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CHAPTER I
INTRODUCTION
'Preamb}e

The efficient design and de&elopment of practical flow
equipment requires careful characterization and obtimizatidn
of very complicated fluid mechanical and physical/chemical
processes. These entail vortex mbtion, turbulence,lchemical
reaction, droplet and particle motion, multi-phase behavior,
etc. Traditional design procedures have been forced to rely
extensively on experiments, an approach if utilized to the
exclusion of available analytical or computational methods,
would soon prove both costly ahd incapable of assimilating
the immense amount of design:information. As a>consequence,
computer modeling is becomipé increasingly more attractive
as a complementary tool to‘assist in prelimiﬁary screening
of design ideas, and diagnosing and solving development
problems (Refs. 1 through 8).

To be reliably utilized, the computer model should
simulate the flow in all its important respects (boundary
conditions, turbulence, flow Qeometry, etc.), and provide a
means whereby the governing equations may be solved cheaply
and accurately. The governing equations are nonlinear and

must be solved simultaneously. Similarity between them and



their diffusional relations allows them to be cast in a
common form and solved in a similar manner.

Several computer models have emerged in recent years
based on these principles, each having its strengths and
weaknesses. The basic differences between them include:
the closure of the turbulence~mode1, the 1ocation/of the
variables in the computational grid, the discretization
scheme, and the solution technique.

Typically, they are axisymmetric and involve. pressure-
velocity (primitive-variable) or stream funqtion-vorticity
formulation. Turbulence is usualiy siﬁulated by way of a
two-equation model, and more recently using second moment
closure. The finite difference equations are obtained from
a Taylor series expansion about nodal points, or a control.
volume approach using:a staggered grid system. Solution
techniques vary from the simple point Gauss-Siedel method
to the more efficient line-by-line SIMPLE (semi-implicit
method for pressure ;inked équations) method for steady-
state problems, with corresponding explicit and SIMPLE

methods for associated transient problems.
The Problem

The present study is concerned with the prediction of
axisymmetric incompressible turbulent swirling‘flowfields,
using stream function-vorticity forhulation. A schematic
illustration of a typical flowfield is shown in Figure 1.

The sudden enlargement creates a CRZ (corner recirculation



zone) whose size and shape are controlled by the expansion
ratio and any other factor  which manipulates the pressure
gradient.

The introduction of swirl induces pressure fields to
balance centrifugallforces, and the decay of swirl caused by
shear and mixing sets up adverse épessure gradients. The
radial profile of the time-mean axial'veiocity depends on
the degree of swirl impérted to the flow. Fof weak swirl,
the profile remains gaussian in form with its maximum along
the jet axis. For étrong swirl, the forceé prompted by the
adverse pressure gradienfs could exceed'the forward kinetic
forces of the flow and result in flow recirculation near the
centerline. An inlet quarl aids the swirling jet to follow
the slope of the wall, thus ﬁroﬁbting streamtube divergence,
intensifying the central fecirculation zone, and reducing
the degree of swirlfrequired to aéhieve é certain level of
recirculation. The degree of swirl imparted to the flow is
characterized by a swirl'number, which represents the ratio
of the axial flux of tangential momentum and the axiai flux
of axial momentum. |

Calculation of such flows is very difficult. They are
bounded by irregularly-shaped boundaries, and exhibit flow
rotation, large velocity gradiehfs, and st;ong streamline
curvatures. As a result, turbulénce modeling and numerical
problems play a critical role in their analysis.

Leaving aside the impediments of turbulence modeling,

it is clear that present calculation methods based on the



finite difference approach suffer from two key weaknesses:
(a) they lack flexibility with respect to irregularly-shaped
boundaries for the calculation domain, and (b) they require °
excessively fine grids to control numerical diffusion.

Generally, flow domains are discretized to fit the
coordinate system, which requires that a rectangular grid
(uniform or nonuniform) énd a stair-step approéch be used
to represent irreqgular boundaries. The use of stair-steps
has a number of implications. - First, boundary distances are
always distorted. Thus, irrespective of physical modeling
and numerical accuracy, calcu;ation’df near-wéll properties
can never be correct. Second; adequate fepresentatioh of
the geometry bounding the flow usually requires an enormous
amount of computer storaée, Thefefore, mesh refining to
control numerical diffusion is not possible, and the
calculated flowfield may be influenced incorrectly by the
geometric representation.-

To circumvent this problem, coordinate transformation
methods have been used in orthogonal or nonorthogonal ways,
and implemented via analytiéal and/or numerical techniques.
Although they resolve the fundamental problem of irregular-
boundary representation, transformation methods exhibit
geometrically-induced errorskfesulting from failure to
satisfy certain consistency conditions.

Clearly, more realistic approaches are possible in the

interest of accuracy, but it is not clear to what extent



penalties will emerge in terms of conceptual simplicity,

universality, and additional computer time and storage.
Objectives

The principal objectives of the present study are to
develop, implement, and evaluate a theoretical/computational
model for predicting incompressible turbulent swirling flows
in domains typical of industrial furnaces and gas turbines.

The study focuses on the fundamental nonorthogonal grid
coverage of an axisymmetric flow domain with irregular
bouhdaries, and involves incorporating swirl and turbulence
effects into a stream function-vorticity simulation.

Model evaluation is accomplished via application to
experimental data cases of varying degrees of complexity.
Laminar cases are used to confirm numerical accuracy, and
turbulent cases are examined to establish the workability
of the solution procedure in complex flow situations.

The solution procedure, which is embodied in a newly

developed computer code, entails the following features:

1. Stream function-vorticity variables

2. Time-dependant calculations

3. Two-equation (k-€) turbulence model

4. Swirl velocity calculations

5. Rectangular and/or non-rectangular grid

6. Displaced, linear, and quadratic interpolation
7. Generalized boundaries

8. Adaptive stability scheme



The simulation is restricted to isothermal incompressible

flows and axisymmetric cylindrical coordinates.
Outline of the Thesis_

In Chapter II, a review of the literature is presented
which focuses on those works: which represent highlights in
the development of the subject, and which served as a guide
in the developmént of the presen? wbrk.

The mathematical-and physicél medel are presented in
Chapter III whi;e the numerical solution procedure is
described in Chapter 1IV.

The predictive'capability of ‘the computer model is
assessed in Chapter V; and Chapﬁe; VI recapitulates the main
conclusions of the study, and outlines recommendations for

future work.



CHAPTER II
LITERATURE REVIEW AND ANALYSIS
Introduction.

In this chapter, a review of the literature is
presented so as to connect the preéent work wiﬁh previous
contributions. It is not the intention here to present an
exhaustive review; rather it is chosen to concentrate on
those works which represent highlights in the development of
the subject, and which served as a guide in the development
of the present work. The chapter is divided into two major
sections. The first section is devoted to the presentation
of recent advances in numerical methods relative to fluid
flow and heat transfef computations; and the second section
is aimed at reviewing relevégt,experimental and theoretiéal

investigations of turbulent swirling flows.

Numerical Methods in Fluids and

Heat Transfer
Discretization Schemes

The finite difference analog of the governing equations
is obtained by overlaying a computational mesh on the flow

domain, and obtaining the appropriate finite difference



equations for every node using a discretization scheme.
Accuracy of the discretization scheme can generally be
judged from the order of the terms of an equivalent Taylor
Series that have been retained in the expansion. However,
/accuracy and stability represent conflicting requirements
with respect to these terms.

Attempfs to discretize the convective terms using the
central différencing scheme (CDS) failed—to pfoduce wiggle-
free solutions for high Reynolds number flows (Refs. 5 and
6). The Hybrid and upwind differencing schemes (HDS and
UDS), which are;based on a purely one-dimensional flux
balance, were found to eliminate these wiggles, and perform
well in the regions where the flow is aligned with the grid
lines and convection is balanced primarily by stream-wise
diffusion rather than cross-stream diffusion or sources.
However, if such idealized conditions are not encountered,
the locally one-dimensional assuﬁption gives rise to severe
truncation errors, known as numerical false diffusion;:which
may become so dominant as to obscure the effects of physical
diffusion on the flow. Theée shortcomings have led to the
development of/improved schemes which attempt'to account for
the effect of flow-to-grid ékewness, the lateral transport,
and the presence of sources.

The locally analytic differencing écheme (Ref. 9),
known as LOADS, takes into account the influence of the
lateral transport and:éource terms. The computational cell

involves five points, the coupling coefficients are always



positive, and the algebraic equations are diagonally
dominant. However, source terms are calculated explicitly
and may lead to convergence difficulties, especially if the
equations are strongly coupled.

The linear flux-spline scheme (Ref. 10) accounts for
sources and laterai.transport éy gssﬁming a piecewise-linear
variation for the total flux. 1In principal, it is similar
to LOADS, both in its properties and computatiqnal details,
but varies oniy in the manner in which the source terms are
introduced.

The skew-up&ind differencing scpémel(Ref; 11), known as
SUDS, is only formally first-order accurate but produces a
significant reduction in numeriéalﬁdiffusion by accounting
for the flow-to-grid skewness. Here the convective flux is
obtained by employing upwind differencing along streamlines
which are defined by the velocity direction. It employs a
compact nine-point computationél cell, and is conservative
but conditionally stable.

The quadratic upstream differencing scheme (Ref. 12),
known as QUDS, utilizes upstream-shifted quadratics and is
free of any second-order numerical diffusion. It employs a
sparse nine-point computational cell, and is conservative
but conditionally stable.

The controlled numerical diffusion with internal feed
back scheme (Ref. 13), known as CONDIF, is a variant of the
central differencing scheme (CDS). It eliminates the

wiggles by explicitly introducing a controlled amount of
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numerical diffusion based on the local gradients. The
computational cell involves only five points. The coupling
coefficients are nonlinear, since they involve the gradient
of the dependent variable aﬁd must be recalculated with each
iteration.

In several studies (e.g., Refs. 14 through 23), these
improved schemes,'amohg seﬁeral othe#s, have been proven to
produce significanfly mdfe accurate results than the simple

first-order upwind scheme.

Representation of Geometry

Present finite difference calculation methods lack
flexibility with respect to irregularly-shaped boundaries
for the computational domain. Typically, the physical
‘domain is discretized to fit the coordinate system, which
requires that a rectangular grid (uniform or nonuniform)
and a stair-step approach be used to represeﬁt irregular
boﬁndaries.

The use of stair-steps has a number of implications.
First, boundary distances are aiways distorted. Hence,
irrespective of physical modeling and numerical accuracy,
calculation of neér-wall properties can never be correct.
Second, appropriate representation of the geometry bounding
the flow to be calculated usually requires a large amount of
computer storage. Consequently, mesh refining—to control

numerical diffusion is not possible, and the calculated
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flowfield may be influenced incorrectly by the geometric
representation.

To circumvent this problem, alternate approéches have
been proposed which use coordinate transformation methods
in orthogonal or nonérthogonal‘ways, and implemented via
analytical or numeri?al techﬁiqﬁesf(Refs. 24 through 27).
Although they resolve the fundamental problem associated
with irreguléf boundafies, trahsformation methods often
exhibit errors resulting from failure to satisfy certain
consistency conditioﬁs. ‘

Moreover, An brthogonal mesh may bécqme‘unsuitable'for
calculations ﬁéar sharp corners, sincé the grid distribution
tends to be sparse; vAé a consequénce: large mesh densities

must be tolerated elsewhere to achieve corner calculations

with acceptable accuracy.

Solution Techniques

The algebraic equations folloﬁing the discretization of
the governing equationézare uéually coupled and nonlinear.
Sequential solution methods‘(Refs. 5 and 6) are currently
very popular because of their simplicity and low compuﬁer
storage requirements. However, if the intér-equation
coupling is strong, these methods exhibit severely poor
convergence rates. | |

Alternate methods in which all the variables are
simultaneously updated have been proposed. These include

coupled point Gauss-Siedel and line Gauss-Siedel methods
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~(Refs. 5 and 6). Direct solution méthqu of the mass and
momentum transport equations have also been proposed (Refs.
28 and 29), but these require excessively large computer
storage.

Iterative methods, such as thé Gauss-Siedel point and
Gauss-Siedel.line methods, afe kﬁowq to converge rapidly for
the first few iterationé‘but‘very slowly thereafter. That
is, they are vefy effective iq smoothing out errors of waQe
length comparable tovthe grid»épacing, but are very slow in
diminishing the low-frequency ones (Ref. 30). Thus, as the
grid is refined, the increasing ddminance of low-fréquency
errors results in excessively laréé éomputatiohal efforts.

In order to alleviate thié problem, multigrid solution
techniques have been prdposed (Refs. 30 through 33), which
employ a hierarchy of grids ¢, k =1, 2, 3, ...M, with the
mesh spacing such that h,,, =‘h;/2. When the COnvergence
rate on the fine grid becomes slow, the multigrid method
switches to a coarser grid, where the low-frequency errors
are more effectively removed. The solution on the fine grid

is then corrected to reflect the removal of these errors.
Turbulent Swirling Flows
General Features

Swirling flows (Ref. 1) result from application of a
tangential velocity component being imparted to the flow by
use of a swirl generator positioned upstream from the

reactor or expansion chamber. Various modes of generation
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have been utilized to accomplish this task: tangential
entry swirler, guide vanes, multi-annular swirler, rotating
honeycomb, and high speed pipe rotation. Obviously, several
structural and geometrical perturbations may exist for each
mode with their accompanying disparities in efficiencies and
resultant velocity profiles. ‘ |

Swirl velocity brofiies generally assume‘a combination
of free and forced vortex\distriﬁution. The time-mean swirl
velocity distributioh mﬁst go to zero'at~thé~centerline as
well as at the enclosu?e wall. Thg inner field tends to be
solid-body rotation (i.e., forced vortex), and the outer
field develops toWards a state of constant angular momentum
or a free vortex (Refs. 34 and 42).

In an isothermél or inert jet, swirl acts to enhance
the rate of jet growth, entrainment, and mean velocity decay
relative to a nonswirling}jet (Réfs. 1 and 2). As swirl is
progressively increased, pressufe fields are induced to
balance centrifugal forces[and the decay of swirl caused by
shear and mixing with the'sufioundiﬁg fluid sets up adverse
pressure gradients. |

The radial profile of the time-averaged axial velocity
depends on the dégree 5f swirl impafted to the flow. For
weak swirl, the profile remains gaussian in form with its
maximum along the jet axis. For'strong swirl, the forces
prompted by the adverse pressure gradieﬁts could transcend
the forward kinetic forces of the flow and result in flow

reversal or vortex breakdown.
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In a reactiné flowfield, the primary use of the swirl-
induced CTRZ (central toroidal recirculation zone) is to
promote flame stabilization and control pollutants emission.
Flame retention requires that the flame velocity matches or
exceeds the forward flow velocity, aﬁd/that sufficient heat
is imparted for‘stable ignition.- In'honSWirling flowfields,
the stabilization mechanism is usuallyncontrolled by a wall
boundary layer, an expan51on chamber, or a mechanical flame
holder. However, in swirling flowflelds, the combination of
swirl velocity distribution, furnace geometry, and air/fuel
ratios produce a number of CTRZ oonfigﬁrations which provide
the necessary mechanism for better mixing, flame retention,

and emission control.

Experimental Work

It is not surprising‘that the significant number of
experimental studies of swirlino flows have produced‘a broad”
diversity of parametric effeofslend observations. Differing
swirl generators, inlet and chaﬁber geometries, flow rates
and fuels, all produce details and dlfferences Wthh may not
be easily resolved. Nevertheless, 1t is the purpose of this
review section to depict common threads among the cases that
have been observed.

owen (Ref. §3) measured time-averaged characteristics
in the initial ﬁixiné region of free ano confined coaxial
air jets with and without swirl. He indicated that there

were substantial large-scale contributions to the total RMS
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turbulent velocity field from inlet swirl. These large-
scale fluctuations resulted in significant deviations from
isotropy over most of the initial mixing region, indicative
of the inadequacy of turbulence models based on the local
equilibrium principles in representing the physics of such
flows. The data also displayed that the recirculated mass
flux and the size of the CTRZ are significantly larger in
confined conditions than in free expansion.

Habib and Whitelaw (Refs. 44 ‘and 45) investigated the
velocity characteristics of confined coaxial jets with and
without swirl. They measured the time-mean axial velocity
and the RMS axial velocity fluctuations. The measurements
indicated that larger annulus to center jet velocity ratios
produce lager CTRZs and higher turbulence intensities. An
increase in inlet swirl was also observed to increase the
'size of the CTRZ. |

Vu and Gouldin (Ref. 46) investigated the flowfield
characteristics of a model swirl combustor under co- and
counter-swirl conditions, without chamber expansion. They
measured time-averaged velocities, turbulence intensities,
and turbulent stresses. They noted that the secondary jet
swirl has a prominent influence on the formation of the
CTRZ, and that high levels of turbulence fluctuations and
dissipation rates characterized the central flow region for
both co- and counter-swirl conditions.

Yoon and Lilley (Ref. 47) investigated the mean flow

characteristics of turbulent swirling jets in suddenly and
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gradually expanding chambers. The primary concern of their
study was to characterize flows of this type in terms of the
effects of sidewall angle, swirl strength, inlet turbulence
intensity, and expansion ratio on the resulting flowfield.
They reportéd that the présence pf’swirl shortens the CRZ
and generates a CTRZ followed by é precéssing vortex core.

An increase in,swirl’wés,fpund to, at leéét initially,
expand the CTRZ in~Width and length, and é‘fﬁrthérxincrease
caused the length toldécrease with/significént increase in
width. o

A gradually expanding inleﬁ‘wasffouhd to cause the
swirling jet to féllow the slope pfﬂthe wall. This had the
effect of augmenting the centrai ad&erse pressure gradients,
intensifying the recirculated mass flux, and decreasing the
degree of swirl necessary to achiéve a particular level of
recirculation. | |

The presence of a chamber contraction at a downstream
location produced a favorabléfpieésure“gfadient which was
superimposed on the advérse‘preSSure gradient promoted by
swirl. 1In certain cases where the contraction was strong
enough to influence the upstreaﬁjfield, the intensity of
the CTRZ was diminished.

Roback and Johnson (Refs. 48 through 50) studied the
downstream mixing of coaxial water jgtsidisgharging into an
expanded duct. They employed a visualization technique to
qualitatively study the time-dependent flow characteristics

and the scale of turbulence. They reported that intensive
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mixing regions existed at the interface between the near
stream and the centérline recirculation zone, and at the
interface between the inner and outer jet streams. Mixing
for swirling jets was found to complete in one-third of the
distance required for nonswirlingfjets}’

Other sigﬁificant experimentél»étﬁdies, with findings
and conclusions similar to those‘describedqabpve, are given

in References 51 through 54.
Theoretical Work -

Numerous.Publications exist which diécuss at length
theoretical approaches to the solution of turbulent swirling
flows. For example, see textbooks on flowfield modeling
(Refs. 1 through 4), compufational fluid dynamics (Refs. 5
through 8), and turbulence modeling (Refs. 55 and 56). A
brief review of related feseéfch papers follows.

Numerical predictiohs of confined axisymmetric swirling
jets were made by Lilley (Ref; 575, using a stream function-
vorticity variable approach;“;Turbulence was simulated by
way of a simple turbulent viscosity formula. The‘general
agreement of predictions with associated e;pefimental data
was encouraging in view of the use of a simple turbulence
model. | |

A confined swirling flow in an axisymmetric furnace
configuration was prédicted by Khalil et al. (Ref. 58).

They employed‘a two-equation (k-€) turbulence model and a

primitive-variable (pressure and velocity) formulation. The
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calculation procedure was based on the SIMPLE (Semi-Implicit
Method for Pressure Linked Equations) method of Patankar and
Spalding (Ref. 6). Predicted axial velocity profiles for
the experimental data case of Baker et al. (Ref. 59) were
found to be in reasonable ag;eemeht with the measurements.

Karasu (Réf: 60) predicted"ﬁurbulént.swirling flows in
circular-sectioned ducts and annaii;'using a,éimilar,model
to that of Khalil et al. (Ref. 58). 'His results highlight
the shortcomings of the two-eduaiion k-e turbu1ence model in
reproducing the‘stabilizing effects of swirl; particularly
in flows featuring a combined Oorfex distribution.

Sloan (Ref. 61) presented an extensive evaluation of
several turbulence models for predicting strongly swirling
flows. He noted that of all the possible models and model
corrections that were evaluated, the Reynolds stress model
holds the greatest potential %or‘prediction improvement.
However, he recommended thatvﬁresenﬁ predictions maintain
the k-€e model due to the marginai'improvement that higher-
order schemes provide relati&g to their added complexity and
increased computational and storage requirements.

Jones and Pascau (Ref. 62) presented calculations 6f
confined swirling flows using the Reynolds stress transport
equations model and the k-¢ turbulence model. Comparison of
their predictions with the corresponding meaéurements of So
et al. (Ref. 52)“grants clear precedenée‘tozthe transport :
equations model, which reasonably reproduced the major

features of swirl.
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In a recent study, Weber et al. (Ref. 54) presented
computations for a number of isothermal swirliﬁg flow cases.
The focus in their work was on two categories of swirling
flows: high confinement flows in geometries representative
of gas turbines, and low confinement flows encountered in
industrial and experimental furpééesﬂ Ip their study, they
assessed three turbulence mdde;s: a Réynolds stress model,
an Algébraic stress model, and‘a/two-equatiOn (k-€) model.
Comparisons between predictions ahd,aésociated measurements
showed that the two high-order\cloSure moéels produce much
improved predictions than the k-e¢ modéi.

It should be noted here that while the standard two-
equation turbulence‘models have;séhetimes produced adequate
comparative predictions, they are generally considered as
insufficient for strongly swirling flows (Refs. 63 through
68). This is in part due toltheyisotropic nature of the
eddy-viscosity formulation of the k-e turbulence model,
which is not valid for flbwgnfhétAa}e characterized by
large-scale fluctuations, roﬁation, and strong streamline
curvatures (Refs. 69 through‘70).> However, ad hoc modifi-
cations to the k-e model havé‘generally fesulted in much
improvement in predictions (Refs. 71 through 73), although

only for very specific cases.
Closure

This survey has been provided to put the present work

into context. The present study focuses on the fundamental
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nonorthogonal grid coverage of an axisymmetric flow domain
with irregular boundaries, and involves incorporating swirl
and turbulence effects into a stream function-vorticity

simulation.



CHAPTER III
' MATHEMATICAL AND PHYSICAL MODEL
Introduction

This chapter is devoted to the presentatlon of the
mathematical and phy51ca1 model employed in the calculation
of incompressible turbulent sw1r1;ng floys. Presented here
are the time-averaged PDEs (pertiel differential equations)
that govern the conservation of mass and momentum, in terms
of stream function and vorticitf variables. The equations
are given in axisymmetric cylindrical coordinates and time-
dependent form. ‘

’ A few comments on the heyhematical treatment of
turbulence are required here. ‘The difficulties involved in
calculating turbulent flows viaksolution of the full time-
dependent form of the Navier-Stokes equations have long been
known. Any numerlcal calculatlon procedure Would requlre a
prohibitively fine grid and excess;vely short time intervals
in order to resolve the subtle(details of turbulence. It is
therefore necessary to solve the time-averaged equations,
whereby the effect of turbulence manifests itself in the
equations in the form of Reynolds stresses and turbulent

fluxes, which involve time-averaged products of fluctuating

21



22

components. These terms are evaluated via a turbulence
model.

The turbulence model eﬁployed here is a two-equation
model based on the eddy-viscosity concept and known as the
k-¢ model (Ref. 55). It necesSitafeé the solution of two
PDEs for the transport of turbu;gnce kiﬁeticlenergy, k, and
its rate of dissipation, €. Knéwledgé of k and € permits
the length scale of turbﬁlencé‘tO'be‘caléulated, and hence
the eddy or turbulent viscosity f?om‘which the Reynolds

stresses can be evaluated.
The Governing Equations

The stream funqtioﬁ-vorticity approach used in the
present work is one of the most,popular methods for sélving
2-D incompressible flow problems in bounded domains. The
distinctly attractive featurgigf;this approach is the
computational decoupling ¢f‘the,kinematics and kinetics from
the thermodynamics. Conseqﬁéntly; pressure determination is
reduced to a post-processing operation involving solution of
a linear PDE, ofteq\referred to as the Poisson equation for
pressure. Conversely, the wéaknéss of this approach is in
the evaluation of vorticity at a no-slip wall. Numerical
experiments have indeed confirmed that unimaginative |
handling of this constraint can,destabil;zelthe numerical
solution.

In this approach, a change of variables is made which

replaces the veloqify components u and v with the stream
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function, ¢, and vorticity, ©, using the relations:

dy/or (3.1)

ru =
rv = -9y/9x _ , (3.2)
o = 0Jv/dx - du/dr ] \ (3.3)

In this Wéy, the continuity:equation is automatically
satisfied, and ' a time-depeﬁdent elliptic équation for the
transport of vorticity can be obtained by combining the
time-averaged axial and radial momentum equations, thereby
eliminating pressure. An additional equation involving the
new dependent variables ¥ and ¢ can be obtained from the
kinematic definition of vorticity given in Equation (3.3).
This steady-state elliptic PDE is often referred to as the
y-equation. \

These two equations, together with the equations for
the transport of tangential momentﬁm, turbulence kinetic
energy, and turbulence dissipation rate, constitute the
complete set of PDEs (subject to appropriate boundary and
initial conditions) necessary to solve for the time-mean
flowfield variables at any location within the flow domain.
Similarity between these equations and their diffusional
relations allows them all to be cast into the common

elliptic form:

o [Gecom + 2 B oolt) - 2 G oed]
S [3erg2) - Herge)] - v
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where ¢ stands for any one of the time-averaged flowfield
variables: ¢, o, w, k, and €, and the equations differ
primarily in their source terms S°. Expressions for the
coefficients b°, I, and S° are given ‘in Table I. The
turbulence generation term, G,, appearing‘in'Table I, is

defined as:

+
Q)IQ)
£
I
+
2]
QU
3]
Ik
N

(3.5)

The Properties of Turbulence

The eddy viscosity approach ts the modeling of
turbulence is to relate the local turbulent viscosity, .,
to one or more properties of the turbulent flow. This
viscosity is allowed to vary from one location to another,
but at any point, it is assumed to be isotropic. It is
evaluated from the local value; of turbulence kinetic
energy, k, and its rate of dissipation, €, through the

relation (Ref. 55):
he = C.pk?/e€ \ (3.6)

where C, is a turbulence constant given by Equation (3.9),
and p is the density of the fluid.
The effective viscosity, represented by H.:, is defined

as follows:

Hesse = B T He (3.7)
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where pu is the laminar viscosity of the fluid and may be
neglecﬁed for high Reynolds number flows.

A local length scale of turbulence, 1, can be evaluated
from the local values of k and € according to the following

relation (Ref. 55):
1 = Ck¥*/¢ (3.8)

Here 1 characterizes the macroscale of turbulence which is
easier to estimate than either p, or €. As a result, it is
often prescribed»as the boundary value from which near-wall
specification of € is obtained.

The recommended values for the constants of the k-¢

turbulence model are as follows (Ref. 55):

C, = 0.09 (3.9)
C, = 1.44 (3.10)
C, =1.92 (3.11)
o, = 1.0 (3.12)
0. = 1.3 ‘ (3.13)

Wall Functions and The Effect

of Swirl

The two-equation (k-€¢) turbulence model presented here
is valid only for fully turbulent flows. However, while
viscous effects on the energy-containing turbulent motions
are negligible throughout most of the flow, the no-slip
condition at a solid interface always ensures that, in the

vicinity of a wall, viscous effects will be influential.
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Although the thickness of this viscous-affected zone is
usually two or more orders of magnitude smaller than the
overall width of the flow, its effects extend over the whole
flow field since, typically, fifty percent of the velocity
change from the wall to the free stream occurs in this
region. |

Generally, there are two approaches for handling the
wall-proximity regions in numerical methods for computing
turbulent flows: the ‘wall-function’ approach and the low-
Reynolds number modeling approach (Ref. 55). The former
has several advantages: (a) it is more economical, (b) it
allows the introduction of empirical information into the
formulation, (c) it produces relatively accurate results
with fewer grid points within the viscous sublayer compared
with the low-Reynolds number approach, and (d) it requires
evaluation of the wall effects only in the computational
cells next to the wall. For these reasons, it was selected
to utilize the ‘wall function’ approach in conjunction with
the kfe turbulence model of the present study.

The ‘wall-function’ method provides algebraic relations
for near-wall grid points which must be located sufficiently
far from the neighboring walls that they lie within the
’logarithmic’ layer, where the viscous effects are entirely
overwhelmed by the turbulent ones. Wall-function relations
for a given variable relate its local value to the wall
fluxes and/or the local values of other variables. These

relations are derived in order to reproduce, identically,
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the full implications of the logarithmic profiles. The
assumption that uniform shear stress prevails in the region
between the wall and its immediate nearby grid_point is made
on the basis that generation and diséipation of turbulence
energy are locally in balance.

The variation of velocity in:the_fully turbulent region
of the wall layer is ébrreléted by the universal velocity

profile (Ref. 55):
U* = (1/x) 1n(EY*) ' ’ (3.14)
where the dimensionless quantities U" and Y* are given by:

U = Ug/U, = U/ (T./p)"? (3.15)

Y* = pUY./p = p(7./p)**Y/ (3.16)

In the above relations, U, is the total time-averaged
velocity parallel to the wall at‘fhe near-wall grid point P,
U, is the friction velocity,#w is the uniform total wall
shear stress in the direction of U,, and Y, is the positive
normal distance fromfthe'wali to the point P, as shown in
Figure 4. The Von Karman constant, k, is assigned the value
0.42 while the éonstant E, which is a function of the wall
roughness, is assigned the value 9.0 for a smooth wall.

In the uniform near-wall shear layer, the generation
and dissipation of turbulence energy are in balance, and so
U, and Y* are related to the local values of k by solving
the k-transport equation with the convection and diffusion

terms omitted, resulting in:
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U, = C, k> ' (3.17)

Y* = pY,C. %K%/ (3.18)

Substitution of Equations (3.17) and (3.18) into
Equation (3.14) yields~the necessary wall function for the

resultant wall shear'streés, which is given by:
T, = =UxpC /'K M/10(EYspC K2 /M) (3.19)

where the negative sign is inserted since 7, and U, must

have opposite signs.

Horizontal Wall

The total tangential velocity near a horizontal wall is

given by:
Us = (U + wp2)Y? ) (3.20)

while the resultant tahqéntiél wall shear stress, 7,, and

its component 7, are given by{

Ty = (To + Tp%)*? o (3.21)

Trx = Moee(0U/0r + 0V/0X) (3.22)

However, in the vicinity of a horizontal Wall, ov/ox
approaches zero. Thus, 7, is the required wall function
for p..(du/dr) obtained by multipiyihg T, by cos(0), where

0 = arctan (w./u;); the result is:

Heee (QU/0r) = —UpkpC,/*k:*?/1n(EY,pC. /K™% /1) (3.23)
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Similarly, the wall function for u..(dw/dr) is obtained

by multiplying 7, by sin(0), resulting in:

Heee (OW/0T) = [~kpC./*kK.*?/1In(EY,pC " Kk 2 /1)

Fthore/T JWe (3.24)

As 0v/0x approaches zero near a horizontal wall, the
vorticity, w, approaches -du/dr. Hence, the required wall

function for v is obtained from Equation (3.23) as:
Meee®p = UK pC,Y*Kp2/1n(EYepC,r*Kp'/2 /1) (3.25)

Equation (3.25) is used as the effective boundary condition
for ® near a horizontal wall.
The turbulence generation term, G,, can also be shown

to reduce to:
Gk=2ueff[(g—§)2+(g—;’)z+(¥)2] b Iy ueff(g—:)z (3.26)
Vertical Wall

Wall functions along a vertical wall are similarly

formulated. The total tangential velocity is now:
Uy = (V2 + w2)? (3.27)

and the resultant tangential wall shear stress, 7,, and its

component 7,, become:

Tw = (‘rxr2 + Tx02)1/2 (3.28)

Ter = Heee(OU/0r + 9V/0X) (3.29)
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However, du/dr approaches zero near a vertical wall. Hence,
T.. 1S the required wall function for p..(dv/dx), obtained by
multiplying 7, by cos(8), where 0 = arctan(w,/v:); the

result is:
Bess (OV/OX) = =VokpC,*K.*2/1n(EY,pC,*/*K.*? /1) (3.30)

Similarly, the wall functioh for p..(0w/dx) is obtained

by multiplying 7, by sin(0), resulting in:
Beee (3W/8X) = -WkpC/*k?/1n(EY,pC, k2 /p) (3.31)

Again, as Jdu/dr approaches zero near a vertical wall,
the vorticity, ®, approaches avyax. Hence, the required

wall function for o is obtained fromJﬁquation (3.30) as:
Mere@s = —VekpC,2/*K,>2/1N(EY,pC, >k, 2 /1) (3.32)

This equation is used as the effective boundary condition
for o near a vertical wall.
The turbulence genération’term, Gx, can also be shown

to reduce to:
Gy = zueff[(g‘:{})z‘*'v(glr,‘)z"'(%)z} +ﬂ—§;+ ueff(%g-';)z (3.33)
Sloping Wall

Provision for wall inclination is included by taking
into account the wall and flow angles in determining the
resultant velocity, which is assumed to be parallel to the

wall (Ref. 3); it is given by:
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U, = [(uw® + v,°)cos?(B - 6,) + w,*]"? (3.34)

where the wall angle 6, = arctan(dY/dx), and the flow angle
0 = arctan(v,/u,). The resultant wall shear stress can then
be evaluated from Equation (3.19) using the above expression

for U,, and the turbulence generation term, G,, reduces to:

o

- () () )T 55 (3.35)

Other Details

From the balance of generation and dissipation of
turbulence kinetic energy, and with the assumption that the
near-wall length scale varies linearly with the normal

distance from the wall, it can be shown that:
€ = C2*%K.>?/(kY,) ' (3.36)

This equation is used to fix values of € at near-wall grid
points. As for the gquantity kp,littis evaluated from the
regular k-transport equation with ﬁhe assumption that the
local rate of production of tﬁrbulence is balanced by the‘

viscous dissipation rate.
The Pressure Recovery Equations

' The purpose of introducing vorticity was to allow the
time-mean pressure, P, to be eliminated from the equations.
However, once the solution has been obtained, the pressure
distribution may be recovered using one of several available

approaches (Ref. 7). Here, the time-averaged equations for
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the conservation of axial and radial momentum are rearranged

into the form:

%g = P,(u,v,w,X,r) (3.37)
g% = P,(u,v,w,x,r) , (3.38)

Then, a spatial—marching integration is propagated along the
coordinate directions (using Equation (3.14) along the axial
direction or Equation (3.15) along the radiél direction) and
continued until all desired valués are obtained. It should
be noted here that this approaéh requires prior knowledge of
the pressure at éne location only (typically at the inlet);
and the integration is initiated using first-order forward
differences followed by central-difference approximations

once two values of P‘becqme available.
Closure

This chapter has presented the mathematical and
physical model employed in the ;alculation of axisymmetric
incompressible turbulent swirling flows. The time-averaged
equations which govern the conservation of mass and momentum
have been given in stream function-vorticity Qariable form.
A two-equation (k-€) turbulence model has been introduced
which closes the system of equations; The model involves
solution of two additional equations for the transport of
turbulence kinetic energy, k, and its rate of dissipation,

€. Wall-functions have been described for the treatment of
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near-wall regions, together with appropriate modifications
to account for the effect of swirl and wall inclination.
Finally, two PDEs for the recovery of pressure have been

described.



CHAPTER IV
NUMERICAL SOLUTION PROCEDURE
Introduction

In Chapter 3; the PDEs (partial differential equations)
which govern axisymmetric incohpreésible turbulent swirling
flows were introduced. The primary task in this chapter is
to derive a generél solution procedure for these equations,
so as to attain the local values of the flowfield variables
at all positions within the flow domain. 4

The solution procedure is a finite difference one, in
which the governing PDEs are)replaced by a set of algebraic
FDEs (finite difference equations)xusing upwind differences
for the convection terms ahd’centeréd differences for the
diffusion terms. The relevént FDEs are derived at points of
a general nonorthogonal mesh“co&ering an irregular domain,
using three different interpolation.profiles.

The steady-state equation is solved using the Gauss-
Siedel point iteration method with overrelaxation, and the
time-dependent equations are solved via an explicit time-
marching technique. Convergence and stability implications
are discussed together with factors which may.influence the

overall accuracy and economy of the predictions.

34
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The Grid System

Figure 2 illustrates a nonorthogonal mesh covering a
typical domain in 2-D axisymmetric cylindrical coordinates
(x,r), in which solution of the governing PDEs is sought.
The ’‘vertical’ gridlines (I =1, 2, ...) are indeed vertical
and nonuniformly spaced to cover the desired x-range, Xg..-
The ‘horizontal’ gridlines (J =1, 2, ...) are skewed with
respect to the x-axis, and the radial locations of the grid
points are obtained at each x; by dividing the specified
vertical domain height, r,.,;, in some predetermined manner
(perhaps uniformly, or gradually expanding or contracting).
This is in essence an algebraic mesh generation technique,
which is handled in a methodical way via the normalizing

transformation relations:

E = x/xmax . (4‘1)

Y/Cpax,s (4.2)

=3
I

where £ and n are the normalized coordinates, which are

easily obtainable for any given flow domain boundary.
The Finite Difference Equations
Preliminaries

Figure 3 illustrates a typical point P in the domain of
integration together with the eight neighboring points (in
compass notation) arrayed on a nonorthogonal grid in the x-r

plane. Notice that all the small distances are available at
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once from the x and r coordinates of the grid points. 1In
particular, Ax. and Ax, represent horizontal distances from
P to the next east and west vertical grid lines, and Ar, and
Ar, represent vertical distances from P to its immediate
north and south neighbors. The figure also displays the
horizontal line (dashed) which locates the projected points
E’ and W’/ to the east and west of P, respectively.

If the grid lines through P were in fact horizontal,
then E and W would coincide with E’ and W/ and the usual
nonuniform rectangular grid FDE would result connecting the
value of ¢ at P to its prevailing values at N, S, E, and W.
However, in the case of the nonorthogonal grid of Figure 3,

the following formula results:
a’%p. = T a‘%p; + (S%p, + S%) (4.3)

where the sum is over N, S, E’ and W/, the a“’s are the so-
called coupling coefficients, S% and S¥ are the linearized
source term coefficients, and a% = T a®,. Here, p values at
E’ and W' must be known prior to using Equation (4.3) in an
iterative solution scheme. Hence, it is required to assume
a profile for the variation of ¢ with r, from which these
values can be interpolated.

In the present work, consideration is given to three

different interpolation profiles (Refs. 74 and 75):

1. Zeroth-order profile, where ¢ is assumed to have a

uniform distribution with r over the east and west
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surfaces of the integration cell, represented by
its values at E and W, respectively.

2. First-order profile, where ¢ is assumed to have a
linear variation with r over the east and west
surfaces of the integration cell. This permits
the value of ¢ at E’ to be ekpressed as a linear
combination of its values at NE and E, or E and SE
depending on the slope of gridline EP. Similarly,
the value of ¢ at W/ can be expressed as a linear
combination of its values at NW and W, or W and SW
depending on the slope of gridline PW.

3. Second-order profile, where p is assumed to have a
quadratic variation with r over the east and west
surfaces of the integration cell. This permits
the value of ¢ at E’ to be expressed as a linear
combination of its values at NE, E, and SE, and
the value of p at W’/ to be expressed as a linear

combination of its values at NW, W, and SW.

In this way, an FDE can be formulated connecting the
value of @ at P directly to its values at the eight nearby
points; the coupling coefficients remain geometry dependent
and so can be found once and for all at the outset; and the
FDE maintains its initial form and can be solved effectively
using standard iterative techniques.

It is of course a simple matter to formulate a general
FDE for the conservative form of the governing PDEs as given

in Equation (3.4). However, for reasons which will become
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apparent as we proceed, the formulation is carried out for

the following variant of Equation (3.4):

b [Setee) + u So(p0) + v S(p0)]

g - Hee )]s e

This equation differs only in the way the convective
terms are presented, and can be’obtained by subtracting ¢
times the continuity. equation from the left-hand-side of

Equation (3.4).

The Interpolation Schemes

Figure 3 illustrates a typical point P in the domain of
integration together with the eight neighboring points (in
compass notation) arrayed on a nonorthogonal grid in the x-r
plane. The values of ¢ at the projected points E’ and W’/
may be expressed as linear éohbinations of values at nearby

points through:
Ve jue = 2 L™y } (4.5)

where the sum is ovef NE, E; and SE for E’, and over NW, W,
and SW for W’. The L@g's are the nth-order fundamental
Lagrange polynomials, also known as the cardinal functions
for polynomial interpolation, which forﬁ a dual basis for
the linear functionals of point evaluation. These are

given by:



L, =0
L, =1
L =0
Ly = 0
L, =1
L = 0

if r. 2 rg,
L(l)NE = (rs
L(l)s = (Trp

L(l)SE =0

else if r,
LY, = 0
LW, = (1,

LW = (rs

if r. 2 ry,
L(l)nw = (rp
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else if r,
LY, = 0
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L(l)sw = (r,
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for the zeroth-order interpolation profile, or by
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(4.6)
(4.7)
(4.8)
(4.9)
(4.10)

(4.11)

(4.12)
(4.13)

(4.14)

(4.15)
(4.16)

(4.17)

(4.18)
(4.19)

(4.20)

(4.21)
(4.22)

(4.23)
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for the first-order interpolation profile, or by:

L = [(Xp = Ye) (¥e = ¥ee) /[ (Tue = Te) (Tye = Tee) ] (4.24)
L®g = [(Yp= Tye) (Ye = Tee) 1/[(Te = Tye) (Te = Tee) ] (4.25)
L®gp = [(TYe = Yye) (Ye = Te)1/[(Tse = Tye) (Tse = ) ] (4.26)
L = [(To = Tu) (Fe = Faw) 1/[ (Fuw = Fu) (Fw = Taw) ] (4.27)
L™, = [(Te= Tyw) (Tp = Tau) 1/ (Xu = Laa) (Tu = Tau) ] (4.28)

L= [(Yes ~ Ym) (Yo = Tu) 1/[(Tow = Tau) (Fsw = Tu) ] (4.29)

for the second¥qrder interpolation profile. Notice that
both the linear and quadratic functions would reduce to
their expected values of zero and unity should the grid

distribution be rectangular indeed.
The Convection Terms

These are evaluated using the upwind differencing

scheme, giving:

Jo _ ©s _B: _ By

Uax © Iu"l[BeAxe+Bwa,, Ax, Ax, ] (4.30).
oy _ s _Be . B

Vov ™ 'V"I[ B Ar +B_Ar. Ar, Ar. ] (4.31)

The values of the coefficients B,, 8,, B,, and B, are related

to the directions of the velocities at point P according to:

u > 0: B, =0, B, =1 (4.32)
u, < 0: B,=1, B, =0 . , (4.33)
Ve > 0: B,=0, B, =1 (4.34)
Ve < 0: B,=1, B, =0 (4.35)
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Using the interpolation functions given in Equations
(4.6) trough (4.29), the net convective contributions to the

overall coupling coefficients become:

Cue = BL™y|up| /8%, / (4.36)
C, = BL™, |u,|/Ax, ‘ | (4.37)
Cor = BL™g|u,| /A%, . ' (4.38)
Cww = B.L™w|up| /A%, W , (4.39)
., = B,L™, |up| /A%, ‘ (4.40)
Cow = BWL“"swlupl/;&Xw o B (4.41)
Cx = B,|V.|/Ar, , (4.42)
Cs = B.|V,|/Ar, - (4.43)
Co = Co/L™, + Co/L™, + Cu + C (4.44)

The Diffusion terms

These are evaluated in the usual central difference

fashion, giving:

2r,

r R - (e ) () e+ (5 ) £ ) o

+ [(rpfiixp)(rpgjzr?) +(rpA)2<rApxp (P = )] Pe F4 .45)

£ 52l gl = (ke ) () o + (r’Z*"’J"A"r,,) ) e
) ()]

o [{ gt (53 (3

> )] e (4.46)

r.Ar Ar. rPAr Ar.

Using the interpolation functions given in Equations
(4.6) trough (4.29), the net diffusive contributions to the

overall coupling coefficients become:
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D = (g ) (25 ) 7 | (4.47)
b = () (27 ) B (4.48)
Dax = (pr ‘pr)(m'zm) L% (4.49)
Do = (Emi ) (25 ) L% o (4.50)
b = (e ) (723) L‘%”w, | (4.51)
Dew = (e ) (7257) L‘;"sw S (4.52)
oo = (sdede ) (F5) (4.53)
b = (srde) () (4.54)
Dp = Dg/L™, + Dy/L™, + Dy + D, (4.55)

The Source Terms

These are handled via the source term linearization

technique, giving:
S° = S, + S% (4.56)

The specific expressions for S° are given in Table I, and
expressions for S°, and S are decided according to the

stability criterion presented in the following section.

The Time-Dependent FDE

Amalgamation of the expressions for the convective,
diffusive, and source terms, together with an explicit time-

dependent term, yields the following FDE for o, w, k, and e€:
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p(0e’= @) /At = Z(pCy+D;)@y = (pCotDy)@p + (S%upetS%) (4.57)

where the sum is’over all eight neighboring points, and the
prime indicates values at the new time level, t + At. If
the second bracketed term on the right-hand-side of Equation
(4.57) is denoted by'RPp/Af, then the féllowing formula

results:
©:' = @ + Re(@o,0 = @) + AL(S%p: + S%)/p ‘ (4.58)

where Yoo is the steady state expression for ¢, obtained
from Equation (4.57)‘by omitting -both the time-derivative
and the source term. In this way, it is readily seen that
values of R, less than or equal to unity form a sufficient
condition for stability provided that the source terms are
carefully handled.

The approach adopted here to guarantee this condition
involves calculating a new At at each time step, sﬁch that
Ry maxy Which is invariably posifive, is kept smaller than or
equal to unity, and any opéosiﬁg effect resulting from a
negative source term is ﬁullified by treating it implicitly.
Following these guidelines, the update formula can be cast

into its final form:

@' = [Wp + Re(We,0 = ) + AtS%/p1/[1 - AtS”P/p] (4.59)

where SY, is allowed to have only negative coefficients.
Notice that Equation (4.59) offers the added advantage of

being easily adaptable to a vectorized solution technique
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(Jacobi-type iterations) should the computations be carried

out on a parallel-processing computer.

The Steady-State FDE

According to Equation (4.4) and Table I, the FDE for ¢
is a specific case éf Eqpation (4.57), in which the time-
derivative And the convective terms are set to zero and the
diffusion coefficient, P°;»is set to unity. fﬁis results in

the following FDE:
Doy = 2 Dj"’j~+ [SWP¢P+ S’U] (4.60)

where the sum is over all eight neighboring points. This
equation can be effectively solved using standard iterative
techniques. However, a certain degree of overrelaxationlmay
be empioyed in order to promote convergence rates. This can

be handled directly via:
Yo = (1 =-f) ¢ + £2 [Dy/Dpl¥y + £ [S":¥: + SVU]/DP, (4.61)

where f is the overrelaxation factor normally taken between
1 and 2. In the present work, a value of 1.5 seemed to be
appropriate for all the:cases investigafed. However, this
is not necessarily the optimal value, which can only be

determined by exploratory computations.
Boundary and Initial Conditions

Before the mathematical problem can be regarded as

complete, it is necessary to provide additional relations
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which embody the boundary conditions of the problem. Since
the governing PDEs are elliptic, their solution is a strong
function of the boundary conditions and utilization of the
correct values is, therefore, crucial in order to mimic the
experimental flowfield correctly.

Boundary conditions are generall§ classified according

to whether the value of a varlable (Dlrlchlet boundary) or

the value of 1ts gradient (Neumann boundary) is prescribed.

Inflow Boundary

At the inlet, the distributioné of mean velocities and
the turbulence quantities are stipulated to correspond to
experimental data whenever possible. The stream function
and vorticity profiles are then deduced from the specified
velocity distribution using Equatipns (3.1) through (3.3).

In the absence of data pertaining to inlet turbulence
quantities, the turbulence intensity is specified as some
fraction of the axial velocity an& the dissipation rate is
estimated using the standard length scale assumption of 3

percent of the inlet diameter.

Axis of Symmetry

At the centerline, the time-mean radial and tangential
velocities, the stream function, and the vorticity are set
to zero whereas the gradient of all other variables is set
to zero. An exception to this has been proposed by Lilley

(Ref. 63), in which the swirl velocity is given an implied
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zero value assuming that solid-body rotation is operative at
the centerline. The near-centerline node is then assigned a
value by linear interpolation between its north neighbor and

the centerline zero value.

Ooutflow Boundary

In most cases, there ié a lack of information about the
distribution of the flowfield variables along this boundary.
Here, the axial gradient of the stream function is assigned
a zero value (i.e., éero radial velocity) while the radial
gradient is subject:to continuity constraints. The other
variables are assumed to be sufficiently smooth to allow
outlet values to be determined by linear extrapolation from

nodes immediately upstream.

No-Slip Wall

Along a no-slip boundary, the stream function is given

a constant value while the three velocity components are set
to zero. As for vorticity, it is estimated from a second-
order approximation to Equation (4.4), with the assumption
that gradients parallel to the wall are negligible compared
to those in the normal direction.

" These conditions are valid for laminar flow cases only.
Turbulent flows require additional relations which provide
linkages for the velocity components, the vorticity, and the

turbulence parameters in the ’‘logarithmic’ region near the
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wall to their intrinsic wall values. A complete discussion

concerning this issue has been presented in Chapter 3.

Initial Conditions

To be able to initiate the numerical computations, it
is necessary to specify initiallvaLues for all the dependent
variables concerned. During the‘courée of this work, it has
been found that any crude approximation can be made provided
that it does not critically viqlate continuity and boundary
conditions. However, initial values that are-closer to the
final solution would, of course;‘lead to faster convergence.
Therefore, if a series of parametric calculations is to be
carried out, it would be beneficial to use the solution of a

previous calculation as the initial estimate for a new one.
The Calculation Sequence

At this point, the mathematical problem can be regarded
as complete. It remains now to outline the general solution

procedure.

1. Specify input parameters such as flow geometry,
boundary conditions, mesh size; etc.

2. Calculate and store frequently use@ geometric
coefficients.

3. Specify initial va}ues for all the dependent

variables at t = 0.
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4. Calculate the coupling coefficients according to
Equations (4.30) through (4.55). Note that these
are identical for all five equations.

5. Determine new values of ® along the no-slip solid
boundary.

6. Solve the vorticity transport equation for o at
each interior point at the new time level using
Equation (4.59).

7. Iterate for new values of ¢ at all interior points
using Equation (4.61).

8. Solve the swirl equation for new values of w at
each interior point at the new time level using
Equation (4.59).

9. Solve the k and € equations for new values of
turbulence properties at each interior point at
the new time level using Equation (4.59).

10. Calculate the velociﬁy components u and v using
Equations (3.1) and (3.2).

11. Calculate a new time-step, At, to satisfy the
stability constraint.

12. Return to Step (4) and repeat the process until

convergence is reached.

The calculation procedure has been embodied in a newly
developed computer code, which has been employed in all the
computations presented in this thesis. The computer code is
a general and flexible one and can be easily applied to a

wide range of practical flow problems.
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Convergence and Accuracy

The time-marching solution procedure is said to have
converged when the sum of the absolute residuals becomes
smaller than a reference value. This value is chosen on the
basis that the felative change in the value of the dependent
variable ¢ between two successive steps at any point P does
not exceed 0.01%. This has proven ;o<be sufficient for all
the cases considered here.

It should be further noted that,whiie the uniform and
linear interpolaéion schemes are botn‘bounded, the quadratic
scheme, which is presumably more accurate, involves negati&e
coefficients that may or may not cause divergence problems.
Therefore, the superiority of a‘certain scheme is a function
of the given problem and can only be asserted by exploratory

computations.
Closure

This chapter has presented the numerical solution
procedure in which the go§ernind PDEs have been replaced by
a set of algebraic FDEs, using upwind differences for the
convection terms and centered differences for the diffusion
terms. The relevant FDEs have been derived at points of a
nonorthogonal mesh covering an irregularly-shaped domain,
using three different interpolation profiles. The solution
technique involved a point Gauss-Siedel method with over-
relaxation for the steady-state equation, and an explicit

time-marching method for the time-dependent equations.
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Convergence and stability implications have been discussed
together with factors which may influence the accuracy and

economy of the solution.



CHAPTER V
‘ MODEL EVALUATION
Introduction

The purpose of this chapter is to assess the predictive
capability of the computer model via compérison of predicted
results with available experimental data for six data cases
of varying degrees of complexity. Laminar cases are used to
confirm numerical accuracy, and turbulent cases are examined
to establish the workability of the solution procedure in
complex flow situations.

The specific test céses were selected from the general
literature on the basis of their completeness, availability
of tabular results, accuracy of the instrumentation, and
complexity of the enclosure geometry. A summary of the
selected cases is provided in Table II, and a schematic
illustration of the test chambers and inlet geometries\is

shown in Figure 5.
Preliminary Assessment

Prior to applying the computer model to practical flow
situations, it is essential to make an impartial comparison
(based on idealized test cases) between the newly developed

grid technique and the conventional stair-step approach for

51
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handling irregularly-shaped boundaries. For this purpose,
consider the 2-D field problem shown in Eigure 6, which is
governed by Laplace’s equation in both cartesian (x,y) and
axisymmetric (x,r) coordinates. The exact solution is:

_  sin (ym/H)
© = Yo gin (2L7/H)

sinh [w(2L -fX)/H] (6.1)

for cartesian coordinates, with boundary conditions ¢ = 0 on
the north, south, and east boundaries and ¢ = ¢, sin (yw/H)
on the west boundary; it is:

B sinh [2.4048 (2L - x)/H]
¢ = % —"g5inh [2.4048 (2L)/H]

Jo [2.4045 r/H] (6.2)

for axisymmetric coordinates, with boundary conditions ¢ = 0
on the north and east boundaries;‘aw/ar % 0 on the south
axisymmetric boundary, and ¢ = p,J, (2.4048 r/H) on the west
boundary, where J, is the zeroth-order Bessel function of
the first kind. ‘

The test section for which predictions were made and
compared with the analytiﬁlsolution is shown in Figure 7.
The newly introduced boundaries were given values éccording
to Equations (6.1) and (6.2). Results were obtained for
four different H/L values: 0.5, 1.0, 2.0, and 4.0; these
correspond to top-wall angles of 14.0, 26.6, 45.0, and 63.4
degrees, respectively. Moreoﬁer, grid-size dependency was
established by solﬁingﬂthe relevant FDEs for each H/L value
using three different mesh sizes: 11 x 6 (coarse), 21 x 11

(intermediate), and 31 x 16 (fine). Here, the first value
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represents the number of I-gridlines while the second value
represents the number of J-gridlines. The I-gridlines are
spaced uniformly and, for each x, the grid spacing in the y-
direction is also uniform. |

The average absolute errors and error percentages are
given in Taﬁles IIT and IV, respggtively, for the cartesian
problem. As the grid size is refiﬁed,’accuracy is expected
to improve. This was thé case with the quadragic scheme
(one order of maénitude improvement), only slightly with the
stair-step approach (a factor of twé), but definitely not
the case with the uniform and linear schemes.

The skewness attained by increasing the value of H/L is
seen to reduce accuracy significantly with the uniform and
linear schemes (a factor of 10 a;d 20, respectively). Only
a factor of four is seen with the stair-step approach, but
the quadratic scheme shows no(such effect at all.

For a given skewness and a‘giQen grid density, the
choice of methods may be compared. For example, for the 45
degree north boundary (H/L = 2) and the intermediate grid
density (21)x 11), the qguadratic scheme is better than the
stair-step approach by é factor of 20 while it is better
than the other schemes by about two orders of magnitude.

Tables V and VI show cprresponding evidence for the
accuracy of the interpolation methods for the axisymmetric
problem. Again, the same trends as described with Tables

IIT and IV are observed.
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For a given set of I-gridlines, as more and more J-
gridlines are used in a nonorthogonal manner, points E’ and
W’ (see Figure 3) become outside the bounds of the compact
nine-point computational cell. Thus, the ‘interpolation’
schemes are in féct forced to extrapolate. To study the
trade-off between reduced truncation error ﬁwith finer mesh)
and extrapolation required to obtain ¢ vaiues at E’/ and W/,
a check was made with the number of J-gridiines increased
for fixed H/L values.

The results are shown in Tables VII and VIII for the
cartesian and axisymmetric problems. Notice that results
only for the intermediate grid (with refihed number of J-
gridlines) of the quadratic scheme, and H/L values of 0.5
and 1.0 are given for ease of interpretation of the general
trends. It is surprising that in general the error reduces
and that the greater grid density more than offsets the

greater extrapolation.’

Test Case 1 (Bentz)

The Physical Flow

This test case corresponds fo the hemodynamic flow in a
stenotic region (see Figure 5a) studied by Bentz (Ref. 76).
fhe stenosis is modelled by a bell-shaped constriction in a
long circular tube, accordipg to the following profile for
the top-wall radius R as a fﬁnction of axial position and

initial tube diameter:
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R(x)/D, = 0.5 - 0.25 exp[-16(x/D,)?] (6.3)

where D, is the tube diameter far from the constriction and
X 1s the axial distance from the narrowest cross-section in
the tube. The test section has a length of 34 tube radii,

with x/D, ranging from -5 to 12. The constriction reduces

the original tube area by a factor’of-four, with the major

region of reduced area occupyiné the zone from xX/D, = =0.7

to 0.7.

LDV measurepents of axial velocities were taken at
several measuring.stations upstream from, within, and
downstream from the constriction, for values of Reynolds
number (based on inlet mean flow velocity and‘diameter)

ranging from 2 to 200.

The Computations

Because the upstream influence of the constriction by
way of pressure is insignifiégnt in this test case, it was
sufficient to begin the coﬁputations at the axial location
x/D, = -2. The outflow boundary was located at x/D, = 8.
Fully-developed laminar tube ﬁlow (Hagen-Poiseuille) was
assumed at the inlet, which is in\good agreement with the
measured data, and inlet conditions for ¢y and o were then
deduced as described in Chapter 4.

Predictions have been made with the quadratic scheme
for Reynolds numbers (based on inlet‘aﬁerage ﬁelocity and

diameter) of 2, 57, and 167, using a 51 x 16 coarse mesh and
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a 101 x 31 fine mesh, with rectangular grid except in the
region of constriction.

Comparisons of predicted axial velocity profiles (non-
dimensionalized b& the average inlet velocity) for the three
Reynolds numbers in question, along with their corresponding
measured data, are shown in Figures 8 through 11. The
predictions are clearly mesh-size independent and display
good agreement with the measured data as Ean‘be seen in
Figures 9 through 11. The reciréulation zone, the throat
velocities, and the downstream deQelopment of the velocity
profile (leading to a parabolic profile near the exit) are
all predicted with,K reasonable accuracy.

Figure 8 shows a comparisonlof the predicted centerline
velocities for the three Reynolds numbers considered. These
conform reasonably well with their measured counterparts.
Examination of these profiles reveals that at the narrowest
cross-section (x/D, = 0); the maximum velocity decreases as
Reynolds number increases,jwhiqh is indicative of flatter
throat profiles at larger Reypolds’numbers. Downstream from
the throat (x/D, > 0), it can be seen that the flow recovers
very quickly for the lowest Reynolds number; however, this
recovery is much slower for the éﬁo higher values indicating
the presence of a near-wall recirculation zone.

Figures 9 through 11 show comparisons of predicted and
measured radial profiles of the axial velocity. at several
axial locations. For Re, = 2, Figure 9 reveals no regions

of flow recirculation; however, the profiles at the axial
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locations x/D, = 0.2 and 0.325 indicate. the presence of
adverse pressure gradients near the tube wall, but are
apparently too weak to reverse the flow.

For Re, = 57 and 167, Figures 10 and 11 display reverse
flow regions which extend a distancefdf about 0.1D, from the
tube wall. The predicted location of reattachment as a
function of Reynolds number is presented in Figure 12, and
comparisons with measured Qalues were not possible due to
the lack of suffiqient experimental data.

Further exploratory computationgirevealed that the
reverse flow region begins to develop as Reynolds number
approaches 10. At Reynolds numbers larger than 50, the
vorticity field becomes significantly altered; the peak
values of boundary vorticity near the throat are seen to
spfead downstream and negative wall values begin to appear
during the expansion indicatingjthe presence of a reverse
flow zone. As Reynolds number is progressively increased, .
the peak wall vorticity value‘and the separation point move
slightly upstream from the throat while the reattachment

point moves farther downstream.

Test Case 2 (Bornstein & Escudier)

The Physical Flow

This test case designates the laminar water experiment
of Bornstein and Escudier (Ref. 42). Here, a single inlet
- stream flows through a radial inflow vane swirler with 32

adjustable guide vanes, into an expanded test chamber (see
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Figure 5b). The inlet diameter is 0.04 m. The expansion
chamber has a diameter of 0.055 m, and is 0.43 m long.
Inlet velocity profiles were not collected, and LDV
measurements of axial and swirl velocities wére taken at a
selection of downstream measuring stations for an inlet

Reynolds number of 612 and a swirl number of 0.337.

The Computations

Although the initiation of the calculation domain at
the first downstream measuring station is feasible, it was
felt that the lack of any experimental data concerning the
radial velocities in this region of flowfield expansion,
where gradients are evolving rapidly, might be detrimental
to the predictions. Therefore, the calculation domain was
bounded on the upstream end by the chamber expansion plane,
and the inlet profiles were shaped from the measured axial
and swirl velocities at the first measuring station.

Predicted axial and swirl velocity profiles (non-
dimensionalized by the average inlet velocity), along with
corresponding experimental data, are shown in Figures 13
through 15 for a 44 x 56 rectangular mesh.

Analysis of the experimental axial velocity profiles
(see Figure 14) displays a very complex recirculation zone
structure near the centerline. The reverse flow region is
displaced from the symmetry axis, and adjoined by forward

flow along the centerline.
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Examination of the predicted axial velocity profiles
(see Figures 13 and 14; solid lines) discloses the formation
of a small central recirculation zone at the axial location
x/D. = 0.5. However, the measured data shows this zone to
form at the axial location x/D. = 0.35 in a much more abrupt
manner than the computations can simulate. The predicted
size and strength of this recirculation zone also display
very poor agreement with their measured counterparts.

The experimental swirl velocities display a double hump
near the outside edge of the recirculation zone as can be
seen in Figure 15. The corresponding predicted profiles
(see Figure 15; solid lines) are unable to simulate this
behavior and their peaks are substantially larger in
magnitude over most of the recirculation zone.

In an effort to understand this lack of agreement, a
parallel prediction was made with a 65 x 83 fine mesh. The
results (not shown) were very similar to those of the 44 x
56 mesh, which seems to indicate that the predictions are
independent of the grid size.

This leaves boundary conditions as one of few remaining
possible sources of error which should be further examined.
To accomplish this, predictions were made using different
wall vorticity formulas and different inlet profiles. While
changes to wall vorticity calculations failed to produce any
meaningful improvements, the predictions displayed a large
sensitivity to variations in the inlet profiles as can be

seen in Figures 13 through 15.
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This case has been also predicted by Sloan (Ref. 61)
using primitive-variable formulation. His predictions are
qualitatively very similar to the present ones. The large
disparity between the calculations and measurements may be

attributed to the lack of adequate inlet profiles.

Test Case 3 (Deshpande & Giddens)

The Physical Flow

This case refers to the turbulent flow,occurring in a
modelled arterial stenosis (see Figure 5a) investigated by
Deshpande and Giddens (Ref. 77). The stenosis is modelled
by a bell-shaped constriction in a long circular tube. The
constriction is described by the following equation for the
top-wall radius R as a function of axial position and

initial tube radius:
R(X)/D, = 0.5 - 0.125 [1 + cos(z7/2) ] (6.4)

where D, is the tube diameter far from the constriction and
x is the axial distance from the narrowest cross-section in
the tube. The test section has a length of 15 tube radii,
with x/D, ranging from -2 to 5.5. The constriction reduces
the original tube area by a factor of four, with the major
region of reduced area occupying the zone from x/D, = -1
to 1.

LDV measurements of time-mean axial velocities and RMS
turbulence velocities were collected at several measuring

stations upstream from, within, and downstream from the
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constriction, for values of Reynolds number (based on the
mean flow velocity and diameter at the inlet) ranging from

5000 to 15000.

The Computations

The calculation domainiwésftaken to be 6 tube diameters
in length, with x/D, ranging from -2 to 4. Inlet velocities
were shaped from‘the measured time-mean profiie:at the axial
location x/D, = -2, which matches the fuily deyeloﬁed power-
law profile. 1Inlet turbulence intensities were also shaped
from measured RMS velocities while the characteristic length
scale of turbulence (needed for estimation of inlet energy
dissipation rates) was taken to be 3 percent of the inlet
diameter. ‘

Predictions have been made with the quadratic scheme
for a Reynolds number of 15000‘(bésed on the inlet average
velocity and diametér) using a 91 x 31 mesh, with uniform
rectangular grid except in the region of reduced area.

Comparisons of prédicted time-mean axial velocity
profiles (non-dimensionalized by the bulk inlet velocity),
along with their corresponding measured data, are shown in
Figures 16 and 17. |

Figure 16 shows the variatioﬂ of centerline velocity
with the axial distance x/D,. The maximum deviation from
the measured profile is seen tosoccur at x/D, = 0, with an

overprediction of about 8 percent.



Il

62

Considering Figure 17, the predicted time-mean axial
velocity profile at the entrance plane to the constriction
(x/D, = =1) is very close to that at x/D, = -2, as indicated
by the measured data as well. A brisk acceleration in the

converging séctign is demonstrated by the results for x/D, =

-0.5, and a rather blunt (plug-like) profile is seen at the

throat. Interestingly, the measured maximqm fhroat velocity
does not occur at the centerline but occurs hear the wall.
This is not the casé with the predictions;‘ |

Flow recirculation is distinctly apparenf in the
profiles from x/DOQQ'O.S to 2, with predicted negative
velocities as high és 40 percent of the average inlet
velocify, correspondingvto measured’values of about 50
percent. (

Figure 18 shows the 1oc§tionvbf flow reattachment as a
function of Reynolds number. ,Tﬁe predicted value for the
Reynolds number in question is x/D, = 2.15, corresponding to
a measured value of about 2.é; It ‘can also be seen from the
Figure that this value is indépendenf of Reynolds number in
the range of 5000 to 15000.‘ finally, examination of the
downstream profiles reflects a gradual return toward the

upstream conditions.
Test Case 4 (Yoon & Lilley)

The Physical Flow

This test case refers to the work of Yoon and Lilley

(Ref. 47). A single air stream enters the test section
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through a secondary annulus, passing through an adjustable
vane swirler en route (see Figure 5c). The swirl generator
is reminiscent of a pfopeller, with the central hub (0.0373
m diameter) functioning as a blocked-off primary tube. The
exit plane of the swirler is’positiqned 0.032 m upstream of
the 90 degreetexpansion block. The- 0.1492 m inside-diameter
secondary annulué_expands in£04a 1.5 m ioné #gst‘chamber,
whose inside diametér is 0.2984 m.

Five-hole pitot probe measurements of time-méan axial,
radial, and swirl velocities were taken at the start of the
expansion and at several downstream measuring stations. The
measurements were taken for five different vane angles of 0,
38, 45, 60, and 70 degrees (0 degree vane angle refers to a
non-swirling flow case with the_éwirl generator and central
hub removed). The corresponding average inlet veleities

are 15.7, 10.5, 12.6, 8.84, and 5.57 m/s, respectively.

The Computations

In this test case, the nbh%Swifling flow study was
considered, and is p;esented as a preface to the succeeding
case. The swiri generator_ahd centrél hﬁb were reﬁoved,
providing an essentially uniform axial velocity profile at
the inlet. The inlet turbulence intensity was taken to be 4
percent of the average velocity, whereas the characteristic
length scale of turbﬁlence (needéd for estimation of energy
dissipation rates) was taken to be 3 percent of the chamber

diameter.
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Predictions have been made using a 46 x 31 mesh with
uniform rectangular grid. Comparisons of predicted time-
mean axial velocities (non-dimensionalized by the average
inlet velocity), along with corresponding measured data,
are shown in Figure 19.

The predicted axial_veloéitieb.folléw the experimental
trends very closelyﬂ However, they failvto métch the data
points precisely because the integrated experimental mass
flow rates vary by as much as 25 percent from the value at
the inlet. |

The predicted corner fecirpulation zone extends to the
axial location x/D, = '2.125 (a distance of 8.5 step sizes),
with a maximum width of 0.19D, océurri;g near the expansion
plane. The measured recirculation zone extends to just
beyond x/D. = 2.0, with a maximum width of 0.17D, occurring
near the inlet as well. The predicted maximum reverse flow
velocity is approximate1§ 20 pefcent of the average inlet
velocity, corresponding to‘é“@easured value of about 16
percent. This case has beén:élsolpredictéd by Abujelala and
Lilley (Ref. 78), and Sloan (Ref. 61) using a primitive-
variable code. Their comﬁutatiéns ére qhalitativefy very

similar to the present ones.
Test Case 5 (Yoon & Lilley)

The Physical Flow

This case refers to the swirling flow system studied by

Yoon and Lilley (Ref. 47), which is an extension of case 4.
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Here, the air stream enters the expansion chamber through a
secondary annulus, passing through a 38 degree vane angle
swirler en route. The flow conditions and rig geometry are

as described in case 4 and Figure 5c.

i

The Computations

The calcu}étions were initiated’at the expansion plane
with inlet velocity profiles shaped_ffom the measured data.
The inlet turbulence“inyénsiﬁy*wéé takeﬁ to be 12 percent of
the average inlet velocity, and the charé¢teristic length
scale of turbuleﬁée wés taken to“be 3 percent of the chamber
diameter. |

Predicted time-mean axial and swirl velocitiés (non-
dimensionalized by the average inlet velocity), along with
corresponding experimental data, are shown in’Figures 20
through 22, for a 46 x 31 rectangular grid.

Examination of Figures 20 _shows a reasonablé agreement
between the measured and brédicted velocities along the axis
of symmetry. However, the calculations demonstrate that the
axial velocity recovers and pfégresses to uniformity at a
much faster rate than that displayed by the measurements.

It is apparent from Figure 21 that the predictions also

fail to reproduce the size and strength of the experimental

- recirculation zone. The experimental profiles maintain the

recirculation zone farther downstream, and are skewed toward
the wall relative to the predictions. The predictions decay

to uniform axial velocity profiles, whereas the experimental
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recirculation zone remains tangible even at the farthest
downstream location. Figure 22 displays that the predicted
swirl velocity also decays to a forced vortex (solid-body
rotation) profile, whereas the experimental data maintain a
combined vortex distribution.

In an effort to explain the lack of agreement between
the predictioné and meéSurements;Athe following issues . were
further examinéd: (a) effect of choice\df iﬁiét conditions
on the predictibhs, (b) effect of choice éf‘parameters in
the k-¢ turbulenée model and its accuracy.in swirling flows,
and (c) correctness of the implementation of the swirl
equation.

Recalling the predictions of case 2, it is apparent
from Figures 13 through 15 that any slight variation in
inlet conditions would have a significant influence on the
resultant flowfield. For example, Figure 13 demonstrates
the effect of varying the inlét swirl and axial velocities
on the formation of the recirculation zone; and Figure 14
shows the effect of inlet swifl velocity on the downstream
axial veiocity profiles. It is clear that the recirculation
zone, which is presenf in the‘casés of uniform swirl aﬁd
combined vortex, is replaced by a forward flow region with
axial velocities that match their peak values at each cross-
section. The radial location‘of the maximum axial velocity
is also shown to be a strong function of the inlet swirl

profile.
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As for the effect of choice of parameters in the k-e¢
turbulence and its accuracy in swirling flows, studies by
other researchers, see for example Sloan (Ref. 61) and
Abujelala and Lilley (Ref. 72), illustrate how k-€e model
modifications have been utilized to effect more accurate
predictions. Some of the inaccuracies in eddy-viscosity
models, such as the k-¢ model, arise from\the assumption
of isotropy, and swirling flows are highly anisotropic as
has been confirmed experimentally, see for example Owen
(Ref. 43).

Correctness of the implementation of the swirl equation
was examined through a comparative study between the present
predictions, previous predictions by Sloan (Ref. 61), and
the experimental data. Tables IX and X give a summary of
the rate of decay of maximum axial and swirl velocities,
respectively. The predictions are qualitatively similar,
and manifest a similar lack of agreement with the measured
data. However, the measuredidatg exhibit inconsistencies in
mass flow rates (up to 50 pgréent error in cross-section
calculations downstream versus at the inlet) and axial flux
of angular momentum (up to 20 percent error). This may have
been due to poor probe sensitivity in turbulent flow, and
nonaxisymmetry of the flow. Additionally, these prediction
studies suffer from inadequacies in the turbulence models

used.
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Test Case 6 (Weber et al.)

The Physical Flow

This test case refers to the highly confined swirling
flow systenm studiediby ﬁeber et al. ngf. 54). The fldw
configuration conSisté of a solid-body vortex generator, a
20 degree angle burner quari; and a cyiindrical furnace (see
Figure 5d). The honéycomb swirl generator and the geometry
of the rig were designed in suéh a way that the air flow had
negligible radial velocity downstream from the gene?ator.
The fﬁrnace diameter D, is 0.44Am,1and is- 2.5 m long. The
confinement ratio D,/A is 2.3, the quarl expansionﬂratio B/A
is 2.0, and the furnace to quarl:oﬁtlét diameter ratio D./B
is 1.15. The axial locations of the entrance and exit of
the quarl are x/D, = 0.341 and x/D, = 0.938, respectively.

The average inlet veléciﬁy is 4.8 m/s, and the inlet
vortex of low turbulence (1%) has ‘a solid-body rotation and
its swirl number is 0.75. LDV measurements of time-mean
axial and tanéential velocities,ytogether with their normal
stresses, were taken at the inlet to the quarl and at many

downstream measuring stations.

The Computations

The calculations were initiated at the entrance to the
quarl (x/D, = 0.341), which coincides with the location of
the first measuring station, and terminated at x/D, = 5.0.

The inlet velocity profiles and turbulence intensities were
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shaped from the measured data, whereas the characteristic
length scale of turbulence was assumed to be 10 percent of
the inlet diameter.

Predicted time-mean axial and swirl velocities (non-
dimensionalized byithé ééerage inlet vglocity), along with
corresponding experiméntal déta,aare\shown‘in Fiéures 23
through 25, for a 91 x 24 méSh and quédfatic intgrpolation.

A comparison of ;he predicted and measufgd centerline
velocity is shown iﬁ,Figure 23. Again, as with case 5, the
predicted recovery‘of the axial velocity-occurS‘at a much
faster rate than ;hat displayed by the‘measuremepts. Thus,
the size and strengtﬁ‘bf the centr;l recirculation zone are
underpredicted. |

Considering the axial velocity profiles of Figure 24,
it‘can be seen that the first stagnation point is properly
predicted. However,vat thé quarl exit, the prediéted radial
displacement of the zero stréamline is roughly 50 percent of
the measured value. HenCe,;the rafe‘with which the vortex
loses its energy is too high and, consequently, the position
of maximum reverse flow is predicted inside the quarl rather
than in the furnace. - Thg calcﬁlaﬁed maximum revefse flow
velocity is 25 percent‘of thé average inlet velocity. This
corresponds to a measured value of about 44 percent, which
is skewed toward the wall relative to the predictions.

As for the swirl velocity diéfribution,rfigure 25
displays how the inlet forced-vortex is transformed into a

combined-vortex near the axial location x/D, = 1.7. It is
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also apparent here that the surplus of tangential momentum

near the centerline in the quarl results in negative axial

velocities that are larger in magnitude than their measured
counterparts.

This test case has been alsq predicted by Weber et al.
(Ref. 54) usiﬁg primitive-variable formulation and different
turbulence models. Their predictions with the k-¢ model are
quélitatively very similar to the present ones and manifest
a similar lack of agreement with the measurements, which may

be attributed to poor k-e turbulence modei performance.
Closure

This chapter has presented an extensive evaluation of
the numerical solution procedure. Computations made for a
2-D field problem confirmed the superiority of the quadratic
interpolation scheme over the standard stair-step approach.
Predictions of laminar and turbulent recirculating flows
were found to be in reasonable agreement with corresponding
measurements. However, predicfions of turbulent swirling
flows displayed a rapid decay (relative to the measurements)
of the swirl velocity toward solid-body rotation, and failed
to capture the experimental size and strength of the central

recirculation zone.



CHAPTER VI
CONCLUDING REMARKS ‘
Summary and Conclusions

Prior to case description and anglysis, a review was
provided of numerical methods in fluids and heat transfer,
and experimental and theoretical investigations of elliptic
swirling flows, in which the effects of incremental changes
in swirl strength, flow rates, and confinement geometries
were analyzed. To a large extent, existing computational
methods are capable of qualitatively capturing the expected
trends and characteristics. However, many of these methods
require prohibitively fine grids in order to satisfactorily
represent irregularly-shaped boundaries. As a Consequence,
their application is limited to simple flow geometries. It
was, therefore, the purpose of the present computer modeling
effort to develop and evaluate a new differencing technique,
which resolves the fundamental problem of irreéular boundary
representation, and leads to accurate results on moderate
grids.

A summary of the main achievements of the present study
and the conclusions thereof are presented in the following

tabulation.

71
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A boundary-fitted nonorthogonial grid technique
has been developed and successfully applied to a
stream function-vorticity simulatioﬁ of axisym-
metfic incbmpressible furbqlené swirling flows.
Thé grid%technique"employs a compact nine-point
computational céll, and ig‘ééméatible with SOLA-
and TEACH-typé co&és; The“formﬁlatibn has been
presénted for displaéed,vlinear, and quadratic"
interpolation functions. | |

A vorticity wall function has been formulated for
the treatment of turbulent near-wall flows.
Comparisons between predipﬁions and analytic
solutions of 2-D field préblems demonstrated the
superiority of- the quadratic interpolation scheme
over the displaced écheme, the linegr scheme, and
the standard stair;stép approach.

Predictions of laminar and turbulent recirculat;ng
flows were found tp}bé in reasonable agreement
with available experimental data.

Reliable predictions of»glliptic swirliﬁg flows
were Heavily dependent‘&pon the availability of
accurate and complete inletuqonditions; computed
results exhibited considerable sensitivity to the
inlet profiles as well és the axial ;ocation at
which the compﬁtations were initiated.

The performance of the k-¢ turbulence model for

swirling flows was generally poor in the vicinity
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of the CTRZ. In the recovery region, it performed
satisfactorily for the time-mean axial velocity;
however, it displayed a rapid decay of the swirl
velocity to a forced-vortex profile.

Convergence difficulties weré encountered with the
quadratic scheme when exfrapolation resulted as a
consequence of the grid arrangement. This problem
was circumvented by generat}ng the grid in a way
such that interpolation is always guaranteed.
Flowfield predictions exhibited large sensitivity
to the manner in which vorticity at a protruding
corner was calculated. It was observed that when
the stream-wise gradient of the stream function
was used for its calculation, the computations
failed to capture the corner recirculation zone.
However, calculations based on the cross-stream
gradient were found to resolve this problem and

compare well with experimental data.

Recommendations for Future Work

'

The present investigation has disclosed some areas

which warrant further research in order to enhance the

predictive capabilities of the current computer model.

These are presented in the tabulation below.

l.

~

Since all of the data cases considered here are
categorized as elliptic recirculating flows, which

are characterized by large cross-stream gradients
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and velocity-to-gridline angles, it is recommended
to replace the upwind scheme with a transportive
scheme which preserves the directional properties
exhibitea by the fluid transport phenomena. The
SUDS (Skew  Upwind Differencing Scheme) and QUDS
(Quadrﬁtic Upstrgam Differencing Scheme) are two
recommended candidates‘for initial evaluation.
Both“have been proven to be more aqcuraﬁe than the
upwind scheme, and fit eaéilyfwith;n the framework
of the present grid techpiéué."

More experimental measuremenfs with swirl should
be sought.v In particular,'ﬁore reliable inlet
conditions are required for experimenfs to be of
sufficient caliber for turbulence and swirl model
evaluation.

The present study has demonstrated that the k-e
turbulence model does not adequately represent the
structure of turbulence‘when applied to confined
swirling flows. ’Promihént amongst its limitations
are the poof prediction of the size and. strength
of the recirculation zone,‘and the inabiiity to
reproduce the observed combined free and forced
vortex distributions. This may be partly due to
the isotropic nature of the k-e¢ pgrbulence model.
Higher-order closure models, in which the stress
components are obtained directly from solution of

their modelled partial differential equations,
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have been receqtly reported to overcome some of
these limitations. Thus, It is suggested that a
higher-order turbulence model, such as the ASM or

RSM, be considered for future implementation.
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TABLE I

COEFFICIENTS AND SOURCE TERMS USED IN THE GOVERNING
'EQUATIONS FOR THE GENERAL VARIABLE ¢

85
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The turbulence generation term, G,, and the turbulence model

constants are as given in Chapter 3.
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TABLE II

SELECTED TEST CASES

Case : " Flow ' Properties

No. Author(s) Fluid  Type - _Measured - Swirl

1 Bentz - Water Laminar u No

2 Bornstein & Water Laminar  u, w ! Yes
Escudier ,

3 Deshpande & Water Turbulent' u, u’ No
Giddens

4 Yoon &  Air Turbulent u, v, w No
Lilley ’

5 Yoon & Air Turbulent u, v, w Yes
Lilley ‘

6 Weber et al. Air Turbulent u, w, u’ Yes




TABLE III
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AVERAGE ABSOLUTE ERROR FOR 2-D FIELD PROBLEM
’ IN CARTESIAN COORDINATES

Grid Stair- ‘ :
H/L Density Steps Displaced = Linear Quadratic
11 x 6 0.228 - 0.343 0.267 0.277
0.5 21 x 11 0.224 0.307  0.365 0.063
31 x 16 0.171 0.305 K 0.372 0.027
11 x 6 0.801 0.996 2.021 0.195
1.0 21 x 11 0.489 0.930 1.827 0.043
31 x 16 0.347 0.904 1.754 0.018
11 x 6 1.245 2.365 5.340 0.175
2.0 21 x 11 0.702 - 2.251 4.678 0.040
31 x 16 0.490 2.186 - 4,466 0.017
11 x 6 1.472 4.000 8.110 0.240
4.0 21 x 11 0.798 3.935 7.063 0.056
31 x 16 0.550 3.844 6.736 0.024




TABLE IV
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AVERAGE ABSOLUTE ERROR PERCENTAGE FOR 2-D FIELD
PROBLEM IN CARTESIAN COORDINATES

Grid ‘Stair- : .
H/L Density Steps Displaced . Linear Quadratic
11 x 6 1.638 5.994 3.311 4.234
0.5 21 x 11 1.961 3.674 4,944 0.980
31 x 16 . 1.652 3.349 5.164 0.409
11 X 6 2.657 5.045 10.434 1.216
1.0 21 x 11 1.955 4.549 10.005 0.286
31 x 16 1.488 4.433 9.792 0.121
11 x 6 2.515 6.390 . 14.373 0.555
2.0 21 x 11 1.627 6.382 13.286 0.139
31 x 16 1.210 6.319 12.909 0.060
11 % 6 2.367 7.826 15.794 0.521
4.0 21 x 11 1.473 8.814 14.420 - 0.132
31 x 16 1.082 8.167 13.963 0.057




TABLE V
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AVERAGE ABSOLUTE ERROR FOR 2-D FIELD PROBLEM

IN AXISYMMETRIC COQRDINATES

Grid Stairf L L .
H/L Density Steps  Displaced Linear Quadratic
11 x 6 0.400 - 0.736 ©0.018 0.192
0.5 21 x 11 0.275 0.852 0.112 0.044
31 x 16 0.197‘ 0.858 ‘ 0.131 0.091
11 x 6 6.927 2.044 , , 0.661 0.087
1.0 21 x 11 0.556 2.064 0.661 0.019
31 x 16 0.379 2.037 " 0.650 0.008
11 X 6 1.052 2.755 = 1.575 0.038
2.0 21 x 11 0.699 2.759 1.480 0.009°
31 x 16 0.458 2.728. 1.439 0.004
11 x 6 0.963 2.512 1.919 0.065
4.0 21 x 11 .0.707 . 2.707 1.849 0.017
31 x 16 0.449 2.699 1.812 0.008
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TABLE VI

AVERAGE ABSOLUTE ERROR PERCENTAGE FOR 2-D FIELD
PROBLEM IN AXISYMMETRIC COORDINATES

Grid Stair-

H/L Density —° Steps Displaced Linear Quadratic
11 x 6 - 3.829 7.221 1.116 1.817

0.5 21 x 11 2.018 8.275 1.132 0.419
31 x 16 2.750 ' 8.340 2.635 0.318
11 x 6 2.750 8.490 : 2.635 0.318

1.0 21 x 11 . 2.685" 8.779. 2.656 0.072
31 x 16 1.917 8.726 2.619 0.029
11 x 6 2.949 7.061 3.626 - 0.096

2.0 21 x 11 2.282 7.358 3.442 0.024
31 x 16 1.609 7.353 - 3.359 0.011
11 x 6 2.530 5.347 3.583 0.142

4.0 21 x 11 2.095 . 6.283 3.469 0.038
31 x

16 1.463 6.355 3.408 0.018

TABLE VII

AVERAGE ABSOLUTE ERROR{FOR DIFFERENT DEGREES
OF EXTRAPOLATION USING THE
QUADRATIC SCHEME

Grid
H/L Density " Cartesian Axisymmetric
21 x 11 0.063 0.044
0.5 21 x 31 0.037" 0.026
21 x 61 0.032 0.021
21 x 11 0.043 i 0.019
1.0 21 x 31 0.013 " 0.007
21 x 61 0.014 0.005




TABLE VIII
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AVERAGE ABSOLUTE ERROR PERCENTAGES FOR DIFFERENT
DEGREES OF EXTRAPOLATION USING THE
QUADRATIC SCHEME

Grid L
H/L Density Cartesian Axisymmetric

21 x 11 0.980 0.419
0.5 21 x 31 0.549 0.245

21 x 61 0.376 0.149

21 x 11 0.286 0.072
1.0 21 x 31 0.080 0.029

21 x 61 | 0.185 - 0.018

TABLE IX
COMPARISON OF THE RATE OF DECAY OF MAXIMUM
AXIAL VELOCITY Umax/Uin FOR CASE 5
Present Sloan (Ref. 61) Yoon & Lilley
x/D, Study k-e LPS Rich. No. ASM (Ref. 47)
0.5 0.90 0.85 " 0.60 0.75 0.98
1.0 0.43 0.38 0.40 0.47 0.58
1.5 0.29 0.29 0.29 0.29 0.30
2.0 0.26 0.26 0.26 0.26 0.27
TABLE X
COMPARISON OF THE RATE OF DECAY OF MAXIMUM
SWIRL VELOCITY Wmax/Uin FOR CASE 5
Present Sloan (Ref. 61) Yoon & Lilley

x/D, Study k-e LPS Rich. No. ASM (Ref. 47)
0.5 0.48 0.46 0.42 0.32 © 0.30
1.0 0.35 0.40 0.40 0.40 0.48
1.5 0.32 0.37 0.35 0.37 0.52
2.0 0.30 0.35 0.35 0.35 0.51
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Figure 1. A Schematic Illustration of the Type of
Flows Considered
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(a) Cases 1 and 3 [Bentz, Ref. 76; Deshpande &
Giddens, Ref. 77]

Figure 5. Schematic Illustration of Test Cases
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