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CHAPTER I 

INTRODUCTION 

~arkovProcesses 

One of the most useful classes of random processes is the class of Markov pro

cesses. In a Markov process, the current state of the process is only influenced by the 

most recent behavior of the process. In short, the process has a fmite memory. This 

Markov property is not an overwhelming restriction on a random process. For a great 

number of random processes found in nature, the assumption of finite memory makes 

good sense. 

As an example, consider the following difference equation representing a discrete

time random process: 

y(n) = 0.8y(n -1) + u(n) (1.1) 

Here, the random process {y (n)} is driven by { u (n)}, which is also a random process. 

For this example, let us assume that { u (n)} is a white noise process with unity variance 

and Gaussian density. From the equation, it is clear that the process remembers only the 

previous value of y: y(n) is not directly influenced by {y(n - 2), y(n - 3), · · · }. Hence, 

the random process {y(n)}is a Markov process. Actually, this is an example of an auto

regressive, moving-average (ARMA) process. ARMA processes have some very nice 

properties, such as linearity, which have proved valuable in modeling a wide range of 

processes. 

1 
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Another example of a Markov process is a Markov chain. A Markov chain is 

essentially a state system in which the state transitions are defined by a set of probabili

ties. As a simple example, suppose there are two states, numbered 1 and 2. Let the prob

ability that the process does not change state be 0.9; thus, there is a probability of 0.1 

that the process will change states. Now, if the process is in state 1 at a given time, 

consider the next state of the process. Clearly, this only depends upon the transition 

probabilities, and not upon any of the previous states which the chain occupied. Hence, 

this is also a Markov process. 

Although the two examples given above are both Markov processes, there are clear 

differences between them. In the first example, the random process asswnes real num

bers; e.g., y(2) = 0.34. However, the second example is a state system. At a given time, 

the process occupies a particular state. But this state can be practically anything. For 

example, a state could represent a quality such as excellent, good or poor; a condition 

such as on or off; or even a number such as 1t. It all depends upon the application. 

The focus of this dissertation is Markov chains for which the states represent real 

numbers. This type of process has been called a Markov chain random process (MCRP). 

For the two-state Markov chain described above, one could create an MCRP by assigning 

the states real numbers. As an example, state 1 could represent the number 1.667, and 

state 2 the number -1.667. 

To provide some insight, let us compare the MCRP and ARMA examples. It has 

been noted that both processes are Markov, but that there are differences between them. 

To illustrate, Figure 1.1 shows sample outcomes for both processes. The most notable 

difference is that the ARMA process assumes a wide range of values, whereas the MCRP 

only assumes ±1.667. In general, ARMA processes are continuous-valued whereas 

MCRPs are discrete-valued. 
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Figure 1.1. Example outcomes for ARMA process and MCRP examples. 

Let us now look at the power spectra of these processes. The details of the power 

spectra shall be examined in Chapter II. However, not worrying about the details of this 

operation for now, the results are plotted in Figure 1.2. As can be seen, the two processes 

have identical power spectra. This is perhaps surprising because in the time-domain, as 

was illustrated in Figure 1.1, the processes look nothing alike. However, the fact that 
i 

their power spectra are identical implies that, at least on some level, the two processes are 

similar. More importantly, it gives us insight into the statistical properties ofMCRPs. 

The goal of this dissertation is to explore MCRPs. The power spectra of these pro-

cesses is a main concern both from an analysis and synthesis viewpoint. The relationship 

between ARMA processes and MCRPs is examined in light of the previous example. 
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Figure 1.2. Power Spectra of ARMA process and MCRP. 

Additionally, several applications of MCRPs shall be considered. Overall, the objective 

of this research is to examine the distinguishing characteristics of MCRPs and to utilize 

these processes in several applications. 

Literature Survey 

Markov chains have been extensively studied and applied to a wide number of 

fields, including operations research, queueing networks, biology (life/death chains), 

gambling and many others [Kem76, Bha60]. The success of Markov chains is a testa-

ment to the fact that many processes are essentially state systems. However, while the 

literature on Markov chains is extensive, most have little bearing on this study of 

MCRPs. 

More relevant is the work of Sittler, who introduced Markov chain random pro-

4 

cesses in the 1950's [Sit54, S1t56]. Sittler's work was based on flow graphs and the rela-

tion of MCRPs to linear discrete-time systems and circuits. He found that the tools used 

for analyzing circuits could be used to analyze MCRPs. Proceeding in this manner, he 
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determined the power spectral density for MCRPs. In fact, although relatively little work 

has been done with Markov chain random processes, most of it has been concerned with 

the power spectrum. 

Since Sittler's initial papers, several others have analyzed the spectral properties of 

MCRPs. These include Huggins [Hug57], and Zadeh [Zad57], who generalized Sittler's 

approach to processes with time-varying parameters. Additionally, some researchers, 

including Barnard [Bar64], have analyzed MCRPs which generate continuous-time sig

nals by mapping each state to a waveform instead of a real number. To date, the most 

general treatment ofMCRPs appears to be by Yoshida [Yos73]. 

After the spectral properties of MCRPs had been thoroughly analyzed, a few 

researchers began to investigate the spectral synthesis problem for MCRPs. That is, they 

wished to determine the MCRP parameters which result in a given power spectrum. 

However, this is a very difficult problem and a general solution has not been found. Nev

ertheless, some researchers have had limited success by considering special classes of 

MCRPs. One of the earlier works in this area was performed by Mullis and Steiglitz 

[Mul72], are their approach is based on MCRPs with circulant transition probability 

matrices. Others have tried similar approaches, most notable Steinhardt, who considered 

MCRPs with normal transition probability matrices. However, these approaches offer 

only a partial solution to the synthesis problem. 

There have been several applications ofMCRPs in the literature. These include 

analysis of signals with timing jitter [Hug57, Y os73] and random telegraph messages 

[Hug57]. The natural sciences have been represented by papers on modeling of wind 

[Jon86] and solar radiation [Agu88]. Two papers have discussed MCRPs in the context 

of speech modeling [Mul72, Sie76], which is one of the applications considered in this 

research. Additionally, binary MCRPs have been employed in lossless data compression 



and have achieved excellent results [Cor87]. Of these applications, only the wind, radi

ation, and speech papers are directly related to this research. More information on these 

topics is discussed in Chapters Nand V. 

Overview 

6 

Examination of Markov chain random processes begins in Chapter IT with a review 

of Markov chains. As noted previously, the literature on Markov chains is extensive, and 

much has little bearing on this research of MCRPs. Consequently, the material in the 

second chapter is restricted to those topics which relate directly to this study. 

Following this, Chapter IT defmes and examines MCRPs. Several statistics are 

derived including the power spectrum. The derivations in this chapter are somewhat dif

ferent from any approach previously documented. Sittler's derivation involved flow 

graphs and analysis techniques of electrical circuits. However, this procedure is difficult 

for large systems. The results from other papers are too general, involving time-varying 

parameters and arbitrary output waveforms. Consequently, it was necessary to reformu

late the results for the purposes of this research. In particular, the derivations and results 

of Chapter IT are given in terms of matrices and vectors, with emphasis on eigen 

decompositions. In addition, Chapter IT also discusses Hidden Markov Models in relation 

to Markov chains and Markov chain random processes. 

The subject of Chapter ill is synthesis. The key goal of tltis chapter is to locate 

MCRPs which achieve desired power spectra. Mter carefully discussing the key 

obstacles to a solution of this problem, several approaches are considered. In particular, a 

ring-stmctured MCRP is introduced and examined in detail. Although there are some 

limitations of this stiUcture, it appears to be the best solution to the spectral synthesis 

problem to date. Additionally, Chapter IT considers synthesis of MCRP with constraints 

of distribution function and joint constraints of distribution function and power spectmm. 
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Chapter N considers MCRPs as models of random processes. The discussion leads 

to an exploration of the relationship between ARMA processes and MCRPs. It is shown 

that, under certain conditions, the power spectrum expressions for MCRPs and ARMA 

processes driven by white noise are similar. Using this relationship and the ring

structured MCRP introduced in Chapter Ill, a procedure is formulated whereby a colored 

noise process can be approximated by an MCRP. 

In Chapters V though VII, several applications for MCRPs are considered. In 

Chapter V, MCRPs are studied as models for speech signals. This provides an excellent 

opportunity to test the results of Chapter IV. The motivation for using MCRPs for speech 

is partially based on the success of Hidden Markov Models (HMMs) for speech. This 

chapter begins by examining conventional speech models. An MCRP model for speech 

is then presented and discussed. Preliminary results are offered which confirm the valid

ity of this approach. 

Chapter VI discusses the use of MCRPs in direct-sequence spread spectrum 

(DS-SS) communications. Conventionally, m-sequences are used as the spreading 

sequence for DS-SS. In Chapter VI, the use of MCRPs as spreading sequences is 

explored. The main advantage of this approach is that, as binary random processes, 

MCRPs are much more flexible than m-sequences. This extra flexibility can prove useful 

in a jamming environment. 

The topic of Chapter VII is Markov random fields. In essence, this is an extension 

of MCRPs to two-dimensional processes, and to sampled images in particular. A thor

ough examination of such processes is beyond the scope of this document. However, 

Chapter VII introduces MCRPs in the context of Markov random fields and discusses 

their feasibility. This approach seems especially well-suited to image processing applica

tions in which there are a relatively few number of pixel bits. A simple example is given 

which demonstrates the potential of MCRPs in this area. 



Finally, Chapter VITI provides a brief summary of this manuscript, noting the con

tributions and results of this research. Additionally, ideas for future research involving 

MCRPs are discussed. 

8 



CHAPTER II 

MARKOV CHAIN RANDOM PROCESSES 

This chapter is concerned with Markov chains and related processes. In the first 

section of this chapter, Markov chams are discussed. The main pmpose of this section is 

to develop an understanding of Markov chains which shall be essential to the study of 

Markov chain random processes. The literature on Markov chains is extensive, and much 

has little bearing on MCRPs. Consequently, the material in this section shall be restricted 

to those topics which are pertinent to this study. In particular, this section shall concen

trate on stationary Markov chains. The second section of this chapter examines Markov 

chain random processes. Several important statistics of stationary MCRPs are discussed, 

including mean, variance, autocorrelation, and power spectral density. The final section 

of this chapter briefly reviews hidden Markov models (HMMs) and discusses their rela

tion to Markov chains and MCRPs. 

Markov Chains 

A Markov chain is essentially a probabilistic, discrete-time, state system. In gen

eral, a Markov chain can have an infmite number of states. However, this study is 

restricted to Markov chains having a finite number of states which for convenience shall 

be numbered from 1 to N. Markov chains are distinguished from other state systems 

because they obey a first-order Markov property [Ios80]. In words, this property requires 

that the state transitions depend only on the present state of the system; previous states of 

the system do not influence state transitions. The Markov property is perhaps better 

9 
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explained by the conditional probability equation 

P[x(n+1)=jlx(n)=i,x(n-1)=h,···]=P[x(n+1)=jlx(n)=i] (II.1) 

where x(n) is an integer-valued random process which assumes the value of the state 

which the system occupies at time n, and h, i, andj are integers which correspond to state 

numbers. The equation implies that x(n) is statistically dependent upon x(n - 1) and 

independent of x(n - 2), x(n - 3), etc. 

It would appear that the Markov property severely limits the usefulness of Markov 

chains since most real-world processes have a higher degree of dependence upon the past 

behavior of the system. However, it is possible to represent such processes in terms of 

Markov chains [Kaz82]. To see how this is done, consider a process which has N states 

and for which the state transitions depend on the present state as well as the previous 

(k -1) states. Such a process is termed anN -state, eh order system. By letting each 

ordered k -tuple of states in this system comprise a state in a new system, a 1"1 order pro

cess with N" states is created which behaves like a Markov chain. The main obstacle in 

dealing with higher order systems directly is that, unlike Markov chains, convenient 

representation of parameters and statistics in terms of matrices is cumbersome. 

Markov Chain Notation 

Markov chains are easily illustrated by means of flow graphs. As an example, Fig

ure 2.1 shows a flow graph for a particular 3-state Markov chain. In the figure, nodes 

indicate states of the system while arrows between nodes represent state transitions. A 

number, t,," is associated with each arrow indicating the probability of transition from 

state i to state j. In general, the transition probabilities {t,,,} could be functions of time. 

In fact, the only constraints on these probabilities are as follows: 

o::;;r,,,::;;1 'Vi,j (II.2a) 
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N 

and I, t, ,1 = 1 V i. (II.2b) 
j=l 

For the purposes of this paper, we shall assume that {t;J are not functions of time. In this 

case, the Markov chain is said to be homogeneous . 

.15 . 8 

State 1 

State 3 

Figure 2.1. 3-State Markov Chain Flow Graph. 

Related to transition probabilities are state probabilities: let S;(n) represent the 

probability that the chain is in state i at time n . The state probabilities are related to the 

transition probabilities by the equation 

N 

sin + 1) = I, S1(n )ti,J 
I= I 

(ll.3) 

for any j. Similarly, one could write 

N 

sin+ 2) = I, S1(n )t1)2), 
I= I 
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where t;,1(2) is defmed to be the two-step transition probability P [x(n + 2) = j I x(n) = i]. 

In general, let t,,j(m) be the m-step transition probability P [x(n + m) = j I x(n) = i] for 

m ~ 0. Note in particular that t,,;(O) = 1 and t,,iO) = 0 fori ::1:- j. Also, t,,1(1) is just t,,J' To 

find the relationship between the set of m-step transition probabilities, { t,,j(m)}, and the 

set of one-step transition probabilities, {t,,1}, it is more convenient to utilize matrix nota

tion. 

Towards this end, T shall be defmed as theN x.N matrix with elements [T]; ,1 = t, ,1• 

That is, the element in the ilh row and jlh column of Tis t;.r Since Tis composed of 

transition probabilities, it is referred to as the transition probability matrix. For the Mar-

kov chain in Figure 2.1, 

(
.15 .8 .05) 

T= 0 .25 .75 . 
. 85 .05 .1 

Similarly, the state probabilities can be represented in vector notation as 

(ll.4) 

Since s1(n + 1) = I.~= 1 s;(n)t;,1 , the set {si(n + 1)} may be more compactly represented by 

i'(n + 1) =i'(n)T. Through a simple substitution, sT(n +2) = i'(n + 1)T=i'(n)'r. 

Repeating this argument, the following becomes apparent: 

sT(n+m)=sT(n)T" form ~0. (11.5) 

Also, since s1(n + m) =I.~= 1 s,(n )t,,im ), it follows that the m-step transition probabilities 

are 

(11.6) 
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Transition probability matrices belong to a class of matrices called stochastic or 

probability matrices. These matrices are characterized by having real, nonnegative ele-

ments and by the fact that each row of the matrix sums to unity. One can see that T is a 

stochastic matrix since [TJ .. , = t;.i ;:;:: 0 and 'I!/= 1 t;,, = 1. This matrix plays an important 

part in the later parts of this chapter and in subsequent chapters. Properties of stochastic 

matrices are discussed in texts on Markov chains, such as [K.em76], and in many texts on 

matrices, such as [Lan85]. Some of these properties shall be specified later in this chap-

ter. However, there are several properties of stochastic matrices which are worth noting 

at this time. First, T always has an eigenvalue equal to 1 with associated right 

eigenvector (1 1 1)T: 

tNN 1 

=1 

1 

1 

1 

since If= 1 t,,, = 1 for all i. This eigenvalue shall be denoted throughout this manuscript as 

~. and the remaining eigenvalues as A10 A.z, · · ·, AN _1• It is also possible to show that any 

eigenvalue of T is less than or equal to 1 in magnitude: letting A be any eigenvalue of T 

with associated left eigenvector u = (u1 u2 
T 

UN) ' 

.Au, = I u,t,,1 

' 
so I I AU1 I = I I I u,t,) 

} } I 

I AI II u) ::; I II ull t1,1 
} } I 

I AI Ilu) ::; II ull I t;,1 =II ull 
} I } I 

(II.7) 
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Based on the transition probabilities, it is possible to categorize Markov chains into 

several classes. This classification is based on the concept of conununication between 

states: the states i and j are said to communicate if it is possible for the Markov chain to 

transition from state ito j and from state j to i. Note that conununication does not have to 

be direct; for the Markov chain in Figure 2.1, even though t2, 1 = 0, state 2 conununicates 

with state 1 since it can reach state 1 by first passing through state 3. 

Markov chains can be classified as either reducible or irreducible [Ios80]. In an 

irreducible Markov chain, every pair of states conununicate; conversely, if a Markov 

chain has any pair ofnonconununicating states, it is said to be reducible. Irreducible 

chains are further classified as either regular or cyclic. A Markov chain is regular if all 

of the elements of T are strictly positive for some n > 0; a Markov chain is cyclic if it is 

not regular. For the example in Figure 2.1, every pair of states communicates, so this 

Markov chain is irreducible. Further, since every element of 

(
.065 

r= .6375 
.2125 

.3225 
.1 

.6975 

is strictly positive, the Markov chain is regular. 

.6125] 

.2625 

.09 

It should be noted that there is a relationship between Markov chain and matrix ter-

minologies. For example, there is a definition of reducibility for both matrices and Mar-

kov chains. Fortunately, the two are related: a Markov chain is reducible if and only if its 

transition probability matrix is reducible. A similar statement is true for the terms 

irreducible, regular, cyclic, primitive, and imprimitive1 (see, for example [Lan85, Sen81, 

Kem76, and Ios80]). 

1 The terms primitive and imprimitive will be introduced in the next section. 



Stationary Markov Chains 

A random or stochastic process is a (usually infinite) set of samples or outcomes 

each of which is a function of time. In a Markov chain, the outcomes take the form of 

infinite sequences which denumerate the state transitions as a function of time. For 

example, in the 3-state Markov chain in Figure 2.1, a possible outcome is 

{2, 3, 1, 1, 3, 2, 2, ···},indicating that the Markov chain began in state 2, transitioned to 

state 3, then to state 1, and so on. 
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For the putposes of this research, the main interest is stationary random processes. 

For a random process to be stationary, the statistics of the process must be time-invariant. 

For homogeneous Markov chains, stationarity is insured if the state probabilities are con

stant [Pap84]; that is, if s(n) does not depend on n. 

To consider the stationarity of a Markov chain, recall that the state probabilities 

were expressed in matrix-vector notation as I' (n + m) = ?' (n )r' form ;::: 0. For the Mar

kov chain to be stationary, s(n) must be such that I' (n) =I' (n )r' for alln and for all 

m ;::: 0. In particular, this means that sT (n) =I' (n )T. Since it has already been shown that 

T has the eigenvalue Au= 1, the previous equation implies that s(n) must be a left eigen

vector of T associated with this eigenvalue. Hence, a Markov chain will be stationary if 

s(n) is a left eigenvector ofT associated with the eigenvalue Au= 1. A state distribution 

s(n) which makes the Markov chain stationary will be called a stationary distribution of 

the Markov chain and shall be denoted by s. 

Now, in general, the eigenvalue Au= 1 could have multiplicity greater than one. In 

this case, the stationary distribution would not be unique. However, suppose the Markov 

chain is irreducible. If so, then the stationary distribution is unique. This result follows 

from the Perron-Frobenius theorem [Lan85]: 



Theorem (Perron-Frobenius): For a nonnegative square irreducible matrix, 
(i) The matrix has a real eigenvalue equal to its spectral radius, 

(ii) There is a real right eigenvector associated with this eigenvalue; and 
(iii) The algebraic multiplicity of this eigenvalue is 1. 
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The spectral radius is defined as the magnitude of the largest eigenvalue of the matrix. 

ForT, the spectral radius is 1 since I Ak I~ 1 = ~- It follows from the Perron-Frobenius 

Theorem that the eigenvalue ~ = 1 has algebraic multiplicity of 1 for irreducible Markov 

chains. Consequently, the stationary distribution of irreducible Markov chains must be 

unique. 

If the Markov chain is further limited to being regular, then an even stronger state-

ment can be made: the state probabilities converge to unique values independent of the 

initial state distribution s(O). To see why, first recall from the previous section that a 

regular Markov chain has the property that every element of T' is positive for some 

n > 0. An equivalent definition is that T can have only one eigenvalue with unity magni-

tude [Lan85]. This property is call primitivity, and some texts use the term primitive 

instead of regular to describe these Markov chains (for example, [Sen81]). 

The benefits of regular Markov chains arise from the fact that every eigenvalue of 

T, except ~. has magnitude strictly less than one. To see why this is such a nice prop-

erty, express T in its eigen decomposition as 

1 

T= (II.8) 
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where V is the modal matrix of T and where J; is the Jordan block for the i'h eigenvalue 

(A.;) ofT. Now consider lim.. -+oo T'. Since all of the eigenvalues except for~= 1 are 

strictly less that unity in magnitude, it follows that lim.. -+oo.r, converges to a matrix of all 

zeros. Thus, 

1 0 0 
0 0 0 

limT'= · V 1 

n-too 

0 0 0 

where v0 = (1 1 1l is the right eigenvector and u0 is the left eigenvector of T 

associated with ~ = 1 and u0 is such that u0v~ = 1. Then, letting 

Uo = (uo,t Uo,2 Uo,N l, and denoting lim.. -+ 00 T' as r, one can see that 

T""=V0U~ 

Uo,J Uo,2 Uo,N 

Uo,t = Uo,2 Uo,N 
(11.9) 

Uo,t Uo,2 Uo,N 

Next, consider lim.. -+oos(n) for an arbitrary initial state distribution s(O): 

lim ST (11) = lim j' (0)1" 
11~00 n-+oo 

= l (0) lim 1" 
n-+oo 

1l = I., s, (n) = 1 regardless of 

s(O). Thus, 



lim l (n) = l (O)v0u~ 
n-+oo 

T 
=Uo 

regardless of s(O). Also, because ~ = 1 has unit multiplicity for regular Markov chains, 

the stationary probability s is unique, and so, s = u0 • Hence, 
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lim l(n) =s. (II.10) 
n-+oo 

The conclusion is that, for regular Markov chains, s(n) converges to the stationary distri-

bution independent of the initial distribution. Because of this, regular Markov chains are 

always asymptotically stationary [Pap84]. 

Regular Markov chains are also ergodic random processes [Ios80]. That is, with 

probability one, any statistic of the process can be determined from a single outcome 

[Pap84]. It should be noted that, in many texts, irreducible Markov chains are called 

ergodic Markov chains (for example, [K.em76, Ios80]). However, this is a misnomer as 

the ergodic property holds only for regular Markov chains [Ios80]. This special case 

when the Markov chain is regular is the most important case and is assumed here unless 

otherwise mentioned. 

The example in Figure 2.1 is a regular Markov chain and therefore ergodic and 

asymptotically stationary. For this example, 

(
.31915 

T'"= .31915 
.31915 

.3617 

.3617 

.3617 

.31915] 

.31915 

.31915 

and therefore the stationary state distribution, as well as the limiting state distribution, is 

s = (.31915 .3617 .31915l, This indicates that the Markov chain spends slightly 

more time in state 2 on the average than in either state 1 or 3. 
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Markov Chain Random Processes 

Markov chain random processes (MCRPs) were first introduced by Sittler [Sit54, 

Sit56]. Simply stated, an MCRP is created by associating a real number to each state of a 

Markov chain. To explain further, let a, denote the real number associated with state i. 

Then, if the Markov chain is in state j at time n, the output of the MCRP is equal to a i at 

time n. For convenience, let a= (a, a2 • • • aN l, which shall be referred to as the out-

putmap. 

To fix ideas, reconsider the Markov chain from Figure 2.1. This Markov chain has 

three states, so an MCRP based on this Markov chain requires three real numbers to make 

up the output map. Although any three real numbers would suffice, suppose that 

a1 = -2.0, a2 = 1.5, and a3 = 0.3. This MCRP, which is illustrated graphically below in 

Figure 2.2, shall be used to illustrate the concepts of this section. Recall from a previous 

section that a typical outcome of the example Markov chain was {2, 3, 1, 1, 3, 2, 2, · · · }, 

indicating that the Markov chain began in state 2, transitioned to state 3, then to state 1, 

and so on. The corresponding output for the Markov chain random process would then 

be {a2, a3,a1,a1, a3,a2, a2, ···},or {1.5, 0.3, -2.0, -2.0, 0.3, 1.5, 1.5, · · · }. 

Figure 2.2. An MCRP with 3 States. 
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Now, in general, one could use any Markov chain and create an MCRP in the fash

ion described above. However, there are types of Markov chains which are better suited 

for this than others. Tills is especially true since the statistics of MCRPs are dependent 

upon the underlying Markov chain. Thus, while it is possible to discuss the statistics of 

MCRPs based on an arbitrary Markov chain, it is beneficial to restrict the attention to 

classes of Markov chains which have desirable properties. Consequently, this section is 

focused on the class of regular Markov chains. As enumerated in a previous section of 

this chapter, these Markov chains (and therefore the MCRPs derived from them) have 

many desirable properties: they can be made stationary; they are always asymptotically 

stationary independent of the initial state distribution; and they are ergodic. 

Most of the material presented below is not new; the statistics of MCRPs have been 

discussed by several authors, including Sittler, Huggins, Zadeh, Barnard and Yoshida 

[Sit54, Sit56, Hug57, Zad57, Bar64, and Yos73]. However, most of these treatments are 

either too general or too specialized. Consequently, the author has found it necessary to 

rederive several pertinent statistics. In particular, the focus has been on eigen decomposi

tion of the transition probability matrix. By deriving statistics in this manner, a few sta

tistical parameters can be determined which give greater insight into tl1e nature of these 

processes. 

Implementation Aspects .Qf MCRPs / 

Perhaps the first question one might ask about MCRPs concerns how they are 

implemented. This is a good query and provides a natural introduction to Markov chain 

random processes. Since MCRPs are so closely related to Markov chains, it suffices to 

show how Markov chains can be implemented. To begin, suppose that the process is in 

state i at time nand consider how the next state should be chosen. To facilitate determi-
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nation of the state transitions, let u(n) be a random process with a uniform [0,1] distribu

tion. Let us determine the state transitions as follows: the state at time n+ 1 will be state j 

if and only if 

j-l 

L t, k < u(n) < 
k= 1 ' 

(II.ll) 

Note that it is possible to interpret the above equation as a transfer function which 

has u(n) as its input. As an example, suppose that the MCRP has only 3 states, and that 

the current state is x(n) = i. Then, the next state, x(n + 1), is the output of the state deci-

sion function illustrated in Figure 2.3. That is, x(n + 1) = 1 if u(n) < t,, 1; x(n + 1) = 2 if 

t,, 1 < u(n) < t,, 1 +t,,2; andx(n + 1) = 3 otherwise. 

x(n+1) 
~ 

3--
41f.":'-~ 

t i,3 

2-
~--------· 

tl,2 

1 -c.----;,.. 
t i, I 

u(n) 
0 1 

Figure 2.3. State Decision Function. 

To see why this works, consider that, according to Equation (ll.ll), 

[
j-1 J J 

P[x(n + 1) = j I x(n) = i] =P ~~ t,,k < u(n) < ~~ t,,k . 
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But, u(n) has a uniform [0,1] distribution, so 

J j-1 

P[x(n +1)=j lx(n)=i]= L t, k- L t, k 
k=l • k=l • 

=t,,,. 

But this is exactly as desired since t,,, is defmed asP [x(n + 1) = j I x(n) = i]. Hence, 

Equation (Il.11) accurately reflects how the state transitions should be determined based 

on the transition probabilities and u (n ). 

Because of the way MCRPs are defmed, an MCRP implementation is practically 

identical to a Markov chain implementation. However, for Markov chain random pro-

cesses, the state decision would need to be followed by a look-up to determine the real 

number associated with the new state. Now, this implementation procedure provides an 

interesting interpretation of MCRPs. As noted above, if the state transitions are deter-

mined by Equation (II.ll), then u(n) can be thought of as the input to the process, which, 

according to Figure 2.3 is nonlinear. Thus, Markov chain random processes can be 

interpreted as nonlinear stochastic processes. 

Swnmarizing this section, MCRPs are clearly easy to implement and require little 

computing power since the multiplication and addition of real numbers is not required. 

In fact, the only requirements are memory for the output map and transition probabilities; 

the generation of u (n ), and logic to perform the state decision function. 

First Order Statistics of MCRPs 

Suppose a regular Markov chain has transition probability matrix T with stationary 

probability s, and output map a. Then the triplet (T,s,a) defines a stationary Markov 

chain random process. The ftrst step in the analysis of a stationary process is usually a 

detennination of the process' probability density function or probability distribution, 
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depending upon whether the process is of a continuous or discrete nature, respectively. 

Clearly, an MCRP can only assume values from the output map. Hence, MCRPs are dis-

crete processes, and the probability distribution function must be found. 

To begin, supposes= (s1 S2 • • • sN)T is the stationary probability vector and 

a= (a1 a2 • • • aNl is the output map for a given MCRP. As in a previous section, let 

x(n) be an integer-valued random process which assumes the value of the state which the 

Markov chain occupies at time n. Similarly, let y(n) be a real-valued random process 

which assumes the value of the output map associated with the state which the Markov 

chain occupies at time n. For example, if the process is in state 2 at time n, then x(n) = 2 

and y(n) = a2• 

Now consider the probability distribution for an MCRP. Note that 

P[y(n) =a;]= P[.x(n) = i] since the statement y(n) =a, is equivalent to x(n) = i. But, 

P [x(n) = i] = s,(n ), the probability that the Markov chain is in state i at time n. Further, 

since the process is stationary, s,.(n) = s,. Therefore, the probability distribution for the 

MCRPis 

P[y(n)=a,]=s, forl~i~N. (II.l2) 

Having easily determined the probability distribution, the mean and variance of the 

process may be found. The mean is given by 

!ly =E {y(n)} 

N 

= L P[y(n)=a,]a, 
'= 1 

N 

=I s,a, 
I =I 

The mean may be more compactly represented in vector notation as 

T 
!ly = s a 

The variance is found in a similar fashion: 

(II.13) 

(11.14) 



N 

= L P [y(n) =a.] (a,- J.L,l 
j = 1 

N 

= L s;(a;2 - 2a;J.1, + J.L~) 
'=1 

N N 

= L s,a,2 

'= 1 
- 2J.L, L s;a, 

•=1 

N 
~ 2 - .. z, = "'-' s;a, r 

•=1 

N 

+ J.L~ L s, 
'= 1 

To facilitate the expression of the variance in matrix-vector form, letS be a diagonal 
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matrix of stationary probabilities. That is, let [S],,, = s,. For the example from Figure 2.2, 

s = (.31915 .3617 .31915l, so 

[
0.31915 

S= 0 
0 

Then, the variance may be expressed as 

0 
0.3617 

0 

(ll.15) 

For the example of Figure 2.2, the output map is given by a= (-2.0 1.5 0.3l. 

From a previous section of this chapter, the stationary distribution was found to be 

s = (.31915 .3617 .31915f Thus, 

P[y(n) = -1] = 0.31915, 

P[y(n) = 0] = 0.3617, 

and P[y(n) = 1] = 0.31915. 

The mean of this process is given by 



and the variance is 

N 

Jly = l S1a1 

I"' 1 

= (0.31915){-2.0) + (0.3617)(1.5) + (0.31915)(0.3) 

=0 

3 
-..:2 ~ 2 - 112y o .. = .4.1 s.a. ,.., 

y I"' 1 I I 
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= (0.31915)(-2.0l +(0.3617)(1.5)2 + (0.31915)(0.3)2 - 0 

= 2.1191. 

It should be noted that, although the MCRP in tins example has zero mean, it is possible 

for an MCRP to have a non-zero mean. 

Autocorrelation of MCRPs 

Proceeding in a similar fashion, the autocorrelation can be derived as follows: for 

n ;;::o, 

<j>(n) =E{y(k +n)y(k)} 

= LP[y(k+n)=a1,y(k)=a;]ap1 

IJ 

= LP[x(k+n)=j,x(k)=i]ap; 
IJ 

= ~ P[x(k +n) = j I x(k) = i]P[x(k) = i]ap1 • 

I} 

Now, recall from a previous section that, by defmition, t,in) =P[x(k +n) = j I x(k) = i]. 

Also, P [x(k) = i] = S1 since the process is stationary. Then 

<j>(n) = ~ t,}n )s1a1a1 
IJ 

But t1)1l) is [Tn]I,J' Thus, 

<j>(n) = L [T"],l;a;a,. (11.16) 
IJ 
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From this Equation, the autocorrelation can be expressed in matrix notation. To do 

this, note 

L[Tnlt.P, 
J 

L[T"lz,pj 
J 

T'a= 

Recall from a previous section that S was defined as anN xN diagonal matrix and the 

diagonal elements are the stationary state probabilities; i.e., [S];,; = S;. Then, note 

Combining these terms, 

= L [Tn],/,a,a1 
I) 

= <j>(n ). 

... as) 1 N 

Also, since the autocorrelation is an even function, <j>(n) = <1>(-n). Thus, 

(II.l7) 
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At this point, it is necessary to digress and distinguish between cases when the pro-

cess has zero mean and when it doesn't. From Equation (II.l4), the mean of the process 

is given by J.ly =?a. Now, defme a, =a, - Jly• and ii = a-~· where~ is a vector of length 

N where every element is Jly· Then, making the substitution a= ii + ~· 

lj>(n) = (ii + ~)T ST 111(ii + ~) 

= liT ST 11 1ii + ~T ST 11 1ii +liT ST 11 I~+ ~T ST 11 I~ (II.l8) 

Now, note that T 11 1~ = ~ since T is a stochastic matrix. Substituting this in the above 

equation, 

liT ST 11 l~ = liS~ 
N 

= " a.s.u -'- , ,,...,, 
, =1 

N 

= J.L, 2.: (a,- J.ly)s, 
, =l 

Similarly, since ~r S = J.L,s and l'T 11 I =I', 

llT ST 11 Iii = J.L ST T 11 Iii 
- y 

N 

= L llvs,a, 
I= I . 

=0 

as above. Finally, since iS = Jlys and T 11 11:!: = 1:!:• 



Thus, Equation (ll.18) simplifies to 

~ ST, 'J.L = J.L ST J.L 
- - y -

= Jly L S,Jly 
I"' 1 

2 = Jly• 
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cp(n) = il ST" 1a + J.L~· (II.19) 

So, processes with a nonzero mean have a constant term in the autocorrelation expres-

sion, whereas those with a zero mean do not. 

Returning to the example of Figure 2.2, recall that 

(.15 .8 .05) 
T= 0 .25 .75 ' 

.85 .05 .1 

a=(-2.0 1.5 0.3l, 

and s=(.31915 .3617 T .31915) . 

So, Jly = 1:, a,s; = 0, and thus ii =a. The autocorrelation for this 3-state system is then 

given by 

cp(n) = (-2.0 (
.3191 

1.5 0.3) ~ 

0 
.3617 

0 

A plot of the autocorrelation is shown in Figure 2.4. 

.8 
.25 
.05 

.05)1" I (-2.0) 

.75 1.5 . 
.1 0.3 

Although the matrix representation of cp(n) is correct, it gives little insight to the 

shape of the autocorrelation sequence. A more perceptive representation of cp(n) can be 

gained through the spectral representation ofT. Let us consider the special case when T 

is diagonable. The case of non-diagonable Twill be discussed in a later section of this 

chapter. The spectral representation of a diagonable NxN matrix Tis given by [Lan85] 
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(ll.20) 

where {Ak} are the eigenvalues ofT and {vk} ({uk}) are the corresponding right (left) 

eigenvectors properly normalized so that ui vk = 1 for all k. More generally, T' is given 

by If,:-~(vkui)A.~ for n > 0. The autocorrelation can then be expressed as follows: 

(ll.21) 

(ll.22) 

From Equation (IT.21), the autocorrelation of an MCRP is influenced chiefly by the 

eigenvalues of its transition probability matrix. The eigenvectors of T and the output 

map determine the coefficients {~k}. 

For the example, the eigenvalues ofT are 1 and 0.7053e±19331 • Consequently, after 

some calculations, the autocorrelation can be expressed as 

cp(n) = (0)(1)'n 1 + (1.06 -0.09f)(0.706e 1931t 1 + (1.06 +0.09j) (0.706e-1931) 1n 1 

Note in particular that, for this example, (30 , the coefficient associated with Au= 1, is zero. 

In fact, ~0 will always be zero. To see why, we shall compare the definition of lj>(n) 

with the expression for lj>(n) given in Equation (II.21 ). First recall the defmition of lj>(n ): 

lj>(n) = E {y(k + n )y(k)}. Now, consider the limit of this expression as n goes to infmity. 

For regular Markov chains, it has been established that the limiting state probabilities are 

independent of the initial state probabilities. Because of this, the state of the Markov 

chain at time k+n becomes independent of the state at time k as n increases without 
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bounds. Hence, y(k +n) and y(k) will become independent as n goes to infinity. There-

fore lim,. -+oo<!>(n) = E {y(k)}E {y(k +n )}. But E {y(k)} = E {y(k +n)} = !ly• so 

lim,. -+ 00 <!>( n ) = 1-1;. 

Now consider the eigenvalue representation of <j>(n) in Equation (II.21). As n goes 

to infinity, A~ goes to zero for alii 'Ak I< 1. Thus, since ~ = 1 is the only eigenvalue with 

magnitude greater than or equal to 1, lim,,-+ oo <j>(n) =lim,-+.,. ~01" + J.l; = ~0 + 1-1;. It follows 

that ~0 must equal zero since, by the argument of the previous paragraph, <j>(n) must con

verge to Jl;. Consequently, since ~0 = 0, the associated term may be removed from the 

autocorrelation expression, which yields 
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(II.23) 

Power Spectrum ofMCRPs: General Expression 

The power spectrum is a frequency representation of the autocorrelation. The 

power spectrum is found by taking the Fourier transform of the autocorrelation sequence, 

which is usually stated as the Z-transfonn of the sequence evaluated on the unit circle. 

Namely, 

As the power spectrum is a linear operator on the autocorrelation, it is possible to con

sider the components of <j>(n) independently. That is, as <j>(n) = il ST" 1a + ~. let 

$1(n) = arST" 1a and $2(n) = ll~ so that <j>(n) = cp1(n) + <j>2(n ). The power spectrum of <j>(n) 

is then given by the sum of the power spectrum of <j>1(n) and <j>2(n ). 

Consider f'lfSt the power spectrum of <j>1(n ). Before the power spectrum of the 

MCRP can be found, the z-transform of the autocorrelation needs to be studied. As is 

common, the z-transfonn is split into sections as follows: 

.. 
W1(z) = L $1(n)z_, 

11=--

0 .. 

= L $1(n)z_, + L <j>1(n)z_,- $1(0) 
n =-oo n =0 

(II.24) 

cl>!(z) is known, <l>1(z) may be found. 

Consider ci>1(z ): 



.. 
<t>;(z) = I, cp1(n)z_, 

11=0 

.. 
~ -rs~- _, =.i..ia .1.0Z. 

nmO 

It is tempting to express this as iiS(J:;;:. 0 T'z_,)ii. However, l; ... 0 T'z_, does not con-

verge for z=l, and it is the unit circle on which we need 4>1(z) to converge. Still, 4>1(z) 
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does converge on the unit circle, but to show this requires a little manipulation. First, 

consider the Jordan decomposition ofT, which can be expressed as T = V ff1, where J is 

the block -diagonal matrix 

1 

1= 

and where J, is the Jordan block for the i'h eigenvalue ofT, A.,. Here, the eigenvalues ofT 

are {1,1..1, ···,A.M}. Since J is block-diagonal, T' may be expressed as 

1 0 

0 
T'= (II.25) 

0 

for n > 0. The first term of the right hand side is just v0~, where v0 (u0) is the right (left) 

eigenvector ofT associated with A.o = 1. Recall from a previous section of this chapter 

that 1 = lim,,-+ .. T' = v0~. Thus, the ftrst term in Equation (II.25) is 1. Equation 

(II.25) can then be rewritten as 

T' = T" +T" 
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for n>O, where tis defmed as 

0 

=T-r 

Note in particular that the eigenvalues ofT are {0,A1, ···,AM}· Since it Twas assumed to 

be regular, it follows that I A, I< 1 for 1 ::;; i ::;; M. Thus, all ofT's eigenvalues are strictly 

less than unity in magnitude. 

Now reconsider the autocorrelation: substituting T' ~ T' + r yields 

(11.26) 

for n > 0. But, T" = v0u~ so T"ii = v0u~ii. Further, recall from a previous section of this 

chapter that s = u0 for regular Markov chains, so T"ii = voi'ii. Now, sTii = 0: 

sT ii = L, s;(a, - J.L,) 

= J.L,- J.L, 

=0. 

Hence, ifST"ii = 0. Thus, <j)1(n) = iiTST'ii for n > 0. But, by convention, fO =~=I, so 

m ( ) - -Ts..;:l" 1-'fl n -a 1· a Vn. (II.27) 

The crucial difference here is that we have replaced T by T, and all ofT's eigenvalues are 

less than unity in magnitude. 
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Now, <I>;(z) may be expressed as 

(ll.28) 

Consider the summation L; =o z _.., T" as a power series off. To study the convergence of 

this power series, consider the following theorem [Bro85]: 

Theorem: For A, an NxN matrix with eigenvalues {A.k}, if the power series 

L; .. obnx" converges for eachx = A.k, then L; .. 0b,,A" converges. 

In our case, the power series coefficients are b" = z .... '. Hence, the power series is 

L; .. 0(z .... ')x" which will converge for I xlz I< 1 or equivalently I x 1<1 z I [Buc78]. Now, the 

eigenvalues oft are 0, A.H • .. , A.N _1• Hence, the power series will converge for all of the 

eigenvalues off if I z I> maxk "'0 I A.k 1. All of the eigenvalues of fare strictly less than 1 

in magnitude, and therefore the convergence region includes the unit circle. Hence, 

L; .. 0 z_..,T, converges for I z I> maxho I A1 I, which includes the unit circle. Also, since 

convergence has been established, L; =o(fz-1)" may be expressed as (I- fz-1f 1 since 

(I- Tz-1) i (Tz-1)" = i (Tz-1)" 
n =0 11 =0 

Then wt(z) = ifS(I- tz-1f 1ii. By symmetry, cl>i(z) = iiTS(I- Tzf1ii and converges 

for I z I< 1/maxho I A.k 1. Note also that (j>1(0) = iiTSJ!lii = iiTSa. Consequently, 

~ < ) -rs(I T- )_, - + -Ts(I T- _,)-1 - -rsw 1 z =a - z a a - z a- a a (ll.29) 



which b defined on the romulus max, •• I I.. I< I z I < 1/ max,.0 ll.. 1. which includes the 
I 
l 

unit circle. The power spectrum is defined by a substitution of z in <l>1(z ): 

<I>I(ro) = <I>I(z) lz=d"' 
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-TS(l ,:;. 'j-1 - + -TS(l ,:;. -j,-1 - -Ts-= a - ~ e a a - ~ e a- a a. (II.30) 

Now consider the power spectrum for cp2(n ). Recall that cp2(n) = J.L;. For cp2(n ), the 

power spectrum is given by 

.. 
<I>z(ro) = 27tJ.L~ I B(ro- 27tk) 

k =-«> 

(TI.31) 

where B(ro) is the unit impulse function; i.e., f.:J(t)B(t)dt = f(O) for any function/which 

is continuous at t=O. This can be confinned by taking the inverse transform of the resul-

tant: 

" 

= J.L~ k~J: B(ro- 27tk)e'codro 
2 

" 

= J.L~ J: B(ro)dro 
2 

= cpz(n). 

The power spectrum of the MCRP is then found by adding the terms in Equations 

(ll.30) and (II.31 ): 

<I>(ro) = <~>1(ro) +<l>2(ro) 

= ilS(l- Te' 0"'f1ii +il S(I- f'e-'j- 1ii -iiTSii + I, 27tJ.L~8(ro- 21tk) (TI.32) 
k =-«> 
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As an example, the power spectrum for the MCRP illustrated previously in Figure 

2.2 is given below in Figure 2.5. A few comments are perhaps in order. The power spec

trum is fairly ordinary looking: there are no shrup comers or jagged edges. In fact, it 

looks like the frequency response one might obtain from a band-pass filter. But then, 

exactly what were we expecting? For, while the power spectrum expression in Equation 

(II.32) is correct, it is however difficult to interpret: exactly how do T and a influence the 

power spectrum? To help answer this question, consider the special case explored in the 

following section. 

10.---~---,----,---~----.----.---.----~---.---, 

8 

6 

4 

2 

0 

0.05 0.1 0 15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Normalized Frequency 

Figure 2.5. Power Spectrum of Example MCRP. 
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Power Spectrum of MCRPs: 

Diagonable Transition Probability Matrix 

Suppose that, for a given MCRP, the transition probability matrix T is diagonable. 

Assume without loss of generality that J..ly = 0. For this situation it is advantageous to 

begin with the autocorrelation equation ~(n) = I..~= 1 ~.t-Alt 1 as in Equation (ll.23 ). Then, 

(ll.33) 

Noting that L;;=0 r" = 11(1-r) for I r I< 1, I..;=o(A,t-Z-1)" = 11(1-A,t-Z-1) for I z 1>1 A.t- 1. 

Thus, 

I z I< 11(max.t- ,.0 I A..t- 1). Thus, 

can be expressed as 

N-1 ( 1 1 J 
<l>(z)= L ~k 1 'l _,+1_'1 _-1 

k = I - 1\,kZ 1\,k£-

The power spectrum is then given by 

1 
(11.34) 
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While the power spectrum expression above may not appear familiar, the following 

is true: one would expect the power spectrum to have maxima at frequencies correspond

ing to the phase angles of the eigenvalues. To explain, suppose Ak = r~ce'1\ Then, 

1 - A~ce -JW = 1 - r "e'(et -ro)' which will be minimum at ro = ek. Since the power spectrum 

equation includes the term 11(1- A~ce-1), one would expect the power spectrum to have 

maxima at frequencies corresponding to the phase angles of the eigenvalues. Further, the 

magnitude of A~c will determine how sharp the maxima is at frequencies around 9": as 

I A" I increases, the maxima will become more narrow. Having seen how the eigenvalues 

influence the shape of the power spectrum, note that the {~"} coefficients can be thought 

of as weights which control the influence of the various eigenvalues. 

This analysis of the MCRP power spectrum leads to a rather interesting interpreta

tion: the eigenvalues of the transition probability matrix behave like "poles" of the pro

cess. That is, there exists a connection between the eigenvalues ofT and the poles of a 

linear transfer function for a discrete-time system. This fact shall be explored in depth in 

Chapter IV. However, this linkage is noted at this time to inform the reader that while 

the power spectrum expression in Equation (11.34) is perhaps unfamiliar in form, it 

should not be unfamiliar in function. 

Let us now consider the power spectrum for the MCRP illustrated previously. The 

power spectrum for this MCRP was shown in Figure 2.5 in the previous section. The 

transition probability matrix for this MCRP is diagonable, and its eigenvalues are~= 1, 

'A, = . 7058e 1.931 , and ~ = . 7058e _, 931 • Thus, a peak in the power spectrum is expected at a 

normalized frequency of 1.93/21t = .31. From Figure 2.5, one can see that this is in fact 

where the power spectrum obtains its maximum. Also, note that, had the eigenvalue 

magnitude been closer to unity, the peak would have been more pronounced. 
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Power Spectrum of MCRPs: 

Non-Diagonable Transition Probability Matrix 

Since we have explored the case when T is diagonable, a natural concern is the 

effect on the power spectrum when T is not diagonable. However, when Tis not diagon

able, the expression for the power spectrum is somewhat more complicated. To illustrate, 

consider a simple, hypothetical example. Suppose T is a 3x3 transition probability matrix 

with Jordan form 

(1 0 OJ 
J= 0 A 1 

0 0 A 

That is, T has two eigenvalues: 1, which has unit multiplicity; and A, which has algebraic 

multiplicity 2, but geometric multiplicity 1. Further, suppose the modal matrix ofT is 

given in block vector notation as 

where { v,} are right eigenvectors and 

V'=[j] 
where {u;} are left eigenvectors. Then, for n ~ 0, Tn may be expressed as 

The spectral representation of T' is then 
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The key difference from the diagonable case is the presence of the n A" -t term in addition 

to the A:' term. Using the spectral representation, the autocorrelation is 

<j>(n) = aT ST' a 

= (aTSv0u~a)(1) + [aTS(v1u~ + v2u~)a]('A") + (aSv1u~a)(n'A"- 1) (ll.35) 

As before, ~0 = 0 by the properties of the eigenvalues of T associated with the eigenvalue 

Au= 1. Therefore, the autocorrelation reduces to <j>(n) = ~ 1/:' + ~2n 'A" - 1• Now consider 

the one-sized z-transfonn of <j>(n ): 

00 

Cl>+(z) = L. <j>(n )z _, 
n =0 

.. .. 
= L. ~1'A"z_,, + L. ~2n'A"- 1z_,, 

n=O tr=O 

Now' using the fact that r: =ox" = 1/(1 -X) and a little manipulation, 

Cl>+(z) = ~~ 
1-A.z-1 + ~2 1_( L 'A"z_,') 

()')... 11=0 

~I 
+ ~:L-~-·) = 1-A.z-1 

~1 ~ -1 
+ 

2z 
= 1-A.z-1 (1-A.z-1/' 

(II.36) 

Again, the eigenvalues function as "poles" of the process. However, they behave 

somewhat differently than before because T is not diagonable. Still, there is a correspon

dence between these MCRPs and processes derived from linear filters. fu this case, the 



relationship is to a linear filter which has a repeated pole. Again, this parallel between 

MCRPs and processes derived from linear filters is mentioned only in passing at this 

time; a more thorough treatment shall be given in Chapter IV. 

Hidden Markov Models 
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Hidden Markov Models (HMMs) are in some sense similar to Markov chain ran

dom processes: both are extensions of Markov chains. However, whereas an MCRP 

associates a real number with each state of a Markov chain, an HMM associates an entire 

random process with each state. Typically, the HMM remains in each state for a fixed 

duration. During that time, the output of the HMM is a sample from the random process 

associated with the current state. 

The model is termed "hidden" because the underlying Markov structure cannot be 

determined through direct measurements of the output of the process. However, the out

put does provide clues as to the current state. HMMs, then, possess two layers of ran

domness: the Markov chain connecting the states; and the random processes composing 

the states. Processes such as HMMs which have two layers of randomness are tenned 

doubly stochastic. 

HMMs have proven to be a very useful tool in modeling certain types of nonstation

ary processes. Specifically, HMMs are best suited to nonstationary processes which pos

sess "short-time" stationarity. That is, although the process is nonstationary, the statistics 

of the process change slowly enough that, over small segments of time, the statistics are 

relatively constant. For these types of processes, HMMs can serve as a structure to con

nect the short-time segments. In this case, the states of the HMM are models of the short

time sections of the nonstationary process. 

As an example, speech is a nonstationary signal which exhibits short-time stationar

ity. Because of this, it is possible to use an HMM to model the interconnection between 
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the short-time sections of speech. In fact, HMMs have proven very useful in the areas of 

speech recognition and speaker identification (see, for example [Rab89]) and have 

recently been exploited for speech coding purposes [Far88, Dea89]. 

There are several common Markov structures commonly used for Hidden Markov 

Models. A few of these are illustrated below in Figure 2.6. The figure in (a) is known as 

a left-right model and is commonly used when the process displays no long-term correla

tion. On the other hand, a model such as in (b) would be more applicable if the process 

has only a few "states" which are recurring. For more infonnation on HMMs, consult 

either of Rabiner's papers [Rab86, Rab89]. 

(a) (b) 

Figure 2.6. Common Hidden Markov Model Structures. 



CHAPTER ill 

SYNTHESIS OF MARKOV CHAIN 

RANDOM PROCESSES 

This chapter details MCRP synthesis. The objectives are in three separate but 

related areas of synthesis: probability distribution function; power spectral density; and 

joint probability distribution/power spectral density. In all cases the constraints to be met 

are assumed to be known; estimation of probability distribution or power spectrum, if 

required, is not discussed in this chapter. 

Probability Distribution Synthesis 

Consider trying to locate an MCRP which has a specified probability distribution 

function. Since MCRPs are discrete-valued processes only probability functions from 

discrete-valued processes can be matched exactly. While it is possible to approximate the 

probability distribution of a continuous-valued process, consider synthesis for a discrete-

valued processes first. 

Suppose the desired discrete-valued process assumes the values {y;} with probabil-

ity {p,} for 1::; i ::;N. Clearly, the output map for the MCRP should be 

a=(Yt Yz YNl and the stationary distribution should be s = (Pt Pz T ... PN). 

It only remains to fmd a transition probability matrix T which meets this stationary distri-

bution. However, this problem does not have a unique solution as there are many trans-

ition probability matrices which will satisfy the conditions. One simple solution to this 

problem is the transition probability matrix 

43 
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T= 

This matrix can be more compactly represented as T = !Jvi', where !N is the usual vector 

of all ones. Then, sis the stationary distribution since i'T= sTc.!Ni') = (i'!N)i' = ?. 

Now consider the more difficult problem of approximating the probability distribu-

tion function of a continuous-valued process with a discrete-valued MCRP. The more 

conventional approach to this problem is to pass a white noise process through a properly 

chosen memoryless nonlinearity. However, consider the use ofMCRPs in this endeavor. 

Of the numerous ways which one could approach this problem, the following 

method appears to have the most merit. Let f(x) be a probability density function of a 

continuous-valued stationary random process. Suppose the MCRP is to haveN states. 

The basic idea is to divide the x-axis into N intervals and assign one member of the out

put map to each interval. Again, there are many ways which this could be done. How-
, 

ever, suppose the intervals are chosen so as to yield intervals of equal probability. That 

is, a set { x,} is found such that 

J~1f(x)dx = ix,x2f(x)dx = ... = (N-
1/(x)dx =( 00 f(x)dx =!:._ 

JXN-2 JXN-1 N 
(Ill.l) 

For convenience of notation, let x0 = -oo, and xN = oo. Then the i'h interval is (x,_ 1,x,) for 

1 :s; i :s; N. Based on this set of intervals, a logical choice for a, is the centroid of the i'11 

interval: 
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L~. xf(x)dx 
a= ' i.~, f(x )dx 

(ill.2) 

Next, let T be any regular doubly stochastic matrix. A doubly stochastic matrix is a 

' 
matrix for which both T and T are stochastic; that is, every row and every column ofT 

sum to unity, respectively. Note that the stationary distribution for any regular, doubly 

stochastic matrix iss= (liN liN l!Nl. 

Under the above conditions, (T,a,s) defines a stationary random process whose 

probability distribution function should approximate that of the given process. In fact, by 

definition, the mean of the MCRP is equivalent to the mean of the given process: 

N 

J.lMCRP = L s;a; 
j = 1 

N ( 1 }ix, = L N . xf(x)dx 
• =1 xr-1 

= J~ xf(x)dx 

= J.ly 

As an example, consider a random process which has a Laplacian density function 

with unit variance: 

f(x)=::}z--51 .. 1 for -oo<x <oo. 

Suppose without loss of generality that N is even. In this case, the output map can be 

shown to be 
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fori= 1 

fori= 2, ... ,N 
2 

fori =N +1 ... N 
2 ' ' 

Figure 3.1 gives sample outcomes from the Laplacian process (top plot) and MCRP with 

N=20 (bottom plot). As can be seen, the waveforms appear similar. The only noticeable 

difference is that the MCRP waveform appears to be clipped. This is because the MCRP 

has a defmite maximum value, which is equal to the largest a,. In contrast, the Laplacian 

process has no such limit. 

5~--~--~--~----~--~--~--~----~--~---. 

-5~--~---L--~----~--~--~--~----~--~--~ 

5.---.----.--~----.---,----.--~----~--~---. 

100 200 300 400 500 600 700 800 900 1000 

Figure 3.1. Waveforms for Laplacian Process (top) and MCRP (bottom). 
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As stated above, the mean of the MCRP equals the mean of the given process. 

However, the higher order moments are not guaranteed to be equal. For the above exam-

pie, Figure 3.2 plots the variance, E {(y(n)- J.lyi}, and skew, E {I y(n) 13}, as a function 

of the number of states N. The true value of the variance is unity and the skew is 

-{4.5 = 2.12. Note that, as N increases, it appears that the MCRP moments become closer 

to the correct values. While this approximation technique has not been tested on a great 

number of processes, the author believes that this statement is true in general. 

1 
2 

( 0.8 

«> 
0.6 ~ ~ 

·s ] 
0.4 rn 

> 
0.2 

0 0 
0 50 100 0 50 100 

Figure 3.2. Variance and Skew ofMCRP as a Function of N. 

Power Spectral Density Synthesis 

The second task of this chapter is to explore synthesis using the power spectral den-

sity. Specifically, we wish to fmd a random process which possesses a desired power 

spectrum. A standard solution to this problem is to assume the process to be the output of 

a linear filter driven by white noise. The core of the problem is to determine the filter 

parameters to achieve the desired spectrum. 
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However, consider trying to locate an MCRP which possesses a given power spec-

tral density. In general, one would probably approach this problem in two steps, as illus-

trated below in Figure 3.3. First, the power spectrum would need to be expressed in a 

form similar to the MCRP power spectmm. Specifically, if Tis required to be 

diagonable, the given power spectrum must conform the MCRP power spectrum equation 

(III.3) 

where it has been assumed without loss of generality that J.l = 0 for the desired process. 

Manipulating the power spectrum into the correct form is equivalent to determining the 

necessary MCRP spectral parameters {Ak} and {~k}· Now, the actual determination of 

these parameters is an application-specific problem. Consequently, for the pwposes of 

this section, the desired {A.k} and {~k} shall be assumed to be known. 

The second phase of this synthesis problem involves fmding T and a which yield 

the desired eigenvalues {A.k} and spectral coefficients {~k}· It is this problem which is 

the focus of this section. 

Power Spectrum 

I Find Spectral Parameters { A.k} and { ~k} I 
{~} 

eigenvectors 
L--F_in_d_T _ _:---------~~~ Find { a1 } 

Figure 3.3. Block Diagram of Power Spectrum Synthesis. 
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Let us take a closer look at this problem. Recall from Chapter II that if T is diagon

able it can be expressed as T = Lk(vku!)A.k where vk (uk) is the right (left) eigenvector ofT 

associated with the eigenvalue "-k· Also from Chapter II, recall that the spectral 

coefficients {~k} were given by ~k =it Svkuiii where S is a diagonal matrix of the station-

ary State probabilities, and ii = (a 1 ti 2 ' ' ' aN) where a; = a; - Jly and where Jly is the 

mean of the process. By a previous assumption, Jly = 0 so ii =a. 

In essence, one is left with two separate but related problems: fmding T with eigen-

values {Ak}; and finding a which results in {~k}· However, as the spectral coefficients 

are functions of the eigenvectors ofT, it is clear that the latter problem cannot be solved 

until Tis found. Consequently, T and its eigenvalues must first be examined. 

A Stochastic Eigenvalue Problem 

Consider trying to find an NxN stochastic matrix T which possesses a given set of 

N eigenvalues. If T could be any NxN matrix this would be an almost trivial problem. 

However, T must be a stochastic matrix. Because of this, finding a transition probability 

matrix with a given set of eigenvalues is a very difficult problem. In fact, there may be 

no solution at all. 

One obstacle may be that one or more of the specified values are not eigenvalues 

for any NxN stochastic matrix. The Russian mathematician F.I. Karpelevic [Kar51] has 

shown that the eigenvalues of stochastic matrices are limited to a closed set in the com

plex plane which is a function of N. This set is quite difficult to describe exactly. How

ever, a good approximation can be made fairly easily, and we shall proceed to define this 

set. (For an exact specification, see Karpelevic 's original paper [Kar51], or the 

description by de Oliveira [Oli68].) To describe this set, define PL to be the convex set in 

the complex plane for which the boundary is the polygon whose vertices are the L1h roots 

of unity. That is, 
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Then, the set MN of all complex numbers which are eigenvalues for some stochastic NxN 

matrix can be approximated by 

N 

MN= uP,. 
•=2 

(ill.4) 

These sets are illustrated in Figure 3.4 for several values of N. Note that, as N increases, 

MN contains more and more of the unit disc. In fact, in the limit as N goes to infinity, the 

set MN approaches the union of all points interior to the unit disc and all points e'zw.:tL on 

the unit circle where k andL are integers. 

N=2 

:Im 

--EfJ-~ 
I 
I 

N=3 N=4 N=5 

--©-~ --6-~· --6-~ 
I I I 
I I I 

Figure 3.4. Domain of Eigenvalues for Stochastic NxN Matrices. 

Unfortunately, even if all N of the specified eigenvalues lie in MN, it is still possible 

that there is no NxN stochastic matrix which possesses these eigenvalues. Consider the 

region DN of complex N -dnnensional space defined by the requirement that 

(Au, A.,, · · ·, A.N _1) e DN if and only if there exists an N xN stochastic matrix for which 

Au. A." · · ·, and A.N _1 are eigenvalues. However, determination of DN is a very difficult 



problem, and published papers have limited themselves to the real eigenvalues of sto

chastic matrices [Sul49, Per64]. Since this research is equally interested in complex 

eigenvalues, results from this area of investigation offer little help. 
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Another approach to this stochastic eigenvalue problem is to detennine bounds on 

the eigenvalues in terms of the elements ofT. Such is the approach with Gersgorin's 

Theorem [Gan64, Lan85], which states that any.eigenvalue of a matrix T =(til) must lie in 

at least one of the disks in the complex plane defined by I i-t,; l:s; L1 ,..; I t,1 1. There are 

also other bounds such as the Deutsch bound [Zen72, Sen81] for the non-unity eigenva-

lues, which takes the form 

However, it is not clear how one could make use of these bounds to find T given a set of 

eigenvalues. 

The consequences of the above paragraphs are that, given current knowledge, it is 

not possible to solve directly for an NxN stochastic matrix T given a set of N eigenvalues 

p .. A}. Further, the discussion implies that no solution exists for certain sets of eigenva-

lues which, at this time, have not yet been clearly defmed. 

Despite this, the author offers the following conjecture here, which shall be restated 

and proved as a theorem in a later section of this chapter: 

Conjecture: Given any set of N eigenvalues {A.k}~,:-~ where A,= 1 and 

I A,k I< 1 fork :t:. 0, there exists an N'xN' diagonable, regular, stochastic 

matrix Twith eigenvalues {l..'k}~~-01 such that 

(l)N'"C.N, 

(2) A'0 =A, and 'A'k::: A.k for 0 < k < N, 
and (3) I A,'k I< 1 for 0 < k <N'. 

In simpler terms, this conjecture says that the desired eigenvalues will be a subset of the 

eigenvalues from a larger stochastic matrix. Thus, by increasing the size ofT, the limita-
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tions imposed by the domain of eigenvalues can be overcome. It should be noted that a 

disadvantage of this approach is that there will likely be undesirable eigenvalues. 

However, as far as the autocorrelation and the power spectrum are concerned, if J3,~, = 0 

for any undesired eigenvalues, the result will be the same as desired. 

Although the conjecture claims the existence of a desirable stochastic matrix, it 

does not state how such a matrix may be found. To fmd such a matrix, let us consider 

several classes of stochastic matrices which have desirable eigen decompositions. 

Ideally, one would like a class of matrices for which there is a simple and well-behaved 

relation between the eigenvalues and the elements of T. Such matrix classes would not 

only let us achieve the desired eigenvalues {A.,~,}, as well as manipulate the spectral coeffi

cients {f3k} in a simple fashion. Classes of matrices with these properties do exist as shall 

be shown in the following sections. 

A Circulant Structure 

The use of circulant stochastic matrices for MCRPs was proposed by Mullis and 

Steiglitz [Mu172], and the material in this section is based on their work. For anNxN 

circulant matrix C, the elements are related by the equation 

[CJ;,j = cv -ilmod<Nl' (ID.5) 

For example, a 3x3 circulant matrix would be given by 

The eigenvalue-eigenvector decomposition for an NxN circulant matrix Cis well-

known and is given by [Dav79, Her86] 

(ID.6) 
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In this equation, F DFI is the NxN matrix 

1 1 1 1 

1 e-,2rrJN 

FDFI' = 1 e-14rrJN 

e-14rrJN 

e-iBrrJN 

e-12W-1Jrr1N 

e -14W -1)TriN 

(ID.7) 

and A is the diagonal matrix 

A= 

-J2(/'I -1)(/'1 -1)rriN e 

lw-t 

(ID.8) 

where "A,k = r;:=-01 c,e72TCiktN, which is just the discrete Fourier transform (DFf) of 

{ c0, c 1, ···,eN _ 1}. While the above applies to all circulant matrices, if the matrix is also 

stochastic, then note that, like all stochastic matrices, there is an eigenvalue equal to one: 

~ _ N-1 jO _ 
'\oo- I;, =o c,e - 1. 

For a circulant stochastic matrix Tc, the Markov chain is irreducible as long as 

c0 ::!: 1. Now consider the eigenvalues of a circulant stochastic matrix. For k > 0, since 

Ak = za-01 C;e-12mktN, Ak is just a Convex combination of the points 

{ 1, e-,zrrktN, e-,zn2ktN, • • ·, e-121t(N -t)ktN} in complex space. Further, since 0 :S c, :S 1, and 

L~=-01 C; = 1, "Ak must clearly lie on or interior to the polygon in complex space formed by 

connecting the points { 1, e-,zrrktN, e-,Zn2ktN, • • ·, e-12tt<N -OktN}, which all lie on the unit circle. 

If only one element of {c0, c 11 • • ·, cN_ 1} is nonzero, 'Ak must equal one of these points. In 

this case, I "A,k I= 1, which implies that the Markov chain would not be regular. Con-
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versely, if two or more elements of {c0,c1, ... ,cN_1} are nonzero, 'A1c will lie in the interior 

of the unit circle, so that I A~c I < 1. Tlms, a necessary condition for the circulant Markov 

chain to be regular is that at least two elements of { c0, c 1, ···,eN _1} are nonzero. 

As shown in Chapter IT, s is the left eigenvector associated with the eigenvalue 

Au = 1. For circulant stochastic matrices, this eigenvector is the first column of FDk· 
But, it is true that Fi}FI = (1/N)F;FI, where" refers to complex conjugate transpose. Con-

sequently, 

·=U ~ ~r 
1 

=-lN, 
N 

and therefore, the diagonal matrix S consisting of stationary probabilities is given by 

S = (1/N)IN. 

Having determined the stationary probabilities, the spectral coefficients {13~c} may 

be found. For 'Ah the right eigenvector is. V~c = (ro0 ro1 ro2 

ro = e-j2rrk1N and the left eigenvector is uk =(liN) (v;l, Thus, 

This can be further simplified by using DFf notation: let 

A (k) = "N -I -J27!:kt!N 
..t...,=oa,+te ' 

which is just the DFf of {a.}. Note that tl v, =A(k) and ura =A "(k)IN. Making these 

substitutions in the above equation for 13~c yields 
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A _A .. (k)A(k) 
Pk- N2 

IA(k) 12 

= (Ill.9) 

The power spectrum for MCRPs with circulant transition probability matrices may there

fore be expressed as 

N -lj A ( k) 12 ( 1 1 J 
<P(ro)= L N2 1 'l -,ro+1 'l jm-1. 

k = t - 1\.ke - 1\.ke 
(Ill.lO) 

The benefit of MCRP with circulant transition probability matrices is that there is a 

straightforward relationship between the spectral parameters {A.~} and {f3k} and the 

MCRP parameters in T and a. 

From the previous discussion, the eigenvalues of a circulant matrix are given by the 

DFT of {c0,c1, ···,cn_1}. It follows that, given a set of eigenvalues {Ak}, the set {c;} can 

be found by taking the inverse DFT of the eigenvalues: 

1 N-1 
"" 'l J2mk!N 

c, =N ~ 1\.ke • 
k=O 

(Ill.ll) 

While this seems straightforward enough, there is one problem: for an arbitrary set of 

eigenvalues, there is no guarantee that the resulting values for { C;} will satisfy 0 :s;; C; :s;; 1 

and I!/.:01 c, = 1. However, Siegel et. al. [Sie76] have developed a linear programming 

algorithm which reportedly results in a set of eigenvalues close to the specified eigenva

lues. Here, Siegel made implicit use of the above conjecture by making the size of the 

matrix much larger than the number of eigenvalues given. For example, Siegel reported 

using a 256-state MCRP to match 5 pairs of complex eigenvalues. 

Another problem with circulant matrices is that the ~k values are restricted to being 

real and positive: in general, these constants can be complex. In fact, for the MCRP 



example in Chapter IT, there were complex constants: ~~ = 1.06 + 0.09 j and ~2 = ~;. As 

shall be seen in the next chapter, this restriction hinders the ability to match data and 

MCRP power spectra. 

It is worthwhile comparing MN, the set composed of all eigenvalues of NxN sto-

chastic matrices, with the corresponding region, denoted here as BN, restricted to circu

lant stochastic matrices. Whereas MN = I../,=2 P;, BN = PN. The differences between the 

sets MN and BN are illustrated in Figure 3.5 for a few values of N. Note that the 

difference between the two sets is small. Thus, circulant stochastic matrices are nearly 

optimal in the sense that they generate nearly all possible eigenvalues. 

Having seen the usefulness and limitations of MCRPs with circulant stochastic 

matrices, a natural question is whether there are other classes of matrices which would 

prove useful. Steinhardt, for one, has considered the class of normal matrices [Ste83], 

which are diagonable matrices such that the modal matrix V satisfies v-1 = V; i.e., 
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T = V AV, A is a diagonal matrix of eigenvalues. However, Steinhardt found that these 

matrices also require ~k to be real and positive. Additionally, he offered no method to 

find T given a set of eigenvalues. Consequently, since the ~k values must be real and 

positive, and since a linear programming algoritlun must be used to fmd the elements of 

T c for circulant stochastic matrices, tl1ere is certainly reason to search for other classes of 

matrices. 
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N=5 
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Figure 3.5. Domain of Eigenvalues for Stochastic and Circulant Stochastic 
N xN Matrices. 

A Summed Structure 

One of the main problems with the circulant structure is that it is difficult to synthe

size a process which requires a large number of eigenvalues. One approach to solving 

complex problems such as this is to try to separate the problem into smaller, hopefully 

simpler, problems. Such is the approach with the summed structure discussed in this sec-

tion. 

The summed structure is based on the fact that if several independent processes are 

summed, the resulting power spectrum is the sum of the power spectrum for each pro-
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cess. Formally, if {y;(n)} are independent random processes, and w(n) = :L, y;(n ), then 

«Pw(co) = :L, «P,,(co). The concept here is to partition the set of spectral parameters, {A,t} 

and {~.t}, and find MCRPs which meet the parameters for each partition. Then, these 

MCRPs, which for clarity shall be called subchains, can be summed to yield the desired 

process. 

One drawback of this approach is that it would require the operation of several 

chains in parallel. Often, one would rather have to deal with only one process than many. 

As it turns out, it is possible to combine these subchains into one larger MCRP. First, if 

{T,} are the transition probability matrices for the subchains, then let 

where® is the Kronecker product. 1fT, is N,xN., then Twill beNxN whereN =UN,. 

That is, Twill have TI, N, states. The output map for Tis more difficult to annotate. 

However, as the Kronecker product is the element-by-element product of the T, matrices, 

the desired output map for Tis found from an element-by-element sum of the output 

maps {a;}. 

Perhaps this is best illustrated by an example. Suppose that we have two subchains; 

one has three states and the other has two states. Let the transition probability matrices 

be given by 

T T and the output maps by a 1 = (a1 a2 a3) and a2 = (U1 ~) • Then, 
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tl,l 'tl,l tl,l 'tl,2 t1,2 'tl,l tl,2 'tl,2 tl,3'tl,l tl,3 'tl,2 

tl,l 't2,1 tl,l 't2,2 tl,2~,1 tl,2 't2,2 tl,3 't2,1 tl,3 't2,2 

T=T1 ®T2 = 
t2,1 'tl,l t2,l'tl,2 t2,2 'tl.l t2,2'tl,2 t2,3 'tl,l t2,3 'tl,2 

t2,l't2,1 t2,l't2,2 t2,2~.1 t2,2~.2 t2,3~,1 t2,3 't2,2 

t3,1 'tl,l t3,l 'tl,2 t3,2 'tl,l t3,2'tl,2 t3,3 'tl,l t3,3 't1,2 

t3,l't2,l t3,1 't2,2 t3,2~.1 t3,2~,2 t3,3~.1 t3,3 't2,2 

and 

a 1 + a 1 

a.+ cx..z 

a 2 + a 1 
a= 

a2 + cx..z 

a 3 + a 1 

a3 + cx..z 

Note that the diagonal elements ofT are similar to the elements of a. For example, 

[T]3, 3 = t2,2't1, 1 while [a]3 = a 2 + a 1• In general, if [T];,, = tj,,'tk,k then [a];= aj + ak. 

Perhaps the most significant problem with this approach is the extremely large 

number of states. Since the number of states is N = Il; N,, T can be very large even for a 

relatively small number of subchains. The structure introduced in the following section 

avoids this problem while maintaining the same basic approach. 

A Ring Structure 

The ring structure discussed in this section uses a similar approach to the summed 

structure but with relatively fewer states. This ring structure is illustrated in Figure 3.6. 

As before, several MCRPs are combined to form a larger process. However, in this case 

the processes are not added, but are connected together by a Markov chain. To explain 

further, refer to Figure 3.6 and suppose at some instant the chain is in any state of sub

chain 1. There is a probability of ( 1 - a 1) that the next state will also be in subchain 1; in 
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this case, the particular state depends upon T1• At the same time, there is a probability of 

a1 that the next state will be in subchain 2; in this case, the particular state depends upon 

s2, the stationary distribution for subchain 2. 

1-(X2n ~ n 
al~~~3 

M 

~' ,' ........ _____ ,, 

'\ 

, , 

\ 
\ 
\ 

' I 
I 
I 

I 
I 

Figure 3.6. MCRP Ring Structure. 

Using block matrix notation, the transition probability matrix for this structure can 

be expressed as 

(1-<Xt)T1 <Xtks~ 0 0 
I 

0 (1-a,JT2 abS~ 0 
l 

T= (III.l2) 

0 (1-aM-I)TM-1 (XM-1kl~ 

o:M!v si 0 0 0 (1-aM)TM 
M 

where T, is the N,xN, transition probability mattix for the i'h subchain, s, is the stationary 

distribution for the i'h subchain, !N, is a vector of all ones and of length N,, and 0 < a, < 1 

for all i. As before, the total number of states in T shall be designated by N: N = 'L,N;. 
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Recall that for a matrix T to be stochastic, every element ·must be nonnegative and every 

row must sum to unity. Since 0 <a, < 1, both a, and (1- a,) are nonnegative for all i, the 

matrices {(1 - a;)T,.} and { a;!sf} consist of nonnegative elements. Hence, every element 

ofT is nonnegative. To illustrate that every row ofT sums to unity, consider the sum of 

the elements in the frrst row of T: 

N1 N1 

:L,[T]1,, = I. (1 - a 1) [T1] 1 ; + I. a 1(k1S2] 
' •=1 , 1=1 1,1 

N1 N1 

= (1 - a1) I. [T1] 1 , +at I. [s2l, 
'::: 1 ' '= 1 

=1. 

Similarly, the other rows ofT also sum to unity. Hence, Tis a stochastic matrix. 

For our purposes there are a few restrictions which must be imposed on the sub

chains. First, each of the T, matrices must be diagonable. fu Chapter IT it was shown that 

regular Markov chains have desirable properties. The restrictions on the T, matrices, 

however, can be relaxed: it is possible to obtain useful results even if some of these 

matrices are not regular. However, if a given T, is not regular, and is in fact reducible, its 

stationary distribution s, will not be unique. fu this case, the stationary distributions, 

must be chosen such that every element of s, is nonzero. Tlris restriction is necessary to 

insure that T will be irreducible. 

Before discussing the statistical properties of tlris structure, note that an MCRP of 

this type is a doubly stochastic process: each subchain is a random process, and, at a 

higher level, these subchains are cmmected together by a random process. In fact, this 

process can be intetpreted as a Hidden Markov Model (HMM). Moreover, the process is 

doubly Markov, as both layers of processes are Markov. 
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To defme the statistical properties of tltis structure, some notation needs to be 

developed. Let a,= (0,,1 a •. 2 ··· a;,Nf be the output map for the i'" subchain, so that 

a = (tfj a{ · · · t!ul for the entire chain. Also, let {A;,t} for 0 ~ k ~ N;- 1 be the 

eigenvalues ofT, with associated right and left eigenvectors {v,,t} and {u,,t}, respec

tively. By convention,~= 1 is the eigenvalue associated with the right eigenvector u;,o 

wltich is also the stationary distributionS;. Also, letS; be a diagonal matrix of the 

stationary distribution s, for the ith subchain. Assume without loss of generality that the 

mean for each subchain is zero so that ii; = a,. In this case, the spectral coefficients for 

each subchain are given by ~ •. t = ii~tSv,,ku~tii for 0 < k < N, and for 1 ~ i ~ M. 

Using this notation, the stationary state probabilities for this structure can be 

expressed in block vector notation as 

s=-1-(_!_l 
~ 1 a 1 
""'- 1 j a, 

(III.13) 

where the L1(1/a1) term has been included as a scaling factor so that the elements of s 

will sum to unity. The only eigenvalues ofT which can have non-zero spectral coeffi

cients are {A.',,t} where 

A,',L=(1-a)A•L 
'•" I I,K 

(III.14) 

for 0 < k < N; and 1 ~ i ~ M. The associated spectral coefficients for these eigenvalues 

are {W,,t} where 

A' - ~•,k 
..... k- ~ 1 

a ""'-' a J J 

(III.15) 

for 0 < k < N, and 1 ::;; i ::;; M. Thus, for this structure, the spectral parameters can be 

found very easily from the eigenvalues and spectral parameters of the subchains. It 
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should be pointed out that T does have eigenvalues other that those described above; 

however, the spectral coefficients of these eigenvalues are identically zero. The proof of 

the assertations in Equations (ID.13), (ill.14), and (Ill.15) are given in the appendix. 

As an example of this structure, suppose there are 3 subchains. Let 

(.4 .6 

~} T1 = 0 .4 

.6 0 .4 

T,=e .8 
.8) 
.2 ' 

e and T3 = .3 .3). 
.7 

As all these matrices are all circulant matrices, s1 = (1/3 1/3 113l, s2 = (1/2 112l, 

and s2 = (1/2 112l. Now suppose that c:x.1 = .1, <X..2 = .3, and~= .6. The transition prob-

ability matrix for this example is then 

[(I- a.,)T, c:x.tLs; 0 

T= 0 (l-~)Tz w] 
~bs~ 0 (1-~;T3 

.36 .54 0 .05 .05 0 0 
0 .36 .54 .05 .05 0 0 

.54 0 ,36 .05 .05 0 0 

= 0 0 0 .14 .56 .15 .15 

0 0 0 .56 .14 .15 .15 

.2 .2 .2 0 0 .28 .12 

.2 .2 .2 0 0 .12 .28 

Now suppose the output maps are a 1 = (-2 .5 1.5l. a 2 = (-.7 .7l, and . 

az = (-.9 . 9l, so that a= (-2 .5 1.5 -.7 .7 -.9 .9l . 

Then, according to Equation (III.13), the stationary state probabilities forT are 

given by 
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s=-1-(-!1 
1 T 

1 J -s -l L t a t <Xz2 ~3 
- 1 

J a.J 

= ~_c(3~ 1 1 1 1 1 
_1 J 

3a.. 3a.l 2az 2{Xz 2~ 2~ 
J cxJ 

=(~ 4 4 2 2 1 _!_)' - - -
18 18 18 18 18 18 

since a.1 = .1, az = .3, and~= .6. That is, the stationary probabilities are 4/18 for every 

state in the :first subchain, 2/18 for every state in the second subchain, and 1/18 for states 

in the third subchain. Now consider the eigenvalues ofT. For T1 the relevant eigenva-

lues are 

and the spectral coefficients for this subchain are 

~1.1 =I A1(1) 12 /(3l = .333, 

and ~1.2 =I A1(2) 12 /(3l = .333, 

where A1(k) = -2(1) + .5(e-i21tk13) + 1.5(e-i41tk13). 

For (T2, ~) the relevant eigenvalue and spectral coefficient are 

~. 1 = .2(1) + .8(e-'21f12) = -.6, 

and P2, 1 =I Ail) 12 /22 = .49, 

, where Az(l) = -.7(1) + .7(e-'21f12) = -1.4. 

For (T3, a3) the relevant eigenvalue and spectral coefficient are 



A..z. 1 = .7(1) + .3(e-12ni2) = .4, 

and ~2.1 =I A2(1) 12 122 = .81, 

where ~(1) = -.9(1) + .9(e-12ni2) = -1.8 
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It should be noted that Th T2 , and T3 each have an eigenvalue of 1, but each of the spec-

tral coefficients for these eigenvalues is zero. Then, according to Equations (ll.14) and 

(ill.15), the eigenvalues ofT which have nonzero spectral coefficients and their 

corresponding spectral coefficients are given below: 

'\I - (1 )" - 4763 -I 3807j R' - ~I. I - 1667 ~~, t, 1 - - <X1 ~~,1, 1 - • e 1-' 1, 1 - "" 1 - • 

a.. k/-; 
J J 

A' 1,2 = ( 1 - a.l"'-..2 = .4 763e _.,.,.,, W 1, 2 = ~~~ 1 = .1667 
a.. -; 

J J 

')..,'1,2 = (1- ~)A..z.t = -.42 

A-'3,1 = (1- ~)~ .• = .16 

W2, 1 = ~I = .1633 
~ -

j «, 

R' - ~3,1 - 135 
l-'3,1- "".-. 

~kl-
j «, 

The power spectrum for this MCRP is given below in Figure 3.7. 

The conjecture of an earlier section of this chapter can now be formally stated and 

proved: 

Theorem: Let {'Ak}~,:-~ be a set of N complex numbers where f..u = 1 and such 

that I 'Ak I< 1 fork :;t: 0. Let E > 0 be given. Then there exists a regular, 

diagonable, stochastic N'xN' matrix Twith eigenvalues {'A'k}~~-01 such 

that 
(l)N' "?.N, 
(2) 'A' 0 =Au and I 'A' k- 'Ak I< E for 0 < k < N, 

and (3) I A'k I< 1 for 0 < k <N'. 
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Figure 3.7. Power Spectrwn for Example Ring-Structured MCRP. 

To prove this theorem, MCRPs employing the ring-structure shall be used. The strategy 

used shall be to assign one subchain to each eigenvalue or complex-conjugate eigenvalue 

pair which is desired. Let us examine three separate cases: (1) complex-conjugate eigen

value pair, (2) real, negative eigenvalue, and (3) real, positive eigenvalue. 

If a complex-conjugate pair of eigenvalues is desired, let T, be the circulant stochas-

tic matrix where c;, 1 = 1. For convenience, such a circulant matrix of size N,xN, shall be 

referred to as RN. For example, if N, = 3, this matrix is 
I 

(0 1 OJ 
R3 = 0 0 1 . 

1 0 0 
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• • • " -j2rckn!N -J2rck!N 
The eigenvalues of this matnx are 'A,,~r = ~" c,,,.e 1 = e '. for 0 :::; k < N;. Conse-

quently, (1- a;)e-jzrrlrtN, will be eigenvalues ofT for 0 < k < N,. It is important to empha

size that while the MCRP with transition probability matrix RN is not regular as it has 
I 

more than one eigenvalue on the unit circle, the resulting T matrix will be regular since 

th ' al (1 ) -JZrrk!N 'th' h . . 1 0 1 e e1genv ues - a, e ' are w1 m t e umt crrc e, as < U; < . 

Suppose the desired complex-conjugate eigenvalue pair is re±~'3 where 0 < e < 1t. 

Then let a., = 1- r so that (1 -a;)= r, and suppose there exists positive integers k 1 and N, 

1 1 , ') 1 -j2rrlr'!N1 
such that k <N, and 27tk IN,""' 6. It follows that if T, =RN,• then 1\, ,,k' = (1- a,)e 

d ')I (1 ) j21tlr'!N • al f an 1\, r,N,-Ir' = -a, e I are eigenv ues 0 T. But 21tk11N;::::: e and (1- U;) = r' so 

"'I -j9 d ')I j9 
1\, ,,lr'::::: re an 1\, •• N,-Ir'::::: re . 

In practice, the difference between e and 21tk1 IN, can be made as small as desired by 

choosing k 1 and N; appropriately. In general, for a given N;, the best k 1 is given by 

kl=[ ~:] (Ill.16) 

where [-] is the nearest integer operator. Hence, using this approach and given any E > 0, 

a proper choice of U;, k 1 and N, will make the inequality I rei9 - (1- a,)e121tlr'tN, I< E hold. 

The second case is when the desired eigenvalue is real and negative. In tlus situa-

tion, letT, =R2• The eigenvalues ofT, are 1..,,0 = 1 and 1..,, 1 = -1. Hence, (1- a,)(-1) will 

be an eigenvalue ofT. If the desired eigenvalue is -r, then let a, = 1 - r so that -r will be 

an eigenvalue ofT. In this case, an approximation to the desired eigenvalue does not 

have to be made; the desired and resulting eigenvalue are equivalent. 

The final case is when the desired eigenvalue is real and positive. In this case, let 

T, = 12; that is, T, is a 2x2 identity matrix. In a situation like this in which T, is reducible, 

s, is not unique. As noted previously, s, must be chosen so that all of its elements are 

nonzero. Although one could chooses, to be most anything, let us uses,= (0.5 0.5f 
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The eigenvalues ofT; are A;,o = 1 and A;, 1 = 1· Hence, according to Equation (ID.14) 

'A',, 1 = (1- a,)'A,, 1 = (1- a1) is an eigenvalue ofT. If the desired real, positive eigenvalue 

is r, then one could choose a, = 1 - r so that (1 -a,)= r would be an eigenvalue ofT. In 

this case, the desired and resulting eigenvalue are identical. 

In summary, by using the ring-structured MCRP, any set of desired eigenvalues can 

be achieved within a given tolerance. This can accomplished by assigning one subchain 

to each desired eigenvalue or complex-conjugate eigenvalue pair. For complex

conjugate eigenvalue pairs, use T; be the circulant stochastic matrix RN1 where N; > 2. By 

properly choosing N, and a, for this subchain, the desired complex-conjugate pair can be 

approximated to within a given tolerance. For real, negative eigenvalues, use T, = R2 and 

choose <X.; to be one minus the magnitude of the eigenvalue. In this case, the desired 

eigenvalue is matched exactly. Finally, if the desired eigenvalue is real and positive, use 

T; = 12 and choose a, to be one minus the magnitude of the eigenvalue. In this case, the 

desired eigenvalue is also matched exactly. Of course, there are more exotic procedures 

which will also achieve the desired results. 

This constructive proof solves one of the two, problems in power spectrum synthe

sis: locating T which possesses a given set of eigenvalues. The second problem is to 

determine the necessary output map to achieve the desired spectral coefficients {~k}. 

Following the procedure above, let us split this problem into three cases: (1) complex

conjugate eigenvalue pair; (2) real, negative eigenvalue; and (3) real, positive eigenvalue. 

Suppose that re±'e is a desired complex-conjugate eigenvalue pair. As described 

above, one could assign T, to be the circulant matrix RN,. Let us assume that a,, k', and 

N, have been chosen so that (1- a,)e±12Jtk'IN, approximates the desired eigenvalue pair 
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The eigenvalues ofT which are derived from T, are A:;,k = (1 - a;)e -i2rrJc1N1 for 

'\ I -J2rrlc'IN '\ I j2rrlc'IN • 
0 < k <N,. However, only ~~, ,,k' = (1- a,)e I and~~, ;,N1-e = (1- a,)e I are desrred. 

Consequently, one would like to make ~ •. k = 0 fork not equal to k' or N,- k'. This can be 
I 

accomplished by appropriately selecting the output map a, for this subchain. Recall that 

~ •• k =I A,(k) 12 /N,2• Thus, to make ~ •. k = 0 fork =F- k', one need only make 

A(k) = 0 fork =1- k'. The solution for this is to let a,,n = g, cos(2rck'n!N,) where g, is a con

stant which can be adjusted to make ~i,k' as large or small as desired. If this is done, then 

k=k',N;-k' 

else 

Consequently, the only eigenvalues ofT which are derived from T; and which have non-

zero spectral coefficients are 'A.', e = re-'9 and 'A'; N -k' = re'9• The spectral coefficients for 
' ' I 

these eigenvalues will be 

A' - ~•,k' 
... l,k'- ~ 1 

a "'-'-, (X 

J }, 

I ~ •• NI-k' 

and ~ ' N -k' = 1 o I ~ a "'-'-, (X 

J J 

I . 
a I-

I o; 
J J 

The constant g, can be adjusted to achieve the desired magnitude. 

(ill.17a) 

(lll.17b) 

Next suppose that ( -r) is a desired eigenvalue. As discussed above, for this eigen

value one would choose Tl = R2• The eigenvalues of R2 are A1,o = 1 and A1, 1 = -1. By 



selecting a,. = 1 - r, Twill have eigenvalue A:,, 1 = (1 - a,)A,, 1 = -r. Let us choose 

a;= (g - g f In this case, it can be shown that~ ... 1 = g(. Thus, T has an eigenvalue 

A.';, 1 = -r with spectral coefficient 

f.t' - ~ ... 1 
...... 1- Ll 

a -
' a J J 
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(ill.18) 

The constant g, can be adjusted to achieve the desired magnitude for the spectral coeffi-

cient. 

Finally suppose that r is a desired eigenvalue. As discussed above, for this eigenva

lue one would choose T, = 12• The eigenvalues of R2 are A,,o = 1 and A,, 1 = 1. By select

ing a, = 1-r, Twill have eigenvalue A:,., 1 = (1- a,)A,, 1 = r. Let us choose 

a, = (g - g l. In this case, it can be shown that ~ •. 1 = g,2• Thus, T has an eigenvalue 

A.',, 1 = r with spectral coefficient 

f.t' - ~ ... 1 
1-'r,l- ~I 

a£..-
' 0: J J 

(ill.19) 

Again, the constant g, can be adjusted to achieve the desired magnitude for the spectral 

coefficient. 

Using these techniques to define the subchains, let us work a simple example. Sup

pose the desired eigenvalues are 0.9e:lQ 65n:', -0.8, and 0.7. Hence, three subchains are 

needed: one to produce eigenvalues 0.9e:lQ 65n:'; one to produce the eigenvalue -0.8; and 

one to produce the eigenvalue 0.7. 



71 

First consider the complex conjugate eigenvalues 0.9e:to.6Sitj. As detailed above, let 

T1 = RN and a 1 = 1 - (0.9) = 0.1. Next, a k' and N1 need to be found such that 
I 

27tk'/N1 = 0.651t. As a simple approximation, let k' = 1 and N1 = 3. Then 0.9e~'!tl3 will be 

eigenvalues for the ring-structured MCRP. The output map a 1 = (a1, 1 a 1,2 a 1,3l is 

defined by a1,n = g1 cos(21tk'n!N1). Substituting k' = 1 and N1 = 3, a 1,,, = g 1 cos(27tn/3). 

The constant g1 is a function of a; for the other subchains, so the determination of g 1 will 

have to wait until all of the a; terms have been defined. 

Next consider the eigenvalue (-0.8). As detailed above, let T2 =R2 and 

a.:z = 1 -0.8 = 0.2. Then ( -0.8) will be an eigenvalue for the ring-structured MCRP. The 

output map for this chain is az = (g2 - g2l. As above, determining g2 will have to wait 

until the remaining a; term is defmed. 

Finally, consider the eigenvalue 0. 7. As detailed above, let T3 = 12 and 

~ = 1-0.7 = 0.3. Then 0.7 will be an eigenvalue for the ring-structured MCRP. The 

output map for this chain is a3 = (g 3 

Now, according to Equations (III.17 a) and (III.17b), the spectral coefficients for the 

complex-conjugate eigenvalues 0.9e~'!tl3 are both given by 

As we want this constant to be equal to 2, as given above, g1 = 3.83. Hence, 

a 1 = (-1.915 -1.915 3.83l 

From Equation (III.18), the spectral coefficient for the eigenvalue (-0.8) is given by 
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As we wish this to be equal to 1, as given above, g2 = 1.915. Hence, 

tl:z = (1.915 -1.915l 

From Equation (ID.19), the spectral coefficient for the eigenvalue 0.7 is given by 

As we wish this to be equal to 1.5, as given above, g2 = 2.345. Hence, 

a3 = (2.345 - 2.345)r 

The transition probability matrix for the ring-structured MCRP is then given by 

[(1-a,)T, atLs; 0 

T= 0 (1-~)T2 ~T l 
T 0 (1-~;T3 ~bs2 

0 .9 0 .05 .05 0 0 
0 0 .9 .05 .05 0 0 
.9 0 0 .05 .05 0 0 

= 0 0 0 0 .8 .1 .1 
0 0 0 .8 0 .1 .1 
.1 .1 .1 0 0 .7 0 
.1 .1 .1 0 0 0 .7 

and the output map by 

= (-Q.7385 0.7385 1.477 1.915 - 1.915 2.345 - 2.345)T 

Note that s1 = (1/3 113 113/ and that s2 = s3 = (112 1/2)r. The power spectrum for 

this example is given in Figure 3.8 below. 
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4 

Nonnalized Frequency 

Figure 3.8. Power Spectrum of Synthesis Example. 

· Joint Probability Distribution - Power Spectral Density Synthesis 

Now consider the more difficult problem of locating a random process which 

matches both a given probability distribution and power spectrum. Previous work done 

in this area is exemplified by the work of Sondhi [Son83] and more recently by Taori, for 

example [Tao90]. The traditional approach to this problem has been to pass a Gaussian 

white noise process through a linear filter and then through a memoryless nonlinearity. 

The nonlinearity achieves the desired distribution. Together, the linear filter and nonlin

earity determine the spectral shaping of the resulting process. The crux of this problem is 



to design the linear filter to produce the proper spectral shaping, taking into account the 

warping effects caused by the nonlinearity. In his paper, Sondhi reported successful 

results for many different combinations of spectra and distribution. 
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However, let us consider MCRPs for joint probability distribution/power spectral 

density synthesis. Having considered probability distribution synthesis and power spec-

tral density synthesis, one can see that the solution is the intersection of the two solution 

sets. In particular, the solution set for this task is likely much smaller than either of the 

two sets. However, given the material from the previous sections, one can at least 

explore a few possibilities. 

In particular, let us restrict our attention to the case when the desired probability 

distribution function is from a continuous-valued process. Recall from the first section of 

this chapter concerning probability distribution synthesis that Twas chosen to be any 

doubly stochastic matrix and let a was defined from centroids of the partitioned distribu

tion function. If we adopt this as the basis for our joint synthesis problem, consider the 

restrictions. 

As a is fixed, the only item which can be modified to meet the spectral constraint is 

the transition probability matrix. However, T must be doubly stochastic. Of the struc

tures considered in the previous section, only the circulant structure qualifies. Let us 

briefly review the results for circulant MCRPs. Recall that a circulant transition 

probability matrix Tc is defmed by [Tel,,,= cv-•>mod(N)· For Tc, the eigenvalues are given 

by "Ak = I!;'=-01 c;e-12mktN. The spectral coefficients {~k} are found by taking the DFI' of the 
N-1 

output map: ~k =I A(k) I2 /N2 where A(k) = L, = 0 a,+ 1e-'2Jtk 11N, and a= (a1 Gz 

In our case, since a is fixed, this means that {~k} are also fixed. Thus, only the eigenva-

lues can be modified. 
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We note here that we have a major problem as the spectral coefficients are fixed. 

Previously, we had asserted that we could add more eigenvalues than were strictly needed 

if the weights of these eigenvalues were identically zero. However, that approach will 

not work in this instance as the spectral coefficients will, in general, be other than zero. 

However, there is another way around this problem. Suppose that we can make 'A~c = 0 for 

any spectral coefficient that is unwanted. As evidenced by the equation 

the result will be a bias in the spectral power equal to the sUm of the spectral coefficients 

of all eigenvalues equal to zero. Hence, at least these terms will not influence the curva-

ture of the power spectrum. 

As our purpose here is only to perform a brief investigation, let us consider a shnple 

example. Suppose that the process is to have a peak in the power spectrum at some spe-

cifiedradian frequency 9. As Tc is defined in terms of {c;}, suppose 

c.=-cos ---9 r (21tik' ) 
I N N 

Then, the eigenvalues ofT c would be 

N-1 
'I _ ~ -J211:/r~/N 
r..~c- k c,e 

•=0 

for k =k' 

for k=N -k' 
else 
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This meets the criteria above wherein all eigenvalues are zero except for the desired 

eigenvalue. However, there is one major problem: a transition probability matrix based 

on {c;} defmed above would not be stochastic as L, C; = 0 and min(c,) < 0. Hence, con

sider redefming { c,} as 

c =-+-cos ---9 1 2r (21tik' ) 
I N N N 

In this case, T c based on { c,} is stochastic for I r IS .5, and the eigenvalues are 

N-l A - L -j2rtki/N 
~c- c;e 

1=0 

1 for k=O 
re-je for k =k' 

= 
reJe for k =N -k' 

0 else 

The only difference from the above is that the magnitude of the eigenvalue with angle 9 

is restricted to being less than .5 in magnitude. Also note that, in practice, k' would most 

likely be chosen to correspond to the spectral coefficient with the largest magnitude. 

As a specific example suppose the process is to have Laplacian density with unit 

variance, 9 = 7t/4 and N is chosen to be 20. Then the output map is as defined in the first 

section of this chapter. Based upon this output map, the largest 13~r is j31 = 0.1438. Hence, 

let k' = 1 so that 

The power spectrum for this process is shown below in Figure 3.9. 

In general, we would like to have control over the magnitude of the eigenvalue. It 

may be possible to do this if the output map can be chosen more flexibly. For, if some of 
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the weights can be made small, then undesired, non-zero eigenvalues could be tolerated. 

However, it is not immediately clear how one would modify the output map to achieve 

this result without compromising the probability distribution constraints. 
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Figure 3.9. MCRP Power Spectmm from Joint Synthesis. 



CHAPTER IV 

STOCHASTIC MODELING WITH MARKOV 

CHAIN RANDOM PROCESSES 

In the previous chapter, a ring structure was introduced which allowed a MCRP to 

be found with a given set of eigenvalues. In this chapter, the flexibility of MCRPs, and 

of ring-structured MCRPs in particular, is tested by considering MCRPs as models for 

stochastic processes. Of course, the best random process which a MCRP could model 

would be another Markov chain random process. In general, however, it is worthwhile to 

consider MCRPs as models for arbitrary stochastic processes. In particular, the focus of 

this chapter is modeling stationary processes with MCRPs. The more difficult problem 

of modeling nonstationary processes is only discussed briefly. 

Stationary Processes 

In any modeling application, perhaps the frrst consideration should be the modeling 

criterion: i.e., those properties of the process which the model should try to match. Of 

course, this is application-dependent. However, for a large nwnber of applications, the 

2nd order statistics are of main importance [Pap84]. Hence, the autocorrelation, or equiv

alently the power spectrum, provides a good choice for modeling criterion: the closer the 

match between the power spectrum of the random process and the power spectrum of the 

model, the better the model. 
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Before considering MCRPs as stochastic models, it is useful to review other station-

ary random processes which have been used as stochastic models. In the following sec-

tion, a class of linear processes known as ARMA is introduced and compared with 

MCRPs. 

ARMA Processes 

A linear ~ingle-input single-output discrete-tin1e system can be expressed by the dif

ference equation 

L M 
y(n) = u(n) + L biu(n- j)- L a1y(n- i) 

j=1 I =1 
(IV.l) 

where u (n) is the input and y (n) is the output of the process at time n. Such a system is 

commonly referred to as an autoregressive moving-average (ARMA) process. Two spe-

cial cases of Equation (IV.l) are worth noting: if L = 0, the process is called autoregres

sive (AR), whereas if M = 0 the process is called a moving average process (MA). It is 

often more useful to interpret AR, MA, and ARMA processes as the output of a linear 

filter which has the transfer function 

H(z) = M 

1 + L a,z-i 
I =1 

= (IV.2) 

where zi are zeros of the system and p, are poles of the system. Then, if the input u (n) is 

a stationary process with power spectrum ct>,.(ro), and all of the poles {p,} are less than 

unity in magnitude, the output y (n) will be stationary and its power spectrum will be 

given by 
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(IV.3) 

In many applications, u(n) is chosen to be white noise so that cl>"(ro) is a constant. 

In this case, all of the spectral shaping is detennined by the filter. Often, it is useful to 

model a random process which does not have a flat spectrum as the output of a linear 

filter driven by white noise. 

ARMA Processes .mld MCRPs 

In the time-domain, ARMA processes and MCRPs have little in common. This is 

chiefly because ARMA processes have continuous probability distribution functions 

whereas the probability distribution function of MCRPs is discrete. Still, both can be 

interpreted as being the output of a transfer function. In the case of ARMA processes, the 

transfer function is a linear, constant-coefficient filter. In contrast, from the discussion in 

Chapter II, the transfer function for MCRPs is nonlinear and state-dependent. 

However, surprisingly enough, ARMA processes and MCRPs have quite similar 

spectral characteristics. This is clearly not apparent from comparing the ARMA power 

spectrum in Equation (IV.3) and the MCRP power spectrum given in Chapter II, Equa

tion (II.34 ): 

N-1 ( 1 
cl>(ro)= :l ~k 1 'A ,m + 

t-t - ~ce 

1 
(11.34) 

Yet, with a little manipulation, it is possible to discover .a striking similarity between the 

two processes. Towards this end, consider the autocorrelation of an AR1vlA process. 

Suppose that the input to the ARMA process is white noise, there are no repeated poles, 

and the number of poles is greater than the number of zeroes. Under these restrictions, it 

is possible to express the autocorrelation of an ARMA process as 

(IV.4) 
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where {p;} are the poles of the system and {y;} are constants which are determined by 

H (z) [Mul72]. Specifically, 

(IV.5a) 

(IV.5b) 

Now recall the MCRP autocorrelation expression from Chapter IT, Equation (II.23 ): 

(ll.23) 

Comparing Equations (N.4) and (ll.23) as given above, it is clear that there is a similar-

ity between the autocorrelations, and therefore the power spectra, of ARMA processes 

and MCRPs. In fact, one researcher has gone so far as to conjecture that "any power 

spectrum obtained by shaping white noise with a finite order linear filter can also be 

obtained with a finite Markov chain" [Mul79]. From Equations (ll.23) and (IV.4) it 

seems apparent that by setting 'Ak = p,, ~k = y,, and J,ly = 0, the power spectra of the two 

processes would be identical. 

In summary, then, while the first order properties of MCRPs and ARMA processes 

are dissimilar, their second order properties are remarkably similar. These comparisons 

are reiterated below in Table 4.1. Before continuing, it should be noted that it is possible 

to massage the power spectrum equation for MCRPs into a form similar to Equation 

(N.3); however, as far as the author knows, there is no easy way of doing this. The rep

resentations of the autocorrelations given above appear to be the best grounds on which 

to compare the zoo order properties of ARMA processes and MCRPs. 



TABLE4.1 

COMPARISON OF ARMA PROCESSES AND MCRPS 

Transfer Function: 

Probability 
Distribution Function: 

Autocorrelation: 

ARMA Processes 

Linear, 
Constant -Coefficient 

Continuous 

~ 'V.p!"' k, ,,., 

Parameter Solutions for ARMA Processes 

MCRPs 

Nonlinear, 
State-Dependent 

Discrete 

In a real-world scenario of data modeling, one would be given a finite-length data 

sequence and be required to fmd the parameters of a model which best fit the data. For 

ARMA models, parameter estimation is based on the notion of prediction. To begin, 

recall the ARMA input-output equation: 

y(n) =H(z)u(n) 

B(z) 
= A(z) u(n) 
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this research, we are most interested in the case for which M > L; i.e., when the denomi-

nator polynomial is of higher degree than the numerator polynomial. At any time n, a 

prediction of y(n) given {y(n -1), y(n - 2), ···}and based on the model parameters {a,} 

and {b,} can be made by y(n) =E[y(n) I y(n -l),y(n -2), ···]. The prediction error, 

e(n) = y(n)- y(n) is given by 



e(n) =H-1(z)y(n) 

A(z) 
= B(z)y(n). 
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(See, for example, [Ros79] for details.) The model parameters {a;} and {b.} are often 

found by minimizing the error function 

Unfortunately, since e (n) is not a linear function of the model parameters, a linear solu-

tion for this minimization does not exist. Still, iterative approaches can be used in the 

solution of this problem. 

However, suppose the process is restricted to being AR. In this case, 

e(n) =A(z)y(n) 

= y(n)+a1y(n -1)+ ... +aMy(n -M). 

It is clear that e (n) is linear in the model parameters {a,}, and therefore, a linear solution 

can be found which minimizes J. 

Given the data set {y(1),y(2), · · ·, y(N)}, J is minimized by [Men87]: 

T -1 T 
€) = ('PN'PN) 'PNYN (IV.8) 

where 

y(M -1) y(M -2) y(1) at y(M +1) 
y(M) y(M -1) y(2) a2 y(M +2) 

'PN= e-' - , and YN= 

y(N -1) y(N -2) y(N -M) aM y(N) 

Calculating the model parameters by minimizing the sum of the squares of the pre-

diction en·ors does not explicitly match data and model power spectrum. However, an 

information-theoretic argument can be used to justify that the resulting power spectrum 
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from the AR model is a valid power spectrum estimator of the data [Sch78]. Thus, this 

method of fmding the model parameters is appropriate given that the modeling criteria is 

the power spectrum. 

Parameter Solutions for MCRPs 

For MCRPs, finding the model parameters is more difficult. The probabilistic 

nature of the model prevents a least-squares prediction-error formulation to solve for the 

model parameters. However, let us consider several other approaches. 

One idea is to assume that the data is generated by an MCRP. In this case, the fre-

quency of occurrence of values in the data provide a good estimate of the transition prob-

abilities. However, the data to be modeled may have a wide range of values. Thus, each 

element of the time series must initially be quantized into one of N levels. The transition 

probabilities can then be estimated by averaging the number of state-to-state transitions: 

f,,, = P[x(n + 1) = j I x(n) = i] 
_ Nwnber of transitions from level i to j 
- Number of occurences of level i 

(IV.9) 

This method does not inherently guarantee power spectrum matching, but it is quick, 

easy, and intuitively clear. 

In fact, the above technique has been used in several recent studies. One study was 

in modeling solar radiation [ Agu88]. In this study, the authors used a library of MCRPs 

to create a model of daily solar radiation at any place on earth. Multiple MCRPs were 

required to account for different radiation patterns around the globe. The authors found 

that this approach produced excellent results, and matched the probability distribution 

function and autocorrelation of known solar radiation data. 
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Another study used this approach to model wind speed [J on86]. In this study, the 

wind speeds were categorized into eleven levels, and the transition probabilities were 

estimated as described above. The authors reported that the autocorrelation of the model 

and the data did not match exactly, though they were close for up to 30 lags. 

While the above approach has merit, one can do better than this by explicitly match

ing the data and model power spectra. To begin, one must have an_ estimate of the data 

power spectra. One of tl1e simplest estimates is the periodogram which is given by 

<i>(ro) =I Y(e'j 12 (IV.lO) 

where Y(ejj is the discrete-time Fourier transform ofthe data [Opp75]. However, this is 

not the most useful estimate for modeling pwposes as it is difficult to determine the 

MCRP parameters from the estimate. It would be more advantageous to have an estimate 

of the data power spectrum from which the MCRP spectral parameters {Ak} and {~k} 

could be easily determined. 

Towards this end, reconsider the AR model. As noted previously, the power spec

trum from the AR model is a valid estimate of the data power spectrum. From the AR 

model for the data, the poles {p,} and spectral coefficients {y,} can easily be found. 

Consequently, these values can be used to determine the MCRP spectral parameters {A.k} 

and {~k}· Therefore, it appears possible to use an AR model as the basis for the MCRP 

model. This approach is illustrated below in Figure 4.1. 

Before continuing, one might ask what advantage there is in using a MCRP as a 

model in this way. Especially since it appears that the MCRP model can at best be only 

as good as an AR model. One answer is that MCRPs might be able to better model cer

tain types of processes. The modeling criteria has been chosen to be the power spectmm. 

However, for some processes, other statistics might be important as well. It is certainly 

possible that, for some types of random processes, the structure of MCRPs provides a 

better model than AR or for that matter, ARMA. A trivial example ofthis, of course, is if 
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Figure 4.1. MCRP Modeling Strategy. 

the data were generated from an MCRP. There may in fact be ways offmding MCRP 

model parameters from the data which do not rely on AR models. However using the AR 

model as a basis for the MCRP model seems a logical approach for now. 

AR Processes and Ring-Structured MCRPs 

Consider using the method illustrated above in Figure 4.1. Determining the AR 

model and its spectral parameters {p;} and {y.} poses no problems. Given the AR spec

tral parameters, the MCRP parameters are immediately known also: the poles {p,} should 



87 

be equated to the eigenvalues {A,} and the AR coefficients{')',} to the MCRP coefficients 

{~k}. One could then use a circulant or ring-structured MCRP to locate a transition prob

ability matrix T for the MCRP which has the necessary eigenvalues {Ak}. The only 

remaining issue is to determine the MCRP output map a so that {~k} equates to {y,}. 

However, herein lies the problem. For, the AR spectral coefficients')', are in general com

plex. While the MCRP pole weights ~k may also be complex, they must be real and posi-

tive for the only known MCRP structures. Consequently, there is a difference between 

the spectral properties of ARMA processes and known MCRP structures. 

While this disparity creates problems, it does not mean that this modeling strategy 

must be discarded. However, this problem makes it necessary to investigate the differing 

spectra of MCRPs with real-valued spectral coefficients and AR processes which have 

complex-valued spectral coefficients. First consider the simple case of 2nd -order process 

which have complex pole-pairs. As an example, suppose the AR transfer function is 

H(z)----1-
- 1 - .5z-1 + .25z-2 

which has poles at p 1 = .5e+pr13 , and p2 = p;. Assuming white noise with unity variance is 

the excitation signal, the spectral coefficients will be given by ')'1 = 0.6349- 0.2199 j and 

y2 = y~. Using the ring structure described in the previous chapter, a MCRP can be found 

with poles A1 = p 1 and A.z = p2 but its spectral coefficients,~~ and ~2, will be real and posi-

tive. Figure 4.2 shows the power spectra of the AR process and MCRP. For both curves, 

the spectral magnitudes have been normalized to 0 dB. 

There are two main differences between the AR and MCRP curves. First, the 

shapes of the curves are different. The MCRP is more symmetric about its peak fre-

quency than the AR spectra. The second and more important difference is that the power 

spectra do not experience their maxima at the same frequency. The AR peaks at a 
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normalized frequency of0.14 whereas the MCRP peaks at 0.17. Differing peak frequen-

cies is undesired because the frequencies near the peak contain most of the process's 

power. Thus, these are the frequencies which are most important to match. 
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Figure 4.2. Power Spectra for AR Process (solid line) and 
MCRP (dashed line). 

The spectra of AR processes and MCRPs with one pole-pair was calculated for 

many different pole-pairs. Figure 4.3 displays several AR and MCRP power spectra for 

various combinations of pole magnitude r and normalized pole angle f, where the pole

pairs are re±,zrrt. It was found that there is a symmetry about the imaginary axis for the 



poles; that is, the plot for poles of angle re±j2rrl..5-f> is symmetric to the plot for retJ2rcf. 

Thus, only values of/from 0 to 0.5 are shown. Also, note that if the eigenvalues and 

poles are purely complex, the AR and MCRP power spectra agree exactly; in these 

cases, the AR spectral coefficients {y,} are real, so exact matches are possible. 

89 

As mentioned previously, and as illustrated in Figure 4.3, the AR and MCRP pro

cesses experience maxima at different frequencies. The difference between these fre

quencies is plotted below in Figure 4.4. The figure plots the peak frequency of the AR 

process minus the peak frequency of the MCRP versus the pole/eigenvalue anglefwhere 

the AR poles and MCRP eigenvalues are re±,zrcf. Each curve in the plot represents a con

stant r. From Figures 4.3 and 4.4, it is clear that the difference in peak frequency 

decreases as the pole magnitude increases. Also, the phase angle of the pole,f, is 

significant. The peak difference are less significant when the poles and eigenvalues are 

near the real or imaginary axis; i.e., whenfis near 0, 0.25, or 0.5. In fact, as noted 

before, if the poles and eigenvalues are purely complex, i.e . .f=0.25, there is no difference 

in maximal frequencies. 

Of course, it might be possible to achieve a better spectral match by modifying the 

MCRP spectral parameters {Ak} and {~k}. For example, for the case discussed above 

with one complex pole-pair, one could change the phase angle of the complex 

eigenvalue-pair so that peak frequencies would agree. Better still, one might want to 

minimize an error function like 

J = ircL<I>AR(w)- <I>McRP(w)]2dW 

with respect to the MCRP spectral parameters. However, as J is not linear in the MCRP 

eigenvalues p .. k}, a nonlinear solution would be required. Consequently, while the 

search for better a MCRP match is certainly worthwhile, it is also more difficult. 
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When there are multiple AR poles, the procedure to fmd the optimwn MCRP 

becomes even more complex. Perhaps most important, the spectral coefficients {~k} for 

the MCRP poles have to be considered. For the one pole-pair case, the weights act only 

as a scaling factor, so they can be ignored. However, for multiple poles, the weights will 

in part determine the shape of the MCRP power spectrum. 

Instead ofpursuing an optimum match at this time, the author proposes the follow-

ing procedure as a first approximation to match AR and MCRP power spectra. First, let 

the MCRP eigenvalues p .. k} be identical to the AR poles {p,}. To see why this might 

work, consider that the AR poles with largest magnitudes will be the most predominant in 

the power spectrum. As in the single pole-pair case, as the pole magnitude increases, the 
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difference between the peaks of the AR and MCRP decreases. Thus, it would be reason-

able to assume the same is true when multiple poles are considered. Of course, the poles 

with smaller magnitudes would likely not be matched very well under this assumption. 

However, these poles are not as significant to the power spectrum as are the poles with 

large magnitudes. 

Assuming the necessary MCRP eigenvalues {A,k} have been determined, it remains 

to fmd the spectral coefficients {~k}. Recall that the power spectrum for a MCRP is 

given by 

N-1 ( 1 
«<>(ro) = L ~k 1 'I. jm + 

k=I -1\,ke 

1 
(IV.ll) 

Thus, it is clear that «<>(ro) is linear in {~k}· Tlris fact can be used to generate a set of 

linear equations in {~k} to insure that the MCRP and AR spectra agree at a given set of 

frequencies .Q = { ro,}. Specifically, let the error function be 

(IV.12a) 

(IV.12b) 

A good choice of frequencies n is the set of frequencies where the AR spectrum has an 

extrema. As this usually results in having more equations than unknowns, a least-squares 

solution is required. 

As an example, consider the AR process with poles .8e±.2~1 and .6e±.1~1 . Also, 

assume the white noise driving the linear filter has unity variance. Then, the MCRP 

poles are 'A1 = .8e 2ft', 'Az =A.;,~ = .6e 7"1 and A4 =A;. Solving for the spectral coefficients 

by minimizing the sum of the squared difference between the power spectra at the 

extrema ofthe AR power spectrum yields ~ 1 = .6971, ~2 = ~ 1 , ~3 = .1055 and ~4 = ~3 The 

power spectrum for the AR and MCRP processes are given in Figure 4.5. As can be 

seen, the spectra agree fairly well at the peaks. 
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Although this procedure has not been investigated extensively, it appears to work 

fairly well. More example~ will be given in the following chapter on speech modeling, 

which is based on much of the material from tllis chapter. 

Nonstationary Processes 
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Before continuing to the next chapter, let us briefly consider the prospects for using 

MCRPs as models of nonstationary processes. There appear to be at least two paths 

which one could take on this endeavor. The first is to return to a discussion of Markov 

chains, and investigate chains which are nonstationary. However, while this may in fact 

lead to meaningful result, the author prefers the second approach. 
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The second approach is to try to make do with stationary MCRPs. Of course, the 

author does not mean to model a nonstationary process with a stationary process. Rather, 

the idea is to connect several dissimilar MCRPs together to model the nonstationary pro

cess. Recall from a previous discussion that many nonstationary processes can be treated 

as "short-time" stationary. That is, over small intervals of time, the process displays 

stationary characteristics. 

In fact, it was this same discussion which arose from the review of Hidden Markov 

Models in Chapter II. For, HMMs provide a natural way to connect together the pro

cesses which model each short-time section. Typically, the short-time sections are mod

eled using linear, time-invariant systems (i.e., ARMA processes). However, there is no 

reason why MCRPs could not be used in this context. In fact, there is good reason why 

they should be used. Consider that the MCRP has the same Markov structure as an 

HMM. Consequently, the MCRP and the HMM could be joined together to form a com

plete Markov model for the nonstationary process. 

A potential advantage of this approach lies in the transition region from one short

time section to another. For, ifMCRPs and HMMs are used together, the transition could 

be specified more clearly by how the states in adjacent MCRPs are connected. It is the 

belief of the author that tllis approach ca:t1 greatly enhance nonstationary modeling using 

HMMs. 

However, the specifics of implementing the above idea are not immediately clear. 

While it was not the intention or goal of this thesis to explore nonstationary modeling, the 

author feels that this is a very natural and valid extension and deserves attention in the 

future. 



CHAPTER V 

SPEECH MODELING WITH MARKOV CHAIN 

RANDOM PROCESSES 

There are several reasons why one might wish to model speech. For one, speech 

signals contain much redundancy and digital transmission of speech signals can be 

accomplished at lower bit rates by transmitting the model parameters instead of the actual 

speech signal. Similarly, it is possible to reduce the storage requirements by storing the 

parameters of a mathematical model of the speech instead of the actual speech. 

Other uses of speech modeling include speech recognition and speaker identifica

tion. In speech recognition, identification of spoken words is sought while in speaker 

identification the attempt is to identify the speaker. In these applications, the modeling 

transfonns the speech signal into a domain whereby word or speaker recognition can be 

performed. Specifically, the model parameters are compared with sets of stored parame

ters to detennine which word has been spoken or the speaker's identity. 

Standard speech models are almost entirely based on autoregressive processes. The 

performance of these models is sufficient for many speech applications. However, there 

are problems with these models, such as poor performance in high noise environments 

[Sam76, Tea79], which provide motivation to consider other types of models. 

Recently, there has been a good deal of interest in Markov chains within the speech 

processing community. This has come in the form of the hidden Markov model (HMM), 

which can be used to model the structure of speech on a phonemic level. Phonemes have 

been called the building blocks of speech, and can be thought of as the distinctive sounds 
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of a language. As speech is well structured, some phonemes are more likely to follow 

than others. Consequently, by letting each phoneme be a state in a Markov chain, the 

structure of speech can be modeled. However, this is complicated by the fact that, at any 

given time, there is no direct evidence to which phonemic state the speech is occupying. 

Thus, the current state of the Markov model is hidden, and can only be measured indi

rectly from the statistics of the speech. Hidden Markov models of speech have been 

employed widely in speech recognition [Rab89] and have recently been used in digital 

coding of speech signals [Far87, Dea89]. 

Motivated by the success of HMMs and by the problems with conventional speech 

models, this chapter explores the use of Markov chain random processes as a model for 

speech signals. Potential application of this model include all of the applications of con

ventional models: storage and transmission of speech signal, and speech and speaker rec

ognition. Additionally, it is conceivable that a "complete" Markov model of speech 

might result by combining an MCRP model of speech at the sub-phonemic level and a 

HMM model of speech at the phonemic level. However, these applications are beyond 

tlte scope of this research; the goal here is merely to set forth the elements of MCRPs as 

models of speech and to discover whether they hold any promise. 

Additionally, this application provides a good opportunity to gauge the success of 

both the spectral synthesis solutions set forth in Chapter ill and the stochastic modeling 

strategy from Chapter IV. For, these techniques will play a part in the MCRP model of 

speech in this chapter. However, before this scheme is examined, it is necessary to dis

cuss speech and AR models of speech. 

Speech,and Standard Speech Models 

As speech is a continuous-time signal, the speech must first be sampled before any 

digital processing can begin. For most applications, speech frequencies above 4kHz do 
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not play a significant role. Consequently, it is common to low-pass ftlter speech at 4kHz 

and sample at 8 to 10 kHz. The result is a discrete-time sequence which is suitable for 

modeling. For the modeling criteria, consider that the human ear is more sensitive to the 

magnitude than the phase of the frequency response [Sch75]. Consequently, a natural 

criteria for speech modeling is the power spectrum. 

Because speech is not stationary, it is necessary to model speech on a short-time 

basis by segmenting the signal into sections which are approximately stationary. For 

speech, it is common to use sections of 10-20 milliseconds [Rab78]. Thus, for each 

10-20 millisecond section of speech, a stationary model is sought. 

Short-time sections of speech are usually lumped into one of two categories: voiced 

or unvoiced. Voiced signals are periodic in nature on a short-time basis. Examples of 

voiced speech include the vowels. Conversely, those sounds with a distinctly aperiodic 

nature on a short-time basis are termed unvoiced. Unvoiced waveforms have little struc-

ture and appear random in nature. An example of an unvoiced sound is the /sh/ sound in 

the word 'show', while an example of voiced sound is the /o/ sound in 'show'. 

Waveforms of voiced and unvoiced speech are shown in Figure 5.1. 

Currently, the dominant mathematical models for discrete-time speech signals are 

based on autoregressive processes. As discussed in the previous chapter, autoregressive 

processes are characterized by a transfer function of the form 

1 
H (z) = -t -z -M • 

1 - <X.1z - {X,_zZ - ''' - <X.MZ 
(V.l) 

From Chapter N, the parameters {a.,} can be found by minimizing the prediction error 

between the model and the data. In this case, the model's power spectrum is a valid esti-

mator of the data's power spectrum. 
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Figure 5.1. Speech Waveforms: Unvoiced /sh/ Sound from the Word 'Show' 
(top), and Voiced /o/ Sound from the Word 'Show' (bottom). 

There are many different ways to implement an AR model of speech. Some of 

these are simple and some exotic, but they mainly differ by the choice of excitation sig-

nal. Here, the LPC model of speech shall be singled out for purposes of comparison with 

the MCRP speech model. For the LPC model, the differences in voiced and unvoiced 

sections of speech are reflected in the choice of input to the AR filter: for unvoiced sec-

tions, the excitation is white noise; for sections of speech which are voiced, the funda-

mental frequency is estimated from the wavefom1 and a corresponding periodic impulse 

train provides the excitation. 
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MCRP Model of Speech 

To consider MCRPs as a model for speech signals, much of the material from the 

previous chapter can be used. The previous chapter showed that AR processes (as well as 

ARMA processes) and MCRPs have similar power spectra. Unfortunately, an exact 
\ 

power spectra match for AR processes was not possible using known MCRP structures. 

However, an approximation was made so that the MCRP had a power spectrum which 

was close to the AR power spectrum. Tlms, as in the previous chapter, an AR model can 

be used as the basis for the MCRP model. 

Because of the probabilistic nature of MCRPs, the output will appear random. 

Therefore, an MCRP seems well-suited to model unvoiced speech. By the same logic, 

however, there is a fundamental problem in using an MCRP to model voiced speech. 

One suggestion has been to filter the output of the MCRP with a comb filter [Sie76], 

which has the fonn 

1 
Hc(z) = ...[., 

1-rz 
(V.2) 

where L would correspond to the pitch period. Essentially, this establishes correlation 

between samples y (n) and y (n - L ), thereby inducing a periodic nature into the wave

form. Thus, voiced sections of speech would be modeled by an MCRP which has been 

passed through a comb filter. 

Based on this idea, Figure 5.2 shows a block diagram for analysis and synthesis of 

speech using an MCRP model. Note that, as in the AR model, analysis and synthesis are 

. performed on a short-time basis. The resulting synthesized sections are concatenated to 

form an approximation of the original speech sequence. The voiced/unvoiced decision 

and pitch estimation can be made using any of the techniques in use with AR models. A 

comparison ofLPC and MCRP speech models is given in Table 5.1. 
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Figure 5.2. Block Diagram of MCRP Model of Speech. 
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TABLE5.1 

COMPARISON OF LPC AND MCRP MODELS 

LPCModel MCRPModel 

Anali!:!i~:~: Minimize Prediction Match Power Spectra 
Error 

Smthe~:~i~:~: 
Unvoiced: White Noise No Processing Nee-

Excitation essary 

Voiced: Periodic Impulse Pass MCRP through 
Train Excitation Comb Filter 

Examples 

In this section, several examples of speech modeling using MCRPs are evaluated. 

The goal is to evaluate the performance of MCRPs as models for speech: in short, can an 

MCRP model generate speech-like sounds? At tltis point, is should be noted that, even 

though the concepts of an AR-based speech model such as LPC are quite simple, the 

actual implementation which achieves useable results is fairly complicated. To do some

thing similar for MCRPs is beyond the scope of this document. However, it is still possi

ble to test the modeling scheme on a scaled down basis by considering a few phonemes. 

Additionally, we shall steer away from some of the more problematic phonemes 

such as diphthongs and voiced fricatives. These represent special challenges which 

would only confuse the issue. Also, instead of dealing with phonemes directly, we shall 

look instead at several simple words which can be adequately modeled with only a couple 

of phonemes. For, it is difficult to determine speech quality from unconnected pho-

nemes. 
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Towards this goal, several simple words have been chosen. These include the 

words 'off', 'us', 'ash', and 'eat'. Each of these words contain exactly two phonemes: 

one voiced and one unvoiced phoneme. Digital samples of each of these words were 

recorded and the words were then segmented into sections representing silence, voiced 

phoneme, or unvoiced phoneme. For each section of phoneme, a representative frame 

was chosen for analysis purposes. For each representative frame, the AR parameters 

were detennined. MCRP parameters were then detennined as described previously in 

Chapter IV. Also, for voiced phonemes, estimates of the pitch periods were made. 

The resulting spectra for each phoneme are given below in Figme 5.3. Each plot 

shows the~ and MCRP power spectra for a specified phoneme. The MCRP curves do 

a fairly good job of estimating the LPC power spectra. Some are a bit poor, and some are 

exceptional. The match in the /f/ phoneme deserves special recognition. Overall, the 

most significant peaks appear to be matched very well. However, the MCRP power spec

tra do not match the AR spectra at frequencies of low magnitude. But then, these fre

quencies are less important. 

Based upon the model parameters, synthetic speech was generated. This was 

undertaken in three phases. In the first phase, the speech was synthesized from the AR 

parameters as in LPC. The purpose of this phase was to confirm the validity of the analy

sis. In each case, the resulting synthetic speech sounded very similar to the original 

speech. 

The next phase was an intermediate step between the LPC and MCRP models. In 

this step, the voiced sections were generated in the same fashion proscribed for the 

MCRP model; namely, white noise was passed through the LPC filter to perform spec

tral shaping and then through a comb filter to induce periodicity. Essentially, the results 

of this test act as an upper limit on the perfonnance of the MCRP model. That is, if exact 

AR-MCRP spectral matching is achieved, the sound quality of the MCRP speech should 
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be equivalent to the speech for this intermediate stop. However, since exact AR-MCRP 

spectral matching was not achieved, the MCRP speech is not expected to sound quite as 

good as the synthesis speech for this intermediate step. Informal listening tests showed 

that synthetic speech from this process sounded much like the LPC speech. However, the 

voiced sections were as not of as good quality. In particular, there was a noticeable ring-

ing present, although it was not severe. 
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Figure 5.3. Power Spectra of AR (solid) and MCRP (dashed) 
for Various Phonemes. 



-60'-----------' 
0 0.5 

Normahzed Frequency 

Normalized Frequency 

O.---~~~fro==m~oo=t~--, 

~ 
.El 

i 
11 -20 

~ 
' ' 

....... ... ........... "' 
---------

/ 

' ' ' ' ' 

-30'--------------' 
0 

' ' ' 
-5 \ 

l y. -15 

j -20 

' ' ' ' ' 

. Normalized Frequency 

' ' ' 

/s/from us 

.......... --

Normalized Frequency 

0.5 

0.5 

Figure 5.3. (Continued.) 

105 

Finally, the MCRP synthetic speech was produced. As expected, since exact power 

spectral matching was not achieved, the synthetic speech was not quite as good as the 

speech from the intermediate phase. However, the results were not significantly worse. 

In fact, the most discernable and objectionable problem with the speech is the ringing 

which was also present in the intermediate-phase speech. Plots of the original and syn-

thetic speech are given below in Figures 5.4 through 5.7. In each plot, the top figure is 

the original speech and the bottom plot is the MCRP speech. 

To summarize, an MCRP model of speech can be based upon the stochastic model-

ing strategy of Chapter IV. However, a modification had to be made to account for 

voiced speech. Although there are details which would have to be worked out in any 



practical implementation of this model, the results of this section have shown that the 

model is capable of generating speech-like sounds. Thus, this model appears to be a 

valid model of speech. Additionally, the positive results of this chapter confirm the 

validity of the MCRP modeling techniques introduced in the previous chapter. 
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Figure 5.4. Original (top) and Synthetic (bottom) Waveforms for 'Off' . 
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Figure 5.6. Original (top) and Synthetic (bottom) Waveforms for 'Us '. 
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Figure 5.7. Original (top) and Synthetic (bottom) Waveforms for 'Eat'. 



CHAPTER VI 

SPREAD SPEC1RUM 

COMMUNICATIONS 

Since the advent of the telegraph over a hundred years ago, we hav~ been able to 

communicate quickly and efficiently by electronic means. Since then, there have been 

many developments in communications. In recent years, the thrust has been toward digi

tal communications. Of course, this is clearly well-suited for some signals, such as those 

generated by computers. However, even such traditionally analog domains as telephone 

channels have been converting to digital transmissions. There are several reasons for 

this. Perhaps foremost, digital communications offers performance and flexibility unat

tainable by analog communications [Zie85]. 

There are many different digital communications schemes, and a specific imple

mentation depends on the requirements of the application. Influencing factors include 

bandwidth, power, desired error performance, cost, complexity, data security, and 

interference rejection among others. Some sophisticated techniques have been developed 

to deal with these problems. Among these tools is spread spectrum communications. 

As its name implies, spread spectrum is a technique which spreads the signal's 

spectrum. There are several advantages of this. Among these are rejection of jamming 

and other interfering signals, low probability of detection (LPD) and low probability of 

interception (LPI) from undesired parties, and multiple user access in the same frequency 

band [Pic82, Sk188]. While spread spectrum has traditionally been a tool for military 

communications, it has seen recent growth in commercial applications [Sch90]. 
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Spread spectrum systems are usually classified as either frequency hopping, direct 

sequence, or hybrid.~or ~~I?-~Y-~2PR.,~g, the signal's center frequency is constantly 

changed, while for direct sequence, the signal is spread by direct modulation with a high

bandwidth signal. Hybrid systems are combinations of frequency hopping and direct 

sequence. In this chapter, MCRPs are considered for use as the spreading signal in direct 

sequence spread spectrum. 

Direct Sequence Spread Spectrum 

A block diagram of a direct-sequence spread spectrum (DS-SS) system is shown 

below in Figure 6.1. On the transmitter side, the ±1-valued data signal d(t) is first mod

ulated. For this discussion, binary phase-shift keying (BPSK) modulation shall be used, 

although other modulation schemes can be employed. The modulated signal is 

(VI.l) 

where fo is the carrier frequency, Eb is the energy per data bit of the transmitted signal, Td 

is the data bit duration, and 9J{t) is a function ofthe data sequence d(t). The simplest 

choice for 9J{t) here is 9J{r) = 0 for d(t) = 1 and Sit)= 7t for d(t) = -1. In this case, the 

modulated signal can be expressed as 

(VI.2) 

The modulated signal sm(t) is then spread by multiplication with the spreading or 

code signal c(t). The transmitted signal is 

(VI.3) 



d(t) • 

Transmitter Channel Receiver 

c(t) Noise c(t) 

Figure 6.1. Block Diagram of DS-SS System. 
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Desirable properties for c(t) include a large bandwidth relative to the data signal, ease of 

generation, and being detenninistic but possessing random-like qualities. Such a signal 

can be obtained from pseudo-noise (PN) sequences termed m-sequences [Her86, Coo86, 

Pic82]. These are special binary sequences which can be implemented easily and effi

ciently using shift registers. 

At the receiver, the signal is first despread by the code signal. Next comes demodu

lating. For a BPSK modulation scheme, this is accomplished by correlating the input sig

nal with a coherent reference signal. Specifically, the input to the demodulator is 

multiplied by a coherent reference signal and then integrated over the data bit duration Ta. 

Finally, an estimate d(t) of d(t) is made based upon the output of the correlator. 

To illustrate the effects of spreading, consider the power spectra of the transmitted 

signal with and without spreading. First, consider tl1e power spectrum of the data signal. 

The continuous-time data signal is obtained by passing the discrete-time data signal 

through a zero order hold. That is, if d, is the discrete-time signal, the continuous-time 

signal is given by d(t) = d,. for nTa :5: t < (n + l)Ta. Then, if<l>a(ro) is the power spectrum 

of {d,}, it can be shown that the power spectrum of d(t) is given by [Zie85] 

(Vl.4) 
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Now, assume that the data sequence is white. That is, E[dndm] = O(n -m), or equiva

lently <I»J(ro) = 1. This is a valid assumption as the source is usually passed through a 

source encoder whose puipose is to remove redundancy from the signal. In this case, the 

power spectrum of the continuous-time data signal is 

(VI.5~. 

When the data signal is modulated by a sinusoidal signal, the power spectrum is trans

lated in the frequency domain to plus and minus the frequency of the carrier. Thus, 

including the gain term, the power spectrum of the transmitted signal is [Sch90] 

(V1.6) 

Now consider the power spectrum after spreading. First, the power spectrum of the 

spreading signal must be found. The spreading signal is generated in a similar manner to 

the data signal by passing a sequence through a zero-order hold. Hence, as in Equation 

(Vl.4), the power spectrum of the spreading signal is given by 

SAJ) = Tc sinc2(jTC)Wc(21tjl'c) (VI.7) 

where Tc is the code bit duration and <~»c(ro) is the power spectrum of the sequence from 

which c(t) is obtained. In this case, c(t) is based upon an m-sequence which has a flat 

spectrum; i.e., the power spectrum of them-sequence approximates <~»c(ro) = 1. Hence, 

Sc(f) = Tc sinc2(fl'J. 

The spectrum of the spread signal may now be found. As multiplication in the time 

domain corresponds to convolution in the frequency domain, the power spectrum of the 

spread signal is S,(f) = S'"(f)*Se(f). Let Ra = l!Ta be the bit-rate for the data and Rc =liTe 

be the bit-rate for the code sequence. The ratio R/Ra =TaiTe is denoted GP, and referred 

to as the processing gain. Typically, G P » 1, so that the spreading signal has a much 
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larger bandwidth than the data signal. In this case, SmifJ has such a much smaller band

width than ScifJ, so SmifJ can be approximated as impulses at ±/o for the purposes of the 

convolution. Specifically, SmifJ == (Eb!Ta)D(j -fo) + (Eb!Ta)D(f + fo). Thus, 

EbTc 2 2 = Ta {sine [(f- fo)TJ +sine [(f + fo)Tc]} 

E = Gb {sinc2[(/- fo)Tc] + sinc2[(/ + fo)TJ} (VI.8) 
p 

Although GP would nonnally be much larger, for purposes of illustration, a plot of S"'(/) 

and S,(/) is given in Figure 6.2 for G P = 4. 

The effect of the spreading is to reduce the magnitude of the power spectrum by 

1/GP while increasing the bandwidth by GP. This makes it more difficult for the signal to 

be detected by an undesirable party. Even if the signal is detected, it is difficult for the 

data to be intercepted as them-sequence would have to be known. However, it is possi-

ble to detennine them-sequence from the transmitted signal [Tor81, Her86], though this 

is computationally expensive. Consequently, if secure communications are required, the 

data should be encrypted. 
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MCRP Spread Spectrum 
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Consider using an MCRP as the code sequence. The potential advantage of this 

approach is that an MCRP is much more flexible than an m-sequence. Whereas the spec

trum of an m-sequence is always white, the spectrum of an MCRP can be colored. Of 

course, an MCRP is by definition a random process. This seems to be a problem as the 

spreading sequence should be detenninistic. However, in any implementation of an 

MCRP, a random number generator will have to be used to detennine the state trans-
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itions. If this random number generator is portable, it can be used at the transmitter and 

receiver with identical results. The consequence is that identical MCRP time series can 

be generated at both the transmitter and receiver. 

The idea of using MCRPs for direct sequence spread spectrum was proposed by 

John Hershey [HeF81a]. His idea centered around colored spreading sequences which 

would spread the data unevenly across the transmission bandwidth. To "fill out" the 

spectrum, noise would be added to the signal before transmission. Thus, the resulting 

spectrum would be the same as in direct sequence spread spectrum. If a jammer were to 

jam only a portion of the signal's bandwidth, which is a common technique, the frequen-

cies in which the data is most heavily represented might be missed. If this were not the 

case, then perhaps the data and added noise frequencies could be reallocated. 

A block diagram of a spread spectrum system based on this idea is shown in Figure 

6.3. This scheme shall be referred to as MCRP-SS for short. As in DS-SS, the data sig

nal is first modulated and then multiplied by a spreading signal c1(t). The result is the 

signal 

(VI.9a) 

At this point, a constant signal is modulated with the same carrier frequency but not nec

essarily the same phase. This modulated signal is multiplied by the spreading signal c2(t) 

which has the same bit rate as c1(t). In this way, an additive noise source is generated 

which is given by 

_{E; 
s2(t)=-\j r;c2(t)cos[27tfot+<j>]. (VI.9b) 

The resulting transmitted signal is then given by 

(VI.lO) 
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Note that the transmission power has been split between the data and additive noise sig

nals. 

Transmitter Channel Receiver 

- 1 -•~I Mod. ~ x 

t t 
1 

x +---1 Mod. t<~~~~tl•--

t t 
cos(21tfot + <!>) c2(t) c2(t) cos(21tf0t + <I>) 

~ ~- ~ 
·I Mr ~r-Hl--;-+~tT 

cos(21tf0t) c1(t) Noise c1(t) cos(21tf0 t) 

Figure 6.3. Block Diagram ofMCRP-SS System. 

Let us look at the spectra of these signals. Let <I>1(ro) and <l>iro) be the power spec-

tra of the sequences from which c1(t) and c2(t) are obtained, respectively. Using the same 

procedure as in the previous section, the power spectra of s1(t) and s2(t) are 

(VI.lla) 

(VI.llb) 
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respectively. Assuming the spreading sequences are independent, the power spectrum of 

s,(t) equals the swn ofthe component's power spectra: 

Eb . 2 
S,(f) = -G {[<l>1(27t(f- fo)TJ + <I>i21t(f- fo)TJ] smc [(f- fo)Tc] + 

2 p 

(VI.l2) 

Next, suppose that <l>1(ro) and <l>2(ro) are such that <l>1(ro) + <1>2( ro) is constant for all ro. 

Pairs of spreading sequences which have this property shall be referred to as being com

plementary. Further, if the code sequences are complementary and ±1 -valued, then it 

can be shown that <1>1( ro) + <1>2( ro) = 2 for all ro. In this case, 

E 
S,(f) = Gb { sinc2[(f- fo)Tc] + sinc2[(f + / 0)Tc]} 

p 

(VI.13) 

which is identical to the power spectrwn for DS-SS. Hence, if the spreading sequences 

are independent with complementary power spectra, the resulting power spectrum for the 

transmitted signal will be identical to that for DS-SS. 

The potential advantage of this scheme is that the communication scheme appears 

to be standard DS-SS, at least in the frequency domain. Consequently, the jammer will 

likely employ a jamming noise which is detrimental to standard DS-SS. Thus, the jam

mer is fooled and it is likely that the jamming noise will be spectrally disjoint with the 

data signal. If it is not, then it may be possible to alter the spreading signals 

c1(t) and cit) so that this is the case. 

Complementary MCRPs 

Of course, for this scheme to work complementary sequences must be found. Thus, 

the first step must be to locate complementary MCRPs. But what other properties should 

these sequences possess? The answer is that they should be as spectrally disjoint as pos-
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sible. As an illustrative example, suppose that CIJ1(ro) and ciJ2(ro) are as shown below in 

Figure 6.4. Note that the power spectra are disjoint and that CIJ1( ro) + W2( ro) = 2 for all ro. 

Thus, two processes which had power spectra W1(ro) and <ll2(ro), respectively, would be 

complementary, spectrally-disjoint processes. 
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Figure 6.4. Power Spectra of Discrete-time Complementary Processes. 

To see why being spectrally disjoint is desirable, recall the modulated and spread 

data power spectrum S1(/) and the complementary noise power spectra S2(/) as given in 

Equations (VI.lla) and (VI.llb), respectively: 

(VI.lla) 

(VI.llb) 
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If Cl>1(ro) and Cl>2(ro) from Figure 6.4 are used, the resulting power spectra S1(f) and S2(f) 

would be as illustrated in Figure 6.5. For clruity, the figure shows only those frequencies 

about fo. Again, the power spectra are dis joint. Further, if the power spectra were added 

together, the result would have a sinc2 shape identical to the spectral shape of the trans-

mitted signal for DS-SS. However, suppose a jammer employed a jamming signal of rel

atively narrow bandwidth about fo. In this case, the jamming signal and the data signal 

occupy completely different frequencies since the data spectrum, S1(f), occupies none of 

the frequencies about fo. It is precisely this reason why the spreading sequences need to 

be spectrally disjoint. 

Now, the power spectra in Figure 6.4 were examples of ideal cases. In practice it is 

not possible to generate binary MCRPs which achieve these power spectra. However, the 

following seems to be a good approximation. First, recall that a random sequence is 

white if its autocorrelation can be expressed as cp(n) = KO(n ); i.e., cp(n) is zero for all 

11 :;:. 0, and is equal to some constant K for n = 0. Recall also that, for MCRPs, the auto

correlation is given by cp(n) = I,k !3kA.~' 1• Suppose that the two MCRPs have eigenvalues 

A1,k = rejzrdctK and ~.k = rejzrdctK, and spectral coefficients 13t,k and f3z.t. respectively. Then, 

the autocorrelations of the two processes can be expressed as 

(VI.l4a) 

K-1 
d .m ( ) _ ~ A ( J2rdc/K)I" I an 't'z n - "'- 1-'z,k re 

k=O 
(VI.l4b) 

respectively. Suppose further that the two processes are independent and 

13t,k + l3z,k = B for all k. Then, as the autocorrelation of the sum of two independent pro-

cesses is the sum of their autocorrelations, 
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for n = O,±K,±2K, ... 
else 

(VI.l5) 

While the resulting power spectrum would not be exactly white, it would be very close 

for large K or small r. 

For binary-valued MCRPs, the following approximately complementary MCRPs 

have been identified. The first MCRP is given by 



T = a 
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and 3 0 = (1 1 - 1 - 1). 
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HereJ r has been introduced as a variable. Any value of r satisfying 0 < r < 1 will work. 

The choice of a particular value for r will be discussed shortly. For this MCRPJ the 

eigenvalues which have non-zero weights are re'rrl2 and re_,rr~z with ~k = .5 for both eigen-

values. The second MCRP uses the ring structure developed in Chapter ill with two sub-

chains: 

r 0 
(1-r) (1-r) (1-r) (1-r) 

4 4 4 4 

0 r 
(1-r) (1-r) (1-r) (1-r) 

4 4 4 4 
(1-r) (1-r) 

0 r 0 0 
2 2 

Tb= 
(1-r) (1-r) 

2 2 
0 0 r 0 

(1-r) (1-r) 
0 0 0 

2 
r 

2 
(1-r) (1-r) 

0 0 0 
2 

r 
2 

and ah = (1 -1 1 -1 1 -1). 

AgainJ this matrix also uses the same variable r as in Ta. The eigenvalues for this MCRP 

which have non-zero weights are rand re'1t with ~k = .5 for both eigenvalues. 
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I 
Thus, in this case, 

so that 

<j>1(n) = .5[(re',vzt 1 + (re-j1r12t 1] 

<j>z(n) = .5[(r )In I+ (r e'rc)l" I] 

for n = 0,±4,±8, ... 
else 
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(VI.l6a) 

(VI.l6b) 

(VI.l7) 

The choice of r is a compromise. As r increases, the power spectra ¢l1(c:o) and 

¢l2(c:o) become more separated. However, it is also true that as r increases, the two pro-

cesses become less complementary. Thus, there is a tradeoff as the processes need to be 

both spectrally disjoint and complementary. The choice of r shall be discussed later in 

conjunction with the probability of bit error. However, for now, suppose r = 0.77. The 

power spectrum for the resulting MCRPs are plotted in Figure 6.6. As can be seen, the 

two MCRPs are nearly complements with 7 dB between the largest and smallest magni-

tudes in the summed spectra. Again, it would be nice to have more separation, but this 

can be gained only at a loss of the processes' complementary status. 

Now, let us see how the transmitted signal's power spectrum would look if these 

MCRPs were used. Recall that the power spectrum of the transmitted signal for DS-SS is 

given by 

E 
S,({) = Gb { sinc2[(f- / 0 )Tc] + sinc2[(f + fo)Tc]} 

p 

whereas 
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is the power spectrum for MCRP-SS. Both spectra are plotted in Figure 6.7. As can be 

seen, the MCRP-SS spectrum follows the DS-SS spectrum but contains spectral oscilla-

tions. 

~ 
El 
oS 
tl 
tl 

~ .. 
Ill 

! 

8 

6 

4 

2 

0 

-2 

-4 

--- __ ..... 

____________ , , 
, , 

' ' ' , , 

' ' 
' 

' 
' ' 

' ' ' ' ' ' ' ' 

' ' ' ' ' 

' ' ' ' 

' ' 

' ' ' ' 

-8~--~--~--~--~----~--~--~--~----~~ 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Normalized Frequency 

Figure 6.6. Power Spectra of Complementary MCRPs: Cl>1(ro) (solid); 
Cl>2(ro) (dashed); and Cl>sum(ro) (dotted). 



~ 
.a 
.,s 
J:l 
0 

l-
~ 
~ 
~ 

5~----~----,-----,-----,-----,-----,-----r----. 

0 

-5 

-10 ... ,, 
f I 
f' 
f ' f 
f ' ' 

-15 
,, ' ' I' < I 

I I < I 
I I 

' 
<I 

I 
,, 

I ' ' I ' f 

: 
,_, 

-20 

i• 
II 

'' ' f I I 
< I 
f ' ' 

' ' ' ' ' 'f 
" 

•' II 
II 
f' I I 

' ', 

•' I' 
' <I 
1 I ~ 

\ J ~ 
' ' ' 
' ' ,, 

' I 
I 
I 
1 
1 
1 

', 
I 

' ' ' 

,, 
(I 

II f I 
II I I 
I 1 I ~ 

: ~ I 

' ' ' I < < 
< I 
I' ,, 

-25~----~--~~----~----~----~--~~----~--~ 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Nonnalized Frequency 

Figure 6.7. DS-SS (solid) and MCRP-SS (dashed) Power Spectra. 

Effects of Partial-band Jamming 

As depicted in Figw·es 6.1 and 6.3, it is common to model the communications 

125 

channel between the transmitter and receiver as introducing additive noise to the trans-

mitted signal. This noise can be categorized into two classes. The first is unintentional 

noise. This includes noises such as thennal noise and other types of nonhostile 

interference such as multipath noise and noise from other users in a multiple access envi-

rorunent. The second class of noise is intentional jamming. 

There are several types of intentional jamming signals. These include barrage 

noise, partial-band, single tone, and pulsed noise [Zie85, TorSI]. Barrage noise is band

limited white noise over the bandwidth of the transmitted signal. Partial-band is similar 
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to barrag~ noise, but only covers a portion of the bandwidth. Single tone noise is just a 

signal at a fixed frequency, usually the center frequency of the transmission. Pulsed 

noise is noise that is 11 on II only a portion of the time. 

The degradation of the communication channel depends on the communication 

scheme as well as the type of jamming noise. The detrimental effects of jamming include 

increased probability of bit error and degradation of synchronization between the trans

mitter and receiver. For the pwpose of this research, the main interest is the effects of 

jamming on the probability of a bit error, Pb. In particular, the focus of this section is the 

effect of partial-band jamming. In the previous section, it was shown that the MCRP-SS 

scheme seems well-suited to deal with this type of jamming signal. Hence, the perform-

ance of this system in partial-band noise should provide a measure of the merits of this 
' 

scheme. 

Probability of Bit Error for DS-SS 

For comparison and derivational pwposes, let us first consider Pb for DS-SS with 

partial-band jamming. To begin, recall that the transmitted signal is 

s,(t) = .V Eb!Ta d (t )c (t) cos(27tfot ). The partial-band jamming noise shall be represented 

by n,(t). Tlris noise shall be assumed to have power spectra density given by 

{
N', 1/±fo I< pW2ss 

snJ(f) = 02 
else 

(VI.l8) 

Here, W55 is the bandwidth of the spread spectrum signal, which is given by 2/Tn and p is 

a fraction which determines how much of the bandwidth of the spread spectrum signal 

the jamming signal occupies. It shall be assumed that p « 1 since the jamming signal is 

partial-band. Additionally, assume n;(t) is zero-mean and has a Gaussian density. In 
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addition to the intentional jamming noise, it is common to also include a broadband noise 

term. Let ll0 (t) represent a white, Gaussian, zero-mean process with power spectrum 

s" (f)=Nof2. 
0 

At the receiver, the signal is despread and passed through a correlator. Based upon 

the output of the correlator, an estimate is made. of d(t). Of course, due to noise, s,(t) is 

not the only signal to reach the receiver: the background noise signal, ll0 (t), and the 

partial-band jamming signal, n,(t), are also received. Let us consider the effects of each 

of these in tum on the correlator. 

The output of the correlator due to s,(t) will be 

Td 

us,= J s,(t)c(t)~ ~os(21tfot)dt 
0 "'V r;{ 

The data signal d(t) is constant, being either 1 or -1 throughout the limits of integration. 

The spreading signal is also ±1-valued, so c 2(t) = 1. Finally, note that the modulating and 

demodulating signal..J21Td cos(21tfot) has been normalized so that 

1:4 { ..J 2/Td cos(21tfot)} 2 dt = 1. Hence, 

(VI.19) 

Now consider the output of the correlator due to 11 0 (t). First, consider the mean 

E[u,. ]: 
0 
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E[u.) ~E[[ n.(t)c(t)-{[cos(21tfot)dt] 

Td 

= J E[n0 (t)]c(t)*os(21tfot)dt 
0 d 

=0 

since u,. (t) is a zero-mean process. Next, consider the variance: 
0 

Since 1l0 (t) is white, E[n0 (t)n 0 ('t)] = (N)2)o(t -'t). Thus, 

2 
(VI.20) 

As before, c2(t) = 1 and the integral equals 1. 

The jamming noise n1(t) may now be considered. Since this is also a zero-mean 

process, E[u11 ] = 0. Next consider the variance: 
I 

(VI.21) 
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Now, since ni(t) and c(t) are independent, E[nj(t)c(t)nj('t)c('t)] equals 

E[ni(t)ni('t)]E[c(t)c('t)], which is just the product of the autocorrelations of ni(t) and c(t). 

Now, let us use the fact that multiplication in the time domain is convolution in the fre-

quency domain. Thus, the power spectrum of ni(t)c(t) is given by Sn (f)*Sc(f). Recall 
J 

that the power spectra of nit) has been defined as s,J(f) = N'/2 for If ±fo I< pWssl2. If 

p « 1, the bandwidth of Sn (f) is much less than the bandwidth of Sc(f), so Sn (f) can be 
J J 

approximated by impulses at ±fo. Specifically, 

W N' W N' 
s,J(f)=p ; jO(f-fcJ+p ~ jO(f+fo) (VI.22) 

Recall that the power spectra of c(t) is given by Tc sinc2(/Tc). Hence, 

Before proceeding, let us simplify this expression a bit. First, it is common to def'me N/2 

as the spectral density had the jammer applied his power evenly across the transmission 

bandwidth. The jammer's power is PJammer = pW88N'i for partial-band jamming or 

PJammer = W88Ni for wideband jamming. Hence, Ni = pN'r Also, recall that W ss = 2/Tc. 

Making these substitutions, 

(VI.23) 

Now, we note that the resulting power spectrum of n1(t)c(t) as given above is relatively 

flat about ±fo. Hence, for the correlator, n1(t)c(t) can be approximated as white noise 

with a power spectral density of Nr Therefore, E[n0 (t)c(t)n0 ('t)c('t)] = N/)(t- 't). Mak

ing this substitution in Equation (VI.21), 
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T4 T4 

E[ u~] = J J N/J(t -'t)""' ':cos(27tfot)""' ':cos(21tfo't)dtd't 
0 0 -'J ~( -'J ~1. 

(VI.24) 

Again, the result follows from the fact that the integral evaluates to unity. 

We may now combine these results. The mean of the output of the correlator is 

given by E[u] =1£:d(t) and the variance by E[(u -E[u])2] =NJ2+Ni. Since the noises 

were assumed to have Gaussian densities, the output of the correlator will also have a 

Gaussian density and its mean will be ~d(t) and variance will be N/2 +Ni. If d(t) = 1, 

the distribution is centered at -{£;whereas if d (t) = -1, the distribution is centered at 

--../&. 
To minimize the probability of error, estimate d(t) by d(t) = 1 if u > 0 and d(t) = -1 

if u < 0. In this case, the probability of error is given by 

Pb =P[u > 0 I d(t) =-1] 

00 '( x+..JE,; )2 
= J 1 e -i ..,JN,12+N1 dX 

0 ""27t(N/2 + N) 

If a substitution of variables is made, namely v = (x +-{E:)!""Nof2 + Ni, the result can be 

expressed using the co-error function Q (x) as 

foo 1 -v2 

where Q(x) = ...[iiie 2 dv 
X 

(VI.25) 

(V1.26) 
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As the argument of Q(x) increases, Q(x) decreases. Therefore, Ph becomes smaller as Eb 

increases and as No and N, decrease, which makes sense. 

Probability .Qf.rut Error f2! MCRP-SS 

Now consider P b for MCRP-SS. Recall that the transmitted signal is given by 

-~ -~ s,(t) = -v r,;d(t)cl(t) cos(27tfot) + -v r:;cz(t) cos(21tfot + cp) 

As before, two types of noises are added in the communication channel: a wideband 

noise n0 {t) with spectral density N0 /2; and a partial-band noise ni(t) with spectral density 

N'/2 for 1/±/o I< pW5512, where p « 1 and Wss = 2/Tc is the bandwidth of the transmitted 

signal s,(t). 

From Figure 6.3, the fJISt function of the receiver is to subtract the noise which was 

added at the transmitter. It shall be assumed that the receiver is able to perform this func

tion so that the noise added at the transmitter can be disregarded for this analysis. There 

are several reasons why this is a valid assumption. While it must be conceded that the 

receiver is not likely to be able to subtract this signal exactly, it should be able to do so 

fairly well. Additionally, the effects of the added noise can be reduced by having it's 

modulation out of phase with the modulation of the data; that is, let cp = 90°. In this way, 

any portion of this noise which is not subtracted out will have a minimal impact on the 

correlator. Additionally, it is felt that the effects of the jamming noise will be much more 

significant than the effects of this complementary noise. 

Ignoring this added noise, the signal at the receiver is r(t) = s1(t) + 110 (t) + ni(t) 

where s1(t) = .YEb!Ta d(t)c1(t) cos(27t/of). Again, the effects of each component of r(t) 

shall be handled in tum. To begin, consider the correlator output to s1(t): 
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= 1 { -{f.d(t)c1(t) cos(21t/<1) }c1(tr{fcos(21tf<l)dt 

=..fid(t) 1 c:(t){-{fcos(21tfot)rdt 

(Vl.27) 

As in the previous section, note that ci(t) = 1 since it is ±1-valued, and integral in the last 

step equals one. 

Now consider the effects of n0 (t) on the correlator. First, consider the mean E [u" ]: 
0 

=0 

since U11 (t) is assumed to be a zero-mean process. Next, consider the variance: 
0 

[ ~ ~ ] 
E[ u,;.J =E f n.(t)c,(t)*os(27tf.,t)dt f n.(~)c,(~)*os(21tfo~)dt 

Since ll0 (t) is white, E[n0 (t)n 0 ('t)] = (Nof2)0(t- 't). Thus, 
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(VI.28) 

Once again, note that c;(t) = 1 and the integral equals 1. 

The jamming noise ni(t) may now be considered. Since this is also a zero-mean 

process, E [u,.] = 0. Next consider the variance: 
~ 

(V1.29) 

E[ni(t)nj(t)]E[c1(t)clt)], which is just the product of the autocorrelations of n1(t) and 

c1(t). Now, let us use the fact that multiplication in the time domain is convolution in the 

frequency domain. Thus, the power spectrum of n1(t)c1(t) is given by S,. (f)*Sc (f). 
J I 

Recall that the power spectra of ni(t) has been defmed as S,.1(f) =N'/2 for 

lf±fo I< pW8812. If p « 1, the bandwidth of S,. (f) is much less than the bandwidth of 
J 

Sc (f), so S,. (f) can be approximated by impulses at ±/0• Specifically, 
I J ' 

the power spectrum of the discrete-time process from which c1(t) is obtained. Then, 
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As in the previous section, this expression can be simplified by substituting N1 = pN'1 and 

Wss = 2/Tc. Making these substitutions, 

Sn1 ({)*(Tc sinc2(jTJTJci>1(27tjTJ) =Nj sinc2((f- fo)Tc)ci>1(21t[f-fo]Tc) + 

Ni sinc2( (f + fo)TJci> 1 (21tff + fo]TJ. 

Again, note that the resulting psd of nj(t)c1(t) as given above is flat about ±fo, at which 

points the power spectral density is N1ci>1(0). Hence, for the correlator, nit)c1(t) can 

approximated as white noise with a power spectral density of N/P1(0). Therefore, 

E[n0 (t)c(t)n0 ('t)c('t)] =N1ci>1(0)0(t -'t). Making this substitution in Equation (VI.29), 

Td Td 

E[ u~] = J J Nici>1(0)0(t-'t)- r::os(27tfot} ... r::os(21tfo't)dtd't 
0 0 -'J ~( -'J ~l 

=N/1),(0) f{ ...ffco•(2ttf">rd• 
= Njci>1(0). (VI.30) 

Again, the integral evaluates to unity. In this case, the choice of spreading signal c1(t), 

and more importantly the value of its power spectrum at ro = 0, clearly influences the 

effect of the jamming noise on the correlator. 

The above results may now be combined. The mean of the output of the correlator 

is given by E[u] = ...jEb/2d(r) and the variance by E[(u -E[u])2] =N)2+Njci>1(0). Since 

the noises were assumed to have Gaussian densities, the output of the correlator will also 

have a Gaussian density and will have mean ~Eb/2d(t) and variance N 0 /2 + N1ci>1(0). 
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As in the previous section, to minimize the probability of error, estimate d(t) by 

d(t) = 1 if u > 0 and d(t) = -1 if u < 0. For this case, the probability of error is given by 

Pb=P[u >Old(t)=-1] 

oo I ( "+..JE,Jl )2 
= J 1 e -'i ..JN,n.+N/'1~ dx 

0 "27t(N)2 + N/P1(0)) 

If a substitution of variables is made, namely v = (x + ...JEb/2)t...jN)2 + N/1>1(0), the result 

can be expressed using the co-error function Q (x) as 

(VI.31) 

Again, note that the argument of Q(x) increases, Q(x) decreases. Therefore, Pb becomes 

smaller as Eb increases and as No and Ni decrease, which makes sense. Also, P b becomes 

smaller as «1>1(0) decreases. 

Comparative Results 

Let us now compare the resulting probabilities of bit error. These are given by 

for DS-SS, and 

for MCRP-SS. There are clearly two differences in the two expressions. The first is that 

the DS-SS expression has an extra factor of 2 in the numerator of the radical. The lack of 

this term in the MCRP-SS expression follows from the fact that only half of the power 

has been devoted to the data signal; the remaining power was dedicated to the additive 

noise. Clearly, this factor favors the DS-SS expression over the MCRP-SS one. The 
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other difference is the inclusion of the Cl>1(0) term in the MCRP-SS expression. If ci>1(0) 

can be made small enough, then the effects, of the jamming noise can be minimized. To 

learn more about Cl>1(0), let us return to the discussion of complementary MCRPs. 

For the ~CRP which produces c1(t) the autocorrelation was given by 

from which it is possible to express the power spectrwn as 

(VI.32) 

Hence, 

Cl> (0) = 1 - r2 
I 1 +r2 

(VI.33) 

Thus, we see that Cl>1(0) depends upon the choice of r: as r increases, Cl>1(0) decreases. 

From the MCRP-SS equation for Ph it is clear that as Cl>1(0) decreases, Ph decreases. It 

follows that as r increases, Pb decreases. Additionally, it has already been noted that r 

influences the separation and degree of complement ofW1(co) and W2(co). To summarize, 

as r increases, the separation and probability of bit error improve; however, at the same 

time, Cl>1(m) and W2(m) become less complementary. 

This tradeoff in the choice of r is illustrated below in Figure 6.8. The figure plots 

the spectral magnitude variation in wsum(co) = W1(m) + Cl>2(co) versus Cl>1(0). The spectral 

magnitude variation shows'how well Cl>1(m) and Cl>2(m) are complementary, and should be 

as small as possible. However, Cl>1(0) is a measure of Pb, and should be as small as possi

ble, also. Hence, one must choose a value of Cl>1(0) which falls near the knee of the curve. 

A reasonable choice is Cl>1(0) = 0.25, for which the spectral oscillations in Cl>.um(ro) are 

about 7 dB. 
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Figure 6.8. Spectral Magnitude Variation Versus 4>1(0). 

Plots comparing P b for DS-SS and MCRP-SS with partial-band jamming are given 

below in Figures 6.9 through 6.11. Each plot represents a different ratio of Eb/N0 , which 

is a measure of the signal-to-noise ratio in the absence of jamming. In each graph, P b is 

plotted versus Eb/Ni on logarithmic scales. Each plot shows four different curves. The 

first of these is P b for DS-SS, which is the solid line. There are three P b curves for 

MCRP-SS, representing 4>1(0) = 0.3, 4>1(0) = 0.25, and 4>1(0) = 0.2; these curves are 

dashed, dotted, and dot-dashed, respectively. 

From the plots, it is clear that MCRP-SS has a lower probability of bit error than 

DS-SS when Eb/N1 is sufficiently small. Thus, when the jamming noise is sufficiently 

large in comparison to the signal power, the MCRP-SS scheme improves the bit error 

performance of the system. When there is relatively less jamming noise, the MCRP-SS 

does not improve the performance of the system, and in fact degrades it; in this case, the 

power devoted to the added noise at the transmitter is wasted. 
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Eb/NjindB 

Figure 6.9. Pb for DS-SS and MCRP-SS withEb/No = 6dB. 

The results for different values of 4>1(0) once again illustrate the tradeoff previously 

mentioned. A smaller value of 4>1(0) decreases P b but also increases the spectral varia-

tion of the transmitted signal, which is undesirable. However, the plots indicate that Pb 

does not vary greatly with values of <1>1(0) near the knee of the tradeoff curve in Figure 

6.8. Overall, <1>1(0) = 0.25 appears to be a good choice. 

To summarize, this chapter has shown that MCRPs can be useful in a spread

spectrum communications scheme which reduces the effects of jamming. By unevenly 

spreading the data signal and then adding complementary noise to "fill out" the spectrum, 

it is possible for the jamming signal to miss the frequencies in which the data is most 

heavily represented. For the case ofpartial-bandjamming it was shown that, under cer-
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tain conditions, this scheme delivers improved bit error probability performance over 

DS-SS. Further improvements to this communication scheme rely on locating MCRPs 

which have a higher degree of separability while retaining a complementary nature. 
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Figure 6.10. Pb for DS-SS and MCRP-SS withEbiN0 = 9dB. 
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Figure 6.11. Pb for DS-SS andMCRP-SS with.Eb!N0 = 12dB. 
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CHAPTER Vll 

MARKOV RANDOM FIELDS 

Although it is common to consider the Markov property in terms of random pro

cesses, other interpretations are possible. For example, suppose instead of a time index 

one has a spatial index. In addition, the problem under consideration could be a 

multidimensional case. As a specific example, one could think of a sampled image; i.e., a 

set of pixels. Here, the Markov property could be used to indicate that each pixel is 

directly influenced only by the pixels closest to it. 

However, there is an important distinction between these spatial-domain and time

domain processes. The concept of causality makes sense for a time-domain process; the 

future cannot influence the present. However, a similar interpretation does not usually 

hold in the spatial-domain. There is no notion of which pixel came flfSt and which prec

eded or followed it; any ordering of the pixels is inherently arbitrary and does not express 

a causal relationship. Instead, the pixels must be thought of as a whole, as a group. The 

necessarily different basis of spatial processes must be handled somewhat differently, 

giving rise to what has been called Markov random fields (MRFs). 

Markov random fields have been applied to a range of spatial processes [Kin80]. 

For images, Markov random fields have been used as models [Kas81, Hac87]. As such, 

they have proven useful in image segmentation, image restoration, and synthesis of tex

tured images. In addition, MRFs have been applied in other areas such as formant track

ing in speech applications [Wil90]. 
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The objective of this chapter is to briefly explore the extension of MCRPs to two 

dimensions. In fact, there are several ways to approach such an extension. One thought 

is to use the MCRP time series to construct an image on a row-by-row or colWllll-by

column basis. A similar technique was used by Hershey, who used m-seqeunces to con

struct a library of two-tone images for the purpose of image compression [Her81 b ]. 

However, at this time, the author has chosen to pursue a somewhat different direction 

which is based on the concepts of Markov random fields. It should be stated that the 

goals of this chapter are quite modest. We wish only to show that is possible, and may be 

advantageous, to use MCRPs in image processing applications. 

To begin, a little notation is necessary. LetL be a finite lattice; i.e., 

L = {(i,j):l :S; i :S;N1, 1 :S;j :S;N2}. These are the points over which the image is defined. 

It should be noted that it is possible to consider infmite latices; however, the author shall 

not do so here. A random field (RF) X is a collection of spatially-oriented random vari

ables and a probability measure which specifies the probability of occurrence of each 

member in the collection. 

A Markov random field is a random field where the probability measure is deter

mined by a set of probabilities over neighborhoods of the lattice. To explain further, let 

11,,, denote a neighborhood about the point (i,j). Neighborhoods must obey certain 

properties, among them that pixel (k, I) is in the neighborhood of pixel (i,j), 11i,j• if and 

only if pixel (i,j) is in the neighborhood of pixel (k,l), 11k,t· Also, by convention, the 

neighborhood of (i,j), 11,,1, does not contain the pixel (i,j). The two most common 

neighborhoods are 

11~., = {(k,/):0 < (i- k)2 + u -1)2 s 1} 

11~., = {(k,l):O < (i- k)2 + (j -1)2 s 2} 

which are illustrated below in Figure 7.1. 

(VII.l) 

(VTI.2) 
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The Markov property holds over the random field by the conditional probability 

equation 

Simply stated, the value of pixel (i,j) depends only upon the pixels in its neighborhood. 

Of course, similar defmitions hold for higher dimensions and even for one dimension; 

however, MRFs are most commonly used in two-dimensional, image processing applica-

tions. 

1 
11 i,j 

Figure 7 .1. Neighborhoods 11!.i and 'll~.i· 

Traditionally, pixel values in MRFs have been defined in terms of neighboring pix

els by 

X; · = L 9., ,Xk 1 + U; · 
•I (L I) ' • ·I 

"• E 'li,J 

(Vll.4) 

where {u;.i} is a collection of independent, identically distributed random variables. The 

above equation is, in fact, very similar to that for an autoregressive process. However, 

the above equation is not causal. For, X;.i is a function of the pixels in its neighborhood, 
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which are in turn functions of X· .. Because of this, Equation (Vll.4) has been called 
'•J 

simultaneous autoregressive (SAR), noncausal autoregressive (NCAR), and spatial auto

regressive by various authors [Der89]. 

While MRFs have traditionally been defmed by Equation (Vll.4), the author sees no 

reason why MCRPs could not be used. To do so, one would have to extend MCRPs to 

higher dimensions much in the same manner that the autoregressive equation was 

extended. The advantage of using MCRPs is derived from the fact that MCRPs are by 

defmition fmite-valued processes. This seems ideally suited to work with images which 

are quantized to a relatively few number of pixel bits. In particular, each state of the 

MCRP could represent one level of quantization. 

To see how this could be done, consider an :MRF based on an MCRP which has N 

states. Thus, each pixel in the image can take on any one of theN values specified by the 

output map of the MCRP. The required "transition" probabilities would be of the form 

P [x;,j = ak l11;,j] where ak is the output map of the MCRP associated with state k. If the 

neighborhood 11;,j consists of p pixels, then there would be NP possible configurations of 

neighborhoods for each k. Hence, there are N · NP = NP + 1 probabilities which must be 

specified. For example, if the chosen neighborhood is 111, then each pixel has four neigh

bors, sop = 4. For this situation, if N is 2, then Np+t = 32. Of course, if there is any 

synunetry in the MRF then the number of unique probabilities will be much smaller than 

this. 

As a simple example, suppose, as above, that 11 1 is the neighborhood and N = 2. In 

this case, each pixel can occupy only one of two states, namely black or white. For this 

example, let us state that, if all of the neighbors about a given pixel are black (white), 

then there the probability is 1.0 that the pixel is also black (white). If three of the four 

neighbors are black (white), then there is a probability of 0.9 that the pixel is also black 

(white). The only other case is when two neighbors are black and two are white. In this 
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case, the probability is equal that the pixel is white or black. Note that introducing sym

metry has greatly reduced the number of probabilities which needed to be defmed. Also, 

based upon these probabilities, the pixels should have a tendency to clump into areas 

which are all black or all white. 

The actual generation of an image based on these probabilities presents a bit of a 

problem. As noted previously, the pixel values have been de:fmed as being noncausal. 

Hence, the image must be created as a whole; at the very le~t, pixel values cannot be 

detennined one at a time. However, the author knows of no way to generate an MCRP

based MRF as a whole in a single step. Despite this, consider the following approach. 

Begin with a randomly generated image in which each pixel value is independent and 

generated from identically distributed random variables. Also, each pixel value of the 

image should belong to the output map of the MCRP. Now proceed through the image 

row by row, one pixel at a time. At each pixel, based on the neighbors and the transition 

probabilities, detennine the new value of the pixel. For example, as defined above, if 3 

of the 4 neighbors are black, then there is an 90% probability that the pixel will changed 

to black; 10% of the time the pixel will be changed to white. After the pixel value has 

been updated, the procedure is repeated on the next pixel. This process in continued until 

every pixel has been updated. 

For the example described above, an image of 100 pixels by 100 pixels was gener

ated. This image and the original image on which it was based, are shown below in Fig

ure 7 .2. As can be seen, the black and white pixels are clumped together much more than 

in the original image. This is to be expected because of the way the transition 

probabilities were defined. 
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As a measure of the validity of this approach, let us estimate the transition probabil

ities based upon the resulting image. The relevant data is given below in Table 7.1. The 

estimates of the transition probabilities based on the resulting image are close to the 

probabilities given above, but could be better. 

In an attempt to obtain more desirable results, the procedure was repeated. The 

resulting second-pass image is shown in Figure 7.3. Again, the black and white pixels 

have clustered together, even more so than before. Estimates of the transition probabili

ties, given in Table 7.2, are very close to the true probabilities. Thus, this MCRP MRF 

approach appears to be valid. 

To summarize, because of their discrete-valued nature, MCRPs appear to be appro

priate to model images, which are very often quantized to only a few bits. However, to 

do so involved extending MCRPs to two dimensions. As well, the inherently non-casual 

relationship of pixels needed to be accounted for. By adopting the key elements of Mar

kov random fields, it was shown that an MCRP could be useful in image processing. 
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Figure 7 .2. Original and First Pass MRF Images. 

TABLE 7.1 

ESTIMATE OF TRANSIDON PROBABILITIES 

Number of Number of Percentage of Percentage of 
Neighborhood White Pixels Black Pixels White Pixels Black Pixels 

All White 1382 77 95 5 

3 White 1714 444 80 20 

2 of Each 1272 1216 51 49 

3 Black 452 1859 20 80 

All Black 83 1501 5 95 



148 

Figure 7.3. First and Second Pass MRF Images. 

TABLE7.2 

ESTIMATE OF SECOND PASS 'IRANSmON PROBABILITIES 

Number of Number of Percentage of Percentage of 
Neighborhood White Pixels Black Pixels White Pixels Black Pixels 

All White 2018 38 98 - 2 

3 White 1715 262 87 13 

2ofEach 979 922 51 49 

3 Black 235 1702 12 88 

All Black 32 2097 2 98 



CHAPTER VITI 

CONCLUSIONS 

Summary 

By associating a real number with each state of a Markov chain, a new but related 

process, termed a Markov chain random process (MCRP), is created. These processes 

have some interesting properties: they are easy to implement, inherently stable, and can 

be made stationary and ergodic. As discrete-valued processes, they are of course ideally 

suited to model processes with discrete distributions. However, these discrete-valued 

processes also bear a strong relationship to the continuous-valued class of ARMA pro

cesses. Despite all of the interesting properties and potentially substantial applications of 

these processes, few researchers have studied them. 

The objective of this research was to investigate this class of random processes in 

several stages. The first stage was to study the statistics of these processes. Next came 

an exploration of the synthesis behavior of these processes, i.e., how one can determine 

the MCRP parameters which result in desired statistics. Once synthesis had been studied, 

it was possible to investigate MCRPs as stochastic models. Finally, several applications 

of MCRPs were considered including speech modeling, spread spectrum communica

tions, and a brief look at the extension of these processes to two dimensions. 

As MCRPs are defmed in terms of Markov chains, the first task of this research was 

to study Markov chains. The transition probabilities {t,,J, transition probability matrix 

T, and state probabilities s,(n) were examined. There are many classes of Markov chains, 
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and some are better suited for use in MCRPs than others. Since the main interest was 

stationary processes, stationary Maikov chains were desired. Better yet, the class of reg

ular Markov chains produce processes which are ergodic as well as stationary. 

After reviewing Markov chains, a few statistics of MCRPs were derived. These 

included the mean, variance, autocorrelation, and power spectral density. Eigen decom

positions were used to express the autocorrelation and power spectrum in terms of the 

eigenvalues of the transition probability matrix. N arnely, if T is diagonable and the 

process has zero mean, from Equation (IT.23) the autocorrelation is given by 

and from Equation (ll.34) the power spectrum is 

where {Ak} are the eigenvalues ofT, and {~A-} are constants which depend upon the 

eigenvectors of T and the real nwnbers associated with the states. From these equations, 

it was clear that an understanding of the eigenvalues ofT was crucial to working with 

MCRPs. 

Having found the statistics of MCRPs, the next question was how one could deter

mine MCRP parameters to achieve given statistics. Three cases were considered: proba

bility distribution synthesis; power spectrum synthesis; and synthesis given both 

probability distribution and power spectrum. For probability distribution synthesis, two 

cases were considered: continuous and discrete distributions. An exact match was given 

for processes with discrete probability distributions. For continuous distributions, a pro

cedure was detailed in which an MCRP could approximate the continuous distribution. 
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Spectral synthesis was a much more difficult problem, and in fact has as yet no gen

eral solution. However, two new classes of MCRPs were proposed which offer partial 

solutions: a summed MCRP structure, and a ring MCRP structure. In both cases, 

processes with a few number of states were combined to form a larger process. Ring

structured MCRPs were thoroughly examined and a technique was outlined to determine 

an MCRP with a given set of eigenvalues and spectral coefficients; however, the 

limitation of this approach was that the spectral coefficients had to be real and positive. 

The third synthesis case was when both probability distribution and power spectrum 

were specified. This, of course, is an even more difficult problem. However, a simple 

example was considered for a process with a Laplacian distribution and single complex 

eigenvalue-pair. For this case, a solution was found, though there was a restriction on the 

ejgenvalue magnitude. 

Chapter IV established a connection between ARMA processes and MCRPs. 

Although the two classes of processes are dissimilar in the time-domain, they neverthe

less exhibit very similar spectral behavior. In particular, the poles of an ARMA process 

and the eigenvalues of a transition probability matrix play exactly the same role in the 

autocorrelation and power spectrum expressions. 

To study this connection closer, the special situation of AR processes with a single 

complex pole-pair and MCRPs with a single complex eigenvalue-pair was studied. How

ever, though the AR poles and MCRP eigenvalues were equated, there was a difference 

between the two processes' power spectra. The explanation was that, for known MCRP 

structures, the spectral coefficients must be real and positive; in contrast, for AR pro

cesses the corresponding coefficients are in general complex. The most noticeable conse

quence of this disparity was that the power spectra of AR processes and MCRPs 

experienced maxima at slightly different frequencies. 
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Despite this discrepancy, it was clear that an AR process could act as the basis for 

an MCRP stochastic model. The approach was to first establish an AR model of a given 

data set using known techniques. Next, the MCRP eigenvalues were equated to the poles 

of the AR filter. Finally, the MCRP spectral coefficients {f3.t} were determined by mini

mizing the difference between the AR and MCRP power spectra at certain frequencies; 

namely, the frequencies where the AR power spectra experienced extrema. 

In Chapter V, this modeling approach was tested by applying it to speech modeling. 

There were several reasons why this application was chosen. First, there are many uses 

for models of speech, including storage and transmission of speech signals, speech recog

nition, and speaker identification. Although there has been much work in these areas, 

current solutions could use improvement. The use of MCRPs for speech was partially 

motivated by the success of hidden Markov models in speech processing. Additionally, it 

was felt that this application would provide a good test of the stochastic modeling tech

niques proposed in Chapter IV. 

For comparison purposes with the MCRP speech model, a standard speech model 

known as LPC was chosen as a reference. In LPC, unvoiced speech is modeled as being 

the output of a AR filter driven by white noise; voiced speech is modeled as the output of 

an AR filter driven by an impulse train with a period corresponding to the pitch period of 

the voiced speech. In the MCRP model, unvoiced speech was modeled by an MCRP. 

For voiced speech, the model was an MCRP that had been passed through a comb filter. 

To test the MCRP model, several simple words were chosen. For each word, an MCRP 

model was created and synthesized speech was generated. Although there were differ

ences in quality between the original and MCRP speech, it was clear that the modeling 

strategy was valid and that MCRPs could generate speech-like sounds. 
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The second application was to spread-spectrum communication. In this utilization, 

MCRPs were employed as spreading sequences in direct-sequence spread-spectrum com

munications. The specific approach involved unevenly spreading the data signal and then 

adding noise to "fill out" the spectrum. The idea was that a jamming signal might miss 

the frequencies where the data was most heavily represented. 

One obstacle to this application was locating a pair of binary, ±1-valued MCRPs 

which were spectrally complementary and disjoint. That is, the sum of the two spectra is 

constant, and the two processes occupy different areas of the spectrum. Using the ring

structure of Chapter ill, MCRPs were located which approximated this condition. 

The probability of bit error for the MCRP spread spectrum system was derived for 

partial band jamming. It was shown that, under certain jamming conditions, this system 

had a lower probability of bit error than conventional direct-sequence spread spectrum. 

The fmal topic of this research was an extension ofMCRPs to two dimensions, and 

to image processing in particular. The reasoning behind this investigation stems from the 

fact that MCRPs are inherently discrete-valued and can assume only a few values. This 

seems particularly well-suited to model images, which are very often quantized to only a 

few bits. As the pixels in images are non-causally related, two-dimensional processes 

that are non-causal are required to properly model images. Tlus realization led to an 

examination of Markov random frelds. The key elements of MRFs were adopted to 

MCRPs, and a simple example was given which showed that MCRPs could be used in 

image processing applications. 

Considerations for Future Research 

There is still much research which can be performed on MCRPs, including areas 

directly related to this research. Although the statistics of MCRPs appears to be well 

understood, there remain unsolved problems in synthesis. For example, in spectral syn-



thesis, structures need to be found which can have complex spectral coefficients, ~e 

While the author was able to accomplish much using real spectral coefficients, exact 

power spectra matches would have resulted if structures with complex spectral coeffi

cients could have been found. 
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For stochastic modeling with MCRPs, it is worthwhile to pursue a modeling strat

egy which does not rely on the in-between step of fmding an AR model; i.e., so that the 

MCRP model parameters could be found directly from the data. The only other strategy 

described was an estimate of the transition probabilities directly from the data. Barring a 

completely new method, perhaps a hybrid between these two approaches could be inves

tigated. 

For the MCRP speech model, voicing is a concern. There appeared to be some 

undesirable qualities present in the synthesized speech for voiced phonemes. Perhaps 

there is a better way to model voiced speech or a method whereby the offending artifacts 

can be eliminated. Also, for any practical implementation of an MCRP model, numerous 

details would have to be worked out. For example, phonemes that are difficult to model, 

such as voiced fricatives, would need to be studied. Additionally, the possibility of 

combining hidden Markov models and MCRP models of speech would perhaps be fruit

ful. 

The MCRP spread spectrum approach too could benefit from some further research. 

In particular, better complementary MCRPs need to be found. lfMCRPs could be 

located which achieve a better tradeoff between being complementary and being 

spectrally-disjoint, the performance of the system would improve. Also, it may be worth

while to consider using an unbalanced system wherein more power is devoted to the data 

than to the added noise. 
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There is much research which could be done for MCRPs as applied to two dimen

sions. For one, statistics of non-causal processes derived from MCRPs need to be deter

mined. Also, a procedure to synthesis images should be researched. As well, specific 

applications where such processes corild be useful need to be identified. 
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APPENDIX 

DERIVATION OF SPECTRAL PARAMETERS FOR 

RING STRUCTURED MARKOV CHAIN 

RANDOM PROCESSES 

In this appendix, the spectral parameters are derived for MCRPs with the ring struc

ture described in Chapter ill. Using block matrix notation, the transition probability 

matrix for this process can be expressed as 

(1-~)T1 ~s; 0 0 
I 

0 (1-a,JT2 a.Jns~ 0 
2 

T= (111.12) 

0 (1-~-I)TM-1 ~-tk,s~ 

a.Mk s~ 0 0 0 (1-a.M)TM 
M 

where ,!N is a vector oflengthN, where every element is 1, T, is the N;xN; transition prob-
1 ~ 

ability matrix for the i'h subchain, S; is the stationary distribution forT;, and 0 <a;< 1 for 

all i. The total number of states in T shall be designated by N: N = L; N;. The only other 

restriction is that each of the T; stochastic matrices must be diagonable. The restriction 

that these matrices be irreducible is relaxed in this instance since T can be shown to be 

irreducible whether the T, matrices are irreducible or not. However, if a given T, is 

reducible, s, will not be unique, and must be chosen with some care. Specifically, every 

element of s, must be nonzero. Every element of s, will be always be nonzero for irreduc-

ible T,. 
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To continue, some notation from Chapter ill needs to be reiterated. Let 

a;= (O;,t a,,2 ··· a;,Nf be the output map for the i'h subchain, so that 
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a= (ai a{ · · · ~l for the entire chain. Let {A,,k} for 0 S k S N, -1 be the eigenva

lues ofT; with associated right and left eigenvectors {v;,k} and {u,,k}, respectively. The 

eigenvectors should be normalized so that rl;,kvi,k = 1 for all i,k. By convention, A;,o = 1 

for every T,, and S; is the left eigenvector ofT; associated with this eigenvalue: S; = u,,0• 

The spectral coefficients for the eigenvalues {A;,k} are given by f3i,k =aT S;v;,kuf.ktl where 

S, is a diagonal matrix composed of the elements of S;. 

Using this notation, it will be shown that the stationary state probabilities for this 

structure can be expressed as 

1 T -s a.z2 (A.2) 

Also, assuming J.l; = i a= 0 for all i, the eigenvalues ofT which can have non-zero spec-

tral coefficients are {A.';,k} where 

A.',,k = (1- c:x.;)A.,,k for 1 S i S M, 0 < k < N; 

and their associated coefficients are {f3';,k} 

13, - f3;,k & 1 . M 0 k N J.Or S l S , < < , .. l,k- ~ 1 
a,~-;; . 

j -J 

(A.3) 

(A.4) 

Now consider the proof of equation (A.2). First note that s in (A.2) is a valid sta-

tionary distribution as all of its elements are positive. Also, the scale factor li(I:)llai]) is 

included to insure that the elements of s sum to unity. To show that sis the stationary 

state probability vector ofT, it must be shown that sTT = ~. Consider the product ~T: 



The first N 1 elements of the resulting row vector are given by 

=-1 (.!_a:) 
~ 1 a t 
£..- 1 
j «J 

since sfT1 =sf and 4hr = 1. By proceeding to consider subsequent groups of N, ele-
M , 

ments, the result is that 

T 1 ( 1 T s T=- -s 
L,!. a1 1 

j aJ 

T =s 

1 T -s 
Cl:z2 
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as was claimed. Also, recall from Chapter ill that S was defined as the diagonal matrix 

of elements of s . Thus 
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(A.5) 

Now consider the eigenvalues ofT. Some ofT's eigenvalues are derived from the 

eigenvalues of the T, matrices. For example, consider T1• Let {vv} be the right eigen

vectors of T1 associated with the eigenvalues {A.v} for 0 < k <N1• Next, let {v'1,k} be 

vectors obtained by appendingN -Nl zeros to Vt,k: v'l,k = <vi.k 0 ... olin block 

vector notation. Now, consider v' 1, k for any 0 < k < N 1 as an eigenvector of T: 

0 Nl--l 
~23 

Tv't,k = 

0 

The firstN1 elements of the resulting column vector can be represented as (l-a1)T1v1,k. 

But T1vu = A.l.kvt,b so the first N1 elements are (1- a 1)A1,kvl.k. Now, recall that s1 = u1,0, 

where u1,0 is the left eigenvector of T1 associated with the eigenvalue A1, 0 = 1. In general, 

for any diagonable matrix A, the right eigenvectors { v,} and left eigenvectors { u,} must 

satisfy u; v, = 0 fori ::1= j [Lan85]. Hence, since s1 = u1,0, si vl.k = 0 for 0 < k < N 1• Thus, 

the last NM elements of Tv'1,k are zero. The remaining elements of Tv'1,k are trivially zero. 

Thus, 



164 

0 

0 

proving that {v'1,k} are eigenvectors ofT associated with the eigenvalues {(1- a1)A1,k} 

for 0 < k <N1• Similarly, it can be shown that, if {u1,t} are eigenvectors of T1, then the 

left eigenvectors ofT associated with {(1-a1)A.l.k} for 0 < k <N1 are {u'l.k} where 

u'1,k = (ui,k 0 ... 0{ using block vector notation. 

Next, note that the nwnbering of the subchains is arbitrary. That is, any subchain 

could be labeled as the frrst subchain as long as the remaining subchains are renumbered 

accordingly. The consequence of this observation is that, if a result can be shown for one 

subchain, a similar result is true for all of the other subchains. Thus, it follows that 

{(1-a,)A.,,k} are eigenvalues ofT for 0 < k <N;, 1 :S i :SM which confrrms equation 

(A.3). 

The spectral coefficients of these eigenvalues can now be found. Recall that, from 

Chapter II, for an eigenvalue A. of Twith right (left) eigenvector v (u) such that ur v = 1, 

the coefficient is 13 =if Sv.,/' ii. For the ring structure, the mean of the process is 

J.l = sr a= [1/(LJ llaj)] L;(lla,)sf a,. Asswning each subchain is a zero-mean process, 

J.l; =?,a, = 0, and hence, J..L = 0. Then, ii =a. As before, consider the eigenvalues 

{(1- <X1)A1,k} for 0 < k <N1• The associated right eigenvectors of Twere shown to be 

given by v't,k = <vf.k 0 ... o{ and the left eigenvectors were given by 

u'1,k = (ui.k 0 · · · 0( Note that 
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0 

By a previous assumption, ui,kvt.k = 1 for all k so the condition (u'1,k)T v'1,k = 1 is met. 

For the eigenvalues {A.'1,k} for 0 < k <N., consider the spectral coefficients {Wu} 

which are given by w •. k = arsv'u(u' •. kl a. Let us split this expression into two parts and 

first consider ( u' t,k)T a: 

Next consider ar Sv' u: 
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0 

T ' t:f a Sv 1 ~r:=-1 . L-
J ai 

0 

0 

0 

Expanding a yields 

TS , 1 ( T aT T) 
a v t,k = L~ at z . .. aM 

j aJ 

0 

Combining these parts, 
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f.t' TS ' ( ' )T 1-' i,k = a v t,k u t,k a 

But ~i,k = t1, S, V;,kuf.ka;. Thus 

f.t' - ~l,k 
1-' l,k- ~ 1 • 

a.."'-
J aJ 

(A.6) 

for 0 < k < N 1• Again, one can argue that the ordering of the subchains is arbitrary and 

that for any result concerning the first subchain there is a similar result for the other sub

chains. Hence, the previous equation can be generalized so that the coefficients asso

ciated with the eigenvalues {(1- a.,)A.,,k} are 

(A.7) 

for 0 < k < N;, 1 :s; i :s; M as was claimed in equation (A.4). 

Hence, each T; contributes N; -1 eigenvalues toT. That means that 

Lr._ 1(N; -1) =N -M of theN eigenvalues ofT have been accow1ted for. The remaining 

M eigenvalues of T can be found as follows. Define the stochastic matrix Ts to be 

T= s (A.8) 
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and suppose T .. is diagonable with eigenvalues {P~c} and associated right eigenvectors 

{v~c}· Let V~c = (vk,t V~c.z ·.. vk,Mr Consider the column vector whose first N1 ele-

ments are V~c,., next N2 elements are V~c, 2 and so on. This vector can be expressed in block 

vector notation as v' 1c = ( v 1c, & 1 
v .tr. ... 
lc,~·2 

= 

(1- cx1)v~c. 1T1,k1 + a1vk.z.k1s~_k2 
(1- <X:z)V~c, 2T z.k2 + <X:z V~c,aklik3 

But, Ti.hr = h: since Ti is stochastic. Also, sfh: = 1. Using these simplifications, 
I I I 

[(1- cx1)vt,t + CX1V~c, 2]g1 
[(1- <X:z)vk,2 + <X..zV~c,3lg2 

Tv'k = (A.9) 

Next, use the fact that T .. v~c = P~cV~c and expand: 



(1-c:x..)vk,t +c:x.,vk,2 

(1 - a:..z)vt,2 + a:..z vt,3 

Tsvk= = 

( 1 - C:X.M )V k,M + C:X.M V k,l 

substitutions in equation (A. 7) yields 

Tv'~c= 

P~tV~t,t!v1 
Pt"l'~t,4Nz 
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pkvk,t 

PtVk,2 

= pkvk. 

P~cVt,M 

and proves that {P~c} are eigenvalues ofT. A similar result relates left eigenvectors of Ts 

to left eigenvectors ofT: if uk = (ut, 1 U~c,2 U~c,M) is the left eigenvector of T8 asso-

ciated with the eigenvalue Pt• then u'k = ( Ut,&1 U~t,&2 
vector ofT associated with the eigenvalue P~c· 

Next, consider the spectral coefficients for these eigenvalues. As before, split the 

expression, which is given by ~It= tl Sv'k(u'kl a, into two parts. First consider tl Sv' It: 

T 
r ' a aSv =-

It L,2. 
J aJ 

.ls 
~' 2 
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... a~) 

1 ("" Vk,r T ) =-1 ~-a,S;_h, . 
l- I (Xj I 

J a.J 

But, S;!111 = S; which yields 

Finally, af S; = J.l; = 0 by a previous assumption. The consequence of this is that ~1 = 0 for 

all of the eigenvalues {p1}. This is fortunate since these eigenvalues are much more dif

ficult to work with than the {(1- a,)A.;,1} eigenvalues. 

Now suppose that Ts is not diagonable. As an example, suppose that Ts is a 3x3 

matrix with Jordan form 

(1 0 OJ 
J= 0 p 1 

0 0 p 

That is, Ts has two eigenvalues: 1, which has unit multiplicity; and p, which has algebraic 

multiplicity 2, but geometric multiplicity 1. Further, suppose the modal matrix of Ts is 

given in block vector notation as 
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so that TV = V J. Let us write out this equation in terms of the component vectors of V 

and the eigenvalues: 

Therefore, 

vk,M)T, and let V1 k be the vector 

V1k = (vk,&, vk,t~2 ••• vk,M_gMy. Then, using the procedure as in the diagonable 

case given above, it is possible to show that 

T I I 
v 1 = pv t• 

d T I I I an v 2 = v 1 + pv 2• 

Hence, 1 and pare eigenvalues ofT. However, in this case, p has algebraic multiplicity 

2, but geometric multiplicity 1. 

Now, this is precisely the situation discussed in Chapter IT in the section concerning 

the power spectra ofMCRP with nondiagonable transition probability matrices. Hence, 

from Equation (ll.35), it is clear that the autocorrelation of this MCRP will have a p" 

term and its spectral coefficient j31 will be 
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· where u' 1 and u' 2 are the corresponding left eigenvectors ofT associated with p. Addi-

tionally, the autocorrelation of this MCRP will have a np"- 1 term and its spectral coeffi

cient ~2 will be 

Formally, the autocorrelation also includes ~0(1)", but it was shown in Chapter IT that ~0 

is always equal to zero for a process like this one with zero mean. 

To show that ~1 and ~2 are zero, consider r!Sv'1c(u')Ta for 1 ~ k,j ~ 2. First con-

sider r!Sv'k: 

~T ' rf aSv =-
k :I)-

} (1.1 

vk,2 S 1 
~ ~2 
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Noting that S;!N = S1 , . 

T , 1 (~ Vk,i T ) a Sv L=- "'-a.s. 
I< ~ J IV I I 

,L.- I ""I 

J Cl.j 

=0 

since t1, s, = J..l; = 0 by a previous assumption. The consequence of this is that ~1 = 0 and 

~ = 0. Hence, even in this case when Ts is not diagonable, its eigenvalues do not influ

ence the autocorrleation or power spectrum of the MCRP. 

To swnmarize, each T, matrix contributes N,. - 1 eigenvalues to T, and each of these 

eigenvalues can have nonzero spectral coefficients. The remaining M eigenvalues of T 

are found from the Ts matrix defmed in (A.8). However, these eigenvalues do not influ

ence the autocorrelation and power spectrum of the ring-structured MCRP. 
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