
I 

THE LIMIT-POINT AND LIMIT-CIRCLE CASES 

OF SECOND AND. FOURTH ORDER 

DIFFERENTIAL EQUATIONS 

By 

DAVID HARTMAN TAYLOR ,, 
Bachelor of Science 

Southwestern Oklahoma State University 
Weatherford, Oklahoma 

1966 

Master of Arts 
University of Missouri-Columbia 

Columbia, Missouri 
1968 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF EDUCATION 
May, 1975 



!k~ 
117.SD 

I e). 3 '1-l 
~,:;.., 



THE LIMIT-POINT AND LIMIT-CIRCLE CASES 

OF SECOND AND FOURTH ORDER 

DIFFERENTIAL EQUATIONS 

'l'hesi s Approved 1 

Dean of the Graduate College 

939 {\ l'aQ 
' \;\j () 

ii 

OKLAtiOt•\A 

STATE UNIVERSITY 
U8.'~ARY 

Mt .. Y 1 2 1976 



PREFACE 

This study is concerned with some of the problems that arise when 

considering expansions of arbitrary functions in terms of eigenfunctions 

associated with formally self-adjoint differential equations. The 

primary objective is to consider necessary and sufficient conditions 

that place a given differential expression into a particular limit-p 

case. 

I am deeply indebted to my thesis adviser, Dr. Marvin Keener, 

Without his aid, this thesis could never have been completed, I also 

wish to thank the other members of my committee, Professor John Jobe, 

Professor Shair Ahmad, Professor Doug Aichele, and Professor James 

Burnham for their assistance. To Dr. Jobe, I owe the deepest debt for 

teaching me to read and write mathematics. 

To my wife, Rosalee, I am especially grateful for her patience 

and understanding. 
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CHAPI'ER I 

INTRODUCTION 

This paper is concerned with some aspects of a broad area in 

differential equations widely known as the eigenvalue problem, The 

problem in its classical form consists of a linear differential expres

sion Ly defined on a compact interval of the real line together with a 

set of boundary conditions at the endpoints of the interval, The 

desired result is to determine a sequence of so-called eigenfunctions 

associated with the expression Ly and then, under certain conditions, 

to represent a function f as an infinite series in these eigenfunctions. 

The problem described above may perhaps be made clearer by the use of a 

simple example, 

EXAMPLE l,ls Consider the linear differential expression Ly given by 

Ly - y" (1.1) 

defined on the interval 0 ~ x ~ rr with the boundary conditions 

y(O) y( rr) = 0, (1.2) 

where the primes represent differentiation with respect to x, An eigen

value of Ly is a complex number A for which there exists a nontrivial 

function y(x,A), called the eigenfunction corresponding to A, defined on 

the interval [o,rr] such that y' is absolutely continuous on that inter

val and y satisfies the differential equation Ly= AY with boundary 

1 



2 

conditions (1.2). It is easily verified that the only values of A for 
2 

which a nontrivial function y(x,A) exists are those real numbers A = n , 

n = 1, 2, •••• 

n = 1, 2, • I e f 

n = 1, 2, ••• Qi 

Thus the eigenvalues 

and the corresponding 

2 associated with Ly are A = n , 
n 

eigenfunctions are y(x,n2) = sin nx, 

If f is an absolutely continuous function defined on the 

interval [o,n] that vanishes at the endpoints of the interval, then f 

may be represented by the infinite series 

(2/n)2=n~1(J~ sin(nt)f(t) dt)sin(nx). (1.J) 

The term "represents" can mean various things. For example, one common 

interpretation is that the series (l.J) represents f on the interval if 

for S (x) the n-th partial sum, 
n 

lim J~ lsn(x) - f(x)l 2 dx = o. 
n-> m 

That is, the series converges in the mean to f (or converges to f in 

2 the norm of the Hilbert space L (O,n)). Another common interpretqtion 

is that the series represents f in the sense 

lim S (x) = f(x) 
n-> oo n 

for each x in the interval. This is commonly called direct convergence. 

The latter form of convergence will be considered for even order differ-

ential expressions. 

The series (l.J) is the well known Fourier sine series, The 

subject of Fourier series representation of functions is a part of a 

more general topic called Sturm-Liouville theory, Interest in Fourier 

series expansion of functions has existed almost as long as calculus. 
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The topics in mathematical physics of interest of that period included 

boundary value problems in vibration of strings stretched between· fixed 

poinh; anrl vibrations of bars or colUJllns of air, ar;sociated with ma the-

ma.ti cal theories of musical vibrations. f~arly contributor::; to th0 

theory of vi r'ratintT strings were Prool< Taylor, Daniel E ernoulli, 

L. l~uler, and d'Alembert. By the 1750's, the latter three mathema-

t.icians had. advanced the theory to the stage that the partial 

2 rlifferential equation Ytt == a yxx was known and a solution of the 

boundary value problem had been found. Also, the concept of funda-

mental nodes of vibration led those men to notions of superposition of 

solutions, that is, to a solution of the form 

y(x,t) == ~~l bnsin(n~x) cos(nnat) 

and thus to the matter of representing an arbitrary function by a 

trigonometric series. In 1822, J.B. Fourier presented many instructive 

examples of expansions in trigonometric series in connection with 

boundary value problems in the conduction of heat. In 1829, 

P. Dirichlet established general conditions on a function sufficient 

to ensure the convergence of its Fourier series to values of the 

function. 

In 1830, J. C, F. Sturnl and J, LiouvUle almost simultaneously 

developed a systematic theory of the expansion of arbitrary functions in 

eigenfunctions associated with the fomally self-adjoint differential 

expression Ly= - (py')' + qy on a compact interval with p and q real

valued and p > O. (These last terns will be described shortly.) This 

is the natural extension of the theory of Fourier which has its base in 

the differential expression (1.1) on a compact interval, In 1910, 
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Hermann Weyl published a major paper that generalized the theory of 

Sturm and Liouville to the singular differential expression given by 

Ly= - (py')' + qy defined on the half-line 0 < x < co where the real

valued functions p and q have finite limits as x tends to zero from the 

right, It was in this generalization that he introduced some simple 

geometric concepts in order to determine whether or not the function to 

be expanded must first satisfy a boundary condition at x = ro. 

The subject of considering Weyl's generalization of the Sturm

Liouville theory (hereafter called Weyl's theory) was essentially 

stagnap.t for approximately thirty-five years following Weyl's work. 

There were, however, two attempts made during this period to further 

generalize Weyl's theory to differential expressions of higher orders. 

The first of these was undertaken by W. Windau [811in1921 to gener

alize the problem to fourth-order expressions. The second attempt was 

made by D. Sin in 1939-40 for arbitrary order. However, both authors 

made essential errors in the beginnings of their developments and as a 

result, failed to succeed in satisfactorily extending Weyl's theory to 

higher order problems. Glazman [461, in 1950, confirmed that these 

authors were in error. Weyl's theory was picked up successfully in the 

mid 1940's by E. C. Titchmarsh [741 and was further developed and 

modernized using methods differing from those employed earlier, Weyl 

had used the theory of integral equations and Stone [71] presented an 

alternative method by proceeding via the general theory of linear 

operators in Hilbert space, Titchmarsh sought to avoid both these 

methods and proceeded by means of contour integrations and the calculus 

of residues. He notes that many times, however, he is doing no more 

than adopting the general theory of linear operators to the particular 



case being considered. 

K. Kodaira [591, in 1950, published a correct generalization of 

Weyl's theory to differential expressions of any even order. He pro

ceeded by means of general linear operator theory. In 1955, 

W. N. Everitt, in his Doctor of Philosophy thesis (Oxford), used the 

methods of Titchmarsh together with some ideas of Kodaira and gener

ali~ed Weyl's theory to differential expressions of the fourth order. 

Kodaira's results require a strong background in operator theory to 

read, while Everitt's [JOl analysis is based on elementary methods of 

complex function theory. In this sense, Everitt's analysis may be 

considered to be more elementary. Everitt published his results in 

1963. 

5 

From this general problem, there has emerged a problem of deter

mining a classification of linear, formally self-adjoint differential 

expressions of order 2n into so-called limit-p cases, n ~ p :=: 2n. The 

consideration of this classification stems from the necessity of deter

mining whether or not boundary conditions at the singular end of the 

interval must be imposed upon the function in order that it may be 

expanded in terms of the eigenfunctions. As will be seen, it turns out 

that if the differential expression is in the limit-n case, then no 

boundary conditions at the singular endpoint need be imposed upon the 

functions to be expanded. In each of the other cases, a boundary condi

tion must be imposed. The classification limit-n is usually called 

limit-point and that of limit-2n is usually called limit-circle. This 

terminology has come from the second-order case and has an elegant geo

metric interpretation. The problem of classifying these differential 

expressions is a fairly recent one although Weyl did give some criteria 



involving the growth of the coefficients that place the differential 

expression into the various limit-p cases. The majority of published 

results have appeared since 1965. 

An interesting problem that precisely parallels that of classi

fication is one of determining the maximum number (up to linear 

independence) of solutions to the problem 

6 

Ly = >.. y, 0 ~ x < oo, Im >.. f 0 (1.4) 

2 that lie in the Hilbert space L (o, oo). It is the case that for 

Im>.. f 0, but otherwise an arbitrary complex number, the 2n-th order 

differential expression Ly is in the limit-p case, n ~ p ~ 2n, if and 

only if there exists a basis for the solution space of {1.4) that 

contains precisely p functions in L2(o, oo) and no basis contains more 

than p such solutions. The equivalence of these two problems will be 

discussed in Chapter V. 

The procedure in this paper will be to first consider the second-

order case by generalizing the results of Titchmarsh [74] to the con-

cepts of quasi-derivatives. These results are presented in order to 

have a compact presentation of those results first obtained by Weyl. 

It is also the case for second-order expressions that the geometry 

involved is quite ·elegant. The theory will then be extended to the 

2n-th order case via the fourth-order case. The generalization from 

fourth to 2n-th order is direct while the generalization from second 

order is not, as witnessed by Windau and Sin. 

One of the primary goals is consideration of the problem of classi-

fication of second and fourth-order differential expressions into the 

various limit-p cases. Much is known in the second-order case, while 
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less has been accomplished in the fourth-order case, There is only one 

known method for optaining results on the classification of 2n-th order 

expressions and this method will be illustrated for the fourth-order 

case. 

Before proceeding, some background material and notations will be 

established. Let (a,b) be an interval in Rand let Ac (a,b) ->Mn and 

y1 (a,b) ..:;> ¢n be functions where Mn is the set of n x n complex 

matrices and ¢n is the set of complex n-vectors. The usual conventions 

as to the meaning of dy/dx and dA/dx as used in differential equations 

will be adopted. Also, let II.All and llyff denote a suitable norm on these 

functions. A discussion of this notation may be found in the book by 

Struble [721. The notations z for the complex conjugate of the function 

(matrix, number) z, A* for the transposed conjugate of the matrix A and 

T A for the transpose of A will be adopted. The following criterion of 

the meaning of a function being a solution of a differential equation 

will be assumed. The prime denote$ differentiation with respect to x. 

DEFINITION 1.11 A vector function y(x) is said to be a solution of the 

matrix differential equation y'(x) = A(x)y(x), a< x < b, if and only if 

y is absolutely continuous in every compact subinterval of (a,b) and 

satisfies the differential equation almost everywhere in (a,b), A 

vector or matrix function is said to be absolutely continuous in a com-

pact interval if each component of the vector or matrix is absolutely 

continuous in that interval. 

The following definition of analyticity is standard. 

DEFINITION 1.21 Let Fe D -> ¢k, D a domain in ¢n. Then Fis said to be 

analytic at a point w0 in D if and only if in some neighborhood 
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llw - wdl < 6, 6 > O, of w0 in D, each component F j of F is continuous 

in w and is analytic in each component wk of w when all other components 

are held fixed. 

Following is a statement of the existence and uniqueness theorem 

that will be used. This theorem is standard and its proof may be found 

in many texts on ordinary differential equations, for example, Struble 

[721, Naimark [6.Sl, or Coddington and Levinson [71. 

THEOREM 1.11 Suppose p0, p1 , .•• , and pn are real-valued functions 

such that each pk· is measurable on an interval (a, b), - oo ~ a < b :'.:: oo 

and such that each pk is locally integrable on the interval (a,b) while 

p0 is of constant sign on the interval. Let C be a fixed vector in ¢n, 

x0 a real number such that a < x0 < b and A a complex parameter. Let the 

2n x 2n matrix A be given by 

A = 

0 

0 

p -A 
n 

1 

·o 

0 

1 

I l/po (1.5) - -----y--- --
-1 

-1 

0 

where the partitioning is between the n-th and (n + 1)-st columns and 

rows and unmarked entries are zero. Then there exists a unique vector-

valued function y(x,C,A) that is locally absolutely continuous on 
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a < x < b, is an entire function of \ for each fixed x, and satisfies 

the differential equation y' = A(A)y with the initial condition 

Some previously used terminology will now be discussed. Suppose 

the coefficients qk(x), k = 0, 1, ••• , n of the differential expression 

have continuous derivatives up to order (m - k) inclusive on the open 

interval (a,b). Let L*z be the differential expression given by 

called the adjoint of L. If all the coefficients of a formally self-

adjoint differential expression are real-valued, then the expression is 

necessarily of even order and can be put into the form 

This result may be found in Section 1,5 of [651. The expression (u,v) 

will denote the inner product of two functions in L2(a,b) defined by 

(u,v) = Jb u(x)v(x) dx. a 

Suppose Ly is a formally self-adjoint differential expression with 

real-valued coefficients and define 

for j = 1, 2, ••• , 2n-l where Mjk and Njk are real constants. 

the relations U .y + V .y = 0, j = 1, 2, ••• , 2n-l by 
J J 

(1. 7) 

Denote 
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(U + V)y = O. {1.8) 

The relations (1.8) are called Stu:rmian boundary conditions. 

DEFINITION 1.31 Let A be a complex number. Then the problem 

Ly = A.y, (U + V)y = 0 (1.9) 

is called an eigenvalue problem and is said to be self-adjoint if and 

only if for each pair of functions u and v that has continuous n-th 

order derivatives on the interval a< x < b and satisfies the condition 

{U + V)y = 0 also satisfies the condition {Lu,v) = (u,Lv). 

Thus, a fo:rmally self-adjoint differential expression is the 

differential expression associated with a self-adjoint problem (1.9). 

Assume that the coefficients pk of (1,6) are locally integrable on 

the interval. Then a more general differential expression is described 

if the coefficients are not assumed to be differentiable. A differen

tial expression of the fo:rm (1.6) is still called fo:rmally self-adjoint 

under these more general conditions and it is convenient to consider a 

generalization of the derivative called a quasi-derivative. The theory 

of quasi-derivatives is very similar to, and in some cases simpler than, 

that of ordinary derivatives and differential equations, The te:rms 

"derivative" and "differential equation" will be retained even when it 

may be more proper to use the expressions "quasi-derivative" and "quasi

differential equation." An excellent account of' these concepts may be 

found in Naimark [65]. Quasi-derivatives are def'ined below and it 

should be noted that the def'initions are dependent upon the diff'erential 

equation being considered, The primary difference between differential 



• 

11 

equations and quasi-differential equations is that, in the latter case, 

no requirements as to the differentiability of the coefficient functions 

are assumed. In the case of the following definition, the differential 

expression being considered is (1.6), 

DEFINITION 1.41 Let y be a vector function. Then the various quasi

derivatives ):kl, with respect to (1.6), are defined by 

where y(k) denotes the k-th order ordinary derivative. 

The connections among the 2n-th order differential expression 

(1.6), its matrix formulation, and its quasi-derivative form will be 

made, The following theorem is easily established using Definition 1.4 

and elementary methods, 

THEOREM 1,21 Let Ly be given as in (1.6) and let A be given as in 

(1.5), Then for A a complex number, the following are equivalent 

problems, 

(i) Ly = A.y, 

(ii) ):2n 1 = A.y, 

(iii) y' = Ay where y = (y, ):lJ, ••• , ):2n-l])T. · 

A notational device that will prove useful will be introduced. 

This notation will be used to describe boundary conditions and to place 

complicated expressions into a very compact form. 

DEFINITION l,51 Let Ly be as given in (1.6). Let u and v be two 



functions defined on the interval a < x < b, having quasi-derivatives 

with respect to Ly up to order 2n - 1, and such that u, v, Lu, and Lv 

are in L2(a,b). Then define 

12 

(1.10) 

Let Ly be as in (1.6). Then in the case n = 1, Ly will be 

denoted by 

Ly= - (py')' + qy 

and in the case n = 2, Ly will be denoted by 

Ly = (ry")" - (py')' + qy. 

The next theorem indicates some of the useful properties of the 

fonn (1.10). The proofs of these results follow from Definition 1.5 

and by using integration by parts. 

THEOREM l.Js Let u and v be two complex-valued functions for which 

Definition 1.5 applies. Then 

(i) [ u u J(x) = 0, 

(ii) [ u v ](x) = [ u v ](x), 

(iii) [ u v ](x) = - [ v u ](x)~ 
(iv) [ a.u v ](x) =a[ u v ](x) = [ u Civ l(x) 

(v) [ (u + v) w ] = [ u w J + [ v w ], and 

(vi) J~ (Lu)v - u(Lv) dx = [ u v l(b) - [ u v ](a). 

Furthennore, if u and v are solutions of Ly = Ay, then 

(vii) [ u v ](x) = constant, and 

(viii) 2iim Af~ u(x)v(x) dx = [ u v ](b) - [ u v J(a). 
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In order to simplify the form of the Sturmian boundary conditions 

(1.7), the form (1.10) may be used. For simplicity, this will be done 

for the fourth-order case. The problems of other orders are similar. 

Consider one of the boundary conditions Ujy = 0 and for the moment, 

write this in terms of quasi-derivatives as 

(1.11) 

It is desired to put the boundary condition (1.11) into the form 

[ y ¢ l(a) = 0 (1.12) 

where ¢(x) is, as yet, some unspecified function with a suitable number 

of quasi-derivatives. By using Definition 1.5, (1.12) may be written as 

¢[1l(a)y(a) + / 2l(a)/1 l(a) - /.11(a)/2l(a) - ¢(a)/3l(a) = o. 

(1.13) 

Comparing coefficients in (1.11) and (l.13), it is seen that ¢(x) need 

only be a solution of the differential equation Ly = AY that satisfies 

the initial conditions at x = a; 

= a.. (1.14) 

Theorem 1.1 states that there exists a unique function ¢ satisfying 

the differential equation and the initial conditions (1.14). Thus, 

every boundary condition of the Sturmian type can be recast in the 

form (1.12). A Green's function for the formally self-adjoint expres

sion (1.6) will be needed. 

DEFINITION 1.6: Let Ly be given by (1.6) and boundary conditions of 

the form (1.7), Then a Green's function for the problem Ly= 0 with 



conditions (1.7) is a function G(x,z) satisfying the conditions: 

(i) G(x,z) is continuous and has continuous quasi-derivatives 

with respect to x up to (2n-2) order inclusive for all x and z in the 

interval [a,bl. 

(ii) For any fixed z in (a,b), G(x,z) has continuous quasi

derivatives of orders (2n-l) and 2n with respect to x in each of the 

intervals [a,z) and (z,b]. The (2n-l)-st quasi-derivative is dis

continuous at x = z with jump one. That is, for each fixed z, 

aC2n-l](z + O,z) - G[ 2n-ll(z - O,z) = 1. 

(iii) In each of the intervals [a,z) and (z,b], G(x,z) satisfies 

the differential equation Ly= 0 and boundary conditions of the form 

(1.7). 

14 

THEOREM 1,41 If the boundary value problem Ly = 0 with boundary condi

tions (1.7) has only the trivial solution, then the problem Ly = 0 

with conditions (1.7) has a unique Green's function. 

A discussion of this last definition and theorem may be found in the 

book by Coddington and Levinson [ 7 J. 
It is noted here how the word singular as applied to a differential 

expression will be used. An endpoint of an interval (a,b) will be 

called a singular endpoint of that interval with respect to the differ

ential expression Ly if that endpoint is infinite or if at least one 

of the coefficients of Ly does not have a finite limit at that endpoint. 

Otherwise, the endpoint is called regular. A differential expression 

is called singular if at least one of the endpoints of its interval of 

definition is singular. It is called regular, otherwise, Notationally, 
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if it is intended that an endpoint of an interval be regular, it will 

be indicated as a closed endpoint. For example, with respect to Ly, 

the interval [a,b) has the regular endpoint a and the singular 

endpoint b, 

In the following definition and theorem, the term eigenvalue will 

be defined and an existence theorem will be given. Various forms of 

arguments for the theorem may be found in standard books on ordinary 

differential equations such as Coddington and Levinson [71. An easily 

followed and elegant development of the existence of eigenvalues for 

this problem is in the form of some unpublished notes by Lazer [621. 
He has used the theory of the completely continuous symmetric opera-

tors. These notes deal only with the second order case, but the 

generalization to the 2n-th order case is simple, 

DEFINITION 1,71 Let Ly be the formally self-adjoint differential 

expression (1,6) with the coefficients pk continuous and real-valued 

on the compact interval a~ x ~ b with p0(x) positive for all those x. 

Then, if A. is such that there exists a nontrivial solution for the 

self-adjoint problem (1,9), then A. is called an eigenvalue for (1.9) 

and the nontrivial solutions for that A. are called the eigenfunctions 

associated with A.. 

THEOREM 1.5: Consider the self-adjoint problem described in the pre-

vious definition. Then the set of eigenvalues for this problem forms 

an infinite sequence of real numbers A.k' k = 1, 2, •••• Furthermore, 

the eigenvalues may be ordered so that 

< "2 < ••• , 



This completes the results and definitions necessary in order to 

consider the limit-point and limit-circle cases of fonnally self

adjoint differential expressions. 

16 



CHAPTER II 

nIE SECOND-ORDER CASE 

Consider the second-order fomally self-adjoint differential 

equation 

Ly= - (py')' + qy = AY (2.1) 

where p and q are continuous and real-valued on the interval [o, oo) 

and p takes on only positive values. Separate consideration of this 

case has the advantage of simplicity which is lacking in the fourth or 

2n-th order case, n > l. The interval [o, oo) will be considered only 

for convenience. By a suitable transfomation of the real line and 

obvious modifications of the expressions, the following theorem will 

apply also to any half-open interval [a,b) or (a,b] where the open end

point .is singular and the closed end.point is regular. In the following 

theorem, the functions $6 and~ will be the boundary value functions as 

discussed in Chapter I. Also note here that the second-order quasi

derivatives with respect to the expression Ly in (2.1) have the fom 

yC1J = py', yC2J = qy - (py')'. 

The procedure will be to consider the problem (2,1) on a compact inter

val [o,b] where both endpoints are regular and then to move to the 

singular case by letting b tend to infinity. 

17 
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THEOREM 2.11 Let b 'be a positive number and A = u + iv, v f O, a 

complex number. Let ¢(x,A,b) and /(.(x,A,b) be two nontrivial solutions 

of (2 .1) on the interval 0 s_ x < ro such that ¢ takes real-valued 

constant initial cond.1 tions at x = 0 and similarly for j. except that 

the initial values are taken at x = b, Let e(x,A,b) be a solution of 

( 2 .1) on that interval such that 

c ¢ a 1 - 1 (2.2) 

and such that e takes real initial conditions at x = 0. Then the set 

of complex numbers f(b,A) for which the solution 

(2 .3) 

satisfies the boundary conditions 

[ 'f' "'}.. ](b) = 0 (2.4) 

forms a circle C(b,A) in the complex plane, Furth~rmore, as b tends 

to infinity (possibly through a sequence) the solution 'f'(x,A,b) tends 

to a function 'f'(x,A) which is a solution of (2.1) on the half-line 

0 S. x < ro that is also in 12(0, ro). Also, the circles C(b,A) tend to 

a set which is either a circle or a point, denoted by C(A) and m(A), 

respect! vely. 

Proofs of the preceding result are found in Chapter 9 of [7] and 

Chapter 2 of [741. These proofs involve Mobius transformations and 

the arguments are easily followed. In the case the limiting set is the 

point m(A), the method of the proof established that ¢(x,A) = ¢(x,A,b) 

is not in 12(0, ro), implying that not all solutions of Ly= AY are in 

L2(o, ro). If the limiting set is the circle C(A), then ¢(x,A) is also 
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in L2(o,oo), and thus all solutions of Ly= 'A.y are in L2(o,oo). 'l'he 

existence of at least one solution of (2.1) in L2(o, co) is dependent 

upon A having a nonzero real part, This is illustrated by an example. 

EXAMPLE 2,11 Let Ly= ... y" and A. == O. Then y1(x) = 1 and y2(x) == x 

are linearly independent solutions of Ly = A.y and clearly no nontrivial 

2 linear combination of y1 and y2 can be in L (O,co). As will be seen 

for this example, if Im A. f 0, then exactly one (up to linear independ

ence) solution can be found for Ly = A.y that lies in L 2( O, co). The 

existence of at least one L2(o, co) solution for Im A f 0 is given by 

Theorem 2.1. 

In the case the limit set is m(A) the limit-point case is said to 

hold and in the case that the limit set is C(A.) the limit-circle case 

is said to hold. The next theorem will justify the statement at the 

end of Example 2.1 by showing that the terms limit-point and limit

circle are independent of the choice of A., so long as Im A. f O. That 

is, the presence of the limit-point or limit-circle case depends only 

upon the coefficients p and q, 

THEOREM 2.21 (First Weyl Theorem) Let A. 0 be any complex number and 

suppose that all solutions of 

are in L2(o,co), Then for any complex A, all solutions of (2.1) are 

2 inL(O,co), 

PROOF1 Let ¢(x) and 'f'(x) be two linearly independent solutions of 

(2.5) such that [ ¢ 'f'J = 1. Then by the variation of parameters 

(for example, Coddington and Levinson [71p. 87] or Naimark [651p. 59]) 
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the general solution of 

( L - >. )y = (A. - A. )y 0 0 
(2.6) 

is given by the function 

J~ [¢(xlf(s) - .¢(slf(x)](>. - t. 0)X(s,A.) ds, (2.7) 

where it is assumed [ .¢ "/-1 J = 1. For convenience, denote 

(J~ lf(s)l 2 ds) 1/ 2 = I(f,c) (2.8) 

for x ~ c ~ 0 and functions f for which the expression makes sense, 

Since¢ and 'f-J are in L2(o, oo), choose M > 0 such that for all x > c 

!(¢, c) < M, I('f", c) < M. (2. 9) 

An application of Schwarz' inequality, while using (2,8) and 

(2.9), implies 

IJ~ [¢(xlf (s) - .¢(s)"/-1 (x) ](A. - A. 0 )'j._ (s,A.) dsl 

::; M( j .¢(x) I +j'f' (x) j) I A. - A. 0 j I(X, c). (2.10) 

By applying Minkowski's inequality to (2.7) and using (2.10), it 

follows that 

(2.11) 

Since I(¢,c) and I()'..,c) tend to zero as c tends to infinity, let c be 

sufficiently large so that M may be chosen to satisfy the condition 

jA. - A. 0jM2 < 4-1 • Then for c sufficiently large, (2.11) may be written 
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that is, 

(2.12) 

But the right hand side of (2 .12) is bounded as x ...> ro and this 

implies -X. is in L2(o, ro). Thus, all solutions of (2.6) are in 

L 2( O, ro), and the proof of the theorem is complete. 

By the cominents in the proof of Theorem 2.2, the limit-circle 

case holds for A arbitrary if· it holds for any one particular A. 

Thus, the limit-circle case is independent of A. Note that A is not 

restricted to being non-real in this theorem, so if the limit-circle 

case holds for a real A, then the limit-circle case holds for all A. 

Thus, in order to check whether the limit-point or the limit-circle 

case holds for the expression Ly, one might as well consider the 

solutions of Ly = O. If all solutions of this differential equation 

are square-integrable, then the limit-circle case holds. Otherwise, 

the limit-point case holds. Thus, the equation in Example 2.1 is in 

the limit-point case by the above remarks. It should also be noted 

that the requirement that q be continuous is not used and it is suffi

cient to assume q satisfies some integrability condition such as being 

locally integrable on 0 ~ x < CD. 



CHAPTER III 

THE FOURTH-ORDER CASE 

An extension of the analysis of the preceding chapter will now be 

made to the fourth-order caee where Ly is expressed as 

Ly = ( ry" ) " - (PY' ) ' + qy • ( 3,1) 

The coefficients r, p and q are to be real-valued and continuous on the 

half-line 0 < x < oo with r(x) > 0 for x ~ 0. The comments following 

(2.1) concerning singular endpoints also apply here. Some of the anal

ysis for the fourth-order case is the same as in the second-order case, 

while some of it is more difficult. The difficulties arise from the 

higher dimension spaces involved and from the existence of cases 

"between" the limit-circle and limit-point cases as compared to the 

second-order case in which each expression (2.1) is either limit-point 

or limit-circle. The possibility of cases between limit-point and 

limit-circle in the cases of order higher than two were not considered 

by Sin and Windau and this caused the errors in their analyses, The 

argument is restricted to the fourth-order case, but the notation 

adopted will be such that the extension to 2n-th order cases will be 

simple in concept, if not in detail. The notation will also be such 

that the points of contact with the second-order case can easily be 

seen. The argument will proceed in the same manner as the second-order 

case after some preliminary results are presented, The proof of the 
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first lemma is identical to the proof of the classical theorem on 

linear independence of solutions when quasi-derivatives are read as 

ordinary derivatives. A proof for ordinary derivatives may be found 

on page 83 of the book by Coddington and Levinson [?]. 

LEMMA 3.11 Let d , 1 < r < 4 be four solutions to Ly= Ay, L given in "'r - -
( 3.1), and let W(¢1'¢2 ,¢3,¢4) denote the determinant of the matrix 

whose ij-th entry is ¢j[i-l](x). Then W(¢1 ,¢2,¢3,¢4) = 0 for some x0 

in the interval of definition of (3.1) if and only if the set of 

functions l¢r) 1s linearly dependent on that interval. 

The detenniriant W in Lemma J.l is called the (generalized) 

Wronskian of the solutions ¢ with respect to (3,1) and has properties 
r 

similar to those of the usual Wronskian! The next lemma makes a · 

connection between the Wronskian of a set of solutions and the bilinear 

fonn in Definition 1.5. 

LEMMA 3.21 Let ¢1 , ¢2 , ¢3, ¢4 be four solutions of Ly= AY· Then 

(3.2) 

PROOFs By Definition 1,5, 

The lemma is established by substituting (3,3) into the right side of 

(3.2) and comparing this with the expansion of the detenninant of the 

matrix W. The proof is then complete, 



For functions f 1 , f 2 , 

denote the column matrix 

. . . ' f integrable on 0 ~ x ::.:: b, let f 
n 

24 

( 1.4) 

Let G(f;b) denote that n x n matrix whose ij-th entry is the integral 

The matrix G(f;b) is called a Gram matrix. The following lemma con-

cerning Gram matrices and determinants will be necessary in the next 

series of lemmas. This lemma is established as Lemma 1 of [251· 

Ltil1MA 3.31 Let f be as in (3.4) and let V be an n x n matrix of 

constants. Then 

(i) G(Vf;b) = VG(f;b)V*, 

(ii) det G(Vf;b) = ldet v] 2 det G(f;b). 

The following theorem is known as the Courant (or Poincaire) 

Minimax Principle. The proof is straightforward and may be found in 

Halmos [471 or Courant and Hilbert [9]. 

THEOREM 3. l: Let A be the matrix of a hermitian transform a ti on on an 

n-dimensional complex inner product space V. Let A. 1 :'.: A. 2 :'.: ... '.::'._ "-n 

be the ordered eigenvalues of A. For each subspace U of V and 

1 :5. k ::.:: n, define 

u( U) = sup { z*Az I z is in U and .Lj=1 j z) 2 = 1), 

where z is a complex n-vector, z = (z1 , z2, ••• , zn)T and define for 

each k 
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uk =inf {u(U) I dim U = n - k + i}. 

Then A.k = uk for each k, 1 < k < n. 

The next lemma establishes a relationship between corresponding 

eigenvalues of two positive definite hermitian matrices. It is well 

known that the eigenvalues of a positive definite hermitian matrix are 

real and positive. This lemma will be used to establish a result that 

leads to the determination of the number of solutions of Ly = A.y that 

are in the class L 2( 0, ro), The proof of this lemma follows by applying 

Theorem 3,1 to the matrices A and A + B. 

L.EMMA 3. 41 Let A and B be positive definite hermitian matrices of 

size n. Suppose t..1 ::::_ t.. 2 ::::_ •• , ~ A.n > 0 are the eigenvalues of A and 

A.' >A.' > 
1 - 2 - ~ A.~ > 0 are the eigenvalues of A + B. Then A.k_ ::::_ A.k for 

k = 1, 2, , n. 

The following lemma is used in the theorem establishing the 

limit-p, 2 .:Sp~ 4 cases in the fourth order problem. This result 

states that, under certain conditions on the functions ¢1 and ¢2 and 

G(¢;b) the Gram matrix of (3,5), the eigenvalues of G(¢;b) are 

increasing functions of b, 

LEMMA 3,51 Let ¢1(x) and ¢2(x) be any two complex-valued functions 

defined on the intervai 0 < x < oo such that 

(i) ¢1 and ¢2 are linearly independent on the interval 0 ~ x ~ b 

for all b > O, and 

(ii) ¢1 and ¢2 are in L 2( O, oo) locally, 

For each b > 0, let G(¢;b) be the matrix given by (3,5) with 

¢ = (¢1 ,¢2)T, Let t.. 1(b) .:S A. 2(b) denote the ordered eigenvalues of 



G(¢;b), Then the following statements are true. 

(iii) G(¢;b) is positive definite for each b > 0, and 

(iv) for b' > b > 0 ands= l or 2, A.s(b') ~ A. 8 (b), 

PROOF: T Let z ~ (z1 ,z2) be a nonzero complex 2-vector. Then -- • 
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Since z1 and z2 are not both zero an~ by the linear independence of the 

system ¢, it follows that z*G(¢;b)z > 0, Therefore, G(¢;b) is positive 

definite and thus conclusion (iii) holds. 

Statement (iv) is established in Section 8 of [261, completing 

the proof of the lemma. 

The following lemma will be used in establishing the number of 

L2(o, oo) solutions of Ly = A.y. A proof of this lemma may also be 

found in [261. 

LEMMA ),61 Let ¢1 and ¢2 satisfy conditions (i) and (ii) of Lemma 3,5, 

Then for r = 1 or r = 2, as functions of b, the quotients 

C (b) = J~ l¢J-r(x)l2 dx 
r 

det G(¢;b) 

are monotone decreasing as b is increasing, 

The next lemma establishes another property of the functions C (b) 
r 

of Lemma 3,6, In Lemma 3,6 it was shown that these functions are 

decreasing functions of b and the next lemma shows that they tend to 

strictly positive limits as b tends to infinity provided there are 

certain linear combinations of ¢1 and ¢2 in L2(o, oo). A proof of this 



resuit may be found in [261. 

Lemma 3.5, 

Suppose ¢1 and ¢2 satisfy conditions (i) and (ii) of 

Then for r = 1 or r = 2, the function C (b) as given in r 

(3,6) tends to a strictly positive limit as b tends to infinity if 

and only if there exists a linear form °'1.¢1 + a.2¢2, with a.r not zero, 

which belongs to the class L2(0,CD), 

The following lemma connects the behavior of the eigenvalues of 
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G(¢;b) as b -> CD with the number of linearly independent linear forms 

rt1¢1 + a.2¢2 in L2(o, CD), This lemma is Theorem 5 of [26]. 

L.EMMA 3,81 

Lemma 3,5, 

Let ¢1(x) and ¢2(x) satisfy conditions (i) and (ii) of 

For each b > 0, let A , r = 1, 2 be the eigenvalues of the . r 

matrices G(¢;b) with 0 < A1(b) ~ A2(b). Let S be the number of those 

A (b) which tend to finite limits as b -> CD. Then the number (up to r 

linear independence) of linear forms a.1¢1 + a.2¢2 in L2(o, CD) is s. 

It is noted here that all the preceding lemmas that were stated 

for two functions ¢1 and ¢2 may be generalized to sets of n functions. 

These lemmas were stated for two functions since this is sufficient 

in the case under consideration. The generalization of the lemmas to 

sets of n functions may be found in the references given. The next 

theorem is useful for establishing some necessary identities in this 

chapter and in Chapters IV and V. 

THEOREM 3,21 Let {fi' , {g1), 1 ~ i ~ 2n + 1, be any two sets of 2n + 1 

functions, each having quasi-derivatives up through order 2n - 1 with 

respect to (1.6). Then 
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det ([ fi g. l) = 0 
l<i,j<2n+l J 

( 3. 7) 

- -

for all x, where the bilinear forms [ fi gj l are with respect to the 

differential expression (1.6). 

PROOF: For notational purposes, define 

( 3 .8) 

Then the left side of (3,7) may be expressed as 

( 3,9) 

where by (1.10) and (3,8), each 1\:• 1 :S k .::S 2n + 1, is the sum of 2n 

terms, 

Using the bilinearity of the determinant functions with respect to 

colwnns, (3,9) is the sum of (2n) 2n+l terms, each of the form 

(J.10) 

where 

= F[Nk l-r2n-l-Nk l 1 < I < 2 + 1 v k ~ , _ .<: _ _n , (3.n) 

and the Nk are chosen from the set of integers {O, 1, ..• ,2n - 1), 

The expression (J.10) may be expressed by using (3.11) as 

+ Tr2n+l _r 2n-l-Nk ]d t (F[N1] ,F[N2n+l l). 
- I lk=l ~ e 1 ••• 

(J.12) 

However, from the above description of the Nk' there are 2n + 1 

integers chosen from a set of 2n integers, Thus, there must be at 



least one pair of the Nk that are identical, say Nj = Nk. Therefore, 

at least two of the columns of the determinant in (3.12) must be 

identical. By the well-known properties of determinants, (3.12) is 

zero. The conclusion (3.7) then follows and the proof of the lemma 

is complete. 

The next lemma is an application of Theorem ).2 and establishes 

the value of a determinant that is necessary later. 
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LEMMA 3,91 Let ¢1 , ¢2, e1 , and e2 be four functions that are defined 

on 0 ~ x < oo with three finite quasi-derivatives with respect to 

(J.l) on that interval. Suppose further that these functions satisfy 

the differential equation 

Ly = A. y, Im. A. f. O 

with Ly given by ( 3,.1) and also satisfy the conditions 

For each b > 0 and r = l or 2, let B (b) be the matrix r 

[ ¢1 ¢1 l [ ¢1 ¢2 l [ ¢1 e l r 

Br(b) [ ¢2 ¢1 l [ ¢2 ¢2 l [ ¢2 e 1 = r 

[ er ¢1 J [ 9r ¢2 ] [ er er l 

with all the entries in the matrix evaluated at x = b, Then 



30 

The proof of the preceding lemma is established by making the sub-

stitutions f 1 = g1 = r4 = g4 = ¢1 , f 2 = g2 = r5 = g5 = ¢2 , and 

f 3 = g3 = er into Theorem ),2 and using the hypotheses of the lemma. 

The following theorem. establishes an interesting relationship between 

the Wronskian of the four boundary value functions for the fourth-order 

problem and the eigenvalues of the problem. This result is used to con-

2 struct the solutions to the fourth-order problem that are in L (0, en). 

'IHEOREM 3,31 Let b be a positive real number and A = u +iv a complex 

number. Let¢ (x,A.),}. (x,A,b), r = 1 1 2, be four solutions of 
r r 

Ly= A.y (3.13) 

on 0.::;: x < CD with L given in (3.1) such that the ¢ take constant 
r 

real-valued and independent initial conditions at x = 0 and similarly 

for the 1'r except that the initial conditions are taken at x = b. In 

all cases, the initial conditions are to be independent of A. Suppose 

further that the following conditions hold; 

('3.14) 

Let D be defined by 

( 3 .15) 

where the explicit dependence of the right hand side of (3.15) upon b 

and A is suppressed. Then, as a function of A, D(A,b) is entire, its 

zeros are real and those zeros are the eigenvalues of the problem de-

fined by (3.13) and (3.14) with the boundary conditions on a solution y 

[ ¢r Y ](o) = O, [ 1-r y ](b) = O, r = 1, 2 (3.16) 



PROOF1 By Lemma J.2 

w<¢1,¢2•Xi .~) = [ ¢1 ¢2 l [ X1 ~ l - [ ¢1 ~1 l [ ¢2 ~ l 

+ [ ¢1 X2 l C ¢2 -X1 l. 

Applying (J.14), it then follows that 
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(1.17) 

Suppose that for some value of A, say A = A0, 

(J.18) 

Then by Lemma 3.1 and (3.17), the four functions ¢r' '/..r' r = 1, 2, 

form a fundamental set of solutions of the eigenvalue problem (3.13), 

with A replaced by A0 , Thus, if y is a solution to this problem, then 

( 3 .19) 

Letting r = 1 and 2 and application of the four boundary conditions 

(3.16) to the solution (3.19) yields the following system of four 

equations in the four unknowns cri' ai' i = 1, 21 

2=i=l (ni[ ¢r ¢i l + Si[ ¢r Xi l) = O, 

~i=1<ni[ Xr ¢i l + ai[ 1-r Xi l) = 0 (3.20) 

where r = 1 and 2. By the use of Theorem 1.4 and the conditions (J.14), 

the determinant of the coefficient matrix of the system (3.20) is seen 

to be - D(A 0), But from (3,18), - D(A 0) f O. Thus the system (3,20) 

has no nontrivial solution for the cri and 13i' and y(x) = O. That is, 

AO is not an eigenvalue for the described problem. 
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Suppose for some value of A, say A = A0 , D(A 0) = O. Then by (3.17) 

and Lemma 3.1, it follows that the four functions ¢1, ¢2 , X1 , and '/..2 are 

linearly dependent. Thus there is a linear combination of these func

tions that is zero. That is, there exist Qi' ~i' i = 1, 2, with not 

both of the ni zero and not both of the Si zero, such that 

(3.21) 

Let y be defined by 

Then, clearly, y satisfies (3.13), Also by Theorem 1.3 and (3.14) 

By the definition of y and (3.21) 

and by the second part of (3,14) and Theorem 1.3 

Therefore, y is a nontrivial solution to the eigenvalue problem as 

described and thus AO is an eigenvalue of this problem. The conclusion 

that the zeros of Dare the eigenvalues of the problem (3.13), (3.14), 

and (3,15) then follows. 

By Theorem 1.1, the functions D(A ,b) as functions of A are entire 

and by Theorem 1.5, the eigenvalues are all real. Therefore, the zeros 

of D(A,b) are all real. This completes the proof of Theorem 3,3, 
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This completes the preliminary results necessary to state and 

establish a series of theorems that are the analogies of the theorems 

in the second-order case. In the following series of theorems, the 

functions ¢1 , ¢2 • e1·, e2 , -X.1 , and Xc, will play the same roles as did the 

functions ¢, e, and X. in the second-order case, Alsb, there will arise 

a set of coefficients g , r, s = 1 1 2, that are the analogies of the rs 

coefficient i. in the second-order case, As expected. from the large 

number of lemmas necessary for the fourth-order case, the analysis is 

more difficult, but similar. Those preceding lemmas that are specific 

to the fourth-order case have generalizations to differential expres-

sions of any even order. In general, the arguments for these 

generalizations are no more difficult that those for the fourth-order 

case, The further restriction of these lemmas to the second-order 

case is also valid, but the second-order case was presented separately 

since the use of these lemmas obscures the elegance of the analysis. 

The proof of the following theorem is contained in Sections 16, 17, 

and 18 of [301. 

THEOREM 3,41 Let b be a positive real number and A. a complex number, 

A. = u +iv, with v f O. Let ¢r(x,A.), ~(x,A.,b), r = 1, 2, be four 

solutions of Ly= A.y, with L given in (3.1), on .the interval 0 ~ x < CD 

such that ¢1 and ¢2 take real-valued independent initial conditions 

at x = 0 and similarly for X1 and)(,2 except that the initial conditions 

are taken at x = b, In all cases, the initial conditions are to be 

independent of A.. Suppose ¢1 , ¢2, )'.1 , and X:z satisfy the conditions 

(3.14). 

Let er(x,A.), r = 1, 2, be two solutions of (3.13) on 0 ~ x < CD 

that take constant real-valued initial conditions at x = 0 in such a 



way that 

for r, s = 1, 2, where & is the Kronecker delta. Then there exists rs 

two solutions 'fJ r(x,A., b), r = 1, 2, of Ly = A.y that satisfy the bound-

ary conditions 

[ \./J -Y l(b) = 0, 1 _< r,s _< 2 r r ""s 

and are expressible in the form 

\.._jJ (x,A., b) = e (x,x.) + "'2 1 ,f. (>.., b)nl (x,>..) r r r L..s= rs Ps (J.22) 

for r = 1, 2. Furthermore, for each r, the set of pairs (£rl'~2) of 

complex numbers in (J.22), when considered as points in the two

dimensional complex space ¢2, all lie on a closed and bounded hyper

surface, say Sr(A.,b), as the functions Xr range over all allowable 

initial values at x = b. Also, the interior of S (X.,b), together with 
r 

its boundary, forms an ellipsoid, say Er(b), when considered as a sub-

set of R4 and E (b) is of dimension four in R4. 
r 

The next theorem states that, as b tends to infinity, the sets 

E (b) are nested and in fact, tend to a set E (oo) which is of dimen-
r r 

4 sion zero, two, or four in R • These dimensions will be the deciding 

factor as to the number of L2(o, oo) solutions of Ly= A.y. The analogy 

in the second-order case is the set of circles in the complex plane ¢ 
which tend to boundaries of sets of dimension zero or two in the 

2 Cartesian space R • A proof of this result may be found in Section 17 

of [JOl. 
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THEOREM 3.5: Let the conditions and hypotheses of Theorem 3,4 hold for 

each b > 0 and for a fixed A, Im A f O. For r = 1 and r = 2, let E (b) r 

and S (b) be those sets described in Theorem 3.4. Then as b tends to 
r 

infinity, each ellipsoid E (b) tends to a convex set, say E (CD), which r r 
4 is of dimension zero, two, or four in R • Furthermore, for S as defined 

in Lemma 3.8 and C (b) defined in (3.6), dim E (CD) is zero if C (CD) is r r r 

zero and dim E ( CD) = 28 if C ( CD) is positive, where C ( oo) denotes r r · r 

lim C (b). 
b-> CD r 

The following theorem is a consequence of the two preceding theo-

rems. The analogy of this theorem in the second-order case is a part 

of Theorem 2.1. As in the second-order case, for Im A f O, the number 

of linearly independent L2(o, CD) solutions of Ly = AY is at least half 

the order of the expression Ly. As commented before, the necessary 

theorems for the result above hold for any even order expression of the 

form (1.6) with real-valued continuous coefficients. A proof of this 

theorem is given in Section 18 of [30]. 

THEOREM 3.61 Let the conditions and hypotheses of Theorems J.4 

and 3,5 hold for each b > O. Let A = u +iv be a complex number with 

v f 0. Then there exists at least two (up to linear independence) 

solutions of the differential equation Ly= t..y that lie in 12(0,CD), 

Ly given in (3.1). 

The following theorem relates the dimension of the sets Er( CD) to 

the number of L2(o, CD) solutions of Ly = AY• This is done by relating 

the dimensions of the sets E (CD), r = 1, 2, to the number of linearly 
r 

independent forms on ¢1 and ¢2 that are in L 2( O, oo). This, together 



2 with the knowledge that 'f' is in L (0, ro) for r = 1 and 2, will deter
r 

mine the 12 character of the solution space. 

'THEOREM 3. 7: I.et the conditions, hypotheses, and notation of the pre-

ceding three theorems hold for a fixed\, Im\ f O. For r = 1 and 

r = 2, let D (d1 ,d2) be that pair of positive integers defined by 

d = (l/2)dim E ( ro). r r 

Let 12 = L2(o, co) and let K denote the maximum number (up to linear 

independence) of L 2 solutions of Ly = \y. Then the followinc state-

ments hold. 

(i) D 2 
(2,2) if and only if ¢1 and ¢2 are both in L . 

(ii) The four cases D = (0,2), (1,2), (2,1), and (2,0) cannot 

occur, 

(iii) 

(iv) 

( v) 

D = 

D 

D 

(1,0) if and 

(0,1) if and 

(1,1) if and 

only if ¢1 
2 12 is L and ¢2 is not . 

only if ¢1 is 2 ¢ 2 not L and 2 is L , 

only if neither ¢1 nor ¢2 is in 12 but 

2 there is a linear form a1¢1 + a2¢2 (a1 and a 2 not zero) which is L , 

(vi) D = (0,0) if and only if neither ¢1 nor ¢2 is L2 and no 

2 nontrivial linear form on ¢1 and ¢2 is L • 

Furthennore, in (i), K = 4; in (iii)-(v), K = J; in (vi), K 2. 

PROOF: It should be noted that by Theorem ).5, dr takes on only the 

values zero, one, or two. Thus, all possible values of D are included 

in (i)-(vi). Also, by Theorem ),6, K > 2. Since K :=: 4, all possible 

values of K are also considered in the statement of the theorem. As 

in Theorem J.5, S will denote the number of eigenvalues of G(¢;b) 

having finite limits as b -> co. 



In the proof of this theorem, it will be necessary to make fre-

quent reference to several statements. For convenience, they are 

stated ass 

(a) 

(b) 

( c) 

d = 0 if and only if C ( oo) = 0, 
r r 

if C (oo) > 0, then d = S, and r r 

if d > 0, then C ( co) > 0 and d = S , r r r 

Some of these statements have been established while others requi~e 

some argument. In (a), if C (co) = O, then d = 0 by Theorem 3,5. 
r r 

For 

the converse, suppose d = O. If C ( oo) > 0, then an application of 
r r 

Lemma 3,7 followed by Lemma 3.8 implies S > O. Then one of the cases 

(ii) or (iii) of Theorem 3.5 holds and d = 1 or 2, a contradiction, 
r 

Thus, C (co) = 0 and (a) holds. Statement (b) follows from Theorem 3,5. 
r 

Statement (c) follows from (a) and (b), 

Each of the statement (i) through (vi) will be considered sepa

rately. Suppose D = (2,2). By (c), S = dr = 2 and Lem.ma ).8 implies 

there are two linearly independent linear forms of ¢1 and ¢2 that are 

2 2 in L • Thus, both ¢1 and ¢2 are in L • For the converse, suppose both 

¢1 and ¢2 are in L2• Lemma 3,8 implies S = 2 and by Lemma 3,7, both 

C (co) are positive. Thus, (c) implies D = (2,2), Therefore, (i) 
r 

holds. 

Let r be either 1 or 2 and supposed = 2. By (c), S = 2 and 
. . r 

2 using the argument for statement (i), both ¢1 and ¢2 are in L and so 

D = (2,2). That is, d3 = 2. -r Thus, the four possibilities D ~ (0,2), 

(1,2), (2,1), and (2,0) cannot occur and (ii) follows. 

Suppose D = (1,0). Then S = l by (c) and Lemma 3,8 implies there 

2 
is exactly one nontrivial linear form °'J.¢1 + a.2¢2 that is in L , By 

(a) and Lemma 3,7, c1(co) > 0 implies a1 f0 and c2(oo) = 0 implies 
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a.2 "" O. Thus, .¢1 is in L and ¢2 is 

2 
not in L • 

2 (.¢2 cannot be in L , 
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for (i) would then imply D = (2,2).) 2 Conversely, suppose ¢1 is L and 

2 ¢2 is not L • 
. 2 

any nontrivial linear form in L , 

then a2 == o. Thus, by Lemma 3,7 1 c1 ( oo) > O and c2( oo) = O, that 1$, 

D == (s,o) by (a) and (b). By Lemma 3.8, ¢1 in L2 implies S > o. There

fore, D = (1,0) or D = (2,0). The second possibility is impossible by 

(11), and so D == (0,1) and (iii) holds. Statement (iv) is completely 

analogous. 

Suppose D = (1, 1). Both C ( oo) are positive and S = 1 by ( c). r . 
2 Thus, there is exactly one nontrivial linear form a.1¢1 + a.2¢2 in L 

and by Lemma 3,7, neither a.1 nor a.2 can be zero. For if either ¢1 or 

¢2 is in L2 , then by the independence of ¢1 (¢2) and a.1¢1 + a.2¢2 , ¢2 

(¢1) must also be in L2, implying D = (2,2) by (i), a contradiction. 

Thus, neither .¢1 nor .¢2 is in L2 • Conversely, suppose neither ¢1 nor 

.¢2 is in L2 , but there is a nontrivial form a.1.¢1 + a.2¢2 that lies in 

L2• Since neither ¢1 nor ¢2 are in L2 , a.1 f 0 and a.2 f O. By 

Lemma 3. 8, S = 1 and by Lemma 3. 7, both C ( oo) are positive. Therefore, 
r 

applying (b), D = (1,1) and (v) must hold. 

1',inally, assume D = ( 0 1 0) • Then, both C ( oo) are zero by (a). 
r 

Since c1( oo) = O, Lemma 3.7 implies no linear form a.1¢1 + a.2¢2 with 

~ 2 d . 2 . d a.1 r 0 can be in L • Thus, pl is not in L • Similarly, p 2 is not in 

L2• Therefore, neither ¢1 nor ¢2 nor any nontrivial linear form 

2 a.1¢1 + a.2¢2 can be in L • For the converse, suppose neither ¢1 nor ¢2 
2 nor any nontrivial linear form a.1¢1 + a.2¢2 is in L • By Lemma 3,7 and 

(a), D = (o,o) and (vi) holds. 

By the remarks at the beginning of the proof, K must take one of 

the values two, three, or four. Clearly, K = 4 if and only if ¢1 and 



39 

¢2 are both in L2• Thus, K = 4 in case (i). In each of the cases 

(iii)-(v), there is one solution not in 12 implying K < 4 and there is 

one solution linearly independent of '? 1 and 'P 2 in 12, and so K > 2, 

implying K = 3. Conversely, if K = 3, then clearly not both ¢1 and ¢2 
2 2 are in 1 • Suppose no nontrivial linear fonn cti¢1 + a.2¢2 is in 1 • 

K = 3 and 'f'1 , Y' 2, ¢1 , and ¢2 form a fundamental set of solutions, so 

2 there are three linearly independent solutions that lie in 1 of the 

form 

Each of "f-.J 1 and 'f/ 2 is in 12, so each of the three linear f onns 

(3.23) 

2 must be in 1 • But, by the supposition that no nontrivial linear form 

a.1¢1 + a.2¢2 is in 12, each of these must be trivial. Thus the three 

forms 

are linearly independent, an obvious contradiction. Thus, there must 

be at least one of the fonns (3.23) that is nontrivial, and so one of 

the cases (iii), (iv), or (v) must hold. Suppose case (vi) holds. 

Then clearly, 2 ~ K < 4. By the argument above, if it is assumed that 

K = 3, then one of the cases (iii)-(v) must hold, contrary to supposi-

tion. Thus, K = 2. Conversely, if K = 2, then clearly no nontrivial 
2 . 

linear combination on ¢1 and ¢2 can lie in 1 for this would imply 

K > 2. Thus, case (vi) holds. This completes the proof of the 

theorem. 



In Theorem 3,7, case (1) is called the limit-circle or limit-4 

case and case (vi) is called the limit-point case. It is these two 

situations which are analogous to the limit-circle and limit-point 

cases, respectively, in the second-order problem. It is now desired 
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to give the analogy of Theorem 2.2. That is, for Im A f O, the number 

of L2(o, CD) solutions of Ly= A.y is invariant. As to be expected, the 

fourth-order case is more complicated. The primary difficulty is the 

existence of cases "between" the limit-point and limit-circle cases, 

a nonexisting problem in the second-order case. Theorem 2.2 used the 

method of variation of parameters to show that if all solutions of 

2 Ly .. AY are in L (o, CD) for a particular A., then the same holds for all 

A.. This theorem was sufficient in the second-order case to establish 

the invariance of the number of L2(o, CD) solutions. However, a similar 

result would not suffice in the fourtq (or higher) order case and the 

problem must be approached in a different manner. The explicit form of 

the Green's function is established and used in the invariance problem. 

The definition of the Green's function is given in Definition 1.6. An 

argument that the Green's function of Theorem 3.8 satisfies Definition 

1.6 may be found in Section 7 of [29]. 

'IHEOREM 3.81 Let b be a positive real number and let Ly be given by 

(3.1). Then for A. not an eigenvalue of Ly, the Green's function is 

given by 

G(x,z,b) = 
2=i=l'f' i(z)¢i(x), 0 ~ x < z, 

L.i=l¢i (z)'f' i (x), z ~ x ~ b, 

where the ¢i and 'f' i are given in Theorem 3.4. Furthermore, for f in 
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12(0,b), the function~ given by 

f(x) = J~ G(x,z,b)f(z) dz, 0 ~ x ~ b, 

is a solution of ·the nonhomogenous differential l9quation Ly = /....y - f, 

0 ~ x ~ b. 

It is noted that the coefficients £rs(A..,b) in (3.22) are analytic 

functions of A in each of the half-planes Im A > 0 and Im A < O. For 

a compact subset K of one of these half-planes, the monotonic and 

bounded nature of the surfaces S (>...,b) implies, by the Helley selection 
r 

principle, that there is a strictly increasing sequence of positive 

real numbers {bj} such that bj -> oo and 

lim 1 (/....,b.) = m (>...), 
j...;;> 00 rs J rs 

and the point (m 1(>...),m 2(A.)) is on the surface S (1...;oo). Then by r r · r 

Vitali's theorem on bounded convergence, for example Ash [lip. 1671, 

the limit process is uniform in/...., Therefore, since each half-plane 

is simply connected, the limit process is valid throughout each of the 

half-planes and the limit functions m (A.) are analytic in the set rs 

Im /.... f O. For r = 1 and 2, Im /.... f O, define 

'f.J (x,1...) = 0 (x,A.) + ~2 1m (>...)¢ (x,A) r r L-s= rs s ( 3.24) 

where the 0 and ¢ are as in Theorem J.l. Note that each 'f.J is a 
r r r 

solution of Ly= AY and lies in L2(o, oo). 

Before proving the theorem on the invariance of the number of 

12(0, oo) solutions, an inequality is required. This inequality is 

established in Section 7 of [321. 



42 

LEMMA 3.101 Let ). be a complex number, Im A. r o·. For each b > 0, let 

G(x,z,b) be the Green's function constructed in Theorem 3.8. Let lbj)' 

j ~ 1, be an increasing sequence of positive real numbers with no finite 

limit point such that for r = 1 and r = 2, 

lim 'P (x, b .) == 'j-} (x) 
. ..._ r J r J_... CD 

where the 'f./ (x,b.) and VJ (x) are given in (3,22) and (3,24), respec-
r J r 

tively. Let G(x,z) be given by 

lim G(x,z,b.) = G(x,z). 
j..;;> CD J 

Let f be in L2(o, oo) and define I(x) by 

~(x) = .f ;' G(x,z)f(z) dz, 

Then, 

(3.25) 

Note that if {b .} is a sequence such that as j -> CD, then b. -> oo 
J . J 

2 and G(x,z,bj) -> G(x,z). Thus, for fin L (0, CD), (3,25) implies that 

the function I given by 

1(x) = .f (!' G(x,z)f(z) dz, 0 ~ x < CD 

is in L2(o, oo), Also, the use of elmentary methods will show that for 

0 ~ x < oo, r£ = A.i - f since the continuity of G(x,z) and its first 

two quasi-derivatives with respect to x and the jump discontinuity of 

G(x,z) at x = z are preserved under the uniform limit, It is now pos

sible to show that the number of L 2( 0, oo) solutions of Ly = A.y is 

dependent only upon the coefficients r, p, and q and not upon the 
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choice of A, provided only that Im A r O. It is this theorem that is 

the extension of Theorem 2.2 to the fourth-order case, The proof of 

this result was established by Everitt [281. 

THEOREM 3,91 The maximum number of linearly independent solutions of 

the differential equation Ly= AY which are in L2(o, co) is independent 

of the choice of A, provided Im A r O. 

Theorem 3,9 makes the terms limit-p, 2 ~ p ~ 4, well-defined for 

Im A r O. Thus, the expression (3.1) may be called limit-p, 2 ~ p ~ 4, 

depending upon the number of L2(o, oo) solutions there are to the differ-

ential equation Ly = iy. As noted before, the limit-2 case is called 

the limit-point case and the limit-4 case is called the limit-circle 

case. 



CHAPTER IV 

EIGENFUNCTION EXPANSIONS 

The convergence theory of eigenfunctions associated with singular 

ordinary differential equations may be considered either in the under

lying Hilbert space of square-integrable functions, i.e., the 

convergence-in-mean theory, or in the classical sense in the space of 

real or complex numbers, i.e., the direct convergence theory. The 

convergence-in-mean theory is discussed in Chapters 9 and 10 of the 

book by Coddington and Levinson [7] and in Naimark's book [65]. The 

direct convergence theory was developed by many authors, but the more 

significant contributions in the second-order case were made by 

E. C. Titchmarsh. His work in final form may be found in his book [74]. 

The theory has been extended by J. Chaudhuri and w. N. Everitt [61 to 

formally self-adjoint differential equations of higher order. This 

extension was via the singular fourth-order problem discussed in Chapter 

III. The extension of the theory from second to fourth-order involves 

problems not'involved in the second-order case. However, the further 

extension of the theory from the fourth-order case to any even order 

expression is largely a matter of notation. 

The fourth-order case with one singular endpoint will be con

sidered, as in Chapter III, to keep the notation as simple as possible 

while allowing sufficient generality to pe:rmit extension to higher 

even order problems with a suitable change of notation. A further 
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restriction on the coefficients of the expression Ly will be made in 

this development in order to establish a lemma. This restriction is in 

the differentiability requirements to be imposed upon the coefficients 

of the differential expression. Until that point, as in Chapter III, 

it is only required that the coefficients be continuous on the half-

line 0 ~ x < CD. Reference will be made to certain results of Chapter 

III and the notation and definitions of Chapter III will be assumed, 

th~t is, the functions ¢r' ~· ~ r' and i will be as before. 

The method of obtaining the eigenfunction expansion is to consider 

:i(x,).,f) = .f ;' G(x,y,).)f(y) dy 

as a function of A for a fixed x where the function f is the one to be 

expanded. It was established in Chapter III that i(x,A,f), for fixed 

f and x, is an analytic function of A in the half-planes Im A > 0 and 

Im A < O. The function i will be integrated with respect to A around a 

large contour, the rectangle defined by the four points ± R + i, 

± R + io. Then by taking R .;;;> CD and o -> O from the right, it will 

be shown that for certain functions F (u), r = 1, 2, of bounded varia
r 

tion on - CD < x < CD, if f satisfies certain conditions, then f has 

the expansion 

(4.1) 

where the integral on the right is a Riemann-Stieltjes integral and for 

r = l and 2, 

¢ (x,u) = lim + ¢ (x,u +iv). 
r v->0 r 
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The majority of the development is taken up with a series of 

lemmas that evaluate the integral of I around the contour and take the 

limits as R -> CD and o ..;;> 0 from the right. These lemmas are generally 

very computational. 

It is first shown that the problem Ly = AY with the boundary con-

ditions introduced in Chapter III satisfies the inner product identity 

(Lu,v) = (u,Lv). (4.2) 

that is, the problem is self-adjoint. 

LEMMA 4.11 Let be be a positive real number and A a complex number. 

Let ¢r(x 1A) 1 'Xr(x,A,b), r = 1, 2, be four solutions of the differential 

equation Ly= Ay, 0 ~ x ~ b, with Ly given in (3,1), such that ¢1 and 

¢2 take constant real-valued initial conditions at x = 0 in such a way 

that 

(4.J) 

Similarly, X1 and Xz take constant real-valued initial conditions at 

x = b in such a way that 

In both cases, the initial conditions are independent of A. Then the 

problem Ly= Ay with boundary conditions given by 

[ ¢ r Y 1( 0) = O, [ ~ y 1( b) = O, r = 1, 2, ( 4.5) 

is self-adjoint, that is, (4.2) holds for u and v two functions satis

fying (4.5) and having continuous fourth-order quasi-derivatives on 

(O,b) satisfying (4.5). 
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PROOF1 Let u{x) and v(x) be two functions that have continuous quasi

deri vati ves with respect to (3,1) up through the fourth order on the 

interval 0 ~ x ~ b, Then u, v, Lu, and Lv are square-integrable on 

that interval, By Theorem 1.3, 

J~ (Lu)v - u{Lv) dx = [ u v l(b) - [ u v J(o), (4.6) 

But, by the definition of the inner product, the left side of (4.6) is 

the expression (Lu,v) - {u,Lv). Thus, it is sufficient to show the 

right side of (4.6) is zero. 

Since the boundary value functions take real values at x = O, 

(4.3) implies 

( 4. ?) 

In Lemma 3,2, let n = 2 and make the substitutions 

Then Lemma 3,2 implies 

det ( [ fi g. ](x) ) = O. 
l~i.~ J 

for all x. In particular, for x = O, the use of (4,5) and (4.?) yields 

[ u v ](O) = 0, In a similar fashion, with f 2 = g2 =/(1 and 

f 3 = g3 = X2, it is seen that [ u v ](b) = O. Thus, the right side of 

(4,6) is zero and the proof of the lemma is complete, 

Until otherwise stated, the function f(x) to be expanded will be 

assumed to be real-valued, This restriction will be lifted in due 

course. By Theorem 3,3, the eigenvalues of Ly= A.y, 0 ~ x ~ b < oo, 

are real and the eigenfunctions associated with these eigenvalues must 
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satisfy real-valued boundary conditions. Thus, without loss of gener-

ality, it will be assumed the eigenfunctions are real-valued. The 

following lemma and its proof may be found in Coddington and Levinson 

[7spp. 197-198]. This lemma is the classical Sturm-Liouville expansion 

theorem for 2n-th order self-adjoint problem on a finite interval with 

both endpoints regular and will be used to establish other results. 

LEMMA 4.21 Let f have continuous quasi-derivatives up through the 

fourth-order on the compact interval 0 :S x ~ b and suppose f satisfies 

the boundary conditions (4.5). Then on this interval 

(4.8) 

where the series converges uniformly on 0 ~ x ~ b and the functions yk 

are the normalized eigenfunctions of the problem Ly= AY with the condi

tions (4.J), (4.4), and (4.5). Furthermore, the Parseval equality holds& 

In the remainder of this chapter, the following functions and defi-

nitions will be used. These were introduced in Chapter III. The 

functions G(x,z,A) and G(x,z,A,b) are the Green's functions of Lemma J.10 

and Theorem 3.8. The functions ¢1 , ¢2, Xp and~ are boundary value 

functions and the functions~ 1 and 'f-J 2 are the two L2(o, oo) solutions 

of Ly = AY constructed in Chapter III. The sets D(b), 0 < b ,::: oo, are 

defined as follows& 

DEFINITION 4.11 For 0 < b < oo, the function f is in D(b) if and only if 

(i) f is in t 2(0,b), 

(ii) rCJl is absolutely continuous on each compact subinterval 



of (O,b), 

(iii) Lf is in L2(o,b), 

(iv) 

( v) 

[ ¢ f ](o) = O for r = 1 and 2, and 
r 

lim ['/:.,(•,A.) f ](X) = 0 for r = 1 and 2 and for all A. 
X->b r 

49 

The functions yk(x,b), k ~ O, will denote the normalized eigen

functions associated with the eigenvalues A.k(b) of the eigenvalue 

problem Ly= Ay, 0 ~ x ~ b < CD, with conditions (4.3), (4.4), and (4.5), 

For convenience, the eigenvalue problem just described will be denoted 

as the problem rr(b). For f in L2(o, CD), the functions I will be given by 

!(x,A.,b,f) = J~ G(x,z,A.,b)f(z) dz, ( 4. 9) 

( 4.10) 

A number of properties of the functions in (4.9) and (4,10) will 

now be established, These are necessary to determine the values of the 

integrals of I around the contour mentioned before as R -> CD and o ...::> 0 

from the right. The first lemma establishes the Stu:rm-Liouville expan

sion for the function (4.9), The proof is easily established by 

calculating the coefficients of the expression (4.8). 

LEMMA 4,31 For b > O, fa real-valued member of D(b), and A.k(b) the 

eigenvalues with associated eigenfunctions yk(x,b) of the problem n(b), 

for A. not an eigenvalue of rr(b). 
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The next lemma gives an interesting relationship between the func

tions i(x,A,f) and i(x,A,Lf) that will prove useful in establishing 

later results. The proof follows the lines of Section 2.6 of [74]. 

LEMMA 4.41 For all A., Im A f O and f in D( oo), 

AI(x,A., f) = f(x) + f(x,A. ,Lf) 

for each x, 0 ::;; x < oo. 

The following estimate of the function f(x,A.,f) will be necessary. 

This lemma and those results that follow from this lemma are the only 

results in this development that require certain differentiability con-

ditions on the coefficients of the expression Ly. The proof is easily 

established by following the method used for the second-order case in 

Section 2.14 of 74 . 

LEMMA 4.51 Let Ly be given by (3.1) and assume r is in c2(o, oo), p is 

in c1 (o, oo), and f is in L2(o, oo). Then for x fixed, v f O, and 

( 4.11) 

In the preceding lemma, the corresponding result for the 2n-th order 

-n-1 I I problem would have 2 as the exponent on A instead of 1/8 on the 

right side of (4.11). The next two lemmas and theorem taken together 

establish that the function Im f(x,A,f) is integrable with respect to A. 

on any line parallel to and distinct from the real axis. The result is 

necessary to aid in the integration of I around the contour in the com-

plex plane. It is first shown the integral exists on the segment 

- 1 ~ u ~ 1, v = constant, v f o. The remainder of the line 
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v = constant r 0 is taken care of in the succeeding lemmas and theorem. 

Lemma 4.6 is established in Section 7 of [61. 

LEMMA 4.61 Let A = u + iv, v > O. Then there exists a constant K(x) 

depending only upon x such that 

Lemma 4.6 is established by using the expansion of i(x,A.,b,f) 

given in Lemma 4.J and noting that 

(4.12) 

The right side of (4.12) is then integrated between ~ 1 and + 1 and 

estimated using the Schwarz inequality. 

The next lemma is also established in Section 7 of [6], The 

method of proof is similar to that of the preceding lemma. 

LEMMA 4.71 Let g be a real-valued member of D( oo) and let Im A. f O. 

Then there exists a constant K(x), depending only upon x, such that for 

A. = u + iv, 

{f-1 +Joo] Im f(x,A., g) 
du ~ K(x) < oo. 

-oo 1 A. · 

The next theorem makes use of the preceding two lemmas to estab

lish that, as a function of A, Im i(x,A,f) is integrable on any line 

parallel to the real axis, but distinct from the real axis. This result 

is necessary in order to evaluate the integral of I around the contour 

mentioned before. 
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'IHEOREM 4.11 Let f be a real-valued member of D( m). Then there exists 

a parameter K(x) depending only upon x such that for A = u + iv, v > O, 

J~i I Im i(x,A, f) I du < K(x) < <D (4.lJ) 

for all u1 arid u2 real, 

PROOF1 Since the integrand in (4.13) is nonnegative for all u, it will 

suffice to show 

J _: I Im !(x,A, f) I du $ K(x) < <D ( 4.14) 

for some parameter K(x). From Lemma 4.6, there is a parameter K1(x) 

such that 

(4.15) 

From Lemma 4.4, 

lrm £(x,A,f)I $ jim (f(x)/A.)j + lrm (f(x,A.,Lf)/A)I. 

Furthermore, from Lemma 4.?, there is a parameter K2(x) such that 

{/
-1 + J<D} Im f(x,A:,Lf) 

du $ K2(x) < CD 

-CD l A 
( 4.16) 

Since Im (l/A.) = v/(u2 + v2), it follows that 

fJ-_1~+ f
1
<Dl Im f(x) du= f(x){!-l + !<D} 2 v 2 du~trf(x). 

~ ....., j A -<D l u + v 

(4.17) 

Therefore, there exists a parameter x3(x) depending only upon x 

such that the integral on the left in ( 4.17) is bounded by x3(x). By 
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combining the results (4.15), (4.16), and (4.17), the result (4.14) 

follows and the proof is complete. 

The following lemma is similar in nature to the last theorem and 

is used later in integrating the function f. The lemma is established 

in Section 8 of [6]. 

LEMMA 4, 81 For - <X> < ~ < u2 < a>, A. = u + iv, 0 < v :::; 1, and 

1 :::; r,s :::;~ there is a constant K(u1 ,u2) depending only upon u1 and u2 

such that 

JU2 Im m (u + iv) du < K(u1 ,u2) 
u1 rs -

where m (>..), 1:::; r,s::: 2, are the coefficients of the 12(0, a>) solurs 

tions y; r(x,A.) of the differential equation Ly= A.y defined in (J.24). 

The following lemma will be used to construct a set of functions 

k that are of bounded variation. These functions will in turn be rs 

used to construct the functions F that are used in the expansion (4.1) 
r 

of the function f(x). Recall that the coefficients m (A.) in the rs 

12(0, oo) solutions of Ly = A.y are analytic in each of the half-planes 

Im A. > 0 and Im A. < 0. This lemma states that for almost all real 

numbers u, m (A.) is integrable on any rectifiable path lying within rs 

one of these half-planes with one endpoint at u. To establish this, it 

is sufficient to show that for almost all u, m (>..) is integrable on rs 

A. = u +iv, 0:::; v::: 1. This lemma is proved in Section 9 of [6] and 

is necessary to arrive at a set of functions of bounded variation de-

fined in the succeeding theorem. 

LEMMA 4.91 For 1 < r,s < 2, let m (A.) be the coefficients in the - - rs 



definition of the L2(o, co) solutions'// (x,A) of Ly = Ay, Im A > 0 
r 

given in (J.24). Let R > 0 be arbitrary. Then for almost all u in 

- R ~ u ~ R and for 1,::: r,s ~ 2, 

exists and is finite. 

The bounded variation functions k that lead to the functions F 
~ r 

in the expansion theorem will now be constructed. The proof of this 

theorem uses the method of contour integration of analytic functions. 

The theorem follows from Theorem 22.23 of [75]. 

THEOREM 4.21 For 1 ~ r,s ~ 2, the functions 

k (u) = - lim !~ Im m (p + iv) dp 
rs v->O+ rs 

exist for all real u, are of bounded variation on compact intervals, 

and satisfy the relations 

Also, the 2 x 2 hermitian matrix 

is nondecreasing for increasing u, that is, for u1 ~ u2, the matrix 

is positive definite or positive semi-definite. 

The next two lemmas define the functions F of bounded variaton 
r 



that are used in the expansion of the function f(x). That these 

functions are of bounded variation will be delayed until Lemma 4.13 

since another result will first be necessary. The proofs of the fol-

lowing two lemmas follow the lines of the corresponding second-order 

results in Sections J.3 and J.4 of [741. 
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LEMMA 4.101 
2 For r = 1 and 2 and Im A. > O. let Y-' r(x,A.) be the L (0, CD) 

solutions constructed in Theorem 3.6. Then for all u, 

lim Ju0 Im 'f' (x,u + iv) du = - Ju0"""""2=l ¢ (x,u) dk (u). (4.18) 
v..;>O+ r L.s s rs 

LEMMA 4.111 For r = 1 and 2, 0 :;:: x < CD, - CD < u < CD, define 

G (x,u) = °""2 1 Ju0 ¢ (x,u) dk (u). r L..s= s rs 

Then for each u, G (., u) is in L 2( O, CD) and 
r 

(4.19) 

is a uniformly bounded function of u. Furthermore, for f a real-valued 

function in D( CD), the function defined by 

F (u) = J 0CD G (x,u)f(x) dx 
r r 

(4.20) 

is finite for all real u. 

The following lemma is used in order to show the functions F 
r 

defined in the previous lemma are of bounded variation on - CD < u < CD. 

The details follow the lines of Lemmas 4.6 and 4.7 and Theorem 4.3. 

LEMMA 4.121 Let Im A. > 0 and let f be a real-valued member of D( CD). 

Then for 0 :;:: j ~ 3, there is a para.meter K such that 



(4.21) 

LEMMA 4.13: Let Fr(u) be as defined in (4.20). Then for r = 1 or 2, 

F (u) is of bounded variation on -oo < u < oo, that is, the total 
r 

variation of F (u) on - R < u < R is bounded independently of R. 
r - -

PROOF1 Let i(x,A,f) be as defined in (4.10) with fa real-valued 

function in D( oo). Then by the comments preceding Theorem 3.9, f(x,A,f) 

is a nontrivial solution of the differential equation Ly = A.y - f, and 

so for at least one i, 0 ~ i ~ 3, ~i](O,A.,f) is not ze~. Without loss 

of generality, let r = 1. Since ¢1(x,A.) is a nontrivial solution of 

Ly= A.y, for some i 0, O ~ i 0 ~ 3, ~iol(o,A) is not zero. Let 

K =max 1¢;io lea,>..) I 
0 l$r'S2 r 

and recall from the initial conditions satisfied by ¢rat x = 0, K0 does 

not depend on A. Let fuj}• 0 ~ j ~ k be a finite sequence of real 

numbers such that uj+l > uj. Then from (4.21) 

Then since O < 1 li.io](O,A) I ~ K0, there is a constant K' such that for 

r = l, 

Then, in particular, 

L~-l Juj+l I Im J0
00 "f/1 (z,>..)f(z) dz I du~ K1 • 

J=O Uj (4.22) 

But, by the use of the triangle inequality and the Fubini theorem, 

(4.22) implies 



2=~:~ I J' ;1 [J'~3+1 Im 'f\ (z,>.) du}f(z) dz I :;: K1. ( 4.2J) 

Let v ..;;;. 0 from the right in (4.23) and use (4.18) and (4.19) to obtain 

Then, from (4.20), 

Since this bound is independent of the range of u, F1(u) is of bounded 

variation on -CD< u < CD. The argument for F2(u) is entirely similar. 

This completes the proof of the lemma. 

The following three lemmas will perfonn the integration of 

Im f(x,>.,f) with respect to A around the contour defined by the rect

angle in the complex plane with vertices± R + i and± R + i6, 

0 < 6 < 1. Then R will be taken to infinity (through real values) and o 

to zero. These integrations, after limits are taken, will define an 

eigenfunction expansion similar to a Fourier integral expansion. In 

general, the integration along the line Im A = 6 is made and the limit 

taken as 6 ..;;;. 0 from the right and this yields the expansion on the 

right side of (4.1) and the limits of the integrals along the vertical 

segments of the rectangle will be zero. The integration along the line 

Im A= 1 will yield the left side of (4.1). The first lemma is estab

lished in Section 11 of [6]. 

LEMMA 4.141 Let f be a real-valued function in D( co) and let f(x,>., f) 

be as defined in (4.10). Let Rand 6 be real numbers with R > 0 and 

0 < 6 < 1. Then 



lim Im {- (l/rr)J_~!i I(x,A,f) dA} 
6->0+ 

~ (1/rr)~2 1 J RR¢ (x,u) dF (u). 
L-r~ - r r 

The next lemma is an easy extension to the fourth-order case of 

the methods and results given in Section 3,6 of [74], 

LEMMA 4.151 Let f be a real-valued function in D( ro) and let x be 

fixed, Then for real values R, 

lim {rm J~:i ~(x,A,f) dA} = O, 
6->0+ 
R->oo 

and a corresponding result holds for R -> - en. Furthermore, 

lim J_~:i I(x,A,f) dA = - irrf(x) 
R->oo 

where the integration is taken on the segment joining - R + i to R + i. 

It is now possible to state and prove the expansion theorem for 

functions in D( oo). This expansion will be similar to a Fourier 

integral expansion, the eigenfunctions in this case being those of the 

eigenvalue problem described at the beginning of this chapter, with Ly 

given as (J,l). As mentioned earlier, it will be necessary to assume 

certain requirements on the differentiability of the coefficients in 

(3.1). These requirements were necessary in the construction of the 

proof of Lemma 4.5. It may be that Lemma 4.5 is true even if these 

requirements are relaxed to having the coefficients locally integrable 

on 0 < x < CD. The requirements in those chapters preceding this one 

were to have these coefficients continuous on 0 ~ x < oo, It should be 

noted that the expansion theorem is stated for the interval 0 < x < CD 
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with Ly regular at x = O, but the theorem holds for any interval 

a< x < b or a< x < b, with the open endpoint singular and the closed - -
endpoint regular. Application to intervals of this type only requires 

a suitable change of variable. The theorem is also applicable to an 

interval of the form a< x < b with both endpoints singular. The 

theorem would be applied in this case by choosing a point c, a < c < b 

and expanding the function on each of the intervals a < x ~ c and 

c ~ x < b and then combining these results. 

THEOREM 4.31 Let Ly be given by (3.1) with the coefficients r, p, and 

q satisfying the hypotheses of Lemma 4.5. Let the subset D( oo) of 

L 2( 0, oo) be defined as in Definition 4.1, and for 1 :::: r, s ~ 2, let the 

functions k be as defined in Theorem 4.2. For - oo < u < oo, rs · 

0 < x < oo, and l :::: r, s ~ 2, define 

G (x,u) = Ju0 "'""2 1 ¢ (x,u) dk (u). r Ls= s rs 

Then for each r and for each u, as a func.tion of x, G (., u) is in 
r 

L2(o, oo). If for r = 1 and 2, -oo < u < oo, and fin D( oo), Fr(u) is 

defined by 

F (u) = J000 G (t,u)f(t) dt, r r 

then F is of bounded variation on - oo < u < oo and for each x > 0 
r 

f(x) = (l/ff)'°""2 1 J 00 ¢ (x,u) dF (u) Lr= - oo r r ( 4.24) 

where 

J 00 ¢ (x,u) dF (u) = lim J bb ¢ (x,u) dF (u). 
- oo r r b...;;> 00 - r r 
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PROOF1 First, assume f is real-valued. The statement concerning the 
J, 

functions G was established in Lemma 4.11. The filnctions F were shown r r 

to be of bounded variation in Lemma 4.13. Statement (4.24) remains to 

be established, Let R and 6 be positive numbers and consider the con-

tour C defined as the negatively oriented rectangle with vertices 

+ R + i and± R + io. Since the singularities of ICx,A,f) are all real, 

in particular, 

(l/n) Im J0 ICx,A,f) d.A = o. (4.25) 

From Lemma 4.14, for each R > 0 and 6 > O, 

lim (l/n)J-RR:ii~ Im ICx,J..,f) di.. = (l/n):L2_1J _RR¢ (x,u) dF (u), 
6->0+ u r= r r 

By Theorem 4, l, the integrals in ( 4, 26) converge as R -> co, thus 

-R+i6 ii\" ) 2 co lim J R+i6 Im ~(x,A,f d.A = ~ 1 J ¢ (x,u) dF (u). 
0 ->O+ r= - co r r 
R-> co 

From Lemma 4.1_5, 

and 

lim (l/n)J -~:i Im iCx,A, f) _dA - f(x), 
R-> CD 

lim (l/n){~:io + J=~:i0} Im ~(x,f-,f) dA = o. 
6->0+ 
R-> co 

( 4.26) 

(4.27) 

(4.28) 

( 4.29) 

Thus, by integrating Im ICx,A,f) around the contour C and then letting 

6 -> O+ and R-> co, (4.25), (4.27), (4.28), and (4.29) imply for real-

valued f, 
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f(x) = (l/'1'1')""°2 1 J' 00 ~ (x,u) dF (u), Lr= -ro r r 
(4,JO) 

The expansion (4,JO) for complex-valued functions in D( ro) may be 

accomplished by writing f(x) =Re f(x) + i Im f(x), then finding the 

expansion (4,JO) for each of the real and imaginary parts and finally 

taking the linear combination of the results. This completes the proof 

of the theorem, 

Following is a theorem which indicates the reasoning behind the 

desire to consider the limit-point case of a singular formally self-

adjoint differential expression. The theorem states that, in Definition 

4.1, if Ly is in the limit-point case and if a function f satisfies 

conditions (i) through (iv), then the function also satisfies (v), In 

other words, in the limit-point case, a condition at x = oo need not be 

imposed upon the function to be expanded, A lemma is required prior to 

proving the theorem, The following lemma is Lemma 3,2 of [351. 

LEMMA 4.161 Suppose the complex-valued measurable functions f and g 

satisfy the conditions 

Then 

(i) 

(ii) 

(iii) 

f is in L2(o,ro), 
2 . 

g is in L (a,b) for all a and b, 0 <a< b < oo, and 

g is not in L2(o, oo), 

lim 
b->ro 

J~ f(x)g(x) dx 

{!~ lg(x)l2 dx}l/2 = 0, 

The following theorem is used extensively in theorems establishing 

the limit-point case for 2n-th order differential equations. The 

theorem is stated and proved for the fourth-order case. 
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THEOREM 4.41 Let Ly be given by (3.1) and suppose the coefficients r, 

p, and q are real-valued and continuous with p(x) > 0 for all x ::::_ 0, 

Let E be that subset of L2(o, a>) defined bys u is in E if and only if 

(1) u is in L2(o, a>), 

(ii) u[Jl is locally absolutely continuous on 0 ~ x < a>, 

(iii) Lu is in L2(o, a>), and 

(iv) [ u ¢i l(O) = 0 for i = 1 and 2. 

Then L is in the limit-point case if and only if 

for each u and v in E. 

lim [ u v ](b) = 0 
b->a> 

( 4. 31) 

PROOF1 Suppose (4.Jl) holds for all u and v in E. Suppose further, 

that Ly is not in the limit-point case. Then there are complex numbers 

a1 and a2 , not both zero, such that 

2 is in L (0, a>), Then, since each ¢i is a solution of Ly= Xy, it 

follows that LY= XY, and thus, LY is in L2(0,a>). Clearly, condition 

(ii) of the definition of E is satisfied, From Chapter III, 

[ Y ¢i ](o) = o, i = 1, 2, 

and so, (iv) is satisfied, Thus, Y is in E. Therefore, by Theorem l.J, 

[ Y Y ](b) = [ Y Y ](o) + 2ivJ~ IY(x)l 2 dx. ( 4. 32) 

Since Y is a linear combination of ¢1 and ¢2 , the first tenn on the 

right of (4.32) is zero. By (4.31), the left side is o(l) as b tends to 



infinity, and thus 

lim J~ jY(x)l 2 dx = O, 
b-> OJ 

implying a1 = a 2 = O, a contradiction. Thus, Ly is in the limit-point 

case. 

For the converse statement, suppose L is in the limit-point case 

and u and v are members of E. Let {bJ , k ~ O, be a strictly increasing 

sequence of positive real numbers with no finite limit point. Let 

G(¢;bk) be defined as in (3.5) and for each k, let r 1(k) and r 2(k) be 

the characteristic roots of G(¢;bk). By Lemma 3.5, G(¢;bk) is positive 

definite and.thus these roots are not zero. For each k ~ O, let 

V(k) = (a.i}bk)) be the unitary 2 x 2 matrix such that 

(4.33) 

For i = 1 and 2, define yi(x,k) by 

Then the left side of (4.33) is G(y;bk) where y is the vector given by 

Y = (y1(x,k),y2(x,k))T. Therefore, by (4.33), 

for all k > 0 and 1 ~ i,j ~ 2. It then follows that since [ yi yj ](O) 

is zero, 

(4.34) 

Also, note (4.3) implies 



64 

(4. 35) 

Since the matrix V is unitary, 

for i = 1 and 2. Thus, these coefficients are bounded, implying there 

is an increasing sequence of positive integers n such that for i,j = 1,2 

cx.i .(b ) ~ a.i . 
J n J 

(4.36) 

and for i = 1 and 2, not both a.il and a.i2 are zero. For i = l and 2, 

define 

., 
Then, since not both .a11 and a.i2 are zero, neither Yi can be in L"'( O, co) 

since the limit-point case holds, but, clearly both Y1 and Y2 are in 

L2(a,b) for all a and b, 0 <a< b < co by continuity of solutions, 

From ( 4. 36) , 

Consider the expression 

(4.37) 

By Theorem 1.3, the numerator of (4.37) may be expressed as 

since vis in E, [ Yk v l(o) = 0, and LYi = AYi' 



In Lemma 4.16, let f(x) = AV(x) - (Lv)(x) and let g(x) = Yi(x) + o(l). 

From the definition of E and the above comments, f and g satisfy the 

hypotheses of Lemma 4.16 and therefore, the expression ( 4. 37), is o(l) 

as k -> CD. 

Theorem 3.2 will now be applied. Let f 1 = r3 =/Si= gJ = y1(.,k), 

f 2 = r4 = g2 = g4 = y2(.,k), f 5 = u, and g5 = v. By (4.34) and (4.35), 

for each k, the upper left 4 x 4 submatrix of the matrix in Theorem J.2 

is a diagonal matrix. Divide the first two rows and first two columns 

by the term 

(4.38) 

for i = l and 2 respectively. Similarly, divide the second two rows 

and second two columns by (4.38), i = 1 and 2 respectively. Then, it 

follows that the upper left 4 x 4 submatrix is 

diag [ 2i v, 2i v, -2i v, -2i v l · 

The element in the (5,5) position is [ u v ](bk). A typical element in 

the fifth row or fifth column (except the (5,5) element) is given in 

(4.J?) and thus is o(l) as k tends to infinity. Therefore, the deter-

minant of the matrix is given by 

( 4. 39) 

Therefore, since by Theorem 3.2, the determinant is identically zero, 

(4.39) implies [ u v ](bk) ~ 0 ask~ CD. Since the sequence bk is 

arbitrary, (4.31) then follows. This completes the proof of Theorem 4.4. 

It should be noted that condition (iv) is not necessary for the 



second half of the proof, for if u and v satisfy (i), (ii), and (iii) 

of the hypothesis, then these functions can always be redefined on 

0 ~ x ~ 1 so that (iv) holds. 
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CHAPTER V 

THE DEFICIENCY INDEX PROBLEM 

This chapter will survey the development of the limit-point and 

limit-circle problem for formally self-adjoint differential expressions· 

of even order with real-valued coefficients defined on an interval with 

one singular endpoint. No attempt will be made to state and prove all 

known results for this problem since the list is rather lengthy. Also, 

many of the results require considerable development of the theory of 

linear operators on function spaces, In general, three basic tech-

niques for determining the limit-p case of a differential expression 

will be considered. Two of these methods are applicable to differential 

expressions of the second and fourth-order, but little has been accomp-

lished with expressions of higher order. The first of these methods is 

particularly applicable to the second-order problem. The idea here is 

to establish the existence (or nonexistence) of two linearly inde

pendent solutions of Ly= AY that lie in L2(o, oo). If this can be 

accomplished, the second-order problem is completely determined since 

these are the only two cases. That is, if there is a basis of the 

2 solution space lying in L (0, oo), the limit-circle case occurs and if 

one solution of Ly = AY can be found that is not square-integrable, the 

limit-point case occurs. This method is less used in the fourth-order 

case since only a determination can be made of whether the expression 

is or is not limit-4 (limit-circle) and less information is obtained 
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since the limit-point (limit-2) .or limit-3 case may occur. 

The second of the two methods makes use of Theorem 4.4. This 

theorem is true for the 2n-th order problem by modifying hypothesis (ii) 

to read that u[ 2n-ll is locally absolutely continuous on the interval 

[o, oo) and by running the index i in (iv) from one to n where the bi-

linear form used is with respect to the particular operator under 

consideration. In this method, a theorem is formulated by putting 

conditions on the coefficients of the differential expression which 

will force [ u v l( oo) = 0 for all u and v in D( en). In this case, the 

limit-point (limit"'.'n) case will occur. Similarly, if two functions u 

and v in the subset E of L2(o, cn) of Theorem 4.4 can be constructed so 

that [ u v l( cn) f O, then the limit-point case does not occur. As 

before, this completely determines the second-order problem, but not 

higher order problems. A combination of this method and the first may 

be applied in the fourth-order problem to eliminate the limit-point and 

limit-circle cases, leaving the limit-3 case. The two methods so far 

described are less applicable in the 2n-th order case, n > 2, since 

these cannot determine the limit-p case, n < p < 2n. However, for 

application to the expansion theorem, it is only necessary to know 

whether or not the limit-n case occurs in order to determine the neces-

sity for imposing a boundary condition at infinity upon the function to 

be expanded. 

The third method for determining the limit-p case is called the 

asymptotic method. With the exception of the second-order, and in some 

cases, the fourth-order expressions, the only known method for iden-

tifying the limit-p case, p > n, is by this asymptotic method. In this 

method, one attempts to obtain asymptotic estimates for the rates of 



growth of a complete set of linearly independent solutions for the 

equation Ly "' A.y, Im A. f O. Knowing the rate of growth of the solutions 

in this basic set, one can usually determine the dimension of the sub

space of the solution space that lies in L2(o, oo). A more complete 

description of the asymptotic method will be made later, along with an 

example of its use, 

The problem of determining the limit-p, n ~ p ~ 2n, case of a 

linear differential operator is commonly called the deficiency index 

problem. A complete description of the reasoning behind this name 

would take considerable development of the general theory of linear 

differential operators, but an informal description will be given. A 

complete development may be found in Naimark's book [651· In the theory 

of linear differential operators, one may consider the formal operator 

M = "°n (-l)k( (k))(k) 
y L....k=O pn-ky (5,1) 

operating on certain functions that are defined on an interval (a,b), 

The coefficients pk are assumed to be real-valued with Po taking only 

positive values, The formal operator (5,1) is self-adjoint in the sense 

that for any two functions u and v having continuous derivatives of all 

orders and vanishing outside some compact subinterval of (a,b), the 

inner product identity, 

(Mu,v) ( u,Mv) ( 5.2) 

holds. Hence, when restricted to the test functions, M is a densely 

defined symmetric operator, say L0, in the Hilbert-Lebesgue space 

2 L (o, oo) and so has a symmetric, closed extension L0 , called the mini-

mum operator associated with M. The above statements are discussed in 
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Section 17.4 of [65]. The operator L = L0, the adjoint of L0 described 

in Chapter I, is called the maximal operator associated with M. Lis 

a closed operator which is the restriction of M to those functions u 

2( ) [2n-ll such that u and Mu are in L a,b and u · is locally absolutely 

continuous on (a,b). 

The formal self-adjoint operators which arise from physical prob-

lems usually come equipped with natural boundary conditions at a and b. 

If these are of the proper type and number, then the restriction of L 

to those elements in its domain which satisfy the boundary conditions 

is a self-adjoint operator H which satisfies the relation L0 '= HS L. 

The operator L of Chapter IV defined on D( co) is such an operator pro-

vided the limit-point case occurs. As shown in Chapter IV, such 

operators allow expansions of functions in L2(a,b) which satisfy cer-

tain boundary conditions. Recall that no conditions at the singular 

endpoint(s) are required on the function to be expanded if the differ-

ential expression is in the limit-point case. If the expression is not 

limit-point, some conditions on the function to be expanded must be im-

posed at the singular endpoint(s). In Chapter IV, the endpoint x = 0 

was taken to be regular and the endpoint x = co was taken to be singu-

lar. At the regular endpoint, boundary conditions were imposed since 

the expression can be cons.idered to be limit-2n at that endpoint. That 

is, for b > 0, all solutions of Ly = AY are square-integrable on 

0 ~ x ~ b, and so the expression is not self-adjoint on 0 ~ x ~ b, 

Thus, boundary conditions must be imposed at a regular endpoint. At 

the singular endpoint, x = m, boundary conditions were needed only if 

the limit-point case did not occur. 

In the theory of the extensions of symmetric operators described 



by Naimark and developed by von Neumann, two cardinals are vital. To 

describe these cardinals, first let D(L0) denote the domain of the 

operator L0 , Define the range spaces ~ and R[ by 
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(.5,3) 

where A is a complex number, Im A > 0, Then define NA and Nr as the 

2 orthogonal complements of~ and Rr, respectively, in L (a,b), The 

deficiency numbers of L0 are then defined by 

k =dim NA, m =dim N~. 

The pair (k,m) is called the deficiency index of L0, An application of 

(5.2) shows that if y is in Nr and if z is any member of D(L0), then 

( L0 - fI (z),y) = o. 

That is, by (5,2), 

and therefore, the inner product identity 

holds. Since z is an arbitrary member of D(L0), it follows then that y 

is a solution of L0y = AY that lies in L2(a,b), But since L0 = M* = M 

by (1.6), the deficiency number m is the dimension of the subspace of 

the solution space of My= AY that lies in L2(a,b), From (5,3) and 

since the coefficients of M are real-valued, it follows that k = m. 

From the above comments, the deficiency index problem is the same prob-

lem as detennining the maximal number of linearly independent solutions 
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2 
of My= AY that lie in L (a,b). Thus, there is reason to study the 

deficiency index problem. However, perhaps the primary reason for 

studying the deficiency index problem is " ••• because it is difficult., 

and therefore challenging" [11, p. 35.51. 

The deficiency index problem, as now known, dates back to Hermann 

Weyl [79], around 1910. Until about the mid 1940's, only a few papers 

appeared dealing with this problem. At that time, several contribu-

tions dealing with the deficiency index problem appeared. Most notable 

among these is Eigenfunction Expansions by E. C. Titchmarsh [74]. 

Weyl's comments, made in a Gibb's lecture [80], on the span of nearly 

forty years without consideration of the problem are interesting. His 

comments refer to the above mentioned work by Titchmarsh and to a major 

paper by Kunihiko Kodaira [59]. 

It is remarkable that forty years had to pass before such a 
thoroughly satisfactory direct treatment emerged; the fact 
is a reflection on the degree to which mathematicians during 
this period got absorbed in abstract generalizations and lost 
sight of their task of finishing up some of the more concrete 
problems of undeniable importance (p. 124). 

The current thrust of the work on the deficiency index problem is 

toward determining necessary and sufficient conditions on the coeffi-

cients of the differential expression to establish the limit~p case. 

There have been a large number of sufficient conditions found, but so 

far, necessary conditions have been elusive. Some of the results for 

second and fourth-order problems will be discussed. The first series of 

results will be examples of the first two methods described earlier. 

Following these, an example of the asymptotic method will be given. 

The asymptotic method is quite difficult and technical, and as a result, 

only one example will be given. After this example is given, a remark-

able theorem that indicates the delicacy of the problem of finding 
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necessary conditions will be proved. In all cases that follow, the 

following notations and conditions will be assumed. 

(5.4) 

L4Y .. ( ry")" ... (PY' ) ' + qy. ( 5. 5) 

The. coefficients r, p, and q of (5,4) and (5.5) will be assumed to be 

real-valued and continuous on the interval 0 < x < oo with p(x) > 0 

for all x in (5,4) and r(x) > 0 for all x in (5,5). Other conditions 

may be imposed in the individual theorems. In the second-order prob

lem, the functions ¢ and 'f' will be those introduced in Chapter II and 

in the fourth-order problem, the functions ¢1 , ¢2 , 'f' 1 , and 'P 2 will be 

those introduced in Chapter III, Recall that 'f', 'f' 1 , and '-f 2 are all 

in L2(o, m). 

The following result is due to Levinson and is one of the more 

widely known conditions for the limit-point case for second-order dif-

ferential expressions. His result is in terms of a comparison function 

for the coefficient q(x), This theorem is Theorem 2.4 of Chapter 9 of 

'IliEOREM 5.11 Let L2y be given by (5.4). Suppose M(x) is a positive, 

differentiable function such that 
1/2 . . 

(i) (~)- is not in L( 0, m), and 

(ii) M'pl/~-3/2 is bounded. 

Suppose further, that for some K > O, 

(iii) q(x) > - KM(x) eventually. 

Then L2y is in the limit-point case. 
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The following theorem is due to Titchmarsh and is similar to 

Theorem 5.1. In this theorem, if p(x) = 1 and the bounding function M 

is assumed to be nondecreasing, then hypothesis (ii) of Theorem 5.1 is 

not needed. This theorem is Theorem 2.20 of [74]. 

THEOREM 5.21 Let t 2y be given by (5.4) and assume p(x) = 1 for all 

x ?=_ O. Suppose M(x) is a positive, continuous, and nondecreasing 

-1/2 function such that M is not integrable on 0 ~ x < a:>. Then, L2y 

is in the limit~point case provided q(x) ~ - M(x) for all.x ~ O. 

Of historical interest is Weyl's original result from his paper 

[791. This result follows immediately from either Theorem 5.1 or 5.2 1 

by setting M(x) = K. 

COROLLARY 5.11 Let L2y be given by (5.4) and assume p(x) = 1 for all 

x ?=_ O. If for some K > O, q(x) > - K for all x:::, O, then L2y ls in 

the limit-point case. 

The following result was established independently by Tltchmarsh 

. [731 and Hartman and Wintner [51] in 1949. As in the first two theo-

rems, the interest is in the growth of the coefficient q and this 

result allows more growth than Weyl's result. 

'IHEOREM 5.31 Let L2y be given by (5.4) and assume p(x) = 1 for all 

x :::. o. 2 If there exists a constant K > 0 such that q(x) :::, - Kx for 

all x :::_ 0, then L2y is in the limit-point case. Furthermore, the 

exponent 2 is the best possible in the sense that if 2 is replaced by 

2 + o, o > 0, the result may no longer be true, 

PROOF: The first part of the theorem follows from Theorem 5.2 by 
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setting M(x) = Kx2• To show the second part, the second-order analogy 

of Theorem 4.4 will be used. 

Let Ly be given by 

2+6 Ly = - y'' - x y, <'> > O. (5.6) 

Let the function u be defined by 

0 :::: x :::: 1, 

1 < X < CD, 

where,f is any c1(0,l) function such that f(O) = f'(O) = 0 and such 

that u[ll is absolutely continuous on 0:;:: x:;:: 2. It may then be calcu

lated directly that u and Lu are in L2(o, CD) and that Ji l is locally 

absolutely continuous on 0 :;:: x < CD• Also, it is easily seen that con

dition (iv) of Theorem 4.4 is satisfied (for the second-order case.) 

Now, for the hennitian fonn [ u v 1 with respect to (5,6) 1 for b > 1, 

it may easily be calculated that 

[ u u l(b) = - 2iim(u(b)u'(b)) = 2. 

By Theorem 4.4, Ly is not in the limit-point case, implying Ly is in 

the limit-circle case. This completes the proof of the theorem. 

The following result is also due to Hartman and Wintner [501. It 

is similar in its restrictions on the growth of q. 

THEOREM 5.41 Let L2y be given by (5,4) and assume p(x) = 1 for all 

x ~ O. If for a certain constant c > O, and for some K > O, the 

inequality. 

(5,7) 



holds for c < x1 < x2, then L2y is in the limit-point case. 

PROOF s Let x2 = x and keep x1 fixed in ( 5. 7) • Then 

Thus, for x sufficiently large, for some constant K1 , q(x) > - K1x. 

The result now follows from Theorem 5.2 by taking M(x) = K1x, and the 

proof is complete. 

The next result leads to the generalization of Weyl's result in 
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Corollary 5.1 to the more general expression (5.4). In Coddington and 

Levinson's book [71, L2y was shown to be in the limit-point case if q 

is bounded below and p-l/2 is not in L(O, oo). This is an immediate 

corollary of Levinson's theorem, Theorem 5.1, be taking M(x) = 1. In 

1966, Everitt [341 removed the condition that p-l/2 is not in L(O, oo). 

His proof, however, is tedious. In 1969, Wong [821 gave an elegant 

proof of the result by using the mean value theorem for derivatives. 

The result is a corollary of the following theorem which connects the 

ideas of the limit-point and limit-circle cases to the notion of oscil-

latory differential equations. A differential equation is said to be 

oscillatory if the equation has at least one oscillatory solution, that 

is, has at least one nontrivial solution with an infinite number of 

zeros. This theorem and its corollary are due to Kurss [611. 

THEOREM 5. 51 Let L2y be g1 ven by ( _5.4) and let a comparison operator 

be defined by 

My= - (py')' + q y, 1 

Then L2y is in the limit-point case if 
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(i) M is in the limit-point case and is nonoscillatory, and 

(ii) q - q1 is bounded below. 

PROOF a By (i), there is a solution v of My = 0 that is strictly posi

tive for.sufficiently large x and is not in L2(o, a:>). Also, (ii) 

implies there exists a real number A such that for x sufficiently 

large, q - q1 ~A.. Without loss bf generality, assume the above holds 

for all x :::_ O. Let y be the solution of L2y = AY that satisfies the 

initial conditions y( 0) = v( 0) and y' ( 0) = v' ( 0). Then since 

q(x) - A:::_ q1 and (L2 - h.)y = 0, the Sturm Comparison Theorem implies 

y(x) :::_ v(x) for all x:::. O. Thus, y is not in L2(o, en) and the limit-

circle case cannot hold. Therefore, L2y is in the limit-point case 

and the proof is complete. 

COROLLARY 5.21 Let L2y be given by (5.4). Then L2y is in the limit

point case if q is bounded below. 

PROOFa Let q1(x) = 0 for all x ~ 0. Then the solutions of My= 0 are 

linear combinations of the functions 

u(x) = 1, v(x) = J~ l/p(t) dt 

and thus do not oscillate. Also, My cannot be in the limit-circle case 

2 since u is not in L ( 0, oo). Therefore, the result holds by Theorem 5. 5. 

This completes the proof of the corollary. 

The following result given a different restriction on the growth 

of q. In this theorem, if q is in L2(o, oo), then the limit-point case 

holds. Thus, q- may be allowed to be arbitrarily large, but only on 

very small sets. The theorem in the special case p(x) = 1 is due to 



Putnam [69]. To the author's knowledge, the following generalization 

has not appeared. 

THEOREM 5.61 Let L2y be given by (5.4) and assume q is in 12(0, co). 

Then L2y is in the limit-point case. 

PROOFs It will be shown that if two solutions of L2y = 0 are in 

12(0, co), then they are necessarily linearly dependent, implying the 

limit-circle case cannot occur. 
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2 Let y be any solution of L2y = 0 such that y is in L (0, co). Then 

(py')'(x) = q(x)y(x), (5.8) 

Integration of both sides of (5.8) from 0 to x yields the identity 

[ (py' )( t) ]~ = J'~ q( t) y( t) dt ( 5. 9) 

and it follows by the Schwarz inequality that the right side of (5.9) 

is bounded as x -> co. Thus, as x -> CD, 

p(x)y'(x) = 0(1). (5.10) 

Let y and z be any two solutions of L2y = 0 that are in L2(o, oo). 

Then, since 

[ y z ](x) = p(x)y(x)z'(x) - p(x)y'(x)z(x), (5.11) 

(5.10) implies each of the terms on the right side of (5,11) is in 

L 2( 0, oo). Thus, [ y z J(x) is in L 2( 0, oo). By 'rheorem 1. J, [ y z J(x) 

is independent of x, and so (5.11) must be identically zero. Since 

(_5,11) is the generalized Wronskian for solutions of L2y = 0, y and z 

cannot be linearly independent. Therefore, the limit-circle case cannot 
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occur, and the conclusion follows. This completes the proof of the 

theorem. 

The following two theorems are due to Wong and Zettl [851. These 

theorems also make use of a comparison operator as in Theorem 5.5. The 

second of these results involves the oscillatory nature of the two op

erators. L2y will be the expression (5.4) with the added condition 

that q(x) < 0 for x ~ O. Define the comparison operator 

M~ = - (z'/q)' + z/p, (5.12) 

where q and p are the coefficients of L2y. Also, assume p and q are 

continuously differentiable on the interval 0 < x < <D. The proofs of 

these theorems are found in [851· 

THEOREM 5.71 Let Y = (qp)'/(qp) and Mz be as defined in (5.12). If 

either 

(i) y+ is in L( O, oo), or 

(ii) Y- is in L(O, oo) and - qp is bounded above, 

then L2y is in the limit-point case. 

The next theorem considers the oscillatory properties of the com

parison operator Mz and of L2y. 

THEOREM 5.81 Suppose l/p is not in L(O, ro) and q < o. Then L2y is in 

the limit-point case if either L2y or Mz is nonoscillatory. 

The search for conditions on the coefficients of L2y in order to 

place the operator in the limit-circle case appears to be less extensive. 

It may be that the limit-point case is more interesting since this case 
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makes the problem L2y = AY self-adjoint. This is easily seen from the 

results of Theorem 4.4. For if L2y is in the limit-point case, then 

for all functions u and v in the domain of 12 , Theorem 4.4 implies 

[ u v l(b) ..;> 0 as b ~ oo, 

Thus, for u and v in the set E of Theorem 4.4, an application of 

Theorem 1.3 yields 

= lim { [ u v l( b) - [ u v 1( 0)} 
b~oo 

= - [ u v l( o). (5.13) 

As in the proof of Lemma 4.1, [ u v l(o) = 0 and (5.13) implies 

(L2u,v) = (u,L2v), Therefore, L2y with the boundary conditions of the 

set E of Theorem 4.4 is self-adjoint. If the limit-circle case holds, 

then L2y restricted to the set D( oo) of Definition 4.1 is self-adjoint. 

The following two theorems give conditions on the coefficients of 

L2y in order that the limit-circle case holds. The first theorem is 

more useful for constructing a class of examples. The second theorem 

is a generalization of a special case of the first result to the more 

general expression (5.4). The first theorem is due to Eastham [201. 

It is noted that the techniques used to determine the limit-point case 

are less successful in determining the limit-circle case since most of 

the limit-point results are established by showing that at least one 

2 solution of L2y = 0 is not in L (0, oo). It is a more difficult problem 

2 to show all solutions of L2y = 0 are in L (0, oo) if the solutions or 

asymptotic estimates of the solutions are not lmown. A proof of the 
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first theorem may be found in [201 and is an application of Theorem 4.4. 

THEOREM 5.91 Let L2y be given by (5.4) and assume p(x) = 1 for all 

x ~ O. Let P, Y, and h be real-valued functions defined on b ~ x < oo, 

b ::::-_ O, such that 

(i) P(x) > 0 for x ~band Pis in L2(o, oo), 

(ii) P' and Y are locally absolutely continuous on b ~ x < oo, 

(iii) Y(x) = o(l) as x -> oo, and 

(iv) h and Y'/P are in L2(b, oo), 

Let q be defined by 

q = h/P + P"/P - (1 + Y)/P4 , 

for x ~band defined to be any L2(0,b) function on 0 ~ x < b. Then 

L2y is in the limit-circle case. 

The following corollary of Theorem 5.9 is simple, but will be used 

in a later theorem, 

COROLLARY 5.31 Let q1(x) be a negative, decreasing function such that 

(- q1)-l/4 is in L2(o, oo) and q1 has continuous derivatives of all 

orders. Then for q2 defined by 

the differential expression My defined by 

is in the limit-circle case. 

My = - y" + q y 2 

PROOF1 The corollary follows immediately by taking P = jq1 j -l/4 , h O, 

and Y = 0 in Theorem 5.9, 
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Note that there have been a. number of theorems in which q1 cart 

satisfy the hypothesis of Corollary 5.3 and Ly= - y" + q1y may be in 

the limit-point case and (5.14) may be in the limit-circle case. Such 

a situation will be examined in a later theorem •. The following theorem 

is due to Everitt [38] and is shown for the general expression (5.4). 

The corresponding result for p(x) = 1 will follow from Theorem 5.9. 

'llIEOREM 5.101 Let L2y be given by (5.4) and assume p' is continuous. 

If 

(i) 

(11) 

(iii) 

(iv) 

( v) 

p' and q' are locally absolutely continuous on 0 < x < CD, 

p" and q" are in L2(o, CD) locally, 

q(x) < 0 for x ~ O, 

(- pq)-l/4 is in L 2 ( O, CD), and 

[p(pq)'(- pq)-5/4]' is in L2(o, CD), 

then L2y is in the limit-circle case. 

PROOF1 The proof will use Theorem 4.4. Define f by 

f(x) = (- pq)-l/4exp{1.f~ (- q/p)1/ 2 dt}. 

It is readily verified that the hypotheses of the theorem imply f 

satisfies the hyoptheses of the second-order version of Theorem 4.4. A 

simple calculation will then show that [ f f ](b) = - 2i, and thus, by 

Theorem 4.4, L2y is in the limit-circle case. This completes the proof. 

It is noted that in the case p(x) = l, by letting P = (- q)-l/4 , 

Y = O, and h = - P", Theorem 5.10 follows from Theorem 5.9. 

The following result is due to Fatula and Wong [68] and relates 

the limit-point case of a differential expression to a known differen-

tial expression. This result will also be used later. 
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THEOREM 5.111 Let L2y be given by (5.4) and let My be given by 

Assume L2y is in the limit-point case. If all solutions of L2y = 0 are 

bounded and jq - q1 1 is bounded, then My is in the limit-point case. 

The next theorem is due to Eastham and Thompson [22]. The result 

of this theorem is quite remarkable and indicates the difficulty of the 

problem of detennining necessary and sufficient conditions for the 

limit-point or limit-circle case to occur. The problem is shown to be 

quite delicate and it is possibly true that for this reason, no neces-

sary and sufficient conditions on the coefficients of L2y have yet been 

found that place the operator L2y in the limit-point or limit-circle 

case. The proof given is a special case of the results of [22]. 

THEOREM 5.121 Given E. > 0, there exist functions q1 and q2 that agree 

except on a sequence of intervals of total length of at most E, and 

such that for Ly and My defined by 

Ly is in the limit-point case and My is in the limit-circle case. 

Furthennore, q1 and q2 can be taken to have continuous derivatives of 

all orders and q1 can be taken to be monotone. 

PROOF: For each n = 1, 2, ••• , define 

Then let q be the step function defined by 
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2 q(x) = - n , s 1 < x < s , 
n- - n 

where s0 = 0, It will first be established that the differential 

expression L2y ... - y" + qy is in the limit-point case and that all 

solutions of L2y = 0 are bounded. Let Y and Z be the functions given by 

It is easily verified that Y and Z satisfy L2y = 0 and are bounded. 

Also, since n(sn - sn_1) = nbn = 2n, it is easily verified by elemen

tary integration that 

2 . 
implying Y is not in L ( O, oo). Therefore, L2y is in the limit-point 

case. 

Let q1 be any c 00(o, oo) function satisfying the conditions 

(i) q1 is nondecreasing, 

(ii) q1(x) ~ q(x) for each x ~ 0, 

(iii) I q1 - qj is bounded on 0 < x < CD, 

(iv) q1(x) = q(x) except in -n-1 neighborhood of each s • an e2 n 

Then, since L2y is in the limit-point case and all solutions of L2y = 0 

are bounded, condition (iii) and Theorem 5.11 imply Ly given in (5,15) 

is in the limit-point case. 

Define q2 by 

Recall that by the definition of q and condition (iv), q1 is constant 
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-n-1 outside E2 neighborhoods of s • Hence, outside these neighborhoods, 
n 

{1q1 1-l/J" == 0, and thus q2(x) = q1 (x) for values outside these neigh-

borhoods. That is, q1 and q2 agree except on a set of measure less 

than E. Since q1 is nonincreasing and negative, 

F h 1 t I d th interval S - e2-n-l < x < s + c 2-n-l. or eac n, e enote e v 
n n - - n 

Then since q1 = q on C( In), 

( ) -1/2 J 
ql x dx ~ UI 

n 

= 0(1) + 2=";1 bn/n 

= 0(1) + ~n~l 2~/n2 . 

Thus, 
. 1/4 2 jq1 (x)1- is in L (o, oo). Therefore, by Corollary 5,3, My 

given in (5,15) is in the limit-circle case. This completes the proof 

of the theorem. 

Attention will now be centered on the fourth-order expression L4y 

given in (5.5). Fewer results have been established for this expres-

sion. One of the difficulties is that there is a case "between" the 

limit-point and limit-circle cases, namely the limit-3 case. The prin-

cipal methods used to establish results in the fourth-order problem 

(and for higher order problems) are the use of Theorem 4.4 and the 

asymptotic method, although Hinton has published a fourth-order result 

using neither of these methods, The first theorem is an extension of 
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Corollary 5.2 in that it is assumed that the coefficient q of y is 

bounded, This result is due to Evert tt [36] and a proof may be found 

in Theorem 1 of his paper. 

THEOREM 5.131 Let t 4y be given by (5.5) and assume r(x) = 1 for all 

x ~ O. Suppose the coefficients p and q satisfy the conditions 

(i) 

(ii) 

(iii) 

(iv) 

( v) 

q is locally integrable on 0 ~ x < CD, 

p is locally absolutely continuous on 0 $ x < CD, 

p(x) ::::, O for x ~ o, 

q is bounded below, and 

either 0 S p(x) S Kx2 or 0 S p(x) S Kx2 1q(x)l 1/ 2 for some 

K > O and for all x::::, o. 

Then L4y is in the limit-point case. 

The following theorem, also due to Everitt [371, is similar to 

Theorem 5.13 in that the growth of the coefficients p and q is re-

stricted. A proof of this result may be found in that paper. 

THEOREM 5.141 Let L4y be given by (5.5) and assume r(x) = 1 for 8.11 x. 

Let E be as defined in Theorem 4.4 where the fo:r:m [ u v l is defined 

with respect to the differential expression L4y. Let k, 1, and m be 

nonnegative constants and let the coefficients p and q of L4y satisfy 

the conditions 

(1) q is locally integrable on 0 $ x < CD, 

(ii) p is locally absolutely continuous on 0 $ x < CD, 

(iii) q(x) ::::, - kx2 almost everywhere for x ::::, 0, and 

(iv) - lx2/ 3 S p(x) S mxlO/J for all x::::. O. 

Then L4y is in the limit-point case. 
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The method of proof of the following theorem by Hinton [521 is 

unusual for a fourth-order problem in that it does not involve either 

Theorem 4.4 or the asymptotic method. Moreover, the result is easily 

applied. The statement given is for a special case of Hinton's theorem 

and the proof given in his paper is easily followed. 

THEOREM 5.151 Let t 4y be given by (5.5) and assume further that 

p(x)::::, O, q(x) ~ 1, p(x) = O(x2), and r'(x) = O(x3) as x -> oo. Then 

L4y is in the limit-point case. 

The asymptotic method will now be considered. Since the mid 1940's, 

the main work on the deficiency index problem has been done in England, 

Russia, and the United States. In England and in the United States, 

the specific problem of the deficiency index was studied only for 

second-order operators until the late 1960's. At that time the fourth-

order problem was considered, primarily by Everitt, Hinton, Eastham, 

Devinatz, Walker, and Wood. In Russia, beginnings were made on the 

establishment of a theory for higher order operators. The Russian 

school used the asymptotic method in the early 1950's to obtain defi-

ciency index theorems for higher order operators. An excellent account 

of some of these methods and results appears in Naimark's book [651. 

In the United States, Everitt, Hinton, and Eastham generally used 

methods other than the asymptotic method while Devinatz, Walker, and 

Wood employed asymptotic methods. An example of the asymptotic method 

will be considered. This example is due to Walker [76, 77]. To at-

tempt to survey all the results using this method would be too lengthy 

since the proofs of these results tend to be quite complicated and long. 

For the fourth-order problem, the most notable results are due to 
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Devinatz [13, 14, 15], Walker [76, 77, 781, and Wood [86]. The results 

presented by Naimark [6.5] for the 2n-th order operator can also cer

tainly be restricted to the fourth-order operator L4y. 

The asymptotic method in the deficiency index problem is generally 

based on an asymptotic theorem of Levinson [7] or [81p. 92] and certain 

extensions of this theorem due to Devinatz [11] and Fedorjuk [451· In

stead of trying to apply Levinson's theorem directly to the problem, 

the procedure is to make certain transformations on the independent and 

dependent variables in order that Levinson's theorem may be applied. 

This procedure will be generally described for the 2n-th order problem. 

The differential equation to be considered.is put into the form 

U'(x) = A(x)U(x), 

where the matrix A is given by (1.5). For convenience, assume the 

problem is defined on the interval 0 ~ x < m. Let Q0 be a nonnegative 

measurable function such that l/Q0 is locally integrable on 0 < x < m, 

but not integrable on the entire interval 0 < x < oo. Let 

s(x) = J~ (l/Q0(t)) dt. 

The function s is monotone increasing, locally absolutely continuous 

and has a monotone increasing inverse which may be denoted x = x(s). 

By setting V(s) • U(x(s)), (5.16) yields 

V'(s) = Q0(x(s))A(x(s))V(s), (5.17) 

where the prime in each case will denote differentiation with respect 

to the indicated independent variable. Let Q1 , ••• , Qn be positive 

functions on the interval 0 < x < oo which are all locally absolutely 



continuous. Let Q be the diagonal matrix 

[ -1 
Q = diag Qn, ••• , Ql, Ql ' • • • ' Q -11 

n I 

where Q~l denotes l/Qk and let V(s) = Q(x(s))W(s). The differential 

equation (5.17) then becomes 
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W'(s) = C(s)V(s) (5.18) 

where the 2n x 2n matrix C is given by 

where 

I 
-d I qQ 

1 I 
- -- -r- - - - - -

ql : dl -cl 
I 

and the unmarked entries are zero. 

Assume 

C(s) = B + V(s) + R(s), 

-c n-1 

d 
n 

(5.19) 
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where B is a. constant matrix with simple eigenvalues, V(s) = o(l) as 

s -> oo, and V' (s) and R(s) are integrable on some interval a ~ s < oo, 

a ~ 0. With these hypotheses and under other suitable conditions, the 

theorem of Levinson can be applied. This theorem states that there is 

a complete set {wk) of solutions of (5.18) and an s0 > 0 such that 

., 

wk(s)exp {- !:0 A.k) -::> ek' 

where ek is a complete set of eigenvectors for B. . Thus, an estimate 

on the growth of the solutions wk can be given, and transforming oack, 

estimates on the growth of a complete set of solutions of L2ny = AY can 

be made. 

The asymptotic method is not always applicable. Generally, when 

the coefficients have "large" oscillations, it is not possible to 

tra.nsfonn the problem into one which is a small perturbation of a dif-

ferential opera.tor with constant coefficients. Even if such a 

transfonnation is possible, the constant matrix B of the decomposition 

(5.19) may have multiple eigenvalues. The problem of finding asymptotic 

estimates in the latter case is not easy, and only recently have some 

beginnings been made by Devinatz and Walker. It is a problem of the 

latter type that will be considered. The asymptotic theorem of 

Levinson's is Theorem 1, page 88, of [8]. It is this theorem that will 

be used. Before stating this theorem, a lemma and a definition will be 

stated. 

DillFINITION 5.11 Let b be a real number and D a real-valued continuous 

function defined on b ~ x. < oo. Then D is said to satisfy condition ( *) 

if and only if either 



91 

(i) J'~ D( t) dt -> oo as x -> oo and there is a real number K such 

that if b < x.. < x2, then Jx2 D( t) dt > K, or 
- i - x1 

(ii) there exists a real number K such that if b ::; x1 ::; x2• 

then Jx2 D( t) dt < K. 
x1 

Note that K need not be positive, Condition (*) will be used in 

the theorems to follow and it will be useful to have some conditions 

that imply condition(*). The proof of the following lemma is 

elementary, 

LEMMA 5.11 Let b0 and b1 be real numbers with b0 ::; b1 and let D be a 

continuous function defined on b0 ::; x::; oo. Then, each of the following 

implies D satisfies condition(*), 

(i) The restriction of D to x ~ b1 satisfies condition(*), 

(ii) D is nonnegative, negative, nonpositive, or positive for 

all x ~ b1 , 

(iii) There exists a monotone function m and a bounded function w 

(iv) D = n1 + n2 for x ~ b1 where n1 satisfies condition (*) and 

D2 is integrable on b1 ::; x < oo. 

Following is the variation of Levinson's theorem that will be used. 

In this theorem and in the next, capital letters will denote matrices 

or vectors and lower case letters will denote real or complex valued 

functions. In Theorem 1, page 88, of [8], a condition that Re (Ak - Aj) 

does not change sign is made. In the following theorem, this condition 
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is replaced by a condition that Re (Ak - Xj) satisfies condition:*). 

It is easily seen that the theorem remains valid under this weaker 

condition. Theorem 8.1, Chapter 3, of[?] uses this weaker condition. 

ntEORElM 5.161 Let T be the diagonal matrix 

and let F be a continuous matrix such that IF(x)I is integrable on the 

interval b S x < CD. For a fixed k, 1 ,:S k ,:Sn, define 

If all the functions Dkj satisfy condition (*), then the differential 

equation 

Y' = [T(x) + F(x)J Y 

has a solution Yk(x) such that as x -> CD, 

where Ek is the elementary vector with zeros in each position except the 

k-th position which is one. 

Before presenting.the theorem, a preliminary lemma will be needed. 

The lemma follows immediately by performing the indicated differen

tiation. 

LEMMA 5.2: Let each of S and T be a nondegenerate connected subset of 

the real line. Suppose there is a continuously differentiable homeo

morphism h1 S -::> T such that h' does not vanish on T. Let g be the 



function inverse of h. For M the set of n x n complex matrices, let 
n 
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A& T -> M be a continuous function, Let Qi T ....> M be a continuously 
n n 

differentiable function such that Q-1(t) exists for each tin T, Then, 

if Y01 T ....> Mn is a fundamental matrix for Y' = AY, then z0 1 S -> Mn, 

defined by z0 a Q(g)Y0(g), is a fundamental matrix for 

Z' = (l/h'(g)) [Q(g)A(g)Q-l(g) + Q'(g)Q-l(g)l Z. 

The following theorem employing the asymptotic method is due to 

Walker [761. Although he established the theorem for more general 

coefficients r, p, and q on t 4y, the theorem will be established for the 

particular case 

(_5.20) 

since the general theorem is quite complicated and is less suited to the 

deficiency index problem, Particular differential expressions of the 

form (5.20) have been studied in recent years since they hope to give an 

indication of how "near" the sufficient conditions of such results as 

the preceding fourth-order results are to being necessary. This partic-

ular result will show the results of Theorem 5,13 are not the best 

possible for L4y given by (5,20). 

THEOREM 5,171 Let t 4y be given by (5.20) with a = 0, c = O, and b = 4. 

Then the differential expression L4y is in the limit-2 (limit-point) 

case if j = 2. 

PROOF1 Let the function h1 [l, oo) -> [o, oo) be given by the equation 

h(x) = (l/J)(x3 - 1) and let g1 [O, oo) ....> [l, co) be given by the 

equation g(s) = ( Js + l)l/3, Note that g is the function inverse of h. 
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For s ~ O, define the functions a. and 13 by 

a.(s) = 4(Js + 1)-1, a(s) = (Js + 1)-B/3. 

Then it is easily seen that a.', 13', and a.2 are in L(O, co). Let v> 1 be 

such that s va is in L( 0, co). Define E: [o, co) -> M4 by 

and define Gs [l, co) -> M4 by 

G(x) = diag [x3, 

Let A be the matrix 

0 

0 
A(x) = 

0 

-1 x, x , 

1 0 

0 1 

4 
-x 0 

1-i 0 0 

By Theorem 1.2, the system 

(5.21) 

0 

0 

-1 

0 

Y' = AY (5.22) 

is equivalent to the differential equation L4y = iy. It will be shown 

that there exists a fundamental matrix Y0 for (5.22) such that as 

X -> CD, 

G(x)Y0(x)E(h(x)) = K + o(l) (5.23) 

where K is the matrix 
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1 l 0 l 

1 .;.l 0 0 
K = 

-1 -1 0 0 

0 0 -1 0 

Let Y1 be a fundamental matrix for (5.22) and define Q1 [l, oo) -> M4 

by 

and let zl be given by 

( 5 .24) 

By Lemma 5.2 1 z1 is a fundamental matrix for the system 

Z' = (l/h'(g)) [Q(g)A(g)Q-l(g) + Q'(g)Q-1(g)J Z. (5.25) 

Note that (5.25) may be expressed as 

Z' = [A0 + v] z ( 5. 26) 

where A0 and V are g1 ven by 

0 1 0 0 Ja./4 0 0 0 

0 0 1 0 0 a./4 0 0 
A = ' v = 0 0 -1 0 -1 0 0 -a./4 0 

0 0 0 0 0 0 0 -Ja/4 

Let J be the matrix 
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1 1 0 1 

1 -1 1 0 
J = 

-1 -1 0 0 

0 0 -1 0 

Let 

(5.27) 

and note that by (5.26), 

(5.28) 

Also, note that w1 is nonsingular. By a calculation, 

1 0 0 0 0 0 -a/2 0 

J~lA J = 
0 -1 0 0 

' J-lVJ = 
0 0 a./2 0 

0 0 0 0 0 0 0 -3a./4 0 

0 0 1 0 a. a. 0 Ja./4 

For s ~ 1, define p by 

P(s) = diag [l, 1, sv, ll 

and let x1(s) be given for s ~ 1 by 

( 5. 29) 

Then it follows from (5.28) and (5,29) that 

( 5. 30) 

Also, note that x1 is nonsingular, Expression (5,30) may be expressed 

as 
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xi = [B + c]x1, (5 .31) 

where B and C are given by 

l -a./4 0 0 0 0 -v/ -cx.s 2 0 

-a./4 -1 0 0 0 0 -v/ a.s 2 0 
B "" 

-1 I , c = 
0 0 VS -Ja. 4 0 0 0 0 0 

0 0 0 0 
-v 0 a. a. s 

From the choice of v and the definition of a., it is clear that C is in 

L(l, CD). Let R be the function defined as Rs ¢ x [l, CD) ...;> ¢, where 

R(z,s) = det (B - zI4). Then a computation shows 

R(z,s) = ('Jcx./4 - z)(- Ja./4 + vs-l - z)(z2 - 1 - a.2/16). 

Let Al (s) and A2(s) be the two continuous functions satis·fyi1'ig 

A~(s) - 1 - a.2(s)/16 = O, k =land 2. Then A1(s) = 1 + o(l) and 

A2(s) = - 1 + o(l) as s ..\> CD since cx.(s) = o(l). Also, define AJ and A. 4 

by 

A3(s) = - Ja.(s)/4 + vs-1, A.4(s) = Ja.(s)/4, ( 5.32) 

and note that R(A.k(s),s) = 0 for l :S k S 4. Let S be the matrix 

l+'Al -a./4 0 0 

a./4 -1-A 0 0 
s == 

.2 

0 0 l 0 

a.(l+A.4•a./4) a.(A.4-1-a./4) 0 l+A.~-a.2/16 

Then by using the definitions of A.1 and A.2, it is easily calculated that 



From the defini t1ons of a., A. 1 , and A. 2, 1 t follows that II S' I is 

integrable on 1::; s < CD. Also, note that ass -> CD, a.= o(l), thus 
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S(s) = d.1ag [2, - 2, 1, ll + o(l). (5.33) 

Therefore, S is nonsingular for sufficiently large s. Applying 

Lemma 5.2 agai:n and using (5.31) while letting 

(.5. 34) 

for s ?::. s1 :::_ s0 , it follows that u1 is a fundamental matrix for the 

system 

( 5. 35) 

where, for this application of the lemma, h(s) = s. By consideration of 

(5.33), both s and s-1 are bounded for s :::. s1 • Thus, since 11 ell is 

integrable on s 2:. s1 and jls•I is integrable on the same interval, it 

follows that II scs-1 + s·s-1 11 is integrable on ~l ~ s < CD. Therefore, 

the system (5.35) may be expressed as 

U' = [T + F] U, (5.36) 

where 

T = diag [l, - 1, A. 3, A.4], 

It is easily se.en that II Fii is in L(s1 , CD). Also, it is easily seen 

by using Lemma 5.1, for Dian the real part of the k-th diagonal element 

of T minus the m-th, Dion satisfies condition (*) for all k and all m. 

Therefore, by Theorem 5.16, there is a fundamental matrix u0 for the 



system (5.36) such that as s ...;;> CD, 

By evaluating the int-egral using (5.32), the exponential factor in 

(5.37) is given by DE(s) where D is the constant diagonal matrix ob

tained by evaluating the integral at s1 • Therefore, by (5,37), 

u0(s)DE(s) = r4 + o(l). 
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The reverse transformations will be made. D is nonsingular and so 

each of u0D and u1 are fundamental m~trices for the system (5,36). Let 

H be a constant nonsingular matrix such that u0D = u1H. Then by (5,34), 

(5.29), (5.27), and (5.24), for s = h(x), 

(5,38) 

Let Y2 = Y1H on the interval [g(s1), CD) and extend this to a fundamental 

matrix of (5.22) on all of [1, oo). Then from (5.38). 

By (5.39), ass-> oo (h(x) -> oo), 

(5.40) 

Since J-l is constant and 

s-1 (x) ..;:. diag [1/2, 1/2, 1, l], 

(5.40) implies 



that is, 

It is easily calculated that 

JPJ-l K di [l 1, 1, hv], = 1 ag , 

where 

Therefore, 

that is, 

Now, let 

K ... 
1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

h-v-1 

0 

1 

and note that diag [l, 1, 1, hvl Q = G. Since diagonal matrices 

commute among themselves, 

G(x)Y0(x)E(h(x)) = Ki1( m)J + o(l) = K + o(l). 
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Therefore, (5.23) is established. The conclusion of the theorem may now 

be shown. The first row of the product GY0E will be compared with the 

first row of K. From (5.21), using g(h(x)) = x and h(g(s)) = s, 
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Then by comparing the first and fourth columns, there are solutions y1 

and y2 such that 

Since h(x) tends to infinity with' x, y1 tends to infinity and y1 is not 

in L2(1, a>). Also, it is clear that no linear combination of y1 and y2 
2 can be in L (1, m). Therefore, the limit-point case holds and the proof 

of Theorem 5.17 is complete. 

Theorem 5,17 implies the differential expression 

iv ( 4 ) L4Y = y - x y' I + y 

is in the limit-point case and thus the condition 

where p(x) = x4 and q(x) = 1, of Theorem 5,13 is not nearly a necessary 

condition for the limit-point case to hold, 

This survey of the deficiency index problem will be concluded by 

some results that connect certain results for the second and fourth-

order cases. This connection will be considered by exa.rilining the 

limit-p properties of the fourth-order operator obtained by "squaring" 

the second-order operator, that is, for sufficiently differentiable co-

efficients p and q, 

2 L y = L(Ly), 

where Ly is the operator defined by (5.4). 
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Let p and q be real-valued functions such that p(x) > 0 for all 

x :::_ 0, q is locally integrable on 0 ~ x < CD, and p, p', p", q, and q' 

are all locally absolutely continuous on 0 < x < CD. Then (5.41) can be 

put into the form 

L2y == (p2y")" _ ( 2pq _pp" y')' + (q2 _ pq" _ p'q')y. 

The first of these results is quite easily established and the results 

are due to Chaudhuri and Everitt [ 5 l. 

2 THEOREM 5.181 The differential expression L y is in the limit-4 case if 

and only if Ly is in the limit-circle case. 

PROOF1 Suppose Ly is in the limit-circle case. Let u(x,i) and v(x,i) 

be two linearly independent solutions of Ly = iy. Then, since Ly is in 

the limit-circle case, both u(x,i) and v(x,i) are in L2(o, CD). Also, 

since the coefficients of Ly are real-valued, u(x,i) = u(x,- i) and 

v(x,i) = v(x,- i) where u(x,- i) and v(x,- i) are solutions of Ly= - iy. 
. 2 

Clearly, both u(x, - i) and v(x, - i) are also in L ( O, oo). Then, 

2 L u(x,i) = L(Lu(x,i)) = L(iu(x,i)) = - u(x,i), 

2 L u(x,- i) = L(Lu(x,- i)) = L(- iu(x,- i)) = - u(x,- i). 

Similar relations hold for v. · Thus, the four functions u(x,.:!: i) and 

v(x,.:!: i) are solutions of L2y = - y. It is easily shown that the four 

solutions are linearly independent. Since the limit-4 case is inde

pendent of the parameter Ai L2y is in the limit-4 case. 

The argument is reversible. If L2y is in the limit-4 case, then 

all solutions of L2y = - y are in L2(o, oo) In particular, for u(x,i) 
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and v(x,1) linearly independent solutions of Ly = iy, u(x,.±, i) and 

2 
v(x,.±, i) are four linearly independent solutions of L y = - y and are in 

L2(o, ro). In particular, the solutions u(x,i) and v(x,i) of Ly= iy are 

2 in L (0, ro). Therefore, Ly is in the limit-circle case and the proof is 

complete. 

Let [ u v l denote the bilinear form associated with Ly and 

[ u v 12 the bilinear form associated with L2y. The expression Ly will 

be assumed to be in the limit-point case. The following theorem g1 ves a 

2 characterization for L y to be in the limit-2 case. Since part of the 

proof is in terms of the theory of self-adjoint operators, some sets 

will need to be defined. Let¢ be the boundary value function defined 

for the second-order problem and ¢1 and ¢2 the boundary value functions 

for the fourth-order problem. 

Let D(T) be the set of all functions f satisfying the following 

cond.i tions. 

(i) 

(ii) 

(iii) 

(iv) 

2 
f is in L ( 0, ro), 

f' is locally absolutely continuous on 0 < x < ro, 

Lf is in L2(o, ro), and 

[ f ¢ l(o) = o. 

Then define T by T(f) = Lf for fin D(T). 

Let D(T2) be the set of all functions f satisfying the following 

conditions. 

(i) f is in D(T), and 

(ii) Tf ls in D(T). 

Then define T2 by T2(f) = T(Tf) for fin D(T2). 

Let D(S) be the set of all functions f satisfying the following 

conditions. 



2 
f is in L ( O, oo), (i) 

(ii) f"' is locally absolutely continuous on 0 :S x < oo, 

(iii) L2 f is in L2 ( O, oo), and 

(iv) [ f ¢i ]2(0) = O, i = 1, 2. 

Then define S by 

S(f) = L2f 

for f in D(S). 
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(5.42) 

Assume Tis self-adjoint and u and v are functions in D(T2 ). From 

the definition of D(T2), these functions are in D(T) and Lu and Lv are 

also in D(T). Therefore, 

(T2u,v) = (T(Tu),v) = (Tu,Tv) = (u,T2v), ... 

implying T2 is self-adjoint. Also, if Ly is in the limit-point case, 

the second-order version of Theorem 4.4 implies T is self-adjoint. To 

see this, let u and v be in D(T). Then applying Theorem 3,2 with 

f1 = g1 • ¢, f 2 = g2 = u, and f 3 = gJ = v yields the relation 

[ u v j(O) = O. By Theorem 4.4 and Theorem l.J, 

(u,Lv) - (Lu,v) = [ u v ]( oo) - [ u v l(o) = O, 

implying T is self-adjoint. A similar result holds for the operator S, 

that is, if L2y is in the limit-point case, then S is self-adjoint. 

It is readily calculated by Definition 1.5 that 

[ u v ]2(x) = [ u Lv ](x) + [ Lu v J(x) (5,43) 

when certain differentiability conditions are assumed on p and q, For 

example, involved in the second-order quasi-derivative is the 
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expression (py')'. This can be expanded to p'y' + py" and (5.43) can 

then be established with elementary calculations. The characterization 

that L 2y be in the limi t-2 case can now be gl ven, The :Proof of thi.s 

theorem is given in Section 7 of [51 and is establ'ished by showing that 

D(T2) = D(S) under the conditions of the theorem. 

THEOREM 5,191 Let Ly be in the limit-point case and let S and D(S) be 

as defined in (5.42). Then L2y is in the limit-2 case if and only if 

f in S implies Lf is in L2(o, oo). 

The following theorem gives a necessary and sufficient condition 

for L2y to be in the limit-) case in terms of the solutions of Ly = AY• 

Its proof is given in Section 8 of [5]. 

'IliEOREM 5.201 Let Ly be in the limit-point case and let ¢(x,A) be that 

solution of Ly• Ay such that for all A, 

¢(0,A) = O, ¢'(0,A) = - 1. 

Then the differential expression L2y is in the limit-3 case if and only 

if there is a value of A with 

- rr/2 < Arg A < rr/2, Arg A f 0 

and a complex constant k such that 

2 is in L ( 0, CD) • 

The following theorem is an application of the.previous theorems 

on the square of Ly. 
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'IHEOREM 5.211 Let Ly .. - y" + qy and assume q' is locally absolutely 

2 continuous on 0 ~ x < CD. Then Ly is in the limit-point case and 1 y 

is in the limit-2 case if either 

(1) 2 q(x) ~ 1ti for all x ~ o.and q"(x) ~ kq (x) almost everywhere 

for x ~ 1 where 0 ~ 1ti < CD and 0 < k < 1, or 

(ii) - k2x2/3 ~ q(x) ~ k,.,,x2/3 for all x ~ 0 and q"(x) ~ k4x4/ 3 for 

almost all x ~ 0, where O ~ k2, k 3, k4 < CD. 

In Theorem·5.21, condition (1) and Theorem.5.? imply Ly is in the 

limit-point case. Condition (11) and Theorem 5.1 imply Ly is in the 

limit-point case. Condition (i) and Theorem 5.13 imply L2y is in the 

limit-2 case and condition (ii) and Theorem 5.14 imply L2y is in the 

limit-2 case. 

2 Some examples illustrating all the possibilities of Ly and L y are 

g1 ven. If Ly is given by 

Ly= - y".+ qy 

with q given by any of 

2 1/2 q(x) = 0, q(x) = x , q(x) = - (x + 1) , 

then Ly is limit-point and L2y is limit-2. In each of the three cases, 
. 2 

(5.44) is limit-point by applying Theorem 5.1 and L y is limit-2 by 

Theorem 5. 21. 

For Ly given by (5.44) and q given by 

q(x) = - ex + 1/16, 

Ly is limit-circle and L2y is limit-4. That Ly is limit-circle follows 
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from Corollary 5.3 by taking q1(x) = - ex in the definition of q2 and 

2 letting q • q2 • L y is limit-4 by Theorem 5,18. 

Let Ly be given by (5,4) with 

4 2 p(x) = (l/6)(x + 1) , q(x) = (x + 1) .• 

Then q is clearly bounded below and thus by Corollary 5.2, Ly is in the 

limit-point case. 2 By Theorem 5.18, L y is not in the limit-4 case. 

Let n = - (1/2)(7 - .fjj) and let 

f(x) • (x + l)n. 

2 It is easily calculated that for the given value of n, L f = 0, Also, 

- n < - 1 and thus f is in L 2( 0, oo). It is also easily verified that 

L:f = - (l/6)(n2 + Jn - 6)(x + l)n+Z, 

' 2 
Then, since n + 2 > 0, Lf is not in L (0, oo). Clearly f•" is locally 

absolutely continuous on 0 :::;: x < · oo. Redefine f, if necessary, on the 

interval 0:::;: x ~ 1 such that condition (iv) of the definition of D(S) 

holds. Then for this new function, say g, g and L2g are in L2(o, oo) 

and g satisfies condition (iv) of the definition of D(S). Therefore, 

g is in D(S). Now, if L2y were in the limit-2 case, Theorem 5.19 would 

imply Lg is in L2(o, oo), That is, Lf is in L2(o, oo), a contradiction. 

2 Thus, L y is in the limit-3 case. 



CHAPTER VI 

SUMMARY 

The primary purpose of this paper has been to trace the development 

of the deficiency index problem and to present a justification for its 

existence. Fourier series were generalized by Sturm and Liouville so 

as to cover the eigenvalues and eigenfunctions of the formally self-

adjoint differential expression 

Ly= - (py')' + (q - A)y = O A 
( 6 .1) 

subject to real linear boundary conditions at either end of a compact 

interval 0 ~ x ~ b, b > 0, The deficiency index problem had its begin

nings in Hermann Weyl's [79] investigations of the generalizations to a 

singular interval of the Sturm-Liouville expansions associated with 

(6.1). As was demonstrated in Chapter II, the extension of the problem 

to the semi-infinite interval 0 ~ x < oo induced a classification of the 

differential equation (6.1) into one of two families. Membership in one 

of these families is determined by whether (6.1) is in the limit-point 

or limit-circle case, that is, whether or not all solutions of (6.1) lie 

in L2(o, oo). These cases are determined geometrically by "contracting 

circles" in the complex plane and are independent of the complex 

parameter A • 

W. N. Everitt [30] extended the deficiency index problem to 

formally self-adjoint differential expressions of any even order. His 
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development was presented in Chapter III for these higher order problems 

by restricting attention to the fourth-order case. This restriction 

still contains all of the difficulties present in higher order problems. 

'rhat is, generalization of the development to problems of order 2n, 

n > 2, is a matter of notation while the extension from second-order to 

fourth-order introduces some problems caused by the existence of cases 

"between" the limit-point and limit-circle cases. These difficulties 

may be seen by comparing the results of Chapter II with those of Chapter 

III. The results of Chapter II follow immediately from those of Chapter 

III, but the second-order case was presented separately since the ideas 

are more intuitive and geometric and the development is simpler. 

Separate development of a second-order expansion theorem was 

omitted even though the restrictions from fourth-order expansions to 

those of the second order have the advantages of simplicity, However, 

the order of simplification from fourth-order expansion theorems to 

those of second order is not sufficient to justify a separate develop

ment, In other words, the establishment of a second-order expansion 

theorem is almost as complicated as the establishment of the fourth

order theorem, 

The primary goal of this paper is contained in Chapter V. The 

intention has been to present in a unified manner various results on 

necessary and sufficient conditions for the various limit-p cases to 

occur and to examine various techniques employed to establish these 

results. The presentation of these results and techniques may serve to 

aid in the further investigation toward the ultimate goal of detennining 

necessary as well as sufficient conditions for the detennination of the 

deficiency index of a particular problem. This ultimate goal would 
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seem to be very difficult to obtain in light of Theorem 5.13 due to 

Eastham and Thompson [22]. Recall that this theorem states that for 

the differential expression - y" + qy, the coefficient q may be re

defined on a set of arbitrarily small positive measure and change the 

deficiency index. 

As discussed in Chapter V, the primary method for considering 

differential ~xpressions of order higher than two is the asymptotic 

method. As seen in the presentation of the example of this method, this 

technique can be quite difficult to apply and in fact may not always be 

applicable. Thus, it would seem that one of the primary problems in the 

area of the investigation of higher order problems would be to establish 

a technique, other than the asymptotic method, for classifying a differ

ential expression that is not in the limit-point case, that is, the 

deficiency index is not half the order of the expression. Recall that 

Theorem 4.4 only determines whether the expression is or is not in the 

limit-point case. 

Investigation of the deficiency index problem has not been 

restricted to differential expressions with real-valued coefficients. 

Everitt [27, 28, 32, 33, 351 has considered the problem for differential 

expressions having complex-valued coefficients. This problem is more 

difficult since the conjugation operator does not necessarily commute 

with the operator determined by the differential expression as has been 

the case of real-valued coefficients. It would be of interest to deter

mine those results that carry over from the real-valued coefficient 

problem. The complex-valued coefficient problem was not considered in 

the interest of compactness of presentation. 

In recent years, the problem of classifying differential 
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expressions into various limit-p cases has been extended to concepts of 

whether the differential expression (6.1) is in the strong (weak) limit 

point case or whether it is separated in L2(o, CD) space; [2, 40, 41, 42, 

43, 441. Recall that Theorem 4.4 implies (6.1) is in the limit-point 

case if and only if the expression [ u v ](b) tends to zero as b -~ends 

to infinity for certain functions u and v. To illustrate the tenns 

used above, definitions will be fonnulated for the second-order differ-

ential expression 

Ly = - y" + qy (6.2) 

where the coefficient q belongs to the class LP(o, CD) for some p, 

1 ~ p < CD, 

DEFINITION 6. l 1 Let f be a function in L 2( 0, CD) and let Ly be given by 

(6.2). Then f belongs to the class D(q) if and only if 

(i) f is in L2(0,CD), 

(ii) f and f' are locally absolutely continuous on 0 < x CD, 

(iii) Lf is in L2(o, CD). 

Recall that by Definition 4.4 and the definition of the fonn 

[ u v 11 (6,2) is in the limit-point case if and only if 

~=~CD [ f(b)g' (b) - f' (b)g(b)J = 0 I (6.3) 

DEFINITION 6.21 The differential expression Ly of (6.2) is said to be 

strong limit-point if and only if for each pair of functions f and g in 

the class D( q) , 

lim f(b)-'(b) = 0 
b...> CD g ' (6.4) 
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Clearly, if Ly is strong limit-point, then Ly is limit-point. Ly 

is called weak limit-point if it is limit-point without being strong 

limit-point. The concept of a differential expression ,to be separated 

in L2(o, en) is basically a modification of condition (iii) of Definition 

6.1. 

DEFINITION 6.31 Let Ly be given by (6.2). Then Ly is said to be 

separated in L2(o, en) if and only if for fin D(q), 

(i) 

(ii) 

q is locally square integrable on 0 ~ x < en, and 

2 qf is in L ( 0 ,. CD) • 

Note that Ly is separated in L 2( 0, en) if in addition to Lf being in 

2( ) 2 ) L 0, en , each of the tenns of Lf is also in L (0, CD • Several papers 

have appeared concerning these concepts. An expository paper presenting 

these concepts in a unified manner and connecting these with known limit-

point criteria would be of interest. 

The bibliography given here is not restricted to those works•upon 

which this paper depends. One of the goals in undertaking the research 

for this paper has been to locate those papers and books that deal in a 

general way with eigenfunction expansion theorems and the deficiency 

index problem. With this bibliography, it is hoped that anyone wishing 

to consider some aspect of the topics presented here or some of the 

generalizations to the concepts mentioned above will find a comprehen-

sive listing of appropriate sources with which to begin a study. 
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