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CHAPTER I 

INTRODUCTION 

Sequential sampling is a significant area of statistics 

from both theoretical and applied viewpoints. In sequential 

experimentation, the final sample size is not fixed. 

Instead, sampling continues until a predetermined level of 

precision has been attained. 

Sequential analysis has two primary branches: 

tial hypothesis testing and sequential estimation. 

sequen

In 

sequential hypothesis testing, two or more hypotheses are 

tested simultaneously. Sampling continues until one 

hypothesis is accepted with specified bounds on the error 

probabilities. Sequential estimation focuses on estimation 

of one or more parameters with a prespecified level of 

precision, such as a coefficient of variation at or below 

a given level or a confidence interval on the parameter 

with a fixed width. This work will concentrate on 

sequential hypothesis testing. 

Dodge and Romig (1929) were the first to propose a 

double sampling plan, the most rudimentary sequential 

procedure. A random sample of fixed size n is taken, and 

if sufficient evidence is present to arrive at a decision, 

sampling is terminated. If there is insufficient evidence 

1 



to arrive at a decision, another random sample of fixed size 

n is taken. A decision is then made based on the results 
2 

of the combined samples. 

The formal theoretical development of sequential 

sampling began during World War II with the work of Abraham 

Wald (1947) and G.A. Barnard (1946) in war-time industrial 

advisory groups. The most important result was Wald's 

Sequential Probability Ratio Test (SPRT). The SPRT decides 

between two simple hypotheses with specified Type I and Type 

II error rates. Figure 1 is a depiction of the SPRT where 

X is a sufficient statistic (usually the sum of obser-
n 

vations) . 

Consider a test to determine whether e, a parameter 

from a distribution f(x, e), is equal to 8 0 or 8 1 (80< 8 1 ): 

that is, H : e = e vs. H : e = e . Further, the Type I 
0 0 1 1 

error rate, the probability of accepting H when H is true 
1 0 

should be at most a, and the probability of accepting H 
0 

when H is true, or the Type II error rate, is to be at most 
1 

~. To choose one hypothesis over another based on a sample 

of fixed size, Neyman and Pearson (1933) developed the like-

lihood ratio test. They showed that, given a random sample 

of size n (x1 , x2' ••. , x ) , the most powerful size - a test 
n 

depends on the ratio 

n f(x_, e) 
1 1 

( 1.1) 1 = n n 
i = 1 

which is the ratio of the joint density of the observed 

2 



X 
n 

Accept H 
1 

Continue 
sampling 

Accept H 
0 

n 

Figure 1. Wald' s SPRT for H0 vs. H 1 
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random sample given H1 is true to the joint density of the 

observed random sample given H is true. The Neyman-o 

Pearson Lemma partitions the parameter space into two 

regions: one is an acceptance region for H and the other 
0 

is an acceptance region for H1 (or a rejection region for 

H ) . H is accepted if 1 < c and H is accepted if 1 > c 
0 0 n 1 n 

for a constant c. The sample size n can be set to obtain 

the desired Type I and Type II error probabilities. 

Wald's SPRT is a sequential analogue to Neyman-Pearson 

testing. The likelihood ratio, 1 , is computed after each 
n 

observation. Sampling continues as long as B < 1 < A, 
n 

where A and B are predetermined constants. As soon as 1 ::5 
n 

B (or 1 ~ A), H is accepted (or H is accepted). Wald 
n 0 1 

determined that by setting 

1-/3 
A ~ a 

and B ~ 
/3 

l-ex ( 1. 2) 

the probabilities of Type I and Type II errors are approx

imate the desired levels of a and /3, respectively. 

The Operating Characteristic (OC) curve is defined as 

the probability of accepting H given e and is often denoted 
0 

by P(S). Wald developed the following approximation for 

the OC curve: 

P(e) ~ ( 1. 3) 

4 



where h is a function of e and the solution of 

co 
Ico [f(x, e1 )/f(x, ~ > ]h f(x, e) dx = 1 (1.4) 

and the constants A and Bare given in equation (1.2). Wald 

showed that 

a' + ~~ ~ a + ~ , ( 1. 5) 

where a' and ~' are the actual error rates obtained by the 

test. The inequality in (1.5) can be replaced by an 

equality if boundary overshooting is ignored. Seebeck 

(1989) and Corneliussen and Ladd (1970) showed that the 

approximate oc curves of certain discrete distributions are 

good approximations of the actual oc curves. 

The Average Sample Number (ASN) function, defined on 

the entire parameter space as the average number of samples 

needed to arrive at a decision given e, is denoted by 

E(Nie). Wald and Wolfowitz (1948) established the following 

optimality property of the SPRT: For all sequential tests 

of H : e = e vs. H : e = e with Type I error probability a 
0 0 1 1 

and Type II error probability ~' the SPRT minimizes E(Nie0 ) 

and E(Nie1 ). Later this result was shown to hold among all 

tests, sequential or not (Lehmann, 1959). However, since e 

may not always assume one of the hypothesized values, the 

behavior of the ASN over the full parameter space is often 

of interest. 

Wald developed the following approximation for the ASN 
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function of the SPRT: 

E(N!e) ~ 
P(e) log B + [1- P(e)] log A 

E(z!e> 

where A and B are given in equation (1.2) and 

z = log 
f (x 1 e ) 

1 1 

f ex 1 e ) 
i 0 

Using the oc function, P(e) is the probability of LZ 

being less than or equal to B given e. The quantity 

(1. 6) 

n 

1 - P(e) is the probability of LZ being greater than or 
n 

equal to A for a specified value e. The graph of such an 

ASN function would take the appearance of that in Figure 2. 

Suppose the true parameter e lies between the hypo-

thesized values; that is, e < e < e . Often it is 
0 1 

assumed that one has no reason to prefer one hypothesis to 

another under these conditions. Yet, in this region of the 

parameter space, a larger sample size is required than in 

any other region. The average sample size for some 

values in this range will be higher than the corresponding 

fixed sample test with the same Type I and Type II error 

rates. 

Wald's approximation of the ASN function is exact if no 

overshooting of the boundaries occurs. However, the 

6 
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overshooting results in substantial underestimation of the 

ASN, especially for parameter values between the hypo-

thesized ones. Baker (1950) used empirical trials to 

study a sequential test of the mean of a normal distribution 

with unit variance. He tested H0 1L = 0 vs . H : 1L = 1 , 
1 

and found that Wald's approximation underestimated the ASN. 

Values twice that predicted by Wald's equation were quite 

common. Studies of the binomial distribution performed by 

corneliussen and Ladd (1970) showed Wald's equation under-

represents the true value of the ASN by approximately twenty 

percent at its maximum. They concluded " ... in view of the 

very large spread in sample number, we do not believe the 

ASN function to be a particularly useful measure of the 

effort required to conduct a sequential test." They 

proposed "Termination Probability Contours" as a guide to 

the amount of sampling required. These are curves that show 

the number of samples required for certain probabilities 

(say 0.50, o.ao, 0.95) of termination given values of the 

binomial parameter p. 

The extremely large sample sizes, especially at values 

intermediate to the hypothesized parameters, limit the 

utility of Wald's SPRT in some applications. An obvious 

factor is that the SPRT is an open test; that is, given 

sampling has not stopped after (n + 1) observations, the 

probability it will continue after n observations is 

positive. Thus the parallel boundaries of the SPRT (see 

Figure 1) may result in unsatisfactorily large sample sizes. 



Several methods have been developed to produce closed 

boundaries such as those in Figure 3. These procedures, 

called closed sequential tests, place a maximum on the 

number of observations taken. Chapter II discusses these 

tests in more detail. 

The simultaneous test of three hypotheses, instead of 

two, is of interest in a number of applications. An 

entomologist may wish to determine whether a.crop is 

infested heavily, moderately, or lightly with a certain 

insect (Lye and Story, 1989). This would be an example of a 

three-hypothesis test involving all simple hypotheses. 

Billard and Vagholkar (1969) suggested simultaneously 

testing three hypotheses when performing a two-sided test of 

hypotheses. As an example, consider a test of H : e = e 
0 0 

vs. H1 : e ~ e0 • This can be accomplished by simultaneously 

testing three simple hypotheses H : e = e vs. 
-1 -1 

e = e , where e < e < e . 
1 -1 0 1 

The 

error rates are controlled at two points under the alter-

native hypothesis, e and e . The choice of e and 
-1 1 - 1 

e depends on the precision required for the application. 
1 

Open and closed tests of three hypotheses have been 

developed and are discussed in Chapter II. A computer 

program was developed to calculate the exact probabilities 

of error when testing three hypotheses of binomial prob

abilities. This program was used to study the oc and 

ASN functions of proposed tests over a range ot-specified 

error rates and hypothesized values. The program and 

9 



X 
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Accept H 
1 

Accept H 
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Figure 3. Closed sequential sampling 
plan 
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results are presented in Chapter III. 

Chapter IV presents a method to test three hypotheses 

for distributions in the Koopman-Darmois family of 

densities. It involves approximations of error prob

abilities. A computer routine is used to solve a system 

of equations that allows one to set the error rates to any 

level desired. 

In Chapter V, examples are presented for the expo

nential and normal distributions and simulation studies 

are performed to evaluate the appropriateness of the method 

proposed in Chapter IV. 

11 

Chapter VI proposes a closed procedure for the 

three-hypothesis case by extending established closed 

procedures for testing simple vs. simple hypotheses. Again, 

the results of simulation studies are presented to check the 

performance of this closed procedure. 

The results presented in this work and possible areas 

of future research are presented in Chapter VII. 



CHAPTER II 

REVIEW OF LITERATURE 

Koopman (1936) considered the family of densities 

f(x; e) = exp{k(x) + ex - b(e)} ( 2. 1) 

with respect to some u-finite measure ~. The function b(e) 

is differentiable such that b'(e) = Ee(X) and b"(e) = 

Vare(X). The Kullback-Leibler information number is 

given by 

I(e, ~> = (e- ~> b'(e)- (b(e)- b(~)). (2.2) 

Schwarz (1962) and Huffman (1983) defined a Koopman

Darmois density as 

f(x; e) = exp{ex - b(e)} (2.3) 

with respect to some non-degenerate u-finite measure ~· The 

properties of (2.1) hold for equation (2.3) This definition 

was possible since Schwarz's work involving Koopman-Darmois 

densities was Bayesian in nature. Therefore, he was 

concerned with distributions of the parameter e. In this 

case, the quantity exp{k(x)} is a constant with respect to 

the parameter. He therefore ignored it in his definition. 

However, if one wanted to draw inference concerning moments 

of the random variable X, exp{k(x)} cannot be ignored. 

12 
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Thus, the more general form for Koopman-Darmois densities 

given in (2.1) will be used in this work. 
n 

X = L x is complete sufficient for e in the Koopman-
n 1 

1 = 1 

Darmois family of densities. It can easily be shown that 

the density of X is 
n 

g ( x , e) = exp { k ( x ) + ex - nb (e) } , ( 2 . 4) 
n n n n n 

where k (x ) is a function of x that allows g to be a 
n n n n 

probability density function. 

The Sequential Probability Ratio Test of two simple 

hypotheses concerning the Koopman-Darmois parameter e will 

be considered in the next section. 

Sequential Probability Ratio Test 

Consider a test of H0 : e = 8 0 vs. H : 
1 

e = e 1 Where e 
1 

is a parameter from a population with the density fe(x) = 

exp{k(x) +ex- b(e)}. Further assume the desired Type I 

and Type II error rates are a and ~. respectively. From 

this population, observations x 1 , 

n-th observation, the ratio 

are taken. 

f f (X ) f (X ) · · · f (X ) 
1n 1 1 1 2 1 n 

At the 

= (2.5) 

is considered. The Sequential Probability Ratio Test is as 

follows: 
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(a) If (f1n I f 0n) < B, accept H 
0 

(b) If ( f 1n I f On ) > A , accept H 
1 

(c) If B < (f1 n I f 0n ) < A, continue sampling. 

This procedure will extend until either condition (a) or (b) 

above is satisfied. For the Koopman-Darmois family, 

f . 
1 n 

f 
on ( 2. 6) 

where X = I:x • 
n 1 

Wald showed that a and ~ are attained 

approximately as error rates if A and B are taken to be 

and B = (2.7) 
1 - a 

Thus, the sequential procedure becomes: 

n(b(e) - b(80)] 
(a) Accept H if X 

1 
< 0 n e - e 

1 0 

+ log (~1(1-a)); 

n(b(e) - b (8 ) 
(b) Accept H if X 

1 0 
> 

1 n e - e 
1 0 

+ log [ ( 1-~) Ia] ; 



(c) Continue sampling if neither (a) nor (b) 

occurs. 

As mentioned in Chapter I, at the hypothesized values, 

the SPRT has the smallest expected sample size of all 

procedures with comparable Type I and Type II error rates. 

However, the sample size may be extremely large when 

parameter values intermediate to the hypothesized ones 

occur. 

An alternative approach is to minimize the average 

sample size at an intermediate parameter value e*. This 

15 

problem is known as the modified Kiefer-Weiss problem. 

Minimizing the ASN at the value of e* for which the ASN is a 

maximum provides a solution to the Kiefer-Weiss problem. 

Closed Sequential Procedures 

An asymptotic solution to the modified Kiefer-Weiss 

problem was given by Lorden (1976, 1980). He developed the 

2-SPRT test which simultaneously performs two one-sided 

SPRTs. Consider testing H : 8 = 8 vs H : 8 = 8 . Let 
0 0 1 1 

* e be a value intermediate to 8 0 and 8 1 for which the ASN is 

to be minimized. * Defining a third hypothesis H : 8 = 8 , a 
2 

one-sided hypothesis of H2 against H0 is conducted for 

possible rejection of H . Simultaneously, another one-sided 
0 

SPRT of H against H is conducted for the possible 
2 1 

rejection of H . This results in two converging lines that 
1 

produce a triangular continuation region (see Figure 3). 
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Recall 

( 2. 8) 

where f is the density function associated with the 

population of interest. The 2-SPRT takes the form: 

f 
(a) Reject H if On A; :::s 

0 f 
2n 

f 
(b) Reject H . f 1n B; 1 --:::S 

1 f 
2n 

(c) Otherwise, continue sampling. (2.9) 

In order to obtain desired error rates a and ~' the error 

rates of the individual SPRTs must be adjusted so that when 

both are conducted simultaneously, the desired error rates 

are obtained approximately. The quantities A and B from 

(2.9) can be determined approximately as: 

a :::s P(Accepting H IH is true); -
A 1 2 

~ :::s P(Accepting H IH is true). (2.10) 
B 

0 2 

A and B are usually found by solving the inequalities in 

(2.9) in terms of the sufficient statistic (sum of obser-

vations, for instance). 

Huffman (1983) extended Lorden's work by determining 

* the value of e which minimizes the maximum sample number to 



within o ((log a-1 ) 1 / 2 ) as a and {3 tend to zero. This 

provides an asymptotic solution to the Kiefer-Weiss problem 

and will be presented for the Koopman-Darmois family of 

densities. 

Let x1 , x 2 , ••• be a random sample from f(x, e) = 

exp{k(x) + ex- b(B) }. It is desired to test H0 : e = e 
0 

vs. H 
2 

e = 9 1 (9 0 < 9 1 ) with Type I and Type II error 

probabilities equal to a and {3, respectively. Let 

n 

17 

n E X X 
i 

( 2. 11) 
i = 1 

Sampling will continue until 

(a) 

or 

(accept H ) 
1 

(2.12) 

It remains to determine a , a , b , and b . The values a 
0 1 0 1 1 

and b 
1 

* are determined by a one-sided test of H : e = e vs. 
2 

H : e = e . Likewise, a and b are obtained from a one-
1 1 0 0 

* sided test of H : e = e vs. H : e = e 
0 0 2 

. * In order to obta1n e , and subsequently a 0 , 

and b , e' is first determined such that 
1 

log a - 1 

I (9') 
0 

-1 log {3 
=----

I ( B') 
1 

a I b I 
1 0 

( 2. 13) 

where I 1 (9) = (B- B1 )b' (B) - {b(B) - b(B 1 ) }, i = 0 1 1. 
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* Denote the value of equation (2.13) by n . Next compute 

( e' - e 1 ) 

a (8') =----
1 I 1 ( e' ) 

for i = o, 1. ( 2. 14) 

Denote a (8') as a • * Find r such that 
i . i 

* ~(r ) = 
* a 
1 

* * a - a 
1 0 

( 2 . 15) 

where ~ is the cumulative distribution function for the 

standard normal random variable. 

where 

* * r 8 = 8' + ------------

Then the adjusted error rates are 

* * 
* 

a (8 ) - a (8 ) 
0 1 a(8 ) = 

* a (e ) 
0 

* * 
* 

a (8 ) - a 0(8 ) 
1 and (3(8 ) = 

* a (8 ) 
1 

* Also let, for 8 = 8 I 

a 

(3 . ( 2. 16) 



The values used in Huffman's extension of the 2-SPRT are 

and 

H 
0 

b(e > 1 * - b(e ) 
a1 

* e - e 1 

* b(e ) - b(e0 ) 

a 
0 

* e - e 
0 

* 
log [ 

1-(3(e > 

] * 
b cx(e ) 

1 

* e - e 
1 

* 

[1 
f3(e > 

] log 

* 
b - cx(e ) 

0 

* 
(2.17) 

e - e 
0 

Tests of Three Hypotheses Using 

Sequential Methods 

Now consider a sequential test of H : e = e vs. 
-1 -1 

e = e vs. H 
0 1 

e = e . These three simple hypotheses 
1 

may be a direct consequence of the application, or they may 

arise due to a desire to decide between a simple hypothesis 

and a two-sided alternative, H : e = e vs. H 
0 0 1 

e *" e . 
0 
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In either case, Armitage (1947) suggested one method of 

testing of these hypotheses would be to simultaneously 



conduct two SPRTs. First, construct an SPRT, call it S , 
-1 

between H and H with 
0 -1 

P (accepting H IH true) = a/2 
-1 0 

and P (accepting H0 IH_ 1 true) = ~. 

An SPRT S1 between H0 and H1 can also be constructed with 

P (accepting H1 IH0 true) = a/2 

and P (accepting H0 IH1 true) = ~. 

The simultaneous tests, s and s can be conducted as 
-1 1 

follows: If s accepts H and S accepts H , H is 
1 1 -1 0 1 

accepted in the overall test. If S accepts H and s 
1 0 -1 

accepts H0 , H0 is accepted. Finally, if S accepts H and 
1 0 

s accepts H , H is accepted. 
-1 -1 -1 

The oc and ASN functions 

were not derived for this test. 

Sobel and Wald (1949) suggested performing S and S 
1 -1 

simultaneously and, more importantly, independently. This 

means once s decides for H , this test terminates, 
1 0 

regardless of how s performs. Since this test is not 
-1 

simply a function of the sufficient statistics, Sobel and 

Wald claim this test is not optimum. The advantage is that 

the independence of the two tests lends nice mathematical 

properties that allow for approximations of the oc and ASN 

curves, such as: 

20 



and 

E(N) ?:: max {E(NIS ), E(N(S )-}, 
1 -1 

P(accepting H_1 ) = P(accepting H_1 1~ 1 ), 

P(accepting H1 ) = P(accepting H 1IS 1 ), 

P(accepting H ) = 1 - P(accepting H IS ) 
0 1 1 

- P(accepting H IS ) . 
-1 -1 

21 

Armitage (1950) suggested simultaneously conducting 

three SPRTs. In addition to performing s and s , a test 
-1 1 

for H vs. H , call this test s , would be run. All three 
-1 1 0 

tests would then be performed until one hypothesis is 

preferred to both of the other hypotheses. This test is 

usually identical to the dual SPRT method Armitage 

previously suggested. When examining Figure 4, note that 

the line AB is in the first quadrant. For this example, the 

third test s will change this process greatly. However, if 
0 

AB is not in the first quadrant (this happens whenever the 

Type I error rate is less than or equal to twice the Type II 

error rate), S0 has no effect when added to the dual method. 

Armitage placed a bound of 

Prob(error) :s 
2ex 

1 - ex 
(2.18) 

for a test with ex=~ for s , s , and S 1 • He claimed, 
-1 0 

however, that this bound was too wide, and more 

appropriately, 



X 
n 

Accept H1 

Accept H 
0 

Accept H 
-1 

n 

Figure 4. Armitage's (1947) procedure 
to test three hypotheses 
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P (error I H _1 ) = P (error I H 1) ex 

and P(erroriH0 ) = 2cx. ( 2. 19) 

In 1969, Billard and Vagholkar submitted a test that is 

based on a geometric set of seven test parameters, 

(a,b,c,d,~,,,n0 ), (see Figure 5). Based on work by Cox and 

Miller (1965), they found the probability of a random walk 

starting at a point x on a line connecting points A and B 

when n = n0 being absorbed by BP to be 

exp(-h a) - exp(-h x) 
n<x) 

0 0 for h 0 = * exp (-h a) - exp(-h b) 0 

0 0 

a - X for h 0, = = 
- b 0 a 

(2.20) 

where h 0 is the solution of 

E{exp(-h(X - tan ~)} = 1. (2.21) 

Using this, Billard and Vagholkar obtained an expression for 

the OC function, L(~), of their sequential test of the mean 

of the normal distribution with unit variance, H : ~ = -1 
-1 

vs. 0 vs . H : 11 = 1 : 
1 

(2.22) 

where L , L , and L are the probabilities of accepting H 
0 1 -1 0 

by crossing lines BC, BP, and CQ, respectively. Now 



X 
n 

a A 

b B 

n 
0 

c c 

d D 

H 
1 

H 
0 

H 
-1 

p 

\ 
1/J 

n 

Q 

Figure 5. Billard and Vagholkar's (1969) 
procedure for testing three 
hypotheses 
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b 
Lo ( /..1.) = I cp { ( x - n01J.) I ern0 • 5 } dx (2.23) 

c 

a 
and L1(1J.) = I cp { ( X - n /..1.) I ern . 5 } n ( X) dx . 

b 0 0 

The expression for L (IJ.) is similar to that for L (IJ.). 
-1 1 

Billard and Vagholkar also found an expression for the 

ASN function; that is, 

+ N (IJ.) + N (IJ.) 
1 -1 

where 

N (/..1.) 
1 

a 
= I C/l { ( x - n /..1.) I ern • 5 } n ( x) dx 

b 0 0 

and 

n(x) = 

[ 
(a - b)exp(-h0 x) - {a·exp(-h0b) - b·exp(-h0 a) 
-----

exp (h0 a) - exp (h0b) 

and n(x) 

+ ( /..1." tan 1/1) for h '* 0 
0 

= (a - x) (x - b) for h = o. 
0 

(2.24) 

(2.25) 

(2.26) 
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Again, a similar expression can be found for N (~) . 
-1 

Using L(~) to set desired error rates, Billard and 

Vagholkar determined a computer optimization method, 

developed by Nelder and Mead (1965), that finds the 

procedure that minimizes E~(N) at one of the hypothesized 

values of ~ or an intermediate value. 

Billard and Vagholkar originally considered tests for 

the normal mean. If the test is symmetric and all error 

rates are equal, these seven parameters (a, b, c, d, ~, ¢, 

n) can be reduced to a set of four (a, b, ~' n ). 
0 0 

Simulation studies were conducted for this special case. 

Results presented for H 
-1 

~ = -1 vs. H0 ~ = 0 vs. 

H1 : ~ = 1 with a = (3 = 0. 05 indicated the proposed 

method works well. 

Billard (1977a) extended this procedure to include 

tests of binomial proportions. Examples for the binomial 

and normal distributions are given in the literature. 

However, it should be applicable to other distributions. 

Closed Procedures for Testing 

Three Hypotheses 

Parameter values intermediate to the hypothesized ones 

lead to large sample sizes when deciding among three 

hypotheses as they did in the two-hypothesis case. There-

fore, some closed procedures have been developedto test 

three hypotheses. 

One such procedure was developed by Armitage (1957). 
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His "Restricted Procedure" takes the appearance shown in 

Figure 6. The test consists of sampling until one of the 

following conditions is met for a > o, b > o and N > 0: 

(a) 

(b) 

(c) 

Accept 

Accept 

Accept 

H 

H 

H 

1 

-1 

0 

if X ~ a + bn. 
n 

if X ~ a - bn. 
n 

if n = N. 

The parameters of the test, a, b and N, are determined to 

attain desired error rates. 

Billard (1977b) developed a test that resembles 
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Armitage's Restricted in appearance. In addition, a minimum 

sample size restriction is used in the test (see Figure 7). 

Nelder and Mead's minimization procedure is again used to 

determine the testing parameters (n0 , n 1 , a, a', ~' ~'). 

Arghami and Billard (1982) proposed a procedure that looks 

somewhat like the 2-SPRT (Figure 8). It used Nelder and 

Mead to determine the nine testing parameters (n , a, b, 
0 

a' b' A. A. A.' A.') 
' • '#'1 1 '#'2 1 '#'1 1 '#'2 • Through symmetry, each of these 

tests can be simplified to a reduced set of testing 

parameters. Billard's procedure can be reduced to a set of 

four parameters, Arghami and Billard's to a set of five. 

Related Sequential Work 

In 1962, Schwarz explicitly found large-sample limiting 

shapes of Bayes sequential testing regions. He related his 

results to the SPRT in the same manner as the likelihood 

ratio test is related to the Neyman-Pearson test for simple 



X 
n 

H 
-1 

Figure 6. 

a + bn 

-a - bn 

N 

H 
0 

Armitage's Restricted (1957) 
procedure for testing three 
hypotheses 
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n 



X 
n 

a 

a' 

n 
0 

H 
-1 

n 

Figure 7. Billard's (1977b) procedure for 
testing three hypotheses 

29 



X 
n 

b 

a 

n 

a' 

b' 

0 

H 
0 

H 
-1 

\ 

<Pl 

n 

<Pl 
I 

} 

Figure 8. Arghami and Billard's (1982) 
procedure for testing three 
hypotheses 

30 



31 

ratio test is related to the Neyman-Pearson test for simple 

hypotheses. Lorden (1972) studied sequential tests with a 

view to minimizing the ASN at certain values of e subject to 

specified error rates, then he considered the extension to 

k-decision problems. 

Corneliussen and Ladd (1970) developed an iterative 

method to calculate the ASN and oc functions along with the 

error probabilities for a simple versus simple sequential 

test of binomial proportions. 

The log-likelihood ratio after n observations when 

sampling from a binomial distribution may be written as 

L(n1, n2 ) = n1log[ (1 - p1)/(1 - p0 )] 

+ n2 log (P/P0 ) , (2.27) 

where n1 is the number of successes, n2 is the number of 

failures and n + n = n. For the n-th trial, if x is a 
1 2 n 

success, then the log of the likelihood ratio is 

log (P1,/Po,n) = log (Pl,n-/Po,n-1) 

+ log (p /P ) . 
1 0 . 

If x is a failure, then 
n 

log (Pl,n /Po,n ) = log (p1, n-1 /Po, n-1 ) 

+ log [ ( 1 - p1 ) I ( 1 - p 0 ) ] • 

(2.28) 

(2.29) 



overstep a boundary of the sequential test, the test is 

terminated. For each possible value of L(n1 , n2) in the 

continuation region (CR), an associated probability can be 

calculated using 

where 

and 

P(n , 
1 

I = 1 

= 

I = 
2 

= 

n ) = I 1 (1 2 

+ 

1 if 

0 if 

1 if 

0 if 

- p) P(n-
1 

1, n2) 

I 2p P(n1 , n - 1) , 2 

L(n - 1, n ) E CR 
1 2 

L(n1 - 1, n2) ~ CR 

L ( n , n - 1) e CR 
1 2 

n - 1) ~ CR. 
2 

(2.30) 
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The probability of accepting the respective hypotheses can 

be calculated iteratively. This method has been extended to 

the three-hypothesis case and is presented in Chapter III. 

Simons (1967) developed a procedure to perform a 

three-hypothesis test for a mean of a normal distribution 

with the population variance known. He defined his test, 

one that takes the appearance of Armitage's (1947) pro-

cedure, in terms of six geometrical parameters (o , o , 8 , 
1 2 1 

82, X, T). These parameters are functions of the error 

rates of the two SPRT's that are combined to form the test. 

Adjusting these parameters changes the actual error rates, 

thus allowing for desired error probabilities to be 



attained. Ghosh (1970) mentioned that extensions of this 

method to a nonnormal distribution is "extremely diffi

cult." The possibilities of specifying error rates in 

this fashion for Koopman-Darmois densities are explored in 

later chapters. 
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CHAPTER III 

PROGRAM TO CALCULATE PROBABILITIES 

CONCERNING A SEQUENTIAL TEST OF 

THREE BINOMIAL PROBABILITIES 

Corneliussen and Ladd (1970) derived a method to 

calculate exact values for the ASN and oc functions for a 

sequential test concerning binomial proportions, H 
0 

vs. H : p = p (see Chapter II). Similar techniques to 
1 1 

determine properties for the sequential test of three 

binomial hypotheses using Armitage's (1950) method have been 

developed. 

Assume the test of three binomial proportions will be 

conducted using a graph of X by n, the number of trials, 
n 

as in Figure 9. If the true binomial proportion is p, then 

at n = 1, the points (1, 1) and (1, 0) will have 

probabilities p and (1- p), respectively. At n = 2, the 

points (2, 2), (2, 1), and (2, 0) will have probabilities 

p 2 , 2p(1-p), and (1-p) 2 , respectively. 

This process can be continued so that the probability 

associated with any point in the continuation region can be 

calculated. A program was written to perform this analysis. 

This development permits the evaluation of the exact oc and 

ASN functions associated with a simultaneous test of three 

34 



hypotheses concerning binomial proportions. Note that this 

technique is valid only for discrete distributions. A 

continuous distribution has an infinite number of possible 

values in the continuation region. 

Consider, for example, the following test: 

35 

( 3. 1) 

where p is a binomial probability. Armitage (1950) 

suggested simultaneously conducting three SPRT's. One tests 

H against H . The other decides between H0 and H1 • The 
-1 0 

SPRT for H vs. H will not have any effect on the 
-1 1 

procedure. Armitage's 1950 procedure will reduce to his 

1947 procedure whenever the Type I error rate is less than 

or equal to twice the Type II error rate. Assuming Type I 

and Type II error rates of a and f3 for each of the SPRTs, 

the slopes of the lines that determine the sampling regions 

are given by 

log 

slope = 1 

log 

log 

and slope0 = 

log 

(1 - p ) 1 

(1 - p ) 
0 

[p1 ( 1 - Po) ] 

[p0 (1 - p ) ] 1 

( 1 - P0 ) 

(1 - p ) 
-1 

[ p 0 ( 1 - p -1 ) ] 

[p_l (1 - Po)] 

(3.2) 
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Note that these are functions of the hypothesized values 

only. Formulae for the intercepts of the lines (see Figure 

9) are given by: 

log [1 ~0 aj log[~ 
1 - ex 

B A 
1 = = 

L [p (1 - p )] L 

~·(1 - P0 )] 
log 0 -1 log 

p (1 - p ) 0(1 p1) -1 0 

log [~ [~ log 
ex 

B A 
1 = = u [p0 (1 - P_1 )] 

u [p,(1 - Po)] 
log log 

p (1 - p) p (1 - p ) -1 0 0 1 

(3.3) 

These formulae are not only functions of hypothesized 

values, but also of the probabilities of Type I and Type II 

errors for each test. 

Consider the specific example H : p = 0.3 vs. H : p = 
-1 0 

0.4 vs. H : p = 0.5 with the desired probability of erro~ 
1 

0.10. The ex and ~ for each set of hypotheses could be set 

to 0.10. 

Using the previously mentioned technique to compute 

exact error probabilities, the following can be calculated: 



Successes 

Accept 

Accept H 
0 

Accept H 
-1 

Tr1als 

Figure 9. Lines and corresponding intercepts 
used for determining acceptance 
regions for the dual SPRT method 
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Prob(error 

Prob(error 

and Prob(error 

p = 0.3) = 0.041521, 

p = 0.4) = 0.191853, 

p = 0.5) = 0.047250. 
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At p = 0.3 or p = 0.5, probabilities of error less than 0.05 

are obtained, while at p = 0.4, a probability of error 

around 0.20 is observed. An analysis using different values 

of p_1 , p 0 , and p 1 was performed and Tables I - VI report 

the results. For most cases presented the following 

relationships hold: 

i) Prob(error I p = p_1 ) ~ aj2 

ii) Prob(error 

iii) Prob(error I p = P1 ) ~ ~/2 (3.4) 

For certain cases, these relationships do not apply. For 

instance, for p = 0.25, p = 0.50, p = 0.75 and for p = 
-1 0 1 -1 

0.10, p0 = 0.35, p 1 = 0.40, the outer hypotheses have higher 

error. This seems to indicate that when the hypothesized 

values are not close (i.e., difference greater than 0.10), 

the two SPRT's seem to obtain approximate independence. 

When p 0 - p ~ p - p (or lack of symmetry) , one test 
-1 1 0 

seems to dominate the other. 

For p_1 = 0.375, p0 = 0.40, p 1 = 0.425, the error 

probabilities for the outer hypotheses are much smaller than 

aj2 or ~/2. Thus, for hypothesized values very close 

(differences less than 0.025), the proposed bounds work, but 
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TABLE I 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 
(0.30, 0.40, 0.50) 

a (3 p Prob(error) 

0.025 0.025 0.30 0.010849 
0.40 0.047022 
0.50 0.012483 

0.025 0.100 0.30 0.012288 
0.40 0.116223 
0.50 0.039683 

0.050 0.050 0.30 0.021020 
0.40 0.092405 
0.50 0.023944 

0.075 0.075 0.30 0.031425 
0.40 0.139716 
0.50 0.035836 

0.100 0.025 0.30 0.035842 
0.40 0.114782 
0.50 0.014315 

0.100 0.100 0.30 0.041521 
0.40 0.191853 
0.50 0.047250 



TABLE II 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 
(0.35, 0.40, 0.45) 

p Prob(error) 

0.050 0.050 0.35 0.015947 
0.40 0.090465 
0.45 0.016831 

0.100 0.100 0.35 0.035901 
0.40 0.191492 
0.45 0.038375 
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TABLE III 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 

a 

0.050 

0.100 

(0.375, 0.40, 0.425) 

0.050 

0.100 

p 

0.375 
0.40 
0.425 

0.375 
0.40 
0.425 

Prob(error) 

0.000098 
0.092378 
0.000118 

0.001085 
0.091145 
0.001248 
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TABLE IV 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 
(0.10, 0.30, 0.40) 

p Prob(error) 

0.050 0.050 0.10 0.000099 
0.30 0.023780 
0.40 0.000118 

0.100 0.100 0.10 0.001085 
0.30 0.091145 
0.40 0.001248 
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TABLE V 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 
(0.10, 0.35j 0.40) 

a (3 p Prob(error) 

0.050 0.050 0.10 0.000318 
0.35 0.044932 
0.40 0.043586 

0.100 0.100 0.10 0.002809 
0.35 0.099663 
0.40 0.093777 
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TABLE VI 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES FOR TESTING THREE 

BINOMIAL PROPORTIONS 
(0.25, 0.50, 0.75) 

a p Prob(error) 

0.050 0.050 0.25 0.040074 
0.50 0.089437 
0.75 0.040075 

0.100 0.100 0.25 0.073529 
0.50 0.187321 
0.75 0.073769 
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are extremely conservative. In general, as the differences 

in hypothesized values decrease, the error probabilities 

also decrease for the outer hypotheses. 

As mentioned in Chapter II, Armitage (1950) suggested 

the following bound for errors assuming a = ~ in both tests. 

P(erroriHi) < a for i = -1, 1 

and P(erroriH0 ) < 2a. (3.5) 

Note that for a = ~' the exact computations have good 

agreement with Armitage's bound for H0 • However, the error 

bounds for the outer hypotheses are extremely conservative. 

The Exact ASN 

The technique used in calculating the exact OC function 

can be used to calculate the exact Average Sample Number for 

given values of p. Table VII gives the values of the ASN 

functions for H 
-1 

p = 0.3, H : p = 0.4, and H : p = 0.5 
0 1 

(a=~= 0.10). Figure 10 is the corresponding graph. 

Notice that the graph of the ASN has two peaks 

indicative of a simultaneous test of three hypotheses. The 

peaks occur at values between the adjacent hypothesized 

values. 

Alternative Method of Boundary Selection 

Due to the fact that Armitage placed bounds on the 

error probabilities as mentioned previously in this chapter, 
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TABLE VII 

AVERAGE SAMPLE NUMBER VALUES FOR 
PARAMETER VALUES FOR TESTING 

THREE BINOMIAL PROPORTIONS 
(0.30, 0.40, 0.50) 

(o: = f3 = 0.10) 

p ASN p ASN 

0.000 15.0000 0.500 88.5579 
0.025 16.1379 0.525 68.2784 
0.050 17.3843 0.550 54.0547 
0.075 18.8499 0.575 44.3321 

0.100 20.6443 0.600 37.4351 
0.125 22.8904 0.625 32.3014 
0.150 25.7488 0.650 28.3421 
0.175 29.4694 0.675 25.2154 

0.200 34.5087 0.700 22.6979 
0.225 41.6961 0.725 20.6326 
0.250 52.2560 0.750 18.9092 
0.275 67.4972 0.775 17.4477 

0.300 87.9762 0.800 16.1902 
0.325 110.0274 0.825 15.0927 
0.350 121.2751 0.850 14.1218 
0.375 116.8491 0.875 13.2524 

0.400 113.7908 0.900 12.4672 
0.425 121.8931 0.925 11.7550 
0.450 126.5710 0.950 11.1093 
0.475 112.3164 0.975 10.5262 

1. 000 10.0000 
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he suggested an adjustment of the a's and ~'s that appear in 

the equations determining intercepts. Recall that the 

probability of error given p = p0 is approximately a + ~. 

Thus a and ~ can be replaced with a/2 and ~/2 in the 

equations for the intercepts for the acceptance of H p = 
-1 

p and H 
-1 1 

. p - p • - 1. This allows for the acceptance of H 
-1 

and H to occur less frequently, thus lowering the 
1 

probability of making an error when p = p . The exact 
0 

computations of the oc function suggests a further adjust-

ment. Recall the error rates at p = p and p = p are 
-1 1 

approximately a/2 and ~/2, respectively. To accommodate 

this, a and ~ in the two remaining intercepts may be 

replaced with 2a and 2~. This will result in the more 

frequent acceptance of H , thus producing larger error rates 
0 

for H and H1 • The intercepts will then be: 
-1 

B' = 
L 

A' = 
L 

log 

[1 - ~/2] [1 :a~ ] log log 
a/2 

B' = A' = u r (1 - p >J 
u [p' (1 - Po)] 

log 0 -1 log 
p (1 - p) p (1 - p ) 

-1 0 0 1 

(3.6) 
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An analysis using a = ~ shows that these intercepts 

actually improve the error rates in the sense that they are 

closer to the desired level of error (see Table VIII). 

ASN for Alternative Method 

The ASN curve for this alternative method compares 

favorably to Armitage's 1950 method. The ASN is larger than 

Armitage's for values of p less that p . When p < p < 
-1 -1 

p , the ASN for this proposed method is smaller than 
1 

Armitage's method. 

Figure 11 and Table IX represent the ASN for H : p = 
-1 

0.3 vs. H0 : p = 0.4 vs. H1 : p = 0.5 using desired 

probability of error equal to 0.10. It is compared to the 

ASN for the same test using a = ~ = 0.10. An examination 

such as this reveals some important characteristics of 

sequential sampling. The actual probability of error is a 

function of the hypothesized values and the desired error 

rates. The method presented to adjust a and ~ has some 

limitations. Changing the hypothesized values will cause 

the adjustment to be ineffective in certain cases. One set 

of Type I and Type II errors can be appropriate for one test 

and not for another. The question then stands: "Can one 

adjust the error rates so that the test of three hypotheses 

will attain desired probabilities of error?" This question 

is addressed in the following chapter. 



TABLE VIII 

ERROR PROBABILITIES AT HYPOTHESIZED 
PARAMETER VALUES USING ALTERNATIVE 

METHOD OF BOUNDARY SELECTION 

p = 0.3 
-1 

Desired Prob(error) 

0.05 

0.10 

p = 0.1 
-1 

Po = 0.4 

p 

0.30 
0.40 
0.50 

0. 30 
0.40 
0.50 

= 0.3 

Desired Prob(error) p 

0.05 0.10 
0.30 
0.40 

P = 0.25 p = 0.5 
-1 0 

Desired Prob(error) p 

0.05 0.25 
0.50 
0.75 

pl = 0.5 

Prob(error) 

0.047889 
0.042681 
0.052752 

0.096122 
0.077682 
0.104966 

p = 0.4 
1 

Prob(error) 

0.022656 
0.042327 
0.087705 

p = 0.75 
1 

Prob(error) 

0.082552 
0.038778 
0.082532 
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TABLE IX 

AVERAGE SAMPLE NUMBER VALUES FOR 
PARAMETER VALUES FOR THE 

MODIFIED TEST OF THREE 
BINOMIAL PROPORTIONS 

(0.30, 0.40, 0.50) 
(ERROR = 0 .10) 

p ASN p ASN 

0.000 20.0000 0.500 101.0775 
0.025 21.1919 0.525 82.0227 
0.050 22.7742 0.550 66.4630 
0.075 24.7825 0.575 54.9752 

0.100 27.2972 0.600 46.7616 
0.125 30.4688 0.625 40.8466 
0.150 34.5360 0.650 36.3928 
0.175 39.7597 0.675 32.8201 

0.200 46.4137 0.700 29.8145 
0.225 54.9306 0.725 27.2402 
0.250 66.0520 0.750 25.0332 
0.275 80.6249 0.775 23.1427 

0.300 98.1997 0.800 21.5172 
0.325 112.9311 0.825 20.1091 
0.350 112.8903 0.850 18.8845 
0.375 99.9851 0.875 17.8165 

0.400 94.3144 0.900 16.8852 
0.425 105.1230 0.925 16.0706 
0.450 119.7423 0.950 15.3463 
0.475 117.9234 0.975 14.6747 

1.000 14.0000 



CHAPTER IV 

A PROCEDURE TO SEQUENTIALLY 

TEST THREE HYPOTHESES 

Consider the probability density function from the 

Koopman-Darmois family of densities; that is, 

f 8 (x) = exp{k(x) +ex- b(B)}. ( 4. 1) 

Suppose it is of interest to choose between the three 

hypotheses 

H e = e 
-1 -1 

H e = e 
0 0 

and H e = e 
1 1 

Let x 1 , i = 1, • • • I n, ... , be independent observations 
n 

from f. xn = E x 1 , the sufficient statistic fore, will be 
i = 1 

the test statistic. Figure 12 takes the appearance of 

Billard and Vagholkar's (1969) procedure (see Figure 5 for 

comparison). Figure 12 can be obtained by letting b = c in 

Figure 5. If, in the process of sampling, (n, X ) lies 
n 

above the region determined by AL, sampling is discontinued 

and H is accepted. Likewise, if (n, X ) lies in the region 
1 n 

determined by MCP, H is accepted. If (n, X ) lies above 
0 n 
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Figure 12. Sampling region for testing 
three hypotheses 
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DQ, H is accepted. Otherwise, sampling continues. The 
- 1 

parallel boundaries can be established by performing two 

SPRTs simultaneously for H vs. H and H0 vs. H • The 
-1 0 1 

value of n at which the two SPRTs cease intersecting (or 
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where the "accept H " wedge begins) is n , which serves as a 
0 0 

sample size minimum. 

Let a 1 , ~ 1 be the Type I and Type II error rates, 

respectively, for testing H vs. H , i = -1, 0. Using 
1 1+1 

SPRTs as defined in Chapter II, it is possible to define 

the process as follows. 

For n i!: then 

[b(B 1 ) -b(B0 )] 

i!: n + 
log [ (1-~ )/a ] 

1 1 

(B 1 - eo> (B 1 - eo> 

log [ (1-(3 )/a ] 
accept H0 if 

[b(e0 ) - b(B_1 ) ] 

n + 0 0 

ce - e ) 
0 -1 

[b(e ) - b(e )J log [~1/(1- a ] 
X 

1 0 n + 1 
:S :S 

n 
(B - e > (e - e ) 

1 0 1 0 

or 

[b(B0 ) - b(e -1 ) ] log [ ~o I< 1 - a J 
accept H if X :S n + 

-1 n (e - e ) (B - e 
0 -1 0 -1 

( 4. 2) 

Otherwise, sampling is continued. n 0 will be the value 

of n such that the lower boundary of the test of H vs. H 
0 1 



will equal the upper boundary of the test of H vs. H . 
-1 0 

This value can then be expressed in terms of the test 

parameters. n0 will be the solution to the equation 

[ b ( e 0 ) - b ( e_1 ) J 
n + 

0 

log[ (1-/30 )ja ~ 

ceo - e -1 > 
= 

log[/3 /(1 - a ] 
1 1 
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[b(e1 ) - b(e0 ) J 

(e1 - eo ) ce - e > 
1 0 

(4.3) 

This implies 

n = 
0 

(e1 - e0 )log[ (1 - f3 0)ja 0] - (e0 - e_1 ) log[/31 /(1 -a 1) 

(e - e ) [b(e ) - b(e ) J - (e - e ) [b(e ) - b(e ) J 
0 -1 1 0 1 0 0 -1 

(4.4) 

The points a, c, and d on the X -axis (see Figure 12) 
n 

are the values of the parallel lines at n = n0 and can be 

determined by: 

a = 

c = 

[b(e1 ) - b(e0 )] 

(e1 - eo) 

[b(e1 ) - b(e0 )] 

(e1 - eo) 

[b(e) - b(e > J 
0 -1 

c = --------------
(e - e ) 

0 -1 

+ 

+ 

+ 

log [ (1 - {3 1 )ja1 ] 

(e1 - eo) 

1 og [ f3 / ( 1 - a 1 ] 

(e1 - eo) 

1 og [ ( 1 - /3 0 ) I a 0 ] 

(eo - e -1) 



and 

d = 
[b(e) - b(e ) ] 

0 -1 

(e - e ) 
0 -1 

+ 
1 og ( ( {3 0 / ( 1 - a 0 ] 

(eo - e_1) 
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( 4. 5) 

Point c is given be two expressions because the two test 

boundaries intersect at this value. By having two equations 

equaling c, it becomes easy to solve equations (4.5) for the 

values a 0 , a1, {30 , and {31 to obtain 

1 - t (d) 
0 a = 0 

, 
t o (c) - t0 (d) 

t o (c) t (d) - t o(d) 
(30 

0 = 
t o (c) - t (d) 

0 

1 - t (c) 1 a = 1 t (a) - t (c) 1 1 

t (a) t (c) - t 1 (c) 
and (31 

1 1 
( 4. 6) = 

t (a) - t (c) 
1 1 

where 

t 0 (x) = exp{x(e 0 - e _1 ) - [b(e0 ) - b(e _1 ) ]n 0} 

and t ( x) = exp { x ( e - e ) - ( b ( e ) - b ( e ) ] n } . 
1 1 0 1 0 0 



The Operating Characteristic Function 

Consider the operating characteristic function, L(e), 

the probability of accepting H0 given the value of e. At 

n = n , H will be accepted if 
0 0 

1. c < X < a with CM being the first boundary to be 
n 

crossed, or if 

2. d < X < c with CP being the first boundary to be 
n 

crossed. 

Let L (e) and L (e) be the respective probabilities of 1 
1 -1 

and 2 above. Then L (e) = L (e) + L (e) . 
1 -1 

Lemmas 1 and 2 

will derive L (e) and L (e), respectively. Then Theorem 
1 -1 

4.1 will give the general form of L(e). 

Lemma 1:.. 

L1 (e) = (exp{ -h0 a} -exp{ -h0 c}) -1 { exp{ -h0 a} 

x [ G ( e, n0 , a) - G ( e, n 0 , c) ] 

- exp{n0 [b(e- h0 ) - b(e)]} [G(e- h0 , n0 , a) 

58 

- G(e - h o' c) ] } for h 'i: 0, 
0 

(4.7) 

L (e) 
1 

{a [G(e, n 0 , a) - G(e, n 0 , c)] 

xg (x, e) dx} 
n 

for h 0 = 0 (4.8) 

where h 0 is the solution to b(e - h) = b(e) - h (b(e ) -
1 

b(e ))f(e -e). 
0 1 0 
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Proof: Recall from Chapter II, equation (2.4), that the 

density function of X is 
n 

g ( x , e) = exp { k ( x ) + ex - nb (e) } • n n n n n 

Therefore 

L 1 (e) =fa gn(x, e) IT(x)dx 
c 

for n = n0 ( 4. 9) 

where IT(x) is the probability that, when starting at 

(n 0 , x), c < x <a, the process crosses CM first. 

Cox and Miller (1965), found for a random walk which 

operates between parallel boundaries X = a* and X = c* and 
n n 

starts at X0 = 0, the approximate probability p-c• that the 

walk ceases with absorption by X = c* is 
n 

p = -c• 

= 

exp { -A. a* } - 1 0 . 

exp{ -A. a*} - exp{ A. c*} 
0 0 

a* 

a* + c* 

for A. = o, 
0 

for A. "" o 
0 

where A. is the nonzero solution for E(exp{-A.x}) = 1. 
0 

(4.10) 

P is a function not only of A. and c*, but also -c* 0 

of a*. Billard and Vagholkar transformed this three-

dimensional function to IT(x). IT(x) is actually a 



three-dimensional function of a - x and b - x, and is found 

to be 

exp { -h a} - exp {-h X} 
II(x) 0 0 for h ~ 0 = 

0 exp {-h a} - exp { -h0 c} 
0 

a - x 
= for h = 0 (4.11) 

0 a - c 

where h0 is the solution for E(exp{-h(X - tan ~) }) = 1. 

For Koopman-Darmois densities, 

E(exp{-hX}) = J exp{k(x) + (8- h)x- b(8)} dx 

Q 
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= exp{b(e- h) - b(8)}. (4.12) 

So E(exp{-h(X- tan~)})= 1 can be restated as 

exp{h tan~- b(8) + b(e- hJ} = 1, 

which implies that 

b ( e - h0 ) = b (e) - h 0 tan ~ . ( 4. 13) 

Remembering that tan ~ is the same as the slope of the line 

if ~ is the angle between the line and the n-axis, 

b(81 ) - b(80 ) 

tan ~ = ------------------------
e - e 

1 0 

( 4. 14) 
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Thus h0 will be the nonzero solution to 

b(e) - b(e) 
b(e - h ) 

0 
= b(e) - h 

0 

1 0 
( 4. 15) 

Now what remains is the calculation of 

Ja gn(x, e)TI(x)dx, where n = n0 • 

c 

For convenience, define G(e, n 0 , k) at n = n0 as 

G(e, n0, k) = Jk 
-co 

g (x, e) dx. 
n 

( 4. 16) 

Thus G is the cumulative distribution function for the 

density of X . 
n 

An expression for L1 (8) can now be found using (4.11), 

for h *- o; that is, 
0 

L1 (e) = r gn(x, e) TI(x)dx 
c 

exp{k (x) + ex - n b(e)} [ (exp{-h a} 
n 0 0 

- exp { - h x } ) 1 ( exp { - h a } - exp { - h c } ) ] dx . 
0 0 0 

This quantity can be expressed as 
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L 1 (B) = (exp{-h0 a} - exp{-h0c})-1 {exp{-h0 a} [G(e, n 0 , a) 

- G ( e, n 0 , c) ] - exp { n 0 [ b ( e - h 0 ) - b (e) ] } 

x [ G ( e - h 0 , n 0 , a) - G ( e - h 0 , n 0 , c) ] } • 

If h = 0, then 
0 

(4.17) 

a 

L 1 (B) = J exp{kn(x) +ex- n 0 b(B) }[(a-x)j(a-c)] dx 
c 

-1 
= (a - c) {a [ G ( e, n 0 , a) - G ( e, n 0 , c) ] 

- Ja X~ (X 1 8) dx } • 
c 

( 4. 18) 

The proof is now complete. 

Lemma 2_. 

L_1 (B)= (exp{-h 0
1 C}- exp{-h 0

1 d})-1 

x {exp(n 0 (b(B - h0 
1 ) - b(B)) }[G(B - h ~, n 0 , c) 

- G(B - h I n 0 , 0 , c) ] - exp { - h 0
1 d} [ G ( e , n 0 , c) 

- G ( e, n0 , d) ] } h I :t; 0 
0 

L_1 (B) = (c- d)-1 {J c x~ (x, B)dx- c[G(B, n 0 ,c) 
d 

(4.19) 

- G ( e, n0 , d] } ( 4. 2 o) 

where h I is the solution of 
0 



Proof: In order to find L (e), it is necessary to find 
- 1 

r(x), the approximate probability that the process crosses 

CP first when starting at (n, x), d < x <c. Using (4.9), 
0 

exp{ -h I x} - exp{ -h I d} 
r(x) 

0 0 for h I ':1:- 0 = 
exp{ -h I c} - exp{-h 1 d} 

0 

0 0 

X - d 
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= for h I = 0 
0 

(4.21) 

Therefore, for h I 
0 

c - d 

L_ 1 (e) = r gn (x, e) r (x) dx 
d 

= Jc exp { k ( x) + ex - n b (e) } [ ( exp { - h I x } 
n 0 0 

d 

For h I = o, 
0 

- exp{-h0
1 d})/(exp{-h0

1 C} - exp{-h0
1 d})] dx 

-1 = (exp{-h0
1 c} - exp{-h0

1 d}) 

- b(e))} [G(e - hI, n, c) 
0 0 

{exp{n (b(e- h 1
) 

0 0 

- G(e - h 0
1 , n0 , d)] - exp{-h0

1 d} [G(e, n0 , c) 

- G ( e, n0 , d) J } • (4.22) 

L_1 (e) = r exp {kn (x) + ex - n0 b(e)} [ (x-c)/ (c-d)] dx 

implies 



implies 

L_ 1 (e) = (c- d)-1 {Jcxgn(x, e)dx- c(G(e, n 0 , c) 
d 

- G ( e, n0 , d) ] } • (4.23) 

The following theorem is presented with the previous 

work serving as proof: 

Theorem 4.1: Let x 1 , i = 1, 2, .•. be random observations 

from fe(x) = exp{k(x) +ex- b(e)}, and let Figure 12 serve 

as the sampling region for testing H : e = e vs. H : e 
-1 -1 0 

= e vs. H : e = e . Let L(e) be the approximate 
0 1 1 

probability of accepting H given e (i.e., OC function), 
0 

then 

L(e) = L1 (e) + L_1 (e), 

where L (e) and L (e) are defined in Lemmas 1 and 2, 
1 -1 

respectively. 

Average Sample Number Function 
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Consider the ASN function, which is the expected number 

of observations required to reach a decision as a function 

of e. Three possibilities exist for this procedure: 

1. A decision is reached at n = n 0 , or 



2. 

3. 

c < X 
n 

< a at n = n o' N (G) denoting the average 
1 

sample number beyond n = n for deciding in favor 
0 

of either H1 or H0 , or 

d < X < c at n = n N (e) denoting the average 
n o' -1 

sample number beyond n = n0 for deciding in favor 

of either H or H . 
0 -1 
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The following theorem provides the ASN function for the 

proposed testing procedure. 

Theorem 4.2: Let the assumptions of Theorem 4.1 hold. 

The Average Sample Number function, .Ee(N), is 

where 

= (b' (G) - tan 1/J)-1 {(a - c) exp{n [b(e - h) 
0 0 

- b(e)]} [G(e - h0 , n0 , a) - G(e - h 0 , n0 , c)] 

+ (exp{-h0 a} - exp{-h0c}) + (c·exp{-h0 a} 

- a·exp{-h0c}) [G(e, n0 , a) - G(e, n0 , c)] 

(exp{-h0a}- exp{-h0c}) -r xgn(x, e)dx} for ho $ o, 
c 

a 

N1 (e) = [b" (B) ]-1 {(a + c) J xgn (x, e) dx - ac 
c 

x [ G ( e, n0 , a) - G ( e, n0 , c) ] 
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N1 (e) = [b"(B) ]-1 { (a + c) r xgn(x, B)dx - ac 
c 

x [G(e, n, a) - G(e, n, c)] 
0 0 -r: X2gn (X, 8) dX} for h0 = 0 1 

and 

N (e) 
-1 

-1 
= (b'(e) -tan</>) {(c-d)exp{n0 [b(e-h0 ') 

- b(e)]}[G(e- h 0 ', n0 , c) 
' 

- G(B- h 0 ', n0 , d)]/(exp{-h0 'c} - exp{-h0 'd}) 

+ (d·exp{-h0 'c} - c·exp{-h0 'd}) [G(e, n0 , c) 

- G(e, n0 , d)J/(exp{-h0 'c}- exp{-h 0 'd}) 

- Jc xgn(x, B)dx} for h~ ~ O, 
d 

N (B) 
-1 . 

= [b"(e)]-1 {(c +d) r xgn (x, e) dx 
d 

- cd [ G ( e , n0 , c) - G ( e, n0 , d) ] -r x2gn (x, e) dx} 
d 

for h '=0 
0 

Proof: 

Since no decision will be made before n , the 
0 

average sample number will be n plus the average sample 
0 

number beyond n = n for deciding in favor of either H or 
0 1 

H0 plus the average sample number beyond n = n 0 for deciding 

in favor of either H or H The ASN function, denoted by 

Ee (N) , will be 

Let N (B) be 
1 

0 - 1 

+ N (B) + N (B). 
1 -1 

(4.24) 
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a 

N 1 (e) = I g n (X , e) n (X) dx , 
c 

(4.25) 

where n(x) is the expected number of observations to 

absorption for a random walk starting at point X = x at n = 
n 

n0 and operating between the parallel lines AL and CM. 

Cox and Miller found that the expected number of steps 

for a random walk starting at zero and operating between 

parallel absorbing boundaries X = a* and X = c* is 
n n 

(a* + c*) - a* exp{ i\ c*} - c* exp{ -i\. a*} 
E(N) 

0 0 = 
1-L ( exp { - i\ a* } 

0 
- exp { i\ c * } ) 

0 

a* c* 
= . i\ = 0, I 

0 
2 

(j 

where i\ is the nonzero solution of E(exp{-i\.X}) = 1 . 
. 0 

Billard and Vagholkar transformed (4.22) into 

n(x) 
c) exp { - h x} - a · exp { - h c} + c · exp { - h x} 

0 0 0 

exp{-h a} - exp{-h c} 
0 0 

..,. (1-L - tan 1/J) for h ~ 0, 
0 

= (a - x) (x - c)j(J'2 for h 0 = 0 

where h is the nonzero solution of 
0 

i\ ~ 0 
0 

(4.26) 

(4.27) 



E(exp{-h(x- tan~)}]= 1. 

For the Koopman-Darmois family of densities 

n(x) = [
(a - c)exp{-h x} - a·exp{-h c} + c·exp{-h a} 

0 0 0 

exp { -h a} - exp { -h c} 
0 0 

~ (b' (e) - tan ~) for h ~ 0 1 
0 

= (a - x) (x - c)/b"(e) for h 0 = 0 1 

where h 0 is such that 

b (e - h ) 
0 

N (e) will then be 
1 

b(e) - b(e) 
= b(e) - h 1 0 

0 e - e 
1 0 

N1 (e) = Jaexp{kn(x) +ex- n0b(e)} n(x) dx 
c 

= (b' (e) - tan ~)- 1 [ (exp{-h0 a} - exp{-h0 c})-1 

x Ja[(a- c)exp{-h x}- a·exp{-h c} 
0 0 

c 

+ c · exp { - h a } ] g ( x 1 e) dx 
0 n 

- fxgn (x, e) dx, 
c 
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(4.28) 



For h = o, 
0 

= (b' (e) -tan 1/J)-1 { (a - c)exp{n [b(e -h) 
0 0 

- b(e) J} [G(e - h0 , n 0 , a) - G(e - h0 , n0 , c)] 

(exp{-h0a} - exp{-h0c}) + (c·exp{-h0a} 

- a·exp{-h c}) (G(e, n, a) - G(e, n, c)] 
0 0 0 

+ ( exp { - h a } - exp { - h c } ) - Ia xg ( x , e ) dx } ; 
0 0 c n 

(4.29) 

N (e) 
1 

a (a - x) (x - c) 
= I exp{kn(x) + ex - n0b(e) }-------

c b"(e) 
dx 

(b"(e) )-1 { (a + c) r xgn(x, e) dx 
c 

a) - G (e, n , c) ] 
0 

- ac (G (e, n , 
0 

a - I x2gn (X I e) dx } . 
c 

(4.30) 

Due to symmetry, N (e) can be found by replacing in 
- 1 

N (e) a with c, c with d, 1/1 with~' and h with h '. 
1 0 0 

Therefore, 

N (e) 
-1 

and 

-1 = (b' (e) - tan ~) { (c - d)exp{n0 [b(e - h~) 

- b(e) J} (G(e - h~, n0 , c) 

- G(e- h~, n0 , d)J/(exp{-h~c}- exp{-h~d}) 

+ (d·exp{-h~c} - c·exp{-h~d}) [G(e, n0 , c) 

- G(e, n0 , d)J/(exp{-h~c} - exp{-h~d}) -r xgn(x, e) dx} for h~ '* o, (4.31) 
d 

69 
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N (e) = ( b" (e) J -1 { ( c + d) Jcxgn (x, e) dx 
-1 

d 

- cd(G(e, no, c) - G(e, no, d)] 

- Jcx2gn(x, e) dx} for h' = 0. (4.32) 
0 

d 

The proof of Theorem 4.2 is now complete. 

Approximations for the oc and ASN functions have been 

developed for the procedure depicted in Figure 12. In the 

next section, the oc function will be used in part to adjust 

the error rates to obtain a more desirable test. 

Error Rate Adjustment 

Suppose it is desired to test 

H e = e 
-1 -1 

H e = e 
0 0 

and H e = e (4.33) 
1 1 

where e is a parameter from fe(x) = exp{k(x) +ex- b(e)}. 

As mentioned in Chapter III, when two SPRTs are combined to 

test these hypotheses, the error rates a , a , (3 , (3 used 
0 1 0 1 

in the SPRTs do not result in desired error levels. It is 

the goal of this section to find the values of the error 

rates that do give desired results. 

The approach used to adjust the error rates will be to 

set values to the probabilities below: 
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P(accepting H 1e = e1 > = r ' 0 1 

P(accepting Hole = e > = r2, -1 

P(accepting H11e = e ) = r3, 0 

and P(accepting H 1e = e) -1 0 
= r 4 • (4.34) 

Since the probability that H is accepted when H is true 
-1 1 

will usually be very small, r can be thought of as the 
1 

probability of error when e is the true value of e. 
1 

Likewise r 2 can be the probability of error when H is 
-1 

true. The quantity (r3 + r 4 ) will be the probability of 

error when H is true. It will now be necessary to find the 
0 

probabilities associated with equation (4.34). 

Theorem 4.3: Based on (4.34), the four desired error rates 

are 

L (e ) + L (e ) = r , 1 1 -1 1 1 

L1 ( e -1) + L -1 ( e -1) = r 2, 

1 - G ( e 0 , n 0 , c) - L 1 ( e 0 ) = r 3 , 

and c) - L (e ) = r . 
-1 0 4 

(4.35) 

Proof: Theorem 4.1 found an approximation for the Operating 

Characteristic function, which is the probability of 

accepting H given a value of e. Thus 
0 

P(accepting H0 le) = L(e) = L (e) + L (e). 
1 -1 

(4.36) 
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Accepting H will require, at n = n , X > c and the 
1 0 n 

process not crossing boundary CM first (see Figure 12). The 

random variable X will be greater than c with probability 
n 

P(X > c) 
n 

g (x, e) dx, 
n 

and CM will be crossed first with probability 

P(CM crossed first) = L (e) • 
1 

Combining (4.37) and (4.38) will give 

00 

P(accepting H1 je) = fc gn(x, e) dx -L1 (e) 

= 1 - G ( e, n0 , c) - L 1 (e) • 

Likewise, the probability of accepting H can be 
-1 

expressed as 

P(accepting H_1 j e) = roo gn (x, e) dx - L_1 (e) 

= G (e, n , c) - L (e) • 
0 -1 

Using (4.34), the four desired error rates become 

(4.37) 

(4.38) 

(4.39) 

(4.40) 
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L (e ) + L (e ) = ..,. , 
1 1 -1 1 1 

L1 < e -1 > + L -1 < e -1 > = ..,. 2' 

1 - G(e 0 , n0 , c) - L 1 (80 ) = "1 3 , 

and G ( e 0 , n 0 , c) - L _1 ( e 0 ) = "1 4 • (4.41) 

The proof is complete. 

The four equations (4.41) are all equations in a, c, d, 

and n0 , which are functions of a0 , a 1 , ~0 , ~ 1 (see equation 

4.6). It is desired to set these error rates such that the 

desired error rates are attained. Therefore, the problem is 

to find the a, c, d, and n that provide a solution to the 
0 

system of equations denoted by (4.41). A method for solving 

a system of nonlinear equations using SAS is presented in 

Chapter V. 

This process (Figure 12) is similar to Billard and 

Vagholkar's (1969), and many of their techniques were 

utilized in this dissertation. There are some notable 

differences between the two methods, however. The procedure 

defined in this chapter adjusts the nominal error rates of 

the two SPRTs to obtain the desired error probabilities. 

Billard and Vagholkar's geometric approach begins with the 

desired error probabilities and then determines the 

geometric parameters that minimize the ASN function at a 

given point. 

A minimum sample size, n , 
0 

is considered for this 

procedure. This is useful for researchers not willing to 

stop sampling after only a few observations. Placing a 
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minimum on sample size is not a necessity or requirement of 

this method, however. The parallel boundaries that 

characterize the sampling regions fqr n > n0 can be extended 

to meet the X -axis (Figure 13). This extension will have 
n 

little effect on the error rates, since making a decision 

early in the process will happen infrequently. Since no 

decision can be made in Figure 12 before it is made in 

Figure 13, the ASN functions for the method in Figure 13 

will be smaller than that depicted in Figure 12. Thus, the 

extension of the parallel boundaries would seem prudent, and 

Chapter V compares the two methods. 



X 
n 

a 

c 

d 

--------------------------------------n n 
0 

Figure 13. Sampling region for testing 
three hypotheses with the 
boundaries extended to 
the X axis 

n 
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CHAPTER V 

TWO EXAMPLES WITH MONTE 

CARLO RESULTS 

,_ 

In order to examine the effectiveness of the procedure 

developed in Chapter IV, it will be derived for certain 

tests and compared using simulation to other known methods. 

The two distributions that will be used are the exponential 

and normal, which are commonly used in the literature for 

sequential sampling (e.g., Huffman, 1983, Billard and 

Vagholkar, 1969). one should note, however, that the 

procedure presented in this dissertation is applicable to 

any distribution in the Koopman-Darmois family. 

A Method Using SAS to Solve a System 

Of Nonlinear Equations 

The method for sequentially testing three hypotheses 

mentioned in Chapter IV relied primarily on solving a system 

of four non-linear equations in four unknowns. There exist 

many computing techniques to solve such a system. However, 

the equations included in this dissertation involve 

cumulative distribution functions. This creates problems 

for some routines that must estimate the incomplete 

integrals that accompany such functions. SAS is convenient 
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for solving these systems because it has implicit functions 

for the cumulative distribution function of most known 

distributions. 

The ETS version of SAS has a procedure named PROC 

SYSNLIN for solving a system of nonlinear equations. An 

alternative method for SAS without ETS has been developed 

using PROC NLIN, SAS's nonlinear regression procedure. 

consider the following general example of four equations, 

four unknowns. 

Let x1, x2, x3, and x 4 , be four unknowns, f 1, f 2, f 3, 

and f 4 be four functions of x through x , and let c , c 2, 
1 4 1 

c , and c be four constants. The system may take the 
3 4 

appearance of: 

f (x , x2, x3, X4) = c 1 1 1 

f 2 (x1' x2, x3, X4) = c 2 

f 3 (x1' x2, x3, X ) = c 
4 3 

77 

f 4 (x1' X I X I X ) = c (5.1) 2 3 4 4 

The values of x , x , x , and x that solve the previous 
1 2 3 4 

system can be found using the following SAS code. 



78 

INPUT A B c D y 

CARDS: 

1 0 0 0 c 
1 

0 1 0 0 c 
2 

0 0 1 0 c 
3 

0 0 0 1 c 
4 

. 
I 

PROC NLIN; 

MODEL y = f *A+ f *B + f *C + f *D: 
1 2 3 4 

RUN: 

The quantities c through c will be numeric values and the 
1 4 

model statement can be quite complicated depending on the 

system. Between the PROC NLIN and MODEL statements should 

be a PARMS statement, giving initial parameter estimates, 

a BOUNDS statement, placing restrictions on the unknowns. 

This method is used to solve systems of equations in 

this chapter. 

Test for Exponential Parameter 

Let x, x , ••. , x , ... be random observations from an 
1 2 n 

exponential distribution with parameter A: that is, 

f(x) = Ae-AX = exp{log A- AX}. (5.2) 

Therefore, using the definition of Koopman-Darmois 
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densities, e =-A, b(e) = -log(-e), and b'(e) = -1;e. Also 

note that the mean of the distribution, ~' is equal to 1/A. 

suppose it is desired to test 

H . 
~ = 1, 

-1 
. 

H ~ = 2, 
0 

and H ~ = 3, (5.3) 
1 

or equivalently, 

H e = -1, 
-1 

H e = -1/2, 
0 

and H e = -1/3. 
1 

(5.4) 

Assume the desired error probability is set at 0.10. The 

distribution of X will be gamma(n, A); that is, 
n 

ge(x) = exp{-log(r(n)) + (n- 1)·log x +ex+ n·log(-e)]. 

(5.5) 

Therefore, 

k (x) = (n- 1) log(x) - log(r(n)). 
n 

h is the solution to 
0 

log(h- e) - log(-e) - 6h·(log 3- log 2) = o, 



and h' is the solution to 
0 

log(h' -e) - log(-e) - 2h'(log 2) = o 

The values of h 0 and h~ must be estimated iteratively 

because the equations cannot be solved explicitly for these 

terms. For e = e , h to four decimal places of accuracy 
-1 0 

is -0.8834. h' for e = -1 is -1/2. For e = e = -1/2, 
0 0 

h' = -1/6, h' = 1/2. 
0 0 

For e = 8 1 = -1/3, h 0 = 1/6, h' = 1. 
0 
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The slopes of the upper and lower sets of parallel lines are 

and 

slope = 
1 

slope = 
0 

respectively. 

b(e) - b(e) 
1 0 

e - e 
1 0 

b(e ) - b(e ) 
0 -1 

e - e 
0 -1 

= 2.4328 

= 1. 3863 1 (5.6) 

The problem remains to find values of a, c, d, and n 0 

that solve the system of equations associated with this 

test. Using Armitage's (1947) method for testing these 

hypotheses, the following values result: 

a = 59.21, 

c = 28.36, 

d = 18.08, 

and n 
0 

= 17.21. (5.7) 
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These values will be used as initial values in the computer 

iterations. The specified error rates used in the procedure 

above are 

0: = 0.10, 
0 

(30 = 0.05, 

0: = 0.05, 
1 

and (31 = 0.10. 

The system of equations associated with (5.4) is 

where 

L 1 ( e 1 ) + L _1 ( e 1 ) = o. 1 o 

L1 (e_1 ) + L_1 (e_1 ) = 0.10 

1 - G(e0 , n0 , c) - L1 (e0 ) = 0.05 

G(e0 , n 0 , c) - L_1 (e0 ) = 0.05 

Jc (-e) n n-1 
G(e~ n, c) = x exp{ex}dx. 

o r(n) 

For e = e = -1, one can find 
-1 

-h = 0 0 88342 
0 

b(e_1 - h0 ) = 2.149175 

e - h = -o. 11658. 
-1 0 

For convenience, define the above quantities as r 1 , 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

r, and 
2 



r , respectively. Using appropriate definitions for L and 
3 1 

L , the system of equations denoted by (5.9) becomes 
-1 

(exp{-a/6} - exp{-c/6})-1 {exp{-a/6}[G(-1/3, n0 , a) 

- G(-1/3, n0 , c)] - exp{n0 (log 2 - log 3)} 

x [G(-1/2, n0 , a) - G(-1/2, n0 , c)]} + (exp{-c} 

- exp{-d}){exp{-n0log 4}(G(-4/3, n0 , c) 

- G(-4/3, n0 , d)] - exp{-c} [G(-1/3, n0 , c) 

- G(-1/3, n0 , d)]}= 0.10 

-1 (exp{r1a} - exp{r1c}) { exp{r 1 a} [G (-1, n0 , a) 

- G(-1, n0 , c)] - exp{n0 r 2 } [G(r3 , n0 , a) 

- G(r3 , n 0 , c]} + (exp{c/2} - exp{d/2})-1 

x{exp{n0 log 2}[G(-1/2, n0 , c)- G(-1/2, n 0 , d)] 

- exp { c; 2 } [ G ( -1, n0 , c) - G ( -1, n0 , d) ] } = 0 . 10 

-1 1 - G(-1/2, n0 , c) - (exp{a/6} - exp{c/6}) 

x { exp {a; 6} ( G ( -1/2 , n0 , a) - G ( -1/2 , n0 , c) ] 

- exp{n0 (log 3 -log 2) }[G(-1/3, n0 , a) 

- G(-1/3, n0 , c)]} = 0.05 

-1 
G(-1/2, n0 , c) - (exp{-c/2} - exp{-d/2}) 

x {exp{-n log2} [G(-1, n , c) - G(-1, n , d)] 
0 0 0 
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- exp{-d/2}[G(-l/2, n ' 0 
c) - G(-1/2, n0 , d)]} = 0.05. 

(5.12) 

Solving the system of equations, the values obtained are 
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a = 50.41, 

c = 20.94, 

d = 14.89, 

and n = 13.96. (5.13) 
0 

These values result from adjusting the error rates 

associated with the two SPRTs that will be conducted 

simultaneously to obtain the desired probabilities of error. 

Figure 14 represents this method using a minimum sample 

number, n , and Figure 15 is the same procedure without the 
0 

minimum on the sample size. Figure 16 represents the 

procedure's comparison to Armitage's method. Note that the 

parallel boundaries are closer in the proposed method than 

Armitage's. This is a result of Armitage's procedure being 

too conservative. A Monte Carlo simulation of 2000 trials 

per parameter value was performed on PC SAS to compare these 

two procedure with Armitage's. Tables X, XI, and XII 

present the probabilities of accepting the hypotheses and 

average sample numbers given the mean of the exponential for 

all three procedures. Figures 17 and 18 are graphs of the 

empirical ASN functions. 

The new procedures appear to be improvements over 

Armitage's. The error rates at the hypothesized values of e 

are closer to the specified levels than the conservative 

error rates obtained by Armitage. This allows for decision 

making to occur sooner on the average, thus lending to 

smaller average sample numbers for all values of e. 
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TABLE X 

ERROR PROBABILITIES AND ASN VALUES FOR 
ARMITAGE'S TEST OF THREE VALUES FOR 
THE MEAN OF AN EXPONENTIAL DENSITY 

(1. 0, 2.0, 3. 0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

0.7 1. 0000 0.0000 0.0000 9.3685 
0.8 0.9995 0.0005 0.0000 10.6395 
0.9 0.9970 0.0030 0.0000 12.9070 
1.0 0.9820 0.0180 0.0000 15.7175 

1.1 0.9285 0.0715 0.0000 19.4970 
1.2 0.8390 0.1310 0.0000 22.1755 
1.3 0.6725 0.3275 0.0000 24.3465 
1.4 0.4850 0.5150 0.0000 25.5970 
1.5 0.3560 0.6435 0.0005 26.0015 

1.6 0.2275 0.7715 0.0010 25.7145 
1.7 0.1450 0.8530 0.0020 26.0490 
1.8 0.0900 0.9040 0.0060 27.5745 
1.9 0.0585 0.9270 0.0145 30.2340 
2.0 0.0435 0.9235 0.0330 33.4795 

2.1 0.0285 0.8970 0.0745 37.2850 
2.2 0.0190 0.8450 0.1360 42.2890 
2.3 0.0130 0.7500 0.2370 46.3410 
2.4 0.0105 0.5995 0.3900 49.3100 
2.5 0.0075 0.4760 0.5165 49.1815 

2.6 0.0025 0.3525 0.6450 44.9460 
2.7 0.0045 0.2330 0.7625 41.5355 
2.8 0.0015 0.1795 0.8190 38.7565 
2.9 0.0030 0.1305 0.8665 34.1110 
3.0 0.0025 0.0800 0.9175 30.0775 

3.1 0.0025 0.0505 0.9470 27.1255 
3.2 0.0005 0.0410 0.9585 25.0730 
3.3 0.0005 0.0205 0.9790 22.6350 
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TABLE XI 

ERROR PROBABILITIES AND ASN VALUES FOR 
PROPOSED TEST OF THREE VALUES FOR THE 

MEAN OF AN EXPONENTIAL DENSITY 
( 1. 01 2.0, 3.0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

0.7 1.0000 0.0000 0.0000 14.1035 
0.8 0.9980 0.0020 0.0000 14.3740 
0.9 0.9770 0.0230 0.0000 15.0180 
1.0 0.9415 0.0585 0.0000 16.1265 

1.1 0.8345 0.1655 0.0000 17.1735 
1.2 0.7205 0.2795 0.0000 17.8550 
1.3 0.5800 0.4200 0.0000 18.6735 
1.4 0.4265 0.5735 0.0000 19.3220 
1.5 0.3070 0.6925 0.0000 19.8560 

1.6 0.2185 0.7800 0.0015 20.5265 
1.7 0.1420 0.8555 0.0025 22.5375 
1.8 0.0645 0.9005 0.0045 24.3755 
1.9 0.0465 0.9190 0.0165 27.8565 
2.0 0.0305 0.9160 0.0375 31.2475 

2.1 0.0305 0.8895 0.0800 35.3710 
2.2 0.0205 0.8400 0.1395 40.5715 
2.3 0.0135 0.7440 0.2425 44.8290 
2.4 0.0085 0.5965 0.3950 47.1140 
2.5 0.0055 0.4735 0.5210 47.2740 

2.6 0.0025 0.3535 0.6440 43.2020 
2.7 0.0040 0.2390 0.7570 40.0830 
2.8 0.0015 0.1840 0.8145 38.1430 
2.9 0.0020 0.1360 0.8620 33.5915 
3.0 0.0010 0.0855 0.9135 30.4290 

3.1 0.0010 0.0525 0.9465 27.8360 
3.2 0.0000 0.0430 0.9570 26.0625 
3.3 0.0000 0.0225 0.9775 23.9900 
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TABLE XII 

ERROR PROBABILITIES AND ASN VALUES FOR 
PROPOSED TEST OF THREE VALUES FOR THE 

MEAN OF AN EXPONENTIAL DENSITY, 
BOUNDARIES EXTENDED 

(1. 0, 2.0, 3.0) 

Probability of Accepting 
MEAN H H Ht ASN 

-1 0 

0.7 1.0000 0.0000 0.0000 7.2380 
0.8 0.9985 0.0015 0.0000 8.2950 
0.9 0.9785 0.0215 0.0000 9.8715 
1.0 0.9445 0.0555 0.0000 11.6535 

1.1 0.8525 0.1475 0.0000 13.3385 
1.2 0.7465 0.2535 0.0000 14.7975 
1.3 0.6150 0.3850 0.0000 16.1160 
1.4 0.4655 0.5345 0.0000 17.2845 
1.5 0.3595 0.6400 0.0005 18.1030 

1.6 0.2675 0.7305 0.0020 19.1320 
1.7 0.1905 0.8060 0.0035 21.3545 
1.8 0.1395 0.8530 0.0075 23.3260 
1.9 0.0990 0.8805 0.0205 26.9120 
2.0 0.0815 0.8775 0.0410 30.2805 

2.1 0.0595 0.8570 0.0835 34.3450 
2.2 0.0480 0.8100 0.1420 39.5405 
2.3 0.0350 0.7155 0.2495 43.2275 
2.4 0.0260 0.5745 0.3995 45.3150 
2.5 0.0210 0.4590 0.5200 45.6810 

2.6 0.0110 0.3455 0.6435 41.7715 
2.7 0.0150 0.2310 0.7540 38.6280 
2.8 0.0075 0.1805 0.8120 36.1905 
2.9 0.0095 0.1310 0.8595 31.7360 
3.0 0.0075 0.0825 0.9100 28.2690 

3.1 0.0060 0.0510 0.9430 25.5740 
3.2 0.0040 0.0400 0.9560 23.9055 
3.3 0.0030 0.0215 0.9755 21.3450 
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Test for Normal Mean 

Let x, x , ... , x, ... be random observations from a 
1 2 n 

normal distribution with unit variance and mean ~; i.e. 

f(x) = (2rr) - 112 exp{-(x - ~) 2/2} 

= exp{-log (2rr)/2- x 2/2 + x~- ~2/2}. 

(5.14) 

Therefore, using the definition of Koopman-Darmois 

2 densities, e = ~' b(e) = e /2, and b' (8) = e. 

Suppose it is desired to test 

H . 
~ = -1, 

-1 
. 

H ~ = o, 
0 

and H ~ = 1. (5.15) 
1 

Assume the desired error probability is 0.05. The 

distribution of X will be normal with mean n~, variance n. 
n 

h0 and h~ are the solutions to 

h' = 
0 

2e - e 
1 

2e - e 
0 

- e = 2e - 1 
0 

- e = 2e + 1 
-1 

When e = e_1 = -1, h0 = -3 and h~ = 1. When e = e = o, 
0 

h = -1 and h' = 1. When e = e h = 1 and h ' - 3. The 
0 0 t' 0 0 

slopes of the upper and lower sets of parallel lines are 

found by 



slope 1 = 
b(e1 ) - b(e0 ) 

e - e 
1 0 
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= 1/2 

and slope0 = = -1/2, (5.16) 

respectively. 

e0 - e 
-1 

As in the exponential case, the values a, c, d, and n 
0 

must be found in order to attain the approximate desired 

error probability of 0.05. Using Armitage's (1947) method, 

the values of a, c, d, and n would be 
0 

a = 5.14, 

c = o, 

d = -5.14, 

and n = 4.5. 
0 

(5.17) 

These will again be used to provide starting values to 

obtain the adjusted quantities. The system of equations 

associated with (5.15) is 

where 

L1 (~J- 1 ) + L_1 (g1 ) = 0.05 

L1 (1.!_ 1 ) + L_1 (~J-_ 1 ) = 0.05 

1- ~[(c- n~J, )/n "5 ]- L (1.!) = 0.025 
0 0 0 1 0 

~[(c- n~J, )/n "5 ]- L (g)= 0.025, 
0 0 0 -1 0 

(5.18) 
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k I -5 2 
~ (k) = (2n) · exp{ -x /2 }dx. 

-co 

(5.19) 

The system (5.18) then becomes 

exp {-a} { ~ [ (a - n ) ;n · 5 ] - ~ [ ( c - n ) ;n · 5 ] } 
0 0 0 0 

+ ( exp {-a} - exp { -c} ) - exp { -n I 2 } { ~ [ ajn · 5 ] 
0 0 

- ~[cjn "5 ] }/(exp{-a} - exp{-c}) + exp{3n /2} 
0 0 

x {~[(c + 2n )/n "5 ]- ~[(d + 2n )/n "5 ]} 
0 0 0 0 

..,.. (exp{-3c}- exp{-3d})- exp{-3d}{~[(c- n 0 )jn0 " 5 ] 

- ~[ (d - n )/n "5 ] }/(exp{-3c} - exp{-3d}) = 0.05 
0 0 

exp{3a}{~[ (a+ n 0 )jn0 "5 ] ....; ~[ (c - n 0 )jn0 "5 ]} 

+ ( exp { 3 a } - exp { 3 c } ) - exp { 3 n0 j 2 } { ~ [ ( a - 2 n ) 1 n · 5 ] 
0 0 

- ~[ (c - 2n0 )/n0 "5 ] }/(exp{3a} - exp{3c}) 

+ exp { -n I 2} { ~ [ cjn · 5 ] - ~ [ d/n · 5 ] } 1 ( exp { c} 
0 0 0 

- exp { d } ) - exp { d }{ ~ [ ( c + n ) n · 5 ] 
0 0 

- ~ [ ( d + n ) In · 5 ] } 1 ( exp { c } - exp { d } ) = 0 • 0 5 
0 0 

1 - ~[cjn "5 ] - exp{a} {~[ajn "5 ] - ~[cjn "5 ]} 
0 0 0 

+ ( exp { a } - exp { c } ) + exp { n 1 2 } { ~ [ ( a - n ) 1 n · 5 ] 
0 0 0 

- ~ [ ( c - n ) In · 5 ] } 1 ( exp { a} - exp { c} ) = 0 • o 2 5 
0 0 . 

~[c/n "5 ] - exp{n /2}{~[ (c + n )/n "5 ] 
0 0 0 0 

- ~[ (d + n )/n "5 ] }/(exp{-c} - exp{-d}) 
0 0 

+ exp { -d }{ ~ [ c;n · 5 ] - ~ [ d/n · 5 ] } 1 ( exp { -c} 
0 0 

- exp{-d}) = 0.025 (5.20) 
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The approximate solution given by PC SAS is 

a = 5.89, 

c = 0.0002, 

d = -5.89, 

and n 
0 

= 5.063. (5.21) 

It will be of interest to compare this new method not 

only to Armitage's (1947) method, but to Billard and 

Vagholkar's as well. Their paper from 1969 lists several 

solutions to tests like the one performed here. For 

comparison, the test using a = ~ = 0.05 and minimizing E(N) 

at ~ = 0.5 was used. The slope of this process was 0.4942, 

with 

a = 5.975, 

b = 0.1362, 

c = -b, 

d = -a, 

and n0 = 5.2358. 

Figure 5 should be referred to for information on the 

appearance of Billard and Vagholkar's test. 

Tables XIII through XVI give the results of Monte Carlo 

simulation designed to test the relative merits of each 

test. Note that the proposed method is a definite 

improvement over Armitage's. More importantly, the 
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TABLE XIII 

ERROR PROBABILITIES AND ASN VALUES FOR 
ARMITAGE'S TEST OF THREE VALUES FOR 

THE MEAN OF A NORMAL DENSITY 
(-1.0, o.o, 1.0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

-1.4 1.0000 0.0000 0.0000 4.9540 
-1.3 0.9975 0.0025 0.0000 5.5535 
-1.2 0.9985 0.0015 0.0000 6.3185 
-1.1 0.9920 0.0080 0.0000 7.0065 
-1.0 0.9795 0.0205 0.0000 8.3865 

-0.9 0.9535 0.0465 0.0000 9.8795 
-0.8 0.9020 0.0980 0.0000 11.9535 
-0.7 0.8215 0.1785 0.0000 13.7635 
-0.6 0.6545 0.3455 0.0000 15.7035 
-0.5 0.4630 0.5365 0.0005 16.6500 

-0.4 0.2620 0.7370 0.0010 15.3345 
-0.3 0.1475 0.8505 0.0020 14.0650 
-0.2 0.0710 0.9265 0.0025 12.3455 
-0.1 0.0325 0.9595 0.0080 11.4085 

0.0 0.0125 0.9700 0.0175 10.9275 

0.1 0.0065 0.9590 0.0345 11.4620 
0.2 0.0025 0.9305 0.0670 12.3530 
0.3 0.0030 0.8445 0.1525 14.0115 
0.4 0.0010 0.7035 0.2955 15.6190 
0.5 0.0010 0.5410 0.4580 16.8260 

0.6 0.0000 0.3470 0.6530 15.7045 
0.7 0.0000 0.1890 0.8110 13.7240 
0.8 0.0000 0.0940 0.9060 11.6930 
0.9 0.0000 0.0435 0.9565 9.9145 
1.0 0.0000 0.0160 0.9840 8.6105 

1.1 0.0000 0.0085 0.9915 7.3305 
1.2 0.0000 0.0050 0.9950 6.3290 
1.3 0.0000 0.0010 0.9990 5.5080 
1.4 0.0000 0.0000 1.0000 4.9730 
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TABLE XIV 

ERROR PROBABILITIES AND ASN VALUES FOR 
BILLARD AND VAGHOLKAR'S TEST OF 
THREE VALUES FOR THE MEAN OF A 

NORMAL DENSITY {-1.0, 0.0, 1. 0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

-1.4 0.9985 0.0015 0.0000 4.6420 
-1.3 0.9955 0.0045 0.0000 5.1775 
-1.2 0.9955 0.0045 0.0000 5.8695 
-1.1 0.9880 0.0120 0.0000 6.5120 
-1.0 0.9680 0.0320 0.0000 7.6320 

-0.9 0.9340 0.0660 0.0000 8.8495 
-0.8 0.8765 0.1235 0.0000 10.4540 
-0.7 0.7905 0.2095 0.0000 11.9015 
-0.6 0.6255 0.3745 0.0000 13.0205 
-0.5 0.4520 0.5470 0.0010 13.6895 

-0.4 0.2720 0.7265 0.0015 12.8010 
-0.3 0.1600 0.8370 0.0030 11.9180 
-0.2 0.0860 0.9095 0.0045 10.6665 
-0.1 0.0405 0.9510 0.0085 10.0465 

0.0 0.0145 0.9645 0.0210 9.7020 

0.1 0.0090 0.9485 0.0425 9.9900 
0.2 0.0030 0.9145 0.0825 10.7195 
0.3 0.0035 0.8330 0.1635 11.9355 
0.4 0.0010 0.6925 0.3065 13.0600 
0.5 0.0010 0.5470 0.4520 13.4170 

0.6 0.0000 0.3730 0.6270 13.1155 
0.7 0.0000 0.2145 0.7855 11.8150 
0.8 0.0000 0.1235 0.8765 10.1795 
0.9 0.0000 0.0650 0.9350 8.9440 
1.0 0.0000 0.0275 0.9725 7.8845 

1.1 0.0000 0.0145 0.9855 6.7670 
1.2 0.0000 0.0085 0.9915 5.8945 
1.3 0.0000 0.0025 0.9975 5.1235 
1.4 0.0000 0.0005 0.9995 4.6650 
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TABLE XV 

ERROR PROBABILITIES AND ASN VALUES FOR 
PROPOSED TEST OF THREE VALUES FOR 

THE MEAN OF A NORMAL DENSITY 
( -1. 0, 0.0, 1. 0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

-1.4 0.9985 0.0015 0.0000 6.4695 
-1.3 0.9955 0.0045 0.0000 6.8100 
-1.2 0.9960 0.0040 0.0000 7.2525 
-1.1 0.9890 0.0110 0.0000 7.7865 
-1.0 0.9685 0.0315 0.0000 8.6645 

-0.9 0.9345 0.0655 0.0000 9.7580 
-0.8 0.8750 0.1250 0.0000 11.3320 
-0.7 0.7885 0.2115 0.0000 12.5985 
-0.6 0.6200 0.3800 0.0000 13.8120 
-0.5 0.4400 0.5595 0.0005 14.3165 

-0.4 0.2615 0.7380 0.0005 13.2635 
-0.3 0.1475 0.8510 0.0015 12.3765 
-0.2 0.0785 0.9180 0.0035 10.8805 
-0.1 0.0350 0.9580 0.0070 10.2785 

0.0 0.0100 0.9720 0.0180 9.8820 

0.1 0.0055 0.9595 0.0350 10.2055 
0.2 0.0015 0.9280 0.0705 11.0040 
0.3 0.0010 0.8480 0.1510 12.3150 
0.4 0.0005 0.7035 0.2960 13.5360 
0.5 0.0005 0.5575 0.4420 14.0705 

0.6 0.0000 0.3785 0.6215 13.8940 
0.7 0.0000 0.2155 0.7845 12.5610 
0.8 0.0000 0.1260 0.8740 10.9990 
0.9 0.0000 0.0650 0.9350 9.8145 
1.0 0.0000 0.0255 0.9745 8.9315 

1.1 0.0000 0.0140 0.9860 7.9705 
1.2 0.0000 0.0080 0.9920 7.2795 
1.,3 0.0000 0.0025 0.9975 6.7935 
1.4 0.0000 0.0005 0.9995 6.4860 
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TABLE XVI 

ERROR PROBABILITIES AND ASN VALUES FOR 
PROPOSED TEST OF THREE VALUES FOR 

THE MEAN OF A NORMAL DENSITY, 
BOUNDARIES EXTENDED 

(-1. 0, o.o, 1. 0) 

Probability of Accepting 
MEAN H H 

-1 Hl ASN 
0 

-1.4 0.9985 0.0015 0.0000 4.6410 
-1.3 0.9955 0.0045 0.0000 5.1850 
-1.2 0.9960 0.0040 0.0000 5.8915 
-1.1 0.9890 0.0110 0.0000 6.5500 
-1.0 0.9685 0.0315 0.0000 7.6685 

-0.9 0.9355 0.0645 0.0000 8.9295 
-0.8 0.8770 0.1230 0.0000 10.5925 
-0.7 0.7905 0.2095 0.0000 12.0390 
-0.6 0.6220 0.3780 0.0000 13.3410 
-o.5 0.4485 0.5505 0.0010 13.8745 

-0.4 0.2690 0.7295 0.0015 12.9580 
-0.3 0.1585 0.8385 0.0030 12.0825 
-0.2 0.0845 0.9105 0.0050 10.7440 
-0.1 0.0385 0.9530 0.0085 10.1735 

0.0 0.0140 0.9650 0.0210 9.7745 

0.1 0.0085 0.9500 0.0415 10.0660 
0.2 0.0030 0.9170 0.0800 10.8310 
0.3 0.0035 0.8345 0.1620 12.0825 
0.4 0.0010 0.6965 0.3025 13.2465 
0.5 0.0010 0.5490 0.4500 13.6725 

0.6 0.0000 0.3735 0.6265 13.3225 
0.7 0.0000 0. 2145 0.7855 11.9680 
0.8 0.0000 0.1230 0.8770 10.2690 
0.9 0.0000 0.0650 0.9350 8.9815 
1.0 0.0000 0.0255 0.9745 7.9510 

1.1 0.0000 0.0140 0.9860 6.7865 
1.2 0.0000 0.0080 0.9920 5.9035 
1.3 0.0000 0.0025 0.9975 5.1295 
1.4 0.0000 0.0005 0.9995 4.6690 
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proposed method gives results very much like Billard and 

Vagholkar's. It should not give more favorable results for 

intermediate values of e since the new method is a special 

case of Billard and Vagholkar's with b = c (Figure 5), and a 

restriction placed on the slopes. One main distinction, 

however, is that, if no minimum sample size is used, the 

boundaries for sampling in the proposed method extend to the 

X -axis. Thus for e > e or for e < e I the ASN for the 
n 1 -1 

new method should be smaller than that of Billard and 

Vagholkar. 

In summary, the proposed procedure and Billard and 

Vagholkar's method give similar results. As explained in 

Chapter IV, however, their respective approaches differ. 

Billard and Vagholkar claim their method is optimal since it 

utilizes a minimization procedure on the ASN function. The 

method proposed in this dissertation should, therefore, also 

be optimal. See Figure 19 for a graphical representation of 

the proposed method (with the boundaries extended) and 

Figures 20 through 23 for comparisons of the proposed 

methods to that of Armitage's and Billard and Vagholkar's. 
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CHAPTER VI 

A CLOSED PROCEDURE TO 

TEST THREE HYPOTHESES 

Huffman (1983) developed a procedure, described in 

Chapter II, to sequentially test H0 : e = e0 vs. H1 : e = 

e . His method, an extension of Lorden's 2-SPRT, provides 
1 

an asymptotic solution to the Kiefer-Weiss problem. It 

involves determining the combination of one-sided SPRT's 

that will minimize the ASN function for parameter values 

between the hypothesized values. The continuation region is 

a closed triangular region depicted in Figure 3. A possible 

extension of the 2-SPRT to test a set of three hypotheses 

would be to simultaneously conduct two 2-SPRTs. One would 

decide between H and H . The other would test H vs. H . 
-1 0 0 1 

The main focus of Huffman's work for testing H : e = 
0 

e vs. H : e = e with error rates a and f3 was determining 
0 1 1 

e•, the intermediate value of e that would result in the 

minimization of the ASN over the parameter space. Thus e• 

is determined so that a one-sided SPRT (H0 : e = e0 vs. 

H 
2 

H 
1 

e = e•) can be performed for the possible acceptance of 

Simultaneously, another one-sided SPRT (H : e = e• vs. 
2. 

e = e ) is performed for the possible acceptance of H . 
1 1 

An important aspect of Huffman's process is that he adjusts 

106 
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the error rates (a(8*) and ~(8*) of equations (2.16)) of the 

two one-sided tests so that the actual error rates are 

approximately equal to the nominal ones. 

Consider again the problem of deciding among three 

hypotheses, but this time a closed test is desired. One 

possible approach is to determine e~, e~, a~, a~, ~~' and 

~* such that two 2-SPRTs conducted simultaneously will 
1 

yield predetermined error rates (see Figure 17). The 

procedure presented in Chapter IV of this thesis adjusted 

the original error rates of the two open SPRTs to attain 

desired probabilities of misclassification. This was 

accomplished by solving a system of four equations in four 

unknowns (a, c, d, and n ), which are, in turn, functions of 
0 

a , a , ~ , and ~ . The adjusted error rates used to 
0 1 0 1 

construct the individual tests, a', a', ~~, and ~', can be 
0 1 0 1 

determined from a, c, d, and n . If these values are then 
0 

used to construct the two individual 2-SPRTs as in 

Huffman's process, it would be quite natural to think that 

his adjustments (a*, a*, ~*, ~*),based upon a' a', ~', ~~, 
0 1 0 1 o, 1 0 1 

would lend a closed three-hypothesis test with the desired 

error rates of a0 , a 1 , ~0 , and ~ 1 • A Monte Carlo study was 

conducted to study the feasibility of this approach. 

A Closed Test for the 

Exponential Parameter 

Consider again the problem discussed in Chapter V of 

deciding among the hypotheses 
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H . e = -1, 
-1 
. 

H e = -1/2' 
0 

and H e = -1/3' 
1 

where e is the parameter from an exponential density. In 

Chapter v, it was determined that the approximate values of 

a = 50.41, 

c = 20.94, 

d = 14.89, 

and n = 13.96 
0 

resulted in the specified error rates of a = 0.10, ~ = 
0 0 

0.05, a = 0.05, ~ 
1 1 

= 0.10. The adjusted error rates of a' o' 

a~, ~~' and~~ that correspond with the values a, c, d, and 

n0 can be found using equations (4.6). Applying (4.6), the 

adjusted error rates for this test are 

a' = 0.42335, 
0 

w = 0.06194, 
0 

a ' = 0.05755, 
1 

and ~ I = 0.10764. ( 6. 1) 
1 

Huffman's 2-SPRT can now be applied twice; once for H e 
-1 

= -1 vs. H0 : e = -1/2 and again for H0 : e = -1/2 vs. 

H1 : e = -1/3. The goal ultimately is to find the equations 
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of the lines that determine the sampling regions; i.e., a00 , 

a 11 , b , b , b , and b such that 00 01 1 0 11 

if X ~ a + b 11n, accept H1, 
n 11 

if a + b n :s X :s a + b 1on, accept H I 01 01 n 10 0 

or if X :s a + b oon, accept H . (6.2) 
n 00 -1 

These values are defined as in equation (2.17): 

a = 1 og [ (3 ( 8 * ) 1 ( 1 - ex ( 8 * ) ) ] 1 ( 8 * - 8 ) 00 0 0 0 0 0 -1 

a = log( (1 - (3 (8*) )/ex (8*) ]/ (8 - 8*) 01 0 0 0 0 0 0 

a = log({3 (8*)/(1- ex (8*))]/(8* - 8 ) 10 1 1 1 1 1 0 

a = log( (1 - (3 (8*) )/ex (8*) ]/ (8 - 8*) 
11 1 1 1 1 1 1 

b = [b(8*) b(8 )J/(8*- 8) 
00 0 -1 0 -1 

b = [b(8 0) b (8*) ]/ (8 - 8*) 01 0 0 0 

b = b (8*) b(8)]/(8* - 8 ) 10 1 0 1 0 

b = b(8 ) b(8*)]/(8 - 8*) (6.3) 
11 1 1 1 1 

8~ and 8~ are the intermediate parameter values of the 

individual 2-SPRTs. First, the intermediate parameter 

values 8~ and 8~ must be found. Then the adjusted error 

rates must be adjusted further. Thus it remains to find 

8~, 8~, and ex0 {8~), ex1 (8~), (30 (8~), 131 {8~). 

and 

First determine 8' and 8' such that 
0 1 

n~ = log(1jex~)/I_1 (8~) = log(l/f3~)/I0 (8~) 

n~ = log{l/ex~)/I0 (8~) = log(l/f3~)/I 1 (8~) (6.4) 
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where 

I 1 (e) = (e - e 1 )b' (e) - {b(e) - b(e1 )} for i = -1, o, 1 

For this case, 

and 

I (e) = log (-e) - 1 - 1/8, 
-1 

I 0 (e) = log(-e) + log 2 - 1 - 1/28, 

I 1 (e) = log(-e) +log 3- 1- 1/38. 

Iterative solutions to (6.4) can be found to be 

and 

8' = -0.7946055 
0 

8' = -0.4059375 
1 

which implies 

and 

n* = 30.0791 
0 

n* = 122.4918. 
1 

Define 

a 1 (e) = (e - 8 1)/Ii (8) for i = -1, o, 1. 

Find r* and r* such that 
0 1 

(6.5) 

(6.6) 

(6.7) 

(6.8) 



and 

~(r~) = a 0 (90 ' )/[a0 (9~)) - a_1 (9~)] 

~(r~) = a 1 (9/)/[a1 (9~)) - a0 (9~)], 
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(6.9) 

where ~ is the cumulative distribution function for the 

standard normal density. For this exponential example, 

a 1 ( 9~) = -3.98909, 

a 0 (9~) = 4.03566, 

a ( 9') = -3.18559, 
0 0 

and a (9') = 7.187502, 
-1 0 

which implies 

and 

r* = -0.504 
0 

r* = -0.00725. 
1 

The values of 9* and 9* can be found by 
0 1 

where 

9* = 9' 
i i 

r* 
i 

cr*(n*)o.s 
i i 

for i = o, 1, 

= (Var(XI9 = 9 , ) J o. s. 
i 

For this test, 

(6.10) 

(6.11) 

(6.12) 
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u* = 1/8' = 1.25849 
0 0 

and u* = 1/8' = 2.46343. 
1 1 

(6.13) 

Employing equations (6.6), (6.7), (6.11), and (6.13), values 

for 8* and 8* are 

and 

0 1 

8* = -0.867626 
0 

8* = -0.406203. 
1 

(6.14) 

To find a0 (8~), a1 (8~), ~0 (8~), and ~1 (8~), equation 

(2.16) will be used. The formulae are 

a (8*) = 
1 1 

~ (8*) = 
1 1 

a 1_1 (8~) - a 1 (8~) 
---------------- a' 

a (8*) 
i-1 1 

a (8*) - a (8*) 
1 1 1-1 1 

a (8*) 
1 1 

1 

~I 
1 

for i = 0' 1' 

for i = 0' 1. (6.15) 

a 1 is defined in equation (6.8) and a 1 and ~ 1 in equations 

( 6 .1) . Thus 

a0 (8~) = 0.52092, 

~0(8~) = 0.07622, 

a 1 (81*) = 0.11408, 

~1(8~) = 0.21724. (6.16) 

All values needed to complete the computations of equations 



(6.3) are now known. These are then used to determine the 

final form of the test as given in equations (6.2). 
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Therefore, the sampling scheme is to continue sampling 

until one of the following conditions is met: 

1) Accept H if X ~ 1.4992n - 5.0003. 
-1 n 

2) Accept H if X ~ 2.7132n- 19.2894 
0 n 

and X ~ 1.0727n + 4.3278. 
n 

3) Accept H if X ~ 2.2149n + 20.5331. 
1 n 

Figure 24 is a graphical representation of the closed 

procedure developed in this chapter. Table XVII presents 

the results of a Monte Carlo simulation study comparing this 

closed procedure with the open procedure derived in Chapter 

V, with Figure 25 the corresponding graph comparing 

empirical Average Sample Number functions. The primary 

motivation for developing this test is the possible 

reduction of sample sizes at intermediate parameter values. 

In view of Table XVII, the goal appears to have been 

attained. The error rates that were previously observed 

with the open test of Chapter IV were not disturbed greatly 

by the closure of this procedure. While the form of this 

test is more difficult to derive, a SAS software package 

could make it easy for users to implement. 
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TABLE XVII 

ERROR PROBABILITIES AND ASN VALUES FOR 
PROPOSED CLOSED TEST OF THREE VALUES 

FOR THE MEAN OF AN EXPONENTIAL 
DENSITY (1. 0' 2.0, 3.0) 

Probability of Accepting 
MEAN H H H ASN 

-1 0 1 

0.7 0.9985 0.0015 0.0000 10.1910 
0.8 0.9945 0.0055 0.0000 10.7695 
0.9 0.9580 0.0420 0.0000 11.5665 
1.0 0.8825 0.1175 0.0000 12.3135 

1.1 0.7730 0.2270 0.0000 13.2975 
1.2 0.6685 0.3315 0.0000 14.1055 
1.3 0.5435 0.4565 0.0000 15.1085 
1.4 0.4200 0.5800 0.0000 16.2600 
1.5 0.3290 0.6705 0.0005 17.2725 

1.6 0.2355 0.7625 0.0020 18.5970 
1.7 0.1775 0.8180 0.0045 20.5760 
1.8 0.1350 0.8555 0.0095 22.1105 
1.9 0.0945 0.8790 0.0265 24.6035 
2.0 0.0690 0.8775 0.0535 26.5870 

2.1 0.0510 0.8475 0 ."1015 28.4335 
2.2 0.0390 0.7875 ·0.1735 30.3740 
2.3 0.0270 0.7245 0.2485 32.0715 
2.4 0.0185 0.5990 0.3825 32.7035 
2.5 0.0130 0.4960 0.4910 32.4365 

2.6 0.0065 0.4055 0.5880 31.4405 
2.7 0.0095 0.3015 0.6890 30.0670 
2.8 0.0045 0.2365 0.7590 28.9695 
2.9 0.0035 0.1840 0.8125 27.6225 
3.0 0.0030 0.1170 0.8800 25.1730 

3.1 0.0030 0.0865 0.9105 23.4400 
3.2 0.0000 0.0710 0.9290 22.3620 
3.3 0.0020 0.0275 0.9705 20.6430 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Several sequential methods for testing simple versus 

simple hypotheses exist. Attempts have been made to extend 

this two-hypothesis case to a three-hypothesis case or, 

similarly, to a simple versus composite case. Often these 

proposed procedures involve simultaneously conducting two 

sequential tests of simple hypotheses. Problems arise, 

however, when application of one procedure to all testing 

situations is attempted. 

Formulae exist that approximate the probability that a 

random walk starting at a certain point will cross one of 

two parallel boundaries. These formulae, developed by 

Billard and Vagholkar (1969), ·are used in this dissertation 

to approximate the probabilities of error in Armitage's 

(1947) method to sequentially decide among three hypotheses. 

These formulae are functions of the error rates used to 

determine sampling regions. The values these error rates 

must be set to in order that the procedure will approx

mately attain desired error probabilities are then 

established. This creates a non-linear system of four 

equations in four unknowns. Chapter IV developed the theory 

needed to determine these equations. 

117 
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In Chapter V, a SAS program to solve any system of 

non-linear equations is presented, and it is used to solve 

the system developed in Chapter IV. Though this process was 

developed for any distribution in the Koopman-Darmois 

family, it is necessary for the distribution function either 

to have a closed form or to be a defined SAS function. This 

will permit the MODEL statement in PROC NLIN to include the 

cumulative distribution functions necessary to solve the 

system of four equations. In the rare event the test was 

needed for a Koopman-Darmois density not represented by a 

SAS function, other methods can be employed to estimate the 

corresponding cumulative distribution function. The fact 

that any Koopman-Darmois density can be tested by this 

method is an advantage. Billard and Vagholkar's procedure 

was derived for the normal mean and the binomial parameter 

only. However, with considerable effort, any Koopman

Darmois distribution could be derived using their method. 

Examining the Monte Carlo simulations is one way of 

determining the merits of the proposed method versus 

Armitage's or Billard and Vagholkar's. For both the 

exponential and normal examples, the proposed method is an 

improvement over Armitage's in that the error rates are 

closer to the nominal levels and the ASN function is 

smaller. When the proposed method is compared to Billard 

and Vagholkar for the normal case, the two procedures give 

similar results. An advantage of the proposed method is 

that it may be implemented using readily available software. 
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This proposed method was used later to derive a closed 

sequential procedure to test three hypotheses. Huffman's 

extension of Lorden's work was used twice with the adjusted 

error rates obtained from the system of four equations. The 

example performed in Chapter VI was with the exponential 

distribution, mainly because the open procedure gave large 

ASN values for parameter values intermediate to the 

hypothesized ones. Therefore, a closed procedure would 

naturally be desired for this case. The closed procedure 

did reduce the ASN at intermediate parameter values as 

desired while maintaining the specified error rates. 

The application of these methods to other distributions 

will be topics of future research. A natural candidate for 

this procedure is the binomial distribution, mainly due to 

applications in medicine with clinical trials and process 

sampling in industrial engineering. Another distribution 

that can be studied is the negative binomial with its 

application to entomology. 

The procedure developed in this thesis works only for 

tests with three simple hypotheses. Extension to a test of 

more than three hypotheses would require development of a 

more complex system of equations. Instead of solving a 

system of four equations, four unknowns, a system of six or 

seven equations might be involved for a test of four 

hypotheses. Such an extension would be a possible topic of 

further research. 

Further development of the closed procedure introduced 
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in Chapter VI could also be considered for future research. 

The asymptotic distribution of this procedure will be of 

interest in order to obtain a test with desirable 

properties. 
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