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CHAPTER I 

INTRODUCITON 

Interactions with the Host 

Because viruses utilize host machinery to replicate, they are used to investigate the 

processes and mechanisms which occur within the cells of their hosts. Viruses provide 

simplified systems with which complicated processes can be studied. Additionally, the 

control of viral disease may be facilitated by an understanding of the biology of the 

offending agent The potential benefits of pathogen control validate the pursuit of this 

understanding. One such pathogen which infects plants, cauliflower mosaic virus 

(CaMV), is introduced below. 

CaMV is the type virus for the caulimovirus group. CaMV is a double-stranded DNA 

virus which infects members of the Crucifer family and some members of the Solanaceous 

family (Hills and Cambell, 1968; Lung and Pirone, 1972; Schoelz et al., 1986). Infection 

is transmitted by aphids in a semi-persistent manner; the virus is stylet-borne (reviewed by 

Hull and Covey, 1982). CaMV can also be transmitted via mechanical inoculation with 

virions, viral DNA, or cloned viral DNA. 

In compatible hosts, cell-to-cell transfer and long distance transport lead to a systemic 

infection. Most or all of the cells in a systemically infected leaf contain CaMV virions 

(reviewed in Maule, 1985b ). During infection, irregular inclusion bodies are produced in 

the cytoplasm of infected cells. These viroplasms may be vacuolated and contain large 

numbers of virions; viroplasms may also be evacuolate and contain no virions (Shepherd 

et al., 1980). On turnips, a commonly used host, symptoms of systemic infection include 
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chlorotic lesions, mosaic patterning, leaf wrinkling, stunting, and vein clearing. Systemic 

symptoms usually appear within 12'-15 days, becoming full blown within 21-25 days 

(Lebeurier et al., 1980). 

Physical Properties of the Virion 

The CaMV virion is thought to be a 50-nm diameter icosahedron with a hollow core 

(Shepherd, 1970; Hull et al., 1976; Chauvin et al., 1979; Kruse et al., 1987). The 
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primary component of the virion shell is a protein with an apparent molecular weight of 44 

kD (AI Ani et al., 1979; Shockey et al., 1980); protein bands of other sizes are also 

observed (Brunt et al., 1975). 

Appr. 16% of the virion mass (Shepherd et al., 1968; Hull et al., 1976) consists of 

an 8 Kb (Franck et al., 1980) double-stranded, circular DNA molecule. Linear forms of 

DNA are also isolated from virions (Shepherd .and Wakeman, 1971). For most strains of 

CaMV, three single-stranded breaks, or "gaps," interrupt the backbone of the virion DNA 

molecule (Hull et al., 1979; Volovitch et al., 1979; Franck et al., 1980; Richards et al., 

1981). Gap 1 occurs in the minus strand (noncoding or template strand). Gaps 2 and 3 

occur on the plus strand. Upon denaturation, CaMV DNA [CabbS strain (Franck et al., 

1980)] dissociates into three separate strands; 8.0 Kb, 5.4 Kb, and 2.6 Kb. 

Organization of the Genome 

Sequence analysis (Franck et al., 1980) reveals 6 to. 8 open reading frames (ORFs) 
' 

located on the plus strand of CaMV DNA. ORFs one through five very closely abut or 

even overlap (Franck et al., 1980) and are conserved between strains, with appr. 5% 

variation between isolates (Balazs et al., 1982). Two other small ORFs, Vll and VIII, are 

less well conserved and little is known about their functions. Although the gene products 

for ORFs IT and Vll are unnecessary for infectivity, the presence and location of initiation 



and termination codons in these regions are crucial for infectivity (Dixon and Hohn, 1984; 

Dixon et al., 1986; Melcher et al., 1986b). 

CaMV as a Tool 

3 

CaMV has features which make it an especially important tool. Unlike the plant RNA 

viruses, CaMV has a replication cycle that is clearly divided into DNA and RNA stages. 

Because the double-stranded DNA of CaMV can be easily cloned, analysis of the nucleic 

acid sequence is much less daunting than for RNA viruses. Additionally, because cloned 

CaMV DNA which has been freed from the vector is infectious, it is easier to evaluate the 

effects of changes in the genome of CaMV than in t!tose of other viruses. CaMV DNA also 

serves as an important vector for expressing exogeneous genes in plants. 

The molecular biology of CaMV provides an especially appropriate model for plant 

molecular biology. Unlike RNA-containing plant viruses, CaMV shares the 

transcriptional, as well as the translational, machinery of its hosts. The CaMV 35 S 

promoter is already a workhorse in the area of chimeric gene constructions. Our 

understanding of CaMV transcription is one of the wedges that is being used to widen our 

understanding of plant transcription. Knowledge about other CaMV processes can only 

enhance our understanding of the molecular biology of plants. 

Work with CaMV can contribute to the pool of knowledge for not only CaMV, but 

also for other viruses. CaMV is similar to several human pathogens, notably the 

retroviruses and the hepadnaviruses. Investigation of both the differences:~d similarities 

between CaMV and other viruses may illuminate the biology and pathology of not only 

CaMV, but also these other viruses. 

Subsequent chapters will further explore the biology of CaMV. The introduction to 

Chpt. II will discuss the roles of RNA in the replication cycle of CaMV. The introduction 

to Chpt ill will discuss the phenomenon of cross protection as it relates to plant RNA 

viruses and CaMV. 



CHAPTER II 

REGULATION OF CAMV GENE EXPRESSION 

Introduction 

Transcription of CaMV DNA 

Covalently closed viral DNA and gapped viral DNA are found in the nuclei (Favali et 

al., 1973; Menissier et al., 1982; Olszewski et al., 1983) and cytoplasm, respectively, of 

infected cells. In the nucleus, viral DNA is asymmetrically transcribed (Howell and Hull, 

1978; Odell and Howell, 1980; Guilfoyle, 1980). Although gapped viral DNA is not 

considered to be transcriptionally active (Hull et al., 1979; Howell and Hull, 1978; 

Guilfoyle, 1980; Al Ani et al., 1980), the detection of minor transcripts with termini near 

or at the DNA gaps (Covey et al., 1981; Guilley et al., 1982; Condit and Meagher, 1983; 

Dudley et al., 1982) suggests that at least a portion of the viral transcripts may be 

transcribed using gapped templates. 

CaMV Transcripts 

Many different viral transcripts have been reported. These fall into two general 

classes, widely accepted transcripts and unsubstantiated ones. The predominant viewpoint 

is that CaMV codes for two major transcripts, the 35 S RNA and the 19 S RNA (Howell 

and Hull, 1978; Odell et al., 1981; Dudley et al., 1982; Covey and Hull, 1981). These 

RNAs are 8.2 and 1.9 Kb long, respectively (Covey et al., 1981; Dudley et al., 1982). 

The 35 S RNA. The 35 S RNA is the most predominant species of CaMV RNA; 

visual inspection of published northern blots suggests that 35 S RNA bands yield 5 to 50 
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times as much signal when compared to 19 S RNA bands (Howell and Hull, 1978; Odell 

et al., 1981; Dudley et al., 1982; Covey and Hull, 1981; Covey et al., 1981). However, 

this ratio varies between, and within, laboratories. S 1 nuclease analysis (Covey et al., 

1981; Guilley et al., 1982) and R-looping analysis (Dudley et al., 1982) suggest that the 

35 S RNA is generally not spliced. Transcription of the major 35 S RNA begins at nt 

7435 (Guilley et al., 1982) on the DNA of the CabbS strain (numbered as by Franck et al., 

1980), proceeds around the circular DNA template, through the origin of transcription, and 

terminates at nt 7615 to produce an RNA with terminally redundant ends (Guilley et al., 

1982). Possible roles for this RNA are discussed elsewhere in this review. A cassette-like 

model for the organization of the 35 S promoter has recently been presented (Benfey and 

Chua, 1990). 

The 19 S RNA. Transcription of the subgenomic 19 S RNA begins at nt 5765 

(Covey et al., 1981) or nt # 5764 (Guilley et al., 1982) of the CabbS sequence (Franck et 

al., 1980) and terminates, coterminal with the 35 S RNA, at nt 7615 (Guilley et al., 1982). 

The 19 S RNA codes for the inclusion body protein (Al Ani et al., 1980; OdeU and 

Howell, 1980; Covey and Hull, 1981) and is transcribed from contiguous DNA sequence 

(Covey et al., 1981). Transcription of the 19 S RNA is driven by the 19 S RNA promoter 

found in the small intergenic region between ORF V and VI. This promoter is less active 

than the 35 S promoter (Ow et al., 1987; Lawton et al., 1987). The 19 S RNA is capped 

and polyadenylated (Odell and Howell, 1980; Covey et al., 1981; Guilley et al., 1982). 

Other Transcripts. A number of RNAs which appear to be transcribed from gapped 

DNA have been reported. An RNA sedimenting at 8 S with a length of0.7 Kb appears to 

result from premature termination of transcription of the 35 S RNA at gap one (Guilley et 

al., 1982). Also, minor 35 S transcripts resulting from initiation and I or termination near 

mp 0 have been reported (Condit and Meahger, 1983; Guilley et al., 1982; Covey et al., 

1981; Dudley et al., 1982). A number of unsubstantiated reports of other CaMV -specific 



RNAs exist (Covey and Hull, 1981; Condit et al., 1983), but the validity of these 

observations remains questionable. 

Replication of CaMV DNA by Reverse Transcription 

6 

The collation of a number of pieces of evidence led to a model for CaMV replication by 

reverse transcription (Hull and Covey, 1983; Pfeiffer and Hohn, 1983; Guilley et al., 

1983). According to this model, the viral DNA is asymmetrically transcribed in the nucleus 

from a covalently-closed minichromosome (Guilfoyle, 1980; Olszewski et al., 1982; Hull 

and Covey, 1983; Menissier et al., 1982; Menissier et al., 1983; Olszewski et al., 1983). 

Transcripts include the greater-than-genome-length 35 S RNA (Covey et al., 1981; Guilley 

et al., 1982). The 35 S RNA is transported to the cytoplasm and reverse transcribed in 

virion-like replication bodies (Thomas et al., 1985; Marsh et al., 1985; Marsh and 

Guilfoyle, 1987) found associated with the viral inclusion bodies (Favali et al., 1973; 

Modjtahedi et al., 1984) in the cytoplasm of the host cell. 

The possible linkage between reverse transcription and virion assembly has been 

reviewed (Hull, 1984; Fuetterer and Hohn, 1987) and a detailed model postulated (Hull et 

al., 1987). The key point to this model is the coregulation of the processes of reverse 

transcription and translation. Both processes utilize the CaMV 35 S RNA. Interference 

between the two processes could be prevented by temporal and I or spatial separation of the . 

viral replication cycle into stages. [A third, pretranslation stage to the CaMV replication 

cycle has been proposed(Hohn et al., 1990); this subject will be addressed in a separate 

section of this review.] 

According to the model, the first phase of the viral replication cycle is the translation of 

the 19 S RNA and the subsequent accumulation of the inclusion body protein. This protein 

facilitates translation of the 35 S RNA, resulting in the accumulation of other viral proteins. 

The inclusion body protein also produces a scaffold which concentrates subsequent viral 

molecules and processes occuring in the cytoplasm of the host cell. 
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The model further postulates that during the second stage of viral replication, the 35 S 

RNA is utilized as a template for reverse transcription rather than for translation. Immature 

coat protein molecules, reverse transcriptase, tRNA primer, and I or other components 

assemble into virion-like replication complexes. These complexes sequester the 35 S RNA 

prior to the onset of reverse transcription; ribosomes are excluded. Spatial separation of 

the processes of reverse transcription and translation prevents competition and interference 

between the two processes. Exclusion of ribosomes also down-regulates translation of the 

35 S RNA. The binding site for the tRNA which primes reverse transcription is located 

just upstream of ORF VII. This strategic location suggests that tRNA-primer binding may 

function to coregulate the processes of translation and reverse transcription (Dixon and 

Hohn, 1984; Futterer et al., 1988). Proteinase processing, phosphorylation, and 

glycosylation might play roles in regulating the maturation of the replication complex 

during or after the reverse transcription of the 35 S RNA. CaMV replication and assembly 

may be linked in a manner similar to the interdependent replication and assembly ofHBV 

(Hirsch et al., 1990; Yu and Summers, 1991). 

Models for CaMV Gene Expression 

EJ\Pll<ssion of ORE v. The CaMV reverse transcriptase may be expressed from ORF 

V via an ORF IV -ORF V fusion protein, as is observed for retroviruses (Covey, 1986). 

However, unlike retroviruses, the translation of the CaMV reverse transcriptase gene could 

begin at a separate AUG initiation codon (Franck et al., 1980), suggesting that translation 

of this ORF is not dependent on frameshifting events, but is initiated at this AUG instead. 

A fusion protein was not detected in vivo or when in vitro transcripts from ORF IV I V 

subclones were translated in vitro (Gordon et al., 1988). The viablility of mutants with 

repeated stop codons between ORF IV and V suggests that frameshifting is not the normal 

mode ofORF V expression (Penswick et al., 1988; Schultze et al., 1990). Furthermore, 



the segment of DNA encoding the ORF NN overlap does not mediate frameshifting 

between adjacent reporter genes in a yeast system (Wurch et al., 1991). 

Another model suggests that ORF V might be expressed using a subgenomic RNA. 
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Although ORF V shows no eucaryotic promoter-like sequences immediately upstream of 

the transcription initiation point, a series of direct and inverted repeats occur between nt 

4925 and 5070; these repeats seem to be linked to dinucleotide-primed transcription from 

this region in vitro (Cooke and Penon, 1986). Promoter activity with appr. 1 % of the 

strength of the CaMV 35 S promoter has also been detected when DNA sequences 

upstream of ORF V are used to drive expression of reporter genes in transient assays 

(Hohn et al., 1990). In vitro translation activity for a 75 kD protein can be detected in 

RNA populations isolated from infected plants (Plant et al., 1985). This messenger activity 

can be hybrid selected using subclones bearing sequences from ORF V. This activity can 

also be detected in fractions of sucrose gradients which sediment at 22 S (Plant et al., 

1985). Unconfirmed work reported the detection of a 22 S subgenomic mRNA (Covey, 

unpublished; cited in Thomas et al., 1985). The existence of a subgenomic mRNA for 

ORF V remains uncertain. 

Translation of the 35 S RNA. The 35 S RNA plays a role in replication; a possible 

role as a messenger RNA also exists. The 35 S RNA is polyadenylated (Odell and Howell, 

1980; Covey et al., 1981) and can be isolated from polysome preparations (Odell et al., 

1985; Howell and Hull, 1978). The 35 S RNA also carries the cap-scan consensus 

proposed by Kozak (1981) near 6 out of 8 of the CaMV ORFs (Hull, 1984). However, 

the 35 S RNA is translated quite poorly in vitro (Franck et al., 1980; Guilley et al., 1982; 

Gordon et al., 1988) and the long 5 ' leader of the 35 S RNA inhibits the translation of 

downstream genes in transient expression assays (Futterer et al., 1990). Some evidence 

for weak in vitro translation of 35 S RNA or of 35 S RNA degradation products has been 

advanced (Plant et al., 1985). The inclusion body protein transactivates the translation of 
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the second cistron of bicistronic reporter gene constructs during transient expression assays 

(Bonneville et al., 1989; Gowda et al., 1989), thereby demonstrating a possible resolution 

of the discrepancy between the implied in vivo translation of the 35 S RNA and the failure 

to achieve significant in vitro translation of this RNA. 

The predominant model of 35 S RNA translation proposes that the closely-packed 

ORFs (I-III; and possibly ORFs N & V) are read by ribosomes which translate the 

individual genes, but do not dissociate from the RNA before beginning translation of 

downstream ORFs (Sieg and Gronenborn, 1982; Dixon and Hohn, 1984). This "relay 

race" model is supported by the packed, polycistronic nature of the CaMV 35 S RNA, the 

size limits of the intergenic region (Brisson et al., 1984; Pennington and Melcher, 

submitted), and the observation that viability of mutants with changes in ORFs Vll and II 

required only that these ORFs be terminated just before the initiation codon of the next 

downstream ORF (Seig and Gronenborn, 1982; Dixon and Hohn, 1984). Because ORFs 

m and N and ORFs N and V overlap, one must also consider the backward scanning 

model of ribosomal travel (Thomas and Capecchi, 1986) for these reading frames. 

Accumulation of Transcriptional Template. Supercoiled CaMV DNA can be extracted 

from the nuclei of infected cells (Menissier et al., 1982; Olszewski et al., 1983). 

Supercoiled CaMV DNA appears to accumulate during incubation of purified nuclei from 

infected plants (Ansa et al., 1982), during replication of CaMV in PEG-infected protoplasts 

isolated from healthy plants (Maule, 1985a) or during prolonged culture of callus tissue 

from infected plants (Covey et al., 1990). The accumulation of supercoiled DNA might be 

a result of the cycling of a small portion of the progeny virions or viral molecules back to 

the nucleus (Saunders et al., 1990). Hohn et al. (1990) have suggested that this cycling 

might be controlled by a balance between reverse transcriptase activity, transactivation of 

35 S RNA translation, and the production of coat protein. Cycling of progeny 



nucleocapsids has been reported to be necessary for high levels of HBV production in 

infected cells (Tuttleman et al., 1986). 

The Time Course of CaMV Re,plication in Protoplasts 

10 

Protoplasts have been infected with CaMV virions or transfected with viral DNA using 

various techniques (reviewed in Maule, 1985b). A large number of viral products has been 

characterized, including viral transcription template, transcripts, proteins, DNA, and 

virions. The protoplast system is in many respects a very good system for the study of 

virus replication. CaMV protein (Yamaoka et al., 1982) and DNA synthesis (Maule, 1983) 

reached levels comparable to those observed for cells in whole plants. All of the viral 

proteins which could be detected in planta could also be detected in protoplasts 

(Kobayashi et al., 1990). Other entities associated with viral replication and infection, such 

as replication complexes (Thomas et al., 1985) and virions (Yamoaka et al., 1982; Sakai 

and Shohara, 1982), have also been isolated from infected protoplasts. 

Howell and Hull (1978) studied the accumulation of CaMV RNA in infected turnip 

protoplasts. RNA was labeled during the time course of infection by including inorganic 

32p in the cultures. Labeled RNA was then isolated at various times postinfection, 

hybridized to filter-bound DNA for various times, and the amount of bound radioactivity 

determined by liquid scintillation counting. Only small amounts of radioactivity were 

bound to the filters when RNA isolated at 2 days was hybridized, but the RNA isolated at 3 

and 4 days gave a three- to four-fold increase in signal. The kinetics of hybridization were 

examined by determining the amount of signal bound at selected times during the 

hybridization. Samples shared a common plateau of signal after 12 (4-day sample) to 24 

(3-day sample) hr of hybridization. However, the slopes of the hybridization curves were 

quite different, the 4-day sample showing a steeper hybridization slope. The authors 

intetpreted these results to mean that the same portion of the CaMV genome was 
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transcribed at all times postinfection (due to the plateau) and that CaMV RNA accumulated 

throughout the experiment (due to the increasing slopes of the hybridization curves of 

samples isolated at successive time points). Other explanations can be envisioned. 

Characterization of this RNA suggested that the total RNA population consisted primarily 

of a large species of RNA complementary to the (-) strand of the viral DNA. The RNA 

population was appr. 30 % polyadenylated. 

An unusual population of RNAs has been isolated from replication complexes that 

were prepared from infected turnip protoplasts (Thomas et al., 1985). Discrete RNA 

species of 6.7, 6.2, 4.7, 3.4, and 2.6 Kb, as well as a heterogeneous smear of RNA 

similar to that reported by Guilley et al. (1982), were observed. 

Some differences between CaMV replication in protoplasts and in cells of whole plants 

may exist. It has been reported that protoplasts do not form the intracellular inclusion 

bodies characteristic of CaMV infection (Yamoaka et al., 1982b). Other authors have 

reported that the regulation of transcription in protoplasts may differ from that observed for 

whole plants (Ebert et al., 1987; Odell et al., 1988; Fang et al., 1989). Although the 

artificial nature of the system must be considered when results are interpreted, the system 

remains the only good way to generate synchronous replication of CaMV. 

Statement of Purpose 

Our understanding of the biology of CaMV has led to a model of the mechanism by 

which plant promoters may function. Also, studies using CaMV have illuminated 

alternative modes of RNA translation. Relationships between CaMV and human pathogens 

continue to become apparent. However, pivotal questions remain unanswered. 

Speculations about the existance of an ORF V RNA species have been advanced, but not 

addressed. This speculation is shaping hypotheses about the replication and expression of 

CaMV (Hohn et al, 1990) and other reverse-transcribing elements (Hohn and Futterer, 



1991). Proof of this sub genomic message seems mandatory before such hypotheses 

become widely accepted. 

Important relationships between transcription and replication remain unexplored. 

Although the kinetics of CaMV DNA synthesis have been well investigated (Maule, 

12 

1985a), the possibility of changes in the CaMV RNA population has not been addressed. 

Indeed, the only study of changes in the CaMV RNA population during replication (Howell 

and Hull; 1978), rather than at a given point in the infection cycle, was done over 13 years 

ago, before the widespread use of "northern blots"! Speculations about CaMV RNA 

expression are becoming annoyingly and dangerously unsupported. 

An investigation of the CaMV RNA population within infected turnip protoplasts was 

undertaken to examine mechanisms by which CaMV gene expression might be regulated. 

By utilizing a synchronously-infected population of cells as a source of CaMV RNA, it was 

hoped that transient changes in the RNA population could be detected and analyzed. 

Specifically, it was hypothesized that a sub genomic ORF V RNA would be detected and 

that correlations between CaMV DNA accumulation and RNA expression would be 

apparent. Additionally, it was speculated that previously unreported RNA species might be 

detectable in this system. The possibility that changes in the RNA population might also be 

detectable in planta was also considered. 

Materials and Methods 

Overview of the System 

The goal of these experiments was to examine mechanisms by which CaMV gene 

expression might be regulated. It was hypothesized that changes in the CaMV RNA 

population could be detected by harvesting the RNA from synchronously-infected 

protoplasts at various times postinfection. 
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RNA Tecbni<Wes. The validity, limitations, and reproducibility of the techniques used 

for RNA analysis were examined using RNA isolated from infected plants rather than RNA 

from protoplasts due to the labor-intensive nature of protoplast work. Following the 

isolation of RNA samples from systemically-infected leaves of turnips, the concentration 

and purity of total cellular RNA was examined using UV spectroscopy. Electrophoresis, 

followed by staining with acridine orange and destaining, allowed analysis of the extent of 

degradation of the ribosomal RNAs within each sample. Gel blot assays were used to 

assess the amount and integrity of CaMV -specific RNA in each sample. Nuclease 

protection assays were used to estimate the relative amounts of CaMV RNA between 

samples and to determine the relative amounts of CaMV 35 S and 19 S RNA within 

samples. 

The effects of oligo(dT)-cellulose chromatography were also characterized. RNA 

degradation during chromatography was assessed by electrophoresis and staining of the 

ribosomal RNAs present in the nonpolyadenylated fractions of RNA isolated from 

individual systemically-infected leaves. Gel blot assays were used to characterize the 

quality and quantity of CaMV -specific RNA present within polyadenylated fractions from 

individual samples. 

Characterization of Chan~s in the CaMV RNA Po.pulation Durin~ Synchronous 

Replication. To detect changes in the CaMV RNA population during viral replication, 

protoplasts were isolated from leaf tissue of healthy host plants, infected with purified 

virions, and distributed to individual cultures. The viablility of uninfected or infected 

cultures was examined by a variety of techniques. CaMV DNA replication curves (Hussain 

et al., 1985) were used to assess the success of these PEG-mediated infections (Maule, 

1983) and to examine the time course of CaMV DNA synthesis. At various times 

postinfection, cultures were harvested and their RNA isolated. RNA in these samples was 

analyzed by gel blot assays ("northern blots"). 



Rea~nts 

The highest quality reagents available in the laboratory were used. Specific sources 

are noted where such sources are considered to be important for the success of the 

..• experimental technique. 

Plasmid Contruction 

14 

The plasmid pCS101 contained the full-length CabbS genome cloned into the Sal I site 

of pBR322 (Richards, Guilley, and Jonard; unpublished). This plasmid was identical in 

construction to pCa37 (Lebeurier et al., 1982). 

The plasmid pSRL51 contained a 1.2 Kb fragment of Arabidopsis thaliana genomic 

DNA inserted into a bacterial vector, pUC119. The inserted fragment included half of the 

a.-tubulin gene including two introns and the 3' terminus. pSRL51 was constructed by 

Steven Ludwig (Ludwig et al., 1987). 

The plasmid pSH115 was created by inserting the 438 Psti I Sac! fragment ofpCS101 

between the corresponding sites of Bluescript SK ( +) [Stratagene]. pSH115 therefore 

contained 438 nt of pCS 101-derived DNA corresponding to nt 5390 to nt 5828 of the 

CabbS viral DNA (numbering of Franck et al., 1980). The orientation of the insert was 

such that synthesis of RNA I DNA primed from the T-3 promoter I primer would result in a 

a fragment of RNA I DNA complementary to the viral coding ( + ) strand or viral RNA. 

All plasmids were constructed using the general guidelines recommended by Maniatis 

et al. (1982). Recombinant plasmids were identified by restriction analysis and I or limited 

DNA sequencing. 

Proto.plast Isolation 

Turnip plants were grown as previously described (Gardner et al., 1980). The plants 

were moved to total darkness and held at 25° C for 20 hr prior to protoplast isolation. 



15 

Protoplasts were isolated following the guidelines of Ulrich et al. (1980). Peeled tissue (2-

3 g from the 4th-7th leaves of 4-5 week-old plants) was digested in 25 m1 offtlter-sterilized 

enzyme solution [1% Cellulase Onozuk:a RS (Y akult Pharmaceutical Co.), 0.1% 

Macerozyme RlO (YakultPharmaceutical Co.), 5 mM MES, pH 5.6, 4 mM CaCl2, 0.4 M 

mannitol] for 4 hr at room temperature. The digestion mixture was then filtered through 

cheesecloth and the protoplasts were washed thoroughly in 5 mM MES, pH 5.6, 4 mM 

CaC12 , 0.4 M mannitol. 

Turnip plants were infected with CabbS virions as previously described (Gardner et 

al., 1980). At time of harvest, the first primary leaf was designated as leaf number one and 

subsequent leaves numbered proceding from oldest to youngest 

Infection of Turnip Protoplasts with CaMY Virions 

CaMV virions were isolated and purified as described by Hull et al. (1976), filter

sterilized, and mixed with freshly-isolated protoplasts. PEG (MW 6000, Sigma) was used 

to promote infection following the procedure of Maule (1983). For small scale work, the 

original volumes specified were used; for large-scale work, this procedure was scaled up 

four-fold. 

Culture of Protoplasts 

Mter infection, pro top lasts ( 6 x 1 ()6) were cultured at room temperature under ambient 

light in 3 m1 of a modified A medium (M medium) in 60 x 15 mm sterile, disposable petri 

dishes whose edges had been sealed with parafilm. M medium consists of A medium 

(Kao and Michayluk, 1981) in which the hormone and CaC12 concentrations were changed 

to those used in 8p medium (Kao and Michayluk, 1975). Alternatively, protoplasts (0.8 x 

106) were cultured in Costar Mark II 24-well tissue culture plates in 0.4 m1 of M medium. 

Carbenecillin was routinely included in the culture medium at a concentration of 0.50 

mglml. Protoplasts were cultured for up to four days before harvest at the time of harvest, 



16 

aliquots from each culture were spotted to nitrocellulose as described below and the rest of 

the culture was collected in a 10 ml centrifuge tube and centrifuged for 5 min. at 100 x g. 

Appr. 9 ml of solution were removed by aspiration. The cells were resuspended in appr. 

one ml of culture media and transfered to a microcentrifuge tube. These tubes were 

centifuged for 5 min. at appr. 100 x g, the packed cell volume was estimated, the supernate 

was removed by aspiration, and the cells were lysed for RNA isolation as described below. 

Dot Blot Assay of Infection 

Replication of viral DNA in transfected protoplasts was followed via dot blot 

hybridization (Hussain et al., 1985). At various times postinfection, triplicate aliquots (5 
.. 

~. appr. 1o4 cells I aliquot) of the cultures were spotted directly on an untreated 

nitrocellulose membrane (Schleicher & Schuell). After all samples were collected, the dry 

filter was laid for 5 min on two layers of 3 MM Whatman paper saturated with 0.5 N 

NaOH. The nitrocellulose filter was then neutralized by two successive 1 min incubations 

on 3MMpaper saturated with 1.0 M Tris-HCl, pH 7.5, 0.6 M NaCl followed by a 5 min 

incubation on 3MMpaper saturated with 0.5M Tris-HCl, pH 7.5, 1.5 M NaCl. The blot 

was then washed twice with chloroform, dried at room temperature, and baked for 2 hr in a 

vacuum oven at appr. 80 OC. The baked blot was hybridized with radiolabeled (Feinberg 

and Vogelstein, 1983), cloned CaMV DNA (pCS101) using conditions recommended by 

the membrane manufacturer. After hybridization, the membrane was washed 4 times with 

2X SSC/0.1% SDS for at 25 ° C for 10 min followed by a final wash under the same 

conditions for 30 min. The washed membrane was exposed to X-ray film. After 

autoradiography, the spots were excised and total radioactivity for each spot was 

determined by liquid scintillation counting. The hybridization conditions used for DNA dot 

blot assays were the same as those used for RNA gel blot assays; these conditions are 

described more fully below. 
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Isolation of RNA from Leayes and Protoplasts 

All solutions, plasticware, and glassware for RNA work were treated and handled as 

recommended by Maniatis et al. (1982). A modification the RNA isolation procedure of 

Chomczynski et al. (1987) was done in 1.5 ml microcentrifuge ("Eppendorf') tubes or in 

15 ml Corex centrifuge tubes. Individual leaves were frozen and ground in liquid nitrogen. 

One volume of Solution D ( 4.0 M guanidinium thiocyanate, 25 mM sodium citrate pH 7 .0, 

0.5 % Sarkosyl, 0.1 M 2-mercaptoethanol) was added to 0.1 to 1.0 volume of the frozen 

tissue and the mixture was vigorously vortexed. Immediately thereafter, 1 volume of 

water-saturated phenol, 0.2 volume of chloroform:isoamyl alcohol (24: 1), and 0.1 volume 

of 2M sodium acetate (pH 4.0) were added to each tube and the mixture was again 

vortexed vigorously. After a 20 min incubation on ice, the phases were separated by 

centrifugation and the aqueous phase was collected. One volume of isopropanol was added 

to the aqueous phase and the samples were then incubated at -20 ° C for one hour. 

Samples were routinely stored at this point or, alternatively, the RNA was pelleted at 

10,000 x g, rinsed with 70:30 (vI v) ethanol I TE-SDS (10 mM Tris pH 7 .0, 1 mM 

EDTA, 0.1% SDS) and stored at -70 o C. For protoplasts, RNA was extracted from 3 x 

1()6 to 6 x 106 cells as described above; however, the cells were not frozen before 

disruption. 

Oli~CdU-Cellulose ChromatoiiD\PhY of RNA 

Immediately before oligo(dT)-cellulose (obtained from Sigma Chemical Company) 

chromatography, RNA samples ("total RNA" or "total cellular RNA") stored in 

isopropanol or ethanol were centrifuged at 10,000 x g for 10 min. The pellet containing the 

RNA was incubated at 70 o C in 200 J..Ll ofTE-SDS, chilled on ice, the insoluble materials 

sedimented by centrifugation at 10,000 x g for 5 min., and the supernatant was collected. 

To each sample, 1/9 volume of 3 M sodium acetate, pH 6.0 and 2.5 volumes of ethanol 
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were added and the samples were incubated at -20 to -70 ° C for 1 or more hr. Samples 

were then centrifuged at 10,000 x g and the RNA pellets were redissolved in 200 J.l.l of 1E

SDS. The concentration of the RNA in each sample was estimated spectrophotometrically. 

Oligo(dT)-cellulose chromatography was carried out for each individual sample as 

described by Kingston (1989) using batch chromatography at room temperature in 

microfuge tubes. Briefly, each sample (RNA in 1E-SDS) was brought to 0.5 M LiCl and 

mixed for 10-45 min with oligo(dT)-cellulose that had been preequilibrated with 1E-SDS, 

0.5 M LiCl. Equal amounts (40-400 J.Lg) of each RNA sample were applied to each 

"column" (40-200 J.l.l packed oligo(dT)-cellulose, appr. 20-100 mg). The "columns" were 

then washed four times with mid-wash buffer (10 mM Tris, pH 7.0, 1 mM EDTA, 0.1% 

SDS, 0.15 M LiCl) and polyadenylated RNA was eluted from the washed oligo(dT)

cellulose "pellet" by two successive 10-30 min incubations with 150 J.l.l of 1E-SDS. Pairs 

of eluted fractions were pooled, mixed, and extracted with buffered phenol/ chloroform I 

isoamyl alcohol (25:24:1, v/v). The RNA in each sample was precipitated with 25 J.l.g of 

tRNA carrier, 1/9 volume of3 M NaOAc, pH 6.0, and 2.5 volumes of95% (or absolute) 

ethanol. Precipitated samples were stored at -70 o C. Nonpolyadenylated RNA was also 

collected by precipitating aliquots of the unbound fraction (appr. 15 J.l.g) with 1/9 vol of 3 

M sodium acetate, pH 6.0 and 2.5 volumes of ethanol. The integrity of nonpolyadenylated 

RNA was assessed by agarose gel electrophoresis (McMaster and Carmichael, 1977). 

Gel Blot Assays ("Northern Blots") 

For gel blot analysis of RNA samples, RNA was redissolved, denatured with glyoxal, 

and separated on 1% agarose gels following the recommendations of Thomas (1980). 

After electrophoresis at a field strength of 0.6 VI em on 14 em gels for 4- 5 hr, RNA was 

capillary transferred to charge-modified nylon membranes (S + S Nytran) using lOX SSC. 

Alternatively, RNA was electrotransferred to Nytran membranes following the membrane 

manufacturer's recommendations. Membranes were baked for 2 hr at appr. 80 ° C under 
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vacuum, washed with hot TE-SDS, and prehybridized for 4-8 hr at 42 o C. 

Prehybridization and hybridization buffers contained 50% formamide, 5X SSPE, 5X 

Denhardt's solution, 0.5% SDS, and 200 J.Lg/ m1 sheared, denatured salmon sperm DNA. 

CaMV -specific RNA was detected using 2 - 5 x 10 6 cpm of radiolabeled (Feinberg and 

Vogelstein, 1983) clonedCaMVDNA (pCS101) perm! of hybridization solution. In 

hybridizations of blots designed to detect CaMV -specific RNA from transfected 

protoplasts, hybridization buffer was mixed 4:1 (vI v) with 50 % dextran sulfate. 

Hybridizations were incubated for appr. 20 hr at 42 o C. 

Mter hybridization,· the membranes were washed four times for 10 min each in 2X 

SSC I 0.1% SDS at room temperature. A final stringency wash with 0.1X SSC I 0.1% 

SDS was done at 65 o C for 30 min. Membranes were exposed to X-ray film at -70 ° C. 

The time of exposure and use of intensifying screens depended on the amount of 

radioactivity bound to each blot 

For blots of RNA isolated from protoplasts, previously bound probe was removed by 

boiling the membrane in TE-SDS for 30 min followed by washing in 2X SSe I 0.1% SDS 

for 5 min. Efficiency of stripping was assessed by exposing the stripped membrane to X

ray film or, alternatively, by Geiger-Mueller monitoring. Membranes were rehybridized 

with a radiolabeled plasmid containing 1.7 Kb of coding sequence for the Arabidopsis 

thaliana tubulin gene (pSRL51; Ludwig et al., 1987). Hydridizations with the tubulin

gene clone were carried out as described above, but the fmal stringency wash was at 25 ° e 

in 2X SSe I 0.1% SDS. 

In Vitro Transcription Probe for Nuclease Protection 

Assays of eaMV 35 S and 19 S RNA 

Nuclease protection assays were performed using a small radiolabeled probe that 

would detect and differentiate between the CaMV 19 S RNA and CaMV RNAs which do 
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not have termini within the DNA sequences encompassed by the probe. To generate this 

probe, the plasmid pSH115 was digested with EcoRI before being used as an in vitro 

transcription template. This digestion resulted in two fragments, the larger of which 

contained 180 nt of DNA complementary to CaMV CabbS DNA. Specifically, CabbS 

DNA sequence from nt 5650 to nt 5829 [numbered as by Franck et al. (1980)] was present 

downstream of the T3 promoter of the vector on the larger fragment In vitro 

transcription reactions using T3 RNA polymerase were assembled following the 

recommendations of the enzyme manufacturer. These reactions generated a 194-nt 

radiolabeled RNA probe consisting of 180 nts of RNA complementary to CaMV CabbS 

DNA and a 5 1 leader of 14 nts complementary to vector sequence. The CaMV 35 S RNA 

contains sequence complementary to 180 nt of the probe; the CaMV 19 S RNA contains 

sequence complementary to 66 nt at the 5 1 end of the probe (Fig. 1). 

Nuclease Protection Assays 

S1 nuclease protection assays were performed following the guidelines of Kedzierski 

and Porter (1990) using the probe described above. The in vitro transcription template 

was removed by acidic phenol extraction (Kedzierski and Porter, 1991). RNA samples (1 

/4 of the polyadenylated RNA purified from 50 J.Lg of total RNA or, alternatively, 10 J.Lg of 

total RNA) were annealed with 1.4 X 10 6 cpm (appr. 1.4 ng) of gel-purified probe in 30 

J.Ll of hybridization buffer containing 60 mM Tris·HCl, pH 7.5, 0.9 M NaCl, 6 mM EDTA, 

4 mM DTT, and 40% formamide. Carrier tRNA dissolved in annealing buffer was added 

to bring the final RNA concentration to 25 J.Lg/30 J.Ll. After annealing overnight at 50 ° C, 

25 J.Ll of each annealed sample were brought to 200 J.Ll with 1X S 1 nuclease buffer 

containing 1 U/J.Ll of S 1 nuclease(BRL) and digested for 1 hr at 37 ° C. Digested samples 

were then extracted with buffered phenoVchloroform/ isoamyl alcohol (25:24: 1) and the 

undigested RNA was precipitated with 10 J.Lg of tRNA and 2.5 volumes of ethanol in the 

presence of 2 M ammonium acetate. The RNA was then redissolved in 80% formamide, 



Figure 1. Diagram of Strategy for Nuclease Protection Assays. 

Reactions were carried out as described in Materials and Methods. Stippled 
area on the plasmid template indicates CaMV sequence. DNA sequences are 
represented by thick lines. RNA sequences are represented by thin lines. 
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10 mM EDTA, 0.1% bromophenol blue, 0.1 %xylene cyanol, heated at 85 o C for 5 min, 

and electrophoresed on 8% sequencing gels at 50 V/cm for 1 hr. Gels were exposed wet 

overnight Alternatively, exposures were also done for 5 days using intensifying screens. 

Results 

Integrity of CaMV Virions Durin~ RNA Isolation. 

In the RNA isolation procedure (Chomczynski and Sacchi, 1987) used to extract RNA 

from plant tissues, DNA is removed from RNA samples by a phenol extraction done at low 

pH To determine if this procedure disrupts CaMV virions, purified CaMV virions were 

subjected to a slightly modified version of this procedure. When done at neutral pH, the 

RNA isolation protocol yielded only trace amounts of ethidium bromide-fluorescing 

material from virions (Fig. 2). This material did not comigrate with authentic virion DNA. 

Little or no CaMV DNA was recovered from CaMV virions. Thus, virions were resistant · 

to disruption by the RNA isolation procedure. 

Analysis of RNA TechniQJ.Ies- RNA from Whole Plants 

The applicability of the techniques used for RNA analysis were examined using RNA 

isolated from systemically-infected leaves of turnips. Presented in Fig. 3 to Fig. 10 are 

results from analysis of RNA samples isolated from individual leaves of four different 

plants. Plant number one was harvested 28 days postinfection. Plants number two, three, 

and four were harvested at 14 to 15 days postinfection. 

Analysis of RNA Purity and Quantity. The concentration and purity of RNA samples 

was examined by measuring the UV absorbance at 260 and 280 nm. Old leaves yielded 

less RNA per gram of stemless tissue than young leaves (not shown). RNA samples 

extracted from older leaves (longer than 15 em) typically had A260 I A2so ratios of appr. 

1.6 while samples from younger tissues typically had correct (Sambrook et al., 1989) 



Figure 2. Effect of GTPC Treatment on CaMV Virions. 

CaMV virions (50 J.Lg of the CabbS strain) were treated by the method of 
Gardner and Shepherd (1980) using Proteinase K and SDS or by a 
modification of the method of Chomczynski and Sacchi (1987) in which the 
extraction was done at neutral pH with guanidine thiocyanate. Nucleic acids 
were then purified by extraction with buffered phenol I chloroform (5:1), 
precipitated with isopropanol in the presence of 50 J.Lg of tRNA carrier, and 
redissolved in TE. One-fifth of the nucleic acid isolated using Proteinase K I 
SDS (ProiSDS) and all of the nucleic acid isolated using guanidine 
thiocyanate (GTPC) were applied to a 1 % agarose gel. After electrophoresis 
at 7. 7 V I em for 45 min, the gel was stained with 1 J.Lg I ml ethidium 
bromide. The sizes (Kb) of selected bands of the DNA size standards (stds; 
BRL 1 Kb ladder) are shown. 
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Figure 3. Analysis of Integrity of RNA Isolated from Turnip Leaves at 28 Days 
Postinoculation-Plant #1. 

RNA was isolated from the indicated leaves (numbered as described in 
Materials and Methods) of an infected plant. The leaflets and shoot apex were 
designated leaf #24. RNA from an uninoculated plant was also analyzed 
(healthy). The positions of the 25 S and 18 S cytoplasmic rRNAs have been 
indicated. 
(A) Seven J.lg of total RNA were glyoxalated, separated by electrophoresis, 
and stained with acridine orange. 
(B) RNA samples were subjected to oligo(dT)-cellulose chromatography and 
an aliquot (5 Jlg) of nonpolyadenylated fractions were glyoxalated, separated 
by electrophoresis, and stained with acridine orange. 
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Figure 4. Analysis of Integrity of RNA Isolated from Turnip Leaves at 14 Days 
Postinoculation-Plant #2. 

RNA was isolated from the indicated leaves (numbered as described in 
Materials and Methods) of an infected plant; the leaflets and shoot apex were 
designated leaf #15. RNA (5 J..Lg) was glyoxalated, electrophoresed, and 
stained as described. An equivalent amount of RNA from an uninoculated 
plant was also included (healthy); The positions of the 25 S and 18 S 
cytoplasmic rRNAs have been indicated. 
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Figure 5. Gel Blot Analysis of CaMV -specific RNA Present in Turnip Leaves at 28 Days 
Postinoculation-Plant #1. 

The gel described in Figure 3A was transferred to a nylon membrane after 
staining, destaining, and photography of rRNA. CaMV -specific RNAs were 
detected following hybridization with radiolabeled, cloned CaMV DNA 
(pCSlOl). The X-ray film was exposed for 2 hr without an intensifying 
screen (Panel A) or 5 hr with an intensifying screen(Panel B). 
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Figure 6. RNA Isolated from Turnip Leaves at 14 Days Postinoculation-Repeat of 
Analysis for Plant #2. 

RNA was isolated from the indicated leaves (numbered as described in 
Materials and Methods) of an infected plant; the leaflets and shoot apex were 
designated leaf# 13. Oligo(dT)-cellulose chromatography was performed as 
described. 
(A) One-half of the polyadenylated RNA fraction purified from 40 Jlg of 
RNA isolated from each leaf was applied to a 1% agarose gel. An equivalent 
amount of RNA isolated from an uninoculated plant (healthy) and 2 ng of 
unlabeled restriction fragments of pCS 101 (Sail std and EcoRI std) were also 
glyoxalated and applied; the sizes of the restriction fragments are indicated 
(Kb). Gel blot analysis was performed using radiolabeled, cloned CaMV 
DNA (pCS101). 
(B) Aliquots of nonpolyadenylated RNA fractions (6 J.Lg) corresponding to 
the polyadenylated RNA fractions described above were glyoxalated, 
electrophoresed, and stained as described. An equivalent amount of 
nonpolyadenylated RNA from an uninoculated plant was also included 
(healthy). The positions of the 25 Sand 18 S cytoplasmic rRNAs are 
indicated. 
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Figure 7. Gel Blot Analysis of CaMV -specific RNA Present in Turnip Leaves at 14 Days 
Postinoculation-Plant #2. 

The gel described in Figure 4, was transferred to a nylon membrane after 
staining, destaining, and photography of rRNA. CaMV -specific RNAs were 
detected following hybridization with radiolabeled, cloned CaMV DNA 
(pCS 101). Unlabeled restriction fragments of pCS 101 (2 ng) were also 
glyoxalated and used as size standards (Sall std and EcoRI std). The sizes of 
these restriction fragments are indicated (Kb ). 
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Figure 8. Gel Blot Analysis of Polyadenylated CaMV RNA Present in Turnip Leaves at 14 
Days Postinoculation-Plant #3. 

RNA was isolated from the indicated leaves (numbered as described in 
Materials and Methods) of an infected plant; the leaflets and shoot apex were 
designated leaf# 13. One-half of the polyadenylated fraction purified from 40 
J..Lg of each RNA sample was applied to a 1% agarose gel. An equivalent 
amount ofpolyadenylated RNA from an uninoculated plant (healthy) and 10 
J..Lg of the nonpolyadenylated RNA fraction from leaf 11 (A - leaf number 11) 
were also included. The positions of the CaMV 35 S and 19 S RNAs are 
indicated; these RNAs were identified based on their migration relative to the 
migration of unlabeled Sail and EcoRI fragments of pCS 101 which had been 
gyoxalated and applied to the gel (not shown). Gel blot analysis was 
performed using radiolabeled, cloned CaMV DNA (pCS101). 
(A) The X-ray fihn was exposed for 3 days with a screen. 
(B) The X-ray fihn was exposed for 6 days with a screen. 
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Figure 9. Results of Nuclease Protection Assays of Poly+ RNA Isolated at 28 and 14 
Days Postinfection-Plants 1 and 2. 

The assay was performed using 1/4 of the polyadenylated RNA purified from 
50 J..Lg of RNA isolated from the indicated leaves. Leaf numbering and assay 
conditions are described more fully in Materials and Methods. The assay was 
also performed using an equivalent amount of poly A+ RNA isolated from an 
uninoculated plant (healthy). Sample RNA was annealed with 1.4 x 106 cpm 
of complementary RNA probe. The hybridization reactions were then 
digested with S-1 nuclease to yield the indicated 35 S- and 19 S-protected 
fragments. The size of the undigested probe is shown (probe). This probe is 
described more fully in Materials and Methods. A dideoxy-C DNA 
sequencing reaction was used to generate DNA size standards (not shown). 
(A) RNA was isolated from the indicated leaves at 28 days postinfection; the 
leaflets and shoot apex were designated leaf# 24. The gel was exposed 
overnight without an intensifying screen. 
(B) RNA was isolated from the indicated leaves at 14 days post infection; the 
leaflets and shoot apex were designated leaf #15. The gel was exposed for 5 
days with an intensifying screen. 
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Figure 10. Results of Nuclease Protection Assay of Total RNA-Plant 4. 

The assay was performed using 10 Jlg of total RNA isolated from the 
indicated leaves. The numbering of leaves, assay conditions, and 
complementary RNA probe are described more fully in Materials and 
Methods. The assay was also performed using 10 Jlg of RNA isolated from 
an uninoculated plant (healthy). Sample RNA was annealed with 2.5 x 10 
6 cpm of probe. The hybridization reactions were then digested with S-1 
nuclease to yield the indicated 35 S-and 19 S-protected fragments. The size 
of the undigested probe is also shown (probe). 
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A260 I A28o ratios of 2.0 (not shown). Recovery of RNA from old leaves was 

complicated by the presence of insoluble or poorly soluble material in the pellets recovered 

following the isopropanol-precipitation step of the RNA extraction. Thus, the purity of 

RNA samples decreased with increasing leaf age. When analyzed by gel blot assay, 

CaMV -specific signal was not detected in RNA samples that were treated with RNAase, 

suggesting that RNA samples were significantly free of DNA (not shown). 

Analysis of RNA Integrity. The intactness of RNA samples was routinely analyzed 

using electrophoresis and acridine-orange staining to detect discrete rRNA bands. These 

analyses were complicated by variation in the degree and uniformity of gel destaining (not 

shown). When less than seven Jlg of RNA was analyzed, minor RNA species, including 

degradation products, were difficult to detect (Fig. 6B). Similarly, the sensitivity of 

detection was impaired on gels that were overly destained or inadequately destained. 

Analysis was greatly facilitated when seven or more Jlg of RNA were present on an 

optimally-destained gel (e.g. Fig. 3A). 

Electrophoresis and staining of total RNA samples}evealed the presence of several 

discrete bands (Fig. 3A). Based upon their predominance in the RNA samples from young 

nongreen tissues, the two major RNAs from these tissues were tentatively identified as the 

25 S and 18 S cytoplasmic ribosomal RNAs. When the molecular weights of these RNAs 

were estimated based upon their migration relative to glyoxalated DNA size standards (not 

shown), the estimated molecular weights agreed with weights reported for the cytoplasmic 

rRNAs of other plant species (reviewed in Leaver, 1979). 

Major RNAs migrating faster than the 18 S RNA were less detectable in samples 

isolated from young leaves than in samples from older leaves (e.g. Fig. 3A). Since the 

young leaves had not yet become green, they were expected to lack a full complement of 

photosynthetic structures, including chloroplast rRNAs. These smaller RNAs were 

therefore identified as plastid rRNAs. A minor band migrating slightly ahead of the 
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cytoplasmic 25 S rRNA was occasionally present (e.g. Fig. 3A, healthy). This RNA was 

tentatively identified as intact 23 S chloroplast rRNA. The 23 S chloroplast rRNA is 

seldom isolated from plant tissues as an intact molecule; instead this RNA is usually 

isolated as three fragments (reviewed in Leaver, 1979). The four bands below the 18 S 

cytoplasmic rRNA band (Fig. 3A) probably therefore correspond to the chloroplast 16 S 

rRNA and three discrete fragments from the chloroplast 23 S rRNA: 

Although discrete rRNA bands were observed following electrophoresis and staining 

of total RNA samples, some degree of degradation was still evident in most samples. Mild 

degradation was indicated by the presence of heterogeneously-sized fragments which 

migrated ahead of discrete bands. The intensity of signal from such fragments was 

typically more intense near the band and became less intense as the distance from the band 

became greater (e.g. Fig. 3A, leaves 14 and 16). This effect will be referred to as 

"smearing" of an RNA band. Undegraded or mildly degraded samples showed 25 S bands 

that were slightly more intense than the 18 S bands (e.g. Fig 3A, leaves 18, 20, 22, 24). 

This was expected as these two RNAs should be present in equimolar quantities (reviewed 

in Leaver, 1979). Severe degradation was indicated by perturbation in the relative 

intensities of the 25 Sand 18 S rRNAs. In severely degraded samples, the 25 S rRNA 

band was less intense than the 18 S rRNA band (e.g. Fig. 3A, leaf 12). Thus, the larger 

25 S rRNA appeared more susceptible to degradation than the smaller 18 S rRNA. 

Using these criteria for RNA integrity, degradation appeared to be more severe in 

samples isolated from old leaves than in samples from young leaves (Fig. 3A, Fig. 4). 

Apparently, it was more difficult to isolate intact RNA from older leaves than from young 

leaves. 

Analysis of Gel Blot Assay Techniqpe. In gel blot assays using cloned CaMV DNA 

as a probe, no signal was ever detected in lanes containing RNA from healthy plants, 

demonstrating that these assays were specific for CaMV RNA or DNA (e.g. Fig.5, 



healthy). No changes in signal intensity which ran diagonal to the direction of 

electrophoresis were observed, suggesting that observed changes are not artifacts of the 

hybridization conditions. 

To assess the efficiency of transfer of DNA fragments from gels using the capillary 

transfer technique, a set of DNA fragments (BRL 1 Kb ladder) was radiolabeled, 

glyoxalated, separated by electrophoresis, and transferred from the gels by capillary 

transfer. After transfer, the agarose gels were dried and exposed to X-ray film. 

Comparison of autoradiograms of the membrane with autoradiograms of the dried gel 

revealed that fragments larger than 4 Kb were transferred from the gel less quantitatively 

than smaller fragments (not shown). 
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To assess the efficiency of capillary transfer on individual gel blot assays, the relative 

signals of the 8.0 Kb and 4.3 Kb bands from Sall- digested pCSlOl were compared. 

These fragments were present in equimolar amounts in the Sall-digested plasmid DNA 

(Richards et al., unpublished). Based on this stoichiometry and the relative sizes of the 

fragments, the 8.0 Kb Sall standard band should have been 1.9 times as intense as the 4.3 

Kb band on gel blot assays. However, on gel blot assays the 8.0 Kb Sall standard band 

was typically slightly less intense than the 4.3 Kb standard band (e.g. Fig. 5, lane Sall 

std). Occasionally even lower relative intensities were observed (Fig. 6, Sail std lane). 

The relative intensities of the two Sall-standard bands were therefore used as a measure of 

transfer efficiency. No aberrations in the relative signals from fragments smaller than 4.3 

Kb were observed (Fig. 5). Scanning densitometry of an autoradiogram from a typical 

assay showed that the 8.0 Kb band was only 0.64 times as intense as the 4.3 Kb band (not 

shown). Therefore, only one-third of the 8 Kb DNA fragment was detected by the gel blot 

assay. Thus, if DNA and RNA capillary transfer efficiencies were similar, only one-third 

of the CaMV 35 S RNA present in a given sample was detected in typical gel blot assays. 
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Analysis of the CaMY RNA Content of Total RNA Samples from Individual Leaves. 

RNA was extracted from the leaves of plant number three at 14 days postinfection and 

analyzed on gel blot assays. When seven Jlg of total cellular RNA from each leaf were 

applied to the gel, the amount of CaMV -specific RNA detected in the gel blot assay varied 

from leaf to leaf (Fig. 7). Variation was also apparent when the CaMV -specific RNA 

content was analyzed by dot blot assay (not shown). To examine the reproducibility of 

leaf-to-leaf variation in relative CaMV RNA content, RNA was isolated in separate 

extractions and analyzed on separate gel blot assays. Gel blot assays were reproducible 

independent of the RNA extraction (not shown). RNA from leaves 10 and 13 gave strong 

CaMV-specific signal on both gel blot assays. Similarly, leaves 9, 11, 12, and 15 gave 

low CaMV -specific signal on both assays. Thus, the relative CaMV RNA content in each 

total RNA sample appeared to be independent of RNA handling. Leaf-to-leaf variation in 

CaMV RNA content occurred in plant number two as well as in plant number one. 

Comparison of the gel blot assays of RNA from these plants suggested that variations in 

CaMV RNA content were variable from plant to plant (Fig. 5 versus Fig. 7). 

Analysis of CaMV RNA Inte!Wty in Total RNA Samples. The integrity of the CaMV 

35 S RNA was assessed using gel blot assays to detect CaMV ,..specific RNA. The CaMV 

35 S RNA was identified by its comigration with the 8.0 Kb DNA size standard Some 

smearing of the 35 S RNA was apparent even in total RNA samples which showed little or 

no degradation when their rRNAs were analyzed as described above (leaves 18, 20, 22; 

Fig. 5 and Fig. 3A, respective! y ). Various degrees of smearing of the 35 S RNA are 

apparent in the literature (Odell et al., 1981; Covey and Hull, 1981). 

Within the 35 S RNA smear, negative "bands" which showed little or no probe 

binding were apparent (e.g. Fig. 5). The positions of these negative bands corresponded 

to the positions of the rRNA bands on the stained gel (not shown). Such bands have been 

reported by others (Odell et al., 1981; Covey and Hull, 1981). Presumably, rRNAs 



prevented the probe from binding to portions of the membrane, thereby preventing 

detection of RNA which comigrated with rRNA. 
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For each sample, the intensity of the 35 S RNA band relative to the smear from 

heterogeneously-sized fragments was noted. The intensities of 35 S RNA bands relative to 

smears decreased with increasing age of the leaf (Fig. 5, Fig. 7). This suggested that 35 S 

RNA isolated from older leaves was less intact than 35 S RNA from younger leaves. 

Effects of 0li&o(dD-Cellu1ose Chromato~aphy on RNA Quality. Oligo(dT)

cellulose chromatography (poly A selection) was used to separate nonpolyadenylated RNA 

from polyadenylated RNA. The integrity of rRNAs before and after oligo(dT)-cellulose 

chromatography was appr. equal (e.g. Fig. 3A versus Fig. 3B), suggesting that RNA 

samples experienced little or no degradation during oligo(dT)-chromatography. 

Electrophoresis and staining of polyadenylated fractions revealed small amounts of rRNA 

still present in the polyadenylated fractions (not shown). Mter chromatography, gel blot 

assays ofpolyadenylated fractions detected an RNA which comigrated with the 18 S rRNA 

(Fig. 8). Based on the migration of this CaMV -specific band relative to size standards, this 

band was identified as the CaMV 19 S RNA. A minor band which comigrated with the 23 

S rRNA was also apparent (Fig. 8). This probably represents an rRNA "shadow-band" 

artifact (Odell et al., 1981). This band could also be detected when assays were performed 

using a subclone of the CabbS ORF II as a probe (not shown). The amount of CaMV

specific signal recovered after chromatography varied significantly between two lots of 

oligo(dT)-cellulose from different manufacturers (not shown). 

Analysis of the Quality and Quantity of Polyadenylated 35 S CaMY RNA Isolated 

from Leaves. The polyadenylated fraction from each sample was analyzed by gel blot 

assay. The intensities of35 S bands relative to 19 S bands were noted. Less 35 S signal 

relative to 19 S signal was detected in samples from older leaves than in samples from 

younger leaves (Fig. 6A, Fig. 8). In all assays, the 35 S RNA band and I or high 



molecular weight smear was detectable if the 19 S band was easily detectable (e.g. Fig. 

6A). 
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Because the relative 35 S RNA signal decreased with increasing leaf age, and the 

extent of RNA degradation seemed to increase with increasing leaf age, the possibility 

exists that changes in the relative 35 S RNA band intensities are artifacts of degradation. 

This possibility was supported by the obseiVation presented earlier that the 23 S rRNA 

seemed more susceptible to degradation than the 18 S rRNA, suggesting that large RNAs 

are especially sensitive to degradation. Gel blot assays of polyadenylated RNA were 

therefore not suited to analysis of minor changes in the relative amounts of RNAs of 

different sizes. 

Analysis of CaMY RNAs by Nuclease Protection. Nuclease protection assays for 

CaMV RNAs were developed and used to overcome the limitations of gel blot assays for 

estimating the relative amounts of 35 S and 19 S RNA. Nuclease protection assays 

measured the amounts of 19 S RNA and the amounts of CaMV RNAs which did not have a 

terminus near the 19 S promoter, presumably the 35 S RNA (or degradation products of 

the 35 S RNA). 

No detectable probe was protected by polyadenlated RNA isolated from uninfected 

plants (Fig. 9A and B). Little (Fig. 9B) or no (Fig. 9A) undigested probe could be 

detected in assays ofpolyadenylated RNA from infected plants. PolyadenylatedRNA from 

infected plants protected probe fragments of two different sizes. The migrations of these 

fragments relative to DNA size standards were consistent with expected migrations for 

protected probe species (not shown). For polyadenylated RNA samples from plant number 

two, a long exposure to X-ray fllm was required to detected protected probe fragments. 

This fact, and the very low signal from leaves 11 and 12 (Fig. 9B), suggested that under 

these conditions, the amount of polyadenylated Ca.MV RNA in these samples was barely 

detectable by nuclease protection assay. Probe fragments protected by the polyadenylated 
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RNA isolated from plant number one were detectable after an overnight exposure of the gel 

to X-ray film. A minor protected fragment migrating to a position between those of the 35 

S-protected fragment and the 19 S-protected fragment was observed for one sample from 

plant number one (Fig. 9A, leaf 18). This band was also observed in other assays of 

polyadenylated RNA (not shown). Minor bands were present in the assay of 

polyadenylated RNA from plant number two(Fig. 9B), but high nonspecific and lane

specific background hindered further assessment of the validity of these bands. 

Nuclease protection assay was used to estimate the amount of 35 S RNA relative to 19 

S RNA in each sample. RNA samples which showed comparable degrees of degradation 

(e.g. Fig. 3A, leaves 14 and 16) showed very different 35 S to 19 S ratios (e.g. Fig. 9A, 

leaves 14 and 16). Similarly, RNA fractions which showed comparable amounts of 

degradation (e.g. Fig. 3A, leaves 14 and 16) showed quite different 35 S RNA contents 

(e.g. Fig. 9A, leaves 14 and 16). Additionally, protected probe fragments were not 

smeared, suggesting that only insignificant amounts of the protecting species of RNA were 

degraded to sizes smaller than the probe (Fig.9). These observations suggested that, unlike 

gel blot assays, nuclease protection assay of the 35 S RNA content relative to 19 S RNA 

content was not sensitive to variations in degrees of sample degradation. Similarly, 

nuclease protection assay of the 35 S RNA content of RNA samples did not appear to be 

sensitive to variations in degrees of sample degradation. 

Leaf-to-leaf variation in the 35 S to 19 S ratio was apparent when total RNA (Fig. 10) 

or polyadenylated RNA (Fig. 9, A and B) from three different plants was analyzed by 

nuclease protection assay. The nuclease protection assay of total RNA from plant number 

four was complicated by an artifactual fragment which comigrated with the 19 S-protected 

fragment (Fig. 10, healthy). Additionally, poor electrophoretic resolution of protected 

fragments complicated this experiment Nonetheless, the data from three different plants 

suggested that the 35 S RNA content relative to 19 S RNA content varied among RNA 

samples. This variation appeared random from plant to plant More 35 S RNA relative to 



19 S RNA was detected in leaves which had higher total CaMV RNA contents than in 

leaves which had relatively lower CaMV RNA contents (Fig. 9 versus Fig. 5). 

Chan~es in the CaMV RNA Po.pulation Durin~ Viral 

Rkplication in Proto.plasts 
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To analyze changes in the CaMV RNA population during viral replication, RNA was 

isolated from protoplast cultures at various times postinoculation. Cell vitality and viral 

replication were assessed. RNA was characterized essentially as for RNA extracted from 

plants (above). Nuclease protection assays were not used to characterize RNA from 

protoplasts. 

Isolation and Culture of ProtQPlasts. An average of 7 X 1()6 protoplasts were 

recovered from each gram of stemless leaf tissue digested with cellulase and pectinase. 

Several media were examined to detennine the optimal medium for cell survival. A greater 

· percentage of uninfected protoplasts survived four days of culture (not shown) when 

cultured in modified A medium (A b. medium; described in Materials and Methods) rather 

than A medium (Kao and Michayluk, 1981), MS medium (Murashige and Skoog, 1962), 

or K 3 medium (Kao et al., 1972). When inoculated cells were cultured in A b. medium for 

one to four days, staining with FDA (Widholm, 1972) or Evan's blue (Gaff and Okong'O

ogola, 1971) typically indicated that appr. one half of the cell population was viable. Cell 

mortality did not increase between day one and day four (not shown). Vigorous cell wall 

regeneration, frequent protoplast budding, and frequent cell elongation were noted (not 

shown). Bilateral cell division was very rare. Thus, turnip protoplasts cultured as 

described in Materials and Methods showed reasonable vitality. 

To further assess protoplast vitality, changes in the packed cell volumes and total 

cellular RNA content of cultures were examined in two experiments (the RNA time course 

experiments described below). When 6 x 1o6 protoplasts were cultured in 3 m1 of media in 



60-mm diameter petri plates, packed cell volumes increased appr. four-fold during the 

period of culture (Fig. 11). Under these conditions, RNA content increased to almost 

twice the initial content (e.g. Fig. 12). Thus, protoplasts cultured as described showed 

vigorous growth. 
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Characterization of CaMV Replication in Turnip Proto_plasts. When the procedure of 

Maule (1983) for PEG-mediated infection of protoplasts was scaled up four-fold, typically 

one-third to one-half of the cell population was recovered after inoculation and washing 

(not shown). To assess the effect of culture conditions on viral replication, inoculated cells 

were mixed well and cultured by two different methods. Cells were cultured in either 

Costar® tissue culture plates or in petri plates. After four days of culture, appr. one-half of 

the cells cultured in tissue culture plates were viable (not shown). The viability of cells 

cultured in petri plates was not examined in this experiment Viral replication was assessed 

as described in Materials and Methods. Aliquots of cells sampled from the tissue culture 

plates showed only small variations in the amount of CaMV -specific probe which was 

bound (Fig. 13). However, for the cells cultured in petri plates, appr. 3-fold more probe 

was bound by the samples collected at 2.5 days postinoculation than by the samples 

collected at 1 day postinoculation (Fig. 13). Similarly, an increase in the amount of bound 

probe was noted for the samples harvested from petri plates at four days postinoculation. 

Thus, cells cultured in petri plates supported viral replication whereas cells cultured in 

tissue culture plates did not. Culture conditions affected viral replication. Because cells 

cultured in petri plates supported more vigorous viral replication than cells· cultured in tissue 

culture plates, petri plates were the preferred culture system in all subsequent experiments. 

To determine the effects of inoculum concentration on viral replication, cells (8 x 10 6 ) 

were inoculated with either 10 J..Lg or 50 J..Lg of virions and cultured in petri plates (1 x lo6 

cells /3 ml). Cells were sampled every 12 hr. When samples were assayed for CaMV 

replication, very little or no retained virion inoculum was detected immediately following 



Figure 11. Changes in Packed Cell Volume During Growth of Turnip Protoplasts. 

Freshly-isolated protoplasts were infected and cultured as described in 
Materials and Methods. Two cultures were harvested at the indicated times 
postinoculation. Each point represents the estimated packed cell volume 
from two cultures. Experiments one and two were done with protoplasts 
isolated in separate experiments. 
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Figure 12. Changes in Cellular RNA Content During Culture of Protoplast Cultures. 

Freshly-isolated protoplasts were infected and cultured as described in 
Materials and Methods. Two cultures were harvested at the indicated times 
postinoculation. Each point represents the estimated total cellular RNA 
recovered from two cultures. Experiments one and two were done with 
protoplasts isolated in separate experiments. 
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Figure 13. Effects of Culture Conditions on Replication of CaMV. 

FreshlY-isolated protoplasts were infected (50 Jlg of CabbS virions 1107 
cells) and cultured as described in Materials and Methods. Cells were 
cultured in either Costar® 24 - well tissue culture plates (0.7 ml of culture I 
16 mm- diameter well) or in disposable petri plates (3 ml of culture I 60 
mm-diameter plate), as indicated. Quadruplicate aliquots from the cultures 
(104 cells) were spotted onto nitrocellulose at the indicated times 
postinoculation. After all samples had been spotted, the membrane was 
treated with NaOH, neutralized, baked, and probed using 1 x 106 cpm of 
radiolabeled, cloned CaMV DNA (pCS 101) per ml of hybridization 
solution. After four low stringency washes with 2X SSC I 0.1 % SDS at 
25o C, the fmal stringency wash was performed at 65o C using 0.1X SSC I 
0.1% SDS. The washed membrane was exposed to X-ray film. After 
autoradiography, each spot was excised and the bound radioactivity 
determined by liquid scintillation counting. Plotted points represent the 
sums of quadruplicate samples. 
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inoculation and washing (Fig. 14A). This is in contrast to other experiments, in which 

significant amounts of inoculum were retained (e.g. Fig. 15). Cells inoculated with either 

10 J.Lg or 50 J.Lg of virions bound increasing amounts of probe between 1.5 and 2.5 days 

postinoculation (Fig. 14A). However, the amount of CaMV DNA detected in the cells 

which were infected with 10 J.Lg of virions appeared to decline at 4 days postinoculation 

relative to 3.5 days postinoculation (Fig. 14A). This decline may have been artifactual. 

When this culture was sampled four days postinoculation, samples tended to bead up on 

the nitrocellulose membrane rather than wetting the membrane quickly and uniformly, as 

was usually observed (not shown). Cells inoculated with 50 J.Lg of virions were therefore 

spotted to a different area of the nitrocellulose membrane for the day-four sampling. A 

similar decline in CaMV DNA content at day four was not observed for these cells. 

Therefore, in assessing the relative rates of replication in these two populations of cells, 

only samples collected before day four were considered. 

At the resolution of this experiment, replication first became detectable simultaneously 

in both cultures after a lag period ofappr. two days (Fig. 14A). In cells infected with 10 

J.Lg of virions, CaMV DNA accumulated at only appr. 40 % the rate observed for cells that 

were inoculated with 50 J.Lg of virions (Fig. 14A). Thus, the concentration of the inoculum 

had little or no effect on the lag period, but determined the rate of viral replication 

subsequent to this lag. 

To determine whether turnip protoplasts could be infected with unencapsidated DNA, 

protoplasts from the experiment described above were also inoculated with DNA isolated 

from virions. DNA and virion inocula contained comparable concentrations of CaMV 

genome equivalents. Protoplasts which were inoculated with DNA isolated from CaMV 

virions appeared to retain the inoculum, but did not show increases in CaMV DNA content 

over the four day period of the experiment (Fig. 14B). Thus, under these conditions, 

virions, but not CaMV DNA, could be used to infect turnip protoplasts. Virions, rather 

than viral DNA, were therefore the inoculum of choice for further experiments. 



Figure 14. Response of Turnip Protoplasts to Inoculation with Different Amounts of 
CaMV DNA or Virions. 

Freshly-isolated protoplasts (8 x 106 cells) were infected and cultured (3 x 
106 cells I 3 ml in a petri plate) as described in Materials and Methods. 
Quadruplicate aliquots of the culture (appr. 1 x104 cells) were spotted onto 
nitrocellulose at the indicated times postinoculation. Mter all samples had 
been spotted, the membrane was treated with NaOH, neutralized, baked, 
and probed using 1 x 106 cpm ofradiolabeled, cloned eaMV DNA 
(peS 101) per ml of hybridization solution. After four low-stringency 
washes with 2X sse I 0.1% SDS at 25 o e, the final stringency wash was 
performed at 65 o C using 0.1X SSe I 0.1% SDS. The washed membrane 
was exposed to X-ray fllm; after autoradiography, spots were excised and 
bound radioactivity was determined by liquid scintillation counting. Shown 
are the total cpm for each time point; the radioactivity bound by 
untransfected cells (background) has been subtracted. Protoplasts were 
inoculated with CabbS virions (A) or with eaMV eabbS DNA (B). 
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Figure 15. Replication of CaMV in Turnip Protoplasts-RNA Time Course One. 

Freshly-isolated protoplasts were infected and cultured as described in 
Materials and Methods. Triplicate aliquots of the culture (appr. 104 cells) 
were spotted onto nitrocellulose at the indicated times postinoculation. Mter 
all samples had been spotted, the membrane was treated with NaOH, 
neutralized, baked, and probed using 1 x 106 cpm of radiolabeled, cloned 
CaMV DNA (pCS 101) per m1 of hybridization solution. After three low 
stringency washes with 2X SSC I 0.1 % SDS at 25o C, the final stringency 
wash was performed at 25o C using 0.1X SSC I 0.1% SDS. The washed 
membranes were exposed·to X-ray film; after autoradiography, each spot 
was excised and the bound radioactivity determined by liquid scintillation 
counting. Plotted points represent the means of triplicate samples. 
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Viral replication was also followed for the cultures used in the characterization of CaMV 

RNA accumulation (see below). Comparison of low-resolution viral replication curves 

from the RNA time course experiments suggested that in these experiments, the observed 

lag times and replication rates were comparable to those observed in previous experiments 

(c.f. Figs. 13 and Fig. 15). 

Time Course of RNA Synthesis. To characterize changes in the CaMV RNA 

population during viral replication, protoplasts were infected, mixed, and cultured in 

individual petri plates. At various times postinfection, cultures were harvested and aliquots 

of these cells were spotted to nitrocellulose to assay viral replication. RNA was isolated 

from the rest of the harvested cells. RNA pellets isolated from protoplasts contained little 

or no insoluble material. Crude RNA pellets were not reprecipitated before 

spectrophotometry and oligo(dT)-cellulose chromatography. The A260/ A28o ratio of each 

sample fell in the range of 1.7 to 1.9 (not shown). No correlation between the A260 I A28o 

ratios and the age of the harvested cultures was noted. 

Polyadenylated RNA was purified from 200 J..Lg of total RNA from protoplasts by 

oligo(dT)-cellulose chromatography. Nonpolyadenylated fractions were also collected. To 

examine RNA integrity, the nonpolyadenylated fractions of RNA were analyzed by 

electrophoresis and acridine-orange staining. Ribosomal RNAs showed very little 

smearing (Fig. 16). The relative intensities of the 23 S to 18 S RNA bands showed that 

these RNAs were present in the expected ratios. These observations suggested that these 

RNA samples had suffered little or no degradation. 

Gel blot assays were used to characterize CaMV RNA in the polyadenylated fraction 

from each sample. Although this assay has limitations (discussed above), it allowed RNAs 

to be detected and sized and gave a rough estimate of transcript levels. RNA from infected 

protoplasts was transferred from gels to nylon membranes using electrotransfer rather than 

capillary transfer. Initially, the efficiency of electrotransfer was estimated using 



Figure 16. Analysis of Integrity of RNA Isolated from Turnip Protoplasts at Various 
Times Postinoculation -RNA Time Course One. 

RNA was extracted from the protoplast cultures described in Figure. 15. 
Polyadenylated and nonpolyadenylated RNAs were separated by oligo(dT)
cellulose chromatography. Aliquots (appr. 15 ~g) of the nonpolyadenylated 
fractions were glyoxalated, separated by electrophoresis, and stained as 
described. The positions of the 25 Sand 18 S cytoplasmic rRNAs are 
indicated. 
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radiolabeled DNA size standards. The electrotransfer of radiolabeled 8-Kb DNA fragments 

appeared to be quantitative (not shown). For the gel blot assay, transfer efficiency was 

estimated by examining the relative intensities of the bands produced by unlabelled DNA 

restriction fragments after hybridization. Although the DNA fragments showed smearing 

toward the wells, comparison of the relative signal from the 8 Kb and 4 Kb Sali-standard 

fragments confirmed that the electrotransfer of DNA to nylon membranes (Fig.17, Sali std) 

was as efficient or more efficient than capillary transfer. No aberrations in the relative 

intensities of the EcoRI-standard bands were noted (Fig. 17, EcoRI std). However, the 

sensitivity of the assay was impaired by the presence of background at the top of the 

membrane which was not lane-specific. Even so, detection of the 0.4 Kb restriction 

fragment (not shown) in 2 ng of EcoR I- digested pCSlOl showed that as little as 0.07 ng 

of glyoxalated DNA could be detected. 

A gel blot assay for tubulin RNA was used to assess RNA integrity and to determine 

the relative amounts of polyadenylated RNA present in each lane. After hybridization with 

the CaMV -specific probe and exposure to X-ray film, the membrane was stripped of the 

CaMV -specific probe and rehybridized with radiolabeled, cloned A. thaliana a3 tubulin 

DNA (pSRL 51; Ludwig et al., 1987). Using the tubulin-specific probe, the DNA 

standards gave a single major band with smearing toward the well (not shown). Thus, the 

vector-containing band of the DNA standards hybridized with vector sequence in the 

tubulin probe. The gel blot assay with the tubulin-specific probe detected a major RNA 

species in all of the RNA samples (Fig. 18). The migration of this RNA relative to size 

standards was consistent with its identification as an authentic tubulin transcript (Ludwig et 

al., 1987). In addition, a minor band of appr. four Kb was detectable. Because this band 

was present at the appr. position expected for the 25 S rRNA, this band was tentatively 

identified as a shadow-band artifact Minor bands comigrating with the 25 S rRNA on gel 

blot assays oftubulin RNA have been observed by others (Ludwig et al., 1988). Very 

little tubulin RNA could be detected immediately after protoplast isolation and inoculation 



Figure 17. Gel Blot Analysis of CaMV -specific RNA Present in Turnip Protoplasts at 
Various Times Postinoculation -RNA Time Course One. 

RNA was isolated from turnip protoplasts at the indicated times after 
inoculation with CaMV virions. The polyadenylated fractions purified 
from 200 J.Lg of RNA were glyoxalated and applied to the gel. Unlabeled 
restriction fragments ofpCS101 (2 ng) were also glyoxalated and applied to 
the gel (Sail std and EcoRI std). Sizes (Kb) of the fragments are indicated. 
Gel blot analysis was performed using radiolabeled, cloned CaMV 
DNA(pCS101). The position of the 19 S CaMV RNA is indicated. 
Although the CaMV 35 S RNA is not visible, its expected position has also 
been indicated [ -(35 S)]. 
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Figure 18. Analysis ofTubulin RNA Isolated from Turnip Protoplasts at Various Times 
Postinoculation-RNA Time Course One. 

The membrane described in Figure 17 was stripped of the CaMV -specific 
probe and repro bed using radiolabeled, cloned Arabidopsis a3-tubulin DNA 
(pSRL51). The sizes (Kb) and estimated positions of bands from the 
glyoxalated pCS 101 restriction fragments (EcoRI std and Sail std; Figure 
17) are indicated. 
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(Fig. 18). In RNA fractions isolated during subsequent culture, the tubulin band in the 

RNA sample isolated 42 hr postinoculation was more intense than the tubulin bands in the 

RNA samples isolated at 20 hr and 68 hr postinoculation. Although slight lane-specific 

smearing was noted above and below the tubulin-specific band, the tubulin RNA in each 

sample appeared to be reasonably intact (Fig. 18). 

When radiolabeled cloned CaMV DNA was used to detect CaMV RNA in samples 

isolated from infected protoplasts, no signal was detected immediately following 

inoculation (Fig. 17, 0 hr post inoculation). Thus, the assay with this probe did not detect 

endogenous cellular transcripts or viral inoculum. CaMV -specific RNA was first detected 

20 hr postinoculation and at all subsequent time points (Fig. 17). This RNA was identified 

as the CaMV 19 S RNA based upon its migration relative to DNA size standards. 

Comparison of the relative signals from the 0.4 Kb EcoRI band (not shown) and the 19 S 

RNA band suggested that appr. 0.07 ng of viral RNA were present in the lanes containing 

RNA isolated at 20, 42, and 68 hr postinoculation. The 19 S band in the RNA sample 

isolated at 68 hr postinoculation was slightly more intense than the bands observed in the 

RNA samples isolated at 20 and 42 hr postinoculation. The 19 S RNA was detected prior 

to the onset of DNA replication (c.f. 20 hr postinoculation in Fig. 17 and Fig. 15). 

In this experiment, the CaMV 35 S RNA was not detected in any of the RNA samples 

isolated postinoculation (Fig. 17). Perhaps failure to detect the 35 S RNA in this 

experiment was due to the high background present at the top of the membrane. To 

determine if the CaMV 35 S RNA could be detected in RNA samples isolated from infected 

protoplasts, RNA was isolated in a separate experiment from 8 x 1CJ6 protoplasts at 24 hr 

postinfection and subjected to oligo(dT)-cellulose chromatography. Using a gel blot assay, 

the 35 S RNA, albeit slightly degraded, was detected in this sample (not shown).· The 

CaMV 19 S RNA was also present at 24 hr postinoculation. To further confmn that the 35 

S RNA was produced in infected protoplasts, RNA was again isolated in a separate 

experiment and subjected to oligo(dT).:.cellulose chromatography. Although no CaMV 
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RNA was detected in RNA samples isolated at 24 hr postinoculation, both the CaMV 35 S 

and 19 S RNA were detected in RNA samples isolated at 60 hr postinoculation (not 

shown). 

Because there seemed to be discrepancies regarding the detection of CaMV RNAs 

following inoculation with virions, a second analysis of the changes in the CaMV RNA 

population during viral replication in protoplasts was undertaken. When cells were 

inoculated, cultured, and assayed for viral replication, the low-resolution replication curves 

suggested that the lag time and replication rate were comparable to those observed in other 

experiments (c.f. Figs. 13, 15, and 19). RNA yield and quality were also comparable, 

although inadequate destaining of the gel may have prevented the detection of mild 

- degradation (Fig. 20). 

In the repeat, the gel blot assay with the CaMV -specific probe revealed that most of the 

Sail DNA size standards were retained in the wells during electrophoresis. Therefore the 

estimation of transfer efficiency was not feasible (Fig.21, San std). No aberrations in the 

relative intensities of the EcoRI-standard bands were noted (Fig. 21, EcoRI std). 

As for the previous experiment, the gel blot assay wit:Q the tubulin-specific probe 

detected an authentic tubulin RNA in all samples (Fig. 22). Also consistent with previous 

observations, a minor tubulin-specific band of appr. four Kb was again detected. 

Comparison of the relative intensities of the signal from the EcoRI size standard and 

tubulin-specific signal from both experiments suggested that more polyadenylated RNA 

was bound to the membrane in the second experiment than in the first (Figs. 22 and 18, 

respectively). In both experiments, very little tubulin RNA could be detected immediately 

after protoplast isolation and inoculation (Fig. 18 and Fig. 22). For the repeat, a dramatic 

increase in tubulin band intensity was noted for the RNA sample isolated 60 hr 

postinoculation (Fig. 22). The samples isolated at 60 hr post inoculation and from an 

infected plant appeared to have 2 to 4 times more tubulin RNA than the samples from 17, 



Figure 19. Replication of CaMV in Turnip Protoplasts-RNA Time Course Two. 

Freshly-isolated protoplasts were infected and cultured as described in 
Materials and Methods. Triplicate aliquots of the culture (appr. 104 cells) 
were spotted onto nitrocellulose at the indicated times postinoculation. Mter 
all samples had been spotted, the membrane was treated with NaOH, 
neutralized, baked, and probed using 1 x 106 cpm ofradiolabeled, cloned 
CaMV DNA (pCS 101) per ml of hybridization solution. After three low 
stringency washes with 2X SSC I 0.1 % SDS at 25o C, the final stringency 
wash was performed at 25o C using 0.1X SSC I 0.1% SDS. The washed 
membranes were exposed to X-ray film; after autoradiography, each spot 
was excised and the bound radioactivity determined by liquid scintillation 
counting. Plotted points represent the means of triplicate samples. 
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Figure 20. Analysis of Integrity of RNA Isolated from Turnip Protoplasts at Various 
Times Postinoculation -RNA Time Course Two. 

RNA was extracted from the protoplast cultures described in Figure. 19. 
Polyadenylated and nonpolyadenylated RNA were separated by oligo(dT)
cellulose chromatography. Aliquots (appr. 7 Jlg) of the nonpolyadenylated 
fractions were separated by electrophoresis and stained as described. The 
positions of the undenatured 25 S and 18 S cytoplasmic rRNAs are 
indicated. 
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Figure 22. Analysis ofTubulin RNA Isolated from Turnip Protoplasts at Various Times 
Postinoculation -RNA Time Course Two. 

The membrane described in Figure 21 was was stripped of the CaMV
specific probe and reprobed using radiolabeled. cloned Arabidopsis a3-
tubulin DNA (pSRL51). The sizes (Kb) and estimated positions of bands 
from gyloxalated pCSlOl restriction fragments are indicated (EcoRI std and 
Sail std). Panels A and B represent different exposures of the membrane to 
X-ray film to facilitate analysis of all samples. 
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36, and 82 hr postinoculation. Smearing characteristic of degradation was evident in the 

samples isolated at 60 and 82 hr and in the sample from the infected plartt. 

80 

The increase in tubulin RNA content at 60 hr postinfection cannot be explained as an 

anomalously high recovery of polyadenylated RNA after oligo(dT)-cellulose 

chromatography, since the amount of polyadenylated CaMV RNA recovered from four 

aliquots of a single RNA sample varied only slightly (not shown). Similarly, in the RNA 

samples isolated from leaf tissues, the relative amount of CaMV RNA in each 

polyadenylated RNA fraction (Fig. 9) accurately reflected the relative amount of total 

CaMV RNA in each total RNA fraction (Fig. 5 and 7). Also, while an explanation for the 

loss of a portion of a polyadenylated fraction can be envisioned, it is more difficult to 

conceive of an explanation for greatly enhanced recovery. Thus, the increase in tubulin 

RNA content (Fig. 22) was probably not artifactual. 

As in the previous experiment, the gel blot assay with the CaMV-specific probe 

detected no CaMV -specific RNA immediately following inoculation, although the CaMV 

19 S RNA was detected at all times subsequent to inoculation (Fig. 21). The relative 

signals from the 2.3 Kb and 4.3 Kb EcoRI bands of the size standards and from the 19 S 

RNA band were compared visually (Fig. 21B). Such comparison suggested that appr. 0.3 · 

to 2 ng of 19 S RNA were present on the membrane in each lane. Therefore more CaMV 

19 S RNA, like the tubulin RNA, was detected in the polyadenylated RNA isolated from 

cells during the repeat of the experiment than in the RNA isolated during the original 

experiment Expression of the 19 S RNA was slightly elevated at 17 hr postinoculation 

relative to 36 and 82 hrpostinoculation (Fig. 21). In the RNA samples isolated at 60 hr 

postinoculation, expression of the 19 S RNA was greatly elevated. This increase was 

coincident with a large increase in tubulin RNA content (Fig. 22). Although these 

increases might be due to enhanced recovery of polyadenylated RNA following oligo(dT)

cellulose chromatography, the magnitude of the 19 S increase appeared greater than the 

magnitude of the tubulin increase (c.f. Fig. 21 and Fig. 22), suggesting that the trivial 
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explanation is insufficient to explain the change in 19 S level. The 19 S RNA, like the 

tubulin RNA, showed smearing characteristic of degradation in the samples isolated at 60 

hr and 82 hr postinoculation and in the sample from an infected plant (c.f. Fig. 21 and Fig. 

22). The 19 S RNA was detected before the onset of viral replication and did not 

accumulate relative to total cellular RNA (c.f. Fig. 17 and 21). 

In contrast to the first experiment, the CaMV 35 S RNA was detected in the repeat of 

the experiment (Fig. 21). Estimates of the amounts of 35 S RNA present in the sample 

were precluded by the absence of a reliable estimate of transfer efficiency. The 35 S RNA, 

like the 19 S RNA, was first observed at 17 hr postinoculation, 19 hr before the onset of 

detectable DNA replication. However, by 36 hr postinoculation and at all subsequent time 

points, considerably less 35 S RNA was detected. The 35 S signal in the RNA sample 

isolated at 60 hr postinoculation was greater that the signal observed in the samples isolated 

at 36 hr and 82 hr postinoculation. In the RNA isolated at 60 and 82 hr postinoculation, 

the 35 S RNA showed smearing characteristic of degradation (Fig. 21). Therefore, the 

relative lack of 35 S RNA in these samples might be attributed to degradation. However, 

for the RNA isolated at 36 hr postinoculation, neither the 35 S RNA nor high molecular 

weight fragments characteristic of degraded 35 S RNA were detected (Fig. 21). Nor did 

the CaMV 19S and tubulin-speciflc bands in these lanes show smearing characteristic of 

degradation (Fig. 21 and Fig. 22, resp). Thus, the absence of the 35 S RNA in the sample 

isolated at 36 hr postinoculation was not due to degradation or loss of polyadenylated 

sample. In a separate experiment, the 35 S RNA could be detected at 60 hr 

postinoculation, but not at 24 hr postinoculation (not shown). In this experiment, the 35 S 

band was appr. twice as intense as the 19 S band, suggesting that, for a given time 

postinoculation, the amount of 35 S RNA relative to the amount of 19 S RNA varied from 

experiment to experiment 

Two minor CaMV -specific bands which migrated slightly ahead of the 35 S RNA 

band were detected in the repeat of the experiment (Fig. 21A). These bands were detected 
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in the RNA isolated at 17 hr postinoculation, but not in the RNA isolated at subsequent 

time points during this experiment. Visual inspection suggested that these minor bands 

were appr. one-tenth as intense as the 35 S band. These bands were not observed in the 

RNA sample isolated immediately after inoculation, suggesting that they were, in fact, due 

to CaMV -specific RNAs rather than endogenous cellular transcripts or inoculum DNA. 

Comparison of the migration of these minor bands to the migration of glyoxalated DNA 

size standards suggested that the large and small minor CaMV RNAs were appr. 7.4 and 

6.6 Kb long, respectively. Because their migration was much slower than the migration 

expected for rRNA bands (not shown), these minor bands could not be explained as rRNA 

shadow-band artifacts. 

The tubulin RNA content relative to total RNA was compared between inoculated 

protoplasts and infected plants. Visual inspection of the autoradiograms suggested that 

systemically infected cells had two- to six-fold more tubulin RNA relative to cellular RNA 

than did infected protoplasts (Fig. 22). The expression of 19 S RNA was also greater in the 

tissues isolated from infected plants (Fig. 21). 

In the sample from an infected plant, the degradation observed for 35 S RNA and 

tubulin RNA were compared. While the tubulin-specific bands showed only minor 

smearing, the 35 S RNA showed extensive degradation (Fig. 22 and Fig. 21, 

respectively). This observation supported the hypothesis that the longer 35 S RNA was 

more susceptible to degradation than shorter RNAs. 

Discontinuation of Experiments. Further analysis of changes in the CaMV RNA 

population during viral replication in protoplasts was not done. Difficulties with plant 

materials and time considerations forced the discontinuation of experiments. Analysis of 

the CaMV RNA populations isolated from protoplasts was therefore not repeated beyond 

the observations presented above. 
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Discussion 

Two Novel CaMV RNAs ? 

Both the CaMV 35 Sand 19 S RNA are produced in infected protoplasts (Fig. 21, 17 

hr postinoculation). Additionally, two novel CaMV -specific bands were observed (Fig. 

21, 17 hr postinoculation). The relationship between these two minor RNAs and minor 

CaMV RNAs reported by other authors is unclear. The two minor RNAs reported here 

migrated at 7.4 and 6.6 Kb (Fig. 21), suggesting that they are not the minor RNA species 

of 4.9, 4.5, and 4.3 Kb which were reported by Condit et al. (1983). Similarly, the 7.4 

and 6.6 Kb RNAs (Fig. 21) are too large to be the 22 S RNA hypothesized by Plant et al. 

(1985) and Hohn et al. (1990). Nor do the 7.4 and 6.6 Kb RNAs (Fig. 21) correspond to 

those reported by Covey and Hull ( 1981 ). 

However, the 7.4 and 6.6 Kb RNAs (Fig. 21) may coincide with the 6.7 and 6.2 

RNAs isolated from viral replication complexes by Thomas et al. (1985). The differences 

between the size estimates of Thomas et al. (1985) and my estimates for the sizes of these 

RNAs could be explained as minor variations in apparent electrophoretic mobilities. 

Although the RNA isolation procedure does not disrupt CaMV virions (Fig. 2), it is 

unclear as to whether or not viral replication complexes would be disrupted by this RNA 

isolation procedure. Some DNA replication intermediates can be recovered from infected 

protoplasts following phenol extraction in the absence of proteinase digestion, (Maule, 

1985a; Thomas et al., 1985). Thus, RNA intermediates in the process of reverse 

transcription might be isolated during the phenol extraction step of the RNA extraction 

method used here. These 7.4 and 6.6 Kb RNAs might therefore correspond to RNA 

replication intermediates. Other minor species of 4.7, 3.4, and 2.6 Kb were also isolated 

from replication complexes (Thomas et al., 1985). Although such species were not 

detected in my work (Fig. 21), perhaps lane-specific background and rRNA shadow

banding prevented the detection of CaMV RNAs in these areas of the lanes. 
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Alternatively, the 7.4 and 6.6 Kb bands (Fig. 21) may represent minor mRNAs which 

code for CaMV gene products. These two minor RNAs were polyadenylated, consistent 

with a role in translation. Such messenger RNAs might be transcribed from novel 

subgenomic promoters. Alternatively, these minor RNAs could be mRNAs arising from 

splicing of the 35 S RNA, although splicing has no known role in caulimovirus gene 

expression. 

Rather than representing authentic mRNAs, the 7.4 and 6.6 Kb RNA species (Fig. 21) 

might have arisen by spurious splicing of the 35 S RNA to generate nonfunctional minor 

RNA species smaller than the 35 S RNA. A strain of CaMV which accumulates a 

noninfectious variant representing appr. 25% of the viral population has been described 

(Hirochika et al., 1985). This variant is thought to arise from reverse transcription of a 

spliced RNA intermediate. For FMV, a caulimovirus which shares many properties with 

CaMV, a noninfectious mutant representing 15 % of the viral population apparently arises 

from reverse transcription of a spliced version of the full-length RNA (Scholthof et al., 

1991). Other CaMV mutants arising from reverse transcription of spliced RNAs have also 

been reported (Hohn et al., 1986; Melcher et al., 1986b; Vaden and Melcher, 1990; 

Pennington and Melcher, submitted). For CabbS, the CaMV strain used in my work, 

deletion mutants do not represent a major portion of the viral population. Thus, splicing of 

the CabbS 35 S RNA is infrequent or spliced RNAs are not normally utilized as templates 

for reverse transcription during CabbS replication. The failure to detect these minor RNAs 

in RNA samples isolated from whole plants might reflect differences in RNA splicing 

efficiency in protoplasts versus in plants. Perhaps imperfect intron consensus sequences 

are recognized with less specificity in protoplasts than in plants. 

The failure to detect these RNAs in samples from whole plants might have other 

explanations. If these RNAs are expressed only in the early stages of viral replication, they 

would be difficult, if not impossible, to detect in RNA samples isolated from whole plants. 

A third explanation suggests that these minor bands might be obscured by the slight 
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smearing of the 35 S RNA band frequently observed in RNA samples isolated from plants 

(e.g. Odell et al., 1981). The significance of the 7.4 and 6.6. Kb minor RNA species (Fig. 

21) must remain speculative, however, until these RNAs can be better documented and 

characterized 

Characterization of Cell Growth 

Turnip protoplasts provided a system in which synchronous viral replication could be 

studied However, it is important to acknowledge the unique physiological status of the 

cell populations utilized in these and other studies. Protoplasts undergo a number of major 

physiological changes during isolation and culture. Removal of the cell wall and osmotic 

shock induce responses similar to those induced by wounding (reviewed in Gould and 

Daines, 1985; Meyer, 1985). Subsequent exposure to growth hormones results in 

dedifferentiation and resetting of the cell clock, ie, synchronization of the cell population 

(reviewed in Meyer, 1985). 

Increases in packed cell volumes of protoplast cultures were noted (Fig. 11 ), but the 

mitotic activity of these cells was not characterized. However, these cultures may have 

proceeded through at least a portion of the cell cycle. When explants of Jerusalem 

artichoke were cultured in the presence of growth hormones, the amount of total RNA in 

each explant increased appr. three-fold before the first synchronous division (MacLeod et 

al., 1979). However, if growth regulators were omitted from the medium, the total RNA 

content of each explant increased only slightly and cells did not divide. Thus, significant 

increases in RNA content occurred only in explants that were mitotically active. Therefore, 

the observation that turnip protoplast cultures accumulated RNA (Fig. 12) suggests that 

these cells were mitotically active. 

A second observation supports the argument that the cells used here were 

synchronized and active in cellular DNA replication. These cells showed a sudden increase 

in tubulin RNA content after 60 hr of cultivation (Fig. 22). A similar, but less dramatic, 
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increase was also seen at 42 hr postinoculation in a separate experiment (Fig. 20). During 

the naturally synchronous mitosis of Physarumpolycephalum, a- tubulin mRNA content 

begins to increase during G2 , peaks during metaphase, and decreases rapidly thereafter 

(Schedl et al., 1984). In synchronized Zinnia mesophyll cells, tubulin content increases 

four-fold during DNA synthesis (Iwasaki et al., 1988). Similarly, in cucumber 

cotyledons, expression of P - tubulin RNA increases during cytokinin-induced cell division 

and elongation (Peng et al., 1990). These observations suggest that plant cells, like 

Physarum plasmodia, undergo transient increases in tubulin mRNA content during the cell 

cycle. Thus, in protoplast cultures, the increase in tubulin RNA content (Fig. 22) is 

consistent with the hypothesis that these cells were undergoing synchronous division. The 

differences in the magnitude of the increases observed in the two experiments (c.f. Fig. 20 

and Fig. 22) could reflect a difference in the point of the mitotic cycle at which RNA 

. samples were collected. The timing of mitosis, in turn, could vary among cells isolated and 

cultured in separate experiments. 

The significance of the protoplast buds observed in these experiments is uncertain. 

The predominant viewpoint is that protoplast budding is an artifact due to the extrusion of 

the cytoplasm through a weak portion of the regenerating cell wall (Hanke and Northcote, 

1974; Horine and Ruesink, 1972). However, Meyer and Abel (1975) reported that 

budding can involve the migration of nuclear material to the daughter bud. Turnip 

protoplast preparations extensively incorporate 3H-thymidine into their DNA (Maule, 

unpublished-cited in Maule, 1985b). Also, turnip protoplasts produced buds in which 

CaMV antigen was detected, thereby suggesting that buds are competent to replicate CaMV 

(Maule, 1983). Thus, it is seems quite probable that the protoplast buds observed in my 

experiments were authentic cells rather than anucleate subprotoplasts. 
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Are Viral Replication and Cell Division Coordinated ? 

The results presented here, and the results of other researchers, prompt me to propose 

that CaMV replication and gene expression are controlled by host mechanisms integral to 

cell division and the cell cycle. Regulation might act at transcriptional, posttranscriptional, 

translational, and /or posttranslationallevels to stimulate CaMV replication in actively 

dividing cells. Alternatively, such regulation could function to repress CaMV replication in 

the absence of cell division. 

The proposed coordination between the cell cycle of the host and CaMV replication 

and gene expression may reflect thy presence of CaMV infection in the young dividing 

tissues of the host. Several observations suggest that CaMV replicates very close to the 

meristematic apex of systemically-infected hosts (reviewed in Maule, 1985b). During 

systemic infection, even very small leaves are fully symptomatic. CaMV symptoms are 

often sectored on the first leaves that show systemic symptoms (Melcher, 1989). Such 

sectoring is reminiscent of chimeric tissues observed by developmental biologists. CaMV 

antigen can be detected in 90-100% of the protoplasts isolated from systemically infected 

leaves (Yamaoka et al., 1982; Maule, 1983). Results from cross-protection experiments 

(Zhang and Melcher, 1989-see Chapter Til, discussion) are also consistent with the 

hypothesis that CaMV replicates very near the meristematic apex of systemically infected 

hosts. 

The activity of the 35 S promoter may be linked to the cell cycle. Expression of 

reporter genes driven by the 35 S promoter, and by variants of the 35 S promoter 

constructed in vitro, has been examined using transient expression assays and transgenic 

plants. Although expression of the 35 S promoter was originally thought to be maximal in 

a variety of cell types, or "constitutive" (Odell et al., 1985), subsequent work has 

demonstrated that this promoter has a more complicated pattern of expression that is 

regulated by a combination of cis-acting elements (Benfey and Chua, 1990 and references 
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therein). Expression from this promoter is strongest in actively dividing tissues (Benfey et 

al., 1989; Fromm et al., 1989; Nehra et al., 1990) and young tissues (Williamson et al., 

1989; Schneider et al., 1990). The 35 S promoter and the promoter of the wheat histone 

gene contain hexamer motifs for the binding of transcription factors (Lam et al., 1989; 

Mikami et al., 1989). These motifs and the transcription factors that bind to them are 

speculated to be important in cell cycle-dependent expression of histone genes (Kawata et 

al., 1990; Tabata et al., 1991). Nagata et al. (1987) and Fujiwara et al. (1991) have used 

transient assays of 35 S promoter-driven reporter genes to demonstrate that transcription 

from the 35 S promoter is cell-cycle dependent. 

The observation that the 35 S promoter might be cell-cycle dependent could explain the 

observation that detection of the 35 S RNA at given times postinoculation was variable 

among experiments (c.f. Fig. 19 and Fig. 21). Additionally, in other experiments, the 35 

S RNA was detected at 24 hr or 60 hr postinoculation (not shown). It is well accepted that 

the physiological state of a leaf is an important determinant of cell proliferation during in 

vitro culture (for references see Fitter and Drikorian, 1982; Peirik, 1987). Hence, the 

timing of cell division during protoplast culture might vary in response to the physiological 

state of individual plants or leaves. If expression of the 35 S RNA were cell-cycle 

dependent, then this variability might affect the expression of the 35 S RNA. Thus, the 

variability among experiments might be attributable to variable tissue response in vitro . 

The transient increase in 35 S RNA content at 60 hr postinoculation (Fig. 21) may be 

related to cell-cycle specific 35 S promoter activity. The increase in 35 S RNA content was 

coincident with a very strong increase in tubulin RNA content (Fig. 22). Since tubulin 

RNA content might well be expected to increase during the S or G2 phases of the plant cell 

cycle (discussed above), these results suggest that 35 S RNA content also increased during 

or near the S or G2 phase of cell division. Such an interpretation is consistent with the 

observations of Nagata et al. (1987) and Fujiwara et al. (1991), who suggested that 

transcription from the 35 S promoter is activated during the S phase of cell division. 
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Expression of the 19 S RNA also appears to be linked to the protoplast cell cycle. A 

slight increase in 19 S RNA content was noted at 68 hr postinoculation (Fig. 19). In a 

separate experiment, a much larger, transient increase in 19 S RNA content was noted at 60 

hr postinoculation (Fig. 21). These results imply that the levels of CaMV 19 S RNA, like 

the levels of CaMV 35 S RNA and tubulin RNA, are regulated in concert with the cell 

cycle. 

The nature of the lag preceding CaMV replication can also be interpreted in light of a 

model in which CaMV replication is coordinated with the cell cycle. CaMV replication 

curves (Fig. 14), consistent with those observed by others (Maule, 1983), demonstrated 

that the onset of detectable CaMV replication is preceded by a lag period of appr. 48 hr 

(e.g. Fig. 14). Detection of CaMV RNA as early as 17 hr postinoculation (Fig. 21) 

demonstrates that transcription preceded the onset of replication by at least 19 hr. 

Kobayashi'et al.(1990) detected CaMV proteins as early 12 hr after infecting protoplasts 

with CaMV virions. Maule (1985a) detected free CaMV DNA lacking the gaps 

characteristic of viral. DNA as soon as 5 hr following inoculation of turnip pro top lasts with 

virions, thereby·suggesting that uncoating began well before the onset of replication. 

Although is not clear if the DNA species observed in Maule's work was actively 

transcribed, the detection of viral RNA as early as 17 hr postinoculation in the work 

presented here demonstrates that the lag duration does not simply represent the time 

required for uncoating of virions. 

Although the lag preceding the onset of CaMV replication might be the minimum time 

required to accumulate the viral gene products necessary for the onset of replication, the 

data presented here and in other studies suggest an alternative explanation. An increase in 

the concentration of the viral inoculum did not decrease the two-day lag preceding the onset 

of viral replication (Fig. 14 ). Thus, the rate of accumulation of viral gene products was not 

the limiting factor responsible for the length of the lag, suggesting that the duration of the 

lag was instead determined by a host factor(s). Hussain et al. (1987) demonstrated that 
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different tissue culture media could have dramatic effects on the duration of the lag. 

However, the actual rate of CaMV DNA accumulation was unaffected by the different 

media. Thus, the CaMV replication curve could be separated into two components; the lag 

component and the replication component The obsezvation that the exaggerated lag was 

not simply due to inhibited CaMV replication suggests that this lag reflected a change in the 

expression of some critical factor for viral replication. Since the growth of cells in different 

tissue culture media varies widely, I speculate that the critical factor missing during the 

exaggerated lag time obsezved by Hussain et al. (1987) was related to cell division. A viral 

requirement for a cell factor related to cell division is consistent with the obsezvation that 

cell viability was not sufficient for CaMV replication, since infected cells cultured in tissue 

culture plates were viable, but not competent for replication (Fig. 13). Although it has been 

suggested that CaMV replication in protoplasts might require active host DNA synthesis 

(Maule, unpublished-cited in Nagata et al., 1987), this possibility and its implications have . · 

not been explored. 

Arguments against a relationship between the CaMV replication cycle and replication 

of host cells center on three points (Maule et al., 1989): CaMV replicates in turnip 

protoplasts which are thought to be mitotically inert, the patterns of accumulation of CaMV 

in leaf tissue (Maule et al., 1989) do not resemble those of the gemini virus ACMV 

(Fargette et al., 1987), and CaMVreplicates in mature host tissues. The frrst point has 

been discussed above. The second point concerns the obsezvation by Maule et al. (1989) 

that CaMV accumulated throughout the growth and expansion of systemically infected 

leaves and that older systemically infected leaves have greater CaMV contents than younger 

systemically-infected leaves. This was contrasted (Maule et al., 1989) with work of 

Fargette et al. (1987) who observed that in infected Datura stramonium L., younger leaves 

contained more ACMV than older leaves. Because the replication of gemini viruses is 

thought to be regulated in concert with the cell cycle of their hosts (fownsend et al., 1986), 

the difference between the patterns of CaMV and ACMV accumulation was taken as 
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evidence that CaMV replication is not regulated in concert with host cell division (Maule et 

al., 1989). However, this comparison seems rather arbitrary, since the replication cycles 

of these viruses are probably quite different Additionally, subsequent work suggests that 

the DNA of a different gemini virus, TYLCV, accumulates throughout the growth and 

expansion of the leaf (Beret al., 1990). Therefore, a comparison between caulimovirus 

and geminivirus replication in infected plants does not constitute evidence against a 

correlation between CaMV replication and host cell division. 

Other types of regulation, such as tissue-specific response and photoinduction, are not 

excluded by the hypothesis that CaMV replication and gene expression are coordinated with 

the cell cycle of host cells. Similarly, this hypothesis does not rule out replication in 

nondividing tissues, since it must also be acknowledged that CaMV spreads through, and 

replicates in (Melcher et al., 1981) mature leaf tissues. Although many of the observations 

made during my experiments, as well as observations reported by other workers, can be 

explained in the context of this hypothesis, it should be stressed that they do not prove the . 

hypothesis. 

Other Mechanisms Controllin~ CaMY Gene Expression 

The CaMV 19 S RNA content of cultures increased over the three- to four-day period 

of the experiments since CaMV 19 S RNA content did not decline relative to total RNA 

content during culture (Fig. 21) and the total RNA content of cultures increased during the 

period of culture (Fig. 12). Howell and Hull (1978), also concluded that the CaMV RNA 

content of infected protoplast cultures increases with time. If the amount of CaMV RNA 

detected at given times represents steady state levels, then increases in CaMV RNA content 

could result from increases in transcriptional template or increases in transcriptional activity 

of a constant amount of template. Additionally, such increases could result from both 

mec.hanisms. Alternatively, the increases in CaMV RNA content might reflect the 

accumulation of CaMV RNA under conditions in which the rates of RNA production and 
i 
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degradation were not equal. However, the molecular basis of the observed increases in the 

CaMV RNA content of protoplast cultures cannot be addressed by the data presented here. 

In infected protoplasts, expression of CaMV RNAs may be controlled by different 

mechanisms at various times postinfection. Expression of the 19 S RNA decreased slightly 

between 17 hr and 36 hr postinoculation (Fig. 21). Expression of the 35 S RNA also 

decreased at this time. A similar decrease was not seen between these time points for 

tubulin expression (Fig. 22), suggesting that the cell cycle is not the only determinant of 

CaMV RNA levels. Candidates for alternative mechanisms include those that govern cell 

wall regeneration or wound responses. The observation that 35 S promoter is wound

inducible in transgenic plants (Barnes, 1990) might be related the the observation that 35 S 

RNA levels were greatly elevated at 17 hr postinoculation. 

The level of expression of the 35 S RNA relative to the 19 S RNA was not invariable. 

Expression of the 35 S RNA in infected protoplasts dropped dramatically between 17 and 

36 hr postinoculation (Fig. 21). However, expression of the 19 S RNA decreased only 

slightly. Differences in 35 S RNA expression relative to 19 S expression also occur within 

a single host plant (Fig. 9). Since changes in the relative amounts of these two RNAs 

occur, the expression of these two RNAs are not controlled by identical mechanisms. 

Covey et al. (1990) demonstrated that the amount of 35 S RNA relative to 19 S RNA 

in RNA samples isolated from infected turnip leaves was quite different from the relative 

amounts of these two RNAs in samples from infected rape leaves. Higher 35 S to 19 S 

ratios were characteristic of RNA isolated from turnips, the more susceptible host 

Shewmaker et al. (1985) transformed host and nonhost plants with CaMV DNA 

sequences. They demonstrated differences in the level of "35 S" RNA relative to "19 S" 

RNA in transgenic hosts versus nonhosts. Thus, the relative levels of the two major 

CaMV RNAs vary from host to host. 

Although Covey et al. (1990) and Shewmaker et al. (1985) demonstrated host-specific 

differences in the relative expression of the 35 Sand 19 S RNAs, differences in the 
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relative expression of the two major CaMV RNAs can be affected by factors other than the 

genome of the host, since such differences occur within infected protoplasts (Fig. 21) and 

among individual leaves of infected plants (Fig. 9). The mechanisms responsible for 

determining the levels of expression of the 35 S and 19 S RNA remain unknown. 

Although work with transgenic plants has failed to demonstrate "random" changes in 35 S 

promoter strength (Williamson et al., 1989; Barnes, 1990; Schneider et al., 1990), 

perhaps a factor not characterized in my study, such as nonuniform shading or undetected 

wounding, affected transcription of the 35 S RNA in planta . Alternatively, 35 S and I or 

19 S RNA levels might be controlled posttranscriptionally. Cytoplasmic levels of histone 

and tubulin RNAs, both of which are expressed in concert with the cell cycle, are subject to 

posttranscriptional control (reviewed in Cleveland, 1988 and Marzluff and Pandey, 1988, 

respectively). Additionally, although there appeared to be no correlation with changes in 

CaMV RNA levels and the onset of viral replication, viral processes might function in 

determining the varying levels of 35 S and 19 S RNA expression. Furthermore, changes 

in the amounts of 35 S and 19 S RNA that were detected might reflect changes in the 

polyadenlyation state of these transcripts. 

The mechanisms controlling the expression of the 35 S and 19 S RNA, while not 

identical, may share overlapping features such as transcriptional factors. The observation 

that the relative expression of these two RNAs is variable suggests that such variation 

might have functional significance. The function of this variability remains open to 

speculation. 

Sumrmu:y 

Many observations regarding the biology of CaMV can be interpreted in light of a 

model in which the CaMV replication cycle is linked to the cellular replication cycle. 

Although such a model is speculative, it can be tested. To address this model, the mitotic 

index of the infected cells would need to be correlated with the time course of CaMV RNA 
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production in protoplasts. The system described here, particularly the introduction of a 

nuclease protection assay that differentiates between the major CaMV RNAs, is suited to 

such an investigation. Additionally, cell culture systems which inhibit cell division, 

particularly growth media lacking plant growth hormones or cell cultures in which specific 

stages of the cell cycle are blocked with inhibitors, could be used to investigate this theory. 

Additionally, the differential expression of the two major CaMV RNAs in planta can now 

be reliably investigated using the nuclease protection assay developed here. 



CHAPTER ill 

CROSS PROTECITON BETWEEN STRAINS OF CAMV 

Introduction 

Definitions of Cross Protection 

Cross protection can be broadly defined as the protection of a plant from viral disease 

by a previous inoculation with a related virus. In this review, cross protection will be 

defined by two requirements: the protecting virus and the challenge must be closely related 

and the protecting strain must be present in the same tissues or cells as the challenge to 

interfere with the replication of the challenge (Palukaitits and Zaitlin, 1984). However, the 

effects of nonspecific interference during "true" cross protection should probably not be 

disregarded when considering hypotheses for the mechanisms of cross protection. 

Cross protection has been used to protect a number of crop plants from severe viral 

disease (reviewed in Palukaitis and Zaitlin, 1984). Increased understanding of the 

principles underlying cross protection might enhance the application of cross protection as 

an economical and practical method for protecting crops and might provide valuable 

insights into viral biology. Although very little cross-protection work has been done with 

CaMV, this virus presents unique opportunities for enhancing OUI understanding of the 

mechanisms by which cross protection functions. Additionally, studies of cross protection 

between strains of CaMV might increase our understanding of CaMV biology. 

95 
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Some Basic Observations from Other Systems 

Cross protection has been extensively reviewed (Hamilton, 1980; Fulton, 1982; 

Sherwood, 1987). The quantitative and qualitative aspects of protection are highly 

dependent upon the identities of the viruses· and hosts in question. Protection may or may 

not be reciprocal between two given strains. Additionally, protection between two strains 

may act by different mechanisms in different hosts (Rezende et al., submitted). Protection 

from disease may involve the partial or complete suppression of challenge replication. 

Protection may be temporary: although the challenge is inhibited initially, upon prolonged 

cultivation the host may develop symptoms. 

Models for the Mechanisms of Cross Protection. 

Several mechanisms might prevent the establishment and spread of the challenge 

(reviewed in Palukaitis and Zaitlin, 1984; Sherwood, 1987). These mechanisms might 

operate individually or in concert. Some possible mechanisms of cross protection include: 

specific inhibitors of viral replication, altered cellular metabolism, exhaustion of cellular 

resources, sequestration of viral molecules, inhibition of virion uncoating, and inhibition 

of the transport of the infectious entity. These mechanisms will be discussed in more detail 

below. 

Protecting inoculations might induce changes in cell metabolism, including the 

production of molecules that are directly inhibitory or which signal general changes in the 

host (reviewed in Sherwood, 1987; White and Antinow, 1991). Examples might include 

the induction of pathogenesis-related proteins or phytoalexins, the production of a"dark 

green agent" observed in the systemic mosaic symptoms of TMV -infected tobacco, or the 

production of other molecules. Such molecules might act to inhibit viral replication in a 

nonspecific or specific fashion. 
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Infection by the challenge virus might also be inhibited if the protecting virus depleted 

factors essential for viral replication (Kohler and Hauschild, 1950). Candidates for such 

limiting factors include metabolic precursors, ribosomes (Ross, 1974), or auxiliary host 

proteins (Palukaitis and Zaitlin, 1984). 

Alternatively, molecules of the challenge virus that are essential for challenge 

replication might be sequestered by the preexisting molecules of the protecting virus. 

Models invoking sequestration of the challenger's RNA by the protecting virus's coat 

protein (de Zoeten and Fulton, 1975) or complementary "antisense" RNA (Palukaitis and 

Zaitlin, 1984) have been proposed. Irreversible binding between the replicase of the 

protecting strain and the challenger's RNA might also inhibit the replication of the 

challenger's RNA (Gibbs, 1969). 

Sherwood and Fulton (1982) demonstrated that uncoating of the challenge was 

inhibited during cross protection between strains of TMV. On cross-protected plants, viral 

RNA was more infectious than RNA encapsidated in coat protein. This observation led to 

development of the field of coat protein-mediated cross protection (for references see 

Wisniewski et al., 1990). 

The mechanisms which prevent initial infection of a protected leaf or cells may also · 

function to prevent spread of the challenge when protection is only partial or breaks·down. 

The failure of TMV to spread within a systemically infected leaf from light green areas to 

dark green areas suggests a blockage of transport (reviewed in Sherwood, 1987). 

Additionally, transgenic plants which produce TMV coat protein seem to show impaired 

virus transport which may be due to the inhibition of virus replication (Register et al., 

1989; Wisniewski et al., 1990). 

One aspect of cross protection that has received little attention is the mechanisms by 

which viruses limit their own replication within host cells. The mechanisms which down

regulate replication of the protecting strain, or the divjsion of viral replication into discrete 

. stages, might function to prevent replication of challenge strains (Ishikawa et al., 1991). 
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Observations with CaMV. 

Cross protection between strains of CaMV has been documented at the symptom 

(Tomlinson and Shepherd, 1978) and DNA levels (Zhang and Melcher, 1989). Incomplete 

protection due to poor infection of the host or weak replication of the protecting strain was 

demonstrated using mechanical or aphid-mediated transmission of infection on brussell 

sprouts (Tomlinson and Shepherd, 1978). Such protection was incomplete after 20 days 

of propagation of the protecting strain but was absolute after a 25 day incubation before 

challenge. Zhang and Melcher (1989) isolated CaMV DNA from infected turnips to 

examine cross protection between two isolates of CaMV. Absolute protection from 

challenge was demonstrated when leaves above the initially inoculated leaf were challenged 

between 2 and 8 days after the initial inoculation. Cross protection between strains of 

CaMV was not temporary since the symptoms (Tomlinson and Shepherd, 1978) or DNA 

(Zhang and Melcher, 1989) of the challenge virus remained suppressed upon prolonged 

cultivation. 

Statement of Purpose 

CaMV has several unusual features which provide unique opportunities in the field of 

cross protection, including: the unique mode of replication, the ease of detecting strain

specific differences between isolates, the variety of molecules that can be assayed, the 

ability to very easily differentiate between encapsidated and free nucleic acid, the 

documented time course of CaMV DNA uncoating and synthesis (Maule, 1985a), and the 

ubiquitous presence of CaMV in systemically infected leaves. These features might 

provide unique insight into the mechanisms which underly cross protection. Additionally, 

cross protection phenomena might illuminate mechanisms which control CaMV gene 

regulation. These possibilities justified an initial investigation of cross protection between 

strains of CaMV at the whole plant and single-cell levels. This study hypothesized that 



cross protection between strains could be demonstrated using a simplified assay system. 

Since CaMV particles are present in most or all cells of systemically infected leaves 

(reviewed in Maule, 1985b), it was also expected that protoplasts isolated from 

systemically infected leaves could be used to examine whether or not cross protection 

operates at the cellular level. 

Materials and Methods 

Rea~nts 
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The highest quality reagents available in the laboratory were used. Specific sources 

are noted where such sources are considered to be especially important for the success of 

the experimental technique. 

Plant Inoculation and Growth. 

Turnip plants were grown and inoculations with virions were performed as previously 

described (Gardner et al., 1980). Alternatively, inocula for Ca-NB2 was prepared by 

inoculating turnip plants with CaMV DNA cloned in bacterial plasmids and linearized 

immediately before inoculation (Zhang and Melcher, 1989). Lysates of systemically 

symptomed leaves from these plants were used as inocula to generate plants that were 

cross-protected by this viral strain. For cross-protection challenge, infected turnip plants 

(45 days old) were inoculated with virions (Gardner et al., 1980) 17 days after the initial 

inoculations. 

For inoculation with viral RNA, a single 3 em leaf of a 4 week-old turnip was 

inoculated with 20 J.1l of TV CV RNA at a concentration of 0.3 Jlg I J.1l in celite and 

phosphate buffer, as described for CaMV virion inoculations (Gardner et al., 1980). 
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Purification of Virions and Viral RNA. 

CaMV virions were prepared and purified as described by Hull et al. (1976). TMV 

204 virions were the generous gift of William Dawson's lab. Purified TVCV virions were 

prepared by the method of Thompson et al. ( 1988) for the preparation and purification of 

potyviruses. RNA was isolated from the virions of TVCV or TMV by the Proteinase K I 

SDS method for CaMV DNA isolation (Gardner et al., 1985). Viral RNA (5 J.lg) was 

treated with 1 UIJ.Ll RNAase-free DNAase (BRL) following the recommendations of the 

enzyme supplier before being used as inocula on plants or as template for eDNA synthesis. 

RNA digestions were done with 10 J.lg I ml RNAase in 10 mM Tris HCl, pH 7.5, 10 mM 

EDTA, for 20 min at 370 C. 

Infection and Superinfection of Protoplasts 

Protoplasts were isolated as described in Chapter II from the youngest fully expanded 

leaves of healthy or infected plants three to four weeks after inoculation. Freshly isolated 

protoplasts were transfected with virions of CaMV or TMV by the method of Maule (1983) 

and cultured as described in Chpt. II. 

Pevel<mment of Dot Blot Assays of Superinfection 

in Whole Plants or in ProtQplasts 

A simple dot blot assay was developed to detect CaMV CabbS or RNA-virus 

superinfection in turnip plants. Differences among three CaMV isolates were exploited to 

develop strain-specific plasmid-DNA probes. CabbS DNA (Franck et al., 1980) carried 

the gene which codes for the wild-type aphid-transmission factor in its ORF II. In 

contrast, the DNA of the Ca-NB2 isolate of CaMV carried a bacterial DHFR gene in place 

of the wild-type ORF IT (Brisson et al., 1984). The CM4-184 strain ofCaMV had a 

deletion of most of its ORF II (Howarth et al., 1981). Lysates of plant tissue were assayed 
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for viral nucleic acids as described by Maule et al. (1981) using the probes described 

below. These same probes were also used to detect viral replication in protoplasts by the 

method described by Hussain et al. (1985). 

Except where otherwise noted, all plasmids were constructed using the cloning 

techniques recommended by Maniatis et al. (1982). Recombinant plasmids were identified 

by restriction analysis and I or limited DNA sequencing. 

Specific Detection of CabbS DNA. A plasmid subclone of the CabbS ORF IT formed 

the basis for a simple assay of CabbS superinfection. The plasmid pSH113 was created by 

inserting the 129 ntHindilll Aval fragment ofpCS101 into the corresponding sites of 

pGEM3Z. The plasmid pSH113 also contained a short repeat at the A val site resulting 

from the blunt-end ligation of two end-filled A val termini. pSH113 therefore contained 

133 bp of pCS 101-derived DNA corresponding to nt 1513 through nt 1646 of the CabbS 

viral DNA (numbering of Franck et al., 1980). The orientation of the insert was such that 

synthesis of RNA or DNA primed from the T -7 promoter I primer would result in a a 

fragment of RNA I DNA complementary to the viral coding ( + ) strand 

Hybridizations were done with 5 x 1 ()6 cpm I m1 of radiolabeled (Feinberg and 

Vogelstein, 1983) pSH113 DNA to detect CabbS-speci:fic signal. Hybridization conditions 

were the same as those described in Chpt II. Stringency washes were done at room 

temperature using 0.1 X SSC I 0.1 % SDS. 

Specific Detection of Ca-NB2 DNA. A plasmid subclone of the Ca-NB2 ORF IT 

formed the basis for a simple assay of Ca-NB2 infection. The plasmid pSH107 contained 

the 345 bp BamHI I Xhol fragment of pCa-NB2 (Brisson et al., 1984) cloned into 

pGEM3Z at the Sali I BamHI sites. This fragment included the DHFR gene which 

replaced the CaMV ORF IT in pCa-NB2. pSH107 was digested with A val and Sac! and 

then digested with exonuclease Til from the vector-derived A val site through the BamHI 

site to remove appr. two-thirds of the insert, including all of the CaMV ORF ill. After 
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digestion with S1 nuclease and religation, the resultant plasmid, pSH111, contained 108 nt 

of sequence derived from pea-NB2 corresponding to the 5 I portion of the Ca-NB2 viral 

ORF II. The first nucleotide of the Xhol recognition site just 5 1 of the DHFR initiation 

codon in pea-NB2 was arbitrarily defined as nt 1; pSH111 carried a portion of the pCa

NB2 derived DNA from nt 2 to nt 109. The orientation of the insert was such that 

synthesis of RNA I DNA primed from the T-7 promoter I primer would result in a fragment 

of RNA I DNA complementary to the viral coding ( + ) strand. 

Hybridizations were done with 5 x 106 cpm I ml of radiolabeled pSH111 DNA to 

detect signal specific for ea-NB2. Hybridization conditions were the same as those 

described in ehpt. II. Stringency washes were done at room temperature using 0.1 X SSe 

I 0.1% SDS. 

Specific Detection of the Nucleic Acids of RNA Viruses. RNA viruses were detected 

as described by Maule et al. (1981). Nitrocellulose membranes were soaked in 10 X SSe 

and air-dried. Lysates of leaves were prepared and applied to the treated membranes and 

the membranes were baked, prehybridized, and hybridized as described in ehpt. II. 

Radiolabeled eDNA complementary to TVeV RNA was prepared by reverse transcription. 

Reverse transcription reactions were performed by annealing 80 ng of random hexamer 

(Promega) with 500 ng of RNA in 12 Jll of RNAase-free water for 5 min at RT. RNA was 

then reverse transcribed with lOU I~ MML V reverse transcriptase (BRL) in the presence 

of 1 x reverse transcripase buffer (BRL), 1 U I Jll RNAasin (Promega), unlabeled 

deoxynucleotides (dATP, dGTP, and dTTP at 0.5 mM each) and [32p] a-dCTP (0.6 J.LM, 

800 Ci I mmole) in a final volume of 20 J.ll. After a 1 hr incubation at RT, the reaction was 

brought to 100 ~ with water and extracted with one volume of buffered phenol/ 

chloroform (5:1 v/v) and precipitated with 25 Jlg of tRNA, 1/2 volume of 4 M ammonium 

acetate and 2.5 volumes of ethanol. The probe was dissolved in water, denatured with 0.1 

N sodium hydroxide for 5 min at 42 oe, and used in hybridizations at concentrations of 1 x 



103 

1Q6 to 2 x 1Q6 cpm per m1 of hybridization solution. Alternatively, the nucleic acid ofTMV 

204 (Dawson et al., 1986) was detected using a radiolabeled (Feinberg and Vogelstein, 

1983) plasmid subclone of the TMV 204 (Dawson et al., 1986) 30 K gene at 5 x 10 6cpm 

per m1 of hybridization solution. This subclone contains the TMV 30 K protein inserted 

between the Xho I and Pst I sites of p UC129 and was a generous gift from the lab of 

William Dawson. Hybridization conditions were the same as those described in Chpt. II. 

Stringency washes were done at room temperature using 0.1 X SSC I 0.1 % SDS. 

Results 

Detection and Characterization of a ContaminatinJ: Virus 

During cross-protection experiments using a preparation of virions (designated R59) 

thought to be the Ca-NB2 strain of CaMV, a discrepancy between spectrophotometric data 

and dot blot hybridization signal was noted. Although material which absorbed light at 260 

nm was abundant, nucleic acid hybridizations detected little or no CaMV -specific nucleic 

acid (not shown). To address this discrepancy, undisrupted virions were subjected to 

electrophoresis through agarose. Virions from this preparation migrated considerably 

faster than authentic CabbS virions (Fig. 23) or authentic CM4-184 virions (not shown). 

This suggested that, while the preparation contained virions, these virions were not CaMV. 

Agarose gel electrophoresis of undisrupted virions from preparations of earlier passages 

(preparations designated U865 and U967) allowed the presence of the contaminant to be 

easily traced back through two previous rounds of virus isolation and passage (not shown). 

The preparation examined in detail (designated R59) was almost homogeneous 

(Fig. 23). Thus, the nucleic acid and coat protein of the predominant virus in this 

preparation could be characterized without further purification of the virus. SDS-PAGE 

was used to size the major capsid protein of the contaminant. The apparent MW of the 

contaminant's coat protein was 17.5.. kD (Fig. 24B). The coat protein of the contaminant 



Figure. 23. Electrophoretic Mobility of the Contaminant Virions. 

The relative mobilities of CaMV CabbS virions (CaMV), contaminant 
virions (contaminant), and BRL "1-Kb ladder" DNA size standards (stds) 
were analyzed by electrophoresis through 0.75% agarose gels which were 
prepared and run with 1 X T AE buffer. Two ~g of virions were loaded I 
lane and electrophoresis was performed for 30 min at a field strength of 7. 7 
VI em using a MINNIE Submarine Agarose Gel Unit(Hoefer Model HE 
33). Following electrophoresis, the gel was stained for 30 min with 1 ~g I 
ml ethidium bromide and photographed under UV excitation. The size (Kb) 
of selected bands of the size standards is shown. 
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Figure. 24. Characterization of the Contaminating Viral Nucleic Acid and Capsid Protein. 

(A) Nucleic acid was isolated from virions by digesting the virions with 
Proteinase Kin the presence of SDS. Nucleic acids were purified by 
extracting with phenol I chloroform (5:1) and precipitated with ethanol 
(Gardner and Shepherd, 1980). The nucleic acid from the original 
contaminated preparation (contaminant), the nucleic acid from the common 
strain ofTMV (common), and linear DNA fragments (stds; BRL "1 Kb 
ladder") were analyzed on 1 % agarose gels using glyoxal and acridine 
orange as described by McMaster and Carmichael (1977). Purified viral 
RNA was also treated with DNAase and used to inoculate turnips. 
Homogenates of leaves which developed systemic symptoms were then 
used to inoculate turnips or tobacco. Virions were then isolated from this 
second group of plants after the development of systemic symptoms. The 
nucleic acid component of these passaged virions was then analyzed (turnip 
and tobacco, resp.). The sizes (Kb) of selected bands of the size standards 
are shown. 
(B) The protein component of the virion was analyzed by SDS-PAGE as 
described in Materials and Methods. Appr. 3 J.Lg of purified virions from 
the contaminated preparation (contaminant) were boiled in the presence of 
SDS and subjected to electrophoresis on discontinuous 12 % 
polyacrylamide gels. An equivalent amount of the CM4-184 strain of 
cauliflower mosaic virus(CaMV), the common strain of tobacco mosaic 
virus (TMV), and SDS-PAGE size standards (stds) were also applied to the 
gel. The gel was stained with Coomassie blue and destained to visualize the 
protein bands. The MWs (k:D) of the size standards are shown. 
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migrated slightly faster than the coat protein of the U-1 strain of TMV (TMV 204-Dawson 

et al., 1986). When the nucleic acid of the virus was purified and analysed by agarose gel 

electrophoresis and acridine-orange staining, an orange band typical of single-stranded 

nucleic acids (McMaster and Cannichael, 1977) was observed (not shown). This nucleic 

acid was RNAase sensitive (not shown). The nucleic acid of the contaminant was 

glyoxalated and separated by electrophoresis through agarose. The migration of this RNA 

relative to glyoxalated DNA size standards suggested that the single-stranded RNA of the 

contaminant was 6.4 Kb long (Fig. 24A). The migration of this RNA was 

indistinguishable from that of RNA isolated from TMV U-1 virions (Fig. 24A). 

The nucleic acid of the contaminant was resistant to DNAase treatment (not shown). 

To obtain a source of the contaminant free of CaMV virions, the DNAase-treated nucleic 

acid from the contaminated preparation was used to inoculate a turnip plant. Unlike turnip 

plants inoculated with the contaminated preparation, this plant did not develop typical 

CaMV symptoms. Instead, this plant appeared symptomless until four weeks 

postinoculation. At this time, mild vein-clearing symptoms became apparent (not shown). 

These symptoms became more pronounced after cultivation of the plant for an additional 

four weeks. Inoculum containing the purified virus was preserved by freezing young 

symptomed leaves taken from this plant at 8 weeks postinoculation. RNA was extracted 

from virions that were isolated from symptomed plants that had been inoculated with this 

frozen inoculum. The RNA from passaged virions appeared to be homogeneous and 

comigrated with the RNA extracted from the original contaminant (Fig. 24A). Thus the 

frozen inoculum contained the causal agent of vein-clearing symptoms. 

A different virion preparation was isolated from infected turnip plants that had been 

inoculated with an inoculum thought to be TuMV. These plants showed vein-clearing 

symptoms rather than the mosaic expected for TuMV. These vein-clearing symptoms were 

identical to those observed on plants inoculated with the RNA of the contaminant described 

above. The concentration of this putative TuMV preparation, estiniated by its absorbance at 
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260 run, suggested a yield which was three times the expected (Thompson et al., 1988) 

yield for TuMV. Because the possibility existed that this TuMV inoculum was present in 

growth chambers coincident with the flrst appearance of contaminated CaMV preparations 

(June and July of 1985, experiments designated U733, U755, and U865), the relationship 

between the virus present in the contaminated CaMV preparation and the virus prepared 

following inoculation with the TuMV inoculum was examined 

RNA was isolated from the virions present in the contaminated CaMV preparation and 

from the virions prepared following inoculation with the TuMV inoculum. These nucleic 

acids showed indistinguishable migrations following glyoxalation, agarose gel 

electrophoresis, and acridine-orange staining (not shown). These nucleic acids were 

transferred to nylon membranes and analyzed by hybridization with radiolabeled eDNA 

prepared from the RNA isolated from the contaminated CaMV preparation. This eDNA 

probe hybridized with nucleic acid from the TuMV-inoculated preparation and to lysates of 

the original TuMV inoculum that had been dot blotted to nitrocellulose by the technique of 

Maule et al. (1983), but did not hybridize to the RNA of TMV 204 (not shown). 

Additionally, the electrophoretic mobilities of the coat proteins of the virions within 

these two preparations were compared using SDS-PAGE. The coat proteins of these 

viruses had indistinguishable electrophoretic mobilities (not shown). 

Thus, the nucleic acids and coat proteins of these two viruses were indistinguishable 

by the methods used here. The contaminant purified from the CaMV preparation is referred 

to hereafter as turnip vein-clearing virus, isolate A (TVCV A) while the virus isolate 

prepared from the TuMV inoculum is referred to as TVCV B • 

Characterization of Cross Protection in Plants 

To detect replication of the challenging virus strain in plants protected by previous 

infection with Ca-NB2 or CM4-184, a simple dot blot assay was developed to detect 

CaMV CabbS or TVCVs superinfection in turnip plants. Lysates from CabbS-inoculated 
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plants gave strong signal when hybridized with radiolabeled pSH113 (Fig. 25). However, 

uninoculated plants or plants inoculated with Ca-NB2 gave negligible signal with this probe 

(Fig. 25). Thus, detection of CabbS infection with the plasmid subclone was specific. 

Specific detection required large concentrations of the probe during hybridizations. 

Hybridizations done with less than 5 x 1 ()6 cpm I m1 of radiolabeled pSH113 gave little or 

no CabbS-specific signal (not shown). Radiolabeled TVCV B eDNA was used to detect 

systemic TVCVB infection (Fig. 26). 

The identity of the viral strain present in the initial, protecting infections was confirmed 

based on the symptoms obseiVed on the plant and the restriction patterns of viral DNA, 

when applicable (not shown). The identity of the virus responsible for initial infection 

following Ca-NB2 inoculation was confirmed using hybridization probes specific for the 

Ca-NB2 ORF II (not shown). After the protecting infection was allowed to develop for 17 

days, the symptomed plants were challenged with either CabbS for TVCV B· After 

challenge inoculations, plants were cultivated for 30 days and then analyzed for 

superinfection. 

Mter challenge inoculations, CabbS symptoms could be detected in plants that had not 

been given protecting inoculations (not shown). Dot blot hybridization detected CaMV

specific sequences in the young, systemically-infected leaves of these plants (Fig. 25). 

Thus, these plants could be infected even though they were quite mature. 

When plants showing systemic CM4-184 or Ca-NB2 symptoms were challenged with 

TVCVB virions, systemic TVCVB symptoms could not be detected in the background of 

CaMV symptoms at 30 days postchallenge. However, TVCVB infection could be detected 

in young leaves from positions above the inoculated leaf by dot blot hybridization with the 

TVCV B - specific probe (Fig. 26). Similarly, plants that had been previously inoculated 

with TVCV B developed symptoms characteristic of systemic CaMV infection following 

challenge with Ca-NB2 or CM4:-184. Thus, cross protection was not observed between 

unrelated viruses. When plants showing symptoms of systemic Ca-NB2 or CM4-184 



Figure 25. Dot Blot Assay of Cross Protection between Strains of eaMV. 

Initial inoculations and subsequent challenge inoculations were performed 
as described in Materials and Methcxls. Plants were inoculated as 
previously described (Gardner et al., 1980) with eM4-184 (eM), Ca-NB2 
(NB2), or TVeVB (Lartey et al., in preparation) virions, as indicated. At 
17 days post-inoculation, the three youngest leaves longer than 7 em were 
challenged with the CabbS strain of eaMV (CS). At 30 days post
challenge, one to two of the youngest leaves 6 to 12 em in length were 
assayed for eabbS DNA. The spot blot was hybridized as described in 
Materials and Methods using a eabbS-specific probe (pSH113) to detect 
systemic eabbS infection (plants) or to detect eabbS DNA in lysates from 
healthy plants to which eabbS virions had been added (stds). Standards 
(stds) contained (L toR) 1 Jlg, 0.1 Jlg, 0.01 Jlg, or 0.001 Jlg of virus I 
spot Following overnight hybridization, the membrane was washed three 
times with 2X sse I 0.1 % sse at 25 o e followed by a final stringency 
wash with 0.1 X sse I 0.1 % SDS at 25 o C for 30 min. The washed 
membrane was exposed to X-ray film overnight without an intensifying 
screen. 
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infection were challenged with CabbS, CabbS-specific sequences could not be detected in 

young emerging leaves at 30 days post challenge (Fig. 25). Thus, initial inoculations with 

CaMV CM4-184 or with Ca-NB2 prevented subsequent systemic infection with CaMV 

CabbS. 

CabbS infection was not prevented by Ca-NB2 following coinoculation with CabbS 

and Ca-NB2 (Fig. 25). Thus, the prevention of superinfection was not due to competition 

between CabbS and Ca-NB2. Protection was specific to related viruses, ie, strains of 

CaMV, as previous inoculation with TV CV B did not prevent the appearance of CabbS in 

the young leaves of plants that were previously infected with TVCV B (Fig. 25). 

Development of an Assay for Cross Protection in Protoplasts 

The assay described above demonstrated that strain-specific differences in CaMV DNA 

could be exploited to examine superinfection in plant tissues. To examine if such an 

approach was also feasible in protoplasts, protoplasts were isolated from systemically

infected plants. The yield of protoplasts from systemically-infected leaves was appr. 50 % 

of the yields obtained from healthy leaves. Recovery of cells after PEG treatment and 

washing was appr. 50 % of the recovery observed for protoplasts isolated from healthy 

leaves. Following PEG-mediated infection and washing, light microscopy revealed that 

cells from healthy plants were almost free from debris at this step. In contrast, cells from 

infected leaves were appr. 50 % debris by volume following the final wash. Although 

protoplast preparations isolated from infected leaves were less stable during manipulations 

and contained debris, upon subsequent culture these cells showed survival rates 

comparable to those obtained from healthy cells. In three initial experiments, the yields and 

stabilities of protoplasts from infected tissue were adequate for the experiments that were 

planned. 

However, in subsequent experiments, the yields of viable cells obtained following 

digestion and PEG-mediated inoculation of infected tissue were much lower. The inability 



to recover useful amounts of viable cells led to the decision to terminate subsequent 

attempts at examining cross protection between strains of CaMV in protoplasts. 
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Results are presented from one experiment designed to assay viral replication in cells 

that were isolated from healthy or infected turnip leaves (Fig. 27). Because protoplast 

yields were quite low, the cells were cultured in Costar® tissue culture plates. To prevent 

the deleterious effects of inadequate aeration in this culture system (discussed in Chpt. II), 

protoplasts were cultured at 0.5 x 1o6 to 1 x 1o6 cells I ml in 0.4 ml of media. Nucleic acid 

replication in these cells was assayed as described in Chpt II, but using the strain-specific 

probes described above. Protoplasts were isolated from healthy plants and infected with 

either TMV U-1 (Dawson et al., 1986) or the CabbS strain of CaMV. In the cells 

inoculated with TMV, TMV-specific signal showed a steady increase throughout the 4 day 

period of the experiment (Fig. 27 A). However, when this assay of TMV U-1 replication in 

protoplasts was repeated using a different preparation of cells, TMV signal showed no 

increase during the first day of culture, increased appr. 10-fold between day one and day 

two, and plateaued after day two (not shown). Thus, although the shapes of the replication 

curves for TMV were variable, replication of TMV in turnip pro top lasts was demonstrated 

in both experiments. In the cells inoculated with CaMV, the rate of CaMV replication was 

comparable to those observed in other experiments until day four, at which time replication 

seemed to be slightly repressed (c.f. Fig. 19 and Fig. 27B). 

Protoplasts from leaves of plants infected with CM4-184 were inoculated with either 

TMV U-1 or CaMV CabbS. In the cells infected with TMV, TMV -specific signal appeared 

to increase slightly during culture (Fig. 27A). However, this signal was only slightly 

above background. In the cells inoculated with CaMV CabbS, CabbS-specific signal 

slowly declined during subsequent culture (27B). Thus, in cells isolated from infected 

plants, replication of the superinfecting viruses was not unequivocally demonstrated. 



Figure 27. Infection of Protoplasts Isolated from Healthy or Infected Plants 

Protoplasts were isolated from the youngest expanded leaves of turnip 
plants four weeks after the plants had been inoculated with CaMV CM4-184 
virions; protoplasts were also isolated from equivalent leaves of a plant 
which had not been inoculated. Freshly-isolated protoplasts (107 cells) were 
infected with 40 ~g of virions and cultured as described in Materials and 
Methods. Aliquots (appr. 104 cells) of each culture were spotted onto 
nitrocellulose at the indicated times posti.nfection; aliquots of an 
uninoculated culture of cells which were isolated from an infected plant 
were also spotted (background). The membranes were treated as described 
below and probed using 5 x 106 cpm of radiolabeled, cloned DNA per ml 
of hybridization solution. After three low stringency washes with 2X SSe I 
0.1 % SDS at 25o e, the final stringency wash was performed at 25o e 
using 0.1X sse I 0.1% SDS. The washed membranes were exposed to X
ray film; after autoradiography, each spot was excised and the bound 
radioactivity determined by liquid scintillation counting. Points plotted 
represent the means of duplicate (background) or triplicate (infected) 
aliquots from the indicated cultures. 
(A) Protoplasts were infected with TMV virions (common strain). After all 
culture aliquots were applied, the membrane was baked and probed with 
pTMV30, a eDNA clone of the TMV (common strain) 30K region. 
(B) Protoplasts were infected with CaMV eabbS virions. After all culture 
aliquots were applied, the membrane was treated with NaOH, neutralized, 
baked, and hybridized with a eabbS-specific probe, pSH113. 
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Discussion 

Characterization of a Contaminating Vims 

TVCV A was the causal agent of vein clearing symptoms. Although vein-clearing 

symptoms were not observed during TVCV A I Ca-NB2 coinfection, such symptoms 

would probably have been masked by the more severe Ca-NB2 symptoms. Following 

inoculation of a plant with DNAase-treated inoculum, vein-clearing symptoms were 

observed, thus demonstrating that these symptoms could be induced by the single-stranded 

RNA of TVCV A· Because CaMV DNA is infectious (Lebeurier et al., 1980), failure to 

observe typical Ca-NB2 symptoms following inoculation of turnips with DNAase-treated 

nucleic acid suggested that this treatment removed most, if not all, of the CaMV DNA. The 

observation that TVCV A RNA could be reisolated from symptomed tissue after passage 

(Fig. 24A) confirmed that this vims was, in fact, the causal agent of the symptoms. 

The observations that TVCVs induced symptoms identical to those ofTCVCA, 

contained RNA and coat protein indistinguishable from those of TVCV A• and was present 

in the growth chamber coincident with TVCV A• suggest that these two preparations of 

virions contain the same vims. Substantiation of this hypothesis would require a more 

detailed comparison of the vimses in these two preparations, such as characterization of the 

immunological properties or amino acid compositions of the coat proteins of the virions. 

Other approaches could be used to demonstrate homologies at the RNA level. 

The coat protein of TVCV A has an apparent molecular weight of 17.2 kD-(Fig. 24A). 

The genome of this vims is a 6.4 Kb- long, single-stranded RNA (Fig. 24B). The 

molecular weights of the protein and nucleic acid components of TVCV A are consistent 

with its tentative identification as a member of the tobamovirus group (Francki et al., 

1985). Electron microscopy and immunological characterization (Robert Lartey, in 

preparation) have confirmed this identification. Because TVCV A and TVCVs infect turnip, 

a crucifer, they may be strains of Rib grass Mosaic Virus or Youcai Mosaic Virus (Oshima 



and Harrison, 1975). However, characterization of symptoms on select hosts has 

suggested that this virus may be a novel tobamovirus (Robert Lartey , in preparation). 
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Although the undisrupted TVCV A virions appear homogeneous during agarose gel 

electrophoresis (Fig. 23), the possibility that the purified preparation contains two or more 

populations oftobamoviruses or tobamovirus strains cannot be ruled out. However, as 

very few tobamoviruses infect crucifers, it seem reasonable to assume that the virus 

population is, in fact, relatively homogeneous. 

The novel host range of TVCV A may be of considerable utility for investigating the 

molecular mechanisms which determine viral host range. Other than the exceptions noted 

above and the symptomless infection of Arabidopsis with TMV-C and TMV-P (Urban et 

al., 1988), crucifers are not systemic hosts for tobamoviruses (Francki et al., 1985). 

Although TMV U-1 (TMV 204-Dawson et al., 1986) does not systemically infect turnips, 

both TMV U-1 and TVCV A infect tobacco (Robert Laney, in preparation). Thus, TMV U-

1 and TVCV A have overlapping, but distinct, host ranges. TMV U-1 and TVCV A are 

probably quite different at the sequence level since their nucleic acids do not hybridize with 

each other. Partial sequence analysis has confirmed that the sequences of TMV U-1 and 

TVCV A are different (Robert Laney, in preparation). These differences could be exploited 

to investigate the molecular basis for the distinct host ranges observed. Significantly, TMV 

U-1 cannot replicate in turnip plants, but can replicate in turnip protoplasts (Fig. 27 A). 

Thus, the basis for the distinct host ranges ofTMV U-1 and TVCV A may reflect 

differences in cell-to-cell transport (30K) function. Although such an interpretation might 

be overly simplistic (reviewed in Atabekov and Dorokhov, 1984), it could provide a 

starting point for an investigation into the mechanism(s) by which the host ranges of these 

two viruses are determined. Additionally, an attempt to complement TMV U-1 infection of 

turnips with TVCV A might prove insightful. 
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Deyelru>ment of an Assay of Cross Protection 

The assay of cross protection between strains of CaMV developed in the work 

presented here has several advantages over assays that have been utilized previously. 

Tomlinson and Shepherd (1978) documented cross protection between strains of CaMV by 

observing inoculated host plants for the development of symptoms specific for the 

challenge. However, observations from other virus systems demonstrate that infections 

may be symptomless (reviewed in Atabekov and Dorokhov, 1984) and that the challenger 

may replicate without inducing symptoms (Cassells and Herrick, 1977). Thus, symptoms 

may not accurately reflect the absence of superinfection. Zhang and Melcher (1989) 

extracted CaMV DNAs and utilized restriction fragment length polymorphisms between the 

protecting and challenge strains to demonstrate systemic protection of the host from the 

challenge strain. This method, while unambiguous, is rather labor intensive. As described 

here, utilization of the dot blot assay technique coupled with the use of strain-specific 

hybridization probes resulted in successful strain-specific detection of CaMV infection 

(Fig. 25). The exploitation of differences in the DNA sequences of three strains of CaMV 

allowed cross protection among these strains to be assayed in a manner that was convenient 

and unambiguous. This assay could easily be applied to large numbers of plants to 

generate statistically meaningful results. 

The utility of this assay in detecting CaMV replication in infected protoplasts was also 

demonstrated (Fig. 27). Because it is questionable as to whether or not TMV replicated in 

cells from infected leaves (Fig. 27 A), the observation that CabbS failed to infect this same 

preparation of cells (Fig. 27B) has little significance. The poor TMV replication suggests 

that the protoplasts isolated from infected leaves were not growing vigorously. Thus, the 

inhibition CaMV replication in these cells may have been due to poor cell viability or poor 

cell vigor rather than cross protection. The speculation that CaMV replication in protoplasts 

requires cell division (presented earlier) is also consistent with this interpretation. 



Alternatively, the poor replication of the TMV challenge may have been related to the 

presence of two infecting viruses within individual cells. 
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Thus, this system could, in theory, be applied to investigate cross protection at the 

single-cell level. However, difficulties with plant materials prevented such an 

investigation. Plant cell stability and viablility declined with each successive attempt to 

isolate pro top lasts from infected leaf tissues. Other authors have reported the isolation and 

culture of protoplasts from systemically symptomed leaves of turnip plants infected with 

CaMV (Howell and Hull, 1978; Furusawa et al., 1980; Yamaoka et al, 1982; Maule et 

al., 1983; Thomas et al., 1985). Thus, the examination of cross protection between 

strains of CaMV in turnip protoplasts isolated from systemically infected leaves is practical 

in theory. However, successful demonstration of its application was not accomplished in 

the work presented here. 

Cross Protection Among Strains of CaMV 

Observations regarding cross protection between strains of CaMV suggest that CaMV 

is widely distributed among the cells in the leaf tissues and very young tissues of the host. 

In many host I virus systems, prolonged cultivation of the challenged, cross-protected host 

can result in the establishment of the challenge infection (reviewed in Hamilton, 1980). It 

has been suggested that such breakdown in cross protection involves replication of the 

challenge in plant tissues that are free of the protecting infection (Kunkel, 1934 ). 

However, the results presented here, and results from other authors (Tomlinson and 

Shepherd, 1978; Zhang and Melcher, 1989), suggest that cross protection among strains 

of CaMV continues even during extended cultivation of the challenged plant. Because 

CabbS, an unusually competitive strain of CaMV (Zhang and Melcher, 1989), was used as 

the challenger in the study presented here, the observation that protection does not break 

down with time suggests the protecting strain is present in most if not all, of the cells of the 

challenged tissues. 
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Zhang and Melcher (1989) challenged cross-protected plants by inoculating healthy 

leaves from positions above the previously inoculated leaf. They observed that the 

protecting inoculation given as little as 2 days before challenge was adequate to protect the 

host from the subsequent challenge. Their results suggest that protection did not function 

by preventing the establishment of infection in the inoculated leaf, but rather acted at some 

later point in the spread of systemic infection. Candidates for the point at which cross 

protection against the spread of CaMV infection is manifested include long distance 

transport and I or infection of the quickly growing tissues at the shoot apex. These results 

are consistent with the theory that CaMV is ubiquitously distributed among the very young 

tissues of the host. 
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