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CHAPTER I 

INTRODUCTION 

'Preamble 
' 

The efficient design and development of practical flow 
~ 

equipment requires careful characterization and optimization 

of very complicated fluid mechanical and ~hysical/chemical 

processes. These entail vortex motion, turbulence, chemical 

reaction, droplet and pa~ticle motion, multi-phase behavior, 

etc. Traditional design procedures have been forced to rely 

extensively on experiments, an approach if utilized to the 

exclusion of available analytical or computational methods, 

would soon prove both costly and incapable of assimilating 

the immense amount of design ,information. As a consequence, 

computer modeling is becoming increasingly more attractive 
' -

as a complementary tool to assist in preliminary screening 

of design ideas, and diagnoslng,and solving,development 

problems (Refs. 1 through 8). 

To be reliably utilized, the computer model should 

simulate the flow in all its important respects (boundary 

conditions, turbulence, flow geometry, etc.); and provide a 

means whereby the governing equations may be solved cheaply 

and accurately. The governing equations are nonlinear and 

must be solved simultaneously. Similarity between them and 

1 



their diffusional relations allows them to be cast in a 

common form and solved in a similar manner. 

Several computer mo~els have emerged in recent years 

based on these principles, each having its strengths and 

weaknesses. The basic differences between them include: 

the closure of the turbulence-model, the location-of the 

variables in the computational grid,, the discretization 

scheme, and the solution·technique. _ 

Typically, they are axisymmetric a~d involve,pressure­

velocity (primitive-variab1e) or stream function-vorticity 
' ' 

formulation. Turbulence is usually simulated by way of a 

two-equation model,.and more recently using second moment 

closure. The finite difference ~quations are obtained from 

a Taylor series expansion about nodal points, or a control 

volume approach using·a staggered grid system. Solution 

techniques vary from the' simple point Gauss-Siedel method 

to the more efficient line-by-line SIMPLE (semi-implicit 

method for pressure linked e~uati'ons) method for steady­

state problems, with corresponding explicit and SIMPLE 

methods for associated transiant problems. 

The Problem 

The present study is concerned with the prediction of 

axisymmetric incompressible turbulent swirling ~lowfields, 

using stream function-vorticity formulation. A schematic 

illustration of a typical flowfield is shown in Figure 1. 

The sudden enlargement creates a CRZ (corner recirculation 

2 



zone) whose size and shape are controlled by the expansion 

ratio and any other factor,which manipulates the pressure 

gradient. 

The introduction of swirl induces pressure fields to ' 

3 

balance centrifugal,forces, and the decay of swirl caused by 

shear and mixing sets up adverse pressure gradients. The 
I J ~~ 

radial profile of th~ time-mean axial velocity depends on 

the degree of swirl imparted to the_ flo~. For weak swirl, 

the profile remains gaussian in form w~~h its,maximum along 

the jet axis. For strong swirl, the forces prompted by the 

adverse pressure gradients could exceed the forward kinetic 

forces of the flow and result in flow recirculati'on near the 

centerline. An inlet quarl aids the swirling jet to follow 

the slope of the wall, thus promoting streamtube divergence, 

intensifying the central recirc~lation zone, and reducing 

the degree of swirl required to achieve a certain level of 

recirculation. The degree of swirl imparted to the flow is 

characterized by a swirl number, which represents the ratio 

of the axial flux of tangential momentum.and the axial flux 

of axial momentum. 

Calculation of such flows is very difficult. They _are 

bounded by irregularly-shaped boundaries, and exhibit flow 

rotation, large velocity gradients, and strong streamline 

curvatures. As a result, turbulence modeling and numerical 

problems play a critical role i~ thelr analysis. 

Leaving aside the impediments of turbulence modeling,_ 

it is clear that present calculation methods based on the 
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finite difference approach suffer from ,two key weaknesses: 

(a) they lack flexibility with respect to irregularly-shaped 

boundaries for the calculation domain, and (b) they require 

excessively fine grids to control numerical diffusion. 

Generally, flow domains are discretized to fit the 

coordinate system, which requires that a rectangular grid 
I< , , , ' 

(un1form or nonun1form) and a sta1r-step approach be used 

to represent irregular boundaries. The use of stair-steps 

has a number of implications. ·First, boundary distances are 

always distorted. Thus, irrespective of physical modeling 

and numerical accuracy, calculation of near-wall properties 

can never be correct. Second, adequate representation of 

the geometry bounding the flow usually requires an enormous 
' 

amount of computer storage. Ther~fore, mesh refining to 

control numerical diffusion is not possible, and the 

calculated flowfield may be influenced incorrectly by the 

geometric representation. 

To circumvent this problem, coordinate transformation 

methods have been used in or~hogonal or nonorthogonal ways, 

and implemented via analytical and/or numerical techniques. 

Although they resolve the fundamental problem of irregular-

boundary representation, transformation methods exhibit 

geometrically-induced errors resulting from failure to 

satisfy certain consistency conditions. 

Clearly, more realistic approaches are possible in the 

interest of accuracy, but it is not clear to what extent 



penalties will emerge in terms of conceptual simplicity, 

universality, and additional computer time and storage. 

Objectives 

5 

The principal objectives of the present study are to 

develop, implement, and evaluate a theoretical/computational 

model for predicting incompressible turbulent swirling flows 

in domains typical of industrial furnaces and gas turbines. 

The study focuses on the fundamental nonorthogonal grid 

coverage of an axisymmetric flow domain with irregular 

boundaries, and involves incorporating swirl and turbulence 

effects into a stream function-vorticity simulation. 

Model evaluation is accomplished via application to 

experimental data cases of varying degrees of complexity. 

Laminar cases are used to confirm numerical accuracy, and 

turbulent cases are examined to establish the workability 

of the solution procedure in complex flow situations. 

The solution procedure, which is embodied in a newly 

developed computer code, en~ails the following features: 

1. Stream function-vorticity variables 

2. Time-dependant calculations 

3. Two-equation (k-€) turbulence _model 

4. swirl velocity calculations 

5. Rectangular andjor non-rectangular grid 

6. Displaced, linear, and quadratic interpolation 

7. Generalized boundaries 

8. Adaptive stability scheme 



The simulation is restricted to isothermal incompressible 

flows and axisymmetric cylindrical coordinates. 

outline of the Thesis 

In Chapter II, a review of the literature is presented 

which focuses on those works whicp represent highlights in 

the development of the subject, and which served as a guide 

in the development of the present work. 

The mathematicalJand physical m0del are presented in 

Chapter III while the numerical solution procedure is 

described in Chapter IV. 
' ' 

The predictive capability of·the computer model is 

6 

assessed in Chapter V; and Chapter VI recapitulates the main 

conclusions of the study, and outlines recommendations for 

future work. 



CHAPTER II 

LITERATURE REVIEW AND ANALYSIS 

Introduction. 

In this chapter, a review of the literature is 

presented so as to connect the present work with previous 

contributions. It is not the intention here to present an 

exhaustive review; r~ther it is chosen to concentrate on 

those works which represent highlights in the development of 

the subject, and which served as a 'guide in the development 

of the present work. The chapter. is divided into two major 

sections. The first section is devoted to the presentation 

of recent advances in numerical methods relative to fluid 

flow and heat transfer computations; and the second section 

is aimed at reviewing releva~t experimental and theoretical 

investigations of turbulent swirling flows. 

Numerical Methods in Fluids and 

Heat Transfer 

Discretization Schemes 

The finite difference analog of the governing equations 

is obtained by overlaying a computational mesh on the flow 

domain, and obtaining the appropriate finite difference 

7 



equations for every node using a discr~tization scheme. 

Accuracy of the discretization scheme can generally be 

judged from the order of the terms of an equivalent Taylor 

Series that have been retained in the expansion. However, 

accuracy and stability represent conflicting requirements 

with respect to these terms. 

8 

Attempts to discretize the convective terms using the 

central differencing scheme (CDS) failed to produce wiggle­

free solutions for high Reynolds number flows (Refs. 5 and 

6). The Hybrid and upwind differencing schemes (HDS and 

UDS), which are based on a purely one-dimensional flux 

balance, were found to eliminate these wiggles, and perform 

well in the regions where the flow is aligned with the grid 

lines and convection is balanced primarily by stream-wise 

diffusion rather than cross-str~am diffusion or sources. 

However, if such idealized conditions are not encountered, 

the locally one-dimensional assumption gives rise to severe 

truncation errors, known as numerical false diffusion 1 ':which 

may become so dominant as to obscure the effects of physical 

diffusion on the flow. These shortcomings have led to the 

development of improved schemes which attempt to account for 

the effect of flow-to-grid skewness, the lateral transport, 

and the presence of sources. 

The locally analytic differencing scheme (Ref. 9), 

known as LOADS, takes into account the influence of the 

lateral transport and source terms. The computational cell 

involves five points, the coupling coefficients are always 



positive, and the algebraic equations are diagonally 

dominant. However, source terms are calculated explicitly 

and may lead to convergence difficulties, especially if the 

equations are strongly coupled. 

9 

The linear flux-spline scheme (Ref. 10) ~ccounts for 

sources and lateral ,transport ~y ~ssuming a piecewise-linear 

variation for the total flux. In principal, it is similar 

to LOADS, both in its properties and computational details, 

but varies only in the manner in which the source terms are 

introduced. 

The skew-upwind differencing scheme .(Ref. 11), known as 

SUDS, is only formally first-order accurate but produces a 

significant reduction in numerical diffusion by accounting 

for the flow-to-grid skewness. Here the convective flux is 

obtained by employing upwind differencing along streamlines 

which are defined by the velocity direction. It emplqys a 

compact nine-point computational cell, and is conservative 

but conditionally stable. 

The quadratic upstream ~ifferencing scheme (Ref. 12), 

known as QUDS, utilizes upstream-shifted quadratics and is 

free of any second-order n~meri~al diffusion. It employs a 

sparse nine-point computational cell, and is conservative 

but conditionally stable. 

The controlled numerical diffusion with internal feed 

back scheme (Ref. 13), known as ,CONDIF, is a variant of the 

central differencing scheme (CDS). It eliminates the 

wiggles by explicitly introducing a controlled amount of 
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numerical diffusion based on the local qradients. The 

computational cell involves only five points. The coupling 

coefficients are nonlinear, since they involve the gradient 

of the dependent variable and must be recalculated with each 

iteration. 

In several st'udies (e.g. , Refs. 14 through 2 3) , these 
l 

improved schemes,· among several others, have been proven to 

produce signi_ficantly more accurate results than the simple 

first-order upwind scheme . .. 

Representation of Geometry 

Present finite difference calculation methods lack 

flexibility with respect to irregularly-shaped boundaries 

for the computational domain. Typically, the physical 

domain is discretized to fit th~ coordinate system, which 

requires that a rectangular grid (uniform or nonuniform) 

and a stair-step approach be used to represent irregular 

boundaries. 

The use of stair-steps .has a number of implications. 

First, boundary distances are always distorted. Hence, 

irrespective of physical modeling and numerical accuracy, 

calculation of near-wall properties can never be correct. 

Second, appropriate representation of the geometry bounding 

the flow to be calculated usually requires a large amount of 
-

computer storage. c~nsequently, mesh refining to control 

numerical diffusion is not possible, and the calculated 



flowfield may be influenced incorrectly by the geometric 

representation. 

To circumvent this problem, alternate approaches have 

been proposed which use coordinate transformation methods 

in orthogonal or nonorthogonal ways, and,~mplemented via 

analytical or.~umeri6al teQhniques: (Refs. 24 through 27). 
' ' 

Although they resolve the fundam~ntal problem associated 
< 

with irregular boundaries 1 transformation methods often 

exhibit-errors resulting from failure to s~tisfy certain 

consistency conditions. 

11 

Moreover, An orthogonal mesh may become unsuitable'for 

calculations near sharp corner~, since the grid distribution 

tends to be sparse. ·As a consequence, large mesh densities 

must be tolerated elsewhere to achieve corner calculations 

with acceptable accur~cy~ 

Solution Technigues 

The algebraic equations following the discretization of 

the governing equations,are ~sua~ly coupled and nonlinear. 

Sequential solution methods (Refs. 5 and 6) are currently 
.,_ 

very popular because of their simplicity ~nd low computer 
- ' 

storage requirements. However, if the inter-equation 

coupling is strong, these methods exhibit severely poor 

convergence rates •. 

Alternate methods in which all the variables are 

simultaneously updated have been proposed. These include 

coupled point Gauss-Siedel and line Gauss-Siedel methods 
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(Refs. 5 and 6). Direct solution methQds of the mass and 

momentum transport equations have also been proposed (Refs. 

28 and 29), but these require excessively large computer 

storage. 

Iterative methods, such as the Gauss-Siedel point and 
' ' ' 

Gauss-Siedel line ~ethods, are kriow~ to converge rapidly for 
' ' ' 

' ' 

the first few itera~~ons b~t very slowly,the~eafter. That 

is, they are very effective in smoothing out erro,rs of wave 

length comparab~e to the grid,spac~ng, but are very slow in 

diminishing the low~frequency ones (Ref. 30). Thus, as the 
' -

grid is refined, the increasing d,ominance of low-frequency 

errors results in excess~vely large computatio~al efforts. 
' ' 

In order to all~viate this problem, multigrid solution 

techniques have been proposed (Refs. 30 through 33), which 

employ a hierarchy of grids Gk, k .= 1, 2, 3, •.• M, with the 
' ' 

mesh spacing such that ?-k+1 = 'hJ2. When the convergence 

rate on the fine grid becomes slo~, the multigrid method 

switches to a coarser grid, ~here the low-freque~cy errors 

are more effectively removed.- The solution on the fine grid 

is then corrected to reflect the removal of these errors. 

Turbulent Swirling Flows 

General Features 

Swirling flows (Ref. 1) result f'rom application of a 

tangential velocity component being imparted to the flow by 

use of a swirl generator positioned upstr~am from the 

reactor or expansion chamber. Various modes of generation 
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have been utilized to accomplish this task: tangential 

entry swirler, guide vanes, multi-annular swirler, rotating 

honeycomb, and high speed pipe rotation. Obviously, several 

structural and geometrical perturbations may exist for'each 

mode with their accompanying disparities in efficiencies and 

resultant velocity_profiles. 

Swirl velocity profi~es generally assume a combination 

of free and forced vortex .distribution. The time-mean swirl 

velocity distribution must go to zero' at-the· centerline as 

well as at the enclosure wall. The inner field tends to be 

solid-body rotation (i.e., for~ed vortex), and the outer 

field develops towards a state of constant angular momentum 

or a free vortex (Refs. 34 and 42). 

In an isothermal or inert jet, swirl acts to enhance 

the rate of jet groWth, entrainment, and mean velocity decay 

relative to a nonswirling jet (Refs. 1 and 2). As swirl is 

progressively increased, pressure fields are induced to 
' 

balance centrifugal forces and the decay of swirl caused by 

shear and mixing with th~ ~ur~oundi~g fluid sets up adverse 

pressure gradients. 

The radial ·profile of the time-averaged axial velocity 

depends on the degree of swirl imparted to the flow. For 

weak swirl, the profile remains gaus.sian in form with its 

maximum along the jet axis. For strong swirl, th~ forces 

prompted by the adverse pressure gradients could transcend 

the forward kinetic forces of the flow and result in flow 

reversal or vortex breakdown. 
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In a reacting flowfield, the primary use of the swirl­

induced CTRZ (central toroidal recirculation zone) is to 

promote flame stabilization and control pollutants e~ission. 

Flame retention requi~es that the flame velocity matches or 

exceeds the forward flow velocity, and that sufficient heat 
' ' ' 

is _imparted _fqr stable igniti~n. · I.n ,hon'swirling flowfields, 
" 

the stabilization mechanism is usually controlled by a wall 
' ' 

boundary layer, ·an expansion ch~mber, or a mechanical flame 

holder. However, in swirling flbwfields, the combination of 

swirl velocity distribution, fu~nace geometry, and air/fuel 

ratios produce a number of CTRZ configurations which provide 

the necessary mecha_nism for better mixin'g,, flame retention, 

and emission control. 

Experimental Work 

It is not surprising that the significant number of 

experimental studies of swirling ~lows have produced a broad' 

diversity of parametric e~fec:ts ',and observations. Differing 

swirl generators, inlet and chamber geometries, flow rates 

and fuels, all produce details and differences which may not 

be easily resolved. Nevertheless, ~t is the purpose of t~is 

review section to depict common threads among the cases that 

have been observed. 

owen (Ref. 43) measured time-avera9ed characteristics 

in the initial mixing region'of free and confined coaxial 

air jets with and without swirl. He indicated that there 

were substantial large-scale contributions to the total RMS 



15 

turbulent velocity field from inlet swirl. These large­

scale fluctuations resulted in significant deviations from 

isotropy over most of the initial mixing region, indicative 

of the inadequacy of turbulence models based on the local 

equilibrium principles in representing the physics of such 

flows. The data also displayed that the recirculated mass 

flux and the size of the CTRZ are significantly larger in 

confined conditions than in free expansion. 

Habib and Whitelaw (Refs. 44 ·and 45) investigated the 

velocity characteristics of confined coaxial jets with and 

without swirl. They measured the time-mean axial velocity 

and the RMS axial velocity fluctuations. The measurements 

indicated that larger annulus to center jet velocity ratios 

produce lager CTRZs and higher turbulence intensities. An 

increase in inlet swirl was also observed to increase the 

size of the CTRZ. 

Vu and Gouldin (Ref. 46) investigated the flowfield 

characteristics of a model swirl combustor under co- and 

counter-swirl conditions, without chamber expansion. They 

measured time-averaged velocities, turbulence intensities, 

and turbulent stresses. They noted that the secondary jet 

swirl has a prominent influence on the formation of the 

CTRZ, and that high levels of turbulence fluctuations and 

dissipation rates characterized the central flow region for 

both co- and counter-swirl conditions. 

Yoon and Lilley (Ref. 47) investigated the mean flow 

characteristics of turbulent swirling jets in suddenly and 
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gradually expanding chambers. The primary concern of their 

study was to characterize flows of this type in terms of the 

effects of sidewall angle, swirl strength, inlet turbulence 

intensity, and expansion ratio on the resulting flowfield. 

They reported that the presence of swirl ~hprtens the CRZ 

and generates a CTRZ followed by a p~ecessing vortex core. 

An increase in swirl" was f,ound to,· at least initially, 

expand the CTRZ in width and length, and a further-increase 
' ' 

caused the length to decrease with significant increase in 

width. 

A gradually expanding inlet was .found to cause the 

swirling jet to follow the slope of the wall. This had the 

effect of augmenting the central adverse pressure gradients, 

intensifying the recirculated mass flux, and decreasing the 

degree of swirl necessary to achieve a particular level of 

recirculation. 

The presence of a chamber contraction at a downstream 

location produced a favorable, ~I>ressure'-gradient which was 

superimposed on the adverse pressure gradient promoted by 

swirl. In certain cases where the contraction was strong 
, r ' r 

enough to influence the upstream field, the intensity of 

the CTRZ was diminished. 

Roback and'Johnson (Refs. 48 through 50) studied the 

downstream mixing of coaxial water jets disRharging into an 

expanded duct. They employed a visualization technique to 

qualitatively- study the time-dependent flow characteristics 

and the scale of turbulence. They reported that intensive 
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mixing regions existed at the interface between the near 

stream and the centerline recirculation zone, and at the 

interface between the inner and outer jet streams. Mixing 

for swirling jets was found to complete in one-third of the 

distance required for nonswirling , jet's .. -

Other significant experiment,~! -~t~dies, :with findings 

and conclusions similar to those ·described above, are given 

in References 51 through 54. 

Theoretical Work· -

Numerous Publications exist which discuss at length 

theoretical approaches to the solution of turbulent swirling 

flows. For example, see textbooks on flowfield modeling 

(Refs. 1 through 4), computational fluid dynamics (Refs. 5 

through 8), and turb4lence modelipg (Refs. 55 and 56). A 

brief review of related research papers follows. 

Numerical predictions of confined axisymmetric swirling 

jets were made by Lilley (Ref~ 57), using a ·stream function-

vorticity variable approach/ ' Turbulence was simulated by 

way of a simple turbulent viscosity formula. The general 

agreement of pr~dictions with associated expe~imental data 

was encouraging in view of the use of a simple turbulence 

model. 

A confined swirling flow in an axisymmetric furnace 

configuration was predicted by Khalil et al. (Ref. 58). 

They employed a two-equation (k-e) turbulence model and a 

primitive-variable (pressure and velocity) formulation. The 
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calculation procedure was based on the ,SIMPLE (Semi-Implicit 

Method for Pressure Linked Equations) method of Patankar and 

Spalding (Ref. 6). Predicted axial velocity profiles for 

the experimental data case of Baker et al. (Ref. 59) were 

found to be in reasonable agreement with the measurements. 

Karasu (Ref. 60) predicted turbulent swirling flows in 

circular-sectioned dUcts and annuli I 'using a' similar .model 

to that of Khalil et al. (Ref~ 58). 'His results highlight 

the shortcomings of· the two-equation k-€ turbulence model in 

reproducing the stabilizing effects· of swirl, particularly 

in flows featuring a combined vortex distribution. 

Sloan (Ref. 61) presented an extensive evaluation of 

several turbulence models for pr.edicting strongly swirling 

flows. He noted that of. all the· possible models and model 

corrections that were evaluated, the Reynolds stress model 

holds the greatest potential for prediction improvement. 

However, he recommended that present predictions maintain 

the k-€ model due to the marginal improvement that higher­

order schemes provide relative to their added complexity and 

increased computational and storage requirements. 

Jones and Pascau (Ref. 62) presented calculations of 

confined swirling flows using the Reynolds stress transport 

equations model and the k-€ turbulence model. Comparison of 

their predictions with the corresponding measurements of So 

et al. (Ref. 52) grants clear precedence to the transport 

equations model, which reasonably reproduced the major 

features of swirl. 
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In a recent study, Weber et al. (Ref. 54) presented 

computations for a number of isothermal swirling flow cases. 

The focus in their work was on two categories of swirling 

flows: high confinement flows in geometries representative 

of gas turbines, and low confinem~nt flows encountered in 

industrial and e~perimental furnaces .• , In their study, they 

assessed three turbulence models: a Reynolds str~ss model, 
' 

an Algebraic stress model, anQ-a two-equation (k-e) model. 

Comparisons between predictions and ,associated measurements 

showed that the two high-order closur~ models produce much 

improved predictions than the k-e model. 

It should be noted here that while the standard two-
'' 

equation turbulence models have sometimes produced adequate 
' ', 

comparative predictions, they are generally considered as 

insufficient for strongly swirling flows (Refs. 63 through 

68). This is in part due to the isotropic nature of the 

eddy-viscosity formulation of the k-e turbulence model, 

which is not valid for flow~ t~at,a~e characterized by 

large-scale fluctuations, rotation, and strong streamline 

curvatures (Refs. 69 through 70). However, ad hoc modifi­

cations to the k-e model hav~ generally resulted in much 

improvement in predictions (Refs. 71 through 73), although 

only for very specific cases. , 

Closure 

This survey has been provided to put the present work 

into context. The present study focuses on the fundamental 
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nonorthogonal grid coverage of an axisymmetric flow domain 

with irregular bound~ries, and involves incorporating swirl 

and turbulence effects into a stream function-vorticity 

simulation. 



CHAPTER· II I. 

·MATHEMATICAL AND PHYSICAL MODEL 

Introdll_ction 

" ' 
This chapter is devoted to the presentation of the 

mathematical and ,physical model employed in the calculation 

of incompressible turbulent swirling f,lows. }?resented here 

are the time-averaged PDEs ( p~rtial di,fferential equations) 

that govern the cons.~rvation of mass· and momentum, in terms 

of stream function and vorticity variables. The equations 

are given in axisymmetric cylindrical coordinates and time-

dependent form. 

A few comments on the ~athematical treatment of 

turbulence are required here·. The difficulties involved in 

calculating turbulent flows via solution of the full time-

dependent form of the Navier-Stpkes equations have long been 

known. Any numerical calculation· procedure would. require a 

prohibitively fine grid and excessively short time intervals 

in order to resolve the subtle details of turbulence. It is 

therefore necessary to solve the time-averaged equations, 

whereby the effect of turbulence manifests itself in the 

equations in the form of Reynolds stresses and turbu'lent 

fluxes, which involve time-averaged products of fluctuating 
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components. These terms are evaluated ·via a turbulence 

model. 

The turbulence model employed here is a two-equation 

model based on the eddy-viscosity concept and known as the 

k-e: model (Ref. 55). It necessitates the solution of two 
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PDEs for the transport of turbulence kinetic energy, k, and 
'' . 

its rate of dissipation, e:. Knowledge of k and 'e: permits 

the length scale of turbulence to· be'cal~ulated, and hence 

the eddy or turpulent viscosity from·which the Reynolds 

stresses can be evaluated. 

The Governing Equations 

The stream fun9tion-vorticity approach used in the 

present work is one of the most_popular methods for solving 

2-D incompressible flow pr9blems ,in bounded domains. .The 

distinctly attractive feature 'of.this approach is the 
' '' 

computational decoupling C?-f the .,kinematics and kinetics from 

the thermodynamics. Cons~quently, pressure determination is 

reduced to a post-processing operation involving solution of 

a linear POE, often 'referred to as the Poisson equation for 

pressure. Conversely,- the weakness of this approach is in 

the evaluation of vorticity ~t a no-slip wall. Numerical 

experiments have indeed confirmed that unimaginative 

handling of this constraint can_destabili?e the numerical 

solution. 

In this approach, a change of variables is made which 

replaces the velocity components u and v with the stream 
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function, ., and vorticity, ~, using tne relations: 

ru = a.;ar 
rv = -a.;ax 
~ = av;ax - au;ar 

(3.1) 

(3.2) 

( 3 • 3 ) 

In this way, the continuity·equation is automatically 

satisfied, and a time-dependent elliptic equation for the 

transport of vorticity can be obtained by combining the 

time-averaged axial and radial momentum equations, thereby 

eliminating pressure. An additional equation involving the 

new dependent variables • and ~ can be obtained from the 

kinematic definition of vorticity given in Equation (3.3). 

This steady-state elliptic PDE is often referred to as the 

v-equation. 

These two equations, together with the equations for 

the transport of tangential momentum, turbulence kinetic 
. ' 

energy, and turbulence dissipation rate, constitute the 

complete set of PDEs (subject to· appropriate boundary and 

initial conditions) necessary· to solve for the time-mean 

flowfield variables at any location within the flow domain. 

Similarity between these equations and their diffusional 

relations allows them all to be cast into the common 

elliptic form: 

(3.4) 



where ~ stands for any one of the time~averaged flowfield 

variables: ., ~, w, k, and €, and the equations differ 

primarily in their source terms s~. Expressions for the 

coefficients b~, ~' and s~ are given in Table I. The 

turbulence generation term, Gk, appearing in· Table I, is 

defined as: 

[ ( au ) 2 
(. av ) 2 

( v ) 2
] ( au av ) 2 

~~~eff = 2 ax + ar + . r + dr + dx . 
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+ ( aw ) 2 + [ Q__f "J!. ) ] 2 ax ' r or\ r . (3.5) 

The Properties of Turbulence 

The eddy viscosity approach to the modeling of 

turbulence is to relate the local turbulent viscosity, ~t' 

to one or more properties of the turbulent flow. This 

viscosity is allowed to vary from one location to another, 

but at any point, it is assumed to be isotropic. It is 

evaluated from the local values of turbulence kinetic 

energy, k, and its rate of dissipation, €, through the 

relation (Ref. 55): 

(3.6) 

where c.,. is a turbulence constant given by Equation (3.9), 

and p is the density of the fluid. 

The effective viscosity, represented by ~efft is defined 

as follows: 

~eff = ~ + ~t (3.7) 
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where ~ is the laminar viscosity of the fluid and may be 

neglected for high Reynolds number flows. 

A local length scale of turbulence, l, can be evaluated 

from the local values of k and € according to the following 

relation (Ref. 55): 

(3.8) 

Here l characterizes the macroscale of turbulence which is 

easier to estimate than either ~tor €. As a result, it is 

often prescribed as the boundary value from which near-wall 

specification of € is obtained. 

The recommended values for the constants of the k-€ 

turbulence model are as follows (Ref. 55): 

c .... = 

cl. = 

c2 = 

ak = 

a€ = 

0.09 

1.44 

1.92 

1.0 

1.3 

Wall Functions and The Effect 

of Swirl 

( 3 • 9 ) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The two-equation (k-€) turbulence model presented here 

is valid only for fully turbulent flows. However, while 

viscous effects on the energy-containing turbulent motions 

are negligible throughout most of the flow, the no-slip 

condition at a solid interface always ensures that, in the 

vicinity of a wall, viscous effects will be influential. 
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Although the thickness of this viscous~affected zone is 

usually two or more orders of magnitude smaller than the 

overall width of the flow, its effects extend over the whole 

flow field since, typically, fifty percent of the velocity 

change from the wall to the free stream occurs in this 

region. 

Generally, there are two approaches for handling the 

wall-proximity regions in numerical methods for computing 

turbulent flows: the 'wall-function' approach and the low­

Reynolds number modeling approach (Ref. 55). The former 

has several advantages: (a) it is more economical, (b) it 

allows the introduction of empirical information into the 

formulation, (c) it produces relatively accurate results 

with fewer grid points within the viscous sublayer compared 

with the low-Reynolds number approach, and (d) it requires 

evaluation of the wall effects only in the computational 

cells next to the wall. For these reasons, it was selected 

to utilize the 'wall function' approach in conjunction with 

the k-€ turbulence model of the present study. 

The 'wall-function' method provides algebraic relations 

for near-wall grid points which must be located sufficiently 

far from the neighboring walls that they lie within the 

'logarithmic' layer, where the viscous effects are entirely 

overwhelmed by the turbulent ones. Wall-function relations 

for a given variable relate its local value to the wall 

fluxes andjor the local values of other variables. These 

relations are derived in order to reproduce, identically, 
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the full implications of the logarithmic profiles. The 

assumption that uniform shear stress prevails in the region 

between the wall and its immediate nearby grid point is made 

on the basis that generation and dissipation of turbulence 

energy are locally in balance. 

The variation of velocity in, tqe fully turbulent region 

of the wall layer is correlated by the· universal velocity 

profile (Ref. 55): 

(3.14) 

where the dimensionless quantities u+ and y+ are given by: 

u+ = Up/Ur = Up/( 1 w!P ) 112 

y+ = P U 7 Y p/IJ. = p ( 1 w/ p ) 112Y p/IJ. 

(3.15) 

(3.16) 

In the above relations, U~ is. the total time-averaged 

velocity parallel to the wall qt the near-wall grid point P, 

U7 is the friction velocity, ·1w is the uniform total wall 

shear stress in the direction of up, and yp is the positive 

normal distance from the wall to the point P, as shown in 

Figure 4. The Von Karman constant, K, is assigned the value 

0.42 while the constant E, which is a function of the wall 

roughness, is assigned the value 9.0 for a smooth wall. 

In the uniform near-wall shear layer, the generation 

and dissipation of turbulence energy are in balance, and so 

Ur and y+ are related to the local values of k by solving 

the k-transport equa~ion with the convection and diffusion 

terms omitted, resulting in: 
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U = c 1/4k 1/2 ., "' ~ 
(3.17) 

(3.18) 

Substitution of Equations (3.17)'and (3.18) into 

Equation (3.14} yields-the necessary wall function for the 

resultant wall she.ar 'stress, whic~ is-_giyen by: 

,, 

1 w = -UpKpC~~.114k/'-?lri( EYppC~~.11~kp112/~) (3.19} 

where the nega~ive sign is inserted since 1~ and up must 

have opposite signs. 

Horizontal Wall 

The total tangential veloci~y near a horizontal wall is 

given by: 

(3.20) 

while the resultant tang'ential wall shear stress, 1 w, and 

its component 1rx are given b~:' 

(3.21} 

('3. 22) 

However I in the vicinity of a '.horizontal wall I av ;ax 

approaches zero. Thus, 1rx is the required wall function 

for JJ.eff(au;ar) obtained by multiplying 1w by cos(9), where 

e = arctan (Wp/Up); the result is:_ 

(3.23} 
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Similarly, the wall function for J.Leff( aw;ar) is obtained 

by multiplying Tw by sin(8), resulting in: 

(3.24) 

As av;ax approaches zer~ near a horizontal wall, the 

vorticity, ~, approaches -au;ar. · Hence, the required wall 

function for ~ is obtained f~om Equation (3.23) as: 

(3.25) 

Equation (3.25) is used as the ~ffective boundary condition 

for ~ near a horizontal wall. 

The turbulence generation term·, Gk, can also be shown 

to reduce to: 

(3.26) 

Vertical Wall 

Wall functions along a vertical wall are similarly 

formulated. The total tangential velocity is now: 

(3.27) 

and the resultant tangential wall shear stress, Tw, and its 

component T xr become: 

(3.28) 

(3.29) 
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However, au;ar approaches zero near a v.ertical wall; Hence, 

.,. xr is the required w:all function for IJ.eff(av;ax)' obtained by 

multiplying 'fw by cos(6), where 6 = arctan(Wp/Vp); the 

result is: 

(3.30) 

Similarly, the wall function for IJ.eff(aw;a~) is obtained 

by multiplying 'fw by sin(~), resulting in: 

(3.31) 

Again, as au;ar approaches zero near a vertical wall, 

the vorticity, ~, approaches av;ax. Hence, the required 

wall function for~ is obtained from,Equation (3.30) as: 

(3.32) 

This equation is used as'the effective boundary condition 

for ~ near a vertical wall. 
' . 

The turbulence generation -t~rm, Gk, can also be shown 

to reduce to: 

Sloping Wall 

Provision for wall inclination is included by taking 

into account the wall and flow angles in determining the 

resultant velocity, which is assumed to be parallel to the 

wall (Ref. 3); it is given by: 
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(3.34) 

where the wall angle 8o = arctan(aY;ax), and the flow angle 

e = arctan(Vp/Up)• The resultant wall shear stress can then 

be evaluated from Equation (3.19) using the above expression 

for Up, and the turbulence generation term, Gk, reduces to: 

2 

+~ 
~eff 

(3.35) 

Other Details 

From the balance of generation and dissipation of 

turbulence kinetic energy, and with the assumption that the 

near-wall length scale varies linearly with the normal 

distance from the wall, it can be shown that: 

(3.36) 

This equation is used to fix values of e at near-wall grid 

points. As for the quantity kp, it'is evaluated from the 

regular k-transport equation with the assumption that the 

local rate of production of turbulence is balanced by the 

viscous dissipation rate. 

The Pressure Recovery Equations 

, The purpose of introducing vorticity was to allow the 

time-mean pressure, P, to be eliminated from the equations. 

However, once the solution has been obtained, the pressure 

distribution may be recovered using one of several available 

approaches (Ref. 7). Here, the time-averaged equations for 
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the conservation of axial and radial momentum are rearranged 

into the form: 

aP P1(u,v,w,x,r) ax = (3.37) 

aP P2(u,v,w,x,r) ar = (3.38) 

Then, a spatial-marching integration is propagated along the 

coordinate directions (using Equation (3.14) along.the axial 

direction or Equation (3.15) along tne raQial direction) and 

continued until all desired values are obtained. It should 

be noted here that this approach requires prior knowledge of 

the pressure at one location only (typically at the inlet), 

and the integration is initiated using first-order forward 

differences followed by central-difference approximations 

once two values of p· become available. 

Closure 

This chapter has presented the mathematical and 

physical model employed in the calculation of axisymmetric 

incompressible turbulent swirling flows. The time-averaged 

equations which govern the conservation of mass and momentum 

have been given in stream function-vorticity variable form. 

A two-equation (k-€) turbulence model has been introduced 

which closes the system of equations. The model involves 

solution of two additional equations for'the transport of 

turbulence kinetic energy, k, and its rate of dissipation, 

€. Wall-functions have been described for the treatment of 



near-wall regions, together with appropriate modifications 

to account for the effect of swirl and wall inclination. 

Finally, two PDEs for the recovery of pressure have been 

described. 
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CHAPTER IV 

NUMERICAL SOLUTION PROCEDURE 

Introduction 

In Chapter 3, the PDEs (partial dif~erential equations) 

which govern axisymmetric incompressible turbulent swirling 

flows were introduced. The primary task in this chap~er is 

to derive a general solution procedure for these equations, 

so as to attain the local values of the flowfield variables 

at all positions within the flow domain. 

The solution procedure is a finite difference one, in 

which the governing PDEs are replaced by a set o~ algebraic 

FOEs (finite difference equations)· using upwind differences 

for the convection terms and centered differences for the 
' ' 

diffusion terms. The relevant FOEs are derived at points of 

a general nonorthogonal mesh·· ·covering an irregular domain, 

using three diff~rent interpolation-profiles. 

The steady-state equation is solved using the Gauss-

Siedel point iteration method with overrelaxation, and the 

time-dependent equations are solved via an explicit time-

marching technique. Converge~ce and stabil~t~ implications 

are discussed together with factors which may influence the 

overall accuracy and economy of the predictions. 
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The Grid System 

Figure 2 illustrates a nonorthogonal mesh covering a 

typical domain in 2-D axisymmetric cylindrical coordinates 

(x,r), in which solution of the governing PDEs is sought. 

The 'vertical~ gridlines (I= 1, 2, ••. ) are indeed vertical 

and nonuniformly spaced to cover the desired x-range, Xmax• 

The 'horizontal' gridlines (J = 1, 2, •.. )are skewed with 

respect to the x-axis, and the radial locations of the grid 

points are obtained at each x1 by dividing the specified 

vertical domain height, rmax,i, in some predetermined manner 

(perhaps uniformly, or gradually expanding or contracting). 

This is in essence an algebraic mesh generation technique, 

which is handled in a methodical way via the normalizing 

transformation relations: 

~ = X/Xmax 

11 = r /r max,! 

( 4.1) 

(4.2) 

where ~ and 11 are the normalized coordinates, which are 

easily obtainable for any given flow' domain boundary. 

The Finite Difference Equations 

Preliminaries 

Figure 3 illustrates a typical point P in the domain of 

integration together with the eight neighboring points (in 

compass notation) arrayed on a nonorthogonal grid in the x-r 

plane. Notice that all the small distances are available at 
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once from the x and r coordinates of the grid points. In 

particular, ~Xe and ~Xw represent horizontal distances from 

P to the next east and west vertical grid lines, and ~rn and 

~rs represent vertical distances from P to its immediate 

north and south neighbors. The figure also displays the 

horizontal line (dashed) which locates the projected points 

E' and W' to the east and west of P, respectively. 

If the grid lines through P were in fact horizontal, 

then E and W would coincide with E' and W' and the usual 

nonuniform rectangular grid FOE would result connecting the 

value of ~ at P to its prevailing values at N, s, E, and w. 

However, in the case of the nonorthogonal grid of Figure 3, 

the following formula results: 

(4.3) 

where the sum is over N, S, E' and W', the a~j's are the so­

called coupling coefficients, S~ and s~ are.the linearized 

source term coefficients,· and a~p = ~ a~J. Here, ~ values at 

E' and W' must be known prior to using Equation (4.3) in an 

iterative solution scheme. Hence, it is required to assume 

a profile for the variation of ~with r, from which these 

values can be interpolated. 

In the present work, consideration is given to three 

different interpolation profiles (Refs. 74 and 75): 

1. Zeroth-order profile, where ~ is assumed to have a 

uniform distribution with r over the east and west 



surfaces of the integration cell, represented by 

its values at E and W, respectively. 
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2. First-order profile, where ~ is assumed to have a 

linear variation with r over the east and west 

surfaces of the integration cell. This permits 

the value of ~ at E' to be expressed as a linear 

combination of its values at NE and E, or E and SE 

depending on the slope of gridline EP. Similarly, 

the value of ~ at W' can be expressed as a linear 

combination of its values at NW and W, or W and SW 

depending on the slope of gridline PW. 

3. Second-order profile, where ~ is assumed to have a 

quadratic variation with r over the east and west 

surfaces of the integration cell. This permits 

the value of ~ at E' to be expressed as a linear 

combination of its values at NE, E, and SE, and 

the value of ~ at W' to be expressed as a linear 

combination of its values at NW, W, and sw. 

In this way, an FOE can be formulated connecting the 

value of ~ at P directly to its values at the eight nearby 

points; the coupling coefficients remain geometry dependent 

and so can be found once and for all at the outset; and the 

FOE maintains its initial form and can be solved effectively 

using standard iterative techniques. 

It is of course a simple matter to formulate a general 

FOE for the conservative form of the governing POEs as given 

in Equation (3.4). However, for reasons which will become 



apparent as we proceed, the formulation is carried out for 

the following variant of Equation (3.4): 

(4.4) 

' 

This equation differs only in the way the convective 

terms are,presented, and can ~e obtained by subtracting~ 

times the continuity:equation from the left-hand-side of 

Equation (3.4). 

The Interpolation Schemes 
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Figure 3 illustrates a typical point P in the domain of 

integration together with the eight neighboring points (in 

compass notation) arrayed on a nonorthogonal grid in the x-r 

plane. The values of ~ at the projected points E' and W' 

may be expressed as linear combinations of values at nearby 

points through: 

(4.5) 

where the sum is over NE, E, and SE forE', and over NW,· w, 

and SW for W'. The L<n>/s are the nth-order fundamental 

Lagrange polynomials, also known·as the cardinal functions 

for polynomial interpolation, which form a dual basis for 

the linear functionals of point evaluation. These are 

given by: 
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L(O) NE = 0 (4.6) 

L(O)E = 1 (4.7) 

L(O) SE = 0 (4.8) 

L(O)NW = 0 (4.9) 

L(O)w = 1 (4.10) 

L(O) sw = 0 (4.11) 

for the zeroth-order interpolation profile, or by: 

if rp ~ rE, then 

L<1> NE = (rp - rE)/(rNE - rE) (4.12) 

L(1)E = (rp - rNE)/(rE - rNE) (4.13) 

L<1> SE = 0 (4.14) 

else if rp < rE, then 

L<1> NE = 0 (4.15) 

L<1> = (rp - rsE)/(rE - rsE) (4.16) E 

L<1> SE = (rp - rE) /(rsE - rE) (4.17) 

if rp ~ rw, then 

L(1)NW = (rp - rw)/(rNW - :r: w) (4.18) 

L(1)w = (rp - rNW)/(rw - rNW) (4.19) 

L<1> sw = 0 (4.20) 

else if rp < rw, then 

L(1)NW = 0 (4.21) 

L<1> = (rp - rsw)/(rw - rsw) (4.22) w 

L<1> = (rp - rw)/(rsw - rw) (4.23) SW 
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for the first-order interpolation profile, or by: 

L<2> = NE [ ( r p - r E) ( r p - r sE) ] I [ ( r NE - r E) ( r NE - r sE) ] (4.24) 

L(2)E = [ ( r p - r NE ) ( r p - r sE ) ] I [ ( r E - r NE ) ( r E - r sE ) ] (4.25) 

L<2> = SE [ ( r p - r NE) ( r p - r E) ] I [ ( r sE - r NE) ( r sE - r E) ] (4.26) 

L<2> -NW- [ (rp- rw) (rp- rsw) ]I[ (rNW- rw) (rNW- rsw)] (4.27) 

L<2> -w - [ (rp- rNW) (rp- rsw) ]I[ (rw,- rNW)(rw- rsw)] (4.28) 

L<2> = sw [ (rp- rNW) (rp- rw) ]I[ (rsw- rNW) (raw- rw)] (4.29) 

for the second-order interpolatibn profile. Notice that 

both the linear and quadratic functions would reduce to 

their expected values of zero and unity should the grid 

distribution be rectangular indeed. 

The Convection Terms 

These are evaluated using the upwind differencing 

scheme, giving: 

u a!() 
= I U I [ l()p _ Bei()E' _ Bw!(JW' ] 

ax p Beaxe+Bwaxw axe axw 

v a!() 
= I V I [ l()p _ Bni()N .;.. Bs!(Js ] 

av p Bnarn+Bsars arn ars (4.31) 

The values of the coefficients Be, Bw, Bn, and Bs are related 

to the directions of the velocities at point P according to: 

Up > 0: Be = o, Bw = 1 (4.32) 

Up < 0: Be = 1, Bw = 0 (4.33) 

Vp > 0: Bn = o, Bs = 1 (4.34) 

Vp < 0: Bn = 1, Bs = 0 (4.35) 
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Using the interpolation functions ·given in Equations 

(4.6) trough (4.29), the net convective contributions to the 

overall coupling coefficients become: 

CNE = BeL(n)NE I Up I /Axe (4.36) 

CE = BeL(n)E I Up I /Axe (4.37) 

CsE = BeL~n) sE I Up I /Axe, (4.38) 

c_ = BwL<n>-1 Up I /Ax ... (4.39) 

Cw = B,..L<n>w I Up I /Ax ... (4.40) 

Csw = BwL(n)swl Up I /AXw (4.41) 

Cu = Bnl Vpl /Arn (4.42) 

Cs = Bsl Vpl /Ars (4.43) 

Cp = C /L(n) E E + Cw/L(n)w + Cu + Cs (4.44) 

The Diffusion terms 

These are evaluated in the-usual central difference 

fashion, giving: 

(4.45) 

(4.46) 

Using the interpolation functions given in Equations 

(4.6) trough (4.29), the net diffusive contributions to the 

overall coupling coefficients become: 
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DNE = (' 2rp ) ( ~E.+~p) 
rpAXeAXp 2 

L(n) NE (4.47) 

DE = ( 2rp ) ( ~E.+~p) 
rpAXeAXp 2 

L(n)E (4.48) 

DsE = ( 2rp ) ( ~E.+~p) 
rpAXedXp 2 

L(n) SE (4.49) 
- ' 

D_ = ( 2rP )( ~w.+~P) 
rpAXwAXp 2 

L(n)HW (4.50) 

Dw = { 2rP )(~w.+~P) 
rpdxwAXp 2 

L(n) 
'W (4.51) 

Dsw = ( 2rp ')( ~w.+~P) 
rPAxwAxP 2 

L(n) sw (4.52) 

DN = ( .rN+rp )(~u +~p) 
rP!rn!rP 2 (4.53) 

Ds = ( rs+rP ) { ~s +~P) 
rPArsArP 2 (4.54) 

Dp = D /L<n> E E + Dw/L(n)w + DN + Ds (4.55) 

The Source Terms 

These are handled via the source term linearization 

technique, giving: 

S"' = S"'pCpp + S"'u (4.56) 

The specific expressio~s for S"' are given in Table I, and 

expressions for S"'p and S"'u are decided according to the 

stability criterion presented in the following section. 

The Time-Dependent FDE 

Amalgamation of the expressions for the convective, 

diffusive, and source terms, together with an explicit time-

dependent term, yields the following FDE for ~, w, k, and €: 
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where the sum is over all eight neighboring points, and the 

prime indicates values at the new time level, t + At. If 

the second bracketed term on the right-hand-side of Equation 

(4.57) is denoted by'Rpp/At, then the following formula 

results: 

(4.58) 

where II'P,o is the steady state expression for .P, obtained 

from Equation (4.57) by omitting-both the time-derivative 

and the source term. In this way, it is readily seen that 

values of Rp less than or equal to unity form a sufficient 

condition for stability provided that the source t~rms are 

carefully handled. 

The approach adopted here to guarantee this condition 

involves calculating a new At -at each time step, such that 

RP,max' which is invariably pos,itive, is kept smaller than or 

equal to unity, and any opposing effect resulting from a 
' 

negative source term is nullified by treating it implicitly. 

Follo~ing these guidelines, the update formula can be cast 

into its final form: 

(4.59) 

where s~p is allowed to have only negative coefficients. 
~ I I < 

Notice that Equation {4.59) offers the added advantage of 

being easily adaptable to a vectorized solution technique 
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(Jacobi-type iterations) should the computations be carried 

out on a parallel-processing computer. 

The Steady-State FDE 

Accordi,ng to Equation ( 4. 4) and Table I, the FDE for 1jJ 

is a specific case ~.f Eq~ation ( 4. 57), in which the time­

derivative and the convective terms are set to zero and the 

diffusion coefficient, r~, is set to unity. This results in 

the following FDE: 

where the sum is over all eight neighboring points. This 

equation can be effectively solved using standard iterative 

techniques. However, a certain degree of overrelaxation may 

be employed in order to prompte convergence rates. This can 

be handled directly via: 

(4.61) 

where f is the overrelaxation factor normally taken between 

1 and 2. In the present work, a value of 1.5 seemed to be 

appropriate for all the·cases investigated. However, this 

is not necessarily the optimal value, which can only be 

determined by exploratory computations. 

Boundary and Initial Conditions 

Before the mathematical problem can be regarded as 

complete, it is necessary to provide additional relations 
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which embody the boundary conditions of the problem. Since 

the governing PDEs are elliptic, their"solution is a strong 

function of the boundary conditions and utilization of the 

correct values is, therefore, crucial in order to mimic the 

experimental flowfield correctly. 

Boundary conditions· are ge~erally classified according 

to whether the value of a variable (Di~i9hlet boundary) or 

the value of its gradient (Neumann boundary) is prescribed. 

Inflow Boundary 

At the inlet, the distributions of mean velocities and 

the turbulence quantities are stipulated to correspond to 

experimental data whenever possible. The stream function 

and vorticity profiles are then deduced from the specified 

velocity distribution using Equati~ns (3.1) through (3.3). 

In the absence of data pertaining to inlet turbulence 

quantities, the turbulence intensity is specified as some 

fraction of the axial velocity and the dissipation rate is 

estimated using the standard length scale assumption of 3 

percent of the inlet diameter. 

Axis of Symmetry 

At the centerline, the time-mean radial and tangential 

velocities, the stream function, and the vorticity are set 

to zero whereas the gradient of all other variables is set 

to zero. An exception to this has been proposed by Lilley 

(Ref. 63), in which the swirl velocity is given an implied 
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zero value assuming that solid-body rotation is operative at 

the centerline. The near-centerline node is then assigned a 

value by linear interpolation between its north neighbor and 

the centerline zero value. 

Outflow Boundary 

In most cases, there is a lack of information about the 

distribution of the flowfield ,variables along this,boundary. 

Here, the axial gradient of the stream function is assigned 

a zero value (i.e., zero radial velocity) while the radial 

gradient is subject to continuity constraints. The other 

variables are assumed to be suffi9iently smooth to allow 

outlet values to be determined by linear extrapolation from 

nodes immediately upstream. 

No-Slip Wall 

Along a no-slip boundary, the stream function is given 

a constant value while the three velocity components are set 

to zero. As for vorticity, it is estimated from a second­

order approximation to Equation (4.4), with the assumption 

that gradients parallel to the wall are negligible compared 

to those in the normal direction. 

These conditions are valid for laminar flow cases only. 

Turbulent flows require additional relations which provide 

linkages for the velocity components, the vorticity, and the 

turbulence parameters in the 'logarithmic' region near the 
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wall to their intrinsic wall values. A complete discussion 

concerning this issue has been presented in Chapter 3. 

Initial Conditions 

To be able to initiate the numerical computations, it 

is necessary to specify initial va~ues for all the dependent 

variables concerned. During the' course of this work, it has 

been found that any crude approximation can be made provided 

that it does not critically violate continuity.and boundary 

conditions. However, initial values that are closer to the 

final solution would, of course;·lead to faster convergence. 

Therefore, if a series of parametric calculations is to be 

carried out, it would be beneficial to use the solution of a 

previous calculation as the initial estimate for a new one. 

The calculation Sequence 

At this point, the mathematical problem can be regarded 

as complete. It remains now to outline the general solution 

procedure. 

1. Specify input parameters such as. flow geometry, 

boundary conditions, mesh size, etc. 

2. Calculate and store frequently used geometric 

coefficients. 

3. Specify initial values for all the- dependent 

variables at t = o. 
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4. Calculate the coupling coefficients according to 

Equations (4.30) through (4.55). Note that these 

are identical for all five equations. 

5. Determine new values of ~ along the no-slip solid 

boundary. 

6. Solve the vorticity transport equation for ~ at 

each interior point at the new time level using 

Equation (4.59). 

7. Iterate for new values of t at all interior points 

using Equation (4.61). 

8. Solve the swirl equation for new values of w at 

each interior point at the new time level using 

Equation (4.59). 

9. Solve the k and € equations for new values of 

turbulence properties at each interior point at 

the new time level using Equation (4.59). 

10. Calculate the velocity components u and v using 

Equations (3.1) and (3.2). 

11. Calculate a new time-step, At, to satisfy the 

stability constraint. 

12. Return to step (4) and repeat the process until 

convergence is reached. 

The calculation procedure has been embodied in a newly 

developed computer code, which has been employed in all the 

computations presented in this thesis. The computer code is 

a general and flexible one and can be easily applied to a 

wide range of practical flow problems. 
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Convergence and Accuracy 

The time-marching solution procedure is said to have 

converged when the sum of the absolute residuals becomes 

smaller than a reference value. This value is chosen on the 

basis that the relative change in the value of the dependent 

variable~ between two successive steps at any,point P does 

not exceed 0. Ql%. This has proven to be su'fficient for all 

the cases considered here. 

It should be further noted that while the uniform and 

linear interpolation schemes are both'boqnded, the quadratic 
,, 

scheme, which is presum~bly more accurate, involves negative 

coefficients that may or may not cause divergence problems. 

Therefore, the superiority of a certain scheme is a function 

of the given problem and can only be asserted by exploratory 

computations. 

Closure 

This chapter has presented the numerical solution 

procedure in which the governing POEs have been replaced by 

a set of algebraic FOEs, using upwind differences .for the 

convection terms and centered differences'-for the diffusion 

terms. The relevant FOEs have be,en derived at points of a 

nonorthogonal mesh covering an irregularly-shaped domain, 

using three different interpolation profiles. The solution 

technique involved a point Gauss-Siedel method with over-

relaxation for the steady-state equation, and an explicit 

time-marching method for the time-dependent equations. 



Convergence and stability implications .have been discussed 

together with factors which may influence the accuracy and 

economy of the solution. 
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CHAPTER V 

MODEL EVALUATION 

Introduction 

The purpose of this chapter is to assess the predictive 

capability of the computer mod~l via comparison of predicted 

results with available experimental' data for six data cases 

of varying degrees of complexity. Laminar cases are used to 

confirm numerical accuracy, and turbulent cases are examined 

to establish the workability of the solution procedure in 

complex flow situations. 

The specific test cases were selected from the general 

literature on the basis of ~heir completeness, availability 

of tabular results, accuracy .9f the instrumentation, and 

complexity of the enclosure geometry. A summary of the 

selected cases is provided in Table II, and a schematic 

illustration of the test chambers,and inlet geometries is 

shown in Figure 5. 

Preliminary Assessment 

Prior to applying the computer model to practical flow 
' ' 

situations, it is essential to make an impartial comparison 

(based on idealized test cases) between the newly developed 

grid technique and the conventional stair-step approach for 

51 
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handling irregularly-shaped boundaries.. For this purpose, 

consider the 2-D field problem shown in Figure 6, which is 

governed by Laplace's equation in both cartesian (x,y) and 

axisymmetric (x,r) coordinates. The exact solution is: 

~ = sin (Y~/H) sinh [~(2L - x)/H] 
~o sin (2L~/H) (6.1) 

for cartesian coordinates, with boundary·conditions ~ = o on 

the north, south, and east bounaaries and ~ = ~~ sin (Y~/H) 

on the west boundary; it is: 

~ = ~ sinh [2.4048 (2L - X)/H] J [ 2 •4048 rjH] 
o sinh [~.4048 (2L)/H] o 

(6.2) 

for axisymmetric coordinates, with boundary conditions ~ = o 

on the north and east boundaries; ·a~;ar = o on the south 

axisymmetric boundary, and·~= ~0 J0 (2.4048 r/H) on the west 

boundary, where J 0 is the zer~th-order Bessel function of 

the first kind. 

The test section for ~hich predictions were made and 

compared with the analytip.solution is shown in Figure 7. 

The newly introduced boundaries were given values according 

to Equations (6.1) and (6.2)'• Results were obtained for 

four different H/L values: 0.5, 1.0, 2.0, and 4.0; these 

correspond to top-wall angles of 14 .. 0, 26.6, 45.0, and 63.4 

degrees, respectively. Moreover, grid-size dependency was 
, , 

established by solving the relevant FDEs f9r each H/L value 

using three different mesh sizes: 11 x 6 (coarse), 21 x 11 

(intermediate), and 31 x 16 (fine). Here, the first value 
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represents the number-of I-gridlines while the second value 

represents the number of J-gridlines. The I-gridlines are 

spaced uniformly and, for each x, the grid spacing in the y-

direction is also uniform. 
' The average absolute errors and error percentages are 

given in Tables III and IV, respectively, for the cartesian 
'' ',' 

problem. As the grid size is refined, 'accuracy is expected 

to improve. This was the case·with the quadratic scheme 

(one order of magnitude improvement), on~y slightly with the 

stair-step approach (a factor of two), but definitely not 

the case with the uniform and linear schemes. 

The skewness attained by increasing the value of H/L is 

seen to reduce accuracy significant!~ with the uniform and 

linear schemes (a factor of 10 and 20, respectively). Only 

a factor of four is seen with the stair-step approach, but 

the quadratic scheme shows no such effect at all. 

For a given skewness and a· given grid density, the 

choice of methods may be compared. For example, for the 45 

degree north boundary (H/L = 2) and the intermediate grid 

density (21 x 11), the quadratic scheme is better than the 

stair-step approach by a factor of 20 while it is better 

than the other schemes by about two orders of magnitude. 

Tables v and VI show ,corresponding evidence for the 

accuracy of the interpolation methods for the axisymmetric 

problem. Again, the same trends as described·with Tables 

III and IV are observed. 
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For a given set of I-gridlines, as more and more J­

gridlines are used in a nonorthogonal manner, points E' and 

W' (see Figure 3) become outside the bounds of the compact 

nine-point computational cell. Thus, the 'interpolation' 

schemes are , in fact forqed to ext,rapolat~. To study the 

trade-off between reduced truncation error (with finer mesh) 

and extrapolation required to obtain~ values atE' and W', 

a check was made with the number of J-gridlines increased 

for fixed H/L values. 

The results are shoWn in Tables VII and VIII for the 

cartesian and axisymmetric problems. No~ice that results 

only for the intermediate grid (with refined number of J­

gridlines) of the quadratic scheme, and H/L values of 0.5 

and 1.0 are given for ease of interpretation of the general 

trends. It is surprising that in general the error reduces 

and that the greater grid density more than offsets the 

greater extrapolation.· 

Test case 1 {Bentz) 

The Physical Flow 

This test case cor~esponds to the he~odynamic flow in a 

stenotic region (see Figure Sa) studied by Bentz (Ref. 76). 

The stenosis is modelled by a bell-shaped constriction in a 

long circular tube, according to the following profile for 

the top-wall radius R as a function of axial position and 

initial tube diameter: 
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R (X) /Do = 0 . 5 - 0 . 2 5 exp [ -16 ( X/Do) 2 .] (6.3) 

where Do is the tube diameter far from the constriction and 

x is the axial distance from the narrowest cross-section in 

the tube. The test section has a length of 34 tube radii, 

with X/Do ranging from -5 to 12. The constriction reduces 

the original tube area by' a factor'of·four, with the major 

region of reduced area occupying the ·zone frolll: X/Do = -0.7 

to 0.7. 

LDV measurements of axial velocities were taken at 

several measuring.,stations upstream from, within, and 

downstream from the constriction,· for values of Reynolds 

number (based on inlet mean flow velocity and diameter) 

ranging from 2 to 200. 

The Computations 

Because the upstream influence of the constriction by 

way of pressure is in~ignificant in this test case, it was 

sufficient to begin the computations at the axial location 

X/Do = -2. The outflow boundary was located at x/Do = 8. 

Fully-developed laminar tube flow (Hagen-Poiseuille) was 
< ' 

assumed at the inlet, which is in good agreement with the 

measured data, and inlet conditions for t and ~ were then 

deduced as described in Chapter 4. 

Predictions have been made with the quadratic scheme 

for Reynolds numbers (based on inlet average velocity and 

diameter) of 2, 57, and 167, using a 51 x 16 coarse mesh and 



a 101 x 31 fine mesh, with rectangular .grid except in the 

region of c9nstriction. 
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Comparisons of predicted axial velocity profiles (non­

dimensionalized by the average inlet velocity) for the three 

Reynolds numbers in question, along· with their corresponding 

measured data, are shown in Figures 8 through 11. The 

predictions are clearly mesh-siz.e independent and display 

good agreement with the measured data as can ·be seen in 

Figures 9 through 11. The recirculation zone, the throat 

velocities, and the downstream development of the velocity 

profile (leading to a parabolic profile near the exit) are 

all predicted with,reasonable accuracy. 

Figure 8 shows a comparison·, of the predicted centerline 

velocities for the three Reynolds numbers considered. These 

conform reasonably well with their measured counterparts. 

Examination of these profiles· reveals that at the narrowest 

cross-section (X/Do = 0), the maximum velocity decreases as 

Reynolds number increases,· ,whiC:h is indicative of flatter 

throat profiles at larger Reynolds·numbers. Downstream from 

the throat (X/00 > 0), it can be seen that the flow recovers 

very quickly for the lowest Reynolds number; however, this 

recovery is much slower for the two higher values indicating 

the presence of a near-wall recirculation zone. 

Figures 9 through 11 show comparisons of predicted and 

measured radial profiles of the axial velocity.at several 

axial locations. For R~ = 2, Figure 9 reveals no regions 

of flow recirculation; however, the profiles at the axial 



locations x/Do = 0.2 and 0.325 indicate.the presence of 

adverse pressure gradients near the tube wall, but are 

apparently too weak to reverse the flow. 
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For ReD= 57 and 167, Figures 10 and 11 display reverse 

flow regions which extend· a distance· of about 0.100 from the 

tube wall. The predicted location of reattachment as a 

function of Reynolds number is,p~esented in Figure 12, and 

comparisons with measured values were not possible due to 

the lack of sufficient experimental ·~ata. 
,, 

Further exploratory computations, revealed that the 

reverse flow region begins to develop .as Reynolds number 

approaches 10. At Reynolds numbers ,larger than 50, the 

vorticity field becomes significantly altered; the peak 

values of boundary vorticity near the throat are seen to 
-

spread downstream and negative wall values begin to appear 

during the expansion indicating, the presence of a reverse 

flow zone. As Reynolds number is progressively increased,, 

the peak wall vorticity value ~nd the separation point move 

slightly upstream from the throat while the reattachment 

point moves farther downstream. 

Test Case 2 (Bornst~iri & Esqudier) 

The Physical Flow 

This test case designates, the laminar water experiment 

of Bornstein and Escudier (Ref. 42). Here, a single inlet 

- stream flows through a radial inflow vane swirler with 32 

adjustable guide vanes, into an expanded test chamber (see 



Figure 5b). The inlet diameter is 0.04 m. The expansion 

chamber has a diameter of 0.055 m, and is 0.43 m long. 

Inlet velocity profiles were not collected, and LDV 

measurements of axial and swirl velocities were taken at a 

selection of downstream measuring stations for an inlet 

Reynolds number of 612 and a swirl number of 0.337. 

The Computations 
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Although the initiation of the calculation domain at 

the first downstream measuring station is feasible, it was 

felt that the lack of any experimental data concerning the 

radial velocities in this region of flowfield expansion, 

where gradients are evolving rapidly; might be detrimental 

to the predictions. Therefore, the calculation domain was 

bounded on the upstream end by the chamber expansion plane, 

and the inlet profiles were shaped from the measured axial 

and swirl velocities at the first measuring station. 

Predicted axial and swirl velocity profiles (non­

dimensionalized by the average inlet velocity), along with 

corresponding experimental data, are shown in Figures 13 

through 15 for a 44 x 56 rectangular mesh. 

Analysis of the experimental axial velocity profiles 

(see Figure 14) displays a very complex recirculation zone 

structure near the centerline. The reverse flow region is 

displaced from the symmetry axis, and adjoined by forward 

flow along the centerline. 
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Examination of the predicted axial velocity profiles 

(see Figures 13 and 14; solid lines) discloses the formation 

of a small central recirculation zone at the axial ·location 

X/Dc = 0.5. However, the measured data shows this zone to 

form at the axial location x/Dc = 0.35 in a much more abrupt 

manner than the computations can simulate. The predicted 

size and strength of this recirculation zone also display 

very poor agreement with their measured counterparts. 
-

The experimental swirl velocities display a double hump 

near the outside edge of the recirculation zone as can be 

seen in Figure 15. The corresponding predicted profiles 

(see Figure 15; solid lines) are unable to simulate this 

behavior and their peaks are substantially larger in 

magnitude over most of the recirculation zone. 

In an effort to,understand this lack of agreement, a 

parallel prediction was made with a 65 x 83 fine mesh. The 

results (not shown) were very similar to those of the 44 x 

56 mesh, which seems to indicate that the predictions are 

independent of the grid size. 

This leaves boundary conditions as one of few remaining 

possible sources of error which should be further examined. 

To accomplish this, predictions were made using different 

wall vorticity formulas and different inlet profiles. While 

changes to wall vorticity calculations failed to produce any 

meaningful improvements, the predictions displayed a large 

sensitivity to variations in the inlet profiles as can be 

seen in Figures 13 through 15. 



This case has been also predicted .by Sloan (Ref. 61) 

using primitive-variable formulation. His predictions are 

qualitatively very similar to the present ones. The large 

disparity between the calculations and measurements may be 

attributed to the lack of adequate inlet profiles. 

Test case 3 (Deshpande & Giddens) 

The Physical Flow 
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This case refers to the turbulent flow occurring in a 

modelled arterial stenosis (see Figure Sa) investigated by 

Deshpande and Giddens (Ref. 77). The stenosis is modelled 

by a bell-shaped constriction in a long circular tube. The 

constriction is described by the following equation for the 

top-wall radius R as a function of axial position and 

initial tube radius: 

R(X)/00 = 0.5- 0.125 [1 + cos(Z~/2)] (6.4) 

where 00 is the tube diameter far from the constriction and 

x is the axial distance from the narrowest cross-section in 

the tube. The test section has a l~ngth of 15 tube radii, 

with x/Do ranging from -2 to 5.5. The constriction reduces 

the original tube area by a factor of four, with the major 

region of reduced area occupying the zone from x/00 = -1 

to 1. 

LDV measurements of time-mean axial velocities and RMS 

turbulence velocities were collected at several measuring 

stations upstream from, within, and downstream from the 
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constriction, for values of Reynolds number (based on the 

mean flow velocity and diameter at the inlet) ranging from 

5000 to 15000. 

The Computations 

The calculation domain:was,taken to be 6 tube diameters 

in length, with X/00 -ranging from -2 to 4. Inlet velocities 

were shaped from the measured time-mean profile·at the axial 

location xjD0 = -2, -which matches the fully developed power-
., 

law profile. Inlet turbulence-intensities were also shaped 

from measured RMS velocities while the characteristic length 

scale of turbulence (needed for estimation of inlet energy 

dissipation rates) was taken to .be 3 percent of the inlet 

diameter. 

Predictions have been made with the quadratic scheme 

for a Reynolds number of 15000' (J:?ased on the inlet average 

velocity and diameter) using a 91 x 31 mesh, with uniform 

rectangular grid except in the. region of reduced area. 

comparisons of predicted time-mean axial velocity 

profiles (non-dimensionalized by the bulk inlet velocity), 

along with their corresponding measured data, are shown in 

Figures 16 and 17. 

Figure 16 shows the variation of centerline velocity 

with the axial distanc~ X/00 • The maximum deviation from 

the measured profile is seen to occur at X/00 = o, with an 

overprediction of about 8 percent. 
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Considering Figure 17, the predicted time-mean axial 

velocity profile at the entrance plane to the constriction 

(x/Do = -1) is very close to that at X/Do = -2, as indicated 

by the measured data as well. A brisk acceleration in the 

converging secti~n is dem9nstrated by the results ,for X/Do = 

-0.5, and a rather blunt (plug-lik~) profile,is seen at the 

throat. Interestingly, the mea~u:red maximu~ throat velocity 

does not occur at the c'enterline· but occurs pear the wall. 

This is not the case with the predictions._ 

Flow recirculation is distinctly apparent in the 

profiles from X/Do = ·o. 5 to 2, with predicted negative ,_ 

velocities as high as 40 percent of the average inlet 

velocity, correspo~~ing to measured values of about 50 

percent. 

Figure 18 shows the location -of flo~ reattachment as a 

function of Reynolds numb~r •.. T~e predicted value for the 

Reynolds number in question is x/Do = 2.15, corresponding to ,, 
,' 

a measured value of about 2. 2.- It ·can also be seen from the 

Figure that this value is independent of Reynolds number in 

the range of 5000 to 15000. Finally, examination of the 

downstream profil~s reflects a gradual return toward the 

upstream conditions. 

Test Case 4 (Yoon & Lilley) 

The Physical Flow 

This test case refers to the work of Yoon and Lilley 

(Ref. 47). A single air stream enters the test section 
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through a secondary annulus, passing through an adjustable 

vane swirler en route (see Figure 5c). The swirl generator 

is reminiscent of a propeller, with the central hub (0.0373 

m diameter) functioning as a blocked-off primary tube. The 

exit plane of the swirler is positioned 0.032 m upstream of 

the 90 degree expansion block. The- 0.1492 m inside-diameter 

secondary annulus expands into·a 1.5 m iong test. chamber, 

whose inside diameter is 0.2984 m. 

Five-hole pitot probe measurements of time-mean axial, 

radial, and swirl velocities were taken ~t the start of the 

expansion and at several downstream measuring stations. The 

measurements were taken for five different vane angles of o, 

38, 45, 60, and 70 d~grees (0 degree vane angle refers to a 

non-swirling flow case with the .swirl generator and central 

hub removed). The corresponding average inlet velocities 

are 15.7, 10.5, 12.6, 8.84, and 5.57 m;s, respectively. 

The Computations 

In this test case,·. the no.n"':"swirling flow study was 

considered, and is presented as a preface to the succeeding 

case. The swirl generator.and central hub were r~moved, 

providing an essentially uniform axial velocity profile at 

the inlet. The inlet turbulence intensity was taken to be 4 

percent of the average velocity, whereas the characteristic 

length scale of turbulence (needed for estimation of energy 

dissipation rates) was taken to be 3 percent of the chamber 

diameter. 



Predictions have been made using a 46 x 31 mesh with 

uniform rectangular grid. Comparisons of predicted time-

mean axial velocities (non-dimensionalized by the average 

inlet velocity), along with corresponding measured data, 

are shown in Figure 19. 
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The predicted axial veloqities.follow the experimental 

trends very closely. However, they fail to match the data 

points precisely because the integrate~ experimental mass 
' . 

flow rates vary ,by as much as 25 perce,nt from the value at 

the inlet. 

The predicted corner recirculation zone extends to the 

axial location X/Dc ='2.125 (a distan~e of 8.5 step sizes), 
,. 

with a maximum width of 0 .• 1900 occurring near· the expansion 

plane. The measured recirculation zone extends to just 

beyond x/Dc = 2.0, with a maximum width of 0.1700 occurring 

near the inlet as well. The predicted maximum reverse flow 
,, 

velocity is approximately 20 .p~rce.nt .of the average inlet 

velocity, corresponding to· a'· measure¢! value of about 16 . , 
percent~ This case has been _al~9. predicted by Abujelala 

Lilley (Ref. 78), and Sloan (Ref. 61) usin'g a primitive­

variable code. Their computations are quali~atively very 

similar to the present ones. 

Test case 5 (Yoon & Lilley) 

The Physical Flow 

and 

This case refers to the swirling flow system studied by 

Yoon and Lilley (Ref. 47), which is an extension of case 4. 
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Here, the air stream enters the expansion chamber through a 

secondary annulus, passing through a 38 degree vane angle 

swirler en route. The flow conditions and rig geometry are 

as described in case 4 and Figure 5c. 

The Computations 

The calculations were initiated at the-expansion plane 

with inlet velocity profiles shaped from the measured data. 
' -

The inl~t turbulence in~ensity·was taken to be 12 percent of 
' 

the average inlet velocity, and'the characteristic length 
' . 

scale of turbulence was taken to"be 3-percent of the chamber 

diameter. 

Predicted time-mean axial and swirl velocities (non-

dimensionalized by the ayerage inlet velocity), along with 

corresponding experimental data, are shown in Figures 20 

through 22, for a 46 x 31 rectangular grid. 

Examination of Figures 2b ~hows a reasonable agreement 

between the measured and predicted velocities along the axis 

of symmetry. However, the ca~culations demonstrate that the 

axial velocity recovers and progresses to -uniformity at a 

much faste~ rate than that displayed by the measurements. 

It is apparent from Figure 21 that the predictions also 

fail to reproduce the size and strength of tpe experimental 

- recirculation zone. The experimental profiles maintain the 

recirculation zone_farther downstream, and are skewed toward 

the wall relative to the predictions. The predictions decay 

to uniform axial velocity profiles, whereas the experimental 
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recirculation zone remains tangible even at the farthest 

downstream location. Figure 22 displays that the predicted 

swirl velocity also decays to a forced vortex (solid-body 

rotation) profile; whereas the exp~rimental data maintain a 

combined vortex distribution. 

In an eff_ort tp explain the l~ack' of · agreement between -

the predictions and meas~rement~1. ~he following issues.were 
', 

further examined: (a) effect of choice of i,niet conditions 

on the predictions_, (b) · effect of choice of .parameters in . , 

the k-f turbulence model and its_apcurac~.in swirling flows, 

and (c) correctness 9f the implementation of the swirl 

equation. 

Recalling the predictions of case 2, it is apparent 

from Figures 13 through 15 that any slight variation in 

inlet conditions would have a significant influence on the 

resultant flowfield. For examp~e, Figure 13 demonstrates 

the effect of varying ~he inlet swirl and axial velocities 

on the formation of the recirculation zone; and Figure 14 

shows the effect of inlet swi~l velocity on the downstream 

axial velocity profiles. It is clear that the recirculation 

zone, which is present i_n the caf?es of uniform swirl and 

combined vortex, is replaced by a forward flow region with 

axial velocities that match their peak v~lues at each cross­

section. The radial location of the maximum axial velocity 

is also shown to be a strong function of the inlet swirl 

profile. 



As for the effect of choice of parameters in the k-€ 

turbulence and its accuracy in swirling flows, studies by 

other researchers, see for example Sloan (Ref. 61) and 

Abujelala and Lilley (Ref. 72), illustrate how k-€ model 

modifications have been utilized to effect more accurate 

predictions. Some of the inaccuracies in eddy-viscosity 

models, such as the k-€ model, ~rise from the assumption 

of isotropy, and swirling flows are highly anisotropic as 

has been confirmed experimentally, see for example owen 

(Ref. 43). 
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Correctness of the implementation of the swirl equation 

was examined through a comparative study between the present 

predictions, previous predictions by Sloan (Ref. 61), and 

the experimental data. Tables IX and X give a summary of 

the rate of decay of maximum axial and swirl velocities, 

respectively. The predictions are qualitatively similar, 

and manifest a similar lack of agreement with the measured 

data. However, the measured data exhibit inconsistencies in 

mass flow rates (up to 50 percent error in cross-section 

calculations downstream versus at the inlet) and axial flux 

of angular momentum·(up to 20 percent error). This may have 

been due to poor probe sensitivity in turbulent flow, and 

nonaxisymmetry of the flow. Additionally, these prediction 

studies suffer from inadequacies in the turbulence models 

used. 



Test Case 6 (Weber et ·al.) 

The Physical Flow 

This test case refers to the highly confined swirling 

flow system studied :by Weber et al .. (Ref. 54). The flow 

configuration consi~ts of a soli~-body vortex.generator, a 
'' 
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20 degree angle burner quar~, and a cylindrical furn~ce (see 

Figure 5d). T~e honeycomb swirl generator and the geometry 

of the rig were designed in such a way that the air flow had 

negligible radia~ velocity downstream from the generator. 

The furnace diameter Df is 0.44-m, .and is· 2.5 m long. The 

confinement ratio Df/A is 2.3, the quarl expansion ratio B/A 

is 2.0, and the furnace to quarl ·outlet diameter ratio Df/B 

is 1.15. The axial locations of the entrance and exit of 

the quarl are x/Df = 0.341 and x/Df = 0.938, respectively. 

The average inlet velocify is 4.8 m/s, and the inlet 
' ' 

vortex of low turbulence (1%) has·a solid-body rotation and 

its swirl number is o. 7'5. LDV measurements of time-mean 

axial and tangential velocities, together. with their normal 

stresses, were taken at the inlet to the quarl and at many 

downstre'am measuring· _stations. 

The Computations 

The calculations were initiated at the entrance to the 

quarl (x/Df = 0.341), which doincides''with 'the location of 

the first measuring station, and terminated at X/Df = 5.0. 

The inlet velocity profiles and turbulence intensities were 



shaped from the measured data, whereas the characteristic 

length scale of turbulence was assumed to be 10 percent of 

the inlet diameter. 

Predicted time-mean axial and swirl velocities (non-

dimensionalized by the average inlet velo.city), along with 

corresponding experimental data, are_shown' in Figures 23 
~ ,' ' 
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through 25, for a 91 X 24 mesh and q1,1adratic int~rpol·ation. 

A comparison of the predicted and measured centerline 
' 

velocity is shown in .Figure 23. Aga:fn, as with case 5, the 

predicted recovery of the axial velocity- oc.cur,s· at a much 

faster rate than that displayed by the measurements. Thus, 

the size and strength-of the central recirculation zone are 

underpredicted. 

Considering the axial velocity profiles of Figure 24, 

it can be seen that the first stagnation point is properly 

predicted. However, at th.e 9uarl exit, the predicted radial 

displacement of the zero streamlin~ is roughly so percent of 
' -

the measured value. Hence,- the rate. with which the vortex . ' 

loses its energy is too high ~nd, consequently, the position 

of maximum reverse flow is predicted inside the quarl rather 

than in the furnace .. - The calculated maximum reverse flow 

velocity is 25 percent of the average inlet velocity. This 

corresponds to a measured.value of about 44 percent, which 

is skewed toward ·the wall re+ative to the predictions. 

As for 'the swiri v~locity distribution, Figure 25 

displays how the inlet forced-vortex is transformed into a 

combined-vortex near the·axial location x/Dr = 1.7. It is 
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also apparent here that the surplus of ·tangential momentum 

near the centerline in the quarl results in negative axial 

velocities that are larger in magnitude than their measured 

counterparts. 

This test case has been also predicted by Weber et al. 

(Ref. 54) using primitive-variable formulation and different 

turbulence models. Their predictions with the k-€ model are 

qualitatively very similar to the present ones and manifest 

a similar lack of agreement with_the measurements, which may 

be attributed to poor k-€ turbulence model performance. 

Closure 

This chapter has presented an extensive evaluation of 

the numerical solution procedure. Computations made for a 

2-D field problem co~f~rmed the superiority of the quadratic 

interpolation scheme over the standard stair-step approach. 

Predictions of laminar and turbulent recirculating flows 

were found to be in reasonable agreement with corresponding 

measurements. However, predictions of turbulent swirling 

flows displayed a rapid decay (relative to the measurements) 

of the swirl velocity toward solid-body rotation, and failed 

to capture the experimental size and strength of the central 

recirculation zone. 



CHAPTER VI 

CONCLUDING REMARKS 

summary and conclusions 

Prior to case description and analysis, a review was 

provided of numerical methods in fluids and heat transfer, 

and experimental and theoretical investigations of elliptic 

swirling flows, in which the effects of incremental changes 

in swirl strength, flow rates, and confinement geometries 

were analyzed. To a large extent, existing computational 

methods are capable of qualitatively capturing the expected 

trends and characteristics. However, many of these methods 

require prohibitively fine grids in order to satisfactorily 

represent irregularly-shaped boundaries. As a Consequence, 

their application is limited to simple flow geometries. It 

was, therefore, the purpose of the present computer modeling 

effort to develop and evaluate a new differencing technique, 

which resolves the fundamental problem o~ irregular boundary 

representation, and leads to accurate results on moderate 

grids. 

A summary of the main achievements of the present study 

and the conclusions thereof are presented in the following 

tabulation. 
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1. A boundary-fitte~ nonorthogonal grid technique 

has been developed_and successfully applied to a 

strea~ function-vorticity simulation of axisym-

metric incompressible turbulent swirling flows. 

2. The grid technique 'employs a compact nine-point 

computational eel~, and is'66m~~tible with SOLA­

and TEACH-type codes. The ·'formulation has been 

prese~.ted for displaced.,· li~ear, an,d quadratic , 

interpolation functions. 

3. A vorticity wall function has been formulated for 

the treatment of turbulent ·near-wall flows. 
•'' 

4. Comparisons between pr.edi~~ions and analytic 

solutions of 2~0 fi~ld p+-oblems demonstrated the 

superiority of· t~e quadratic interpolation scheme 

over the displaced s~heme, the linear scheme, and 

the standard stair:step approach. 

5. Predictions of laminar and turbulent recirculating 

flows were found t,o ·.be in· reasonable agreement 

with available experimental data. 

6. Reliable predictions of.elliptic swirling flows 
' ~ < ' 

were heavily dependent ·upon the availability of 

accurate and complete inlet conditions; computed 

results exhibited_considerable sensitivity to the 

inlet profiles as well as ~he axial location at 

which the computations were initiated. 

a. The performance of the k-€ turbulence model for 

swirling flows was generally poor in the vicinity 
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of the CTRZ. In the recovery region, it performed 

satisfactorily for the time-mean axial velocity; 

however, it displayed a rapid decay of the swirl 

velocity to a forced-vortex profile. 

9. Convergence difficulties were encountered with the 

quadratic scheme when extrapolation resulted as a 

consequence of the grid arrangement. This problem 

was circumvented by generating the grid in a way 
' 

such that interpolation is. always guaranteed. 

10. Flowfield predictions exhibited large sensitivity 

to the manner in which vorticity at a protruding 

corner was calculated. It was observed that when 

the stream-wise gradient of the stream function 

was used for its calculation, the computations 

failed to capture the corner recirculation zone. 

However, calculations based on the cross-stream 

gradient were found to resolve this problem and 

compare well with experimental data. 

Recommendations for Future Work 

The present investigation has disclosed some areas 

which warrant further research in order to enhance the 

predictive capabilities of the current computer model. 

These are presented in the tabulation below. 

1. Since all of the data cases considered here are 

categorized as elliptic recirculating flows, which 

are characterized by large cross-stream gradients 
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and velocity-to-gridline angles, it is recommended 

to replace the upwind scheme with a transportive 

scheme which preserves the directional properties 

exhibited by the fluid transport phenomena. The 

SUDS (Skew·Upwind Differencing Scheme) and-QUOS 

(Quadratic Upstream Differencing Scheme) are two 

recommended candidates for initial evaluation. 

Both have been proven to ~e ·more accurate than the 

upwind scheme, and fit easil~with~n the framework 

of the present grid t.ech_nique.-

2. More experimental measurements with swirl should 

be sought. In particular,_ 'more reliable inlet 

conditions are required for experiments to be of 

sufficient caliber for turbulence and swirl model 

evaluation. 

3. The present-study has aemonstrated that the k-f 

turbulence model.does not adequately represent the 

structure of turbulence. when applied to confined 

swirling flows. 'Prominent amongst its limitations 

are the poor prediction. of 'the size and. strength 

of the recirculation zone, and the inability to 

reproduce the ~bse~ed combined free and forced 

vortex distributions. This may be partly due to 

the isotropic nature of·the k-f turbulence model. 

Higher-order closure models, in which the stress 

components are obtained directly from solution of 

their modelled partial differential equations, 
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have been recently reported to overcome some of 

these limitations. Thus, It is suggested that a 

hig~er-order turbulence"model, such as the ASM or 

RSM, be.considered for fut~~~ implementation. 

' . ' 
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TABLE I 

COEFFICIENTS AND SOURCE TERMS .USED IN THE GOVERNING 
'EQUATIONS FOR THE GENERAL VARIABLE <p 

0 

1 

w 1 

k 1 

€ 1 

where 

1 

IJ.eff 

IJ.eff 

-~·Qt.+ r(J) 
r ar 

+ S., 
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The turbulence generation ter~, Gk, and the turbulence model 

constants are as gi vem in Chapter 3 . · 
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TABLE II 

SELECTED TEST CASES 

Case Flow Properties 
No. Author(s) Fluid , Type ,Measured swirl 

1 Bentz water Laminar u No 

2 Bornstein &', Water Laminar u, w Yes 
Escudier 

3 Deshpande & water Turbulent u, u' No 
Giddens 

4 Yoon & Air Turbulent u, v, w No 
Lilley 

5 Yoon & Air Turbulent u, v, w Yes 
Lilley 

6 Weber et al. Air Turbulent u, w, u' Yes 

w' 
' 

u'w' 
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TABLE III 

AVERAGE ABSOLUTE ERROR FOR 2-D FIELD PROBLEM 
IN CARTESIAN COORDINATES 

Grid stair-
H/L Density Steps Displaced Linear Quadratic 

11 X 6 0.228 0.343 0. 26,7 0.277 
0.5 21 X 11 0.224 0. 3,07 0.365 0.063 

31 X 16 0 .1·71 0.305 0.372 0.027 

11 X 6 0.801 0.996 2.021 0.195 
1.0 21 X 11 0.489 0.930 1.827 0.043 

31 X 16 0.347 0.904 1.754 0.018 

11 X 6 1.245 2.365 5.340 0.175 
2.0 21 X 11 0.702 2.251 4.678 0.040 

31 X 16 0.490 2.186 ' 4.466 0.017 

11 X 6 1.472 4.000 8.110 0.240 
4.0 21 X 11 0.798 3.935 7.063 0.056 

31 X 16 0.550 3 .'844 6.736 0.024 
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TABLE IV 

AVERAGE ABSOLUTE ERROR PERCENTAGE ·FOR 2-D FIELD 
- PROBLEM IN CARTESIAN COORDINATES 

Grid 'Stair-
H/L Density Steps Displace~ ' Linear Quadratic 

11 X 6 1.638 5 .'994 3.311 4.234 
0.5 21 X 11 1.961 3.674 4. 944· 0.980 

31 X 16 1.652 3.349 5.164 0.409 

11 X 6 2.657 5.045 10.434 1.216 
1.0 21 X 11 1.955 4.549 10.005 0.286 

31 X 16 1.488 4.433 9.792 0.121 

11 X 6 2.515 6.390 14.373 0.555 
2.0 21 X 11 1;.627 6. 382' 13.286 0.139 

31 X 16 1.210 6.319 12.909 0.060 

11 X 6 2.367 7.826 15.794 0.521 
4.0 21 X -11 1'.473 8.814 14.420 0.132 

31 X 16 1.082 8 .16~. 13.963 0.057 



H/L 

0.5 

1o0 

2o0 

4o0 

I I I J II I I 
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TABLE V 

AVERAGE·-ABSOLUTE ERROR FOR 2-D FIELD PROBLEM 
IN AXISYMMETRIC COORDINATES 

Grid 
Density 

11 X 6 
21 X 11 
31 X 16 

11 X 6 
21 X 11 
31 X 16 

11 X 6 
21 X 11 
31 X 16 

11 X 6 
21 X 11 
31 X 16 

Stair-­
Steps 

0.400 
0.275 
0.197' 

Oo927 
Oo556 
0:0379 

1o052 
0 0 6-99 
Oo458 

Oo963 
_Oo707 
Oo449· 

\ ' 

Displaced 

0. 73,6 
0. 8'52 
0.858 

2o044 
2o064 
2 o-037 

2.755 
2o759 
2o728. 

2.51.2 
2 0 7.07 
2o699 

,. ' 

Linear 

Oo018 
Oo112 
Oo131 

Oo6~l 
Oo661 
Oo650 

1o575 
1o480 
1o439 

1o919 
.1. 849 
1o812 

Quadratic 

0.192 
Oo044 
Oo091 

Oo087 
Oo019 
Oo008 

0.038 
Oo009 
Oo004 

Oo065 
Oo017 
0~008 



H/L 

0.5 

1.0 

2.0 

4.0 

H/L 

0.5 

1.0 
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TABLE VI 

AVERAGE ABSOLUTE ERROR PERCENTAGE FOR 2-D FIELD 
PROBLEM IN AXISYMMETRIC COORDINATES 

Grid Stair-
Density ' Steps Displaced- Linear Quadratic 

11 X 6 3.829 7.221 1.116 1.817 
21 X 11 2.018 8.275 1.132 0.419 
31 X 16 2.750 8.340 2.635 0.318 

11 X 6 2.750 8.490 2.635 0.318 
21 X 11 .2.685' 8.779. 2.656 0.072 
31 X 16 1.917 8.726 2.619 0.029 

11 X 6 2.949 7.061 3.626 0.096 
21 X 11 2.282 7.358 ·3. 442 0.024 
31 X 16 1.609 7.353 3.359 0.011 

11 X 6 2.530 5.347 3.583 0.142 
21 X 11 2.095 6.283 3.469 0.038 
31 X 16 1.463 6.355 3.408 0.018 

TABLE VII 

' 
AVERAGE ABSOLUTE ERROR FOR DIFFERENT DEGREES 

OF EXTRAPOLATION USING THE 
QUADRATIC SCHEME 

Grid 
Density Cartesian 

21 X 11 0.063 
21 X 31 0.037• 
21 X 61 0.032 

21 X 11 0.043 
21 X 31 0.013 
21 X 61 0.014 

Axisymmetric 

0.044 
0.026 
0.021 

0.019 
0.007 
0.005 



H/L 

0.5 

1.0 

X/Dc 

0.5 
1.0 
1.5 
2.0 

X/Dc 

0.5 
1.0 
1.5 
2.0 

TABLE VIII 

AVERAGE ABSOLUTE ERROR PERCENTAGES FOR DIFFERENT 
DEGREES OF EXTRAPOLATION USING THE 

QUADRATIC SCHEME 

Grid 
cartes fan· Density Axisymmetric 

21 X 11 0.980 0.419 
21 X 31 0.549 0.245 
21 X 61 0.376 0.149 

21 X 11 0.286 0~072 
21 X 31 0~080 0.029 
21 X 61 0 .18~ . 0.018 

TABLE IX 

COMPARISON OF THE RATE OF DECAY OF MAXIMUM 
AXIAL VELOCITY Umax/Uin FOR CASE 5 

91 

Present Sloan (Ref. 61) Yoon.& Lilley 
LPS Rich. Study k-e No. ASM (Ref. 47) 

0.90 0.85 0.60 0.75 0.98 
0.43 0.38 0.40 0.47 0.58 
0.29 0.29 0.29 0.29 0.30 
0.26 0.26 0.26 0.26 0.27 

TABLE X . 

COMPARISON OF THE RATE OF DECAY OF MAXIMUM 
SWIRL VELOCITY Wmax/Uin FOR CASE 5 

Present Sloan (Ref. 61) Yoon & Lilley 
Study k-e LPS Rich. No. ASM (Ref. 47) 

0.48 0.46 0.42 0.32 0.30 
0.35 0.40 0.40 0.40 0.48 
0.32 0.37 0.35 0.37 0.52 
0.30 0.35 0.35 0.35 0.51 
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Figure 1. A Schematic Illustration of the Type of 
Flows Considered 
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(a) Cases 1 and 3 [Bentz, Ref. 76: Deshpande & 
Giddens, Ref. 77] 

Figure 5. Schematic Illustration of Test Cases 
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Figure 5 (Continued) 
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Figure 9. Case 1; Comparison of Predicted and 
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Figure 10. Case 1; Comparison of Predicted and 
Measured Axial Velocity Profiles 
for Re = 56 [Bentz, Ref. 76] 
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Figure 11. Case 1; Comparison of Predicted and 
Measured Axial Velocity Profiles 
for Re = 167 [Bentz, Ref. 76] 
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