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CHAPTER 1
INTRODUCTION
Markov Processes

One of the most useful classes of random processes is the class of Markov pro-
cesses. In a Markov process, the current state of the process is only influenced by the
ﬁost recent behavior of the process. In short, the process has a finite memory. This
Markov property is not an overwhelming restriction on a random process. For a great
number of random processes found in nature, the assumption of finite memory makes
good sense.

As an example, consider the following difference equation representing a discrete-

time random process:
y(n)=08y(n —)+u(n) 4 1.1
Here, the random process {y(n)} is driven by {u(n)}, which is also a random process.

For this example, let us assume that {u(n)} is a white noise process with unity variance
and Gaussian density. From the equation, it is clear that the process remembers only the
previous value of y: y(n) is not directly influenced by {y(n —2), y(n —3),--*}. Hence,
the random process {y(rn)} is a Matkov process. Actually, this is an example of an auto-
regressive, moving-average (ARMA) process. ARMA processes have some very nice
properties, such as linearity, which have proved valuable in modeling a wide range of

processes.



Another example of a Markov process is a Markov chain. A Markov chain is
essentially a state system in which the state transitions are defined by a set of probabili-
ties. As a simple example, suppose there are two states, numbered 1 and 2. Let the prob-
ability that the process does not change state be (.9; thus, there is a probability of 0.1
that the process will change states. Now, if the process is in state 1 at a given time,
consider the next state of the process. Clearly, this only depends upon the transition
probabilities, and not upon any of the previous states which the chain occupied. Hence,
this is also a Markov process.

Although the two examples given above are both Markov processes, there are clear
differences between them. In the first example, the random process assumes real num-
bers; e.g., y(2) = 0.34. However, the second example is a state system. At a given time,
the process occupies a particular state. But this state can be practically anything. For
example, a state could represent a quality such as excellent, good or poor; a condition
such as on or off; or even a number such as x. It all depends upon the application.

The focus of this dissertation is Markov chains for which the states represent real
numbers. This type of process has been called a Markov chain random process (MCRP).
For the two-state Markov chain described above, one could create an MCRP by assigning
the states real numbers. As an example, state 1 could represent the number 1.667, and
state 2 the number -1.667. |

To provide some insight, let us compare the MCRP and ARMA examples. It has
been noted that both processes are Markov, but that there are differences between them.
To illustrate, Figure 1.1 shows sample outcomes for both processes. The most notable
difference is that the ARMA process assumes a wide range of values, whereas the MCRP
only assumes £1.667. In general, ARMA processes are continuous-valued whereas

MCRPs are discrete-valued.
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Figure 1.1. Example outcomes for ARMA process and MCRP examples.

Let us now look at the power spectra of these processes. The details of the power
spectra shall be examined in Chapter Il. However, not worrying about the details of this
operation for now, the results are plotted in Figure 1.2. As can be seen, the two processes
have identical power spectra. This is perhaps surprising because in the time-domain, as
was illustrated in Figure 1.1, the processes look nothing alike. However, the fact that
their Ii)ower spectra are identical implies that, at least on some level, the two processes are
similar. More importantly, it gives us insight into the statistical properties of MCRPs.

The goal of this dissertation is to explore MCRPs. The power spectra of these pro-
cesses is a main concern both from an analysis and synthesis viewpoint. The relationship

between ARMA processes and MCRPs is examined in light of the previous example.
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Figure 1.2. Power Spectra of ARMA process and MCRP.

Additionally, several applications of MCRPs shall be considered. Overall, the objective
of this research is to examine the distinguishing characteristics of MCRPs and to utilize

these processes in several applications.
Literature Survey

Markov chains have been extensively studied and applied to a wide number of
fields, including operations research, queueing networks, biology (life/death chains),
gambling and many others [Kem76, Bha60]. The success of Markov chains is a testa-
ment to the fact that many processes are essentially state systems. However, while the
literature on Markov chains is extensive, most have little bearing on this study of
MCRPs.

More relevant is the work of Sittler, who introduced Markov chain random pro-
cesses in the 1950’s [Sit54, S1t56]. Sittler’s work was based on flow graphs and the rela-
tion of MCRPs to linear discrete-time systems and circuits. He found that the tools used

for analyzing circuits could be used to analyze MCRPs. Proceeding in this manner, he



determined the power spectral density for MCRPs. In fact, although relatively little work
has been done with Markov chain random processes, most of it has been concerned with
the power spectrum.

Since Sittler’s initial papers, several others have analyzed the spectral properties of
MCRPs. These include Huggins [Hug57], and Zadeh [Zad57], who generalized Sittler’s
approach to processes with time-varying parameters. Additionally, some researchers,
including Barnard [Bar64], have analyzed MCRPs which generate continuous-time sig-
nals by mapping each state to a waveform instead of a real number. To date, the most
general treatment of MCRPs appears to be by Yoshida [Yos73].

After the spectral properties of MCRPs had been thoroughly analyzed, a few
researchers began to investigate the spectral synthesis problem for MCRPs. That is, they
wished to determine the MCRP parameters which result in a given power spectrum.
However, this is a very difficult problem and a general solution has not been found. Nev-
ertheless, some researchers have had limited success by considering special classes of
MCRPs. One of the earlier works in this area was performed by Mullis and Steiglitz
[Mul72], are their approach is based on MCRPs with circulant transition probability
matrices. Others have tried similar approaches, most notable Steinhardt, who considered
MCRPs with normal transition probability matrices. However, these approaches offer
only a partial solution to the synthesis problem.

There have been several applications of MCRPs in the literature. These include
analysis of signals with timing jitter [Hug57, Yos73] and random telegraph messages
[Hug57]. The natural sciences have been represented by papers on modeling of wind
[Jon86] and solar radiation [Agu88]. Two papers have discussed MCRPs in the context
of speech modeling [Mul72, Sie76], which is one of thé applications considered in this

research. Additionally, binary MCRPs have been employed in lossless data compression



and have achieved excellent results [Cor87]. Of these applications, only the wind, radi-
ation, and speech papers are directly related to this research. More information on these

topics is discussed in Chapters IV and V.
Overview

Examination of Markov chain random processes begins in Chapter II with a review
of Markov chains. As noted previously, the literature on Markov chains is extensive, and
much has little bearing on this research of MCRPs. Consequently, the material in the
second chapter is restricted to those topics which relate directly to this study.

Following this, Chapter II defines and examines MCRPs. Several statistics are
derived including the power spectrum. The derivations in this chapter are somewhat dif-
ferent from any approach previously documented. Sittler’s derivation involved flow
graphs and analysis techniques of electrical circuits. However, this procedure is difficult
for large systems. The results from other papers are too general, involving time-varying
parameters and arbitrary output waveforms. Consequently, it was necessary to reformu-
late the results for the purposes of this research. In particular, the derivations and results
of Chapter II are given in terms of matrices and vectors, with emphasis on eigen
decompositions. In addition, Chapter II also discusses Hidden Markov Models in relation
to Markov chains and Markov chain random processes.

The subject of Chapter III is synthesis. The key goal of this chapter is to locate
MCRPs which achieve desired power spectra. After carefully discussing the key
obstacles to a solution of this problem, several approaches are considered. In particular, a
ring-structured MCRP is introduced and examined in detail. Although there are some
limitations of this structure, it appears to be the best solution to the spectral synthesis
problem to date. Additionally, Chapter II considers synthesis of MCRP with constraints

of distribution function and joint constraints of distribution function and power spectrum.



Chapter IV considers MCRPs as models of random processes. The discussion leads
to an exploration of the relationship between ARMA processes and MCRPs. It is shown
that, under certain conditions, the power spectrum expressions for MCRPs and ARMA
processes driven by white noise are similar. Using this relationship and the ring- |
structured MCRP introduced in Chapter II1, a procedure is formulated whereby a colored
noise process can be approximated by an MCRP.

In Chapters V though VII, several applications for MCRPs are considered. In
Chapter V, MCRPs are studied as models for speech signals. This provides an excellent
opportunity to test the results of Chapter IV. The motivation for using MCRPs for speech
is partially based on the success of Hidden Markov Models (HMMs) for speech. This
chapter begins by examining conventional speech models. An MCRP model for speech
is then presented and discussed. Preliminary results are offered which confirm the valid-
ity of this approach.

Chapter VI discusses“the use of MCRPs in direct-sequence spread spectrum
(DS-SS) communications. Conventionally, m-sequences are used as the spreading
sequence for DS-SS. In Chapter VI, the use of MCRPs as spreading sequences is
explored. The main advantage of this approach is that, as binary random processes,
MCRPs are much more flexible than m-sequences. This extra flexibility can prove useful
in a jamming environment.

The topic of Chapter VII is Markov random fields. In essence, this is an extension
of MCRPs to two-dimensional processes, and to sampled images in pasticular. A thor-
ough examination of such processes is beyond the scope of this document. However,
Chapter VII introduces MCRPs in the context of Markov random fields and discusses
theﬁ feasibility. This approach seems especially well-suited to image processing applica-
tions in which there are a relatively few number of pixel bits. A simple example is given

which demonstrates the potential of MCRPs in this area.



Finally, Chapter VIII provides a brief summary of this manuscript, noting the con-
tributions and results of this research. Additionally, ideas for future research involving

MCRPs are discussed.



CHAPTER I

MARKOYV CHAIN RANDOM PROCESSES

This chapter is concerned with Markov chains and related processes. In the first
section of this chapter, Markov chains are discussed. The main purpose of this section is
to develop an understanding of Markov chains which shall be essential to the study of
Markov chain random processes. The literature on Markov chains is extensive, and much
has little bearing on MCRPs. Consequently, the material in this section shall be restricted
to those topics which are pertinent to this study. In particular, this section shall concen-
trate on stationary Markov chains. The second section of this chapter examines Markov
chain random processes. Several important statistics of stationary MCRPs are discussed,
including mean, variance, autocorrelation, and power spectral density. The final section
of this chapter briefly reviews hidden Markov models (HMMs) and discusses their rela-
tion to Markov chains and MCRPs.

Markov Chains

A Markov chain is essentially a probabilistic, discrete-time, state system. In gen-
eral, a Markov chain can have an infinite number of states. However, this study is
restricted to Markov chains having a finite number of states which for convenience shall
be numbered from 1 to N. Markov chains are distinguished from other state systems
because they obey a first-order Markov property [I0s80]. In words, this property requires
that the state transitions depend only on the present state of the system; previous states of

the system do not influence state transitions. The Markov property is perhaps better
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explained by the conditional probability equation
Pix(n+)=j|lx(n)=i,x(n—1)=h,---]1=Px(n+1)=j|x(n)=1i] (IL1)
where x(n) is an integer-valued random process which assumes the value of the state

which the system occupies at time n, and 4, i, and j are integers which correspond to state
numbers. The equation implies that x(n) is statistically dependent upon x(n — 1) and
independent of x(n —2), x(n — 3), etc.

It would appear that the Markov property severely limits the usefulness of Markov
chains since most real-world processes have a higher degree of dependence upon the past
behavior of the system. However, it is possible to represent such processes in terms of
Markov chains [Kaz82]. To see how this is done, consider a process which has N states
and for which the state transitions depend on the present state as well as the previous
(k — 1) states. Such a process is termed an N-state, k™ order system. By letting each
ordered k —tuple of states in this system comprise a state in a new system, a 1* order pro-
cess with N states is created which behaves like a Markov chain. The main obstacle in
dealing with higher order systems directly is that, unlike Markov chains, convenient

representation of parameters and statistics in terms of matrices is cumbersome.

Markov Chain Notation

Markov chains are easily illustrated by means of flow graphs. As an example, Fig-
ure 2.1 shows a flow graph for a particular 3-state Markov chain. In the figure, nodes
indicate states of the system while arrows between nodes represent state transitions. A

number, ¢, , is associated with each arrow indicating the probability of transition from

2 J?
state I to state j. In general, the transition probabilities {t, ,} could be functions of time.

In fact, the only constraints on these probabilities are as follows:

0<r, <1 Vi,j (IL.2a)
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N
and T1,=1 V i (IL.2b)

=1

For the purposes of this paper, we shall assume that {,} are not functions of time. In this

case, the Markov chain is said to be homogeneous.

State 1

State 3

Figure 2.1. 3-State Markov Chain Flow Graph.

Related to transition probabilities are state probabilities: let s;(n) represent the

probability that the chain is in state i at time n. The state probabilities are related to the

transition probabilities by the equation
N
s(n+1)= X 5,(n)k,, (IL3)
1=1
for any j. Similarly, one could write

s(n+2)= ‘Z:l s(n)t, (2),
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where ¢; (2) is defined to be the two-step transition probability P[x(n +2) =j | x(n) =i].

In general, let ¢, (m) be the m-step transition probability P [x(n +m) = j | x(n) = i] for

m 2 0. Note in particular that 7, ;(0) =1 and ¢, (0)=0fori #j. Also,¢, (1)isjusts, . To
find the relationship between the set of m-step transition probabilities, {7, ;(m)}, and the
set of one-step transition probabilities, {¢,  }, it is more convenient to utilize matrix nota-
tion.

Towards this end, T shall be defined as the NxN matrix with elements [T, =¢, ..

That is, the element in the i" row and ;" column of T'is ¢, ,. Since T is composed of
transition probabilities, it is referred to as the transition probability matrix. For the Mar-

kov chain in Figure 2.1,

A5 8 .05
r={ 0 .25 75|
85 05 1

Similarly, the state probabilities can be represented in<vector notation as
s()=(,(n) sm) 0 sy (IL.4)
Since 5,(n +1) = YV si(n )t;.,, the set {s;(n + 1)} may be more compactly represented by

s'(n+1)=s"(n)T. Through a simple substitution, s"(n +2) =s"(n + 1)T =" (n)T°.

Repeating this argument, the following becomes apparent:
s'(n +m) =s"(m)T" form 0. (IL5)

Also, since s,(n +m) = N s(n )t,,(m), it follows that the m-step transition probabilities

are

t, (m)=[T"1 . (1L.6)
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Transition probability matrices belong to a class of matrices called stochastic or
probability matrices. These matrices are characterized by having real, nonnegative ele-
ments and by the fact that each row of the matrix sums to unity. One can see that T'is a
stochastic matrix since [T], ,=¢; ; 20 and 21, =1. This matrix plays an important ‘
part in the later parts of this chapter and in subsequent chapters. Properties of stochastic
matrices are discussed in texts on Markov chains, such as [Kem76], and in many texts on
matrices, such as [Lan85]. Some of these properﬁe§ shall be specified later in this chap-
ter. However, there are several properties of stochastic matrices which are worth noting

at this time. First, T always has an eigenvalue equal to 1 with associated right

eigenvector(1 1 --- 1)
w1} (1
=1 -
vyt ha )\l \1

since Z?’;l t,,=1forall i. This eigenvalue shall be denoted throughout this manuscript as

A, and the remaining eigenvalues as A, A,, -**,Ay_,. It is also possible to show that any

eigenvalue of T is less than or equal to 1 in magnitude: letting A be any eigenvalue of T

with associated left eigenvector = (u; u, -+ uy),
M =d'T
Au, = “Lu,t,, .

so X |Au =X Xut |
J J '
IM Zlul <X Xlult,,
J J o
IM Zlu| < Zlul 2t = Zul
J ' J i

I <1. IL7)
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Based on the transition probabilities, it is possible to categorize Markov chains into
several classes. This classification is based on the concept of communication between
states: the states i and j are said to communicate if it is possible for the Markov chain to
transition from state i to j and from state j to i. Note that communication does not have to
be direct; for the Markov chain in Figure 2.1, even though ¢, ; = 0, state 2 communicates
with state 1 since it can reach state 1 by first passing through state 3.

Markov chains can be classified as either reducible or irreducible [10s80]. In an
irreducible Markov chain, every pair of states communicate; conversely, if a Markov
chain has any pair of noncommunicating states, it is said to be reducible. Irreducible
chains are further classified as either regular or cyclic. A Markov chain is regular if all
of the elements of T are strictly positive for some n > 0; a Markov chain is cyclic if it is
not regular. For the example in Figure 2.1, every pair of states communicates, so this

Markov chain is irreducible. Further, since every element of

065 3225 .6125
T"=[6375 .1 .2625
2125 6975 .09

is strictly positive, the Markov chain is regular.

It should be noted that there is a relationship between Markov chain and matrix ter-
minologies. For example, there is a definition of reducibility for both matrices and Mar-
kov chains. Fortunately, the two are related: a Markov chain is reducible if and only if its
transition probability matrix is reducible. A similar statement is true for the terms
irreducible, regular, cyclic, primitive, and imprimitive' (see, for example [Lan85, Sen81,

Kem76, and Io0s80]).

1 The terms primitive and imprimitive will be introduced in the next section.
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Stationary Markov Chains

A random or stochastic process is a (usually infinite) set of samples or outcomes
each of which is a function of time. In a Markov chain, the outcomes take the form of
infinite sequences which denumerate the state transitions as a function of time. For
example, in the 3-state Markov chain in Figure 2.1, a possible outcome is
{2,3,1,1,3,2,2, -}, indicating that the Markov chain began in state 2, transitioned to
state 3, then to state 1, and so on.

For the purposes of this research, the main interest is stationary random processes.
For a random process to be stationary, the statistics of the process must be time-invariant.
For homogeneous Markov chains, stationarity is insured if the state probabilities are con-
stant [Pap84]; that is, if s(n) does not depend on n.

To consider the stationarity of a Markov chain, recall that the state probabilities
were expressed in matrix-vector notation as s*(n +m) = s (n)T” for m = 0. For the Mar-
kov chain to be stationary, s(n) must be such that s (n) = s"(n)T™ for all n and for all
m 2 0. In particular, this means that s"(n) = s"(n)T. Since it has already been shown that
T has the eigenvalue A, = 1, the previous e;luation implies that s(rn) must be a left eigen-
vector of T associated with this eigenvalue. Hence, a Markov chain will be stationary if
s(n) is a left eigenvector of T associated with the eigenvalue A, = 1. A state distribution
s(n) which makes the Markov chain stationary will be called a stationary distributioy of

the Markov chain and shall be denoted by s.

Now, in general, the eigenvalue A, = 1 could have multiplicity greater than one. In

this case, the stationary distribution would not be unique. However, suppose the Markov
chain is irreducible. If so, then the stationary distribution is unique. This result follows

from the Perron-Frobenius theorem [Lan85]:
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Theorem (Perron-Frobenius): For a nonnegative square irreducible matrix,
(i) The matrix has a real eigenvalue equal to its spectral radius,
(ii) There is a real right eigenvector associated with this eigenvalue; and
(iii) The algebraic multiplicity of this eigenvalue is 1.

The spectral radius is defined as the magnitude of the largest eigenvalue of the matrix.
For T, the spectral radius is 1 since | A, [< 1 =A,. It follows from the Perron-Frobenius
Theorem that the eigenvalue A, = 1 has algebraic multiplicity of 1 for irreducible Markov
chains. Consequently, the stationary distribution of irreducible Markov chains must be
unique.

If the Markov chain is further limited to being reguiar, then an even stronger state-
ment can be made: the state probabilities converge to unique values independent of the
initial state distribution s(0). To see why, first recall from the previous section that a
regular Markov chain has the property that every element of T is positive for some
n > 0. An equivalent definition is that T can have only one eigenvalue with unity magni-
tude [Lan85]. This property is call primitivity, and some texts use the term primitive
instead of regular to describe these Markov chains (for example, [Sen81]).

The benefits of regular Markov chains arise from the fact that every eigenvalue of
T, except Ao, has magnitude strictly less than one. To see why this is such a nice prop-
erty, express T in its eigen decomposition as

1
J,
T=V . V! (11.8)
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where V is the modal matrix of T and where J; is the Jordan block for the i" eigenvalue

(A,) of T. Now consider lim, _,.,7". Since all of the eigenvalues except for A, = 1 are

strictly less that unity in magnitude, it follows that lim, _, .J; converges to a matrix of all

zeros. Thus,
10 0)
00 - 0
]j_rn T' = . . veo . V_l
" —’“ o0 .
00 - 0
= vo"g
where vo=(1 1 --- 1)"is the right eigenvector and u, is the left eigenvector of T

associated with A, = 1 and u, is such that uev? = 1. Then, letting

uo=(Uo, Uor - Uoy),and denoting lim, ,.T" as T”, one can see that
T = v,
Uy Uon *° Upy
- 0',1 (T,Z - O:N (II.9)
Upy Uoz *°* Uon
Next, consider lim, _, ., s(n) for an arbitrary initial state distribution s(0):
lim s"(n) = lim 5" (0)T"
=5"(0) lim T"
=s"(0)T"
=5 (0w ub.
Now, s(0)v,=(5;(n) s,(n) - sy 1 - 1)''=3, 5(n)=1regardless of

5(0). Thus,
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lim 5" (n) = 5" (0)voud

= ul
regardless of s(0). Also, because A, = 1 has unit multiplicity for regular Markov chains,
the stationary probability s is unique, and so, s = u,. Hence,

lims'(n)=s. (I1.10)

n—co
The conclusion is that, for regular Markov chains, s(n2) converges to the stationary distri-

bution independent of the initial distribution. Because of this, regular Markov chains are
always asymptotically stationary [Pap84].

Regular Markov chains are also ergodic random processes [Ios80]. That is, with
probability one, any statistic of the process can be determined from a single outcome
[Pap84]. It should be noted that, in many texts, irreducible Markov chains are called
ergodic Markov chains (for example, [Kem76, I0os80]). However, this is a misnomer as
the ergodic property holds only for regular Markov chains [Ios80]. This special case
when the Markov chain is regular is the most important case and is assumed here unless
otherwise mentioned.

The example in Figure 2.1 is a regular Markov chain and therefore ergodic and
asymptotically stationary. For this example,

31915 3617 31915
T"=|.31915 .3617 .31915
31915 3617 31915

and therefore the stationary state distribution, as well as the limiting state distribution, is
s=(31915 .3617 .31915)". This indicates that the Markov chain spends slightly

more time in state 2 on the average than in either state 1 or 3.
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Markov Chain Random Processes

Markov chain random processes (MCRPs) were first introduced by Sittler [Sit54,
Sit56]. Simply stated, an MCRP is created by associating a real number to each state of a
Markov chain. To explain further, let a, denote the real number associated with state i.
Then, if the Markov chain is in state j at time n, the output of the MCRP is equal to g; at
time n. For convenience, let a = (a} a, - ay), which shall be referred to as the out-
put map.

To fix ideas, reconsider the Markov chain from Figure 2.1. This Markov chain has
three states, so an MCRP based on this Markov chain requires three real numbers to make
up the output map. Although any three real numbers would suffice, suppose that
a,=-2.0,a,=1.5, and a; = 0.3. This MCRP, which is illustrated graphically below in
Figure 2.2, shall be used to illustrate the concepts of this section. Recall from a previous
section that a typical outcome of the example Markov chain was {2,3,1,1,3,2,2,---},
indicating that the Markov chain began in state 2, transitioned to state 3, then to state 1,
and so on. The corresponding output for the Markov chain random process would then

be {a,,a;,a,,a,,a;,a,,a,, -}, or {1.5,0.3,-2.0,-2.0,0.3,1.5,1.5,---}.

Figure 2.2. An MCRP with 3 States.



20

Now, in general, one could use any Markov chain and create an MCRP in the fash-
ion described above. However, there are types of Markov chains which are better suited
for this than others. This is especially true since the statistics of MCRPs are dependent
upon the underlying Markov chain. Thus, while it is possible to discuss the statistics of
MCRPs based on an arbitrary Markov chain, it is beneficial to restrict the attention to
classes of Markov chains which have desirable properties. Consequently, this section is
focused on the class of regular Markov chains. As enumerated in a previous section of
this chapter, these Markov chains (and therefore the MCRPs derived from them) have
many desirable properties: they can be made stationary; they are always asymptotically
stationary independent of the initial state distribution; and they are ergodic.

Most of the material presented below is not new; the statistics of MCRPs have been
discussed by several authors, including Sittler, Huggins, Zadeh, Bamard and Yoshida
[Sit54, Sit56, Hug57, ZadS7, Bar64, and Yos73]. However, most of these treatments are
either too general or too specialized. Consequently, the author has found it necessary to
rederive several pertinent statistics. In particular, the focus has been on eigen decomposi-
tion of the transition probability matrix. By deriving statistics in this manner, a few sta-
tistical parameters can be determined which give greater insight into the nature of these

processes.

Implementation Aspects of MCRPs

Perhaps the first question one might ask about MCRPs concemns how they are
implemented. This is a good query and provides a natural introduction to Markov chain
random processes. Since MCRPs are so closely related to Markov chains, it suffices to
show how Markov chains can be implemented. To begin, suppose that the process is in

state i at time n and consider how the next state should be chosen. To facilitate determi-
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nation of the state transitions, let y(») be a random process with a uniform [0,1] distribu-
tion. Let us determine the state transitions as follows: the state at time n+1 will be state j
if and only if

J=1

i, < u(m) < élr,,k (L11)

Note that it is possible to interpret the above equation as a transfer function which
has u(rn) as its input. As an example, suppose that the MCRP has only 3 states, and that
the current state is x(n) =i. Then, the next state, x(n + 1), is the output of the state deci-
sion function illustrated in Figure 2.3. Thatis, x(n + 1) =1if u(n) <¢, s x(n +1) =2 if

t,,<u(n)<t,  +t,, and x(n + 1) = 3 otherwise.

x(n+1)
A

u(n)
0 1

Figure 2.3. State Decision Function.

To see why this works, consider that, according to Equation (II.11),

Plx(n+1)=j |x(n)=i]=Pii!i',l fe<u(n)< jZ t,',,].
k=1 k=1
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But, u(n) has a uniform [0,1] distribution, so

j—1
Pl(+D=j1x@)=i1= 2 1,,- T,

=1,

But this is exactly as desired since ¢, , is defined as P[x(n +1) =j | x(n) =i]. Hence,

Equation (II.11) accurately reflects how the state transitions should be determined based
on the transition probabilities and u(n).

Because of the way MCRPs are defined, an MCRP implementation is practically
identical to a Markov chain implementation. However, for Markov chain random pro-
cesses, the state decision would need to be followed by a look-up to determine the real
number associated with the new state. Now, this implementation procedure provides an
interesting interpretation of MCRPs. As noted above, if the state transitions are deter-
mined by Equation (II.11), then u(n) can be thought of as the input to the process, which,
according to Figure 2.3 is nonlinear. Thus, Markov chain random processes can be
interpreted as nonlinear stochastic processes.

Summarizing this section, MCRPs are clearly easy to implement and require little
computing power since the multiplication and addition of real numbers is not required.
In fact, the only requirements are memory for the output map and transition probabilities;

the generation of u(#n), and logic to perform the state decision function.
First Order Statistics of MCRPs

Suppose a regular Markov chain has transition probability matrix T with stationary

probability s, and output map a. Then the triplet (T,s,a) defines a stationary Markov
chain random process. The first step in the analysis of a stationary process is usually a

determination of the process’ probability density function or probability distribution,
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depending upon whether the process is of a continuous or discrete nature, respectively.
Clearly, an MCRP can only assume values from the output map. Hence, MCRPs are dis-

crete processes, and the probability distribution function must be found.

To begin, suppose s =(5; S, - sy)" is the stationary probability vector and

a=(a, a, - ay) isthe output map for a given MCRP. As in a previous section, let
x(n) be an integer-valued random process which assumes the value of the state which the
Markov chain occupies at time n. Similarly, let y(n) be a real-valued random process
which assumes the value of the output map associated with the state which the Markov

~ chain occupies at time . For example, if the process is in state 2 at time 1, then x(n) =2
and y(n) =a,.

Now consider the probability distribution for an MCRP. Note that
Ply(n)=a;]=P[x(n)=i] since the statement y(n) =g, is equivalent to x(n) =i. But,
P[x(n)=1i]=s,(n), the probability that the Markov chain is in state i at time n. Further,
since the process is stationary, s;(n) =s,. Therefore, the probability distribution for the

MCRP is
Ply(n)=a]=s, forl1<i<N. (I.12)

Having easily determined the probability distribution, the mean and variance of the

process may be found. The mean is given by

H,=E{y(n)}

N
=3 Plym=ala

N
=2 54, (I.13)
1=1
The mean may be more compactly represented in vector notation as
n,=sa (IL.14)

The variance is found in a similar fashion:
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o, =E{(y(n)-1,)’)

N

=3 Ply(n)=al(a,- i)’
y 2 2

= :§1 sia; —2a;p, + )

N 2 N 2 N
= le,a, - 2u, ‘_,_‘,ls,.a, + X,

1 1=1
y 2 2

= 21 Siat - uy
1=

To facilitate the expression of the variance in matrix-vector form, let S be a diagonal

matrix of stationary probabilities. That is, let [S], , =s,. For the example from Figure 2.2,

s=(31915 .3617 .31915)", s0

0.31915 0 0
S= 0 0.3617 0
0 0 0.31915

Then, the variance may be expressed as
o:=a'Sa - (s'a) (IL.15)
For the example of Figure 2.2, the output map is givenby a=(-2.0 1.5 0.3)".
From a previous section of this chapter, the stationary distribution was found to be
§=(31915 3617 .31915)". Thus,
Ply(n)=-11=0.31915,
Ply(n)=0]=0.3617,
and P[y(n)=1]=0.31915.

The mean of this process is given by
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N
py= 2 54,

1=1

= (0.31915) (=2.0) + (0.3617) (1.5) +(0.31915) (0.3)
=0

and the variance is

=(0.31915)(-2.0)* +(0.3617) (1.5)* +(0.31915) (0.3)* - 0
=2.1191.

It should be noted that, although the MCRP in this example has zero mean, it is possible

for an MCRP to have a non-zero mean.

Autocorrelation of MCRPs

Proceeding in a similar fashion, the autocorrelation can be derived as follows: for
nz0,

¢(n)=E{y(k +n)y(k)}
=2 Ply(k+n)=a,y(k)=a]jaa,
]

=2 Plx(k+n)=j,x(k)=ilaa;
Y
= ZP[x(k+n)=j|x(k)=ilP[x(k)=ilaa,.
L}
Now, recall from a previous section that, by definition, 7, (n) = P[x(k +n)=j | x(k) =i].

Also, P[x(k) =i] =s, since the process is stationary. Then

d(n)= 2t (n)saa,
Butt, (n)is [T"],,. Thus,

d(n)= Z[T"],saa, (1L 16)
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From this Equation, the autocorrelation can be expressed in matrix notation. To do

this, note

Z[Tn]l"’al
J

Z [Tn]zv]aj
J

Z’ [T"]N 4%
J

Recall from a previous section that S was defined as an NxN diagonal matrix and the

diagonal elements are the stationary state probabilities; i.e., [S];; =s;. Then, note

aS=(a;s, a5, ‘- a;8y)
Combining these terms,
F[T"]l,ﬂj
;Uﬂ%@
dST'a=(a5;, ayS, * asy)

Z[T"]N,ja,
\ J
= Z [T"]US‘a,aj
Yy

= (n).

Also, since the autocorrelation is an even function, ¢(n) = ¢(—n). Thus,

o(n)=a'ST"'a Vn. (IL.17)
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At this point, it is necessary to digress and distinguish between cases when the pro-
cess has zero mean and when it doesn’t. From Equation (II.14), the mean of the process
is given by 1, = s'a. Now, define d, =a, - H,, and @ = a— |, where |1 is a vector of length

N where every element is j,. Then, making the substitution a=d + |,
o(n) = (@+ W' ST"@+p)
=& ST"\a+ ' ST"\a+a ST p+p'ST" ' (I.18)
Now, note that 7" !y = |t since T is a stochastic matrix. Substituting this in the above

equation,
asT"lu=asy
y ~
= :§1 as;u,
N
=w§@—mm
N N
=W (E’l %5~y E’l si)

= B, (1, — 1)
=0.

Similarly, since }'S=p s and s'T'" ' =",

WST"a=p s'1"a

as above. Finally, since p’S=p sand T"lp=p,
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T

WST " =p,s b

=K, X SH,
= p;
Thus, Equation (II.18) simplifies to
O(n)=aST"\a+p. (IL.19)

So, processes with a nonzero mean have a constant term in the autocorrelation expres-
sion, whereas those with a zero mean do not.

Returning to the example of Figure 2.2, recall that

A5 8 .05
r={ 0 .25 .75}
85 05 .1

a=(-20 15 03),

and s=(31915 3617 .31915).

So, b, = Y., a,5; =0, and thus @ = a. The autocorrelation for this 3-state system is then

given by

3191 0 0 Y15 8 .05\"'(-2.0
om)=(-20 15 03) 0 3617 O 0 25 .75 1.5 |
0 0 3191){8 05 .1 03

A plot of the autocorrelation is shown in Figure 2.4.

Although the matrix representation of ¢(#) is correct, it gives little insight to the
shape of the autocorrelation sequence. A more perceptive representation of ¢(n) can be
gained through the spectral representation of T. Let us consider the special case when T
is diagonable. The case of non-diagonable T will be discussed in a later section of this

chapter. The spectral representation of a diagonable NxN matrix T is given by [Lan85]
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N-1
T= ,Eo(vkuz)h (11.20)

where {A,} are the eigenvalues of T and {v,} ({,}) are the corresponding right (left)

eigenvectors properly normalized so that u;v, = 1 for all k. More generally, T" is given

by N - J(vl)A; for n > 0. The autocorrelation can then be expressed as follows:

o(n)=a ST"a+p;
_ AT N-i Tsnlnil ~ 4 012
=a@ 8§ L (A 1a@+ W
k=0

V-1
~T T "
= kzo(a Sy @A+

N-1
=X BN+ (IL.21)
k=0
where B, =a" Svuld. (IL.22)

From Equation (II.21), the autocorrelation of an MCRP is influenced chiefly by the
eigenvalues of its transition probability matrix. The eigenvectors of T and the output

map determine the coefficients {B,.}.

For the example, the eigenvalues of T are 1 and 0.7053¢****, Consequently, after
some calculations, the autocorrelation can be expressed as
o(n) = (0) (1) +(1.06 — 0.097) (0.706¢ ***)" ' + (1.06 + 0.09/) (0.706¢ )"

Note in particular that, for this example, B, the coefficient associated with A, = 1, is zero.

In fact, B, will always be zero. To see why, we shall compare the definition of ¢(n)

with the expression for ¢(n) given in Equation (I1.21). First recall the definition of ¢(n):
¢(n)=E{y(k+n)y(k)}. Now, consider the limit of this expression as n goes to infinity.
For regular Markov chains, it has been established that the limiting state probabilities are
independent of the initial state probabilities. Becausé of this, the state of the Markov

chain at time k+»n becomes independent of the state at time k as » increases without
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Figure 2.4. Autocorrelation of Example MCRP.

bounds. Hence, y(k +n) and y(k) will become independent as n goes to infinity. There-
fore lim, .. ¢(n) =E{y(k)}E{y(k +n)}. But E{y(k)}=E{y(k +n)}=p,, so
lim, _,..¢(n) = 2.

Now consider the eigenvalue representation of ¢(x) in Equation (I.21). As n goes
to infinity, A; goes to zero for all | A, |< 1. Thus, since A, = 1 is the only eigenvalue with
magnitude greater than or equal to 1, lim, . ¢(n) =1lim, _,,Pol" + 1} = Po+15. It follows
that B, must equal zero since, by the argument of the previous paragraph, ¢(n) must con-
verge to uf,. Consequently, since B, = 0, the associated term may be removed from the

autocorrelation expression, which yields
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0= AL+ w23)

Power Spectrum of MCRPs: General Expression

The power spectrum is a frequency representation of the autocorrelation. The
power spectrum is found by taking the Fourier transform of the autocorrelation sequence,
which is usually stated as the Z-transform of the sequence evaluated on the unit circle.

Namely,

@)= I o)z

2=e®

As the power spectrum is a linear operator on the autocorrelation, it is possible to con- \
sider the components of ¢() independently. That is, as ¢(n) =& ST'" '@+ ui, let

¢y(n) =& ST"'@ and §,(n) = 1 so that ¢(n) = ¢,(n) + ¢,(n). The power spectrum of ¢(n)
is then given by the sum of the power spectrum of ¢,(r) and ¢,(n).

Consider first the power spectrum of ¢,(n). Before the power spectrum of the

MCRP can be found, the z-transform of the autocorrelation needs to be studied. As is

common, the z-transform is split into sections as follows:

D)= T dm)z"

n=—co

0 oo

= 2 ¢(m)z"+ X ¢(n)z™ - 6,(0)

n =~o00 n=0
=D(z) + @i(2) - $,(0). (I1.24)
However, since ¢,(—n) = ¢,(1), @1(z) = X .o 0,(n)z" = ®}(z™"). Therefore if ®i(z) or
®i(z) is known, ®,(z) may be found.

Consider ®j(z):
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()= T 4y(mz”

n=0

= i @ST'az:™".

n=0

It is tempting to express this as @ S, T"z™")d. However, X;r_,T"z™" does not con-

verge for z=1, and it is the unit circle on which we need ®,(z) to converge. Still, ®,(z)
does converge on the unit circle, but to show this requires a little manipulation. First,
consider the Jordan decomposition of T, which can be expressed as T=VJV"~ ! where J is

the block-diagonal matrix

Ju)
and where J, is the Jordan block for the i eigenvalue of T, A,. Here, the eigenvalues of T

are {1,A,, -*,Ay}. Since J is block-diagonal, T" may be expressed as

1 ) (0
0 Ji
T = . VitV . V! (11.25)

0 L Jy
for n > 0. The first term of the right hand side is just v u,, where v, (u,) is the right (left)
eigenvector of T associated with A, = 1. Recall from a previous section of this chapter

that T~ =lim, .. T" = v,u,. Thus, the first term in Equation (I1.25) is T”. Equation

(I1.25) can then be rewritten as

Tr=T+T"
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for n>0, where T is defined as

Ji

~
n

<
1

Iu)
=T-T
Note in particular that the eigenvalues of T are {0,,, ---,A,}. Since it T was assumed to

be regular, it follows that | A, |< 1 for 1 <i <M. Thus, all of Ts eigenvalues are strictly

less than unity in magnitude.
Now reconsider the autocorrclatioﬁ: substituting T" = " + T yields
o,(n) = a'TST'a'
=asST"d +asT'a (I1.26)
forn >0. But, T” = vou, so TG = vould. Further, recall from a previous section of this
chapter that s = u, for regular Markov chains, so T°@ = v,s'd. Now, s"@=0:

ST& = Zr Si(al - l“ly)

=250, — 2, S,
=K, —H,
=0.

Hence, @ ST"d =0. Thus, ¢,(n) =& ST"d for n > 0. But, by convention, T°=T° =1, so
$,(0) =@ ST°d = @ ST°a. Therefore,

o,(m)y=ast"'a  Vn. (IL.27)
The crucial difference here is that we have replaced T by T, and all of T’s eigenvalues are

less than unity in magnitude.
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Now, ®](z) may be expressed as

oo

dl(z) = a’s( pX (f’z")")d. (I1.28)

n=0

Consider the summation Y7 _,z™"T" as a power series of T. To study the convergence of

this power series, consider the following theorem [Bro85]:

Theorem: For A, an NxN matrix with eigenvalues {A,}, if the power series
2 -ob.x" converges for each x = A, then 2,7 _,b,A" converges.

In our case, the power series coefficients are b, =z™. Hence, the power series is

2 =o(z7)x" which will converge for | x/z |< 1 or equivalently | x |<| z | [Buc78]. Now, the
eigenvalues of T are 0,A,, --,Ay_,. Hence, the power series will converge for all of the
eigenvalues of T if | z [> max, ., | A, |. All of the eigenvalues of T are strictly less than 1
in magnitude, and therefore the convergence region includes the unit circle. Hence,

Yo _oz"T" converges for | z |> max, .o | A, |, which includes the unit circle. Also, since

convergence has been established, X o(Tz™")" may be expressed as (I — Tz ™) since
(-7 éo(i'z")" = éo(f'z“)” - él(i'z“)"
= (T2
=1
Then ®'(z) = @SUI - Tz™')"'d@. By symmetry, ®j(z) = a'S(I - Tz)"'@ and converges
for | z |< 1/max, . | A, |. Note also that ¢,(0) =& ST°@ = @ Sa. Consequently,

D,(z)=dSUI-Tz)a+a SA-T:) a-aSa (11.29)
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which is defined on the annulus max, ., | A, I<| z | < 1/max, ., | A, |, which includes the
|

i
unit circle. The power spectrum is defined by a substitution of z in ®,(z):

(Dl((o) = ¢[(Z) Iz=ejm
AT 5yl AT & —jonle  ATox
=@ SI-Te’") @a+a SI-Te”") a—a Sa. (11.30)
Now consider the power spectrum for ¢,(n). Recall that ¢,(n) = ;,Li. For ¢,(n), the
power spectrum is given by

(@) = 2ms} T 8(w—2mk) @L31)

where &(w) is the unit impulse function; i.e., [z F()8(t)dt = £(0) for any function f which

is continuous at =0. This can be confirmed by taking the inverse transform of the resul-

tant:

__1_ L; Jo ___l__J.z < 2 Fi)
o f_ E(DZ(m)e d®= o= lk;_“Zn}.Lyﬁ(w 2rk)e’“d ®
2

2

n

o0 2
= pikz (w-2mk)e’*dw

The power spectrum of the MCRP is then found by adding the terms in Equations
(II.30) and (11.31):

D(0) = Dy(0) + P,(w)

=& SA-Te') 'a+a"SU-Te™™ 'a-aSa+ T 2mpld(@-2mk) (IL32)
k =—co
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As an example, the power spectrum for the MCRP illustrated previously in Figure
2.2 is given below in Figure 2.5. A few comments are perhaps in order. The power spec-
trum is fairly ordinary looking: there are no sharp comers or jagged edges. In fact, it
looks like the frequency response one might obtain from a band-pass filter. But then,
exactly what were we expecting? For, while the power spectrum expression in Equation
(I.32) is correct, it is however difficult to interpret: exactly how do T and a influence the

power spectrum? To help answer this question, consider the special case explored in the

following section.

10 T T T T T

Power Spectrum in dB

_2 L ] ] 1 1 Il L 1 L
0 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency

Figure 2.5. Power Spectrum of Example MCRP.
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Power Spectrum of MCRPs:

Diagonable Transition Probability Matrix

Suppose that, for a given MCRP, the transition probability matrix T is diagonable.

Assume without loss of generality that p, = 0. For this situation it is advantageous to

begin with the autocorrelation equation ¢(n) = X ., B;A\"' as in Equation (I.23). Then,
q)+(z) = o( Z ﬁkl’l) -n
N-1 0 1
=T B I (1.33)
Noting that Xo_or" = 1/(1=r) for | 7 |< 1, T oMz™) = 1/(1 =Nz™) for | z |5 A .

Thus,

for |z > max, .o | A¢ |

Since &(z) = D*(z™), it follows that &(z) = X2} B/(1 - A,z ™) for

|z |< 1/(max, .o | A |). Thus,

Not By Not By
o0 b0

for max, .o | A¢ |<| z |< 1/(max, ., | A, [). Now, noting that ¢(0) = Xx-{ B:At = Xro1 Bs, this

can be expressed as

1 1
)~2Bk[1 7\’ -1 1_7‘*2_1)

The power spectrum is then given by

N1 1 1
<D((D)=k§1 ﬁk(l—xkem * I——M—e__’—m - 1). (IL.34)
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While the power spectrum expression above may not appear familiar, the following
is true: one would expect the power spectrum to have maxima at frequencies correspond-
ing to the phase angles of the eigenvalues. To explain, suppose A, = rkeje*. Then,
1-Me7®=1- rkel(e"_m), which will be minimum at ® = 6,. Since the power spectrum
equation includes the term 1/(1 — A.e™“), one would expect the power spectrum to have
maxima at frequencies corresponding to the phase angles of the eigenvalues. Further, the
magnitude of A, will determine how sharp the maxima is at frequencies around 6,: as
| A¢ | increases, the maxima will become more narrow. Having seen how the eigenvalues
influence the shape of the power spectrum, note that the {B,} coefficients can be thought
of as weights which control the influence of the various eigenvalues.

This analysis of the MCRP power spectrum leads to a rather interesting interpreta-
tion: the eigenvalues of the transition probability matrix behave like "poles" of the pro-
cess. That is, there exists a connection between the eigenvalues of T and the poles of a
linear transfer function for a discrete-time system. This fact shall be explored in depth in
Chapter IV. However, this linkage is noted at this time to inform the reader that while
the power spectrum expression in Equation (II.34) is perhaps unfamiliar in form, it
should not be unfamiliar in function.

Let us now consider the power spectrum for the MCRP illustrated previously. The
power spectrum for this MCRP was shown in Figure 2.5 in the previous section. The
transition probability matrix for this MCRP is diagonable, and its eigenvalues are A, =1,
A, =.7058¢", and A, =.7058¢™"°”. Thus, a peak in the power spectrum is expected at a
normalized frequency of 1.93/2rn = .31. From Figure 2.5, one can see that this is in fact
where the power spectrum obtains its maximum. Also, note that, had the eigenvalue

magnitude been closer to unity, the peak would have been more pronounced.
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Power Spectrum of MCRPs:
Non-Diagonable Transition Probability Matrix

Since we have explored the case when T is diagonable, a natural concern is the

effect on the power spectrum when T is not diagonable. However, when T is not diagon-
able, the expression for the power spectrum is somewhat more complicated. To illustrate,
consider a simple, hypothetical example. Suppose T is a 3x3 transition probability matrix

with Jordan form

J=

S O

0
1
A

S O =

That is, T has two eigenvalues: 1, which has unit multiplicity; and A, which has algebraic

multiplicity 2, but geometric multiplicity 1. Further, suppose the modal matrix of T is

given in block vector notation as
V=0, v\ W)

where {v,} are right eigenvectors and

where {u;} are left eigenvectors. Then, for n 20, T" may be expressed as

T

1 0 0 | %
T'=( v, v)|0 A" nd" ']
0 0 A" Jldf

The spectral representation of T is then

T" = vog(1) + (v, +" V1) A) + vy + ()" 7).
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The key difference from the diagonable case is the presence of the nA" ! term in addition
to the A" term. Using the spectral representation, the autocorrelation is
o(n)=a"ST"a
= (@' Svoupa) (1) + [a’ S(vyul +vup)al (A7) + (aSvuya) (n X' ) (IL.35)
= Bo(1) +B,A") + B, (nA" 7).
As before, B, = 0 by the properties of the eigenvalues of T associated with the eigenvalue

Ao = 1. Therefore, the autocorrelation reduces to (n) = B,A" +B,nA"~". Now consider

the one-sized z-transform of ¢(n):
D'(z) = Zo d(n)z™

=3 BAz™ + ) BnA "'z

n=0 n=0

Now, using the fact that %;_,x" = 1/(1 — x) and a little manipulation,

®'e) = I_BA'Z_I + Bzé%(i x"z“’)

n=0
B of 1
_1_M-l + Bza_}\l(l_xz—l)

_ | B, - B
- | + N2
1-2z (1-2Az7

Next, using ®(z) = @*(z) + D*(z™) - §(0), and O(®) = V() |, __ 0

1 1 e™? e’
D(w) = + + + -0 1136
( ) Bl(l—-}\E—/m 1 _M_[(D) BZ((l_M—,mf (1 _Mjco)2) q)( ) ( )
Again, the eigenvalues function as "poles" of the process. However, they behave
somewhat differently than before because T is not diagonable. Still, there is a correspon-

dence between these MCRPs and processes derived from linear filters. In this case, the



41

relationship is to a linear filter which has a repeated pole. Again, this parallel between
MCRPs and processes derived from linear filters is mentioned only in passing at this

time; a more thorough treatment shall be given in Chapter IV.
Hidden Markov Models

Hidden Markov Models (HMMs) are in some sense similar to Markov chain ran-
dom processes: both are extensions of Markov chains. However, whereas an MCRP
associates a real number with each state of a Markov chain, an HMM associates an entire
random process with each state. Typically, the HMM remains in each state for a fixed
duration. During that time, the output of the HMM is a sample from the random process
associated with the current state.

The model is termed "hidden" because the underlying Markov structure cannot be
determined through direct measurements of the output of the process. However, the out-
put does provide clues as to the current state. HMMs, then, possess two layers of ran-
domness: the Markov chain connecting the states; and the random processes composing
the states. Processes such as HMMs which have two layers of randomness are termed
doubly stochastic.

HMMs have proven to be a very useful tool in modeling certain types of nonstation-
ary processes. Specifically, HMMs are best suited to nonstationary processes which pos-
sess "short-time" stationarity. That is, although the process is nonstationary, the statistics
of the process change slowly enough that, over small segments of time, the statistics are
relatively constant. For these types of processes, HMMs can serve as a structure to con-
nect the short-time segments. In this case, the states of the HMM are models of the short-
time sections of the nonstationary process.

As an example, speech is a nonstationary signal which exhibits short-time stationar-

ity. Because of this, it is possible to use an HMM to model the interconnection between
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the short-time sections of speech. In fact, HMMs have proven very useful in the areas of
speech recognition and speaker identification (see, for example [Rab89]) and have
recently been exploited for speech coding purposes [Far88, Dea89].

There are several common Markov structures commonly used for Hidden Markov
Models. A few of these are illustrated below in Figure 2.6. The figure in (a) is known as
a left-right model and is commonly used when the process displays no long-term correla-
tion. On the other hand, a model such as in (b) would be more applicable if the process
has only a few "states" which are recurring. For more information on HMMs, consult

either of Rabiner’s papers [Rab86, Rab89].

(@ | (b)

Figure 2.6. Common Hidden Markov Model Structures.



CHAPTER III

SYNTHESIS OF MARKOV CHAIN
RANDOM PROCESSES

This chapter details MCRP synthesis. The objectives are in three separate but
related areas of synthesis: probability distribution function; power spectral density; and
joint probability distribution/power spectral dénsity. In all cases the constraints to be met
are assumed to be known; estimation of probability distribution or power spectrum, if

required, is not discussed in this chapter.
Probability Distribution Synthesis

Consider trying to locate an MCRP which has a specified probability distribution
function. Since MCRPs are discrete-valued processes only probability functions from
discrete-valued processes can be matched exactly. While it is possible to approximate the
probability distribution of a continuous-valued process, consider synthesis for a discrete-

valued processes first.

Suppose the desired discrete-valued process assumes the values {y;} with probabil-

ity {p,} for 'Si <N. Clcgrly, the output map for the MCRP should be

a=(Qy Yy, - yN)T and the stationary distribution shouldbe s=(p;, p, - pN)T.
It only remains to find a transition probability matrix T which meets this stationary distri-
bution. However, this problem does not have a unique solution as there are many trans-
ition probability matrices which will satisfy the conditions. One simple solution to this

problem is the transition probability matrix
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Pr P ' Dn
T=

Pr D2 " DPn)

This matrix can be more compactly represented as T = 15", where 1,, is the usual vector

of all ones. Then, s is the stationary distribution since s"T = §"(1ys") = (s L)s” =s".
Now consider the more difficult problem of approximating the probability distribu-
tion function of a continuous-valued process with a discrete-valued MCRP. The more
conventional approach to this problem is to pass a white noise process through a properly
chosen memoryless nonlinearity. However, consider the use of MCRPs in this endeavor.
Of the numerous ways which one could approach this problem, the following
method appears to have the most merit. Let f(x) be a probability density function of a
continuous-valued stationary random process. Suppose the MCRP is to have N states.
The basic idea is to divide the x-axis into NN intervals and assign one member of the out-
put map to each interval. Again, there are many ways which this qould be done. How-
ever, suppose the intervals are chosen so as to yield intervals of equal probability. That

is, a set {x,} is found such that
xy *2 XN -1 oo 1
Lo fx)dx = £ | fxydx= - = LM f(x)dx ==£~-. fx)dx =N (Im.1)

For convenience of notation, let x, = —co, and xy = co. Then the i" interval is (x,_,,x,) for

1<i <N. Based on this set of intervals, a logical choice for g, is the centroid of the i

interval:
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fx " xfoodx

a=—7
f Fx)dx

=N Jdi xf(x)dx (II1.2)

Next, let T be any regular doubly stochastic matrix. A doubly stochastic matrix is a

matrix for which both T and T7 are stochastic; that is, every row and every column of T
sum to unity, respectively. Note that the stationary distribution for any regular, doubly

stochastic matrixiss=(I/N 1N .- LN)".
Under the above conditions, (T,a,s) defines a stationary random process whose

probability distribution function should approximate that of the given process. In fact, by

definition, the mean of the MCRP is equivalent to the mean of the given process:

N
Myvcre = _Zl 5;4;

(5 o[

= fmxf(x)dx

= l,[,y
As an example, consider a random process which has a Laplacian density function

with unit variance:

V2% for —co < x < oo,

= e

Suppose without loss of generality that N is even. In this case, the output map can be

shown to be
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)_1} fori=1

2

N
Y BLE P 0 Y (i"l){ g(z(i-l))_} e N
a; \IE{IOK(N) 1} \/5 lo N 1 fori=2, 2

—ay_,. fori=%+1,~-,N

Figure 3.1 gives sample outcomes from the Laplacian process (top plot) and MCRP with
N=20 (bottom plot). As can be seen, the waveforms appear similar. The only noticeable
difference is that the MCRP waveform appears to be clipped. This is because the MCRP
has a definite maximum value, which is equal to the largest g,. In contrast, the Laplacian

process has no such limit.

- 5 1 ! L L ! Il ! 1 1
100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

-5 1

Figure 3.1. Waveforms for Laplacian Process (top) and MCRP (bottom).
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As stated above, the mean of the MCRP equals the mean of the given process.
However, the higher order moments are not guaranteed to be equal. For the above exam-
ple, Figure 3.2 plots the variance, E {(y (1) — J,)’}, and skew, E{| y(n) '}, as a function
of the number of states N. The true value of the variance is unity and the skew is
\/Z._S— =2.12. Note that, as N increases, it appears that the MCRP moments become closer
to the correct values. While this approximation technique has not been tested on a great

number of processes, the author believes that this statement is true in general.

0.8+ .
0.6 =

Skew

Variance

04
0.2

T
]

Figure 3.2. Variance and Skew of MCRP as a Function of N.

Power Spectral Density Synthesis

The second task of this chapter is to explore synthesis using the power spectral den-
sity. Specifically, we wish to find a random process which possesses a desired power
spectrum. A standard solution to this problem is to assume the process to be the output of
a linear filter driven by white noise. The core of the problem is to determine the filter

parameters to achieve the desired spectrum.
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However, consider trying to locate an MCRP which possesses a given power spec-
tral density. In general, one would probably approach this problem in two steps, as illus-
trated below in Figure 3.3. First, the power spectrum would need to be expressed in a
form similar to the MCRP power spectrum. Specifically, if T is required to be

diagonable, the given power spectrum must conform the MCRP power spectrum equation

N-1 1 1
- — -1
@((0) kgl Bk( 1 _ A'kejm + 1 _ xke_',m ) (III.3)

where it has been assumed without loss of generality that pu = 0 for the desired process.
Manipulating the power spectrum into tlie correct form is equivalent to determining the
necessary MCRP spectral parameters {A.} and {B,}. Now, the actual determination of
these parameters is an application-specific problem. Consequently, for the purposes of
this section, the desired {A,} and {B,} shall be assumed to be known.

The second phase of this synthesis problem involves finding T and a which yield
the desired eigenvalues {A,} and spectral coefficients {B,}. It is this problem which is

the focus of this section.

Power Spectrum

l

Find Spectral Parameters (A, } and {B)

M (By)

Y eigenvectors
Find T » Find (a,}

Figure 3.3. Block Diagram of Power Spectrum Synthesis.
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Let us take a closer look at this problem. Recall from Chapter II that if T is diagon-

able it can be expressed as T = Y v\, where v, (u) is the right (left) eigenvector of T
associated with the eigenvalue A,. Also from Chapter II, recall that the spectral
coefficients {B,} were given by B, = & Sv,uLd where S is a diagonal matrix of the station-
ary state probabilities, and @=(d; d, - dy)where d;=a;— |, and where |, is the
mean of the process. By a previous assumption, p, =0so @=a.

In essence, one is left with two separate but related problems: finding T with eigen-

values {A,}; and finding @ which results in {B,}. However, as the spectral coefficients
are functions of the eigenvectors of T, it is clear that the latter problem cannot be solved

until 7 is found. Consequently, T and its eigenvalues must first be examined.

A Stochastic Eigenvalue Problem

Consider trying to find an NxN stochastic matrix T which possesses a given set of

N eigenvalues. If T could be any NxN matrix this would be an almost trivial problem.
However, T must be a stochastic matrix. Because of this, finding a transition probability
matrix with a given set of eigenvalues is a very difficult problem. In fact, there may be
no solution at all.

One obstacle may be that one or more of the specified values are not eigenvalues
for any NxN stochastic matrix. The Russian mathematician F.I. Karpelevic [Kar51] has
shown that the eigenvalues of stochastic matrices are limited to a closed set in the com-
plex plane which is a function of N. This set is quite difficult to describe exactly. How-
ever, a good approximation can be made fairly easily, and we shall proceed to define this
set. (For an exact specification, see Karpelevic’s original paper [Kar51], or the
description by de Oliveira [O1i68].) To describe this set, define P; to be the convex set in
the complex plane for which the boundary is the polygon whose vertices are the L" roots

of unity. That is,
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L-1 omkiL L-1
P = oe 2 o=10<0,<1Vk

k=0 k=0
Then, the set My, of all complex numbers which are eigenvalues for some stochastic NxN

matrix can be approximated by
My=UP, (I11.4)

These sets are illustrated in Figure 3.4 for several values of N. Note that, as N increases,

M, contains more and more of the unit disc. In fact, in the limit as N goes to infinity, the

J2rkiL

set M, approaches the union of all points interior to the unit disc and all points e on

the unit circle where k£ and L are integers.

Figure 3.4. Domain of Eigenvalues for Stochastic NxN Matrices.

Unfortunately, even if all N of the specified eigenvalues lie in My, it is still possible
that there is no NxN stochastic matrix which possesses these eigenvalues. Consider the
region Dy of complex N-dimensional space defined by the requirement that
(Ags Ay, -+, Ay 1) € Dy if and only if there exists an NxN stochastic matrix for which

Ao Ay, or, and Ay _, are eigenvalues. However, determination of Dy, is a very difficult
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problem, and published papers have limited themselves to the real eigenvalues of sto-
chastic matrices [Sul49, Per64]. Since this research is equally interested in complex
eigenvalues, results from this area of investigation offer little help.

Another approach to this stochastic eigenvalue problem is to determine bounds on
the eigenvalues in terms of the elements of T. Such is the approach with Gersgorin’s
Theorem [Gan64, Lan85], which states that any eigenvalue of a matrix T = (¢,) must lie in
at Jeast one of the disks in the complex plane defined by | z ~¢, | X ;| 1, |. There are
also other bounds such as the Deqtsch bound [Zen72, Sen81] for the non-unity eigenva-

lues, which takes the form

1 N
Al < —2"1']??{!=1|th""/|'

However, it is not clear how one could make use of these bounds to find T given a set of

eigenvalues.

The consequences of the above paragraphs are that, given current knowledge, it is
not possible to solve directly for an NxN stochastic matrix T given a set of N eigenvalues
{A}. Further, the discussion implies that no solution exists for certain sets of eigenva-
lues which, at this time, have not yet been clearly defined.

Despite this, the author offers the following conjecture here, which shall be restated

and proved as a theorem in a later section of this chapter:

Conjecture: Given any set of N eigenvalues {Xk}’: ;(} where A, =1 and
| A I< 1 for k # 0, there exists an N'xN’ diagonable, regular, stochastic
matrix T with eigenvalues {\}Y :0‘ such that

()N’ =N,
(2) Ny =X, and X, = A, for 0 <k <N,
and 3)|N.|<lforO<k <N’

In simpler terms, this conjecture says that the desired eigenvalues will be a subset of the

eigenvalues from a larger stochastic matrix. Thus, by increasing the size of T, the limita-
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tions imposed by the domain of eigenvalues can be overcome. It should be noted that a
disadvantage of this approach is that there will likely be undesirable eigenvalues.
However, as far as the autocorrelation and the power spectrum are concerned, if B, =0
for any undesired eigenvalues, the result will be the same as desired.

Although the conjecture claims the existence of a desirable stochastic matrix, it
does not state how such a matrix may be found. To find such a matrix, let us consider
several classes of stochastic matrices which have desirable eigen decompositions.
Ideally, one would like a class of matrices for which there is a éhnple and well-behaved
relation between the eigenvalues and the elements of T. Such matrix classes would not
only let us achieve the desired eigenvalues {A,}, as well as manipulate the spectral coeffi-
cients {B,} in a simple fashion. Classes of matrices with these properties do exist as shall

be shown in the following sections.
A Circulant Structure

The use of circulant stochastic matrices for MCRPs was proposed by Mullis and
Steiglitz [Mul72], and the material in this section is based on their work. For an NxN

circulant matrix C, the elements are related by the equation
[€T:.; = € -ipmosay (IIL.5)

For example, a 3x3 circulant matrix would be given by

Cp € €
C = C, Cp C1 |
C, € G

The eigenvalue-eigenvector decomposition for an NxN circulant matrix C is well-
known and is given by [Dav79, Her86]

C=Fp AFp,. (IIL6)



53

In this equation, Fpzr is the NN matrix

(1 1 1 1
1 o7 o 4N . o ~/20 = VeV
1 e—j41t/N e—j8n‘/N e e—j4(N— DN
FDF]' = . - . s e (IH.7)
1 e PW-DmN N -pRN =20 =D - heN
and A is the diagonal matrix

Ay
A= A (II1.8)
Ay_s
where A, = X0~ c,e 7™ which is just the discrete Fourier transform (DFT) of
{com 1y scy-1}. While the above applies to all circulant matrices, if the matrix is also

stochastic, then note that, like all stochastic matrices, there is an eigenvalue equal to one:
A=2dce’=1.

For a circulant stochastic matrix T, the Markov chain is irreducible as long as

co # 1. Now consider the eigenvalues of a circulant stochastic matrix. For k& > 0, since

M = Do c;e 2™ N ), is just a convex combination of the points

[1,eP™N PRIV ... o2 =DENY in complex space. Further, since 0 <c, <1, and

YN-te, =1, A, must clearly lie on or interior to the polygon in complex space formed by

- -2 - - . . o
g PN oMM .. o2 -DENY \which all lie on the unit circle.

connecting the points {1,
If only one element of {c,,c,, -*,cy_,} is nonzero, A, must equal one of these points. In

this case, | A, | = 1, which implies that the Markov chain would not be regular. Con-
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versely, if two or more elements of {¢, c,,-+,cy_,} are nonzero, 3, will lie in the interior
of the unit circle, so that | A, | < 1. Thus, a necessary condition for the circulant Markov
chain to be regular is that at least two elements of {c,,c;, ***,Cy_,} are nonzero.

As shown in Chapter II, s is the left eigenvector associated with the eigenvalue

Ao = 1. For circulant stochastic matrices, this eigenvector is the first column of Fp.
But, it is true that Fpp = (1/N)Fppr, where * refers to complex conjugate transpose. Con-

sequently,

«

i
2|~
2=
2|~

~—

1

2|~
=

and therefore, the diagonal matrix S consisting of stationary probabilities is given by
S = (1/N)I.

Having determined the stationary probabilities, the spectral coefficients {B,} may

be found. For A,, the right eigenvectoris v, = (0" ®' ®* --- "Y' where

—j2mkiN

w=e and the left eigenvector is u, = (1/N) (v})". Thus,

B.=d'Sv,ua
1 7 . 1
=~ (@) ).

This can be further simplified by using DFT notation: let

AR =X a,.e7 ",
which is just the DFT of {a,}. Note that a'v, = A(k) and uta = A*(k)/N. Making these

substitutions in the above equation for B, yields
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_ A" (k)A(K)

Bk N2

_IA®F

v (ITL9)

The power spectrum for MCRPs with circulant transition probability matrices may there-

fore be expressed as

NSt AK) P 1 1
= + ——1
@((D) k2=:l N2 ( 1 —- ?\ke—]m 1 — )\kejm » (m-lo)

The benefit of MCRP with circulant transition probability matrices is that there is a
straightforward relationship between the spectral parameters {A,} and {B,} and the
MCRP parameters in T and a.

From the previous discussion, the eigenvalues of a circulant matrix are given by the
DFT of {cg, ¢y, ***5Cn_1}. It follows that, given a set of eigenvalues {A,}, the set {c;} can

be found by taking the inverse DFT of the eigenvalues:
1Nt 2mkIN
c,=— X A&/, ([I.11)

While this seems straightforward enough, there is one problem: for an arbitrary set of
eigenvalues, there is no guarantee that the resulting values for {c;} will satisfy 0 <¢; <1
and Y25 c, = 1. However, Siegel et. al. [Sie76] have developed a linear programming
algorithm which reportedly results in a set of eigenvalues close to the specified eigenva-
lues. Here, Siegel made implicit use of the above conjecture by making the size of the
matrix much larger Athan the number of eigenvalues given. For example, Siegel reported

using a 256-state MCRP to match 5 pairs of complex eigenvalues.

Another problem with circulant matrices is that the B, values are restricted to being

real and positive: in general, these constants can be complex. In fact, for the MCRP
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example in Chapter II, there were complex constants: , = 1.06 +0.09; and B, =B As
shall be seen in the next chapter, this restriction hinders the ability to match data and
MCRP power spectra.

It is worthwhile comparing My, the set composed of all eigenvalues of NxN sto-

chastic matrices, with the corresponding region, denoted here as By, restricted to circu-
lant stochastic matrices. Whereas M =", P;, By =Py, The differences between the
sets M, and By, are illustrated in Figure 3.5 for a few values of N. Note that the
difference between the two sets is small. Thus, circulant stochastic matrices are nearly
optimal in the sense that they generate nearly all possible eigenvalues.

Having seen the usefulness and limitations of MCRPs with circulant stochastic
matrices, a natural question is whether there are other classes of matrices which would
prove useful. Steinhardt, for one, has considered the class of normal matrices [Ste83],
which are diagonable matrices such that the modal matrix V satisfies V' =V; i.e.,

T =VAV", A is a diagonal matrix of eigenvalues. However, Steinhardt found that these
matrices also require 3, to be real and positive. Additionally, he offered no method to
find T given a set of eigenvalues. Consequently, since the B, values must be real and
positive, and since a linear programming algorithm must be used to find the elements of
T for circulant stochastic matrices, there is certainly reason to search for other classes of

matrices.
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Figure 3.5. Domain of Eigenvalues for Stochastic and Circulant Stochastic
NxN Matrices.

A Summed Structure

One of the main problems with the circulant structure is that it is difficult to synthe-
size a process which requires a large number of eigenvalues. One approach to solving
complex problems such as this is to try to separate the problem into smaller, hopefully
simpler, problems. Such is the approach with the summed structure discussed in this sec-
tion.

The summed structure is based on the fact that if several independent processes are

summed, the resulting power spectrum is the sum of the power spectrum for each pro-
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cess. Formally, if {y,(n)} are independent random processes, and w(n) = Y, y;(n), then

D, (0)=2, @, (w). The concept here is to partition the set of spectral parameters, MG

and {B,}, and find MCRPs which meet the parameters for each partition. Then, these

MCRPs, which for clarity shall be called subchains, can be summed to yield the desired
_ process.

One drawback of this approach is that it would require the operation of several
chains in parallel. Often, one would rather have to deal with only one process than many.
As it turns out, it is possible to combine these subchains into one larger MCRP. First, if
{T,} are the transition probability matrices for the subchains, then let

IT=T,8T,®---®Ty
where ® is the Kronecker product. If T, is NxN,, then T will be NxN where N =[1, N,.
That is, T will have [], N, states. The output map for T is more difficult to annotate.
However, as the Kronecker product is the element-by-element product of the T, matrices,
the desired output map for T is found from an element-by-element sum of the output
maps {a;}.

Perhaps this is best illustrated by an example. Suppose that we have two subchains;
one has three states and the other has two states. Let the transition probability matrices
be given by

ba b fs
_ T T2
T] = t2,l tz,z tz,s s T2 = ’

T T
2,1 2,2
A r3,l t3,2 t3,3

and the output maps by a, =(a, a, as)T and a, = (O %)r_ Then,
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LT T2 BT 82Tz T BaTie
LTy UaTn L2 h2%e 63Ty 3%
t, T t, T t,,T 1, ,T t, ,T 1, ,T

21T, T2 LU BTN BT BT
I'=T,®T,= )
LTy baYs Lol bLoby LTy b3,

L% BT BTy BT BTy BsTe
LTy BTy bl boly BTy L3,

and

(a,+0,
a,+oy,
a,+ao,
a,+ o,
a,+ oy
\%s T 0

Note that the diagonal elements of T are similar to the elements of a. For example,
[T];; =¢,,7,, while [a]; =a,+o,. In general, if [T];, =¢; 7, then [a]; =a; + 0.
Perhaps the most significant problem with this approach is the extremely large
number of states. Since the number of states is N = [I; N,, T can be very large even for a
relatively small number of subchains. The structure introduced in the following section

avoids this problem while maintaining the same basic approach.
A Ring Structu

The ring structure discussed in this section uses a similar approach to the summed
structure but with relatively fewer states. This ring structure is illustrated in Figure 3.6.
As before, several MCRPs are combined to form a larger process. However, in this case
the processes are not added, but are connected together by a Markov chain. To explain
further, refer to Figure 3.6 and suppose at some instant the chain is in any state of sub-

chain 1. There is a probability of (1 — o) that the next state will also be in subchain 1; in
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this case, the particular state depends upon T,, At the same time, there is a probability of

o, that the next state will be in subchain 2; in this case, the particular state depends upon
s,, the stationary distribution for subchain 2.

1-04
1-0,
az

o ; 2 3 Z\a ?
I-o ‘\\
Subchain 1 '
Oyt ’,'

!

1-0iy M ,,'

®_ .

—————

Figure 3.6. MCRP Ring Structure.

Using block matrix notation, the transition probability matrix for this structure can
be expressed as

(1-a)T, olys; 0 : 0
0 (-T;, olys; - - 0
T= (1IL12)
0 (=0 _)Ty_, OLM—AM,SL
Oy Ly, 51 0 0 0 (1 — 04 )Ty

where T, is the N,xNN, transition probability matrix for the i subchain, s, is the stationary

distribution for the i” subchain, 1 is a vector of all ones and of length N, and 0 < o;; <1

for all i. As before, the total number of states in T shall be designated by N: N =X, N,.
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Recall that for a matrix T to be stochastic, every element must be nonnegative and every
row must sum to unity. Since 0 < o, < 1, both ¢, and (1 — &) are nonnegative for all i, the
matrices {(1 —o,)T;} and {oc,-lsf } consist of nonnegative elements. Hence, every element
of T is nonnegative. To illustrate that every row of T sums to unity, consider the sum of

the elements in the first row of T

N, N,
2,:[1']1,: = Z"l(l -0y [Tl]1,1 + El al[-]-‘anz],,,

N, N,
=(1-0,) 2T}),, +0 2 [s]
=(1-o)+0o,
=1.

Similarly, the other rows of T also sum to unity. Hence, T is a stochastic matrix.

For our purposes there are a few restrictions which must be imposed on the sub-
chains. First, each of the T, matrices must be diagonable. In Chapter II it was shown that
regular Markov chains have desirable properties. The restrictions on the T, matrices,
however, can be relaxed: it is possible to obtain useful results even if some of these
matrices are not regular. How{ever, if a given 7, is not regular, and is in fact reducible, its
stationary distribution s, will not be unique. In this case, the stationary distribution s,
must be chosen such that every element of s, is nonzero. This restriction is necessary to
insure that T will be irreducible.

Before discussing the statistical properties of this structure, note that an MCRP of
this type is a doubly stochastic process: each subchain is a random process, and, at a
higher level, these subchains are connected together by a random process. In fact, this
process can be interpreted as a Hidden Markov Model (HMM). Moreover, the process is

doubly Markov, as both layers of processes are Markov.
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To define the statistical properties of this structure, some notation needs to be
developed. Leta,=(@,1 4.> " a.-,zv,)T be the output map for the i subchain, so that
a=(@ @ - aL)T for the entire chain. Also, let {A; .} for 0 <k <N, -1 be the
eigenvalues of T, with associated right and left eigenvectors {v, ,} and {x, ,}, respec-
tively. By convention, A, =1 is the eigenvalue associated with the right eigenvector ; ,
which is also the stationary distribution 5;. Also, let S; be a diagonal matrix of the
stationary distribution s, for the ith subchain. Assume without loss of generality that the
mean for each subchain is zero so that @; = a,. In this case, the spectral coefficients for
each subchain are given by B, . = &,T,kSv,,ku,T,,td forO<k<N,andfor1 <i<M.

Using this notation, the stationary state probabilities for this structure can be
expressed in block vector notation as

T
s=é(ailsf algsg &l-;si,) . (II.13)

i%

where the X, ,(1/e,) term has been included as a scaling factor so that the elements of s

will sum to unity. The only eigenvalues of T which can have non-zero spectral coeffi-

cients are {A’, .} where
Nioi=(1-a)h, (IIL.14)
for0 <k <N;and 1 <i <M. The associated spectral coefficients for these eigenvalues

are {f’, .} where

Bi=— (I11.15)

forO0 <k <N, and 1 <i <M. Thus, for this structure, the spectral parameters can be

found very easily from the eigenvalues and spectral parameters of the subchains. It
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should be pointed out that T does have eigenvalues other that those described above;
however, the spectral coefficients of these eigenvalues are identically zero. The proof of
the assertations in Equations (II1.13), (II1.14), and (III.15) are given in the appendix.

As an example of this structure, suppose there are 3 subchains. Let

4 6 0
T,={0 4 6|
6 0 4
Tzzf.z .8’
8 2
73
and T5=| 5 .7)‘

As all these matrices are all circulant matrices, s, =(1/3  1/3  1/3),5,=(1/2 1/2),

ands,=(1/2 1/2)". Now suppose that o, =.1, o, = .3, and o, = .6. The transition prob-

ability matrix for this example is then

((1-oy)T,
T= 0

A I
(36 .54

0 36
S4

(ST R e i
SIS = ==

Now suppose the output maps are a; =(—2 .5

a,=(-9 9, sothata=(-2 5

a‘ll‘.’»sg:
(1- 0(2)T 2
0
0 .05
S54 .05
36 .05
0 .14
0 .56
2 0
2 0

1.5 -7

0
0,15}
(1-0,)T,
05 0 0}
05 0 0
05 0 0
56 .15 .15
14 15 .15
0 28 .12
0 .12 28

1.5, a,=(-7 .7),and

7 -9 9.

Then, according to Equation (III.13), the stationary state probabilities for T are

given by



_4fr 111 1 1 1Y
- 30, 3o, 30y 20, 20, 20, 20,

(42 4 4 2 2 1 1Y
{18 18 18 18 18 18 18
since o, = .1, o, =.3, and o, =.6. That is, the stationary probabilities are 4/18 for every

state in the first subchain, 2/18 for every state in the second subchain, and 1/18 for states
in the third subchain. Now consider the eigenvalues of T. For T, the relevant eigenva-

lues are
A= A1) +.6(e7*) +0(e ™) = 529277,
and A, , = 4(1)+.6(e7*™) +0(e™*™) = .5292¢ ",
and the spectral coefficients for this subchain are
B, =l A1) P /(3)° =333,
and B,,=|A4,2) [ /(3)’ = 333,
where A, (k)=-2(1)+.5(e7*™?) +1.5(e7*™").
For (T,, a,) the relevant eigenvalue and spectral coefficient are
M= 2(1) + 8(e7*™) = -6,
and B, , =| 4,(1) [} 12* = 49,
. where A,(1)=-7(1)+.7(e"*™)=-14.

For (T, a;) the relevant eigenvalue and spectral coefficient are
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A, =71+ 3™ = 4,
and B, , =| A,(1) [ 12* = .81,
where A,(1)=-9(1)+.9(¢?**)=-1.8
It should be noted that T';, T,, and T, each have an eigenvalue of 1, but each of the spec-

tral coefficients for these eigenvalues is zero. Then, accofdjng to Equations (III.14) and
(III.15), the eigenvalues of T which have nonzero spectral coefficients and their

corresponding spectral coefficients are given below:

Nia=(1=-0o)A,, = 4763 Bhi= P - =.1667
125,
N=1 =)A= 4763 " B = By - =.1667
O(.l ;‘
;%
! ’ B2,l
Nip= (-0l =—42 B =——=.1633
L2y
Jj
/ ’ B3,l
7\.3'1=(1—(X2)7\.3.1=.16 B3,1= - =.135
03 Z;

j 7
The power spectrum for this MCRP is given below in Figure 3.7.
The conjecture of an earlier section of this chapter can now be formally stated and

proved:

Theorem: Let {A,}Y -, be a set of N complex numbers where A, = 1 and such
that | A, |< 1 for k 2 0. Let £> 0 be given. Then there exists a regular,

diagonable, stochastic N'xN’ matrix T with eigenvalues {A’.}" ' such
that

(1)N'2N, .

@)N,=A,and |N, - A, |<eforO<k <N,
and (3) [N l<lforO<k <N’
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Power Spectrum in dB

0.05 0.1 0.15 02 025 03 0.35 04 045 0.5

Normalized Frequency

Figure 3.7. Power Spectrum for Example Ring-Structured MCRP.

To prove this theorem, MCRPs employing the ring-structure shall be used. The strategy
used shall be to assign one subchain to each eigenvalue or complex-conjugate eigenvalue
pair which is desired. Let us exMe three separate cases: (1) complex-conjugate eigen-
value pair, (2) real, negative eigenvalue, and (3) real, positive eigenvalue.

If a complex-conjugate pair of eigenvalues is desired, let T, be the circulant stochas-

tic matrix where c; , = 1. For convenience, such a circulant matrix of size NV, x/N, shall be

referred to as RN. . For example, if N, = 3, this matrix is

R,=

-0 O
[ R
S = O
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—j2rkniN, —y2nk/N,

The eigenvalues of this matrix are A, , =2, c, € e ‘. for0 <k <N,. Conse-

quently, (1 - oc,-)e_jmw’ will be eigenvalues of T for 0 <k <N,. It is important to empha-
size that while the MCRP with transition probability matrix Ry is not regular as it has
more than one eigenvalue on the unit circle, the resulting T matrix will be regular since

the eigenvalues (1 — o, )e 2™, are within the unit circle,as O< o, < 1.
Suppose the desired complex-conjugate eigenvalue pair is re™° where 0 < 0 <.
p \

Then let o, = 1 —r so that (1 — ;) =r, and suppose there exists positive integers k” and N,

e-j2n'k’/N,

such that k" <N, and 2rtk’/N, = 0. It follows that if T, = Ry, then X', ., = (1 - o)

12, are eigenvalues of T. But 2rtk’/N; =0 and (1 —o,) =7, s0

’ —
aIld l I,Ni—k' -— (1 - (l,)e
7\’1 ~j0 }\'I ~ jo
ww=reand A,y _p=re’.

In practice, the difference between 0 and 2ntk’/N, can be made as small as desired by

choosing k&’ and N, appropriately. In general, for a given N,, the best &’ is given by

K =[ N‘e] (I1.16)

2

where [-] is the nearest integer operator. Hence, using this approach and given any £> 0,
a proper choice of o, kK’ and N, will make the inequality | re’®—(1 - oc,)e’mw‘ |< € hold.

The second case is when the desired eigenvalue is real and negative. In this situa-
tion, let T, = R,. The eigenvalues of T, are A, ;=1 and A, , =—1. Hence, (1 —o,)(-1) will
be an eigenvalue of T'. If the desired eigenvalue is -, then let o, = 1 —r so that -r will be
an eigenvalue of 7. In this case, an approximation to the desired eigenvalue does not
have to be made; the desired and resulting eigenvalue are equivalent.

The final case is when the desired eigenvalue is real and positive. In this case, let
T, =1,; that is, T, is a 2x2 identity matrix. In a situation like this in which T, is reducible,
s, is not unique. As noted previously, 5, must be chosen so that all of its elements are

nonzero. Although one could choose s, to be most anything, let us use 5, = (0.5 0.5)".
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The eigenvalues of T, are Aio=1 and A.=1 Hence, according to Equation (II1.14)

N, =1=-0o)A =(1-0,)is an eigenvalue of T. If the desired real, positive eigenvalue
is r, then one could choose o, = 1 —r so that (1 — o) =r would be an eigenvalue of T. In
this case, the desired and resulting eigenvalue are identical.

In summary, by using the ring-structured MCRP, any set of desired eigenvalues can
be achieved within a given tolerance. This can accomplished by assigning one subchain
to each desired eigenvalue or complex-conjugate eigenvalue pair. For complex-
conjugate eigenvalue pairs, use T; be the circulant stochastic matrix Ry where N; > 2. By
properly choosing N, and ¢, for this subchain, the desired complex-conjugate pair can be
approximated to within a given tolerance. For real, negative eigenvalues, use T, =R, and
choose ¢; to be one minus the magnitude of the eigenvalue. In this case, the desired
eigenvalue is matched exactly. Finally, if the desired eigenvalue is real and positive, use
T; =1, and choose @, to be one minus the magnitude of the eigenvalue. In this case, the
desired eigenvalue is also matched exactly. Of course, there are more exotic procedures
which will also achieve the desired results.

This constructive proof solves one of the two problems in power spectrum synthe-
sis: locating T which possesses a given set of eigenvalues. The second problem is to
determine the necessary output map to achieve the desired spectral coefficients {B,}.
Following the procedure above, let us split this problem into three cases: (1) complex-
conjugate eigenvalue pair; (2) real, negative eigenvalue; and (3) real, positive eigenvalue.

Suppose that re™° is a desired complex-conjugate eigenvalue pair. As described

above, one could assign T, to be the circulant matrix Ry . Let us assume that o, k", and
+y2nk’IN . . . .
N, have been chosen so that (1 —o)e approximates the desired eigenvalue pair

re¥®,
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. —j2nkIN,

The eigenvalues of T which are derived from T, are A; , = (1 — o) for

2N, J2RKIN, .
and Xy _p=(1-0)e are desired.

0<k <N, However,only A’ ,=(1-a,)e
Cbnsequenﬂy, one would like to make B, , = 0 for k not equal to k" or N, — k’. 'I['his can be
accomplished by appropriately selecting the output map a, for this subchain. Recall that
B, =l A,(k) ' /N*. Thus, to make B, , =0 for k # k’, one need only make

A(k)=0 for k # k’. The solution for this is to let a, , = g, cos(2rk’n/N,) where g, is a con-

stant which can be adjusted to make B, , as large or small as desired. If this is done, then

2
i f
— k=k",N.-k’
B:,k = 4 !
0 else

Consequently, the only eigenvalues of T which are derived from T; and which have non-

zero spectral coefficients are ', . =re”® and X, y _- =re’®. The spectral coefficients for

these eigenvalues will be

(II.17a)

(ITL.17b)

The constant g, can be adjusted to achieve the desired magnitude.

Next suppose that (-r) is a desired eigenvalue. As discussed above, for this eigen-

value one would choose T, = R,. The eigenvalues of R, are A, ;=1 and A, ; =—1. By
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selecting o, = 1 —r, T will have eigenvalue Noi=(1-o)A,  =-r- Let us choose
a,=(g —g)". In this case, it can be shown that B; =g’ Thus, T has an eigenvalue

A; | ==r with spectral coefficient

= , (II.18)

The constant g, can be adjusted to achieve the desired magnitude for the spectral coeffi-

cient.

Finally suppose that r is a desired eigenvalue. As discussed above, for this eigenva-
lue one would choose T, =1I,. The eigenvalues of R, are A, ;=1 and A, , =1. By select-
ing o, = 1 —r, T will have eigenvalue A’; ; = (1 —a)A, , =r. Let us choose
a,=(g —g)". Inthis case, it can be shown that B..= g2. Thus, T has an eigenvalue

N, 1 =r with spectral coefficient

— (I11.19)

Again, the constant g, can be adjusted to achieve the desired magnitude for the spectral

coefficient.

Using these techniques to define the subchains, let us work a simple example. Sup-
pose the desired eigenvalues are 0.9¢**%™, -0.8, and 0.7. Hence, three subchains are
needed: one to produce eigenvalues 0.9¢*°*™; one to produce the eigenvalue -0.8; and

one to produce the eigenvalue 0.7.
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First consider the complex conjugate eigenvalues 0.9, As detailed above, let

T,=Ry and o, =1-(0.9)=0.1. Next, a k” and N, need to be found such that

21k’/N, = 0.65%. As a simple approximation, let k¥’ =1 and N, =3. Then 0.9¢"™ will be
eigenvalues for the ring-structured MCRP. The output map a, =(a,,, 4, am)T is
defined by a,, = g, cos(2mk’'n/N,). Substituting k¢’ =1 and N, =3, a, , = g, cos(2rn/3).
The constant g, is a function of ¢; for the other subchains, so the determination of g, will

have to wait until all of the o terms have been defined.

Next consider the eigenvalue (-0.8). As detailed above, let T, = R, and

o, =1-0.8=0.2. Then (-0.8) will be an eigenvalue for the ring-structured MCRP. The
output map for this chainisa,=(g, - gz)T. As above, determining g, will have to wait
until the remaining o; term is defined.

Finally, consider the eigenvalue 0.7. As detailed above, let T; =1, and

o3 =1-0.7=0.3. Then 0.7 will be an eigenvalue for the ring-structured MCRP. The
output map for this chainis a, = (g; —g&s)'.
Now, according to Equations (II1.17a) and (IIL.17b), the spectral coefficients for the

2yw3

complex-conjugate eigenvalues (0.9¢ are both given by

gil4

1
OCIZ;
7 4

As we want this constant to be equal to 2, as given above, g, = 3.83. Hence,
a,=(-1915 -1915 3.83)

From Equation (II1.18), the spectral coefficient for the eigenvalue (-0.8) is given by
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As we wish this to be equal to 1, as given above, g, = 1.915. Hence,
a,=(1915 -1915)

From Equation (II1.19), the spectral coefficient for the eigenvalue 0.7 is given by

As we wish this to be equal to 1.5, as given above, g, = 2.345. Hence,
a,=(2345 -2345)7

The transition probability matrix for the ring-structured MCRP is then given by

(1-a)T,  oyls; 0
T=| 0 (-, ol
L LS, 0  (l-oy)T,
(0 9 0 05 05 0 0
0 0 9 05 05 0 0
9 0 0 05 05 0 0
=0 0 0 0 8 .1 .1
0 0 0 8 0 .1 .1
1 1.1 0 0 70
1.1 .1 0 0 0 7

and the output map by
a=(@ & &)
=(-0.7385 0.7385 1477 1915 -1915 2345 —2345)

Note that s, =(1/3 1/3 1/3)" and thats,=s,=(1/2 1/2)". The power spectrum for

this example is given in Figure 3.8 below.



73

Power Spectrum in dB
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Figure 3.8. Power Spectrum of Synthesis Example.

* Joint Probability Distribution - Power Spectral Density Synthesis

Now consider the more difficult problem of locating a random process which
matches both a given probability distribution and power spectrum. Previous work done
in this area is exemplified by the work of Sondhi [Son83] and more recently by Taori, for
example [Tao90]. The traditional approach to this problem has been to pass a Gaussian
white noise process through a linear filter and then through a memoryless nonlinearity.
The nonlinearity achieves the desired distribution. Together, the linear filter and nonlin-

earity determine the spectral shaping of the resulting process. The crux of this problem is
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to design the linear filter to produce the proper spectral shaping, taking into account the
warping effects caused by the nonlinearity. In his paper, Sondhi reported successful
results for many different combinations of spectra and distribution.

However, let us consider MCRPs for joint probability distribution/power spectral
density synthesis. Having considered probability distribution synthesis and power spec-
tral density synthesis, one can see that the solution is the intersection of the two solution
sets. In particular, the solution set for this task is likely much smaller than either of the
two sets. However, given the material from the previous sections, one can at least
explore a few possibilities.

In particular, let us restrict our attention to the case when the desired probability
distribution function is from a continuous-valued process. Recall from the first section of
this chapter conceming probability distribution synthesis that T was chosen to be any
doubly stochastic matrix and let @ was defined from centroids of the partitioned distribu-
tion function. If we adopt this as the basis for our joint synthesis problem, consider the

restrictions.

As a is fixed, the only item which can be modified to meet the spectral constraint is

the transition probability matrix. However, T must be doubly stochastic. Of the struc-
tures considered in the previous section, only the circulant structure qualifies. Let us
briefly review the results for circulant MCRPs. Recall that a circulant transition
probability matrix T is defined by [T C]w =C(-ymoawvyr FOr T¢, the eigenvalues are given
by A = 20 oo c;e?*™ . The spectral coefficients {f,} are found by taking the DFT of the
output map: B, =] A(k) [*/N? where A(k) = g:oa, €N anda=(a, a, - ay).
In our case, since a is fixed, this means that {3, } are also fixed. Thus, only the eigenva-

lues can be modified.
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We note here that we have a major problem as the spectral coefficients are fixed.
Previously, we had asserted that we could add more eigenvalues than were strictly needed
if the weights of these eigenvalues were identically zero. However, that approach will
not work in this instance as the spectral coefficients will, in general, be other than zero.
However, there is another way around this problem. Suppose that we can make A, =0 for

any spectral coefficient that is unwanted. As evidenced by the equation

1 1

1 1
= + -1 +
xEoBk( 1-2Ae’® 1-Ne™® ) akz=o .

the result will be a bias in the spectral power equal to the sum of the spectral coefficients

of all eigenvalues equal to zero. Hence, at least these terms will not influence the curva-
ture of the power spectrum.

As our purpose here is only to perform a brief investigation, let us consider a simple
example. Suppose that the process is to have a peak in the power spectrum at some spe-

cified radian frequency 0. As T is defined in terms of {c;}, suppose

c —Lcos 2nik,—9
‘"N N

Then, the eigenvalues of T, would be

A’k = Nz—,l c e—qu'kt/N
1=0 !
re?® for k=k’
=<re’® for k=N-k’
0 else
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This meets the criteria above wherein all eigenvalues are zero except for the desired
eigenvalue. However, there is one major problem: a transition probability matrix based
on {c;} defined above would not be stochastic as 2, ¢; =0 and min(c,) < 0. Hence, con-

sider redefining {c,} as

—--1—+z£ 0S 2“”"—9
CENTN\ TN

In this case, T based on {c,} is stochastic for | 7 |[< .5, and the eigenvalues are

N-1
—2rkilN
?\lk= zo C‘-e I '
1=

1 for k=0

_ re?® for k=k’
re’® for k=N-k’
0 else

The only difference from the above is that the magnitude of the eigenvalue with angle 0

is restricted to being less than .5 in magnitude. Also note that, in practice, k” would most
likely be chosen to correspond to the spectral coefficient with the largest magnitude.

As a specific example suppose the process is to have Laplacian density with unit
variance, 0 = t/4 and N is chosen to be 20. Then the output map is as defined in the first
section of this chapter. Based upon this output map, the largest B, is B, = 0.1438. Hence,

let £” =1 so that

ok Lo 2
720 2020 4)
The power spectrum for this process is shown below in Figure 3.9.

In general, we would like to have control over the magnitude of the eigenvalue. It

may be possible to do this if the output map can be chosen more flexibly. For, if some of
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the weights can be made small, then undesired, non-zero eigenvalues could be tolerated.
However, it is not immediately clear how one would modify the output map to achieve

this result without compromising the probability distribution constraints.

Power Spectrum in dB

0 0.05 0.1 0.15 02 025 03 0.35 04 045 0.5

Normalized Frequency

Figure 3.9. MCRP Power Spectrum from Joint Synthesis.



CHAPTER IV

STOCHASTIC MODELING WITH MARKOV
CHAIN RANDOM PROCESSES

In the previous chapter, a ring structure was introduced which allowed a MCRP to
be found with a given set of eigenvalues. In this chapter, the flexibility of MCRPs, and
of ring-structured MCRPs in particular, is tested by considering MCRPs as models for
stochastic processes. Of course, the best random process which a MCRP could model
would be another Markov chain random process. In general, however, it is worthwhile to
consider MCRPs as models for arbitrary stochastic processes. In particular, the focus of
this chapter is modeling stationary processes with MCRPs. The more difficult problem

of modeling nonstationary processes is only discussed briefly.
Stationary Processes

In any modeling application, perhaps the first consideration should be the modeling
criterion: i.e., those properties of the process which the model should try to match. Of
course, this is application-dependent. However, for a large number of applications, the
2" order statistics are of main importance [Pap84]. Hence, the autocorrelation, or equiv-
alently the power spectrum, provides a good choice for modeling criterion: the closer the
match between the power spectrum of the random process and the power spectrum of the

model, the better the model.

78



79

Before considering MCRPs as stochastic models, it is useful to review other station-
ary random processes which have been used as stochastic models. In the following sec-
tion, a class of linear processes known as ARMA is introduced and compared with

MCRPs.
ARMA Processes

A linear single-input single-output discrete-time system can be expressed by the dif-

ference equation
L M
y(n)=u(n)+ Zlbju(n -j)- Ela,y(n-—i) (Iv.1)
1= 1=

where u(n) is the input and y(n) is the output of the process at time n. Such a system is

commonly referred to as an autoregressive moving-average (ARMA) process. Two spe-
cial cases of Equation (IV.1) are worth noting: if L =0, the process is called autoregres-
sive (AR), whereas if M =0 the process is called a moving average process (MA). It is
often more useful to interpret AR, MA, and ARMA processes as the output of a linear
filter which has the transfer function
L
I+ X bz”

H(z) = —’;‘—
1+ X az”
1=1

IL'[(I -z,z7)
=2 Iv.2)
]::-Il(l —pxz_l

where z; are zeros of the system and p, are poles of the system. Then, if the input u(n) is

a stationary process with power spectrum ®,(w), and all of the poles {p,} are less than
unity in magnitude, the output y(rn) will be stationary and its power spectrum will be

given by
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D () = |HE) I D) av.3)
In many applications, u(n) is chosen to be white noise so that ®@,(®) is a constant.

In this case, all of the spectral shaping is determined by the filter. Often, it is useful to
model a random process which does not have a flat spectrum as the output of a linear

filter driven by white noise.
ARMA Processes and MCRPs

In the time-domain, ARMA processes and MCRPs have little in common. This is
chiefly because ARMA processes have continuous probability distribution functions
whereas the probability distribution funciion of MCRPs is discrete. Still, both can be
interpreted as being the output of a transfer function. In the case of ARMA processes, the
transfer function is a linear, constant-coefficient filter. In contrast, from the discussion in
Chapter II, the transfer function for MCRPs is nonlinear and state-dependent.

However, surprisingly enough, ARMA processes and MCRPs have quite similar
spectral characteristics. This is clearly not apparent from comparing the ARMA power
spectrum in Equation (IV.3) and the MCRP power spectrum given in Chapter II, Equa-
tion (I1.34):

N-1 1 1
O(w) = El Bk(m + Ther 1) (I1.34)
Yet, with a little manipulation, it is possible to discover a striking similarity between the
two processes. Towards this end, consider the autocorrelation of an ARMA process.
Suppose that the input to the ARMA process is white noise, there are no repeated poles,
and the number of poles is greater than the number of zeroes. Under these restrictions, it

is possible to express the autocorrelation of an ARMA process as

N
o, (n) = El o (IV.4)
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where {p;} are the poles of the system and {Y;} are constants which are determined by
H(z) [Mul72]. Specifically,
1 =CAHP) (IV.5a)

where A, =(1-p,z " YH(z) | (IV.5b)

z=p;

Now recall the MCRP autocorrelation expression from Chapter II, Equation (I1.23):
Nt [l 2
o= T BAS + W, (I1.23)

Comparing Equations (IV.4) and (I1.23) as given above, it is clear that there is a similar-
ity between the autocorrelations, and therefore the power spectra, of ARMA processes
and MCRPs. In fact, one researcher has gone so far as to conjecture that "any power
spectrum obtained by shaping white noise with a finite order linear filter can also be
obtained with a finite Markov chain" [Mul79]. From Equations (I1.23) and (IV 4) it
seems apparent that by setting A, = p,, B, =1,, and 1, = 0, the power spectra of the two
processes would be identical.

In summary, then, while the first order properties of MCRPs and ARMA processes
are dissimilar, their second order propertiés are remarkably similar. These comparisons
are reiterated below in Table 4.1. Before continuing, it should be noted that it is possible
to massage the power spectrum equation for MCRPs into a form similar to Equation
(IV.3); however, as far as the author knows, there is no easy way of doing this. The rep-
resentations of the autocorrelations given above appear to be the best grounds on which

to compare the 2™ order properties of ARMA processes and MCRPs.
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TABLE 4.1
COMPARISON OF ARMA PROCESSES AND MCRPS

ARMA Processes MCRPs
Transfer Function: Linear, Nonlinear,
Constant-Coefficient State-Dependent
Probability
Distribution Function: y Continuous Discrete
Autocorrelation: T o T B

Parameter Solutions for ARMA Processes

In a real-world scenario of data modeling, one would be given a fmite-length_data
sequence and be required to find the parameters of a model which best fit the data. For
ARMA models, parameter estimation is based on the notion of prediction. To begin,
recall the ARMA input-output equation:

y(n)=H(z)u(n)

B(z)

A()()

where B(z)=1+b;z"' ++--+b,z" and A(z) =1 +a,z" +--- +a,z™. For the purposes of

this research, we are most interested in the case for which M > L; i.e., when the denomi-
nator polynomial is of higher degree than the numerator polynomial. At any time n, a
prediction of y(n) given {y(n — 1), y(n —2), ---} and based on the model parameters {a,}
and {b,} can be made by y(n)=E[y(n)| y(n —1),y(n —2),---]. The prediction error,

e(n)=y(n)—y(n)is given by
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e(n)=H"'@2)y(n)

_AQ@)

-E(z—)y(n).

(See, for example, [Ros79] for details.) The model parameters {a;} and {b,} are often

found by minimizing the error function

J = ‘nzez(n).

Unfortunately, since e(n) is not a linear function of the model parameters, a linear solu-

tion for this minimization does not exist. Still, iterative approaches can be used in the
solution of this problem.

However, suppose the process is restricted to being AR. In this case,
e(n)=A(z)y(n)
=ymn)+a,y(n —1)+--+a,y(n —-M).
It is clear that e(n) is linear in the model parameters {a,}, and therefore, a linear solution

can be found which minimizes J.

Given the data set {y(1), y(2), -, y(N)}, J is minimized by [Men87]:

e =(¥L¥,) V1Y, (IV.8)
where
(YM-1) yM-2) -  y1) ) a, (y(M +1))
yMm) ymM-1) - y(2) a, y(M +2)
we=| 00 =] aane|
yN-1) yN-2) - yN-M) Ay Y(N)

Calculating the model parameters by minimizing the sum of the squares of the pre-
diction errors does not explicitly match data and model power spectrum. However, an

information-theoretic argument can be used to justify that the resulting power spectrum
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from the AR model is a valid power spectrum estimator of the data [Sch78]. Thus, this
method of finding the model parameters is appropriate given that the modeling criteria is

the power spectrum.

Parameter Solutions for MCRPs

For MCRPs, finding the model parameters is more difficult. The probabilistic
nature of the model prevents a least-squares prediction-error formulation to solve for the
model parameters. However, let us consider several other approaches.

One idea is to assume that the data is generated by an MCRP. In this case, the fre-
quency of occurrence of values in the data provide a good estimate of the transition prob-
abilities. However, the data to be modeled may have a wide range of values. Thus, each
element of the time series must initially be quantized into one of N levels. The transition
probabilities can then be estimated by averaging the number of state-to-state transitions:

f,,=Plx(n+1)=j|x(n)=i]

_ Number of transitions from level i to j
Number of occurences of level i

AR

This method does not inherently guarantee power spectrum matching, but it is quick,
easy, and intuitively clear.

In fact, the above technique has been used in several recent studies. One study was
in modeling solar radiation [Agu88]. In this study, the authors used a library of MCRPs
to create a model of daily solar radiation at any place on earth. Multiple MCRPs were
required to account for different radiation patterns around the globe. The authors found
that this approach produced excellent results, and matched the probability distribution

function and autocorrelation of known solar radiation data.
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Another study used this approach to model wind speed [Jon86]. In this study, the
wind speeds were categorized into eleven levels, and the transition probabilities were
estimated as described above. The authors reported that the autocorrelation of the model
and the data did not match exactly, though they were close for up to 30 lags.

While the above approach has merit, one can do better than this by explicitly match-
ing the data and model power spectra. To begin, one must have an estimate of the data

power spectra. One of the simplest estimates is the periodogram which is given by
@)=Y [ (IV.10)
where Y(e’®) is the discrete-time Fourier transform of the data [Opp75]. However, this is

not the most useful estimate for modeling purposes as it is difficult to determine the
MCRP parameters from the estimate. It would be more advantageous to have an estimate
of the data power spectrum from which the MCRP spectral parameters {A,} and {B,}
could be easily determined.

Towards this end, reconsider the AR model. As noted previously, the po§ver spec-
trum from the AR model is a valid estimate of the data power spectrum. From the AR
model for the data, the poles {p,} and spectral coefficients {Y,} can easily be found.
Consequently, these values can be used to determine the MCRP spectral parameters {A,}
and {B,}. Therefore, it appears possible to use an AR model as the basis for the MCRP
model. This approach is illustrated below in Figure 4.1.

Before continuing, one might ask what advantage there is in using a MCRP as a
model in this way. Especially since it appears that the MCRP model can at best be only
as good as an AR model. One answer is that MCRPs might be able to better model cer-
tain types of processes. The modeling criteria has been chosen to be the power spectrum.
However, for some processes, other statistics might be important as well. It is certainly
possible that, for some types of random processes, the structure of MCRPs provides a

better model than AR or for that matter, ARMA. A trivial example of this, of course, is if
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Figure 4.1. MCRP Modeling Strategy.

the data were generated from an MCRP. There may in fact be ways of finding MCRP
model parameters from the data which do not rely on AR models. However using the AR

model as a basis for the MCRP model seems a logical approach for now.

AR Processes and Ring-Structured MCRPs

Consider using the method illustrated above in Figure 4.1. Determining the AR
model and its spectral parameters {p;} and {y,} poses no problems. Given the AR spec-

tral parameters, the MCRP parameters are immediately known also: the poles {p, } should
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be equated to the eigenvalues [}, } and the AR coefficients {y} to the MCRP coefficients
{B:}. One could then use a circulant or ring-structured MCRP to locate a transition prob-
ability matrix T for the MCRP which has the necessary eigenvalues {A,}. The only
remaining issue is to determine the MCRP output map a so that {B,} equates to {v,}.
However, herein lies the problem. For, the AR spectral coefficients v, are in general com-
plex. While the MCRP pole weights B, may also be complex, they must be real and posi-
tive for the only known MCRP structurés. Consequently, there is a difference between
the spectral properties of ARMA processes and known MCRP structures.

While this disparity creates problems, it does not mean that this modeling strategy
must be discarded. However, this problem makes it necessary to investigate the differing
spectra of MCRPs with real-valued spectral coefficients and AR processes which have
complex-valued spectral coefficients. First consider the simple case of 2™-order process

which have complex pole-pairs. As an example, suppose the AR transfer function is

1
—.5z714+.25:

H(z)=1

+yn/3

which has poles at p, =.5¢¥™, and p, = p;. Assuming white noise with unity variance is

the excitation signal, the spectral coefficients will be given by 7y, = 0.6349 —0.2199; and
Y. =7;- Using the ring structure deécribed in the previous chapter, a MCRP can be found
with poles A, = p, and A, = p, but its spectral coefficients, B, and B,, will be real and posi-
tive. Figure 4.2 shows the power spectra of the AR process and MCRP. For both curves,
the spectral magnitudes have been normalized to 0 dB.

There are two main differences between the AR and MCRP curves. First, the
shapes of the curves are different. The MCRP is more symmetric about its peak fre-
quency than the AR spectra. The second and more important difference is that the power

spectra do not experience their maxima at the same frequency. The AR peaks at a
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normalized frequency of 0.14 whereas the MCRP peaks at 0.17. Differing peak frequen-
cies is undesired because the frequencies near the peak contain most of the process’s

power. Thus, these are the frequencies which are most important to match.

s

Power Spectra in dB

Tt

8t

_9 L 1 L B —

0 0.05 0.1 015 02 025 03 035 04 045 0.5

Normalized Frequency

Figure 4.2. Power Spectra for AR Process (solid line) and
MCRP (dashed line).

The spectra of AR processes and MCRPs with one pole-pair was calculated for
many different pole-pairs. Figure 4.3 displays several AR and MCRP power spectra for
various combinations of pole magnitude r and normalized pole angle f, where the pole-

pairs are re™>%. It was found that there is a symmetry about the imaginary axis for the
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poles; that is, the plot for poles of angle ,.,%2%5-/ is symmetric to the plot for ;. , %2,
Thus, only values of f from 0 to 0.5 are shown. Also, note that if the eigenvalues and
poles are purely complex, the AR and MCRP power spectra agree exactly; in these
cases, the AR spectral coefficients {Y,} are real, so exact matches are possible.

As mentioned previously, and as illustrated in Figure 4.3, the AR and MCRP pro-
cesses experience maxima at different frequencies. The difference between these fre-
quencies is plotted below in Figure 4.4. The figure plots the peak frequency of the AR
process minus the peak frequency of the MCRP versus the pole/eigenvalue angle f where
the AR poles and MCRP eigenvalues are re™*¥. Each curve in the plot represents a con-
stant . From Figures 4.3 and 4 .4, it is clear that the difference in peak frequency
decreases as the pole magnitude increases. Also, the phase angle of the pole, f, is
significant. The peak difference are less significant when the poles and eigenvalues are
near the real or imaginary axis; i.e., when f is near 0, 0.25, or 0.5. In fact, as noted
before, if the poles and eigenvalues are purely complex, i.e. f/=0.25, there is no difference
in maximal frequencies.

Of course, it might be possible to achieve a better spectral match by modifying the
MCRP spectral parameters {A,} and {B,}. For example, for the case discussed above
with one complex pole-pair, one could change the phase angle of the complex
eigenvalue-pair so that peak frequencies would agree. Better still, one might want to

minimize an error function like
7= [ 12(@) - ums(@)Fde

with respect to the MCRP spectral parameters. However, as J is not linear in the MCRP
eigenvalues {A;}, a nonlinear solution would be required. Consequently, while the

search for better a MCRP match is certainly worthwhile, it is also more difficult.
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Figure 4.4. Difference in AR and MCRP Peak Frequencies. Pole magnitudes:
0.2 (solid), 0.4 (dash), 0.6 (dot), and 0.8 (dot-dash).

When there are multiple AR poles, the procedure to find the optimum MCRP
becomes even more complex. Perhaps most important, the spectral coefficients {B,} for
the MCRP poles have to be considered. For the one pole-pair case, the weights act only
as a scaling factor, so they can be ignored. However, for multiple poles, the weights will
in part determine the shape of the MCRP power spectrum.

Instead of pursuing an optimum match at this time, the author proposes the follow-
ing procedure as a first approximation to match AR and MCRP power spectra. First, let
the MCRP eigenvalues {A,} be identical to the AR poles {p,}. To see why this might
work, consider that the AR poles with largest magnitudes will be the most predominant in

the power spectrum. As in the single pole-pair case, as the pole magnitude increases, the
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difference between the peaks of the AR and MCRP decreases. Thus, it would be reason-
able to assume the same is true when multiple poles are considered. Of course, the poles
with smaller magnitudes would likely not be matched very well under this assumption.
However, these poles are not as significant to the power spectrum as are the poles with
large magnitudes.

Assuming the necessary MCRP eigenvalues {A,} have been determined, it remains
to find the spectral coefficients {f8,}. Recall that the power spectrum for a MCRP is
given by

1 1
D(w) = ZBk[l e T Thes 1)- (Iv.i1)

Thus, it is clear that ®(w) is linear in {B,}. This fact can be used to generate a set of

linear equations in {B,} to insure that the MCRP and AR spectra agree at a given set of

frequencies Q = {®,}. Specifically, let the error function be

J = Znez(co,) (IV.12a)
where e(,) = @y pp(0,) — D o (@) (IV.12b)

A good choice of frequencies €2 is the set of frequencies where the AR spectrum has an

extrema. As this usually results in having more equations than unknowns, a least-squares

solution is required.

As an example, consider the AR process with poles .8¢**¥ and .6¢*™. Also,

assume the white noise driving the linear filter has unity variance. Then, the MCRP
poles are A, = .8¢ *, A, = A}, A, = .6¢ "™ and A, = A;. Solving for the spectral coefficients
by minimizing the sum of the squared difference between the power spectra at the
extrema of the AR power spectrum yields B, =.6971,B, =B,,B;=.1055 and B, =P, The
power spectrum for the AR and MCRP processes are given in Figure 4.5. As can be

seen, the spectra agree fairly well at the peaks.
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Figurc 4.5. AR Power Spectrum (solid) and MCRP Power Spectrum
(dashed) for Two Pole-Pair Example.

Although this procedure has not been investigated extensively, it appears to work
fairly well. More examples will be given in the following chapter on speech modeling,

which is based on much of the material from this chapter.
Nonstationary Processes

Before continuing to the next chapter, let us briefly consider the prospects for using
MCRPs as models of nonstationary processes. There appear to be at least two paths
which one could take on this endeavor. The first is to return to a discussion of Markov
chains, and investigate chains which are nonstationary. However, while this may in fact

lead to meaningful result, the author prefers the second approach.
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The second approach is to try to make do with stationary MCRPs. Of course, the
author does not mean to model a nonstationary process with a stationary process. Rather,
the idea is to connect several dissimilar MCRPs together to model the nonstationary pro-
cess. Recall from a previous discussion that many nonstationary processes can be treated
as "short-time" stationary. That is, over small intervals of time, the process displays
stationary characteristics.

In fact, it was this same discussion which arose from the review of Hidden Markov
Models in Chapter II. For, HMMs provide a natural way to connect together the pro-
cesses which model each short-time section. Typically, the short-time sections are mod-
eled using linear, time-invariant systems (i.e., ARMA processes). However, there is no
reason why MCRPs could not be used in this context. In fact, there is good reason why
they should be used. Consider that the MCRP has the same Markov structure as an
HMM. Consequently, the MCRP and the HMM could be joined together to form a com-
plete Markov model for the nonstationary process.

A potential advantage of this approach lies in the transition region from one short-
time section to another. For, if MCRPs and HMM:s are used together, the transition could
be specified more clearly by how the states in adjacent MCRPs are connected. It is the
belief of the author that this approach can greatly enhance nonstationary modeling using
HMMs.

However, the specifics of implementing the above idea are not immediately clear.
While it was not the intention or goal of this thesis to explore nonstationary modeling, the
author feels that this is a very natural and valid extension and deserves attention in the

future.



CHAPTER V

SPEECH MODELING WITH MARKOV CHAIN
RANDOM PROCESSES

There are several reasons why one might wish to model speech. For one, speech
signals contain much redundancy and digital transmission of speech signals can be
accomplished at lower bit rates by transmitting the model parameters instead of the actual
speech signal. Similarly, it is possible to reduce the storage requirements by storing the
parameters of a mathematical model of the speech instead of the actual speech.

Other uses of speech modeling include speech recognition and speaker identifica-
tion. In speech recognition, identification of spoken words is sought while in speaker
identification the attempt is to identify the speaker. In these applications, the modeling
transforms the speech signal into a domain whereby word or speaker recognition can be
performed. Specifically, the model parameters are compared with sets of stored parame-
ters to determine which word has been spoken or the speaker’s identity.

Standard speech models are almost entirely based on autoregressive processes. The
performance of these models is sufficient for many speech applications. However, there
are problems with these models, such as poor performance in high noise environments
[Sam76,‘Tea79], which provide motivation to consider other types of models.

Recently, there has been a good deal of interest in Markov chains within the speech
processing community. This has come in the form of the hidden Markov model (HMM),
which can be used to model the structure of speech on a phonemic level. Phonemes have

been called the building blocks of speech, and can be thought of as the distinctive sounds
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of a language. As speech is well structured, some phonemes are more likely to follow
than others. Consequently, by letting each phoneme be a state in a Markov chain, the
structure of speech can be modeled. However, this is complicated by the fact that, at any
given time, there is no direct evidence to which phonemic state the speech is occupying.
Thus, the current state of the Markov model is hidden, and can only be measured indi-
rectly from the statistics of the speech. Hidden Markov models of speech have been
employed widely in speech recognition [Rab89] and have recently been used in digital
coding of spcech signals [Far87, Dea89].

Motivated by the success of HMMs and by the problems with conventional speech
models, this chapter explores the use of Markov chain random processes as a model for
speech signals. Potential application of this model include all of the applications of con-
ventional models: storage and transmission of speech signal, and speech and speaker rec-
ognition. Additionally, it is conceivable that a "complete" Markov model of speech
might result by combining an MCRP model of speech at the sub-phonemic level and a
HMM model of speech at the phonemic level. However, these applications are beyond
the scope of this research; the goal here is merely to set forth the elements of MCRPs as
models of speech and to discover whether they hold any promise.

Additionally, this application provides a good opportunity to gauge the success of
both the spectral synthesis solutions set forth in Chapter III and the stochastic modeling
strategy from Chapter IV. For, these techniques will play a part in the MCRP model of
speech in this chapter. However, before this scheme is examined, it is necessary to dis-

cuss speech and AR models of speech.
Speech and Standard Speech Models

As speech is a continuous-time signal, the speech must first be sampled before any

digital processing can begin. For most applications, speech frequencies above 4 kHz do
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not play a significant role. Consequently, it is common to low-pass filter speech at 4 kHz
and sample at 8 to 10 kHz. The result is a discrete-time sequence which is suitable for
modeling. For the modeling criteria, consider that the human ear is more sensitive to the
magnitude than the phase of the frequency response [Sch75]. Consequently, a natural
criteria for speech modeling is the power spectrum.

Because speech is not stationary, it is necessary to model speech on a short-time
basis by segmenting the signal into sections which are approximately stationary. For
speech, it is common to use sections of 10-20 milliseconds [Rab78]. Thus, for each
10-20 millisecond section of speech, a stationary model is sought.

Short-time sections of speech are usually lumped into one of two categories: voiced
or unvoiced. Voiced signals are periodic in nature on a short-time basis. Examples of
voiced speech include the vowels. Conversely, those sounds with a distinctly aperiodic
nature on a short-time basis are termed unvoiced. Unvoiced waveforms have little struc-
ture and appear random in nature. An example of an unvoiced sound is the /sh/ sound in
the word ’show’, while an example of voiced sound is the /o/ sound in ’show’.
Waveforms of voiced and unvoiced speech are shown in Figure 5.1.

Currently, the dominant mathematical models for discrete-time speech signals are
based on autoregressive processes. As discussed in the previous chapter, autoregressive
processes are characterized by a transfer function of the form

1

— oz =0z = — Oz

(V.1)

H)=1 |
From Chapter IV, the parameters {0, } can be found by minimizing the prediction error

between the model and the data. In this case, the model’s power spectrum is a valid esti-

mator of the data’s power spectrum.
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Figure 5.1. Speech Waveforms: Unvoiced /sh/ Sound from the Word ’Show’
(top), and Voiced /o/ Sound from the Word ’Show’ (bottom).

There are many different ways to implement an AR model of speech. Some of
these are simple and some exotic, but they mainly differ by the choice of excitation sig-
nal. Here, the LPC model of speech shall be singled out for purposes of comparison with
the MCRP speech model. For the LPC model, the differences in voiced and unvoiced
sections of speech are reflected in the choice of input to the AR filter: for unvoiced sec-
tions, the excitation is white noise; for sections of speech which are voiced, the funda-
mental frequency is estimated from the waveform and a corresponding periodic impulse

train provides the excitation.
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MCRP Model of Speech

To consider MCRPs as a model for speech signals, much of the material from the
previous chapter can be used. The previous chapter showed that AR processes (as well as
ARMA processes) and MCRPs have similar power spectra. Unfortunately, an exact
power spectra match for AR processes was not possible using known MCRP structures.
However, an approximation was made so that the MCRP had a power spectrum which
was close to the AR power spectrum. Thus, as in the previous chapter, an AR model can
be used as the basis for the MCRP model.

Because of the probabilistic nature of MCRPs, the outpﬁt will appear random.
Therefore, an MCRP seems well-suited to model unvoiced speech. By the same logic,
however, there is a fundamental problem in using an MCRP to model voiced speech.
One suggestion has been to filter the output of the MCRP with a comb filter [Sie76],
which has the form

1
H(z)= 1 T (V.2)

-rz

where L would correspond to the pitch period. Essentially, this establishes correlation
between samples y(n) and y(n — L), thereby inducing a periodic nature into the wave-
form. Thus, voiced sections of speech would be modeled by an MCRP which has been
passed through a comb filter.

Based on this idea, Figure 5.2 shows a block diagram for analysis and synthesis of
speech using an MCRP model. Note that, as in the AR model, analysis and synthesis are
. performed on a short-time basis. The resulting synthesized sections are concatenated to
form an approximation of the original speech sequence. The voiced/unvoiced decision
and pitch estimation can be made using any of the techniques in use with AR models. A

comparison of LPC and MCRP speech models is given in Table 5.1.
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ANALYSIS: Original Section of Speech
Estimate Power Spectrum Voiced/Unvoiced Decision
Find MCRP Which Matches Yes
Speech Power Spectrum
Estimate Pitch
SYNTHESIS:
Generate MCRP
Time Series
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No Comb Filter €

l
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Figure 5.2. Block Diagram of MCRP Model of Speech.
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TABLE 5.1
COMPARISON OF LPC AND MCRP MODELS

LPC Model MCRP Model
Analysis: Minimize Prediction = |Match Power Spectra
Error
Synthesis:
Unvoiced: White Noise No Processing Nec-
Excitation essary
Voiced: Periodic Impulse Pass MCRP through
Train Excitation Comb Filter
Examples

In this section, several examples of speech modeling using MCRPs are evaluated.
The goal is to evaluate the performance of MCRPs as models for speech: in short, can an
MCRP model generate speech-like sounds? At this point, is should be noted that, even
though the concepts of an AR-based speech model such as LPC are quite simple, the
actual implementation which achieves useable results is fairly complicated. To do some-
thing similar for MCRPs is beyond the scope of this document. However, it is still possi-
ble to test the modeling scheme on a scaled down basis by considering a few phonemes.

Additionally, we shall steer away from some of the more problematic phonemes
such as diphthongs and voiced fricatives. These represent special challenges which
would only confuse the issue. Also, instead of dealing with phonemes directly, we shall
look instead at several simple words which can be adequately modeled with only a couple
of phonemes. For, it is difficult to determine speech quality from unconnected pho-

nemes.
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Towards this goal, several simple words have been chosen. These include the
words ’off’, "us’, ’ash’, and ’eat’. Each of these words contain exactly two phonemes:
one voiced and one unvoiced phoneme. Digital samples of each of these words were
recorded and the words were then segmented into sections representing silence, voiced
phoneme, or unvoiced phoneme. For each section of phoneme, a representative frame
was chosen for analysis purposes. For each representative frame, the AR parameters
were determined. MCRP parameters were then determined as described previously in
Chapter IV. Also, for voiced phonemes, estimates of the pitch periods were made.

The resulting spectra for each phoneme are given below in Figure 5.3. Each plot
shows the AR and MCRP power spectra for a specified phoneme. The MCRP curves do
a fairly good job of estimating the LPC power spectra. Some are a bit poor, and some are
exceptional. The match in the /f/ phoneme deserves special recognition. Overall, the
most significant peaks appear to be matched very well. However, the MCRP power spec-
tra do not match the AR spectra at frequencies of low magnitude. But then, these fre-
quencies are less important.

Based upon the model parameters, synthetic speech was generated. This was
undertaken in three phases. In the first phase, the speech was synthesized from the AR
parameters as in LPC. The purpose of this phase was to confirm the validity of the analy-
sis. In each case, the resulting synthetic speech sounded very similar to the original
speech.

The next phase was an intermediate step between the LPC and MCRP models. In
this step, the voiced section's were generated in the same fashion proscribed for the
MCRP model; namely, white noise was passed through the LPC filter to perform spec-
tral shaping and then through a comb filter to induce periodicity. Essentially, the results
of this test act as an upper limit on the performance of the MCRP model. That is, if exact

AR-MCRP spectral matching is achieved, the sound quality of the MCRP speech should
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be equivalent to the speech for this intermediate stop. However, since exact AR-MCRP
spectral matching was not achieved, the MCRP speech is not expected to sound quite as
good as the synthesis speech for this intermediate step. Informal listening tests showed
that synthetic speech from this process sounded much like the LPC speech. However, the

voiced sections were as not of as good quality. In particular, there was a noticeable ring-

ing present, although it was not severe.

0 /ab/ from off 0 /f/ from off
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Figure 5.3. Power Spectra of AR (solid) and MCRP (dashed)
for Various Phonemes.
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Figure 5.3. (Continued.)

Finally, the MCRP synthetic speech was produced. As expected, since exact power
spectral matching was not achieved, the synthetic speech was not quite as good as the
speech from the intermediate phase. However, the results were not significantly worse.
In fact, the most discernable and objectionable problem with the speech is the ringing
which was also present in the intermediate-phase speech. Plots of the original and syn-
thetic speech are given below in Figures 5.4 through 5.7. In each plot, the top figure is
the original speech and the bottom plot is the MCRP speech.

To summarize, an MCRP model of speech can be based upon the stochastic model-
ing strategy of Chapter IV. However, a modification had to be made to account for

voiced speech. Although there are details which would have to be worked out in any
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practical implementation of this model, the results of this section have shown that the
model is capable of generating speech-like sounds. Thus, this model appears to be a
valid model of speech. Additionally, the positive results of this chapter confirm the
validity of the MCRP modeling techniques introduced in the previous chapter.
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Figure 5.4. Original (top) and Synthetic (bottom) Waveforms for 'Off’.
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Figure 5.5. Original (top) and Synthetic (bottom) Waveforms for 'Ash’.
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Figure 5.6. Original (top) and Synthetic (bottom) Waveforms for 'Us’.
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Figure 5.7. Original (top) and Synthetic (bottom) Waveforms for 'Eat’.
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CHAPTER VI

SPREAD SPECTRUM
COMMUNICATIONS

Since the advent of the telegraph over a hundred years ago, we have been able to
communicate quickly and efficiently by electronic means. Since then, there have been
many developments in communications. In recent years, the thrust has been toward digi-
tal commmﬁcationé. Of course, this is clearly well-suited for some signals, such as those
generated by computers. However, even such traditionally analog domains as telephone
channels have been converting to digital transmissions. There are several reasons for
this. Perhaps foremost, digital communications offers performance and flexibility unat-
tainable by analog communications [Zie85].

There are many different digital communications schemes, and a specific imple-
mentation depends on the requirements of the application. Influencing factors include
bandwidth, power, desired error performance, cost, complexity, data security, and
interference rejection among others. Some sophisticated techniques have been developed
to deal with these problems. Among these tools is spread spectrum communications.

As its name implies, spread spectrum is a technique which spreads the signal’s
spectrum. There are several advantages of this. Among these are rejection of jamming
and other interfering signals, low probability of detection (LPD) and low probability of
interception (LPI) from undesired parties, and multiple user access in the same frequency
band [Pic82, Ski188]. While spread spectrum has traditionally been a tool for military

communications, it has seen recent growth in commercial applications [Sch90].
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Spread spectrum systems are usually classified as either frequency hopping, direct

sequence, or hybrid. ;(for frequency hopping, the signal’s center frequency is constantly

changed, while for direct sequence, the signal is spread by direct modulation with a high-
bandwidth signal. Hybrid systems are combinations of frequency hopping and direct
sequence. In this chaptef, MCRPs are considered for use as the spreading signal in direct

sequence spread spectrum.
Direct Sequence Spread Spectrum

A block diagram of a direct-sequence spread spectrum (DS-SS) system is shown
below in Figure 6.1. On the transmitter side, the +1 —valued data signal d(¢) is first mod-
ulated. For this discussion, binary phase-shift keying (BPSK) modulation shall be used,

although other modulation schemes can be employed. The modulated signal is

2,
Sa(8) ="\| 7 cosl2mfyf +6,()] (VL1)
d

where f, is the carrier frequency, E, is the energy per data bit of the transmitted signal, T,

is the data bit duration, and 0,(¢) is a function of the data sequence d(¢). The simplest
choice for 0,(¢) here is 6,(r) =0 for d(t) = 1 and 6,(¢) = & for d(t) =—1. In this case, the

modulated signal can be expressed as
2E,
s, ()= Td (t) cos[2mft]. (V1.2)
d

The modulated signal s,,(¢) is then spread by multiplication with the spreading or

code signal ¢(¢). The transmitted signal is

2E,
(1) ="\| - c()d (1) cosl2nfyr]. (VL3)
d
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Transmitter Channel Receiver
| I
] ] A
d(t) ! 1 1(t) d(t)
—— Modulate : : X)—»| Demodulate —>
' :
: :
cos(2rf, t) c(t) Noise c(t) cos(2rf,t)

Figure 6.1. Block Diagram of DS-SS NSystem.

Desirable properties for ¢ (¢) include a large bandwidth relative to the data signal, ease of

generation, and being deterministic but possessing random-like qualities. Such a signal
can be obtained from pseudo-noise (PN) sequences termed m-sequences [Her86, Coo86,
Pic82]. These are special binary sequences which can be implemented easily and effi-
ciently using shift registers.

At the receiver, the signal is first despread by the code signal. Next comes demodu-
lating. For a BPSK modulation scheme, this is accomplished by correlating the input sig-
nal with a coherent reference signal. Specifically, the input to the demodulator is
multiplied by a coherent reference signal and then integrated over the data bit duration T},.
Finally, an estimate d () of d(t) is made based upon the output of the correlator.

To illustrate the effects of spreading, consider the power spectra of the transmitted
signal with and without spreading. First, consider the power spectrum of the data signal.
The continuous-time data signal is obtained by passing the discrete-time data signal
through a zero order hold. That is, if d,, is the discrete-time signal, the continuous-time
signal is given by d(¢t) =d, for nT, <t <(n +1)T,. \Then, if @ () is the power spectrum

of {d,}, it can be shown that the power spectrum of d(t) is given by [Zie85]

S4(f) = T,sinc’(fT,)@,(2nfT,). (V14)
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Now, assume that the data sequence is white. That is, E [d,d,,] = &(n —m), or equiva-

lently @,(®) = 1. This is a valid assumption as the source is usually passed through a
source encoder whose purpose is to remove redundancy from the signal. In this case, the

power spectrum of the continuous-time data signal is
S,(f) = T, sinc*(fT). (VL5)
When the data signal is modulated by a sinusoidal signal, the power spectrum is trans-

lated in the frequency domain to plus and minus the frequency of the carrier. Thus,

including the gain term, the power spectrum of the transmitted signal is [Sch90]
Su(f) = E{sinc’[(f = f)T,] +sinc’[(F + f)T,1}- (VL6)
Now consider the power spectrum after spreading. First, the power spectrum of the
spreading signal must be found. The spreading signal is generated in a similar manner to
the data signal by passing a sequence through a zero-order hold. Hence, as in Equation

(V1.4), the power spectrum of the spreading signal is given by
8.(f) = T.sinc*(fT,)®,(2/T,) (VL7)
where T is the code bit duration and ® () is the power spectrum of the sequence from

which c(¢) is obtained. In this case, c(¢) is based upon an m—seﬁuenée which has a flat
spectrum; i.e., the power spectrum of the m-sequence approximates @, (w) = 1. Hence,
S.(f) = T.sinc’(fT.).

The spectrum of the spread signal may now be found. As multiplication in the time
domain corresponds to convolution in the frequency domain, the power spectrum of the
spread signal is S,(f) = S,,(f)*S.(f). Let R, = 1/T, be the bit-rate for the data and R_ = 1/T,
be the bit-rate for the code sequence. The ratio R/R; =T,/T, is denoted G, and referred

to as the processing gain. Typically, G, » 1, so that the spreading signal has a much
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larger bandwidth than the data signal. In this case, §, () has such a much smaller band-
width than S (f), so S,,(f) can be approximated as impulses at %, for the purposes of the
convolution. Specifically, S,,(f) = (E,/T)(f - fo) + (E,/T)(f + f;). Thus,

S.(f) =S, (N)*S.(f)
g Eog
~E c(f—f;))-l._fv; c(f+f(‘))

E

Tc 2 . 2
;d {sinc[(f — £,)T.,] +sinc*[(F + £)T.1}

E,

== {sinc®[(f = £,)T.1+sinc’[(f +£,)T.1}  (VL8)

Although G, would normally be much larger, for purposes of illustration, a plot of S,,(f)

and S,(f) is given in Figure 6.2 for G, =4.

The effect of the spreading is to reduce the magnitude of the power spectrum by
1/G, while increasing the bandwidth by G,,. This makes it more difficult for the signal to
be detected by an undesirable party. Even if the signal is detected, it is difficult for the
data to be intercepted as the m-sequence would have to be known. However, it is possi-
ble to determine the m-sequence from the transmitted signal [Tor81, Her86], though this
is computationally expensive. Consequently, if secure communications are requifed, the

data should be encrypted.
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MCRP Spread Spectrum

Consider using an MCRP as the code sequence. The potential advantage of this
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approach is that an MCRP is much more flexible than an m-sequence. Whereas the spec-

trum of an m-sequence is always white, the spectrum of an MCRP can be colored. Of

course, an MCRP is by definition a random process. This seems to be a problem as the

spreading sequence should be deterministic. However, in any implementation of an

MCRP, a random number generator will have to be used to determine the state trans-
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itions. If this random number generator is portable, it can be used at the transmitter and
receiver with identical results. The consequence is that identical MCRP time series can
be generated at both the transmitter and receiver.

The idea of using MCRPs for direct sequence spread spectrum was proposed by
John Hershey [Her81a]. His idea centered around colored spreading sequences which
would spread the data unevenly across the transmission bandwidth. To "fill out" the
spectrum, noise would be added to the signal before transmission. Thus, the resulting
spectrum would be the same as in direct sequence spread spectrum. If a jammer were to
jam only a portion of the signal’s bandwidth, which is a common technique, the frequen-
cies in which the data is most heavily represented might be missed. If this were not the
case, then perhaps the data and added noise frequencies could be reallocated.

A block diagram of a spread spectrum’ system based on this idea is shown in Figure
6.3. This scheme shall be referred to as MCRP-SS for short. As in DS-SS, the data sig-
nal is first modulated and then muitiplied by a spreading signal c,(t). The result is the
signal

5,(8) ="\ / %c,(t)d(t) cos[2nfit].. (VL.92)
d

At this point, a constant signal is modulated with the same carrier frequency but not nec-
essarily the same phase. This modulated signal is multiplied by the spreading signal c,(¢)
which has the same bit rate as ¢,(¢). In this way, an additive noise source is generated

which is given by
E,
5,(t) = T c,(t) cos[2nrfyt + ). (V1.9b)
d

The resulting transmitted signal is then given by

5,(t) = %—cl(r)d(t) cos[2mfit] +\ / I;—”-cz(r) cos[2nfyt + . (VL.10)
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Note that the transmission power has been split between the data and additive noise sig-

nals.
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Figure 6.3. Block Diagram of MCRP-SS System.

Let us look at the spectra of these signals. Let ®,(®) and ®,(w) be the power spec-

tra of the sequences from which c,(¢) and c,(¢) are obtained, respectively. Using the same

procedure as in the previous section, the power spectra of s,(¢) and s,(¢) are
Eb .2
$,() = g (D2 ~ T )sinc’[(F~F)T.] +
p
D, (2n(f — f)T,) sinc’[(F + )T, 1} (VL.11a)
E,

and 5,(f) =5 = {,2nf - f)T.) sinc”[(f = f)T.]+

D, (2n(f — f)T.) sinc”[(f + f)T.1}, (VL.11b)
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respectively. Assuming the spreading sequences are independent, the power spectrum of

5,(t) equals the sum of the component’s power spectra:

E
SAP) = 55 {1,@n(f - )T+ @,2n(f ~ TN sincl(F ~F)T.] +
I 4

[@,2n(f ~ f)T.) + p2n(f ~ T sinc’[(F+HT.]}  (VL12)
Next, suppose that ®,(®) and ®,(w) are such that ®,(®) + P,(w) is constant for all .

Pairs of spreading sequences which have this property shall be referred to as being com-
plementary. Further, if the code sequences are complementary and +1 —valued, then it

can be shown that @,(®) + ®,(w) =2 for all ®. In this case,

E
S.f) = - {sin€’l(f = f)T.1+sinc’[(f + 7)T.]} (VL13)

which is identical to the power spectrum for DS-SS. Hence, if the spreading sequences
are independent with complementary power spectra, the resulting power spectrum for the
transmitted signal will be identical to that for DS-SS.

The potential advantage of this scheme is that the communication scheme appears
to be standard DS-SS, at least in the frequency domain. Consequently, the jammer will
likely employ a jamming noise which is detrimental to standard DS-SS. Thus, the jam-
mer is fooled and it is likely that the jamming noise will be spectrally disjoint with the
data signal. If it is not, then it may be possible to alter the spreading signals

¢,(?) and c,(¢) so that this is the case.
Complementary MCRPs

Of course, for this scheme to work complementary sequences must be found. Thus,
the first step must be to locate complementary MCRPs. But what other properties should

these sequences possess? The answer is that they should be as spectrally disjoint as pos-
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sible. As an illustrative example, suppose that @, (w) and @,(w) are as shown below in
Figure 6.4. Note that the power spectra are disjoint and that ®,(®) + ®,(®) = 2 for all .
Thus, two processes which had power spectra ®,(®) and ®,(®), respectively, would be

complementary, spectrally-disjoint processes.
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Figure 6.4. Power Spectra of Discrete-time Complementary Processes.

To see why being spectrally disjoint is desirable, recall the modulated and spread
data power spectrum S,(f) and the complementary noise power spectra S,(f) as given in
Equations (VI.11a) and (VI1.11b), respectively:

Eb .2
S.(f) = 5o {1 ~ T sinc{(F - )T +
p
@, (2r(f — f,)T,) sinc’[(f + £;)T.1} (V1.11a)
Eb | .2
and §,() = 55~ {D,2n(f = T sin’[(f - )T, +
P

@,(2n(f — f)T.) sinc”[(f + £,)T.13, (VI.11b)
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If ®,(ow) and ©,(®) from Figure 6.4 are used, the resulting power spectra S,(f) and S,(f)

would be as illustrated in Figure 6.5. For clarity, the figure shows only those frequencies
about f,. Again, the power spectra are disjoint. Further, if the power spectra were added
together, the result would have a sinc® shape identical to the spectral shape of the trans-
mitted signal for DS-SS. However, suppose a jammer employed a jamming signal of rel-
atively narrow bandwidth about f,. In this case, the jamming signal and the data signal
occupy completely different frequencies since the data spectrum, S,(f), occupies none of
the frequencies about f;,. It is precisely this reason why the spreading sequences need to
be spectrally disjoint.

Now, the power spectra in Figure 6.4 were examples of ideal cases. In practice it is
not possible to generate binary MCRPs which achieve these power spectra. However, the
following seems to be a good approximation. First, recall that a random sequence is
white if its autocorrelation can be expressed as ¢(n) = Kd(n); i.e., ¢(n) is zero for all
n # 0, and is equal to some constant K for n =0. Recall also that, for MCRPs, the auto-
correlation is given by ¢(n) = X, B,A,"!. Suppose that the two MCRPs have eigenvalues
M =re”™® and A, , =re”™X, and spectral coefficients B, , and B, ,, respectively. Then,

the autocorrelations of the two processes can be expressed as

bim) = 2. By (re ™ m)" (VI.142)

In|

and dy(n)= 3 By u(re™) (VL14b)
k=0

respectively. Suppose further that the two processes are independent and
By.x+ B, =B for all k. Then, as the autocorrelation of the sum of two independent pro-

cesses is the sumn of their autocorrelations,
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Figure 6.5. Resulting Signal Spectrum (top) and Added-Noise Spectrum (bottom).

q)sum = q)l(n) + ¢2(n)

- KilB(reﬂnk/K)l n|
k=0

tnt =0,+K,+
={BKr forn =0,£K,+2K, ... (VL15)

0 else
While the resulting power spectrum would not be exactly white, it would be very close
for large K or small r.
For binary-valued MCRPs, the following approximately complementary MCRPs

have been identified. The first MCRP is given by
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([ (1-r) 1-r) d-r) (1-7r) )
4 Tty 4 4
(1-r) (1-r) (1-r) (1-r)
| @ 4 T+ 4
T 1-r 1-r) (1-r) r+(1—r)
4 4 4 4
(1-r) (1-7) (1-r) (1-r)
"2 4 4 4
and a,=(1 1 -1 -—1)

Here, r has been introduced as a variable. Any value of r satisfying 0 <r < 1 will work.

The choice of a particular value for r will be discussed shortly. For this MCRP, the

eigenvalues which have non-zero weights are re’™ and re ™™ with B, = .5 for both eigen-

values. The second MCRP uses the ring structure developed in Chapter III with two sub-

chains:
p
r 0
0
1-r)y (1-r)
2 2
L=l a-rn a-n
2 2
(1-r) (1-r)
2 2
1-ry dA-r)
. 2 2
and a,=(1 -1 1 -1

(1-r) (A=r) (A-r) (1-r))
4 4 4 4
(1-r) (1-r) A=r) (1-7)
4 4 4 4
0 r 0 0
0 0 r 0
0 0 0 r
r 0 0 0

1 -1.

Again, this matrix also uses the same variable r as in T,. The eigenvalues for this MCRP

which have non-zero weights are r and re’™ with B, = .5 for both eigenvalues.
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Thus, in this case,

| o, (m) = .5[re™) "+ (re™)"Y (VL16a)

0,(n) = 5[ +(re’™"Y (VL16b)

so that

¢sum(n) = :21(5) (r el2mk/4)l nj

Inl =0.4+4. +
={4r forn =0,+4,%8, ... (VL17)

0 else
The choice of r is a compromise. As r increases, the power spectra ®,(®) and

®,(w) become more separated. However, it is also true that as r increases, the two pro-
cesses become less complementary. Thus, there is a tradeoff as the processes need to be
both spectrally disjoint and complementary. The choice of r shall be discussed later in
conjunction with the probability of bit error. However, for now, suppose r =0.77. The
power spectrum for the resulting MCRPs are plotted in Figure 6.6. As éan be seen, the
two MCRPs are nearly complements with 7 dB between the largest and smallest magni-
tudes in the summed spectra. Again, it would be nice to have more separation, but this
can be gained only at a loss of the processes’ complementary status.

Now, let us see how the transmitted signal’s power spectrum would look if these
MCRPs wefe used. Recall that the power spectrum of the transmitted signal for DS-SS is

given by
S(f) = % {sinc’[(f — f)T,1 +sinc’[(f + £)T.1}
whereas
S,(f)= ZE—(:; {[@,2n(f - f)T,) + @, (2n(f — f)T.) sinc’[(f — f)T,] +

[@,@2n(f = f)T.) + @y2n(f — )T sinc”[(f +/)T.1}
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is the power spectrum for MCRP-SS. Both spectra are plotted in Figure 6.7. As can be

seen, the MCRP-SS spectrum follows the DS-SS spectrum but contains spectral oscilla-

tions.

Power Spectra n dB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5

Normalized Frequency

Figure 6.6. Power Spectra of Complementary MCRPs: ®,(w) (solid);
D,(w) (dashed); and D, (w) (dotted).
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Figure 6.7. DS-SS (solid) and MCRP-SS (dashed) Power Spectra.

Effects of Partial-band Jamming

As depicted in Figures 6.1 and 6.3, it is common to model the communications
channel between the transmitter and receiver as introducing additive noise to the trans-
mitted signal. This noise can be categorized into two classes. The first is unintentional
noise. This includes noises such as thermal noise and other types of nonhostile
interference such as multipath noise and noise from other users in a multiple access envi-
ronment. The second class of noise is intentional jamming.

There are several types of intentional jamming signals. These include barrage
noise, partial-band, single tone, and pulsed noise [Zie85, Tor81]. Barrage noise is band-

limited white noise over the bandwidth of the transmitted signal. Partial-band is similar
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to barrage noise, but only covers a portion of the bandwidth. Single tone noise is just a
signal at a fixed frequency, usually the center frequency of the transmission. Pulsed
noise is noise that is "on" only a portion of the time.

The degradation of the communication channel depends on the communication
scheme as well as the type of jamming noise. The detrimental effects of jamming include
increased probability of bit error and degradation of synchronization between the trans-
mitter and receiver. For the purpose of this research, the main interest is the effects of
jamming on the probability of a bit error, P,. In particular, the focus of this section is the
effect of partial-band jamming. In the previous section, it was shown that the MCRP-SS
scheme seems well-suited to deal with this type of jamming signal. Hence, the perform-
ance of this system in partial-band noise should provide a measure of the merits of this

scheme.

Probability of Bit Error for DS-SS

For comparison and derivational purposes, let us first consider P, for DS-SS with

partial-band jamming. To begin, recall that the transmitted signal is
s(t)= \]E,,/Td d(t)c(t)cos(2mfyt). The partial-band jamming noise shall be represented

by n,(¢). This noise shall be assumed to have power spectra density given by

4

NI
= [fEhl<

0 else

pWiss
2 (V1.18)

5, =

Here, Wi is the bandwidth of the spread spectrum signal, which is given by 2/T,, and p is

a fraction which determines how much of the bandwidth of the spread spectrum signal
the jamming signal occupies. It shall be assumed that p « 1 since the jamming signal is

partial-band. Additionally, assume #,(¢) is zero-mean and has a Gaussian density. In
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addition to the intentional jamming noise, it is common to also include a broadband noise
term. Let n,(¢) represent a white, Gaussian, zero-mean process with power spectrum
S (f) =N,/2.

At the receiver, the signal is despread and passed through a correlator. Based upon
the output of the correlator, an estimate is made of d(z). Of course, due to noise, s,(¢) is
not the only signal to reach the receiver: the background noise signal, n,(¢), and the
partial-band jamming signal, n (¢), are also received. Let us consider the effects of each
of these in turn on the correlator.

The output of the correlator due to s,(¢) will be

T,

fs ) () ——cos(21tfot)dt

T,

J{d(t)c(t) —cos(anot)}c(t) 2cos(21tf(,t)dt

=+E,d(t) fc (t){‘\ / —cos(21cf0t)} dt

The data signal d(¢) is constant, being either 1 or -1 throughout the limits of integration.

The spreading signal is also £1-valued, so c*(f) = 1. Finally, note that the modulating and
demodulating signal \IZITJ cos(2mfyt) has been normalized so that

Jo\2IT, cos(2nfy)Ydr = 1. Hence,
u, =\E,d(). (VL19)

Now consider the output of the correlator due to n,(¢). First, consider the mean

Elu, I
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Td
Efu,]=E |: J-n OO\ = cos(21tﬁ,t)dt}

Td
= f E[n,(£)Jc()\ ’ T£cos(21tfor)dt
o d

=0

since u, (t) is a zero-mean process. Next, consider the variance:
T, T,
E[uz} [ f n,(t)c(t) —cos(21tﬁ,t)dt fn (T)c(7) ——cos(21r.ﬁ,'t)d’tj|

f fE [n,(®n,(Dlc(t)c(T)\ / —cos(2mf,t) cos(21tfo't)dtd T.

Since n,(t) is white, E[n,(t)n,(1)] = (NV,/2)3(¢ —1). Thus,

f (1) {'\ / ——cos(21tf0t)}

N]Z

SR

(VI.20)

As before, c*(t) = 1 and the integral equals 1.
The jamming noise 7,(f) may now be considered. Since this is also a zero-mean

process, E [u,,j] = 0. Next consider the variance:

T,

d Td
E [” 2:} { fn (t)c(r) Ed cos(ZItht)dr f n(Wc(\| = cos(21tﬁ,1:)d ‘cil

T,

J. Efn (t)c@)n (DM = cos(21tfot) 2 cos(2nf01:)dtd 1. (V1.21)

okﬁm’i
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Now, since nj(t) and c(f) are independent, E [n/(t)c(¢)n;(t)c (1)] equals

E[nj(t)n(0)]E[c(t)c ()], which is just the product of the autocorrelations of n;(¢) and c(¢).
Now, let us use the fact that multiplication in the time domain is convolution in the fre-
quency domain. Thus, the power spectruin of n,(t)c(¢) is given by S,,J(f)*Sc(f). Recall
that the power spectra of n () has been defined as S,,J O =N";12for | fLf,|<pWes/2. If

p < 1, the bandwidth of S"/(f) is much less than the bandwidth of S.(f), so S,,j(f) can be

approximated by impulses at Xf,. Specifically,

P ssN

' Snl(f) = 8(f -ﬁ) (VIZZ)

Recall that the power spectra of c(f) is given by T sinc’(fT,). Hence,

5, (P @sine (1)) = 2 ging - 1) + 2 s i 4 )

Before proceeding, let us simplify this expression a bit. First, it is common to define N;/2

as the spectral density had the jammer applied his power evenly across the transmission
bandwidth. The jammer’s power is Pjypme, = pWssN'; for partial-band jamming or

P jppumer = WissN; for wideband jamming. Hence, N;=pN’,. Also, recall that W = 2/T...
Making these substitutions, ’

8, (YT, sinc’(fT,)) =N, sinc*(f = f)T,) +N;sinc®(F+f)T,).  (VI.23)
Now, we note that the resulting power spectrum of #,(t)c (¢) as given above is relatively

flat about 1f;,. Hence, for the correlator, n,(f)c(f) can be approximated as white noise
with a power spectral density of N,. Therefore, E [1,(t)c (t)n,(t)c(t)] = N,&(t — ). Mak-

ing this substitution in Equation (V1.21),
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N.&(t—7) —cos(21rfot) —%cos(an;;t)dtd't

J

2 2
{ A\ / — cos(2nfot)} dr
T,

=N, (VL24)

o%;‘]

o) |

N.

J

o%&‘i

Again, the res;ult follows from the fact that the integral evaluates to unity.

We may now combine these results. The mean of the output of the correlator is
given by Efu] = \/E: d(t) and the variance by E[(u —E[u])’]= ]V,,/Z +N;. Since the noises
were assumed to have Gaussian densities, the output of the correlator will also have a
Gaussian density and its mean will be \/l:T,, d(t) and variance will be N,/2+N;. Ifd(t)=1,
the distribution is centered at \/E,,_ whereas if d(t) = ~1, the distribution is centered at
—E,.

To minimize the probability of error, estimate d(¢) by d(t)=1ifu>0andd t)=-1
if u <0. In this case, the probability of error is given by

P,=Plu>0|d(t)=-1]

;(‘;’%i_:_) dx

!'\IZTC(N /2+N))
If a substitution of variables is made, namely v = (x +x’E:)/\]N /2 + N, the result can be

expressed using the co-error function Q (x) as

2E
Pb=Q( ¥ +;N (V1.25)

where Q(x)= f—\/;:ie:;_dv (V1.26)
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As the argument of Q (x) increases, Q(x) decreases. Therefore, P, becomes smaller as E,

increases and as N, and N, decrease, which makes sense.
Probability of Bit Error for MCRP-SS

Now consider P, for MCRP-SS. Recall that the transmitted signal is given by

E, ,E,,
s(t)= i— d(t)c,(t) cos(2mfyt) + E c,(t) cos(2mfyt + &)

As before, two types of noises are added in the communication channel: a wideband
noise n,(r) with spectral density N,/2; and a partial-band noise n,(¢) with spectral density
N2 for | f£f, |< pWss/2, where p € 1 and Wy = 2/T, is the bandwidth of the transmitted
signal s,(¢).

From Figure 6.3, the first function of the receiver is to subtract the noise which was
added at the transmitter. It shall be assumed that the receiver is able to perform this func-
tion so that the noise added at the transmitter can be disregarded for this analysis. There
are several reasons why this is a valid assumption. While it must be conceded that the
receiver is not likely to be able to subtract this signal exactly, it should be able to do so
fairly well. Additionally, the effects of the added noise can be reduced by having it’s
modulation out of phase with the mod{xlation of the data; that is, let ¢ =90°. In this way,
any portion of this noise which is not subtracted out will have a minimal impact on the
correlator. Additionally, it is felt that the effects of the jamming noise will be much more

significant than the effects of this complementary noise.

Ignoring this added noise, the signal at the receiver is r(¢) = 5,(t) +n,(t) + n;(t)

where s,(t) = \]E,,/Td d(t)c,(t) cos(2mfyt). Again, the effects of each component of r(z)

shall be handled in tum. To begin, consider the correlator output to s,(z):
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1,

fs,(t)cl(t) 2 cos(21tfot)dt

I,

= H\[—d(t)c,(t) cos(ZEfOt)}Cl(t) —2-cos(21tfot)dt
o T 2
= '\/-%?d(t) ! cl(t) {\/_-T%-cos(znfot)} dt
='\/-%‘d\(t). (V1.27)

As in the previous section, note that c7(¢) = 1 since it is +1-valued, and integral in the last

step equals one.

Now consider the effects of n,(t) on the correlator. First, consider the mean E ["".,]:

Td
Efu,] =E|:fn (t)cy() -——cos(21cf0t)dt]

Td
= f E [n,(t)]c,(t)’\’ %cos(anot)dt

=0

since u,,a(t) is assumed to be a zero-mean process. Next, consider the variance:

I, 1,

E[u2]=E [fn (t)e,() —cos(zn;gt)dtfn (1)c,(%) -—cos(znﬁ,r)dz]

T, T,

ffE[n ®n, (D), (f)c,(T) cos(Zn:fot) —2—cos(21tfo't)dtd‘c.

Since n,(t) is white, E[n,,(t)n,,('v:)] = (N,/2)8(t —7). Thus,
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£l

N,
2

c%_ﬂ“'!

c; 2® {'\ / %cos(anot)} dt

N 28
== (VL.28)

Once again, note that c7(t) = 1 and the integral equals 1.

The jamming noise #,(t) may now be considered. Since this is also a zero-mean

process, E [u,,j] =(). Next consider the variance:

T, T,

E [uz] |:fn ey () —cos(2nf0t)dt fn (1)c,(7) —cos(Znﬁ,t)d'c}

I, T,

= ffE [n;(#)c (n, (e, (V] E,z—cos(Znﬁ,t) —;—cos(ano‘l:)dtdt. (V1.29)
;. d d

Now, since n,(¢) and c,(¢) are independent, E[n,(t)c,(t)n;(t)c,(7)] equals

E[n;(t)n(DIE[c,(t)c,(T)], which is just the product of the autocorrelations of r,(¢) and
¢,(t). Now, let us use the fact that multiplication in the time domain is convolution in the
frequency domain. Thus, the power spectrum of n,(t)c,() is given by S,,J(f)*Scl(f).
Recall that the power spectra of n;(¢) has been defined as S,,j(f) =N’;/2 for

| fE/ < pWel/2. If p « 1, the bandwidth of S,,J(f) is much less than the bandwidth of

S¢,(f), so S,,j(f) can be approximated by impulses at &f,. Specifically,

W N
5,00~ sgp -y + PV gy

Recall that the power spectra of c,(t) is given by T, sinc*(fT,)®,(2nfT.) where @ (o) is

the power spectrum of the discrete-time process from which c,(z) is obtained. Then,
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TCPWSSN’j

2 sinc’((f ~ f)T)@,(2nlf - fIT,) +

S, (DT, sinc’(fT,)®,(2nfT,)] =

T pWesN’;

= sind'(f + AT (2nlf +£IT)

As in the previous section, this expression can be simplified by substituting N, = pN”, and
Wss = 2/T,. Making these substitutions,
S, (N*(Tsinc*(fT,)T,)®,(2nfT.,)) =N, sinc’(f — f)T,)®,2nlf - fIT.) +
N, sinc®((f + f)T,)@,2x[f + £IT,).
Again, note that the resulting psd of n,(t)c,(¢) as given above is flat about 1f;, at which

points the power spectral density is N,®,(0). Hence, for the correlator, n (¢)c,(f) can
approximated as white noise with a power spectral density of N;®,(0). Therefore,
E[n,(t)c(t)n,(t)c ()] = N,®,(0)5(¢ — 7). Making this substitution in Equation (VI1.29),

T, T,

E[u}]= ffNj®l(0)5(t—r) T%cos(Zufot) %cos(an;,T)dtd'c
0 0

T, 2
=N;@,(0) f{'\ / %cos(anor)} dt

=N,D,(0). (VL30)
Again, the integral evaluates to unity. In this case, the choice of spreading signal c,(t),

and more importantly the value of its power spectrum at ® = 0, clearly influences the
effect of the jamming noise on the correlator.

The above results may now be combined. The mean of the output of the correlator
is given by Efu] = \/E,,/_Z d(r) and the variance by E[(u —E[u])*]=N,/2+N @,(0). Since
the noises were assumed to have Gaussian densities, the output of the correlator will also

have a Gaussian density and will have mean \/E,,/Z d(t) and variance N,/2 + N, ®,(0).
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As in the previous section, to minimize the probability of error, estimate d(¢) by
d(t)=1ifu >0and d(f)=-1if u <0. For this case, the probability of error is given by
P,=Plu>0]d(t)=-1]

[ A yrs)
= e dx
) 27N, /2 +N;®(0))

If a substitution of variables is made, namely v = (x +VE,/2)A\N,/2 +N,®,(0), the result

can be expressed using the co-error function @ (x) as

rie ) N

Again, note that the argument of Q(x) increases, @ (x) decreases. Therefore, P, becomes

smaller as E, increases and as N, and N; decrease, which makes sense. Also, P, becomes

smaller as ®,(0) decreases.
Comparative Results

Let us now compare the resulting probabilities of bit error. These are given by

2E,
P, =
’ Q[ N,+2N,

for DS-SS, and

Fy= Q(V N, +2N,<I>1(O)J

for MCRP-SS. There are clearly two differences in the two expressions. The first is that
the DS-SS expression has an extra factor of 2 in the numerator of the radical. The lack of
this term in the MCRP-SS expression follows from the fact that only half of the power
has been devoted to the data signal; the remaining power was dedicated to the additive

noise. Clearly, this factor favors the DS-SS expression over the MCRP-SS one. The
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- other difference is the inclusion of the @,(0) term in the MCRP-SS expression. If @, 0)
can be made small enough, then the effects of the jamming noise can be minimized. To
learn more about ®,(0), let us return to the discussion of complementary MCRPs.
For the MCRP which produces ¢,(¢) the autocorrelation was given by
0,(n) = 0.5[re™) " + (re ™"

from which it is possible to express the power spectrum as -

1-r*
o (w)= 32
(@) 1+2r%cos(2w) +r* (V1.32)
Hence,
<1>(o)—1—"—2 (VL33)
S 42 )

Thus, we see that @,(0) depends upon the choice of 7: as r increases, ®,(0) decreases.

From the MCRP-SS equation for P, it is clear that as ®,(0) decreases, P, decreases. It
follows that as r increases, P, decreases. Additionally, it has already been noted that r
influences the separation and degree of complement of ®,(w) and ®,(®w). To summarize,
as r increases, the separation and probability of bit error improve; however, at the same
time, @,(w) and ®,(w) become less complementary.

This tradeoff in the choice of r is illustrated below in Figure 6.8. The figure plots
the spectral magnitude variation in @, (®) = ®,(®) + P,(®) versus P,(0). The spectral
magnitude variation shows how well ®,(®) and ®,(®) are complementary, and should be
as small as possible. However, ®,(0) is a measure of P,, and should be as small as possi-
ble, also. Hence, one must choose a value of @,(0) which falls near the knee of the curve.
A reasonable choice is ®,(0) = 0.25, for which the spectral oscillations in ®,,,(®) are

about 7 dB.
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Figure 6.8. Spectral Magnitude Variation Versus @,(0).

Plots comparing P, for DS-SS and MCRP-SS with partial-band jamming are given

below in Figures 6.9 through 6.11. Each plot represents a different ratio of E,/N,, which
is a measure of the signal-to-noise ratio in the absence of jamming. In each graph, P, is
plotted versus E,/N; on logarithmic scales. Each plot shows four different curves. The
first of these is P, for DS-SS, which is the solid line. There are three P, curves for
MCRP-SS, representing ®,(0) = 0.3, ®@,(0) = 0.25, and ®,(0) = 0.2; these curves are
dashed, dotted, and dot-dashed, respectively. |

From the plots, it is clear that MCRP-SS has a lower probability of bit error than
DS-SS when E, /N, is sufficiently small. Thus, when the jamming noise is sufficiently
large in comparison to the signal power, the MCRP-SS scheme improves the bit error
performance of the system. When there is relatively less jamming noise, the MCRP-SS
does not improve the performance of the system, and in fact degrades it; in this case, the

power devoted to the added noise at the transmitter is wasted.
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Figure 6.9. P, for DS-SS and MCRP-SS with E,/N, = 6dB.

The results for different values of ®,(0) once again illustrate the tradeoff previously

mentioned. A smaller value of CD;(O) decreases P, but also increases the spectral varia-
tion of the transmitted signal, which is undési:able. However, the plots indicate that P,
does not vary greatly with values of ®,(0) near the knee of the tradeoff curve in Figure
6.8. Overall, ®,(0) = 0.25 appears to be a good choice.

To summarize, this chapter has shown that MCRPs can be useful in a spread-
spectrum communications scheme which reduces the effects of jamming. By unevenly
spreading the data signal and then adding complementary noise to "fill out” the spectrum,
it is possible for the jamming signal to miss the frequencies in which the data is most

heavily represented. For the case of partial-band jamming it was shown that, under cer-
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tain conditions, this scheme delivers improved bit error probability performance over
DS-SS. Further improvements to this communication scheme rely on locating MCRPs

which have a higher degree of separability while retaining a complementary nature.
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Figure 6.10. P, for DS-SS and MCRP-SS with E,/N, = 9dB.
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CHAPTER VII
MARKOV RANDOM FIELDS

Although it is common to consider the Markov property in terms of random pro-
cesses, other interpretations are possible. For example, suppose instead of a time index
one has a spatial index. In addition, the problem under consideration could be a
multidimensional case. As a specific example, one could think of a sampled image; i.e., a
set of pixels. Here, the Markov property could be used to indicate that each pixel is
directly influenced only by the pixels closest to it.

However, there is an important distinction between these spatial-domain and time-
domain processes. The concept of causality makes sense for a time-domain process; the
future cannot influence the present. However, a similar interpretation does not usually
hold in the spatial-domain. There is no notion of which pixel came first and which prec-
eded or followed it; any ordering of the pixels is inherently arbitrary and does not express
a causal relationship. Instead, the pixels must be thought of as a whole, as a group. The
necessarily different basis of spatial processes must be handled somewhat differently,
giving rise to what has been called Markov random fields (MREFs).

Markov random fields have been applied to a range of spatial processes [Kin80].
For images, Markov random fields have been used as models [Kas81, Hac87]. As such,
they have proven useful in image segmentation, image restoration, and synthesis of tex-
tured images. In addition, MRFs have been applied in other areas such as formant track-

ing in speech applications [Wil90].

141
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The objective of this chapter is to briefly explore the extension of MCRPs to two
dimensions. In fact, there are several ways to approach such an extension. One thought
is to use the MCRP time series to construct an image on a row-by-row or column-by-
column basis. A similar technique was used by Hershey, who used m-segeunces to con-
struct a library of two-tone images for the purpose of image compression [Her81b].
However, at this time, the author has chosen to pursue a somewhat different direction
which is based on the concepts of Mé.l'kOV random fields. It should be stated that the
goals of this chapter are quite modest. We wish only to show that is possible, and may be
advantageous, to use MCRPs in image processing applications.

To begin, a little notation is necessary. Let L be a finite lattice; i.e.,
L={(,j):1<i<N,1<j<N,}. These are the points over which the image is defined.

It should be noted that it is possible to consider infinite latices; however, the author shall
not do so here. A random field (RF) X is a collection of spatially-oriented random vari-
ables and a probability measure which specifies the probability of occurrence of each
member in the collection.

A Markov random field is a random field where the probability measure is deter-
mined by a set of probabilities over neighborhoods of the lattice. To explain further, let
n,,, denote a neighborhood about the point (i, /). Neighborhoods must obey certain
properties, among them that pixel (k,/) is in the neighborhood of pixel (i, /), n; ;, if and
only if pixel (i, j) is in the neighborhood of pixel (k,/), 1, ;. Also, by convention, the
neighborhood of (i, j), N, ,; does not contain the pixel (i, /). The two most common

neighborhoods are
., ={k,N0<(—k)’+(j -1y’ <1} (VIL1)
o, ={(k,1):0< (i —k)*+( -1y’ <2} (VIL2)

which are illustrated below in Figure 7.1.
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The Markov property holds over the random field by the conditional probability
equation
PX, =% | X, ;=x,,,(,j) € L1=PX,,, =%, | X; ;=x, ;,(i,j) € Ny,]  (VIL3)
Simply stated, the value of pixel (i, j) depends only upon the pixels in its neighborhood.
Of course, similar definitions hold for higher dimensions and even for one dimension;

however, MRFs are most commonly used in two-dimensional, image processing applica-

tions.

nli,j

Figure 7.1. Neighborhoods n;; and ;.

Traditionally, pixel values in MRFs have been defined in terms of neighboring pix-
els by

Xi= L ek,lxk.l + u; (VIL4)

ke n,;

where {u; ;} is a collection of independent, identically distributed random variables. The

above equation is, in fact, very similar to that for an autoregressive process. However,

the above equation is not causal. For, x; ; is a function of the pixels in its neighborhood,
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which are in turn functions of X; j Because of this, Equation (VIL.4) has been called
simultaneous autoregressive (SAR), noncausal autoregressive (NCAR), and spatial auto-
regressive by various authors [Der89].

While MRFs have traditionally been defined by Equation (VII.4), the author sees no
reason why MCRPs could not be used. To do so, one would have to extend MCRPs to
higher dimensions much in the same manner that the autoregressive equation was
extended. The advantage of using MCRPs is derived from the fact that MCRPs are by
definition finite-valued processes. This seems ideally suited to work with images which
are quantized to a relatively few number of pixel bits. In particular, each state of the
MCRP could represent one level of quantization. |

To see how this could be done, consider an MRF based on an MCRP which has N
states. Thus, each pixel in the image can take on any one of the N values specified by the
output map of the MCRP. The required "transition" probabilities would be of the form
PIx; ;= a, | n; ;] where a, is the output map of the MCRP associated with state k. If the
neighborhood 1; ; consists of p pixels, then there would be N” possible configurations of
neighborhoods for each k. Hence, there are N - N¥ = N”*! probabilities which must be
specified. For example, if the chosen neighborhood is 1), then each pixel has four neigh-
bors, so p = 4. For this situation, if N is 2, then N**' =32. Of course, if there is any
symmetry in the MRF then the number of unique probabilities will be much smaller than
this.

As a simple example, suppose, as above, that ' is the neighborhood and N =2. In
this case, each pixel can occupy only one of two states, namely black or white. For this
example, let us state that, if all of the neighbors about a given pixel are black (white),
then there the probability is 1.0 that the pixel is also black (white). If three of the four
neighbors are black (white), then there is a probability of 0.9 that the pixel is also black

(white). The only other case is when two neighbors are black and two are white. In this
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case, the probability is equal that the pixel is white or black. Note that introducing sym-
metry has greatly reduced the number of probabilities which needed to be defined. Also,
based upon these probabilities, the pixels should have a tendency to clump into areas
which are all black or all white.

The actual generation of an image based on these probabilities presents a bit of a
problem. As noted previously, the pixel values have been defined as being noncausal.
Hence, the image must be created as a whole; at the very least, pixel values cannot be
determined one at a time. However, the author knows of no way to generate an MCRP-
based MRF as a whole in a single step. Despite this, consider the following approach.
Begin with a randomly generated image in which each pixel value is independent and
generated from identically distributed random variables. Also, each pixel value of the
image should belong to the output map of the MCRP. Now proceed through the image
row by row, one pixel at a time. At each pixel, based on the neighbors and the transition
probabilities, determine the new value of the pixel. For example, as defined above, if 3
of the 4 neighbors are black, then there is an 90% probability that the pixel will changed
to black; 10% of the time the pixel will be changed to white. After the pixel value has
been updated, the procedure is repeated on the next pixel. This process in continued until
every pixel has been updated.

For the example described above, an image of 100 pixels by 100 pixels was gener-
ated. This image and the original image on which it was based, are shown below in Fig-
ure 7.2. As can be seen, the black and white pixels are clumped together much more than
in the original image. This is to be expected because of the way the transition

probabilities were defined.
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As a measure of the validity of this approach, let us estimate the transition probabil-
ities based upon the resulting image. The relevant data is given below in Table 7.1. The
estimates of the transition probabilities based on the resulting image are close to the
probabilities given above, but could be better.

In an attempt to obtain more desirable results, the procedure was repeated. The
resulting second-pass image is shown in Figure 7.3. Again, the black and white pixels
have clustered together, even more so than before. Estimates of the transition probabili-
ties, given in Table 7.2, are very close to the true probabilities. Thus, this MCRP MRF
approach appears to be valid.

To summarize, because of their discrete-valued ﬁature, MCRPs appear to be appro-
priate to model images, which are very often quantized to only a few bits. However, to
do so involved extending MCRPs to two dimensions. As well, the inherently non-casual
relationship of pixels needed to be accounted for. By adopting the key elements of Mar-

kov random fields, it was shown that an MCRP could be useful in image processing.



Figure 7.2. Original and First Pass MRF Images.

TABLE 7.1

ESTIMATE OF TRANSITION PROBABILITIES
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Number of Number of Percentage of Percentage of
Neighborhood | White Pixels Black Pixels ‘White Pixels Black Pixels
All White 1382 77 95 5
3 White 1714 444 80 20
2 of Each 1272 1216 51 49
3 Black 452 1859 20 80
All Black 83 1501 5 95
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Figure 7.3. First and Second Pass MRF Images.

TABLE 7.2

ESTIMATE OF SECOND PASS TRANSITION PROBABILITIES

Number of Number of Percentage of | Percentage of
Neighborhood White Pixels Black Pixels White Pixels Black Pixels
All White 2018 38 98 2
3 White 1715 262 87 13
2 of Each 979 922 51 49
3 Black 235 1702 12 88
All Black 32 2097 2 98




CHAPTER VIII
CONCLUSIONS
Summary

By associating a real number with each state of a Markov chain, a new but related
process, termed a Markov chain random process (MCRP), is created. These processes
have some interesting properties: they are easy to implement, inherently stable, and can
be made stationary and ergodic. As discrete-valued processes, they are of course ideally
suited to model processes with discrete distributions. However, these discrete-valued
processes also bear a strong relationship to the continuous-valued class of ARMA pro-
cesses. Despite all of the interesting properties and potentially substantial applications of
these processes, few researchers have studied them.

The objective of this research was to investigate this class of random processes in
several stages. The first stage was to study the statistics of these processes. Next came
an exploration of the synthesis behavior of these processes, i.e., how one can determine
the MCRP parameters which result in desired statistics. Once synthesis had been studied,
it was possible to investigate MCRPs as stochastic models. Finally, several applications
of MCRPs were considered including speech modeling, spread spectrum communica-
tions, and a brief look at the extension of these processes to two dimensions.

As MCRPs are defined in terms of Markov chains, the first task of this research was
to study Markov chains. The transition probabilities {7, }, transition probability matrix

T, and state probabilities 5,(n) were examined. There are many classes of Markov chains,
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and some are better suited for use in MCRPs than others. Since the main interest was
stationary processes, stationary Markov chains were desired. Better yet, the class of reg-
ular Markov chains produce processes which are ergodic as well as stationary.

After reviewing Markov chains, a few statistics of MCRPs were derived. These
included the mean, variance, autocorrelation, and power spectral density. Eigen decom-
positions were used to express the autocorrelation and power spectrum in terms of the
eigenvalues of the transition probability matrix. Namely, if T is diagonable and the

process has zero mean, from Equation (IL.23) the autocorrelation is given by
y In} 2
d(n)= ,E'l B+ [
and from Equation (II.34) the power spectrum is

o —% . S—
((o)—k=lBk l—hke‘lm l—lke—jm

where {A,} are the eigenvalues of T, and {B,} are constants which depend upon the

eigenvectors of T and the real numbers associated with the states. From these equations,
it was clear that an understanding of the eigenvalues of T was crucial to working with
MCRPs.

Having found the statistics of MCRPs, the next question was how one could deter-
mine MCRP parameters to achieve given statistics. Three cases were considered: proba-
bility distribution synthesis; power spectrum synthesis; and synthesis given both
probability distribution and power spectrum. For probability distribution synthesis, two
cases were considered: continuous and discrete distributions. An exact match was given
for processes with discrete probability distributions. For continuous distributions, a pro-

cedure was detailed in which an MCRP could approximate the continuous distribution.
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Spectral synthesis was a much more difficult problem, and in fact has as yet no gen-
eral solution. However, two new classes of MCRPs were proposed which offer partial
solutions: a summed MCRP structure, and a ring MCRP structure. In both cases,
processes with a few number of states were combined to form a larger process. Ring-
structured MCRPs were thoroughly examined and a technique was outlined to determine
an MCRP with a given set of eigenvalues and spectral coefficients; however, the
limitation of this approach was that the spectral coefficients had to be real and positive.

The third synthesis case was when both probability distribution and power spectrum
were specified. This, of course, is an even more difficult problem. However, a simple
example was considered for a process with a Laplacian distribution and single complex
eigenvalue-pair. For this case, a solution was found, though there was a restriction on the
eigenvalue magnitude.

Chapter IV established a connection between ARMA processes and MCRPs.
Although the two classes of processes are dissimilar in the tixﬂe-domain, they neverthe-
less exhibit very similar spectral behavior. In particular, the poles of an ARMA process
and the eigenvalues of a transition probability matrix play exactly the same role in the
autocorrelation and power spectrum expressions.

To study this connection closer, the special situation of AR processes with a single
complex pole-pair and MCRPs with a single complex eigenvalue-pair was studied. How-
ever, though the AR poles and MCRP eigenvalues were equated, there was a difference
between the two processes’ power spectra. The explanation was that, for known MCRP
structures, the spectral coefficients must be real and positive; in contrast, for AR pro-
cesses the corresponding coefficients are in general complex. The most noticeable conse-
quence of this disparity was that the power spectra of AR processes and MCRPs

experienced maxima at slightly different frequencies.
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Despite this discrepancy, it was clear that an AR process could act as the basis for
an MCRP stochastic model. The approach was to first establish an AR model of a given
data set using known techniques. Next, the MCRP eigenvalues were equated to the poles
of the AR filter. Finally, the MCRP spectral coefficients {,} were determined by mini-
mizing the difference between the AR and MCRP power spectra at certain frequencies;
namely, the frequencies where the AR power spectra experienced extrema.

In Chapt;:r V, this modeling approach was tested by applying it to speech modeling.
There were several reasons why this application was chosen. First, there are many uses
for models of speech, including storage and transmission of speech signals, speech recog-
nition, and speaker identification. Although there has been much work in these areas,
current solutions could use improvement. The use of MCRPs for speech was partially
motivated by the success of hidden Markov models in speech processing. Additionally, it
was felt that this application would provide a good test of the stochastic modeli