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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Synthesis and Secretion of Opioids 

Discovery of Opioids . 

The name "Opioids" refers to a group of chemicals that produce a morphine-like 

effect. The discovery of specific receptors for opioides in animal tissue by Goldstein 

(1971) and Pert and Snyder (1973) led these authors to suggest that opioid-like 

chemicals were produced by humans and animals. Further evidence for the presence 

of endogenous opioid-like peptides (EOP) came from the discovery that electrical 

stimulation of the brain-stem produces analgesia (Reynolds 1969; Mayer and Liebekind 

197 4; Pasternak 1981 ), and that analgesia could be blocked by administering 

naloxone, a specific opioid antagonist (Pfiffer and Herz 1984, Akil et al 1984). 

The search for identification and purification of EOP lead to the discovery of 

specific brain opioids identified as enkephalins, endorphins, and dynorphins (Hughes 

1975; Li and chung 1976). The name endorphin refers to B-endorphins and related 

peptides (Guillemin, 1978). Recently, "opiopeptins" has been proposed as a generic 

term to cover the three families of endogenous opioid peptides classified as 

enkephalinergic, dynorphinergic or endorphinergic (Morley et al 1982). 

It is now clear that there are at least three genes responsible for producing 

large precursor peptides or prohormones, fragments of which have opioid activity. 



These precursors are proopiomelanocorticotropin (POMC), proenkephalin and 

prodynorphin (Hollt 1983). 

Opioid Synthesis Pathway 

The prohormone, POMC, is a glycoprotein of approximately 285 amino acid 

with sugar residues attached near the N-terminal end of the molecule (Fenger 1990). 

POMC is synthesized by the anterior and intermediate lobes of the pituitary and a 

number of other tissues including hypothalamus, lung, placenta, and gastrointestinal 

tract (Drouin et al 1990; Fenger 1990). POMC is hydrolyzed to a-lipotrophic hormone 

(a-LPH), adrenocorticotropic hormone (ACTH) andy-melanocyte-stimulating hormone 

(y-MSH). a-LPH, a large peptide with 91 amino acid (POMC 42-134) is cleaved toy

lipotrophin (42-101) and a-endorphin (104-134). The cleavage products may differ 

according to site of synthesis. The 31 amino acid a-endorphin from different species 

varies only by one or two amino acids in the C-terminal region (Bloom 1983). 
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The precursor proenkephalin is hydrolysed to form pentapeptide methionine

enkephalin (Tyr-Giy-Giy-Phe-Met) and leucine-enkephalin (Tyr-Giy-Giy-Phe-Leu). 

Dynorphin (8 amino acid) and a-nee-endorphin (1 0 amino acid) are derived from 

prodynorphin (Lewis and Stern 1983). These peptides are distributed in brain tissues of 

a wide variety of animal species (Simantov et al 1976). 

Sites of Opioid Production 

Immunohistochemical techniques have been used to identify specific sites of 

opioid synthesis in the brain. The cellular distribution of enkephalins and a-endorphins 

is not the same in different regions of brain. a-Endorphin is found mostly in the 

hypothalamus, midbrain, amygdala, pituitary and brain stem. Although hypothalamus 

may contain high levels of a-endorphin and enkephalins, other areas such as the 



caudate hypothalamus and the globus pallidus contain much more en kephalin than B

endorphin (Bloom 1978). Immunohistochemical staining of serial sections from rat 

hypothalamus indicates that enkephalins and B-endorphins represent two separate 

neuronal systems (Watson 1978; Baile et al 1986; Ravindra and Grosvenor 1990). 

B-Endorphin is present at higher concentrations in plasma than cerebrospinal 

fluid (CSF) in humans (Atkinson 1987). Some B-endorphin immunoreactivity has been 

detected in the stomach, duodenum, jejunum, pancreas, adrenal gland and follicular 

cells of the ovary (Baile et al 1986; Drouin et al 1990). 

Opioid Receptors 
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The discovery of EOP indicated that perhaps receptors could be categorized as 

either enkephalin or endorphin receptors (Pert and Snyder 1973). It was Martin et al 

(1976) who hypothesized that multiple opioid receptors exist in brain. Subsequently, 

opiate receptors have been classified as mu (!l) receptors which have a high affinity for 

morphine and B-endorphin, delta (8) receptors which have high affinity for enkephalins, 

kappa (K) receptors which have high affinity for dynorphin, and epsilon (e) receptors 

which have highest affinity for B-endorphin (Chang et al 1981; Goldstein et al 1989). In 

human brain, ll· 8 and K type of opiate receptors have been identified (Takemori and 

Portoghese 1985). 

Mapping the location of opiate receptors in human brain showed that ll and k 

types predominated ;3-nd that 8 receptors were rare. The K-receptors are most 

abundant in hypothalamus, amygdala and hippocampus, which are areas involved with 

the neuroendocrine effects of opioids. !l-Receptors also were present in these areas 

and other parts of the brain (Pfeiffer et al 1982). K-receptors in human brain were 

further subdivided into 2 distinct types distinguishable by their low and very high 

affinities for the endogenous opioid peptides B-endorphin and dynorphin, respectively. 
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The K-receptor affinity for B-endorphin is about 300-fold lower than that for dynorphin 

and thus B-endorphin at physiological concentrations may not interact with K-receptors. 

B-endorphin and enkephalins may represent the physiological ligands for !l and 8 

opiate receptors (Miller, 1982). 

Opioid Function 

There is accumulating evidence that opioid peptides represent an unique class 

of regulatory chemicals in the endocrine system and in the central and somatic 

divisions of the nervous system. The fact that three types of opioid chemicals 

(endorphins, enkephalins and dynorphins) are found in the hypothalamus, pituitary and 

the adrenal gland, indicates that opioids play a powerful role in regulating the 

organism's response to physiological and environmental demands, including physical 

and psychological stress (Amir et al 1979; Zalman and Galina 1986). Like 

catecholamines, the opioids may have a basic, multisystem function essential to the 

maintenance of homeostasis and to the survival of the organism. Some of these basic 

functions relate to stress, appetite, and cardiovascular systems. It is often difficult to 

determine whether the effects of the endorphins on complex behaviors are primary or 

whether they are secondary to their ability to modify sensory or autonomic variables. 

Opioid release during stressful conditions has been studied extensively. Stress 

appears to activate the hypothalamus-pituitary-adrenal axis of the peripheral 

sympathetic system, leading to release of endogenous opioid peptides from both the 

anterior pituitary and the adrenal medulla (Guillemin 1977, Holaday 1979). These 

stress-related opioid peptides may serve some analgesic function (Zalman and Galina 

1986). The opioid mu-receptor, and even the delta type, may mediate analgesia when 

stimulated by opioid alkaloids (opium) or opioid peptides (Pasternak 1981 ). In addition, 

mu receptors may mediate local analgesia in peripheral tissues (Akil et al1984). 
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There is extensive literature on the effect of opioids on feeding (Merely and 

Levine 1985). An overwhelming body of evidence favors a role for the endogenous 

opioid peptides in the regulation of ingestive behavior (Morley et al 1983; Gosnell 

1987). More detailed involvement of opioid involvement in feed intake regulation will be 

discussed later in this chapter. 

Opioids influence the cardiovascular system by their interaction with specific 

opioid receptors found in the central and peripheral nervous systems, the vascular tree 

and the heart (Holaday 1985). Exogenous administration of opioid peptides affects 

cardiovascular function by decreasing systemic arterial pressure and heart rate, and by 

suppressing baroreceptor reflex function (Holaday 1985). Furthermore, synthetic opioid 

agonists affect the urinary excretion of water and sodium (Akil et al 1984). 

Opioids produce their biological effect by binding to cell-surface receptors 

(Childers 1991 ). Early studies indicated that opioid receptors (mu, kappa, delta and 

epsilon) were coupled to G-proteins that function as transducers in allowing the opioid 

receptor to inhibit adenylyl cyclase, thereby decreasing intracellular concentrations of 

cAMP (Giugliano et al 1989). However, some of the effects of mu and delta receptors 

may also be mediated by direct receptor interaction with G-proteins coupled to ion 

channels (Childers 1991 ). In a recent report, Giugliano et al (1989) suggested that 

opioids may inhibit insulin release by suppressing cytosolic accumulation of cAMP. 
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Regulation of Feed Intake 

The regulation of feed intake and energy balance are influenced by a number of 

factors (Harris 1990). Central regulation of body composition is interfaced with central 

regulation of feed intake. This central control system balances energy input with 

energy output in regulating body weight (Harris 1990). Dysfunction in the central 

regulatory system can result in excessive weight gain or loss (Bray 1991 ). 

Feeding behavior can be influenced by several external factors such as 

environmental conditions, sensory cues and nutrient type in the diet (Morley 1980; 

Kissileff and Van ltallie 1982). The internal regulatory systems, including 

gastrointestinal, hormonal and metabolic factors, also play a role in feeding behavior 

(Kissileff and Van ltallie 1982). The primary site responsible for the integrated control 

of feed intake and energy balance is the central nervous system (CNS), with the 

hypothalamus serving as the primary neuroendocrine transducer in regulation of 

feeding behavior. Peptides found in the CNS have been shown to have a direct effect 

on the control of metabolism, feed intake, and reproductive behaviors. 

Hypothalamus and Feed Intake 

The regulation of feed intake requires the integration of many signals including 

environmental factors and immediate and long term energy needs. Feed intake is 

regulated mainly by the central nervous system. Hypothalamus is an area of the brain 

classically associated with feed intake. It receives input from metabolic, hormonal, 

neurogenic, thermal and cortical factors, which describe the nutritional status of the 

organism (Figure 1 ). Electrical stimulation of the lateral hypothalamic area (LH) initiates 

feeding, but electric or chemical destruction of the LH results in aphagia. Electrical 

stimulation of the ventromedial hypothalamus (VMH) inhibits eating in hungry animals, 
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but ablation of this area produces hyperphagia and obesity. The interaction between 

the two areas is suggested to control feed intake. Other areas added to the list of 

regulatory centers in the central nervous system are the paraventricular nucleus and 

rostral areas such as the nucleus solitarius (Morley 1980; Sullivan and Gruen 1985; 

Harris 1990). 

Lnvlronmental Factors 
PSYCHOLOGICAL +- Palatabllty 

'CORTICAL • e.g. junk food 

METABOLIC 
e.g. Glucostat 

Llpostat 
Amlnostat 

HORMONAL 
e.g. Insulin 

GJ. hormones 

NEUROGENIC 
e.g. GJ. distension 

THERMOSTAT 

NEUROENDOCRINE 
TRANSDUCER 

( HYPOTHALAMUS ) 

FEEDING 

Figure 1. Diagram representing the role of hypothalamus as the central neuro
endocrine transducer in appetite regulation. (From Morley 1980) 

The role of neurotransmitters in initiating feeding was shown by central adminis-

tration of adrenergic, cholinergic, and serotonergic agonists as well as gamma 

aminobutyric acid (GABA) agonists (Blundell 1991 ). In sheep and cattle, feeding has 



been stimulated by ventricular injection of a- and B-adrenergic agonists and 5-

hydroxytryptamine (Simpson 1975; Baile et al 1979). The GABA agonists, when 

injected in the CNS, have stimulated feeding in sheep (Seoane et al 1984). 

Opioid Peptides and Feed Intake 

Accumulating evidence suggests that opioids in the CNS are actively involved 
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in the control of feed intake (Baile and Mclaughlin 1987; Levine and Atkinson 1987). 

Central administration of B-endorphin, met-enkephalin or dynorphin increases feed 

intake. Although most opioid peptide work has been done in rats (Morely and Levine 

1891; Lowy 1981 ), some work has been done with humans and sheep. Injection of 

several met-enkephalin analogues and B-endorphin into the central ventricles has 

stimulated feeding in satiated sheep and rats (Grandison and Guidotti 1977; Baile et al 

1981; McKay et al 1981 ). Feeding in sheep was blocked by prior administration of 

naloxone, a pure opioid antagonist (Baile 1981; Alavi et al 1991 ). Intravenous 

administration of naloxone suppressed feed intake (Brown and Holtzman 1971, King et 

al 1979) whilst the quaternary analogue of naloxone, which is incapable of crossing the 

blood brain barrier, had no effect on feed intake (Carr and Simon 1982). Such results 

indicate that opioid regulation of feed intake occurs in the central nervous system .• 

Another determinant of the possible significance of opioid peptides in the 

control of feed intake is the concentration of opioid peptides in various areas of the 

brain of hungry or satiated animals. Measurements of peptides in sheep have shown 

that met-enkephalin concentration in the basomedial hypothalamus increased with 

increasing lengths of fasting from 0 to 2 h (Scallet et al 1985). In separate 

experiments, met-enkephalin concentrations in the VMH, paraventricular nucleus and 

anterior, dorsomedial and posterior hypothalamus were higher in fed than 4-h fasted 



sheep (Scallet et al 1985), whereas concentrations of B-endorphin were lower in the 

LH, and anterior and posterior hypothalamus of fed than in fasted sheep (Baile et al 

1985). The differential response to hunger by opioids indicates that hypothalamic 

concentrations of opioids differ depending on the states of hunger and satiety 

(Margules et al 1978, Kaye et al 1987). 
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Animal experiments support the hypothesis that the endorphin system plays an 

important role in the biological response to stress and constitutes an "endorphin stress 

system" (Rossier et al 1979). B-Endorphin and ACTH are concomitantly released by 

the hypophysis in response to acute stress (Guillemin et al 197, Holtzman 1974, Lowy 

et al 1981, Khawaja et al 1989). Clinical and laboratory studies have shown that 

"stress" may either increase or decrease food consumption depending on type and 

duration of the stress procedure. For example, mild tail pinching produces overeating 

and obesity in rats while immobilization stress may produce anorexia (Morely and 

Levine 1980). It is well known that acute exposure of animals to stressors of various 

kinds, for example heat, cold, immobilization , food deprivation, glucodeprivation or foot 

shock, provoke profound behavioral effects by activating either the sympatho-adrenal 

or the hypothalamo-hypophyseal-adrenal system. 

Non-opioid Chemicals and Feed Intake 

Serotonergic, alpha-adrenergic, beta-adrenergic and dopaminergic pathways 

are some of the well studied monoaminergic systems involved in feed intake regulation 

(Morely 1980; Sullivan and Gruen 1985; Blundell 1991 ). The satiety center in the VMH 

is thought to be under positive serotonergic control in that direct application of a 

serotoninergic agonist to this area causes anorexia (Shor-Posner et al 1986). 

Alpha-adrenergic. An a-adrenergic system is thought to excite feeding by 
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inhibiting the VMH satiety center. Norepinephrine injections into the medial 

hypothalamus produce feeding through a strictly a-adrenergic effect. Long-lasting 

activation of the a-adrenergic receptors with clonidine produces overeating (Mayer and 

McCaleb 1980; Leibowitz and Hor 1982). 

Beta-adrenergic. In contrast the to a-adrenergic system, the B-adrenergic 

system is thought to cause satiety by inhibiting part of the classical feeding center in 

the VLH. Inhibition of feed intake in hungry rats occured when isoproterenol , a B

adrenergic agonist, was injected into the lateral hypothalamus (Martin 1977). Inhibition 

of feed intake in rats after intraperitoneal injection of salbutamol, a B-adrenergic 

stimulant, was reversed with intracerebroventricular injection of propranalol, a B

adrenergic blocker (Borsini et al 1982). 

Dopaminergic. Dopamine depletion in the nigrostriatal tract produces anorexia 

while dopamine agonists help restore food ingestion. Administration a of dopamine 

antagonist suppresses feeding elicited either by injection of 2-deoxy-0-glucose or 

fasting (Muller et al 1981 ). 

Cholecystokinin. Cholecystokinin (CCK) initially found in the gastrointestinal 

(GI) tract, later in the brain, is one of several peptides involved in feed intake 

regulation (Baile 1986). In contrast to opioid peptides, CNS administration of CCK 

reduces feeding. Furthermore, it's likely that opioid and CCK-derived peptides may 

interact in regulating feed intake. Injections of physiological co~centrations of CCK into 

the lateral ventricles of sheep decreased their feed intake (Della-fera and Baile 1979). 

Concentrations of CCK in specific hypothalamic areas of hungry and satiated sheep 

have been measured. In the anterior hypothalamus, the CCK concentrations were 

higher in fed than fasted sheep (Scallet et al 1985). 
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Obesity and Feed Intake 

Obesity is characterized by excess adipose tissue. Development of obesity is a 

consequence of caloric intake that exceedes the maintenance energy requirements of 

the body. Increasing prevelance of obesity has directed attention of many researchers 

to study the mechanism by which obesity develops and the patho-physiological 

consequense of such condition. Opiate receptors and endogenous opioids play an 

important role in the central regulation of feed intake under both physiological and 

pathological conditions including obesity (Levine et al 1982; Morley et al 1983; Reid 

1985). 

In 1978, Margules and co-workers demonstrated for the first time elevated 

plasma and pituitary levels of B-endorphin in genetically obese (ob/ob) mice and 

Zucker fatty rats (fa/fa). Margules et al (1978) found genetically obese (ob/ob) mice to 

be ten times more sensitive than their lean littermate controls to the anorectic effect of 

naloxone. In a similar study, Morley et al (1983) demonstrated an elevated pituitary 

concentrations of B-endorphin in genetically obese rats (fa/fa) and mice (ob/ob). It is 

worth mentioning that obese Zucker fatty rats are also hyperinsulinemic and 

hyperglycemic (Margulese et al 1978). Diabetic animals are extremely sensitive to 

naloxone, as demostrated by Levine et al (1982). These investigators found 

spontaneously diabetic mice to be 80 times more sensitive to the feed inhibitory effect 

of naloxone than nondiabetic control and streptozocine-induced diabetic mice to be 

1 000 time more sensitive than their controls. Therefore, it is reasonable to suggest that 

greater sensitivity of obese animals to naloxone may be related to their hyperglycemia 

and glucose-induced increase in the activity of opiatergic recepotors. 
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Blood Pressure Regulation 

Components of Blood Pressure Regulation 

The circulatory, endocrine and nervous systems constitute the major integrating 

systems of the body. The circulatory system transports and distributes essential 

substances, removes by-products of metabolism, and maintains hemostatic balance 

during different physiological states. Blood serves as the vehicle for this homeostatic 

function, which depends on velocity of flow, blood pressure, and vessel diameters. 

Velocity of flow is inversely related to the cross-sectional area of the vessel 

(Laplace law) and directly proportional to the difference between inflow and outflow 

pressure. Thus, changes in the diameter of the vessel (resistance) affect blood 

pressure and flow. Just as in electrical circuitry, vessels added in series to a circulatory 

pathway increase resistance and blood pressure for a given flow (for example in renal, 

splanchnic and hepatic capillaries), whereas addition of blood vessels in parallel 

reduces resistance and blood pressure (f~r example colateral blood vessles in skeletal 

muscle of atheletes). 

Blood flow is regulated by complex regulatory systems. Superimposed on the 

intrinsic local tissue regulation (autoregulation) of blood flow are regulations imposed 

by the hormonal and autonomic nervous systems. The major hormonal regulatory 

system is the renin-angiotensin-aldosterone system. Autonomic regulation of blood 

pressure is in the realm of the sympathetic nervous system (SNS), which controls the 

blood pressure through sympathetic nerve fibers distributed over small arteries and 

arterioles. The vasomotor center in the brain stem (medulla) transmits impulses 

through the sympathetic fibers to regulate vascular smooth muscle tone. The upper 

and lower parts of the vasomotor center in the medulla serve as pressor and depressor 
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centers, respectively. The opposing actions of two parts regulate the vascular tone and 

thereby the vascular resistance (Figure 2). 

CARDIOVASCULAR REFLEX PATHWAYS 

Aortic 
Bodies 

Veins 
(Capacitance) 

CORTEX 

~~ 
HYPOTHALAMUS 

Figure 2. Autonomic control of blood pressure regulation 
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Blood pressure is a function of cardiac output and total vascular resistance. Any 

condition that increases either cardiac output or total peripheral resistance will cause 

an increase in mean arterial blood pressure. An increase in vascular resistance rather 

than cardiac output, is thought to be the principal factor contributing to essential 

hypertension in humans (Folkow et al 1958; Dustan et al 1981; Korner et al 1989; 

Shepherd 1990). 

Adrenergic Regulation of Blood Pressure 

Norepinephrine (NE) and epinephrine (EPI) are catecholamines involved in 

adrenergic regulation of blood pressure. Adrenal medulla is the major site of EPI 

production. Sympathetic nerve endings produce NE, which is the neurotransmitter at 

most sympathetic postganglionic nerve endings and at some synapses in the central 

nervous system. EPI secreted by the adrenal medulla functions as a neuroendocrine 

chemical. Both NE and EPI exert their effects by activating adrenoceptors located on 

the cell surface of target cells (Table 1 ). 

Two major classes of adrenoceptors exist and these are termed alpha (a) and 

beta (B) adrenoceptors (Raper 1987). Distribution of adrenoceptors varies from organ 

to organ (Table 1 ). The balance between the a- and B-adrenoceptor and their subtypes 

known as a1, a 2, B1 , and B2 determines the characteristic cardiovacular responses to 

NE and EPI release. 
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TABLE 1 

DISTRIBUTION OF ADRENOCEPTOR SUBTYPE AND ADRENERGIC RESPONSES 
OF SELECTED ORGANS OR TISSUES 

Organ/Tissue Receptor Effect 

Heart B1 i force of contraction i heart rate 

Blood vessels a1, ~. B2 <X1, a2 = vasoconstriction B2= vasodilation 

Kidney a1, B1 a1= t renin release B1= i renin release 

Pancreas a1, ~. B2 <X1, a2 = t secretion B2= i secretion 

Fat cells a2, B1 <X2= t lipolysis, B1= i lipolysis 

Liver a1, B2 Glycogenolysis and gluconeogenesis 

Symp. Terminals a2, B2 <X2= t NE release, B2= i NE release 

Bronchioles B2 Dialation 

1 Adapted from Maki et al 1990. 

a-Adrenoceptor. The two subtypes of a-adrenoceptors are a1 and a2. Both 

types are located on the postsynaptic plasma membrane of target cells. The a2-

adrenoceptors also are located in the presynaptic membrane, where they function in 

the regulation of neurotransmitter release. Release of NE by exocytosis into the 

myoneuronal junction occurs when a nerve impulse is propagated along the 

postganglionic adrenergic neuron to the varicosities of the axon terminal. NE then 

activates a-adrenoceptors on the peripheral vascular smooth muscle causing 

vasoconstriction (Timmermans and Van Zwieten 1980; Bylund 1988). ~-Adrenoceptors 

at the presynaptic sites mediate feedback inhibition of NE release (Brummelen 1987). 

The characteristic order of potency for agonists at both ~ and a2-adrenoceptors is 

epinephrine > norepinephrine > dopamine > isoproterenol. 

a1-Adrenoceptors produce their effect via phopholipase hydrolysis of 



phosphotidyl biphosphate and attendant intracellular increase in calcium and protein 

kinase C. ~-Adrenoceptors produce their effect by inhibiting adenyl cyclase, thereby 

decreasing production of intracellular cAMP from ATP (Maki et al 1990). 
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Plasma NE is almost entirely derived from sympathetic nerve terminals, and as 

such reflects sympathetic nerve activity (Cryer 1980). Previous studies in normotensive 

human subjects showed that changes in plasma NE levels mirrored the changes in 

blood pressure during barroreflex activation by vasoactive drugs (Grossman et al 

1982). 

B-adrenoceptors. The B-adrenoceptors are divided into two subtypes, 

generally referred to' as B,- and B2-adrenoceptors. The B, -adrenoceptor is considered 

unique to the heart, kidney and intestine, with B2-adrenoceptors present in other 

tissues and heart (Brodde 1984). The characteristic order of potency for agonists at 

both B, and B2-adrenoceptors is isoproterenol > epinephrine > norepinephrine > 

dopamine (Kalant and Roschlau 1989). Stimulation of the peripheral B2-adrenoceptor 

causes vasodilation, whereas stimulation of a-adrenergic receptors in blood vessels 

causes vasocons-triction. Most, if not all, of the actions of catecholamines at B-

adrenoceptor sites are mediated by the stimulation of the plasma membrane-bound 

adenyl cyclase enzyme, which stimulates the formation of intracelluar cAMP from ATP 

(Maki et al 1990). 

Opioid Regulation of Blood Pressure 

Neuroendocrine contributions to the CNS regulation of blood pressure and heart 

rate are well established (Ganong et al 1979). Endogenous opioids are among the 

neuropeptides identified in this regulatory role (Rubin 1984). Opiatergic peptides have 

been demonstrated in important cardiovascular control centers of the brain (Holaday 



1983). Stimulation of central opiatergic receptors results in change in cardiovascular 

function. For example Haddard et al (1986) and Naranjo et al (1985) observed a 

decrease in blood pressure following central administration of B-endorphin. 
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Central administration of opioids such as B-endorphin or enkephalin causes a 

significant decrease in blood pressure in normotensive animals( Schatz et al 1980; 

Kunos et al 1981 Cuthbert et al 1989), whereas the opiate antagonist naloxone 

increases blood pressure in hypovolemic-shock-associated hypotension in non-human 

primates (Mcintosh 1986). Proopiomelanocorticotrophin derived peptides are 

distributed throughout the brain and brain stem; opioid-containing axonal projections 

originate in the hypothalamus and extend to various brainstem areas, including the 

locus cerulus, nucleus tractus solitarius and area postrema. It is in these areas that 

opiate receptors exist and opiate containing neurons synapse with a-adrenergic 

neurons, suggesting a functional relationship between the two systems (Zamir et al 

1984). Randich and co-workers (1991) found that intrathecal (spinal) administration of 

naloxone antagonized the vagal-mediated bradycardia produced by morphine. 

There is experimental evidence to support the hypothesis that opioid peptides 

may function as neurotransmitters or as modulators in various peripheral effector 

organs innervated by sympathetic and parasympathetic neurons. Lang et al (1983) and 

Xiang et al (1984) reported that a considerable amount of enkephalins are stored in the 

heart, possibly in sympathetic nerve endings. Koyanagawa et al (1989) suggest that 

opioid receptors may mediate vagal bradycardia in dogs. Recently, Rogers and 

Henderson (1990) demonstrated that activation of presynaptic mu- and delta-opioid 

receptors depressed acetylcholine release in the hypogastric ganglion, thus indicating 

that opioids and opioid receptors may regulate neurotransmitter release in 

parasympathetic and sympathetic systems by a presynaptic mechanism. 



Evidence for the interaction between opiatergic and sympathetic nervous 

systems in the regulation of blood pressure was demonstraed by Kunos et al (1981 ), 

who showed that the hypotensive effect of clonidine, an ~-adrenergic agonist, was 

reversed by naloxone. Further, Laskey et al (1989) showed that the effects of B

agonists on blood pressure were mediated via an opioid pathway. 
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Opioid receptors and peptides have been found in high concentration in the 

nucleus tractus solitarius (NTS) in the rat, cat and monkey brain, with the greatest 

concentration of each occurring in the area of NTS that receives afferent input from 

heart (Lesli 1985). It is therefore possible that stimulation of these afferents causes the 

release of an opioid peptide in the NTS, which in turn leads to reduced sympathetic 

outflow to renal and other vascular beds (Weinstock et al 1989). 

Hypertension in Health 

According to guidelines set by The World Health Organization (WHO), 

hypertension is defined as systolic pressure greater than 160 mmHg and diastolic 

pressure greater than 90 mmHg, although most US authors consider 140/90 mmHg as 

an adequate criterion (Trevisan et al 1988; Stoner and Parker 1991 ). The etiology of 

hypertension is complex and not always well understood. In situations where the 

etiology is known, such as in renal hypertension, the hypertension can be effectively 

treated . However, hypertension of unknown cause (essential hypertension) is difficult 

to treat (Folkow 1982). 

The prevalence of hypertension is sufficiently high in western societies to 

warrant considering it as a serious public health problem. Epidemiological data reveal 

that premature cardiovascular morbidity and mortality are directly related to the level of 

diastolic and systolic blood pressure (Kannel, 197 4, 1979; Hansen et al 1990). 
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Hypertension can produce two primary damaging effects on the cardiovascular system: 

( 1) increased work load on the heart and (2) damage to blood vessles caused by 

excessive pressure {Messerli 1990; Morgan and Baker 1991 ). 

Risk Factors for Hypertension 

Certain risk factors increase the probability of developing hypertension. An 

individual with one or a combination of specific risk factors has a greater probability of 

becoming hypertensive than an individual without such risk factors. The most common 

risk factors for hypertension are obesity, diabetes, excess sodium ingestion and excess 

alcohol ingestion (Van ltallie 1986; Horan and Lenfant 1990; Reaven 1990; Mahler 

1990; McKeigue et al 1991 ). 

Obesity. An association between obesity and hypertension has been 

demonstrated clearly in several epidemiological studies (Stamler 1978; Van ltallie 

1985; Dryer et al 1990; Falkner et al 1990; Xavier Pi-Sunyer 1990, Horswill and Zipf 

1991 ). Conclusions from these studies are supported by experiments demonstrating 

hypertension in obese dogs (Rocchini et al 1989) and Zucker fatty rats (Kurtz et al 

1989). Patients are considered obese when their body weight exceeds by 25 % their 

ideal body weight which is calculated according to the actuarial tables of the 

Metropolitan Life Insurance Company (Stamler et al 1978). 

Although a high proportion of obese individuals develop hypertension, not all 

obese individuals are hypertensive. In a study of 1 million people, Stamler and co

workers (1978) reported that the prevalence rate for hypertension was 50% greater in 

overweight than normal weight people. The prevalence of hypertension increases with 

increasing age and body weight (Stamler 1978; Leitschuh et al 1991 ). The incidence of 

hypertension was higher in obese blacks as compared with obese caucasians. 



Regardless of race, obese males have a higher prevalence of hypertension than 

female individuals (Stamler 1978, Ramirez et al 1991 ). Several adaptations in the 

cardiovascular system occur during the development of obesity that may lead to 

development of hypertension. For example, as a consequence of the expanding 

adipose tissue a greater demand is placed on the heart and blood supply, and this is 

associated with elevated cardiac output and eventually, left ventricular hypertrophy. 
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Diabetes. Distribution of adipose tissue may have a significant effect on the 

association observed between obesity, diabetes and hypertension (Krieger and 

Landsberg 1988; Evers et al 1989; Lundgren et al 1989; Mahler 1990; Despres et al 

1991 ). Upper body (abdominal) obesity, assessed by increased waist-to-hip ratio, may 

contribute significantly more to high blood pressure and diabetes than lower body 

(gluteal) obesity (Bray 1990; Gerber et al 1990; Skarfors et al 1991 ). Studies show that 

hypertension also is strongly associated with diabetes in obese and nonobese 

individuals (Young and Landsberg 1982; Memeh 1990; Xavier Pi-Sunyer 1990, 

Muscelli et al 1990; Gans and Donker 1991 ). Diabetes and hyperinsulinemia play a 

significant role in the pathogenesis of hypertension and coronary heart disease 

(Ronnemaa et al 1991; Reaven 1990). This relationship between diabetes and 

hypertension has been demonstrated recently in humans (Ronnemaa et al 1991 ), and 

in spontaneously hypertensive rats (Hulman et al 1991 ). The interactions between 

diabetes and obesity and hypertension are not completely understood, but 

hyperinsulinemia and insulin resistance may serve as causative links (Swislocki 1990). 

Hyperinsulinemia. Some of the suggested mechanisms (Fig. 3) linking 

hyperinsulinemia to hypertension include: (1) insulin's stimulatory effect on SNS activity 

(Rowe et al 1981 ); (2) insulin's stimulation of sodium absorption in the kidney 



(DeFronzo 1981; Skott et al 1989); (3) insulin stimulation of locally active growth 

factors in the vascular wall (Baret al 1988); and (4) insulin stimulation of endothelial

derived vasoactive hormones (Ferrari and Weidmann 1990; Ferrannini and Natali 

1991 ). 
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Insulin, SNS activity and Hypertension. Insulin may affect hypertension by 

increasing sympathetic nervous system activity (SNS). Intravenous infusion of insulin 

increased plasma catecholamine concentrations in normal individuals independently of 

changes in glucose concentrations (Rowe et al 1981 ). Siani et al (1989) showed that iv 

administration of insulin increased heart rate and that this was reversible by 

propranolol, a B-adn:inergic blocker. Whether these results were caused directly by 

insulin or indirectly by insulin effect on glucose is still not clear, since some studies 

have shown that dietary glucose influences the sympathetic activity in rats (Kaufman et 

al 1991 ). 

Insulin, Sodium Balance and Hypertension. Insulin increases sodium 

reabsorption in kidney distal tubules (DeFronzo et al 1981; Skott et al 1989; Gesek et 

al 1991 ). The increase in sodium reabsorption leads to water retention and, 

consequently, increases in blood volume and pressure. Insulin may also enhance 

sodium reabsorption indirectly by its effect on renal sympathetic activity (Gans and 

Donker 1991 ). Brands and co-workers (1991) showed that sustained iv infusion of 

insulin and glucose significantly increased mean arterial pressure and heart rate in 

rats. 
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Figure 3. Schematic of proposed insulin-mediated mechanisms of blood pressure 
regulation. (GI, gastrointestinal; GH, growth hormone; ANF, atrial 
natriuretic factor). Adapted from Ferrari and Weidmann 1990. 

Insulin, Vascular Growth and Hypertension. Abnormal cellular calcium 

homeostasis may link insulin resistance and high blood pressure in non-insulin 

dependent diabetic individuals (Levy at al 1989; Resnick et al 1991 ). These authors 

found that plasma co~centrations of Ca2+ and Mg2+ were positively and negatively 

correlte with incidence of diabetes in humans, repectively. It has been suggested that 
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insulin may contribute to vascular hypertrophy leading to increased vascular tone, and 

subsequent increase in blood pressure (Raij 1991 ). Insulin inhibition of plasma 

membrane Ca++/Mg++_ATPase activity, increases intracellular calcium concentrations 

(Pershadsingh and McDonald 1979), which could potentially modulate cardiovascular 

function (Ferrari and Weidmann 1990). 

Insulin, Endothelial Function and Hypertension. Vascular endothelium 

represents an extraordinary complex network of cells with multiple metabolic and 

immunological properties. These cells are continuously bathed by chemicals in blood. 

The presence of insulin receptors in endothelial cells (Frank and Partridge 1981) 

indicates that these cells respond to insulin regulation of glucose and amino acid 

transport and glucose metabolism (Baret al 1988). Endothelial cells produce a number 

of factors that cause relaxation (nitric oxide, prostacyclin) and contraction (endothelin) 

of vascular smooth muscle (Miller 1991 ). Endothelial cells synthesize clotting factors 

and this can be. affected by insulin. In both type I and type II diabetes, the levels of 

prostacyclin are depressed but may improve with normalization of hyperglycemia 

suggesting that high plasma glucose may compromise endothelial cell function (Stolar 

1988). Therefore, one may suggest that a dysregulation of endothelial cell's function 

may lead to alterations in the regulation of the blood hemodynamics in the blood 

vessels of obese diabetic and nondiabetic individuals. 
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Objectives and Hypothesis 

Opioids have an important role in regulation of feeding behavior and 

cardiovascular function (Morely 1982, Holaday 1983). Dysfunction in opioid biology has 

been associated with development of obesity in obese Zucker rats and also with 

development of hypertension in animals (Guillemin et al 1977, Holaday 1983). 

The schematic in Fig. 4 displays a working model that illustrates the relationship 

between opiates and obesity and their interactive effect on blood pressure regulation. 

The model indicates that enhanced activity in the opiatergic system is essential for the 

overeating that leads to dietary obesity. Opiatergic regulation of intake during the 

induction or dynamic phase of obesity will differ from that during the maintenance or 

static phase of obesity because the obese state per se modifies opiatergic regulation 

of appetite. Obesity is closely linked with the development of hypertension. 

Fl.._. F_E_Eo_r_NT_A_Ke--~19 
OPIATES 1--------------------.. 

. ~------------------- I OBESITY 

L __ I e_L_o_oo_P_R_es_s_uR_e--11 jJ 
Figure 4. This model illustrates the possible relationship between obesity 

and opiates and their interactive role in feed intake and 
pressure regulation. The model is explained in the text. 
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The model further shows that abnormal cardiovascular function in obese 

individuals is partly the result of an obesity-induced defect in the opiatergic regulation 

of blood pressure and cardiovascular function. The model does not distinguish if the 

defects in opiatergic regulation of appetite and blood pressure are one-and-the-same 

or whether the defective site(s) of opiate dysfunction is exclusively central or is located 

at central and peripheral sites. The model subserves the thesis that static obesity 

changes opiatergic regulation of appetite and blood pressure. Experiments were 

designed to address this thesis and to further determine the cellular mechanisms 

explaining opiate involvement in obesity-associated hypertension. 

Objectives in experiment 1 were to determine the dose-response curve for 

naloxone inhibition of feed intake in sheep and to establish doses that were without 

side effects. 

Experiment 2 was designed to test the hypothesis that obesity alters the 

opiatergic regulation of feed intake. The inhibitory effect of naloxone on feed intake 

was evaluated in lean sheep and sheep in the static phase of obesity. Sheep became 

obese by overeating for 40 - 50 wk (see Chapter 2). 

Experiments 3, 4 and 5 tested the hypothesis that obesity in sheep is asso

ciated with hypertension and that cardiovascular responses to opioid blockade differ in 

lean and obese sheep. Cardiovascular responses to clonidine were determined in the 

presence and absence of naloxone to examine the interactive effects of opioids and 

adrenergic receptors on cardiovascular function in lean compared with obese sheep. 

Finally, the effect of obesity on the pharmacokinetics of iv injected naloxone 

was investigated. Results obtained in lean and obese sheep treated with naloxone can 

be readily compared only if body condition has no effect on plasma levels or 

degradation of the injected naloxone. 
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CHAPTER II 

DEVELOPMENT OF OBESE SHEEP MODEL 

Introduction 

Obesity, diabetes and hypertension are clinical diseases with high prevalence in 

western society. Epidemiological statistics reveal that diabetes and obesity are major 

predisposing factors for premature cardiovascular morbidity. It has been estimated that 

approximately 26% of the US population (age 20-74 yr) currently are considered 

obese (Van ltallie 1985). 

Obesity is an important risk factor for development of hypertension. Indeed, in 

the United States, national data for 1979-1980 suggest that 44% of the hypertensive 

population are obese, whereas only 16% of the normotensive population are obese. 

Conversely, 53% of all obese subjects are hypertensive, but only 22% of non-obese 

individuals are hypertensive (Horan and Lenfant 1990). There seems to be a clear 

association between obesity and high blood pressure. 

Understanding and treating human diseases has depended to a great extent on 

the use of animal research models. Obese animals may represent models of human 

obesity in certain respects but not others. Studies in animal models may be aimed at 

elucidating etiological factors in obesity or the metabolic abnormalities and clinical 

diseases associated with obesity. Animals may be used to study neurotransmitters 

involved in the regulation of food intake, pharmacokinetic properties of therapeutic 

drugs in obese patients, and finally the pathophysiology of obesity-associated 
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hypertension and diabetes (Fuller and Yen 1987; Bohr and Dominiczak 1991 ). 

Obesity can have different origins and etiologies in animals just as in humans. 

In animals, obesity can be genetic in origin or induced by chemical, surgical or dietary 

means (Bray 1979). Genetically obese animal models, e.g. ob/ob mouse and fa/fa fatty 

rats, might be good models for genetic obesity but not for nongenetic obesity in 

humans (Bray 1977; Fuller and Yen 1987). 

Excessive caloric intake produces obesity in humans and animals. Animals can 

be induced to overeat either by force feeding, enhancing the palatability of food, 

manipulations such as hypothalamic lesions, or by tail-pressure stress to enhance 

feeding (Bray 1979; Penicaud et al 1989). Special effort is necessary to produce 

dietary-induced obesity in rodents. Rats become dietary obese by consuming a diet 

comprised of cheese, ham, salami, bread, and crackers; the so-called "cafeteria diet" 

(Sclafani and Springer 1976; Rolls et al 1980; Bubag et al 1990). The lack of 

homogeneity of diet introduces difficulty in estimating the type of nutrients and amount 

of calories that are ingested in dietary-obese rats as compared with control rats fed 

standard rat chow. Alternative procedures involve the feeding of high glucose, high 

fructose or high fat diets to induce dietary obesity in rats while control animals are fed 

standard rat chow (Levin et al1983; Kaufman et al1991). 

Genetic and nongenetic obese animal models have been used to study the 

patho-physiology of hypertension in humans. The most studied animal models are 

genetically hypertensive such as the Dahl salt sensitive rat (OS) and the Japanese 

spontaneously hypertensive rat (SHR). Dahl and co-workers established a genetic stain 

of rats that became hypertensive when fed a high salt diet and a second salt-resistant 

strain (SR) that did not develop hypertension (Dahl 1962). The SHR rats were 

originally developed by Okamoto and Aoki (1963) by selectively breeding of the Wistar 
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Kyoto (WKY) rats for higher blood pressure. The SHR rats have many similarities to 

human essential hypertension and currently SHR rats are the most widely used animal 

model of essential hypertension. SHR rats have enhanced our understanding of some 

of the mechanisms associated with hypertension, but unfortunately this genetic animal 

model does not show the risk factors appropriate for obesity-associated hypertension. 

An animal model of renal hypertension, originally described by Goldblatt and 

associates in 1937, is produced by clamping one or both renal arteries (Goldblatt et al 

1937). Variation of Goldblatt's original technique has been used by other investigators 

(Hall et al 1990; Xie et al 1990; I mig and Anderson 1991 ), to advance significantly our 

understanding of renal hypertension. 

Dietary obese hypertensive dogs were first described by Wood and Cash 

(1939). Recently, Rocchini and associates reported that high fat feeding produces 

obesity and hypertension in dogs (Rocchini et al 1987). The obesity was produced by 

supplementing the regular diet of dogs with 2 lb of freshly cooked beef fat per·day. 

After 5 wk on this diet, mean arterial pressure and heart rate were increased 24 and 

21 %, respectively, in high-fat supplemented dogs compared with control animals fed 

only regular diet (Rocchini et al 1987). 

Development of hypertension in genetically obese rats has been inconsistent. 

Kurtz et al (1989) reported an increase of approximately 20 mmHg in the mean arterial 

blood pressure of Zucker fatty rat compared with lean Zucker rats. However, others 

have failed to see any significant difference in the blood pressure of lean or obese 

Zucker rats (Ernsberger and Nelson 1988; Kasiske et al 1991 ). Furthermore, 

development of hypertension in the Zucker rat may be genetic in origin, and distinct 

from the obese state because caloric restriction did not attenuate the hypertension 

(Kurtz et al 1989). 
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In some models of dietary-induced obesity, rats and dogs are fed excess fat in 

their normal ration to develop obesity-associated hypertension (Levin et al 1983; 

Rocchini et al 1987; Bunag et al 1990). In these studies, obese animals are compared 

to lean ones which are fed normal diet without the excess amount of fat, and thus 

comparisons may not be appropriate since animals belong to different dietary 

treatments. We have developed an obese sheep model (Fig. 1) by dietary means, in 

which the composition of the diet is the same for both lean and obese sheep. This 

sheep model of obesity develops some of the risk factors associated with diabetes and 

hypertension in humans, such as hyperinsulinemia, hyperglycemia, and insulin 

resistance (McCann and Bergman 1988; McCann et al 1991 ). In this chapter we will 

present results pertaining to the development of dietary obesity in Rambouillet ewes 

that were used in this thesis. 

Materials and Methods 

Animals and Diet 

Lean adult Rambouillet ewes aged 3-4 years were purchased from USDA-ARS, 

Forage and Livestock Research Laboratoy, Fort Reno, OK. The diet fed throughout the 

experiment was a pelleted hay-grain mixture (Stillwater Ag and Mill, Stillwater, OK) with 

a small amount of prairie hay to provide long-stem roughage for maintenance of rumen 

motility. Fresh water was always available to each sheep. Chemical composition of the 

pelleted feed and hay was relatively constant throughout the experiment (Table 1 ). 

Dietary-Induction of Obesity 

Ewes were assigned randomly to the lean (n=5) and obese (n=5) groups and 

housed individually in pens (1.1 x1.8 m) bedded with sawdust in a room with constant. 
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Figure 1. Schematic diagram of development of dietary obese sheep model. 
The graph depicts the changes in body weight and feed intake in sheep during 
dynamic and static phases of obesity. Dynamic obesity persists until nearly 
steady-state body weight and feed consumption occurs at which time animals 
enter static-phase obesity. Diagram provided by Or. McCann, Oklahoma State 
University. 



TABLE 1 

NUTRIENT COMPOSITION OF DIET AS FED1 

Nutrient 

Dry Matter (OM) 

Total Digestible Nutrient (TON) 

Total Protein 

Crude Fat 

Nitrogen Free Extract 

Crude Fiber 

Ash 

Calcium 

Phosphorus 

Magnesium 

Potassium 

Sodium 

Sulfur 

Manganese 

Copper 

Cobalt 

Zinc 

Iron 

Molybdenum 

Pellet Hay 

Values as g/kg 

934.6 ± 2.0 942.0 ± 6.2 

671.4 ± 12.3 523.2 ± 7.9 

152.4 ± 4.7 47.3 ± 3.3 

27.9 ± 0.4 12.8 ± 0.9 

545.9 ± 9.1 480.1 ± 17.2 

149.1 ± 12.6 373.8 ± 18.0 

98.3 ± 3.4 58.9 ± 3.5 

13.2±0.3 3.2 ± 0.3 

5.2 ± 0.3 0.89 ± 0.20 

9.1 ± 0.4 1.03 ± 0.16 

15.8 ± 0.3 5.23 ± 1.59 

3.0 ± 0.2 0.23 ± 0.02 

1.6 ± 0.2 1.07 ± 0.29 

Values as mg/kg 

60.5 ± 6.5 48.7 ± 8.8 

5.82 ± 0.79 1.44 ± 0.36 

1.49 ± 0.08 0.212 ± 0.054 

67.4 ± 15.5 5.96 ± 1.80 

994.6 ± 45.6 43.6 ± 6.6 

2.5 ± 0.22 0.50 ± 0.11 

1 Values are means (± SE) of means of 5 analyses done at 
intervals of approximately 4 months on 5 different batches of pellets 
and hay. Analyses performed by Triple "S" Labs, Loveland, CO, USA. 
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light, temperature (20 ± 1 oC) and music (radio). Sheep were acclimated to environment, 

jugular venipuncture and personel for 4 wk before experimental data were coolected.were 

collected. At this time, all sheep were fed maintenance levels of the pelleted feed (12.8 

g/kg) and hay (1 g/kg). The target body weight associated with lean body condition was 

calculated using wither heights and a weight-to-wither height ratio of 0.65 kg/em (McCann 

and Bergman 1988, McCann et al 1991 ). Target body weights were used in calculating 

maintenance intakes in all sheep during the acclimation period and in lean sheep throught 

the experiment. 

Amount of pellets fed to obese sheep increased from maintenance to 1 .5 kg per 

sheep per day in week (wk) 1, to 2.0 kg in wk 2 and to 2.5 kg per sheep per day in wk 

3 of the experiment. Feed refusal was determined daily and amounts fed adjusted to 

provide weigh backs of approximately 1 0% of the amount fed. Pellets were fed in two 

equal amounts at 0900 and 1630 h. Hay (1 g/kg) was fed daily at 0900 h throughout the 

experiment. 

Indices of Obesity and Chemical Composition of Carcass 

Sheep were necropsied over a 4 month period at wk 11 0 to 130 of the 

experiment. A lean and obese sheep were necropsied as a pair after an overnight fast. 

All sheep were in equilibrium body weight at necropsy. 

Sheep were electrically stunned, exsanguinated and eviscerated. The omental, 

perirenal and pericardia! fat depots were removed and weighed to the nearest 1 g. 

Weights of heart, kidney and liver also were recorded. The carcass was split longitudinally 

into right and left halves and chilled overnight at 4 oC. The half-carcass was ground 

seven times through a 9 mm plate before subsampling for proximate analysis. Proximate 

composition was done by standard AOAC method (Association of Official Analytical 

Chemists 1970). Protein was determined by the macro-Kjehldal method. Lipid content was 
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determined using Soxhlet extraction procedure with anhydrous petroleum ether. Moisture 

content was the difference in weight of tissue before and after freezecdrying of 

subsamples (500 g) of comminuted carcass. 

Results and Discussion 

Body Weight and Feed Intakes 

Body weights in the obese group increased in a curvilinear fashion until attaining 

a plateau value by wk 40 approximately (Fig. 2). Overeating for 40 wk increased body 

weight from 45 ± 3 kg to 85 ± 3 kg in obese sheep. Intakes of pellets and hay in obese 

sheep peaked at 1840 ± 1 05 g x sheep·1 x day-1 at wk 3-5 and declined gradually 

thereafter until plateauing at nearly constant levels of 915 ± 32 g x sheep-1 x day-1 at wk 

30-60 of ad libitum feeding. Intakes of digestible energy mirrored feed intakes (Fig. 2), and . 

clearly were decreasing from peak values (5490 ± 315 Kcal DE.sheep -1 • day-1 ) at wk 3 

while body weights continued to increase in obese sheep. Body weights and intakes in 

lean sheep were nearly constant throughout the experiment (Fig. 2). 

Obese sheep were in static-phase obesity afterwk 40 based on stable body weight 

and relatively constant consumption that was sufficient for maintenance of steady-state 

body weight and presumably steady-state body composition. Obese sheep were fed 

a specified maintenance intake starting wk 72 of the experiment. During static phase 

obesity (wk 40-120), average intakes of dry matter and digestible energy per kg body 

weight were practically equivalent in lean sheep fed maintenance and obese sheep fed 

maintenance (wk 72-120) or consuming maintenance when fed ad libitum (wk 40-71; 

Table 2). 
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Figure 2. Body weight and digestible energy (DE) intakes in maintenance-fed lean sheep 
and obese sheep during the dynamic and static phases of dietary obesity. 
The bottom panel represents kcal DE consumed per kg body weight in lean 
and obese sheep. Average daily DE intake was obtained for 7 day (wk) 
intervals throughout the experiment. 
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Indices of Obesity and Carcass Composition 

Body weights in obese sheep (79 ± 3 kg) were about twice those in lean sheep 

(46 ± 2 kg) at necropsy (Table 3). Weights of the omental, perirenal fat and pericardia! 

fatdepots were markedly greater (P<0.01) in obese than lean sheep. Weights of some 

of the vital organs, (e.g., heart, liver and kidneys) were greater (P<0.01) in obese than 

lean sheep. The percentage of lipid was greater (P<0.01) and the percentage of 

protein less (P<0.01) in the heavier (P<0.01) carcass of obese compared with lean 

sheep. 

TABLE 2 

AVERAGE DAILY TOTAL INTAKES OF DRY MATTER (OM) AND DIGESTIBLE 
ENERGY (DE) DURING THE STATIC PHASE OF DIETARY 

OBESITY IN SHEEP1 

Lean (5} Obese (5} 

Item WK 50-120 WK 50-66 WK 70-120 

Dry Matter g/kg1.0 12.5 ± 0.2 11.3 ± 0.3 10.3 ± 0.2 

(DM) g/kg0.75 32.5 ± 0.6 34.5 ± 1.0 30.7 ± 0.5 

Digestible Energy Kcal/kg1·0 38.7 ± 0.8 35.5 ± 0.9 32.0 ± 0.5 

(DE) Kcal/kg075 101.1 ± 2.9 107.8 ± 3.3 95.3 ± 1.4 

1 Obese sheep were fed ad libitum but consuming maintenance during week (WK) 
50-66 and were fed a specified maintenance during WK 72-120. Daily intakes of OM and 
DE were averaged for each sheep during each period and the average value used to 
calculate the mean ± SE values shown. DE intakes were calculated on the basis that 1 
g of total digestible nutrient (TON) provides 4.45 Kcal DE. 
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TABLE 3 

WEIGHTS OF LIVE BODY, CARCASS, INTERNAL ORGANS, AND FAT 
DEPOTS AND CHEMICAL COMPOSITION OF CARCASS DURING 

STATIC PHASE OBESITY IN SHEEP 

Lean (5) Obese (5}1 
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Body and organ weights ___ _ 

Body weight (kg) 

Carcass weight (kg) 

Omental fat {kg) 

Perirenal fat {kg) 

Pericardia! fat {g) 

Heart {g) 

Liver {g) 

Right kidney {g) 

Left kidney {g) 

Lipid 

Protein 

Moisture 

Ash 

46 ± 2 79 ± 3 

20 ± 0.5 40 ± 1 

0.94 ± 0.14 4.42 ± 0.2 

0.48 ± 0.09 2.17 ± 0.23 

91 ± 12 274 ± 26 

248 ± 17 287 ± 16 

530 ± 20 714 ± 49 

58± 2 76 ± 6 

54±2 82 ± 7 

Carcass Percent Composition 

23±2 

14.9 ± 1.2 

58± 1.0 

4.2 ± 0.4 

46 ± 1 

10.7 ± 0.5 

24 ± 0.7 

3.1 ± 0.2 

1 Except for heart weights, values for lean and obese sheep within an item differ 
{P<0.05) 

Dietary obese sheep portray some of the risk factors associated with obesity in 

humans such as hyperinsulinemia, hyperglycemia, insulin resistance. Our 

understanding of the etiology and pathophysiology of obesity relies heavily on the 

availability of suitable animal models. Genetically obese rodents are well suited to 

study pathophysiology of obesity with genetic origin. Dietary obese rodents are difficult 
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to produce. One of the limitations of genetically obese or dietary obese rodents is their 

small body size which precludes repetitive sampling. Obese sheep provide an ideal 

model of non-genetic origin for studies including diabetes, insulin resistance and blood 

pressure. Sheep are equivalent in size to humans, are docile, do not molest the 

experimenter, and are readily instrumented for short term or chronic physiological and 

pharmacological studies. As with any model, sheep have their limitations. Sheep are 

herbivorous ruminants whereas humans are omnivorous and nonruminants. However, 

sheep are established animal models for humans in areas of neurophysiology, 

cardiovascular physiology and reproductive biology. 
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CHAPTER Ill 

EFFECTS OF NALOXONE ON AD LIBITUM INTAKE 

AND PLASMA INSULIN, GLUCOSE, AND FREE 

FATTY ACIDS IN MAINTENANCE-FED SHEEP 

Introduction 

Changes in plasma levels of insulin, glucose and free fatty acids (FFA) are 

thought to play a role in systemic regulation of feed intake in animals (Bray 1986; 

Friedman et al 1986; Morley 1987). Endogenous opiates and their receptors also play _ 

important roles in the regulation of feed intake in physiological and pathological 

conditions (Morley et al 1983; Vim and Lowy 1984; Reid 1985). Opiate antagonists 

such as naloxone and naltrexone decrease feed intake in fasted or fed animals and 

humans (Morley 1987; Baile and Mclaughlin 1987). In addition to their effects on 

appetite, endorphins also are capable of affecting the plasma concentrations of insulin, 

FFA and glucose directly via peripheral opiate receptors and( or) indirectly via opiate 

receptors in the central nervous system (Morley 1987; Appel et al 1987; Rudman and 

Kutner 1986; Curry et al 1987). Naloxone, therefore, may suppress feed intake by 

direct effects within the CNS alone or in combination with naloxone-induced changes in 

the concentrations of plasma chemicals such as insulin, glucose and FFA that serve as 

peripheral signals in appetite regulation. Conversely, plasma glucose itself may 

influence appetite by regulating the activity of central opiate receptors in rats (Morley 

and Levine 1982). 

52 
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Endorphinergic regulation of appetite may differ among species and between 

animals of the same species that are in differing physiological states. For example, 

doses of naloxone that decreased feed intake in satiated chickens were ineffective in 

12-h fasted chickens (Sangiah et al 1988). In these and other similar studies in 

domestic animals (Baile et al 1981 ), the endorphinergic link between feed intake and 

changes in plasma insulin, glucose and FFA were not examined. Therefore, the 

objectives of this study were to determine (1) dose-dependent inhibitory effects of 

naloxone on ad libitum intake in lean sheep fasted overnight, and (2) whether effects of 

naloxone on feed intake were dissociated from concomitant effects of naloxone on 

plasma concentrations of insulin, glucose and FFA. 

Materials and Methods 

Dorset ewes (n = 5), 3 to 4 years of age and weighing 36 ± 2 kg, were housed 

individually in a room with constant light and temperature (23-25 ·c). Except on 

experimental days, sheep were fed a maintenance intake (540 g) of a pelleted hay

grain feed (14% CP; 12% fibre, 63% TON; 93% OM) in two equal amounts at 0900 h 

and 1700 h and 90 g of hay at 0900 h. All feed routinely was consumed within 30 min 

of feeding. Previous work showed that sheep fed this ration were in zero-energy 

balance (McCann and Bergman 1988; McCann et al 1990) as indicated in this study by 

steady-state body weights over prolonged time intervals of at least several months 

before and during data collection. The weight-to-height ratio in these Dorset ewes 

indicated a lean body condition that has been associated with a stripped carcass lipid 

content of about 23% and a live body lipid content of 16% to 20% (McCann and 

Bergman 1988; McCann et al 1990). 

Five of twenty four sequences possible for treatments of 0 (saline), 0.3, 1.0 and 
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3.0 mg/kg naloxone were assigned to sheep in a generalized block design with sheep 

considered as blocks. At least 7 d elapsed between successive treatments. Naloxone 

hydrochloride (DuPont, Wilmington, Delaware) was prepared fresh in sterile saline (5 

ml) as needed on each experimental day, and was injected iv by jugular vein catheter 

5 min before 16-h fasted sheep were allowed ad libitum intake of pellets for the 

ensuing 24 h. A sham trial consisting of blood sampling and 24 h of ad libitum feeding 

was done in all sheep to acclimate them to experimental procedures. Feed intakes 

were determined and blood samples obtained at 10, 20, 40 and 60 min and 2, 4, 8, 12, 

16 and 24 h of ad libitum feeding; additional blood samples were taken 30, 20 and 5 

min before ad libitum feeding. Blood samples were collected via jugular catheter that 

was inserted at least 12 h before sample collections. Plasma samples were stored(-

22 C) after centrifugation (4 C) of whole blood tor 20 min at 1000 x g. Glucose and 

FFA concentrations in plasma were determined using enzymatic colorimetric assays 

(McCann et al 1990; McCann et al 1986). Plasma concentrations of insulin were 

determined in duplicate by a validated solid-phase radioimmunoassay (McCann et al 

1986). 

Treatment effects of animal, naloxone dose, sample time and their interactions 

were tested by repeated measures analysis of variance using the General Linear 

Model (GLM) procedure in SAS (Freund 1986). An analysis of covariance model of 

SAS for split-unit and repeated measures (Meredith et al 1988) was done to adjust 

plasma concentrations of insulin, glucose and FFA for differences in feed intakes 

among treatment groups; feed intake was considered as the covariate changing with 

the subunit levels (time). Data are presented as mean ± SE. 
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Results 

Saline-treated sheep, that previously had been meal fed a maintenance intake, 

consumed 1.79 kg of a high-energy diet during 24 h of ad libitum feeding (Table 1 ). 

Approximately 50% and 80% of their total 24-h intake was consumed in the first 60 

min and 4 h of ad libitum intake, respectively. Relative to control intakes in saline-

treated sheep, naloxone at doses of 0.3 and 1.0 mg/kg initially had no significant effect 

on intakes in the first 60 min of ad libitum intake, but both doses decreased (P < 0.01) 

the cumulative 2-h and 4-h intakes by approximately 35% (Table 1 ; Fig. 1). In contrast, 

the highest dose of naloxone (3 mg/kg) had immediate (1 0-min) and protracted (4 h) 

TABLE 1 

MEAN (± SE) CUMULATIVE FEED INTAKE (g) IN LEAN SHEEP (n=5) 
TREATED WITH NALOXONE AND FED AD LIBITUM A 

Dose of Naloxone (mg/kg) 

Time Saline 0.3 1.0 3.0 

10 min 630 ± 29b 649 ± 39b 690 ± 31 b 344 ± 79c 

20 min 885 ± 82b 718 ± 64b 718 ± 40b 392 ± 115c 

40 min 908 ± 84b 730 ± 58b 718 ± 40b 392 ± 114c 

60 min 947 ± 104b 765 ± 64b 720 ± 40bc 475 ± 114c 

2 h 1,216 ± 149b 822 ± 69c 769 ± 61c 482 ± 117d 

4 h 1,397 ± 216b 987 ± 104c 836 ± 74c 560 ± 111d 

8 h 1,515 ± 220b 1,225 ± 123c 1,066 ± 114cd 849±171d 

12 h 1,615 ± 194b 1,501 ± 95bc 1,329 ± 129cd 1,151 ± 157d 

16 h 1,699 ± 166b 1,684 ± 69b 1,489 ± 155b 1, 443 ± 152b 

24 h 1,788 ± 137b 1,826 ± 56b 1,638 ± 154b 1,890 ± 85b 

asheep were allowed 24-h ad libitum intake after a 16-h fast. 

bcdMeans within a time period with similar superscripts are not different (P > 0.05). 
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FEED INTAKE IN NALOXONE-TREATED SHEEP 
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Figure 1. Cumulative feed intakes (mean± SE) after 10 min, 4h, and 24 h of ad 
libitum intake in sheep (n=5) pretreated with 0, 0.3, 1.0, or 3.0 mg/kg of 
naloxone iv. 

inhibitory effects on feed intake. Doses of naloxone used had no observable effects 

onthe gross motor behaviour or well-being of the sheep. Preliminary experiments by us 

in 2 sheep showed that 10 mg/kg naloxone clearly affected motor behaviour adversely. 

Compared with saline-treated sheep, 0.3 and 1.0 mg/kg naloxone decreased 

(P<0.01) cumulative intakes during the first 8 to 12 h of ad libitum intake, whereas 3 

mg/kg naloxone decreased (P< 0.01) cumulative intake during the first 12 to 16 h of 

ad libitum intake. Although 16-h cumulative intakes in naloxone-treated sheep 

generally were less than those in saline-treated sheep, the mean rate of intake 
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between 4 and 16 h in sheep treated with 0.3 mg/kg (2.9 g/min), 1.0 mg/kg (2.7 g/min) 

or 3.0 mg/kg (3.7 g/min) of naloxone exceeded (P < 0.05) that during saline treatment 

(1.2 g/min). These results suggest that pretreatment with naloxone effectively 

suppressed intake only in the first 2 to 4 h of ad libitum intake; thereafter the effects of 

naloxone waned and a rebound response was observed as evidenced by greater 

consumption rate in naloxone-treated than in control sheep. Consequently, total 

intakes at 24 h were similar in all groups of sheep (see Table 1 and Fig. 1 ). 

Plasma concentrations of insulin (38 ± 7 vs 95 ± 22 fmol/ml) and glucose (2.7 ± 

0.2 vs 3.6 ± 0.2 J.tmol/ml) first increased (P < 0.01) above fasting levels at 40 min and 

4 h, respectively, of ad libitum intake in saline-treated sheep (Fig. 2). 

Plasma FFA levels decreased (P < 0.01) from 291 ± 48 nmol/ml to a sustained low 

level of 92 ± 14 nmol/ml after 60 min of ad libitum intake in saline-treated sheep. 

Concentrations of insulin, glucose and FFA in plasma of ad libitum-fed sheep 

pretreated with three doses of naloxone were statistically similar to those in control 

sheep despite the fact that feed intakes were affected by naloxone. To determine 

naloxone effects per se on plasma variables, the plasma concentrations of insulin, 

glucose and FFA were adjusted statistically for naloxone-induced differences in feed 

intake (18, 19). This analysis showed significant covariate relationship between plasma 

variables and feed intake across sheep in all treatment groups. The adjusted 

treatment means for glucose and FFA remained unaffected by naloxone treatment, but 

the highest dose of naloxone tended (P=0.09) to increase plasma insulin concen

trations independent of feed intake. Collectively, results suggest that the inhibitory 

effects of naloxone on appetite in sheep likely were independent of peripheral 

feedback signals in plasma involving insulin, glucose, or FFA. 



600 

~ 400 
0 

~ 200 

0 

E 4 
...... 
0 
E 3 
:::1... 

2 

500 

400 

E 30o ...... 
0 
E 200 -

100 

0 

58 

PLASMA VARIABLES IN NALOXONE-TREATED SHEEP 
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Figure 2. Plasma concentrations (mean ± SE) of free fatty acids, glucose and insulin 
before (fasted) and after (fed) naloxone treatment in lean sheep (n=5). 
Arrows indicate naloxone injection 5 min before start of 24 h of ad libitum 
feeding. The pooled standard error (PSE) for insulin concentrations are 
shown for each treatment group; standard errors (bar) at 16 and 24 h are 
shown because mean concentrations differed the most at these times. 
Standard error bars for glucose and FFA were numerically contained 
within symbols for mean concentration. 

Discussion 

This study demonstrated dose-dependent inhibitory effects of naloxone on ad 

libitum intake in 16-h fasted lean sheep that routinely had been meal fed a 

maintenance intake. However, only the highest dose of naloxone (3 mg/kg) had 
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immediate inhibitory effects on feed intake. Lower doses of naloxone did not reduce 

intake significantly until sheep had consumed feed in the initial h of ad libitum intake. 

The behavioral response of feed intake to low doses of naloxone in this study 

apparently was modified with time as animals ate. One interpretation is that the strong 

endorphinergic drive for hunger in our sheep could be antagonized immediately only by 

high dose naloxone, and that low dose naloxone became effective with time because 

endorphinergic drive for eating diminished as the animals consumed feed. This 

postulate is strengthened by comparing our results with those of Baile et al (Baile et al 

1981) who determined dose-dependent effects of naloxone in 4-h fasted sheep that 

previously were maintained on ad libitum intake. Baile et al (1981) reported that as 

little as 0.03 mg/kg naloxone suppressed 2-h intake in their sheep, whereas much 

higher doses of 0.3 and 1.0 mg/kg naloxone were ineffective in our study. Fasting an 

overfed animal for 4 h (Baile et al 1981) should result in less hunger drive than fasting 

maintenance-fed animals for 16 h, as was done in our study. The degree of negative 

energy balance, therefore, would seem to be directly related to the endorphinergic 

drive for hunger in sheep, as illustrated by responses to naloxone in this study and that 

of Baile et al ( 1981 ). A further consideration is that our sheep purposefully were lean, 

whilst those of Baile et al ( 1981) should have been fatter, relatively, because their 

sheep chronically were overfed. Data in lean and obese Rambouillet ewes suggest 

that body condition per se alters opiate regulation of appetite in sheep (Chapter IV). 

Additionally, it should be noted that the supraphysiological dose of 3 mg/kg of 

naloxone was incapable of completely suppressing intake in these sheep. In broiler 

chicks, doses of naloxone as high as 10 mg/kg had no effect whatsoever on intake in 

12-h fasted birds (Sangiah et al 1988). That intake was not suppressed completely by 

high dose naloxone in fasted sheep or chicks suggests that opiate and nonopiate 
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systems (e.g., monaminergic and gaba-receptors) in the CNS are involved to different 

degrees in initiating feeding in hunger-driven sheep and chicks. Girard and co-workers 

(1985; 1986) reported that initiation of feeding in sheep may involve neurons in the 

medial hypothalamus that are responsive to gamma-aminobutyric acid. 

This study also sought to determine if the inhibitory effects of naloxone on feed 

intake were mediated in part by changes in the plasma levels of insulin, glucose, or 

FFA. Increases in the concentrations of insulin or glucose are purportedly feedback 

signals for satiety, whereas increases in plasma FFA may have a role in hunger drive 

(Rezek 1976; Morley 1987). Our results showed that dose-dependent effects of 

naloxone on appetite in sheep were manifested without concomitant naloxone-induced 

changes in plasma insulin, glucose, or FFA. However, the highest dose of naloxone 

tended to increase plasma insulin levels, independent of changes in feed intake, 

towards the latter half of ad libitum intake. This supports other studies in rats where 

naloxone treatment significantly increased the plasma insulin level (Fontela et al 1986; 

Knudtzon 1986). A direct effect of naloxone on pancreatic B-cell function in sheep 

should be considered because B-cells of rodents respond to opiate stimulation in vitro 

(Rudman and Kunter 1986; Curry et al 1987). 

The biological half-life of naloxone in rats approximates 40 min (Tepperman et 

al 1983). It is assumed that the ability of naloxone to effectively block opiate action in 

sheep in this study waned within 2 to 4 h of iv injection of naloxone consistant with the 

naloxone short half life of 43 min sheep (Chapter VIII). We suggest that the recovery 

in feed intake in our naloxone-treated sheep after 4 h of ad libitum intake likely 

reflected loss of naloxone bioactivity because of its metabolism and elimination. 

Morley (1987) has addressed the teleological practicality of opiates suppressing 

reproductive function while stimulating feeding drive in hungry animals. It is well 
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established that naloxone treatment increases LH secretion in postpartum cows that 

are in negative energy balance and lactating (Whisnant et al 1986). Results of this 

study and those of Baile et al (1981) would suggest that the greater the degree of 

negative energy balance then the greater the opiate drive for hunger that directly or 

indirectly could curtail reproductive function in domestic ruminants. Indeed, a dose of 

naloxone that increased plasma LH in beef cows at d 42 postpartum was ineffective at 

d 14 or 28 postpartum when negative energy balance may have been more severe 

(Whisnant et al 1986a). Central opiate systems may be part of an intricate neural 

regulatory mechanism that links nutritional state and reproduction in domestic 

ruminants (McCann and Hansel 1986), and such a system would be influenced by the 

suckling calf (Whisnant et al 1986b). 

We conclude that the ability of naloxone to suppress appetite in sheep is 

negatively associated with duration of fasting or severity of negative energy balance, 

and that the appetite inhibitory effects of naloxone in sheep do not involve peripheral 

changes in plasma insulin, glucose, or FFA. 
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CHAPTER IV 

OPIATERGIC REGULATION OF FEED INTAKE 

IN LEAN AND OBESE SHEEP 

Introduction 

Considerable evidence supports the involvement of the opiatergic system in 

regulation of appetite in mammalian and nonmammalian species (Sanger 1981; Morley 

et al1983; Reid 1985; Sangiah et al 1988; Alavi et al 1991). Although opiatergic 

control of appetite requires opioid receptors located centrally in the brain and 

peripherally in the intestine, centrally located receptors in the hypothalamus and 

surrounding area are believed to play the dominant role in appetite regulation (Morley 

· et al 1983; Atkinson 1987). Stimulation of opiate receptors in the central nervous 

system (CNS) is associated with hunger drive and eating. Opiate antagonists such as 

naloxone reduce intake in hungry animals, whereas opiate agonists can increase 

intake in satiated animals (Gosnell 1987; Baile et al 1981, 1987; Alavi et al 1991 ). 

Dysfunction in opiatergic regulation of appetite may be involved in the 

development and maintenance of the obese state in humans (Baranowska et al 1987; 

Giugliano et al 1987) and animals (Margules et al 1978; Shimomura et al 1982). 

Concentrations of B-endorphin were higher in pituitary and plasma of genetically obese 

than lean mice or rats during the development of the obese state (Margules et al 1978; 

Givens et al 1980). Plasma levels of B-endorphin generally are greater in humans with 

established obesity than in humans of lean body condition (Ritter et al 1991 ). Further 
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support for opiatergic dysfunction in obesity comes from results consistently showing 

greater appetite inhibitory effects of naloxone in obese humans (Atkinson 1987) and 

genetically obese rodents (Margules et al 1978) than in their lean controls. However, 

the exact roles played by central and peripheral opioid receptors in appetite regulation 

during dynamic obesity and static phase obesity are not clear (Morley et al 1983; Vim 

and Lowy 1984) 

Dysfunction in opioid regulation of appetite could be an initiating factor in the 

development of obesity in genetically obese rodents or it could be a prerequisite for 

allowing hyperphagia during the dynamic or induction phase of obesity. Most, if not all, 

studies comparing opioid regulation of appetite between genetically lean and obese 

rodents have examined opiatergic control of appetite in obese animals during the 

dynamic phase of obesity. In contrast, similar studies in humans compare responses to 

naloxone between lean individuals and individuals in the static or established phase of 

obesity. Unlike dynamic phase obesity, hyperphagia is not evident during the steady 

state conditions of static phase obesity if hyperphagia means that animals consume 

more than their maintenance requirements (McCann and Bergman 1988). 

McCann et al (1991) has developed an animal model of dietary obesity in 

sheep. Dietary obese sheep are hyperinsulinemic, hyperglycemic and insulin resistant 

(McCann and Bergman 1988; McCann et al 1991 ). Sheep consume 3 to 6 times 

maintenance during dynamic obesity but consume only maintenance upon attainment 

of static phase obesity (McCann et al 1991 ). The impact of the obese state per se on 

opiatergic regulation of appetite in sheep therefore can be examined readily because 

diet type, level of intake, and energy balance are equivalent in both lean sheep and 

sheep in the static phase of obesity (McCann et al 1991 ). The objectives in this study , 

therefore, were to determine if intake differed between lean and obese sheep allowed 



free access to a common diet, and whether obesity affected opiatergic regulation of 

appetite in sheep. 

Materials and Methods 

Animals 
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Rambouillet ewes aged 3 to 4 years were purchased from USDA-ARS, Forage 

and Livestock Research Laboratory, Fort Reno, Oklahoma. Detailed description of 

development of obesity is discussed in Chapter II. Briefly, sheep were fed a pelleted 

hay-grain diet maintain them in lean body condition (lean, n=5) or were fed the same 

diet ad libitum to induce dietary obesity (obese, n=5). Obese sheep were considered to 

be in static phase of obesity after 50 wk of overfeeding as indicated by nearly constant 

body weight and feed intake. 

Lean (46 ± 2 kg) and obese (79 ± 3 kg) sheep were fed the pelleted hay-grain 

mixture (12.5 g/kg) in two equal amounts at 0900 and 1500 h; small amounts of hay (1 

g/kg) were fed daily at 0900 h to maintain rumen tone. Uneaten feed was removed at 

1700 h. This ration maintained zero-energy balance in lean and obese sheep. 

Chemical composition of the pellets and hay was presented in Chapter II (see Table 

1 ). Sheep were housed and fed individually in a room with constant light and 

temperature (21-23 C). 

Treatments 

Lean and obese sheep were paired and assigned randomly by latin square to 5 

treatments of 0 (saline), 0.01, 0.1, 1 and 3 mg/kg naloxone. Naloxone hydrochloride 

generously provided by DuPont Pharmaceutical (Wilminigton, Delaware, USA) was 

prepared fresh in sterile saline and filtered through a disposable 0.2 J.L nylon filter 
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before injection on each experimental day. Saline (1 0 ml) and naloxone solutions (1 0 

ml) were injected via a cannulated jugular vein 5 min before 16-h fasted sheep were 

allowed ad libitum intake of pellets for the ensuing 32 h. Cannula were flushed quickly 

with 2 ml of saline after each dose of naloxone. At least 7 d elapsed between 

successive treatments. Blood samples were collected and feed intakes were 

determined at 20, 40 and 60 min and 2, 4, 8, 12, 16, 24 and 32 h of ad libitum feeding. 

The amount of feed consumed was measured by replacing the uneaten feed with a 

fresh batch of pellets (1 000 g) at each time interval. Blood samples (5 ml) were 

collected into glass tubes containing 50 f..ll mixture of benzamidine (200 mg/ml) and 

heparin (5000 U/ml) that were held in an ice-water bath. Chilled blood samples were 

centrifuged (4 C) for 10 min at 1000 x g and plasma stored (-30 C) for determination of 

plasma naloxone. Additional blood samples (5 ml) were collected into chilled glass 

tubes containing EDTA (7.2 mg) at 60, 30 and 1 min before each naloxone injection 

and the recovered plasma used for quantification of B-endorphin concentrations. A 

sham trial was conducted to familiarize animals to all experimental procedures 

including ad libitum feeding for 32 h. 

Chemical Analysis 

Naloxone Assay. Plasma concentrations of naloxone immediately before and at 

25, 45 and 65 min after the 4 highest doses of naloxone were quantified by Waters 

HPLC system equipped with a reverse-phase radial pak C18 column cartridge (Waters, 

Milford, MA, USA). Preliminary experiments indicated that a mobile phase (pH 4.5) 

comprising 0.1 M ammonium dihydrogen phosphate, 0.9 mM octasulfonic acid, 5.4 mM 

disodium EDT A, and 4.5 % n-propanol at a flow rate of 0. 7 ml/min provided optimal 

conditions with respect to the separation of naloxone, naltrexone (internal standard) 
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and benzamidine added to blood tubes to prevent proteolytic degradation of peptide 

hormones. The intraassay and interassay coefficients of variation were 4.1 and 3.5%, 

respectively. 

B-Endorphin Assay. Plasma concentrations of immunoreactive B-endorphin 

were measured by radioimmunoassay (lncStar, Stillwater, MN). Sepharose particles in 

suspension were added (0.5 ml) to columns provided by the manufacturer. The 

supernatant in the column was forced through using a rubber bulb, and then the 

bottom of the column was tightly capped. Columns received 1 ml of either human B

endorphin (17-272 pg/ml), ovine B-endorphin standard (25-200 pg/ml), sheep plasma 

samples, or control sheep plasma for determination of non specific binding in RIA. The 

columns were then capped and rotated end over end for 4 h (± 15 min) at 2-8 C before 

plasma was allowed to drain through the column. Any remaining fluid in the column 

was forced out gently with the rubber bulb. The remaining sepharose particles in the 

column were washed with 3 X 1 ml aliquots of saline (0.9% NaCI) until all the particles 

settled at the bottom of the column. Saline was forced to drain as before. To elute the 

sepharose bound B-endorphin, two sequential additions of 250 J.LI of 0.025 N HCI were 

added and allowed to sit for 1 min and then the HCI was forced through the column 

and collected into a clean glass test tube. The extract collected was mixed and placed 

on crushed ice for immediate radioimmunoassay. 

All samples were assayed in duplicate according to manufacturer's instructions. 

Briefly, 200 J.LI of extract were transferred to duplicate 12 X 75 mm glass tubes held in 

crushed ice. Neutralizing buffer (100 J.LI) was added to all tubes before 100 J.LI of rabbit 

anti-B-endorphin serum were added to all tubes except total count (TC) and 

nonspecific binding tubes. Tubes were gently mixed and incubated for 16-24 h at 2-8 

C, before 100 J.ll C 25 1] B-endorphin were added. Vials were mixed gently and incubated 
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for 16-24 h at 2-8 C. Goat anti-rabbit serum (0.5 ml) was added, vials were mixed and 

then incubated for 15-25 min at 2-8 C before centrifugation (20 C) at 1 000 x g for 20 

min. The supernatant was discarded and tubes allowed to drain for at least 2 min. The 

excess supernatant around the edge of the tubes was blotted before turning tubes 

upright. Using a Micromedic MEplus gamma-scintillation counter (Horsham, PA, USA), 

the activity of the precipitate of each tube was counted for 5 min to achieve statistical 

accuracy and results were calculated automatically from linear standard curves 

generated as log-logit plots by weighted least-squares regression. 

The B-endorphin RIA was validated for use in ovine samples as follows. Serial 

dilutions of plasma or serum from lean (n = 2) or obese (n= 2) sheep inhibited binding 

of C25I]B-endorphin to antibody in a manner that paralleled inhibition by either human B

endorphin (lncStar, Stillwater, MN) or ovine B-endorphin (Peninsula Laboratories, 

Belmont, CA). The RIA had reasonable accuracy for measuring B-endorphin in sheep 

plasma because mean (± SE) recovery of ovine B-endorphin was 82.5 ± 8.0% and 

95.9 ± 19.9% when sheep plasma samples (n=4) were spiked with 50 and 200 pg/ml 

of ovine B-endorphin, respectively. lntraassay and interassay coefficients of variation 

were 6.6% and 13.5%, respectively. Reported values of immunoreactive B-endorphin 

have not been corrected for recovery losses. 

Calculations and Statistical Analyses 

Differences in cumulative feed intake between lean and obese sheep in the first 

32 h after 0 mg/kg naloxone were tested by univariate correlated t test for repeated 

measurements (Gill 1979). Effects of dose, time and their interaction on cumulative 

feed intake at each level of body condition were tested using repeated measures 

analysis of variance in the general linear model procedure of SAS (Freund et al 1986); 

Fisher's protected (P<0.05) LSD test was used for multiple comparisons among means 
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at a given sample time in each body condition. Effects of body condition, naloxone 

dose and their interaction on feed intake were examined using cumulative intakes after 

naloxone injections calculated as percentage of the corresponding control intake in 

each sheep. Percent cumulative feed intakes at +20 min, +2 h and +4 h of ad libitum 

feeding then were each analyzed by 2 x 4 split-plot analysis of variance; multiple 

comparisons among means were done using Duncan's new multiple range test if a 

significant F-value (P<0.1) was found. 

Dose-response curves for naloxone effects on intake were constructed as 

follows. Area under the curve (AUG) for cumulative intakes in the first 2 h after each 

dose of naloxone were calculated by trapezoid method. For each sheep, the AUG after 

0.01, 0.1, 1 and 3 mg/kg naloxone were calculated as percent of AUG after the control 

dose (0 mg/kg) of naloxone to provide data on relative feed intakes in naloxone-treated 

lean and obese sheep. Best fit of the relationship between relative feed intake and 

naloxone dose was determined using least squares polynomial regression analysis of 

observations (n=20) in each body condition group (SAS, Cary, NC, USA). Comparisons 

of regression residual sum-of-squares and coefficient of determination determined that 

a first degree polynomial best described the dose-response effect of naloxone on 

intake in lean and obese sheep. Dose of naloxone suppressing relative intake by 25% 

(D25} was calculated using an equation derived from first degree (linear) polynomial 

regression analysis of mean data in each body condition group. Significance of 

difference in the mean D25 dose between lean and obese sheep was determined by 

comparing the 95% confidence interval range for the mean 0 25 dose in lean sheep with 

the mean 0 25 dose in obese sheep. Level of significance was 0.05. Values are 

presented as mean ± SE. 



Results 

Control Feed Intake. 

Intakes after 0 mg/kg naloxone were greater (P< 0.05) in lean than obese 

sheep through the first 8 h of ad libitum feeding (Fig 1 ). In the first 20 min of ad 

libitum feeding, saline-treated lean and obese sheep had consumed 42% and 26%, 

respectively, of their 32-h total intake. 
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Figure 1. Cumulative feed intakes (mean± se) in 16-h fasted lean and obese 
sheep allowed ad libitum intake of a pelleted hay-grain diet for 32 h. 
Sheep were in steady state and chronically fed maintenance of the hay
grain diet to keep them in zero-energy balance. Sheep were presented 
with fresh batches (1 000 g) of pellets at time 0 and at each time point 
indicated when intakes were determined. 
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After 2 h of ad libitum feeding, lean sheep had consumed approximately twice as much 

as obese sheep, whether measured as absolute intake (1343 vs 645 g) or as percent 

of 32-h total intakes (61 vs 35 %). Cumulative intakes became equivalent statistically in 

both groups at + 12 h, and thereafter, of ad libitum intake. Differences in shape of the 

control intake curves (see Fig. 1) may reflect differences in the chemical regulation of 

early (+20 min to + 16 h), but not late, consummatory behavior in lean and obese 

sheep fed under the conditions of this experiment. 

Naloxone Treatment Effect 

Dose-dependent and time-dependent inhibitory effects of naloxone on intake 

were observed in lean and obese sheep (Fig. 2, 3 and Table 1). Cumulative intakes 

were most affected by naloxone in the first 2 to 4 h of ad libitum feeding in both groups 

of sheep and these results are highlighted in Fig 4. 

To allow comparison of the effects of naloxone in lean versus obese sheep, 

cumulative intakes during the first 4 h of ad libitum intake were recalculated as percent 

of corresponding control intakes in each sheep. The lowest dose of naloxone (0.01 

mg/kg) increased cumulative intake nonsignificantly by 15 to 20 % in lean sheep in the 

first 4 h of ad libitum feeding (Fig. 5). This dose also increased cumulative intake 

nonsignificantly by 20 % in obese sheep only at + 1 h of ad libitum intake. Of the ten 

sheep used in this experiment , four lean and two obese sheep displayed a stimulatory 

response to low dose naloxone in that their 2-h cumulative intake was 37 ± 9 % 

greater (P<0.01) after 0.01 mg/kg naloxone than after 0 mg/kg naloxone. 

Maximum suppression of intakes occurred during the first 2 h after injection of 

naloxone (0.1, 1 and 3 mg/kg). Injection of 0.1 mg/kg naloxone had no effect on intake 

in lean sheep but the 2-h intakes in obese sheep were suppressed (P<0.05) 30 ±13% 

by this dose. Naloxone doses of 1 and 3 mg/kg suppressed (P<O.O) 2-h intakes in lean 



73 

sheep by approximately 29% and 50%, respectively. In contrast, intakes in obese 

sheep at +2 h were suppressed (P<0.025) 48% and 71% by 1 and 3 mg/kg naloxone, 

respectively. Interactive effects of body condition and naloxone on feed intake were 

determined using cumulative intakes calculated as percent of corresponding control 

intake at +20 min, +2 h and +4 h of ad libitum feeding. Intakes at these times were 

affected by body condition (+20 min only) and naloxone dose but not by their 

interaction (Fig. 6). 

FEED INTAKE IN NALOXONE-TREATED SHEEP 

Figure 2. Cumulative feed intakes (mean ± SE) during 32-h of ad libitum intake in lean 
sheep pretreated with 0, 0.01, 0.1, 1 or 3 mg/kg of naloxone. Naloxone 
was injected iv 5 min before feeding began. Additional notes as in legend 
to Fig. 1. 
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Figure 3. Cumulative feed intakes (mean ± SE) during 32-h of ad libitum intake in 
obese sheep pretreated with 0, 0.01, 0.1, 1 and 3 mg/kg naloxone iv. 
Additional notes as in legend to Fig. 2. 
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Figure 4. Cumulative feed intakes (mean ± SE) during the first 4 h of ad libitum intake 
in lean and obese sheep pretreated with 0, 0.01, 0.1, 1 and 3 mg/kg 
naloxone iv. For clarity of presentation, SE bars are not shown but the pooled SE 
values were 167, 142, 128, 112 and 90 in lean sheep and 131, 90, 170, 90 and 50 in 
obese sheep treated with 0.01, 0.1, 1 or 3 mg/kg naloxone, respectively. Additional notes 
in legend to Fig. 2. 
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Figure 5. Cumulative feed intakes as percent of control intakes (mean ± SE} in lean 
and obese sheep pretreated with 0.01, 0.1, 1 or 3 mg/kg naloxone. 
Cumulative intakes during the first 4 h of ad libitum intake were expressed 
as percent of corresponding intake after 0 mg/kg naloxone (control} for 
each sheep and mean values calculated at each time point for the 
different doses of naloxone are shown. For clarity of presentation, SE 
bars are not shown but the pooled SE values were 12, 16, 13 and 11 in 
lean sheep and 16, 15, 12 and 12 in obese sheep treated with 0.01, 0.1, 
1 or 3 mg/kg naloxone, respectively. Additional notes in legend to Fig. 2. 



TABLE 1 

MEAN (± SE) CUMULATIVE FEED INTAKE (g) IN LEAN (n=5) AND OBESE (n=5) SHEEP 
TREATED WITH NALOXONE AND FED AD LIBITUM 

Naloxone Body Time, hr 

(mg/kg) 

Saline 

0.01 

0.1 

1.0 

3.0 

Condition 0.33 0.66 1 2 4 8 12 16 24 32 

Lean 931 ± 66"b 1054± 1630. 1156±165" 1343 ± 2060. 1468 ± 239"'1o 1586 ± 2400. 1650 ± 222 1697 ± 220 1812 ± 200 2195 ± 205 

Obese 483 ± 109~ 527 ± 130 0. 538 ± 127o.b 645 ± 143" 748 ± 149"' 953 ± 200"'b 1182 ± 194 1357 ± 208 1427 ± 188 1831 ± 186 

Lean 1000 ± 86" 1191 ± 170(.\ 1297 ± 165"' 1530 ± 1510. 1611 ± 1400. 1665 ± 142" 1730 ± 154 1749 ± 162 1781 ± 146 2172 ± 227 

Obese 513 ± 800. 563 ± 900. 613 ± 101"' 630 ± 102"' 727 ± 120"- 880 ± 270" 1183 ± 224 1319 ± 245 1450 ± 285 1873 ± 397 

Lean 981±1140. 1010± 1210.0 1067± 115"'b 1156± 153"b 1217± 138"b 1376±78"' 1467 ± 68 1520±84 1578 ± 80 1806 ± 154 

Obese 382± 130a.b 398± 145o.b 398± 145(\bC 509± 2240. 723 ± 207 C\ 1090 ± 273(). 1284 ± 280 1440 ± 295 1607 ± 263 1966 ± 256 

Lean 625 ± 127a.b 654 ± 108 bC 707 ± 97 be 859 ± 92bc 1240 ± 136 b 1609 ± 214 0.. 1792 ± 262 1855 ± 306 2057 ± 318 2554 ± 367 

Obese 224 ±55 o.b 269 ± 76"b 277± 93bC 318 ± 101CI.C 429 ± 138°b 700 ± 168G\b 849 ± 144 1021 ± 154 1224 ± 175 1615 ± 198 

Lean 587 ± 104b 588 ± 103c 600 ± 96c 615±90C 736 ±sse 1113 ± 33"' 1337 ± 60 1580 ± 138 1842 ± 147 2389 ± 172 

Obese 69 ± 35 b 87 ± 43 b 112±47c 165 ± 52c 227 ± 75 b 410 ± 125 b 601 ± 190 890 ± 257 1085 ± 279 1508 ± 376 

1 Sheep fasted 16 h were injected iv with saline or naloxone 5 min before they were allowed ad libitum feeding 
for 32 h. Means with the same superscript letters are not different (P<0.05) for comparison at each time interval within 
each level of body condition. 
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Figure 6. Feed intakes as percent of control intake at 20 min, 2 h and 4 h of ad libitum 
in lean and obese sheep injected with 0.01, 0.1, 1 and 3 mg/kg naloxone. 
Probability values shown indicate significance of treatment effects of body 
condition (BC), naloxone dose (NAL) and their interaction (lA) are derived 
from split-plot analysis of variance; means within each time period with 
similar superscript letter are not different (P>0.05); NS indicates no 
significant effect (P>0.1 ). 
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The dose-response curve for naloxone's effect on intake was shifted leftward in 

obese compared with lean sheep (Fig. 7). The significant (P<0.05) best fit regression 

line in lean sheep was Y = -25.04(1og dose) + (-31.04) (r= 0.990) and that in obese 

sheep was Y = -33.87(1og dose)+ (-55.1) (r= 0.980). Regression analysis of variance 

showed that the linear regression fits were affected by body condition (P<0.02) and 

naloxone dose (P<0.001 ), but not by their interaction. Regression coefficients (slopes; 

b) of each equation were equivalent but the position of the lines differed (P<0.02) in 

lean and obese sheep. Dose of naloxone suppressing intake by 25% (025) was 

calculated from these equations and was significantly less in obese (0.129 mg/kg ) 

than lean (0.574 mg/kg) sheep; endpoints for a 95 percent confidence interval for 0 25 

dose of naloxone were 0.0654 and 0.257 mg/kg and 0.218 and 1.51 mg/kg in obese 

and lean sheep, respectively. Results show that obese sheep were about 4 times more 

sensitive to naloxone than lean sheep. 
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Figure 7. Dose-response effect of naloxone on acute feed intake in lean and 
obese sheep fed ad libitum. Area under the curve (AUC) for cumulative 
feed intake in the first 2 h of ad libitum intake was calculated in each 
sheep after each dose of naloxone. Within each body condition, the 2-h 
AUC after 0.01, 0.1, 1 and 3 mg/kg naloxone was expressed as 
percentage of 2-h AUC after 0 mg/kg (control) naloxone in each sheep 
and the mean (± SE) values shown were calculated for each dose. 
Regression equations for the mean data (lines shown) were 
Y= -33.88(1og dose) + (-55.07) in lean andY= -25.04(1og dose) + (-31.0) 
in obese sheep. Dose of naloxone inhibiting intake by 25 percent (025) 

was calculated from these equations and was 0.13 mg/kg in obese sheep 
and 0.57 mg/kg in lean sheep as discussed in results. Additional notes in 
legend to Fig 1 . 
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Plasma Chemicals 

The quantitatively greater inhibitory effects of naloxone in obese than lean 

sheep were associated with similar plasma concentrations of naloxone in both groups 

after either 1 or 3 mg/kg naloxone (Fig. 7). Levels of naloxone in plasma after injection 

of 0.1 and 0.01 mg/kg naloxone were below the sensitivity (1 0 ng/ml) of the assay 

system. 

Concentrations of B-endorphin in plasma obtained from 16-h fasted sheep were 

similar (P> 0.05) in lean (33.3 ± 4.2 pg/ml) and obese (48.4 ± 8.6 pg/ml) sheep. 
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Plasma concentrations of naloxone (mean ± SE) in lean and 
obese sheep injected with 1 and 3 mg/kg naloxone iv. 
Concentrations of naloxone after iv injection of 0.01 and 
0.1 mg/kg naloxone were below the sensitivity (1 0 ng/ml) 
of the assay. 
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Discussion 

We have developed a nongenetic animal model of obesity in which the obesity 

is caused by excessive voluntary consumption of a normal diet fed at maintenance to 

lean control sheep. Our results show clearly that early consummatory behavior differs 

in lean and obese sheep. Hunger drive was greater in lean than obese sheep in the 

first 8 h of ad libitum feeding. The initial rapid consumption rate in lean sheep slowed 

to a nearly constant rate of consumption which was comparable with that in obese 

sheep. Cumulative intake consistently was less in obese than lean sheep despite an 

approximate doubling of body mass in obese compared with lean sheep. 

The stronger appetite-inhibitory effect of naloxone in obese than lean sheep 

suggests that opiatergic regulation of appetite differs between lean and obese sheep in 

the static phase of obesity. Response to the appetite-inhibitory effect of naloxone also -

was greater in genetically obese rats (fa/fa) and mice (ob/ob) than in lean ones 

(Margules et al 1978). The 0 25 dose of naloxone was approximately three times lower 

in obese (ob/ob) mice (approximately 0.39 vs 1.12 mg/kg) and obese (fa/fa) rats 

(approximately 0.17 vs 0.57 mg/kg) than in lean controls when intakes were measured 

1 to 2 h after feeding began in naloxone-treated animals (Margules et al 1978). Feed

inhibitory response to naloxone also was greater in genetically obese Zucker rats than 

in lean ones (Mclaughlin and Baile 1984 a, b). Greater responsiveness to the feed

inhibitory effects of naloxone also has been reported in obese compared with lean 

humans (Atkinson 1987). In contrast, sensitivity to naloxone appears similar in control 

rats and rats with nongenetic forms of obesity due to ventromedial hypothalamic 

lesions, ovariectomy or drug administration (Gun ion and Peters 1981). Reasons for the 

increased sensitivity to naloxone in dietary obese sheep, obese humans and 

genetically obese rodents are unknown but may involve down-regulation of central 
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opioid receptors, and(or) effects of hyperglycemia on opioid receptor activity (Morley et 

al 1983). 

There is a good positive relationship between increased plasma 13-endorphin 

levels and overeating in normal and genetically obese rats (Margules et al 1978; Davis 

et al 1982). Plasma levels of 13-endorphin are higher in obese than lean humans, 

particularly when comparisons are restricted to female subjects (Ritter et al 1991 ). 

Margules et al ( 1978) reported higher plasma and pituitary, but unchanged 

hypothalamic, concentrations of 13-endorphin in obese mice (ob/ob) and Zucker rats 

(fa/fa) than in lean controls during the dynamic phase of obesity in these young 

animals aged 2 to 5 months. Others have reported markedly elevated 13-endorphin and 

met-enkephalin concentrations in the pituitary and hypothalamus of genetically obese 

(ob/ob) than lean mice aged 4 to 5 months (Khawaja et al 1989). Concentration of 

kappa and delta binding sites were greater and that of mu binding sites less in 

membranes isolated from brain of obese (ob/ob) than lean mice (Khawaja et al 1989). 

However, it remains controversial whether increased pituitary synthesis and release of 

opioids play an important role in the central control of appetite during development of 

the obese state (Morley et al 1982; Vim and Lowy 1984). Results of several studies 

support the claim that plasma 13-endorphin enters the CSF but not the interstitial fluid of 

brain (Banks and Kastin 1990). Pituitary-derived increases in the plasma 

concentrations of 13-endorphin do not always result in parallel increase in CSF levels of 

13-endorphin in sheep, which are results suggesting that hypothalamic opioid receptors 

may respond only to centrally produced opioids in sheep (Smith et al 1986). 

It is still not clear whether brain opioid peptides increase in hungry animals to 

initiate feeding, and thus would be involved with hunger drive, or whether opioid 

peptides increase after feeding commences so as to act as a positive reinforcement 
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and increase the "joy" of eating (Morley et al 1982; Kirkham and Blundell 1984; Carr 

and Simon 1984; Stein et al 1990). In our sheep model, obese sheep were continually 

exposed to feed during the dynamic phase of obesity and consequently were unlikely 

to experience significant increases in hunger drive despite a change in feed intake 

amounts as sheep progressed from the dynamic to static phase obesity. Nevertheless, 

increased opioid activity during dynamic phase obesity could have resulted in down

regulation of central opioid receptors, thus explaining the greater sensitivity to naloxone 

in obese than lean sheep during static phase obesity. Greater response to antagonist 

is an expected response in systems that have undergone receptor down-regulation. 

Although plasma concentrations of immunoreactive a-endorphin were similar in 

16-h fasted lean and obese sheep in this study, it is possible that central opioid 

receptor activity and plasma a-endorphin concentrations differed between lean and 

obese sheep during dynamic obesity and in the fed state during static phase obesity. 

Although there is no clear relationship between plasma levels of a-endorphin and 

activity of central opioid control of appetite in animals (Morley et al 1982; Vim and 

Lowy 1984), plasma a-endorphin levels routinely are used as a crude index of opioid 

biology in animals. 

Plasma glucose concentration can affect opioid receptor activity and animal 

response to naloxone treatment. Levine et al (1982) reported that genetically obese 

diabetic mice (db/db) and streptozotocin-induced diabetic mice were 80 to 1000 times 

more sensitive, respectively, than control animals to naloxone's inhibitory effect on feed 

intake. On the other hand, streptozotocin-induced diabetes decreased the effectiveness 

of some opioid agonists in stimulating feed intake in rats (Gosnell et al 1989) and 

reduced the contractile response of guinea-pig ileum to stimulation by the opioid 

agonist, morphine (Shook et al 1986). Further, glucose added to incubation media 



reportedly increased the amount and affinity of binding of naloxone to membranes 

isolated from rat brain (Morley et al 1981 ). Morley et al (1983) postulated that 

increasing concentrations of glucose alter conformation and binding properties of an 

opioid receptor such that this receptor in the presence of glucose preferentially binds 

naloxone with high affinity while failing to bind opioid agonists. 
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Because obese mice and rats are hyperglycemic, the greater effectiveness of 

naloxone in obese than lean rodents may be related to the increase in plasma glucose 

levels. Dietary obese sheep are hyperglycemic and hyperinsulinemic and the 

approximate increases in plasma glucose of 5 to 10 mg/dl and plasma insulin of 

approximately 10 to 30 J.LU/ml in obese sheep are very similar to the increases in 

plasma insulin and glucose observed in obese compared with lean humans. The 

increase in plasma glucose in genetically obese compared with lean rodents usually 

exceeds 1 0 mg/dl. It is possible that modest hyperglycemia in dietary obese sheep and 

obese humans sufficiently affects opioid receptor activity, as postulated by Morley et al 

(1983), resulting in greater inhibitory effects of naloxone in obese than lean subjects. 

An interesting finding in this study was the response of four lean and two obese 

sheep to the lowest dose of naloxone (0.01 mg/kg) which stimulated their feed intake 

by approximately 37%. Relative to saline-treated controls, low doses of naloxone of 

0.06 mg/kg (Lowy et al 1980) and 0.01 to 0.1 mg/kg (Brown and Holtzman 1979) 

increased food intake in rats by 20 to 35%. The ability of low dose naloxone to 

increase intake in rats may depend on duration of fasting before treatment and whether 

naloxone is administered during the light or dark cycle (Brown and Holtzman 1979). 

One possible explanation for stimulation of intake by low dose naloxone could be that 

of different affinities of naloxone for the opioid receptors involved in appetite regulation. 

Naloxone at very low concentration may bind preferentially to high affinity and few 
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opioid receptors that stimulate appetite, whereas higher concentration of naloxone bind 

to many opioid receptors coupled to appetite inhibitory pathways. In a recent study, 

Kelly et al (1990) demonstrated that autoregulation of B-endorphin release by 

hypothalamic arcuate neurons may be controlled by presynaptic opioid receptors, a 

mechanism similar to the autoregulation of adrenergic neurons by a 2-adrenoceptors. In 

support of the finding of Kelly et al (1991 ), Rogers and Henderson (1990) previously 

had reported that activation of presynaptic mu and delta receptors by opioid agonists 

resulted in reduction of transmitter release from the same preganglionic nerve 

terminals. Possibly, naloxone at low concentration could block presynaptic opioid 

receptors leading to increased release of B-endorphin and stimulation of feed intake, 

whereas high concentrations of naloxone could block both presynaptic and 

postsynaptic opioid receptors thereby resulting in naloxone suppression of feed intake. 

In conclusion, early feeding behavior differs substantially in lean and dietary 

obese sheep. Sensitivity to the appetite-inhibitory effects of naloxone was at least four 

times greater in dietary obese than lean sheep, and this change in sensitivity was 

associated with comparable levels of B-endorphin and naloxone in the plasma of lean 

and obese sheep. 
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CHAPTER V 

CARDIOVASCULAR RESPONSES TO ADRENERGIC 

AGONISTS IN LEAN NORMOTENSIVE AND 

OBESE HYPERTENSIVE SHEEP 

Introduction 

Hypertension or high blood pressure is a serious public health problem in 

western societies. Risk factors commonly associated with the development of 

hypertension are obesity, glucose intolerance, and dyslipidemia (Van ltallie 1986; 

Cambien et al 1987; Ferrari and Weidmann 1990; Reaven 1990; Crandall and 

DiGirolamo 1990). Origin and nature of irregularities in glucose and lipid metabolism 

associated with hypertension are still unknown (Ferrannini and Natali 1991; Ferrari and 

Weidmann 1990). Obesity-associated hypertension is very prevalent in the United 

States where obesity exists in 44% of the hypertensive population as compared with 

an incidence of obesity of only 16% in the normotensive population. Conversely, 53% 

of obese subjects are hypertensive as compared with an incidence of hypertension of 

22% in nonobese subjects (Hoarn and Lenfant 1990). There seems to be a fairly clear 

association between sedentary lifestyle, overweight and high blood pressure (Stamler 

et al 1978; Van ltallie 1985). 

Obesity frequently coexists with hyperinsulinemia, hyperglycemia and 

hypertension in humans and other animal models (Cambien et al 1987; Krieger and 

Landsberg 1988). Defects in glucose and insulin metabolism may play a role in both 
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the etiology and clinical course of hypertension because abnormalities of glucose and 

insulin metabolism occur more frequently in hypertensive patients than in normotensive 

ones (Krieger and Landsberg 1988; Haffer et al 1989; Falkner et al 1990). Patients 

with high blood pressure have been shown to be relatively glucose intolerant 

(Ferrannini et al 1987). In addition, spontaneously hypertensive rats tend to be 

hyperinsulinemic and insulin resistant when compared to normotensive Wistar-Kyoto 

rats (Hulman 1991 ). 

Elevated plasma levels of very low-density lipoproteins (VLDL) and decreased 

levels of high-density lipoproteins (HDL-cholesterol) are common abnormalities of 

lipoprotein metabolism in hypertensive humans (Williams et al 1990; Frohlich and 

Pritchard 1989; Bjorntorp 1990; Despres et al 1990). The plasma H DL-cholesterol 

concentration is inversely related to the plasma insulin level in obese subjects 

(McKeigue et al 1991; Ronnemaa et al 1991 ). Hyperinsulinemia together with 

decreased plasma levels of HDL-cholesterol are frequent findings in obese 

hypertensive compared with obese normotensive subjects (Cambien et al 1987; 

McKeigue et al 1991 ). 

The other risk factor associated with hypertension is excess sodium ingestion 

(Beard 1990). It appears that approximately one fourth of normotensive subjects and 

one half of hypertensive patients are characterized as sodium sensitive in that excess 

dietary sodium increases their blood pressure. The relationship between excess dietary 

sodium and blood pressure is complicated. It seems that obesity associated

hyperinsulinemia may significantly interact with sodium metabolism in the development 

of hypertension in humans (Rocchini 1990; Horan and Lenfant 1990; Folkow 1990). 

Blood pressure is a function of cardiac output (CO) and total peripheral 

resistance (TPR). Established human hypertension is associated with increased TPR 
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and normal rates of CO (Folkow et al 1958; Lund-Johansen 1983). Several 

mechanisms may explain the increased TPR. Increased vascular wall diameter in 

hypertensive humans correlated positively with increased vascular response to 

adrenergic agonist stimulation (Aalkjaer et al 1987). Sympathetic outflow from the 

central nervous system (CNS) modulates activity of the resistance vessels and thus 

systemic blood pressure. Hyperinsulinemia in obesity may affect sympathetic nervous 

system (SNS) activity and its regulation of resistance vessels, and thus hyper

insulinemia could increase TPR (Krieger et al 1988). 

Attempts have been made to develop animal models to further understanding of 

the mechanisms responsible for hypertension in obesity. Spontaneously hypertensive 

rats (SHR) have been used extensively in hypertension research, but unfortunately this 

genetically developed model is not obese and lacks other risk factors associated with 

essential hypertension in humans (Wexler 1981 ). Although genetically obese rats are 

hyperinsulinemic, development of hypertension in these animals has not been a 

consistent finding. Kurtz et al (1989) reported that obese Zucker rats become 

hypertensive, whereas others found no significant difference in blood pressure between 

lean and obese Zucker rats (Levin et al 1984; Contreras and Williams 1989). 

Dietary obese hypertensive models were first demonstrated by Wood and Cash 

(1939). Recently, Rocchini and associates (1987) produced hypertension in dogs fed a 

high fat diet as compared with control dogs fed a different diet devoid of high fat. 

Differences in diet, levels of energy balance, and the probability that high-fat feeding 

incites renal damage (Grone et al 1989; Kasiske et al 1991) confounds any 

conclusions that hypertension in dogs fed a high diet is strictly obesity associated. 

Furthermore, high-fat feeding prevented development of hypertension in spontaneously 

hypertensive rats (Wexler 1981 ). Feeding rats a high fructose diet results in 



hyperinsulinemia and hypertension (Hwang et al 1987). Such results also are 

confounded by differences in diet, energy balance and unknown effects due to 

abnormally high intakes of fructose. 

We have developed a dietary obese sheep model that is hyperinsulinemic, 

hyperglycemic, and insulin resistant (McCann et al 1991 ). This animal model also 

portrays most of the above mentioned risk factors associated with essential 

hypertension in humans. Our objectives were therefore to determine if dietary obese 

sheep are hypertensive, whether obesity affects cardiovascular responses to the 

adrenergic agonists norepinephrine and phenylephrine, and whether sympathetic 

activity, indirectly assessed by arterial plasma catecholamines, differs in lean and 

obese sheep. 

Materials and Methods 

Animals 
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Lean and obese Rambouillet ewes (n=5/group} aged 3-4 years were housed 

individually in a room with constant light and temperature (21 ± 1 C). Sheep were fed a 

pelleted hay-grain mixture (12.5 g/kg) and hay (1 g/kg) to provide approximately 38 Kcal 

DE/kg, an amount sufficient to maintain sheep in zero-energy balance. Nutrient 

composition of the diet and detailed results on events during the induction and 

maintenance phase of dietary obesity are reported elsewhere (Chapter 2). Briefly, lean 

adult sheep were fed a maintenance intake of pelleted hay-grain diet to keep them in 

lean body condition, or were fed the same diet ad libitum to induce obesity. Sheep 

were in static phase obesity after 50 wk of ad libitum intake at which time body weight, 

feed intakes and body composition were in relatively steady state. At wk 70 of ad 

libitum feeding, obese sheep were a maintenance intake of pellets in two equal 
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amounts at 0900 and 1700 h, with small amounts of hay ( 1 g/kg) fed at 0900 h. 

Animal Preparation and Experimental Protocol 

Surgery was conducted with aseptic technique for survival surgery. Anesthesia 

was induced with pentobarbital sodium (Nembutal®, Abbott, IL; 50 mg/kg) and 

maintained with mixture of 1-2% halothane (Fiuthane®, Ayerst Lab, NY) and oxygen. 

The gas mixture was delivered to the sheep through an endotracheal tube using a 

surgical anesthesia machine (Ohio Chemical & Surgical Equipment, Madison, WI). 

Catheters with diameters of 12.7 mm (ID) were implanted in the caudal aorta 

and the caudal vena cava through the femoral artery and vein, respectively. The distal 

end of the catheters were exteriorized from the right hind leg and brought to the mid 

back of the animal. The catheters were connected to Tuohy-Borst adapters (Perfektum, 

New Hyde Park, NY, USA) and wrapped in surgical adhesive tape which was glued to 

the animal. Sheep were treated with penicillin (300,000 U/kg) daily for 5 days after 

surgery. Catheters were flushed thrice weekly with sterile heparinized saline (1 0 U/ml) 

and filled with 1 .5 ml of heparin ( 1 000 U/ml). At least 2 wk elapsed between surgery 

and experiments in any sheep. Inspection at necropsy confirmed that both catheter tips 

were positioned about 3 to 4 em cranial to the ileac bifurcations. 

Basal Blood Pressure Measurements. One lean and one obese sheep 

constituted a replicate and replicates were assigned randomly by latin square design to 

sequence of norepinephrine (0.25, 0.5, 1.0, 2.0, and 4.0 J.Lg/kg) and phenylephrine (1, 

3, 7, 10 and 30 J.Lg/kg) dose. The doses of norepinephrine (NE; Sigma, St. Louis, MO) 

and phenylephrine (PE; Sigma, St. Louis, MO) were paired by dosage and coded for 

assignment as experimental days within a replicate. All experiments were done 

between 0900 and 1200 h in 16-h fasted sheep with at least 4 d between PE and N E 
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experiment. 

NE and PE were given as a bolus injection via the vena cava catheter to 

conscious standing sheep. Order of administration of the paired doses of NE and PE in 

each experiment day was alternated across replicates. Cardiovascular variables 

returned to basal values for at least 20 min before the second adrenergic agonist was 

given on any experimental day. The venous catheter was flushed immediately with 2 

ml saline after each agonist injection. Doses of NE and PE used were established in 

preliminary experiments with lean and obese sheep. 

Blood pressure transducers and physiograph were calibrated using a water 

column with 1 .36 em H20 height equal to 1 mmHg (West 1985); the physiograph pen 

deflection set at 5 em for 1 00 mmHg. Relationship between water pressure developed 

and physiograph pressure measured was determined by least square linear regression 

for each transducer assigned for use in lean or obese sheep. The regression equation 

in lean sheep was Y= 0.8305(X) + 0.471 (r=0.999) and that in obese sheep was 

Y=0.8342(X} + 0.2449 (r=0.999}, where Y equals physiograph (transducer} pressure 

and X equals absolute water pressure converted to mmHg. All blood pressure readings 

consequently were divided by the correction factor of 0.831 (lean sheep) or 0.834 

(obese sheep) to obtain absolute pressure. The aortic catheter was connected to a 

calibrated pressure transducer (Narco Bio-System, International Biomedics, Houston 

USA} which was located at the level of the heart. Changes in blood pressure were 

recorded continuously by 4-channel physiograph (Narcotrace Model 40 MKIV, Narco 

Bio-Systems). Heart rates were determined simultaneously using a Narco 

biotachometer model 7302 (Narco Bio-Systems) coupled to the pressure transducer. 

On each experimental day, recordings of blood pressure and heart rate were made for 

45 min before agonist injection. Three observations on blood pressure and heart rate 



97 

were done during this stabilization period at approximately 15 min intervals for each 

sheep. These basal recordings were done once a wk for 5 wk to provide a mean basal 

pressure and heart rate measurement in each sheep which was comprised of 5 

separate observations of three values each. Mean arterial pressure (MAP) was 

calculated 2/3 diastolic plus 1/3 of systolic pressure (West 1985) 

Arterial Plasma Catecholamines. Arterial blood (5 ml) was collected into 

heparinized syringes during the stabilization period on three separate experimental 

days. Blood was immediately transferred to a prechilled (4 C) glass tube containing 

100 Ill of mixture of EGTA (ethyleneglycol-bis-[B-aminoethylether] N,N,N',N'-tetraacetic 

acid; 90 mg/ml) and GSH (reduced glutathione; 75 mg/ml). The chilled blood was 

centrifuged at 1 000 x g for 1 0 min at 4 C and the recovered plasma stored at -20 C for 

later HPLC analysis. NE and epinephrine (EPI) were determined by HPLC and 

electrochemical detection system comprised of Waters Model 510 pump, C 18 reverse 

phase column (3.9 X 150 mm) with 5).! particles, and Model 460 electrochemical 

detector (Waters, Division of Millipore, Milford, MA, USA). The concentrations of NE 

and EPI were determined by the method described by Water's catecholamine analysis 

kit (Waters, Milford, MA USA). Briefly, to 1.5 ml of plasma, 50 ).!1 of internal standard 

(3,4-dihydroxybenzylamine; 10 pg/).!1) and 10 mg of aluminum oxide were added. The 

mixture was alkalinized with 400 Ill of 2 M Tris buffer (pH 8.7), and shaken for 15 min. 

The solution was centrifuged for 1 min at 1 000 x g. The supernatant was eluted and 

the precipitated alumina washed and the supernatent discarded 3 successive times 

with 1 ml of 0.0165 M Tris buffer (pH 8.1). The alumina-bound catecholamines were 

desorbed from the alumina by 100 Ill of a mixture (1 0 ml) containing 100 ).!I of glacial 

acetic acid, 50 ).!I sodium disulfite (1 0%, w/v), 50 Ill EDTA (5%, w/v) and 9.8 ml of 

distilled water. The suspension was centrifuged and 50 111 of the supernatant containing 

the catecholamines was gently separated from the precipitated alumina and injected 
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for analysis. The mobile phase contained 5% methanol, 0.1 M anhydrous sodium 

acetate, 0.1 M citric acid anhydrous, 0.5 mM 1-octane sulfonic acid and 0.15 mM 

EDT A. The flow rate was 1.0 ml/min. The voltage of the glassy carbon electrode was 

maintained at +0.60 mV against the Ag/AgCI reference electrode throughout the 

experiment. 

Plasma Hormone and Metabolites. Arterial blood (5 ml) was collected into 

heparinized syringes during the 45 min stabilization period in wk 1 and 5 of the 

experiments. Blood was immediately dispensed into glass tubes containing 50 Jll 

solution of heparin (5,000 U/ml) and benzamidine (200 mg/ml) that were held in an ice-

water bath (4 C). Plasma was recovered by centrifugation (1 000 x g, 15 min, 4 C) and 

stored frozen (-22 C). Plasma concentrations of insulin and glucagon were quantified 

by validated radioimmuno-assay (McCann et al 1991; Blackett et al 1991 ), and those of_ 

glucose, free fatty acid (FFA), total cholesterol, HDL-cholesterol and total triglyceride 

were quantified by enzymatic assay (McCann et al 1991 ). A single serum sample was 

obtained from each sheep at wk 5 of the experiment and used to quantify serum 

electrolyte concentrations of Na+, K+, cr. Ca2+, Mg2+ and P04-, and serum clinical 

chemistry levels of creatine, creatine phosphate kinase (CPK), albumin, alkaline 

phosphatase (ALP), lactate dehydrogenase (LDH), gamma glutamyl transferase 

(SGGT), and blood urea nitrogen (BUN); analyses were done by automated enzymatic 

procedures (Cobas Mira, Roach Diagnostic System , Nutley, NJ, USA) in the 

Department of Clinical Pathology, College of Veterinary Medicine , Oklahoma State 

University. 

Statistical Analysis 

Differences in plasma and serum variables, basal blood pressures and heart 
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rates between lean and obese sheep were evaluated by Students unpaired two-tailed t 

test (Steel and Torrie 1980). Main and interactive effects of body condition and agonist 

dose on maximum increments in MAP and maximum decrement in heart rate observed 

after each agonist dose were determined using 2 x 5 split-plot analysis of variance; 

multiple comparisons among means were done using Duncan's new multiple range test 

if a significant f-value (P<0.1) was found (Steel and Torrie 1980). Dose-response 

curves of blood pressure response to adrenergic agonist were constructed as follows. 

The maximum increment in MAP after each dose of agonist was determined for all 

sheep. Best fit of the relationship between blood pressure increase and agonist dose 

was determined using noniterative least squares polynomial regression analysis (Fig P; 

Biosoft, Ferguson, MO) of observations (n=25) in each body condition group. 

Comparison of residual sum-of-squares and coefficient of determinations determined 

that a first polynomial adequately described the data as compared with higher degree 

polynomial, exponential, logarithmic, or power fits. Best fit of group data dictated fit 

used in individual sheep to determine dose of agonist increasing MAP by 25 (D25} or 

50 (050} mmHg; differences in mean agonist dose for 0 25 and 0 50 between lean and 

obese sheep were evaluated by Student's two-tailed t test (Steel and Torrie 1980). 

Results 

Plasma Chemical Analyses 

Compared with lean sheep, obese sheep had higher (P< 0.05) plasma 

concentrations of insulin, glucagon and glucose but lower (P< 0.05) concentrations of 

HDL-cholesterol (Table 1 ). Plasma levels of total cholesterol and triglyceride were 

unaffected by obesity, but levels of total cholesterol tended to be higher (P<0.1) in lean 

than obese sheep. 



TABLE 1 

PLASMA CONCENTRATIONS OF SELECTED HORMONES 
AND METABOLITES IN LEAN AND OBESE 

SHEEP FASTED 16 h 

Item Lean (5) Obese (5) 

Insulin ( J.LU/ml) 7 ± 1 19 ± 2* 

Glucose (mg/dl) 47 ± 1 53± 2* 

Glucagon (pg/ml) 68 ± 7 113 ± 8* 

HDL Cholesterol (mg/dl) 52± 4 31 ± 3* 

Total Cholesterol (mg/dl) 74 ±4 60 ± 5 

Triglycerides (mg/dl) 13 ± 1 15 ± 3 

* Lean and obese differ (P < 0.05). 
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Serum ion concentrations were not remarkable and equivalent concentrations 

were measured in serum of lean and obese sheep (Table 2). The serum magnesium 

concentration, however, apparently was increased (P <0.05) in obese compared with 

lean sheep. Serum levels of clinically relevant chemicals were similar in lean and 

obese sheep (Table 3). 

Arterial plasma catecholamine levels were unaffected by obesity in sheep 

(Table 4). Large variation was observed in the data even though the average of three 

observations was used to calculate the final value in each sheep. 



TABLE 2 

SERUM ION CONCENTRATIONS IN LEAN AND OBESE 
SHEEP FASTED 16 h 

Item Lean (5) Obese (5) 

Sodium (meq/1) 139.8 ± 0.5 140.8 ± 0.9 

Potassium (meq/1) 4.5 ± 0.1 4.4 ± 0.2 

Chloride (meq/1) 105.0 ± 5.3 105.6 ± 4.3 

Calcium (mg/dl) 8.1 ± 0.4 8.5 ± 0.4 

Magnesium (mg/dl) 2.0 ± 0.04 2.5 ± 0.15* 

Phosphorus (mg/dl) 7.1 ± 0.8 7.3 ± 0.6 

* Lean and obese differ (P < 0.05) 

TABLE 3 

SERUM CLINICAL CHEMISTRY IN LEAN AND OBESE 
SHEEP FASTED 16 h 

Item Lean (5) Obese (5) 

BUN (mg/dl) 15.8 ± 1.5 14.8±1.7 

Creatine (mg/dl) 0.9 ± 0.1 1.0 ± 0.1 

Albumin (mg/dl) 2.7 ± 0.2 3.0 ± 0.1 

Total Protein (mg/dl) 6.7 ± 0.2 7.2 ± 0.3 

Alkaline Phosphatase (U/L) 99.2 ± 14.5 64.2 ± 15.4 

LDH (U/L) 198.0±19.4 203.6 ± 27.7 

CPK (U/L) 48.0 ± 12.7 38.8 ± 8.2 

SGGT (U/L) 68.4 ± 5.1 72.4 ± 2.5 
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TABLE 4 

ARTERIAL PLASMA CONCENTRATION OF NOREPINEPHRINE 
AND EPINEPHRINE IN LEAN AND OBESE 

SHEEP FASTED 16 h 

Item 

Norepinephrine (pg/ml) 

Epinephrine (pg/ml) 

Basal Blood Pressure and Heart Rate 

Lean (5) 

167 ± 34 

110 ± 27 

Obese (5) 

106 ± 27 

48 ± 7 

Systolic, diastolic and mean arterial blood pressure were approximately 25% 

greater (P< 0.01) in obese than lean sheep (Table 5). The obesity-associated 
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hypertension coexisted with a marked 50 percent increase in the heart rate of obese 

compared with lean sheep. Blood pressure variability in obese sheep appeared similar 

to that in lean sheep because the mean (± SE) coefficient of variation in blood 

pressure was similar in lean (7.0 ± 0.3%) and obese (6.4 ± 0.2%) sheep. 

TABLE 5 

BASAL CARDIOVASCULAR VARIABLES IN LEAN AND 
OBESE SHEEP FASTED 16 h 

Item 

Systolic Blood Pressure, mmHg 

Diastolic Blood Pressure, mmHg 

Mean Arterial Blood Pressure, mmHg 

Heart Rate, beats/min 

• Lean and obese differ (P < 0.01 ). 

LEAN (5) 

96.6 ± 2.9 

65.2 ± 2.2 

75.7 ± 2.2 

49.6 ± 1.4 

OBESE (5) 

121.6 ± 3.0* 

81.1 ± 2.7• 

94.6 ± 2.8'1\' 

74.8 ± 5.61J 



Cardiovascular Responses to Adrenergic Agonists 

Overall mean arterial pressure before NE or PE injections was similar (P> 

0.05) in lean sheep (77.0 ± 2.3 vs 78.0 ± 2.8 mmHg) as also was the case in obese 

sheep (95.8 ± 3.2 vs 95.7 ± 2.2 mmHg). 

103 

NE and PE increased (P<0.01) MAP in a dose-dependent manner in lean and 

obese sheep (Fig. 1 ). Body condition did not affect peak blood pressure response to 

NE or PE dose, although mean response in obese sheep always exceeded that in lean 

sheep. Peak blood pressure response and nadir heart rates after each dose of agonist 

are summerized in Table 6. 
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Figure 1. Mean arterial blood pressure (MAP) response to 
dose of norepinephrine (upper panel) or phenylephrine 
(lower panel). Values are mean ± SE. The pressure increase 
above basal (A MAP) is plotted as a function of each agonist dose. 
Best fit of the relationship between mean increment in MAP and 
dose of agonist was determined by noniterative least squares 
regression (see Methods). First degree polynomial was best (P<0.01) 
fit of mean data shown here and all observations (n=25) in each 
group (see results and Table 7). Equations describing the 
relationship shown for NE were Y= 18.5(X) + 6.8 (r= 0.96) in lean 
sheep and Y = 17. 7(X) + 13.4 (r= 0.89) in obese sheep; equations for 
PE were Y=46.2(1ogX) + 7.1 (r= 0.84) in lean sheep and 
Y=54.3(1ogX) + 14.0 (r= 0.88) in obese sheep. Neither regression 
coefficients (b; slope) nor intercepts for each agonist differed 
(P>0.05) between lean and obese sheep as determined by 
regression analysis of variance and Student's t test. 
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TABLE 6 

ABSOLUTE SYSTOLIC (SBP), DIASTOLIC (DBP) AND MEAN (MAP) ARTERIAL PRESSURE AND HEART RATE (HR) 
RESPONSE TO INTRAVENOUS NOREPINEPHRINE (NE) AND PHENYLEPHRINE (PE) 

IN LEAN AND OBESE SHEEP 1 

SBP {mmHg) DBP (mmHg) MAP (mmHg} HR (beats/min} 

NE Lean Obese Lean Obese Lean Obese Lean Obese 
(J.tg/kg) 

Control 99.2 ± 3.5 122.9 ± 4.1 65.7 ± 2.4 82.3 ± 3.4 77.0 ± 2.3 95.8 ± 3.2 51.7 ± 2.9 77.2 ± 6.0 

0.25 109.3 ± 3.0 143.3 ± 2.8 73.8 ± 4.0 93.7±1.7 71.0±3.1 110.2 ± 2.0 41.6 ± 2.4 56.8 ± 3.6 

0.5 118.5 ± 3.2 148.1 ± 5.9 81.4 ± 4.0 100.0 ± 2.8 79.2 ± 3.2 116.0 ± 3.7 38.6 ± 2.7 59.8 ± 1.9 

1.0 129.3 ± 3.7 175.5 ± 5.3 87.7 ± 4.3 112.2 ± 3.0 86.9 ± 3.5 133.3 ± 3.7 39.6 ± 3.2 55.8 ± 3.0 

2.0 158.4 ± 8.2 192.3 ± 8.1 106.9 ± 4.8 123.1 ± 4.6 109.5 ± 5.3 146.2 ± 5.7 37.2 ± 3.4 49.2 ± 1.2 

4.0 199.2 ± 9.2 234.6 ± 11 135.8 ± 6.2 149.5±10 142.3 ± 6.2 177.9 ± 10 36.8 ± 3.5 48.0 ± 2.3 

PE (J.tg/kg) 

Control 100.1 ± 3.8 123.2 ± 2.6 66.9 ± 2.6 81.9±2.1 78.0 ± 2.8 95.7 ± 2.2 46.9 ± 1.5 70.8 ± 5.1 

1.0 114.1 ± 4.8 144.7 ± 4.6 77.6 ± 4.3 96.6 ± 3.0 89.8 ± 4.9 112.6 ± 3.9 40.4 ± 1.7 58.0 ± 4.0 

3.0 129.1 ± 6.1 170.7 ± 6.6 91.5 ± 5.5 113.9 ± 6.4 104.0 ± 6.0 132.8 ± 7.1 33.6 ± 1.5 47.2 ± 3.5 

7.0 152.6 ± 10 194.7 ± 6.2 101.6±7.1 129.8 ± 6.1 118.6 ± 8.9 151.4±6.7 34.0 ± 2.3 46.4 ± 5.5 

10.0 166.5±12 211.5 ± 6.2 111.7±7.1 143.3 ± 7.1 130.0 ± 9.5 166.0 ± 7.4 30.8 ± 0.7 40.8 ± 4.5 

30.0 194.9 ± 15 246.5 ± 7.4 140.1 ± 10 167.1 ± 14 158.4 ± 13 193.6 ± 12 27.8 ± 1.8 37.3 ± 5.8 

1 Peak blood pressure and nadir heart rates were measured in each sheep 0 to 3 min after each agonist injection and 
mean (±SE) values shown were calculated. 

...... 
0 
01 
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Noniterative least squares regression indicated that a first degree polynomial 

was the best fit of relationship between peak increment in MAP and dose of NE and 

log dose of PE in lean and obese sheep. Regression equations for observations in 

lean (n=25) sheep after NE and PE were Y= 18.5(X) + 6.8 (r= 0.96) and Y= 46.2(1og 

X)+ 7.1 (r= 0.84), and those for observations (n=25) in obese sheep were Y= 17.7(X) 

+ 13.4 (r= 0.89) and Y= 54.3(1og X) + 14.0 (r= 0.88), respectively. Equations derived 

from linear regression of data in individual sheep were used to estimate dose of NE 

and PE that increased their MAP by 25 (D25} or 50 (D50} mmHg. The mean D25 and D50 

doses of NE and PE were similar (P>0.05) in lean and obese sheep, although D25 for 

NE was lower (P<0.08) in obese than lean sheep (Table 7). The D25 dose of NE and 

PEon average was 34% and 42% lower, respectively, in obese than lean sheep. 

TABLE 7 

EFFECTIVE ADRENERGIC AGONIST DOSE IN LEAN AND OBESE SHEEP 

Dose, J.tg/kg Probability Values 

Agonist Type BC D25 D5o BC Dose lA 

Norepinephrine Lean 0.97 ± 0.11 2.37 ± 0.15 0.1 0.05 NS 

Obese 0.64 ± 0.11 2.47 ± 0.56 

Phenylephrine Lean 2.95 ± 0.6 4.84 ± 5.6 0.1 0.05 NS 

Obese 1.71 ± 0.281 5.49 ± 1.25 

Agonist dose for D25 and D50 were determined in each sheep using equations 
derived from linear regression analysis (see text) and mean (± SE) values shown were 
calculated for lean (n=5) and obese (n=5) sheep. Probability values for significance of 
treatment effects from split plot analysis of variance; treatments were body condition 
(BC), dose of agonist (Dose) and their interaction (lA). Means within each agonist type 
with similar superscript letter are not different (P>0.05) as determined by Duncan's new 
multiple-range test. 
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Regardless of dose, heart rate (HR) was decreased (P<0.01) approximately 

27% in lean sheep treated with NE (Fig. 2). In contrast, heart rate in obese sheep was 

decreased (P<0.01) approximately 25% by 0.25, 0.5 and 1 mg/kg NE and 

approximately 37% by 2 and 4 mg/kg NE. Overall decrease in heart rate was affected 

(P<0.05) by body condition with greater decrement in obese than lean sheep. 

Body condition markedly affected (P<0.01) the heart rate response to PE (Fig. 

2). The decrease in heart rate (beats/min) was greater (P<0.05) in obese than lean 

sheep after 1 (6.5 vs 12.8), 3 (13.3 vs 23.6), 7 (13.7 vs 24.4), 10 (16.1 vs 30) and 30 

( 19.1 vs 33.5) J..l.g/kg PE. Duration of blood pressure response increased with 

increasing dose of NE or PE equally in lean and obese sheep (Fig. 3). Equivalent 

duration of response suggests similar blood levels of the injected NE and PE in lean 

and obese sheep. 

Baroreceptor reflex function was assessed by plotting absolute HR as function 

of absolute MAP after NE or PE treatment (Fig. 4). Although the regulation of 

baroreceptor control as function of increasing blood pressure appears similar in both 

groups of sheep, it is clear that for any given blood pressure the heart rate was greater 

in obese than lean sheep. The shift in the position of the curve indicates that the set 

point about which this regulation operates is different in lean and obese sheep. That 

regulation of the baroreceptor reflex was similar in lean and obese sheep was attested 

to by calculating similar baroreceptor sensitivity ratios in lean and obese sheep (Fig. 

5). 
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Figure 2. Decrements in heart rate {.e..HR) in lean and obese sheep 
(n=5/group) injected with different doses of norepinephrine 
(upper panel) or phenylephrine (lower panel). The maximum 
decrement in heart rate (beats/min) after each agonist dose was used to 
calculate the mean (± SE) values shown. Probability values shown for 
significances if treatment effects of body condition (BC), agonist dose 
(NE; PE) and their interaction (lA) were derived from 2 x 5 split-plot 
analysis of variance; means within each agonist type with similar lower 
case letter are not different (P<0.05) as determined by Duncan's new 
multiple range test. 
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Figure 3. Duration of pressor response in lean and obese sheep 
(n=5/group) injected with different doses of norepinephrine 
(upper panel) or phenylephrine (lower panel). Duration was 
time (min) for the increased MAP to return to basal values after iv 
injection of agonist dose. Probability values shown for significances if 
treatment effects of body condition (BC), agonist dose (NE; PE) and 
their interaction (lA) were derived from 2 x 5 split-plot analysis of 
variance. 
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Figure 4. Relationship between heart rate and MAP in lean and obese 

sheep (n=5/group) under basal conditions and after iv 
injection of adrenergic agonists. Reading left-to-right, data points 
(mean ± SE) correspond to basal conditions and then lowest-to-highest 
dose of norepinephrine (upper panel) or phenylephrine (lower panel). 
Peak pressure response and the attendant heart rate for dose of 
adrenergic agonist are shown. 
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Figure 5. Baroreflex sensitivity ratios (mean ± SE) in lean and obese 
sheep (n=5/group) calculated at peak pressor response to 
dose of norepinephrine (upper panel) or phenylephrine 
(lower panel). Ratios calculated as decrement in heart rate 
(beats/min) below basal divided by peak increment in MAP (mmHg) 
above basal in response to agonist dose. Values for decrement in heart 
rate were those coincident with peak pressor response and usually this 
coincided with the nadir heart rate observed after the iv injection of 
adrenergic agonist. Probability values shown for significance of 
treatment effects of body condition (BC), agonist dose (NE; PE) and 
their interaction (lA) were derived from 2 x 5 split-plot analysis of 
variance. 
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Discussion 

Many epidemiological studies have demonstrated a strong relationship between 

obesity and essential hypertension (Stamler 1978; Van ltallie 1985; Krieger et al 1988). 

The pathophysiological mechanisms involved in obesity-associated hypertension are 

unknown, but suggested mechanisms include insulin's effects on vascular structure 

and reactivity and insulin's effects on sympathetic nervous system activity (Krieger and 

Landsberg 1988; Swislocki 1990; Ferrari and Weidmann 1990). 

We have established the dietary obese sheep as an alternative animal model 

applicable to obese humans with or without type II diabetes mellitus (McCann and 

Bergman 1988; McGann et al 1991 ). We report here that dietary obese sheep also are 

hypertensive. MAP and HR were 25% and 50% greater, respectively, in obese than 

lean sheep under basal, defined conditions. Dietary means have been used to induce 

obesity-associated hypertension in dogs (Rocchini 1989; Wehberg et al 1990) and rats 

(Kaufmann et al 1991) fed a high fat diet and in rats fed a high fructose diet (Hwang et 

al 1987); MAP was increased approximately 13 to 22% in these models of obesity

associated hypertension. 

Ernberger and Nelson (1988) reported obesity-associated hypertension in rats 

made dietary obese by recurrent bouts of fasting/refeeding but not in rats made obese 

by chronic ad libitum feeding. Results in obese sheep, however, clearly show that 

hypertension was associated with obesity per se and not obesity interacting with diet 

type, level of intake, or non-steady state conditions of the dynamic phase of obesity. 

Our sheep became obese over 40 to 50 wk by consuming ad libitum the same normal 

diet fed at maintenance to lean control sheep. Blood pressure recordings were done in 

our study when lean and obese animals were fed equivalent levels of a common diet 

such that each was in zero-energy balance. Further, we purposefully measured basal 



cardiovascular variables over 5 wk when cardiovascular variables and animal 

metabolism were in pseudo-steady state conditions and this is seldom the case in 

other animal models of obesity-associated hypertension. 
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Obesity induced by feeding a diet different from that fed to control animals may 

have ontoward effects other than those associated with the obese state. For example, 

high fat feeding has produced renal damage in rodents (Grone et al 1989; Kasiske et 

al 1991 ). Moreover, surgical manipulation of the animal (e.g., catheterization) requires 

suitable recovery time before reliable measurement of cardiovascular variables can be 

made. Simple catheterization of leg blood vessels in sheep required at least 7 d 

recovery before the surgery-induced increase in MAP abated and MAP returned to 

basal values; this effect was more pronounced in obese than lean sheep. 

Obesity-associated hypertension in sheep coexisted with hyperinsulinemia, 

hyperglycemia and decreased plasma concentrations of HDL-cholesterol, which are 

results consistent with obesity-associated hypertension in humans. However, unlike 

humans, plasma triglyceride concentration was similar in lean and obese sheep. These 

results suggest that hypertriglyceridemia is not a prerequisite finding in obese 

mammals that are hypertensive. Plasma levels of Ca2+, Na+ and K+ were similar in lean 

and obese sheep indicating that the obesity-associated hypertension likely was 

unrelated to abnormal metabolism of sodium, potassium or calcium. 

It has been argued that the hyperinsulinemia of obesity increases sympathetic 

nervous system activity leading to increased vascular constriction and hypertension 

(Krieger and Landsberg 1988). Fasting hyperinsulinemia was evident in obese sheep 

since approximately wk 2 to 7 of ad libitum feeding (J. P. McCann, unpublished data), 

but plasma catecholamines at wk 100 to 120 of obesity in this study were similar in 

lean and obese sheep. In fact, arterial plasma catecholamines tend to be greater in 
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lean than obese sheep. O'Hare et al (1989) also reported that obese men had greater 

plasma insulin, glucose and MAP than lean controls and that plasma NE 

concentrations did not differ. The SHR rat and some hypertensive humans reportedly 

have elevated plasma venous levels of catecholamines relative to values in 

normotensive controls (VIachkis and Alexander 1981; Tuck 1986; Ludwig et al 1991 ). 

Dogs fed a high fat diet for 6 wk developed hypertension, but the elevated levels of 

plasma catecholamines noted at wk 1 remained steady throughout the next 5 wk of 

high-fat diet feeding (Rocchini et al 1989). Other workers, however, reported a 

decrease in plasma catecholamine levels in dietary-obese compared with lean rats 

(Levin et al 1983). It appears that hyperinsulinemia and hypertension can coexist in 

obesity without concomitant significant elevation in the plasma catecholamine levels. 

Hyperinsulinemia definitely plays some role in the development and sustenance 

of hypertension, coronary heart disease and atherosclerosis in obese and nonobese 

humans with or without diabetes (Swislocki 1990; Gwinup and Elias 1991; Reaven 

1990; Ronnemaa et al 1991 ). The exact mechanism linking hyperinsulinemia to 

cardiovascular disease are unknown. Experimental efforts to induce hypertension in 

animals infused with insulin have been largely unsuccessful. Five-told elevation in 

plasma insulin in euglycemic dogs tor 7 d did not affect MAP (Hall et al 1990) and 

high-sucrose feeding together with 5-d iv infusion of insulin in rats barely increased 

MAP above values in chow-ted control rats (Brands et al 1991 ). High fructose (Hwang 

et al 1987) feeding alone has produced obesity, hyperinsulinemia, insulin resistance 

and a modest rise in systolic blood pressure. 

Increased TPR is believed responsible for the increased blood pressure in 

obesity-associated hypertension (Folkow 1982). Enhanced vascular reactivity to 

adrenergic stimulation will increase vascular resistance and this could explain the 
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increased blood pressure in obese subjects (Landsberg and Kreiger 1989). Blood 

pressure increases in response to NE or PE injections were similar in lean and obese 

sheep in this study, although dose of NE increasing MAP by 25 mmHg was greater 

(P<0.08) somewhat in obese than lean sheep. However, increases in MAP after iv 

injections of PE were significantly greater in obese, high-fat fed dogs than in lean dogs 

fed a low-fat diet (Wehberg et al 1990). Pressure response to iv infusion of PE was 

greater marginally in obese rats chronically fed high fat than in lean rats fed regular 

chow (Bunag et al 1990). The relative contribution of high-fat feeding and the obese 

state to adrenergic agonist-induced increase in blood pressure in such syudies are not 

clear. Hypertensive dogs and rats made obese by high-fat feeding become 

normotensive if fed a normal levels of fat intake (Rocchini et al 1987; Kaufman et al 

1991 ). Results comparing pressor response to alpha-adrenergic agonists in lean 

versus obese humans apparently are not available, but dose of NE increasing blood 

pressure by 20 mmHg was less in nonobese humans with essential hypertension than 

in normotensive humans (Weidmann 1989). 

Several studies suggest that baroreflex function may be altered in hypertensive 

animals and humans (Aars 1968; Dustan 1983; Corner 1989; Xie et al 1991 ). Alteration 

in baroreflex control of heart rate can involve resetting of the threshold pressure for 

inhibition of heart rate and(or) change in sensitivity of the baroreflex pressure-activity 

curve (Korner 1989). Baroreflex sensitivity was normal but baroreflex response was 

reset to function at higher pressure levels in rats (Jones and Floras 1980) and rabbits 
I 

(Guo et al 1983; Xie et al 1991) with renal hypertension and in nonobese humans with 

essential hypertension (Bristow et al 1969; Eckberg 1979). That the curve relating 

change in heart rate to change in MAP was shifted rightward in obese compared with 

lean sheep in this study, suggests that baroreflex control of heart rate was impaired in 
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the dietary obese sheep and that this impairment was characterized by resetting of the 

reflex without change in sensitivity of the reflex. Similar results on baroreflex control of 

heart rate were found in dogs that developed hypertension and obesity after 6 wk of 

high-fat feeding (Wehberg et al 1990) and in Wistar rats chronically fed high fat to 

develop obesity and border-line hypertension (Bunag et al 1990). 

In summary, we report a new model of obesity-associated hypertension in 

sheep in which the obesity is induced by overconsumption of a normal diet. 

Hypertension in our dietary obese sheep model coexists with hyperinsulinemia, 

hyperglycemia, insulin resistance, hyperglucagonemia and lower plasma levels of HDL

cholesterol. Moderately greater hypertensive responses to adrenergic agonists in 

obese than lean sheep suggest the obesity-associated hypertension may be related to 

enhanced reactivity of adrenoceptor mechanisms in vascular smooth muscle of the 

obese sheep; this interpretation is valid only if the hypertensive response was caused 

directly via agonist-induced constriction of vascular smooth muscle and not indirectly 

by adrenergic agonist modification of central sympathetic outflow to resistance vessels. 

Chronic hyperinsulinemia in obese sheep may enhance vascular reactivity to 

vasoconstrictive agents and it also may play a role in resetting of the baroreflex 

control of heart rate, possibly by inducing structural changes in thickness and collagen 

content of vascular smooth muscle. 
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CHAPTER VI 

EFFECT OF CLONIDINE ON BLOOD PRESSURE AND 

HEART RATE IN LEAN AND OBESE SHEEP 

Introduction 

a-Adrenergic receptors mediate vasoconstriction and elevation of blood 

pressure. Modulation of synaptic norepinephrine release by presynaptic adrenergic 

receptors and the subclassification of a-adrenoceptors into 01- and a 2- subtypes have 

been well documented (Kobinger 1978). Postsynaptic a,-adrenoceptors located in the 

plasma membrane of vascular smooth muscle are the a-adrenoceptor type most 

responsible for vasoconstriction and blood pressure elevation (Timmermans and Van 

Zwieten 1980; Van Brummelen et al 1984). Adrenergic ~-adrenoceptors are widely 

distributed in the body and are usually pre-synaptic, but they appear to be also located 

postjunctionally on vascular smooth muscle cells where they mediate vasoconstriction 

(Docherty and McGrath 1980; Timmermans and Van Zwieten 1980; Van Brummelen et 

al 1984; Goldberg and Robertson 1984). Activation of presynaptic a 2-adrenoceptors 

results in a decrease in release of endogenous transmitter (Schmitt 1967; Kobinger 

1978). 

Many drugs used in therapy of hypertension decrease blood pressure either by 

reducing the sympathetic drive to the cardiovascular system or by blocking the 

transduction of this signal to the effector organ. Clonidine hydrochloride is a 

hypotensive drug with agonistic properties for ~-adrenoceptors (Bentley and Li 1968; 
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Langer et al 1980). Because of its pKa of 8.05, about 85% of administered clonidine 

exists in the protonated form in extracellular fluid (pH 7.36). Further, the lipid-solubility 

of clonidine enables it to cross the blood brain barrier and reach the pressure 

regulatory centers in the brain (Kobinger 1978). 

Clonidine activation of ~-adrenoceptors in the cardiovascular control center in 

the brain reduces sympathetic outflow to heart and vasculature and enhances 

parasympathetic tone to the heart, processes that promote lowering of blood pressure 

and heart rate (Schmitt et al 1967; Kobinger and Walland 1971; Pettinger 1980). 

Clonidine-induced decrease in heart rate and blood pressure is accompanied by 

decreased sympathetic activity as measured by electrical activity in peripheral 

sympathetic nerves of animals and by decreased plasma levels of catecholamines in 

animals and humans (Isaac 1980; Pettinger 1980). 

As discussed above, activation of central ~-adrenoceptors produces peripheral 

hypotension in humans and rodents. However, clonidine has an initial transient 

hypertensive effect when given iv to humans, rats, and dogs (Hoefke and Kobinger 

1966; Shaw et al 1971 ), and this hypertensive response is effected by clonidine 

activation of postjunctional vascular smooth muscle ~-adrenoceptors (Timmermans 

and Van Zwieten 1980). Thus, the hemodynamic effects of clonidine depend on the 

balance between activation of peripheral post-junctional and cental pre-synaptic ~

adrenoceptors (Timmermans and Zwieten 1980). 

Mechanisms responsible for obesity-associated hypertension in humans and 

animals are unknown but likely include dysfunctions in the neural and humoral control 

of cardiovascular function (Krieger and Landsberg 1988; Ferrari and Weidmann 1990; 

Rocchini 1990). The role of ~-adrenoceptors in obesity-associated hypertension is not 

clear but available evidence suggests that down-regulation of central ~-adrenoceptors 
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may play a role in obesity-associated hypertension (Pettinger 1980; Levin 1990; 

Gulati 1991 ). The objectives of this experiment were to determine if cardiovascular ~

adrenoceptor-dependent responses differed in lean normotensive sheep and obese 

hypertensive sheep. The hypertensive sheep model is a new and alternative animal 

model that displays hyperinsulinemia, hyperglycemia and insulin resistance (McCann 

and Bergman 1988; McCann et al 1991 ). 

Materials and Methods 

Animal Preparation 

Surgery was conducted with aseptic technique for survival surgery. Anesthesia 

was induced with 50 mg/kg pentobarbital sodium (Nembutal®, Abbott Lab., IL) and 

maintained with 1-2% halothane (Fiuthane®, Ayerst Lab, NY) in oxygen delivered to 

the sheep through an endotracheal tube by anesthesia machine (Ohio Chemical & 

Surgical Equipment, Madison, WI). 

Catheters with diameters of 12.7 mm (ID) were implanted in the abdominal 

aorta and the abdominal vena cava through the femoral artery and vein, respectively. 

The distal end of the catheters were exteriorized from the right hind leg and brought to 

mid back of the animal. The catheters were connected to Tuohy-Borst adapters, and 

wrapped in surgical adhesive tape which was glued to the animal. Sheep were treated 

with penicillin (300,000 U/kg) daily for 5 days after surgery. Catheters were flushed 

thrice weekly with sterile heparinized saline (1 0 U/ml) and filled with heparin ( 1 ,000 

U/ml). At least 2 wk elapsed between surgery and experiments in any sheep. 

Inspection at necropsy confirmed that both catheter tips were positioned about 3 to 4 

em cranial to the ileac bifurcations. 
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Experimental Protocol 

All experiments were done between 0900 and 1200 h in 16-h fasted lean (n=5) 

and obese (n=5) Rambouillet ewes that were, loosely held by halter in their own pen. 

The aortic catheter was connected to a calibrated blood pressure transducer (Narco 

Bio-System, Int. Biomedics, Houston, TX) located at the level of heart. Changes in 

blood pressure were recorded with a 4-channel Narcotrace model 40 MKIV physic

graph (Narco Bio-System). Heart rates were determined using Narco biotachometer 

model 7302 (Narco Bio-System) linked to the blood pressure transducer, and 

occasionally from direct counting of the systolic waves for 1 min at slow (0.5 em/sec) 

chart speed. Before each clonidine injection, blood pressure and heart rate were 

recorded for 45 min (stabilization period), during which time three measurements were 

made at 15 min intervals to establish base line values of blood pressure and heart 

rate. After the stabilization period, 5 or 10 !lglkg clonidine (1 0 to 15 ml volume) were 

infused in 2 min via the venous catheter which was immediately flushed with 5 to 1 0 ml 

of saline. Clonidine hydrochloride (Sigma, St. Louis, MO) solutions were freshly 

prepared for each experiment in saline, filtered through a 0.2 llm filter, and kept on ice 

until injected. Blood pressure and heart rate were recorded throughout each 

experiment, but blood pressure and heart rate measurements were done at 2, 5, 10, 

15, 20, 30, 45, 60, 75, 90, 105 and 120 min post injection. Experiments were done 

simultaneously in a lean and obese sheep pair, with sequence of clonidine dose 

randomized among pairs; at least 5 days elapsed between successive doses of 

clonidine in each pair of sheep. 

Calculations and Statistical Analysis 

The mean arterial pressure (MAP) was determined as 2/3 of diastolic blood 
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pressure plus 1/3 of systolic blood pressure (West 1985). Differences between lean 

and obese sheep in blood pressure and heart rate after clonidine injections were 

compared using univariate correlated t test for repeated measurements (Gill 1979). The 

interactive effects of body condition and clonidine dose on blood pressure and heart 

rate variables were tested by 2 x 2 split-plot analysis of variance and Duncan's new 

multiple range test if a significant F-value (P<0.1) was found (Steel and Terrie 1980); 

for these analyses, clonidine-induced change in blood pressure for each sheep was 

quantified by area-under-the-curve (AUC) and peak heart rate and peak MAP also 

were used. AUC in each sheep was calculated by trapezoid method. Level of 

significance was 0.05. Values are mean ± SE. 

Results 

Basal MAP (91.5 ± 3.8 vs 73.8 ± 2.2 mmHg) and HR (72.7 ± 5.3 vs 50.6 ± 2.5 

beats/min) were greater (P< 0.01) in obese than lean sheep. Values of blood pressure 

variables and heart rates for each clonidine dose are summarized for lean and obese 

sheep in Table 1 and 2. Clonidine produced a dose-dependent increase in MAP in 

both lean and obese sheep (Fig. 1 ). MAP was greater (P< 0.05) after 10 ~g/kg than 

after 5 ~g/kg clonidine in lean sheep and in obese sheep. Maximum increment in MAP 

developed in response to clonidine was unaffected by body condition but was affected 

significantly by clonidine dose (Table 3). However, the overall MAP response to 5 

~g/kg clonidine was less (P< 0.05) in obese than lean sheep (Fig. 2). The response to 

low dose clonidine in obese sheep was only 46 % of that of lean sheep. Lesser MAP 

response to low dose clonidine together with similar MAP response to high dose 

clonidine are results suggesting fewer vasoactive ~-adrenoceptors in obese compared 

with lean sheep. 



TABLE 1 

BLOOD PRESSURE VARIABLES AND HEART RATE IN SHEEP AFTER ADMINISTRATION OF 5 ~g/kg CLONIDINE 

Lean (n=5) Obese (n=5) 

Time SBP DBP MAP HR SBP DBP MAP HR 

{min} {mmHg} {mmHg} {mmHg} {beat/min} {mmHg) {mmHg} {mmHg) {beat/min} 

-30 94.7 ± 2.4 64.1 ± 2.1 73.3 ± 2.0 52.0 ± 2.6 119.2 ± 3.2 81.2 ± 3.2 93.9 ± 3.1 71.6 ± 3.8 
-15 93.7 ± 2.9 62.6 ± 2.4 73.1 ±2.4 51.2 ± 2.9 118.7 ± 4.2 79.3 ± 3.4 92.4 ± 3.7 70.8 ± 3.3 

0 94.2 ± 3.4 63.1 ± 2.4 73.5 ± 2.5 51.6±2.4 120.1 ± 3.0 79.5 ± 2.9 93.1 ± 2.9 67.2 ± 2.9 

2 119.6 ± 8.9 86.7 ± 6.8 97.7 ± 7.5 40.0 ± 2.2 135.5 ± 2.2 93.7 ± 1.4 107.3±1.5 44.4 ± 2.6 

5 124.4 ± 7.0 83.8 ± 3.6 97.4 ± 4.7 52.6 ± 5.3 145.6 ± 2.5 95.1 ± 2.9 112.5 ± 2.5 65.6 ± 7.5 

10 121.6 ± 7.3 82.8 ± 4.2 95.8 ± 5.2 55.2 ± 6.5 134.1 ± 2.8 90.8 ± 3.3 105.2±3.1 65.8 ± 5.5 

15 118.7 ± 6.8 79.5 ± 3.8 92.6 ± 4.5 54.0 ± 3.6 127.8 ± 3.2 85.0 ± 2.1 99.3 ± 2.2 68.0 ± 4.0 

20 111.9 ± 7.3 76.1 ± 4.4 88.1 ± 5.1 60.4 ± 6.0 121.1 ± 3.9 78.8 ± 3.5 92.9 ± 3.6 74.8 ± 6.8 

30 107.1 ±5.5 70.8 ± 3.1 83.0 ± 3.5 55.2 ± 1.0 121.1 ± 3.7 77.3 ± 3.0 91.9 ± 3.2 72.4 ± 4.9 

45 101.4 ± 5.6 67.5 ± 3.4 78.8 ± 4.0 56.4 ± 2.4 124.5 ± 7.5 80.7 ± 5.3 95.3 ± 6.0 70.0 ± 2.4 

60 98.0 ± 5.0 65.5 ± 3.0 76.4 ± 3.4 54.4 ± 1.7 124.5 ± 11.2 83.6 ± 8.3 97.2 ± 9.3 67.2 ± 3.3 

75 96.6 ± 3.8 65.1 ±3.1 75.6 ± 2.9 52.8 ± 1.9 125.9 ± 10.1 84.1 ± 7.6 98.0 ± 8.6 66.4 ± 3.8 

90 96.1 ± 3.5 64.1 ± 2.8 74.8 ± 2.7 52.2 ± 2.4 125.9 ± 9.5 85.0 ± 7.4 98.7 ± 8.1 66.4 ± 2.9 

105 94.2 ± 3.5 63.1 ± 3.1 73.5 ± 3.0 52.4 ± 1.7 122.5 ± 9.9 82.6 ± 7.8 95.9 ± 8.5 68.4 ± 2.5 

120 93.7 ± 2.6 62.6 ± 2.5 73.1 ± 2.2 52.8 ± 1.7 121.1 ± 9.9 81.2 ± 6.0 94.5 ± 7.5 67.6 ± 2.9 
....... 

SBP= Systolic Blood Pressure; DBP= Diastolic Blood Pressure; MAP= Mean Arteial Pressur; HR= Heart Rate 1\.) 
(j) 



TABLE 2 

BLOOD PRESSURE VARIABLES AND HEART RATE IN SHEEP AFTER ADMINISTRATION OF 10 J.LQ/kg CLONIDINE 

Lean (n=5) Obese (n=5) 

Time SBP DBP MAP HR SBP DBP MAP HR 

{min} {mmHg} {mmHg} {mmHg} (beat/min} {mmHg} {mmHg} {mmHg) (beat/min} 

-30 92.5 ± 1.9 64.1 ± 2.2 73.6 ± 1.9 49.6 ± 2.4 115.3 ± 4.4 76.4 ± 4.2 89.4 ± 4.2 76.4 ± 7.0 

-15 93.9 ± 1.9 64.6 ± 2.1 74.4 ± 1.9 49.6 ± 2.2 116.8 ± 4.1 76.4 ± 4.6 89.9 ± 4.4 75.2 ± 7.3 

0 92.7 ± 2.3 64.6 ± 2.9 74.0 ± 2.6 49.6 ± 2.4 115.8 ± 4.3 77.4 ± 5.1 90.2 ± 4.8 75.2 ± 7.4 

2 118.4 ± 8.9 84.8 ± 6.6 96.0 ± 7.3 35.6 ± 0.7 133.1 ± 4.4 91.8 ± 3.5 105.6 ± 3.7 44.0 ± 2.8 

5 137.2 ± 4.7 93.9 ± 2.8 108.3 ± 2.9 37.6 ± 1.6 174.0 ± 16.3 110.0±7.1 131.4 ± 10.1 57.4 ± 7.9 

10 136.2 ± 3.8 95.9 ± 2.9 109.3 ± 1.9 43.6 ± 4.1 167.7 ± 15.3 106.2 ± 4.7 126.7 ± 8.1 63.2 ± 8.5 

15 131.4 ± 4.0 90.1 ± 3.2 103.8 ± 3.0 44.8 ± 3.8 161.0 ± 12.5 104.8 ± 4.3 123.5 ± 6.6 67.6 ± 9.3 

20 127.1 ± 4.6 84.8 ± 4.4 98.9 ± 4.3 47.8 ± 3.3 141.3 ± 4.3 95.7 ± 3.0 110.8 ± 3.3 74.4 ± 12.0 

30 118.4 ± 6.0 78.1 ± 5.1 91.5 ± 5.3 52.0 ± 2.6 126.4 ± 6.9 85.6 ± 4.5 99.2 ± 5.2 74.8 ± 9.2 

45 104.0 ± 6.4 74.2 ± 4.4 84.2 ± 4.9 56.0 ± 5.0 120.6 ± 5.1 81.2 ± 3.5 94.4 ± 4.0 75.0 ± 9.0 

60 98.8 ± 8.1 69.9 ± 4.4 79.5 ± 5.5 63.6 ± 9.6 116.8 ± 4.5 79.3 ± 3.8 91.8 ± 3.9 75.2 ± 7.0 

75 98.3 ± 6.6 67.0 ± 4.2 77.4 ± 4.9 54.4 ± 2.4 114.8 ± 4.0 77.9 ± 4.4 90.2 ± 4.1 74.0 ± 5.4 

90 96.8 ± 5.7 65.6 ± 4.3 76.0 ± 4.6 52.4 ± 1.6 115.8 ± 4.0 80.3 ± 4.2 92.1 ± 4.0 43.2 ± 4.7 

105 94.9 ± 5.3 66.1 ± 3.7 75.7 ± 4.2 54.2 ± 1.0 112.4 ± 3.2 76.0 ± 4.2 88.1 ± 3.8 72.0 ± 4.6 

120 95.9 ± 5.7 66.1 ± 3.8 76.0 ± 4.2 52.8 ± 2.0 113.9 ± 4.5 76.9 ± 4.6 89.2 ± 4.6 71.2 ± 4.4 
..... 

SBP= Systolic Blood Pressure; DBP= Diastolic Blood Pressure; MAP= Mean Arteial Pressur; HR= Heart Rate 1\) 
--.1 
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Figure 1. Hemodynamic effects of 5 and 10 JlQ/kg clonidine in lean (n=5) and 
obese (n=5) sheep. Arrows indicate iv injection of clonidine. 

TABLE 3 

MAXIMUM CHANGE IN MAP AND HR AFTER CLONIDINE INJECTION 
IN LEAN AND OBESE SHEEP1 

Clonidine Dose Probabilit~ Value 

Item Body Condition 5 Jlg/kg 10 Jlg/kg BC Dose lA 

MAP, mmHg Lean 24.0 ± 5.38b 35.4 ± 1.6° NS 0.025 NS 

Obese 18.8 ± 3.7" 41.6 ± 12.0bc 

HR, beats/min Lean 11.1 ± 1.o• 13.0 ± 3.o• 0.01 NS NS 

Obese 25.3 ± 3.0b 31.0 ± 5.0b 
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1 Values are mean ± SE and represent the difference between the peak MAP and nadir HR 
developed and corresponding basal values in each sheep. Peak MAP and nadir HR values were recorded 
1 to 5 min after clonidine injection. Probability values for significance of treatment effects from split-plot 
analysis of variance; means within each item with similar superscript letter are not different (P>0.05) as 
determined by Duncan's new multiple range test. (BC=body condition, lA= interaction). 
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Figure 2. MAP response to 5 and 10 J.lg/kg clonidine in lean 
and obese sheep. Response calculated as area (AUC) 
above basal MAP plus one standard deviation of basal. 
Probability values from split-plot analysis of variance for 
treatment effects were body condition 0.1; clonidine dose 
0.005; interaction 0.1. Means with similar superscript letters 
are not different (P>0.05) as determined by Duncan's new 
multiple range test. 
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After clonidine injection, HR decreased acutely in lean and obese sheep before 

returning to basal levels immediately, except in lean sheep injected with 1 0 J.I.Q/kg 

clonidine (Fig. 1 ). The maximum decrements in HR after clonidine in each group of 

sheep were unaffected by dose , but the decrement was 2 to 3 times greater (P<0.05) 

in obese than lean sheep (Table 3). The bradycardiac response to clonidine appeared 

unrelated to the dose-dependent hypertensive effects of clonidine. Results in Table 3 

show that for the same time interval (+2 to + 10 min) after each dose of clonidine, the 
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decrement in HR was considerably greater in obese than lean sheep despite less or 

similar increment in peak MAP being developed in obese than lean sheep. 

Additional qualitative observations on behavior of sheep injected with clonidine 

are noteworthy. Salivation was noticeably increased in all sheep by either dose of 

clonidine. However, distinct respiratory distress was evident in obese but not lean 

sheep and this response was exacerbated by increasing dose of clonidine. Respiration 

rate increased along with marked reduction in volume of air breathed in the first +5 to 

+ 15 min after clonidine injection. 

Discussion 

In this experiment 5 and 10 ~J,g/kg clonidine produced marked hypertension in 

lean and obese sheep. Blood pressure did not decrease significantly below basal 

values in these clonidine-injected sheep when observations were made up to 4 h after 

clonidine treatment. The blood pressure response to clonidine is biphasic in many 

species including man (Kobinger 1978; Pettinger 1980). After iv injection, clonidine 

activation of vascular smooth muscle <X:2-adrenoceptors produces an initial short-lived 

hypertension response which precedes a chronic hypotensive response mediated by 

clonidine activation of central a2-adrenoceptors (Timmermans and Van Zwieten 1980, 

Jie et al 1987). The hypertensive response in man is evident after high but not low 

doses of clonidine (Pettinger 1980). Neither acute nor chronic hypotensive responses 

were observed in our sheep injected with doses of clonidine which were comparable to 

those used in studies reporting biphasic pressure responses to iv clonidine. 

Hypertension without any hypotensive response was reported previously for 

normal sheep injected iv with clonidine (Eisenach 1988; Castro and Eisenach 1989), 

but the degree of hypertension noted by these workers was less than that in our sheep 
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despite employment of similar doses of clonidine. Blood pressure response to iv 

injection of clonidine in sheep apparently differs from the biphasic hyper-hypotensive 

response observed in dogs (Schmitt and Schmitt 1969), goats (Eriksson and Tuomisto 

1982) and rats (Grichois et al 1990) treated with clonidine doses similar to those used 

in this study. The biphasic blood pressure response to iv clonidine has been explained 

by clonidine activation of a2-adrenoceptors in the peripheral vasculature and in the 

CNS that mediate clonidine's hypertensive and hypotensive responses, respectively 

(Kobinger and Walland 1967; Pettinger 1980; Head and DeJong 1986). Intravenously 

injected clonidine can interact with both central and peripheral adrenoceptors. Thus the 

blood pressure change after iv clonidine reflects the balance between the central 

hypotensive and peripheral vasoconstrictive effects of clonidine. 

Because ruminants are more sensitive to a-agonists than nonruminants 

(Hopkins 1972), it would be difficult to inject a dose of clonidine iv that would, on basis 

of dose, preferentially affect central but not peripheral adrenoceptors. Accordingly, the 

typical blood pressure response to iv clonidine in sheep is singularly hypertensive 

reflecting the dominant role of adrenoceptors in the peripheral vasculature, relative to 

those in the CNS, when both are exposed to iv clonidine. This is substantiated by the 

results of Eisenach (1988) and Eisenach and Tong (1991) in sheep where clonidine 

produced hypertension when administered iv but produced hypotension when similar 

dosage was administered intrathecally into spinal fluid. A few reports in ruminants, 

however, have noted mild hypotension after iv injection of 7 J.lg/kg clonidine in goats 

(Eriksson and Tuomisto 1982) and after epidural injection of approximately 2-5 11g/kg 

clonidine (Eisenach and Tong 1991 ). Reasons for the discrepancy in results between 

sheep and goats are not clear, but it is reasonable to assume that clonidine-induced 

hypotension in sheep could be masked by clonidine's dominant effect of peripheral 

vasoconstriction. Although central and peripheral adrenoceptors likely were stimulated 
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by iv clonidine, hypertension without development of hypotension occurred in the lean 

and obese sheep injected with clonidine in this experiment. 

The maximum increment in MAP after each dose of clonidine and the overall 

hypertensive response to high dose clonidine were comparable in lean and obese 

sheep. However, the hypertensive response to low dose clonidine was significantly 

less in obese than lean sheep. That the difference in response to clonidine between 

lean and obese sheep was observed in the presence of submaximal concentrations of 

clonidine, but not in the presence of saturating concentrations of clonidine, suggests 

that obese sheep had fewer <X.:!-adrenoceptors than lean sheep. Relative to control 

conditions, fewer cell-surface receptors are associated with a rightward shift in the 

dose-response curve for agonist action (Kahn 1985). This would be applicable if our 

results could be explained entirely by the peripheral vasoconstrictive actions of 

clonidine in vascular smooth muscle. If clonidine indeed has central and peripheral 

effects in sheep that are concurrent but antagonistic, then the lesser hypertensive 

response to low dose clonidine in obese than lean sheep could be explained by a 

greater central vasodilatory effect of clonidine in obese sheep than lean sheep without 

difference in response to the peripheral vasoconstrictive effects of clonidine. 

Reflex bradycardia was two to three times more prominent in obese than lean 

sheep a despite similar, or lesser, hypertensive response in obese than lean sheep. 

These results suggest that clonidine affected baroreceptor function by affecting 

baroreceptor sensing of increased MAP, central cardiovascular processing of 

baroreceptor information, and( or) efferent signalling to cardiac muscle in obese 

compared with lean sheep. Centrally acting clonidine inhibits sympathetic and 

enhances parasympathetic nervous activity (Pettinger 1980). The greater bradycardia 

in obese than lean sheep might indicate greater parasympathetic vagal response to 



clonidine in the obese sheep. Others have suggested that clonidine increases the 

sensitivity of the baroreflex response in normal rats (Grichois et al 1990). 
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The observed bradycardia in sheep in this study dissipated within 1 0 min even though 

MAP was increased for up to 30 to 60 min after clonidine injection. In contrast, 

bradycardia persisted throughout the hypertensive response in sheep injected with 

phenylephrine, an a1-agonist (see Chapter V). 

Clonidine can affect respiration in sheep by central and peripheral mechanism 

(Eisenach 1988; Eisenach et al 1988; Bolme and Fuxe 1973). Bolme and Fuxe (1973) 

hypothesized that clonidine interacts with a central inhibitory noradrenergic mechanism 

to control respiration. Clonidine had slight inhibitory effect on respiration in goats 

(Eriksson and Tuomisto 1982) but significantly reduced incidence and duration of 

breathing in foetal lambs (Bamford et al 1990; Bamford and Hawkins 1990). In this 

experiment, respiratory effects of clonidine were distinct in obese sheep but barely 

detectable in lean sheep. However, lean and obese sheep exhibited similar parietal 

gland response as illustrated by noticeable salivation in each sheep in the first 10 min 

approximately after each dose of clonidine. Furthermore, preliminary experiments to 

determine appropriate dose of clonidine revealed that 20 !J.g/kg clonidine produced 

severe dyspnea in obese (n=2) but not lean (n=2) sheep, and consequently only doses 

of 5 and 1 0 11g/kg clonidine were used in the experiment. The marked difference in 

respiratory response to clonidine in obese compared with lean sheep suggests that 

central ~-adrenoceptor activity was greater in obese hypertensive than in lean 

normotensive sheep. It would appear that obesity in sheep affects central and 

peripheral a2-adrenoceptor regulation of vasoconstriction and central a2-adrenoceptor 

regulation of respiration. Levin (1990) reported that density of binding sites for <X2-

agonists was greater in brain membranes of obese than lean rats. Putative differences 

in ~-adrenoceptor activity in obese compared with lean sheep may be the 



consequence of hypertension and not the obese state per se because the central 

response to a 2-agonist also was greater in spontaneously hypertensive rats than in 

their normotensive littermates (Yarbrough et al 1983; Tibirica et al 1988). 
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In summary, the cardiovascular response to low and high doses of iv clonidine 

differed in lean and dietary-obese sheep. Hypertensive response to low dose clonidine 

was greater in lean than obese sheep, whilst bradycardic response to clonidine was 

greater in obese than lean sheep regardless of clonidine dose. Hypertension without 

hypotension suggested that iv clonidine predominantly affected peripheral 

vasoconstrictive ~-adrenoceptors in sheep. However, clonidine-induced apnea and 

dyspnea were markedly more noticeable in obese compared with lean sheep. Dietary 

obesity may differentially affect function of central and peripheral ~-adrenoceptors in 

sheep. 
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CHAPTER VII 

HEMODYNAMIC EFFECTS OF CLONIDINE AND 

NALOXONE IN NORMOTENSIVE LEAN AND 

HYPERTENSIVE OBESE EWES 

Introduction 

Clonidine a is potent antihypertensive drug in humans and animals (Kobinger 

1978; Pettinger 1980; Isaac 1980; Jarratt et al 1987). The hypotensive action of 

clonidine is due both to a centrally-mediated decrease in sympathetic tone to the heart 

and vascular together with an enhanced vagal baroreceptor reflex (Kobinger 1978; 

Isaac 1980; Jarrot et al 1987; Maze and Tranquilli 1991 ). Despite the well documented 

hypotensive effect of clonidine in various species, the blood pressure response to iv 

clonidine is biphasic in humans, dogs, cats and certain strains of rats (Boissier et al 

1968; Kobinger 1978; Frisk-Holmberg et al 1984). Clonidine causes an initial short

lived hypertension that precedes chronic hypotension and both responses are attended 

by bradycardia (Rhee and De Lapp 1988; Grichois et al 1990). 

The blood pressure response to clonidine reflects the balance of clonidine 's 

activation of centrally located a 2-adrenoceptors, which mediate hypotension, and 

peripheral a2-adrenoceptors in vascular smooth muscle which mediate hypertension 

(Schmitt et al 1969; Kobinger 1978; Isaac 1980; Langer 1985). The biphasic blood 

pressure response to clonidine depends on the dose of clonidine and accessibility of 

clonidine into brain tissue after its systemic administration by intravenous or oral routes 
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(Frisk-Holmberg et al 1984; Rhee and De Lapp 1988). Low levels of clonidine are 

associated with a hypotensive response, where increasing concentrations of plasma 

clonidine are associated with hypertensive response (Wing et al 1977; Pettinger 1980). 

The central effects of clonidine on blood pressure seem to involve opioid 

receptors active within the hypothalamus, nucleus tractus solitarius and (or) nucleus 

reticularis lateralis (Schmitt 1967; Jarrot et al 1987; Tibirica et al 1989; Bousquet et al 

1989). Concomitant administration of the opioid antagonist, naloxone, has inhibited or 

abolished the hypotensive response to iv clonidine in anaesthetized normotensive and 

hypertensive rats (Farsang and Kunes 1979; Shropshire and Wendt 1983; Mastrianni 

and Ingenito 1987; Mosquede-Garcia and Kunes 1988; Chang et al 1989) and in 

normotensive dogs (Pinto et al 1989). However, naloxone co-treatment had no effect 

on the hypotensive response to clonidine in normotensive and hypertensive humans 

(Watkins et al 1980; Bramnert and Hokfelt 1983) and normotensive Wistar-Kyoto 

rats(Mastrianni and Ingenito 1987). The ability of naloxone to affect the blood pressure 

response to clonidine may be species specific. 

Obese humans are frequently hypertensive (Stamler 1978; Van ltallie 1985 ). It 

has been suggested that dysfunction in central ~-adrenoceptors could lead to 

enhanced sympathetic outflow and development of hypertension in obese subjects 

(Bramnert and Hokfelt 1983; Veith et al 1984 ). We reported that the blood pressure 

response to iv clonidine differed between normotensive lean and dietary obese 

hypertensive sheep (Chapter VI). The pressor response was less and the bradycardic 

response was greater in obese than lean sheep injected iv with 5 j.lg/kg clonidine, 

whereas the hypertensive and bradycardic responses were comparable in both group 

after 10 11g/kg clonidine. The objectives of this experiment were to determine if 

naloxone affected the hypertensive and bradycardiac response to high dose clonidine 

(1 0 j.lg/kg) in sheep and whether these responses differed in normotensive lean sheep 



and hypertensive obese sheep. The dietary obese sheep is hyperinsulinemic, 

hyperglycemic, insulin resistant, and hypertensive (see Chapter V). 

Materials and Methods 

Animal Preparation 

Five normotensive lean (46 ± 2 kg) and 5 hypertensive obese (79 ± 3 kg) 

Rambouillet ewes were housed individually in a room with constant light and 
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temperature (20-21 C). Procedures for induction of dietary obesity in sheep were 

described in full in Chapter II. Briefly, lean adult Rambouillet ewes weighing 47 ± 3 kg 

were fed a pelleted hay-grain diet at maintenance (lean; control) or fed the same diet 

ad libitum (obese) until the maximum voluntary capacity for adipose accretion was 

attained at which point animals were in static-phase obesity characterized by steady

state body weights and steady-state levels of maintenance intake. Consequently, all 

sheep were fed a specified maintenance intake of approximately 38 Kcal DE/kg in two 

equal amounts at 0900 and 1700 h such that each was in zero-energy balance before 

and during the experiments. 

Surgery was conducted with aseptic technique for survival surgery. Anesthesia 

was induced with 50 mg/kg pentobarbital sodium (Nembutal®, Abbott Lab., IL) and 

maintained with 1-2% halothane (Fiuthane®, Ayerst Lab. NY). The gas mixture was 

delivered from a surgical anesthesia machine (Ohio Chemical & Surgical Equipment, 

Madison, WS, USA) to the sheep through an endotracheal tube. 

Catheters with diameters of 12.7 mm (ID) were implanted in the abdominal 

aorta and the abdominal vena cava through the femoral artery and vein, respectively. 

The distal end of the catheters were exteriorized from the right hind leg and brought to 

mid back of the animal. The catheters were connected to Tuohy-Borst adapters, and 
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wrapped in surgical adhesive tape which was glued to the animal. Sheep were treated 

with penicillin (300,000 U/kg) daily for 5 days after surgery. Catheters were flushed 

thrice weekly with sterile heparinized saline (1 0 U/ml) and filled with heparin (1 ,000 

U/ml). At least 2 wk elapsed between surgery and experiments in any sheep. 

Inspection at necropsy confirmed that both catheter tips were positioned about 3 to 4 

em cranial to the ileac bifurcations. 

Experimental Protocol 

One lean and one obese sheep constituted a replicate and replicates were 

assigned randomly to one of the six sequences possible for treatment of clonidine (1 0 

!!g/kg), naloxone (3 mg/kg) and combined clonidine and naloxone (see below). On 

each experimental day, clonidine hydrochloride (Sigma, St. Louis, MO) and naloxone 

(Sigma) were prepared fresh in saline, filtered through a 0.2 11m filter and kept on ice 

until injected in via the venous catheter. At least 5 d separated successive treatments. 

Experiments were done between 0900 and 1200 h in conscious 16-h fasted 

sheep that were free-standing in their own pen. The aortic catheter was connected to a 

calibrated blood pressure transducer (Narco Bio-System, Int. Biomedics Houston TX 

USA) located at the level of heart. Changes in blood pressure were recorded with a 4-

channel Narcotrace model 40 MKIV physiograph (Narco Bio-System). Heart rates were 

determined using Narco biotachometer model 7302 (Narco Bio-System) linked to the 

blood pressure transducer. On each experimental day, recordings of blood pressure 

and heart rate were made for 45 min before iv injection of drugs. Three observations 

on blood pressure and heart rate were done during this stabilization period at 

approximately 15 min interval for each sheep. After the stabilization period, drugs in 5 

to 10 ml of saline were infused in 2 min and the venous infusion catheter flushed with 

similar volume of saline. Blood pressure and heart rate measurements were done at 2, 
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5, 10, 15, 20, 30, 45, 60, 75, 90, 105, and 120 min after injection of naloxone or 

clonidine. In the combined treatment, naloxone was injected iv 5 min before clonidine 

and blood pressure and heart rate measurements done at times indicated relative to 

clonidine injection and also at 2 min after naloxone. 

Statistical analysis 

The mean arterial pressure (MAP) was calculated as 2/3 of diastolic plus 1/3 

systolic blood pressure (West 1985). Effects of drug treatment on absolute values of 

MAP and heart rate within each body condition level were tested by repeated 

measures method of Gill (1979). Interactive effects of body condition and drug 

treatment on blood pressure and heart rate variables were determined using 2 x 3 

split-plot analysis of variance with separation of means by Duncans' new multiple 

range test if a significant F-value (P<0.1) was found (Steel and Torrie 1980). For this 

analysis the maximum change in MAP and heart rate measured after drug injection 

were used; additionally, the net effect of drug-induced change in MAP was quantified 

by area-under-the-curve (AUC) measured from time 0 until MAP returned to the mean 

plus one SD of that mean for basal MAP values in each sheep. Level of significance 

was 0.05 and reported values are means ± SE. 

Results 

Blood pressure variables and heart rates in lean and obese sheep before and 

after injection of drug are summarized in Table 1, 2 and 3. Overall basal MAP 

(92.6 ± 3.7 vs 74.6 ± 2.4 mmHg) and basal HR (69.8 ± 3.3 vs 51.6 ± 2.6 bpm) were 

greater (P<0.01) in obese than lean sheep (Table 1, 2, 3). Clonidine injection caused 

pronounced hypertension in lean and obese sheep (Fig. 1 ). The hypertensive response 
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to clonidine was equivalent in lean and obese sheep whether measured as maximum 

change in MAP (Fig. 3) or net change in MAP response (Fig. 4). Clonidine-induced 

bradycardia was greater in obese than lean sheep (Fig. 2; 5). 

Naloxone by itself induced noticeable hypertension in all sheep. In contrast to 

clonidine, hypertensive response to naloxone was greater in obese than lean sheep 

(Fig. 1, 3, 4). Interestingly, the hypertensive response to naloxone was accompanied 

by tachycardia, not bradycardia as was observed after clonidine injection (Fig. 1, 2). 

The degree of tachycardia in naloxone-treated sheep was two-to-three times greater in 

obese than lean sheep (Fig. 5). The clonidine-induced hypertension and bradycardia in 

both group of sheep were completely unaffected by antecedent treatment with 

naloxone (Fig. 4, 5). 

Other gross behavioral effects of clonidine were observed but not quantified. 

Clonidine induced noticible salivation in both group of sheep, but clonidine caused 

distinct respiratory stress (apnea) in obese but not lean sheep. Naloxone by itself had 

no observable effect on respiration or salivation, but naloxone appeared to attenuate 

the respiratory-inhibiting effects of clonidine in the obese sheep without affecting in a 

major way the salivation response to clonidine. 



TABLE 1 

BLOOD PRESSURE VARIABLES AND HEART RATE IN SHEEP AFTER IV ADMINISTRATION OF 10 JlQ/kg CLONIDINE 

Lean (n=5) Obese (n=5) 

Time SBP DBP MAP HR SBP DBP MAP HR 

{min} {mmHg} {mmHg} {mmHg} {beat/min} {mmHg} {mmHg} {mmHg} {beat/min} 

-30 92.5 ± 1.9 64.1 ± 2.2 73.6 ± 1.9 49.6 ± 2.4 115.3 ± 4.4 76.4 ± 4.2 89.4 ± 4.2 76.4 ± 7.0 

-15 93.9 ± 1.9 64.6 ± 2.1 74.4 ± 1.9 49.6 ± 2.2 116.8 ± 4.1 76.4 ± 4.6 89.9 ± 4.4 75.2 ± 7.3 

0 92.7 ± 2.3 64.6 ± 2.9 74.0 ± 2.6 49.6 ± 2.4 115.8 ± 4.3 77.4±5.1 90.2 ± 4.8 75.2 ± 7.4 

2 118.4 ± 8.9 84.8 ± 6.6 96.0 ± 7.3 35.6 ± 0.7 133.1 ± 4.4 91.8 ± 3.5 105.6 ± 3.7 44.0 ± 2.8 

5 137.2 ± 4.7 93.9 ± 2.8 108.3 ± 2.9 37.6 ± 1.6 174.0±16.3 110.0 ± 7.1 131.4 ± 10.1 57.4 ± 7.9 

10 136.2 ± 3.8 95.9 ± 2.9 109.3 ± 1.9 43.6 ± 4.1 167.7±15.3 106.2 ± 4.7 126.7 ± 8.1 63.2 ± 8.5 

15 131.4±4.0 90.1 ± 3.2 103.8 ± 3.0 44.8 ± 3.8 161.0 ± 12.5 104.8 ± 4.3 123.5 ± 6.6 67.6 ± 9.3 

20 127.1 ± 4.6 84.8 ± 4.4 98.9 ± 4.3 47.8 ± 3.3 141.3 ± 4.3 95.7 ± 3.0 110.8 ± 3.3 74.4 ± 12.0 

30 118.4 ± 6.0 78.1 ± 5.1 91.5 ± 5.3 52.0 ± 2.6 126.4 ± 6.9 85.6 ± 4.5 99.2 ± 5.2 74.8 ± 9.2 

45 104.0 ± 6.4 74.2 ± 4.4 84.2 ± 4.9 56.0 ± 5.0 120.6 ± 5.1 81.2 ± 3.5 94.4 ± 4.0 75.0 ± 9.0 

60 98.8 ± 8.1 69.9 ± 4.4 79.5 ± 5.5 63.6 ± 9.6 116.8 ± 4.5 79.3 ± 3.8 91.8 ± 3.9 . 75.2 ± 7.0 

75 98.3 ± 6.6 67.0 ± 4.2 77.4 ± 4.9 54.4 ± 2.4 114.8 ± 4.0 77.9 ± 4.4 90.2 ± 4.1 74.0 ± 5.4 

90 96.8 ± 5.7 65.6 ± 4.3 76.0 ± 4.6 52.4 ± 1.6 115.8 ± 4.0 80.3 ± 4.2 92.1 ± 4.0 43.2 ± 4.7 

105 94.9 ± 5.3 66.1 ± 3.7 75.7 ± 4.2 54.2 ± 1.0 112.4 ± 3.2 76.0 ± 4.2 88.1 ± 3.8 72.0 ± 4.6 

120 95.9 ± 5.7 66.1 ± 3.8 76.0 ± 4.2 52.8 ± 2.0 113.9 ± 4.5 76.9 ± 4.6 89.2 ± 4.6 71.2 ± 4.4 
__. 

SBP= Systolic Blood Pressure; DBP= Diastolic Blood Pressure; MAP= Mean Arterial Pressur; HR= Heart Rate -I» 
0'1 



TABLE 2 

BLOOD PRESSURE VARIABLES AND HEART RATE IN SHEEP AFTER IV ADMINISTRATION OF 3 mg/kg NALOXONE 

Lean (n=5) Obese (n=5) 

Time SSP DBP MAP HR SSP DBP MAP HR 

(min) (mmHg) (mmHg) (mmHg) (beat/min) (mmHg) (mmHg) (mmHg) (beat/min) 

-30 96.8 ± 4.5 65.1 ± 1.8 75.7 ± 2.5 54.0 ± 2.5 120.1 ± 4.4 81.7 ± 3.3 94.5 ± 3.6 71.0 ± 5.2 

-15 96.4 ± 3.1 64.1 ± 2.0 74.9 ± 2.1 54.8 ± 3.4 119.7 ± 4.2 80.2 ± 3.4 93.4 ± 3.7 70.6 ± 4.9 

0 96.8 ± 3.0 65.1 ± 1.4 75.7 ± 1.7 54.8 ± 3.8 120.6 ± 4.8 81.2 ± 4.3 94.4 ± 4.4 71.6 ± 5.1 

2 119.9 ± 7.7 80.4 ± 4.5 93.6 ± 5.6 62.8 ± 2.9 161.5 ± 6.3 112.2 ± 6.2 129.1 ± 6.3 105.4±10.4 

5 115.1 ± 4.8 74.7 ± 2.9 88.2 ± 3.4 61.6 ± 4.3 151.4±6.1 101.1 ± 7.0 118.1 ± 6.6 104.2 ± 12.2 

10 110.2 ± 3.8 69.4 ± 2.5 83.0 ± 2.8 58.4 ± 3.5 143.2 ± 5.2 92.7 ± 6.2 109.6 ± 5.9 95.4 ± 9.4 

15 107.8±3.4 68.4 ± 2.1 81.6 ± 2.2 58.0 ± 3.3 138.4 ± 4.6 91.8 ± 5.9 107.3 ± 5.4 93.6±10.1 

20 105.4 ± 3.0 67.9 ± 2.0 80.5 ± 2.1 58.4 ± 3.5 134.6 ± 5.3 91.3 ± 6.3 105.7±6.1 96.2 ± 9.5 

30 103.0 ± 3.2 67.0 ± 1.9 79.0 ± 2.1 57.8 ± 3.4 132.2 ± 4.8 88.9 ± 5.9 103.3 ± 5.6 93.6 ± 9.4 

45 103.0 ± 4.1 66.5 ± 2.2 78.7 ± 2.7 59.8 ± 2.9 126.4 ± 3.5 86.0 ± 5.0 99.5 ± 4.6 87.6 ± 6.7 

60 100.6 ± 4.0 66.5 ± 2.0 77.9 ± 2.6 60.0 ± 3.0 122.5 ± 4.3 82.2 ± 4.6 95.7 ± 4.6 88.0 ± 7.0 

75 98.3 ± 4.4 65.1 ± 2.5 76.2 ± 3.0 58.8 ± 4.1 121.1 ± 4.4 83.1 ± 4.8 95.8 ± 4.7 87.2 ± 6.5 

90 96.8 ± 4.3 63.1 ± 2.9 74.4 ± 3.2 56.4 ± 4.0 119.7 ± 4.2 82.6 ± 4.7 95.0 ± 4.6 88.0 ± 5.2 

105 95.4 ± 4.5 62.6 ± 2.8 73.6 ± 3.2 56.6 ± 4.3 120.1 ± 4.5 83.1 ± 4.2 95.5 ± 4.4 85.2 ± 6.2 

120 93.5 ± 4.1 62.2 ± 2.9 72.6 ± 3.2 56.0 ± 4.2 122.1 ± 4.0 83.6 ± 3.8 96.5 ± 3.8 86.0 ± 5.4 
..... 

SBP= Systolic Blood Pressure; DBP= Diastolic Blood Pressure; MAP= Mean Arterial Pressur; HR= Heart Rate .f:>. 
0"> 



TABLE 3 

BLOOD PRESSURE VARIABLES AND HEART RATE IN SHEEP INJECTED IV WITH NALOXONE (3 mg/kg) 5 MIN BEFORE 
CLONIDNE (1 0 mg/kg) 

Lean (n=5) Obese (n=5) 

Time SBP DBP MAP HR SBP DBP MAP HR 

(min) (mmHg) (mmHg) (mmHg) (beat/min) (mmHg) (mmHg) (mmHg) (beat/min) 

-30 93.9 ± 4.0 64.6 ± 3.1 74.4 ± 3.2 49.2 ± 2.3 118.7 ± 3.6 79.3 ± 4.0 92.5 ± 3.9 70.8 ± 3.7 

-15 93.9 ± 3.5 64.6 ± 3.3 74.4 ± 3.2 47.6 ± 2.1 121.1 ±3.9 82.2 ± 3.4 95.2 ± 3.5 70.0 ± 3.3 

-5 93.5 ± 3.4 64.6 ± 2.6 74.2 ± 2.6 48.6 ± 2.0 121.1 ± 3.9 81.2 ± 3.2 94.5 ± 3.4 69.6 ± 4.4 

-3 119.9 ± 7.4 80.9 ± 3.0 93.9 ± 4.1 58.8 ± 4.5 166.3 ± 5.9 111.6 ± 6.1 129.8 ± 6.0 95.6 ± 4.8 

0 114.1 ±5.1 74.7 ± 2.8 87.8 ± 3.1 59.2 ± 4.5 151.9 ± 5.6 99.5 ± 5.6 116.9 ± 5.5 96.0 ± 7.6 

2 136.7 ± 4.0 97.7 ± 3.8 110.7 ± 3.5 39.4 ± 2.6 168.2 ± 5.2 109.2 ± 7.2 128.8 ± 6.0 49.2 ± 4.9 

5 141.0 ± 6.1 91.5 ± 5.7 108.0 ± 5.5 44.8 ± 5.2 169.7 ± 3.7 111.1 ±3.5 130.6 ± 3.4 55.2 ± 6.9 

10 141.5±5.7 92.9 ± 4.7 109.1 ± 4.8 42.8 ± 3.6 168.7 ± 5.8 111.6 ± 4.1 130.6 ± 4.6 56.0 ± 6.3 

15 134.3 ± 4.7 86.2 ± 3.7 102.2 ± 3.9 48.6 ± 3.0 158.6 ± 2.5 104.7 ± 2.1 122.7 ± 2.2 61.2 ± 6.1 

20 127.6 ± 4.5 82.8 ± 3.6 97.8 ± 3.8 51.6 ± 3.0 152.8 ± 4.0 102.5 ± 2.8 119.2±3.1 66.4 ± 7.4 

30 118.9 ± 4.9 77.6 ± 5.7 91.4 ± 5.4 55.4 ± 3.9 141.3 ± 4.8 93.2 ± 4.1 109.2 ± 4.3 68.4 ± 8.2 

45 107.8 ± 5.8 73.2 ± 4.8 84.8 ± 4.8 62.4±12 132.2 ± 2.8 85.5 ± 2.5 101.1 ±2.5 71.2 ± 5.7 

60 98.8 ± 5.5 67.9 ± 3.8 78.2 ± 3.9 67.4 ± 15 127.8 ± 3.2 85.0 ± 3.0 99.4±3.1 73.6 ± 4.1 

75 93.5 ± 5.5 67.0 ± 3.5 75.8 ± 3.4 62.8 ± 9.4 124.0 ± 4.9 82.6 ± 3.4 96.5 ± 3.8 73.6 ± 3.0 

90 95.4 ± 3.3 65.5 ± 3.1 75.5 ± 2.9 55.2 ± 3.7 122.5 ± 4.6 81.7 ± 3.5 95.3 ± 3.8 71.6 ± 3.3 

120 94.9 ± 3.4 64.6 ± 2.1 74.7 ± 2.6 64.0 ± 2.1 120.6 ± 6.8 79.8 ± 5.0 93.4 ± 5.6 71.2 ± 2.8 -+>-
SBP= Systolic Blood Pressure; DBP= Diastolic Blood Pressure; MAP= Mean Arterial Pressur; HR= Heart Rate 
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Figure 1. Changes in absolute mean arterial pressure (MAP) in lean 

(n=5) and obese (n=5) sheep injected with clonidine 
(1 OJ.Lg/kg) alone, naloxone (3 mg/kg) alone, or naloxone 
5 min before clonidine (bottom panel). Arrows indicate 
time of injections. Values are means ± SE. 
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Figure 2. Changes in absolute heart rate (HR) in lean (n=5) and 
obese (n=5) sheep injected with clonidine (1 Oj.lg/kg) 
alone, naloxone (3 mg/kg) alone, or naloxone 5 min 
before clonidine (bottom panel). Arrows indicate 
time of injections. Values are means ± SE. 
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Figure 3. Maximum changes in mean arterial pressure (MAP) in 
lean (n=5) and obese (n=5) sheep injected iv with 
clonidine ( 10 11g/kg) alone, naloxone (3 mg/kg) 
alone, or naloxone 5 min before clonidine. Values 
are means± SE and were calculated using the 
difference between the peak MAP developed and the 
corresponding basal values in each sheep. The 
greatest change in MAP from basal occurred in the 
first 5 min after time 0 (see Fig 2, 3). Probability 
values from split-plot analysis of variance for 
treatment on MAP response were body condition NS, 
treatment 0.005, and their interaction 0.1. Mean with 
similar lower case letter are not different (P>0.05) 
as determied by Duncan's new multiple range test. 
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Figure 4. Mean arterial pressure (MAP) response in lean (n=5) and 
obese (n=5) sheep injected iv with clonidine (1 OJ.Lg/kg) 
alone, naloxone (3mg/kg) alone, or naloxone 5 min 
before clonidine. Response calculated as area above 
basal MAP plus one standard deviation of basal. 
Probability values from split-plot analysis of variance 
for treatment effects were body condition NS, drug 
treatment 0.005, and their interaction 0.1. Mean with 
similar lower case letter are not different (P>0.05) 
as determined by Duncan's new multiple range test. 
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Figure 5. Maximum changes in heart rate (HR) in lean (n=5) and 
obese (n=5) sheep injected iv with clonidine (1 0 11g/kg) 
alone, naloxone (3 mg/kg) alone, or naloxone 5 min 
before clonidine. Values are means ± SE and were 
calculated using the difference between greatest or 
lowest HR developed and the corresponding basal values 
in each sheep. The greatest change in HR from basal 
occurred in the first 5 min after time 0 (see Fig 2). 
Probability values from split-plot analysis of variance 
for treatment on HR were body condition NS, drug 
treatment 0.001, and their interaction 0.05. Means 
with similar lower case letters in each panel are not 
different (P>0.05) as determined by Duncan's new 
multiple range test. 
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Discussion 

The blood pressure response to iv clonidine in many species is biphasic in that 

a brief hypertensive response precedes the development of a chronic hypotensive 

response (Kobinger 1978; Isaac 1980). In humans, high doses of clonidine given per 

os or iv results in hypertensive then hypotensive relatively whereas relatively lower 

doses result in hypotension generally (Pettinger 1980). Clonidine induces hypotension 

and bradycardia via activation of central a 2-adrenoceptors that lead to suppressed 

sympathetic outflow to heart and vasculature and enhanced vagal drive to the heart 

(Kobinger 1978; Pettinger 1980). On the other hands, the hypertensive response to 

clonidine is elicited by clonidine activation of vasoconstrictive ~-adrenoceptors in 

vascular smooth muscle. The blood pressure response to clonidine activation has been 

explained on the basis of the balance between clonidine activation of central 

hypotensive-related a2-adrenoceptors vis-a-vis activation of peripheral 

vasoconstrictive-related ~-adrenoceptors (Pettinger 1980; Isaac 1980). 

In this study, clonidine had a singularly hypertensive response in both lean and 

obese sheep. Clonidine-induced hypertension without hypotension was reported 

previously in sheep by Eisenach and colleagues (1987). Explanation of divergence in 

blood pressure response to iv clonidine between humans and sheep is not clear. The 

same dose of clonidine that produced hypotension in humans may induce hypertension 

in sheep because ruminants in general are more responsive to a2-agonists than 

nonruminants (Hopkins 1978). Additionally, less than 2% of iv injected clonidine enters 

the brain in nonruminants (Jarrett et al 1987) and differences in brain uptake of 

clonidine between sheep and humans may explain the divergence in demonstration of 

clonidine-induced hypotension between these species. The initial, transient 

hypertension seen in other species injected iv with clonidine (Pettinger 1980; Isaac 



1980) was intensified in sheep possibly because of a greater reactivity of peripheral 

a 2-adrenoceptors and (or) reduced brain uptake of clonidine in sheep as compared 

with other species. The suggestion of lesser brain uptake of clonidine in sheep as 

compared with other species is tenuous because ~-agonists clearly have potent 

centrally-mediated analgesic effects in ruminants (Eisenach et al 1987) and other 

species (Maze and Tranquilli 1991 ). 
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The hemodynamic responses to iv naloxone in sheep were unusual in that 

many previous studies reported no cardiovascular effects of naloxone in normotensive 

or hypertensive rats (Mastrianni and Ingenito 1987; Mosqueda-Garcia and Kunes 1988; 

Lasky et al 1989), normotensive dogs (Pinto et al 1989), or hypertensive humans 

(Bramnert and Hokfelt 1983). Naloxone caused hypertension and tachycardia in sheep 

and these responses were greater in obese than lean sheep. Dunlap et al (1989) 

increased blood pressure without affecting heart rate in foetal sheep injected iv with 

very high doses of 10 to 40 mg/kg naloxone. The same authors (Dunlap et al 1989) 

obtained hypertension and tachycardia when foetal sheep were exposed to an 

extraordinarily high dose of 80 mg/kg naloxone. 

Sites and mechanisms of action for naloxone's effects on blood pressure and 

heart rate in sheep are not clear from this study. Ordinarily, increased blood pressure 

is associated with reflex bradycardia (West 1985), but naloxone-treated sheep 

displayed tachycardia in the face of increased blood pressure. This suggests that 

naloxone somehow masked the baroreceptor reflex in sheep. The hypertensive 

response to naloxone could be due to central and(or) peripheral effects of naloxone 

that resulted in vasoconstriction and increased blood pressure. Feria et al (1990) 

reported that naloxone potentiates cardiovascular responses to sympathetic amines 

possibly by enhancing catecholamine discharge in peripheral adrenergic nerve 
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endings. Central effects of naloxone on blood pressure and heart rate cannot be 

ignored. Petty and DeJong (1982) reported that direct injection of the opioid agonist, B-

endorphin, into the nucleus tractus solitarius (NTS) produced hypotension and 

bradycardia at low doses of B-endorphin but a rise in blood pressure and heart rate at 

high doses of B-endorphin. That direct injection of enkaphalins in the NTS of rats also 

caused an increase in blood pressure (Petty and DeJong 1983), suggests that different 

opioid receptors involved in cardiovascular regulation exist in the NTS. Naloxone 

blockade of one or more types of opioid receptors in the NTS of sheep might explain 

their naloxone-induced hypertension and tachycardia. 

Pretreatment with naloxone had no effect on clonidine's ability to increase blood 

' 

pressure and decrease heart rate in sheep in this study and naloxone pretreatment 

also did not reverse clonidine's antinocioceptive effect in sheep (Eisenach et al 1987). 

Pretreatment with naloxone by iv or intracerebroventricular routes also did not affect 

the hypotensive response to clonidine in normotensive cats (Shropshire and Wendt 

1983), normo-tensive and hypertensive humans (Watkins et al 1980; Bramnert and 

Hokfelt 1983) and normotensive, anaesthetized Wistar-Kyoto rats (Mastrianni and 

Ingenito 1987). On the other, naloxone pretreatment abolished or inhibited significantly 

the hypotensive response to clonidine in normotensive conscious dogs (Pinto et al 

1989), spontaneously hypertensive rats (SHR) that were anaesthetized (Farsang and 

Kunos 1979; Mastrianni and Ingenito 1987) and in normotensive rats that were 
. 

anaesthetized (Mosqueda-Garcia and Kunos 1988) or conscious and unrestrained 

(Chang et al 1989). The ability of naloxone to block the cardiovascular effects of 

clonidine appears to be readily demonstratable in normotensive and hypertensive 

rodents but not so in normotensive or hypertensive sheep or humans. 

Clonidine and naloxone injected alone had similar effects on blood pressure 
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increase but markedly divergent effect on heart rate in sheep. Response to combined 

clonidine and naloxone treatment in sheep equalled that of clonidine injected alone. 

Feria et al (1990) showed convincingly that naloxone enhances pressor response to 

epinephrine, norepinephrine and phenylephrine, all cx.-adrenoceptor agonist, mechanism 

might involve naloxone blockade of presynaptic delta-type opioid receptors in 

peripheral nerve endings. Naloxone pretreatment potentiated the initial pressor 

response to clonidine in conscious normotensive Sprague-Dawley rats (Dixon and 

Chandra 1985; Chang et al 1989), which are results somewhat consistent with the 

finding of Feria et al (1990). Lack of an antagonistic, additive or synergistic effect of 

naloxone on the pressor response to clonidine in sheep is not readily explainable. One 

might suggest that naloxone and clonidine affect blood pressure in sheep by different 

and independent routes, or that naloxone works upstream of and with diametrically 

opposite effects to that of clonidine in their regulation of the same central neural relay 

system that controls baroreceptor function, vasoconstriction, and heart rate. In species 

where naloxone blocks cardiovascular response to clonidine, the locus of naloxone 

effect is within the baroreceptor relay center of the medulla (Isaac 1980). 

Naloxone-induced tachycardia was strikingly much greater in obese than lean 

sheep both in terms duration and magnitude. Naloxone-induced tachycardia was still 

prominent in obese sheep through the full 180-min period after naloxone injection; the 

greater naloxone-induced rise in blood pressure in obese than lean sheep was 

dissipated by 60 min after naloxone injection. These results suggest differences in 

opioid receptors between lean and obese sheep, particularly opioid receptor 

mechanisms concerned with increasing heart rate. Previous work showed that 

naloxone had approximately 4-fold greater inhibitory effects on feed intake in obese 

than lean sheep (see Chapter IV). Collectively, results of these studies suggest 
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down-regulation of opioid receptors, or specific receptor types, in anatomical sites 

concerned with appetite and cardiovascular regulation. The greater responses to 

naloxone in obese than lean sheep are expected findings to antagonist stimulation of a 

system that has undergone receptor down-regulation or desensitization. 

In summary, the hypertensive and bradycardic responses to iv clonidine in lean 

and obese sheep were unaffected by prior exposure to naloxone. The naloxone

induced hypertension and tachycardia were greater in obese than lean sheep, which 

are results considerably different from the absent cardiovascular effects of naloxone in 

dogs and rodents. 
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CHAPTER VIII 

INFLUENCE OF OBESITY ON PHARMACOKINETICS 

OF NALOXONE IN RAMBOUILLET SHEEP 

Introduction 

Drug distribution, biotransformation and excretion may be changed due to 

alteration in body composition in obese compared with normal body weight humans 

and animals. Increased proportion and absolute amount of adipose tissue and 

increased lean body mass occur in human obesity (Baecke et al 1982; Forbes and 

Wells 1983). Changes in the size of these compartments in obese compared with lean 

individuals may alter distribution of lipophilic and lipophobic drugs (Abernethy and 

Greenblatt 1982, 1984). Additionally, adiposity may lead to altered protein binding of 

drug as well as altered processes of hepatic and renal biotransformation and excretion 

(Benedek et al 1984; Abernethy and Greenblatt 1986). 

Volume of distribution of drugs and their distribution between intravascular and 

extravascular compartments may be affected by solubility properties of drug in fat, or 

by altered binding of drug to plasma proteins (Abernethy and Greenblatt 1986). Obesity 

had no effect on plasma protein binding of verapamil or cimetidine to albumin, whereas 

increased concentration of a,-acid glycoprotein concentration explained the greater 

protein-bound fraction of propranolol in plasma of obese compared with lean humans 

(Benedek et al 1983; 1984 ). Biotransformation of drugs in obesity may be influenced 

by pathophysiological processes associated with obesity, such as fatty infiltration and 
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fibrosis of the liver (Adler and Schaffner 1979) and cardiovascular dysfunction, which 

may alter hepatic blood flow and peripheral organ perfusion (Rodighiero 1989; Crandall 

and DiGirolamo 1990). Finally, increased renal glomerular filtration in some obese 

subjects might be predicted to increase clearance of drugs that can be filtered and 

excreted by the kidney (Stokholm and Brochner-Mortensen 1980). These data support 

the importance of understanding parameters of drug disposition in obese individuals 

because drug therapy is commonplace in combating the pathophysiological problems 

of dyslipidemia, hypertension and diabetes that are associated with obesity (Abernethy 

et al 1986; O'Connor and Feely 1987). 

Animal models can serve as valuable tools in studies to distinguish the potential 

differences in drug disposition between lean and obese individuals. Two animal 

models, the Zucker obese rat (fa/fa) and the cafeteria-fed male Sprague Dawley rat, 

have provided preliminary data on the effects of obesity on pharmacokinetics of 

prednisolone, phenobarbital, verapamil, and d-fenfluramine (Blouin et al 1987; 

Fracasso et al 1988; Nichols et al 1989; Rice et al 1989). However, the genetically 

obese Zucker rat may have limited application because of its impaired renal function 

and cytochrome P-450 activity that are unrelated to the obese state (Litterst 1979; 

Abernethy and Greenblatt 1986). Limitations of the cafeteria-fed Sprague Dawley rat 

model of obesity identified to date are that only male rats become obese and that the 

unusual cafeteria diet itself can affect drug pharmacokinetics; obese rats consume a 

cafeteria diet of chocolate chip cookies, orange juice, condensed milk and high fat 

while lean control rats are fed standard rat chow (Abernethy and Greenblatt 1986). 

Naloxone is generally recognized as a short acting pure opiate antagonist. It is 

rapidly metabolized by the liver and eliminated by the kidney (Weinstein et al 1971; 

1973). The primary metabolite of naloxone is naloxone-3-glucuronide, although the 



N-dealkylation and reduction of the 6-ketone group of naloxone also takes place to 

some extent (Fujimoto, 1969; Weinstein et al 1971; 1973). Although naloxone has 
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been used in numerous studies in sheep, the pharmacokinetics of naloxone in sheep 

and domestic ruminants is unknown. Where necessary, investigators have extrapolated 

available data on the pharmacokinetics of naloxone in rats to sheep. The objectives of 

this study were to determine the pharmacokinetics of naloxone in sheep and determine 

how dietary obesity affected naloxone kinetics in sheep. 

Materials and Methods 

Animals 

Five lean (46 ± 2 kg) and 5 obese (77 ± 3 kg) ewes used in this experiment 

were housed individually in a room with constant light and temperature (21 ± 1 °C). 

Conditions for induction of dietary obesity and maintenance of lean sheep are 

described in detail elsewhere (Chapter II). Briefly, lean adult Rambouillet ewes were 

fed a pelleted hay-grain diet at maintenance to keep them in lean body condition or 

were fed the same diet at ad libitum (obese) until a static body weight was achieved. 

During static phase obesity, lean and obese sheep were fed the same diet at 

maintenance such that all sheep were in zero-energy balance. Body fat estimated as 

percent of body weight was approximated 27% in lean sheep and 37% in obese sheep 

(McCann et al 1991 ). Percent lipid in the eviscerated carcass was 23 ± 2% in lean 

sheep and 46 ± 1 % in obese sheep. Chronic catheters were placed in the caudal 

vena cava as described in Chapter 4. 

Drug Administration and Sample Collection 

Naloxone (Sigma, St.Louis, MO, USA) solution was prepared in sterile saline 



and filtered through a 0.2 J..Lm cellulose acetate filter (Micro Filtration System, USA) 

immediately before each experiment. Catheters were placed in the jugular vein of 
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sheep at least 12 h before sample collection. Naloxone (3 mg/kg) in saline was 

injected (0900 h) in 16-h fasted sheep via the vena cava catheter which was flushed 

immediately with 10 ml of saline. Blood samples (5 ml) were collected via the jugular 

catheter at 30, 15, and 1 min before and 2, 5, 10, 20, 30, 45, 60, 90, 120, 240 and 480 

min after naloxone injection. Samples were dispensed immediately into chilled glass 

tubes containing 50 J..LI of mixture of benzamidine (200 mg/ml) and heparin (5000 U/ml). 

Plasma obtained by centrifugation (1000 x g, 4 C) was stored frozen (-30 C). 

Experiments were conducted in a one lean and one obese sheep at a time. 

Naloxone Assay 

Instruments and Chemicals. Plasma naloxone concentrations were determined 

by the HPLC and electrochemical detection using a modification of method described 

by O'Connor et al (1989). The HPLC system (Waters, Millipore Co, Milford, MA, USA) 

comprised of a pump (model 510), autosampler with refrigerator unit (WISP, model 

712), electrochemical detector (model 460), and chromatographic software (Maxima 

820). A C-18 reverse phase radial pack cartridge column (10 x 0.5 em) with 4 J..L 

particles (Waters, Millipore Co. Milford, MA, USA) were used to resolve naloxone and 

naltrexone (internal standard). The voltage of the glassy carbon electrode was 

maintained at +8.5 mV against the Ag/AgCI reference electrode. 

Chloroform, 2-propanol, ammonium dihydrogenphosphate, octanesulfonic acid 

and sodium bicarbonate were all analytical grade chemicals from Fisher Scientific 

Pittsburgh, PA. Disodium EDTA was obtained from Sigma, St. Louis, MO, and 1-pro

panol was purchased from Curtis Matheson, Houston, TX. 
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Sample Extraction and HPLC Analysis. Plasma (0.5 ml) was placed in a 5 ml 

vial and alkalinized with 0.5 ml of a mixture (pH 8.6) of 0.1 M ammonium dihydrogen

phosphate, 0.05 M sodium bicarbonate and 0.043 M sodium carbonate. Vials were 

capped and mixed for 10 sec before 3.0 ml chloroform-2-propanol (9:1, v/v) were 

added and mixed until the contents turned buttery. Vials were centrifuged at 3000 X g 

for 15 min at room temperature, vigorously tapped once and then centrifuged again. 

Approximately 2.7 ml of the lower organic phase containing naloxone and naltrexone 

were transferred into clean 12x75 mm borosilicate test tubes. Tubes were evaporated 

to dryness under nitrogen at room temperature (90-120 min) and their contents 

redissolved in 100 ~-tl of mobile phase. Tubes were vortexed, centrifuged at 1000 x g 

for 5 min at 22 C and their contents were transferred to autoinjector vials, which were 

then loaded into refrigerated (8 C) autosampler. Standards for naloxone ( 10, 50, 100, 

200, 400, 800 ng/ml) and naltrexone (400 ng/ml) were prepared in sheep plasma. 

Inter-assay precision was determined by analysis of pooled sheep plasma spiked with 

naloxone and naltrexone (400 ng/ml each). In a preliminary analysis, detector linearity 

was demonstrated for standards containing naloxone concentrations of 10 to 2400 

ng/ml. 

Mobile phase (pH 4.5) consisted of 0.1 M ammonium dihydrogenphosphate, 

0.54 M disodium EDTA, 0.9 11M octanesulfonic acid and 3 to 10% 1-propanol. All 

solvents were filtered (0.2 11m HA filter; Waters, Millipore Co. Milford, MA, USA) and 

degassed by helium sparging. An additional 0.2 11m filter (Puradisc 25 AS, Whatman 

Inc, Clifton, NJ) was connected to the pump inlet to filter and degas the mobile phase. 

The flow rate of the mobile phase was set at 0. 7 ml/min for best separation of eluting 

peaks. 
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Pharmacokinetic Analysis 

Data were analyzed using a microcomputer program for pharmacokinetic 

modelling (Bourne 1986). Initial estimates of the first-order rate constants were 

obtained by subjecting mean data for each body condition to analysis using several 

different models. Choice of the appropriate pharmacokinetic model was based on 

lowest weighted sum of squares, F test, and Akaike's information criterion (AIC) value 

for individual data (Akaike 1974; Boxenbaum et al 1974; Yamaoka et al1978). Areas-

under-the-curve (AUC) were calculated by trapezoidal approximation between the first 

(0 h) and last sampling times. 

Pharmacokinetic values of lean and obese were compared using Students' 

unpaired t test and Mann-Whitney U test (t%~, t%a, Vc, Vd(area)• Vd(ss) and Cl9}. 

Significance was tested at P<0.05. 

Results 

Mobile phase containing 4.5 % 1-propanol provided adequate separation of 

naloxone, naltrexone (internal standard) and benzamidine (anticoagulant). At an 

electrode potential of +0.85 V , the lower limit of detection was 1 ng/ml. Intra- and 

inter-assay coefficients of variation were 4.1 and 4.3%, respectively. Recovery of 

naloxone and naltrexone averaged 78 ± 4 and 76 ± 4%, respectively. Deterioration of 

sensitivity after 50 to 60 injections was obviated by refurbishing the electrode (-0.6 V 

for 60 sec) after every 30 injections. After refurbishing, electrode was stabilized by 

pumping (0.1 ml/min) mobile phase for 12-16 h. 

Disposition of naloxone in plasma after intravenous administration was best 

described by a two-compartmental open model using the equation: 
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where CP is the concentration of naloxone in plasma at time t, A and B are the zero-

time blood concentration intercepts of the biphasic disposition curve, and a. and B are 

the hybrid rate constants related to slopes of the distribution (a.) and elimination (B) 

phases. Pharmacokinetic parameters were calculated from exponents of coefficients of 

disposition curves (Gibaldi and Perrier 1975; Baggot 1977). 

Pharmacokinetic variables of naloxone in lean and obese sheep are presented 

in Table 1. Naloxone was rapidly eliminated (t% B) after intravenous administration in 

both lean 43.08 (range= 29.3-53.7 min) and obese 37.7 min (range= 24.4-82.8 min) 

sheep. 
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Figure 1. Disposition of naloxone (3 mg/kg) in plasma after intravenous 
administration to lean (n= 5) and obese (n=5) ewes. Data are 
mean± SD. Components of equation describing curves are shown in Table 1. 
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Median volume of distribution (Vd(area)) of naloxone was large in lean (4.51 Ukg) and 

obese (3.5 L.kg) sheep, indicating extensive distribution and possibly accumulation 

within extravascular tissue. Median clearance of naloxone was higher in lean (88.18 

TABLE 1 

PHARMACOKINETIC PARAMETERS (mean± SD) OF INTRAVENOUSLY INJECTED 
NALOXONE (3 mg/kg) IN LEAN AND OBESE SHEEP. 

Parameters Lean (n=5) Obese (n=5) 

A, ng/ml 1814 ± 968 2282 ± 772 

B, ng/ml 413 ± 172 573 ± 301 

a, min_, 0.19048 ± 0.09222 0.28154 ± 0.23220 

~.min_, 0.01710 ± 0.00448 0.01851 ± 0.00743 

K, 0, min_, 0.06296 ± 0.01814 0.06690 ± 0.02796 

K, 2, min_, 0.08668 ± 0.04924 0.15643 ± 0.14971 

K2,, min_, 0.05794 ± 0.04577 0.07672 ± 0.06342 

t%a, min a 3.55 (2.07-7.06) 2.41 (1.12-15.26) 

t%~. min a 43.08 (29.3-53.7) 37.73 (24.36-82.83) 

Vc, L kg-1 a 1.35 (0.81-2.94) 1.08 (0.73-1.71) 

Vd(area)•L kg_, a 4.51 (4.03-8.63) 3.54 (2.89-5.95) 

V L k -1 ab d(ss)• g 3.62 (2.80-6.43) 2.92 (2.55-3.23) 

Cl8 , ml kg_, min"1 ab 88.18 (71.08-111.44) 77.11 (49.77-82.31) 

AUC, ng h mr1 b 35900 ± 6440 47972 ± 9336 

k10 = first-order elimination rate constant; k12 , k21 are the first-order rate constants describing 
distribution between central (plasma) and peripheral compartment (tissue); t% a =distribution half-life after 
intravenous administration; t% B = elimination half-life after intravenous administration; Vc = volume of the 
central compartment; Vd1area) = apparent volume distribution calculated using AUC; Vd1ssJ = apparent volume 
of distribution at steady state; Cl9 = body clearance of the drug. 

a presented as median and range 

b lean and obese differ (P<0.05) 
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Discussion 

The objectives of this experiment were to describe naloxone pharmacokinetics 

in sheep and assess the impact of obesity on such kinetics. The elimination half-life of 

naloxone in sheep("" 40 min) was similar to that in rats (40 min) (Tepperman 1983). 

Fishman et al (1973) and Berkowitz (1975) reported an elimination half-life of 57 to 90 

min for naloxone in man whereas Kleiman-Wexler et al ( 1989) reported a half-life of 16 

to 31 min in rats. The relatively rapid elimination of naloxone is consistent with its short 

duration of action. Rapid distribution of naloxone throughout the body is important for 

its antagonistic effect on opiatergic receptors in CNS and peripheral tissues. Naloxone 

rapidly accesses the brain tissue of rats(< 5 min; Weinstein et al 1973) and can attain 

a two fold greater concentration in brain than serum of rats (Tepperman et al 1983). 

The volume of distribution (Vd(area)) in lean (4.5 Ukg) sheep was similar to that 

in obese (3.5 L/kg) sheep. A larger Vd(ss) of naloxone in lean than obese sheep may 

represent the significantly greater percent water composition in the body of lean 

compared with obese sheep. Obese sheep have more fat per unit body weight than 

lean sheep. Fat tissue has a low blood perfusion rate (Rowland and Toze 1980). The 

greater percent fat in obese sheep is associated with reduced percent body water 

composition. Therefore, the larger Vd(ss) of naloxone in lean than obese sheep could 

be explained by their greater. In addition, because fat has a relatively low blood 

perfusion rate, the distribution of naloxone among the compartments of unit weight of 

volume of distribution would differ between lean and obese sheep with relatively 

greater perfusable nonfat tissue compartment in the lean than obese sheep. 

Vd of naloxone was similar to Vd (2.8 to 3.9 L/kg ) of naloxone in man 

(Fishman et al 1973). Although the Vd of naloxone was large in sheep, a greater Vd (8 

Ukg) was reported in rats (Tepperman et al 1983). Rapid metabolism of naloxone by 
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the liver in vitro (Fujimoto 1969; Weinstein et al 1971; Weinstein et al 1973) explains 

the very low bioavailability (5%) of oral naloxone in man (Kalant and Roschlau 1989). 

In fact, Weinstein and co-workers (1973) emphasized that the low potency of oral 

administration of naloxone in man is associated with a very effective first-pass hepatic 

extraction of naloxone. Cheymol et al (1987) point out that altered hepatic function and 

blood flow need to be considered when dealing with pharmacokinetic disposition of 

drugs in obese individuals. Rapid distribution and clearance of the drug into well 

perfused tissues such as liver and kidney, with an accompanying rapid elimination, 

may have reduced the impact of adiposity on the disposition of naloxone. 

Generally, lipophilic drugs have larger volume of distribution than nonlipophilic 

drugs (Galletti et al 1989). A larger Vd of naloxone in lean than obese sheep is 

contrary to the characteristics of lipophilic drugs in that the lipophylic nature of 

naloxone should have increased its distribution in fat tissue of obese sheep. It seems 

clear that differences in drug lipophilicity are insufficient to explain complications of 

drug pharmacokinetics in obese individuals (Bickel 1984; Cheymol et al 1987). A 

recent pharmacokinetic study of propranolol, a lipophilic antihypertensive drug, showed 

an equal half-life but reduced Vd and clearance in obese compared with lean humans 

(Cheymol et al 1987), which are results agreeing with those reported here for naloxone 

in lean and obese sheep. 

We conclude that obesity did not alter the elimination half life, but had reduced 

the clearance and volume of distribution of naloxone in sheep. 
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CHAPTER VIII 

SUMMARY 

Obesity is a pathophysiological condition in humans that is associated with 

hyperinsulinemia, hyperglycemia and hypertension. How obesity may lead to 

dysregulation of appetite and blood pressure has been the topic of many investigations 

in humans and rodents. The opiatergic system clearly plays an important role in the 

regulation of appetite and blood pressure. Therefore, the primary objectives of this 

thesis were to study whether a dietary obesity alters opiatergic regulation of appetite 

and blood pressure in sheep, a new animal model of obesity. 

Our experiments showed that dietary obesity altered appetite drive in sheep. 

Chronic obesity reduced appetite drive in sheep. The appetite-inhibitory effects of the 

opioid antagonist, naloxone, were 4 times greater in obese than lean sheep. This 

appetite effects of naloxone were considered to be central and independent of 

coincidental changes in plasma insulin, glucose and free fatty acids. 

Obesity in sheep was associated with a 25 % increase in mean arterial 

pressur~ (MAP) and 50% increase in heart rate (HR). The baroreflex sensitivity was 

found to be similar in lean normotensive and obese hypertensive sheep, but the 

baroreceptor system setting had shifted rightward in obese compared with lean sheep. 

The reflex bradycardiac response to a,-agonist (phenylephrine) was greater in obese 

than lean sheep. 

Greater hypertensive and tachycardiac responses to naloxone in obese than 

lean sheep indicated that obesity had altered opiatergic regulation of blood pressure. 
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The altered appetite and cardiovascular responses in obese sheep to naloxone cannot 

be attributed to differences in disposition of naloxone because the pharmacokinetic 

parameters of naloxone were similar in lean and obese sheep. 

Clonidine, a hypotensive drug produced hypertension rather than hypotension in 

normotensive lean and hypertensive obese sheep. The degree of clonidine-induced 

hypertension was less in obese than lean sheep at low dose clonidine (5 J.Lg/kg) but 

was similar in both groups at high dose clonidine (1 0 J.Lg/kg). The clonidine-induced 

rise in mean arterial pressure and reflex bradycardia in lean and obese sheep were 

unaffected by antecedent treatment with iv naloxone. 

We conclude that development of dietary obesity alters opiatergic regulation of 

appetite and blood pressure in sheep possibly by down regulation of opioid receptors, 

and that obesity alters adrenergic receptor control of blood pressure. 
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