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CHAPTER I 

INTRODUCTION 

One goal of industrial robot vision research is to give robots humanlike visual 

capabilities so that the robots can sense the environment in their field of view, understand 

what is being sensed, and take appropriate actions as programmed. Over the past three 

decades, a number of serious efforts have been devoted to this challenging subject, 

especially to the problem of recognizing and locating objects in the workspace of the 

robot. 

Some commercial or non-commercial vision systems for robotics and industrial 

automation have been developed. Some examples of such systems are SIGHT-I [Bai78], 

VS-100 [Che82], HYPER [Aya86], and SCERPO [Low87]. However, their capabilities 

are still very primitive. One good reason for this slow progress is that sophisticated 

visual interpretation is needed in an industrial robot vision system. 

Basic requirements for an industrial robot vision system are speed, accuracy, and 

flexibility [Chi86] [Koc87] [Han89]. The processing speed for acquiring and analyzing 

an image must be high enough to execute a specific task while the system must recognize 

objects and determine their positions and orientations in high accuracy. Also, the vision 

system must be flexible enough to accommodate variations of the objects and their 

environment. 

However, realization of these requirements is very difficult because extensive 

computations are involved in the processing of the image, and hardware is usually 

limited. Also, the, objects can usually overlap or occlude in the actual environment. This 

problem can cause severe degradation in the rate of object recognition and accuracy. 
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Since the recognition of occluded objects is a very important problem to be solved 

for industrial robot vision applications, our research is focused on this topic. The main 

goal of the research is to develop a fast, accurate, and reliable system which can 

recognize partially occluded objects. Unlike other object recognition systems [Aya86] 

[Bol82] [Koc87] [Bha87] [Li89], we propose to use extended local features consisting of 

corners, arcs, parallel-lines, and corner-arcs to increase the ac~uracy of the sy~tem as well 

as the recognition rate. We also propose to use hashing in constructing a knowledge-base 

and searching feature data from the kpowledge-base to reduce the searching time. In 

order to increase the speed of the system, we develop parallel algorithms for all 

procedures· in the system and implement them on a hypercube-topology multiprocessor 

computer, the Intel iPSC/2. 

In this research some reasonable assumptions are made to make the system 

realizable: 1) The shapes of the objects are unique, 2) The objects are flat, rigid, and 

hardly deformable, and 3)'The objects are translated and rotated only in x andy planes. 

In the following sections, we review previous work in object recognition and define some 

problems in the work. Then we describe our objectives and proposed research in detail. 

Previous Work in Object Recognition 

The most straightforward way to recognize the objects would be to match models 

for each possible combination of identity, position, and orientation to the image. Besl 

and Jain [Bes85] show that such an exhaustive search is hopeless for the case of 

three-dimensional objects. Because of the complexity of this task, researchers have 

mstead turned to recognizing objects by their features. 

The features can be classified into two types: global and local features. The classic 

technique for object recognition is pattern recognition using global feature vectors. The 

idea is to describe the object with a list of numerical values that are invariant to 

translation, rotation, and possibly scaling. Examples are perimeter, centroid, area, and 
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moments of inertia. On the other hand, a local feature is a feature that depends only on 

portions of the object. The local features describe more complex properties of the object, 

usually in terms of line and curve segments defining the object's boundary. Typically, 

the local features are organized as a highly structured and abstracted representation. 

Global Feature Method 

An ad hoc set of global features is used by the SRI vision module [Gle79]. The 

module includes a camera which sees a binary silhouette of the object. From this 

silhouette several global descriptors are computed. These include area, perimeter, 

number of holes, area of holes, maximum and minimum radii from the object's centroid, 

the ratio of these two radii, and others. These descriptors are formed into a feature 

vector, and the object is recognized using a nearest neighbor classifier. 

A gin has developed a computer vision system for industrial inspection and 

assembly in [Agi80]. As implemented in the SRI vision module [Gle79], the 

connectivity analysis program builds a description of each blob as the image is processed. 

An array, which he calls a blob descriptor, is created to hold information about the blob 

and its shape. The types of information in a blob descriptor derive a number of shape and 

size descriptors characterizing the blob. The size and shape descriptors include area, 

perimeter length, the ratio perimeter/area, moments of inertia, number of holes, sum of 

the areas of the holes, etc. A storage array called a prototype descriptor is associated 

with each prototype or model. The mean and variance of each measure of size or shape 

(feature value) are stored in the descriptor. Given several prototype descriptors and the 

image of an unknown part shape, it is determined to which object class the part belongs 

by the nearest neighbor procedure and the binary decision tree procedure. 

Birk eta!. [Bir81] model objects by a set of coarse shape features for each possible 

viewpoint. For a given viewing position, the threshold object is overlaid with a 3 x 3 grid 

(each grid square's size is selected by the user), centered at the object's centroid, and 
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oriented with respect to the minimum moment of inertia. A count of the number of above 

threshold pixels in each grid square is used to describe and recognize the object. 

Persoon and Fu [Per77] use shape discrimination method using Fourier descriptors 

in character recognition and machine parts recognition. Objects are described as the 

Fourier descriptors of their boundary curves (shapes). They use the Euclidean metric in 

the space of the Fourier descriptors to compute the distance between the unknown sample 

and the nearest sample in the training set. They scale, rotate, and adjust the starting point 

of each sample in the training set in order to minimize the resulting Euclidean distance. 

In order to classify an unknown numeral, the distance between that numeral and each 

numeral in the training set is computed. 

The normalized Fourier descriptor has been used to recognize aircraft from 

silhouettes [Wal80]. An object's Fourier descriptor is found by taking the Fourier 

transform of its boundary curve. The boundary is treated as a periodic complex function 

with real and imaginary parts ~brresponding to the x and y coordinates. The descriptor is 

then normalized to a standard location, rotation angle, size, and boundary curve trace 

starting point. The unknown object's normalized descriptor is compared to each 

normalized descriptor in the object library. The object is identified by the closest match. 

Kulkarni et al. present a neural network model for invariant object recognition in 

[Kul90]. The model consists of two stages. In the first stage features are extracted from 

an image of an object, and the second stage is used to recognize the object. For invariant 

feature extraction, moment invariants [Hu62] are applied. Moment invariants are defined 

by a set of seven moment invariant functions that are invariant to translational, scale, and 

rotational differences in input patterns. In the recognition stage, a neural network is used 

as a classifier. 

Wechsler and Zimmerman [Wec88] [Wec89] describe an approach to 

two-dimensional object recognition using distributed associative memory which can 

modify the flow of information. Stimulus vectors are associated with response vectors 



and the result of this association is spread over the entire memory space. Complex-log 

invariant image mapping is combined with the distributed asso'ciative memory to yield a 

system able to recognize a memorized object regardless of the scale and rotation. 

Recalled information from the memorized database is used to classify an object, 

reconstruct the memorized version of the object: and estimate the magnitude of changes 

in scale or rotation. 

Local Feature Method 

Perkins [Per78] has developed a vision system which can determine the position 

and orientation of complex curved objects. He constructs two-dimensional models from 

boundary segments, called concurves, constructed from line segments and arcs that are 

extracted from training images of each stable view of each part. All possible 

combinations of image and model con curves are matched and ranked according to 

general properties, such as total length, number of lines and arcs, etc. 

Bolles and Cain [Bol82] describe the local-feature-focus method, which is an 

algorithm to recognize and locate partially visible two-dimensional objects. First the 

image is scanned to detect local features. In the example presented in their paper, three 

5 

, types of features were detected in the binary images: round holes, convex 90° corners, 

and concave 90° corners. The position of each feature is recorded, along with its size and 

orientation, if any. The matching process utilizes clusters of mutually consistent features 

to hypothesize objects and also uses templates of objects to verify these hypotheses. 

Ayache [Aya83] [Aya86] has used polygons to represent objects and uses the 

polygon line segments as features. The longer line segments determine privileged 

features. These privileged segments determine an initial hypothesis when matched to 

scene line segments. Each hypothesis receives a quality score and a coordinate transform 

that takes the privileged segment onto the scene. Matching other model segments revises 

the quality score and a Kalman filter updates the coordinate transform. The quality score 
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essentially determines how much the model resembles the scene objects. 

Turney et al. [Tur85] develop an algorithm to identify and locate partially visible 

two-dimensional objects using a sub-template based on the Hough transform. Instead of 

using edge points as in the normal Hough transform, overlapping segments of boundary 

are used. For each segment, a vector is stored pointing to the object's centroid. 

Whenever a subtemplate matches in the image, an accumulator at the position pointed to 

by the subtemplate's vector is incremented. After all the object's subtemplates have been 

matched against the edges in the image, the accumulator with the largest value that is 

above a threshold is considered to be the position of the object. 

Koch and Kashyap [Koc85] [Koc87] present a vision system that recognizes and 

locates partially occluded objects. The vision system uses stored models to locate and 

identify the objects in the scene. The models are based on the boundary of the objects. 

From the polygon approximation of the boundary, vertices of high curvature are 

Identified as corners. These corners are used as features in detecting the model in the 

image. A globally consistent coordinate transform that takes the model into the image is 

found by using a Hough-like transform and the corner features. 

Bhanu and Ming [Bha86] [Bha87] present a method based on a cluster-structure 

approach for the recognition of two-dimensional partially occluded objects. Basically, 

the technique consists of the following steps: 1) determine the initial disparity matrix, 2) 

cluster the samples in the disparity matrix using the K-means algorithm, 3) find and thin 

the sequences in the current cluster, 4) cluster the sequence averages using K-means 

algorithm, and 5) use the maximum distance algorithm to select the final set of matching 

segments from the cluster with the best maximum distance results. 

Mehrotra et al. [Meh90] has developed an industrial part recognition method using 

a component-index. A component corresponds to a convex section of the object 

boundary. A component of the unanalyzed portion of the scene is identified using k-d 



tree-based component-index. The objects that contain the identified component are 

hypothesized to be present in the scene. A given hypothesis is verified by matching the 

transformed boundary of the hypothesized object against the scene. 

Problem Definition 

7 

The global features are easy to compute from binary images, and their ordering in 

the model is unimportant. But the global features depend on the whole object being 

visible. Hence, they are of little value when the objects may be touching or overlapping. 

On the other hand, the local features are extracted from only part of the object, but when 

combined describe the whole object. Therefore, local features can be used for the 

recognition of occluded objects since the objects can be recognized by using only a 

subset of the features [Koc85]. 

Some researchers have used local features for recognizing partially occluded 

objects. Ayache et al. [Aya86] and Rummel et al. [Rum84] used lines, but Perkins 

[Per78] used arcs. On the other hand, Koch et al. [Koc85] [Koc87] and Li et al. [Li89] 

used comers. However, the recognition rate and accuracy of their systems could be 

decreased severely as the occluded portion of the objects is increased because only a 

single type of local feature is used. 

Most object recognition systems [Koc85] [Koc87] [Bha87] [Han89] convert a 

gray-level image to a simple binary image by using a thresholding technique. If the 

mtensity of the pixel is above a certain threshold, that pixel is assigned to the 

background. Otherwise it is labeled as belonging to the object. A closed contour of the 

object is extracted from the binary image by following the edges. However, it is very 

difficult to separate the objects from the background by using the thresholding technique 

in the case of low contrast or noisy images. Therefore, more sophisticated algorithms 

would be required to extract a closed contour of the object in an image taken under poor 

lighting conditions. 



Usually, before the features are extracted, the digitized image undergoes several 

preprocessing (or early processing) steps such as median filtering, edge detection, 

thinning, boundary detection, and straight line extraction. The preprocessing steps are 

usually the most time-consuming components in the object recognition system, because 

the digitized images to be processed generally consist of two-dimensional arrays of 

pixels. The processing requirements grow as n2 for an n x n image. 

8 

For example, Mcintosh and Mutch presented a new approach to match straight line 

segments extracted from image pairs in [Mci88]. According to their experiments, line 

extraction took 28 seconds while matching lines using constraints took 2.5 seconds on an 

Apple Mcintosh computer. Note that the size of the image they used was only 128 x 128. 

In Ayache et al. [Aya87], edge extraction for a 512 x 512 image required an average of 

120 seconds of CPU time on a Sun 3 workstation. 

Real-time vision applications demand much higher speed than this. Video frame 

rate is typically either 30 or 60 frames per second, so preprocessing must be measured in 

milliseconds, not seconds. Preprocessing requires extensive computations and thus the 

overall system is very slow. 'We could increase the speed of the system by reducing the 

complexity of the preprocessing and/or by exploiting parallelism inherent in the process. 

Most industrial object recognition systems are knowledge-based systems in which 

objects in the input image are matched with a set of predefined models of objects. Before 

on-line matching, distinctive features are extracted from the model objects and then those 

features are usually stored in a knowledge-base. For the matching, compatible features 

between the input object and model object are searched from the knowledge-base. The 

searching time grows linearly as the number of the model objects increases. To reduce 

the searching time, some researchers construct the knowledge-base in the form of a 

decision tree [Gri88] [Meh90]. But, the depth of the tree becomes greater as the number 

of model objects increases, or as the objects become more complex. Thus, the searching 

time would be increased. Also the decision trees are not easily extended to use local 
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features [Kno86]. 

Objectives and Proposed Research 

The goal of this research is to develop a new vision system that recognizes and 

locates partially occluded objects. We first propose to use extended local features 

consisting of comers, arcs, parallel-lines, and comer-arcs. These extended local features 

will increase the accuracy of our system. An object is simply modeled by the local 

features and then the feature data is stored in a knowledge-base. For recognizing an 

object, we test the compatibility between the model feature data and the image feature 

data. Koch et a!. develops a matching method which brings a model point to the 

corresponding image point using coordinate transformation and cluster-seeking in 

[Koc85]. However his method is only for comers. We expand his method tor arcs, 

parallel-lines, and corner-arcs. 

Second, we propose to develop robust preprocessing techniques such as edge 

detection and straight line extraction so that our system handles gray-level noisy images. 

The reliability of the system depends on how well the edges or straight lines are extracted 

from the input image because the features are extracted from the preprocessed image. 

Since we have already studied edge detection and straight-line extraction in [Bae89-l], 

[Bae89-2], and [Bae90], we expand the previous work for this research. 

Recently, several commercial systems offering 100- 1,000 processors in a 

hypercube configuration have been announced in the super-mini computer price range. 

Intel's personal supercomputer, the iPSC/2, is an example. It comprises 32, 64, or 128 

processing nodes connected in a regular hypercube topology [Int86]. As mentioned 

earlier, preprocessing steps such as median filtering, edge detection, straight-line 

extraction, thinning, and boundary detection, etc., are the most time consuming 

procedures in an object recognition system. However, those processing steps might be 

implemented on a multiprocessor machine to reduce the processing time, since most 
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image processing tasks (particularly in early processing) exhibit a high degree of inherent 

parallelism. 

Third, we propose to develop parallel algorithms for the preprocessing steps and 

implement them on the Intel iPSC/2 hypercube machine, and then analyze our parallel 

algorithms. In addition to the development of the parallel algorithms for the 

preprocessing, we also propose to increase the processing parallelism for the remaining 

procedures such as feature extraction, matching, and verifying, then implement them on 

the hypercube. 

Fourth, we propose to construct the knowledge-base using hashing, which can 

reduce the searching time significantly because a key (or feature) can be searched in one 

access time most of the time. The space of each type of the extended local features is 

discretized by equally dividing the space. Each feature data is converted into a unique 

key, and then a hashing function generates a home address for the key. Figure 1.1 shows 

a block diagram of the proposed object recognition system. Note that the whole system is 

implemented on the iPSC/2. 

Finally, we test the system for a variety of combinations of industrial objects such 

as nippers, screwdrivers, pliers, wrenches, etc. Sample objects used in this research are 

shown in Figure 1.2. Also we perform a precision test for the system by measuring the 

difference between the desired coordinate transform and the actual coordinate transform. 

Overview 

Chapter II presents some parallel algorithms for the preprocessing steps such as 

edge detection, straight line extraction, and thinning. The iPSC/2 hypercube 

multiprocessor is introduced first. Then an overview of some conventional edge 

detection techniques using operators such as Sobel, Laplacian, and Laplacian of Gaussian 

is provided and a parallel edge detection algorithm is developed. For parallel straight line 

extraction, a parallel pass-segment linking algorithm is developed. Also, a new parallel 
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Figure 1.2 Sample Objects Used in This Research 

thinning algorithm based on boundary following and shrinking is proposed. The parallel 

preprocessing algorithms are implemented on the hypercube and their performance is 

analyzed. 

Chapter ITI describes how to extract the extended local features such as corners, 

arcs, parallel-lines, and corner-arcs in parallel. The structures for the feature data are 

declared and their parameters are shown. For parallel implementation of the corner 
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detection, a feature data distribution method is developed which can be extended to the 

other features. Equations for estimating the center point and radius of an arc candidate 

are derived by the least square error method, and then the Newton's method for solving 

the equations is described. Also, a method for accurately estimating an initial center 

point and radius is developed because the initial values are very important for reducing 

the number of iterations in the Newton's method. To detect parallel-lines, a significance 

of parallelism and a degree of alignment between two straight lines are defined and 

depicted. Finally the corner-arc detection method is described. At the end of the chapter, 

a parallel line and arc drawing algorithm is developed. 

Parallel matching and verification methods are presented in Chapter IV. First of all, 

the object modeling and hypothesis generation schemes using hashing are explained in 

detail. Formulas for testing the compatibility between a model feature and an image 

feature are given according to the feature type. Then a coordinate transform, which 

brings a model point to the corresponding image point, is derived from the compatible 

features. The coordinate transforms will be clustered if the objects are correctly matched. 

Several existing cluster seeking algorithms are reviewed, and then the maximin-distance 

algorithm is selected for our use. In order to yerify the matching, two methods are 

developed: coarse-verification method and fine-verification method. 

In Chapter V, three experiments are performed and their results are reported. In the 

first experiment a simple occluded object image is used for a preliminary test. Some 

resulting images of the extended local feature extraction and the verifications of the 

matchings are shown. A precision test is performed in the second experiment. 

Differences between the desired coordinate transform and the actual coordinate transform 

are provided in terms of the pixels for the translation and the angles for the rotation. 

Also, the resulting data of the cluster seeking is tabulated. In the third experiment, a 

comprehensive test is performed with 20 synthetic occluded object images. The method 

for constructing the synthetic images is described. Also, an occlusion ratio for each 



object is computed. Finally, the hypothesis and matching rates are reported, and the 

overall processing times are summarized. 

Chapter VI provides a summary of the results of this research. Some conclusions 

and a motivation for further research are presented. Suggested topics for future 

investigation are included at the end. 
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CHAPTER II 

PARALLEL PREPROCESSING ON THE HYPERCUBE 

MULTIPROCESSOR COMPUTER 

As we discussed earlier, one of the requirements for a successful robot vision 

system is speed. However, preprocessing such as edge detection, straight line extraction, 

and thinning is time-consuming because large data sets and extensive computations are 

involved. Since the proposed system involves numerous local features, this becomes 

even more of a problem. Our attempted solution to this problem is to increase the 

processing parallelism and implement the processing on a hypercube-topology 

multiprocessor computer, the Intel iPSC/2. 

In this chapter, we first introduce the iPSC/2 hypercube multiprocessor. Then we 

review some edge detection techniques and develop efficient parallel algorithms for edge 

detection and straight line extraction on the hypefcube. Also, we develop a new parallel 

thinning algorithm based on boundary following and shrinking. Finally, we test the 

algorithms on the Intel iPSC/2 with some images and analyze their performance. 

The iPSC/2 Hypercube 

The hypercube is a MIMD (Multiple Instruction stream and Multiple Data stream) 

machine with a distributed memory model that characterizes loosely coupled processing. 

A hypercube represents a geometrical interconnection scheme having 2d identical 

processing nodes, m which d represents the dimension of the hypercube. For example, a 

five-dimensional hypercube is a 32-node (25) system with each node connected to its five 

nearest neighbors. Figure II.l shows graphically hypercubes of various sizes. Each 

15 
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Figure 11.1 Hypercube Architecture in d-Dimensions 

processor has its own memory and communicates with others by message-passing. 

The iPSC/2 is a second generation machine with improved computation and 

communication capability. The system consists of two subsystems: the system resource 

manager (SRM, sometimes called the host), and the hypercube itself (sometimes called 

the cube). The SRM is a standalone microcomputer connected to one node of the 

hypercube. Each node consists of an Intel 80386/Weitek 1167 processor set along with 

special hardware for efficient message passing using a form of worm-hole routing 

[Nug88]. Each node provides processing power approximately equal to a VAX 11n80. 

AdditiOnally, //0 nodes prov1dmg parallel disk l/0 directly from the processing nodes 

may be added, but are not part of this system. 

iPSC/2 programs are generally written in two parts: a host part that runs on the 

SRM, and a node part that runs on each node of the cube. Although this structure is not 

mandatory, it provides a convenient paradigm from which to work. This paradigm is 
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usually referred to as Single Program Multiple Data (SPMD). Usually, the host program 

handles such non-parallel functions as terminal I/O, disk 1/0, or network access. 

Meanwhile, the node program or programs handle all problem specific processing. 

Parallel Edge Detection 

Edge detection is a very important step in image processing and pattern recognition. 

An image can be simplified or converted into a line representation through the edge 

detection step, and then significant features of the image can be extracted from the result 

[Dud73]. In this section, we provide an overview of some conventional edge detection 

techniques using operators such as Sobel [Sob72] [Smi87], Laplacian [Pra84] [Qon83] 

[Ros82], and Laplacian of Gaussian [Mar80] [Gri85] [Tor86] [Lun86]. Then we discuss 

the image distribution method and the load balancing problem. Finally, we develop a 

parallel edge detection algorithm and implement it on the iPSC/2. 

Review of the Ed&e Detection TechniQJleS 

The most commonly used method of edge detection in image processing 

applications is the gradient. Given a function f(x, y ), the gradient off at coordinates 

(x, y) is defined as the vector 

· [at] 
Glf(x,y)] = ~ 

The magnitude of G [f(x, y )] IS given by 

mag[G] = ~(~)' + (;;)' 

(ll.l) 

(ll.2) 



For a digital image, the derivatives in Equation (11.2) are approximated by differences. 

Consider the 3 X 3 image region shown in Figure 11.2. The a/lax is estimated by 
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(II.3) 

Similarly, the af/ay is estimated by 

(II.4) 

Now, Equation (11.2) can be implemented by using two 3 x 3 orthogonal directional 

(vertical and horizontal) operators, which are often referred to as Sobel operators. The 

operators are shown m Figure 11.3. 

p6 p7 Po 

Ps f(x,y) pl 

p4 p3 p2 

Figure II.2 Numbering for 3 x 3 Edge Detection Operators 

Another edge detection technique is to use a linear derivative operator given by 

(II.5) 



-1 0 1 -1 -2 -1 

-2 0 2 0 0 0 

-1 0 1 1 2 1 

Figure II.3 Sobel Operators 

which is called the Laplacian operator. For a digital image, the discrete analog of the 

Laplacian could be approximated as 

V2/(l,J) = f).;_t(z,j) + /).!f(i,j) 
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= 4f(i,j) - [f(i + 1,j) + f(i -1,j) + f(i,j + 1) + f(i,j -1)] (II.6) 

which can be represented as a single 3 x 3 operator. Figure II.4 shows this approximation 

to the Laplacian operator. 

0 -1 0 

-1 4 -1 

0 -1 0 

Figure II.4 Laplacian Operator 
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The edge detection technique using the Sobel or Laplacian operator is simple to 

implement, and relatively fast in terms of processing time. But these operators do not 

give thin edges of the image. Therefore, some extra processing such as edge thinning or 

edge following is needed when line edges are desired. The Laplacian is also more 

susceptible to noise. 

Marr and Hildreth [MarSO] [Gri85] proposed an optimal edge detection method 

using the Laplacian of Gaussian. It makes use of significantly larger convolution masks, 

and its output consists of a set of connected edge contours which may be used directly for 

feature extraction. The basic idea is that an edge, or sharp intensity change, gives rise to 

a zero-crossing in a second directional derivative of the image. 

Marr and Hildreth proposed the use of a Gaussian smoothing filter to reduce the 

sensitivity to noise. The Gaussian function is given by 

1 (-x2
) ·a(x) = ~exp 2cr (II.7) 

In two dimensions, 

G(r) = --exp -r 1 ( 
2
)' 

2m:? 2cr 
(II.8) 

where r is the radial distance from the origin and a is the standard deviation of the 

Gaussian smoothing function7 Now we can write 

(II.9) 

For two dimensions, an alternative representation of Equation (II.9) is 

(II.lO) 
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This equation is circularly symmetric. Note that the r in Equation (11.10) is set to 2{'2 a. 

Although line edges can be obtained by the optimal edge detection technique, one 

degree of freedom is left: the a in Equation (ll.9) or the r in Equation (ll.10). Those 

variables vary the width and height of ~he Laplacian of Gaussian function, and thus they 

affect the resolution of the resulting edges. In this research, the magnitude of the gradient 

at every zero-crossing point is computed by the Sobel operators. Then only the points 

with magnitude above a threshold are considered as edges. Equation (II.10) is 

transformed to be an 9 x 9 or larger operator to provide adequate smoothing. Figure ll.5 

shows a 9 x 9 Laplacian of Gaussian operator when a = 1.7. Note that the values are 

scaled by 1000. 

Input Ima~e Distribution Method 

Load balancing is a crucial factor in parallel processing because imbalance can 

cause severe degradation of performance. In order to maximize performance, the amount 

of work performed by each node must ideally be equal. In many cases this implies that 

the amount of data loaded to each node must also be equal. These algorithms exhibit this 

property. In this research the input image plane is divided into rows as evenly as possible 

according to the number of nodes being allocated. Each resulting sub-image is 

distributed to a node. If the size of the input image isM x M, the original computational 

complexity is O(M2). It is obvious that the processing time can be reduced in theory to 

O(M2/N) by using the distribution method, where N is the number of nodes being used. 

Note that some rows on the borders of each node need to be shared with its adjacent 

nodes for convolution with a kernel. The number of shared rows depends on the number 

of rows of the kernel: r/2 rows need to be shared if r is even and r/2 - 1 if r is odd (more 

common), where r is the number of rows of the kernel used. The input image distribution 

method is depicted in Figure ll.6. 
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Figure II.5 Laplacian of Gaussian Operator (9 x 9, cr = 1.7) 
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F1gure II.6 Input Image Distribution Method 
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Parallel Edge Detection Algorithm 

By the input image distribution method discussed earlier, we can load the image 

evenly into the nodes. This is a form of static load balancing, which is very important for 

efficient use of the hypercube. The parallel edge detection algorithm then runs on the 

data as follows: 

Step 1: Read in the file header of the input image and get the size of the image. 

Step 2: Calculate the spb-image size including overlapped rows. 

Step 3: Read in the sub-image and send it to each node. 

Step 4: On each node detect the edges by convolving the sub-image with the edge 
operator(s) in parallel. 

Step 5: Receive the edges of the sub-images from the nodes. 

Step 6: Write out. the edges of the input image. 

Note that only Step 4 executes completely in the hypercube. The other steps are 

performed in the host. However, Step 4 is by far the most complex so the potential 

benefit due to a parallel solution could be large. 

Parallel Straight Line Extraction 

In this section, we discuss several object representation schemes and develop a 

parallel obJect representation scheme using straight lines, which can be implemented on 

the hypercube. 

Background 

Much research has been performed on the development of compact algorithms for 

object representation as well as data reduction of the image of objects. One instance is a 

hierarchical representation of spatial occupancy, which is called octree or quadtree 

representation of objects [Jac80] [Mea81]. Occupied and unoccupied regions are 
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represented in the form of a hierarchical tree, where the size of a region depends on the 

level in the tree. The size of a region in a high level in the tree is larger than the size of a 

region in a low level. This scheme is very compact, but it requires complicated 

algorithms for some computations [Bes85]. 

Another scheme is a line representation of objects. The vertex points of the objects 

are detected, then each pair of vertices is connected. with a line. In practice, the edges or 

contours of the objects are often detected and apprqximated by straight lines. Then the 
' 

objects can be represented simply by such approximated straight lines [Tro80]. This 

scheme is frequently used in object recognition problems because of its simplicity and 

fast display of the lines even though it has some limitations with complex objects [Hat83] 

[Low87] [Mci88]. 

In recent years, Lowe [Low87] and Rosin [Ros89] proposed a straight line 

extraction method using polygonal approximation. In the following section we modify 

their methods and develop a parallel algorithm implemented on the hypercube. 

Development of Parallel Straight Line Extraction Algorithm 

Since the edge detection technique using the Laplacian of Gaussian operator gives 

us a set of connected edge contours, it is easy to list the coordinates of the edge points in 

each set into segment arrays: first, scan row by row from the topmost left point until a 

non-zero point (i.e., zero crossing point) is found. If a non-zero point is found, it is a 

beginning point for that segment. Second, keep searching for a non-zero neighbor point 

and m~ving t? that point until no more non-zero points are detected. Note that once a 

non-zero point is detected, then it is assigned to zero after listing its coordinates into a 

segment array so that the point will never be listed again. Finally, a set of edge contours 

Is stored into a segment array. Since the number of segments depends on the image, the 

segment array should be allocated dynamically to save memory space. This segmenting 

procedure is performed in parallel. 
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As the result of the segmenting procedure, the segment arrays in each node contain 

contour points of the objects only in its own sub-image. In other words, the segmenting 

is only a local procedure. In order to link the local segments globally, the segments that 

contain any points on the top or bottom row in the node must be sent to their adjacent 

nodes, then linked one after the other for all nodes. Such a segment is defined as a 

pass-segment. 

One might think that the linking is a sequential procedure because it should be done 

for one after the other node. But we can increase the procedure parallelism and reduce 

the processing time significantly by studying the procedure and developing a parallel 

algorithm. Figure 1~.7 shows pseudocode of the algorithm for the node program when 8 

nodes are used. 

Procedure Global_L1nk1ng 

I* Step 1 *I 
IF (my_node_number mod (4)) = 0 THEN 

search pass-segments 
send the pass-segments to (my_node_number + 1) 

ELSE IF ((my_node_number mod (4)) - 3) = 0 THEN 
search pass-segments 
send the pass-segments to (my_node_number - 1) 

ELSE 
rece1ve the pass-segments 
l1nk the pass-segments locally 

END IF 

I* Step 2 *I 
IF ((my_node_number mod (4) - 1) = 0 THEN 

update the top and bottom row posit1ons 
, search pass-segments 

send the pass-segments to (my_node_number + 1) 
END IF 

Figure II. 7 Pseudocode for Parallel Segment Linking Algorithm 



End 

IF ((my_node_number mod (4)) - 2) = 0 THEN 
rece~ve the pass-segments 
link the pass-segments locally 

END IF 

I* Step 3 */ 
IF ((my_node_number mod (8) - 2) = 0 THEN 

update the top and bottom row posit~ons 
search pass-segments 
send the pass-segments to (my_node_nurnber + 4) 

END IF 
IF ((my_node_nurnber mod (8)) - 6) = 0 THEN 

rece~ve the pass-segments 
l~nk the pass-segments locally 

END IF 

(Figure II.7 Continued) 
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my_ node_ number is the logical position of a node. So, in this case, it is one number 

between 0 through 7, inclusive. mod stands for modulo operation. We can see that only 

three sequential steps are needed to link the pass-segments in 8 nodes, and it is easy to 

expand this algorithm for more than 8 nodes: simply add one more step as the number of 

nodes is increased by a factor of 2. The complexity of the parallel algorithm is thus 

O(log n) rather than O(n). Figure 11.8 depicts this algorithm. 

In order to extract an approximated straight line from the global segments, we use 

the polygonal approximation method by Lowe [Low87] and Rosin [Ros89]. The 

coordinates of the frrst and last points of the segment are listed into a straight-line array 

as the beginning and ending points of the straight line. Then the approximated straight 

line IS recursively split at the maximum deviation point if the ratio of the length of the 

lme divided by the deviation is greater than a threshold value. A C program for this 

procedure is given in Figure 11.9. 
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Figure 11.8 Parallel Pass-Segment Linking Algorithm 

Polygonal_Approx~mat~on(segment, beg~n, end, stl~ne) 

struct SEGMENT seg_array; I* Array of global-segment *I 
~nt beg~n, end; /* Beg~nning and ending position *I 
struct STLINE- st_array; ./*Array of straight-line */ 

I* In~tialize the variable for maximum deviation *I 
max_dev~at~on = 0; 

I* Calculate the length between beginning and ending points */ 
I* of the segment *I 
length= calculate_d~stance(seg_array[begin], seg_array[end]); 

I* Loop for f~nd~ng the pos~t~on w~th maximum deviation */ 
for (pos = beg~n; pos < end; pos++) { 

d = calculate_dev~at~on(seg_array[begin], seg_array[end], 
seg_array[pos]); 

~f (d > max_dev~at~on) { 
max_dev~at~on = d; 
max_pos = pos; 

Figure 11.9 A C Program for Polygonal Approximation 



I* If the ratio of the maximum deviation to the length *I 
I* is greater than threshold, split the segment at that *I 
I* pos1tion and then call the function for two spl1t *I 
I* segments recurs1vely *I 
1f ((max_deviation I length) >threshold) { 

Polygonal_Approximat1on(segment, begin, max_pos, stline); 
Polygonal_Approx1mation(segment, max_pos, end, stl1ne); 

I* If the segment is not spl1t, list the coord1nates of *I 
I* the beg1nning and ending positions into the straight- *I 
I* line array *I 
else { 

list_stline(stline, beg1n, end, segment); 

(Figure II.9 Continued) 

If (xl> y1) and (x2, y2) are the coordinates of the beginning and ending points of a 

segment respectively, and (x, y) is the coordinates of a point in the segment, then the 

deviation at the point, d, can be calculated by the following equation: 
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d = (TI.ll) 

where 

Figure TI.lO shows an example of the straight line extraction using the polygonal 

approximation method for three levels of recursion. 

Parallel Thinning 

Thinning is one of the most important procedures in pattern recognition and image 

data reduction, but it is a very time consuming procedure. In most existing thinning 
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Figure Il.lO An Example of the Polygonal Approximation Method 

algorithms, several templates (usually 3 x 3) are scanned on the image for deleting 

boundary points but not the skeleton of an object. This procedure is repeated until no 

points are deleted. The complexity of the whole procedure is found to be O(n3) [Mar87]. 

In order to reduce processing time, many parallel algorithms have been proposed 

which can be easily implemented on currently available mesh computers. Examples are 

[Zha84], [Lu86], [Chi87], [Hol87], [Hal89], and [Guo89]. However, those parallel 

thinning algorithms are undesirable for implementation in distributed memory computers 

because the global shapes of the objects in an image might be affected when the image is 

divided and distributed to each node. To avoid this problem, data swapping between 

nodes, that is, communication, must be performed at every iteration [Kue85]. 
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Parallel Boundary Detection and Object Extraction 

In this section, we develop a new parallel thinning algorithm based on boundary 

following and shrinking. Each object boundary in the image is extracted and linked in 

parallel. The number of objects is divided based on the number of nodes being used and 

object size. Then each of the sub-objects is distributed to the nodes and thinned in 

parallel by following the boundaries and shrinking the~ in the direction perpendicular to 

the boundary and pointing toward the inside of the object. This algorithm reduces the 

complexity from O(n3) to O(n2). 

Let us assume that we have a digitized binary image. Then an object region in the 

image can be simply represented by the set of boundary points, or connected edge points 

of the object. The connectedness of two boundary points in a binary image depends on 

the definition of the neighborhood: four-neighbor (N4) or eight-neighbor {N8) [Shi87]. 

(N4) and (N8) neighborhoods of a point at (i,j) consist of the following points: 

N4 = {(i,j-1), (i,j+1), (i-1,j), (i+'l,j)} 

N8 = {N4, (i -1,j- 1), (i -l,j + 1), (i + 1,j -1), (i + 1,j + 1)} 

(TI.12) 

(TI.13) 

In this research we have chosen eight-neighbor as the definition of the neighborhood. 

Two points are eight-connected if, they are eight-neighbors of each other. Figure 11.11 

shows a 3 x 3 template according to the eight-neighbor definition. 

Let us assume that the size of the input binary image is n x n, and no object points 

touch the periphery. Then the boundaries can be detected by the following procedure: 

Procedure Boundary_Detect~on; 

beg~n 

for J = 0 to n-1 do beg~n 
for ~ = 0 to n-1 do beg~n 

~f I(~,J) = 1 and I(p,q) = 1 for all (p,q) e N8 , then 
B(i,j) = 0; 

else 

end; 
end; 

end; 

B(i,j) = 1; 
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Figure 11.11 Eight-Neighbor Definition 

where I is an array representing the input image, and B is an array representing the output 

which contains only boundary points. This procedure is performed in each node for its 

sub-image in parallel. 

As the result of the boundary detection, each node has boundary points only for its 

own sub-image. Now, we extract the objects locally by the boundary-following method 

which is described in [Shi87] (see chapter 4). The data structure for an object might be 

the following: 

typedef struct { 

1.nt numofbound, I* Number of boundary points *I 
numoftbe, I* Number of po1.nts on top border *I 
nurnofbbe; I* Number of po1.nts on bottom border *I 

XYCRD *bound, I* A pointer for boundary data *I 
*tbe, I* A po1.nter for top border elements *I 
*bbe; I* A po1.nter for bottom border elements *I 

OBJECT; 

where XYCRD is another data structure for a data position. Figure 11.12 illustrates the 

'bound', 'tbe', and 'bbe'. In order to link the local objects in the nodes globally, the local 

obJects which have top border elements or bottom border elements are sent to their 

adjacent nodes and linked in parallel by the method described in the previous section. 
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Figure 11.12 Bound, Bbe, and Tbe 

Parallel Object Thinnin~ 

For load balancing, the root node collects the information of the number of objects 

and their sizes from all nodes. The root node divides the number of the objects according 

to their sizes as well as the number of nodes, and then redistributes the sub-objects to all 

nodes. In the global object-linking step, the boundary data of the objects might be 

shuffled. To arrange the data, we project the objects on a working plane and perform the 

boundary-following step once again. 

Now, we thin the objects in each_ node in parallel by following the object boundaries 

clockwise and by shrinking them in the direction perpendicular to the boundary and 

pointing toward the inside of the object. This procedure is repeated until the number of 



boundary points is not changed. Nate that we find the direction for shrinking based on 

the eight boundary-following directions shown in Figure ll.l3 and defined by the 

following equanon: 
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shrink dir = (follow dir + 2) mod 8 (II.l4) 

where if the shrink_ dir is zero, then shrink_ dir is reassigned to eight. 

6 7 8 
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Figure II.13 Eight Boundary-Following Directions 

Figure II.14 shows the results of shrinking a simple cross object after one iteration. 

The starting point is the top-left position of the object, and the arrows represent the 

boundary-following direction which is clockwise. 'x' and'.' denote the boundary of the 

original object and the boundary of the shrunken object respectively. Note that the 

crrcled points are mserted to make the shrunken object boundary connect. The 

connectivity of the shrunken-object boundary is essential for the next iterations. If a 
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boundary point is an element of a parallel line or a single line (overlapped) then the point 

is just copied without shrinking. The parallel line and the single line are depicted in 

Figure II.15(a) and II.15(b), respectively. 
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Figure II.l4 Results of Shrinking a Simple Cross Object After 
One Iteration 

The shrinking step produces the skeletons of the objects, which are at most 

two-pixels wide. To make single-pixel wide skeletons, we pse the Zhang and Suen 

algorithm [Zha84] which preserves the connectivity of the skeletons. Note that we can 

remove two-pixel wide points by following the skeleton data points instead of scanning 

all over the working plane. Also note that we need only one iteration, that is, two 

subiterations, because one layer of the object is peeled off at each iteration. 
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Figure Il.15 Parallel Line and Single Line. (a) Parallel Line, 
(b) Single Line 

Experimental Results and Speedup 
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The three parallel algorithms of edge detection, straight line extraction, and thinning 

developed in the previous sections were implemented on the iPSC/2 and tested for a 

variety of combinations of image size and number of nodes. 

For the edge detection, the proce~sing time on a VAX 11n50 and the hypercube 

when using Laplacian of Gaussian operator are compared in Figure II.16. Here, we can 

see that edge detection on a 512 x 512 image "on the hypercube with 8 nodes is about 30 

times faster than on the VAX 11n5o. 

Speedup (S p) can be defined as 

S = Processing time on a single processor = Ta 
P Processing time on P processors TP 

(II.15) 

Figure II.17 shows the speedup when using Laplacian of Gaussian operator. We can see 

that the speedup increases almost linearly as the number of nodes increases, and we 
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Figure ll.16 Processing Times on VAX 11n 50 and iPSC/2 (9 x 9 
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obtain more speedup at larger image sizes. This is an indication that, for reasonable 

(large) sized images, useful increases in performance can be realized for much larger 

order' hypercubes than shown here. 
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To test straight line extraction, an image of simple industrial objects was used. The 

size of the input image was 512 x 512. The processing times according to different 

number of nodes are shown in Figure ll.18. Note that the processing time includes times 

for the edge detection using Laplacian of Gaussian operator, the zero crossing points 

detection, and the straight line extraction. We can see that the processing times are 

decreased approximately linearly as the number of nodes is increased. 
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Figure Il.17 Speedup When Using Laplacian of Gaussian Operator 
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It is obvious from our experimental results that the processing times for the 

preprocessing steps such as edge detection and straight line extraction are approximately 

inversely proportional to the number of nodes. This means our parallel algorithms have a 

high degree of parallelism without serious degradation. 

Our parallel-thinning algorithm is also implemented on the Intel iPSC/2. Figure 

Il.19(a) shows a test image which contains sixteen 'H's. The size of the i~age is 512 X 

512. According to the input image distribution method, the input image is divided by the 

number of nodes and each sub-image is distributed to each node. Then the boundary 

detection for each sub-image is performed in parallel. Through the parallel linking 
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Figure II.18 Processing Times for Straight Line Extraction 
According to Various Number of Nodes 

procedure, the sixteen objects are extracted and redistributed to the nodes as evenly as 

possible. Finally, the objects are thinned by boundary-following and shrinking. Figure 

II.19(b) is the final result. The skeletons are single-pixel wide. 

For the comparison, we also implement Zhang and Suen's algorithm on the iPSC/2. 

As we discussed in the previous section, we need to swap data between nodes at every 

iteration. The processing times of Zhang and Suen' s algorithm as well as our algorithm 

according to different numbers of nodes are shown in Table I. We can see that our 

algorithm is much faster than Zhang and Suen's. But our algorithm has some 

degradation when using 32 nodes because there are only 16 objects in the image and 

more communication time is needed for object extraction as more nodes are used. That 
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Figure 11.19 Result of the Thinning. (a) An Original Input 
Image (512 x 512), (b) A thinned Image 
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1s, our algorithm depends on the number of objects in the input image. The more objects 

in the scene, the more parallelism and the more efficient the algorithm becomes. Another 

problem is that, so far, our algorithm works only for solid objects. But this problem can 

be solved by some modification of the algorithm: If an object contains some holes inside, 

then we detect the boundaries of the holes as well as the boundary of the object. In the 

shrinking procedure, we shrink the boundary of the object inward and shrink the 

boundaries of the holes outward. 

TABLE I 

COMPARISONS OF THE PROCESSING TIMES 
FOR THINNING (IN SECONDS) 

Algorithms 

Zhang and Suen's 

Ours 

4 

56.1 

10.2 

Number of Nodes 

8 

34.4 

6.4 

16 

23.6 

3.7 

32 

13.0 

4.5 



CHAPTER III 

PARALLEL FEATURE EXTRACTION 

Feature extraction is the most important step in a pattern recognition system. 

Accuracy of the system relies on how well the features are extracted. In this chapter, we 

will discuss how to extract the local features such as comers, arcs, parallel-lines, and 

comer-arcs from the straight lines, which are obtained through the preprocessing steps 

discussed in Chapter II. The local feature detection is also performed on the hypercube in 

parallel. At the end of this chapter, a parallel line and arc drawing algorithm is provided. 

Comer Detection 

Data Structure 

As the result of the preprocessing such as edge detection and straight line 

extraction, each node has the data of the approximated straight lines, which consists of 

coordinates of starting and ending points, lengths and deviations of the lines. The data 

structure for a straight line is the following: 

I* Coordinates of starting point 
I* Coord1nates of ending po1nt 
I* Length of the l1ne 

typedef struct { 
1nt xl, yl, 

x2, y2; 
float len, 

dev; I* Dev1at1on of the l1n-e 
STLINE; 

Figure Ill.l shows the parameters of a straight line. 

*I 
*I 
*I 
*I 

A corner can be defined as a point where two straight lines merge. The data 

structure for a corner is the following: 

41 
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0 

(x2, y2) 

(xl, yl) 

Figure 111.1 Parameters of a Straight Line 

typedef struct { 

STLINE stl, I* Stralght llne 1 *I 
st2; I* Stralght llne 2 *I 

float ang; I* Angle of the corner *I 
CORNER; 

Figure 111.2 depicts a comer and its parameters. Note that the length of stl is greater than 

or equal to the length of st2. This condition is desired for matching discussed in the next 

chapter. 

(xl, yl) 

Figure 111.2 A Comer and Its Parameters 
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Parallel Corner Detection 

In [Koc85] and [Koc87], Koch and Kashyap assumed that the contour of the object 

was closed. In practice, it is very difficult to get a closed contour due to variation in 

illumination, reflections, and shadows. In our research, we assume that the contour is not 

closed. Hence, we have to compare every straight line to all other straight lines in order 

to detect comers. The complexity of this step is 0 (n 2), where n is the number of straight 

lines. In order to reduce the complexity of the comparison, we split the data and then 

implement the corner detection in parallel on the hypercube. 

First, the root node (node 0) collects the local straight lines from each node, and 

merges them into an array, global_straight_line. Second, the root node redistributes the 

global_straight_line array to all nodes except th~ root node. Third, each node computes 

the beginning and ending positions of the global_straight_line by the following equations 

for its own straight lines to be concerned. 

my _node_number*n 
begin = 

N 

end 
= (my_node_number +- l)*n _ 1 

.N 

(Ill. I) 

(Ill.2) 

where N is the number of nodes allocated. In this way, parallelism can be introduced to 

reduce the complexity of the corner detection to 0 (n 2/N). Figure lll.3 illustrates the 

global straight line division method. 

Now each node detects comers in parallel by comparing every pair of straight lines 

from the global_straight_line array and its own straight lines. If the proximity of ~wo 

straight lines is less than a threshold value, they are saved into an array corner. Koch and 

Kashyap [Koc85] [Koc87] detected only comers with high curvature, that is, large comer 
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Figure III.3 Global Straight Line Division Method 

n-1 

angle in our case. Although high curvature gives more significant features than low 

curvature, corners with low curvature but long straight lines can give us valuable 

information of the objects. In this research we detect and use all of the corners. 

Computation of Corner An~le 
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According to the data structure of straight line, each straight line has information of 

its deviation. The deviation is computed by the following method using a library 

function, atan2(): 

dx = x2 - xl 
dy = y2 - yl 

IF (dx = 0 and dy 
dev = 0 

ELSE 
dev = atan2(dy, 

IF (dy < 0) 

= 0) 

dx) 
THEN 

dev = dev + 21t 
END IF 

END IF 

THEN 



Figure III.4 illustrates the deviations of the straight lines according to the different 

directions. Note that the deviations are assigned clockwise. 

The comer angle between two straight lines can be obtained by the following 

method: 

d1ff = st2.dev - stl.dev 

IF (d1ff > n) THEN 
ang = diff - 2n 

ELSE IF (d1ff < -n) THEN 
ang = d1ff + 2n 

ELSE 
ang d1ff 

END IF 

Note that the comer angles range from -1t to 1t. 

3n 

7n 
4 

0 

n 
4 

2 --------*""--------

5n 
4 

n 

3n 
4 

n 
2 

Figure III.4 Deviations of the Straight Lines According to 
the Different Directions 

45 
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Arc Detection 

The arc is another important local feature. However arc detection is much more 

difficult than comer detection since the function of an arc is non-linear and it requires 

more parameters than a comer. Recently, Rosin [Ros89] proposed an arc detection 

method, which is more accurate but complicated. Earlier, Perkins [Per78] developed a 

circular arc fitting algorithm based on a least squares error criterion. 

An arc can be represented by eight parameters: radius R, center at (X0 YJ, starting 

at (Xs, Ys), ending at (X., Y.), and length L. Figure III.5 shows the parameters of an arc. 

The data structure of the arc is the following: 

typedef struct 
1nt xs, ys, I* Start1ng po1nt *I 

Xe, ye, I* End1ng po1nt *I 
XC, yc; I* Center point *I 

float r, I* Rad1us of the arc *I 
len; I* Length of the arc *I 

ARC; 

In order to fit an arc to polygonal approximated lines, we minimize the errors between the 

arc and the vertices of the lines. Figure III.6 illustrates an error between the arc and one 

vertex. 

An arc with radms R and center at (X0 Yc) can be represented by the following 

equation: 

(III.3) 

Smce the coordmates of the vertices of the polygonal approximated lines are already 

known, the error function to be minimized will be the following: 

(III.4) 



L 

Figure Ill.5 Parameters of an Arc 

Figure Ill.6 Error Between the Arc and One Vertex of the 
Polygonal Approximated Line 

47 



where n is the number of vertices. From the conditions, 

aJ 
ax = o, 

c 

we can get 

aJ 
ay = o, 

c 

ai 
and-= 0 aR 

n n n 
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I (X, - XJ3 + I (Y, - YJ2 (X, - XJ - R 2 I (X, - XJ = 0 (III.5) 
•=1 •=1 •=1 

n n n 

I (X, - XJ2 CY. - YJ + I (Y, - Yc)3 - R2 I (Y, - Yc) = 0 (III.6) 
•=1 •=1 •=1 

n n 

I (X, - XJ2 + I (Y, - YJ2 - nR 2 = 0 (III.?) 
•=1 •=1 

See Appendix A for the derivauons of the Equations (III.5) through (III.?). 

The above three equations can be solved by Newton's method for the three 

unknown parameters, Xc, Yc, and R. Let's represent the three unknown parameters as a 

vector, 

X=[~] 
Then, the Equations (III.5), (III.6), and (III.?) can be represented by a system 

[
h(X)] 

f(x) = :h(x) = 0 
i-J(x) 

Newton's method for the system is given by the following: 

(III.8) 



Form= 0, 1, 2, ... , until satisfied, do: 
x<m+l) : = x(m) - f(x<mylf(x(m)) 

where the matrix f(x) called the Jacobian matrix is given by 

a a a 
ax It ayft aRit c c 

f(x) = 
a a a 

ax:h ay:h aR:h c c 

a a a 
axh ayh aRh c c 
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(III.9) 

(III.lO) 

In order to get the inverse of the matrix f(x), we use the following equation instead of a 

common numerical method such as factorization or LU decomposition method: 

(( rl = ad} ((x) 
x lf(x)l 

(III.ll) 

where I f(x)l is the determinant of the matrix f(x) and ad] f(x) is the adjoint matrix of 

f(x) [Ger65] [Ful67]. 

An adjoint matix is defined as the transpose of the cofactor matrix [Ger65]. To 

illustrate the construction of a cofactor matix, consider the third-order matrix A: 

(III.l2) 

The cofactor matrix obtained from A is denoted Ac and is as follows: 

(III.13) 



Each of the cofactors in the preceding matrix is obtained from the determinant of A, 

which is 

Au Al2 A13 
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IAI = A21 A22 A23 (III.l4) 

A31 A32 A33 

Thus, the cofactors are 

A~~ 
A22 A23 

A~2 =-
A21 A23 

A32 A33 A31 A33 

and so forth for the remaining cofactors. 

In Newton's method, the first guess x<oJ is a very important factor not only for 

converging to a root but also for reducing the number of iterations. In this research, we 

develop a method for estimating a "good" initial center point (X~, Y~) and radius R0 of the 

candidate for an arc. 

Let /1 and /2 be the first and last straight lines of the candidate. Then we find the 

equations for 1/ and /2', which are perpendicular to /1 and /2 , and pass through the center 

pomts of /1 and /2, respectively. Now, the initial center point (X~, Y~) is obtained by 

solving the two equations for 11' and /2'. The initial radius R 0 is simply the distance from 

the (X~, Y~) to the center point of /1 or /2• This method is demonstrated in Figure 111.7. 

From the experimental results, the initial center point and radius of the candidate for an 

arc are very close to the actual values in most case. So, we can reduce the number of 

iterations significant! y. 

In order to find the length of the arc L, let a be the central angle of the arc and M be 

the length of the side opposite the angle (see Figure 111.5). From the Law of Cosines, 

(III.15) 



or 

where 

Figure Ill. 7 A Method for Estimating the Initial Center Point 
and Radius of the Candidate of an Arc 

(radians) 

Thus, the length of the arc L is simply given by 

L = a·R 
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(III.l6) 

(III.l7) 

(III.18) 

Since all pairs of straight lines have already been compared to each other for testing 

their proximity in the corner detection, we use the corner data for searching a set of 

straight lines, or candidate for an arc: we recursively link the corners which are adjacent 

to each other. Before the linking, we drop the corners with high curvature (that is, sharp 

corners) or high ratio of the length of the longer line to the length of the shorter line for 

reducing the execution time. Those lines have little possibility to be an arc. 
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For parallel implementation of the arc detection on the hypercube, the root node 

collects the local candidates from the nodes and divides the local candidates as evenly as 

possible according to the number of the nodes being allocated. Then the root node 

redistributes the sub-candidates to the nodes, and each node estimates the parameters 

such as center point, radius, and length for each candidate in parallel. Figure III.8 shows 

a block diagram of parallel arc detection. Note that theN in the figure is the number of 

nodes allocated. 

NODES ROOT NODE 

Start 
~ 

Detect Comers 

i 
Drop Sharp Corners 

1 ' 
Search Candidates "-.I Collect Local 

I for Arcs by Linking !/I Candidates 
Adjacent Corners 

1 ! 
i 
i I # of Candidates I N J i 
i 
! 1 i 

Estimate / I Redistribute 

I Sub-Candidates 0 0 0 ' I (Xc, YJ andR ! 
! 

Estimate 
(Xc, Y J and R 

by New,ton Method 

l 
Calculate L 

( End ) 

Figure III.8 A Block Diagram of Parallel Arc Detection 
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Parallel-Line Detection 

Industrial objects or parts usually contain some parallel lines in their boundary. 

Thus parallel lines are potentially significant features for representing the objects. Lowe 

[Low87] used the perceptual grouping method,based on proximity, parallelism, and 

collinearity of the straight lines extracted from an image to reduce searching space for 

object matching. In his work, a measure of the parallelism between two lines is defined 

as 

4D8sl1 
E = 

1tli 
(III.l9) 

where Dis a constant (set to 1), 8 is the angular difference in radians between two lines, s 

is the average separation between two lines, 11 is the length of the longer line, and 12 is the 

length of the shorter line. The significance of the parallelism is inversely proportional to 

E. 

In this research, we simplify Equation (III.19) and define a significance of 

parallelism between two straight lines, span as the following: 

s,~ = c · ( e 1 d)( i,J (III.20) 

where C is a constant, 8 is the angular difference in radians between two lines, d is the 

perpendicular distance from the longer line to the midpoint of the shorter line, /1 is the 

length of the longer line, and /2 is the length of the shorter line. Figure III.9 shows these 

parameters. Note that the significance of the parallelism is proportional to Spar 

Now we compute Spar for every pair of straight lines. If Spar is greater than a 

threshold value, then we list the pair of lines into an array parallel-line. The data 

structure of the parallel-line is the following: 



d 

Figure III.9 Parameters for the Significance of 
Parallelism Between Two Lines 

typedef struct { 
STLINE stl, 

st2; 
float d; 

PARLINE; 

I* 
I* 
I* 
I* 

·Longer line *I 
Shorter l1ne *I 
Perpend1cular distance *I 
between two lines *I 

However, one more parameter might be added in the significance of parallelism 
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defined in Equation (III.20). If two lines are parallel but too far away from one ~other, 

those lines have less significance in parallelism than closely aligned parallel lines. In 

order to eliminate the parallel lines not aligned, we compute a degree of alignment (doa). 

The doa is defined by perpendicular distance from the center point of the shorter line 

(st2) to the line which is perpendicular to the longer line (stl) and passes through the 

center point of the line. In. this research, we set the doa as 

doa < length 
4
of st2 



If the doa of a parallel line is greater than or equal to the threshold value, we drop the 

parallel line from the list. Figure III.lO shows degree of alignment of two lines. Note 

that the parallel-line detection is also performed in parallel on the hypercube. 

- rJ st2 
----------------.. --•• !.! ••• -.... -·-·· • 

doa 
" , -

stl 

Figure III.lO A Degree of Alignment (doa) of Two Lines 

Comer-Arc Detection 

If an arc and a comer exist in an object, the information of the arc and the comer 
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can be combined and used as a feature for the object. For example, when the angle of the 

comer, radius of the arc, and distance from the vertex of the comer to the center point of 

the arc are combined as a feature, it can form a significant new feature for the object. 

Let's call the feature "corner-arc". 

The feature is invariant to rotation and translation of the object, so we can test the 

compatibility between the comer-arc of a model object and the comer-arc of an input 

object. Also, a coordinate transform can be obtained from the comer-arc feature because 

the coordinates of the vertex of the comer and center point of the arc are linearly 

transformed as the object is translated and rotated. The compatibility test and the 



coordinate transform are described in Chapter IV. 

To detect corner-arcs, corner and arc detection should be performed in advance 

because corner-arcs are combined features of the corners and arcs. If any arcs are 
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detected, we search the corners with sharp angle. Of course, all of the corners can be 

used, but only sharp corners are used because the combination of the arcs and all of the 

corners might result in a large number of the features. Now the information of the corner 

and the arc is listed into an array, co rare. The following is the data structure of the 

corarc array. 

typedef struct 
1.nt x, I* X coord1.nate of the corner po1.nt *I 

y, I* y coord1.nate of the corner po1.nt *I 
XC, I* X coord1.nate of center po1.nt of the arc *I 
yc; I* y coordinate of center po1.nt of the arc *I 

float ang, I* Angle of the corner *I 
r, I* Rad1.us of the arc *I 
d; I* D1.stance from the center po1.nt of the *I 

I* arc to the corner point *I 
} CORARC; 

Figure 111.11 shows the parameters of a corner-arc. 

d 

Figure 111.11 Parameters of a Corner-Arc 
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Parallel Line and Arc Drawing 

The extended local features basically consist of lines and arcs. The basic task of a 

line or arc drawing in computer graphics is to compute the coordinates of the pixels 

which lie near the line or arc on a two-dimensional raster grid. In this section, we study 

some existing line and arc drawing algorithms, and then we develop a parallel line and 

arc drawing algorithm which can be impl~mented on the iPSC/2. 

Parallel Line Drawing 

There exist several line drawing algorithms. Examples are incremental algorithm 

and Bresenham' s algorithm [Fol82]. In the incremental algorithm, the slope of the line, 

m, is calculated by m = tJ.y/!u, where tu = (x2.- xi) and tJ.y = (y2 - yi) if the 

coordinates of the starting and ending points of the line are (xi , y i ) and (x2, y2 ), 

respectively. Here if we assume that !u = 1, then them reduces to tJ.y, that is, a unit 

change in x changes y by m. Thus, for all points (x,, y,) on the line, we know that if 

x, + 1 = x, + 1, then y, + 1 = y, + m. That is, the next values of x andy are defined in 

terms of their previous values. When m is greater than 1, a step in x will create a step in y 

which is greater than 1. Thus we must reverse the roles of x andy by assigning a unit 

step toy and incrementing x by tu = tJ.y lm = lim. The incremental algorithm is quite 

simple to implement, but it has some disadvantages: rounding y to an integer takes time, 

and the variables y and m must be real or fractional binary rather than integer, because the 

slope is a fraction. 

Bresenham's algorithm [Bre65] is attractive because it may be programmed without 

multiplication or division instructions, and thus it is efficient with respect to speed of 

execution and memory utilization. For simplicity in describing the algorithm, we assume 

that the slope of the line is between 0 and 1. The algorithm uses a decision variable d, 

which at each step is proportional to the difference between r and q shown in Figure 

Ill.12. The figure depicts the ith step, at which the pixel P, _1 has been determined to be 

closest to the actual line being drawn, and we now want to decide whether the next pixel 
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to be set should be R, or Q,. If r < q, then R, is closer to the desired line and should be set; 

else Q, is closer and should be' set. The black circles in Figure m.12 are pixels selected 

by Bresenham's algorithm. 

Figure ill.12 Notation for Bresenham's Algorithm 

The line being drawn is from (xl, yl) and (x2, y2 ). Assuming that the first point is 

nearer the origin, we translate both points by (-xl, -yl ), so it becomes the line from (0, 

0) to (dx, dy), where dx = (x2 - xl) and dy = (y2 - yl ). Now the decision variable 

d, is defined as 

d, = dx(r - q) (III.21) 

Since dx is positive when the slope of the line is between 0 and 1, we chooseR, when d, < 

0, that is, (r - q) < 0. From the examination of Figure III.12 we can rewrite Equation 

(III.21) as 
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(III.22) 

If d, :2: 0, then Q, is selected, so y, = y, _1 + 1 and 

d,+1 = d, + 2(dy - dx) (III.23) 

If d, < 0, then R, is selected, so y, = y, _1 and 

d,+l = d, + 2dy (III.24) 

Hence we have an iterative way to calculate d,+1 from the previous d, and to make the 

selection between R, and Q,. The initial starting value d1 is found by evaluating Equation 

(III.22) for i = 1, knowing that (x0 , y0) = (0, 0). Then 

dl = 2dy - dx (III.25) 

The arithmetic needed to evaluate Equations (III.23), (III.24), and (III.25) is 

minimal, because the equations consists of only addition, subtraction, and left shift to 

multiply by 2. This is important, because time-consuming multiplication is avoided. 

Moreover, the actual inner loop is quite simple. To generalize the algorithm, slopes of 

the lines are determined by one of the eight octants (see Table II). Note that the origin 

point is at the top-left comer of the image plane (refer to Figure ill.14 in the next 

section). According to the different octants, only slight changes are needed in the actual 

inner loop. A C program for the Bresenham's algorithm is shown in Figure III.13. Note 

that this version works only for lines with slope between 0 and 1, that is, eighth octant. 

Bresenham's algorithm is implemented on the hypercube in parallel. All of the 

lines to be drawn are sent to all nodes. In each node, the lines are tested to determine if 

they are inside the local image plane (LIP) or if they pass through the top and/or bottom 

borders of the LIP (see Figure III.14). If a line is inside of the LIP, then we draw the line 
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TABLE IT 

DETERMINATION OF THE OCT ANTS 

Ax !1y I Ax 1-1 11y I Octant 

~0 ~0 ~0 1 

~0 ~0 <0 2 

<0 ~0 <0 3 

<0 ~0 ~0 4 

<0 <0 ~0 5 

<0 <0 <:0 6 

~0 <0 <0 7 

~0 <0 ~0 8 

into the LIP. Otherwise, we compute the coordinates of the intersection point(s) of the 

line and the top and/or bottom borders of the LIP. The coordinates can be obtained by 

the following equations: 

where 

x/ = x1 + dev*(top - y1) 

x2' = x1 + dev*(bottom - y1) 

y/ = top 

y2' = bottom 

(III.26a) 

(III.26b) 

(III.26c) 

(III.26d) 



Line_Draw{D, xl, 
Image D; 
int xl, yl, 

dx = x2 - xl; 
dy = y2 - yl; 

yl, x2, 

x2, y2; 

y2) 
I* Image plane for the line drawing *I 
I* Coordinates of start~ng and end~ng *I 
I* points of the l~ne *I 

absdx = abs(dx); I* Absolute value of dx *I 
absdy = abs(dy); I* Absolute value of dy *I 
d~ff = absdx - absdy; I* Difference between absdx and absdy *I 

I* Write the starting po~nt *I 
wr~te_p~xel(D, xl, yl); 

I* Determ~ne the octant of the l~ne *I 
octant= determ~ne_octant(dx, dy, d~ff); 

I* Sw1tch accord1ng to the octant of the l~ne *I 
sw1tch(octant) { 

case 8: 
d = 2*absdy - absdx; 
1ncrl = 2*absdy; 
1ncr2 = 2*(absdy 

I* Main loop *I 
wh~le(xl < x2) { 

xl++; 
1f (d < 0) 

- absdx); 

d = d + incrl; 

else 
yl--; 
d = d + ~ncr2; 

I* In1tial value 
I* Increment 1f 
I* Increment 1f 

for 
d < 
d >= 

I* Write the selected point near the l1ne *I 
wr~te_p1xel(D, xl, yl); 

break; 

Figure Ill.13 A C Program for Bresenham's Algorithm 

d *I 
0 *I 

0 *I 
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Now the lines inside of the LIP or newly generated line segments by the above equations 

are drawn in parallel on each node. 

(0, 0) 

NodeO 

Node 1 

top 

bottom 

(0, 512) 

Global Image Plane 
(GIP) 

~-+- Local Image Plane 
(LIP) 

(512, 512) 

Figure III.l4 Global and Local Image Planes 

Parallel Arc Drawin& 

There exist several arc drawing algorithms [Dan70] [Jor73] [Sue79], but the 

simplest method is to create a suitable approximation to the arc by drawing it as a series 

of short straight lines [Dem84]. We benefit from the method because we have already 

implemented the Bresenham' s line drawing algorithm in the previous section. 

To produce good-looking arcs, it is obvious that the number of line segments 
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needed for an arc should be increased as the radius increases. Very complex formulas 

can be developed to calculate the number of lines needed to produce an arc, but a simple 

one that works well on a typical microcomputer screen is 

N ) end angle - start angle 
= (min + const x r x 21t (Ill.27) 

where r is the radius of the arc, n is the number of lines required, and start_ angle and 

end angle are the angles of the ending and starting points of the arc, respectively. The 

minimum min and the constant multiplier const can be adjusted to produce acceptable 

resolution. In this research, we set the min to 20 and const to 0.4. A C program of the 

arc drawing method is given in Figure III.15. As we can see, an arc is converted into a 

series of the approximated line segments. 

To implement the arc drawing in parallel on the hypercube, we divide the number 

of the arcs to be drawn by the number of nodes being used. Then the arc drawing 

procedure shown in Figure III.15 is performed in parallel on each node for each sub-arc. 

Arc_Draw ( xc, yc, xs, ys, xe, ye, r) 
int XC, yc, !* Coordinates of the center point of the arc 

xs, ys, !* Coordinates of the starting point of the arc 
xe, ye, !* Coordinates of the end1.ng po1.nt of the arc 

float r; !* Radius of the arc 

!* Compute the angle~ of startl.ng and end1.ng po1.nts */ 
start_angle = atan2(yc-ys, xc-xs); 
end_angle = atan2(yc-ye, xc-xe); 

/~ Compute the number of the l1.ne segments for the arc */ 
N = (20 + 0.4*r)*(end_angle- start_angle)/(2*pi); 

!* Compute the incremental angle */ 
delta_angle = (end_angle- start_angle)/N; 

Figure Ill.15 A C Program for the Arc Drawing 

*I 
*I 
*I 
*I 



I* Coordinates of the starting point *I 
I* of the first llne segment *I 
xl xs; 
yl = ys; 
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I* Generate the coord1nates of the start1ng and ending po1nts */ 
I* of each llne segment. Then, draw the l1ne segment *I 
for (k = 1; k <= N; k++) { 

I* Compute the coord1nates of the ending point *I 
x2 cos(start_angle + k*delta_angle)*r + xc; 
y2 = sln(start_angle + k*delta_angle)*r + yc; 

I* Draw the l1ne segment *I 
Llne_Draw(xl, yl, x2, y2); 

I* Set the coordlnates of the starting po1nt of the next *I 
I* line segment as the coordinates of the end1ng point of *I 
I* current llne segment *I 
xl x2; 
yl = y2 i 

(Figure III.15 Continued) 



CHAPTER IV 

PARALLEL MATCHING AND VERIFICATION 

Most industrial vision systems are knowledge-based (or model-based) systems and 

usually employ the hypothesis-test paradigm in the matching phase. In the hypothesis 

generation step, the identities and locations of several objects are hypothesized; whereas 

in the hypothesis test step, the hypothesis is tested by checking if the hypothesized 

objects are matched to the input objects or not. 

There are two types of approaches to hypothesize the identities and locations of 

objects in an input image: model-driven and data-driven [Meh90]. In the model-driven 

approach, all of the features of each model are tried in tum to the features of the input 

image for generating hypothesis. This approach has a disadvantage in terms of execution 

time because exhaustive searching is involved. Thus this approach is undesirable when 

the number of the model objects is large. 

On the other hand, in the data-driven approach, the knowledge-base is searched for 

the features of the input image to hypothesize what objects are present in the input image. 

This approach is relatively efficient, but execution time still depends on the size of the 

knowledge-base. In order to eliminate this problem, a hashing scheme is applied in this 

research. The knowledge-base can then be searched in very few accesses in most cases. 

In this chapter, we first describe how to model an object and generate the 

hypothesis by hashing. Then we develop a parallel matching strategy using coordinate 

transform and clustering. Finally, we describe how to verify the hypothesis. 
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Modeling and Hypothesis Generation 

Once the extended local features such as comers, arcs, parallel-lines, and 

comer-arcs are extracted from the image with a model object, the model object is 

modeled by the extracted features. A database of model objects contains the name of the 

object, number of each feature type, and data of the feature type. The structures of a 

model database are shown in Figure IV.l. 

ObJect 
Name -r- #of Comers - Comer Data 

r--- #of Arcs ~ Arc Data I 

r--- #of Parallel- - Parallel-Line Data Lines 

"-- #of Comer- - Comer-Arc Data 
Arcs 

Figure IV.l Structures of a Model Database 

In order to recognize the objects in a~ input image, the feature extraction is also 

performed for the mput image. Then one or more objects are hypothesized by searching 

the knowledge-base. In other words, the data-driven method is applied in this research. 

However, since the searching time increases linearly with the size of the knowledge-base, 

the hashing scheme is used to reduce the searching time. 

Hashing is an important solution to the searching problem, because the search times 

can be independent of the number of records. That is, no matter how many records are 
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stored, the average searching times remain bounded [Vit87] [Tre84]. Suppose we want 

to store m records in a contiguous area of memory containing at least n locations. A 

record is converted into a unique key K. Then a hashfunction, H(K), transforms the key 

into the address space. This can be represented by the following equation: 

H(~) --7 {0, 1, ... ,n -1} (IV.1) 

For implementing the hashing, each feature data should be converted into a unique 

key first. How can we represent the data in numerical form? Fortunately, the spaces of 

the local feature data are finite. For example, in case of a corner, the range of the corner 

angles is from -1t to 1t and the range of the lengths of two straight lines is from 0 to 

512...f2 when the size of the image is 512 x 512. Thus, the space can be digitized by equal 

division and a unique key can be assigned to each unit space. Figure IV.2 shows the 

range of each parameter according to the four different feature types. The numbers in the 

parentheses are unit spaces for the digitization. 

Now, each feature data is converted into a number with seven digits, which 

becomes a key for the hashing. Formats of the keys for each feature type are shown in 

Figure IV.3. Conversion functions, whi~h map the feature data to the keys, are given in 

the following: 

1) Corner: 

key = 1000000 + 10000* (ang + 1t) + 100*stl.len st2.len 
0.1 10 + 10 

(IV.2) 

2) Parallel-line: 

· · d 100* stl.len st2 .len 
key = 2000000 + 10000* 10 + 10 + 10 (IV.3) 



3) Arc: 

r len 
key = 3000000 + 1000*- +-

r 10 10 

4) Corner-arc: 

key = 4000000 + 10000* (an~.; 1t) + 100* ;O + ~~~ 

- rr 

0 

(a) Comer 

ang 
(0.1) 

rr 

(c) Arc 

512 /2 

r 
(10) 

st2.Ien (10) 

0 

stl.len (10) 

2rr 512 12 

len (10) 

0 

0 

-rr 

(b) Parallel-Line 

512 12 
d 

(10) 

(d) Comer-Arc 

ang 
(0.1) 

n 

512 /2 

st2.len (10) 

0 

stl.len (10) 

len (10) 

0 
512 /2 

(10) 

Figure IV .2 Ranges of the Parameters 
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(IV.4) 

(IV.5) 
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(a) Corner 

ang stl.len st2.len 

(b) Parallel-Line 

d stl.len st2.len 

(c) Arc 

r len 

(d) Corner-Arc 

ang r len 

Figure IV .3 Formats of the Keys for the Hashing 

There are many different hashing functions, but a simple hashing function using the 

modulo operator is applied. A key is divided by a number that is the address size of the 

memory, and then the remainder will be the home address of the key. This can be 

represented by the following equation: 

H(K) = K mod n (IV.6) 

The remainder produced by the modulo operator will be a number between 0 and n - 1. 

When we store the feature data into a knowledge-base by using the above hashing 

function, the choice of the divisor n can have a major effect on how well the data are 
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spread out. Usually, a prime number is used for the divisor because primes tend to 

distribute remainders much more uniformly than do nonprimes. Since the remainder is 

going to be the address of a data item, we choose a number as close as possible to the 

desired size of the address space. This number actually determines the size of the address 

space [Fol87]. 

If the hashing function hashes to an address that has already been occupied by a 

data item, that is, a collision between the data occurs, another hashing function is applied. 

We call this function the rehashing function, which is given by 

H,(K) = G(H,_ 1(K)) mod n (IV.?) 

where H, _1 (K) is the previous hashed or rehashed value, and G (n) is the decimal value of 

(n + 10)13. For example, 

G(53) = (53 + 10)13 = 63(13) = 6*13 + 3*1 = 81 

If the previous rehashing function produces a cycle (i.e., visits an address a second time), 

then we switch to the following alternate rehashing function to complete the storing or 

searching data: 

H,(K) = (H,_ 1(K) + 1) mod n (IV.8) 

where the initial value of H,_ 1(K) is the value produced by the previous rehashing 

function that caused the cycle. A flow chart for the insertion of a feature data is given in 

Figure IV.4. Note that only the key and object name for the feature data are inserted in 

the knowledge-base, and multiple object names might be listed under a key because the 

model objects could have the same feature data. 



Generate Key, K 

Hashing 
H(K)=K %n 

Rehasing 

H1(K) = G(H 1-1 (K))% n 

Rehasing 

H1(K) = (H 1-1 (K) + 1)% n 

no 

Error: No Room 

no 

no 

Insert the Key 

and Object Name 

Figure IV.4 A Flow Chart for the Insertion of a Feature Data 
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For hypothesizing the objects in an input image, the feature data from the input 

image are converted into keys, and then each key is searched from the knowledge-base in 

the same manner as the insertion. If a key is found, the objects listed under the key are 

hypothesized. Now, the locations of these objects are hypothesized by the matching 

method discussed in the next section. For parallel implementation the number of 

hypothesized objects are divided by the number of the nodes being used, and the 

sub-objects are redistributed to the nodes. 

Parallel Matching 

If we assume that the objects to be recognized are rigid and hardly deformable, the 

objects could be rotated and translated in x andy directions. Therefore, the matching can 

be done by finding the translation and the rotation, and then transforming the coordinates 

of the model features. In this section, we will develop a parallel matching strategy using 

coordinate transform and clustering. Then we will verify the matching by transforming 

the model and overlapping the transformed model onto the image. The procedures are 

implemented in parallel on the iPSC/2 hypercube. 

Parallel Implementation 

The local features such as corners, arcs, parallel-lines, and corner-arcs described in 

Chapter lli are extracted from both the model and the image. Every pair of model feature 

and image feature is compared to test their compatibility. If the number of model 

features is M and the number of image features is /, then the time complexity of the 

compatibility test is O(M/). For large M and/, the time complexity of the compatibility 

test and subsequent procedures such as coordinate transformation and verification will be 

increased extensively. In order to solve this problem, we increase the processing 

parallelism by partitioning the feature data. 

First, the root node (node 0) collects the data of corners, arcs, parallel-lines, and 



corner-arc from all nodes. Then the root node merges them and lists into the arrays 

global_corner, global_arc, global_yarallel_line, and global_corner _arc respectively. 

Second, the root node redistributes the global data of the features to all nodes. Third, 

each node finds its own data to be concerned by dividing the number of global data by 

the number of nodes allocated. It should be noted that each node keeps only beginning 

and ending positions of the global data and not the actual data. In this manner we can 

save memory space. Now every pair of feature data from the global array and only its 

own data are compared in parallel in each node to test their compatibility. Then the 

coordinate transform is computed from each pair of compatible features. 

Compatibility Between a Model Feature and an Image Feature 
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Since the objects to be matched are rigid and not easily deformable, some 

parameters of the features are invariant to rotation and translation. For example, in case 

of a corner, angle between two lines, or lengths of two lines are stable even if the comer 

(or the object) is rotated or translated. In this section, we represent compatibility between 

a model feature and an image feature as a distance function for each type of the features 

(see Figure IV.5). 

Let us define CC, AA, PP, and EE as compatibility between comers, arcs, 

parallel-lines, and corner-arcs respectively. Then CC, AA, PP, and EE can be represented 

by the following: 

1) Corner to Corner (CC): 

I 

Cc [c ( )2 c (l l )2 ' c (l - /2m)2] 2 = 1 a, - am + 2 ll -, lm + 3 2• (IV.9) 

2) Arc to Arc (AA): 

.!. 

AA = [Al(L, - Lm)2 +AiR, - Rm)2t (IV.lO) 



(a) 

(b) 

(c) 

(d) 

Image 

Image 

L. 
1 

Image 

Image 

Model 

Model 

L 
m 

Model 

Model 

Figure IV .5 Compatibility Between a Model Feature and an Image 
Feature. (a) Comer to Comer, (b) Arc to Arc, 
(c) Parallel-line to Parallel-line, (d) Comer-arc 
to Comer-arc 
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3) Parallel-line to Parallel-line (PP): 

.!. 

PP = [Pl(d, - dm)2 + P2(ll, - /lm)2 + Pi/2, - l2m)2t (IV.ll) 

4) Corner-arc to Corner-arc (EE): 

.!. 
EE [E ( )2 E ( )2 E (d -dm)2]2 = 1 a, - am + 2 r, - r m + 3 ' - (IV.l2) 

above compatibility functions are less than some threshold values, then we can say that 

the corresponding model and image features are compatible each other. Now we derive 

the coordinate transform from the set of the compatible features. 

Coordinate Transform 

In this section we derive the coordinate transform which brings the coordinates of a 

model feature into the coordinates of an image feature. Let 8 and (tx, ty) be the rotation 

angle and the translation in x andy directions respectively. Let (MXI,MY,) and (IXI,IY,) be a 

point on a model feature and a point on an image feature respectively. The coordinate 

transform (8, tx,ty) rotates a model point (M;a,My,) by angle e and translates by (tx, ty) in X 

andy directions, and then matches the transformed model point to the image point. This 

can be represented by the following equation in matrix form. 

(IV.13) 

Solving for lx, and!Y'' we have 

(IV.14) 

and 
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(IV.l5) 

Let us define Q1 and Q2 as 

II 

Q1 = L (IXJ - MXJ cos e + M,, sine - tx)2 

•=1 
(IV.l6) 

and 

II 

Q2 = L (I,. - MXJ sine - M,, cos e - t,)2 
I= 1 

(IV.l7) 

where n is the number of points taken along the feature segment. Let Q be the sum of Q1 

and Q2• That is 

(IV.l8) 

Then we have to minimize Q since it is the sum of the squared errors between the points 

on the image and the points on the transformed model. In other words, set 

aQ = o 
at · X 

aQ = o 
at ' y 

From the above conditions, we obtain 

and 

aQ 
and-= 0 ae (IV.19) 

(IV.20) 

(IV.21) 
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See Appendix B for the derivations,of the Equations (IV.20), (IV.21), and (IV.22). 

Since we assume that the objects are rigid, the coordinate transforms for the 

compatible features between the image and the model will produce a group of matches or 

~luster which has the same or similar coordinate transforms. To find the group of 

matches, we apply a cluster-seeking algorithm discussed in the next section. 

Cluster Seekin~ 

There exist several applicable cluster-seeking algorithms. Examples are K-means 

algorithm, maximin-distance algorithm, andlsodata algorithm [Tou74]. In this section 

we will evaluate the three cluster seeking algorithms and select one of them for our 

research. Then we will describe the selected algorithm st~p by step. 

The K-means algorithm is based on the minimization of the sum of the squared 

distances from all points in a cluster domain to the cluster center. This procedure consists 

of the following steps: 

Step 1: Choose K initial cluster centers c1(1), cil), ... , cK(l) arbitrarily. 

Step 2: At the kth iterative step, distribute the sample { p} among the K cluster 
domains, using the relation, 

p e S,(k) if II p - c,(k)ll < II p - c,(k)ll (IV.23) 

for all i = 1, 2, ... , K, i "# j, where S, (k) denotes the set of samples whose 
cluster center is c,(k), and II p - ell denotes the Euclidean distance between 
two patterns p and c. 
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Step 3: From the results of Step 2, compute the new cluster centers 
c/k + 1 ),j = 1, 2, ... , K, such that the sum of the squared distances from 
all points in S,(k) to the new cluster center is minimized. In other words, 

the new cluster center c,(k + 1) is computed so that the performance index 

(IV.24) 

is minimized. The c,(k + 1) which minimizes the performance index is 
simply the sample mean of S,(k). Consequently, the new cluster center is 
given by 

1 
C/k + 1) =N I, p, j = 1,2, ... ,K 

p e S/k) 
(IV.25) 

where N, is the number of samples in S,(k ). 

Step 4: If c, (k + 1) = c, (k) for j = 1, 2, ... , K, the algorithm has converged and the 
procedure is terminated. Otherwise go to Step 2. 

Bhanu and Ming used the K-means algorithm in [Bha86] and [Bha87] because the 

K-means algorithm is relatively simple to implement. However, the behavior of the 

K-means algorithm is influenced by the number of cluster centers specified before 

executing the algorithm and the choice of initial cluster centers. In practice, it is very 

difficult to predict the number of cluster centers desired. 

The Isodata algorithm is similar in principle to the K-means procedure in the sense 

that cluster centers are iteratively determined by the sample means. However, Isodata 

represents a fairly comprehensive set of additional heuristic procedures which have been 

incorporated into an interactive scheme. For a set of N samples, Isodata consists of the 

following principal steps [And73]: 

Step 1: Choose values for the process parameters: 

Nc = number of current cluster centers; 
K = number of cluster centers desired; 
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a parameter against which the number of samples in a cluster 
domain is compared; 

ee = standard deviation parameter; 
ec = lumping parameter; 
L 

I 

= maximum number of pairs of cluster centers which can be 
lumped; 

= number of iterations allowed. 

Step 2: If a set of seed points is not provided as part of the input, then generate a 
set of seed p-oints. 

Step 3: Assign each data, unit to the cluster wi~ the nearest seed point. 

Step 4: Discard any cluster which contains fewer than eN data units. 

Step 5: Perform either a lumping or a splitting iteration (details are specified 
below) according to the following rules: 

a) A lumping iteration is mandatory if Nc ;;::: 2K. 
b) A splitting iteration is mandatory if Nc s; K/2. 
c) Otherwise, alternate the processes by splitting on odd iterations 

and lumping on even iterations. 

Step 6: Compute new seed points as cluster centers and perform the data unit 
reallocation/seed point recomputation cycles. 

Step 7: Repeat steps 4, 5, and 6 until the process converges or until these three 
steps have been repeated I times. 

During a lumping iteration, all pairwise distances between cluster centers are 

computed. If the distance between·the two nearest centers is less than 80 then the 

associated clusters are merged and the distance to all other centers is computed. This 

process is continued up to a maximum of L merges in anyite.ration. During a splitting 

iteration, a cluster provisionally is chosen for splitting if the within cluster standard 

deviation for any vanable exceeds the product of ee and the standard deviation of that 

variable in the original data set as a whole. 

In the Isodata algorithm, it is necessary to specify the number of initial cluster 

centers, but the number is not necessary to be equal to the number of the desired cluster 

centers because the n1:1mber of cluster centers is updated during execution. However, the 

Isodata algorithm IS very complicated and requires extensive experimentation before 
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arriving at meaningful conclusions. 

On the other hand, the maximin-distance algorithm is based on the Euclidean 

distance concept. It is very simple to implement and it is not necessary to specify the 

number of initial cluster centers. Therefore we select the maximin-distance algorithm for 

our use. Let p, be a sample pattern and let c1 be a cluster center. Then the 

maximin-distance algorithm consists of the following steps. 

Step 1: Arbitrarily let p1 become the first cluster center c1• 

Step 2: Determine the farthest sample from p1, and let it become the second cluster 
•' 

center~· 

Step 3: Compute the distance frorp each remaining sample to the existing centers 
while saving the minimum of the computed distances. Then select the 
maximum of the minimum distances. If the maximum distance is an 
appreciable fraction of the average distance between the current cluster 
centers (in our research, at least one half of the average distance), then let 
the correspondin~ sample be a new cluster center. 

Step 4: If a new cluster center was created in Step 3, then go to Step 3. Otherwise 
the algorithm is terminated. · 

Hypothesis Verification of the Matching 

Through the coordinate transform and the cluster-seeking procedures, we obtain the 

rotation angle e and the translation in X andy directions (tx, ty). Now the points of the 

model object are rotated by 8 and translated by (tx,t;). If (M~,MJ,) is a transformed 

model point, then this can be represented by the following equation. 

[M! My~] = [MXI My.] [ co~ 88 
-sm 

sine] + [t ty] 
cosS x 

(IV.26) 

Or 

(IV.27) 

and 
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(IV.28) 

To verify the matching, the transformed mo~el Mr is imposed onto the input image, 

and then the input image pixel at every transformed model point is checked if the pixel 

belongs to object area or background. If an input image pixel at a transformed model 

point belongs to object area, then we say that the point is "matched". The matching ratio 

Rm can be defined by the following formula: 

R = Number of matched points x 100 (%) 
m Number of model points 

If the matching ratio is greater than a predefined value, the hypothesis is accepted. 

Otherwise, it is rejected. 

(IV.29) 

The verification method described above (we call that .fine-verification method) is 

very time-consuming because all of the model points are transformed and the input image 

points corresponding to the model points are checked if they belong to object area or not. 

An alternative method (coarse-verification method) is considered. Instead of checking 

all of the model points, only the boundary points at equispaced locations are checked. 

Figure IV.6 demonstrates the coarse-verification method. 

Figure IV .6 Coarse-Verification Method 



CHAPTERV 

EXPERIMENTAL RESULTS 

The parallel occluded object recognition algorithm using extended local features 

such as comers, arcs, parallel-lines, and comer-arcs is implemented on a 

hypercube-topology multiprocessor computer, the Intel iPSC/2. For model objects, we 

use ten different industrial tools shown in Figure 1.2. 

Three experiments are made and their results are provided in this chapter. In the 

first experiment a preliminary test is performed with a simple occluded image. All of the 

procedures such as preprocessing, feature extraction, matching, and verification are 

performed to see how the system works. A precision test is given in the second 

experiment. We check how precisely an object whose location is already known is 

located. Also results of the cluster-seeking are provided. Finally, a comprehensive test is 

performed in the third experiment. Twenty synthetic occluded images are constructed, 

and the objects in each synthetic image are recognized. Overall recognition rate is 

provided. 

Experiment 1 (Preliminary Test) 

For preliminary experimental results, we use only three industrial tools as model 

objects; an adjustable wrench, a long nose plier, and an Allen wrench. The image of each 

model object is shown in Figure V.1(a), V.1(b), and V.1(c). The occluded image shown 

in Figure V.1(d) is an input image to be matched or recognized. The size of the image is 

512 x 512. Note that the objects in the occluded image are rotated and translated 

arbitrarily. 
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(a) 

(b) 

Figure V .1 Images of Model Objects and Input. (a) Image of 
Adjustable Wrench (model, 512 x 512), (b) Image 
of Long Nose Plier (model, 512 x 512), (c) Image 
of Allen Wrench (model, 512 x 512), (d) Image of 
Occluded Objects (input, 512 x 512) 
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(c) 

(d) 

(Figure V .1 Continued) 
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Before extracting features, we perform preprocessing such as edge detection and 

straight line extraction. First of all, according to the input image distribution method 

discussed in Chapter II, the input images are divided by the number of nodes being used 

and each resulting sub-image is distributed to one node. Each sub-image is convolved 

with a 9 x·9 Laplacian of Gaussian operator (see Figure II.5), and then zero-crossing 

points are detected in parallel on the hypercube. 

The zero-crossing points detection is a task of assigning the changes in sign of a 

convolved image with a Laplacian of Gaussian operator as the location of the edge 

[Vli89]. There exist several algorithms for zero-crossing point detection. Examples are 

[Kim87] and [Vli89]. In [Kim87] a zero-crossing patterns is classified into one of 16 

patterns by assigning its pattern value according to the direction of the connectivity. 

These 16 zero-crossing patterns represent all the possible types of the spatial connection 

of a zero-crossing point. 

On the other hand, in [Vli89] the convolved image is segmented into positive, zero, 

or negative regions dependent upon the pixel value. Then the minimum distance for a 

zero value pixel to both the positive and negative regions is computed with Borgefors' 

distance transformation [Bor84]. A pseudo-Euclidean distance from the given (zero) 

pixels to the nearest (positive or negative) regions is computed by the transformation in 

two passes through the image. The zero value pixels are now assigned to the nearest 

adjacent region. This results in a binary image of positive and negative regions. Finally 

the 8-connected contour of the positive region is extracted by an exclusive-or with the 

4-connect eroded image for getting closed contours. 

The two zero-crossing algorithms described above have some disadvantages in 

terms of execution times. The searching of 16 zero-crossing patterns in [Kim87] is a 

time-consuming task, and the distance transformation in [Vli89] involves heavy 

computations. Also, it is not necessary to get closed contours because we are dealing 

with noisy images. This has been discussed in Chapter I. In this research, we develop a 
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simple and fast zero-crossing points detection method. 

After convolving an image with the Laplacian of Gaussian operator, the sign of 

each pixel is compared with the signs of the piX'els in east and south neighbors. If any 

sign changes are detected, we consider the pixel with positive value as a zero-crossing 

point. Here we compute the magnitude of the gradient at the zero-crossing point by the 

Sobel operators for thresholding. Only when the magnitude is greater than a pre-defined 

threshold value, a value (255) is assigned to that point The following is a C program for 

this method: 

Zero_Crosslng(S, D) 
Image S, D; I* Source and Dest1nation 1mage buffers *I 

I* In1t1alize the destination buffer Wlth 0 *I 
Inltlallze(D); 

for (1 = 0; 1 < row-1; i++) { 
for (j = 0; j < column-1; j++) 

I* Compare the sign of the current pixel *I 
I* with the s1gn of the p1xel in east *I 
lf (S(l,j)*S(l,J+l) < 0) ( 

!* Compute the magn1tude of grad1ent by Sobel *I 
I* operators. If the magnitude lS greater than *I 
I* threshold value, val = 1. Otherwlse val = 0. *I 
val = Sobel_mag(i,j); 

I* Assign 255 to the point with positive value *I 
if (S(i,J) > 0) 

D(l,j) = 255*val; 
else 

D(l,j+l) = 255*val; 

I* For the p1xel in south *I 
else lf (S(l,j)*S(i,j+l) < 0) 

val= Sobel_mag(1,J); 
1f (S(i,J) > 0) 

D(i,J) = 255*val; 
else 

D(l,J+l) = 255*val; 

else 
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Figure V.2 is the edge detected image from Figure V.l(d). We can see that the edges are 

one-pixel wide but not closed. 

Figure V.2 Edge Detected Image from Figure V.l(d) 

After the zero-crossing points detection, straight lines are extracted from the edge 

detected images by using the polygonal approximation method desct;i_bed in Chapter II. 

Segments (or connected edges) are extracted, and then each segment is approximated by 

several straight lines according to their lengths and deviations. The straight lines in each 

node (local straight lines) are linked globally in parallel by the algorithm given in Figure 

II. 7. Figure V .3 shows the straight lines extracted from Figure V .2. 77 straight lines are 

extracted in this case. Also, 31, 39, and 9 straight lines are extracted from the images of 

the adjustable wrench, long nose plier, and Allen wrench, respectively. Now the objects 

can be simply represented by the straight lines. Thus the storage requirements for the 
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objects can be reduced significantly. For example, only 0.8 Kbytes are needed for storing 

the straight lines of the adjustable wrench while 262 Kbytes are needed for the original 

raw image. 

Figure V.3 Straight Lines Extracted from Figure V.2 

In order to extract the local features ip parallel, the straight lines are redistributed to 

the nodes by the global straight line division method given in Chapter III. The root node 

(node 0) collects the local straight lines in each node for the global straight lines, and 

sends the data of the global straight lines to all of the nodes. For load balancing, the 

global straight lines are split as evenly as possible according to the number of nodes 

being allocated. Note that the global straight lines are not split physically. Each node 

figures out only the beginning and ending positions for its own local straight lines. Now 

every pair of the global straight lines and the local straight lines are compared with each 



other, and then the extended local features such as corners, arcs, parallel-lines, and 

corner-arcs are extracted in parallel. 
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First of all, corners are detected from the straight lines. If the distance between the 

beginning or ending points of any two straight lines is less than three pixels, we regard 

the point where two straight lines merge as a corner. There are four different types of 

arrangement of the two straight lines, which are illustrated in Figure V.4. According to 

the type of the arrangement, we list the coordinates of the straight lines in different order 

so that the ending point of stl and the beginning point of st2 should stand face to face 

with each other like type 3 in Figure V.4. This is important because the beginning or 

ending point of the straight line of a model is mapped to that of the input in the 

coordinate transform. The lengths of the two straight lines are computed. If the length of 

st2 is greater than that of stl, we exchange,stl for st2. Finally the angle of the corner is 

computed by the method described in the section of Computation of Corner Angle in 

Chapter ill. Figure V.5 shows the corners of the long nose plier and their data is listed in 

Table Ill. 

After detecting the corners, arcs are detected from the comers. Since the proximity 

or connectivity of every pair of straight lines has already been checked during the corner 

detection, we use the corner data for searching the candidates for the arcs. Each 

candidate should consist of three or more connected lines. In order to reduce the 

searching space, we drop the corners with high curvature or large difference in lengths of 

two straight _lines, because those corners have little possibility to be a member of the 

candidates. If a corner angle is greater than 41t I 9 radians (80 degrees) or the ratio of the 

length of the longer line (stl) to the length of the shorter line (st2) is greater than 2.5, then 

we drop the corner from the list. For searching the candidates, we check if any two 

corners are adjacent each other. If so, we link the straight lines of the corners. This 

procedure is repeated recursively until no lines are linked. Note that the lines are linked 

in a clockwise manner. 
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Type 1 

(xl,yl) (xl,yl) 

Type2 

(xl,yl) (x2,y2) 

Type3 

(x2,y2) (xl,yl) 

Type4 

(x2,y2) (x2,y2) 

Figure V.4 Types of Arrangement of Two Straight Lines 

For parallel implementation of the arc detection procedure, the candidates for the 

arcs are divided by the number of nodes being used. Each subset of the candidates is 

redistributed to each node, and then the parameters of the arc such as center point, radius, 

and length of the arc are computed in parallel. We estimate the center point and radius of 

the arc by solving the Equations (Ill.5), (Ill.6), and (III.7). To solve the equations we use 

Newton's method given in Equation (ll.9). The initial values for the Equation (III.9) are 

crucial for reducing the number of iterations. So, we have developed a method for 

estimating good initial values in Chapter Ill (see Figure III.7). 
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TABLEITI 

DATA OF THE CORNERS OF THE LONG NOSE FLIER 

Comer Line1 Line2 

Num ang x1 y1 x2 y2 len x1 y1 x2 y2 len 

0 -1.15 45 77 170 150 144.8 170 150 177 145 8.6 
1 0.59 462 253 485 282 37.0 485 282 486 294 12.0 
2 0.87 485 282 486 294 12.0 486 294 481 299 7.1 
3 -1.44 308 442 324 441 16.0 324 441 325 427 14.0 
4 -0.78 263 403 308 442 59.5 308 442 324 441 16.0 
5 -0.18 40 78 134 158 123.4 134 158 177 183 49.7 
6 2.24 134 158 40 78 123.4 40 78 45 77 5.1 
7 -0.73 170 150 45 77 144.8 45 77 40 78 5.1 
8 0.77 178 142 100 22 143.1 100 22 101 17 5.1 
9 -2.19 185 106 101 17 122.4 101 17 100 22 5.1 
10 0.22 101 17 185 106 122.4 185 106 210 148 48.9 
11 0.56 257 172 210 148 52.8 210 148 185 106 48.9 
12 -0.30 391 198 322 174 73.1 322 174 257 172 65.0 
13 0.23 322 174 391 198 73.1 391 198 427 221 42.7 
14 0.16 427 221 462 253 47.4 462 253 485 282 37.0 
15 -0.17 462 253 427 221 47.4 427 221 391 198 42.7 
16 0.28 326 202 244 191 82.7 244 191 212 177 34.9 
17 -1.32 244 191 212 177 34.9 212 177 205 186 11.4 
18 -0.21 227 238 230 283 45.1 230 283 241 322 40.5 
19 0.24 273 379 241 322 65.4 241 322 230 283 40.5 
20 0.90 273 379 325 427 70.8 325 427 324 441 14.0 
21 0.31 325 427 273 379 70.8 273 379 241 322 65.4 
22 0.50 134 158 177 183 49.7 177 183 201' 223 46.6 
23 0.33 177 183 201 223 46.6 201 223 205 242 19.4 
24 0.44 322 174 257 172 65.0 257 172 210 148 52.8 
25 0.28 369 216 428 253 69.6 428 253 468 298 60.2 
26 -0.25 428 253 369 216 69.6 369 216 326 202 45.2 
27 0.18 244 191 326 202 82.7 326 202 369 216 45.2 
28 1.21 219 209 205 186 26.9 205 186 212 177 11.4 
29 -0.20 230 283 227 238 45.1 227 238 219 209 30.1 
30 -0.28 227 238 219 209 30.1 . 219 209 205 186 26.9 
31 -0.23 225 351 263 403 64.4 263 403 308 442 59.5 
32 0.29 263 403 225 351 64.4 225 351 204 292 62.6 
33 0.99 201 223 205 242 19.4 205 242 201 246 5.7 
34 -0.77 428 253 468 298 60.2 468 298 481 299 13.0 
35 -0.86 468 298 481 299 13.0 481 299 486 294 7.1 
36 0.28 225 351 204 292 62.6 204 292 201 246 46.1 
37 0.85 204 292 201 246 46.1 201 246 205 242 5.7 



92 

Figure V.5 Comers of the Long Nose Plier 

Let (x11,y11), (x12,y12), (xn1,Yn1), and (xn2,yn2) be the coordinates of the beginning and 

ending points of the first and last straight lines of the candidate, respectively. Also, let 

(x1m,Y1m) and (xnm,Ynm) be the coordinates of the middle points of the first and last straight 

lines respectively. Then the initial values for the center point (X~, Y~) are given by the 

following: 

i) When Yu "# Y12 and YnJ "# Yn2: 

0 dev2 *x2m + Y2m - dev1 *x1m - Y1m X = ________ :...___ __ __;__ 
c dev2 - dev1 

ii) When Yu "# Y12 and Yn1 = Yn2: 



Y o - d *X 0 d * c - - evl c + ev1 X1m + Y1m 

iii)Wheny11 = y12 andynl '¢ Yn2: 

where 

Yo- d *X0 d * c - - ev2 c + ev2 X2m + Y2m 

x12 - Xu 
dev1 = --

Yn - Yu 

Xn2 - Xnl 
dev2 = ---

Yn2 - Ynl 

The initial radius R 0 is the distance from (X~, Y~) to (x1m, Y1m) or (xnm, y nm). 
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The Jacobian matrix given in Equation (III.l 0) is obtained by taking the partial 

derivative ofiJ,J;, and/3 with respect toXc, Yc, andR. The followings are the elements 

of the Jacobian matnx: 

a n 

-a J;_ = -2 I,(Y, - YJ(X, - XJ 
Yc 1 =1 

a n 

-a J;_ = -2R I, (X, - XJ 
IR. •=1 

a n n 
~ 2 ~ 2 2 -Jz = - LJ (X, - XJ - 3 LJ (Y, - YJ + nR 

ayC I= 1 I= 1 
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a 
oR!;= -2nR 

where n is the number of vertices. The inverse of the Jacobian matrix is computed by 

Equation (III.ll) 

The final center point and radius are obtained by solving Equation (III.9) iteratively. 

At any iteration, if the difference between the previous value and the current value is less 

than E, then an arc has been detected successfully from the candidate. Here e is set to 

0.001. However, if the number of iterations exceeds a certain number (100 in this 

experiment), then the iteration is terminated and the candidate is rejected. Finally, the 

length of the arc Lis computed by Equation (III.18). Figure V.6 illustrates the arcs 

detected from the long nose plier, which consist of 8 arcs. Note that some beginning or 

ending portions of the arcs are overlapped with each other. This could happen because a 

straight line is usually shared by two adjacent comers. However, this is not a serious 

problem because the coordinates of the starting and ending points of the arcs are used in 

the matching. 

Parallel-lines are also detected from the straight lines. In order to detect the 

parallel-lines, the significance of parallelism given in Equation (III.20) is checked 

between two straight lines. The constant C is set to 1 and the threshold value for the 

significance of parallelism Spar is set to 0.02. The greater S par• the more significant in 

parallelism. So, if Spar between any two straight lines is greater than 0.02, they are 

regarded as a parallel-line. 
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Figure V.6 Arcs of the Long Nose Plier 

However, the parallel-line detection method does not work very well in practice 

because the Spar is composed of three parameters; angular difference 8, perpendicular 

distance d, and ratio of the lengths of two straight lines 12 I 11• If 8 is large but d and 12 I 11 

are small, the Spar could be greater than the threshold value, and thus a parallel-line coqld 
,, 

be detected. But the two straight lines are not parallel actually because they have large 

difference in angle. 

To solve this problem, we check the three parameters for the Spar in a hierarchical 

fashion. We first check the angular difference e between two straight lines. If the e is 

less than 1t I 20 radians (9 degrees), then we check the perpendicular distanced. If the d 

is less than 100.0, then we check the ratio of the length 12 I 11• If 12 I 11 is less than 3.0, then 

the two straight lines are regarded as a parallel-line. Otherwise, they are rejected from 

the parallel-line testing. Here we check one more parameter, degree of alignment (doa) 
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of the two lines. Let (x11 , y11), (x12, y12), (x21 , y21 ), and (x22, y22) be the coordinates of the 

beginning and ending points of the longer line and the shorter line, respectively. Also, let 

(x1m, Y1m) and (X2m, Y2m) be the coordinates of the middle points of the longer line and the 

shorter line, respectively. Then, the doa is given by following formula: 

do a (V.l) 

If the doa is less than (length of longer line I 4), the two straight lines are listed into an 

array for parallel-lines. The parallel-lines detected from the Allen wrench are shown in 

Figure V.7. 

Figure V.7 Parallel-Lines of the Allen Wrench 



Finally, comer-arcs are detected from the lists of comers and arcs. If any arcs are 

detected, then we search the comers with sharp angle. In this experiment we set a 

'threshold value for the comer angle to 2.0 radians. So, if a comer angle is greater than 
r 

2.0, all pairs of the comer and the arcs become corner-arcs. Figure V.8 illustrates the 
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comer-arcs detected from the adjustable wrench. The extended local feature extraction is 

also preformed for the input image in parallel. 67 comers, 6 arcs, 11 parallel-lines, and 

36 corner-arcs are extracted. Refer to Table Vll for the numbers of the features of the 

adjustable wrench, long nose plier, and Allen wrench. 

Figure V.8 Comer-Arcs of the Adjustable Wrench 

Only for this preliminary experiment, let us assume that we have already known 

what objects are in the input image. So, we just try to match the model objects to the 

known objects in the input image by figuring out how much they are rotated and 
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translated. Then we verify the matching by overlapping the transformed model objects 

onto the input image. For the matching, compatibilities between the features extracted 

from the model object and the features from the input image are checked in parallel (see 

Figure IV.5). If a model feature and an input feature are compatible with each other, we 

compute a coordinate transform (8, tx, ty) from the compatible features by Equations 

(IV.20), (IV.21), and (IV.22). If the type of the features is a corner, we take 4 points each 

from the model and image features: (xi, y i ) and (x2, y2) of sti , and (xi , y 1 ) and (x2, y2) 

of st2. For an arc, we take 2 points each: (xs, ys) and (xe, ye ). For a parallel-line, we 

take 4 points each: (xi , y 1) and (x2 , y2) of stl , and (xi , y i) and (x2 , y2) of st2 . For a 

corner-arc, we take 2 points each: (x, y) and (xc, yc ). Refer to Figures (Ill.2), (III.5), 

(Ill.9), and (Ill.ll). 

Since the objects being used are rigid and not easily deformable, the coordinate 

transforms will be clustered if some model points are correctly mapped to the 

corresponding points of the input objects. We seek the cluster by the cluster-seeking 

algorithm (maximin-distance algorithm) described in Chapter IV, and the final coordinate 

transform for the object is given by the center of the cluster. The final coordinate 

transforms for the adjustable wrench, long nose plier, and Allen wrench are (0.459, 

63.845, -92.071), (-1.348, -9.218, 433.584), and (0.607, 268.340, -80.677), respectively. 

The straight lines of the model object are rotated by 8 and translated by (tx, ty), and the 

transformed straight lines are superimposed on the straight lines of the input image for 

the verificatiOn of the matching. 

For comparison, we first use only corners as the feature. The adjustable wrench and 

the long nose plier are matched successfully, but the Allen wrench is not matched 

because no coordinate transforms are clustered. The lack of appropriate features causes 

the no-match of the Allen wrench. Next we use the extended local features. The Allen 

wrench is matched successfully now. Also the matching ratios of the adjustable wrench 

and the long nose plier are increased. Here the term matching ratio (Rm) was defined as 
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R = Matched area x 100 (%) 
m Area of model object 

(V.2a) 

or 

R _ Number of pixels in matched area 100 (%) 
m - Number of pixels in model object X 

(V.2b) 

Table IV shows the comparisons of the matching ratios with only comers and with the 

extended local features. Fig~e V.9 (a), (b), and (c) show the verifications of the 

matchings of the adjustable wrench, long nose plier, and Allen wrench respectively. 

We also compare the processing times for the feature extraction and matching with 

only comers and with the extended local features. The processing times are tabulated in 

Table V. Note that 16 nodes are allocated for this comparison. We can see that the 

processing times when using the extended local features are approximately 4 times larger 

than the processing times when ~sing only comers. 

TABLE IV 

COMPARISONS OF MATCHING RATIOS 

With only With extended 
comers local features 

AdJustable 95.7% 97.5% 
wrench 

Long nose 86.2% 87.6% 
plier 

Allen No match 90.3% 
wrench 



(a) 

(b) 

Figure V.9 Verification of the Matching. (a) Adjustable Wrench, 
(b) Long Nose Plier, (c) Allen Wrench 
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(c) 

(Figure V.9 Continued) 

TABLEV 

COMPARISONS OF PROCESSING TIMES 
ON 16 NODES (IN SECONDS) 

With only With extended 
comers local features 

Adjustable 0.42 1.39 
wrench , 

Long nose 0.45 1.67 
plier 

Allen 0.21 0.76 
wrench 
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Experiment 2 (Precision Test) 

In this experiment we intend to test the precision of our system. In order to do this, 

we rotate and translate the straight lines of the combinational wrench shown in Figure 

V.10 (a) by 9 = 1.0 radians or 57.3 degrees, tx = 300 pixels, and t, = -100 pixels. The 

transformed straight lines of the combinational wrench is shown in Figure V.10 (b). 

Then we use the Figure V:10 (a) as a model and (b) as an input to be matched. After 

extracting the extended local features, we performed the matching. 

35 pairs of the model and input features are compatible each. A coordinate 

transform is computed from each pair of the compatible features. Clusters are sought by 

the maximin-distance ~lgorithm. The coordinate transforms are plotted in 

three-dimensional space (see Figure V.ll). The results ofthe cluster-seeking procedure 

are provided in Table VI. 11 clusters are sought and the last cluster (cluster number 10) 

(a) 

Figure V.10 Straight Lines of the Combinational Wrench for the 
Precision Test. (a) Original Straight Lines 
(model), (b) Transformed Straight Lines (input) 
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(b) 

(Figure V .1 0 Continued) 

Figure V .11 A Three-Dimensional Plot of the Coordinate Transforms 
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TABLE VI 

RESULTS OF THE CLUSTER SEEKING FOR 
THE PRECISION TEST 

Data e tx ty Cluster 
Number Number 

1 -0.700196 -214.~25357 99.327232 0 
2 1.296954 380.323822 -38.560028 1 
3 -1.429823 -210.693146 361.585510 2 
4 -0.201902 -103.208069 -31.887503 3 
5 0.992272 297.548035 -101.295464 4 
6 0.991179 296.100647 . -99.273170 4 
7 0.980327 292.502777 -98.502090 4 
8 -0.948638 -235.183762 187.503296 5 
9 1.068916 321.799286 -87.157135 6 
10 1.061309 319.188202 -89.056450 6 
11 1.030517 312.360870 -102.683609 7 
12 -0.903635 -232.449524 171.584518 8 
13 -0.189480 -119.443680 -35.585964 9 
14 1.017366 305.640411 -97.021362 10 
15 0.996538 299.062988 -99.384239 10 
16 0.998950 299.647919 -100.093613 10 
17 0.999034 299.677856 -100.089813 10 
18 1.025569 307.991455 -95.658203 10 
19 1.009387 303.761871 -100.858192 10 
20 1.011308 303.426422 -98.042068 10 
21 1.002593 301.059723 -99.897430 10 
22 1.005226 301.988953 -100.130119 10 
23 1.001673 300.485901 -99.894585 10 
24 0.996626 298.828918 -100.622444 10 
25 1.000399 299.973755 -99.678383 10 
26 1.019787 306.404999 -96.202690 10 
27 0.996212 298.612335 -100.327347 10 
28 1.011029 304.174316 -100.718086 10 
29 0.997770 299.199829 -99.442734 10 
30 1.013357 305.071564 -101.170715 10 
31 1.001269 300.476074 -99.877029 10 
32 1.015303 304.842896 -97.071106 10 
33 0.999433 299.740112 -100.093460 10 
34 1.001362 300.669128 -100.335258 10 
35 1.015969 305.908875 -101.438835 10 



has the largest number of coordinate transforms. The final coordinate transform is 

obtained by averaging the coordinate transforms in the cluster. The final coordinate 

transform is (1.006, 302.120, -99.457). Thus the differences between the desired 

coordinate transform and the actual coordinate transform are the followings: 

Difference in e = 0.006 radians or 0.344 degrees. 

Difference in fx = 2.120 pixels, 

Difference in tY = 0.543 pixels, and 
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To verify the matching, we rotate the input straight lines by 1.006 radians and 

translate by 302.120 pixels and -99.457 pixels in x andy directions. Figure V .12 shows 

the verification of the matching by superimposing the transformed input straight lines 

onto the original straight lines shown in Figure V.lO (a). We can see that the transformed 

combinational wrench is located and matched almost perfectly. Therefore, we can 

conclude that the precision of our system is very high for this test case. 

Figure V.12 Verification of the Matching for the Precision Test 
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Experiment 3 (Comprehensive Test) 

In this experiment we test the system with all of the 10 model objects shown in 

Figure 1.2. First of all, we extract the extended local features from the image of each 

model object, and then we model the object with the features. Each model consists of the 

name of the object, number of the features for each feature .type, and feature data. The 

numbers of the features extracted from each model object image are summarized in Table 

VII. 

During the modeling of the model objects, the knowledge-base is created or updated 

with the extended local features by hashing. We allocate the memory space for 997 

addresses, which is a prime number. Each feature data is converted to a key represented 

as a 7 digit number using Equations (IV.2) to (IV.5) according to its feature type. For 

example, if angle, stl.len, and st2.len of a corner are -1.0, 200, and 100 respectively, the 

key will be 

key = 1000000 + 10000*(-1.~.; 1t) + 100* 200 100 
10+10 

= 1216169 

A base address for the feature data is has~ed by the Equation (IV.6). In the case of 

the previous example, the bas~ address is 826. If the base address is empty, we insert the 

key there and add the name of the object into the object name list for the address. If the 

key to be inserted and the key in the base address are same, we search the object name 

list of the address. If no same object name is found, we add the object name into the list. 

On the other hand, if the two keys are different, that is, a collision has occurred, we use 

the rehashing functions given by Equation (IV.7) and (IV.8) until an available address is 

found. In this experiment 345 addresses are occupied. Let us defme a term packing 

density as the ratio of the number of occupied addresses to the number of total addresses: 
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TABLE VII 

NUMBER OF FEATURES 

Corner Arc Parallel- Corner-
line arc 

Adjustable 27 1 3 2 
wrench 

Long nose 38 8 7 14 
plier 

Allen 9 0 2 0 
wrench 

Combinational 26 l 2 1 
wrench 

Diagonal 33 3 2 6 
plier 

Offset screw- 17 2 3 4 
driver 

Big screw- 20 1 3 1 
driver 

Small screw- 13 1 2 1 
driver 

Cutter 46, 7 4 56 

Knife 23 1 1 5 

Number of occupied addresses 
Packing density = x 100 (%) 

Number of total addresses 
(V.3) 

In our case, the packing density is 34.6%. On the other hand, since the total number of 

features extracted from the 10 model objects is 396 (see Table V.4), the number of 

addresses with more than one object name is 51. Thus, the ratio of the addresses where 
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multiple objects are assigned is 12.9%. 

For input images, we try to generate synthetic images, in which some objects are 

occluded arbitrarily. In other words, we do not use the images taken by a CCD camera. 

Therefore, we do not have to generate the images of occluded objects by hand. Also we 

can easily create as many synthetic images as we want. Let's assume that the model 

objects are fairly dark and the background is light. ~en we can extract the object areas 

from the model object images by thresholding. That is, if the gray level of a pixel is less 

than a threshold value, then we regard the pixel as one of pixels in the object area and we 

assign 0 (black) to that pixel. Otherwise, we assign 255 (white). 

In order to make a synthetic image, we first determine the number of model objects 

to be used for the image by using a random number generator. In this experiment we set 

the lower and upper bounds of the random number generator to 3 and 5, respectively. 

Note that all of the objects in a synthetic image are unique. Now we extract the object 

areas from the images of the randomly chosen model objects. Then we rotate and 

translate the pixels in the object areas randomly by Equation (IV .26). Again, we used the 

random number generator for (8, tx, fy). However, the transformed objects might be out of 

the bounds of the image plane. To avoid this problem, we transform only four corner 

points of the object: top-left, top-right, bottom-left, and bottom-right. If the four 

transformed corner points are mside of the bounds, we perform the transformation for all 

of the pixels. Otherwise, we generate another (8, tx, ty) until the condition is satisfied. 

Now we overlap the transformed objects one after the other for making the synthetic 

occluded object image. 

A term occlusion ratio (R0 ) refers to the ratio of the occluded area of the object to 

the area of the object: 

R = Occluded area of the object x 100 (%) 
o Area of the object 

(V.4a) 

or 
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R = Area of the object - Visible area of the object x 100 (%) 
o Area of the object 

(V.4b) 

The visible area of the object can be obtained by subtracting all the other objects from the 

synthetic image. 

One problem was found in the transformation of the pixels in the model object area: 

the pixels are not transformed linearly. In other words, more than one pixel could be 

transformed to the same position. This problem i~ caused by the truncation of the 

floating point representation to make integer coordinates in Equation (IV.26). Therefore, 

the number of pixels of the transformed object area is not identical to the number of 

pixels of the model object area. For example, we extract the object area of the long nose 

plier from the image shown in Figure V.13 (a). Then we rotate the object area by 7t /4 

radians and translate by -60 and 260 pixels in x and y directions. The transformed object 

is shown in Figure V.13 (a). We can see that the object area is not completely dark, 

which means some pixels in the object ~a are white (background). To solve this 

problem, we use a smoothing method: if a pixel is white, then check its 8 neighbors (see 

Figure 11.11 ). If more than 4 neighbors are black, then convert the pixel to black. Figure 

V.13 (b) illustrates the results of the smoothing for the Figure V.13 (a). The following is 

pseudo code inC-like notation for the generation of the synthetic images: 

for (1 = 0; 1 < number_of_synthet1c_1mages; 1++) 
choose_number_of_objects_randomly(); 
for ( j = 0; J <, number_of_obJ ects; J ++) 

wh1le (choose_an_obJect() !=UNIQUE) 

read_obJect_1mage(); 
extract_obJect(); 
detect_4_corner_po1nts(); 
while (transform(4_corner_points) == OUT_OF_BOUND) 

choose_rot_tx_ty_randomly(); 

transform(object); 
smooth1ng(ob]ect); 
overlap(ob]ect, synthet1c_1mage); 

wr1te_synthet1c_1mage(); 



(a) 

(b) 

Figure V.13 An Example of Smoothing. (a) Before Smoothing, 
(b) After Smoothing 
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In this experiment we constructed 20 synthetic occluded object images and used 

them as the input images for the comprehensive test. The extended local features are 

extracted from the input image for the matching. Each feature data is converted to a key 

by one of the Equations (IV.2) to (IV.5) according to its feature type, and the key is 

sought from the knowledge-base by hashing. If the key is found, we hypothesize that the 

objects in the object name list of the key exist in the input image. The hypothesized 

objects are split evenly according to the number of nodes allocated, and each 

hypothesized object is matched in parallel using the compatibility test of the features, 

coordinate transform, and clustering. Then the matching is verified by the coarse and 

fine verification methods discussed in Chapter IV. In this experiment we do not try the 

only coordinate transform from the cluster with largest number of samples, but also we 

try the coordinate transforms from all the other clusters recursively to increase the 

matching rate. 

The matching and verification are performed for the 20 synthetic images~ One 

example is shown in Figure V.14. Figure V.14 (a) is a synthetic image in which 5 objects 
~ 

are occluding each other. The occlusion ratios of the adjustable wrench and big 

screwdriver are 26.3% and 48.1% respectively. On the other hand, the matching ratios of 

the adjustable wrench and big screwdriver are 97.1% and 77.8% respectively. The 

verifications of these matchings are shown in Figure V.14 (b) and (c). The big 

screwdriver is not matched because it is occluded heavily, so only a few features are 

extracted. The results of the comprehensive test for the 20 synthetic images are provided 

in Appendix C. The occlusion ratios range from 0.3% to 100% and the average occlusion 

ratio is 35.8%. The number of the matched objects (more than 80% in matching ratio) is 

57 out of 74 objects. Thus overall matching rate is 77%. The status of the hypothesis for 

each object is also provided. 61 out of74 objects (82.4%) are correctly hypothesized. 

Note that the previous example shown in Figure V.14 is about the synthetic image #4 in 

Appendix C. 



(a) 

(b) 

Figure V .14 An Example of Matching and Verification of a Synthetic 
Image. (a) A Synthetic Image, (b) Matching and 
Verification of the Adjustable Wrench, (c) Matching 
and Verification of the Big Screwdriver 
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(c) 

(Figure V.14 Continued) 

Table VIII shows the overall processing times for the example shown in Figure 

V .14 according to the different number of nodes. We can see that the processing times 

for the edge detection and straight line extraction are decreased approximately by a factor 

of 2 as the number of nodes is increased by a factor of 2. This means the speedup is 

almost linear. However, the processing times for the extended local feature extraction 

and the matching and verification are not so nearly linear. This is caused by the fact that 

communication times between nodes are increased as the number of nodes is increased. 
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TABLEVill 

OVERALL PROCESSING TIMES FOR THE EXAMPLE 
SHOWN IN FIGURE V.14 (IN SECONDS) 

Number of nodes 
Procedures 

4 8 16 32 

Edge detection 
and straight- 27.5 14.4 7.7 4.2 

line extraction 

Extended local 
feature 3.4 2.7 2.7 3.5 

extraction 

Matching 
and 3.5 3.1 2.9 1.8 

verification 

Total 34.4 20.2 13.3 9.5 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In conclusion, a parallel occluded object recognition algorithm using extended local 

features and hashing has been proposed. The algorithm has been implemented and tested 

on a hypercube-topology multiprocessor computer, the Intel iPSC/2. The main goal of 

this research was to develop an accurate, reliable, and fast object recognition system. 

In order to achieve the goal, we first proposed to use extended local features 

(corners, arcs, parallel-lines, and corner-arcs) to make our system more accurate and 

more reliable. We developed methods for extracting these extended local features from 

an image. An object was· simply modeled by the extended local features. For 

hypothesizing and matching objects, compatible features between input and model 

objects were searched from the knowledge-base. Here we developed a scheme for 

constructing the knowledge-base using hashing, which can reduce the searching time 

significantly. Then we derived the coordinate transform from the compatible features, 

which brings the model features onto the image features. 

Second, we developed new parallel algorithms for low-level image processing 

techniques such as edge detection, straight-line extraction, and thinning, because these 

steps are the most time-consuming in most existing object recognition systems. Then we 

implemented those algorithms on the iPSC/2 hypercube and analyzed their performance. 

We also increased the processing parallelism for the feature extracting and matching 

procedures and implemented them on the hypercube. 

Finally, we tested the system with ten industrial tools and analyzed its performance. 

We performed three experiments: preliminary test, precision test, and comprehensive test. 

115 



116 

In the preliminary test we used a simple occluded image where three objects were 

occluded arbitrarily. We implemented all of the procedures such as preprocessing, 

feature extraction, matching, and verification, and then verified their correct operation. 

In the precision test we translated and rotated an object in known directions. Then we 

matched the transformed object and analyzed the precision of the matching in terms of 

the pixels and angles. In the comprehensive test we tested our system with 20 synthetic 

images and collected statistical data such as the matching ratio, occlusion ratio, and 

overall matching rate. The experimental results show that our parallel occluded object 

recognition system using extended local features on the Intel iPSC/2 is fairly accurate, 

reliable, and fast. The results are summarized in the next section. 

Summary of Results 

The preliminary test given in Chapter V shows that our parallel preprocessing 

algorithms such as parallel edge detection using Laplacian of Gaussian operator and 

parallel straight-line extraction work very well. The extended local features of the 

corners, parallel-lines, arcs, and corner-arcs are extracted from the straight-lines 

successfully. From the matching procedure, all of the three known objects in the test 

image are successfully located, and,the matching is verified. The comparison of the 

matchings with only corners and with extended local features reveals that the matching 

ratios and rate are improved when using the extended local features. However, the 

processing time when using extended local features is approximately 4 times as large as 

the processing time when using only corners. 

The results of the precision test led us to believe that our system is very accurate. 

In that test, the average differences between the desired coordinate transform and the 

actual coordinate transform are only (0.006 radians, 2.120 pixels, 0.543 pixels). The 

transformed model is matched to the image almost perfectly (see Figure V .11 ). Also, it is 

shown that the clusters of the coordinate transforms are sought successfully by the 
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maximin-distance cluster seeking algorithm in the precision test. 

In the comprehensive test, the 10 model objects are modeled by the extended local 

features and a knowledge-base is constructed by the hashing scheme. The packing 

density is 34.6% when 997 addresses are used. For the comprehensive test, 20 synthetic 

images are constructed, in which 3 to 5 objects are overlapped with each other. The 

average occlusion ratio is 35.8%. From the hypothesizing procedure, 61 out of 74 objects 

are correctly hypothesized. Thus the true hypothesizing rate is 82.4%. On the other 

hand, 57 out of 7 4 objects are successfully located from the matching. So, the overall 

matching rate is 77%. 

The processing times for the parallel preprocessing steps (see Table VIII) are 

approximately inversely proportional to the number of nodes. This result is very 

meaningful and desirable because of the fact that the hypercube architecture is easily 

scalable to many processors. In other words, for reasonably larger sized images, useful 

increases in performance can be realized for much larger order hypercubes than shown in 

this dissertation. However, the processing times for the feature extraction and matching 

are not decreased as the number of nodes is increased. This is caused by the fact that the 

communication times between nodes exceed the computing times when a large number of 

nodes is used. 

Suggestions for Future Research 

Although our system performs fairly well, there are some places to be studied 

further. Also, there are some possibilities for extending the ideas presented in this 

dissertation. Several points which could provide worthwhile results are listed below. 

1. So far, our system works for only two-dimensional objects. In other words, 

relatively flat objects can be located and recognized. What about three-dimensional 

obJects? Is it possible to use the extended local features for three-dimensional object 

recognition? This would seem to depend on how the objects are modeled. If the objects 
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are modeled by the features extracted from several views such that their shapes are 

consistent within some degree of the translation and rotation, for example, views from the 

top or bottom or sides, then the extended local features could be applicable because they 

are also consistent from the translation and rotation. The coordinate transform can be 

computed from the compatible features between the input and model objects. In this 

case, six parameters are required for the coordinate transform: translations in x, y, and z 

axes Ctn ty, tz) and rotations about X, y, and z axes (ex, ey, ez). Now Equation (IV.13) can 

be modified as the following: 

where R is a composition matrix of R (8x), R (8y), and R (8z). That is, 

The R (8J, R (8y), and R (8z) are defined by the following matrices: 

R(9,) = [ ~ 

sin ex OJ 
cosex 0 

0 1 

0 
cosez 

-sin ez 
si~ ezj 
cosez 

(VI.l) 

(VI.2) 

(VI.3) 

(VI.4) 

(VI.5) 

Equation (VI.l) could be solved for the six parameters by a least square error method. 

2.' The extended local features consist of corners, arcs, parallel-lines, and 

corner-arcs. From our experiment, it was shown that the extended local features increase 
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the accuracy of the system as well as the overall matching rate of the system. Is there any 

possibility to add more feature types and further increase accuracy? One possibility is the 

features between the comers, that is, from each comer to the other comers. The distance 

between two comers and the angles of the comers are invariant to rotation and transl~tion 

of the object. Thus compatible features between the model and input can be searched, 

and then coordinate transforms can be computed from the compatible features. In order 

to reduce the searching space, only the comers with sharp angles might be considered as 

the features. 

3. MIMD machines can be classified into two types in terms of memory 

architectures: distributed-memory architectures and shared-memory architectures. The 

distributed memory architectures can be classified again in terms of the interconnection 

network topologies: ring-topology architectures, mesh-topology architectures, 

hypercube-topology architectures, tree-topology architectures, etc. [Dun90]. Our parallel 

algorithms for occluded object recognition were developed and implemented on the Intel 

iPSC/2, which belongs to the distributed-memory hypercube-topology architecture. 

Implementation on other multiprocessor systems would probably require modification of 

our parallel algorithms. However, it would be interesting to study the performance of the 

extended local feature method on a variety of multiprocessor architectures. Especially, 

the low-level image processing steps such as the edge detection, straight line extraction, 

and thinning might be interestmg to implement on other multiprocessors because those 

steps are still time-consuming in our system, but a high degree of parallelism could be 

exploited from them. 

4. Recently, many researchers have proposed to use neural networks, especially 

Hopfield-style neural network [Hop85] for the object matching or recognition phase in 

computer vision. Examples are [Leu88] and [Li89]. In [Leu88], a model and an mput 

handwritten characters are thinned and approximated by straight segments. Features are 

simply represented by the comer angle of a pair of straight segments and the vector 



120 

joining mid-points of the segments. A compatibility function is defined to measure the 

degree of conformity with the relative positional relations between the input and model 

features. The compatibility function is mapped to the minimum energy function of a 

Hopfield neural network, and then the neural network is simulated to find the best 

matching segments. In [Li89], distinct features such as curvature points are extracted, 

and a graph consisting of a number of nodes connected by arcs is constructed. Object 

recognition is formulated as matching a model graph with an input image graph. A 

Hopfield binary network is implemented to perform acsub-graph isomorphism to obtain 

the optimal compatible matching features between graphs. The algorithm is extended to 

detect one object among several objects which could be touching or overlapping. 

Similarly, our occluded object recognition algorithm using extended local features could 

be solved by the neural network. The compatibility functions given by Equations (IV.9) 

through (IV.12) could be combined to form a new compatibility function. Then, the new 

compatibility function could be converted into the minimum energy function of a 

Hopfield neural network by rearranging the parameters. Better performance might result 

from using the extended local features. 



REFERENCES 

[Agi80] Agin, Gerald J., "Computer Vision Systems for Industrial Inspection and 
Assembly", Computer, Vol. 13, No.5, May 1980, pp. 11-20. 

[And73] Anderberg, Michael R., Cluster Analysis for Applications, Academic Press, 
New York, 1973. 

[Aya83] Ayache, Nicholas, "A Model-Based Vision System to Identify and Locate 
Partially Visible Industrial Parts", Proceedings of Computer 
Vision and Pattern Recognition, June 19-23, 1983, pp. 492-494. 

[Aya86] Ayache, Nicholas and Faugeras, Oliveier D.', "HYPER: A New Approach for 
the Recognition and Positioning of Two-Dimensional Objects", IEEE 
Transactions on Pattern Analys{s and Machine Intelligence, Vol. PAMI-8, 
No. 1, January 1986, pp. 44-54. 

[Aya87] Ayache, Nicholas and Faverjon, Bernard, "Efficient Registration of Stereo 
Images by Matching Graph Descriptions of Edge Segments", International 
Journal of Computer Vision, 1987, pp. 107-131. 

[Bae89-1] Baek, Joong H. and Teague, Keith A., "Parallel Edge Detection on the 
Hypercube", Proceedings of the Fourth Conference on Hypercubes, 
Concurrent Computers, and Applications, March 6-8, 1989, pp. 983-986. 

[Bae89-2] Baek, Joong H. and Teague, Keith A., "Parallel Object Representation Using 
Straight Lines on the Hypercube Multiprocessor Computer", Proceedings of 
the Fourth Conference on Hypercubes, Concurrent Computers, and 
Applications, March 6-8, 1989, pp. 987-990. 

[Bae90] Baek, Joong H. and Teague, Keith A., "Parallel Thinning on a Distributed 
Memory Machine", Proceedings of the Fifth Distributed Memory Computing 
Conference, April8-12, 1990. pp. 72-75. 

[Bai78] Baird, M. L., "Sight I: A Computer Vision System for Automated IC Chip 
Manufacture", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 8, 
No.2, February 1978, pp. 133-139. 

[Bal81] Ballard, D. H., "Generalizing the Hough Transform to Detect Arbitrary 
Shapes", Pattern Recognition, Vol. 13, 1981, pp. 111-122. 

[Bes85] Besl, Paul J. and Jain, Ramesh C., "Three-Dimensional Object Recognition", 
Computmg Surveys, Vol. 17, No.1, pp. 75-145, March 1985. 

[Bha86] Bhanu, Bir and Ming, John C., "Clustering Based Recognition of Occluded 
Objects", Proceedings of the 8th International Conference on Pattern 
Recognition, 1986, pp. 732-734. 

121 



122 

[Bha87] Bhanu, Bir and Ming, John C., "Recognition of Occluded Objects: A 
Cluster-Structure Algorithm", Pattern Recognition, Vol. 20, No. 2, 1987, pp. 
199-211. 

[Bir81] Birk, J. R., Kelley, R. B., and Martins, H., "An Orienting Robot for Feeding 
Workpieces Stored in Bins", IEEE Transactions on Systems, Man, and 
Cybernetics, Vol. 11, No.2, February 1981, pp. 151-160. 

[Bol82] Bolles, Robert C. and Cain, Ronald A., "Recognizing and Locating Partially 
Visible Objects: The Local-Feature-Focus Method", The International 
Journal of Robotics Research, Vol. 1, No.3, Fall1982, pp. 57-82. 

[Bor84] Borgefors, G., "Distance transformations in arbitrary dimensions", Computer 
Vision, Graphics, and Image Processing, Vol. 27, 1984, pp. 321-345. 

[Bre65] Bresenham, J. E., "Algorithm for Computer Control of a Digital Plotter", 
IBM Systems Journal, Vol. 4, No.1., 1965, pp. 25-30. 

[Che82] Chen, M. J. and Milgram, D. L., "A development System for Machine 
Vision", Proceedings of the IEEE Computer Society Conference on Pattern 
Recognition and Image Processing, 1982, pp. 512-517. 

[Chi86] Chin, Roland T. and Dyer, Charles R., "Model-Based Recognition in Robot 
Vision", Computing Surveys, Vol. 18, No. 1, March 1986, pp. 67-108. 

[Chi87] Chin, Roland T. and Wan, Hong-Khoon, "A One-Pass Thinning Algorithm 
and Its Parallel Implementation", Computer Vision, Graphics, and Image 
Processing, Vol.40, 1987, pp. 30-40. 

[Dan70] Danielsson, Per E., "Incremental Curve Generation", IEEE Transactions on 
Computers, Vol. C-19, No.9, September 1970, pp. 783-793. 

[Dem84] Demel, John T. and Miller, Michael J., Introduction to Computer Graphics, 
Wadsworth, Inc., Belmont, 1984. 

[Dud73] Duda, Richard 0. and Hart, Peter E., Pattern Classification and Scene 
Analysis, A Wiley-Interscience Publication, New York, 1973. 

[Dun90] Duncan, Ralph, "A Survey of Parallel Computer Architectures", Computer, 
February 1990, pp. 5-16. 

[Fol87] Folk, Michael J. and Zoellick, Bill, File Structures, Addison-Wesley 
Publishing Company, Massachusetts, 1987. 

[Ful67] Fuller, E. Leonard and Bechtel, D. Robert, Introduction to Matrix Algebra, 
Dickenson Pubhshmg Company, Inc., Belmont, California, 1967.-

[Ger65] Gere, James M. and William Weaver, Jr., Matrix Algebra for Engineers, D. 
Van Nostrand Company, Inc., Princeton, New Jersey, 1965. 

[Gle79] Gleason, G. J. and Agin, G. J., "A Modular Vision System for 
Sensor-Controlled Manipulation and Inspection", Proceedings of 9th 
International Symposium on Industrial Robots, 1979, pp. 57-70. 



[Gon83] Gonzalez, Rafael C. and Wintz, Paul, Digital Image Processing, 
Addison-Wesley Publishing Company, Massachusetts, 1983. 

123 

[Gri85] Grimson, W. E. L. and Hildreth, E. C., "Comments on Digital Step Edges 
from Zero Crossing of Second Directional Derivatives", IEEE Transactions 
on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, No.1, January, 
1985, pp. 121-127. 

[Gri88] Grimson, W. Eric L., "On the Recognition of Parameterized 2D Objects", 
International Journal of Computer Vision, Vol. 3, 1988, pp. 353-372. 

[Guo89] Guo, Zicheng and Hall, Richard W., "Parallel Thinning with 
Two-Subiteration Algorithms", Communications of the ACM, Vol. 32, No.3, 
March, 1989, pp. 359-373. 

[Hal89] Hall, Richard W. "Fast Parallel Thinning Algorithms: Parallel Speed and 
Connectivity Preservation", Communications of the ACM, Vol. 32, No. 1, 
January, 1989, pp. 124-131. 

[Han89] Han, Min-Hong, Jang, Dongsig, and Foster, Joseph, "Inspection of 2-D 
Objects Using Pattern Matching Method", Pattern Recognition, Vol. 22, No. 
5, 1989,pp.567-575. 

[Hat83] Hattich, W., "Recognition of Overlapping Workpieces by Model-Directed 
Construction of Object Contours", Artificial Vision for Robots, Chapman & 
Hall, New York, pp. 77-92. 

[Hay86] Hayes, J.P., et al, "Architecture of a Hypercube Supercomputer", 
Proceedings of International Conference on Parallel Processing, August, 
1986. 

[Hol87] Holt, Christopher M., Stewart, Alan, Clint, Maurice, and Perrott, Ronald H., 
"An Improved Parallel Thinning Algorithm", Communications of the ACM, 
Vol. 30, No.2, February 1987, pp. 156-160. 

[Hop85] Hopfield, J. J. and Tank, D. W., "Neural Computations of Decisions in 
Optimization Problems", Biological Cybernetics, Vol. 52, July 1985, pp. 
141-152. 

[Hu62] Hu, Ming-Kuei, "Visual Pattern Recognition by Moment Invariants", IRE 
Transactions on Information Theory, Vol. 8, Feburary 1962, pp. 197-219. 

[lnt86] Intel Corporation, iPSC Technical Description, 1986. 

[Jac80] Jackins, C. L. and Tanimoto, S. L., "Oct-trees and Their Use in Representing 
3D Objects", Computer Graphics and Image Processing, Vol. 14, 1980, pp. 
249-270. 

[Jor73] Jordan, Bernard W., Lennon, William J., and Holm, Barry D., "An Improved 
Algorithm for the Generation of Nonparametric Curves", IEEE Transactions 
on Computers, Vol. C-22, No. 12, December 1973, pp. 1052-1060. 



124 

· [Kel82] Kelley, R. B., Birk, J. R., Martins, H. A. S., and Tella, R., "A Robot System 
Which Acquires Cylindrical Workpieces from Bins", IEEE Transactions on 
Systems, Man, and Cybernetics, Vol. 12, No.2, March/April1982, pp. 
204-213. 

[Kim87] Kim, Yeon C. and Aggarwal, J. K., "Positioning Three-Dimensional Objects 
Using Streo Images", Joural of Robotics and Automation, Vol. RA-3, No.4, 
August 1987, pp. 361-373. 

[Kno86] Knoll, Thomas F. and Jain, Rarnesh C., "Recognizing Partially Visible 
Objects Using Feature Indexed Hypothesis", IEEE Journal of Robotics and 
Automation, Vol. RA-2, No. 1, March 1986, pp. 3-13. 

[Koc85] Koch, Mark W. and Kashyap, R. L., "A Vision System to Identify Occluded 
Industrial Parts", IEEE International Conference on Robotics and 
Automation, 1985, pp. 55-60. 

[Koc87] Koch, Mark W. and Kashyap, Rangasarni L., "Using Polygons to Recognize 
and Locate Partially Occluded Objects", IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. PAMI-9, No.4, July 1987, pp. 
483-494. 

[Kue85] Kuehn, James T., Fessler, Jeffrey A. and Siegel, Howard Jay, "Parallel Image 
Thinning and Vectorization on PASM", Proceedings ofCVPR '85: IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, 
1985, pp. 368-374. 

[Kul90] Kulkarni, A. D., Yap, Al. C., and Byars, P., "Neural Networks for Invariant 
Object Recognition", Proceedings ofthe 1990 Symposium on Applied 
Computing, 1990, pp. 28-32. 

[Leu88] Leung, C. H., "Structural Matching Using Neural Networks", Abstracts of 
the First Annual Internaltional Neural Network Society Meeting, Vol. 1, 
1988, pp. 31. 

[Li89] Li, Wei and Nasrabadi, Nasser M., "Object Recognition Based on Graph 
Matching Implemented by a Hopfield-Style Neural Network", Proceedings 
of International Joint Conference on Neural Network, Vol. II, 1989, pp. 
287-290. 

[Low87] Lowe, David G., "Three-Dimensional Object Recognition from Single 
Two-Dimensional Images", Artificial Intelligence, Vol. 31, 1987, pp. 
355-395. 

[Lu86] Lu, H. E. and Wang, P. S. P., "A Comment on a Fast Parallel Algorithm for 
Thinning Digital Patterns", Communications of the ACM, Vol. 29, No.3, 
March 1986, pp. 239-242. 

[Lun86] Lunscher, W. H. H. J. and Beddoes, M. P., "Optimal Edge Detector 
Evaluation", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 
SMC-16, No.2, March/April1986, pp. 304-312. 



[MarSO] Marr, D. and Hildreth, E., "Theory of Edge Detection", Proceedings 
of Royal Society of London, B, Vol. 207, 1980, pp. 187-217. 

[Mar87] Martinerz-Perez, M. Pilar, "A Thinning Algorithm Based on Contours", 
Computer Vision, Graphics, and Image Processing, Vol. 39, 1987, pp. 
186-201. 

125 

[Mcl88] Mcintosh, James H., "Matching Straight Lines", Computer Vision, Graphics, 
and Image Processing, Vol. 42, 1988, pp. 386-408. 

[Mea81] Meagher, D. J., "Geometric Modeling Using Octree Encoding", Computer 
Graphics and image Processing, Vol. 19, pp. 129-147. 

[Meh90] Mehrotra, Rajiv, Kung, Fu K., and Grosky, William I., "Industrial Part 
Recognition Using a Component-Index", Image and Vision Computing, Vol. 
8, No.3, August 1990, pp. 225-232. 

[Mud87] Mudge, T. N. and Abdel-Rahman, T. S., "Vision Algorithms for Hypercube 
Machines", Journal of Parallel and Distributed Computing, Vol. 4, 1987, 
pp.79-94. 

[Nug88] Nugent, Steven F., "The iPSC/2 Direct-Connect Communications 
Technology", Concurrent Supercomputing, Intel Corporation, 1988, pp. 
59-68. 

[Off85] Offen, R. J. VLS/lmage Processing, McGraw-Hill Book Company, New 
York, 1985. · 

[Per77] Persoon, Eric and Fu, King-Sun, "Shape Discrimination Using Fourier 
Descriptors", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 
SMC-7, No.3, March 1977, pp. 170-179. 

[Per78] Perkins, W. A., "A Model-Based Vision System for Industrial Parts", IEEE 
Transaction on Computers, Vol. C-27, No.2, February 1978, pp. 126-143. 

[Pra84] Pratt, William K., Digital/mage Processing, John Wiley & Sons, Inc., New 
York, 1984. 

[Ros82] Rosenfeld, Azriel and Kak, A vinash C., Digital Picture Processing, 
Academic Press, New York, 1982. 

[Ros89] Rosin, PaulL. and West, Geoff A. W., "Segmentation of edges into lines and 
arcs", Image and Vision Computing, Vol. 7, No.2, May 1989, pp. 109-114. 

[Rum84] Rummel, P. and Beutel, W., "Workpiece Recognition and Inspection by a 
Model-Based Scene Analysis System", Pattern Recognition, Vol. 17, No.1, 
1984, pp. 141-148. 

[Shi87] Shua1, Yosh1ak1, Three-Dimensional Computer Vision, Springer-Verlag, 
New York, 1987. 



126 

[Smi87] Smith, David and Myers, Donald, "Edge Detection in Tactile Images", IEEE 
1987 International Conference on Robotics & Automation, Vol. 3, 1987, pp. 
1500-1505. 

[Sob72] Sobel, V. A., "Device for Analyzing the Structure of Complex Contour 
Images", Automatic Remote Control, Vol. 33, 1972, pp. 775-779. 

[Sto82] Stockman, G. C., Kopstein, K., and Benett, S., "Matching Images to Models 
for Registration and Object Detection Via Clustering", IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No.3, May 1982, 
pp. 229-241. 

[Sue79] Suenaga, Yasuhito, Kamae, Takahiko, and Kobayashi, Tomonori, "A 
H1gh-Speed Algorithm for the Generation of Straight Lines and Cjrcular 
Arcs", IEEE Transactions on Computers, Vol. C-28, No. 10, October 1979, 
pp. 728-736. 

[Tor86] Torre, Vincent and Poggio, Tomaso A., "On Edge Detection", IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, 
No.2, March 1986, pp. 147-163. 

[Tou74] Tou, J. T. and Gonzalez, R. C., Pattern Recognition Principles, 
Addison-Wesley Publishing Company, Massachusetts, 1974. 

[Tre84] Tremblay, Jean-Paul and Sorenson, Paul G., An Introduction to Data 
Structures wtth Applications, McGraw-Hill, Inc., New York, 1984. 

[Tro80] Tropf, H., "Analysis-by-Synthesis Search for Semantic Segmentation, 
Applied to Workpiece Recognition", Proceedings of the 5th International 
Conference on Pattern Recognition, Miami, December 1980, pp. 241-244. 

[Tur85] Turney, Jerry L., Mudge, Trevor N., and Volz, R. A.," Recognizing partially 
occluded parts", IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. PAMI-7, July 1985, pp. 410-421. 

[Vit87] Vitter, Jeffrey Scott and Chen, Wen-Chin, Design and Analysis of Coalesced 
Hashing, Oxford University Press, New York, 1987. 

[Vli89] Vliet, Lucas J. Van and Young, Ian T., "A Nonlinear Laplace Operator as 
Edge Detector in Noisy Image", Computer Vision, Graphics, and Image 
Processing, Vol. 45, 1989, pp. 167-195. 

[Wal80] Wallace, T. P. and Wintz, P. A., "An Efficient Three-Dimensional Aircraft 
Recognition Algorithm Using Normalized Fourier Descriptors", Computer 
Graphics and Image Processing, Vol. 13, 1980, pp. 99-126. 

[Wal87] Wallace, A.M., "Matching Segmented Scenes to Models Using Pairwise 
Relationships Between Features", Image and Vision Computing, 1987, pp. 
114-120. 



127 

[Wec88] Wechsler, Harry and Zimmerman, George Lee, "2-D Invariant Object 
Recognition Using Distributed Associative Memory", IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 10, No.6, November 1988, 
pp. 811-821. 

[Wec89] Wechsler, Harry and Zimmerman, George Lee, "Distributed Associative 
Memory (DAM) for Bin-Picking", IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol. 11, No.8, August 1989, pp. 814-822. 

[Zha84] Zhang, T. Y. and Suen, C. Y., "A Fast Parallel Algorithms for Thinning 
Digital Patterns", Communications of the ACM, Vol. 27, No.3, March 1984, 
pp. 236-239. 



APPENDIXES 

128 



APPENDIX A 

DERIVATION OF EQUATIONS (Ill.5), (111.6), AND (111.7) 

The error function to be minimized is 

n 2 2 2 2 
J = L [(X, - XJ + (Y, - Yc) - R ] (A.l) 

•=1 

From the condition 

aJ 
ax = o, 

c 

we can obtain 

a1 ~ 2 2 2 -a = 2 ~[(X, - xc> + (Y, - YJ - R H-2(X, - xc)l = o 
'XC I= 1 

(A.2) 

The above equauon can be rewritten by 

n 

L [(X, - Xc)2 + (Y, - Yc)2 - R2] (X, - XJ = 0 (A.3) 
• = 1 

By solving the above equation, we can derive Equation (ill.5). 

From the condition 

aJ 
aY = o, 

c 

we can obtain 
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(A.4) 

The above equation can be rewritten by 

n 

L[(X,- XJ2 + (Y,- YJ2 - R 2](Y,- Yc) = 0 (A.5) 
I: 1 

Solving the above equation gives us Equation (ITI.6). 

From the condition 

aJ 
aR = o, 

we can obtain 

a1 ~ 2 2 2 
aR = 2,:-1[(X, - XJ + (Y, - YJ - R ](-2R) = 0 (A.6) 

The above equation can be rewritten by 

n 

L[(X,- XJ2 + (Y,- YJ2 - R 2] = 0 (A.7) 
I= 1 

or 

n n n 

L (X, - XJ2 + L (Y, - Yc)2 - L R 2 = 0 (A.8) 
•=1 •=1 ' •=1 

Since 

we can obtain Equation (ITI.7) from (A.8). 



APPENDIXB 

DERIVATION OF EQUATIONS (IV.20), (IV.21), AND (IV.22) 

From Equation (IV.18), 

n 

Q = l {IXI - MXI cose + My, sinS - txi + 
I= 1 

From the condition 

aQ = 0 
at · X 

we can obtain 

n 

l (/y, - MXI sine - My, cose - ty)2 

I =1 

Solving the above equation for tx, we, can drive Equation (IV.20). 

From the condition 

aQ = 0 at ' y 

we can get 
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(JQ n 
-:;- = -2 I (ly. - MXl sinS - My. cos8 - ty) = 0 
oty , = 1 

(B.3) 

We can obtain Equation (IV.21) by solving the above equation forty. 

From the condition 

()Q 
ae = o, 

we can get 

n 

2 I (ly. - MXl sin 8 - My, cos e - ty)( -MXl cos 8 + My. sin 8) 
'= 1 

n 

= 2 L (!XI - tx)(M Xl sin 8 + My, cos 8) + 
'= 1 . 

n 

2 L (ly, - ty)(-MXl cos8 + My, sin 8) = 0 
'= 1 

(B.4) 

Solving the above equation gives us 

(B.5) 

By substituting Equations (IV.20) and (N.21) for tx and ty in the above equation, 

respectively, we can get Equation (N.22). 



APPENDIXC 

RESULTING DATA OF EXPERIMENT 3 

Synthetic Object Hypothe- Matched Matching Occlusion 
Image Name sized Ratio(%) Ratio(%) 

knif YES YES 99.2 52.7 
Image 1 lopl YES YES 98.2 47.8 

adwr YES YES 92.9 38.5 
cowr YES NO 0.0 100.0 

----------------------------------------------------------------------------------------
cutt YES YES 98.4 33.8 

Image2 smsc YES NO 0.0 10.8 
dipl YES YES 98.3 33.5 
bisc YES YES 96.3 41.1 

----------------------------------------------------------------------------------------
lopl YES YES 91.9 16.9 

Image 3 dipl YES YES 92.6 16.4 
alwr NO NO 0.0 33.8 

----------------------------------------------------------------------------------------
lopl NO NO 0.0 28.9 
bisc YES NO 77.8 48.1 

Image4 alwr YES YES 86.0 45.3 
adwr YES YES 97.1 26.3 
dipl YES YES 92.7 32.1 

----------------------------------------------------------------------------------------
smsc NO NO 0.0 67.2 

Image 5 lopl YES YES 95.7 18.4 
adwr YES YES 96.2 24.4 

----------------------------------------------------------------------------------------
adwr NO NO 0.0 41.6 

Image 6 knif YES YES 95.1 34.3 
ofsc YES YES 93.0 13.0 

----------------------------------------------------------------------------------------
bisc YES YES 86.6 49.9 

Image 7 cutt YES YES 99.4 46.3 
adwr YES YES 96.7 25.8 
ofsc YES YES 88.4 37.6 

----------------------------------------------------------------------------------------
blSC YES YES 96.8 36.5 

Image 8 dipl YES YES 95.6 31.3 
knif YES YES 93.4 27.5 
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Synthetic Object Hypothe- Matched Matching Occlusion 
Image Name sized Ratio(%) Ratio(%) 

lopl YES YES 94.2 39.4 
Image 9 knif NO NO 0.0 36.9 

adwr YES YES 94.7 43.2 
----------------------------------------------------------------------------------------

knif YES YES 96.9 23.5 
Image 10 smsc NO NO 63.0 27.3 

dipl YES YES 99.1 25.3 
alwr NO NO 0.0 38.7 

----------------------------------------------------------------------------------------
ofsc YES YES 88.1 16.5 

Image 11 smsc YES YES 97.7 37.3 
alwr YES YES 96.3 23.5 
lopl YES YES 95.0 16.8 

----------------------------------------------------------------------------------------
lopl NO NO 56.0 52.7 

Image 12 knif YES YES 99.3 46.4 
dipl YES YES 90.9 29.0 

----------------------------------------------------------------------------------------
lopl YES YES 96.7 16.2 

Image 13 adwr YES YES 93.9 24.4 
smsc NO NO 0.0 61.3 

----------------------------------------------------------------------------------------
ofsc YES YES 90.8 41.8 
cowr YES YES 88.0 37.3 

Image 14 dipl NO NO 72.8 41.7 
adwr YES YES 94.8 44.5 
lopl YES YES 93.8 24.4 

----------------------------------------------------------------------------------------
ofsc YES YES 96.6 8.7 

Image 15 cowr YES YES 92.1 0.3 
cutt YES YES 98.4 2.4 

----------------------------------------------------------------------------------------
knif YES YES 99.3 15.5 

Image 16 smsc YES YES 95.9 50.4 
alwr YES YES 98.1 18.7 

----------------------------------------------------------------------------------------
cutt YES YES 80.0 60.7 
cowr YES YES 96.1 73.4 

Image 17 adwr YES YES 95.5 44.2 
lopl YES YES 93.9 48.3 
dip! YES YES 83.3 69.6 

----------------------------------------------------------------------------------------
dipl YES YES 93.9 54.2 

Image 18 cowr YES YES 95.1 14.7 
bisc YES YES 97.1 32.8 
knif YES YES 99.7 35.3 

----------------------------------------------------------------------------------------
smsc NO NO 0.0 35.5 

Image 19 ofsc YES YES 91.2 12.9 
bisc YES NO 0.0 18.3 

----------------------------------------------------------------------------------------



Synthetic 
Image 

Image20 

Object 
Name 

smsc 
cutt 
dipl 
adwr 
lopl 

Hypothe-
sized 

NO 
YES 
YES 
YES 
NO 

Matched Matching Occlusion 
Ratio(%) Ratio(%) 

NO 0.0 55.5 
YES 98.9 47.1 
YES 97.5 45.3 
YES 88.5 47.9 
NO 79.6 48.7 

NOTE: alwr =Allen wrench; lopl =Long nose plier; adwr =adjustable 
wrench; dipl = Diagonal plier; smsc = Small screwdriver; ofsc 
= Offset screwdriver; cutt = Cutter; cowr = Combinational 
wrench; knif =Knife; bisc = Big screwdriver 
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