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CHAPTER I 

LITERATURE REVIEW 

The Study of Plant Embryo Development 

Embryogenesis in plants is a relatively simple morphological 

process. However, at the molecular level a complex series of 

interactions regulate the temporal and spatial expression of genes which 

ultimately control development of the embryo. Plant hormones and other 

regulatory molecules must act in concert to control development in a 

predictable and reproducible way. Much of what is known about these 

processes comes from descriptive, experimental, and biochemical studies 

(Maheshwari 1950; Raghavan 1976; Bewley and Black 1985). These studies 

have addressed many features of embryogenesis, ranging from the 

structure and organization of the egg, zygote, and embryo, to hormonal, 

nutritional, and metabolic aspects that play a key role during seed 

development. 

Regulation of embryogenesis has also been studied at the molecular 

level (Higgins 1984; Dure 1985; Goldberg et al. 1989). These studies 

suggest that many of the important events that affect both morphogenesis 

and differentiation occur during the early stages of embryo development 

and that as many as 20,000 genes may be expressed during plant 

embryogenesis. 

Genetic analysis of embryo development in plants has been 
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facilitated by the isolation of mutants defective in embryogenesis. The 

best examples of this type of mutant include: cell culture lines of 

carrot which fail to complete somatic embryogenesis in ~. defective 

kernel mutants of maize, and embryo-lethal mutants of Arabidopsis. 

Variant Cell Lines of Carrot Defective in Somatic Embryo~enesis 

A number of different plant species can produce somatic embryos when 

grown in liquid suspension culture (Ammirato 1983). Many of these 

somatic embryos can then be transferred to a solid medium where they can 

complete development and form normal plants. Somatic embryogenesis 

appears to mimic zygotic embryogenesis even in the absence of endosperm 

and surrounding maternal tissue. One genetic approach to understanding 

somatic embryogenesis in carrot has been to isolate cell lines that do 

not form somatic embryos at a high temperature (Breton and Sung 1982; 

Giuliano et al. 1984; Schnall et al. 1988). The aim in these studies 

has been to identify genes or gene products that play a key role in 

embryogenesis. 

The variant cell lines described by Breton and Sung (1982) were 

isolated from haploid cell cultures that were not treated with mutagens. 

These temperature-sensitive lines were identified by their inability to 

produce embryos at the restrictive temperature (32° C) while retaining 

the ability to produce somatic embryos at the permissive temperature 

(24° C). Three types of variant cell lines were isolated using this 

approach; the cell lines either stopped growing (ts-growth), formed 

callus only, or formed a mixture of callus and somatic embryos that 

became arrested during embryo development (ts-emb-). This final class 

of variants was a group of mutants potentially defective in processes 
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specific to embryo development. Further characterization of one mutant 

line (ts59) has shown that the altered gene product is required twice 

during development: 5 days after the initiation of embryogenesis and 

during the transition from the heart to torpedo stage of development (Lo 

Schiavo et al. 1988). Further analysis of this mutant, using two­

dimensional gel electrophoresis, showed that protein patterns were 

significantly different from wild-type. The main difference in ts59 

appeared to be due to a lack of secondary modification in one subclass 

of heat-shock proteins (HSPs). It appears in this case that a 

developmental mutant isolated at high temperature was defective in a 

gene that does not play a direct role in embryogenesis, but rather is 

important for protecting the cell from damage due to high temperature. 

Variant cell lines with a temperature-sensitive phenotype are 

potentially useful for identifying genes that play a critical role in 

embryogenesis. The main drawback to this group of mutants is that they 

have been induced in a haploid cell line that cannot be regenerated to 

give fertile plants. This limitation makes it difficult to perform many 

genetic manipulations that are commonly used to characterize 

developmental mutants. 

A second group of ts-growth and ts-emb- variants of carrot has been 

described by Giuliano et al. (1984). In this study, diploid suspension 

culture cells were mutagenized with EMS, transferred to fresh 

embryogenic media, and then tested for their ability to produce somatic 

embryos at 24° and 31° C. One line, ts2, consistently lacked the 

ability to produce somatic embryos at 31° C. This phenotype was 

maintained in cell lines started from variant ts2 plants that were 

regenerated at the permissive temperature. Unfortunately, genetic 



studies on the inheritance pattern and developmental studies describing 

zygotic embryo development in regenerated ts2 plants have not been 

reported. 
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Schnall et al. (1988) described the isolation and initial 

characterization of 21 new variant cell lines that were defective in 

somatic embryogenesis at 33° C. These variants were somaclonal in 

nature and isolated from a predominantly diploid cell culture. Six 

classes of temperature-sensitive variants were identified. Three of the 

variant cell lines were classified as ts-emb-. Based on temperature­

shift experiments, one of the ts-emb- variants was found to be defective 

in a factor that was constitutively required for somatic embryogenesis. 

Two other mutants appeared to blocked at the globular stage of 

development. 

Defective-Kernel Mutants of Maize 

The earliest reports of genetic factors causing defective kernels in 

maize were made by Jones (1920), Demerec (1923), Mangelsdorf (1923, 

1926), Brink (1927), Wentz (1930), and Emerson (1932). These recessive 

lethal factors were first identified in corn improvement programs where 

part of the improvement strategy included inbreeding of heterozygous 

lines. The inbreeding of heterozygotes in this case uncovered recessive 

traits that had a negative effect on seed development. Several 

different types of defective kernels were described in these early 

works. The major differences in the phenotypes were the amount of 

endosperm and the size of the embryo present within the seed. The 

phenotypes that resulted were given a number of names such as zygotic 

lethal, germless, and defective seed. 
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Of these earliest reports, Mangelsdorf (1926) described the most 

comprehensive group of mutants with defective kernels. Fourteen 

different defective seed (de) lines were identified following selfing, 

because they produced ears with a high percentage of aborted seeds. All 

of these mutations segregated as single Mendelian recessive factors. 

Complementation crosses were made among these 14 mutants and only two 

mutants (de-S and de-ll) appeared to be defective in the same gene. 

Mangelsdorf estimated the stage of developmental arrest by expressing 

the weight of defective kernels as a percentage of the normal kernel 

weight. Defective kernels had weights that ranged from 2% (de-14) to 

49% (de-2) of the normal kernel weight. This method of estimating the 

stage of developmental arrest from average kernel weight was generally 

good for determining the extent of endosperm and embryo development. 

However, it was not possible in every case to accurately determine the 

stage of the arrested embryo by simply weighing the seed. For example, 

de-4 seeds, which usually lacked a visible embryo, were often heavier 

than seeds from other mutants that did contain a visible embryo. The 

mutant gene in most of these de lines did not appear to be expressed 

exclusively in the seed because homozygous mutant plants grown from 

defective kernels were usually abnormal and died after only a few weeks 

of growth. 

Defective kernel mutants of maize have subsequently been divided 

into three classes: (1) defective endosperm mutants that produce altered 

endosperm but have an embryo capable of growing into normal plants; (2) 

germless mutants with a defective embryo but a normal endosperm; and (3) 

defective seed mutants where development of both the embryo and the 

endosperm are defective. The third class of mutants was not always 



lethal; in some cases mutant embryos of this type were capable of 

growing into normal plants. 
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Defective endosperm mutants include the miniature seed mutant (Lowe 

and Nelson 1946), mutant de-17 (Brink and Cooper 1947), several mutants 

described by Mangelsdorf (1926), the su~ary, floury, shrunken, and waxy 

mutants described by Coe and Neuffer (1977) and a series of endosperm 

mutants which fail to accumulate dry matter (Manzocchi et al. 1980a, 

1980b). Microscopic analysis of sections through defective seeds 

produced by many of these mutants has shown that the flow of nutrients 

from maternal tissues to the developing embryo and endosperm is often 

disturbed by changes in the chalaza! region of the embryo sac and is 

probably the cause of reduced endosperm development (Lowe and Nelson 

1946). In a more recent paper, Torti et al. (1984) describe a specific 

defect in de*-Bl8, one of the defective endosperm mutants originally 

described by Manzocchi et al. (1980a). This particular mutant 

accumulates 15-fold less of the endogenous auxin indole-acetic acid 

(IAA) in the endosperm of mature kernels relative to wild-type. 

Furthermore, exogenous applications of the synthetic auxin naphthalene­

acetic acid (NAA) to developing seeds were found to normalize the weight 

of de*-B18 mutant kernels. These results suggest that the altered gene 

in de*-Bl8 is involved in IAA metabolism in the endosperm. 

Germless mutants of maize produce kernels with a normal endosperm 

but no visible embryo a maturity. Germless mutants were initially 

described by Demerec (1923) and subsequently by Wentz (1930) and Sass 

and Sprague (1950). Some germless mutants were found that formed 

visible mutant embryos during the intermediate stages of seed 

development; these embryos then decayed during the final stages of seed 



development and were occasionally not found in mature seeds (Sass and 

Sprague 1950). Relatively few of these defective kernel mutants were 

truly germless because most kernels contained arrested embryos. 

An extensive collection of defective kernel mutants has been 

described more recently by Neuffer and Sheridan (1980). In this study, 

pollen was mutagenized with EMS and then used to pollinate 72 ears. A 

total of 3919 M1 kernels were produced, 3461 of these grew into mature 

M1 plants which were selfed to give 3172 ears with M2 kernels. 
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Screening these ears revealed that 855 M1 plants segregated for 

recessive kernel mutants, 432 of these were classified as embryo-lethal 

because defective kernels from these mutants did not germinate. Neuffer 

and Sheridan used the term "defective kernel" in a generalized way to 

describe the 855 recessive kernel mutants that produced 25% defective 

kernels when selfed. A list of 26 descriptive terms, each with a two or 

three letter symbol, was presented in order to more accurately define 

each kernel phenotype. Neuffer and Sheridan (1980) also defined four 

types of defective kernel mutants: (1) those with defective endosperm 

and a non-viable embryo; (2) those with defective endosperm but a viable 

embryo that could germinate and produce an abnormal plant; (3) those 

with defective end~sperm but a normal, viable embryo; and (4) those with 

normal endosperm and a defective embryo or "germless" kernels. The 

original 855 recessive kernel mutants included 432 type 1, 59 type 2, 

147 type 3, and 3 type 4. The remaining 214 were not classified. 

Type 1 mutants were of most interest because they produced kernels 

with embryos that were arrested between zygotic and mature stages of 

development. A subset of 194 type 1 mutants were chosen for further 

analysis. Mapping studies were performed using a series of B-A 
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translocations and the method developed by Roman and Ullstrup (1952). 

This technique was used to locate 89 mutations to chromosome arms. The 

mapping results indicated that these mutations were scattered randomly 

throughout the genome. Another set of experiments included the 

construction of discordant kernels to test whether mutant embryos could 

be rescued by normal endosperm. The results of these studies on embryo­

endosperm interaction indicated that in most cases normal endosperm 

could not rescue mutant embryos. In the few cases where the embryo was 

rescued, the resulting kernels germinated but died soon after depletion 

of endosperm reserves. These results support the idea that the 

endosperm does play a nurturing role during the development of the 

embryo. 

In a companion paper, Sheridan and Neuffer (1980) described the 

lethal phases of embryos in defective kernels and also characterized the 

response of mutant embryos in culture in an attempt to identify 

auxotrophic mutants. Most mutants had immature kernels that were 

lighter in color and smaller than adjacent normal kernels. In most 

cases the mutant embryos were no more than one-half to two-thirds the 

size of comparable normal, mature embryos. One-hundred and two mutants 

were examined in culture on basal and enriched media; 21 simply enlarged 

or failed to respond on either medium, while 81 produced roots and 

shoots on at least one medium. Most mutants responded in a similar way 

on the two different media, while 16 grew better on basal and 23 showed 

superior growth on enriched medium. Among this latter group, 10 were 

classified as potential auxotrophs, one of these was auxotrophic but 

turned out to be allelic with ~. a previously identified proline 

mutant described by Gavazzi et al. (1975). 
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In a subsequent study, Sheridan and Neuffer (1982) further 

characterized 14 additional defective kernel mutants that formed 

defective shoot primordia. Five mutants were blocked at the proembryo 

stage and were allelic, the remaining 9 mutants were blocked at later 

stages of development (Figure 1). Eleven mutants representing 7 

distinct loci were analyzed in discordant kernels to test the 

relationship of the embryo and endosperm in determining the mutant 

phenotype. In all cases, the presence of normal endosperm failed to 

rescue the mutant embryo. Reciprocal experiments also revealed that 

mutant endosperm had little effect on normal embryos. These results 

indicate that the mutant phenotype in this group was determined largely 

by the genotype of the embryo. 

Embryo-Lethal Mutants of Arabidopsis 

The first comprehensive study of embryo-lethal mutants in 

Arabidopsis was reported by Muller (1963). Approximately 20,000 seeds 

from the geographical race "Dijon" were imbibed for 42 h and then 

treated with X-irradiation. These M1 seeds were then grown in soil and 

the resulting plants were screened for the presence of abnormal embryos. 

Abnormal embryos were found in a total of 3080 M1 plants. Dry M2 seeds 

were saved from 875 of these M1 plants and used in subsequent studies. 

Chlorophyll mutations were identified by segregation in 26 of these 

families. Seventy-two families with interesting phenotypes were 

examined more closely with respect to the phenotype of the aborted seeds 

and arrested embryos produced by heterozygous plants. A different group 

of 60 randomly-chosen families was used for determining the diversity of 

lethal phases and segregation patterns of the mutant alleles. 
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Figure 1. Phenotypes of Defective Kernel Mutants of Maize Impaired in 
the Formation of Shoot Primordia. Stages of normal 
development are shown across the bottom according to Abbe 
and Stein (1952). Arrested embryos from defective kernels 
are shown above the corresponding normal stage of 
development. Figure reprinteti from Sheridan and Neuffer 
(1982). 
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The following nomenclature was devised to more accurately describe 

the different classes of seeds found in heterozygous fruits (siliques). 

Class I, the embryo fails to develop beyond the heart stage. Four types 

of class I phenotypes were defined: sicca, brevis, ~. and diffusa. 

A more complete description of these 4 types of class I mutants was as 

follows: sicca, maximal seed length of 0.3 mm, aborted seeds turn brown 

while normal seeds in the same silique are at the linear to curled 

cotyledon stage; brevis, maximal seed length is 0.4 mm, aborted seeds 

turn brown at the time when normal seeds have mature green embryos; 

vana, maximal seed length is 0.5 mm, aborted seeds remain colorless, 

then turn brown when normal seeds have mature green embryos; diffusa, 

like vana except that aborted seeds are pale green, then turn brown when 

normal seeds have mature green embryos. 

Class II, the embryo clearly has differentiated hypocotyl and 

cotyledons, but does not reach normal size. Seeds reach normal length 

of 0.5 mm. Two types of class II mutants were defined; murca, with 

green embryos, and parva with embryos that are not green. 

Class III, the embryo is normal in size and structure. This class 

has 4 types: fusca, albina, xantha, and chlorina. Fusca mutant embryos 

have dark, wine-red regions of variable size, usually in the cotyledons. 

A1bina embryos are white, even after the removal of the seed coat. 

Xantha embryos are cream colored or yellow, and turn light or bright 

yellow after removal of the seed coat. Ch!orina embryos are light 

greenish-yellow, and turn intensely greenish-yellow after removal of the 

seed coat. 

Most of the M1 families examined by MUller segregated in subsequent 

generations for a single recessive lethal factor. Four families were 
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found that segregated for two independent and phenotypically 

distinguishable lethal factors in subsequent generations. The 

segregation ratios and lethal phases of a group of 60 randomly-chosen 

mutants were also determined. The lethal phases of this group are 

summarized in Figure 2. A relatively large number of mutants were 

blocked at the transition between the globular and heart stages of 

development. The segregation ratio in heterozygous plants of each 

mutant was compared with the expected 25% aborted seeds using the chi­

square test. In the random sample, 29 mutants had segregation ratios 

that were not significantly different from 25%, 27 mutants had slightly 

reduced segregation ratios with a median ratio of 21.1%, and 4 mutants 

had severely reduced segregation ratios (less than 10% aborted seeds). 

Muller concluded that approximately 50% of the mutations being studied 

had a somewhat negative effect on the germination or growth of pollen 

tubes. 

One mutant, brevis 1420 showed a non-random distribution of aborted 

seeds within heterozygous siliques. A total of 51 siliques from three 

heterozygous plants were examined with respect to the relative position 

of normal and aborted seeds in the siliques. These siliques contained a 

total of 3058 seeds, approximately 85% normal seeds and 15% aborted 

seeds. Over 95% of the aborted seeds were located in the distal-half of 

the siliques. This observation led to the conclusion that the brevis 

1420 mutant allele inhibits aspects of gamete competition that take 

place during self-fertilization. 

The work described by Muller (1963) was pioneering in several 

respects. He devised a system that could be used for testing the 

mutagenic potential of various treatments with chemicals or irradiation. 
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Figure 2. Lethal Phase of Embryos Found in Aborted Seeds From 60 
Lethal Mutants of Arabidopsis thaliana. Stages of normal 
development are shown across the top and the mutant classes 
are listed along the left side. The solid horizontal bars 
represent the extent of normal development for each mutant. 
The dashed lines following the bars represent the lethal 
phase of each mutant. Figure reprinted from Muller (1963). 
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This work also served as an inspiration to others to pursue Arabidopsis 

as a model system for the genetic analysis of plant embryo development 

(Meinke and Sussex 1979a). 

Meinke and Sussex (1979b) described the isolation and 

characterization of six new EMS-induced embryo-lethal mutants of 

Arabidopsis with early lethal phases (see Figure 3). These mutants were 

non-allelic and were shown to segregate as single Mendelian recessive 

traits at 18°, 2S 0 and 32° C. Meinke (1982) subsequently demonstrated 

that two of these mutants showed a non-random distribution of aborted 

seeds in siliques produced by heterozygous plants; which was evidence 

for gametophytic expression of the mutant gene. Figure 4 illustrates 

the idea of a non-random distribution of aborted seeds within a 

heterozygous silique. These data support the idea that there is overlap 

between sporophytic and gametophytic gene expression. Another of the 

six mutants originally described by Meinke and Sussex (1979b) had a 

particularly interesting phenotype: the embryo proper arrested at an 

early globular stage, but embryonic arrest was followed by abnormal 

growth of the suspensor. Serial sections through aborted seeds from 

this mutant, called SOB, demonstrated that the suspensor in this mutant 

contained between lS and lSO cells (Marsden and Meinke 198S), while the 

suspensor of normal embryos is made up of only 6 to 8 cells. Two of the 

six original mutants described by Meinke and Sussex (1979b), SOB and 

71E, have not been maintained because seed stocks lost viability. 

Since 1980, over 90 additional embryo-lethal (or embryo-defective) 

mutants have been isolated and characterized by the Meinke laboratory in 

an attempt to further our understanding of the genetic control of plant 

embryo development. A number of different approaches have been taken in 
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Figure 3. Lethal Phase of Arrested Embryos Found in Aborted Seeds From 
Six Lethal Mutants of Arabidopsis thaliana. Stages of 
normal development are shown across the top. The stage of 
developmental arrest for each mutant is represented by the 
horizontal black bar. In mutant SOB (*), developmental 
arrest of the embryo proper is followed abnormal growth of 
the suspensor. Figure reprinted from Meinke (1982). 
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Figure 4. Illustration of a Silique From a Plant That is Heterozygous 
for an Embryo-Lethal_Mutation. The open circles represent 
normal seeds and the colored circles represent aborted 
seeds. The top and bottom halves of this silique contain 
equal numbers of aborted seeds, while the top and bottom 
halves of siliques from some mutants contain unequal 
numbers of aborted seeds. Reprinted from Meinke (1982). 
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the analysis of these mutants. Initial studies summarized the 

segregation ratios and lethal phases of 32 EMS-induced embryo-lethal 

mutants (Meinke 1985). Figure 5 demonstrates the range of lethal phases 

obtained in this group. Further studies with 17 of these mutants showed 

that arrested embryos could be grown in culture (Baus et al. 1986). Two 

mutants showed particularly interesting responses; one mutant (112A-2A) 

formed rootless plants in culture and another mutant (122G-E) appeared 

to be auxotrophic when tested on basal and enriched media. The latter 

mutant was subsequently shown to require biotin for normal growth 

(Schneider et al. 1989). Shellhammer and Meinke (1990) then showed that 

arrested embryos from heterozygous 122G-E (biol) plants contained 5-fold 

less biotin than corresponding wild-type embryos. Recent work on biol 

has dealt with determining the biochemical defect in this mutant. 

Using SDS-PAGE of total seed protein, Heath et al. (1986) examined 

the levels of storage proteins present in normal and aborted seeds. The 

aim of that study was to find a mutant that blocked at an early stage of 

development but continued cellular maturation and accumulated seed 

storage proteins. These studies showed that levels of two major seed 

storage proteins were reduced in aborted seeds from eight of the nine 

mutants tested. Dry seeds from homozygous mutant 130B-A-2 plants 

accumulated nearly normal levels of storage proteins, while green seeds 

from this mutant had reduced levels of storage proteins. In a related 

study, Patton and Meinke (1990) described the ultrastructure of embryos 

from normal and aborted seeds from four mutants. The goal was to 

determine the degree of cellular differentiation in arrested embryos by 

using protein bodies as developmental markers. Mature protein bodies 

accumulated in the hypocotyl and cotyledons of normal embryos only 
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Figure 5. Lethal Phases of 32 Embryo-Lethal Mutants of Arabidopsis 
thaliana. Normal stages of development are listed across 
the top. The solid black bar represents the lethal phase 
of each mutant listed. The dashed line for mutant 115D-4A 
approximates the extent of the lethal phase. Figure 
reprinted from Meinke (1985). 
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during the final stages of development. One mutant (emb22) consistently 

lacked mature protein bodies, while another mutant (emb30) accumulated 

mature protein bodies in the hypocotyl and cotyledons. Other mutants 

showed variable patterns of protein accumulation; the albino mutant 

114D-4A had protein bodies that were only partially filled, whil~ emb31 

had mature protein bodies in the hypocotyl and immature protein bodies 

in the cotyledons. The pattern of maturation in emb31 was consistent 

with the phenotype of this mutant because the cotyledons developed more 

slowly than the hypocotyl. 

Additional embryo-lethal mutants with a wide range of lethal phases 

have now been tested for their response in culture (Franzmann et al. 

1989). Conclusions from this study were that mutants with an early 

lethal phase failed to turn green in culture and produced only limited 

callus; mutants with a later lethal phase responded better in culture, 

many of these mutants produced abnormal leaves, rosettes, and flowers. 

Two mutants formed phenotypically normal homozygous mutant plants with 

the exception of producing 100% aborted seeds. 

Over 50 new mutants have been recently isolated following EMS seed 

mutagenesis, X-irradiation, and Airobacterium-mediated insertional 

mutagenesis (Meinke et al. 1989; Feldmann et al. 1990). One recent 

study with some of the T-DNA tagged lines describes the patterns of 

abnormal development found in some these embryo-lethal mutants 

(Errampalli et al. in press). This paper also describes an extensive 

study on the cosegregation of T-DNA markers (kanamycin resistance; 

nopaline synthesis) and the mutant phenotype in attempt to resolve 

whether the mutant genes are truly tagged with a T-DNA element. The T­

DNA tagged mutants have been examined in preparation for molecular 
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'isolation of the defective genes in these embryonic mutants. 

Most of the data presented in Chapter 2 and Chapter 4 of this 

dissertation were included in a recently submitted manuscript that 

described the mapping of embryo-lethal mutations with visible markers, 

telotrisomics, and molecular (RFLP) markers (Patton et al. submitted). 

The results presented in the mapping manuscript included the addition of 

16 new genes to the linkage map. Additionally, a high-resolution RFLP 

mapping strategy was presented and used to map the biol gene to within 

0.5 eM of an RFLP marker. My role in this study was to provide our 

laboratory the methods used to map embryonic lethals, and test these 

methods on the first three mutations (biol, emb22, and emb30-l). These 

procedures were based on the methods originally described by Servitova 

and Cetl (1984). I first mapped these three genes with visible markers 

and telotrisomics, then started working with RFLP markers. Other 

members of the laboratory (Linda Franzmann, with the help of Karl Hansen 

and Leigh Mickelson) subsequently mapped an additional 13 genes with 

visible markers using procedures that I refined during my first year of 

study towards the Ph.D. degree. All of the mapping data from our 

laboratory were then combined and used to construct an updated linkage 

map of Arabidopsis which was presented in the mapping manuscript 

described above. 

Lethal mutants of Arabidopsis have been used to address key 

questions concerning the genetic, biochemical, and physiological basis 

of embryo development. A number of diverse approaches have been used to 

document that many genes expressed during embryo development also play a 

role during vegetative growth. Many of these genes are likely to code 

for factors involved in basic cellular metabolism, like biol, while 



others may play a more critical role in the control of early 

development. The challenge in the future is to determine the function 

of these genes and how they interact to control a relatively simple 

developmental process. This is an exciting time because we are at the 

threshold of being able to meet this challenge using Arabidopsis and 

gene isolation techniques that include T-DNA insertional mutagenesis, 

RFLP mapping and chromosome walking. 
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Results presented in this dissertation represent the first efforts 

to define the chromosomal location of three mutant genes (biol, emb22, 

and emb30-l) being studied in our laboratory. Three different methods 

were explored for mapping embryo-lethal mutations: mapping with visible 

markers, telotrisomic analysis, and mapping with RFLP markers. 

Different visible markers were used to map these three embryo-lethal 

mutations of Arabidopsis. Backcrosses were used to demonstrate the 

correct position of emb30 relative to flanking visible markers. 

Telotrisomic analysis was also explored as a method for mapping embryo­

lethal mutations to chromosome arm by screening for a distortion in the 

expected percentage of aborted seeds produced by telotrisomic F1 plants. 

Finally, a method of high-resolution RFLP mapping of embryonic lethals 

was presented and then tested with the QiQl gene in preparation for gene 

isolation through chromosome walking. 

Mapping of embryonic lethals will clearly complement the current 

analysis of the Arabidopsis genome. These studies will not only help to 

define the number of complementation groups that are represented among 

these mutants, but should also facilitate the analysis of the 

Arabidopsis genome by defining new genes. The addition of embryonic 

lethals to the standard linkage map will increase the number of useful 
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genetic markers, improve the resolution of the map, and be a first step 

toward the construction of balanced-lethal chromosomes. The high­

resolution RFLP mapping strategy should facilitate molecular isolation 

of genes through chromosome walking and also help to integrate the 

standard linkage and RFLP maps. 



CHAPTER II 

MAPPING EMBRYO-LETHAL MUTATIONS WITH 

VISIBLE MARKERS AND TELOTRISOMICS 

Introduction 

Arabidopsis as a Model System for Studying Plant Embryo Development 

General Features. Arabidopsis thaliana (L.) Heynh. (Figure 6) is 

an inconspicuous member of the brassica family that grows well in sandy 

soils in many parts of the temperate world. Arabidopsis plants are 

easily grown in the laboratory or in a greenhouse with minimal 

maintenance. Mature plants have a fibrous root system, a compact basal 

rosette, and main and minor stems with indeterminant inflorescences. 

Arabidopsis usually self pollinates, but may be crossed in the 

laboratory with the aid of a dissecting microscope and fine-tipped 

forceps. The fruits, called siliques, have 2 locules, each containing 

up to 30 seeds at maturity. The typical life cycle of Arabidopsis 

ranges from 4 to 6 weeks. 

Embryo development in Arabidopsis follows a predictable pattern of 

development (Figure 7) that takes from 10 to 14 days depending upon 

environmental conditions. Early embryonic development begins with the 

zygote, which divides via mitosis giving rise to the two-celled embryo. 

One of these cells gives rise to the embryo proper while the other gives 

rise to the suspensor as outlined in Figure 8. The embryo turns green 
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Figure 6. Drawing of Arabidopsis tbaliana (L.) Heynh. (A) Mature plant 
showing rosette leaves, main stem and lateral braches with 
terminal inflorescence; (B) Epidermal hairs (trichomes) on 
the surface of rosette leaves; (C) Flower at the time of 
pollination; (D) Floral petal (E,F) Flower with sepals and 
petals removed, showing the position of the stamens; 
(G) Mature pistil, shown with sepals, petals and stamens 
removed; (H) Mature silique with valves split to reveal two 
rows of seeds; (I) Mature seed. Drawing from Ross-Craig 
(1948). 
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Figure 7. Stages of Normal Embryo Development in Arabidopsis thaliana. 
The embryo is composed of two major parts, the embryo 
proper (stippled region) and the suspensor (clear cells). 
The embryo proper develops into the mature embryo, while 
the suspensor degenerates during the final stages of 
development. Drawing from Meinke (1986). 
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Figure 8. Stages of Early Embryo Development in Capsella bursa­
pastoris. (A, B, C) Development of the proembryo; 
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(D) octant stage with four of the eight cells of the embryo 
proper visible; (E) 16-cell stage, the time of initiation 
of the epidermal layer; (F) early globular; (G) globular; 
(H) late-globular; (I) heart stage. Early development in 
Arabidopsis follows a similar pattern as shown here. 
Drawing from Meinke (1979). 



at the heart stage and remains green until desiccation when the embryo 

turns pale inside the dark brown seed coat. The suspensor is composed 

of 6 to 8 cells and is believed to play a role in delivering maternal 

nutrients to the developing embryo' proper (Yeung 1980). The cells of 

the suspensor degenerate during the final stages of embryo development 

and are generally not found in mature seeds. 
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Genetic Features. Arabidopsis is particularly amenable to the 

isolation of mutants. In Arabidopsis, mutations have been identified in 

genes for nearly every aspect of plant growth and development. 

Mutations that affect embryo development are among the most commonly 

seen following mutagenesis with either X-irradiation (MUller 1963), EMS 

(Meinke 1986), or T-DNA insertion (Errampalli et al. 1991). The linkage 

map of Arabidopsis contains over 80 visible mutations with a wide range 

of morphological aberrations (Koornneef 1990). Considering the number 

of mutations that have been isolated, this is a relatively small number 

of genes on the genetic map. Trisomic and telotrisomic lines have also 

been identified in Arabidopsis which can be used for linkage studies 

(Koornneef 1983). Some of these lines however, are difficult to screen 

and maintain. 

Complementation analysis in Arabidopsis is feasible, but only when 

working with a limited number of genetic loci. Performing 

complementation tests among embryo-lethal mutants is facilitated by the 

fact that the F1 progeny are screened as mature green seeds, not as 

mature F1 plants. However, cross-pollination in Arabidopsis is tedious 

because the young flower of the female parent must be emasculated prior 

to self fertilization, then hand-pollinated with a detached dehiscent 
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anther from the donor plant. Each cross typically takes 5 minutes and 

two to three successful pollinations are usually required to get 

meaningful results from a complementation test. Thus,it would take at 

least 300 hours just to perform the crosses for allelism tests among 50 

mutants. 

A number of different tissues of Arabidopsis including roots, 

leaves, stems, and seeds are susceptible to A~robacterium-mediated T-DNA 

transformation, (Lloyd et al. 1986; Schmidt and Willmitzer 1988; 

Valvekens et al. 1988; Feldmann and Marks 1987). The frequency of 

transformation in these procedures has not yet reached the level 

required for shotgun transformation; a method in which random DNA 

fragments from wild-type plants are transformed into homozygous mutant 

tissue in an attempt to identify a piece of DNA that can complement (or 

rescue) mutant phenotypes. 

Many of the tools that are required for basic genetic studies are 

presently available in Arabidopsis, but many of the genetic stocks that 

are found in other model systems are not available. For example, there 

are not many good stocks available for initial linkage analysis. Other 

tools like translocations, well-characterized deletions, duplications, 

inversions and balanced lethal chromosomes simply do not exist in 

Arabidopsis at this time. As pointed out by Fink (1988), these 

shortcomings will need to be addressed if Arabidopsis is to become a 

model genetic system like yeast, Drosophila, or Caenhorhabditis. 

Molecular Characteristics. One of the main reasons Arabidopsis has 

received so much attention lately has to do with the molecular 

organization of the genome. Arabidopsis has very little repetitive DNA 
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and one of the smallest genomes (7 x 10• Kb) among flowering plants 

(Leutwiler et al. 1984; Meyerowitz and Pruitt 1985). Other features 

include 2 separate RFLP maps (Chang et al. 1988; Nam et al. 1989), a 

yeast artificial chromosome (YAC) library with average inserts of 150 kb 

(Ward and Jen 1990), and a partially-completed physical map of the 

Arabidopsis genome (Goodman et al. 1989) consisting of overlapping 

cosmid clones prepared by the method described by Coulsen et al. (1986). 

In addition, a large international effort is currently being organized 

with the following goals: sequencing the entire genome of Arabidopsis 

(Palca 1989) and identifying by mutation and cloning as many genes as 

possible in order to examine in detail the relationship between mutant 

phenotype and gene function in higher plants. As part of this effort, 

resource and stock centers will be set up to maintain and distribute 

clones, mutants and seed stocks. A computer network with well over 100 

subscribers called "Electronic Arabidopsis" has already been in 

operation at Michigan State University that allows researchers to 

exchange ideas and obtain up-to-date information from colleagues on 

matters concerning Arabidopsis (Sommerville 1989). 

In summary, Arabidopsis has one of the best combinations of 

morphological, genetic, and molecular characteristics for the study of 

plant embryo development. Other model systems like maize have the 

problem of many linkage groups and a large haploid genome (5 x 106 Kb) 

which may hinder the molecular isolation of genes. The main limitations 

in using carrot as a system for studying embryogenesis include the lack 

of genetic information available and the fact that many of the embryonic 

mutants affect somatic rather than zygotic embryogenesis. 
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Why Map Embryo-Lethal Mutants of Arabidopsis? As just pointed out, 

embryo-lethal mutants of Arabidopsis are an ideal system for the genetic 

analysis of plant embryo development. Because these mutants are so 

abundant, they can help strengthen the genetic characteristics of 

Arabidopsis. Once these mutations are placed on the standard genetic 

map they may be used as visible markers to help map mutations isolated 

in other labs. Embryonic lethals are particularly useful as genetic 

markers because (1) they are readily recovered following mutagenesis; 

(2) compared with other visible markers, only a small number of F2 

plants are required for linkage detection; (3) plants heterozygous for 

embryonic lethals can be identified by dissecting mature siliques 

following self-pollination; and (4) the absence of pleiotropic effects 

allows rapid identification of other visible markers in plants 

segregating for embryonic lethals. 

Mapping these lethal mutations is also the first step in creating 

balanced lethal chromosomes, which have been invaluable to genetic 

analysis of Drosophila and Caenhorhabditis. Balanced lethal chromosomes 

usually contain inversions to suppress crossing over and flanking 

recessive lethal genes that enforce heterozygosity in subsequent 

generations. Mapping will also be required to construct genetic mosaics 

which could be used to perform clonal analysis studies and examine cell­

autonomy of the lethal gene. These studies would require that the 

lethal mutation map near the end of a chromosome and distal of a linked 

cell-autonomous marker. See Figure 9 for a description of the strategy 

used to construct genetic mosaics. 

Complementation analysis among embryonic lethals can be simplified 

by first mapping mutations to linkage groups, then limiting allelism 
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Figure 9. A General Strategy for Producing Genetic Mosaics. The left 
half of the box shows the strategy for analyzing a 
recessive mutation (m) in mosaic plants and the strategy on 
the right is for analyzing a dominant mutation in mosaic 
plants (M). In both strategies, (v) represents the 
recessive allele of a visible marker gene with a leaf 
phenotype and (+) represents the wild-type allele of the 
corresponding genes. The lower half of the box shows the 
phenotype of the leaves before and after X-irradiation. 
The shaded portion of the leaf represents the mosaic 
sector, identified by the visible marker phenotype. Figure 
reprinted from Meinke (1991). 



tests to mutations that map to the same chromosome. This strategy may 

be used in the near future to help identify as many complementation 

groups as possible that are represented among embryonic lethals. This 

approach may help to reach one of the goals of the International 

Arabidopsis Genome Project which is to identify by mutation as many 

genes as possible that play a role in the life cycle of the plant. 
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A final reason for mapping embryonic mutations in Arabidopsis is 

that it is the first step in isolating genes through chromosome walking. 

This strategy involves determining which linkage group the gene is on, 

then locating the closest flanking molecular (RFLP) marker using RFLP 

mapping techniques (a method for high-resolution RFLP mapping of embryo­

lethal mutations is presented in Chapter 4). Tightly-linked RFLP 

markers can then be used as starting material to isolate large (150 Kb) 

DNA fragments from a genomic YAC library. These YACs should on the 

average represent 1 eM of the genome. New fragments are made from the 

ends of the starting YAC and used to isolate adjacent overlapping YACs. 

This process continues until the gene of interest is covered by a YAC. 

Verification of gene isolation will require transformation of the 

putative gene back into plants and complementation of the mutant 

phenotype. Mapping additional embryo-lethal mutants of Arabidopsis 

should therefore complement the genetic analysis of embryogenesis in 

plants, strengthen the genetic characteristics of Arabidopsis, and 

facilitate the isolation of genes through chromosome walking. 

The remainder of this chapter will focus on the procedures used in 

the linkage analysis of three embryo-lethal mutations: Q!Ql, ~. and 

emb30-l. Visible markers and telotrisomic lines are described along 

with the methods used to make crosses, collect and analyze data, and 



33 

construct an updated linkage map. The efficiency of two different 

methods for mapping embryonic lethals with visible markers is also 

compared. The third chapter describes the construction of new multiple 

marker lines that will be useful in the rapid detection of linkage 

between new mutations and visible markers. The fourth chapter describes 

how RFLP markers can be used to map embryo-lethal mutations at high 

resolution. Also, an example using this strategy is presented where the 

biol gene of Arabidopsis is mapped to within 0.5 eM of an existing RFLP 

marker. 
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Materials and Methods 

Growth of Plant Material 

All plants used in this study were grown at 23 ± 3° C in either 3 

inch pots or 100 mm tissue culture plates under 40 W fluorescent shop 

lights set for 16h light/ 8h dark cycles. The soil mixture contained 12 

parts coarse vermiculite (Terra-Lite, W.R. Grace Co., Cambridge, MA), 3 

parts potting soil (Redi-Earth Peat-Lite, W.R. Grace) and 1 part sterile 

sand. Plants grown in soil were watered daily with a solution 

containing 1.6 g/1 of 7-16-19 All Purpose Hyponex (Hyponex Co., Fort 

Wayne, IN) and 0.1 g/1 of 15-16-17 Peat Lite Special (Peters Co., 

Allentown, PA). Seeds placed in culture were first surface sterilized 

for 30 sec in 95% ethanol, 6 min in 50% Clorox and rinsed with at least 

three changes of sterile distilled water. 

Isolation of Embryo-Lethal Mutants 

Embryo-lethal mutants used in this study were isolated and 

characterized previously as described by Meinke (1985). The mutagenic 

procedure consisted of treating mature dry seeds of the Columbia ecotype 

with 0.2% EMS in water for 7h with gentle stirring; the seeds were then 

washed with water for 12h prior to planting. The resulting chimeric M1 

plants (see Figure 10) were grown in soil and allowed to self-pollinate. 

At least 4-6 successive siliques were screened in each M1 plant for the 

presence of 25% aborted seeds to ensure sampling from each sector. 

Normal seeds present in the siliques containing 25% aborted seeds should 

be a mixture of heterozygous and wild-type with respect to the lethal 
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Figure 10. · Schematic Drawing of Chimeric M1 Plant. The four squares 
represent the embryonic shoot apex. One cell (shaded) 
becomes mutagenized at an ~ locus during EMS treatment 
and subsequently gives rise to the mutant sector. 
Siliques that grow out of this mutant sector will contain 
25% aborted seeds (dark) and 75% normal seeds (light) 
following self-pollination. Figure reprinted from Meinke 
(1991). 



gene. Heterozygotes were identified among these normal seeds by 

planting in soil and screening siliques again for 25% aborted seeds. 

Figure 11 demonstrates the diversity of phenotypes obtained from 

this group of mutants. Three embryo-lethal mutants with distinctive 

phenotypes were chosen for this study: biol, emb22, and emb30. The 

eventual goal is to isolate the genes defined by these mutations and 

determine their function during embryo development. 
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The biol Mutant. This mutant, originally called 122G-E, is a 

biotin auxotroph and has a broad lethal phase ranging from the globular 

to mature cotyledon stages of development (see Figure 5, p.l8). A 

typical arrested biol embryo is shown in Figure 11. The biol mutant was 

chosen for this study for several reasons: (1) very few auxotrophs have 

been identified in plants; (2) virtually nothing is known about biotin 

biosynthesis in plants; (3) this is the first example of an embryonic 

lethal of Arabidopsis that has a known biochemical lesion; and (4) 

studying biol should lead to a better understanding of mutations that 

affect housekeeping functions essential for embryogenesis. 

Further analysis of QiQl supports the model which predicts that 

arrested embryos from lethal mutants defective in housekeeping functions 

should be white in color and have a broad lethal phase (Meinke 1991). 

The logic behind the first part of this model is as follows: 

housekeeping genes are likely to be required for normal chloroplast 

maintenance, so mutants defective in these genes will likely have 

defective chloroplasts and therefore lack the normal green pigmentation. 

The second part of the model predicts that auxotrophic mutants will have 

a broad lethal phase; this prediction stems from the fact that the 
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Figure 11. Embryos From Selected Lethal Mutants of Arabidopsis. Top 
row from left to right the embryos are: mature wild-type ; 
embl6; emb22; and hiQl. Bottom row from left to right 
emb30-l, embl8, ~; and mature wild-type. The maximal 
length of the mature wild-type embryos is approximately 
500 ~m. 
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homozygous mutant embryo receives nutrients from surrounding 

heterozygous maternal tissue which may provide variable levels of the 

required nutrient or gene product which in turn leads to the variable 

lethal phase. This model has not been adequately tested but is instead 

a working model that will likely require modification once a number of 

genes have been cloned and analyzed. Two other nutritional mutants have 

been identified in Arabidopsis, but neither becomes lethal during embryo 

development. The thiamine (th) mutants described by Li and Redei (1968) 

appear to get sufficient levels of thiamine from maternal sources to 

survive embryo development, but mutant plants never survive past the 

seedling stage. The txpl mutant of Arabidopsis is defective in the 

synthesis of tryptophan, but does not become lethal during embryo 

development, probably because the !IUl gene is duplicated in the genome 

(Last and Fink 1988). The second gene appears to produce enough gene 

product for the completion of embryo development but not enough for the 

completion of the life cycle. 

The best way to verify this model would be to isolate genes from a 

number of lethal mutants and determine their function. Mutations in 

other genes which appear to play a more direct role in the regulation of 

embryogenesis are currently being analyzed at the molecular level in 

preparation for gene isolation. 

Mutant emb22. In previous papers this mutant was referred to as 

115D-4A or the "green blimp" mutant. Arrested embryos from ~ are 

green and fairly large in size but they consistently lack a 

differentiated hypocotyl and cotyledons (Figure 11, p.37). Light 

microscopic examination of serial sections revealed that some internal 
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differentiation does occur in arrested emb22 embryos but no defined root 

or shoot meristems were seen (Patton and Meinke 1990). Arrested emb22 

embryos grow in culture to produce abnormal shoots and leaves, but never 

produce flowers or seeds (Franzmann et al. 1989). The emb22 mutant 

therefore appears to be blocked in morphogenesis of both developing 

embryos and young shoots. This mutant gene also appears to show 

gametophytic as well as sporophytic expression (Meinke 1985). The 

phenotype of mutant emb22 suggests that the defective gene may have a 

developmental rather than housekeeping function. Until the emb22 gene 

is cloned and analyzed, this question remains unresolved. 

Mutant emb30. Arrested embryos from emb30, originally called 112A-

2A, are blocked at the linear cotyledon stage of development (Figure 5, 

p.l8), are green in color, and typically have fused cotyledons and a 

reduced hypocotyl (Figure 11, p.37). As described earlier, this mutant 

in culture forms rootless plants with thick abnormal leaves. Serial 

sections taken through arrested embryos have shown that the root apex 

appears to be missing in~ (Patton and Meinke 1990). These 

observations are consistent with the idea that the wild-type allele 

(~) is responsible in part for controlling development of the root 

apex. Again, the only definitive way to determine the function of EMB30 

will to be clone and analyze this gene at the molecular level. 

Wild-Type Ecotypes 

Landsberi "Erecta" Ecotype. The Landsberg ecotype of Arabidopsis 

has been used for many years as a common laboratory strain. All of the 

visible marker lines used in this study were isolated previously and 
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maintained in this genetic background. Although Landsberg is often 

considered a wild-type ecotype, many laboratories maintain the 

homozygous recessive er (erecta) mutation. Typical plants from this 

ecotype have short main stems (15-20 em) that are erect in stature, have 

2-4 lateral branches, and short floral internodes (distance between 

adjacent siliques on the inflorescence is often less than 0.5 em). 

Mature siliques produced by Landsberg plants are usually 0.7-1.0 em in 

length, 0.2-0.3 em wide and typically contain 50 seeds. 

Columbia Ecotype. When Columbia and Landsberg "erecta" plants are 

grown together, the most striking differences are the growth habit and 

the length of the inflorescence. The Columbia ecotype, in contrast to 

Landsberg, has long (30-40 em) main stems, which bend under the weight 

of the inflorescence, and the distance between adjacent siliques is 

typically 1-2 em. Mature siliques produced by Columbia plants are 

noticeably longer and more slender than Landsberg siliques. Typical 

Columbia siliques are 1-2 em long, 0.1-0.2 em wide and contain 50 seeds. 

Features that are common to these Arabidopsis ecotypes but are 

abnormal in visible marker lines include the appearance and distribution 

of trichomes, presence of epidermal wax on stems, floral morphology, and 

color of leaves, inflorescences or seeds. Each of these characters will 

be discussed in the following section. 

Multiple Marker Lines 

General Information on Multiple Markers. Multiple markers used in 

this study were generated previously by Maarten Koornneef and were 

maintained in the Landsberg "erecta" background. Each multiple marker 
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used in this study contained two or three recessive mutations on one of 

the five linkage groups plus the §L mutation on chromosome 2. Refer to 

the genetic map shown in Figure 12 for the location, and Table 1 for a 

brief description of each of the visible markers used in this study. 

The paragraphs below summarize the unique features of the multiple 

markers W2, W4, W8, WlO, Wll and Wl3 and describe the recessive 

mutations contained in each multiple marker. The letter "W" in the 

multiple marker designation stands for Wageningen, the location of the 

Agricultural University in the Netherlands where Maarten Koornneef and 

his students constructed these multiple marker lines. It should be 

noted that Maarten Koornneef has recently changed the designation of 

some these marker lines. In order to be consistent with my laboratory 

records, the old nomenclature will be used in this document. 

W2 Multiple Marker. This multiple marker contains two recessive 

mutations, en and disl, that map to the top arm of chromosome 1. The 

first mutation, en is at 0 eM and exhibits two distinct phenotypes, 

narrow leaves (both rosette and cauline) and twisted siliques. The 

narrow leaf phenotype is most striking when comparing wild-type and en 

cauline leaves. This phenotype can easily be identified in young 

seedlings grown either in soil or in culture plates. In 7-10 day old 

seedlings the en leaves are 2 to 3 times longer than they are wide, 

while wild-type leaves are just about as long as they are wide. The 

twisted silique phenotype is also easy to screen, the siliques are 

twisted for 1-3 complete 360° rotations. This phenotype is more 

pronounced in Columbia plants because the siliques are typically longer 

and therefore contain more twists than Landsberg siliques. This 
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Figure 12. Linkage Map of Arabidopsis Showing Locations of Visible 
Markers Used in This Study. Marker positions from Patton 
et al. (submitted). 
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TABLE 1 

OVERVIEW OF VISIBLE MARKERS USED IN THIS STUDY 

Location 

1: 0 

1: 16.6 

1: 43.6 

1: 58.4 

1: 91.4 

1: 100.0 

1: 119.9 

2: 16.2 

3: 37.3 

3: 80.3 

4: 47.0 

4: 63.3 

5: 13.7 

5: 31.4 

5: 57.7 

5: 88.7 

B'rief Description of Phenotype 

narrow leaves; twisted siliques 

linear, singed, and distorted trichomes 

similar to disl but longer trichomes 

pale-green plants 

fat siliques with extra carpels 

apetalous flowers 

reduced number of trichomes 

erect stems; blunt siliques 

trichomes absent 

shiny stems; reduced epidermal wax 

like cer2 

like apl 

pale green plants; not seen in culture 

trichomes absent; yellow seeds 

yellow seeds 

yellow inflorescence 



phenotype makes it slightly more difficult to open the valves and 

examine the contents of the silique but it is not a major hinderance 

when screening mature siliques for aborted seeds. 

The second mutation in the W2 multiple marker is disl, which maps 

to 16.6 eM on chromosome 1. This mutation disrupts the formation of 

trichomes, which are normally found on the upper leaf surface and the 

lower portion of stems. In wild-type Arabidopsis, the leaf trichomes 

are usually three-branched (Figure 13), while the stem trichomes are 

branched either two or three times. Leaf and stem trichomes of disl 

plants are unbranched and singed or twisted in appearance (Figure 14). 

A lOX hand lens can be used to screen for the disl phenotype in young 

seedlings grown in soil or in culture. The best time to screen 

seedlings for disl is when they have formed 2-3 pairs of true leaves. 

It should be noted that cotyledons do not have trichomes and should 

therefore not be confused with true leaves when screening for trichome 

phenotypes. The disl phenotype is essentially the same in both 

Landsberg and Columbia backgrounds. The combination of gn and disl in 

the W2 multiple marker line does not seem to have an adverse effect on 

general plant growth or seed set. 
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W4 Multiple Marker. This multiple marker contains three mutations 

on the lower arm of chromosome 1: ~. apl, and ill· The chl mutation 

is located at 58.4 eM on chromosome 1 and causes plants to develop a 

lime-green color rather than the normal dark green color. This mutation 

affects leaves, stems and sepals, or all of the green organs in the 

Arabidopsis plant. One of the pleiotropic effects of this mutation is 

an overall reduction in growth rate and ultimately results in smaller 
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Figure 13. Photograph of Rosette Leaves Showing Wild-Type Trichomes. 
The smallest rosette leaf here is about 0 . 5 em in length. 



Figure 14 . Photograph of Rosette Leaves From Qi§l Plant Showing 
Distorted Trichomes. The smallest rosette leaf here is 
about 0.5 em in length. 
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plants. This phenotype can be screened in plants grown in soil or in 

culture. Care must be taken when growing a population of plants that 

are segregating for chl because surrounding green plants tend to quickly 

overgrow adjacent mutant plants. In this case, the normal plants can be 

selectively trimmed to allow adequate light for the mutant plants. 

The apl mutation is located at 100.0 eM on chromosome 1 and causes 

plants to produce flowers that are missing petals. The flowers of apl 

are normal in every other way. The gpl phenotype can be screened only 

in mature plants that are flowering. Seed set is slightly reduced in 

apl plants. 

The &11 mutation is located at 119.9 eM which is near the end of 

chromosome 1. The ill mutation affects the shape and distribution of 

trichomes on the plant. The leaves of ill plants have very few 

trichomes. Those that are seen are usually linear or branched twice and 

are found mainly near the leaf margin. This phenotype can be screened 

with a lOX hand lens in plants grown in soil or in culture. The &11 

phenotype is most easily seen in plants with a number of fully expanded 

rosette leaves. Screening for gll can be tricky because some leaves in 

wild-type plants show an abnormal distribution of trichomes. The key to 

identifying plants that are homozygous recessive for ill is to make sure 

that all of the leaves examined are fully expanded and have the 

phenotypes described above. 

Plants from the W4 line tend to grow more slowly than wild-type, 

flower later, and have slightly reduced seed set. Despite these 

features and the fact that the &ll mutation is sometimes hard to screen 

in segregating populations, the W4 marker line can still be used 

successfully to map mutations that affect seed development. Each of the 



three mutant phenotypes exhibited in W4 look essentially the same in 

both Landsberg and Columbia backgrounds. 
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W8 Multiple Marker. The W8 multiple marker has two markers on 

chromosome 3: ~and cer7. The first marker, gll, maps to the top arm 

of chromosome 3 at 37.3 eM. Plants that are homozygous recessive for 

~ completely lack leaf trichomes. This phenotype is seen when plants 

are grown either in soil or in culture. As with most other trichome 

mutants, the phenotype is most easily seen in young seedlings with 2-3 

pairs of true leaves. 

The cer7 mutation maps to 80.3 eM near the lower end of chromosome 

3. This mutation blocks the accumulation of epidermal wax on the stem. 

Nine distinct cer loci have been identified and mapped in Arabidopsis. 

The stems of most of these mutants resemble cer2 which is shown in 

Figure 15 along with a wild-type stem. The cer7 phenotype can easily be 

screened with the unaided eye by gently rubbing a small portion of the 

stem with a finger, and then examining that region under bright light. 

Plants that have normal epidermal wax will have an overall powdery or 

dull appearance with a small shiny green region where the wax was 

removed by rubbing. Mutant plants that lack epidermal wax have stems 

that are shiny along their entire length, regardless of whether the 

stems are rubbed with a finger or not. The phenotypes of the W8 marker 

are similar in the Landsberg and Columbia backgrounds. 

WlO Multiple Marker. The two mutations found in WlO, ~and~. 

map to chromosome 4. The~ mutation is located at 47.0 eM near the 

center of the chromosome. Like ~described above, ~affects the 

accumulation of epidermal wax on the stems. A quick comparison of cer2 
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Figure 15. Comparison of Stems From Wild-Type (top) and cer2 (bottom) 
Plants. Note the absence of wax on the ~ stem. These 
stems are approximately 0.2 mm in diameter. 
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and cerZ shows that the phenotypes of these two mutations are 

indistinguishable. Figure 15 (p.49) compares the main stems from wild­

type and cer2 plants. Note the dull appearance of the wild-type stem 

when compared to cer2. Screening for the cer2 phenotype is the same as 

described above for cerZ. 

The second mutation in WlO, ap2, maps to 63.3 eM near the lower end 

of chromosome 4. The ap2 mutation disrupts the formation of petals in 

the flower. Plants that are homozygous recessive for ap2 will 

occasionally produce flowers with small, pale-green petals, but most 

flowers completely lack petals. This phenotype can quickly be 

identified in a segregating population because the distal portion of ap2 

inflorescences lack the white color provided by normal petals. In our 

laboratory, most siliques produced by ~ plants were very short 

(<0.5 em) and did not contain seeds, however, occasional siliques did 

produce 2-4 seeds. These plants produce normal pollen but the dehiscent 

anthers are not in close proximity to the stigma when pollen is shed. 

The filaments seem to be pointed at an angle away from the pistil rather 

than growing parallel to it. The pistil also seems to elongate past the 

ends of stamens prior to the time of dehiscence, so even if the 

filaments did grow at the proper angle, the pollen would probably not be 

deposited onto the stigma. These ~ flowers can be hand-pollinated if 

the stamens are removed with fine-tipped forceps and the dehiscent 

anthers are touched onto the stigma surface. Siliques of ~plants 

produced following hand-pollination typically contain 20 seeds. 

The WlO multiple marker is not an ideal marker for mapping 

mutations that affect seed development because one-fourth of the F2 

progeny must be hand-pollinated in order to get enough seeds to screen 
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for the seed phenotype. The cer2 and ap2 phenotypes do not appear to be 

affected by genetic background. An additional multiple marker for 

chromosome 4 has been constructed and is discussed in chapter 3. 

Wll Multiple Marker. The Wll multiple marker contains two 

mutations on chromosome 5, lu and tt3. The lu mutation is at 13.7 eM on 

chromosome 5 and disrupts timing of flowering and the pigmentation of 

green tissues. Plants that are homozygous recessive for lu are very 

pale green and exhibit an extended vegetative growth phase. The pale 

green phenotype can be seen in young seedlings and mature plants when 

grown in soil. In contrast, the pale-green phenotype is not seen when 

plants are grown in culture on a basal medium supplemented with glucose. 

Homozygous recessive lu plants grow vegetatively for 8-10 weeks 

producing large rosettes (up to 10 em in diameter) before they flower, 

while wild-type plants grown under the same conditions begin to flower 

after only 4-5 weeks of vegetative growth (rosettes are typically 5 em 

in diameter). When these Wll plants finally do flower they seem to 

produce an unusually large number of opened (mature) flowers at the same 

time. The overall effect is an inflorescence with 15-20 mature flowers 

bunched up at the tip, while wild-type plants usually have 5-10 mature 

flowers at any one time. These mutant plants with a large number of 

mature flowers also produce a very distinct and sweet-smelling aroma 

especially if a number of plants are grown together in the same pot. 

All of the characteristics described above have been observed in both 

Landsberg and Columbia backgrounds. 

The tt3 mutation is located at 57.7 eM near the middle of 

chromosome 5. This mutation disrupts the accumulation of anthocyanin-
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derived pigments in the seed coat. The testa (seed coat) of normal 

seeds accumulates a brown pigment during the final stages of seed 

maturation, while mutant tt3 seeds have transparent seed coats which 

give these seeds an overall yellow color (Figure 16). The yellow color 

in this case is due to the normal color of the mature dry embryo which 

is visible through the transparent seed coat rather than yellow pigments 

in the seed coat. The yellow seed phenotype can be seen with the naked 

eye by breaking open mature dry siliques on a piece of white paper. 

Wild-type plants produce dark seeds which are easily seen on the light 

background, while the seeds produced by mutant tt3 plants are yellow and 

more difficult to see on the light background. This phenotype can be 

seen only in mature plants that have produced dry seeds. The tt3 

phenotype is the same whether in the Landsberg or Columbia background. 

The Wll multiple marker does not affect seed set. 

Wl3 Multiple Marker. Like Wll, this multiple marker has two 

markers on chromosome 5, tti and~· The tt& mutation is at 34.4 eM and 

affects both trichome formation and seed coat pigmentation. This 

mutation causes plants to produce yellow seeds (like tt3) and glabrous 

stems and leaves (no trichomes, like~). These two characteristics 

are inseparable during segregation and appear to be the result of a 

single mutational event. The glabrous phenotype can be screened like 

the other trichome mutations, with a lOX hand lens. In this case, all 

seedlings with the glabrous phenotype will grow and produce seeds with a 

transparent seed coat (yellow seeds as in Figure 16). 

The~ mutation is located at 88.7 eM near the end of the lower arm 

of chromosome 5. This mutation causes the center of the rosette and 
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Figure 16 . Comparison of Seeds From Wild-Type (left) and tt3 (right) 
Plants. Note the absence of pigmentation in the seed coat 
of~ seeds. Seeds are approximately 0.5 mm in length. 
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tips of inflorescences to accumulate a yellow pigment. The bright 

yellow color can be seen with the unaided eye by examining either the 

last few centimeters of mature inflorescences or the center of the 

rosette of young seedlings grown in culture or in soil. The Wl3 

markers, tti and ~. do not affect seed set and are essentially the same 

in the Landsberg and Columbia backgrounds. 

Sin~le Marker Lines 

The dis2 Mutation. The dis2 mutation is located at 43.6 eM near 

the center of chromosome 1. This mutation causes the plants to form 

distorted linear trichomes that are much like disl trichomes. The main 

difference between disl and dis2 is that dis2 trichomes are noticeably 

longer and are occasionally branched. This mutation does not affect 

seed set and looks similar in both the Landsberg and Columbia 

backgrounds. 

The clv2 Mutation. The clv2 mutation maps to 91.4 eM on the lower 

arm of chromosome 1. This mutation affects the formation of the carpels 

within the ovary. Siliques produced by wild-type plants have two 

carpels or valves, while siliques produced by homozygous recessive clv2 

plants typically have 3-4 carpels (Figure 17). These siliques are 

usually shorter and fatter in mutant plants and contain essentially the 

same number of seeds as normal wild-type siliques. This phenotype seems 

to be consistent whether in the Landsberg or Columbia background. 
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Figure 17 . Comparison of Siliques From~ (top) and Wild-Type 
(bottom) Plants . Note the extra valve present on the ~ 
silique. The siliques in this photograph are 
approximately 2 em long . 
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Telotrisomic Marker Lines 

General Information. Telotrisomics are aneuploids that have an 

extra chromosome that is missing one of the chromosome arms. The extra 

chromosome arm is attached to the centromere and segregates as an 

independent genetic unit. Transmission of telocentric chromosomes in 

telotrisomics is often reduced in both pollen and ovules. A selfed 

telotrisomic will therefore produce a mixture of normal diploid and 

telotrisomic progeny. A number of different trisomic and telotrisomic 

sets have been identified in Arabidopsis (Steinitz-Sears 1963; Robblen 

and Kribben 1966, and Koornneef and VanderVeen 1978). The 

telotrisomic lines used in this study were originally identified as 

morphological variants in a trisomic line which was obtained by crossing 

a stable colchicine-induced tetraploid with a normal diploid (Koornneef 

and VanderVeen 1983). Putative telotrisomics were characterized in 

detail and shown to distort segregation over the region covered by the 

extra chromosome arm in crosses with visible markers. The telotrisomics 

described below were induced and maintained in the Landsberg "erecta" 

background and were obtained from Maarten Koornneef. Telotrisomic lines 

were maintained by saving selfed seed from telotrisomic plants then 

identifying them again in the next generation based on plant morphology. 

Telotrisomic Trla. The phenotype of Trla is fairly consistent and 

easy to see in a segregating population. Trla telotrisomic plants are 

shorter than wild-type and have dark green leaves and irregular petals 

(Figure 18). These plants are 5-10 em shorter than diploids from the 

same population of seeds. Trla plants are a very dark shade of green 

which sometimes is not easy to see. The flowers have 2 to 4 long 



Figure 18. Comparison of 4 Week Old Trla (left) and Wild-Type (right) 
Plants. Note the abnormal flowers and dark green leaves 
on the Trla plants. 
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slender petals which are often irregularly spaced around the 

circumference of the flower. Trla plants are fertile but produce only 

one-half to two-thirds of the normal number of seeds when compared to 

wild-type. 
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Telotrisomic Trlb. These plants have long slender stems and small 

necrotic rosette leaves (Figure 19). The rosette of Trlb plants also 

contains a reduced number of leaves. This telotrisomic has normal 

fertile flowers and shows good seed set. Trlb plants are easily spotted 

among a population of plants that are descendants from a telotrisomic 

parent. 

Linkage Analysis 

Mapping With Visible Markers. The strategy used for mapping 

embryonic lethals with visible markers is shown in Figure 20. Flowers 

from visible marker lines (vis/vis) were emasculated prior to self­

pollination and dusted-with pollen from plants heterozygous for an 

embryo-lethal mutation (emb/EMB). The resulting F1 progeny were 

screened for the lethal by examining the contents of mature green 

siliques under. a d,issect!,ng microscope. F1 plants that contained 25% 

aborted seeds were double heterozygotes with the recessive alleles in 

trans with respect to the marker and the lethal (~ gmQ/vis EMB). 

These double heterozygotes were allowed to self and produce F2 seeds. 

Aborted seeds were removed from seed stocks prior to planting. Usually 

27 pots, each containing 9 F2 plants in known positions, were grown from 

each cross. Mature F2 plants were then screened for both the visible 

marker and the lethal (AD method). Alternatively, F2 seeds were surface 
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Figure 19. Comparison of 4 Week Old Trlb (left) and Wild-Type (right) 
Plants. Note the slender stem and necrotic rosette of the 
Trlb plant . 
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Figure 20. Drawing of Strategy Used to Map Embryonic Lethals With 
Visible Markers. The visible marker is crossed with 
pollen from plants heterozygous for the lethal. One­
half of the resulting F1 plants will be segregating for 
the lethal and one-half will not be segregating for the 
lethal. F2 seeds are saved from F1 plants segregating for 
the lethal, then planted and screened for the appropriate 
phenotypes. 
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sterilized and placed in lOOmm tissue culture plates containing an agar 

medium then screened after germination for the visible marker only (EF 

method). 

Four computer programs (BUILD, SUMMARY, CHI, RECF2) were then used 

in succession to summarize and analyze data collected using the AD 

screening method, while only the CHI program was needed to analyze the 

EF data. The BUILD and SUMMARY programs were written by Patricia 

Alexander at the OSU computer center (according to my specifications) 

during the summer of 1988. The CHI program was written by John Garnett, 

a student at Oklahoma State University (again, according to my 

specifications), during the spring of 1988. The RECF2 program was 

written by Piet Starn of the Wageningen Agricultural University (WAU), 

the Netherlands, and obtained from Maarten Koornneef during a visit to 

his lab at the WAU in January of 1988. The RECF2 program was described 

by Koornneef and Stam (1988) in a paper that discusses different methods 

for mapping genes in Arabidopsis. 

Data collected using the AD screening method were entered onto 

screening sheets that had a separate row for each plant and columns 

representing each phenotype screened. Segregation data were then 

entered via keyboard into the BUILD computer program which generated a 

text file that was essentially a duplicate of the screening sheet. The 

SUMMARY computer program, which analyzes the BUILD text file, was then 

used to sum the total number plants in each of the four phenotypic 

classes. See appendix A (p.l31) for sample printouts from the BUILD and 

SUMMARY programs for a cross between W2, containing visible markers~, 

disl, and er and the embryonic lethal ~. In this example, the 

visible markers ~ and ~ are linked to ~. Note that the data 
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shown in Appendix A were actual F2 segregation data. 

A computerized version of the chi-square test (CHI) was then used 

to determine whether the segregation ratios were significantly different 

from that expected for unlinked genes. The CHI program was written for 

the sole purpose of analyzing F2 segregation data collected by either 

the AD or the EF screening method, following crosses between an 

embryonic lethal and visible markers. Appendix B (p.l38) demonstrates 

how the CHI program was used to determine whether the segregation data 

presented in Appendix A was significantly different from what was 

expected for unlinked genes. 

Finally, an estimate of the percent recombination between the 

embryonic lethal and the visible marker was made using AD data and 

RECF2. This program is a computerized version of the. maximum likelihood 
.__-.~-·---~--·-··"-····~---~·-·· .. ··~·O<._, ....... ~-------· -~------· " .--- . -.;.:: 

~~?~(F:is~~~~-~_?~) based on the method of Servitova anci Cetl Q~.~~2. 

See Appendix C (p.l43) for an example of how recombination estimates 

were made using AD segregation data. In this example, a recombination 

estimate was made between disl and emb30 from the cross described above. 

Backcrosses. Backcrosses are required to definitively show the 

gene order when two genes are tightly linked. Figure 21 demonstrates 

the crossing strategy used to resolve the gene order in this case. The 

steps included are: (1) cross a maker line that has two visible markers 

(EMB ~ ~~ visl ~) with pollen from a linked heterozygous 

lethal (~ VISl VIS2/emb VISl VIS2); (2) identify heterozygous lethal 

F1 plants (~ ~ ~~ YlSl YIS2); (3) backcross visible marker 

parent with pollen from heterozygous lethal F1 plant described above; 

(4) collect 100 to 200 F2 backcross progeny and then plant and screen 
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Figure 21. Drawing of Strategy Used for Backcrosses. Plants with two 
visible markers are crossed with pollen from a 
heterozygous lethal. One-half of the resulting F1 

plants will be segregating for the lethal and also be 
heterozygous for both of the visible markers; these F1 

plants are then backcrossed with the visible marker 
parent. The backcross progeny are then planted and 
screened for both visible markers and the lethal. 
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for both visible markers and the lethal; and (5) resolve the order of 

the three genes by determining the number of backcross progeny in each 

of the eight possible genotypic classes. Only one gene order will be 

consistent with the data because the number of gametes with 2 

recombination events over the interval in question will be much less 

than the number of gametes with one or no crossovers. 

Constructin~ the Genetic Map. The gene,tic m1'i.P.~as constructed with 

the aid of three computer programs, GENMAP, CHROMAP, and_f1RINIAI'LOT. 
·~-.,_., _______ ,_,.,. _________ ....._.~----·-----~·--------.---- ---·--- - .. ·-·- -----" ~---.·-~-~------·····-~-- -.-~-- .. ._ ... ,_ -- - -~-· ... ·--·-·- --- ..... •' . ""'"' ,_,_., . ~ 

Detailed instructions on how to use these programs are included in 

Appendix D (p.lSO), and Appendix E (p.lSS). The GENMAP program was 

written by Piet Starn at the Wageningen Agricultural University and 

obtained from Maarten Koornneef in January 1988. GENMAP requires data 

files that contain all available recombination data for each of the 

chromosomes (shown in Appendix D, p.lSO). The data files that were used 

to construct the most recent linkage map of Arabidopsis (Koornneef 1990) 

were obtained from Maarten Koornneef. In order to use GENMAP, the order 

of genes on each chromosome must be known. GENMAP first converts 

recombination estimates from each data set into eM using the Kosambi 

(1944) mapping function. For short distances (eg. P < 10%), 

recombination estimates are approximately equal to eM. As the distance 

gets greater between two loci, the eM value increases exponentially (see 

Appendix F; p.l61). GENMAP then estimates the position of each gene 

us~ng a best-fit_procedure. Chi-square values are calculated for each 

data set by comparing the original estimated distance between two genes 

obtained experimentally with the final estimated distance established by 

GENMAP. This process continues for each pair of genes until a minimum 
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cumulative chi-square value for all data sets is reached. Suspect data 

sets with unusually high chi-square values are noted and may either be 

removed or maintained. The orders of some genes on the map have not 

been resolved; backcrosses will therefore be required to definitely 

determine the gene order in these regions. Until these regions are 

resolved, the gene order suggested by GENMAP will be maintained. 

The CHROMAP program was written by Mike Palmer, an assistant 

professor in the Department of Botany at Oklahoma State University. 

This program is essentially a mathematical algorithm that reads a data 

file that contains information on the length of each chromosome and the 

number and position of each gene. CHROMAP then draws lines 

corresponding to length of each chromosome and places the gene symbols 

and appropriate map positions on each of the chromosomes. When two 

genes are very close and the gene symbols overlap, the program moves the 

gene symbols apart and then draws a line from the gene symbol to the 

appropriate position on the chromosome. This program then saves the 

resulting map in a plotting language that can then be read by plotting 

programs to generate a hard copy of the map. The commercially available 

plotting program PRINTAPLOT (Insight Development Corporation) was used 

to plot the updated linkage maps. These programs were essential for 

presenting the genetic map in a standard way. Original versions of the 

updated map were reproduced by a professional graphic artist at 

considerable expense; with CHROMAP and PRINTAPLOT, new genetic maps can 

be generated easily with an IBM-compatible computer and a Hewlett 

Packard printer in 15 minutes. Detailed instructions for how to use 

CHROMAP and PRINTAPLOT are shown in Appendix E (p.l61). 
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Telotrisomic Analysis. The strategy used for mapping with 

telotrisomics is shown in Figure 22. Telotrisomic plants (EMB/EMB/EMB) 

were identified based on their characteristic morphology, then crossed 

with pollen from plants heterozygous for the lethal (EMB/emb). In this 

case, F1 plants were scored as being diploid or telotrisomic and also 

for the presence of aborted seeds following self-pollination. The 

percentage of aborted seeds produced by telotrisomic F1 plants was 

expected to be significantly less than 25% if the extra chromosome arm 

covered the gene of interest. The percentage of aborted seeds produced 

by diploid (~emb) siblings from the same cross was determined as a 

control. Chi-square tests were used to determine whether the percentage 

of aborted seeds produced by telotrisomic F1 plants was significantly 

less than that produced by diploid F1 plants. 



67 

EMB EMB EMB EMB emb 

X 

Telotrisomic Heterozygous lethal 

EMB emb EMB 

Telotrisomic F1 

Figure 22. Drawing of Strategy Used for Mapping Embryonic Lethals With 
Telotrisomics. Telotrisomic plants are crossed with 
pollen from plants heterozygous for the lethal. F1 plants 
are screened as diploid or telotrisomic based on plant 
morphology. The percentage of aborted seeds is calculated 
for telotrisomic F1 plants that are segregating for the 
lethal and compared to the pecentage produced by sibling 
diploid plants that are segregating. 



68 

Results 

Linka~e Analysis 

Three embryo-lethal mutants with interesting phenotypes (biol, 

emb22, and emb30) were chosen for this initial mapping study in 

preparation for gene isolation. Visible markers used to map these genes 

had phenotypes that were easy to screen and did not significantly 

disrupt seed set. Four classes of progeny (A, B, C, D) were observed 

when F2 plants were screened for both the visible marker and the lethal 

(Table 2). The AD method of linkage detection was used to assign F2 

plants to these four classes. The lethal and visible markers were in 

repulsion in the F1 generation and linkage was detected by non-random 

segregation of the marker and lethal genes. Table 2 illustrates how 

recombinant progeny (A and D) become rare as the visible marker and the 

lethal get more tightly linked. Only two classes of progeny (E and F) 

were observed when F2 plants were screened for just the visible marker. 

Table 2 shows that the ratio of phenotypically normal (E) to mutant (F) 

progeny should be 3:1 if the visible marker and the lethal are unlinked 

and 2:1 if the two genes are adjacent. Linkage can therefore be 

detected using the EF method if the ratio of normal to mutant progeny is 

significantly less than 3:1. 

The minimum number of F2 plants required to detect linkage for each 

screening method is summarized in Table 3. Values were calculated by 

substituting the derivation formulae, shown in Table 2, into the chi­

square formula as outlined in Appendix G (p.l63). Equations were solved 

for N (number of plants) by entering values of p (recombination 

percentage) and critical values from the chi-square table for each level 



F2 

class 

A 

B 

c 

D 

E 

F 

TABLE 2 

EXPECTED FREQUENCY OF F2 PLANTS OBTAINED FOLLOWING 
CROSSES WITH VISIBLE MARKERS 

F2 genotype Recombination frequency 

Marker Lethal 0.0 0.1 0.2 0.3 0.4 0.5 Derivation"' 

+/- +/+ 0.000 0.063 0.120 0.170 0.213 0.250 1/3(P)(2P) 

+/- +/m 0.667 0.607 0.560 0.530 0.507 0.500 2/3(1-P+P2 ) 

mjm +/+ 0.333 0.270 0.210 0.160 0.120 0.083 1/3(1-P) 2 

mjm +/m 0.000 0.060 0.110 0.140 0.160 0.167 2/3(P)(1-P) 

+/- 0.667 0.670 0.680 0.700 0.720 0.750 A + B 

mjm 0.333 0.330 0.320 0.300 0.280 0.250 C + D 

... Method for determining frequency of F2 plants in each class from Servitova and 
Cetl (1984), where P =recombination frequency. 

(J'I 

\.0 



TABLE 3 

MINIMUM NUMBER OF F2 PLANTS REQUIRED FOR LINKAGE DETECTIONa 

Level of significance 
Recombination Screening 

frequencyb methode p 0.05 p 0.01 p 0.005 

0.1 AD 13 18 20 

EF 113 195 232 

0.2 AD 27 38 43 

EF 147 255 303 

0.3 AD 73 105 119 

EF 254 438 521 

0.4 AD 358 518 587 

EF 800 1384 1646 

' 
I 

a Numbers in the table were calculated usirg formulae derived in 
Appendix 1. 

b Between visible marker and embryonic lethal. 

c Refer to Table 2 and text. 
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of significance. One striking feature of Table 3 is the small number of 

F2 plants required for linkage detection with the AD method. For 

example, fewer than 150 F2 plants are needed to detect genes separated 

by 30% recombination. If additional plants are screened, linkage can be 

detected between genes separated by even greater distances. For 

example, linkage was detected between dO and emb22, two genes separated 

by over 40% recombination on chromosome 1, after screening only 467 F2 

plants with the AD method. In this case the number of plants in classes 

A-D was significantly different from that expected for unlinked genes, 

x2 = 16.1; P <0.005 (see Appendix H, p.l66 for calculation). 

It appears from Table 3 that the EF method could also be used to 

detect linkage between genes separated up to 40% recombination, if a 

sufficient number of F2 plants were screened. The advantage to this 

approach of linkage detection would be to eliminate the effort required 

to screen F2 plants for the embryonic lethal (dissecting siliques). In 

practice, the EF method was not always reliable for linkage detection. 

In one case 453 F2 seedlings were screened following crosses between chl 

and ~ and linkage was not detected (X2 - 1.6) even though these 

genes are separated by less than 5% recombination on chromosome 1 (see 

Appendix I, p.l68 for calculation). In a cross between tt~ and biol, 

two genes separated by more than 30% recombination on chromosome 5, 

linkage was detected despite the distance after screening 1364 F2 

seedlings (x2 - 32.4; P <0.005; Appendix J, p.l70). In other cases, the 

EF method gave misleading results and suggested that genes were linked 

when in fact the genes were unlinked. Effects of mutant alleles on 

gametogenesis (certation), reduced viability of homozygous mutant 

plants, and relatively small sample sizes appear to be largely 
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responsible for inconsistent results obtained with the EF method. 

Linkage was readily detected with the AD method by screening 250 F2 

plants for both the visible marker and the embryonic lethal. Numbers 

obtained with the AD method were not only used to detect linkage with 

chi-square tests but were also used to es~imate the percent 

I recombination with the RECF2 computer program. Recombination estimates 

obtained with this program were accompanied by a standard deviation and 

an internal chi-square value that compared' the observed frequencies of 

plants in classes A-D with those expected for the estimated level of 

recombination. 

Table 4 summarizes estimates of recombination between embryonic 

lethals and linked visible markers generated by the RECF2 computer 
! 

program. Internal chi-square values were generally less than 5.0 with 

three degrees of freedom, indicating that results obtained were close to 

those expected for the estimated level of recombination. The 

consistency of this mapping method is illustrated by results obtained 

from crosses between W2 (gn, ~. ~) and ~. After screening only 

219 F2 plants, the estimated percentages of recombination with emb30-l 

were 2.4% (disl), 10.2% (gn), and 45.0% (~). An additional 203 F2 

plants were then screened and the final combined estimates were 2.8% 

(~), 10.5% (~), and 49.6% (~). A second allele at this locus 

(emb30-2) was then mapped with W2 by Linda
1
Franzmann in our laboratory; 

she screened 230 F2 plants and found recomqination estimates that were 
I 

1.4% (~). 11.3% (gn), and 50.6% (~). We are therefore confident 

that recombination estimates obtained with this method are reproducible 

and that linkage can routinely be detectedibetween an embryo-lethal 

mutation and a visible marker separated by,up to 35% recombination. 
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TABLE 4 

RECOMBINATION ESTIMATES BETWEEN EMBRYONIC LETHALS 
AND VISIBLE MARKERS 

Chromo- Percent F2 plants 

Lethal Marker some recombination" screened 

biol n 5 11.2 ± 1.5 423 

tt3 5 18.5 ± 2.7 221 

tt& 5 35.3 ± 3.0 423 

.en 1 49.2 ± 5.0 222 

disl 1 43.4 ± 4.7 224 

chl 1 63.8 ± 5.3 201 

&12 1 57.0 ± 5.4 201 

apl 1 71.5 ± 4.8 201 

tl 2 50.9 ± 3.6 428 

ill 3 43.3 ± 3.7 361 

cer7 3 58.1 ± 0.4 361 

cer2 4 62.9 ± 5.0 226 

~ 4 58.5 ± 5.1 226 

emb22 chl 1 4.0 ± 0.8 450 

ill£2. 1 19.1 ± 2.7 236 

~ 1 24.7 ± 3.6 185 

9lll 1 31.3 ± 2.6 466 

.en 1 40.0 ± 3.1 466 

er 2 51.6 ± 3.5 466 

cer2 4 51.2 ± 5.1 221 

ap2 4 51.3 ± 5.1 221 



Lethal Marker 

emb30-l disl 

.21! 

er 

cer2 

ap2 

emb30-2 disl 

an 

TABLE 4 (Continued) 

Chromo- Percent 

some recombinations 

1 2.8 ± 0.7 

1 10.5 ± 1.4 

2 53.0 ± 3.1 

4 42.6 ± 4.9 

4 39.8 ± 4.9 

1 1.4 ± 0.6 

1 11.3 ± 2.0 

F2 plants 

screened 

422 

422 

621 

199 

199 

230 

230 

a From the RECF2 computer program ± standard deviation. 
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The data shown in Table 4 were then combined with recombination 

estimates obtained from Maarten Koornneef and Linda Franzmann (our 

laboratory) and entered into GENMAP to determine chromosomal locations 

of mutant genes and produce the updated linkage map shown in Figure 23. 

It should be noted that Linda Franzmann (with the help of Karl Hansen 

and Leigh Mickelson) mapped the additional 13 embryonic lethals using 

procedures worked out during the course of this study and outlined in 

this chapter. Suspect data sets (GENMAP x2 >5.0) were maintained in 

both this map and the previously published map (Koornneef 1990). GENMAP 

estimates map positions without definitively establishing gene order. 

The precise locations of some genes on the linkage map therefore remains 

to be determined. The positions of emb genes were established through 

backcrosses as described below for emb30 or, estimated with GENMAP by 

identifying the gene order that gave the lowest cumulative chi-square 

value. 

Backcross Analysis 

Backcrosses were used to resolve the position of emb30 relative to 

linked markers on chromosome 1 (Table 5). Recombination data with~ 

suggested that emb30 was located between~ and disl, but GENMAP placed 

emb30 below ~. A further complication was the fact that many of the 

recombination estimates for genes in this region of chromosome 1 were 

considered suspect by GENMAP. Backcrosses were performed between W2 

(~, ~) and emb30-l. Eight progeny were identified in classes V and 

VI (single recombinants if the gene order is ~-~-emb30) whereas no 

progeny were identified in classes VII and VIII (double recombinants if 

the gene order is ~-disl-emb30). The correct gene order was therefore 
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1 2 3 4 5 
0.0 an 

fy .4 emb76 0.0 
.5 0.0 Gf 0.0 hy2 0.0 4.2 emb24 rgn 2.3 hy3 8.4 tt7 .8 cer 1 5.0 chl2 9.2 ch7 10.6 alb 1 6.3 

13.4 chl1 7.0 cp2 9.5 11. 1 hy5 
16.6 dis 1 13.0 emb29 13.7 lu 
17.8 emb30 16.2 er 15. 1 tt4 
20.6 Dw1 16.9 hy1 16.4 fg 

20.9 Gai 22.0 py 24.5 cp1 17.2 alb2 

21.0 ga4 25.2 abi3 28.2 fca 23.5 pi 
25.3 cnx 

32.1 th1 32.7 as 30.8 th3 25.6 ms1 
32.4 fb 32.8 emb1B 37.7 ag 31.4 ttg 39.2 Ch42 34.6 aux1 37.3 gl1 42.5 emb2B 35.5 ga3 

43.5 im 38.1 su 
43.6 dis2 42.4 sul 

47.0 cer2 45.2 ch5 
47.1 cerB 

47.5 ga5 47.0 th2 
47.4 emb39 

48.7 emb20 47.2 tt2 
53.8 tt1 49.8 Abi1 55.7 gl3 54.2 chl3 56.2 cer4 57.7 tt3 58.4 Chi 56.3 fd 
62.2 emb22 64.2 csr 63.3 ap2 63.9 emb9 
66.4 le 66.8 pgm 
69.8 cer5 72.9 ap3 71.6 cer9 

73.2 tt5 73.4 cp3 
76. 1 ch6 77.2 bioi 
79.7 emb7B 79.0 tz 
80.3 cer7 83.6 cer3 

87.5 tt6 88.7 yi 
88.1 ft 89. 1 emb15 
91.4 clv2 89.8 min 
97.1 cere 93. 1 emb16 

100.0 ap1 98.3 aba 
101.7 emb2!S 

110.7 c lv 1 
115.8 emb33 
119.8 ga2 
119.9 gl2 
122.4 fe 

Figure 23. Linkage Map of Arabidopsis thaliana With Embryonic Lethals 
in Bold. Reprinted from Patton et al. (submitted). 



TABLE 5 

RESULTS FROM BACKCROSSES BETWEEN emb30-1 AND 
LINKED VISIBLE MARKERS 

Progeny genotype 

77 

Progeny Crossovers Number of 

classa illl disl emb30 requiredb progeny 

I m;m m/m +/+ 0 59 

II +/- +/- +/m 0 101 

III m;m +/- +/m 1 20 

IV +/- m/m +/+ 1 3 

v m/m m/m +/m 1 2 

VI +/- +/- +/+ 1 6 

VII m/m +/- +/+ 2 0 

VIII +/- m/m +/m 2 0 

a Classes VII and VIII should be rare if the gene order is an-disl-emb30 
as shown. Classes V and VI should be rare if the gene order is an-emb30-
disl. 

b Minimal number of crossovers required in F1 parent to generate observed 
progeny. 
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determined to be ~-disl-emb30. 

One surprising feature of the backcross results was the unequal 

frequency of plants obtained in reciprocal classes. For example, 

classes I and II were not represented equally among the backcross 

progeny (Table 5, p.77). Only 59 backcross progeny were identified in 

class I while the remaining 101 were in class II (X2 = 11.0; P <0.005; 

Appendix K, p.l72). Classes III and IV were also not represented 

equally among the backcross progeny. Similar results were also observed 

by Linda Franzmann following backcrosses with other visible markers and 

embryonic lethals. Certation and differences in genetic background are 

two factors that may disrupt the expected distribution of progeny in 

backcross experiments. Additional backcrosses will nevertheless be 

required to definitively establish gene order in certain regions of the 

linkage map. 

Telotrisomic Analysis 

Telotrisomics were also used to assign genes to linkage groups. 

This method was explored because aneuploids are particularly useful for 

linkage detection. In this method, results are obtained in the F1 

generation without the need to grow large numbers of F2 plants. 

Telotrisomics Trla and Trlb were chosen for this study because their 

distinctive phenotypes facilitated rapid identification in segregating 

populations. If the embryonic lethal is'covered by the extra arm in a 

segregating F1 plant (EHR/~~), then siliques produced by that plant 

should contain significantly less than 25% aborted seeds following self­

pollination. Results from crosses between two embryonic lethals and 

their corresponding telotrisomic (Trla x gmQlQ; Trlb x ~) 
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demonstrated that segregation ratios were indeed reduced when the 

duplicated arm covered the embryonic lethal (Table 6). The percent 

aborted seeds produced by segregating telotrisomics (EMB/emb/EMB) was 

determined to be 14.5% for Trlb x emb22 and 15.9 to 16.6% for Trla x 

emb30 (Table 6). Two types of controls were included in these 

experiments. The first involved diploid plants that were identified in 

the F1 generation. Segregation ratios were calculated for EMB/emb 

heterozygotes identified as diploid (D) in column 3 of Table 6, to 

demonstrate that approximately 25% aborted seeds were produced in the 

absence of the duplicated chromosome arm. The second control involved 

crosses between embryonic lethals and telotrisomics with duplicated arms 

not covering the embryonic lethal. Results from these crosses (Trla x 

emb22; Trlb x emb30) demonstrated that segregation ratios were not 

reduced when the extra arm did not cover the gene of interest (Table 6). 

Results obtained with Trla x emb22 and Trlb x emb22 also demonstrated 

that this locus (emb22), known from recombination data to be near the 

centromere, was located on the lower arm of chromosome 1. The biol 

locus was not mapped with this technique because the telotrisomics for 

chromosome 5 could not be identified in segregating populations. 

The ratio of aborted seeds produced by telotrisomic F1 plants was 

expected to be determined by transmission rates of monosomic and disomic 

gametes (Koornneef and Van der Veen 1983) and distances between the 

embryonic lethal and the centromere (Koornneef 1983). In reciprocal 

crosses with wild-type Columbia plants, the transmission rate for Trlb 

disomic female gametes was 33% (34 telotrisomic and 69 diploid F1 

plants). The transmission rate of male disomic gametes was 10% (3 

telotrisomic and 27 diploid F1 plants). These values are similar to 
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TABLE 6 

LINKAGE DETECTION WITH TELOTRISOMICS 

Percent Number 

EMB F1 aborted of seeds 

Cross location plant"' seeds screened Chi- squareb 

Trlb X emb22 lb T 14.5 1091 32.2*** 

Trlb X emb22° II D 21.5 995 

Trla x emb22° lb T 20.1 634 0.9 

Trla x emb22° II D 21.6 713 

Trla x emb30-l la T 15.9 1189 52.4*** 

Trla X emb30-l II T 16.6 823 30.6*** 

Trlb X emb30-l c la T 22.6 836 0.7 

Trlb x emb30-l0 II T 23.2 757 0.1 

Trlb x emb3Q-lc II D 24.5 1117 

Trlb X emb30-l c II D 23.2 1028 

.. Screened as diploid (D) or telotrisomic (T) based on plant morphology. 
Individual F1 plants are listed separately to demonstrate the 
consistency of results obtained. 

b Calculated using non-telotrisomic controls as standards for exp~cted 
values. *** Significantly different from expected at P ~ 0.005. 

c Negative controls involving either non-telotrisomic F1 plants or 
telotrisomics with the duplicated arm not covering the gene of interest. 
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those reported previously (27% female and 7% male) by Koornneef and Van 

der Veen (1983). It should be noted that Koornneef and VanderVeen 

(1983) obtained their values following reciprocal crosses with wild-type 

plants in the Landsberg background. The transmission rates for crosses 

with Columbia plants was therefore not expected to be identical to those 

obtained following crosses with Landsberg. 

The transmission rate for Trla gametes was more difficult to 

calculate in reciprocal crosses with wild-type Columbia, because the 

Trla seed stock segregated for an apetalous phenotype not previously 

reported. It was not determined whether this class of progeny 

represented tetrasomic individuals or simply plants segregating for a 

recessive mutation. Following crosses with pollen from either emb22 or 

emb30-l, 33.8% female transmission of the Trla disomic gametes was 

observed in F1 plants (22 telotrisomic and 43 diploid), which appeared 

to be consistent with the published transmission rate of 28% for female 

Trla gametes (Koornneef and Van·der Veen 1983). 
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Discussion 

The value of saturating genetic maps has been demonstrated in a 

variety of organisms, ranging from viruses to eukaryotes. The linkage 

map of Arabidopsis now contains over 100 visible markers (Koornneef 

1990; Figure 23, p.76) but is still far from saturation. Now that 

Arabidopsis is considered a model system for plant biology, advances 

must be made in both classical genetics as well as the molecular 

genetics, in order to complement the current focus on the analysis of 

the Arabidopsis genome. The standard linkage map of Arabidopsis has 

been constructed largely by the examination of F2 progeny from selfed F1 

plants (Koornneef et al. 1983; Koornneef and Starn 1988; Patton et al. 

submitted). This mapping method minimizes the number of backcrosses 

required for mapping, but often fails to establish gene order. 

Consequently there is some uncertainty associated with both the precise 

gene order and location of some genes on the updated linkage map sho~m 

in Figure 23 (p.76). Questions also remain concerning the effect of 

environmental factors and sex differences on observed recombination 

frequencies in Arabidopsis. Zhuchenko et al. (1988) conclude that in 

Arabidopsis, there are up to 5-fold differences in the observed 

recombination frequencies, over certain intervals, between the male and 

female gametes. Additional studies will therefore be required to 

improve both the density and the resolution of the linkage map. 

The efficiency of mapping genes in Arabidopsis with chlorophyll­

deficient lethals was noted previously by Servitova and Cetl (1984). A 

similar approach has now been used to map embryonic lethals, now the 

most common class of marker on the genetic map. Linkage can easily be 



detected between visible markers and embryonic lethals that are 

separated by 35% recombination, which translates into about 45 eM with 

the Kosambi (1944) mapping function (Appendix F, p. 161). This is a 

conservative estimate of the distance over which visible markers are 

useful. In the future it should be possible to use new linkage tester 

lines (described in Chapter 3), that contain visible markers near the 

center of each chromosome, to detect linkage with over 85% of the new 

embryonic lethals. 

Many additional mutants defective in embryo development have been 

identified in Arabidopsis but remain to be placed on the linkage map. 
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It should therefore be possible to improve the resolution and utility of 

the linkage map by mapping additional embryonic lethals. The efficiency 

of mapping embryonic lethals with visible and RFLP markers (discussed in 

Chapter 4), and the wide distribution of emb genes throughout the genome 

should also facilitate the integration of the standard genetic and 

molecular maps of Arabidopsis. 

Considerable effort will be required to saturate for the embryo­

lethal phenotype and assign these mutants to complementation groups. 

Large-scale allelism tests in Arabidopsis are feasible only when working 

with mutant phenotypes determined by relatively few target genes. The 

availability of multiple alleles has nevertheless played an important 

role in the genetic and molecular analysis of developmental pathways in 

other organisms and would clearly facilitate the analysis of embryonic 

lethals in Arabidopsis. The most efficient way to identify multiple 

alleles of embryonic lethals in Arabidopsis may be to assign new mutants 

to linkage groups, and then perform complementation tests with mutants 

in the same region. This approach has already led to the identification 



of a new allele of emb20 (Linda Franzmann, our lab) and might simplify 

the task of cataloguing mutants identified in other laboratories. 
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The addition of embryonic lethals to the Arabidopsis linkage map 

should also facilitate the construction of balanced lethal chromosomes. 

Balancers with defined chromosomal inversions and flanking lethal 

mutations have been used extensively in Drosophila and Caenhorhabditis 

to enforce heterozygosity, maintain mutagenized chromosomes, and isolate 

new alleles at a locus of interest. Now that a number of embryonic 

lethals have been mapped (Patton et al. submitted), the main obstacle to 

constructing balancers is the identification of appropriate inversions. 

The cytogenetic approach to isolating inversions has proven successful 

in maize (Carlson 1988) but is not likely to be feasible in Arabidopsis 

because of the small size of meiotic chromosomes (Schweizer et al. 

1988). Inversions in Arabidopsis will likely have to be identified by 

screening for segregation distortion following mutagenesis with X-rays. 

Previous studies with maize have demonstrated the value of 

constructing genetic mosaics to examine the role of specific genes in 

plant development (Hake and Freeling 1986; Poethig 1988). The approach 

used in these studies was to map the gene of interest, identify a 

closely-linked visible marker with a cell-autonomous phenotype, then use 

X-irradiation to generate marked sectors that lacked the dominant 

allele. A similar approach could be used to determine whether recessive 

embryonic lethals of Arabidopsis are defective in a diffusible product 

required for later stages of development. Mapping embryonic lethals of 

Arabidopsis should therefore not only strengthen the classical genetics 

of this model system, but also our understanding of the molecular basis 

of plant growth and development. 



CHAPTER III 

CONSTRUCTION OF NEW MULTIPLE MARKER LINES TO 

FACILITATE MAPPING OF EMBRYONIC LETHALS 

Introduction 

Mapping embryonic lethals of Arabidopsis has been facilitated by 

the use of marker lines that contain two or more visible mutations. 

These multiple marker lines (described in Chapter 2) are especially 

useful when performing backcrosses because they usually contain two 

linked mutations which can be used to identify the correct placement of 

linked mutations. These marker lines however, are not efficient for 

initial linkage detection because they cover at most two different 

chromosomes. Each multiple marker line carries ~on chromosome 2 in 

addition to the other visible markers on different chromosomes. 

A supertester line, called WlOO, has been constructed in 

Arabidopsis that contains two visible markers on each of the five 

chromosomes (Koornneef et al. 1987) that should, in theory, greatly 

reduce the amount of time required to map new genes. There are a number 

of reasons why this multiple line has not been used widely among members 

of the Arabidopsis community. The most common complaints about WlOO are 

the difficulty in maintaining WlOO and in screening F2 plants for each 

of the marker phenotypes. The plants from the WlOO line also have a 

male sterile mutation (~), maintained in the heterozygous state, 

which obviously disrupts seed set. The ms-1 mutation would have to be 
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segregated out of WlOO before it could be used to map embryonic lethals 

because the mapping method requires screening mature seeds of F2 for the 

lethal phenotype. Another problem with the WlOO line is that one of the 

mutations, ~. results in plants that require pyrimidine for normal 

growth. The problem with this marker is that F2 plants must be grown in 

the absence of pyrimidine in order to screen for this marker. Those F2 

plants that are homozygous recessive for ~ will become pale and die as 

seedlings; these plants must then be rescued by watering with a 

pyrimidine-containing solution before they can be screened for the 

remaining markers. The problem with this kind of marker is the time 

involved in, and difficulty associated with screening for this 

phenotype. The only way to be sure that F2 plants are screened 

correctly is to test progeny from each F2 plant for their ability to 

grow in the absence of pyrimidine; the ratio of F3 progeny that grow to 

those that do not grow, indicates the genotype of the F2 parent. 

In order to circumvent the problems associated with WlOO, three new 

multiple marker lines were constructed that could be used to 

efficiciently detect linkage between embryonic lethals and linked 

visible markers. One of the multiple marker lines (DP23) contains 5 

mutations, each near the center of one of the chromosomes. With this 

line it should be possible to detect linkage with most embryonic lethals 

after screening only one set of F2 plants. This assumes that embryo­

lethal mutations will be distributed randomly throughout the genome, 

which they appear to be (see Figure 23, p.76). The other two marker 

lines, DP27 and DP28, contain mutations that are located near the ends 

of chromosomes 1, 3, 4, and 5 which should complement areas not covered 

by DP23. 
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Materials and Methods 

Plant Material 

Plants were grown and maintained as described in chapter 2. 

Visible markers used in the construction of multiple markers were 

obtained from Maarten Koornneef during December of 1987 and maintained 

in the Landsberg (er) background. The locations of these markers are 

shown in Figure 24. The phenotypes of these mutations, with the 

exception of Qn and ttS, are described in the Materials and Methods 

section of Chapter 2. The Q£ mutation, on chromosome 4 at 9.5 eM, 

reduces the distance between siliques on the stem and, more prominently, 

causes mature siliques to point downward. Plants with the hR mutation 

are easy to screen at maturity whether in the Landsberg or Columbia 

background. The ttS mutation is located at 73.3 eM on chromosome 3 and 

has a phenotype identical to that of tt3 (yellow seeds at maturity). 

The strategy used to create multiple marker lines from single 

markers is outlined in Figure 25. In general, the strategy was to cross 

one marker line with pollen from the other marker line. The F1 progeny 

were screened for the maternal phenotype to make sure that accidental 

selfs were no longer maintained. The desired F1 plants were allowed to 

self and the dry F2 seeds were collected. F2 plants were screened for 

all appropriate phenotypes and dry seeds were saved from those plants 

that carried all of the recessive marker mutations. The integrity of 

each new multiple marker line was verified by planting and screening the 

next generation of seeds. 
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9.5 bp 

16.6 dis1 16.2 er 

31.4 ttg 

37. 1 g11 

47.0 cer2 

58.4 ch1 57.7 tt3 

73.2 tt5 

88.7 yi 
91.4 clv2 

Figure 24. Linkage Map With Visible Markers Used in Multiple Marker 

Construction. DP23 contains chl, er, &11, cer2, and tt3. 
DP27 contains er, ~. ~. and ttg. DP28 contains disl, 
clv2, er, and ttS. Map positions from Patton et al. 
(submitted) 
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vis1- vis1 VIS1 VIS1 

X 

VIS2- VIS2 vis2 vis2 

visible marker 1 visible marker 2 

I 
vis1 VIS1 

VIS2 vis2 

F1 heterozygote 

Figure 25. Drawing of Strategy Used to Create Multiple Markers From 
Existing Visible Markers. Visible marker 1 is crossed 
with visible marker 2. The resulting F1 double­
heterozygote is grown to maturity and allowed to self­
pollinate. F2 seeds are then planted and screened for 
both recessive traits. 
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Multiple Marker Construction 

The DP23 Multiple Marker Line. This multiple marker line contains 

a total of 5 recessive mutations; chl, er, ill, cer2, and tt3. The 

construction of DP23 was slowed because cer2 was not available as a 

monogenic line, but was part of WlO, a multiple marker that also carried 

ap2. The ap2 mutation was considered undesirable for DP23 because the 

apetalous flowers often required manual pollination to get adequate seed 

set for mapping embryonic lethals. The strategy used to obtain cer2 as 

a monogenic line (shown in Figure 26) was to cross WlO (cer2 ~cer2 

~)with Landsberg erecta wild-type plants (~ A£21 ~ A£l); save 

F2 seeds from F1 plants (~ Afl/~ ~). and then to screen the F2 

progeny for plants that were homozygous recessive for only the cer2 

mutation (cer2 AP2/cer2 -). F3 seeds were saved from each of the 

cer2/cer2 F2 plants, and then tested for the presence of a recessive ap2 

allele (AP2/ap2). The majority of the cer2/cer2 F2 plants were 

heterozygous (~gpl), however several clean cer2/cer2 lines were found 

and subsequently used in the construction of DP23. 

The strategy used to construct DP23 was to make crosses between chl 

and &ll, and also to make crosses between cer2 and tt3. F2 seeds were 

saved from F1 plants from each of the crosses (either QHl ill/chl GLl or 

CER2 ~ ~ IIl). F2 plants that carried both mutations (either chl 

ill/£hl ill or cer2 ~cer2 tt3) were identified and seeds were saved. 

These new marker lines were then crossed to each other and again F2 

seeds were saved from F1 plants. A large number of these F2 seeds were 

planted and screened before a single plant was found that was homozygous 

for each of the five mutations (£hl ~ &l1 ~ ~£hl ~ill cer2 tt3). 
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cer2- cer2 CER2 CER2 

X 

ap2 ap2 AP2 AP2 

W10 Landsberg 

I 
cer2 CER2 

ap2 AP2 

F1 heterozygote 

Figure 26. Strategy Used to Isolate cer2 as a Monogenic Line From WlO. 
WlO (cer2 ~cer2 ap2) was crossed with pollen from 
Landsberg wild-type (CER2 AP2/CER2 AP2). The resulting F1 

double-heterozygote in this case contained the recessive 
alleles in the cis configuration and was allowed to self­
pollinate. F2 plants that were homozygous recessive 
cer2/cer2 were progeny then tested in the F3 generation 
for the presence of the recessive ap2 allele. 
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The DP 28 Multiple Marker Line. This multiple marker carries 4 

mutations: disl and clv2 on chromosome 1, er on chromosome 2, and tt5 on 

chromosome 3. This multiple marker should be able to detect linkage 

with mutations on the distal portions of chromosome 1, all of chromosome 

2, and the lower half of chromosome 3. One of the markers, disl, was 

not available as a monogenic line, but was easily segregated away from 

gn in the W2 line using the same strategy employed to recover cer2. The 

strategy used in the construction of DP28 was to cross disl/disl with 

clv2/clv2 first and to recover disl clv2/disl clv2 F2 plants, then cross 

these plants with tt5/tt5 and finally recover disl clv2 tt5/disl clv2 

tt5 plants. 

The DP27 Multiple Marker Line. This multiple marker contains four 

visible mutations; er on chromosome 2, Qn on chromosome 4, and~ and 

ttg on chromosome 5. In this strategy, Qp/Qn was crossed with Wl3 which 

already contained ~ and ttg. F2 plants were identified that were 

homozygous recessive for all of the mutations. DP27 contains markers 

near the top of chromosome 4 and near the ends of chromosome 5. These 

positions were selected to complement the coverage missed by the DP23 

and DP28. 



93 

Results and Discussion · 

The new multiple marker lines DP23, DP27, and DP28 are summarized 

in Figure 24 (p.88). These multiple marker lines should decrease the 

amount of time and effort involved in mapping new genes. The major 

drawback in making new multiple marker lines is the time involved in 

their construction. For example, it takes at least 4 months just to get 

dry F2 seeds from one set of crosses. In cases where visible markers 

had to be separated away from a multiple marker line (eg. cer2 and 

disl), 4 months were again required just to get the F2 seeds following 

crosses with wild-type. The next step was to screen F2 plants for the 

desired phenotype and save dry F3 seeds (2 months) and test these 

progeny to determine which plants were homozygous dominant for the other 

visible marker. These progeny testing experiments took an additional 2-

3 months to finally identify plants that contained the desired genotype. 

In all, it took at least 8 months just to separate one visible marker 

from another in crosses between W2 and wild-type, and WlO and wild-type. 

One other aspect to note was the number of F2 plants that had to be 

screened before the monogenic lines were identified. In the cross 

between W2 (gn ~an Qial) and wild-type (AN ~AN Ql£1), a total of 

280 F2 seeds were planted and only 7 had the desired phenotype 

(AN Qial/- ~). Two of these plants were later shown to be wild-type 

(AN/AN) for the other marker, while the other 5 were heterozygous 

(AN/an) at this locus. This translates into 0.7% (2/280) F2 plants with 

the desired genotype. This result was not too surprising because these 

two genes are separated by approximately 15% recombination. The 

expected frequency of the desired F2 class was therefore the product of 



94 

the expected frequency of recombination between these two genes for the 

male and female gametes (0.0759 x 0.075o) or 0.56% which is very close 

to the observed value of 0.7%. 

The isolation of cer2 as a monogenic line (described in Figure 26, 

p.91) was easier than expected because the other recessive mutation 

(ap2) segregated away from cer2 in the F2 generation at a higher than 

expected frequency. In this case, 12 out 120 F2 plants were recessive 

(cer2 AP2/cer2 -) for the first marker and five of those (4% of the 

total F2 planted) were the desired genotype (cer2 Afl/cer2 AP2). This 

was surprising because these cer2 and ~ are separated by exactly the 

same distance (16.6 eM) as an and disl on the linkage map. One would 

therefore expect approximately the same frequency of F2 plants with a 

monogenic genotype. The difference observed in these segregating 

populations could be due to small sample size, peculiarities in the 

recombination frequency in that region, a negative effect of the 

recessive ap2 allele on gametogenesis (certation) or uncertainties in 

the genetic map. These differences were first thought to be due to 

small sample size, but a chi-square test suggests that the observed 

difference in this sample was significant (x2 ~ 27.9; P < 0.005). A 

second explanation for these differences could be the phenomenon 

observed by Zhuchencko et al. (1988) where extreme differences were 

measured in the recombination frequencies between the male and female 

gametes over certain intervals. It is interesting to note that over the 

interval between cer and ap2, four times more recombination was measured 

in male gametes than in female gametes, which was one of the largest 

differences for all intervals tested. Another reason for having more 

plants than expected in the desired F2 class could be that the ap2 
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allele exhibits certation. This hypothesis however is not supported by 

the frequency of ~ap2 plants observed in 870 F2 plants; if anything, 

the ap2 allele contributed to fertilization more frequently than the AP2 

allele in these populations. This' phenomenon then becomes hard to 

explain unless one considers that cer2 and ap2 may actually be separated 

by a greater distance on chromosome 4 than is reflected in the genetic 

map, which is a possibility given the uncertainties associated with 

genetic maps at this level of resolution. 

In each case during the construction of DP27 and DP28, the 

frequency of obtaining double recessive F2 plants following crosses 

between two linked visible markers (~disl x clv2/clv2 and cer2/cer2 

x Qpjhu) was not significantly different from expected (P > 0.05). This 

was probably due to the fact that these sets of genes were separated by 

such great distances on their respective chromosomes that recombination 

occurred freely between them. 

In the construction of DP23, the strategy relied on pure random 

assortment rather than recombination because the recessive mutations 

involved were on different chromosomes. In the final cross during DP23 

construction (chl &ll/chl ill x cer2 tt3/cer2 tt3) approximately 1 out 

of 250 F2 plants or (0.25) 4 was expected to have all of the recessive 

markers. In reality, approximately 500 F2 plants were screened before 

one plant was identified as having all of the recessive traits, which is 

not significantly different from expected. 

If we assume that linkage can be detected between loci separated by 

35% recombination (Chapter 2), which translates into approximately 45 eM 

by the Kosambi (1944) mapping function (Appendix F, p.l61), the DP23 

multiple marker should cover about 88% (278 eM covered/430 eM total) of 
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the genome with respect to detecting linkage between embryonic lethals 

and the visible markers. Most of the genome not covered by DP23, about 

33 eM on distal portions on chromosome 1 and 13 eM near the. top end of 

chromosome 5, is covered by the other two markers DP27 and DP28. This 

means that if embryo-lethal mutations occur randomly throughout the 

genome, then 88% of the new mutations should be assigned to a linkage 

group with one cross. This marker should therefore greatly facilitate 

future complementation analysis among embryo-defective mutants. As 

already stated, this strategy requires that mutations be mapped to 

linkage group and then complementation tests will be limited only to 

linked mutations. This strategy is one step toward the goal of defining 

as many genes as possible in Arabidopsis that play a role during plant 

growth and development. 



CHAPTER IV 

MAPPING WITH RFLP MARKERS 

Introduction 

In the 1960's, a group of bacterial enzymes was discovered that 

could digest incoming bacteriophage DNA during the process of infection 

(Boyer 1971). These enzymes were said to "restrict" the establishment 

of phage within the cell. These enzymes, called restriction enzymes 

(Lederberg and Meselson 1964), have been instrumental in the growth of 

modern molecular biology. The first restriction enzymes that were 

described (type I) bind at specific sites but require a number of 

cofactors for in vitro activity and appear to cleave DNA molecules at 

more or less random sites that are over 1000 base pairs away. Type III 

restriction enzymes also bind to DNA at specific sites but cleavage 

occurs over 20 bases away from the recognition site. Type I and type 

III restriction enzymes have therefore not been used extensively in 

molecular cloning procedures because the cleavage occurs at non-specific 

sequences. A third class of restriction enzymes (type II) requires only 

Mg* as a cofactor and binds and cleaves DNA at specific sequences. The 

sequence-specificity of type II restriction enzymes allows complex 

nuclear genomes to be reduced into a population of DNA fragments with 

discrete sizes with similar ends. At least 475 distinct restriction 

endonucleases have been isolated from bacteria; approximately 200 are 

type II restriction enzymes (Roberts 1988), most of which are 
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commercially available. 

The restriction enzymes that are commonly used for restriction 

fragment length polymorphism (RFLP) analysis usually have a 4-6 base 

pair (bp) recognition sequence. The frequency of cleavage can be 

estimated by making the assumption that each of the four different 

nucleotides occurs randomly and at equal frequency in the genome. A 6 

bp recognition enzyme would therefore be expected to cut once every 4096 

or (46 ) bp within the genome, while a 4 bp recognition enzyme would cut 

once every 256 or (44 ) bp. In plants however, genomic restriction 

fragments range in size from a few bp to more than 20 Kb. There is also 

substantial variation in the frequency of cleavage for enzymes with 

recognition sequences that are the same size. For example, in tomato, 

the restriction enzyme Dra I (recognition sequence 5' TTTAAA 3') cuts 

nuclear DNA much more frequently than Sst I (GAGCTC) (Bernatzky 1988). 

In addition, restriction enzymes that are sensitive to methylated DNA do 

not cut well in plants because of the high degree of methylation. 

When plant nuclear DNA is digested with a restriction enzyme, 

hundreds of thousands of fragments are generated. In order to study the 

restriction pattern from a given chromosomal locus, these fragments must 

be fractionated and the fragments of interest distinguished from all 

other similar-sized fragments. DNA fragments are generally separated by 

gel electrophoresis, and the individual fragments are visualized using 

Southern (1975) blotting and subsequent hybridization to a cloned and 

labeled homologous sequence. 

At a given pH, all DNA fragments have roughly the same charge-to­

mass ratio. The DNA molecules are negatively charged due to the sugar­

phosphate backbone, and move at a constant rate through an electric 
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field regardless of size. However, when DNA is electrophoretically 

separated through a medium such as agarose, the fragments move according 

to size. The fragments can be thought of as "snaking" their way through 

small pores in the agarose matrix. Small DNA fragments will therefore 

move faster than larger fragments through agarose during 

electrophoresis. There is a good inverse relationship between the 

migration rate of DNA in agarose and the log of its molecular weight 

(Aaij and Borst 1972). 

After electrophoresis, DNA fragments are transferred in their 

original pattern from the agarose to a membrane or filter. Because 

large DNA fragments do not transfer efficiently, the gel is first 

treated with dilute acid to partially depurinate the DNA molecules, then 

treated with a strong base to denature the double-stranded molecules. 

The single stands break at the depurinated sites thus liberating smaller 

fragments which can be efficiently transferred. The DNA is then 

covalently bound to the membrane in the single-stranded state. This 

allows labeled complementary strands of DNA (probes) to anneal to their 

specific homolog among the separated fragments. DNA probes can be 

labeled using radioactivity in the form of 32P, or with a nucleotide 

analog such as digoxigenin deoxyuridine-triphosphate. Fragments can 

then be identified by autoradiography or immunological detection. 

An illustration of the theory behind RFLP analysis is shown in 

Figure 27. The difference (polymorphism) in the size of restriction 

fragments is due to variations in the distribution of restriction sites. 

These variations are caused by insertions, deletions, or the gain or 

loss of restriction sites by base substitutions. It should be noted 

that variation in restriction sites at a given locus does not 
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A B 

Probe 

I I I 

Figure 27. Schematic Drawing That Illustrates the Theory Behind RFLP 
Mapping. In this example, a small portion of a chromosome 
is shown for individuals A and B. The restriction sites 
(arrows) are shown for the locus of interest. Note that 
the probe shown at right detects the polymorphism 
(due to additional restriction site in B) between these 
two individuals on a Southern blot shown below. 



101 

necessarily mean that there is functional difference in the sequences 

examined. Since restriction sites are actual DNA sequences, the 

variation in these sites have been used to study genetic divergence 

between individuals (Engels 1981; Templeton 1983; Palmer et al. 1985). 

Sequences that hybridize to a given probe come from discrete 

chromosomal loci. Different alleles at these loci can be detected by 

variation in restriction fragments. Restriction fragments are therefore 

ideally suited to be genetic markers. If the individuals in Figure 27 

(p.lOO) were crossed, then the F1 progeny would contain both polymorphic 

alleles and be recognized as a heterozygote on a Southern blot. This 

illustrates the codominant nature of RFLP markers. These alleles would 

segregate in a Mendelian fashion in backrossses or in the F2 generation. 

Linkage can therefore be detected using a simple X2 test when 

segregation i~ significantly different from expected for unlinked loci. 

Grodziker et al. (1974) first demonstrated that restriction 

fragments could be used as genetic markers. In this study, a 

temperature-sensitive mutation was mapped in adenovirus by using a 

restriction fragment marker. Since then, extensive studies have 

resulted in the construction of RFLP linkage maps to help identify 

genetic diseases in man (Botstein et al. 1980; Bhattacharya et al. 1984; 

Stephans et al. 1990). This technique, in conjunction with chromosome 

walking, has already led to the discovery of the defective gene in over 

70% of cystic fibrosis patients (Riordan et al. 1989). In plants, 

linkage analysis with DNA markers has been accomplished in maize (Evola 

et al. 1986), tomato (Vallejos et al. 1986), pea (Polans 1985), 

Arabidopsis (Chang et al. 1988; Nam et al. 1989), and many other 

species. The utility of RFLP markers in plant genetics has been 



discussed previously (Burr et al. 1983; Tanksley 1983). Some of the 

applications include: estimating levels of variation in germplasm 

collections, monitoring the purity of hybrid seeds, selecting (via 

linkage) agronomically important traits, studying the components of 

quantitative traits, facilitating gene isolation through chromosome 

walking, and identifying the products of cell fusion experiments. 
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The major limitation to RFLP analysis is the cost. Restriction 

enzymes are expensive and large amounts of these enzymes are needed to 

analyze many individuals in a segregating population. The complexity of 

the genome being studied is reflected in the amount of DNA, and 

restriction enzyme required, for RFLP analysis. Plants with large 

genomes such as onion or cereals require up to 10 ~g of DNA per 

individual for RFLP analysis, while in Arabidopsis only 1 ~g of DNA per 

individual is required to detect single-copy sequences. Traditional 

Southern analysis requires the use of 32P in the production of labeled 

probes. This isotope is short-lived, hazardous, and expensive. Non­

radioactive techniques have been recently produced that allow the 

production of stable probes and detection of single copy sequences. 

A safe and cost-effective method for high-resolution RFLP mapping 

of embryonic mutations of Arabidopsis is presented in this chapter. 

This method will facilitate the molecular isolation of genes that play 

an essential role during embryo development and complement the current 

analysis of the genetic control of plant embryo development. An example 

of this method is presented where the QiQl locus of Arabidopsis is 

mapped to within 0.5 eM of an existing RFLP marker. 
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Materials and Methods 

The wild-type ecotypes used for RFLP mapping were Landsberg (er), 

described in Chapter 2, and Niederzenz which was obtained from both 

Elliot Meyerowitz (California Institute of Technology) and Mark Estelle 

(Indiana University, Bloomington). Embryo-lethal mutants in the 

Columbia background were also described in Chapter 2. The strategy used 

to map embryonic lethals with RFLP markers is shown in Figure 28. 

Embryo-lethal mutants in the Columbia background were crossed with 

either Landsberg (er) or Niederzenz ecotypes to produce polymorphic F1 

plants. F2 seeds were collected from heterozygous (EMa/emb) F1 plants 

following self pollination. F2 plants were then screened for the lethal 

as soon as the first siliques became mature. Batches of 5 wild-type 

(~EMB) F2 plants were frozen on dry ice and stored at -80° C in 

sealed plastic bags. 

Total plant DNA was isolated from each pool of 5 plants using the 

procedure described by Richards (1990) which is outlined in Appendix L 

(p.l74). DNA yields were typically 50-80 ~g per pool as measured by 

fluorescence in the presence of Hoescht dye #33258 using a mini­

fluorometer (Hoefer). Plant DNA was cut with 5-fold excess of 

restriction enzyme (Bethesda Research Labs), separated on 0.75% agarose 

gels, and then transferred to Nytran (Schleicher & Schuell) membranes 

with a vacuum blotter and crosslinked with UV irradiation (Stratagene) 

as described in Appendix L. 

Molecular markers used in RFLP mapping were lambda clones from the 

RFLP map of Chang et al. (1988) and obtained from Elliot Meyerowitz 

(California Institute of Technology, Pasadena). Details concerning the 
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Figure 28. Drawing of Strategy Used in High-Resolution RFLP Mapping of 
Embryonic Lethals. The letters (L) and (C) represent 
different RFLP alleles of the same locus. Wild-type 
(EMB L/EMB L) Landsberg plants are crossed with a Columbia 
plant heterozygous (EMB Cjemb C) for the lethal. Plants 
which are segragating for the lethal represent one-half 
of the F1 generation as shown and are allowed to self­
pollinate. F2 plants are screened for the lethal and 
batches of 5 wild-type (EMB/EMB) are saved for DNA 
isolation and Southern blotting. 
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construction and mapping of these clones are described by Chang et al. 

(1988). In general, low copy number DNA sequences from Arabidopsis 

strain Columbia were cloned into the phage replacement vector Asep6-lac5 

(Davis et al. 1980). The phage were then labeled and used as probes on 

Southern blots that contained genomic restriction digests from Columbia, 

Landsberg, and Niederzenz ecotypes. Clones that recognized 

polymorphisms were then mapped in F2 and F3 generations following 

crosses between either Niederzenz and Columbia, Columbia and Landsberg, 

or Niederzenz and Landsberg. The resulting RFLP linkage map which 

contains these markers is shown in Figure 29. 

In our laboratory, phage clones were propagated in the~- coli host 

strain C600, obtained from Elliot Meyerowitz (along with the phage), 

using the procedures outlined in Maniatis et al. (1982). Phage DNA was 

isolated from plate lysates using Prep-eze columns (Sprime ~ 3prime, 

Inc.) according to the procedure provided with the columns. Purified 

phage DNA was cut with Eco RI and labeled with the reagents provided in 

the Genius non-radioactive DNA labeling kit (Boehringer Mannheim) using 

the protocol described in Appendix L (p.l74). Hybridization and 

immunological detection were also carried out using reagents provided 

with the Genius kit according to the protocols described in Appendix L 

(p.l74). 
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Results and Discussion 

Hi~h-Resolution RFLP Mappin~ Strate~y 

Although mapping genes with visible markers is important for 

genetic studies, localizing genes relative to molecular markers is 

required for gene isolation through chromosome walking. RFLP mapping of 

embryonic lethals is facilitated by the ability to identify heterozygous 

(~emb) plants in the F2 generation. Mapping other types of recessive 

mutations requires progeny testing in the F3 to determine the genotype 

of F2 plants. The ability to distinguish heterozygous (~emb) from 

homozygous wild-type (~EMB) plants in the F2 generation was 

instrumental in devising the high-resolution RFLP mapping strategy. 

When co-dominant RFLP markers are used to map embryonic lethals, 

three RFLP patterns and six classes of plants should be present in the 

F2 generation following self-pollination of heterozygous (EMB/emb) F1 

plants. Table 7 summarizes the expected frequency of F2 plants in each 

RFLP class at different levels of recombination between the RFLP marker 

and the embryonic lethal. Frequencies are listed separately for ~EMB 

and ~~ plants because only ~EMB F2 plants were used for RFLP 

mapping. Note that ~EMB plants with Columbia-specific bands (classes 

II and III) are rare when the lethal and the RFLP marker are closely 

linked. For example, only 2% of the ~~ F2 plants are in classes II 

and III when the lethal and RFLP marker are separated by 1% 

recombination. This frequency increases to 75% if the RFLP marker and 

lethal are unlinked. The presence of Columbia-specific bands on 

Southern blots is therefore a direct measure of recombination between 

the RFLP marker and the embryonic lethal. In contrast, EMA~emb F2 
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TABLE 7 

EXPECTED FREQUENCIES OF F2 PLANTS WITH DISTINCT RFLP PATTERNS OBTAINED 
FOLLOWING CROSSES WITH LANDSBERG OR NIEDERZENZ ECOTYPES 

Recombination frequency between 

RFLP site and EMB locus 
RFLP 

F2 genotype class" 0.01 0.05 0.10 0.25 0.35 0.50 

0.010 0.0475 0.090 0.1875 0.2275 0.250 

II 0.980 0.9050 0.820 0.6250 0.5450 0.500 

III 0.010 0.0475 0.090 0.1875 0.2275 0.250 

I 0.9800 0.902 0.810 0.560 0.423 0.250 

II 0.0199 0.095 0.180 0.380 0.455 0.500 

III 0.0001 0.003 0.010 0.060 0.122 0.250 

a I= RFLP pattern produced by Landsberg or Niederzenz parent (~EMB); 

II - pattern produced by F1 heterozygote; III - pattern produced by 

Columbia (EMB/~) parent. With co-dominant RFLP patterns, rare 

recombinants (classes II and III) are readily detected among pooled 

ID:m/IDm plants. 
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plants produce bands on Southern blots that are characteristic of both 

parents, regardless of the percent recombination. Following discussions 

with Eric Ward and George Jen at Ciba-Geigy Corporation, I reasoned that 

the efficiency of RFLP mapping with embryonic lethals could be increased 

by analyzing DNA from pools of EMB/EMB F2 plants and determining the 

frequency of rare recombinant plants through the presence of Columbia­

specific bands on Southern blots. This pooling strategy should reduce 

the number of DNA preparations required for high-resolution RFLP mapping 

and facilitate the isolation of genes through chromosome walking. 

RFLP Mappin& of the EMB30 Locus 

Initial RFLP mapping studies were carried out with the hope of 

identifying molecular markers that were tightly linked to the emb30 

locus on chromosome 1. The standard genetic map and RFLP maps of 

Arabidopsis have not yet been fully integrated, but there are a few 

markers in common between these maps. Markers in the emb30 region on 

the RFLP map of Chang et al. (1988), shown in Figure 29 (p.l06), were 

selected because of their ability to recognize polymorphisms between the 

Columbia ecotype and one of the other two ecotypes used to construct the 

map. Markers AbAt219 and AbAt254 were both used in initial studies as 

probes on blots that contained DNA from Columbia, Niederzenz, and 

ColumbiajNiederzenz F1 plants. In each case, the DNA was digested with 

an enzyme that was supposed to give polymorphic bands. However, these 

markers consistently failed to recognize differences between the 

Columbia and Niederzenz ecotypes. 

With respect to the emb30 markers, 7 months were spent trying to 

resolve the problem of identifying the expected polymorphisms. During 
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this time, over 20 different plant DNA preparations were made and tested 

on a total of 8 Southern blots with either the AbAt219 or AbAt254 probe. 

There are a number of different reasons that could explain why these 

probes did not work. One explanati~n would be that the lambda phage 

used to make the DNA probes were not the appropriate strains. Over 20 

different RFLP markers, in the form of lambda phage strains, were 

obtained from Elliot Meyerowitz as high-titer lysates and it is possible 

that some of.these stocks were contaminated or mixed either before they 

were sent or after they were received. Nevertheless, every precaution 

was taken when growing these phage not to mix the different strains. A 

second possibility is that the polymorphic bands were actually present 

but not detected with the Genius nonradioactive DNA detection system. 

This explanation does not seem to be likely because later experiments 

have shown that the Genius system is more than sensitive enough to 

detect polymorphisms in single-copy sequences of Arabidopsis. 

Another possibility is that the Niederzenz ecotype obtained from 

Elliot Meyerowitz was actually the Columbia ecotype. This was not fully 

tested, but in later experiments there appeared to be differences in the 

flowering time between individual plants derived from this seed stock. 

Since that time, a new seed stock of the Niederzenz ecotype was obtained 

from Mark Estelle (Indiana University). The Estelle-derived Niederzenz 

was not tested against the Meyerowitz-derived Niederzenz on Southern 

blots because by this time all of the DNA was used up from the 

Niederzenz (Meyerowitz) plants and no further plants were grown from 

this seed stock. 
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RFLP Mapping of the BIOl Locus 

The next set of experiments used the RFLP marker AbAt331 from the 

biol region on chromosome 5. Plant DNA from Columbia, Niederzenz 

(Estelle) and Landsberg ecotypes was digested with the appropriate 

restriction enzyme and tested for polymorphisms using labeled AbAt331 as 

a probe on Southern blots. In these experiments polymorphisms were 

detected between all three ecotypes as expected. Once the appropriate 

polymorphisms were detected, the next experiment was to show that 

recombinants could be detected among pooled F2 plants. Again AbAt331 

was chosen as a probe because this marker appeared to be roughly 15 eM 

from the biol locus which should give approximately 1 recombinant per 5 

BIOl/BIOl F2 plants or 1 recombinant per pool. Figure 30 shows the 

resulting blot where 3 of the 4 pools tested had recombinants. 

Comparison of the linkage and RFLP maps revealed that two markers 

AbAt233 and AbAt558 should be within 5 eM of biol on chromosome 5. 

These two markers were labeled and used as probes in a series of 

Southern blots in order to determine which marker was most closely 

linked to biol. In these blots each pool contained 5 F2 plants to 

ensure detection of a single recombinant homologue. As a control, the 

equivalent of a single recombinant homologue was detected in a sample 

containing 10 ~g of genomic DNA (Figure 31, lane 3). The sensitivity of 

this method was also confirmed by the detection of recombinants in 

several pools (e.g. Figure 32, lane 5). 

The presence of recombinants in 3 of 4 pools of biol x Niederzenz 

F2 plants probed with AbAt331 demonstrated that this marker was not 

tightly linked to the QiQl locus. Two recombinants were detected out of 
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Figure 30. Southern Blot of DNA From 4 Pools of biol x Niederzenz F2 

Plants Probed With AbAt331. All lanes contained genomic 
DNA digested with the restriction enzyme Eco RI. Lane 1: 
2 ~g Columbia DNA; lane 2: 2 ~g Niederzenz DNA; lane 3: 
blank; lanes 4-7: 10 ~g each from different pools of 5 
ftlQl/BIOl F2 plants from the biol x Niederzenz cross. 
Note the presence of Columbia-specific bands in lanes 6,7, 
and 8. 
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Figure 31. Southern Blot of DNA From Genetic Reconstruction and 5 Pools 
of hi2l x Landsberg F3 Plants Probed With AbAt558. All 
lanes contained genomic DNA digested with Xba I. Lane 1: 
2 ~g of Columbia DNA; lane 2: 2 ~g of Landsberg DNA; 
lane 3: 9 ~g of Landsberg and 1 ~g of Columbia DNA; 
lanes 4-8: 10 ~g of DNA from different pools of 5 
~~ F2 plants. Note the absence of Columbia­
specific bands in these pools. 
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Figure 32. Southern Blot of DNA From 5 Pools of biQl x Landsberg F2 

Plants Probed With AbAt233. All lanes contained genomic 
DNA digested with Xba I. Lane 1: 2 ~g of Columbia DNA; 
lane 2: 2 ~g of Landsberg DNA; lane 3: 1 ~g of Columbia 
DNA; lanes 4-8: 10 ~g of DNA from the same 5 pools shown 
in Figure 31. Note that lane 5 shows evidence of at least 
1 recombinant plant. 
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14 pools of biol x Landsberg F2 plants probed with AbAt233. This 

corresponds to approximately 3 eM between AbAt233 and biol. In 

contrast, no recombinants were detected among 19 pools of biol x 

. 
Landsberg F2 plants probed with AbAt558. It therefore appears that 

AbAt558 is within 0.5 eM or 70 Kb (Chang et al. 1988) of the biol locus. 

The recent identification of a 220 Kb YAC that hybridizes to AbAt233 

(Ward and Jen 1990) and a 160 Kb YAC that hybridizes to AbAt558 (Eric 

Ward, personal communication) should aid molecular analysis of this 

region and facilitate the isolation of BIOl through chromosome walking. 

In conclusion, it appears from these preliminary experiments that 

the pooling strategy described above will be useful for future RFLP 

mapping studies. It should also be noted that this strategy could be 

used to map mutations other than embryonic lethals as long as the 

homozygous recessive individuals are viable and can be readily 

identified in the F2 generation. This mapping method should not only 

save time by reducing the number of DNA preparations required but should 

also result in a higher resolution estimate of recombination per 

Southern blot. In conjunction with advances in the resolution of the 

RFLP map and large-DNA technology (YAC,s and pulse-field gel 

electrophoresis), this RFLP mapping method should facilitate molecular 

isolation of genes of Arabidopsis through chromosome walking. These 

techniques should then be useful in answering important questions that 

remain about how genes control developmental processes such as plant 

embryogenesis. 
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Concluding Remarks 

The goals of this dissertation were to document as clearly as 

possible a review of the literature, results from experiments, and the 

relevance of this work in relation to the field of the genetic analysis 

of embryogenesis. Chapter 1 included a review of work on the genetic 

control of plant embryogenesis. Most of the early work was done on 

defective-kernel mutants of maize. Maize continues to be a promising 

system, especially for understanding the role of the endosperm in 

embryogenesis, and as a model system for studying monocot embryogenesis. 

A second experimental system, mutants of carrot that are unable to 

complete somatic embryogenesis, was also reviewed. At this time, there 

are some major limitations in studying embryogenesis in carrot. The 

most important drawbacks are the lack of genetic information, and the 

fact that many of the embryonic mutants have been induced in haploid 

cell culture lines that cannot be regenerated into fertile plants. 

Finally, a review of embryo-lethal mutants of Arabidopsis was 

given. An extensive study by Muller (1963) was reviewed where over 800 

embryo-defective mutants were isolated and 60 were characterized in some 

detail. In the latter part of the 1970's, this paper inspired David 

Meinke, then a graduate student at Yale University, to pursue the study 

of plant embryogenesis through the isolation and characterization of 

embryo-lethal mutants of Arabidopsis. In his thesis, Meinke (1979) 

described six mutants which were defective in embryo development. A 

series of papers then followed, which described in detail, different 

aspects of the work presented in his thesis. After taking a position at 

Oklahoma State University, Meinke and colleagues have isolated and 
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characterized over 100 new embryo-lethal mutants: Highlights from this 

work include the isolation of developmentally interesting mutants (emb22 

and~), the isolation of a biotin auxotroph (QiQl), and numerous 

interesting conclusions regarding the genetic control of plant embryo 

development. Results from these studies have been summarized in no less 

than 15 publications and numerous conferences. 

The field of Arabidopsis genetics and molecular biology has 

experienced a tremendous infusion of scientists over the past 5 years. 

Many types of mutants are being isolated and characterized by members of 

laboratories from all over the world. Most of these studies have the 

long-term goal of cloning genes responsible for their respective 

processes. The purpose of the work summarized in this dissertation was 

four-fold: (1) to demonstrate that embryonic lethals of Arabidopsis 

could be readily mapped with visible markers, telotrisomics, and RFLP's; 

(2) to enhance the genetic characteristics of Arabidopsis by adding new 

markers to the genetic map and by providing material which could be used 

in the future to construct balanced-lethal chromosomes; (3) to create 

new genetic stocks which could be useful in the future to map embryonic 

lethals and other mutations; and (4) to supply our lab with the most up 

to date techniques for RFLP mapping in preparation for gene isolation 

through chromosome walking. I feel that this dissertation has met these 

goals and should serve as a reference, in the future, to others 

interested in mapping not only embryo-defective, but other types of 

mutants in Arabidopsis. 
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TITLE: W2 X EMB30-1 (10-13-87) 

POT/I PLANT/I AN DIS1 ER EMB30-1 

1 A + + + M 
1 B M M + M 
1 c 
1 D + + + M 
1 E + + + M 
1 F M M + M 
1 G + + + M 
1 H + + + M 
.1 I M M + + 

2 A M M + + 
2 B + + M M 
2 c M M + + 
2 D M M M + 
2 E + + + M 
2 F M M + + 
2 G + M + + 
2 H + + + M 
2 I M M + + 

3 A + + M M 
3 B M M + + 
3 c M M + + 
3 D + + + M 
3 E M + + + 
3 F + + + M 
3 G + + M M 
3 H + + + M 
3 I + + M M 

4 A M M M + 
4 B + + + M 
4 c + + M M 
4 D M M + + 
4 E + + M M 
4 F + + + M 
4 G + + + M 
4 H + + + M 
4 I + + + M 

5 A 
5 B + + + M 
5 c 
5 D + + + M 
5 E 
5 F M M M + 
5 G M M M + 
5 H M + ·+ M 
5 I + + + M 
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TITLE: W2 X EMB30-l (10-13-87) 

POT# PLANT/I AN DISl ER EMB30-l 

6 A M M M + 
6 B M M M + 
6 c + + + M 
6 D M M + + 
6 E M M + + 
6 F + + + M 
6 G M + M M 
6 H M + + + 
6 I + + M M 

7 A + + M M 
7 B + + + M 
7 c + + + M 
7 D 
7 E + + + M 
7 F + + + M 
7 G M M M + 
7 H M M + + 
7 I M M + + 

8 A + + M M 
8 B + + + M 
8 c 
8 D 
8 E + + M M 
8 F + + + M 
8 G M M + + 
8 H M M M + 
8 I + + + M 

9 A M M M + 
9 B M M + + 
9 c + + M M 
9 D + + + M 
9 E + + + M 
9 F M M + + 
9 G + M M + 
9 H + M + + 
9 I M M + + 

10 A + + + M 
10 B + + + M 
10 c M M + + 
10 D + + + + 
10 E + + + M 
10 F + + + M 
10 G M + + M 
10 H + + + M 
10 I + + + M 
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TITLE: W2 X EMB30-1 (10-13-87) 

PO Til PLANT/I AN DISl ER EMB30-1 

11 A + + + M 
11 B + + + M 
11 c + M + + 
11 D + + + M 
11 E M + + M 
11 F + M M + 
11 G M M + + 
11 H + + M M 
11 I + + M M 

12 A + + + M 
12 B + + + M 
12 c + + + M 
12 D + + + M 
12 E 
12 F + + + M 
12 G + + + M 
12 H M M + + 
12 I M + + M 

13 A 
13 B + + M M 
13 c + + + M 
13 D + + + M 
13 E + + + M 
13 F + + + M 
13 G + + + M 
13 H + + M M 
13 I M M + + 

14 A + + + M 
14 B 
14 c + + M M 
14 D 
14 E + + + M 
14 F + + M M 
14 G + M M + 
14 H + + + M 
14 I + + + M 

15 A + + + M 
15 B + + M M 
15 c + + + M 
15 D M M + + 
15 E + M M + 
15 F + + + M 
15 G + + + M 
15 H + + + M 
15 I + M + M 
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TITLE: W2 X EMB30-1 (10-13-87) 

POT1f PLANT/I AN DIS1 ER EMB30-1 

16 A M M + ;+ 
16 B + + + M 
16 c + + M M 
16 D + + M M 
16 E + M M + 
16 F M + + M 
16 G M M + + 
16 H M M + + 
16 I 

17 A + + + M 
17 B M M + + 
17 c + + + M 
17 D + + + M 
17 E + + + M 
17 F + + M M 
17 G + + + M 
17 H + + + M 
17 I + + + M 

18 A + + M M 
18 B M M + + 
18 c M M M + 
18 D 
18 E + + + M 
18 F M M M + 
18 G + + M M 
18 H + + M M 
18 I M + M M 

19 A M M M + 
19 B M M M + 
19 c + + + M 
19 D + + + M 
19 E + + + M 
19 F M M + + 
19 G + + + M 
19 H + + + M 
19 I + + + M 

20 A + + + M 
20 B + + + M 
20 c + M + + 
20 D + M + + 
20 E + + + M 
20 F + + M M 
20 G + + + M 
20 H M M M + 
20 I M + + M 
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TITLE: W2 X EMB30-l (10-13-87) 

POT/I PLANT11 AN DIS1 ER EMB30-1 

21 A M M + + 
21 B + + + M 
21 c + + + M 
21 D + + + M 
21 E + + + M 
21 F + + M M 
21 G M M M + 
21 H M M M + 
21 I M M + + 

22 A + + M M 
22 B M M + + 
22 c + + M M 
22 D + + + M 
22 E 
22 F + + + M 
22 G + + M M 
22 H + + M M 
22 I + + + M 

23 A + + M M 
23 B + M + + 
23. c 
23 o· + M + + 
23 E + + + M 
23 F + + + M 
23 G M M + + 
23 H 
23 I + + M M 

24 A + M + + 
24 B + + + M 
24 c M M + + 
24 D 
24 E + + + M 
24 F M M + + 
24 G + + + M 
24 H + M + + 
24 I + + + M 

25 A + M + + 
25 B + + + M 
25 c 
25 D M M + + 
25 E + + + M 
25 F M M + + 
25 G M M + M 
25 H + + M M 
25 I + + M M 
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TITLE: W2 X EMB30-1 (10-13-87) 

POT/I PLANT/I AN DIS1 ER EMB30-1 

26 A + + + M 
26 B 
26 c M M + + 
26 D + + + M 
26 E + + + M 
26 F + + + M 
26 G + + + M 
26 H 
26 I + + M M 

27 A + + + M 
27 B 
27 c M M + + 
27 D 
27 E M M M + 
27 F 
27 G 
27 H + + + M 
27 I + + M M 

SUMS OF: 
+ 152 146 159 72 
M 67 73 60 147 

OTHER 24 24 24 24 

SUMS OF: 
++ 16 3 50 
+M 136 143 109 
M+ 56 69 22 
MM 11 4 38 

TOTAL NUMBER OF PLANTS : 243 
TOTAL NUMBER OF DEAD PLANTS : 24 
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GENE MAPPING The Chi-Square Test II 11/15/1990 

1. AD Test - 3 degrees of freedom. 
2. EF Test - 1 degree of freedom. 
3. Send latest results to printer. 
4. Exit to DOS. 

The main menu, shown above, appears on the screen after the CHI program 

is started. Use the cursor control keys to highlight the type of data 

and press return, the AD and EF methods are explained in Table 2 (p.66). 

The AD segregation data from Appendix A for the genes disl and emb30 

will be used in this example, so we highlight "AD Test" and press 

return. 



GENE MAPPING II Enter AD Test Data 

Choose a title: 

(+/-,+/+) A: 
(+/-,+/e) B: 
(M/M,+/+) C: 
(M/M,+/e) D: 
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II 11/15/1990 

The menu shown above appears on the screen and prompts the user for a 

title and the number of plants in each F~ class. Enter the appropriate 

information. The genotypes of the four classes A, B, G, and D are shown 

to the left of the appropriate letter. 
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GENE MAPPING Enter AD Test Data II 11/15/1990 

Choose a title: disl x emb30-l 

(+/-,+/+) A: 3 
(+/-,+/e) B: 143 
(M/M,+/+) C: 69 
(M/M,+/e) D: 4 

Once the information is filled in, the screen should appear as shown 

above. To start the calculation press Control-Q (press control key 

while holding down the key for the letter "Q" on the keyboard. 



GENE MAPPING Enter AD Te~t Data II 

dis1 x emb30-1 

Observed Expected Difference 

A 
B 
c 
D 

3 
143 

69 
4 

Total 219 

Chi-square -

54.75 
109.50 

18.18 
36.57 

230.28 *** 

Press any key to continue. 

-51.75 
33.50 
50.82 

-32.57 

11/15/1990 

The screen will then show the chi-square calculation along with the 

level of statistical significance (* - significantly different at P 

0.05; **at P- 0.01; and*** at P s 0.005). In this case, the 
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segregation of the ~ and emb30 genes is significantly different from 

what is expected for unlinked genes, therefore the genes appear to be 

linked. To print the results, press any key to return to main menu 

shown on P.l39, then highlight "Send latest results to printer" and 

press return. The final printout looks exactly like what is inside the 

box shown above. To quit, highlight "Exit to DOS" and press return. 
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******** MAIN MENU ************************* 
* * 
* * 
* choose the phase (coupling/repulsion) * 
* * 
* choose the type of data set * 
* * 
* choose the parameters to estimate * 
* * 
* * 
* enter the data (observed frequencies) * 
* * 
* enter the number of iterations * 
* * 
* enter the trial values * 
* * 
* -------------------- * 
* RUN I make your choice I * 
* I (use cursor keys) I * 
* QUIT I and press ENTER I * 
* -------------------- * 
******************************************** 

The menu shown above appears on the screen once RECF2 has been started. 

Each item in this menu must be selected before RECF2 can make 

recombination estimates. Highlight the first item "choose the phase" 

with the cursor keys, and press enter. 

******** PHASE MENU ********** 
* 
* 
* 
* 
* 
* 
* 

·* 

coupling 

repulsion 

* 
* 
* 
* 
* 
* 
* 
* 

****************************** 

Make your choice 
(use cursor keys) 
and press ENTER 

The "phase menu" shown above then appears on the screen. The recessive 

alleles are either in the coupling or repulsion phase in the F1 plants. 

When mapping embryonic lethals with visible markers, use repulsion. 



A. a a 

B. . . . . .. 

bb . . . ... 

A. a a 

BB . . . ... 

Bb . . . ... 

bb . . . ... 

A. aa 

BB 

Bb 

Dominance at 
both loci 
4 phenotypes 

Dominance at 
one locus 

6 phenotypes 

Dominance at 
one locus; 

********************** 
* TYPE OF DATA * 
* * * Make your choice * 
* (use cursor keys) * 
* and press ENTER * 
********************** 

AA Aa aa 

BB No dominance 

Bb 9 phenotypes 

bb 

one recessive lethal 

4 phenotypes 
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The "type of data" choice is then highlighted in the main menu; the menu 

shown above then appears on the screen. The choices in this menu refer 

to the genetic characteristics of the marker and the gene of interest 

being mapped. In our case, there is dominance at one locus 

(heterozygotes indistinguishable from wild-type) and one recessive 

lethal. Highlight the appropriate choice and press enter. 

. .~ .. 
... 



********* Parameter Menu ********************* 
* * 
* * * Rec. + Cert. A/a-locus+ Cert. B/b-locus * 
* 
* 
* * Rec. + Cert. A/a-locus 

* 
* 
* * Rec. + 

* 
* 
* 
* 
* 
* 
* 

Cert. B/b-locus * 
* 
* 

* 
******************************** 

* * * Rec. only * Rec. ~recombination frequency 

* * 
* * Cert.- certation 
*************** 

Ma~e your choice 
(use cursor keys) 
and press ENTER 
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Next, choose the parameters to estimate in the main menu; the "parameter 

menu" shown above will appear on the screen. The choices here ask 

whether you want to simultaneously estimate recombination and certation 

parameters. Usually, "recombination only" is selected in this menu. If 

certation is to be estimated, the user must manually enter his/her own 

estimate of certation effects into the "trial values" menu shown later. 

Certation values range from 0.0 (pollen carrying recessive allele does 

not contribute to fertilization to 1.0 (pollen carrying recessive allele 

outcompetes the wild-type allele in all cases). A certation value of 

0.5 would represent a "normal" heterozygote where half of the pollen 

grains that contribute to fertilization carry the wild-type allele and 

half carry the recessive allele. 
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A. aa 

BBDG DATA 

BbGD 
************************************************ 

proceed 

The next choice in the main menu is "enter the data"; after this choice 

is selected, the data menu shown above is displayed. The observed 

number of plants in each class is entered into the four rectangular 

boxes. The letter "A" represents the visible marker and "B" is the 

lethal. The capital letters represent the wild-type allele and the 

lower case is for recessive. The "A." genotype represents plants with 

the wild-type phenotype and "aa" is for plants with the recessive 

phenotype. The "BB" symbol represents plants that are not segregating 

for the lethal, while "Bb" plants are segregating. The four rectangular 

boxes represent F2 classes A (upper left), B (lower left), C (upper 

right), and D (lower right) as defined in table 2 (p.68). The data 

shown here are from segregation data shown in Appendix A, for the genes 

Q.i...U and ~-
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Number of iterations 

(default-20) 

proceed 

The next choice in the main menu is "number of iterations". The number 

of iterations (or mathematical "tries" to fit your data with a level of 

recombination) is set at default value of 20 as shown above, which seems 

to work well as long as your segregation data are fairly close to what 

is expected for some percent recombination. In most cases, highlight 20 

and press return. 

TRIAL VALUES 

Recombination:!~ ___ o_._2_s_o~~ 

proceed 

The next choice in the main menu is "enter the trial values". The trial 

values are your best estimate of the level of recombination (and/or 

certation). ~J')_:".9_gE~n.!._l:13..e~ this value as a starting poir1t as it tries 

to fit your data with what would be expected at different levels of 
~~ -------------· ""------------·----

recombination. If you are not sure, just enter 0.25 (25% recombination) 

as shown above. In nearly all cases this value is sufficient. If not, 

you may need to try higher or lower values depending upon the data. 
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Estimates after 5 iterations : 

Parameter 
1 

Estimate 
0.02444 

Covariance matrix: 

0.000085 

Observed Expected 

3 
69 

143 
4 

3.525 
69.475 

142.519 
3.481 

Total Chi-square -

St.Dev. 
0.00923625 

Chi-square contribution 

0.0781 
0.0033 
0.0016 
0. 0773 

0.1603 (d.f.- 2) 

Finally, choose "RUN" from the main menu and press return, the computer 

screen will then display the recombination estimate and ask if you want 

to print (YjN), press "Y". The covariance matrix calculation is then 

displayed, press "Y" to print. Finally an internal chi-square value is 

shown that compares your observed data with what is expected for that 

level of recombination, again press "Y" to print. The printout shown 

above is from the data entered into the data menu of this Appendix. The 

recombination estimate in this case is 0.02444 with a standard deviation 

of 0.00923625 (2.4 ± 0.92%). The covariance matrix and chi-square 

calculations are both very low with these data, suggesting that the 

observed number of F2 plants in each class is very close to what you 

would expect for two genes separated by 2.4% recombination. When you 

are finished, highlight "quit" in the main menu and press return to exit 

the program and return to the disk operating system (DOS). 
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It is important to note that you must have a good idea of the gene order 

before using GENMAP. The example shown here reconstructs the positions 

of genes on chromosome 3 which is shown in Figure 23 (p.75). Chromosome 

3 was chosen as an example because there are only 11 genes to work with. 

Once the GENMAP program is started, the user is prompted for an "input 

file". The input file is a DOS text file that contains all of the 

available recombination for a given chromosome, note that there must be 

recombination data in this file for each gene to be mapped to this 

chromosome. There are 5 of these files, one for each chromosome. The 

names are chrl.dat, chr2.dat, chr3.dat, chr4.dat, and chr5.dat. The 

example shown below is for chr3.dat. 

hy2 ch6 43.0 4.0 
hy2 cer7 48.6 4.1 
hy2 cer7 46.0· 3.6 
hy2 tt6 48.1 3.5 
gll tt5 39.4 3.0 
gll ch6 28.3 4.3 
gll cer7 28.4 5.5 
gll tt6 38.0 3.8 
tt5 cer7 12.8 5.6 
ch6 gll 43.0 3.0 
ch6 tt5 2.9 0.8 
hy2 abi3 26.1 3.0 
abi3 gll 20.1 3.1 
abi3 tt5 33.0 2.4 
hy2 gll 32.0 0.8 
gll ttS 31.6 1.3 
hy2 tt5 46.9 1.6 
gll cer7 37.0 2.6 
hy2 ap3 48.0 4.6 
gll ap3 30.3 5.4 
hy2 csr 42.2 5.2 
tt5 csr 9.0 2.4 
gll csr 25.5 2.5 
csr cer7 16.3 2.9 
gll emb29 18.0 2.6 
hy2 emb29 10.7 1.8 
cer7 emb78 0.6 0.5 
gll emb78 30.3 3.7 

Note that care must be taken when adding recombination data to these 
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files: 1) always retrieve and save these files in a DOS text format; 2) 

make sure there are no extra spaces at the end of a text line or no 

extra hard returns at the end of the file; and 3) never add any special 

commands from a word processor such' as underline, bold, or 

superscripts/subscripts. After you have entered the name of the input 

data file (chr3.dat in this case) the program asks whether you want a 

printed list of the genes to be mapped. You must print this list (shown 

below) before going to the next step because each gene will be referred 

to by the whole number printed next to the gene symbol in the list. 

1 hy2 
2 ch6 
3 cer7 
4 tt6 
5 gll 
6 tt5 
7 abi3 
8 ap3 
9 csr 

10 emb29 
11 emb78 

GENMAP then asks: "Do you want a printed list of the data sets that have 

been read from the input-file? (Y/N)". Normally you will not need to 

print this list unless you need to verify recently added recombination 

data. The program then asks: "Should all markers listed be mapped 

(Y/N)?". Press "Y" to map all genes listed. The next prompt is "Do you 

want to remove SUSPECT data sets? (Y/N)". Press "N", the recent maps 

(Koornneef 1990; Patton et al. submitted) include SUSPECT data because 

they reflect the peculiarities present in the genome of Arabidopsis. 

GENMAP then prompts you to enter the gene order starting at the top of 

the chromosome with position 0. See the next page for exactly how the 

screen looks when gene order is entered and how the program prompts you 

to enter the correct order. 



Ordering of the markers. 

The following prompts ask for the numerical identifiers of 
the markers at the successive positions; positioning starts at 
position 0. 

position 0: 1 
position 1: 10 
position 2: 7 
position 3: 5 
position 4: 9 
position 5: 8 
position 6: 6 
position 7: 2 
position 8: 11 
position 9: 3 
position 10: 4 
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The numbers on the right were entered from the keyboard. The gene order 

is then printed out on the screen for you to verify before GENMAP 

calculates the relative positions of genes. The screen will then show 

the following: 

The order of markers currently is as follows: 

pos. 0 <---> hy2 
pos. 1 <---> emb29 
pos. 2 <-- -> abi3 
pos. 3 <---> gll 
pos. 4 <-- -> csr 
pos. 5 <---> ap3 
pos. 6 <-- -> tt5 
pos. 7 <-- -> ch6 
pos. 8 <-- -> emb78 
pos. 9 <---> cer7 
pos. 10 <---> tt6 

Do you want to change the gene order? (Y/N) 

Press "N" if the order is correct. GENMAP will then calculate the 

positions of the genes for the chromosome and ask whether you want a 

copy printed out. The printout for chromosome 3, using the above gene 

order and the recombination data (chr3.dat file) shown previously, is 

shown on the next page. 
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Estimated map distances. 

nr marker_l marker_2 distance st.dev. cum.dist. st.dev. 
1 hy2 emb29 13.018 1.632 13.018 1.632 
2 emb29 abi3 12.212 2.883 25.231 2.491 
3 abi3 gll 12.024 2.393 37.254 1.213 
4 gll csr 26.956 2.039 64.210 2.336 
5 csr ap3 8.689 8.688 72.899 8.528 
6 ap3 tt5 0.283 8.594 73.182 1.943 
7 tt5 ch6 2.889 0.794 76.072 2.070 
8 ch6 emb78 3.611 2. 714 79.683 2. 774 
9 emb78 cer7 0.653 0.499 80.336 2.745 

10 cer7 tt6 7.138 9.180 87.474 8.913 

The column labeled "cum.dist." shows the estimated positions of the 

genes, remember that there will always be one gene at position 0, hy2 in 

this case. Occasionally GENMAP will not agree with ·the gene order that 

you put in, and will place one of the genes in another position. You 

can manually override this order and reenter your original order if you 

have proof that this is actually the gene order. The program asks "Do 

you want to change the order of genes? (YjN)" If you press "Y" reenter 

the old order to override the GENMAP estimated order. If you press "N" 

the program asks "DO you want a list of SUSPECT data sets? (YjN)". The 

list of suspect data sets for the above calculation is shown below. 

Used data, 
10 ch6 
13 abi3 

original estimates, combined estimates, chi-square values 
gll 64.667 38.817 5.034 ** SUSPECT ** 
gll 21.302 12.024 6. 296 ** SUSPECT ** 

Total Chi-square value- 33.803 (d.f.- 17) 

The program then prompts you to hit any key to exit, from there you can 

reboot GENMAP to calculate another chromosome. 
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Before starting the CHROMAP program, you must first create a DOS text 

file that contains information on how the chromosomes will look. The 

lengths of chromosomes, centromere positions (optional), and gene 

positions (from GENMAP) are included in the text file. An example of 

this file is shown below. The second entry (5) is the number of 

chromosomes while the next five entries are the lengths of the 

chromosomes. The negative numbers (chosen at random) indicate that 

centromere positions will not be included in this map. If centromere 

positions are to be included, the centromere position as a positive 

number one space after the chromosome length. The remainder of the data 

file is separated in to three columns, chromosome number, gene position 

in eM, and gene symbol. This data file was used to generate the map 

shown in Figure 23 (p.75). 

*** Arabidopsis Chromosome Map *** 
5 
123 -60.0 
48 -50 
88 -57 
74 -50 
99 -41 
1 0.0 an 
1 0.4 emb76 
1 0.5 rgn 
1 0.8 cerl 
1 10.6 albl 
1 13.4 chll 
1 16.6 disl 
1 17.8 emb30 
1 20.6 Dwl 
1 20.9 Gai 
1 21.0 ga4 
1 32.1 th1 
1 32.4 fb 
1 43.6 dis2 
1 53.8 ttl 
1 54.2 chl3 
1 58.4 chl 
1 62.2 emb22 
1 66.4 le 
1 69.8 cer5 
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1 88.1 ft 
1 91.4 clv2 
1 97.1 cer6 
1 100.0 apl 
1 101.7 emb25 
1 110.7 clvl 
1 115.8 emb33 
1 119.8 ga2 
1 119.9 g12 
1 122.4 fe 
2 0.0 Gf 
2 2.3 hy3 
2 5.0 ch12 
2 7.0 cp2 
2 16.2 er 
2 16.9 hyl 
2 22.0 PY 
2 32.7 as 
2 32.8 embl8 
2 34.6 auxl 
2 42.4 sul 
2 47.1 cer8 
2 47.4 emb39 
3 0.0 hy2 
3 13.0 emb29 
3 25.2 abi3 
3 37.3 gll 
3 64.2 csr 
3 72.9 ap3 
3 73.2 tt5 
3 76.1 ch6 
3 79.7 emb78 
3 80.3 cer7 
3 87.5 tt6 
4 0.0 gal 
4 6.3 hy4 
4 9.5 bp 
4 24.5 cpl 
4 28.2 fca 
4 30.8 th3 
4 37.7 ag 
4 39.2 ch42 
4 42.5 emb28 
4 43.5 im 
4 47.0 cer2 
4 47.5 gaS 
4 48.7 emb20 
4 49.8 Abil 
4 56.2 cer4 
4 56.3 fd 
4 63.3 ap2 
4 71.6 cer9 
4 73.4 cp3 



158 

5 0.0 fy 
5 4.2 emb24 
5 8.4 tt7 
5 9.2 ch7 
5 11.1 hy5 
5 13.7 lu 
5 15.1 tt4 
5 16.4 fg 
5 17.2 alb2 
5 23.5 pi 
5 25.3 cnx 
5 25.6 msl 
5 31.4 ttg 
5 35.5 ga3 
5 38.1 su 
5 45.2 ch5 
5 47.0 th2 
5 47.2 tt2 
5 55.7 gl3 
5 57.7 tt3 
5 63.9 emb9 
5 66.8 pgm 
5 77.2 biol 
5 79.0 tz 
5 83.6 cer3 
5 88.7 yi 
5 89.1 embl5 
5 89.8 min 
5 93.1 embl6 
5 98.3 aba 

Once started, the GHROMAP program asks for the name of the input file 

and the name of the output file. The input file is the DOS text file 

shown above and the output file is a plotter language file that contains 

the information needed to print the map. Note that the output file 

should contain the three extension "plt", for example "map.plt". After 

the names of the input file and output file have been entered, the 

program plots the map on the screen, and then moves the overlapping gene 

symbols up or down until no overlaps are detected. GHROMAP then saves 

this final plot in a form that can be used to print the map with a 

plotting program. The plotting program PRINTAPLOT is then used to print 

the map. Start the PRINTAPLOT program by typing "pp" while in the 
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PRINTAPLOT (pplot) directory. The menu shown below then appears on the 

screen. 

PrintAPlot 1.1 (C) Copyright 1988 Insight Development Corp. 

Plotter Settings Files Go Configuration Exit 
Select plotter model to emulate 

Use arrow keys to highlight an option, then press Enter to select it 
- OR -

Just enter the first letter of the option 

Press Esc to revert to previous menu 

SETTINGS SHEET ======r============n 
PLOTTER EMULATION 

HP 7475A 

CONFIGURATION 
Active printer 

HP LaserJet 
Output destination 

LPTl 
Paper source 

Paper tray 

Pen Size Color 
1 1 Black 
2 1 Black 
3 1 Black 
4 1 Black 
5 1 Black 
6 1 Black 

SETTINGS SHEET FILE 

Work disk C: 
Copy count 1 

Origin X 0.00 in 
y 0.00 in 

Resolution 150 dpi 
Inverse No 
Adjust size 100 % 

Use the arrow keys to highlight the "settings" option then press enter. 

The option "Get" will then be highlighted automatically, press enter 

again. The cursor moves to the file "C:\PPLOT\"; type in "standard" to 

complete the filename C:\PPLOT\STANDARD and press return. This file 

automatically contains the settings that used to print the map with a 

Hewlett Packard DeskJet. The screen now shows the proper settings as 

shown on the next page. 
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PrintAPlot 1.1 (C) Copyright 1988 Insight Development Corp. 

Plotter Settings Files Go Configuration Exit 
GetjSavejChange values in the SETTINGS SHEET 

Use arrow keys to highlight an option, then press Enter to select it 
- OR -

Just enter the first letter of the option 

Press Esc to revert to previous menu 

SETTINGS SHEET ======;:::=================~ 
PLOTTER EMULATION 

HP 7475A 

CONFIGURATION 
Active printer 

HP DeskJet 
Output destination 

LPTl 

Pen Size 
1 2 
2 3 
3 4 
4 1 
5 1 
6 1 

Color 
Black 
Black 
Black 
Black 
Black 
Black 

SETTINGS SHEET FILE 
standard 

Work disk C: 

Origin X 0.00 in 
y 0.00 in 

Resolution 300 dpi 
Inverse No 
Adjust size 99 % 

Use the arrow keys to highlight "files" and press enter. The cursor 

moves to the filename "C:\PPLOT\"; use the delete (+-) key to delete this 

filename and replace with the name of the output file from CHROMAP (eg. 

map.plt). Be sure to use the proper Drive:directory address for the 

output file, for example A:\map.plt or C:\CHROMAP\map.plt. The name of 

the file to be printed will appear at the top of the screen, press 

return to confirm file name or press the space bar to cancel. Use the 

arrow keys to highlight "Go" and press return. The data file will then 

be read and plotted by the printer. When the printer is finished, 

highlight "Exit" to quit and return to DOS. 



APPENDIX F 

CONVERSION OF RECOMBINATION FREQUENCY (P) INTO 

CENTIMORGANS USING THE KOSAMBI (1944) 

MAPPING FUNCTION 
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_w_ (eM) 

0.01 1.00 
0.02 2.00 
0.03 3.00 
0.04 4.01 
0.05 5.02 
0.06 6.03 
0.07 7.05 
0.08 8.07 
0.09 9.10 
0.10 10.13 
0.11 11.18 
0.12 12.24 
0.13 13.31 
0.14 14.38 
0.15 15.48 
0.16 16.58 
0.17 17.71 
0.18 18.84 
0.19 20.00 
0.20 21.18 
0.21 22.38 
0.22 23.61 
0.23 24.87 
0.24 26.15 
0.25 27.47 
0.26 28.82 
0.27 30.21 
0.28 31.64 
0.29 33.12 
0.30 34.66 
0.31 36.25 
0.32 37.91 
0.33 39.64 
0.34 41.46 
0.35 43.37 
0.36 45.38 
0.37 47.52 
0.38 49.81 
0.39 52.27 
0.40 54.93 
0.41 57.84 
0.42 61.05 
0.43 64.67 
0.44 68.79 
0.45 73.61 
0.46 79.45 
0.47 86.90 
0.48 97.30 
0.49 114.88 



APPENDIX G 

DERIVATION OF FORMULAE USED TO CALCULATE MINIMUM 

NUMBER OF F2 PLANTS REQUIRED TO 

DETECT LINKAGE 

163 
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AD equation (3 degress of freedom): 

where: X2 is a Chi-squared critical value for P = 0.05, 0.01 or 0.001 

N is minimum number of plants required for linkage detection 

p is recombination frequency (0.1, 0.2, 0.3 or 0.4) 

p0 is recombination frequency for unlinked genes (0.5) 

2 X = 

{N[l/3(p)(2-p)] - N[ lj3(p0 ) (2-p0 ) ]} 2 {N[2/3(1-p+p2 )] - N[2/3(1-p0+p0
2 )] } 2 

+ 

{N[l/3(1-p) 2 )- N[l/3(l-p0 ) 2 ]} 2 {N[2/3(p)(l-p)]- N[2/3(p0 )(l-p0 )]} 2 

+ + ----------------------------------

when solved for N, this simplifies to: 

N- where K~ = ----------------------

9 
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EF equation (1 degree of freedom): 

{ {N[l/3(p)(2-p) ]+N[2/3(1-p+p2 )])- {N[l/3(po)(2-p0 ) ]+N[2/3(1-p0+p0
2 )]} ) 2 

x2 = -----------------------------------------------------------

{ {N[l/3(1-p) 2 ]+N[2/3(p) (1-p)]) - {N[l/3(1-p0 ) 2 ]+N[2/3(1-p0+p0
2 )]} } 2 

+ ----------------------------------------------------------

when solved for N, this simplifies to: 

x2 
N = where Ksp = ___ _ 

27 



APPENDIX H 

CHI-SQUARE CALCULATION FOR THE DISTRIBUTION 

OF F2 PROGENY IN CLASSES A-D FOR 

THE CROSS ~ x emb22 
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F2 class 

A B c D 

Observed 108 252 54 53 

Expected 116.75 233.50 38.76 77.99 

x2 = (108-116.75) 2 + <252-233.5) 2 + (54-38.76) 2 + (53-77.99) 2 

116.75 233.5 38.76 77.99 

= 16.1 Significantly different at P < 0.005. 



APPENDIX I 

CHI-SQUARE CALCULATION FOR THE DISTRIBUTION 

OF PROGENY IN CLASSES E and F FOR 

THE CROSS chl x emb22 
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F2 class 

E F 

Observed 328 339.75 

Expected 125 113.25 

x2 = <328-339.75)2 + <125-113.25)2 
339.75 113.25 

1.6 Not significantly different. 



APPENDIX J 

CHI-SQUARE CALCULATION FOR THE DISTRIBUTION 

OF F2 PROGENY IN CLASSES E AND F FOR 

THE CROSS tt~ x biol 

170 
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F2 class 

E F 

Observed 932 432 

Expected 1023 341 

x2 <932-102322 + <432-34122 
1023 341 

= 32.4 Significantly different at P <0.005. 



APPENDIX K 

CHI-SQUARE CALCULATION FOR THE DISTRIBUTION 

OF F2 PROGENY IN CLASSES I AND II FOR 

THE BACKCROSS W2 X emb30 
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Class 

I II 

Observed 59 101 

Expected 80 80 

x2 (59-8022 + (101-8022 
80 80 

= 11.0 Significantly different at P <0.005. 



APPENDIX L 

MOLECULAR BIOLOGY PROTOCOLS USED IN RFLP MAPPING 

174 



Plant DNA Isolation - 5 plants/pool 

Extraction Buffer: 0.1 M Tris (8.0) 
0.1 M EDTA (8.0) 
0.25 M NaCl 
100 ~gjml Proteinase K 
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1) Grind 5 plants to a powder in liquid N2 and transfer frozen powder 
to weigh boat on dry ice. Estimate fresh weight of tissue if not 
available. 

2) Use spatula to transfer frozen powder to 50 ml Oak Ridge Tube or 250 
ml centrifuge bottle then add 5-10 mls extraction buffer per gram 
fresh weight, mix to suspend cells. 

3) Add enough 10% Sarkosyl to give final concentration of 1% sarkosyl, 
mix gently via inversion to lyse cells and incubate 1-2 hours at 
55°C. 

4) Spin 7K rpm (JA-20 rotor) 10 min; 4°C. 

5) Save supernatant, add 0.6 vol cold isopropanol, gently invert to 
mix, incubate 30 min -20°C. 

6) Spin 9K (JA-20) 15 min save nucleic acid pellet and resuspend pellet 
in 4.5 mls TE80. 

7) Add 4.85 g CsCl; mix well to dissolve; incubate on ice 30 min; 
transfer to 15 ml Corex tube. 

8) Spin 9K for 10 min; use sterile pasteur pipet to transfer supernatant 
(minus pellicle) to new 50 ml Oak Ridge Tube. 

9) Add 250 ~1 of 10 mgjml EtBr (WEAR GLOVES); incubate 30 min on ice. 

10) Pellet RNA with 9K, 10 min spin; transfer supernatant to 5 ml quick 
seal ultracentrifuge tube. 

11) Spin 60K, 10-12 hours, 0 deceleration, 20°C, VTi 65.2 rotor. 

12) Use UV to illuminate tube, puncture top of tube with 2lg needle, 
then insert 18.5 g needle (on a syringe) just below fluorescent DNA 
band; draw off DNA slowly, remove needle and squirt DNA into Corning 
15 ml tube. 

13) Extract DNA to 2X past colorless with isopropanol over CsCl water in 
15 ml Corning screw cap tube. 

14) Add 2vol H20 and 6vol cold EtOH, mix, incubate lhr at -20°C. (DNA 
should appear as stringy, white ppt.) 

15) Transfer to 15 ml corex tube, spin 10 min 9K; resuspend DNA pellet 
in 400 ~1 TE80 transfer to microfuge tube. 
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in 400 ~1 TE80 transfer to microfuge tube. 

16) Add 40 ~1 (O.lvol) 3M Na Acetate and 800 ~1 (2vol) cold EtOH mix and 
incubate lhr -20°C to reprecipitate DNA. 

17) Spin 10 min in microfuge, wash DNA pellet with 1 ml 80% EtOH, 
briefly air dry pellet, resuspend in 50 ~1 TE80. Let dissolve 
overnight at 4° C. Estimate concentration and purity using 260/280 
readings from spectrophotometer. 



HIGH-EFFICIENCY VACUUM BLOTTING 

REAGENTS 

0.25 N HCl (20 mls concentrated Hpl and HlO up to 1 liter) 

Denaturation solution (0.5 M NaOH; 1.5 M NaCl; 2 mM EDTA) 

20.00 g NaOH 
87.66 g NaCl 
4.00 mls 0.5 M EDTA 

dH20 up to 1 liter 

Neutralization solution 
(0.5 M Tris-HCl {pH~7}; 3M NaCl; 2 mM EDTA) 

500 mls 1 M Tris-HCl (pH = 7} 
175.3 g NaCl 
4.0 mls 0.5 M EDTA 
dH20 up to 1 liter 

20X sse (3 M NaCl; 0.3 M sodium citrate) 

175.3 g NaCl 
88.2 g sodium citrate (citric acid trisodium salt) 

dH20 up to 800 m1s 
adjust pH to 7.0 with NaOH 
adjust final volume to 1 liter with dH20 
FILTER THROUGH 0.45 urn MESH FILTER BEFORE USE 

Note: All of the following steps require gentle shaking of the 
gel in 3 gel volumes of each solution. 

1) 15-20 min in 3 volumes 0.25 N HCl (15 for 0.75 mm gels 20 for 
thicker) DO NOT OVER-FRAGMENT THE DNA! 

2) Decant acid; rinse gel ~ 1 min in dHlO; replace with 3 
volumes of denaturation solution; agitate for 30 min; 
can be longer 

3) Decant; rinse in dHlO; replace with 3 volumes neutralization 
solution; shake for 30 min (can be longer) 

4) Transfer gel to prepared vacuum blotter; seal edges of gel 
with 1% molten agar or agarose. Turn on vacuum and set to 
40 em. Add filtered 20X SSG to immerse the gel to 
approximately twice its thickness. Vacuum blot for 2 hrs or 
longer. Photograph restained gel. Crosslink DNA to Nytran 
on 3MM filter paper (wetted with 2X SSG) at a setting of 
1,200 (xlOO) pJ with Stratalinker. Briefly rinse membrane 
with 2X sse before drying or use. 
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GENIUS PROTOCOL - HYBRIDIZATION 

Solutions: 

20X SSC = 3M NaCl; 0.3M sodium citrate (citric acid sodium salt) pH 
7.0 

Hybridization solution= 5X SSC; 1.5% Blocking reagent, 0.1% sarkosyl; 
0.02% SDS; 50% formamide; 10 % dextran sulfate 

13 mls 
50 mls 
25 mls 
1.5g 
200 ~1 
1 ml 
10 ~ 

H20 
formamide 
20x sse 
blocking reagent (vial #11) 
10% SDS 
10% sarkosyl 
Dextran sulfate 

put on stir plate 1-2 hrs at 60° C to dissolve blocking reagent 

2X SSC; 0.1 % SDS 

o.sx sse; 0.1 % sns 

For 130 cm2 membranes use the following volumes: 

1) Run DNA out on gel; fragment the DNA with HCl; denature with NaOH; 
and neutralize. Blot 2hrs with 40 em H20 vacuum with 20X SSC 
overlay. Crosslink DNA to Nytran with 1200 (x 100 ~J) using 
Stratalinker. Wash membrane briefly with 2X SSC. SEE VACUUM 
BLOTTING PROTOCOL. 

2) Pre-hybridize membrane at 42° C for at least 1 hr with 26 mls 
hybridization solution in a sealed bag. 

3) Replace pre-hybridization solution with 3.25 mls hybridization 
solution containing freshly denatured probe (10 min at 95° C and 
quick chill at -70° C for 10 min.). Hybridize at 42° Cat least 6 
hrs; can go up to 24 hrs. 

** Note that you should begin making Buffer #2 prior to step 4 if you 
are going to go directly to the immunolog~cal detection procedure. 

4) Wash membrane 2 x 5 min. at room To with 65 mls 2X SSC; 0.1% SDS. 

5) Wash membrane 2 x 15 min. at 65° C with 65 mls O.SX SSC; 0.1% SDS. 

6) Membrane can then be used directly for immunological detection or 
stored air dried for later use. 



GENIUS PROTOCOL - DNA LABELING 

1) Isolate and purify linearized template DNA (may use 
phenol/chloroform). Bring final pellet up in 37.5 ~1 TE-80. 

2) Denature template DNA by heating in a 95° C water bath for 10 min. 
then quickly chill tube on dry ice. Complete denaturation is 
essential. 

3) Add the following to a microfuge tube on ice: 

1 ~g template DNA (or desired amount) in 37.5 ~1 TE-80 
5 ~1 hexanucleotide mixture (random primers) vial #5 
5 ~1 dNTP labeling mixture vial 116 
2.5 ~1 Klenow enzyme (2U/~l) vial #7 
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4) Incubate at 37° C for at least lhr., may go as long as 20 hrs. Stop 
the reaction by adding 5 ~1 of 0.2M EDTA (pH= 8.0). 

5) Add: 2.5 ~1 of 20 mgjml glycogen (acts as a carrier), 22.5 ~1 H20 and 
7.5 ~1 of 4M LiCl, mix. 

6) Add 250 ~1 of cold absolute EtOH; mix and transfer to siliconized 
tube (dig-deoxy-labeled DNA pellets will be difficult to get into 
sol'n otherwise). Incubate tube on dry ice or at -70° C for 30 min. 

7) Spin in microfuge at room To for 10 min. drain tube and briefly dry 
pellet. 

8) Resuspend pellet with 50 ~1 of TE-80 + 0.1% SDS, incubate at 37° C 
for 10 min. with frequent vortexing. Add contents of tube to 10 mls 
of hybridization solution and store at -20° C. Use 3.25 mls for 130 
cm2 blots. Boil and quick-freeze hybridization solution before use. 
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GENIUS PROTOCOL - IMMUNOLOGICAL DETECTION 

Solutions: (note that vloumes are for 130 cm2 membranes) 

Buffer 111 100 mM Tris-HCl; lSO mM NaCl; pH= 7.S 

Buffer #2 1.2S% Blocking reagent and SO ~g/ml ssDNA in Buffer #1 
(2.S g blocking reagent and lml of 10 mgjml ssDNA per 200mls buffer) 

Buffer #3 = 100 mM Tris-HCl; 100 mM NaCl; SO mM MgC1 2 ; pH= 9.S 
Make fresh by adding lOmls each of 1M Tris-HCl (pH= 9.S) 
and 1M NaCl to 7S mls H20; then, while stirring, slowly add 
Smls 1M MgC1 2 • 

Buffer #4 = 10 mM Tris-HCl; lmM EDTA; pH= 8.0 

(Prepare the following just prior to use) 

Antibody conjugate sol'n = S.2~1 (vial #8) in 26 mls buffer #2 

Color solution= S8.S ~1 NBT (vial #9) 
4S. S ~1 x-phos (vial 1/10) 
13 mls buffer 113 

All of the following incubations are carried out at room T0 with gentle 
agitation (except for the color development). Volumes are for 130 cm2 

membranes. 

1) Wash filter briefly (zl min.) in 13G mls buffer #1. 

2) Incubate membrane for 30 min. with 130 mls buffer #2. 

3) Make Antibody conjugate sol'n. 

4) Incubate membrane for 30 min. with 26 mls Antibody conjugate (in 
sealed bag). 

S) Wash 2 x lS min. with 130 mls Buffer #1. 

6) Equilibrate membrane for 2 min. with 26 mls buffer #3. 

7) Incubate filter in the dark with 13 mls color solution (in sealed 
bag) may go as long as 1 day. 

8) When (and if) desired bands are detected stop reaction by rinsing 
membrane with 6S mls buffer #4. 

9) Photocopy andjor photograph blot as soon as possible to document 
results. 
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