AN EXAMINATION OF SEQUENTIAL

PROCEDURES FOR THE TESTING

OF THREE HYPOTHESES

By
MARK EDWARD PAYTON
Bachelor of Science Southwest Missouri State University Springfield, Missouri 1986
Master of Science
Oklahoma State University
Stillwater, Oklahoma 1988

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1991

Thesis 19910 p348e
cop. 28

Oklahoma State Univ. Library

AN EXAMINATION OF SEQUENTIAL PROCEDURES FOR THE TESTING OF THREE HYPOTHESES

Thesis Approved:

ACKNOWLEDGMENTS

There are many people I would like to thank for their encouragement and assistance in the completion of this thesis. First of all, special thanks goes to the fine faculty (and future colleagues) in the Department of Statistics at OSU. I appreciate Drs. Larry Claypool and Bill Warde's service on my committee and the other faculty members for the fine education I received. Thanks goes to other OSU faculty: Dr. John Chandler for his computer expertise and Drs. Jerry Young and Scott Fargo from Entomology for service on my committee. Also thanks goes to SMS faculty Drs. Melvin Foster and Ed and Shirley Huffman for guidance prior and during my stay at OSU.

I would like to thank the "non-academic" people in my life: my parents, Bill and Naomi Payton, whose support and encouragement made this thesis, and the degree in general, possible. I appreciate Vickie Turner, a great typist and an even better friend. Also, special thanks is extended to Deanna Corley, whose presence in my life made the past year a lot easier.

Last, but certainly not least, sincere appreciation is extended to my advisor, Dr. Linda J. Young, who provided much needed insight, encouragement, and support. Everything she did and said was with my best interests in mind. I will
be happy if I'm half as good of an advisor to my students as she was to me. With her I look forward to a long and enjoyable professional relationship.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 12
Sequential Probability Ratio Test 13
Closed Sequential Procedures 15
Tests of Three Hypotheses Using Sequential Methods 19
Closed Procedures for Testing Three Hypotheses 26
Related Sequential Work 27
III. PROGRAM TO CALCULATE PROBABILITIES CONCERNING A SEQUENTIAL TEST OF THREE BINOMIAL PROBABILITIES 34
The Exact ASN 45
Alternative Method of Boundary Selection 45
ASN for Alternative Method 49
IV. A PROCEDURE TO SEQUENTIALLY TEST THREE HYPOTHESES 53
The Operating Characteristic Function 58
Average Sample Number Function 64
Error Rate Adjustment 70
V. TWO EXAMPLES WITH MONTE CARLO RESULTS 76
A Method Using SAS to Solve a System Of Nonlinear Equations 76
Test for Exponential Parameter 78
Test for Normal Mean 92
VI. A CLOSED PROCEDURE TO TEST THREE HYPOTHESES 106
A Closed Test for the Exponential Parameter 107
VII. SUMMARY AND CONCLUSIONS 117
BIBLIOGRAPHY 121

LIST OF TABLES

Table PageI. Error Probabilities at Hypothesized ParameterValues for Testing Three BinomialProportions (0.30, 0.40, 0.50)39
II. Error Probabilities at Hypothesized Parameter Values for Testing Three Binomial Proportions (0.35, 0.40, 0.45) 40
III. Error Probabilities at Hypothesized Parameter Values for Testing Three Binomial Proportions (0.375, 0.40, 0.425) 41
IV. Error Probabilities at Hypothesized Parameter Values for Testing Three Binomial Proportions (0.10, 0.30, 0.40) 42
V. Error Probabilities at Hypothesized Parameter Values for Testing Three Binomial Proportions (0.10, 0.35, 0.40) .43
VI. Error Probabilities at Hypothesized Parameter Values for Testing Three Binomial Proportions (0.25, 0.50, 0.75) 44
VII. Average Sample Number Values for ParameterValues for Testing Three BinomialProportions (0.30, 0.40, 0.50)$(\alpha=\beta=0.10)$ • 46
VIII. Error Probabilities at Hypothesized Parameter Values Using Alternative Method of Boundary Selection 50
IX. Average Sample Number Values for Parameter
Values for the Modified Test of Three Binomial Proportions (0.30, 0.40, 0.50) (Error $=0.10$) 52
X. Error Probabilities and ASN Values for Armitage's Test of Three Values for the Mean of an Exponential Density (1.0, 2.0, 3.0)87
XI. Error Probabilities and ASN Values for Proposed Test of Three Values for the Mean of an Exponential Density (1.0, 2.0, 3.0)88
XII. Error Probabilities and ASN Values for
Proposed Test of Three Values for the Meanof an Exponential Density, BoundariesExtended (1.0, 2.0, 3.0)89
XIII. Error Probabilities and ASN Values forArmitage's Test of Three Values for the Meanof a Normal Density (-1.0, 0.0, 1.0)96
XIV. Error Probabilities and ASN Values forBillard and Vagholkar's Test of Three Valuesfor the Mean of a Normal Density(-1.0, 0.0, 1.0)97
XV. Error Probabilities and ASN Values for Proposed Test of Three Values for the Mean of a Normal Density ($-1.0,0.0,1.0$) 98
XVI. Error Probabilities and ASN Values forProposed Test of Three Values for the Meanof a Normal Density, Boundaries Extended(-1.0, 0.0, 1.0) 99
XVII. Error Probabilities and ASN Values for Proposed Closed Test of Three Values for the Mean of an Exponential Density, (1.0, 0.0, 1.0)115

LIST OF FIGURES

Figure
Page

1. Wald's SPRT for H_{0} vs. H_{1} 3
2. The Average Sample Number Function 7
3. Closed Sequential Sampling Plan 10
4. Armitage's (1947) Procedure to Test Three Hypotheses 22
5. Billard and Vagholkar's (1969) Procedure for Testing Three Hypotheses 24
6. Armitage's Restricted (1957) Procedure for Testing Three Hypotheses 28
7. Billard's (1977) Procedure for Testing Three Hypotheses 29
8. Arghami and Billard's (1982) Procedure for Testing Three Hypotheses 30
9. Lines and Corresponding Intercepts Used for Determining Acceptance Regions for the Dual SPRT Method 37
10. Average Sample Number Function for the Test ofThree Binomial Proportions, 0.3, 0.4, and 0.5with Alpha $=$ Beta $=0.10$47
11. Comparison of ASN Functions for Alternative Method and Armitage for Test of Three Proportions (0.3, 0.4, 0.5) 51
12. Sampling Region for Testing Three Hypotheses 54
13. Sampling Region for Testing Three Hypotheses with the Boundaries Extended to the X_{n} axis 75
14. Sampling Region for Testing Three Values for the Mean of the Exponential Distribution (1.0, 2.0, 3.0) 84
15. Sampling Region for Testing Three Values for the Mean of the Exponential Distribution (1.0, 2.0, 3.0), Boundaries Extended
16. Armitage's and Proposed Sampling Regions for Testing Three Values for the Exponential Mean (1.0, 2.0, 3.0)86
17. ASN Functions for Proposed Method and Armitage's for the Test of Three Exponential Means (1.0, 2.0. 3.0)90
18. ASN Functions for Proposed Method with Boundaries Extended and Armitage's for Test of Three Exponential Means91
19. Sampling Region for Testing Three Values for the Mean of Standard Normal Distribution (-1.0, 0.0, 1.0), Boundaries Extended101
20. ASN Functions for Proposed Method and Armitage's for the Test of Three Standard Normal Means (-1.0, 0.0, 1.0)102
21. ASN Functions for Proposed Method with Boundaries Extended and Armitage's for Test of Three Normal Means103
22. ASN Functions for Proposed Method and Billard and Vagholkar's for the Test of Three Standard Normal Means104
23. ASN Functions for Proposed Method with the Boundaries Extended and Billard and Vagholkar's for Normal Means105
24. Closed Method for Testing Values for the Mean of an Exponential Distribution (1.0, 2.0, 3.0) 114
25. ASN Functions for Proposed Closed and Open Methods for Test of Three Exponential Means (1.0, 2.0, 3.0)116

INTRODUCTION

Sequential sampling is a significant area of statistics from both theoretical and applied viewpoints. In sequential experimentation, the final sample size is not fixed. Instead, sampling continues until a predetermined level of precision has been attained.

Sequential analysis has two primary branches: sequential hypothesis testing and sequential estimation. In sequential hypothesis testing, two or more hypotheses are tested simultaneously. Sampling continues until one hypothesis is accepted with specified bounds on the error probabilities. Sequential estimation focuses on estimation of one or more parameters with a prespecified level of precision, such as a coefficient of variation at or below a given level or a confidence interval on the parameter with a fixed width. This work will concentrate on sequential hypothesis testing.

Dodge and Romig (1929) were the first to propose a double sampling plan, the most rudimentary sequential procedure. A random sample of fixed size n is taken, and if sufficient evidence is present to arrive at a decision, sampling is terminated. If there is insufficient evidence
to arrive at a decision, another random sample of fixed size n_{2} is taken. A decision is then made based on the results of the combined samples.

The formal theoretical development of sequential sampling began during World War II with the work of Abraham Wald (1947) and G.A. Barnard (1946) in war-time industrial advisory groups. The most important result was Wald's Sequential Probability Ratio Test (SPRT). The SPRT decides between two simple hypotheses with specified Type I and Type II error rates. Figure 1 is a depiction of the SPRT where X_{n} is a sufficient statistic (usually the sum of observations).

Consider a test to determine whether θ, a parameter from a distribution $f(x, \theta)$, is equal to θ_{0} or $\theta_{1}\left(\theta_{0}<\theta_{1}\right)$; that is, $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$. Further, the Type I error rate, the probability of accepting H_{1} when H_{0} is true should be at most α, and the probability of accepting H_{0} when H_{1} is true, or the Type II error rate, is to be at most B. To choose one hypothesis over another based on a sample of fixed size, Neyman and Pearson (1933) developed the likelihood ratio test. They showed that, given a random sample of size $n\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the most powerful size $-\alpha$ test depends on the ratio

$$
\begin{equation*}
l_{n}=\prod_{i=1}^{n} \frac{f\left(x_{i}, \theta_{1}\right)}{f\left(x_{i}, \theta_{0}\right)} \tag{1.1}
\end{equation*}
$$

which is the ratio of the joint density of the observed

Figure 1. Wald's SPRT for H_{0} vs. H_{1}
random sample given H_{1} is true to the joint density of the observed random sample given H_{0} is true. The NeymanPearson Lemma partitions the parameter space into two regions: one is an acceptance region for H_{0} and the other is an acceptance region for H_{1} (or a rejection region for H_{0}). H_{0} is accepted if $l_{n}<c$ and H_{1} is accepted if $l_{n}>c$ for a constant c. The sample size n can be set to obtain the desired Type I and Type II error probabilities.

Wald's SPRT is a sequential analogue to Neyman-Pearson testing. The likelihood ratio, l_{n}, is computed after each observation. Sampling continues as long as B $<l_{n}<A$, where A and B are predetermined constants. As soon as $l_{n} \leq$ B (or $l_{n} \geq A$), H_{0} is accepted (or H_{1} is accepted). Wald determined that by setting

$$
A \simeq \frac{1-\beta}{\alpha}
$$

and

$$
\begin{equation*}
B \simeq \frac{\beta}{1-\alpha}, \tag{1.2}
\end{equation*}
$$

the probabilities of Type I and Type II errors are approximate the desired levels of α and β, respectively.

The Operating Characteristic (OC) curve is defined as the probability of accepting H_{0} given θ and is often denoted by $P(\theta)$. Wald developed the following approximation for the OC curve:

$$
\begin{equation*}
P(\theta) \simeq \frac{A^{h}-1}{A^{h}-B^{h}}, \tag{1.3}
\end{equation*}
$$

where h is a function of θ and the solution of

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left[f\left(x, \theta_{1}\right) / f\left(x, \theta_{0}\right)\right]^{h} f(x, \theta) d x=1 \tag{1.4}
\end{equation*}
$$

and the constants A and B are given in equation (1.2). Wald showed that

$$
\begin{equation*}
\alpha^{\prime}+\beta^{\prime} \leq \alpha+\beta, \tag{1.5}
\end{equation*}
$$

where α^{\prime} and β^{\prime} are the actual error rates obtained by the test. The inequality in (1.5) can be replaced by an equality if boundary overshooting is ignored. Seebeck (1989) and Corneliussen and Ladd (1970) showed that the approximate $O C$ curves of certain discrete distributions are good approximations of the actual OC curves.

The Average Sample Number (ASN) function, defined on the entire parameter space as the average number of samples needed to arrive at a decision given θ, is denoted by $E(N \mid \theta)$. Wald and Wolfowitz (1948) established the following optimality property of the SPRT: For all sequential tests of $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$ with Type I error probability α and Type II error probability β, the SPRT minimizes $E\left(N \mid \theta_{0}\right)$ and $\mathrm{E}\left(\mathrm{N} \mid \theta_{1}\right)$. Later this result was shown to hold among all tests, sequential or not (Lehmann, 1959). However, since θ may not always assume one of the hypothesized values, the behavior of the ASN over the full parameter space is often of interest.

Wald developed the following approximation for the ASN
function of the SPRT:

$$
\begin{equation*}
E(N \mid \theta) \simeq \frac{P(\theta) \log B+[1-P(\theta)] \log A}{E(z \mid \theta)} \tag{1.6}
\end{equation*}
$$

where A and B are given in equation (1.2) and

$$
z_{i}=\log \frac{f\left(x_{i} \mid \theta_{1}\right)}{f\left(x_{i} \mid \theta_{0}\right)}
$$

Using the $O C$ function, $P(\theta)$ is the probability of Σz_{n} being less than or equal to B given θ. The quantity 1-P(θ) is the probability of Σz_{n} being greater than or equal to A for a specified value θ. The graph of such an ASN function would take the appearance of that in Figure 2.

Suppose the true parameter θ lies between the hypothesized values; that is, $\theta_{0}<\theta<\theta_{1}$. Often it is assumed that one has no reason to prefer one hypothesis to another under these conditions. Yet, in this region of the parameter space, a larger sample size is required than in any other region. The average sample size for some values in this range will be higher than the corresponding fixed sample test with the same Type I and Type II error rates.

Wald's approximation of the ASN function is exact if no overshooting of the boundaries occurs. However, the

overshooting results in substantial underestimation of the ASN, especially for parameter values between the hypothesized ones. Baker (1950) used empirical trials to study a sequential test of the mean of a normal distribution with unit variance. He tested $H_{0}: \mu=0$ vs. $H_{1}: \mu=1$, and found that Wald's approximation underestimated the ASN. Values twice that predicted by Wald's equation were quite common. Studies of the binomial distribution performed by Corneliussen and Ladd (1970) showed Wald's equation underrepresents the true value of the ASN by approximately twenty percent at its maximum. They concluded "...in view of the very large spread in sample number, we do not believe the ASN function to be a particularly useful measure of the effort required to conduct a sequential test." They proposed "Termination Probability Contours" as a guide to the amount of sampling required. These are curves that show the number of samples required for certain probabilities (say $0.50,0.80,0.95$) of termination given values of the binomial parameter p.

The extremely large sample sizes, especially at values intermediate to the hypothesized parameters, limit the utility of Wald's SPRT in some applications. An obvious factor is that the SPRT is an open test; that is, given sampling has not stopped after $(n+1)$ observations, the probability it will continue after n observations is positive. Thus the parallel boundaries of the SPRT (see Figure 1) may result in unsatisfactorily large sample sizes.

Several methods have been developed to produce closed boundaries such as those in Figure 3. These procedures, called closed sequential tests, place a maximum on the number of observations taken. Chapter II discusses these tests in more detail.

The simultaneous test of three hypotheses, instead of two, is of interest in a number of applications. An entomologist may wish to determine whether a.crop is infested heavily, moderately, or lightly with a certain insect (Lye and story, 1989). This would be an example of a three-hypothesis test involving all simple hypotheses. Billard and Vagholkar (1969) suggested simultaneously testing three hypotheses when performing a two-sided test of hypotheses. As an example, consider a test of $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta \neq \theta_{0}$. This can be accomplished by simultaneously testing three simple hypotheses $H_{-1}: \theta=\theta_{-1}$ vs.
$H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$, where $\theta_{-1}<\theta_{0}<\theta_{1}$. The error rates are controlled at two points under the alternative hypothesis, θ_{-1} and θ_{1}. The choice of θ_{-1} and θ_{1} depends on the precision required for the application. Open and closed tests of three hypotheses have been developed and are discussed in Chapter II. A computer program was developed to calculate the exact probabilities of error when testing three hypotheses of binomial probabilities. This program was used to study the OC and ASN functions of proposed tests over a range of specified error rates and hypothesized values. The program and
X_{n}

n
Figure 3. Closed sequential sampling plan
results are presented in Chapter III.
Chapter IV presents a method to test three hypotheses for distributions in the Koopman-Darmois family of densities. It involves approximations of error probabilities. A computer routine is used to solve a system of equations that allows one to set the error rates to any level desired.

In Chapter V, examples are presented for the exponential and normal distributions and simulation studies are performed to evaluate the appropriateness of the method proposed in Chapter IV.

Chapter VI proposes a closed procedure for the three-hypothesis case by extending established closed procedures for testing simple vs. simple hypotheses. Again, the results of simulation studies are presented to check the performance of this closed procedure.

The results presented in this work and possible areas of future research are presented in Chapter VII.

CHAPTER II

REVIEW OF LITERATURE

Koopman (1936) considered the family of densities

$$
\begin{equation*}
f(x ; \theta)=\exp \{k(x)+\theta x-b(\theta)\} \tag{2.1}
\end{equation*}
$$

with respect to some σ-finite measure μ. The function $b(\theta)$ is differentiable such that $b^{\prime}(\theta)=E_{\theta}(X)$ and $b^{\prime \prime}(\theta)=$ $\operatorname{Var}_{\theta}(X)$. The Kullback-Leibler information number is given by

$$
\begin{equation*}
I(\theta, \phi)=(\theta-\phi) b^{\prime}(\theta)-(b(\theta)-b(\phi)) . \tag{2.2}
\end{equation*}
$$

Schwarz (1962) and Huffman (1983) defined a KoopmanDarmois density as

$$
\begin{equation*}
f(x ; \theta)=\exp \{\theta x-b(\theta)\} \tag{2.3}
\end{equation*}
$$

with respect to some non-degenerate σ-finite measure μ. The properties of (2.1) hold for equation (2.3) This definition was possible since Schwarz's work involving Koopman-Darmois densities was Bayesian in nature. Therefore, he was concerned with distributions of the parameter θ. In this case, the quantity $\exp \{k(x)\}$ is a constant with respect to the parameter. He therefore ignored it in his definition. However, if one wanted to draw inference concerning moments of the random variable $x, \exp \{k(x)\}$ cannot be ignored.

Thus, the more general form for Koopman-Darmois densities given in (2.1) will be used in this work.
$X_{n}=\sum_{i=1}^{n} x_{i}$ is complete sufficient for θ in the KoopmanDarmois family of densities. It can easily be shown that the density of X_{n} is

$$
\begin{equation*}
g_{n}\left(x_{n}, \theta\right)=\exp \left\{k_{n}\left(x_{n}\right)+\theta x_{n}-n b(\theta)\right\}, \tag{2.4}
\end{equation*}
$$

where $k_{n}\left(x_{n}\right)$ is a function of x_{n} that allows g_{n} to be a probability density function.

The Sequential Probability Ratio Test of two simple hypotheses concerning the Koopman-Darmois parameter θ will be considered in the next section.

Sequential Probability Ratio Test

Consider a test of $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$, where θ is a parameter from a population with the density $\mathrm{f}_{\theta}(\mathrm{x})=$ $\exp \{k(x)+\theta x-b(\theta)\}$. Further assume the desired Type I and Type II error rates are α and β, respectively. From this population, observations x_{1}, x_{2}, \ldots are taken. At the n-th observation, the ratio

$$
\begin{equation*}
\frac{f_{1 n}}{f_{0 n}}=\frac{f_{1}\left(x_{1}\right) f_{1}\left(x_{2}\right) \cdots f_{1}\left(x_{n}\right)}{f_{0}\left(x_{1}\right) f_{0}\left(x_{2}\right) \cdots f_{0}\left(x_{n}\right)} \tag{2.5}
\end{equation*}
$$

is considered. The Sequential Probability Ratio Test is as follows:
(a) If $\left(f_{1 n} / f_{o n}\right)<B$, accept H_{o}.
(b) If $\left(f_{1 n} / f_{o_{n}}\right)>A, \quad$ accept H_{1}.
(c) If $B<\left(f_{1 n} / f_{O_{n}}\right)<A$, continue sampling.

This procedure will extend until either condition (a) or (b) above is satisfied. For the Koopman-Darmois family,

$$
\begin{equation*}
\frac{f_{1 n}}{f_{o n}}=\exp \left\{\left(\theta_{1}-\theta_{0}\right) X_{n}-n\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]\right\}, \tag{2.6}
\end{equation*}
$$

where $X_{n}=\Sigma x_{1}$. Wald showed that α and β are attained approximately as error rates if A and B are taken to be

$$
\begin{equation*}
A=\frac{1-\beta}{\alpha} \quad \text { and } \quad B=\frac{\beta}{1-\alpha} . \tag{2.7}
\end{equation*}
$$

Thus, the sequential procedure becomes:
(a) Accept H_{0} if $X_{n}<\frac{n\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]}{\theta_{1}-\theta_{0}}$

$$
+\log [\beta /(1-\alpha)] ;
$$

(b) Accept H_{1} if $X_{n}>\frac{n\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right.}{\theta_{1}-\theta_{0}}$

$$
+\log [(1-\beta) / \alpha] ;
$$

(c) Continue sampling if neither (a) nor (b) occurs.

As mentioned in Chapter I, at the hypothesized values, the SPRT has the smallest expected sample size of all procedures with comparable Type I and Type II error rates. However, the sample size may be extremely large when parameter values intermediate to the hypothesized ones occur.

An alternative approach is to minimize the average sample size at an intermediate parameter value θ^{*}. This problem is known as the modified Kiefer-Weiss problem. Minimizing the ASN at the value of θ^{*} for which the ASN is a maximum provides a solution to the Kiefer-Weiss problem.

Closed Sequential Procedures

An asymptotic solution to the modified Kiefer-Weiss problem was given by Lorden (1976, 1980). He developed the 2-SPRT test which simultaneously performs two one-sided SPRTs. Consider testing $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$. Let θ^{*} be a value intermediate to θ_{0} and θ_{1} for which the ASN is to be minimized. Defining a third hypothesis $H_{2}: \theta=\theta^{*}$, a one-sided hypothesis of H_{2} against H_{0} is conducted for possible rejection of H_{0}. Simultaneously, another one-sided SPRT of H_{2} against H_{1} is conducted for the possible rejection of H_{1}. This results in two converging lines that produce a triangular continuation region (see Figure 3).

Recall

$$
\begin{equation*}
f_{i n}=f_{i}\left(x_{1}\right) \cdots f_{i}\left(x_{n}\right), \quad \text { for } i=0,1,2, \tag{2.8}
\end{equation*}
$$

where f is the density function associated with the population of interest. The 2-SPRT takes the form:
(a) Reject H_{0} if $\frac{f_{o n}}{f_{2 n}} \leq A$;
(b) Reject H_{1} if $\frac{f_{1 n}}{f_{2 n}} \leq B$;
(c) Otherwise, continue sampling.

In order to obtain desired error rates α and β, the error rates of the individual SPRTs must be adjusted so that when both are conducted simultaneously, the desired error rates are obtained approximately. The quantities A and B from (2.9) can be determined approximately as:

$$
\begin{align*}
& \frac{\alpha}{A} \leq P\left(\text { Accepting } H_{1} \mid H_{2} \text { is true }\right) ; \\
& \frac{\beta}{B} \leq P\left(\text { Accepting } H_{0} \mid H_{2} \text { is true }\right) . \tag{2.10}
\end{align*}
$$

A and B are usually found by solving the inequalities in (2.9) in terms of the sufficient statistic (sum of observations, for instance).

Huffman (1983) extended Lorden's work by determining the value of θ^{*} which minimizes the maximum sample number to
within $O\left(\left(\log \alpha^{-1}\right)^{1 / 2}\right)$ as α and β tend to zero. This provides an asymptotic solution to the Kiefer-Weiss problem and will be presented for the Koopman-Darmois family of densities.

Let x_{1}, x_{2}, \ldots be a random sample from $f(x, \theta)=$ $\exp \{k(x)+\theta x-b(\theta)\}$. It is desired to test $H_{0}: \theta=\theta_{0}$ vs. $H_{2}: \theta=\theta_{1}\left(\theta_{0}<\theta_{1}\right)$ with Type I and Type II error probabilities equal to α and β, respectively. Let

$$
\begin{equation*}
x_{n}=\sum_{i=1}^{n} x_{i} \tag{2.11}
\end{equation*}
$$

Sampling will continue until
(a) $X_{n} \geq a_{1} n+b_{1}\left(\right.$ accept $\left.H_{1}\right)$
or
(b) $X_{n} \geq a_{0} n+b_{0}\left(\right.$ accept $\left.H_{0}\right)$.

It remains to determine a_{0}, a_{1}, b_{0}, and b_{1}. The values a_{1} and b_{1} are determined by a one-sided test of $H_{2}: \theta=\theta^{*}$ vs. $H_{1}: \theta=\theta_{1}$. Likewise, a_{0} and b_{0} are obtained from a onesided test of $H_{0}: \theta=\theta_{0}$ vs. $H_{2}: \theta=\theta^{*}$.

In order to obtain θ^{*}, and subsequently a_{0}, a_{1}, b_{0}, and b_{1}, θ^{\prime} is first determined such that

$$
\begin{equation*}
\frac{\log \alpha^{-1}}{I_{0}\left(\theta^{\prime}\right)}=\frac{\log \beta^{-1}}{I_{1}\left(\theta^{\prime}\right)} \tag{2.13}
\end{equation*}
$$

where $I_{i}(\theta)=\left(\theta-\theta_{i}\right) b^{\prime}(\theta)-\left\{b(\theta)-b\left(\theta_{i}\right)\right\}, i=0,1$.

Denote the value of equation (2.13) by n^{*}. Next compute

$$
\begin{equation*}
a_{i}\left(\theta^{\prime}\right)=\frac{\left(\theta^{\prime}-\theta_{i}\right)}{I_{i}\left(\theta^{\prime}\right)} \text { for } \quad i=0,1 \tag{2.14}
\end{equation*}
$$

Denote $a_{i}\left(\theta^{\prime}\right)$ as a_{i}^{*}. Find r^{*} such that

$$
\begin{equation*}
\Phi\left(r^{*}\right)=\frac{a_{1}^{*}}{a_{1}^{*}-a_{0}^{*}} \tag{2.15}
\end{equation*}
$$

where Φ is the cumulative distribution function for the standard normal random variable. Also let, for $\theta=\theta^{*}$,

$$
\sigma^{*}=\left(\operatorname{Var}_{\theta} \mathrm{X}\right)^{1 / 2}
$$

where

$$
\theta^{*}=\theta^{\prime}+\frac{r^{*}}{\sigma^{*}\left(\mathrm{n}^{*}\right)^{1 / 2}} .
$$

Then the adjusted error rates are

$$
\begin{align*}
& \alpha\left(\theta^{*}\right)=\frac{a_{0}\left(\theta^{*}\right)-a_{1}\left(\theta^{*}\right)}{a_{0}\left(\theta^{*}\right)} \alpha \\
& \beta\left(\theta^{*}\right)=\frac{a_{1}\left(\theta^{*}\right)-a_{0}\left(\theta^{*}\right)}{a_{1}\left(\theta^{*}\right)} \beta . \tag{2.16}
\end{align*}
$$

and

The values used in Huffman's extension of the 2-SPRT are

$$
a_{1}=\frac{b\left(\theta_{1}\right)-b\left(\theta^{*}\right)}{\theta_{1}-\theta^{*}}
$$

$$
a_{0}=\frac{b\left(\theta^{*}\right)-b\left(\theta_{0}\right)}{\theta^{*}-\theta_{0}}
$$

$$
b_{1}=\frac{\log \left[\frac{1-\beta\left(\theta^{*}\right)}{\alpha\left(\theta^{*}\right)}\right]}{\theta_{1}-\theta^{*}}
$$

and

$$
\begin{equation*}
\mathrm{b}_{0}=\frac{\log \left[\frac{\beta\left(\theta^{*}\right)}{1-\alpha\left(\theta^{*}\right)}\right]}{\theta^{*}-\theta_{0}} \tag{2.17}
\end{equation*}
$$

Tests of Three Hypotheses Using

Sequential Methods

Now consider a sequential test of $H_{-1}: \theta=\theta_{-1}$ vs. $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$. These three simple hypotheses may be a direct consequence of the application, or they may arise due to a desire to decide between a simple hypothesis and a two-sided alternative, $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta \neq \theta_{0}$.

In either case, Armitage (1947) suggested one method of testing of these hypotheses would be to simultaneously
conduct two SPRTs. First, construct an SPRT, call it S_{-1}, between H_{0} and H_{-1} with

$$
\begin{array}{ll}
& \mathrm{P}\left(\text { accepting } \mathrm{H}_{-1} \mid \mathrm{H}_{0} \text { true }\right)=\alpha / 2 \\
\text { and } & \left.\mathrm{P} \text { (accepting } \mathrm{H}_{0} \mid \mathrm{H}_{-1} \text { true }\right)=\beta .
\end{array}
$$

An SPRT S_{1} between H_{0} and H_{1} can also be constructed with

$$
P\left(\text { accepting } H_{1} \mid H_{0} \text { true }\right)=\alpha / 2
$$

and

$$
P\left(\text { accepting } H_{0} \mid H_{1} \text { true }\right)=\beta
$$

The simultaneous tests, S_{-1} and S_{1} can be conducted as follows: If S_{1} accepts H_{1} and S_{-1} accepts H_{0}, H_{1} is accepted in the overall test. If S_{1} accepts H_{0} and S_{-1} accepts H_{0}, H_{0} is accepted. Finally, if S_{1} accepts H_{0} and S_{-1} accepts H_{-1}, H_{-1} is accepted. The OC and ASN functions were not derived for this test.

Sobel and Wald (1949) suggested performing S_{1} and S_{-1} simultaneously and, more importantly, independently. This means once S_{1} decides for H_{0}, this test terminates, regardless of how S_{-1} performs. Since this test is not simply a function of the sufficient statistics, Sobel and Wald claim this test is not optimum. The advantage is that the independence of the two tests lends nice mathematical properties that allow for approximations of the OC and ASN curves, such as:

$$
E(N) \geq \max \left\{E\left(N \mid S_{1}\right), E\left(N\left(S_{-1}\right)\right\},\right.
$$

$$
P\left(\text { accepting } H_{-1}\right)=P\left(\text { accepting } H_{-1} \mid S_{-1}\right),
$$

$$
P\left(\text { accepting } H_{1}\right)=P\left(\text { accepting } H_{1} \mid S_{1}\right),
$$

and

$$
P\left(\text { accepting } H_{0}\right)=1-P\left(\text { accepting } H_{1} \mid S_{1}\right)
$$

- P (accepting $\mathrm{H}_{-1} \mid \mathrm{S}_{-1}$).

Armitage (1950) suggested simultaneously conducting three SPRTS. In addition to performing S_{-1} and S_{1}, a test for H_{-1} vs. H_{1}, call this test S_{0}, would be run. All three tests would then be performed until one hypothesis is preferred to both of the other hypotheses. This test is usually identical to the dual SPRT method Armitage previously suggested. When examining Figure 4, note that the line $A B$ is in the first quadrant. For this example, the third test s_{0} will change this process greatly. However, if $A B$ is not in the first quadrant (this happens whenever the Type I error rate is less than or equal to twice the Type II error rate), S_{0} has no effect when added to the dual method. Armitage placed a bound of

$$
\begin{equation*}
\text { Prob (error) } \leq \frac{2 \alpha}{1-\alpha} \tag{2.18}
\end{equation*}
$$

for a test with $\alpha=\beta$ for S_{-1}, S_{0}, and S_{1}. He claimed, however, that this bound was too wide, and more appropriately,

n
Figure 4. Armitage's (1947) procedure to test three hypotheses

$$
P\left(\text { error } \mid H_{-1}\right)=P\left(\text { error } \mid H_{1}\right)=\alpha
$$

and

$$
\begin{equation*}
P\left(\text { error } \mid H_{0}\right)=2 \alpha \tag{2.19}
\end{equation*}
$$

In 1969, Billard and Vagholkar submitted a test that is based on a geometric set of seven test parameters, $\left(a, b, c, d, \psi, \phi, n_{0}\right)$, (see Figure 5). Based on work by Cox and Miller (1965), they found the probability of a random walk starting at a point x on a line connecting points A and B when $n=n_{0}$ being absorbed by $B P$ to be

$$
\begin{align*}
\Pi(x) & =\frac{\exp \left(-h_{0} a\right)-\exp \left(-h_{0} x\right)}{\exp \left(-h_{0} a\right)-\exp \left(-h_{0} b\right)} \text { for } h_{0} \neq 0 \\
& =\frac{a-x}{a-b} \text { for } h_{0}=0, \tag{2.20}
\end{align*}
$$

where h_{0} is the solution of

$$
\begin{equation*}
\mathrm{E}\{\exp (-\mathrm{h}(\mathrm{X}-\tan \psi)\}=1 \tag{2.21}
\end{equation*}
$$

Using this, Billard and Vagholkar obtained an expression for the $O C$ function, $L(\mu)$, of their sequential test of the mean of the normal distribution with unit variance, $H_{-1}: \mu=-1$ vs. $\mathrm{H}_{0}: \mu=0$ vs. $\mathrm{H}_{1}: \mu=1:$

$$
\begin{equation*}
L(\mu)=L_{0}(\mu)+L_{1}(\mu)+L_{-1}(\mu), \tag{2.22}
\end{equation*}
$$

where L_{0}, L_{1}, and L_{-1} are the probabilities of accepting H_{0} by crossing lines $B C, B P$, and $C Q$, respectively. Now

Figure 5. Billard and Vagholkar's (1969) procedure for testing three hypotheses

$$
\begin{align*}
& L_{0}(\mu)=\int_{c}^{b} \phi\left\{\left(x-n_{0} \mu\right) / \sigma n_{0}^{\cdot 5}\right\} d x \tag{2.23}\\
& L_{1}(\mu)=\int_{b}^{a} \phi\left\{\left(x-n_{0} \mu\right) / \sigma n_{0}^{.5}\right\} \Pi(x) d x .
\end{align*}
$$

and

The expression for $L_{-1}(\mu)$ is similar to that for $L_{1}(\mu)$. Billard and Vagholkar also found an expression for the ASN function; that is,

$$
\begin{equation*}
E_{\mu}(N)=n_{0}+N_{1}(\mu)+N_{-1}(\mu) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{1}(\mu)=\int_{b}^{a} \phi\left\{\left(x-n_{0} \mu\right) / \sigma n_{0}^{.5}\right\} n(x) d x \tag{2.25}
\end{equation*}
$$

and

$$
\begin{gather*}
n(x)= \\
{\left[\frac{(a-b) \exp \left(-h_{0} x\right)-\left\{a \cdot \exp \left(-h_{0} b\right)-b \cdot \exp \left(-h_{0} a\right)\right.}{\exp \left(h_{0} a\right)-\exp \left(h_{0} b\right)}-x\right]} \\
\quad \div(\mu \cdot \tan \psi) \text { for } h_{0} \neq 0 \\
n(x)=\frac{(a-x)(x-b)}{\sigma^{2}} \text { for } h_{0}=0 . \tag{2.26}
\end{gather*}
$$

and

Again, a similar expression can be found for $N_{-1}(\mu)$. Using $L(\mu)$ to set desired error rates, Billard and Vagholkar determined a computer optimization method, developed by Nelder and Mead (1965), that finds the procedure that minimizes $E_{\mu}(N)$ at one of the hypothesized values of μ or an intermediate value.

Billard and Vagholkar originally considered tests for the normal mean. If the test is symmetric and all error rates are equal, these seven parameters (a, b, c, d, ψ, ϕ, n_{0}) can be reduced to a set of four (a, b, ψ, n_{0}). Simulation studies were conducted for this special case. Results presented for $H_{-1}: \mu=-1$ vs. $H_{0}: \mu=0$ vs. $H_{1}: \mu=1$ with $\alpha=\beta=0.05$ indicated the proposed method works well.

Billard (1977a) extended this procedure to include tests of binomial proportions. Examples for the binomial and normal distributions are given in the literature. However, it should be applicable to other distributions.

Closed Procedures for Testing Three Hypotheses

Parameter values intermediate to the hypothesized ones lead to large sample sizes when deciding among three hypotheses as they did in the two-hypothesis case. Therefore, some closed procedures have been developed to test three hypotheses.

One such procedure was developed by Armitage (1957).

His "Restricted Procedure" takes the appearance shown in Figure 6. The test consists of sampling until one of the following conditions is met for $\mathrm{a}>0, \mathrm{~b}>0$ and $\mathrm{N}>0$:
(a) Accept H_{1} if $X_{n} \geq a+b n$.
(b) Accept H_{-1} if $X_{n} \leq a-b n$.
(c) Accept H_{0} if $\mathrm{n}=\mathrm{N}$.

The parameters of the test, a, b and N, are determined to attain desired error rates.

Billard (1977b) developed a test that resembles Armitage's Restricted in appearance. In addition, a minimum sample size restriction is used in the test (see Figure 7). Nelder and Mead's minimization procedure is again used to determine the testing parameters $\left(n_{0}, n_{1}, a, a^{\prime}, \psi, \psi^{\prime}\right)$. Arghami and Billard (1982) proposed a procedure that looks somewhat like the 2 -SPRT (Figure 8). It used Nelder and Mead to determine the nine testing parameters $\left(n_{0}, a, b\right.$, $\left.a^{\prime}, b^{\prime}, \phi_{1}, \phi_{2}, \phi_{1}^{\prime}, \phi_{2}^{\prime}\right)$. Through symmetry, each of these tests can be simplified to a reduced set of testing parameters. Billard's procedure can be reduced to a set of four parameters, Arghami and Billard's to a set of five.

Related Sequential Work

In 1962, Schwarz explicitly found large-sample limiting shapes of Bayes sequential testing regions. He related his results to the SPRT in the same manner as the likelihood ratio test is related to the Neyman-Pearson test for simple

X_{n}

Figure 6. Armitage's Restricted (1957) procedure for testing three hypotheses

Figure 7. Billard's (1977b) procedure for testing three hypotheses

Figure 8. Arghami and Billard's (1982) procedure for testing three hypotheses
ratio test is related to the Neyman-Pearson test for simple hypotheses. Lorden (1972) studied sequential tests with a view to minimizing the ASN at certain values of θ subject to specified error rates, then he considered the extension to k-decision problems.

Corneliussen and Ladd (1970) developed an iterative method to calculate the ASN and OC functions along with the error probabilities for a simple versus simple sequential test of binomial proportions.

The log-likelihood ratio after n observations when sampling from a binomial distribution may be written as

$$
\begin{align*}
L\left(n_{1}, n_{2}\right)= & n_{1} \log \left[\left(1-p_{1}\right) /\left(1-p_{0}\right)\right] \\
& +n_{2} \log \left(p_{1} / p_{0}\right) \tag{2.27}
\end{align*}
$$

where n_{1} is the number of successes, n_{2} is the number of failures and $n_{1}+n_{2}=n$. For the n-th trial, if x_{n} is a success, then the log of the likelihood ratio is

$$
\begin{align*}
\log \left(p_{1, n} / p_{0, n}\right)=\log & \left(p_{1, n-1} / p_{0, n-1}\right) \\
+ & \log \left(p_{1} / p_{0}\right) \tag{2.28}
\end{align*}
$$

If x_{n} is a failure, then

$$
\begin{align*}
\log \left(p_{1, n} / p_{0, n}\right) & =\log \left(p_{1, n-1} / p_{0, n-1}\right) \\
& +\log \left[\left(1-p_{1}\right) /\left(1-p_{0}\right)\right] \tag{2.29}
\end{align*}
$$

overstep a boundary of the sequential test, the test is terminated. For each possible value of $L\left(n_{1}, n_{2}\right)$ in the continuation region (CR), an associated probability can be calculated using

$$
\begin{align*}
P\left(n_{1}, n_{2}\right)= & I_{1}(1-p) P\left(n_{1}-1, n_{2}\right) \\
& +I_{2} p P\left(n_{1}, n_{2}-1\right) \tag{2.30}
\end{align*}
$$

where

$$
\begin{aligned}
I_{1} & =1 \text { if } L\left(n_{1}-1, n_{2}\right) \in C R \\
& =0 \text { if } L\left(n_{1}-1, n_{2}\right) \notin C R
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =1 \text { if } L\left(n_{1}, n_{2}-1\right) \in C R \\
& =0 \text { if } L\left(n_{1}, n_{2}-1\right) \notin C R .
\end{aligned}
$$

The probability of accepting the respective hypotheses can be calculated iteratively. This method has been extended to the three-hypothesis case and is presented in Chapter III.

Simons (1967) developed a procedure to perform a three-hypothesis test for a mean of a normal distribution with the population variance known. He defined his test, one that takes the appearance of Armitage's (1947) procedure, in terms of six geometrical parameters $\left(\gamma_{1}, \gamma_{2}, \delta_{1}\right.$, $\left.\delta_{2}, \mathrm{X}, \mathrm{T}\right)$. These parameters are functions of the error rates of the two SPRT's that are combined to form the test. Adjusting these parameters changes the actual error rates, thus allowing for desired error probabilities to be
attained. Ghosh (1970) mentioned that extensions of this method to a nonnormal distribution is "extremely difficult." The possibilities of specifying error rates in this fashion for Koopman-Darmois densities are explored in later chapters.

PROGRAM TO CALCULATE PROBABILITIES CONCERNING A SEQUENTIAL TEST OF THREE BINOMIAL PROBABILITIES

Corneliussen and Ladd (1970) derived a method to calculate exact values for the ASN and OC functions for a sequential test concerning binomial proportions, $H_{0}: p=p_{0}$ vs. $H_{1}: p=p_{1}$ (see Chapter II). Similar techniques to determine properties for the sequential test of three binomial hypotheses using Armitage's (1950) method have been developed.

Assume the test of three binomial proportions will be conducted using a graph of X_{n} by n, the number of trials, as in Figure 9. If the true binomial proportion is p, then at $\mathrm{n}=1$, the points $(1,1)$ and $(1,0)$ will have probabilities p and (1 - p), respectively. At $\mathrm{n}=2$, the points $(2,2),(2,1)$, and $(2,0)$ will have probabilities $p^{2}, 2 p(1-p)$, and $(1-p)^{2}$, respectively.

This process can be continued so that the probability associated with any point in the continuation region can be calculated. A program was written to perform this analysis. This development permits the evaluation of the exact $O C$ and ASN functions associated with a simultaneous test of three
hypotheses concerning binomial proportions. Note that this technique is valid only for discrete distributions. A continuous distribution has an infinite number of possible values in the continuation region.

Consider, for example, the following test:

$$
\begin{equation*}
H_{1}: p=p_{-1} \text { vs. } H_{0}: p=p_{0} \text { vs. } H_{1}: p=p_{1} \tag{3.1}
\end{equation*}
$$

where p is a binomial probability. Armitage (1950) suggested simultaneously conducting three SPRT's. One tests H_{-1} against H_{0}. The other decides between H_{0} and H_{1}. The SPRT for H_{-1} vs. H_{1} will not have any effect on the procedure. Armitage's 1950 procedure will reduce to his 1947 procedure whenever the Type I error rate is less than or equal to twice the Type II error rate. Assuming Type I and Type II error rates of α and β for each of the SPRTs, the slopes of the lines that determine the sampling regions are given by

$$
\text { slope }_{1}=\frac{\log \frac{\left(1-p_{1}\right)}{\left(1-p_{0}\right)}}{\log \frac{\left[p_{1}\left(1-p_{0}\right)\right]}{\left[p_{0}\left(1-p_{1}\right)\right]}}
$$

and

$$
\begin{equation*}
\text { slope }_{0}=\frac{\log \frac{\left(1-p_{0}\right)}{\left(1-p_{-1}\right)}}{\log \frac{\left[p_{0}\left(1-p_{-1}\right)\right]}{\left[p_{-1}\left(1-p_{0}\right)\right]}} \tag{3.2}
\end{equation*}
$$

Note that these are functions of the hypothesized values only. Formulae for the intercepts of the lines (see Figure 9) are given by:

$$
\begin{aligned}
B_{L}= & \frac{\log \left[\frac{\beta_{0}}{1-\alpha_{0}}\right]}{\log \left[\frac{p_{0}\left(1-p_{-1}\right)}{p_{-1}\left(1-p_{0}\right)}\right]}, \quad A_{L}=\frac{\log \left[\frac{\beta_{1}}{1-\alpha_{1}}\right]}{\log \left[\frac{p_{1}\left(1-p_{0}\right)}{p_{0}\left(1-p_{1}\right)}\right]}, \\
B_{U}= & \log \left[\frac{1-\beta_{0}}{\left.\alpha_{0}\right]}\left[\frac{p_{0}\left(1-p_{-1}\right)}{p_{-1}\left(1-p_{0}\right)}\right]\right.
\end{aligned} \quad A_{U}=\frac{\log \left[\frac{\left.1-\beta_{1}\right]}{\left.\alpha_{1}\right]}\right.}{\log \left[\frac{p_{1}\left(1-p_{0}\right)}{p_{0}\left(1-p_{1}\right)}\right]},
$$

These formulae are not only functions of hypothesized values, but also of the probabilities of Type I and Type II errors for each test.

Consider the specific example $H_{-1}: p=0.3$ vs. $H_{0}: p=$ 0.4 vs. $H_{1}: p=0.5$ with the desired probability of error 0.10. The α and β for each set of hypotheses could be set to 0.10 .

Using the previously mentioned technique to compute exact error probabilities, the following can be calculated:

Successes

Figure 9. Lines and corresponding intercepts used for determining acceptance regions for the dual SPRT method
and

$$
\begin{aligned}
& \text { Prob (error } \mid \mathrm{p}=0.3)=0.041521, \\
& \text { Prob (error } \mid \mathrm{p}=0.4)=0.191853, \\
& \text { Prob (error } \mid \mathrm{p}=0.5)=0.047250 .
\end{aligned}
$$

At $\mathrm{p}=0.3$ or $\mathrm{p}=0.5$, probabilities of error less than 0.05 are obtained, while at $p=0.4$, a probability of error around 0.20 is observed. An analysis using different values of p_{-1}, p_{0}, and p_{1} was performed and Tables I - VI report the results. For most cases presented the following relationships hold:
i) $\operatorname{Prob}\left(\right.$ error $\left.\mid \mathrm{p}=\mathrm{p}_{-1}\right) \leq \alpha / 2$
ii) $\operatorname{Prob}\left(\right.$ error $\left.\mid p=p_{0}\right) \leq \alpha+\beta$
iii) Prob(error $\left.\mid p=p_{1}\right) \leq \beta / 2$

For certain cases, these relationships do not apply. For instance, for $p_{-1}=0.25, p_{0}=0.50, p_{1}=0.75$ and for $p_{-1}=$ $0.10, \mathrm{p}_{0}=0.35, \mathrm{p}_{1}=0.40$, the outer hypotheses have higher error. This seems to indicate that when the hypothesized values are not close (i.e., difference greater than 0.10), the two SPRT's seem to obtain approximate independence. When $p_{0}-p_{-1} \neq p_{1}-p_{0}$ (or lack of symmetry), one test seems to dominate the other.

For $p_{-1}=0.375, p_{0}=0.40, p_{1}=0.425$, the error probabilities for the outer hypotheses are much smaller than $\alpha / 2$ or $\beta / 2$. Thus, for hypothesized values very close (differences less than 0.025), the proposed bounds work, but

TABLE I

ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
(0.30, 0.40, 0.50)

α	β	p	Prob(error)
0.025	0.025	0.30	0.010849
		0.40	0.047022
		0.50	0.012483
0.025	0.100	0.30	0.012288
		0.40	0.116223
		0.50	0.039683
0.050	0.050	0.30	0.021020
		0.40	0.092405
		0.50	0.023944
0.075	0.075	0.30	0.031425
		0.40	0.139716
		0.50	0.035836
0.100	0.025	0.30	0.035842
		0.40	0.114782
		0.50	0.014315
0.100	0.100	0.30	0.041521
		0.40	0.191853
		0.50	0.047250

TABLE II
ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
($0.35,0.40,0.45$)

α	β	p	Prob(error)
0.050	0.050	0.35	0.015947
		0.40	0.090465
		0.45	0.016831
0.100	0.100	0.35	0.035901
		0.40	0.191492
		0.45	0.038375

TABLE III

ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
 (0.375, 0.40, 0.425)

α	β	p	Prob(error)
0.050	0.050	0.375	0.000098
		0.40	0.092378
		0.425	0.000118
0.100	0.100	0.375	0.001085
		0.40	0.091145
		0.425	0.001248

TABLE IV
ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
(0.10, 0.30, 0.40)

α	β	p	Prob(error)
0.050	0.050	0.10	0.000099
		0.30	0.023780
		0.40	0.000118
0.100	0.100	0.10	0.001085
		0.30	0.091145
		0.40	0.001248

TABLE V

ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
($0.10,0.35 ; 0.40$)

α	β	p	Prob(error)
0.050	0.050	0.10	0.000318
		0.35	0.044932
		0.40	0.043586
0.100	0.100	0.10	0.002809
		0.35	0.099663
		0.40	0.093777

TABLE VI

ERROR PROBABILITIES AT HYPOTHESIZED PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
(0.25, 0.50, 0.75)

α	β	p	Prob(error)
0.050	0.050	0.25	0.040074
		0.50	0.089437
		0.75	0.040075
0.100	0.100	0.25	0.073529
		0.50	0.187321
		0.75	0.073769

are extremely conservative. In general, as the differences in hypothesized values decrease, the error probabilities also decrease for the outer hypotheses.

As mentioned in Chapter II, Armitage (1950) suggested the following bound for errors assuming $\alpha=\beta$ in both tests.

$$
P\left(\text { error } \mid H_{i}\right)<\alpha \text { for } i=-1,1
$$

and

$$
\begin{equation*}
P\left(\text { error } \mid H_{0}\right)<2 \alpha \tag{3.5}
\end{equation*}
$$

Note that for $\alpha=\beta$, the exact computations have good agreement with Armitage's bound for H_{0}. However, the error bounds for the outer hypotheses are extremely conservative.

The Exact ASN

The technique used in calculating the exact $O C$ function can be used to calculate the exact Average Sample Number for given values of p. Table VII gives the values of the ASN functions for $H_{-1}: p=0.3, H_{0}: p=0.4$, and $H_{1}: p=0.5$ ($\alpha=\beta=0.10$). Figure 10 is the corresponding graph.

Notice that the graph of the ASN has two peaks indicative of a simultaneous test of three hypotheses. The peaks occur at values between the adjacent hypothesized values.

Alternative Method of Boundary Selection

Due to the fact that Armitage placed bounds on the error probabilities as mentioned previously in this chapter,

TABLE VII

AVERAGE SAMPLE NUMBER VALUES FOR PARAMETER VALUES FOR TESTING THREE BINOMIAL PROPORTIONS
($0.30,0.40,0.50$)
$(\alpha=\beta=0.10)$

p	ASN	p	ASN
0.000	15.0000	0.500	88.5579
0.025	16.1379	0.525	68.2784
0.050	17.3843	0.550	54.0547
0.075	18.8499	0.575	44.3321
0.100	20.6443	0.600	37.4351
0.125	22.8904	0.625	32.3014
0.150	25.7488	0.650	28.3421
0.175	29.4694	0.675	25.2154
0.200	34.5087		
0.225	41.6961	0.700	22.6979
0.250	52.2560	0.725	20.6326
0.275	67.4972	0.775	18.9092
0.300	87.9762		17.4477
0.325	110.0274	0.800	16.1902
0.350	121.2751	0.825	15.0927
0.375	116.8491	0.875	14.1218
0.400	113.7908	0.900	13.2524
0.425	121.8931	0.925	12.4672
0.450	126.5710	0.950	11.7550
0.475	112.3164	0.975	11.1093
			10.5262
		1.000	10.0000

Figure 10. Average Sample Number Function for the Test of Three Binomial Proportions, $0.3,0.4$, and 0.5 with Alpha $=$ Beta $=0.10$
he suggested an adjustment of the $\alpha^{\prime} s$ and $\beta^{\prime} s$ that appear in the equations determining intercepts. Recall that the probability of error given $p=p_{0}$ is approximately $\alpha+\beta$. Thus α and β can be replaced with $\alpha / 2$ and $\beta / 2$ in the equations for the intercepts for the acceptance of $H_{-1}: p=$ p_{-1} and $\mathrm{H}_{1}: \mathrm{p}=\mathrm{p}_{1}$. This allows for the acceptance of H_{-1} and H_{1} to occur less frequently, thus lowering the probability of making an error when $p=p_{0}$. The exact computations of the OC function suggests a further adjustment. Recall the error rates at $p=p_{-1}$ and $p=p_{1}$ are approximately $\alpha / 2$ and $\beta / 2$, respectively. To accommodate this, α and β in the two remaining intercepts may be replaced with 2α and 2β. This will result in the more frequent acceptance of H_{0}, thus producing larger error rates for H_{-1} and H_{1}. The intercepts will then be:

$$
\begin{aligned}
& B_{L}^{\prime}= \frac{\log \left[\frac{2 \beta}{1-\alpha}\right]}{\log \left[\frac{P_{0}\left(1-P_{-1}\right)}{P_{-1}\left(1-P_{0}\right)}\right]}, \quad A_{L}^{\prime}=\frac{\log \left[\frac{\beta / 2}{1-\alpha / 2}\right]}{\log \left[\frac{P_{1}\left(1-P_{0}\right)}{P_{0}\left(1-P_{1}\right)}\right]}, \\
& B_{U}^{\prime}= \log \left[\frac{1-\beta / 2}{\alpha / 2}\right] \\
& \log \left[\frac{P_{0}\left(1-P_{-1}\right)}{P_{-1}\left(1-P_{0}\right)}\right]
\end{aligned}, \quad A_{U}^{\prime}=\frac{\log \left[\frac{1-\beta}{2 \alpha}\right]}{\log \left[\frac{P_{1}\left(1-P_{0}\right)}{P_{0}\left(1-P_{1}\right)}\right]} .
$$

An analysis using $\alpha=\beta$ shows that these intercepts actually improve the error rates in the sense that they are closer to the desired level of error (see Table VIII).

ASN for Alternative Method

The ASN curve for this alternative method compares favorably to Armitage's 1950 method. The ASN is larger than Armitage's for values of p less that p_{-1}. When $\mathrm{p}_{-1}<\mathrm{p}<$ p_{1}, the ASN for this proposed method is smaller than Armitage's method.

Figure 11 and Table IX represent the ASN for H_{-1} : $p=$ 0.3 vs. $H_{0}: p=0.4$ vs. $H_{1}: p=0.5$ using desired probability of error equal to 0.10. It is compared to the ASN for the same test using $\alpha=\beta=0.10$. An examination such as this reveals some important characteristics of sequential sampling. The actual probability of error is a function of the hypothesized values and the desired error rates. The method presented to adjust α and β has some limitations. Changing the hypothesized values will cause the adjustment to be ineffective in certain cases. One set of Type I and Type II errors can be appropriate for one test and not for another. The question then stands: "Can one adjust the error rates so that the test of three hypotheses will attain desired probabilities of error?" This question is addressed in the following chapter.

TABLE VIII

ERROR PROBABILITIES AT HYPOTHESIZED
PARAMETER VALUES USING ALTERNATIVE METHOD OF BOUNDARY SELECTION

$\mathrm{p}_{-1}=0.3$	$\mathrm{p}_{0}=0.4$	$\mathrm{p}_{1}=0.5$
Desired Prob(error)	p	Prob (error)
0.05	0.30	0.047889
	0.40	0.042681
	0.50	0.052752
0.10	0.30	0.096122
	0.40	0.077682
	0.50	0.104966
$p_{-1}=0.1$	$p_{0}=0.3$	$\mathrm{p}_{1}=0.4$
Desired Prob(error)	p	Prob (error)
0.05	0.10	0.022656
	0.30	0.042327
	0.40	0.087705
$\mathrm{p}_{-1}=0.25 \quad \mathrm{p}_{0}=0.5$		
Desired Prob(error)	p	Prob (error)
0.05	0.25	0.082552
	0.50	0.038778
	0.75	0.082532

Figure 11. Comparison of ASN Functions for Alternative Method (---) and Armitage (- for the Test of Three Proportions (0.3, $0.4,0.5)$

TABLE IX

AVERAGE SAMPLE NUMBER VALUES FOR
 PARAMETER VALUES FOR THE
 MODIFIED TEST OF THREE
 BINOMIAL PROPORTIONS
 ($0.30,0.40,0.50$)
 (ERROR $=0.10$)

p	ASN	p	ASN
0.000	20.0000	0.500	101.0775
0.025	21.1919	0.525	82.0227
0.050	22.7742	0.550	66.4630
0.075	24.7825	0.575	54.9752
0.100	27.2972	0.600	46.7616
0.125	30.4688	0.625	40.8466
0.150	34.5360	0.650	36.3928
0.175	39.7597	0.675	32.8201
0.200	46.4137		
0.225	54.9306	0.700	29.8145
0.250	66.0520	0.725	27.2402
0.275	80.6249	0.775	25.0332
	98.1997	0.800	23.1427
0.300	112.9311	0.825	21.5172
0.325	112.8903	0.850	20.1091
0.350	99.9851	0.875	18.8845
0.375	94.3144	0.900	17.8165
0.400	105.1230	0.925	
0.425	119.7423	0.950	16.8852
0.450	117.9234	0.975	15.0706
0.475		1.000	14.6747

CHAPTER IV

A PROCEDURE TO SEQUENTIALLY
 TEST THREE HYPOTHESES

Consider the probability density function from the Koopman-Darmois family of densities; that is,

$$
\begin{equation*}
f_{\theta}(x)=\exp \{k(x)+\theta x-b(\theta)\} \tag{4.1}
\end{equation*}
$$

Suppose it is of interest to choose between the three hypotheses

$$
\begin{aligned}
\mathrm{H}_{-1}: \theta & =\theta_{-1}, \\
\mathrm{H}_{0}: \theta & =\theta_{0}, \\
\mathrm{H}_{1}: \theta & =\theta_{1},
\end{aligned}
$$

Let $x_{i}, i=1, \ldots, n, \ldots$, be independent observations from f. $X_{n}=\sum_{i=1}^{n} x_{i}$, the sufficient statistic for θ, will be the test statistic. Figure 12 takes the appearance of Billard and Vagholkar's (1969) procedure (see Figure 5 for comparison). Figure 12 can be obtained by letting b $=c$ in Figure 5. If, in the process of sampling, $\left(n, X_{n}\right)$ lies above the region determined by AL, sampling is discontinued and H_{1} is accepted. Likewise, if (n, X_{n}) lies in the region determined by MCP, H_{0} is accepted. If $\left(n, X_{n}\right)$ lies above

Figure 12. Sampling region for testing three hypotheses

DQ, H_{-1} is accepted. Otherwise, sampling continues. The parallel boundaries can be established by performing two SPRTs simultaneously for H_{-1} vs. H_{0} and H_{0} vs. H_{1}. The value of n at which the two SPRTs cease intersecting (or where the "accept H_{0} " wedge begins) is n_{0}, which serves as a sample size minimum.

Let α_{1}, β_{i} be the Type I and Type II error rates, respectively, for testing H_{i} vs. H_{i+1}, $i=-1$, 0 . Using SPRTs as defined in Chapter II, it is possible to define the process as follows.

For $n \geq n_{0}$, then
accept H_{1} if $X_{n} \geq \frac{\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]}{\left(\theta_{1}-\theta_{0}\right)} n+\frac{\log \left[\left(1-\beta_{1}\right) / \alpha_{1}\right]}{\left(\theta_{1}-\theta_{0}\right)}$, accept H_{0} if $\frac{\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right]}{\left(\theta_{0}-\theta_{-1}\right)} n+\frac{\log \left[\left(1-\beta_{0}\right) / \alpha_{0}\right]}{\left(\theta_{0}-\theta_{-1}\right)}$ $\leq X_{n} \leq \frac{\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]}{\left(\theta_{1}-\theta_{0}\right)} n+\frac{\log \left[\beta_{1} /\left(1-\alpha_{1}\right]\right.}{\left(\theta_{1}-\theta_{0}\right)}$,
or
accept H_{-1} if $X_{n} \leq \frac{\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right]}{\left(\theta_{0}-\theta_{-1}\right)} n+\frac{\log \left[\beta_{0} /\left(1-\alpha_{0}\right]\right.}{\left(\theta_{0}-\theta_{-1}\right)}$.

Otherwise, sampling is continued. n_{0} will be the value of n such that the lower boundary of the test of H_{0} vs. H_{1}
will equal the upper boundary of the test of H_{-1} vs. H_{0}. This value can then be expressed in terms of the test parameters. n_{0} will be the solution to the equation

$$
\begin{align*}
& \frac{\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right] n_{0}+}{\left(\theta_{0}-\theta_{-1}\right)}= \\
& \quad \frac{\log \left[\left(1-\beta_{0}\right) / \alpha_{0}\right]}{\left(\theta_{0}-\theta_{-1}\right)}= \tag{4.3}\\
& \left.\left(\theta_{1}-\theta_{0}\right)-b\left(\theta_{0}\right)\right] \\
& n_{0}+\frac{\log \left[\beta_{1} /\left(1-\alpha_{1}\right]\right.}{\left(\theta_{1}-\theta_{0}\right)}
\end{align*}
$$

This implies

$$
\begin{equation*}
n_{0}=\frac{\left(\theta_{1}-\theta_{0}\right) \log \left[\left(1-\beta_{0}\right) / \alpha_{0}\right]-\left(\theta_{0}-\theta_{-1}\right) \log \left[\beta_{1} /\left(1-\alpha_{1}\right)\right.}{\left(\theta_{0}-\theta_{-1}\right)\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]-\left(\theta_{1}-\theta_{0}\right)\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right]} \tag{4.4}
\end{equation*}
$$

The points a, c, and d on the X_{n}-axis (see Figure 12) are the values of the parallel lines at $n=n_{0}$ and can be determined by:

$$
\begin{aligned}
& a=\frac{\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]}{\left(\theta_{1}-\theta_{0}\right)} n_{0}+\frac{\log \left[\left(1-\beta_{1}\right) / \alpha_{1}\right]}{\left(\theta_{1}-\theta_{0}\right)}, \\
& c=\frac{\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right]}{\left(\theta_{1}-\theta_{0}\right)} n_{0}+\frac{\log \left[\beta_{1} /\left(1-\alpha_{1}\right]\right.}{\left(\theta_{1}-\theta_{0}\right)}, \\
& c=\frac{\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right]}{\left(\theta_{0}-\theta_{-1}\right)} n_{0}+\frac{\log \left[\left(1-\beta_{0}\right) / \alpha_{0}\right]}{\left(\theta_{0}-\theta_{-1}\right)},
\end{aligned}
$$

and

$$
\begin{equation*}
d=\frac{\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right]}{\left(\theta_{0}-\theta_{-1}\right)} n_{0}+\frac{\log \left[\left(\beta_{0} /\left(1-\alpha_{0}\right]\right.\right.}{\left(\theta_{0}-\theta_{-1}\right)} \tag{4.5}
\end{equation*}
$$

Point c is given be two expressions because the two test boundaries intersect at this value. By having two equations
 values $\alpha_{0}, \alpha_{1}, \beta_{0}$, and β_{1} to obtain

$$
\begin{align*}
& \alpha_{0}=\frac{1-t_{0}(d)}{t_{0}(c)-t_{0}(d)} \\
& \beta_{0}=\frac{t_{0}(c) t_{0}(d)-t_{0}(d)}{t_{0}(c)-t_{0}(d)}, \\
& \alpha_{1}=\frac{1-t_{1}(c)}{t_{1}(a)-t_{1}(c)}, \\
& \beta_{1}=\frac{t_{1}(a) t_{1}(c)-t_{1}(c)}{t_{1}(a)-t_{1}(c)}, \tag{4.6}
\end{align*}
$$

and
where

$$
t_{0}(x)=\exp \left\{x\left(\theta_{0}-\theta_{-1}\right)-\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right] n_{0}\right\}
$$

and

$$
t_{1}(x)=\exp \left\{x\left(\theta_{1}-\theta_{0}\right)-\left[b\left(\theta_{1}\right)-b\left(\theta_{0}\right)\right] n_{0}\right\}
$$

The Operating Characteristic Function

Consider the operating characteristic function, $L(\theta)$, the probability of accepting H_{0} given the value of θ. At $\mathrm{n}=\mathrm{n}_{\mathrm{o}}, \mathrm{H}_{\mathrm{o}}$ will be accepted if

1. $\mathrm{c}<\mathrm{X}_{\mathrm{n}}<\mathrm{a}$ with CM being the first boundary to be crossed, or if
2. $\mathrm{d}<\mathrm{X}_{\mathrm{n}}<\mathrm{c}$ with CP being the first boundary to be crossed.

Let $L_{1}(\theta)$ and $L_{-1}(\theta)$ be the respective probabilities of 1 and 2 above. Then $L(\theta)=L_{1}(\theta)+L_{-1}(\theta)$. Lemmas 1 and 2 will derive $L_{1}(\theta)$ and $L_{-1}(\theta)$, respectively. Then Theorem 4.1 will give the general form of $L(\theta)$.

Lemma 1.

$$
\begin{align*}
L_{1}(\theta)= & \left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)^{-1}\left\{\exp \left\{-h_{0} a\right\}\right. \\
& \times\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right] \\
& -\exp \left\{n_{0}\left[b\left(\theta-h_{0}\right)-b(\theta)\right]\right\}\left[G\left(\theta-h_{0}, n_{0}, a\right)\right. \\
& \left.\left.-G\left(\theta-h_{0}, n_{0}, c\right)\right]\right\} \text { for } h_{0} \neq 0, \tag{4.7}\\
L_{1}(\theta)= & (a-c)^{-1}\left\{a\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right]\right. \\
& \left.\int_{c}^{a} x g_{n}(x, \theta) d x\right\} \text { for } h_{0}=0 \tag{4.8}
\end{align*}
$$

where h_{0} is the solution to $b(\theta-h)=b(\theta)-h\left(b\left(\theta_{1}\right)-\right.$ $\left.b\left(\theta_{0}\right)\right) /\left(\theta_{1}-\theta_{0}\right)$.

Proof: Recall from Chapter II, equation (2.4), that the density function of X_{n} is

$$
g_{n}\left(x_{n}, \theta\right)=\exp \left\{k_{n}\left(x_{n}\right)+\theta x_{n}-n b(\theta)\right\}
$$

Therefore

$$
\begin{equation*}
L_{1}(\theta)=\int_{c}^{a} g_{n}(x, \theta) \Pi(x) d x \quad \text { for } n=n_{0} \tag{4.9}
\end{equation*}
$$

where $\Pi(x)$ is the probability that, when starting at ($\left.n_{0}, x\right), c<x<a, ~ t h e ~ p r o c e s s ~ c r o s s e s ~ C M ~ f i r s t . ~$

Cox and Miller (1965), found for a random walk which operates between parallel boundaries $X_{n}=a *$ and $X_{n}=c *$ and starts at $X_{0}=0$, the approximate probability $p_{-c *}$ that the walk ceases with absorption by $X_{n}=c *$ is

$$
\begin{align*}
P_{-c^{*}} & =\frac{\exp \left\{-\lambda_{0} a *\right\}-1}{\exp \left\{-\lambda_{0} a^{*}\right\}-\exp \left\{\lambda_{0} c^{*}\right\}} \text { for } \lambda_{0} \neq 0 \\
& =\frac{a *}{a *+c^{*}} \text { for } \lambda_{0}=0, \tag{4.10}
\end{align*}
$$

where λ_{0} is the nonzero solution for $E(\exp \{-\lambda x\})=1$.
$P_{-c^{*}}$ is a function not only of λ_{0} and c^{*}, but also of a*. Billard and Vagholkar transformed this threedimensional function to $\Pi(x) \cdot \Pi(x)$ is actually a
three-dimensional function of $a-x$ and $b-x$, and is found to be

$$
\begin{align*}
\Pi(x) & =\frac{\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} x\right\}}{\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}} \text { for } h_{0} \neq 0 \\
& =\frac{a-x}{a-c} \text { for } h_{0}=0 \tag{4.11}
\end{align*}
$$

where h_{0} is the solution for $E(\exp \{-h(X-\tan \psi)\})=1$. For Koopman-Darmois densities,

$$
\begin{align*}
E(\exp \{-h X\}) & =\int_{\Omega} \exp \{k(x)+(\theta-h) x-b(\theta)\} d x \\
& =\exp \{b(\theta-h)-b(\theta)\} \tag{4.12}
\end{align*}
$$

So $E(\exp \{-h(X-\tan \psi)\})=1$ can be restated as

$$
\exp \{h \tan \psi-b(\theta)+b(\theta-h)\}=1,
$$

which implies that

$$
\begin{equation*}
\mathrm{b}\left(\theta-\mathrm{h}_{0}\right)=\mathrm{b}(\theta)-\mathrm{h}_{0} \tan \psi . \tag{4.13}
\end{equation*}
$$

Remembering that $\tan \psi$ is the same as the slope of the line if ψ is the angle between the line and the n-axis,

$$
\begin{equation*}
\tan \psi=\frac{b\left(\theta_{1}\right)-b\left(\theta_{0}\right)}{\theta_{1}-\theta_{0}} \tag{4.14}
\end{equation*}
$$

Thus h_{0} will be the nonzero solution to

$$
\begin{equation*}
b\left(\theta-h_{0}\right)=b(\theta)-h_{0} \frac{b\left(\theta_{1}\right)-b\left(\theta_{0}\right)}{\theta_{1}-\theta_{0}} \tag{4.15}
\end{equation*}
$$

Now what remains is the calculation of

$$
\int_{c}^{a} g_{n}(x, \theta) \Pi(x) d x, \text { where } n=n_{0} .
$$

For convenience, define $G\left(\theta, n_{0}, k\right)$ at $n=n_{0}$ as

$$
\begin{equation*}
G\left(\theta, n_{0}, k\right)=\int_{-\infty}^{k} g_{n}(x, \theta) d x \tag{4.16}
\end{equation*}
$$

Thus G is the cumulative distribution function for the density of X_{n}.

An expression for $L_{1}(\theta)$ can now be found using (4.11), for $h_{0} \neq 0$; that is,

$$
\begin{aligned}
L_{1}(\theta)= & \int_{c}^{a} g_{n}(x, \theta) \Pi(x) d x \\
= & \int_{c}^{a} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\}\left[\left(\exp \left\{-h_{0} a\right\}\right.\right. \\
& \left.\left.-\exp \left\{-h_{0} x\right\}\right) /\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)\right] d x .
\end{aligned}
$$

This quantity can be expressed as

$$
\begin{align*}
L_{1}(\theta)= & \left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)^{-1}\left\{\operatorname { e x p } \{ - h _ { 0 } a \} \left[G\left(\theta, n_{0}, a\right)\right.\right. \\
& \left.-G\left(\theta, n_{0}, c\right)\right]-\exp \left\{n_{0}\left[b\left(\theta-h_{0}\right)-b(\theta)\right]\right\} \\
& \left.\times\left[G\left(\theta-h_{0}, n_{0}, a\right)-G\left(\theta-h_{0}, n_{0}, c\right)\right]\right\} \tag{4.17}
\end{align*}
$$

If $h_{0}=0$, then

$$
\begin{align*}
L_{1}(\theta)= & \int_{c}^{a} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\}[(a-x) /(a-c)] d x \\
= & (a-c)^{-1}\left\{a\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right]\right. \\
& \left.-\int_{c}^{a} x q_{n}(x, \theta) d x\right\} . \tag{4.18}
\end{align*}
$$

The proof is now complete.

Lemma 2.

$$
\begin{align*}
L_{-1}(\theta)= & \left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right)^{-1} \\
& \times\left\{\operatorname { e x p } (n _ { 0 } (b (\theta - h _ { 0 } ^ { \prime }) - b (\theta)) \} \left[G\left(\theta-h_{0}^{\prime}, n_{0}^{\prime} c\right)\right.\right. \\
& \left.-G\left(\theta-h_{0}^{\prime}, n_{0}, c\right)\right]-\exp \left\{-h_{0}^{\prime} d\right\}\left[G\left(\theta, n_{0}, c\right)\right. \\
& \left.\left.-G\left(\theta, n_{0}, d\right)\right]\right\}, h_{0}^{\prime} \neq 0 \tag{4.19}\\
L_{-1}(\theta)= & (c-d)^{-1}\left\{\int_{d}^{c} x_{n}(x, \theta) d x-c\left[G\left(\theta, n_{0}, c\right)\right.\right. \\
& \left.-G\left(\theta, n_{0}, d\right]\right\} \tag{4.20}
\end{align*}
$$

where h_{0}^{\prime} is the solution of

$$
b^{\prime}\left(\theta-h^{\prime}\right)=b(\theta)-h^{\prime}\left[b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)\right] /\left(\theta_{0}-\theta_{-1}\right)
$$

Proof: In order to find $L_{-1}(\theta)$, it is necessary to find $\Gamma(x)$, the approximate probability that the process crosses CP first when starting at $\left(n_{0}, x\right), d<x<c$. Using (4.9),

$$
\begin{align*}
\Gamma(x) & =\frac{\exp \left\{-h_{0}^{\prime} x\right\}-\exp \left\{-h_{0}^{\prime} d\right\}}{\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}} \text { for } h_{0}^{\prime} \neq 0 \\
& =\frac{x-d}{c-d} \text { for } h_{0}^{\prime}=0 \tag{4.21}
\end{align*}
$$

Therefore, for h_{0},

$$
\begin{align*}
L_{-1}(\theta)= & \int_{d}^{c} g_{n}(x, \theta) \Gamma(x) d x \\
= & \int_{d}^{c} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\}\left[\left(\exp \left\{-h_{0}^{\prime} x\right\}\right.\right. \\
& \left.\left.-\exp \left\{-h_{0}^{\prime} d\right\}\right) /\left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right)\right] d x \\
= & \left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right)^{-1}\left\{\operatorname { e x p } \left\{n _ { 0 } \left(b\left(\theta-h_{0}^{\prime}\right)\right.\right.\right. \\
& -b(\theta))\}\left[G\left(\theta-h_{0}^{\prime}, n_{0}, c\right)\right. \\
& \left.-G\left(\theta-h_{0}^{\prime}, n_{0}, d\right)\right]-\exp \left\{-h_{0}^{\prime} d\right\}\left[G\left(\theta, n_{0}, c\right)\right. \\
& \left.\left.-G\left(\theta, n_{0}, d\right)\right]\right\} . \tag{4.22}
\end{align*}
$$

For $h_{0}^{\prime}=0$,

$$
L_{-1}(\theta)=\int_{d}^{c} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\}[(x-c) /(c-d)] d x
$$

implies
implies

$$
\begin{align*}
L_{-1}(\theta)= & (c-d)^{-1}\left\{\int_{d}^{c} x g_{n}(x, \theta) d x-c\left[G\left(\theta, n_{0}, c\right)\right.\right. \\
& \left.\left.-G\left(\theta, n_{0}, d\right)\right]\right\} . \tag{4.23}
\end{align*}
$$

The following theorem is presented with the previous work serving as proof:

Theorem 4.1: Let x_{1}, $i=1,2, \ldots$ be random observations from $f_{\theta}(x)=\exp \{k(x)+\theta x-b(\theta)\}$, and let Figure 12 serve as the sampling region for testing $H_{-1}: \theta=\theta_{-1}$ vs. $H_{0}: \theta$ $=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$. Let $L(\theta)$ be the approximate probability of accepting H_{0} given θ (i.e., OC function), then

$$
L(\theta)=L_{1}(\theta)+L_{-1}(\theta),
$$

where $L_{1}(\theta)$ and $L_{-1}(\theta)$ are defined in Lemmas 1 and 2 , respectively.

Average Sample Number Function

Consider the ASN function, which is the expected number of observations required to reach a decision as a function of θ. Three possibilities exist for this procedure:

1. A decision is reached at $n=n_{0}$, or
2. $c<X_{n}<a$ at $n=n_{0}, N_{1}(\theta)$ denoting the average sample number beyond $n_{0}=n$ for deciding in favor of either H_{1} or H_{0}, or
3. $d<X_{n}<c$ at $n=n_{0}, N_{-1}(\theta)$ denoting the average sample number beyond $\mathrm{n}=\mathrm{n}_{0}$ for deciding in favor of either H_{0} or H_{-1}.

The following theorem provides the ASN function for the proposed testing procedure.

Theorem 4.2: Let the assumptions of Theorem 4.1 hold. The Average Sample Number function, $\mathrm{E}_{\theta}(\mathrm{N})$, is

$$
E_{\theta}(N)=n_{0}+N_{1}(\theta)+N_{-1}(\theta),
$$

where

$$
\begin{aligned}
N_{1}(\theta)= & \left(b^{\prime}(\theta)-\tan \psi\right)^{-1}\left\{(a - c) \operatorname { e x p } \left\{n _ { 0 } \left[b\left(\theta-h_{0}\right)\right.\right.\right. \\
& -b(\theta)]\}\left[G\left(\theta-h_{0}, n_{0}, a\right)-G\left(\theta-h_{0}, n_{0}, c\right)\right] \\
& \div\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)+\left(c \cdot \exp \left\{-h_{0} a\right\}\right. \\
& \left.-a \cdot \exp \left\{-h_{0} c\right\}\right)\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right] \\
& \div\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right) \\
& \left.-\int_{c}^{a} x_{n}(x, \theta) d x\right\} \text { for } h_{0} \neq 0, \\
N_{1}(\theta)= & {\left[b^{\prime \prime}(\theta)\right]^{-1}\left\{(a+c) \int_{c}^{a} x_{n}(x, \theta) d x-a c\right.} \\
& \times\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
N_{1}(\theta)= & {\left[b^{\prime \prime}(\theta)\right]^{-1}\left\{(a+c) \int_{c}^{a} x g_{n}(x, \theta) d x-a c\right.} \\
& \times\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right] \\
& \left.-\int_{c}^{a} x^{2} g_{n}(x, \theta) d x\right\} \text { for } h_{0}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
N_{-1}(\theta)= & \left(b^{\prime}(\theta)-\tan \phi\right)^{-1}\left\{(c - d) \operatorname { e x p } \left\{n _ { 0 } \left[b\left(\theta-h_{0}^{\prime}\right)\right.\right.\right. \\
& -b(\theta)]\}\left[G\left(\theta-h_{0}^{\prime}, n_{0}, c\right)\right. \\
& \left.-G\left(\theta-h_{0}^{\prime}, n_{0}, d\right)\right] /\left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right) \\
& +\left(d \cdot \exp \left\{-h_{0}^{\prime} c\right\}-c \cdot \exp \left\{-h_{0}^{\prime} d\right\}\right)\left[G\left(\theta, n_{0}, c\right)\right. \\
& \left.-G\left(\theta, n_{0}, d\right)\right] /\left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right) \\
& \left.-\int_{d}^{c} x_{n}(x, \theta) d x\right\} \text { for } h_{0}^{\prime} \neq 0, \\
N_{-1}(\theta)= & {\left[b^{\prime \prime}(\theta)\right]^{-1}\left\{(c+d) \int_{d}^{c} x g_{n}(x, \theta) d x\right.} \\
& -c_{d}\left[G\left(\theta, n_{0}, c\right)-G\left(\theta, n_{0}, d\right)\right] \\
& \left.-\int_{d}^{c} x^{2} g_{n}(x, \theta) d x\right\} \text { for } h_{0}^{\prime}=0
\end{aligned}
$$

Proof:

Since no decision will be made before n_{0}, the average sample number will be n_{0} plus the average sample number beyond $n=n_{0}$ for deciding in favor of either H_{1} or H_{0} plus the average sample number beyond $n=n_{0}$ for deciding in favor of either H_{0} or H_{-1}. The ASN function, denoted by $E_{\theta}(N)$, will be

$$
\begin{equation*}
E_{\theta}(N)=n_{0}+N_{1}(\theta)+N_{-1}(\theta) \tag{4.24}
\end{equation*}
$$

Let $N_{1}(\theta)$ be

$$
\begin{equation*}
N_{1}(\theta)=\int_{c}^{a} g_{n}(x, \theta) n(x) d x, \tag{4.25}
\end{equation*}
$$

where $n(x)$ is the expected number of observations to absorption for a random walk starting at point $X_{n}=x$ at $n=$ n_{0} and operating between the parallel lines $A L$ and $C M$.

Cox and Miller found that the expected number of steps for a random walk starting at zero and operating between parallel absorbing boundaries $X_{n}=a *$ and $X_{n}=c *$ is

$$
\begin{align*}
E(N) & =\frac{(a *+c *)-a * \exp \left\{\lambda_{0} c *\right\}-c * \exp \left\{-\lambda_{0} a *\right\}}{\mu\left(\exp \left\{-\lambda_{0} a *\right\}-\exp \left\{\lambda_{0} c *\right\}\right)} ; \lambda_{0} \neq 0 \\
& =\frac{a * c^{*}}{\sigma^{2}} ; \lambda_{0}=0, \tag{4.26}
\end{align*}
$$

where λ_{0} is the nonzero solution of $E(\exp \{-\lambda X\})=1$. Billard and Vagholkar transformed (4.22) into

$$
\begin{align*}
\mathrm{n}(\mathrm{x})= & {\left[\frac{(a-c) \exp \left\{-h_{0} x\right\}-a \cdot \exp \left\{-h_{0} c\right\}+c \cdot \exp \left\{-h_{0} x\right\}}{\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}}-x\right] } \\
& \div(\mu-\tan \psi) \text { for } h_{0} \neq 0, \\
= & (a-x)(x-c) / \sigma^{2} \text { for } h_{0}=0 \tag{4.27}
\end{align*}
$$

where h_{0} is the nonzero solution of

$$
E(\exp \{-h(x-\tan \psi)\}]=1
$$

For the Koopman-Darmois family of densities

$$
\begin{align*}
n(x)= & {\left[\frac{(a-c) \exp \left\{-h_{0} x\right\}-a \cdot \exp \left\{-h_{0} c\right\}+c \cdot \exp \left\{-h_{0} a\right\}}{\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}}-x\right] } \\
& \div\left(b^{\prime}(\theta)-\tan \psi\right) \text { for } h_{0} \neq 0, \\
= & (a-x)(x-c) / b^{\prime \prime}(\theta) \text { for } h_{0}=0, \tag{4.28}
\end{align*}
$$

where h_{0} is such that

$$
\mathrm{b}\left(\theta-\mathrm{h}_{0}\right)=\mathrm{b}(\theta)-\mathrm{h}_{0} \frac{\mathrm{~b}\left(\theta_{1}\right)-\mathrm{b}\left(\theta_{0}\right)}{\theta_{1}-\theta_{0}} .
$$

$N_{1}(\theta)$ will then be

$$
\begin{aligned}
N_{1}(\theta)= & \int_{c}^{a} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\} n(x) d x \\
= & \left(b^{\prime}(\theta)-\tan \psi\right)^{-1}\left[\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)^{-1}\right. \\
& \times \int_{c}^{a}\left[(a-c) \exp \left\{-h_{0} x\right\}-a \cdot \exp \left\{-h_{0} c\right\}\right. \\
& \left.+c \cdot \exp \left\{-h_{0} a\right\}\right] g_{n}(x, \theta) d x \\
& -\int_{c}^{a} x_{n}(x, \theta) d x,
\end{aligned}
$$

$$
\begin{align*}
&=\left(b^{\prime}(\theta)-\tan \psi\right)^{-1}\left\{(a - c) \operatorname { e x p } \left\{n _ { 0 } \left[b\left(\theta-h_{0}\right)\right.\right.\right. \\
&-b(\theta)]\}\left[G\left(\theta-h_{0}, n_{0}, a\right)-G\left(\theta-h_{0}, n_{0}, c\right)\right] \\
& \div\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)+\left(c \cdot \exp \left\{-h_{0} a\right\}\right. \\
&\left.-a \cdot \exp \left\{-h_{0} c\right\}\right)\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right] \\
&\left.\div\left(\exp \left\{-h_{0} a\right\}-\exp \left\{-h_{0} c\right\}\right)-\int_{c}^{a} x g_{n}(x, \theta) d x\right\} ; \\
& h_{0} \neq 0 \tag{4.29}
\end{align*}
$$

For $h_{0}=0$,

$$
\begin{align*}
N_{1}(\theta)= & \int_{c}^{a} \exp \left\{k_{n}(x)+\theta x-n_{0} b(\theta)\right\} \frac{(a-x)(x-c)}{b^{\prime \prime}(\theta)} d x \\
= & \left(b^{\prime \prime}(\theta)\right)^{-1}\left\{(a+c) \int_{c}^{a} x g_{n}(x, \theta) d x\right. \\
& -\operatorname{ac}\left[G\left(\theta, n_{0}, a\right)-G\left(\theta, n_{0}, c\right)\right] \\
& \left.-\int_{c}^{a} x^{2} g_{n}(x, \theta) d x\right\} \tag{4.30}
\end{align*}
$$

Due to symmetry, $N_{-1}(\theta)$ can be found by replacing in $N_{1}(\theta)$ a with c, c with d, ψ with ϕ, and h_{0} with $h_{0}{ }^{\prime} \cdot$ Therefore,

$$
\begin{align*}
N_{-1}(\theta)= & \left(b^{\prime}(\theta)-\tan \phi\right)^{-1}\left\{(c - d) \operatorname { e x p } \left\{n _ { 0 } \left[b\left(\theta-h_{0}^{\prime}\right)\right.\right.\right. \\
& -b(\theta)]\}\left[G\left(\theta-h_{0}^{\prime}, n_{0}, c\right)\right. \\
& \left.-G\left(\theta-h_{0}^{\prime}, n_{0}, d\right)\right] /\left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right) \\
& +\left(d \cdot \exp \left\{-h_{0}^{\prime} c\right\}-c \cdot \exp \left\{-h_{0}^{\prime} d\right\}\right)\left[G\left(\theta, n_{0}, c\right)\right. \\
& \left.-G\left(\theta, n_{0}, d\right)\right] /\left(\exp \left\{-h_{0}^{\prime} c\right\}-\exp \left\{-h_{0}^{\prime} d\right\}\right) \\
& \left.-\int_{d}^{c} \operatorname{xg}_{n}(x, \theta) d x\right\} \text { for } h_{0}^{\prime} \neq 0, \tag{4.31}
\end{align*}
$$

and

$$
\begin{align*}
N_{-1}(\theta)= & {\left[b^{\prime \prime}(\theta)\right]^{-1}\left\{(c+d) \int_{d}^{c} x g_{n}(x, \theta) d x\right.} \\
& -\operatorname{cd}\left[G\left(\theta, n_{0}, c\right)-G\left(\theta, n_{0}, d\right)\right] \\
& \left.-\int_{d}^{c} x^{2} g_{n}(x, \theta) d x\right\} \text { for } h_{0}^{\prime}=0 . \tag{4.32}
\end{align*}
$$

The proof of Theorem 4.2 is now complete.
Approximations for the OC and ASN functions have been developed for the procedure depicted in Figure 12. In the next section, the OC function will be used in part to adjust the error rates to obtain a more desirable test.

Error Rate Adjustment

Suppose it is desired to test
and

$$
\begin{align*}
& \mathrm{H}_{-1}: \theta=\theta_{-1}, \\
& \mathrm{H}_{0}: \theta=\theta_{0}, \\
& \mathrm{H}_{1}: \theta=\theta_{1}, \tag{4.33}
\end{align*}
$$

where θ is a parameter from $f_{\theta}(x)=\exp \{k(x)+\theta x-b(\theta)\}$. As mentioned in Chapter III, when two SPRTs are combined to test these hypotheses, the error rates $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}$ used in the SPRTs do not result in desired error levels. It is the goal of this section to find the values of the error rates that do give desired results.

The approach used to adjust the error rates will be to set values to the probabilities below:

$$
\begin{align*}
& P\left(\text { accepting } H_{0} \mid \theta=\theta_{1}\right)=\gamma_{1}, \\
& P\left(\text { accepting } H_{0} \mid \theta=\theta_{-1}\right)=\gamma_{2}, \\
& P\left(\text { accepting } H_{1} \mid \theta=\theta_{0}\right)=\gamma_{3^{\prime}} \\
& P\left(\text { accepting } H_{-1} \mid \theta=\theta_{0}\right)=\gamma_{4} . \tag{4.34}
\end{align*}
$$

and

Since the probability that H_{-1} is accepted when H_{1} is true will usually be very small, γ_{1} can be thought of as the probability of error when θ_{1} is the true value of θ.

Likewise γ_{2} can be the probability of error when H_{-1} is true. The quantity $\left(\gamma_{3}+\gamma_{4}\right)$ will be the probability of error when H_{0} is true. It will now be necessary to find the probabilities associated with equation (4.34).

Theorem 4.3: Based on (4.34), the four desired error rates are

$$
\begin{align*}
& L_{1}\left(\theta_{1}\right)+L_{-1}\left(\theta_{1}\right)=\gamma_{1}, \\
& L_{1}\left(\theta_{-1}\right)+L_{-1}\left(\theta_{-1}\right)=\gamma_{2}, \\
& 1-G\left(\theta_{0}, n_{0}, C\right)-L_{1}\left(\theta_{0}\right)=\gamma_{3}, \\
& G\left(\theta_{0}, n_{0}, c\right)-L_{-1}\left(\theta_{0}\right)=\gamma_{4} . \tag{4.35}
\end{align*}
$$

and

Proof: Theorem 4.1 found an approximation for the operating Characteristic function, which is the probability of accepting H_{0} given a value of θ. Thus

$$
\begin{equation*}
P\left(\text { accepting } H_{0} \mid \theta\right)=L(\theta)=L_{1}(\theta)+L_{-1}(\theta) . \tag{4.36}
\end{equation*}
$$

Accepting H_{1} will require, at $n=n_{0}, X_{n}>c$ and the process not crossing boundary CM first (see Figure 12). The random variable X_{n} will be greater than c with probability

$$
\begin{equation*}
P\left(X_{n}>c\right)=\int_{c}^{\infty} g_{n}(x, \theta) d x \tag{4.37}
\end{equation*}
$$

and CM will be crossed first with probability

$$
\begin{equation*}
P(C M \text { crossed first })=L_{1}(\theta) \tag{4.38}
\end{equation*}
$$

Combining (4.37) and (4.38) will give

$$
\begin{align*}
P\left(\text { accepting } H_{1} \mid \theta\right) & =\int_{c}^{\infty} g_{n}(x, \theta) d x-L_{1}(\theta) \\
& =1-G\left(\theta, n_{0}, c\right)-L_{1}(\theta) \tag{4.39}
\end{align*}
$$

Likewise, the probability of accepting H_{-1} can be expressed as

$$
\begin{align*}
P\left(\text { accepting } H_{-1} \mid \theta\right) & =\int_{-\infty}^{c} g_{n}(x, \theta) d x-L_{-1}(\theta) \\
& =G\left(\theta, n_{0}, c\right)-L_{-1}(\theta) . \tag{4.40}
\end{align*}
$$

Using (4.34), the four desired error rates become

$$
\begin{align*}
& L_{1}\left(\theta_{1}\right)+L_{-1}\left(\theta_{1}\right)=\gamma_{1}, \\
& L_{1}\left(\theta_{-1}\right)+L_{-1}\left(\theta_{-1}\right)=\gamma_{2}, \\
& 1-G\left(\theta_{0}, n_{0}, C\right)-L_{1}\left(\theta_{0}\right)=\gamma_{3}, \\
& G\left(\theta_{0}, n_{0}, C\right)-L_{-1}\left(\theta_{0}\right)=\gamma_{4} . \tag{4.41}
\end{align*}
$$

and

The proof is complete.
The four equations (4.41) are all equations in a, c, d, and n_{0}, which are functions of $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}$ (see equation 4.6). It is desired to set these error rates such that the desired error rates are attained. Therefore, the problem is to find the a, c, d, and n_{0} that provide a solution to the system of equations denoted by (4.41). A method for solving a system of nonlinear equations using SAS is presented in Chapter V.

This process (Figure 12) is similar to Billard and Vagholkar's (1969), and many of their techniques were utilized in this dissertation. There are some notable differences between the two methods, however. The procedure defined in this chapter adjusts the nominal error rates of the two SPRTs to obtain the desired error probabilities. Billard and Vagholkar's geometric approach begins with the desired error probabilities and then determines the geometric parameters that minimize the ASN function at a given point.

A minimum sample size, n_{0}, is considered for this procedure. This is useful for researchers not willing to stop sampling after only a few observations. Placing a
minimum on sample size is not a necessity or requirement of this method, however. The parallel boundaries that characterize the sampling regions for $n>n_{0}$ can be extended to meet the X_{n}-axis (Figure 13). This extension will have little effect on the error rates, since making a decision early in the process will happen infrequently. since no decision can be made in Figure 12 before it is made in Figure 13, the ASN functions for the method in Figure 13 will be smaller than that depicted in Figure 12. Thus, the extension of the parallel boundaries would seem prudent, and Chapter V compares the two methods.

Figure 13. Sampling region for testing three hypotheses with the boundaries extended to the X_{n} axis

CHAPTER V

TWO EXAMPLES WITH MONTE

CARLO RESULTS

In order to examine the effectiveness of the procedure developed in Chapter IV, it will be derived for certain tests and compared using simulation to other known methods. The two distributions that will be used are the exponential and normal, which are commonly used in the literature for sequential sampling (e.g., Huffman, 1983, Billard and Vagholkar, 1969). One should note, however, that the procedure presented in this dissertation is applicable to any distribution in the Koopman-Darmois family.

A Method Using SAS to Solve a System
Of Nonlinear Equations

The method for sequentially testing three hypotheses mentioned in Chapter IV relied primarily on solving a system of four non-linear equations in four unknowns. There exist many computing techniques to solve such a system. However, the equations included in this dissertation involve cumulative distribution functions. This creates problems for some routines that must estimate the incomplete integrals that accompany such functions. SAS is convenient
for solving these systems because it has implicit functions for the cumulative distribution function of most known distributions.

The ETS version of SAS has a procedure named PROC SYSNLIN for solving a system of nonlinear equations. An alternative method for SAS without ETS has been developed using PROC NLIN, SAS's nonlinear regression procedure. Consider the following general example of four equations, four unknowns.

Let x_{1}, x_{2}, x_{3}, and x_{4}, be four unknowns, f_{1}, f_{2}, f_{3}, and f_{4} be four functions of x_{1} through x_{4}, and let c_{1}, c_{2}, c_{3}, and c_{4} be four constants. The system may take the appearance of:

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{1} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{2} \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{3} \\
& f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=C_{4} \tag{5.1}
\end{align*}
$$

The values of x_{1}, x_{2}, x_{3}, and x_{4} that solve the previous system can be found using the following SAS code.

INPUT A B C D Y ;
CARDS;

1	0	0	0	c_{1}
0	1	0	0	c_{2}
0	0	1	0	c_{3}
0	0	0	1	c_{4}
$;$				

PROC NLIN;
$\operatorname{MODEL} Y=f_{1} * A+f_{2} * B+f_{3} * C+f_{4} * D ;$
RUN;

The quantities c_{1} through c_{4} will be numeric values and the model statement can be quite complicated depending on the system. Between the PROC NLIN and MODEL statements should be a PARMS statement, giving initial parameter estimates, a BOUNDS statement, placing restrictions on the unknowns.

This method is used to solve systems of equations in this chapter.

Test for Exponential Parameter

Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be random observations from an exponential distribution with parameter λ; that is,

$$
\begin{equation*}
f(x)=\lambda e^{-\lambda x}=\exp \{\log \lambda-\lambda x\} \tag{5.2}
\end{equation*}
$$

Therefore, using the definition of Koopman-Darmois
densities, $\theta=-\lambda, b(\theta)=-\log (-\theta)$, and $b^{\prime}(\theta)=-1 / \theta$. Also note that the mean of the distribution, μ, is equal to $1 / \lambda$. Suppose it is desired to test

$$
\text { and } \quad \begin{array}{ll}
\mathrm{H}_{-1}: \mu=1, \\
\mathrm{H}_{0}: \mu=2, \\
\mathrm{H}_{1}: \mu & =3, \tag{5.3}
\end{array}
$$

or equivalently,

$$
\begin{align*}
& \mathrm{H}_{-1}: \quad \theta=-1, \\
& \mathrm{H}_{0}: \quad \theta=-1 / 2, \\
& \mathrm{H}_{1}: \quad \theta=-1 / 3 . \tag{5.4}
\end{align*}
$$

and

Assume the desired error probability is set at 0.10. The distribution of X_{n} will be gamma (n, λ); that is,

$$
\begin{equation*}
g_{\theta}(x)=\exp \{-\log (\Gamma(n))+(n-1) \cdot \log x+\theta x+n \cdot \log (-\theta)] \tag{5.5}
\end{equation*}
$$

Therefore,

$$
k_{n}(x)=(n-1) \log (x)-\log (\Gamma(n))
$$

h_{0} is the solution to

$$
\log (h-\theta)-\log (-\theta)-6 h \cdot(\log 3-\log 2)=0,
$$

and h_{0}^{\prime} is the solution to

$$
\log \left(h^{\prime}-\theta\right)-\log (-\theta)-2 h^{\prime}(\log 2)=0
$$

The values of h_{0} and h_{0}^{\prime} must be estimated iteratively because the equations cannot be solved explicitly for these terms. For $\theta=\theta_{-1}, h_{0}$ to four decimal places of accuracy is -0.8834. h_{0}^{\prime} for $\theta=-1$ is $-1 / 2$. For $\theta=\theta_{0}=-1 / 2$, $h_{0}^{\prime}=-1 / 6, h_{0}^{\prime}=1 / 2$. For $\theta=\theta_{1}=-1 / 3, h_{0}=1 / 6, h_{0}^{\prime}=1$. The slopes of the upper and lower sets of parallel lines are

$$
\text { slope }_{1}=\frac{b\left(\theta_{1}\right)-b\left(\theta_{0}\right)}{\theta_{1}-\theta_{0}}=2.4328
$$

and \quad slope $_{0}=\frac{b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)}{\theta_{0}-\theta_{-1}}=1.3863$,
respectively.
The problem remains to find values of a, c, d, and n_{0} that solve the system of equations associated with this test. Using Armitage's (1947) method for testing these hypotheses, the following values result:

$$
\begin{align*}
& a=59.21 \\
& c=28.36 \\
& d=18.08 \\
& n_{0}=17.21 \tag{5.7}
\end{align*}
$$

and

These values will be used as initial values in the computer iterations. The specified error rates used in the procedure above are

$$
\begin{align*}
& \alpha_{0}=0.10, \\
& \beta_{0}=0.05, \\
& \alpha_{1}=0.05, \\
& \beta_{1}=0.10 . \tag{5.8}
\end{align*}
$$

and

The system of equations associated with (5.4) is

$$
\begin{align*}
& L_{1}\left(\theta_{1}\right)+L_{-1}\left(\theta_{1}\right)=0.10 \\
& L_{1}\left(\theta_{-1}\right)+L_{-1}\left(\theta_{-1}\right)=0.10 \\
& 1-G\left(\theta_{0}, n_{0}, c\right)-L_{1}\left(\theta_{0}\right)=0.05 \\
& G\left(\theta_{0}, n_{0}, c\right)-L_{-1}\left(\theta_{0}\right)=0.05 \tag{5.9}
\end{align*}
$$

where

$$
\begin{equation*}
G(\theta, n, c)=\int_{0}^{c} \frac{(-\theta)^{n}}{\Gamma(n)} x^{n-1} \exp \{\theta x\} d x \tag{5.10}
\end{equation*}
$$

For $\theta=\theta_{-1}=-1$, one can find

$$
\begin{align*}
& -h_{0}=0.88342 \\
& b\left(\theta_{-1}-h_{0}\right)=2.149175 \\
& \theta_{-1}-h_{0}=-0.11658 . \tag{5.11}
\end{align*}
$$

For convenience, define the above quantities as r_{1}, r_{2}, and
r_{3}, respectively. Using appropriate definitions for L_{1} and L_{-1}, the system of equations denoted by (5.9) becomes

$$
\begin{align*}
& (\exp \{-a / 6\}-\exp \{-c / 6\})^{-1}\left\{\operatorname { e x p } \{ - a / 6 \} \left[G\left(-1 / 3, n_{0}, a\right)\right.\right. \\
& \left.-G\left(-1 / 3, n_{0}, c\right)\right]-\exp \left\{n_{0}(\log 2-\log 3)\right\} \\
& \left.\times\left[G\left(-1 / 2, n_{0}, a\right)-G\left(-1 / 2, n_{0}, c\right)\right]\right\}+(\exp \{-c\} \\
& -\exp \{-d\})\left\{\operatorname { e x p } \{ - n _ { 0 } \operatorname { l o g } 4 \} \left[G\left(-4 / 3, n_{0}, c\right)\right.\right. \\
& \left.-G\left(-4 / 3, n_{0}, d\right)\right]-\exp \{-c\}\left[G\left(-1 / 3, n_{0}, c\right)\right. \\
& \left.\left.-G\left(-1 / 3, n_{0}, d\right)\right]\right\}=0.10 \\
& \left(\exp \left\{r_{1} a\right\}-\exp \left\{r_{1} c\right\}\right)^{-1}\left\{\operatorname { e x p } \{ r _ { 1 } a \} \left[G\left(-1, n_{0}, a\right)\right.\right. \\
& \left.-G\left(-1, n_{0}, c\right)\right]-\exp \left\{n_{0} r_{2}\right\}\left[G\left(r_{3}, n_{0}, a\right)\right. \\
& \left.-G\left(r_{3}, n_{0}, c\right]\right\}+(\exp \{c / 2\}-\exp \{d / 2\})^{-1} \\
& \times\left\{\exp \left\{n_{0} l o g 2\right\}\left[G\left(-1 / 2, n_{0}, c\right)-G\left(-1 / 2, n_{0}, d\right)\right]\right. \\
& \left.-\exp \{c / 2\}\left[G\left(-1, n_{0}, c\right)-G\left(-1, n_{0}, d\right)\right]\right\}=0.10 \\
& 1-G\left(-1 / 2, n_{0}, c\right)-(\exp \{a / 6\}-\exp \{c / 6\})^{-1} \\
& \times\left\{\exp \{a / 6\}\left[G\left(-1 / 2, n_{0}, a\right)-G\left(-1 / 2, n_{0}, c\right)\right]\right. \\
& -\exp \left\{n_{0}(l o g 3-\log 2)\right\}\left[G\left(-1 / 3, n_{0}, a\right)\right. \\
& \left.\left.-G\left(-1 / 3, n_{0}, c\right)\right]\right\}=0.05 \\
& G\left(-1 / 2, n_{0}, c\right)-(\exp \{-c / 2\}-\exp \{-d / 2\})^{-1} \\
& \times\left\{\exp \left\{-n_{0} l o g 2\right\}\left[G\left(-1, n_{0}, c\right)-G\left(-1, n_{0}, d\right)\right]\right. \\
& \left.-\exp \{-d / 2\}\left[G\left(-1 / 2, n_{0}, c\right)-G\left(-1 / 2, n_{0}, d\right)\right]\right\}=0.05 \tag{5.12}
\end{align*}
$$

Solving the system of equations, the values obtained are

$$
\begin{align*}
& \mathrm{a}=50.41, \\
& \mathrm{c}=20.94, \\
& \mathrm{~d}=14.89, \\
& \mathrm{n}_{0}=13.96 . \tag{5.13}
\end{align*}
$$

and

These values result from adjusting the error rates associated with the two SPRTs that will be conducted simultaneously to obtain the desired probabilities of error.

Figure 14 represents this method using a minimum sample number, n_{0}, and Figure 15 is the same procedure without the minimum on the sample size. Figure 16 represents the procedure's comparison to Armitage's method. Note that the parallel boundaries are closer in the proposed method than Armitage's. This is a result of Armitage's procedure being too conservative. A Monte Carlo simulation of 2000 trials per parameter value was performed on PC SAS to compare these two procedure with Armitage's. Tables X, XI, and XII present the probabilities of accepting the hypotheses and average sample numbers given the mean of the exponential for all three procedures. Figures 17 and 18 are graphs of the empirical ASN functions.

The new procedures appear to be improvements over Armitage's. The error rates at the hypothesized values of θ are closer to the specified levels than the conservative error rates obtained by Armitage. This allows for decision making to occur sooner on the average, thus lending to smaller average sample numbers for all values of θ.

Figure 14. Sampling Region for Testing Three Values for the Mean of the
Exponential Distribution (1.0, 2.0, 3.0)

Figure 15. Sampling Region for Testing Three Values for the Mean of the Exponential Distribution (1.0, 2.0, 3.0), Boundaries Extended

Figure 16. Armitage's (--) and Proposed (-) Sampling Regions for Testing Three Values for the Exponential Mean (1.0, 2.0, 3.0)

TABLE X

ERROR PROBABILITIES AND ASN VALUES FOR ARMITAGE'S TEST OF THREE VALUES FOR THE MEAN OF AN EXPONENTIAL DENSITY
($1.0,2.0,3.0$)

	Probability of Accepting			
MEAN	H_{-1}	H_{o}	H_{1}	ASN
0.7	1.0000	0.0000	0.0000	9.3685
0.8	0.9995	0.0005	0.0000	10.6395
0.9	0.9970	0.0030	0.0000	12.9070
1.0	0.9820	0.0180	0.0000	15.7175
1.1		0.9285	0.0715	0.0000
1.2	0.8390	0.1310	0.0000	19.4970
1.3	0.6725	0.3275	0.0000	24.1755
1.4	0.4850	0.5150	0.0000	25.5970
1.5	0.3560	0.6435	0.0005	26.0015
1.6	0.2275	0.7715	0.0010	25.7145
1.7	0.1450	0.8530	0.0020	26.0490
1.8	0.0900	0.9040	0.0060	27.5745
1.9	0.0585	0.9270	0.0145	30.2340
2.0	0.0435	0.9235	0.0330	33.4795
2.1	0.0285	0.8970	0.0745	37.2850
2.2	0.0190	0.8450	0.1360	42.2890
2.3	0.0130	0.7500	0.2370	46.3410
2.4	0.0105	0.5995	0.3900	49.3100
2.5	0.0075	0.4760	0.5165	49.1815
2.6	0.0025	0.3525	0.6450	44.9460
2.7	0.0045	0.2330	0.7625	41.5355
2.8	0.0015	0.1795	0.8190	38.7565
2.9	0.0030	0.1305	0.8665	34.1110
3.0	0.0025	0.0800	0.9175	30.0775
3.1	0.0025	0.0505	0.9470	27.1255
3.2	0.0005	0.0410	0.9585	25.0730
3.3	0.0005	0.0205	0.9790	22.6350

TABLE XI

> ERROR PROBABILITIES AND ASN VALUES FOR PROPOSED TEST OF THREE VALUES FOR THE MEAN OF AN EXPONENTIAL DENSITY
> $(1.0,2.0,3.0)$

MEAN Probability of Accepting				
0.7	1.0000	0.0000	0.0000	14.1035
0.8	0.9980	0.0020	0.0000	14.3740
0.9	0.9770	0.0230	0.0000	15.0180
1.0	0.9415	0.0585	0.0000	16.1265
1.1	0.8345	0.1655	0.0000	17.1735
1.2	0.7205	0.2795	0.0000	17.8550
1.3	0.5800	0.4200	0.0000	18.6735
1.4	0.4265	0.5735	0.0000	19.3220
1.5	0.3070	0.6925	0.0000	19.8560
1.6	0.2185	0.7800	0.0015	20.5265
1.7	0.1420	0.8555	0.0025	22.5375
1.8	0.0645	0.9005	0.0045	24.3755
1.9	0.0465	0.9190	0.0165	27.8565
2.0	0.0305	0.9160	0.0375	31.2475
2.1	0.0305	0.8895	0.0800	35.3710
2.2	0.0205	0.8400	0.1395	40.5715
2.3	0.0135	0.7440	0.2425	44.8290
2.4	0.0085	0.5965	0.3950	47.1140
2.5	0.0055	0.4735	0.5210	47.2740
2.6	0.0025	0.3535	0.6440	43.2020
2.7	0.0040	0.2390	0.7570	40.0830
2.8	0.0015	0.1840	0.8145	38.1430
2.9	0.0020	0.1360	0.8620	33.5915
3.0	0.0010	0.0855	0.9135	30.4290
3.1	0.0010	0.0525	0.9465	27.8360
3.2	0.0000	0.0430	0.9570	26.0625
3.3	0.0000	0.0225	0.9775	23.9900

TABLE XII

ERROR PROBABILITIES AND ASN VALUES FOR PROPOSED TEST OF THREE VALUES FOR THE MEAN OF AN EXPONENTIAL DENSITY, BOUNDARIES EXTENDED
($1.0,2.0,3.0$)

MEAN Probability of Accepting				
0.7	1.0000	0.0000	0.0000	7.2380
0.8	0.9985	0.0015	0.0000	8.2950
0.9	0.9785	0.0215	0.0000	9.8715
1.0	0.9445	0.0555	0.0000	11.6535
1.1	0.8525	0.1475	0.0000	13.3385
1.2	0.7465	0.2535	0.0000	14.7975
1.3	0.6150	0.3850	0.0000	16.1160
1.4	0.4655	0.5345	0.0000	17.2845
1.5	0.3595	0.6400	0.0005	18.1030
1.6	0.2675	0.7305	0.0020	19.1320
1.7	0.1905	0.8060	0.0035	21.3545
1.8	0.1395	0.8530	0.0075	23.3260
1.9	0.0990	0.8805	0.0205	26.9120
2.0	0.0815	0.8775	0.0410	30.2805
2.1	0.0595	0.8570	0.0835	34.3450
2.2	0.0480	0.8100	0.1420	39.5405
2.3	0.0350	0.7155	0.2495	43.2275
2.4	0.0260	0.5745	0.3995	45.3150
2.5	0.0210	0.4590	0.5200	45.6810
2.6	0.0110	0.3455	0.6435	41.7715
2.7	0.0150	0.2310	0.7540	38.6280
2.8	0.0075	0.1805	0.8120	36.1905
2.9	0.0095	0.1310	0.8595	31.7360
3.0	0.0075	0.0825	0.9100	28.2690
3.1	0.0060	0.0510	0.9430	25.5740
3.2	0.0040	0.0400	0.9560	23.9055
3.3	0.0030	0.0215	0.9755	21.3450

Figure 17. ASN Functions for Proposed Method (--) and Armitage's (-) for the Test of Three Exponential Means (1.0, 2.0, 3.0)

Figure 18. ASN Functions for Proposed Method (---) with Boundaries Extended and Armitage's (-) for Test of Three Exponential Means

Test for Normal Mean

Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be random observations from a normal distribution with unit variance and mean μ; i.e.

$$
\begin{align*}
f(x) & =(2 \pi)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2\right\} \\
& =\exp \left\{-\log (2 \pi) / 2-x^{2} / 2+x \mu-\mu^{2} / 2\right\} \tag{5.14}
\end{align*}
$$

Therefore, using the definition of Koopman-Darmois densities, $\theta=\mu, b(\theta)=\theta^{2} / 2$, and $b^{\prime}(\theta)=\theta$.

Suppose it is desired to test

$$
\begin{array}{ll}
H_{-1}: \mu=-1 \\
\text { and } \quad & H_{0}: \mu=0 \\
H_{1}: \mu & =1
\end{array}
$$

Assume the desired error probability is 0.05 . The distribution of X_{n} will be normal with mean $n \mu$, variance n. h_{0} and h_{0}^{\prime} are the solutions to

$$
\begin{aligned}
& \mathrm{h}_{0}=2 \theta-\theta_{1}-\theta_{0}=2 \theta-1 \\
& \mathrm{~h}_{0}^{\prime}=2 \theta-\theta_{0}-\theta_{-1}=2 \theta+1
\end{aligned}
$$

When $\theta=\theta_{-1}=-1, h_{0}=-3$ and $h_{0}^{\prime}=1$. When $\theta=\theta_{0}=0$, $h_{0}=-1$ and $h_{0}^{\prime}=1$. When $\theta=\theta_{1}, h_{0}=1$ and $h_{0}^{\prime}=3$. The slopes of the upper and lower sets of parallel lines are found by

$$
\text { slope }_{1}=\frac{b\left(\theta_{1}\right)-b\left(\theta_{0}\right)}{\theta_{1}-\theta_{0}}=1 / 2
$$

and

$$
\begin{equation*}
\text { slope }_{0}=\frac{b\left(\theta_{0}\right)-b\left(\theta_{-1}\right)}{\theta_{0}-\theta_{-1}}=-1 / 2 \tag{5.16}
\end{equation*}
$$

respectively.
As in the exponential case, the values a, c, d, and n_{0} must be found in order to attain the approximate desired error probability of 0.05. Using Armitage's (1947) method, the values of a, c, d, and n_{0} would be

$$
\begin{align*}
& \mathrm{a}=5.14, \\
& \mathrm{c}=0, \\
& \mathrm{~d}=-5.14, \\
& \mathrm{n}_{0}=4.5 . \tag{5.17}
\end{align*}
$$

and

These will again be used to provide starting values to obtain the adjusted quantities. The system of equations associated with (5.15) is

$$
\begin{align*}
& L_{1}\left(\mu_{1}\right)+L_{-1}\left(\mu_{1}\right)=0.05 \\
& L_{1}\left(\mu_{-1}\right)+L_{-1}\left(\mu_{-1}\right)=0.05 \\
& 1-\Phi\left[\left(c-n_{0} \mu_{0}\right) / n_{0}^{\cdot 5}\right]-L_{1}\left(\mu_{0}\right)=0.025 \\
& \Phi\left[\left(c-n_{0} \mu_{0}\right) / n_{0} \cdot 5\right]-L_{-1}\left(\mu_{0}\right)=0.025, \tag{5.18}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi(k)=\int_{-\infty}^{k}(2 \pi)^{-.5} \exp \left\{-x^{2} / 2\right\} d x . \tag{5.19}
\end{equation*}
$$

The system (5.18) then becomes

$$
\begin{align*}
& \exp \{-\mathrm{a}\}\left\{\Phi\left[\left(\mathrm{a}-\mathrm{n}_{0}\right) / \mathrm{n}_{0}{ }^{5}\right]-\Phi\left[\left(\mathrm{c}-\mathrm{n}_{0}\right) / \mathrm{n}_{0}{ }^{5}\right]\right\} \\
& \div(\exp \{-a\}-\exp \{-c\})-\exp \left\{-n_{0} / 2\right\}\left\{\Phi\left[a / n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[c / n_{0}{ }^{5}\right]\right\} /(\exp \{-a\}-\exp \{-c\})+\exp \left\{3 n_{0} / 2\right\} \\
& \times\left\{\Phi\left[\left(c+2 n_{0}\right) / n_{0}{ }^{5}\right]-\Phi\left[\left(d+2 n_{0}\right) / n_{0}{ }^{5}\right]\right\} \\
& \div(\exp \{-3 c\}-\exp \{-3 d\})-\exp \{-3 d\}\left\{\Phi\left[\left(c-n_{0}\right) / n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[\left(d-n_{0}\right) / n_{0}{ }^{\cdot 5}\right]\right\} /(\exp \{-3 c\}-\exp \{-3 d\})=0.05 \\
& \exp \{3 a\}\left\{\Phi\left[\left(a+n_{0}\right) / n_{0}{ }^{5}\right]-\Phi\left[\left(c-n_{0}\right) / n_{0}{ }^{5}\right]\right\} \\
& \div(\exp \{3 a\}-\exp \{3 c\})-\exp \left\{3 n_{0} / 2\right\}\left\{\Phi\left[\left(a-2 n_{0}\right) / n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[\left(c-2 n_{0}\right) / n_{0} \cdot{ }^{5}\right]\right\} /(\exp \{3 a\}-\exp \{3 c\}) \\
& +\exp \left\{-\mathrm{n}_{\mathrm{o}} / 2\right\}\left\{\Phi\left[\mathrm{c} / \mathrm{n}_{0}{ }^{5}\right]-\Phi\left[\mathrm{d} / \mathrm{n}_{\mathrm{o}}{ }^{5}\right]\right\} /(\exp \{\mathrm{c}\} \\
& -\exp \{d\})-\exp \{d\}\left\{\Phi\left[\left(c+n_{0}\right) n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[\left(d+n_{0}\right) / n_{0}{ }^{5}\right]\right\} /(\exp \{c\}-\exp \{d\})=0.05 \\
& 1-\Phi\left[c / \mathrm{n}_{0}{ }^{-5}\right]-\exp \{\mathrm{a}\}\left\{\Phi\left[a / \mathrm{n}_{0}{ }^{5}\right]-\Phi\left[\mathrm{c} / \mathrm{n}_{\mathrm{o}}{ }^{5}\right]\right\} \\
& \div(\exp \{a\}-\exp \{c\})+\exp \left\{n_{0} / 2\right\}\left\{\Phi\left[\left(a-n_{0}\right) / n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[\left(c-n_{0}\right) / n_{0}{ }^{5}\right]\right\} /(\exp \{a\}-\exp \{c\})=0.025 \\
& \Phi\left[c / n_{0}{ }^{5}\right]-\exp \left\{n_{0} / 2\right\}\left\{\Phi\left[\left(c+n_{0}\right) / n_{0}{ }^{5}\right]\right. \\
& \left.-\Phi\left[\left(d+n_{0}\right) / n_{0}{ }^{5}\right]\right\} /(\exp \{-c\}-\exp \{-d\}) \\
& +\exp \{-\mathrm{d}\}\left\{\Phi\left[\mathrm{c} / \mathrm{n}_{0}{ }^{5}\right]-\Phi\left[\mathrm{d} / \mathrm{n}_{0}{ }^{-5}\right]\right\} /(\exp \{-\mathrm{c}\} \\
& -\exp \{-\mathrm{d}\})=0.025 \tag{5.20}
\end{align*}
$$

The approximate solution given by PC SAS is

$$
\begin{align*}
\mathrm{a} & =5.89, \\
\mathrm{c} & =0.0002, \\
\mathrm{~d} & =-5.89, \\
\text { and } \quad n_{0} & =5.063 . \tag{5.21}
\end{align*}
$$

It will be of interest to compare this new method not only to Armitage's (1947) method, but to Billard and Vagholkar's as well. Their paper from 1969 lists several solutions to tests like the one performed here. For comparison, the test using $\alpha=\beta=0.05$ and minimizing $E(N)$ at $\mu=0.5$ was used. The slope of this process was 0.4942 , with

$$
\begin{aligned}
& \mathrm{a}=5.975, \\
& \mathrm{~b}=0.1362, \\
& \mathrm{c}=-\mathrm{b}, \\
& \mathrm{~d}=-\mathrm{a},
\end{aligned}
$$

and

$$
n_{0}=5.2358
$$

Figure 5 should be referred to for information on the appearance of Billard and Vagholkar's test.

Tables XIII through XVI give the results of Monte Carlo simulation designed to test the relative merits of each test. Note that the proposed method is a definite improvement over Armitage's. More importantly, the

TABLE XIII

ERROR PROBABILITIES AND ASN VALUES FOR ARMITAGE'S TEST OF THREE VALUES FOR THE MEAN OF A NORMAL DENSITY

(-1.0, 0.0, 1.0)

MEAN	Probability of Accepting			ASN
	H_{-1}	H_{0}	H_{1}	
-1.4	1.0000	0.0000	0.0000	4.9540
-1.3	0.9975	0.0025	0.0000	5.5535
-1.2	0.9985	0.0015	0.0000	6.3185
-1.1	0.9920	0.0080	0.0000	7.0065
-1.0	0.9795	0.0205	0.0000	8.3865
-0.9	0.9535	0.0465	0.0000	9.8795
-0.8	0.9020	0.0980	0.0000	11.9535
-0.7	0.8215	0.1785	0.0000	13.7635
-0.6	0.6545	0.3455	0.0000	15.7035
-0.5	0.4630	0.5365	0.0005	16.6500
-0.4	0.2620	0.7370	0.0010	15.3345
-0.3	0.1475	0.8505	0.0020	14.0650
-0.2	0.0710	0.9265	0.0025	12.3455
-0.1	0.0325	0.9595	0.0080	11.4085
0.0	0.0125	0.9700	0.0175	10.9275
0.1	0.0065	0.9590	0.0345	11.4620
0.2	0.0025	0.9305	0.0670	12.3530
0.3	0.0030	0.8445	0.1525	14.0115
0.4	0.0010	0.7035	0.2955	15.6190
0.5	0.0010	0.5410	0.4580	16.8260
0.6	0.0000	0.3470	0.6530	15.7045
0.7	0.0000	0.1890	0.8110	13.7240
0.8	0.0000	0.0940	0.9060	11.6930
0.9	0.0000	0.0435	0.9565	9.9145
1.0	0.0000	0.0160	0.9840	8.6105
1.1	0.0000	0.0085	0.9915	7.3305
1.2	0.0000	0.0050	0.9950	6.3290
1.3	0.0000	0.0010	0.9990	5.5080
1.4	0.0000	0.0000	1.0000	4.9730

TABLE XIV

ERROR PROBABILITIES AND ASN VALUES FOR BILLARD AND VAGHOLKAR'S TEST OF THREE VALUES FOR THE MEAN OF A NORMAL DENSITY (-1.0, 0.0, 1.0)

MEAN	Probability of Accepting			ASN
	H_{-1}	H_{0}	H_{1}	
-1.4	0.9985	0.0015	0.0000	4.6420
-1.3	0.9955	0.0045	0.0000	5.1775
-1.2	0.9955	0.0045	0.0000	5.8695
-1.1	0.9880	0.0120	0.0000	6.5120
-1.0	0.9680	0.0320	0.0000	7.6320
-0.9	0.9340	0.0660	0.0000	8.8495
-0.8	0.8765	0.1235	0.0000	10.4540
-0.7	0.7905	0.2095	0.0000	11.9015
-0.6	0.6255	0.3745	0.0000	13.0205
-0.5	0.4520	0.5470	0.0010	13.6895
-0.4	0.2720	0.7265	0.0015	12.8010
-0.3	0.1600	0.8370	0.0030	11.9180
-0.2	0.0860	0.9095	0.0045	10.6665
-0.1	0.0405	0.9510	0.0085	10.0465
0.0	0.0145	0.9645	0.0210	9.7020
0.1	0.0090	0.9485	0.0425	9.9900
0.2	0.0030	0.9145	0.0825	10.7195
0.3	0.0035	0.8330	0.1635	11.9355
0.4	0.0010	0.6925	0.3065	13.0600
0.5	0.0010	0.5470	0.4520	13.4170
0.6	0.0000	0.3730	0.6270	13.1155
0.7	0.0000	0.2145	0.7855	11.8150
0.8	0.0000	0.1235	0.8765	10.1795
0.9	0.0000	0.0650	0.9350	8.9440
1.0	0.0000	0.0275	0.9725	7.8845
1.1	0.0000	0.0145	0.9855	6.7670
1.2	0.0000	0.0085	0.9915	5.8945
1.3	0.0000	0.0025	0.9975	5.1235
1.4	0.0000	0.0005	0.9995	4.6650

TABLE XV

ERROR PROBABILITIES AND ASN VALUES FOR PROPOSED TEST OF THREE VALUES FOR THE MEAN OF A NORMAL DENSITY ($-1.0,0.0,1.0$)

	Probability of Accepting			
MEAN	H_{-1}	H_{o}	H_{1}	ASN
-1.4	0.9985	0.0015	0.0000	6.4695
-1.3	0.9955	0.0045	0.0000	6.8100
-1.2	0.9960	0.0040	0.0000	7.2525
-1.1	0.9890	0.0110	0.0000	7.7865
-1.0	0.9685	0.0315	0.0000	8.6645
-0.9	0.9345	0.0655	0.0000	9.7580
-0.8	0.8750	0.1250	0.0000	11.3320
-0.7	0.7885	0.2115	0.0000	12.5985
-0.6	0.6200	0.3800	0.0000	13.8120
-0.5	0.4400	0.5595	0.0005	14.3165
-0.4	0.2615	0.7380	0.0005	13.2635
-0.3	0.1475	0.8510	0.0015	12.3765
-0.2	0.0785	0.9180	0.0035	10.8805
-0.1	0.0350	0.9580	0.0070	10.2785
0.0	0.0100	0.9720	0.0180	9.8820
0.1	0.0055	0.9595	0.0350	10.2055
0.2	0.0015	0.9280	0.0705	11.0040
0.3	0.0010	0.8480	0.1510	12.3150
0.4	0.0005	0.7035	0.2960	13.5360
0.5	0.0005	0.5575	0.4420	14.0705
0.6	0.0000	0.3785	0.6215	13.8940
0.7	0.0000	0.2155	0.7845	12.5610
0.8	0.0000	0.1260	0.8740	10.9990
0.9	0.0000	0.0650	0.9350	9.8145
1.0	0.0000	0.0255	0.9745	8.9315
1.1	0.0000	0.0140	0.9860	7.9705
1.2	0.0000	0.0080	0.9920	7.2795
1.3	0.0000	0.0025	0.9975	6.7935
1.4	0.0000	0.0005	0.9995	6.4860

ERROR PROBABILITIES AND ASN VALUES FOR PROPOSED TEST OF THREE VALUES FOR THE MEAN OF A NORMAL DENSITY,

BOUNDARIES EXTENDED

$$
(-1.0,0.0,1.0)
$$

Probability of Accepting				
-1.4	0.9985	0.0015	0.0000	4.6410
-1.3	0.9955	0.0045	0.0000	5.1850
-1.2	0.9960	0.0040	0.0000	5.8915
-1.1	0.9890	0.0110	0.0000	6.5500
-1.0	0.9685	0.0315	0.0000	7.6685
-0.9	0.9355	0.0645	0.0000	8.9295
-0.8	0.8770	0.1230	0.0000	10.5925
-0.7	0.7905	0.2095	0.0000	12.0390
-0.6	0.6220	0.3780	0.0000	13.3410
-0.5	0.4485	0.5505	0.0010	13.8745
-0.4	0.2690	0.7295	0.0015	12.9580
-0.3	0.1585	0.8385	0.0030	12.0825
-0.2	0.0845	0.9105	0.0050	10.7440
-0.1	0.0385	0.9530	0.0085	10.1735
0.0	0.0140	0.9650	0.0210	9.7745
0.1	0.0085	0.9500	0.0415	10.0660
0.2	0.0030	0.9170	0.0800	10.8310
0.3	0.0035	0.8345	0.1620	12.0825
0.4	0.0010	0.6965	0.3025	13.2465
0.5	0.0010	0.5490	0.4500	13.6725
0.6	0.0000	0.3735	0.6265	13.3225
0.7	0.0000	0.2145	0.7855	11.9680
0.8	0.0000	0.1230	0.8770	10.2690
0.9	0.0000	0.0650	0.9350	8.9815
1.0	0.0000	0.0255	0.9745	7.9510
1.1	0.0000	0.0140	0.9860	6.7865
1.2	0.0000	0.0080	0.9920	5.9035
1.3	0.0000	0.0025	0.9975	5.1295
1.4	0.0000	0.0005	0.9995	4.6690

proposed method gives results very much like Billard and Vagholkar's. It should not give more favorable results for intermediate values of θ since the new method is a special case of Billard and Vagholkar's with $b=c$ (Figure 5), and a restriction placed on the slopes. One main distinction, however, is that, if no minimum sample size is used, the boundaries for sampling in the proposed method extend to the X_{n}-axis. Thus for $\theta>\theta_{1}$ or for $\theta<\theta_{-1}$, the ASN for the new method should be smaller than that of Billard and Vagholkar.

In summary, the proposed procedure and Billard and Vagholkar's method give similar results. As explained in Chapter IV, however, their respective approaches differ. Billard and Vagholkar claim their method is optimal since it utilizes a minimization procedure on the ASN function. The method proposed in this dissertation should, therefore, also be optimal. See Figure 19 for a graphical representation of the proposed method (with the boundaries extended) and Figures 20 through 23 for comparisons of the proposed methods to that of Armitage's and Billard and Vagholkar's.

Figure 19. Sampling Region for Testing Three Values for the Mean of Standard Normal Distribution ($-1.0,0.0,1.0$), Boundaries Extended

Figure 20. ASN Functions for Proposed Method (--) and Armitage's (-) for the Test of Three Standard Normal Means (-1.0, 0.0, 1.0)

Figure 21. ASN Functions for Proposed Method (---) with Boundaries Extended and Armitage's (-) for Test of Three Normal Means

Figure 22. ASN Functions for Proposed Method (--) and Billard and Vagholkar's (—) for the Test of Three Standard Normal Means

Figure 23. ASN Functions for Proposed Method (---) with the Boundaries Extended and Billard and Vagholkar's (- for Normal Means

CHAPTER VI

A CLOSED PROCEDURE TO
TEST THREE HYPOTHESES

Huffman (1983) developed a procedure, described in Chapter II, to sequentially test $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=$ θ_{1}. His method, an extension of Lorden's 2-SPRT, provides an asymptotic solution to the Kiefer-Weiss problem. It involves determining the combination of one-sided SPRT's that will minimize the ASN function for parameter values between the hypothesized values. The continuation region is a closed triangular region depicted in Figure 3. A possible extension of the 2 -SPRT to test a set of three hypotheses would be to simultaneously conduct two $2-S P R T s$. One would decide between H_{-1} and H_{0}. The other would test H_{0} vs. H_{1}.

The main focus of Huffman's work for testing $H_{0}: \theta=$ θ_{0} vs. $H_{1}: \theta=\theta_{1}$ with error rates α and β was determining $\theta *$, the intermediate value of θ that would result in the minimization of the ASN over the parameter space. Thus θ * is determined so that a one-sided $\operatorname{SPRT}\left(H_{0}: \theta=\theta_{0}\right.$ vs. $\left.H_{2}: \theta=\theta *\right)$ can be performed for the possible acceptance of $H_{0} \cdot$ Simultaneously, another one-sided $\operatorname{SPRT}\left(H_{2}: \theta=\theta\right.$ vs. $H_{1}: \theta=\theta_{1}$) is performed for the possible acceptance of H_{1}. An important aspect of Huffman's process is that he adjusts
the error rates $\left(\alpha\left(\theta^{*}\right)\right.$ and $\beta\left(\theta^{*}\right)$ of equations (2.16)) of the two one-sided tests so that the actual error rates are approximately equal to the nominal ones.

Consider again the problem of deciding among three hypotheses, but this time a closed test is desired. One possible approach is to determine $\theta_{0}^{*}, \theta_{1}^{*}, \alpha_{0}^{*}, \alpha_{1}^{*}, \beta_{0}^{*}$, and β_{1}^{*} such that two 2-SPRTs conducted simultaneously will yield predetermined error rates (see Figure 17). The procedure presented in Chapter IV of this thesis adjusted the original error rates of the two open SPRTs to attain desired probabilities of misclassification. This was accomplished by solving a system of four equations in four unknowns (a, c, d, and n_{0}), which are, in turn, functions of $\alpha_{0}, \alpha_{1}, \beta_{0}$, and β_{1}. The adjusted error rates used to construct the individual tests, $\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \beta_{0}^{\prime}$, and β_{1}^{\prime}, can be determined from a, c, d, and n_{0}. If these values are then used to construct the two individual 2-SPRTs as in Huffman's process, it would be quite natural to think that his adjustments $\left(\alpha_{0}^{*}, \alpha_{1}^{*}, \beta_{0}^{*}, \beta_{1}^{*}\right)$, based upon $\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \beta_{0}^{\prime}, \beta_{1}^{\prime}$, would lend a closed three-hypothesis test with the desired error rates of $\alpha_{0}, \alpha_{1}, \beta_{0}$, and β_{1}. A Monte Carlo study was conducted to study the feasibility of this approach.

A Closed Test for the
Exponential Parameter

Consider again the problem discussed in Chapter V of deciding among the hypotheses

$$
\begin{aligned}
& \mathrm{H}_{-1}: \theta=-1, \\
& \mathrm{H}_{0}: \theta=-1 / 2, \\
& \mathrm{H}_{1}: \theta=-1 / 3,
\end{aligned}
$$

and
where θ is the parameter from an exponential density. In Chapter V, it was determined that the approximate values of

$$
\begin{aligned}
& \mathrm{a}=50.41, \\
& \mathrm{c}=20.94, \\
& \mathrm{~d}=14.89,
\end{aligned}
$$

and $\quad n_{0}=13.96$
resulted in the specified error rates of $\alpha_{0}=0.10, \beta_{0}=$ $0.05, \alpha_{1}=0.05, \beta_{1}=0.10$. The adjusted error rates of α_{0}^{\prime}, $\alpha_{1}^{\prime}, \beta_{0}^{\prime}$, and β_{1}^{\prime} that correspond with the values a, c, d, and n_{0} can be found using equations (4.6). Applying (4.6), the adjusted error rates for this test are

$$
\begin{align*}
& \alpha_{0}^{\prime}=0.42335, \\
& \beta_{0}^{\prime}=0.06194, \\
& \alpha_{1}^{\prime}=0.05755, \\
& \beta_{1}^{\prime}=0.10764 . \tag{6.1}
\end{align*}
$$

and

Huffman's 2-SPRT can now be applied twice; once for H_{-1} : θ $=-1$ vs. $H_{0}: \theta=-1 / 2$ and again for $H_{0}: \theta=-1 / 2$ vs.
$H_{1}: \theta=-1 / 3$. The goal ultimately is to find the equations
of the lines that determine the sampling regions; i.e., a_{00}, $a_{01}, a_{10}, a_{11}, b_{00}, b_{01}, b_{10}$, and b_{11} such that
or

$$
\begin{align*}
& \text { if } X_{n} \geq a_{11}+b_{11} n, \text { accept } H_{1}, \\
& \text { if } a_{01}+b_{01} n \leq X_{n} \leq a_{10}+b_{10} n \text {, accept } H_{0} \text {, } \\
& \text { if } X_{n} \leq a_{00}+b_{00} n, \text { accept } H_{-1} \text {. } \tag{6.2}
\end{align*}
$$

These values are defined as in equation (2.17):

$$
\begin{align*}
& a_{00}=\log \left[\beta_{0}\left(\theta_{0}^{*}\right) /\left(1-\alpha_{0}\left(\theta_{0}^{*}\right)\right)\right] /\left(\theta_{0}^{*}-\theta_{-1}\right) \\
& a_{01}=\log \left[\left(1-\beta_{0}\left(\theta_{0}^{*}\right)\right) / \alpha_{0}\left(\theta_{0}^{*}\right)\right] /\left(\theta_{0}-\theta_{0}^{*}\right) \\
& a_{10}=\log \left[\beta_{1}\left(\theta_{1}^{*}\right) /\left(1-\alpha_{1}\left(\theta_{1}^{*}\right)\right)\right] /\left(\theta_{1}^{*}-\theta_{0}\right) \\
& a_{11}=\log \left[\left(1-\beta_{1}\left(\theta_{1}^{*}\right)\right) / \alpha_{1}\left(\theta_{1}^{*}\right)\right] /\left(\theta_{1}-\theta_{1}^{*}\right) \\
& b_{00}=\left[b\left(\theta_{0}^{*}\right)-b\left(\theta_{-1}\right)\right] /\left(\theta_{0}^{*}-\theta_{-1}\right) \\
& b_{01}=\left[b\left(\theta_{0}\right)-b\left(\theta_{0}^{*}\right)\right] /\left(\theta_{0}-\theta_{0}^{*}\right) \\
& \left.b_{10}=b\left(\theta_{1}^{*}\right)-b\left(\theta_{0}\right)\right] /\left(\theta_{1}^{*}-\theta_{0}\right) \\
& \left.b_{11}=b\left(\theta_{1}\right)-b\left(\theta_{1}^{*}\right)\right] /\left(\theta_{1}-\theta_{1}^{*}\right) \tag{6.3}
\end{align*}
$$

θ_{0}^{*} and θ_{1}^{*} are the intermediate parameter values of the individual 2-SPRTs. First, the intermediate parameter values θ_{0}^{*} and θ_{1}^{*} must be found. Then the adjusted error rates must be adjusted further. Thus it remains to find $\theta_{0}^{*}, \theta_{1}^{*}$, and $\alpha_{0}\left(\theta_{0}^{*}\right), \alpha_{1}\left(\theta_{1}^{*}\right), \beta_{0}\left(\theta_{0}^{*}\right), \beta_{1}\left(\theta_{1}^{*}\right)$.

First determine θ_{0}^{\prime} and θ_{1}^{\prime} such that

$$
\begin{align*}
& n_{0}^{*}
\end{align*} \quad=\log \left(1 / \alpha_{0}^{\prime}\right) / I_{-1}\left(\theta_{0}^{\prime}\right)=\log \left(1 / \beta_{0}^{\prime}\right) / I_{0}\left(\theta_{0}^{\prime}\right),
$$

where

$$
I_{i}(\theta)=\left(\theta-\theta_{i}\right) b^{\prime}(\theta)-\left\{b(\theta)-b\left(\theta_{i}\right)\right\} \text { for } i=-1,0,1
$$

For this case,

$$
\begin{align*}
& I_{-1}(\theta)=\log (-\theta)-1-1 / \theta, \\
& I_{0}(\theta)=\log (-\theta)+\log 2-1-1 / 2 \theta, \\
& I_{1}(\theta)=\log (-\theta)+\log 3-1-1 / 3 \theta . \tag{6.5}
\end{align*}
$$

and

Iterative solutions to (6.4) can be found to be

$$
\begin{align*}
& \theta_{0}^{\prime}=-0.7946055 \\
\text { and } \quad & \theta_{1}^{\prime}=-0.4059375
\end{align*}
$$

which implies

$$
n_{0}^{*}=30.0791
$$

and

$$
\begin{equation*}
\mathrm{n}_{1}^{*}=122.4918 \tag{6.7}
\end{equation*}
$$

Define

$$
\begin{equation*}
a_{i}(\theta)=\left(\theta-\theta_{i}\right) / I_{i}(\theta) \text { for } i=-1,0,1 \tag{6.8}
\end{equation*}
$$

Find r_{0}^{*} and r_{1}^{*} such that
and

$$
\begin{align*}
& \left.\Phi\left(r_{0}^{*}\right)=a_{0}\left(\theta_{0}^{\prime}\right) /\left[a_{0}\left(\theta_{0}^{\prime}\right)\right)-a_{-1}\left(\theta_{0}^{\prime}\right)\right] \\
& \left.\Phi\left(r_{1}^{*}\right)=a_{1}\left(\theta_{1}^{\prime}\right) /\left[a_{1}\left(\theta_{1}^{\prime}\right)\right)-a_{0}\left(\theta_{1}^{\prime}\right)\right], \tag{6.9}
\end{align*}
$$

where Φ is the cumulative distribution function for the standard normal density. For this exponential example,

$$
\begin{align*}
& a_{1}\left(\theta_{1}^{\prime}\right)=-3.98909 \\
& a_{0}\left(\theta_{1}^{\prime}\right)=4.03566, \\
& a_{0}\left(\theta_{0}^{\prime}\right)=-3.18559, \\
& a_{-1}\left(\theta_{0}^{\prime}\right)=7.187502, \tag{6.10}
\end{align*}
$$

and
which implies

$$
r_{0}^{*}=-0.504
$$

and

$$
\begin{equation*}
r_{1}^{*}=-0.00725 . \tag{6.11}
\end{equation*}
$$

The values of θ_{0}^{*} and θ_{1}^{*} can be found by

$$
\begin{equation*}
\theta_{i}^{*}=\theta_{i}^{\prime} \frac{r_{i}^{*}}{\sigma_{i}^{*}\left(n_{i}^{*}\right)} 0.5 \quad \text { for } i=0,1, \tag{6.12}
\end{equation*}
$$

where

$$
\sigma_{1}^{*}=\left[\operatorname{Var}\left(\mathrm{X} \mid \theta=\theta_{1}^{\prime}\right)\right]^{0.5}
$$

For this test,

$$
\sigma_{0}^{*}=1 / \theta_{0}^{\prime}=1.25849
$$

and

$$
\begin{equation*}
\sigma_{1}^{*}=1 / \theta_{1}^{\prime}=2.46343 . \tag{6.13}
\end{equation*}
$$

Employing equations (6.6), (6.7), (6.11), and (6.13), values for θ_{0}^{*} and θ_{1}^{*} are

$$
\begin{equation*}
\theta_{0}^{*}=-0.867626 \tag{6.14}
\end{equation*}
$$

and $\quad \theta_{1}^{*}=-0.406203$.

To find $\alpha_{0}\left(\theta_{0}^{*}\right), \alpha_{1}\left(\theta_{1}^{*}\right), \beta_{0}\left(\theta_{0}^{*}\right)$, and $\beta_{1}\left(\theta_{1}^{*}\right)$, equation (2.16) will be used. The formulae are

$$
\begin{align*}
& \alpha_{i}\left(\theta_{i}^{*}\right)=\frac{a_{i-1}\left(\theta_{i}^{*}\right)-a_{i}\left(\theta_{i}^{*}\right)}{a_{i-1}\left(\theta_{i}^{*}\right)} \alpha_{i}^{\prime} \text { for } i=0,1, \\
& \beta_{i}\left(\theta_{i}^{*}\right)=\frac{a_{i}\left(\theta_{i}^{*}\right)-a_{i-1}\left(\theta_{i}^{*}\right)}{a_{i}\left(\theta_{1}^{*}\right)} \beta_{i}^{\prime} \text { for } i=0,1 . \tag{6.15}
\end{align*}
$$

a_{i} is defined in equation (6.8) and α_{i} and β_{i} in equations (6.1). Thus

$$
\begin{align*}
& \alpha_{0}\left(\theta_{0}^{*}\right)=0.52092, \\
& \beta_{0}\left(\theta_{0}^{*}\right)=0.07622, \\
& \alpha_{1}\left(\theta_{1}^{*}\right)=0.11408, \\
& \beta_{1}\left(\theta_{1}^{*}\right)=0.21724 . \tag{6.16}
\end{align*}
$$

All values needed to complete the computations of equations
(6.3) are now known. These are then used to determine the final form of the test as given in equations (6.2). Therefore, the sampling scheme is to continue sampling until one of the following conditions is met:

1) Accept H_{-1} if $X_{n} \leq 1.4992 n-5.0003$.
2) Accept H_{0} if $X_{n} \leq 2.7132 n-19.2894$
and $X_{n} \geq 1.0727 n+4.3278$.
3) Accept H_{1} if $X_{n} \geq 2.2149 n+20.5331$.

Figure 24 is a graphical representation of the closed procedure developed in this chapter. Table XVII presents the results of a Monte Carlo simulation study comparing this closed procedure with the open procedure derived in Chapter V, with Figure 25 the corresponding graph comparing empirical Average Sample Number functions. The primary motivation for developing this test is the possible reduction of sample sizes at intermediate parameter values. In view of Table XVII, the goal appears to have been attained. The error rates that were previously observed with the open test of Chapter IV were not disturbed greatly by the closure of this procedure. While the form of this test is more difficult to derive, a SAS software package could make it easy for users to implement.

Figure 24. Closed Method for Testing Values for the Mean of an Exponential Distribution (1.0, 2.0, 3.0)

TABLE XVII

ERROR PROBABILITIES AND ASN VALUES FOR PROPOSED CLOSED TEST OF THREE VALUES FOR THE MEAN OF AN EXPONENTIAL DENSITY (1.0, 2.0, 3.0)

MEAN Probability of Accepting ASN				
0.7	0.9985	0.0015	0.0000	10.1910
0.8	0.9945	0.0055	0.0000	10.7695
0.9	0.9580	0.0420	0.0000	11.5665
1.0	0.8825	0.1175	0.0000	12.3135
1.1	0.7730	0.2270	0.0000	13.2975
1.2	0.6685	0.3315	0.0000	14.1055
1.3	0.5435	0.4565	0.0000	15.1085
1.4	0.4200	0.5800	0.0000	16.2600
1.5	0.3290	0.6705	0.0005	17.2725
1.6	0.2355	0.7625	0.0020	18.5970
1.7	0.1775	0.8180	0.0045	20.5760
1.8	0.1350	0.8555	0.0095	22.1105
1.9	0.0945	0.8790	0.0265	24.6035
2.0	0.0690	0.8775	0.0535	26.5870
2.1	0.0510	0.8475	0.1015	28.4335
2.2	0.0390	0.7875	0.1735	30.3740
2.3	0.0270	0.7245	0.2485	32.0715
2.4	0.0185	0.5990	0.3825	32.7035
2.5	0.0130	0.4960	0.4910	32.4365
2.6	0.0065	0.4055	0.5880	31.4405
2.7	0.0095	0.3015	0.6890	30.0670
2.8	0.0045	0.2365	0.7590	28.9695
2.9	0.0035	0.1840	0.8125	27.6225
3.0	0.0030	0.1170	0.8800	25.1730
3.1	0.0030	0.0865	0.9105	23.4400
3.2	0.0000	0.0710	0.9290	22.3620
3.3	0.0020	0.0275	0.9705	20.6430

Figure 25. ASN Functions for Proposed Closed (--) and Open (—) Methods for Test of Three Exponential Means (1.0, 2.0, 3.0)

CHAPTER VII

SUMMARY AND CONCLUSIONS

Several sequential methods for testing simple versus simple hypotheses exist. Attempts have been made to extend this two-hypothesis case to a three-hypothesis case or, similarly, to a simple versus composite case. Often these proposed procedures involve simultaneously conducting two sequential tests of simple hypotheses. Problems arise, however, when application of one procedure to all testing situations is attempted.

Formulae exist that approximate the probability that a random walk starting at a certain point will cross one of two parallel boundaries. These formulae, developed by Billard and Vagholkar (1969), are used in this dissertation to approximate the probabilities of error in Armitage's (1947) method to sequentially decide among three hypotheses. These formulae are functions of the error rates used to determine sampling regions. The values these error rates must be set to in order that the procedure will approxmately attain desired error probabilities are then established. This creates a non-linear system of four equations in four unknowns. Chapter IV developed the theory needed to determine these equations.

In Chapter V, a SAS program to solve any system of non-linear equations is presented, and it is used to solve the system developed in Chapter IV. Though this process was developed for any distribution in the Koopman-Darmois family, it is necessary for the distribution function either to have a closed form or to be a defined SAS function. This will permit the MODEL statement in PROC NLIN to include the cumulative distribution functions necessary to solve the system of four equations. In the rare event the test was needed for a Koopman-Darmois density not represented by a SAS function, other methods can be employed to estimate the corresponding cumulative distribution function. The fact that any Koopman-Darmois density can be tested by this method is an advantage. Billard and Vagholkar's procedure was derived for the normal mean and the binomial parameter only. However, with considerable effort, any KoopmanDarmois distribution could be derived using their method.

Examining the Monte Carlo simulations is one way of determining the merits of the proposed method versus Armitage's or Billard and Vagholkar's. For both the exponential and normal examples, the proposed method is an improvement over Armitage's in that the error rates are closer to the nominal levels and the ASN function is smaller. When the proposed method is compared to Billard and Vagholkar for the normal case, the two procedures give similar results. An advantage of the proposed method is that it may be implemented using readily available software.

This proposed method was used later to derive a closed sequential procedure to test three hypotheses. Huffman's extension of Lorden's work was used twice with the adjusted error rates obtained from the system of four equations. The example performed in Chapter VI was with the exponential distribution, mainly because the open procedure gave large ASN values for parameter values intermediate to the hypothesized ones. Therefore, a closed procedure would naturally be desired for this case. The closed procedure did reduce the ASN at intermediate parameter values as desired while maintaining the specified error rates.

The application of these methods to other distributions will be topics of future research. A natural candidate for this procedure is the binomial distribution, mainly due to applications in medicine with clinical trials and process sampling in industrial engineering. Another distribution that can be studied is the negative binomial with its application to entomology.

The procedure developed in this thesis works only for tests with three simple hypotheses. Extension to a test of more than three hypotheses would require development of a more complex system of equations. Instead of solving a system of four equations, four unknowns, a system of six or seven equations might be involved for a test of four hypotheses. Such an extension would be a possible topic of further research.

Further development of the closed procedure introduced
in Chapter VI could also be considered for future research. The asymptotic distribution of this procedure will be of interest in order to obtain a test with desirable properties.

BIBLIOGRAPHY

Arghami, N.R. and Billard, L. (1982). A modification of a truncated partial sequential procedure. Biometrika 69, 613-618.

Armitage, P. (1947). Some sequential tests of Student's hypotheses. J. of the Roy. Statist. Soc, Suppl., 9, 250.

Armitage, P. (1950). Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis. J. of the Roy. Statist. Soc, Ser. B, 12, no. 1, 137-144.

Armitage, P. (1957). Restricted sequential procedures. Biometrika 44, 9-26.

Baker, A.G. (1950). Properties of some tests in sequential analysis. Biometrika 37, 334-346.

Barnard, G.A. (1946). Sequential tests in industrial statistics. JASA, Suppl., 8, 1-26.

Billard, L. (1977a). Optimum partial sequential tests for two-sided tests of the binomial parameter. JASA 72, 197-201.

Billard, L. (1977b). A truncated partial sequential procedure. Biometrika 64, 567-572.

Billard, L. and Vagholkar, M.K. (1969). A sequential procedure for testing a null hypothesis against a two-sided alternative hypothesis. J. of the Roy. Statist. Soc. Ser. B, 31, no. 2, 285-294.

Corneliussen, A. and Ladd, D.W. (1970). On sequential tests of the binomial distribution. Technometrics 12, 635-646.

Cox, D.R. and Miller, H.D. (1965). The Theory of Stochastic Processes, Methuen and Co., Ltd., London.

Dodge, J.F. and Romig, H.G. (1929). A method of sampling inspection. Bell Syst. Tech. J. 8, 613-631.

Ghosh, B.K. (1970). Sequential tests of statistical hypotheses. Addison-Wesley, Reading, Mass.

Huffman, M.D. (1983). An efficient approximate solution to the Kiefer-Weiss problem. Ann. of Math. Statist. 11, 306-316.

Koopman', B.O. (1936). On distributions admitting a sufficient statistic. Trans. Amer. Math. Soc. 39, 399-409.

Lehman, E.L. (1959). Testing Statistical Hypotheses. Wiley, New York.

Lorden, G. (1972). Likelihood ratio tests for sequential k-decision problems. Ann. Math. Statist. 43, 1412-1427.

Lorden, G. (1976). 2-SPRT and the modified Kiefer-Weiss problem of minimizing an expected sample size. Ann. of Statist. 4, 281-291.

Lorden, G. (1980). Structure of sequential tests minimizing an expected sample size. Z. Wahrsch. veru. Gebiete 51, 291-302.

Lye, B. and Story, R.N. (1989). Spatial dispersion and sequential sampling plan of the southern green stink bug on fresh market tomatoes. Ento. Soc. of Amer. 18, 139-144.

Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization. Computer J. 7, 308-313.

Neyman, J. and Pearson, E.S. (1933). On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. Roy. Soc. London, Series A, 231, 289.

Schwarz, G. (1962). Asymptotic shapes of Bayes sequential testing regions. Ann. Math. Statist. 33, 224-236.

Seebeck, K. (1989). A computer program to develop and evaluate a Wald's sequential probability ratio test for the parameters of three discrete distributions. Master of Science Thesis, Oklahoma State University.

Simons, G. (1967). A sequential three hypothesis test for determining the mean of a normal population with known variance. Ann. of Math. Statist. 38, 1365-1375.

Sobel, M. and Wald, A. (1949). A sequential decision procedure for choosing one of three hypotheses concerning the unknown mean of a normal distribution. Ann. of Math. Statist. 20, 502-522.

Wald, A. (1947). Sequential Analysis. John Wiley and Sons, Inc., New York.

Wald, A. and Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test, Ann. Math. Statist. 19, 326-339.

Wetherill, G.B. (1975). Sequential Methods in Statistics. London, Chapman and Hall, New York.

V
 VITA
 Mark Edward Payton
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: AN EXAMINATION OF SEQUENTIAL PROCEDURES FOR THE TESTING OF THREE HYPOTHESES

Major Field: Statistics
Biographical:
Personal Data: Born in Sioux City, Iowa, September 2, 1964, the son of Bill and Naomi Payton.

Education: Graduated from Logan-Rogersville High School, Rogersville, Missouri, in May, 1982; received Bachelor of Science in Education in Mathematics from Southwest Missouri State University in May, 1986; received Master of Science in Statistics from Oklahoma state University in May 1988; completed requirements for the Doctor of Philosophy Degree in statistics at Oklahoma State University in July, 1991.

Professional Experience: Graduate Teaching Associate, Department of statistics, Oklahoma state University, 1988-1991; Graduate Research Associate, Department of Statistics, Oklahoma State University, Summer, 1988; Graduate Teaching Assistant, Department of Statistics, Oklahoma State University, 1986-1988.

Professional Organizations: American Statistical Association, Mu Sigma Rho, Phi Kappa Phi.

