. # ... _ .. 

Figure 101. A Dancer Roll Separating Two Free Spans 
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Assumptions made were: 

(1) Web mass is negligible, 

(2) Web cross-sectional area is constant, 

(3) A no slip region exists between the web and roller, 

( 4) Transport of strain is neglected, 

(5) Friction in the roller bearing is viscous. 

Based on these assumptions, the subsystem shown in Figure 101 can be 

represented by the lumped-parameter model shown in Figure 102. Each 

web span is represented as a massless elastic spring. 

Polar Moment of Inertia, I 2 

Spring Constant, k 2 

f(~ 

Figure 102. A Lumped-Parameter Model for the Subsystem Shown 
in Figure 101 
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A torque balance equation can be written as: 

.. . 
J2 e2 + Bn e2 +K e2 = f(t) R2 , (252) 

where 

K = (k2 + k3) R~ , k2 = t~ , k3 = t~ ; A2 = A3 = A = d h , 

and 

Bn is the bearing viscous friction coefficient. 

The natural frequency of the subsystem is : 

(253) 



APPENDIX E 

TENSION VARIATION IN A WEB SPAN WITH NON-

UNIFORM THICKNESS ACROSS ITS WIDTH 

The thickness of a web typically varies across its width. Consider an 

idealized web span which has a non-uniform thickness in the CMD of the 

web span as shown in Figure 103. It is assumed that there is the same 

amount of strain on the edges as in the middle portion. 

By using the equation (20), the linearized relationship between the 

strain in the web and web-velocity for the web span between rollers 0 and 

1 in Figure 103 is: 

According to the results of analyses from Chapter 2.7, the effect of the 

viscoelastic properties of a web on tension variation will be neglected in the 

mathematical modeling. Using equation (21), the tension loaded in the non­

uniform thickness web span is : 

(255) 
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L 

T T h2 

where 

L : Length of the free span 

T : Tension loaded 

h1 :Thickness of web edges 

h2 : Thickness of the web in the middle portion 

d1 : Width of web edges 

d2 :Width of the center portion of the web. 

• _...,F\1.._ 
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Figure 103. A Free Web Span with Non-Uniform Thickness in CMD 
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Assume that stress and strain in the cross-sectional area are uniform across 

its width. Since the thickness of the web is non-uniform across its width, 

the tension T can be written as follows: 

T = TI + T2, 

where 

and 

T I =AI E E I = d2 h2 E E I ' 

T 2 = A2 E E I = 2 di hi E E I ' 

(256) 

(257) 

AI :Cross-sectional area of the web in the middle portion 

A2 : Sum of cross-sectional areas of the web edges 

T I : Tension loaded in the middle portion 

T 2 : Sum of tension loaded web edges 

e I : Strain . 

By solving equations (254) through (257) simultaneously, tensions in 

the edges and middle portion of the web can be calculated separately. 
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