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PREFACE

This research is concerned with the development and
evaluation of special control charting techniques for quality
data generated from a first order response process. The
primary objectives are to present methodology for
constructing the control limits of these special control
charts using a conditional distribution and to use computer
simulation to determine the average run length of these
charts.  Several SAS programs are used in the study to -
determine the average run length for a particular scenario.
Modifications of the programs are then done to facilitate the
determination of the average run length for other scenarios.
Comparisons of these average run lengths with those of other
control charts commonly used on continuous flow processes are
then made. A FORTRAN program is also coded to calculate the
control limits of these special control charts. It is found
that the special control charts are capable of monitoring the
mean and/or dispersion of a first order response process.
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CHAPTER 1

BACKGROUND AND RESEARCH OBJECTIVES

Introduction

Control charts are employed for establishing and

maintaining

the statistical control of a process and for

helping analyze process capability. Most of the existing

control charting techniques are based on two major

assumptions

(1) The
are
(2) The

as follows:
underlying distribution from which observations
drawn is a normal distribution.

observations drawn from a process are independent

of one another. Hence, the subgroups of any size n

formed are also independent.

These two assumptions are not always satisfied in

industry settings. Violation of the first assumption can be

easily circumvented by using the Central Limit Theorem or

some type of data transformation to obtain normality.

Violation of the second assumption results in a serially

correlated quality data stream. Serially correlated data

can be easily encountered in industry processes. The

measurement

data generated from a continuous flow process

with well mixed vessels such as is commonly encountered in



chemical,-refining and mining processes are often serially
correlated. These continuous flow processes can be
categorized in various forms. The form most commonly
encountef@d is the first order response process. Box and
Jenkins (1976) and Hunter (19864), among others, discuss the
nature of first order, continuous processes as gener ators aof
serially correlated data.

The presence of serial correlation has a serious impact
on the performance of traditional control charts, causing a
dramatic increase in the frequency of false alarms. This
proposed research is to develop and evaluate a control
charting technique to deal specifically with serially
correlated data generated from a first order response

process.
Existing Control Charting Techniques

The concept of control charts was formally introduced
in 1931 by Dr. Walter Shewhart. It is based on the principle
that variatinnkin measurement data pertaining to a process
can be separated into two sources — inherent process
variation due to chance causes and variation due to
assignable causes. Dr. W. Edwards Deming (1982) refers to
these as common cause and special cause variation,
respectively. If the inherent variation can be estimated,
then, using statistical procedures, it is possible to detect
shifts in the mean and/or dispersion of a process. Thus,

the objectives of control charts are to determine whether the



process is in state of statistical control, to assist in
establishing a state of statistical control, and to monitor
current control of the process. The assumptions held in the
application of Shewhart's control charts are data
independence and normality. Development of other forms of
control charts, such as the Individual chart, Moving Average
chart, Cumulative Sum chart, and so on, all stem from the
theory conceived by Dir. Shewhart. These charts also assume
data independence and normality.

In normal practice, coupled control charts are generally
used simultaneously, such as Xbar and R charts, Individual
and Moving Range charts, and Moving Average and Moving Range
charts, to monitor both the mean and dispersion of a processi
The two underlying assumptions of data independence and
normality in those control charts are not always satisfied;
in these cases, the performance of these coupled contirol
charts is seriously affected.

In situations where the normality of process data cannot
be held, the Central Limit Theorem can usuaily be applied to
Justify the assumption of statistic normality. The Central
Limit Theorem essentially states that, under general
conditions, the distribution of subgroup means will approach
normality for a large sample size. Approximate normality of
data for plotting can also be achieved by some suitable forms
of data transformation (Natrella, 1963) (Dudewicz, 1788).
Much effort has been invested by researchers to study the

effect of data non—normality on control charts.



In situations where the.independence of process data
does not exist, that is, the process data are serially
correlated, there is no clear way to justify the use of
control éharts. There are some suggested ways to deal with
serially correlated data, such as avoidance and compensation
(Brooks and Case, 1986). Avoidance seeks to increase the
sampling interval to the point that the data are sufficiently
independent. Compensation seeks to remove the effect of
serial correlation, back to the point of control. Both ways
may be impractical in industry settings.

Currently, the approach used to deal directly with the
serially correlated data is through time series analysis. A
time series model is first fitted on the process data and a )
control chart is then applied to the residuals generated by
this fitted model. There are some variations in the
application of the time series approach to serially
correlated data. The accuracy of a model fitting depends on
both the number of observations available and the criteria
used in the model fitting. This approach is quite
complicated and the calculations involved are tedious.

Hence, the time series approach is difficult for a non time-

series expert to comprehend and use in industry.
Data from a Continuous Flow Process

Measurement data are taken on one or more
characteristics of a production unit. In discrete processes,

production units are usually independent discrete items. The



measured characteristics of these items are independent of
one another. Subgrouping of several measurements of the same
characteristic of these items, all taken at the same time,
does not‘affect the independence of these quality data. In a

continuous process, however, there is not a well defined

production unit (Wortham, 1972) (Dunn and Strenk, 19895).
Almost any chemical, petroleum, bulk liquid, or other semi-
homogenized product is a case of this kind. The application
of traditional éontrol charting techniques is difficult in
such cases since the sampling unit is defined in terms of
laboratory analysis requirements rather than in, say,
shipping units of product.

This problem is even compounded by the fact that to puli
n samples in a row from a continuous flow process will
usually result in ranges of near zero, with the range being
an almost pure measure of test variation (Walter, 19595).
Thus, in continuous flow processes, the most common sampling
subgroup size is one. However,‘even when a sample is pulled
one at a time at regular intervals, the measurements of these
samples are bound to be correlated to one another.

Most continuous processes have associated tanks, drums
or vessels where mixing takes place. Often, as new materials
are tontinuously added to the top of a tank, the well mixed
product is drawn from the bottom, simultaneocusly. Due to
this nature of mixing, a sample taken now has some material
in it that was produced one, two, or even more sample periods

earlier. This mixing prevents the samples from behaving



independeqﬁly, thus the data are serially correlated. The
relation of the current observation of process output with
the past process output can be statistically quantified.

To deal with the difficulties caused by the natural
characteristics of continuous flow processes, Freund (1960)
suggests the use of the acceptance control chart in batch o
continuous processes. Walter (1935) sugqgests the use of
control charts of moving averages of subgroup size four and
moving ranges of subgroup size two in the continuous process
control of a petroleum refinery. The use of exponentially
smoothed data in control charts for continuous process
control is suggested by Noftham (1972). Moving Average and
Range charts, and Individual and Moving Range charts are
also suggested for the monitoring of continuous flow
processes (Grant and Leavenworth, 1988). Koo (1987)
discusses how the Xbar chart, Individual chart and Moving
Average chart can be economically used to monitor continuous
flow processes. Occassione (19356) discusses how Xbar and
Range Charts are applied to continuous processes. In all
these cases, however, the existence of serial correlation in
the data of continuous flow processes is still not addressed
explicitly. Rather, all the methodologies suqggested still
assume the existence of normality and independence in the
process data. In some cases, the dependence’of process data
is acknowledged but avoidance is used to deal with it.

This research specifically attempts to deal explicitly

with the serially correlated data from a continuous flow



process. For simplicity, only a single output of interest
from a continuous flow process is considered in this
research.

A tybical first order continuous flow process can be
depicted as in Figure 1.1. The output Y's generated by a
first order process are dependent on the independent input
X's and serially correlated to one another. That is, the
current observation of Y is not independent of past
observations of the same output. The lag i serial
correlation of output Y can be calculated to determine the
relationship between data that are 1 observations apart. The
lag i1 serial corvelation, 1., can be estimated using the

equation (Box and Jenkins, 1976).

n—-1i _ _
z (Ye — ¥Y)®¥(Yeus — Y)
t=1
ry = {(1.1)
n —
Y (Y — Y)2
t=1
where
n
X Y
_ t=1
Y =
n

‘Due to the distribution of the estimated serial
correlation, the estimate of the serial correlation is
accurate only for a large number of observations. In an
industry setting, one may or may not have the large number of

observations to estimate the serial correlation of the



Input

X3 >1 First

Xa >| Order Output
H Process > Y

X >

Figure 1.1. First Order Process Having Single
Output Y of Interest



process output. Unfortunately, the time series analysis
approach uses the estimate of the serial correlation. Hence,
the time series model developed cannot correctly capture the
correlation structure, especially when it is a short run
process. With only few observations to beqin, say 25-30, the
time series analysis approach is definitely a poor one. Even
with a sufficient number of observations for the estimation
of serial correlation, depending on the criterja used in the
model fFitting, there wili be several possible time series
models for a given series of output. Using the model
identification macro program in TIMESLAB developed by Newton
(1988), this fact can be easily verified. The usual practice
in the quality control discipline is to employ models which "
use parameters parsimoniously. However, the validity of this

selection criterion in the quality control discipline has not

been proved yet.

Subgroup variation in a Continuous

Flow Praocess

In traditional control charting, the variation of
observations can be divided into two categories: within-
subgroup and between—-subgroup variations. This is done
through the use of a concept called rational subgrouping.
Within—-subgroup variation is a measure of inherent or common
cause variability. Common cause variation exists in all
processes. It can be calculated from control chart data and

is designated o. Between—subgroup variation is the
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variability from subgroup to subgroup, or the special cause
variation in addition to the common cause or inherent
variability. The measurement of total process variation is
S. Uhen‘a process is stable, or in a state of statistical
control (50SC), there is no variation from subgroup to
subgroup and s is equal to ;. However , when the process is
out—-of-control, the between—subgroup variatipn exists and it
inflates the value of s well above the value of ;.

Normally, control charts are constructed using empirical
data collected from an industry process. The state of the
process, either in-control or out—-of-control, is usually
unknown; that is why control charts are needed. Therefore,
if control limits are calculated using measurement of the
total variation, s, the control limits will reflect only the
inherent process variability of the process if it is in
control. Otherwise, the control limits will be wider since
the value of s consists of both between—-subgroup and within-—
subgroup variation. Hence, the probability of detecting an
out—-of—-control condition would be reduced because the control
limits are now wider apart. Thus, it is important to
calculate the control limits using the measurement of within-
subgroup variation, ;. The usual practice is to use the
subgroup range to compute the estimate of within—subgroup
variation, ; (Patnaik, 1950) (Duncan, 1986) (Grant and
Leavenworth, 1988) (Nelson, 1990).

In a continuous flow process, since observations are

drawn one at a time at a reqular interval, the within-



11

subgroup variation is usually estimated by the moving ranges
of size n = 2. This is to safeguard that the variation
computed contains as nearly as possible only the inherent
variability of the process. The moving ranges of size two
are formed from a time series of output values by finding the
vange of the first two consecutive values, and subsequently
dropping the oldest value and adding the newest value to form
each successive range. The use of the moving range to
estimate the process variation is also discussed by

Wadswor th, et al., (1986), Gibra (1973) and A.S.T.M. Special
Technical Publication (1976). The estimation of process
variation using moving ranges still assumes data independence
even though data are drawn from a continuous flow process. ’
This difficulty can be dealt with by applying Hartley's Lemma
(1950) which states that, if Y, Y=, ..., Y« denote a
multivariate observation from a multinormal distribution with
equal variance g2 and equal correlation r, then the range of
the Y, is exactly distributed as the range in a subgroup of k
independent normal variates with variance ¢2(1-r) and
further, is distributed independently of the mean, Ybar.

This research will use Hartley's Lemma and the moving ranges
of size two in the estimation of the process inherent

variation.
The Nature of Continuous Well—Mixed Processes

To understand how serially correlated data may be

observed, a continuous well-mixed process is considered. A
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typical simple chemical process is shown in Figure 1.2.

Inputs to a plug flow reactor result in output which is
represented by characteristics of interest. Typical inputs
to a reactor might include monomer concentration, catalyst
strength and temperature; important outputs might be
molecular weight of the resulting polymer, moisture content,
or urganic chlorine level (Brooks and Case, 1986).

That output then flows directly to an agitated (well-
mixed) tank. The tank output delivers the same product, now
more homogenized. That output is now designated as Y to
denote that it is observed downstream of the agitated tank,
as opposed to X which appears at the tank input. It is
clear that the major effect of the tank will be to smooth an
homogenize the variation in product coming from the reactor.

It is often not possible to measure ocutput X. If it
were, this research would not be needed. Rather, the first
oppurtunity to measure the characteristic of interest is at
downstream output Y. The mixing process results in a gradual
output response relative to a change made at the input of the
tank. That is, the first order output response Y at some
arbitrary time s, s > 0 , after a step disturbance in the
input to the tank (output X) at time 0 follows the classical
expnhential response
Y(s) = e==/7TY(0) + (l-e—=/7)X(s) (1.2)
where T is a constant representing the residence time of
the tank and s is also the sampling interval. 1If the

sampling interval equals to the residence time of the tank,
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then only e™* = 0.386 of the "old" product from time O would
remain in the tank at time s = 1. The residence time 71 is
equal to the ratio of occupied tank volume to the volumetric
flow raté for a first order process. This equation is
similar to those found in Box and Jenkins (1976), Coughanowr
and Koppel (1963), and MacGregor and Tidwell (1980).

It is assumed that the length of sampling interval can
be fixed. Thus, by letting e~ =/ = r , output Y can be
observed as a single measurement at a fixed time s apart.

By indexing the observed output of Y, Equation (1.2) can be

rewritten as a generalized equation for any time period.

Y(t) = r¥Y(t-1) + (1-r)X(t) (1.3)
where t = time index for output Y
= 1s also known as a filter constant

Brooks and Case (1986) have shown that if the serial
correlation of Y(t) is ignored, then the control char ts used
to monitor the process will be based on the assumption of
data independence. These control charts surely generate
false signals about the process and unnecessary corrective
action will be implemented, thereby worsening process
stability. The internal serial correlation, between
contiguous members of the Y time series, is inherent in well-
mixed chemical processes. Failure to meet the assumption of
data independence means that all the existing common control
charting techniques are not appropriate to be used.
Moreover, process capability indices carmot be calculated

with assurance, nor can any usual statistical inference be
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made concgrning the data, without first considering
explicitly the effect of data dependence.

In industry, most of the response processes such as
Iefinery‘processes are higher order response processes.
However, a higher order response process usually can be
‘broken down' into smaller components of lower order i1response
processes. As long as the physical structure permits
observations to be sampled, all the lower order response
processes can be monitored and controlled in isolation.
Often, the lower order response processes are the first order
responses processes. Each FORP can be monitored and
controlled separately. By first principles, the chemical
engineer is able to determine the filter conétant of many
FORPs and proper quality control tools can be used to monitor

and control such response processes.
Research Objectives

Based on the above discussion, the scope of this

research can be stated as follow:

Objective: To develop and evaluate procedures for
determining a pair of new control charts capable
of monitoring both the mean and dispersion of
serially correlated quality data generated from a

first order response process (FORP).

In order to accomplish this objective, several

subob jectives must be met. The subobjectives are:



To derive and construct procedures for determining the
appropriate control limits for the control chart that
monitors the mean of serially correlated quality data
genefated from a FORP. To facilitate further
discussion, the control chart constructed in this
subob jective is denoted as an OPA Y char t.

To derive and construct procedures for determining the
appropriate control limits for the control chart that
monitors the dispersion of serially correlated quality
data generated from a FORP. To facilitate further
discussion, the control chart constructed in this
subob jective is denoted as an OPA MRy chart.

To analytically show that when the proposed control
chart procedures developed in subobjective (1) is
applied to the serially correlated quatity data
generated from a FORP, it has the same Average Run
Length (ARL) as an Individual chart applied to an
independent normal data stream.

To determine the ARL of the proposed control chart
procedures developed in subobjective (2) for different
magnitudes of stepwise shifts in the dispersion of the
input variable to a FORP using a simulation approach.
To determine the ARL when both the proposed control
chart procedures are used simultaneocusly for different
magnitudes of stepwise shifts in the mean of the input
variable to a FORP using a simulation approach.

To compare the ARLs of the OPA Y chart versus those of

16
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the I chart when all of these charts are applied to the
same FORP data stream. The shift in the mean of the
input variable to a FORP data stream is éither stepwise,
trend or cyclical.

To compare the ARLs of the OPA MRy chart versus those of
the MR(2) chart when these two charts are applied to the
same FORP data streams. The shift in the dispersion of
the input variable to a FORP data stream is a stepwise
shift and the shift in the process mean is either trend
or cyclical.

To determine and compare the ARLs of the OPA Y chart, and
the combined OPA Y and OPA MRy charts four different
magnitudes of stepwise shift in the mean of the input
variable to a FORP data stream when the value of the
supposed-to-be—-known filter constant of the FORP, 1, is
either understated, correctly stated or overstated.

To determine and compare the ARLs of the OPA MRy chart
for different magnitudes of stepwise shifts in the
dispersion of the input variable to a FORP data stream
when the value of the supposed—-to-be—-known filter
constant of the FORP, r, is either understated, correctly
stated or overstated.

To determine the ARLs of Montgomery's modified EWMA char t
when it is applied to a FORP data stream for different
magnitudes of stepwise shifts in the mean of the input
variable to the FORP.

To compare the ARLs in subobjective (10) with thaose of
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the OPN Y chart which is also applied to the same data
stream as the modified EWMA chart.

To determine the ARLs of the OPA Y chart and OPA MRy
charf when these charts are applied to data from a higher
order response process.

To investigate the rvobustness of the pruposed control
chart procedure to the degree of order of a response
process using the ARLs from subobjectives (3), (4) and
(12).

To develop a simple and flexible inter active user
computer program to implement the proposed control

charting technique.
Research Assumptions

In order to further define and delimit this research,

cer tain general assumptions are made. They include:

1.

The serially correlated quality data are generated from
a FORP.

The user of the proposed control charts has a prior
knowledge of the FORP involved. Using first principles,
it is assumed that the user knows the numerical value of
the filter constant, r.

The input variable, X, to the FORP cammot be measured.
Thus, its parameters must be determined from the
observable, but serially correlated output variable, Y.
Only a single variable of input X is of interest to the

user. The FORP does not introduce any extra variation.



19

Thus, by monitoring the corresponding output variable Y,
the input value X can be monitored accordingly.

In the case of a continuous flow chemical process which
exhibits a first order response behavior, the in-flow
rate to the process is equal to the out-fFlow rate.
Moreover, instantaneocus and complete mixing is assumed
when a change in the input is made. For a non—continuous
flow FORP, similar and comparable assumptions are also
made.

It is assumed that the input variable, X, is independent
and identically distributed. The underlying distribution
of variable X 1is normal.

The sampling subgroup size is one and sampling is done

at a regular interval.



CHAPTER I1I
LITERATURE REVIEW
Introduction

Since traditional control charting was first introduced
in the 1930's, various techniques have evolved to deal with
different process control situations. Each control charting
method is built on different sets of assumptions. The most
common assumptions made among various charting techniques are
the independence of data and the normality of the underlying
population from which the data are drawn.

The development of various control charting techniques
has been compiled by Gibra (1973) and Vance (1983). It shows
the variety in the efforts to study the performance of
different processes through control charting techniques.

From the literature, it is clear that even though some effort
has been geared to the development of control charting
techniques that deal with serially correlated data, they are
often developed on a generalized serially correleted data
stream. Moreover, the application of these techniques is
difficult.

This research concentirates on the monitoring of a

correlated data stream from a FORP. Due to the inadequacy of

20



21

existing control charting techniques to monitor the mean
and/or dispersion of a FORP, it is imperative to develop a
control charting technique that deals specifically with

quality data generated from a first order response pruocess.
Background

The concept of control charts was first introduced in
the 1930's by Dr. Walter Shewhart (1931). The concept was
built on the assumption that the measurable characteristic
of a manufactured product is always subject tu some
uncontrollable variation. The variation 1s divided into two
parts: 1) a stable system of chance which is normal to the
process, and 2) variation outside of this stable pattern
which can be discovered and corrected. Independence and the
normality of the prucess data requirements are inherent in
the concept and also mentioned in most statistical quality
control texts (Duncan, 19846) (Grant and Leavenworth, 1988)
(Wadsworth, et al., 1986).

In the 1960's, Lieberman (1965) summarized the concept
of the Shewhart control charts. He points out fhat the
Shewhart control chart has as its functions to: (1)
determine the process capabilities, (2) detect and identify
assignable causes of variation, and (3) provide guidance in
correcting the process. The traditional control chart is a
chart of data from the process, and its primary purpose 1is
to provide a basis from which corrective action is taken.

The action is taken when a plotted point falls outside a



fixed limit, or a succession of points fall between some less
extreme limits. Even though traditional Shewhart control
charts are powerful in detecting process shifts in mean and
dispersidn, they fail to perform well under certain
situations.

Situations such as the existence of correlated data
within subgroups, correlation between suﬁqroups, non—
normality of the underlying process from which subgi oups are
drawn, cyclic trends in data and so on, affect the conclusion
one makes about the process. The risks of Type I and/or Type
I1I errors usually is inflated if traditional control charting

techniques are used in these situations.
Correlation in Shewhart's Control Charts

Neuhardt (1987) studies the effects of correlated data
within subgroups in statistical process control. Correlated
data within subgroups arises because of simplicity in data
collection due to multiple, but similar, measurements on a
single product or multiple station machines. When each
subgroup is considered as an independent sample of a
multivariate random vector, the paper investigates the
cunsequences of unrecognized or unaccounted for correlation
and how the control rules should be modified if the
correlation is recognized. Neuhardt realizes that the
effect of correlated measurements within subgroup increases
the Type 1 error rate for the Xbar chart. That is an out-

of—control condition which occurs too frequently in the Xbar
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chart. However, the variance charts are not affected in the
same fashion when equality of covariances of the measurements
is assumed.

Alt and Deutsch (1979) show the effect of correlated
observations within independent samples on the parameters of
the Shewhart Xbar chart. They extend the method proposed by
Page (1954) to the case where the within—-subgroup
observations are correlated. They find that the subgroup
size n needed to detect a shift of a given magnitude
incr eases with the extent of correlation. Both articles deal
only with correlation within subgroups and not correlation
between subgroups. That is, the subgrvoups are still assumed.
to be independent from one another. "

Ali (1987) studies the effect of dependency between
observations on the distribution of the sample mean and its
rate of convergence to normality. He gives various methods
to approximate the distribution of the sample mean of
dependent obser vations generated from a stationary stochastic
process and the departure from the normal distribution is
numer ically assessed for a range of models. It is shown that
the convergence to normality is slowed by the degree of
correlation, the degree of skewness in the random variables
defining the stochastic process, and on the subgroup size.
His results show that the central 1limit theorem is still
valid in the sample mean of correlated data.

Throughout the development and fine—tuning of the

traditional control charting techniques, several factors
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have been tabulated for the calculation of various control
limits. .These tables can be found in many statistical
quality control texts (Duncan, 1986) (Grant and Leavenworth,
1988) (wédsworth, et al., 19846). These factors are derived
under the assumptions that the subqgroups are drawn from a
normal process and the subgroups are independent of aone
another. Thus, violation of these assumptions makes the

factors inappropriate.
Covrelation in Other Control Charts

Goodman (1982) discusses how the CUSUM can be used in
a continuous flow process which generates serially correlated
data. Johnson and Bagshaw (1974), and Bagshaw and Johnson ’
(1975) study the effect of serial correlation on the
performance of the CUSUM charts. They investigate the
influence of serial correlation for both the fixed sample
size and sequential versions of CUSUM tests. They conclude
that the CUSUM test is not robust with respect to departures
from data independence. Kartha and Abraham (1779) stuwly the
effect of serial correlation on the average run length of
CUSUM charts. The average run length is found to be
decreased by the presence of serial correlation. Nath
(1976) develops the control chart for fraction defective for
the case of dependent observations.

Suo far, not much work has been documented on the studies
of the effect of data correlation in other types of control

charts such as the Individual chart, Moving Range and Moving



Average charts.

Correlation in Manufacturing Data

Jacaobs and Lorek (1980) show that daily manufacturing
data may not be independent and norﬁally distributed. They
warn that by using the assumptions of data independence and
normality in variance investigations, the results may not be
valid. They conclude that care should be taken when making
variance investigations, for example, setting control limits
based on this type of data. They recommend that
investigators either iuise weekly data which are more likely
to be independent of one another and normal, or that they
use statistical methods which explicitly take into account
serial correlation or non—normatity.

Hubele and Keats (1987) point out when automatic
control is implemented, practically all data can be
ctollected. In thesé cases, Shewhart's control charts are
usually not appropriate because they require independent and
normally distributed data. Consequently, time-ser ies
analysis may be more useful for process control when all the
data are available in an automatic control mode.

Hahn (1977) presents an example where the data are
nonindependent while the statistical analysis ignored this,
thereby resulting in a wrong conclusion. He conveyé the
message that analyses failing to take into account
nonindependent data can lead to wrong conclusions.

In industry, serially correlated data may have long been



neglected. This may be attributed to the fact that it is
more complicated and tedious to deal with correlated data.
Thus, people often avoid them and simply ignore their
existencé. But, with today's computing power, correlation
“in guality data can be analyzed and more meaningful and

accurate process caontrol can be achieved.

Time Series Approach to Serially

Corrvelated Quality Data

The ideé of dealing with correlated data using a time
series approach emerged in the 70's when Stamboulis (1971)
relaxed the assumption of independence and replaced it by
dependency introduced via an AR(1) model with parameter «.

Vasilopoulos and Stamboulis (1978) further modified and
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extended the standard Shewhart control charting technique by

introducing dependence via a secaond order autoregressive

process (AR(2) Model). Curves of modified auxiliary quality

control factors are presented in their paper.

The use of a time series analysis approach to deal with

the correlated data is also suggested by Alwan and Roberts
(1988). They propose amd illustrate the use of two basic
charts, the Common—Cause Chart and the Special-Cause Chart,
in sorting out special causes from common causes. The

autoregressive integrated moving average (ARIMA) model of

Box and Jenkins is first used to model systematic nomwandom

behavior of the out-of-control process. A standard control

chart for residuals of the fitted model is then used to
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detect departures from control due to special causes.
Montgomery (1990) presents two methods for applying
statistical control charts to serially correlated data. The
first mefhod is based on modeling the autocorrelative
structure and applying control charts to the residuals. The
second method is a simple modification of the Exponentially
Weighted Moving Average (EWMA) control chart. The EWMA is
found to be the optimal one-step—ahead forecast for the mean
of an IMA (1,1) model. Thus, the forecast for the
observation in period t+1 which is made at the end of period
t is used as the center line for the control chart in period
t+1. The standard deviation of these one-step—-ahead
prediction errors is then used to construct control limits
for period t+1. The major assumption Montgomery makes in
his paper 1is that the observations from the process can be
well-modeled by an IMA (1,1) model. He claims that in
practice the IMA (1,1) model is a very gqood approximation
for forecasting the level of a time series. Alwan and
Roberts (1988) also note that the IMA (1,1) model produces a
forecast of the mean level of the series that is 1 obust to
the exact form of the underlying ARIMA model. Montgomery
concludes that the EWMA control chart is a very useful
procedure for application to serially correlated data.
Sahrmann (1979) i1llustrates how time series analysis
can be used in coating weight control for reverse roll
coating. He uses a time series analysis approach to identify

sources of cyclical variation and then measures their
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relative Sontribution to overall process variation. Methods
for dealing with serially corirelated data are also suggested
by several authors. These include, Berthouex, et al. (1976,
1978), Ddoley, et al. (19846, 1990), Ermer (1979, 1980),
Ermer, et al. (1979), Liao, et al. (1982), Montgomery and
Friedman (19892), Notohardjono and Ermer (1983, 1986) and
Yourstone and Meointgomery (194397).

Although the tactical approaches to the problem of
serial correlation taken by these people often differ from
one another, the strategic thrust of their effor ts are
identical. fhat is, they wish to fit an appropriate time
ser ies model to the observations and then apply control

charts to the stream of residuals from this model.
Need for Study

From the above discussion, it is clear that there are
at least four good reasons why this research should be

per formed:

(1) Even though time series analysis is used to deal with
correlated data, there are three major drawbacks. They
are:

(i) a large number of subgroups is needed bhefore a
proper time series model can be accurately fitted,

(ii) there is usually more than one model that well fits
the data, and

(iii) computation in the time series analysis is

complicated and tedious.
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(2) Correlated data is very common in the process
ind&gtries. A simple, easy to use and easy to
understand control charting technique is not now
available. In the procesé industries, the typical
method used to deal with correlated data is avoidance.
Some may just ignore the fact that correlated data exist
and hence, they are sure tou make wrong conclusions and
take unnecessary corrective action.

{3) Several researchers have investiqgated the effect of
correlated data. However, they emphasize only on the
correlation within subgroups. Often, the multivariate
normal distribution is assumed to be the appropriate
underlying distribution. Under these circumstances,
the indepéndence between subgroups is still assumed.

(4) The FORP is une of the most commonly encountered
processes in industry. The existing control charting
techniques can not monitor correlated data from a FORP
effectively. Thus, it is imperative to develop a
control charting technique specifically for correlated

data generated from such a process.
Conclusion

The existence of correlated data in the quality'cnntro]
discipline can no longer be neglected. From the literature
above, it is clear that the issue of correlated data has been
neglected for a long time. No work has been documented on

the development of a control chart specifically for serially
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correlated data generated from a first order response
process. All recent efforts are geared to the time series
analysis approach to serially correlated data. This research
will satisfy one major need by providing a control charting
technique which deals directly with serially correlated data

generated from a first order response process.



CHAPTER III

MEAN CONTROL CHART FOR RQUALITY DATA FROM

A FIRST ORDER RESPONSE PROCESS
Introduction

In this chapter, a derivation of the mean and the
asymptotic sfandard deviation of the serially correlated data
stream generated from a first order response process is
presented. The control charting technique specifically deals
with the mean level output of a first order response process.
The proposed mean control chart, denoted as an OPA Y chart,
is based on conditional distribution theory. Linear model
theory (Graybill, 1976) is used to derive the conditional
control limits of the proposed OPA Y chart. A numerical
example is then presented to illustrate how the proposed 0OPA
Y chart can be constructed using some empirical data.

Unlike the traditional Shewhart control charts in which
caontrol limits are computed once and used for all plotted
points, control limits for the OPA Y chart are computed from
point to point. That is, at the current plotted point, one-—
period—ahead control limits are computed for the next plotted
point. The process is considered out-of—control at the

current time period if the current plotted point falls beyond
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its one—pgriod—ahead control limits constructed one period
before. The one-period—ahead control limits for the next
plotted point depend on the current plotted point. In a
traditioﬁal control chart, control limits are set to be three
sigma away from the center line; in this propased OPA Y
chart, every pair of the conditional one-period—-ahead control

limits is also set at three sigma away from its center line.
Distribution of Y

The distribution of a serially correlated output variate
from a first order response process at the t*" time period is
derived in this section. It is assumed that the input random
variable, X., to the first order response process, is ‘;
independent and identically distributed. The underlying
distribution of X. is a normal distribution with mean, p, and
standard deviation, ¢. A random vector of X can be easily
formed by grouping the first (t+1) of the X's. Using linear
model theory, the random vector is

X = (Xoy X153 X2y aaey; X&)
and is distributed as a multivariate normal with mean vector,
Ale+1, and covariance matrix, 02I¢.s.
Recall that the first order response equation is
Ye = r¥e—2 + (1-1T)X¢ (3.1)
Substituting
Ye—1 = ¥Ygoe + (1-7T)IXg_y (3.2)

into Equation (3.1) results in



Yt=
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I‘EY,,_E + (1~r)Xt_] + (1~F)Xt

rzvt—e + (l—r)rXt_1 + (1—r)Xt

Continuously substituting for the first term on the right

hand side of the

equation results in

Ye = (1-1)r*tXo + (1-r)r®t=1X; + (1-r)r*&8)Xe +
see + (1-7T)Xe
t
Ye = T (1-7TIr*Xe—w (3.3)
k=0
Thus, Y. is a linear combination of (Xo,; X1, «-.,y Xe)'.
Letting
21 = Ye = (1-r)r*Xo + (1-r)re—2X, + ... + (1-1)Xy
2a = Xe =0 + O + aee + Xe )
Za = Yeor = (1-TIFr% " 2Xo + (1-T)r* =X, + ... + OXg
These three equations can be written as
2 = AX
where 2 = (2:, 2, Z23)"°
_—(l—r)r” {1-r)re—r ... (1-r)r? (l—r)—_
A = 0 0 .- 0 1
(1-r)rt—12 (l-r)r*e—2 ... (1-r) ¢
L —

The dimension of matrix A is 3 x (t+1).

It can be shown that

for large t, Z is distributed as a multivariate normal.
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(1-r) (1-r)r

— — - - _— (1) —_——-

Ye H (1+1r) (1+1r)

2 = Xe ~ N R g2 (1-r) 1 0 (3.4)
’

Ye—2 H (1-r)r (1-r)

L —1 L y PR () P
(1+r) (1+r)

Detailed derivation can be found in Appendix B. Using linear
model theory, it is clear that the asymptotic distribution of
Ye 15
(1-r)
Y¢ ~ Normal|p, 02— (3.5)
(1+r) -
It is also easily found that X. and Y.., are independent of
one another. The variance of Y. can also be derived by
viewing Equation (3.1) as a first order autoregressive
process, AR(1); since it can be expressed as

Ye = ¥e—1 + e«
where « = r and e« = (1-r)X.. The computation of the
variance of Y. follows directly from using Box and Jenkins
(1976).

It may be tempting to construct a control chart for the
mean of FORP data using the mean and variance as shown in
(3.9). Hoﬁever, due to the correlated nature of Y., a mean
chart developed using these mean and variance values is found
to be inefficient in detecting process changes. It 1s also

pointed out before that a time series approach to correlated
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data is qgite complicated and tedious. Thus, even though a
FORP can be modeled as a time series model of AR(1), in this
research the time series approach is not used on the
correlatéd data from a FORP. Rather, an one—period-ahead
control chart, an OPA Y chart will be developed using the

mean and variance of the conditional distribution of Y.
Conditional Distribution of Y. Given Y¢—:

Recall that the joint distribution of (Y¢, X&y Ye—1)' is
the expression in (3.4). If Ye-: is known and it takes on
the value k. Then, from linear model theory it can be shown
that the joint distribution of B = (Y¢, X&)', given that Y¢—:

=

equals k, is a bivariate normal.

rk+(1-r)p (1-1r)2 (1-r)
B ~ Normal a2 (3.6)
R ’ {(1-r) 1

If it is further assumed that X. takes on value c, then
the conditional distribution of Y., given that Y., equals k
and X. equals c, is found to be
1 for vye=rk+(1-r)c
P(Ye=ye) =
(o] otherwise (3.7)
That is, when Y.-; and X\ are given, the value of Y. is
deterministic.
If Xe is a random variable from a normal distribution

rather than a specific value, ¢, then it can be shown that
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the distribution of Y., given that Y.-, equals k and X¢ is
normally distributed with mean p and variance a2, is a normal

distribution with mean rk+(1-r)p and variance (1-r)2g2.
Ytl(Yt_1=k) -~ Normal[{k+(1—r)p, (1—r)2aE] (3.8)
Conditional Control Limits
of the OPA Y Chart

From (3.8), the one—period—ahead control limits can be
constructed for the proposed OPA Y chart. The central line

and control limits for the t*" plotted point are:

CLQPAY = rYt—l + (l-r)}‘ (3.9)
LCLQPAY = rYt—1 + (l—r)(H—BG) (3.11)

From (3.7) it is clear that, given the observed value
of a serially correlated datum Y..:, the unobservable
independent variable X. will determine the observable value
of Ye. Thus, X and Y. constitute a conditional point-to-
point mapping and the condition is that the value of Ye¢-.
must be known. Due to this conditional point-to—-point
mapping, it is found that the Type I and Il errors of any
plotted point on the OPA Y chart are identical to any plotted
point on the Individual chart for an independent normal data
stream.

To explain this fact, a phantom Individual chart is
used for the X random variable. Let the upper and lower

control limits of the Individual chart of X be denoted as
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UCL; and LCL:, respectively. SinceVX is normally and
independently distributed with mean p and standard deviation
o, the phantom Individual chart for this X variable has the
followiné upper and lower control limits.

UCLy = p + 3o

LCLy = p — 30
If X at time period t, X., falls exactly on UCLy;, and Y.-: is
known and has value k, then, from Equation (3.1), Y. is

Ye = 1Tk + (1-r)(p + 30) (3.12)
Likewise, i1f X, falls exactly on LCL;, and Ye¢—2 is known and
has value k, then, from Equation (3.1}, Y. is

Ye =1k + (1-r)(p - 3a) (3.13)

Since (X¢, Y:¢) is a point-to—point mapping, the ’

probability of X¢ falling beyond UCL; is the same as the
probability of Y. falling beyond rk+(1-r){(p+3c). Similarly,
the probability of X. falling beyond LCL; is the same as the
probability of Y falling beyond rk+(1-r){(p-3c). Thus, 1if
the one—period—ahead upper control limit of Y. on the OPA Y
chart, UCLgpav, 1S assigned the value rk+(1-r)(p+3c) and the
lower control limit, LClgeravy, 15 assigned the value
rk+(1-r)(p-30), then the Type I and II erraors of the proposed
OPA Y chart at this plotted point Y. are identical to the X.
point plotted on the Individual chart for an independent
normal data stream. It is noted that the assignments of the
UCLoravy and LCLgepay with (3.12) and (3.13), respectively, are
identical to the control limits constructed in (3.10) and

(3.11), respectively.
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Sincg each plotted point on the proposed OPA Y chart
has its own one—period—-ahead control limits, it leads to the
fact that any plotted point on the proposed OPA Y chart has
identical'Type I and II error risks as the Individual chart
for an independent normal data stream.

To use the one—period—ahead center line and control
limits as in (3.9)-(3.11) for serially correlated data
observed empirically from a first order response process, the
mean and variance of the unobservable variate X must be known
or estimated. Using Hartley's Lemma, it is found that

MRybar
= o, Y(1-1) (3.14)
de
Equation (3.14) is also shown in the paper by Cryer, et al.

(1990). From (3.3), it is found that

J{1-r)

gy, = 0 —— (3.15)
Y(141)

Ry = R (3.16)

Substituting (3.13) into (3.14) results in

MRybar (1-1r)
= ¢ —_—_——
de= Y(1+7)

MRybar v(1+r)
o = (3.17)

da (1-r)

Substituting (3.16) and (3.17) into (3.9)—-(3.11) and using
the average of Y values, Ybar, as an estimate of p,, the one-
period—ahead control limits of the OPA Y chart for the t*r

time period are
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CLQPAY— = rYe—21 + (1-r)Ybar (3.18)
— —_
MRybar v(1+4r)
UCLoray = TY¥¢—21 + (1-r)|lYbar + 3 (3.19)
. ds (1-r)

b —

MRybar v(1+r)
de (1-r)

Values of Ybar and MRybar can be calculated from the first
few, say 25-30, measurements of the Y variate. Obviously,
the accuracy of these estimations increases with the number

of measurements used.
Numerical Illustration -

A numerical example is presented in this section to
illustrate how to use the proposed OPA Y chart on serially
correlated data generated from a first order response
process. As stated in the assumptions of this fesearch, the
user is expected to have a prior knowledge of that particular
first order response process. The value of the filter
constant, r, is assumed to be known using first principles.

Assume that the first order response process to be
monitored has a filter constant r equal to 0.8. Suppose that
30 measurements from this process have been observed from the
i=¢t to the 300%™ time periods. At each time period, only one
measurement is collected. These 30 measurements are the Y
values and they are presented in TABLE 3.1 in time order.

The moving ranges of subgroup size two of Y, MRy, are
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calculated. The average of Y and MRy are also computed.
These two gquantities are essential to compute the one—period-
ahead control limits. The one-period-ahead control limits
are thenvcnmputed for all the time periocds except the 1=*
time period using the formulas in (3.19)-(3.20). For
example, the one-period—ahead control limits for the 2%t" time
period are computed using formulas 1n (3.19)—-(3.20) and

following quantities

Ybar = 19.761
MRybar = 0.189
da = 1.128
Yo = 19.693

The one—period—ahead control limits for the 2% time period

are found to be

Il

Lower control limit 12.033

]

Upper control limit 20.380
All the MRy, the average of Y and MRy, and the one-period-
ahead control limits are also presented in TABLE 3.1.

By plotting the Y. values and the one-period—-ahead
control limits on the control chart, the required OPA Y chart
is obtained. The OPA Y chart is plotted in Figure 3.1, and
is easily interpreted. It should be noted that the central
line of the OPA Y chart is omitted in TABLE 3.1 and Figure

3.1 to avoid confusion in the reading of table and

interpretation of the control chart.
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SERIALLY CORRELATED DATA FROM A FIRST ORDER RESPONSE PROCESS

WITH FILTER CONSTANT 0.8, MOVING RANGES OF TWO AND ONE-

PERIOD-AHEAD CONTROL LIMITS FOR THE OPA Y CHART

1 20.023
2 20.208 0.183 19.297 20. 644
3 19.9035 0.303 19.443 20.792
4 20.020 0.115 19.203 20.550
3 19.786 0.234 19.295 20.642
6 20.134 0.348 '19.108 20.454
7 20.074 0.060 19.386 20.733
8 19.4693 0.381 19.338 20.685
4 192.210 0.483 19.033 20.380
10 19.385 0.1735 18.647 19.994°
11 19.649 0.264 18.787 20.134 -
12 19.643 0.0046 18.998 20.345
13 19.736 0.093 18.993 20.340
14 19.714 0.022 19.068 20.414
15 19.349 0.369 19.050 20.397
16 19.266 0.083 18.758 20.105
17 19.091 0.173 18.692 20.038
18 19.321 0.230 18.552 19.898
19 19.880 0.5599 18.736 20.082
20 19.8435 0.035 19.183 20.530
21 20.249 0.404 19.153 20.502
Pars] 20.022 0.2287 19.478 20.825
23 19.826 0.196 19.296 20.643
24 19.736 0.070 19.140 20.486
25 19.774 0.018 19.084 20.430
26 19.870 0.096 19.098 20.443
a7 19.726 0.144 19.173 20.522
28 19.832 0.106 19.060 20.406
- a9 19.922 0.090 19.144 20.491
30 19.916 0.006 19.216 20.563
Average 19.761 0.189
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Conclusion

In this chapter, the derivation of the distribution of
Ye¢ and the conditional distribution of Y. given Y.-. are
presented. The proposed OPA Y chart is constructed using the
conditional one—-period—ahead control limits. The ARL of the
proposed OPA Y chart is found to be identical to an
Individual chart applied to an independent normal data
stream. A numerical example is used to illustrate the
construction of the proposed OPA Y chart to monitor the mean

level of the output of a first order response process.



CHAPTER 1V

DISPERSION CONTROL CHART FOR QUALITY DATA

FROM A FIRST ORDER RESPONSE PROCESS

Introduction

In this chapter, a derivation of the mean and standard
deviation of the conditional moving range of subgroup size
two of serially correlated data generated from a first order
response process is presented. The control chart that -
specifically deals with the dispersion of the output of a
first order response process is then constructed. The
proposed dispersion control chart, denoted as an O0PA MRy
chart, is a control chart based on the conditional
distribution of the moving range of subgroup size two of
serially correlated data generated from a first order
response process. A numerical example is then presented to
illustrate how the proposed 0OPA MRy chart can be constructed
using empirical data.

Unlike the traditional Moving Range control charts for
process dispersion in which the control limits are computed
once and used for all the plotted points, the control limits
for the OPA MRy chart are computed from point to point. That

is, at a current plotted point, one—-period—ahead control

44
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limits are computed for the next plotted point. The one-
period—ahead control limits for the next plotted point
depends on the current observation of the Y variate. In the
traditioﬁal Moving Range chart, control limits are set to be
three sigma away from the center line even though the
underlying distribution of the moving range is not normal.

In the proposed OPA MRy chart, this three sigma convention is

still employed.

Conditional Distribution of the Moving Range

of Subgroup Size Two of the Y Variate

The conditional distribution, mean and variance of the
moving range of subgroup size two of serially correlated dat;\
generated from a first order response process at the t®" time
period is derived. Recall that the first order response
process that generated serially correlated output, Y, is

Yt'= rYe—s + (1-1T)Xe (4.1)
From (3.4), it is known that X. is independent of Ye¢-—,. If
Ye—1 15 known and takes on the value k, then

Ye = Ttk + (1-1T)Xe
Defining le as the range of Y.¢-, and Y. given that Y.-.
equals k, then

le = Range of k and Y.

le |Yt - k' (4.2)
Substituting (4.1) into (4.2) results in

le = l rk + (1-r)Xe — k '

le I (1-r)Xe — (1-1)k l
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le =_| {(1-1)(Xe — k) ' (4.3)
In a first order response process, it is found that
O C<r < 1. Then,
R'k
_— = | (Xe — k) l (4.4)
(1-r)
Letting @ equal Equation (4.4) results in
le
= — = l (Xe — k) I (4.3)
(1-r)
The distribution of @ is then considered. From Equation
(4.3), it is found that X. is a double valued function of
@, say Q@' and @", (Basnet and Case, 1990). That is,
B8' =k - & (4.6a)

a" k + @ (4.6b)

Then, the density function of @, h(&), is given by

s § Q"
h(R) = f(k-Q) + —_—} flk+Q)
§d Q § a
h(@) = f(k—-&) + f(k+Q) (4.7)

where f(-) is defined as before.
Using Equations (4.3), (4.7), and a single variable
transformation approach, the density function of le is

found to be

1 R|k le
g(R'k) S — flk = — ] + flk + ——— (4.8)
(1-1r) {(1-r) {(1-r)

- _|

A detailed derivation can be found in Appendix C.
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Mean and Standard Deviation of R|k

Computation of the expected value and variance of le
from Equation (4.8) is difficult, as the results are not in a
closed form. To circumvent this difficulty, the expected
value and variance of the variable @ are found first. With
Equation (4.7), the expected value of @, E(R), is found to
be
™
E(RQ) = I 2-h(R) da (4.9)
0
and the variance of @, V(&), is
v(Ra) = E(Q2) - [E(Q)]2 (4.10)
where
®
E(Q2) = I 82-h(Q) dR
0]
From Equation (4.3), it is clear that,
le = (1-r)@ (4.11)
Then the expected value of le, E(le),-and the variance of
le, V(le) are
E(le) = (1-r)E(Q) (4.12)
V(R|K) = (1-r)2v(Q) (4.13)
It can be shown that the expected value of &, E(R), and the

variance of &, V(®), both have a "closed” form as
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vial

where

detailed derivation can be found in Appendix C.

$'(x) and #(x) are as defined in the Notation.

20d’

g2 + (k — pl)2

k—p

+ |k-n| |2

|

- [E(@)1]2

- 28

o

A
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(4.14)

(4.13)

Substituting Equations (4.14) and (4.135) into Equations

(4.12) and (4.13),

E(R'k)

V(le)

Std(R'k)

From Equations (4.16) and (4.18),

Conditional Control Limits of the OPA MRy Chart

(1-r)

20d’

k—p

M ol

the following results are obtained.

- k—p
1- 2% ! ‘
a

(1—r)2[52 + (k — p)z - [E(Q)]E]

Thus, the standard deviation of le equals

%
= (1-r) [Ez + (k — p)z - [E(Q)]E]

(4.16)

(4.17)

(4.18)

the one—-period—-ahead

control limits for the t*" time period can be constructed for

the proposed OPA MRy chart:

CL oramMRy

UCLoramry

E(le)

E(R|k) + B-Std(R|k)

E(le) - 3-Std(R|k)

(4.19)
(4.20)

(4.21)
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In order to use the conditional one—period—ahead control
limits on the proposed OPA MRy chart as shown in Equations
(4.19)—-(4.21) to monitor the dispersion of serially
correlated data from a first order response process, the
average and standard deviation of the unobservable X variate,
p and o, must be known or estimated. Equations (4.16)-(4.18)
can be used on empirical data by replacing the p and o with
the proper estimate as in Equations (3.13)-(3.17).

The computation of the one—ﬁeriod—ahead control limifs
of fhe proposed OPA MRy chart may be complicated as it
involves the quantities &'(x) and #(x). The calculation of
#(x) can be aided by using a higher degree polynomial
approximation (Nelson, 1983). With simple computer program,-
the computation of the one-period-—ahead control limits of the
OPA MRy chart can be greatly simplified. The FORTRAN program

coded in Chapter VIII can be used to perform these

computations.
Numerical Illustration

A numerical example is presented to illustrate how to
use the proposed OPA MRy chart on serially correlated data
generated from a first order response process. Similar to
the construction of the OPA Y chart, the user is expected to
have a prior knowledge of that particular first order
response process. The value of the filter constant, r, is
assumed to be known using first principles.

The 30 observations of Y used in the construction of the
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OPA MRy cnart are the same data set used in Chapter 111 for
the construction of the OPA Y chart. From the 30
observations, the average of Y is 19.834, and of the MRy is
0.164. fhese two quantities are required to compute the one-
period—-ahead control limits. The one—period-ahead control
limits are computed for all the time periods except the 1=*
time period using the formulas in (4.14), (4.16)—-(4.18),
(4.20) and (4.21). 1t should be noted that the FORTRAN
program coded in Chapter VIII is used to perform the
computation. As an example, the one—period—ahead control
limits of the OPA MRy chart for 9¢t" time period are found to
be

Lower control limit = 0.0

Upper control limit 0.986

All the observations, the MRy, the average of Y and MRy, and
the one—-period—ahead control limits are presented in TABLE
4.1. By plotting the MRy values and the one—per iod-—ahead
contrel limits on the control chart, the required OPA MRy
chart is obtained. The OPA MRy chart is plotted in Figure
4.1. It should be noted that the central line of the 0PA MRy

chart is omitted in TABLE 4.1 and Figure 4.1 as it is not

very important in interpretation of the control chart.
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_ TABLE 4.1
SERIALLY CORRELATED DATA FROM A FIRST ORDER RESPONSE PROCESS
WITH FILTER CONSTANT 0.8, MOVING RANGES OF TWO AND ONE-
PERIOD-AHEAD CONTROL LIMITS FOR THE OPA MRy CHART

Time 3 t Y . "Ry LCLOPAMRV UCLqunRy

1 20.023

2 20.208 0.185 0.0 0.601
3 19.905 0.303 0.0 0.629
4 20.020 0.115 0.0 0.590
a9 19.786 0.234 0.0 0.600
& 20.134 0.348 0.0 0.585
7 20.074 0.060 0.0 0.616
8 19.693 0.381 0.0 0.607
9 19.210 0.483 0.0 0.586
10 19.385 0.175 0.0 0.649
11 19.649 0.264 0.0 0.616
12 19.643 0.006 0.0 0.588 s
13 19.736 0.093 0.0 0.588
14 19.714 0.022 0.0 0.585
15 19.349 0.365 0.0 0.586
16 19.266 0.083 0.0 0.622
17 19.091 0.175 0.0 0.4638
18 19.321 0.230 0.0 0.677
19 19.880 0.559 0.0 0.627
20 19.845 0.035 0.0 0.588
21 20.249 0.404 0.0 0.587
22 20.022 0.227 0.0 0.637
23 19.826 0.196 0.0 0.601
24 19.756 0.070 0.0 0.586
a5 19.774 0.018 0.0 0.385
26 19.870 0.096 0.0 0.585
27 19.726 0.144 0.0 0.588
28 19.832 0.106 0.0 0.585
29 19.922 0.090 0.0 0.386
30 19.916 0.006 0.0 0.591

Aver age 19.761 0.189
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Conclusion

In this chapter, the derivation of the conditional
distribution of the moving range of (Ye¢_;,Ys), given that
Ye—1 15 known, is presented. The mean and standard deviation
of this conditional distribution are then determined. They
are used to construct the conditional one—periocd-—ahead
control limits of the proposed OPA MRy chart. A numerical
example is used to illustrate the construction of the
proposed OPA MRy chart to ﬁonitor the dispersion of the
output of a FORP. The FORTRAN program coded in Chapter VIII
is used to compute the one—period—-ahead control limits of the

OPA MRy chart. =



CHAPTER V

DETERMINING THE AVERAGE RUN LENGTH OF A

CONTROL CHART USING SIMULATION
Introduction

A desirable control chart is one that has a very low
frequency of signaling a false alarm when the process is in-
control and has the capabilities of swiftly signaling an cut-
of—-control alarm when the process experiences changes. The _
performance measure of such capabilities is the Average Run
Length, ARL, for in—-control and out—-of-control scenarios. In
this research, the ARL of a control chart is determined by
simulation.

In this chapter, the methodologies used to determine the
average run length of the pfoposed OPA ¥ and OPA MRy charts,
and other control charts used for comparisoh, are discussed.
The generation of the first order response process data used
in this study is presented in detail. The control limits of
these control charts are constructed using the theoretical
values. Several types of process shift are simulated in this
research and embedded in the data stream. The process shifts
are: stepwise, trend-wise, and cyclical shifts in the process

mean or standard deviation. Even though there are numerous

54
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scenarios in which the ARL of control charts needs to be
determined, the method to simulate all these scenarios can be
easily generalized. All the computer simulations are

designed using the SAS lanquage. The procedures available in

SAS greatly reduce the programming effort.
Data Generation

The purpose of this study is to develop and evaluate
control charting techniques on quality data generated from a
first order response process. Thus, a stream of observation
data from a FORP must be generated through simulation, and
control charts are then applied to this stream of data
generated. In order to generalize the simulation, individual
data values are generated through the SAS intrinsic normal
random variate generator RANNOR. The individual data values
generated are standard normal variates. To avoid computation
underflow at a later stage, the individual data generated are
transformed intoc normal variates with mean, MEAN = p = 10.0
and standard deviation, STD = g = 1.0. These normal variates
are then input into a first order response process equation
to generate the first order response process output data
values, Y, which are serially correlated. The recurrence
relation of a FORP data generator in computer code is,

Y2 = FC*Y1 + (1-FC)*(RANNOR(SEED)*STD + MEAN) (S.1)
where FC is the filter constant, r, of a FORP, and Y1 and Y2
are two consecutive values of Y. The values of the filter

constant used in the study are 0.0, 0.3, 0.6, and 0.9. By
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using a filter constant equal to 0.0, an independent normal
data stream is generated. Thus, Equation (5.1) can be used
to generate an independent normal data stream as well.

To ﬁegin using this recurrence relation, the very first
Y value used in the FORP is just a normal variate with mean
equal to MEAN and standard deviation equal to STh. All
subsequent Y values of the FORP are then generated using
Equation (5.1). Since the very first Y value is not
generated using Equation (5.1), the first few Y values
generated do not truly depict a FORP. Thus, to 'warm—up’' the
FORP data stream, the first 50 FORP data values generated are
discarded. However, the 31*=* value generated is kept to be
used later to generate the first of the observed data for
control chért plotting.

To facilitate discussion, all the Y values used in the
plotting of the control charts are called ‘observations’,
this is to distinguish them from the Y values generated
during the ‘'warm-up' period. In a real situation, the Y
values obtained during the ‘'warm-up' period are not even
observed by the user of control charts. Another assumption
made at this point is that in é real situation, observation
from the FORP data stream is observed at a fixed regular time
interval. Correspondingly, in a simulation situation, these
time periods are indexed by t, with the first observation
made at time period 1. In this data generation, the 322 Y
value generated is the observation made at time period 1.

All the observations generated subsequently are used as
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individual data or, along with the 51=* Y value, are used to
compute moving ranges of subgroup size two. These individual
values or the moving ranges are then plotted on the
appropriéte control chart. The appropriate control charts in
this study are the OPA Y, I, OPA MRy and MR(2) charts. The
first two charts are applied to the individual data, and the
OPA MRy and MR(2) charts are applied to the moving ranges.
Each plotted point on these charts is checked to see if 1t
falls beyond or within the appropriate control limits.

It should be noted that only from the generation of the
first observation is the effect of different type of process
shift embedded into the FORP data generation process. That
is, the effect of the process shift is only embedded in the
generation of the 32<¢ Y value. Moreover, only one type of
shift is embedded into a scenario under study at a time. To
embed the effect of a shift in the process mean or process
standard deviation into the original (10.0,1.0) normal

variate, the following methods are used

(1) For a stepwise shift in the process mean, the standard
deviation is multiplied by the magnitude of shift and
added to the process mean. Hence, the shift in process
mean is in terms of the process standard deviation. The

FORP data generator in computer code becomes

STD = 1.0

MEAN = 10.0

NMEAN = MEAN + SHIFT*STD

Ya = FC#Y1l + (1-FC)*(RANNOR(SEED)*STD + NMEAN)

where SHIFT is the magnitude of shift. The magnitudes
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(3)
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of shift used in this study are: 0.0, 0.23, 0.350, 1.00,
1.50, 2.00 and 3.00. Figure 5.1 shows the stepwise
shift in mean.

For.a shift of the process mean in trend, where trend is
defined as a gradual increase in mean by a total of 3
standard deviations in 20 subgroup sampling intervals,
the value of the mean used for the generation of a new X
value is inflated by a rate of (3/720) standard
deviation. That is, the very first observation is
generated using the original mean p = 10.0. The second
observation is generated using the mean

R = 10.0+(3/20)a. The third observation is generated
using the mean p = 10.0+2%(3/20)ag, and so on. The meané
used to generate the X values ceases to inflate further

after its value has reached the maximum,

10.0+20%#(3/20)a. The FORP data generator in computer

code is
STPSZ = 3*STD/20
NMEAN = MEAN + MIN(STPSZ*PER,3%5STD)
Ye = FCxY1 + (1-FC)*(RANNOR(SEED)*STD + NMEAN)

where PER is the index of the point in trend, PER =
O(1)w. Figure 5.2 shaows the trend-wise shift in mean.

For a cyclical shift of the process mean, a cycle 1is

‘defined by a sinusoidal wave with period equal to 48

subgroup sampling intervals and amplitude equal to 3
standard deviations. The value of the mean used to
generate a new X value is obtained by adding to the

original mean the product of a sine function and the
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amplitude of the cycle. The step increment of the
variable for the sine function is 2%pi/48. The initial
argument for the sine function is 0.0, and it increases
by é value of 2#pi/48 for each subsequent usage in the
sine function. The FORP data generator in computer

code becomes

STPSZ = 2*xPI/48

AMP = 3%STD

NMEAN = MEAN + AMP*SIN(PER)

Ye = FC*Y1 + (1-FC)*(RANNOR(SEED)*5TD + NMEAN)
PER = PER + STPSZ

where PER is the argument for the sine function; it
begins with a value of 0.0 and increases with a value of
2¥pi/48 for subsequent steps. Figure 5.3 shows the
cyclical shift in mean.

(4) For a stepwise shift in the process standard deviation,
the standard deviation is multiplied by the ratio of the
new standard deviation to.the original standard
deviation, 0hew/0oi1a- The FORP data generator in
computer code becomes

NSTD
ye

RATIO*STD
FC*Y1 + (1-FC)*(RANNOR(SEED)*NSTD + MEAN)

where RATIO is the value of Orneaw/0ci1a- The ratios used
in this study are: 1.00, 1.25, 1.5950, 1.75, 2.00, 2.50,
3.00. Figure 5.4 shows the stepwise shift in

dispersion.

If a plotted point falls within the control limits, the
next plotted point is generated and checked against the

control limits, and so on. If the plotted point falls beyond
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the control limits, an action signal results. Then, the
number of points checked since the previous action signal is
recorded. This number is the 'run length' of the control
chart for a particular scenario. This procedure is repeated
until the 10,000%" run length is recorded. The average of
these 10,000 run lengths is the average run length or ARL of

the control chart for a particular scenario.
Control Limits

It is important to remember that the control limits of
control charts discussed in this chapter are constructed
based on theoretical values, not on a few initial
observations collected. That is, it is assumed that the
mean, p, and standard deviation, o, of the unobservable X
variates are known. Moreover, the filter constant, r, of the

FORP is also assumed to be exactly known by first principles.

OPA Y Chart

The control limits for the OPA Y chart are conditional
control limits. They are conditioned on the current
observation and used for the next observed value. Using
Equations (3.10)-(3.11), after rearrangement of terms, the
conditional control limits for the next observation of Y are

UCLopavy = FC*(Y2-MEAN) + MEAN + 3%STD(1-FC)
LCLopay = FC*(Y2-MEAN) + MEAN — 3%S5TD(1-FC)
where Y2 is the current observation of Y and FC is the

filter constant of the FORP.
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To construct the first set of conditional control limits
on the OPA Y chart, the value of Y2 is the S51=* Y value
generated. In a real application, the average of the initial
sample of observations collected is used as the first YZ2.
Since it is assumed that, b; first principles, the filter
constant can be exactly stated, the filter constant used for‘

the construction of the conditional control limits is the

same as the one used for generation of the Y data.

OPA MRy Chart

The control limits for the OPA MRy chart are conditional
control limits. Similar to the control limits of the OPA Y
chart, they are also conditioned on the current observation
of Y which is denoted as k. Using Equations (4.20) and
(4.21), the conditional control limits for the next plotted
point on the OPA MRy chart are

UCLoramry = E(le) + B*Std(le)

LCLoramry = E(le) - B*Std(le)
where E(le) and Std(R'k) are defined by Equation (4.16) and
(4.18), respectively. To construct the first set of
conditional control limits on the OPA MRy chart, the value of

k is the 51=* Y value generéted.
I Chart

The purpose of applying the I chart on the FORP data
stream is to investigate how the I chart performs if serial

correlation in a FORP is not explicitly recognized. Whether
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the serial correlation in the FORP data stream is recognized
or not, the expected value of the average of moving ranges
of subgroup size two computed is found to be (Cryer and Ryan,

1990)
E[hR(E)bar] = 1.128%a %v(1-r) (35.2)

From Equation (3.13), it is known that
g, = a0 JY{1-r)//(1+1) (5.3)

Substituting (5.3) into (5.2) results in
E[MR(E)bar] = 1.128%a*(1-r)/J/(1+r) (5.4)

The control limits of an I chart are

UCL: = MEAN + 3%5TD (3.93)

LCL MEAN — 3%STD (9.6)

It is known that the STD can be estimated by

E[ﬁR(E)bar]

STD = (3.7)
1.128

Substituting (3.7) into (5.5) and (5.6), the theoretical

control limits of the I chart based on a FORP data stream are

ucL » MEAN + E.bb*E[MR(E)bar]

LCL MEAN - E.bb*E[MR(E)bar]

These control limits are not conditional control limits.
They are constructed and used for all the plotted points on

the I chart under study.
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MR(2) Chart

Whether the serial correlation in the FORP data stream
is recognized or not, the expected value of the average af
the moving ranges of subgroup size two computed can be
determined. Using Equation (5.4) and the formula for the
control limits of a traditional MR(2) chart, the theoretical
control limits of the MR(2) chart based on a FORP data
stream are

UCLmrca2y = 3.267*E[ﬁR(2)bar]

LCLmrc=2> = 0.0 |
These control limits are not conditional control limits.
They are determined and used for all the plotted points in

the MR(2) chart.
Average Run Length

The ARL is defined as the average number of subgroups
that must be taken from a process until an out-of—-control
point is found and corrective action can be implemented. Or,
equivalently, the number of plotted points on a control
chart until an out-of—-control point is found. The ARL is
associated with the probability of a control chart detecting
a process change. Normally, traditional Operating
Characteristic Curves can be constructed an& used to
determine the ability of a control chart to detect a process
change if the points plotted are independent of one another

and the distribution of the points plotted is known.
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However, in this research study, all the data are FORP data
which are not necessarily independent. Moreover, the plotted
points on certain charts are not independent of one another,
such as fhe plotted points of the OPA MRy or the MR(2)
charts. Therefore, instead of talking about the risks of
failing to detect a shift of a given magnitude, a better
method is to account for how many plotted points it will take
to detect the shift. The simplest way to determine the ARL
of a control chart on quality data from a FORP is by
simulation. Through simulation, the standard deviation of
the run length, SDRL, can also be determined.

In the derivation of the one-period-ahead control
limits, it is found that the Type I and Type II error risks
of any plotted point on the OPA Y chart are identical to the
risks of the corresponding plotted point on an Individual
chart for an independent normal data stream. Thus, the ARLs
of a OPA Y chart for different magnitudes of shift in the
mean level of the output of a first order response process
are identical to the ARLs of the corresponding Individual
chart.

An Individual chart is an Xbar chart with subgroup size
one. The ARL of the Xbar chart has been determined by
several authors such as by Graham (1986) and Champ, et al.
(1987). The ARL of the Xbar chart, and hence, the ARL of the
Y chart, can be found correspondingly from their work. It
should be pointed out that no runs rules are used in the

proposed OPA Y chart. Therefore, the corresponding ARL must
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be the ARL for the Xbar chart without using any runs rules.
Runs rules may be incorporated into the OPA Y chart, but the
procedure may be quite difficult as the one-period-ahead
control iimits of the OPA Y chart cause the division of
control charts into proper zones, for the application of runs

rules,; to be more complicated.
List of Programs Coded

SAS programs have béen coded to simulate the performance
of the OPA Y, OPA MRy, I and MR(2) charts in various
scenarios of interest. The conditions incorporated into the
scenarios can be broken down in the following manner

1.a 4 filter constants exactly stated: r = 0.0, 0.3, 0.6,
0.9

1.b 1 filter constant exactly stated: r = 0.6 with

1 filter constant overstated: r = 0.7 and
1 filter constant understated: r = 0.9
2.a 7 shifts in the mean of X variates (in multiples of a)

¢ 0.0, 0.25, 0.50, 1.00, 1.50, 2.00, 3.00

2.b 7 shifts in the standard deviation of X variates
(Crheaw/0c1a): 1.0, 1.25, 1.90, 1.75, 2.00, 2.350, 3.00

2.c 1 shift in the mean of X variates in trend: 3¢ in 20
subgroup sampling intervals

2.d 1 shift in the mean of X variates in cycle: cycle
period equal to 48 subgroup sampling intervals and
cycle amplitude equal to 3a

The SAS program scenarios coded are listed in TABLE 5.1.

Since the execution of the simulation of each scenario can be

quite long, simulation for only one scenario is done at a

time. After bbtaining the ARL for one scenario, conditions
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are changed to form a new scenario. It is important to point
ocout that each scenario has the same random number seed.

Thus, each scenario is subject to the same stream of random
numbers. -An example of a S5AS program and the corresponding
SAS output are included in Appendix D. The SAS program is
the PROGRAM 1 with filter constant 0.3 and stepwise shift in
mean equal to 2. The ARL and SDRL are 6.1837 and 5.6497,
respectively. These values are rounded and listed in the

corresponding cell in TABLE 5.2.
ARL and SDRL of the OPA Y and 0OPA MRy Charts

Using SAS programs (1), (7) and (13), the ARL and SDRL
of the OPA Y chart under a stepwise shift in process mean,
the ARL and SDRL of the OPA MRy chart under a stepwise shift
in process dispersion, and the ARL and SDRL of the combined
OPA Y and OPA MRy charts under a stepwise shift in process
mean can be determined. They are presented in TABLEs 5.2,
9.3 and 5.4, respectively.

From TABLE 5.2, it is found that the ARLs of the 0OPA Y
chart are identical to those obtained theoretically. Without
making any comparisons to other control charts, these 0PA Y
and OPA MRy charts appear to be capable of detecting a
process shift. A special effort is made to display the ARL
and SDRL of the OPA Y and OPA MRy charts under the types of
process shifts shown by conditions (2.a) and (2.b). This is
to illustrate the fact that, under a normal working

environment in which a stepwise shift in process mean or
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LIST OF SAS PROGRAM SCENARIOS CODED
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PROGRAM NAME OF CONDITION
NUMBER CHART (S) NUMBER

1 OPA Y chart (1.a) and (2.a)
r=d OPA Y chart (1.a) and (2.c)
3 OPA Y chart (1.a) and (2.d)
4 I chart (1.a) and (2.a)
5] I chart (1.a) and (2.c)
6 I chart (1.a) and (2.d)
7 OPA MRy chart (1.a) and (E.b)
8 OPA MRy chart (1.a) and (2.c)
9 OPA MRy chart (1.a) and (2.d)
10 MR(2) chart (1.a) and (2.b)
11 MR(2) chart (1.a) and (2.c)
12 MR(2) chart (1.a) and (2.d)
13 Combined OPA Y and

OPA MRy charts (1.a) and (2.a)
14 OPA Y chart (1.b) and (2.a)
15 Combined OPA Y and

0OPA MRy charts (1.b) and (2.a)
16 OPA MRy chart (1.b) and (2.b)




TABLE 3.2

ARL. OF THE OPA Y CHART WITH CONDITIONS
1.a and 2.a ON FORP DATA
(USING THEORETICAL VALUES)
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STEP SHIFT IN MEAN (IN MULTIPLE UF SIGMA)
FILTER
CONSTANT 0.00 0.25 0.50 1.00 1.30 2.00 3.00
0.0 M 370.36 283.08 155.53 43.82 14.37 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 35.65 1.46
0.3 M 370.36 283.08 155.53 43.82 14.37 6.19 2.02
S 372.62 284.72 1356.60 43.29 14.02 35.63 1.46
0.6 M 370.36 283.08 155.53 43.82 14.357 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 5.65 1.46
0.9 M 4370.36 283.08 1535.53 43.82 14.57 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 3.65 1.46

PROGRAM 1 is

used to

generate

this table



ARL OF THE OPA MRy CHART WITH CONDITIONS

TABLE 5.3

l.a and 2.b ON FORP DATA
(USING THEORETICAL VALUES)
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Oraew/0c1a (DISPERSION SHIFTS IN STEP)
FILTER :
CONSTANT 1.00 1.25 1.30 1.7 2.00 2.50 3.00
0.0 M 154.74 42.84 19.98 12.06 8.35 5.20 3.82
S 155.692 43.06 19.68 11.77 7.92 4.85 3.42
0.3 M 132.81 37.60 17.46 10.61 7.351 4.70 3.48
S 133.16 37.02 17.25 10.24 7.16 4.39 3.09
0.6 M 119.61 33.17 15.33 ?2.34 6.37 4.14 3.10
5] 120.70 32.351 14.81 .00 6.26 3.77 2.71
0.9 M 110.28 28.87 13.08 7.80 5.52 3.53 2.70
S 109.61 28.34 12.88 7.46 35.13 3.09 2.17
PROGRAM 7 is used to generate this table



ARL OF THE COMBINED OPA Y AND OPA MRy CHARTS WITH
CONDITIONS 1.a and 2.a ON FORP DATA

TABLE 5.4

(USING THEORETICAL VALUES)
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STEP SHIFT IN MEAN

(IN MULTIPLE OF SIGMA)

FILTER

CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00

0.0 M 135.51 113.45 78.19 31.64 12.48 5.67 1.82
S 136.90 113.79 79.10 31.86 12.392 5.44 1.35

0.3 M 121.26 106.82 79.95 34.50 13.06 5.69 1.80
S 121.01 108.11 81.79 34.83 13.38 5.58 1.35

0.6 M 112.28 104.92 87.28 38.61 13.33 5.57 1.75
S 112.96 105.06 892.45 39.37 13.74 35.58 1.30

0.9 M 108.80 115.58 107.90 39.58 12.55 5.21 1.68
S 108.01 117.29 115.95 42.90 13.60 35.41 1.21

PROGRAM 13 is used to generate this table
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dispersion is more likely than other less common process
shifts, these OPA Y and OPA MRy charts do perform

satisfactorily.
Conclusion

In this chapter, a simulation approach to determine the
ARL of the control charts used in this study is discussed in
detail. The generalized approach can be made specific to
simulate the ARL of the OPA Y, OPA MRy, I, or MR(2) charts
for the FORP data stream under different scenarios. All the
simulation programs are coded using the SAS language. It
should be noted that the control limits constructed in the
simulation are based on the theoretical values of the mean
and standard deviation of X variates. Moreover, the filter
constant is assumed to be exactly stated. Up to this point,
there are a total of 16 SAS programs coded to determine the

ARL of various control charts under different scenarios.



CHAPTER VI

ANALYSIS OF SIMULATION RESULTS USING

THEORETICAL FORP VALUES
Introduction

In this chapter, tﬁe performance of the proposed 0OPA Y
and OPA MRy charts are evaluated. The ARLs of these charts
are compared to the ARLs of other traditional charts which
are usually employed with a continuous flow process. These
traditional charts are the I and MR(2) charts. The ARLs of
control charts using different scenarios (see TABLE 35.1) are
determined by simulation. The ARLs determined are presented
to aid comparison. Due to the cost of computing time, not
all scenarios are simulated. Those scenarios which are not
run are designated by the notation N/R. For some scenarios,
the ARL values are too large to be computed in a CPU time of
S minutes; those scenarios which are run but for which
results are not obtained after 5 minutes CPU time are

designated by the notation T/L.
Tables of Results

Generally, there are two types of ARL table. One

consists of 4 rows and either 2 or 7 columns. The other

74
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consists of 3 rows and 7 columns. For example, TABLE 6.3 is
a 4x2 ARL table, TABLE 6.1 a 4x7 ARL table and TABLE 6.% a
3x7 ARL table. For a 4x2 or 4x7 ARL table, the rows show the
differenf values of the filter constant of the FORP used, r =
0.0, 0.3, 0.6 and 0.9. The rows of the 3x7 ARL table show
the values of filter constant that are either overstated, r =
0.7, exactly stated, r = 0.6, or understated, r = 0.3. The
columns of a 3x7 or 4x7 ARL table show the level of shift in
either the process mean or standard deviation of the X
variates. And the columns of a 4x2 ARL table show the type
of control chart used to monitor the process which has a
shift of mean in trend or in cycle. It should be noted that
each row of an ARL table consists of 2 sub-rows with the
first designated as M and the second as S§. The entries stand
for the average run length, ARL, and the standard deviation
of run length, SDRL, respectively, of a control chart for a
particular combination of filter constant and process shift
(scenario). So, as an example in TABLE 5.2, for a scenario
in which the filter constant is 0.6 and the shift in the mean
of X variates is 0.5cg, the ARL is found to be 135.33 and the

SDRL is 136.60.
Hypothesis Testing

An indicator '#' is placed in front of certain ARL
values in the ARL table of a control chart. This indicates a
significant difference in the mean of the ARL values of the

two control charts under comparison. For an in-control
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situation, the '#' indicates the scenario which gives the
higher ARL when compared to that of the corresponding
scenario in another control chart. For an out—-of—control
situatioﬁ, the '#' indicates the scenario which gives the
lower ARL. However, not all the ARLs in the evaluations are
marked, as in some cases these are no corresponding ARLs to
be tested with, or the test outcome is insignificant.

By the central limit theorem, the distributions of the
ARLs can be approximated by normal density functions. The
ARLs of the two charts under comparison are known to be
independent of one another. Moreover, the true variances are
unknown and not necessarily equal. The objective of
hypothesis testing is to be able to claim that when the
process is in—-control, the OPA Y or OPA MRy chart has a
larger ARL value or when the process is out—of—-control, the
OPA Y or OPA MRy chart has a lower ARL value. Thus, the
hypothesis testing of the difference in the mean of the two
ARLs for an in—control situation is

Ho: Ul — U2 =0
Ha: Ul - U2 > O

and for an out-of—-control situation is

"Ho: Ul — U2 =0

Ha: U1 — U2 < O
where
Ul = Mean of the ARL of the OPA Y or OPA MRy chart
U2 = Mean of the ARL of the other chart under comparison

The test statistic is
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M; - Mz)
t' =
(S5,)2 (S,)2
+
\ Ny Neg
where

My, = Dbsefved ARL of the OPA Y or OPA MRy chart
M= = Observed ARL of the other chart under comparison
S: = Observed SDRL of the OPA Y or OPA MRy chart
S= = Observed SDRL of the other chart under comparison

Ny = Number of run lengths generated for the OPA or OPA
MRy chart

Nz = Number of run lengths generated for the other chart
under comparison
This test is known as Aspin-Welch test (Duncan, 1984). Since
the number of run lengths generated in this research is
10000, 35000 or 1000, the test statistic t' can be
approximated as a standard normal random variable.

For an in—control process, the null hypothesis will be
rejected if the test statistic is greater than Z2.. In this
study, a is taken at the 34 level. When the null hypothesis
is rejected, it can be concluded that the ARL of the oPA Y
chart or OPA MRy chart is favorable compared to that of the
other chart under comparison.

‘For an out-of—-control process, the null hypothesis will
be rejected if the test statistic is less than Z.. When the
null hypothesis is rejected, it can be concluded that the ARL
of the OPA Y chart or OPA MRy chart is favorable compared to

that of the other chart under comparison.
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Comparison of the ARL

To analyze and compare various ARLs under different
scenarios, the ARLs of comparable charts are grouped under
various 'evaluation’' headings. A brief description is
included for each evaluation. The description includes the
objective of the ARL comparison, the features of the data
streams used, the magnitude of process shift either in mean
or dispersion, how the control limits are constructed; the
type of process shift, and whether the filter constant, r,
is explicitly recognized or not. The filter constant, r, is
not explicit recognized if the user mistakenly considers a
FORP data stream as an independent data stream. The details
of how the computer simulation is carried out are documented
in the previous chapter. The tabulated ARL results are
presented and followed by a brief analysis of the comparison
in terms of the ARL of the control charts involved.

To determine the preference of a control chart over
others on a FORP data stream with a particular filter
constant, the ARL of a control chart on an in-control
situation is first considered. If this ARL is considered too
low, the control chart will not be used on that particular
FORP data stream. If the ARL is deemed acceptable, say 80
and above, the ARL of the out-of-control situation is
examined. The preferred control chart should be the one with
a large ARL when the process is in—control and a low ARL when

the process is out—-of-control. It should be noted that the
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preference of a control chart on FORP data also depends on

the filter constant of the response process.

Evaluation 6.1

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA Y chart
and the I chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: Mean level is shifted by 0.0, 0.25,
0.50, 1.00, 1.50, 2.00 and 3.00 in
terms of process standard deviation.

Type of Shift: Stepwise.

Control limits: The control limits of these charts are
based on theoretical values.

Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA Y and I charts are presented in
TABLEs 6.1 and 6.2, respectively. The SAS programs used to
generate these ARL values are PROGRAMs 1 and 4; the program
listings are found in Appendix E.

The ARLs in TABLE 6.1 clearly show that the performance
of the OPA Y chart is the same regardless of the values of
the filter constant of a FORP. From Chapter III, it is known
that the ARLs of the OPA Y chart are similar to the ARLs of
the I chart on an independent data stream. This fact is
clearly illustrated by the similar values of ARL in the first

row of both the TABLEs 6.1 and 6.2. Minor discrepancies are

due to round—-off errors.



TABLE 6.1

ARL OF THE OPA Y CHART WITH CONDITIONS
1.a and 2.a ON FORP DATA
(USING THEORETICAL VALUES)

80

STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)
FILTER
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00
0.0 M 370.36 283.08 135.53 43.82 14.37 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 5.65 1.46
0.3 M |#370.36 283.08 155.53 43.82 14.57 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 35.65 1.46
0.6 M |#370.36 283.08 155.353 43.82 14.57 &4.19 2.02
S 372.62 284.72 156.60 43.29 14.02 35.65 1.46
0.9 M |#370.36 283.08 155.53 43.82 14.537 6.19 2.02
S 372.62 284.72 156.60 43.29 14.02 35.65 1.46

PROGRAM 1 is

used to

generate

this table



ARL OF THE I CHART WITH CONDITIONS

TABLE 6.2

1.a and 2.a ON FORP DATA
(USING THEORETICAL VALUES)

STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)

FILTER
CONSTANT 0.00 0.25 0.350 1.00 1.50 2.00 3.00
0.0 M 370.93 155.81 14.39

S 372.88 N/R 156.72 N/R 14.04 N/R N/R
0.3 M 84.70 #60.62 #9.99 #2.63

S 84.23 60.45 N/R 9.04 N/R 1.72 N/R
0.6 M 21.92 #16.66 #4 .36 #1.94

S 21.62 16.29 N/R 3.19 N/R 0.97 N/R
0.9 M b6.22 #4.28 #2.09

S 7.25 N/R 4.19 N/R 1.30 N/R N/R

PROGRAM 4 is used to generate this table
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Comparing the ARL for an out—-of-control process in both
TABLEs 6.1 and 6.2, the ARLs of the OPA Y chart are found to
be favorably significant at the 5% level when the process 1is
in—contrdl for filter constant greater than 0.0. Even though
the I chart has favorable ARLs when the process is out-of-
control for filter constant greater than 0.0, the low ARL for
an in—control process makes this chart impractical. That is,
the I chart signals alarm more frequently as the filter
constant of the FORP gets larger in value. For a FORP with
filter constant of 0.6, it is found that the I chart on the
average signals a false alarm every 21.92 plotted points when
the process is indeed in-control. Thus, with this
performance of the I chart when the process is in—control, it
is clear that the I chart is not a useful control chart for a

FORP correlated data stream.

Evaluation 6.2

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA Y chart
and the I chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: The gradual shift in the mean is an
increase with a total of 3 process
standard deviations in 20 subgroup
sampling intervals. Once the maximum
magnitude of the shift is reached, the
process mean remains at this level.

Type of Shift: Trend-wise.

Control limits: The control limits of these charts are
based on theoretical values.
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Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA Y and I charts are presented in
TABLE 4.3. The SAS programs used to generate these ARL
values are PROGRAMs 2 and 35; the program listings are found
in Appendix E.

From TABLE 6.3, it is found that the I chart is more
powerful in detecting a sﬁift of the process mean in trend
for different values of the filter constant of a FORP as the
low ARLs of the I chart are significant at 3% level. Due to
the development of the OPA Y chart in which (Xe¢, Ye) is a
point—-to—point mapping, the ability of this chart to detect

a process shift is not affected by the different values of

the filter constant.

Evaluation 6.3

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA Y chart
and the I chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: The mean 1is shifted in a cyclical
manner. The cycle has a period which
is equal to the sampling interval of 48
subgroups. The amplitude of the cycle
has a magnitude of 3 process standard
deviations.

Type of Shift: Cycle.

Control limits: The control limits of these charts are
based on theoretical values.



TABLE 6.3

ARL OF THE OPA Y AND I CHARTS WITH CONDITIONS
1.a and 2.c ON FORP DATA
(USING THEORETICAL VALUES)

MEAN SHIFTS IN TREND
FILTER
CONSTANT OPA Y chart I CHART
0.0 M 14.35 14.357
S 4.13 4.14
0.3 M 14.55 #10.11
S 4.13 3.45
0.6 M 14.35 #7.06
S 4.13 3.14
0.9 M 14.35 #4.04
S 4.13 3.02

PROGRAMs 2 and 5 are used to generate this table
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Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA Y and I charts are presented in
TABLE 6.4. The SAS programs used to generate these ARL
values are PROGRAMs 3 and 63 the program listings are found
in Appendix E.

From TABLE 6.4, it is found that the I chart is more
powerful in detecting a shift of process mean in cycle as the
low ARLs of the I chart are significant at 5% level for
filter constant greater that 0.0. Even though the I chart is
mofe sensitive to changes of process mean in step, trend, or
cycle regardless of the magnitude of the filter constant of a
FORP, its ARL for an in—control FORP data stream is generally
considered to be too low for a filter constant greater than
0.3. Hence, as a whole, the I chart is not practical in
monitoring a correlated FORP.

Generally speaking, the ARL of the proposed OPA Y chart
for different magnitudes and types of shift in process mean
are acceptable. The robustness of the OPA Y chart to
different magnitudes of the filter constant makes it even
more favorable over the I chart. At this stage, it is clear

that the OPA Y chart is a more favorable control chart for a

FORP data stream than the I chart.



TABLE 6.4

ARL OF THE OPA Y AND I CHARTS WITH CONDITIONS
l1.a and 2.d ON FORP DATA
(USING THEDRETICAL VALUES)

MEAN SHIFTS IN CYCLE
FILTER
CONSTANT OPA Y chart I CHART
0.0 M 8.31 8.31
S 2.66 2.66
0.3 M 8.31 #6.06
S 2.66 1.81
0.6 M 8.31 #4.73
S 2.66 1.70
0.9 M 8.31 ' #3.11
S 2.66 1.94

PROGRAMs 3 and 6 are used to generate this table

86
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Evaluation 6.4

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA MRy chart
and the MR(2) chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9

Process shift: Ratios of new standard deviation to
old standard deviation are 1.00, 1.25,
1.90, 1.75, 2.00, 2.50 and 3.00.

Type of Shift: Stepwise.

Control limits: The control limits of these charts are
based on theoretical values.

Filter constant: Filter constant is explicitly and
' correctly recognized using first
principles. It is used in the
construction of control limits.
The ARL values for the OPA MRy and MR(2) charts are presented
in TABLEs 6.5 and 6.6, respectively. The SAS programs used
to generate these ARL values are PROGRAMs 7 and 103 the
program listings are found in Appendix E.

From TABLEs 6.5 and 6.6, it is clear that the ARLs of
the OPA MRy chart are significantly higher than those of the
MR(2) chart for all the scenarios as the ARLs of the OPA MRy
chart are significant at 54 level for an in—control process
and insignificant for out-of-control process. The abilities
of these two charts to detect any magnitude of stepwise shift
in dispersion for any values of filter constant are quite
close.

It is interesting to realize that the ARLs of the OPA

MRy chart with filter constant equal to 0.0 under different



TABLE 6.3

ARL. OF THE OPA MRy CHART WITH CONDITIONS
1.a and 2.b ON FORP DATA
(USING THEORETICAL VALUES)

Craw / 0o2a (DISPERSION SHIFTS IN STEP)

FILTER
CONSTANT 1.00 1.25 1.30 1.75 2.00 2.50 3.00
0.0 M |[#1534.74 42.84 19.98 12.06 8.35 5.20 3.82
S 155.69 43.06 19.68 11.77 7.92 4.83 3.42
0.3 M [#132.81 37.60 17.46 10.61 7.51 4.70 3.48
S 133.16 37.02 17.235 10.24 7.16 4 .39 3.09
0.6 M |#1192.61 33.17 15.33 ?.34 6.37 4.14 3.10
S 120.70 32.51 14.81 9.00 b.26 3.77 2.71
0.9 M 110.28 28.87 13.08 7.80 5.92 3.53 2.70
S 109.61 28.34 12.88 7.46 5.13 3.09 2.17

PROGRAM 7 i1is used to generate this table



TABLE 6.6

ARL OF THE MR(2) CHART WITH CONDITIONS
1.a and 2.b ON FORP DATA

(USING THEORETICAL VALUES)

Crew / 0o1a (DISPERSION SHIFTS IN STEP)

FILTER
CONSTANT 1.00 1.285 1.50 1.75 2.00 2.90 3.00
0.0 M 120.52 #31.58 #14.88 #9.23 #6.66 #4.39 #3.36
S 120.32 30.35 13.84 8.22 3.69 3.91 2.958
0.3 M 112.81 #29.62 #13.77 #8.38 #6.13 #3.99 #3.11
S 111.06 29.01 12.79 7.38 5.14 3.30 2.42
0.6 M 109.87 #28.49 #13.06 #7.92 #5.67 #3.73 #2.85
S 107.66 28.32 12.31 7.24 4.89 3.13 2.25
0.9 M 110.09 #27.55 #12.40 #7.43 #5.29 #3.44 2.66
S 109.03 26.80 11.88 6.81 4.74 .87 2.11

PROGRAM 10 is

used to generate this table
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shifts in process dispersion are not identical to the ARLs of
the traditional MR(2) chart; since the filter constant equals
0.0 and the Y values are independent of one another. The
moving rénges of subgroup size two of the Y values formed
must have the same probability density function as the
traditional moving ranges of subgroup size two from an
independent data stream. However, the conditional
distribution of the moving range given that the first Y value
in a moving:subgroup of size two is known, is different from
the unconditional distribution of the moving range of
subgroup size two from a stream of Y values. Thus the ARL of
the OPA MRy chart, which is constructed based on conditional
control limits, is sure to be different from the ARL of the
traditional MR(2) chart.

At this stage, the benefit of using the OPA MRy chart on
a correlated FORP data stream is not obvious yet as it is
masked by the tedious construction required for the OPA MRy
chart. That is, even though the OPA MRy chart has appealing
ARL values for all scenarios, the computational tedium may

detract from its use.
Evaluation 6.5

"The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA MRy chart
and the MR(2) chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: The gradual shift in the mean is an
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increase with a total of 3 process

standard deviations in 20 subgroup

sampling intervals. Once the maximum

magnitude of the shift is reached, the

process mean remains at this level.
Type of Shift: Trend—-wise.

Control limits: The control l1limits of these charts are
based on theoretical values.

Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA MRy and MR(2) charts are
presented in TABLE 6.7. The SAS programs used to generate
these ARL values are PROGRAMs 8 and 113 the program listings
are found in Appendix E.

From TABLE 6.7, it is found that the MR(2) chart is not
sensitive to shifts of process mean in trend for filter
constants equal to 0.0, 0.3 or 0.6. For these values of the
filter constant, the OPA MRy chart has a substantially lower
ARL when it is applied to the similar FORP data stream. The
ARL of the OPA MRy chart on a FORP data stream with shift of
process mean in trend increases as the value of filter
constant increases. It is interesting to know that for
filter constant equal to 0.9, the MR(2) chart has a lower
ARL, which is significant at 5% level, than that of the 0OPA
MRy chart. Recall that the shift in the mean of input
variate X is at a rate of 3d/20 per subgroup sampling
interval for 20 subgroup sampling intervals. When this

magnitude of shift rate is 'translated' into the Y variate,

it is found that the magnitude of shift in the mean of output



TABLE 6.7

ARL OF THE OPA MRy AND MR(2) CHARTS WITH
CONDITIONS 1.a and 2.c ON FORP DATA
(USING THEORETICAL VALUES)

MEAN SHIFTS IN TREND

FILTER
CONSTANT OPA MRy MR(2)
0.0 M #20.01 119.05
S 8.30 120.39
0.3 M #23.35 110.77
S 10.22 110.92
0.6 M #28.62 102.43
S 14.03 105.95
0.9 M 49.62 #40.79
=] 38.74 71.88

PROGRAMs 8 and 11 are used to generate this table
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variate Y depends on the filter constant of the FORP.
Shift rate in X variate = 3a¢/20

3o, Y(1+r)

Shift rate in Y variate

20 J(1-r)
r = 0.0 Shift rate in Y variate = 0.1300d,
r = 0.3 Shift rate in Y variate = 0.2040,
r = 0.6 Shift rate in Y variate = 0.300c¢,
r = 0.9 Shift rate in Y variate = 0.6540,

Thus, it can be seen that the shift rate in the Y variate
increases drastically for r=0.9. This explains the sudden
decrease in the ARL of the MR(2) chart for r=0.9. Overall,
the OPA MRy chart is still a more favorable control chart for
a FORP data stream with a shift of process mean in trend as
the ARLs are comparatively small for all values of the filter

constant.
Evaluation 6.6

The characteristics of this evaluation are:

Ob jective: To compare the ARL of the OPA MRy chart
and the MR(2) chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: The mean is shifted in a cyclical
manner. The cycle has a period which
is equal to the sampling interval of 48
subgroups. The amplitude of the cycle
has a magnitude of 3 process standard
deviations.

Type of Shift: Cycle.

Control limits: The control limits of these charts are
based on theoretical values.
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Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA MRy and MR(2) charts are presented
in TABLE 6.8. The SAS programs used to generate these ARL
values are PROGRAMs 9 and 12; the program listings are found
in Appendix E.

In TABLE 6.8, i1t i1s clear that the OPA MRy chart is more
power ful than the MR(2) chart in detecting a cyclical shift
of process mean for filter constant equals to 0.0, 0.3 or
0.6 as these ARLs of the OPA MRy chart are significant at the
5% level. The ARL of the 0OPA MRy>chart increases as the
value of filter constant increases, but decreases as the
filter constant equals 0.9. Again, it is interesting to find
that the ARL of the OPA MRy chart is higher than that of the
MR(2) chart when the filter constant is 0.9. This is due to
the fact that the 'translation’ of the shift in X variate
into Y variate is not linear; rather, is an exponential
relation which depends on the filter constant.

From TABLEs 6.5 to 6.8, it is clear that the OPA MRy
chart is a more favorable control chart for‘a FORP data
stream than the MR(2) chart. Even though the OPA MRy chart
may be a bit tedious to construct, this extra effort can be
easily justified by the gains in abilities to detect shifts
in process mean in trend or cycle. Moreover, with a computer
program, the construction of the OPA MRy chart can be made

very easy.



TABLE 6.8

ARL OF THE OPA MRy AND MR(2) CHARTS WITH
CONDITIONS 1.a and 2.d ON FORP DATA
(USING THEORETICAL VALUES)

MEAN SHIFTS IN CYCLE

FILTER
CONSTANT oPA MRy MR(2)
0.0 M #17.39 103.02
S 14.55 101.88
0.3 M #23.84 ) 79.71
S 22.23 78.50
0.6 M #36.56 42.48
S 35.95 39.93
0.9 M 17.44 #10.38
S 12.94 6.90

PROGRAMs 9 and 12 are used to generate this table
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Evaluation 6.7

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA Y charts
when the value of the supposed-to-be-
known filter constant of a FORP is
either understated, correctly stated
or overstated.

Data Streams: FORP data for which r equals 0.6.

Process shift: Mean level is shifted by 0.0, 0.235,
0.50, 1.00, 1.30, 2.00 and 3.00 in
terms of the process standard
deviation.

Type of Shift: Stepwise.

Control limits: The control limits of these charts are
based on theoretical values.

Filter constant: Using first principles, the r is
explicitly recognized and used in the
construction of control limits,
However, the r used is either
overstated as 0.7, exactly stated as
0.6 or understated as 0.5.

The ARL values for the OPA Y charts are presented in
TABLE 6.9. The SAS program used to generate these ARL values
is PROGRAM 143; the program listing is found in Appendix E.

From TABLE 6.9, it is obvious that the filter constant
should be exactly stated in order for the OPA Y chart to
perform as intended for a FORP data stream with stepwise
shift in the process mean. If the filter constant is
overstated, the ARLs of the OPA Y chart decrease. If the
filter constant is understated, the ARLs of the OPA Y chart
inflate. The change of the ARL is not proportional to the

deviation of the supposed—to-be-known filter constant from

its true value. If the detection of any magnitude of shift
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TABLE 6.9

ARL OF THE OPA Y CHART WITH CONDITIONS
1.b and 2.a ON FORP DATA
(USING THEORETICAL VALUES)

STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)

FILTER
CONSTANT 0.00 0.25 0.90 1.00 1.50 2.00 3.00
0.7 M 39.07 35.28 12.17 2.93

0s S 38.36 34.95 N/R 12.67 N/R 2.73 N/R
0.6 M 370.36 283.08 155.53 43.82 14.57 6.19 2.02
ES S 372.62 284.72 156.60 43.29 14.02 5.65 1.46
0.5 M 156.82 11.39

us S N/R T/L N/R 137.03 N/R ?.76 N/R

0S = Overstated ES = Exactly stated US = Understated
PROGRAM 14 is used to generate this table
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in the process mean is deemed more important than signaling
a false alarm when the process is in-control, overstating the
filter constant is more favorable than understating the

filter constant.

Evaluation 6.8

The characteristics of this evaluation are:

Objective: To compare the ARL of the combined OPA
Y and OPA MRy charts when the value of
the supposed—to-be—known filter
constant of the FORP is either
understated, correctly stated or
overstated.

Data Streams: FORP data for which r equals 0.64.

Process shift: Mean level is shifted by 0.0, 0.295,
0.30, 1.00, 1.50, 2.00 and 3.00 in
terms of the process standard
deviation.

Type of Shift: Stepwise.

Control limits: The control limits of these charts are
based on theoretical values.

Filter constant: Using first principles, the r 1is
explicitly recognized and used in the
construction of control limits.
However, the r used is either
overstated as 0.7, exactly stated as
0.6 or understated as 0.95.

The ARL values for the combined OPA Y and OPA MRy charts.
are presented in TABLE 4.10. The SAS program used to
generate these ARL values is PROGRAM 15; the program listing
can is found in Appendix E.

From TABLE 6.10, it is obvious that the filter constant

should be exactly stated in order for the combined OPA Y and

OPA MRy charts to perform as intended for a FORP data stream
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TABLE 6.10

ARL OF THE COMBINED OPA Y AND OPA MRy CHARTS
WITH CONDITIONS 1.b and 2.a ON FORP DATA
(USING THEORETICAL VALUES)

STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)

FILTER
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00
0.7 M 19.00 18.69 10.235 2.63

as S 18.35 18.30 N/R 11.42 N/R 2.60 N/R
0.6 M 112.28 104.92 87.28 38.61 13.33 9.97 1.75
ES S 112.96 105.06 89.45 39.37 13.74 35.58 1.30
0.5 M 142.37 10.78

us S N/R T/L N/R 143.30 ' N/R 92.82 N/R

0S = Overstated ES = Exactly stated US = Understated
PROGRAM 15 is used to generate this table
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with stepwise shift in the process mean. If the filter
constant is overstated, the ARLs of the combined OPA Y and
0OPA MRy charts decrease. If the filter constant is
understafed, the ARLs of the combined OPA Y and OPA MRy
charts inflate. The change of the ARL is not proportional to
the deviation of the supposed—-to-be—known filter constant
from its true value. The ARL of the combined charts with
true filter constant equal to 0.6, but overstated as 0.7, for
an in—-control process is only 19. This is considered too

small as an ARL for an in—control process.

Evaluation 6.9

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA MRy
charts when the value of the supposed-
to-be-known filter constant of the FORP
is either understated, correctly stated
or overstated.

Data Streams: FORP data for which r equals 0.6.

Process shift: Ratios of new standard deviation to
old standard deviation are 1.00, 1.25,
1.90, 1.75, 2.00, 2.50 and 3.00.

Type of Shift: Stepwise.

Control limits: The control limits of these charts are
based on theoretical values.

Filter constant: Using first principles, the r is

) explicitly recognized and used in the
construction of control limits.
However, the r used is either
overstated as 0.7, exactly stated as
0.6 or understated as 0.95.

The ARL values for the OPA MRy chart are presented in TABLE

6.11. The SAS program used to generate these ARL values is



TABLE 6.11

ARL OF THE OPA MRy CHART WITH CONDITIONS
1.b and 2.b ON FORP DATA
(USING THEORETICAL VALUES)

101

Trew/0cr1a {(DISPERSION SHIFT IN STEP)

FILTER -

CONSTANT 1.00 1.25 1.50 1.75 2.00 2.30 3.00
0.7 M 20.01 .24 S.74 N/R 3.44 2.15
0s S 19.42 8.87 S5.26 2.95 N/R 1.63
0.6 M 119.61 33.17 15.33 9?.34 b6.57 4.14 3.10
ES S 120.70 32.51 14.81 9.00 6.26 3.77 2.71
0.5 M 153.23 49.39 14.43 4.93
us S T/L 153.64 48.58 N/R 14 .39 N/R 4.76

0S = Overstated ES = Exactly stated US Understated

PROGRAM 146 is used to

generate this table
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PROGRAM 163 the program listing is found in Appendix E.

From TABLE 6.11, it is obvious that the filter constant
should be exactly stated in order for the OPA MRy chart to
perform és intended for a FORP data stream with a stepwise
shift in process dispersion. If the filter constant is
overstated, the ARLs of the OPA MRy chart decrease. If the
filter constant is understated, the ARLs of the MRy chart
inflate. The change of the ARL is not proportional to the
deviation of the supposed-to-be—-known filter constant from
its true value. The ARL of the OPA MRy chart with true
filter constant equal t070.6, but overstated as 0.7, for an
in—control process is only 20.01. This is considered too
small as an ARL for an in—control process. The ARL of the
OPA MRy chart with true filter constant equal to 0.6, but
understated as 0.5, for an in—control process is too large to
be determined in a CPU time of 3 minutes.

Whether or not the ARLs inflate or decrease in a similar
pattern when the true filter constant has a value other than
0.6 but is overstated or understated is not investigated in
this research. From TABLEs 6.9-6.11, it is important to
realize that, if the true filter constant equals 0.6 but is
overstated as 0.7, the overstating of the filter constant
causes the ARL of an in—control process to decrease
unfavorably. If the true filter constant equals 0.6 but is
understated as 0.3, the understating of the filter constant
causes the ARL of an in—control process to inflate

considerably. Therefore, the best practice is to exactly
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state the filter constant using first principies.
Conclusion

In fhese ARL evaluations, substantial computer
simulation has been carried out. The ARL and SDRL for the
OoPA Y, OPA MRy, I, and MR(2) charts on a FORP data stream
with different types and different magnitudes of process
shifts have been determined and presented. From the above
comparison, there is clear indication that the 0OPA Y and OPA
MRy charts perform favorably on a FORP data stream. It is
also important to note that the filter constant be exactly
stated in order to have the OPA Y or OPA MRy chart perform as

desired.



CHAPTER VII

ANALYSIS OF SIMULATION RESULTS USING

EMPIRICAL FORP AND SORP VALUES
Introduction

In the previous two chapters, the ARL of the OPA Y and
OPA MRy charts are evaluated and compared with those of the I
and MR(2) charts. One distinguishing feature of the
evaluations is that the control limits of the control charts
are constructed using theoretical mean and standard deviation
values of the X variates. One has the advaﬁtage of using
these theoretical values because the relationship between the
X (input) and Y (output) variates of a FORP are well defined.
Those control charts used in the evaluations are constructed
based on theoretical values of the mean and the average of
the moving ranges of subgroup size two of the Y variates.

However, if the response process is not a FORP but
rather a second order response process, SORP, or if the
construction of a particular control chart cammot be based on
the theoretical mean and standard deviation values of the X
variates, then a different approach to computing the control
limits of the control chart has to be used. In this case,

the control limits of the control chart are constructed based

104
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on the statistics from an initial small sample, say 30
subgroups. In other words, the controi limits are
constructed based on empirical data.

The'modified EWMA chart is a control chart suggested by
Montgomery (1990) as a useful tool to monitor a correlated
data stream. The construction of control limits for the
Modified EWMA chart is based on statistics derived from an
initial small sample of the correlated data stream.
Therefore, to compare the ARLs ofkthe Modified EWMA and OPA Y
charts on a FORP data stream, the control limits of the OPA Y
chart are constructed based on empirical data from a FORP.
Otherwise, the comparison of ARLs for the Modified EWMA and
OPA Y chart is not gompatible.

To investigate how the OPAR Y or OPA MRy chart performs
on a SORP data stream, the control limits of the OPA Y or OPA
MRy chart must be constructed based on the empirical data
from the output of a SORP. This scenario corresponds to a
situation in which the user of the OPA Y or OPA MRy chart
mistakenly considers a SORP data stream as if it is a FORP
stream. Nevertheless, it is assumed that the user still
exactly states the filter constant. Using the SORP values,
the OPA Y chart or OPA MRy chart is set up as if the chart
will be applied on a FORP data stream. In fact, the chart
constructed is applied on a SORP data stream. The ARL of the
OPA Y and OPA MRy charts on a SORP data stream under
different magnitudes of process shift in the X variates

(input of the SORP) are determined using simulation.
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To compare the ARLs of the OPA Y or OPA MRy cﬁért on a
SORP, compatible to the ARLs of the OPA Y or OPA MRy chart on
a FORP, the ARL of the OPA Y or OPA MRy chart on a FORP has
to be defermined again. This time, the control limits of the
OPA Y or OPA MRy chart on a FORP are constructed based on
empirical data from the output of a FORP and the ARLs of
these charts on FORP data are determined using simulation as

in Chapters V and VI.
Data Generation
FORP Data

The FORP data stream used to determine the ARL of the
OPA Y, OPA MRy and Modified EWMA chart are generated using
the method described in Chapter V. In addition, an initial
small sample needs to be generated in order to estimate the
mean and average of the moving ranges of the Y variates.
This is done by generating 30 observations after the first 50
Y values are discarded for ‘warming—-up' purpose. fhe first
30 observations are used to compute 30 moving ranges of
subgroup size two. The average of the moving ranges, MRybar
is then calculated from these 30 moving ranges. An estimate
of the mean of the Y variates, Ybar, is also computed from
these 30 observations. These MRybar and Ybar are statistics
derived from the empirical data and are used to compute the
control limits of control charts.

In this study, the first plotted point on the control
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chart is obtained from the 31=* gbservation. That is, the
first 30 observations are used only to estimate parameters
for the construction of control limits, and are ﬁot plotted

on the control charts.
SORP Data

The generation of a SORP data stream is just an
extension of the generation of a FORP data stream. A SORP
can be depicted as two FORPs in series (Box and Jenkins,
1976). The input to the first FORP is the X variates, and
the output of the first FORP becomes the input to the second
FORP. The output of the second FORP is the output of the
SORP. To facilitate further discussion, the output of a SORP
is denoted as a 2 variate. 1In a real process, the filter
constant for thé two FORPs can be different. However, in
this research, for simplicity, it is assumed that the filter
constants of the first and second FORP in a SORP are the
same. In computer codes, a SORP generator can be described
by a pair of recurrence relations:

Y2
22

FCxY1 + (1-FC)*(RANNOR(SEED)*STD + MEAN) (7.1)
FC*¥Z1 + (1-FC)=xY2 (7.2)

n

where FC is the filter constant, r, of a first and second
FDRP, Y1 and Y2 are two consecutive values of Y, output of
the first FORP, and 21 and Z22 are the two consecutive values
of 2, output of the SORP. The values of the filter constant
used in the study are 0.0, 0.3, 0.6, and 0.9. By using a

filter constant equal to 0.0, an independent normal data
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stream is generated. Thus, Equations (7.1) and (7.2) can be
used to generate an independent normal data stream as well as
an SORP data stream.

To Qse these recurrence relations, the first Y and 2
values used in the first and second FORP are two identical
and independent normal variates with mean equal to p = MEAN
and standard deviation equal to ¢ = STD. For this study,
MEAN is set to equal 10.0, and STD equals 1.0. All
subsequent Y values of the first FORP are then generated
using Equation (7.1). Every subsequent Y value generated is
substituted into Equation (7.2) to generate a corresponding 2
value.

Since the very first Y and Z2 values are not generated
using Equations (7.1) and (7.2), respectively, the first few
Z values generated do not truly depict a SORP. Thus, to
‘warm—up' the SORP data generator, the first 350 SORP data
values generated are discarded. However, the 51=* value
generated is used to generate the first 'observation' of the
initial sample. In this study, 30 observations are generated
in order to estimate the mean and average of the moving
ranges of the 2 variates. This is done by generating 30
ocbservations of Z values after the first 50 Z values are
discarded for ‘'warming-up' purposes. These first 30
~observations of Z, along with the 351=* Z value are used to
compute 30 moving ranges of subgroup size two. The average
of the moving ranges, MRzbar, is then calculated from these

30 moving ranges. An estimate of the mean of the Z variates,
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Zbar, is also computed from these 30 observations. These
MRzbar and Zbar statistics are derived from the empirical
data and are used to compute the control limits of control
charts.

To embed the effect of a shift in process mean or
process standard deviation into the (10.0,1.0) normal
variate, for the generation of SORP data, the following
methods are used:

(1) For a stepwise shift in the process mean, the standard
deviation is multiplied by the magnitude of shift and
added to the process mean. Hence, the shift of process
mean is in terms of the process standard deviation. The

SORP data generator in computer codes becomes

NMEAN = MEAN + SHIFT*STD
ye = FC*Y1 + (1-FC)*(RANNOR(SEED)*STD + NMEAN)
22 = FC*Z1 + (1-FC)=*Y2

where SHIFT is the magnitude of shift. The magnitudes
of shift used in this study are: 0.0, 0.25, 0.50, 1.00,
1.50, 2.00 and 3.00. Figure 5.1 shows the stepwise
shift in mean.

(2) For a stepwise shift in the process standard deviation,
the standard deviation is multiplied by the ratio of the
new standard deviation to the original standard

deviation, Ghew/0ci1a- The SORP data generator becomes:

NSTD = RATIO*STD
Ye = FC*#Y1 + (1-FC)*(RANNOR(SEED)*NSTD + MEAN)
22 = FCxZ21 + (1-FC)»Y2

where RATIO is the value of Crew/0ci1a- The ratios used

in this study are: 1.00, 1.25, 1.50, 1.75, 2.00, 2.50,
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3.00. Figure 5.4 shows the stepwise shift in

dispersion.

It should be noted that only from the generation of the
first pldtted point onward is the effect of the process shift
embedded into the SORP data generation process. That is,
the effect of process shift is only embedded beginning with
the generation of the 31=* observation of 2. Moreover, only

one type of shift is embedded in a scenario under study.
Control Limits

In this section, the construction of the control limits
for the control charts used in the study are discussed. It
is important to remember that the control limits are
constructed based on empirical data. That is, it is assumed
that the mean, p, and standard deviation, o, of the
unobservable X variates aré unknown, and they need to be
estimated from empirical data. However, the filter constant,
r, of the FORP is still assumed to be exactly known by first
principles. In the case of a SORP data stream, the two
filter constants,; FC1 and FC2, used for data generation are
assumed to be equal. It is assumed that the user has
mistakenly considered a SORP as a FORP and applies the OPA Y
or OPA MRy chart on this SORP data stream. It is further
assumed that the user has exactly stated one of the filter
constants, FCl1, but used it as the filter constant for a
FORP. This stated filter constant, FC1l, is used for the

construction of control limits based on empirical data which
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have been mistakenly considered as FORP data.
Modified EWMA Chart

The'control limits of the Modified EWMA chart are one-
step—ahead control limits based on the prediction error made.
The EWMA statistic is

We = o Ye + (1-a) We—s (7.3)
where 0 £ o < 1.

If the observations from the process can be modeled by
an ARIMA (0,1,1) = IMA(1,1) model, then the EWMA is the
optimal one-step—ahead forecast for the mean of this process
(Montgomery, 1990). Using the procedure presented by
Montgomery, the one-step—ahead control limits can be
constructed.

If Yce+1(t) is the forecast for the observation in
period t+1 made at the end of period t, then

YCew1({t) = We (7.4)
is used as the center line for the control chart in period
t+1. The sequence of one-step—ahead prediction errors

€e+2(1) = Yeurs — YCegaa(t)

Yeers — We (7.3)

or €ee1(1)
are independently and identically distributed if the
underlying process is really IMA(1,1). There are two
procedures that could be used to estimate the standard
deviation of the one-step—-ahead prediction error, o,.
However, in this study only one method is adopted to estimate

0p. The method used is to apply an EWMA to the absolute
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value of the prediction error as follows,

o(t) = Slet(1)| + (1-8) o(t-1), O £ &§ < 1 (7.6)
Since the mean absolute deviation of a normal distribution
is related to the standard deviation by o = 1.23 6(t)

(Montgomery and Johnson, 1976), the standard deviation of

the prediction error at time t can be estimated by

-

ge(t) = 1.25 o(t) (7.7)
The control limits of the Modified EWMA chart for period t+1,

calculated at the end of period t, are

UCLmawma = We + 3 ap(t)

=LJt

CL ME WM

-~

LCLmawma = We — 3 a5 (t) (7.8)

The starting values of the control chart are obtained
by treating the first 30 observations of Y after the '‘warm—
up' process. The EWMA is used for the first 30 periods with
Wo equal to Ybar from the first 30 observations. Gelving
Equation (7.3) successively, Wac is obtained. Using Equation
(7.9), a series of one-step prediction errors e, (1), e=(1),
«ee3 E30(1) are also obtained. As specified by Montgomery
(1990), the sample standard deviation of these prediction
errors is used to provide starting values for Equation (7.6)
at time origin t = 0. That is, the sample standard
deviation of e;(1), i = 1(1)30, is used as ©(0) in Equation
(7.6). Solving Equation (7.6) successively, 0(30) is

-

obtained. Consequently, ¢5(30) is also obtained through

Equation (7.7). Substituting Wsoc and do(30) into Equation



113

(7.8), the contgol limits for the first plotted point on the
Modified EWMA chart can be calculated. The first plotted
point is the 31=* observation recorded.

The-control limits for the second plotted point can be
obtained after the 31=%* observation is recorded. Using
Equations (7.3), (7.9), (7.6), (7.7) and (7.8), the control
limits for the second plotted point are computed. This
procedure is repeated to construct subsequent control limits
on the control chart.

As suggested by Montgomery (1990), the value o« used for
the EWMA Equation (7.3) is 0.20, and the value of § used for
smoothing the error estimates in Equation (7.6) is 0.25 for
the first 30 observations and 0.10 for all subsequent
observations. The large initial value for 8§ is used to
induce a more rapid rate of smoothing during the time periods
following control start-up. This ensures that starting
values for the EWMA and the error estimates are quickly

updated.

OPA Y Chart Using Y Data

The control limits for the OPA Y chart are conditional
control limits. They are conditioned on the current
observation. Using Equations (3.10) and (3.11), after
rearrangement of terms, the conditional control limits for
the next plotted point on the control chart are

UCLorav = FC*(W-MEAN) + MEAN + 3%*STD(1-FC) (7.9)

LCLoravy FC*(W-MEAN) + MEAN — 3*STD(1-FC) (7.10)

i
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where W is the current value on the control chart and FC is
the filter constant of the response process.

For a FORP data stream, the W is replaced by the current
observation of Y, Y2, MEAN is replaced by Ybar, and STD is
replaced by the following equation (from Equation (3.17))

MRybar * V(14r)

g = (7.11)
1.128 * (1-r)

Equation (7.11) is derived from the fact that,

a,2 = g2 * (1-r)/(1+r) (7.12)
and

MRybar = 1.128 ¥ g, * V(1-r) (7.13)
Taking the square root of Equation (7.12) and substituting
into Equation (7.13) results in

MRybar = 1.128 * ¢ * (1-r)//(1+r) (7.14)

Then rearranging Equation (7.14) results in Equation (7.11).

OPA MRy Chart Using Y Data

The control limits for the OPA MRy chart are conditional
control limits. Similar to the control limits of the OPA Y
chart, they are also conditioned on the current plotted point
on the OPA Y chart which is denoted as k. Using Equations
(4.20) and (4.21), the conditional control limits for the
next plotted point on the OPA MRy chart are

UCLoramry = E(le) + 3-Std(R|k) (7.19)

LCLoramry = E(R|k) - 3-Std(R|k) (7.16)
where E(le) and Std(RIk) are defined as in (4.16) and

(4.17), and both involve the p and ¢ of the X variates, plus
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the current observation.
For a FORP data stream, the k is replaced by the current
observation of Y, Y2, p is replaced by Ybar, and ¢ is

replaced by Equation (7.11).

OPA Y Chart Using 2 Data

For a SORP data stream, the conditional control limits
for the next plotted point on the OPA Y chart are the
Equations (7.9) and (7.10); except that the W is replaced by
the current observation of 2, 22, MEAN is replaced by Zbar,
and STD is replaced by the following equation (from Equation
(3.17))

MRzbar * JV(1+FC1)

T = (7.17)
1.128 * (1-FC1)

It is seen that the estimate of the STD expressed in Equation

(7.17) is not correct as 2 is an output from a SORP.

OPA MRy Chart Using Z Data

For a SORP data stream, the conditional control limits
for the next plotted point on the OPA MRy chart are the
Equations (7.15) and (7.16); except that the k is replaced by
the current observation of 2, 22, p is replaced by Zbar, and

o is replaced by Equation (7.17).
List of Programs Coded

SAS programs have been coded to simulate the performance

of the OPA Y, OPA MRy and Madified EWMA charts in various
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scenarios of interest. The conditions incorporated into the
scenarios can be broken down in the follaowing manner

l.a 4 filter constants exactly stated: r = 0.0, 0.3, 0.6,
0.9

2.a 7 shifts in the mean of X variates (in multiple of a)
: 0.0, 0.25, 0.50, 1.00, 1.350, 2.00, 3.00

2.b 7 shifts in standard deviation of X variates
(Crew/0cr1a): 1.0, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00

For consistency, these conditions are labeled in such a
way to match with those in Chapter V.

The SAS program scenarios coded are listed in TABLE 7.1.
Since the execution of the simulation of each scenario can be
quite long, only simulation for one scenario is done at a
time. Due to the length of the simulation time, the ARLs for
some scenarios are the averages of 10000 or, in some cases,
5000 or 1000 run lengths simulated. After obtaining the ARL
for‘one scenario, parameters are changed to form a new
scenario. It is important to point out that each scenario
has the same random number seed. Thus, each scenario is

subject to the same stream of random numbers.
Comparison of the ARL

To analyze and compare various ARLs under different
scenarios, the ARL of comparable charts are grouped under
various evaluation headings. A brief description is included
for each evaluation. The description includes the objective
of the ARL comparison, the features of the data streams used,

the magnitude of process shift either in mean or dispersion,
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TABLE 7.1

LIST OF SAS PROGRAM SCENARIOS CODED

PROGRAM NAME OF CONDITION
NUMBER CHART(S) NUMBER
17 Modified EWMA chart (1.a) and (2.a)

on FORP data stream

18 OPA Y chart on (1.a) and (2.a)
FORP data stream )

19 OPA MRy chart on (1.a) and (2.b)
FORP data stream

20 OPA Y chart on (1.a) and (2.a)
SORP data stream

21 OPA MRy chart on (1.a) and (2.b)
SORP data stream




118

how the control limits are constructed, type of process
shift , and whether the filter constant is explicitly
recognized or not. The tabulated ARL results are presented
and folldwed by an analysis of the comparison in terms of
the ARL of the control charts involved. Statistically
significant ARLs ‘are marked with '#'.

Due to the effect of variation in control limits
introduced by using empirical values (see Appendix F), the
ARL of the OPA Y and OPA MRy charts on a FORP data stream
presented in this chapter are found to be different from

those of similar charts in Chapter VI.

Evaluation 7.1

The characteristics of this evaluation are:

Objective: To compare the ARL of the Modified
EWMA chart and the OPA Y chart.

Data Streams: FORP data for which r equals 0.0, 0.3,
0.6 and 0.9.

Process shift: Mean level is shifted by 0.0, 0.25,
0.50, 1.00, 1.50, 2.00 and 3.00 in
terms of process standard deviation.

Type of Shift: Stepwise.

Control limits: Control 1limits of these charts are
based on the initial 30 empirical
values of the Y variate.

‘Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits in the
Y chart.

EWMA parameter: The « used in the EWMA computation is
0.2. The § used for smoothing the
error estimates is 0.25 for the initial
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30 observations and 0.10 for all
subsequent observations.

The ARL values for the OPA Y and the Modified EWMA charts are
presented in TABLEs 7.2 and 7.3, respectively. The SAS
programs used to generate these ARL values are PROGRAMs 17
and 18; the program listings are found in Appendix E.

It is seen from TABLE 7.2 that the Modified EWMA chart
is insensitive to a magnitude of shift less than 3. It
should be remembered that the variation due to using
empirical data is contained in the ARLs. Examining TABLE
7.3, it is readily seen that the ARLs are large, significant
at 5% level, for small magnitudes of shift in the process
mean, but the ARLs are acceptable for larger magnitudes of
process shift. When comparing TABLEs 7.2 and 7.3, it is
clear that for a magnitude of mean shift greater or equal to
1.5 sigma, the OPA Y chart performs better than the Modified
EWMA chart as the ARLs of the OPA Y chart are significant at
the 5% level. It is interesting to find that the ARL of the
Modified EWMA chart does not change considerably for small
magnitudes of mean shift. This is not the case for the OPA Y
chart. Clearly, a data stream from a first order response
process is not suitable to be modeled as an IMA(1,1) time-—
series model.

An IMA(1,1) time series model can be written in terms of
the observations, W's, and the random errors, e's, in the
form (Box and Jenkins, 1976)

N-Q; = Ut_1 + e — Get_,_ (7.18)
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ARL OF THE MODIFIED EWMA CHART WITH CONDITIONS
l1.a AND 2.a ON FORP DATA
(USING EMPIRICAL VALUES)
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STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)
FILTER
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00
0.0 M |130.18 129.30 129.37 #127.10 121.18 110.59 73.71
S |134.79 134.50 134.93 133.25 135.00 133.96 120.58
0.3 M |131.32 130.69 #130.32 127.39 118.73 104.58 64.35
S |132.29 135.96 136.37 136.54 136.18 133.93 116.51
0.6 M |150.34 #150.64 148.38 143.10 132.09 111.12 61.57
S |157.43 158.40 138.06 158.62 158.13 152.75 125.53
0.9 M |217.20 215.39 #214.72 208.75 183.34 146.27 81.90
S |226.91 227.50 228.27 229.73 2286.09 215.64 175.69
PROGRAM 17 is used to generate this table
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TABLE 7.3

ARL/DF THE OPA Y CHART WITH CONDITIONS
1.a AND 2.a ON FORP DATA
(USING EMPIRICAL VALUES)

STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)

FILTER
CONSTANT| 0.00 0.25 0.50 1.00 1.530 2.00 3.00
0.0 M 3921.76 #2.46

S T/L T/L N/R 17795.1 N/R N/R 3.40
0.3 M 739.85 #32.59 #10.33

S T/L N/R 10275.4 N/R 104.87 44.31 N/R
0.6 M 10592.55 #113.84 #11.09

S T/L 7468.27 N/R 966.84 N/R 26.22 N/R
0.9 M 490.24 #25.99 #2.31

S T/L N/R 3297.0 N/R &7.08 N/R 2.65

PROGRAM 18 is used to generate this table
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where © is some constant. Recall that, from Chapter III, a
FORP can be viewed as an AR(1) time series model. An AR(1)
time series model can be written in terms of the
observatians, V's, and the random errors, e's, in the form
Ve = aVe—1 + e« (7.19)
Obviously, an AR(1) time series model is different from the
IMA(1,1) time series model. This explains why the Modified
EWMA chart, which assumes that the observations from a
process can be well—-modeled by an IMA(1,1) time series model,

does not perform satisfactorily on a FORP data stream.

Evaluation 7.2

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA Y chart
on FORP and SORP data streams.

Data Streams: FORP data with r equal to 0.0, 0.3, 0.6
and 0.9. SORP data with FC1 equal to
FC2 equal to 0.0, 0.3, 0.6 and 0.9.

Process shift: Mean level is shifted by 0.0, 0.25,
0.50, 1.00, 1.30, 2.00 and 3.00 1in
terms of process standard deviation.

Type of Shift: Stepwise.

Control limits: Control limits of these charts are
based on the initial 30 empirical
values.

Filter constant: Filter constant is explicitly and

i correctly recognized using first
principles. It is used in the
construction of control limits in the
OPA Y chart on FORP and SORP data
streams.

The ARL values for the OPA Y charts on FORP are already

presented in TABLE 7.3, but to aid comparison they are
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listed here again as TABLE 7.4. The ARL values for the OPA Y
chart on SORP data streams are presented in TABLE 7.5. The
SAS programs used to generate these ARL values are PROGRAMs
18 and 26; the program listings can be found in Appendix E.
The first row of TABLEs 7.4 and 7.5 are supposed to be
similar, as when the filter constant is equal to zero, the
SORP and FORP are identical data streams. The discrepancies
and normal statistical variation are due to the number of
simulation runs performed. From TABLE 7.5, it is noted that
the ARLs for the OPA Y chart are large, significant at the 5%
level, for a magnitude of mean shift up to about 0.5 sigma
when the filter constant of the SORP is 0.9. However, for
filter constants equal to 0.3 or 0.6, the OPA Y chart is
quite sensitive to the process shift in a SORP data stream as
the ARLs of the OPA Y chart are significant at the 5% level.
In TABLE 7.5, the ARLs for an in—control process with
filter constant equal to 0.2 seems to be very ‘'strange' as
compared to other ARLs in the same row. This may be due to
the number of simulation rﬁns at this scenario. Another
‘strange’' pattern observed in TABLE 7.5 is that the SDRLs are
not strictly decreasing with the increase in the magnitude of
the process mean for filter constants equal to 0.0 and 0.9.
The reason for such irregularity is not known. The OPA Y
chart is found to be somewhat robust to a SORP data stream in
the sense that the Y chart still performs well under
different magnitudes of shift for a filter constant that is

neither too large nor too small.
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ARL OF THE OPA Y CHART WITH CONDITIONS

1.a AND 2.a ON FORP DATA
(USING EMPIRICAL VALUES)
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STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)

FILTER
CONSTANT| 0.00 0.25 0.50 1.00 1.50 2.00 3.00
0.0 M 391.76 2.46
S T/L T/L N/R 17795.1 N/R N/R 3.40
0.3 M 739.85 32.59 10.33
S T/L N/R 10273.4 N/R 104.87 44.31 N/R
0.6 M 1059.55 113.84 11.09
S T/L 7468.27 N/R 566.84 N/R 96.22 N/R
0.9 M 490.24 25.99 2.31
S T/L N/R 3297.0 N/R 67.08 N/R 2.65

PROGRAM 18 is used to generate this table



TABLE 7.5

ARL OF THE OPA Y CHART WITH CONDITIONS

1.a AND 2.a ON SORP DATA=

(FC1=FC2; USING EMPIRICAL VALUES)
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STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA)
FILTER
CONSTANT| 0.00 0.25 0.50 1.00 1.50 2.00 3.00
0.0 M e2873.4 B815.29 416.33 37.98 12.67 2.69
S T/L 25164.1 7801.57 16181.2 262.87 62.26 4.93
0.3 M 266.39 157.45 #87.75 18.64 #6.43 #3.24 1.55
5 11303.82 455.72 267.6 37.25 12.53 3.07 0.84
0.6 M 103.78 #69.52 31.79 #B.46 3.90 #2.53 1.59
S 979.70 192.76 76.26 22.53 3.12 1.47 0.469
0.9 M |2406.27 498.91 483.56 7.77 #4 .66 3.42 2.33
S |4996.63 15459.4 32540. 6.70 2.921 1.90 1.09

all scenarios are simulated for 5000 times,
marked with b

simulated 1000 times
PROGRAM 20 is used to generate this table

except as
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Evaluation 7.3

The characteristics of this evaluation are:

Objective: To compare the ARL of the OPA MRy chart
on FORP and SORP data streams.

Data Streams: FORP data with r equal to 0.0, 0.3, 0.6
and 0.9. SORP data with FC1 equal to
FC2 equal to 0.0, 0.3, 0.6 and 0.9.

Process shift: Ratios of the new standard deviation to
the old standard deviation are 1.00,
1.25, 1.50, 1.75, 2.00, 2.50 and 3.00.

Type of Shift: Stepwise.

Control limits: Control limits of these charts are
based on the initial 30 empirical
values.

Filter constant: Filter constant is explicitly and
correctly recognized using first
principles. It is used in the
construction of control limits.

The ARL values for the OPA MRy charts on FORP and SORP data
streams are presented in TABLEs 7.6 and 7.7, respectively.
The SAS programs used to generate these ARL values are
PROGRAMs 19 and 213 the program listings are found in
Appendix E.

The first rows of TABLEs 7.6 and 7.7 are supposed to be
similar, as when the filter constant is equal to zero, the
SORP and FORP are identical data streams. The discrepancies
and normal statistical variation are due to the number of
simulation runs performed. From TABLE 7.7, it is noted that
the ARLs for the OPA MRy chart are large when the filter
constant of the SORP is 0.9 as the ARLs are significant the

at the 5% level. However, for filter constants equal to 0.3
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ARL. OF THE OPA MRy CHART WITH CONDITIONS
l1.a AND 2.b ON FORP DATA
(USING EMPIRICAL VALUES)
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Orenw/0c1a (DISPERSION SHIFTS IN STEP)

FILTER
CONSTANT 1.00 1.25 1.50 1.75 2.00 2.50 3.00
0.0 M 390.81 24 .28 ?.16
S |2942.20 N/R 35.57 N/R 10.89 N/R N/R
0.3 M 52.13 11.99 4.98
S N/R 107.01 N/R 15.38 N/R 5.01 N/R
0.6 M 239.16 #17.95 #7.03
S &675.40 N/R 25.54 N/R 7.65 N/R N/R
0.9 M #39.63 #8.59 #3.70
S N/R 67.72 N/R 10.41 N/R 3.54 N/R
PROGRAM 19 is used to generate this table
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TABLE 7.7

ARL OF THE OPA MRy CHART WITH CONDITIONS
1.a AND 2.b ON SORP DATA=
(FC1=FC2; USING EMPIRICAL VALUES)

Ornew/0c1a (DISPERSION SHIFTS IN STEP)

FILTER
CONSTANT 1.00 1.85 1.50 1.75 2.00 2.50 3.00
0.0 M 439.41 63.16 23.65 13.64 ?2.12 5.49 3.91
S |3354.06 141.56 36.74 18.11 10.35 5.74 3.82
0.3 M 196.52 #44.47 19.21 #11.04 7.73 #4.70 3.53
S 813.13 73.38 26.02 13.45 8.72 4.65 3.35
0.6 M |#345.17 56.57 23.92 13.21 8.77 35.20 3.67
S |1803.70 109.31 36.18 16.90 ?.49 5.27 3.57
0.9 M 2478.28 106.00 48B.56 25.99 13.60 9.09
S T/L 9331.19 608.42 235.37 65.33 18.60 13.05

= all scenarios are simulated 9000 times, except as
marked with b

b simulated 1000 times

PROGRAM 21 is used to generate this table
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the OPA MRy chart is quite sensitive to the process shift as
the ARLs are significant at the 5% level. Overall, the OPA
MRy chart is found to be quite robust to the SORP data stream
in the sénse that the MRy chart performs quite well under

different magnitudes of shift.
Conclusion

The ARL of the OPA Y, OPA MRy and Modified EWMA charts
on a FORP data stream under different magnitudes of process
shift are determined through simulation. The control limits
of control charts in this chapter are based on emhirical
values. It is found that the OPA Y and OPA MRy charts are
quite robust to a SORP data stream inasmuch their ARLs are
acceptable for various magnitude of process shift. It 1is
also found that the Modified EWMA chart is not suitable for a
FORP data stream. The effects of variation in empirical
determined control limits on the ARL of a control chart is
also discussed in Appendix F. This explains the

discrepancies between the ARLs of similar charts determined

in previous chapters versus those in this chapter.



CHAPTER VIII

COMPUTER PROGRAM TO IMPLEMENT THE

OPA Y AND OPA MRy CHARTS

Introduction

A FORTRAN program is coded to implement the proposed
special control charting techniques for quality data obtained
from a FORP. It is assumed that the user has prior knowledge
of the filter constant of the FORP. The main purpose of the
program is to illustrate the fact that the conditional
control limits of the OPA Y and OPA MRy charts can be
easily constructed, and manual construction of these control
charts should not be regarded as an obstacle for the

implementation of these useful tools on FORP data.

Program Algorithm

The user has the option of entering the observations
via the keyboard or letting the program read the observed
values from a disk file. The disk file should be named
'INPUT'. If the observations are to be read from an ASCII
disk file, the values should be arranged in a column with the
first value being the filter constant, r, and subsequent

values being the observations in time order. If the

130
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observations have to be entered via keyboard, the user has
to first input the known value of the filter constant, r,
and the number of observations, N, required to initiate the
construcfion of the OPA Y and OPA MRy charts. The user is
then prompted to enter the observations one by one. The
program then computes the average of observations and average
of moving ranges of subgroup size two of these observations.
These quantities are denoted as Ybar and MRybar,
respectively. An estimate of the standard deviation of the X
variates of a FORP, sigma, is then computed using the
following equation

MRybar * SQRT(1.0 + r)

sigma = (8.1)
1.128 * (1.0 — r)

The program constructs conditional control limits for
each observation entered except the first observation. Since
the control limits are conditioned on the previous
observation, the first set of control limits is the control
limits for second observation, and is constructed conditioned
on the first observation. The equations used to construct
the control limits of the OPA Y and OPA MRy charts are
Equations (3.19)-(3.20) and (4.20)-(4.21), respectively.

The construction of conditional control limits, and
display of the OPA Y and OPA MRy values and the corresponding
control limits, are performed in a subroutine called CHART.
The user has the option of storing the results in a disk
file. The output disk file is named 'RESULT'. Whether the

user makes this selection or not, the results are always
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displayed on the computer monitor screen as well.

After all the control limits and observations are
displayed, the user is given an opportunity to decide
whether fo terminate the program or to continue to enter
observations. If the user decides to enter more
observations, and the array used to store the observation is
not yet full, an observation can be accepted and the program
will compute the moving range and its control limits based
upon the previously computed Ybar and MRbar. That is, the
estimate of mean and standard deviation are based only upon
the initial N observations. The value of the observation
entered, its moving range, and corresponding control limits
for the OPA Y and OPA MRy charts are displayed or stored in
the disk file as well, before the user is prompted to enter
the next observation. Otherwise, the program terminates. A
brief flow-chart of this main program.is found in Figure 8.1.

Subroutine CHART is coded to construct the conditional
control limits of the OPA Y and OPA MRy charts. The argument
parameters needing to be passed from the main program are the
index of the plotted point, the current and previous
observations, the current moving range, the Ybar, MRybar,
filter constant r, and a constant term B which has been
computed in the main program.

The subroutine begins by constructing the conditional
control limits of the OPA Y chart using Equations (3.19) and
(3.20). - From Equation (4.16), it is found that the

construction of the conditional control limits of the OPA MRy
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Where to
read data?

Keyboard

Diskfile

' 4
Read r and Successively enter
observations a total of N
from disk observations
Compute Ybar
and MRbar
Yy
Successively
call subroutine
CHART
Display the Call subroutine
results CHART

Enter new
observation

Another
observation?

Figure 8.1. Flow—chart of Main Program for Constructing
the OPA Y and OPA MRy Charts
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chart involves a lot of componenfs. They are broken down
into several FORTRAN statements. The ordinate of standard
normal distribution is coded as a function PHIS and the
cumulatiQe of the standard normal is coded as a function PHI.
The computations in both functions are in double precision to
reduce round-off computation errors. The computation of PHI
is approximated using polynomial equation 29.2.19 in thé text
by Abramowitz and Stegun (192435). The computer codes can
also be found in a program coded by Nelson (1983). This
eliminates the need for numerical integration for the
determination of the cumulative standard normal.

If the control limits of the OPA MRy charts are less
than zero, they are set at the value zero. The current
observation and its moving range are tested to see whether
they fall within or beyond their respective control limits.
If one falls beyond the control limits, a mark '®' will be
printed beside the value during output to indicate an out-of-
control situation is signaled. The flow-chart of this
subroutine can be found on Figure B.2. The FORTRAN program

can be found in Appendix G.
Example

‘After the program is compiled and linked, the executive
file can be used. After loading the .EXE file into RAM, the
user is prompted to select the option on how the observations

are to be input.
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‘ Begin ’

Construct conditional
control limits of
OPA Y Chart

Construct conditional
control limits of
OPA MRy Chart

Determine whether
plotting points
are in—control

Display
Results

< Return )

Figure 8.2. Flow—chart for Subroutine CHART




PROGRAM TO CONSTRUCT THE Y AND MRy CHARTS

ENTER D IF THE DATA ARE STORED IN DISK FILE

If the user has stored the observations in a disk
and the disk file is in the current active disk drive,
user will be prompted to confirm that the disk file is

proper format and with the proper file name. Then the
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file,
the
in

user

is prompted to select the option whether to store the results

in a disk file or not. If the user opts to enter

observations via the keyboard, the user is prompted to enter

the value of the filter constant.

ENTER THE VALUE OF FILTER CONSTANT

Assuming that the user enters 0.8 as the filter

constant, the user is then'prompted to enter the number of

data to be entered.

ENTER THE NUMBER OF DATA POINTS

Assume also that the user enters 30 as the number of data

values to be entered, the program then asks for the data to

be input one by one.

ENTER THE DATA ONE BY ONE

Assume that the FORP data to be entered are 20.133, 20.241,

20.107, ..., 21.932 and 22.189. Assume also the input X
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variate to the FORP is known to follow a normal distribution
with mean 20 and standard deviation 1. However, from time
period 26 onward, the X variate has a new normal distribution
with meaﬁ 23 and standard deviation 1. That is, the X
variate is out—-of—control from time period 26 onward. After
entering these values, the user is prompted to select the

option of storing the results in a disk file as well.

‘ENTER D IF WANT TO STORE RESULTS IN DISK

After making the selection, the program continues all other

calculations. The results are displayed and the user is

prompted to enter more data or terminate from the program.

NUMBER OF INITIAL OBSERVATIONS = 30

Ybar = 20.1719700

MRybar = 1.6489265E-001

Y(1) = 20.1330000

No. Y LCL UcL MRy LCL ucL
2 20.241 19.552 20.729 -108 -000 .o12
3 20.107 19.639 20.816 .134 . 000 -.012
4 20.023 19.532 20.708 .082 . 000 -512
3 20.093 19.466 20.643 .068 -000 -9217
6 20.148 192.520 20.697 -035 -.000 .513
7 19.974 19.564 20.741 -174 -000 .511
8 19.791 19.425 20.602 -183 -.000 .921
9 19.793 19.279 20.436 =002 .000 .948
10 19.823 19.280 20.437 -030 - 000 - .547
11 192.850 19.304 20.481 -.027 -.000 -942
12 19.968 19.326 20.503 .118 -.000 .938
13 19.844 19.420 20.597 .124 - 000 .S522
14 19.629 19.321 20.498 -213 .000 -.939
15 19.772 19.149 20.326 -143 .000 -.081
16 19.526 19.264 20.440 -.246 -000 -991
17 19.716 19.067 20.244 190 -000 - 606
18 19.705 19.219 20.3926 .011 - 000 962
19 19.697 19.210 20.387 .008 -000 « 264
20 19.842 19.204 20.380 -143 -.000 -9366

21 19.895 19.320 20.496 .053 -000 -9339
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22 19.791 19.362 20.539 -104 - 000 .931
23 19.844 19.279 20.456 .053 .000 -.248
24 20.057 19.321 20.498 .213 .000 .9339
23 19.975 19.492 20.4668 . 082 . 000 -.915
26 20.835% 19.426 20.603 .860* .000 -321
27 21.425% 20.114 21.291 =990 .000 611
28 21.339 20.986 21.763 -114 - 000 .778
29 21.9232% 20.677 21.854 .393 .000 .810
30 22.189% 20.992 22.168 .237 -.000 214

MORE DATA TO ENTER 7?7 Y — TO CONTINUE
From the display above, it is clear that the OPA MRy chart
indicates an out—-of-control signal at time period 26. The
OPA Y chart also signals out-of-control condition beginning
from time period 26. If the user decides to continue, a
letter Y needs to be entered, and the user is prompted to
enter the new observation. If there are already 300
observations, a message will be displayed and the user has to
restart the program.
SORRY ! THERE ARE ALREADY 3500 DATA POINTS
START AGAIN
This concludes the discussion of the FORTRAN program

developed in this chapter.
Conclusion

‘There is opportunity to enhance the FORTRAN program
discussed in this chapter. For example, the estimates of
Ybar and MRybar may need to be updated as more observations
are entered at a later time. Or the program may need to

provide flexibility to the user who wishes to try several
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filter constants due to not being very sure about the exact
filter constant of the FORP. Or, one may wish to increase
the visual capability of the program by graphically plotting
the OPA Y and OPA MRy charts. The intention of this chapter
is to illustrate that the methodologies to construct the 0OPA
Y and OPA MRy charts can be programmed. Hence, the OPA Y and
OPA MRy charts should be implemented as useful control charts

to monitor a FORP.



CHAPTER IX
CONTRIBUTIONS AND FUTURE RESEARCH
Summary of Study

The purpose of this research is to develop procedures
for constructing special control charts to monitor the mean
and dispersion of an unobservable input variate, X, to a FORP
by plotting the corresponding observable output variate, Y.
The procedures for constructing the two control charts, the
OPA Y and OPA MRy charts, are successfully developed and
evaluated. The OPA Y and OPA MRy charts can be used
simultaneously to monitor the mean and/or dispersion of a
FORP.

The performance measure used for evaluation is the ARL
of a control chart. These control charts are evaluated based
on their abilities to detect various types and magnitudes of
praocess shifts. This research concentrates on six types of
process shifts. They are process mean shifts in step, trend
or cycle and process dispersion shifts in step only. Other
scenarios are also studied, such as when the filter constant
is overstated or understéted, and when SORP data are
mistakenly assumed to be FORP data.

The abilities of these control charts are compared to

140
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that of the I and MR(2), and Modified EWMA charts. The I and
MR(2) charts are usually used in continuous flow processes
without explicitly recognizing the existence of serial
correlation within data. The Modified EWMA chart, which
assumes that the observations from a process can be well-
modeled by an IMA(1,1) time series model, is a recent
development as a robust control chart for various

time—-series models, not including a FORP.

Compar ison shows that the overall abilities of the 0OPA Y
and OPA MRy charts in detecting process changes are
desirable. The analyses show that the OPA Y and OPA MRy
charts are useful tools to monitor the process mean and
dispersion of a FORP. The 0OPA Y and OPA MRy charts are also
found to be robust to a SORP data stream. The filter
constant of a FORP should be exactly stated in order for the
OPA Y and OPA MRy charts to perform as intended, however.
Compared to the Modified EWMA chart, the OPA Y chart is found
to be more favorable. It is also shown that the OPA Y chart
on a FORP has the same ARL as an I chart applied to an
independent normal data stream, if it were observable. This

fact is also verified in the simulation output.
Contributions

The major contribution of this research to the
statistical quality control discipline is the provision of a
control charting technique which deals directly with serially

correlated data generated from a FORP. The OPA Y and OPA MRy
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control charting techniques proposed in this study provide a
useful tool to monitor and control a FORP without using any
unfeasible methods, such as avoidance and compensation as
discussed in Chapter I, to circumvent the existence of
correlation in the output data of a FORP.

In the existing control charting techniques, a prior
knowledge of the process to be monitored is usually not
required. The control limits of control chart can be
computed by the first few observations obtained, and further
observations collected can be easily plotted on the control
chart established. Surely, when an out—-of—-control condition
is signaled in such a control chart, the user needs to have
some knowledge of the process being monitored in order to
identify the assignable cause and take necessary corrective
action. Sometimes, the task of searching for an assignable
cause can be done by other technical personnel. As a whole,
there is usually lack of communication between the technical
personnel who design the process and the control chart user
who constructs the chart and identifies any out—-of—control
signal. On the contrary, in using the OPA Y and MRy charts,
the control chart user needs to know the filter constant of a
FORP and hence the observation sampling interval. This
forces the control chart user to communicate with the
technical personnel who design the FORP to be monitored.
Thus, the proposed OPA Y and MRy charts indirectly help to
bring the technical and quality control chart personnel

together and foster better communication.
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The OPA Y and MRy charts are process specific. That is,
these control charts should only be applied on a FORP data
stream. This motivates the control chart user to acquire
some knoﬁledge of the process to be monitored before begins
the construction of control charts. Existing control
charting techniques (including time-series approach) are
generally data specific. That is, some control charts are
suitable for variable data, some are suitable for attribute
data, some are suitable for serially correlated data and so
on. The process specific feature in the 0OPA Y and MRy
control charting techniques is unique among all the existing
control charting techniques for serially correlated quality
data. A time—-series approach to serially correlated data
does not require the control chart user to know from where
the serially correlated data are generated; however, this is
not the case for the construction of the OPA Y and OPA MRy
charts. Having more knowledge of the processes, the control
chart personnel can prioritize the processes to be monitored.

Another contribution of this research is the realization
of variation in the empirically determined control limits on
the ARL of a control chart. This will affect the way the
control chart user determines a control chart parameters such
as sample size, sampling interval and control limit

multiplier.



144

Future Research

This research has developed an initial phase for
develaopment of control charts using conditional control
limits to monitor correlated data streams; however, there are
tremendous possibilities for expansion. Future researcﬁ
areas include:

1. Expand the model of control chart construction to data
from a SORP or a series of first order response
processes.

2. Allow more types of process shift to be present in the
data, either consecutively or concurrently, and
evaluate the performance of the OPA Y and OPA MRy
charts.

3. Develop a user friendly software package with graphical
capability that will enhance the applicability of these
proposed control charts.

4. Expand the control chart construction so that the
filter constant is also estimated from the empirical
data and not from first principles.

Another ‘'by—-product' of this research is the realization
of the effects of variation in controi limits on ARL
determination. This opens an area for future research to
investigate how the number of subgroups, m, and subgroup

size, n, affect the ARL of a control chart.
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SOME USEFUL L INEAR MODEL THEOREMS

The fellowing linear model theorems and definition are
taken from the text by Graybill (1976). They are useful in

the derivation of the conditional distribution of variable Y.

Theorem A.1

Let the px! random vector X be distributed N(x:p,Z), and
partition X, p and £ as
Xi Ha Ti1 Zae
X = R = r = (A.1)
X= ‘ Re Ze1 Lee
where X, and p, are gxl vectors, i, is a qxq matrix with
(00< q < p), and the size of the remaining vectors and
matrices are thus determined. The random vector X, is
normally distributed with mean p; and covariance matrix Z,,.,

that is X is distributed N(X,:p;,%::).

Theorem A.2

Let the px1 random vector X be distributed N{(x:p,%),
where Z has rank p, let B be any q x p matrix of constants,
and let b be any q x 1 vector of constants. Then the g x 1
vector Y defined by

Y = BX + b is distributed N(y:Bp + b, BEB')
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Theorem A.3

Let the px1 vector X be distributed N(x:u,¥), where X
has rank p. Let X, p, ¥ be partitioned as in (A.1), where X,
has size gxl1, where O < g < p. The conditional distribution
of X, given Xe = €z, where Cz is a vector of constants, is
normal with mean Ry + Z,¥="*{Cz—Hu=) and covariance matrix

Yi1-25 Wwhere Z,:.2 = 231 — ZioZee""1Z21.

Definition A.4

Let the (p+1)x1 random vector X' have a multivariate
normal distribution with mean p' and covariance matrix Z'.
The simple correlation coefficient of any two random
variables X, and X3 in X' is denoted by f:,; and defined by

CDV(X;, XJ) [+ Y
Bis = =

'\/(0'5_10'33)
\IVar(X;)VaT(XJ)

Oy-.-., p
9,---9 P

o G b

-
~

if 0s5s > 0 and a5 > O.

If 05 a

!
o

or 33 = 0, B,; is not defined.
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The single variable transformation theorem is taken from a

text by Mood, et al. (1974).

Theorem A.9S

Suppose X 1s a continuous random variable with
probability density function f,(-). Set X = {x:fx{(x) > 0).
Assume that:

(i) y=g(x) defines a one—to-one transformation of X onto V.

(ii1) The derivative of x = g~ *{(y) with respect to y is
continuous and nonzero for y € V, where g—*(y) is the
inverse function of g(x); that is g~ *{(y) is that x for
which g(x) = y. Then Y = g(X) is a continuous random

function variable with density

d

fely) = g—*(y) fx[g"l(y)]

dy
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SOME MATHEMATICAL DERIVATIONS

RELATED TO THE OPA Y CHART
Mean and Asymptotic Standard Deviation of Y.

It is assumed that the input random variable, X., is
independent and identically distributed. The underlying
distribution is a normal distribution with mean, p, and
standard deviation, . The (n+1) x 1 random vector of X can
be easily formed by grouping the first (n+1) of the X's.
Using linear model theory, the random vector of X is
distributed as a multivariate normal with mean vector,

Rlhea, and covariance matrix, ¢2I,+.,. That is,

Xo

Xa
X = XE ~ Nn+1 E1n+1, 0'21'1-0-3

X

Recall that the first order response equation is
Ye = T¥Ye—a + (1-1r)Xe (B.1)

Substituting

Yem1 = TYe—m + (1-1)Xe—2 (B.2)
into Equation (B.1) results in

Ye = rlr¥Ye—e + (1-1)Xe—-21 + (1-1)Xe

Ye = r2¥e_ o + (1-1)1rXe—z + (1-1T)Xe
Continuously substituting the Y term on the right hand side
of the equation, results in

Ye = (1-1)rtXo + (1-r)r*—1X; + (1-r)re =X +

eee + (1-T)Xe



Ye = ; (1-r)r*Xe—iw (B.3)
k=0
Thus, Ye¢ 1s a linear combination of (X:, Xz, .-.-5 Xn)'.
Letting |
21 = Y = (1-r)rtXo + (1-r)r®*—1X, + ... + (1-r)Xe
2e = X =0 + 0 + ... + Xe
Z2a = Ye—z = (1-r)ret—1Xs + (1-r)re—2X; + ... + OXe
These three equations can be written as
2 = AX
where
_ ..
2 = e
Zs
|
__(l-r)re (1-r)re—r ... (1-r)r (l—r)__
A = (o) o) “ew (o) 1
(1-r)re—r (l-r)re—= ... (1-r) (o)
| |
The dimension of matrix A is 3 x (t+1). Using Theorem A.2,
the distribution of 2Z is
Z = AX ~ Na(pAless, T2AIc431A’)
Ta—r)r” (1-r)re—* ... (1-r)r (l—r;ﬂ_ 1~
Mean of Z2 = p o o .- o 1 1

(1—-r)ret—2

(1-r)ret—=a -

(1—r) o] :
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[ T
t
2 (1-r)r*
k=0
t-1
2 (1-r)rk
k=0
For large t,
t 1
X2 (1-r)rx = (1-r) . =1
k=0 (1-r)
and
t-1 1
2 1-r)rx =(1-r) —— =1
k=0 (1-r)

Therefore, for large t,

Mean of Z

i
=
[y

The covariance matrix of Z2 = 62Ql..1A'= d2AA'

r}l—r)r* (1-r)re—12 esa (1-r)r (1-r)
= g2 0 0 “ee (o) 1 X
(1-r)rs—12 (1-r)re—= ., (1-r) (0]
(1-r)re (o) (1-r)re—2
(1-r)re—2 (o) (1-r)re—=
(1-r)r (0] (1-r)
(1-r) 1 (0]




t t
Z (1-r)&rak {1-r) Z (1-r)&rsk—1
k=0 k=1
= g2 (1—-r) 1
t t-1
2 (1-r)grekxk— 0 Z (1-r)&rax
k=1 k=0
- 1
For large t
t 1
L (1l-r)&r2k = (1-r)2 = (1-r)/(1+r)
k=0 1 —r2
t-1 1
X (1-r)8r2@k = (1-r)2 = (1-r)/(1+r)
k=0 1 - r2
t t (1-r)2r (1-r)r
L (1-r)8r8k—1 = (1-r)2r X rax—=2 = =
k=1 k=1 - r2 (1+r)

For large t, the covariance matrix of 2

(1-r)/7(1+r)

(1—-r)

(1-r)r/(1+r)

-

Thus, 2 is asymptotically distributed as a multivariate

normal with mean vector equal to (p p p)'

matrix equal to

(1-—vr)/(1+r)
g2 (1-r)

(1-v)r/(1+r)

L

Using Theorem A.1,

(1-r)

1

0

(1-r)

0]

(1-r)r/(1+r)
(0]

(1—vr)/¢1+41r)

(1-r)r/(1+4r)

0O

and covariance

(1—r)/(1+r)“J

it is clear that the distribution of Y.
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Y+« ~ Normal [E, 02(1—r)/(1+rz] (B.4)

Assume that Y.-: is known and it takes on the value k.
Then, from Theorem A.3, the joint distribution of Y¢ and X.
given Y._, equals k, is a bivariate normal with mean equal to

Hi + Zi2lea"r(Caopna)

H (1-r)r/(1+4r) (1+r)
R o) (1-r)a?
B+ r(k—p)
R
-
rk + (1-r)p
R

and covariance matrix equal to

11 — Zi2Zep 1Is,
— — —
r}l—r) (1-7r)r
(1-r) —_— (147) (1-r)r
= g2 (1+r) - o2 (1+7) 0
(1-r) (1+41)
(1—-r) 1 (0]
(1-1r) (1-r)r2 0]
_ (1-7)
= g2 (1+r) i (1+1r)
(1-r) 1 (o) 0
| | | -

(1-r)2 (1-r)

(1-r) 1
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Using Theorem A.1, the conditional distribution of Y. is

Yt|(Yt_1=k) ~ Normal [Ek+(1—r)u, (l—r)zcg] (B.9)



APPENDIX C

SOME MATHEMATICAL DERIVATIONS RELATED

TO THE OPA MRy CHART
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SOME MATHEMATICAL DERIVATIONS RELATED

TO THE OPA MRy CHART

LConditional Distribution of the Moving Range

of Subgroup Size Two of the Y Variate

Recall that the first order response process that
generates serially correlated output, Y, is

Ye = ¥Ye—1 + (1-1)Xe ’ (C
In Appendix B, it is known that X. is independent of Ye¢—:.
If Ye—1 is known and takes on the value k, then

Ye = rk + (1-r)Xe (C
Defining R'k as the range of Y.~ and Y. given thét Ye—2

equals k, then

le Range of k and Y.

le |Yt - k| (Cc

Substituting (C.1) into (C.3) results

Rjk = | rk + (1-r)X¢ — k |
Rlk = | (1-r)X, = (1-r)k |
Rjk = | (1-r)(Xe = k) | (Cc

In a first order response process, it is found that
0 <r < 1. Then,

R|k
- = l (Xe — k) l (C
(1-r)

Letting @ equal Equation (C.3) results in
le

Q= = | (Xe — k) l (C
(1-r)
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The distribution of @ is then considered.  From Equation
(C.6), it is found that X. is a double valued function of
@, say @' and @", (Basnet and Case, 1990). That is,

2 (C.7a)

Q' =k -
-k +@Q (C.7b)

Qll

Then, the density function of @, h{(R), is given by

§ Q' § Q"
h{@) = f(k-Q) + f(k+Q)
f Q §d Q
h(@) = f(k-Q) + f(k+Q) (C.8)

where f(-) is the probability density of X which appears
before in Equation (C.1).
Considering Equation (C.6),
le
(1-r)
Taking the derivative with respect to le, and considering
the absolute value, results in
de
lJl = J—— ] = 1/(1-1r) (C.9)
d(le)

Using Theorem A.S, the density function of le is

le
g(le) = h j— |J|
(1-vr)
Thus,
1 le le
g(R'k) = flk — + flk ¥+ —— (C.10)

(1-r) (1-r) (1-r)
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Mean and Standard Deviation of le

With Equation (C.8), the expected value of @, E(Q), is

found to be

(]
E(Q) = I 2-h(Q) dQ (C.11)
o)

Substituting Equation (C.8) into (C.11) results,

E(Q) I R f(k-Q@) d@ + I @ f(k+Q) d@ (C.12)
(o) 0o

Considering the first component of Equation (C.12) and
substituting f(k—-Q) with the normal random variable equation

results in

1 -1
j Q@ —  Exp (k—Q—-p)2 dQ (C.13)
J(2w) a 2a2
(o)
Substituting y =k - p, and @ = Q@ — y + y into (C.13)

results in

1 -1
I (R -y +y) — Exp (y—-Q)2] da
J(2w) o 2ag2
0
@
1 -1
= 'j (@ - y) —_ Exp (R-y)2| d@
v(2w) o 2ag2
0
@
1 -1
+ I y ——  Exp (R-y)2| d@ (C.14)
J(2w) o 202

0]
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The second part is equal to y multiplied by the area from
[O,m) under a normal curve which has mean y and variance o2.
Letting this quantity be denoted as y*PLX > O|H=y, o=al.
In addition to that, by integrating the first part of (C.14)

results in

o
1 -1
J (R -y +y) — Exp (y—R)2| d&
JY(2w) o 202
0
a -1
= Exp y?2 + vy PLX > 0|u=y,c=c] (C.13)
J{2w) 202

The second component of Equation (C.12) can also be
simplified by substituting z = p — k and @ = Q@ — z + z.
After performing similar steps, the second component of
Equation (C.12) becomes

a -1

Exp
J(2w) c2a?

z2 + z PLX > 0|H=z,o=c] (C.16)

Substituting (C.135) and (C.16) into (C.12) after

standardizing PLX > O|H=y,c=a] and PLX > 0|p=z,c=a] results

in
a —y2 —z2
E(Q) = — |Exp + Exp + y PLZ > (~-y/a)]
J(2w) 2g2 2a2
- .
+ z PLZ > (—z/a)1 (C.17)

where 2 is a standard normal variate.
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Replacing vy = k — p and z = p — k back into (C.17) results
in
a —(k—pn)2

E(R) = 2 Exp|l——— | + (k—p) PLZ > —(k—p)/a]
v{2w) 2¢2

— (k—p) PLZ > (k—p)/al

It is known that

PLZ > —(k—p)/a] dL(k—p) /ol

PLZ > (k—p)/al B[ (p—k) /0]

Therefore,
2a —(k—p)2

E(R) = Exp|l— | + (k—H)E§[(k—n)/a] - ﬁ[(u~k)/c§]
v(2w) 22

Due to the symmetric properties of normal random variate, it

can be shown that

(k—p)[§c(k—p)/on - ﬁ[(u—k)/ai]

= lk—Hl*[E -2 i(—'k—ullaz]

where |a| = absolute value of a. Hence,
k—R

EQ) = 20 &' + |k—p| [E -2 i(—'k—u'/az] (C.18)
o

where

$'(a) is the ordinate value of standard normal at point a.
The variance of &, V(Q), is

v(R) = E(R2) - [EM@)]12 (C.19)
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where
[ ]

E(Q2) = J R2-h(Q) da (C.20)
o)
Substituting Equation (C.8) into (C.20) results in
® @
E(Q2) = j Q2f(k—Q) da + J R2f(k+Q) da (C.21)
o) o)
Considering the first component of Equation (C.21) and
substituting f(k—Q) with the normal random variable equation
results in

1 -1
I Q2 Exp (k—-@—-p)2| d8 (C.22)
J(2nw) o . 202
0
Substituting y = k — p, and @2 = (@ — y + y)& into (C.22)

results in

1 -1
I (@ —y + y)JR — Exp (y—QR)2} dQ
J(2w) o 202
0 -
(-]
1 -1
= J (@ - y)Q@ — __ Exp (Q-y)2| d@
J{(2nw) a 202
0
[ 3
1 -1
+ I vy — _  Exp (@-y)2| di@ (C.23)
J(2n) o 2ag2

The first part can be evaluated using integration by parts.

It is found that



I Q@ - y)Q

o

= g2 [ ——
J(2w) o

(0]

1

o2PLZ > -y/c]

Substituting Q@ =

results in

J(2n) a

J{(2nw) o

Exp

1

-1
Exp

J(2w) o 2a2

-1

(Q-y) 2

202

o2PLX > 0|p=y,a=o]

@ -y + vy into the second part of (C.23)

(R-y)2| da@

dQ

-1

y) — Exp (Q-y) 2
J(2w) a 2ag2
1 -1
y) Exp (@-y)2}] dR
J(2uw) o 202
[ —
1 -1
y2 — Exp (@-y)2| dQ
J(2w) a 2a?
— @
—y2
ag2Exp + y2PLX > Olp=y,a=a]
2ag2
. —
—y?2
o2Exp + y2PLZ > -y/al
202
- —

Thus, (C.23) becomes

de
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1 -1
f (R -y + y)I& — Exp (y-R)2}| dQ
J(2nw) o 202
(0]
y -y?
= g2PLZ > -y/adl + —_ o?2Exp}|———| + y2PLZ > -y/0o]
J(2n) o 202
Y —-y?
= (g2+y2)PLZ > -y/ol + —  o?2Exp|—— (C.24)
J(2nw) o - 202

The second component of Equation (C.21) can also be
simplified by substituting z = p - k and @2 = (@ — z + 2z)Q
and @ = @ - z + z. After performing similar steps, the
second component of Equation (C.21) becomes

z —-z2

(02+22)PLZ2 > -2/0) + —  o2Exp|——— (C.23)
J2n) o 2ag?

Substituting (C.24) and (C.25) into (C.21) results in

Y -y?
E(Q2) = (a2+y2)PLZ > -y/agl + — o2Exp
J(2nw) o 2aq 2
z —-z2
+ (g2+22)PLZ > -2/l + —  o2Exp|—— (C.26)
J(2w) o 202

Replacing vy = k — p and z = p - k back into (C.26), and

realizing that y = - z results,

E(Q2) = [Ez + (k_H)E][:P[Z > (-y/a)]1 + PLZ > (y/a)]:]



Due to symmetry of the normal curve,
PLZ > (-y/a)1 + PL2Z > (y/a)] =1
Therefore,

E(R2) = &2 + (k—p)2

Hence,

V(R) = [EZ + (kip)E] - {E(R)>2

From Equation (C.6), it is clear that

le = (1-r)Q

172

(C.27)

(C.28)

(C.29)

Then, the expected value of le, E(R|k), and the variance of

R'k, V(le) are

E(le) = (1-r)E(QR)
V(RIK) = (1-r)2V(R)
Thus,
k—p —lk—pl
E(le) = (1-r) |2cd’ +|k-ﬂ| 1- 2%
a

V(le)

(1—r)2E2 + (k-p)2 — [E(Q)]El

%
Std(le) = (1-r) [52 + (k—p)z - [E(Q)]E]

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)
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**%* TSO FOREGROUND HARDCOPY ***x*
DSNAME=U11563A . EXAMPLE .DATA

//U11563A JOB (11563,440-88-2421),CLASS=4 ,TIME=(5,0),MSGCLASS=X

//*
//* PROGRAM 1
//*
/*ROUTE PRINT LOCAL
// EXEC SAS
//SYSIN DD *
DATA PHD;
KEEP ARL;
SEED = 12345;
FC = 0.3; /* FILTER CONSTANT */
FCH = {1 - FC;
STD = q; /* INITIAL STD. DEV. OF X */
MEAN = 10; /* INITIAL MEAN OF X */
SHIFT = 2.0; /* SHIFT IN TERM OF SIGMA X */
NMEAN = MEAN + SHIFT*STD; /* NEW MEAN OF X */
NSIM = 10000; /* NUMBER OF SIMULATION */
QQUY = MEAN + 3*FC1*STD; /* CONSTANT TERM OF UCLOPAY */
QQLY = MEAN - 3*FC1*STD; /* CONSTANT TERM OF LCLOPAY */
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED)*STD + MEAN; /* GENERATE INITIAL VALUE */
DO K = 1 TO 50; /* WARM UP FORP GENERATOR */
Y2 = FC*Y{1 + FC1*(RANNDR(SEED)*STD + MEAN):
Yt = Y2;
END;
NUM = 0;
LAB: AO = Y41 - MEAN;
UCLY = QQUY + FC*AOQ; /* UCL OF OPA Y CHART */
LCLY = QQLY + FC*AO; i /* LCL OF OPA Y CHART */
Y2 = FC*Y1 + FC1*(RANNOR(SEED)*STD + NMEAN);
IF LCLY < Y2 < UCLY THEN DO; /* POINT IS WITHIN CL’S */
NUM = NUM + 1;
Yt = v2;
GO TO LAB;
END;
ARL = NUM + {1; /* AVERAGE RUN LENGTH */
OUTPUT; )
END;

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MIN;

VAR ARL;
TITLE1 ’‘ARL

/* STATISTICS OF ARL */
OF THE OPA Y CHART ON FORP DATA’;

TITLE2 ’'WITH FILTER CONSTANT, FC = 0.3. ';

TITLE3 ‘SHI

FT IN MEAN = 2.0 SIGMA';
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00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000 140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
000004 10
00000420
00000430
00000440



ARL OF THE OPA Y CHART ON FORP DATA 14:40 Thursday,
WITH FILTER CONSTANT, FC = 0.3.
SHIFT IN MEAN = 2.0 SIGMA

Analysis Variable : ARL

N Mean Std Dev Minimum Max imum Skewness Kurtosis

February 7,

1991

1

GLT
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Z/7U11363A JOB (113563,440-868—2421) ,CLASES=4, TIME=(S,0) ,MB8GCLASS=X

YA
- PrROORAM 1
r&a
FHROUTE PRINT LOCAL
77 EXEC SAS
Z/,BYSIM DD w
DATA PHDj
KEEPFP ARL )
SEED - 12345y
FC - 0O.3%
FC1 - 3 — FCg
STD - 1y
MEAN = 103
SHIFT = 2.0;3;
NMEAN = MEAN + SHIFT#3TD)
NSIM - 10000g
Qaauy = MEAN + 3IWFC148TD;j
QLY - MEAN — JHFCL*8STDy
DO I = 1 TO NSIM;
Y1 = MANNMOR((SEED)*STD + MEANg
DO K = 1 TO SO
YE =
Y1 = Y&gj
END3
nNuUM - Og
LADs Ao = YT ~ MEAN}
ucLY - QQUY + FC*QOg
LCLY - RELY + FC#AOg
h g -
IF LCLY < Y& < UCLY THEN DOj
NUM = NUM + 1
Y1 = Y=y
OO0 TO LABj
ENDg
arL = NUM + 1)
ouUTPUT
ENDg

Ve g

/w
7w
7w
/-
S
-
e

-
7.

7w
7w

re

e J

Filter Constant */

Initial Std. Dev. of X »/
INnitial Mesan of X #»/

BShift in term of sigma K */
New mean of x */

Number of Simulation #*/
Constant term of UCLopay ¥/
Constant term of LClLopay #/

Cenerate initial valuw */
Warm up FORF generator #/

FCaY1l + FO1#%(RANNOR(SEED)*STD + MEANY;

UCL ot OFA Y chart #/
LCL of OFPA Y chart =/

FCauY1l + FCl#%(RANNOR(SEED)>#8TD -+ NMEANY)

Point is within CLL'w »/

Averagas Run Length #*/

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
/7w Statismtics of ARL =»/

VAR ARL 3

TITLEL2
TITLEER "WITH FILTER CONSTANT,
TITLES 'SHIFT IN MEAN = 2.0 SIOMA'}

a4

TARL OF THE OrFra ¥ CHART ON FORFE DATA' g
FC = 0.3.
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/7/7U11563A JOB (11363,440-88—-2421) ,CLASS®4 , TIME=(35,0) ,MSGCLASS=X

a4 2

a4 J PROGRAM B2

Y4
/wROUTE PRINT LOCAL
/77 EXEC SAS
//78YSIN DD
DATA PHDj

KEEP ARLj

SEED - 124y
FC - 0.3 /7% FilLlter Constant =/
FC1 - 31 -~ FC3
8TD - 1 /7% Initilial 8S8td. Dev. of X «w/
MEAN = 10g /7% Initial Mean of X »/
arMPe - BJegTD}p /7% Amplitude of trend #/
STrPSZ = AMP/203 /% Svtep = AmPp/20 subgpw ¥/
QALY - MEAN + IHFrCl1wSTDs /% Constant term of UCLopay #/
QaLyY - MEAN — IJHFC1#8TD; /7% Conmtant term of LCLopay #»/
NSIM = 100003 /7% Number of Simulation %/
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED)#*#STD + MEAN3; /7% Oenerate initial valum #/
DO K = 1 TO SO3 /7% Warm up FORP generator #/
YEB m= FCuYl + FOCl1%(RANNOR((SEED>*STD + MEAN)>§
Y1 = Y=y
END g
NUM = Ogpg
PER = Ogp /% Pariod = O %/
LAB: AO = YiI — MEAQANj
uecLy = QQUY + FC+AOg /7% UCL of OPA Y chart =/
LCLY - QALY <+ FC#AOgj /7% LCL of OPA Y chart =/
NMEAN = MEAN+MINI(STPSZ#PER,.AMP) 3 /% New Mean of X, trend =/
e m FCaY1l + FC1L#(RANNOR(SEED)>)#STD + NMEAN)>j

IF LCLY < YB < uUCLY THEN DO
NUM = NUM + 13

/7% Polnt is within CL's »/

ENDj
ARL = NUM + 13 /7% Average Run Length =#/
ouUTPUT

END g

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINj
VAR ARL.j /7% Statimtics of ARL »/
TITLE1L "ARL OF THE OrfFA Y CHART ON FORFP DATA'j
TITLEEZ "WITH FILTER CONSTANT, FC = 0.3.°'s
TITLE3 "'MEAN VARIES IN TREND: TREND PERIOD = 20 SUBDGROUPS® §
TITLES "AND AMPLITUDE = 3J3«SIOMA' g

77
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//7U11963A JOB (11%63,440-88—2421) ,CLASS=4, TIME=(S,0) , MB8ACLASS=X
s 7.
srw PROGRAM 3
s
/#ROUTE PRINT LOCAL
// EXEC BAS
//7B8YSIN DD
DATA PHDj
KEEP ARLj

SEED = 1234%j
FC - 0.3 /7% Fllter Constant =»/
FC1 - 1 — FCg
sSTD - 1y 7% Initial Std. Dev. of X %/
mMEAN = 10¢g /7% Initial Mean of X =/
BTPSZ = (BR/7)/24% /n Boap = BEeaPrl/ 48 subgpws */
A - BB TDj /7% Amplitude of cycle &/
Qaauy - MEAN + JINFC1I#8STD; /7% Constant term of UCLopay %/
QaLy - MEAN — 3J3%FCl#8TDj /7% Conmstant term of LCLopay %/
NSIM - 10000}y /7% Number of Simulation #/
PO I = 1 TO NSIM;
Y1 = RANNOR(SEED>#STD + MEANS /7% Generate inittial valuwm #/
DO K = 1 TO SOg /7% Warm up FORP generator #/
Y8 = PFCaYl + FCle(RANNOR(SEED))#8TD + MEAN)
Y1 = v=g
END3
~NUM - Og
reEr - Oy % Pariod = O w/
LABs AO = Y1 — MEAN;
ucLy - QQAUY <+ FC*AO0g /7% UCL of OFA Y chart =/
LeLy - QEULY + FC#*AOj h /# LCL of OPA Y chart =/
NMEAN = MEAN + AMP#3SIN(PER)j; /% New Mean of X, cyclical =/
e = FCwY1l + FCl¥%(RANNOR(SEED)#*STD <+ NMEAN? 3
IF LCLY < Y& < uUCLY THEN DOj /7% Polint is within CL's %/

NUM = NUM + 13
Y1 = vm,
PER = PER + STPS8Z,
B0 TO LAPg

END s
ARL. = NUM + 13 o Average Run Length #/
ouUTPUT
ENDj
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MIN;
VAR ARL. s /7% Statistics of ARL »/

TITLEL 'ARL OF THE OFA Y CHART ON FORPF DATA
TITLEE ‘'WITH FILTER CONSTANT, FC = O.3.°'j
TITLE3 "MEAN VARIES IN CYCLE: CYCLE PERIOD = 48 SUBGROUPS'
TITLEL "AND AMPLITUDE = 3I#8I0MA° 3
77
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//7Ul11863A JOB (11563,440-88-24821) ,CLASS=G , TIME=(S,0) , MS8BCLASS=X
7w
ye PROGRAM &
e '
/eROUTE PRINT LOCAL
7/ EXEC SAS
//78YSIN DD =
DATA PHD)
KEEP ARL 3

sSEED - 12340
FC - 0.3 /% Firlter Conmtant «/
rFC1 = 1T — FC3
FCca - 1 + PFC3;
STD - 13 - 7% Irmitial Std. Dev. of X w/
MEAN = 103 /7% Initial Mean of X »/
SHIFT o= =2_03 7% Bhift i term of migma X %/
NMEAN = MEAQN + SHIFT»S8TDjg /% New Mean of x =/
MRBAR = 1.1B8#FC1#STD/SQRTI(FCR)y /7% Theo. MRBAR %/
L1 = MEAN — BE.4465%MRBARGg /7% LCL of I chart »/
ucLx - MEAN + 2B, H6#MRBAR; /7% UCL of I chart =/
NSIM - 100007 /% Number of Simulatiorn =/
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED ) #*STD+MEAN; /7% Oenerate inittial valuwe »/
DO K w» 1 TO S0g 7% Warm up FORF generator #»/
Y& = FOCaYl + FCl#*» (RANNMNMOR(SEED) »3TD + MEAN)
Y1 = vE&y
END
NUM = O3
LABs = = FOuYl + FCL%(RANNOR(SEED)#*STD + NMEAN)
IF LCLI < Y8 < UCLI THEN DOj /7% Point is within CL's »/
NUM = NUM + 1
Y1 - Y=g
G0 TO LAB;
END
ARL. = NUM + 13 7% Qverage Run Length «+/
ouUTrUT
END
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
vAar ARl g /7% Btatimtice of ARL »/

TITLEL 'ARL OFf THE TRADITIONAL I CHART ON FORFP DATA'j
TITLEE 'WITH FILTER CONSTANT, FC = 0.3°';
TITLED ‘SHIFT IN MEAN = 2.0 SIGMA‘'s

/77



//7U11863A JOB (113563,440-88—-2421) ,CLABS=4 ,TIME=(S,0) ,MB8GCLABS=X

/-
4 2
4 2
/#ROUTE PRINT LOCAL
7/ EXEC SAS
//78YSIN DD #
DATA PHDj
KEEP ARL 3

SEED = 12345
Fc - 0.33
FCc1 - 1 — FCjp
Fca - 1 + FC}y
aTD - 1y

MEAN = 103

AMP - BuSTD}
STPSZ = AMP/20;
MRBAR =

LOLI =

UCLI =

NSIM = 100003
DO I = 1 TO NSIM;

Y1 = RANNOR(SEED)#STD <+ MEAN;
DO K = 1 TO 9503

PROGRAM S

1.1809%FC14+#3TD/SQRT(FCR2)2 3
MEAN — 2.486+MRBARg
MEAN + B.S5H5S6YMRPAR)3

/7% Filter Constant #/

/7% Inittial 8td. Dev. of X =/
/7% Initial Mean of X #/

/7% Ampliltude of trend «/

/7% Step = Amp/20 subgpws #/
/7% Theo. Std. Dev. of Y #/
/7% LCL of I chart #/

/7w UCL of I chart «/

/% Number of Simulation #/

/7% Benerate initial value »/
/7% Warm up FORP generator ®*/

Y82 = FC#Y1l + FC1#(RANNOR(SEED)#*3STD -+ MEAN>;
-

vi vey
ENDg
NUM = Op
PER - Oy
LABs NMEAN =
Ye -

Y1 = Y23
PER = PER +
GO0 TO LAB;j

END3
ARL = N + 13
QUTPUT 3

END3}

MEAN+-MIN(STPSZ#PER, AMP) §

FCuYl + FC1% (RANNOR(SEED))#STD + NMEAN) 3

IF LCLI < Y& < uUCLI THEN DOj
NUM = NUM + 13

/7% Pariod = O #/
/7% New Mean of X, trend =/

/% Point is within CL's #/

/% Average Run Length »/

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg

VAR ARL

/7% Btatistics of ARL =/

TITLEL "ARL OF THE TRADITIONAL I CHART ON FORF DATA's

TITLE2 'WITH FILTER CONSTANT,
TITLE3 "'MEAN VARIES IN TREND:
TITLES "AND AMPLITUDE = 3#8I0MA° 3

/77

FC = 0.3.'g
TREND PERIOD = 20 SUBBROUPS '
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7701 1563A JOP (11%563,440-80-2421) ,CLASES=4 , TIME=(S,0) ,M8ACLASS=X

&4

7/

‘4 4

S HROUTE PR
7/
/7/78YSIN DD
DATA PHDj

PROGORAM &

INT LOCAL

EXEC SAB

KEEPFP ARL

Filter Conmtant =/

Dev. of X =/
INnitial Mean of X #/
Btep = B#prl/H68 subgps %/
Amplitude of cycle */

MRBAR */

Number of Simuslation »/

Geanerate inittlial value »/
Warm up FORFP generator #*/

Point is Wwithin CL's =#/

Average Run Length =/

Statintics of ARL »/

\MEED = 12345
[ =] - 0.3y -
FE1 = 1 — FC3
Fee = 1 -+ FC3
sSTD - 13 /7% Initial SBtod.
MEAN = 103 7 »
BTPBZ = (BER/7)/B4p 7 »
amMP - BuSTDj /7w
MRBAR = 1.128#FCl#STD/SQRT(FC2); /% Theo.
LCL I - MEAN — B.O6OHWMRDAR; /% LCL of I chart =/
|8 [~ B 3 - MEAN + B.HOSYMRBAR /7% LUCL of I chart =/
NSIM = 10000, Ve 4
DO X = 1 TO NSIM;
Yi = RANNOR((SEED)«*STD + MEAN; /-
PO K = 1 TO SO; ry
Y2 = FCaY1l + FC1#%(RANMNMOR(SEED))®*STD + MEAN) j
Yi = Y&,
ENDj
NUM - Og
PER = Ogpg 7% Period = O %/
LABs NMEAN = MEAQAN + AMP*SIN(FPER) 3 /7% New Mean of X,
yYa = FCHY1l + FC1# (RANNOR(SEED)#3TD + NMEAN) 3
IF LCLI < Y2 < UCLI THEN DO)j /»
NUM = NUM O+ 13
Y1 - v@myg
PER = PER + STFPOZ;
G0 TO LAB;
END
ARL = NUM <+ 13 /-
OUTPUT
- ENDg
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
var ARL g Fé 4
TITLEL 'ARL OF THE TRADITIONAL I CHART ON FORM™ DATA'S
TITLEE2 '"WITH FILTER CONSTANT, FC = 0.3. ‘)
TITLE3 "'MEAN VARIES IN CYCLE: CYCLE FPERIOD = 48 SUBDGROUPS'® »
TITLES "AND AMPLITUDE = 3#8I0MA°

cyclical »/

182
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/7/7U11363A JOB (113563,440-88—-2421) ,CLASS8=4 , TIME=(S5,0) , MSGCLASS=X

g4
7/ n
7w

PROGRAM 7

/4«ROUTE PRINT LOCAL.
77 EXEC SAS
/7/78YSIN DD &

DATA PFPHDj

KEEFP ARL

SEED - 18345)
FC - 0.3 /7% Filter Consmstant #/
FC1 - 1 — FC3
21 - 1/SART(2e22/7) /7% 1/8AQRT(Bwpi) %/
sSTD - 13 /7% Initial Std. Dev. of X #/
MmEAN = 103 /7% Initial Mean of X %/
SHIFT = 3,03 /% Sigmanew over Sigmacld #/
NSTD - BHIFT*STD;
NSIM = 10000g /% Number of Simulation #*/
DO I = 1 TO NSIM;
Y1 = RANNOR((SEED)#STD -+ MEAN; /7% Generate lst value #/
DO KK = 1 TO SO /7% Warm up FORP generator #/
Y8 = FCeY1l + FCL1%¥(RANNOR(SEED)#STD + MEAN) j
Y1 = vEm,
ENDj
nNUM = Oy
LABs Al - ABSC(Y1 — MEAN)j;
AR - Al / BTD;
= - Bl # EXP(—C.STARTAQAR); /7% Ordinate of Std. Normal #/
B3 - 1 — BePROBNORM(—AR) ;3 /7% PROBNORM = CDF of Normal #/
ERK - 2aSTD#BE + Alw B33 /7% Expected of R given K »x/
ER - FC1 % ERKj /% Exp. of Range given K #/
B - SBAQRT(STD#*8TD + Al#*Al — ERK#ERK)
SR - FC1 % B&4; /% 8%td. of Range given K #/
| I~ BN - ER — ISR /% LCL of OFA MRy chart #/
ucL. - ER + DR, /7% UCL of OFA MRy chart #/
IF LCL < O THEN LCL = O3
ya = FCuYl + FCl1#(RANNOR(SEED)#*NSTD -+ MEAN) ;3
RY - APS(YE~-Y1)s
IF LCL < RY < UCL THEN DO /7% Point is within CL'sm #/
NUM = NUM + 13
Y1 = vEg
G0 TO LAD;
ENDj
ARL = NUM =+ 13 /7% Average Run Length #/
ouTrPuT
END 3
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINjg
VAR ARLj /7% Statistics of ARL %/
TITLEYL "ARL OF THE OFA MRy CHART ON FORPF DATA'j
TITLEE2 "WITH FILTER CONSTANT, FC = O0.3°'j
TITLE3 °‘SHIFT RATIO IN DISPERSION = 3.0°'j

/77
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7701 1363A JOB (11763, 440-88-24R21) ,CLASS=4 , TIME=(S ,0) ,MB3ECLASS=X

7=
s
e

PROGRAM B

ZHROUTE PRINT LOCAL.
7,/ EXEC BAS
//8SYSIN DD *

DATA PHD;
KEEP ARL )

SEED - 124D
| o >3 - Q.3 /7% Filter Conmstant */
FC1 - 1 — PCg3
Bl - 1 /8QART (2R /7); Fu 1L/BART(E2wpi) */
sTD - 1l 7% Initial Std. Dev. of X =/
MEAN - 10)p /7% Initial Mean of X #/
amr = BB TDg % Amplitude of trend */
sSTrSZ = QMP/20; s Bteap = Amp/20 subgps #*/
NSIM = 100003 /7% Number of S8imulation #*/
DO I = 1 TO NSIMg
Y1 = RANNOR(SEED)#STD + MEAN) /7% Canmrate initial value #/
DO K = 1 TO SOg /7% Warm up FORP generator %/
Y& = FCu#Y1l + FOLl%(RANNOR(SEED))*STD + MEAN)? ;3
Y1 = Y=y
=MD 3
NUM = Og
PER = Ofg /% Pariocd = O w/
LABa Al = APB8S{(Y1l1 — MEAMN) 3
AR = A1/ BTDy
B2 - Pl % EXP(-O.D3FARTAR) /7% Ordinate of Std. Normal =/
B3 = 1 — EP#PROPNORM(—AR)g /7% PROBNORM = CDF of Normal =»/
ERIK = Z2#STD#DPE + AlwB3g /7% Expected of R given K #/
ER - FC1 w» ERKjp /7% Exp. of Range given K =/
Ba = SaGRT(STDESTD + Al®vAl — ERK*ERIK)j
aSR = FC1 % B&4g /% Btd. of Range gliven K »/
LCL = ER ~ 3JI*8R;3; /% LECL of OPA MRy chart =/
UCL = ER <+ 3I%SRj /7% UCL of OFA MRy chart «/

IF LCL < O THEN LCL = O)

NMEAN
va
MRY

= MEANT-MINC(STPSZ*PER,.AMP) 3 /i

New Mean of X, trend */

- eyl + FCL#(RANNOR(SEED))#*8STD + NMEAN? g

- APS(YE—Y1)} s

IF LOCL < MRY < UCL THEN DOj /.
NUM = NUM -1

Y1

- Y=y

PER = PER + 13

so0
END 3
ARL =

TO LABg

NUM O+ 1 s

ouTPUT

END 3

Moving Range %/
FPoint s within CL's w/

Average Run Length #/

PROC MEANS N MEAN 8TD SKEWNESS KURTOSIS MAX MINjg

VAR ARL.j

TITLEL 'ARL. OF THE OFA
TITLEZ2 'WITH FILTER CONSTANT,
TITLEDS "'MEAN VARIES IN TREND:

7 »

TITLE4 "AND AMPLITUDE = 3#8I0MA‘'y

77

Statistics of ARL =/

MRy CHART ON FORFP DATA' g
FC = 0.3.
TREND PERIOD = 20 SUBDROUPS'
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/7/7U11363A JOB (11363,440-88—2421) ,CLASES™S , TIME=(S,0) , MEGGCLASS=X

7/7n
A
I ea 4

PROGRAM 9

Z¥ROUTE PRINT LOCAL.

/77
/7/78YS8S1

EXEC SAS

N DD =

DATA PHD;
KEEP ARL.3

SEED - 1 234Ny
FC - 0.3s /-
FC1 - 1 - FCgj
B1 = 1 /78QART (Be=22/7)23 7w
sSTD - 1y P
MEAN = 103p Ve
STPSZ = (BR/7)/B43 7w
ame - BeSTDj3 /-
NSIM - 10000g /7w
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED>*8TD + MEAN} /"
DD K = 1 TO SOg 7w

Fillter Constant #/

1/78ART(Bupili) #/
Initial Std. Dev. of
Inttial Mean of X =&/
Step = E#PI/48 subgps #/
Amplitude of Simulation */
Number of Simulation #/

X w/

Cenwrate initial value %/
Warm up FORF generator #/

Normal #*/
PROBNORM = CDF of Normal »/
Expwcted of R given K #/

of Range given K #/

of Range given K #/
LCL. of OFA MRy chart #/
UCL of OFA MRy chart »/

Mean of X, cyclical #/

Point is within CL's w/

Average Run Length =/

YE = PFCaYl + FC1*(RANNOR(SEED>«STD + MEAN?j
Y1 = vay
END)
NUM = O
PER = O3 /7% Peariod = O w/
LABs Qal = APS(Y1 — MEAN)>;
Aas = Al/ 8TDgj
B= = Bl % EXF(—O.S+AResAR); /% Ovrdinate of Std.
B3 = 1 — BwPROBNORM(—-AER) Ve
ERK = 2#STDwBE + Al#BI; Ve 4
=r = FCl1 % ERKj 7% Expe.
Bée - SQRT(STD#B8TD + Al®*Al — ERK#ERK)
SR - FCl1 * Bé&4y /7w Btd.
LCOCL = ER — 3SR, -
UCL = ER + 3%8R; VL
IF LCL < ©O THEN LCL = Ojp
NMEAN = MEAN + AMP*SINI(PER) /7% New
ye - FCeY1l + FC1*(RAMNNOR(SEED>*S8TD + NMEAN) ;
rY - ABS(YE—-Y1)3 /7% Moving Range #*/
IF LCL < RY < UCL THEN DOj 7 »
NUM = NUM + 13
Yi - YRy
PER = PER +~ STPrPSZ;
80 TO LAB;
END3j
ARL = NUM + 13 Fe
ouUTPUT
ENDg

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINj

VAR ARL 3

7%

Statistics of ARL #/

CYCLE PERIOD = 48 SUBOOUFPFRS:j

TITLEYD '"ARL OF THE OFA MRy CHART ON FORFP DATA'j
TITLEE '"WITH FILTER CONSTANT, FC = 0.3.'s
TITLES °'MEAN VARIES IN CYCLE:

TITLES "AMPLITUDE = 3J3«wSIGMA® 3

&4
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/77Ul 13863A JOB (11563,440-868-2421) ,CLASS=4 , TIME=(S ,0) ,MS8ACLASS=X
r A
/- PROGRAM 10
I&A
/7#*ROUTE PRINT LOCAL
/77 EXEC SAS8
//8YSIN DD w
DATA PHDj
KEEPF ARLj

SEED - 123453
| o >3 - 0.3 /7% Filter Constant #/
FC1 = 1 — FCjy
FCca - 1 + FC3
sSTD - 1 /7% Initial 8Std. Dev. of X =/
MEAN - 10%g /7% Initial Mean of X &/
SHIFT = 1.0 /% Bigmanew over Sigmaocold #»/
NSTD - BHIFT#STD;
MRBPAR = STD#1.128%#FC1/8QRT(FCE2) 3 /7% Theoretical MRbar #/
LCLMR = O.O0g
UCLMR = 3.2&47+*MRBAR; /7% DOGuMRbDar = MR chart UCL »/
NSIM = 10000} /7% Number of Simulation #/
DO I = 1 TO NSIMj;
Y1 = RANNOR(SEED? *STD+MEANS /7% Qanerate inittial value #/
DO K = 1 TO SOg /7% Warm up FORFP generator #/

YEB = FCwY1l + FCl1l#% (RANNOR(SEED)*STD + MEAN)j;
Y1 = Y&y

END3

NUM = O3

LAB: e = FOCRY1l <+ FCl1#%(RANNOR(SEED)#*NSTD + MEAN)>

MR - AP8S(YE2—Y1)g /% Mowving Range =/

IF LCLMR < MR < UCLMR THEN DOj . /% Polnt 1w within CL's #/
NUM = NUM + 13
Yi - YEgy
B0 TO LAPj3

END3g
ARL = NUM + 13 /7% Average Run Length »/
DUTPUT;
ENDj
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
VAR ARL 3 . /7% Statistics of ARL »/

TITLE1L 'ARL. OF THE TRADITIONAL MR(2) CHART ON FORMP DATA'j
TITLE2 '"FILTER CONSTANT, FC = 0.3°g
TITLED ‘'SHIFT RATIO IN DISPERSION = 1.0'j



/7/7U11363A JOB

/-
I 4
rrw

rROGKRAM 11

/#ROUTE PRINT LOCAL

77 =X
/7 /8¥Yys1

=EC sAS
N DD

DATA PHD3
KEEP ARL3

BEED = 1234%;

Fc - 0.33

FC1 - 1 - FC3

Fca - 1 + FC}

sTD - 1y

MEAN = 103

amr - B3umTDy

STPSZ = AMP/20;
MRDAR = BTD®1.l28%FC1/SART(FCE) 3
LCLMR = ©.03

UCLMR = 3.267+MRBAR};
NBIM = 10000y

DO I = 1 TO NSIM;

Y1 = RANNOR(SEED)*STD + MEANS;
DO K = 1 TO SO

Pé g
I J
7 n
7%
Ve

re J
ré

e
Fa 2

Ve
e 2

7w
7=

7w

ré . J
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(11563, 440-88-R2421 ) ,CLASES=4 , TIME= (5,05 ,MSGCLASS =X

Filter Conmtant »/

INnitial 8Std. Dev. of X #/
Initial Mean of X #/
Amplitude of Ctrend »/
Step = Amp /20 mubgpws */
Theoretical MRbLar »/

D4ewMRbar = MR chart UCL #/
Number of Sismulation »/

Cenerate initlal value #/
Warm up FORP ganerator #/

Pariod = C #/

New Mean of X, trend »/

Moving Range %/
FPoint is within CL's %/

Average Run Length =/

Btatistics of ARL »/

CHART ON FORFP DATA '

FC = 0.3.'yg
TREND PERIOD = 20 SUBBOUPRS ' j

Y8 = FCaY1l + FC1#(RANNOR(SEED)>#STD + MEAN)j
Y1 = Ygg
END 3
nNUM - Oy
PER - Og
LAB:s NMEAN = MEAN+MIN(STPSZ*PER.AMP) 3
ve = FOC#Y1l + FC1#(RANNOR(SEED)>#8TD + NMEAN) 3
MR - APB(YE—Y12;
IF LOLMR < MR < UCLMR THEN DOj
NUM = NUM + 13
Yi - YRy
PER = PER + 13
80 TO LAB;
END§
ARL = MNUM + 13
QUTPUT;
ENDgy
PROC MEANS N MEAN S8TD SKEWNESS KURTOSIS MAX MINg
VAR ARL.3
TITLEL "ARL OF THE TRADITIONAL MR(2)>
TITLEE 'WITH FILTER CONSTANT,
TITLED "MEAN VARIES IN TREND:
TITLESL "AND AMPLITUDE = 3J3#SIOMA*3



/7/7U1 135634 JOB

(11963,440-88-2421)72 ,CLASS™SL , TIME=(S,0) ,MSGCLASS=X

IE4 4
‘4 4 PROBRAM 12
Ee
/Z#ROUTE PRINT LOCAL
77 EXEC SAS
//78Y8SIN DD =
DATA PHD;s
KEEP ARL 3
SEED - 1234
FC - 0.3 /% Filter Conmtant «/
FC1 - 1 — FCg
Fca - 1 + FCgs
sSTD - 13 /7% Initial Std. Dev. of X #/
MEAN = 103 7% Initial Mean of X w/
STPS8Z = (BR/7)/84s /7w Step = EBEPIl/489 subgps */
aMre = J3uBTDg /7% Amplitude of Simulation #/
MRBAR = STD#1.1B0#FCl1l/SAQRT(FCE=) /7% Theovretical MRbar »/
LCLMR = 0.0
UCLMR = 3.267+MRBAR} /7% DGwMRbar = MR chart UCL =/
NSIM = 100003 7% Number of Simulation #/
DO I = 1 TO NSIM;
Yi = RANNOR(SEED)«STD + MEANjS /% Beanerate inlitial value *»/
DO K = 1 TO SO3 /7% Warm up FORP generator #/
YE = FC#Y1l + PCL*(RANNOR(SEED)#STD + MEAN)Y
Y1 = Yy
END 3
NUM - Ogp
PER - Op /% Period = O %/
LAPB: NMEAN = MEAN + AMP#S8IN(PER) 3 /7% New Mean of X, cyclical »/
va = FC#Y1l + FC1#(RANNOR(SEED)*S8TD + NMEAN) ;
MR - ABsS({(YE-—Y1)g /% Moving Range #/
IF LCLMR < MR < UCLMR THEN DOj /7% Poitnt is within CL'ms #/

NUM = NUM O+ 19
Yi = vay
PER = PER + BTPSZ;
80 TO LAB;

ENDj

ARL = NUM + 13 /7% Average Run Length #/

ouTPUT
=nND

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg

VAR ARL 3

/% Statimtics of ARL «#/

TITLEYL ‘ARL OF THE TRADITIONAL MR(Z) CHART ON FORFP DATA'3
TITLEE2 "WITH FILTER CONSTANT, FC = 0.3.°'s

TITLE3 'MEAN VARIES IN CYCLE: CYCLE PERIOD = 48 SUBBOUFPRS')
TITLEL4 "AND AMPLITUDE = J#SIOBMA° 3

’7

188
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Z/7U11863A JOB (11563,440-00-2421)% ,CLASS=Y , TIME=(S,0) ,M8GCLASS=X

a4 4
/-
&4 4

PROGRAM 13

/7#wROUTE PRINT LOCAL
77/ EXEC SAS

/78YS1

N DD &

DATA PHDj
KEEPFP ARL 3

SEED - 12D
| o = - 0.3y /7% Fllter conmtant #/
FC1 - 1 — FCg
D1 - 1/78QRT(2%22/7)% 7% 1/SQRT(2#PI) W/
STD - 13 /7% Initial 8S%d. Dev. of X =/
MEAN = 103 /7% Initial Mean of X =/
SFBSTD = 1.03 /7% Sigmanew over Sigmacld #/
SsSEMUL - g /7% Mean shift in sigma X #/
NMEAN = MEAN + SFMUSSTD;
NSTD - BrSTDSTD
Qruy - MEAN + 3#FCl#8TDj;
QALY - MEAN — IJFClw8TDj
NSIM - 31000073 /7% Number of Simulation #/
DO I = 1 TO NSIM;
Y1i = RANNOR((SEED)#STD + MEANg /7% Ounerate iniltial value #/
DO K = 1 TO SO /7% Warm up FORF generator %/
Y8 = FCuYl + PFC1l*(RANNOR(SEED))#STD + MEAN) j
Y1 = Y=,
END 3
NUM - Of
LAB: Al = Y1 — MEAN;)
A = ABSBS(Al1? / 8TD;
B2 = Pl % EXP(—0O.SHAB*AR) ; /7% Drdinate of Std. Normal #*/
»3 = 1 — 2#PROBNORM(—ABR)) /7% PROBNORM = CDF of Normal =/
ERK - BamgTDWDE + ADBS (ALl )*DP3; /7% Expmcted of R given K =/
ERrR = FCl1 » ERK3 7% Exp. of Range given K #/
B - BORT(STD*STD + Al*Al — ERK*ERIK) j
SR - FCl1 % B&4g /7% 8td. of Range given K #/
LCLMR = ER — J3#8R) /7% LCL of OFA MRy Chart %/
UCLMR = ER + 3%»8SR;g; /7% UCL of OPA MRY Chart =/
IF LCLMR < O THEN LCLMR = O3
ucLyY = QQAUY + FC*Alg /7% ULC of OPA Y Chart %/
LCLY = QALY + FC®#Al /7% LCL of OFA Y Chart #/
e = FC¥Y1l + FCL#{RANNOR(SEED)*NSTD -+ NMEAN)
MRY - ARs(YE—-Y1)s
IF (LCLMR < MRY < UCLMR) AND (LCLY < Y& <UCLY)> THEN DOj
NUM = NUM + 13 /7% Point is in—control #*/
Y1 = v=;
B0 TO LABR;
END g
ARL = NUM + 13
ouTPUT /7% Average Run Length #+/
END
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
VAR ARL 3 /7% Btatimtics of ARL %/

TITLEl1L 'ARL Of THE JOINT OPA Y AND OFA MRy CHARTS ON FORFP DATA'j
TITLEE2 'WITH FILTER CONSTANT, FC = 0.3.°')
TITLED 'SHIFT IN MEAN = 2 SIGMA';

77
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//7U11963A JOB (11563, 440-88—-2421) ,CLASS=4, TIME=(S5,0) ,MSGCLASS=X
s/
e PROGRAM 14
s
/WROUTE PRINT LOCAL
// EXEC SAS
/7/8YSIN DD =
DATA PHD}j
KEEP ARL

SEED - 1234
FC1 - O.&¢ /7% Actual Filter Constant #/
FC1A - 3 - FC1gj
FCca - 0.3 /% Amumumed Filter Conmstant =/
FCE2A = 1 — FCa;
SsSTD - 1 /7% Initial Std. Dev. of X */
MEAN = 103 /7% INnitial Mean of X #/
BSHIFT = =2_0Op /% Shift in term of migma x */
NMEAN = MEAN + SHIFT#8TD;j; /7% New mean of x #*/
QAQAVY - MEAN + IJIFCEAWSTDs; /7% Conmstant term of UCLopay #*/
QaLy - MEAN — JINFCEANSTDj /7% Constant term of LCLopay #/
NSIM = 100003 /7% Number of Simulation #*/
PO I = 1 TO NSIM;

Y1 = RANNOR(SEED)?>»STD + MEAN3; /% Generate initial valum #*/

DO K = 1 TO SO /7% Warm up FORP generator ¥/

Y& = FLlwYl + FC1A® (RANNOR(SEED)#STD + MEAN)3
Y1 = Y@=,
END
~NUM - Op
LAB3s AOC - Y1 — MEAN

ucLy - QAUY <+ FC2wAO0)y /7% UCL of OPA Y chart =/

LCLY - QULY <+ FCE2E+AO0g /7% LCL of OPA Y chart =/

e - FOCl1#Y1l + FCLA® (RANNOR((SEED)#STD -+ NMEAQN)

IF LCLY < Y& < uUcLY THEN DOjs /7% Point is within CL'sms =/

NUM = NUM + 13
Y1 = vEg
00 TO LAB

ENDj
ARL = NUM + 1 /7% Average Run Length #/
oUTPUT
END3j
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINj
VAR ARL.jp /7% BStatistics of ARL »/

TITLE1lL "'ARL OF THE OFA Y CHART ON FORF DATA WITH'j
TITLEER "ACTUAL FILTER CONSTANT, FCl = O.&6. ABSUMED FILTER, '
TITLED 'CONSTANT, FCE = O.3. SHIFT IN MEAN = 2.0 SIOMA‘')

4



//7U11363A JOB

PROGRAM 1S

INT LOCAL

a4 2

/7 /-

/-

/#ROUTE PR
a4 EXEC SAS

//8YSIN DD
DATA PHD;

-

(113563 ,440-860-2421) ,CLASS=4 , TIME=(S,0) ,MSACLASS=X

KEEP ARL.j
SEED =~ 128345
FC1 = O.&63 7% Actual filter conmtant %/
FC1A = 1 — FC1g
FCca2 - O.Sg /7% Amsumed Tilter constant #*/
FCEBA = 1 - FCE;
P11 - 1L/BART (222 /7) /% 1/8QRTI(E%PI) %/
aTD - 1 /7% Initial 8Std. Dev. of X #/
nmEanN = 103 /7 Initial Mean of X w/
8S8F8STD = 1.0 /7% Sigmanew over Sigmeocld #/
SrEMU - gy /7% Mumanrn shift fin Sigma X &/
NMEAN = MEAN + SFMLUSTD;
NSTD - SrSTD#STDjs
QaQuy - MEAN + IFCEAWETD;
QALY - MEAN — INFC2ASTD;
N8IM = 10000g /7% Number of Simulation =/
DO I = 1 TO NSIMg
Y1 = RANNOR(SEED)?*#3TD + MEANS /7% Cenerate initial value #*/
DO K = 1 TO SO; /7% Warm up FORP genereator %/
Y2 = FCl#Yl + FC1LA® (RANNOR(SEED)#*8TD + MEAN) j
Y1 = YB3
END
NUM - O3
LABs Al - Y1 — MEAN;
A - ABPDB(AlY> / STDj
B2 = Bl % EXP(—0.3%#AB*AE); /7% Ordineate of Std. Normal #/
B3 - 1 — E2#PROBNORM(—AR)j /7% PROBNORM = CDF of Normal
ERK = EaSTD*BE + ABS(Al)«*B3, /7% Expectaead of R given K »/
ER - FCEA * ERKj3 /7% Exp. of Range given K »/
Ba - SORT(STD#STD + Al®#Al — ERK®*ERK)? 3
8R = FCEA % B&4g /7% 8Std. of Range givan K #/
LCLMR = ER — 3#8R; /% LCL of OPA MRy Chart »/
UCLMR = ER + 3#8R3; /7% UCL of OFPA MRy Chart =»/
IF LCLMR < O THEN LCLMR = O3
uCcLY - QRUY <+ FCEwAlg /% UWLC of OFPA Y Chart #»/
LCLY = QQOLY -+ FCE2wAlj /7% LCL of OPA Y Chart »/
e - FClL#Y1l + FC1A®(RANNOR((SEED)) *NSTD -+ NMEAN) 3
MRy - ABS(YER—Y1)}
IF (LCLMR < MRY < UCLMR?> AND (LCLY < Y& <UCLY)> THEN DOj
NUM = NUM + 1 ' /7% Point is ifin—control =#»/
Yi - Y=gy
GO0 TO LAB;
END3
ARL = NUM + 13
ouUTrUT 3 /7% AQverage Run Length %/
END3

PROC MEANS

N MEAN

VAR ARL§

TITLE1

TITLE2
TITLES
TITLES

STD SKEWNESS KURTOSIS MAX MINg
/7% Statismtics of ARL %/

TARL OF THE JOINT OFA Y AND OFPA MRy CHARTS ON FORF DATA';
FC1 = O.&6.'}

TWITH ACTUAL FILTER CONSTANT,

‘ASSUMED FILTER CONSTANT,
‘SHIFT IN MEAN = 2 SIOMA';

FCR = 0.5.'3
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/701138634 JOB (11363 ,440-08—-2421) ,CLASS=4 ,TIME=(5,0) ,MS8GCLASS=X

/-
7 /-
a4

PROGRAM 15

/7#ROUTE PRINT LOCAL

77 EXEC

SA8

/7/78YSIN DD =

DATA PHDj

KEE® ARL. g

192

SEED = 18345
FC1 - O.bg /7% Actual Filter Constant #/
FC1A = 1 — FC1l3;
FCca - O.S3 /7% Assumed Filter Constant */
Fo=aAa - 1—-FCBjg
B1 - 1/B8QRT(EBe2R/7); /7% 1L/78QART(2wpi) w/
sSTD - 1 /7% Initial Std. Dev. of X »/
MEAN - 10g /7% Initial Mean of X w/
SHIFT = 3.0% /7% Sigmanew over Sigmacld #/
NSTD - SHIFT*STD;j;
NSIM - 100003 /7% Number of Simulation »/
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED)#STD + MEAQAN; /7% Generate 1st value %/
DO K = 1 TO 303 /7% Warm up FORP generator ¥/
YEB = PFCi#Y1l + FC1A® (RANNOR(SEED)*STD + MEAN)>3
Y1 = YB3
END 3
NUM - Og
LABs Al - ABS(Y1 — MEAN)j
As - A1l / BTDj
B2 - Pl # EXP(—O0O.3#AR+AR))j /7% Ordinate of Std. Normal «/
B3 - 1 — B2#»PROBNORM(—A2)3 /7% PROBNORM = CDF of Normal %/
ERK - PuSTD#BE + Al*B3y /7% Expected of R given K #/
ER - FCE2EA » ERKjp /7% Exp. of Range glven K #/
B = BQRT(STD#STD + Al®#Al — ERK#ERK)j
SR - FCE2A * B4) /7% 8td. of Range given K #/
| 9 = I - ER — 3IwdR; /7% LCL of OPA MRy chart #/
uCcL. - ER + ISR, 7% UCL of OFPA MRy chart w/
IF LCL < O THEN LCL = Op
Y2 = FCTlwY1l + FC1LA®(RANNOR(SEED)*NSTD + MEAN)Y)3
RY = ABS(YE—-Y1)>;
I¥ LCL < RY < UCL THEN DOj /7% Point 1w within ClL's #/
NUM = NUM + 13
Yi = vag
G0 TO LAD;
END3s
ARL. = NUM + 13 s Average Run Length »/
ouUTPUT
ENDj
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
VAR ARL 3 . /7% Statistics of ARL #/
TITLEL "ARL OF THE OFPA MRy CHART ON FORPFP DATA WITH' g
TITLEE2 "ACTUAL FILTER CONSTANT, FCl = O.&6.°')
TITLE3 'ASSUMED FILTER CONSTANT, FC2 = O0.5. '3
TITLES4 "SHIFT RATIO IN DISPERSION = 3.0';

/77
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7/7U11863A JOB (11563,440-88—2421) ,CLASS=4 , TIME=(5,0) ,MSGCLASS=X

77w
/-
V4 J

PROGRAM 17

/#ROUTE PRINT LOCAL

77/ EXEC

sSAS

F/78YSIN DD &

DATA PHDj
ARRAY

X(30> ERR(30)>3 /7w X(t) = Observed values /

KEEFP ARL 3

SEED - 123453
FC - 0.3 /7% Filter constant w/
FC1 = 1 — FCg
STD - 1y . /7% Inittial 8Btd. Dev. of X #/
MEAN = 10g /7% Initial Mean of X w/
NSIM = 10000y /% Number of Simulation #/
PO I = 1 TO NSIM;
Y1 = RANNOR((SEED)®#STD + MEAN3 /7% Oenerate initial value #/
DO K = 1 TO SOg /7% Warm up FORP generator #/
Y8 = FCuY1l + FCl#(RANNOR(SEED)#STD + MEAN)
Y1 = vYa&g
ENDgj
XSUM = 0.03p
DO L = 1 TO 303 /7% Observe 1st 30 values #»/
e = FOC#Y1l + FC1%»(RANNOR(SEED)#8STD <+ MEAN) g
XC(L)> = YvYgay
X8UM = XSuUuM + X(L )3
Yi - YEmg
END3j
Z0 = X8SUM/30; /7% Z0 =m Xbar ®/
ERR(1)> = X(1> — ZOg /7% Error(t) = X(€) — 2(t—1) #/
SUMERR = ERR(1))
SSAERR = ERR(1)%ERR(1)
=1 - D.0wZ0 + O.EBuXC(1)g 7% EWMA, r=0.8, Z(t) = -/
DO M = 2 TO 303 I (L-rd)uZi{t—1) + rEX(t) »/
ERR(M)) = X(M> — Z1g /7% Error(t) = X(t) — Z(t—1) =/
== = O.B%Z1 + O.BaX(M)3
SUMERR = SUMERR + ERR(M) 3
SSQERR = SSQERR + ERR(M)*ERR(M) 3
=1 - ZEmg
END 3 /7% Daltal(O) = Std. of ERR %/
DO = (SSQERR — (SUMERR#SUMERR/30))/E2Y%;
DI = O.ES*ABS(ERR(1)>) + O0.73%DOj /% Delta, qQ=O.23 =/
DO N = 2 TO 303 7% D0EI)mquiERRC(E) 14+(1—q)*D(t—1)> */

DE = O.ESHAPRS(ERR(N)Y) + O0.73#Dl;
D1 = DEg

END3j
AP UCL = Z1 + 3%l1.BS#D1ig /% UCL, Modified EWMA Chart &/
LCL = Z1 — 3#1.83#D1; /% LCL, Modified EWMA CHArt #»/
Ya = FC#Y1 + FC1#%(RANNOR(SEED)>#STD + NMEAN) 3
IF LCL < YB < uUCL THEN DOj /% Point is within CL's #*/
NUM = NUM + 13
Y1 - Yy
z= - O.BuZ]1 + OC.EBERVYE; /7% Next forecast point =/
ER - Ye — Z1g
D2 - O.l1lwABB(ER) + O.9%#D1lgj /7% Next delte value,q=wO0.10 #/
Z1 - ZBy
D1 - D=,
G0 TO LAD;
END3
ARL. = NUM + 13 /7% Average Run Length &/
oUTPUT
ENDs
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINj
vAR ARL 3 7% Statistics of ARL %/
TITLE1l ‘ARL OF THE MODIFIED EWMA CHART ON FORFP DATA';
TITLEER 'WITH FILTER CONSTANT, FC = O.3. '3
TITLED® 'SHIFT IN MEAN = 2,0 SIOMA'}
TITLESL "LAMBDA OF EWMA CHART = O.20. ALPHA FOR SMOOTHING THE';
TITLES ‘ERROR ESTIMATES=O.ES (l1st 30 OBS) =0.10 (THE REST) '

77/
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/7/U11563A JOB (11563,440-88—-R421) ,CLASS=4,TIME=(S,0) , MSGCLASS=X
s 7
s PROGRAM 18
rr-
/*ROUTE PRINT LOCAL.
s/ EXEC BAaS
//BYSIN DD
DATA PHD;
KEEP ARL )

SEED - 1234
FC - 0.3 /7% Filter Constant #/
FC1 - 1 — FC3
FCce - SART(1+FC)
sTD - 1 /7% Initial BStd. Dev. of X &/
MEAN = 103 /7% Initiral Mean of X =/
SHIFT = 2,03 7% Bhift An term of sigma x %/
NMEAN = MEAN + SHIFT#STD; /7% Neaw mean of X »/
NSIM - 100003 /7% Number of Simulation #*/
DO I = 1 TO NSIM;
Y1 = RANNOR(SEED)#STD+MEAN; /7% Oenerate inittial value */
DO K = 1 TO SOj /% Warm up FORPFP generator #/

Y& = FCHY1l + FCl# (RANNOR(SEED)#STD + MEAN) 3
Y1 = vmg
=ND
MRSUM = 0.0
YSUM = 0O.O0j
PO L = 1 TO 3O;
ve - FC®Y1l + FCl%(RANNOR(SEED)4STD + MEAN)

YyasumM - YSUM + Y=p
MRSUM = MRSUM + ADBS(YE—-Y1l)s
Y1 - YEg
ENDg
AVOe - YSUM/ 303 /7% Empirically compute #/
MRBAR = MRSUM/30; /7% AVE and MRDAR »/
S8STD - MRBARSFCE/(1.128%rFC1);
Qaa@auy = AVE + JINFCLPSSTD; /7% Conmtant term of UCLopay #/
QALY - AVE — JINFCL#B8TD; /7% Conmtant tSterm of LClLopay #/
NUM - Oy
LAB: AO - Y1 — AVOg
ucL.Y = QALY <+ FC*QAO} /7% UCL of OPA Y chart w/
oLy - QALY + FC#*AOj /7% LCL of OFA Y chart #/
hg = FOCeY1l + FCL#(MRANNOR(SEED)>#STD -+ NMEAN)?
IF LCLY < Y& < UCLY THEN DOjg /7% Point 1w within ClL'ms #/

NUM = NUM + 13
Yi = va;
G0 TOo La’;

END3
ARL. = NUM + 13 7% Average Run Length #/
ouUTPUT
END3j
PROC MEANS N MEAN STDjg
vVAaR ARL g /% Statistics of ARL »/

TITLEl1 'ARL OF THE OFPFA Y CHART ON FORPFP DATA's
TITLEZ 'WITH FILTER CONTSTANT, FC = 0.3. ‘'3
TITLE3 "SHIFT IN MEAN = 2.0 SIOMA'j



/7/7U11563A JOB (113463 ,440-88—2421) ,CLASS=L , TIME=(S,0) ,MB86GCLASBS=X
/S w
VA PROORAM 19
/7w
/7#ROUTE PRINT LOCAL
77 EXEC SAS
//78YSIN DD «
DATA PHDg
KEEF ARL

SEED - 1BRIHT g
FC - O.0gp /7% Filter Constant w»/
FC1 - 1 — FCy
Fce - SARTC(1+FCYg
B1 - 1 /8ART(Be2E/7)) /7% 1/78RQRT(Bepl) w/
sSTD - 19 /7% Imnrttial Std. Dev. of X #/
mMEAN = 10p 7% Initial Mean of X #*/
BHIFT = 2.0 /7% Sigmanew over Sigmacld */
NSTD - BHIFT#STD)
NSIM = 3100003 /7% NMumber of Simulation #/
PO I = 1 TO NSIM;

Y1 = MRANMOR(SEED¥8TD + MEAN /7% Benerate lst valuw */

DO K = 1 TO SOj /% Warm up FORP genmrator #/

Y& = FCeY1l + PFCLl#* (RANNOR(SEEDI#STD -+ MEAN? §
Yi = Y&
END 3§
MRSUM = O.0jg
YSUM = O0.0g
DO L = 1 TO 203
e - PFCHY1l + FOCLl*(RANNMOR(SEED)>*STD + MEANM)
Y8LM - Y8UM + YB3
MRBUM = MRSUM + APBBICYE~-Y1)2j§
Y1 = vB;
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ENDg
Qave - YSLH/30g /7% Empivrically compute #*/
MRBAR = MROSUM/30; /¥ AVE and MRBAR #/
a8TD - MRBAR®#FCER/(1.128B08%FC12;
NUM - Oy

LABs Al = ABS(Y1LI — AVO)
A = Al / ®8TDg
B2 = Bl % EXP(—0O.3xAReAR? /7% Ordinate of 8td. Normal =/
p -k ] - 1 — BHPROBDNORM(-AER)j 7% PROBNORM = CDF of Normal =/
=|mic = E2NaSSTDDE + Alw B3 /7w Expmcted of R given K »/
=R - FC1 #* ERKj /% Exp.of Range given K =/

B - SAORTI(SBTDHSBSTD + Al*Al — ERK*ERK)

SR = FCl1 * B4g /% 8tcd. of Range glilven K =/
LCL - ER — J3wSRg 7% LCL of OFA MRy chart %/
ucL - ER + 34BR; /% UCL of OPA MRy chart */
IF LCL < O THEN LCL = Og
Y = FORY1l + FOC1#(RANNOR(SEED) #NSTD + MEAN) 3
RY - APS(YE—-Y1l)s
IF LCL < RY < LUCL THEN DOj /% Point im within Cl'ms »/

NUM = NUM > 1
Yi = vmy
G0 TO LAB;

END 3
AL = N + 13 /7% Average Run Length */
QuUTPUT
=ENDg
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
VAR ARL 3 /7% SBtatistics of ARL #/

TITLEL 'ARL OF THE OFA MRy CHART ON FORFM DATA 3
TITLEE 'WITH FILTER CONSTANT, FC = 0.0'g
TITLED ‘SHIFT RATIO IN DISPERSION = 2.0‘'j



Z7/7U11863A JOB (113563,440-88—-24£1) ,CLASS=4L4 , TIME=(S,0) ,MSGCLASS=X

e

e 4

24 4

/7#ROUTE PRINT LOCAL
77 EXEC 8AS
/7/78YSIN DD »

DATA PHD3

KEEFP ARL

SEED - 12345
FC1 - 0.3y
FC11A - 1 - FC13
Fce - 0.33
FocaA - 1 - FC2j
STD - 1y

MEAN = 103
SHIFT = 2.03
NMEAN =

NSIM - JOO0O0y

DO I = 1 TO NSIMjy

Z1 = RANNOR(SEED)#8TD + MEAN;
Y1 = RANNOR(SEED) #STD + MEAN;

PO K = 1 TO SO

PROGRAM 20

MEAN + SHIFT*8TDg

Ve 2

/-

7w
Ve J
Ve g
Ve 2
7w

7»
ra
/-

1t Filter Constant «/
8nd Filter Constant =/
Initial Std. Dev. of X w/
INnitial Mean of X #/
Shift in term of wmigma
New mean of X w»/

Number of Simulation %/

Generate initial value «#/

Cenerate initial value #/
Warm up SORPF generator =/

Af the process is FORP #/

of the process ams #/

196

"/

“w/

/7% Constant term of UCLopay #/
/7% Constant term of LCLopay =*/

Y2 = FC2#Yl + FCEA* (RANNOR(SEED)>#8STD <+ MEAN) 3
ZB = FCl#Z1 + FClLA®YER,
Z1 = Zpgy
Y1 = vag
END3j
MRSUM = O0.03 /7% Compute Average and Std.
vysum = 0.03 /7% Deav.
DO L = 1 TO 303 Ve 2
va = FCE2x#Y1l + FC2A® (RANNOR(GEED)#STD + MEAN) §
=28 - FOC1#Z1 + FClAwYa2j;
YSUM = YSUM + Z8;
MRSUM = MRSUM + APB(Z2—-Z1);
1 - Py
Yi - ymy
ENDj
Ave - YSLUM/ 30
MRBAR = MRSUM/30;
SI1I0 = MRPAR#SQART(1+FCl1)i/7 (1 .120#FC1AY;
Qauy - AVE + JINFCLASIOj
QQLy = AVE — JFCLANSIOg
nNUM = Opg
LAB: Ao - Z1 — AVG;
LY - QQUY + FC1#AO0; /% UCL of OFA Y chart #/
LCLY - QALY + FC1#AO; /7% LCL of OFA Y chart «#/
e - FCReY1l + FCEA® (RANNOR(SEED)#STD + NMEAN) j
z2 = FC1#Z1 + FClAWwYER;
IF LCLY < Z8B < uUCLY THEN DOjs /7% Point is within CL'w #/
NUM = NUM + 13
=1 - Zmy
Yi - YRy
G0 TO LADBg
END 3
ARL. = NUM + 13 /% Average Run Length =#»/
ouUTPUT
ENDgy

PROC MEANS N MEAN STD
VAR ARL g

TITLEL "ARL OF THE
TITLEE ‘'lst FILTER
TITLES *‘rC&2 = 0.3.

77/

SKEWNESS KURTOSIS MAX MINj

7w

orA Y CHART ON SORFM

CONSTANT ,

FC1L = 0.3,

Statistics of ARL w/
DATA WITH'}j
8nd FILTER CONSTANT, '3

SHIFT IN MEAN = 2.0 SIGMA'j
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/70115634 JOB (113563,440-88—-2421) ,CLABE=4 , TIME=(S,0) ,M8ACLAS8=X

4
Yes
a4 2

PROGRAM 21

ZWROUTE PRINT LOCAL

4 EXEc

sSAS

//78YSIN DD

DATA PHDj

KEEF ARL;

SEED - 12343
FCa - 0.3y /7% Filter Constant =/
FCT1A = 1 — FC1l1g
Fca - 0.3p
FCcea - 1-FCEBg
D1 - 1/SART (222 /7)5 /7% 1/78QRT(2Bwpi)> #/
sSTD == 13 /7% Inmnitial 8Std. Dev. of X w»/
MEAN = 103 /7% Initial Mean of X =/
SHIFT = 3.0g /% Slgmanew over Sigmacld */
NBTD - SHIFT+3TD)
NSIM - BOOOy /7% Number of Simulation »/
DO I = 1 TO NSIMj;
Z1 = RANMNOR(SEED)#3TD -+ MEANS /7% Oenerate 1st value »/
Y1 = RANNOR(SEED)>#STD + MEAN) /% Cenerate lst value »/
DO K = 1 TO SO 7% Warm up SORF generator =»/
Y& = FC2#Y1l + FCEA® (RANNOR(SEED))*8TD + MEAN?;
Z8 = FClwZl + FClAnYERg
Z1 = Zmg
Y1 = YEB)
END§
MRBUM = O.03 /7% Compute Average and Std. #/
YaumMm = O0.0}g /% Dev. of the process aws #/
DO L = 31 TO 303 /7% ¥ the process is 30RP #/
Ye - EFCE#Y1lL + FCEAX (RANNOR(SEED)#SBTD + MEAN) 3
e = FC1#Z]1 + FCLrLA®YE;
YSuM = YEguUM + Zpg
MRSUM = MRSUM + ABRS(ZE-Z1)
Z1 - Zpy
Yi = Y¥Y&g
ENDj
AVG - YSUM/30;
MRBAR = MRSUM/30;
SI0O .= MRBARSQRT(1+FC12/7(1.1284FC1AXyg
~NUM - Op
LAB: Al - AB3(Z1 — AVE)j
A - Al / BI0g
B= - Pl % EXP(—0.SeQAReAs); /7% Ordinate of 8td. Normal =/
B - 1 — EBPRODNORM(—AR) 3 /7% PROBNORM = CDF of Narmal #/
ERK - PuSIOEBE + AlwBdg /7% Expeacted of R given K #/
ER = FC1A #* ERK3 7% Exp. of Range given K #/
B& = SOQRT(SIC#+SIO + Al*¥Al — ERK#ERK)? 3
srR = FC1A #* B4y /7% Std. of Range given K »/
LeL - ER — 3uSR) /7% LCL of OPA MRy chart =»/
oL - ER + 3%8R; s UCL of OFPA MRy chart =/
IF LCL < O THEN LCL = Og
Y& = FCEsYl + FCEREA® (RANNODR(SEED)#*NSTD -+ MEAN) ;3
ZB = FC1#Z1 + FCiAanY®);
RZ = ABS(ZE-Z21))
IF LCL. < RZ < UCL THEN DOg /% Point s within CL'sm #/
NUM = NUM + 13
Z1 - Ty
Y1 - YRy
Q0 TO LABg
ENDg
ARL = NUM + 13 /7% Average Run Length */
QUTPUT
END3j

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MINg
vaRr ARL 3
*ARL OF THE OrFAa Mty CHART ON SOR™ DATA WITH's

TITLEL

TITLES
TITLES

/77

/7% Btatistics of ARL »/

‘1mt FILTER CONSTANT, FCl = 0.3, BEBnd FILTER CONSTANT,
‘rFce = 0.3. SHIFT RATIO IN DISPERSION = 3.0°')



APPENDIX F

THE EFFECTS OF VARIATION IN EMPIRICALLY
DETERMINED CONTROL LIMITS ON

THE AVERAGE RUN LENGTH
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The Effects of Variation in Empirically

. Determined Control Limits on the ARL

To facilitate discussion in this section, an independent
normal data stream with mean p and variance ¢2? is considered.
To construct an Xbar chart on these independent data, the
normal practice is to group data into m subgroups of size n,
say m=30 and n=4. Then, the average and range of each
subgroup, Xbar and R, are computed respectively. The
averages of these subgroup averages and ranges are also
calculated, and are denoted as Xbb and Rb respectively. The
control limits of the Xbar chart are constructed as follows,

UCL xbar = Xbb + 0.73%Rb (F.1)
LCLxbar = Xbb — 0.73%Rb (F.2)
Since each plotted point on the Xbar chart is normally
distributed with mean p and standard deviation 0.35¢ (since
n=4), the probability for a point (Xbar) to fall within the
control limits can be easily computed, and is designated as
Pa.
UCL xbar
Pa = I f(Xbar) d(Xbar) (F.3)
LCLxbar
where f(-) is a p.d.f. of a normal distribution. Thus, the
number of points plotted until an out-of-control signal is
found, even though the process is in—control, without using
any runs rules, follows a geometric distribution with

parameter p = (1-Pa). That is,
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P(X) = (1 — Pa)Pax—? X =1, 2, ... (F.4)
where X is the number of points plotted until an out-of-
control signal is found.

It is well known that the expected value of a geometric
random variable is p—*. Thus, the ARL of the Xbar chart is
equal to

ARL = (1 — Pa)—? (F.3)
For an in—control process, (1 — Pa) is the Type I error and,
when the process is out—-of-control, Pa is the Type II error.
It is known that Xbb is normally distributed with mean equal

to p and variance equal to o2/(mn).
Xbb ~ Normal[g, azl(mnE] (F.b6)

Using the Central Limit Theorem, Rb is seen to be normally

distributed with mean de=%¢ and variance (dx*ag)2/m.
Rb ~ Normal[:dg*a, (da*a)zlm:] (F.7)

It is also a well known fact that Xbar and R are independent
of one another; this leads to the fact that Xbb and Rb are
also independent of one another.
If the Xbb and Rb are at their mean values, that is

Xbb = p and Rb = da%0c where de equals 2.0359 for n=4, 1t is
readily known that Pa is 0.0027 for an in—control process.
The corresponding ARL is about 370. This ARL of 370 is to
be interpreted as the average number of plotted points on
the Xbar chart until an out-of-control signal is found when

the process is, in fact, in—-control. It should be noted that
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this ARL value of 370 is the average run length, conditioned
on the fact that Xbb and Rb are at their mean values. As
mentioned earlier, the distribution of run length for such a
caontrol éhart with Xbb and Rb at their mean values is indeed
a geometric distribution. When runs rules are applied to the
control chart, the run length distribution is no longer a
geometric distribution, but still has a long tail skewed to
the right. Some researchers have approximated the
distribution of run length when runs rules are used (Champ
and Woodall, 1990). The approximate distribution of run
length still assumes that both Xbb and Rb are at their mean
values.

In reality, if one uses the Xbar chart with control
limits empirically constructed using statistics Xbb and Rb
derived from the initial m subgroups of size n, with Xbb and
Rb varying according to theirvown distribution, the average
run length one expects is different from the value 370.
Certainly, ARL' has its own distribution as well. This ARL'
can be determined by considering the distribution of Xbb and
Rb.

For given values of Xbb and Rb, say c and d,
respectively, the upper and lower control limits of the Xbar
chart, UCLxpar and LCLxnars can be defined in terms of the
values of ¢ and d. The probability of a plotted point falls
within these control limits, Pa, is then determined. Pa is
also a function of ¢ and d. And such, the ARL of the control

chart with these given Xbb and Rb values can be determined as
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follows,
ARL"(c,d) = L1 - Pa(c,d)]12 (F.8)
where
UCL xpar{C,d)
Pa(c,d) = J f(Xbar) d(Xbar) (F.9)
LCLxbar (€yd)
and

UCL xpar{Ccy,d) = c + 0.73%d
LCLxpar(c,d) = c — 0.73%d (F.10)
Therefore, the unconditional ARL' of the control chart can
be aobtained by considering all possible values of Xbb ahd Rb.
This can be done by integrating over the entire ranges of Xbb
and Rb.
® ®
ARL® = I J L1 - Pa(c,d)1~* g(c) h{(d) dc dd (F.11)
0 -wo
where g(-) and h(-) are the p.d.f. of Xbb and Rb,
respectively.

Using some type of numerical integration, it is able to
verify that the ARL' obtained using Equation (F.11) is
different from the expected 370 for an in—-control process.
This iilustrates the fact that, all the while, the well known
370 ARL of the Xbar chart when the process is in-control is
correct only based on the mean values of Xbb and Rb. That
is, the possible variations of Xbb and Rb are not taken into
consideration at all. If the variation of the Xbb and Rb are

taken into consideration, the ARL obtained is certainly
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different. Since in a real practical application of the Xbar
chart the Xbb and Rb values are computed from an initial m
subgroups of size n, the ARL computed from Equation (F.11)
depicts é more truthful situation.

Equation (F.11) is only used to compute the ARL for a
Xbar chart on independent normal data when the process is in-
control. However, the approach can be extended to other
control charts, such as the Range chart, the MR(2) chart,
or a control chart for a correlated data stream. In the Xbar
chart, since the plotted points are independent of one
another and normally distributed, the f(-) in Equation (F.9)
can sufficiently describe the characteristic of these plotted
points. If the plotted points are not independent of one
another, such as moving ranges of an independent data stream
or individual data from a FORP data stream, the p.d.f. f(-)
in Equation (F.?) does not capture the correlation between
plotted points. Hence, the average run length of such a
control chart, with the consideration of variation of control
limits, must be determined by other methods. At present,
simulation seems to be the only way to determine how the
number of subgroups, m, and the subgroup size, n, affect the
average run length of a control chart for which control
limits are constructéd on the statistics derived from the

initial m subgroups of size n.
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LISTING OF FORTRAN PROGRAM TO CALCULATE
THE CONTROL LIMITS OF THE OPA Y

AND OPA MRy CHARTS

204



Can

- 205

ObJjwctive:s This program constructs the OFA and OPA MRy charts

Data input: Initial data can be read from a disk file named INPUT or

entered via the keybhoard.

If data are in disk file, they have to be arranged in
column with the value of filter constant in the first
row, followed by the cbservatlons.

I¥f data is entered via keyboard, the user has to supply
the value of filter constant, the number of observations
to be entered and the obhservationms.

Resultes cutputs: All the results will be displayed on the computer

monmitor screen. But, the user has the option to
store the results in disk file as well.

Only the upper and lower control limits of the
control charts and the plotting points are listed.
Dut—of—control points are indicated with a '"#*,

Additional data: After the Iimnitial ocbhwservations have been used to

construct the control charts, the user can further
enter additional observation.

Assumptiorn: It ie assumsd that the observations are from a FORF and

the filter conmstant is known and is betwesen O and 1.
It iwm assumed that there are net more than 300
observations.

ERE R KRR R BN EEFRBEEEEREEEEERER

nanooooaoooaoao0000000DN0Nn000

30

noon gg

CHARACTER DAT*1, ANS+1

COMMON YBAR,SIOMA,RHO,DB

REAL MRBAR, MRSUM, LL, LCL, MR(S00), YI(S00?
DE = 1.1828

INPUT OBSERVATIONS AND COMPUTE THE YBAR ANMND MRBAR

WRITE (#,%) ‘PROGRAM TO CONSTRUCT THE OFA Y AND OPA MRy CHARTS®
WRITE (#,%)
WRITE (#,%#) ‘ENTER D IF THE DATA ARE STORED IN DISK FILE-®
READ (#,170) DAT
IF (.NOT. ¢((DAT .E@. ‘'D‘') .OR. (DAT .EGQ. 'd‘}>) BOTO SO
WRITE (#,#) "'THE DATA IN THE FILE SHOUWD BE IN COLUMN®
WRITE (#,%) ‘THE FIRST VALUE SHOULD BE THE FILTER CONSTANT.'
WRITE (#,#) 'ALSO, THE FILE NAME SHOULD BE “INPUT" °
WRITE (#,%) *'IS THE FILE IN THE CORRECT FORM T Y — YE®'
WRITE (#,%) °‘IF NO, THE PROGRAM WILL TERMINATE.®
READ (#,170) ANS
IF (.NOT. ((ANSB .EQ. 'Y') .OR. (ANS .EQ. ‘'y'>)>) 80TO 200
OPEN(S ,FILE="INPUT" )
READ (S,#) RHO
WRITE (#,#) ‘FILTER CONBTANT', RHO
N - 1
READ (S,#) YN
WRITE (#,%> N,Y(N)
YESUM = YN
MRSUM = 0.0
[ - N+ 1
READ (3,#,END=30) Y(N)
WRITE (#,%#) N, YC(N)
MRI(N? = ABS(Y(N) — Y(N—1))>
YEUM = YSUM + YN
MRSUM = MRSUM + MR(N)D
~N - N+ 1
@aoTo =0
cLOBE <3
N =N - 1
®oTo ®so
WRITE (=,%) ‘ENTER THE VALUE OF FILTER CONSTANT'®
READ (#,#) RHO
WRITE (#,#) ‘ENTER NUMBER OF DATA POINTS'®
READ (#,%)> N
WRITE (#,%) ‘'ENTER THE DATA ONE BY ONE'*
READ (#,%) YC(1)
YEUM = ¥Y(1)
MRBUM = 0.0
PO 70 I = B, N
READ (#,%) Y(I)
MRCI? = APBC(Y(I) — Y(I—1))
YESUM = YESUM + YC(I)
MRBUM = MRSUM + MRC(I)
CONT INUE
YBAR = YSUM/FLOAT(N?
MRBAR = MRSUM/FLOATI(N—-1)

OFTION TO STORE RESULTS IMN DISK FILE



WRITE (%, %)

WRITE (#%,#) 'ENTER D IF WANT TO STORE THE RESULTS TO DISK®*

READ (#,170> DAT

WRITE (#,%) ‘'NUMBER OF INITIAL OBSERVATIONS = ' ,N
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WRITE (#,#) °'Ybar - ', YBAR
WRITE (#,#) ‘MRybar = ', MRBAR
WRITE (%,%> °r -, mHO
WRITE (%#,%> °"¥YC(1)? -, YC1)
c .
c DISPLAY THE HEADINGS AND THE VALUES OF YBAR AND MRBAR
c
WRITE (#%,%0)
90 FORMAT (/1X, ‘NO"®,7X,'Y*',7X, 'LCL"*,5X, "UCL" ,8X,
% "MRy' ,6X,'LCL* ,5X, ‘UCL"/)
IF ((DAT .EQ. 'D‘'? .0OR. (DAT .EQ. 'd')>)THEN
OPEN (S,FILE='RESULT® ,STATUS="'NEW" >
WRITE (S,#) ‘NUMBER OF INITIAL OBSERVATIONS = *',N
WRITE (S,%) 'Ybar - ', YBAR
WRITE (S,%) 'MRybar = °', MRBAR
WRITE (S,#) "Y1 -, Y1)
WRITE (5,90)
ENDIF
A - 1 .0+RHO
-] - 1.0—-mHO
BIGMA = MRBAR®SGRT(A) / (DE*B)
c
c CONSTRUCT THE CONDITIONAL CONTROL LIMITS FOR THE Y AND MRy CHARTS
c AND DISPLAY THEM WITH THE CORRESFONDING Y AND MRy VALUES
c
DO 100 I = 2, N
CALL CHART (DAT,I,Y(I),Y(I—1),MR(I))>
100 CONTINUE
c
c OPTION TO ENTER MORE OBSERVATION
c
130 WRITE (%,160)>
160 FORMAT (/° MORE DATA TO ENTER 7 Y — TO CONTINUE')
READ (#,170> ANS
170 FORMAT (A1)
IF (ANS .NE. 'Y') B8OTO BOO
N =N+ 1
IF (N .OT. S00)> THEN
WRITE (#,.%) °‘SORRY | THERE ARE ALREADY S0O DATA POINTS:*
WRITE (#,%) 'START AGAIN'
@o0TO =00
ENDIF
WRITE C#,%)
WRITE (#,%#) '‘ENTER THE NEW DATA®
READ (#,%) Y(N)>
MRI(N? = ABS(Y(N) — YI(N—1)>)
WRITE (#,190)
190 FORMAT (71X, 'No.’ 77X, 'Y"' ,7X, 'LCL " ,%X, ‘UCL" ,8X,
S "MRy',&8X,'LCL"*,S5X, 'UCL"/)>
c
CALL CHART (DAT,N,Y(N),YI(N—1) ,MRI(N?)
QDTO 130
=00 IF ((DAT .EQ. 'D') .OR. (DAT .EG@. °‘d')>) CLOSBE(S)
sToP
END
c -
c »
c SUBROUTINE TO COMPUTE THE CONDITIONAL CONTROL LIMITS OF THE OPA -
c Y AND OFPA MRy CHARTS AND DISPLAY THEM ALONG WITH THE CORRESPONDING
c Y AND MR(E)> OF ¥ VALUES -
[ > »
| =3 % %
c
BSUBROUTINE CHART(DAT,I,Y,Y1,MR)
COMMON YBAR,SIOMA,RHO,B
CHARACTER®*1 DAT
mREAL MR, LCL, LL
YCL = RHO#Y1 + Bs*YBAR
LCL = YCL — 3#BesSIOMA
UCL = YCL + J*pesIoMA
c
C = APS(Y1 — YBARr)
D = PHI(-C/SIOMA}
E = PHIS(C/SIOMA)
F = R.OSIOMASE + C#(1.0 — =2.0#D)
EK = BaF
8K = BeSQRT(SISMASBSIOMA + CHC — F*F)
UL = EK + 3#8K
LL = EK — 38K
IF (UL .LE. ©O) UL = 0.0
IF (LL .LE. O) LL = 0.0
IF (CY .®E. LCL)> .AND. (Y .LE. UCL)?> THEN

CT1L =
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ELSE
CTL = ‘&u°
ENDIF
IF ((MR .OE. LL?> .AND. (MR .LE. UL)>)> THEN
cT8 = *
ELSE
CTE = °"%°
ENDIF
IF C(DAT .EQ. 'D'?> .OR. (DAT .EQ. 'd')>> THEN
WRITE (S,80) I,Y,CT1,LCL,UCL,MR,CTE®,LL UL
ENDIF
WRITE (#,80) I,Y,CT1,LCL,UCL,MR,CT2,LL UL
80 FORMAT(1IX , I3, 3N F7.3,A1L,BU1IX ,F7.3) ,4X,F7.3,A1,8(1X,F7.3)3)
RETURN
END
[~ L 2 2 2 2 L 2 2 2 L2 2
c »
[ =4 SUBPROGRAM TO COMPUTE THE CUMULATIVE OF A STANDARD NORMAL »
=] (USED EQUATION 26.2.1% OF ABRAMOWITZ AND STEQUN'S TEXT (174649 »
[~ »*
[ = » L a2 2 2 2 » » »
c
FUNCTION PHI(X)?
DOUBLE PRECISION C(&) ,PH
DATA C/4.9867347D—-82, 2.11410061D-82, J.B776243D-3,
- 3.80036D-S5, 4.889%9058D-3, S.3I3A3D—&/
IF (X .LT. O THEN
Y - DBLE(—-X?
~H m ((((CT(HINY + C(TrINY + T(H))nY + C(A)I»wY
- + C(BY)>®uY + C(l)dinY
PHI = 1.0 — SNOL(1DO — O.SDO®(1DO + PH)#%#(—1&DO)?)
ELSE
Y - DBLE(X)
H m (T (EHEINY + C(I))INY + C(LY)INY + C(I))IwY
- + C(22i)uY + CC1))IwY
PHI = SNOL(1DO — O.SDO¥(1DO + PHI##(—18DO0)>)
ENDIF
RETURN
END
c - 230 A6 A 34 0 98 4 - - » ooy
[ =4 -«
(=] SUBPROBRAM TO COMPUTE THE ORDINATE VALUE OF STANDARD NORMAL »*
c L
c » » L L2 2 2
c
FUNCTION PHIS(X)

DOUBLE PRECISION Y
Y - DBLEC(X)
PHIS = SNOL (O.378%42E8DO#DEXPF(—-Y&#Y/2D0O))

RETURN
END
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