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PREFACE 

This research is concerned with the development and 

evaluation of special control charting techniques for quality 

data generated from a first order response process. The 

primary objectives are to present methodology for 

constructing the control limits of these special control 

charts using a conditional distribution and to use computer 

simulation to determine the average run length of these 

charts. Several SAS programs are used in the study to 

determine the average run length for a particular scenario. 

Modifications of the programs are then done to facilitate the 

determination of the average run length for other scenarios. 

Comparisons of these average run lengths with those of other 

control charts commonly used on continuous flow processes are 

then made. A FORTRAN program is also coded to calculate the 

control limits of these special control charts. It is found 

that the special control charts are capable of monitoring the 

mean and/or dispersion of a first order response process. 
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CHAPTER I 

BACKGROUND AND RESEARCH OBJECTIVES 

Introduction 

Control charts are employed for establishing and 

maintaining the statistical control of a process and for 

helping analyze process capability. Most of the existing 

control charting techniques are based on two major 

assumptions as follows: 

(1) The underlying distribution from which observations 

are drawn is a normal distribution. 

<2> The observations drawn from a py·ocess are independent 

of one another. Hence, the subgroups of any size n 

formed are also independent. 

These two assumptions are not always satisfied in 

industry settings. Violation of the first assumption can be 

easily circumvented by using the Central Limit Theorem or 

some type of data transformation to obtain normality. 

Violation of the second assumption results in a serially 

correlated quality data stream. Serially correlated data 

can be easily encountered in industry processes. The 

measurement data generated from a continuous flow process 

with well mixed vessels such as is commonly encountered in 

1 



chemical, refining and mining processes are often serially 

correlated. These continuous flow processes can be 

categorized in various forms. The form most commonly 

encountered is the first order response process. Box and 

Jenkins <1976> and Hunter (1986>, among others, discuss the 

nature of first order, continuous processes as generators of 

seJ ially correlated data. 

The presence of serial correlation has a ser·ious impact 

on the performance of traditional control charts, causing a 

dramatic increase in the fr·equency of false alarms. This 

proposed research is to develop and evaluate a control 

charting technique to deal specifically with serially 

correlated data generated from a first order response 

process. 

Existing Contr·ol Charting Techniques 

The concept of control charts was formally introduced 

2 

in 1931 by Dr·. Walter Shewhar·t. It is based on the principle 

that variation in measurement data pertaining to a process 

can be separated into two sources - inherent process 

variation due to chance causes and variation due to 

assignable causes. Dr·. Ww Edwards Deming ( 1982) r·efers to 

these as common cause and special cause variation, 

respectively. If the i nher·ent variation can be estimated, 

then, using statistical procedures, it is possible to detect 

shifts in the mean and/or dispersion of a process. Thus, 

the objectives of control charts are to determine whether the 



process is in state of statistical control, to assist in 

establishing a state of statistical control, and to monitor 

current control of the process. The assumptions held in the 

application of Shewhart's control charts are data 

independence and normality. Development of other forms of 

control charts, such as the Individual chart, Moving Average 

chart, Cumulative Sum chart, and so on, all stem from the 

theory conceived by Dr-. Shewhart. 

data independence and normality. 

These charts also assume 

3 

In normal practice, coupled contr·ol char-ts ar·e generally 

used simultaneously, such as Xbar and R charts, Individual 

and Moving Range charts, and Moving Aver-age and Moving Range 

charts, to monitor both the mean and dispersion of a process. 

The two underlying assumptions of data independence and 

normality in those control charts are not always satisfied; 

in these cases, the performance of these coupled control 

charts is seriously affected. 

In situations wher-e the normality of process data cannot 

be held, the Central Limit Theorem can usually be applied to 

justify the assumption of statistic not·mality. The Central 

Limit Theorem essentially states that, under general 

conditions, the distribution of subgroup means will approach 

normality for a large sample size. Approximate normality of 

data for plotting can also be achieved by some suitable forms 

of data transformation <Natrella, 1963) <Dudewicz, 1988). 

Much effort has been invested by researchers to study the 

effect of data non-normality on control charts. 



In situations where the independence of process data 

does not exist, that is, the process data are serially 

correlated, there is no clear way to justify the use of 

control chaT·ts. There are some suggested ways to deal with 

serially correlated data, such as avoidance and compensation 

<Br-ooks and Case, 1986). Avoidance seeks to increase the 

4 

sampling interval to the point that the data are sufficiently 

independent. Compensatior1 seeks to ,-emove the effect of 

serial correlation, back to the point of control. 

may be impr·actical in industry settings. 

Both ways 

Currently, the approach used to deal directly with the 

serially correlated data is through time series analysis. A 

time series model is first fitted on the process data and a 

control chart is then applied to the residuals generated by 

this fitted model. There are some variations in the 

application of the time series approach to serially 

correlated data. The accuracy of a model fitting depends on 

both the number of observations available and the criteria 

used in the model fitting. This approach is quite 

complicated and the calculations involved are tedious. 

Hence, the time series approach is difficult for a non time­

series expert to comprehend and use in industry. 

Data from a Continuous Flow Process 

Measurement data are taken on one OT more 

characteristics of a production unit. In di§cre_i~ processes, 

production units are usually independent discrete items. The 



5 

measured Eharacteristics or these items are independent of 

one another. Subgrouping of several measurements of the same 

characteristic of these items, all taken at the same time, 

doP~ not affect the independence of these quality data. In a 

~on_~!!luous pr-ocess, however-, there is uot a well defined 

production unit <Wortham, 1972> <Dunn and Strenk, 1985>. 

Almost any chemical, petroleum, bulk liquid, or other semi-

homogenized product is a case of this kind. The applicatio11 

of traditional control charting techniques is difricult in 

such cases since the sampling unit is defined in terms of 

laboratory analysis requirements rather than in, say, 

shipping units of product. 

This problem is even compounded by the fact that to pull 

n samples in a row from a continuous flow process will 

usually result in ranges of near· zero, with the tauge being 

an almost pure measure of test variation <Walter, 1955>. 

Thus, in continuous flow processes, the most common samplir~ 

subgroup size is one. However, even when a sample is pulled 

one at a time at regular intervals, the measurements of these 

samples are bound to be correlated to one another. 

Most continuous processes have associated tanks, drums 

or vessels where mixing takes place. Often, as new materials 

are continuously added to the top of a tank, the well mixed 

product is drawn from the bottom, simultaneously. Due to 

this nature of mixing, a sample taken now has some material 

in it that was produced one, two, or even more sample periods 

ear 1 ier. This mixing pr-events the samples fr-om behaving 



independently, thus the data are serially correlated. The 

relation of the cur-rent observation of pr-ocess output with 

the past process output can be statistically quantified. 

To deal with the difficulties caused by the natural 

characteristics of continuous flow processes, Freund (1960) 

suggests the use of the acceptance control chart in batch ot 

continuous processes. Walter (1955> suggests the use of 

contr-ol charts of moving averages of subgroup size four and 

moving ranges of subgroup size two in the continuous process 

control of a petroleum refinery. The use of exponentially 

smoothed data in control charts for continuous process 

control is suggested by Wortham (1972). Moving Average and 

Range charts, and Individual and Moving Range charts are 

also suggested for the monitor-ing of continuous flow 

processes <Grant and Leavenworth, 1988>. Koo < 1987> 

discusses how the Xbar chart, Individual chart and Moving 

Average chart can be economically used to monitor continuous 

flow processes. Occassione <1956> discusses how Xbar and 

Range Charts are applied to continuous processes. In all 

these cases, however, the existence of set ial cor-relation in 

the data of continuous flow processes is still not addressed 

explicitly. Rather·, all the methodologies suggested still 

assume the existence of normality and independence in the 

process data. In some cases, the dependence of process data 

is acknowledged but avoidance is used to deal with it. 

This research specifically attempts to deal explicitly 

with the serially correlated data from a continuous flow 

6 



7 

process. for simplicity, only a single output of interest 

from a continuous flow process is considered in this 

research. 

A typical first order continuous flow process can be 

depicted as in Figure 1.1. The output Y's generaterl by a 

first order- process are dependent on the independent input 

X's and serially correlated to one another. That is, the 

cur-rent observation of Y is not independent of past 

observations of the same output. The lag i serial 

correlation of output Y can be calculated to deter·mine the 

relationship between data that are i observations apart. The 

lag i serial cor-relation, r t., can be estimated using the 

equation <Box and Jenkins, 1~76>. 

n-i 
I: <Yt - Y>*<Yt+t. Y> 

t=l 
rt. = ( 1.1> 

n 
1: <Yt - Y) 2 

t=l 

where 

n 
I: Yt 

t=l 
y = 

n 

Due to the distribution of the estimated serial 

correlation, the estimate of the serial correlation is 

accur·ate only for a large number of observations. In an 

industry setting, one may or may not have the large number of 

observations to estimate the serial cor-relation of the 



Inpt!_t 
X1 ---> First 
Xe ---> Order 

: Process 
X., ---> 

Output 
~-------------> v 

Figure 1.1. First Order Process Having Single 
Output V of InteJ-est 

8 
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process Of.!tput. Unfortunately, the time series analysis 

approach uses the estimate of the serial corr·elation. Hence, 

the time series model developed cannot correctly capture the 

correlation structure, especially when it is a short run 

process. With only few observations to beqin, say 25-30, the 

time series analysis appToach is definitely a poor one. Even 

with a sufficient number of observations for the estimatior1 

of serial correlation, depending on the criteria used in the 

model fitting, there will be several possible time series 

models for a given series of output. Using the model 

identification macro program in TIMESLAB developed by NewtorJ 

<1988>, this fact can be easily verified. The usual practice 

in the quality control discipline is to employ models which 

use parameters parsimoniously. However, the validity of this 

selection criterion in the quality control discipline has not 

been proved yet. 

Subgroup Variation in a Continuous 

Flow Process 

In traditional control charting, the variation of 

observations can be divided into two categories: within-

subgroup and between-subgroup variations. This is done 

through the use of a concept called rational subgrouping. 

Within-subgroup variation is a measure of inherent or- common 

cause variability. Common cause variation exists in all 

processes. It can be calculated fr·om control chat·t data and 

is designated u. Between-subgroup variation is the 



variability from subgroup to subgroup, or the special cause 

variation in addition to the common cause or inher·ent 

variability. The measurement of total process variation is 

s. When a process is stable, or in a state of statistical 

control <SOSC>, there is no variation from subgroup to 

subgroup and s is equal to u. However, when the process is 

10 

out-of-control, the between-subgroup variation exists and it 

inflates the value of s well above the value of a. 

Nm·mally, control charts are constructed using empir·ical 

data collected from an industry process. The state of the 

process, either in-control or out-of-control, is usually 

unknown; that is why control charts are needed. Therefore, 

if control limits are calculated using measurement of the 

total variation, s, the control limits will reflect only the 

inherent process variability of the process if it is in 

control. Otherwise, the control limits will be wider since 

the value of s consists of both between-subgroup ar~ within-

subgroup variation. Hence, the probability of detecting an 

out-of-control condition would be •-educed because the contr·ol 

limits are now wider apart. Thus, it is important to 

calculate the control 1 imi ts using the measur·ement of within-

subgroup variation, a. The usual practice is to use the 

subgroup range to compute the estimate of within-subgroup 

variation, a CPatnaik, 1950) <Duncan, 1986> CGr·ant and 

Leavenworth, 1988> (Nelson, 1990). 

In a continuous flow pl·ocess, sittce observations ar·e 

drawn one at a time at a regular interval, the within-
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subgroup ~ariation is usually estimated by the moving ranges 

of size n = 2. This is to safeguard that the variation 

computed contains as nearly as possible only the inherent 

variability of the process. The moving y·anges of size two 

are formed from a time series of output values by finding the 

range of the first two consecutive values, and subsequently 

dropping the oldest value and adding the newest value to form 

each successive Tange. The use of the moving r·ange to 

estimate the process variation is also discussed by 

Wadsworth, et al., (1986>, Gibra (1975) and A.S.T.M. Special 

Technical Publication (1976). The estimation of process 

variation using moving ranges still assumes data independence 

even though data are drawn from a continuou~ flow process. 

This difficulty can be dealt with by applying Har·tley's Lemma 

(1950> which states that, if Y1, Ye, ••• , Vk denote a 

multivariate observation from a multinormal distribution with 

equal variance u2 and equal correlation r, then the range of 

the Vi. is exactly distributed as the range in a subgr·oup of k 

independent normal variates with variance u2(1-r> and 

further, is distributed independently of the mean, Vbar·. 

This research will use Hartley's Lemma and the moving ranges 

of size two in the estimation of the process inherent 

variation. 

The Nature of Continuous Well-Mixed Processes 

To understand how serially correlated data may be 

obser·ved, a continuous well-mixed pr·ocess is considered. A 
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typical simple chemical process is shown in Figure 1.2. 

Inputs to a plug flow reactor result in output which is 

represented by characteristics of interest. Typical inputs 

to a reactor might include monomer concentration, catalyst 

strength and temperature; important outputs might be 

molecular weight of the resulting polymer, moisture content, 

or organic chlorine level <Brooks and Case, 1986). 

That output then flows directly to an agitated <well-

mixed) tank. The tank output delivers the same product, now 

more homogenized. That output is now designated as Y to 

denote that it is observed downstream of the agitated tank, 

as opposed to X which appear·s at the tank input. It is 

clear that the major effect of the tank will be to smooth or 

homogenize the variatior1 in product coming fr·om the reactor. 

It is often not possible to measure output X. If it 

were, this research would not be needed. Rather, the first 

opportunity to measure the characteri~tic of interest is at 

downstream output Y. The mixing process results in a gr·adual 

output response relative to a change made at the input of the 

tank. That is, the first order· output response Y at some 

arbitrary time s, s > 0 , after a step disturbance in the 

input to the tank (output X> at time 0 follows the c1assical 

exponential response 

( 1. 2) 

where .,. is a constant representing the residence time of 

the tank and s is also the sampling interval. If the 

sampling interval equals to the residence time of the tank, 
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Output, X 
Reactor 

==~I._______. w 

Inputs: 
x1,xe, •• x.., 

< > 
L-----> Output, Y 

Figure 1.2: Simple Chemical Process 
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then only _e- 1 = 0.386 of the "old" pr·oduct from time 0 would 

remain in the tank at time s = T. The residence time T is 

equal to the ratio of occupied tank volume to the volumetric 

flow rate for a first order process. This equation is 

similar to those found in Box and Jenkins (1976>, Coughanowr 

and Koppel (1965>, and MacGregor and Tidwell (1980>. 

It is assumed that the length of sampling interval can 

be fixed. Thus, by letting e-w/..- = r , output Y can be 

observed as a single measurement at a fixed time s apart. 

By indexing the observed output of Y, Equation (1.2) can be 

rewritten as a generalized equation for any time period. 

Y < t) = r Y < t-1 > + ( 1-r-) X< t > ( 1. 3) 

where t = time index for output Y 

r· = is also known as a fi 1 ter constant 

Brooks and Case <1986> have shown that if the serial 

correlation of Y<t> is ignored, then the control charts used 

to monitor the process will be based on the assumption of 

data independence. These contr-o 1 cha•· ts sur e 1 y generate 

false signals about the process and unnecessary corrective 

action wi 11 be implemented, they·eby worsening process 

stability. The internal serial correlation, between 

contiguous members of the Y time series, is inherent in well-

mixed chemical processes. Failure to meet the assumption of 

data independence means that all the existing common control 

charting techniques are not appropriate to be used. 

Moreover, process capability indices cannot be calculated 

with assurance, nor can any usual statistical inference be 



made concerning the data, without first considering 

e)(plicitly the effect of data dependence. 
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In industry, most of the response processes such as 

refinery pr·ocesses a•·e higheJ order response pr·ocesses. 

However, a higher order response process usually can be 

'broken down' into smaller components of lower order t·esponse 

processes. As long as the physical structure permits 

obsetvations to be sampled, all the lower order response 

processes can be monitored and controlled in isolation. 

Oftert, the lower order response processes ar·e the first otder 

responses processes. Each FORP can be monitored and 

controlled separately. By first principles, the chemical 

engineer is able to determine the filter constant of many 

FORPs and proper· quality control tools can be used to monitor· 

and control such response processes. 

Research Objectives 

Based on the above discussion, the scope of this 

research can be stated as follow: 

Objective: To develop and evaluate procedures for 

detet·mining a pair of new contr·nl charts capable 

of monitoring both the mean and dispersion of 

serially correlated quality data generated from a 

first order response process <FORP>. 

In or-der to accomplish this objective, several 

subohjectives must be met. The subobjectives are: 



1. To de~ive and construct procedures for determining the 

appropriate control limits for the control chat·t that 

monitors the mean of serially correlated quality data 

generated from a ~ORP. To facilitate further 

discussion, the control chart constructed in this 

subobjective is denoted as an OPA Y chart. 

2. To derive and construct procedures for determining the 

appropriate control limits for the control chart that 

monitors the dispersion of serially correlated quality 

data generated from a FORP. To facilitate further 

discussion, the control chart constructed in this 

subobjective is denoted as an OPA MRy chart. 

3. To analytically show that when the proposed control 

chart procedures developed in subobjective <1> is 

applied to the serially correlated quality data 

geJier·ated fr·om a FORP, it has the same Average Run 

Length <ARL> as an Individual chart applied to an 

independent normal data str·eam. 

4. To determine the ARL of the proposed control chart 

procedur-es developed in subobjective <2> for· different 

magnitudes of stepwise shifts in the dispersion nf the 

input variable to a FORP using a simulation approach. 

5. To determine the ARL when both the proposed control 

chart pr-ocedures are used simultaneously for di ffer·e11t 

magnitudes of stepwise shifts in the mean of the input 

var· iab le to a FORP using a simulation approach. 

6. To compare the ARLs of the OPA Y chart versus those of 

16 
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the I chart when all of these charts are applied to the 

same FORP data stream. The shift in the mean of the 

input variable to a FORP data stream is either stepwise, 

trend or cyclical. 

7. To compare the ARLs of the OPA MRy chart ver-sus those of 

the MR<2> chart when these two charts are applied to the 

same FORP data streams. The shift in the dispersion of 

the input variable to a FORP data stream is a stepwise 

shift and the shift in the process mean is either tr-end 

or eye 1 ica L. 

8. To determine and compare the ARLs of the OPA Y chart, and 

the combined OPA Y and OPA MRy charts fur different 

magnitudes of stepwise shift in the mean of the ir~ut 

variable to a FORP data stream when the value nf the 

supposed-to-be-known filter constant of the FORP, r, is 

either understated, correctly stated or overstated. 

9. To determine and compare the ARLs of the OPA MRy chart 

for different magnitudes of stepwise shifts in the 

dispersion of the ir~ut var·i~ble to a FORP data stream 

when the value of the supposed-to-be-known filter 

constant of the FORP, r, is either under stated, cmr ectl y 

stated or overstated. 

10. To determine the ARLs of Montgomery's modified EWMA chat t 

when it is applied to a FORP data stream for different 

magnitudes of stepwise shifts in the mean of the input 

variable to the FORP. 

11. To compare the ARLs in subobjective <10> with those of 



the OPn Y chart which is also applied to the same data 

stream as the modified EWMA chart. 

18 

12. To determine the ARLs of the OPA Y chart and OPA MRy 

char·t when these cha•··ts are applied to data from a highet­

order response process. 

13. To investigate the robustness of the proposed contt·ol 

chart procedure to the degree of order of a response 

pr·ocess using the ARLs from subobjectives (3), (4) and 

( 12). 

14. To develop a simple and flexible inte1active user 

computer program to implement the proposed control 

char·ting technique. 

Research AssumptioJ~ 

In order to further define and nelimit this research, 

cer tai n general assumptions ar·e made. They include: 

1. The serially correlated quality data are generated from 

a FORP. 

2. The user of the p1·oposed control char·ts has a pl io1· 

knowledge of the FORP involved. Usinq first principles, 

it is assumed that the user knows the numer· ical value of 

the filter constant, r. 

3. The input variable, X, to the FORP cannot be measur-ed. 

Thus, its parameters must be determined from the 

observable, but set ially correlated output variable, Y. 

4. Only a single variable of input X is of interest to the 

user. The FORP does not intr-oduce any extra variation. 
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Thus, by monitoring the correspondinq output variable V, 

the input value X can be monitm·ed accordingly. 

5. In the case of a continuous flow chemical process which 

exhibits a first order tesponse behavior, the in-flow 

rate to the process is equal to the out-flow rate. 

Moreover, instantaneous and complete mixing is assumed 

when a change in the input is made. For a non-continuous 

flow FORP, similar· and comparable assumptions are also 

made. 

6. It is assumed that the input variable, X, is independent 

and identically distributed. 

of variable X is normal. 

The underlying distribution 

7. The sampling subgroup size is one anrl samplinq is done 

at a regular interval. 



CHAPTER I I 

LITERATURE REVIEW 

Introduction 

Since traditional control charting was first introduced 

in the 1930's, various techniques have evolved to deal with 

different pr·ocess control situations. Each control charting 

method is built on different sets of assumptions. The most 

common assumptions made among var·ious charting techniques ar·e 

the independence of data and the normality of the underlying 

population from which the data are drawn. 

The development of various control charting techniques 

has been compiled by Gibr·a ( 1975> and Vance ( 1983>. It shows 

the variety in the efforts to study the performance of 

different processes through control charting techniques. 

From the literature, it is clear that even though some effort 

has been geared to the development of control chaTting 

techniques that deal with serially correlated data, they are 

often developed on a generalized se1·ially correlated data 

stream. Moreover, the application o·f these techniques is 

difficult. 

This research concentrates on the monitorir~ of a 

correlated data stream from a FORP. Due to the inadequacy of 
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existing control charting techniques to monitor the mean 

ann/or- dispersion of a FORP, it is imperative to develop a 

control chartinq technique that deals specifically with 

quality data generated from a first order r-esponse pr-ocess. 

Background 

The concept of control char·ts was fir-st introduced in 

the 1930's by Dr. Walter Shewhart <1931). The concept was 

built on the assumption that the measurable characteristic 

of a manufdctured product is always subject tu some 
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uncontr-ollable variation. The var-iation is divided into two 

parts: 1) a stable system of chance which is normal to the 

pr-ocess, and 2> variation outside of this stable patter·n 

which can be discovered and corrected. Independence and the 

liOJ mali ty of the process data requir·ements ar·e inher-ent in 

the concept and also mentioned in most statistical quality 

contr-ol texts <Duncan, 1986 > (Grant and Leavenwm th, 1988> 

<Wadsworth, et al., 1986). 

In the 1960 • s, Lieberman ( 1965> summar·ized the concept 

of the Shewhart control charts. Ue points out that the 

Shewhart control char·t has as its functions to: < 1 > 

determine the process capabilities, <2> detect and identify 

assignable causes of variation, and <3> p•-ovide guidance in 

correcting the process. The traditional control chart is a 

chart of data fr·om the pr·ocess, and its primary pur-pose is 

to provide a basis from which corrective action is taken. 

The action is taken when a plotted point falls outside a 
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fixed limit, or a succession of points fall between some less 

extreme 1 imi ts. Even though tr·adi tiona! Shewhart control 

charts are powerful in detecting process shifts in mean and 

dispersion, they fai 1 to per··for·m well under certain 

situations. 

Situations such as the existence of correlated data 

within subgroups, correlation between subgroups, non­

normality of the underlying process from which subgroups are 

drawn, cyclic trends in data and so on, affect the conclusion 

oue makes about the pr·ocess. The risks of Type I and/or Type 

II errors usually is inflated if traditional control charting 

techniques are used in these situations. 

Correlation in Shewhart•s Control Charts 

Neuhardt <1987> studies the effects of em-related data 

within subgroups in statistical process control. Correlated 

data within subgroups arises because of simplicity in data 

collection due to multiple, but similar, measurements on a 

single product 01 multiple station machines. When each 

subgroup is considered as an independent sample of a 

mul tivar·iate r·andom vector , the paper investigates the 

cunsequences of unrecognized or unaccounted ·for correlation 

and how the control rules should be modified if the 

correlation is recognized. Neuhardt realizes that the 

effect of correlated measurements within subgy·oup incr·eases 

the Type I error rate for the Xbar chart. That is an nut-

of-control condition whicl1 occurs too fr-equently in the Xbar 
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chart. However, the variance charts are not affected in the 

same fashion when equality of covat iances of the measutemellts 

is assumed. 

Alt and Deutsch <1979> show the effect of cottelated 

observations within indeper~ent samples on the parameters of 

the Shewhar· t X bat· chart. They extend the method proposed ~y 

Page <1954> to the case where the within-subgrouJJ 

observations are cort·elated. They find that the subgroup 

size n needed to detect a shift of a given magnitude 

increases with the extent of cor-re1 at ion. Both ar· tic 1 es deal 

only with correlation within subgroups and not correlation 

between subgroups. That is, the subgt·oups ate still assumed 

to be independent from one another. 

Ali (1987) studies the effect of dependency between 

observations on the distribution of the sample mean and its 

r·ate of convergence to normality. He gives various methods 

tu approximate the distribution of the sample mean of 

dependent observations gener·ated from a stational y stochastic 

process and the departure from the normal distribution is 

numerically assessed for a , .. ange of models. It is shown that 

the convergence to normality is slowed by the degree of 

correlation, the degt·ee of skewness in the r·andom variables 

defining the stochastic process, and on the subqroup size. 

His results show that the central limit theor·em is still 

valid in the sample mean of correlated data. 

Throughout the development and fine-tuning of the 

traditional control charting techniques, several factors 
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have been tabulated for the calculation of various control 

limits. These tables can be found in many statistical 

quality control texts <Duncan, 1986) <Grant and Leavenworth, 

1988) <Wadsworth, et al., 1986). These facto~s are derived 

under the assumptions that the subgroups are drawn from a 

nor·ma 1 pr ocess and the subgroups ar·e independent of one 

another. Thus, violation of these assumptions makes the 

factors inappropriate. 

Co11 elation in OtheT Contr·ol ChaT ts 

Goodman (1982) discusses how the CUSUM can be used in 

a continuous flow py·ocess which generates seT-ially co1related 

data. Johnson and Bagshaw <1974>, and Bagshaw and Johnson 

< 1975) study the effect of sel ial em-relation on the 

performance of the CUSUM charts. They investigate the 

influence of ser·ial coT-relation fm both the fixed sample 

size and sequential versions of CUSUM tests. They cone lude 

that the CUSUM test is rmt robust with respect to departures 

from data independence. Kartha and Abraham (1979) study the 

effect of serial con· elation on the aver age run length of 

CUSUM charts. The average run length is found tu LJe 

decreased by the presence of seT ial coT-relation. Nath 

<1976) develops the control chart for fraction defective for 

the case of dependent observations. 

So far, not much work has been documented on the studies 

of the effect of data correlation in othe1 types of contTol 

charts such as the Individual chart, Moving Range and Moving 
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Average charts. 

Correlation in Manufactur .. i ng Data 

Jacobs and Lorek (1980) show that daily manufacturing 

data may not be independent and normally distt ibuted. They 

warn that by using the assumptions or data independence and 

normality in variance investigations, the results may not be 

valid. They conclude that care should be taken when making 

variance investigatio11s, for· example, setting control limits 

based on this type OT nata. They recommend that 

investigators eithet use weekly data which ar·e mote likely 

to be independent or one another and normal, or that they 

use statistical methods which explicitly take into account 

serial correlation or non-normality. 

Hubele and Keats <1987> point out when automatic 

control is implemented, J.lractically all data can be 

collected. In these cases, Shewhart's conttol charts are 

usually not apJ.lropriate because they require independent and 

normally distr-ibuted data. Consequently, time-series 

analysis may be more useful for process control when all the 

data are available in an automatic control mode. 

Hahn (1977) presents an example where the data are 

nonindependent while the statistical analysis ignored this, 

thereby resulting in a wrong conclusion. He conveys the 

message that analyses failing to take into account 

nonindependent data can lead to wrong conclusions. 

In industr-y, serially correlated data may have long been 



neglected~ This may be attributed to the fact that it is 

mor·e campi icated and tedious to deal with cmTelated data. 

Thus, people often avoid them and simply ignore their 

existence. But, with today's computing power, corTelation 

in quality data can be analyzed and more meaninyful and 

accur·ate process control can be achieved. 

Time Series Approach to Serially 

Correlated Quality Data 
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The idea of dealing with correlated data using a time 

series approach emerged in the 70's when Stamboulis (1971> 

relaxed the assumption of independence and replaced it by 

dependency intr-oduced via an AR<1> model with pa1ameter ex. 

Vasilopoulos and Stamboulis <1978) further modified and 

extended the standard Shewha1·t control charting technique by 

introducing dependence via a second order autoregressive 

p•-ocess <AR<2> Model>. Curves of modified auxiliary quaJjty 

control factors are presented in their paper. 

The use of a time seties analysis approach to deal with 

the correlated data is also suggested by Alwan and Roberts 

( 1988>. They pr-opose and illustrate the use of two basic 

charts, the Common-Cause Chart and the Special-Cause Chart, 

in sorting out special causes from common causes. The 

autoregressive integrated movinq average <ARIMA> model of 

Box and .Jenkins is filst used to model systematic norwa11dom 

behavior of the out -of--control process. A standard control 

char-t for residuals of the fitted model is then used to 
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detect departures from control due to special cduses. 

Montgomery <1990) presents two methods for applyir~ 

statistical control charts to serially correlated data. The 

first method is based on modeling the autocorrelative 

structure and applying control charts to the residuals. The 

second method is a simple modification of the Ex!-Jonentially 

Weighted Moving Average <EWMA> control chart. The EWMA is 

found to be the optimal one-step-ahead forecast for· the mean 

of an IMA <1,1> model. rhus, the forecast for the 

observation in period t+1 which is made at the end of period 

t is used as the center line for the control chart in period 

t+1. The star~ard deviation of these one-step-ahead 

prediction errors is then used to construct control limits 

for period t+1. The major assumption Montgomery makes in 

his paper is that the observations from the process can be 

well-modeled by an IMA <1,1> model. He claims that in 

practice the IMA <1,1> model is a very good approximation 

for forecasting the level of a time ser· ies. Alwan and 

Roberts <1988> also note that the IMA <1,1> model produces a 

forecast of the mean level of the sey··ies that is 1 obust to 

the exact form of the underlying ARIMA model. Montgomery 

concludes that the EWMA control chatt is a very useful 

procedure for application to serially correlated data. 

Sahrmann <1979> illustrates how time series analysis 

can be used in coating weight control for reverse roll 

coating. He uses a time set··ies analysis appr·oach to identify 

sources of cyclical variation and then measures their 
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relative contribution to overall process variation. Methods 

for dealing with serially con-elated data ate also suggested 

by several authors. These include, Berthouex, et al. <1976, 

1978>, Dooley, et al. ( 1986, 1990>, Er·mer· ( 1979, 1980), 

Ermer, et al. (1979>, Liao, et al. (19U2>, Montgomery and 

F1 iedman ( 1989>, Notohat·djono and Et·me• ( 1983, 1986) and 

Yourstone and Montgomery <19BCJ>. 

Although the tactical -"PI--·u-naches to the problem of 

serial correlation taken by these people o~ten differ from 

one another, the stJ·ategic tht ust of their eff01 ts ar·e 

identical. That is, they wish to fit an appropriate time 

seties model to the observations and then apply control 

charts to the stream of residuals from this model. 

Need fm Study 

From the above discussion, it is clear that there are 

at least fout good reasons why this Jeseatch should be 

performed: 

(1) Even though time series analysis is used to deal with 

correlated data, there are three major drawbacks. They 

are: 

( i > a 1 ar ge number · of subgroups is needed bef ot· e a 

proper time series model can be accurately fitted, 

(ii> theTe is usually more than one model that well fits 

the data, and 

(iii> computation in the time ser·ies analysis is 

complicated and tedious. 
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<2> Correlated data is very common in the process 

industries. A simple, easy to use and easy to 

understand control chartinq technique is not nnw 

available. In the process industries, the typical 

method used to deal with correlated data is avoidance. 

Some may just ignor-e the fact that cor· r·elated data exist 

and hence, they are sure to make wrong conclusions and 

take unnecessary corrective action. 

<:J> Several researchers have investiqated the effect u f 

cor-related data. However, they emphasize only on the 

correlation within subgroups. Often, the multivariate 

normal distribution is assumed to be the appropriate 

underlyinq distribution. Under these circumstances, 

the independence betweert subgroups is still assumed. 

(4) The FORP is one of the most commcJnly encountered 

pr-ocesses in industr·y. The existing contr-ol char·ting 

techniques can not monitor correlated data from d FORI' 

effectively. Thus, it is imperative to develop a 

control charting technique specifically for correlated 

data genet·ated from such a process. 

Conclusion 

The existence of corTelated data in the quality coutroJ 

discipline can no longer be neglected. From the literature 

above, it is clear that the issue of con·elated data has been 

neglected for a lung time. No work has been documented on 

the development of a control char·t specifically fot ser·ially 
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correlate~ data generated from a first order response 

process. All recent efforts are geared to the time series 

analysis approach to serially correlated data. This research 

will satisfy one major need by providing a control charting 

technique which deals directly with serially correlated data 

generated from a first order response process. 



CHAPTER III 

MEAN CONTROL CHART FOR QUALITY DATA FROM 

A FIRST ORDER RESPONSE PROCESS 

Introduction 

In this chapter, a derivation of the mean and the 

asymptotic standard deviation of the serially correlated data 

stream generated from a first order response process is 

presented. The control charting technique specifically deal6 

with the mean level output of a first order response process. 

The proposed mean control chart, denoted as an OPA Y chart, 

is based on conditional distribution theory. Linear model 

theory <Graybill, 1976> is used to derive the conditional 

control limits of the proposed OPA Y chart. A numerical 

example is then presented to illustrate how the proposed OPA 

Y chart can be constructed using some empirical data. 

Unlike the traditional Shewhart control charts in which 

control limits are computed once and used for all plotted 

points, control limits for the OPA Y chart are computed from 

point to point. That is, at the current plotted point, one­

period-ahead control limits are computed for the next plotted 

point. The process is considered out-of-control at the 

current time period if the current plotted point falls beyond 
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its one-p=riod-ahead control limits constructed one period 

before. The one-period-ahead control limits for the next 

plotted point depend on the current plotted point. In a 

traditional control chart, control limits are set to be three 

sigma away from the center line; in this proposed OPA V 

chart, every pair of the conditional one-period-ahead control 

limits is also set at three sigma away from its center line. 

Distribution of v~ 

The distribution of a serially correlated output variate 

from a first order response process at the t~" time period is 

derived in this section. It is assumed that the input random 

variable, x~, to the first order response process, is 

independent and identically distributed. The underlying 

distribution of x~ is a normal distribution with mean, ~, and 

standard deviation, u. A random v'ector of X can be easi 1 y 

formed by grouping the first (t+l) of the X's. 

model theory, the random vector is 

. . . ' 

Using linear 

and is distributed as a multivariate normal with mean vector, 

~~~+1, and covariance matrix, u21~+1• 

Recall that the first order response equation is 

Y~ = rY~-1 + <1-r>X~ 

Substituting 

Y~-1 = rY~-e + <1-r>X~-1 

into Equation (3.1> results in 

(3.1) 

(3.2) 
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Yt = r2Yt-e + (1-r>rXt-1 + (1-r>Xt 

Continuously substituting for the first term on the right 

hand side of the equation results in 

Yt = 
t 
1: 

k=O 

+ (1-r>Xt 

(3.3) 

Thus, Yt is a linear combination of <Xo, X1, ••• , Xt>'. 

Letting 

z1 = Yt = (1-r)rtXo + (1-r>r""-1 X1 + + (1-r>Xt 

Ze = Xt = 0 + 0 + 

Za = Yt-1 = (1-r)rt-1Xo + <1-r)r,t-ex1 + + OXt 

These three equations can be written as 

z = AX 

where z = <Z1, Ze, Za>' 

(1-r)rt (1-r)rt-1 (1-r)r 1 <1-r> 

A = 0 0 0 1 

<1-r)rt-1 <1-r)rt-e <1-r> 0 

The dimension of matrix A is 3 x (t+1). It can be shown that 

for large t, Z is distributed as a multivariate normal. 
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<1-r> <1-r>r 
<1-r> 

v .. ... (1+r> (1+r> 

z = x .. - N ... u2 (1-r) 1 0 (3.4) 

' Y._-1 ... <1-r>r <1-r> 
0 

(1+r) (1+r) 

Detailed derivation can be found in Appendix B. Using linear 

model theory, it is clear that the asymptotic distribution of 

Y, - NoriRal [· u• 
< 1-r> J 
(1+r) 

(3.5) 

It is also easily found that x._ and Y .. -1 are independent of 

one another. The variance of v._ can also be derived by 

viewing Equation (3.1) as a first order autoregressive 

process, AR<1>; since it can be expressed as 

v._ = cxY._-1 + e._ 

where ex = r and e._ = <1-r>X.__ The computation of the 

variance of v._ follows directly from using Box and Jenkins 

( 1976). 

It may be tempting to construct a control chart for the 

mean of FORP data using the mean and variance as shown in 

<3.5). However, due to the correlated nature of v._, a mean 

chart developed using these mean and variance values is found 

to be inefficient in detecting process changes. It is also 

pointed out before that a time series approach to correlated 
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data is quite complicated and tedious. Thus, even though a 

FORP can be modeled as a time series model of AR<l>, in this 

research the time series approach is not used on the 

correlated data from a FORP. Rather, an one-period-ahead 

control chart, an OPA V chart will be developed using the 

mean and variance of the conditional distribution of Yt. 

Conditional Distribution of Yt Given Yt-1 

Recall that the joint distribution of <Yt, Xt, Yt-1>' is 

the expression in <3.4>. If Yt-1 is known and it takes on 

the value k. Then, from linear model theory it can be shown 

that the joint distribution of B = <Yt, Xt>', given that Yt-1 

equals k, is a bivariate normal. 

B - Normal [
(1-r)2 

a2 
<1-r> 

(3.6) 

If it is further assumed that Xt takes on value c, then 

the conditional distribution of Yt, given that Yt- 1 equals k 

and Xt equals c, is found to be 

for Yt=rk+(l-r)c 

otherwise (3.7) 

That is, when Yt-1 and Xt are given, the value of Yt is 

deterministic. 

If Xt is a random variable from a normal distribution 

rather than a specific value, c, then it can be shown that 
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the distribution of v~, given that v~-1 equals k and x~ is 

normally distributed with mean ~ and variance u2, is a normal 

distribution with mean rk+<1-r>~ and variance (1-r)2u2. 

Conditional Control Limits 

of the OPA Y Chart 

(3.8) 

From (3.8>, the one-period-ahead control limits can be 

constructed for the proposed OPA y chart. The central line 

and control limits for the t~" plotted point are: 

CLaPAV = rY~-1 + (1-r)~ (3.9> 

UCLaPAV = rY~-1 + < 1-r > (~+3u> (3.10) 

LCLaPAV = rY~-1 + (1-r><~-3u> (3.11> 

From (3.7) it is clear that, given the observed value 

of a serially correlated datum ¥~-1, the unobservable 

independent variable x~ will determine the observable value 

of Y~. Thus, x~ and v~ constitute a conditional point-to­

point mapping and the condition is that the value of Y~-1 

must be known. Due to this conditional point-to-point 

mapping, it is found that the Type I and II errors of any 

plotted point on the OPA Y chart are identical to any plotted 

point on the Individual chart for an independent normal data 

stream. 

To explain this fact, a phantom Individual chart is 

used for the X random variable. Let the upper and lower 

control limits of the Individual chart of X be denoted as 
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UCLx and ~CLz, respectively. Since X is normally and 

independently distributed with mean ~ and standard deviation 

u, the phantom Individual chart for this X variable has the 

following upper and lower control limits. 

UCLx = ~ + 3a 

LCLx = ~ - 3u 

If X at time period t, Xt, falls exactly on UCLx, and Yt-1 is 

known and has value k, then, from Equation <3.1>, Yt is 

Yt = rk + <1-r><~ + 3a> <3.12> 

Likewise, if Xt falls exactly on LCLx, and Yt-1 is known and 

has value k, then, from Equation (3.1>, Yt is 

Yt = rk + <1-r)(~- 3u> (3.13) 

Since <Xt, Yt> is a point-to-point mapping, the 

probability of Xt falling beyond UCLx is the same as the 

probability of Yt falling beyond rk+(l-r)(~+3u). Similarly, 

the probability of Xt falling beyond LCLx is the same as the 

probability of Yt falling beyond rk+<l-r><~-3a). Thus, if 

the one-period-ahead upper control limit of Yt on the OPA V 

chart, UCLoPAv, is assigned the value rk+<1-r)(~+3~> and the 

lower control limit, LCLoPAv, is assigned the value 

rk+<1-r><~-3u>, then the Type I and II errors of the proposed 

OPA V chart at this plotted point Yt are identical to the Xt 

point plotted on the Individual chart for an independent 

normal data stream. It is noted that the assignments of the 

UCLoPAv and LCLoPAv with (3.12> and <3.13>, respectively, are 

identical to the control limits constructed in <3.10> and 

<3.11>, respectively. 
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Since each plotted point on the proposed OPA V chart 

has its own one-period-ahead control limits, it leads to the 

fact that any plotted point on the proposed OPA V chart has 

identical Type I and II error risks as the Individual chart 

for an independent normal data stream. 

To use the one-period-ahead center line and control 

limits as in <3.9>-<3.11> for serially correlated data 

observed empirically from a first order response process, the 

mean and variance of the unobservable variate X must be known 

or estimated. Using Hartley's Lemma, it is found that 

MRybar 
= av -/( 1-r) ( 3. 14) 

de 

Equation <3.14> is also shown in the paper by Cryer, et al. 

<1990). From <3.5>, it is found that 

-/( 1-r) 
av = a 

-/(1+r) 

... v = ~ 

Substituting <3.15) into (3.14> results in 

MRybar 

de 
= a 

a = 

<1-r) 

-/( 1+r > 

MRybar -/( 1 +r > 

de ( 1-r) 

(3.15) 

(3.16) 

(3.17) 

Substituting (3.16) and (3.17) into (3.9)-(3.11> and using 

the average of V values, Vbar, as an estimate of ..-v, the one­

period-ahead control limits of the OPA V chart for the tth 

time period are 
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CLoPAV = rY-t.-1 + ( 1-r > Vbar <3.18) 

rv._, + (1-rl(:bar + 3 
MRybar .t( 1+r '] 

UCLoPAV = 
de (1-r) 

(3.19) 

~ rV •-• + ( 1-r l (:bar 
MRybar .f( l+rl J 

LCLoPAV - 3 
de (1-r) 

(3.20) 

Values of Vbar and MRybar can be calculated from the first 

few, say 25-30, measurements of the Y variate. Obviously, 

the accuracy of these estimations increases with the number 

of measurements used. 

Numerical Illustration 

A numerical example is presented in this section to 

illustrate how to use the proposed OPA Y chart on serially 

correlated data generated from a first order response 

process. As stated in the assumptions of this research, the 

user is expected to have a prior knowledge of that particular 

first order response process. The value of the filter 

constant, r, is assumed to be known using first principles. 

Assume that the first order response process to be 

monitored has a filter constant r equal to 0.8. Suppose that 

30 measurements from this process have been ObSPrved from the 

1•-t. to the 30-t.h time periods. At each time period, only one 

measurement is collected. These 30 measurements are the V 

values and they are presented in TABLE 3.1 in time order. 

The moving ranges of subgroup size two of V, MRy, are 
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calculated. The average of V and MRy are also computed. 

These two quantities are essential to compute the one-period­

ahead control limits. The one-period-ahead control limits 

are then computed for all the time periods except the 1•t 

time period using the formulas in (3.19)-(3.20>. For 

example, the one-period-ahead control limits for the 9tn time 

period are computed using formulas in <3.19>-<3.20> and 

following quantities 

Vbar = 

MRybar = 

19.761 

0.189 

de = 1.128 

Ya = 19.693 

The one-period-ahead control limits for the 9t" time period 

are found to be 

Lower control limit = 19.033 

Upper control limit = 20.380 

All the MRy, the average of V and MRy, and the one-period­

ahead control limits are also presented in TABLE 3.1. 

By plotting the Yt values and the one-period-ahead 

control limits on the control chart, the required OPA V chart 

is obtained. The OPA V chart is plotted in Figure 3.1, and 

is easily interpreted. It should be noted that the central 

line of the OPA V chart is omitted in TABLE 3.1 and Figure 

3.1 to avoid confusion in the reading of table and 

interpretation of the control chart. 
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TABLE 3.1 

SERIALLY CORRELATED DATA FROM A FIRST ORDER RESPONSE PROCESS 
WITH FILTER CONSTANT 0.8, MOVING RANGES OF TWO AND ONE-

PERIOD-AHEAD CONTROL LIMITS FOR THE OPA Y CHART 

Time,t v ... MRy LCLoPAV UCLoPAv 

1 20.023 
2 20.208 0.185 19.297 20.644 
3 19.905 0.303 19.445 20.792 
4 20.020 0.115 19.203 20.550 
5 19.786 0.234 19.295 20.642 

6 20.134 0.348 19.108 20.454 
7 20.074 0.060 19.386 20.733 
8 19.693 0.381 19.338 20.685 
9 19.210 0.483 19.033 20.380 

10 19.385 0.175 18.647 19.994. 

11 19.649 0.264 18.787 20.134 
12 19.643 0.006 18.998 20.345 
13 19.736 0.093 18.993 20.340 
14 19.714 0.022 19.068 20.414 
15 19.349 0.369 19.050 20.397 

16 19.266 0.083 18.758 20.105 
17 19.091 0.175 18.692 20.038 
18 19.321 0.230 18.552 19.898 
19 19.880 0.559 18.736 20.082 
20 19.845 0.035 19.183 20.530 

21 20.249 0.404 19.155 20.502 
22 20.022 0.227 19.478 20.825 
23 19.826 0.196 19.296 20.643 
24 19.756 0.070 19.140 20.486 
25 19.774 0.018 19.084 20.430 

26 19.870 0.096 19.098 20.445 
27 19.726 0.144 19.175 20.522 
28 19.832 0.106 19.060 20.406 
29 19.922 0.090 19.144 20.491 
30 19.916 0.006 19.216 20.563 

Average 19.761 0.189 



21 

20.1! 

20.6 

20.4 

20.2 
~· 
lo. 20 0 
~ 

" 19.8 w 
:! 
lol 19.6 ~ 

11: 
< 19.4 w 
:! 

19.~ 

2 6 8 

42 

10 12 ,.. 16 16 20 22 2"' 26 28 30 

Tllol~ PERIOD 
0 08S£RVATION Y 

Figure 3.1. The OPA Y chart, r = 0.8 



Conclusion 

In this chapter, the derivation of the distribution of 

Yt and the conditional distribution of Yt given Yt-1 are 
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presented. The proposed OPA Y chart is constructed using the 

conditional one-period-ahead control limits. The ARL of the 

proposed OPA Y chart is found to be identical to an 

Individual chart applied to an independent normal data 

stream. A numerical example is used to illustrate the 

construction of the proposed OPA Y chart to monitor the mean 

level of the output of a first order response process. 



CHAPTER IV 

DISPERSION CONTROL CHART FOR QUALITY DATA 

FROM A FIRST ORDER RESPONSE PROCESS 

Introduction 

In this chapter, a derivation of the mean and standard 

deviation of the conditional moving range of subgroup size 

two of serially correlated data generated from a first order 

response process is presented. The control chart that 

specifically deals with the dispersion of the output of a 

first order response process is then constructed. The 

proposed dispersion control chart, denoted as an OPA MRy 

chart, is a control chart based on the conditional 

distribution of the moving range of subgroup size two of 

serially correlated data generated from a first order 

response process. A numerical example is then presented to 

illustrate how the proposed OPA MRy chart can be constructed 

using empirical data. 

Unlike the traditional Moving Range control charts for 

process dispersion in which the control limits are computed 

once and used for all the plotted points, the control limits 

for the OPA MRy chart are computed from point to point. That 

is, at a current plotted point, one-period-ahead control 
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limits are computed for the next plotted point. The one­

period-ahead control limits for the next plotted point 

depends on the current observation of the Y variate. In the 

traditional Moving Range chart, control limits are set to be 

three sigma away from the center line even though the 

underlying distribution of the moving range is not normal. 

In the proposed OPA MRy chart, this three sigma convention is 

still employed. 

Conditional Distribution of the Moving Range 

of Subgroup Size Two of the Y Variate 

The conditional distribution, mean and variance of the 

moving range of subgroup size two of serially correlated data 

generated from a first order response process at the ttn time 

period is derived. Recall that the first order response 

process that generated serially correlated output, Y, is 

Yt = rYt-1 + (1-r>Xt <4.1) 

From <3.4>, it is known that Xt is independent of Yt-1• If 

Yt-1 is known and takes on the value k, then 

Yt = rk + <1-r>Xt 

Defining Rfk as the range of Yt-1 and Yt given that Yt-1 

equals k, then 

Rfk = Range of k and Yt 

Rfk = fYt - kf 

Substituting <4.1> into <4.2> results in 

Rfk = 

Rfk = 

rk + <1-r>Xt- k 

<1-r>Xt - <1-r>k 

(4.2> 
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R 1 k = -1 ( 1-r > ( X t - k > ( 4 • 3 > 

In a first order response process, it is found that 

0 < r < 1. Then, 

= (4.4) 
(1-r> 

Letting Q equal Equation (4.4) results in 

<1-r> 
= I <Xt - k> <4.5) Q = 

The distribution of Q is then considered. From Equation 

(4.5), it is found that Xt is a double valued function of 

Q, say Q' and Q", <Basnet and Case, 1990). That is, 

Q' = k Q (4.6a> 

Q" = k + Q (4.6b) 

Then, the density function of Q, h(Q), is given by 

G Q" 
f(k+Q) -- I G Q' h(Q) 

G Q 
f(k-Q) + 

G Q 

h(Q) = f(k-Q) + f(k+Q) (4.7) 

where f(·) is defined as before. 

Using Equations (4.5>, (4.7>, and a single variable 

transformation approach, the density function of Rlk is 

found to be 

1 
f[k Rlk l + f[k + 

(1-r> 
Rlk l 

<1-r> 
(4.8) g<Rfk> = 

(1-r> 

A detailed derivation can be found in Appendix C. 
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Mean and Standard Deviation of Rlk 

Computation of the expected value and variance of Rlk 

from Equation <4.8> is difficult, as the results are not in a 

closed form. To circumvent this difficulty, the expected 

value and variance of the variable Q are found first. With 

Equation (4.7>, the expected value of Q, E<Q>, is found to 

be 

E(Q) = I Q-h(Q) dQ 

0 

and the variance of Q, V<Q>, is 

(4.9) 

VCQ> = ECQ2) - [E(Q)]2 <4.10~ 

where 

ECQ2) = 

ID 

I Q2 ·h (Q) dQ 

0 

From Equation <4.5>, it is clear that, 

Rf k = ( 1-r )Q (4.11> 

Then the expected value of Rlk, E<R!k>, and the variance of 

Rlk, V<Rfk> are 

E<Rtk> = C1-r>E<Q> <4.12> 

VCRfK> = <1-r)2V(Q) (4.13) 

It can be shown that the expected value of Q, ECQ>, and the 

variance of Q, V<Q>, both have a "closed" form as 
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E<Q> = [ k-}4] 
.2o-i I -;;-

(4.14) 

V[Ql = o-2 + (k - J4)2 - [E(Q)J2 <4.15) 

where i'<x> and i<x> are as defined in the Notation. A 

detailed derivation can be found in Appendix C. 

Substituting Equations (4.14> and (4.15) into Equations 

<4.12> and (4.13>, the following results are obtained. 

V<Rik> = (1-r)2~2 + (k - J4)2 - [E(Q)J:J 

Thus, the standard deviation of Rlk equals 

~ 
Std<Rik> = <1-r> ~2 + <k- J4)2 - [E(Q)J~ 

Conditional Control Limits of the OPA MRy Chart 

( 4. 16) 

(4.17> 

(4.18> 

From Equations (4.16> and <4.18>, the one-period-ahead 

control limits for the ttn time period can be constructed for 

the proposed OPA MRy chart: 

UCLoPAMRv 

LCLoP'AMRv 

= E<Rik> 

= E<Rik> + 3·5td<Rik> 

= E<Rik> 3·5td<Rik> 

(4.19) 

(4.20> 

(4.21> 
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In order to use the conditional one-period-ahead control 

limits on the proposed OPA MRy chart as shown in Equations 

(4.19)-(4.21> to monitor the dispersion of serially 

correlated data from a first order response process, the 

average and standard deviation of the unobservable X variate, 

~ and a, must be known or estimated. Equations <4.16)-(4.18> 

can be used on empirical data by replacing the ~ and a with 

the proper estimate as in Equations (3.15)-(3.17>. 

The computation of the one-period-ahead control limits 

of the proposed OPA MRy chart may be complicated as it 

involves the quantities t'<x> and t<x>. The calculation of 

t<x> can be aided by using a higher degree polynomial 

approximation <Nelson, 1983). With simple computer program, 

the computation of the one-period-ahead control limits of the 

OPA MRy chart can be greatly simplified. The FORTRAN program 

coded in Chapter VIII can be used to perform these 

computations. 

Numerical Illustration 

A numerical example is presented to illustrate how to 

use the proposed OPA MRy chart on serially correlated data 

generated from a first order response process. Similar to 

the construction of the OPA Y chart, the user is expected to 

have a prior knowledge of that particular first order 

response process. The value of the filter constant, r, is 

assumed to be known using first principles. 

The 30 observations of Y used in the construction of the 
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OPA MRy c~art are the same data set used in Chapter III for 

the construction of the OPA Y chart. From the 30 

observations, the average of Y is 19.834, and of the MRy is 

0.164. These two quantities are required to compute the one­

period-ahead control limits. The one-period-ahead control 

limits are computed for all the time periods except the 1•t 

time period using the formulas in <4.14>, <4.16)-(4.18>, 

(4.20> and (4.21). It should be noted that the FORTRAN 

program coded in Chapter VIII is used to perform the 

computation. As an example, the one-period-ahead control 

limits of the OPA MRy chart for 9tn time period are found to 

be 

Lower control limit = 0.0 

Upper control limit = 0.586 

All the observations, the MRy, the average of Y and MRy, and 

the one-period-ahead control limits are presented in TABLE 

4.1. By plotting the MRy values and the one-period-ahead 

control limits on the control chart, the required OPA MRy 

chart is obtained. The OPA MRy chart is plotted in Figure 

4.1. It should be noted that the central line of the OPA MRy 

chart is omitted in TABLE 4.1 and Figure 4.1 as it is not 

very important in interpretation of the control chart. 
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TABLE 4.1 

SERIALLY CORRELATED DATA FROM A FIRST ORDER RESPONSE PROCESS 
WITH FILTER CONSTANT 0.8, MOVING RANGES OF TWO AND ONE-

PERIOD-AHEAD CONTROL LIMITS FOR THE OPA MRy CHART 

Time,t Yt MRy LCLoPAMRy UCLoPAMRy 

1 20.023 
2 20.208 0.185 0.0 0.601 
3 19.905 0.303 0.0 0.629 
4 20.020 0.115 0.0 0.590 
5 19.786 0.234 0.0 0.600 

6 20.134 0.348 o~o 0.585 
7 20.074 0.060 0.0 0.616 
8 19.693 0.381 0.0 0.607 
9 19.210 0.483 0.0 0.586 

10 19.385 0.175 0.0 0.649 

11 19.649 0.264 0.0 0.616 
12 19.643 0.006 0.0 0.588 
13 19.736 0.093 0.0 0.588 
14 19.714 0.022 0.0 0.585 

15 19.349 0.365 0.0 0.586 
16 19.266 0.083 0.0 0.622 
17 19.091 0.175 0.0 0.638 
18 19.321 0.230 0.0 0.677 
19 19.880 0.559 0.0 0.627 
20 19.845 0.035 0.0 0.588 

21 20.249 0.404 0.0 0.587 
22 20.022 0.227 0.0 0.637 
23 19.826 0.196 0.0 0.601 
24 19.756 0.070 o.o 0.586 
25 19.774 0.018 0.0 0.585 

26 19.870 0.096 0.0 0.585 
27 19.726 0.144 0.0 0.588 
28 19.832 0.106 0.0 0.585 
29 19.922 0.090 0.0 0.586 
30 19.916 0.006 o.o 0.591 

Average 19.761 0.189 
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Figure 4.1. The OPA MRy chart, r = 0.8 
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Conclusion 

In this chapter, the derivation of the conditional 

distribution of the moving range of <Yt- 1 ,Yt>, given that 

Yt-1 is known, is presented. The mean and standard deviation 

of this conditional distribution are then determined. They 

are used to construct the conditional one-period-ahead 

control limits of the proposed OPA MRy chart. A numerical 

example is used to illustrate the construction of the 

proposed OPA MRy chart to monitor the dispersion of the 

output of a FORP. The FORTRAN program coded in Chapter VIII 

is used to compute the one-period-ahead control limits of the 

OPA MRy chart. 



CHAPTER V 

DETERMINING THE AVERAGE RUN LENGTH OF A 

CONTROL CHART USING SIMULATION 

Introduction 

A desirable control chart is one that has a very low 

frequency of signaling a false alarm when the process is in­

control and has the capabilities of swiftly signaling an out­

of-control alarm when the process experiences changes. The 

performance measure of such capabilities is the Average Run 

Length, ARL, for in-control and out-of-control scenarios. In 

this research, the ARL of a control chart is determined by 

simulation. 

In this chapter, the methodologies used to determine the 

average run length of the proposed OPA Y and OPA MRy charts, 

and other control charts used for comparison, are discussed. 

The generation of the first order response process data used 

in this study is presented in detail. The control limits of 

these control charts are constructed using the theoretical 

values. Several types of process shift are simulated in this 

research and embedded in the data stream. The process shifts 

are: stepwise, trend-wise, and cyclical shifts in the process 

mean or standard deviation. Even though there are numerous 
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scenarios in which the ARL of control charts needs to be 

determined, the method to simulate all these scenarios can be 

easily generalized. All the computer simulations are 

designed using the SAS language. The procedures available in 

SAS greatly reduce the programming effort. 

Data Generation 

The purpose of this study is to develop and evaluate 

control charting techniques on quality data generated from a 

first order response process. Thus, a stream of observation 

data from a FORP must be generated through simulation, and 

control charts are then applied to this stream of data 

generated. In order to generalize the simulation, individual 

data values are generated through the SAS intrinsic normal 

random variate generator RANNOR. The individual data values 

generated are standard normal variates. To avoid computation 

underflow at a later stage, the individual data generated are 

transformed into normal variates with mean, MEAN = ~ = 10.0 

and standard deviation, STD =a = 1.0. These normal variates 

are then input into a first order response process equation 

to generate the first order response process output data 

values, Y, which are serially correlated. The recurrence 

relation of a FORP data generator in computer code is, 

Y2 = FC*Yl + C1-FC>•<RANNORCSEED>•STD +MEAN> (5.1) 

where FC is the filter constant, r, of a FORP, and Y1 and Y2 

are two consecutive values of Y. The values of the filter 

constant used in the study are 0.0, 0.3, 0.6, and 0.9. By 
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using a filter constant equal to 0.0, an independent normal 

data stream is generated. Thus, Equation (5.1> can be used 

to generate an independent normal data stream as well. 

To begin using this recurrence relation, the very first 

Y value used in the FDRP is just a normal variate with mean 

equal to MEAN and standard deviation equal to STD. All 

subsequent Y values of the FORP are then generated using 

Equation (5.1>. Since the very first Y value is not 

generated using Equation (5.1), the first few Y values 

generated do not truly depict a FDRP. Thus, to 'warm-up' the 

FORP data stream, the first 50 FORP data values generated are 

discarded. However, the 51-~ value generated is kept to be 

used later to generate the first of the observed data for 

control chart plotting. 

To facilitate discussion, all the Y values used in the 

plotting of the control charts are called 'observations', 

this is to distinguish them from the Y values generated 

during the 'warm-up' period. In a real situation, the Y 

values obtained during the 'warm-up' period are not even 

observed by the user of control charts. Another assumption 

made at this point is that in a real situation, observation 

from the FORP data stream is observed at a fixed regular time 

interval. Correspondingly, in a simulation situation, these 

time periods are indexed by t, with the first observation 

made at time period 1. In this data generation, the 52"d Y 

value generated is the observation made at time period 1. 

All the observations generated subsequently are used as 
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individual data or, along with the 51•t Y value, are used to 

compute moving ranges of subgroup size two. These individual 

values or the moving ranges are then plotted on the 

appropriate control chart. The appropriate control charts in 

this study are the OPA Y, I, OPA MRy and MR<2> charts. The 

first two charts are applied to the individual data, and the 

OPA MRy and MR<2> charts are applied to the moving ranges. 

Each plotted point on these charts is checked to see if it 

falls beyond or within the appropriate control limits. 

It should be noted that only from the generation of the 

first observation is the effect of different type of process 

shift embedded into the FORP data generation process. That 

is, the effect of the process shift is only embedded in the 

generation of the 52"d Y value. Moreover, only one type of 

shift is embedded into a scenario under study at a time. To 

embed the effect of a shift in the process mean or process 

standard deviation into the original (10.0,1.0) normal 

variate, the following methods are used 

(1) For a stepwise shift in the process mean, the standard 

deviation is multiplied by the magnitude of shift and 

added to the process mean. Hence, the shift in process 

mean is in terms of the process standard deviation. The 

FORP data generator in computer code becomes 

STD 
MEAN 
NMEAN 
Y2 

= 1.0 
= 10.0 
= MEAN + SHIFT*STD 
= FC*Yl + <1-FC>*<RANNOR<SEED>*STD + NMEAN> 

where SHIFT is the magnitude of shift. The magnitudes 
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of shift used in this study are: 0.0, 0.25, 0.50, 1.00, 

1.50, 2.00 and 3.00. Figure 5.1 shows the stepwise 

shift in mean. 

<2> For a shift of the process mean in trend, where trend is 

defined as a gradual increase in mean by a total of 3 

standard deviations in 20 subgroup sampling intervals, 

the value of the mean used for the generation of a new X 

value is inflated by a rate of (3/20> standard 

deviation. That is, the very first observation is 

generated using the original mean ~ = 10.0. The second 

observation is generated using the mean 

~ = 10.0+(3/20>u. The third observation is generated 

using the mean ~ = 10.0+2*(3/20)u, and so on. The mean 

used to generate the X values ceases to inflate further 

after its value has reached the maximum, 

10.0+20*(3/20>u. The FORP data generator in computer 

code is 

STPSZ = 3*STD/20 
NMEAN = MEAN + MIN<STPSZ*PER,3*STD> 
Y2 = FC*Yl + (1-FC>*<RANNOR<SEED>*STD + NMEAN> 

where PER is the index of the point in trend, PER = 

0(1)m. Figure 5.2 shows the trend-wise shift in mean. 

(3) For a cyclical shift of the process mean, a cycle is 

defined by a sinusoidal wave with period equal to 48 

subgroup sampling intervals and amplitude equal to 3 

standard deviations. The value of the mean used to 

generate a new X value is obtained by adding to the 

original mean the product of a sine function and the 
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L------------------------------------------------------> 
Time 

process process 
<- in-control ->:<- out-of-control -> 

Figure 5.1. Stepwise Shift in Mean 

L------------------------------------------------------> 
Time 

I 20 subgroups 
sampling interval 

process 
in-control ->:<- process out-of-control -> 

Figure 5.2. Trend-wise Shift in Mean 
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amplitude of the cycle. The step increment of the 

variable for the sine function is 2*pi/48. The initial 

argument for the sine function is 0.0, and it increases 

by a value of 2*pi/48 for each subsequent usage in the 

sine function. The FORP data generator in computer 

code becomes 

STPSZ = 2*PI/48 
AMP = 3*STD 
NMEAN = MEAN + AMP*SIN<PER> 
Y2 = FC*Yl + <1-FC>*<RANNOR<SEED>*STD + NMEAN> 
PER = PER + STPSZ 

where PER is the argument for the sine function; it 

begins with a value of 0.0 and increases with a value of 

2*pi/48 for subsequent steps. Figure 5.3 shows the 

cyclical shift in mean. 

<4> For a stepwise shift in the process standard deviation, 

the standard deviation is multiplied by the ratio of the 

new standard deviation to the original standard 

deviation, u" __ luo 1 a• The FORP data generator in 

computer code becomes 

= RATIO*STD NSTD 
Y2 = FC*Y1 + (1-FC>*<RANNOR<SEED>*NSTD + MEAN> 

where RATIO is the value of Un-w1Uo1a• The ratios used 

in this study are: 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 

3.00. Figure 5.4 shows the stepwise shift in 

dispersion. 

If a plotted point falls within the control limits, the 

next plotted point is generated and checked against the 

control limits, and so on. If the plotted point falls beyond 
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the contrQl limits, an action signal results. Then, the 

number of points checked since the previous action signal is 

recorded. This number is the 'run length' of the control 

chart for a particular scenario. This procedure is repeated 

until the lO,OOOt" run length is recorded. The average of 

these 10,000 run lengths is the average run length or ARL of 

the control chart for a particular scenario. 

Control Limits 

It is important to remember that the control limits of 

control charts discussed in this chapter are constructed 

based on theoretical values, not on a few initial 

observations collected. That is, it is assumed that the 

mean, ~' and standard deviation, a, of the unobservable X 

variates are known. Moreover, the filter constant, r, of the 

FORP is also assumed to be exactly known by first principles. 

OPA Y Chart 

The control limits for the OPA Y chart are conditional 

control limits. They are conditioned on the current 

observation and used for the next observed value. Using 

Equations <3.10)-(3.11>, after rearrangement of t~rms, the 

conditional control limits for the next observation of Y are 

UCLoPAv = FC*<Y2-MEAN) +MEAN+ 3*STD<1-FC> 

LCLoPAv = FC*(Y2-MEAN) + MEAN 3*STD<l-FC> 

where Y2 is the current observation of Y and FC is the 

filter constant of the FORP. 
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To construct the first set of conditional control limits 

on the OPA Y chart, the'value of Y2 is the 51•t Y value 

generated. In a real application, the average of the initial 

sample of observations collected is used as the first Y2. 

Since it is assumed that, by first principles, the filter 

constant can be exactly stated, the filter constant used for 

the construction of the conditional control limits is the 

same as the one used for generation of the Y data. 

OPA MRy Chart 

The control limits for the OPA MRy chart are conditional 

control limits. Similar to the control limits of the OPA Y 

chart, they are also conditioned on the current observation 

of Y which is denoted as k. Using Equations (4.20) and 

<4.21>, the conditional control limits for the next plotted 

point on the OPA MRy chart are 

UCLoPAMRy = E<Rik> + 3*Std(Rik) 

LCLoPAMRy = E<Rik) 3*Std(Rik) 

where E<Rik> and Std<Rik> are defined by Equation <4.16> and 

<4.18>, respectively. To construct the first set of 

conditional control limits on the OPA MRy chart, the value of 

k is the 51•t Y value generated. 

l Chart 

The purpose of applying the I chart on the FORP data 

stream is to investigate how the I chart performs if serial 

correlation in a FORP is not explicitly recognized. Whether 
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the serial correlation in the FORP data stream is recognized 

or not, the expected value of the average of moving ranges 

of subgroup size two computed is found to be <Cryer and Ryan, 

1990) 

E[MR(2)bar] = 1.128*Uv*.,/(1-r) 

From Equation (3.15>, it is known that 

Uv = u .,/(1-r)/.,/(1+r> 

Substituting (5.3> into <5.2) results in 

E[MRC2)bar] = 1.128*u*<1-r)/.,/(1+r) 

The control limits of an I chart are 

UCLx = MEAN + 3*STD 

LCLx = MEAN 

It is known that the STD can be estimated by 

STD = 

E [MR<2>bar] 

1.128 

Substituting (5.7> into (5.5> and (5.6>, the theoretical 

(5.2> 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

control limits of the I chart based on a FORP data stream are 

UCLx =MEAN+ 2.66*E[MRC2)bar] 

LCLx =MEAN- 2.66*E[MRC2)bar] 

These control limits are not conditional control limits. 

They are constructed and used for all the plotted points on 

the I chart under study. 



65 

MR<2> Chart 

Whether the serial correlation in the FORP data stream 

is recognized or not, the expected value of the average of 

the moving ranges of subgroup size two computed can be 

determined. Using Equation (5.4> and the formula for the 

control limits of a traditional MR<2> chart, the theoretical 

control limits of the MR<2> chart based on a FORP data 

stream are 

UCLMR<e> = 3.267*E[MR(2)bar] 

LCLMR<e> = 0.0 

These control limits are not conditional control limits. 

They are determined and used for all the plotted points in 

the MR<2> chart. 

Average Run Length 

The ARL is defined as the average number of subgroups 

that must be taken from a process until an out-of-control 

point is found and corrective action can be implemented. Or, 

equivalently, the number of plotted points on a control 

chart until an out-of-control point is found. The ARL is 

associated with the probability of a control chart detecting 

a process change. Normally, traditional Operating 

Characteristic Curves can be constructed and used to 

determine the ability of a control chart to detect a process 

change if the points plotted are independent of one another 

and the distribution of the points plotted is known. 
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However, in this research study, all the data are FORP data 

which are not necessarily independent. Moreover, the plotted 

points on certain charts are not independent of one another, 

such as the plotted points of the OPA MRy or the MR<2> 

charts. Therefore, instead of talking about the risks of 

failing to detect a shift of a given magnitude, a better 

method is to account for how many plotted points it will take 

to detect the shift. The simplest way to determine the ARL 

of a control chart on quality data from a FORP is by 

simulation. Through simulation, the standard deviation of 

the run length, SDRL, can also be determined. 

In the derivation of the one-period-ahead control 

limits, it is found that the Type I and Type II error risks 

of any plotted point on the OPA Y chart are identical to the 

risks of the corresponding plotted point on an Individual 

chart for an independent normal data stream. Thus, the ARLs 

of a OPA Y chart for different magnitudes of shift in the 

mean level of the output of a first order response process 

are identical to the ARLs of the corresponding Individual 

chart. 

An Individual chart is an Xbar chart with subgroup size 

one. The ARL of the Xbar chart has been determined by 

several authors such as by Graham <1986) and Champ, et al. 

<1987). The ARL of the Xbar chart, and hence, the ARL of the 

Y chart, can be found correspondingly from their work. It 

should be pointed out that no runs rules are used in the 

proposed OPA Y chart. Therefore, the corresponding ARL must 
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be the ARL for the Xbar chart without using any runs rules. 

Runs rules may be incorporated into the OPA Y chart, but the 

procedure may be quite difficult as the one-period-ahead 

control limits of the OPA Y chart cause the division of 

control charts into proper zones, for the application of runs 

rules, to be more complicated. 

List of Programs Coded 

SAS programs have been coded to simulate the performance 

of the OPA Y, OPA MRy, I and MR<2> charts in various 

scenarios of interest. The conditions incorporated into the 

scenarios can be broken down in the following manner 

1.a 4 filter constants exactly stated: r = 0.0, 0.3, 0.6, 
0.9 

l.b 1 filter constant exactly stated: r = 0.6 with 

1 filter constant overstated: r = 0.7 and 

1 filter constant understated: r = 0.5 

2.a 7 shifts in the mean of X variates <in multiples of CT) . o.o, 0.25, 0.50, 1.00, 1.50, 2.00, 3.00 . 
2.b 7 shifts in the standard deviation of X variates 

<u~--1ao1d): 1.0, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00 

2.c 1 shift in the mean of X variates in trend: 3a in 20 
subgroup sampling intervals 

2.d 1 shift in the mean of X variates in cycle: cycle 
period equal to 48 subgroup sampling intervals and 
cycle amplitude equal to 3a 

The SAS program scenarios coded are listed in TABLE 5.1. 

Since the execution of the simulation of each scenario can be 

quite long, simulation for only one scenario is done at a 

time. After obtaining the ARL for one scenario, conditions 
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are changed to form a new scenario. It is important to point 

out that each scenario has the same random number seed. 

Thus, each scenario is subject to the same stream of random 

numbers. An example of a SAS program and the corresponding 

SAS output are included in Appendix D. The SAS program is 

the PROGRAM 1 with filter constant 0.3 and stepwise shift in 

mean equal to 2u. The ARL and SDRL are 6.1857 and 5.6497, 

respectively. These values are rounded and listed in the 

corresponding cell in TABLE 5.2. 

ARL and SDRL of the OPA Y and OPA MRy Charts 

Using SAS programs <1>, <7> and (13>, the ARL and SDRL 

of the OPA Y chart under a stepwise shift in process mean, 

the ARL and SDRL of the OPA MRy chart under a stepwise shift 

in process dispersion, and the ARL and SDRL of the combined 

OPA Y and OPA MRy charts under a stepwise shift in process 

mean can be determined. They are presented in TABLEs 5.2, 

5.3 and 5.4, respectively. 

From TABLE 5.2, it is found that the ARLs of the OPA Y 

chart are identical to those obtained theoretically. Without 

making any comparisons to other control charts, these OPA Y 

and OPA MRy charts appear to be capable of detecting a 

process shift. A special effort is made to display the ARL 

and SDRL of the OPA Y and OPA MRy charts under the types of 

process shifts shown by conditions <2.a> and <2.b>. This is 

to illustrate the fact that, under a normal working 

environment in which a stepwise shift in process mean or 
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TABLE 5.1 

LIST OF SAS PROGRAM SCENARIOS CODED 

PROGRAM NAME OF CONDITION 
NUMBER CHART<S> NUMBER 

1 OPA y chart ( 1. a> and (2.a) 

2 OPA y chart < 1. a> and <2.c> 

3 OPA y chart ( 1. a> and (2.d) 

4 I chart < 1. a> and <2.a> 

5 I chart ( 1. a) and <2.c> 

6 I chart < 1. a> and (2.d) 

7 OPA MRy chart ( 1. a> and (2.b) 

8 OPA MRy chart ( 1. a> and <2.c) 

9 OPA MRy chart < 1. a> and (2.d) 

10 MR<2> chart < 1. a> and <2.b> 

11 MR<2> chart ( 1. a) and <2.c> 

12 MR<2> chart < 1. a> and (2.d) 

13 Combined OPA y and 
OPA MRy charts ( 1. a) and <2.a> 

14 OPA Y chart ( 1. b) and (2.a> 

15 Combined OPA y and 
OPA MRy charts ( 1. b) and <2.a> 

16 OPA MRy chart ( 1. b) and (2.b) 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 5.2 

ARL OF THE OPA Y CHART WITH CONDITIONS 
1.a and 2.a ON FORP DATA 

<USING THEORETICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE UF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 3.00 

370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

370.36 283.08 . 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 . 156.60 43.29 14.02 5.65 1.46 

370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

PROGRAM 1 is used to generate this table 
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FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 5.3 

ARL OF THE OPA MRy CHART WITH CONDITIONS 
1.a and 2.b ON FORP DATA 

<USING THEORETICAL VALUES> 

Un • .,..luo~c::t <DISPERSION SHIFTS IN STEP> 

1.00 1.25 1.50 1. 75 2.00 2.50 3.00 

154.74 42.84 19.98 12.06 8.35 5.20 3.82 
155.69 43.06 19.68 11.77 7.92 4.85 3.42 

132.81 37.60 17.46 10.61 7.51 4.70 3.48 
133. 16 37.02 17.25 10.24 7.16 4.39 3.09 

119.61 33.17 15.33 9.34 6.57 4.14 3.10 
120.70 32.51 14.81 9.00 6.26 3.77 2.71 

110.28 28.87 13.08 7.80 5.52 3.53 2.70 
109.61 28.34 12.88 7.46 5.13 3.09 2.17 

PROGRAM 7 is used to generate this table 
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TABLE 5.4 

ARL OF THE COMBINED OPA Y AND OPA MRy CHARTS WITH 
CONDITIONS 1.a and 2.a ON FORP DATA 

<USING THEORETICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 
FILTER 
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00 

0.0 M 135.51 113.45 78.19 31.64 12.48 5.67 1.82 
s 136.90 113.79 79.10 31.86 12.39 5.44 1.35 

0.3 M 121.26 106.82 79.95 34.50 13.06 5.69 1.80 
s 121.01 108.11 81.79 34.83 13.38 5.58 1.35 

0.6 M 112.28 104.92 87.28 38.61 13.33 5.57 1.75 
s 112.96 105.06 89.45 39.37 13.74 5.58 1.30 

0.9 M 108.80 115.58 107.90 39.58 12.55 5.21 1.68 
s 108.01 117.29 115.95 42.90 13.60 5.41 1.21 

PROGRAM 13 is used to generate this table 

72 



dispersion is more likely than other less common process 

shifts, these OPA Y and OPA MRy charts do perform 

satisfactorily. 

Conclusion 
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In this chapter, a simulation approach to determine the 

ARL of the control charts used in this study is discussed in 

detail. The generalized approach can be made specific to 

simulate the ARL of the OPA Y, OPA MRy, I, or MRC2> charts 

for the FORP data stream under different scenarios. All the 

simulation programs are coded using the SAS language. It 

should be noted that the control limits constructed in the 

simulation are based an the theoretical values of the mean 

and standard deviation of X variates. Moreover, the filter 

constant is assumed to be exactly stated. Up to this paint, 

there are a total of 16 SAS programs coded to determine the 

ARL of various control charts under different scenarios. 



CHAPTER VI 

ANALYSIS OF SIMULATION RESULTS USING 

THEORETICAL FORP VALUES 

Introduction 

In this chapter, the performance of the proposed OPA Y 

and OPA MRy charts are evaluated. The ARLs of these charts 

are compared to the ARLs of other traditional charts which 

are usually employed with a continuous flow process. These 

traditional charts are the I and MR<2> charts. The ARLs of 

control charts using different scenarios <see TABLE 5.1> are 

determined by simulation. The ARLs determined are presented 

to aid comparison. Due to the cost of computing time, not 

all scenarios are simulated. Those scenarios which are not 

run are designated by the notation N/R. For some scenarios, 

the ARL values are too large to be computed in a CPU time of 

5 minutes; those scenarios which are run but for which 

results are not obtained after 5 minutes CPU time are 

designated by the notation TIL. 

Tables of Results 

Generally, there are two types of ARL table. One 

consists of 4 rows and either 2 or 7 columns. The other 

74 



75 

consists of 3 rows and 7 columns. For example, TABLE 6.3 is 

a 4x2 ARL table, TABLE 6.1 a 4x7 ARL table and TABLE 6.9 a 

3x7 ARL table. For a 4x2 or 4x7 ARL table, the rows show the 

different values of the filter constant of the FORP used, r = 

0.0, 0.3, 0.6 ~nd 0.9. The rows of the 3x7 ARL table show 

the values of filter constant that are either overstated, r = 

0.7, exactly stated, r = 0.6, or understated, r = 0.5. The 

columns of a 3x7 or 4x7 ARL table show the level of shift in 

either the process mean or standard dP.viation of the X 

variates. And the columns of a 4x2 ARL table.show the type 

of control chart used to monitor the process which has a 

shift of mean in trend or in cycle. It should be noted that 

each row of an ARL table consists of 2 sub-rows with the 

first designated as M and the second as S. The entries stand 

for the average run length, ARL, and the standard deviation 

of run length, SDRL, respectively, of a control chart for a 

particular combination of filter constant and process shift 

<scenario>. So, as an example in TABLE 5.2, for a scenario 

in which the filter constant is 0.6 and the shift in the mean 

of X variates is 0.5a, the ARL is found to be 155.53 and the 

SDRL is 156.60. 

Hypothesis Testing 

An indicator '*' is placed in front of certain ARL 

values in the ARL table of a control chart. This indicates a 

significant difference in the mean of the ARL values of the 

two control charts under comparison. For an in-control 
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situation, the '#' indicates the scenario which gives the 

higher ARL when compared to that of the corresponding 

scenario in another control chart. For an out-of-control 

situation, the '#' indicates the scenario which gives the 

lower ARL. However, not all the ARLs in the evaluations are 

marked, as in some cases these are no corresponding, ARLs to 

be tested with, or the test outcome is insignificant. 

By the central limit theorem, the distributions of the 

ARLs can be approximated by normal density functions. The 

ARLs of the two charts under comparison are known to be 

independent of one another. Moreover, the true variances are 

unknown and not necessarily equal. The objective of 

hypothesis testing is to be able to claim that when the 

process is in-control, the OPA Y or OPA MRy chart has a 

larger ARL value or when the process is out-of-control, the 

OPA Y or OPA MRy chart has a lower ARL value. Thus, the 

hypothesis testing of the difference in the mean of the two 

ARLs for an in-control situation is 

Ho: Ul U2 = 0 

Ha: Ul U2 > 0 

and for an out-of-control situation is 

Ho: Ul U2 = 0 

Ha: Ul U2 < 0 

where 

Ul = Mean of the ARL of the OPA Y or OPA MRy chart 

U2 = Mean of the ARL of the other chart under comparison 

The test statistic is 
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<M1 - Ma> 
t' = 

(51) 2 (51)2 
+ 

\ n1 na 

where 

M1 = Observed ARL of the OPA Y or OPA MRy chart 

Me = Observed ARL of the other chart under comparison 

51 = Observed SDRL of the OPA Y or OPA MRy chart 

Sa = Observed SDRL of the other chart under comparison 

n1 = Number of run lengths generated for the OPA or OPA 
MRy chart 

na = Number of run lengths generated for the other chart 
under comparison 

This test is known as Aspin-Welch test <Duncan, 1986>. Since 

the number of run lengths generated in this research is 

10000, 5000 or 1000, the test statistic t' can be 

approximated as a standard normal random variable. 

For an in-control process, the null hypothesis will be 

rejected if the test statistic is greater than Z~- In this 

study, a is taken at the 5% level. When the null hypothesis 

is rejected, it can be concluded that the ARL of the OPA Y 

chart or OPA MRy chart is favorable compared to that of the 

other chart under comparison. 

·For an out-of-control process, the null hypothesis will 

be rejected if ~he test statistic is less than Z«. When the 

null hypothesis is rejected, it can be concluded that the ARL 

of the OPA Y chart or OPA MRy chart is favorable compared to 

that of the other chart under comparison. 



Comparison of the ARL 

To analyze and compare various ARLs under different 

scenarios, the ARLs of comparable charts are grouped under 

various 'evaluation' headings. 

included for each evaluation. 

A brief description is 

The description includes the 

objective of the ARL comparison, the features of the data 

streams used, the magnitude of process shift either in mean 

or dispersion, how the control limits are constructed, the 

type of process shift, and whether the filter constant, r, 
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is explicitly recognized or not. The filter constant, r, is 

not explicit recognized if the user mistakenly considers a 

FORP data stream as an independent data stream. The details 

of how the computer simulation is carried out are documented 

in the previous chapter. The tabulated ARL results are 

presented and followed by a brief analysis of the comparison 

in terms of the ARL of the control charts involved. 

To determine the preference of a control chart over 

others on a FORP data stream with a particular filter 

constant, the ARL of a control chart on an in-control 

situation is first considered. If this ARL is considered too 

low, the control chart will not be used on that particular 

FORP data stream. If the ARL is deemed acceptable, say 80 

and above, the ARL of the out-of-control situation is 

examined. The preferred control chart should be the one with 

a large ARL when the process is in-control and a low ARL when 

the process is out-of-control. It should be noted that the 



preference of a control chart on FORP data also depends on 

the filter constant of the response process. 

Evaluation 6.1 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA Y chart 
and the I chart. 
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Data Streams: FORP data for which r equals 0.0, 0.3, 
0.6 and 0.9. 

Process shift: Mean level is shifted by 0.0, 0.25, 
0.50, 1.00, 1.50, 2.00 and 3.00 in 
terms of process standard deviation. 

Type of Shift: Stepwise. 

Control limits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL values for the OPA Y and I charts are presented in 

TABLEs 6.1 and 6.2, respectively. The SAS programs used to 

generate these ARL values are PROGRAMs 1 and 4; the program 

listings are found in Appendix E. 

The ARLs in TABLE 6.1 clearly show that the performance 

of the OPA Y chart is the same regardless of the values of 

the filter constant of a FORP. From Chapter III, it is known 

that the ARLs of the OPA Y chart are similar to the ARLs of 

the I chart on an independent data stream. This fact is . 

clearly illustrated by the similar values of ARL in the first 

row of both the TABLEs 6.1 and 6.2. Minor discrepancies are 

due to round-off errors. 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 6.1 

ARL OF THE OPA V CHART WITH CONDITIONS 
1.a and 2.a ON FORP DATA 

<USING THEORETICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 
' 

0.00 0.25 0.50 1.00 1.50 2.00 3.00 

370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

#370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

#370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

#370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

PROGRAM 1 is used to generate this table 
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TABLE 6.2 

ARL OF THE I CHART WITH CONDITIONS 
1.a and 2.a ON FORP DATA 

<USING THEORETICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 
FILTER 
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00 

0.0 M 370.93 155.81 14.59 
s 372.88 N/R 156.72 N/R 14.04 N/R N/R 

0.3 M 84.70 #60.62 #9.99 #2.63 
s 84.23 60.45 N/R 9.04 N/R 1.72 N/R 

0.6 M 21.92 #16.66 #4.36 #1.94 
s 21.62 16.29 N/R 3.19 N/R 0.97 N/R 

0.9 M 6.22 #4.28 #2.09 
s 7.25 N/R 4.19 N/R 1.30 N/R N/R 

PROGRAM 4 is used to generate this table 
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Comparing the ARL for an out-of-control process in both 

TABLEs 6.1 and 6.2, the ARLs of the OPA Y chart are found to 

be favorably significant at the 5% level when the process is 

in-control for filter constant greater than 0.0. Even though 

the I chart has favorable ARLs when the process is out-of-

control for filter constant greater than 0.0, the low ARL for 

an in-control process makes this chart impractical. That is, 

the I chart signals alarm more frequently as the filter 

constant of the FORP gets larger in value. For a FORP with 

filter constant of 0.6, it is found that the I chart on the 

average signals a false alarm every 21.92 plotted points when 

the process is indeed in-control. Thus, with this 

performance of the I chart when the process is in-control, it 

is clear that the I chart is not a useful control chart for a 

FORP correlated data stream. 

Evaluation 6.2 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA Y chart 
and the I chart. 

Data Streams: FORP data for which r equals 0.0, 0.3, 
0.6 and 0.9. 

Process shift: The gradual shift in the mean is an 
increase with a total of 3 process 
standard deviations in 20 subgroup 
sampling intervals. Once the maximum 
magnitude of the shift is reached, the 
process mean remains at this level. 

Type of Shift: Trend-wise. 

Control limits: The control limits of these charts are 
based on theoretical values. 



Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL values for the OPA Y and I charts are presented in 

TABLE 6.3. The SAS programs used to generate these ARL 

values are PROGRAMs 2 and 5; the program listings are found 

in Appendix E. 

From TABLE 6.3, it is found that the I chart is more 

powerful in detecting a shift of the process mean in trend 
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for different values of the filter constant of a FORP as the 

low ARLs of the I chart are significant at 5% level. Due to 

the development of the OPA Y chart in which CXt, Yt> is a 

point-to-point mapping, the ability of this chart to detect 

a process shift is not affected by the different values of 

the filter constant. 

Evaluation 6.3 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA Y chart 
and the I chart. 

Data Streams: FORP data for which r equals 0.0, 0.3, 
0.6 and 0.9. 

Process shift: The mean is shifted in a cyclical 
manner. The cycle has a period which 
is equal to the sampling interval of 48 
subgroups. The amplitude of the cycle 
has a magnitude of 3 process standard 
deviations. 

Type of Shift: Cycle. 

Control limits: The control limits of these charts are 
based on theoretical values. 



TABLE 6.3 

ARL OF THE OPA Y AND I CHARTS WITH CONDITIONS 
1.a and 2.c ON FORP DATA 

<USING THEORETICAL VALUES> 

MEAN SHIFTS IN TREND 
FILTER 
CONSTANT OPA Y chart I CHART 

0.0 M 14.55 14.57 
s 4.13 4.14 

0.3 M 14.55 #10.11 
s 4.13 3.45 

0.6 M 14.55 #7.06 
s 4.13 3.14 

0.9 M 14.55 #4.04 
s 4.13 3.02 

PROGRAMs 2 and 5 are used to generate this table 
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Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL values for the OPA Y and I charts are presented in 

TABLE 6.4. The SAS programs used to generate these ARL 

values are PROGRAMs 3 and 6; the program listings are found 

in Appendix E. 

From TABLE 6.4, it is found that the I chart is more 

85 

powerful in detecting a shift of process mean in cycle as the 

low ARLs of the I chart are significant at 5% level for 

filter constant greater that 0.0. Even though the I chart is 

more sensitive to changes of process mean in step, trend, or 

cycle regardless of the magnitude of the filter constant of a 

FORP, its ARL for an in-control FORP data stream is generally 

considered to be too low for a filter constant greater than 

0.3. Hence, as a whole, the I chart is not practic~l in 

monitoring a correlated FORP. 

Generally speaking, the ARL of the proposed OPA Y chart 

for different magnitudes and types of shift in process mean 

are acceptable. The robustness of the OPA Y chart to 

different magnitudes of the filter constant makes it even 

more favorable over the I chart. At this stage, it is clear 

that the OPA Y chart is a more favorable control chart for a 

FORP data stream than the I chart. 



TABLE 6.4 

ARL OF THE OPA Y AND I CHARTS WITH CONDITIONS 
1.a and 2.d ON FORP DATA 

<USING THEORETICAL VALUES> 

MEAN SHIFTS IN CYCLE 
FILTER 
CONSTANT OPA Y chart I CHART 

0.0 M 8.31 8.31 
s 2.66 2.66 

0.3 M 8.31 #6.06 
s 2.66 1.81 

0.6 M 8.31 #4.73 
s 2.66 1.70 

0.9 M 8.31 #3.11 
s 2.66 1.94 

PROGRAMs 3 and 6 are used to generate this table 
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Evaluation 6.4 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA MRy chart 
and the MR<2> chart. 

Data Streams: FORP data for which r equals 0.0, 0.3, 
0.6 and 0.9 

Process shift: Ratios of new standard deviation to 
old standard deviation are 1.00, 1.25, 
1.50, 1.75, 2.00, 2.50 and 3.00. 

Type of Shift: Stepwise. 

Control limits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL valu~s for the OPA MRy and MR<2> charts are presented 

in TABLEs 6.5 and 6.6, respectively. The SAS programs used 

to generate these ARL values are PROGRAMs 7 and 10; the 

program listings are found in Appendix E. 

From TABLEs 6.5 and 6.6, it is clear that the ARLs of 

the OPA MRy chart are significantly higher than those of the 

MR<2> chart for all the scenarios as the ARLs of the OPA MRy 

chart are significant at 5% level for an in-control process 

and insignificant for out-of-control process. The abilities 

of these two charts to detect any magnitude of stepwise shift 

in dispersion for any values of filter constant are quite 

close. 

It is interesting to realize that the ARLs of the OPA 

MRy chart with filter constant equal to 0.0 under different 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 6.5 

ARL OF THE OPA MRy CHART WITH CONDITIONS 
1.a and 2.b ON FORP DATA 

<USING THEORETICAL VALUES> 

an_w I Uo1d <DISPERSION SHIFTS IN STEP> 

1.00 1.25 1.50 1.75 2.00 2.50 

#154.74 42.84 19.98 12.06 8.35 5.20 
155.69 43.06 19.68 11.77 7.92 4.85 

#132.81 37.60 17.46 10.61 7.51 4.70 
133.16 37.02 17.25 10.24 7.16 4.39 

#119.61 33.17 15.33 9.34 6.57 4.14 
120.70 32.51 14.81 9.00 6.26 3.77 

110.28 28.87 13.08 7.80 5.52 3.53 
109.61 28.34 12.88 7.46 5.13 3.09 

PROGRAM 7 is used to generate this table 
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3.00 

3.82 
3.42 

3.48 
3.09 

3.10 
2.71 

2.70 
2. 17 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 6.6 

ARL OF THE MR<2> CHART WITH CONDITIONS 
1.a and 2.b ON FORP DATA 

<USING THEORETICAL VALUES> 

Un-.w I O"o1d <DISPERSION SHIFTS IN STEP> 

1.00 1.25 1.50 1.75 2.00 2.50 3.00 

120.52 #31.58 #14.88 #9.23 #6.66 #4.39 #3.36 
120.39 30.55 13.84 8.22 5.69 3.51 2.58 

112.81 #29.62 #13.77 #8.38 #6.13 #3.99 #3.11 
111.06 29.01 12.79 7.38 5.14 3.30 2.42 

109.89 #28.49 #13.06 #7.92 #5.67 #3.73 #2.85 
107.66 28.32 12.31 7.24 4.89 3.15 2.25 

110.09 #27.55 #12.40 #7.43 #5.29 #3.44 2.66 
109.03 26.80 11.88 6.81 4.74 2.87 2.11 

PROGRAM 10 is used to generate this table 
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shifts in process dispersion are not identical to the ARLs of 

the traditional MR<2> chart; since the filter constant equals 

0.0 and the Y values are independent of one another. The 

moving ranges of subgroup size two of the Y values formed 

must have the same probability density function as the 

traditional moving ranges of subgroup size two from an 

independent data stream. However, the conditional 

distribution of the moving range given that the first Y value 

in a moving subgroup of size two is known, is· different from 

the unconditional distribution of the moving range of 

subgroup size two from a stream of Y values. Thus the ARL of 

the OPA MRy chart, which is constructed based on conditional 

control limits, is sure to be different from the ARL of the 

traditional MR<2> chart. 

At this stage, the benefit of using the OPA MRy chart on 

a correlated FORP data stream is not obvious yet as it is 

masked by the tedious construction required for the OPA MRy 

chart. That is, even though the OPA MRy chart has appealing 

ARL values for all scenarios, the computational tedium may 

detract from its use. 

Evaluation 6.5 

'The characteristics of this evaluation are: 

Objective: 

Data Streams: 

Process shift: 

To compare the ARL of the OPA MRy chart 
and the MR<2> chart. 

FORP data for which r equals o.o, 0.3, 
0.6 and 0.9. 

The gradual shift in the mean is an 
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increase with a total of 3 process 
standard deviations in 20 subgroup 
sampling intervals. Once the maximum 
magnitude of the shift is reached, the 
process mean remains at this level. 

Type of Shift: Trend-wise. 

Control limits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL values for the OPA MRy and MR<2> charts are 

presented in TABLE 6.7. The SAS programs used to generate 

these ARL values are PROGRAMs 8 and 11; the program listings 

are found in Appendix E. 

From TABLE 6.7, it is found that the MR<2> chart is not 

sensitive to shifts of process mean in trend for filter 

constants equal to 0.0, 0.3 or 0.6. For these values of the 

filter constant, the OPA MRy chart has a substantially lower 

ARL when it is applied to the similar FORP data stream. The 

ARL of the OPA MRy chart on a FORP data stream with shift of 

process mean in trend increases as the value of filter 

constant increases. It is interesting to know that for 

filter constant equal to 0.9, the MR<2> chart has a lower 

ARL, which is significant at 5% level, than that of the OPA 

MRy chart. Recall that the shift in the mean of input 

variate X is at a rate of 3a/20 per subgroup sampling 

interval for 20 subgroup sampling intervals. When this 

magnitude of shift rate is 'translated' into the Y variate, 

it is found that the magnitude of shift in the mean of output 



TABLE 6.7 

ARL OF THE OPA MRy AND MR<2> CHARTS WITH 
CONDITIONS 1.a and 2.c ON FORP DATA 

<USING THEORETICAL VALUES> 

MEAN SHIFTS IN TREND 
FILTER 
CONSTANT OPA MRy MR<2> 

0.0 M #20.01 119.05 
s 8.30 120.39 

0.3 M #23.35 110.77 
s 10.22 110.92 

0.6 M #28.62 102.43 
s 14.03 105.95 

0.9 M 49.62 #40.79 
s 38.74 71.88 

PROGRAMs 8 and 11 are used to generate this table 
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variate Y depends on the filter constant of the FORP. 

Shift rate in X variate = 3a/20 

3ay ../( l+r > 
Shift rate in Y variate = 

20 ../(1-r> 

r = 0.0 Shift rate in y variate = o. 1500"y 

r = 0.3 Shift rate in y variate = 0.2040"y 

r = 0.6 Shift rate in y variate = 0.3000"y 

r = 0.9 Shift rate in y variate = 0.6540"y 

Thus, it can be seen that the shift rate in the y variate 

increases drastically for r=0.9. This explains the sudden 

decrease in the ARL of the MR<2> chart for r=0.9. Overall, 

the OPA MRy chart is still a more favorable control chart for 

a FORP data stream with a shift of process mean in trend as 

the ARLs are comparatively small for all values of the filter 

constant. 

Evaluation 6.6 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA MRy chart 
and the MR<2> chart. 

Data Streams: FORP data for which r equals 0.0, 0.3, 
0.6 and 0.9. 

Process shift: The mean is shifted in a cyclical 
manner. The cycle has a period which 
is equal to the sampling interval of 48 
subgroups. The amplitude of the cycle 
has a magnitude of 3 process standard 
deviations. 

Type of Shift: Cycle. 

Control limits: The control limits of these charts are 
based on theoretical values. 



Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 
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The ARL values for the OPA MRy and MR<2> charts are presented 

in TABLE 6.8. The SAS programs used to generate these ARL 

values are PROGRAMs 9 and 12; the program listings are found 

in Appendix E. 

In TABLE 6.8, it is clear that the OPA MRy chart is more 

powerful than the MR<2> chart in detecting a cyclical shift 

of process mean for filter constant equals to 0.0, 0.3 or 

0.6 as these ARLs of the OPA MRy chart are significant at the 

5% level. The ARL of the OPA MRy chart increases as the 

value of filter constant increases, but decreases as the 

filter constant equals 0.9. Again, it is interesting to find 

that the ARL of the OPA MRy chart is higher than that of the 

MR<2> chart when the filter constant is 0.9. This is due to 

the fact that the 'translation' of the shift in X variate 

into Y variate is not linear; rather, is an exponential 

relation which depends on the filter constant. 

From TABLEs 6.5 to 6.8, it is clear that the OPA MRy 

chart is a more favorable control chart for a FORP data 

stream than the MR<2> chart. Even though the OPA MRy chart 

may be a bit tedious to construct, this extra effort can be 

easily justified by the gains in abilities to detect shifts 

in process mean in trend or cycle. Moreover, with a computer 

program, the construction of the OPA MRy chart can be made 

very easy. 



TABLE 6.8 

ARL OF THE OPA MRy AND MR<2> CHARTS WITH 
CONDITIONS 1.a and 2.d ON FORP DATA 

<USING THEORETICAL VALUES> 

MEAN SHIFTS IN CYCLE 
FILTER 
CONSTANT OPA MRy MR<2> 

0.0 M #17.39 103.02 
s 14.55 101.88 

0.3 M #23.84 79.71 
s 22.23 78.50 

0.6 M #36.56 42.48 
s 35.95 39.93 

0.9 M 17.44 #10.38 
s 12.54 6.90 

PROGRAMs 9 and 12 are used to generate this table 
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Evaluation 6.7 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA Y charts 
when the value of the supposed-to-be­
known filter constant of a FORP is 
either understated, correctly stated 
or overstated. 

Data Streams: 

Process shift: 

FORP data for which r equals 0.6. 

Mean level is shifted by 0.0, 0.25, 
0.50, 1.00, 1.50, 2.00 and 3.00 in 
terms of the process standard 
deviation. 

Type of Shift: Stepwise. 

Control lfmits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Using first principles, the r is 
explicitly recognized and used in the 
construction of control limits. 
However, the r used is either 
overstated as 0.7, exactly stated as 
0.6 or understated as 0.5. 

The ARL values for the OPA Y charts are presented in 

TABLE 6.9. The SAS program used to generate these ARL values 

is PROGRAM 14; the program listing is found in Appendix E. 

From TABLE 6.9, it is obvious that the filter constant 

should be exactly stated in order for the OPA Y chart to 

perform as intended for a FORP data stream with stepwise 

shift in the process mean. If the filter constant is 

overstated, the ARLs of the OPA Y chart decrease. If the 

filter constant is understated, the ARLs of the OPA Y chart 

inflate. The change of the ARL is not proportional to the 

deviation of the supposed-to-be-known filter constant from 

its true value. If the detection of any magnitude of shift 



FILTER 
CONSTANT 

0.7 M 
OS s 

0.6 M 
ES s 

0.5 M 
us s 

TABLE 6.9 

ARL OF THE OPA Y CHART WITH CONDITIONS 
1.b and 2.a ON FORP DATA 

(USING THEORETICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 3.00 

39.07 35.28 12.17 2.93 
38.36 34.95 N/R 12.67 N/R 2.73 N/R 

370.36 283.08 155.53 43.82 14.57 6.19 2.02 
372.62 284.72 156.60 43.29 14.02 5.65 1.46 

156.82 11.39 
N/R T/L N/R 157.03 N/R 9.76 N/R 

OS = Overstated ES = Exactly stated US = Understated 
PROGRAM 14 is used to generate this table 

97 



98 

in the process mean is deemed more important than signaling 

a false alarm when the process is in-control, overstating the 

filter constant is more favorable than understating the 

filter constant. 

Evaluation 6.8 

The characteristics of this evaluation are: 

Objective: 

Data Streams: 

Process shift: 

To compare the ARL of the combined OPA 
Y and OPA MRy charts when the value of 
the supposed-to-be-known filter 
constant of the FORP is either 
understated, correctly stated or 
overstated. 

FORP data for which r equals 0.6. 

Mean level is shifted by 0.0, 0.25, 
0.50, 1.00, 1.50, 2.00 and 3.00 in 
terms of the process standard 
deviation. 

Type of Shift: Stepwise. 

Control limits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Using first principles, the r is 
explicitly recognized and used in the 
construction of control limits. 
However, the r used is either 
overstated as 0.7, exactly stated as 
0.6 or understated as 0.5. 

The ARL values for the combined OPA Y and OPA MRy charts_ 

are presented in TABLE 6.10. The SAS program used to 

generate these ARL values is PROGRAM 15; the program listing 

can is found in Appendix E. 

From TABLE 6.10, it is obvious that the filter constant 

should be exactly stated in order for the combined OPA Y and 

OPA MRy charts to perform as intended for a FORP data stream 



FILTER 
CONSTANT 

0.7 M 
OS s 

0.6 M 
ES s 

0.5 M 
us s 

TABLE 6.10 

ARL OF THE COMBINED OPA Y AND OPA MRy CHARTS 
WITH CONDITIONS 1.b and 2.a ON FORP DATA 

<USING THEORETICAL VALUES> 
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STEP SHIFT IN MEAN (IN MULTIPLE OF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 3.00 

19.00 18.69 10.25 2.63 
18.35 18.50 N/R 11.42 N/R 2.60 N/R 

112.28 104.92 87.28 38.61 13.33 5.57 1.75 
112.96 105.06 89.45 39.37 13.74 5.58 1.30 

142.37 10.78 
N/R T/L N/R 143.30 N/R 9.82 N/R 

OS = Overstated ES = Exactly stated US = Understated 
PROGRAM 15 is used to generate this table 
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with stepwise shift in the process mean. If the filter 

constant is overstated, the ARLs of the combined OPA Y and 

OPA MRy charts decrease. If the filter constant is 

understated, the ARLs of the combined OPA Y and OPA MRy 

charts inflate. The change of the ARL is not proportional to 

the deviation of the supposed-to-be-known filter constant 

from its true value. The ARL of the combined charts with 

true filter constant equal to 0.6, but overstated as 0.7, for 

an in-control process is only 19. This is considered too 

small as an ARL for an in-control process. 

Evaluation 6.9 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA MRy 
charts when the value of the supposed­
to-be-known filter constant of the FORP 
is either understated, correctly stated 
or overstated. 

Data Streams: FORP data for which r equals 0.6. 

Process shift: Ratios of new standard deviation to 
old standard deviation are 1.00, 1.25, 
1.50, 1.75, 2.00, 2.50 and 3.00. 

Type of Shift: Stepwise. 

Control limits: The control limits of these charts are 
based on theoretical values. 

Filter constant: Using first principles, the r is 
explicitly recognized and used in the 
construction of control limits. 
However, the r used is either 
overstated as 0.7, exactly stated as 
0.6 or understated as 0.5. 

The ARL values for the OPA MRy chart are presented in TABLE 

6.11. The SAS program used to ~enerate these ARL values is 



FILTER 
CONSTANT 

0.7 M 
OS s 

0.6 M 
ES s 

0.5 M 
us s 

TABLE 6.11 

ARL OF THE OPA MRy CHART WITH CONDITIONS 
1.b and 2.b ON FORP DATA 

(USING THEORETICAL VALUES> 

CTrt_wiCTo1d <DISPERSION SHIFT IN STEP> 

1.00 1.25 1.50 1.75 2.00 2.50 

20.01 9.24 5.74 N/R 3.44 
19.42 8.87 5.26 2.95 N/R 

119.61 33.17 15.33 9.34 6.57 4.14 
120.70 32.51 14.81 9.00 6.26 3.77 

153.23 49.39 14.43 
T/L 153.64 48.58 N/R 14.39 N/R 
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3.00 

2.15 
1.63 

3.10 
2.71 

4.93 
4.76 

OS = Overstated ES = Exactly stated US = Understated 
PROGRAM 16 is used to generate this table 
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PROGRAM 16; the program listing is found in Appendix E. 

From TABLE 6.11, it is obvious that the filter constant 

should be exactly stated in order for the OPA MRy chart to 

perform as intended for a FORP data stream with a stepwise 

shift in process dispersion. If the filter constant is 

overstated, the ARLs of the OPA MRy chart decrease. If the 

filter constant is understated, the ARLs of the MRy chart 

inflate. The change of the ARL is not proportional to the 

deviation of the supposed-to-be-known filter constant from 

its true value. The ARL of the OPA MRy chart with true 

filter constant equal to 0.6, but overstated as 0.7, for an 

in-control process is only 20.01. This is considered too 

small as an ARL for an in-control process. The ARL of the 

OPA MRy chart with true filter constant equal to 0.6, but 

understated as 0.5, for an in-control process is too large to 

be determined in a CPU time of 5 minutes. 

Whether or not the ARLs inflate or decrease in a similar 

pattern when the true filter constant has a value other than 

0.6 but is overstated or understated is not investigated in 

this research. From TABLEs 6.9-6.11, it is important to 

realize that, if the true filter constant equals 0.6 but is 

overstated as 0.7, the overstating of the filter constant 

causes the ARL of an in-control process to decrease 

unfavorably. If the true filter constant equals 0.6 but is 

understated as 0.5, the understating of the filter constant 

causes the ARL of an in-control process to inflate 

considerably. Therefore, the best practice is to exactly 
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state the filter constant using first principles. 

Conclusion 

In these ARL evaluations, substantial computer 

simulation has been carried out. The ARL and SDRL for the 

OPA Y, OPA MRy, I, and MR<2> charts on a FORP data stream 

with different types and different magnitudes of process 

shifts have been determined and presented. From the above 

comparison, there is clear indication that the OPA Y and OPA 

MRy charts perform favorably on a FORP data stream. It is 

also important to note that the filter constant be exactly 

stated in order to have the OPA Y or OPA MRy chart perform as 

desired. 



CHAPTER VII 

ANALYSIS OF SIMULATION RESULTS USING 

EMPIRICAL FORP AND SORP VALUES 

Introduction 

In the previous two chapters, the ARL of the OPA Y and 

OPA MRy charts are evaluated and compared with those of the I 

and MR<2> charts. One distinguishing feature of the 

evaluations is that the control limits of the control charts 

are constructed using theoretical mean and standard deviation 

values of the X variates. One has the advantage of using 

these theoretical values because the relationship between the 

X <input> and Y (output> variates of a FORP are well defined. 

Those control charts used in the evaluations are constructed 

based on theoretical values of the mean and the average of 

the moving ranges of subgroup size two of the Y variates. 

However, if the response process is not a FORP but 

rather a second order response process, SORP, or if the 

construction of a particular control chart cannot be based on 

the theoretical mean and standard deviation values of the X 

variates, then a different approach to computing the control 

limits of the control chart has to be used. In this case, 

the control limits of the control chart are constructed based 
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on the statistics from an initial small sample, say 30 

subgroups. In other words, the control limits are 

constructed based on empirical data. 

The modified EWMA chart is a control chart suggested by 

Montgomery <1990> as a useful tool to monitor a correlated 

data stream. The construction of control limits for the 

Modified EWMA chart is based on statistics derived from an 

initial small sample of the correlated data stream. 

Therefore, to compare the ARLs of the Modified EWMA and OPA Y 

charts on a FORP data stream, the control limits of the OPA Y 

chart are constructed based on empirical data from a FORP. 

Otherwise, the comparison of ARLs for the Modified EWMA and 

OPA Y chart is not compatible. 

To investigate how the OPA Y or OPA MRy chart performs 

on a SORP data stream, the control limits of the OPA Y or OPA 

MRy chart must be constructed based on the empirical data 

from the output of a SORP. This scenario corresponds to a 

situation in which the user of the OPA Y or OPA MRy chart 

mistakenly considers a SORP data stream as if it is a FORP 

stream. Nevertheless, it is assumed that the user still 

exactly states the filter constant. Using the SORP values, 

the OPA Y chart or OPA MRy chart is set up as if the chart 

will be applied on a FORP data stream. In fact, the chart 

constructed is applied on a SORP data stream. The ARL of the 

OPA Y and OPA MRy charts on a SORP data stream under 

different magnitudes of process shift in the X variates 

(input of the SORP> are determined using simulation. 
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To compare the ARLs of the OPA Y or OPA MRy chart on a 

SORP, compatible to the ARLs of the OPA Y or OPA MRy chart on 

a FORP, the ARL of the OPA Y or OPA MRy chart on a FORP has 

to be determined again. This time, the control limits of the 

OPA Y or OPA MRy chart on a FORP are constructed based on 

empirical data from the output of a FORP and the ARLs of 

these charts on FORP data are determined using simulation as 

in Chapters V and VI. 

Data Generation 

The FORP data stream used to determine the ARL of the 

OPA Y, OPA MRy and Modified EWMA chart are generated using 

the method described in Chapter V. In addition, an initial 

small sample needs to be generated in order to estimate the 

mean and average of the moving ranges of the Y variates. 

This is done by generating 30 observations after the first 50 

Y values are discarded for 'warming-up' purpose. The first 

30 observations are used to compute 30 moving ranges of 

subgroup size two. The average of the moving ranges, MRybar 

is then calculated from these 30 moving ranges. An estimate 

of the mean of the Y variates, Ybar, is also computed from 

these 30 observations. These MRybar and Ybar are statistics 

derived from the empirical data and are used to compute the 

control limits of control charts. 

In this study, the first plotted point on the control 
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chart is obtained from the 31•t observation. That is, the 

first 30 observations are used only to estimate parameters 

for the construction of control limits, and are not plotted 

on the control charts. 

The generation of a SORP data stream is just an 

extension of the generation of a FORP data stream. A SORP 

can be depicted as two FORPs in series <Box and Jenkins, 

1976). The input to the first FORP is the X variates, and 

the output of the first FORP becomes the input to the second 

FORP. The output of the second FORP is the output of the 

SORP. To facilitate further discussion, the output of a SORP 

is denoted as a 2 variate. In a real process, the filter 

constant for the two FORPs can be different. However, in 

this research, for simplicity, it is assumed that the filter 

constants of the first and second FORP in a SORP are the 

same. In computer codes, a SORP generator can be described 

by a pair of recurrence relations: 

Y2 = FC*Y1 + <1-FC>*<RANNOR<SEED>*STD +MEAN> 
22 = FC*21 + <1-FC>*Y2 

<7 .1> 
(7.2> 

where FC is the filter constant, r, of a first and second 

FORP, Y1 and Y2 are two consecutive values of Y, output of 

the first FORP, and 21 and 22 are the two consecutive values 

of 2, output of the SORP. The values of the filter constant 

used in the study are 0.0, 0.3, 0.6, and 0.9. By using a 

filter constant equal to 0.0, an independent normal data 



108 

stream is generated. Thus, Equations <7.1) and (7.2) can be 

used to generate an independent normal data stream as well as 

an SORP data stream. 

To use these recurrence relations, the first Y and Z 

values used in the first and second FORP are two identical 

and independent normal variates with mean equal to ~ = MEAN 

and standard deviation equal to u = STD. For this study, 

MEAN is set to equal 10.0, and STD equals 1.0. All 

subsequent Y values of the first FORP are then generated 

using Equation (7.1>. Every subsequent Y value generated is 

substituted into Equation <7~2> to generate a corresponding Z 

value. 

Since the very first V and Z values are not generated 

using Equations (7.1) and <7.2), respectively, the first few 

Z values generated do not truly depict a SORP. Thus, to 

'warm-up' the SORP data generator, the first 50 SORP data 

values generated are discarded. However, the 51•t value 

generated is used to generate the first 'observation' of the 

initial sample. In this study, 30 observations are generated 

in order to estimate the mean and average of the moving 

ranges of the Z variates. This is done by generating 30 

observations of Z values after the first 50 Z values are 

discarded for 'warming-up' purposes. These first 30 

observations of Z, along with the 51•t Z value are used to 

compute 30 moving ranges of subgroup size two. The average 

of the moving ranges, MRzbar, is then calculated from these 

30 moving ranges. An estimate of the mean of the Z variates, 
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Zbar, is also computed from these 30 observations. These 

MRzbar and Zbar statistics are derived from the empirical 

data and are used to compute the control limits of control 

charts. 

To embed the effect of a shift in process mean or 

process standard deviation into the <10.0,1.0> normal 

variate, for the generation of SORP data, the following 

methods are used: 

<1> For a stepwise shift in the process mean, the standard 

deviation is multiplied by the magnitude of shift and 

added to the process mean. Hence, the shift of process 

mean is in terms of the process standard deviation. The 

SORP data generator in computer codes becomes 

NMEAN 
Y2 
Z2 

= MEAN + SHIFT*STD 
= FC*Y1 + <1-FC>*<RANNOR(SEED>*STD + NMEAN> 
= FC*Z1 + <1-FC>*Y2 

where SHIFT is the magnitude of shift. The magnitudes 

of shift used in this study are: 0.0, 0.25, 0.50, 1.00, 

1.50, 2.00 and 3.00. Figure 5.1 shows the stepwise 

shift in mean. 

(2) For a stepwise shift in the process standard deviation, 

the standard deviation is multiplied by the ratio of the 

new standard deviation to the original standard 

NSTD 
Y2 
Z2 

The SORP data generator becomes: 

= RATIO*STD 
= FC*Y1 + <1-FC>*<RANNOR<SEED>*NSTD +MEAN> 
= FC*Z1 + <1-FC>*Y2 

where RATIO is the value of un--1uo1d• The ratios used 

in this study are: 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 



3.00. Figure 5.4 shows the stepwise shift in 

dispersion. 
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It should be noted that only from the generation of the 

first plotted point onward is the effect of the process shift 

embedded into ~he SORP data generation process. That is, 

the effect of process shift is only embedded beginning with 

the generation of the 31•t observation of z. Moreover, only 

one type of shift is embedded in a scenario under study. 

Control Limits 

In this section, the construction of the control limits 

for the control charts used in the study are discussed. It 

is important to remember that the control limits are 

constructed based on empirical data. That is, it is assumed 

that the mean, ~' and standard deviation, a, of the 

unobservable X variates are unknown, and they need to be 

estimated from empirical data. However, the filter constant, 

r, of the FORP is still assumed to be exactly known by first 

principles. In the case of a SORP data stream, the two 

filter constants, FCl and FC2, used for data generation are 

assumed to be equal. It is assumed that the user has 

mistakenly considered a SORP as a FORP and applies the OPA Y 

or OPA MRy chart on this SORP data stream. It is further 

assumed that the user has exactly stated one of the filter 

constants, FCl, but used it as the filter constant for a 

FORP. This stated filter constant, FCl, is used for the 

construction of control limits based on empirical data which 
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have been mistakenly considered as FORP data. 

Modified EWMA Chart 

The control limits of the Modified EWMA chart are one­

step-ahead control limits based on the prediction error made. 

The EWMA statistic is 

Wt =a Yt + (1-a) Wt-1 

where 0 ~ a < 1. 

(7.3) 

If the observations from the process can be modeled by 

an ARIMA <0,1,1> = IMA<1,1> model, then the EWMA is the 

optimal one-step-ahead forecast for the mean of this process 

<Montgomery, 1990). Using the procedure presented by 

Montgomery, the one-step-ahead control limits can be 

constructed. 

If Yct+1<t> is the forecast for the observation in 

period t+1 made at the end of period t, then 

(7.4) 

is used as the center line for the control chart in period 

t+1. The sequence of one-step-ahead prediction errors 

or 

et+1(1) = Yt+1 

et+1<1> = Yt+1 (7.5) 

are independently and identically distributed if the 

underlying process is really IMA<1,1). There are two 

procedures that could be used to estimate the standard 

deviation of the one-step-ahead prediction error, ap. 

However, in this study only one method is adopted to estimate 

ap. The method used is to apply an EWMA to the absolute 
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value of the prediction error as follows, 

e<t> = olet<1>j + <1-o> e<t-1>, o i o < 1 (7.6) 

Since the mean absolute deviation of a normal distribution 

is related to the standard deviation by a= 1.25 e<t> 

<Montgomery and Johnson, 1976>, the standard deviation of 

the prediction error at time t can be estimated by 

(7.7) 

The control limits of the Modified EWMA chart for period t+1, 

calculated at the end of period t, are 

(7.8> 

The starting values of the control chart are obtained 

by treating the first 30 observations of V after the 'warm­

up' process. The EWMA is used for the first 30 periods with 

W0 equal to Vbar from the first 30 observations. Solving 

Equation <7.3) successively, W3 o is obtained. Using Equation 

<7.5>, a series of one-step prediction errors e1<1>, ee<1>, 

••• , eao<l> are also obtained. As specified by Montgomery 

(1990), the sample standard deviation of these prediction 

errors is used to provide starting values for Equation <7.6) 

at time origin t = 0. That is, the sample standard 

deviation of e~<l>, i = 1(1)30, is used as 9(0) in Equation 

(7.6). Solving Equation (7.6> successively, 9(30> is 

obtained. Consequently, ap(30) is also obtained through 

Equation <7.7>. Substituting Wao and ap(30) into Equation 
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(7.8>, the control limits for the first plotted point on the 

Modified EWMA chart can be calculated. The first plotted 

point is the 31•t observation recorded. 

The control limits for the second plotted point can be 

obtained after the 31•t observation is recorded. Using 

Equations (7.3>, <7.5), (7.6>, (7.7) and (7.8), the control 

limits for the second plotted point are computed. This 

procedure is repeated to construct subsequent control limits 

on the control chart. 

As suggested by Montgomery (1990>, the value a used for 

the EWMA Equation <7.3) is 0.20, and the value of 8 used for 

smoothing the error estimates in Equation (7.6) is 0.25 for 

the first 30 observations and 0.10 for all subsequent 

observations. The large initial value for 8 is used to 

induce a more rapid rate of smoothing during the time periods 

following control start-up. This ensures that starting 

values for the EWMA and the error estimates are quickly 

updated. 

OPA Y Chart Using y Data 

The control limits for the OPA Y chart are conditional 

control limits. They are conditioned on the current 

observation. Using Equations (3.10> and (3.11>, after 

rearrangement of terms, the conditional control limits for 

the next plotted point on the control chart are 

UCLoPAv = FC*(W-MEAN> +MEAN+ 3*STD<1-FC> 

LCLoPAv = FC*<W-MEAN> + MEAN 3*STD<l-FC> 

(7.9) 

<7.10) 
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where W is the current value on the control chart and FC is 

the filter constant of the response process. 

For a FORP data stream, the W is replaced by the current 

observation of Y, Y2, MEAN is replaced by Ybar, and STD is 

replaced by the following equation (from Equation (3.17>> 

MRybar * ../(1+r> 
a = 

1.128 * <1-r> 

Equation <7.11> is derived from the fact that, 

uy2 = u2 * <1-r)/(1+r) 

and 

MRybar = 1.128 * Uv * ../(1-r> 

(7.11> 

( 7. 12) 

(7.13) 

Taking the square root of Equation <7.12> and substituting 

into Equation (7.13> results in 

MRybar = 1.128 * u * <1-r)/../(1+r> (7.14) 

Then rearranging Equation (7.14) results in Equation (7.11>. 

OPA MRy Chart Using y Data 

The control limits ftir the OPA MRy chart are conditional 

control limits. Similar to the control limits of the OPA Y 

chart, they are also conditioned on the current plotted point 

on the OPA Y chart which is denoted as k. Using Equations 

(4.20) and (4.21>, the conditional control limits for the 

next plotted point on the OPA MRy chart are 

UCLcPAMRy = E<Rik> + 3·Std<Rik> (7.15) 

LCLcPAMRy = E<Rik> 3·Std<Rik> (7.16> 

where E<Rik> and Std<Rik> are defined as in (4.16) and 

(4.17>, and both involve the Jt and u of the X variates, plus 
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the current observation. 

For a FORP data stream, the k is replaced by the current 

observation of Y, Y2, ~ is replaced by Ybar, and u is 

replaced by Equation <7.11). 

OPA Y Chart Using ~ Data 

For a SORP data stream, the conditional control limits 

for the next plotted point on the OPA Y chart are the 

Equations <7.9) and (7.10>; except that theW is replaced by 

the current observation of z, Z2, MEAN is replaced by Zbar, 

and STD is replaced by the following equation (from Equation 

(3.17>> 

a = 
MRzbar * ~(1+FC1> 

1.128 * <1-FC1> 
(7.17) 

It is seen that the estimate of the STD expressed in Equation 

(7.17> is not correct as Z is an output from a SORP. 

OPA MRy Chart Using ~ Data 

For a SORP data stream, the conditional control limits 

for the next plotted point on the OPA MRy chart are the 

Equations (7.15> and (7.16>; except that the k is replaced by 

the current observation of Z, 22, ~ is replaced by Zbar, and 

a is replaced by Equation <7.17>. 

List of Programs Coded 

SAS programs have been coded to simulate the performance 

of the OPA Y, OPA MRy and Modified EWMA charts in various 
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scenarios of interest. The conditions incorporated into the 

scenarios can be broken down in the following manner 

1.a 4 filter constants exactly stated: r = 0.0, 0.3, 0.6, 
0.9 

2.a 7 shifts in the mean of X variates (in multiple of u> 
: o.o, 0.25, 0.50, 1.00, 1.50, 2.00, 3.00 

2.b 7 shifts in standard deviation of X variates 
(Un•w1Uo1d): 1.0, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00 

For consistency, these conditions are labeled in such a 

way to match with those in Chapter V. 

The SAS program scenarios coded are listed in TABLE 7.1. 

Since the execution of the simulation of each scenario can be 

quite long, only simulation for one scenario is done at a 

time. Due to the length of the simulation time, the ARLs for 

some scenarios are the averages of 10000 or, in some cases, 

5000 or 1000 run lengths simulated. After obtaining the ARL 

for one scenario, parameters are changed to form a new 

scenario. It is important to point out that each scenario 

has the same random number seed. Thus, each scenario is 

subject to the same stream of random numbers. 

Comparison of the ARL 

To analyze and compare various ARLs under different 

scenarios, the ARL of comparable charts are grouped under 

various evaluation headings. A brief description is included 

for each evaluation. The description includes the objective 

of the ARL comparison, the features of the data streams used, 

the magnitude of process shift either in mean or dispersion, 
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TABLE 7~1 

LIST OF SAS PROGRAM SCENARIOS CODED 

PROGRAM NAME OF CONDITION 
NUMBER CHART<S> NUMBER 

17 Modified EWMA chart ( 1. a> and (2.a) 
on FORP data stream 

18 OPA Y chart on < 1 ~a> and <2.a> 
FORP data stream 

19 OPA MRy chart on ( 1. a) and (2.b) 
FORP data stream 

20 OPA Y chart on < 1. a> and <2.a> 
SOAP data stream 

21 OPA MRy chart on < 1. a> and <2.b> 
SORP data stream 
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how the control limits are constructed, type of process 

shift , and whether the filter constant is explicitly 

recognized or not. The tabulated ARL results are presented 

and followed by an analysis of the comparison in terms of 

the ARL of the control charts involved. Statistically 

significant ARLs are marked with '#'. 

Due to the effect of variation in control limits 

introduced by using empirical values <see Appendix F>, the 

ARL of the OPA Y and OPA MRy charts on a FORP data stream 

presented in this chapter are found to be different from 

those of similar charts in Chapter VI. 

Evaluation 7.1 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the Modified 
EWMA chart and the OPA Y chart. 

Data Streams: FORP data for which r equals 0.0, 0.3, 
O.b and 0.9. 

Process shift: Mean level is shifted by 0.0, 0.25, 
0.50, 1.00, 1.50, 2.00 and 3.00 in 
terms of process standard deviation. 

Type of Shift: Stepwise. 

Control limits: Control limits of these charts are 
based on the initial 30 empirical 
values of the Y variate. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits in the 
Y chart. 

EWMA parameter: The « used in the EWMA computation is 
0.2. The 8 used for smoothing the 
error estimates is 0.25 for the initial 
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subsequent observations. 
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The ARL values for the OPA Y and the Modified EWMA charts are 

presented in TABLEs 7.2 and 7.3, respectively. The SAS 

programs used to generate these ARL values are PROGRAMs 17 

and 18; the program listings are found in Appendix E. 

It is seen from TABLE 7.2 that the Modified EWMA chart 

is insensitive to a magnitude of shift less than 3a. It 

should be remembered that the variation due to using 

empirical data is contained in the ARLs. Examining TABLE 

7.3, it is readily seen that the ARLs are large, significant 

at 5Y. level, for small magnitudes of shift in the process 

mean, but the ARLs are acceptable for larger magnitudes of 

process shift. When comparing TABLEs 7.2 and 7.3, it is 

clear that for a magnitude of mean shift greater or equal to 

1.5 sigma, the DPA Y chart performs better than the Modified 

EWMA chart as the ARLs of the OPA Y chart are significant at 

the 5Y. level. It .is interesting to find that the ARL of the 

Modified EWMA chart does not change considerably for small 

magnitudes of mean shift. This is not the case for the DPA Y 

chart. Clearly, a data stream from a first order response 

process is not suitable to be modeled as an IMA<1,1> time-

series model. 

An IMA<1,1) time series model can be written in terms of 

the observations, W's, and the random errors, e's, in the 

form <Box and Jenkins, 1976) 

(7.18) 



TABLE 7.2 

ARL OF THE MODIFIED EWMA CHART WITH CONDITIONS 
1.a AND 2.a ON FORP DATA 
<USING EMPIRICAL VALUES> 
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STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 
FILTER 
CONSTANT 0.00 0.25 0.50 1.00 1.50 2.00 3.00 

0.0 M 130.18 129.30 129.37 #127. 10 121.18 110.59 73.71 
s 134.79 134.50 134.93 135.25 135.00 133.96 120.58 

0.3 M 131.32 130.69 #130.32 127.39 118.75 104.58 64.55 
s 132.29 135.96 136.37 136.54 136.18 133.93 116.51 

0.6 M 150.34 #150.64 148.38 143.10 132.09 111. 12 61.57 
s 157.43 158.40 158.06 158.62 158.13 152.75 125.53 

0.9 M 217.20 215.39 #214.72 208.75 183.34 146.27 81.90 
s 226.91 227.50 228.27 229.73 226.09 215.64 175.69 

PROGRAM 17 is used to generate this table 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 7.3 

ARL.OF THE OPA Y CHART WITH CONDITIONS 
1.a AND 2.a ON FORP DATA 
<USING EMPIRICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 3.00 

391.76 #2.46 
TIL TIL N/R 17795.1 N/R N/R 3.40 

739.85 #32.59 #10.53 
T/L N/R 10275.4 N/R 104.87 44.31 N/R 

1059.55 #113.84 #11.09 
T/L 7468.27 N/R 566.84 N/R 96.22 N/R 

490.24 #25.99 #2.31 
T/L N/R 3297.0 N/R 67.08 N/R 2.65 

PROGRAM 18 is used to generate this table 
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where e is some constant. Recall that, from Chapter III, a 

FORP can be viewed as an AR<l> time series model. An AR<l> 

time series model can be written in terms of the 

observations, V's, and the random errors, e's, in the form 

(7.19) 

Obviously, an AR<l> time series model is different from the 

IMA<1,1> time series model. This explains why the Modified 

EWMA chart, which assumes that the observations from a 

process can be well-modeled by an IMA<l,l) time series model, 

does not perform satisfactorily on a FORP data stream. 

Evaluation 7.2 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA Y chart 
on FORP and SORP data streams. 

Data Streams: FORP data with r equal to 0.0, 0.3, 0.6 
and 0.9. SORP data with FCl equal to 
FC2 equal to 0.0, 0.3, 0.6 and 0.9. 

Process shift: Mean level is shifted by 0.0, 0.25, 
0 • 50 , 1 • 00 , 1 • 50 , 2 • 00 c:md 3 • 00 i n 
terms of process standard deviation. 

Type of Shift: Stepwise. 

Control limits: Control limits of these charts are 
based on the initial 30 empirical 
values. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits in the 
OPA Y chart on FORP and SORP data 
streams. 

The ARL values for the OPA Y charts on FORP are already 

presented in TABLE 7.3, but to aid comparison they are 
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listed here again as TABLE 7.4. The ARL values for the OPA Y 

chart on SORP data streams are presented in TABLE 7.5. The 

SAS programs used to generate these ARL values are PROGRAMs 

18 and 20; the program listings can be found in Appendix E. 

The first row of TABLEs 7.4 and 7.5 are supposed to be 

similar, as when the filter constant is equal to zero, the 

SORP and FORP are identical data streams. The discrepancies 

and normal statistical variation are due to the number of 

simulation runs performed. From TABLE 7.5, it is noted that 

the ARLs for the OPA Y chart are large, significant at the 5% 

level, for a magnitude of mean shift up to about 0.5 sigma 

when the filter constant of the SORP is 0.9. However, for 

filter constants equal to 0.3 or 0.6, the OPA Y chart is 

quite sensitive to the process shift in a SORP data stream as 

the ARLs of the OPA Y chart are significant at the 5% level. 

In TABLE 7.5, the ARLs for an in-control process with 

filter constant equal to 0.9 seems to be very 'strange' as 

compared to other ARLs in the same row. This may be due to 

the number of simulation runs at this scenario. Another 

'strange' pattern observed in TABLE 7.5 is that the SDRLs are 

not strictly decreasing with the increase in the magnitude of 

the process mean for filter constants equal to 0.0 and 0.9. 

The reason for such irregularity is not known. The OPA Y 

chart is found to be somewhat robust to a SORP data stream in 

the sense that the Y chart still performs well under 

different magnitudes of shift for a filter constant that is 

neither too large nor too small. 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 7.4 

ARL OF THE OPA Y CHART WITH CONDITIONS 
1.a AND 2.a ON FORP DATA 
<USING EMPIRICAL VALUES> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 

391.76 
T/L TIL N/R 17795.1 N/R N/R 

739.85 32.59 10.53 
TIL N/R 10275.4 N/R 104.87 44.31 

1059.55 113.84 11.09 
TIL 7468.27 N/R 566.84 N/R 96.22 

490.24 25.99 
T/L N/R 3297.0 N/R 67.08 N/R 

PROGRAM 18 is used to generate this table 
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3.00 

2.46 
3.40 

N/R 

N/R 

2.31 
2.65 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 7.5 

ARL OF THE OPA Y CHART WITH CONDITIONS 
1.a AND 2.a ON SORP DATA• 

<FC1=FC2; USING EMPIRICAL VALUES'> 

STEP SHIFT IN MEAN <IN MULTIPLE OF SIGMA> 

0.00 0.25 0.50 1.00 1.50 2.00 

b2873.4 815.29 416.33 37.98 12.67 
T/L 25164.1 7801.57 16181.2 262.87 62.26 

266.39 157.45 #87.75 18.64 #6.43 #3.24 
1503.82 455.72 267.6 37.25 12.53 3.07 

103.78 #69.52 31.79 #8.46 3.90 #2.53 
579.70 192.76 76.26 22.53 3.12 1.47 

b406.27 498.91 483.56 7.77 #4.66 3.42 
4996.63 15459.4 32540. 6.70 2.91 1.90 
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3.00 

2.69 
4.93 

1.55 
0.84 

1.59 
0.69 

2.33 
1.09 

• all scenarios are simulated for 5000 times, except as 
marked with b 

1:o simulated 1000 times 
PROGRAM 20 is used to generate this table 
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Evaluation 7.3 

The characteristics of this evaluation are: 

Objective: To compare the ARL of the OPA MRy chart 
on FORP and SORP data streams. 

Data Streams: FORP data with r equal to 0.0, 0.3, 0.6 
and 0.9. SORP data with FC1 equal to 
FC2 equal to 0.0, 0.3, 0.6 and 0.9. 

Process shift: Ratios of the new standard deviation to 
the old standard deviation are 1.00, 
1.25, 1.50, 1.75, 2.00, 2.50 and 3.00. 

Type of Shift: Stepwise. 

Control limits: Control limits of these charts are 
based on the initial 30 empirical 
values. 

Filter constant: Filter constant is explicitly and 
correctly recognized using first 
principles. It is used in the 
construction of control limits. 

The ARL values for the OPA MRy charts on FORP and SORP data 

streams are presented in TABLEs 7.6 and 7.7, respectively. 

The SAS programs used to generate these ARL values are 

PROGRAMs 19 and 21; the program listings are found in 

Appendix E. 

The first rows of TABLEs 7.6 and 7.7 are supposed to be 

similar, as when the filter constant is equal to zero, the 

SORP and FORP are identical data streams. The discrepancies 

and normal statistical variation are due to the number of 

simulation runs performed. From TABLE 7.7, it is noted that 

the ARLs for the OPA MRy chart are large when the filter 

constant of the SORP is 0.9 as the ARLs are significant the 

at the 5% level. However, for filter constants equal to 0.3 



FILTER 
CONSTANT 

0.0 M 
s 

0.3 M 
s 

0.6 M 
s 

0.9 M 
s 

TABLE 7.6 

ARL OF THE OPA MRy CHART WITH CONDITIONS 
1.a AND 2.b ON FORP DATA 
<USING EMPIRICAL VALUES> 

CTro • .,..ICTo~d <DISPERSION SHIFTS IN STEP> 

1.00 1.25 1.50 1.75 2.00 2.50 

390.81 24.28 9.16 
2942.20 N/R 35.57 N/R 10.89 N/R 

52.13 11.99 4.98 
N/R 107.01 N/R 15.38 N/R 5.01 

239.16 #17.95 #7.05 
675.40 N/R 25.54 N/R 7.65 N/R 

#39.63 #8.59 #3.70 
N/R 67.72 N/R 10.41 N/R 3.54 

PROGRAM 19 is used to generate this table 
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3.00 

N/R 

N/R 

N/R 

N/R 



FILTER 
CONSTANT 

0.0 M 
5 

0.3 M 
s 

0.6 M 
s 

0.9 M 
5 

TABLE 7.7 

ARL OF THE OPA MRy CHART WITH CONDITIONS 
1.a AND 2.b ON SORP DATA• 

<FC1=FC2; USING EMPIRICAL VALUES> 

a,., • ..,lao1cl <DISPERSION SHIFTS IN STEP> 

1.00 1.25 1.50 1. 75 2.00 2.50 

439.41 63.16 23.65 13.64 9.12 5.49 
3354.06 141.56 36.74 18.11 10.55 5.74 

196.52 #44.47 19.21 #11.04 7.75 #4.70 
813.13 73.38 26.02 13.45 8.72 4.65 

#345. 17 56.57 23.92 13.21 8.77 5.20 
1803.70 109.51 36.18 16.90 9.49 5.27 

b478.28 106.00 48.56 25.59 13.60 
T/L 5331.19 608.42 235.37 65.33 18.60 
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3.00 

3.91 
3.82 

3.53 
3.35 

3.67 
3.57 

9.09 
13.05 

• all scenarios are simulated 5000 times, except as 
marked with b 

t:o simulated 1000 times 
PROGRAM 21 is used to generate this table 
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the OPA MRy chart is quite sensitive to the process shift as 

the ARLs are significant at the 5% level. Overall, the OPA 

MRy chart is found to be quite robust to the SORP data stream 

in the sense that the MRy chart performs quite well under 

different magnitudes of shift. 

Conclusion 

The ARL of the OPA Y, OPA MRy and Modified EWMA charts 

on a FORP data stream under different magnitudes of process 

shift are determined through simulation. The control limits 

of control charts in this chapter are based on empirical 

values. It is found that the OPA Y and OPA MRy charts are 

quite robust to a SORP data stream inasmuch their ARLs are 

acceptable for various magnitude of process shift. It is 

also found that the Modified EWMA chart is not suitable for a 

FORP data stream. The effects of variation in empirical 

determined control limits on the ARL of a control chart is 

also discussed in Appendix F. This explains the 

discrepancies between the ARLs of similar charts determined 

in previous chapters versus those in this chapter. 



CHAPTER VIII 

COMPUTER PROGRAM TO IMPLEMENT THE 

OPA Y AND OPA MRy CHARTS 

Introduction 

A FORTRAN program is coded to implement the proposed 

special control charting techniques for quality data obtained 

from a FORP. It is assumed that the user has prior knowledge 

of the filter constant of the FORP. The main purpose of the 

program is to illustrate the fact that the conditional 

control limits of the OPA Y and OPA MRy charts can be 

easily constructed, and manual construction of these control 

charts should not be regarded as an obstacle for the 

implementation of these useful tools on FORP data. 

Program Algorithm 

The user has the option of entering the observations 

via the keyboard or letting the program read the observed 

values from a disk file. The disk file should be named 

'INPUT'. If the observations are to be read from an ASCII 

disk file, the values should be arranged in a column with the 

first value being the filter constant, r, and subsequent 

values being the observations in time order. If the 

130 
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observations have to be entered via keyboard, the user has 

to first input the known value of the filter constant, r, 

and the number of observations, N, required to initiate the 

construction of the OPA V and OPA MRy charts. The user is 

then prompted to enter the observations one by one. The 

program then computes the average of observations and average 

of moving ranges of subgroup size two of these observations. 

These quantities are denoted as Vbar and MRybar, 

respectively. An estimate of the standard deviation of the X 

variates of a FORP, sigma, is then computed using the 

following equation 

MRybar * SQRT<1.0 + r> 
sigma = 

1.128 * <1.0- r> 
(8.1) 

The program constructs conditional control limits for 

each observation entered except the first observation. Since 

the control limits are conditioned on the previous 

observation, the first set of control limits is the control 

limits for second observation, and is constructed conditioned 

on the first observation. The equations used to construct 

the control limits of the OPA V and OPA MRy charts are 

Equations <3.19)-(3.20) and <4.20)-(4.21>, respectively. 

The construction of conditional control limits, and 

display of the OPA V and OPA MRy values and the corresponding 

control limits, are performed in a subroutine called CHART. 

The user has the option of storing the results in a disk 

file. The output disk file is named 'RESULT'. Whether the 

user makes this selection or not, the results are always 
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displayed on the computer monitor screen as well. 

After all the control limits and observations are 

displayed, the user is given an opportunity to decide 

whether to terminate the program or to continue to enter 

observations. If the user decides to enter more 

observations, and the array used to store the observation is 

not yet full, an observation can be accepted and the program 

will compute the moving range and its control limits based 

upon the previously computed Ybar and MRbar. That is, the 

estimate of mean and standard deviation are based only upon 

the initial N observations. The value of the observation 

entered, its moving range, and corresponding control limits 

for the OPA Y and OPA MRy charts are displayed or stored in 

the disk file as well, before the user is prompted to enter 

the next observation. Otherwise, the program terminates. A 

brief flow-chart of this main program is found in Figure 8.1. 

Subroutine CHART is coded to construct the conditional 

control limits of the OPA Y and OPA MRy charts. The argument 

parameters needing to be passed from the main program are the 

index of the plotted point, the current and previous 

observations, the current moving range, the Ybar, MRybar, 

filter constant r, and a constant term B which has been 

computed in the main program. 

The subroutine begins by constructing the conditional 

control limits of the OPA Y chart using Equations (3.19> and 

(3.20). From Equation <4.16>, it is found that the 

construction of the conditional control limits of the OPA MRy 



Diskfile 

Read r and 
observations, 

from disk 

Compute Ybar 
and MRbar 

Successively 
call subroutine 

CHART 

Display the 
results 

Keyboard 

YES 

Accept r and N 

Successively enter 
a total of N 
observations 

Call subroutine 
CHART 

Enter new 
observation 

Figure 8.1. Flow-chart of Main Program for Constructing 
the OPA Y and OPA MRy Charts 
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chart involves a lot of components. They are broken down 

into several FORTRAN statements. The ordinate of standard 

normal distribution is coded as a function PHIS and the 

cumulative of the standard normal is coded as a function PHI. 

The computations in both functions are in double precision to 

reduce round-off computation errors. The computation of PHI 

is approximated using polynomial equation 29.2.19 in the text 

by Abramowitz and Stegun (1965). The computer codes can 

also be found in a program coded by Nelson (1983>. This 

eliminates the need for numerical integration for the 

determination of the cumulative standard normal. 

If the control limits of the OPA MRy charts are less 

than zero, they are set at the value zero. The current 

observation and its moving range are tested to see whether 

they fall within or beyond their respective control limits. 

If one falls beyond the control limits, a mark '*' will be 

printed beside the value during output to indicate an out-of­

control situation is signaled. The flow-chart of this 

subroutine can be found on Figure 8.2. 

can be found in Appendix G. 

Example 

The FORTRAN program 

After the program is compiled and linked, the executive 

file can be used. After loading the .EXE file into RAM, the 

user is prompted to select the option on how the observations 

are to be input. 
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{Begin ) 

I 
Construct conditional 

control limits of 
OPA Y Chart 

I 
Construct conditional 

control limits of 
OPA MRy Chart 

I 
Determine whether 
plotting points 
are in-control 

I 
Display 
Results 

I 
(Return 

Figure 8.2. Flow-chart for Subroutine CHART 



PROGRAM TO CONSTRUCT THE Y AND MRy CHARTS 

ENTER D IF THE DATA ARE STORED IN DISK FILE 
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If the user has stored the observations in a disk file, 

and the disk file is in the current active disk drive, the 

user will be prompted to confirm that the disk file is in 

proper format and with the proper file name. Then the user 

is prompted to select the option whether to store the results 

in a disk file or not. If the user opts to enter 

observations via the keyboard, the user is prompted to enter 

the value of the filter constant. 

ENTER THE VALUE OF FILTER CONSTANT 

Assuming that the user enters 0.8 as the filter 

constant, the user is then prompted to enter the number of 

data to be entered. 

ENTER THE NUMBER OF DATA POINTS 

Assume also that the user enters 30 as the number of data 

values to be entered, the program then asks for the data to 

be input one by one. 

ENTER THE DATA ONE BY ONE 

Assume that the FORP data to be entered are 20.133, 20.241, 

20.107, ..• , 21.932 and 22.189. Assume also the input X 
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variate to the FORP is known to follow a normal distribution 

with mean 20 and standard deviation 1. However, from time 

period 26 onward, the X variate has a new normal distribution 

with mean 23 and standard deviation 1. That is, the X 

variate is out-of-control from time period 26 onward. After 

entering these values, the user is prompted to select the 

option of storing the results in a disk file as well. 

ENTER D IF WANT TO STORE RESULTS IN DISK 

After making the selection, the program continues all other 

calculations. The results are displayed and the user is 

prompted to enter more data or terminate from the program. 

NUMBER OF 
Ybar = 
MRybar = 
Y< 1> = 

INITIAL OBSERVATIONS = 
20.1719700 

1.648965E-001 
20.1330000 

No. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13. 
14 
15 
16 
17 
18 
19 
20 
21 

y 

20.241 
20.107 
20.025 
20.093 
20.148 
19.974 
19.791 
19.793 
19.823 
19.850 
19.968 
19.844 
19.629 
19.772 
19.526 
19.716 
19.705 
19.697 
19.842 
19.895 

LCL 

19.552 
19.639 
19.532 
19.466 
19.520 
19.564 
19.425 
19.279 
19.280 
19.304 
19.326 
19.420 
19.321 
19. 149 
19.264 
19.067 
19.219 
19.210 
19.204 
19.320 

UCL 

20.729 
20.816 
20.708 
20.643 
20.697 
20.741 
20.602 
20.456 
20.457 
20.481 
20.503 
20.597 
20.498 
20.326 
20.440 
20.244 
20.396 
20.387 
20.380 
20.496 

MRy 

.108 

.134 

.082 

.068 

.055 

.174 

.183 

.002 

.030 

.027 

.118 

.124 

.215 

.143 

.246 

.190 

.011 

.008 

.145 

.053 

30 

LCL 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

UCL 

.512 

.512 

.512 

.517 

.513 

.511 

.521 

.548 

.547 

.542 

.538 

.522 

.539 

.581 

.551 

.606 

.562 

.564 

.566 

.539 
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22 19.?91 19.362 20.539 .104 .000 .531 
23 19.844 19.2?9 20.456 .053 .000 .548 
24 20.057 19.321 20.498 .213 .000 .539 
25 19.975 19.492 20.668 .082 .000 .515 
26 20.835* 19.426 20.603 .860* .000 .521 
27 21. 425* 20. 114 21.291 .590 .000 .611 
28 21.539 20.586 21.763 .114 .000 .778 
29 21. 932* 20.677 21.854 .393 .000 .810 
30 22.189* 20.992 22.168 .257 .000 .914 

MORE DATA TO ENTER ? Y - TO CONTINUE 

From the display above, it is clear that the OPA MRy chart 

indicates an out-of-control signal at time period 26. The 

OPA Y chart also signals out-of-control condition beginning 

from time period 26. If the user decides to continue, a 

letter Y needs to be entered, and the user is prompted to 

enter the new observation. If there are already 500 

observations, a message will be displayed and the user has to 

restart the program. 

SORRY ! THERE ARE ALREADY 500 DATA POINTS 
START AGAIN 

This concludes the discussion of the FORTRAN program 

developed in this chapter. 

Conclusion 

There is opportunity to enhance the FORTRAN program 

discussed in this chapter. For example, the estimates of 

Ybar and MRybar may need to be updated as more observations 

are entered at a later time. Or the program may need to 

provide flexibility to the user who wishes to try several 
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filter constants due to not being very sure about the exact 

filter constant of the FORP. Or, one may wish to increase 

the visual capability of the program by graphically plotting 

the OPA Y and OPA MRy charts. The intention of this chapter 

is to illustrate that the methodologies to construct the OPA 

Y and OPA MRy charts can be programmed. Hence, the OPA Y and 

OPA MRy charts should be implemented as useful control charts 

to monitor a FORP. 



CHAPTER IX 

CONTRIBUTIONS AND FUTURE RESEARCH 

Summary of Study 

The purpose of this research is to develop procedures 

for constructing special control charts to monitor the mean 

and dispersion of an unobservable input variate, X, to a FORP 

by plotting the corresponding observable output variate, Y. 

The procedures for constructing the two control charts, the 

OPA Y and OPA MRy charts, are successfully developed and 

evaluated. The OPA Y and OPA MRy charts can be used 

simultaneously to monitor the mean and/or dispersion of a 

FORP. 

The performance measure used for evaluation is the ARL 

of a control chart. These control charts are evaluated based 

on their abilities to detect various types and magnitudes of 

process shifts. This research concentrates on six types of 

process shifts. They are process mean shifts in step, trend 

or cycle and process dispersion shifts in step only. Other 

scenarios are also studied, such as when the filter constant 

is overstated or understated, and when SORP data are 

mistakenly assumed to be FORP data. 

The abilities of these control charts are compared to 

140 
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that of the I and MR<2>, and Modified EWMA charts. The I and 

MR<2> charts are usually used in continuous flow processes 

without explicitly recognizing the existence of serial 

correlation within data. The Modified EWMA chart, which 

assumes that the observations from a process can be well­

modeled by an IMA<1,1> time series model, is a recent 

development as a robust control chart for various 

time-series models, not including a FORP. 

Comparison shows that the overall abilities of the OPA Y 

and OPA MRy charts in detecting process changes are 

desirable. The analyses show that the OPA Y and OPA MRy 

charts are useful tools to monitor the process mean and 

dispersion of a FORP. The OPA Y and OPA MRy charts are also 

found to be robust to a SORP data stream. The filter 

constant of a FORP should be exactly stated in order for the 

OPA Y and OPA MRy charts to perform as intended, however. 

Compared to the Modified EWMA chart, the OPA Y chart is found 

to be more favorable. It is also shown that the OPA Y chart 

on a FORP has the same ARL as an I chart applied to an 

independent normal data stream, if it were observable. This 

fact is also verified in the simulation output. 

Contributions 

The major contribution of this research to the 

statistical quality control discipline is the provision of a 

control charting technique which deals directly with serially 

correlated data generated from a FORP. The OPA Y and OPA MRy 
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control charting techniques proposed in this study provide a 

useful tool to monitor and control a FORP without using any 

unfeasible methods, such as avoidance and compensation as 

discussed in Chapter I, to circumvent the existence of 

correlation in the output data of a FORP. 

In the existing control charting techniques, a prior 

knowledge of the process to be monitored is usually not 

required. The control limits of control chart can be 

computed by the first few observations obtained, and further 

observations collected can be easily plotted on the control 

chart established. Surely, when an out-of-control condition 

is signaled in such a control chart, the user needs to have 

some knowledge of the process being monitored in order to 

identify the assignable cause and take necessary corrective 

action. Sometimes, the task of searching for an assignable 

cause can be done by other technical personnel. As a whole, 

there is usually lack of communication between the technical 

personnel who design the process and the control chart user 

who constructs the chart and identifies any out-of-control 

signal. On the contrary, in using the OPA Y and MRy charts, 

the control chart user needs to know the filter constant of a 

FORP and hence the observation sampling interval. This 

forces the control chart user to communicate with the 

technical personnel who design the FORP to be monitored. 

Thus, the proposed OPA Y and MRy charts indirectly help to 

bring the technical and quality control chart personnel 

together and foster better communication. 
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The OPA Y and MRy charts are process specific. That is, 

these control charts should only be applied on a FORP data 

stream. This motivates the control chart user to acquire 

some knowledge of the process to be monitored before begins 

the construction of control charts. Existing control 

charting techniques (including time-series approach> are 

generally data specific. That is, some control charts are 

suitable for variable data, some are suitable for attribute 

data, some are suitable for serially correlated data and so 

on. The process specific feature in the OPA Y and MRy 

control charting techniques is unique among all the existing 

control charting techniques for serially correlated quality 

data. A time-series approach to serially correlated data 

does not require the control chart user to know from where 

the serially correlated data are generated; however, this is 

not the case for the construction of the OPA Y and OPA MRy 

charts. Having more knowledge of the processes, the control 

chart personnel can prioritize the processes to be monitored. 

Another contribution of this research is the realization 

of variation in the empirically determined control limits on 

the ARL of a control chart. This will affect the way the 

control chart user determines a control chart parameters such 

as sample size, sampling interval and control limit 

multiplier. 
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Future Research 

This research has developed an initial phase for 

development of control charts using conditional control 

limits to monitor correlated data streams; however, there are 

tremendous possibilities for expansion. 

areas include: 

Future research 

1. Expand the model of control chart construction to data 

from a SORP or a series of first order response 

processes. 

2. Allow more types of process shift to be present in the 

data, either consecutively or concurrently, and 

evaluate the performance of the OPA V and OPA MRy 

charts. 

3. Develop a user friendly software package with graphical 

capability that will enhance the applicability of these 

proposed control charts. 

4. Expand the control chart construction so that the 

filter constant is also estimated from the empirical 

data and not from first principles. 

Another 'by-product' of this research is the realization 

of the effects of variation in control limits on ARL 

determination. This opens an area for future research to 

investigate how the number of subgroups, m, and subgroup 

size, n, affect the ARL of a control chart. 
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SOME USEFUL LINEAR MODEL THEOREMS 

The following linear model theorems and definition are 

taken from the text by Graybill (1976>. They are useful in 

the derivation of the conditional distribution of variable Y. 

Theorem A.1 

Let the px1 random vector X be distributed N<x:~,~>, and 

partition X, ~ and ~ as 

X = [::] <A. 1 > 

where X1 and ~1 are qx1 vectors, ~11 is a qxq matrix with 

<O < q < p>, and the size of the remaining vectors and 

matrices are thus determined. The random vector X1 is 

normally distributed with mean ~ 1 and covariance matrix ~1 1 , 

Theorem A.2 

Let the px1 random vector X be distributed N<x:~,~>, 

where ~ has rank p, let B be any q x p matrix of constants, 

and let b be any q x 1 vector of constants. Then the q x 1 

vector Y defined by 

Y = BX + b is distributed N<y:B~ + b, B~B'> 
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Theorem A.3 

Let the pxl vector X be distributed N<x:~,~>, where~ 

has rank -P· Let X, ~' ~be partitioned as in <A.l>, where X, 

has size qxl, where 0 < q < p. The conditional distribution 

of X, given Xe = Ce, where Ce is a vector of constants, is 

normal with mean ~ 1 + ~1e~ee- 1 <Ce-~e> and covariance matrix 

Definition A.4 

Let the <p+l)xl random vector X' have a multivariate 

normal distribution with mean~· and covariance matrix~·. 

The simple correlation coefficient of any two random 

variables X1 and X~ in X' is denoted by ~1J and defined by 

Cov<X1, XJ> rr1J 
~1j = = 

\jvar<X1>Var<Xj> 

i = 0' ..• ' p 
j = 0' ••• ' p 
i t j 

if U11 > 0 and u~J > 0. 

If u11 = 0 or u~~ = 0, ~1J is not defined. 



The single variable transformation theorem is taken from a 

text by Mood, et al. <1974). 

Theorem A.5 
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Suppose X is a continuous random variable with 

probability density function fM(-). Set X= {x:fx<x> > 0). 

Assume that: 

(i) y=g<x> defines a one-to-one transformation of X onto V. 

(ii) The derivative of x = g- 1 (y) with respect to y is 

continuous and nonzero for y e V, where g- 1 <y> is the 

inverse function of g<x>; that is g- 1 (y) is that x for 

which g(x) = y. Then Y = g<X> is a continuous random 

function variable with density 

fv(y) = 
d 

dy 
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SOME MATHEMATICAL DERIVATIONS 

RELATED TO THE OPA Y CHART 

Mean and Asymptotic Standard Deviation of Yt 

It is assumed that the input random variable, Xt, is 

independent and identically distributed. The underlying 

distribution is a normal distribution with mean, ~' and 

standard deviation, u. The <n+l) x 1 random vector of X can 

be easily formed by grouping the first (n+1) of the X's. 

Using linear model theory, the random vector of X is 

distributed as a multivariate normal with mean. vector, 

~1n- 1 , and covariance matrix, a2ln+1 • That is, 

X = . . 

Recall that the first order response equation is 

Y~ = rY~- 1 + <1-r>X~ 

Substituting 

into Equation <B.l) results in 

Y~ = r[rY~-e + <1-r>X~-1] + <1-r>X~ 

(8.1) 

(8.2) 

Continuously substituting the Y term on the right hand side 

of the equation, results in 

••• + <1-r>x~ 



t 
Yt = ~ <1-r)rkXt-k 

k=O 
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<B.3> 

Thus, Yt is a linear combination of <X 1 , Xe, ••• , Xn>'. 

Letting 

+ (1-r>Xt 

Ze = Xt = 0 + 0 + 

+ OXt 

These three equations can be written as 

Z = AX 

where 

( 1-r )rt (1-r)rt- 1 (1-r>r <1-r> 

A = 0 0 0 1 

<1-r)rt- 1 ( 1-r )rt-e <1-r> 0 

The dimension of matrix A is 3 x <t+1). Using Theorem A.2, 

the distribution of Z is 

<1-r)rt <1-r)rt- 1 <1-r>r <1-r> 1 

Mean of Z = }l 0 0 0 1 1 

(1-r)rt- 1 (1-r)rt-e <1-r) 0 
1 



t 
I: <1-r)r~< 

k=O 

·- .. 1 

t-1 
I: (1-r>r~< 

k=O 

For large t, 
t 1 
I: <1-r)r~< = <1-r) = 1 

k=O <1-r> 

and 
t-1 1 

I: <1-r)r~< = (1-r> = 1 
k=O <1-r) 

Therefore, for large t, 

Mean of Z ,.. --u [
1

1
1 ] 

The covariance matrix of Z = u2Ait+ 1 A'= u2AA' 

(1-r)rt <1-r)rt- 1 

0 0 

(1-r)rt- 1 <1-r)rt-e 

<1-r)rt 

<1-r)rt- 1 

. . 
<1-r)r 

<1-r> 

0 

0 

. . 
0 

1 

<1-r)r 

0 

<1-r> 

<1-r)rt- 1 

<1-r)rt-e 

. . 
<1-r> 

0 

(1-r> 

1 

0 
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X 



t t 
l: ( 1-r )ere~< (1-r) l: <1-r>ere~<- 1 

k=O k=1 

= o-2 ( l-r) 1 0 

t t-1 
l: (1-r)ere~<-1 0 l: (1-r>ere~< 

k=1 k=O 

For large t 

t 1 
l: <1-r>ere~< = <1-r)2 = (1-r)/(1+r) 

k=O 1 r2 

t-1 1 
l: <1-r>ere"' = (1-r)2 = <1-r)/(1+r) 

k=O 1 r2 

t t (1-r)2r <1-r)r 
l: <1-r)ere~<- 1 = 

k=1 
(1-r)2r l: re~<-e = 

k=1 1 - r2 
= 

(1+r) 

For large t, the covariance matrix of Z 

(1-r)/(1+r) (1-r> <1-r)r/(1+r) 

= <1-r> 1 0 

<1-r)r/(1+r) 0 <1-r>l<1+r> 

Thus, Z is asymptotically distributed as a multivariate 

normal with mean vector equal to (~ ~ ~)' and covariance 

matrix equal to 

(1-r)/(l+r) (1-r> <1-r)r/(1+r) 

<1-r) 1 0 

<1-r)r/(1+r) 0 <1-r)/(l+r) 

Using Theorem A.1, it is clear that the distribution of Yt 

is 
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Yt- Normal r' a2(1-r)/(1+r~ (8.4) 

Assume that Yt-1 is known and it takes on the value k. 

Then, from Theorem A.3, the joint distribution of Yt and Xt 

given Yt-1 equals k, is a bivariate normal with mean equal to 

[ .. ] ~ '[ 1-r l: IC 1 +r J (1+r) 
= + (k-}l) .. (1-r)a2 

= c +~r(k-~l] 
= [k + :1-rlp J 

and covariance matrix equal to 

~11 - ~1e~ee- 1 ~e1 

<1-r> <1-r)r 

o] <1-r) ( 1+r > [1-rlr = a2 (1+r> - at <1+r) 
(1-r) (1+r) 

(1-r> 1 0 

<1-r> <1-r)r2 0 
<1-r) 

= at < 1+r) - a2 (1+r) 

(1-r> 1 0 0 

= [
1-r> 2 

a2 
1-r) 
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Using Theorem A.l, the conditional distribution of Yt is 
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SOME MATHEMATICAL DERIVATIONS RELATED 

TO THE OPA MRy CHART 

-Conditional Distribution of the Moving Range 

of Subgroup Size Two of the Y Variate 

Recall that the first order response process that 

generates serially correlated output, Y, is 

Yt = rYt-1 + <1-r>Xt 

164 

(c. 1) 

In Appendix B, it is known that Xt is independent of Yt-1• 

If Yt-~ is known and takes on the value k, then 

Yt = rk + <1-r>Xt 

Defining Rlk as the range of Yt-1 and Yt given that Yt-1 

equals k, then 

Rlk = Range of k and Yt 

Rlk = IYt - kl 

Substituting CC.1> into <C.3> results 

rk + C1-r>Xt - k 

<1-r>Xt- <1-r>k 

< 1-r > < X t - k > 

In a first order response process, it is found that 

0 < r < 1. Then, 

= 
<1-r> 

Letting Q equal Equation <C.S> results in 

Q = = 
<1-r) 

CC.2> 

<C.3> 

<C.4> 

<C.S) 

CC.6> 
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The distribution of Q is then considered. From Equation 

<C.6>, it is found that x~ is a double valued function of 

Q, say Q' and Q", <Basnet and Case, 1990). 

Q' = k - Q 
Q" = k + Q 

That is, 

Then, the density function of Q, h(Q), is given by 

8 Q' 8 Q" 
h(Q) = f(k-Q) + f(k+Q) 

8 Q 8 Q 

h(Q) = f(k-Q) + f(k+Q) 

<C.7a) 
<C.7b> 

<C.B> 

where f(·) is the probability density of x~ which appears 

before in Equation <C.1>. 

Considering Equation <C.6>, 

Q = 
<1-r) 

Taking the derivative with respect to Rlk, and considering 

the absolute value, results in 

dQ 
= 1/(1-r) <C.9> 

d<Rik> 

Using Theorem A.5, the density function of Rlk is 

g<Rik> = [Rik J 
h [1-r> 

Thus, 

1 
<C.lO> g<Rik> = 

<1-r> 
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Mean and Standard Deviation of Rlk 

With Equation <C.B>, the expected value of Q, E<Q>, is 

found to be 

E<Q> = 

CD 

J Q·h(Q) dQ 

0 

Substituting Equation <C.B> into <C.11) results, 

CD CD 

E<Q> = J Q f(k-Q) dQ + J Q f(k+Q) dQ 

0 0 

Considering the first component of Equation <C.12> and 

<C.ll> 

<C.12> 

substituting f(k-Q) with the normal random variable equation 

results in 

CD 

<k-GI-~) J J 
1 r-· Q Exp dQ CC.13> 

..J(21T) u 2a2 
0 

Substituting y = k - }4, and Q = Q- y + y into <C.13) 

results in 

CD 

(y-Gij J 
1 r-· (Q - y + y) Exp dQ 

..JC2n> u 2a2 
0 

CD 

(Q-y) J J 
1 r-· = (Q - y> Exp dQ 

..J(21T) u 2u2. 
0 

CD 

<GI-y)J dGI J 
1 r-· + y Exp CC.14> 

..JC2n) u 2u2 
0 
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The second part is equal to y multiplied by the area from 

[O,m) under a normal curve which has mean y and variance a2. 

Letting this quantity be denoted as y*P[X > 01~=y, a=a]. 

In addition to that, by integrating the first part of <C.14> 

results in 

I (Q - y + y) 

0 

1 

.,/(21J) 

a 

Exp [~ y2] 
2a2 

= 
.,/(21J) 

[
-1 

Exp 
a 2a2 

(y-Ql ~ dQ 

+ y P[X > O~~=y,a=a] 

The second component of Equation <C.12> can also be 

simplified by substituting z = ~ - k and Q = Q - z + z. 

After performing similar steps, the second component of 

Equation <C.12> becomes 

a [-1 J Exp -- z2 
.,/( 21f) 2a 2 

+ z P[X > 01~=z,a=aJ 

Substituting (C.15) and <C.16) into <C.12> after 

<C.15> 

<C.16> 

standardizing P[X > Ol~=y,a=a] and P[X > 01~=z,a=aJ results 

in 

.,/(21J) 
Exp [~] + Exp [~] 

2a2 2a2 
+ y P[Z > <-y/a)] E<Q> = 

+ z P[Z > <-z/a)] <C.17> 

where Z is a standard normal variate. 
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Replacing y = k - ~ and z = ~ - k back into <C.17> results 

in 

E<Q> = [-(k-·t>j 
2 Exp + 

2o-2 ..t<2n> 

It is known that 

Therefore, 

E(Q) = 

Due to the symmetric properties of normal random variate, it 

can be shown that 

(k-~)~[(k-~)/o-]- f[(~-k)/o-~ 

= 1 k-~ 1 * ~ - 2 t < -1 k-~ l'u J 
where 1a1 = absolute value of a. Hence, 

where 

(c. 18) 

t'<a> is the ordinate value of standard normal at point a. 

The variance of Q, V(Q), is 

V(Q) = E(Q2) - [E(Q)]2 <C.19> 



where 

E(Q2) = 

CD 

I Q2 ·h(Q) dQ 

0 

Substituting Equation <C.B> into <C.20) results in 

CD CD 

E(Q2) = I Q2f(k-Q) dQ + I Q2f(k+Q) dQ 

0 0 

Considering the first component of Equation <C.21> 
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<C.20> 

<C.21> 

and 

substituting f(k-Q) with the normal random variable equation 

results in 

CD 

I 
0 

1 
Q2 ___ _ 

../(2v> a-

Substituting y = 

results in 

CD 

t-1 
Exp 

2a-2 

k - "'' 
and 

1 

I (Q - y + y)Q 
../(21f) (T 

0 

CD 

1 
= (Q - y)Q Exp 

Q2 = (Q - y + y)Q into 

(y-Q)~ [-1 Exp dQ 
2a-2 

dQ I ../(21f) (T 

[-1 
2a-2 

(Q-y) ~ 
0 

• 

(Q-y) J dQ I y 

1 [-1 + Q Exp 
../(21f) (T 2a-2 

0 

<C.22> 

<C.22> 

<C.23> 

The first part can be evaluated using integration by parts. 

It is found that 
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4D 

(Q-yl J dQ I 
1 [-1 (Q - y)Q Exp 

../(21f) u 2u2 
0 

4D 

(Q-yl J dQ I 1 [-1 = u2 Exp 
../(21f) u 2u2 

0 

= u2P[X > O!tt=y,u=ul 

= u2P[Z > -y/ul 

Substituting Q = Q - y + y into the second part of <C.23) 

results in 

4D 

(Q-yl] I 
1 [-1 y (Q - y + y) Exp dQ 

../(21f) u 2u2 
0 

4D 

(Q-y)J I (Q 
1 [-1 = y - y) Exp dQ 

../(2v> u 2u2 
0 

4D 

(Q-y)J dQ I 1 [-1 + y2 Exp 
../(2v> u 2u2 

0 

y 

cy·J = u2Exp + y2P[X > O!tt=y,u=ul 
../(2w> CT 2u2 

y 

cy·J = u2Exp + y2P(Z > -y/ul 
../(21f) u 2u2 

Thus, <C.23) becomes 
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CD 

I 1 

Exp [;- (y-Qj (Q - y + y)Q dQ 
.J'(21T) a 2a2 

0 

y 
[-y'j = a2P[Z > -y/a] + a2Exp + y2P[Z > -y/a] 

.J'(21T) a 2a2 

y 
[-y•j = (a2+y2)P[Z > -y/a] + a2Exp 

.J'(21T) a 2a2 
<C.24) 

The second component of Equation <C.21) can also be 

simplified by substituting z = ~ - k and Q2 = (Q - z + z)Q 

and Q = Q - z + z. After performing similar steps, the 

second component of Equation <C.21> becomes 

z 

[
-z2j a2Exp 
2a2 

<C.25> (a2+z2)P[Z > -z/a] + 
.J'(21T) (T 

Substituting <C.24) and <C.25> into <C.21> results in 

[
-y2j a2Exp 
2a2 

y 
E(Q2) = (a2+y2)P[Z > -y/a] + 

.J'(21T) a 

z 
[

-z2j a2Exp 
a 2a2 

<C.26> + (a2+z2)P[Z > -z/a] + 
.J'(21T) 

Replacing y = k- ~and z = ~- k back into <C.26>, and 

realizing that y = - z results, 
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Due to symmetry of the normal curve, 

PCZ > <-ylu>l + PCZ > (y/u)] = 1 

Therefore, 

E(Q2) = u2 + <k-~)2 <C.27> 

Hence, 

V(Q) = E2 + <k-:~>j - {E(Q)}2 <C.28> 

From Equation <C.6>, it is clear that 

Rjk = <1-r>Q <C.29> 

Then, the expected value of Rjk, E<Rjk>, and the variance of 

Rlk, V<Rjk> are 

Thus, 

E<Rjk> = <1-r>E<Q> 

V<RjK> = (1-r)2V(Q) 

[k-~J E<Rjk> = <1-r> 2ut' u +jk-~j 

V<Rjk> = < 1-r > 2 E2 + (k-~)2 - CE(Q) lj 

Std<Rjk> = <1-r> E2 + (k-~)2 - CE<Q>Jj 

<C.30> 

<C.31) 

<C.32) 

<C.33) 

~ 
<C.34> 
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EXAMPLE OF A SAS PROGRAM 

AND SAS OUTPUT 
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**** TSO FOREGROUND HARDCOPY **** 
DSNAME=U11563A.EXAMPLE.DATA 

//U11563A JOB (11563,440-88-2421),CLASS=4,TIME=(5,0),MSGCLASS=X 
II* 
II* 
II* 

PROGRAM 1 

/*ROUTE PRINT LOCAL 
// EXEC SAS 
//SYSIN DO * 
DATA PHD; 

KEEP ARL; 
SEED 12345; 
FC 0.3; 
FC 1 1 - FC; 
STD 1; 
MEAN 10; 
SHIFT 2.0; 
NMEAN MEAN + SHIFT*STD; 
NSIM 10000; 
QQUY MEAN + 3*FC1*STD; 
QQLY MEAN - 3*FC1*STD; 
DO I = 1 TO NSIM; 

/* FILTER CONSTANT */ 

/* INITIAL STD. DEV. OF X */ 
/* INITIAL MEAN OF X */ 
/* SHIFT IN TERM OF SIGMA X */ 
I* NEW MEAN OF X */ 
/* NUMBER OF SIMULATION */ 
/* CONSTANT TERM OF UCLOPAY */ 
/* CONSTANT TERM OF LCLOPAY */ 

Y1 = RANNOR(SEED)*STD + MEANl /* GENERATE INITIAL VALUE */ 
DO K = 1 TO 50; /* WARM UP FORP GENERATOR */ 

Y2 FC*Y1 + FC1*(RANNOR(SEED)*STD +MEAN); 
Y 1 Y2; 

END; 
NUM 0; 

Y1 - MEAN; 
QQUY + FC*AO; /* UCL OF OPA Y CHART */ 
QQLY + FC*AO; /* lCL OF OPA Y CHART */ 
FC*Y1 + FC1*(RANNOR(SEED)*STD + NMEAN); 

LAB: AO 
UCLY 
LCLY 
Y2 
IF LCLY < Y2 < UCLY THEN DO; /* POINT IS WITHIN CL'S */ 

NUM = NUM + 1; 
Y1 = Y2; 
GO TO LAB; 

END; 
ARL = NUM + 1· 
OUTPUT; 

END; 

/* AVERAGE RUN LENGTH */ 

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX MIN; 
VAR ARL; /* STATISTICS OF ARL */ 
TITLE1 'ARL OF THE OPA Y CHART ON FORP DATA'; 
TITLE2 'WITH FILTER CONSTANT, FC = 0.3. '· 
TITLE3 'SHIFT IN MEAN = 2.0 SIGMA'; 

II 
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00000010 
00000020 
00000030 
00000040 
Ooo00050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
00000190 
00000200 
00000210 
00000220 
00000230 
00000240 
00000250 
00000260 
00000270 
00000280 
00000290 
00000300 
00000310 
00000320 
00000330 
00000340 
00000350 
00000360 
00000370 
00000380 
00000390 
00000400 
00000410 
00000420 
00000430 
00000440 



Analysis Variable : ARL 

N Mean 

10000 6. 1857000 

ARL OF THE OPA Y CHART ON FORP DATA 
WITH FILTER CONSTANT, FC = 0.3. 

SHIFT IN MEAN • 2.0 SIGMA 

Std Dev Minimum Maximum 

5.6497440 1.0000000 52.0000000 

14:40 Thursday, February 7, 1991 

Skewness Kurtosis 

2.0119625 5.9831888 
-----------------------------------------------,-----------------------------------------

.... 
-..J 
CJI 
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LISTINGS OF SAS PROGRAM USED TO DETERMINE 

THE ARL OF CONTROL CHARTS 
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""* //* ,, ... 
/*~CUTE ~~XNT LOCAL 
// EXEC I!IAI!I 
//BVSXN DD * 
DATA ~HDJ 

KEEP ARLJ 
SEED 1E!341!1J 
FC 0.3, /* F~lt•r Cons-•nt */ 
FC1 1 FCJ 
STD lJ /* J:n:l.t:l.al Std. D•v. o_,- X */ 
MEAN lOJ /* Xn:l.t:l.al Mwan o_,. X */ 
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SHXFT e.OJ /* Bhl_,-t :l.n t•rm o_,. •lQma x */ 
NMEAN MEAN + SHXFT*BTDJ /* N•w m•an o_,. K */ 
NSJ:M 10000, /* Numbwr o_,. Stmulatton */ 
QQUV MEAN + 3*FC1*STDJ /* Con•tant twrm o_,. UCLopay */ 
QQLV MEAN - 3*~C1*BTDJ /* Con•tant t•rm o_,- LCLopay */ 
DO Z - 1 TO NBJ:Mt 

Vl - ~ANNOft<SEED)*STD + MEANJ /* Gwn•rat• :l.n:l.t:l.a1 va1u• */ 
DO I< - 1 TO I!IOJ /* Warm up FDRP Q•n•rator */ 

ve ~C*Yl + ~Cl*<~ANNO~<I!IEED>•I!ITD + MEAN)J 
v1 ve, 

ENDJ 
NUM OJ 

LABa AO Vl MEANJ 
UCLV QQUV + FC*AOJ /* UCL o_,- ~A V chart */ 
LCLV QQLV + FC*AOJ /* LCL o_,. CPA V chart */ 
ve FC•Vl + FC1•<RANNDR<SEED)*BTD + NMEAN)J 
IF LCLV < VE < UCLV THEN DOJ /* Potnt l• w:l.thtn CL"• */ 

NUM - NUf'l + 1 J 
v1 ve, 
BO TO LABJ 

ENDJ 
A~L - NUM 1, /* Av•r•v• ftun L•nQth *' 
OUTPUTJ 

ENDJ 
PROC MEANS N MEAN STD SKEWNESS KURTOSZB I"IAX MXNJ 

VAR ARLt /* Statl•ttc• o.,- ARL */ 
TITLEl ·~L ~THE O~A V CHA~T ON FOR~ DATA"t 
TITLEe "WJ:TH ~ZLTER CONSTANT 0 FC- 0.3. • 1 
TITLE3 "SHZFT J:N MEAN- E.O SIBMA"t 



,,. ,, .. ,,. 
/*~CUTE ~~NT LOCAL 
// EXEC ISAIS 
//BVIS~N DD * 
DATA PHDJ 

KEEP AALJ 
SEED 1Z!!3415J 

PADBAAM e 

FC 0.3J /* F~lt•r Con•tant */ 
FC1 1 FCJ 
STD lJ /* ln~t~al Std. D•v• o~ X */ 
I"'EAN 10J /* ln~1J~•1 M•an o~ X */ 
AMP 3*BTD' /* Amp1~tud• o~ tr•nd */ 
BT~BZ AM~/eo, /* IS1J•p - Amp/Z!!O •ubQp• */ 
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QQUV MI!:AN + 3*FC1*ISTD' /* Con•1iant 1J•rm o~ UCLopay */ 
QQLV MEAN - 3*FC1*ISTD, /* Con•1Jan1J t•rm o~ LCLopay */ 
NISIM 10000J /* Numb•r o~ 8~mu1a1J~on */ 
DO 1 - 1 TO NISlMJ 

LAB• 

V1 - ~ANND~<SEED>•STD + MEANJ /* B•nera1J• ~n~tlal va1u• */ 
DO ~ - 1 TO 801 /* Warm up ~~p ~-n•r•tor -~ 

ve FC*Y1 + FC1*<~ANNO~<ISEED>*ISTD + MEAN>J 
v1 ve, 

ENDJ 
NUM OJ 
PEA OJ /* P•rlod - 0 */ 
AO Vl MEANJ 
UCLV QQUV + FC*AOJ /* UCL o~ CPA V ~hart */ 
LCLV QQLV + FC•AOJ /* LCL o~ CPA V ~hart */ 
NMEAN MEAN+MIN<BTPSZ*PER 0 A~>J /* N•w Mean o~ X 0 tr•nd */ 
ve FC*Yl + FCl*<AANNDR<SEED>•BTD + NI"'EAN>J 
IF LCLV < VZ!! < UCLV THEN DDJ /* Po~nt ~- w1th1n CL'• */ 

NUM NUM + 1 J 
Vl VZ!! J 
PI!:~ ~EA + 1 J 
EIO TO LABJ 

ENDJ 
AftL -HUM+ 1, /* Av•ra9• Run L•n~-h *~ 
DUT~TJ 

I!:NDJ 
P~DC Me:ANIS N MEAN ISTD ISKEWNe:ISIS K~TDB~IS MAX MlNJ 

YAA ARLJ /* B1Ja1J~-t~~- o~ ARL */ 
T~TLE1 'ARL OF THE DP'A V CHA~T ON F~~ DATA' J 
TITLEe 'W~TH F~LTER CDNISTANTo FC- 0.3.'J 
TlTLE3 'MEAN YAR~EIS ~N T~END• TREND ~AIDD- Z!!O BUBBADUPB'J 
T~TLE4 'AND AMPL~TUDE- 3*ISIBMA'J 



,, .. ,, .. ,, .. 
/*~OUTE ~ZNT LOCAL 
// EXEC I!SAIII 
//IIIYB:IN DD * 
DATA P"HDJ 

I<:IEEI"' A~LJ 
SEIED 11!!341!5J 
FC Oo3J 
FC1 1 FCJ 

P~DBRAM 3 

STD 1J /* Zn~~~-1 8-d. D•v• o~ X */ 
MEAN 10J /* ln~~~-1 M•an o~ X */ 
1!5TP"I!5Z (I!!I!!/7)/1!!4J I'* 1!5-•P - I!!*P"Z/41!5 •ubQpw *I' 
AMP" 3*1!5TDJ I'* Amp1i~ud• o~ cyc1w *I' 
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QQUY MEAN + 3*FC1*1!5TDJ I'* Con•--n~ twrm o~ UCLopay */ 
QQLY MEAN - 3*FC1*111TDJ /* Con•~•n- t•r• o~ LCLopay */ 
NllllM 10000J /* NuMb•r o~ I!S~mu1a~~on */ 
DO Z - 1 TO NI!SlMJ 

LASo 

Y1 - ~~<BEED>*BTD + MEANJ /* B•nwrat• ~n~~~-1 va1u• */ 
DO K - 1 TO eo, /* War~ up FDftP ~-n•rator */ 

Yl!! FC*Y1 + FC1*<~ANNOft<BEED>*I!5TD + MEAN)J 
Y1 Ye, 

ENDJ 
NUM 
P"E" 
AO 
UCLY 
LCLY 
NMEAN 
Ye 
ZF LCLY 

NUI'I 

o, 
o, /* P"•r~od - 0 *"' 
Y1 MEANJ 
QQUY + FC*AOJ /* UCL o~ DPA Y chart */ 
QQLY + FC*AOJ /• LCL o~ DPA Y chart */ 
MIEAN + AMP*I!5ZN(PER>J /* N•w Mwan o~ X. cyc11ca1 
FC•Y1 + FC1*(RANNDR<BEED)*IIITD + NMEAN>J 
< VI!! < UCLV THEN DOJ /* Po~n~ ~- wlth~n CL'• */ 

NlJt'l + 1' 
v1 ve, 
PER P"ER + I!STPSZJ 
BO TO LAI!!IJ 

ENDJ 
ANL - NUM + ' ' ~· Av•r•v• ftun L•nvth */ 
DUTP"UTJ 

ENDJ 
P"~DC MEANS N MEAN IIITD IIII<:EWNEI!SI!S I<:U~TDIIIli!S MAX M:INJ 

V~ A~LJ /* Btat~-t~c- o~ A~L *I' 
TZTLE1 'A~L OF THE OP"A Y CHART ON FO~P" DATA'J 
TlTLEe 'WITH FZLTE~ CONSTANT. FC- 0.3.'J 
TZTLE3 'MEAN VA~ZEB ZN CYCLE• CYCLE PEftlOD- 41!5 SU&a"DUPS'J 
TZTLE4 'AND AMPL:ITUDE- 3*I!SZBMA'J 



,, .. ,, .. ,, ... 
/*~OUTE PRZNT LOCAL 
// EXEC BAS 
//SVSZN DD * 
DATA r-HDI 

KEE.- ARL1 
!SEED 1e34l:ll 

PROaRAM 4 

FC 0.31 /* F~1t•r COn•-•nt •/ 
FC1 1 FC1 
FCI!! 1 + FC1 
BTD 11 /* Zn~~ta1 S~d. D•v• o~ X */ 
MEAN 101 /* Zn~~ta1 M••n o~ X */ 
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SHZFT ~.01 /* Sht~~ ~n ~-rm o~ -~QmA X */ 
NMEAN MEAN + I!SHZFT*BTDI /* N•w M•an o~ x */ 
MftBAR 1.1~S*FC1*STD/SQ~T<FC~)I /* Th•o• MRBAR */ 
LCLZ MEAN - ~.66*MRBA~I /* LCL o~ Z char~ */ 
UCLZ MEAN + ~.66*MRBARI /* UCL o~ Z char~ */ 
N1!5ZM 100001 /* Numb•r o~ B~Mu1a~~on */ 
DO Z 1 TO NI!SZMI 

V1 - ~ANNDft<SEED)*STD+MI!:ANI /* B•n•ra~- ~n~~~-1 va1u• */ 
DO K - 1 TO 1:101 /* Warm up FO~P Q•n•ra~or */ 

VI!! FC*V1 + FC1*<~ANND~<SEI!:D)*STD + MEAN)I 
v1 - v~, 

END I 
NUM - 01 

LAB I V~ FC*V1 + FC1*<RANND~<SEED)*STD + NMI!:AN)I 
ZF LCLZ < ve < UCLZ THEN DOl /* Po~n~ ~- w~~h~n CL'w */ 

NUf1 - NUf1 + 1 ' 
v1 v~, 

BO TO LABI 
END1 
AftL- NUM + 11 /* Av•raQ• ~un L•nGth */ 
OUT .. UTI 

END I 
.-~oc MEANS N MEAN STD SKEWNESS K~TOSZS MAX MZN1 

// 

YA~ A~l /* 8~--~-~~cw o~ ARL */ 
TITLE1 'AftL OF THE T~ADZTZDNAL Z CHAftT ON FORP DATA'I 
TITLE~ 'WITH FZLTE~ CONSTANT, FC- 0.3'1 
TITLE::!! 'SHZFT ZN MEAN- ~.0 SIBMA'I 



//U11~63A JOB C11~63o440-BB-e4B1> 0 CLABB-4 0 TXME-c~.0> 0 MBGCLABB-X 
//* 
//* PROGRAM ~ 
//* 
/*ROUTE PRXNT LOCAL 
// II!:XII!:C ISAS 
//SVSXN DD * 
DATA P'HDI 

KEEP AI'IILI 
SEED 1e34~1 

FC 0.31 /* Fklt•r Conwtant */ 
FC1 1 FCJ 
Fee 1 FCI 
STD 11 /* Xnktkal Std. D•v• o~ X */ 
MEAN 101 /* Xnktkal M•an o~ X */ 
AMP 3*BTDJ /• Amplktud• o~ tr•nd */ 
BTPBZ AHP/eOf /* St•p - Amp/BO •ubgps */ 
HRI!lAR 1.1ee•~C1*STD/SQRTCFCE)J /* Th•o• Std. D•v• o~ V */ 
LCLX MEAN - e.66*MAI5ARI /* LCL o~ X chart */ 
UCLX HII!:AN + E.66*MRI5ARI /* UCL o~ X chart */ 
NSXM 100001 /* Numb•r o~ Skmulatkon */ 
DO X - 1 TO Nl!lXM1 

V1 - AANNORCSEII!:D)*STD + HII!:ANJ /* B•n•rat• 1nktkal valu• */ 
DO K - 1 TO ~o, /* Warm up FDRP g•n•r•tor */ 

VB FC•V1 + FCl*CRANNOR<BEII!:D)*I!ITD + HEAN>I 
v1 ve, 

END I 
NUH 01 
~ER 01 /* P•rkod - 0 */ 

LABo NHEAN MEAN+MXN<BTPBZ*PER 0 AMP>1 /* N•w M•an o~ X 0 tr•nd */ 
ve FC*Yl + FCl•CRANNORCSEED>•STD + NMEAN>I 
XF LCLX < VB < UCLX THEN DOJ /* Po1nt 1s wkth1n CL's */ 

NUM 
Vl 
~ER 

+ 1J NUH 
ve, 
PER + 

SO TO LABI 
END I 
ARL- NUf1 + 11 
OUTPUTJ 

ENDJ 

1' 

PROC MEANS N MEAN STD SKEWNESS KUATOSX~ MAX MXN1 

// 

YAR ARLJ /* Stat1stkcs o~ ARL */ 
TXTLE1 'ARL 0~ THE TAADXTXONAL X CHART ON FOAP DATA'J 
TXTLEE 'WXTH ~XLTER CONSTANT• FC- O.S.'f 
TXTLE3 'MEAN YAAXES XN TRENDo TREND ~EAXOD - EO SUI!lBROU~S' 
TXTLE4 'AND AH~LXTUDE- 3*SXBMA'I 
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//U11863A 308 C11863o440-S8-1!!41!!1>oC~A&&-4 0 TIME-c8 0 0) 0 MSBC~ASS-X 
//• 
//* PROSRAM b 
//* 
/*ftOUT~ PftiNT ~DCA~ 
// EX!!:C BAS 
//BVSIN DD * 
DATA I"'HD, 

KE~P Aft~. 

I!I~~D 11!!341!1' 
Fe o.a, 
FC1 1 - FC, 
FCI!! 1 + Fe, 
STD 1, 
MEAN 10, 
I!ITPI!IZ cee/?>/e4, 
AMP 3•1!1TDJ 
MftBAft 1.1ei!I*Fe1•1!1TD/I!IQftTCFee>, 
~e~I MEAN - e.bb*MftBARJ 
Ue~I MEAN + e.bb*MftBAR, 
NSIM 10000, 
DO I 1 TO NI!IIM, 

In1t1a1 l!ltd. D•v• 
In1t1&1 M•an o~ X 
Bt•p - e•PI/41!1 wubgpw 
Amp11tud• o~ cyc1• •/ 
Th•o• MftBAft */ 
~e~ o~ I chart */ 
ue~ o~ I chart */ 

/* Nu.mb•r o-F Sl.mu1at;l.on 

V1 - RANNOft<BE~D>*I!ITD + MEAN' /* S•n•rat• 1n1t1&1 va1u• */ 
DO K - 1 TO so, /* Warm up FORP g•n•rator */ 

VI!! Fe•V1 + FC1•CftANNOR<BEED>•BTD +MEAN>, 
v1 ve, 

END' 
NUM o, 
P~R o, /* P•r1od - 0 */ 

~AB• NMEAN MEAN+ AMP*BINCPER>, /* N•w M•an o~ X 0 cye11ca1 •/ 
VI!! Fe•V1 + Fe1•<RANNORCBEED>•BTD + NMEAN>• 
IF ~e~I < VI!! < Ue~I THEN no, /* Po1n~ 1w w1~htn e~·- */ 

NUM NUf'1 ... 1' 
v1 ve, 
P~ft P~R + BTPI!IZ' 
SO TO ~AB, 

END, 
ARL - NUM + 1, /• Av•r•o• ftun L•noth */ 
OUTPUT, 

END, 
PftOC Me:ANI!I N MEAN I!ITD I!IK~WNEI!IS KUftTOI!III!I MAX MIN, 

// 

YAft AR~. /* Btat1wt1cw o~ AR~ */ 
TIT~~1 'AR~ OF TH~ TftADITIO~ I eHAftT ON FORP DATA'' 
TIT~~e 'WITH FI~T~R eONI!ITANT 0 Fe- 0.3.'' 
TIT~E3 'MEAN VARIES IN eve~~~ eve~E PERIOD- 41!1 BUBSROUPS'I 
TIT~E4 'AND AMP~ITUD~- 3*BISMA'' 
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//U11S63A 308 C11\'563 ....... o-aa-e ... e1>.CLASS-.... TII'IE-<S.O)•MSBCLASS-X 

""* //* PROBAAM 7 

""* /*ROUTE PftiNT LOCAL 
// EXEC SAIS 
//SYSIN DD * 
DATA ~DJ 

KEEP AftLJ 
SIEED 11!!3 ... SJ 
FC o.a, /• F11t•r Conwtant *" 
FC1 1 - FCJ 
81 1/SQRTCI!!•I!!S/?)J /* 1/SQftTCI!!*p1) */ 
STD 1J /* In1t1a1 Std. D•v• o~ X *" 
MEAN 10J "* In1t1a1 M•an o~ X *" 
SHIFT 3.0J /* S1gman•w ov•r S1gmao1d */ 
NSTD SHI~T*STDJ 

NSIM 10000J "* Numb•r o~ S1mu1at1on *" 
DO I - 1 TO NISIMJ 

Y1 - ftANNOftCBEED>*STD + MEANJ /* B•n•rat• 1wt va1u• */ 
DO I< - 1 TO SOJ "* Warm up FOAP v•n•rator */ 

VI!! ~C*Y1 + ~C1*CRANNOACS~I!!:D)*ISTD + MEAN)J 
v1 ve, 

ENDJ 
NUM OJ 

LABo A1 ABBCY1- MEAN>J 
AI!! A1 / STDJ 
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Bl!! 81 * EXP<-O.S*AI!!*AI!!)J 
83 1 - I!!*PAOBNOAMC-AI!!>• 
ERK e•STD•Be + A1* B3J 
ER FC1 * EAI<J 

/* Ord1nat• o~ Btd. Normal *" 
/* PAOBNOAM - CDF o~ Normal *" 
/• EMp•c~ed o~ R glv•n K */ 
/*~Exp. o~ RanQ• Q~v•n K •/ 

B... BQRTCSTD*BTD + A1*A1 
SA FC1 * a ... , 
LCL Eft - 3*SAJ 
UCL Eft + 3*BA, 
IF LCL < 0 THEN LCL - o, 

EAK*I!:AK>' "* Std. o~ Rang• g1v•n I< */ 
/* LCL o~ OPA MAy chart */ 
/* UCL o~ OPA MAy chart */ 

Yl!! - FC*Y1 + ~C1•<AANNOACSEED>*NBTD + MEAN>J 
AY - ABSCYI!!-Y1)J 
IF LCL < AY < UCL THIEN DOJ 

NUM - NUM + 1, 
v1 ve, 
SO TO LABJ 

I!:NDJ 

"* Po1nt 1w w1th1n CL'• */ 

ARL- NUM + 1J /* Av•r•a• ftun L•nQ~h */ 
OUTPUT, 

ENDJ 
PAOC MIEANB N MEAN STD SKEWNESS KURTOSIS MAX MINJ 

VAA AALJ /* Stat1wt1cw o~ AAL */ 
TITLE1 'ARL OF THE OPA Mfty CHART ON FORI"' DATA'' 
TITLES 'WITH FILTI!:ft CONST~NT• FC- 0.3'J 
TITLES 'SHI~T RATIO IN DISPI!:RSION- 3.0'J 

"" 



..... ...... ...... 
"*~OUT~ P~XNT ~DCA~ 
_,_, ~X~C I!SAI!S 
.-.-svexN DD .. 
DATA .-HDJ 

I<IE~P AA~J 

BlEED - 1 e34~ J 

P~DB~AM 8 

FC 0.3J "* F11~•r Cona~&n~ *" 
FC1 1 - FCJ 
B1 l"BQ~T<e•ee.-7,, "* 1"BQ~T<e•p1) *" 
BTD lJ "* Xn1~1a1 S~d. D•v• o~ X *" 
MEAN 10J "* Xn1~1a1 M•an o~ X *" 
AMP 3*I!STDJ "* Ampll~ud• o~ ~r•nd *" 
I!STPI!SZ AMP.-eo, "* e~•P - Amp.-eo aubQp• *" 
NI!SXM 10000, "* Numb•r o~ B1mula~ion *" 
DO X - 1 TO NeXMJ 

~AI!!Ia 

Vl - ~A~(I!S~~D)*I!STD + MIEANJ /* B•n•ra~• 1n1~1a1 va1u• *" 
DO I< - 1 TO ~01 "* Warm up FD~P Q•n.ra~or *" 

Ve FC*Vl + FC1*<~AN~<I!SE~D)*8TD + MIEAN)I 
v1 - ve, 

~NDJ 

NUM OJ 
PlEA 01 
Al AI!!IB<Vl - ~AN)J 

Ae Al_, 15TDJ 
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ee 1!!11 • EXP<-o.~•Ae•Ae,, 

B3 1- e•PRDBNDRM<-Ae)J 
E~l< e•eTD•ee + A1•ea, 

/* Drd~n•~• o~ 8td. Norma1 */ 

/* PRDBND~M - CDF o~ Normal */ 
_,_,.. IEKp•c~•d o~ ~ Qlv•n 1< *" 

E~ FCl * ERI<J 
B4 B~T(ISTD*I!STD + Al*A1 
SR FC1 * 1!1141 
~c~ ~~ - 3*eA 9 
uc~ ~~ + a•e~, 

XF ~C~ < 0 THIEN ~C~ - OJ 

/* EKp. o~ ~&nQ• Qlv•n 1< ..,._, 
Efti<*E~I< ) J "* I!S~d. o~ RanQ• Qlv•n I< *" 

/* ~C~ o~ DPA M~y char~ */ 
/* UC~ o~ DPA M~y char- _,._, 

NMEAN ~AN+MXN<I!STPI!SZ*P~ft.AMP)I /* N•w "-•n o~ x. ~r•nd */ 
ve - FC*V1 + FC1*<~ANN0~(8~~D)*I!STD + NMEAN)J 
~V - ABe<Ve-Vl)J /* MovlnQ ftanQ• *" 
XF ~c~ < MftV < uc~ THEN 001 "* Po1n~ 1a w1~h1n c~·· ..,._, 

NUI'I NUM + ' 1 J 
v1 ve 1 
PER P~R + 11 
130 TO ~ABJ 

END1 
AftL - NUM + 1f /* Av•r•~• ftun L•nvth *' 
DUTPUTJ 

END I 
PRDC MEANI!S N MEAN BTD SI<EWNE158 I<URTOSXS MAX MXNJ 

"" 

VAR AR~I _,_,. 8~a~l-~1ca o~ AR~ *" 
TXT~I!:l 'AR~ OF THE DPA Mfty CHA~T ON F~P DATA'J 
TXT~Ee 'WXTH FX~T~~ CONSTANT• FC- 0.3. '1 
TXT~E3 'MEAN VA~XIES XN TftiENDa T~~ND P~RXDD- eo BUBBRDUPS'I 
TXT~E4 'AND AMP~XTUD~- 3*8XI3HA'I 



,,. ,,. ,,. 
'*"OUTE l"'ftJ:NT LOCAL 
'' EXEC I!IAI!I 
''BVI!IJ:N DD * 
DATA I"HDJ 

I<EEP AftLJ 
SEED 1ea ... s, 
FC o.a, 
FC1 1 - I""CJ 

PRDBRA.. 9 

81 1,BQRTCE!•E!E!,?)f 
BTD 11 
.. EAN 101 
STPI!IZ CE!E!,?)'E! ... f 
A..... :!I*I!ITDI 
NI!IJ:.. 100001 
DO J: - 1 TO Nl!l% .. 1 

, ... 

1,SCIRTCE!•pl) *' 
J:nl•la1 s•d• D•v• o~ X *' 
J:nl•la1 ..__" o~ X *' 
B••P - e•PJ:, ... B •ubgp• *' 
Amp1l•ud• o~ l!llmu1a•lon *' 
Numb•r o~ Slmu1a•lon *' 

V1 - ftANNOftCI!IEED)*I!ITD + .. EAN1 '* B•n•r••• lnl•l•1 va1u• *' 
DO I< - 1 TO I!IOJ '* Warm up I""Dftl" o•n•ra-or *' 

VE! I""C*V1 + FC1*CftANNDRCI!IEED)*I!ITD + .. EAN)I 

LAB a 

V1 - VE!J 
END I 
NUI"' 01 
PEft OJ 
A1 ABI!ICV1 - MI!!!:AN)I 
AI!! A1, BTD1 

'* P•rlod - 0 *' 
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BE! 1!11 * EXI"C-Ooi!I*AE!*AE!)I 
83 1 - I!!*PROBNDR .. C-AE!>I 
Eftl< E!•BTD•BE! + A1*B31 

'* Ordlna•• o~ s•d· Norma1 *' 
'* PRDBNDR.. - CDI"" o~ Norma1 *' 
'* EKp.C-•d o~ R glv•n I< *' 

Eft FC1 * Eftl<l 
a... BQftTCBTD•BTD + A1•A1 
SR FC1 * a ... , 
LCL Eft 3•Bftl 
UCL Eft + 3•BRI 
J:F LCL < 0 THEN LCL - 01 

'* EKp. o~ R•no• glv•n 1< *' 
EI'III<*Eftl<) 1 

'* B.d. '* LCL '* UCL 

o~ l'ltano• glven 1< *' 
o~ OI"A ,.fty char• *' 
o~ DI"A Ml'lty char• *' 

NMEAN- MEAN + A .. I".SJ:NCI"ER)I '* 
VI!! - I""C*V1 + I""C1*CftANNDRCI!IEED)*BTD 

New ,._an o~ X 0 cyc1lca1 
+ Nl'tEAN) 1 

ftV - ABI!ICVE!-V1)1 '* 
J:F LCL < ftV < UCL THEN DDI '* 

NUM NUI'I + 1 1 
V1 VE!I 
PEft I"Eft + BTI"I!IZI 
GO TO LAB1 

END I 

Movlng Rano• *' 
Poln• l• wl.hln CL'• *' 

AftL - NU,. + 11 '* Av•r•v• Run L•no•h *' 
OUTPUT I 

END1 
PI'IIOC MI!!!:ANI!I N MEAN BTD BI<EWNEBB I<URTOI!IJ:B MAX .. XN1 

YAR ARLI '* a•a•l••tc• o~ ARL *' 
T X TLE 1 ' AftL OF THE DPA 1'1Ry CHAI'IIT ON FDftl" DATA ' I 
TXTLEI!! 'WXTH FXLTEI'It CONBTANTo FC- 0.3.'1 
TJ:TLE:!I '"EAN YAI'IIXEI!I J:N CVCLEa CYCLE PEftXOD- ... a BUBBOUI"ftl!l'l 
TJ:TLE ... 'AMPLJ:TUDE- 3•SJ:BMA'I 

... , 



PROGRAM 10 ,,. 
/*ROUT~ PRZNT LOCAL 
// ~X~C I!JAB 
//t!SVI!UN DD * 
DATA PHDJ 

KEEl"' ARLJ 
SEED 11!!341!1J 
FC o.a, 
FC1 1 FCJ 
FCI!! 1 + FCJ 
STD 1f 
MEAN 10J 
SHZFT 1-0J 
Nt!STD SHIFT*I!STDJ 
HR8AR t5TD•1.11!!8*FC1/8QRT<FCI!!)J 
LCLI"'A OoOJ 
UCLHR 3.1!!67*HI't8AI'tf 
NBIH 10000J 
DO I - 1 TO N81HJ 

t!Std. '* Xn~t~•1 M•an o~ X */ 
/* etvm•n•w over S1gmao1d 

V1 - RANNOR<SE~D>*8TD+HEANJ /* Bwnwrat• tn1t1a1 va1u• 
DO I< - 1 TO I!IOJ /* Warm up FORP gwn•rator 

VI!! FC*V1 + FC1*<RANNOR<BEED>•BTD + HEAN>J 
v1 - ve, 

ENDJ 
NUH o, 

LA8a ve 
HR 
IF 

FC•V1 + FC1*<RANNDR<SEED>*NBTD + HEAN>J 
ABS<Ve-V1>J /* Hovlng Rang• •/ 

LCLHR < HR < UCLHR TH~N DOJ /* Polnt lw w1th1n CL'w */ 
NUH-NUH+ 1J 
v1 ve, 
GO TO LABJ 

ENDJ 
A~L - NOM + 11 /* Av•r•v• Run L•nvth */ 

OUTPUTJ 
ENDJ 

PROC HEANI!S N MEAN t!STD t!St<EWNEI!SS KUI'tTOt518 MAX HINJ 

,, 

VAI't ARLJ /* Btat1•t1c• o~ ARL */ 
TITLE1 'ARL OF THE TRADZTZONAL Hft(l!!) CHART ON FORP DATA'J 
TITLE!!! 'FILTER CONSTANT. FC- 0.3'J 
TITL~3 'SHIFT RATIO IN DISPERSION- 1o0'J 
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P"ROBI'tAM 11 ,.,. ... 
"'*ROUT~ P"RXNT LOCAL 
_._. ~X~C 15AI5 
_._.15YI51N DD * 
DATA PHDJ 

KEEP AAL, 
BEED 1z:!34~J 

FC 0.3. 
FC1 1 FCJ 
FCI! 1 + FCJ 
STD 1J 
MEAN 10J 
AMP" 3 .. 15TDJ 
BTPISZ AMP,.I!!OJ 
HRSAI't 15TD•1.1I!!S*FC1_.SQI'tTtFCz:!)J 
LCLMR O.O, 
UCLMR 3.1!67*1'1RBARJ 
NISIM 10000J 
DO X 1 TO NSIMJ 

lnLtLa1 I!Std. D•v• 
XnLtLa1 M•an o~ X *"' 
AMp1~~ud• o~ tr•nd */ 
e-•P - A•p/eo •ubQpw *' 
Th•or•tlea1 MRbar *"' 

V1 - l'tAN~CSEED>•STD + MEAN, "'* B•n•rat• LnLtLa1 va1u• 
DO K - 1 TO eoa /* Warm up FORP ~-n•rator 

Ve FC•V1 + FC1•CRANNOR<8EED>•STD + MEAN>J 
v1 ve, 

ENDJ 
Nut'l o, 

o, "'* P•rLod - 0 *"' 
LAB I 

PEI't 
NMEAN MEAN+MIN<STPBZ*PER 0 AMP>J "'* N•w M•an o~ X 0 t;r•nd 
ve 
MR 
IF 

FC*V1 + FC1*CRANNOR<SEED)*BTD + NMEAN>J 
ABI!ICVI!-V1)J "'* Movln~ Ran~• *"' 

LCLMI't < Ml't < UCLMR THEN DOJ "'* PoLnt LW wLthLn 
Nut'l NUM + 1f 
v1 ve, 
P~A P"ER + 1J 
SO TO LABJ 

ENDJ 

CL'• */ 

ARL - NUM + 11 /* Av•raq• Run L•nQth */ 
DUTPUTJ 

ENDJ 
Pl'tOC MEANS N MEAN BTD SKEWNESS KURTOSIS MAX MINJ 

,.,. 

VAR ARLJ "'* Statlwtlcw o~ ARL *"' 
TITLE1 "ARL OF THE TRADITIONAL MRCI!> CHART ON FOI'tP DATA"J 
TITLEI! "WITH FILT~R CONSTANT. FC- 0.3."J 
TXTLE3 "MEAN VARIES IN TREND• TREND P~l'tXOD - eo SUBBOUPRS• 
TXTLE4 "AND AMPLITUDE- 3*8IBMA"J 
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,, .. 
/*ROUTE P'ft:lNT 
// EXEC 9A9 
//BVB:lN DD • 
DATA PHDt 

LOCAL 

KEEP ARL 
BEED • 1ea4e, 
FC 
FC1 
Fee 

o.a, 
1 Fe, 
1 + FCt 

9TD 1t 
MEAN 10t 
BTPBZ te~/7)/e4t 

AMI"' 3*BTD' 

PROSRAM 1e 

MRBAR BTD•1.1eB*FC1/BQRTtFC~)J 

LCLMR O.OJ 
UCLMR a.e67*MRBAR' 
NB:lM 10000, 
DO :l - 1 TO NB:lM' 

-'* Fl1~•r Conw~an~ *-' 

:lnl~la1 S~d. D•v. o~ X *-' 
:lnl~la1 M•an o~ X *-' 

-'* S~•P - ~*P:l/48 wubgpw *" 
-'* Amp1l~ud• o~ Slmu1a~lon *-' 
-'* Th•or•~lca1 MRbar *-' .. , 
/* Numbwr o~ S~mu1atton */ 

V1 - RANNOR<BEED>*BTD + MEAN, -'* B•n•r•~- lnl~la1 va1u• */ 
DO K - 1 TO eo, /* Warm up FDRP gwn•ra~or */ 

V~ ~C*V1 + FC1•CRANNDRCBEED>*BTD +MEAN)' 
v1 ve, 

ENDt 
NUM OJ 
PER OJ /* P•rlod - 0 */ 

LAB• NMEAN MEAN+ AMP•SXNtPER>t /* N•w M•an o~ X 0 cyc1lca1 *-' 
Ve FC*V1 + FC1*CRANNDRtSEED>•BTD + NMEAN>t 
MR ABBCVe-V1>t /* Movlng Rang• *-' 
:lF LCLMR < MR < UCLMR THEN DDt /* Poln~ lw wl~hln CL'w */ 

NUM NUI'1 + 1 J 
V1 
PER 

ve, 
P"ER 

130 TO LABt 
ENDt 

STPSZt 

AftL - NUM + 1, /* Avwrao• Run Lwnoth */ 
DUTI"'UTt 

ENDt 
I"'RDC MEANS N MEAN BTD SKEWNESS KURTDB:lB MAX M:lN' 

// 

VAR ARLJ /* S~aiJlw~lcs o~ ARL */ 
T:lTLE1 'ARL 0~ THE TRAD:lT:lDNAL Mft(~) CHART ON FORI"' DATA't 
T:lTLE~ 'W:lTH ~:lLTER CDNBTANTo ~C- 0.3.'t 
T1TLE3 'MEAN VAft:lES :lN CVCLEo CVCLE PER:lDD- 4B SUBBDUPRB'J 
T:lTLE4 'AND AMPL:lTUDE- 3*S:lBMA'J 
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.......... 

........... 

.......... 
/*ftOUTE ~ftXNT LOCAL 
// EXII!:C I!IAB 
,.../BYI!IXN DD • 
DATA ~HDJ 

KEE~ AALJ 
BEI!:D 11!!3 .. l!!IJ 
FC 0.3J 
FC1 1 - FCf 

PAOI!IftAM 13 

Bl 1/SQATce•ee/?)J 
I!ITD 1 J 
MI!:AN 10J 
eFBTD 1.0J 
I!II""MU e, 
Nr1EAN r111!:AN + BFMU•STDf 
NI!ITD I!II""I!ITD*I!ITDJ 
QQUY r111!:AN + 3*FC1*I!ITDJ 
QQLY r111!:AN - 3•FC1*BTDJ 
NBXM 10000J 
DO X 1 TO NI!IZMf 

..... 
1/BQRT<e•PX> */ 
ln~~~-1 S-d. D•v• 
Xn~-~al M•an o~ X .. .... 

/* S~Qman•w ov•r 8l~mao1d */ 
/* M••n •h~~t ~" •tQma X */ 

Yl - ftANNDftCI!III!:I!:D>*I!ITD + MEANJ /• Swnwra-• ~n~-~-1 valu• 
DO I< - 1 TO eo, /• Warm up FOftP ~-n•ra-or 

VI!!! I""C•Yl + I""Cl*(ftANNOft(I!II!:II!:D)*I!ITD + MEAN)J 
v1 ve, 

I!:NDJ 
NUr1 OJ 

LABo Al Yl - MI!:ANJ 
Ae ABI!ICA1) / BTDJ 
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Bl!! 1!11 * I!:XPC-O.I!I*Ae•Al!!>J 
1!13 1 - e•PROI!INOAMC-Ae>J 
EAt< e•BTD*I!II!!! + AI!II!ICA1>*1!13J 

"* Ord~nat• o~ Btd. Normal */ 
/* ~ftOI!INDRM - CDF o~ Normal ....... 
/* EMp•ct•d o~ R Q~V•n K */ 

EA FCl * II!:RI<J 
1!1.. I!IQftTCI!ITD•I!ITD + A1*A1 -
I!IA FC1 * I!I .. J 
LCLMR Eft 3*I!IRJ 
UCLMA II!:R + :!l*I!IRJ 
XF LCLMft < 0 THI!:N LCLMA - OJ 

/* ~xp. o~ Aan~• Q~v•n K */ 

ll!:ftt<•ll!:ftl<) ' 
/* Std. o~ ftan~• ~~v•n I< •/ 
/• LCL o~ CPA Mfty Chart *" 
/* UCL o~ OP'A r1R')<· Chart •/ 

UCLY QQUY + FC•AlJ /* ULC o~ OPA Y Chart •/ 
LCLY QQLY + FC*A1J "* LCL o~ OP'A Y Chart *" 
VI!!! FC•Y1 + FCl*CftANNORCI!III!:II!:D>*NI!ITD + NMEAN)J 
MAY AI!II!ICYI!!-Yl)J 
IF CLCLMA < MftY < UCLMA> AND CLCLY < Ye <UCLY> THEN DOJ 

NUM -Yl 
eo TO 

II!:NDJ 
ARL - NUM 
OUTPUTJ 

ENDJ 

NUM + 1' /* Po~nt ~- ~n-contro1 */ 
ve, 
LAI!IJ 

+ 1' 

PROC MEANS N MEAN BTD SKEWNEI!IB KUATOSII!I MAX MINJ 
VAft ARLJ 
TXTLE1 'ARL 01"" THE JOXNT OPA Y AND 
TXTLEe 'WITH FXLTII!:R CONSTANT• FC -
TXTLII!:3 'I!IHXFT IN MEAN- e BIBMA'J 

/* l!ltat~.t~c:w 
CPA Mfty CHAftTI!I 
o.:s ••• 

o~ ARL */ 
ON FORP DATA'J 



,,. ,,. ,, .. 
/*ROUTE ~~~NT LOCAL 
// EXEC eAI!I 
''I!IYI!S~N DD * 
DATA I'"HDJ 

KEE~ A~LJ 

I!IEED 1e341!SJ 
FC1 0.6, 
FC1A 1 - FC1J 
Fee o.e, 
FCeA 1 Fee, 

PROEIRAM 14 

I!ITD ~n1t1e1 l!ltd. Dwv. o~ X */ 
MEAN ~n1t1a1 Mwen o~ X *' 
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I!IH~FT l!lhl~t ln twrm o~ wlgma M *' 
NMEAN N•w m••n o~ x */ 
QQUY Conwtant twrm o~ UCLopey *' 
QQLY Conwtant twrm o~ LCLopay *' 
NI!I~M 10000J /* Numbwr o~ 1!11mu1at1on *' 
DO ~ 1 TO NI!I~MJ 

V1 - ~ANND~CI!IEED)*I!ITD + MEANJ /* Etwnwratw 1n1t1a1 va1uw *' 
DO K - 1 TO I!IOJ /* Warm up FORP gwnwrator *' 

Ve FC1*Y1 + FC1A*CRANNO~CI!IEED)*I!ITD + MEAN)J 
v1 ve, 

ENDJ 
NUM OJ 

LAB I AO Y1 MEANJ 
UCLY QQUV + FCe•AOJ '* UCL o~ OPA Y chart */ 
LCLV QQLY + FCe*AOJ '* LCL o~ OPA Y chart */ 
ve FC1*Y1 + FC1A*CRANN~<I!IEED)*I!ITD + NMEAN)J 
~F LCLV < Ye < UCLV THEN DDJ /* Polnt lw wlthln CL'w *' 

NUM - NUt1 + 1J 
Y1 ve, 
EtO TO LABJ 

ENDJ 
ARL - NUM + 1J /* Avwragw ~un Lwngth *' 
OUTPUTJ 

ENDJ 
~~DC MEANI!I N MEAN I!ITD SKEWNI!!!:I!II!I K~TOI!I~I!I MAX M~NJ 

VA~ ARLJ '* l!ltatlwtlcw o~ ARL */ 

T~TLE1 'ARL OF THE O~A V CH~T ON FO~~ DATA W~TH'J 
T~TLEe 'ACTUAL F~LTE~ CONI!ITANT 0 FC1 - 0.6. ASI!IUMED F~LTE~. 
T~TLE3 'CONI!ITANT 0 FCe- 0.1!1. I!IH~FT ~N MEAN- e.O I!I~EtMA'J 



,, .. ,,_ ,, ... 
/*~OUTE ~RINT LOCAL 
// EXEC t!SAt!S 
//t!SYt!SIN DD * 
DATA P'HDJ 

KEEP ARLJ 
SEED 1e34\!5J 
FC1 0.6J 
FC1A 1 - FC1J 
Fee o.e, 
FCeA 1 - FC!!J 

PROBRAM 1\!5 

s1 1/t!IQRT<e•ee/?>J 
STD 1J 
MEAN 10J 
SFBTD 1.0J 
e..-MU e, 
NMEAN MEAN + BFMU*BTDt 
Nt!STD t!SP't!STD*STDJ 
QQUY MEAN + 3*FC!!A*BTDJ 
QQLY MEAN - 3•FC!!A*8TDJ 
NBIM 10000J 
DO I - 1 TO Nt!SIMJ 

"* Actual 

/* 1 /SQRT <2*~1 '> */ 
/* ln~t~al Std. D•v• o~ X •/ '* In~t~e1 M•an o~ X */ 
/* a~am•n•w ov•r e~Qmao1d */ 
/* M•an wh~~t ~n S~~-- X */ 

Y1 - RANNORCt!SEED>*STD + MEANJ /* Ben•r•t• ~n~t~a1 va1u• 
DO 1< - 1 TO \!50J /* Warm up FORP ~-n•rator 

Y!! FC1*Y1 + FC1A*C~ANNO~Ct!SEED>•BTD + MEAN>J 
v1 ve, 

ENDJ 
NUM OJ 

LAB a Al Y1 - MEANJ 
Ae ABS<A1> / STDJ 
Be 81 * EXP<-o.e•Ae•Ae>J /* Ord~nat• o~ Std. Normal */ 
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B3 1 - e•~ROBN~M<-A!!>J /* PROBN~M- CDF o~ Normal */ 
ERI< !!*STD*B!! + ABSCA1>•B3t /* EMp•ct•d o~ R ~~v•n I<*/ 
ER FC!!A * ERI<t /* EMp. o~ Ran~• ~~v•n I< */ 
B4 BQRT<STD*STD + Al*Al - E~I<*E~K>t 

BR FCeA • B4J /* Std. o~ Ran~• ~~v•n K */ 
LCLMft E~ 3•8Rt /* LCL o~ OPA MRy Chart */ 
UCLMR ER + 3*BRJ /* UCL o~ OPA Mfty Chart */ 
IF LCLI"'R < 0 THEN LCLI"tft - 0 t 
UCLY QQUY + FC!!*Alt /* ULC o~ OPA Y Chart */ 
LCLY QQLY + FC!!*Alt /* LCL o~ OPA Y Chart */ 
Y!! FC1*Y1 + FC1A*CRANN~<8EED>*NSTD + NMEAN>t 
MRY ABS<Y!!-Y1>t 
IF CLCLMR < MRY < UCLMR> AND CLCLY < Ye <UCLY> THEN DOt 

NUM- NUM + 1J /* ~o~nt ~- ~n-control */ 
Yl ve, 
130 TO LABt 

ENDt 
ARL - NUM + lt 
OUTPUTt /* Av•r•~- Run L•n~th */ 

E:NDJ 
PROC MEANS N MEAN STD SKEWNESS I<URTOSI8 MAX MINt 

VAR ARLt /* Stat~wt~c• o~ ARL */ 
TITLE1 'ARL OF THE JOINT OPA Y AND OPA MAy CHARTS ON FORP DATA' 
TITLE!! 'WITH ACTUAL P'ILTER CONSTANT• FC1- 0.6.'J 
TXTLE3 'ASSUMED FILTER CONSTANT 0 FC!!- 0.\!5.'J 
TITLE4 'SHIP'T IN MEAN-!! BIBMA't 



.......... .......... .......... 
/*ROUT~ PRINT LOCAL 
"" ~x~c eAa 
/;"SVI!IIN DD * 
DATA PHDJ 

KEEP" ARLJ 
SEED 1e34::1J 
FC1 0.6J 
FC1A 1 - FC1J 
Fee o.::s, 
FCeA 1-FCeJ 

PROGRAM 16 

e1 1;'SQAT<e•ee,...?>• 
BTD 1J 
MEAN 10J 
SHIFT 3.0J 
NI!ITD ::IHIFT*I!ITDJ 
NSIM 10000J 
DO I 1 TO NI!IIMJ 

1;'1!JQRT<e*p1> *" 
Int.tt.a1 Std. D•v• 
Int.tt.a1 Mean o~ X 

o~ X ...... 

V1 - RANNOA<eE~D>*BTD + MEANJ "* S.nerat• 1•t 
DO K - 1 TO ::IOJ ;'* Warm up FORP 

valu• */ 
Q•n•ra"t;:or 

LAB I 

ve FC1*V1 + FC1A*<RANNOR<SEED>*I!ITD + M~AN>J 
v1 ve, 

ENDJ 
NUM OJ 
A1 ABS<V1 - MEAN)J 
Ae A1 ;' STDJ 
Be B1 * EXP<-O.::I•Ae•Ae>J /• Ordt.nate o~ Std. Normal */ 
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B3 1 - e•PROBNORM<-Ae>J ;'* PROBNORM- CDF o~ Normal *" 
ERK e•STD•Be + A1*B3J "* EMpe~ted o~ R 9i.ven K *" 
ER FCeA * ERKJ ;'* EMp. o~ Ran9• gt.ven K *" 
84 BQAT<STD*STD + A1*Al EAK*ERK>J 
SR FCeA • B4J /* l!ltd. o~ Range gt.ven K */ 
LCL Eft - S•I!IRJ "* LCL o~ OPA MRy chart *" 
UCL ~A + 3•SRJ "* UCL o~ CPA MAy ~hart */ 
IF LCL < 0 THEN LCL - OJ 
ve- FC1*V1 + FC1A*<RANNOR<SEED>•NBTD + MEAN>J 
RV- ABI!I<Ve-V1)J 
IF LCL < AV < UCL THEN DOJ ;"• Pot.nt 1• wt.tht.n CL'• *" 

NUM - NUM + 1 J 
v1 ve, 
150 TO LABJ 

~NDJ 
ARL - NUM + 1. /* Av•r•v• Run L•ng~h */ 
OUTPUTJ 

ENDJ 
PROC MEANS N MEAN STD SKEWNESS KURTOSIS MAX Ml:NJ 

VAR ARLJ "* Statt.•tt.c• o~ ARL *" 
TITL~1 'AAL OF THE OPA MRy CHART ON FORP DATA WITH'J 
TITLEe 'ACTUAL FILTER CONBTANTo FC1- 0.6.'J 
TITLES 'ASSUMED FILTER CONSTANTo FCe- O.::I.'J 
TITLE<o 'BHIFT RATIO IN DISPERSION- 3.0'J 

........ 



I' I'* 

""* ""* 
PROBRAM 17 

I'*ROUTE ~RlNT LOCAL 
1'1' EXEC BAI!I 
1'/I!IVI!IlN DD * 
DATA PHDJ 

ARRAY XC30) ERRC30)J 
KEEP ARL 1 
SEED 1e34l5J 
FC 0.3J 
FC1 1 FCJ 
STD 1J I'* ln~~~-1 l!l~d. D•v• o~ X *I' 
MEAN 10J I'* lnl~~-1 M•an o~ X *I' 
NI!IXM 10000J I'* Numb•r o~ B~mu1a~~on *I' 
DO 1 - 1 TO Nl!llMJ 

V1 - ftANNOR<I!IEED>*I!ITD + MEANJ I'* B•n•r•~- ln~~~-1 va1u• *I' 
DO K - 1 TO l50J I'* Warm up FOftP ~-n•ra~or *I' 

Ve! FC•V1 + FC1•<RANNOR(I!IEED>*I!ITD + MEAN>J 
v1 ve, 

ENDJ 
XBUM O.OJ 
DO L - 1 TO 30J 

Ve FC*V1 
/• Oba•rv• 1•- 30 va1u•• •/ 

+ FC1*CRANNOR<I!IEED>*I!ITD + MEAN>J 
X<L> 
XBUM 
V1 

ENDJ 

ve, 
XI!IUM + X <L> J 
ve, 

ZO XBUM/30J 
ERR<1> X<1> - ZOJ 
I!IUMEftR EftR(1)J 
BBQERR ERR<1>•ERR<1)J 
Z1 O.I!I•ZO + o.e•X<1>J 
DO M - e TO 30J 

ERft<M> X <M> Z1J 
ze o.s•z1 + o.e•x<M>, 

+ Eftft<M> J 

/• ZO - Xbar '»/ 
/* ErrorCt) - X<t) - Z<~-1) 

I'* EWMA 0 r-o.e 0 Z<~> *I' 
I'* <1-r>•Z<~-1) + r•X<~> *I' 
I'* Error<~> - X<~> - Z<~-1> 

I!IUI"'EftR BUMERft 
BI!IQERR I!II!IQERR + ERft<M>*ERRCM)J 
Z1 ze, 

ENDJ I'* D•1~a<O> - l!l~d. o~ ERft *I' 
DO (I!II!IQERR- <SUMERR*I!IUMERft/30))/e~J 

D1 O.el5•ABI!I<Eftft(1)) + 0.7l5*DOJ I'* D•1~a. q-o.el5 *I' 
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DON-e TO 30J I'* D<~>-q•IEftRCt>I+C1-q>•D<t-1> *I' 
De o.eB*AI!II!ICERR<N>> + 0.7l5•D1J 
D1 - Del 

ENDJ 
LAB I UCL Z1 + 3•1.el5*D1J I'* UCL 0 Mod~~~-d EWMA Char~ *I' 

LCL- Z1 - a•1.ei!I*D1J I'* LCL 0 Mod~~~-d EWMA CHAr~ *I' 
ve FC•V1 + ~C1*<RANNOft<BEED>*I!ITD + NMEAN)J 
IF LCL < Ve < UCL THEN DOJ I'* Po~nt ~- w~th~n CL'w *I' 

NUM NUM + 1J 
v1 ve 1 
ze o.e•z1 + o.e•ve, 
ER Ve - Z1 J 
De 0.1•AI!II!ICEft) + o.~•D1J 
z1 ze, 
D1 DeJ 
BO TO LAB1 

ENDJ 
ARL- MUM+ 11 /* Av•r•a• Run L•nQ~h */ 
OUTPUT I 

ENDJ 
~ROC MEANI!I N MEAN I!ITD I!IKEWNEI!II!I KUftTOI!Ill!l MAX MlNJ 

I' I' 

VAR AftLJ I'* l!l~at~wt~cw o~ AftL *I' 
TlTLE1 'AftL ~THE MODI~IED EWMA CHART ON~~ DATA'J 
TITLEe 'WITH ~ILTER CONI!ITANTo FC- o.a. 'I 
TlTLE3 'I!IHIFT IN MEAN- e.o I!IIBMA'J 
TITLE4 'LAMBDA OF EWMA CHART - o.eo. ALPHA FOR I!IMOOTHlNB THE' 
TlTLEI!I 'Eftftaft EI!ITIMATEI!I-O.el!l C1at 30 01!11!1) -0.10 <THE ftEI!IT>'J 



"'"'* "'"'* "'"'* /*~OUTE ~~INT LOCAL 
// EXEC t!SAIS 
//t!SVSIN DD * 
DATA PHDJ 

KEEP ARLJ 
SEED 11!!341SJ 

PROBRAH 18 

Fe o.a, /* F~1t•r Conwtant */ 
FC1 1 - FCJ 
FCe BQRT<1+FC)J 
STD 1J /* In~t~a1 Std. D•v• o~ X */ 
MEAN 10J /* In~t~a1 M•an o~ X */ 
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ISHI~T l!!oOJ /* ISh~~t ~n t•rm o~ a~gma K */ 
NHEAN MEAN + ISHI~T*t!STDJ /* N•w m•an o~ X */ 
NSIM 10000J /* Num~•r o~ t!S~mu1at~on */ 
DO I - 1 TO NSIMJ 

Y1 - ~ANNO~<ISEED>*ISTD+HEANJ /* ts•n•r•t• ~n~t~•1 v•1u• */ 
DO I< - 1 TO ISOJ /* W•rm up ~OR~ g•n•r•tor */ 

VI!! ~C*Y1 + FC1*<~ANNOR<t!SEED>*STD + HEAN)J 

ENDJ 
MRISUM OoOJ 
VISUM O.OJ 
DO L - 1 TO :!IIOJ 

VI!! ~C*Y1 + ~C1*<~ANNORCISEED)*ISTD + MEAN>J 
VISUM VISUM + VI!! J 
HRI!SUH MRt!SUH + ABS(VI!!-V1>J 

ve, 

VISUH/:!IIOJ 
M~t!SUM/:!IIOJ 
~BA~•FCI!!/(1.1I!!S*FC1)J 

AVB + 3*~C1•t!SISTDJ 

AYt!S - :!II*~C1*t!SISTDJ 
o, 

/* Emp~r~ca11y coMput• */ 
/* AYB •nd M~BAR */ 

/• Con•tJant: 
/* Conwil:anir 

t•rm o~ UCLopay */ 
-•rm o~ LCLopay */ 

LABo 

V1 
ENDJ 
AVB 
~BAR 

ISISTD 
QCIUV 
CICILY 
NUM 
AO 
UCLV 
LCLV 
VI!! 

V1 AYBJ 
CICIUV + FC*AOJ /* UCL o~ OPA V ch•rt */ 
CICILY + ~C•AOJ /* LCL o~ O~A V ch•rt */ 
FC•V1 + ~C1•C~ANNO~<ISEED>*ISTD + NHEAN)J 

IF LCLV < VI!! < UCLV THEN DOJ /* Po~nt ~- w~th~n CL'w */ 
NUM­
V1 

NUH + 
VI!!J 

TO LABJ ao 
ENDJ 
ARL- NUM + 1J 
OUTPUTJ 

ENDJ 

1J 

~ROC HEANIS N MEAN ISTDJ 

// 

YAR A~LJ /* IStattwttcw o~ A~L *"' 
TITLE1 'ARL ~THE OPA V CHART ON FORP DATA'J 
TITLE!!! 'WITH FILTER CON~TANT• FC- 0.:!11. 'J 
TITLE:!II 'ISHIFT IN MEAN- 1!!.0 SII!SHA'J 



,,. 
//* 
//* 

PROBRAH 1~ 

/*~CUTE ~R%NT LOCAL 
// EXEC SA& 
//SYS%N DD * 
DATA PHDJ 

KEEP ARLJ 
SEED 1eS4SJ 
FC o.o, /* F11t•r ConstAnt *' 
FC1 1 - ~c, 

FCe SQRT<1+FC>t 
81 1/SQ~T<e•ee/7)J /* 1/SQRT<e•p1> */ 
STD 1J /* Xn1tiAl Std. D•v• o~ X */ 
MEAN 10, /* %n1tiAl H•An o~ X */ 
SH%FT e.OJ /* SigmAn•w ov•~ S1gmAold */ 
NSTD BHX~T*STDI 
NBXH 100001 /* Nu~b•r o~ S1mu1At1on */ 
DO X 1 TO N8%M' 

Y1 - ~ANNO~<BEED>•BTD + MEANJ /* 5•n•rAt• 1st VA1u• */ 
DO K - 1 TO ~0. /* Warm up FDRP Q•n•ra~or */ 

Ye ~C*Vl + ~Cl*C~ANNO~<SEED>*STD + MEAN>1 
v1 ve, 

ENDJ 
~SUM O.OJ 
YSUM O.OJ 
DO L - 1 TO 30J 

Ye ~C*Vl + ~Cl*<~ANNO~CSEeD>*STD +MeAN>' 
va~ - va~ + ve, 
MRSUM- MRSUH + AB&cve-Yl>t 
v1 ve, 

ENDJ 
AVB YSUM/30J /* EMp1r1cAlly comput• */ 
MRBAR M~BUM/30J /* AYB And MftBAR */ 
BSTD MRBAR•~Ce/C1.12S*FC1> 1 
NUM o, 

LAB• Al ABB<Vl - AYB>t 
Ae Al / SSTDt 
Be Bl * EXPC-O.S•Ae•Ae>l /* Ord1nat• o~ Std. Normal */ 
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B3 1 - e•~ROBNORMC-A2>1 /* PROBNORH - CDF o~ Normal */ 
E~K e•&BTD•Be + Al* B3J /* eMp•ct•d o~ ~ Q1v•n K */ 
ER FC1 * eRKJ /* EMp.o~ RAMQ• g1v•n K */ 

B4 SQ~T<SSTD•SSTD + A1*A1 E~K•ERK>, 

SA FCl * 841 /* Std. o~ Rang• Q1v•n K */ 
LCL - Eft - 3*S~I /* LCL o~ CPA M~y cha~t */ 
UCL - ER + 3*SRI /* UCL o~ CPA Hfty che~t */ 
%F LCL < 0 THEN LCL - o, 
Ve - FC*Vl + FCl*CftANNORCSEED>•NSTD + MEAN>I 
RV - Aescve-vl>• 
%F LCL < RV < UCL THEN DOJ /* ~o1nt 1s w1th1n CL'w */ 

NUM- NUM + 1J 
v1 ve, 
BO TO LABJ 

ENDJ 
A~L - NUM + 1J /* Av•r•v• Run L•ngth *' 
OUTPUT' 

END I 
PROC MEANS N MEAN STD SKEWNESS KURTOS%8 MAX M%NJ 

VAR ARLI /* StAt1wtics o~ ARL */ 
T%TLE1 'ARL 0~ THE O~A MAy CHART ON F~ DATA'I 
T%TLEe 'WXTH FXLTE~ CONSTANT 0 FC- O.o• 1 
T%TLE3 'SHXFT RAT%0 XN D%SPERSXDN- e.O't 

// 



//* 
//* 
//* 
/•ROUTE ~RINT LOCAL 
// EXEC BAS 
//SVSIN DD * 
DATA PHDJ 

KEEP ARLJ 
SEED 11:!3415J 
FC1 0.3J 
FC1A 1 - FC1J 
Fee o.aJ 
FCeA 1 P"'Cf!J 

PROGRAM eo 

STD 1J /* In1~1&1 S~d. D•v• o~ X */ 
MEAN 10J /* In1~1a1 M•an o~ X */ 
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SHIFT e.OJ /* Sh1~~ 1n ~-rm o~ •1Qma K */ 
NHEAN MEAN + SHIFT•STDJ /* N•w m•an o~ X */ 

NSIM 15000J /* Numb•r o~ S1mu1a~1on •/ 
DO I - 1 TO NBIMf 

LAB I 

Z1 RANNOR<SEED>*BTD + MEANJ /* G•n•r•~• 1n1~1&1 va1u• */ 
V1 - RANNDR<BEED>*BTD + MEANJ /* B•n•r•~• 1n1~1a1 valu• */ 
DO I< - 1 TO SOJ /* Warm up SORP Q•n•ra~or */ 

ve FCe•V1 + FCI:!A*CRANNORCBEED>•STD + MEAN)J 
ze FC1*Z1 + FC1A*VI:!f 
Z1 ZeJ 
v1 ve, 

ENDf 
MRSUM O.o, /* Compu~- Av•r•G• and S~d. */ 
VISUM O.OJ /* D•v· o~ ~h• proc:••• •• */ 
DO L - 1 TO 30J /* 1~ ~h• proc:••• 1• FORP */ 

ve FCe*Y1 + FCeA•CRANNORCBEED>•STD + MEAN)J 
ze FC1•Z1 + FC1A*Vf!J 
VBUM VSUM + ze, 
~BUM ~BUM+ ABBCZe-Z1)J 
z1 ze, 
v1 ve, 

ENDJ 
AYB 
MRBAR 
SIB 
GIGIUV 
GIGILV 
NUM 
AO 
UCLV 
LCLV 
VI!! 
ze 
If"' LCLV 

NUt1 

VSUM/~OJ 

MRSUM/30J 
~BAR*SGiftTC1+FC1)/C1.1I!!!S*P"'C1A>J 

AYe + 3*P"'C1A*BIBJ /* Con•~-n~ ~-rm o~ UCLopay */ 
AYB - 3*FC1A*SIBJ /* Con•~-n~ ~•rm o~ LCLopay */ 
OJ 
Z1 AYBJ 
GIGIUV + FC1*AOJ /* UCL o~ O~A V c:har~ */ 
GIGILV + FC1*AOJ /* LCL o~ ~A V c:har~ */ 
P"'CI!!!•V1 + FCI!!!A•CRANNORCBEED>•BTD + NMEAN)J 
FC1*Z1 + P"'C1A*YI!!!J 
< Zl!!! < UCLV THEN DOJ /* Po1n~ 1• w1~h1n CL'• */ 

NUM + 1 J 
Z1 ZI!!!J 
V1 VeJ 
SO TO LABJ 

ENDJ 
ARL - NUM + 1 J 
OUTPUTJ 

ENDJ 
~ROC MEANS N MEAN BTD 

YAR ARLJ 
TITLE 1 ' ARL Of"' THE 
TITLEe '1•~ P"'ILTER 
TITLE3 'P"'CI!!! - 0.~. 

SKEWNESS KURTOSIS MAX MINJ 
/* B~a~1-~1c:• o~ ARL */ 

~A V CHART ON BOR~ DATA WITH'J 
CONSTANT• FC1- 0.3. f!nd FILTER CONSTANT•'J 

SHIP"'T IN MEAN- e.O SIGMA'f 



PROGRAM 1!!!1 
//* 
/*ROUT~ ~~ZNT LOCAL 
// ~XEC I!SAI!I 
//I!SVI!SZN DO * 
DATA PHDJ 

KEEP ARLJ 
BlEED 1l!!34\5J 
FC1 0.3J 
FC1A 1 - FC1 J 
FCl!! 0.3J 
FCl!!A 1-FCl!!J 
a1 l/BQftT<e•ee/7)J 
STD lJ 
MEAN 10J 
SHZP'T 3.0J 
NSTD SHXFT*BTDJ 
NBXM eooo, 
DO % 1 TO NI!SXMJ 

Zl RANNO~(I!S~IED)*I!STD + 
Vl - ~ANNOR<BE~D>*BTD + 
DO I< - 1 TO I!SOJ 

1'1EANJ 
MEANJ 

1/BQRT<I!!*p1) 
%n1t1a1 !Std. 

"* B•n•••"t;• 1•'b 
I'* B•n•r•t• 1•1:i 
I'* Warm up t!!!!IDRP 

ve Fce•vt 
Zl!! FCl*Zl 
zt ze, 

FCl!!A*<RANNOR<BIEED)*BTD + MEAN)J 
FC1A*VE!J 

Vl ve, 

o"f' X *" 

va1u• •I' 

Va1u• *" 
Q•nwrai:or .. , 
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ENDJ 
MRBUM 
VBUM 
DO L -

o.o, 
o.o, 

1 TO 30J 
P'CI!!*Vl 

/* Comput• Av•r•Q• •nd Std. *" 
/* Dev. o~ ~he proc••• •• *" 
/* 1"f' th• proc••• 1w BO~P *" 

ve + FCI!!A*<RANNOR<BEIED)*I!STD + MEAN)J 
Zl!! FCl*Zl + FClA*VE!J 
YBUM YSUM + ZI!!J 
MRBUM M~BUM + ABB<Zl!!-Zl)J 
zt ze, 
v1 ve, 

ENDJ 
AVG 
MRBAR 

VSUI'1/30J 
MRBUM/30 J 

- MRBAA*I!SCI~T<1+FC1)/(1.1I!!B*FC1A)J o, 
LABo 

I!S%13 
NUM 
Al 
Ae 
Bl!! 
83 
ERI< 
ER 
84 
BR 

A8B<Z1 - AVG) J 
Al " exe, 
Bl * EXP<-O.I!S*Ae*AI!!)J 
1 - I!!*P~OBNORMC-Ae)J 

e•axa•ae + Al•B3J 
P'ClA * EAI<J 
SGRT<I!SXG*I!SlB + Al*Al 
P'ClA * B4J 
~~ - 3•1!1RJ 
ER + 3*SRJ 

LCL < 0 THEN LCL - OJ 

/* Drd1nat• o"f' Std. Normal *" 
/* PROBNORM - COP' o"f' Normal */ 
/* EKp•ct•d o"f' ~ Q1v•n I< */ 
/* EKp. o"f' Ran9• Q1v•n I< *" 

ERI<*ERI< ) J 
"* Std. o"f' Rang• Q1v•n I< */ 
/* LCL o"f' CPA MRy chart */ 
/* UCL o"f' CPA MRy chart */ 

LCL 
UCL 
1P' 
VI!! 
ze 
RZ 
XF 

FCI!!*Yl + FCI!!A•CRANNOR<BE~D)*NBTD + 
- FCl•Zl + FClA•YI!!J 

MEAN> J 

- ABB<ZI!!-Zl)J 
LCL < RZ < UCL THEN DOJ 
NUM NUM + lJ 
z1 ze, 
v1 ve, 
130 TO LABJ 

ENDJ 
ARL- NUf1 + lJ 
OUT~UTJ 

END• 

/* Pot.nt 

PROC I'IEANI!I N I'IIEAN STD SKEWNeSS I<URTDSZS MAX M%NJ 

// 

... -~· T%TWE1 'ARL OF THE 
TZT~I!! 'lwt FXLTIER 
T%TLI!!3 'FCI!! - 0.3. 

/* Btat1wt1cw o"f' AAL *" 
D~A MRy CHART ON SOft~ DATA W1TH' J 
CDNSTANT 0 P'Cl- 0.3 0 l!!nd P'XLTER CONI!STANTo'J 

SHZP'T RAT%0 XN D%S~ERS%DN- 3.0'J 



APPENDIX F 

THE EFFECTS OF VARIATION IN EMPIRICALLY 

DETERMINED CONTROL LIMITS ON 

THE AVERAGE RUN LENGTH 
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The Effects of Variation in Empirically 

Determined Control Limits on the ARL 

To facilitate discussion in this section, an independent 

normal data stream with mean ~ and variance u2 is considered. 

To construct an Xbar chart on these independent data, the 

normal practice is to group data into m subgroups of size n, 

say m=30 and n=4. Then, the average and range of each 

subgroup, Xbar and R, are computed respectively. The 

averages of these subgroup averages and ranges are also 

calculated, and are denoted as Xbb and Rb respectively. The 

control limits of the Xbar chart are constructed as follows, 

UCLxbar = Xbb + 0.73*Rb <F.1> 

LCLxbar = Xbb 0.73*Rb <F.2> 

Since each plotted point on the Xbar chart is normally 

distributed with mean ~ and standard deviation 0.5u <since 

n=4>, the probability for a point <Xbar) to fall within the 

control limits can be easily computed, and is designated as 

Pa. 

UCLxbar 

Pa = I f(Xbar) d<Xbar) <F.3) 

LCLxbar 

where f(·) is a p.d.f. of a normal distribution. Thus, the 

number of points plotted until an out-of-control signal is 

found, even though the process is in-control, without using 

any runs rules, follows a geometric distribution with 

parameter p = (1-Pa>. That is, 



P(X) = (1 - Pa>Pax-1 X = 1, 2, 

where X is the number of points plotted until an out-of­

control signal is found. 
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<F.4> 

It is well known that the expected value of a geometric 

random variable is p- 1 • Thus, the ARL of the Xbar chart is 

equal to 

ARL = (1 - Pa>- 1 <F.5> 

For an in-control process, <1 - Pa> is the Type I error and, 

when the process is out-of-control, Pa is the Type II error. 

It is known that Xbb is normally distributed with mean equal 

to~ and variance equal to u2/(mn). 

Xbb- Normal~, u2/(mn~ <F.6> 

Using the Central Limit Theorem, Rb is seen to be normally 

distributed with mean de*u and variance (ds*u)2/m. 

Rb - Normal [de*u, (ds*U) 2/m J <F.7> 

It is also a well known fact that Xbar and R are independent 

of one another; this leads to the fact that Xbb and Rb are 

also independent of one another. 

If the Xbb and Rb are at their mean values, that is 

Xbb = ~ and Rb = de*u where de equals 2.059 for n=4, it is 

readily known that Pa is 0.0027 for an in-control process. 

The corresponding ARL is about 370. This ARL of 370 is to 

be interpreted as the average number of plotted points on 

the Xbar chart until an out-of-control signal is found when 

the process is, in fact, in-control. It should be noted that 
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this ARL value of 370 is the average run length, conditioned 

on the fact that Xbb and Rb are at their mean values. As 

mentioned earlier, the distribution of run length for such a 

control chart with Xbb and Rb at their mean values is indeed 

a geometric distribution. When runs rules are applied to the 

control chart, the run length distribution is no longer a 

geometric distribution, but still has a long tail skewed to 

the right. Some researchers have approximated the 

distribution of run length when runs rules are used <Champ 

and Woodall, 1990). The approximate distribution of run 

length still assumes that both Xbb and Rb are at their mean 

values. 

In reality, if one uses the Xbar chart with control 

limits empirically constructed using statistics Xbb and Rb 

derived from the initial m subgroups of size n, with Xbb and 

Rb varyi~g according to their own distribution, the average 

run length one expects is different from the value 370. 

Certainly, ARL' has its own distribution as well. This ARL' 

can be determined by considering the distribution of Xbb and 

Rb. 

For given values of Xbb and Rb, say c and d, 

respectively, the upper and lower control limits of the Xbar 

chart, UCLxbar and LCLxbar, can be defined in terms of the 

values of c and d. The probability of a plotted point falls 

within these control limits, Pa, is then determined. Pa is 

also a function of c and d. And such, the ARL of the control 

chart with these given Xbb and Rb values can be determined as 



follows, 

ARL' l<c,d) = [1 - Pa<c,d)J71 

where 

and 

UCLxbar<c,d) 

Pa<c,d> = J f<Xbar> d(Xbar> 

LCLxbar<c,d) 

UCLxbar<c,d) = C + 0.73*d 
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<F.B> 

<F.9> 

<F.10> 

Therefore, the unconditional ARL' of the control chart can 

be obtained by considering all possible values of Xbb and Rb. 

This can be done by integrating over the entire ranges of Xbb 

and Rb. 

ARL' = J J [1 - Pa<c,d)]-1 g<c> h(d) de dd 

0 -m 

where g<-> and h<-> are the p.d.f. of Xbb and Rb, 

respectively. 

<F.11> 

Using some type of numerical integration, it is able to 

verify that the ARL' obtained using Equation <F.ll) is 

different from the expected 370 for an in-control process. 

This illustrates the fact that, all the while, the well known 

370 ARL of the Xbar chart when the process is in-control is 

correct only based on the mean values of Xbb and Rb. That 

is, the possible variations of Xbb and Rb are not taken into 

consideration at all. If the variation of the Xbb and Rb are 

taken into consideration, the ARL obtained is certainly 
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different. Since in a real practical application of the Xbar 

chart the Xbb and Rb values are computed from an initial m 

subgroups of size n, the ARL computed from Equation <F.ll> 

depicts a more truthful situation. 

Equation <F.ll> is only used to compute the ARL for a 

Xbar chart on independent normal data when the process is in­

control. However, the approach can be extended to other 

control charts, such as the Range chart, the MR<2> chart, 

or a control chart for a correlated data stream. In the Xbar 

chart, since the plotted points are independent of one 

another and normally distributed, the f(-) in Equation <F.9> 

can sufficiently describe the characteristic of these plotted 

points. If the plotted points are not independent of one 

another, such as moving ranges of an independent data stream 

or individual data from a FORP data stream, the p.d.f. f(-) 

in Equation <F.9> does not capture the correlation between 

plotted points. Hence, the average run length of such a 

control chart, with the consideration of variation of control 

limits, must be determined by other methods. At present, 

simulation seems to be the only way to determine how the 

number of subgroups, m, and the subgroup size, n, affect the 

average run length of a control chart for which control 

limits are constructed on the statistics derived from the 

initial m subgroups of size n. 



APPENDIX G 

LISTING OF FORTRAN PROGRAM TO CALCULATE 

THE CONTROL LIMITS OF THE OPA Y 

AND OPA MRy CHARTS 
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c••••••***************************************************************** 
C ObJ.ct~v•• Th~w provram conwtructw th• CPA and CPA MRy chartw * 
c • 
C Data ~nputo ln~t~al data can b• r•ad ~rom a d~wk ~~1• nam•d INPUT or * 
C ent•r•d v~a •h• k•yboard. * 
C X~ data ••• ~n d~ak ~~1•• th•Y hav• to be arranQ•d ~n * 
C co1uan wlth the va1u• o~ ~~1t•r cons-ant ~n th• ~~r•t * 
C row• ~o11ow•d by ~h• obw•rvat~ons. 
c X~ d&~a ~- •nt•r•d v~• k•vboard• th• u••r haw to •upp1y * 
C th• va1ue o~ ~~1~•r conetan~. the numb•r o~ ob••rv&-~ona * 
C to be •n~•r•d and the obw•rvat~on•. * 
c * 
C R•wultw output• All th• r•wultw w~ll b• d~wplay•d on th• comput•r * 
C monttor wcr••n• But. ~h• uw•r haw th• op-~on to • 
C wtor• th• r•wu1tw ~n d~•k ~~1• •• w•ll. • 
C Only th• upp•r and low•r control l~m~tw o~ ~h- * 
C contro1 chart• •nd th• p1o~~~nQ po~ntw ••• l~at•d· * 
C Dut-o~-control po~ntw ar• tndtcat•d wtth • '*'• * 
c 
C Add1~~onal da~•• A~~-r the ~n~~~-1 obw•rva-~ons have b••n u••d ~o * 
c 
c 

conwtruc~ -he con~rol ch•r~•• ~h• user can ~urth•r 
•n-•r add~t~onal obw•rva~~on. 

* .. 
c .. 
C Awwumptlona X~ 1• •••um•d ~hat -h• obw•rva~~on• ar• ~rom a FOftP and * 
C -h• ~~1•er constant lw known and lw b•tw.•n 0 and 1. * 
C ~t ~- awwumed that -h•r• •r• not more ~han SOO * 
C obwervattonw. * 
c .. 
C*********************************************************************** 
c 

c 

CHARACTER DAT*1• ANB*l 
COKMON VBAR.SIBMA.RHO.B 
REAL MRBAR• MRSUM• LL• LCL• MRCSOO>• V<SOO) 
Dl!! - 1 .11!8 

C INPUT OBSERVATIONS AND COMPUTE THE VBAR AND MRBAR 
c 

WRITE <*•*> 'PROeRAM TO CONSTRUCT THE ~A V AND OPA MAy CHARTS' 
WRITE <*•*> 
WRITE <*•*) 'ENTER D I~ THE DATA ARE STORED IN DISK FILE' 
READ <•.170> DAT 
IF <.NOT. C CDAT .ECI. 'D') .OR. <DAT .EQ. 'd' > >) EIOTO SO 
WRITE <*•*> 'THE DATA IN THE ~ILE SHOULD BE IN COLUMN' 
WRITE C*o*> 'THE FIRST VALUE SHouLD BE THE ~ILTER CONSTANT. 
WRITE <*•*> 'ALeDo THE FILE NAME SHOULD BE ''INPUT" 
WRITE <*o*> 'IS THE FILE IN THE CORRECT FORM? V- YES' 
WRITE <*o*> 'IF NO• THE PROeRAM WILL TERMINATE.' 
READ <•.170) ANS 
IF < • NOT • < C AN8 • ECI • ' V ' > • OR • < ANS • ECI. ' y ' > > ) BOTO 1!!00 
OPENCB.FILE-'INPUT'> 
READ <B.*> ,_HD 
WRITE <*•*> 'FILTER CONSTANT'• RHO 

N - 1 
READ CSo*> V<N> 
WRITE <*o*> N 0 VCN> 
V8UI'1 VCN> 
MRSUf1 - 0.0 
N - N + 1 

eo READ CS 0 * 0 END-30> V(N) 
WRITE <*o*> N 0 VCN) 
MACN> ABSCVCN> - V<N-1>> 
VSUM VSUM + V<N> 
t1ftSUf1 l'lftSUM + I"'A < N > 
N N + 1 
EIOTO 1!!0 

ao CLOSE CS> 
N - N - 1 
eoTo eo 

SO WRITE <*o*> 'ENTER THE VALUE OF FILTER CONSTANT' 
READ <*o*> RHO 
WftiTE <*o*> 'ENTER NUMBER OF DATA ~OINTS' 
READ <*o*> N 
WRITE <*o*> 'ENTER THE DATA ONE BY ONE' 
READ C*o*> VC1> 
VISUM V< 1 > 
t1fti!IUI'I - 0 • 0 
DO 70 I - l!!o N 

READ C*o*> VCI) 
Mft(l) ABSCVCI) - VCI-1)) 
VSUM VaUM + VCI> 
l"'ftt!!UM l"'fti!SUM + M,_ C I > 

70 CONTINUE 
80 VBAR VSUM,FLOATCN> 

MftBAft - l"'fti!IUI'I,FLOATCN-1) 
c 
C ~TIDN TO STORE RESULTS IN DISK ~ILE 
c 



c 

WRJ:TE <•o•> 
WRJ:TE <*o*> 'ENTE~ D J:F WANT TO STORE THE RESULTS TO DJ:BK' 
~EAD <• 0 170) DAT 
WRJ:TE <•,•> 'NUMBE~ OF J:NJ:TJ:AL OBSE~VATJ:ONS- •,N 
WftJ:TE <•,•> 'Vbar VB~ 

WftJ:TE <*o*> ·~ybar MABA~ 

WftJ:TE <*o*> 'r ~HO 

WA J: TE ( * , * > ' V < 1 ) V < 1 > 

C DJ:SPLAV THE HEADJ:NBS AND THE VALUES OF VBAR AND MRBAA 
c 

90 

c 

WAJ:TE <* 0 90) 
FORMAT < / 1x • • No.· .7x,. • v • .7X • • LCL • .~x • · ucL • .ax • 

• 'MRy'•6X 11 'LCL'•8X 11 'UCL'/) 
J: F < < DAT • EGI. ' D ' > • OR • ( DAT • EQ • ' d ' > ) THEN 

OPEN <S 0 FJ:LE-'RESULT',STATUB-'NEW'> 
W~J:TE <S,•> 'NUMBE~ OF INJ:TJ:AL OBSE~VATJ:ONS 
WAJ:TE <So*> 'Vbar VB~ 

W~J:TE <B,*> 'MAybar M~BAR 

WRJ:TE <B,•> 'V< 1 > V( 1 > 
WftJ:TE <15 0 90) 

ENDJ:F 
A 
B 
I!IJ:BMA 

1.0+RHO 
1.0-~HD 

~BA~*I!IGI~T<A)/CDe•B> 
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C CONI!IT~UCT THE CONDJ:TJ:ONAL CONT~OL LJ:MJ:TI!I FO~ THE V AND M~y CHA~TS 
C AND DJ:BPLAV THEM WJ:TH THE CO~RESPONDJ:NB V AND MAy VALUES 
c 

100 
c 

DO 100 J: - e, N 
CALL CHART CDAT,J:,V<J:>,V<J:-1),MRCJ:)) 

CONTJ:NUE 

C OPTION TO ENTER MO~E OBSERVATJ:ON 
c 
180 
160 

170 

190 

c 

eoo 

WRJ:TE <*, 160> 
FORMAT (/' MORE DATA TO ENTER ? 
READ (* 0 170) ANB 
FO~I'tAT <A1> 
J:F CANS .NE. 'V'> BOTO eoo 
N - N + 1 
J:F <N .BT. BOO> THEN 

Y- TO CONTJ:NUE'> 

WftJ:TE <*o*> 'SO~~V THERE A~E ALREADY BOO DATA POJ:NTS' 
WAJ:TE <*o*> 'STA~T ABAJ:N' 
BOTO eoo 

ENDJ:F 
WRJ:TE <*o*> 
WRJ:TE <*o*> 'ENTER THE NEW DATA' 
READ <•,•> V<N> 
M~<N> - ABS<V<N> V<N-1)) 
WAJ:TE <* 0 1'PO> 
FDPtriAT < / 1 X • • No. • ,. 7X • • v • • 7X • • LCL • ,. sx • • UCL • • ax • 

• . Hfty I • 6X. I LCL •• :sx •• UCL. /) 

CALL CHART <DAT 0 N,V<N>,V<N-1>,~CN>> 

BOTO 180 
J: F < < DAT • EGI. ' D ' > • OR. < DAT • EGI. 'd ' > ) CLOSE< S > 
STOP 
END 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c ... 
C SUB~OUTJ:NE TO COMPUTE THE CONDJ:TJ:ONAL CONT~OL LJ:MJ:TS OF THE OPA * 
C V AND CPA Mfty CHA~TS AND DJ:SPLAV THEI't ALONS WJ:TH THE CORRESPONDJ:NB * 
C V AND ~<e> OF V VALUES * 
c * 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

c 

SUBftOUTJ:NE CHA~T<DAT,J: 0 V,V1 0 M~> 
COMI'tON VBA~ 0 SJ:SI'tA,RHD,B 
C~ACTE~*1 DAT 
..e:AL Mft 0 LCL, LL 
YCL ~HD*Y1 + B*VBA~ 

LCL VCL 3*B*Bl:BI'tA 
UCL 

c 
D 
E 
F 
EK 
BK 
UL 
LL 
J:F 
J:F 
J:F 

VCL + 3*B*I!Il:BI'tA 

ABSCV1 - VB~) 

PHJ:C-C/SJ:I!R"'A> 
PHJ:BCC/BJ:eJI'IA) 
e.o•BJ:&MA*E + c•c1.o- e.o•D> 
B•F 
B*S~T<SJ:BMA*SJ:BHA + C*C - F•F> 
EK + 3*BK 
EK- 3*SK 

CUL .LE. O> UL - 0.0 
<LL .LE. O> LL - 0.0 
< <V .ee:. LCL> .AND. <V .LE. UCL) > THEN 
CT1 



ELSE 
CT1 ••• 

I!NDJ:F 
J:F CCMA .SI!. LL) .AND. CMR .LE. UL>> THEN 

CTI!! 
ELI!IE 

CTI!! '*' 
ENDJ:F 
J:F C CDAT .EQ. 'D') .OR. CDAT .EQ. 'd')) THEN 

WRJ:TE C~oSOJ J:,V,CT1 0 LCL 0 UCL 0 MR,CTI!! 0 LL 0 UL 
ENDJ:F 
WRJ:TE <• 0 80) J: 0 V 0 CT1 0 LCL 0 UCL 0 MR 0 CTI!! 0 LL 0 UL 

SO FORMATC1X 0 J:3 0 3X 0 F7.3 0 A1 0 1!!C1X 0 F7.3) 0 ~X 0 F7.3 0 A1 0 1!!C1X 0 F?.S>> 
RETURN 
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END 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c ... 
C SUBPRDGftAM TO COMPUTE THE CUMULATJ:YI! OF A I!ITANDARD NORMAL * 
C CUI!IED EQUATJ:ON 1!!6.1!!.19 OP' AI!IRAMOWJ:TZ AND BTESUN'B TEXT C196~) * 
c ... 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 

FUNCTJ:DN P"HJ:CX> 
DOUBLE P"RECJ:SJ:ON CC6> 0 PH 
DATA C,~.91!1673~7D-1!! 0 1!!.11~10061D-1!! 0 S.I!!7761!!63D-S, 

• S.I!I0036D-~ 0 ~.I!IS906D-~ 0 ~.31!1SD-6/ 
J:F CX .LT. O> THEN 

V DI!ILEC-X> 
P"H CCCCCCC6J*V + CC~>>•V + CC~>>•V + CC3>>•V 

• + CCI!!>>•V + CC1>>•V 
P"HJ: 1.0- I!INBLC1DO- O.~DO•C1DO + PH>••<-16DO>> 

ELI!IE 
v DI!ILECX> 
PH 

• 
CCCCCCC6>•V + CC~>>*V + CC~>>•V + CCS))*V 
+ cce>>•v + CC1>>•v 

PHJ: I!INBLC1DO - O.~DO*C1DO + PH>**C-16DO)> 
ENDJ:F 
RETURN 
END 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••**** c ... 
C I!IUBPRO&RAM TO COMPUTE THE ORDJ:NATE VALUE OF I!ITANDARD NORMAL * 
c ... 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 

FUNCTJ:ON PHJ:I!ICX> 
DOUBLE PRECJ:I!IJ:ON V 
V DI!ILECXJ 
PHJ:S- BNBLC0.3989~1!!1!!1!1DO*DEXPC-V*V'I!!DO>) 
RETURN 
END 
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