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PREFACE 

In January 1983, I returned to OSU to begin formal work on the 

degree of Doctor of Philosophy. My personal goal was to take a number of 

courses which I knew from experience would be useful in the burgeoning 

information age. Luckily for me, since without it I might never have 

collected and produced enough material to write this dissertation, I became 

involved with the Oklahoma State University Consortium for Enhancement 

of Well Log Data via Signal Processing. (We call it the Well Log Project for 

brevity.) This wonderful group of companies gave us much needed contact 

with researchers from companies such as Amoco Production Company; 

Arco Oil and Gas Company; Cities Service Oil and Gas Corporation; 

Conoco; Dresser-Atlas Company; Exxon Production Research Company; 

Gearhart Industries, Inc.; Halliburton; International Business Machines; 

Mobil Research and Development Corporation; Phillips Petroleum 

Corporation; Seismograph Service Corporation; Sohio Petroleum Company; 

Texaco Corporation; and the Oklahoma State University Center for Energy 

Research. My graduate research assistantship was funded by this 

consortium, and the support is gratefully acknowledged. 

Ironically, some experts, along the very helpful and extremely detailed 

discussions, also advised that everything possible had been done for the 

gamma-ray log, and that I should pursue a more fruitful avenue of research. 

Instead of the desired effect, this made me more determined to do something 

which, I hope, is useful in the field. After all, the history of technology is 

iii 



filled with ironies like Einstein working at a patent office during an era when 

serious suggestions were being made that patent offices be closed since 

everything possible had been invented. One thing for which I feel indebted 

to these researchers is that in spite of any doubts as to the fruitfulness of this 

field of my endeavor, they did their utmost to assist me in every way 

possible. 

After reading a large amount of literature on gamma-ray logging, I 

knew that the issue of what to do about the Poisson noise inherent in 

radioactive decay is an important problem to investigate. The problem is that 

this noise is small in comparison with the uncertainties involved in physical 

logging, so by late spring 1983 I began using the synthetic logs described 

here and measuring the results in Monte Carlo simulations. This was the 

turning point because it provided me with a relatively objective figure of merit 

of a filter. 

And, although I touch on the subject of what input parameters should 

be provided to the synthetic log generator, I have never changed them from 

that first spring day when the program ran. This I have purposely not 

experimented with for fear of coming up with an optimized log instead of an 

improved filter. The question of how the different synthetic log parameters 

affect filtering may provide another interesting topic of research if couched 

in slightly different tenns. 

The advent of the synthetic log brought with it some startling conclusions: 

Ordinary median filters increased the noise; recursive median filters improved 

the noise level more than did the optimal time-invariant linear filter; but my 

own best filter thus far did little in comparison. That filter has long since 

been confined to mass storage, but it did introduce me to a useful methodology 

in inventing filters. One indication of the pathological features of this filter 
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appears to be that the histograms results of the Monte Carlo simulation are 

multimodal. By keeping a record of the input seeds to the random number 

subsequently be regenerated and examined manually for the features that 

cause unusually beneficial or pathological behavior. This may seem like it 

would produce an unwieldy quantity of output, but for any filter that 

improved the results, less than 10% of the histogram's data points fell 

outside the Gaussian-like center hump, and often the examination of only a 

few of these would be sufficient to conjecture what might be improved. 

Once the histogram began to appear Gaussian, the filters often began to 

produce reasonable results on actual log data, also. Perhaps the process 

could be repeated with the tails of the histograms, but this is left as a 

potentially interesting problem for future work. 

In addition to acknowledging the helpful discussions with the various 

members of the OSU Well Log Consortium, I would especially like to thank 

Eric Pasternak of Arco for providing suitable gamma-ray log data on which 

to illustrate the results. To all the faculty members at OSU I wish to extend 

my heartfelt thanks since I cannot think of a single class in which the professor 

did not take time to explain some question that I had which might not even 

be particularly related to the subject. In particular, and not necessarily in 

any particular order, I wish to thank certain members of that faculty for their 

special help. Dr. James Rowland made computer simulations a very exciting 

part of all his classes, and serving on my committee. Dr. Gary Stewart of the 

Geology Department spent many hours defining salient features in various logs 

and ultimately examining the results of the more meritorious filters to see if 

they made gross blunders. Dr. Stewart also served on my committee. Dr. 

David Soldan initially got me started in the gamma-ray log and helped with 

in the numerous discussions that save many precious hours when learning a 
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new subject and initially acting as my thesis advisor. Dr. Allen Steinhardt 

came up with challenging problems that were, at the same time, unusual, 

relevant, and interesting. He subsequently served as my thesis advisor before 

joining MIT Lincoln Labs (now at Cornell University) and is especially 

remembered for good mathematically correct and relevant answers to many 

of my badly posed questions. 

My debt of gratitude to the chairman of my committee, Dr. Rao Yarlagadda 

can never be repaid. He has contributed in so many ways to my education 

that I doubt I can name them all. He instigated the OSU Wellog Consortium, 

which has been so important, taught numerous courses, answered many 

questions, provided many books, and provided continuity in the mist of the 

many changes my committee has undergone. Without his patience and persistent 

encouragement, this work might have died on the verge of completion. 

In my personal life, I must thank my loving wife Carol for her 

patience with all days I spent away from home in pursuit of this project. My 

father, Jack T. Paden, Jr. has also provided much needed encouragement to 

overcome those many petty adversities that once seemed too onerous to 

endure. My grandfather, Jack T. Paden, Sr. always encouraged me by 

instilling the philosophy that the purpose of education is to enable one to 

fmd that employment which best suits that particular individual, in order that 

she or he may get the most out of life. (Or, as I have come to think of it: 

The only real success in life is to be able to do exactly what one wants.) 

Last, but not least, I express my heartfelt thanks to the many, many 

other people, going as far back as my school days in Sand Springs, Oklahoma, 

in Stillwater, and other places, who have assisted me over the years both in 

obtaining the requisite education for this research, as well as in the research 

itself. 
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CHAPTER I 

INTRODUCTION 

At least two major types of gamma-ray logging tools are widely used 

in the oil field. The first of these, which produces what is known as the 

gamma-gamma log, has a radioactive source as well as a transducer that 

converts gamma-rays into electrical impulses. The second, which produces 

the gamma-ray log, has only the transducer, and will be discussed here. It is 

often used to study geologic fonnations involving highly radioactive elements 

such as those containing Uranium, as well as to do ordinary oil field logging. 

This tool is also made with multiple transducers, each sensitive to gamma

rays of particular energy. Due to the penetrating nature of gamma-rays, 

these tools are usually made cylindrically symmetric. As the tool is pulled 

up a borehole, the naturally occurring radiation is converted to electrical 

pulses, which are integrated by a simple RC circuit known as the ratemeter, 

and the result then recorded for subsequent interpretation. This produces 

relatively large signals for beds of shale, which are more radioactive 

than beds of sand. 

The underlying cause of the problem is that the needs of the oil field 

are much different than the needs of Uranium mining. In Uranium mining, 

boreholes are often drilled solely for exploratory purposes preparatory to 

mining. These holes are available for many hours for logging purposes, and 

consequently the logging may be done much more slowly than in oil fields. 

This need for rapid logging in oil fields, along with the fact that uranium ore 
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and other ore mined for radioactive elements are many times more radioactive 

than common shale or sand, produces a log at least an order of magnitude 

less noisy than that found in oil field logs. On the other hand, in the oil 

field, the time spent logging the well may often come at the expense of idle 

drilling equipment, costing many tens of thousands of dollars per day. Many 

of the researchers working with gamma-ray logs come from the mining 

environment, so they have little motivation to reduce the greatly increased 

variance associated with the rapidly done oil field log. 

At first it may seem that logging the well more slowly is a reasonable 

solution, but in the oil field are a number of tools producing useful information 

when run at a rapid pace. These include sonic tools, resistivity tools, 

induction tools, borehole televiewers and others. Consequently, the choice 

invariably made is to run the log rapidly and process the results numerically. 

The other important observation in this scenario is that the driving function 

of this system-the relative radioactivity of each geologic bed-cannot be 

accurately deduced from other logs. This lack of knowledge of the input to 

the system and the desire to estimate it more precisely leads to the construction 

of synthetic logs in order to be able to evaluate the results precisely. 

To lay the framework for this work, a model of gamma-ray logging is 

developed which takes into account the previous efforts in this field. Next a 

method of synthetic log construction is proposed that is rich in the smaller · 

beds which most interest geologists. Having thus ascertained the driving 

function of the system, the measurement of the error of the filtered signal is 

defmed. Then, since the filters of interest are nonlinear and have no closed 

form equation representing their capability for noise reduction, the Monte 

Carlo method is advocated, along with applications of the relevant equations 

to other parts of this work. After that, an unattainable minimum noise level 
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is derived below which no filter can achieve additional noise reduction. And 

last, an introductory summary is given, along with an outline of the 

remainder of this work. 

1.1. The Model of Gamma-Ray Logging 

The model of gamma-ray logging used is highly dependent on research 

in that field. The first reference to practical gamma-ray well logging was 

published by Howell and Frosch (1939) at the annual meeting of the board of 

directors of the Humble Oil & Refining Co. in Oklahoma City. They first 

used an ionization chamber, which led to the construction of a more rugged 

apparatus containing two Geiger counters. This instrument was about 12 

feet long and 3.5 inches in diameter, similar in size to modem instruments 

which often make use of scintillation counters. 

1.1.1. Poisson Noise 

The radioactive decay which drives these detectors has associated 

with it a phenomenon known as Poisson noise. This can be derived 

mathematically, as in Haight (1967), which starts with the basic physics in 

Evans (1955). Haight includes other important facts about the Poisson 

distribution and an extensive bibliography. If the mean of the Poisson 

distribution is sufficiently large, it may be effectively modeled by a Gaussian 

distribution with its mean and variance set equal to the mean of the Poisson 

distribution. The error in this approximation is derived and is discussed 

extensively in §119 and §120 of Fry (1965), which gives the warning that 

the largest percentage error is in the tails of the distribution, a caveat that 

does not apply here. The noisy signal is then affected by interaction with a 

number of parameters such as the borehole diameter, the length of the 
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Geiger counter tubes, the absorption of gamma radiation in the drilling mud, 

and a number of other factors. 

1.1.2. Factors Affecting the Recorded Signal 

Scott and his colleagues (1961) mention borehole diameter, medium filling 

the borehole, borehole casing, water content of ore, and the nonuniform 

distribution of radioactive material within a layer and give standard conditions 

for U. S. Atomic Energy Commission logging. However, such standarp 

conditions are virtually impossible to achieve in an oil well. Rhodes and 

Mott (1966) quantify the effects of such less-than-ideal factors in oil well 

logging. This is largely based on work done around 1961. They quantify the 

effects of the borehole diameter, mud density, casing and cement thickness, bed 

thickness, and detector eccentricity. This is done for a number of different 

gamma-ray energies. By using these differing characteristics, the log analyst 

may determine the interactions of these different effects. The capability to 

do this demonstrates the usefulness of the spectral gamma logs. 

Mathematical investigation of the effects of the ratemeter, the length 

of the detector, the size of the borehole, and the absorption of the drilling 

mud was done by Czubek (1964, 1971, 1972). Davydov (1970) investigated 

the one-dimensional problem in gamma-ray logging. Czubek and Zorski 

(1976) present a method of accounting for the above effects as well as logging 

velocity, absorption in the rock, and rock porosity. They present tables of 

the mathematical coefficients required for practical application of the 

method. 

From the standpoint of signal processing, this is all greatly simplified 

by Conaway and Killeen (1978). These researchers defme the geologic 

impulse response (GIR) as the response produced by infmitesimally thin bed 
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on a one-dimensional detector. If this is done under the ideal conditions of 

noise-free counts, and infmitesimal sample inteiVal, then the GIR, <1>, as a 

function of depth z is 

<l>(z) = ~-alzl, (1) 

where the infmitesimal bed is assumed to be at z = 0 and a, a constant to 

determine the shape of the double exponential. Essentially, this equation is 

the one found in Davydov (1970), who refers Suppe and Khaikovich (1960). 

They go on to derive the inverse digital operator for the GIR as 

(2) 

The issue of how to relate a to Czubek's work is further examined by 

Conaway (1980). He points out that Czubek's expression for the GIR may 

be written: 

<I>(J..L,Z) = [ co ] ' 

2!JR K1(!l.R) - !:0(x)dx 

(3) 

where J.l is the linear attenuation coefficient, R is the borehole radius, K0(x) 

and K1(x) are modified Bessel functions of the second kind, and E1(x) is the 

exponential integral of order 1 defmed by 

00 

E1(x) = Je;'dt. (4) 

X 

Both the exponential integral and the modified Bessel function of the second 

kind are tabulated in Abramowitz and Stegun (1964). Czubek (1971) suggested 

approximating the GIR with the double-sided exponential and gave an 
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expression for obtaining a from the borehole radius R and linear attenuation 

coefficient ~' 

E1(~R) 
a=--~--~~------~ 

!lR [ Kl(J.tR)-to(x)dx] 
(5) 

Although Czubek suggests obtaining a from normalizing the two curves, 

Conaway (1980) uses what he terms the semilogarithmic slope method. It 

turns out that either of these methods is more than what is required for the 

logs discussed later. 

Poisson 

Noise 

1 Geologic Deconvolve Filter 

:@-Shale Beds Impulse 
... GIR - Noise ... - - ... 

Response (GIR) 

Figure 1. Model of gamma-ray logging. 

Combining the various pieces gives a model for gamma-ray logging as 

illustrated in Figure 1. The shale beds generate the signal, which, by virtue 

of the discrete nature of the constant process of radioactive decay, has Poisson 

noise added to it. This, of course, neglects the extremely small second order 

effect that as decay occurs, a miniscule amount of material is transmuted to 

another element, thereby changing the rate. This combined signal then 
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passes through the geologic features at various angles to strike the detector. 

Neglecting the second-order effects of the various beds having different 

attenuations of gamma-rays and assuming a two-dimensional problem as in 

the literature cited, implies convolution with a linear geologic impulse 

response (GIR). This may then be deconvolved by means of the three-point 

inverse function previously discussed and the noise subsequently filtered, 

giving the desired signal. The novel contribution of this thesis is in filtering 

Poisson noise added to a signal containing many discrete jumps, so 

techniques for filtering such noise that were found in existing literature will 

now be discussed. 

1.2. Linear Filters for Noise Removal 

Papoulis (1977) gives an account of the Wiener filter, which is the 

optimal linear filter for noise removal. If the signal and noise are uncorrelated, 

and the noisy log to be filtered is the sum of the signal and noise, then in 

terms of the ideal signal power spectrum Sss(ro), the cross-spectrum of the 

ideal and noisy signals Ssx(ro), and the noise power spectrum Snn(ro): 

Sxx(ro) = Sss(ro) + Snn(ro) 

Then the Wiener filter is given by 

Sss<ro) 
H(ro) - --

- S (ro) + S (ro)' ss nn 

and the resulting mean square error, e, is given by 

(6) 

(7) 

(8) 
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00 

(9) 

-oo 

This shows that once certain statistics of the signal and the noise are 

known, the noise level after filtering with the optimal linear filter may be 

obtained without actually implementing the filter. However, as will be 

shown later, linear filters are of limited use due to the sharp changes in the 

desired signal, so the literature concerning nonlinear filters is discussed next. 

1.3. Nonlinear Filters for Noise Removal 

Many different nonlinear filters are discussed in various widely 

different publications. The median filter is the most widely used of the 

nonlinear filters, so first it and the operationally similar recursive median 

filter (RM filter) are defmed. But although the operations appear very 

similar, the results will later appear to be vastly different. After the median 

filter is presented, some generalized nonlinear filters will be presented. 

1.3.1. Median and Recursive Median Filters 

J. W. Tukey (1971) is the frrst to revive the median filter as a tool for 

time series analysis. Given the input sequence Xk and output sequence Y k· 

the output of the median filter of length W = 2N+ 1 is defined as 

Yk =median of {Xk-N• Xk-N+t. Xk-N+2• ... , Xk-1• Xk, Xk+b 

(10) 

The first and the last points of a noisy sequence are usually replicated before 

filtering to minimize end effects. The output of the recursive median filter is 

similarly defmed as: 



9 

(11) 

where the first N points of the median operator are now previously filtered 

points. These filters have been successfully applied in areas such as speech 

processing by Jayant (1976) and in digital image processing by Huang, et al. 

(1979). Huang suggests an algorithm for implementing a fast median filter, 

which is similar to that in Ataman, et al. (1980). This algorithm is shown by 

Bednar and Watt (1984) to reduce the computer time required from O(L312.) 

to O(L) where 0( ) is the order as given by Aho, Hopcroft, and Ullman 

(1983) and Lis the length of the median filter. The actual time saved is even 

greater than this seems to indicate, since every full sort routine must examine 

every element to be sorted, but the fast median algorithm needs, on the 

average, to examine only ~ of the elements. 

Literature on the theory of median filters is less well-developed than 

that of linear filters. The typical techniques, such as superposition for linear 

systems, do not exist, making design difficult. However, knowledge of 

some of the published properties can greatly reduce the number of trials 

required to find useful filters. Some interesting signal structures and properties 

of median filters are given in Nodes and Gallagher (1982). These structures 

include: 

1. A constant neighborhood is a region of at least N+ 1 

consecutive points, all of which are identically valued. 

2. An edge is a monotonically rising or falling set of points 

surrounded on both sides by constant neighborhoods. 

3. An impulse is a set of Nor less points whose values are 

different from the surrounding regions and whose surrounding 

regions are identically valued constant neighborhoods. 



4. A root is a signal which is not modified by filtering. 

Useful properties are: 

1. Impulses are eliminated by both ordinary and recursive 

median filters. 

2. Constant neighborhoods and edges are unperturbed. 

3. Only signals composed solely of constant neighborhoods 

and edges are roots. 

4. Any signal of length L is reduced to its root after at most 

~(L-2) successive passes by any median filter. 

5. A signal is invariant to recursive filtering if and only if it 

is invariant to standard filtering. 

6. Any signal will be reduced to a root after one pass of a 

recursive median filter. 

10 

These properties are used extensively to make decisions regarding what 

nonlinear filters might reduce the noise level without significantly degrading 

the signal. 

1.3.2. Generalized Median Filters 

Other useful facts about nonlinear filters are given the paper by Peterson, 

et al. (1988). This work uses two- broad generalized classes of median 

filters, called L filters, and standard type M filters (STM filters). As before 

if Xk is the input and Y k is the output, then the L filter is defmed as 

w 

yk = LAj~)· (12) 

j=l 
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Here X~) is the jth smallest sample from the W samples inside the window 

centered at k. A certain choice for the Aj coefficients yields an a-TM filter, 

given by 

(13) 

j=T+l 

where T is the largest integer which is less than or equal to aW, with a 

being constrained by 0 $;a$; 0.5. As in Bednar and Watt (1984), when a=O 

the a-TM filter becomes the running mean filter; when a=0.5 it becomes the 

median filter. The output Y k of an STM filter solves the equation 

k+N 
I,\f(Xj-Y k) = 0, (14) 

j=k-N 

where 

{ 1, x>p 
'P(x) = x/p, I xI $;p (15) 

-1, x<-p 

with p some positive constant. This filter approaches the running mean filter 

asp approaches infmity or the median filter asp approaches 0. Peterson, et 

al. (1988) go on to derive a relation for the root mean square (RMS) error of 

the a-TM and STM filters, which are then graphed for W=5. This is done 

for signals containing a single edge, constructed as follows: The notable 

feature of these graphs is that 

(16) 

in which 



{ S, Ic:;;O 
Sk = S+H, k>O 

12 

(17) 

and H is the height of a step at time k. The edge height of the filter and the 

RMS error are both normalized to the standard deviation of the zero-mean, 

Gaussian white noise. All the filters graphed in Figure 4 and Figure 7 in 

Peterson, et al. (1988), including the median, running mean, a-TM with T=1 

and STM with p=1, 2, 3, 4, 5, and W=5 produce a greater RMS error after 

the operation for a normalized edge height of more than approximately 2.5. 

This means that the noise is greater in the output than the noise in the input. 

In terms of approximated Poisson noise, if the mean level is 100, the standard 

deviation is 10, so this represents a jump from 100 to 125, which is a relatively 

small change in the gamma-ray log. The typical gamma-ray log is filled 

with much larger changes, which as the graphs show, cause these filters even 

more problems. Although this does not rule out some other, probably 

heavily center-weighted combination of Aj coefficients for the L filter, it 

does eliminate all the nonlinear filters for which substantial published data is 

known. 

1.4. The Monte Carlo Method 

As can be seen in the derivation of Peterson's results, the algebra is 

extensive, and yields results which must be integrated numerically. In order 

to avoid such problems, especially when the results may not show improvement by 

lowering signal noise, a method of evaluation more dependent on machine 

computation is required. The method which is used is known as the Monte 

Carlo method after the famous gambling resort in Monaco. This method 

depends, as does the profit in such an establishment, in running the trials a 

large number of times, thereby reducing the variance of the simulated result. 
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1.4.1. Theoretical Basis 

This result is important m a number of applications, as well as 

explaining a part of the practicality of the scientific method in general. The 

derivation given is due to Bendat and Piersol (1971). Given N uncorrelated 

random variables xi> the expected value of the sample mean x is 

(18) 

(19) 

Since the observations Xi are uncorrelated, the cross product terms in the last 

expression will have an expected value of zero. It then follows that 

In terms of a Monte Carlo simulation, this demonstrates that the average of 

many trials is an unbiased estimator of the mean of the random variable 

being simulated. Further, in N trials, the variance is reduced by ~. Bendat 

and Piersol continue with the remark that this estimate of the mean is consistent 

and can be shown to be efficient. 

1.4.2. Other Uses for these Results 

These results have many uses. Aside from being the basis of Monte 

Carlo simulation, they assure that independent trials by different scientists or 

at different times will reduce the variance of the estimate of the mean of the 

distribution of the random variable under investigation. This is true regardless 
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of the distribution, so long as the samples are uncorrelated. Later, after the 

synthetic log is defmed, the result will be used again to show that if N 

samples from the same level are corrupted with white noise, that the estimate 

of the level has a variance reduced by ~' when compared to the variance of 

the noise. 

1.5. Survey ~f Dissertation 

The material covered so far is the background for this dissertation. l:p. 

order to give a clear exposition, this background is summarized, and the 

remainder of the dissertation described. 

1.5.1. Summazy of the Introduction 

The basic method of gamma-ray logging was explained. The problems 

of logging in the oil field versus logging for rare earth mining have been 

discussed and provide the motivation for the balance of this work. The work 

done by Davydov, Czubek, Conaway, and others effectively gives the model 

of gamma-ray logging described. The true driving function of this model is 

the distinct beds of different types of sands and shales which each produce a 

characteristic signal level. These sharp boundaries produce a signal with 

unusually sharp changes in level. This signal is corrupted with the Poisson 

noise inherent in the process of radioactive decay. Deconvolution of the 

GIR can be done quickly with Conaway's method, leaving only the Poisson 

noise to corrupt the signal. These facts motivate the remainder of this 

dissertation. 
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1.5 .2. Outline of Dissertation 

Due to the probabilistic uncertainty associated with the true driving 

function of an actual gamma-ray log, a method of creating stochastic 

synthetic logs is given in Chapter IT. A figure of merit is then presented, 

which when combined with the synthetic log and the Monte Carlo method, 

enables objective evaluation of novel filters. The same equations on which 

the Monte Carlo method is based are also used to calculate an unattainable 

lower bound for noise removal. The effects of different bed widths on the 

unattainable minimum noise level is then discussed. Chapter IT closes with 

the evaluation of the prescribed figure of merit for the optimum stationary 

linear filter. 

Within the framework for evaluation defmed in the previous chapter, 

Chapter ill evaluates the numerous filters. Median filters and a-trimmed 

mean filters are then evaluated by simulation, or the published literature. 

These filters are found to be worse on the average than no filter, at least for 

the synthetic log used. Recursive median filters are then shown in simulation to 

outperform the Wiener filter, and further reduction is achieved by the novel 

approach of simple (unity weighted) linear combinations of recursive median 

filters. Attention is then focused ·on the optimal linear combination of 

selected recursive median filters and it is shown that very little additional 

improvement is obtained. 

Having exhausted all the traditional filters which are computationally 

simple to use, as well as the linear combination of recursive median filters, 

Chapter ill continues by defming a novel class of filters named twin window 

filters. This method can be used with a number of more traditional filters as 

kernels, and these are shown in Monte Carlo simulation to achieve superior 

noise reduction. Cascading certain twin window filters with recursive 
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median filters of length 3 achieves still better results. Attention is then 

focused on mathematical optimization of the twin window filter parameter 

with the running av~rage as kernel. To produce this result, several different 

functions must be integrated numerically since the closed-form results are 

unknown. After avoiding many potential numerical traps involving loss of 

precision, the result is obtained. Unfortunately, this yields only a slight 

improvement in the figure of merit. Chapter N presents a method of analysis 

for the Twin Window Average Filter (TW AF) and uses it to optimize the filter 

parameter with respect to signal level. The fmal chapter, Chapter V draws 

conclusions and makes suggestions for future work. 



CHAPTER IT 

SYNTHETIC LOGS 

Because the true input function-the shale beds in the model of 

gamma-ray logging given in the last chapter-is unknown, a method for 

constructing synthetic logs is developed. In order to use this to evaluate the 

effectiveness of the novel filters, a figure of merit is next devised. Before 

making use of these results in the next chapter, an unattainable minimum 

noise level is derived, below which no filter can reduce the noise. This and 

the residual noise level of the Wiener filter represent the greatest and least 

amount of noise reduction which filters of interest can achieve. The novel 

filters must do better than the relatively simple optimal stationary linear filter 

to be of interest. At the other end of the scale, the optimal nonstationary 

filter, the Kalman filter cannot do better than the relatively simply-derived 

unattainable minimum bound. 

To compute the Kalman filter, full information regarding the method 

by which the ideal log is constructed must be used as input. This is, of 

course, absurd, since the synthetic log is not that closely modeled after 

actual logs. Also, the Kalman filter requires many more computations than 

any of the proposed filters, so even if it could reduce the noise to the 

unattainable minimum bound (which is impossible,) it is doubtful that it 

would be used when the novel filters presented here come relatively close. 

Note that in most of the proposed work linear filters are not as useful as the 

17 
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nonlinear filters for reasons to be discussed later. With the path to take thus 

carefully outlined, the construction of the synthetic log is now considered. 

2.1. Construction of Synthetic Logs 

Literature discussing the statistics of the distribution of shale, sand, 

and other geologic beds is unknown. Even if such data existed, it might not 

give sufficient correlation information between beds to enable construction 

of a realistic log. Therefore, in order to construct a random synthetic log, the 

desired properties are first enumerated, then a method proposed. From the 

viewpoint of the geologist, the salient features which must be preserved as 

much as possible are the bed boundaries, since these are often the basis for 

Counts 
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1 251 501 751 1001 1251 1501 1751 2000 
Samples 

Figure 2. One of the 1000 different ideal synthetic logs used here. On the 
average, each of these 2048-point logs has 273 beds. 
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judgment on the best means of augmenting oil production. 

Also, the differences in counts produced by adjacent beds are large; 

instantaneous changes by factors of two, three, or even more are not rare. 

To simulate these features, the ideal synthetic log is generated by taking the 

bed width to be an independent, unifonnly distributed random variable 

between 5 and 10 samples in duration. The amplitude of each bed is also an 

independent, unifonnly distributed random variable between 50 and 288 

counts and is constant throughout the bed. Note that this is an idealizeq 

version. Every synthetic log in this dissertation contains 2048 samples 

which is equivalent to 1024 feet at 6 inches per sample. This is illustrated in 

Figure 2, but, for clarity, only an eighth of the log is shown in Figure 3. 
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Figure 3. Part of the sample ideal log at an expanded scale. 
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Logs constructed in this manner were used to evaluate proposed novel 

filters. However, in actual logging, the bed breaks do not occur in such 

precise synchronization with the sampling. So to help ensure that this does 

not unduly influence the figure of merit of a filter, another synthetic log is 

constructed with the same parameters, but is moved back in time ! sample 

interval so that each and every pair of beds has a point between them in what 

is assumed to be the worst possible place: the average of the signal levels. 

Whichever ideal log is used, the next step is the same. Simulated 

Poisson noise is added by using Gaussian noise with the variance set equal 

to the average signal level, as is illustrated in Figures 4 and 5. This is a 

reasonably good approximation for signals having a minimum level of 50 

counts, as discussed in Haight (1967). h1 the present case, a large part of the 

error is exemplified by the possibility _that the signal level of a bed will be 

reduced to a negative value, which is a physical impossibility. This 
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Figure 4. The noisy synthetic log. 
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Counts 
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Figure 5. Part of the noisy log on an expanded scale. 

possibility is extremely remote. In the worst case of a bed with an ideal 

signal of 50 counts, one standard deviation is ..J5o ~ 7.071. So the 

impossible case occurs only when the noise is beyond 7 standard deviations, 

an exceedingly rare event. 

Equation (20) shows that given N samples, each from a certain population 

with a standard deviation of O'v, that the mean value of the samples is a 

0' 
random variable with a standard deviation of~ . Moreover, this is true 

regardless of the distribution of the population from which the samples were 

drawn. To give a concrete example, if 1000 logs are processed by a certain 

filter, and the results have a mean of 9.00 and a standard deviation of 0.31, 

then the uncertainty associated with the estimate of the mean is~~ 0.01. 

This assures us that, if the same experiment is performed a sufficiently large 

number of times, the results may be ascertained to any desired precision. 
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In the case of the gamma-ray logs, the Monte Carlo approach was 

used to obtain results sufficiently precise to distinguish between the various 

filters. More specifically, 1000 different noise sequences were each added 

separately to 1000 different synthetic logs to ensure that a particular pattern 

in a synthetic log would not give misleading results. All the logs were 

filtered with each of the proposed filters, and the mean and variance of each 

filter tabulated. Fortunately, the standard deviation associated with the best 

filters ranged from 0.27 to 0.32 and even the worst filter had a standard 

deviation of only 0.38. So the results given below are accurate ±0.03 in the 

worst cases. But before this principle can be used as assurance that the 

simulation is representative of the overall population of filtered logs, a figure 

of merit for noise reduction must be defmed. 

2.2. Measurement of Noise on a Linear Scale 

One possible figure of merit is the signal-to-noise ratio (SNR) of the 

log. The noisy log constructed above has a SNR of 14.5 dB. To calculate 

this SNR, the expected value of the power of the zero-mean ideal log was 

divided by the expected value of the power of the noise. The logarithm of 

the result was then multiplied by ten. This is, of course, the typical way to 

figure the SNR and is certainly useful in comparing high quality signals in 

which the ratio might range over several decades. 

Gamma-ray logging, however, does not produce the typical signal. It 

is strictly positive, often of short duration, and it will soon be shown that the 

SNR only ranges over a fraction of a single decade. Although the SNR is 

highly useful in many fields, the RMS error is more directly related to the 

visual noisiness in which we are interested, so it is the figure of merit used 
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here. The RMS error of a filtered log, Y k' with N points, whose ideal log is 

~' is defmed by: 

RMS error= 
1 N 
N~)Gk-Yk]2 

k=l 

(21) 

The RMS error of the noisy log is 13.000 (22.2789 dB) which compares 

favorably with the simulated result of 12.995 (22.2755 dB). 

2.3. An Unattainable Minimum Noise Level 

Another use of Equation (20) is to compute a lower limit to which the 

RMS error can be reduced. Assuming that the bed boundaries are known 

precisely and because the log has a constant value within each bed, 

Equation (20) applies. To make use of this, first note that since the number 

of each of the six different sizes of layers is equal, the proportion of the total 

number of points contained in the wide layers is greater than that in the 

narrow beds. The fraction of the total number of points contained in each 

layer is proportional to the width of the layer. For instance, in the model 

used here, the bed widths are unifonnly distributed between 5 and 10 

samples, so is of the total number of samples are contained in beds of width 

5, 46s of the samples are contained in beds of width 6, and so on through 10. 

However, Equation (20) assures us that the noise variance of each point in a 

bed of width n can be reduced by an average factor of ~. fu our example is 
of the beds may achieve reduction by k. This continues for each bed width 

up to the example of !~ of the beds may achieve reduction by 1~. For this 

particular example, the total factor by which the noise is reduced is 

5 1 6 1 7 1 8 1 9 1 10 1 
45 5 + 45 6 + 45 7 + 45 8 + 45 9 + 45 10" 



24 

In general, for uniformly distributed beds of constant amplitudes between n1 

and n2 inclusive, the variance can be reduced by a factor of 

n1 n1+1 n2-1 n2 
fit+n;+~+ ... +~+ii; 

n1 + n1+ 1 + ... + n2-1 + n2' 

Maki , f th 'd · ~ k n(n+ 1) d I · 1 · ng use o e I entity k = 2 an ettmg n3 = n2+ gives 

k=1 

2(n3-n1) 2(n3-n1) 

n3(n3-1)-n1(ni-1) :- n32-n3-n12+n1 

2(n3-n1) 
= n3+n1-1' 

Finally, substituting for n3 gives a noise reduction factor of: 

n2-1 n2 
+--+-

n2-1 n2 2 
n1 + n1+1 + ... + n2-1 + n2 = n2+n1' 

(22) 

(23) 

which is the minimum, and unattainable, factor by which the variance can be 

reduced by any filter. Curiously, this happens to be exactly the same reduction 

that would be achieved in a log in which all beds are the same width: the 

average of the smallest and largest bed. 

Returning to our particular example of n 1 = 5 and n2 = 10 and making 

use of the fact that the original noise variance is 169 gives a minimum 

unattainable noise variance of 
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2 
169 = 25.53. 

n2+nt 
(24) 

This is equivalent to an RMS error of 4.75, or 36.5% of the original noise. 

This minimum value of noise can only be attained, on the average, when the 

bed boundaries are known. If they are not known, then some beds may be 

close enough together to allow the noise of one bed to raise its amplitude to 

that of the other bed. Therefore, the minimum value of residual noise 

represented by Equation (23) cannot be attained consistently and no filter of 

any type can be expected to achieve this level of noise reduction. Now that 

we have a bound on the maximum noise reduction, let us consider what can 

be achieved by the optimum linear filter, thereby establishing a benchmark 

that nonlinear filters must exceed to compensate for their added complexity. 

2.4. The Wiener Filter Applied 

As seen from Equation (9), the power spectral density is required to 

compute the residual error in the Wiener filter. To compute this, note that 45 

different types of points exist in the synthetic log, each with equal probability. 

This makes it apparent that the autocorrelation function R00(x) starts out 

dropping by 4~ until the points of beds of width 5 are exhausted, then drops 

by is with each successive drop likewise decreasing. This is shown in Figure 6. 

This function was then transformed and numerically integrated: 

00 

(25) 

--oo 

So the mean square error of the residual noise after Wiener filtering is 136. 

This means that the optimum linear filter (which may not even be practical 

to implement) can only reduce the RMS error from 13 to 11.7, leaving 90% 
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Figure 6. The autocorrelation function of the ideal synthetic log. 
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of the noise. The fact that this is still a large proportion of the original noise 

shows that nonlinear filters are attractive alternatives. While the computation 

of the residual error of the Wiener filter is comparatively simple, involving 

but one numerical integration, the corresponding calculations for the 

nonlinear filters to be discussed is many times more cumbersome, so the 

Monte Carlo method is used. Before examining these simulations, the 

chapter summary is given. 

2.5. Chapter Summary 

Due to the extreme difficulty of determining the true driving function 

of an actual gamma-ray log, a method of constructing synthetic logs was 

given. This method is readily applicable to a digital computer and can be 

used to generate an arbitrary number of ideal synthetic logs for study. The 
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RMS error was selected as the figure of merit for computer simulation, and 

its relative merit over measuring noise in decibels was discussed. This figure 

of merit was then used to quantify the unattainable minimum noise level, 

beyond which no filter of any type can, on the average reduce the noise in 

the synthetic log. At the other end of the scale, the Wiener filter quantifies 

the noise reduction expected from the optimum stationary linear filter. 

These two bounds are important since they represent the range of interesting 

novel filters. If a new filter cannot do better than the Wiener filter, it might 

be just as well to use a linear filter, while it is utterly futile to search for a 

filter to attempt to achieve an unattainable goal. With these results clearly in 

hand, Monte Carlo simulation will now be used to establish performance 

against these established benchmarks. 



CHAPTER ill 

MONTE CARLO SIMULATION 

Given the two important bounds of the previous section; and the fact 

that the true driving function of the system is known only for a synthetic log, 

at least for the immediate future; and the fact that an objective figure of 

merit is needed to access the results of the filtering in an unbiased measure; 

leads to the use of Monte Carlo Simulation. When this was applied to ordinary 

median filters, it was discovered that the noise increased, at least on this 

particular log with this particular type of noise. Therefore, these filters will 

not be discussed further. The filters that do show promise are the closely

related recursive median filters. These are evaluated, along with a filter 

comprised of a linear combination of RM filters. This brings up the question 

as to the best weighting for the linear combination, but multiple linear 

regression is used to show that optimal weighting will not produce much 

more than marginally better results, at least for this particular log and this 

particular type of noise. A novel filter, the Twin Window Filter is then 

introduced, and further simulation reveals that it performs the best thus far. 

This filter is then applied to actual data to show that, in addition to working 

well as measured by the chosen figure of merit, it also appear to visually 

improve actual data. Each of the nonlinear filters which lowered the RMS 

error of the synthetic log will now be defmed and the significant results of 

the Monte Carlo simulations described. 

28 
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3.1. Results of Recursive Median Filtering 

One thousand noisy synthetic logs, each of 2048 points, were each 

filtered with RM filters of odd lengths up to 13. The mean and standard 

deviation of each resulting histogram is given in Table 1. For convenience 

in notation, an RM filter of length 1 is defmed as the original, unfiltered 

data. As the window length of the· RM filter increases, its performance 

deteriorates due to the inclusion of an increasing proportion of data points i:p 

the window that are not highly correlated with the data point being 

estimated. Although the results are significantly better than the optimal 

linear filter, they are not very close to the minimum noise level (36.5%) 

derived above. Even though this minimum is unattainable, we continue the 

search for a superior nonlinear filter by testing linear combinations of RM 

filters. 

TABLE 1 

'DIE MEANS AND STANDARD DEVIATIONS OF Tiffi lllSTOORAMS 
OF RMS ERROR OF SELECTED RM FILTERS. 

Length Average Percent of 
Original 

RMS Error 
100% 
73% 
77% 
91% 

104% 
180% 
238% 

Standard 



3.2. Linear Combinations of 
Recursive Median Filters 
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Because median filters of different lengths pass different value 

through at the same point, an investigation of linear combinations of RM 

filters was undertaken. This method can take advantage of some of the noise 

suppressing benefits of moving average filters while retaining the full 

advantage of preserving sharp edges in the data. To describe this let Y'(k) be 

the fmal result of a linear combination of RM filtered data Y3(k), Y5(k), and 

Y7(k). That is. 

(26) 

where the an's are the weighting parameters. If computer time is crucial in 

an application, it is good for the an's to be small and add up to a power of 2 

for scaling. Another program was constructed to evaluate selected linear 

combinations (small integral weights) of the most promising lengths of 3, 5, 

and 7. It showed that some improvement could be made over the simple RM 

filter. Due to the results of previous experiments with RM filters, the 

original data was added as yet another term in the linear combination. This 

produces a reduction of RMS error by another 4% for a1 = a2 = a3 = 1 in the 

1000 log simulation. 

If noncausal filtering is allowed, the data can be fed in reverse through 

the RM filters. If a RM filter of length 3 in reverse is denoted by Y 3r(k), 

then 

(27) 

where Y 1 (k) is the unfiltered noisy file and again the an's are the weighting 

parameters. This combined forward/reverse technique offers additional 
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noise suppression. In a Monte Carlo simulation of 1000 logs, it produces an 

average improvement of 3% for a0= 1. 

3.3. Optimal Weighting for RM Filters 

It is difficult to derive the best linear combination of RM filters on a 

theoretical basis. To calculate a lower bound on the performance of a 

selected combination of RM filters, we use multiple linear regression, as in 

Devore (1982). This procedure fits, by the least squares method, a linear 

equation of the form: 

(28) 

where G(k) is the ideal log, Y 0(k) is a filtered sequence and bi are the regression 

coefficients to be determined by solving the following system of equations: 

N N N. N 

L1 LY3(k) :LYs(k) LY7(k) 
k=l k=l k-1 kzl 

N N N N 

bl LY3(k) LY3(k)Y3(k) LYs(k)Y3(k) LY7(k)Y3(k) 
I<= I k=l k=l I<= I bz 
N N N N b3 

!Ys(k) I,Y 3(k)Y sCk) I,Y s(k)Y s(k) I,Y7(k)Y5(k) 
b4 

k=l k•l k•l I<= I 

N N N N 

LY7(k) I,Y3(k)Y7(k) I,Y5(k)Y7(k) I,Y7(k)Y7(k) 
k•l k-1 k-1 k•l 

N 

LG(k) 
kzl 

N 

LY3(k)G(k) 
k=l 

N (29) 
LY5(k)G(k) 
I<= I 

N 

I,Y7(k)G(k) 
k•l 
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Of course, since this requires the ideal log as input, it cannot serve as a 

practical filter. It is used only to compute a bound for a particular collection 

of RM filters. This can be expanded to any number of independent 

variables, so long as the number of data points, N, is sufficiently large. This 

was done with the noisy file and the four most promising filters, those of 

lengths 3, 5, 3r, and Sr. For the usual thousand files, multiple linear 

regression achieves a result of 8.16 RMS which is only 62.8% of the original 

noise. No linear combination can produce a better result than this, and since 

the weights were allowed to be different for each of the thousand files, a 

fixed combination will not do as well. Setting the weights to 1 gives: 

Y 1 (k)+ Y sCk)+ Y 7(k)+ Y 9(k) 
Y'(k) = 4 (30) 

, Y lr(k)+ Y 5r(k)+ Y 7r(k)+ Y 9r(k) 
Y(k)= 4 (31) 

Y 1 (k)+ Y 7(k)+ Y 7r(k)+ Y 9(k)+ Y 9r(k) 
Y'(k) = S (32) 

The results for these· linear combinations are summarized in Table 2. 

Note that the spread of the histograms is reduced along with the reduction of 

the average value. Note that the spread of the histograms is reduced along 

with the reduction of the average value. However promising this result 

appears, a class of filters does exist which consistently does better than this 

unattainable minimum for linear combinations of RM filters of 8.16 RMS 

which is only 62.8% of the original 13 RMS error. For this new class, we 

have chosen the name twin window (TW) filters. 
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TABLE2 

THE AVERAGE VALUES AND STANDARD DEVIATIONS OF RMS 
ERRORS OF 1000 RUNS OF COMBINATIONS OF RM FILTERS. 

Average Percent of Standard Description 
ofRMS Original Deviation 
errors RMS Error 

13.00 100% 0.278 The original noisy log. 
9.54 73% 0.284 RM filter of length 3. 
9.091 70% 0.276 Linear combination of Equation (30). 
9.087 70% 0.279 Linear combination of Equation (31). 
8.64 66% 0.248 Linear combination of Equation (32). 
8.16 63% 0.266 Multi le linear re ression. 

3.4. Twin Window Filtering 

The advantages of the twin window filter are that it produces 

significantly better results on the synthetic logs than the various RM filters 

discussed, and it can be implemented in a fast method similar to that in 

Huang (1979), Ataman (1980) and Bednar (1984). Also, the computer time 

required is less than that required by the averaged recursive median filters. 

Similar filters are given by Pomalaza-Raez (1984) and Schultz (1981). The 

outer window (of length nine throughout this paper) moves along one point 

at a time, centered about the point to be estimated. The points in this 

window are sorted, which may not be necessary for computation, but is a 

convenient mechanism to portray the operation. Next, an inner window is 

formed by including the points which lie a certain number of standard 

deviations above and below the point being estimated. The number of 
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standard deviations in half of the inner window defines the filter parameter c. 

As an example, Figure 7 illustrates how the TW filter operates . 

... [19 20 15 12 50 45 49 68 93] .. . 
... [12 15 19 20 45 49 50 68 93] .. . 

... [12 15 19 20 (45 49 50 68) 93] .. . 
49~50 = 49.5 

Figure 7. Illustration of the operation of the twin window filter. 

The first line in Figure 7 represents the original data, a sequence of three 

noisy steps in the middle of other data,. with the point to be estimated having 

the value 50, shown in boldface. The second line shows the data sorted. In 

the third line, the inner window is represented by the parenthesis. This 

window uses the filter parameter c = 3, and thus includes all points within 

50±c -{50, or approximately between 29 and 71. If, for example's sake, the 

ordinary twin window is used, which applies a median filter to the inner 

window, then because the window is already sorted and has an even number 

of points, the average of the two innermost points is used as the estimate. 

Note that the point being estimated, 50 in this case, may not be in the center 

of the window, as happens here. Instead of the median being applied to the 

inner window a variety of other methods may be applied to the inner window 

to obtain the estimate of the selected point. 

Methods tried so far include the simple, unweighted average; the 

median; maximum likelihood; a method which allows the internal window to 

move based on the latest estimate of the selected point; and each of the first 
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three followed by a three point RM filter. The RM filter can improve the 

RMS error by removing spikes caused by noise which exceed the bounds of 

the inner window. Continuing this example for each method, an unweighted 

f th . . th . . d . ld 45+49+50+68 53 0 F average o e pomts m e mner wm ow y1e s 4 = . . or 

the median, since the window is an even number of points, the average of 

th . . d . . 49+SO F . lik lib d e two center pomts IS use , g1vmg 2 . or maxnnum e oo , 

Equation (33) is used and gives 

k 

l+~I,xJ- 1 
i=l 

---~-------- = 53.2. 
2 

(33) 

The possibility also exists that a 3cr window centered around the newly formed 

estimate would add or omit one or more points compared with those in the original 

window. We will refer to this as a moving internal window. In this example, none 

of the estimates cause a point to be added to or deleted from the internal window, so 

no movement of the window would occur. If the internal window does change, the 

estimate calculated from the new window is used It will be shown in Monte Carlo 

simulation that a moving internal window does not, in itself, reduce the RMS error. 

However, it does allow similar results using smaller internal windows as evidenced 

in the Monte Carlo simulation. This may prove to be useful in processing certain 

types of data. For instance, in the section which follows on the optimization of the 

twin window filter with respect to the filter parameter, it is found that larger values 

of c wmk better at low signal levels. So for a log of lower overall level, this filter 

should be more beneficial. Such investigation, however, would require altering the 
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synthetic log, and so is considered beyond the scope of this worlc, therefore we 

return to the original log and simulation of the various twin window filters. 

3.5. Monte Carlo Simulation of the Twin Window Filters 

As was done with the RM filters, 1000 different 2048-point noisy 

synthetic logs were constructed and filtered. In order to express these results 

in uncluttered tables, the designations in Table 3 will be used. 

TABLE 3 

DESIGNATIONS FOR SEVEN DIFFERENT TW FILTERS. 

Desi nation 
A 
B 
c 
D 
E 
F 
G 

T e of Filter 
TW using average. 
With maximum likelihood (ML). 
Median. 
Moving internal window. 
Average followed by 3-point RM. 
ML followed by 3-point RM. 
Median followed b 3- oint RM. 

3.5.1. Mean Values for Synthetic Log 

For the seven cases of TW filters described, the average RMS error 

for various filter parameters is given in Table 4. In these tables, "low" is the 

minimum value; "loc" is its filter parameter. The range of 7.49 to 6.87 is 

equivalent to 57.6% to 52.8% of the original noise. The fact that these are 

smooth, broad curves shows that selection of the filter parameter is not 
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critical to filter petformance. Further evidence that these filters are well

behaved is given in the histograms and examples in the Appendices of Paden 

and Steinhardt (1984). This work is further expanded in Paden (1985), and 

histograms are given in the Appendix C and Appendix D. An example 

histogram is shown in Figure 8. The filename, D3 _15, in this figure is the 

result of the truncation of 33
52, which is the same filter parameter which gave 

the best result for twin window average filters in Table 4 where it was 

rounded to 3.16. The Gaussian cUive in the figure is the curve implied by 

estimates of the mean and variance of the data in the histogram. Results 

based on only a single synthetic log indicate that another 2% reduction in 

noise may be gained by using averages of different filters as discussed under 

linear combinations of RM filters. 

TABLE4 

RMS ERRORS FOR SEVEN DIFFERENT TW FILTERS FOR 
NINE DIFFERENT VALVES OF THE Fll.. TER PARAMETER C. 

c A B c D E F G 
2.00 8.76 8.82 9.02 8.06 7.42 7.48 7.88 
2.25 8.17 8.23 8.47 7.60 7.13 7.18 7.61 
2.50 7.74 7.79 8.05 7.34 6.94 6.99 7.42 
2.75 7.46 7.50 7.77 7.27 6.87 6.91 7.31 
3.00 7.32 7.35 7.59 7.36 6.90 6.93 7.26 
3.25 7.31 7.33 7.51 7.56 7.02 7.03 7.27 
3.50 7.41 7.41 7.49 7.20 7.20 7.30 
3.75 7.59 7.58 7.51 7.45 7.44 7.37 
4.00 7.84 7.82 7.57 7.75 7.72 7.46 
low 7.30 7.33 7.49 6.86 6.91 7.26 
loc 3.16 3.19 3.47 2.81 2.81 3.06 
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Figure 8. Histogram of the RMS difference 
in 1000 synthetic logs filtered 
with TW AF (c=3.15625). 

3.5.2. Standard Deviation for Synthetic Log 
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Another measure the reliability of TW filters with regard to filtering 

the Poisson noise is the standard deviation of the RMS error measurements 

from the Monte Carlo simulation. This data is in Table 5. No filter produces 

much more spread in the error than that of the original data (0.267), and the 

spread associated with the lowest RMS averages is generally below that 

average spread. This is fortunate because it implies that the best filters also 

are the most dependable. As clearly seen in Table 4, the best filters are the 

TW using either the average or the maximum likelihood, followed by a 

three-point recursive median. 

3.5.3. Results for Synthetic Log with Slopes 

Before giving an example of an actual log filtered with a TW filter, let us 

consider one of the drawbacks of the above simulation. The original problem 
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was that linear filters do not do well on logs with sharp comers. Consequently, 

the synthetic log was created to emphasize this problem. If another rule is used 

to construct the synthetic logs used in the simulations, substantially 

different results might be obtained. One very obvious problem with 

the log constructed of discrete levels (Figure 3) is that it implies that 

the bed boundaries always break synchronously with the sampling. In 

order to simulate this problem, the synthetic log was reconstructed 

with one point added between each bed, precisely half way betweel) 

layers. The average RMS errors for 1000 of these logs are given in 

Table 6. Although this is higher that the corresponding table for the 

first synthetic log, it is comparable to the best RM filters. The spread 

of the data is given in Table 7, and while it shows somewhat less 

dependable filters, they should still be quite useful. The best of these 

TABLES 

THE STANDARD DEVIATIONS OF THE RESULTS OF MONTE 
CARW SIMULATION OF THE SEVEN FILTERS GIVEN IN 

TABLE 3 FOR SELECTED FILTER PARAMETERS. 

c A B c D E F G 
2.00 .300 .300 .310 .332 .303 .305 .318 
2.25 .290 .290 .303 .322 .296 .298 .311 
2.50 .284 .285 .296 .313 .292 .294 .304 
2.75 .274 .275 .288 .307 .288 .290 .301 
3.00 .268 .268 .. 281 .302 .285 .286 .297 
3.25 .270 .271 .277 .312 .286 .286 .291 
3.50 .274 .274 .274 .290 .291 .288 
3.75 .281 .281 .274 .298 .297 .286 
4.00 .295 .295 .278 .310 .309 .290 
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filters are applied to real gamma-ray logs in the next section to further 

illustrate their usefulness. 

TABLE6 

AVERAGE RMS ERRORS FOR SIX OF THE FILTERS IN TABLE 3. 

c A B c E F G 
2.00 9.73 9.78 10.0 8.55 8.60 8.99 
2.25 9.37 9.42 9.71 8.46 8.50 8.96 
2.50 9.15 9.19 9.56 8.47 8.50 9.02 
2.75 9.06 9.09 9.53 8.56 8.59 9.15 
3.00 9.08 9.10 9.61 8.72 8.74 9.35 
3.25 9.19 9.20 9.78 8.94 8.95 9.58 
3.50 9.36 9.36 9.99 9.19 9.19 9.85 
3.75 9.59 9.58 10.24 9.47 9.46 10.06 
4.00 9.85 9.83 10.50 9.78 9.75 10.42 
Low 9.05 9.08 9.53 8.45 8.49 8.96 
Loc 2.84 2.84 2.72 2.34 2.38 2.19 

TABLE7 

STANDARD DEVIATIONS FOR THE DATA IN TABLE 6. 

c A B c E F G 
2.00 .286 .287 .293 .288 .291 .299 
2.25 .286 .288 .295 .287 .290 .302 
2.50 .286 .286 .297 .287 .289 .302 
2.75 .292 .293 .307 .296 .298 .312 
3.00 .293 .293 .316 .299 .300 .322 
3.25 .300 .301 .329 .306 .307 .334 
3.50 .309 .310 .343 .316 .317 .347 
3.75 .317 .317 .354 .323 .323 .356 
4.00 .330 .330 .376 .337 .336 .379 
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3.6. Twin Window Filtering Applied to Actual Logs 

In order to evaluate the results of filtering properly, two tools were run 

simultaneously in the same hole. One was processed through Schlum

berger's filtering and is a conventional gamma-ray data curve; the other was 

not filtered and represents raw data. The raw data was then deconvolved 

using a=O.l 0 and for ease of comparison, scaled by a small constant to give 

a good match with the Schlumberger data. This was then filtered by a twin 

window filter using the average of the internal window. The filter parameter 

was 2.50 and the length of the outer window fixed at 9 points. The results 

are shown in Figure 9. The RMS difference between the filtered log and the 

Schlumberger log is only 7.23 and occurs primarily at the peaks and valleys. 

This is even slightly less than the RMS difference between the ideal and 

noisy logs with the same filter (7 .30). Since visual inspection shows that 

this method of filtering produces sharper bed boundaries, substantiating the 

results of the Monte Carlo simulation, it indicates that the twin window filter is 

superior. 

3.7. Chapter Summary 

Monte Carlo simulation was applied to evaluate the results of the 

various nonlinear filters discussed. First, it was discovered that on this 

particular type of synthetic log that ordinary median filters do not improve 

the RMS error. However, recursive median filters of lengths 3, 5, and 7 do 

show varying degrees of improvement with respect to this figure of merit. 

Linear combinations of these recursive median filters were shown to 

decrease the error even more. In the quest for the perfect weighting for the 

linear combination, multiple linear regression was used to show that the 

optimal weighting produces only slight improvement over uniform weighting 
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Figure 9. Schlumberger gamma-my log, the log of the same borehole processed 
by another tool and TW filters, and a composite log with differences 
shaded. 
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for the particular filters used. The reduction in noise obtained by multiple 

linear regression is, in fact, impractical to implement as a filter since the 

weights obtained were allowed to, and did in fact, vary from log to log. 

Next, a novel filter, the twin window filter, was introduced and shown to be 

superior to even the impractical, but promising, results of the multiple linear 

regression. Further, the twin window offers the frame work in which to 

implement a number of different filters, which each produce better results on 

the synthetic log than any of the filters related to the recursive median~. 

This type of filter also has a filter parameter which can be adjusted to suit 

particular needs, or simply to improve the RMS difference. The most 

promising of these filters was applied to raw gamma-ray log data and seen to 

produce good results. Having used multiple linear regression to show how 

little optimal weighting improves linear combinations of recursive median 

filters, the twin window filter will, in the next chapter, be optimized with 

respect to the filter parameter and signal level. 



---------

CHAPTERN 

OPTIMIZATION OF THE TWIN WINDOW 
AVERAGE FILTER 

The Twin Window Average Filter (TW AF) is defmed such that the 

width of the internal window W = 2c ~ where c is the filter parameter 

and Xn is the value of the point in the center of the window as in the 

previous chapter. This leads to the observation that this window includes 

relatively fewer uncorrelated points when Xn is small than when it is large. 

Therefore making the inner window smaller for small Xn should improve 

the filter performance. This will be first be done using the Monte Carlo 

method. 

4.1. A Special Synthetic Log 

Since the idea behind the optimization is that the filter parameter may 

be beneficially adjusted for each level, a new type of synthetic log is 

constructed. Central to this new log is that it contains an excessive number 

of beds of a particular level which is denoted by V, for value. Each of the 

added beds in the synthetic log is the same length, L, to allow the statistics 

to be tabulated not only by level, but also by location within a particular bed. 

The first extra bed is after the end of the bed containing the 25th point of the 

log. The extra bed is generated again after the bed containing the 75th point 

of the log and the remaining log has an extra bed after the bed containing 

point at position 50N-25. The extra bed is only generated at the end of the 

44 
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bed at a particular position to preserve, to the greatest extent possible, the 

remaining characteristics of the synthetic log. So for the 2048-point logs 

used here, the new log will contain at least 41 beds of level V. Because the 

level of the random beds is a random double-precision floating point 

number, the chances of one of the other beds being generated at precisely 

that level are vanishing small. This special synthetic log with V =50 and L=S 

is shown in Figure 10. For the purpose of showing greater detail, the first 

256 points of same log are shown in Figure 11. The 256-point noisy log is 

shown with noise added in Figure 12. 

Counts 
300 
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50 

1 251 501 751 1001 1251 1501 1751 2000 

Figure 10. Most (97.6%) of the revised ideal log, showing the extra beds at 
V=SO with L=S. 



Counts 
300 

250 

200 

150 

100 

50 

1 33 65 

46 

97 129 161 193 225 2_57 

Figure 11. The frrst 256 points (12.5%) of the revised ideal log, with the added 
beds of length 5. 
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Figure 12. The first 256 points (12.5%) of the revised noisy log, with the added 
beds of length 5. 
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4.2. Monte Carlo Simulation 

As in the previous cases, Monte Carlo simulation was used to model 

1000 of these 2048-point logs. This undertaking was considerably complicated 

by the fact that statistics were collected for the mean and standard deviation 

for each individual point location in a bed for a particular signal level V and 

bed length L. This involved hundreds of files on disk for each level V, 

which each contain 4000 bytes. Each of these files was then summarized by 

its data count, mean, and standard deviation using the program a vg, given 

in Appendix B. This summary was then further consolidated to produce the 

desired results. This results were then used to construct a modified version 

of the Twin Window filter which does, in fact perform better than the original. 

Taking these topics in order, the program to create the special synthetic log 

will now be explained. 

4.2.1. Program Description 

A suitable program was written to create the special synthetic log and 

was run to evaluate the mean and variance for all combinations of the values 

of these parameters: 

1 2 6 7 
c = 2, 2g, 2g, ... , 3g, 3g, 4 

L = 5, 6, 7, 8, 9, 10 

v = 50, 60, 90, 120, 150, 180, 210, 240, 270, 288 

where c is the filter parameter, L is the width of the bed, and V is the level of 

the bed to be examined. It was run separately for each value of V since a 

run takes between 3 and 4 days, depending on how much cpu time was 

siphoned off for other activities. fu addition to separate runs for each value 

V, a separate directory was used, although the file names are distinct. 
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As an example, let V=50 and L=5, for each of the 17 values of c, 12 

files are populated with the results from 1000 different synthetic logs, giving 

a total of 204 files. Each set of 12 files includes the mean and standard 

deviation of these 6 results: 

1. RMS difference of the ideal and filtered values of the 

first point in each bed of width 5. (Each log has 41 of this type 

of point.) 

2. Similarly, the RMS difference concerning the second 

point. 

3. Contains similar RMS difference for the third point. 

4. Contains similar RMS difference for the fourth point. 

5. Contains values for the fifth point. 

6. RMS difference of the entire ideal and filtered log. (Each 

log has 2048 points, and each of them impact this evaluation.) 

In addition to these important files of interest, 18 other files were 

created with various other values to check the results, for a total of 222 files. 

TABLES 

NUMBER OF FILES CREATED FOR EACH BED LENGTH. 

BedLen th Number of Files B es 
5 222 909,312 
6 259 1,060,864 
7 296 1,212,416 
8 333 1,363,968 
9 370 1,515,520 
10 407 1,667,072 

Total 1887 7,729,152 
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The number of files created for each bed length is given in Table 8. Because 

each file has one 4-byte floating point number for each of the usual 1000 

logs, it is 4000 bytes long. Assuming a cluster size on MS-DOS of 4096, or a 

block size on UnixTM, gives the total disk space consumed by the file, 4096 

bytes, as in the third column. This excludes the space the directory entries 

require, which amounts to a little more than a single file in itself. For the ten 

values of V under consideration, the total requirement is well over 73 megabytes. 

4.2.2. Checking the Simulation 

Returning to the example with V=50 and L=5, one check that was 

made was the new mean value of the noisy synthetic log. Considering that 

each log has 2048 points, and 41 special beds of 5 points each, gives 1843 

points uniformly distributed between 50 and 288, and 205 points having a 

mean value of 50. The expected mean value is 

184350~288 + 205·50 
2048 ~ 157.0884. (34) 

The square root of this value, 12.5335 is the expected RMS difference 

between the ideal and unfiltered noisy synthetic log. From the selected 

example file, for the 1000 logs, the mean RMS difference is 12.5265 with a 

standard deviation, per Equation (20), of 0~2 ~ 0.0083, certainly a 

positive indication. In like manner, the mean value of the ideal log is 

157.211 and the standard deviation is ~ = 0.1229, so the Monte Carlo 

result is approximately 1 standard deviation from the expected result. 

Similarly, for the unfiltered noisy synthetic log, the numbers are remarkably 

close: 157.210 and ~1 = 0.1234, a remarkable one standard deviation 
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from the expected. The overall result for the filtered log (c = 2.00), 

however, is 156.83 and ~4 :::. 0.1234, a little over 2 standard deviations 

from the expected result, but in the opposite direction, the first subtle hint of 

a possible bias in the estimator. This same bias in similar quantity is also 

seen across all the filter parameters (c=2.00 to 4.00). Cancelling this bias 

may be another means of improving filter performance, but frrst a means of 

consolidating this detailed, but imponderably large mass of data is given. 

4.2.3. Consolidation of Data 

The consolidation of this data occurs in two phases, the first combines 

the statistics of various points within a particular length bed, at a particular 

signal level, and the second combines the various length beds at a particular 

TABLE9 

OPTIMAL VALUES OF THE TW FILTER 
PARAMETERFORSELECTED 

SIGNAL LEVELS. 

Si al Level 
50 
60 
90 
120 
150 
180 
210 
240 
270 
288 

Filter Parameter 
3.67 
3.62 
3.33 
3.15 
3.10 
3.10 
3.10 
3.20 
3.28 
3.28 
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signal level. Once the data is consolidated, the required optimal values can 

be interpolated. These values are given in Table 9. So, as anticipated, the 

best values for the filter parameter are larger for the low signal levels, and 

smaller for high signal levels. But the optimal filter parameter also increases 

slightly again near a signal level of 240, for reasons, as yet, undetermined. 

Nevertheless, the above table was implemented in a Monte Carlo simulation 

and found to improve the results. 

4.3. Results of the Improved Filter 

To implement the improved filter, the existing code was modified by 
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Figure 13. The center curve is RMS error plotted against variation of the 
optimal curve. The two outside lines are ±1 standard deviation. 
The value 3.10 is nominally optimal. 
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adding a subroutine called optl vl which given a signal level, returns the 

best filter parameter, interpolated from the data in Table 9. The altered 

routines are given in Appendix E. This program not only implements the 

filter, but varies the data in Table 9 by effectively adding a constant and 

evaluating the results. The data in Table 9 has the filter parameter value 

3.10 as the bottom of a bathtub-shaped curve, so this value was selected as 

nominally optimal and a constant was added to the entire curve by the 

program. For instance, if the program parameter is 3.25, the entire curve is 

shifted upward 0.15. The program used parameters valued at every 3~ 
between 2.5 and 3.5, and the results are shown in Figure 13. While the 

graph of Figure 13 does not have its extremum precisely over 3.10, it is well 

within the ±1 standard deviation lines. It also clearly shows that the filter is 

somewhat tolerant to variation from the optimal in that perturbation of the 

optimal curve by as much as 0.10 produces only 0.02 change in RMS error, 

although further perturbation may cause substantially greater error. 

The other thing to note is that, similarly to the optimization of the 

linear combinations of recursive median filters, the optimized filter only 

performs slightly better than the original. In the present case, the improved 

filter has an RMS error of slightly less than 7.25 while the original was 7 .30. 

Since the standard deviation is approximately 0.009, these two estimates are 

less than 6 standard deviations apart. However, the improved filter requires 

only one additional subroutine call, which could easily be avoided by inline 

code, or the inline declaration in C++, and a table lookup. For such a small 

price, the improvement is probably worth the effort. With the improvement 

completed, let us summarize the steps involved to make practical use of the 

optimized twin window average filter. 
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4.4. A Method for Using the Filters 

To make practical use of this filter, and to compare it to another log as 

done in the previous chapter, several steps are required. The first step is to 

scale the data in terms of depth to assure that similarly-numbered points 

correspond to the same geologic beds. This allows for the fact that even 

though the tool is frrst lowered and the well logged only as the tool is lifted, 

it may snag on the sides of the borehole and cable stretch may cause disparities 

in the data. This was not a problem in the previous chapter since both tools 

were run simultaneously. The second step is the selection of a in Equation 

(1). The exponential, when convolved with the log, gives the log the general 

appearance of indistinct beds, or sloping bed boundaries. Although scientific 

analysis based on the properties of the material surrounding the borehole 

may yield a proper value for a, simply applying different values and observing 

which value yields beds that appear distinct seems to work well. This was 

the method used in the previous chapter, and can be accomplished quite 

rapidly if the observer attachs a numeric value to the slope of the beds and 

tries to center the optimum a between values of a which gave similar slopes 

on opposite sides on the optimum. 

The third problem is to relate the ordinate of the graph to the number 

of counts. This, too, turns out to be surprisingly simple if approached in the 

correct manner. The technique is to use the largest unchanging bed to 

approximate the mean, J.!, and standard deviation, cr, for that one particular 

bed. If that bed is so narrow as to make the estimates uncertain, then several 

beds may be used, yielding the estimates J.ln, and 0'0 • Once these are found, 

0' 
the required scaling factors, ~0, may be estimated as ~n = --1! • These may be 

J.ln 

averaged using a weighted average which considers the number of points in 
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. the bed and the level of the bed, but for the data in the last chapter, the first 

two ~0's calculated were in close agreement, so this did not seem to be 

necessary in practice. Of course, if it is only desired to scale two logs of the 

same borehole to be equal, the scale factor may be taken as the square root 

of the ratio of the total power of each log. 

The filter must then be selected. This should be done on the basis of 

the filters and parameters that appear to work best on the synthetic logs. The 

optimization of the filter parameter accomplished after the large expenditure 

of computer time in this chapter has two problems in practice. It is highly 

dependent on the distribution of geologic beds, which implies that a large 

number of actual logs are needed to estimate that distribution; and once the 

optimization is performed, it changes the performance of the filter only 

slightly. Therefore, the optimization is of little value unless one has a large 

quantity of data stored on a very large and fast computer. That is the reason 

that the log was filtered in the previous chapter, before obtaining this 

optimization. 

4.5. Chapter Summary 

Upon observation that due to· the fact that the inner window of the 

Twin Window filter includes relatively more uncorrelated points for large 

signal values than small, a corresponding optimization of the filter with 

respect to the filter parameter was sought. The optimization was determined, 

in addition to numerous other statistics which, it was hoped, would be useful 

in better understanding the filter. After determining the optimal relationship 

between the filter parameter and the point to be estimated, the optimized 

filter was run over the usual 1000 synthetic logs to verify that it did, in fact, 

improve the performance. Also, the optimization function was perturbed, 
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and it was shown that the perturbations degraded the performance within the 

certainty allowed by the Monte Carlo simulation. This simulation also 

showed that the improved version only did very slightly better than the 

original filter. However, the cost at execution time to implement the 

optimized filter is very low, so it is a worthwhile improvement, if the initial 

cost of finding the optimization can be justified. 



CHAPTERV 

CONCLUSIONS AND 
FUTURE WORK 

As Isaac Newton (1675) said, "If I have seen further than the others it 

is by standing on the shoulders of giants." From the literature, a basic model 

of gamma-ray logging was derived which showed how the Poisson noise 

could be viewed as adding to the signal emitted from the geologic beds. 

This is then convolved with the geologic impulse response which can be, 

with suitable restrictions, deconvolved to remove its effects. The 

problem of how to remove the Poisson noise without seriously degrading the 

signal which is composed of the sharp transitions representing the distinct 

layers of sand and shale was then addressed. The optimal stationary linear 

filter, designed by Wiener, removes only 90% of the noise, in the RMS 

sense. 

Because so much noise remained, nonlinear filters were sought to 

improve the problem. The first of these, the median filters, actually made 

the noise worse. This was measured in Monte Carlo simulation, using a 

synthetic log due to the uncertainty associated with the true driving function 

of the physical system. The RMS difference was selected as the figure of 

merit. This made objective evaluation possible, and enabled the computer to 

evaluate large numbers of logs quickly. To quantify the amount of noise that 

it is possible to remove, an unattainable minimum noise level was derived, 

the value of which marked the best that could be achieved at 36.5% of the 
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original noise. After ascertaining these two limits, work turned to finding 

filters which produced better results than linear filters. The first improvement 

was seen in the recursive median filters. 

5 .1. Recursive Median Filters 

The recursive median filters which improve the noise level are the 

recursive medians of length 3, 5, and 7 with the RMS noise remaining of 

73%, 77%, and 93%, respectively. Since these are not linearly dependent, 

linear combinations of these filters were tried and found to improve the noise 

level, leaving only 70% of the original noise. Also, since recursive median 

filtering in reverse does not produce the same result as forward filtering, the 

linear combinations were augmented with reverse recursive median filters 

for a greater improvement in noise level, with 66% of the noise remaining. 

So far, the weighting of the linear combinations has been uniform, so in an 

attempt to determine the optimum linear combination, a simulation was 

made with multiple linear regression used on each individual log. Even 

allowing the weights to change independently for each log only reduces the 

noise to 63%. This method is impractical to implement as a filter, and shows 

very little improvement over the simple unifotm weights used previously. It 

has no known practical value, but it does demonstrate a limit to the amount 

of noise reduction available by means of such linear combinations. Having 

come to the apparent limit as to what can be expected in the realm of median 

filters, a novel filter, called the twin window, is introduced. 

5 .2. Twin Window Filters 

The twin window filters were defmed as a framework to surround 

various kernels, namely the average, maximum likelihood, and median, 
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although others could easily be added in the future. These reduce the noise 

to 56.2%, 56.4%, and 57.6% of its original value, respectively. The inner 

window of the filter was allowed to vary, improving its position according to 

the best estimate of the current point, and reduced the noise to 55.9%, as 

well as producing these with a smaller value of filter parameter. Upon 

observation that the worst errors often occurred at single points, a 3-point . 

recursive median was run after each of the first three twin window filters to 

achieve noise levels of 52.8%, 53.2%, and 55.8% respectively. 

The observation that the twin window methodology allows more the 

uncorrelated points in the inner window at high signal level than at low 

levels leads to the optimization of the filter with respect to the filter 

parameter. This was carried out for the twin window average filter. The 

function of signal level versus filter parameter thus generated was found, 

when reapplied to the usual Monte Carlo simulation to reduce the noise to 

55.7%. The optimal curve was then perturbed by adding a global constant 

and, within a fraction of 1 standard deviation, found to be consistent with the 

premise that the curve was indeed optimal. So a novel filter was introduced, 

investigated, optimized to a limited extent, and found to compare reasonably 

well to the unattainable minimum noise level of 36.5%. 

5.3. Future Work 

The state of knowledge on twin window filters presently is analogous 

to that of recursive medians before the investigation turned to multiple linear 

regression. However, the TW filter has a filter parameter, and thus, along 

with the various different kernels which may be used in the filter, leads to a 

larger system of regression equations. Once the resultant value is known, a 

decision to whether the potential reduction in noise is worth the added 
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complexity of the filter. This complexity might be reduced by studying how 

much the filter parameter has to change to produce a filtered log of diversity 

sufficient to change the result of the regression. 

Many times in the course of this work, investigation of the synthetic 

logs associated with the extreme tails of the histograms has provided insight 

into improvements in the filters. Often, this is because these logs represent a 

caricature of the important features which cause the extreme (good or bad) 

results. This will probably continue to be an important investigative tool. In 

addition to this, since the twin window filters have parameters, the histograms 

for different filter parameters could, in effect, be lined up and the little boxes 

reassigned to their particular log. Boxes from each histogram pertaining to 

the same log could be connected, and the correspondence of log to box 

rearranged within the column of each histogram to minimize the length of 

the connecting lines. Once this is done properly, if any long lines between 

boxes remain, they would be investigated individually to determine what 

physical features in the original log caused the sudden change in result. This 

method of investigation has been made practical only recently by the 

combination of high resolution graphics and fast processors on personal 

workstations. 

Another aspect of the histograms that seems to demand investigation is 

the fact that reduced variance in the histogram seems to correlate with the 

greatest noise reduction. Further work in this area may lead to a simple 

heuristic to fmd the optimal filter parameter, or may lead to some totally 

unforeseen and better filter. Understanding of why this should be so certainly 

seems, at least at this point, to have some fundamental impact on nonlinear 

filters. 
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Leaving Poisson noise totally behind could also result in a very 

interesting investigation. The gamma-ray tool basically has not changed 

much since it was invented in 1939. A updated digital version could register 

every decay detected by sending the digitally-encoded time between decays. 

This leads to a different noise distribution, but has the advantage of less 

reduction of data before filtering, effectively destroying the role of the 

unattainable minimum bound, so prominently unassailable in this work. 

The work of optimizing the twin window filter may be done analytically, 

although with numerous numerical integrations and convolutions, much more 

accurately and in less time. However, checking out such a program is very 

time-consuming and requires, among other things, functions which in fact 

evaluate accurately to nearly the full machine precision, unlike the error 

function often implemented on Unix™, which for some values, only produces 

nine or ten significant digits. An example of a correct function is given in 

Hart (1967), and is used here in the program avg for the more mundane and 

less demanding task of calculating the Gaussian curves approximating the 

histograms in the appendices. The time for such a program to do the same 

job, when carefully written, might be reduced by a factor of 25 or more for 

the 3-digit precision given, and would not increase as rapidly as the required 

precision increased. This method has the added advantage of generating 

intennediate results which might prove useful. in improving the twin window 

filter in ways not now foreseen. 
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APPENDIX A 

PROGRAM TO EVALUATE 
THE TWIN WINDOW 

AVERAGE FILTER 

The program in this appendix is typical of those used to evaluate the 

filters presented here. It was originally written for a DEC Vax 11nso, then 

ported to an AT&T 3B2/400, and fmally to an mM AT clone from Gateway 

housing a Micronics motherboard with an Intel 80486 processor. The V ax 

was, of course, multiuser, so typically a run would actually get less than 

30% to 50% of the total CPU time. The 3B2 was also multiuser, but due to 

lack of after hours use, often runs would get 90% to 95% of the CPU time. 

The overall performance was approximately half the speed for a given 

amount of CPU time. The AT runs Microsoft Windows/386 and the 

program approximately 10 to 12 times the speed of the Vax, a much needed 

improvement for some of the more complex programs. 

The routines required to make a complete working program are: 

twaf.c, bubble.c, cputime.c, daytime.c, flush.c, gamgev2.c, gauss.c, ncproces.c, 

poisnois.c, randb.c, reload.c, rmfilt.c, rmssub.c, twaffilt.c. 

The main routine is twaf. c and the others are subroutines listed in 

in alphabetical order for the convenience of the reader, although it may not 

be the most efficient from a machine's point of view. In order to assist the 

potential programmer to understand the dependencies, the following 

topological sort may be helpful: 
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twa f. c calls: 
cputime.c, daytime.c, flush.c, gamgev2.c, ncproces.c, poisnois.c, reload.c, rmfilt.c, 

rmssub.c, twaffilt.c. 
cputime.c calls nothing. 

daytime.c calls nothing. 
flush.c calls nothing. 

gamgev2.c calls 
gauss.c, randb.c. 

ncproces.c calls nothing. 
poisnois.c calls 

gauss.c. 

reload.c calls nothing. 

rmfilt. c calls 

bubble. c. 

rmssub.c calls nothing. 
twaffilt.c calls: 

bubble.c. 
bubble.c calls nothing. 

gauss.c calls: 
randb.c. 

randb.c calls nothing. 

This source code, when compiled with Borland's Turbo C++ 

Professional, combines to produce an executable program. Its original form 

was that of 14 separate source files and a projectfile which compiled each 

into an object file, then linked these 14 object files together to produce an 

executable. When run, produces 67 files requiring over 300k bytes of disk 

space. One file, called datatext, is a text file which gives a running 

account of the time at which the program last added to its data files. When 

run under a multitasking operating· system, this file may be checked to 

monitor the progress of the program. A second file, called dataseed, 

contains the seed of the multiplicative congruential random number 

generator before the synthetic log was generated. It is often useful for 

reconstructing the log for which a given filter produces an exceptionally 

large or small result. The remaining 65 files are the results of varying the 

filter parameter between 2.00 and 4.00 by 3~, which corresponds to the file 

names d2_0 0. ot, d2_03 . ot, ... , d4_0 0. ot, respectively. 
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This last group of 65 files represents the data central to the theme of the 

program. Each file consists of 1000 single-precision floating-point numbers 

stored in binary format. Each of these numbers represents the RMS average 

difference between an ideal synthetic log and the corresponding filtered 

noisy synthetic log. As an example, consider the file d3_15. ot. From the 

file name, the filter parameter can be deduced as 3i2, which, although 

somewhat cumbersome written on paper, has an exact, and simple, binary 

representation. Each set of four bytes in the file is the binary representation 

of a single-precision floating-point number. So bytes 9 to 12 represent a 

number (say 7 .26, for example's sake.) This means that when the third 

2048-point noisy synthetic log was filtered, that the RMS difference between 

it and the original ideal synthetic log was 7 .26. Of course reading this 

binary data is somewhat difficult, so in Appendix B is the program listing for 

a utility that assists in this endeavor. 

The main program twaf. c: 

/* program otwl !Ordinary twin window. (Uses median without RM3.) 

Ideal gamma-ray log generator. 
Makes multiple runs with different noise files. Finds the RMS average of 

the difference between the ideal log and a simple combination of recursive 

median filters. Larry Paden 3/30/84. 

Changed to print out the seed before each pass. LJP 8/23/83. 
synthetic log generator changed to produce small layers. LJP 10/5/83. 

Prints the unformatted files directly. LJP 8/30/84. 

Some subroutines are in [LARRY.PADEN]LIBRARY 

RELOAD subroutine added to pick up where it left off. LJP 10/2/84. 

PHOENIX added. LJP 10/4/84. 
Converted to c. ljp 4/5/87.*/ 

iinclude <stdio.h> 
iinclude <sys\stat.h> 
/* The directory for a RAM disk to cut down on hard disk use. */ 
idefine DIR 'D:\\twaf' 
/* Signal length in samples. */ 
#define LENSIG 2048 
/* Number of noisy logs. */ 

#define RUNS 1000 

/* Controls verbosity of text output. */ 

#define IRMSVERB 0 



/* The number of points in the outer window. */ 
idefine LARGE 9 

/* Lowest filter parameter. */ 
#define BOTTOM 2.0 
/* Highest filter parameter. */ 
#define TOP 4.0 
/* Filter parameter increment. Change filename in sprintf %.2f below.*/ 
#define DELTA 0.03125 
/* Minimum time in seconds between harddisk writes. */ 
#define TIMEALL (600.0) 
/* Minimum slope. */ 
#define SLPMIN 0.0 

/* Maximum slope. */ 
#define SLPMAX 0.0 
/* Name of file for text output. */ 
#define LUWNAME 'datatext' 
char datafile[128] = 'data'; /* Place to store a data file name. */ 
void main() { 

FILE *luwrite, 
*tempfile, 
*hardfile; 

void flush(); 

I* 
/* 

I* 
I* 
/* 

Logical unit for writing text. *I 
LU for other files. *I 
LU to copy to hard disk. *I 
For MS-DOS fflush only. *I 
CPU (?) time used. MS-DOS elapsed time. *I double cputime(); 

double lasttime; 
static double param, 

/* Save the last time files were transfered. */ 
/* Filter parameter. */ 

rmsdiff, /* RMS difference. */ 
rmsavgl, rmsavg2, /* RMS average of the two logs. */ 
signal[LENSIG], ideal[LENSIG], xplt[LENSIG]; 

float wrflt; 
int limit; 
int irun; 
int junk; 
int kk; 

/* convert to single prec1s1on. */ 
/* Length of a log in points. */ 
I* Log suite sequence number. */ 
/* Info returned, but not used. */ 
I* Loop counter through a log. */ 

int errtmp; /* Error message data. */ 
unsigned short iseed[3]; /*Random number generator seed. */ 
int sprflng, sprfsht, sprfint; /* For checking sprintf results. */ 

int readdesc, writdesc, nitems, nindx, errnbr; /* For copying files. */ 
limit = LENSIG; 
/* Write various input parameters. */ 

luwrite = fopen (LUWNAME, 'a+'); 
daytime (luwrite); 
fprintf (luwrite, 'Hard disk is updated every %g seconds from %s.\n', 

TIMEALL, DIR); 
fprintf (luwrite, 'The outer window is length: %d.\n', LARGE); 
fprintf (luwrite, 'Bottom, top, delta: %g, %g, %g\n', 

BOTTOM, TOP, DELTA); 
fprintf (luwrite, 'Files have %d points; transitions %g to %g.\n', 

LENSIG, SLPMIN, SLPMAX); 
flush (luwrite); 
/* Initialize seed. */ 
iseed[O] Oxe66d; 

iseed[l] = Oxdeec; 
iseed[2] = Ox5; 
/* Initialize everyting else */ 
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if (stat (DIR, ( struct stat *}ideal} == 0} { 

fprintf (luwrite, 'Directory %s already exists. DIR); 

fprintf (luwrite, 'Are other processes using it?\n'); 

exit (-8); 

if ( ( errtmp = mkdir (DIR}} I= 0} { 

fprintf (luwrite, •cannot make directory %s %d\n', DIR, errtmp); 

exit (-9); 

sprflng = sprintf (datafile, '%s\\d%d_%.2d.ot•, DIR, 4, 0); 

sprfsht = sprintf (datafile, '%s\\d%d_%.2d.ot•, 4, 0}; 

lasttime = 0.0; 

irun = 0; 

ncprocessor(}; 

I* Reload all arrays if data is available. *I 
irun = reload (luwrite, BOTTOM, TOP, DELTA, iseed); 

fprintf (luwrite, 'Run and seed: %d %ux %ux %ux\n', 

irun, iseed[2], iseed[l], iseed(O] l; 

daytime(luwritel; flush (luwrite}; 

I* Do the number of times in RUNS. *I 
for (irun=irun; irun<RUNS; irun++} 

printf ('%d •, irun}; 

daytime (stdout}; 

fprintf (luwrite, '%d • irun); 

daytime (luwrite); 

flush (luwrite); 

I* save the seed. *I 
if ((tempfile = fopen ('dataseed', 'a+b'l) ==NULL} { 

fprintf (luwrite, 'Stopped by fopen dataseed.\n'}; 

exit (-10); 

if ((errtmp = fseek (tempfile, (long} (3*sizeof(short}*irun), 0}) 

I= 0) { 

fprintf (luwrite, •seek error on dataseed. %d\n', errtmp); 

exit ( -11); 

if (fwrite ((char *} iseed, sizeof(short), 3, tempfile} != 3) { 

fprintf (luwrite, 'Write error on dataseed.\n'l; 

exit (-12); 

if (fclose (tempfile) == EOF) { 

fprintf (luwrite, 'Stopped by fclose dataseed.\n'}; 

exit (-13); 

/* Check time. */ 

if (cputime(}-lasttime > TIMEALL} { 

lasttime = cputime(); 

fprintf (luwrite, 'Appending files.\n'}; 

fprintf (luwrite, '%g %d %ux %ux %ux\n', 

cputime(), irun, iseed[2], iseed[1], iseed[O]); 

daytime(luwrite); flush c(luwrite); 

!* Append the RAM disk files to the files in this directory. */ 

for (param=BOTTOM; param<=TOP; param+=DELTA} 

sprfint = param; 
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if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot', 
•.•, sprfint, (int)(100.*(param-sprfint)))) != sprfsht) 

fprintf (luwrite, 

'Stopped due to sprintf %d return code -16.\n', errtmp); 
exit (-14); 

if ( (hardfile = fopen (datafile, 'a+b')) == NULL) { 
fprintf (luwrite, 'Stopped by fopen %s. \n', datafile); 
exit (-15); 

if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot', 
DIR, sprfint, (int)(100.*(param-sprfint)))) l= sprflng). 
fprintf (luwrite, 

'Stopped due to spriritf %d return code -14.\n', errtmp); 
exit ( -16); 

if ((tempfile = fopen (datafile, 'rb')) ==NULL) { 
fprintf (luwrite, 'Stopped by fopen %s.\n', datafile); 

exit (-17); 

readdesc = fileno(tempfile); 
writdesc = fileno(hardfile); 
while ( (nitems = 

read (readdesc, (float*)ideal, (unsigned)LENSIG)) > 0) { 
if ( (errnbr = write (writdesc, (float*) ideal, 

(unsigned)nitems)) l= nitems) { 

if 

if 

fprintf (luwrite, 'Bad write to %s %d/%d.\n', 
datafile, errnbr, nitems); 

fprintf (stderr, 'Bad write to %s %d/%d. \n', 
datafile, errnbr, nitems); 

sleep (600); 

nindx = errnbr; 

nitems -= errnbr; 
/* While hard disk is full, give user a chance to fix. */ 
while ((errnbr =write (writdesc, 

&((float*)ideal) [nindx], 
(unsigned)LENSIG)) l= nitems) 
fprintf (luwrite, •. •); 

fprintf (stderr, •,•); 

nindx += errnbr; 

nitems -= errnbr; 

sleep (600); 

(fclose (tempfile) == EOF) { 

fprintf (luwrite, 'Stopped by fclose tempfile.\n'); 
exit (-18); 

(fclose (hardfile) == EOF) { 

fprintf (luwrite, 'Stopped by fclose hardfile.\n'); 
exit (-19); 

unlink (datafile); 
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I* 

I* Create synthetic log. *I 
gamgev2 (ideal, limit, iseed, SLPMIN, SLPMAX); 

I* Copy the ideal synthetic log and add noise. *I 
for (kk=O; kk<limit; kk++l signal[kk] = ideal[kk]; 

poisnois (signal, limit, iseed); 

I* Compute RMS between noisy and ideal. */ 
rmssub (ideal, signal, 0, limit, IRMSVERB, 

&rmsdiff, &rmsavg1, &rmsavg2); 

I* Save the RMS value. *I 
if ((tempfile = fopen ('datanois', 'a+b')) ==NULL) { 

fprintf (luwrite, 'Stopped by fopen datanois.\n'); 

exit (-21); 

if ( (errtmp = fseek (tempfile, (long) (sizeof(wrflt)*irun), 0) l 

!= 0) { 

fprintf (luwrite, •seek error on datanois. %d\n', errtmp); 

exit (-22); 

wrflt = rmsdiff; 
if ( (errtmp = fwrite ((char *) (&wrflt), sizeof(wrflt), 

1, tempfile)) l= 1) { 
fprintf (luwrite, 'Stopped by fwrite datanois. %d\n', errtmp); 

exit (-23); 

if (fclose (tempfilel == EOFl { 
fprintf (luwrite, •stopped by fclose datanois.\n'l; 

exit ( -24); 

I* Copy the data so that the copy can be filtered. *I 
for (param=BOTTOM; param<=TOP; param+=DELTA) 

for (kk=O; kk<limit; kk++) { 

xplt[kk] = signal[kk]; 

twaffilt (xplt, limit, LARGE, param, &junk, 0, &ideal[1836]); 
rmfilt (xplt, limit, 3, &junk, 1);*/ 
rmssub (ideal, xplt, 0, limit, IRMSVERB, 

&rmsdiff, &rmsavg1, &rmsavg2); 
sprfint = param; 

if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot•, 
DIR, sprfint, (int) (100.*(param-sprfint)))) l= sprflng) 

fprintf (luwrite, 

'Stopped due to sprintf %d return code -30.\n', errtmp); 
exit (-30); 

if ((tempfile = fopen (datafile, 'a+b'll ==NULL) { 
fprintf (luwrite, •stopped by fopen %s.\n', datafile); 
exit (-31); 

if ((errtmp = fseek (tempfile, (long) (sizeof(wrflt)*irun), 0)) 

I= 0) { 

fprintf (luwrite, 'Seek error on %s. %d\n', datafile, errtmp); 
exit (-32); 
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wrflt = rmsdiff; 
if ((errtmp = fwrite ((char*) (&wrflt), sizeof(wrflt), 

1, tempfile)) 1=1) { 

fprintf (luwrite, 'Stopped by fwrite %s.\n', datafile); 
exit (-33); 

if (fclose (tempfile) == EOF) { 
fprintf (luwrite, •stopped by fclose %s.\n', datafile); 
exit (-34); 

daytime (luwrite); 

fprintf (luwrite, 'Finished!!!'); 

fclose (luwrite); 

system ('NEXT.BAT\n'); 

I* Deal with a peculiarity of MS-DOS. See TUrbo C++ help on fflush(). *I 
void flush(FILE *stream) 

int duphandle; 

I* flush the stream's internal buffer *I 
fflush(stream); 

I* make a duplicate file handle *I 
duphandle = dup(fileno(stream)); 

I* close the duplicate handle to flush the DOS buffer *I 
close(duphandle); 

Subroutine bubble. c: 

I* Bubble sort. By Larry Paden 5119183. Translated to c 415187. *I 
I* This would probably run faster written with pointers. *I 
void bubble (double xx[], int istart, int iend) 

I* double *xx; I* Data to be sorted. *I 
I* int istart; 

I* int iend; 

double temp; 

int ii, jj; 

I* First location to be sorted. *I 
I* Last location to be sorted.· *I 

I* Temporary location. *I 
I* Indices. *I 

I* Do some parameter checking. *I 

if (istart >= iend) 

printf ('Bubble did nothing. %d %d\n', istart, iend); 
return; 

if (iend-istart >= 1024) { 

printf ('You could really speed this up with a binary sort.'); 

I* Sort it. *I 

75 



for (jj=istart+1; jj<=iend; jj++) { 

temp=xx[jj]; 

ii = j j; 

while (temp< xx[ii-1]) 

xx[ii] = xx[ii-1]; 

ii = ii-1; 
if (ii <= istart) break; 

xx [ ii] = temp; 

Subroutine cputime.c: 

I* Returns a double of elapsed time in MS-DOS. Larry Paden 7130190. *I 

I* Bugs: not really the cpu time, as on the multi-user systems of old. *I 

iinclude cdos.h> 
iinclude <math.h> 
iinclude csysltimeb.h> 
static double basis = 0.0; 
double cputime () { 

struct timeb timebuf; 

ftime(&timebuf); 

if (basis l= 0.0) { 
return (((double) timebuf.time + (double) timebuf.millitm I 1000.0) -basis); 

else { 
basis = (double) timebuf.time + (double) timebuf.millitm I 1000.0; 

return (0.0); 

Subroutine daytime. c: 

/* Prints time on.input LU. Larry Paden 4110/86.*1 

iinclude cstdio.h> 

iinclude <time.h> 

iinclude <sysltimeb.h> 
void daytime(FILE *lu) 

long clock, time(); 

char *ctime(); 

struct tm *localtime(), *now; 
struct timeb timebuf; 
time (&clock); 

ftime(&timebuf); 
I* fprintf (lu, ctime(&clock)); Somewhat verbose. *I 
now= localtime(&clock); 
fprintf (lu, '%.2dl%.2dl%.2d %.2d:%.2d:%.2d.%.3d\n', 

now->t:m_year, now->tm_mon+1, now->tm_mday., 

now->tiDLhour, now->tm_min, now->tm_sec, 
(int) timebuf.millitm); 

I* Military dates are readily machine sortable. *I 

76 



Subroutine flush. c: 

/*Deal with a peculiarity of MS-DOS. See Turbo C++ help on fflush(). */ 

iinclude <stdio.h> 

ltinclude <io.h> 
void flush(FILE *stream) 

int duphandle; 

fflush (stream); I* flush the stream's internal buffer */ 

duphandle = dup (fileno (stream)); /*make a duplicate file handle*/ 

close (duphandle); /*close duplicate to flush the DOS buffer*/ 

Subroutine gamgev2. c: 

/* Generates random synthetic gamma-ray logs. HIMIN and 

* HIMAX are chosen to make the average noise power of the 

* generated logs to be 13. Larry Paden 10/5/83. 

* WIDMAX and initial width changed 5/17/84. LJP 

* Gamge2 created to add random slopes between levels. LJP 6/7/84. 

* Gamgevar to allow calling program to select width of slopes. LJP 8/5/84. 

* Gamgev2 to tidy up. Parameters are the same, but fewer calls to erand() 

* are made, so this will not generate the same synthetic log LJP 9112/90. 

*I 
ltinclude <math.h> 

ltdefine WIDMIN 5 

ltdefine WIDMAX 11 

ltdefine WIDE (WIDMAX-WIDMIN) 

ltdefine HIMIN 50 

ltdefine HIMAX 288 
ltdefine HIGH (HIMAX-HIMIN) 

void gamgev2 (double xx[], /*Incoming ideal log. */ 

int isize, /* Length in samples of the ideal log. */ 

unsigned short iseed[], /*Seed for the random number generator. */ 

double slpmin, /* Minimum transition between levels. */ 

double slpmax) /* Maximum transition between levels. */ 

int ii, jj; 

double erand48b(), slpwid, swidth, width, height, oldhi; 

slpwid=slpmax-slpmin; 

ii = 0; 
height= HIMIN+HIGH*erand48b(iseed); 

width= WIDMAX*erand48b(iseed); 

I* printf ("At %d W1, h1: %g, %g\n", ii, width, height);*/ 

while (ii < isize) { 

/* Generate width points on a level. */ 

for (jj=ii; jj<=ii+width-1 && jj<isize; jj++) {xx[jj] 

ii = ii+Width; 

oldhi = height; 

height= HIMIN+HIGH*erand48b(iseed); 

width= WIDMIN+WIDE*erand48b(iseed); 
if (slpmin+slpwid >= 0.0) { 

height;} 
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/* 

swidth = slpmin + (slpwid==O.O? 0.0 : slpwid*erand48b(iseedll; 
printf ('At %d W2, h2: %g, %g\n', ii, swidth, height);*/ 

/* Generate swidth points on a slope. */ 
for (jj=ii; jj<=ii+swidth-1 && jj<isize; jj++l 

xx[jj] = oldhi + {jj-ii+l)*{height-oldhil/{int) {swidth+ll;} 

ii = ii+swidth; 

Subroutine gauss. c: 

/* Generates Gaussion RV. From Fortran; Larry Paden 4/5/87 */ 

*include <math.h> 
static double twopi = 0.0; 

double gauss { 

unsigned short seed[], 

double s, 
double am) 

/* Random number generator seed. */ 
/* Standard deviation. */ 

/* Mean value. */ 

double erand48b{), atan(), log(), cos(), sqrt(); 

if {twopi == 0.0) { 
twopi = 8.0*atan(l.Ol; 
printf {'Two pi is %18.17lg\n', twopi); 

return (sqrt(-2.*log{erand48b{seedlll * s * 
cos(twopi*erand48b(seed))+aml; 

Subroutine ncproces. c: 

/* Tells if a numeric coprocessor is found. Larry Paden 7/30/90 */ 

*include <dos.h> 
int ncprocessor () { 

if (_8087 > 0) { 
printf ('This program finds an 80%d87.\n', _8087); 

else printf ('This program cannot find the 80x871\n'); 
return (_8087); 

Subroutine poisnois. c: 

/* Adds Guassian noise to a synthetic gamma-ray log. The noise 

* 
* 
* 

variance is set to the square root of the log at each point 
to simulate the Poisson distribution. Larry Paden 10/5/83. 
From Fortran 4/5/87 ljp. */ 

iinclude <math.h> 
void poisnois (double xx[], int isize, unsigned short iseed[Jl 
/* 

I* 
I* 

double *xx; 

int isize; 

unsigned short *iseed; 

int ii; 

/* An incoming synthetic log. */ 
/* Length of this log. */ 

I* Random number generator seed. *I 

/* Array index. */ 

78 



double 

whino, 
gauss(); 

I* Gaussian (0, 1) distributed. *I 
I* Noise generator. *I 

for (ii=O; ii<isize; ii++l 

whino =gauss (iseed, 1.0, 0.0); 

xx[ii] = whino*sqrt(xx[ii]l + xx[ii]; 

Subroutine ran db . c: 

I* A simple version of the UNIX(tm) 48-bit multiplicative congruential random 

*number generator. Takes 1.7 times longer to execute on the i486, but code 
* is considerably more readable. Larry Paden 912019.0. 
*I 

#include <math.h> 
#define two_m16 (.(long double) (1. 165536.)) 

static double 
result= ((Ox330eU*two_m16 + OxabcdU) * two_m16 + Ox1234U) * two_m16, 

a2 = Ox0005U*65536.*65536., a1 = OxdeecU*65536., aO = Oxe66dU, 

carry = Oxb * two_m16 * two_m16 * two_m16; 

double drand48b() { 

double b2, b1, bO, intprt; 

modf (a2*result, &intprt); 

b2 = a2*result-intprt; I* Fractional part of 16 by 48 bits. *I 
modf (a1*result, &intprt); 

b1 = a1*result-intprt; I* Fractional part of 16 by 48 bits. *I 
modf (aO*result+carry, &intprt);l* Works if carry< 2A16. *I 
bO = aO*result+carry-intprt; I* Fractional part of 16 by 48 bits. *I 
result= modf (b2+b1+b0, &intprt); I* Works if sum b[0-2] <= 2.0. *I 
return (result); 

double erand48b (unsigned short iseed[]) { 

a2 = iseed[2]*65536.*65536.; a1 = iseed[1)*65536.; aO 
return (drand48b()); 

iseed[O]; 

Subroutine reload. c: 

I* Checks the length of dataseed, datanois, and dataxxx files. 

If they are within one record of being the same length, the 

seed is reloaded and the return value is set accordingly. The other 

files are not truncated since it is easier to seek to a given position 

and write than it is to truncate. Larry Paden 418187. *I 
#include <stdio.h> 

#include <sysltypes.h> 

#include <syslstat.h> 
reload ( 

FILE *luwrite, 
double bottom, 

double top, 

double delta, 

I* LU for outputing text messages. *I 
I* Least file (of form dataX.XX.) *I 
I* Greatest file (of form dataX.XX.) *I 
I* Increment from bottom to top. *I 

unsigned short iseed[ J l I* Random number gene·rator seed. * 1 
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int access(), stat(), open(), close(), seedrecs, records, errtmp; 

double param; 

char *tmp, filename[20); 

FILE *fp; 

struct stat statbuf; 

if (access (tmp='dataseed', 06) == 0) { 

stat (tmp, &statbuf); 

seedrecs = statbuf.st_size/(sizeof(short)*3l; 

if (seedrecs <= 0) { 

fprintf (luwrite, 'Reload: empty seed. %d\n',statbuf.st_size); 

exit ( -ll; 

if ((fp = fopen ('dataseed', 'r'll ==NULL) 

fprintf (luwrite, 'Reload: cannot open dataseed.\n'); 

exit (-2); 

if (fseek (fp, (seedrecs-1)*sizeof(short)*3, 0) I= 0) { 

fprintf (luwrite, 'Reload: cannot seek on dataseed.\n'l; 

exit (-3); 

if (fread ((char *l iseed, sizeof(short), 3, fp) I= 3) { 

fprintf (luwrite, 'Reload: read wrong number of items.\n'l; 

exit (-4); 

if (fclose (fp) != 0) 

else { 

fprintf (luwrite, 'Reload: cannot close dataseed.\n'l; 

exit ( -5); 

return (0); /* No previous data. */ 

if (access (tmp='datanois', 06) == 0) { 

stat (tmp, &statbuf); 

records= statbuf.st_size/sizeof(float); 

else { 
records = 0; 

if (records>seedrecs I I records<seedrecs-1) { 

fprintf (luwrite, 'Reload failed: datanois %d %d\n', 

records, seedrecs); 

exit (-6); 

for (param=bottom; param<=top; param=param+delta) { 

if ((errtmp =sprintf (filename, 'data%.2f', param)) I= 8) 

fprintf (luwrite, 'Reload: stopped at sprintf %d\n', errtmp); 

exit(-7); 

if (access (filename, 06) == 0) { 

stat (filename, &statbuf); 

records= statbuf.st_size/sizeof(floatl; 

if (records>seedrecs I I records<seedrecs-1) 

fprintf (luwrite, 'Reload failed on %s: %d %d\n', 
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filename, records, seedrecs); 

exit (-8); 

else { 
fprintf (luwrite, 'Reload: cannot access %s.\n', filename); 

exit (-9); 

if (seedrecs <= 0) seedrecs 0; 

else seedrecs -= 1; 

return (seedrecs); 

Subroutine rmf i 1 t . c: 

I*C Recursive median filter. Larry Paden 6115187. 

I*C The filtered data is input and returned in xx. *I 
#include <stdio.h> 
#include <math.h> 

#define BUFLEN 51 
void rmfil t ( 

double xx[), 
int last, 
int length, 

int *differ, 
int verbos) 

I* The data to be filtered. *I 
I* The length of the data. *I 
I* The length of the large window. *I 

I* Returns the number of points changed. *I 
I* Prints certain statistics. *I 

int ii, JJ, haflen; 

double xsort[BUFLEN]; 

haflen = length/2; 
if (length > BUFLEN) { 

/* Buffer for sorting. */ 

printf ('Rmfilt must be passed length< %d, not %d. Stopped.\n', 

BUFLEN, length); 

exit (-70); 

*differ = 0; I* Zero the number of differing points. *I 
I* Note that if the filter is run with the first and last points 

duplicated at the beginning and end, the first haflen points will 

always remain the same, but the last point needs to be saved 

for future reference. *I 
I* The data point numbered 0 remains unchanged. *I 
I* For each data point between 1 and haflen-1 filter. *I 
for (ii=l: ii<haflen; ii++l { 

jj = ii-haflen; 
while (jj < 0) { 

xsort[jj-(ii-haflen)] 

jj++; 

while (jj <= ii+haflen) { 

xsort[jj] = xx[ii+jj]; 

jj++; 

bubble (xsort, 0, length); 

xx[O]; 
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if (xx[ii1 l= xsort[haflen1) 

*differ+=1; 

xx[ii1 = xsort[haflen1; 

/*For each data point, filter. (Except for first and last haflen.) */ 

for (ii=haflen; ii<last-haflen; ii++) 

for (jj=O; jj<length; jj++) 

xsort[jj1 = xx[ii-haflen+jj1; 

bubble (xsort, 0, length); 

if (xx[ii1 l= xsort[haflen1) 

*differ+=1; 

xx[ii1 = xsort[haflen1; 

/* Filter last haflen points. */ 

for (ii=last-haflen; ii<last-1; ii++) 

jj = ii-haflen; 
while (jj < last) { 

xsort[jj-(ii-haflen) 1 

j j++; 

while (jj < ii+haflen) { 

xsort[jj1 = xx[last-11; 

j j++; 

bubble (xsort, 0, length); 

if (xx[ii1 l= xsort[haflen1) 

*differ+=1; 

xx[ii1 = xsort[haflen1; 

xx[ii+jj 1; 

/* The last data point (numbered last-1) remains unchanged. */ 

/* Clean up. */ 

if (verbos == 1) 

if (*differ > 0 J 
printf ('%d points changed.\n', *differ); 

/*format (1h, i<log10(float(*differ))+1>,' points changed.')*/ 

else { printf ('0 points changed. No difference in output!'); } 

Subroutine rms sub . c: 

/* Given real arrays X1 and X2 and range ISTART to LIMIT, this calculates 

*the RMS average of the difference (RMSAVG), and the ordinary average 

*values of the two input files (AVG1 and AVG2.) The results are labelled 

* and printed if VERBOSE > 0. Larry Paden 6/22/83. 

* From Fortran. ljp 4/5/87. */ 

iinclude <math.h> 
void rmssub ( 

double x1[], 
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double x2[], 

int istart, 

I* Incoming arrays. *I 
I* First point in evaluation. *I 

int limit, 
int verbose, 

double *rmsavg, 
double *avgl, 
double *avg2) 

I* Last point NOT in evaluation. *I 
I* Print if > 0. *I 

I* The three outputs. *I 

double total; 
int ii; 

total = limit-istart; 

*msavg = 0. 0; 

*avgl = 0.0; 
*avg2 = 0.0; 
for (ii=istart; ii<limit; ii++) { 

*rmsavg = *rmsavg + (xl[ii]-x2[ii]) * (xl[ii]-x2[ii]); 

*avgl *avgl+xl[ii]; 

*avg2 *avg2+x2 [ ii] ; 

*rmsavg = sqrt (*rmsavgltotal); 
*avgl = *avglltotal; 

*avg2 = *avg21total; 
if (verbose > 0) printf ('RMS 

*rmsavg, *avgl, *avg2); 
%lg; averages %lg %lg\n', 

Subroutine twaffil t. c: 

I*C Twin window average filter. Larry Paden 3129184. 
c The filtered data is returned in XX. 

From twinfilt 9111190. *I 
#include <math.h> 
#define !ARRAY 2048 

#define XSMAX 51 
#define XI(qq) xi[(qq)+XSMAX] 
void twaffilt ( 

double xx[ l, 
int last, 

I* The data to be filtered. *I 
I* The length of the data. *I 

int large, 
double range, 

I* The length of the large window. *I 
I* Maximum distance from the current point *I 
I* which is allowed in the little window. *I 

int *differ, 
int verbos) 

I* Returns the number of points changed. *I 
I* Prints certain statistics. *I 

int ii, jj, top, btm, haflen; 
double fmod(), sqrt(), fabs(); 
static double xi[IARRAY+2*XSMAX], 

xsort[XSMAX*2+1], value; 

I* Do some parameter checking. *I 
if (last > !ARRAY) 

I* Orignally xi(-SO:size+Sl) .*1 
I* Temporary locations. *I 

printf ('Input array is greater than %d.\n', !ARRAY); 

return; 

if (large > XSMAX*2+1) { 

83 



large = XSMAX*2+1; 

printf ('The maximum filter length is: %d\n', XSMAX*2+1); 

I* Initialize and copy the array. *I 
*differ = 0; I* Zero the number of differing points. *I 
haflen = large/2; /* Center position in XSORT. */ 

for (ii=O; ii<last; ii++) XI (ii) = xx[ii]; 

I* Append end points. */ 

for (ii=O; ii<haflen; ii++) 

XI(-1-ii) = XI(O); 

XI(last+ii) = XI(last-1); 

/* For each data point, filter. */ 

for (ii=O; ii<last; ii++) { 

!* Initialize and sort the little sort array. */ 

for (jj=O; jj<large; jj++) xsort[jj] XI(ii+jj-haflen); 

bubble (xsort, 0, large); 

for (btm=O; btm<large; btm++) 

if (fabs(xx[ii]-xsort[btm]) <= range*sqrt(xx[ii])) 

break; 

for (top=large-1; top>=O; top--) { 
if (fabs(xx[ii]-xsort[top]) <= range*sqrt(xx[ii])) 

break; 

/* Calculate average of inner window. */ 

value = 0.0; 

for (jj=btm; jj<=top; jj++l 

value+= xsort[jj]; 

value I= (double) (top-btm+1); 

/* Check for difference and copy the point. */ 

!* printf ('Value: %lg\n', value); */ 

if (xx[ii] I= value) { 

*differ+=1; 

xx[ii] = value; 

/* Clean up. */ 

if (verbos == 1) 

if (*differ > 0) 

printf ('%d points changed.\n', *differ); 
/*format (1h, i<log10(float(*differ)l+1>,' points changed. ')*I 

else { printf ('0 points changed. No difference in output!'); } 

84 



APPENDIXB 

PROGRAM TO CONSOLIDATE 
THE DATA 

The program to consolidate the data produced by the code in 

Appendix A is avg. c, and when compiled with the ingenious Turbo C++ 

provisions for expanding command line arguments, might be invoked by: 

avg -a -p d?_??.ot 

which would print on its standard output the statistics for each of the files 

matching the specification by the wildcard characters. The -p switch 

toggles printing of the value of every point and the -a switch toggles 

printing of the mean and standard deviation of the set of points represented 

in the file. Other switches may be used to select contiguous subsets of the 

file. If the switches are forgotten, the program will list them using the - ? , or 

any other unrecognized switch. The program to interpret the binary files 

produced by the routines in Appendix A is 

Program avg. c: 

/* Prints out the average and std. dev. of a file. Larry Paden 6/1/87 

*Handles multiple files. (Use avf data* for all.) LJP 6/3/87 

* As arguments, -x drops the first x elements and +y stops after 
* the yth element in the file and gives the statistics. LJP 6/3/87 
* Converted to Turbo C++ LJP 10/10/90. 
* Bugs: Only processes file once. For data with mean/std-1e7 all 
* significance will be unnecessarily lost. 

*I 
iinclude <stdio.h> 
iinclude <math.h> 

iinclude <Values.h> 

iinclude <stdlib.h> 
iinclude <alloc.h> 

idefine ULIMIT 1048576 
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I* Longest file length. *I 
*define BIG 1.0e30 

idefine LITTLE 1.0e-30 
I* Too BIG to square! *I 
void main (int argc, char *argv[]} 

FILE *tempfile; I* Logical unit for writing text. *I 
double sum, square, histlo, histhi, histstep, histmin, histmax, histtmp, 

I* 

I* 

norm (double, double, double, double}; 
float xinput; 

long far *histpnt = NULL, histlen, histcnt, lngtmp; 
int errtmp, count, sent, hi, ii, jj, start, 

avgflg, histflg, prtflg, newfile, lnnflg, process, zero; 

long stop; 

avgflg = 1; 
histflg 0; 

histmin MAXDOUBLE; 
histmax - MAXDOUBLE; 

process 1; 
if (argv[O] [0] I= 'a'} avgflg 0; 

if (argv[O] [0] 'P'} prtflg 1; 

else prtflg = 0; 

lnnflg = 1; 

zero = 1; 

start = 0; 

stop = ULIMIT; 

for (ii=1; iicargc• ii++} { 
count = start; 

newfile = 1; 
if (histflg && histpnt == NULL) { 

I* Allocate the required array. *I 
histlen = (histhi-histlo}lhiststep + 1; 
printf(•Available heap is, initially: %lu bytes.\n•, 

farcoreleft(});*l 

if ((histpnt = (long far*} farcalloc ((unsigned long}histlen, 
(unsigned long} (sizeof(*histpnt}}}} ==NULL} { 

fprintf ( stderr, "Histpnt is %Fp\n •, histpnt} ; 

exit (10}; 

printf ("Available heap is: %lu bytes.\n", farcoreleft());*l 

for (histcnt=O; histcnt<histlen; histcnt++} histpnt[histcnt] 

if (argv[ii][O] == '-'} 

jj=1; 

while (argv[ii][jj] I= '\0'} { 

if (argv[ii][jj] >= '0' && argv[ii] [jj] <= '9'} { 

start= atoi (&argv[ii] [jj]); 
while (argv[ii] [jj l >= '0' 

&& argv[ii] [jj] <= '9' 

I* && argv [ ii l [ j j l I= '\0' *I l { 

jj++; 

if (argv[ii] [jj] '\0'} break; 

0; 
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else if (argv[ii][jj] =='a') 

if (avgflg) avgflg = 0; 

else avgflg = 1; 

else if (argv[ii] [jj] == 'H') 
if (histflg) histflg = 0; 

else histflg = 1; 

histlo = 0.0; 

histhi = 13.0; 

histstep = 0.25; 

hi = ii; 
jj = 2; 

histlo = atof (&argv[hi) [jj]); 
while (argv[hi) [jj) 

&& argv [hi J [ j j J 

II argv[hi) [jj l 

II argv[hi) [jj J 
jj++; 

>= 

<= 

'0' 

'9' 

' ' 

'e') 

if (argv[hi) [jj] == '\0') break; 
while (l(argv[hi][jj) >= '0' 

&& argv[hi] [jj] <= '9' 

I I argv [hi J [ j j J ' • ' ) 
&& argv[hi) [jj) I= '\0') 

jj++; 

if (argv[hi) [jj] == '\0') break; 

histhi = atof (&argv[hi) [jj)); 

while (argv[hi) [jj] >= •o• 
&& argv[hil [jj) <= '9' 

II argv[hi] [jj] 

I I argv[hil [jj 1 
jj++; 

'e') 

if (argv[hil [jj1 == '\0') break; 
while (! (argv[hil [jj1 >= '0' 

&& argv[hi] [jj) <= '9' 

II argv[hi) [jj1 '. ') 

&& argv [hi l [ j j J ! = ' \ 0 ' l 
jj++; 

if (argv[hi) [jj1 == '\0') break; 

histstep = atof (&argv[hi][jj]); 

while (argv[hi] [jj 1 >= '0' 

&& argv[hi1 [jj1 <= '9. 

II argv[hil [jj1 -- ' ' 

II argv[hi] [jj] 'e') 

jj++; 

if (argv[hi)[jj) == '\0') break; 

while (I (argv[hi1 [jj1 >= •o• 
&& argv[hi1 [jj] <= '9' 

II argv[hi) [jj 1 '. • l 
&& argv [hi 1 [ j j 1 I = ' \ 0 ' l 
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j j++; 

if (argv[hi] [jj] '\0') break; 

else if (argv[ii] [jj] == 'l') 

if (lnnflg) lnnflg 0; 

else lnnflg = 1; 

else if (argv[ii] [jj] 'P') 

if (prtflg) prtflg 0; 

else prtflg = 1; 

else if (argv[ii][jj] 'z') 

if (zero) zero = 0; 

else zero = 1; 

else { 

fprintf (stderr, '%s: Bad switch %s.\n', 

argv[O], argv[ii)); 

fprintf (stderr, 

•usage: %s -alp\n\ 

\ta\ttoggle averaging\n\ 

\tH\tselect Histogram -Hlo:hi:step\n\ 

\tl\ttoggle line numbering\n\ 

\tp\ttoggle printing\n', argv[O]); 

/*d toggle float/double 

u toggle short 

cXX set number of columns */ 

jj++; 

continue; 

else if (argv[iil [OJ == '+') { 

stop= atoi (&argv[iil [1)); 

continue; 

if (start >= stop) 

fprintf (stderr, '%s: %d >=%din %s\n', 

argv(O], start, stop, argv[ii)); 

continue; 

if ((tempfile = fopen (argv[ii), 'rb')) ==NULL) 

fprintf (stderr, '%s: Cannot open %s.\n', 

argv[O], argv[ii]); 
continue; 

if (start I= 0) 
if ( (errtmp fseek 

(tempfile, (long) (sizeof(float)*start), 0)) l= 0) 

fprintf (stderr, '%s: Cannot seek on %s. %d\n', 

argv[O], argv[ii], errtmp); 

continue; 
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sent = 0; 

sum= square = 0.0; 

while ((errtmp = fread ((&xinput), sizeof(xinput), 

1, tempfile)) == 1 && sent< stop-start) { 

I* Don't bother with files with values without physical meaning.*/ 

if (fabs(xinput) > BIG) { 

fprintf (stderr, '%s: fabs(%s(%d)) •, 

argv[O], argv[ii], scnt+start); 

fprintf (stderr, '= %lg > %g\n', xinput, BIG); 

process = 0; 

break; 

if (fabs(xinput) <LITTLE && xinput != 0.0) 

fprintf (stderr, '%s: fabs(%s(%d)) •, 

argv[O], argv[ii], scnt+start); 

fprintf (stderr, '= %lg < %g\n', xinput, LITTLE); 

process = 0; 

break; 

if ((histflg I I avgflg) && (zero I I xinput != 0)) { 

sent++; 

sum += xinput; 

square += (double)xinput*xinput; 

if (histflg) { 

lngtmp = (long) ((xinput-histlo)/histstep); 

if (lngtmp < 0) lngtmp = 0; 

if (lngtmp > histlen) lngtmp = histlen; 

histpnt[lngtmp]++; 

if (xinput < histmin) histmin xinput; 

if (xinput > histmax) histmax xinput; 

if (prtflg) { 

if (lnnflg) 

if (fmod((double)(count), 10.) 0.) 

printf ('%.4d', count); 

else { 

if (newfile) { 

printf ('%.4d', count); 

for (jj=O; jj<fmod( (double.) (count), 10.); jj++) { 

printf ( • •); 

printf ('%7.Slg', xinput); 

if (fmod((double) (count), 10.) 9.) 

printf ('\n'); 

count++; 

newfile = 0; 

if (process) 
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if (prtflg) printf ('\n'); 
if (Ifeof(tempfile) && sent != stop-start) { 

fprintf (stderr, '%s: data missing %sat %d. %d\n', 

argv[O], argv[ii], start+scnt, errtmp); 

if (sent == 0) continue; 

if (avgflg) { 

if (sent > 1) { 

sum = sum/sent; 

else 

square= sqrt((square-scnt*sum*sum)/(scnt-1) ); 

fprintf (stdout, '%s. %d %lg %lg\n', 

argv[ii], sent, sum, square); 

fprintf (stdout, '%s %d %lg\n', argv[iiL sent, sum); 

process = 1; 
if (prtflg) printf ('\n'); 
if (fclose (tempfile) == EOF) 

fprintf (stderr, '%s: cannot close %s.\n', argv[O], argv[ii]); 

continue; 

if (histflg) { 
printf ( 'Histogram\t%s\n', argv[ii]); 

printf ('%g\t%g\t%g\tlo:hi:step\n', histlo, histhi, histstep); 

if (sent > 1) { 

else 

sum = sum/sent; 
square= sqrt((square-scnt*sum*sum)/(scnt-1)); 

fprintf (stdout, '%d\t%lg\t%lg\tent:avg:std\n', 

sent, sum, square); 

fprintf (stdout, '%d\t%lg\t0\tent:avg:std\n', sent, sum); 

square= 1.0; 

printf ('%g\t%g\t\tmin:max\n', histmin, histmax); 

printf ('\nValue\tCount\tExpect\n'); 

for (histcnt=O; histcnt<histlen; histcnt++) { 
histtmp = histlo+histent*histstep; 

printf ('%g\t%ld\t%g\n', histtmp, histpnt[histcnt], 

sent* (norm (sum, square, histtmp, histtmp+histstep))); 

Subroutine erfast. c: 

/*Returns (2/sqrt(pi)) *integral from 0 to x of exp (-tA2) dt. To avoid 

* loss of precision due to subtracting nearly equal numbers, erfc = 1-erf. 

*Coefficients are Hart & Cheney *5667 (18.72D). Larry Paden 9/23/90. 

* Runs in about 70.8% of the time of its counterpart *5667 on Unix by using 
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* constants, instead of arrays. This version may also be 1 bit (out of 53) 

* more accurate. LJP 9123190. 

* Testing Clenshaw•s 20D formula from 0 to 0.5 by 0.00001 reveals a maximum 

* relative error of only 2.22e-16 and most of the time 0 relative error. 

* The trouble with #5667 is that the precision is absolute, so #5708 may be 

*used instead. Tested from 0 to 8 by 0.001, it is off 13.8e-16 relative to 

* to function itself. After 8, it quickly deteriorates so that by 26, it 
* only 10D relative accuracy. Between 8 and 100, use #5725, which is faster 

* to compute anyway. It is off by 2.2e-16 relative max. Larry Paden 1128/91. 

*I 

#include <math.h> 

I* TOOBIG = sqrt (abs (ln (MINDOUBLE))) to prevent underflow. *I 
#define TOOBIG 26.6157 

I* From c.w. Clenshaw, 'Chebyshev series for Mathematical Functions, • National 

Physical Laboratory Mathematical Tables, London, 1962. *I 
#define NUMERATOR1(xx) ((( ((( (\ 

0.007547728033418631287834e0) * (xx) + \ 

-0.288805137207594084924010e0) * (xx) + \ 

0.143383842191748205576712e2) * (xx) + \ 

0.380140318123903008244444e2) * (xx) + \ 

0.301782788536507577809226e4) * (xx) + \ 

0.740407142710151470082064e4) * (xx) + \ 

0.804373630960840172832162e5) 

I* First coefficient of DENOM1 is 1.0. *! 
#define DENOM1 (xx) ( ( ( ( ( \ 

I* 

(XX) + \ 
0.380190713951939403753468e2) * (XX) + \ 
0.658070155459240506326937e3) * (xx) + \ 

0.637960017324428279487120e4) * (XX) + \ 

0.342165257924628539769006e5) * (XX) + \ 

0.804373630960840172826266e5) 

J.F. Hart, Computer Approximations, 1968, 

idefine N5667(xx) ((( ((( ((\ 

0.5641877825507397413087057563e0) * (XX) 

0.9675807882987265400604202961el) * (XX) 

0.7708161730368428609781633646e2) * (xx) 

0.3685196154710010637133875746e3) * (xx) 

0.1143262070703886173606073338e4) * (XX) 

0.2320439590251635247384768711e4) * (XX) 

0.28980293292167655611275846e4 ) * (xx) 

0.18263348842295112592168999e4) 

#define D5667(xx) ((( ((( ((\ 

(XX) 

0.1714980943627607849376131193e2) * (XX) 

0.1371255960500622202878443578e3) * (XX) 

0.6617361207107653469211984771e3) * (XX) 

0.2094384367789539593790281779e4) * (xx) 

0.4429612803883682726711528526e4) * (XX) 

0.60895424232724435504633068e4 ) * (XX) 

ERFC 5667, page 293. *I 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 

+ \ 
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0.495882756472114071495438422e4 ) * (XX) + \ 

O.l8263348842295112595576438e4) 

/* J.F. Hart, Computer Approximations, 1968, ERFC 5708, page 296. */ 

#define N5708 (XX) ( ( ( ( ( ( ( ( ( \ 

0.5641895867618136136925465862e0) * (xx) + \ 

0.1006485897490954253550505591e2) * (XX) + \ 

0.860827622119485951175545307e2) * (xx) + \ 

0.456261458706092630641800311e3) * (xx) + \ 

0.163176026875371469635150913e4) * (xx) + \ 

0.40322670108300497362095728e4) * (xx) + \ 

0.67582169641104858863327586e4) * (xx) + \ 

0.7113663246954049873409986e4) * (xx) + \ 

0.372350798155480672256717e4) 

#define D5708 (XX) ( ( ( ( ( ( ( ( ( \ 

(XX) + \ 

0.1783949843913955652884238734e2) * (xx) + \ 

0.1530777107503622158569520624e3) * (xx) + \ 

0.8176223863045440770282502642e3) * (XX) + \ 

0.2968004901482308716427652719e4) * (XX) + \ 

0.754247951019347575547208583e4) * (XX) + \ 

O.l33493465612844573717217317e5) * (xx) + \ 

0.158025359994020425273588457e5) * (XX) + \ 

0.11315192081854405468201443e5) * (XX) + \ 

0.372350798155480654352472e4) 

/* J.F. Hart, Computer Approximations, 1968, ERFC 5725, page 297. */ 

#define N5725 (XX) ( ( ( ( ( ( \ 

0. 5641895835477550741253201704e0) * (xx) · + \ 

0.1275366644729965952479585264el) * (XX) + \ 

0.5019049726784267463450058el) * (xx) + \ 

0.61602098531096305440906el) * (XX) + \ 

0.7409740605964741794425el) * (xx) + \ 

0.29788656263939928862el) 

#define D5725 (xx) ( ( ( ( ( ( \ 

(XX) + \ 

0.2260528520767326969591866945el) * (XX) + \ 

0.9396034016235054150430579648el) * (XX) + \ 

0.120489519278551290360340491e2) * (XX) + \ 

0.1708144074746600431571095e2) * (xx) + \ 

0.9608965327192787870698el) * (xx) + \ 

0.33690752069827527677el) 

double erf (register double xx) 

double erfc (double); 

int minusx = 0; 

if (XX< 0) {XX= -XX; minUSX++;} 

if (XX > 0. 5) {xx = 1. 0-erfc (xx);} 

else { 

register double x2 = xx * xx; 
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xx *= M_2_SQRTPI * NUMERATOR1 (x2) I DENOM1 (x2); 

return (minusx? -xx: xx); 

double erfc (register double xx) 

if (xx < 0.5) return (1- erf(xx)); 

if (XX>= TOOBIG) return (0.0); I* exp (-xxA2) will underflow. *I 
if (XX< 8.0) return (exp (-xx*xx) * N5708 (xx) I D5708 (XX)); 
return (exp (-xx*xx) * N5725 (XX) I D5725 (xx)); 

Subroutine norm. c: 

I* The nunit and norm functions. Larry Paden 9121187 MS-DOS ljp 9121190. *I 
*include <stdio.h> 

*include <math.h> 
*define ABS (XX) ( (XX>=O)? (XX) :-(XX)) 
double erf (double), erfc (double); 

double nunit (double x1, double x2) 

I* Calculates the area under the standard normal curve, avoiding loss of 
precision except where both arguments are abs(x[12]) < 0.7. This is 

not currently a problem. Note that the returned value is always 
positive notwithstanding the definition of erf(3C) and reguardless of 

the order of the arguments. *I 

if ( (X1>0) l= (x2>0)) { I* If signs are different *I 
return ((erf(ABS(x2)1M_SQRT2) + erf(ABS(X1)IM_SQRT2))12.0); 

else ( I* Signs are same *I 
I* Need test here for both absolute values <0.7. *I 
return ((ABS (erfc(ABS(x1)IM_SQRT2) - erfc(ABS(x2)1M_SQRT2)))12.0); 

double norm (double mu, double sigma, double aa, double bb) 

I* Calculates the area under the normal curve, with mean mu, variance 

sigmaA2, from aa to bb. Uses method of nunit. Larry Paden 1123188. *I 

double x1, x2; 

if (sigma<=O.O) 

fprintf (stderr, 'Norm: Sigma %g!\n', sigma); 

sigma = -sigma; 

x1 = (aa-mu)lsigma; 
x2 = (bb-mu)lsigma; 
if ( (X1>0) != (x2>0)) I* If signs are different *I 

return ((erf(ABS(X2)IM_SQRT2) + erf(ABS(x1)IM_SQRT2))12.); 

else { I* Signs are same *I 
I* Need test here for both absolute values <0.7. *I 
return ((ABS (erfc(ABS(X1)IM_SQRT2) - erfc(ABS(x2)IM_SQRT2)))/2.); 
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APPENDIXC 

RESULTS OF RUNNING 
THE TWIN WINDOW 

AVERAGE FILTER 

The Twin Window Average Filter was run on 1000 different synthetic 

logs with the filter parameter c varying between 2.0 and 4.0 by 3~. For each 

of these logs, the results were displayed in histograms. Care was taken to 

produce each of the graphs on the same scale to aid in visual comparison of 

the histograms. The filter parameter may be deduced from the title. For 

instance, on the second graph is "02_03" which means that the parameter c 

was set to 2.03125 or 23~. This was done so that the machine could handle 

the important steps in the process, reducing the possibility of human error. 

For each histogram, the mean and variance was estimated to use in 

computing the nonnal distribution. This distribution cmve was then superimposed 

on each plot as an aid in visualizing the mean and standard deviation. It 

portrays graphically that the data in each histogram is very close to being 

normally distributed. Most importantly, the normal curves illustrate that as 

the filter parameter increases to its optimum value, the variance of the 

histogram decreases. This might provide insight as to what an appropriate 

value of the filter parameter should be in a practical application. 

The program that summarizes the data for the histograms is given in 

Appendix B. To do this for a single file, it was invoked by: 

avg -H6.0:10.0:0.03125 d2 OO.ot > d2_00.txt 
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for each of the 65 files. The program has a feature that piles any points 

beyond the range of the buckets into the first or last bucket, whichever is 

nearer. In this invocation, a point with a value of 5 would show up in the 6 

bucket, or a point with a value of 22 would show up in the 10 bucket. The 

results are presented such that the diligent reader may verify that each histogram 

contains precisely 1000 points. 
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6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_31) Filter (D2_34) 
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10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 .10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_37) Filter (D2_ 40) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_ 43) Filter (D2_ 46) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_50) Filter (D2_53) 
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55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_56) Filter (D2_59) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_62) Filter (D2_65) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_68) Filter (D2_71) 
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30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_75) Filter (D2_78) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_81) Filter (D2_84) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_87) Filter (D2_90) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D2_93) Filter (D2_96) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_00) Filter (D3_03) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_06) Filter (D3_09) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_12) Filter (D3_15) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_18) Filter (D3_21) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_25) Filter (D3_28) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 ,10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_31) Filter (03_34) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_37) Filter (D3_ 40) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_ 43) Filter (D3_ 46) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_50) Filter (D3_53) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_56) Filter (D3_59) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_62) Filter (D3_65) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_68) Filter (D3_71) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_75) Filter (D3_78) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_81) Filter (D3_84) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of Twin Window Average Histogram of Twin Window Average 
Filter (D3_87) Filter (D3_90) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of Twin Window Average 
Filter (03_93) 
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RMS Difference in each of 1000 Logs 

Histogram of Twin Window Average 
Filter (04_00) 
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Histogram of Twin Window Average 
Filter (03_96) 

6.5 7 7.5 8 8.5 9 9.5 

RMS Difference in each of 1 000 Logs 

10 



APPENDIXD 

HISTOGRAMS OF A TWIN WINDOW 
AVERAGE FILTER FOLLOWED BY 
A RECURSIVE MEDIAN 3 FILTER 

The main program given in Appendix A, twa f . c, has one subroutine 

commented out. The subroutine is called rmfil t and the parameter 3 

means that it implements a recursive median filter of length 3 on the data. 

As can readily be detennined from the program listing the RM3 is run after 

the TW AF. The resulting histograms have lower means than the TW AF 

alone, but do not match the corresponding normal curve as closely. The 

filter parameter for the TW AF was explained in the previous appendix. Its 

digits give the decimal number truncated to two places for an integral 

number of fractional parts whose size is 3
1
2• For instance, D3_09 indicates 

3 
3.09 or 332• 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_00) Recursive Median 3 (D2_03) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_06) Recursive Median 3 (D2_09) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_12) Recursive Median 3 (D2_15) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_18) Recursive Median 3 (D2_21) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_25) Recursive Median 3 (D2_28) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_31) Recursive Median 3 (D2_34) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_37) Recursive Median 3 (D2_ 40) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1000 Logs RMS Difference in each of 1 ooo Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (02_ 43) Recursive Median 3 (D2_ 46) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_50) Recursive Median 3 (D2_53) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 



111 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_56} Recursive Median 3 (D2_59} 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_62} Recursive Median 3 (D2_65} 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_68} Recursive Median 3 (D2_71} . 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 {D2_75} Recursive Median 3 {D2_78} 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 
' 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_81} Recursive Median 3 (D2_84} 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 ooo Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_87} Recursive Median 3 (D2_90} 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D2_93) Recursive Median 3 (D2_96) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_00) Recursive Median 3 (D3_03) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_06) Recursive Median 3 (D3_09) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_12) Recursive Median 3 (D3_15) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_18) Recursive Median 3 (D3_21) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_25) Recursive Median 3 (D3_28) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 
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Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_31) Recursive Median 3 (D3_34) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_37) Recursive Median 3 (D3_ 40) 

60 60 
55 55 
50 50 
45 45 
40 40 
35 . 35 
30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 . 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_ 43) Recursive Median 3 (D3_ 46) 

60 60 
55 55 
50 50 
45 45 
40 40 
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30 30 
25 25 
20 20 
15 15 
10 10 
5 5 
0 0 

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10 

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs 



116 

Histogram of TWAF followed by Histogram of TWAF followed by 
Recursive Median 3 (D3_50) Recursive Median 3 (D3_53) 
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Histogram of TWAF followed by 
Recursive Median 3 (D3_90) 
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APPENDIXE 

PROGRAM TO OPTIMIZE 
THE TWIN WINDOW 

AVERAGE FILTER 

This is the program to optimize the Twin Window Average Filter with 

respect to the filter parameter. It requires the following routines from 

Appendix A: 

bubble.c, cputime.c, daytime.c, flush.c, gauss.c, ncproces.c, poisnois.c, randb.c, 

reload.c, rmfilt.c, rmssumb.c, and twaffilt.c. 

In addition, to these, the main program 1 v1. c, requires the subroutines: 

appendel.c, gamv2lvl.c, rmslvl.c, savedata.c, and savemat.c. 

As in Appendix A, the source code was maintained in separate files with a 

Turbo C++ project file to compile each into an individual object file. These 

were then combined into an executable file. 

The main program 1 v1. c: 

/* Compiles statistics for a particular level of signal. Larry Paden 9/16/90. 
Ideal gamma-ray log generator. 

Makes multiple runs with different noise files. Finds the RMS average of 
the difference between the ideal log and a simple combination of recursive 
median filters. Larry Paden 3/30/84. 

Changed to print out the seed before each pass. LJP 8/23/83. 
Synthetic log generator changed to produce small layers. LJP 10/5/83. 

Prints the unformatted files directly. LJP 8/30/84. 

Some subroutines are in [LARRY.PADEN)LIBRARY 
RELOAD subroutine added to pick up where it left off. LJP 10/2/84. 

PHOENIX added. LJP 10/4/84. 
Converted to c. ljp 4/5/87. Reload only protects old data under c. 

Reload removed from lvl version; it stopped the bedwid loop. LJP 9/18/90. 

*I 
*include <stdio.h> 
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iinclude <sys\stat.h> 

/* Level to examine. */ 

!* Width of smallest bed. */ 

#define LEVEL 288.0 

/*#define WIDMIN 5*/ 

idefine WIDMIN 5 

!* Width of widest bed plus one. */ #define WIDMAX 11 

/*!*RAM disk. Root \ is limited, so use sub. */ #define DIR 'D:\\lvl' */ 

!*RAM disk. Root \ is limited, so use sub. */ #define DIR 'D:\\lv2' 

!* Signal length in samples. */ #define LENSIG 2048 

!*Number of noisy logs. */ #define RUNS 1000 

/* Controls verbosity of text output. */ idefine IRMSVERB 0 

!* The number of points in the outer window. */ #define LARGE 9 

/*Lowest filter parameter. */ #define BOTTOM 2.0 

!*Highest filter parameter. */ #define TOP 4.0 

/* Filter parameter increment. */ /*#define DELTA 0.03125*/ 

#define DELTA 0.125 

/*Minimum seconds between hard disk writes. */ #define TIMEALL {600.0) 

!* Minimum slope. */ #define SLPMIN 0.0 

/* Maximum slope. */ #define SLPMAX 0.0 

!*!* Name of file for text output. */ #define LUWNAME 'dd\\text'*/ 

!* Name of file for text output. */ #define LUWNAME 'd2\\text' 

char tmpstr[128] = ''; !*Place to store a data file name. */ 

char dirname[128] = ''; 
void main {) { 

FILE *luwrite, 

*tempfile, 

*hardfile; 

void flush{); 

!* Place to store a directory name. */ 

/* File descriptor for writing text. *I 

!* File descriptor for other files. *I 
/* File descriptor to copy to hard disk. *I 

!* For MS-DOS fflush only. *I 
/* CPU (?) time used. MS-DOS elapsed time. *I double cputime(); 

double lasttime; 

static double param, 

!* Save the last time files were transfered. */ 

!* Filter parameter. */ 

rmsdiff[WIDMAX], 

rmsavgl[WIDMAX], 

rmsavg2 [WIDMAX], 

signal [LENSIG], 

ideal [LENSIG], 

xpl t [ LENSIG] ; 

float wrflt; 

long longtmp; 

int limit, 

irun, 

junk, 

kk, 

errtmp, 

place, 

bedwid; 

unsigned short iseed[3]; 

/* int sprflng, sprfint; 

char *strrchr(), 

*errstr; 

limit = LENSIG; 

/* RMS difference between two logs. */ 

·/* RMS average of the two logs. */ 

!* Places to put logs. */ 

/* Convert to single precision. */ 

/* Temporary storage of a special length. */ 

!* Length of a log in points. */ 

/* Log suite sequence number. */ 

/* Info returned, but not used. */ 

!* Loop counter through a log. */ 

!* Error message data. */ 

/* saves a place, typically in a string. */ 

/* Bed width under consideration. */ 

!* Random number generator seed. */ 

/* For checking sprintf results. */ 

!* Pointers to a string. */ 

/* String to print in an error message. */ 

/* Write various input parameters. */ 
luwrite = fopen (LUWNAME, 'a+'); 

daytime ( 1 uwri tel ; 

120 



fprintf (luwrite, 'Hard disk is updated every %g seconds from %s.\n', 

TIMEALL, DIR) ; 

fprintf (luwrite, 'The outer window is length: %d.\n', LARGE); 
fprintf (luwrite, 'Bottom, top, delta: %g, %g, %g\n', 

BOTTOM, TOP, DELTA); 

fprintf (luwrite, 'Files have %d points; transitions %g to %g.\n', 
LENSIG, SLPMIN, SLPMAX); 

flush (luwrite); 

I* Initialize various things. (See discriptions above.) */ 

iseed[O] Oxe66d; 

iseed[l] = Oxdeec; 

iseed[2] = OxS; 
/* if (stat ( •. \\dd', (struct stat *)ideal) != 0 && 

(errtmp=mkdir ('.\\dd')) !=0) { 

*I 

fprintf (luwrite, •cannot make directory %s %d\n', '.\\dd', errtmp); 

exit (-9); 

if (stat ('.\\d2', (struct stat *)ideal) != 0 && 

(errtmp = mkdir ('.\\d2')) I= 0) { 
fprintf (luwrite, •cannot make directory %s %d\n', '.\\d2', errtmp); 

exit (-9); 

if (stat (DIR, ( struct stat * l ideal) == 0) { 
fprintf (luwrite, 'Directory %s already exists. DIR); 

fprintf (luwrite, 'Are other processes using it?\n'l; 
exit ( -8); 

if ( (errtmp = mkdir (DIR) l I= 0) { 

fprintf (luwrite, •cannot make directory %s %d\n', DIR, errtmp); 

exit (-9); 

sprintf (dirname, '%s\\*.*', DIR); 

lasttime = 0.0; 

irun = 0; 
ncprocessor {) ; 

fprintf {luwrite, 'Run and seed:. %d %ux %ux %ux\n', 

irun, iseed[2], iseed[l], iseed[O] l; 

daytime(luwrite); flush (luwrite); 

I* Do for each bed width. Typically 5 to 10 inclusive. *I 
for (bedwid=WIDMIN; bedwid<WIDMAX; bedwid++) 

I* Do the number of times in RUNS. *I 
for {irun=O; irun<RUNS; irun++) { 

/* Report on progress. Make sure things are saved on hard disk. *I 
printf ('%dL%d •, bedwid, irun); daytime (stdout); 

fprintf {luwrite, '%dL%d •, bedwid, irun); 

daytime (luwrite); flush (luwrite); 

if ((errtmp = sprintf {tmpstr, errstr='seed%.2d.', 

bedwid, (int)LEVEL)) I= 7) { 
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/* 

fprintf (luwrite, 

'Stopped by sprintf %don format %s.\n', errtmp, errstr); 

exit (-28); 

savedata (luwrite, DIR, tmpstr, iseed, sizeof(short), 3); 

/* Check time. If not written in last TIMEALL seconds, then write. *I 
if (cputime()-lasttime > TIMEALL) 

lasttime = cputime(); 

errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp); 

errtmp = appendel (luwrite, dirname, '.\\d2', &longtmp); 

fprintf (luwrite, 

'Appending %d files totalling %ld bytes (%g) .\n', 

errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O); 

fprintf (luwrite, '%g %d %ux %ux %ux\n', 

cputime(), irun, iseed[2], iseed[1], iseed[O]); 

daytime(luwrite); flush (luwrite); 

*I 

I* create synthetic log; copy it; add noise; measure result; save. *I 
gamv2lvl (ideal, limit, iseed, SLPMIN, SLPMAX, 

LEVEL, (double)bedwid, 24., 50.); 

for (kk=O; kk<limit; kk++) signal[kk] = ideal[kk]; 

poisnois (signal, limit, iseed); 

rmssub (ideal, signal, 0, limit, IRMSVERB, 

&rmsdiff, &rmsavg1, &rmsavg2); 

I* Save the RMS difference between the ideal and noisy logs. *I 
if ((errtmp = sprintf (tmpstr, errstr='diff%.2d%%.2d.%.3d', 

bedwid, (int)LEVEL)) != 14) 

fprintf (luwrite, 

'Stopped by sprintf %don format %s.\n', errtmp, errstr); 
exit ( -29); 

savemat (luwrite, DIR, tmpstr, rmsdiff, bedwid+1, 0, 1); 

I* Save the ideal array average value. *I 
if ((errtmp = sprintf (tmpstr, errstr='idyl%.2d%%.2d.%.3d', 

bedwid, (int)LEVEL)) != 14) { 

fprintf (luwrite, 

'Stopped by sprintf %don format %s.\n', errtmp, errstr); 

exit (-30); 

savemat (luwrite, DIR, tmpstr, rmsavg1, bedwid+1, 0, 1); 

I* Save the noisy array average value. *I 
if ((errtmp = sprintf (tmpstr, errstr='nois%.2d%%.2d.%.3d', 

bedwid, (int)LEVEL)) !:.14) 
fprintf (luwrite, 

'Stopped by sprintf %don format %s.\n', errtmp, errstr); 
exit (-31); 

saveroat (luwrite, DIR, tmpstr, rmsavg2, bedwid+1, 0, 1); 
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I* 

I* Copy the data so that the copy can be filtered. *I 
for (param:BOTTOM; param<=TOP; param+=DELTA) { 

for (kk=O; kk<limit; kk++l xplt[kk) = signal[kk); 
twaffilt (xplt, limit, LARGE, param, &junk, 0); 
rmfilt (xplt, limit, 3, &junk, 1);*1 

rmslvl (luwrite, ideal, xplt, 0, limit, IRMSVERB, bedwid, LEVEL, 

rmsdiff, rmsavgl, rmsavg2); 

I* Save postfiltering noisy average array. *I 
if ((errtmp = sprintf (tmpstr, errstr='n%.3d%.2d%%.2d.%.3d', 

(int) (param*lOO.), bedwid, (int)LEVEL)) != 14) 

fprintf (luwrite, 

•stopped by sprintf %don format %s.\n', errtmp, errstrl; 

exit (-32); 

savemat (luwrite, DIR, tmpstr, rmsavg2, bedwid+l, 0, 1); 

I* Save postfiltering RMS difference array. *I 
if ((errtmp = sprintf (tmpstr, errstr='d%.3d%.2d%%.2d.%.3d', 

(int) (param*100.), bedwid, (int)LEVEL)) != 14) { 

fprintf (luwrite, 

•stopped by sprintf %don format %s.\n', errtmp, errstr); 

exit (-33); 

savemat (luwrite, DIR, tmpstr, rmsdiff, bedwid+1, 0, 1); 

I* Copy all the leftover pieces to hard disk. */ 

!* errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp); *I 
errtmp = appendel (luwrite, dirname, '.\\d2', &longtmp); 
fprintf (luwrite, 'Appending %d files totalling %ld bytes (%g) .\n', 

errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O); flush (luwrite); 

I* Copy all the leftover pieces to hard disk. (Shouldn't be any now.) *I 
I* errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp) ;*/ 

errtmp = appendel (luwrite, dirname, '."\\d2', &longtmp); 

fprintf (luwrite, 'Appending %d files totalling %ld bytes (%g) .\n', 
errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O); 

I* Clean up; run next job, if any. *I 
daytime (luwrite); 

fprintf (luwrite, 'Finished!!!'); 

fclose (luwrite); 

system ('NEXT.BAT\n'); 

Subroutine appendel . c : 

I* Takes a drive, path, and DOS file prototype; appends the files to those of 

* the same name in the output directory, or creates them if nonexistent; and 

* deletes the original file. All the while doing extensive error checking. 
* If the output device is full, it prints a message and outputs a • • every 
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* ten minutes hoping someone will correct the problem. Larry Paden 9114190. 

*I 
#include <stdio.h> 
#include <dir.h> 

#include <dos.h> 
#include <string.h> 

#define BUFLEN 128 
int appendel ( 

FILE *lu, 
char *indir, I* Input path and file prototype. *I 
char *outdir, 
long *count) 

I* output directory in which appended or created. */ 
I* Count of total bytes written. *I 

struct ffblk fileblk; 

FILE *hardfile, 

*tempfile; 

int dirstat, 

I* Holds file information. *I 
I* For writing. *I 
!* For reading. *I 
I* Zero if another file is found by findnext. *I 

errnbr, I* Error number return. *I 
filecnt, /* Count the files and return the value. *I 
ii, /* Temporary counter. */ 

nitems, nindX, I* Number of items read in. *I 
readdesc, 
writdesc; /* File handles for reading and writing. */ 

char infile [MAXPATH], /*Actual individual input file name. */ 
outfile [MAXPATH], I* Actual individual output file name. */ 

buffer [BUFLEN], I* Transfer to this RAM way station. */ 

*pnt; 

*count = 0; 

filecnt = 0; 

dirstat = findfirst (indir, &fileblk, 0); 

while ( !dirstat) 

filecnt++; 

I* Make true name and open the input file for reading. */ 
strcpy (infile, indir); 

if ((pnt = strrchr (infile, '\\')) I= 0) pnt[1] = '\0'; 

strcat (infile, fileblk.ff_name); 

if ((tempfile = fopen (infile, 'rb')) --NULL) { 
fprintf (lu, 'Appendel cannot open input %s.\n', infile); 

exit (-17); 

I* Make true name and open the output file for appending or create it. *I 
strcpy (outfile, outdir); 

if (outfile[strlen(outfile)-1] 1= '\\') strcat (outfile, '\\'); 
strcat (outfile, fileblk.ff_name); 

if ((hardfile = fopen (outfile, 'a+b')) ==NULL) { 
fprintf (lu, 'Appendel cannot open output %s.\n', outfile); 
exit (-15); 

I* Perform the copy operation with low-level reads and writes. */ 
readdesc fileno(tempfile); 
writdesc = fileno(hardfile); 
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while ( (nitems = 
read (readdesc, buffer, (unsigned)BUFLEN)) > 0) { 

(*count) += (errnbr =write (writdesc, buffer, (unsigned)nitems)); 

if (errnbr != nitems) { 

fprintf (lu, 'Bad write to %s %d<%d.\n', 

outfile, errnbr, nitems); flush (lu); 

fprintf (stderr, 'Bad write to %s %d<%d.\n', 

outfile, errnbr, nitems); 
sleep (600); 

nindx = errnbr; 

nitems -= errnbr; 

I* While hard disk is full, give user a chance to fix. *I 
(*count) += (errnbr = 

write (writdesc, &buffer[nindx], (unsigned)nitems)); 

while (errnbr != nitems) { 

fprintf (lu, '.'); 
fprintf ( stderr, •. •) ; 

nindx += errnbr; 
nitems -= errnbr; 

sleep ( 600U) ; 

(*count) += (errnbr 
write (writdesc, &buffer[nindx], (unsigned)nitems)); 

if (fclose (tempfile) == EOF) { 

fprintf (lu, 'Stopped by fclose tempfile.\n'); 

exit ( -18); 

if (fclose (hardfile) == EOF) { 
fprintf (lu, 'Stopped by fclose hardfile.\n'); 

exit (-19); 

unlink (infile); 
dirstat = findnext (&fileblk); 

return (filecnt); 

Subroutine garnv21 vl. c: 

I* Generates random synthetic gamma-ray logs. HIMIN and 

* HIMAX are chosen to make 
*generated logs to be 13. 

* WIDMAX and initial width 

the average noise power of the 

Larry Paden 1015183. 
changed 5117184. LJP 

* Gamge2 created to add random slopes between levels. LJP 6/7184. 

* Gamgevar to allow calling program to select width of slopes. LJP 815184. 

* Gamgev2 to tidy up. Parameters are the same, but fewer calls to erand() 

* are made, so this will not generate the same synthetic log. LJP 9112190. 

* Gamv2lvl makes logs with extra levels (lvl) every pnts points. LJP 9112190. 

*I 
iinclude <math.h> 
static double next=-1.0; I* Next occurence of extra bed. *I 
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void gamv2lvl (double xx[], I* Incoming ideal log. *I 
int isize, I* Length in samples of the ideal log. *I 
unsigned short iseed[], /*Seed for the random number generator. *I 
double slpmin, I* Minimum transition between levels. *I 
double slpmax, /* Maximum transition between levels. */ 

double lvl, /* Level to use extra times in log. */ 
double extent, /*Width of lvl; if 0, then range from WIDMIN to WIDMAX-1. */ 

double init, 

double pnts) 

/* Where to make the initial point. If <0, set to pnts. */ 

/* Attempt to produce lvl every pnts points. */ 

double erand48b (unsigned short[]), slpwid, swidth, width, height, oldhi; 

int ii, jj; 
void newhw (double[], double[], int, unsigned short[], 

double, double, double, double); 

next = -1.0; 
slpwid=slpmax-slpmin; 

ii = 0; 
newhw (&height, &width, ii, iseed, lvl, extent, init, pnts); 

I* printf ('At %d W1, h1: %g, %g\n', ii, width, height) ;*I 
while (ii < isize) { 

/*Generate width points on a level. *I 
for (jj=ii; jj<=ii+width-1 && jj<isize; jj++) {xx[jj] 

ii = ii+width; 

oldhi = height; 

height;) 

newhw (&height, &width, ii, iseed, lvl, extent, init, pnts); 
/* printf ('At %d W1, h1: %g, %g\n', ii, width, height);*/ 

if (slpmin+slpwid > 0.0) { 

/* 

swidth = slpmin + (slpwid==O.O 7 0.0 : slpwid*erand48b(iseed)); 
printf ('At %d W2, h2: %g, %g\n', ii, swidth, height);*/ 

I* Generate swidth points on a slope. */ 

for (jj=ii; jj<=ii+swidth-1 && jj<isize; jj++) 
xx[jj] = oldhi + (jj-ii+1)*(height-oldhill(int) (swidth+1) ;) 

ii = ii+swidth; 

#define WIDMIN 5 
#define WIDMAX 11 

#define WIDE (WIDMAX-WIDMIN) 
#define HIMIN 50 
#define HIMAX 288 

#define HIGH (HIMAX-HIMIN) 

void newhw 
double *height, I* New level to be generated. */ 

double *width, 
int ii, 
unsigned short 

double lvl. 
double extent, 

double init, 

double pnts) 

I* New number of points to be generated at that level. */ 
/* Counter to determine where in the log. *I 

iseed[], /* RV generator seed. */ 

I* Make extra occurences of this bed. *I 
I* Width of lvl; if 0, then range from WIDMIN to WIDMAX-1. */ 

I* Where to make the initial point. If <0, set to pnts. */ 

I* Average number of points apart for start of extra beds. */ 

double erand48b (unsigned short[]); 

if (next== -1.0) { 
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next = (init<O) ? pnts - WIDMIN - (WIDE-ll 12.0 

if (ii <next) { I* Generate as usual. *I 
*height= HIMIN+HIGH*erand48b(iseed); 
*width WIDMIN+WIDE*erand48b(iseed); 

else I* Generate the special level. *I 
*height = lvl; 

init; 

*width = (extent==O.O) ? WIDMIN+WIDE*erand48b(iseed) 

next += pnts; 

Subroutine rms 1 v 1 . c : 

extent; 

I* Given real arrays Xl and X2 and range !START to LIMIT, this calculates 
*the RMS average of the difference (RMSAVG), and the ordinary average 

*values of the two input files (AVGl and AVG2.) The results are labelled 

* and printed if VERBOSE> 0. Larry Paden 6122183. 
*From Fortran. ljp 415187. *I 

#include <stdio.h> 

#include <math.h> 
#define TOTLEN 16 
void rmslvl ( 

FILE *lu, 
double ideal[], 
double noisy [], 
int istart, 

int limit, 

I* 

I* 
I* 
I* 

File pointer for messages. *I 

Incoming arrays. *I 
First point in evaluation. *I 
Last point NOT in evaluation. 

int verbose, 
int max, 

I* Print if > 0. *I 

double lvl, 

double rmsavg[ J, 
double avgl[], 

double avg2 []) 

int ii, cnt[TOTLEN], which; 

if (max > TOTLEN) { 

I* Maximum number of points in a 

I* Look for runs at this level. 

I* The three outputs. *I 

*I 

run. *I 
*I 

fprintf (lu, 'Need more space in rmslvl %d>%d.\n', max, TOTLEN); 
exit (110); 

for (ii=O; ii<=max; ii++l 
rmsavg[ii] = 0.0; 
avgl [ ii] = 0. 0; 

avg2 [ ii J = 0 . 0; 
cnt[ii] = 0; 

cnt[O] = limit-istart; 
which = 0; 
for (ii=istart; ii<limit; ii++) { 

rmsavg[O] += (ideal[ii]-noisy[ii]) * (ideal[ii]-noisy[ii]l; 

avgl[O] += ideal[ii]; 

avg2[0] += noisy[ii]; 

if (ideal[ii] == lvl) I* Yes, it must be exactly equal! *I 
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cnt[++which]++; 

rmsavg[which] += (ideal[ii]-noisy[ii]l * (ideal[ii]-noisy[ii]); 

avg1[which] += ideal[ii]; 

avg2[which] += noisy[ii]; 

else { 
which 0; 

for (ii=O; ii<=max; ii++l 

if (cnt[ii] > 0) { 

rmsavg[ii] 

avg1 [ii 1 
avg2 (ii] = 

= sqrt (rmsavg[ii]lcnt[ii]); 

avg1[ii]lcnt[ii]; 
avg2[ii]lcnt[ii]; 

if (verbose > 0) fprintf (lu, 'RMS 
*rmsavg, *avg1, *avg2); 

if (verbose > 1) 
for (ii=O; ii<max; ii++l 

%lg; averages 

fprintf (lu, '%.2d %g %g %g %d\n', 

%lg %lg\n', 

ii, rmsavg[ii], avgl[ii], avg2[ii], cnt[ii]l; 

flush (lu); 

Subroutine savedata. c: 

I* Lu should be a file descriptor open for writing (possible) error messages. 
* creates or appends to file fname in directory dir the data pointed to by 

* wrflt which is size bytes long. Larry J. Paden 9114190. 

*Example: savedata (stderr, 'D:\\dd', 'datanoi2', &wrflt, sizeof(wrfltl, 1); 

*I 
lfinclude <stdio.h> 
savedata (FILE *fd, I* 

char *dir, I* 
char *fname, I* 
char *wrflt, I* 
int size, I* 
int number) I* 

FILE *tempfile; I* 
int place, I* 

errtmp; I* 
char tmpstr[256]; I* 
strcpy (tmpstr, dir); 
place=strlen(tmpstrl; 

Send error messages to this file descriptor. *I 
Open the target file in this directory. *I 
Name of target file. *I 
Pointer to data ~o write to target. *I 
Size of single item of data. *I 
Number of data items to be written. *I 

File descriptor of the target file. *I 
Holds the place in the string. *I 
Holds error codes. *I 
Place to build up true file name. *I 

if (tmpstr[place] != '\\') 
tmpstr[place++l = '\\'; 
tmpstr[place] = '\0'; 

I* If no \ on directory name, get one. *I 

strcat (tmpstr, fname); 

if ((tempfile = fopen (tmpstr, 'ab')) ==NULL) { 
fprintf (fd, 'Stopped by fopen %s.\n', tmpstr); 

exit (101); 
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if ((errtmp = fwrite (wrflt, size, number, tempfilell !=number) 

fprintf (fd, 'Stopped by fwrite %s. %d\n', tmpstr, errtmp); 
exit (102); 

if (fclose (tempfile) == EOF) { 
fprintf (fd, 'Stopped by fclose %s.\n', tmpstr); 
exit (103); 

return (1); I* The number of files written. *I 

Subroutine sa vema t . c : 

I* Lu should be a file descriptor open for writing (possible) error messages. 

* Creates or appends to files in directory dir the data pointed to by 
* wrflt which is size bytes long. The names of the (times) number of files 
* is created by format varied over the range from start to start+times*incr. 
* Larry J. Paden 9114190. 
*Example: savemat (stderr, 'D:\\dd', format, data_array, data_length, 0, 1); 

*I 
iinclude <stdio.h> 
savemat (FILE *fd, 

char dir[], 
char format [], 

double data[], 

int times, 

I* Send error messages to this file descriptor. *I 
I* Open the target file in this directory. */ 

I* Printf style name of target files. *I 
I* Pointer to data to_write to target. */ 

I* Times to use format to create files. *I 
int start, I* Starting argument to printf. */ 

int incrl /* Increment to increase start. */ 

I* File descriptor of the target file. *I FILE *tempfile; 

float wrflt; 

int ii, 
I* Cast the incoming double into this float. *I 

place, 

errtmp; 
char tmpstr[256]; 
int value;. 

value = start; 

I* 
I* 
I* 
I* 
I* 

strcpy (tmpstr, dir); 

place=strlen(tmpstr); 

Loop counter. *I 
Holds the place in the string. *I 
Holds error codes. *I 
Place to build up true file name. *I 
current value of the start+=incr sequence. *I 

if (tmpstr[place] I='\\') 

tmpstr[place++l = '\\'; 
tmpstr[place] = '\0'; 

I* If no \ on directory name, get one. *I 

for (ii=O; ii<times; ii++l 
if ((errtmp = sprintf (&tmpstr[place], format, value)) < 3) { 

fprintf (fd, 'Stopped by sprintf (\'%s\', \'%s\', %g) .\n', 

tmpstr, format, value); 

exit (100); 

if ((tempfile = fopen (tmpstr, 'ab')) ==NULL) ( 

fprintf (fd, •savemat cannot open %s.\n', tmpstr); 
exit (101); 
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wrflt = data[ii]; 

if ((errtmp = fwrite (&wrflt, sizeof(wrflt), 1, tempfile)) != 1) { 

fprintf (fd, 'Savemat cannot write %s. %d\n', tmpstr, errtmp); 

exit (102); 

if (fclose (tempfile) == EOF) { 

fprintf (fd, •savemat cannot close %s.\n', tmpstr); 
exit (103); 

value += incr; 

return (times); 
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