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PREFACE 

This dissertation is the outcome of a chance observation. During a study on the 

interaction between some commonly used drugs and anesthetics we noticed the 

pulmonary toxicity of xylazine. A few investigator have reported pulmonary edema 

and death after xylazine or xylazine-ketamine administration. However, the cause was 

not determined. This work is an attempt in elucidating the mechanism of the 

pulmonary toxicity of xylazine. The initial findings, presented in Chapter II, have been 

published in Veterinary and Human Toxicology. In Chapter Ill, pathophysiology of 

xylazine-induced pulmonary edema and initial attempts in determination of its etiology 

is described. This part has been published in Toxicology and Applied Pharmacology. 

Chapter IV further describe the pathophysiology of xylazine-induced pulmonary edema. 

In chapter V the direct toxicity of xylazine on pulmonary endothelium was investigated. 

These chapters have been submitted for publication in Toxicology and Applied 

Pharmacology and Toxicology in vitro, respectively. 

Although the findings of this study identifies and characterizes the pulmonary 

toxicity of xylazine, the underlying pathophysiology of xylazine-induced pulmonary 

edema remains unclear. The results presented here provide clues and directions for 

further studies in the elucidation of the mechanism of xylazine-induced pulmonary 

edema. 

This work is the culmination of a 14 year endeavor during which I have been 

overcome many obstacles and benefitted from the help of many individuals. However, 

I am mostly indebted to Dr. Subbiah Sangiah, my major professor. I wish to express 
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CHAPTER I 

INTRODUCTION AND REVIEW OF LITERATURE 

Xylazine, 2(2,6-dimethyl phenylamino)-4-H5,6-dihydro-1 ,3-thiazine 

hydrochloride (Bay Va 14 70 or Rom pun) was developed as an antihypertensive drug 

in Germany by Bayer, AG. The pronounced central nervous system (CNS) depressive 

effect of xylazine during clinical trials in human led to its introduction as sedative, 

analgesic and muscle relaxant for veterinary use. 

In veterinary medicine, xylazine is used alone or in combination with other 

anesthetics and tranquilizers. The combination of xylazine and ketamine is commonly 

used for short surgical procedures. Ketamine, a dissociative anesthetic, produces 

anesthesia characterized by marked analgesia (Wright, 1982). 

CH 3 

CH 3 

Figure 1 . Xylazine 

Pharmacology of Xylazine 

Xylazine is an a2-adrenergic agonist with sedative, analgesic and muscle

relaxant properties (Greene and Thurmon, 1988). The CNS effects of xylazine are 

1 



2 

mediated mainly through a2-adrenergic receptors (Hsu, 1981 ). The analgesia is 

mediated by peripheral and central a2-adrenoceptor stimulation (Schmitt et al., 1974). 

Xylazine also has local anesthetic effects which is thought to be due to blockade of 

action potential and conduction velocity (Aziz and Martin, 1978). The muscle relaxant 

property of xylazine is due to blockade of intraneuronal impulse transmission in CNS 

(Booth, 1982). 

Xylazine causes a transient hypertension followed by hypotension, bradycardia 

and heart block. The hypertension is caused by peripheral vasoconstriction mediated 

by postsynaptic a2-adrenoceptors (Schmidtt et al., 1970; Antonaccio et al., 1973; 

Langer, 1980). Hypotension is due to a centrally mediated decrease in sympathetic 

outflow (Schmidtt et al., 1970; Antonaccio et al., 1973; Van Zwieten and 

Timmermans, 1983). The bradycardia and heart block are due to vagal stimulation, 

decreased CNS sympathetic output and decreased norepinephrine release in cardiac 

nerves by stimulation of presynaptic a2-adrenoceptors (Schmidtt et al., 1970; 

Antonaccio, et al., 1973 and Langer, 1980). 

The effect of xylazine on the respiratory system is minimal. However, some 

effects such as hypoxia and reduced respiratory rate have been observed in sheep and 

horses, respectively (Waterman et al., 1987; Fessel, 1970; Burns and McMullan, 

1972; Hoffman, 1974; McCashin and Gabel, 1975). 

Gastrointestinal transit time is prolonged in mice (Hsu, 1982), dogs (Hsu and 

McNeel, 1983; McNeel and Hsu, 1984), sheep (Seifelnasr et al., 1984), bears and 

tigers (Cooke and Kane, 1980) after administration of xylazine. This effect is 

attributed to the inhibitory effect of xylazine on the release of acetylcholine from 

Auerbach's plexus (Vizi, 1974). 

The most pronounced effects of xylazine on the urinary system are glucosuria 
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and diuresis. These effects have been reported in cattle (Thurmon at al., 1978), cats 

(Hartsfield, 1980), ponies (Trim and Hanson, 1986), horses (Greene et al., 1987; 

Thurmon at al., 1978) and rats (Mohammad et al., 1989). The glucosuria is secondary 

to elevated blood glucose levels as a consequence of decreased insulin release. The 

increased urinary output caused by xylazine, similar to clonidine, appears to be 

mediated through central and renal a2-adrenoceptors (Roman et al., 1979; Gellai and 

Ruffalo, 1987). 

Plasma insulin levels are decreased after administration of xylazine in horses 

(Thurmon at al., 1982; Tranquilli et al., 1984; Greene et al., 1987), cattle (Symond 

and Mallinson, 1978; Eichner et al., 1979), sheep (Brockman, 1981 ), and dogs 

(Goldfine and Areiff, 1979; Benson at al., 1984). This effect is attributed to the 

inhibitory effects of xylazine on the a2-adrenoceptor of pancreatic 13 cells (Hsu and 

Hummel, 1981 ). Xylazine increased plasma levels of growth hormone in dogs 

(Hampshire and Attszuler, 1981), decreased antidiuretic hormone in horses (Greene, 

et al., 1986) and decreased prolactin in rats (Fayez et al., 1989). 

Metabolism of Xylazine 

The metabolic fate of xylazine is not well understood. In rats, xylazine is rapidly 

metabolized, yielding approximately twenty metabolites (Ouhm et al., 1969). The 

major metabolite of xylazine, 1, amino-2-6-dimethylbenzene, is thought to result from 

oxidative or hydrolytic breakdown of the thiazine ring (Putter and Sanger, 1973). 

Garcia-Villar et al. (1981) found that xylazine is rapidly distributed and eliminated in 

horses, cattle, sheep and dogs. They suggested that the rapid elimination may be due 

to intense metabolism rather than renal excretion, evidenced by a lack of significant 

amounts of unchanged xylazine in the urine of sheep. 
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Toxicity of Xylazine 

Untoward cardiovascular effects of xylazine, such as transient hypertension 

followed by prolonged hypotension, bradycardia and heart block are among the most 

important side effects of xylazine. However, these effects are often not fatal, and 

xylazine toxicity, at times life-threatening, is attributed to pulmonary edema and 

respiratory distress. There are few cases of xylazine toxicity reported in literature; 

however, most lethalities after xylazine or xylazine-ketamine anesthesia are attributed 

to underlying diseases and are not reported. Cases of pulmonary edema and/or death 

after xylazine or xylazine-ketamine administration have been reported in sheep (Uggla 

and Lindqvist, 1983), dogs (Kirkpatrick, 1978; Kommonen and Koskinen, 1984), a bull 

(Newey, 1977), a stallion (Fuentes, 1978), a pony (Clarke and Hall, 1969), rabbits 

(Palmore, 1990), rats (Kanniappan and Ramaswamy, 1979), and grey seals (Baker and 

Gatesman, 1985). Xylazine toxicity has also been reported in humans (Poklis et al., 

1978; Carruthers et al., 1979; Gallanosa et al., 1981; Spoerke, et al., 1986). 

Biotransformation and Toxicity 

Biotransformation is the process by which the body handles endogenous 

chemicals and xenobiotics. Biotransformation is the sum of two separate phases 

through which chemicals are prepared for elimination from the body. The final 

outcome of these two phases is the modification of drugs or xenobiotics to a more 

polar molecule suitable for elimination. 

In phase I, drugs or xenobiotics are made more polar by exposing or adding 

functional groups. The addition of hydrophilic moieties is achieved by two oxidative 

enzyme systems, cytochrome P-450 and flavine-monooxygenase, both of which add 

a hydroxyl group to drugs or xenobiotics. Other enzymes, such as hydrolases, 
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esterases and amidases, expose existing functional groups (Sipes and Gandolfi, 1986). 

In phase II, drugs or xenobiotics are conjugated by moieties such as glucuronides, 

sulfate, acetylates and amino acids in order to make them more suitable for excretion 

and elimination from the body. 

The cytochrome P-450 system plays a major role in the phase I reactions. One 

of the most important characteristics of the cytochrome P-450 enzyme system is its 

ability to be induced or inhibited. A wide range of drugs and xenobiotics can alter the 

activity of cytochrome P-450 by induction or inhibition. Phenobarbital (PHB) and 

polycyclic aromatic hydrocarbons such as 3-methylcholantherene (3-MC) are two of 

well-studied enzyme inducers with different patterns of induction (Sipes and Gandolfi, 

1986). Each of these inducers affects different isozymes of cytochrome P-450 and 

forms the basis of the classification of the isozymes of cytochrome P-450. Hence, 

isozymes of cytochrome P-450 are classified as either PHB- or 3-MC-inducible. 

In most circumstances, the induction of the cytochrome P-450 reduces the 

toxicity of a compound, except when cytochrome P-450 metabolism leads to the 

formation of a reactive metabolite. In this case, inducers augment the toxicity. 

Mansour et al. (1988) have shown that inducers of cytochrome P-450 such as 3-MC, 

~-naphthoflavone and PHB protect rats from lung injury and pulmonary edema due to 

oxygen toxicity. This protection was attributed to an increased pulmonary cytochrome 

P-450 component and peroxidase activity. In contrast, induction by PHB or 3-MC 

augments the toxicity of acetaminophen, which is metabolized to a reactive 

intermediate by cytochrome P-450 (Mitchell et al., 1973). In general, however, 

inducers of the cytochrome P-450 reduce the toxic effect of chemicals; whereas, 

inhibitors enhance the response to a drug or its toxic effects. 

Inhibitors of cytochrome P-450 are important because they include a large 
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number of drugs used in human and veterinary therapeutics. Cimetidine (Speeg et al., 

982), chloramphenicol (Christensen and Skovsted, 1969; Haplert and Neal, 1980) and 

ketoconazole (Mosca et al., 1985), are examples of commonly used therapeutic agents 

that inhibit cytochrome P-450. Cimetidine alters the pharmacokinetics of many drugs 

by inhibition of the hepatic cytochrome P-450 microsomal enzyme system (Bauman 

and Kimel blatt, 1982). Recent studies indicate that cimetidine inhibits the metabolism 

of drugs by reversible binding to hepatic cytochrome P-450 (Knodell et al., 1982; 

Speeg et al., 1982). Chloramphenicol, a broad spectrum antibiotic, inhibits the hepatic 

P-450 metabolism of barbiturates and prolong the anesthetic effect in various animals 

including mice, rats, dogs, cats, and monkeys (Adams, 1970; Adams and Dixit, 1970; 

Adams et al., 1977). In contrast to cimetidine, inhibition by chloramphenicol is due 

to irreversible binding of chloramphenicol to cytochrome P-450 (Halpert and Neal, 

1980). Similar to induction, inhibition of cytochrome P-450 can have toxic 

consequences either by augmenting the drug effect or by causing a shift to a toxifying 

pathway capable of generating reactive metabolites. 

In addition to toxicity resulting from drug interactions, it is also possible that 

biotransformation can result in the formation of reactive metabolites capable of binding 

to cellular proteins, causing damage. Reactions mediated by both phases of 

biotransformation can generate reactive metabolites (Sipes and Gandolfi, 1986; Monk, 

1991 ). Many drugs and toxicants exert their toxic effects through the formation of 

reactive species. A classical example of the formation of reactive metabolites by 

cytochrome P-450 is the N-hydroxylation product of acetaminophen, which is 

conjugated by glutathione (Booth, 1982). In hepatic glutathione depletion, such as 

that caused by acetaminophen overdose, this highly reactive intermediate can cause 

hepatic necrosis. Speeg et al. (1985) have shown that inhibition of the oxidation of 
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acetaminophen by cimetidine, a known inhibitor of cytochrome P-450, reduces the 

extent of acetaminophen-induced hepatic injury in rats. With regard to acute lung 

injury, a-naphthylthiourea, paraquat and 4-ipomeanol cause lung injury through reactive 

species generated by cytochrome P-450 (Boyd, 1980). 

Another mechanism for biotransformation-mediated toxicity is the possibility of 

a shift to a toxifying pathway. Large doses of xenobiotics may deplete cellular defense 

mechanisms and saturate major nontoxic pathways so that minor pathways capable 

of producing reactive intermediates become prominent (Boyd, 1980; Sipes and 

Gandolfi, 1986). 

· Considering the growing list of drugs and xenobiotics capable of affecting 

cytochrome P-450, it is important to understand the interaction between cytochrome 

P-450 and drugs and xenobiotics, as it could have important implications in 

therapeutics, where several drugs are often administered concomitantly. 

Pulmonary Edema 

Pulmonary edema (PE) is thought to be caused by increased pressure or 

increased permeability (Staub, 1984). Increased-pressure PE is characterized by the 

lack of cellular damage, low-protein edema fluid and prolonged course of development. 

In contrast, increased-permeability PE is characterized by the presence of cellular 

damage, protein-rich edema fluid and rapid onset (Staub, 1984). Although there might 

not be a clear distinction between these two forms of PE in some experimental models 

of acute lung injury and PE, the ratio of proteins in the edema fluid to the serum or 

plasma can serve as an indicator of the nature of PE. The protein concentration of the 

edema fluid in increased-permeability PE is usually greater that 70% (Sprung et al., 

1981; Staub, 1984). A number of drugs including analgesics, antiarrhythmic agents 
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and opiates have been reported to cause pulmonary damage through non-cardiogenic 

factors, such as direct toxicity or indirect augmentation of an inflammatory reaction 

(Cooper et al., 1986a and 1986b). Also, toxicants such as a-naphthylthiourea, 

paraquat and 4-ipomeanol cause lung injury through reactive species generated by 

cytochrome P-450 (Boyd, 1980) which can cause endothelial injury leading toPE. The 

mechanism of pulmonary toxicity of these agents is not well-understood and it is 

possible that inflammatory mediators such as leukocytes, oxygen radicals, arachidonic 

acid metabolites, and cytokines in some way play a role in the etiology of acute lung 

injury and PE. 

Cellular and Biochemical Mediators of Acute Lung lnjurv 

Increasing evidence indicates that acute lung injury is the culmination of the 

activity of leukocytes and a host of inflammatory mediators of cellular origin which 

together cause pulmonary vascular endothelial injury and result in increased

permeability PE. Leukocytes (neutrophils and eosinophils), oxygen reactive 

metabolites, arachidonic acid metabolites such as prostaglandins (PG), leukotrienes 

(L T) and thromboxanes (TX), interleukin-1 (IL-1) and tumor necrosis factor (TNF) have 

been shown to be involved in various experimental models of acute lung injury. 

Leukocytes. Neutrophils mediate an inflammatory response by releasing proteolytic 

enzymes and generating oxygen-derived free radicals which are capable of damaging 

pulmonary vascular endothelium and destroying lung tissues (Varani et al., 1985). 

Superoxide dismutase, catalase and dimethyl sulfoxide partially prevented the acute 

lung injury by scavenging reactive oxygen metabolites such as superoxide anion, 

hydrogen peroxide, and hydroxyl radicals (Varani et al., 1985; Fox et al., 1983). 
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Depletion of neutrophils with agents such as cyclophosphamide, nitrogen mustard and 

hydroxyurea reduce the severity of acute lung injury in experimental animals (Stephens 

et al., 1988; Shasby et al., 1982a; Johnson and Malik, 1980; Heflin and Brigham, 

1981 ). There are also cases such as ischemia-reperfusion (Grosso et al., 1990; Deeb 

et al., 1990) where lung injury is independent of neutophils. 

Eosinophilic pleural effusion in patients with various underlying diseases 

(Kokkola and Valta, 1974; Veress et al., 1979) suggests a role for eosinophils in acute 

lung injury. The effects of activated eosinophils on pulmonary vessels is biphasic; an 

initial, intense vasoconstriction followed by increased vascular permeability and PE 

(Hoidal, 1990). Rowen et al. (1990) have shown that eosinophils can cause acute 

edematous injury mediated partially by oxygen radicals in isolated perfused rat lung. 

Transmembrane pores formed by eosinophils' cationic proteins have been implicated 

in cell damage (Young et al., 1986). Activated eosinophils cause pulmonary 

vasoconstriction, bronchoconstriction, and vascular endothelial injury (Fujimoto et al., 

1990). These results indicate that injurious effects of neutrophils and eosinophils are 

caused by their cytolytic proteins and oxygen radicals. 

Oxygen Radicals. Oxygen radicals, generated by leukocytes, derived from xanthine 

oxidase, resulting from lipid peroxidation or produced during metabolism of 

xenobiotics, have been implicated in acute lung injury. Oxygen radicals cause 

oxidative stress which could cause cellular injury if cellular defense mechanisms such 

as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (enzymatic), 

glutathione, vitamin E and vitamin C (non-enzymatic) are overwhelmed. Oxygen 

radicals can cause lipid peroxidation, which can increase membrane permeability, 

oxidize sulfhydryl group of proteins, disturb cellular enzyme functions, and damage 
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nucleic acids. Oxygen radicals derived from xanthine oxidase play an important role 

in ischemia-reperfusion injury in small intestine, stomach, liver, kidney, lung, heart and 

brain (Korthuis and Granger, 1986). Xanthine dehydrogenase is converted to xanthine 

oxidase upon reperfusion of a hypoxic area. Xanthine oxidase uses oxygen as 

substrate to generate reactive oxygen species (Grisham and McCord, 1986). It is also 

hypothesized that upon injury, endothelial xanthine dehydrogenase (a cytoplasmic 

enzyme) is converted to xanthine oxidase capable of generating oxygen radicals 

(Jarasch et al., 1986). Grosso et al. (1990), in a pulmonary hypoperfusion/ischemia

reperfusion model, have shown that xanthine oxidase-generated oxygen radicals are 

· partial1y responsible for pulmonary capillary endothelial damage and PE. Oxygen 

radicals generated by neutrophils have cause acute lung injury and PE (Repine et al., 

1982; Shasby et al., 1982b; McDonald et al., 1987; Patterson et al., 1989). The 

pulmonary toxicity of paraquat and bleomycin has been proposed to be caused by 

oxygen radicals generated from their metabolism (Frank, 1985). It is also likely that 

oxygen free radicals are generated as the result of membrane lipid peroxidation and 

breakdown of membrane arachidonic acids. 

Arachidonic Acid Metabolites. Oxidative stress and lipid peroxidation result in the 

breakdown of arachidonic acid through cyclooxygenase and lipoxygenase pathways. 

The breakdown products of these pathways, such as prostaglandins (PG), 

thromboxanes (TX) and leukotrienes (L T), have been implicated in lung inflammation. 

Cyclooxygenase products PGE2 and PGI 2 have vasodilatory effects, and TX cause 

pulmonary vasoconstriction, bronchoconstriction, and platelet and neutrophil 

aggregation (Henderson, 1987). Leukotrienes, which are lipoxygenase-derived 

products, increase vascular permeability and cause granulocyte accumulation and 
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adherence (Henderson, 1987). Lung injury caused by amphotericin Bin rc;~ts is thought 

to be associated with oxidant stress and eicosanoid production but independent of 

neutrophils (McDonnell et al., 1988). LT were found in the bronchoalveolar lavage 

fluid (Stephenson et al., 1988) and PE fluid from patients with adult respiratory 

distress syndrome (Matthay et al., 1984). In an isolated rabbit lung model, Littner and 

Lott (1989) have shown that the cyclooxygenase product, thromboxane A 2 from 

endogenous arachidonic acid breakdown caused increased-pressure pulmonary edema. 

Cyclooxygenase and lipoxygenase products are released from endothelial cells in vitro 

under hyperoxic conditions (Jackson et al., 1986). The increased permeability caused 

by LTB4 is thought to be neutrophil-independent (Burgess et al., 1990). L T have also 

been shown to stimulate the human umbilical endothelial cells to synthesize platelet

activating factor and bind neutrophils (Mcintyre et al., 1986). 

Cytokines. Cytokines such as IL-1 and TNF may also play a role in acute lung injury. 

IL-1 is produced primarily by monocytes/macrophages in response to infection and 

injury. Vascular endothelium, smooth muscle cells, astrocyte and microglial cells of 

the brain and B lymphocytes also produce IL-1 (Dinarello, 1988). Overall, IL-1 causes 

a number of cellular and biochemical effects which lead to congestion of vessels, 

formation of clot, infiltration of inflammatory cells and increased endothelial 

permeability (Dinarello, 1988). In vitro, IL-1 directly affects the vascular endothelium, 

causing increased adhesiveness for granulocytes (Bevilacqua et al, 1985; Cotran et al., 

1986), increased synthesis of platelet-activating factor (Bussolino et al., 1986), and 

increased prostaglandin E2, a vasodilator (Aibrightson et al., 1985). IL-1 depresses 

both the levels and the activity of hepatic cytochrome P-450 in mice (Shedlofsky et 

al., 1987). The level of IL-1 is increased in bronchoalveolar fluid in patients with 
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bacterial pulmonary infection (Wilmott, 1990), in alveolar macrophages from patients 

with Adult Respiratory Distress Syndrome (ARDS, Jacobs, 1989), and in ventricular 

fluid from patients with head injury (McClain et al., 1987). IL-1 and TNF levels are 

increased in patients with fulminant hepatic failure (Muto et al., 1988). Elevated levels 

of IL-1 have also been reported in women after ovulation (Cannon and Dinarello, 

1985). IL-1 bioactivity was increased in monocrotaline-treated rats (Gillespie et al., 

1988). A monokine preparation containing IL-1 caused pulmonary edema and albumin 

leakage in rats (Gillespie et al., 1989). Goldblum et al. (1988) have shown that human 

IL-1 causes acute pulmonary vascular endothelial injury and lung edema in rabbits. It 

is suggested that the cytotoxic effects of IL-1 are caused indirectly through stimulating 

the release of oxygen radicals from endothelial cells (Matsubara and Ziff, 1986). 

Tumor necrosis factor (TNF) is also produced mainly by monocytes/ 

macrophages (Fong and Lowry, 1990). TNF induces IL-1 production by the vascular 

endothelium (Dinarello, 1986; Nawroth et al., 1986), activates polymorphonuclear cell 

functions (Shalaby et al., 1985) and induces procoagulant activity of vascular 

endothelium (Bevilacqua et al., 1986; Nawroth and Stern, 1986). Although the 

production of TNF is associated with infection, elevated levels of TNF have been 

reported in non-infectious conditions such as cancer (Balkwill et al., 1987; Aderka, et 

al., 1985), thermal injury (Marano et al., 1990), renal allograft rejection (Maury and 

Teppo, 1987), head injury (Goodman et al., 1990), heart failure (levine et al., 1990), 

hepatic failure (Muto et al., 1988) and ARDS (Roten et al., 1991 ). TNF production by 

peripheral blood mononuclear cells from anorexia nervosa patients (Schattner et al., 

1990) and alveolar macrophages from patients with rheumatoid arthritis (Gosset et al., 

1991) is increased. It appears that elevation of TNF is not exclusive to infectious 

diseases. Infusion of TNF into rats caused hypotension, metabolic acidosis, elevated 
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hematocrit and potassium levels, and hyperglycemia leading to death from respiratory 

arrest (Tracy et al., 1986). At necropsy, prominent hemorrhagic lesions were found 

in the lung and gastrointestinal tract (Tracy et al., 1986). In mice, administration of 

TNF caused peripheral blood lymphopenia and neutrophilia accompanied by necrosis 

in the small intestine due to endothelial injury (Remick et al., 1987). Systemic 

administration of TNF can cause pulmonary vascular endothelial injury and pulmonary 

edema in guinea pigs and rabbits (Stephens et al., 1988; Goldblum et al., 1989). This 

effect of TNF appears to be granulocyte-dependent, as granulocyte depletion prevents 

acute lung injury (Stephens et al., 1988). TNF caused generation of superoxide anion 

from neutrophils (Tsujimoto et al., 1986). TNF also increases endothelial cell 

permeability in vitro (Horvath et al., 1988; Henning et al., 1988; Brett et al., 1989; 

Shinjo et al., 1989; Royall et al., 1989; Goldblum and sun, 1990). This effect is 

thought to be independent of neutrophils (Horvath et al., 1988) and due endothelial 

cytoskeletal alteration involving G protein (Brett et al., 1989). Hocking et al. (1990) 

found that TNF caused neutrophil-dependent pulmonary edema in isolated, perfused 

guinea pig lung. The edema was attributed to increased pulmonary capillary pressure 

caused by thromboxanes, platelet activating factor (PAF), and increased capillary 

permeability mediated by PAF (Hocking, 1990). Results from studies involving 

endothelial cytotoxicity of TNF are contradictory and depend on the model used. TNF 

was not cytotoxic to human endothelium (Schuger et al., 1989, Pober and Cotran, 

1990), except when TNF-pretreated human umbilical endothelial cells were transferred 

to a balanced salt solution (Schuger et al., 1989). It appears that TNF does not have 

direct endothelial cytotoxicity; rather, it increases the susceptibility of endothelium to 

injury. Pre-exposure of rat arterial endothelial cells to TNF increases the toxicity of 

activated neutrophils towards these cells (Varani et al., 1988). This is perhaps due to 
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generation of cytotoxic superoxide anion from neutrophils stimulated by TNF 

(Tsujimoto et al., 1986). TNF-stimulated eosinophils are cytotoxic to human umbilical 

vein endothelium, possibly through peroxidase activity of eosinophils (Siungaard et al., 

1990). Inhibition of protein synthesis in bovine pulmonary endothelial cells by 

cycloheximide makes these cells susceptible to lysis by TNF (Nolop and Ryan, 1990). 

Oxygen radicals, leukocytes, arachidonic acid metabolites and cytokines appear 

to cause acute lung injury; commonly the injury is due to the sum of the effects of 

several of these mediators. Whatever the mechanism, the ultimate target tissue of 

these mediators is the vascular endothelium. 

Pulmonary Vascular Endothelium and Acute Lung Injury 

Endothelial cells have important synthetic and metabolic functions. In addition 

to providing a barrier, endothelial cells synthesize prostaglandins, prostacyclin, factor 

VIII-related antigen and fibronectin. They also inactivate norepinephrine and adenosine 

and convert angiotensin I into angiotensin II (Hammersen and Hammersen, 1985). 

Acute lung injury caused by xenobiotics such as a-naphthylthiourea, paraquat, 4-

ipomeanol, nitrofurantoin and bleomycin is thought to be the result of pulmonary 

epithelial or vascular endothelial oxidant injury (Boyd, 1980; Martinet al., 1985; Martin 

and Kachel, 1987). Injury is due to the formation of oxygen radicals during 

metabolism by cytochrome P-450. The isolation and culture of endothelial cells from 

pulmonary vessels provides a useful model to elucidate the mechanism of action of 

many well-known pulmonary toxicants and the role of mediators such as leukocytes, 

oxygen radicals, arachidonic acid metabolites and cytokines in acute lung injury. In 

addition, endothelial cell culture will provide a suitable in vitro model for the study of 

interrelationships among these mediators with respect to etiology of acute lung injury 
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caused by drugs and xenobiotics. 

Statement of Dissertation Problem 

Important drug interactions occur during anesthesia when a number of drugs 

are administered. Many toxicities and deaths have been reported after administration 

of xylazine or a xylazine-ketamine combination. However, the causes were not 

determined or were attributed to an underlying disease. Unexplained death or PE after 

xylazine or xylazine-ketamine administration have been reported in sheep (Uggla and 

Lindqvist, 1983), dogs (Kirkpatrick, 1978; Kommonen and Koskinen, 1984), a bull 

(Newey, 1977), a stallion (Fuentes, 1978), a pony (Clarke and Hall, 1969), rabbits 

(Palmore, 1990), rats (Kanniappan and Ramaswamy, 1979), and grey seals (Baker and 

Gatesman, 1985). These toxic effects could be the result of impaired metabolic 

capability of individual patients. 

The purpose of the first part of this study was to assess the effects of inducers 

and inhibitors of cytochrome P-450 on the duration of xylazine-ketamine anesthesia. 

Inhibition of cytochrome P-450 was accompanied with respiratory distress, PE, pleural 

effusion and death. It appears that PE is one of the side effects of xylazine or xylazine

ketamine, probably xylazine. PEcan be caused directly by xylazine or by metabolites 

resulting from the biotransformation of xylazine by cytochrome P-450. Whatever the 

cause, the outcome is PE and respiratory distress. The most likely target of xylazine 

toxicity is the lung vascular endothelium. Xylazine or its metabolites could damage 

pulmonary endothelial cells and cause leakage of plasma proteins into the interstitium 

and eventually into the pleural space. Endothelial injury is one of the common features 

of increased-permeability PE caused by drugs and chemicals. Alternatively, PEcan be 

caused by xylazine-induced hemodynamic changes resulting in pulmonary 
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hypertension. The initial hypertensive effects of xylazine caused by peripheral 

vasoconstriction could result in pulmonary hypertension leading to increased vascular 

permeability. It is also likely that xylazine or its metabolites directly damage pulmonary 

endothelium and cause increased-permeability PE. Other possible mechanisms include 

the involvement of mediators of acute lung injury such as leukocytes, oxygen radicals, 

arachidonic acid metabolites, and cytokines such as IL-1 and TNF. 

The purpose of this study was to confirm that xylazine causes PE, to 

characterize xylazine-induced PE, and to elucidate the role of each of above factors in 

the etiology of xylazine-induced PE (Figure 2). The results of this study will provide 

insight into the mechanism of xylazine-induced PE which could be useful in the 

therapeutic management of xylazine toxicity in animals and humans. 
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CHAPTER II 

EFFECTS OF SOME HEPATIC MICROSOMAL ENZYME INDUCERS 

AND INHIBITORS ON XYLAZINE-KETAMINE ANESTHESIA 

Introduction 

Xylazine-ketamine combination is a commonly used anesthetic in veterinary 

medicine. Xylazine is an alpha 2-adrenergic agonist with analgesic, sedative and 

muscle-relaxant properties (Greene and Thurmon, 1988). Ketamine, a dissociative 

anesthetic, produces anesthesia characterized by marked analgesia (Wright, 1982). 

The combination of xylazine and ketamine produces adequate anesthesia for most 

short surgical procedures. The metabolic fate of xylazine is not well understood. In 

rats, xylazine is rapidly metabolized, yielding about twenty metabolites (Duhm, et al., 

1969). Garcia-Villar et al. (1981) found that xylazine is rapidly distributed and 

eliminated in horses, cattle, sheep and dogs. They suggested that the rapid elimination 

may be due to intense metabolism rather than renal excretion, as evidenced by a lack 

of significant amounts of unchanged xylazine in the urine of sheep. These studies 

suggest that xylazine may be metabolized by hepatic cytochrome P-450, similar to the 

metabolism of ketamine. A major pathway of ketamine biotransformation is N

demethylation by cytochrome P-450 enzymes (White et al., 1982). The extent of 

metabolism varies among species (Chang and Glazko, 1974). In rats and cats, a large 

portion of ketamine is excreted unchanged in urine (Wright, 1982). In contrast, in 

humans and monkeys, most of the ketamine is metabolized (Wright, 1982). 

Many commonly used drugs such as chloramphenicol, cimetidine, ketoconazole 
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and phenobarbital affect hepatic microsomal enzyme systems and alter the metabolism 

of other drugs (Haplert and Neal, 1980; Knodell et al., 1981; Sheet and Mason, 1984; 

Park and Breckenridge, 1981 ). Such drugs interactions could profoundly alter the 

duration and outcome of anesthesia. The purpose of this study was to investigate the 

effects of some inducers and inhibitors of hepatic microsomal enzyme systems on 

xylazine-ketamine anesthesia in rats. 

Materials and Methods 

Male Sprague-Dawley rats (Sasco Labs., Omaha, NE) of similar age (250-350 

g) were housed with temperature, humidity and air circulation maintained at optimal 

levels according to the Guide for the Care and Use of Laboratory Animals. They were 

allowed free access to food and water and kept on a 12-hour light-dark cycle. One 

week after arrival, the rats were divided into pre-anesthetic treatment groups of 8 to 

10 each. The control group received saline (i.p.) pretreatment. The other groups were 

pretreated as follows: chloramphenicol (CHPC), 100 mg/kg, i.p., 60 minutes; 

phenobarbital (PHB), 40 mg/kg, i.p., once daily for 4 days; SK&F 525-A, 25 mg/kg, 

i.p., 30 minutes; ketoconazole (KCZ), 40 mg/kg, p.o., 2 hours and cimetidine (CIM), 

100 mg/kg, i.p. 60 minutes prior to intramuscular administration of xylazine (21 mg/kg) 

and ketamine 45 mg/kg). The duration of anesthesia was measured as the time from 

the loss of righting reflex to the time of return of righting reflex. The animals that died 

in SK&F 525-A and ketoconazole pretreated groups were necropsied. Animals 

showing less severe signs of respiratory distress recovered but were euthanatized and 

necropsied. Gross pathological changes were noted, and the lungs were removed and 

fixed in buffered formalin. After fixation, tissues were processed, sectioned at 6p and 

stained with H & E. Mean ± SE of the duration of anesthesia for each group was 
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calculated and compared to control using Dunnett's test. Differences were considered 

significant at P < 0.05. 

Drugs. Chloramphenicol (Chloromycetin sodium succinate, Park-Davis, Morris Plains, 

NJ), phenobarbital (Eisin-Sinn Inc., Cherry Hill, NJ), cimetidine (Tagamet, SK&F, 

Carolina, PR), ketoconazole (Nizoral, Janssen, New Brunswick, NJ), xylazine (Rompun, 

Mobay, Shawnee, KS) and ketamine (Ketaset, Bristol-Myers, Syracuse, NY) were 

purchased commercially. Ketoconazole tablets were dissolved in distilled water prior 

to administration with an oral needle. The combination of xylazine and ketamine was 

a mixture of 7 ml of 2% xylazine and 3 ml of 10% ketamine. SK&F 525-A (proadefen 

hydrochloride) was a gift from Smith Kline & French Labs., Swedenland, PA. 

Results 

Duration of Anesthesia. The animals lost their righting reflex 2-3 minutes after 

administration of xylazine-ketamine. All animals showed marked polyuria during 

anesthesia. In all animals, the urine contained a substantial amount of glucose, as 

indicated by strip glucose test. Pretreatment with CHPC, CIM, KCZ and SK&F 525-A 

significantly (P < 0.05) increased the duration of anesthesia to 143.7 ± 6.9, 127.6 

± 10.1, 138.7 ± 9.5 and 183.8 ± 11.4 min., respectively, as compared to that of 

control group (94.1 ± 5.5 min.). However, pretreatment with PHB did not affect the 

duration of anesthesia (1 01.9 ± 6.6 min.) significantly (Table 1 ). Animals pretreated 

with SK&F 525-A and ketoconazole showed respiratory distress about 6 hours after 

recovery from anesthesia, and the severity of respiratory distress increased within the 

next 24 hours, leading to death from respiratory arrest in some animals (Table 1). 
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Pathological Findings. Rats that died from 12 to 24 hours after pretreatment with 

SK&F 525-A and ketoconazole had extensive serous pleural effusion (5-1 0 ml). The 

fluid was typically straw colored and sometimes contained numerous intact red blood 

cells. These animals also had severe pulmonary edema affecting the alveoli and 

perivascular stroma (Figure 1 ). There were no significant lesions in animals that 

survived, except for increased numbers of macrophages in alveoli and the alveolar 

stroma. 

Discussion 

Pretreatment with SK&F 525-A, chloramphenicol, ketoconazole and cimetidine 

significantly increased the duration of anesthesia, as expected. However, 

phenobarbital, a known inducer of cytochrome P-450, did not affect the duration of 

anesthesia. The increase in duration of anesthesia in animals pretreated with known 

cytochrome P-450 inhibitors SK&F 525-A, CHPC, KCZ and CIM indicates that 

cytochrome P-450 enzymes are involved in the metabolism of xylazine-ketamine 

(Haplert and Neal, 1980; Knodell et al., 1981; Sheet and Mason, 1984; Park and 

Breckenridge, 1981). The lack of a significant change in the duration of anesthesia 

with phenobarbital pretreatment suggests that phenobarbital inducible cytochrome P-

450 isoenzymes are not involved in the metabolism of xylazine-ketamine. 

Death due to pulmonary edema after xylazine and xylazine-ketamine 

administration has been reported. Uggla and lindqvist (1983) reported a case of 

xylazine-induced pulmonary edema and death in sheep. They also noted eight cases 

of acute pulmonary edema among fifty sheep sedated with xylazine. A case of death 

due to pulmonary edema has been reported in a Poodle anesthetized with xylazine

ketamine for angiography (Kommonen and Koskinen, 1984). Two deaths occurred in 



TABLE 1 

EFFECTS OF SOME HEPATIC MICROSOMAL ENZYME INHIBITORS 

AND INDUCERS ON XYLAZINE (21 mg/kg, i.m.)-KETAMINE (45 mg/kg,i.m.) 

ANESTHESIA IN RATS 

Dose 

Pretreatment (mg/kg) Route Time# 

Control (saline) i.p. 

Chloramphenicol 100 i.p. 60min 

Cimetidine 100 i.p. 60 min 

Ketoconazole 40 p.o. 2 hrs 

SK&F 525-A 25 i.p. 30 min 

Phenobarbital§ 40 i.p. 4 days 

Duration of 

anesthesia 

(min) 

94.1 ± 5.5 

143.7 ± 6.9* 

127.6 ± 1 0.1 * 

138.7 ± 9.5* 

183.8 ± 11.4 * 

101.9 ± 6.6 

* Significantly different from control at P < 0.05. 

§Once daily 

n Dead 

10 0 

10 0 

10 0 

10 2 

8 7 

9 0 

# Pretreatment time before administration of xylazine-ketamine. 
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German Shepards within 24 hours of receiving xylazine and ketamine (Kirckpatrick, 

1978). But the cause of death was not reported. Kanniappan and Ramaswamy 

(1979) noted death due to severe dyspnea within 30 hours after injection of xylazine 

in rats, whereas no similar death occurred in mice receiving xylazine. In our study 7 

out of 8 and 2 out of 10 rats pretreated with SK&F 525-A and ketoconazole, 

respectively, died from pulmonary edema within 24 hours. The reported cases of 

death and those found in our studies are perhaps due to impairment of metabolism of 

xylazine and ketamine or species variation in metabolic disposition. 

The impaired metabolism could lead to increased plasma half-life of the parent 

drug and/or formation of reactive metabolites which could both play a role in 

pathophysiology of pulmonary edema. Pulmonary edema is classified according to its 

etiology. Hemodynamic edema is caused by increased vascular pressure and 

permeability edema is caused by increased vascular permeability (Staub, 1984). 

Hemodynamic edema is characterized by a relatively slow course in contrast to 

permeability edema which is characterized by rapid progression (Staub, 1984). 

Pulmonary edema observed in our study could have resulted from the hemodynamic 

effects of xylazine and/or ketamine. Alternatively, xylazine and/or ketamine or their 

potential reactive metabolites could damage pulmonary vascular endothelium leading 

to increased permeability. 

Xylazine is known to have deleterious cardiovascular effects such as 

bradycardia, hypotension and varying degrees of heart block (Greene, and Thurmon, 

1988). On the other hand ketamine has been shown to produce an elevation of mean 

aortic pressure, pulmonary arterial pressure and central venous pressure (Wright, 

1982). 

If pulmonary edema results from the cardiovascular effects of xylazine and/or 



Figure 1. 
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Lung from a rat pretreated with SK&F 525-A (25 mg/kg, i.p.) 30 min. 
before administration of xylazine (21 mg/kg, i.m.) and ketamine (45 
mg/kg, i.m.). Note both the perivascular (arrow) and intra-alveolar ( *) 

edema. H & E, 11 OOx. 
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ketamine due to the inhibition of their metabolism and increased plasma half-life, there 

should be some cases of pulmonary edema in the CHPC and CIM pretreated groups. 

We did not observe any signs of respiratory distress and death in the CHPC and CIM 

pretreated group. This suggests that hemodynamic changes as the cause of 

pulmonary edema are unlikely. Also, it appears that the hemodynamic pulmonary 

edema follows a slower course as compared to permeability pulmonary edema (Staub, 

1984). The presence of large amount of edema fluid and death within 24 hours 

indicates an acute course of events which perhaps are the result of vascular 

endothelial damage by potential reactive metabolites similar to that caused by a

naphthylthiourea (Cunningham and Hurley, 1971; Boyd and Neal, 1976). The lack of 

respiratory distress and death in CHPC and CIM pretreated groups could mean that 

CHPC and CIM inhibit specific isoenzymes of cytochrome P-450 which are not involved 

in the toxicity while SK&F 525-A and KCZ inhibit isoenzymes which are involved in 

xylazine-ketamine toxicity. 
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CHAPTER Ill 

XYLAZINE-INDUCED PULMONARY EDEMA IN RATS 

Introduction 

Xylazine-ketamine combination is a commonly used anesthetic in veterinary 

medicine. Xylazine is an a2-adrenergic agonist with analgesic, sedative and muscle

relaxant properties (Greene et al., 1988). Ketamine, a dissociative anesthetic, 

produces anesthesia characterized by marked analgesia (White, 1982). In a recent 

study (Amouzadeh et al., 1989) on the effects of inhibitors and inducers of 

cytochrome P-450 on the duration of xylazine-ketamine anesthesia, pretreatment of 

rats with SK&F 525-A and ketoconazole prolonged the duration of anesthesia, but 

caused acute lung injury leading to death from pulmonary edema (PE), pleural effusion 

(PLE) and respiratory distress. Cases of PE and/or death after xylazine or xylazine

ketamine administration have been reported in sheep (Uggla and Lindqvist, 1983), dog 

(Kirkpatrick, 1978; Kommonen and Koskinen, 1984), and rat (Kanniappan and 

Ramaswamy 1979; Amouzadeh, et al., 1989). Xylazine toxicity has also been 

reported in humans (Poklis et al., 1978; Carruthers et al., 1979; Gallanosa et al., 

1981 ). Xylazine causes a transient hypertension followed by hypotension, bradycardia 

and heart block. The hypertension is caused by peripheral vasoconstriction mediated 

by postsynaptic a-adrenoceptors (Schmidtt et al., 1970; Antonaccio et al., 1973; 

Langer, 1980). Hypotension is due to centrally mediated decrease in sympathetic 

outflow (Schmidtt et al., 1970; Antonaccio et al., 1973; Van Zwieten and 

Timmermans, 1983). Bradycardia and heart block are due to vagal stimulation, 
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decreased CNS sympathetic output and decreased norepinephrine release in cardiac 

nerve by stimulation of presynaptic a2-adrenoceptor (Schmidtt et al., 1970; 

Antonaccio, et al., 1973 and Langer, 1980). It appears that the cause of PE and death 

is xylazine. 

PE is thought to be caused by either increased pressure (cardiogenic) or 

increased permeability (non-cardiogenic). Increased-pressure PE in characterized by 

lack of cellular damage, low protein edema fluid and benign course of development. 

In contrast, increased-permeability PE is characterized by presence of cellular damage, 

protein-rich edema fluid and rapid onset (Staub, 1984). A number of drugs including 

analgesics, antiarrhythmic agents and opiates have been reported to cause pulmonary 

damage through non-cardiogenic factors such as direct toxicity or indirect 

augmentation of an inflammatory reaction (Cooper et al., 1986a and 1986b). 

Inflammatory mediators such as arachidonic acid breakdown products and oxygen 

radicals generated by neutrophils or xanthine oxidase have been implicated in 

experimental lung injury (Shasby et al., 1982; Birgham, 1985; Grosso et al., 1989). 

In addition, toxicants such as a-naphthyltiourea, paraquat and 4-ipoineanol cause lung 

injury through reactive species generated by cytochrome P-450 (Boyd, 1980). The role 

of reduced glutathione (GSH) in protection of lung from injury caused by oxidant stress 

or reactive species is well-established (Adams et al., 1983; Minchin and Boyd et al., 

1983). GSH has been shown to protect lung against injury induced by paraquat and 

4-ipomeanol (Boyd et al., 1982; Hagen et al., 1986). 

The pulmonary toxicity of xylazine could be caused directly by xylazine itself 

or its metabolite(s) or indirectly through inflammatory mediators of acute lung injury 

such as arachidonic acid breakdown products and oxygen radicals. 

The objectives of this study were to confirm that xylazine causes PE, to 
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characterize the pathological changes by comparison to a-naphthylthiourea (ANTU), 

a known edemagenic agent, and to elucidate roles of hemodynamic factors, 

metabolites, arachidonic acid breakdown products and oxygen radicals in etiology of 

xylazine-induced PE. 

Methods 

Animals: 

Specific virus antibody-free male Sprague-Dawley rats (Sasco Labs., Omaha, 

NE) of similar age and weight (225-250 g) were housed with temperature, humidity 

and air circulation maintained according to the Guide for the Care and Use of 

Laboratory Animals (NIH, 1985). They were allowed free access to food and water 

and were kept on a 12-hour light-dark cycle. One week after arrival, the rats were 

randomly assigned to various treatment groups. 

Drugs: 

Allopurinol, yohimbine, polyethylene glycol-conjugated superoxide dismutase 

and catalase, dimethyl sulfoxide (OMSO), ibuprofen, prazosin, tolazoline, atropine 

sulfate, cystathionine, taurine (Sigma Chemical Company, St. Louis, MO), xylazine 

(Gemini , Rockville centre, NY), ketamine (Ketaset , Labs, Syracuse, NY) and a

naphthylthiourea (Eastman Kodak, Rochester, NY) were purchased commercially. 

SK&F 525-A and BW755C were gifts from Smith French & Kline Labs, Swedenland, 

PA and Wellcome Research Laboratories, Beckenham Kent, UK, respectively. The 

combination of xylazine and ketamine was a mixture of 7 ml of 2 % xylazine and 3 ml 

of 1 0% ketamine. a-naphthylthiourea (ANTU) suspension was prepared in olive oil. 

DMSO was diluted to a 50 % solution with distilled water before administration. 
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Ibuprofen was dissolved in propylene glycol. The other compounds were dissolved in 

distilled water. 

Exoeriment One: Determination of the Cause of Pulmonary Edema 

Animals were randomly assigned to eight groups of six. Each group received 

one of the following treatments: saline; xylazine (21 mg/kg, im); ketamine (45 mg/kg, 

im); xylazine (21 mg/kg, im) plus ketamine (45 mg/kg, im); SK&F 525-A (50 mg/kg, 

ip); SK&F 525-A (50 mg/kg, ip) 30 min before xylazine (21 mg/kg, im); SK&F 525-A 

(50 mg/kg, ip) 30 min before ketamine (45 mg/kg, im); and SK&F 525-A (50 mg/kg, 

ip) 30 min before xylazine (21 mg/kg, im) plus ketamine (45 mg/kg, im). Animals were 

killed by decapitation 24 hr after the administration of drugs. The lungs and hearts 

were removed en block. The lungs were separated from the hearts, trimmed of fat and 

connective tissues, blot-dried with gauze and their wet-weight was measured. Percent 

LW/BW ratios were compared as an indicator of PE. 

Exoeriment Two: Selection of the Edemaqenic Dose of Xylazine 

Preliminary studies with 42 mg/kg xylazine indicated that this may be the 

appropriate dose to cause PE and PLE. In order to select an appropriate dose which 

caused PE and PLE with least number of acute death, twelve rats were randomly 

assigned to two groups of six. They received intramuscular injection of either 42 

mg/kg or 63 mg/kg of xylazine and were killed by decapitation 24 later. The lungs and 

hearts were removed en block. The lungs were separated from the hearts, trimmed 

of fat and connective tissues, blot-dried with gauze and their wet weight was 

measured. Pleural fluid was collected and its volume was measured. 
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Exoeriment Three: Characterization of Pulmonary Edema 

Animals were randomly assigned to two groups of 24 each. One group 

received xylazine (42 mg/kg, im) and the other group received a-naphthylthiourea (5 

mg/kg, ip). The control group consisted of six animals which received vehicles (saline 

or olive oil). After administration of drugs the animals were observed for signs of 

behavioral changes such as convulsion, sedation, respiratory distress, pol.yuria 

(qualitatively) and glucosuria (glucose strip test, Keto-Diastix , Miles Inc., Elkhart, IN). 

They were killed by decapitation at 3, 6, 12 and 24 hr after administration of xylazine 

or ANTU. Trunk blood was collected with and without EDTA. Gross pathological 

changes were noted. The volume of pleural fluid and wet-lung weight were measured. 

The blood and pleural fluid were centrifuged at 2000 X g for 1 5 min and serum and 

supernatant, respectively, were collected and frozen. Lung tissues were fixed in 

Carson's modified buffered formalin. After fixation, tissues were routinely processed, 

sectioned at 6 pm and stained with H &. E for histological examination. 

Total and differential white blood cell counts (WBC) and hematocrit (HCT) were 

measured. Serum and pleural fluid protein electrophoresis was done using Helena 

Serum Protein Electrophoresis Procedure (Helena Labs., Beaumont, TX). Total protein, 

lactate dehydrogenase (LDH), albumin, Na, K, and Cl were determined using Roche 

COBAS-MIRA diagnostic instrument (Roche Diagnostic Systems, Nutley, NJ). Total 

protein was determined according to Biuret method. Albumin was determined by 

modification of bromocresol green colorimetric method. LDH level was determined 

using Dri-STAT Reagent (Beckman, Carlsbad, CA). Na, K, and Cl were measured by 

ion-specific electrodes. 

Pulmonary edema was assessed by comparison of percent lung to body weight 

ratios (% LW/BW) of treated groups to that of control. The volume of pleural fluid, 
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where present, was measured. The ratios of total protein and various electrophoretic 

protein fractions in pleural fluid to those in serum were used as an indicator of the 

nature of pulmonary edema. 

Exoeriment Four: Mechanism of Pulmonary Edema 

Animals were randomly assigned to pretreatment groups of six. Each group 

received one of the following pretreatments: yohimbine (4.2 mg/kg, ip, 10 min); 

prazosin (20 mg/kg, ip, 10 min); tolazoline (20 mg/kg, ip, 10 min); yohimbine (4.2 

mg/kg, ip, 10 min) plus prazosin (20 mg/kg, ip, 10 min); atropine (20 mg/kg, ip, 10 

min); dimethyl sulfoxide (7 .8 g/kg, ip, 30 min); allopurinol (50 mg/kg, po, 24, 12 and 

2 hr); superoxide dismutase (20,000 U/kg, ip, 30 min); catalase (20,000 U/kg, ip, 30 

min); BW755C (50 mg/kg, po, 30 min before xylazine and every 6 hr for 24 hr); 

ibuprofen (50 mg/kg, ip, 30 min before xylazine and every 6 hr for 24 hr); 

cystathionine (1 00 mg/kg, ip, 30 min) plus taurine (1 00 mg/kg, ip 30 min). After 

pretreatment period, the animals were given 42 mg/kg xylazine intramuscularly. 

Control animals received either vehicles (propylene glycol or distilled water, n = 1 6) or 

42 mg/kg xylazine (n = 24). Animals were killed by decapitation 24 hr after the 

administration of drugs. The lungs and hearts were removed en block. The lungs 

were separated from the hearts, trimmed of fat and connective tissues, blot-dried with 

gauze and their wet-weight was measured. Pleural fluid was collected and its volume 

was measured. 

Data Analysis: 

The mean ± SE of percent lung to body weight ratio, PF/S total and individual 

protein ratios, pleural fluid volume, total and differential WBC counts, HCT, Na, K, Cl 
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and serum LDH were calculated. In experiment one the effects of xylazine, ketamine 

and SK&F 525-A were evaluated by analysis of variance for 23 factorial experiment 

using SAS General Linear Model (GLM) procedure. Data from experiment two were 

analyzed using unpaired Student t-test. In experiments three and four the data were 

analyzed by one-way analysis of variance using SAS General Linear Model (GLM) 

procedure. The significance of treatment means as compared to control values 

was determined by Dunnett's test. A probability level of P < 0.05 was considered 

significant for all experiments. 

Results. 

Determination of the Cause of Pulmonary Edema 

Xylazine, SK&F 525-A plus xylazine, and SK&F 525-A plus xylazine and 

ketamine increased (p < 0.05) the% LW/BW ratio as compared to control. Ketamine, 

SK&F 525-A, SK&F 525-A plus ketamine, and xylazine plus ketamine did not affect 

the% LW/BW ratio. There was no significant interaction (p > 0.05) between xylazine 

and ketamine with regards to% LW/BW ratios. However, xylazine-induced changes 

in %LW/BW ratios were enhanced by SK&F 525-A (Figure 1 ). 

Selection of the Edemaqenic Dose of Xylazine 

At 42 mg/kg,% LW/BW ratio was 0.89 ± 0.05, and PLE was 5.7 ± 1.5 mi. 

At 63 mg/kg, % LW/BW ratio was 0.85 ± 0.03, and PLE was 4.3 ± 1.0 mi. The 

mortality was 50 % in each group. Since there was no difference between the 42 and 

63 mg/kg doses of xylazine with regard to% LW/BW ratio and PLE, the lower dose of 

xylazine (42 mg/kg, im) was used in experiments two, three and four. 
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Characterization of Pulmonary Edema 

Percent LW/BW ratio was increased (p < 0.05) in both xylazine- (Figure 2) and 

ANTU-treated (Figure 3) rats as compared to control. PLE in xylazine-treated rats 

increased to a maximum at 24 hr (Figure 2). In ANTU-treated rats, PLE reached a 

maximum at 6 hr (Figure 3). PF/S protein ratios for xylazine- and ANTU-treated groups 

are presented in Table 1 and 3, respectively. In xylazine-treated rats, WBC, neutrophil, 

and monocyte counts were increased (p < 0.05) at 12 hr (Table 2). Hematocrit was 

increased (p < 0.05) at 3, 6, 12, and 24 hr after xylazine. Serum sodium and chloride 

concentration were decreased (p < 0.05) at 6 and 12 hr and potassium concentration 

was increased (p < 0.05) at 6 hr. Serum LDH was increased (p < 0.05) at 3 hr (Table 

2). In ANTU-treated rats, neutrophil count was increased (p < 0.05) at 6 hr. 

Monocyte count was decreased (p < 0.05) at 6 and 24 hr. Serum chloride 

concentration was increased (p < 0.05) at 12 hr. Potassium concentration was 

decreased (p < 0.05) at 12 hr and increased (p < 0.05) at 24 hr. Serum LDH was 

increased (p < 0.05) at 3 and 6 hr (data not shown). 

Behavioral Observations. Xylazine-treated rats (42 mg/kg, im) convulsed and lost their 

righting reflex within 5 min, followed by pronounced polyuria and glucosuria. 6-12 hr 

the animals became dyspneic and showed signs of nasal and orbital bleeding 

as evidenced by blood clots around orbits and nostrils. Subsequently, dyspnea 

increased in severity and lead to death associated with respiratory distress in some 

animals. ANTU-treated rats became dyspneic within 6-12 hr; dyspnea increased in 

severity, but the animals survived. 

Pathological Findings. Xylazine-treated rats (42 mg/kg, im) had extensive serous PLE. 
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Effects of (8) xylazine (21 mg/kg, im, n = 6); (C) ketamine (45 mg/kg, im, 
n = 6); (0) xylazine (42 mg/kg, im) plus ketamine (45 mg/kg, im, n = 6); 
(E) SK&F 525-A (25 mg/kg, ip, n = 6); (F) SK&F 525-A (25 mg/kg, ip) 
plus xylazine (21 mg/kg, im, n = 6); (G) SK&F 525-A (25 mg/kg, ip) plus 
ketamine (45 mg/kg, im, n = 6); (H) SK&F 525-A (25 mg/kg, ip) plus 
xylazine (21 mg/kg, im) and ketamine (45 mg/kg, im, n = 6) on % LW /BW 
ratio. The treatment schedule is given in experiment one of Methods. 
( *) Significantly (p < 0.05) different from control (A, n = 5). 



1.2 

1.0 

0 
I- 0.8 
<C 
a: 
3= 0.6 
m 
........ 
3= 
...J 0.4 
M 

0.2 

0 

Figure 2. 

49 

D LW/BW RATIO 12 
- PLEURAL EFFUSION 

* * * 10 ""D 
r-
m 
c 

8 :D 
> r-

m 
6 "TT 

"TT 
c 
en 

4 0 z 
-3 

2 -
0 

c 3 6 12 24 

Time (hr) 

Effect of xylazine (42 mg/kg, im) on % LW/BW ratio and PLEat various 
times. (*)Significantly (p < 0.05) different from control (C). 
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Effect of ANTU (5 mg/kg, ip) on % LW/BW ratio and PLE at various 
times. ( *) Significantly (p < 0.05) different from control (C). 



TABLE 1 

THE EFFECTS OF XYLAZINE (42 mg/kg, im) ON THE PLEURAL FLUID 

TO SERUM PROTEIN RATIO 

Time (hr) 

PROTEIN 3 6 12 24 

TOTAL 0.86 ± 0.028 0.90 ± 0.01 0.85 ± 0.04 0.68 ± 0.05 
(4)b (4) (2) (2) 

ALBUMIN 1.08 ± 0.02 1.08 ± 0.02 1.02 ± 0.05 1.08 ± 0.02 
(4) (4) (2) (2) 

o.n ± o.14 0.50 ± 0.06 0.52 ± 0.00 0.57 ± 0.07 
(4) (4) (2) (2) 

0.50 ± 0.08 0.74 ± 0.10 1.08 ± 0.02 0.72 ± 0.08 
(4) (4) (2) (2) 

1.06 ± 0.05 1.22 ± 0.05 1.18 ± 0.24 0.99 ± 0.10 
B (4) (4) (2) (2) 

0.77 ± 0.20 0.93 ± 0.14 1.47 ± 1.47 1.53 ± 0.04 
(4) (4) (1) (2) 

a All values are expressed as mean ± SE. 

b The number of animals Is given In parantheses. 
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TABLE 2 

SUMMARY OF SELECTED WHOLE BLOOD AND SERUM CLINICOPATHOLOGY 

FROM XYLAZINE (42 mg/kg, im)-TREATED RATS 

Time (hr) 

Parame&er" Control 3 e 12 24 

* 11100.0 ± 6!16.6 lli83.3 ± 1235.4 14516.7 ± 2535.8 31333.3 ± 3883.4 11220.0 ± 2147.5 
WBC (7300-11000)b (61(10.13100) (41100-23200) (24100-37400) (5400.16900) 

(6)c (6) (6) (3) (5) 

* 
NEUTROPHIL 30711.7 ± 358.4 3646.2 ± 412.8 8510.2 ± 1664.11 20742.0 ± 3484.7 6424.4 ± 2420.6 

(19511-4280) (2074-4585) (2107·131120) (15424·27302) (1i44-14872) 
(6) (6) (6) (3) (5) 

EOSINOPHIL 115.8 ± 40.2" 172.5 ± 28.3 86.2 ± 50.0 401.7 ± 401.7 42.6 ± 42.6 
(11-2111) (122·282) (11-296) (11-1205) (11-213) 

(6) (6) (6) (3) (5) 

LYMPHOCYTE 5633.2 ± 567.0 6075.0 ± 833.7 5830.7 ± 1065.2 11149.3 ± 1159.7 4562.4 ± 850.3 
(3358-7038) (3843-8253) (26115-9280) (7471·11375) (185g..6384) 

(6) (6) (6} (3} (5) 

* 253.0 ± 74.3 811.7 ± 38.7 89.7 ± 80.3 1040.3 ± 521.5 176.4 ± 40.2 
MONOCYTE (78·408) (0·252} (4g..489} (11-1625} (71·268) 

(6) (6) (6) (3) (5} 

* * * * 41.1 ± 0.5 50.4 ± 2.8 55.4 ± 1.2 52.0 ± 0.5 54.6 ± 3.8 
HCT (6} (6) (4) (3) (5} 
(%) 

* * 
Na 140.8 ± 0.6 138.6 ± 0.6 135.5 ± 0.6 124.5 ± 2.5 137.5 ± 3.5 

(mEq/L) (6} (5) (4} (2) (2) 

* K 6.8 ± 0.2 6.4 ± 0.2 10.2± 1.1 11.5 ± 0.1 11.2±2.5 
(mEq/L) (6) (5) (4} (2} (2) 

Cl * * 
(mEq/L) 100.5 ± 0.8 116.6 ± 1.3 113.2 ± 1.0 110.5 ± 1.5 94.5 ± 4.5 

(6) (5) (4) (2) (2} 

SERUM LOH * (UtL) 11110.0 ± 112.2 1951.8 ± 172.8 1252.2 ± 229.2 1437.5 ± 36.5 1904.5 ± 687.5 
(6) (5) (4) (2) (2) 

* Significantly different from control at p < 0.05. 

a All valuea are expreaed aa mean ± S.E. 

b The range ol values Ia given In parantha-. 

c The nunbar ol animals Ia given In parantheaaa. 

WBC = Total while blood call count, HCT = Hematocrit, LDH = Lactate dehydrogenase. 
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TABLE 3 

THE EFFECTS OF ANTU (5 mg/kg, ip) ON THE PLEURAL FLUID 

TO SERUM PROTEIN RATIO 

Time (hr) 

PROTEIN 3 6 12 24 

TOTAL 0.84 ± 0.038 0.88 ± 0.01 0.77 ± 0.01 0.70 ± 0.01 
(6)b (6) (6) (6) 

ALBUMIN 1.11 ± 0.03 1.03 ± 0.01 1.03 ± 0.03 1.08 ± 0.01 
(6) (6) (6) (6) 

0.83 ± 0.29 0.51 ± 0.08 0.60 ± 0.08 0.64 ± 0.04 
(6) (4) (6) (6) 

0.58 ± 0.09 0.66 ± 0.11 0.69 ± 0.09 0.91 ± 0.16 
(6) (4) (6) (6) 

0.96 ± 0.12 1.26 ± 0.11 1.08 ± 0.08 0.89 ± 0.09 
B (6) (6) (6) (6) 

1 0.63 ± 0.10 1.47 ± 0.37 1.35 ± 0.23 1.22 ± 0.16 
(6) (6) (6) (6) 

8 All values are expressed as mean ± S.E. 

b The number of animals is given In parantheses. 
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The fluid was typically straw-colored and clotted upon exposure to air. It also 

contained numerous intact red blood cells (RBC) which settled from fluid upon 

centrifugation. The lungs were congested and edematous. Petechia and ecchymoses 

were commonly seen in the lung parenchyma of xylazine-treated animals. These 

animals also had severe PE affecting the alveoli and perivascular stroma (Figure 4). 

ANTU-treated rats (5 mg/kg, ip) had edematous lungs and extensive serous PLE which 

was colorless and clotted upon exposure to air and did not contain any RBC. There 

were no gross pathological changes in other organs in either group. 

Mechanism of Pulmonary Edema 

Pretreatment with yohimbine, prazosin, tolazoline, prazosin plus yohimbine, 

atropine, DMSO, allopurinol, superoxide dismutase, catalase, BW755C, ibuprofen and 

cystathionine plus taurine did not affect the% LW/BW ratio. PLE was increased (P < 

0.05) by yohimbine, yohimbine plus prazosin, and allopurinol, was reduced (p < 0.05) 

by DMSO, and was not changed in other groups (Figure 5 & 6). 

Discussion 

The results of this study indicate that xylazine causes PE characterized by rapid 

onset, cellular damage and protein-rich pleural fluid. The increase in PF/S protein ratio 

to above 0. 7 and the near unity of the ratio of albumin, 13-globulins and \-globulins in 

pleural fluid to that in serum indicate that large protein molecules gain access to pleural 

space, most likely through injured pulmonary vascular endothelium. The increase in 

PF/S protein ratio in xylazine-treated rats is similar to that in ANTU-treated rats. PE 

caused by ANTU is the result of increased permeability due to endothelial injury 

(Teplitz, 1979). Therefore, xylazine-induced PE can be classified as increased-
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permeability PE (Staub, 1984). 

The elevated hematocrit was attributed to intravascular fluid loss secondary to 

extensive pleural effusion, severe diuresis and glucosuria. The cause of hyponatremia 

is unknown. The mild hyperkalemia may be due to a mild buildup of acids, as the sum 

of the total measured cations remained fairly constant. The increased serum potassium 

level may have resulted from severe acidosis and cell damage. Increased serum L.DH 

levels indicates cellular damage. 

Adverse cardiovascular effects of xylazine such as transient hypertension 

followed by hypotension, bradycardia and heart block, mediated by central and 

peripheral a-adrenoceptors and cardiac muscarinic receptors (Schmidtt et al., 1970; 

Antonaccio et al., 1973; Langer, 1980; Greene, et al., 1986), suggest that 

hemodynamic factors may play a role. However, failure of a-adrenergic antagonists 

such as yohimbine (a2-receptor), tolazoline (a1- and a2-receptors) and prazosin (a1-

receptor) and cholinergic antagonist (atropine) to prevent xylazine-induced PE and PLE 

indicates that receptor-mediated hemodynamic changes may not be the cause of PE. 

We have recently shown that the anesthetic dose of xylazine (21 mg/kg) caused 

PE and PLE when the metabolism of xylazine was inhibited by inhibitor of cytochrome 

P-450 such as SK&F 525-A (Amouzadeh et al., 1989). This effect is similar to that 

seen after administration of a higher dose of xylazine (42 mg/kg) indicating that 

xylazine may directly injure pulmonary vascular endothelium and cause PE and PLE. 

The direct effect of xylazine on pulmonary vascular endothelium needs to be 

investigated. However, xylazine is rapidly metabolized in various species including rat 

(Garcia-Villar et al., 1981; Duhm et al., 1969) making the possibility of direct effect 

of xylazine unlikely. It is possible that the direct endothelial injury is caused by 



Figure 4. 
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Light micrograph of lung from a rat 12 hr after xylazine (42 mg/kg, im). 
Note the perivascular (arrowheads) and intra-alveolar ( *) edema (H & E, 
X 80). 
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FIGURE 5. Effects of pretreatment with adrenergic and cholinergic antagonists on 
xylazine-induced PE and PLE. (A) xylazine (42 mg/kg, im, n = 23), (8) 
yohimbine (4.2 mg/kg, ip, n = 6), (C) prazosin (20 mg/kg, ip, n = 6), (D) 
tolazoline (20 mg/kg, ip, n = 6), (E) yohimbine (4.2 mg/kg, ip) plus 
prazosin (20 mg/kg, ip, n = 6), and (F) atropine (20 mg/kg, ip, n = 6). The 
pretreatment schedules is given in experiment three of Methods. 
Animals were given 42 mg/kg xylazine, im after pretreatment period.(*) 
Significantly (p < 0.05) different from xylazine group. ( +) Significantly 
(p < 0.05) different from control% LW/BW ratio (0.47 ± 0.01, n = 16). 
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Effects of pretreatment with blockers of various mediators of acute lung 
injury on xylazine-induced PE and PLE. (A) xylazine (42 mg/kg, im, 
n = 23), (8) dimethyl sulfoxide (7 .8 g/kg, n = 6), (C) allopurinol (50 mg/kg, 
po), (0) superoxide dismutase (20,000 U/kg, ip), (E) catalase (20,000 
U/kg, ip, n = 6), (F) BW755C (50 mg/kg, ip, n = 6), (G) ibuprofen (50 
mg/kg, ip, n = 6), and (H) cystathionine (1 00 mg/kg, ip) plus taurine (1 00 
mg/kg, ip, n = 6). The pretreatment schedule is given in experiment three 
of Methods. Animals were given 42 mg/kg xylazine, im after 
pretreatment period. (*)Significantly (p < 0.05) different from xylazine 
group. ( +) Significantly (p < 0.05) different from control % LW/BW 
ratio (0.47 ± 0.01, n = 16). 
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potential reactive metabolite(s). The combination of cystathionine and taurine has been 

shown to supplement the hepatic glutathione level and protect the liver against 

acetaminophen toxicity (Kitamura et al., 1989). Although administration of 

cystathionine and taurine combination, shown to supplement glutathione pool 

(Kitamura et al., 1989), did not affect PE and PLEin this study, the animals appeared 

more active, and respiratory distress was not so severe as in the xylazine-treated 

group. This result suggests that glutathione conjugation might be important in 

elimination of the metabolites of xylazine. 

Large doses of xenobiotics can deplete cellular defense mechanisms and 

saturate major nontoxic pathways so that minor pathways capable of producing 

reactive intermediates become prominent (Sipes and Gandolfi, 1986). It is possible 

that inhibition of metabolism by cytochrome P-450 or increasing the dose saturates the 

detoxifying pathway and shifts the metabolism of xylazine to an alternate pathway. 

This could result in the formation of reactive metabolites capable of injuring pulmonary 

endothelium. 

It is also possible that mediators of acute lung injury such as arachidonic acid 

breakdown products and oxygen radicals generated by neutrophils or xanthine oxidase 

play a role in xylazine-induced PE. Oxygen radicals, generated by xanthine oxidase, 

caused PE by direct endothelial damage in a pulmonary hypoperfusion/ischemia

reperfusion model (Grosso et al., 1989). Inhibition of xanthine oxidase by allopurinol 

prevented ischemic injury in cat small intestine (Parks et al., 1982). In contrast, 

allopurinol failed to prevent lung damage caused by ANTU (Martin, 1986). In this 

study, allopurinol augmented xylazine-induced PE and PLE. This is, perhaps, due to an 

inhibitory effect of allopurinol on hepatic drug metabolizing enzymes (Vessel et al., 

1970; Mcinnes and Brodie, 1988) which could enhance the direct effects of xylazine 
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on pulmonary vascular endothelium. Alternatively, inhibition of hepatic metabolizing 

enzymes by allopurinol could shift the metabolism of xylazine to a toxifying pathway 

resulting in the formation of reactive metabolite(s) capable of damaging pulmonary 

vascular endothelium. DMSO, an effective scavenger of hydroxyl radicals, has been 

shown to prevent PE and acute lung injury (Fox et al., 1983, Kimura et al., 1988). The 

reduction in the extent of PE and PLE by DMSO in this study indicates that reactive 

oxygen radicals, such as hydroxyl radicals, may be involved in xylazine-induced PE. 

Superoxide dismutase and catalase did not affect % LW/BW ratio and PLEin spite of 

their increased half-life by conjugation to polyethylene glycol (Abuchowski et al., 1977; 

McCord and English, 1981 ). This could be due to inadequate doses of superoxide 

dismutase and catalase or lack of accessibility of these scavengers to the source of 

reactive species which may be intracellular (Downey, 1990). 

Neutrophils are thought to be involved in PE (Repine et al., 1982). They 

mediate an inflammatory response by releasing proteolytic enzymes and generating 

oxygen-derived free radicals which are capable of damaging pulmonary vascular 

endothelium and destroying lung tissue (Varani et al., 1985). The elevation of 

neutrophil counts in xylazine-treated rats suggests that they are possibly involved. This 

increase at a later period ( 1 2 hr) indicates that neutrophils are responding to an acute 

injury rather than being the cause themselves. However, the role of neutrophils needs 

further investigation. 

The role of metabolites of arachidonic acid in experimental lung injury is well

established (Birgham, 1985). Ibuprofen, a blocker of the cyclooxygenase pathway and 

BW755C, a blocker of both cyclooxygenase and lipoxygenase pathways had no 

protective effect. This lack of protection by ibuprofen and BW755C indicates that 

arachidonic acid breakdown products may not be involved in xylazine-induced PE. 
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In summary, the results indicate that xylazine causes increased-permeability PE 

characterized by rapid onset, cellular damage and protein-rich pleural fluid. Xylazine-

induced PE is not mediated by hemodynamic factors through peripheral and/or central 

a-adrenergic and myocardial cholinergic receptors, and oxygen radicals are possibly 
\ 

involved in its etiology. Elucidation of the exact mechanism of xylazine-induced PE can 

be useful in therapeutic management of xylazine toxicity in animals and man. 
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CHAPTER IV 

BIOCHEMICAL AND ULTRASTRUCTURAL ALTERATIONS IN 

XYLAZINE-INDUCED PULMONARY EDEMA 

Introduction 

Xylazine, an a2-adrenergic agonist with analgesic, sedative and muscle-relaxant 

properties (Greene et al., 1988), is commonly used alone or in combination with 

ketamine in veterinary medicine. In a recent study, we have shown that xylazine 

caused pulmonary edema (PE) in rats which was characterized by rapid onset,. cellular 

damage, extensive pleural effusion and protein-rich edema fluid (Amouzadeh et al., 

1991 ). These are the hallmark of increased-permeability PE in contrast to increased

pressure PE which is characterized by lack of cellular damage, low protein edema fluid 

and benign course of development (Staub, 1984). 

A number of drugs including analgesics, antiarrhythmic agents and opiates have 

been reported to cause pulmonary damage through non-cardiogenic factors such as 

direct toxicity or indirect augmentation of an inflammatory reaction (Cooper et al., 

1986a and 1986b). In addition, toxicants such as a-naphthylthiourea, paraquat and 

4-ipomeanol cause lung injury through reactive species generated by cytochrome P-

450 (Boyd, 1980) which can cause endothelial injury and lead to PE. It was suggested 

that xylazine-induced PE could be classified as increase-permeability PE resulting from 

endothelial injury caused by xylazine or its metabolites (Amouzadeh et al., 1991 ). 

Also, oxygen radicals might be involved in the etiology of xylazine-induced PE and PLE 

(Amouzadeh et al., 1991 ). 
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Oxygen radicals, generated by xanthine oxidase (XO), neutrophils or drugs have 

been implicated in various experimental models of lung injury. Grosso et al. (1990), 

in a pulmonary hypoperfusion/ischemia-reperfusion model, have shown that xanthine 

oxidase-generated oxygen radicals are partially responsible for pulmonary capillary 

endothelial damage and PE. Neutrophil-generated oxygen radicals have been shown 

to cause acute lung injury and PE (Repine, 1982; Shasby et al., 1982; McDonald et al., 

1987; Patterson et al., 1989). The pulmonary toxicity of paraquat and bleomycin has 

been proposed to be caused by oxygen radicals generated during their metabolism 

(Frank, 1985). 

Cytokines such as IL-1 and TNF may also play a role in acute lung injury. IL-1 

is produced primarily by monocytes/macrophages in response to infection and injury. 

Vascular endothelium, smooth muscle cells, astrocyte and microglial cells of the brain 

and B lymphocytes also produce IL-1 (Dinarello, 1988). Overall, IL-1 causes a number 

of cellular and biochemical effects which lead to congestion of vessels, formation of 

clot, infiltration of inflammatory cells and increased endothelial permeability (Dinarello, 

1988). In vitro, IL-1 directly affects the vascular endothelium, causing increased 

adhesiveness for granulocytes (Bevilacqua et al, 1985; Cotran et al., 1986), increased 

synthesis of platelet-activating factor (Bussolino et al., 1986), and increased 

prostaglandin E2, a vasodilator (Aibrightson et al., 1985). IL-1 depresses both the 

levels and the activity of hepatic cytochrome P-450 in mice (Shedlofsky et al., 1987). 

The level of IL-1 is increased in bronchoalveolar fluid in patients with bacterial 

pulmonary infection (Wilmott, 1990), in alveolar macrophages from patients with Adult 

Respiratory Distress Syndrome (ARDS, Jacobs, 1989), and in ventricular fluid from 

patients with head injury (McClain et al., 1987). IL-1 and TNF levels are increased in 

patients with fulminant hepatic failure (Muto et al., 1988). Elevated levels of IL-1 have 



68 

also been reported in women after ovulation (Cannon and Dinarello, 1985). IL-1 

bioactivity was increased in monocrotaline-treated rats (Gillespie et al., 1988). A 

monokine preparation containing IL-1 caused pulmonary edema and albumin leakage 

in rats (Gillespie et al., 1989). Goldblum et al. (1988) have shown that human IL-1 

causes acute pulmonary vascular endothelial injury and lung edema in rabbits. It is 

suggested that the cytotoxic effects of IL-1 are caused indirectly through stimulating 

the release of oxygen radicals from endothelial cells (Matsubara and Ziff, 1986). 

Tumor necrosis factor (TNF) is also produced mainly by monocytes/ 

macrophages (Fong and Lowry, 1990). TNF induces IL-1 production by the vascular 

endothelium (Dinarello, 1986; Nawroth et al., 1986), activates polymorphonuclear cell 

functions (Shalaby et al., 1985) and induces procoagulant activity of vascular 

endothelium (Bevilacqua et al., 1986; Nawroth and Stern, 1986). Although the 

production of TNF is associated with infection, elevated levels of TNF have been 

reported in non-infectious conditions such as cancer (Balkwill et al., 1987; Aderka, et 

al., 1985), thermal injury (Marano et al., 1990), renal allograft rejection (Maury and 

Teppo, 1987), head injury (Goodman et al., 1990), heart failure (Levine et al., 1990), 

hepatic failure (Muto et al., 1988) and ARDS (Roten et al., 1991 ). TNF production by 

peripheral blood mononuclear cells from anorexia nervosa patients (Schattner et al., 

1990) and alveolar macrophages from patients with rheumatoid arthritis (Gosset et al., 

1991) is increased. It appears that elevation of TNF is not exclusive to infectious 

diseases. Infusion of TNF into rats caused hypotension, metabolic acidosis, elevated 

hematocrit and potassium levels, and hyperglycemia leading to death from respiratory 

arrest (Tracy et al., 1986). At necropsy, prominent hemorrhagic lesions were found 

in the lung and gastrointestinal tract (Tracy et al., 1986). In mice, administration of 

TNF caused peripheral blood lymphopenia and neutrophilia accompanied by necrosis 
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in the small intestine due to endothelial injury (Remick et al., 1987). Systemic 

administration of TNF can cause pulmonary vascular endothelial injury and pulmonary 

edema in guinea pigs and rabbits (Stephens et al., 1988; Goldblum et al., 1989). This 

effect of TNF appears to be granulocyte-dependent, as granulocyte depletion prevents 

acute lung injury (Stephens et al., 1988). TNF caused generation of superoxide anion 

from neutrophils (Tsujimoto et al., 1986). TNF also increases endothelial cell 

permeability in vitro (Horvath et al., 1988; Henning et al., 1988; Brett et al., 1989; 

Shinjo et al., 1989; Royall et al., 1989; Goldblum and sun, 1990). This effect is 

thought to be independent of neutrophils (Horvath et al., 1988) and due endothelial 

cytoskeletal alteration involving G protein (Brett et al., 1989). Hocking et al. (1990) 

found that TNF caused neutrophil-dependent pulmonary edema in isolated, perfused 

guinea pig lung. The edema was attributed to increased pulmonary capillary pressure 

caused by thromboxanes, platelet activating factor (PAF), and increased capillary 

permeability mediated by PAF (Hocking, 1990). Results from studies involving 

endothelial cytotoxicity of TNF are contradictory and depend on the model used. TNF 

was not cytotoxic to human endothelium (Schuger et al., 1989, Pober and Cotran, 

1990), except when TNF-pretreated human umbilical endothelial cells were transferred 

to a balanced salt solution (Schuger et al., 1989). It appears that TNF does not have 

direct endothelial cytotoxicity; rather, it increases the susceptibility of endothelium to 

injury. Pre-exposure of rat arterial endothelial cells to TNF increases the toxicity of 

activated neutrophils towards these cells (Varani et al., 1988). This is perhaps due to 

generation of cytotoxic superoxide anion from neutrophils stimulated by TNF 

(Tsujimoto et al., 1986). TNF-stimulated eosinophils are cytotoxic to human umbilical 

vein endothelium, possibly through peroxidase activity of eosinophils (Siungaard et al., 

1990). Inhibition of protein synthesis in bovine pulmonary endothelial cells by 
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cycloheximide makes these cells susceptible to lysis by TNF (Nolop and Ryan, 1990). 

Considering the multiple factors involved in the etiology of drug-induced acute 

lung injury, the purpose of this study was to elucidate the role of some of these factors 

and to characterize ultrastructural alterations in xylazine-induced PE. 

Methods 

Animals: 

Specific virus antibody-free male Sprague-Dawley rats (Sasco Labs., Omaha, 

NE) of similar age and weight (225-250 g) were housed with temperature, humidity 

and air circulation maintained according to the Guide for the Care and Use of 

Laboratory Animals (NIH, 1985). They were allowed free access to food and water 

and were kept on a 12-hour light-dark cycle. One week after arrival, the rats were 

assigned to various treatment groups. 

Drugs and Chemicals: . 

Xylazine (Gemini, Rockville center, NY), hypoxanthine, nitroblue tetrazolium, 

ethylene diamine tetra-acetic acid (EDTA), phenazine methosulfate (PMS) , Triton X-

1 00, L( +)-lactic acid, 2-[4-iodophenyl]-3-[4-nitrophenyl]-5 phenyltetrazolium chloride 

(INT), 13-nicotinamide adenine dinucleotide (NAD), bovine serum albumin and 2-

mercaptoethanol and actinomycin D (Sigma Chemical Co., St. Louis, MO), Tris and 

HEPES (Research Organics Inc., Cleveland, OH), analytical grade potassium phosphate 

dibasic and potassium phosphate monobasic, calcium chloride, sodium hydroxide and 

sodium bicarbonate (Fisher Scientific, Fair Lawn, NJ), paraformaldehyde (Polysciences 

Inc., Warrington, PA), cacodylic acid and glutaraldehyde (Electron Microscopy Science, 

Ft. Washington, PA), Click's medium (Irvine Scientific, Irvine, CA), fetal bovine serum 
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(Hyclone, Logan, UT), L-glutamine, gentamicin and Dubellco's Modified Eagles Medium 

(Gibco BRL, Grand Island, NY), 3H-thymidine (ICN Radiochemicals, Irvine, CA) were 

purchased commercially. IL-1 was kindly provided by Dr. Peter Lomedico of Hoffmann 

La Roche, Inc., Nutley, NJ. TNF was a gift from Cetus Corporation, Emeryville, CA. 

Assessment of Pulmonary Edema (PEl: 

PE was assessed by comparisons of the percent lung to body weight ratios (% 

LW/BW) of treated groups to that of control. The volume of pleural fluid, when 

present, was measured. 

Experiment One: Determination of Protein. Lactate Dehydrogenase (LDHL ~anthine 

Oxidase (XOL lnterleukin-1 UL-1 land Tumor Necrosis Factor (TNFl in Bronchoalveolar 

Lavage Fluid (BALF) 

Twenty four rats were given xylazine (42 mg/kg, im) and 3, 6 and 12 hr later 

they were killed by decapitation. Pleural fluid was collected and its volume was 

measured. Lungs and hearts were removed en block. The lungs were separated from 

the hearts, trimmed of fat and connective tissues, blot-dried with gauze and their wet

weight measured. Each lung was lavaged with 8.0 ml of phosphate buffered saline 

(PBS), pH 7 .3, at room temperature using an infusion pump (Harvard Apparatus, Model 

940) at 2.0 ml/min. A 2.0 min dwell time was allowed before withdrawal. The lavage 

fluid was centrifuged at 2000 x g for 1 5 min and the supernatant was collected and 

frozen. 

Protein Assay. Protein concentration in the BALF was determined by bicinchoninic 

acid reagent (BCA, Pierce, Rockford, IL) with bovine serum albumin as standard. 
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LDH Assay. Lactate dehydrogenase was asssayed spectrophotometrically following 

the method of Korzeniewski and Callewaert ( 1986) using a 96-well microtiter plate 

assay. Briefly, 100 pi of BALF sample (triplicate determination) was placed in each 

well and 1 00 pi of assay mixture was added and the absorbance was measured at 490 

nm for 2 min using a kinetic microplate reader (Vmex, Molecular Devices, Menlo Park, 

CA). The assay mixture contained 5.4 x 1 o·2 M L( +)lactate, 6.6 x 1 Q-41NT, 2.4 x 1 o· 

4 PMS, 1.3 x 1 o-3 M NAD in 0.2 M Tris buffer (pH 8.2). 

Xanthine Oxidase Assay. Xanthine oxidase was assayed by adaptation of the method 

of Fried (1966). The assay was done in 96-well microtiter plate. Each well contained 

100 mM potassium phosphate buffer (pH 7.8), 10 mM EDTA, 0.3% Triton X-100, 5.6 

pg/ml phenazine methosulfate, 400 pg/ml nitro blue tetrazolium, 1 mM hypoxanthine 

and 80 pi of lavage fluid in a final volume of 200 pl. The absorbance was measured 

at 540 nm against a reference containing all components except hypoxanthine, using 

a kinetic microplate reader (V max• Molecular Devices, Menlo Park, CA). All data 

(triplicate determination) were corrected for background rate of formazan formation in 

the absence of added substrate. The results are reported in U/L activity where one 

enzyme unit corresponds to the formation of one mole of formazan per minute. 

IL-1 Assay. IL-1 was assayed following the method of Kaye et al (1984) using a 

murine interleukin-dependent helperT-cell clone (D1 O.G4.1, ATCC, TIB 244). The cells 

were grown in Click's medium containing 10% fetal bovine serum, 200 mM L

glutamine, 5 x 1 o-s 2-mercaptoethanol and 50 pg/pl gentamicin supplemented to 5-

1 0% with Con A-conditioned rat splenocyte supernate. The assay was performed in 

96-well microtiter plates (triplicate determination) in a final volume of 200 pl. Each 
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well contained 2 x 104 D1 O.G4.1 cells in medium containing final concentration of 1 

pg/ml Con A, 100 pi BALF (1 :5 dilution). The cells were incubated 48 hr and labeled 

with 3H-thymidine (specific activity, 34 Ci/mmole) at 1.0 pCi/well. After the labeling 

period, cells were harvested and processed for determination of 3H-thymidine 

incorporation using a scintillation counter (Beckman LS 5000TD). IL-1 activity in BALF 

samples were determined from linear regression analysis of a standard curve generated 

from a titration of recombinant human IL-1 a. 

TNF Assay. TNF was assayed following the methods of Decker and Lohmann-Mathes 

(1988) using a TNF-sensitive murine fibrosarcoma cell line WEHI 164 (American Type 

Culture Collection CRL-1751). The cells were maintained in Dubellco's Modified Eagles 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2-

mercaptoethanol, 2 mM L-glutamine, 25 mM HEPES buffer, NaHCo3 and 50 pg/ml 

gentamicin. The cells were passaged twice weekly by detachment with trypsin-EDT A 

and reconstituted with fresh medium to 1-3 x 1 05 cells/mi. The cells were then 

washed extensively with serum-free DMEM without phenol red to remove the LDH 

present in bovine serum. Three-fold dilution of BALF samples and TNF standard 

(rhTNF, 21-67 x 106 U/mg) were titrated in 96-well microtiter plates. To each well 1 

x 104 WEHI cells in serum-free DMEM without phenol red was added. To enhance the 

sensitivity of cells to TNF, 1 0 pg/ml actinomycin D was also added and cells were 

incubated for 10 to 24 hr. Following incubation period, 0.1 ml of supernate was 

transferred to the corresponding wells of a flat bottomed microtiter plate and 0.1 ml 

LDH substrate mixture (5.4 X 1 0"2 M L( +)lactate, 6.6 X 1 0"4 1NT, 2.4 X 1 0"4 PMS, 1.3 

x 1 o-3 M NAD in 0.2 M Tris buffer, pH 8.2) was added to each well and absorbance 

was measured at 490 nm for 2 min (V max' Molecular Devices, Mel no Park, CA). TNF 
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activity in BALF samples was determined from regression analysis of a standard curve 

generated from a titration of rhTNF. A monoclonal antibody against rhTNF was used 

to verify the presence of TNF in BALF. The anti-human rTNF was added to BALF 

samples and the mixture was assayed for cytotoxic activity. The antibody reduced the 

cytotoxic activity of BALF considerably. 

Exoeriment Two: Light and Electron Microscooy 

Animals were given xylazine (42 mg/kg, im) and were killed by decapitation 0.5 

(n = 3) and 12 hr (n = 4) later. The pleural fluid was removed and its volume was 

measured. Lungs and hearts were removed en block. The lungs were separated from 

the heart, trimmed of fat and connective tissues, blot-dried with gauze and their wet 

weight measured. The left lobe was fixed by tracheal instillation of Karnovsky's 

modified fixative (Karnovsky, 1965) at 20 em H20 to full lung expansion. The right 

lobes were fixed by immersion in the same fixative. After fixation, a section of the 

right lobe was routinely processed, sectioned at 6 pm and stained with H & E for 

histological examination. A section of left lobe was cut into 1 mm x 1 mm cubes and 

postfixed in o'smium tetroxide and processed routinely for transmission electron 

microscopy. 

Data Analysis: 

The mean ± SE of percent lung to body weight ratio, pleural fluid volume, 

protein concentrations, LDH, XO, IL-1 and TNF levels were calculated. Data were 

analyzed by one-way analysis of variance using SAS General Linear Model procedure. 

The significance of treatment means as compared to control values was determined 

by Dunnett's test. A probability level of P < 0.05 was considered significant. 
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Results 

Gross Pathological Findings: 

Xylazine-treated rats had extensive serous pleural effusion. The fluid was 

typically straw-colored and clotted upon exposure to air. It also contained numerous 

intact red blood cells which settled from fluid upon centrifugation. The lungs were 

congested and edematous. Petechia and ecchymoses were commonly seen in the lung 

parenchyma of xylazine-treated animals. There were no gross pathological changes 

in other organs. 

Pulmonary Edema 

Percent LW/BW ratio was increased (p < 0.05) at 0.5, 3, 6 and 12 hr in 

xylazine-treated animals as compared to control. The volume of pleural effusion 

steadily increased throughout each period monitored (Figure 1 ). 

Protein. LDH. XO. IL-1 and TNF 

Protein concentration, LDH, XO and TNF levels were increased (p < 0.05) at 

3, 6 and 12 hr in xylazine-treated animals as compared to control (Figures 2A, B, C, 

E). IL-1 level was unchanged at 3 and 6 hr, and was reduced (p < 0.05) at 12 hr 

(Figure 20). 

Light and Electron Microscooy 

The lungs showed severe PE affecting the alveoli and perivascular stroma 

(Figure 3). Ultrastructurally, extensive endothelial damage such as thinning, 

detachment from basement membrane or bleb formation were observed (Figure 4). 

Both histological and ultrastructural changes were more pronounced at 1 2 hr after 
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administration of xylazine. 

Discussion 

The results of this study support our initial hypothesis that xylazine-induced PE 

is due to increased permeability of pulmonary endothelium. The increased level of LDH 

in the BALF is an indication of cellular injury which leads to leakage of protein into 

interstitial space, alveolar space and finally thoracic cavity. This protein leakage is 

reflected by the increased protein concentration in BALF from xylazine-treated rats as 

compared to control. Ultrastructural observations indicate that endothelial injury such 

as thinning, detachment from basement membrane or bleb formation are prominent 

features of xylazine-induced PE. Endothelial injury is evident as early as 0.5 hr after 

administration of xylazine and becomes more pronounced by 12 hr. These changes 

are similar to those caused by known edemagenic agents such as alloxan and a

naphthylthiourea which cause increased-permeability PE (Cottrel, et al., 1967; 

Cunningham and Hurley, 1972). 

In a previous study (Amouzadeh et al., 1991 ) , we found that DMSO was 

partially effective in preventing xylazine-induced PE and pleural effusion. This effect 

was attributed to oxygen radical scavenging activity of DMSO. Therefore, it was 

suggested that oxygen radicals are involved in etiology of xylazine-induced PE. The 

increased level of XO in BALF of xylazine-treated rats support this suggestion and 

indicates that xanthine oxidase-generated oxygen radicals may play a role in xylazine

induced PE. The XO could be activated by hypoxia/reperfusion during the initial 

hypertensive effect of xylazine. Alternatively, xylazine itself or one of its metabolites ~ 

could damage pulmonary endothelium directly and lead to activation of XO. Such 

activation has been proposed by Jarasch et al. (1986) as a result of endothelial injury. 
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Percent lung to body weight (% LW/BW) ratio and pleural effusion 
volume in rats given 42 mg/kg xylazine (im, n = 31 ). C = Control (Saline, 
im, n = 13). ( *) Significantly different from control (p < 0.05). 
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Figure 2A. Protein concentration in BALF from rats given 42 mg/kg xylazine (im, 
n=24). C =Control (saline, im, n=9). (*)Significantly different from 
control (p < 0.05). 
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Lactate dehydrogenase levels (LOH) in BALF from rats given 42 mg/kg 
xylazine (im, n=24). C =Control (saline, im, n=9). (*)Significantly 
different from control (p < 0.05). 
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Figure 2C. Xanthine oxidase levels in BALF from rats given 42 mg/kg xylazine (im, 
n = 24). C = Control (saline, im, n = 9). ( *) Significantly different from 
control (p < 0.05). 
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Figure 20. lnterleukin-1 (IL-1) activity in BALF from rats given 42 mg/kg xylazine 
(im, n = 24). C = Control (saline, im, n = 9). ( *) Significantly different 
from control (p < 0.05). 
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Tumor necrosis factor (TNF) activity in BALF from rats given 42 mg/kg 
xylazine (im, n = 24). C = Control (saline, im, n = 9). ( *) Significantly 
different from control (p < 0.05). 
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Light micrograph of the lung from a rat given 42 mg/kg xylazine (im, 
n =4) and sacrificed 12 hr later. Note perivascular (arrowheads), 
peribronchiolar (arrows) and alveolar edema(*). H&E x37. 



Figure 4. 
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Electron micrograph of the lung of a rat given 42 mg/kg xylazine (im, 
n =4) and sacrificed 12 hr later. Note endothelial thinning, detachment 
from basement membrane or blabbing (arrowheads). Uranyl acetate and 
lead citrate. x9000. 
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The role of cytokines in etiology of xylazine-induced PE remains unclear. In this 

study, IL-1 activity remained unchanged and was reduced at 12 hr after xylazine 

administration. This reduction in activity is perhaps due to the displacement of a large 

volume of the plasma into the thorasic cavity as this will reduce the totalll-1 plasma 

level. Murine IL-1 caused granulocytopenia followed by granulocytosis and sustained 

pulmonary leukostasis in rabbits (Goldblum et al., 1987). Human recombinant IL-1 has 

been shown to cause pulmonary vascular endothelial injury accompanied with 

pulmonary leukostasis (Goldblum, 1988). It appears that lung injury caused by IL-1 is 

leukocyte-dependent. We have shown that leukocyte count is elevated only 12 hr 

after administration of xylazine. This is an indication that xylazine-induced PE is 

perhaps independent of leukocytes. Therefore, this could be the reason for the lack 

of elevated IL-1 levels as IL-1 lung injury appears to be leukocytes-dependent. 

TNF levels were increased substantially throughout all time periods. This 

increase was highest at 1 hr indicating that TNF somehow plays a causative role in 

xylazine-induced PE. TNF-induced pulmonary endothelial injury in rabbits is 

independent of leukocytes as indicated by the lack of significant change in pulmonary 

leukostasis and myeloperoxidase activity (Goldblum et al., 1989). In addition, TNF 

increased transendothelial albumin movement in the absence of leukocytes in vitro 

(Goldblum et al., 1989). In contrast, granulocyte depletion prevented TNF-induced 

acute lung injury in guinea pigs (Stephens et al., 1988). The role of leukocytes in the 

pulmonary endothelial injury caused by IL-1 and TNF is not clear. Besides having many 

common characteristics with IL-1, TNF causes morphological changes in endothelium 

in vitro such as cellular elongation and ovetlapping (Stolpen et al., 1986), actin 

filament reorganization and loss of fibronection network as well as cytostatic effects 
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(Sato et al., 1986). The role of TNF in xylazine-induced pulmonary edema appears to 

be due to its effect on endothelial permeability or its cytotoxic effect. 

In summary, these results indicate that xylazine causes increased-permeability 

PE through endothelial injury. Whereas oxygen radicals and TNF appear to be involved, 

IL-1 may not play a role in the etiology of xylazine-induced pulmonary edema. 
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CHAPTER V 

EFFECTS OF XYLAZINE ON BOVINE 

PULMONARY ARTERY ENDOTHELIAL CELLS IN CULTURE 

Introduction 

In a recent study, we reported that xylazine, a veterinary analgesic, sedative 

and muscle relaxant, caused pulmonary edema (PE) in rats characterized by rapid 

onset, cellular damage, extensive pleural effusion and protein·rich edema fluid 

(Amouzadeh et al., 1991 ). These characteristics are the hallmark of increased· 

permeability pulmonary edema (Staub, 1986). Subsequently, we showed that 

xylazine-induced PE is due to endothelial injury as indicated by the elevated protein and 

lactate dehydrogenase levels in bronchoalveolar lavage and ultrastructural changes 

such as endothelial thinning, detachment from basement membrane or bleb formation 

(Amouzadeh et al., 1991 ). The endothelial injury is likely caused by oxygen radicals 

since xanthine oxidase levels in bronchoalveolar lavage fluid was increased in xylazine

treated rats (Amouzadeh et al., 1 991 ) . Since inhibitors of cytochrome P-450 such as 

SK&F 525-A augmented the pulmonary toxicity of xylazine (Amouzadeh et al., 1991), 

it is thought that endothelial injury in xylazine-treated rats is due to direct effects of 

xylazine or its metabolites on the pulmonary vascular endothelium. Many classes of 

drugs such as antibacterial agents, nitrosoureas, alkylating agents, antimetabolites, 

analgesics, anticonvulsants, antiarrhythmic agents, diuretics, opiates and antirheumatic 

drugs have been associated with pulmonary diseases (Cooper et al., 1986a and 

93 



94 

1986b). These drugs could be classified according to their mechanism of toxicity into 

two categories: cytotoxic and non-cytotoxic. Most of cytotoxic drugs are used in 

chemotherapy whereas non-cytotoxic drugs include a wider range of agents. The 

mechanism of the toxicity of many cytotoxic drugs is not well-understood and in many 

cases it might be the result of a combination of effects. In addition to drugs, toxicants 

such as paraquat, a-naphthylthiourea (ANTU), 4-ipomeanol and pyrrolizidine alkaloids 

also cause lung injury. The pulmonary toxicity of paraquat, 4-ipomeanol, ANTU and 

monocrotaline is caused by the reactive metabolites of these toxicants generated by 

cytochrome P-450 (Boyd, 1980). In the case of paraquat, these reactive metabolites 

are oxygen radicals (Boyd, 1980). Regardless of the source and the mechanism of 

injury, often pulmonary endothelium is the primary target of these agents. Ble9mycin, 

cyclophosphamide, and nitrofurantoin generate oxygen radicals which are thought to 

be responsible for pulmonary toxicity of these agents (Cooper, 1986a; Frank, 1985). 

Endothelial injury is one of the common features of increased-permeability PE. Using 

endothelial cells isolated from porcine thoracic aorta, Ody and Junod ( 1985) have 

shown that paraquat is directly toxic to endothelial cells. Martin and Howard (1985) 

have also reported similar findings for amiodarone, an antiarrhythmic drug, using 

bovine pulmonary artery endothelial cells. 

The purpose of this study was to determine whether xylazine-induced PE is 

caused by the direct effect of xylazine on pulmonary endothelium using bovine 

pulmonary endothelial cells as an in vitro model. 

Materials and Methods 

Endothelial Cells. Bovine pulmonary artery endothelial cells (BPAEC) were purchased 

from American Type Culture Collection at passage 16 (ATCC No. CCI 209). The cells 
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were cultured in minimum essential medium supplemented with 20 % fetal calf serum 

(complete medium) at 37 °C in 95% 0 2 and 5% C02 and used at passage 19. 

Chemicals and Cell Culture Medium. Minimum essential media, fetal calf serum, 

trypsin-EDTA (Gibco-BRL Grand Island, NY), xylazine hydrochloride, trypan blue and 

Hank's balanced salt solution (Sigma Chemical Co., St. Louis, MO) were purchased 

commercially. 

Experimental Procedure. Cells were plated in 24-well plates at a density of 3.5 x 104 

cells per well and allowed to grow to confluency. Upon confluency, the medium was 

removed from each well and the monolayer was rinsed with 0.5 ml complete medium. 

The xylazine was dissolved in distilled water and filtered through 0.2 p filter. Various 

concentrations of xylazine (0.3- 300 pg/ml) in a volume of 10 pi was mixed with 990 

pi of complete medium and was placed in wells. The control well contained 10 pi of 

filtered distilled water (quadruplicate determinations). The plates were incubated for 

either 0.5 or 3 hr at 37 °C in 95% 0 2 and 5% C0 2• After incubation, the monolayers 

were photographed using a phase-contrast microscope (Olympus, CK 1) and the 

medium was removed and frozen. The monolayer was removed with trypsin-EDTA 

and the number of live and dead cells were determined by dye exclusion assay using 

0.4% trypan blue. Cell viability was calculated as percentage of the ratio of live to the 

total number of cells. Morphological changes were assessed by comparison of the 

phase-contrast micrographs of treated monolayer to that of control. 

Data Analysis. The mean ± S.E. of percentage viability for control and each dose was 

calculated and analyzed by one way analysis of variance using SAS general Linear 
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model procedure. The significance of treatment means as compared to control value 

was determined by Dunnett's test. A probability level of P < 0.05 was considered 

significant. 

Results 

Phase-contrast micrographs did not show any change up to 30 pg/ml xylazine 

(Figure 1 A, 8, D & C). At 300 pg/ml xylazine, cells appeared elongated and retracted 

from growth surface (Figure 1 E). The viability of the BPAEC was not affected by 

xylazine at any dose or time period (Figure 2). 

Discussion 

The result of this study indicate that xylazine may not have any direct toxic 

effects on BPAEC. Since a dose-dependent response could not be demonstrated and 

absence of any change in cell viability, the morphological changes caused by 300 

pg/ml of xylazine could be attributed to non-specific effects. This dose could also be 

an in vitro toxic threshold, however, it will not have any in vivo toxicological 

consequences. The pharmacokinetic data of xylazine in rats are not known at present, 

however, extrapolation of the pharmacokinetics parameters of xylazine from dogs and 

horses (Garcia-Villar et al., 1981) suggests that the concentration of xylazine in plasma 

after administration of 42 mg/kg xylazine should not exceed 42 pg/kg. Therefore, 

xylazine-induced pulmonary edema could not be the result of the direct toxicity of 

xylazine. Since we used bovine pulmonary artery endothelial cells, the possibility of 

a species-dependent response could not be ruled out. However, considering similar 

morphological (cobble-stone appearance) and biochemical (presence of angiotensin 

converting enzyme, prostaglandin metabolism) characteristics of endothelial cells 



97 

derived from different sources (bovine, porcine, and human) it is unlikely that species 

variation is an important factor. It is also possible that pulmonary toxicity of xylazine 

is caused by its metabolites, some of which could be reactive. Pulmonary toxicity of 

paraquat, ANTU and monocrotaline is thought to be due the reactive metabolites, 

generated by cytochrome P-450 either in liver or lung (Boyd, 1980). The role of 

metabolites of xylazine in its pulmonary toxicity needs further investigation. 

In summary, xylazine does not appear to have any toxicity toward BPAEC in 

vitro indicating that xylazine-induced pulmonary edema is mediated through 

mechanisms other than direct toxicity. 
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Figure 1 A. Phase-contrast micrograph of the morphology of the BPAEC monolayer 
0.5 hr (A) and 3.0 hr (8) after treatment with distilled water (control). 



Figure 1 B. 
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Phase-contrast micrograph of the morphology of BPAEC monolayer 0.5 
hr (A) and 3 hr (B) after treatment with 0.3 pg/ml xylazine. 
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Figure 1 C. Phase-contrast micrograph of the morphology of BPAEC monolayer 0.5 
hr (A) and 3 hr (8) after treatment with 3 pg/ml xylazine. 
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Figure 1 D. Phase-contrast micrograph of the morphology of BPAEC monolayer 0.5 
hr (A) and 3 hr (8) after treatment with 30 pg/ml xylazine. 



Figure 1 E. 
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Phase-contrast micrograph of the morphology of BPAEC monolayer 0.5 
hr (A) and 3 hr (8) after treatment with 300 pg/ml xylazine. Note 
elongation and retraction of cells. 



Figure 2. 
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Effect of various concentration of xylazine (0.3- 300 pg/ml) on viability 
of BPAEC after 0.5 and 3 hr incubation. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Various inducers and inhibitors of hepatic cytochrome P-450 microsomal 

enzymes were studied for their effects on xylazine-ketamine anesthesia. Pretreatment 

of Sprague-Dawley rats with chloramphenicol, cimetidine, ketoconazole, and SK&F 

525-A significantly increased the duration of anesthesia in rats injected with ketamine 

and xylazine. Pretreatment with phenobarbital did not affect the duration of anesthesia 

significantly. The increase in duration of anesthesia in animals pretreated with SK&F 

525-A and ketoconazole was accompanied by secondary respiratory distress about 6 

hours after recovery from anesthesia, often leading to death within 24 hours. Lesions 

including extensive serous pleural effusion, alveolar edema rich in macrophages and 

extensive pulmonary hilar edema with hemorrhage were found at necropsy. These 

results indicated that acute lung injury could be a consequence of xylazine-ketamine 

anesthesia when the metabolism of these drugs is inhibited. 

To determine the cause of PE, Sprague-Dawley rats were given a single 

anesthetic dose of xylazine alone or in combination with ketamine and/or SK&F 525-A 

and percent lung to body weight (% LW/BW) ratios (as an indicator of PE) were 

compared. The results indicated that xylazine caused PE which was independent of 

ketamine and was enhanced by SK&F 525-A. Subsequently, it was determined that 

42 mg/kg xylazine, im is an optimal edemagenic dose. At this dose, xylazine increased 

the % LW/BW ratio as compared to control and pleural effusion (PLE) of various 

amounts was observed in 75 % of the animals. The pleural fluid to serum (PF/S) 

105 



106 

protein ratio for xylazine was similar to that obtained for a-naphthylthiourea. Extensive 

serous PLE and alveolar edema with hemorrhage were found at necropsy in xylazine

treated rats. Pretreatment with yohimbine, prazosin, tolazoline, yohimbine plus 

prazosin, atropine, dimethyl sulfoxide, allopurinol, superoxide dismuatse , catalase, 

BW755C, ibuprofen, cystathionine plus taurine did not affect the% LW/BW ratio. PLE 

was increased by yohimbine, yohimbine plus prazosin, and allopurinol, reduced by 

DMSO, and not changed in other groups. 

The increase in PF/S protein ratio to above 0. 7 and the near unity of the ratio 

of albumin, 13-globulins and \-globulins in pleural fluid to that in serum suggested that 

large protein molecules gain access to pleural space, most likely through injured 

pulmonary vascular endothelium. Failure of a-adrenergic antagonists (yohimbine, 

tolazoline, prazosin) and cholinergic antagonist (atropine) to prevent xylazine-induced 

PE and PLE was an indication that receptor-mediated hemodynamic changes are not 

the cause of PE. In addition, PE caused by hemodynamic factors are characterized by 

low protein edema fluid, lack of cellular damage and prolonged course of development. 

The lack of protection by inhibitors of cyclooxygenase and lipoxygenase pathways 

implied that arachidonic acid metabolites were not involved. Leukocytes were thought 

not to be the cause, since an increase in leukocyte count at a later period (12 hr) 

suggested that leukocytes were responding to an acute injury rather than being the 

cause themselves. Based on these results, xylazine-induced pulmonary edema can be 

classified as increased-permeability PE as a consequence of pulmonary endothelial 

injury and protein leakage. Hemodynamic factors, leukocytes and arachidonic acid 

metabolites were ruled out as primary factors. However, oxygen radicals may play an 

important role. In addition, the role of cytokines such as IL-1 and TNF needed 

investigation. The biochemical and ultrastructural alterations were also characterized 
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to further elucidate the mechanism of xylazine-induced PE. Sprague-Dawley rats were 

given xylazine and lungs were lavaged with phosphate-buffered saline 3, 6 and 12 hr 

later. Total protein, lactate dehydrogenase (LDH), xanthine oxidase (XC), interleukin-1 

(IL-1) and tumor necrosis factor (TNF) were measured in lavage fluid. Protein 

concentration, LDH, XC and TNF levels were significantly increased in lavage fluid 

from xylazine-treated rats as compared to control. IL-1 level was unchanged at 3 ·and 

6 hr, and was significantly reduced at 1 2 hr. Another group of rats were given 42 

mg/kg xylazine intramuscularly and lungs were fixed 0.5 and 12 hr later for 

ultrastructural observations. Endothelial damage such as thinning, detachment from 

basement membrane or bleb formation were observed. The results provided direct 

evidence and supported the initial hypothesis that xylazine-induced PE is the result of 

increased pulmonary endothelial permeability. It is possible that xylazine or its 

metabolites are the cause. The initial findings after inhibition of the metabolism of 

xylazine-ketamine indicated that the acute lung injury is perhaps due to direct effect 

of xylazine on pulmonary endothelium. 

Endothelial cell culture was used to clarify the role of xylazine. Xylazine, at 

various concentration (3 - 300 pg/ml), was incubated with confluent monolayers of 

bovine pulmonary artery endothelial cells (BPAEC) for 0.5 or 3 hr. Phase contrast 

microscopy and dye exclusion assay were used to assess the effects. Phase-contrast 

micrographs did not show any change up to 30 pg/ml xylazine. However, at 300 

pg/ml xylazine, cells appeared elongated and retracted from growth surface. The 

viability of the BPAEC was not affected by xylazine at any dose or time period. Since 

a dose-dependent response could not be demonstrated, and absence of any change in 

cell viability, the morphological changes caused by 300 pg/ml of xylazine was 

attributed to non-specific effects. This dose could also be an in vitro toxic 
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threshold, however, it will not have any in vivo toxicological consequences. The 

pharmacokinetic profile of xylazine in rats is not known. Extrapolation of the 

pharmacokinetics parameters of xylazine from dogs and horses suggests that the 

concentration of xylazine in plasma after administration of 42 mg/kg xylazine should 

not exceed 42 pg/kg. Therefore, xylazine-induced PE could not be the result of the 

direct toxicity of xylazine on pulmonary artery endothelial cells. 

Overall, the results of this study indicated that xylazine caused increased 

permeability PE and PLE as a result of pulmonary endothelial injury and leakage of 

protein. The adverse cardiovascular effects of xylazine do not appear to be the cause. 

Leukocytes and IL-1 are probably not involved and oxygen radicals, specifically those 

generated by xanthine oxidase, and tumor necrosis factor may play an important role. 

However, it has to be determined that whether oxygen radical are the cause or simply 

an effect resulting from the initial respiratory distress caused by xylazine or endothelial 

injury. The isolated perfused lung may provide a useful model for determination of the 

role of each of the proposed factors. 

It is very likely that metabolite(s) of xylazine, perhaps reactive in nature, 

produced either in liver or lung causes endothelial injury. Studies on the metabolism 

of xylazine are basically non-existent with the exception of one study which indicated 

that metabolism of xylazine in rats yields 20 metabolites, resulting from the breakdown 

of thiazine ring, with dimethyl benzylamine being the major metabolite. Unfortunately, 

no further attempt has been made to determine the chemical nature of the remaining 

metabolites. It is hypothesized that inhibition of the metabolism of xylazine or 

increasing it dose could shift its metabolism to a toxifying pathway or saturate the 

detoxifying pathway and result in the formation of a reactive metabolite capable of 

damaging the pulmonary endothelium. It is also possible that conjugation of 
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metabolites results in the formation of reactive species. Both the shift to a toxifying 

pathway and the formation of reactive metabolites as a result of glutathione 

conjugation have been proposed as the mechanism of toxicity of drugs and toxicants. 

Elucidation of the exact mechanism of xylazine-induced PE can be useful in therapeutic 

management of xylazine toxicity in animals and man. 
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