
A MODEL FOR SOFTWARE REUSE IN A

MULTIPARADIGM ENVIRONMENT

By

BRENDAN MACHADO

Bachelor of Science

University of Bombay

Bombay, India

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1991

Oklahoma State Univ. Library

A MODEL FOR SOFTWARE REUSE IN A

MULTIPARADIGM ENVIRONMENT

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. K. George for his encouragement

and advice throughout my graduate program. Dr. W. Miller spent many hours

unraveling the secrets of TEX. Thanks go to him for his generosity with time and

patience. Many thanks also go to Dr. G. Hedrick and Dr. J. Friske for serving on my

graduate committee. Their suggestions and support were very helpful throughout

the study.

To the Computer Science Department secretaries, Anna Ventris and Janice

Bryan, who were always supportive and cheerful, I extend sincere thanks. To Terry

Johnson -for always keeping things in perspective; thanks go to him and to Fouad,

c

Hisham, Jo, and Saeed for their friendship. Thanks also to Dr. R. Brown for

valuable advice and a most stimulating semester.

My sisters, Rowena and Wendell, prqvided many ~plifting conversations. My

aunt Henryetta kept in touch. Her humorous correspondances helped me immea-

surably. Thanks are due to them.

My parents, Raphael and Grace Machado, encouraged and supported me all

the way and helped me keep the end goal constantly in sight. Special thanks go to

them for their continuous faith and support.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Summary '
Problem Statement
Importance of the Topic .

II. RELATED WORK

1
1
2

7

III. A MODEL FOR MULTIPARADIGM SOFTWARE REUSE. 22

World Interconnection Model . . 22
An Example 31
An Introduction to Modal Logic 34

Historical Note 36
Contemporary Work . 37

Structure and Modality . . . 38

IV. THE LANGUAGE AND ITS DESCRIPTION 47

World Interconnection Language 4 7
Example 1: Multiparadigm Software Reuse 51
Example 2: Exposure of Inheritance 53
Example 3: Multiple Versions. 57

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK 61

BIBLIOGRAPHY . 63

lV

LIST OF FIGURES

Figure

1. Possibility relations from stack & queue to deque

2. Specification of a stack ADT [WSHF81] '.

3. Possibility relations from stack & queue to deque

4. Specific1,1tion of a queue ADT [WSHF81] .

5. Specification of a deque ADT (first part).

6. Specification of a deque ADT (second part) [WSHF81]

7. Possibility relations between stack, queue, & deque

8. Hierarchical & world interconnection models .

9. Relations between i, r, c with view+

10. ui, uio relations between: i, r, c with view (+ - * /) .

11. Reflexive relations at worlds

12. Reflexive & symmetric relations at worlds

13.

14.

Reflexive & transitive relations at worlds .

Reflexive, symmetric & transitive relations at stack .

15. Paraphrased excerpt from library ,,

16. Implementing stack using deque.

17. A schema for table search

v

Page

6

25

27

28

29

30

30

32

33

34

40

41

43

44

52

55

59

CHAPTER I

INTRODUCTION

Summary

Software reusability and extendibility may be facilitated by imposing an ap

propriate structure on software systems. Object-oriented design together with the

client and heir relations has attempted to address these issues. However, there

exists a vast resevoi'r of routines already written in different languages that may

be reused. This research describes a model to interconnect multiparadigm routines

using the concept of possible worlds. The structure imposed on such a system

facilitates reusability and extendibility.-

Problem Statement

This research uses the concept of possible worlds to develop a model for mul

tiparadigm systems. A software system is composed of uninstantiated modules,

module interfaces, and propositions, called possible worlds. Specifically, the model

should provide structure to a system of multi paradigm routines. Structure, allowing

"used in" ui and "used instead of" uio relations based on the concept of views, fa

cilitates reusability and extendibility. A view is a set of interfaces and propositions.

1

2

The choice of a programming language is but one step in the software devel

opment cycle. According to Zave [Zav89], complex systems have characteristics

and complexities that are inherent to the process and not to the current way of

doing things. In such cases the problem characteristics may be completely satisfied

only by the use of more than one programming language; e.g., one may require

the use of a database query language, the sophisticated array manipulation of Cor

Pascal, the simple list manipulation of Lisp, and the declaratives and rules of Pro

lag. The characteristics of these languages are classified under different models or

paradigms and systems consisting of programs from different paradigms are called

multiparadigm systems. Each paradigm may be the basis for a class of program

ming languages. Some of the well known paradigms are: procedural, functional,

object-oriented, logic, rule-based. While a paradigm offers a focused and cohesive

view, a single paradigm may not be able to describe all the aspects of a system.

Thus in a multiparadigm system different paradigms offer the raw material to solve

problems.

Importance of the Topic

How easy is it to decompose a problem into manageable subproblems, fit the

methods and structures required to solve each subproblem to the methods and

structures available in a large library of multiparadigm codes, interconnect the

encoded subproblems so that they may communicate, and execute the system?

Although much work has been done, common experience shows that we continually

3

start from scratch to build a system. Among the many reasons cited in the literature

[BR87,Gog86,Pri87,Mey87] are the following:

1. We are biased towards one programming language and prefer to use it.

2. Even if we are proficient in several languages, the decomposition of a prob-

lem into subproblems and the mapping· of the structures and methods to a

language may be difficult and is done in an ad hoc manner.

3. It is likely that for many subproblems, solutions written in several different

languages already exist in software libraries or in one of our directories. How-

ever, we tend to not reuse multiparadigm software.

In large software systems, there is the potential for a large gain in productivity

if software can be reused. Lewis and Oman [1090) predict that in the future,

programs and data will be interchanged and mixed at the users request. Developers

will be able to use off-the;-shelf code that can intemperate. Users will have the
,,

choice of either buying or building. Users will have available large libraries of

multiparadigm routines and they will have to compose and coordinate these routines

to form a multiparadigm system '[Zav89):

Working systems are beginning to appear for the construction of multi paradigm

systems. Several advocate the use of a module interconnection language to glue

together programs written in different languages [MHS86b,MHS86a,Pur86,Zav89).

Other systems advocate the marriage of paradigms and introduce new languages or

new features in existing languages [Hai86a,Hai86b,Sea87].

4

Reusability is one of the most significant factors in improving software devel

opment productivity and quality [RGP86). Reusability can be useful during the

entire software life cycle such as specification, design, and testing. One of the prob

lems of reuse is that code may be written in a different language. The difficulty of

mixed language code reusability from large software libraries is to find a software

from a description of it. This semantic retrieval is a fundamental problem of AI.

The model proposed in this thesis will address the issue of integrating the selected

software into the system. This involves the correct binding of interfaces.

Meyer [Mey87) makes a strong argument for designing reusable code using

the object-oriented design paradigm. He argues that the problem of software reuse

is a technical one and cannot be solved by the design of better libraries, library

retrievals, or management. Instead, reuse is limited because designing reusable

software is difficult. Attempts have been made to design programming languages to

support reusability. E.g., Algol-68 and Ada offer overloading, and Ada and Clu offer

genericity. These techniques are useful in developing reusable code but they do not

go far enough. They are not flexible because a complex hierarchy of representations

that have different levels of characterization cannot be described. They offer only

two levels: generic and fully instantiated modules. Neither technique allows a

client to use various implementations of a data abstraction without knowing which

implementation is used in each instance.

In object-oriented design, software is constructed as a structured collection of

abstract data-type implementations. An abstract data-type is a class of objects

5

characterized by the operations available on them and the abstract properties of

these operations. Object-oriented design actually identifies modules with imple

mentations of abstract data-types. Such a dual purpose structure is called a class.

Classes may be structured using two different relations: client and inheritance.

Class A is a client of B if A co:r;ttains a declaration of the form bb:B. A may

manipulate bb only through the features defined in the specification of B.

Class C defined as a heir to class A has all the features of A, to which it may

add its own.

The powerful combination of object-oriented design and the client and inheri

tance relations is a key element in achieving extendibility and reusability. Unfortu

nately, current implementations of the object-oriented paradigm compromise these

key benefits.

1. Exposure of instance variables. Consider the design of a class stack whose op

erations push, pop, top, empty may be implemented in an array or with point

ers. Since clients of stack are allowed to access the instance variables of stack,

the designer can no longer change an instance variable without the risk of ad

versely affecting descendant classes that access stack instance variables.

2. Exposure of Inheritance. Define a class Deque with the following methods:

push, pop, top, empty, nq, dq, front. Define another class Stack with the fol

lowing methods: push, pop, top, empty. An undesirable effect of defining Stack

to inherit from Deque is that Stack inherits the extra operations nq, dq, front

from Deque (Figure 1). If all operations are visible to clients of Stack then

6

switching to the self contained implementation of Stack (which does not sup

port them) could be an incompatible change. Similarly, Queue inherits the

extra operations push, pop, top from De que.

top, empty

push, pop

top, empty

nq, dQ

front

Figure 1. Possibility relations from stack & queue to deque

This research provides structure to a multiparadigm system using a possible

worlds model. In the possible worlds model, a software system is composed of

worlds. Each world is related to other worlds by possibility relations based on

views. Both the client and inheritance relations are embodied in the possibility

relation.

CHAPTER II

RELATED WORK

A panel of 15 representatives from industry and academia was asked to identify

the software challenges for the next five years [1090]. Portability across architec

tures, distributed transaction based computing, user programming, smart systems,

interoperability, and object-oriented design are on their list.< The development of

heterogeneous systems has tried to address these challenges.

In a heterogeneous system, multiparadigm software communicates across a

variety of architectures. Notkin [Not90] reports on the development of the Het

erogeneous Computer System (HCS) at the University of Washington. The goal of

HCS is to increase the sharing of services across systems, while decreasing the cost of

integrating new types of systems and services into the environment. HCS provides

a set of network services such as electronic mail, filing, and remote computation

to a diverse collection of systems using heterogeneous remote procedure calls and

naming services. Although multiple standards are accommodated economically, ex

isting programs are not guarenteed transparent access to other existing programs.

Proxy subclasses are defined to implement the different HCS services on different

machines. A proxy subclass supplies a specific systems method for providing an

abstract heterogeneous service. An object-oriented design is used to develop the

7

8

abstract and proxy classes:

Einarsson and Gentleman [Ein85,EG84] point out that two kinds of difficulties

affect mixed language programs.

1. Differences in language definition

(a) Unique data structures; e.g., Fortran has no record structure and Pascal

has no complex type.

(b) Differing I/ 0 abstractions or file structure abstractions; e.g., Fortran as

sumes discrete record I/b operations versus byte stream I/0 operations

for many other languages.. Random access files cannot be defined in

standard Pascal but are defined in many Fortran dialects.

(c) Parameter passing semantics; e.g., InC, copy-in/copy-out semantics are

implemented using the address of the operand but this is difficult for

Fortran to support.

(d) Binding time differences; e.g., Can files be opened and closed during

execution or should they be attached before execution?

(e) Exception handling. Should exceptions be carried over from the caller

to the callee routine?

(f) Asynchronism: processes, interrupts, semaphores, rendezvous These

various models of programming withffi:ultiple processes are quite incom

patible.

2. Incompatible implementation

9

(a) Data structure representation; e.g., Fortran stores multidimensional ar

rays by columns while Pascal does so by rows.

(b) I/0 buffering. I/0 support packages for each language tend to do their

own buffering, so interaction with the users' terminal produces messages

that are out of order.

(c) Labels and transfer of control. The problem is one of cleaning the envi

ronment being left and re-establishment of the execution environment.

(d) Passed procedures. A calls B and passes it C as a parameter. The

problem is one of establishing an environment in which C can execute.

(e) Incompatible storage management. Details of implementation such as

how the stack is organized and what pointers are kept, the levels of

indirection used to access dynamically allocated blocks, etc.

(f) Separate compiled/interpreted execution. In most cases it is assumed

that the basic unit of execution is a procedure. However not all language

processors support separate compilation and some are interpretive.

(g) Integrated programming environments. The Lisp environment has ed

itors and debuggers built in to support a single language. These tools

may not tolerate a foreign language in the environment.

(h) Environment setup and initialization can be awkward.

Einarsson (Ein86] suggests three maJor methods to rmx programming lan-

guages.

10

1. The system developer makes inter language communication possible with some

of the languages supported by the manufacturer of the system.

2. A virtual program library can be written in a portable computer oriented

language (PCL) and called from a user oriented language (UL).

3. Two or more programs written in different languages can interact by writing

and reading ASCII files on an external memory device.

Darondeau et al. [DGR81] define communicating entities as separately com

piled program components. The authors assume that some universal connections

and control passing mechanisms have been defined as a common extension of every

communicating language. This allows program components to be linked indepen

dent of their respective languages. The'authors define two means of communication

between languages.

1. Standard Types. Extending a set of languages with a common set of stan

dardized data types provides a means of inter language communication. Each

language is provided with a means of conversion between shared standard

types and other local data types.

2. Foreign Types. A disadvantage of the standard type is its fine granularity.

Compound types must be converted to/from standard types for inter language

communication with the associated expense. For a given program component,

a foreign type is one which is referenced under the generic form M.T with M

being the universal name of a program component which exports type T.

11

Foreign parameters are passed by name as in Algol-60. The only operations

on a foreign type M.T outside Mare those that have been explicitly exported

byM.

Goguen [Gog86] suggests that an environment library be constructed. In it,

program components from which many different but r.elated systems may be con

structed are stored. Store design information and knowledge that went into con

structing the code. Stored documentation of each component in the form of formal

specifications (i.e. sets of axioms) describes what each component is supposed to

do. This knowledge of design objectives and decisions is stored with the code so

that it is available during debugging and maintenance when 80% of the sotware

effort is expended [KG87]. Program composition is achieved by the use of a library

interconnection language LIL. A LIL package and make clauses allow for separate,

independent, and incremental compilation. Each LIL package may have multiple

versions in multiple programming languages. To construct new entities from old

ones, several different approaches may be used:

1. Sew together two entities along a common interface.

2. Enrich an existing entity with some new features.

3. Hide some existing features of an entity.

4. Slice an entity to eliminate unwanted functionality.

5. Implement one abstract entity using features provided by others.

12

Goguen proposes the following major semantic concepts:

1. Vertical composition involving top-down and/or bottom-up hierarchy of ab-

stract machine levels.

2. Horizontal composition involving moP,ularization at a given level.

3. Theories which declare the properties that an actual parameter must have to

meaningfully substitute for the formal paramet~r of an entity.
- >

4. Views that describe semantically correct bindings at interfaces and thus de-

scribe interconnections.

Balzer [Bal71], defines Ports as a data element used for communication with

files, terminals, physical devices, other programs, and the monitor. One logical

implementation is with Incremental System Programming Language ISP L. In

this implementation, Ports are defined in terms of data semaphores, which are

Dijkstra semaphores with -data~ A Port data type consists logically of a pointer

to the Port to which the connection is made and a data semaphore representing

the availability of and the actuai data being passed through the Port. The same

mechanism that is used for transmitting data to a subroutine is used for Ports.

Thus, the data passed is a pointer to an actual parameter list, the contents of

which are accessed by the receiver through a formal parameter list. Two Ports

communicate using the commands CONNECT, DISCONNECT, SEND, RECEIVE,

CONDITIONAL RECEIVE, and REQUEST. Terminals and physical devices are

handled by connecting the Port to a-Port in a device dependent system program

13

for the terminal or physical device that transforms the communication into I/0

commands appropriate for the device, and which then requests the supervisor to

perform the I/0 through the MONITOR Port. In ISPL, each job has a MONITOR

Port which is used for all communication with the jobs monitor. Files are handled

similarly, except that- the determination of the program to which the connection

should be made is based on user supplied routines (for each file type) to create,

destroy, connect, disconnect, and communicate with that file type.

Balkovich et al. and Gettys [BLP85,Get84] describe Project Athena, an exper

iment at MIT to explore the potential uses of advanced computer technology in the

university curriculum. Corporate sponsors are DEC and IBM. By the end of the

project, MIT will have a network of 2000 high performance graphics work stations.

The system will provide facilities that will make it possible to share information and

to access data and programs from any computer. The communications network is

implemented with multiple technologies and is based on a high-speed backbone

network. There are three major problems involved in building large distributed

systems:

1. Scale

2. Different machine architectures

3. Different operating systems

Project Athena uses the UNIX operating system which provides the foundation

needed to port all applications to all types of workstations. A working hypothesis of

14

the Project is that ~ost scientific and engineering applications can usefully interact

only when employing a small number (20-30) of data types (e.g., graphs, arrays,

\

tables). Interfaces between diverse applications may be defined with common repre-

sentations of these data types and methods for manipulating them. This motivates

keeping the number of supported.programming languages small.

Hailpern [Hai86a) suggests four ways t~ build a multiparadigm language.

1. Combine the syntax and semantics of several languages; e.g., Combine the

syntax and semantics of Prolog, Lisp, and C into one language. An advantage

is that users can start using the system quickly as they are already familiar

with one component of the system. A disadvantage is the unintended side

effects caused by the complex interactions of different semantics.

2. Add new structures to an existing language; e.g., adding objects and methods

to Pascal.

3. Redefine an existing language in the light of new theoretical discoveries. This

allows for corrections to be made to existing languages.

4. Start from scratch and build a new system. The a:dvantages are consistency

and elegance but the effort to attract a user community may be prohibitive.

Stefik et al. [SBK86) working at the Xerox Palo Alto research center are de-

veloping a multiparadigm system called the Loops knowledge programming system.

The Loops system integrates the following paradigms:

15

1. Functional. A pure mathematical specification of the solution to a problem,

eliminating the conventional von Neumann model of memory and variables;

e.g., pure Lisp, Backus's FP language.

2. Rules-oriented. Speci(ying the constraints of the problem, rather than the

algorithm for finding a solution; e.g., Prolog, OPS5

3. Object-oriented. Grouping data· into objects or abstract data types, where

each object (or class of objects) has a set of operations·(methods) to manip

ulate the data stored in that object'; e.g., Smalltalk, Simula, CLU.

4. Access-oriented. The specification of side-effects or demons attached to the

manipulation of variables; e.g., an extension of Loops.

Researchers at the University of Texas at Austin [Kor86] have tried to apply

the relational data model to the following:

1. User interfaces: the'use of relational languages to access directories and mail

boxes modeled as rel~tions.

2. Design databases: where design environments such as CAD. and software de

velopment are being modeled as relations.

These applications are not the traditional data processing applications to which

the relational model was exclusively applied initially. One drawback to the natu

ralness of expression in Relational languages was the restriction to atomic domains

16

(first normal form). Allowing set-value and record-value domains will make repre

sentations more compact and provide the user with an intuitive view of the data.

Another drawback: only three kinds of operators (i.e. insert, delete, update) to

modify tuples. rwo approaches are suggested for additional semantic rich opera

tions.

1. Relations with side-effects

• A queue relation is defined for each non-relational' operation

• To print a file, a tuple representing the file is enqueued

• The file is ultimately printed and the tuple dequeued

2. Operator relations. Relational expressions may be embedded within a host

programming language (C, PL/1 or COBOL) and a special call is used to

execute the relational operations.

In the object-oriented view, both data and methods need to be expressed and

the internal structure must be hidden from the users. The object is represented as a

tuple with attributes for the data and a single set valued attribute for the methods.

Thus, two paradigms may exist.

1. Operation-oriented programming: when the data is brought to an operation

in the form of a queue relation.

2. Object-oriented programming: where a message is sent to an object to perform

a method.

17

A scheme to translate between these two is used so that one may work with either. -

According to Tu and Perlis [TP86], functional programming creates more com-

pact programs. Functional programming maintains referential transparency which

means that variables can take a single value within a given scope. Programs are

thus easier to debu~ and maintain. Functional, programs show more parallelism be-

cause of the absence of side effects. The non-functional language, APL, offers array

processing capabilities that enable condensed programs and highly parallel compu-

tation. However, a major weakness of APL is its semantics: gotos and side effects.
,,

It uses dynamic' binding instead of lexical binding. The authors have attempted a

functional APL langu~ge called FAC that combines the strengths and eliminates

the weaknesses of the two paradigms. FAC has the same syntax as APL but FAC

has functional semantics - lexical binding and no side effects or gotos.

Jenkins et al. [JGM86] describe the programming language Nials (Nested In-

teractive Array Language) which supports several styles of programming including:

1. Imperative; e.g., assembly language, Basic. These languages have constructs

closely related to the intruction sets found in a von Neumann architecture.

They include commands such as assignment and branching. They can evaluate

formulae involving arithmetic and logical expressions.

2. Procedural; e.g., Algol, Fortran, PL/1, Pascal, C, Euclid, and Ada. The

procedural style of programming includes imperative programming facilities,

but supplements them with an abstraction mechanism to build procedures

that generalize the concepts of a command and an expression.

18

3. Applicative; e.g., Lisp, ISWIM, Lucid. The applicative style of programming

uses function applications and recursive function definitions as the main means

of computation.

4. Lambda-free; e.g., Backus's FP language. This style limits the use of func-

tional mechanisms to two levels; i.e., functions on data and combining forms

that construct functions from other ones.

5. Array-oriented; e.g., APL. This style uses array data structures as the values

in the data domain and has operations that map these values as a whole.

6. Relational; e.g., Prolog. The programmer provides a description of the prob-

lem and an underlying interpreter deduces the solution based on some pre-
. '

sumed semantics.

The term "style of programming" has been used in a generic sense and means

the style associated with a particular paradigm of computing. The design of Nial has

been influenced by the de~ire to provide a multiparadigm programming language,

suitable for teaching various styles. Nial is an exampe of a programming language

based on More's array theory [Mor79,Mor81]. In array theory all data objects

are arrays. Operations are functions that map arrays to arrays. Transformers are

functions that map operations to operations: In essence, array theory is similar to a

typed lambda calculus that is limited to functional objects of order two. While Nial

does not directly support relational or object-oriented styles, they may be embedded

in it.

19

Hailpern [Hal86] showcases nine multiparadigm research projects.

1. Arctic: a functionllanguage for real-time control

2. C++: an imperative, object-oriented language

3. CaseDE design environments (imperative and specification)

4. Lore: object-oriented, set-based

5. Orient84/K:, object-oriented, rule-based, access-oriented, parallel

6. Smallworld: imperative, object-oriented

7. Tablog: functional, rule-based

8. Algebraic specifications in Prolo9: specifications, rule-based

9. Integrating functional and logic programming: functional, rule-based

Hayes et al. [HS87 ,HMS88,MHS8~b] describe a mixed language programming
- '

system using distributed computing. A mixed language program or MLP is written

in two or more programming languages. A MLP consists of components. Each

component is composed of one or niore procedures written in the same language
' ' '

called a host language. A MLP system consists of six parts.

1. UTS Language: It consists of two parts. The first part is a collection of types

and type constructors; e.g., integer, float, array(lO, 5) of integer. The second

part makes use of symbols to construct signatures that denote sets of types.

20

A typical use may be to describe a parameter in a signature whose actual

argument type may vary from call to call.

2. Language Binding: Defined for each host language. They specify the mappings

between the host language types and the UTS language types. Only some

mappings may have an ex_act equivalence.

3. Agent: Each program component has an envelope process called an agent for

the language binding. An agent has a set of outgoing routines to handle calls

to procedures outside the component and to translate arguments from the

host language into UTS. An agent has a set of incoming routines to handle

invocations of procedures and to translate arguments from UTS into the host

language. An agent uses inter-process communication to implement cross

language calls.

4. Interface Specification: A list of interfaces exported from a component to

gether with a list of imported interfaces. These imported and' exported inter

faces are specified in the fiTS language as signatures that describe the number

and type of arguments of the given procedure. For example:

export "procname" <export signature>

import "procname" ·<import signature>

5. MLP Translator: Each host language has one,MLP translator. Its basic func

tion is to take a program component and produce object code. Besides, a

MLP translator has other tasks.

21

(a) insert code for the agent.

(b) place export and import signatures at known locations in a file.

(c) change calls to external cqmponent procedures into calls on the local

agent.

6: MLP Linker: It performs static type-checking of arguments of the inter com

ponent calls. The MLP linker inserts prologue code and epilogue code into the

main program component. Prologue code establishes inter-process communi

cation links and distribute~ the proces~es among different machines. Epilogue

code sends messages to terminate' a process when the program has terminated.

Manweiler et al. [MHS86a] describe how to add a new language to the Berkeley

UNIX implementation of the Mixed L'anguage Programming system. Hayes et al.

[HHS88] describe the integration of the object-oriented, distributed programming

language Emerald into the M LP system.

CHAPTER III

A MODEL FOR MU:LTIPARADIGM SOFTWARE REUSE

World Interconnection Model

This section introduces a new model for software design and development.

The model called "World Interconnection Model" is based on the "Possible Worlds

Model" described by Kripke (Kri63r. This model attempts to provide structure to

a system composed of multiparadigm routines. The structure will allow "used in"

ui and "used instead of" uio r'elations between two worlds based on the concept of

v1ews.

A world interconnection model is made up of several worlds. If it is possible to

specify a sub-problem as an abst~act data-type then this abstract data-type can

be associated with a world. A = { a 1 , a 2 , ... } is a set of agents. An agent is an

instantiation of a world. An agent considers the world of which it is an instance

the real world. It considers another world as "possible" if it cannot distinguish this

other world from the real one; i.e., if its ·view o{ the real world is OK in the other

world. In the world interconnection model, a software system is broken down into

worlds. Let :E = (S, 1r, W) be a software system. S = { 81, 82, .•• } is the set of all

worlds. Methods, method interfaces, and propositions are defined at each world.

22

23

Define each world s~ = M~ U E~ U I~ U P.. M, is the set of methods defined at world

s,. An example of a method would be an algorithm to implement a procedure or

function for the stack abstract data-type described in Figure 2.

Each method has an interface that describes it. Ei is the set of interfaces

describing methods defined at woi-ld s.- AI;l example of interfaces is given by the

specification of procedures and functions for the stack abstract data-type (Figure 2).

Some accessible methods may be 'from other worlds. World s, has a set of inter

faces I~ corresponding to methods it can access. Accessible methods may be used

in a method at a wotld. This "used in" relation, .ui resembles the object-oriented

paradigm client relation. Accessible methods may be used instead of methods de

fined at a world. This "used instead, of" relation uio correspon<;ls to the object

oriented paradigm inheritance relation.

P, is the set of propositions defined at s .. Propositions may be modal formulas

such as Dp or Op. Language, com.Inunication, and architecture specifications may be

included in propositions. This information may be used during design, compilation,

and maintenance.

Worlds may be dormant ot instantiated. An example of a dormant world is

an abstract data-type description of a stack while an instantiation is an execution

of an instance of a stack abstract data-type also called an agent. Worlds may also

be classified as abstr~ct and concrete. An abstract world has no defined methods;

i.e., M = {}. For a concrete world, M =I {}.

• procedure Push(var S: stack; x: T);

pre: '""full(S)

post: S =X'"" S';

• function Pop(var S: stack): T;

pre: '"" empty(S)

post: S' = RESULT '"" S;

• function Top(S: stack): T;

pre: '"" empty(S);

post: RESULT = first(S);

• procedure Clear(var S: stack);

post: S = <>;

• function Empty(S: stack): boolean;

post RESULT = (S = <>);

• function Full(S: stack): boolean;

post: RESULT = (length(S) = maxstack);

Figure 2. Specification of a stack ADT [WSHF81]

24

25

Every world has a set of views associated with it. Let ~be the set of all views

possible at world si. Define ~ = 2E,ui,uP,; i.e., Vi is the set of all subsets of the

present and accessible method interface, and proposition sets. An agent a has view

Va of world s.- Va is defined as a set of method interfaces and formulas that are

well-defined at that, world. An agent a'may cho~se or be assigned a view V 01 of a

world. If an age]lt is allowed to choose its view of the world then va E 2E,ui,uP,. If

an agent is assigned a view of the world then Va E X, X C 2E,ui,uP,. For a stack

abstract data-type, a view may be a subset of the method interfaces [WSHF81]

described in Figure 2.

w = {w\ w2., •• • } is the set of all possibility relations between worlds. With

view Va, agent a may develop possibility relation Wa. An ordered pair (s1,s2) E Wa

if agent a's view Va of world s1 is OK at world s2; i.e., if agent a considers world

s 2 a possible world when its view of world s1 is Va. Since different views may exist,

for the same world, different possibility relations can develop with different worlds.

To define Wa, view va needs to b'e OK at worlds. Define 1r as a function from the

set S x V ~---+ {OK, -,OK}. Function 1r either OK's or -,OK's a view at a world.

A view Va is OK at a world s if all the inter:faces t in the view .are supported by

methods m from the set of methods M defined at world s and if all propositions c.p

in the view are true at worlds.

Definition 3.1

1r(s,va) =OK if (Vt EVa, t 1--+ m, mE M) 1\ (Vc.p EVa, 'P 1--+ true)

M is a set of methods at s.

26

A view Va is not 0 K at a world s if there exists atleast one interface t in the

view that is not supported by any method m from the set of methods M defined
' '

at world s or if there exists atleast one proposition t.p in the view that is false at

worlds.

Definition 3.2

As an illustrative example, consider the Stack ang Deque ADT's. Stack may con-

sider deque as a possible world because the stack view is 0 K at deque. Therefore, it

is possible to introduce a meaningful relation between stack and deque that relates

to the world interconnection model. The world interconnections can be represented

using a directed graph. Nodes represent worlds and arcs represent possibility rela-

tions. A possibility relation from stack to deque is indicated using an arrow from

stack to deque. (Figure 3).

For a queue abstract data-type, a view may be a subset of the method interfaces

[WSHF81] in Figure 4. This vi~w is also OK at deque. So, a possibility relation

may exist from queue to deque (Figure 3). Thus two different abstract data-types,

stack and queue, regard deque as a possible world and they have two completely

different views of deque. This structure intuitively mimics the relation between

a class (deque) and the subclasses (stack and queue) as defined in one model of

object-oriented inheritance [HN87]. For a deque abstract data-type, a view may be ,

a subset of the method interfaces [WSHF81] described in Figure 5 and 6.

Can an agent that considers deque as the real world consider either stack or

27

Figure 3. Possibility relations from stack & queue to deque

queue as a possible world? Yes, if its view of deque is OK in the stack or queue

worlds. This arguement is more readily acceptable if you consider the many possible

values that a view may hav~. This constitutes a mutual relationship in which worlds

access methods defined at each <;>ther (Figure 7).

Now suppose deque considers table as a possible world. This does not nec

essarily mean that agents at stack ~d queue automatically consider table as a

possible world. This is because the possibility relation between deque and table

has been formed through the deque view. This view is different from the stack and

queue views. The agents at stack and queue will have to independantly establish

possibility relations with table. This allows for a flexible model of structure.

• procedure Nq(var Q: queue; x: T);

pre: rv full(Q)

post: Q = Q' rv x;

• function Dq(var Q: queue): T;

pre: rv empty(Q)

post: Q' = RESULT "' Q;

• function Peek(Q: queue): T;

pre: rv empty(Q);

post: RESULT = front(Q);

• procedure Clear(var Q: queue);

post: Q = <>;

• function Empty(Q: queue): boolean;

post RESULT = (Q = <>);

• function Full(Q: queue): boolean;

post: RESULT = (length(Q) = maxqueue);

Figure 4. Specification of a queue ADT [WSHF81]

28

29

• procedure Push(var D: deque; x: T);

pre: "' full(D)

post: D = x "'D';

• procedure Nq(var D: deque; x: T);

pre: "' full(D)

post: D = D' "' x;

• function Pop(var D: deque): T;

pre: "' empty(D)

post: D' = RESULT "' D;

• function Dq(var D: deque): T;

pre: "' empty(D)

I '

post: D = D "' . RESULT;

• function Front(D: deque): T;

pre: "' empty(D);

post: RESULT = first(D);

• function Rear(D: deque): T;

pre: "' empty(D);

post: RESULT = last(D);

Figure 5. Specification of a deque ADT (first part)

• procedure Clear(var D: deque);

post: D = <>;

• function Empty(D: d~que): boolean;

post RESULT = (D = <>);

• function Full(D: deque): boolean;

post: RESULT = (length(D) 2 maxdeque);

Figure 6. Specification of a d~que A.DT (second part) [WSHF81]

Figure 7. Possibility relations between stack, queue, & deque

30

31

In the hierarchical model (Figure 8), Stack and Queue inherit from Deque,

and Deque, Stack and Queue inherit from Table. If some change is made to T

that is acceptable to S but not to Q then the hierarchy relations are compromised.

In the world interconnectiqn model, S and Q have views that are OK at D and

T. D has a view that is OK at T. ,This results in the formation of possibility

relations -wsn, wQD, -wsT, wQT, wDT (Figure 8). Any change made at T may affect

the possibility relations -wsT', wQT, wDT., These changes will' not affect possibility

relations WSD '· WQD.

There may be a main program world containing a main program method. The

main program may contain subroutine calls or invocations to methods in other

worlds. A call or invocation has an interface and these interfaces may be incorpo

rated into views. Based on views, a possibility relation may be formed with another

world. This concludes a description of the static structure of the system.

Execution may begin at the main program or it may begin with a concurrent

instantiation of several agents. Inter agent communication takes place based on

which views are in use.

An Example

Integer, real, and complex numbers are represented by three worlds i, r, and

c respectively. Following our established notation, M is a set of methods, E the

corresponding interfaces, and I a set of interfaces of methods to be "used in" or

"used instead of".

Figur:e '8. Hier.archical & world interconnection models

M, = { +J, E 1 = { var1 = exp, oper1 exp1 }

Mr = { +r }, Er = { varr = expr operr expr}

Me= { +c}, Ec = { vare = expe opere expe}

32

Figure 9 gives the possibility relations. between worlds in' the sense of "used

instead of" uio. Therefore, +r can be used instead of +z at world i; +e can be used

instead of +i and +rat worlds i and r respectively. The reflexive relations at worlds

i, r, and c are ui "used in" relations. +z, +r and +c are used in the respective

worlds i, r, c.

33

+ +

Figure 9. Relations between i, r, c with view+

The operations of complex subtraction -c, complex multiplication *c, and

complex division /c may be defuied in terms of real operations.

(w,x) -c (y,z) = (w -r y,x -r z)

(W, X) * c (Y, Z) = (W *r Y - r X *r Z, X *r Y + r W *r Z)

(w,x) _ (w*rY+rX*rZ, X*rY-rW*rZ)
(y,z) - y2+,.z2

Figure 10 gives the possibility relations between worlds. The relation from r

to c illustrates the "used instead of" uio relation while the relation from c to r

illustrates the "used in" ui relation and "used instead of" uio relation.

A possibility relation from c tor allows +r, -r, *r, /r to be used in a method

. 34

. +-*/

I I
* *

+ +

Figure 10. ui, uio relations .between i, r, c with view (+ - * I)

defined at c. Alternately, the possibility relation allows for methods defined at r

corresponding to +c, -c, *c, I c to be used instead of these at c. For world i, the

operations +n -n *n +c, -c, *c may be used instead of the corresponding integer

operations. I r and I c may be used in some method that duplicates the I, operation.

An Introduction to Modal Logic

Necessity, impossibility, contingency and possibility are modal notions and

modal logic is the logic of these notions. Chellas [Che80] defines modal logic as the

logic of necessity and possibility. According to Konyndyk [Kon86], a modal logic

35

should provide a way to exhibit the logical structure of those inferences that use

modal concepts in a way which affects their validity. The following symbols are

commonly used to represent the modal operators.

1. Op : "p is necessary." Konyndyk [Kgn8~] defines a necessity as that whose

denial is self inconsistent. Examples of necessity are:

(a) Vp, q, if p =true 1\ p ~ q, then. q =true

(b) 7 + .5 = 12 '

(c) AUB=BUA

The other modal operators may be defined in terms ofnecessity.

2. Op : "p is possible." A propo.sition p is possible in case it is not necessary

that it be false. Op = -,0-,p

3. Jp : "p is impossible." A proposition p is impossible in case it is necessary

that it be false. Jp = 0-,p

4. A contingent proposition is one that is both possibly true and possibly false.

5. Two propositions are consistent or compatible iff their conjunction is possible.

6. Two propositions are inconsistent or incompatible iff their conjunction is im

possible.

7. Two propositions are contradictory iff both cannot be true and both cannot

be false.

36

Historical Note

Lemmon and Scott (LS77] have summarized the historical development of

modal logics. Aristotle explored the modal notions in his "De Interpretation" ch.

12 and ch. 13. He arrived at the followin,g results:

1. DA and -,DAis a contradiction.

2. (>A and -,(>A is a contradiction .. · ·

3. DA and o'-,A is not a contradiction.

4. <>A and <>•A is not a contradiction.

Aristotle detected two senses of the p<:>ssibility operator:

1. DA-+ <>A which is possibility proper.

2. <>A-+ <>•A eg. contingency.

Aristotle gave two equivalences ·for impossibility:

1. lA = o.A

2. lA =·<>A

From these we may derive the famous equivalences:

1. OA = .o.A

2. DA = •<>•A

37

The Megarians and the Stoics developed theories concerning modality that

suggest a connection between modalities and temporal notions. This connection is

supported by recent work on the logic of time. They defined the possible as that

which either is or will be; the impossible as that which being false, will not be true;

the necessary as that which being true, will not be false; and the non-necessary as

that which either is already or will be false.

In the middle ages, Pseudo-S<;otus added these variations:

He also considered modes such as ",to doubt, to ~now, to wish" and pointed

out similarities between these and the usual modalities. Recent work in epistemic

logic corroborates his observations.

Contemporary Work

Modern work in modal logic is attributed to C. J. Lewis. Lewis tried to

define an implication without the paradoxes of Russel and Whitehead in "Principia

Mathematica." In "Symbolic Logic", Lewis and Langford defined strict implication

=? in this way.

This definition of strict implication, also called entailment, expresses the fact that

a conditional is true precisely when the negation of the consequent is incompatible

38

with the antecedent. Lewis intended that if A entails B then B should follow

logically from A. This definition led to the following paradoxes:

1. Anything whatsoever follows from the impossible

-,OA ~(A:::::> B)

2. The necessary follows from anything whatsoever

DB --+ (A :::::> B)

Lewis accepted thes~ paradoxes because they are the consequence of acceptable

and straightforward rules that are in everyday use. Lewis describes five systems of

modal logic, Sl- S5 each with its own rules and theorems.

Structure and Modality

Different systems of modal logic are described by Konyndyk [Kon86]. Each

has different theorems and validates different inferences. Saul Kripke suggested the

idea of possible worlds and possibility relations between worlds as a way of looking

at differences bet~een modal systems. In this ~ection we discuss applications of

different systems of modal logic to the world interconnection model.

Read 8 I= v as "view v is OK at world 8.", In the formulas below, 8 1 and 8 2

are not necessarily distinct.

World 8 1 considers world 8 2 a possible world if a view of 8 1 is OK in 8 2 •

39

A view v is possible in a world s1 if it is OK in some world related to 8 1 by a

possibility relation W.

A view v is necessary in a world s1 if it is OK in every world related to 8 1 by
'' '

a possibility relation W.

In the rest of this section, the modal systems T, X, S4, S5 are applied to the
' '

world interconnection model using as example the worlds stack, queue and deque.

The modal system T has the characteristic formula Dcp :) cp; i.e., whatever is

logically necessary is OK. If the possibility relations at a world in a possible worlds

model are reflexive, the characteristic formula ofT holds. A view that includes the

formula Dcp requires cp to ~e defined (for a method) or true (for a proposition) at

that world. In Figure 11, view Vstack = Dpush. By definition, Dpush must be OK

in all worlds possible from stack;j.e., Dpush must be OK at stack and deque. Bince

the relation at stack is reflexive, the the characteristic formula ofT, Dpush :) push

must hold at stack. Thus

Dpush :) push

Dpush

push (modus ponens)

Therefore push must be defined at stack. Since Dpush holds at stack, by definition,

push must be defined at deque.

I Opush I
push

Dpush

push

Opush

Figure 11. Reflexive relations at worlds

40

The system X has the characteristic formula c.p :J DOc.p. If the possibility

relations at a world are reflexive "and symmetric, the characteristic formula of X

holds. A view that includes the formula r.p requires DOr.p to be true at that world.

In Figure 12, view V 8 tack = push. By definition, push must be OK in all

worlds possible from stack; i.e., push must be OK at stack and deque. Since the

relation at stack is reflexive and symmetric, the the char~cteristic formula of X,

push :J DOpush must hold at stack. Thus

push :J DOpush

push

DO push (modus ponens)

Therefore DOpush must hold at stack. Since the relation at stack is reflexive, the

characteristic formula ofT, D(Opush):) <)push must hold at stack. Thus

O<)push :::><)push

O<)push

<)push

I push I
push?
opush

(modus ponens)

Do push

push?

¢push

Figure 12. Reflexive & symmetric relations at worlds

41

Therefore <)push must hold at stack. Since D<)push holds at stack, by the

definition of D, <)push must hold at stack and deque. By the definition of<), it is

sufficient that push be defined at either stack or deque.

The system S4 has the characteristic formula Dcp :::> DDcp. If the possibility

relations at a world are reflexive and transitive, the characteristic formula of S4

42

holds. A view that includes the formula Dcprequires DD<p to be true at that world.

In Figure 13, view V 8 tack = Dpush. By definition, Dpush must be OK in all

worlds possible from stack; i.e., Dpush must be OK at stack, deque and table.

Since the relation at sta-ck is reflexiveand transitive, the the characteristic formula

of S4, Dpush :> DDpush must hold at stack. Th~s

Dpush :> D Dpush

Dpush

DO push (modus ponens)

Therefore DDpush J;ll.Ust hold at stack. Since the relation at stack is reflexive, the

characteristic formula ofT, D(Dpush) :> r:,Jpush must hold at stack. Thus

DDpush :> Dpush

DO push

Dpush (modus ponens)

Therefore Dpush must hold at stack. Since DDpush holds at stack, by the definition

of D, Dpush must hold at deque.,

Since the relation at stack is reflexive, the characteristi'c formula ofT, Dpush :>

push must hold at stack. Thus

Dpush :> push

Dpush

push (modus ponens)

Therefore push must hold at stack. Since Dpush holds at stack, by the definition

of D, push must hold at deque.

43

At deque, vdeque = Dpush. By definition, Dpush must be OK at all worlds

posible from deque; i.e., Dpush must hold at table. From the definition of D, it is

necessary that push be defined at table. The definition of push and the truth of

'
Dpush at table is also justified by the transitive relation from stack to table.

push
Opush
OOpush

jopushl

push
Opush

Figure 13. Reflexive & transitive relations at worlds

push
Opush

jopush I

The system S5 has the characteristic formula O~.p :) DO~.p. If the possibility

relations at a world are reflexive, symmetric and transitive, the characteristic for-

mula of S5 holds. A view that includes the formula O~.p requires DO~.p to be true at

that world.

In Figure 14, view V 8 tack = Opush. By definition, Opush must be OK in all

worlds possible from stack; i.e., Opush must be OK at stack, deque and table.

44

Since DOpush holds at stack, applying the definition of 0 we have Opush true at

stack, deque and table. From the definition of 0, push may be defined at stack,

deque, table, or any possible world of deque or table.

push?

opush

Do push

lopushj

push?
<>push

Figure 14. Reflexive, symmetric & transitive relations at stack

push?

<>push

The immediate question is "How may all this be used?" In CHAPTER IV,

a language specification corresponding to the model is defined. The compiler for

such a language may establish a possibility relations graph. From such a graph,

the compiler can distinguish which modal systems are present. The corresponding

moda.l formulas that hold are established. Consistency questions about the system

may be answered based on these formulas. The questions addressed in the previous

45

discussion provide a framework for a general application of modality.

The possible worlds model, when combined with a modal logic, allows a user

to reason about its knowledge. A user knows a formula if that formula is true

in all worlds it considers possible. But what is so important about what a user

knows? We have already stated that the possible worlds model establishes a certain

structure on the system. This structure is based on the concept of a view. If this

view changes, then the worlds that are possible may change because a possibility

relation may not hold. Thus, the system is dynamic.

To know a formula means to establish the truth of the formula in all possible

worlds. This is written as

A formula may be true in atleast one possible world. We write this as

By asking questions about what is possible, a user can identify those possible worlds

that are useful to it. These questions may be as explicit as "Is a Prolog routine

available for the stack abstract data-type?"

Thus, from a partitioning of the system into worlds based on abstract specifi

cations, we have created structure. This enables a user to get replies to questions

on necessity and possibility and this allows for the construction of extendible, mul

tiparadigm systems.

CHAPTER IV

THE LANGUAGE AND ITS DESCRIPTION

A model for softw~re reuse in a multiparadi.gm environment is of little prac-

tical value without a compatible language. A problem may,be described in a way

compatible wit~ the 'model, using a "yYorld .Interconnection Language." A specifi-
, ,•'

cation for such a language is given below. A.n informal description of the semantics

of the phrase structures is provided.·. BNF D;Otation is used to describe production

rules. Non-terminals (representing conc~pts) are enclosed in< > brackets.

World Interconnection Language

< world_system >::= < world_system >< module > I < module >

The model describes a system as. composed of several modules that may be of two

different types.

<module>::=< world..:.module >I< agenLmodule >

The system has two kinds of modules. A world_module is an uninstantiated world

description while an agenLmodule specifies instances of several agents. Each agent

46

47

is an instantiated world_module.

< world_module >::= world< world_name >: {

< method_list ><inter face_list >< proposition_list >}

A world_module corresponds to a world in the inodel. It specifies a collection of

available methods, a list of interfaces to be used in or used instead of existing meth

ods, and a list of propositions that are OK at the world. Any two world_modules,

though belonging to the same system, are independant ~f each other. This avoids

any committment to object-oriented style client and inheritance relations in the

external interface of a world_module. Thus, the system is reusable and extendible.

This aspect of the model is discussed and illustrated in Example 2.

< agenLmodule >::= create< agenLmodule_name >: {

< agenLlist >< possrel.:.Zist >}

An agenLmodule corresponds to a system of instantiated agents.

< method_list >::= implementation : { < implementation_spec_list >}

1 comment : { < < any_text > >}

The method_list specifies the path of a file_name containing the source code of

the method. The comment statement includes text for descriptive or debugging

purposes.

<inter face_list >::= < inter face_list ><inter face> I < inter face>

< proposition_list >::= < proposition_list ><proposition > I <proposition >

< proposition >::= < debug_query > I < system_info >

48

Remember that a view may consist of a list of interfaces and propositions. A view

containing interfaces is used to construct possibility relations. A view may contain

a debug query that traces an execution of an agent. In Example 2, modal operators

are introduced to guide the compiler.

< agenLlist >::= < agenLlist >agent< agenLname >:< world_name >

I agent< agenLname >:< world_name >

< possreUist >::= < possreUist > possrel < agenLname > ·

< world_view >< world_list >

I possrel < agenLname >< world_view >< world_list >

The agenLlist is a list of agents that are instances of some world. An agent is

associated with a world_view. This world view may be satisfied in any of the worlds

in the world_hst. This corresponds to the formation of a possibility relation. The

world_list specifies an agent name and interface names. If sufficient semantics are

present in a world, the world_list may only contain agent names. The interface

description combines the work of Hayes et al. and Purtilo [HS87,Pur86].

<interface>::= < interface_name >: {< interface_spec >}

< znter face_spec >::= < type_spec > I < record_spec >

< type_spec >::= < type_name >

I < type_spec > (*) I < type_spec > (+)

I < type_spec > (< < integer _value > >)

I < type_spec >; < type_spec >

I < type_spec >, < type_spec >

< record_spec >::= record< record_name >: { < type_spec >}

< type_name >::= int I real I char I boolean

49

The set of< type_name > defined herein contains the fundamental types integer,

real, char and boolean. This may be modified to include other types or objects. The

semi-colon denotes a sequential relationship between arguments while the comma

operator denotes an alternation relation.

Repeated elements as in lists or arrays are indicated by a parenthesized integer,

asterisk, or plus. The exact number of components is indicated by an integer. A

non-negative number of components is indicated by an asterisk. A plus sign indi

cates a positive number of components. An interface may also contain a collection

of< type_spec > in a < record_spec >.

< world_list >::= < world_list >< agent_name >< world_view >

I < world_list >< agenLname >

I < agenLname >< world_view >

I < agenLname >

< world_view >::= < inter face_names > I <propositions >

50

Example 1: Multiparadigm Software Reuse

This example, first presented by Purtilo [Pur86], is an illustration of software

reuse in a multiparadigm environment. The world interconnection language is used

to partition the system into worlds. Instantiated worlds called agents are created

and possibility relations between agents are developed by binding interfaces.

Some lisp application requires the generation of a cubic spline to interpolate
'

data. The data is represented as a list of ordered pairs.

Xi and Y~ represent the abscissa and ordinate respectively of any one data point. A

fortran library routine paraphrased in Figure 15 is used.

If the spline routine is being invoked from a main lisp routine then the problem

may be represented using the world interconnection language. Each of the two

routines is identified as a world. The implementations are in files. The spline

view of world userlisp sends a list of tuples and accepts a list of triples. World

fmmobject also has a view called spline. This interface accepts aninteger number

representing the number of points and two arrays of points. It returns three arrays

of points. The world description is given below.

world userlisp: { implementation: {/v/brenjprogl.lisp}

spline : {{float, float}(*), {float, float, float}(*)}}

world fmmobject: { zmplementation: {/v/brenjprog2.fortran}

spline: { int, float(*), float(*), float(*), float(*), float(*)}}

subroutine spline(n, x, y, b, c, d)

integer n

double precision x(n), y(n), b(n), c(n), d(n)

The coefficients b(i), c(i), and d(i), i = 1, 2, ... , n

are computed for a cubic interpolating spline

s(x) = y(i) + b(i) * (x- x(i)) + c(i) * (x- x(i))2 + d(i) * (x- x(i))3

for x(i) ::; x ::; x(i + 1)

input

n =the number of data points (n ~ 2)

x = abscissas of points in stridly increasing order

y =ordinates of the points ,

output

b, c, d =arrays of spline coefficients as defined above

Figure 15. Paraphrased excerpt from library

51

52

Let Land F be agents of the respective worlds. Using view spline of agent L,

a possibility relation is constructed to agent F.

create example : { agent L : userlisp

agent F: fmmobject

possrel L spline F spline}

As things stand, the interfaces do no mesh si:qce the argument patterns do no match.

What is necessary is another routine to perform coercion as shown below.

world newrule : { implementation : {/v /brenjprog3.pascal}

. input : {{float, float}(*), {float, float, float}(*)}

output : { int,jloat(*),float(*), float(*), float(*), float(*)}}

create example : { agent L : userlisp

agent F: fmmobject

agent N : newrule

possrel L spline N input

possrel N output F spline}

Example 2: Exposure of Inheritance

Alan Snyder [Sny87] questions whether or not the use of inheritance in the

construction of a software component should be exposed to clients (inheriting or

instantiating). Object-oriented inheritance allows a subclass to inherit methods

from any ancestor. A client of a subclass may access instance variables of an ancestor

class. Consequently, a change to a variable name or a method in any ancestor class

53

will affect all dependant subclasses and clients. In the world interconnection model

connections between world modules are defined using the world interconnection

language which defines possibility relations between independant modules using

views. The possibility relations .relate·one world to another and no further. Views

allow access to allowed methods only. All varia~les may be accessed only through

interfaces. Changes to any method will affect all worlds that access that method

through a possibility relation.

Consider the deque and stack abstract data-types defined in CHAPTER III.

Deque and stack have operations push, pop, top, and empty. In addition, deque

has the operations nq, dq, front. In order to implement the abstraction defined in

Figure 16, define the class stack to inherit (in the sense "use instead of") operations

from the class deque, ignoring the additional operations.

A self-contained definition of the operations may also be included for stack.

Clients of stack should be able to switch between the inherited and self-contained

definitions. However, in some cases the absence of the extra operations nq, dq, and

front could lead to an application break-down. This occurs when some client of

stack, using the 'operations defined at deque, starts to use the·operation:s defined at

a stack, at which the extra operations that it used are missing. It is necessary to

exclude the extra operations from the external interface of stack. This exposure of

inheritance introduces a dependancy between stack and deque. The designer is not

free to change the inheritance hierarchy without affecting clients of stack.

54

push nq
DE QUE

dq pop.

top front

empty

/ " push
pop.

top STACK
empty

Figure 16. Implementing stack using deque

This exposure of inheritance is avoided using the world interconnection lan

guage. The view of the stack w9rld does not include the operations nq, dq, and

front. Thus the possibility relations between stack and deque is formed from a view

that excludes these extra operations. No client of stack can use these extra oper

ations because the view will not allow i.t. An illustrative implementation is given

below.

55

world deque: {{ implementation: {/vfbrenfpush.pas}

push{ real, real(*)}}

{implementation: {/v/bren/pop.pas}

pop{reaZ, real(*)}}

{implementation : {/v fbrenftop.pas}
'

top{ redl, real(*)}}

{implementation: {/v/brenfempty.pas}

empty{ boolean, real(*)}}

{implementation: {fvfbrenfnq.pas}

nq{ real, real(*)}}

{implementation: {/v/bren/dq.pas}

dq{ real, real(*)}}

{implementation : {/v /bren/ front.pas}

. front{ real, real(*)}}}

world stack: {{ implementation: {/vfbrenfpush.pas}

push{ real, real(*)}}

{implementation : {/v /brenfpop.pas}

pop{ real, real(*)}}

{implementation : {/v fbrenftop.pas}

top{ real, real(*)}}

56

{implementation: {/v/bren/empty.pas}

empty{boolean, real(*)}}}

If clients of stack want to use operations defined at deque then possibility

relations need to be established.

create exec_module : { agent D : deque

agent S : stack

possrel S push, pop, top, empty D push, pop, top, empty}

It may be that the S push interface may be OK at, agent D, the S pop interface

be OK at agent E, and the S top and S empty interfaces be OK at agent F. In

this case we can use the modal operator <> to guide the compiler. The possibility

operator <> indicates the existance of at least one world among D, E, F at which

the interfaces of S are OK. The specification is given below.

create exec_module : { agent D E, F : deque

agent S : stack

possrel S <>(push, pop, top, empty) D E F}

Example 3: Multiple Versions
,'

Bertrand Meyer (¥ey87] cites the example of table search to illustrate software

that is "neither ever quite the sa:tne, nor ever quite another." This means that while

table search programs tend to do the same kinds of things, they are not exactly the

same. A general description of the code would be:

1. Start at some position in the table t

57

2. Check to see if the search element exists at that position

3. If not, move to another position

4. Terminate the search either when the element has been found or the entire

table has been searched

A more precise description is given in Figure 17. Details that may change (vari

ants) include all the types and routines in uppercase. Now it is virtually impossible

to write code corresponding to every combination of variant. However, it is likely

that the few variants that are required will have already been written and exist in

some library. These different versions of the table search constitute different worlds.

Eg. there may be a search routine ~ith an array implementation of table and one

with a pointer implementation. A user who wants to change implementations from

one to the other must consider both array _search and pointer_search as methods of

one world. A change from array to pointer implementation is accomplished without

alteration to any method.

If the array _search is being invoked from a main routine then the problem may

be represented using the world interconnection language. The two il!lplementations

are made methods of the same world. The user selects the correct implementation

Search (x:ELEMENT, t:TABLE_QF_ELEMENT) return boolean

pos: POSITION

begin

end;

pos := INITIAL_PQSITION(x,t);

while not EXHAUSTED(pos,t) and then not FOUND(pos,x,t) do

pos := NEXT(pos,x,t);

Figure 17. A schema for table search

and establishes a possibility relation between the appropriate views.

world search: {{ implementation: {/v/brenjarray_search.pas}

a_search : { x : int, t : int(+)}}

{implementation : {/v jbrenjpointer _search. pas}

p_search : {x : int, t: pointer}}}

world main : { implementation : {/v jbrenj examplel.pas}

x_search: {x: int, t: int(+)} }

create exec_module : { agent search: search

agent main : main

possrel main x_search search a_search}

58

59

Alternately, array _search and pointer_search may be considered as separate worlds.

In this case the representation becomes:

world array_search: { implementation: {/v/brenjarray_search.pas}

a_search : { x : int, t : int(+)}}

world pointer _search : { implementation: {/v /brenjpointer _search.pas}

p_search : { x : int, t :pointer}}

world main: { implementation: {/v/bren/examplel.pas}

x_search: { x : int, t: int(+)}}

create exec_module : { agent search : search

agent main : main

possrel main x_search array_search a_search}

The three examples show different uses of the world interconnection model.

'
A common thread is that the world interconnection model may be used to build

extendible and reusable software.

CHAPTER V

SUMMARY, CONCLUSIONS, .AND FUTURE WORK

Software productivity in large software systems may be improved by the reuse

of multiparadigm software. This dissertation develops a possible worlds model ap-

plicable to the problem of software reuse. The model provides structure to a system

' '

composed of multi paradigm routines. This structure allows "used in" and "used in-

stead of" relations between worlds based on the concept of views. A view consists of

interface names and propositions. Each interface name has a corresponding interface

pattern description.and provides access to a method. Bindings between' interfaces

across multiparadigm worlds allows for multiparadigm software reuse. Propositions

in a view may be used for verification·, debugging or to guide the compiler.

A world interconnection language is developed based on the model. The de-

scription of the language is informal and intuitive. The language is used to illustrate

multiparadigm software reuse.

Exposure of inheritance is a problem of some object-oriented languages. This

model avoids this problem by developing possibility relations between agents based

on v1ews.

This work may be extended to include multiparadigm systems runmng on

different architectures using different communication paradigms. Future work may

60

61

include an implementation of the world interconnection system. This would include

a system of compiler, linkers, debuggers, and interconnection language. The model

may be extended. to include the run-time. By keeping histories of runs, tools may

be developed to reason about an agent's knowledge. The model holds the promise

of a new programming paradigm based on the theory of modal logics and possible

worlds.

This work could unify the current efforts towards a new generation of inter

connection larrg:uages and systems.

[Bal71]

[BLP85]

[BR87]

[Che80]

[DGR81]

[EG84]

[Ein85]

[Ein86]

[Get84]

[Gog86]

[Hai86a]

[Hai86b]

[Hal86]

BIBLIOGRAPHY

R. M. Balzer. Ports-a method for dynamic interprogram communication
and job control. In Spring Joint Computer Conference, pages 485-489,
1971.

E. Balkovich, S. Lerman, and R. P. Parmelee. Computing in higher
education: the athena experience. Communications of the ACM, 1214-
1224, November 1985.

T. Biggerstaff and C. Richter. Reusability framework, assessment, and
directions. IEEE Software, 41-49, Mar 1987.

B. F. Chellas. Modal Logic. Cambridge University Press, 1980.

Ph. Darondeau, P. Le Guernic, and M. Raynal. Types in a mixed lan
guage system. BIT, 21:246-254, 1981.

B. Einarsson and W. M. Gentleman. Mixed language programming.
Software-Practice and Experience, 383-395, April 1984.

B. Einarsson. The Structure of Mixed Language Programming Realiza
tion. Technical Report LITH-IDA-R-85-01, Linkoping University Swe
den, 1985.

B. Einarsson. Mixed language programming realization and the provi
sion of data types. IEEE Software, 2-9, 1986.

J. Gettys. Project athena. In USE NIX Summer Conference Proceed
ings, pages 72-77, June 1984.

J. A. Goguen. Reusing arid interconnecting software components. IEEE
Computer, 16....:.28, Feb 1986.

B. Hailpern. Multiparadigm languages. IEEE Software, 6-9, Jan 1986.

B. Hailpern. Multiparadigm research: a survey of nine projects. IEEE
Software, 70-77, Jan 1986.

J. Y. Halpern. Reasoning about knowledge: an overview. In Proceedings
of the Conference on Theoretical Aspects of Reasoning About Knowledge,
pages 1-17, Morgan Kaufmann, 1986.

62

[HHS88]

(HMS88]

(HN87]

(HS87]

[JGM86]

[KG87]

[Kon86]

[Kor86]

[Kri63]

[1090]

(LS77]

(Mey87]

63

R. Hayes, N.C. Hutchinson, and R. D. Schlichting. Integrating Emerald
into a System for Mixed-Language Programming. Technical Report 88-
36, Dept. of C.S. The University of Arizona Tucson, Oct 1988.

R. Hayes, S. W. Manweiler, and R. D. Schlichting. A simple system for
constructing distributed, mixed-language programs. Software-Practice
and Experience, 641-660, July 1988.

B. Hailpern and V. Nguyen, A model for object-based inheritance. In B.
Shriver and P. Wegner, editors, Research Directions in Object-Oriented
Programming, MIT Press, 1987.

R. Hayes and R. D. Schlichting. Facilitating mixed language program
ming in distributed systems. IEEE Transactions on Software Engineer-
ing, 1254-1264, Dec 1987.

M. A. Jenkins, J. I. Glasgow, and C. D. McCrosky. Programming styles
in nial. IEEE Software, 46-55, Jan 1986.

R. R. Korfhage and N. E. Gibbs. Principles of Data Structures and
Algorithms with Pascal. WM. C. B~own, Dubuque, Iowa, 1987.

K. Konyndyk. Introductory Modal Logic. Notre Dame Indiana, 1986.

H. F. Korth. Extending the scope of relational languages. IEEE Soft
ware, 19-28, Jan 1986.

S. Kripke. Semantical considerations of modal logic. Zeitschrift fur
Mathematische Logik und Grundlagen -der Math-ematik, 9:67-96, 1963.

T. G. Lewis and P. W. Oma~. The challenge of software development.
IEEE Software, 9-12, Nov 1990.

E. J. Lemmonand D. Scott. The Lemmon Notes. American Philosoph
ical Quarterly Monograph Series, 1977.

B. Meyer. Reusability: the case for object-oriented design. IEEE Soft
ware, 50-64, March 1987.

[MHS86a] S. W. Manweiler, R. Hayes, and R. D. Schl~chtin.g. Adding New Lan
guages to the MLP System. Technical Report 86-9, Dept. of C.S. The
University of Arizona Tucson, June 1986.

(MHS86b] S. W. Manweiler, R. Hayes, and R. D. Schlichting. The MLP System
Users Manual. Technical Report 86-4, Dept. of C.S. The University of
Arizona Tucson, Feb 1986.

(Mor79] T. More. The nested rectangular array as a model of data. AP L Quote
Quad, 9(4):55-73, 1979.

[Mor81]

[Not90]

[Pri87]

[Pur86]

[RGP86]

[SBK86]

[Sea87]

[Sny87]

[TP86]

64

T. More. Notes on the diagrams, logic, and operations of array theory.
In Bjorke and Franksen, editors, Structures and Operations in Ep,gi
neering and Management Systems, Tapir'Publisher Trondheim Norway,
1981.

D. Notkin. Proxies: a software structure for accommodating hetero
geneity.- Software-Practice and Experience, 357-364, April1990.

R. Prieto-Diaz. Classifying software for reusability. IEEE Software,
6-16, Jan 1987.

J. M. Purtilo. A software interconnection technology to support specifi
cation of computational environments. PhD thesis, University of Illinois
at Urbana-Champaign, 1986.

C. V. Ramamoorthy) V. Garg, and A. Prakash. ·Programming in the
large. IEEE Transactions on Software Engineering, 769-783, July 1986.

M. J. Stefik, D. G. Bobrow, and K. M. Kahn. Integrating access-oriented
programming into a multiparadigm environment. IEEE Software, 10-
18, Jan 1986.

IEEE Software. Seamless. Systems, Nov 1987.

A. Snyder. Inheritance and the development of encapsulated software
components. In B. Shriver and P. Wegner, editors, Research Directions
in Object-Oriented Programming, pages 219-252, MIT Press, Cam
bridge, MA, 1987.

H. Tu and A. J. Perlis. Fac: a functional apllanguage. IEEE Software,
36-45, Jan 1986.

[WSHF81] W. Wulf, M. Shaw, P~ Hilfinger, and L. Flon. Fundamental Structures
of Computer Science. Addison-Wesley, 1981.

[Zav89] P. Zave.• A compositional approach to multiparadigm programming.
IEEE Software, 15-25, Sept 1989. '

VITA

Brendan Machado

Candidate for the Degree of

Doctor of Philosophy

Thesis: A MODEL FOR SOFTWARE REUSE IN A MULTIPARADIGM
ENVIRONMENT

Major Field: Computer Science

Biographical:

Personal Data: Born in Bombay, India, March 22, 1963, the son of Raphael
and Grace Machado.

Education: Attended St. Stanislaus Junior College, Bombay, upto May
1981; attended St. Xavier's College, Bombay, upto May 1985; received
Bachelor of Science Degree in Physics and Chemistry from The
University of Bombay in May 1985; completed requirements for the
Doctor of Philosophy degree at Oklahoma State University in
December, 1991.

Professional Experience: Teaching Assistant, Department of Computer
Science, Oklahoma State University, August, 1987, to May, 1991.

