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NOMENCLATURE 

A Area of the beam contacted to the foundation 

Ai Constant in Hakiel's algebraic equations 

a1 Thickness of the inner foundation 

a2 Thickness of the outer foundation 

Bi Constant in Hakiel's algebraic aquations 

· C Constant to calculate the classical buckling mode 

Ci Consta;nt in Hakiel's algebraic equations 

Cn Coefficients of polynomial function of strain 

Cn' Coefficients of polynomial function of radial modulus 

E Young's modulus for isotropic material 

Ec Core Stiffness 
','' 

Ecm Young's modulus of core material 

Et Tangential Young's modulus of a wound roll 

Er Radial Yo~g's modulus of a wound roll 

F Axial force 

F cr Buckling load 

F crm Modified classic buckling load 

g2 Ratio ofmoduli of wound roll (EtJEr) 

h Thickness of a stack 

I 1 Moment of inertia of one layer 

Ieq Equivalent moment of inertia of a beam 

In Moment of inertia of n layers 
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k1 Constant in Pfeiffer's equation 

k2 Springiness factor in Pfeiffer's equation 

kg Shear parameter of Pasternak's foundation model 

ke Moment parameter of the generalized foundation model 

ks Second parameter of two parameter foundation model 

kt Second parameter of Vlasov foundation model 

L Length of a beam 

m Buckling mode 

n Number of layers or dummy index 

na Number of division of the foundation in x-direction 

P Potential energy of a beam 

p(x) Reaction pressure from the foundation on the beam 

Pi Radial pressure at any point of a wound roll 

P 0 Radial pressure at the outside of a core 

P r Radial pressure 

q(x) Intensity of a distributed load 

r Radius or a multiplying factor 

rc Inner radius of a core 

ri Radius at any point of a wound roll 

r 0 Outside radius of a core 

s Dimensionless outside diameter of a wound roll 

t Caliper of web material 

T Tension applied to the top of an elastic foundation 

T w Winding Tension 

u x-directional displacement 

Un x-directional displacement at node n 

Ux Lateral displacement of foundation 
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v y-directional displacement 

Vn y-directional displacement at node n 

w Radial displacement 

W Width of a stack or wound roll 

x x coordinate 

Xin Smallest mesh size in x-direction of the solid element 

y y coordinate 

a. Spring constant 

~ Modulus of the foundation 

8 Lateral displacement 

8P Incremental radial pressure 

8T Incremental circumferential stress 

Er Radial strain 

Et Tangential strain 

11 Normalized local coordinate 

11n Normalized local coordinate at node n 

Jl Friction coefficient 

v Poisson's ratio 

Vc Poisson's ratio of the core 

9 Rotational degree of freedom 

CJcr Buckling stress 

crr Radial stress 

ot Circumferntial stress 

COz Rotational angle about z-axis 

; Normalized local coordinate 

;n Normalized local coordinate at node n 
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CHAPTER I 

INTRODUCTION 

Thin flat flexible materials such as film, foil, paper, sheet metal and 

textile are defined as webs. Webs are wound upon a core as a roll because 

the roll is a convenient form to handle, store, and to use in subsequent web 

processing. The core is made of fiber, plastic or steel. The winding methods 

may be center winding, surface winding or a combination of both. 

The stress distribution in a wound roll depends upon the winding 

conditions and material properties. The stress in the radial direction is 

called the radial or interlayer pressure. The stress in the circumferential 

direction is called the circumferential or tangential stress. Extreme radial 

pressure and/or circumferential stress may cause various roll defects. 

Gilmore [14] collected various roll defects and defined a roll defect 

terminology. The roll defects concerning the radial pressure are dishing, 

telescoping, offset, loose core, core slippage, etc. The roll defects due to the 

circumferential stress are crushed core and starred roll defect. Among the 

roll defects, the starred roll defect , which is also called starring, is a 

starred pattern of a wound roll due to the buckling of the web layers . 

Numeroussources[1,7,8,9, 14,20,21,26,34,35,39,40,47]have 

reported that the circumferential stress can be negative and may cause the 

starred roll defect, but none had tried to calculate the buckling stress 

quantitatively rather than qualitatively. The buckling stress is a function of 

1 



radial pressure distribution, core stiffness, friction coefficient between the 

webs and material properties of the web. 

Objectives and Scope of Study 

The objectives of this research are: 

- To develop a numerical model that can predict the buckling stress of a 

center wound roll. 

- To set up a failure criterion of a starred roll defect. 

2 

The buckling analysis is based on the stress distribution in a wound 

roll. There has been a variety of research concerned with theoretical and 

experimental stress distributions for three decades. The winding models to 

date are a linear isotropic model [5], an anisotropic model [1, 31, 47] with 
' 

constant radial modulus and an anisotropic nonlinear modulus model [17]. 

Hakiel's nonlinear model [17] is the most recently developed model. This 

model implemented the nonlinear radial modulus of the wound roll and 

included a core boundary condition. 

The friction force between webs increases the buckling load of web 

layers, which decreases the chance of starred roll defect. The numerical 

models employed in this research implemented Hakiel's nonlinear model 

and the slippage between webs. The typical stress distribution of a center 

wound roll wound at constant tension exhibits a wide plateau region of 

radial pressure and circumferential stress. The circumferential stress is 

negative in the plateau region and the value depends upon the winding 

tension. Excessive negative circumferential stress may cause the roll to 

buckle. The radial stiffness of the roll tends to protect the roll from buckling 

and so does the friction force between the webs. 



3 

A part of a series of webs in compressive circumferential stress region 

was modeled as an elastic beam which has the equivalent moment of 

inertia as the selected webs. The surrounding wound webs were modeled as 

elastic foundations which act as linear springs in the radial direction. 

Interface elements were used between the beam and the foundations to 

model the slippage between the webs. 

The classic solutions of the buckling problem of a beam upon elastic 

foundation was calculated by energy method with Winkler's foundation 

model [ 42]. Both numerical and experimental analyses were performed. 

For the numerical buckling analysis, the geometric nonlinear static 

analysis was employed using the ANSYS program [2] installed in the 

HARRIS 800 computer and IBM-"RT" computer. ANSYS is a general 

purpose structural analysis program which is based on the finite element . 
method. 

The problem of a buckling analysis of a center wound roll was studied 

with two simplified models. The first model assumed the radial pressure 

and modulus as constant throughout the roll. The second implemented 

variable radial pressure and corresponding modulus to represent the 

wound roll more accurately. 

The radial modulus was obtained as a function of pressure by several 

stack tests using a servo-hydraulic material testing machine [22, 27]. The 

friction coefficient between the webs were measured using the ASTM 

standard [3]. 

The validity of the first constant modulus model was established by a 

number of buckling experiments with stacks of reproduction paper using 

the material testing machine. Several rolls were center wound using the 

3M Splicer Winder in the Web Handling Research Center (WHRC) at 



Oklahoma State University (OSU). Starred roll defects were generated by 

rotating the wound rolls upon a flat surface while pressing them down. 

Major Results 

4 

A numerical model was developed which can predict the buckling 

stress of a center wound roll. A margin of safety of a starred roll defect was 

defined as an indicator of the starring of a wound roll. 

The numerical buckling loads for the buckling experiments of stacks 

of reproduction paper were at the lower limits of the experimental values 

including one standard deviation. The buckling modes of the numerical 

and experimental analyses were almost the same for the different stack 

pressures tested. The conclusion was drawn that the finite element model 

can be used to predict the initial buckling stress of stacks of reproduction 

paper. 

The numerical buckling modes for stepped tension windings showed 

reasonable agreement to that of winding experiments. The numerical 

values were within one standard deviation of the experimental values. 

The classic buckling load was modified by adding the friction force 

between the beam and the foundation due to the radial pressure and the 

friction coefficient between webs. The friction involved classic buckling 

loads were smaller than that of the finite element analyses, but not more 

than 25% for all the cases. The finite element analysis for one winding 

condition required tens of hours of computing time using the IBM-"RT" 

computer, but a few minutes were enough to calculate the classic solutions. 

Considering the computing time, the classic solution may be a useful tool to 



roughly predict the numerical solutions and the starred roll defect for a 

given winding condition. 

5 

A margin of safety of a starred roll defect was defined as the difference 

of the maximum compressive circumferential stress from the buckling 

stress in absolute value divided by the maximum compressive 

circumferential stress or buckling stress. If the margin of safety is positive, 

the denominator will be the maximum circumferential stress. If the 

margin of safety is negative, the denominator will be the buckling stress. 

The larger the margin of safety is, the safer the roll is from starring. If it is 

around zero, the roll may be buckled by a small perturbing load. When it is 

negative, the larger the absolute value is, the more easily the starred roll 

defect may occur. 

Chapter Description 

In Chapter II, a literature survey is presented which covers winding 

models, roll quality, foundation models, and elastic stability . 

In Chapter III, the buckling analyses of stacks of paper are 

presented. The finite element analyses for the nonlinear buckling problems 

and the buckling experiments of stacks of paper using material testing 

machine are described. 

In Chapter IV, the buckling analyses of center wound rolls are 

presented. The finite element analyses and the winding experiments using 

3M Splicer Winder are described. 

In Chapter V, a summary of the conclusio'ns which can be drawn 

from the classic, numerical and experimental results and suggests future 

research. 



CHAPTER IT 

LITERATURE SURVEY 

Wound Roll Stress and Roll Quality 

Wound roll stress analysis has been a very important topic for web 

handling industries, as roll quality is dependent on the stress distribution 

in a wound roll. The winding models tQ date have been formulated based on 

the following assumptions: 

1. Rolls are wound on a center winder, 

2. Rolls are homogeneous, linear or nonlinear elastic solids, 

3. Web caliper is constant through the winding, 

4. The body force of the roll is ignored, 

5. The air entrainment during winding is ignored, 

6. The web is a perfect annulus, 

7. There is no slippage between the web layers. 

In 1966, Pfeiffer, J.D. [31] described a method for calculating the 

internal pressure distribution in a roll Qf paper by measuring sotind wave 

velocity. The radial pressure was suggested as an exponential function of 

strain and the radial modulus was derived as a linear function of radial 

pressure. The original pressure function was shown in Equation (2.1). In 

1968, the pressure function was updated to enforce the pressure to be zero at 

zero strain as shown in Equation (2.2). [32] The modulus function was 

6 



derived by differentiating the pressure with respect to strain as shown in 

Equation (2.3). 

7 

(2.1) 

(2.2) 

(2.3) 

In 1967, Frye, K.G. [12] reported controllable winding variables by the 

machine and the operator, and all their effects on roll quality and roll 

hardness. Roll structure can be controlled by unwind, nip pressure, rider 

roll, core shaft, drive-torque, a~d web tension. 

Daly, D.A. [7] divided roll defects into five categories and discussed 

them in detail. These categories are operational, web control, nonuniform 

nip, roll structure, and specific roll defects. 

In 1968, Altman, H.C. [1] assumed the roll as a linear orthotropic 

thick wall cylinder, i.e., the radial modulus is constant but different from 

the tangential modulus. Closed formula for radial pressure and 

circumferential stress were derived as a function of winding tension, 

radius ratio of any point to the outside radius, and some elastic parameters 

of the roll. 

Hussain, S.M. [21] et al. measured the circumferential stress within a 

roll of paper by splicing a specially made strain gauge directly into the webs 

of paper. In 1977 [20], an instrumented steel core was developed to measure 

the accurate pressures at the core surface. 

In 1973, Ericksson, L.G. and Rand, T. [9] analyzed the stresses in 

large newsprint rolls during winding. The circumferential stress was 

measured using a strain gage glued to the web. The interlayer pressure 
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' 
was calculated by drilling the roll to the. core radially and measuring the 

difference of the hole size before and after winding. Paper roll density was 

calculated by measuring the paper thickness variations in a later paper [8]. 

In 1975, Monk, D.W. [26] et al. calculated the uitemal stresses within 
' 

rolls of cellophane by integrating the relations given by Altmann. Various 

factors that caused the roll defects were studied. It was found that a roll at a I 
constant tension winding had the most negative circumferential stress v 

which usually caused the starring. It was also found that a roll wound at a 

constant torque had the least negative circumferential stresses. 

In 1979, Pfeiffer [34] applied an energy balanced principle to calculate 

the roll stresses. The tensile strain energy given by the wound-in tension 

provided the compressive energy of the layers underneath. The pressure 

and modulus functions obtained by the compression tests of stack of roll 

materials were used to derive the stresses. 

In 1980, Yagoda, H.P. [ 4 7] developed an accurate series solutions and 

clarified the stress behavior near the core. An explicit analytic solution was 

derived using hypergeometric functions for the radial and circumferential 

stresses. It was emphasized that the stresses near the core should be 

considered to design an appropriate core. 

In 1987, Hakiel, Z. [17] implemented a finite difference method to solve 

the nonlinear second order differential equations based on the nonlinear 

material property in radial direction and an accurate core boundary 

condition. This nonlinear model is the most recently developed model. 

Pfeiffer, J.D. [36] updated his winding model by changing the 

expression of the slope term in the equilibrium equation. 

Roisum, D.R. [39] summarized the stress history of paper stresses: 

before, during and after winding. In 1988, the measurement methods of the 



roll quality were summarized and the statistics were emphasized to 

analyze the data correctly. [40] 

In 1988, Willett, M.S. and Poesch, W.L. [ 44] calculated the stress 

distributions in wound reels of magnetic tape using a nonlinear finite 

difference approach. The governing equation included the thermal 

expansion term. A procedure to measure the Poisson's ratio in the radial 

direction using laser beam was presented. 

In 1990, RQisum, D.R. [41] reviewed all the winding models to date 

and developed a new boundary condition at the outside of the roll by 

measuring the radial displacement during winding. 

9 

Fikes, M. [10] measured the radial pressures of center wound rolls by 

FSR films. It was showed that FSR film can be a good tool to measure the 

radial pressure after winding. 

Foundation Models 

In 1867, Winkler [ 45] assumed the foundation as closely spaced elastic 

supports. The reaction force of the foundation is directly proportional to the 

beam deflection. The deflections ~d stresses of a beam upon elastic 

supports were calculated. The force vs deflection relation is shown in 

Equation (2.4) and the governing equation is shown in Equation (2.5). 

p(x) = k w(x) (2.4) 

d2w(x) 
EI 2 + k w(x) = q(x) 

dx (2.5) 

In 1945, Hetenyi [18] derived the deflections, stresses and buckling 

loads of beams upon elastic foundations with various boundary conditions. 
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The modulus of the foundation was defined as the spring constant for unit 

length of the beam. 

In 1964, Kerr, A.D. [24] reviewed various elastic and visco-elastic 

foundation models. The presented models were Pasternak's model [29], 

Filonenko-Borodich's model [11], Hetenyi's model [18, 19], Ressner's model 

[37] and a generalized foundation model [13]. 

In 1983, Zhaohua, F. and Cook, R.D. [48] divided the foundation 

models into one and two parameter models. The first parameter represents 

the linear response of the foundation on the beam. The. second parameter 

has several different physical meanings depending upon the assumption a 

model has made on the second order differential term. 

Filonenko-Borodich's model [11] assumed that top ends of the springs 

were connected to an elastic membrane that was stretched by a constant 

tension T. 
. d2w(x) 

p(x) = k w(x) - T'--'-
dx2 (2.6) 

Pasternak's model [29] considered the shear interactions between the 

springs. 
· d2w(x) 

p(x) = k w(x) - kg dx2 
(2.7) 

The generalized foundation [13] includes the moments at each points 

of contact. 
· d2w(x) 

p(x) = k w(x) - ke · 
dx2 

Vlasov's model [23, 43] regarded the foundation as a semi-infinite 

elastic medium. 
d2w(x) p(x) = k w(x) - k.rt _..;...._;_ 

dx2 

(2.8) 

(2.9) 
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All these two parameter models are mathematically the same if the 

constants of the second order terms were substituted by k 8 • The force vs 

deflection relation and the governing differential equation for these models 

are shown in Equations (2.10) and (2.11). 

d2w(x) 
p(x) = k w(x) - k8 2 dx (2.10) 

(2.11) 

Neglecting the second term in Equation (2.11) gives the governing 

equation of Winkler's foundation in Equation (2.5). Because the constants in 

the second parameter were unknown and very difficult to calculate, the 

Winkler's foundation model was used to calculate the classic solutions in 

this research. 

Elastic Stability 

In 1961, Timoshenko [42] wrote a representative reference for buckling 

analysis. It includes various theoretical solutions of elastic or inelastic 

buckling problems of bars, frames, beams, rings, arches, curved bars, 

plates, shells, etc. It also describes the energy method to solve the buckling 

problem of a beam upon Winkler's foundation. The classic solution of this 

research referred this energy method. 

Because the buckling problem of a wound roll includes the interlayer 

friction and the radial pressure, it is not a linear buckling or eigenvalue 

problem but a nonlinear buckling problem. 
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In 1977, Zienkiewicz [ 49] discussed the geometric nonlinear problems 

in detail. It was mentioned that the nonlinear buckling problem should be 

solved by considering it as a geometric nonlinear static problem. 

The analytic methods of geometric nonlinear structural problems can 

be divided into two classes: One class is incremental and does not 

necessarily satisfy the equilibrium conditions. The other class is self

correcting and satisfies the equilibrium conditions. 

The first class includes the incremental stiffness procedure [25, 28] 

and the Newton-Raphson methods [28]. The incremental procedure is easy 

to apply but is not accurate. A very fine load step should be used to get an 

accurate solution. 

The second class includes the iteration method combined with the 

systematic relaxation [30], the perturbation method [6], the self-correction 

incremental forms [15], the incremental procedure combined with Newton

Raphson iteration [46], the initial value formulation [6, 30], and the self

correcting initial value formulation [16]. 

The ANSYS program [2] is a general purpose structural analysis 

program based on the finite element method. It can solve linear and 

nonlinear buckling problems: The linear buckling problems use the 

eigenvalue technique and the nonlinear buckling problems use the 

geometric nonlinear static analysis by the large deflection option. It also 

has interface elements to model the slippages between materials. To 

perform the geometric nonlinear static analyses using the ANSYS 

program, the full Newton-Raphson option was used, which updates the 

stiffness matrix every iteration. 



CHAPTER III 

BUCKLING ANALYSIS OF STACKS OF PAPER 

Finite Element Analysis 

Introduction 

Several assumptions were made for the finite element model as 

follows: 

1. One quarter of the circumference of the roll was modeled in 
rectangular coordinates rather than polar coordinates, 

2. The plane stress condition was assumed, 

3. Stresses from Hakiel's model are accurate, 

4. An element has constant radial pressure and modulus, 

5. Gaps exist only between the beam and the foundations, 

6. Core deformations were neglected, 

7. Poisson's ratio of the web material was assumed as zero. 

Figure 1 shows a wide range of compressive circumferential stress 

distribution in a center wound roll. A part of the compressive stress region 

was modeled as two dimensional elastic beam elements with an equivalent 

moment of inertia as the selected webs as shown in Figure 2. The 

surrounding materials were modeled as two dimensional isoparametric r> 
~~ 

solid elements. Because a steel core was used throughout the experiments 

the core was modeled as rigid support as shown in Figure 3. '.rhe gaps 

13 
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between the beam and the foundation were modeled as two dimensional 

interface elements that act like linear springs when com:pressed and have 

no rigidity when stretched as shown in Figure 4. The material properties 

and dimensions were shown in Tables I and II. 

Tension Zope 

Compression Zone 

Core 

Figure 1. , Circumferential Stress Distribution of 
a Center Wound Roll 
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Figure 3. Finite Element Mesh of Simplified Model 



Beam Elements 
(STIF3) 

Interface Element 
(grni'12) 

Solid Element 
<SriF42) 

Figure 4. Detailed Mesh around Beam Elements 
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TABLE I 

MATERIAL PROPERTIES OF EXPERIMENTAL MATERIALS 

Property Reproduction PolypropylenePolyester Steel 
Paper Film Core 

Young's Modulus(ksi) £00 

Poisson's Ratio 0.0 

Friction Coefficient 0.35 

Core Stiffness(ksi) 

450 

0.0 

0.97 

TABLE II 

653.4 

0.0 

0.28 

30,000 

0.3 

3930 

DIMENSION OF EXPERIMENTAL MATERIALS 

Material Caliper Width Thickness Length 
of Stack 

Stack of Beam 0.004225" 4.25" 0.4" 8.375" 

Stack of Foundation 0.004225" 4.25" 3.86" 8.5" 

Aluminum Block 4.25" 0.4" 1.25" 

Aluminum Spacer 1.0" 0.25" 3.0" 

Polypropylene 0.001" 6.0" 

Polyester Film 0.00092" 6.0" 

18 
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Eguiyalent Thickness of A Beam 

The buckling stress of a beam is directly related to the moment of 

inertia. If the selected webs do not slip upon each other, the individual 

moment of inertia can be summed to get the equivalent moment of inertia 

of the modeled beam. The modeled beam thickness was calculated by 

equating the total moment of inertia of selected webs to the equivalent 

moment of inertia of the modeled beam. The moment of inertia of one layer 

and of n layers are 

and 

The equivalent moment of inertia of a beam is 

w~ 
Ieq=--

12 

Equating Equations (3.2) and (3.3) yields: 

Wt3n W~ 
12 12 

The equivalent thickness of a beam can be expressed as: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The number of layers (n) can be determined by the web caliper (t) and the 

beam thickness (h) such as 

Substituting Equation (3.6) into (3.5) gives 

teq = tV3h 1/3 

(3.6) 

(3.7) 



Radial Modulus of Elasticity 

of Reproduction Paper 

The radial modulus of a stack of paper or web material is not a 

constant but a function of pressure: A stack behaves like a soft spring 

under low pressure and a stiffer spring under high pressure. The radial 

modulus was obtained as a function of pressure by compression tests of a 

stack of paper. 

Pfeiffer's Method. Pfeiffer [33, 35] suggested an exponential 

relationship between pressure and strain, and derived the radial modulus 

as a linear function of pressure. 

Pr = -k1+k1exp(k2£r) (3.8) 

The physical significance of the constants k1 and k2 is: k1 enforces the 

pressure to be zero at zero strain, k2 is called a springiness factor and 

shows the hardness of the material. For soft materials k2 is low, for hard 

materials k2 is high. Arranging Equation (3.8) and taking the logarithm 

gives: 

(3.9) 

The procedure to calculate the constants k1 and k2 is as follows; 

1. Take the logarithm of the pressure Pr ; 

2. Perform least-squares curve fitting tp obtain k1 and k2. 

3. Add previous k1 to the pressure .Pr; 

4. Iterate procedure 1 to 3 until old k1 and new k1 are reasonably close. 

Differentiating Equation (3.8) with respect to the strain gives the radial 

modulus as a linear function of pressure: 
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(3.10) 

Polynomial Curve Fitting Method. Pfeiffer's method has a very good 

physical meaning and in many cases will fit the data well but sometimes 

this method does not represent the data accurately. A polynomial curve 

fitting method was developed. This method represented the data very well. 

The pressure vs strain data was cu.rVe fitted by higher order polynomial 

function. 

(3.11) 

The radial modulus is the derivative of the pressure. 

(3.12) 

Using Equations (3.11) and (3.12), the radial modulus and the pressure 

were tabulated according to the strain. By least-squares curve fitting of the 

modulus vs pressure data, the radial modulus was expressed as a 

polynomial function of pressure 

(3.13) 

The calculations of the radial modulus of web material will be shown in 

the experimental analysis section. 

I 



Ewiyalent Spring Constant 

The spring constant of the foundation was expressed by the radial 

modulus and the foundation dimension using Hooke's law. The interface 

element needs this spring constant as an input data. 

The spring constant of an interface element can be calculated by Hooke's 

law. 
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(3.14) 

The stress and the strain developed by the applied force F are: 

or=L andEr=~ 
WL Lr 

Substituting Equation (3.15) into (3.'1 gives: 

L=Er_o_ 
WL Lr 

By definition of the spring constant, we get: 

The equivalent spring constant of the stack of paper in the buckling 

experiment was: 

a = (4.25)(8.375)Er = 9_2212 Er 
3.86 

Eguivalent Modulus of Foundation 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The modulus of foundation was definec;l as a spring constant 

corresponding to unit length [42]. It is the key parameter of the classic 

buckling mode and load. 



Substituting Equation (3.17) into (3.19) gives: 

(3 = WEr 
Lr 

(3.19) 

(3.20) 

The equivalent modulus of foundation of the stack of paper in the buckling 

experiment was: 

R. = 4·25Er = 1101 ..... .., 3.86 . ~ 

Classic Buckling Mode and Load 

(3.21) 

The buckling mode and. load were predicted by the classic solutions of 

an eigenvalue buckling problem of a beam upon elastic foundation. The 

theory and the program were shown in Appendix A and C. The buckling 

mode is the minimum integer that satisfies Equation (3.22) and the 

corresponding buckling load can be obtained by Equation (3.23). 

(3.22) 

(3.23) 

The classic solution did not consider the friction force between the 

beam and the foundations. In the numerical model, the axial loads were 

applied at both sides of the beam. Because the friction forces were divided 

equally between the upper and lower axial loads, half of the area of the 

foundation was multiplied by the friction coefficient and the radial 
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pressure. The modified classic buckling loads were obtained by adding the 

friction forces to the classic buckling loads as follows: 

(3.24) 

The material properties and dimensions are in Tables I and IT. 

The illustrative procedure to find the classic buckling mode and load for 

the buckling experiment at stack pressure of 1.16 psi was as follows; 

The equivalent thickness of the beam was: 

teq = t n113 = 0.0042552130.4113= 0.01935" (3.25) 

The equivalent moment ofinertia of the beam was: 

Ieq = 'W: = (4.25X0~1935)3 = 2_566E_6 in4 
(3.26) 

The equivalent spring constant of the foundation was : 

a = WLEr = (4.25)(8.375X148.24) = 1366_90 lbfm 
Lr 3.86 (3.27) 

The equivalent modulus of foundation was_ :. 
/'[/' ~ 

~ = WEr = (4.25X148.24) = 163_21 lb/in2 
Lr 3.86 (3.28) 

When the stack pressure was 1.1654 psi, the buckling mode was 

obtained as 9 by the minimum integer that satisfied Equation (3.29): 

[ (163.21)(8.375)4 = ~L4 ] s; m2(m+1)2 
x4(6E5X2.566E-6) 7t4Et Ieq 

The corresponding buckling load was obtained as: 

(3.29) 

(3.30) 
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The modified classic solution was: 

Ferro= Fer+ J.lPrA/2 = 31.86 +( 0.35X1.165)(35.594)/2 = 39.12lb (3.31) 

The calculation for each stack pressure was shown in Table III. 

TABLE III 

MATERIAL PROPERTIES AND CLASSIC SOLUTIONS 
OF STACK TESTS FOR EACH STACK PRESSURE 

Stack 
Pressure 

(psi) 

1.16 

1.40 

1.63 

1.86 

2.10 

2.33 

Spring Modulus of 
Constant Foundation 

(lb/in) (lb/in2) 

1366.90 163.21 

1555.79 185.77 

1742.27 208.03 

1926.32 230.01 

2107.87 251.69 

2286.90 273.06 

where 

c 

5354.0 

6093.9 

6824.3 

7545.2 

8256.3 

8957.5 

Classic Solutions 
Mode Buckling LoadOb) 

~=0 J!>(> 

9 31.86 39.12 

9 33.84 42.54 

9 35.79 45.94 

9 37.72 49.32 

10 39.54 52.60 

10 41.06 55.57 



Finite Element Model 

The finite element modeling was accomplished using ANSYS 

commercial finite element code. The version 4.4 is resident upon an IBM

RT computer. 

Element Types 

Elastic Beam Element <STIF3). The" elastic beam element was shown 

in Figure 5. 

Number of nodes (2) : i, j 

Degrees of freedom per node (3): :u,v, COz 

Real constants : area, moment of inertia, height, shear deflection 
constant, initial strain 

Material properties : Young's modulus, coefficient of thermal 
expansion, Poisson's ratio, density 

Shape functions : 

U = Cl + C2 X 

v = ca + C4 x + cs x2+ cs x3 
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COz = dv = C4 + 2cs x + 3cs x2 
dx (3.32) 

y 
J 

roz 

X 

Figure 5. Two Dimensional Elastic Beam Element (STIF3) 



Interface Element (STIF12). The interface element was shown in 

Figure 6. 

Number of nodes (2) : ij 

Degrees of freedom per node (2): u,v 

Real constants (4): angle from global x-axis, normal stiffness, initial 
interference, initial gap status, shearing stiffness. 

Material properties : Friction coefficient 

Shape function : None 

Operation 

y 

1. H the interface is open, . . 
no stiffness is associated with this element. 

2. If the interface is closed and sticking, 
The normal stiffness is used for the gap resistance, 
The shearing stiffness is used for sliding resistance. 

3. H the interface is closed but sliding, 
The normal stiffness is used for the gap resistance. 
The constant friction force is used for the sliding resistance. 

v 

X 

Figure 6. Two Dimensional Interface Element (STIF12) 



Isoparametric Solid Element (STIF42). The isoparametric solid 

element was shown in Figure 7. 

Number of nodes (4): i, j, k, 1 

Degrees of freedom per node (2): u,v 

Real constant : Thickness 

Material properties : Young's modulus (x,y), Poisson's ratio, 
coefficient of thermal expansion (x,y), density, shear modulus 

Shape functions : 
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U = ! Un(l +;n;)(l +11n11) 

V = tvn(l +;n;)(l +11n 11) 
(3.33) 

y 

where n = i,j, k, 1 

;i = ;1 = ..:}, ~ = ;k = 1 

11i = 1'\j = -1, 11k = 111 = 1 

Un,Vn :displacements at node n 

;, 11 : local element coordinates 

(-1 s:;; s:; 1, -1 s:; 11 s:; 1) 

(1,-1) 

~------------------------------~ X 

(3.34) 

(3.35) 

Figure 7. Two Dimensional Isoparametric Element (STIF42) 



Boundary Conditions 

In Figure 3, the x-directional displacements of the left boundary were 

fixed. The center of left boundary was simply supported to prevent vertical 

rigid body translation. The lateral pressure was applied to the right 

boundary as x-directional forces. The nodal points of the assumed buckling 

mode of the beam were constrained together by constraint equations. The 

CE command in ANSYS program can cause the nodal points to deflect 

together with simple constraint equations. 

Mesh Generation 

The y-directional mesh was determined to let one half-sine wave of a 

buckling mode have four elements. If assumed buckling mode was 10, the 

number of elements in y-direction was 40. The x-directional size and the 

number of division of the foundation part were determined by the 

geometric progression so that the mesh size increases gradually as shown 

in Figure 8. 

(3.36) 

al(r-1) 
na = log( + 1) /log(r) 

teq (3.37) 

Then the x-coordinates were calculated as follows: 

(3.38) 



6 x. r m 

~ 

Figure 8. X-directional Mesh Generation 
by Geometric Progression 

x. r m 
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Nonlinear Bucklin~- Analysis 

If the structural stability depends only on the initial geometry and 

stress state, it is a linear or an eigenvalue buckling problem. The 

eigenvalue represents the buckling load and the eigenvector represents the 

buckling mode. 

The simplified model of a center wound roll includes a beam upon an 

elastic foundation, radial pressure and slippages between webs. The 

structural stability of this model not only depends on the original geometry 

but also on the updated geometry, material properties and the status of the 

interface elements. It is a nonlinear buckling problem. The geometric 

nonlinear static analyses must be employed to solve this nonlinear 

buckling problem. 

Calculating Procedure. Tlie buckling load is defined as a transition 

point below which the structure recovers its original geometry and above 

which it deforms more. The procedure to find the buckling mode and load 

by nonlinear static analysis is as follows: 

1. Apply boundary conditions corresponding to the assumed buckling 
mode: (Lateral pressure, Specified displacements, Constraint 
equation of nodal points for assumed buckling mode); 

2. Apply small perturbing loads to the centers between the nodal 
points of assumed buckling mode and save the ANSYS files 
"file03.dat" and "file16.dat" for restart run; 

3. Remove the perturbing loads and apply assumed buckling load; 

4. Check the lateral displacement at the center of the beam whether it 
decreases or increases. If it decreases it is below the buckling 
load, and if it increases it is above the buckling load.; 

5. If it is not buckled yet, restart the ANSYS run from the procedure 2 
by increasing the load slightly until you get the buckling load; 
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6. If the buckling load for assumed buckling mode was found, try 
another buckling modes and find the mode that has the smallest 
buckling load. 

Pre- and Post-processin~ Programs. For each stack pressure and 

buckling mode, we must modify the input data to the ANSYS program 

frequently. One pre- and two post-processing programs for ANSYS 

program were developed inC-language and were attached to Appendix C. 

A flow chart for these programs were shown in.Figure 9. 

The program "MAIN.C" reads data files 'ANSD.INP' and 'FINP' and 

modifies the loading range in 'ANSD.INP' according to the data in 'FINP'. 

To find the buckling load for assumed buckling mode, "MAIN .C" controls 

the individual programs "ANSD.C", "ANSP.C" and "ANSQ.C" in closed 

loop. 

The pre-processing program "ANSD.C" generates the input data to 

the ANSYS program. The header fih~ "V ARIABLE.H" declares global 

variables and transports them between the individual programs. It also 

reads or writes the problem information from or to the data file 

'ANSD.INP'. This data file contains the problem identification, the 

calculating conditions, the dimensions of the beam and the foundation, the 

material properties, and the lower and upper limits of the buckling loads. 

The post-processing program "ANSP.C" picks several nodal 

displacements from the ANSYS output file 'ANS.OUT' and prints them to 

a file 'ANSP.O'. The program "ANSQ.C" reads the file 'ANSP.O' and 

checks the displacements whether the beam is buckled or not. It writes the 

buckling status and accuracy of the buckling load to the file 'ANSD.INP' so 

that the "MAIN.C" program can control the programs. 
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Modify 'ansd.inp' according to the data in 'finp' 

ANSD.C 

ANSP.C 

Increase Load 

MAIN.C 

Figure 9. Flow Chart of Nonlinear Buckling Analysis 



Results of Finite Element Analysis 

Finite element computation of buckling loads requires some input. 

The calculating conditions such as a large displacement convergent 

bound, a perturbing load, and an iteration number were carefully chosen 

to give reasonable results. A detailed discussion of these effects on the 

numerical solutions was discussed at the section of center wound roll in 

Chapter IV. 
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Stack Pressure of 1.16 psi. As shown in Table III, the classic buckling 

mode was 9 and the buckling load was 39.12 lb. The buckling loads for the 

buckling modes from 8 to 11 were calculated and compared. The buckling 

mode associated with the smallest buckling load is the tabulated buckling 

mode. 

Figure 10 showes the history of the lateral displacement at the center 

of the beam where the perturbing load was applied. Bo is the initial 

displacement when the radial pressure and the perturbing load were 

applied. B1 , ... , ~, Bj , ... , Bn are the displacements at assumed buckling 

loads. At 53lb, the lateral displacement B1 was smaller than Bo, i.e., the 

beam went back to its original geometry. At 59lb, Bn was larger than Bo, 

i.e., the beam deformed more.~ was slightly smaller than Boat 57.4lb, 

i.e., the load was slightly below the buckling load. Bj was slightly larger 

than Boat 57.8lb, i.e.,the load was slightly above the buckling load. The 

buckling load at the buckling mode 8 was found to be between 57.4 and 57.8 

lbs. 

The horizontal line in Figure 11 represented the perturbed 

displacement Bo. The circled points represent the lateral di~splacements at 

assumed buckling loads. As the load increased, the lateral displacements 
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~ and Bj approached the oo. The load at ~ was the lower bound and the load 

at Bj was the upper bound of the buckling load. 
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59.0 

t 

t 
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Figure 10. Lateral Displacements according to Beam Status 
Stack Pressure = 1.16 psi, Buckling Mode = 8 
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Using the same procedure, the buckling loads for the buckling modes 

9 to 11 were calculated as shown in Table Nand Figure 12. Because the 

buckling load for the buckling mode 10 was the smallest, the buckling 

mode was 10 and the corresponding buckling load was 51.90 lb. 

TABLE N 

BUCKLING MODE DETERMINATION OF STACK TESTS 
. FOR EACH STACK PRESSURE 

Buckling 
Mode 1.16 

8 57.55 

9 

10 

11 

12 

13 

54.50 

51.90 

53.75 

Stack Pressure (psi) 
1.40 '. 1.63 1.86 

59.60 

55.95 

57.05 

63.40 

59.95 

60.85 

68.5 

63.10 

63.20 

63.50 

2.10 

67.25 

66.80 

66.50 

69.25 

2.33 

71.25 

70.25 

69.25 

72.25 
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1.16 psi 
1.40psi 
1.63psi 
1.86psi 
2.10 psi 
2.33psi 



Higher Stack Pressures. For the higher stack pressures, the buckling 

loads for the buckling modes 9 to 13 were calculated and shown in Table 

IV and Figure 12. The buckling mode associated with the minimum 

buckling load represented the buckling mode for each stack pressure. The 

buckling modes and loads for each stack pressure are shown in Table V 

and Figure 13 in conjunction with the classic solutions and the 

experimental results. 

TABLE V 

BUCKLING LOADS AND MODES 
OF STACK TESTS FOR EACH STACK PRESSURE 

Stack Classic Numerical Experimental 
Pressure Buckling Load Buckling No. Buckling 

(psi) J.1>(> %error Mode Load %error ofTests Load STD 

1.16 39.12 24.6 

1.40 42.54 24.0 

1.63 45.94 23.4 

1.86 49.32 21.8 

2.10 52.60 20.9 

2.33 55.57 19.8 

10 

10 

10 

10 

12 

12 

51.90 6.0 

55.95 22.1 

59.95 18.2 

63.10 19.3 

66.50 27.3 

69.25 32.9 

19 55.57 

3) 71.82 

Z3 73.29 

Z3 78.22 

19 91.53 

19 103.16 

7.06 

10.11 

15.17 

12.45 

22.55 

16.52 
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Comparison to Classic Solutions. In Table V and Figure 13, the 

classic buckling loads were smaller than those computed by finite element 

analyses. The modified classic buckling loads included the friction forces 

between the beam and the foundations. The percentage errors of them 

relative to the numerical ones were within 25 %. Considering the 

computing time, the classic solution can be a useful tool to roughly predict 

the numerical solution and the starring of a wound roll for a given 

winding condition. 

Comparison to Experimental Results. The experimental results were 

the averages of many tests. The number ,of tests wer~ shown in Table V. 

The error bars were standard deviations of the experimental buckling 

loads. In experiments, the buckling loads. were determined by the slope 

change in load vs displacement curves. Although the beam began to 

buckle, it could not change the slope immediately. The noticeable change 

in slope occurred at a slightly post-buckled state. The experimental 

buckling loads represented the loads at slightly post-buckled states. 

The numerical results were smaller than the experimental ones for 

all the stack pressures, for they represented loads which were almost 

initial buckling loads. At the stack pressures of 2.10 psi and 2.33 psi, the 

difference between the numerical and experimental buckling ~oads was 

larger than at the lower stack pressures. The reason was that the friction 

force at the higher stack pressure was so large that the local buckling 

usually occurred at the l?ading area. The percentage errors of the 

numerical buckling loads relative to the averaged experimental ones were 

within 33%. 
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These comparisons of the finite element and experimental results 

have shown that the finite element model was able to predict the initial 

buckling loads and modes of stacks of reproduction paper for various stack 

pressures. If the radial pressure of a wound roll is assumed to be constant, 

the starred roll defect of the wound roll can be predicted using this model. 

Experimental Analysis 

The buckling experiments were performed, which used stacks of 

reproduction paper as a beam and foundations, to verify the constant 

radial modulus model. The buckling modes were measured for a few 

stacks of paper and only the buckling loads were measured for most cases 

because an extreme load usually caused a permanent deformation of the 

stack of paper. 

Radial Modulus of Reproduction Paper 

The MTS machine [27] was used in conjunction with a one thousand 

pound load cell to apply compressive force on the stack. The output signals 

were converted to the loads and the displacements through DASH-16/16F 

AID converter board and the LABTECH Notebook software which was 

installed in an IBM-AT compatible personal computer. The experimental 

equipment is shown in Figure 14. 

A specimen of the stack of reproduction paper for the radial modulus 

measurement had an area of 3" by 4.25" and a height of 3.65". Because the 

strain was very large at low pressure ranges, the load was applied by 

stroke control in the MTS machine. A stack was tested several times by 

examining the effect of loading rate on the load vs displacement curve. A 
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loading rate that was slow enough to yield a consistent curve was used to 

measure the radial modulus. The up-loading curves were chosen because 

the buckling experiments were performed by up-loading. Figure 15 shows 

a load vs displacement curve for several up-loading cases. The radial 

modulus was measured from a ·Stiffened specimen, because the stack of 

paper of buckling experiments will become more stiff by experimenting 

several times. 

'' Load Cell l : '· J 
I I ,. 

Stack of '• 

Paper '• 
"•," 

I I .... ... 
0 )· 

Actuator 1··. :::· ·I 
' ' ..... 

' •' 
.... 

ffiM-AT Computer 

MTSMacbine i2S2!iS Dash-16'16F Board 
l.abTechNotebook 

Figure 14. Apparatus for Radial Modulus Measurement 
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Figure 15. Load vs Displacement Curve for Radial Modulus 
Measurement of Stack of Reproduction- Paper 
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Pfeiffer's Method. [35] The pressure vs strain curve was obtained in 

Figure 16 by dividing the compressive force by the specimen area and the 

displacement by the original stack height. The pressure and radial 

modulus functions were shown in Equations (3.9) and (3.11). The constants 

kt and k2 were obtained by taking the logarithms and least-squares curve 

fittings of the pressures as shown in Equation (3.10). The constant k1 was 

added to the pressures and logarithms were taken of the modified 

pressures. A simple program to calculate the constants kt and k2 was 

made and presented in Appendix E. 

Figure 17 shows the iterations of the curve fittings to find the 

converged k1 within the error of l.OE-5. Mter 19th and 20th iterations, the 

constants were as follows: 

k~19) = 0.31047, k~20) = 0.31048 and !420)= 96.678 (3.39) 

The k1 values from 19th and 20th iterations were close enough to decide 

that the pressure function fitted the data well. The pressure and radial 

modulus functions were obtained by substituting the constants k1 and k2 

into Equations (3.9) and (3.11) respectively: 

Pr = 0.3105 [exp(96.678£r)- 1] 

Er = 30.017 + 96.678 Pr 

(3.40) 

(3.41) 

The pressure function was overlapped with the experimental data in 

Figure 16. The modulus function was overlapped with that of the least

squares curve fitting method in Figure 18. 
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1. Pfeiffer's Pressure function 
Pr = 0.3105 [exp(96.678Er) - 1] 

2. Third order polynomial function 
Pr =- 0.16195+68.7~- 2036.h~ + 1.9099e5~ 

0.01 0.02 

Strain (in!"m) 

0.03 0.04 

Experiment 
Pfeiffer 
Polynomial 

Figure 16. Pressure vs Strain Curve for Radial Modulus 
Measurement of Stack of Reproduction Paper 
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Er = 42.081 + 93.729Pr- 2.1338p;- 0.06307~ 
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Figure 18. Radial Modulus of Reproduction Paper 
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Polynomial Curve Fitting Method. A third order polynomial function 

was obtained by a least-squares curve fitting of the pressure versus strain 

curve as shown in Figure 16. The radial modulus was obtained by 

differentiating the polynomial pressure function. 
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Pr =- 0.16195+68.764e.r- 2036.1ey + 1.9099esey 

Er = 68.764- 4072.2£.r + 5.7297ey 

(3.42) 

(3.43) 

The pressures and the moduli were tabulated versus the original strain 

data. The radial modulus function was then obtained as a function of 

pressure by a least-squares curve fitting as shown in Figure 18. 

Er = 42.081 + 93.729Pr- 2.1338~- 0.0630~ (3.44) 

In Figure 16, the data below 0.2 psi were scattered so much that they were 

discarded in the curve fitting. The curve fitted function did not represent 

the pressure well around the upper edge of the data, i.e., 7.5 psi. The valid 

range of the polynomial function of the radial modulus was between 0.2 psi 

and 7.0 psi. 

Comparison of Two Methods. Figure 16 shows that both Pfeiffer's and 

polynomial pressure functions represented the experimental pressure 

very well for the low pressure range below 4 psi. At the pressure range 

above 4 psi, Pfeiffer's pressure data were higher than the experimental 

ones. In Figure 18, the linear radial moduli of Pfeiffer's method were 

similar to that of the polynomial function at lower pressure range, but 

those were larger than these at higher range. 

Because Pfeiffer's method assumed the radial modulus as a linear 

function of pressure, it could not represent the experimental data 



accurately. The higher order polynomial function represented the radial 

modulus more accurately than Pfeiffer's linear function. The coefficients / 

of the polynomial function do not have any physical meaning but Pfeiffer's 

constants do. 

Buckling Experiment 

Apparatus. The experimental equipment was the same as the one 

used in the radial modulus measurement. A fixture was made for the 

buckling experiments of stacks of reproduction paper as shown in Figure 

19 and attached to the MTS machine. A bottom plate, three vertical plates, 

and two loading units were made of aluminum. A hydraulic cylinder 

stack and a hydraulic hand pump were used to supply lateral pressure on 

the stacks of paper. A pressure gage was calibrated by a dead weight gage 

and connected to a hydraulic hand pump. Four steel rods were used to 

guide the movement of the vertical plate to maintain its vertical angle. Two 

aluminum blocks were used at the loading area to supply a good contact on 

the paper beam. Four thin aluminum spacers were placed below the 

foundation to maintain a horizontal level. 

The loading area of the paper beam was carefully cut to obtain a flat 

surface. The upper and lower parts of the beam and the foundations were 

glued to be easily handled. The material properties and the dimensions of 

the reproduction paper and the aluminum are shown in Table I. 
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Paper beam 

Supporting plate (AI) 

Pressure Gage 

Hydraulic Pump 

Figure 19. Apparatus for Buckling Test of Stacks of Paper 



Stack Pressure. The forces corresponding to the ram pressures were 

measured by the load cell and least-squares curve fitted by a linear 

function as shown in Figure 20. 
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F = -14.899 + 1.6578 Pram (3.45) 

The constant term was due to the weight of the loading part of the ram. A 

converting constant from the ram pressure to the stack pressure was 

obtained by dividing the slope by the area of the beam which was 8.375" by 

4.25". 

Pstack = 0.04658 Pram (3.46) 

200 

150 

100 

50 
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Ram Pressure (psi) 

Figure 20. Calibration of Ram Pressure by Load Cell 
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Experimental Procedure. The loading procedure was very important. 

When the vertical loading units and/or the lateral pressing units were 

misaligned, the paper beam was distorted and local buckling occurred at 

the edges of the beam. The experimental procedure was as follows; 

1. Mount the foundations upon spacers, the lower aluminum block, 
and the beam; 

2. Apply small lateral pressure and align the upper loading unit to 
the side supporting plate; 

3. Press down the beam slightly to -contact the bottom completely; 

4. Apply lateral pressure gradually and check the alignment of the 
load cell and the lower loading unit. Adjust the whole fixture if 
necessary; 

5. If everything is aligned well, fasten all the bolts; 

6. Apply vertical load gradually by seeing the load vs displacement 
curve on the computer and the buckling shape of the specimen; 

7. If the buckled area is localized, stop loading and align the load cell 
and the loading units again. Repeat steps 2 through 6, if 
necessary. 

Results of Experimental Analysis 

A typical load vs displacement curve in buckling experiments was 

shown in Figures 21 and 23. In Figure 21, the load was applied until the 

beam was fully buckled and encountered bending. Figure 22 showed the 

status of the beam as the load was increased. In Figure 23, the load was 

applied until the beam began to buckle. 



Beam Thickness = 0.40" 
Paper Width = 4.25" 
Foundation Thickness = 3.86" 
Stack Pressure = 1.16 psi 
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Figure 21. Load vs Displacement Curve of Buckling 
Experiment (Loaded up to Fully Buckled State) 
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Beam Thickness = 0.40" 
Paper Width = 4.25" 
Foundation Thickness = 3.86" 
Stack Pressure = 1.16 psi 
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The curve in Figure 21 was divided into three regions according to the 

slope of the curve. In region I, the slope was almost constant and the beam 

was in a pre-buckled ~tate as shown in Figure 22. In region II, the slope 

was decreased nonlinearly as the load was increased. The beam was 

encountering buckling, i.e., post-buckled state. The beam began to buckle 

at the transition point of the slope from region I to region II. The buckling 

load was obtained at this transition point. In region Ill, the beam was 

fully buckled and encountered bending, i.e., the slope waf:! kept zero or 

negative although the displacement was increased. The buckling modes 

were clear in region III and after the middle of region II. 

? 

A few of the specimens were fully compressed up to region III to see 

the buckling modes. The majority of the specimens were compressed until 

they began to buckle, which was at the beginning p~rt of region II as 

shown in Figure 23. 

Determining the buckling load by the slope change from the load vs 

displacement curve was not easy. Occasionally the slope did not have a 

constant region because of the misalignment of the fixture and the load 

cell. Various tests were performed and analyzed statistically. The number 

of data obtained from the tests were 19,67 ,39,23,19 and 19 for stack 

pressures of 1.16, 1.40, 1.63, 1.86, 2.10, and 2.33 psi. 

The buckling loads were measured at various loading rates to see the 

effect of the loading rates on the buckling loads. The buckling load was not 

dependent upon the loading rate at rat~s slower than 0.0001 in/sec as 

shown in Figure 24. Most of the remaining data was obtained at the 

loading rate of 0.0001 in/sec. 
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Figures 25 to 30 show the buckling loads for the stack pressures 1.16 to 

2.33_psi. The buckling loads were scattered for all the buckling 

experiments. Averaged buckling loads and the standard deviations are 

shown in Figure 31. The standard deviations show large scattering of the 

buckling loads for each stack pressure. The reason for these la:r,ge 

standard deviations was due to the misallgnment of the fixture and the 

load cell, the initial flatness of the stacks of paper, uncertainties of the 

lateral pressure, the frictional behavior of the experiments and the 

reading error from the load vs displacement curve. The comparison of 

these results to the numerical solutions was discussed in the finite 

element analysis part and presented in Figure 13. 
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Figure 26. Buckling Loads for Stack Pressure of 1.40 psi 
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Figure 27. Buckling Loads for Stack Pressure of 1.63 psi 
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Figure 28. Buckling Loads for Stack Pressure of 1.86 psi 
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CHAPTER IV 

BUCKLING ANALYSIS OF CENTER WOUND ROLLS 

Finite Element Analysis 

Introduction 

The stress distribution of a center wound roll was calculated by 

Hakiel's nonlinear winding model. The variable radial pressure 

distribution and the corresponding radial modulus were implemented into 

the numerical model. The radial pressure was represented as nodal 

forces. The radial modulus was calculated according to the pressure by the 

modulus function obtained by the stack tests. The equivalent spring 

constant and the modulus of foundation were calculated by assuming that 

the springs were connected. in series. The modulus of foundation is a key 

parameter of classic solutions. 

Stress Distribution in a Center Wound Roll 

Core Stiffness. A core stiffness was defined as a pressure that was 

necessary to strain the outside surface of the core, radially, to a value of 1 

in./in. [1]. If the core is made of steel or isotropic material, the core 

stiffness can be derived as a function of the geometry and material 

properties of the core [41]. 



(4.1) 

By the strain-displacement relation in a cylindrical coordinate it can be 

shown as: 

The stress-strain relation for an isotropic material is: 

£t = O't- VOr 
· Ecm 

The stresses at the outside of the core [38] are: 

Or= -Po 

O't = -P/f~ r~ 
r~- r~ 

Inserting Equations (4.3)-(4.5) into (4.2); we get: 
' . 

. 2 2 E _ E ro- rc 
c - em 2 · 2 ( 2 2) ro + rc- Vc to- rc 

The core stiffness of the steel core in this research was: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Ec = (3.0E7) 3.4452- 3.0352 = 3.93E6 psi 
3.4452+ 3.0352 - (0.3X3.4452- 3.0352) (4.7) 

Hakiel's Nonlinear Winding Model. Pfeiffer [31] regarded the radial 

modulus as a function of radial pressure. Yagoda [47] .implemented an 

accurate core boundary condition into the winding model. Then Hakiel [17] 

implemented the finite difference method to solve the governing equations 

by considering the nonlinear radial modulus and the core boundary 

condition. The derivation of the algebraic equations from the governing 



equations is shown in Appendix B. It was programmed inC-language and 

presented in Appendix C. 

Windini Conditions. The stress distribution of a wound roll depends 

on the followings: 

- Dimension and material properties of a core; 

- Outside diameter of a roll; 

- Winding speed; 

- Caliper and material properties of a web; 

-Winding Tension 

First three parameters was fixed: Steel cores of the same size were 

used to avoid any effect of the core stiffness on the buckling of the roll. The 

outside diameter of the roll was 6", which had wide constant stress region. 

The winding speed of 30 feet per minute was used to reduce the air 

entrainment during winding. 

The web material was polyester film. Constant and stepped tension 

windings were applied to generate the starred roll defects. Various 

winding conditions were presented in Table VI, Figures 32 and 35. Figure 

34 shows a wide range of compressive circumferential stress distributions. 

Figure 37 shows large compressive circumferential stress region around 

the stepped area. 



Case 
Number 

1 

2 

3 

4 

5 

TABLE VI 

WINDING CONDITIONS AT 3M SPLICER WINDER 
Core : I.D.=3.035", O.D.=3.445" 

Winding Speed = 30 fpm 

Initial Stepping Final 
Radius Tension Radii Tension Radius Tension 
(inch) (psi) (inch) (psi) (inch) (psi) 

1.723 200 3.0 200 

1.723 300 3.0 300 

1.723 500 3.0 500 

1.723 200 2.5-2.541 500 3.0 500 

1.723 300 2.5-2.541 500 3.0 500 
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Programs for Hakiel's Model. The radial pressure and 

circumferential stress distribution in a center wound roll are calculated by 

the program "HAKIEL.C". The program "MESH.C" reads the output of 

"HAKIEL.C" and generates the radial mesh to make the input data for 

"ANSD.C" and "BUCKLE.C". The program "ANSD.C" generates the input 

data to ANSYS program as discussed in the finite element analysis section 

in Chapter III. The program "BUCKLE.C" calculates the classic buckling 

solutions and modifies the buckling load by adding the friction force due to 

the radial pressure. The header file "ER.H" contains the radial modulus 

as a function of pressure. These programs are controlled by the program 

"MAIN.C". A flow chart for them is shown in Figure 38. 

Finite Element Model 

The element types, mesh and boundary conditions for the finite 

element model of a center wound roll were the same as that of the stack of 

paper. The model of a wound roll implemented the pressure distribution 

in a wound roll. Only a quarter of the circumferential length of the roll 

was modeled as a beam length because the memory of the IBM-RT 

computer was limited. 

Representation of Radial Pressure. A typical radial pressure 

distribution at a constant tension winding: was shown in Figure 33. The 

pressure at each element was obtained by the average of the adjacent nodal 

pressures and was applied to the model by the incremental forces as 

shown in Figure 39. The total force at the right sides of the element divided 

by the area represents the element pressure. The radial modulus of the 

element was calculated according to the element pressure. 
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Egyivalent Modylys of Fotmdation. Every element in the radial 

direction has a different radial modulus and size. A spring constant of the 

fotmdation was obtained by assuming that the elements were connected in 

a series of linear springs as shown in Figure 40. By Hooke's law, a spring 

constant of individual element is : 

AEr,i 
<Xi=--

4 

Total displacement tmder an axial force will be the summation of the 

individual displacements: 

na na 

(4.8) 

(4.9) 

The total displacement can be expressed by an equivalent spring constant: 

(4.10) 

Inserting CXi in Equation ( 4.8) into ( 4.9) and equating Equations ( 4.9) and 

(4.10) yield an equivalent spring constant as: 

[
na ]-1 

aeq= l:_y_ 
i=l AEr,i (4.11) 

The modulus of foundation can be obtained by simply dividing the 

spring constant by the beam length. The corresponding classic buckling 

mode and load can be calculated by Equations (3.22) and (3.23). 
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Results of Finite Element Analysis 

Parametric Study of Calculating Conditions 

Perturbing Load. In the buckling analysis, several perturbing loads 

were applied at the centers of the nodal points of the beam to generate 

assumed buckling mode. Several perturbing loads were tested for the 

constant tension winding of 200 psi. The inner and outer roll radii were 

1.723" and 3.00". The beam was selected between .the radii 2.40" and 2.75". 

The beam length was calculated at the radius 2.361" which was at the 

middle of the wound roll. The convergent bound of large displacement was 

fixed at 0.005". The perturbing load was varied from 0.005lb to 0.2lb. 

Figure 41 shows the lateral displacements for different perturbing 

loads. The circled points represented the perturbed displacements. The 

triangular and rectangular points were the displacements at the axial 

loads of 15 and 15.5 lb, which were lower and upper bounds of the buckling 

load. The displacements at these axial loads were almost the same as that 

due to the perturbing load, i.e., the beam maintained its original geometry. 

Figure 42 shows the effect of the perturbing load on the buckling mode 

and stress. The buckling mode was not changed at all. The buckling stress 

was 12.18 psi at 0.005 lb and 12.66 psi at 0.2lb. The error between them is 

only 3.8 %. The buckling load was not changed much for different 

perturbing loads. 

The buckling load corresponding to the perturbed geometry 

represents the buckling load at slightly post buckled state. When the 

perturbing load was too small, the lateral displacement due to the 

perturbing load was too small to be detected because the ANSYS output 



had only six significant digits. If it is too large, the buckling load may 

represent the load at highly post buckled state. 
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To calculate the buckling load, the perturbing load should be as small 

as possible, which can cause detectable lateral displacement. 
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Figure 41. Lateral Displacements for Different 
Perturbing Loads 
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Convergent Bound. To perform the geometric nonlinear static 

analysis by ANSYS program, the convergent bound of the displacement 

should be set in conjunction with the number of iterations according to the 

geometry, the material properties and applied load. The default value is 

0.001. 

Several convergent bounds were tested for the constant tension 

winding of 200 psi. The inner and outer roll radii were 1. 723" and 3.00". 

The beam was selected between the radii 2.40" and 2.55". The beam length 

of 3. 709" was calculated at the middle of the wound roll. The perturbing 

load was fixed at 0.05lb. The convergent bound was varied from 0.0001" to 

0.05". 

When the convergent bounds were 0.0002" and 0.0001", the solutions 

did not converge within ten iterations. The solutions for other cases 

converged within two or three iterations with accurate displacement 

solutions. Figure 43 shows the effect of convergent bound on the buckling 

mode and stress. The buckling mode was not changed at all. The buckling 

stress was 12.46 psi at 0.0005" and 12.54 psi at 0.05". The error between 

them was only 0.6 %. The convergent.bound did not affect the solution 

noticeably. 

If the convergent bound is large enough that the iteration stops too 

early even if the solution is not accurate, the solution may not satisfy the 

equilibrium condition for given boundary conditions. If it is too small, the 

displacement may not converge at all or too many iterations may be 

required to get a converged solution. The convergent bound should be as 

small as possible to obtain the converged solution within a tolerable 

number of iterations. 
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Parametric Study of Beam Geometry and Location 

A wound roll was modeled in rectangular coordinates rather than 

polar coordinates. The beam part was selected from the negative v 
circumferential stress _r~gion. The buckling stress and mode may be -------- -~-~-·----

affected by the selection of the length, location and thickness of the beam. 

Various lengths, locations and thicknesses of the beam were tested to find 

the effects of them on the numerical solutions and to find the best method 

to select the beam from the stress distribution of a wound roll. 

Beam Location. The beam length was calculated by a quarter of the 

circumferential length of the roll at the middle of the wound roll. The 

beam thickness was fixed at 0.15". The perturbing load was 0.05lb and the 

convergent bound was 0.001". The beam was located from inside to the 

outside of the roll as shown in Figure 44. 

Figure 45 shows the effect of the beam location on the buckling mode 

and stress. When the beam was located at the radius 2.225", the buckling 

mode was 17 and the buckling stress was 25.16 psi. When the beam was 

located at the radius 2.676", the mode was 14 and the buckling stress was 

17.92 psi. The buckling stress was decreased almost linearly as the beam 

was moved out from the core showing a sensitivity to foundation stiffness 

which is a function of radial pressure. The level of the circumferential 

stress should be considered when selecting the beam location. 
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Figure 44. Beam Locations in a Wound Roll 
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Beam Length. The beam was located at the middle of the roll. The 

beam thickness was fixed at 0.15". The perturbing load was 0.05lb and the 

convergent bound was 0.001". The beam length was calculated by a quarter 

of the circumferential length of the roll at several locations. 

Figure 46 shows the effect of the beam length on the numerical 

solutions. As the beam length was increased, the buckling mode was 

increased from 13 to 17 and the buckling stress was decreased from 20.97 

psi to 18.53 psi. This shows that the beam length does not affect the 

buckling stress much but it affects the buckling mode considerably. It may 

be reasonable to calculate the beam length at the middle of the wound roll. 

Beam Length with Same Effective Length. Because a quarter of the 

circumferential length of the roll was modeled, it should be examined 

whether the numerical buckling stress and mode can represent that at full 

circumferential length. The effective length was defined as the beam 

length for one buckling mode or half-sine wave. The beam length was 

varied so that the effective length of the beam was constant at 0.20". 

Figure 47 shows the buckling stresses and modes for different beam 

lengths with the same effective length. When the beam length was 1.20" 

and the corresponding buckling mode was 6, the buckling stress was 30.64 

psi. As the beam length was increased to 2.00" with the buckling mode 10, 

the buckling stress was decreased to 25.45 psi, i.e., the buckling stress was 

decreased by 17_%. When the beam length was 4.00", the buckling stress 

was decreased by 33 %. Even if the beams had the same effective lengths, 

the buckling stress was decreased as the buckling mode was increased. If 

this is an eigenvlaue buckling problem and the effective length is the 

same, the buckling stress should be the same. This means that the actual 



buckling stress was overestimated by the numerical model because a 

quarter of the roll was modeled instead of modeling the full 

circumferential length. 
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Beam Thickness. The location and the length of the beam were 

obtained at the middle of the roll. The perturbing load was 0.05 lb and the 

convergent bound was 0.001". The beam thickness was varied from 0.10" to 

0.35" by an increment of 0.05". 

Figure 48 shows the effect of the beam thickness on the buckling mode 

and stress. When the beam thickness was 0.1,", the buckling mode was 17 

and the buckling stress was 24.9 psi. When the beam thickness was 0.35", 

the buckling mode was decreased to 13 and the buckling stress was 

decreased to 13.1 psi, which was almost half of the buckling stress at the 

thickness of 0.1". The buckling stress was decreased exponentially as the 

beam thickness was increased. 

Results of Parametric Study. From the parametric study of the effects 

of the location, length, and thickness of the beam, the beam thickness was 

found to be the most important parameter of the buckling analysis of a 

center wound roll. The procedure to select the beam thickness by 

considering the circumferential stress distribution and to calculate the 

corresponding buckling mode and stress was as follows: 

1. Select a beam corresponding to a certain level of compressive 
circumferential stress. ex) Tr > 10 % of Tr(max) 

2. Calculate the buckling mode and stress. 

3. Compare the buckling stress to the circumferential stress. 
If the buckling stress is less than minimum circumferential 

beam stress, increase the beam thickness. 
If the buckling stress is larger than minimum circumferential 

beam stress, decrease the beam thickness. 

4. Repeat the procedures 1 through 3 until the buckling stress and 
minimum circumferential beam stress are within an acceptable 
limit. 
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Stepped Tension Windings 

To generate a large compressive circumferential stress region, the 

winding tension was stepped from 200 to 500 psi and from 300 to 500 psi 

between the radii of 2.500" and 2.541" as shown in Figure 35. The inner 

and outer radii were 1. 723" and 3.00". The radial pressure and the 

circumferential stress distribution are shown in Figures 36 and 37. 

The results of the parametric study of the effect of the beam geometry 

and location on the numerical solutions were applied to the stepped 

tension windings. 
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The numerical buckling stresses for different beam selections were 

overlapped on the circumferential stress distribution in Figure 49. At first, 

the beam thickness was selected by studying the region within the wound 

roll in which the circumferential stresses of the roll were larger than 

30.421 psi, which was 10 % of the maximum circumferential stress in 

absolute value. The corresponding buckling mode and stress were 17 and 

19.65 psi. Because the buckling stress was less than the minimum 

circumferential beam stress, the beam thickness was increased by 

choosing 5 %of the maximum circumferential stress. The corresponding 

buckling mode and stress were 16 and 16.40 psi. By the iterative procedure 

developed in the parametric study, the beam thickness was selected so that 

the minimum circumferential beam stress and the buckling stress were 

close enough. 

Figure 50 compares the buckling stresses to the minimum 

circumferential beam stresses at various beam thicknesses. At the fourth 

iteration with a beam thickness of 0.1896", the minimum circumferential 

beam stress of 17.04 psi was close to the buckling stress of 17.22 psi. The 



corresponding buckling mode was 17. Because one quarter of the roll was 

modeled, the buckling mode was 68 for this stepped winding condition. 
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With the same procedure, the buckling mode and stress were 

calculated for the stepped tension winding from 300 to 500 psi. 

In Table VII and Figure 51, the classic buckl~ng modes are shown to 

be smaller than the numerical and experimental ones within a 30% error. 

The classic buckling stresses including· friction force were smaller than 

the numerical buckling stresses within a 25 % error as shown in Table 
- ' 

VII and Figure 52. Considering the computing time, the classic solution 

can be a useful tool to roughly predict tJie numerical solution and the 

starring of a wound roll for a given.winding condition. 

In Table VII and Figure 51, the numerical buckling mode 68 at the 

stepped winding tension of 200 to 500 psi was within a standard deviation 

8.68 of experimental buckling mode 76. The numerical buckling mode 80 at 

the stepped winding tension of 300 to 500 psi was almost the same as the 

averaged experimental buckling mode 78. 

With these comparisons of the buckling mode~ from the numerical 

and experimental analyses, the finite element model was proved to be 

useful to predict the buckling stress of center wound rolls: 



Winding 
Tension 

(psi) 

TABLE VII 

BUCIU.ING MODES AND STRESSES 
FOR CENTER WOUND ROLLS 

Classic Numerical 
Bucklin" Friction Buckling 

Mode Stress involved % Error Mode Stress 

200-500 13(52*) 10.15 15.36 24.3 17(68*) 17.2 

300-500 17(68*) 17.19 29.10 23.4 

IDO 

:m 

500 

10 

12 

15 

6.76 7.8 12.9 

9.44 12.25 10.7 

15.11 26.73 15.7 

20(80*) 34.5 

11 

13 

17 

10.31 

16.00 

30.68 

Experimental 
Buckling 

Mode 

76± 8.68** 

78± 6.90** 

* Multiplied by four to compare to the experimental buckling modes 

** Standard deviation of the experiments 
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Failure Criterion for Starred Roll Pefects 

A failure criterion of starred roll defects was obtained by developing a 

concept of a margin of safety. The margin of safety for a starred roll defect 

was defined as the difference of the maximum compressive 

circumferential stress from the bu,ckling stress divided by the maximUm. 

circumferential stress or by the b~ckling stress as follows; 

• , _ lacrl - IGt(max)l 
Margin of Safety - 1 Crl 1 1 a or Gt(max) (4.12) 

where Denominator = IGt(max)l ifM.S. > 0 

lacrl ifM.S. < 0 

The margin of safety is an indicator to determine whether the wound 

roll may buckle or not for a given winding condition. The larger the 

margin of safety is, the safer the roll1s from starring. If it is around zero, 

the roll may be buckled by a small pertUrbing load. When it is negative, the 

larger the absolute value is, the more e~sily the starred roll defect may 

occur. 

Table VIII and Figure 53 show the margins of safety for different 

winding conditions. The margins of safety at the winding conditions of 200 

to 500 psi and 300 to 500 psi were -16.69 and -4.86 respectively. The starred 

roll defect may occur more easily at the former case than at the latter case 

because the margin of safety is negative and the absolute value is larger. 



TABLE VIII 

COMPARISON OF BUCKLING STRESSES AND 
CIRCUMFERENTIAL STRESSES 

Winding 
Tension 

(psi) 

200-500 

300-500 

210 

000 

500 

FOR CENTER WINDINGS 

Maximum 
Circumferential Stress 

(psi) 

304.21 

202.05 

1.595. 

3.607 

9.810 

Buckling 
Stress 
(psi) 

17.2 

34.5 

10.31 

16.00 

30.68 

Margin of 
Safety 

(psi/psi) 

-16.69 

-4.86 

5.44 

3.43 

2.13 
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Constant Tension Windings 

The beam thickness was selected so that the circumferential stress of 

the beam was larger than 99 % of the maximum compressive 

circumferential stress. 

In Table VII and Figure 52., the classic buckling stresses which 

included the friction forces were smaller than the numerical solutions 

within 25% error. The classic solutions can be used as rough predictions 

of the numerical solutions. 

In Table VII and Figure 54., the classic buckling modes were within 

12 % error from the numerical solutions. 

The margins of safety for constant tension windings were shown in 

Table VIII and Figure 55. Because the critical buckling stresses were 

larger than the maximum circumferential stresses of the rolls, the 

margins of safety were positive and the rolls were safe from starring. As 

the winding tension was increased, the margin of safety was decreased, 

i.e.,the roll became less safe from starring. 

Even if the circumferential stress is. below the buckling stress, the roll 

may buckle if an additional perturbing load is encountered, which yields 

the total circumferential stress to be larger than the buckling stress. 

Examples of perturbing loads might be cases where the roll is dropped or 

impacted. 
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Experimental Analysis 

Winding experiments were performed to validate the variable radial 

modulus model, which used polypropylene and polyester films with the 3M 

Splicer Winder in the WHRC at OSU. 

The drawing of the winder is shown in Figure 56. The winding 

conditions and the material properties were discussed in the finite element 

analysis part and presented in Table VI. 

Only the buckling modes were measured after winding because the 

buckling loads could not be measured during or after winding. The 

polypropylene and polyester were tested to generate the starred roll defect. 

The wound roll of polypropylene showed severe edge deformation at high 

winding tensions and the starred roll defect could not be generated. Clear 

starred roll defects were generated with polyester film by stepping the 

winding tension. A focus was on the polyester film for the winding 

experiments. 

Radial Modulus of Polyester Film 

The INSTRON machine [22] was used to measure the radial modulus 

of the polyester film in conjunction with a 2248 lb load cell. The output 

signal from the INSTRON was collected by the IBM-AT compatible 

computer through a GPIB board and a data acquisition program 

accompanied by the INSTRON. The radial modulus was obtained by the 

least-squares curve fitting method. 
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The specimen area of the stack of polyester film was 3.00" by 4.25" and 

the initial height was 3.86". The pressure vs strain curve is shown in 

Figure 57. A third order polynomial function was obtained by least squares 

curve fitting of the pressure vs strain data. 

The radial modulus was obtained as a function of strain by 

differentiating the polynomial function of pressure. 

The radial moduli were tabulated as a function of the experimental 

strain. Several modulus functions were obtained for different pressure 

ranges by least-squares curve fittings with respect to the radial pressures~ 

The modulus functions were overlapped and divided by several linear 

functions as shown in Figure 58 and Table IX . These linear functions are 

used to let the Hakiel's model run faster. 
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TABLE IX 

RADIAL MODULUS OF POLYESTER FILM 
AS A FUNCTION OF PRESSURE 

(Type 377/Grade 92) 

P_ressure(psi) Radial Modulus(psi) 

0.0 to 5.0 51.244p 
5.0 to 10.0 40.427 p - 54.081 

10.0 to 20.2 37.257p + 84.836 
20.2 to 40.5 34.698p + 137.505 
40.5 to 70.5 32.336p + 233.088 
70.5 to 100.4 30.505p + 362.051 

100.4 to 150.8 28.846 p + 528.648 
150.8 to 199.1 27.381 p + 749.474 
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Experimental Procedure 

A chart, which ta}?ulated the rotating speed of the windup roll versus 

the roll radius, should be prepared befQre the windings to mainta,in a 

certain winding speed. The experimental procedure was as follows: 

1. Mount the unwind, roll and place -~he web upon the winding 
machine in a proper path in ~hich theload cell was calibrated. 
Different path may cause incorrect reading of· the load; 

2. Tape the edge of the web on the windup roll. Wind a few wraps and 
realign the web path on the windup roll if there is any 
misalignment; 

3. Run the machine by monjtoring the .. rotating'speed of the windup 
roll. Adjust the rotating speed of windup roll frequently by a 
chart which tabulates the rotating speed vs radius for a certain 
winding speed; 

4. For a stepped winding tension, increase the winding tension 
continuously by counting the number of revolutions of the 
windup roll; 

5. During the winding, paint" the sides of the wound roll using a black 
permanent marker, which will show clear buckling mode after 
buckling occurred; 

6. After a roll was wound,, place the wound roll upon a flat surface 
and rotate the roll several times while pressing it down to, 
generate the starring; . · · · 

7. Count the number of half sine wave of the wound roll, which is the 
buckling mode. 

Results of Experimental Analysis 

Stepped Tension Windings. In stepped tension winc:ij.ngs, the 

circumferential stresses were larger than the buckling stresses as shown 

in Figure 53. The margins of safety were -16.69 and -4.86 for two different 
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winding conditions as shown in Table VIII and Figure 53. The starred roll 

defects were generated by rotating the wound rolls upon a flat surface 

while pressing them down. Figure 59 shows a typical starred roll defect 

generated at a stepped tension winding. 

The starring did not occur during or after winding because the radial 

pressure and the friction force inside, the roll prevented the roll from 

buckling. This means that the roll could not be buckled without any 

perturbing load. This is the reason why good looking wound rolls 

frequently encounter starred roll defects during transportation or in stock 

or in use. 

Figures 60 and 61 show the experimental buckling modes at the 

stepped tension windings. The horizontal lines are the averaged buckling 

modes. The sides 1 and 2 are the cross machine directional ends of the 

wound roll. Figure 62 shows the average buckling modes with standard 

deviations. 

The classic, numerical and experimental buckling modes in winding 

experiments are shown in Table VII and Figure 51. The classic and 

numerical buckling modes were multiplied by four to be compared to the 

experimental values because a quarter of the circumferen~iallength of the 

wound roll was modeled. 

For the stepped winding tension from 200 psi to 500 psi, eleven 

windings tests were' performed. The average experimental buckling mode 

was 76 and the standard deviation was 8.68. The classic and numerical 

buckling mode was 52 and 68 respectively. The numerical buckling mode 

was within one standard deviation of the experiments. 

For the stepped winding tension from 300 psi to 500 psi, eleven 

windings tests were performed. The classic, numerical and experimental 
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buckling modes were 68, 80 and 78 respectively. The standard deviation of 

the experiments was 6.9. The numerical and experimental buckling 

modes were very close in this winding condition. 

Constant Tension Windinils. In constant tension windings, the 

numerical buckling stresses were much larger than the circumferential 

stresses of the wound rolls as shown in Figure 54. Because the margins of 

safety were larger than 2.13 for three constant tension windings, they 

were safe from starring. Clear starred roll defects could not be generated 

at these constant winding tensions. Ohly dim, starred roll defects were 

generated. 

By comparing the numerical and experimental buckling modes, it 

was proven that the finite element model could predict the buckling 

stresses and modes of center wound rolls for given wincling conditions. 
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Figure 59. Starred Roll Defect at Stepped Tension Winding 
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

Summary 

A finite element model was developed whiCh can predict the buckling 

stress of a center wound roll for a given Winding condition. The model was 

based on the stress distribution calculated by Hakiel's nonlinear winding 

model. 

The first model assumed the radial pressure and modulus as 

constant throughout the wound roll. The model was validated by the finite 

element analyses using ANSYS program and the buckling experiments 

using stacks of reproduction paper on the MTS machine. 

The second model implemented the variable radial pressure and 

modulus in a wound roll. The model was validated by the finite element 

analyses and the center winding experiments using polyester films on the 

3M Splicer Winder. 

Classic solutions were obtained by the energy method based upon 

Winkler's foundation model [18, 19, 42]. The classic buckling load was 

modified by adding the friction force between the beam and the foundations 

as follows; 

F crm = F cr + J,JP rA12 

A margin of safety for a starred roll defect was defined as an indicator 

of starring for a given winding condition as follows; 

121 



122 

• · lcrcrl - lOt( )I Margin of Safety = · max 
lcrcrl or ICJt(max)l 

The larger the margin of safety is, the safer the roll is from starring. 

When it is around zero, the roll may be buckled by a small perturbing load. 

When it is negative, the larger the absolute value is, the more easily the 

starred roll defect may occur. 

By comparing the results from the classic, numerical and 

experimental analyses, the following conclusions were obtained: 

1. The numerical buckling loads of stacks of reproduction paper 

represented the initial buckling loads for given stack pressures. 

2. The numerical buckling modes of the wound rolls could predict the 

experimental values. 

3. A concept· of the equivalent moment ofinertia of a beam was valid 

to represent a series of webs. 

4. The modified classic buckling loads were good predictions of 

numerical values within a 25% error. 

5. The margin of safety of starred roll defect was useful indicator to 

determine the starring of the wound roll for a given winding 

condition. 



, Recommendations 

The following are recommended for further study; 

1. If the computer memory is large enough, model the whole roll 

instead of modeling a quarter of the roll and use finer mesh for 

the foundations to represent the pressure distribution more 

accurately. 

1.23 

2. Develop a more accurate winding model than Hakiel's to calculate 

the stress distributions in wound rolls. 

3. Perform a parametric study for a wide range of constant winding 

tensions with different web materials and roll dimensions. 

4. If the roll is wide in the cross machine dire,ction, plane strain 

condition should be assumed in the winding model and the finite 

element analysis. 

5. To perform winding experiments to validate the numerical model, 

use computerized winding machine to apply accurate winding 

conditions consistently and find better method to generate the 

starred roll defect from the wound roll. 

6. Find better classic solution to predict the numerical solution and 

the starred roll defect more accurately. 
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APPENDIX A 

BUCKLING OF A BEAM UPON AN ELASTIC 

FOUNDATION 

When a beam is subjected to the elastic foundation, the energy method 

can be used to calculate the critical value of the compressive force. The 

work done by the axial load is equal to the strain energy of the beam and the 

foundation. 
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F. ·········································· +F .. ~··· ···::-::::::::::::: ._. ~·:: 
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Figure 63. A Beam with AxialLoad upQn Elastic Foundation 
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The general expres~ion for the deflection cu.rve of a beam with hinged 

ends can be represented by a series summation such as: 

-
y = L an sinn7tx 

n=l L (A.l) 

The strain energy due to the bending of the beam is: 

JL , 

d2 2 
Ut = EI (..-L) dx 

2 dx2 
0 (A.2) 

Differentiating Equation (A.l~ twice and substituting it into Equation (A.2) 

gives: 

00 

Ut = 7t4EI L(aftn4) 
4L3 n=l 

The strain energy due to the deformation of the foundation is: 

Substituting Equation (A.l) into Equation (A.4) gives: 

The work done by the axial load F is: 

T = f F(ds-dx) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

The axial deformation of the beam can be approximated by Taylor's series 

expansion: 



ds = .../dx2 + dy2 = dx V 1 + (dy)2 
dx 

ds = dx[l + l(dy>2] 
2 dx 

Substituting Equation (A.S) into Equation (A.6) gives: 

1L d 2 
T = F (...I.) dx 

2 dx 
0 
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(A.7) 

(A. B) 

(A.9) 

Differentiating Equation (A.l) and substituting it into Equation (A.9) gives: 

00 

T = 7t2F L (a~n2) 
4L n=l (A.10) 

The work done by the axial load is equal to the strain energy obtained by the 

beam and the foundation: 

(A.11) 

Substituting Equations (A.3), (A.5) and (A.10) into Equation (A.ll) gives: 
00 00 00 

7t4E} :L<a~n4) + ~~ :La~ = '4£ :L<a~n2) 
4L n=l n=l n=l {A.12) 

Solving Equation (A.12) for F gives:· 

(A.13) 

Let all terms except one be equal to zero, i.e., the buckling mode will have a 

simple sine wave. 

y = am sinm1tx 
L (A.14) 
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The critical buckling load can be expressed as follows: 

F - x2EI ( . 2 -~L4 ) cr --- m +___;_ __ 
L2 m2n;4EI (A.15) 

The critical load depends not only on the properties of the beam but also · 

on the integer m th~t represents the buckling mode. By gradually 

increasing ~' a point will be reached where_ the critical load (F cr) for mode 

m+ 1 is smaller than that for mode ni. This means that the buckling mode 
< ' ' ' 

must be changed from m to m+1 for values-for the modulus of the 

foundation (~) which are larger than this point. The. critical value of~ can 

be found as follows: 

(A.16) 

Arranging Equation (A.16) gives simple expression as: 

(A.17) 

The minimum integer that satisfies Equation (A.17) is the buckling 

mode. The corresponding buckling load c~ be obtained by substituting the 

·buckling mode (m) into Equati~n (A.15). 



APPENDIX B 

HAKIEL'S NONLINEAR WINDING MODEL 

Figure 64. Free Body Diagram of a Segment of a Ring 

Basic Assumptions 

Hakiel's winding model assumed the followings. 

1. The wound roll is a geometrically perfect cylinder: The web has 

uniform thickness and width throughout the winding, 
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2. The roll is made of a collection of concentric hoops of web not a 

spiral. The elastic constants including the radial modulus (Er) 

are constant in a single hoop, 

3. The roll is an orthotropic elastic cylinder: It is linear elastic in the 

circumferential, direction and nonlinear elastic in the radial 

direction. The radial modulus is a function of pressure, 

4. The stresses are functions of radius but not of axial or 

circumferential position, 

5. The pla,ne stress condition is assumed. 

Basic Linear Eguation 

The equilibrium equation for plane stress in cylindrical coordinates in 

absence of shear is: 

dO' r-r +O'r-O't=O 
dr 

The linear orthotropic constitutive equations are: 

for the radial direction: 

O'r O't Er=--Vrt-
Er Et 

for the tangential direction: 

The strain energy constraint is: 

Vtr _ Vrt ---
Er Et 

Define the simple symbols as: 

v=vrt 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 
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and 

(B.6) 

where g2 is constant during the winding of any one lap. 

Equations (B.2) and (B.3) can be rewritten as: 

(B.7) 

and 

(B.S) 

The strain compatibility equation is: 

(B.9) 

By substituting Equations (B.l), (B.7) and (B.S) into (B.9) and 

eliminating O't, a second order ordinary differential equation(ODE) can be 

obtained in terms of the radial stress. 

r2 d20'r + 3rdO'r- (g2-l)O'r = 0 
dr dr (B.lO) 

This ODE can be represented by the incremental radial pressure as: 

r2 d2oP + ardoP - (g2-l)oP = 0 
dr dr (B.ll) 

where oP =- crr 

Boundary Conditions 

The second order ODE is subject to two boundary conditions: One is at 

the outside of the winding roll and the other is at the core boundary. 
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The incremental inter layer pressure caused by the winding of the last 

lap is equal to the pressure given by the hoop stress formulation: 

T t oP = -_:tt_ at r = s r (B.12) 

The radial deflection of the core outer surface must be equal to that of 

the inside of the roll. 

w=~ at r=1 . Ec (B.13) 

Because the strain £tis w at r = 1, Equation (B.S) becomes: 

w = oT + voP at r = 1 
Et (B.14) 

where oT(= O"t) is incremental circumferential stress. 

By substituting O"t in Equation (B.2) into oT in Equation (B.14) and 

equating Equations (B.13) and (B.14), the second boundary condition at the 
• 

core will be: 

(B.15) 

Finite Difference Method 

The term g2 in the second order ODE in Equation (B.11) is a function of 

radial modulus, consequently a function of radial pressure that is the 

independent variable, i.e., Equation (B.11) is nonlinear. If g2 is ~ssumed 

as constant at one layer, a finite difference method can be used to solve the 

equation. By applying the central difference approximation, a set of 

algebraic equations can be obtained as follows: 

(B.16) 

where 
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(B.17) 

The boundary conditions can be represented as: 

§::'P _ Tw,n+l t 
u n+l--

rn+l (B.18) 

and 

(B.19) 

Finally Equations (B.17) to (B.19) constitute a set ofn+llinear 

algebraic equations with n+ 1 unknowns. This set of equations consists of a 

tri-diagonal system. This can be solved easily by Thomson's algorithm 

which can solve tri-diagonalized matrix equations [4]. The solutions are 

the radial pressures caused at n+llocations in the roll by the winding of 

the lap n+l. The total stresses will be obtained by adding all the 

incremental stresses due to the winding of each lap. 

n 

Pi = Pi + :2, aPij 
j=i+l (B.20) 

· The circumferential stress can.be calculated by solving Equation (B.l) 

for O't: 

dP· T· - p. - r; _1 
1- 1 1dr (B.21) 



APPENDIX C 

PROGRAMS FOR HAKIEL'S WINDING MODEL 

AND CLASSIC SOLUTION 

#include <string.h> /*Main: Program for Hakiel's model*/ 
#include <stdio.h> 
void Initialize(); 
void haltiel(); 
void mesh(); 
void buckle(); 

char finp[20]; 
extern char fdel[50]; 
extern char fn1[20],fn2[20],fn3[20],fn4[20],fn5[20]; 
extern int section,nline,leng,part; 
extern double rmin,rmax,percent,Rl,R2; 
extern int itw[lO],nh; 

) extern double tww[lO],H,hh,ec,et,nyu,tw,rk; 
'\ extern int nlayer,ntw,mat,norm; /* IBM-RT */ 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 

FILE *fl; 
strcpy(fin p ,argv[ 1]); 
Initialize(); 
if (!strcmp("yes",argv[2])) hakiel(); 
else { 

int line= 0; 
char c[SO]; 
f1 = fopen(fn3,"r"); 
while(!feof(fl)) { 

fgets(c,SO,fl); line++; 
} 
nline = --line; 
fclose(fl); 

} 
mesh(); 

} /* main */ 
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I* Hakiel's Winding Model *I 

#define Max 3000 I* ffiM-RT *I 
#include "variable.h" 
void Initialize(); 
void Tw _pick(); 
void Constant_Tri(); 
void Result(); 
double Er(); 
extern char finp[20]; 

fdel[50]="rm "; 
section,nline ,leng, part; 

. rmin,rmax,percent,R1,R2; 
itw[10],nh; 
tww[10] ,H,hh,ec,et,nyu, tw ,rk; 
nlayer,ntw,mat,norm; I* IBM-RT *I 

char 
int 
double 
int 
double 
int 
double dp[Max],p[Max],T[Max],r[Max], I* ffiM-RT *I 

a[Max], b[Max],c[Max] ,d[Max], beta[Max] ,gama[Max]; 
void hakiel() 
{ 

int i,k,nl; 
double a2,b2,c2; 
k= 0; 
rk = l.O+H*(et/ec-l.O+nyu)lr[O]; 
while (k < nlayer) { · 

Tw_pick(k); 
if((k+l)% 50== 0) 
print£'(" Winding ... %4d-th layer, Tw = %.1f\n",k+1,tw); 
dp[k+ 1] = H*twlr[k]; 

I*** Calculate dp[i] ***I 
if (k == 0) ; I* first layer *I 
else if (k == 1) I* second layer *I 

dp[1] = dp[2]1rk; . 
else if (k == 2) { . I* ·third layer *I 

a2 = 1.0-1.5*H/(1.0+H); 
b2 = H/(1.0+H)*H/(1.0+H)*(l;0-etJEr(p[2]))-2.0; 
c2 = 1.0+1.5*H/(1.0+H); 
dp[1] = c2*dp[3V(-b2*rk-a2); 
dp[2] ·= rk*dp[1]; · 

} 
else { I* 4th- nlayer 

Constant_Tri(k); 
} 

I*** Calculate p[i] & T[i] from dp[i] ***I 
for (i=1; i <= k+1; i++) 

p[i] = p[i] + dp[i]; 
if (k == nlayer-1) { 

T[k+1] = tw; 

*I 
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} 
k++; 

for (i=k; i >= 2; i--) 
T[i] = -p[i]-r[i71]*(p[i+ 1]-p[i-1])/(2*H); 

T[1] = -p[1]-r[O]*(p[2]-p[1])/H; 
Result(k); 

} /*while*/ _ 
printft"\n k = %d !! Everything is wound. \n" ,k); 

} /* hakiel */ 
void Initialize() 
{ 
/************ 

mat 
INPUT NOMENCLATURE 
Material Identification 

*************** 

Option for Normalization of the radius 
Number of Junction of Winding· Tension 
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norm 
ntw 
section 
part 
percent 

: l'fumber of section of a circumferenciallength of a roll 
: _ Beam Selection by percentage or specified radii 

Percentage of Ma~c Stress for Beam Part Selection 

nh 
hh 
ec 
et 
nyu 
rmin 
rmax 
B 

No. of Layers for one 'Element 
Caliper of Web Material 
Core Stiffness 
Tangential Young's modulus 
Poison's Ratio -
Initial Radius 
Final Raidius 
Beam Length(ifit is zero, it will be calculated at middle) 

itw[i] No. of Layers at Junction Point 
tww[i] : Winding Tension· at Junction Point 

*********************************************************~******/ 
int i,fp; 
dinp('r' ,'p'); 
I eng = strlen(finp ); . 
f1 = fopen(finp,"r"); 
fgets(head,100,fl); 
fscanf(fl,"%d%d%d%d%d %If', 

&mat,&norm,&ntw ,&section,&part,&percent); 
fscanftfl,"%d %lf%lf%lf%lf%lf%lf %If% If %If', 
- &nh,&hh,&ec,&et,&nyu,&rmin,&rmax,&R1,&R2,&B); 
for (i=O; i < ntw; i++) { ~ 

} 

fscanf(fl,"%d%lf',&itw[i],&tww[i]); 
itw[i]/=nh; 

fclose(fl); 
dinp('w', 'p'); 
H = hh*nh; 
nlayer = (rmax-rmin+1e-10}/H; 
for (i=O; i < nlayer+ 1; i++) { 



} 

dp[i]=p[i]= 0.0; 
r[i] = rmin + H*i; 

strcpy(fn1,finp ); 
strcat(fn1,".d"); /* fnl.d .... input data to mesh.c */ 
strcpy(fn3 ,finp ); 
strcat(fn3," .f'); /* fn3.f ... input data redisplay */ 
strcpy(fn4,finp ); 
strcat(fn4,".b"); /* fn4.b ... output from buckle.c */ 
strcpy(fn5,finp ); 
strcat(fn5,".a"); /* fn5.a ... input data tp ansd.c */ 
for (fp=O; fp < 2; fp++) { 

if(fp == 0) 
f3 = stdout; 

else 
f3 = fopen(fn3,"w"); 

fprintf(£3," %s\n",head); 
fprintf(£3," Material l.D .... %d\t",mat); 
switch (mat) { 
case 1: 
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fprintf(f3,"*Hakiel's Paper *\n"); break; 
case 2:; 
case 3: 

fprintftf3,"*Polypropylene (linear function)*\n"); break; 
case 4: · 

fprint:ft£3, "*Polypropylene (3rd polynomial function)* \n"); break; 
case 5: 

fprintftf3,"*ICI film Polypester (377/92) *\n"); break; 
default: 

printft"mat = %d!! Check Material I.D !\n",mat); 
exit(1); 

} 

fprint:ft£3," Thickness (hh) = % 12.5£\n" ,hh); 
fprint:ft£3," No. of layer (nh) = %12d\n",nh); 
fprint:ft£3," Core Modulus (Ec) = %12.5e\n",ec); 
fprint:ft£3," Tan. Modulus (Et) = % 12.5e \n" ,et); 
fprint:ft£3," Posson Ratio (nyu)= %12.5e \11",nyu); 
fprint:ft£3," Min. Radius (rmin)= %12.5e\n",rmin); 
fprint:ft£3," Max. Radius (rmax)= %12.5e \n",rmax); 
fprint:ft£3," No. of section = %2d\n",section); 
fprint:ft£3," Beam part Selection(l/0) = %2d\n",part); 
fprint:ft£3," Normalization(l/0) = %2d\n \n",norm); 
fprint:ft£3,"\n Output File \"%s\" ... input informations ",fn3); 
fprint:ft£3,"\n \ "%s \" ... input to mesh.c" ,fn1); 
fprintftf3,"\n \"%s\" ... input to buckle.c\n",fn4); 
fprintftf3,"\tLayer\tRadius\tTension \n"); 
for (i=O; i < ntw; i++) 

fprint:ft£3," \ t%6d \ t%6.3£\ t%6.3£\n" ,itw[i] ,r[itw[i]], tww[i]); 



fprintft£3,"\n Total layers ... %8d\n",nlayer); 
} 

fclose(£3); 
} /* Initialize *I 
void Result(k) 
int k; 
{ 

} 

int i,line = 0; 

f1 = fopen(fn1,"w"); 
fprintftfl,"* Radius\tRadial Pressure\tCircumferential Stress\n", 

tw ,r[k + 1], tw ,r[k + 1]); 
line++; 
for (i=1; i <= k; i+=2) { 

fprintftfl,"%.4f\ t%.4e \ t%.4e \n", 
r[i-1],p[i],T[i]); 

line++; 
} 
fprintf(fl,"%.4f\ t%.4e \t%.4e \n" ,rmax,O.O,T[k+i]); 
line++; 
nline = line; 
fclose(fl); 

void Tw _pick(k) 
int k; 
{ 

int i· 
' k = k+1; 

for (i=O; i < ntw; i++) { 
if (k == itw[i]) { 

} 

tw = tww[i]; 
break; 

else if(k > itw[i] && k <= itw[i+1]) { 

} 

if(tww[i] == tww[i+1]) { 
tw = tww[i]; 
break; 
} 

else { 
tw = tww[i]+(tww[i+1]-tww[i])/ 

(itw[i+ 1]-itw[i])*(k-itw[i]); 
break; 
} 

}/* fori < ntw */ 
} /* Tw_pick */ 
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void 
int 
{ 

} 

Constant_ T.ri(n) 
n; 

int 
double 

i,n1; 
h_r,gi2; 

n1 = n+1; 
a[1] = 0.0; 
b[l] = -rk; 
c[1] = 1.0; 
d[1] = 0.0; 
for (i=2; i <= n; i++) { 

h_r = H/r[i]; 

} 

gi2 = et/Er(p[i]); 
a[i] = 1.0-1.5*h_r; 
b[i] = h_r*h_r*(1.0-gi2)-2.0; 
c[i] =1.0+1.5*h_r; 
d[i] = 0.0; 

d[n] = -dp[n+1]*c[n]; 
c[n] = 0.0; 
beta[1] = b[1]; 
gama[1] = d[1]/b[1]; 
for (i=2; i <= n; i++) { 

} 

beta[i] = b[i]-a[i]*c[i-1]/beta[i-1]; 
gama[i] = (d[i]-a[i]*gama[i-1])/beta[i]; 

dp[n] = gama[n]; 
for (i=n-1; i >= 1; i--) 

dp[i] = gama[i]-c[i]*dp[i+1]/beta[i]; 

142 



I* Radial Modulus Function*/ 

#include <math.h> 
extern int mat; 
double Er(p) 
double p; 
{ 

} 

switch (mat) { 
case 1: 
case 2: 
case 3 : /* polypropylene 
if( p <= 11.0) 
else if(p > 11.0 && p <= 50.0) 
else if(p > 50.0 && p <= 70.0} 
else if(p > 70.0 && p <= 110.0) 
else if(p > 110 && p <= 150.0) 
else if(p > 150.0 && p <= 300.0) 
else { 

retum(450.0*p); 
retum(1060.0*p-0.513*p*p) 

(linear functions) */ 
ret~rn(82.93*p); 
return(325.42*p-2671.8); 
ret~(275.44 *p-172.8); 
return(289.46*p-1154.2); 
return(272.05*p+ 760.5); 
return(231.83*p+6793.0); 

printft"\nCaution !!! Out of range of\"layer_er Table\"\n"); 
exit(1); 

} 
case 4 :/* polypropylene (3rd polynomial functions) */ 
if(p <= 20) 

retum(81.823+128.04*p+6.8096*p*p-0.17355*p*p*p); 
else if(p > 20.0 && p <= 100.0) 

return(-444.98+176.54*p+2.5333*p*p-1.6321e-2*p*p*p); 
else if(p > 100.0 && p <= 330.0) , 

return( -4.4852e4+972.39*p-3.1059*p*p+3. 7733e-3*p*p*p); 
else { 

printft"Caution !!! Out of range of \"layer_er Table\"\n"); 
exit(1); 

} 
case 5: /* 
if( p <= 5.0) 

polyester(ICI 377/92) */ 

else if(p > 5.0 && p <= 10~0164) , 
else if(p > 10.0164 && p <= 20.1897) 
else if(p > 20.1897 && p <= 40.4648) 
else if(p > 40.4648 && p <= 70.4554) 
else if(p > 70.4554 && p <= 100.377) 
else if(p > 100.377 && p <= 150.796) 
else if(p > 150.796 && p <= 199.079) 
else { 

return(51.2436*p); 
return( 40.427 4 *p+54.081); 
return(37 .2571 *p+84.8356); 
return(34.6979*p+ 137 .5052); 
return(32.335'8*p+233.0884); 
retum(30.5054 *p+362.0507); 
retum(28.8457*p+528.64 79); 
retum(27 .3813*p+ 7 49.4 736); 

printft"\nCaution !!! Out of range of\ "layer_er Table\ "\n"); 
exit(1); 

} 
default:; 
} /* switch */ 
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/* Buckling of a Beam upon Elastic Foundation */ 

#include 
#include 
#include 
extern double 

int 
double 

buckle() 
{ 

<stdio.h> -
<math.h> 
"varlable.h" 
et,hh; 
i,m; 
iz,L2, L3, L4,Pe, 
betaO,betal,pe,Beta,Alpa; 

/* BUCKLE.H */ 

printft"\n ... calculating buckling mode and load .. ~ \n"); 
f1 = fopen(fn4,"w"); . -
iz = W*hh*hh*tl/12; 
L2= B*B; 
L3= L2*B; 
14= L3*B; 
betaO= L4/(pow(M_PI,4.0)*et*iz); 
betal= 3*beta0/16; 
fprintftfl," Young\'s modulus - = %12.5e\n",et); 
fprintftfl," Moment of inertia "= % 12.5e \n" ,iz); 
fprintftfl," Width of the plate · = %12.5£\n",W); 
fprintftfl,"- Length of the plate . = %12.5£\n",B); 
fprintftfl," Foundation = %12.5f %12.5f\n",al,a2); 
fprintftfl," Thickness of the sheet = % 12.5£\n" ,hh); 
fprintftfl," Orig. Th. ofthe stack= %12.5£\n",tl); 
fprintftfl," Equiv: Th. of the stack= %12.5£\n\n",t); 
Alpa = kl; 
pe= M_PI*M_Pl*et*iz/L2; . 
fprintftfl,"\tks\tmode Fcr(lb)\t Pcr(psi)\t PeOb)\n"); 
Beta=betaO* Alpa/B; 
for(m=1;m < 50;m++) { _ 

ift(m*m*(m+1)*(m+1)-Beta) > 0.0) { 

} 
} 
fclose(fl); 

} /* buckle */ 

Fe = pe*(in*m+Beta/(m*m)); 
Pc = Fc/tl/W; 
Pe = pe*m*m; 
mode_b = m; _ 
fprintftfl, ''%12.4e \~%3d\ t%8.3£\ t%8.3£\ t%8.3£\n", 

break;· 
Alpa,m,Fc,Pc,Pe); · 
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/* Header File "variable.h" */ 

#include 
#include 
#define 
#define 

<stdio.h> 
<string.h> 
NMAX 100 
FMAX 100 

FILE 
char 
int 
int 
int 
int 
double 

double 
double 

*fl., *f2,*£3,*f4,*f5; 
fn1[20],fn2[20],fn3[20],fn4[20],fn5[20]; 
iijj,kk,ll,ie,na,nc,nt,nb1,ne,:h.ac,nae; 
db1,db2,nfx[50],fs; 
niter ,nprn,nstep; 
n1[10],e1[10],n[10]; 
a1,a2,B,W,ks,k1,area,t,t1,MU,Ey,cnvr, 
pr[50],Dav,fr[50],X[50],Ex,Pav,Fs,Ps; 
df,fx,h,areah,areat,Iz1,Iz2,rate; 
x[NMAX],y[2],z; ' 

/* ansd.inp */ 
double fc1,fc2,fcr,Fc,Pc; 
int restart,slope,mode,mdiv ,mode_b,nb,nf,nd,ifc; 
char head[6][100],ansdin[10]; 

void dinp(rw ,N) 
char rw,N; 
{ 

int i; 
if (N == 'c') 

strcpy(ansdin,fn5); 
else 

strcpy(ansdin,"ansd.inp"); 
switch(rw) { 
case 'r': 

fl=fopen(ansdin,"r"); 
for (i=O; i < 6; i++) 

fgets(head[i],100,fl); 
fscanftfl,"%lf %If %lf',&fc1,&fc2,&fcr); 
fscanftfl,"%d %d %d %d %d %d %d", 

&ifc,&restart,&slope,&mode,&mdiv,&nf,&nd); 
nb = mode*mdiv; 
fscanftfl, "%If %If %If %If %If %If %If %If %If', 

&a1,&t,&a2,~B,&W,&tl,&Ey,&MU,&df); 
fscanftfl,"%lf %d%d%d %d%d %If', 

&rate, &na,&ne,&nt,&niter ,&npm,&cnvr ); 
fscanf(fl, "%lf%d%lf%1f%1f%1f%1f%1f', 

&k1,&mode_b,&Fc,&Pc,&Fs,&Ps,&Pav ,&Ex); 
nae = na + ne + 1; 
if(N == 'p') 

break; 

for (i=O; i <= nae; i++) 
fscanf(fl,"%lf' ,&X[i]); 
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} 

case 'w': 
fl=fopen(ansdin, "w"); 
for (i=O; i < 6; i++) 

fprintf(fl., "%s" ,head[i]); 
fprintf(fl.,"%.3f\t%.3f\t%.3f ",fc1,fc2,fcr); 
fprintft:£1, "%3d\ t%3d \ t%3d\ t%3d \ t%3d\ t%3d \ t%3d \n", 

ifc,restart,slope,mode,mdiv ,nf,nd); 
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fprintf(fl,"%.4f\t%.5e %.4f\t%.4f\t%.3f\t%.4f\t%.3e %.2£\t%.4£\n", 
a1,t,a2,B,W,t1,Ey,MU,df); 

fprintftfl,"%.2f\t%d\t%d\t%d\t%d\t%d\t%.4f\n", 
rate,na,ne,nt,ni ter ,nprn,cnvr ); 

fprintf(fl,"%.5e\t%2d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", 
k1,mode_b,Fc,Pc,Fs,Ps,Pav ,Ex); 

nae = na + ne +1; · 
for (i=O; i <= nae; i++) ( 

} 
break; 
default:; 
} 
fclose(fl); 

fprintf(fl.,"% 10.8£\n" ,X[i]); 
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I* Data File "ansd.inp" */ 

polyester(377/92) (h = 0.00092", Tw = 200psi) Beam= center L=(R1+R2)/2 
fc1 fc2 fer ifc restart slope mode mdiv nf 
a1 t a2 b w t1 Ey MU df 
fac na ne nt niter nprn cnvr 
k1 mode Fe Pc Fs Ps Pav Ex 
x[i] 
-23.750 -23.800 -23.800 10 2) 14 4 10 
0.5637 5.02600e-03 0.5637 2.8000 

1 
6.000 
2) 

'0.1500 6.534e+0 0.28 0.0050 
1.75 7 7 2 -20 0.0005 
3.48786e+03 6 22.014 24.460 1.738 1.931 1.724 88.355 
0.000()()()()() 
0.24651137 
0.38737501 
0.46786852 
0.51386481 
0.54014840 
0.55516760 
0.56375000 
0.56877600 
0.57735840 
0.59237759 
0.61866119 
0.66465748 
0.74515099 
0.88601463 
1.13252600 

/* Data File "finp" */ 

fname 
c200.1_17 .00 

fg1 
-20 

fg2 
-40 

ncheck div . mode mdiv restart 
4 10 17 4 0 



APPENDIX D 

PROGRAMS FOR NONLINEAR BUCKLING 

ANALYSIS 

#include 
main() 

"variable.h" 
/* main.c */ 

{ 
char line[120],fname[20],ansys[50],ansp[50],ansys1[50], 

file3[50],keep3[50],fetch3[50], 
file16[50],keep16[50],fetch16[50]; 
fg1,fg2,fi ,Df; double 

int 
FILE 

ncheck,div ,i,j ,leng,nfile; 
*fl. *f2· ' ' dinp('r' ,'p'); 

fl. = fopen("finp","r"); 
fgetsOine, 120,£1); 
fscanf(fl,"%s %lf%lf %d%d%d%d%d",fname,&fg1,&fg2, 

&ncheck,&div ,&mode,&mdiv ,&restart); 
fclose(fl); 
leng = strlen(fname); 
strncpy(file3,fname,leng-2); 
strncpy(file 16,fname,leng-2); 
strcat(file3, "f3"); 
strcat(file 16, "fl6"); 
strncpy(ansys,fname,leng-1); 
strcat(ansys,''a"); · 
strcpy(keep3,"cp file03.dat "); 
strcat(keep3,file~); 
strcpy(keep16,"cp file16.dat "); 
strcat(keep16,file16); 
strcpy(fetch3,''cp "); 
strcat(fetch3,file3); 
strcat(fetch3," file03.dat"); 
strcpy(fetch16,"cp "); 
strcat(fetch16,file16); 
strcat(fetch16," file16.dat"); 
Df = (fg2-fg1)/ncheck; 
fi = Dfldiv; 
nfile=O; 
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for (i=O; i < ncheck; i++) { 
fc1 = fg1+Df*i; 
fc2 = fc1 + Df; 
nf = div; 
j = 0; 

do { 
nfile++; 
slope= 1; 
dinp('w' ,'p'); 

if{lrestart) { , 
system("ansd"); ·I* make a.I)SYS input "ansd.1" *I 

· I~ ansd < ansd.inp > ansd.l+node *I 
system("ansys < ansd.l > ldevlnull "); 

system(keep3); · 
system(keep16); 

system("cp ans.out ans.outll"); 
restart= 1; 
system("date >> finp"); 

} I* !restart *I 
for(ifc=O; ife <=. nf; ifc++) { 
fer = fcl+(fc2-fc1)/nf*ifc; 

} 

dinp('w' ,'p'); 
system(fetch3 ); 
system(fetch16); 
system("ansd"); I* make ansys input "ansd.2" *I 
system("ansys < ansd.2 > ldev/null "); 
system("cat pre2 >> pre"); 
system("cat ans.out2 >> ans.out"); 

/***Examine the displacements***/ 
system(" ansp "); 

I* ansp < ans.out+ansd.inp+node > ansp.o *I 
dinp('r', 'p'); 

/*** Updateload ranges· ***I 
system("ansq"); · 

· I* ansq < ansp.OHlnsd.inp > ansd.inp *I 
strcpy(ansys1,"mv ans.out "); · 
strcat(ansys1,ansys); 

. system(a:psys1);. · I* cp ans.out > file##.#a *I 
ansys[leng-1]='b'; · 
strcpy(ansys 1, "mv ans.dsp "); 
strcat(ansys1,ansys); 
system(ansys1); . I* cp ans.out > file##.#b *I 
fname[leng-1]++; 
strcpy(ansp,"cat ansp.o st1 > "); 
strcat(ansp,fnam~); 
system(ansp); I* cat ansp.o st1 > file##.#1 *I 

f3 = fopen(fname,"a"); 
fprintf(£3,"\nFile name = %s\n",fname); 
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} 

fclose(£3); 
j++; 
dinp('r' ,'p'); 

if (slope == 1) 
restart=O; 

else if (slope == 2) 
system("cp ans.out11 ans.out"); 

else if (slope > 2){ 
system("rm file* core"); 
exit(); 

} 
} while (slope==2 && nfile<9); /* end do*/ , 
} 

system("rm file* core"); 
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I* Input Data generation to ANSYS program *I 

#include "variable.h" 
void constants(); 
void mesh(); 
void boundary(); 
void resume(); 
double x_y(); 
double h2,areah2,ks2; 
main() 
{ 

} 

dinp('r', 'p'); 
constants(); 
if (!restart) { 

} 

mesh(); 
boundary(); 

else resume(); 

void constants() 
{ 

int i· ' ' 

char temp[100]; 
Dav=Pav*al/Ex; 
if(MU != 0.0) 
else 
area= W*B; 
h = Blnb; 
areah = W*h; 
areat = W*t; 
Iz1 = W*h*h*h/12; 
Iz2 = W*t*t*t/12; 
ks = kllnb; 

fs=O; 
fs=1; 

I* ansd.c *I 

sprintf\temp,"%.9e %.9e %.9e",h/2,areah/2,ks/2); 
sscanf\temp,"%lf %If %lf',&h2,&areah2,&ks2); 
h = h2*2; 
areah = areah2*2; 
ks = ks2*2; 
nb1 = nb+1; 
nac = nae+3; 
y[O] = 0; 
y[1] = B; 
z=O.O; 

I* Node generation *I 
n1[0] = 1; 
n1[1] = nb1 *na+1; 
n1[2] = n1[1]+nbl; 
n1[3] = n1[2]+nbl *nt; 
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} 

n1[4] = n1[3]+nb1; 
n1[5] = n1[4]+nb1 *ne; 
nc = n1[2]+nb1; 
e1[0] = 1; 
e1[1] = na+1; 
e1[2] = e1[1]+2; 
e1[3] = e1[2]+5; 
e1[4] = e1[3]+2; 
e1[5] = e1[ 4]+ne; 
db1 = mdiv/2; 
db2 =mdiv; 
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void mesh() 
{ 

int ij ,m,pick,half; 
double xin· ' f3 = fopen("ansd.1","w"); 

fprintf(£3, "/OUTPUT ,pre \niPREP7\ntriTLE "); 
fprintf(£3, 
"MU=%4.2f,t=%7.5f,tl=%7.5f,Ey=%9.3e,m~%2d,F=%8.3f,%8.3f\n", 
MU,t,t1,Ey,mode,fc1,fc2); 

fprintf(f3,"KAY,6,1 \t *Large Deflection Option\n"); 
fprintf(f3,"CNVR,,%.4f,1 \t *Convergent Bound\n \n",cnvr); 
fprintf(f3,"ET,1,42,0,1,3 \t * Plane.stress\n"); 
fprintf(f3,"R,1,%7.3f \t * Thickness\n\n",W); 
fprintf(f3,"EX,%2d,%.4e $EY,%2d,%.4e $NUXY,%2d,O\n", 

1,Ex,1,Ey,1); 
fprintf(f3,"\nET,2,12,%d,1,3 \t\t ***Gap Element\n",fs); 
fprintf(£3, "R,2,-90, %.10e,1" ,ks); 
fprintf(£3," \t \t * theta,stiffness,interfernce,status\n"); 
fprintf(f3,"MU,2,%.2f \t\t *Friction Coefficient\n",MU); 
fprintf(f3,"\nET,6,12,%d,1,3 \t\t ***Gap Element\n",fs); 
fprintf(£3, "R,6,-90, %.9e, 1" ,ks2); 
fprintf(£3," \t \t * theta,stiffness,interfernce,status\n"); 
fprintf(f3,"MU,6,%.2f \t\t *Friction Coefficient\n\n",MU); 
fprintf(f3,"ET,4,3 \t \t \t *Center Beam Element\n"); 
fprintf(f3,"EX,4,%.4e\nNUXY,4,0\n",Ey); · 
fprintf(f3,"R,4,%.6e,%.6e,%.6e\t* Area,Izz,Thickness\n",areat,Iz2,t); 

fprintf(f3,"ET,3,3 \t \t \t *Lateral Beam Element\n"); 
fprintf(f3,"EX,3,%.4e\nNUXY,3,0\n",Ex); 
fprintf(f3,"R,3,%.10e,1.0E1,%.10e\t* Area,Izz,Thickness\n",areah,h); 

fprintf(f3,"ET,5,3 \t \t \t * Top_Bottom Beam Element\n"); 
fprintf(f3,"EX,5,%.4e\nNUXY,5,0\n",Ex); 
fprintftf3,"R,5,%.9e,1.0E1,%.10e\t* Area,Izz,Thickness\n", 

areah2,h2); 
for (i = 0; i <= nae; i++) 

if(i < na) 
x[i] = X[i]; 

else if (i == na){ 



} 

x[i] = X[i]; 
x[i + 1]=X[i]; 
x[i+2]=(X[i]+X[i+1])/2; 
x[i+3]=X[i+1]; 

else if (i > na) 
x[i+3] = X[i]; 

for (i=O; i <= nac; i++) { 
n[O] = nb1*i+1; 

} 

n[1] = n[O]+nb; 
for (j = O;j <= 1;j++) 

fprintf(f3,"$N,%4d,%10.8f,%10.8f ",n[j],x[i],yfj]); 
fprintf(f3,"$FILL \n"); 

/***Node Generation***/ 
for (ie = 0; ie < 5; ie++){ 

ii = n1[ie]; 
jj = ii+1; 
kk =jj+nb1; 
11 = kk.-1; 

switch (ie) { 
case 0: 

case 1 :; 
case 3: 

case 2: 

case 4: 

fprintf(f3,"\nTYPE,1 $MA.T,%2d $REAL,1 ",1); 
fprintf(f3,"\n$E, %4d, %4d, %4d,%4d" ,ii,jj,kk,ll); 
fprintf{f3,"\t \t$EGEN,%~d,%2d,%2d",na,nb1,l); 
fprintf{£3,"\t \t *Element %2d-%2d\n",1,na); 
break; 

fprintf(f.3,"TYPE,6 $MAT, 6 $REAL,6 "); 
fprintf{£3, "$E, %4d, %4d \n" ,ii,ll); 
fprintf{f3,"TYPE,2 $MAT, 2 $REAL,2 "); 
fprintf{£3, "$E, %4d, %4d "jj ,kk); 
fprintftf3,"\t \t *Element %2d-%2d\n",e1[ie],e1[ie]+1); 
break; 

fprintf{f3,"TYPE,5 $MAT, 5 $REAL,5 "); 
fprintftf3,"$E, %4d, %4d ",ii,ll); 
fprintf(f3,"$E, %4d, %4d ",nc,nc+nb1); 
fprintf(£3,"* Element %2d-%2d\n",e1[ie],e1[ie]+1); 
fprintftf.3,"TYPE,4 $MAT, 4 $REAL,4 "); 
fprintf(f3, "$E, %4d, %4d" ,nc,nc+ 1,' '); 
fprintf{£3,"\t \t *Element %2d\n",e1[ie]+2); 
fprintf(f.3,"TYPE,3 $MAT, 3 $REAL,3 "); 
fprintf(£3, "$E, %4d, %4d "jj ,kk); 
fprintftf3,''$E,%4d,%4d "jj+nb1,kk+nb1); 
fprintf(£3,"* Element %2d-%2d \n" ,e1[ie]+3,e 1[ie]+4); 
break; 
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fprintfU3,"\nTYPE,1 $MAT,%2d $REAL,1 ",1); 
fprintf(f3," \ n$E, %4d, %4d, %4d, %4d" ,iijj ,kk,ll); 
fprintf(f3,"\t \t$EGEN,%2d,%2d,%2d",ne,nb1,el[ie]); 
fprintf(f3,"\t \t *Element %2d-%2d\n",e1[ie],e1[ie+1]-1); 
break; 

default: 
break; 

} 
} 
fprintf(f3,"\n"); 
for (ie = 0; ie < 5; ie++ ){ 

ii = n1[ie]; 
jj = ii+1; 
kk =jj+nb1; 
11 = kk-1; 
if((ie == 0) I I (ie == 4)) 

fprintf(f3,"$EGEN,2,1,%2d,%2d ",e1[ie],el[ie+1]-1); 
else if ((ie == 1) I I (ie == 3)) 

fprintf(f3,"$EGEN,2,1,%2d ",e1[ie]+1); 
else if (ie == 2){ 

fprintf(f3,"$EGEN,2,1,%2d\n",e1[ie]+2); . 
fprintf(f3,"$EGEN,2,1,%2d,%2d ",e1[ie]+3,e1[ie]+4); 

} 
} . . 
fprintf{f3,"\t *Element %d-%d\n",el[5],e1[5]+na+ne+4); 
fprintf(f3,"$EGEN, %2d, 1, %2d, %2d" ,nb-2,e1[5],e 1[5]+na+ne+4); 
fprintf{f3,"\t \t \t \t \t *Element %d-%d\n", 

e 1[5]+na+ne+5,nb*(na+ne+5)+4-e 1[5]); 
fprintf(f3,"$EGEN,%d,%2d,%2d,%2d ",2,nb-1,e1[0],e1[0]+na-1); 
fprintf(f3,"$EGEN,%d,%2d,%2d ",2,nb,e1[1]); 
fprintf(f3, "$EG EN, %d, %2d, %2d, %2d \n" ,2,nb,e 1[2],e 1[2]+ 1); 
fprintf(f3,"$EGEN,%d,%2d,%2d ",2,nb-1,e1[2]+2); 
fprintf(f3,"$EGEN,%d,%2d~%2d ",2,nb,e1[3]); 
fprintf(f3,"$EGEN,%d,%2d,%2d,%2d ",2,nb-1,e1[4],e1[5]-1); 
fprintf(f3,"\t *Element %d-%d\n", · 

nb*(na+ne+5)+5-e1[5]1nb*(na+ne+5)+4); 
/*** Element Generation ***/ 

f4 = fopen("node" ,"w"); 
pick = mode % 4; half= nb/2+ 1; 
switch(pick) { 

} 

case 0: pick= half-db1; 
case 1 : pick = half; 
case 2: pick= half+db1; 
case 3: pick= half; 
default:; 

break; 
break; 
break; 
break; 

fprintftf4,"%d %d %d %d\n'\nc,nc+pick-1,nc+nb-db1,nc+nb); 
fclose(f4); 

} /*mesh*/ 
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void boundary() 
{ 

int i,j,m,pick,half; 
fprintf(f3, "\niTER, %d, %d, %d" ,niter ,nprn,-1); 
fprintftf3,"\n$PRNF,-1 $PRDI,-1 $PRST,-1 $KRF,-1"); 
fprintf(f3,"\n$PRDI,%4d,%4d,%4d \t \t *Loading Points", 

nc,nc+nb,1); 
I* Equivalent Displacement corresponding to Radial Pressure*/ 

nstep=O; 
fprintf(f3,"\nD,%4d,UX,%15.10f,%4d,%4d",1,Dav,nb1,1); 
fprintf(f3,"\nD,%4d,UX,%15.10f,%4d,%4d",nl[5],-Dav,nl[5]+nb,l); 
fprintf(f3,"\nD,%4d,UY,, \t \t *Left Center ",nb/2+1); 
fprintf(f3;"\nD,%4d,UY,, \t \t *Right Center ",n1[5]+nb/2); 
fprintf(f3,"\nCE,%3d,0,%'3d,UX,1,%3d,UX,-1 ",1,nc,nc+db2); 
fprintf(f3,"\nRP%-d,l,, , , ,%3d \t \t *Mode Constraints\n", 

mode,db2); 
/* Perturbing Load */ 

for (m = 0; m < 2; m++H 
for G = 0; j < mode; j++ ){ 

ifG% 2) rx = -df; 

} 

else fx = df; 
nfx[j] = nc + dbl+db2*j; 
fprintf(f3,"\nF,%4d,FX,%10.6f',nfxfj],fx); 

fprintf(f3,"\n$LWRI \t\t \t STEP %4d",++nstep); 
fprintf(f3,"\t *Perturbing Load *\n"); 

/*Assumed Buckling Load*/ 
if(!m) { 

} 
} 

fprintf(f3, "FDEL, %4d,FX, %4d, %2d \n", 
nc+dbl,nc+nb-dbl,db2); 

fprintf(f3,"F, %4d,FY, %10.4f' ,nc,-fc1); 
fprintf(f3," $F,%4d,FY,%10.4f',nc+nb,fcl); 
fprintftf3,"\n$LWRI \t\t \t STEP %4d",++nstep); 
fprintf(f3,"\t *Axial Load *\n"); 
fprintf(f3,"\nFDEL, %4d,FY, %4d, %4d" ,nc,nc+nb,nb); 

fprintf(f3,"\nAFWRITE \nFINISH\n \n"); . 
fprintf(f3,"/0UTPUT ,ans.out \n!INPUT ,27 \nFINISH\n"); 
fclose(f3); 

} /*mesh*/ 
void resume() 
{ 

f3 = fopen(" ansd.2", "w"); 
fprintf(f3,"/0UTPUT,pre2\n!PREP7\ntriTLE "); 
fprintf(f3, 
" MU =%4.2f,t=%7 .5f,t1=%7 .5f,Ey=%9.3e,m=%2d,F=%8.3f, %8.3f\n", 

MU,t,tl,Ey,mode,fc1,fc2); 
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fprintf(f3,"RESU\n"); 
fprintf(f3, "/GOLI\n"); 
fprintf(f3,"/GOPR\n"); 
fprintf(f3,"\niTER,%d,%d, %d" ,niter,nprn,-1); 
fprintftf3,"\n$PRNF,-1 $PRDI,-1 $PRST,-1 $KRF,-1"); 
fprintf(f3,"\n$PRDI,%4d,%4d,%4d \t \t *Loading Points", 

nc,nc+nb, 1); 
/* Check the buckling load */ 

fprintf(f3, "\n \nFDEL, %4d,FX, %4d, %2d", 
nc+db 1,nc+nb-db1,db2); 

fprintf(f3,"\nF,%4d,FY,%10.4f',nc,-fcr); 
fprintf(f3," \nF, %4d,FY,% 10 .4f' ,nc+nb,fcr ); 
fprintf(f3,"\t\t $LWRI\tSTEP %4d\n",++nstep); 
fprintf(f3,"\nSLOAD, 1 \nAFWRITE \nFINISH\n \n"); 
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fprintf(f3, "/LOAD \n/OUTPUT,ans.out2 \n/INPUT ,27 \nFINISH\n"); 
fclose(f3); 

} 
double x_y(q,r) 
double q; 
int r; 
{ 

} 

int i; 
double x1;' 
if (r == 0) return(1.0); 
else { 

} 

x1 = 1.0; 
for (i=O; i < r; i++) 

x1=x1*q; 
return(x1); 



I* Pick up Displcements from "ans.out" */ 

#include 
main() 
{ 

"variable.h" 
I* ansp.c */ 

char line[120],ln[30],li[60],fout[9],nl[9],n2[9],n3[9],n4[9]; 
char sW[8],st1[5],st2[5]; 
int i,icc,nstep,istep,ip,c; 
int iprint=O; 
double f,af; -
dinp('r', 'p'); 
fl = fopen("node!' ,"r"); _ 

fscap.f(fl, "%s%s%s%s" ,n1,n2,n3,n4); 
fclose(fl); , ·· 
f2 = fop~n("ansd.2", "r"); 
for (i=O; i <: 3; i++) 

fgets(line, 120,f2); . 
fclose(f2); 
f4 = fopen(" ansp.o", "w"); 
fprintf(f4, "%s" ,head[O]); 
fprintf(f4,"%s" ,line+7); 

157 

fprintftf4," %s(Ux)\t %s(Ux)\t %s(Ux)\t %s(Uy)\tStep\tFerce\n", 
n1,n2,n3,n4); 

nstep = -nd-1; · 
icc = 0; 
af =(fc2-fcl)/nf; 
:f3 = fopen(" ans.out", "r"); 
f5 = fopen("ans.dsp","w"); 

while (!feoft:f3)){ 
fgetsOine, 120,:f3 ); 
iftstrlen(line) > 30){ 

ift!strncmp(line," SOLUTION NOT CONV" ,18)) { 

} 

- slope= 99; 
dinp('w' ,'p'); 
exit(); 

if (line[3] == I 1){ 

} 
else 

if (line[ 4] ==·I 1
){ 

stmcpy(stO,line+5 ,2); 
st0[2]=1\01

; 

} 
else { 

} 

-stmcpy(st0,line+4 ,3); 
st0[3]=1\01

; 

strncpy(st0,line+3 ,4); 



} 

sW[4]='\0'; 
stmcpy(stl,line+8 ,4); 
strncpy(st2,line+58,4); 

if (!strcmp(stl," ") && !strcmp(st2," 4.4")) 
for (i=O; i<13; i++) 

fgets(line,l20,f3); 
ifUstrcmp(stO,nl)) { 

iprint=l; 
nstep++; 

} 

if (nstep<O ) f = 0; 
else f = fcl +af*nstep; 
stmcpy(li+52,line+69,3); ' 
li[55] = '\0'; 
strncpy(li,line+ll,l2); 
li[12] = '\ t'; 

else ift!strcmp(sW,n2)) { 
strncpy(li+l3,line+ll,12); 
li[25] = '\t'; 

} ' 

else ift!strcmp(st0,n3)) { 

} 

stmcpy0i+26,line+11,12); 
li[38] = '\t'; 

else ift!strcmp(sW,n4)) { 
strncpy(li+39,line+27,12); 
li[51] = '\t'; 
fprintf{f4, "%s %.3£\n" ,li,f); 

} 
if{iprint) fprintf{f5, "%s" ,line); 
ift!strcmp(st0,n4)) iprint=O; 
} /*end iftstrlen(line) > 30)*/ 

} /*end while */ 
fclose(£3); 
fclose(f4); 
fclose(£5); 

158 



/* Check Buckling Status from "ansp.o" */ 

#include 
#include 
double 
double 
double 
main() 

"variable.h" 
<math.h> 
abs(); 
min(); 
max(); 

/* ansq.c */ 
{ 

char. line[120],fcr[50],fll[10],ft2[10]; 
FILE *fl,*f2,*f3; . 
int i,j,nn; 
int incr,decr,inc,dec; · 
double eps,fi,ux1,ux2,ux3,uy,step~fc[30],ux[30],uxx; 
dinp('r' ,'p'); 
f2 = fopen("ansp.o","r"); 
for (i=O; i < nd+2; i++) { 

fgets(line, i20,f2); 
if(i==1) { 

stmcpy(ffi,line+50,8); 
stmcpy(ff2,line+59,8); . 
sprintftfcr,"%s %s ",ffi,ft2); 

} 
} 

sscanftfcr,"%lf %If' ,&fc1,&fc2); 
fi = (fc2-fc1)/nf; 
eps=1E-10; 
incr=decr=inc=dec = 0; 
f3 = fopen("stl","w"); . 

fscanf(f2,"%lf %If%*~ %*s %*s %*s",&ux1,&ux2); 
uxx = abs(ux1-ux2); 

for (i=1; i<nf+2 ; i++ ) { 
fscanftf2,"%lf %If %*s %*s %*s %lf',&ux1,&ux2,&fc[i]); 
ux[i] = abs(ux1-ux2); · 
if (ux[i] > (uxx+eps)) { 

incr = 1; if (!inc) inc=i; 
} 
if (ux[i] < (uxx-eps)) { 

} 

deer= 1; 
dec = i; 

if(decr && !incr) slope= 1; 
else if(decr && incr) slope= 2; 
else if(ldecr && incr) slope= 3; 
fprintftf3,"%2d= %.3e ",i,uxx); 
fprintf(f3,"%9.3e dec=%d inc=%d ",ux[i],decr,incr); 
fprintftf3,"f=%.3f\n" ,fc[i]); -

} /*fori*/ 
fclose(f2); 
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if (slope == 2) { 
fc1 = fc[dec]; 
fc2 = fc[inc]; 

} 
slope= (fi < -0.1)? 2: 20; 

fprintftf3, 
"\nfc=(%.2f,%.2f) Pc=(%.2f, %.2£) slope=%2d,df=%.4f,cnvr=%.4f\n", 

-fcl,-fc2,-fcl/W/tl,-fc2/W/tl,slope,df,cnvr); 
fclose(f3); 
dinp('w' ,'p'); 

} /*** ansq.c ***/ 
double abs(x) 
double x; 
{ 

return(x>O ? x : -x); 
} 
double min(x,y) 
double x,y; 
{ 

return(x>y ? x : y); 
} 
double max(x,y) 
double x,y; 
{ 

return(x<y? x : y); 
} 
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APPENDIX E 

PROGRAM FOR PFEIFFER'S K1 AND K2 

I* Pfeiffer's Radial Modulus Function. *I 
I* Pr = -k1 + k1 *exp(k2*e) 

log(Pr+k1) = log(k1) + k2*e 
Er = k1 *k2 +k2*Pr *I 

#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include <stdlib.h> 
void least(); 
main() 
{ 

char 
int 
double 
FILE 

data[20],out1[20],out2[20]; 
i,N,ok,iter,Max=1000; 
*p, *e, *pr, *Pr,k1,kp,logk1,k2,ei; 
*fl *£2 *m. ' ' J..:>, 

printf(111nput File Name ?\til); 
scanf(11%S II ,data); strcpy(out1,data); strcpy(out2,data); 
strcat(out1, II .111

); strcat(out2,11 .211
); 

f1 = fopen(data,11r 11
); 

f2 = fopen(outl,"w"); 
f3 = fopen(out2,"w11

); 

i = 0; 
p = malloc(Max*sizeof(double)); 
e = malloc(Max*sizeof(double)); 
pr = malloc(Max*sizeof(double)); 
Pr = malloc(Max*sizeof(double)); 
while(!feof(fl)) { 

fscanf(f1, 11%lf %If' ,&pr[i],&e[i]); 
i++; 

} 
fclose(fl); 
N = i-1; 
kp = ok = 0; 
fprintft£2,"* Iteration \t k1 \t k2\n11

); 

iter= 0; 
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while (!ok) { 

} 

for(i=O; i<N; i++) p[i]=log(pr[i] + kp); 
least(p,e,&logk1,&k2,N); 
k1 = exp0ogk1); 
iftfabs(k1-kp) < 1E-5) ok = 1; 
else kp = k1; 
iter++; 
fprintftf2,"%5d\t%10.4e\t%10.3f\n",iter,k1,k2); 

fprint:f{£2,"\n\nPr = (%10.3e) + (%10.3e)exp(%.3f*e)\n",-k1,k1,k2); 
fprintftf2,"Er = %10.3e + %10.3f*Pr\n",k1 *k2,k2); 
fclose(£2); 
free(p); free(e); free(pr); free(Pr); 

printft"\tk1,k2 \t==> %s\n\te,Pr,Er\t==> %s\n\n",out1,out2); 
} /* main */ , 

void 
double 
int 

least(y ,x,aO ,a1 ,N) 
*y, *x, *aO, *al; 
N· 

' { 

} 

int i; 
double sx,sy,sx2,sxy,det; 

sx = sy = sx2 = sxy = 0; 
for(i=O; i<N; i++) { 

} 

sx += x[i]; 
sy += y[i]; 
sx2+= x[i]*x[i]; 
sxy+= x[i]*y[i]; 

det = N*sx2 - sx*sx; 
*aO = (sy*sx2- sx*sxy)/det; 
*a1 = (N*sxy- sx*sy)/det; 
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