
ON-LINE SCHEDULING AND CONTROL OF

RANDOM FLEXIBLE MANUFACTURING

SYSTEMS WITHIN AN OBJECT

ORIENTED FRAMEWORK

By

CHUDA BAHADUR ~ASNET

Bachelor of Engineering
University of Poona

Poona, India
1973

Master of Science in Industrial and
Management Engineering
Montana State University

Bozeman, Montana
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 1991

i
i ..
"'

•

,.
'

• ,i ~ I

. i . ,l •• , '

.... !

Oklahoma StAte Univ. Library

ON-LINE SCHEDULING AND CONTROL OF

RANDOM FLEXIBLE MANUFACfURING

SYSTEMS WITlllN AN OBJECf

ORIENTED FRAMEWORK

Thesis Approved:

I

~flALL
Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to the many individuals who helped me

in the course of this work. I am particularly indebted to Dr. Joe H. Mize, my major

adviser. He has provided superb guidance, but what I appreciate even more is his unfail

ing moral encouragement and support. I am also grateful to the other committee mem

bers Dr. Charles M. Bacon, Dr. Kenneth E. Case, Dr. John W. Nazemetz and Dr. M.

Palmer Terrell for their advisement.

Special thanks go to Dr. Wayne C. Turner for his support of my graduate endeav

ors. I also appreciate the support and the intellectual environment provided by members

(past and present) of the Center for Computer Integrated Manufacturing at OSU.

Finally, I wish to thank the members of my family for their confidence, under

standing and sacrifices.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION .

II. STATEMENT OF THE PROBLEM .

Introduction
Statement of the Problem
Outline of the Proposed Approach. . . .

Dynamic
Reactive
Comprehensive . .
Object-Oriented . .

ill. BACKGROUND OF THE STUDY ...

Introduction
Mathematical Programming Approach . . .

RandomFMS
Heuristics Oriented Approach
Control Theoretic Approach
Simulation Based Approach
Artificial Intelligence Based Approach .
Interactive Approach.
Summary .

IV. GOALS, SPECIFIC OBJECTIVES AND ASSUMPTIONS.

Research Objectives
Objective 1 Methodology
Objective 2 Object Oriented Representation
Objective 3 Development of Framework . . .
Objective 4 Measures of Merit
Objective 5 Evaluation.
Objective 6 Further Research .

Research Assumptions . .

V. PROPOSED METHODOLOGY .

Introduction
Solution Approaches

iv

Page

. 1

4

4
7
7
7
8
8
9

10

10
11
23
30
34
37
42
51
54

55

55
55
55
56
56
56
56
57

58

58
60

Chapter

VI.

Simultaneous Solution .
Hierarchical Solution

Release Heuristics
Fixed Period Release ..
Variable Period Release . .
Priority Release .

Proposed Methodology
Rules
Simulation

Summary
Material Handling Constraints .
Buffer Capacity
Alternate Routing of Parts
Tool Transport and Tool Changes .
Due Date and Priority
Material Availability.
Fixtures and Pallets Availability.
Tool Availability and Tool Life .
Machine Failures.
Dynamic Production Environment
On-Line Scheduling and Control Decisions .

OBJECT ORIENTED REPRESENTATION OF THE
PROPOSED METHODOLOGY .

Page

61
61
62
62
66
74
77
78
81
84
84
84
84
85
85
85
85
85
86
86
86

88

Introduction 88
Features of Object Oriented Programming 88
Proposed Framework 90
Object Oriented Representation of Proposed Framework . 90

Resources Hierarchy 93
FMSController Hierarchy . 97
WorkFlow Item Hierarchy . 99
Buffer Hierarchy. . 101
Operation Class . . 102
Routing Hierarchy . 103
Order Class. . . 104
Tool Class 105
ToolCrib Class . . . 105
Time Matrix Class . 105
Simulation Processing Hierarchy 106

Interaction Between the Objects. 107
Controller Hierarchy . . 109
Resource Hierarchy 111
Tool Class 112
Routing Hierarchy . 113

v

Chapter

VII.

VIII.

Simulation Hierarchy .
Queue Hierarchy. . . .
WorkFlowitem Class .

Summary

EVALUATION OF THE METHODOLOGY ..

Introduction
Measures of Merit

Average Weighted Tardiness . . .
Sojourn Time
C.P.U. Time
Target System Flexibility

~S Simulator
Order Generator
Experimental Evaluation.

Fixed Component of the Experiment .
Variable Part of the Experiment ..
Validation of the Model
Replications
Simulation Termination

Analysis of Experimental Results
Average Weighted Tardiness ...
Sojourn Time
C.P.U. Time
Summary of Statistical Analyses .. .

Target System Flexibility . . .
Chapter Summary

SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS ...

Introduction
Research Summary. .

Methodology
Object-Oriented Representation ..
Development of Framework . .
Measures of Merit . . .
Evaluation
Further Research

Contributions of the Research . .
Representation Issues . . .
Methodology Development and Evaluation . .
Dynamic Environment Considered
Test Bed for ~S Control Policies

vi

Page

113
114
115
116

118

118
118
119
120
120
121
121
122
123
123
125
127
129
129
130
131
134
136
140
141
143

144

144
144
144
145
146
146
146
147
147
147
148
148
149

Chapter Page

Integrated Environment for Control Simulation and
Expert Systems 149

Recommendations 149
Release levels 150
Control Simulation Criteria . . 150
Control Simulation Input . . . 150
Distributed Control Simulation 151

BIBLIOGRAPHY. . .

APPENDICES (*)

APPENDIX A- VALIDATION, SAS PROGRAM AND
SAS OUTPUT

APPENDIXB- SMALLTALK-80 CODE

(*) Available in a separate volume in the School of Industrial Engineering and
Management Library at Oklahoma State University

vii

152

LIST OF TABLES

Table Page

I. Summary of the Heuristics . 77

II. ANOVA with Average Weighted Tardiness as Dependent
Variable 131

III. Average Weighted Tardiness Measure at Combinations of
Factors 133

IV. ANOVA with Sojourn Time as Dependent Variable. 134

V. Average Sojourn Time Measure at Combinations of
Factors . 135

VI. ANOVA with C.P.U. Time as Dependent Variable 137

VII. C.P.U. Time Measure at Combinations of Factors . 138

VIII. Summary of Performance Measures 140

viii

LIST OF FIGURES

Figure Page

1. Flexible Manufacturing System Configuration . . 59

2. Example of Releaser Rule Base. 80

3. Interfacing Simulation with Physical System for Real-time
Control 82

4. Example of Dispatcher Rule Base 83

5. Framework for the Proposed Methodology. 91

6. Hierarchy of Resource Classes in Random FMS . 94

7. Hierarchy of the FMSController Subclasses 98

8. Hierarchy for the WorkFlow Item. 100

9. Classes to Represent Buffers . 101

10. Hierarchy of Class Operation . 103

11. Class Hierarchy of the AlternateRouting Object . 103

12. Simulation Processing Classes . . 106

13. Summary of the Class Hierarchies 108

14. Flexible Manufacturing System Simulation 124

15. Factorial Design of Simulation Experiments . 127

16. Multiple Comparison of Control Policies for Average Weighted
Tardiness 132

17. Multiple Comparison of Control Policies for Average Sojourn
Time · · · · · · · · · 136

18. Multiple Comparison of Control Policies for C.P.U. Time. 139

ix

CHAPTER I

INTRODUCITON

The goal of the research described herein was the development of a comprehen

sive framework in which automated manufacturing systems may be operated. This

framework facilitates the decisions that need to be taken at the shop floor as the manufac

turing processes are carried out.

Automation is increasingly being adopted in the manufacturing sector on account

of the advantages of rapid turnaround, high quality, low inventory costs, and low labor

costs. Flexible manufacturing system (FMS) is one of the options for automation in the

discrete manufacturing industry. A FMS consists of a number of computer numerically

controlled (CNC) workstations which can process a variety of parts. These parts are

mounted on pallets which are transported by automatic transportation devices. The CNC

machines have tool magazines on which some tools may be stored for automatic

changeover as needed. Some systems even permit automatic conveyance of the tools to

the machine magazines. The whole system is directed by a supervisory computer.

The research problems raised by the industrial espousal of FMS could be broadly

classified into two problem areas: design problems and operation problems. At the

design stage, one is interested in specifying the system so that the desired performance

goals are achieved. Discrete event simulation has been the traditional mainstay of this

endeavor. Recently, 'rough-cut' approaches based on queueing theory have been devel

oped to narrow down the choices rapidly. The slower simulation analysis can then be

applied to the 'short list'.

1

The operation problems are aimed at making decisions related to the planning,

scheduling, and control of a given FMS. These problems differ on the basis of the plan

ning horizon being considered. The long term planning decisions can be made with the

traditional Master Production Schedule (MPS) and Material Requirements Planning

(MRP) concepts. The problem of short term scheduling and control of FMS, however,

has still not been answered adequately. The very flexibility of the FMS makes the

choices of a scheduler too numerous to handle easily. The large number of system com

ponents and the corresponding constraints make the problem still more difficult.

2

Various methodologies have been suggested in the research literature to help the

decision making process as faced by the operator of a FMS. These approaches are based

on Operations Research, Artificial Intelligence, and other problem solving techniques.

The approaches, however, either make too many restrictive assumptions, or take an

inordinate amount of time, or are overly simplistic to be of practical use to the shop floor

operator.

An ideal scheduling tool should take into account all the constraints of the FMS.

It should permit convenient interaction between the supervisory computer and the human

operator. The scheduler should help in making the decisions as the actual system condi

tions occur: machine failure, unavailability of material, change of priorities, quality

problems, etc.

FMS scheduling is an active area of research. Various approaches are continually

being offered. But the stringent requirements of the problem have made it difficult to

bring about a complete, ideal solution. However, the high investment required for a

FMS and the potential of FMS as a strategic competitive tool make it worth while to

pursue a solution of the problem.

Like some other researchers, the position taken in this research is that discrete

event simulation can be a practical tool to help in this decision making process. In as

much as the developed model is a valid model of the real system, the schedules generated

3

by a simulator are bound to be feasible. Further, evaluation of a limited number of alter

natives is possible within limited time bounds by using multiple passes of the simulation.

This approach is feasible on account of the increasingly high performance of the

desktop computers. These computers are cheap enough to be solely dedicated to the

scheduling task, and fast enough to provide adequate decision. support. This trend is pro

gressively favorable. Further, these computers provide excellent graphics hardware that

can be utilized to develop user friendly interfaces for the operator of the FMS.

This simulation environment and the decision making framework is implemented

in an Object Oriented Programming (OOP) language: Smalltalk-80. The chief merit of

OOP from the viewpoint of the task in hand is that OOP makes it convenient to decom

pose complex systems. Each of the components of the system can be defined individu

ally and its behavior can be described in isolation.

The goal of this research was to develop a conceptual framework in which the

aforementioned tasks can be carried out An event based approach was followed in

which the framework reacts to the events as they occur on the shop floor. In the pro

posed framework, knowledge based simulation is used as a decision making tool. The

system is designed to solve problems on-line, interactively. The framework has been

implemented for 'proof of concept' purpose. Finally, the prototype has been evaluated

using measures of effectiveness developed as part of this research effort.

CHAPTER II

STATEMENT OF THE PROBLEM

Introduction

Industrial Engineering researchers have devoted a lot of attention to scheduling

problems. Over the years, much effort has been expended on finding a mathematical

optimization formulation (and solution) of the problems. Owing to the combinatorial

explosion, an optimal solution of practically sized problems is difficult to find.

Recent attention given to Flexible Manufacturing Systems has generated new

interest in scheduling problems. The considerable investment required for FMS makes it

essential that these systems be operated effectively. However, the variety and flexibility

of these systems pose difficult problems for the operational system designer. FMS's are

widely different. Almost every FMS needs its own specific scheduling system tailored

for itself. The flexibility of FMS opens up many choices that need to be resolved.

Dupont-Gatelmand (1982) reported on a survey of FMS installations and showed

the wide variety in the extant FMS's. It appears that automation of the machines and

diversity of parts are the two criteria that are used commonly to justify the use of the

designation- 'flexible'. She was able to classify the FMS's into three broad categories:

1. Flexible modules and units: These could be a single machining center with mul

tiple head changer and automatic parts input/output system. They may have an

automatic tool changer and pallet storage magazine. Some of these centers may be

combined into machining cells with robots. A separate computer may or may not be

used to control these systems. The flexibility is in the variety of parts machined.

4

5

2. Flexible conveyor lines: These systems are similar to automatic transfer lines.

But they are multi-functional, and the parts do not necessarily have to go to all the

machines. The part transfer may be done by roller conveyor, or shuttle conveyor, or

wire guided carts.

3. Unaligned flexible systems: These systems are analogous to job shops. They are

invariably controlled by computers. The parts transfer is done usually by wire

guided carts. The carts have on-board microcomputers.

The variety in FMS installations shows the difficulty in designing scheduling and

control systems. Since this control is done as the process evolves on the shop floor, the

control system has to be intimately tied to the actual system under consideration.

Rachamadugu and Stecke (1989) suggest another dichotomy for the classification

of FMS's which is useful from the scheduling point of view: flexible flow systems (FFS)

and general flexible machining systems (GFMS). In the flow systems, the parts follow

one sequence of machines although different operations may be performed on them.

Two types of these are the flexible assembly systems and flexible transfer lines.

The GFMS is more like a job shop - the processing is nonserial. Two modes of

operation can be identified for these: dedicated and nondedicated. In the dedicated mode

of operation, the FMS processes a fixed set of part types usually in a fixed ratio. The

FMS is tooled for these particular parts, and often even the routing is pre-determined

once the set of parts and their production ratio is known. Since the parts are made to

stock, at a specific ratio, a stable schedule is usually sought for this type of FMS.

The other GFMS mode of operation is nondedicated. In this mode, the number of

parts processed simultaneously by the FMS is much higher than that of the dedicated

FMS. The set of parts is not fixed, nor is the production ratio of the parts. The flow of

parts is controlled by customer order. Thus the production control is more JIT like, and

the flow of materials in the FMS is like that of a traditional jobshop. The order size of a

part type may vary as the external or the internal requirements change over time.

6

In a survey of 95 FMS's in the U.S.A. and Japan, Jaikumar (1986) found that

most FMS applications in the U.S.A. were in the dedicated mode: producing only a few

parts simultaneously. The average number of parts produced was 10; this number was 93

for Japan. Jaikumar asserts that the U.S. companies used the FMS the wrong

(inflexible) way- for high volume production of a few parts, not for high variety pro

duction of many parts at low cost per unit. This is also borne out by the annual volume

per part- 1727 for U.S. and 258 for Japan.

Thus, to really gain the competitive advantage of FMS, it is necessary to use it in

the random mode: low volume, high variety of parts. To enable this, decision support

methodologies need to be developed. The research described herein makes a contribu

tion to this goal.

Most FMS scheduling research has also been targeted at the dedicated mode of

operation of FMS. Little has been done to schedule the nondedicated (also called ran

dom) FMS. The scheduling problem for this type ofFMS is also the most difficult

since it resembles the jobshop scheduling problem closely. Indeed, it is even more com

plex than jobs hop scheduling on account of more alternatives and constraints.

Most of the FMS scheduling approaches fail to consider the effect of part trans

portation devices and the time required for this activity. Rachamadugu and Stecke

(1989) point out that this could be a substantial issue since the processing time and the

transportation times are comparable. Further, scheduling procedures typically neglect the

limited buffer space available at the machining centers.

In conformity with the dedicated role of FMS, parts are assumed to be made to

stock and the objective in the scheduling formulation is usually the maximization of pro

duction rate or machine utilization. But this objective is not suitable for random FMS,

where the scheduling is order driven. In this application, due date should be the primary

criterion for choosing among scheduling alternatives.

Statement of the Problem

To sum up, the extant models do not take into account the totality of the

scheduling problem in FMS:

1. Material handling constraints.

2. Buffer capacity.

3. Alternate routing of parts.

4. Tool transport and tool changes.

5. Due date and priority.

6. Material availability.

7. Fixtures and pallets availability.

8. Tool availability and tool life.

9. Machine failures.

10. Dynamic production environment.

11. Scheduling and control decisions must be made on-line.

Although the current approaches do address some aspects of these, they ignore

the others. The research problem addressed by this research may be stated as:

Existin~ schedulinfi techniQJ.Ies do not take into account all the relevant opportu

nities. constraints. and realities existin~ in a random flexible manufacturinfi system.

Outline of the Proposed Approach

7

The framework developed in this research presents a comprehensive methodology

for scheduling and controlling random FMS. The salient points of this approach are:

Dynamic

In the traditional approach, everything is assumed to be started ab initio. Jobs are

available at the start of the planning period. Once the schedule is decided upon, the

8

schedule is carried out in toto. Needless to say, this seldom happens in practice. Disrup

tions and unexpected changes continually occur on the shop floor. In the proposed

approach, the supervisory computer continually updates the schedule in response to the

events in the shop floor.

Reactive

The literature distinguishes between predictive and reactive scheduling. Predic

. tive scheduling involves advance planning - prediction of events. Reactive scheduling

reacts to the disruptions in the shop floor, and tries to bring the shop floor back on

schedule.

In the proposed approach, like in discrete event simulation, all scheduling activi

ties are event driven. A unified, reactive viewpoint is taken for all the events. The

schedule is always updated in response to events in an effort to meet the goals of the

scheduler. Arrival of new jobs is treated in the same fundamental way as the failure of a

machine - as an event.

Comprehensive

The proposed approach considers major constraints that exist on the floor.

Tooling. Traditional approaches overlook the existing tooling of the machines. It

is assumed that the machines will be completely re-tooled every scheduling period. In

the event driven scheduling proposed here, the tools already on the tool magazines are

taken into account as a planning factor. The tool changes are planned as necessitated by

the events.

AQY.. It is said that the transportation devices are not usually bottlenecks in the

operation of FMS's. But they still need to bear on the scheduling of FMS's.

9

Buffer Space. Although it is not a major concern, the storage for WIP is limited in

an FMS. Thus, FMS scheduling is constrained by the available buffer space.

Object-Oriented

The object-oriented paradigm has been employed because of its superior capabil

ity of modeling complex systems. It is used for the implementation of discrete event

simulation, embedded expert systems, and for control algorithms.

CHAPTER ill

BACKGROUND OF THE STUDY

Introduction

This chapter presents a review of the pertinent literature on the problem to be

addressed by this research. Production scheduling has had a long history as an object of

production management research. It is not the intent here to discuss all the results of this

research effort. This review focuses on scheduling problems of Flexible Manufacturing

Systems (FMS) with more emphasis placed on the specific problem areas and on the

approaches closest to this research.

Early scheduling researchers spent a lot of effort on finding algorithmic solution

of the particular problems of their interest. With the realization of the intractability of

the general problem, the emphasis has been placed on the analysis of complexity of the

problem. Algorithmic approaches are now being actively sought for only very small

problems - one or two machines or other problems of particular structures.

The general job shop scheduling problem is known to be NP-hard (there is no

known algorithm to solve it, that solves it in number of steps which is a polynomial of

the size of the problem). The FMS scheduling problem has more alternatives and con

straints than the job shop problem, and can be conjectured to be NP-hard too. Various

versions of the FMS scheduling problem have been shown to be NP-hard [Hwan and

Shogun, 1989]. On account of this intractability, researchers have suggested many

heuristical or other non-optimal solutions to the problem.

FMS scheduling literature could be classified in many ways. For the purpose of

this review, the following taxonomy, based on the basic approach, is used.

10

11

1. Mathematical programming approach

2. Heuristics oriented approach (dispatching rules)

3. Control theoretic approach

4. Simulation based approach

5. Artificial Intelligence (AI) based approach

6. Interactive approach

There is some cross fertilization among these approaches. For example, some AI

based approaches use simulation to generate or evaluate schedules. Similarly, an inter

active approach may use any of the other five methods. In the following discussion, the

approaches are classified on the basis of their main emphasis.

Mathematical Programming Approach

In this approach, the researchers have cast the problem into an Operations

Research model. Buzacott and Yao (1986) present a comprehensive review of the

analytical models developed for the design and control of FMS up until1984. They

strongly advocate the analytical methods as giving better insight into the system perfor

mance than the simulation models. The analytic models let the modeler identify the key

parameters and their influence on the performance of FMS.

Stecke (1983) appears to have done comprehensive work on the operational

aspects of dedicated FMS. She points out the opportunities provided by the FMS as the

reasons why managing production for an FMS is more difficult - the versatility of

machines, simultaneous processing of multiple part types, and alternate routing of the

parts.

To manage the complexity of the problem, Stecke and many other authors who

have followed her divided the FMS operation problem into two subproblems: preproduc

tion setup and production operation. In this view, a FMS is prepared beforehand for the

given part mix: loading the tools, allocating the operation to the machines, allocating the

12

pallets and fixtures to the different part types. After this preparatory planning phase, the

remaining problems are called operational problems and solved later. It should be noted,

however, that there is no clear boundary between the planning and the scheduling prob

lems, and one approach may place most of the burden on the planning stage, while

another approach may do the opposite. Stecke (1983) places stress on pre-production

setup of the FMS. This is to be carried out frequently, as the part mix changes. To carry

out a complete setup, a FMS manager would solve 5 problems:

1) Part type selection problem. This problem determines the part types to be pro

duced in the FMS out of the total production requirement of the company.

2) Machine grouping problem. Stecke would partition the machines in the FMS so

that machines in a group can all perform the same operations.

3) Production ratio problem. This problem is related to problem 1 -determine the

ratio of the parts selected to be manufactured in the FMS.

4) Resource allocation problem. This problem determines the allocation of pallets

and fixtures to the part types.

5) Loading problem. The solution to the problem will simultaneously allocate

operation of the part types and the corresponding tools to the machine groups.

The five problems could be solved successively, or in an iterative fashion. Stecke

(1983) then goes on to describe models for the grouping and loading problems. For this

problem, the major constraint is the capacity of tool magazines of each machine tool.

This is complicated by the different number of slots taken up by the tools, and the com

monality of the tools requirements of different part types.

Assume a total of m machines are to be grouped into a total of M machine groups,

and let

xu = 1 if operation i is assigned to machine group I, 0 otherwise

b = total number of operations to be assigned

and Cli = maximum number of machine groups operation i can be assigned to

13

Then,
M

1 s I,xu s q;, i = 1, ... , b

1=1

The tool magazine capacity constraints may be simply stated as

b
:2,dixil 5 tz, I= 1, , M

i=1

where di is the number of tool slots taken up by operation i, tz is the tool maga-

zine capacity of the machine tools in group I. The above formulation is overly simplistic

because it ignores the common tools for the different operations assigned to a machine

group. This becomes complicated on account of the set exclusion and inclusion opera

tion that needs to be done to take care of commonality. If w1· 1• 1• is the count of slots
12 3 ••

occupied by the tools contained in the intersection of the sets of tools required by the

operations iJ, i2, i3, ... ,then the tool magazine capacity constraint may be written as

b b-1 b

:2,dixil - L LWili2 Xill Xi2/

i=1 iJ=1 i2=i]+ 1

b-2 b-1 b

+ L L Lwili2i3 Xi II Xi21 Xi3l-• s tz
i]=1 i2=iJ+ 1iJ=i2+ 1

The minimum number of machines, M, required to cover all operations is calcu-

lated. This is done by initially considering each individual machine (there are min all)

as a group and posing the problem

m

Maximize L 'Yj slj

j=1

subject to

b b-1 b
Slj = tj- Ldi Xij + L LWili2 Xilj Xi~

i=1 iJ=1 i2=i]+1

b-2 b-1 b
- L L LWili2i3 Xilj Xi~ Xi~+

i]=1 i2=i]+1i3=i2+1

The parameter 'Yj is a parameter to weight the slack in tool magazines, slj. The

14

above formulation is subject to the other constraints defmed earlier. The object of this

formulation is to pack as many tools as possible in few machine tools, at the same time

making enough tool allocations to cover all the part types. The above problem gives the

number of groups M needed. If there are more machines than the number of groups, the

additional machines are tooled identical to some of the ones that are grouped. This way,

the machines are pooled to allow maximum flexibility.

In Stecke's methodology, the operations and corresponding tools are then

assigned (loaded) to the machine groups. She suggests 6 different objectives to optimize

during the loading phase.

1. Balance the assigned machine processing times. The relative workload rj

assigned to machine j may be defmed as

b
rj = L aiPijXij,

i=1

j=1, ... ,m

where a; is the proportion of part type i relative to the other part types, (that is,

the part types are in the ratio a1 : a2 : ... : ab), Pij is the processing times of part type i

on machine j. (There is a change in notation here. The previous notation for operations

15

is now used for part types). Then, to balance the assigned machine processing times, she

suggests many objectives, one of which is given below:

m-1 m
Minimize L, L, lfj - rhl Y, 'Y > 0

j=1 h=j+1

2. Minimize the number of movements from machine to machine. This objective

may be stated as

b-1 m
Minimize L L,(xij - Xi+ 1, j) 2

i=1 j=1

3. Balance the workload per machine for a system of groups of pooled machines

of equal sizes. Here, instead of the machines, it is sought to balance the workload across

groups. If sl is the number of machines assigned to group /, and r1 is the load on group /,

then this objective may be stated as

M-1 M [rl rk] 2
Minimize L L - --

s1 sk
i=1 k=/+1

4. Unbalance the workload per machine for a system of groups of pooled

machines of unequal sizes. This objective stems from earlier results of Stecke and Solberg

(1982) that recommends unbalancing the workload for each machine when the pooled

group sizes are unequal in order to obtain maximum production rate. This objective may

be stated as follows:

M
Minimize L (r1 - Xt*) 2

/=1

16

Xz* in the above expression is the theoretical optimal workload that should be

assigned to machine group I to maximize expected production [Stecke and Solberg,

1982].

5. Fill the tool magazines as densely as possible. The rationale of this objective is

to allow the greatest number of alternate routings. This objective is similar to the earlier

formulation to determine the minimum number of machine groups M, except it is sought

to place as many tools as possible.

m
Minimize L slj

j=1

6. Maximize the sum of operation priorities. Here, again, most operations are

sought to be assigned to multiple machines to permit alternate routings.

b m
Maximize~ ~ w·x·· ~ £.. I I)

i=1 j=1

The weight w i on the operations is used to favor more critical operations such as

bottleneck operations.

The formulations of Stecke (1983) lead to large nonlinear mixed integer prob

lems. She suggests various linearization schemes. Stecke's planning problems place

much of the scheduling problem in the setup stage. Once the setup is done as per the five

specific sub-problems, most of the resource allocation is already complete. The setup is

carried out for a particular part mix.

It is not clear when one of the six loading objectives is to be favored over the oth

ers. In some cases, where the machine tools are separated over a long distance, the

choice is obvious. In other cases the answer is hard to discern. The grouping problem

does not consider the production ratio ai. Thus, it could give an answer which is not

17

desirable from the view point of maintaining the production ratio. Another problem with

the formulation is the large number of variables and constraints that result from the

linearization of the problems. That makes the approach computationally expensive.

Stecke's approach is explained above at length because other mathematical

modeling approaches build upon this foundational work. Lashkari et al. (1987) devel

oped a formulation of the loading problem. Their formulation considered refixturing

and limited tool availability. Refixturing of the parts may be required when a different

machine is used, or when a different machining operation is performed in the same

machine tool. Besides this problem, they place an upper bound on the number of tools

that may be assigned. Their approach assumes that between all machine transfers, a part

necessarily passes through a central storage. They consider two objectives:

1. Minimization of total transportation requirements of the parts. This could be

an important objective where the distance between machining centers is large relative to

the operation time. This is Stecke's second objective.

Defme X;J,k = 1 if operation k of part type i is assigned to machine j

= 0 otherwise

0; = number of different operations to be performed on part type i

M = number of machine tools in the FMS

Then the distance traveled by part i for the first operation

M
= I,CLj. X;J,l), where Lj is the loading distance to machine j

j=1

Similarly the distance traveled by part i for the last operation
M

= I, (Uj . X;J,(O;)), where Uj is the unloading distance from machine j

j=1

The total distance traveled by part i for inter-machine transfers

0,-lM

= L L cxij,k - xij,k+J)2 cui. xij,k + Li. xij,k+J)
k=lj=l

18

And, fmally, if there is a refixturing, it needs a transfer to the central storage and

back even if the operation is carried out in the same machine tool. This distance

0,-lM

= L L (X;j,k. X;j,k+J). F(i,k+lJJ). (Uj + Lj)
k=lj=l

where F(i,k,p,q) = 1 if refixturing is needed by part type i for operation k , and kth

operation is done on machine q and (k-l)th operation is done on machine p, 0 otherwise.

The sum of these 4 terms is the total distance Di for a part type i. To minimize the trans-

portation load, the objective is

R
Minimize Z = I, D;. where R is the total number of part types in the FMS

i=l

2. Minimization of refixturing requirements. Number of refixturings needed by

part type i for operation k

= Q(i,k) = ~ X;,p,(k-1) [~ (X;,q,k. F(i,k,p,q))]
p=l q=l

To minimize the total number of refixturings for all the part types produced in the

FMS, the objective is to minimize Z, where Z is given by

R 0;
Z= L L,Q(i,k)

i=l k=2

They restrict the allocation of part types to single machines. This results in the

constraint

M
L, X;J,k = 1 for each pair i, k

j=1

19

When desirable, certain operations may always be grouped together on a machine

tool.

M
L, IT X;J,k = 1 where G is the set of operations to be grouped.

j=1 G

Let Yj,H = 1 if machine toolj is equipped with tool of type H.

= 0 otherwise.

If the number of available tools of type H is h, then

M
L, Yj,H $ h for each tool type H

j=1

The constraint arising out of the capacity of the tool magazines is expressed in the

same way as Stecke (1983), already explained above.

The above objective functions and the constraints have products of 0-1 integer

variables. Lashkari et al. (1987) linearize the formulation to solve the problem using

linear integer programming code. Their computational experience shows that even for

small problems (2 to 5 part types, 2 to 5 operations per part), the problem size becomes

considerably high. In order to reduce the search, they suggested dividing the problem

into two sub-problems, the result of which could be used as an upper bound for the origi-

nal problem.

20

Unlike Stecke, Lashk:ari et al. will permit only one allocation of a machine to an

operation. This would curtail some flexibility at the operation control level. Their

modeling is suitable only when the parts must always traverse to and from a central stor

age for every inter-machine transfer. Further, the objective function lacks the relative

weighting for the different part types.

Wilson (1989) used simpler and more straight forward formulation of the con

straints to solve the same problem as discussed by Lashk:ari et. al. (1987). He was able to

do this for the reason that not all X;J,k are permissible to begin with. Thus all tool allo-

cations need not be constrained. The non-linear terms in the first objective function

could also be eliminated by restructuring the expression. He demonstrated substantial

savings in computational effort using his modeling of the constraints and the objective

function.

Shanker and Rajamarthandan (1989) present a similar model with the objective of

part movement minimization. In contrast to Lashk:ari et al. (1987), they do not require

the parts to go to a central storage after every operation. Also, they are not interested in

the distance traveled: only the number of movements is of concern. This changes their

objective function to (in terms of the notation of Lashk:ari et al.)

R Or1M
Minimize L L L (X· ·k- X·· 1.\2

lJ, lJ+ ·"'
i=1 k=1j=1

They also consider the same constraints. Like Wilson (1989), they exploit

the particular structure of the problem to obtain linearization of the problem. They also

reported that high computational effort was required.

Han et al. (1989) address the setup and scheduling problem in a special type of

FMS: where all the machines are of the same type, and tools are 'borrowed' between

machines and from the tool crib as needed. In their model, the number of tools is lim-

ited. The purpose of their model is to assign tools and jobs to machines so that the

'borrowing' of tools is minimized while maintaining a 'reasonable' workload balance.

Defme:

ajt = 1 if part type j requires tool type t, 0 otherwise

xit = 1 if tool type t is assigned to the magazine of machine tool i, 0 otherwise

y ij = 1 if part j is assigned to the machine tool i, 0 otherwise

Then the number of tool types required by a job j is given by

where I is the number of tool types.

If the job j is assigned to the machine tool i, the number of tools available there

for jobj,

1
eij = Lajt xit

t=1

To minimize the number of tools to be borrowed the objective may be written:
m n

Minimize ~ ~ (r·- e··) y·· · where m is the number of machines ~ ~ J l) l)'
i=1 j=1 and n is the number of jobs.

There is a limited number (cr) of each type t of tools available.

m
L X if $ c1 for t = 1, 2, ... , 1

i=1

The tool magazine of machine tool i has limited capacity si:

I
L xit $ si fori= 1, 2, ... , m

t=1

Each part type is assigned to one machine tool

21

m
I, Yij = 1 for j = 1, 2, ... , n

i=1

If total processing time of job j is Pj• then the load on each machine i is

n

LPjYij

j=1

For a perfect balance of the workload, the load on any machine should be
n

b=

LPj

j=1
m

The objective of workload balance is framed as a constraint. The workload im

balance is defined by a, and the constraint may be written,

n
b (1 - a) :S I, Pj Yij :S b (1 +a), i = 1, 2, , m

j=1

22

The problem as posed above is a nonlinear integer programming problem, and is

computationally expensive. To solve the problem efficiently, the authors propose to

decompose the problem. The two sub-problems each have the same objective as shown

above. But the constraints are divided. The first problem finds an optimum tool alloca

tion xit, given the job allocation Yij· This will need the frrst two constraints only. The

second problem fmds an optimal job allocation Yij• given the tool allocation xit. Phrased

in this way, both problems become linear. The first problem is a capacitated transporta

tion problem, and the second is a generalized assignment problem. It is suggested to

solve the two problems iteratively.

They also propose a greedy heuristic to solve the same problem. Their heuristic

does not consider the workload. The jobs are assigned to the machines with the largest

processing times assigned frrst. Then the number of times each tool type is required at a

23

machine tool is determined. A machine tool with the highest requirement is allotted the

tool. This process is repeated until there are no more of both machine tools and tool

types left to assign.

Han et al. (1989) also carried out a simulation study of throughput performance

under two different setup procedures (decomposition, heuristic), two queue formation

methods (common queue of incoming parts, individual queue of machine tools), two tool

return policies (return borrowed tools when finished, return only when needed) , and four

dispatching rules (longest processing time, least number of tool movements, shortest pro

cessing time, random). They recommended their heuristic tool loading method together

with a policy of not returning a tool until needed. The differences between the dispatch

ing rules were not found significant.

The FMS investigated by Han et al., is special. All machine tools are assumed

identical. Consequently, the jobs remain at one machine, and the tools are moved to the

machines as needed.

Random EMS.

The dedicated FMS problem assumes a fixed part mix. As seen above in Stecke

(1983), the part mix is selected from the total production requirement of the company.

When the machines in the FMS are grouped, and loaded with the parts, the operation of

the parts is allocated to the machines. Then until the production allocation is changed

again, the FMS is operated in the same way as a job shop since the allocation of opera

tion and tooling of the machines is taken care of. If the parts visiting the machine are not

selected in advance, the operations need to be allocated as the parts arrive and the

machines need to be tooled correspondingly. ··This type of FMS is called "random

FMS".

24

Hutchison et al (1989) provide a mathematical formulation of the problem. Their ·

formulation is a static one in which N jobs are to be scheduled on M machines. The

objective is to minimize the mak:espan:

Minimize T max

subject to

Xi(g+l)k(m)- Xigk(m) + H (1 - Vi(g+l)k{m)) ~ Pi(g+l)k(m)

fori= 1, ... , N; g = 1, ... , Q; -1; k = 1, •.. , Z;(g+l)

where Xigk(m) is the completion time of the kth option of operation g on machine m of

job i; His an arbitrarily large number; Vigk(m) = 1 if the kth option of operation g on

machine m of job i is used, 0 otherwise; Pigk(m) is the processing time of kth option of

operation g on machine m of job i; and T max is the largest completion time for the last

operation of all the jobs; Z;g is the number of alternative machine options for operation g

of job i.

This constraint assures the precedence relations of the operations.

Xigk(m)- Xjhq(m) + H (1 - Yigk(m)jhq(m)) ~ Pigk(m) Vigk(m)

Xjhq(m) - Xigk(m) + H (Y;gk(m)jhq(m)) ~ Pjhq(m) Vjhq(m)

fori= 1, ... , N; g = 1, ... , Q;; m = 1, ... , M

where Yigk(m)jhq(m) = 1 if the kth option of operation g on machine m of job i precedes

qth option of operation h on machine m of job j , 0 otherwise; Q; is the number of

operations in job i.

These constraints ensure that no two operations are processed on a machine simultane

ously.

XiGk(m)::; Tmax fori= 1, ... , N; k = 1, ... , Z;g

This constraint defines T max as the largest of all operation completion times.

Xilk(m) ~ Pilk(m) Vilk(m) fori= 1, ... , N; k = 1, ... , Za

This ensures that the completion time of the first operation must be equal to or greater

than its processing time.

25

Xigk(m) S HVigk(m) fori= 1, ... , N; g = 1, ... , Qi; k = 1, ... , Za

This constraint sets the unused operation completion time to zero.

Zig

L Vigk(m) = 1 fori= 1, ... , N; g = 1, ... , Qi

k=1

This is needed to select only one machine option.

This is a mixed integer 0-1 programming formulation. They solve this problem

by a branch and bound scheme. As can be seen, a single formulation solves the allocation

of the operations to the machines and the timed sequence of the operations. However,

their study assumes that material handling devices, pallets, buffers, and tool magazines

do not constrain the system. Further, at most one alternative is allowed for any operation.

An alternative approach to the above problem is to decompose it into two sub

problems. The first problem is the allocation of the jobs to the machines in the routings.

The second problem is the time bound sequencing of the jobs, the standard job shop

problem.

Hutchison et al (1989) report on a comparison of the performance of the above

two methodologies and another methodology which was based on dispatching rule

(SPT). A novel feature of their simulation experiment is their use of a measure of flex

ibility: probability of an alternate machine option for any operation. This measure was

set at nine levels in their experiment.

They concluded that the programming formulations produced substantial

improvement in makespan over the dispatching rules. However, as compared to the

decomposed problem, the unified formulation did not produce significant improvement

in makespan to justify the additional computational effort required.

In the above approach, the tool magazines do not constrain the system. Hence the

fust subproblem of the decomposition can allocate all the jobs to their machines. How

ever, when the tool magazine is considered restraining, it may not be possible to allocate

26

all the jobs for one tooling setup. Then this subproblem resolves to a selection problem.

Out of the pool of waiting jobs, jobs are selected to be processed in the next planning

period (part type selection problem) . The selected parts are then sequenced. The process

is repeated period by period. In this approach, it is assumed that at the beginning of each

planning period all the tools are reassigned and replaced in the tool magazine.

Shanker and Tzen (1985) propose a mathematical programming approach to solve

the part selection problem for random FMS. Their approach is similar to [Stecke, 1983].

Stecke assumes the part ratio as given and the planning horizon as indefmite whereas

Shanker and Tzen consider individual parts and a fixed planning horizon. They have a

constraint on the tool magazine capacity which is very similar to Stecke's. They con

strain the model to find a unique routing for each part type (in contrast to Stecke).

:2, xi kG S 1, i = 1, 2, m; k = 1, 2, y i

GeB(i,k)

Here, B(i,k) is the set of machines on which operation k of job i can be per

formed. xikG = 1 if operation k of job i is performed on machine G, 0 otherwise. y i is

the number of operations for job i.

They do not allow splitting of the job between planning horizons.

otherwise.

Yi n
L I,xikj = x; Y;. i = 1, 2, m

k=1 j=1

where x; = 1 if job i is selected for production in this planning period, 0

The overload and underloads on the machines may be specified as a constraint.

m Yi
L I Piki xiki +vi- oi = H, j = 1,2, n; vi, oi ~ O; u1oi = o
i=l k=l

where Pikj is the processing time of operation k of job i on machine j; Uj and Oj are the

underloads and overloads for machine j; and H is the length of the planning horizon.

Two objectives are considered:

1. Balancing the workload. The objective is to minimize the sum of both the

overload and the underload of all the machines. This will attempt to load the machines

as close to capacity as possible.

n n
Minimize ZJ =I Woj oj +I Wuj uj

j=l j=l

27

where w oj is the weight on overload Oj and w uj is the weight on underload Uj for

machinej.

2. Balancing the workload and minimizing the number of late jobs.

n n m wd·x·

Minimize z2 = I Woj oj +I Wuj Ur ~ max (D: ~,-2H)
j=l j=l J=l

To minimize the late jobs, w di weights the job i, R; is the remaining time on job i.

Dis a parameter with small value that influences the selection of late jobs. Jobs due

within two planning horizons will be given higher priority.

The resulting problems are, again, non-linear integer problems. They suggest

linearization schemes. Even after linearization, the problems are computationally too

expensive, and they further propose two heuristics corresponding to the two objectives.

For balancing the workload, they propose essentially a greedy heuristic which attempts to

allocate to the most lightly loaded machine the longest operation first. For the second

28

objective, the same heuristic is modified to include the overdue jobs with the highest pri

ority. Their computational experience showed that the analytical formulations would be

too formidable to be of practical use, and they suggested further research to obtain better

heuristics.

In the above approaches for random FMS, the scheduling of the FMS is decom

posed into two problems: part type selection, and sequencing of jobs. The sequencing is

done using one of the dispatching rules. Of course, some (e.g. branch and bound) search

could be used to solve the sequencing problem too. Hwan and Shogun (1989) present the

part selection problem for a random FMS with machines of a single general purpose type

capable of producing all part types. They include the due date and the quantity of parts

needed to be produced in their formulation. By ignoring the tool overlapping (cf. Stecke,

1983), they considerably simplify the tool magazine constraint. Their objective is to

maximize the number of part types selected over a planning horizon, a surrogate for

maximizing the production rate. They take care of due dates by weighting on the

selected part types. By assuming a single machine type, their problem essentially boils

down to maximizing the utilization of the tool slots in the tool magazines. They report

computational experience on two Lagrangian relaxation techniques they used to solve the

problem. Their heuristics and Lagrangian methods obtained solutions close to optimal

solutions found by the Branch and Bound method. The CPU times required by the three

methods are successively order of magnitudes higher.

Jaikumar and Wassenhove (1989) propose a hierarchical planning and scheduling

decomposition of FMS operation problems. In the first level, an aggregate production

model is used. This is a linear programming model that chooses parts to be produced in

a FMS during the next planning period. The remaining parts are assumed to be produced

elsewhere at a cost difference. The objective is to maximize the cost difference while

allowing for the inventory cost for work in process. The essential constraints are the

demand for the parts and the machine capacity. The second level objective will organize

29

the production requirements into part families to minimize family setup cost and tool

setup cost while the production requirement determined in level one acts as a constraint.

Put simply, the objective of the second level is to minimize tool changeover. The pro

duction requirements and the tool and machine allocation are determined in levels one

and two. All that remains in the third level is to determine a feasible schedule that will

fulfill the above requirements. Detailed requirements such as buffer requirements, and

material handling constraints, are taken care of at this level. Jaikumar and Wassenhove

recommend simulation using some dispatching rule to carry out this level. If a feasible

schedule cannot be obtained, the planning process is reiterated. They discuss the appli

cation of their framework in an existing FMS and point out that the primary problem is at

the first level - selection of parts. Once this is decided upon, the other two problems can

be solved by simple heuristics.

Planning of a FMS is a problem with multiple criteria. Lee and Jung (1989) for

mulate a part selection and allocation problem using goal programming. Their model

considers the goals of 1) meeting production requirements, 2) balancing of machine uti

lization, and 3) minimization of throughput time of parts. Deviational variables repre

senting the under- and over- achievement for each of the goals are used to measure the

deviation from the goal. The model casts even the technological constraints into goal

constraints. The goal programming model of Lee and Jung can provide the decision

maker with a satisficing solution for given goals and their prioritization. But even with

restrictive assumptions, the model is computationally expensive for practical use.

It has been pointed out in the course of the above discussion that the mathemati

cal programming formulation of the problem tends to get computationally expensive as

the problem size increases. The only way to use these models is to use the heuristics

which are offered as approximations to the models. But then they do not optimize any

more. The models make simplifying assumptions which are not always valid in practice.

The assumptions, of course, change with the models: some models assume automatic tool

30

transport, some others will neglect delays caused by AGV's, still others will assume that

tool magazines, pallets and fixtures do not constrain the models in any way, and so on.

The models also take a static view of the shop floor. It is assumed that all the planned

activities will be carried out exactly, or the disruptions are infrequent enough that period

ic solution of the problems will be practical.

Hueristics Oriented Approach

To counter the difficulties mentioned above, use of simple heuristics or dispatch

ing rules has been suggested. Given that a resource is idle, the heuristics will quickly

yield the operation it should carry out. Given that an operation is finished, the heuristics

will say where the job needs to go. Extensive study of these dispatching rules have been

carried out in the general job shop context [Conway, 1965; Conway, 1965b; Gere, 1966;

Panwalker and Iskander, 1982]. In the same vein, numerous simulation studies of dis

patching rules have been carried out in the FMS area. A comprehensive survey is pre

sented in [Gupta et al., 1989]. Some significant results are discussed below.

Nof et al. (1979) carried out a study of different aspects of planning and schedul

ing of FMS. They explore the part mix problem, part ratio problem, and process selec

tion problem. In the scheduling context, they report on three part sequencing situations:

1. Initial entry of parts into an empty system

2. General entry of parts into a loaded system

3. Allocation of parts to machines within the system (dispatching rules)

They examined three initial entry control rules, two general entry rules, and four

dispatching rules. Their conclusion was that all these issues were interrelated: perfor

mance of a policy in one problem is affected by choices for other problems.

Stecke and Solberg (1981) investigated the performance of dispatching rules in a

FMS context. They experimented with five loading policies in conjunction with sixteen

dispatching rules in the simulated operation of an actual FMS. Under broad criteria, the

31

shortest processing time (SPI') rule has been found to perform well in a jobshop envi

ronment [Conway,1965; Conway, 1965b]. Stecke and Solberg, however, found that

another heuristic- SPT/fOT, in which the shortest processing time for the operation is

divided by the total processing time for the job - gave significantly higher production rate

compared to all the other fifteen rules evaluated. Another surprising result of their simu

lation study was that extremely unbalanced loading of the machines caused by part

movement minimization objective gave consistently better performance than balanced

loading.

Buzacott and Shantikumar (1980) consider the control of FMS as a hierarchical

problem: a) Pre-release phase, where the parts which are to be manufactured are decided,

b) Input or release control, where the sequence and timing of the release of jobs to the

system is decided, and c) Operational control level, where the movement of parts be

tween the machines is decided. Their relatively simple models stress the importance of

balancing the machine loads, and the advantage of diversity in job routing. Buzacott

(1982) further stresses the point that operational sequence should not be determined at

the pre-release level. His simulation results showed that best results are obtained

when:l) For input control, the least total processing time is used as soon as space is

available, and, 2) For operational control, the shortest operation times rule is used.

In the study of Shanker and Tzen (1985), the formulation of the part selection

problem is mathematical; but its evaluation was carried out in conjunction with dispatch

ing rules for scheduling the parts in the FMS. Further, on account of the computational

difficulty in the mathematical formulation, they suggested heuristics to solve the part

selection problems too. They used four dispatching rules: FIFO, SPT, LPT, MOPR

(most operations remaining first). They felt that they had not done enough simulation

runs to conclude either way about the dispatching rules. But they conjectured that

MOPR would perform better (in terms of machine utilization) when the workload is bal

anced. On the average, SPT performed the best.

32

Moreno and Ding (1989) take up further work on heuristics (for part selection) as

mentioned above, and present two heuristics which reportedly give better objective val

ues than the heuristics in [Shanker and Tzen, 1985]. This, however, they are able to do

by increasing the complexity of the heuristics. Their heuristic is 'goal oriented' - in each

iteration, they evaluate the alternate routes of the selected job to see which route will

contribute most to the improvement of the objective. Otherwise, their heuristic is the

same as that of Shanker and Tzen.

Chang et al. (1989) report on a heuristics based beam search technique designed

to solve the random FMS scheduling problem. Beam search is a breadth first search

technique in which an evaluation function is used to retain only a certain number of

nodes to sprout at every level. The number of retained nodes is called the beam width of

the search. The quality of the solution, of course, depends on the evaluation function.

The root of their search tree has no operation scheduled. They progressively go along

the time line and schedule more and more operations until at the final leaf, all the opera

tions are scheduled. At each node, to evaluate the schedule, they carry out a simulation

using the SPT rule. This SPT rule identifies the critical path in the schedule. This is

analogous to the Critical Path Method (CPM). For the first machine in the critical path,

they evaluate all the possible alternate assignments. Only a certain number (beam width)

of assignments is then fixed depending on the makespan obtained.

A contribution of Chang et al. is a measure of flexibility of the manufacturing

system. This is called a flexibility index. It denotes the average number of workstations

able to process an operation. Flexibility index is 1 for the conventional job shop. For

various values of the flexibility indices, they compare their algorithm against several dis

patching rules. As can be expected, their algorithm gives better results than the dispatch

ing results at the cost of increased computational effort. It can also be seen that as the

flexibility of the FMS increases, even a beam width of 1 gives very good results.

33

Chang et al. do not consider the tool magazine as restraining. They do not con

sider the pallets, fixtures, and transportation devices either. The only constraints consid

ered are the capacity constraints, precedence constraints, and the routing (which may

have alternate machines). This limits the usefulness of their approach.

Donath (1988) developed a heuristic based hierarchical methodology to schedule

a FMS in near real-time. In his approach, at every point of decision, e.g. completion of

a job, a program called 'SCHEDULE' is run. This makes decisions on the next assign

ment of assignable operations. His decomposition has two main subproblems. In the

first, a cost of assigning an operation to a machine is calculated on the basis of process

time, idle time, and the average time for that operation. Secondly, a generalized assign

ment problem is solved to assign the jobs to the machines. All the pending operations

are assigned even if they were assigned already (but not carried out). The runtime of

SCHEDULE is said to be near real time (about a minute). However, the tool magazine

capacity of the machines is not considered in this methodology.

Slomp et al. (1988) consider three quasi on-line procedures for scheduling FMS's.

These procedures are essentially heuristic rules for the selection of a workstation, a trans

port device, and an operator. The selections are made hierarchically, and the three proce

dures differ in the way these selections are placed in the hierarchy. In the Function

Sequential Scheduling (FSS) procedure, the selections of workstation, transport device,

and the operator are made for each operation sequentially. The Function Integrated

Scheduling (FIS) makes all the three assignments simultaneously. In the Function

Phased Scheduling (FPS) procedure, the workstation assignments are completed first, in

phase one; then, the transport device and operator assignments are made in phase two.

Simple rules, analogous to dispatching rules, were used for all the selections. The work

station that can start the earliest is assigned. The transport device that can be available

earliest is used. Similarly, the operator that can finish his activities at the earliest

moment is selected for the operation. For the selection of jobs, four dispatching rules

34

were used: SPT, SPT{fOT, SPT*TOT, and EFTA (Earliest finishing time with alterna

tives considered). When the makespan is used as the criterion, the SPT!fOT rule per

formed the best. This result is the same as that of Stecke and Solberg (1981), although

their criterion was the production rate. Slomp et al. concluded that FPS performed worse

than FIS and FSS, and that FIS is to be favored when there is heavy workload on trans

port devices and operators, otherwise FSS is recommended.

Heuristic rules are excellent for dynamic problems. Some of them, for instance,

SPT, have very little computational overhead, and still give good results. A scheduler

will need to only decide on the heuristics to be used for each type of decision: resource

allocation, job allocation, tool change, etc. Then the system can run automatically using

the rules. However, the scheduler has to live with suboptimal results. The performance

of the rules change considerably depending on the system state. Thus it is not always

easy to select appropriate rules.

Control Theoretic Approach

Gershwin et al. (1986) present a control theoretic perspective on the production

control aspects of FMS. Kimemia and Gershwin (1983) presented a closed loop hierar

chical formulation of the FMS scheduling problem. Akella et al. (1984) describe the per

formance of a simulated model of an actual facility using this hierarchical policy. A

FMS is considered where parts are manufactured to meet a certain demand which could

be varying over time. There is a penalty for exceeding the demand as well as not meet

ing it. Thus it would be best to produce exactly at the same rate as the demand; but this

cannot be done on account of the failure of the machines. Stochastic machine failures are

considered, which are smoothed by providing buffers of the parts.

The heart of this control theoretic scheduling policy is to maintain a steady safety

buffer of the parts produced in the FMS, as long as it is feasible to do so. The opera

tional state of the FMS can be defmed by a vector a, the ith component of which indi-

35

cates the number of operating machines of type i. The production rate u is defined as a

vector whose jth component represents the instantaneous rate of production of part type j.

A characteristic of the framework is that it is constrained to fmd a solution within the

production capacity of the FMS. For each machine state~. a capacity state .0(!!) can be

defmed which is the set of possible production rate vectors y. For each ~. a safety buffer

level Hj (!!) is defmed for each part type j. At any point in time, the production rate

vector .u is found by solving the linear program.

Linear Program:

Minimize £ .u

subject to

L tij uj 5 a.i for all i (feasible production rate)

j

.u ~ .Q

where £ is a vector of cost coefficients for each part type, and tij is the load on

machine i due to a unit vector of production rates. Thus, depending on the vector£, and

the machine state ~. a particular production rate .u is chosen. As an approximation, for a

given buffer level Xj, Cj is estimated by

cj (xj) = Aj (!!) (xj- Hj (!!))

where Aj (!!) is a positive quantity indicating the relative value and vulnerability

of part type j.

Their hierarchy is based on the frequency of events. Decisions about events of

higher frequency is made at a lower level of hierarchy.Three levels of hierarchy are sug

gested. The frequency of events at a particular level is an order of magnitude smaller

than that at a lower level. The top level of the hierarchy calculates the vector Hj for each

machine state~. As an approximation, Akella et al. (1984) suggest

36

where .dis the vector of demands for the parts, and Tj is the average mean time to repair

of all the machines part j visits. A higher hedging point Hj is required if more time is

required to repair the machines, and if there is a high demand for a part type j. The

safety stock needs also to be higher if the part is more vulnerable to failure. They sug

gested

Aj = number of machines that part type j visits.

These parameters are suggested only as approximations. More complicated formulations

are available. As can be noticed, the need to determine these occurs only if the configu

ration or the part mix of the FMS changes.

At the middle level, calculations need to be done more frequently. From the

parameters given by the top level, the vector of cost coefficients &. is calculated, and the

linear program is solved. This is to be done on-line. This results in a vector of produc

tion rates y. The lowest level of the hierarchy dispatches parts in such a way that the

flow rates ll established at the middle level are achieved.

A rigorous formulation of the above hierarchical framework is provided by

Gershwin (1989). The simulation results of Akella et al. show that their hierarchical

scheduling methodology produces high output with low work in process. It is able to

track the demand on the system very closely while coping with disruptions due to

machine failure.

As can be seen, the closed loop control policy is tailored for a dedicated FMS

producing a particular part mix. The tooling of the FMS, buffer capacity and other con

straints are not considered. It is assumed that the input of a part is a sufficient control

decision, and the (alternate) routing, possible deadlocks, blocking, etc. need not be con

sidered. Further, the possible effect of long total processing times of parts in the FMS on

the feedback loop is ignored.

37

Simulation Based Approach

Recently some authors have presented discrete event simulation as a scheduling

tool. Basically, simulation is proposed as a tool to evaluate the dispatching rules. This is

not an entirely new approach: the study by Conway (1965, 1965b) was based on simula

tion. What is new is that the authors suggest using data from the actual FMS for simula

tion. Thus a simulation model of the 'real production system' is built. The simulation

model is initialized to the exact current state of the factory. The dispatching rules are

then tested on this model. Obviously, a large amount of data gathering is necessitated by

this approach to initialize the model.

Although not specifically targeted for a FMS, FACTOR [Anon., 1990] is an

example of a commercial software product based on this approach. It takes over where

MRP leaves off, and it carries out detailed finite capacity scheduling of the factory using

simulation. Choices of sequencing rules are provided. Simulation can be carried out

using any of these rules and various other scenario - shift changes, maintenance, failure

of machines, etc. Detailed performance reports for all of these scenarios, as well as com

patible information are presented. Gantt charts, and shop orders are also generated.

FACfOR [Grant, 1989] provides two standard interfaces: a modeler's interface for the

person who builds and maintains the simulation model, and a scheduler's interface for the

operator using the model on a daily basis. FACfOR may be used both as a scheduling

tool and for 'what ifl' analysis of scheduling alternatives. It may be used to reschedule in

the event of unforeseen events on the shop floor. Practical experience with FACTOR is

described in [Robbins, 1986].

Yancey and Peterson (1989) report on the synthesis of expert systems with FAC

TOR. Two expert system modules have been incorporated into the FACfOR system.

Output Analysis System (OAS) is an expert system shell which generates rulebases for

analyzing a schedule. These rulebases then detect problems and suggest improvements to

38

the schedule generated by FACfOR. The solutions are incorporated into a new revised

schedule. The shell generates an inference engine which is embedded in the rulebase.

This makes for efficient running of the expert system. Rule bases are created as needed

by the modeler, with a particular purpose in mind - for example, to detect late orders, or

to suggest solutions for late orders, etc. Similarly, Site Specific Tailoring (Ssn is used

to create rulebases for making decisions during simulation. The rulebases implement

sequencing decisions, resource selection, etc. SST rulebases tend to be small (less than

ten rules). SST provides a customized inference engine for each rulebase. When a rule

base is invoked, it retrieves context sensitive data from FACfOR and after running its

rules, returns its inference.

Grant et al. (1989) propose a framework that carries out adaptive and predictive

scheduling in real-time. This approach derives from FACTOR, and is based on five

components. SCHEDULER generates a schedule of the operations of the factory. Like

FACfOR, this is done by simulating a detailed model of the plant. MONITOR is their

next module: it tracks the on-going progress of the schedule. This consists mainly of

data sampling, and communications with the processes. Performance measures are

calculated. COMPARATOR compares the performance with the planned schedule. This

module will signal when the performance is beyond control levels, called "performance

tolerance fences". RESOLVER uses Expert Systems technology to determine what, if

any, action needs to be taken. It decides how cost effective rescheduling is going to be.

In the event of rescheduling, it determines the method to do so. ADAPTOR uses discrete

event simulation again to determine a new schedule to patch up with the original sched

ule. An expert system is used to select the heuristic, time horizon, and the components

involved for this adaptive scheduling. Simulation experiments carried out to determine

the feasibility of this methodology have reportedly yielded encouraging results.

Davis and Jones (1989) propose concurrent simulation to carry out production

scheduling. In their scheme, multiple simulators of a production facility are initialized to

39

the latest state of a FMS. These simulators are stopped after some time. The simulations

are then analyzed as terminating simulations to decide on the best rule to use.

Synergism between expert systems and simulation is used in an on-line schedul

ing system called ESS (Expert System Scheduler). Jain et al. (1989) describe the devel

opment of a scheduling system which communicates on-line with the factory control

system, generating schedules in real-time. The scheduling decisions are based on the

expertise of an experienced scheduler. The system is based on LISP, and uses object

oriented concepts for both the expert systems and simulation. It is possible to run the

simulation backward in time to obtain starting time-windows for jobs. The major reason

for implementing backward simulation was implementation of llT concepts. With this

concept the job can be started at the latest possible time. Conflicts are resolved by shift

ing individual jobs in the schedule forward or backward. The system reacts interactively

with the user, and permits solicitation of more information by the user, or changing of

the schedule. At the time this article was written, the system had been controlling pro

duction at an automated manufacturing facility for several months.

Manivannan and Banks (1989) propose a framework for a knowledge-based on

line simulation system (KBOLS) to control the manufacturing shop floor. The main

component in their scheme is a knowledge based controller (KBC) which is modeled

after blackboard systems in AI. The blackboard system was originally proposed in

HEARSAY-I speech understanding project [Barr and Feigenbaum, 1981]. It has multi

ple 'knowledge sources' (KS) , which are expert systems, each with their own field of

expertise. KS's are activated under specified conditions. A 'scheduler', which is itself a

specialized knowledge source sequences the different knowledge sources. These KS's

work cooperatively to solve the problem at hand. KS's communicate with each other

through generally accessible messages- hence the name 'blackboard'. Blackboard archi

tecture based planners are particularly suitable [Young, 88] for factory scheduling: 1)

they can be driven by external events posted on the blackboard; 2) independent knowl

edge sources lend themselves to ease of modifications.

40

Four independent knowledge bases (KB) are proposed for KBC. The factual KB

contains historical knowledge and the current system status. The procedural KB has

algorithms and procedures for loading, routing, and scheduling of parts and processing

stations. The temporal KB keeps track of time of event occurrences on the shop floor.

The on-line simulation KB has rules to determine when to execute the simulation and to

set the simulation parameters. KBC monitors the shop floor activities and when a fault

occurs, it collects all the data from the concerned cell. A fault diagnosis is carried out,

and if the fault has occurred before, a learning module (which has learned the previous

response) provides the steps to be carried out. If it is a new fault, all the factual, proce

dural, and temporal knowledge are collected. The on-line simulation KB is called to

determine whether a simulation is necessary, and what parameters are needed for simula

tion. The KBC then calls the on-line simulator to determine the best control activity by

way of simulation. This decision is then passed both to the learning module, and the

shop floor cell.

The manufacturing simulator proposed by Manivannan and Banks for KBOLS

system has software to model shop floor activities and to perform resimulations. It has

the capability to interface with the rulebase, the human operator, and the KBC. The

simulation results are analyzed by the on-line simulation rulebase. The rulebase then

selects the control decision to be carried out. All the above activities are carried out on

line. Since this particular system is in the planning stage, it is too early to discuss its per

formance.

Wu and Wysk (1989) report on a multi-pass expert control system (MPECS)

which uses discrete-event simulation for on-line control and scheduling in flexible manu

facturing systems. In their system, simulation is used to evaluate dispatching rules. An

expert system is employed to compile the set of candidate dispatching rules [Wu and

41

Wysk, 1988]. This expert system has a learning module to learn from past decisions.

The expert system generates the candidate set on the basis of current system objectives,

system status, and the characteristics of on-going operations. A 'Flexible Simulation

Mechanism' (FSM) collects all the data on the current system status. A simulation model

is then generated based on this data. A series of simulation runs is carried out starting

from the current state using each of the candidate dispatching rules for the next short

time period (dt), selected by the user. FSM provides performance measures for each of

the runs. The rule that results in the best performance is used to generate a series of

commands to the real-time control system of the FMS. The FMS is then run for time dt

under the 'best' dispatching rule.

Compared to single-pass heuristic scheduling, Wu and Wysk report an improve

ment of2.3%-29.3% under different simulation windows(= dt) and measures of perfor

mance. Selection among waiting jobs for operation in a machine is, however, just one

of the decisions that need to be made on the shop floor. Although Wu and Wysk's con

trol system addresses flexible manufacturing, it is not known how or if other decisions in

FMS, e.g. routing selection, tool change, AGV selection, etc. are handled in this system.

Simulation is certainly more tractable than mathematical programming formula

tions of FMS scheduling problems. With simulation, there is no concern about feasibil

ity, since there is no need to make any simplifying assumptions. The simulation model

can be built as close to reality as one needs to. However, if the simulation is carried out

with just one rule for each type of decision, then simulation does not serve any decision

support purposes. Then, the only purpose of simulation would be prediction - when a job

can be expected to be completed, what machine utilizations can be expected, etc. Simu

lation can work as a decision support tool when there is the possibility to simulate under

different decision alternatives. Then informed decisions could be made by looking at the

simulation results. When considered as a candidate system for on-line scheduling,

response time of the scheduling system is a major concern. The response time would

42

also depend on the number of candidate rules evaluated. This issue can only be resolved

by more investigations into this new method of scheduling.

Artificial Intelligence Based Approach

Artificial Intelligence (AI) appears to be particularly suited to solving scheduling

problems because AI was developed to solve problems similar to scheduling - problems

involving a large search space, and where human expertise can find reasonable solutions

pretty fast. Many researchers have sought to utilize this similarity by using AI method

ology to solve scheduling problems. There are four application areas where AI has been

used with success: computer vision, natural language processing, expert systems, and

planning. For scheduling applications, one is primarily interested in expert systems and

planning.

Expert systems consists of three components [Gevarter, 1984]:

1) A knowledge base of facts and heuristics related to the domain of interest.

These are expressed in the form of rules of the form- If (conditions) then

(actions). When 'conditions' are right in the database, the 'actions' alter the

database.

2) A working memory for keeping track of the problem status, the input data for a

particular problem, and modifications to the data.

3) An inference engine, which is independent of the domain of interest and selects

the rules to be applied as the problem solving process is continued.

It might seem that expert systems are just a collection of If-then rules, and as such, they

are similar to conventional computer programs. But the main advantage of expert sys

tems is their decomposition into the three components as mentioned above. Thus, the

knowledge about the problem and the methods for using the knowledge are completely

separate, which is not the case with conventional programming. The knowledge associ

ated with an expert system can be changed very easily by changing the rules.

43

Planning, also called problem solving, concerns itself with situations where there

is a goal, and different actions have to be planned to achieve the goal. The main empha

sis is on the task of stringing together sequences of actions. Given a goal, the planner

can fmd actions to obtain the goal. To carry out the actions, more actions may be

needed. A basic problem in planning is the conflict in the actions. One action may

adversely impact the effect of another action. In another case, the sequence of actions

may be feasible action by action but not as a whole. Typically, planning programs use a

search process to find a feasible plan that is in some sense, "good". Hierarchical plan

ning is a common method of planning in which a high level plan is formed first, and then

this plan is more and more elaborated until a fmal, feasible, satisfactory plan is obtained.

N onhierarchical planning generates all the actions at the lowest level without regard to

stringing them together, and then tries to resolve the conflict among the actions. In script

based planning, previously prepared outlines of plans are used. These skeletal plans are

then fleshed out so that the resulting plan meets the current goal. In opportunistic plan

ning, the plan is developed piecewise, and then linked together as opportunities arise.

This paradigm is said to be the followed by humans in solving problems.

As pointed out by Gevarter (1984), at frrst the researchers tried to solve the plan

ning problems without regard for the domain of the problem. But this proved inadequate

for the "real world" complex planning tasks. Planning has had to rely more and more on

the domain knowledge; and ideas from expert systems were used to capture the knowl

edge. Thus, the distinction between expert systems and planning systems became less

prominent. Now, they can both be called knowledge based systems.

Steffen (1986) has presented a survey of AI based scheduling systems. These

systems were developed to schedule production systems, not necessarily a FMS. He dis

cusses the surveyed systems from four perspectives: historical, methodological, applica

tion, and implementation. The AI paradigms used by systems historically tracked the

development of AI ideas. As better ideas were developed in AI, they were incorporated

44

into production scheduling. Steffen found that many AI approaches were currently used

by the system builders but most approaches were rule based. He points to the common

misconception that AI is solely concerned with imitating human behavior. The goal of

scheduling research is efficiency not behavioral. Thus, many scheduling systems did not

use the human scheduler as the model for emulation. As can be expected from the com

plexity of the problem, job shops were the most popular subject for research on AI

based scheduling systems. It is interesting to observe that only 2 of the 51 systems sur

veyed were operational in the factory environment. This is attributed to implementation

difficulties. Kusiak and Chen (1988) have also reviewed a number of AI-based schedul

ing approaches. They address individual approaches while Steffen (1986) provides a

general survey.

Bullers et al. (1980) advocate the use of AI in manufacturing planning and con

trol. They suggest using predicate calculus to solve planning and control problems, par

ticularly at the operational level, in automated manufacturing. It is argued that tradi

tional off-line analyses are too slow and may result in costly mistakes in real-time envi

ronments. These real-time decisions should be made by automated control systems hav

ing knowledge of the system as well as its status. They present predicate forms that can

represent the static and the dynamic states of a production system. For example, MCH

PART (mch, part, t) is a dynamic assertion that states that a certain machine has a part at

time t. With these statements in the data base, logic programming can be used to ask

various questions from the data base. Logic programming uses unification and/or reso

lution to come up with an answer to the questions. Examples of such questions are:

"Were any parts in the system at time t1 due before t:z?", "Given the current time and an

SPT scheduling algorithm, when will part p complete its last operation?". Their research

is, however, only exploratory and gives simple instances of what could be done. It is not

clear if a decision support system was ever based on these ideas or what success it may

have had. Considering the slow process of back tracking used in the resolution of logic

programming, it is doubtful that these ideas can result in a practical system that offers

real time support.

45

ISIS is a knowledge based system to schedule production. Its main emphasis is

on the constraints of the production system being modeled (Fox et al, 1982; Bourne and

Fox, 1984). Although theoretically the search space in scheduling problems could be

very large, they found that it was severely curtailed by various constraints. They found

that human schedulers spent 80%-90% of their time determining the current constraints

and 10%-20% of the time actually working on the production schedules. Categories of

constraints defmed in ISIS are: 1) organizational goals e.g. due dates, cost, quality; 2)

operator's preferences e.g. particular machines for some operations; 3) gating constraints

such as operation precedence, resource requirements; and 4) physical constraints, for

instance, the size of a machine, life of a tool. Some constraints determine the admissi

bility of a schedule - these are hard constraints which, if violated, render the schedule

infeasible. Other constraints determine the acceptability of a schedule - these rate the

schedule on the basis of their desirability.

ISIS is constraint directed in the sense that constraints are used to identify the

next state to go to and are also used to evaluate the current state. If the constraints overly

constrain the search and progress cannot be made, these constraints are relaxed. ISIS

follows a hierarchical planning paradigm. There are four levels in this hierarchy: order

selection, capacity analysis, resource analysis, and resource assignment. Each level is

composed of three phases: a presearch analysis phase which constructs the current prob

lem, a constraint directed search, and a post search analysis phase which determines the

acceptability of the solution. Level 1 selects an order to be scheduled based on the cate

gory of the order and its due date. Its output is a prioritized list of orders to be sched

uled. The level 2 phase produces constraints for the next level based on the capacity of

the plant. Its output is the earliest start time and latest finish time for each operation of

the selected order as determined by the order's release and due dates. In level3,

46

resources are selected to produce an order. A beam search is carried out in the space of

alternative partial schedules. This search is carried out with the help of constraints

developed earlier. Level 3 still does not completely commit the resource to a particular

time. It merely fixes the reservation time bounds on the machines. Level4 fmally fixes

the actual times of the operations with a view to minimize the work-in-process.

The beam search and the constraint based approach of ISIS do limit the search

space greatly. But the symbolic manipulations inherent in AI technology are time con

suming. In comparison to an optimal search, it is not known how good the solutions

produced by ISIS were or how fast (or_ slow) it was. Although the time bounds are not

fully committed until constraints cause them to be bound, ISIS uses horizontal loading -

one highest priority order is entirely scheduled, then the next priority is picked up, and

so on. It is known that this approach creates "holes" in the schedule - a machine sits idle,

even if a job is available, because a more important job is coming (Vollmann et al.,

1988). It is not clear how much this problem is alleviated by ISIS's least commitment

approach.

Another production scheduling system based on the constraint directed approach

is OPAL (Bensana et al., 1988). In this system, a constraint propagation module (CBA)

sequences operations of jobs according to the precedence constraints, release dates, and

due dates. These constraints for each operation are through all the operations of a job. If

the conflicts are all resolved by these constraints, a schedule is produced, and the prob

lem is solved. But if there are conflicts not cleared by following the constraints, OPAL

activates a decision support module (DS) to force an ordering on the contending jobs.

This decision support module is rule-based. This module is based on the fuzzy set

methodology. Each rule is assigned an index which can be regarded as a grade of mem

bership of the rule in the fuzzy set of rules relevant to the goal. These indices function

like certainty factors and attach weights to the rules. The rules could be simple priority

rules such as SPT or rules linked to the utilization of auxiliary resources or rules pertain-

47

ing to slack times of operations. A supervisor module guides the search process by alter

nately calling the CBA and DS modules. Each time the CBA module stops, a new node

is generated. The DS module determines the branching of the node. Then, the CBA

module is called again to propagate the decisions forced by the DS module. The search

is a depth-first, back-tracking type. As can be seen, OPAL is a static scheduling tool. It

does not follow the dynamic changes in the shop floor.

Bruno et al. (1986) present a rule-based system to schedule production in a FMS.

They use expert systems to capture knowledge about the domain, and queueing network

analysis for performance evaluation. The expert system uses rules to select production

lots to introduce into the FMS. Primarily, the lots are selected on the basis of the dis

patching rule of critical ratio (CR). A lot with highest priority may not be scheduled if a

constraint is violated. Production constraints such as release time, needed fixtures,

maintenance, etc. are checked. Capacity constraints such as system congestion and

throughput are checked by a heuristic based on the mean value analysis of closed queue

ing network. This module calculates the machine utilization, average queue lengths, and

lot throughputs. A simulation model is used to obtain the system state trajectory using

the rule base and the performance analyzer. This trajectory is the resulting schedule.

An interesting feature is that the expert system is written in OPS5, a rule-based

production system language, while the queueing network analyzer is written in

FORTRAN-77. Because of the different data structures used in the two modules, data

needs to be translated back and forth. It is not known how much this translation penal

izes the system performance.

It is well known that mean value analysis calculates steady state performance.

However, a FMS is a dynamic entity where the operating conditions are continually

changed by the very actions of the scheduler and by the vagaries of nature. Thus the

validity of the results of mean value analysis for use in decisions about production lot

introduction is open to question.

48

A nonlinear planning algorithm for FMS scheduling is proposed by Shaw (1988).

Here, the term 'nonlinear' is not to be taken in the mathematical programming sense. It is

an AI planning approach where the plans are not formed in a serial fashion, one after the

other. The plans are formed in parallel (least commitment) until some constraints force

the actions to be serial. This approach is based on the A* search, where one starts from

an initial state and by applying successive operators (from a rule base), the goal state is

fmally reached. It is a heuristic best-first search procedure directed by an evaluator

which evaluates a current node on the basis of the estimated cost of the path from the

initial state to the goal state (Nilsson, 1980). If this evaluator is always correct, there is

obviously no search: one directly gets the path from the initial state to the goal state. But

even if the estimate always errs on the conservative side, one is guaranteed to get the

optimum result. The operator to be applied at a node is specified as follows:

<Action-name>

<Precondition>

<Add list>

<Delete list>

<Resource>

: <list-of-arguments>

: <list-of-precondition-literals>

: <list-of-add-list-literals>

: <list -of -delete-list -literals>

: <resource-name>

<Duration> :<length-of-duration>

These operators are available in the rule base. In this methodology, the jobs are

individually scheduled using this search procedure. Of course, these schedules are not

going to be feasible, due to the simultaneous contentions on the resources. A list

(Alternate-list) of operators that are in conflict is then prepared. A plan-revision proce

dure is used to resolve the contentions. This procedure schedules the operators on an

alternate resource as far as possible. A forward chaining procedure propagates the

changes. If an alternate machine is not available, then the operators just wait, again

necessitating a change propagation. This plan-revision step is a unique feature developed

with production scheduling in mind, and is not found in other AI planning literature.

49

Four evaluators were tested for the A* algorithm mentioned above:

1) fO: Height of the search tree

2) fl: Cumulative processing time+ estimated total remaining time

3) f2: Cumulative processing time + imminent operation time

4) f3: processing time+ number of operations left

Shaw found that a) good heuristic knowledge is important for improving the

computation efficiency of the scheduling algorithm; b) a global heuristic is better than a

local heuristic; and c) a domain specific heuristic is better than a general heuristic. As

can be expected, the size of the search tree was significantly higher when the number of

alternative machines for an operation or the number of machines in the system was

higher. This is on account of the higher branching in the search tree. When his A*

algorithm was modified for due-date targets, he concluded that there is not a single rule

that would dominate in every situation. He suggests selecting the rule dynamically,

based on the system state.

Unlike many other FMS scheduling methodologies, this methodology explicitly

considers alternate job routing, and incorporates it in the optimization. This approach

attempts to obtain the globally minimal make-span. It is claimed that the scheduling

system can perform dynamic scheduling, adapting to changes in the FMS environment.

Although it will use AI heuristics to limit the search, the search space is still very large

and may make it prohibitively expensive to use in practical scheduling problems.

SCORE (Shop-floor Contingency Rescheduling Expert) is an on-line scheduling

system which is based on blackboard concepts of AI [Chiodini, 1986; Chiodini, 1989]. It

carries out both predictive scheduling (a priori determination of future events) and reac

tive scheduling (alter the schedule in response to changing shop floor status). Predictive

scheduling is done top-down; given the master production schedule, it generates a

schedule for future events. Reactive scheduling is carried out bottom-up. This principle

aims at localizing the disruptions at the lowest level in the shop floor hierarchy. First,

50

the sub-assembly schedule is adjusted; if it does not absorb the effect of the disruption,

the final assembly schedule is revised. If the effect of the perturbation is high enough, it

may cause changes on the master production schedule.

SCORE is event driven. As events occur, they trigger SCORE to take action.

The SCORE supervisor is the focus of action in Chiodini's system. It prioritizes the

active events posted in the Agenda (a data structure similar to the blackboard), dispatches

the tasks (similar to Knowledge Sources) that handle the specific event, allocates an exe

cution time slice to the task to be performed, and coordinates concurrent access to the

database by the running tasks. An interesting feature of SCORE is its management of

task execution times, which is handled by the SCORE supervisor. Predictive scheduling

is carried out in the background, and is scheduled during periods of reduced activity of

production lines. The goal in predictive scheduling is to generate a schedule that satisfies

as many objectives of the master production schedule as possible, while remaining within

the capacity constraints. The activation of this task has lower priority compared to the

real-time reactive scheduling.

Shop floor activities are continually monitored and the data base is updated. If an

error status is reported, a corrective action request is posted on the Agenda, which trig

gers reactive scheduling. Reactive scheduling performs a search in the space of alternate

partial schedules to fmd a schedule that still meets the original schedule with the least

disruption. When tested under a simulated environment, SCORE has reportedly per

formed satisfactorily and is now under field test.

Many ideas in AI could be used beneficially in FMS scheduling. Heuristic

search is one method that should prove useful. The separation of control, operator, and

data is another idea that helps build flexible software for large systems. However, AI

methods have, by defmition, intensive symbolic manipulation. This raises concerns

about their use in real-time systems.

51

Interactive Approach

All the approaches mentioned in earlier sections can be implemented in an inter

active environment. What makes interactive scheduling different is that the scheduling

decisions are mainly made by a human operator with the aid of the computer. The main

focus of interactive scheduling has been on the computer generation and display of Gantt

charts.

Godin (1978) presents a review of interactive scheduling. He describes various

earlier attempts at computerization of production scheduling and scheduling of other

systems. He reports the consensus that interactive scheduling combines the best of both

humans and machines. He offers some hypotheses on why interactive scheduling sys

tems have not fulfilled their promise: dynamic nature of production systems, computer

ignorance, unavailability of suitable hardware and software, uniqueness of each schedul

ing situation, etc. Some of the above impediments have now been removed with the

introduction of hardware and software highly conducive to user oriented computer uti

lization. Correspondingly, some applications have been reported in the literature.

Adelsberger and Kanet (1989) provide a more recent review of the state of art in

interactive scheduling. They describe the main components of an interactive scheduler:

1. Graphics interface capable of providing a pictorial representation of the

schedule. The interface gives the status of each resource over time. Ideally, it should

provide the facilities of zooming, panning, and scrolling to view all the schedule at the

same time. It should also permit viewing the schedule from the perspective of the jobs.

The authors describe a large number of existing and planned systems with these capabili

ties.

2. A schedule editor for manually generating and manipulating schedules. ·Mini

mally, the system should enable adding or deleting an operation one by one. More

sophisticated systems let the user i) change the completion time of an operation, ii)

52

modify the quantity in the production order, iii) change the allocated resource for a job

and iv) split or combine operations. Advanced editors test the schedules for violation of

constraints dynamically to alert the user. Some systems depict the effects of a schedule

change in an animated fashion. As one operation is 'dragged' across the screen, its effect

on other operations and machines is animated. A nice feature of some systems lets the

user 'undo' a decision. The ultimate goal is to have AI based software which recom

mends specific changes for the scheduler to try.

3) Database manager for accessing information. This module retrieves data from

the production planning system, engineering database, and the shop floor status informa

tion system.

4) Schedule evaluator for measuring the performance of schedules. Many current

interactive schedulers do not have this module. An evaluator should provide feedback to

the scheduler on a number of performance measures: due date performance, work in pro

cess, lead time, machine utilization etc.

5) Automatic schedule generator. Many systems reviewed by the authors do not

have this module. At the minimum, this module should provide a feasible schedule, so

that the operator can improve on it. Of course, any of the scheduling methodologies

described in the earlier sections, e.g. mathematical programming or AI could be used to

generate the schedule.

Many of the developers described by Adelsberger and Kanet are incorporating

expert systems technology into their systems. An expert system may be used to imple

ment constraints, or preferences or just sound advice. A user could add or delete the

rules as needed.

An interactive scheduler developed for actual industrial use is described by Jack

son and Browne (1989). This scheduler has some of the components described by

Adelsberger and Kanet, namely, a graphics interface, a schedule editor, a database man

ager, and a schedule generator. This scheduler is built on the premise that it is almost

53

always impossible to obtain optimal solutions to most real-life scheduling problems, and

good solutions can be generated by a human operator by editing , with the help of a

computer, a schedule built by one pass of a scheduling heuristic. A number of dispatch

ing rules are provided for the purpose of creating the schedule. This system was devel

oped with ergonomic considerations in mind. An application keypad provided many

functions for viewing and editing the schedule. Provision is made for scrolling and

panning.

Conway and Maxwell (1986) describe an interactive scheduling system called

LLISS (Low Level Interactive Scheduling System) developed by them in collaboration

with Hewlett Packard Laboratories. Their view on scheduling optimization is instructive:

Scheduling is inherently an exceedingly complex process. There are

simply too many variables, and too many possible solutions, for there to be

any hope of obtaining optimal solutions to any non-trivial scheduling prob

lems. Anyone who claims otherwise either does not understand the problem,

or is being carefully deceptive in the use of the term.

Their system assists the human scheduler in organizing the information, permit

ting selective retrieval and display of the information. It communicates automatically

with the external entities and predicts the implication of each individual scheduling deci

sion. LLISS communicates with: 1) Manufacturing engineering, for the types of avail

able machines, and the work they can perform; 2) Production planning, to obtain the

tasks to be performed, to acknowledge when a task is completed or is to be completed; 3)

Material control, to communicate the raw material requirements; 4) Maintenance control,

to obtain machine availability, and the repair status; and 5) Machine control, to obtain the

information on the status of a job, to obtain failure information and to communicate

scheduling orders.

LLISS permits schedule editing. Tools are available to reschedule using different

heuristics- due date, priority, lateness etc. Tasks may be split or combined; quantities

54

and priorities may be changed. The schedule may be viewed by time, machine, task, or

status.

As pointed out earlier, computer aided scheduling is now feasible with the intro

duction of powerful microcomputers with large amount of core memories and high per

formance. These machines also have very good graphics capability. These qualities

make for good interactive programs. However, there are not many published accounts of

interactive scheduling systems. Most of the systems r~ported in [Adelsberger and Kanet,

1989] were developed in Europe.

Summary

Six different approaches for scheduling a FMS were reviewed. Many authors are

of the opinion that mathematical optimization is too intractable for practical FMS

scheduling applications. Heuristic based approaches are appealing from the view point

of their simplicity, but may adversely affect efficiency on account of their short time

horizons. Work on approaches based on control theory, Ai, and simulation have been

all going on for some time, but none have established their prominence in the field.

There is not much reported work done on interactive scheduling.

On account of the on-line requirements of dynamic scheduling, complicated

iterative models are not likely to succeed in random FMS. From this perspective, dis

crete event simulation offers some promise, since it is not iterative. However, a single

pass simulation does not help because it does not evaluate alternatives. Thus a very lim

ited evaluation of some scheduling alternatives is desirable, even within simulation. This

may be done with knowledge based simulation where the alternatives are chosen by an

embedded expert system. This is the rationale underlying the research approach

described in the following chapters.

CHAPTER IV

GOALS, SPECIFIC OBJECTIVES

AND ASSUMPTIONS

Research Objectives

The main goal of this research was the development of a comprehensive

methodology for scheduling and controlling random FMS that is capable of generating

consistently good solutions in near real-time. Two requirements are placed on this

methodology: on-line processing, and consideration of all the specified constraints.

With this goal in mind, the following objectives for the research have been iden-

tified.

Objective 1.. Methodolo~

Develop the general outline of a comprehensive methodology for scheduling and

controlling random FMS that is capable of generating consistently good solutions. This

outline should state the main components (or modules) of the scheduling system and their

interactions. It should show how these interactions will lead to the solution of the

problem.

Objective 2... Object-Oriented Representation

The objective here is to determine the classes and subclasses of objects required

for representation and expression of the random FMS scheduling problem in the object

oriented paradigm. The resulting representation should, ideally, i) facilitate concise and

55

56

intuitive representation of the problem, and, ii) facilitate the implementation of the solu

tion methodology defined in fulfillment of objective 1.

Objective .l. Deyelo.pment .Q.f Framework

Develop an object oriented framework for the interactions of the components

within the system being developed that is capable of carrying out the logic of the solution

methodology while operating in a dynamic environment, on-line. The framework will

include: i) the messages needed to be passed between the objects, ii) the methods these

messages will invoke, resulting in scheduling and control decisions, and, iii) explicit rep

resentation of the methodology's response to the events occurring in the real

environment.

Objective .4.. Measures .Q.f Mmt

Develop and validate relevant measures of merit for evaluating alternative

scheduling and control methodologies for random EMS. These measures may be qualita

tive and/or quantitative.

Objective .i. Evaluation

The fifth objective is to evaluate the scheduling methodology developed in this

research. To do so, the ideas will be implemented in an object oriented environment. The

implemented framework will then be evaluated on the basis of measures developed in

fulfillment of objective 4 and compared to alternate methodologies.

Objective .G... Further Research

Finally, one objective of this research is to identify what further work needs to be

done, as an extension of this effort or otherwise, to bring about a solution of the problem:

scheduling and control of nondedicated EMS.

57

Research Assumptions

Unfortunately, scheduling approaches tend to have a very limited domain of

application. The methodology will work only for the particular type of problem to which

it is addressed. This is on account of the detailed nature of the solution offered.

This research is addressed to a random FMS: production of parts in limited

quantities, where the part mix is not fixed in advance. The frequency of orders, or the

production control policy is such that parts are made only to order.

The configuration of the FMS is assumed to consist of a loading station, a number

of versatile processing equipments, and an unloading station, all tied together by AGV's.

An operation on a part can potentially be carried out by one or more alternate machines

provided the machine is loaded with the right tool. Limited buffers exist where parts

awaiting processing can be stored.

The FMS is assumed to be controlled by an operator, assisted by a supervisory

computer. The supervisory computer obtains the parts requirement, due dates, and avail

able dates from a host computer. It is assumed that preliminary planning of these jobs is

done such that a feasible loading on the FMS results - inordinate queues do not build up

at the loading station.

The supervisory computer directs the AGV's and other equipments through pro

grammable logic controllers (PLC) or computers associated with them. Thus, the func

tion of the supervisory computer is only to determine the next steps to be taken by these

controllers. The actual real-time process control will be carried out by the PLC's or other

computers associated with the processes. Thus, although the process needs to be con

trolled in real time, the run time criterion is not so tight for the supervisory computer.

This research is directed to the needs of the supervisory computer.

CHAPTERV

PROPOSED METHODOLOGY

Introduction

The problem addressed in this research is a dynamic problem in which orders

arrive randomly to a FMS. The scenario could be described as follows. The FMS con

sists of a number of numerically controlled machines with limited tool capacity in their

tool magazines. The tool magazines are supplied from a tool crib which has a limited

number of copies of each tool type. Each NC machine has an input and output buffer of

finite capacity. The machines fail randomly and require random repair tin)e for repair.

There is a load/unload station for the whole FMS which serves as a material inter

face. Figure 1 on next page shows a schematic of the physical arrangement. All incom

ing materials arrive at this station and all fmished parts are dispatched from here. Each

part requires a particular type of pallet. There is a limited number of copies of each

pallet type. A part is loaded into its requisite pallet at the load/unload station. The

pallets are transported by an automatic vehicle to the selected machines in their routings.

When the processing on the part is fmished, it is finally transported to the load/unload

station. There are a limited number of these vehicles, and there is a time matrix for the

time required for inter-station transport.

Each order arriving at the FMS is for a batch of parts of a specific type. The part

requires a number of processes to be carried out. The number of processes needed is

random for each order. These processes could have one or more random alternate

machines on which they can be carried out. Each process, however, requires the same

58

59

random processing time and needs a particular type of tool. The orders can have one of

two priorities: high and low. Each order also has a due date assigned to it.

Load/Unload Station

Machine 1 Machine 2 Machine 3

0 0 0
Input Buffer/ '_Output Buffer

Machine n

0

0 0 0
AGV1 AGV2

Machine 5

0

AGVm

Machine4

.o
Figure 1. Flexible Manufacturing System Configuration

A machine can perform a process only if it is up (not failed), if it is one of the

alternate machines in the routing, and if it has the requisite tool. The normal flow of a

work part is from the load/unload station to the input buffer (queue) of a selected alter-

nate machine for its frrst operation. Then the operation is carried out and it moves to the

output buffer of the machine. If the output buffer of a machine is full, the part blocks the

machine from further processing until there is space in the output buffer. The work part

then moves on to other machines in its routing and finally moves back to the load/unload

station. When all the work parts for an order are finished, the order is completed.

A setup of the FMS involves stopping of the NC machines and moving unneeded

tools to the tool crib while bringing in needed tools from the tool crib. It may also

involve moving a tool from one machine to another machine.

60

The problem is to plan the release of the orders as they continue to arrive, the

allocation of the operations to one of the alternate machines, the sequencing of the parts

once they are released, and the planning of the setup of the tools.

Some previous researchers (e.g. Stecke, 1983) have addressed a selection ques

tion, in which there are a number of job types with their associated loads which continue

to arrive at the plant in question. The problem is to select some of these jobs that could

be allocated to the FMS. (The others might go to some other department or to subcon

tractors). In so doing, the choice among the alternates is simultaneously made, and the

machines are tooled with the requisite tools. The problem is then solved at least until the

product mix is changed. This has been called dedicated mode of operation by some

authors.

Another problem concerns the situation where the job types are not preselected,

and various random jobs (at least of a large variety) continue to arrive at the FMS. This

means that the machines have to be tooled and retooled again as the jobs arrive. This

type of FMS, as described above in detail, has been called a random FMS.

This chapter describes some solution approaches and heuristics developed to

address the problem described above. Then these approaches and heuristics are incorpo

rated into a proposed methodology for schedul~ng and controlling a random FMS.

Solution Approaches

The solution approaches could be broadly classified as simultaneous solution and

hierarchical solution. Some discussion of these appears in the literature review (Chapter

ill). This section and the next present a more focused treatment of them as well as some

heuristics proposed in this research.

61

Simultaneous Solution

Hutchison et al. (Chapter ill, page 24) proposed an approach in which mathemat

ical programming is used to simultaneously allocate the machines (from the routings) and

the time windows when the process is carried out. In this approach, however, no limit is

placed on the tool capacity, the number of pallets, the AGV's, the number of buffer

spaces etc. The formulation is also static: it considers a number of jobs at a time, not a

stream of incoming jobs. They found that this approach did not offer significant

improvement over a simpler decomposition approach where machine allocations are car

ried out separately from the machine scheduling. Furthermore, the branch and bound

search is expensive in terms of computer resources, particularly for real time application.

For these reasons, this simultaneous approach was not investigated in this research.

Hierarchical Solution

Shanker and Tzen (Chapter ill, page 26) proposed an approach in which the

problem is decomposed into two sub-problems, release and dispatch:

1) Release. From among the arrived jobs, select the jobs to be scheduled in the

next plannin~ horizon (the others will wait until the next selection). The selection

simultaneously carries out the allocation of the processes to the machines. In what

follows, this decision process is called "releasing". This approach assumes that a

planning cycle exists in which the orders are selected for each cycle. These orders

are selected so that the machines' tool magazine constraints are not violated. A tool

ing setup is then incurred: the machines are tooled for the selected orders. The

released orders are then completed and the cycle begins again.

2) Dispatch. The released jobs are then scheduled on the machines (allocating

time windows for the operations). This problem, of course, is the traditional job shop

62

problem with N jobs, M machines. A mathematically rigorous search approach or a

simple priority rule based approach may be used.

Their objective is to minimize the overload/underload from the scheduling period

(or planning horizon), and to minimize the tardiness. They proposed a mathematical

programming formulation for sub-problem # 1 (Chapter ill, page 26). As can be

expected, the program is too complex for on-line application, and they suggested heuris

tics to solve the releasing problem. They use priority rules to solve the second sub

problem. It might be observed that this approach takes care of incoming streams of jobs

directly: jobs that arrive after the release of selected jobs simply wait for the next release

cycle with other unselected jobs.

Release Heuristics

This section describes some heuristics that can be used for the release part of the

hierarchical solution described above. Many heuristics could be used for this purpose.

Essentially, they select some orders to be introduced into the FMS from the load/unload

station. In doing so, they attempt to attain some specified objective.

Fixed Period Release

Moreno and Ding (1989) investigated the same hierarchical problem as studied by

Shanker and Tzen (1985). They presented another heuristic for the combined objective of

workload balance and minimizing tardiness for the release of work parts into the random

FMS. They reported that their heuristic gave better results than that of Shanker and

Tzen.

Heuristic 1.. The following is the pseudocode for a heuristic based on the heuristic

(#2) of Moreno and Ding. Notation is as listed below.

Slotj

pi

H
Lj

opi

~

Pend_List

T
STATUSj

Toolik

Toolsj

AvToolst

LoadBal

Route

Rel_List

tik

Utilization

Number of orders not yet released

Due date of order i

Processing time of operation k for each work part of order i

Vector of alternate machines on which operation k of job i can be per

formed

Tool slot capacity of machine j

Priority of order i

Length of scheduling period

Current load on machine j

Number of operations for order i

Number of processes for order i

Prioritized list of the orders which have not been released

Current time
Status ofmachinej, STATUSj ={Up, Down}

Tool required for operation k of order i

Set of tools mounted in machine j

Number of available tools of type t

Sum of overload/underload of all the machines
A vector of machine indices. For order i, Route(r) E Air

Final list of orders to be released

Tool type required for operation k of order i

Vector of loads on the machines in the FMS

Number of work parts for order i

Machine allocated for operation k of order i

1. Initialize all the variables with correct values;

LoadBal := L H

J
2. For i = 1 to N do

opi
A. Let SLACK = Di - T - LPik * ni

k=l
B. Insert i into Pend_List in descending order of the priority Pi , placing orders

with the same priority in ascending order of SLACK

3. While there are elements in Pend_List

63

A. Let i = First element in Pend_List

B. Remove i from Pend_List

1\
C. Let numRoute = IT size (An:)

k=1

D. Let chosenRoute = nil; testLoad = LoadBal

E. For n = 1 to numRoute do

i. Let freq = n; new Load = 0

ii. Initialize the vector Route
iii. For k = 1 to ni do

1. Let numAltemates = size (An:)

2. Let position = (freq - 1) mod numAltemates + 1
3. Let route (k) = Aik (position)

4. Let freq = (freq- 1) div numAltemates + 1

{Check if route is feasible}

iv. feasible = true
v. Fork= 1 toni do

1. Let j = Route (k)
2. If not ((STA TUSj = Up) and

(((Slotj- size (foolsj) > 0) and (AvToolstik > 0)) or(~ e

Toolsj))) then

feasible = false

vi. if feasible then

1. For k = 1 to ni do

A. newUtilization =Utilization (Route (k)) + Pik * Oi

B. If (newUtilization > H) then

newLoad = newLoad + newUtilization- H

else

newLoad = newLoad + H- newUtilization

2. if new Load < testLoad then

A. Let chosenRoute = Route

B. Let testLoad = newLoad

F.lf not (chosenRoute =nil) then

i. Add i to the Rel_List
ii. For k = 1 to ni do

1. Let j = chosenRoute (k); Mik = j

64

65

2. Utilization G)= Utilization G)+ Pik * Oi

3. if(~ t toolsj) then

A. Add ~ to Toolsj
B Let A vToolst = A vToolst. - 1

ik ik

4. If (Utilization G)> H) then

LoadBal = LoadBal + Utilization G) - H

else

LoadBal = LoadBal + H- Utilization G)
4. Return the Rel_List as the list of jobs to be released, and Mile as the list of allocated

machines

Basically, this heuristic carries out the following steps.

1. Put all the waiting jobs into a list in descending order of their priorities and as~ending

order of slacks.

2. While there is a job in the list

a. Pick the first job.

b. For all the possible machine allocations for this job:

A. If the allocation is feasible, calculate the machine loadings.

(feasible = the machine is up and there is a tool slot available in the tool

magazine of the machine, or the tool is already in the tool magazine)

B. Select the allocation that causes the minimum overload/underload for

the scheduling period.

The constraints of pallets, material handling, and buffer space are not

explicitly accounted for in this formulation. Using the above heuristic, jobs are selected

for the next planning period, machines are retooled, and the jobs are dispatched through

the FMS using a dispatching rule of choice. When all the jobs are done, the cycle begins

again.

Although pallets, material handling devices, and buffer space limits are not con

sidered in the above, these constraints can be handled via the same priority rule that is

used to sequence the parts for a machine. For instance, after a work part is released, it

queues up for the pallet and when a pallet of the correct type is available, a work part is

selected as per the priority rule.

The above described approach for controlling a random FMS is called "fixed

period release".

Variable Period Release

66

The number of buffer spaces in the FMS can be brought to bear on the scheduling

process by considering the congestion of the FMS. When too many parts are released

into the FMS, it is congested and the machines are blocked frequently. This downgrades

the efficient operation of the FMS. This is especially noticeable in an FMS because most

FMS's have very small amounts of buffer space at the machines. A variation on the fixed

period release is to release a number of parts which is a factor of the total number of

pallets which can be accommodated in the FMS. Determination of this factor is not an

on-line problem. It can be determined at the planning stage of the FMS by simulation.

Using this factor, the planning cycle will be variable. The planning period in the Fixed

Period release is quite arbitrary anyway, and, because of queueing delays, all of the

released jobs are never finished in the planning period. It is conjectured that by selecting

just enough jobs to be released to avoid congestion, better performance can be obtained.

Three heuristics for this release are described below.

Heuristic 2. The selection of the orders and the allocation to the machines is done

using a heuristic whose pseudocode is given below. This heuristic, developed in this

research, is similar to heuristic # 1 of Moreno and Ding. The differences are in using

variable periods, where they use fixed periods, and in checking for feasibility only at the

last stage of the algorithm. Besides the notation given earlier, the following notation is

used.

NUM

Proc_List

Order_List

Op_List

Target number of work parts to be released to avoid congestion

Ordered list of the process times

List of orders corresponding to the order of the process times

List of operation stages corresponding to the order of the process times

1. Initialize all the variables with correct values

2. Fori = 1 to N do
opi

A. Let SLACK = Di - T - Dik * ni

k=1

B. Insert i into Pend_List breaking ties in the following order:

i. orders with negative slack always come before orders with positive

slack

ii. orders with higher priority come before orders with lower priority

iii. orders with lesser slack come before orders with higher slack

3. Let selectedNum = 0

4. While there are elements in Pend_List and selectedNum < NUM

A. Let i = First element in Pend_List

B. Remove i from Pend_List

C. Insert i into Rel_List at the last position
D. Let selectedNum = selectedNum + oi

5. Let N =size (Rel_List)

6. For i = 1 to N do

A. Fork = 1 to ni do

i. Let load = (pik * oi)

ii. Insert load into Proc_List in descending order of magnitude

1. Let ind = index of load in Proc_list

ii. Let Order_List (ind) = i; Op_List (ind) = k

7. For j = 1 to size (Proc_list) do
A. Let i = Order_List G); k = Op_List G); chosenMachine = Aik (1)

B. Form = 2 to size (Aik) do

i.lfUtilization (m) <Utilization (chosenMachine) then

Let chosenMachine = m

67

C. Let Utilization (chosenMachine) =Utilization (chosenMachine) + Proc_List G)
D. Let Mik = chosenMachine

{check for feasibility}

8. Let feasible = true; i = 1

9. While is Nand feasible

A. Fork = 1 to ni do

i. j = Mik
i. If STATUS. =Down then

J

1. Let feasible = false

else

If tw: t Toolsi then

If A vToolstik = 0 or size (Toolsi) = size (Slo9 then

B. Let i = i + 1

10. If not feasible then

else

Let feasible = false

1. Let A vToolst = A vToolst - 1
ik ik

2. Insert tw: into Toolsi

A. Remove last item from Rel_List

B. Go to step 5

else

68

Return Rel_List as the list of orders to be released and Mik as the list of machine

allocations

Basic steps in this heuristic are:

1. Arrange the jobs into a list in order of the slack time and priority.

2. Pick the first jobs in the list so that total number of parts to be introduced is equal to

the desired number to be introduced.

3. Arrange all the total process times of the selected jobs into a list with the largest one at

the top.

4. Pick the first process, and among the machines it could be assigned to, assign it to a

machine that has the least loading so far. Update the loading of the machines.

5. If all the jobs are not assigned, go to step 4.

6. Now check for the feasibility of the assignment.

H the assignment is not feasible,

69

remove the last job in the list of selected jobs and go to step 3.

If feasible,

end of heuristic.

The above heuristic gives an evenly balanced load on the machines. Hereafter,

this release heuristic is called Balanced Release. Since the feasibility check is done only

at the last point, this heuristic saves many computer expensive feasibility checks where

the tool constraint is not very restrictive.

Heuristic 3. If the machines are, however, very constrained (small tool space, or

few tools) many jobs will be rejected and the number of parts will be much less than the

congestion limit. A third heuristic can be used to get more jobs released (although it

does not achieve as good a balance). This heuristic assumes the existence of a function

coeffOfVar that calculates the coefficient of variation (standard deviation I mean) given a

vector of numbers. This heuristic, developed in this research, differs from heuristic 1 in

that it tries to minimize the coefficient of variation of the utilization of machines, and not

overload/underload of the machines, as originally proposed.

1. Initialize all the variables with correct values.

2. For i = 1 to N do
opi

A. Let SLACK = Di - T - LPik * ni

k=1

B. Insert i into Pend_List breaking ties in the following order:

i. orders with negative slack always come before orders with positive

slack.

ii. orders with higher priority come before orders with lower priority

iii. orders with lesser slack come before orders with higher slack.

3. While there are elements in Pend_List

A. Let i =First element in Pend_List

B. Remove i from Pend_List

ni
C. Let numRoute = IT size (Aik)

k=1

D. Let chosenRoute =nil; testVariation = coeffOfVar (Utilization)

E. For n = 1 to numRoute do

i. Let freq = n; new Load= 0

ii. Initialize the vector Route.
iii. For k = 1 to ni do

1. Let numAlternates =size (Aoc)

2. Let position= (freq- 1) mod numAlternates + 1
3. Let route (k) = Aik (position)

4. Let freq = (freq- 1) div numAlternates + 1

{Check if route is feasible}

iv. Let feasible = true
v. Fork= 1 toni do

1. Let j = Route (k)
2. If not ((STA TUSj =Up) and

(((Slotj- size (Toolsj) > 0) and (AvTools1ik > 0)) or (tik E

Toolsj))) then

Let feasible = false

vi. if feasible then
1. Fork = 1 to ~ do

A. Let j = Route (k)
A. Let newUtilization G)= Utilization (j) + Pik * Oi

2. Let newVariation = coeffOfVar (newUtilization)

3. ifnewVariation < testVariation then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

F. If not (chosenRoute =nil) then

i. Add i to the Rel_List
ii. For k = 1 to ni do

1. Letj = chosenRoute (k); Mik = j

2. Utilization (j) =Utilization (j) + Pik * Oi

3. if(~ t toolsj) then

A. Add tik to Toolsj

70

B Let A vToolstik = A vToolstik - 1

4. Return the Rel_List as the list of jobs to be released, and Mik as the list of allocated

machines

The basic steps in this heuristic are:

1. Put all the remaining jobs into a list in order of their slacks and priorities.

2. While there is a job in the list

a. Pick the first job.

b. For all the possible machine allocations for this job

A. If the allocation is feasible, calculate the new machine loadings.

B. If the allocation reduces the coefficient of variation of the machine

loadings,

Select the allocation that reduces the variation the most.

If it does not reduce the variation, reject the job.

71

This heuristic is hereafter called Feasibility Release, since it checks for feasibility

at every stage.

Heuristic 4. When the FMS under consideration is severely constrained by the

transport system, minimizing the transport requirements is more important than balanc-

ing the load. A heuristic, developed in this research, to reduce the transportation needs

of the released parts is presented below. This differs from the above heuristic (# 3) in

that it attempts to minimize the number of transfers; and uses variation of utilizations

only as a tie breaker. It assumes the existence of a function transfers, which calculates

the number of part transfers needed when given a vector of the machines to be visited.

1. Initialize all the variables with correct values.

2. For i = 1 to N do
opi

A. Let SLACK= Di- T- LPik * ni

k=1

B. Insert i into Pend_List breaking ties in the following order:

i. orders with negative slack always come before orders with positive

slack.

ii. orders with higher priority come before orders with lower priority

iii. orders with lesser slack come before orders with higher slack.

3. While there are elements in Pend_List and selected.Num < NUM

A. Let i = First element in Pend_List

B. Remove i from Pend_List
ni

C. Let numRoute = IT size (Aik)

k=1

D. Let chosenRoute =nil; test Variation= coeffOfVar (UtiliZation)

E. For n = 1 to numRoute do

i. Let freq = n; new Load = 0

ii. Initialize the vector Route.
iii. For k = 1 to ni do

1. Let numAltemates = size (Aik)

2. Let position= (freq- 1) mod numAltemates + 1
3. Let route (k) = ~ (position)

4. Let freq = (freq- 1) div numAltemates + 1

{Check if route is feasible}

iv. Let feasible= true

v. Fork= 1 toni do

1. Let j = Route (k)
2. If not ((STATUSj =Up) and

(((Slotj- size (Toolsj) > 0) and (AvToolstik > 0)) or(~ E

Toolsj))) then

Let feasible = false

vi. if feasible then

1. Fork = 1 to ni do

A. Let j = Route (k)
A. Let newUtilization G)= Utilization (j) + Pik * Oi

2. Let newVariation = coeffOfVar (newUtilization)

3. if chosenRoute = nil then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

72

else

C. Let numTransfers = transfers (Route)

i. Let newTransfers = transfers (Route)

ii. If newTransfers < numTransfers then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

C. Let numTransfers = newTransfers

else if newTransfers = numTransfers then

if newVariation <test Variation then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

C. Let numTransfers = newTransfers

F. If not (chosenRoute =nil) then

i. Add i to the Rel_List
ii. Fork = 1 to ni do

1. Let j = chosenRoute (k); Mik = j

2. Utilization (j) =Utilization (j) + Pik * Oi

3. if (tik t toolsj) then

A. Add ~ to Toolsj
B Let A vTools1ik = A vTools1ik - 1

iii. Let selectedNum = selectedNum + oi

4. Return the Rel_List as the list of jobs to be released, and Mik as the list of allocated

machines

The basic steps in this heuristic are given below.

1. Put all the waiting jobs into a list in order of their slacks and priorities

2. While there is a job in the list and there is no congestion

a. Pick the first job.

b. For all the possible machine allocations for this job

A. If any allocation is feasible, select the job.

1. calculate the new machine loadings.

73

2. Among the feasible allocations to machines, select the one with

the least number of transfers. In case of tie,

a. Select the allocation that reduces the variation of

machine loading the most.

In what follows, this heuristic is called Transport Release, since its focus is on

reducing the transport requirement.

74

Heuristic 2, 3 or 4 can be applied to the list of waiting orders (unreleased orders).

The focus of these is on the variation of workload, compared to the focus of heuristic 1

which is on providing workload close to a target planning period. As such they can be

conjectured to provide a more balanced load on the machines. The planning period will,

however, change for every pass of this heuristic. In what follows, this approach will be

called "variable period release". In this approach, some account of the limited buffers

and transportation is taken by limiting the number of work parts admitted to the system at

one time to avoid congestion. The allocation of pallets, buffers, and material handling

devices to the work parts is handled through queueing and priority rules. The sequencing

of the parts through the FMS is also done using priority rules.

Priority Release

A simple method to solve both the release and dispatch problems is to use dis

patching rules for both purposes. Then no scheduling period need to be considered. At

every opportunity where a part can be released, release one or more parts on the basis of

the dispatching rule. This opportunity occurs whenever an order is finished on the FMS

since the tools needed specifically for this order are no longer required, and more jobs

can be released after retooling the FMS. Obviously, this approach will incur a penalty of

setups.

Heuristic .5,. The following heuristic was developed in this research for this release

method.

1. Initialize all the variables with correct values.

2. Fori = 1 to N do

A. Insert.i into Pend_List, ordering the items as per the selected priority

rule.

3. feasible= true

4. While there are elements in Pend_List and feasible = true

A. Let i = First element in Pend_List

B. Remove i from Pend_List
ni

C. Let numRoute = 11 size (Aut)
k=1

D. Let chosenRoute =nil; test Variation= coeffOtVar (Utilization)

E. For n = 1 to numRoute do

i. Let freq = n; newLoad = 0

ii. Initialize the vector Route.
iii. For k = 1 to ni do

1. Let numAltemates = size (Aik)

2. Let position = (freq - 1) mod numAltemates + 1
3. Let route (k) = Aut (position)

4. Let freq = (freq - 1) div numAltemates + 1

{Check if route is feasible}

iv. Let feasible= true
v. Fork= 1 toni do

1. Let j = Route (k:)
2.1fnot ((STATUSj =Up) and

(((Slotj- size (Toolsj) > 0) and (AvToolstik > 0)) or(~ e

Toolsj))) then

Let feasible = false

vi. if feasible then
1. For k = 1 to ni do

A. Let j = Route (k)
B. Let newUtilization G) = Utilization G) + Pik * Oi

2. Let newVariation = coeffOfVar (newUtilization)

3. if chosenRoute = nil then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

else

75

if new Variation < test Variation then

A. Let chosenRoute = Route

B. Let testVariation = newVariation

F. If (chosenRoute =nil) then

else

Let feasible = false

i. Add i to the Rel_List
ii. Fork = 1 to ni do

1. Let j = chosenRoute (k); Mik = j

2. Utilization G)= Utilization G)+ Pik * Oi

3. if(~ t toolsj) then

A. Add t~ to Toolsj
B Let A vTools1ik = A vTools1ik - 1

4. Return the Rel_List as the list of jobs to be released, and Mik as the list of allocated

machines

The basic steps in this heuristic are:

1. Put all the remaining jobs into a list, ordering them by the selected priority rule.

2. While there is a job in the list

a. Pick the first job.

b. For all the possible machine allocations for this job

A. If it is not feasible to introduce the job, reject the job and break from

the loop

B. If only one allocation is feasible, use the allocation.

C. If more than one allocation is feasible,

select the allocation that reduces the variation the most.

76

The allocation of pallets, buffers, material handling devices to the work parts in

this approach is still handled through queueing and priority rules. The sequencing of the

parts through the FMS is also done using priority rules. Table I presents a summary of

the heuristics presented above.

77

TABLE I

SUMMARY OF THE HEURISTICS

Heuristic Objective Load limit Load Complexity

balancing

Heuristic 1 Min overload/ Up to fair medium

underload scheduling

period

Heuristic 2 Min variation of Up to preset best most

utilization congestion limit

Heuristic 3 Min variation of Up to preset good medium

utilization congestion limit

Heuristic 4 Min transport, Up to preset fair medium

then Min var of congestion limit

utilization

Heuristic 5 Introduce jobs, No limit fair least

then Min var of

utilization

Proposed Methodology

The above sections discussed the hierarchical solution of the random FMS prob

lem, and heuristics that can be used to implement the release phase of the solution. But

the problem addressed in this research is even broader than can be addressed by the hier

archical approach. For example, it does not address machine failures and material han

dling constraints. This section describes the methodology proposed and investigated in

this research. The approach is based on rules, heuristics, and simulation. The basic

strategy is i) to use rules to handle events as they occur, ii) to use variable period release

as a release mechanism, and iii) to use simulation for selection of the appropriate dis

patching policy. These elements of the methodology are now described.

78

It is apparent from the study of literature that complex mathematical program

ming formulations developed for minimizing makespan in the context of static jobshop

are not suitable for practical use in the context of dynamic jobshop with random arrival

of jobs. Simple priority rules, such as SPT, have been developed for use in the later

context Random FMS is ajobshop with some more complexity added. It can be conjec

tured that random FMS will also engender suitable rules in the dynamic situation. In

addition to the usual jobshop priority rules, rules are needed for the pallets, material

handler, etc.

In the proposed methodology, at any point where a control decision is needed, a

rule is invoked to make the decision. This rule may be an expert system, or a simple rule

such as a priority rule. The rule may call for the execution of an algorithm or the rule

may be about other rules to use in the given situation. The decision points and the rules

invoked are given below. All the rule bases created in this research are presented in

Appendix B.

Releaser. This rule base is invoked at the beginning of a release cycle. At these

times, work parts are released to the limit of avoiding congestion. Call this limit point A.

When the load on the FMS decreases substantially (but not empty), more jobs are

released. Call this lower limit point B. The determination of these two points is not the

object of on-line decision making. In a system as complex as the one under considera

tion, analytical performance modeling cannot (yet) give guidance on the number of work

parts to be circulated in order to avoid congestion. Simulation should be used off-line in

the planning phase to decide these two points: point A, number of work parts in the FMS

79

to trigger release, and point B, number of work parts to stop release. Then, in the real

time control phase, these numbers are merely used as rules of thumb. At the point when

a fresh release is initiated, a small expert system is used to choose the heuristic to use for

the release of specific work parts to the FMS. Any of the heuristics mentioned above

may be chosen by this rule base. Heuristic 2 is suitable when the FMS is not overly

constrained. When the FMS is overly constrained by the tools, and tool magazine

capacities, heuristic 2 is computationally expensive, and results in under loading of the

FMS. In that case heuristic 3 may be used. Heuristic 4 is suitable when transportation is

a bottleneck in the system. Some examples of the Releaser rulebase is given below in

Figure 2 on next page.

Priority mk.. The rules are selected by prior simulation (see below). These rules

are invoked when a resource such as a pallet or a machine is idle. At this decision point,

a simple dispatching rule is used for the selection of the work part. The machines in the

FMS use a priority rule. But the transport device uses the closest transport/closest part

rule: when a transport device is available, pick up the nearest part; when a work part

needs transport, use the nearest available transport.

Machine failure .QI repair. At the time when a machine fails, or when a machine is

up after repair, new allocations or new releases may be called for. Rules in the controller

program handle these events. These rules call for a search for available alternate

machines (suitably tooled) in case of machine failure. If such machines cannot be found,

the affected work part is sent back to the load/unload station. During the next release

cycle, an alternate machine is tooled for these parts if the routing and tool availability

permit. After machine repair, another reallocation of jobs is made and any waiting parts

are released.

80

.Qn:kr arrival. At the time of arrival of an order, a new release may be initiated if

this order is of high priority, and the material is available. A new release is, however,

not initiated if the FMS is highly loaded. This decision is made by invoking a rule base.

ampleToolsMeansFeasible
"If there are lots of tools then the FMS is not very constrained"

if: (ampleTools > 0.8)
then:

[feasible is: true withCertainty: 0.5]
else:

[feasible is: true withCertainty: -0.5]

congestedifBlocked
"If the resources in the FMS are blocked, then release fewer

orders at a time"

if: (blocked)
then:

else:
[congestion is: 'high' withCertainty: 0.9.]

[congestion is: 'low' withCertainty: 0.9]

balancedReleaselfFeasible
"Where there is ample tool space use balancedRelease because
it gives more balanced release"

if: (feasible)
then:

else:
[releaseAlgorithm is: 'balancedRelease' with Certainty: 0.75]

[releaseAlgorithm is: 'feasibilityRelease' withCertainty: 0.75]

Figure 2. Example of Releaser Rule Base

81

Simulation

The complexity of dynamically scheduling and controlling a random FMS can be

captured adequately only by a discrete event simulation model. It is conjectured that the

only means of examining any decision choice in this environment is to carry out detailed

simulation. The methodology of using simulation as a real-time decision making tool is

explained by Harmonosky (1990): (See Figure 3, next page, from [Harmonosky, 1990]).

A computer simulation of a CTh.f system is linked with the actual physical system.

Once the link between the simulation and the system is established, the simulation

logic will be controlled by the actual system communication signals, dictating

start and stop of robot movement, equipment processing, and cart movement.

The simulation will always reflect the current system status, and it will be in

effect monitoring the system. Then, when a system production control decision is

needed, the starting condition for the simulation is the actual system status. For

each different control decision option, a simulation run may be executed for some

period of time. The future impact upon the system due to different decisions may

be evaluated by analyzing simulation statistical results. In this mode, the simula

tion model is used as a real-time production control tool with look-ahead system

assessment capabilities.

In the proposed methodology, at every epoch of release to the FMS, a fresh

selection of priority rule is made. Thus, the priority rule used in the FMS can change

from one release cycle to another. A simple rule base (with about 10 rules) selects the

dispatching rule to be used. If there is a congestion in the system, SPT is selected. If the

load is light, SLACK is used. In these cases, simulation is not required for the selection

of priority rule. In other cases, deterministic simulations are carried out for the time

period until the next anticipated release cycle using a few rules selected by the rule base.

The rule that gives the highest total utilization of the machines is selected for the next

release period. A few examples of the rules are given in Figure 4 on page 83.

I Specify Options I
I I I

es

1'~:..1·
Option 1 Opt,ion 2 Option n

.... t t

Figure 3. Interfacing Simulation with Physical
System for Real-time Control

82

In the proposed methodology, a rule base is used to select the dispatching rule. If

there is a high degree of certainty about the decision rule selected by the rule base, a

simulation look ahead may not be necessary. But if a simulation of alternative priority

rules is called for, it is done for a period corresponding to the release cycle. The best rule

is then used for this cycle.

Wu and Wysk (1989) (Chapter ill, page 41) also use deterministic simulation

look-ahead to select dispatching rules from a set of dispatching rules selected by an ex

pert system. The difference in the approach in this research from that in Wu and Wysk

(1989) is in the criteria followed for the selection of priority rule and in the time horizon

for simulation. They suggest using the same criteria for control simulation as for the sys

tem modeled. A preliminary study with this approach was not successful in this research.

Instead, the criteria of total utilization of the machines was used for the control simulat-

ion. Wu and Wysk also use a relatively much shorter time horizon for their simulation.

Again, an early test of extending the result of small horizon simulation to longer release

cycles was not encouraging and longer, actual time cycles were used in this research.

congesredVVhe~anyJobs

"Conway study: high congestion indicares use of SPT "

if: ((pendingJobs ='many') & (lareJobs ='many'))

then:

[congestion is: 'high' withCertainty: 0.9]

else:

[congestion is: 'low' withCertainty: 0.8]

defineNiceAnd.Easy

83

"If the load is light: not too many pending jobs and few or medium released jobs

are late, it is nice and easy"

if: ((pendingJobs ='few') & (lateJobs ='few'))

then:

[niceAnd.Easy is: true withCertainty: 1.0]

else:

[niceAnd.Easy is: true withCertainty: -0.6]

dueDateForLateness

"DueDate is sometimes a good rule for decreasing lateness"

if: (measure = 'lareness')

then:

[dispatchingRule is: 'dueDate' withCertainty: 0.6]

slackForNoProblem

"If the load is light: not too many pending jobs and most released jobs are not

lare, follow the slack rule"

if: ((measure= 'lateness') & (niceAnd.Easy))

then:

[dispatchingRule is: 'slack' withCertainty: 1.0].

Figure 4. Example of Dispatcher Rule Base

Summary

This chapter describes the framework that was developed for the realization of

objective 1 of this research. The proposed methodology does not bring about a mathe

matically optimum solution of the problem. It, however, seeks to address the multiple

facets of the problem as outlined in the problem statement of this research. (Chapter II,

page 7). As an overview, the multiple constraints in a random FMS are handled in the

following way:

Material Handlin& Constraints

84

When the transportation subsystem is perceived by the Releaser rule base as the

bottleneck, the rule base selects heuristic 4 to reduce part transfers. Another significant

consideration of the material handling constraint is the priority rule used in the system to

reduce idle travel: when a transport device is available, it picks up the work part that is

closest to it. Further, in the dispatching rule selection, the dynamic effect of material

handling constraints is accounted for in the simulation.

Buffer Ccwacity

Buffer capacity is taken into account by considering the congestion during

release. Jobs are released so that congestion is reduced. Part of the problem is solved by

off-line simulation: in determining the range of work part levels in the FMS at which the

FMS should operate. Then this range is used by the on-line control system.

Alternate Routin& Qf £atts.

Alternate routing of parts is used to allocate the operations to the machines. This

is done with a view to improve the machine load balance and/or the transportation

requirement, as the situation may warrant.

..

85

Th..Ql Transport .and Iwll Chan~s

Basically this is a setup question and every setup is allowed setup time in the

system. The effect of this constraint is felt in the quantities of work parts allowed in the

FMS at any one time.

~~.and Priority

Each job has a due date based on the total work content. It can have one of two

priorities: high and low. Due date is directly considered in release. All the jobs are

ordered by their slacks (up to due date) and their priority.

Material A vail ability

The jobs are not scheduled all in advance. The jobs are only scheduled for a

small time window. So material availability is not a problem. A job is not released if its

material is not available.

Fixtures .and Pallets Availability

A simple rule is used during release to take into account the availability of pallets.

Work parts are only released that require up to a factor of the number of pallets available.

This factor needs to be determined, again, by off-line simulation.

Th..Ql Availability .and Th..Ql Li.fu

Tool availability is directly considered in the release heuristics. An order is

released only if the tool is available for the order. The tool life is considered in the simu

lation and time for tool change is allowed after tool life is expired.

86

Machine Failures

Machine failures and machine repairs invoke heuristic rules. Upon failure, all the

parts needing that machine are routed to the load/unload station. From there they are

routed to an alternate machine in the next release if an alternate is available. Upon com

pletion of repair, a rule base is invoked to determine if a rescheduling (re-release, and

selection of dispatching rule) is called for.

Dynamic Production Environment

The dynamic changes occurring in the FMS are always updated in the simulation

environment. The continual arrival of orders, failure and repair of machines and other

dynamic events cause the corresponding controVdecision rule to be invoked. Thus, the

dynamic production environment is accounted for.

On-Line Schedulin~ .imd Control Decisions

The above should be implementable on-line. The reason is that the heuristics are

not complex, and are quickly executed. Further, the time window for scheduling is brief.

Since the dynamic production environment changes continuously, it is not fruitful to

create detailed schedules far into the future. Therefore, projection is made only for a

short duration at a time. At that time, another release decision is made and further pro

jection is made again for a short duration. The simulations for selection of dispatching

rule are carried out only for a time window until the next release. Further, on-line inter

active decision making can be carried out by the user by selecting the orders to be

released. The program will determine if the release is feasible. If feasible, a dispatching

rule may be selected and a time window established. The program can carry out a simu

lation with this input and report on the results.

87

With the development of the methodology as described above, research objective

1 has been achieved successfully.

CHAPTER VI

OBJECf ORIENTED REPRESENTATION OF

THE PROPOSED FRAMEWORK

Introduction

It is apparent from the description of the proposed methodology (Chapter V) that

a prerequisite of computer implementation of the methodology is a good environment for

modeling of complex systems and decisions therein. The rationale for creating an object

oriented programming environment for scheduling and controlling FMS is the superior

capability of this paradigm to represent complex systems. Since the methodology pro

posed herein uses discrete event simulation as a monitoring and controlling tool for the

flexible manufacturing system, the simulation modeling capabilities of the OOP

paradigm are especially attractive. Investigations into object-oriented modeling over a

number of years at the Center for Computer Integrated Manufacturing at OSU have

demonstrated the attractiveness of OOP for the purposes mentioned above [Beaumariage

(1990), Karacal (1990)].

Features of Object Oriented Programming

The basic construct in OOP is the~· An object may represent a physical

object, an information object, or a decision making entity in a complex system. The

attributes of the object are stored in instance variables. These instance variables are,

again, objects representing some aspect of the object. These objects can be created as an

instance of some specific .da£s. of objects. Various classes of objects are predefined as

needed. Operations to be carried out on a class of objects are defined as methods for that

88

89

class. These methods are privy to the class for which they are defined. Only the meth

ods defined in this way can alter the state of an object. Thus, these methods are safe to

use (do not cause unexpected results) since they have been previously defined with the

particular class of objects in mind. Any modeling of a complex system consists of creat

ing instances of the predefined classes. These objects represent, for instance, the FMS

controller, the NC machine, the transport device, etc. The interaction between the

objects takes place through message passing between the objects which causes the appro

priate method defined for the objects to be invoked. This causes alteration of the state of

the object and/or carrying out the desired computation.

The main feature of the OOP paradigm is inheritance. It means that once a class

of objects is defined, a subclass of it can be defined that hierarchically inherits all the in

stance variables and methods of the superclass(es). Thus, a class hierarchy can be

created with the highest class representing the most general attributes of the family of

objects, and the lower classes defining more and more specific types of objects. Inheri

tance increases the effectiveness of the modeler by providing for the reusability of the

predefined classes. Once a class is defined, if a modeler needs a similar class he can

make the new class a subclass of the old class, thus using all the code previously written

for the old class. Only the specific differences between the new classes need to be rede

fined.

Another advantage of using OOP, briefly alluded to before, is encapsulation and

consequent messa&e passin&. The instance variables and the associated methods defmed

for a class of objects are the sole responsibility of the class: the instance variables and

methods are encapsulated. No other object or method can access the state of an object

without passing an appropriate message to the concerned object. This makes for a modu

lar environment where the modeler needs to be concerned only with one identifiable

entity in the system and the changes in the state of the entity. Still another productivity

enhancing feature of OOP is polymorphism, which means that the same message passed

90

to different objects may cause entirely different effects. Since the methods are encapsu

lated within the object, the commonality of method names does not cause any ambiva

lence. The method will make the object behave in a way that is appropriate to the object

receiving the message.

Proposed Framework

The proposed framework uses rules and simulation to make control decisions for

the operation of a random flexible manufacturing system. For a complete description of

the proposed methodology, reference may be made to Chapter V. A brief review is pre

sented here. The system supervisor computer maintains the current state of the FMS in a

simulation model. As the host computer and the NC machines send in information, the

simulation model is updated. This process is illustrated in Figure 5, in the next page.

These external events may merely signal the updating of the simulation model. In those

cases no control decisions are needed. When the supervisor decides that some action is

needed, it invokes the appropriate rules. These rules may require carrying out some

algorithm, or simple prioritizing of some queue. They may require evaluation of control

policies through execution of a simulation model. In this latter case, a simulation model

is created from the current simulation model, and the simulation is carried out. The ap

propriate policy is then chosen from the simulation output, and conveyed to the NC

machines.

Object Oriented Representation of Proposed Framework

The object classes needed for representation of the framework (and the FMS)

have been coded in Smalltalk-80, which is a pure object oriented language [Goldberg and

Robson, 1989]. A rather large object library and some elementary classes needed for

simulation are provided with the software. A considerable amount of additional devel

opment was required for the representation of the system being investigated.

EXTERNAL INTERFACE
(HOST COMPUTER, ~-----.o~E----.,

MACHINE CONTROLLERS

EVENTS

SYSTEM
SUPERVISOR

UPDATE

SIMULATION

SPECIFY POLICIES,
COPY LATEST

SIMULATION MODEL

OPTION! OPTIONN

EXERCISE SIMULATION

DECISIONS

DECISIONS

MODEL, CHOOSE POLICY 1-------------'

ON THE BASIS OF
PERFORMANCE MEAS

Figure 5. Framework for the Proposed Methodology

91

92

The object oriented representation parallels the communication aspects of the real

system. The machines and the transport devices "talk" to the controller via message

passing. The controller, in turn, decides on the control response and communicates the

decision to the machine. In a real world implementation of the methodology, themes

sage passing of OOP could be left intact, and the messages could then be passed through

the real communication interfaces.

The main class hierarchies developed are:

1) Resource. These objects represent the physical equipment and fixtures used by,

the system. By using subclasses, all the different types are represented with the

minimum duplication of code.

2) FMSController. These objects represent the decision/control aspects of the

system. Again subclasses represent different control policies that may be used.

One instance of the controller is used at a time.

3) WorkFlow Item. This object is a representation of the parts flowing inside the

FMS. It also represents the computer process for the part.

4) Buffer. Buffers represent the locations of work in process. They may be

attached to the machines or may be free standing. Subclassing permits represen

tation of limited capacities.

5) Operation. This is a data structure representing one process of the work part.

6) Routing. This object is a collection of operations needed to complete a work

part. A subclass permits representation of alternate routings.

7) Order. This class represents incoming shop orders complete with order size,

priority, availability, etc.

8) Tool. Objects of this class represent the tools to be mounted on the FMS

machines.

9) Tool Crib. This object is a repository of the tools.

93

1 0) TimeMatrix. This is an information object for look up of the travel distances

for the transport devices.

11) Simulation. This hierarchy of classes performs the important function of

simulation processing - handling of the event queue, pausing and resuming of

the computer processes, etc.

In addition to the hierarchies mentioned above, rule bases were implemented, also

in Smalltalk. HUMBLE (Piersol, 1987), a commercial expert system shell for Smalltalk-

80, was used for this purpose. The rule bases are:

1) Releaser. This rule base decides on the heuristic to be used for the next release

cycle. It looks at the congestion in the system, severity of tool constraints, and

transport requirements to select from heuristic 2, 3 and 4 (Chapter V). Currently

10 rules are implemented.

2) Dispatcher. This rule base selects the priority rule to be used in the next release

cycle. Currently 8 rules are implemented.

3) OrderArrival. These rules decide if a reschedule is to be initiated at the time of

arrival of an order. There are 7 rules in this rule base.

Some examples of these rules were presented in Chapter V. Listings of these

rules are given in Appendix B.

The following contains a very brief description of the class hierarchies, their

instance variables, and methods. This description should facilitate perusal of the com

plete code attached in Appendix B.

Resources Hierarchy

The primary objects in any dynamic discrete event system are the resources.

OOP provides an excellent medium for representing different types of resources in a

hierarchical manner. The hierarchy developed to represent resources in a random FMS is

shown in Figure 6, next page.

94

Figure 6. Hierarchy of Resource Classes in Random FMS

Resource and ResourceProvicier are basic Smalltalk:-80 object classes that provide

the function of entities waiting for units of a server, getting the service, and releasing the

server (s). Resource has an instance variable ofpendin~. which is the queue of entities

waiting for service. It also has an instance variable of resourceNaroe, which separates

the identity of one resource from another. &esourceProvider maintains the number of

available servers in an instance variable of aroountAyailable. Every work part in an FMS

queues up for a pallet of the requisite type. There are many different pallet types, and a

number of pallets of each type are available. Thus l3lllia is not much different from a

ResourceProvider . The few differences from ResourceProvider are taken care of by

making the £al.k1 a subclass of ResourceProyider and defining new methods or modify

ing methods of the superclass.

PbysicalDevice is an abstract class. It does not have any instantiations, but forms

an umbrella for defining common methods for the classes fMSMachine and Transport

Device. PhysicalDevice includes the instance variables of timeToFailure and timeToRe-

95

wtir, which are the probability distributions for the time between failures and time taken

for a repair. It also has the instance variable of .mllil.S., which indicates whether it is up or

down. These variables are inherited by EMSMachine and TransportDeyice. EMSMa

~ also has the instance variable of bloclred, which indicates its status regarding

blocking by a work part that has nowhere to go, and 1Q.Qls., which represents the set of

tools mounted on the machine. TransportDeyice includes the instance variable of~

ableLocations, which represents the locations where available transport devices are

located.

Summary m Functions .Qf ReSOurces Hierarchy

Resource.

- Identify the resource by name

- Maintain a queue of requests for service

ResourceProyider.

- Quantify the number of servers available

- Provide service to the customer on a FIFO basis, maintaining count of available

number of servers. This discipline can be overridden in lower level subclasses.

~

- Use the Oueue object to provide statistics on time in queue and queue length

-Use the EMS Controller object to allocate pallets to work parts when available

PhysicalDevice.

- Provide failure and repair mechanism. When failure occurs, one unit of the

resource is withdrawn from service, and after the passage of repair time, it is

returned to service.

- Communicate with the FMSController object to decide which work part to pro

cess next from its input queue

- Inform the FMSController when the failure or repair completion event occurs.

- Adjust (increase) the remaining processing time of work parts when failure

occurs

- Keep track of process times and utilization statistics

EMS Machine.

- Maintain tool magazine as a capacitated set of tools, provide methods for the

interchange of tools

- Interact with tool crib

- Use input and output buffers of limited capacity if initialized for that purpose

96

- Provide mechanism for blocking of the FMS when there is no place for a finished

job to go, i.e., the output buffer is full

- Make work parts wait not only for the servers, but also for the input buffer space

when the input buffer is limited in capacity

- To avoid deadlock, use a reservation mechanism when a work part proceeds to the

EMSMachine after waiting for a space in the input buffer

- Provide for failure conditions when work part may be reassigned to another

machine

TransportPevice.

- Track all the transport devices in the FMS as to their locations

- Provide service to transport requests as per the priority rule

- Provide for aborting of transport services when work parts are reassigned to a

different machine

97

FMSController Hierarchy

The scheduling and controlling functions within the FMS are represented by sub

classes of FMSController. This is an abstract Class without any instantiation, and serves

to introduce common methods for all controllers. Its instance variables are~. repre

senting the FMS controlled; controlSim, the simulation process for choosing the priority

rules; and numberOfActiyeWFl. the number of work parts released into the FMS. The

hierarchy of its subclasses is shown in Figure 7, next page.

FixedPeriodController class has the bulk of the code for this hierarchy. It releases

work parts into the FMS based on minimizing an objective of underload/overload in a

given scheduling l2efi,Qd. A list of route allocations of work parts is maintained as .al.lQ:.

catedWEI. The list of allocation of tools to the machines in the FMS is stored in the

instance variable toolAllocations. The objective function is stored by objective, and

resourceUtilization is the list of machine loadings. The list of active machines in the

FMS is updated in resources, while toolCopiesUsed is a dictionary of the number of

copies of tools used indexed by tool types. The instance variable dispatchPolicy stores

the current priority rule used in controlling the FMS.

YariablePeriodController releases work parts into the FMS based on rules, and a

simulation for selecting the priority rule. Its instance variables are palletUtilization: a

dictionary of pallet loadings, timelnTrausport: a list of time spent by work parts in trans

port activities, timelnSystem: sojourn time of work parts inside the FMS, pendin(i:Orders:

a prioritized list of unreleased orders, and con~estionFactor: a factor used to determine

the number of work parts released into the FMS to avoid congestion. PriorityRuleCon

~ releases and dispatches work parts on the basis of one assigned priority rule: the

dispatchPolicy. SimController is a dummy controller used for the look ahead simulation

of priority rules.

V ariablePeriodController

PriorityRuleController

Figure 7. Hierarchy of the FMSController Subclasses

Summary .of Functions .Qf ~ FMSController Hierarchy

FMSController.

- Provide linkage to the FMS that it controls

- Act as an umbrella for its subclasses

FixedPeriodController.

- Implement Heuristic 1 (Chapter VI) attempting to minimize the over

load/underload for all machines

98

- Check for feasibility for a particular machine assignment, or a routing assignment:

test if the machine is up and whether the appropriate tools are available and there

is place in the tool magazine

- Schedule tool changes for the machines after a release cycle is completed

- Keep track of tool allocations and tool availability

- Handle the event requests of order arrivals, machine failure or repair, and order

completions

- Choose job from an input queue following the selected priority rule

- Find, if possible, an alternate machine for a work flow item when the assigned

machine has failed

V ariablePeriodConttoller.

- Implement Heuristic 2, 3 and 4 for release of work parts into the system

- Create a simulation model when a control simulation is needed, and run it. Then

select the appropriate rule for use

- For event handling, when it is necessary to interface with rule bases, initialize

HUMBLE knowledge bases, and provide interface to them

- Provide its own version of event handling, some of which is different from the

FixedPeriodController

- Prioritize pending orders

PriorityRuleController.

- Implement different aspects of event handling
-

- Implement release of work parts into the system based on specified priority rule

SimController.

- Implement its own event handling

- Provide means of copying tool allocations, and routing allocations for use in the

control simulation

WorkFlow Item Hierarchy

99

All work parts are represented by objects of the class WorkFlowltem. This class

has the dual function of representing both the physical part and the process associated

100

with the part. Some of its instance variables: routin~, m, enttyTime, location, ~.

resourceWanted, arnountWanted, priority and ~ refer to the physical work part.

Other instance variables: myProcess, mySemaphore, and resumption Time are attributes

of the computer process. The class hierarchy of this object is shown in Figure 8.

I ObjectH SimulationObject ~-I -~~ WorkFlowltem I

Figure 8. Hierarchy for the WorkFlowltem

Summazy m Functions m WorkFlow Item Hierarchy

SimulationObject CSmalltalk:-80).

-Functions as the entity that "flows" through the system. Each instance creates a

process, and carries out its "tasks"

- The basic task of a simulation object is to wait for a resource, acquire a resource,

and to release a resource

WorkFlow Item.

- Store an identification of its own process so that the process may be suspended,

resumed, or terminated as necessary

- Answer to various queries regarding its state, or its attributes

- Carry out its task - repeatedly enquire the controller about its next process, get

itself transported there, and carry out the process at the location

101

- Provide means to stop its ongoing process and to restart another process for itself,

which is necessary when there is a change in machine allocation, or in the tasks

for the work part

-Wait for resources like pallets, machines, and transport devices, and release them

when done

- Re-create its own process for control simulation

Buffer Hierarchy

The representation of buffers where parts wait in an FMS is shown hierarchically

in Figure 9. The basic buffering function is represented by an object of the class Queue.

It has the instance variable~. which represents a collection of the work parts waiting

at the buffer. The queue discipline is, however, determined by the controller object.

Figure 9. Classes to Represent Buffers

Addition of an instance variable of capacity changes the class Queue to Capaci

tatedQueue and permits it to represent finite queues. These two objects represent the

input or output queues of machines. InputQueue and QutputOueue instance variables in

102

fMSMachine are instances of CapacitatedQueye. A free standing buffer is represented

by a FreeBuffer, which has a ~ attached to it. A load/unload station is represented by

a FreeBuffer.

Summary Qf Functions fur~ Buffer Hierarchy

Queue.

- Provide a list of work parts waiting at the queue

- Collect time in queue and queue length statistics

- Provide methods for enumerating over the queue's items

- Provide answers to queries about items in the queue

CapacitatedQueue.

- Impose a limit on the number of parts that the queue can hold

- Keep trace of the parts for which space has been allocated at this buffer

- Answer questions relating to remaining queue capacity

FreeBuffer.

-Identify individual buffers by name

Operation class

The class Operation represents an individual process on a work part. It has the

instance variable of machine, indicating the machine required for the operation; .tQ.Ql, the

tool to be mounted for the operation; processTime, the time required for the operation;

and setupTime. Since alternate operations are represented by a linked list, this class is a

subclass of Link. Its class hierarchy is depicted in Figure 10, in the next page.

I Object 1--l ~>I Link 1~--~>1 Operation I
Figure 10. Hierarchy of Class Operation

Summary .Qf Functions fw: Qperation ~

- Maintain a list of the machine, tool, process time, and setup time for any

(alternate) operation, and provide access when needed

- Answer queries about any of its instance variables

Routin~ Hierarchy

103

The routing to be followed by a work part is represented by a class hierarchy as

shown in Figure 11.

pbject H Routing ~-1 -~~ AltemateRouting I
Figure 11. Class Hierarchy of the AltemateRouting Object

An object of class Routin~ has instance variables of~. denoting the number

of serial operations to be carried out; routin~. which is a list of operations to be carried

out; and currentSta~e, pointing to the current stage of the processing of the work part.

AltemateRoutin~ is a subclass of Routin~. and each element of its routin~ is a linked list

of the alternate operations.

104

Summary Qf functions Qf Routin~ Hierarchy

Routin~.

- Information object to hold the information on the list of operations needed for a

work part

- Track which stage of the operations is currently pending

- Enumerate over all the operations in its different stages

- Alteration and creation of its structure

- Check if any failed resources are included in any of its stages

- Answer the number of work part transfers necessary to accomplish the routing

AlternateRoutin~.

- Store alternate operations for each stage in a linked list. Add alternate operation

for a stage, as well as add total number of stages of operations

- Provide all possible routings, and permissible current machines for any stage

An object of the class Qrder represents incoming shop orders. It maintains a list

of its associated work parts in the instance variable wfiCollection. Other significant

instance variables are: duePate, tota1Work, orderSize, priority, routinf:, and p,a,Jkt.

Summary Qf Functions Qf Qrder ~

- Keep track of the availability and release status of the order

- Answer queries regarding different aspects of the order

- Keep the identity of the group of work parts forming an order

105

Objects of the class Th.Ql represent tools used in the FMS. Its instance variables

are: numCcwies representing the number of copies of this tool, toolLife representing the

useful life of a copy of the tool, location pointing to the machine on which a particular

copy of the tool is mounted, ~ to keep track of its identity, and toolCrib representing

the location of the tool inventory.

Summary .of Functions .of Th.Ql.Cl.a.s.s...

- Keep track of movement and location of all copies of itself

- Keep track of life of each copy of a tool, and schedule a tool replacement when

tool life is expired

ToolCrib Qas.s.

Class ToolCrib represents the tool crib in the FMS with instance variables:

changeOverTime, which is the setup time required for tool reallocations; toolCollection,

representing the list of tools in the FMS; and totalCopies representing the master list of

copies of all tool types.

Summary .2f Functions .2f ToolCrib ~

- Work as a repository of all the tools

- Provide information to the controller about availability of tools

TimeMatrix Qas.s.

An object of the class TimeMatrix stores the time required by the transport

device to travel from one station to another. Its instance variables are: resourceArray, the

list of the station names; m, the size of the matrix; and the timeArray, which is the

matrix of travel times.

106

Summary .Qf Functions .Qf TimeMatrix ~

-Work as an information object holding travel times from/to all the stations in the

FMS

Simulation Processin& Hierarchy

The actual processing of the simulation is carried out by the CimSimulation

object. The hierarchy of its superclasses is shown in Figure 12.

pbject H Simulation H CimSimulationl

Figure 12. Simulation Processing Classes

The Simulation class is provided by Smalltalk-80. It provides its basic functions

of simulation processing through the instance variables resources, currentTime, and

eventOueye. A list of the machines in the FMS is maintained by the resources instance

variable. All simulation in Smalltalk-80 is done through multiple processes. When a

process cannot proceed, it is suspended and its resumption event joins the eventQueue.

The class CimSimulation maintains additional lists of pallets, and transportDevices. The

order List is a list of active orders. Other lists are lists of unreleased work part entities:

arrivedWFJs, list of released entities: releasedWEis, list of entities waiting for failed

machines: failedMachineWaiters.

107

Sumroa.zy Qf Functions .Q.f Simulation Processini Hierarchy

Simulation CSmalltalk:-8Q).

- Provide the event queue necessary for the conduct of discrete event simulation

- Keep track of active and inactive processes; and suspend and resume them as

called for by the event triggering

- Creation of new processes and scheduling them in the event queue

- Maintain relevant information about the resources involved in the simulation

CimSiroulation.

- Scheduling mechanism for ending the simulation arbitrarily by any process

- Keep track of active and released work parts, arrived orders, pallets, and transport

devices

- Direct manipulation of the event queue such as deletion of a scheduled event, or

alteration of time for a particular event

Interactions Between the Objects

This section describes the interactions (message passing) between the objects in

fulfillment of research goal 3. Since the physical objects are represented by software

objects in the implementation, the messages sent by the software objects to each other are

very similar to the messages that would be sent between the actual objects. For the pur

pose of easy access, the methods for each object are categorized into groups, each group

addressing one behavior of the object in question. These groups are called protocols.

The detailed implementation is presented in the form of actual code in Appendix B.

Here, only the more important protocols and their messages are discussed. Figure 13 on

the next page shows a summary of the class hierarchies developed to implement the

methodology.

Object

{
Pallet

Resource ~ ResourceProvider {FMSMachine

Physical Device

Transport Device

FMSController ~ FixedPeriodController~ VariablePeriodController

-(
CapacitatedQueue

Queue

FreeBuffer

Link ~ Operation

Routing ~ AlternateRouting

Simulation ~ CimSimulation

Order

Class

SimController

PriorityRuleController

Legend

ParcPiace library

Class Class implemented
for the research

SimulationObject ~ WorkFiowltem

Tool

TooiMatrix

Figure 13. Summary of the Class Hierarchies

108

109

The major interactions between the objects are the message passings that occur

between the resources and the EMSController. These mainly consist of event updates to

the controller, and the controller's response to the events. The protocol in the EMSCon

.t!:Qlkr hierarchies to handle events is called~ reiDJests. The methods in this protocol

differ between the controllers to reflect the control policies of the particular controllers.

Where possible, advantage is taken of the inheritance feature of object oriented pro

gramming.

Controller Hierarchy

The major methods in the~ reQJieSts protocol are:

1) doneOrder: anOrder. An order has been completed. The FixedPeriodController

ignores the message. VariablePeriodControl1er schedules a new release of parts

into the EMS, if the number of work parts inside the EMS has dropped below the

minimum point. PriorityRuleController attempts to release more work parts into

the system if feasible.

2) iAmDone: aWFI. A work part has completed its journey through the EMS.

FixedPeriodController schedules a new release if there are no more work parts in

the EMS. VariablePeriodController collects statistics about the departing part for

use in its decision making process. PriorityRuleController attempts to release

more work parts into the system if feasible.

3) orderArrival: anOrder. An order has arrived at the EMS. VariablePeriodCon

.t!:Qlkr invokes the OrderArriyal knowledge base to decide if a release cycle of the

FMS is called for. Other controllers ignore this message except in the case when

there is no work part inside the FMS, in which case, they initiate a release cycle.

4) failedDevice: aResource. A resource has gone down. All the controllers inherit

the same behavior for this event, from the FixedPeriodController class. The con

trollers send the work parts being processed, if any, and parts whose next process-

110

ing was scheduled at this resource back to the load/unload station. An attempt is

made to reallocate these parts to another machine if the machine is appropriately

tooled.

5) upDevice: aResource. A downed machine has been rendered serviceable. All

the controllers exhibit the same behavior for this event. A release cycle of the

FMS is initiated in which all the parts waiting for this failed machine are routed

to this machine.

The main computations in the controller hierarchy are carried out by code in the

.tMk lan~rna~e protocol. The major methods in this protocol are:

1) reallocate. This method initiates the release cycle. It uses various methods to

carry out its functions. On the whole, the tool allocations necessary for the work

parts currently inside the FMS are calculated first. Then, the appropriate algo

rithms are carried out to determine new work parts to be released into the envi

ronment. Any necessary simulation runs and/or rule base consultations are

carried out.

2) releaseWaitingJobs. This method is used by the FixedPeriodController to im

plement Algorithm 1 (Chapter V). YariablePeriodController consults the Releaser

rule base to determine the algorithm to be used. It then uses the appropriate

method: balancedRelease implements Algorithm 2, feasibilityRelease carries out

Algorithm 3, and minTransportRelease incorporates Algorithm 4. This controller

also determines the appropriate priority rule using Dispatcher rule base. If there

are more than one potential candidates for the priority rule, simulation models are

created and run to select the rule for the current simulation cycle. PriorityRule

Controller has its own version of this method. It implements the priority rule

under which it is operating.

3) scheduleToolChange. This method is carried out after the initiation of the

release cycle. It finds out the earliest time when a tool change can be carried out:

111

when all the current operations are finished. It then passes the message to all the

machines to carry out the tool change necessitated by the latest order allocations.

Resource Hierarchy

Objects of the Resource class hierarchy provide service to all the work parts. They

get instructions from an object of the controller hierarchy. They send event requests to

the controller hierarchy and requests for decisions including which work to process next.

The major methods in this hierarchy have to do with handling of the objects in the queue

and processing of the work parts. These methods are defined in the .ta£k lan~rna~ proto

col.

1) provideServices. This is the work horse method defined for all the subclasses as

appropriate. This method is used whenever the status of resource availability or

service demand changes. If there is enough resource at hand, it sends a message

to the controller to find which work part to process first.

2) reserveSpace. This method is sent to the EMSMachine when a work part needs

to be sent there. The work part waits at its previous location until there is a space

available at the machine. This provision is necessitated by the limited input

queue capacity of the machines: to prevent deadlock in the event when the trans

porter is waiting for a place in the input buffer of the machine and the machine is

waiting for the transporter to offload a work part from its buffer.

3) hasSpace. This message sent to a FMSMachine returns the availability of space

in the machine input buffer.

4) isBlocked. This message sent to a FMSMachine is answered with the status of

the machine with regard to blocking.

5) scheduleToolChange: toolSet at: aTime. This message tells a EMSMachine to

change the tools in its tool magazine with the new tool set at the requested time.

This will allow for the time required to swap tools with the tool crib and with

other machines.

112

6) continuePending. This message is sent to a EMSMachine after it has recovered

from a failure. It causes the machine to start processing any parts waiting in the

input queue or parts with partially finished operation.

7) amountA vailable. A PhysicalDeyice answers with the number of available

servers when this message is sent to it.

8) currentW ork. This message is implemented at the PbysicalDevice level and

answers the work parts currently processed by all the servers.

9) transport: aWFI to: aResource. This message sent to the transport device causes

the transport to pick up the work part and transport it to the resource. In so doing,

the actual server is determined by the controller in response to a message.

10) is Up. This is another inquiring message, and any subclass of PhysicalDeyice

answers with its status, true when it is up and false when it is down.

Objects of the IQ.Ql class represent the tools in the implementation. Each tool is an

instance of this class. Its important messages are in the 1QQls. transaction protocol.

1) supplyToolFor: aMachine. This message to a tool causes it to send a copy to the

machine, and to do the necessary book keeping about the location of the copy.

2) usedTime: aTime location: aLocation. This message informs the IQ.Ql that the

copy at the location has been used for a given time. This goes towards book

keeping of the used life of the tool copy.

3) youAreReturnedFrom: aMachine. The Th.Ql is being told that the copy previ

ously at a machine is now returned to the tool crib.

113

Routin~ Hierarchy

The routings are represented by the Routin~ and AltemateRoutin~ classes. Meth

ods are defmed for the construction of routing and for the accessing of the information .

about the routing. Important methods are located in the accessin~ protocol.

1) numberOfMovements. This message, answered by Routin~, informs about the

number of movements needed if this routing is followed.

2) numRemainingOps. This method answers the number of remaining operations

in the current routing including the current stage of operation.

3) allPossibleRoutes. An AltemateRoutin~ answers this message with all the pos

sible combinations of routings that can be followed by a work part.

4) currentProcesses. This message is implemented at the AltemateRouting level,

and returns a list of the machines to which a work part could go for the current

operation.

Simulation Hierarchy

Objects of the Simulation hierarchy exhibit all the behaviors necessary for carrying

out and updating a simulation model. The implementation uses the subclass CimSimula

tion for these functions. Most important simulation processing methods are placed in the

simulation control protocol.

1) activate. This method tells a simulation model to activate itself and to carry it

out. Thus the control simulation model, once created, is sent this message to

determine the performance.

2) changeTimeForWFI: a WFI to: aNewTime. This message informs CimSimula

llim to reschedule the event for a work part to a new time and to re-sort the event

queue.

114

3) holdObject: a WFI for: a Time. A CimSimulation is told by this message to sus

pend the process for a work part for the given time. This is the basic operation

for placing an event in the event queue.

4) scheduleEndAfter: a Time. This message causes CimSirnulation to schedule the

end of simulation after the passage of a given time.

5) removeFromEventQueuelfPresent: a WFI. This is another simulation processing

message that causes CimSimulation to remove a work part from its event queue.

Many methods are implemented for CimSimulation class to keep track of essential

book keeping. These methods are mostly in the accessin~ protocol.

1) activeList. This message when sent to CimSimulation causes it to return a list of

work parts that have arrived at the FMS but have not completed the operation.

2) activeResources. CimSimulation responds with a list of resources that are up

when this method is invoked.

3) failedMachineWaiters. Again, this method results in a list of work parts that

have been waiting for some failed machine.

Oueue Hierarchy

The objects of this hierarchy perform the purpose of storing work parts during pro

cessing. Usually they are attached to a machine as input or output buffers. But they

could be free standing, for example the load/unload station. They could also be a logical

queue, as for the transport device. As in other classes, numerous methods permit inter

action with other objects. The essential functions of adding and removing work parts are

carried out by methods in addin~ and remoyin~ protocols.

1) add: aJob. This method causes a work part to be added to the buffer. The class

CapacitatedOueue implements a variation, taking care of the reservation of

spaces.

115

2) remove: aJob. This method removes a job from the queue. Queue statistics are

updated.

Methods to enquire about the buffers are provided in the testin~ protocol. Some

examples are:

1) includes: a WFI. This message asks the buffer if it has a given work part.

Answer true if it has the work part, false otherwise.

2) isEmpty. This method tests the buffer to see if it is empty.

3) hasSpace. An enquiry is made to see if there is space in the buffer. Capacitat

edOueue has to check its actual contents, as well as allocated space. Other

buffers, of course, always have space available.

WorkFlow Item~

Objects of this class represent the work parts flowing in the FMS. For each such

object, there is an ongoing process in the computer. As such, there are methods to handle

the physical object as well as the computer process. The methods to handle the process

aspect are placed in the simulation control protocol.

1) holdFor: a Time. This message causes the WorkFlow Item to stop its process and

to wait in the event queue for a given time before proceeding further.

2) pause. This method tells the process to go to sleep temporarily.

3) resume. The WorkFlowltem is told to resume its process after having gone to

sleep.

4) terminate. The associated process is permanently terminated. This happens

when a work part has finished all its processing, or if a process needs to be

restarted after a certain point, as when a machine fails. Then, a new process is

started from this point.

116

The most important methods for this class are contained in the~ lan~rua~e proto

col. This is where the processes to be followed by a work part are to be found.

1) tasks. This method is a statement of the tasks to be followed by the work part.
I

When a work part is told to carry out its tasks, it follows its routing, and gets

processed and transported until it is done.

2) completeProcessesAtLocation. A WorkFlowltem has arrived at a resource. It

has grabbed the resource. It is then told to complete all the processes that need to

be carried out at this resource.

3) requestOutputQueue. A WorkFlowltem needs to obtain space at the output

buffer of a machine after its processes at the machine are completed. If there is

no space there, the machine is blocked. To prevent deadlock where parts in a

. group of machines are waiting in a circular fashion for the input queue space and

thus are causing permanent blocking, a work part is sent to the load/unload station

if this situation is suspected.

4) rerouteToStation: aResource. The current machine has failed, and this Work-

Flowltem is told to re-route to another machine. This method will cause the

WorkFlow Item to terminate its current process and start another process for itself.

5) restartFromLoadStation. This is another method to handle a machine failure.

This time the WorkFlowltem is told to go to the load/unload station. The current

process is terminated, and another process is initiated.

Summary

In accordance with the object oriented programming concepts, software objects

that are 'natural' representations of the physical, decision/control, and information aspects

of the random FMS have been created. Numerous messages have been written that are

sent back and forth between the objects as their interaction proceeds in the system.

117

In this chapter, the object oriented representation of the framework and the inter

actions between them were described. These fulfill objectives 2 and 3 of the research

proposal. Only the highlights of the development have been set forth. Further details

can be obtained from the Smalltalk code presented in Appendix B.

CHAPTER VII

EVALUATION OF THE METHODOLOGY

Introduction

This chapter presents an evaluation of the proposed methodology. This evalua

tion has been done in the context of the measures of merit outlined below. For the pur

pose of the evaluation, the alternative methodologies as outlined in Chapter V have been

implemented in the class hierarchy of EMSController as detailed in Chapter VI. Besides

the controller classes, a FMS simulator has been built. An order generator was also con

structed to load the FMS simulator. The statistical results of the simulation were then

used for the quantitative evaluation.

Measures of Merit

This section identifies performance measures to be used in the evaluation of

methodologies for scheduling and controlling random flexible manufacturing systems. A

FMS is usually a part of a hierarchical organizational structure. Any performance goal

for the control of the FMS is thus subservient to the higher level goals of the organiza

tion. A methodology to carry out the lower level tasks should thus be evaluated in terms

of its ability to achieve the major goal. However, due to the complexity of the organiza

tions, it is not possible to devise a complete mathematical formulation of the objective

(suprema!) of the manufacturing system. Thus, there is no objective of the infimal that

could be set forth from the suprema!.

Therefore, one is led to the use of surrogate objectives for the scheduling and

controlling function of manufacturing systems. It should also be said that, a single

118

119

objective is not enough to capture the requirements placed on scheduling and controlling.

Thus the performance measures are multiple criteria to be used for the evaluation. Many

such performance measures have been suggested in the literature.

A vera~e Wei~hted Tardiness

The main requirement placed by the upper planning and control hierarchy on the

shop floor control is the target time when the work is to be completed. This is especially

true of the job shop environment considered in this research. A job shop environment is,

by definition, a make to order (MTO) situation. The orders as they arrive at the organi

zation have due dates assigned to them: by the customer, or promise dates assigned by

the management. This due date is translated into due dates for work parts that flow

through the system. From the view point of the upper planning levels, it is necessary to

meet the set due dates with due consideration to the priority assigned to a product. Even

if the FMS is operated very efficiently, if high priority work is delayed or work needed

early is finished late while work needed late is finished early, the FMS operation has not

performed well. Thus, due date performance is the primary criteria to be used for the

evaluation of scheduling and controlling algorithms. The measure of average weighted

tardiness is suggested for the evaluation of control frameworks. The tardiness of a high

priority work order is assigned a weight of 2 and that of low priority work is assigned a

weight of 1. The steady state average value of this measure is then used for evaluation.

tardiness = max (0, finish time - due date)

weighted tardiness = 2 * tardiness for high priority orders

= 1 * tardiness for low priority orders

120

Sojourn~

In some literature dealing with the planning of FMS, the authors have used the

utilization of the machines as the objective. This is considered necessary especially in

view of the expense incurred in the building of the system. The use of this criterion can

be justified only for the static loading of the system often considered in the literature.

When only current work in hand is considered, it is justifiable to use the machines as

much as one could use them so that they are available for future use. But when the

dynamic situation of continuously arriving work is considered, maximization of the aver

age utilization of the machines can not be used as a measure of merit. Average utiliza

tion is directly determined by the arrival rate of the work. In the long term, the average

utilization will assume the same value as the traffic density (if traffic density< 1). Thus,

measure of efficient operation of the FMS is not the average utilization, but the queueing

delay: how long the incoming work must wait before the work is finished. Thus, a sec

ond measure of merit used in this research is the average time a work part spends in the

system after arrival at the FMS load/unload station.

C.P.U.~

The current research aims at developing a methodology for scheduling and con

trolling a random FMS on-line. While sophisticated search techniques could be used off

line to find an optimal schedule for this problem, it is contended that they are not suitable

for dynamic operation, where decisions are needed on-line. The requirement of real-time

control, however, varies with the application. What is considered real-time in some

applications may be too slow to handle some other applications. For the macro level

operation envisioned in this research, an algorithm is considered fast enough if it can find

a decision within a time which is of the order of the time between successive macro

events in the FMS - arrival of parts, completion of processing, completion of transport,

121

breakdown, repair etc. It is apparent that the requirement is not as severe as that of real

time process control of the FMS. Nevertheless the time taken for decision making by the

control software is a useful benchmark. Thus, another performance measure suggested in

this research is the milliseconds of actual CPU time needed for control decisions per hour

of operation of the (simulated or real) system. This measure is necessarily hardware

dependent. But if all the compared algorithms use the same hardware, meaningful com

parisons can still be made.

Tar~et System Flexibility

Another useful measure for comparison of control methodologies is the latitude

allowed for differences between target systems. How flexible is the modeling capability

of the framework? Flexibility here refers to the capability to address different FMS con

figurations. For example, if a new component such as a robot is introduced in the target

system will a complete rewriting of the model be necessitated? While the three earlier

performance measures are quantitative, this last measure is a qualitative one.

This section presented four performance measures suitable for the evaluation of

scheduling and controlling methodologies for random FMS. The following two sections

describe the experimental setup developed for the quantitative evaluation.

FMS Simulator

A highly detailed FMS simulator has been implemented in the Smalltalk-80 soft

ware environment using the components described in Chapter VI. Figure 1 on page 59

shows a schematic of the physical configuration. The simulator permits the modeling of

the machines, transport devices, fixtures, and tools. These physical components have

different types and exist in limited quantities. It is possible to represent the limited queue

capacity of the machines. The machines can have individual distributions of time

between failure and time to repair. The events of arrival of work part, mounting on the

122

needed pallet, its movement within the FMS, retrieval of pallet, and eventual exit from

the FMS are modeled in complete detail. The machines, in turn, are allowed to fail, to get

repaired, to get blocked by work pieces which can not move, and to get the tools in their

tool magazines changed.

A complete listing of the Smalltalk-80 code implementing this simulator and the

order generator described in the next section may be found in Appendix B.

Order Generator

An order generator to load the FMS simulator was implemented in Smalltalk-80.

It consists of the class LoadGenerator. Its main instance variables are numberOtMachi

nesYisited, which is the distribution of number of machines in the routing of an order;

numberOfAlternates, the distribution of number of alternate machines for any operation;

arrivalDjstribution, the distribution of time between arrival of the orders; yisitTime, the

distribution of process time for the operations; and orderSize, the distribution of size of

an order. Once initialized with these objects, the order generator schedules itself with the

active simulation processor to generate arrival of the orders. The main methods defined

for this class are:

1) seed: aSmalllnteger. This message permits reseeding the random number stream

for all the distributions used by the LoadGenerator.

2) scheduleArrival. This method causes the LoadGenerator to activate. It accesses

the active simulation processor and schedules the arrival of orders as specified in

its instance variables.

3) createOrder. This method makes the LoadGenerator take samples from its vari

ous distributions and to create an order to be sent to the FMS.

The order generated by the order generator consists of a randomly specified num

ber of work parts with one routing, with alternate machines specified. The required tools

are also specified. These orders have one of high or low priorities. However, they can

123

not be executed until the part arrives to the FMS (there is another specified distribution

for this delay).

Experimental Evaluation

The order generator, the FMS simulator and the FMS controller were used to

evaluate the proposed methodology vis-a-vis alternative methodologies experimentally,

via discrete event simulation. Figure 14, on next page, depicts the interactions of simu

lation objects constructed for the purpose of the evaluation. The experimental setup is

described in the following sub-sections.

~ CoffiPonent .Qf ~Experiment

1. A hypothetical FMS cell was modeled consisting of 8 NC machines, a load/unload sta

tion, a tool crib, pallets and 4 AGV's.

2. The number of transportation devices (AGV's) was fixed at 4.

3. The input and output queue capacities at each machine was fixed at 2.

4. The processing time for each operation was distributed uniformly from 5 to 25 min

utes. The processing time sampling was done at the time of creation of the order by the

order generator. This time was assigned to the order and was used throughout the life of

the order.

5. Transportation time was uniformly distributed from 1.5 to 4 minutes.

6. Each machine was equipped with a tool magazine of capacity 10 slots.

7. The tool for a process was randomly selected from a total of 100 tool types in the tool

crib. It was assumed that two copies of each tool are available. A setup time of 30 min

utes was incurred in mounting/dismounting of tools for the 8 machines and in

transportation from/to the tool crib. One tool occupies one slot, and one operation

requires only one tool.

EXPERIMENTAL
DESIGN

Loading

Orders

Statistics ·

Control
Decisions

Event
Requests

- ~ PERFORMANCE k · .

EVALUATION

: Statistics

Figure 14. Flexible Manufacturing System Simulation

124

8. It is assumed that there is no need to adjust the position of work part in a pallet, or to

change the pallet through the entire time a work part visits the flexible manufacturing

system.

9. Orders for a random (3 to 8) number of parts of a specific part type were generated

with the inter-arrival time following an exponential distribution to maintain the desired

traffic density.

10. Each part type requires one pallet type. There are 50 pallet types, with 5 copies of

each type being available.

125

11. Due dates are assigned to each order on the basis of the total work content. A factor

of 5 is used. That is, if an order is generated at current time,

Due date = current time + I, process time * order size * 5
All operations

12. Machine failures. The machines fail with an exponential distribution of time between

failures (500 hours) and uniform distribution of time between repairs (5 hours to 10

hours). When the failure of a machine occurs, the work part under process is not

scrapped. Instead, it is assumed to need only the remaining part of its processing time.

Variable £m:t Qf .thk Experiment

A complete factorial experiment has been carried out with the following factors

and levels:

1. Control approach: The scheduling and controlling methodology is a factor in the

experiment. Five different approaches (levels) were evaluated:

a) Fixed period release. This assumes a scheduling period of 480 minutes. De

tails about this heuristic are presented in Chapter V. The heuristic is used for release of

parts and aims at a target machine utilization of 480 minutes at each release. Then one of

the following priority rules (each is a level) is used for dispatch of the parts.

i) SPT. The work part with the shortest imminent processing time is picked first

from the queue. However, if there is a part which is already late, then this part is pre

ferred. If more than one part is late then the part with the least slack is chosen, where

slack is given by

Slack = Due date - current time - remaining work

This approach is called FSPT in the following discussion.

ii) SLACK. The work part with the least slack time is picked first. Hereafter,

this approach is called FSLACK.

126

b) Priority release. All the order releases are based on the priority rule which is

also followed for dispatching the work part through the FMS. Every time an order is fin

ished, as many work parts (with the priority decided by priority rule) are released as fea

sible. Two rules were investigated:

i) SPT. This is the same rule as described above. This approach will henceforth

be called PSPT.

ii) SLACK. This rule picks the order or the part with the lowest remaining slack

time. This control policy is called PSLACK in the following.

c) Variable period release. This is the comprehensive scheduling and controlling

approach developed in this research. The rules and algorithms followed for this

methodology are set forth in Chapter V. This approach is called SIMRULE in the

following discussion.

Thus, the five levels of the factor "control approach" have been labeled FSPT,

FSLACK, PSPT, PSLACK, and SIMRULE.

2. Traffic density. FMS loading was another factor in the experiments. This was to

determine the effectiveness of the methodologies for different loads on the FMS. Two

levels of traffic density (60% and 70%) were used.

3. Routing Flexibility. The number of alternates provided for each operation was also

used as a factor. This was to determine the impact of flexibility and control approach on

the performance measures. Two levels of alternate routings were employed. The first

permitted one to two (uniformly distributed) alternate operations for each stage of pro

cessing. The second permitted two to three (uniformly distributed) alternate operations.

In summary, the factorial design can be represented by the diagram presented in

Figure 15, on next page.

Control

FSPT

FSLACK

PSPT

PSLACK

SIMRULE

LOW
(0.60)

HIGH
(0.70)

Figure 15. Factorial Design of Simulation Experiments

Validation .Qf ~Model

The load generator, FMS simulator and FMS controller depicted in Figure 14,

above, were validated using the following procedures.

127

Random Number Generator. The success of any simulation experiment depends to

a large measure on the availability of a number of good random number streams. For

this purpose, a random number generator (Payne, Rabung, and Bogyo [1969]) recom

mended in Law and Kelton (1991) was implemented in Smalltalk-80. Reportedly, this

generator is well-tested and works correctly. Up to 100 streams 100,000 numbers apart

can be obtained.

128

~ Check. The orders and the resulting work parts were followed through the

system from their creation to the completion for a number of simulation runs. All events

were found to occur in the simulation as described in this Chapter, above, and in Chap

ters 5 and 6. The work parts followed the routing (alternate) specified, and the correct

tools and process times and transport times were used. Specifically, the following events

were checked for correct occurrence:

Creation of order

Generation of work parts from the order

Movement of transport vehicles

Failure and repair of machines

Tooling setup

Flow of work part: creation, waiting for pallets, pallet loading, waiting for trans

port, movement to machine, waiting for machine, processing, further movements

and processings, fmal movement to load/unload station, retrieval of pallet

(including integrity of pallet numbers), completion of an order, data collection on

weighted tardiness of the order and sojourn time of the work part

Machine allocation algorithms

Triggering of a release cycle

Use of alternate routing

Priority rule (queue discipline) operation

LwW Generator Check. Tests were conducted on the load generator to see if the

orders and the work parts were generated as specified. Data from a run of 100,000 simu

lated minutes are given in Appendix A, where it can be seen that the load generator per

forms as specified.

Normal ~ .Qf £m:ts... Tests were conducted to assure that the parts flowed

through the system evenly: no parts should get stuck in the system, and all parts should

129

be tracked until they complete their journey through the FMS simulator. For this pur

pose, periodic snapshots of the system were taken every 1000 simulated minutes to check

on the parts and orders in the system. All parts were tracked, with none being lost or

stuck in the system.

Ca1culation .Qf Statistics. Calculation of sojourn time and lateness were hand

checked for some simulations of short durations and found correct.

Utilization Check. A number of simulation runs were conducted in which the load

generator was set to generate a 60% traffic intensity. Mter the model had attained steady

state, utilization statistics were collected for a further 60,000 simulated minutes. The

average utilization was found to be very close to 60% (See Appendix A). Since the load

generator was pretested, this independent test shows that indeed the parts do visit the

resources as specified and the model runs as envisaged.

Replications

Five replications were made under each of twenty combinations. For each exper

iment, two random number streams were used: one for the order generator, the other for

the failure and repair cycles. In order to curtail variation of the estimates, common ran

dom numbers were used: one set for each replication. That is, for each experimental

condition, the same five sets of common random number streams were used for the five

replications. The experiment was analyzed with each replication as a block.

Simulation Termination

Preliminary simulation runs were carried out to determine when the simulation

can be assumed to have warmed up. The graphical procedure of Welch (Law and Kel

ton, 1991) was used to determine the time period. For each cell in the experimental

design, simulations were carried out until the number of work parts in the system could

130

be assumed to have reached steady state. Statistics were cleared at that point in time, and

observations were taken for the next 20,000 (simulated) minutes.

Analysis of Experimental Results

A total of 100 experiments were carried out, 5 replications for each of 20 combi-

nations of the factor levels. Each experiment resulted in observations of 3 responses:

1. Average weighted tardiness, in minutes.

2. Average sojourn time, in minutes.

3. C.P.U time (milliseconds real time per hour of simulated time)

For all three responses, the linear model is

Xijkm = J.1 + Ci + Tj + F k + Rm + CT ij + CFik + TFjk + CTFijk + Em(ijk)

where

Xijkm e {Average weighted tardiness, Average sojourn time, CPU time}

J..L = Average response over all the populations

Ci = Effect of the control policy (i = 1 , 5)

Tj =Effect of the traffic density (j = 1, 2)

Fk =Effect of routing flexibility (k = 1, 2)

Rm =Effect of the replication block (m = 1, 5)

CT ij = Interaction between control policy and traffic density

CFik =Interaction between control policy and routing flexibility

TFjk = Interaction between traffic density and routing flexibility

CTFijk =Interaction between control policy, traffic density and routing

flexibility

Em(ijk) = Random error for replication m within the cell i, j, k.

The results of the experiment were analyzed using a SAS program. The SAS

program with the embedded data is presented in Appendix A. The complete output of

131

the SAS computations is also included in Appendix A. The conclusions drawn from the

output are presented in the following sub-sections.

A vera~ Wei~hted Tardiness

With respect to the dependent variable of average weighted tardiness, the analysis

of variance is presented below in Table IT.

TABLE IT

ANOV A WITII AVERAGE WEIGHTED TARDINESS
AS DEPENDENT VARIABLE

Source DF Sum of Squares Mean Square F

Value

Control 4 66419280.2 16604820.1 25.04

Flexibility 1 79663720.5 79663720.5 120.12

Traffic 1 252219549.5 252219549.5 380.29

Replication 4 1205315.2 301328.8 0.45

Control * Flexibility 4 16856384.7 4214096.2 6.35

Control * Traffic 4 65307009.5 16326752.4 24.62

Flexibility * Traffic 1 73240484.8 73240484.8 110.43

Control * Flexibility 4 17722746.2 4430686.6 6.68
*Traffic

Model 23 572634490.7 24897151.8 37.54

Error 76 50405230.4 663226.7

TOTAL 99 623039721.1

Pr>F

0.0001

0.0001

0.0001

0.7689

0.0002

0.0001

0.0001

0.0001

0.0001

132

The significance of the overall F - test is very high, indicating that the model ac

counts for a significant portion of the variability in the average weighted tardiness. All

the main factors of control policy, routing flexibility, and traffic density are significant,

as are the interactions. This shows that not only the different levels of control policies

have different mean values of average weighted tardiness, but also the means are differ-

ent for different combinations of control policies with routing flexibilities and traffic

densities.

The mean values of the average weighted tardiness at different levels of traffic

density and routing flexibility are shown in Table m, next page. From Table m, it can

be concluded that although there is high variation in the ordering of the rules (there is

interaction between the experimental conditions and the control policy), SIMRULE has

the least average weighted tardiness. The coefficients of variations (in percent) vary

widely although SIMRULE seems to have the lower value in the tables. For low traffic

density situations, there is hardly anything to choose between the control policies, but

SIMRULE proves itself in high traffic density situations.

To find the significant differences among the control policies, Duncan's multiple

range test was carried out. A significance level of 0.05 was used. The result for the

average weighted tardiness measure is shown below in Figure 16. Mean values of

performance measure are shown in parenthesis. A line is drawn under any set of means

for which the differences are not statistically significant.

FSLACK
(2461.9)

FSPT
(2400.1)

PSPT
(2026.6)

PSLACK
(1973.0)

SIMRULE
(236.9)

Figure 16. Multiple Comparison of Control Policies for
Average Weighted Tardiness

TABLElll

AVERAGE WEIGHTED TARDINESS MEASURE AT
COMBINATIONS OF FACTORS

FSPT FSLACK PSPT PSLACK

Hi&h Traffic Density

Mean 4640.96 4731.34 3691.46 3684.65

CoeffofVar 54.834911 52.027082 72.384493 70.882520

.L!lli Traffic Density

Mean 159.23664 192.52940 361.67210 261.25260

CoeffofVar 45.094461 35.433600 32.985442 29.914974

High Routin& Flexibility

Mean 1340.19 1462.77 860.24310 816.47880

CoeffofVar 126.98730 116.47315 107.37896 93.356579

Low Routing Flexibility

Mean 3460.00 3461.09 3192.89 3129.42

CoeffofVar 101.14546 101.69072 96.215925 99.959258

133

SIMRULE

290.72160

54.475321

183.01144

64.385205

156.00474

36.495273

317.72830

52.324947

From the multiple comparison, it can be concluded that the SIMRULE control

policy has significantly lower average weighted tardiness. Priority rule based release

seems to perform better than fixed period release, although the difference is not signifi-

cant.

Sojourn Iiink

The results of analysis with the sojourn time as the dependent variable are now

presented. The table for the analysis of variance is given in Table IV.

Source

Control

Flexibility

Traffic

Replication

Control * Flexibility

Control * Traffic

Flexibility * Traffic

Control * Flexibility
*Traffic

Model

Error

TOTAL

TABLE IV

ANOVA WITH SOJOURN TIME AS
DEPENDENT VARIABLE

DF Sum of Squares Mean Square

4 75651069.1 18912767.3

1 76282230.2 76282230.2

1 259675689.0 259675689.0

4 1027218.8 256804.7

4 13916729.8 3479182.5

4 68620665.1 17155166.3

1 67988776.5 67988776.5

4 15208756.1 '3802189.0

23 578371134.6 25146571.1

76 50300095.7 661843.4

99 628671230.3

F Pr>F

Value

28.58 0.0001

115.26 0.0001

392.35 0.0001

0.39 0.8166

5.26 0.0009

25.92 0.0001

102.73 0.0001

5.74 0.0004

37.99 0.0001

134

The overall degree of significance for the model is very high, thus indicating that

the model is able to represent substantial amounts of variation in the average sojourn

time values. All the main effects of the major factors are significant. All the interac-

tions are also significant. This suggests that the effect of all the factors is different at

different levels of the rest of the factors.

The mean values of average sojourn time at combinations of routing flexibility

and traffic density with the control policies is given in Table V.

TABLE V

AVERAGE SOJOURN TIME MEASURE AT
COMBINATIONS OF FACTORS

FSPT FSLACK PSPT PSLACK

Hi~h Traffic Density

Mean 5554.28 5647.92 4298.81 4303.94

CoeffofVar 46.802449 44.013399 57.416027 55.750829

~Traffic Density

Mean 785.06730 903.55450 1143.77 1078.72

CoeffofVar 16.707651 13.592149 16.337199 11.682774

High Routing Flexibility

Mean 2071.69 2256.35 1649.83 1642.26

CoeffofVar 88.429605 79.717050 54.572341 45.255044

~ Routing Flexibility

Mean 4267.66 4295.12 3792.76 3740.40

CoeffofVar 85.698285 84.444074 75.938354 78.194089

SIMRULE

980.24290

25.180545

759.60880

25.915209

740.83760

19.214315

999.01

26.375149

135

136

From the above tabulation of means of average sojourn times, it is apparent that

the least sojourn time for all the levels of routing flexibility and traffic densities is given

by SIMRULE. However, there is interaction between the control policies and the load

ing conditions: different orderings of control policies are obtained for different experi

mental conditions. As in the case of average weighted tardiness, there is not much to

choose for low traffic conditions, but SIMRULE performs better for high traffic condi

tions. The coefficient of variation also appears to be lower for SIMRULE.

Multiple comparison of means for different control policies was carried out using

Duncan's multiple range test. The result is presented in Figure 17, where the means

under each control policy is presented in parenthesis. Policies which do not differ signif-

icantly are grouped together by an underline. The SIMRULE control policy is signifi

cantly better than the other two approaches, and FSLACK is significantly worse than

PSPT and PSLACK, which are not significantly different.

FSLACK
(3275.7)

C.P.U.~

FSPT
(3169.7)

PSPT
(2721.3)

PSLACK
(2691.3)

SIMRULE
(869.9)

Figure 17. Multiple Comparison of Control Policies
for Average Sojourn Time

The third response variable considered in the simulation experiment was the

C.P.U. time (in milliseconds per simulated time of FMS operation) required for control

decisions under each of the approaches. The result of this analysis is presented below.

The table of analysis of variance is given in Table VI.

Source

Control

Flexibility

Traffic

Replication

Control * Flexibility

Control * Traffic

Flexibility* Traffic

Control * Flexibility
*Traffic

Model

Error

TOTAL

TABLE VI

ANOVA WITH C.P.U. TIME AS
DEPENDENT VARIABLE

DF Sum of Squares Mean Square

4 280273.2860 70068.3215

1 3506.0894 3506.0894

1 27779.7456 27779.7456

4 790.9630 197.7407

4 657.2528 164.3132

4 2845.0869 711.2717

1 0.0005 0.0005

4 1892.7905 473.1976

23 317745.2147 13815.0093

76 9226.5584 121.4021

99 326971.7731

F Pr>F

Value

577.16 0.0001

28.88 0.0001

228.82 0.0001

1.63 0.1757

1.35 0.2581

5.86 0.0004

0.00 0.9984

3.90 0.0062

113.80 0.0001

137

The significance of the overall model is very high indicating that the model does

explain a significant portion of the variation in C.P.U. Time. The analysis of variance

shows that the main effects of control policy, routing flexibility, and traffic density are

significant. The three way interaction between control policy, routing flexibility and

traffic density is also significant indicating that the combinations of these are different

from each other for their effect on C.P. U. Time.

138

The mean values of C.P.U. Time for combinations of control policies with levels

of routing flexibility and traffic densities are presented in Table vn.

TABLE Vll

C.P.U. TIME MEASURE AT COMBINATIONS
OF FACTORS

FSPT FSLACK PSPT PSLACK

Hi~h Traffic Density

Mean 32.763655 40.168395 65.966390 66.717515

CoeffofVar 46.093319 61.478724 13.0533 8.9010865

Low Traffic Density

Mean 8.3934850 7.9706100 37.470565 39.186300

CoeffofVar 40.071391 44.162017 27.880448 27.330566

High Routing Flexibility

Mean 26.058965 34.698815 56.825620 58.538890

CoeffofVar 75.96911 84.364525 23.799459 19.949570

Low Routing Flexibility

Mean 15.098175 13.440190 46.611335 47.364925

CoeffofVar 69.677186 70.651451 42.559952 40.353025

SIMRULE

192.36323

9.3341116

138.28566

11.853789

168.12673

19.325333

162.52216

20.798946

139

Perusal of the above results shows that SIMRULE uses the highest amount of

C.P.U. Time, followed by the priority rule based releases and the fixed period releases.

There is no appreciable difference between the SPT and the SLACK rules. There does

not seem to be any reason to prefer one dispatching rule over another on account of their

effect of the C.P.U. Time. The coefficient of variation of C.P.U. Time is also the lowest

for SIMRULE.

Duncan's multiple range test was carried out to fmd which control policies were

significantly different in terms of their effect on C.P.U. Time. The result of the analysis

is presented in Figure 18. The mean C.P.U. Time (millisecond/hour of simulated time) is

given in parenthesis. The control policies which do not differ significantly are grouped

together by an underline.

SIMRULE
(165.324)

PSLACK
(52.952)

PSPT
(51.718)

FSLACK
(24.070)

Figure 18. Multiple Comparison of Control
Policies for C.P. U. Time

FSPT
(20.579)

As can be seen from the figure, SIMRULE has the highest mean C.P.U. Time

which is significantly different from the others. This is followed by the priority rule

based releases which are grouped together. Fixed period release takes significantly lower

C.P.U. Time. It is apparent that SLACK and SPT rules do not differ significantly in

terms of C.P. U. Time.

140

Summary .Q.f Statistical Analyses

The proposed methodology (SIMRULE) provides significantly lower average

weighted tardiness and lower average sojourn time for the hypothetical situation explored

in this simulation experiment. The coefficients of variation of these measures also

appear to be lower. Routing flexibility and traffic density also have significant impact on

the two measures. This impact exists when the factors are taken alone or in combination

with the control policies investigated. Table vm, below, presents a summary of the

mean value of performance measures.

TABLE VIII

SUMMARY OF PERFORMANCE MEASURES

SIMRULE FSPT FSLACK PSPT PSLACK

Average 236.9 2400.1 2461.9 2026.6 1973.0
Weighted
Tardiness

Sojourn 869.9 3169.7 3275.7 2721.3 2691.3
Time

C.P.U. 165.32 20.58 24.07 51.72 52.95
Time

As was expected, SIMRULE requires significantly higher C.P.U. Time than the

other methods evaluated. It is far more comprehensive than any control policy previously

141

reported in the literature. It is gratifying, however, that the mean value of C.P.U. Time,

165 millisecond per simulated hour of operation is still a very small value when consider

ing the dynamics of decision making in a real world scheduling environment. .

It may be pointed out, however, that there exists a significant interaction between

all the three factors. This interaction exists for all the three response variables tested.

For this reason, the comparison of the control policies should be taken with caution, par

ticularly for lateness. For lateness, SIMRULE performs worse than FSPT when the traf

fic density is low. But it performs significantly better when the traffic density is high. It

may very well be the case that, for this particular configuration, performance of

SIMRULE is better only in a narrow region around the higher traffic density tested.

Further investigations are needed with 1) other levels of traffic density, both higher and

lower, 2) various system sizes and 3) more control policies to comprehensively test the

methodology developed in this research.

Target System Flexibility

Object oriented programming provides a high degree of modeling flexibility on

account of the modularity of the objects. The objects represent some particular aspect of

the system that is being modeled. The objects isolate those specific behaviors indepen

dent of the other aspects. When an appropriate message is passed to them, they exhibit

the specified behaviors. Thus they are very amenable to changes in other objects in the

model. The new objects just need to use the old methods defined for the old objects to

obtain the desired behaviors.

For example, if a new material handling device such as a robot needs to be intro

duced into the current framework, virtually no change is needed in other objects such as

the resources hierarchy, or the work flow items. Only the methods needed for the robot

need to be defmed. The robot object can still access the resources, work flow items, and

the controller as before.

142

Furthermore, use of inheritance in object oriented programming permits use of

some existing object when the new behavior is close to that of another previously defined

object. Only the differences need to be coded, all the similarities can be inherited. Thus,

in the above example, the robot can inherit many of the behavior of transportDevice,

already defined in the framework.

Thus an object oriented framework such as developed in this research provides

much more flexibility in modeling the control aspects of complex systems than a proce

dural programming framework could provide. It is possible to obtain modularity in tra

ditional programming languages but not to the same degree as in OOP. Further, OOP

highly enhances reusability of code in comparison to procedural programming paradigm.

The above discussion applies generally to all aspects of modeling of scheduling

and control. It has even more applicability when discrete event simulation is part of the

control strategy. Using control simulation for an evaluation of control options is an area

of active research. This strategy requires on-line construction and exercise of simulation

models. The flexibility of OOP in construction of simulation models has been widely

investigated and publicized. Based on these results, it seems fair to say that the object

oriented framework developed in this research has higher flexibility than other method

ologies involving control simulation.

Another aspect of target system flexibility provided by the framework is the

decomposition of the problem into rules and heuristics. Decomposition may lead to

some sub-optimization but when a change in the target system is required, it may still be

possible to retain certain components of the decomposition, making changes only in the

other components. This can not be said of a monolithic mathematical programming for

mulation, where even a small change is likely to require a complete reformulation and

even a change in the mathematical approach used.

143

Chapter Summary

In accordance with objective 4 of the research, three quantitative and one qualita

tive performance measures have been identified in this chapter for evaluation of

scheduling and controlling methodologies for random FMS. These measures were then

used to evaluate the methodology developed in this research, SIMRULE, against alter

nate methodologies in fulfillment of objective 5.

The SIMRULE methodology is superior in terms of the main measure of perfor

mance - average weighted tardiness. It is also superior in terms of the second measure of

performance - average sojourn time. But it is inferior when it is evaluated against the

third measure- C.P.U. time. However, this disadvantage does not appear to be a serious

handicap, and is far outweighed by its superior decision results.

Using an object oriented framework for controlling and scheduling random FMS

seems advantageous from the viewpoint of the flexibility offered, especially when a con

trol simulation is part of the decision evaluation process.

CHAPTER VITI

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

Introduction

This chapter presents concluding thoughts about the research. First a summary of

the research is presented. Then, the contributions of the research are pointed out.

Finally, recommendations for future research are cited.

Research Summary

The goal of this research has been the development of a comprehensive method

ology for scheduling and controlling random FMS. The requirement of comprehensive

ness implies the consideration of all the specified constraints. Another requirement is on

line processing. Keeping this goal in mind, six objectives were identified for this

research. These objectives and the status of their attainment are now discussed.

Methodolo~

The first objective was the development of a comprehensive methodology for

scheduling and controlling random FMS that is capable of generating consistently good

solutions. Although there exist many algorithms for static scheduling for job shops, the

only viable approach to dynamic job shop scheduling is the use of priority rules. Simi

larly, it is contended that effective control of random FMS will require development of

rules to handle the different situations encountered therein. At the same time, discrete

144

145

event simulation is the only modeling approach that is capable of capturing all the com

plexity of random FMS.

The methodology developed in this research consists of a decomposition of the

problem, where heuristics, rules, and simulation are used to make the control decisions

needed for random FMS. Heuristics have been developed to address the problem of

release of work parts. Rules are used for the selection of the heuristics. Rules and simu

lation are used for selection of dispatching rules. Rules also handle events such as

machine failure and machine repair.

Using these solution elements, the goal of developing a comprehensive method

ology for scheduling and controlling random FMS was achieved.

Object -Oriented Reyresentation

The second objective was to determine the classes and subclasses of objects

required for the representation and expression of the random FMS scheduling problem in

the object oriented paradigm.

Smalltalk-80, an object oriented language, was used as the vehicle to develop this

representation. Figure 13 on page 108 depicts the class hierarchy created in this research.

The OOP principles of modularity and inheritance were adhered to in this development.

In a nutshell, objects of the class Resource and its subclasses represent physical equip

ments and pallets; objects of the class EMS Controller and its subclasses represent deci

sion/control elements; CimSimulation carries out simulation processing; and

WorkFlow Item represents work parts and their processes.

The above classes and other classes developed in this research are capable of ex

pressing the problem of controlling a random FMS within all the constraints specified in

this research.

146

Develo.pment Qf Framework

The next objective was the development of an object oriented framework for the

interactions of the components within the environment being developed that would be

capable of implementing the methodology while operating in a dynamic, on-line envi

ronment.

The research was successful in developing a framework of messages between the

objects for implementation of the methodology outlined in Chapter V. In this frame

work, like in the real system, the physical objects send event requests to the deci

sion/control object which then sends its decision to the physical objects. The controller

object may create its own control simulation process in order to arrive at a decision, as

discussed in Chapter V.

Measures Qf .Mkrit

The fourth objective was to develop and validate measures of merit for evaluating

scheduling and controlling methodologies for random EMS. Three quantitative and one

qualitative measures of merit were developed. The most important measure is the aver

age weighted tardiness. The second yardstick is the sojourn time taken by work parts

inside the EMS. The third comparative figure is the C.P.U. time taken for control deci

sions. A qualitative criterion for selection of control methodology is the flexibility of the

methodology to the variations in the target system.

Evaluation

This objective consists of evaluation of the methodology developed in this

research. A full factorial simulation experiment was carried out with two levels of route

flexibility, two levels of traffic density, and five levels of control policies. The

SIMRULE methodology developed in this research effort was found to be superior to the

147

other control policies compared in this research on the criteria of average weighted tardi

ness, and sojourn time. The C.P.U. time taken for control decisions was highest, but

even this time was not unconscionably high. It was also argued that the object oriented

methodology is particularly attractive when target system flexibility is considered.

Further Research

The fmal objective was the identification of further research in this area. Certain

avenues of future research were identified, and they are discussed in the final section of

this chapter.

Contributions of the Research

The literature of scheduling is vast. Much research work has been carried out in

different areas of scheduling. Scheduling of random FMS is just one such area and many

researchers have applied their efforts in this field. However, a disconcerting aspect of

this research are the various idealizations that permit a succinct expression and resolution

of the problem, but leave many realities of the problem out of consideration. The current

research was an attempt to fill this void. The completion of the objectives as set forth in

the preceding section makes the following contribution to this area of Industrial Engi

neering and Operations Research.

Representation~

This research developed an object oriented representation of the complete random

FMS problem. This included the decision/control elements, the information elements,

and the physical elements and their interactions. This representation provides the OOP

features of modularity, reusability, and separation of decision/control, information, and

physical elements.

148

The most significant aspect of this representation is its intuitive appeal. In every

case, an object is defined separately from others, and exhibits behaviors that one would

intuitively expect from it For example, a material handler is represented by an instance

of TrapsportDevice and exhibits some behaviors of Resource. The behavior of Resource

is coded separately from that of other objects, and some of this behavior is inherited by

TransportPevice. Other behaviors of material handler are independently coded.

Another significant contribution of the representation is the separate modeling of

decision/control elements. This permits convenient change of control policies.

EMS Controller represents the control policies to be followed, and when a change in con

trol policy is required, it just entails the use of a different subclass of EMS Controller. In

this way, a high degree of reusability of code is achieved.

Methodolo~ Development .an.d Evaluation

A comprehensive methodology was developed for scheduling and controlling

random FMS. This included all the multiple constraints as set forth in the problem

statement in page 7. One or more of these dimensions of the problem are usually

ignored, and, to the knowledge of the author, all of them are never considered together as

they were in this research. Thus the development of this methodology is a significant

contribution of this research.

Dynamic Environment Considered

Whereas most of the existing approaches to scheduling view the shop floor as

static, the current research attempts to account for the constantly changing dynamic

nature of a real world random EMS. This contribution is especially significant in view of

the comprehensive realistic manner in which the methodology in this research considers

the dynamic environment..

149

Ths! lkd fw: EMS. Control Policies

The implementation of the object oriented framework, as carried out in this

research, provides a test bed for comprehensive evaluation of control policies designed

for automated manufacturing systems. All the features of a FMS are implemented, so the

control policies have to make provisions for these features. Furthermore, the OOP

paradigm permits many variations of the basic model to be easily developed by using

subclasses, and thus provides a very high degree of reusability. Therefore, the test bed

developed in this research will be fruitful for future work to be undertaken in this field.

Intewted Environment fur Control Simulation

and Expert Systems

The methodology developed in this research integrates heuristics, expert systems,

and simulation. Heuristics are usually implemented in a procedure oriented language,

expert systems in a list processing or logic processing language, and manufacturing simu

lations in a special purpose simulation language. To the knowledge of the author, there

is no environment where all this can be done within a single environment in a seamless

way. The framework provided by this research provides such a single environment.

This is useful both for future research and for practical implementation where heuristics,

simulation and expert systems need to be integrated.

Recommendations

As a result of this research effort, some recommendations about future research

can be made. These are described below.

150

Release Levels

As the number of work parts introduced to the FMS at one time increases, ini

tially the performance of the FMS improves. But after a point, the FMS becomes con

gested and the effectiveness of the FMS starts to degrade. In this research, this point was

identified by preliminary simulation. A useful research would be to obtain analytical

results that could be used on-line. Of course it can not be expected that an analytical

solution to such a complex problem could be set forth in its complete form. But even a

solution for a simple FMS could be very useful as an approximation.

Control Simulation Criteria

In choosing the priority rule to be used, total utilization of the machines were

used as a criterion for the control simulation even though weighted tardiness has been the

major performance criterion for the actual system. Preliminary research showed that

better results were obtained with total utilization than the actual criterion of weighted

tardiness. A useful line of enquiry would be to identify performance criteria for the con

trol simulation. This would enhance the use of on-line simulation as a control tool.

Control Simulation InmU

The only modeling approach that can capture the complexity of a random FMS in

its entirety is a discrete event simulation model. As the processing speed of microproces

sors goes up, the attractiveness of on-line simulation as a control tool increases, espe

cially when applied to a short time horizon. In this research the only control factor

investigated by control simulations was the priority rule. A topic for further research

would be identification of other factors to be investigated at the same time.

151

Distributed Control Simulation

The control simulations for the evaluation of alternatives were carried out in this

research using a single processor consecutively. However, these simulations are particu

larly amenable to distributed processing since there is no interaction between them. One

useful line of research would be to develop a framework for distributed on-line object

oriented simulation. On-line simulation is currently slow on account of serial processing.

Progress in distributed simulation would substantially enhance the use of on-line simula

tion.

BffiLIOGRAPHY

Adelsberger, H.H. and J.J. Kanet (1989), "The Leitstand- a New Tool for Computer In
tegrated Manufacturing", In Proceedings of the Third ORSA!TIMS Conference on
Flexible Manufacturing Systems, 253-258.

Akella, R., Y. Choong, and S.B. Gershwin (1984), "Performance of Hierarchical Produc
tion Scheduling Policy", IEEE Transactions on Components, Hybrids, and Manu
facturing Technology, CHMT-7 (3), 215-217.

Anonymous (1990), Total Control of Scheduling Dynamics, Sales brochure, Pritsker
Corporation, Indianapolis, Indiana.

Barr, A.B. and E.A. Fiegenbaum (1981), The Handbook of Artificial Intelligence, Vol. 1,
343-348, William and Kaufmann Inc., Los Altos, California.

Beaumariage, T.G. (1990), "Investigation of an Object Oriented Modeling Environment
for Manufacturing Systems", Unpublished Ph.D. Thesis, School of Industrial Engi
neering and Management, Oklahoma State University, Stillwater, OK.

Bensana, E., G. Bel, and D. Dubois (1988), "OPAL: A Multi-Knowledge-Based System
for Industrial Job-Shop Scheduling", International Journal of Production
Research,26 (5), 795-819.

Bourne, D.A. and M.S. Fox (1984), "Autonomous Manufacturing: Automating the Job
Shop", IEEE Computer, 17 (9), 7 6-86.

Bruno, G., A. Elia, and P. Laface (1986), "A Rule-Based System to Schedule Produc
tion" ,IEEE Computer, 19 (7), 32-40.

Bullers, W.I., S.Y. Nof, and A.B. Whinston (1980), "Artificial Intelligence in Manufac
turing Planning and Control", AilE Transactions, 12 (4), 351-363.

Buzacott, J.A. and J.G. Shantikumar (1980), "Models for Understanding Flexible Manu
facturing Systems", AilE Transactions, 12 (4), 339-349.

Buzacott, J.A. (1982), "Optimal Operating Rules for Automated Manufacturing Sys
tems", IEEE Transactions on Automatic Control, AC-27 (1), 80-86.

Buzacott, J.A. and D.D. Yao (1986), "Flexible Manufacturing Systems: A Review of
Analytical Models", Management Science, 32 (7), 890-905.

152

153

Chang, Y., H. Matsuo, and R.S. Sullivan (1989), "A Bottleneck-Based Beam Search for
Job Scheduling in a Flexible Manufacturing System", International Journal of Pro
duction Research, 27 (11), 1949-1961.

Chiodini, V. (1986), "A Knowledge Based system for Dynamic Manufacturing Replan
ning", In Symposium on Real-Time Optimization in Automated Manufacturing
Facilities, National Bureau of Standards, Gaithesburg, Maryland.

Chiodini, V. (1989), "SCORE: An Integrated System for Dynamic Scheduling and Con
trol of High-Volume Manufacturing", Unknown publication.

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967), Theory of Scheduling, Addison
Wesley Publishing Company, Reading, Mass.

Conway, R.W. (1965), "Priority Dispatching and Work in Process Inventory in a Job
Shop", Journal of Industrial Engineering, 16 (2), 123-130.

Conway, R.W. (1965b), "Priority Dispatching and Job Lateness in a Job Shop", Journal
of Industrial Engineering, 16 (4), 228-237.

Conway, R.W. and W.L. Maxwell (1986), "Low-Level Interactive Scheduling", In Sym
posium on Real-Time Optimization in Automated Manufacturing Facilities~
National Bureau of Standards, Gaithesburg, Maryland.

Davis, W.J. and A.T. Jones (1989), "On-Line Concurrent Simulation in Production
Scheduling", In Proceedings of the Third ORSAITIMS Conference on Flexible
Manufacturing Systems, 253-258.

Donath, M., R.J. Graves, and D.A. Carlson (1989), "Flexible Assembly Systems: The
Scheduling Problem for Multiple Products", Journal of Manufacturing Systems, 8
(1), 27-33.

Donath, M.W. (1988), "A Scheduling Methodology for Flexible Manufacturing Sys
tems", Unpublished Ph.D. Thesis, University of Massachusetts.

Dupont-Gatelmand C. (1982), "A Survey of Flexible Manufacturing Systems", Journal
of Manufacturing Systems, 1 (1), 1-16.

French, S. (1983), Sequencing and Scheduling, An Introduction to the Mathematics of the
Job-Shop, E, Horwood, West Sussex, U.K.

Fox, M.S., B. Allen, and G. Strohm (1982), "Job-Shop Scheduling: An Investigation in
Constraint-Directed Reasoning", In Proceedings of the National Conference on
Artificial Intelligence, 155-158.

Gere, W.S. (1966), "Heuristics in Job Shop Scheduling", Management Science, 13 (3),
167-190.

154

Gershwin, S.B., R.K. Hildebrant, R. Suri, and S.K. Mitter (1986), "A Control Perspec
tive on Recent Trends in Manufacturing Systems", IEEE Control Systems Maga
zine, 6 (2), 3-15, 1986.

Gershwin, S.B. (1989), "Hierarchical Flow Control: A Framework for Scheduling and
Planning Discrete Events in Manufacturing Systems", In Proceedings of the IEEE,
77 (1), 195-209.

Gevarter, W.B. (1984), Artificial Intelligence Expert Systems Computer Vision and Natu
ral Language Processing, Noyes Publications, Park Ridge, New Jersey.

Grant, F.H., S.Y. Nof, and D.G. MacFarland (1989), "Adaptive/Predictive Scheduling in
Real Time", In Proceedings, Advances in Manufacturing Systems Integration and
Processes, Society of Manufacturing Engineers, Dearborn, Michigan

Grant, F.H. (1989), "Scheduling Manufacturing Systems with FACI'OR", In Proceedings
of the 1989 Winter Simulation Conference, 277-280.

Gupta, Y.P., M.C. Gupta, and C.R. Bector (1989), "A Review of Scheduling Rules in
Flexible Manufacturing Systems", International Journal of Computer Integrated
Manufacturing, 2 (6), 356-377.

Han, M., Y.K. Na, and G.L. Hogg (1989), "Real-time Tool Control and Job Dispatching
in Flexible Manufacturing Systems", International Journal of Production Research,
27 (8), 1257-1267.

Harmonosky C.M. (1990), "Implementation Issues Using Simulation for Real-time
Scheduling, Control, and Monitoring", In Proceedings of the 1990 Winter Simula
tion Conference, 595-598.

Hutchison, J., K. Leong, D. Snyder, and F. Ward (1989), "Scheduling for Random Job
Shop Flexible Manufacturing Systems", In Proceedings of the Third ORSA!TIMS
Conference on Flexible Manufacturing Systems, 161-166.

Hwan, S.S. and A.W. Shogun (1989), "Modeling and Solving an FMS Part Selection
Problem", International Journal of Production Research, 27 (8), 1349-1366.

Jackson, S. and J. Browne (1989), "An Interactive Scheduler for Production Activity
Control", International Journal of Computer Integrated Manufacturing, 2 (1), 2-14.

Jaikumar, R. (1986), "Postindustrial Manufacturing", Harvard Business Review, 64 (6),
69-76.

Jaikumar, R. and L.N.Van Wassenhove (1989), "A Production Planning Framework for
Flexible Manufacturing Systems", Journal of Manufacturing Operations Manage
ment, 2, 52-79.

Jain, S., K. Barber and D. Osterfeld (1990), "Expert Simulation for On-Line Schedul
ing", In Proceedings of the 1989 Winter Simulation Conference, 930-935.

155

Karacal, S.C. (1990), "The Development of an Integrative Structure for Discrete Event
Simulation, Object Oriented Programming, and Imbedded Decision Processes",
Unpublished Ph.D. Thesis, School of Industrial Engineering and Management,
Oklahoma State University, Stillwater, OK.

Kimemia, J.G. and S.B. Gershwin (1983), "An Algorithm for the Computer control of
Production in Flexible Manufacturing Systems", liE Transactions, 15 (4), 353-362.

Kusiak, A. and M. Chen (1988), "Expert Systems for Planning and Scheduling Manufac
turing Systems", European Journal of Operational Research, 34, 113-130.

Lashkari, R.S., S.P. Dutta, and A.M. Padhye (1987), "A New Formulation of Operation
Allocation Problem in Flexible Manufacturing Systems: Mathematical Modeling
and Computational Experience", International Journal of Production Research, 25
(9), 1267-1283.

Law, A.M. and W.D. Kelton (1991), Simulation Modeling and Analysis, 2nd Edition,
McGraw-Hill Inc., New York.

Lee, S.M. and H. Jung (1989), "A Multi-Objective Production Planning Model in a
Flexible Manufacturing Environment", International Journal of Production
Research, 27 (11), 1981-1992.

Manivannan, S. and J. Banks (1989), "Design of a Knowledge-Based On-Line Simula
tion System to Control a Manufacturing Shop Floor", Unknown publication.

Moreno, A.A. and F. Ding (1989), "Goal Oriented Heuristics for the FMS Loading (And
Part Type Selection) Problems", In Proceedings of the Third ORSA!TIMS Confer
ence on Flexible Manufacturing Systems, 105-110.

Nilsson, N. (1980), Principles of Artificial Intelligence, Tiago Publishing Co., Palo Alto,
California.

Nof, S.Y., M.M. Barash, and J.J. Solberg (1979), "Operational Control of Item Flow in
Versatile Manufacturing Systems", International Journal of Production
Research,11 (5), 479-489.

Panwalker, S.S. and W. Iskander (1977), "A Survey of Scheduling Rules", Operations
Research, 25 (1).

Rachamadugu, R. and K.E. Stecke (1989), Classification and Review of FMS Scheduling
Procedures, Working Paper #481 C, The University of Michigan,Ann Arbor,
Michigan.

Robbins, J.H. (1986), "Simulation Helps Schedule Shop", American Machinist and
Automated Manufacturing, 130 (10), 106-108.

Shanker, K. and Y.J. Tzen (1985), "A Loading an Dispatching Problem in a Random
Flexible Manufacturing Systems", International Journal of Production
Research,23, 579-595.

156

Shanker, K. and S. Rajamarthandan (1989), "Loading Problem in FMS: Part Movement
Minimization", Proceedings of the Third ORSA!l'IMS Conference on Flexible
Manufacturing Systems. 99-104.

Shaw, M.J. (1988), "Knowledge-Based Scheduling in Flexible Manufacturing Systems:
an Integration of Pattern-Directed Interference and Heuristic Search", International
Journal of Production Research,26 (5), 821-844.

Slomp, J., G.J.C. Gaalman, and W.M. Nawijin (1988), "Quasi On-line Scheduling Pro
cedures for flexible Manufacturing Systems", International Journal of Production
Research,26 (4), 585-598.

Smith, M.L., R. Ramesh, R.A. Dudek, and E.L. Blair (1986), "Characteristics of U.S.
Flexible Manufacturing Systems- A Survey", In Proceedings of the Second
ORSA/TIMS Conference on Flexible Manufacturing Systems. 477-486.

Stecke, K.E. and J.J. Solberg (1981), "Loading and Control Policies for a Flexible Manu
facturing System", International Journal of Production Research, 19 (5), 481-490.

Stecke, K.E. and J.J. Solberg (1982), The Optimality of Unbalanced Workloads and
Machine Group Sizes for Flexible Manufacturing System, Working Paper No. 290,
Graduate School of Business Administration, The University of Michigan, Ann
Arbor, Michigan.

Stecke, K. (1983), "Formulation and Solution of Nonlinear Integer Production Planning
Problems for Flexible Manufacturing Systems" ,Management Science, 29 (3), 273-
288.

Steffen, M.S. (1986), "A Survey of Artificial Intelligence-Based Scheduling Systems", In
Proceedings, Fall Industrial Engineering Conference, Institute of Industrial Engi
neers, Norcross, Georgia.

Vollmann, T.E., W.L. Berry, and D.C. Whybark (1988), Manufacturing Planning and
Control Systems, Third Edition, 169-173, Richard D. Irwin Inc., Homewood,
Illinois.

Wilson, J.M. (1989), "An Alternative Formulation of the Operation-Allocation Problem
in Flexible Manufacturing Systems", International Journal of Production Research,
27 (8), 1405-1412.

157

Wu, S.D. and R.A. Wysk (1988), "Multi-pass Expert Control System- a Con
troVScheduling Structure for Flexible Manufacturing Cells", Journal of Manufac
turing Systems, 7 (2), 107-120.

Wu, S.D. and R.A. Wysk (1989), "An Application of Discrete-Event Simulation to On
Line Control and Scheduling in Flexible Manufacturing", International Journal of
Production Research, 27 (9), 1603-1623.

Yancey, D.P. and S. Peterson (1989), "Implementation of Rule-Based Technology in a
Shop Scheduling System", In Proceedings of the 1989 Winter Simulation Confer
ence, 865-873.

Young, R.E. and M.A. Rossi (1988), "Toward Knowledge-Based Control of Flexible
Manufacturing Systems", liE Transactions, 20 (1), 36-43.

VITA

Chuda B. Basnet

Candidate for the Degree of

Doctor of Philosophy

Thesis: ON-LINE SCHEDULING AND CONTROL OF RANDOM FLEXIBLE
MANUFACfURING SYSTEMS WITHIN AN OBJECT -ORIENTED
FRAMEWORK

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Dingla, Nepal, July 9, 1948, the son of Dambar B. and
Rambha Basnet.

Education: Received Bachelor of Engineering (Mechanical) from University of
Poona, India in May, 1973; received the Master of Science degree in
Industrial and Management Engineering from Montana State University,
Bozeman, Montana in August 1987; completed the requirements for the
Doctor of Philosophy at Oklahoma State University in July, 1991.

Professional Experience: Production Engineer, Structo Nepal, Kathmandu, Nepal,
1973 to 1978; Aircraft Maintenance Engineer, Royal Nepal Airlines
Corporation, Kathmandu, Nepal, 1978 to 1985; Teaching Assistant, Montana
State University, Bozeman, Montana, 1985 to 1987; Teaching and Research
Assistant, Oklahoma State University, Stillwater, Oklahoma, 1987 to present.

