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CHAPTER I 

INTRODUCTION 

The research reported herein Is to determine the feasibility of 

using data collected during typical drilling operations to predict an 

upper bound on the minimum principal in-situ stress of rock. These 

predictions are desired in order that hydraulic fracturability of 

reservoir rock can be better determined and fracturing programs 

designed without the need for expensive fracturing stress tests, 

guesswork, or empiricism. The work uses data available from four 

wells already drilled, namely the GRI (Gas Research Institute) Staged 

Field Experiment Wells (SFE # 1, 2, 3 & 4), which were drilled mainly 

with conventional tri-cone roller bits in east Texas and western 

Wyoming. A high-fidelity drilling model is used in an "inverted" 

mode to predict in-situ ultimate rock strength. This strength is a 

function of effective confining pressure available from published 

laboratory data for various rock types. The ultimate rock strength at 

a given depth is then used to estimate bounds on the in-situ 

minimum principal rock stress, or "formation closure stress". This IS 

accomplished by employing principles of elastic and plastic 

deformation theory together with principles of soil mechanics. The 

results from this approach are compared with good agreement to 

available hydraulic fracturing stress test data from the four SFE 

1 



wells. This approach can provide an inexpensive means to assist 

with the design of hydraulic fracturing treatments. 
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CHAPTER II 

LITERATURE REVIEW AND 

TECHNICAL DISCUSSION 

Drilling Models 

The concept of usmg drilling data to predict drilling rock 

strength has developed over a number of years as drilling models for 

various types of bits have steadily improved. Although models have 

been proposed for full-hole polycrystalline diamond compact bits 

(PDC bits) [1], natural diamond bits [2], and core bits [3], the more 

traditional tricone roller bit has received the most attention [ 4-13] 

because of its widespread use. Consequently, this model is the most 

highly-developed, and a recent article by Winters, et al [13] has 

demonstrated very high fidelity in predicting penetration rates. 

In this model, penetration rate of the drill bit is calculated as a 

function of known operating conditions, bit design constants, mud 

properties and hydraulics, and ultimate compressive rock strength 

and ductility. The relationship given in [13] is: 

1_ = SD2 (aS.Ik +d) + ___h_ + cpJlD 
R NW W e ND Im (1) 

where R Is the bit penetration rate (ft/hr), and: 
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a,b 

c 

D 

e 

d 

Im 

N 

w 

s 
p 

Jl 

= 
= 
= 

= 
= 
= 

= 
= 
= 
= 
= 

Bit design constants (hr*rpm*in/ft) 

Bit design constant (hr*lbf*gal/ft*lb*cp*in) 

Bit diameter (inches) 
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Rock ductility or strain at rock failure (dimensionless) 

Cone offset coefficient (in - 1) 

Modified jet impact force (lbf) 

Rotary Speed (rpm) 

Weight-on-bit (lb) 

Compressive strength of rock at failure (psi) 

Drilling fluid (mud) density (lb/gal) 

Plastic viscosity (Bingham Plastic Model) of 
drilling fluid (mud)(cp) 

By usmg known laboratory and field data together with 

experimentally determined bit coefficients in the right side of (1) 

Winters, et al [13] claim that penetration rate can be predicted with a 

mean-square error (compared to measured penetration) of 2.0% or 

less. Such accuracy has led several authors [13, 14, 15] to propose 

usmg this model in an "inverted" mode to predict rock strength S if 

the penetration rate and other parameters are known. Rearranging 

(1) such that S is expressed as a function of the other variables 

produces this "inversion" [13]: 

(2) 

Usually, in the absence of direct measurements made from core 

samples, ductility values in (2) must be estimated to calculate S. 



Reasonable estimates can be made based on published literature 

values [13] for various lithologies, provided these lithologies are 

known. If cutting samples are collected by a "mud logger" during 

drilling, and a lithology log is plotted, lithologies can be identified. 

Otherwise, offset-well lithology data must be used. 

Winters' [13] model development is a continuation of Warren's 

[12] work. The drilling model proposed by Warren [12] is given by; 

1 _ aS2n3 b cDpJl ----+-+--
R W~ ND Im 

where the variables are defined as in (1). 

(3) 
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Winters continued development of (3) because predictions for 

R were low in drilling soft shales and in situations where 

underbalanced drilling was performed. By introducing the fourth bit 

coefficient, "d", and the rock ductility, "e", or strain at failure, it was 

believed that penetration rates in the softer formations could be 

modeled better. The "d" coefficient is defined as the drill bit cone 

offset and has units of 1/length. This is a very difficult parameter to 

measure and was assigned numerical values to give the best fit of 

the model to laboratory data. The ductility e also involves some 

sources of error. Values for strain at failure, or ductility, were 

determined from laboratory triaxial tests performed on different 

rock cores. Values for strain at failure, defined as a function of 

differential pressure by Winters [13], were all developed at room 

temperature and with a single strain rate. Values for strain at 

failure for a rock selected from a stress-strain rock failure curve, are 



extremely subjective and would be a strong function of whoever 

made the selection. Also, it is believed that the strain at failure Is a 

strong function of strain rate and temperature [ 16] which were not 

considered in Winters' work. A proper model for ductility should 

include both rotary speed and formation temperature. 

Because the ductility and cone offset model (1) is suspect, m 

this study it was decided to begin with the model presented by 

Warren [12] in equation (3). Inverting this for rock strength gives: 

S = [NW2- bW2- cpJ.1NW2]-5 

aRD3 a_D4 almD2 (4) 

Neither Winters [13] nor Warren [12] addressed "chip hold 

down effects" on penetration rate modeling, but it is known [ 17, 18] 

that this effect is important. 

6 

The effective differential pressure IS the pnmary contributor to 

the "chip hold-down effect" [17] for a given lithology. The chip hold-

down effect arises because the actual pressure difference across a 

drilled chip under the bit must be overcome before the chip can be 

removed by the flowing mud and bit teeth. Figure 1 illustrates this 

effect. The effective differential pressure is the difference between 

the pressures at top and the bottom of a "formed", but not "free", 

chip. High chip hold-down causes the formation to appear harder to 

drill. The chip hold-down effect is a complicated and poorly 

understood phenomenon, and is believed to be a function of the 

aforementioned pressures; the penetration rate; chip thickness; chip 

permeability; mud type and viscosity; mud fluid mechanics at 
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Hydrostatic Mud Column 
Pressure and Frictional 
Back Pressure 
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Figure 1. Chip Hold-Down Illustration 
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bottom-hole; and mud solids size, type and quantity. Several 

investigators [ 17, 18] have examined this problem, with no clear 

physical model emerging. As a first step m the study herein, we 

propose to include this effect with a purely empirical relationship. 

8 

In (3) and ( 4) the bit coefficients must be obtained after a 

suitable "chip hold down" modification has been included. The initial 

task was to determine the most appropriate form for this 

modification, or "chip hold-down function". Increasing differential 

pressure acts to reduce rate of penetration by two primary 

mechanisms. First, increasing differential pressure mcreases rock 

strength, discussed later in equation (8); second, the "chip hold 

down" effect increases with differential pressure, further reducing 

penetration rate. It is also lithology dependent. 

Three different approaches were used in an attempt to 

describe the chip hold-down effect. These were; 

A. Multiply the third term (the "hydraulic effect" term) on 

the R.H.S of (3) by a suitable function of differential 

pressure. This approach assumes that chip hold down is 

totally coupled to the effect of hydraulic jets cleaning 

bottom hole. 

B. Multiply the first term (the "crushing effect" term) on the 

R.H.S. of (3) by a suitable differential pressure term. This 

approach assumes that the chip hold-down effect 

mcreases the strength of the rock indirectly, such that 

when the chip is not removed, and thus "reground", the 

rock appears stronger. 



9 

C. Multiply the first two terms ( the "crushing effect" and the 

"effect of more than one tooth penetrating the rock") on 

the R.H.S. of (3) by a suitable differential pressure term. 

This approach assumes the same effect as in B, but 

includes the effect of more than one tooth in contact with 

the rock. 

To establish the best relationship for chip hold-down, data 

from laboratory full scale drilling tests was used in which bottom 

hole pressure varied and other conditions remained constant. A 

reasonably complete set of laboratory drilling data from Amoco 

Production Company in Tulsa, OK, was available for an IADC 537 bit, 

8.5 inches, in diameter, in which the bottom hole pressure was 

varied from 120 to 1200 psi. (An IADC bit code indicates the 

hardness of the formation the bit is designed to drill, together with 

certain features of the bit's tooth cutting structure and other special 

features). Such data was available for drilling both Catoosa Shale and 

Carthage Limestone, which yielded the most complete data set for 

determination of chip hold down effects. Because data was 

somewhat limited, it was decided to determine values for the bit 

coefficients a, b and c in (3) for the IADC 537 bit at one effective 

confining pressure (1200 psi) with different operating conditions and 

lithologies. The values of a, b and c that gave the best match of 

results from (3) with this data were obtained using SAS [19] and a 

mean-square fit routine. 

The values of a, b and c obtained at 1200 psi differential 

pressure were held constant while various chip hold-down functions 

were tried, using the three approaches listed above. Drilling data at 
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other differential pressures was then employed to produce a chip 

hold-down function that gave the best fit of equation (3 ), modified as 

in the three approaches above. Results from the chip hold down 

functions obtained in Catoosa Shale and Carthage Limestone for the 

three cases discussed above are shown in Figures 2-4. When 

evaluating the chip hold down functions for approaches A, B and C it 

was observed that approach C yielded the most reasonable model of 

the chip hold down effect because it alone yielded positive values of 

the chip hold-down function for all differential pressures. The 

results in Figure 4 for both Catoosa Shale and Carthage Limestone 

were used, and a reasonable fit to this data is given in (5), with the 

coefficients ae, be and Ce for Catoosa Shale and Carthage Limestone 

given in Table 1 : 

(5) 

where fe(P e) is defined as the differential pressure or the "chip hold 

down function", and 

P e = Effective confining pressure (psi) 

ae be Ce = Chip hold down coefficients (lithology dependent) 
Units on ae, be and Ce chosen such that 
fe(P e) is dimensionless. 

The equations (3) and ( 4) are now modified to include a chip 

hold-down effect, and the final version of the 3-term model IS given 

as: 
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Lithology 

Catoosa Shale 

Carthage Limestone 

TABLE I 

CHIP HOLD DOWN FUNCTION 
LITHOLOGY COEFFICIENTS 

a * c 

.004966 

.014132 

b * c 

.75721 

.4 7016 

c * c 

1 4 

.1 0254 

.56948 

* Units on ac, be and Cc chosen such that fc(P e) IS dimensionless. 



Then, solving for rock strength gives: 

S = [ NW2 - bW2 - cp~NW2 ls 
afc(P e)RD3 aD4 afc(P e)ImD2 

For bits used in the SFE wells for which no published 

laboratory drilling data is available, laboratory drilling data was 

obtained from a bit manufacturing company and from Amoco 

Production Company Research Center, Tulsa, OK. 

1 5 

(6) 

(7) 

To verify the utility of (1), three "sharp" 8.5 inch bits with 

IADC codes of 4-3-7, 5-3-7, and 6-2-7 were used by Winters [13] m 

a shallow field test in Oklahoma over a 3000 foot interval. Values of 

S were calculated foot-by-foot from (2), and the results were 

compared with results from 18 selected core samples from a nearby 

well. These cores were tested in a triaxial load cell with appropriate 

confining pressure to determine mechanical properties. A close 

match was obtained between measured triaxial rock strengths and 

computed rock strengths from (2). The computed bottomhole rock 

strengths varied from 3,000 to 30,000 psi. 

Equation (3) was verified in [12] with good penetration rate 

predictions, but the laboratory tests used limited differential 

pressure variability. Equation (4) was not verified for rock strength 

with field triaxial core tests. However, because the penetration rate 

predictions of (3) are comparable to those of ( 1) for most drilling 



situations, we believe rock strength calculations will be of 

comparable accuracy. 

1 6 

A problem arises m using equations (1), (2), (3) and (4) when 

the bit is dull, either because of tooth wear or missing teeth. No 

published models are available to predict penetration rates with dull 

bits, and we expect such situations will arise. The simplest approach 

would be to use drilling data only over the footage interval of the bit 

run where confidence exists that the bit remained sharp. However, 

this would ignore as much as 50% of the data, if we discarded say the 

bottom half of each bit interval. A second approach would be to 

linearly degrade the bit sharpness from beginning to end of the bit 

interval. This assumes, of course, that accurate dull-bit grading 1s 

available from the bit records. Then using an unpublished procedure 

communicated by Warren [20], the penetration rate R in ( 1) or (3) 

can be adjusted as a function of the tooth dullness. This is done by 

multiplying the inverse of the R.H.S. of (1), (3) or (6) with a reduction 

factor that linearly decreases with bit tooth wear. Unfortunately, 

this procedure holds some promise only for worn teeth, not for 

broken teeth. If the bit was pulled with large numbers of insert 

teeth missing, only the initial footage for the sharp bit could be used. 

It should be empathized that during conversations with the drilling 

engineer on the four SFE wells, it was learned that no bits had severe 

tooth damage and that almost all bits were pulled green (with little 

or no wear). Accordingly, in the work reported herein, all bits were 

assumed to have insignificant wear. 



Relation Between the Ultimate Rock Strength and 

the Minimum Principal Fracturing Stress 

1 7 

The value of S determined from Equation (2) has been shown 

[13] to be the ultimate compressive strength of the rock under the 

confining pressures determined by the annular friction backpressure 

and hydrostatic pressure of the drilling fluid, or "mud" and the rock 

pore pressure. However it should be noted that Winters [ 13] verified 

the ultimate compressive rock strength at no deeper than 1500 feet, 

such that the chip hold down effect would be negligible, and would 

not have to be modeled. On the other hand, rock strength and 

ductility in (2) were modeled in [13] as a function of confining 

pressure. 

In order to use this "confined" ultimate rock strength for stress 

calculations, the "unconfined" rock strength must be determined, 

which will be lithology dependent. The required lithology 

information can be obtained from [13], [21] and [22]. The major 

problem m this project is to relate the unconfined ultimate rock 

strength to the in-situ fracturing stress. A physical correlation 

between the ultimate rock strength and the minimum principle 

failure stress is difficult, because there are two different criteria of 

failure. The ultimate rock strength from the drilling model is 

determined by failure in compression, while the m1mmum in-situ 

fracturing stress is determined by tensile failure after overcoming 

the appropriate in-situ stresses. It is known that the tensile strength 

of rock is very small compared to the compressive strength [16, 23]. 

Also, during a fracturing test, the tensile strength of the rock is 
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overcome only during the initial fracturing. After the initial fracture, 

only the minimum principal in-situ stress must be overcome to 

maintain an open fracture. This stress is called the formation closure 

stress. It is believed that the tensile strength is also small compared 

with the minimum principal in-situ stress [16]. 

The compressive rock strength is a function of effective 

differential pressure for various rock types, and can be normalized 

as shown by Winters et al [13] and others [21, 22], with sample 

results, given in Figures 5 and 6. The effective differential pressure 

is initially defined as: (1) for permeable formations, the difference 

between the hydrostatic mud column pressure and the rock pore 

fluid pressure and (2), for impermeable formations, only the mud 

pressure. This is over-simplified, but perhaps reasonable, because 

when the formation is permeable, a "mud cake" at bottom hole 

serves as a barrier to higher-pressure mud attempting to equalize 

with the pore fluid beneath an "incident" chip. Accordingly, in this 

simplified treatment, the net "differential" pressure acting on an 

"incident" chip is the bottom hole pressure minus the pore pressure. 

For impermeable formations, we assume that substantially reduced 

pressure (from overburden pressure) on rock at bottom-hole causes 

sufficient increase in rock volume to reduce pore fluid pressure to 

zero. Because the rock is impermeable, far-field pore pressure 

cannot equalize with the near-chip "zero" pore pressure. 

Accordingly, the net differential pressure acting on an incident chip 

is simply the bottom-hole mud pressure. Empirical expressions for 

rock strength as a function of effective differential pressure for g1ven 
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lithologies can be obtained by fitting data from [13, 24] with 

equations given by: 

2 1 

(8a) 

where 

S = Compressive strength at rock failure (confined)(psi) 

So = Compressive strength at rock failure(unconfined)(psi) 

P e = Effective confining pressure(psi) 

as, bs = Lithology coefficients (dimensions chosen such 

that asP e bs is dimensionless) 

For each lithology a set of coefficients as and bs can be determined 

by using a mean square fit routine in SAS [19] (SAS is a suite of 

commercially available computer programs for statistical analysis of 

data). For a given lithology the unconfined rock strength, s0 , will 

typically change with well depth due to rock hardening caused by 

cementation, grain size changes, compaction, and other burial factors. 

Table 2 lists the unconfined rock strength values for the lithologies 

given in Figures 5 and 6. 

Now consider calculating the unconfined rock strength, So from 

(8a), in which the lithology composition is known and the confined 

rock strength S has been determined from (7). Equation (8a) can be 

re-arranged to solve for So, which yields: 

(8b) 



TABLE II 

UNCO~ROCKSTRENGTHFOR 

THE LITHOLOGIES SHOWN 
IN FIGURES 5 AND 6 

Lithology Unconfined Rock 
(psi) 

Bedford Limestone 6500 

Carthage Limestone 9800 

Catoosa Shale 5000 

Mancos Shale 10800 

Berea Sandstone 7100 
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Strength 
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Now with S known, So vanes inversely with effective confining 

pressure, P e· It can be seen that if the rock is assumed 

"impermeable", So, will be small because P e will equal the large 

bottom hole mud pressure. On the other hand if the rock is assumed 

"permeable", So will be larger because P e will equal the "smaller" 

difference between bottom-hole mud pressure and pore pressure. In 

effect, this means that determination of unconfined rock strength 

depends upon knowledge of rock permeability and pore pressure in 

addition to knowledge of confined rock strength S and lithology. (It 

is shown in Appendix A that the impermeable case gives an upper 

bound on in-situ stress). An estimate of permeability can be 

obtained from the Self Potential (SP) electric log of the wellbore after 

the well is drilled. Pore pressure is more difficult to obtain, but can 

be estimated if data from offset wells in the area is available. In this 

study we will calculate unconfined rock strength and in-situ stress 

separately for both assumptions, namely, permeable and 

impermeable rock, and compare the results with field stress test and 

lithology data to determine under what conditions, if any, these 

assumptions might hold. 

Assume that So has been determined for the two permeability 

assumptions. Then from (8a) we have: 

(9a) 

(9b) 
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where p and i denote the permeable and impermeable assumptions, 

respectively. 

Now with lithology coefficients known, Mohr circles for the 

stress state of the rock [16] can be drawn for any effective confining 

pressure, as suggested by Cheatham [25], and shown in Figure 7. One 

of the Mohr circles in Figure 7 is obtained by solving equation (9a) or 

(9b) with an effective confining pressure Pel• which gives a value S1 

for rock strength. The unconfined rock strength So 1 and the lithology 

coefficients a8 and b8 are known values. The Mohr circle is 

constructed by using a radius of the maximum stress divided by 2.0 

which is: 

radius=~ 
2.0 

and the center of the Mohr circle is at compressive and shear stress 

values of, respectively: 

By generating a large number of Mohr circles from (9a) or (9b) 

at different confining pressures, a Mohr failure envelope can be 

constructed from tangents, as shown in Figure 8. The failure 

envelope can then be used to determine whether a rock sample 

under any stress loading condition will fail. Failure will occur if the 

Mohr circle for that given stress state intercepts the failure envelope. 

Otherwise, the rock will not fail. 
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It has been observed from triaxial rock stress tests on cores 

from the SFE #1 well that there is a difference in the shape of the 

failure envelope for different lithologies, as shown in Figures 9 and 

10 [24]. The sandstone failure envelope is approximated by almost 

straight lines, while the shale failure envelope has more of a concave 

shape. Other investigators [25] have concluded that sandstone tends 

to fail according to the elastic Coulomb failure criteria, while shale 

fails plastically. It can also be observed from Figures 9 and 10 that 

the tensile strength is small compared to the compressive strength. 

A sample set of "permeable" and "impermeable" failure 

envelopes are shown in Figure 11. The failure envelope for a g1ven 

rock describes compressive failure as a function of confining 

pressure. Because the failure envelope gives the maximum possible 

stress state of the rock, it can be used as an upper bound on the 

minimum in-situ principal rock stress. From this envelope, a new 

quantity called the "failure angle of internal friction", ~. [16] can be 

determined for all values of P e· 

The "failure angle of internal friction" can be defined from soil 

mechanics tests [26-30] where the defining experiment employs a 

horizontally divided box filled with sand and placed under a vertical 

load, illustrated in Figure 12. The shearing force necessary to 

displace the upper box is measured for various values of vertical 

load [30]. In this way it is found that the shearing stress for failure 

is directly proportional to the normal stress, such that 

.1. =tan ~ 
(J (1 0) 
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where 

t = shear stress at box movement (psi) 

a = normal stress at box movement (psi) 

p = angle of internal friction (degrees) 

32 

Figure 13 illustrates how the angle of internal friction, p, is found on 

a Mohr failure envelope. The angle of internal friction is the angle 

between axis of normal stress and the tangent to the Mohr failure 

envelope at a point representing a given failure stress condition. The 

internal friction is considered to be due to the interlocking of the soil 

or rock grains and resistance to sliding between the grains. The 

"failure angle", a, is illustrated in Figure 13. If shear failure takes 

place according to Mohr's hypothesis, the plane of failure should run 

at an angle, a, relative to the normal stress axis of the specimen [16]. 

The derivation of an expression for p, from (9a) and (9b) is 

given in Appendix B, and the result ts; 

P =arcsin [ 1.0 
1.0 +( 4~ ) 

Soas(P e-i-6. b, -Pe-t. b.) (11) 

where 

P = Failure angle of internal friction (degrees) 

~ = Arbitrarily small pressure (psi) - 50 psi used in this 
study 

So = Unconfined rock strength (psi) 

P e+~ = Effectine confining pressure plus the arbitrarily 
small pressure (psi) 
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P e-~ = Effectine confining pressure minus the arbitrarily 
small pressure (psi) 
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This failure angle is the pnmary mechanism to relate rock 

strength to in-situ stress. The in-situ rock effective confining 

pressure used in (11) is given by the difference between the in-situ 

horizontal stress and in-situ pore pressure; 

where 

P e-is = Effective in-situ pressure (psi) 

P P = In-situ pore pressure (psi) 

S h = In-situ horizontal stress (psi) 

(12) 

Note that this in-situ confining pressure in (12) is not the same as 

the drilled rock confining pressure, discussed earlier in the 

paragraph preceding (8a) (and given explicitly by (25) in the next 

section). Unfortunately, the in-situ horizontal stress Sh needed in 

(12) is the principal unknown in our problem. Accordingly, we will 

use an iterative procedure (in conjunction with (20), to converge to 

the correct angle of internal friction, to be discussed below following 

(21)). 

Now, let us examme the calculation of in-situ stress. Early 

investigators encountering this problem were civil engineers, who 

needed information on horizontal stresses in the ground to design 

structures. Literature studies reveal that "a coefficient of earth at 



rest", K0, has been used by varwus investigators [26-30], m a 

relationship given by 

where 

Sob = Overburden pressure or vertical stress (psi) 

Sh = Horizontal or lateral stress (psi) 
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(13) 

Ko = Coefficient for earth pressure at rest (dimensionless) 

Relationships for K 0, determined for rock at failure, were obtained 

experimentally by different investigators as follows: 

Ko = 1 - sin(~) [27] (14) 

Ko = 0.9(1 - sin(~)) [28] (15) 

K0 = 1 + (2/3)sin(~) [29] (16) 

Ko = 0.95 - sin(~) [30] (17) 

where 

~ = angle of internal friction (degrees) 

The foregoing theory from soil mechanics is applicable to solid rocks 

provided the Mohr failure envelopes have been determined [31]. 

These will have been determined from the "inverted" penetration 

rate model (7) and the rock strength pressure relationship (9a) and 

(9b). 



Equations (13) - (17) were developed for situations m which 

the pressure in the pores of the rock was zero. Alkpan [32] 
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compared the results from (14) - ( 17), shown in Figure 14. It can be 

seen that differences are small. Brooker and Ireland [30] found that 

results from (14) matched data from sand and that data from shales 

and clays matched predictions from (15) - (17) quite well. This 

approach, modified to account for non-zero pore pressure, will be 

applied to data from the four SFE wells, where the angle of internal 

friction ~ can be determined from (11) for every foot drilled. 

A similar concept has been used in several investigations [33, 

34] by relating horizontal to vertical earth stresses through Poisson's 

Ratio. The approach from the hydraulic fracturing literature assumes 

non-zero pore pressure ·and has been used with varying degrees of 

success. It is given by: 

where 

She = Net effective horizontal stress (psi) 

Sve = Net effective vertical stress (psi) 

v = Poisson's Ratio 

(18) 



o.e..,.....----------------------, 

0.7 

= ~ 0.1 

~ 

~ 
c 0.1 
11.1 
II: 
2 
It ! ... 
u 

0.1 

KO: 1-SIN(X) 

~~~-------­
~0 = ((2/.})~IH.{X~~SJ.H(!})L(ft.SI!!(YJ) 
KO: Q..~SJ'!f!L. _______ _ 

0.2+----__,.----..,....----------..,..------f 
20 25 30 35 40 45 

ANGLE OF INTERNAL FRicnON (DEGREES) 

Figure 14. Comparisons of Different Calculations of Ko 

37 



38 

From [24], the in-situ closure stress, or horizontal stress sh' IS 

obtained by combining the relations in (18) to obtain: 

(19) 

Now, assuming the overburden and the pore pressure are known, the 

fracture closure pressure could be predicted for given values of 

Poisson's Ratio. In fact (19) has been applied to data from the SFE 

#1-3 wells, with good results, where Poisson's Ratio was obtained 

from electric log data [24]. The equation was also applied to data 

from Gulf of Mexico wells [35] with mixed results, assummg a 

constant value, v = 0.25, for sandstone. Now by comparing (19) with 

(13), we propose a more general relationship, given by: 

m which, as a special case for (20): 

Ko = _y__ 
1-v 

(20) 

(21) 

In fact, if (21) holds, we would have a method of determining 

Poisson's Ratio from the internal angle of friction used to calculate K0. 

This calculation for v from SFE well data could then be checked 

against values of v determined from electric logs to determine if, m 

fact, (21) is valid. 
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Equation (20) shows that the minimum in-situ stress occurs 

when Ko equals zero, such that a minimum value of in-situ horizontal 

stress is the the pore pressure. This lower bound on horizontal in­

situ stress would be expected to occur in an unconsolidated sand. 

Determination of Sh in (20) requires knowledge of ~ to find Ko. 

In turn, calculation of ~ in (11) requires knowledge of Sh in (12). 

Accordingly, we will use an iterative procedure by first assuming a 

first guess for Sh in (12), calculate ~ in (11) with the guess to give Ko 

in (14) - (17), and then Sh in (20). This value of Sh is put back into 

(12) and the process repeated until values of Sh on successive trials 

differ by only a small amount. 

The utilization of Poisson's Ratio to obtain the in-situ stress is 

discussed by various investigators [31, 34 ], who conclude that it IS 

not always applicable. In a personal communication [36], J. B. 

Cheatham emphasized that various investigators in hydraulic 

fracturing have questioned the general applicability of (18) and (19). 

Hubbert and Willis [31] also demonstrate, that (18) and (19) may 

lead to incorrect results. They state that the general state of stress 

underground is that in which the three principal stresses are 

unequal. Consider a normal fault, which is a vertical or near-vertical 

break in the continuity of a rock formation caused by shifting or 

dislodging of the earth's crust, in which adjacent surfaces are 

differentially displaced parallel to the plane of fracture. For 

techtonically relaxed areas characterized by normal faulting, the 

least principal stress should be horizontal and the fractures produced 

should be vertical. The injection pressure required for fracturing 

would be less than that of the overburden. In areas of active 
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tectonic compressiOn, the least principal stress should be vertical and 

equal to the pressure of the overburden. For these more rare 

situations, the fractures should be horizontal, with injection 

pressures equal to or greater than the pressure of the overburden. 

Horizontal fractures cannot be produced by hydraulic fracturing 

pressures less than the total pressure of the the overburden. 

Another important conclusion was that regardless of whether the 

fracturing fluid was of the rock penetrating or non-penetrating type, 

the fractures should be approximately perpendicular to the axis of 

least stress. The assumption that the three principal stresses should 

in general, be equal, was due to the fact that over long periods of 

geologic time, the earth has exhibited a high degree of mobility 

wherein the rocks have been repeatedly deformed to the limits of 

failure by faulting and folding. In order for this to have occurred, 

substantial differences between the principal stresses would have 

been required. With experiments involving a gelatin model, Hubbert 

[37] demonstrated that for sand having an angle of internal friction 

of 30 degrees, failure will occur in both normal faults, as well as 

thrust faults, when the largest principal stress reaches a value which 

is about three times the least principal stress. A thrust fault is a 

fault whose plane has a small angle of inclination with the horizontal. 

Furthermore, the failure will occur along a plane making an angle of 

about 60 degrees with the direction of the least principal stress. 

Also, for a fixed vertical stress, the horizontal stress may have any 

value between the limits of one-third to three times the minimum 

vertical stress. 
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The presence of a wellbore distorts the pre-existing stress field 

m the rock. An approximate calculation of this distortion may be 

made by assuming that the rock is elastic, the borehole smooth and 

cylindrical, and the borehole axis vertical and parallel to one of the 

preexisting regional principal stresses. The stresses to be calculated 

should all be viewed as the effective stresses carried by the rock in 

addition to fluid pressures, which exist within the wellbore as well as 

in the rock. The calculation employs elastic theory for the stresses m 

an infinite plate containing a circular hole, with its axis perpendicular 

to the plate. This was first done by Kirsch [38] and Timoshenko [39]. 

In the study herein, the distortion in near-wellbore rock stresses 

caused by the presence of the wellbore can be neglected. This IS 

because the drilled compressive rock strength (used in the 

penetration rate model) is a function only of the differential pressure 

across the undrilled rock. Moreover, the formation closure stress, for 

which we seek bounds, is determined mainly by stresses away from 

the well bore in fractures that can extend at least 100 feet. Stress 

distortions would typically occur only within inches of the wellbore. 

While these distortions might affect the pressure required to initially 

fracture the well, they would not be expected to significantly affect 

the closure stress. 

The calculation of the m1mmum principal in-situ stress as a 

function of Poisson's Ratio is complicated by the fact that the rock 

has been under high pressure during millions of years and has likely 

undergone chemical reactions, including bonding and cementing. The 

problem of developing a stress history for a sedimentary basin has 

been considered by various investigators. Voight [ 40] considered 
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effects due to the overburden pressure, pore pressure and thermal 

stresses, including a superposed tectonic stress, for the elastic case. 

He pointed out the importance of using the correct material 

properties at deposition and initial burial, compared to properties at 

later events when the rock is cemented. The effects of thermal 

stresses are handled assuming "locked in" stresses, which are a result 

of the changing material properties, and require that the analysis be 

performed in time steps by calculating stress changes at each step. 

These stress changes are accumulated to arrive at a stress state at 

any time. Later, Prats [41] used elastic and viscoelastic analysis to 

calculate the stress difference expected in different rocks at depth. 

He concluded that the effects of overburden, pore pressure, 

temperature, tectonic strains, and variable material properties were 

all important. His analyses show that with creep, soft materials, such 

as shales, will have considerably larger stresses than harder rocks, 

such as sandstones. Prats also reported that "the least horizontal 

stresses may be different in a sandstone reservoir than m an 

adjacent shale and that the measured stress does not correlate with 

measured ambient formation properties. Reported compressive 

stresses in shales exceed those in sandstones. In some cases the 

difference in the stresses appears to contain growth of hydraulically 

induced vertical fractures. 

Warpiniski [ 42] uses a combination of the time-history 

approach and a new proposed viscoelastic model. He proposed that 

the minimum horizontal stress be given by 

(22) 
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where 
y = Biot's modulus, which is a coefficient of linear expansion 

of the formation and may be a function of overburden, 
temperature and horizontal strain (dimensionless) 

St = A generalized term that accounts for tectonic imbalance 
in horizontal stresses (psi) 

In a later paper, Warpinsky and Teufel [43] apply this approach to 

field data on three MWX (Multi-Well Experiments) wells, where they 

actually measure the quantities needed for prediction of horizontal 

stresses. The results agree well with the stress tests performed on 

these wells. The approach has merit, but there is a problem with 

obtaining lateral strain of a formation during drilling operations. 

In [ 44], Warpinsky discusses the difficulty of obtaining data 

needed for evaluation of the horizontal stresses in Prats's work [ 41]. 

He states that in general, none of the needed parameters are known, 

so the calculation is currently more of academic than of practical 

interest. The equation proposed by Prats [41] shows that the 

differential horizontal effective stress induced by changes in depth, 

temperature, strain or pressure could be written as 

where 

11 = differential 

T = temperature (degrees Fahrenheit) 

ei> ej = tectonic strains (dimensionless) 

(23) 
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O:t = thermal coefficient of expansiOn (1/degrees 
Fahrenheit) 

E = Young's modulus (psi) 

v = Poisson's Ratio (dimensionless) 

It is obvious that some account of geology and depositional history is 

needed in the final modeling, but this should be done in great detail 

and might not be directly available from data collected during 

drilling operations. However, this could possibly be applied in post 

analysis of well data when the complete depositional history is 

known for the formation drilled. 

All previous efforts for predicting in-situ horizontal stresses 

requires either extensive logging or stress testing. Also, some 

approaches [ 41, 42] require guessing and estimation of parameters 

that are almost impossible to verify. The use of electric logs to 

obtain Poisson's ratio for closure stress predictions has shown to be 

unreliable [30, 34, 36] and expensive. The approach proposed herein 

is believed to be the least expensive, since the only field requirement 

Is instrumentation for collection of drilling data. Such 

instrumentation is becoming more and more routine with most 

drilling operations, and will therefore add little extra cost. 



CHAPTER III 

RESULTS AND 1ECHNICAL 

DISCUSSION 

In what follows, an approach is given to obtain rock strength 

from drilling data and to use it to estimate in-situ closure stress 

bounds for four SFE (Staged Field Experiment) wells. 

Rock Strength Lithology Coefficients 

The lithology coefficients a8 and bs in (8) for each lithology 

were determined from triaxial stress test performed on cores at 

different confining pressures. The triaxial test data were obtained 

from [13] and [24], and coefficients obtained using the statistical 

analysis computer program SAS [19] are shown in Table 3. Results 

from (8a) for sandstone and shale are shown plotted versus the 

measured triaxial rock strengths at different confining pressures m 

Figures 15 and 16 with the corresponding data points listed in Table 

4 and 5. 

Penetration Rate Model: Coefficients and 

Chip Hold Down Function 

The modified 3-term tricone drilling model developed by 

Warren [12] will be used to predict drilling rock strength, as given m 
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TABLE III 

CONANEDROCKSTRENGTH 
LITHOLOGY COEFFICIENTS 

Lithology as 

Shale (general) .0043188 
(See Table 4) 

Sandstone (general) .01331 
(See Table 5) 

Mancos Shale .0033110 

Carthage Limestone .0041415 

Catoosa Shale .0029602 
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bs 

.74191 

.57106 

.649783 

.678632 

.969626 
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PREDICTED MODEL FAILURE STRESS (PSI) 
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Figure 15. Rock Strength Model Prediction for Shale Versus 
Triaxial Rock Strength Tests 
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PREDICTED MODEL FAILURE STRESS (PSI) 

70000~----~----~------~----~----~----~----~ 

60000 ........... -........ -:· ...... -............ -~ .................... ~- ................... -:-.................... . ... -· ............. . 

50000 . . . ····················-··························································-························· ····················-···-·······-········ . . 

40000 .................... -:- .......... -........ -: . . . . . . . . . . . . . . . . . -. ~ ............ -................. -.......... ~ ............. - ...... -:- .................. . 

. . . . . . 
30000 .................... : ..................... ; ................ ·---------------------~--------------------: ..................... : .................... . . . . 

20000 . . ...................................................................................................................................................... . . . . . . . . 

10000 ........ ; ..................... :- ................... . . . 

o~~~~--~~--~--~~--~~--~--~~--~~ 

0 10000 20000 30000 40000 50000 60000 70000 
TRIAXIAL FAILURE STRESS (PSI) 

Figure 16. Rock Strength Model Prediction for Sand Versus 
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Confining 
Pressure 

(psi) 

1000 
2000 
1500 
3000 
1500 
3000 
1500 
3000 

TABLE IV 

SHALE TRIAXIAL TEST AND 
MODEL PREDICTIONS 

Triaxial Model Unconfined 
Failure Failure Failure 
Stress Stress Stress 
(psi) (psi) (psi) 

7400 8631 5000 
9700 11073 5000 

19130 14264 7200 
21800 19014 7200 
18400 18821 8700 
22700 25088 8700 
16400 18425 9300 
24900 24560 9300 
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Reference 

[ 13] 
[ 13] 
[24]. 
[24] 
[24] 
[24] 
[24] 
[24] 



Confining 
Pressure 

(psi) 

1000 
2000 
5000 

10000 
1500 
3000 
1500 
3000 
1500 
3000 
1500 
3000 

TABLE V 

SANDSTONE TRIAXIAL TEST AND 
MODEL PREDICTIONS 

Triaxial Model Unconfined 
Failure Failure Failure 
Stress Stress Stress 
(psi) (psi) (psi) 

15000 13671 8100 
17300 16377 8100 
19600 22068 8100 
28000 28851 8100 
31500 34728 18600 
39100 42560 18600 
28900 28753 15400 
36900 35238 15400 
27400 30433 16300 
41400 37297 16300 
46900 45930 24600 
58600 56289 24600 
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Reference 

[22] 
[22] 
[22] 
[22] 
[24] 
[24] 
[24] 
[24] 
[24] 
[24] 
[24] 
[24] 



5 1 

(7). In this model, both the bit coefficients and the "chip hold down" 

coefficients in (5) most be determined from laboratory drilling data. 

The task of determining the bit coefficients for various bit types 

involved collection, evaluation and editing of this data. Sample input 

laboratory drilling data is listed in Table 6. The initial task was to 

determine the most appropriate form for the chip hold-down 

function. As discussed earlier increasing differential pressure 

reduces rate of penetration by two primary mechanisms: Rock 

strength increases and chip hold-down increases. 

In our earlier section "Literature Review and Technical 

Discussion", we described the procedure for modeling the chip hold­

down effect, using a "chip hold-down function" given by (5), with 

appropriate coefficients listed in Table 1 for two lithologies, Catoosa 

Shale and Carthage Limestone. Because the chip hold-down function 

is independent of the drilling bit used, it could be applied, along with 

the rock strength function in (Sa), to obtain the bit coefficients for 

the other IADC bit types drilling both Catoosa Shale and Carthage 

Limestone. Table 7 presents the results, and Appendix C lists the 

SAS program. The predicted ROP's using equations (5), (6), and (Sa) 

are plotted versus laboratory drilling R OP' s in Figures 17-23. From 

these Figures, it can be concluded that the modified 3-term drilling 

model (6) predicts laboratory penetration rates with acceptable 

accuracy. We therefore believe these models (5), (6), and (Sa) can be 

applied with good accuracy in the field. However, this will require a 

method to handle inhomogeneous, or "mixed" lithologies, because 

rocks encountered m field drilling will rarely be homogeneous, as in 

laboratory drilling. 



52 

TABLE VI 
SAMPLE LAB ORA TORY DRILLING DATA 

Lithology Borehole N Bit w R 
Type Pressure Torque 

(psi) (rpm) (ft-lb) (lbs) (ft/hr) 

1* 1161 62 256 6.96 3.84 
1 1202 62 575 13.7 7.03 
1 1202 62 952 20.7 10.90 
1 1199 6 1 1304 27.64 14.87 
1 1202 60 1685 34.63 19.57 
1 1205 6 1 2066 41.38 24.34 
1 1200 60 2559 47.52 31.66 
1 1201 122 238 7.14 5.01 
1 1198 122 513 14.13 10.34 
1 1198 122 823 21.08 17.34 
1 1201 121 1178 28.00 26.01 
1 1198 121 1587 34.90 30.15 
1 1197 121 1966 41.53 42.06 
1 1200 120 2413 4 7.53 48.69 

* 1 = Catoosa Shale 



* 

Bit Make Bit Type 

Security S33CF 

Security S82F 

Security S84F 

Smith F3 

Security M84F 

Hughes J55R 

Security H87F 

TABLE VII* 

DRILLING MODEL BIT COEFFICIENTS 
FOR DIFFERENT IADC CODES 

Size IADC a b 

(in) (hr·r~~ ·i n) (h r r ~~·in) 

8.75 1 1 6 .020641 2.69531 

8.75 437 .018172 3.07096 

8.75 517 .025865 4.21486 

8.50 537 .013830 9.77070 

8.50 617 .019020 13.45270 

8.50 627 .04 7020 13.47211 

8.50 737 .016841 9.31402 

c 

( hr-lbf·gal ) 
ft-lb·cp·in 

.001892 

.002094 

.003350 

.002231 

.003256 

.003306 

.003350 

Reducing to three significant digits for the coefficients a, b, and c yields less than 0.5 
percent possible error in in-situ stress bound calculation as discussed in Appendix K. 
While Table VII shows more than three significant digits, the accuracy of the data used to 
compute values for a, b, and c probably does not justify more than three. Vl 

w 
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Figure 18. 3-Term Model Prediction Versus Laboratory Drilling 
Data for 437 IADC Bit 
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Data for 517 IADC Bit 
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Figure 20. 3-Term Model Prediction Versus Laboratory Drilling 
Data for 537 IADC Bit 
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Figure 21. 3-Term Model Prediction Versus Laboratory Drilling 
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Mixed Lithology Treatment 

When data is gathered from drilled formations with mixed or 

"non-pure" lithological components (ie, sand and shale mixed 

together), a combined effect of the mix should be reflected in the 

model. This means that the two independent effects, the chip hold 

down function (5) and the function correlating unconfined and 

confined rock strength (8) discussed in the preceding paragraphs 

must be related to the percent and type of each lithology present to 

obtain the combined effect. Again, this is an extremely complicated 

problem, and no useful studies are available from the literature. All 

available data and physical modeling is for pure lithological 

components. We propose to handle mixed lithologies with an 

empirical approach by weighting each of the two effects by the 

volumetric percentage of the lithological component present and 

averaging the effect over all components in the mix. The resulting 

expresswns from (5) and (8a) become: 

where 

n 

fc= L ei(Cci+licfebci) 
i = 1 

n 

s =Soc L Si(l + asfeb'') 
i =1 

(24a) 

(24b) 

ei = Volume fraction of lithology "i" present 
at given depth 

n = Number of different lithologies present 
at a given depth 



Soc = Compressive strength of mixed lithologies 
at rock failure (unconfined) (psi) 

S = Compressive strength of mixed lithology 
rock at failure (confined) (psi) 

aci, bci• Cci> ash bsi = Coefficients for lithology i 

P e = Effective confining pressure 

fc = Chip hold-down function for mixed 
lithologies 
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We note that values for Si for every foot drilled are obtained from 

"mud logger" data. This data is collected during the drilling of the 

well by microscopic examination of drilled chips collected from the 

drilling mud return line. Together with (7), these equations were 

applied to the collected drilling data for every foot of drilled depth 

for prediction of drilling rock strength. The procedure is straight 

forward, but computationally intense. By substituting the right side 

of 24(a) into (7) we obtain one equation with one unknown, S. The 

value of Sop and Soi can be found from (9). For the four SFE wells we 

assume that the pore pressure, Pp, is known. We observed in the 

discussion following ( 4) that the effective confining pressure, P e• or 

effective differential pressure, for drilled rock is a complicated and 

poorly understood phenomenon. A thorough understanding and 

mathematical modeling of this effect Is beyond the scope of this 

work. In our calculations, we propose a much simplified 

approximation of this effect using the relationship: 

(25) 
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where P e is effective confining pressure and P Pis the pore pressure. 

Mud column hydrostatic pressure at bottom hole, Ph, is calculated 

from: 

where 

Ph= .052*p*Depth 

Ph = Hydrostatic bottom-hole pressure (psi) 

p = Mud Weight (ppg) 

Depth = Well Depth (feet) 

(26) 

Circulating pressure in the well bore annulus, P a' is calculated 

from a suitable hydraulics model knowing the drilling fluid flow rate, 

annulus geometry, and drilling fluid rheology. In the work herein, 

we used the non-Newtonian Power Law model [46] which is 

described in detail in Appendix D. 

For impermeable formations (ie, shale), P P is assumed zero in 

(25) such that the effective confining pressure equals the bottom 

hole pressure. The unconfined rock strength, computed for every 

foot of depth, is the intermediate quantity sought. 

SFE Well Data Gathering 

The initial task for the SFE wells was to collect and organize the 

data necessary for predicting drilling rock strength. The required 

data includes the IADC bit codes, together with bit and nozzle sizes 
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used on the wells. Tables 8-11 summarize this data for the 4 SFE 

wells. The conditions under which these bit were operated are 

needed as input to the rock strength model (7) and include weight on 

bit (W), rotary speed (N), fluid flowrate (Q) and rate of penetration 

(R), all recorded versus depth. Table 12 shows a sample input 

drilling file. The formation and core data must be collected such that 

the best description of the formation at a given depth is obtained. 

This will include primary, secondary and tertiary lithology 

descriptions, together with percentages present, as shown in Table 

13. Primary lithology refers to the lithology present from the 

mudlogger that has the highest percent by volume at a given depth. 

The secondary and tertiary lithologies are those with the second and 

third highest lithology percentages by volume, respectively, from the 

mudlogger information. The determination of these percentages IS 

usually done by a geologist, who analyzes drilled chips under a 

microscope at well site. Pore pressure (See Table 14) and overburden 

pressure (See Table 15) are also required input. To be able to edit 

and interpret this data, and to obtain supplementary information 

such as mud properties, the daily drilling reports from the SFE wells 

were collected.(See Appendix E for sample daily drilling wire) From 

the daily drilling wire, drilling fluid properties were collected and 

organized as shown in Table 16. 

Questionable or useless drilling data was culled out. This data 

editing employed knowledge of drilling operations and common 

sense. For example, data taken during drilling with poor hydraulics, 

bit balling, cone locking or abnormal bit wear must be eliminated. In 
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TABLE VIII 

SFE #1 BIT SUMMARY 

Bit Depth in Depth out Size Type IADC Jets 
No. (ft) (ft) (in) CITE (32nd's of an in.) 

1 55 1480 17.50 S3Sj 1 1 1 20 20 20 
2 1480 3060 12.25 S33SF 116 1 5 1 5 1 6 
3 3060 5830 12.25 S84F 517 1 6 1 6 15 
2 5830 5846 12.25 S33SF 116 1 2 1 5 1 5 
4 5846 5950 8. 75 F5 627 1 0 10 1 1 
5 5950 6012 8.75 mRE OPEN 
6 6012 6060 8.75 mRE OPEN 
4 6060 6181 8.75 F5 627 1 0 10 1 1 
7 6181 6211 8.75 mRE OPEN 
4 6211 7271 8. 75 F5 627 1 0 10 1 1 
8 7271 7395 8. 75 M89TF 627 1 1 1 1 0 
7 7395 7470 8. 75 mRE OPEN 
9 7470 7531 8.75 mRE OPEN 
7 7531 7556 8.75 mRE OPEN 
8 7556 7900 8. 75 M89TF 627 1 1 1 1 0 
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TABLE IX 

SFE #2 BIT SUMMARY 

Bit Depth in Depth out Size Type IADC Jets 
No. (ft) (ft) (in) CDIE (32nd's of an in.) 

1 0 2865 12.25 S33S 116 1 8 1 8 1 8 
2 2865 3945 12.25 S3SJ 1 1 1 1 6 1 6 1 6 
3 3945 5660 8. 7 5 S82F 437 1 1 1 1 1 1 
4 5660 6811 8. 7 5 S84F 517 10 1 0 1 0 
5 6811 8116 8.75 F2 527 10 1 0 1 0 
6 8116 8230 8. 75 S86CF 537 1 1 1 1 1 1 
7 8230 8260 8.75 CDRE OPEN 
6 8260 8265 8.75 S86CF 537 1 1 1 1 1 1 
7 8265 8360 8. 75 CDRE OPEN 
8 8360 8678 8. 75 H87F 737 1 1 1 1 1 1 
7 8678 8709 8.75 CDRE OPEN 
9 8709 8739 8.75 CDRE OPEN 

10 8739 9206 8.75 H87F 737 1 1 1 1 1 1 
1 1 9206 9480 8.75 H87F 737 1 1 1 1 1 1 

9 9480 9572 8.75 CDRE OPEN 
12 9572 9806 8.75 H87F 737 1 1 1 1 1 1 
1 3 9806 9821 8.75 CDRE OPEN 
14 9821 9835 8. 75 CDRE OPEN 
1 2 9835 9846 8.75 CDRE OPEN 
1 5 9846 9887 8.75 CDRE OPEN 
1 6 9887 9942 8.75 CDRE OPEN 
1 7 9942 10163 8.75 H87F 737 1 2 1 2 1 2 
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TABLE X 

SFE #3 BIT SUMMARY 

Bit Depth in Depth out Size Type IADC Jets 
No. (ft) (ft) (in) CDr.E (32nd's of an in.) 

1 68 1480 17.50 S3SJ 1 1 1 1 6 1 5 1 5 
2 1480 3256 12.25 S33SF 116 14 14 14 
3 3256 4547 12.25 WM52F 14 1 4 1 3 
4 4547 6298 12.25 S84F 517 14 1 4 1 3 
2 6298 6315 12.25 S33SF 1 1 6 14 1 4 14 
5 6315 6365 8.75 S84F 517 10 1 0 10 
6 6365 6811 8.75 S86F 537 1 0 1 0 10 
7 6811 7351 8.75 CDRE OPEN 
8 7351 7411 8.75 CDRE OPEN 
9 7 411 7868 8.75 CDRE 647 10 1 0 10 
8 7868 7916 8.75 CDRE OPEN 

10 7916 7945 8.75 CDRE OPEN 
1 1 7945 8079 8.75 CDRE OPEN 
1 2 8079 9017 8.75 M90F 647 10 1 0 10 
10 9017 9046 8.75 CDRE OPEN 
1 3 9046 9199 8.75 M85F 617 1 1 1 1 1 1 
10 9199 9229 8.75 CDRE OPEN 
14 9229 9294 8.75 CDRE OPEN 
1 5 9294 9367 8.75 CDRE OPEN 
1 3 9367 9449 8. 75 M85F 617 1 1 1 1 1 1 
1 5 9449 9502 8.75 CDRE OPEN 
1 3 9502 9600 8. 75 M85F 617 1 1 1 1 1 1 
12 9600 9700 8.75 CDRE OPEN 
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TABLE XI 

SFE #4 BIT SUMMARY 

Bit Depth in Depth out Size Type IADC Jets 
No. (ft) (ft) (in) CDIE (32nd's of an in.) 

1 17.50 40 980 HP11 1 1 1 1 4 14 14 
2 12.25 980 2460 S33SF 116 14 14 1 4 
3 12.25 2460 3071 ATJ-11 437 12 12 12 
4 12.25 3071 4158 S82F 437 1 3 1 3 1 3 
5 12.25 4158 5041 ATJ11 437 13 1 3 13 
6 12.25 5041 5740 S82F 437 1 6 16 1 6 
5RR 12.25 5740 6023 ATJ11 437 1 6 1 6 1 6 
6RR 12.25 6023 6146 S82F 437 1 8 1 8 1 8 
7 12.25 6146 6352 S33SF 437 1 6 1 6 1 6 
5RR 12.25 6352 6777 ATJ11 437 1 5 1 5 1 5 
8 8.50 6777 6805 mRE 
9 12.25 6805 7117 HP43A 437 1 6 1 6 1 6 
10 8.50 7117 7217 HP11J 116 12 1 2 1 2 
1 1 8.50 7217 7310 ATJ11 437 1 3 1 3 1 3 
12 8.50 7310 7317 mRE 
1 3 8.50 7317 7388 mRE 
1 4 8.50 7388 7493 mRE 
11RR 8.50 7493 7753 ATJ11 437 1 3 1 3 0 
14RR 8.50 7753 7782 mRE 
llRR 8.50 7782 7963 ATJ11 437 1 3 1 3 0 
8RR 8.50 7963 8004 mRE 
llRR 8.50 8004 8093 ATJ!! 437 1 3 1 3 0 



69 

TABLE XII 

SECTION OF DRILLING DATA FOR SFE #2 

Depth w N R Q 
(ft) (Kips) (RPM) (FT/HR) (GPM) 

8000 40.021 65.981 8.625 321 

8001 40.017 65.968 9.064 321 

8002 39.825 65.704 8.965 321 

8003 40.176 65.64 7 8.038 321 

8004 39.356 65.704 13.117 321 

8005 3 9.148 65.357 12.651 321 

8006 3 9.25 3 65.625 13.583 321 

8007 39.202 65.713 12.005 321 
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TABLE XIII 

SECfiON OF LITHOLOGY DATA FOR SFE #2 

Depth % Sandstone % Limestone %Shale 
(ft) 

8000 30 30 40 

8001 50 40 1 0 

8002 50 30 20 

8003 50 30 20 

8004 60 30 1 0 

8005 6.0 30 10 

8006 30 50 20 

8007 60 30 10 
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TABLE XIV 

PORE PRESSURE GRADIENT SUMMARY FOR 
THE SFE WELLS 

Item Depth Pore Pressure 
(ft) Gradient (psi/ft) 

SFE #1 from [24] 7000 to 7209 .44 
7209 to 7279 .43 
7279 to 7307 .40 
7307 to 7465 .434 
7465 to 7487 .295 
7487 to 7503 .48 
7503 to 7560 .44 
7560 to 7575 .46 
7575 to 7784 .51 
7784 to ID* .52 

SFE #2 from [45] 0 to 8000 .46 
8000 to 8800 .46 + .04*(Depth-8000)/1000 
8800 to 8900 .44 
8900 to 9000 .46 + .04*(Depth-8000)/1000 
9000 to ID* .50 

SFE #3 from [ 45] 0 to ID* .515 

SFE #4 from [45] 0 to ID* .520 

* TD indicates total well depth 



TABLE XV 

OVERBURDEN PRESSURE GRADIENT SUMMARY 
FOR THE SFE WELLS 

Well 

SFE #1 [45] 

SFE #2 [45] 

SFE #3 [45] 

SFE #4 [45] 

Sob 

1.015 psi/ft 

1.040 psi/ft 

1.040 psi/ft 

1.100 psi/ft 

72 
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TABLE XVI 

DRILLING FLUID INPUT FOR THE SFE WELLS 

Item Depth Mud Weight Plastic Viscosity 
(ft) (ppg) (cp) 

SFE #1 7000-7384 9.4 9 
7384-7474 9.4 7 
7474-7692 9.4 7 
7692-TD 9.4 9 

SFE #2 0-8082 9.9 9 
8082-8183 10.0 9 
8183-8251 10.1 8 
8251-8457 10.0 6 
8457-8591 10.0 5 
8591-8709 9.9 6 
8709-8770 10.0 6 
8770-8949 9.9 6 
8949-9122 10.0 8 
9122-9377 10.0 6 
9377-9481 10.0 6 
9481-9640 10.0 7 
9640-9780 9.9 9 
9780-9942 9.8 8 
9842-TD 9.9 1 4 

SFE #3 9500-9600 10.7 1 5 
SFE #4 6500-6713 9.7 1 1 

6713-6799 9.7 1 2 
6799-7039 10.0 9 
7039-7117 10.0 14 
7117-7310 10.3 1 5 
7310'-7331 10.3 1 6 
7331-7388 10.4 1 6 
7388-7439 10.4 20 
7439-7607 10.3 1 9 
7607-7651 10.3 1 9 
7651-7782 10.3 24 
7782-7963 10.2 20 
7963-8097 10.3 1 9 
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addition, the drilling and lithology data had to be "depth shifted" to 

match the electric log data and the stress test data. This 1s needed 

because depths measured during drilling are not calibrated against 

depths measured during logging. Depth shifting is done by 

overlaying foot-by foot the rock strengths calculated from (7) with 

simular electric log plots, namely, Gamma Ray, Self Potential and 

Compressional Wave Travel Time logs. The rock strength depths are 

then shifted the number of feet needed to match lithology and 

formation changes with drilling rock strength changes. This depth 

shifting allows stress test data, where electric logs are used for 

depth, to be correlated with drilling data. A summary of the depth 

shifts for the SFE wells 1-4 is listed in Table 17. Finally, data from 

all hole sections that appear to have complete and sufficiently high­

quality data must be organized for further analysis. 

Rock Strength Calculations 

The calculation of rock strength, confined and unconfined, for 

both the permeable and impermeable cases, is accomplished in a SAS 

routine (See Appendix F) which draws upon both lithology and 

drilling input files. The rock strength is calculated from (7), and the 

mixed lithologies are treated as described by (24a) and (24b). The 

rock strength coefficients from Table 3 used in this study were the 

general sandstone coefficients for sandstone and conglomerate and 

the general shale coefficients for all other lithologies. The permeable 

and impermeable rock strengths are calculated using effective 

differential pressures, as discussed earlier. A problem arises, 
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TABLE XVII 

DEPTH SHIFTS FOR THE SFE WELLS 

Item Drilling Interval Depth Shift* 
(ft) (ft) 

SFE #1 NONE 

SFE #2 7900-8230 -1 0 
8320-8734 +7 
8734-8855 +0 
8855-9480 +4 
9480-9806 +2 
9806-10163 +4 

SFE #3 9000-9700 +6 

SFE #4 NONE 

* Depth Shift indicates the footage the rock strength had to be 
adjusted to match the electric log and stress test data. 
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however, with the chip hold-down function used m (7). Data is 

presently available to calculate the coefficients ac, be and Cc for the 

function in (5) for only two lithologies, namely Catoosa Shale and 

Carthage Limestone. Obtaining data for other lithologies is an 

expensive and time consuming process, and is beyond the scope of 

the work reported here. Accordingly, we will assume for this work, 

that the coefficients for Catoosa Shale can be used for impermeable 

lithologies (mainly shales), and that the coefficients for Carthage 

Limestone can be used for all other lithologies. This is admittedly an 

unsupported hypothesis, but appears to be the only mechanism at 

hand to test the proposed approach. A sample output from the rock 

strength SAS program is shown in Appendix G, and a sample plot of 

permeable and impermeable confined rock strength versus depth for 

the SFE #2 well is given in Figure 24. Appendix H contains rock 

strength plots from all four wells. For "impermeable" rock strength, 

pore pressure was assumed zero m (25), while for "permeable" rock 

strength, pore pressures given in Table 14 were used. These two 

rock strength calculations in Figure 24 and Appendix H show the 

significant effect that confining pressure has on in -situ rock strength. 

Moreover, these figures illustrate that knowledge of in-situ 

permeability or impermeability is necessary in order to calculate 

rock strengths, and by implication, in-situ stress bounds. 

Upper In-Situ Stress Bounds Calculation 

The rock strength calculation is used to calculate a "permeable" 

and an "impermeable" upper bound on stress (See Appendix F for 
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program). The first step is to calculate the unconfined rock strength 

for both the permeable and the impermeable cases. Then equations 

(9a) and (9b) can be applied, using the in-situ effective pressure 

given by (12) and mixed lithologies treated as in equations (24a) and 

(24b). An initial guess of 0.65 psi/ft is used for Sh in (12). The 

resulting effective pressure is used in (11) for both the permeable 

and impermeable cases to calculate an angle of internal friction. Now 

by using equations (14) (for the permeable case) and (15) for the 

impermeable case as suggested by [30], a coefficient for earth at rest, 

K0 , can be calculated. The value of Ko for both the permeable and 

impermeable cases is employed in (20) for calculation of Sh. These 

values for Sh are then used in (12) and the procedure is repeated. 

This procedure is iterated four times, which was found to yield less 

than a 1 psi change in Sh between the two last iterations. A sample 

output from this routine is shown in Appendix G, and Figure 25 

present values of Ko plotted versus depth for a section of SFE # 2, for 

both the permeable and impermeable assumptions. Appendix I 

contains coefficients for earth at rest from all four wells. Similar 

plots of P are given in Figure 26 and Appendix J. 

Comparison of the Calculated Upper Bounds 

on In-Situ Stress to Results from 

Field In-Situ Stress Tests 

The field stress tests performed on SFE wells #1-4 are 

summarized in Tables 18-21. The stress test is typically performed 

over a two foot interval in the wellbore. This test is performed by 
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TABLE XVIII 

STRESS TEST DATA FOR SFE#1 

Depth of Stress Tests Closure Stress Lithology 
(ft) (psi) 

7209-11 4145 Sand 

7279-81 4760 Sand 

7307-09 4164 Sand 

7560-62 5216 Shale 

7575-77 5196 Shale 

7724-26 5329 Shale 

7784-86 4896 Shale 
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TABLE XX 

STRESS TEST DATA FOR SFE #3 

Depth of Stress Tests Closure Stress Lithology 
(ft) (psi) 

9227-29 5400 Sand 
9266-68 5275 Sand 
9324-26 5800 Shale/Sand 
9554-56 7950 Shale 
9600-02 7950 Shale 
9630-32 8200 Shale 
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TABLE XXI 

STRESS TEST DATA FOR SFE #4 

Depth of Stress Tests Closure Stress Lithology 

* 

(ft) (psi) 

6780-82* 6540 Shale 
7044-46* 6695 Shale 
7328-30* 6980 Shale 
7328-30** 6741 Shale 
7411-13* 6220 Sand 
7411-13** 6003 Sand 
7801-03* 6730 Shale 
7801-03** 6630 Shale 
7881-83* 6785 Shale 
7881-83** 6611 Shale 
7931-33* 7690 Shale 
7931-33** 7455 Shale 

Indicates Analysis of Stress Test Performed by S. Holditch And 
Associates. 

** Indicates Analysis of Stress Test Performed by Res Tech. 
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isolating with "packers" a two-foot section of wellbore and slowly 

increasing the fluid pressure in this section by pumpmg m more test 

fluid. During this procedure the pressure and the volume pumped 

into the isolated section are monitored. Figure 27 illustrates the 

results. When the formation breaks down the test fluid flows into 

the formation, and a decrease in pressure may be observed on the 

pressure versus volume curve. As more fluid is pumped, the 

pressure versus volume curve levels out. The pressure at which this 

leveling occurs is taken as the formation closure pressure. This is, 

however a subjective determination, and is dependent upon the 

person making the judgement. 

The data from stress tests performed on these wells are plotted 

with the calculated in-situ stress bounds in Figures 28-40. In 

Figures 28-40, PP indicates the pore pressure, SH the horizontal 

permeable upper stress bound and SHI the horizontal impermeable 

upper stress bound. For SFE #1 and SFE #3 the results from the 

stress tests are plotted as one point, referred to as either PERMEABLE 

or IMPERMEABLE which describes the permeability in which the 

stress tests were performed. For SFE #2 there is given an upper and 

a lower limit from the stress test analysis. Also, for SFE #2 the stress 

tests performed in permeable formations are separated from 

impermeable formations by different symbols. It can be observed 

from SFE #1-3 that all the stress tests yield fracture closure 

pressures between or on the impermeable upper bound and the 

lower bound of pore pressure. It is also observed from SFE #1-3 that 

the closure pressures from stress test performed in impermeable 

formations lie on or close to the calculated impermeable upper in-
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TABLE XIX 

STRESS TEST DATA FOR SFE #2 

Depth of Stress Tests Closure Stress Lithology 
(ft) (psi) 

7973-75 5700 +I- 50 Lime 
7997-99 5620 +I- 50 Sand/Lime 
8054-56 5450 +I- 100 Shaley Sand 
8111-13 5350 +I- 100 Sand 
8161-63 5950 +/- 100 Shale 
8233-35 5600 +50/-100 Shale 
8265-67 5350 +/-50 Sand 
8304-06 5750 +/-50 Shale 
8329-31 4840 +/-50 Sand 
8416-18 5390 +50/-100 Sand 
8516-18 5400 +/-100 Shale 
8702-04 5270 +1-50 Sand 
8844-46 6050 +/-150 Shaley Sand 
8962-64 5750 +/-25 Shaley Sand 
9065-67 6200 +/-1 00 Shale 
9425-27 6200 +50/-200 Shaley Sand 
9508-10 5900 +/-100 Sand 
9590-92 7100 +/-500 Shale 
9676-78 6600 +/-500 Shale 
9754-56 6400 +/-200 Siltstone 
9823-25 6160 +/-150 Sand 
9887-89 6080 +/-100 Sand 
9944-46 6100 +/-50 Sand 
9985-87 6935 +50/-300 Shale 
10025-27 6580 +/-150 Shaley Sand 
10102-04 7160 +/-150 Lime 
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situ stress bound. The permeable stress test closure pressures lie on 

or below the calculated permeable upper bounds, but above the pore 

pressure (See Figures 28-36). These are encouraging results, since 

the calculated permeable and impermeable upper bounds seems to 

be the actual upper bounds. It can be seen that the "impermeable" 

upper bound serves as an upper bound on in-situ stress for all rock, 

whether permeable or impermeable. Pore pressure, of course, serves 

as a lower bound. 

It is also important to note from this study that in-situ rock 

appears to typically be close to failure. It is concluded that much of 

the rock in the earth (at least in the vacinity of the SFE wells 1-3) IS 

close to failure. We speculate that as rock is confined at higher 

stresses, which is the case with increased depth, it fails and becomes 

harder due to compaction. The continued compaction and hardening 

of earth rock with increasing depth suggests that deeply buried rock 

is frequently close to failure and fails more and more the deeper it is 

buried. This conclusion is supported by other evidence. E. Hunt 

observed [ 45] that in shales and sands there are various indications 

from core and log analysis of rock in the earth being close to or at 

failure. These are: 

A. When shear velocity logs are run usmg polarized sources and 

three component receivers the shear velocity can be extracted 

in the three principal directions x, y, and z. When the x and y 

(horizontal velocities) are significantly different (birefringency) 

it is a strong indication of the presence of fractures m the 

formation. In the SFE wells a birefringency of 5-10 % was 



observed. More than 6 % birefringency IS indicative of 

presence of fractures. 

1 0 1 

B. There are large differences between measurements of the 

modulus of elasticity using dynamic and static loading on rock 

cores m the lab. Static loading on a core measures the modulus 

of elasticity from the stress-strain curve using a triaxial test. 

The dynamic loading test in the lab measures the shear and 

compressional velocities to obtain poissons ratio, and from 

which the modulus of elasticity is calculated. The large 

differences can not be explained by normal acoustical or static 

effects. It is believed that microfractures, which indicate rock 

at failure, open or close under static loading but are not closed 

under dynamic loading. These existing microfractures indicate 

that rock is close to or at failure. 

C When rock core thin sections are examined under a microscope, 

microcracks can frequently be seen crossing rock grains. Such · 

microcracks, which ultimately sealed due to temperature and 

pressure effects, indicate in-situ rock failure. 

For SFE #4 (Figures 3 7 -40) it is seen that stress test results lie 

above the upper bounds calculated in our approach. This might have 

been expected since SFE #4 is located in a mountain area in western 

Wyoming near the "overthrust belt". Active tectonic stresses are 

know to exist in this area. Consider adding a constant term, T, to the 

R.H.S of (20) as proposed in (22) to account for horizontal tectonic 

stress. Then (20) becomes: 

(27) 
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By simple comparison of the results m Figures 37-40, it can be seen 

that a value of T given by; 

T = 1500 psi (28) 

will yield an upper bound in (27) such that all the stress test data 

lies on or below this new bound. This new upper bound is given in 

Figures 41-44. The value for T in (28) for SFE #4 can be explained 

partly by the well being located at the foot of a 700 ft mountain. An 

overburden gradient of 1.1 psi/ft indicates a 770 psi overburden 

increase due to this mountain, but this account for only about half of 

the needed 1500 psi. Z. Moschovidis [47] observed that values for T 

as high as 1250 psi have been seen in central mid-America fields 

located in mountain areas. Accordingly, we suspect that in 

mountainous areas, a non-zero value for T in (27) is needed to 

account for both tectonics stresses and nearby mountains. The value 

for T would then vary for each field. Unfortunately, as shown by 

Warpinski [42, 43, 44], calculating a value for T is extremely difficult. 

Combination of the Two Upper Bounds 

The two upper bounds calculated for the permeable and 

impermeable cases were combined into a single upper bound on 

stress by treating each foot of formation as either "impermeable" or 

"permeable" according to some measure of its permeability. The best 

results were obtained by assuming that permeable intervals were 
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those containing more than 90 percent sandstone, and that all other 

intervals were impermeable. The results of this approach are shown 

in Figures 45-57. It can be seen that all stress test data points are on 

or below this combined upper bound. Note that for SFE #4 a value of 

1500 psi for T was included. Numerous other sandstone percentages 

were tried as the "switch value" for permeability, but the value of 90 

% appeared optimum. 

While it could be argued that volumetric percentage of 

sandstone is not necessarily a good measure of permeability, it IS 

probably as good an indicator as can be obtained from data typically 

collected during drilling operations (ie, mud-logger lithology data). 

However, if one is willing to wait for an electric log to be run before 

this calculation is done, better permeability information can be 

obtained. Hunt [ 45] examined the electric logs from SFE # 1-4, and 

gave a rough estimate of permeabilities from the SP (Self Potential) 

logs. Formations were assumed permeable if permeability was 

larger than .01 md and impermeable if less than or equal to .01 md. 

Tables 22 and 23 present the results for SFE #1 and #2, respectively. 

For SFE #3 and 4 the intervals evaluated were impermeable. These 

new combined stress bounds are shown in Figures 58-70. This 

approach also yields all stress test data points on or below the 

calculated upper bound. It can be seen that the electric log approach 

yields less deviation of stress test data from the upper bound than 

does the 90 percent sandstone approach. Improved methods of 

combining the two upper bounds using drilling data would be 

possible if better knowledge of permeability could be obtained. One 
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TABLE XXII 

PERMEABLE SECfiONS FOR SFE#1 WHERE 
PERMEABILITY IS LARGER 

THAN .01 MD. 

Depth Interval 
(ft) 

7210-7248 
7251-7256 
7292-7326 
7332-7342 
7360-7384 
7392-7398 
7420-7424 
7442-7472 
7496-7518 
7586-7594 
7600-7612 
7628-7655 
7663-7687 
7698-7716 
7740-7750 
7766-7776 
7794-7803 
7815-7822 
7826-7849 
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TABLE XXIII 

PERMEABLE SECfiONS FOR SFE#2 WHERE 
PERMEABILITY IS LARGER 

THAN .01 MD. 

Depth Interval 
(ft) 

8263-8276 
8324-8336 
8396-8402 
8414-8436 
8646-8660 

8806-8812 
8853-8862 
8870-8886 
8896-8925 
9004-9012 
9021-903 6 
9090-9100 
9183-9200 
9244-9264 
9824-9844 
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Figure 60. Section of Combined In-Situ Upper Stress Bounds 
with .01 md Permeability Switch from Electric 
Logs for SFE #2 (7800 - 8200 Feet) 
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Figure 63. Section of Combined In-Situ Upper Stress Bounds 
with .01 md Permeability Switch from Electric 
Logs for SFE #2 (9000 - 9400 Feet) 
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Figure 64. Section of Combined In-Situ Upper Stress Bounds 
with .01 md Permeability Switch from Electric 
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Figure 65. Section of Combined In-Situ Upper Stress Bounds 
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approach would be to devise a technique to determine permeabilities 

directly from drill cuttings at the wellsite. 

An attempt to improve the electric log approach was made by 

changing the "impermeability switch" from .01 md to .005 md. This 

resulted in some stress test values being higher than the resulting 

upper in-situ stress bound. Accordingly, we recommend that .01 md 

be used as the "impermeability switch". 

Sensitivity Analysis 

The sensitivity of the calculated in-situ stress upper bound to 

variations m the various coefficients was investigated, together with 

the effect of using a smaller set of laboratory drilling data to obtain 

the bit coefficients. For the sensitivity analysis for stress bounds, 

two different sets of operating conditions and bits used on SFE #2 

were investigated. The two sets of conditions, one in shale and one 

in sand, are presented, and detailed results given in Appendix K. The 

effect of changes from nominal values in coefficients was 

investigated for bit coefficients, rock strength coefficients, and chip 

hold down coefficients. It is concluded in Appendix K that 

reasonably bounded changes in any of these coefficients result m a 

change in the upper in-situ stress bound of substantially less than 20 

percent. Accordingly, we conclude that the procedure presented 

here for determining bounds on in-situ stress is not unduly sensitive 

to the values of any coefficient. 

An analysis was also performed on the procedure to calculate 

bit coefficients from laboratory drilling data. For this study, we 
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employed a subset of the available drilling data to generate bit 

coefficients, and then tested these coefficients against lab data that 

was not used to generate the coefficients. Appendix K presents the 

procedure and results. It can be concluded that using only a part of 

the drilling data yielded coefficients that produced a good match to 

the data that was not used to generate the coefficients in all cases 

but one. For this latter case, it appears that the employed data did 

not sufficiently span the penetration rate range for the complete data 

set. It can be concluded that the procedure used to determine the bit 

coefficients is reasonable, that the penetration rate model is 

reasonable, and that in general, larger data sets are preferable to 

smaller sets in determining bit coefficients. 

Step 1 

Summary of Steps Needed to Obtain 

Upper Bounds on Horizontal 

Fracture Closure Stress 

Employ The modified Amoco 3-term drilling penetration rate 

model with foot-by foot drilling data to obtain drilling rock strength, 

S, versus depth, Equation(?). 

Step 2 

Obtain lithology description versus depth from the mudlogger 

data. 
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Step 3 

From the laboratory-determined, lithology dependent 

correlations of rock strength with drilled rock confining pressure, use 

S from Step 1 to find unconfined rock strength, So using Equation 

(8a). This calculation will be a strong function of the assumed or 

known permeability of the drilled rock. 

Step 4 

From Step 3, lithology dependent permeable and impermeable 

rock strengths, Sp and Si may now be written as functions of in-situ 

confining pressure. (using Equations (9a) and (9b)). 

Step 5 

Using Step 4, construct Mohr failure envelopes for both the 

permeable and impermeable cases for each foot drilled. Confining 

pressure will be a parameter on each failure envelope curve. This 

envelope gives the stress state of rock at failure. Hence, it is an 

upper bound on in-situ rock stress. 

Step 6 

Assume a starting value for in-situ rock confining pressure. 

We use 0.65 (psi/ft)depth minus pore pressure (assumed known). 

Enter the failure envelope and determine the corresponding angle of 
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internal friction, p, of the rock at failure. This IS done by applying 

Equation (11) 

Step 7 

From soil mechanics literature, calculate coefficient Ko. This is 

done by applying Equation (14) for sandstone (used when the 

lithology is more than 80 percent sandstone) and Equation (15) for 

all other lithologies. 

Step 8 

Using known overburden stress, S08 , and pore pressure, Pp 

calculate a trial value for the upper bound on horizontal stress for 

both the permeable and impermeable cases as follows: 

For the permeable case: 

(29a) 

For the impermeable case 

(29b) 

where the permeable and impermeable case uses different values for 

Ko because each case has it own failure envelope, and therefore 

different angles of internal friction. 
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Step 9 

Use the left sides of Equation (29a) and (29b) as a second guess 

for the true in-situ confining pressure, and repeat Steps 7 and 8 for 

both cases. Iterate until Ko converges. Spu and Siu are then 

determined. 

Step 10 

Repeat steps 3-9 for each foot drilled depth and plot both 

permeable and impermeable horizontal stress bounds versus depth. 

Step 11 

Combine the two upper bounds into a single upper bound by 

usmg the permeable bound for intervals with more than 90 % sand, 

and using the impermeable bound otherwise. If permeability 

information is available from electric logs, combine the two bounds 

by using the permeable bound for intervals having more than .01 md 

permeability, and using the impermeable bound otherwise. 



CHAPTER IV 

CONCLUSIONS 

1 . A method for obtaining in-situ stress profile bounds from 

drilling data has been proposed and validated. The method 

uses a modified tricone bit drilling model to predict rock 

strengths, together with Mohr circles and equations for the 

coefficient of earth at rest to obtain bounds on the in-situ rock 

stress. 

2. Bit coefficients and chip hold-down functions for the drilling 

model have been obtained from available laboratory data, for a 

limited number of bits and lithologies. 

3. All data necessary to test the proposed procedure was 

collected, edited, and organized from SFE wells 1, 2, 3 and 4. 

4. Both confined and unconfined rock strengths were predicted 

from the drilling model. 

5. In-situ stress bounds were obtained from calculated rock 

strengths using Mohr circles and failure envelopes, together 

with published relationships for the "coefficient of earth at 

rest". 

6. The predicted in-situ stress bounds were compared to data 

from actual stress tests performed on the four SFE wells. The 

calculated "upper" in-situ stress bound agrees well with the 
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stress test data for SFE #1-3. The closure pressures from stress 

tests performed in impermeable formations lie close to or on 

the impermeable upper bound. The closure pressures obtained 

in the permeable formations lie below the permeable upper 

stress bound. 

7. The "impermeable" upper bound on in-situ stress serves as an 

upper bound for all rock, whether permeable or impermeable. 

Pore pressure is a lower bound. 

8. Almost all impermeable rock in SFE #1-3 appears to be at or 

close to failure. 

9. Upper bounds for in-situ stress on SFE #4 could be calculated 

only if an additional additive constant representing tectonic 

effects is included in the calculations. For SFE #4, this constant 

was 1500 psi. 

1 0. The combined upper bound seems to be a reasonable approach 

to obtain a single upper bound profile on in-situ stress, and 

agrees well with the stress test data. If electric logs are 

available, .01 md can be used as a switch between the 

permeable and impermeable bounds. Otherwise mudlogger 

data can be used, with 90 % sandstone as the switch. 

11. Sensitivity analysis of the empirically developed coefficients 

used in this study indicate that a +/- 20 percent change in most 

coefficients yields less than 20 percent change in the calculated 

in-situ stress bounds. Accordinly, the procedure is not unduly 

sensitive to variations in the various coefficients used. 



CHAP1ERV 

RECOMNffiNDATIONSFOR 

FU1UREWORK 

1. Develop and model the differential pressure effect more 

accurately than in the proposed approach. This would involve 

including the effects of fluid viscosity, mud solids content and 

type, pore fluid compressibility, rock permeability, mud spurt 

loss, and rate of penetration. 

2. Conduct full scale laboratory drilling experiments on a suitable 

variety of homogeneous rock using various differential 

pressures to obtain chip hold-down function coefficients for 

various lithologies. Determine whether one function for 

permeable rock and another for impermeable rock can be used 

to adequately model all rock. 

3. Conduct full scale laboratory drilling experiments on 

inhomogeneous rock to determine the accuracy of the "mixing" 

approach used herein, Equations (24a) and (24b ). 

4. Conduct suitable full-scale laboratory drilling experiments to 

determine bit coefficients for all potential tricone bits used to 

drill gas wells planned for hydraulic fracturing. Expand and 

update Table 6. 

5. Evaluate current models with more drilling data and in-situ 

stress data. The MWX (Multi Well Experiments) wells could be 
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used because of the large amount of stress tests that were 

conducted. Other possibilities include data from SFE #4, GRI 

co-op wells, and GRI hydraulic fracture test site wells. 
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6. Investigate in-situ stress bound calculations in mountain areas. 

This will involve modeling of the tectonic stresses. 

7. Evaluate whether the tricone bit model together with either a 

drilling torque model or other log-derived data can be used to 

predict pore pressure from drilling data. 

8 Determine whether bit performance tests can be used for 

predicting the wear state of the bit and give bit life predictions. 

This will involve integrating a wear model into the tricone 

penetration rate model. 

9. Evaluate the use of existing torque models for predictions of 

rock strength. 

1 0. Evaluate and investigate a wear model for integration into the 

tricone bit model. 

11 . Evaluate and investigate possible drag bit models for use in 

predicting drilling rock strength and in-situ closure stress. 
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APPENDIX A 

DEMONSTRATION THAT THE IMPERMABLE ROCK 

ASSUMPTION GIVES AN UPPER IN-SITU 

STRESS BOUND FOR ALL ROCK 

1 5 1 
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This appendix shows that the impermeable or non penetrating 

calculated rock strength gives an upper in-situ stress bound for all 

rock, whether permeable or impermeable. Consider the following 

equations from the text: 

_s_=lO+aPb• So . s e (AO) or (8a) 

(Al) or (5) 

S = [ NW2 - bW2- cpj.!NW2 l5 
aFc(Pe)RD3 aD4 aFc(PJimD2 (A2) or (7) 

(A3) or (B9) 

Ko = 1.0 - sin(f3) (A4) or (14) 

(A5) or(20) 

Now by inspection, it can be seen from (A2) that with all other 

quantities fixed, S has its minimum value Smin when Fc(P e) is 

maximum. From (Al) we see that Fc(Pe) achieves it's maximum 

value Fmax when Pe is maximum at Pmax• which will occur when the 

drilled rock is impermeable, hence we have: 

(A6) 
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where 

(A 7) 

Now solve (AO) for So , using Smin for S from (A6): 

s . 
So= mm 

1.0 + asPmaxb. (A8) 

Substitute the right side of (A6) for Smin m (A8) yields: 

(A9) 

Now by inspection of (A9) and (A 7), it can be seen that So 

archives its minimum value Somin when Pe = Pmax• or when the rock 

is impermeable. Now consider (AO) with the confining pressure 

equal to the in-situ confining pressure (rather than the drilled rock 

confining pressure) and the unconfined rock strength given by (A9). 

The in-situ confining pressure from (12): 

(AlO) 

where p e-is is the in-situ pressure, sh is the horizontal stress upper 

bound, and P P the pore pressure. Because the horizontal stress 

bound in (AlO) is initially unknown, we use an initial guess for it of 

0.65 psi/ft times depth. Then knowing pore pressure, we calculate a 
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first trial value of Pe-is from (AlO), and substitute into (AO) which 

gives: 

(A 11) 

Now calculate values for S from (All) for two pressures, P e-is + ~ and 

P e-is _ ~· where ~ is an arbitrary small pressure. Then by substituting 

from (All), the angle of internal friction, given by (A3), may be 

written as: 

~ = arcsin(--------"1~. >L------) 
0 4~ 1. + ------'-==------

So-mirils(Pin-s + tJ. Q, - Pin-s- tJ. Q, ) (Al2) 

It can now be seen that since So-min is the mmimum value for So, ~ 

in (Al2) will be the minimum value for the angle of internal friction, 

other quantities being fixed. Accordingly, (A4) shows that for the 

impermeable case, the coefficient for earth at rest, K0, is maximum. 

Finally, (A5) can be solved for the horizontal stress bound, which will 

be maximum, since K0 is maximum. 

The horizontal stress bound calculated from (A5) Is then used 

m (AlO), and the procedure to calculate the horizontal stress bound 

Is iterated until the horizontal stress bound from (A5) changes little 

from the previous iteration. It was determined that for all cases of 

interest only 4 iterations were needed to obtain a change of less than 

1 psi between the last two iterations. A graphic illustration of the 

iterative process is given in Figure 71. We conclude that under the 

assumption convergence occurs in this process, the impermeable rock 
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Figure 71. Graphic Illustration of Iterative Process on Failure 

Envelope to Obtain an In-Situ Horizontal Stress 
Bound 
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assumption yields an upper bound for in-situ stress for all rock, 

whether permeable or impermeable. 
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APPENDIXB 

MATHEMATICAL SOLUTION FOR ANGLE OF 

INTERNAL FRICTION FROM TWO 

MOHR CIRCLES 
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This section show how the angle of internal friction, ~, is 

obtained from the Mohr's failure envelope. Figure 72 shows that ~ is 

obtained by the use of similar triangle equalities. The two circles m 

the figure are Mohr circles at two different confining pressures. 

These two circles are obtained by using the equation for rock 

strength (8a) given by: 

_s_ = 1 +a o h. 
So s-< e (BO) 

The tangent to the failure envelope where the Mohr circle 

touches the envelope defines the angle of internal friction as shown; 

A relationship for ~. is obtained using two Mohr circles taken at two 

different pressures Pe+ll and Pe-ll where tl is an arbitrarily small 

pressure. By using similar triangles, it is observed in Figure 72 that: 

and 

Now usmg (B2) in (B 1) and solving for 11 gives: 

11 = rr(Xcl + XcV 
f2- fl 

It can be seen from Figure 46 that 

(B 1) 

(B2) 

(B3) 

(B4) 
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Figure 72. Angle of Internal Friction Obtained From Two Mohr 
Circles 



160 

Now, these geometric variables can be expressed as m terms of S 

from (BO) as: 

(B5) 

[S(Pc+ ~) +Pe + ~] - [Pe + ~] s(Pc+ ~) 
r2= 

2 (B6) 2 

[S(Pc+ ~) +Pe + ~] + [Pe + ~] S<Pc+ ~) + 2Pe + 2~ 
Xc2= 

2 (B7) 2 

[S(Pc- ~) +Pe- ~] + [Pe- ~] S<Pc+ ~) + 2Pe- 2~ 
Xcl = 

2 (B8) 2 

Substituting the right sides of (B5)-(B8) m (B4) gives: 

(B9) 

The value for ~ used m this project was selected to be 50 psi. 



APPENDIXC 

SAS PROGRAM FOR DETERMINATION OF BIT 

COEFFICIENTS 

1 6 1 



CMS liL!DET IN1 DISK 437 S82F A; 
DATA INPUT2: 
IllriLE IN1 !'IRSTOBS•OS LRECL•SO; 
Ill PUT 085 LITH GPM CiPm PP BHP T RPM WOB TO T01 ROP; 
+I!IPUT 1108 RPM GPH ROP BHP LITH; 
*IE' LITH=l. !HEll DELETE; 
Jl=lO: 
J2=10; 
.:3=10; 
~r.l=9.2; 
PV=7: 
::HA•B. 75; 

IF BHP<121 THEN DO; DELETE; END; 

•LITH•1-LIM!; 
IF LITH•1 THEN 00; 50•9800; 
SA•.004226119; SB•.67862975; 
AF•.039222; BF•.33279; CF•.S654; !NO; 

•LITH•2-SHALE: 
IF LITH•2. THEN 00; 50•5000; 
SA•.00241767; SB•.8033011; 
AF•.241996; Bl•.18645; CF•.1126; !NO; 

• LITH•4- SAND; 
IF LITH•4. THEN 00; S0•6100; 
SA•.Ol83752; SB•.S293818; 
AF•.03922; ar•.33279: cr•.5493; END; 

*LITH•3-B!DlORO; 
IF LITH•3. THEN 00; 50•5500; 
SA=.004226119; SB•.67862975; 
AF•.039222: BF•.33279; CF•.5654; END; 

LA•5A*BHP**SB; 
5C•so•c 1•LA>; 
SC•SC/1000; 
TERM1•SC**2.~IA**3./(RPM+W01**2.); 
TERM2•1.0/(RPft*DIA); 
AREAJ•.000767*(J1**2.+J2**2.+J3**2.); 
AREAB•3.14159*(DIA**2.)/4.; 
IF•.OOOS16*MW*GPft*(.32086*Cfft/lRIAJ); 
ALl•.lS*AREAB/ARilJ; 
IM•(l.-ALr**(•O.l22))*If; 
TERM3•CIA*MW*PV/IM; 
K•(1.0-Ar*(BHP•l20J**If)/Cl; 
*PROC NLIN OUTISTwCOif K!THOD-OUD; 
PROC NLIN OUTISTWCO!l M!THOD-KlRQUARCT; 
PARAK!TIRS A•.02 B-4.0 C•.004; 
POR•(l./K)*(A*TERM1•1*TERM2)+C+r!IM3; 
POR2•POR*POR; 
O!R.A•-TIRM1/POR2*K; 
OER.B•·TIRM2/POR2*K; 
DER.C•·T!RM3/POR2; 
MODEL ROP.1./POR; 
BOUNDS O<C, O<B, O<A; 
OUTPUT OUT•TAHl PR!DICTED-PR!D RISIOUAL•R!SID PARKs-A B C; 
PROC PRINT OATA•TAHf; 
VAR K SO SC BHP ROP PRED R!SID WOB RPM; 
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APPENDIXD 

POWER LAW HYDRAULICS MODEL FOR 

CALCULATION OF ANNULAR 

PRESSURE DROP 
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This section gives the equations used to calculate the annular 

pressure drop due to the flow of the drilling fluid [46]. The non­

newtonian power law model uses the measured rheological 

properties from the fan VG viscometer, as well as flow rate and 

wellbore geometry. The procedure for calculating the pressure drop 

in each of the annular sections is listed below. An annular section is 

defined as a section of the annulus where the annular cross-sectional 

geometry does not change. Typical annular sections occur opposite 

drill collars, heavy weight drill pipe, and regular drill pipe. Pressure 

drops for each of these sections are calculated separately and shown 

below. 

The non-newtonian power law model IS given by [ 46]: 

where 

't = Shear Stress (dynes/cm**2) 

~ = Shear Rate (1/sec) 

n = Flow behavior index of power law model 

(dimensionless) 

K = Consistency index of power law model 

(dynes*sec**n /cm**2) 

The values for n and K may be calculated from [ 46]: 

n = 3.32 logE8600) 

8300 

(Dl) 

(D2) 



where 

K = 510 83oo 
(511)n 

8300 = Dial reading of fann viscometer at 300 rpm 

(centipoise) 

8600 = Dial reading of fann viscometer at 600 rpm 

(centipoise) 
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(D3) 

The Reynolds number is calculated for each of the annular sections 

by [46]: 

Nre = 109,000 p(V)2-n (0.0208(d2- d1))n 

K 2-rl 
n (D4) 

where 

(D4) 

Nre = Reynolds number (dimensionless) 

p = Mud weight (ppg) 

v = Average annular fluid velocity (ft/sec) 

q = Flow rate (gpm) 

dz = Annular outer diameter (inches) 

dl = Annular inner diameter (inches) 

The Reynolds is used to determine if the flow is laminar or turbulent, 

depending upon whether it is less or greater than 2100, respectively. 



If the flow is laminar, the pressure drop per unit length for each 

section is given by: 
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N.,::;; 2100 (D6) 

If turbulent the result is: 

dpf _ fpv2 

dL 21.1 (d2- dl) Nrc> 2100 (D7) 

where 
f= 0.0791 

N 0.25 
re (D8) 

dpf 
dL = Pressure drop in annular section (psi/ft) 

f = Turbulent friction coefficient (dimensionless) 

The lengths for each of the annular sections are multiplied by the 

pressure drop per unit length for each section. Finally, pressure 

drops for all annular sections are added up to obtain the total 

annular pressure drop. 
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S. A. HOLDITCH & ASSOCIATES. INC. 
OAIL Y DRILLING REPORT 

DATE 5/13/90 

LEASE & WELL __ s_F_E_H4 _______ _ DAYS FROM SPUD _::,3 __ _ Oa11"i Cwmul,u ...... e 

Onll•ng Cost 4708 95306 

Mud CoSI 705 3094 
DEPTH_~9~8~0 ____ _ FOOTAGELAST24HOURS_~7~6~2 ____ _ 

ACTIVITY. REPORT TIME _ __:l;:.r.J.y.!i!:.ngL.,;t:,:o::..,:ru~n:....c:p,:i.~:,pe;:_ ________ _ Ev•lu,auon Cou 

Comptet•on Cost 

F 1ciht1ft COlt 

OPERATIONS PREVIOUS 24 HOURS TOTAL COST 5413 98400 

1 1/2 hours lay down HYDP 6 pick up drill 1 1/2 hours tryins to run casing 

collars Hit bridse at 160' 

:. 1/2 hours drillins 

'2 hour survey at 442' - 1" 

'2 hour circulate 

hour phort trip back to collars 

1 2 hour circulate 

1 1/2 hour POOH 

2 hours rig1ins up casing crew 

1/2 hour ria service 

DRILLING MUD PROPERTIES MUD COMPANY 

Wt. 9.2 Vis. 33 WL_..;.N.;;.C_ Gels 6/14 ~Solids _;4;._ __ PV 9 YP __ ..:;8:.,..._ pH -~1~0"-• ..:.5 _ 

~Oil __ .;...o ___ _ ~Sand _..;;2 ___ _ Cake 2/32 

MUD USED: 30 Bar 65 Gel 

BIT RECORD: 

JETS· J2nd BIT DEPTH 
NO SIZE TYPE SER NO 1 2 3 OUT 

1 17.5 HPU 143437 14 14 14 980 

BIT WT. ON STROKE ANN JET 
NO BIT RPM EN:;TH SPM LINER GPM VEL VEL 

1 30000 120 9 160 6 524 45 372 

OP SIZE 
& TYPE 4 1/2 X-+!ole 11:0. DC _..;;6 __ _ oo ___ _ 

10 

EH WT 30000 
STAB POSITIO"> -----------

PPMCL _..:,1:.;20:.,:0;.;:;0 __ PPMC1 --'1"'2"'0'-----

CONO 
CUM DULL 

FEET HRS. HRS. ~T/HR T B G 

940 22 22 43 7 7 ~ 

SURF BIT 'looHHP DEVIATION 
PSI PSI 15> e:; SURVEYS 

1700 1048 61 442'-1° 980'-1° 

3 THO 7 5/8 reg 

KILL RATE IGPMI 

L E II:G T H _1,_,7'-'9'---­
P~:.,? PRESSURE 
liot:ILLRATE 
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SAS ROUTINE FOR CALCULATION OF PERMEABLE 

ANDIN.WERMEABLEROCKSTRENGTH 
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data hellol; 
CMS FILED!F INl DISK SF!2 DRI A; 
INFIL! INl FIRSTOBS•lO LR!CL•2S6; 
input depth ahale ailt aand conql li•e dolo coal; 
data hello2; 
CMS FILED!F IH2 DISK S!'E2 LOC A; 
IHFIL! IH2 FIRSTOBS•lO LR!CL•2S6; 
1nput depth ldph dtc dta ~hob pef npas rop tor vob ~ ap•; 
data both; 
••rge hellol(in•nl) hello2(1n•n2); by depth; 
if nl and n2; 

IF DIPTH<SOOO.l THIN 00; PG•.46; INO; 
IF D!PTH>8000.1 AHO DIPTH<8800.1 THIN 00; 
PG•.46•.04•(D!PTH•8000.)/1000.; INO; 
IF D!PTH>8800.1 lHD DIPTH<8900.1 THIN 00; 
PC• .44; INO; 
IF D!PTH>8900.1 lHD DIPTH<9000.1 THIH 00; 
PG•.46+.04•(D!PTH·8000.)/1000.; IXO; 
If DEPTH> 9000 THIN DO; PC• . SO; 1N0; 

IF DIPTH>l lHD D!PTH<llOOO THEN IP•8; 

If D!PTH>l lHD D!PTH<7896.1 THIN 00; MW•9.9; PV•9; GPM•321; !HD; 
If D!PTH>7896.1 AHO D!PTH<8082.1 THEN OO;MW•9.9;PV•9; GPM•321; !HD; 
IF D!PTH>8082.1 AHO D!PTH<8183.1 THIN OO;MW•lO.;PV•9; GPM•320; !HD; 
If DIPTH>8183.1 AHO D!PTH<82Sl.l THIN OO;MW•l0.l;PV•8; GPM•322; END; 
IF DEPTH>82Sl.l AHO DIPTH<84S7.1 THIN OO;MW•lO.;PV•6; GPM•297; !NO; 
IF D!PTH>84S7.1 AHO D!PTH<8S91.1 THIN OO;MW•lO.;PV•S; GPM•328; END; 
IF DEPTN>8S91.1 AKO DIPTH<8709.1 THIN DO;MW•9.9;PV•6; GPI!•328; END; 
IF DIPTH>8709.1 AHO D!PTH<8770.1 THIN OO;MW•l0.;PV•6; GPM•292; IND; 
IF DIPTH>8770.1 AHO D!PTH<8949.1 THIN OO;MW•9.9;PV•6; GPM•32S; END; 
IF D!PTH>8949.1 AHO D!PTH<9122.1 THIN OO;MW•l0.;PV•8; GPM•32S; IND; 
IF D!PTH>9122.1 AHO DIPTH<9377.1 THIN DO;MW•l0.;PV•6; GPI!•32S; END; 
IF DEPTH>9377.1 AHO DEPTH<9481.1 THIN OO;!W•l0.;PV•6; GPM•325; IND; 
If DIPTH>9481.1 lHD DEPTH<9640.1 THIN OO;!IW•lO. ;PV•7; GPI!•32S; END; 
IF D!PTH>9640 .1 AHO DIPTH<9780 .1 THIN OO;!IW•9. 9 ;PV•9; GPM•32S; END; 
IF D!PTH>9780.1 AHO DIPTH<9942.1 THIN DO;MW•9.8;PV•8; GPM•306; !NO; 
IF DIPTH>9942.1 AHO DIPTH<llOOO.l THIN DO;MW•9.9;PV•l4; GPH•28S; !NO; 

IF DIPTH<8116.1 THIN DO; Jl•lO; J2•10; J3•10; BTYP!•S37; END; 
IF D!PTH>8116.1 AHO DIPTH<8229.1 THIN DO; Jl•ll; J2•ll; J3•11; 
BTYPI•537; END; 
IF D!PTH>8259.9 AHO DIPTH<826S.l THIN DO; Jl•ll; J2•ll; JJ•ll; 
BTYP!•S37; END; 
IF D!PTH>8320.1 AHD DIPTH<8677.9 THIN 00; Jl•ll; J2•11; Jl•ll; 
8TYPE•737; END; 
IF DIPTH>8738.9 AND DIPTH<9479.9 THIN DO; Jl•ll; J2•ll; Jl•ll; 
BTYP!•737; !NO; 
IF·DIPTH>9571.9 lHO DIPTH<980S.9 THIN DO; Jl•ll; J2•ll; Jl•ll; 
8TYPI•737; IND; 
IF DIPTH>9941.9 THIN 00; Jl•ll; J2•ll; Jl•ll; 
8TYPI•737; END; 

aand•ailt•sand•congl; 
shal•shale•coal: 
ll•e•ll•e•dolo; 
LIM!SA•.0043188; LIM£58•.74191; lrL•.Ol413; 8FL•.4702; CFL•.6595; 
SHALSl•.0043188; SHALS8•.7419l; AFSH•.00496; 8FSH•.7572; CFSH•.l025; 
SAHDSAs.Ol331 ; SAHDS8•.S7106; AfSA•0.01413; 8FSA•.4702; CfSl•.659S; 
IF BTYP!•437 THEN DO; l•.Ol817; 8•3.0709; C•.002094; IHD; 
IF BTYP!•517 THEN DO; A•.02587; 8•4.2149; C•.003350; IHD; 
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If BTYP!=S37 THEN DO; 1•.01383; 8•9.7704; C=.002231; !ND; 
IF BTYP!•617 THEN DO; 1•.01902; 8•13.4527; C•.003256; END; 
If BTYP!•627 THEN DO; 1•.01953; 1•3.2536; C=.01441; END; 
If BTYP!•737 THEN DO; 1•.01684; 1•9.314; C•.007988; END; 
*If BTYP!•737 THEN DO;*A•.03224;*8•3.02;*C•.0033;*END; 
du•8.75; 
C01.DIA•6. 75; 
PIPDIA=S.O; 
Ir D!PTH<llOOO AND D!PTH>1 THEN DO; t1RC•554; DRP•D!PTH·DRC; 
ANCV!L•GPM/(2.448*(DIA**2.0·COLDIA**2.0)); 
AHPV!L•GPM/(2.448*(DIA**2.0•PIPDIA**2.0)); 
FAJil•PV•YP; 
lAN6•FAJI3•PV; 
PLN•3.32*LOG(FAN6/FAH3); 
PLK•(510*FAN3)/((51l)**PLN); 
R!YAC•109000~*((AJICV!L)**(2•PLN))/PLK; 
R!YIC•( .0208*(DI1·COLDIA)/(2•1/PLN))**PLN; 
R!YNC•R!YAC*R!YIC; 

R!YAP•109000*MW*((ANPV!L)**(2·PLN))/PLK; 
R!YBP•(.0208*(DIA·PIPDIA)/(2+1/PLN))**PLN; 
R!YNP•R!YAP*R!YBP; 

If R!YNC>2100.1 THEN DO; 
rRICKC•.0791/(R!YNC**.25); 
PR!SSC•DRC*(rRICKC*MW*1NCV!L**2.)/(21.1*(DIA·COt.Dl1)); 
END; 

If R!YNC<2100.1 THEN DO; 
PR!SSCA•DRC*(PLK*AHCV!L**PLN); 
PR!SSC8•((2+1/PLN)/.0208)**PLN; 
PR!SSCC•144000*(DIA·COLDIA)**(1•PLN); 
PR!SSC•PR!SSCA*PR!SSCI/PR!SSCC; 
END; 

IF R!YNP>2100.1 THEN DO; 
rRICKP•.0791/(R!YNP**.2S); 
PR!SSP•DRP*(FRICKP*MW*ANPV!L**2.)/(2l.l*(DIA·PIPDIA)); 
END; 

If R!YNP<2100 .1 THEN DO; 
PR!SSPA•DRP*(PLK*lNPV!L**PLN); 
PR!SSP8•((2•l/PLN)/.0208)**PLN; 
PR!SSPC•l44000*(DI1•PIPDIA)**(l·PLN); 
PR!SSP•PR!SSPA*PR!SSPB/PR!SSPC; 
END; 

ANTOT•PR!SSC•PR!SSP; 
B!T•l. 0; 

BHPI•.052*MW*DEPTH•AHTOT; 
PP•PG*DEPTH; 
BHP•.OS2*MW*DEPTH·B!T*PG*DEPTH•AJITOT; 

IF 8HP<l20 THEN BHP•120; 
AR!AJ•.000767*(Jl**2.•J2**2.+J3**2.); 
AR!AB•3.14159*(DIA**2)/4.; 
IF=.000516*MW*GPM*(.32086*GPM/AREAJ); 
ALF•.lS*AR£18/AREAJ; 

1 7 1 



KLI•(CFL+AFL*(8HP·120)**8FL); 
'KLII•(CFL•AFL*(BHPI·120)**8FL); 
KSH•CCFSH+AFSH*(8HP·120)**BFSH); 
KSHI•{CFSH+AFSH*(BHPI·120)**1FSH); 
KSA•{CFSA+AFSA*(IHP·120)**1FSA); 
KSAI•(CFSA•AFSA*(8HPI·120)**8FSA); 
K•KLI*LI"E+KSH*SHAL•KSA*SAND; 
KI•KLII*Ll"E•KSHI*SHAL+KSAI*SAND; 
T!RM1•(R'"*W08**2.0)/(A*K*ROP*OIA**3.0); 
TERM1l•(R'"*WOB**2.0)/(A*KI*ROP*OIA**3.0); 
TIRM2•(8*W08**2.0)/(A*OIA**4.0); 
T!RM3•(C*RPM*MW*PV*W08**2.0)/(I"*K*A*OIA**2); 
TIR"3l•(C*RPM*MW*PV*WOI**2.0)/(IM*KI*A*OIA**2); 
ROCKY•(TERK1•TIRM2·T!RM3); 
ROCKYI•(TIRM1I·TERK2·TERM3I); 
ROCK•(TERM1·TERK2·T!RM3)**.5; 
ROCKI•(TERK1I·TERK2·T!RM3I)**.S; 
IF ROCKY<O.S THEN 00; ROCK•3; END; 
IF ROCKYI<O.S THIN 00; ROCKI•3; END; 
ROCK•ROCK*1000; 
ROCKI•ROCKI*1000; 
IF OIPTH>7900.1 AND OIPTH<B220.9 THEN 00; OIPTH•O!PTH-10; END; 
IF DEPTH>B320.1 AND OEPTH<B678.9 THEN 00; OEPTH•OEPTH•7; END; 
IF OEPTH>88SS.1 AND D!PTH<9480.9 THIN 00; O!PTH•OEPTH+4; END; 
IF DIPTH>9S72.1 AND DIPTH<9806.9 THEN 00; D!PTH•DIPTH•10; END; 
IF DIEPTH>9942 .1 AND OIPTH<10163. 9 THEN 00; DEPTH•DIPTH+4; END; 
IF DIPTH>B229.1 AND D!PTH<82S9.9 THEN 00; OILETI; END 
IF DIPTH>826S.1 AND DIPTH<B320.1 THEN 00; OELETI; END 
IF OIPTH>8677.9 AND OIPTH<B738.9 THEN 00; DILETI; END 
IF OIPTH>9479. 9 AND DEPTH<9571. 9 THEN 00; DELETE; EHO 
IF D!PTH>980S.9 AND OIPTH<9941.9 THEN 00; D!LETI; !NO 

PERSAND•SAND; 
PERSHALE•SHAL; 
PERLIME•LIM!; 

*A1•0.00431BB ;* 81•0.74191; 
A1•0.01331 ;11•0.57106 ; A2•0.00431BB 82•0.74191 
A3•0.004318B ; 13•0.74191; 

SANDO•PERSAN0*(1+A1*8HP**B1); 
SANOOI•P!RSAN0*(1•A1*BHPI**B1); 
LIM!O•PERLI"E*(1+A2*8HP**I2); 
LIMEOI•P!RLIME*(1+A2*BHPI**B2); 
SHAL!O•PERSHAL!*(1+A3*BHP**B3); 
SHAL!OI•P!RSHAL!*(1+A3*8HPI**B3); 
SOC•ROCK/(SANOO+LIM!O+SHAL!O); 
SOCI•ROCKI/(SANOOI•LIM!OI+SHAL!OI); 

CPR•, 6S*DIPTH·PP; 
GAMMA•CPR•SO; 
ZITA•CPR·SO; 
SAN01•PERSAN0*(1+A1*ZETA**B1); 
LIM!1•PERLIM!*(1+A2*Z!TA**B2); 
SHAL!1•PERSHAL!*(1+A3*Z!TA**B3); 

SC1•SOC*(SAND1•LIME1•SHAL!1); 
SC1I•SOCI*(SAND1•LIM!l•SHAL!l); 
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SAH02•PERSAND*(l+Al*GAHMA**Bl); 
LIME2•PERLIME*(l+A2*G~**B2); 
SHALE2=PERSHAL!*(l+A3*G~**B3); 
SC2•SOC*(SAN02+LIM!2+SHAL!2); 
SC2I•SOCI*(SAND2+LIME2+SHALE2); 

delta•sc2-scl; 
OELTAI•SC2I-SCli; 
N•DELTA/(DELTA•200); 
NI•DELTAI/(DELTAI•200); 
betal•arnn(n); 
BETAli•ARSIN(NI); 
BETA2•BETAl*l80/(3.141S93); 
BETA2I•BETA1I*180/(3.141S93); 
RO•l-N; 
11:01•.9*(1-NI); 
SOVB•l.04*DEPTH; 
sh•ko*(sovb-Pp)•Pp; 
SHI•ROI*(SOVB-PP)+PP; 

CPRP•SH-PP; 
CPRI•SHI-PP; 
GAHMAP•CPRP+SO; 
GAMMAI•CPRI+SO; 
Z!TlP•CPRP-SO; 
ZETAI •CPRI- SO; 
SANDlP•PERSAHO*(l+ll*Z!TAP**Bl); 
SAHOli•PERSAND*(l+Al*Z!TAI**Bl); 
LIM!lP•PERLIKE*{l•A2*ZETAP**B2); 
LIM!li•PERLIM!*{l+l2*ZETAI**B2); 
SHALE1P•PIRSHALE*(l+A3*ZETAP**B3); 
SHALE1I•PIRSHALE*(l+A3*Z!TAI**B3); 
SClP•SOC*(SlHOlP+LIM!lP+SHALElP); 
SCliM•SOCI*(SlHOli•LIM!li•SHAL!li); 
SAND2P•PERSAND*(l+Al*G~P**Bl); 
SAND2I•PERSAHO*(l+Al*G~I**Bl); 
LIME2P•PERLIHE*(l•A2*G~P**B2); 
LIHE2I•PERLIHE*(l+A2*GAMMAI**B2); 
SHAL!2P•PERSHALE*(l•A3*GAMMAP**83); 
SHALE2I•PERSHALE*(l+A3*GAMMAI**B3); 
SC2P•SOC*(SAH02P•LIME2P•SHALE2P); 
SC2IM•SOCI*(SAH02I+LIHE2I+SHALI2I); 

OELTAP•SC2P-SClP; 
DELTAIH•SC2IM-SC1IH; 
NP•D!LTAP/(OELTAP+200); 
NIM•DELTAIH/(DELTAIH•200); 
BETAlP•ARSIN(NP); 
BtTAliM•ARSIN(NIM); 
BETA2~•BETA1P*l80/(3.141S93); 
BETA2IH•BETA1IH*l80/(3.141S93); 
ROP•l-NP; 
KOIH•.9*(1-NIM); 
SHP•KOP*(SOVB-PP)+PP; 
SHIM•KOIM*(SOVB-PP)+PP; 

CPRP2•SHP-PP; 
CPRI2=SHIM-PP; 
CAHMAP2•CPRP2+50; 
CAHMA12=CPR12•50; 
ZETAP2•CPRP2-50; 
ZETAI2•CPRI2-50; 
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SAH01P2•PERSAND*(l+Al*ZITAP2**81); 
SAND1I2•PERSANO*(l+Al*ZITAI2**81); 
LIM!lP2=PERLIM!*(l+A2*ZITAP2**82); 
LIM!li2•PERLIM!*(l+A2*ZITAI2**82); 
SHAL!lP2•PERSHAL!*(l+A3*ZETAP2**83); 
SHAL!li2•P!RSHAL!*(l+A3*ZITAI2**83); 

SClP2•SOC*(SlNDlP2+LIM!lP2•SHAL!lP2);. 
SCliM2•SOCI*(SAH01I2+LIM!li2+SHAL!li2); 

SAH02P2•PERSAHO*(l+Al*GAHKAP2**81); 
SAH02I2•PERSAHO*(l•Al*GlHKAI2**81); 
LIME2P2•PERLIM!*(l+A2*GlHKAP2**82); 
LIM!2I2•PERLIM!*(l+A2*GlftKAI2**82); 
SHALE2P2•PERSHAL!*(l+A3*GlHKAP2**83); 
SHAL!2I2•P!RSHAL!*(l+A3*GlHKAI2**83); 

SC2P2•SOC*(SAH02P2•LIM!2P2+SHAL!2P2); 
SC2IM2•SOCI*(SAH02I2•LIM!2I2+SHAL!2I2); 

OELTAP2•SC2P2•SC1P2; 
D!LTAIM2•SC2IM2·SC1IM2; 
NP2•0ELTAP2/(0!LTAP2•200); 
NIM2•D!LTAIM2/(D!LTAIM2+200); 
8!TllP2•ARSIN(NP2); 
81TlliM2•ARSIN(NIM2); 
B!Tl2P2•81TllP2*180/(3.141S93); 
8!Tl2IM2•81TlliM2*180/(3.141S93); 
KOP2•l·NP2; 
KOIM2•.9*(l·NIM2); 
SHP2•KOP2*(SOV8·PP)+PP; 
SHIM2•KOIM2*(SOV8~PP)•PP; 

CPRP3•SHP2•PP; 
CPRI3•SHIM2·PP; 
GAMMAP3•CPRP3+SO; 
GAMMAI3•CPRI3+SO; 
ZITAP3•CPRP3•SO; 
ZETAI3•CPRI3·SO; 
SAH01P3•PERSAND*(l+Al*Z!TAP3**Bl); 
SAH01I3•P!RSAHO*(l+ll*Z!TAI3**8l); 
LIM!lP3•PERLIM!*(l+A2*Z!TAP3**82); 
LIM!1Il•PERLIM!*(l+A2*ZITAI3**B2); 
SHAL!lP3•P!RSHAL!*(l+A3*Z!TAP3**B3); 
SHAL!li3•P!RSHAL!*(l+l3*ZITAI3**83); 

SClP3•SOC*(SlNDlP3+LIM!lP3•SHALElP3); 
SCliM3•SOCI*(SAH01I3+LIM!li3+SHALEli3); 

SAND2P3•PERSANO*(l+ll*GAMMAP3**Bl); 
SAN02I3•PERSANO*(l+ll*GAMMAI3**Bl); 
LIM!2P3•PERLIM!*(l•A2*GAMMAP3**B2); 
LIM!2I3•PERLIM!*(l•A2*GlftKAI3**B2); 
SHALE2Pl•P!RSHALE*(l+l3*GAMKAP3**Bl); 
SHAL!2I3•PERSHAL!*(l+Al*GAMMAI3**83); 

SC2P3=SOC*(SAND2P3•LIM!2P3+SHAL!2P3); 
SC2IM3•SOCI*(SAND2I3+LIM!2I3+SHALE2I3); 

OELTAP3•SC2P3·SC1P3; 
DELTAIM3•SC2IM3·SC1IM3; 
NP3•DELTAP3/(DELTAP3•200); 
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NIM3•DELTAIM3/(DELTAIM3+200); 
BETAlP3•ARSIN(NP3); 
BETAliM3•ARSIN(NIM3); 
BETA2P3•BETA1P3*180/(3.141S93); 
BETA2IM3•BETAliM3*180/(3.141593); 
KOP3•l·NP3: 
KOIM3•.9*(l·NIM3); 
SHP3•KOP3*(SOVB·PP)•PP: 
SHIM3•KOIM3*(SOVB·PP)•PP; 

CPRP4•SHP3·PP; 
CPRI4•SHI!!3•PP; 
GA!!!!AP4•CPRP4+SO; 
GA!!!!AI4•CPRI4+SO; 
ZETAP4•CPRP4•50; 
ZETAI4•CPRI4•50; 
SAHDlP4•PIRSAND*(l+Al*ZETAP4**Bl); 
SAND114•PIRSAND*(l•Al*ZETAI4**Bl); 
Ll!!ElP4•PIRLI!!E*(l•A2*ZETAP4**B2); 
LI!!Eli4•PIRLI!!E*(l+A2*ZETAI4**B2); 
SHALE1P4•PIRSHALI*(l+A3*ZETAP4**B3); 
SHALili4•PERSHALI*(l+A3*ZETli4**B3); 

SClP4•SOC*(SANDlP4+LI!!IlP4+SHALilP4); 
SCli!!4•SOCI*(SlNDli4•LI!!Ill4+SHALill4); 

SAHD2P4•PERSAND*(l+ll*GA!!!!AP4**Bl); 
SlND214•PERSAHD*(l+ll*GA!!!!AI4**Bl); 
LI!!E2P4•PERLI!!E*(l•A2*GA!!MAP4**B2); 
LI!!E2I4•PIRLIME*(l+A2*GA!!!!li4**B2); 
SHALI2P4•PERSHALI*(l+A3*GA!!MAP4**B3); 
SHALE214•PIRSHALE*(l+A3*GA!!!!AI4**83); 

SC2P4•SOC*(SlND2P4+LI!!I2P4+SHlLE2P4); 
SC2IM4=SOCI*(SlND2I4+LlME2I4•SHALE214); 

DELTlP4•SC2P4•SClP4; 
DILTAIM4•SC2IM4•SCliM4; 
NP4•DILTAP4/(DELTAP4•200); 
NI!!4•DILTAIM4/(DILTAIM4+200); 
BITAlP4•lRSIN(NP4); 
BITAliM4•lRSIN(NI!!4); 
PI=3.141S93; 
BITA2P4•BITA1P4*180/PI; 
BITl21!!4•BITlll!!4*180/PI; 
KOP4•l·NP4; 
KOI!!4•.9*(l·NI!!4); 
SHP4•KOP4*(SOVB·PP)+PP; 
SHIM4•KOIM4*(SOVB·PP)•PP; 
*If PERSAND>.90l THEN COMB•SHP4; 
*If PERSAND< .901 THEN COMB•SHIM4; 

proc print; 
YlR DEPTH ROCK ROCKI SHIM4 SHP4 PP KOP4 K01!!4 BETA2P4 BITA2IM4; 

TITLE 'BOUND2 DATA '; . ; 
C!!S FI TAGOUT DISK BOUND2 DATA A (LRECL 80 RECFM F BLOCK 80); 

PROC TAG; PARMCARDS4; 
GENERATE l FANCY PLOT. 
FRAME ON. 
TITLE 'ANGLE OF INTERNAL FRICTION FOR SFEI2' 

,STYLE DUPLEX. ALPHABET ITALIC. 
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SAS DATA. 
US! X•D!PTH Y•SHI~4. 
USI X•D!PTH Y•SHP4. 
US! X•D!PTH Y•PP. 
fJfD Of DATA. 
Y AXIS LABEL "ANGLE Of INTERNAL AICTION (DIGRDS)" ,ST'lL! DUPLEX, 
ALPHABET ITALIC. 
X AXIS LABEL "DEPTH (n)" ,STYLI DUPLIX,ALPHABET ITALIC. 
X AXIS ~AX 10200, MIN 7800, TICK 2, STEP 100.0. 
X AXIS LIHGTH 8.2. 
X PAGE 10. 
Y AXIS MAX 90., MIN 0, TICK 2, ST!P 10. 
!VERY MSC STYLI DUPLEX, ALPHABET ITALIC, HEIGHT .15. 

!VERY CURVE S~IOL SIZE 1, S~IOL ILAHitiKG Off. 
!VERY M!SSAGI BLANKING ON. 
CURV! 1 S~BOL COUNT O,COLOR ILUI , SYMBOL TYPI 17. 
CURV! 2 SYMBOL COUKT O,COLOR RED , S~IOL TYPE 15. 
L!CEND EXISTENCE ON. 
LEGEND IS UKITS COORDINATE. 
LIGINO CONKICT LC, X•BOOO Y•2000. 
LIGINO HEIGHT .12. 
LEGEND TEXT " ", STYLI DUPLEX, ALPHABET ITALIC. 
CURV! 1 LABEL 'PERI!IABLI' . 
CURVE 2 LAIIL 'II!PIRI!IABL!'. 

GO. 
c. 
SINO. 
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APPENDIXG 

SAMPLE OUTPUT FROM SAS PROGRAM IN APPENDIX F 
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1 7 8 

Permeable Horizontal Pore 
Rock StrenJth Suess c Imrermtablt) Pressure 

(psii Fonb Iteration HoriiOfttal (psi 1 
Depth Impermea~le tpsiJ Stress fPffmnb It' 

Rotk Strenatb Forth ltenlion 
(feet) tpsi l fpsi 1 

8000.0 30021.0 18858.8 5449.23 4354.58 3687.80 
8001.0 28654.8 17774.3 5598.90 4459.81 3688.58 
8002.0 23226.1 11561.1 6126.86 4662.96 3689.37 
8003.0 25121.8 14895.4 5853.43 4616.84 3690.15 
8004.0 16311.2 6340.8 6780.53 5123.26 3690.93 
8005 .o 27054.0 14746.6 5867.91 4544.40 3691.71 
8006.0 28531.7 17666.6 5611.43 4467.38 3692.49 
8007.0 26879.2 16677.9 5630.26 4470.42 3693.27 
8008.0 14539.3 5508.6 6852.05 5172.46 3694.05 
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Sensitivity analyses were performed on the empirically 

developed coefficients used in the proposed approach to obtain m­

situ stress bounds. Evaluations were also performed on the amount 

and type of laboratory drilling data used to obtain the bit 

coefficients. 

The Amount and Type of Laboratory 

Drilling Data Needed for 

Bit Coefficients 

This investigation involved usmg a subset of the available 

laboratory drilling data to obtain bit coefficients for two IADC bits, 

namely the 437 and the 617, to "test" against the laboratory drilling 

data not used to generate the bit coefficients. The "test" consisted of 

employing the values of the bit coefficients in the modified three 

term penetration rate model (6) and using this model to predict 

penetration rates for the conditions associated with each lab drilling 

data point. 

For the 437 IADC code bit, three different scenarios were 

studied: 

1 ) Employ part of the available laboratory drilling data m 

both Catoosa Shale and Carthage Limestone and test 

against the remaining data. The results are shown in 

Figure 109. The dark symbols indicate the laboratory 

drilling data employed, and the open symbols indicate the 

laboratory drilling data it was tested against. The bit 

coefficient values obtained using this data are listed in 
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a =.OJ!5, ~.19, c=.oo1!17 
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Figure 109. Bit Coefficients Developed from Part of Carthage 
Limestone and Catoosa Shale Drilling Data Tested 
Against the Other Part of the Carthage Limestone 
and Catoosa Shale Data for a 437 IADC Bit 
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Figure 109. It is seen that the unused data matched the 

model very well. 

2) Employ the available Catoosa Shale drilling data and test 

against the Carthage Limestone drilling data. The results 

are shown in Figure 110, and it is observed that a very 

good match is obtained. 

3) Employ the Carthage Limestone data and test against the 

Catoosa shale. The results are shown in Figure Ill, and it 

can be seen that a poor match results. The bit coefficients 

employed for this scenario yield underpredicted values 

for ROP in the Catoosa Shale. This may be due to 

insufficiently high ROP values in the "employed" data set, 

such that high ROP values are not predicted well. 

For the 617 IADC bit, two scenarios were investigated: 

4) Employ the Catoosa Shale and Bedford Limestone data, 

and test against the Carthage Limestone data. The results 

in Figure 112 show a reasonable match. 

5) Employ the Carthage Limestone and Catoosa Shale data 

and test against the Bedford Limestone data. The results 

in Figure 113 shows a reasonable match. 

Sensitivity ·of In-Situ Stress Bounds, Coefficient for 

Earth at Rest and Rock Strength to Changes 

m Empirically Developed Coefficients 

The evaluation of empirically developed coefficients for the bit, 

rock strength, and chip hold-down was accomplished by varying the 
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a=.0187, b=4 . .34, c=.00155 
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Figure 110. Bit Coefficients Developed from Catoosa Shale 
Drilling Data Tested Against Carthage Limestone 
Drilling Data for a 437 IADC Bit 



223 

a=.0166, b=1.76, c=.00392 
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Figure 111. Bit Coefficients Developed from Carthage Limestone 
Drilling Data Tested Against Catoosa Shale 
Drilling Data for a 437 IADC Bit 
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a=.D197, b=tJ.4, c=.DD.309 
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Figure 112. Bit Coefficients Developed from Bedford Limestone 
and Catoosa Shale Drilling Data Tested Against 
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617 IADC Bit 
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a=.0199, b=n6, c:::.004J4 
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Figure 113. Bit Coefficients Developed from Carthage Limestone 
and Catoosa Shale Drilling Data Tested Against 
Bedford Limestone Drilling Data for a 617 IADC Bit 



coefficients by +/-20 percent about selected nominal values. This 

amount of coefficient variation appeared to span what could be 

reasonably be expected in practice. 
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Two sets of typical operating conditions were taken from the 

SFE #2 well. These were: 

Case 1: Depth 8139 ft. 

Bit IADC 537 

Lithology 100% Shale 

ROP 7.087 ft/hr 

WOB 37.675 klbs 

RPM 64.6 RPM 

PV 9 cp 

Case 2: Depth 9000 ft. 

BitiADC 737 

Lithology 100% Sandstone 

ROP 13.025 ft/hr 

WOB 40.621 klbs 

RPM - 52.3 RPM 

PV 15 cp 

For Case 1 Figure 114 shows the sensitivity of calculated rock 

strength to a +/- 20 percent change from nominal of the bit 

coefficients. Figure 115 shows the sensitivity of the impermeable 

upper bound on in-situ stress to the same coefficient variation. It 

can be seen that rock strength changes remain less than 12 % of 

nominal and stress bound changes remain less than 2.5 % of nominal. 

The same approach was used to evaluate the sensitivity of the 
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coefficient of earth at rest, K0 , and the impermeable in-situ stress 

bound to a =/- 20 percent variation about nominal values of the chip 

hold-down coefficients. Figures 116 and 117 shows the results. It 

can be seen that while there is little sensitivity to the coefficients ae 

and ce, strong sensitivity to be exists. This is perhaps expected since 

be is an exponent in the confining pressure term. In order for the in­

situ stress bound to vary less than 20 % from nominal, the coefficient 

be should vary less than 10 % from nominal. This does not appear to 

be an unreasonable expectation. 

For Case 1 Figure 118 shows the sensitivity of the impermeable 

upper bound on in-situ stress to a +/- 20 percent change from 

nominal of the shale rock strength coefficients. It can be seen that 

impermeable stress bound changes remain less than 14 % of nominal. 

Little or no sensitivity is shown to the coefficient a8 (less than 1 % ), 

while a stronger sensitivity to the coefficient bs exists. This is 

perhaps expected since b8 is an exponent in the confining pressure 

term. 

For Case 2 Figure 119 and 120 show the sensitivity of the rock 

strength and the permeable upper bound on in-situ stress to a +/- 20 

percent change from nominal of the bit coefficients. It can be seen 

that rock strength changes remain less than 13 % of nominal, and 

stress bound changes remain less than 4 % of nominal. 

The same approach was used to evaluate the sensitivity of rock 

strength, coefficient of earth at rest, and permeable upper bound on 

in-situ stress to a +/- 20 percent change of nominal of the chip hold­

down coefficients. It can be seen from Figure 121 that rock strength 
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changes remam less than 18 % of nominal; from Figure 122 that 

changes in the coefficient for earth at rest remain less than 13 % of 

nominal; and from Figure 123 that changes in the permeable bound 

on in-situ stress remain less than 5 % of nominal. 

It can be concluded that three significant digits m the bit 

coefficients gives less than 0.5 percent possible error in the in-situ 

stress bound calculation. This is based on the results above, in which 

a change of less than 20 percent in nominal bit coefficients values 

yields a change of less than 20 percent in in-situ stress bounds. 

Since three significant digits gives a maximum possible error of 0.5 

percent in the bit coefficient, we estimate from the curves in Figure 

115 and 120 that the maximum error in in-situ bounds due to error 

in the bit coefficients would be less than 0.5 percent. 
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