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CHAPTER I
INTRODUCTION

This paper is concerned with some aspects of a broad area in
differential equations widely known as the eigenvalue problem. The
problem in its classical form consists of a linear differential expres-
sion Ly defined on a compact interval of the real line together with a
set of boundary conditions at the endpoints of the interval. The
desired result is to determine a sequence of so-called eigenfunctions
assoclated with the expression Ly and then, under certailn conditions,
to represent a function f as an infinite series in these eilgenfunctions,
The problem described above may perhaps be made clearer by the use of a

simple example.
EXAMPLE 1,1: Consider the linear differential expression Ly glven by
Ly = - y" (1.1)
defined on the interval 0 < x < 7 with the boundary conditions
y(0) = y(m) = 0, (1.2)

where the primes represent differentiation with respect to x. An elgen-
value of Ly is a complex number A for which there exists a nontrivial
function y(x,\), called the elgenfunction corresponding to A\, defined on
the lnterval [O,ﬁ] such that y' is absolutely continuous on that inter-

val and y satisfies the differentlal equatlon Ly = Ay with boundary



conditions (1.2), It is easily verified that the only values of A for

2
which a nontrivial function y(x,A) exists are those real numbers A =n ,

n=1, 2, .... Thus the elgenvalues assoclated with Ly are kn = nz,

[}

n=1 2, ..., and the corresponding eigenfunctions are y(x,nz) = sin nx,
n=1, 2, ..., If f is an absolutely continuous function defined on the
interval [O,w] that vanishes at the endpoints of the interval, then f

may be represented by the infinite serles
@ (N
(2/w)zn=1(f o sin(nt)£(t) dt)sin(nx). (1.3)

The term "represents" can mean various things. For example, one common
interpretation is that the series (1.3) represents f on the interval if
for Sn(x) the n-th partial sum,
lim fg |S (x) —‘f(x)l2 dx = 0,
n
n-> @
That is, the series converges in the mean to f (or converges to f in
the norm of the Hilbert space LZ(O,ﬁ)). Another common interpretation
is that the serles represents f in the sense
lim S _(x) = f£(x)
n
n-> @
for each x in the interval., This is commonly called direct convergence.
The latter form of convergence will be considered for even order differ-

ential expressions.

The series (1.3) is the well known Fourier sine series, The
subject of Fourier serles representation of functions is a part of a
more general toplc called Sturm-Liouville theory., Interest in Fourier

series expansion of functlons has existed almost as long as calculus,



The ﬁopics in mathematical physics of interest of that period included
boundary value problems in vibration of strings stretched between fixed
points and vibrations of bars or columns of alr, assoclated wilth mathe-
matical theorles of musical vibrations. Rarly contributors to the
theory of vihrating strings werevProok Taylor, Daniel Ternoulli,

L. wuler, and d'Alembert. By the 1750's, the 1atter three mathemaf
ticlans had advanced the theory to the stage that the partial
differential equation Yip = azyxx was known and a solution of the
boundary value problem had been found. Also, the concept of funda-
mental nodes of vibration led those men to notlons of superposition of

solutions, that 1s, to a solutidn of the form
®
y(x,t) = 2:£=1 bnsin(nﬁx) cos(nmat)

and thus to the matter of representing an arbitrary function by a
trigonometric series. In 1822, J.‘B. Fourier presented many instructive
examples of expansions in trigonometric series in connection with
boundary value problems in the conduction of heat., In 1829,

P. Dirichlet established general conditions on a function sufficient

to ensure the convergence of its Fourler series to values of the
function.

In 1830, J. C. F. Sturm and J. Liouville almost simultaneously
developed a systematic theory of the expansion of arbitrary functions in
elgenfunctions assoclated with the formally self-adjoint differential
expression Ly = - (py')' + qy on a compact interval with p and q real-
valued and p > 0. (These last terms will be described shortly.) This
is the natural extenslon of the theory of Fourier which has its base in

the differential expression (1.1) on a compact interval. In 1910,



Hermann Weyl published a major paper that generalized the theory of
Sturm and Liouville to the singular differentlal expression glven by
Ly = - (py')"' + qy defined on the half-line 0 < x < o where the real-
valued functions p and q have finite limits as x tends to zero from the
right, It was in this generalization that he introduced some simple
geometric concepts in order to determine whether or not the function to
be expanded must flrst satlisfy a boundary condition at x = .,

The subject of considering Weyl's generalization of the Sturm-
Liouville theory (hereafter called Weyl's theory) was essentially
stagnant for approximately thirty-five years following Weyl's work,
There were, however, two attempts made during this period to further
generallze Weyl's theory to differential expressions of higher orders.
The first of these was undertaken by W. Windau [81] in 1921 to gener-
allize the problem to fourth—order»expressions. The second attempt was
made by D. Sin in 1939-40 for arbitrary order. However, both authors
made essentlal errors in the beginningé of thelr developments and as a
result, falled to succeed in satisfactorlily extending Weyl's theory to
higher order problems., Glazman [461, in 1950, confirmed that these
authors were 1n error. Weyl's theory was picked up successfully in the
mid 1940's by B, C. Titchmarsh [747] and was further developed and
modernized using methods differing from those employed earlier. Weyl
had used the theory of integral equatlons and Stone [71] presented an
alternative method by proceeding via the general theory of linear
operators in Hilbert space. Tltchmarsh sought to avoid both these
methods and proceeded by means of contour integratlons and the calculus
of residues. He notes that many times, however, he is doing no more

than adopting the general theory of linear operators to the particular



case belng considered.

K. Kodaira [591, in 1950, published a correct generalization of
Weyl's thebry to differential expressions of any even order. He pro-
ceeded by means of general linear operator theory. In 1955,

W. N, BEveritt, in his Doctor of Philosophy thesis (Oxford), used the
methods of Titchmarsh together with some ldeas of Kodaira and gener-
alized Weyl's theory to differential expressions of the fourth order.
Kodaira's results require a strong background in operator theory to
read, while Everitt's [30] analysis 1s based on elementary methods of
complex function theory. In this sense, Bveritt's analysis may be
considered to be more elementary. Everltt published his results in
1963.

From this general problem, there has emerged a problem of deter-
mining a classification of linear, formally self-adjoint differential
expressions of order 2n into so-called limit-p cases, n < p £ 2n. The
consideration of this classification stems from the necessity of deter-
nining whether or not boundary conditions at the singular end of the
interval must be imposed upon the function in order that it may be
expanded in terms of the elgenfunctions. As will be seen, it turns out
that if the differential expression is in the limit-n case, then no
boundary conditions at the singular endpoint need be imposed upon the
functions to be expanded. In each of the other cases, a boundary condi-
tion must be imposed. The classification limit-n is usually called
limit-point and that of 1limit-2n is usually called limit-circle, This
terminology has come from the second-order case and has an elegant geo-
metric interpretation. The problem of classifying these differential

expresslions is a falrly recent one although Weyl did give some criteria



involving the growth of the coefficients that place the differential
expression into the various limit-p cases. The majority of published
results have appeared since 1965.

An interesting problem that precisely parallels that of classi-
fication is one of determining the maximum number (up to linear

independence) of solutions to the problem
Ly =\y, 0<x< o, InX #0 (1.4)

that 1lie in the Hilbert space LZ(O,CD). It is the case that for

Imn A # 0, but otherwise an arbitrary complex number, the 2n-th order
differential expression Ly is in the limit-p case, n < p < 2n, if and
only if there exists a basis for the solution space of (1.4) that
contains precisely p functions in LZ(O.oo) and no basis contalns more
than p such solutions. The equivalence of these two problems will be
discussed in Chapter V.

The procedure in this paper will be to first consider the second-
order case by generallizing the results of Titchmarsh [74] to the con-
cepts of quasl-derlvatives. These results are presented in order to
have a compact presentation of those results first obtalned by Weyl.
It is also the case for second-order expressions that the geometry
involved is quite elegant. The theory will then be extended to the
2n-th order case via the fourth-order case. The generalization from
fourth to 2n-th order is direct while the generalization from second
order 1s not, as witnessed by Windau and Sin.

One of the primary goals 1is consideration of the problem of classi-
fication of second and fourth-order differential expressions into the

various 1limit-p cases. Much is known in the second-order case, while



less has been accomplished in the fourth-order case. There is only one
known method for obtaining results on the classification of 2n-th order
expressions and this method will be illustrated for the fourth-order
case.

Before proceeding, some background material and notations will be
established, Let (a,b) be an interval in R and let A: (a,b) => M" and
vt (a,b) > ¢" be functions where M" is the set of n x n complex
matrices and ¢n 1s the set of complex n-vectors. The usual conventions
as to the meaning of dy/dx and dA/dx as used in differential equations
will be adopted. Also, let llAl and Nyl denote a suitable norm on these
functions. A discussion of this notation may be found in the book by
Struble [?21. The notations z for the complex conjugate of the function
(matrix, number) z, A* for the transposed conjugate of the matrix A and
AT for the transpose of A will be adopted. The following criterion of
the meaning of a function being a solutlon of a differential equation

willl be assumed. The prime denotes differentiation with respect to x.

DEFINITION 1.1: A vector function y(x) is said to be a solution of the
matrix differential equation y'(x) = A(x)y(x), a < x < b, if and only if
y 1s absolutely continuous in every compact subinterval of (a,b) and
satisfies the differential equation almost everywhere in (a,b). A
vector or matrix function is sald to be absolutely continuous in a com-
pact interval if each component of the vector or matrix is absolutely
continuous in that interval.

The following definition of analyticity is standard.

DEFINITION 1.2: Let F: D -> ¢X, D a domain in ¢®. Then F is said to be

analytic at a point w, in D if and only if.in some nelghborhood

0



fw - wdl <8, §> 0, of w, in D, each component Fj of F is continuous

0

in w and is analytic in each component w, of w when all other components

k
are held fixed,

Following is a statement of the existence and uniqueness theorem
that will be used. This theorem is standard and its proof may be found

in many texts on ordinary differential equations, for example, Struble

[727, Naimark [65], or Coddington and Levinson [7].

THEOREM 1.,1: Suppose Pgr Byv eee and p, are real-valued functions

such that each pk~is measurable on an interval (a,b), - o<a<b<L o
and such that each Py is locally integrable on the interval (a,b) while
Py 1s of constant sign on the interval. Let C be a flxed vector in ¢n,
X, a real number such that a < x

0 0
2n x 2n matrix A be given by

< b and A a complex parameter. Let the

0 1 0
0 0 1
1,
:
A = R (1.5)
pli -1
Pha -1
Py 0

where the partitioning is between the n-th and (n + 1)-st columns and
TOWS and unmarked entries are zero. Then there exists a unique vector-

valued function y(x,C,\) that is locally absolutely continuous on



a < x <b, 1s an entire function of A for each fixed'x, and satisfies

the differential equation y' = A(\)y with the initial condition

y(xovcrk) =C

Some previously used terminology will now be discussed. Suppose

the coefficlents qk(x), k=0,1, ... , n of the differential expression

(m) (m-1)

Ly = qqy" " + qp¥ + ooty

have continuous derivatives up to order (m - k) inclusive on the open

interval (a,b). Let L*z be the differential expression given by
= (-1)™a2) ™ + (1) a, )™ 4 LG

called the adjoint of L. If all the coefficlents of a formally self-
ad jolnt dlfferentlal expression are real-valued, then the expression is

necessarlly of even order and can be put into the form
-1 -1 -1
Ly = (-l)n(poy(n))(n) + (1) (p (0 Nl s py. (1.6)

This result may be found in Section 1.5 of [65]. The expression (u,v)

will denote the inner product of two functlons in Lz(a,b) defined by
b -
(u,v) = fa u(x)v(x) dx.

Suppose Ly is a formally self-adjoint differential expression with

real-valued coefficients and define

vy =52 V@), vy -5 v Ve

for =1, 2, ... , 2n-1 where M, and N, are real constants. Denote
J 3k ik

the relations ij + ij =0, j=1,2, ... , 2n-1 by
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(U+V)y=o0. (1.8)
The relations (1.8) are called Sturmian boundary conditions.
DEFINITION 1.3: Let A be a complex number. Then the problem
Ly = Ay, (U+V)y =0 (1.9)

is called an elgenvalue problem and 1s sald to be self-adjoint if and
only if for each palr of functions u and v that has continuous n-th
order derivatives on the interval a < x < b and satlsfies the condition

(U + V)y = 0 also satisfies the condition (Lu,v) = (u,Lv).

Thus, a formally self-~-adjoint differential expression is the
differential expression associated with a self-adjoint problem (1.9).

Assume that the coefficlents 129 of (1.6) are locally integrable on
the interval, Then a more general differential expression is described
if the coefficlents are not assumed to be differentiable, A differen-
tial expression of the form (1.6) is still called formally self-adjoint
under these more general conditlions and it 1s convenient to consider a
generalization of the derivative called a quasi-derivative. The theory
of quasi-derivatlives 1is very similar to, and in some cases simpler than,
that of ordinary derlvatives and differentlal equatlions. The terms
"derivative" and "differential equation" will be retained even when it
may be more proper to use the expressions "quasl-derivative" and "“quasi-
differential equation." An excellent account of these concepts may be
found in Naimark [65]. Quasi-derivatives are defined below and it
should be noted that the definitlons are dependent upon the differential

equation being considered. The primary difference between differential
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equations and quasi-differential equations is that, in the latter case,
no requirements as to the differentiability of the coefficlent functions
are assumed. In the case of the following definition, the differential

expression being considered 1s (1.6).

DEFINITION 1.4: Let y be a vector function, Then the various quasi-

derivatives y[k}, with respect to (1.6), are defined by

y[k] - y(k), 0 <k<n-1, y[n] _ Poy(n)'
y[n+k] - Pky(n"k) _ (y[n+k-1]),’ 1<k<n,

(k)

where y denotes the k-th order ordinary derivative.

The connections among the 2n-th order differential expression
(1.6), its matrix formulation, and its quasi-derivative form will be
made, The following theorem is easily established using Definition 1.4

and elementary methods.

THEOREM 1.2: Let Ly be given as in (1.6) and let A be given as in
(1.5). Then for A a complex number, the following are equivalent

problems,
(i) Ly = Ay,
2
(11) )’]: n] =AY,

(111) y' = Ay where y = (y, yJ:l], e y]:Zn-l])T'

A notational device that will prove useful will be introduced.
This notatlon will be used to describe boundary conditions and to place

complicated expressions into a very compact form.

DEFINITION 1.5: Let Ly be as given in (1.6). Let u and v be two
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functions defined on the interval a < x < b, having quasi-derivatives
with respect to Ly up to order 2n - 1, and such that u, v, Lu, and Lv

are in L%(a,b). Then define
Cuv ) - s Laktent-) | [0 Rah - (1a0)
] i

Let Ly be as in (1.6). Then in the case n = 1, Ly will be

denoted by
Ly = - (py")' + ay
and in the case n = 2, Ly will be denoted by
Ly = (xy")" - (py')' + ay.

The next theorem indicates some of the useful properties of the
form (1.10). The proofs of these results follow from Definition 1.5

and by using integration by parts.

THEOREM 1,3: Let u and v be two complex-valued functions for which

Definition 1.5 applies. Then

(1) Luu(x) =0,
(11) [ uv J(x) =[ uv [x),
(111) [uv ¥x) =-[ v u J(x),

[+

(1v) [auv J(x) =of uv Yx) =[ uav |(x)
(v) [(u+v)w]l=[uw]l+[vw] and
(v) J2 (@) - w(td) ax =L uv (o) - uv Aa).
Furthermore, if u and v are solutions of Ly = Ay, then
(vi1) [ u v )(x) = constant, and>

(viii) 2iIm xf: w(x)v(x) ax = uv }(b) - uv J(a).
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In order to simplify the form of the Sturmian boundary conditions
(1,7), the form (1.10) may be used. For simplicity, this will be done
for the fourth-order case. The problems of other orders are similar.
Consider one of the boundary conditions ij = 0 and for the moment,

write this in terms of quasi-derivatlives as

ay(a) + Bym(ao + w[?'](a) + aym(a) =0, (1.11)

It is desired to put the boundary condition (1.11) into the form

[y#g Ua) =0 (1.12)

where @(x) is, as yet, some unspecified function with a suitable number

of quasi-derivatives. By using Definition 1.5, (1.12) may be written as

L3 ay(a) + 2@ @) - A )2 e - 33 la) = o.
(1.13)

Comparing coefficients in (1.11) and (1.13), it is seen that @§(x) need
only be a solution of the differential equation Ly = Ay that satisfies

the initlial conditions at x = a;

Ba) = -5, BrNa) = -y, B2Na) =5, BONa) =0 ()

Theorem 1.1 states that there exists a unique function @ satisfying
the differential equation and the initial conditions (1.14). Thus,
every boundary condition of the Sturmian type can be recast in the
form (1.12). A Green's function for the formally self-adjoint expres-

sion (1.6) will be needed.

DEFINITION 1.6: Let Ly be given by (1.6) and boundary conditions of

the form (1.7). Then a Green's function for the problem Ly = 0 with
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conditions (1.7) is a function G(x,z) satisfying the conditions:

(1) 6(x,z) is continuous and has continuous quasi-derivatives
with respect to x up to (2n-2) order inclusive for all x and z in the
interval [a,b1. ‘

(11) For any fixed z in (a,b), G(x,z) has continuous quasi-
derivatives of orders (2n-1) and 2n with respect to x in each of the
intervals [a,z) and (2,b]. The (2n-1)-st quasi-derivative is dis-

continuous at x = z with jump one. That is, for each fixed gz,

G[2n-1](z + 0,z) - G[zn-lq(z - 0,z) =1,
(111) In each of the intervals [a,z) and (z,b], G(x,z) satisfies
the differential equation Ly = 0 and boundary conditions of the form

(1.7).

THEOREM 1.4: If the boundary value problem Ly = O with boundary condi-
tions (l.?) has only the trivial solution, then the problem Ly = O

with conditions (1.7) has a unique Green's function,

A discussion of this last definition and theorem may be found in the
book by Coddington and Levinson [71

It is noted here how the word singular as applied to a differential
expression will be used. An endpoint of an interval (a,b) will be
called a singular endpoint of that interval with respect to the differ-
ential expression Ly if that endpoint is infinite or if at least one
of the coefficients of Ly does not have a finite 1limit at that endpoint.
Otherwise, the endpoint is called regular, A differentlal expression
1s called singular if at least one of the endpolnts of its interval of

definition 1s singular. It is called regular, otherwise. Notationally,
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if it is intended that an endpoint of an interval be regular, it will
be indicated as a closed endpoint. For example, with respect to Ly,
the interval [a,b) has the regular endpoint a and the singular
endpoint b,

In the following definition and theorem, the term elgenvalue will
be defined and an exlistence theorem will be given. Various forms of
arguments for the theorem may be found in standard books on ordinary
differential equations such as Coddington and Levinson [7]. An easily
followed and elegant development of the existence of elgenvalues for
this problem 1s in the form of some unpublished notes by Lagzer [627.
He has used the theory of the completely continuous symmetric opera-
tors. These notes deal only with the second order case, but the

generallization to the 2n-th order case is simple,

DEFINITION 1.7: Let Ly be the formally self-adjoint differential
expression (1.6) with the coefficients Py continuous and real-valued
on the compact interval a < x < b with po(x) positive for all those x.
Then, 1f A 1s such that there exlsts a nontrivial solution for the
self-ad joint problem (1.9), then A is called an eigenvalue for (1.9)
and the nontrivial solutions for that A are called the eigenfunctions

assocliated with A.

THEOREM 1.5: Consider the self-adjoint problem described in the pre-
vious definition. Then the set of eigenvalues for this problem forms
an infinite sequence of real numbers kk' k=1, 2, .... Furthermore,
the elgenvalues may be ordered so that

_<_)\ f....lim |)\|=+CD
1 2 k> o k



1%

This completes the results and definitions hecessary in order to
conslder the limit-point and limit-clrcle cases of formally self-

ad joint differential expressions.



CHAPTER II
THE SECOND-ORDER CASE

Consider the second-order formally self-adjoint differential

equation
Ly = - (py')' + ay = Ay (2.1)

where p and q are continuous and real-valued on the interval [0, o) |
and p takes on only posltive values., Separate consideration of this
case has the advantage of simplicity whidh is lacking in the fourth or
2n-th order case, n > 1. The interval [O,(D) will be considered only
for convenlence. By a suitable transformation of the real line and
obvious modifications of the expressions, the following theorem will
apply also to any half-open interval [a,b) or (a,b] where the open end-
point is singular and the closed endpoint is regular. In the following
theorem, the functions @ and X will be the boundary value functions as
discussed in Chapter I. Also note here that the second-order quasi-

derivatives with respect to the expression Ly in (2.1) have the form

yEl] = py', yEZ] =ay - (py")"'.

The procedure will be to consider the problem (2.1) on a compact inter-
val [O,b] where both endpoints are regular and then to move to the

singular case by letting b tend to infinity.

17



18

THEOREM 2.1t Let b be a positive number and A = u + iv, v % 0, a
complex number. Let @(x,A,b) and ¥(x,\,b) be two nontrivial solutions
of (2.1) on the interval 0 < x < m such that f takes real-valued
constant initial conditions at x = 0 and similarly for X except that
the initial values are taken at x = b, Let e(x,x,b) be a solution of

(2.1) on that interval such that
WERED! (2.2)

and such that 0 takes real initial conditions at x = 0. Then the set

of complex numbers f(b,\) for which the solution
¥ (x,0,0) = 8(x,\,b) + £(b,1)F(x,\,b) (2.3)

satisfies the boundary conditions

[¥Y KXAp) =0 (2.4)

forms a circle C(b,\) in the complex plane. Furthermore, as b tends
to infinity (possibly through a sequence) the solution V¥ (x,\,b) tends
to a function Y (x,A) which is a solution of (2.1) on the half-line
0 < x < o that is also in L2(0,oo). Also, the circles C(b,\) tend to
a set which is elther a circle or a point, denoted by C(\) and m(\),

respectively.

Proofs of the preceding result are found in Chapter 9 of [7] and
Chapter 2 of [74]. These proofs involve Mébius transformations and
the arguments are easlily followed. In the case the limiting set is the
point m(A), the method of the proof established that @#(x,r) = @#(x,\,b)
is not in L2(0,oo), implying that not all solutions of Ly = Ay are in

LZ(O,oo). If the limiting set is the circle C(A), then @#(x,A) is also
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2 f
in LZ(O,oo), and thus all solutions of Ly = Ay are in L°(0, ®). The
existence of at least one solution of (2.1) in Lz(o,oo) is dependent

upon A having a nonzero real part. This 1s illustrated by an example.

EXAMPLE 2,1t Let Ly = - y" and A = 0, Then yl(x) =1 and yz(x) = X
.are linearly independent solutions of Ly = Ay and clearly no nontrivial
linear combination of Y and y, can be in LZ(O,tn); As will be seen
for this example, if Im A # O, then exactly one (up to linear independ-
ence) solution can be found for Ly = Ay that lies in LZ(O,CD). The
existence of at least one L2(O,oo) solution for Im A f 0 is glven by

Theorem 2.1,

In the case the limit set is m(\) the limit-point case is said to
hold and in the case that the 1limit set is C(A) the limit-circle case
is sald to hold, The next theorem will justify the statement at the
end of Example 2.1 by showilng that the terms limit-point and limit-
circle are independent of the choice of A, so long as Im A # 0. That
is, the presence of the limit-point or limit-circle case depends only

upon the coefficients p and q.

THEOREM 2.2: (First Weyl Theorem) Let XO be any complex number and

suppose that all solutions of

Ly = Aoy (2.5)

are in LZ(O.oo). Then for any complex A, all solutions of (2.1) are

in L2(0, o).

PROOF: Let #(x) and ¥ (x) be two linearly independent solutions of
(2.5) such that [ §Y¥ 7] =1. Then by the varlation of parameters

(for example, Coddington and Levinson [7:p. 87 | or Naimark [65:p. 59 )
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the general solution of
(L - 2g)y = (= Ag)y (2.6)
1s glven by the function
X(xh) = e f(x) + ey (x) +
So DB (s) = B(sIF ()T = AX(s,h) ds,  (2.7)
where 1t is assumed [ ¥ ]=1. For convenience, denote
(% 212 09)/ < 1(5,0) (2.8)

for x > ¢ > 0 and functions f for which the expression makes sense.

Since # and ¥ are in LZ(O,oo), choose M > 0 such that for all x> ¢

I(fg,c) <M, I(¥,c) <M. (2.9)

An application of Schwarz' inequality, while using (2.8) and

(2.9), implies
S DA (8) - BIP (R)T = AK (sih) as|
<u([g) | +HY R Dh - 2p|T0Ge).  (2.20)

By applying Minkowski's inequality to (2.7) and using (2.10), it

follows that
1(/,e) < (Jo| + [ey| M+ [n - XO|2MZI(X,C) (2.11)

Since I(@,c) and I(X,c) tend to zero as c tends to infinity, let c be
sufficlently large so that M may be chosen to satisfy the condition

IK - kole <471, Then for c sufficiently large, (2.11) may be written
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I e) < (fog] + [ep| M+ (1/2)1(K0),
that 1s,
I(Y,c) < 2(|01| + |c2|)M. (2.12)

But the right hand side of (2.12) is bounded as x => o and this
implies X is in LZ(O,co). Thus, all solutions of (2.6) are in

1%(0, @), and the proof of the theorem is complete.

By the comments in the proof of Theorem 2.2, the limit-circle

case holds for A arbitrary if it holds for any one particular A,

Thus, the limit-circle case is independent of A. Note that A is not
restricted to being non-real in this theorem, so if the limit-circle
case holds for a real A, then the limit-circle case holds for all \.
Thus, in order to check whether the limit-point or the limit-circle
case holds for the expression Ly, one might as well consider the
solutions of Ly = 0. If all solutlons of this differentlal equation
are square-integrable, then the limlt-clrcle case holds, Otherwise,
the limit-point case holds. Thus, the equation in Example 2.1 1s in
the limit-point case by the above remarks. It should also be noted
that the requirement that q be continuous is not used and it is suffl-
cient to assume q satisfies some integrability condition such as being

locally integrable on 0 < x < .



CHAPTER IIT
THE FOURTH-ORDER CASE

An extension of the analysis of the preceding chapter will now be

made to the fourth-order case where Ly is expressed as

Ly = (xy")" - (py")' + ay. (3.1)

The coefficients r, p and q are to be real-valued and continuous on the
half-line 0 < x < @ with r(x) > 0 for x > 0. The comments following
(2.1) concerning singular endpoints also apply here. Some of the anal-
ysis for the fourth-order case is the same as in the second-order case,
while some of it is more difficult. The difficulties arise from the
higher dimension spaces involved and from the existence of cases
"between" the limit-circle and limit-polnt cases as compared to the
second-order case in which each expression (2.1) is either limit-point
or limit-circle, The possibility of cases between limit-point and
limit-circle in the cases of order higher than two were not considered
by Sin and Windau and this caused the errors in their analyses. The
argument is restricted to the fourth-order case, but the notation
adopted will be such that the extension to 2n-th order cases will be
simple in concept, if not in detail. The notation will also be such
that the points of contact with the second-order case can easily be
seen. The argument will proceed in the same manner as the second-order

case after some preliminary results are presented. The proof of the

22
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first lemma is identical to the proof of the classical theorem on
linear independence of solutions when quasil-derivatives are read as
ordinary derivatives. A proof for ordinary derlvatives may be found

on page 83 of the book by Coddington and Levinson [7].

LEMMA 3.1: Let ¢r’ 1 < r <4 be four solutions to Ly = Ay, L given in
(3.1), and let W(¢1,¢2,¢3,¢4) denote the determinant of the matrix
whose ij-th entry is ¢.Ei‘1](x). Then W(g.,%,,8.,8,) = O for some x

J 1’7273 7L 0
in the interval of definition of (3.1) if and only if the set of

functions iﬁr} is linearly dependent on that interval.

The determinant W in Lemma 3.1 1s called the (generalized)
Wronskian of the solutions ¢r with respect to (3.1) and has properties
similar to those of the usual Wronskian. The next lemma makes a
connection between the Wronsklan of a set of solutions and the bilinear

form in Definition 1.5.

LEMMA 3.2: Let 5251, ¢2, ;253, g, be four solutions of Ly = \y. Then
(BB, 808,) = 8,8, 10 8,8, 1-08,5,108,4,]

+[ ¢1 1641[ ¢2 ﬁfj ~|' (3-2)

PROOF': By Definition 1.5,

g 8, 1-900T+ V2T fL2YT 03 L (59)

The lemma 1is established by substituting'(B.B) into the right side of
(3.2) and comparing this with the éxpansion of the determinant of the

matrix W. The proof is then complete.
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1’ fZ'

denote the column matrix

For functions f cen fn Integrable on 0 < x < b, let f

)T, (3.4)

£= (£, ooy £

Let G(f;b) denote that n x n matrix whose 1j-th entry is the integral
I £ (x)F (%) ax. (3.5)
01 J ’

The matrix G(f;b) is called a Gram matrix. The following lemma con-
cerning Gram matrices and determinants will be necessary in the next

series of lemmas. This lemma is established as Lemma 1 of [25].

LEMMA 3.3: Let f be as in (3.4) and let V be an n x n matrix of
constants. Then
(1) G(Vvf;b) = VG(£;p)v*,

(11) det G(VE;d) = |det v|? det G(£;b).

The following theorem is known as the Courant (or Poincaire)
Minimax Principle. The proof is straightforward and may be found in

Halmos [47] or Courant and Hilbert [9].

THEOREM 3.1: Let A be the matrix of a hermitian transformation on an
n-dimensional complex inner product spéce'V. Let xl > AZ > e E_Xn

be the ordered elgenvalues of A, For each subspace U of V and

1l <k £n, define

2 .4y,

u(U) = sup {z*AzI z is in U and §:§=llzj

where z is a complex n-vector, z = (21, 22, cee zn)T and define for

each k
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w, = inf fu(o) | atn U = n -k + 1y.

Then xk = Uy for each k, 1 < k <n.

The next lemma establishes a relationship between corresponding
eigenvalues of two positive definite hermitian matrices. It is well
known that the elgenvalues of a positive definite hermitian matrix are
real and positive. Thils lemma will be used to establish a result that
leads to the determination of the number of soluiions of Ly = Ay that
are in the class LZ(O,oo). The proof of this lemma follows by applying

Theorem 3.1 to the matrices A and A + B.

LEMMA 3.4: Let A and B be positive definite hermitian matrices of
size n. Suppose Ay 2 A, 2 .00 2 A, ” 0 are the elgenvalues of A and

' 1 > ] o ] '
Xl > XZ 2 e ZA0> 0 are the eigenvalues of A + B. Then Ay 2 Xk for

k=1,2, «.. , n.

The following lemma is used in the theorem establishing the
1limit-p, 2 < p < 4 cases in the fourth order problem. This result
states that, under certain conditions on the functions ¢1 and ¢2 and
G(#;b) the Gram matrix of (3.5), the eigenvalues of G(@;b) are

increasing functions of b,

LEMMA 3.5: Let ¢1(x) énd ¢2(x) be any two complex-valued functions
defined on the interval 0 < x < @ such that
(1) 4, and g, are linearly independent on the interval 0 < x <D
for all b > 0, and
(11) ¢1 and ¢2 are in LZ(O,oo) locally.
For each b > 0, let G(#;b) be the matrix given by (3.5) with

g =(g,,8 )T. Let A,(b) < A, (b) denote the ordered eigenvalues of
1'72 1 2
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G(#;b). Then the following statements are true.
(111) G(@;b) is positive definite for each b > 0, and

(iv) for ' > b> 0 and s = 1 or 2, xs(b') > ks(b).
PROOF: Let z = (zl.zz)T be a nonzero complex 2-vector. Then
z*G(f;b)z = Ib {z g.(x) + z.0 (x)l2 dx
! 0 171 272 )

Since Zq and z, are not both zero and by the linear independence of the
system @, 1t follows that z*G(@;b)z > 0. Therefore, G(@;b) is positive
definite and thus conclusion (iii) holds.

Statement (1v) is established in Section 8 of [267], completing

the proof of the lemma.

The following lemma will be used in establishing the number of
LZ(O,(D) solutions of Ly = Ay. A proof of this lemma may also be

found in [ 267].

LEMMA 3.6: Let ﬁl and ¢2 satisfy conditions (i) and (ii) of Lemma 3.5.

Then for r = 1 or r = 2, as functions of b, the quotients

b 2
¢ (v =0 |8,_(0)]© ax
t det G(g;b)

are monotone decreasing as b is increasing.

The next lemma establishes another property of the functions Cr(b)
of Lemma 3.6, In Lemma 3.6 it was shown that these functions are
decreasing functions of b and the ﬁext lemma shows that they tend to
strictly positive limits as b tends to infinity provided there are

certain linear combinations of ¢1 and ¢2 in LZ(O,oo). A proof of this
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result may be found in [267.

LEMMA 3.7: Suppose ¢1 and ¢2 satisfy conditions (i) and (ii) of
Lemma 3.5. Then for r = 1 or r = 2, the function Cr(b) as given in
(3.6) tends to a strictly positive limit as b tends to infinity if

and only if there exists a linear form a1¢1 + af,, With o not zero,

>
which belongs to the class LZ(O,(D).

The following lemma connects the behavior of the elgenvalues of
G(#;b) as b = o with the number of linearly independent linear forms

a1¢1 + a2¢2 in LZ(O,cn). This lemma is Theorem 5 of [25].

LEMMA 3.8: Let ¢1(x) and ¢2(x) satisfy conditions (1) and (1i) of

Lemma 3.5. UFor each b > 0, let kr, r =1, 2 be the elgenvalues of the
matrices G(f;b) with 0 < xl(b) < xz(b). Let S be the number of those
Kr(b) which tend to finite limits as b = @. Then the number (up to

linear independence) of linear forms al¢l + a2¢2 in LZ(O,cn) is S.

It is noted here that all the preceding lemmas that were stated
for two functions ¢1 and ¢2 may be generalized to sets of n functionms.
These lemmas were stated for two functions since this is sufficient
in the case under consideratioﬁ. The generalization of the lemmas to
sets of n functions may be found in the references given. The next
theorem is useful for establishing some necessary identities in this

chapter and in Chapters IV and V.

THEOREM 3.2: Let {fﬁ , {gi}, 1<i<2n+1, be any two sets of 2n + 1
functions, each having quasi-derivatives up through order 2n - 1 with

respect to (1.6). Then
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det ([ f, e, PN =0 (3.7)
1<i, j<2n+l J
for all x, where the bilinear forms [ fi gj 1 are with respect to the

differential expression (1.6).

PROOF: For notational purposes, define

F[jj - (fgj]'fgj]' f[jw )T (3.8)

e 2n+l .

Then the left side of (3.7) may be expressed as
det (ul,uz, ves ,u2n+1) (3.9)

where by (1.10) and (3.8), each w, 1 <k<2n+1, is the sun of 2n

terms,
uk==§z;;é(F[i]é£2n-i] _ F[Zn-i]égi]).

Using the bilinearity of the determinant functions with respect to

2n+1

columns, (3.9) is the sum of (2n) terms, each of the form

+ det (vl,vz, ces ,v2n+1) (3.10)

where

v, = F[Nkjégzn'l‘Nkw, 1<k<2n+1, (3.11)

k

and the N, are chosen from the set of integers {o, 1, ... ,2n - 1}.

The expression (3.10) may be expressed by using (3.11) as

TIE o ), D), o

However, from the above description of the N , there are 2n + 1

kl

integers chosen from a set of 2n integers. Thus, there must be at
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least one palr of the N Therefore,

k k'
at least two of the columns of the determinant in (3.12) must be

that are ldentical, say Nj = N

identical, By the well-known properties of determinants, (3.12) is
zero. The conclusion (3.7) then follows and the proof of the lemma

is complete.

The next lemma is an application of Theorem 3.2 and establishes

the value of avdeterminant that is necessary later.

LEMMA 3.9: Let ¢1, ¢2, 9y, and 8, be four functions that are defined
on 0 < x < o with three finite quasi-derivatives with respect to
(3.1) on that interval. Suppose further that these functions satisfy

the differential equation
Ly =\y, Imx #£0
with Ly given by (3,1) and also sétisfy the conditions
[oy 8, 1=0, [ ¢, 8 T1=06,.,[88 10
For each b> 0 and r = 1 or 2, let Br(b) be the matrix
[o 8,0 (88,0 [ o, ]

Br(b)- [¢2¢1~| [¢2¢2_] [¢2 erw

J; er ¢1 ] [ er ¢2 ] [ er Gr_l

with all the entries in the matrix evaluated at x = b. Then

‘det B(b) = [ Prr ¢3_r (b)), r =1, 2.
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The proof of the preceding lemma is established by making the sub-

stitutions fl =8 = f4 =8, = ﬁl. f2 =8, = f5 = 85 = ¢2. and

f3 = g3 = er into Theorem 3.2 and using the hypotheses of the lemma.
The following theorem establishes an interesting relationship between
the Wronskian of the four boundary value functions for the fourth-order

problem and the eigenvalues of the problem. This result is used to con-

struct the solutions to the fourth-order problem that are in L2(0,<D).

THEOREM 3.3: Let b be a positive real number and A = u + iv a complex

il

number. Let ¢r(x,k),'Xr(x,x,b), r =1, 2, be four solutions of

Ly = \y (3.13)

on 0 < x < w with L given in (3.1) such that the ¢r take constant
real-valued and independent initial conditions at x = 0 and similarly
for the"Xr except that the initial conditions are taﬁen at x = b, In
all cases, the initial conditions are to be independent of \. Suppose

further that the following conditions hold;
(4,8, 1=0 (%X 1=0. (3.14)
Let D be defined by
DOLE) =L B Xy TL B X 1-08, % 104,% 1T (3.15)

where the explicit dependence of the right hand side of (3.15) upon b
and A is suppressed. Then, as a function of A, D(A,b) is entire, its
zeros are real and those zeros are the eigenvalues of the problem de-

fined by (3.13) and (3.14) with the boundary conditions on a solution y

2.y 1) =0, [ X, v Kb) =0, r=1, 2 (3.16)



n
PROOF: By Lemma 3.2
Wy By K X) = [ By B 1O X % 1-0 8, % 10, %,
P % 108,70

Applying (3.14), it then follows that

W(g .8, X, K,) = =D | (3.17)
Suppose that for some value of A, say A = KO'
- D(ky) # 0. (3.18)

Then by Lemma 3.1 and (3.17), the four functions ﬁr' Xr, r=1, 2,
form a fundamental set of solutions of the eigenvalue problem (3.13),

with A replaced by XO' Thus, 1f y is a solution to this problem, then

y(x) =572 (0, (%) +BX (). (3.19)

Letting r = 1 and 2 and application of the four boundary conditions
(3.16) to the solution (3.19) yields the following system of four

equations in the four unknowns a Bi' i=1, 2:

1
o

SE (o[ 4. B T+ d X -

|
(@]

PFECAR AR R AR (3.20)

where r = 1 and 2. By the use of Theorem 1.4 and the conditions (3.14),
the determinant of the coefficient matrix of the system (3.20) is seen
to be - D(xo). But from (3.18), - D(xo) # 0. Thus the system (3.20)

has no nontrivial solution for the @, and B,, and y(x) = 0. That is,

A~ 1s not an eigenvalue for the described problem.

0
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Suppose for some value of A, say A =\, D(XO) = 0. Then by (3.17)
and Lemma 3.1, it follows that the four functions ¢1, ¢2,'X1, :a.nd')(_2 are
linearly dependent. Thus there is a linear combination of these func-
tions that is zero. That is, there exist ai, Bi' 1 =1, 2, with not

both of the q, zero and not both of the Bi zero, such that

i
S (a8 (x) -8 X () =0, (3.21)

Let y be defined by

Y(x) = O‘lﬁl(x) + azﬂz(x)-

Then, clearly, y satisfies (3.13). Also by Theorem 1.3 and (3.14)

[ 8.y N0) =al g @ 10)+al g @, o) =o.

By the definition of y and (3.21)

y(x) = B (x) + B X,(x)

and by the second part of (3.14) and Theorem 1.3

(X, v W0) =803 % H0) +8,[ X, %, 10) = o.

Therefore, y is a nontrivial solution to the eigenvalue problem as
described and thus xo is an eigenvalue of this problem. The conclusion
that the zeros of D are the eigenvalues of the problem (3.13), (3.14),
and (3.15) then follows.

By Theorem 1.1, the functions D(A,b) as functions of \ are entire
and by Theorem 1.5, the eigenvalues are all real. Therefore, the zeros

of D(\,b) are all real. This completes the proof of Theorem 3.73.
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This completes the preliminary results necessary to state and
establish a serles of theorems that are the analogles of the theorems
in the second-order case. In the following serles of theorems, the

functions #., #., 6., 0 , and will play the same roles as did the
1’ F2r 1

2
functions ¢, A, and X.in the second-order case. Alsb, there will arise
a set of coefficients Prs' r, s =1, 2, that are the analogies of the
coefficient I in the second—ordér case. As expected from the large
number of lemmas necessary for the fourth-order case, the analysis is
more difficult, but similar. Those preceding lemmas that are specific
to the fourth-order case have generalizations to differentiél expres-
sions of any even order. In general, the arguments for these
generalizations are no more difficult that those for the fourth-order
case, The further restriction of these lemmas to the second-order

case 1s also valid, but the second-order case was presented separately
since the use of these lemmas obscures the elegance of the analysis,

The proof of the following theorem is contained in Sections 15, 17,

and 18 of [ 307.

THEOREM 3.4: Let b be a positive real number and A a complex number,
A =u+1iv, with v # 0. Let ¢r(x,x),‘xr(x,x,b), r =1, 2, be four
solutions of Ly = Ay, with L given iﬁ (3.1), on the interval 0 £ x < o
such that ﬁl and ¢2 take real-valued independent initial conditions
at x = 0 and similarly for'Xl a.nd')(_2 except that the initial conditions
are taken at x = b. In allicases, the initial conditions are to be
independent of X. Suppose ¢l’ ¢2, Xl,‘and')(2 satlisfy the conditions
(3.14).

Let er(x,x), r =1, 2, be two solutions of (3.13) on 0 < x < ®

that take constant real-valued initial conditions at x = O in such a



way that

Loy 8, 1=0, [ £, 8, 1=08,

for r, s = 1, 2, where érs is the Kronecker delta, Then there exists
two solutions‘f/r(x,x,b), r =1, 2, of Ly = Ay that satisfy the bound-

ary conditions

[‘%”r‘xs J(b) =0, 1 <r,s <2

and are expresslible iIn the form

W aaab) = 0 () + 5o A (1,0 (x,0) (3.22)

s=1 “rs

for r = 1, 2. Furthermore, for each r, the set of palrs (lrl,jgz) of
complex numbers in (3.22), when considered as points in the two-
dimensional complex space ¢2, all lle on a closed and bounded hyper-
surface, say Sr(x,b), as the functions’)(r range over all allowable
initial values at x = b, Also, the interior of Sr(x,b), together with
its boundary, forms an ellipsoid, say Er(b), when considered as a sub-

set of R and Er(b) is of dimension four in Ru.

The next theorem states that, as b tends to infinity, the sets
Er(b) are nested and in fact, tend to a set Er(<n) which 1s of dimen-
sion zero, two, or four in Ru. These dimensions will be the deciding
factor as to the number of LZ(O,co) solutions of Ly = Ay. The analogy
in the second-order case is the set of circles in the complex plane &
which tend to boundaries of sets of dimenslon zero or two in the

Cartesian space R2. A proof of this result may be found in Section 17

of [307.
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THEOREM 3.5: Let the conditions and hypotheses of Theorem 3.4 hold for
each b> 0 and for a fixed A\, Im X # 0. Forr =1 and r = 2, let Er(b)
and. Sr(b) be those sets described in Theorem 3.4, Then as b tends to
infinity, each ellipsold Er(b) tends to a convex set, say Er(cn), which
1s of dimension zero, two, or four in Ru. bFurthermore, for S as defined
in Lemma 3.8 and Cr(b) defined in (3.6), dim Er(cn) is zero if Cr(oo) is
zero and dim Er((n) = 25 if Gr(oo) is positive, where Cr(oo) denotes

1im Cr(b).
- @

The followlng theorem is a consequence of the two preceding theo-
rems. The analogy of this theorem in the second-order case is a part
of Theorem 2.1. As in the second-order case, for Im A % 0, the number
of linearly independent L2(0,<n) solutions of Ly = Ay is at least half
the order of the expression Ly. As commented before, the necessary
theorems for the result above hold for any even order expression of the
form (1.6) with real-valued continuous coefficients. A proof of this

theorem is given in Section 18 of [30].

THEOREM 3.6: Let the’conditions and hypotheses of Theorems 3.4
and 3.5 hold for each b > 0, Let A = u + iv be a complex number with
v # 0. Then there exists at least two (up to linear independence)
solutions of the differen£1a1 equation Ly = Ly that lie in L2(0,<D),

Ly given in (3.1).

The following theorem relates the dimension of the sets Er(cn) to
the number of LZ(O,(D) solutions of Ly = Ay. This is done by relating
the dimensions of the sets Er(cn), r =1, 2, to the number of linearly

independent forms on ¢l and ¢2 that are in LZ(O,CD). This, together
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with the knowledge that‘%”r is in LZ(O,(D) for r = 1 and 2, will deter-

mine the L2 character of the solution space.

" THEQOREM 3.7: Let the conditions, hypotheses, and notation of the pre-
ceding three theorems hold for a fixed A\, Im A # 0. For r = 1 and

r=2, let D = (dl'dz) be that pair of positive integers defined by

a, = (1/2)dim Er(tn).

Let L? = LZ(O,(D) and let K denote the maximum number (up to linear

independence) of L2 solutions of Ly = Ay. Then the following state-
ments hold,
(1) D = (2,2) if and only if ¢1 and ¢2 are both in L2,

(11) The four cases D = (0,2), (1,2), (2,1), and (2,0) cannot

occur,
(111) D = (1,0) 1f and only if f) 1is 1% and g, is not 12,
(iv) D = (0,1) if and only if ¢1 is not L2 and ¢2 is LZ.
(v) D= (1,1) if and only if neither nor @, is in 1% but
1 2

2

there is a linear form al¢1 + a2¢2 (al and @, not zero) which is L,
(vi) D = (0,0) if and only if neither ¢l nor ¢2 1s L% and no

nontrivial linear form on ¢1 and ¢2 is L7,

Furthermore, in (1), K = 4; in (111)-(v), X = 3; in (vi), K = 2.

PROOF: It should be noted that by Theorem 3.5, dr takes on only the
values zero, one, or two. Thus, all possible values of D are included
in (1)-(vi). Also, by Theorem 3.6, K > 2, Since K < 4, all possible
values of K are also considered in the statement of the theorem. As
in Theorem 3.5, S will denote the number of eigenvalues of G({@;b)

having finite limits as b => .
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In the proof of this theorem, it will be necessary to make fre-
quent reference to several statements. For convenience, they are
stated ass

(a) d_ =0 if and only if Cr((n) = 0,

(v) 1if Cr( @) > 0, then dr =3, and

(e) 1if d_ >0, tﬁen cr( ®) > 0 and . = 8.

Some of these statements have been esiablished while others require
some argument. In‘(a), if Gr(cn) = 0, then d_ = 0 by Theorem 3.5, For
the converse, suppose dr =0, If Cr(cn) > 0, then an application of
Lemma 3.7 followed by Lemma 3.8 implies S > 0. Then one of the cases
(11) or (iii) of Theorem 3,5 holds and d. =1 or 2, a contradiction.
Thus, Cf(cn) = 0 and (a) holds. Statement (b) follows from Theorem 3.5.
Statement (c) follows from (a) and (b).

Bach of the statement (i) through (vi) will be considered sepa-
rately, Suppose D = (2,2), By (c), S = dr = 2 and Lemma 3.8 implies
there are two linearly independent linear forms of ¢l and ¢2 that are

in 12, Thus, both ¢l and ¢2 are in 1., For the converse, suppose both

(]

¢1 and ¢2 are 1in L2. Lemma 3.8 implies S = 2 and by Lemma 3.7, both

(2,2). Therefore, (i)

Cr(cn) are positive. Thus, (c) implies D
holds.

Let r be elther 1 or 2 and suppose dr =2. By (e¢), S =2 and
using the argument for statement (i), both ¢1 and ¢2 are in L% and so

(0,2),

i

D = (2,2). That is, dj—r = 2, Thus, the four possibilities D

(1,2), (2,1), and (2,0) cannot occur and (ii) follows.
Suppose D = (1,0). Then S = 1 by (c) and Lemma 3.8 implies there

1s exactly one nontrivial linear form a + o that is in L2. By

1¢l 2¢2
(a) and Lemma 3.7, Cl(cn) > 0 implies o, # 0 and CZ((D) = 0 implies
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2

= 0, Thus, ¢1 1s in L? and ¢2 is not in L% (@, cannot be in L%,

a2 2

for (1) would then imply D = (2,2).) Conversely, suppose ¢l is 1% and
2 ' 2

¢2 is not L=, 1If a1¢1 + a2¢2 is any nontrivial linear form in L",

then o, = 0. Thus, by Lemma 3.7, Cl((D) > 0 and Cz(oo) = 0, that is,

2
D = (3,0) by (a) and (b). By Lemma 3.8, ¢1 in 12 implies S > 0, There-
fore, D = (1,0) or D = (2,0)., The second possibility is impossible by
(11), and so D = (0,1) and (iii) holds. Statement (iv) is completely
analogous.

Suppose D = (1,1). Both Cr(cn) are positive and S =1 by (c).
Thus, there is exactly one nontrivial linear form a1¢1 + a2¢2 in L2
and by Lemma 3.7, nelther a

nor o, can be zero, For if either ¢1 or

1 2
¢2 is in L2, then by the independence of ¢1 (¢2) and. q1¢1 + a2¢2. ¢2
(¢1) must also be in Lz, implying D = (2,2) by (1), a contradiction.
Thus, neither ¢1 nor ¢2 1s in L%, Conversely, suppose nelther ¢1 nor
¢2 is in LZ, but there is a nontrivial form a1¢1 + a2¢2 that lies’in
L. Since neither ¢1 nor ¢2 are in L2, ay # 0 and a, # 0. By
Lemma 3.8, S = 1 and by Lemma 3.7, both Cr(oo) are positive. Therefore,
applying (b), D = (1,1) and (v) must hold.

Finally, assume D = (0,0). Then, -both Cr(cn) are zero by (a).
Since Cl(cn) = 0, Lemma 3.7 implies no linear form a1¢1 + a2¢2 with
ay # 0 can be in 12, Thus, ¢1 is not in LZ. Similarly, ¢2 is not in
L2. Therefore, neither ¢1 nor ¢2 nor any nontrivial linear form
al¢1 + a2¢2 can be in L°, For the converse, suppose neither ¢1 nor ¢2
nor any nontrivial linear form a1¢1 + a2¢2 is in L. By Lemma 3.7 and
(a), D = (0,0) and (vi) holds.

By the remarks at the beginning of the proof, K must take one of

the values two, three, or four. Clearly, K = 4 if and only if ¢1 and
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¢2 are both in L2, Thus, X = 4 in case (1). In each of the cases
(111)-(v), there is one solution not in L2 implying K < 4 and there is
one solution linearly independent of‘f”l and‘)U2 in L2, and so K > 2,
implying K = 3, Conversely, if K = 3, then clearly not both ¢1 and ¢2
are in LZ. Suppose no nontrivial linear form a1¢1 + a2¢2 is in LZ.
K=3 and‘f’l.\fyz, ¢1. and ¢2 form a fundamental set of solutions, so
there are three linearly independent solutions that lie in L2 of the

form

Gy ¥ Ol p + ey F o, 1Sk <3
Each of‘)"’1 andYJ2 is in L2, so each of the three linear forms

oqfy + gy 1<k S I (3.23)

must be in L2. But, by the supposition that no nontrivial linear form
al¢1 + a2¢2 is in L2, each of these must be trivial, Thus the three

forms
0y * oyt 1S k<3

are linearly independent, an obvious contradiction. Thus, there must
be at least one of the forms (3.23) that is nontrivial, and so one of
the cases (111i), (iv), or (v) must hold. Suppose case (vi) holds.
Then clearly, 2 < K < 4, By the argument above, if it is assumed that
K = 3, then one of the cases (ii1)-(v) must hold, contrary to supposi-
tion. Thus, K = 2, Conversely, if K = 2, then clearly no nontrivial
linear combination on ¢1 and ¢2 can 11e in L? for this would imply

K > 2, Thus, case (vi) holds., This completes the proof of the

theorenm.
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In Theorem 3.7, case (1) is called the limit-circle or limit-4
case and case (vi) is called the 1limit-point case. It is these two
situations which are analogous to the limit-circle and limit-point
cases, respectlively, in the second-order problem, It is now desired
to glve the analogy of Theorem 2.2. That is, for Im A # O, the number
of LZ(O,(D) solutions of Ly = Ay is invariant. As to be expected, the
fourth-order case is more complicated. The primary difficulty is the
existence of cases "between" the limit-point and limit-circle cases,

a nonexisting problem in the second-order case, Theorem 2.2 used the
method of variation of parameters to show that if all solutlons of

Ly = Ay are in LZ(O,OD) for a particular A, then the same holds for all
A. This theorem was sufficlient in the second-order case to establish
the invariance of the number of LZ(O.oo) solutions., However, a similar
result would not suffice in the fourth (or higher) order case and the
problem must be apéroached in a different manner. The explicit form of
the Green's function 1s established and used in the invariance problem.
The definition of the Green's function is given in Definition 1.6. An
argument that the Green's function of Theorem 3.8 satisfies Definition

1.6 may be found in Section 7 of [29].

THEOREM 3.8: Let b be a positive real number and let Ly be glven by
(3.1). Then for A not an eigenvalue of Ly, the Green's function is

given by

52 W ()8, (x), 0 < x <z,

G(x,z,b) =

Zilfdi(z»ui(X), z<x<b,

where the ¢1 and.yui are given in Theorem 3.4, Furthermore, for f in
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Lz(o,b), the function § given by
B(x) = fg G(x,z,b)f(z) dz, 0 < x < b,

is a solution of the nonhomogenous differential equation Ly = \y - f,

0<x<h.

It is noted that the coefficients frs(k,b) in (3.22) are analytic
functions of A in each of the half-planes Im A > 0 and Im A < 0., For
a compact subset K of one of these half-planes, the monotonic and
bounded nature of the surfaces Sr(k,b) implles, by the Helley selection
principle, that there 1s a strictly increasing sequence of positive
real numbers {bj} such that bj > o and

tn LOorg) =m0,
and the point (mrl(k),mrz(X)) is on thé surface Sr(h,<n). Then by
Vitali's theorem on bounded convergence, for example Ash [lxp. 1671,
the 1imit process is uniform in A. Therefore, since each half-plane
is simply connected, the limit process is valid throughout each of the
half-planes and the 1limit functions mrs(x) are analytic in the set

InA #0. Forr=1and 2, Im A # 0, define

W) =0 (x0) + 32 n ()F (xA) (3.2)

m
s=1"rs

where the er and ¢r are as in Theorem 3.1, Note that each‘fjr is a
solution of Ly = Ay and lies in L2(O,oo).

Before proving the theorem on the invariance of the number of
LZ(O,oo) solutlons, an 1neqﬁa11ty is required. Thils lnequality is

established in Section 7 of [327].
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LEMMA 3.10: Let X be a complex number, Im A % 0., For each b> 0, let
G(x,z,b) be the Green's function constructed in Theoren 3.8; Let &bﬁ},
J> 1, be an increasing sequence of positive real numbers with no finite
1limit point such that for r =1 and r = 2,

32?05*’r‘*'b3’ =¥ ()
where the‘%)r(x,bj) andﬁ%)r(x) are given in (3.22) and (3.24), respec-
tively. Let G(x,z) be given by

1im G(x,2,b.) = G(x,2).

j>® J

Let f be in L2(0, ) and define (x) by
(x) = fé” G(x,2z)f(z) dz.
Then,
58 18)% ax < (/m VAP | 2]? ax. (3.25)

Note that if {bj} is a sequence such that as j => o, then bj > o
and G(x,2,b,) > G(x,2). Thus, for £ in 12(0, @), (3.25) implies that

the function § glven by
B(x) = Jo° G(x,2)£(z) dz, 0 < x < @

is in LZ(O,oo). Also, the use of elmentary methods will show that for
0<x< w, L§ =A) - f since the continuity of G(x,z) and its first
two quasi-derivatives with respect to x and the Jjump discontinuity of
G(x,z) at x = z are preserved under the uniform 1limit., It is now pos-
sible to show that the number of LZ(O,GD) solutions of Ly = Ay is

dependent only upon the coefficlents r, p, and q and not upon the
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choice of A, provided only that Im A # O. It is this theorem that is
the extension of Theorem 2.2 to the fourth-order case. The proof of

this result was established by Everitt [ 287].

THEOREM 3.9: The maximum number of linearly independent solutions of
the differential equation Ly = Ay which are in LZ(O,oo) is independent

of the choice of \, provided Im A # 0,

Theorem 3.9 makes the terms 1limit-p, 2 < p < 4, well-defined for
Im A # 0. Thus, the expression (3.1) méy be called limit-p, 2 < p < 4,
depending upon the number of LZ(O,cn) solutions there are to the differ-
ential equation Ly = 1y. As noted before, the 1limit-2 case is called
the limit-point case and the limit-4 case is called the limit-circle

case,



CHAPTER IV
EIGENFUNCTION EXPANSIONS

The convergence theory of elgenfunctions associated with singular
ordinary differential equatlons may be considered either in the under-
lying Hilbert space of square-integrable functions, i.e., the
convergence-in-mean theory, or in the classical sense in the space of
real or complex numbers, i.e., the direct convergence theory., The
convergence-in-mean theory is discussed in Chapters 9 and 10 of the
book by Coddington and Levinson [7] and in Naimark's book [65]. The
direct convergence theory was develbped by many authoérs, but the more
significant contributions in the second-order case were made by
E, C., Titchmarsh, His work in final form may be found in his book [74].
The theory has been extended by J. Chaudhuri and W, N, Everitt [6] to
formally self-adjoint differential equations of higher order. This
extension was vla the singular fourth-order problem discussed in Chapter
IIT. The extenslion of the theory from second to fourth-order involves
problems not involved in the second-order case., However, the further
extension of the theory from the fourth-order case to any even order
expression is largely a matter of notation.

The fourth-order case with one singular endpoint will be con-
sldered, as in Chapter III, to keep thé notation as simple as possible
while allowing sufficient generality to permit extension to higher

even order problems with a suitable change of notation. A further

Ll
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restriction on the coefficilents of the expression Ly will be made in
this development in order to establish a lemma. This restriction is in
the differentiability requirements to be imposed upon the coefficlents
of the differential expression. Until that point, as in Chapter III,
it 1s only required that the coefficients be continuous on the half-
line 0 € x < @, Reference will be made to certain results of Chapter
III and the notation and definitions of Chapter III will be assumed,
that is, the functions ¢r’ XT,‘%Jr, and § will be as before.

The method of obtaining the elgenfunction expansion is to consider

B(xh,8) = I5° 6lx,y0)E(y) ay

as a function of A for a fixed x where the function f is the one to be
expanded. It was established in Chapter III that Q(x,k,f), for fixed

f and x, is an analytic function of A in the half-planes Im A > 0 and
Im A < 0, The function Q will be integrated with respect to A around a
large contour, the rectangle defined by the four points + R + 1,

+ R + 18. Then by taking R ==  and § = 0 from the right, it will

be shown that for certain functions Fr(u), r =1, 2, of bounded varia-
tion on - @ < x < w, if f satisfies certain conditions, then f has

the expansion

£(x) = (/MY 2, Lin I8 (xu) aF (u) (1)

where the integral on the right is a Riemann-Stieltjes integral and for

r =1 and 2,

g.(x,u) = $i20+ g (x,u + 1v).



The majority of the development is taken up with a series of
lemmas that evaluate the integral of § around the contour and take the
limits as R ~> @ and § -> 0 from the right. These lemmas are generally
very computational,

It 1s first shown that the problem Ly = Ay with the boundary con-

ditions introduced in Chapter III satisfles the inner product identity
(Lu,v) = (u,Lv). (4.2)
that is, the problem is self-adjoint.

LEMMA 4,1t Let be be a positive real number and X a complex number.
Let ¢r(x,h),'xr(x,k,b), r =1, 2, be four solutions of the differential
eqﬁation Ly = Ay, 0 < x <b, with Ly glven in (3.1), such that ¢1 and
¢2 take constant real-valued initial conditions at x = O in such a way

that

[ ¢ 8,]-o. (4.3)

Similarly, )(.1 and X2 take constant real-valued inltial conditions at

x = b in such a way that

[X X, 7=o0. (4.4)

In both cases, the initial conditions are independent of A. Then the

problem Ly = Ay with boundary conditions given by

[¢ry—_](0)=0»[7<ry—,](b)=0» r=1, 2, (4,5)

is self-adjoint, that is, (4.2) holds for u and v two functions satis-

fylng (4.5) and having continuous fourth-order quasi-derivatives on

(0,b) satisfying (4.5).
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PROOF: Let u(x) and v(x) be two functions that have continuous quasi-
derivatives with respect to (3.1) up through the fourth order on the
interval 0 < x < b.' Then u, v, Lu, and Lv are square-integrable on

that interval., By Theorem 1.3,
g ()7 - w(L¥) ax = uv Ib) - [ uv J0). (4.6)

But, by the definition of the inner product, the left side of (4.6) 1is
the expression (Lu,v) - (u,Lv). Thus, it is sufficient to show the

right side of (4.6) is zero.

Il

Since the boundary value functions take real values at x = 0,

(4.3) implies

[ #, 2, N0) =o. (4.7)

In Lemma 3.2, let n = 2 and make the substitutions

fp=w g =v,f,=g=H, =g =40,

Then Lemma 3.2 implies
det ([ £ g5 J(x) ) =o.
141, 333
for all x. In particular, for x = 0, the use of (4.5) and (4.7) yields
[ uv J(0) =0. Ina similar fashion, with f, =g, =X and
f, = ='X2, it is seen that [ uv ](b) = 0, Thus, the right side of

3 3
(4.6) 1s zero and the proof of the lemma is complete.

Until otherwise stated, the function f(x) to be expanded will be
assumed to be real-valued. Thils restriction will be lifted in due
course, By Theorem 3.3, the eigenvalues of Ly = Ay, 0 < x<b < o,

are real and the eigenfunctions associated with these eigenvalues must
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satisfy real-valued boundary conditions. Thus, without loss of gener-
ality, it will be assumed the eigenfunctions are real-valued. The
following lemma and its proof may be found in Coddington and Levinson
[7xpp. 197~198]. This lemma is the classical Sturm-Liouville expansion
theorem for 2n-th order self-adjoint problem on a finite interval with

both endpoints regular and will be used to establish other results,

LEMMA 4.,2: Let f have continuous quasi-derivatives up through the
fourth-order on the compact interval 0 < x < b and suppose f satisfles

the boundary conditions (4.5). Then on this interval

£(x) = > 0p (£3)7,(x) (4.8)

where the series converges uniformly on 0 < x < b and the functlons Yy
are the normalized eigenfunctions of the problem Ly = Ay with the condi-

tions (4.3), (4.4), and (4.5). Furthermore, the Parseval equality holds:
b 2 . o 2
Io [£G|® ax = 3 20[ (2ay))] =

In the remainder of this chapter, the following functions and defi-
nitions will be used. These were introduced in Chapter III. The
functions G(x,z,A) and G(x,2,\,b) are the Green's functions of Lemma 3.10
and Theorem 3.85 The functions ¢1, ¢2, Xi, and X2 are boundary value
functions and the functions 7’1 apd‘%Jz are the two LZ(O,oo) solutions
of Ly = Ay constructed in Chapter III. The sets D(b), 0 < b < w, are

defined as followst

DEFINITION 4.1t For 0 < b < w, the function f is in D(b) if and only if
(1) f s in L2(0,D),

(11) fEBq is absolutely continuous on each compact subinterval
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of (0,b),
(111) Lf 1s in L3(0,b),
(1iv) [‘¢r £ ](0) =0 for r

(v) um [ 20-0) £ )x)
X->b

1 and 2, and

0 for r =1 and 2 and for all \.

The functions yk(x,b), k > 0, will denote the normalized.eigen—
functions assoclated with the elgenvalues )\k(b) of the eigenvalue
problem Ly = Ay, 0 < x < b < w, with conditions (4.3), (4.4), and (4.5).
For convenlence, the elgenvalue problem Jjust described willl be denoted

as the problem m(b). For f in LZ(O,OD), the functions § will be given by
B(x\,b,8) = g Glx,2,0,D)£(z) dz, (%.9)
B(x,\,f) = fé” 6(x,2,))f(z) dz. (4.10)

A number of properties of the functions in (4.9) and (4.10) will
now be established. These are necessary to determiné the values of the
integrals of § around the contour mentioned before as R => m® and 6 = 0
from the right. The first lemma establishes the Sturm-Liouville expan-
sion for the function (4.9). The proof is easily established by

calculating the coefficients of the expression (4.8).

LEMMA 4,3t For b > 0, f a real-valued member of D(b), and xk(b) the

eigenvalues with associated eigenfunctions yk(x,b) of the problem m(b).

®(x,A,Db,f) :E:GD ¢ (P)y, (x,b)

=1 A - kk(b)

e (0) = Jp £(x)7,(x,b) ax

for A not an eigenvalue of m(b).
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The next lemma glves an interesting relationship between the func-
tions O(x,\,f) and §(x,\,Lf) that will prove useful in establishing

later results. The proof follows the lines of Section 2.6 of [74].
LEMMA 4,41 For all A\, Im X # 0 and f in D( @),

Xﬁ(x,K,f) = f(x) + Q(X,X,Lf)
for each x, 0 £ x < .,

The following estimate of the function ﬁ(x,k,f) will be necessary.
This lemma and those results that follow from this lemma are the only
results in this development that require certain differentiability con-
ditions on the coefficlents of the expression Ly. The proof is easily
established by following the method used for the second-order case in

Section 2.14 of 74 ,

LEMMA 4.5: Let Ly be given by (3.1) and assume r is in CZ(O,(D), p is
in Cl(O,oo), and f is in LZ(O,cn). Then for x fixed, v # 0, and

INERY
8(xn,2) = o(|a|8]v| D). (4.11)

In the preceding lemma, the corresponding result for the 2n-th order
problem would have 2777 a5 the exponent on IXI instead of 1/8 on the
right side of (4.11). The next two lemmas and theorem taken together
establish that the function Im §(x,k,f) is integrable with respect to A
on any line parallel to and distinct from the real axis. The result is
necessary to aild in the integratlon of § around the contour in the com-

plex plane. It is first shown the integral exists on the segment

-1<u<l, v=constant, v % 0. The remainder of the line
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v = constant # 0 is taken care of in the succeeding lemmas and theorem.

Lemma 4.6 1s established in Section 7 of [6].

LEMMA 4.6: Let A = u + iv, v > 0. Then there exists a constant K(x)

depending only upon x such that
J'_} |Im ﬁ(x,)\,f)l du < K(x) < .

Lemma 4.6 is established by using the expansion of @(x,x,b,f)

given in Lemma 4.3 and noting that

) ZE:OD vck(b)yk(x,b) ' (4.12)

m Qx,h,b.) k=0 (u - kk(b))z + 2

The right side of (4.12) is then integrated between - 1 and + 1 and
estimated using the Schwarz inequality.
The next lemma is also established in Section 7 of [67]. The

method of proof is similar to that of the preceding lemma.

LEMMA 4.7: Let g be a real-valued member of D( @) and let Im X\ # O.
Then there exists a constant K(x), depending only upon x, such that for

A=u+1iv,

{/-l +/oo —--—-——-—-Im ﬁ(x’kfg) du < K(x) < o.

- 1 A

The next theorem makes use of the preceding two lemmas to estab-
1ish that, as a function of A, Im ﬁ(x,x,f) is integrable on any line
parallel to the real axis; but distinct from the real axis. This result
is necessary in order to evaluate the integral of ﬁ around the contour

mentioned before.
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THEOREM 4.1: Let f be a real-valued member of D( @). Then there exists

a parameter K(x) depending only upon x such that for \ = u + iv, v> 0,
u
5 I 8(xn,£)| du < K(x) < o (%.13)

for all ul and u2 real.

PROOF: Since the integrand in (4.13) is nonnegative for all u, it will

suffice to show
I_% | B(x,2,1)| du < K(x) < (4.14)

for some parameter K(x). From Lemma 4.6, there is a parameter Kl(x)

such that
J‘_i |1 §(x,1,£)| au < Ky (%) < o, (4.15)
From Lemma 4.4,
|Im §(x,0,8)| < |Im (£(A)| + |10 (@(x,2,LEA)] .

Furthermore, from Lemma 4.7, there is a parameter Kz(x) such that

- X,N,L
{/ ' + /CD In M du < Kz(x) < o (4.16)
- 1 A

Since Im (1/)) = v/(u?~ + v2), it follows that

I

@

f(x)
A

-1 @ v
du = f(x) / + / ) du < Trf()().
- @ 1 u + v

Im

(4.17)

Therefore, there exists a parameter K3(x) depending only upon x

such that the integral on the left in (4.17) is bounded by K3(x). By
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combining the results (4.15), (4.16), and (4.17), the result (4.14)

follows and the proof is complete.

The following lemma is similar in nature to the last theorem and
is used later in integrating the function E. The lemma is established

in Section 8 of [6].

LEMMA 4.8: For - < uy >

1 <r,s S\QQ there 1s a constant K(ul,uz) depending only upon Uy and u,

<u, < o A =u+iv, 0<v<l, and

such that
up
fu1 Inm mrs(u +1iv) du < K(ul,uz)

where mrs(h), 1 <r,s <2, are the coefficients of the LZ(O,(D) solu-

tions %Jr(x,h) of the differential equation Ly = Ay defined in (3.24).

The following lemma will be used to construct a set of functions
krs that are of bounded varliatlon. These functions will in turn be
used to construct the functions Fr that are used in the expansion (4.1)
of the function f(x). Recall that the coefficients mrs(x) in the
LZ(O,op) solutions of Ly = Ay are analytic in each of the half-planes
Im A >0 and Im A < 0, This lemma states that for almost all real
numbers u, mrs(x) is integrable on any rectifiable path lying within
one of these half-planes with one endpoint at u. ‘To establish this, it
is sufficlent to show that for almost all u, mrs(h) is integrable on
A =u+1iv, 0<v <1, This lemma is proved in Section 9 of [6] and
is necessary to arrive at a set of functions of bounded variation de-

fined in the succeeding theorem.

LEMMA 4,91 For 1 < r,s < 2, let mrs(k) be the coefficients in the



definition of the LY(0, o) solutions YW_(x,\) of Ly = \y, In \ > 0
given in (3.24). Let R > 0 be arbitrary. Then for almost all u in

~-R<u<BRand forl <r,s <2,
fl Im (u + iv)l dv
0 "rs
exilsts and 1s finite.

The bounded variation functions krs that lead to the functions Fr
in the expansion theorem will now be constructed. The proof of this
theorem uses the method of contour integration of analytic functions,

The theorem follows from Theorem 22.23 of [75].

THEOREM 4.2: For 1 < r,s < 2, the functions

u
krs(u) - 1220+ IO In mrs(p +1iv) dp

exist for all real u, are of bounded variation on compact intervals,

and satisfy the relations
k() = (1/2)(k (u+0) + k (u-0)), k,(u) = k,y(u).
Also, the 2 x 2 hermitian matrix
[ k(w) J,1<srs<2
is nondecreasing for increasing u, that is, for Uy < Uy, the matrix
[ krg(up) = Tpg(uy) ]
is positive definlite or positive semi-definite,

The next two lemmas define the functions Fr of bounded variaton
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that are used in the expansion of the functlion f(x). That these
functions are of bounded variation will be delayed until Lemma 4,13
since another result will first be necessary. The proofs of the fol-
lowing two lemmas follow the lines of the corresponding second-order

results in Sections 3.3 and 3.4 of [74].

LEMMA 4,103 For r =1 and 2 and Im A > O. 1et‘%7r(x,k) be the L2(O,cn)

solutions constructed in Theorem 3.6. Then for all u,

2
i§$o+ fg In (x,u +1v) du = - fgjzs=1 g (x,u) dk (). (4.18)

LEMMA 4,11y Forr=1land 2, 0<x< o, -® <u< o, define
2 u
Gr(x,u) = EZS=1 Jo ¢S(x,u) dkrs(u). (4.19)
Then for each u, Gr(.,u) is in LZ(O;oo) and
2
ISD Gr(x,u) dx

is a uniformly bounded function of u. Furthermore, for f a real-valued

function in D( @), the function defined by
- a
Fr(u) Io Gr(x,u)f(x) dx (4.20)
is finite for all real u.

The following lemma 1s used in order to show the functions Fr
defined in the previous lemma are of bounded variation on -®» < u < .

The details follow the lines of Lemmas 4.6 and 4.7 and Theorem 4.73.

LEMMA 4.,12: Let Im A\ > O and let f be a real-valued member of D( ).

Then for 0 < j < 3, there is a parameter K such that
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f_‘”m |Im @:ﬂ(o,x,fﬂ du < K < . (4.21)

LEMMA 4.13: Let F‘r(u) be as defined in (4.20). Then for r = 1 or 2,
Fr(u) is of bounded variation on -® < u < o, that is, the total

variation of Fr(u) on - R < u <R is bounded independently of R.

PROOF: Let §(x,\,f) be as defined in (4.10) with f a real-valued
function in D( @). Then by the comments preceding Theorem 3.9, ﬁxx,k,f)
is a nontrivial solution of the differential equation Ly = Ly - f, and
so for at least one i, 0 <1 < 3, @ﬁij(o,x,f) is not zero. Without loss
of generality, let r = 1. Since ¢1(x,X) is a nontrivial solution of

Ly = Ay, for some i,, 0 <1, < 3, ¢Eioq(0,k) is not zero. Let

K

]

o= nax_ |00

and recall from the initial conditions satisfied by ¢r at x = 0, KO does

not depend on A, Let {uj}, 0 < j <k be a finite sequence of real

numbers such that u,,, > u,. Then from (4.21)
J+l J

ff°m| Zi__:l ¢£1°](o,>\) In J“(;” ¥ (z.0)1(z) dz| du < K.

Then since 0 < I¢Eio](o,x)| < KO, there 1s a constant K' such that for

r=1,
@® (o 0]
‘r-qgl Im J‘O yjl(zv)\)f(z> dZI du < K'/KO = Kl'
Then, in particular,
k-1 U §41, (6 0]
2 520 Ju] 0 SO W (zn)E(z) dz | au < K. (4.22)

But, by the use of the triangle inequality and the Fubini theorem,

(4.22) implies
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EZ?;% IISD {fﬁgfl Im‘%’l(z,k) du}f(z) dz| <K . (4.23)

Let v => 0 from the right in (4.23) and use (4.18) and (4.19) to obtain
k-1 @
§:j=0|‘r0 { Gl(x,uj+1) - Gl(x,uji}f(z) dzl < K.

Then, from (4.20),

SE [Fu) - F)] < 5.

Since thls bound is independent of the range of u, Fl(u) is of bounded
variation on -® < u < ®. The argument for Fz(u) is entirely similar.

This completes the proof of the lemma,

The following three lemmas will perform the integration of
Im EKx,k,f) with respect to A around the contour defined by the rect-
angle in the complex plane with vertices + R + 1 and + R + 16,
0 < 8§ <1, Then R will be taken to infinity (through real values) and §
to zero. These integrations, after limits are taken, will define an
elgenfunction expansion similar to a Fourler integral expansion. In
general, the integration along the line Im A = § 1s made and the limit
taken as § = 0 from the right and this ylelds the expansion on the
right side of (4.1) and the limits of the integrals along the vertical
segments of the rectangle will be zero. The integration along the line
Im A =1 will yield the left side of (4.1). The first lemma is estab-

lished in Section 11 of [6].

%

LEMMA 4,14: Let f be a real-valued function in D( @) and let §(x,\,f)
be as defined in (4.10)., Let R and § be real numbers with R > 0 and

0<§<1. Then
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ﬁ:n:m Im {- (1/ﬁ)f_g:i B(x,n,f) @)

= (/mS e, g B(x) @ ().

The next lemma is an easy extension to the fourth-order case of

the methods and results given in Section 3.6 of [74].

LEMMA 4.,15: Let f be a real-valued function in D( @) and let x be
fixed, Then for real values R,
R+1
lim {Im IR+1 O(x,\, 1) &q =0,

5-=>0+
R->

and a corresponding result holds for R = -®. Furthermore,
1n B Bxa, ) & = - inf(x)
~R+1
R-=> o

where the integration is taken on the segment joining - R+ 1 to R + 1,

It is now possible to state and prove the expansion theorem for
functions in D( @). This expansion will be similar to a Fourier
integral expansion, the elgenfunctions in this case being those of the
elgenvalue problem described at the beginning of this chapter, with Ly
given as (3.1). As mentioned earlier, it will be necessary to assume
certain requirements on the differentiability of the coefficlents in
(3.1). These requlrements were necessary in the construction of the
proof of Lemma 4.5. It may be that Lemma 4.5 is true even if these
requirements are relaxed to having the coefficients locally integrable
on 0 < x < w. The requirements in those chapters preceding this one
were to have these coefficlents continuous on 0 < x < . It should be

noted that the expansion theorem 1is stated for the interval 0 < x <
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with Ly regular at x = 0, but the theorem holds for aﬁy interval

a slx <bora<x<b, with the open endpoint singular and the closed
endpoint regular., Appllcatlon to intervals‘of this iype only requires
a suitable change of variable. The theorem is also applicable to an
interval of the form a < x < b with both endpoints singular. The
theorem would be applied in this case by choosing a point ¢, a<e¢ <D
and expanding the function on each of the intervals a < x < ¢ and

¢ £ x <b and then combining these results.

THEOREM 4.3: Let Ly be given by (3.1) with the coefficients r, p, and
q satisfying the hypotheses of Lemma 4,5. Let the subset D( @) of
LZ(O,GD) be defined as in Definition 4,1, and for 1 < r,s < 2, let the
functions k _ be as defined in Theorem 4,2, For ~m <u< m,

0<x< w, and 1 < r,s < 2, define

6 (xu) =[5 52 B (xu) dk_(u),

Then for each r and for each u, as a function of x, Gr(.,u) is in
2
L“(0, ), If forr=1and 2, - <u< o, and f in D( w), Fr(u) is

defined by
Fr(u) = fo Gr(t,u)f(t) at,
then Fr is of bounded variation on -® < u < o and for each x > 0
_ 2 ®
£(x) = (1/m)S oy I B (x,u) aF_(u) (4.24)

where

I Polxou) @R, (u) = Lin 528 (xu) oF (u).
(03]
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PROOF: First, assume f is real-valued. The statement concerning the
functions Gr was established in Lemma 4,11, The fﬁnctions Fr were shown
to be of bounded variation in Lemma 4.13. Statement (4.24) remains to
be established, Let R and 6 be positive numbers and consider the con-
tour C defined as the negatively oriented rectangle with vertices

+R+1and + R+ 15. Since the singularities of §(x,\,f) are all real,
(1/mfy 8xn,£) ax = o,
in particular,
(1/m) In fo B(x,x,£) ar = 0. | (4.25)
From Lemma 4,14, for each R> 0 and & > O,

-R+18 ;
lin (1/m)f mre In Bxa,0) an = (/MBS J R g (x,u) oF (u),
(4.26)

By Theorem 4.1, the integrals in (4.26) converge as R -> w, thus

g.iino f‘gﬁg In O(x,,f) dx = Ziﬂ J_o #(xu) aF (u). (4.27)
>0+

R->

From Lemma 4,15,

Ln  (1/mf _pir In §(xA,£) an = - £(x), (4.28)
R-> .
and
m (/)R e B 1 B(xn,E) @ = 0. 4.29)
5->0+ { R+1§ —R+ié} i (
R-~>m®

Thus, by integrating Im I(x,k,f) around the contour C and then letting
§ => 0+ and R > o, (4.25), (4.27), (4.28), and (4.29) imply for real-

valued f,
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£(x) = (/M3 1.2 8 (xu) & (u). (%.30)

The expansion (4.30) for complex-valued functions in D( w) may be
accomplished by writing f(x) = Re f(x) + 1 Im f(x), then finding the
expansion (4.30) for each of the real and imaginary parts and finally
taking the linear combination of the results. This completes the proof

of the theorenm.

Following 1s a theorem which indicates the reasoning behind the
desire to consider the limit-point case of a singular formally self-
ad joint differential expression. The theorem states that, in Definition
4,1, if Ly is in the limitépoint case and if a functlon f satisfiles
conditions (1) through (iv), then the function also satisfies (v). In
other words, in the limit-point case, a condition at x = @ need not be
imposed upon the function to be expanded. A lemma is required prior to

proving the theorem. The following lemma is Lemma 3,2 of [351.

LEMMA 4,163 Suppose the complex-valued measurable functions f an& g
satisfy the conditions
(1) £ s 1n 130, o),
(11) g is in Lz(a,b) for all a and b, 0 < a <b < o, and
(111) g is not in L2(0, ®).
Then
im Jg £(0e(x) ax .
b-> {J.‘g |g(x)|2 d_x}l/z )

The following theorem is used extensively in theorems establishing
the limit-point case for 2n-th order differential equations. The

theorem 1s stated and proved for the fourth-order case.
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THEOREM 4.4: Let Ly be given by (3.1) and suppose the coefficients r,
p, and q are real-valued and continuous with p(x) > 0 for all x 2,0.'
Let B be that subset of LZ(O,OD) defined bys u is in E if and only if
(1) u is in L2(O,ao),
(11) uEB] is locally absolutely continuous on 0 < x < @,
(111) Lu is in LZ(O,co), and
(iv) [ u ¢i 7(0) =0 for 1 =1 and 2.
Then L is in the limit-point case if and only if
im [ uv J(v) =0 (4.31)
b-> @

for each u and v in E,

PROOF: Suppose (4.31) holds for all u and v in E. Suppose further,
that Ly is not in the limit-point case. Then there are complex numbers
oy and Qs not both zero, such that

Y(X) = fxlﬁl(xo)\) + Q2¢2(xv)\)
is in LZ(O,OD). Then, since each ¢i is a solution of Ly =1y, it
follows that LY = )Y, and thus, LY is in LZ(O,oo). Clearly, condition

(11) of the definition of E is satisfied, From Chapter III,
[Yg, J0)=0,1=1,z2
and so, (iv) is satisfied, Thus, Y 1s in E. Therefore, by Theorem 1.3,
b 2
[yy Jw) =[ ¥y o) + 2wy l¥(x)| % ax. (4,32)

Since Y is a linear combination of §; and §,, the first term on the

right of (4.32) is zero. By (4.31), the left side is o(1) as b tends to
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infinity, and thus

1im fg |Y(x)|2 dx = 0,
b-> o

implying A = a, = 0, a contradiction., Thus, Ly is in the limit-point
case. ‘

For the converse statement, suppose L is in the limit-point case
and u and v are members of E, Let {b& y, k>0, be a strictly increasing
sequence of positive real numbers ﬁith no finite limit point. Let
G(¢;bk) be defined as in (3.5) and for each k, let rl(k) and rz(k) be
the characteristic roots of G(¢;bk). By Lemma 3.5, G(¢;bk) is positive
definite and thus these roots are not zero. For each k > 0, let

V(k) = (aij(bk)) be the unitary 2 x 2 matrix such that
V(k)G(Bs by V¥ (k) = diag [y (k) ()], (4.33)
For 1 =1 and 2, define yi(x,k) by
¥y (%K) = ay; ()8, (x) + 0, (0 )8, ().

Then the left side of (4.33) is G(y;bk) where y is the vector given by

y = (5(x,%),5,(x,%))7.  Therefore, by (4.33),
I ¥y (x0T (%K) dax =z, (16, 4

for all k> 0 and 1 <1,j < 2. It then follows that since [ Yy ¥ (o)

is zero,
AR 1v,) = ri(k)éij- (4.34)

Also, note (%4.3) implies
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Ly ¥; Wv) =0, 1<1,522. (4.35)
Since the matrix V is unitary,
. 2 2
|y (B |7 +|ag (B | = 1

for 1 = 1 and 2. Thus, these coefficients are bounded, implying there

is an increasing sequence of positive integers n such that for i,j = 1,2

and for 1 =1 and 2, not both 44 and ay are zero. for i =1 and 2,

define

Y, (x) = 0y B, (x) + o ().

s
Then, since not both.a11 and aiZ are zero, nelther Yi can be in L“(O,oo)

since the limit-point case holds, but, clearly both Y, and Y2 are in

1
Lz(a,b) for all a and b, 0 < a < b < o by continuity of solutions.

From (4.36),
¥y (x,k) = ¥, (x) + o(1).
Consider the expression

[ (¥, +0(2)) v )(by)
{2k 1,0 + o(0)|? a2

(4.37)

By Theorem 1.3, the numerator of (4.37) may be expressed as

Sk (4, (0) + 0(1)(AF(x) - (L)(x)) ax

=\Y,.

since v is in E, [ Yo v 1(0) =0, ana LY, 1
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In Lemma 4.16, let £(x) = Av(x) - (Lv)(x) and let g(x) = Yi(x) + o(1).
From the definition of E and the above comments, f and g satisfy the
hypotheses of Lemma 4.16 and therefore, the expression (4.37) is o(1)
as k = o,

Theorem 3.2 will now be applied. Let f; = fB =g = éB = yl(.,k).
f, = fu =g, = éh = yz(.,k), f5 = u, and £s = Ve By (4.34) and (4.35),
for each k, the upper left 4 x 4 submatrix of the matrix in Theorem 3.2

is a diagonal matrix., Divide the first two rows and first two columns

by the term
B [y, (x| 2 2 2/? (4.38)

for 1 =1 and 2 respectively., Similarly, divide the second two rows
and second two columns by (4.38), 1 =1 and 2 respectively. Then, it

follows that the upper left 4 x 4 submatrix is
diag [[2iv,2iv,-21iv, -2iv],

The element in the (5,5) position is [ u v ](bk). A typical element in
the fifth row or fifth column (except the (5,5) element) is given in
(4.37) and thus is o(1) as k tends to infinity. Therefore, the deter-

minant of the matrix is glven by

M u v Av,) + o(1). (4.39)

Therefore, since by Theorem 3.2, the determinant is identically zero,
(4.39) implies [ u v W(bk) => 0 as k = ®. Since the sequence b, is

arbitrary, (4.31) then follows. This completes the proof of Theorem 4.4,

It should be noted that condition (iv) is not necessary for the
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second half of the proof, for if u and v satisfy (i), (11), and (1i1)
of the hypothesis, then these functions can always be redefined on

0 < x <1 so that (iv) holds.



CHAPTER V
THE DEFICIENCY INDEX PROBLEM

This chapter will survey the development of the limlt-point and
limit-circle probleﬁ for formally self-adjoint differential expressions
of even order with real-valued coefficients defined on an interval with
one singular endpoint. No attempt wlll be made to state and prove all
known results for this problem since the 1list is rather lengthy. Also,
many of the results require considerable development of the theory of
linear operators on functlon spaces. In general, three basic tech-
nlques for determining the limit-p caée of a differential expression
will be considered. Two of these methods are applicéble to differential
expressions of the second and fourth—ofder, but 1little has been accomp-
lished with expressions of higher order. The first of these methods is
particularly applicable to the second-order problem. The idea here is
to establish the existence (or nonexistence) of two linearly inde-
pendent solutions of Ly = Ay that lie in L2(0,<D). If this can be
accomplished, the second-order problem is completely determined since
these are the only two cases., That is, if there 1s a basis of the
solution space lying in L2(0,<D), the limit-circle case occurs and if
one solution of Ly = Ay can be found that is not square-integrable, the
limit-point case occurs, This method is léss used in the fourth-order
case since only a determination can be made of whether the expression

is or is not limit-4 (limit-circle) and less information is obtained

67
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since the limit-point (1limit-2) or limit-3 case may occur.

The second of the two methods makes use of Theorem 4.4, This
theorem is true for the 2n-th order problem by modifying hypothesis (11)
to read that u[2n~11 is locally absolutely continuous on the interval
[0,00) and by running the index i in (iv) from one to n where the bi-
linear form used is with respect to the particular operator under
consideration, In this method, a theorem is formulated by putting
conditions on the coefficients of the differential expression which
will force [ u v J(®) = 0 for all u and v in D( @). In this case, the
limit-point (limit-n) case will occur. Similarly, if two functions u
and v in the subset BE of LZ(O,cn) of Theorem 4.4 can be constructed so
that [ u v |( @) # 0, then the limit-point case does not occur. As
before, this completely determines the second-order problem, but not
higher order problems, A combination of this method and the first may
be applied in the fourth-order problem to eliminate the limit-point and
limit-circle cases, leaving the 1limit-3 case. The two methods so far
described are less applicable in the 2n-th order case, n > 2, since
these cannot determine the limit-p case, n < p < 2n., However, for
application to the expansion theorem, it is only necessary to know
whether or not the limit-n case occurs in order to determine the neces-
sity for imposing a boundary condition at infinity upon the function to
be expanded.

The third method for determining the limit-p case 1s called the
asymptotic method. With the exception of the second-order, and in some
cases, the fourth-order expressions, the only known method for iden-
tifying the limit-p case, p > n, is by this asymptotic method. In this

method, one attempts to obtain asymptotic estimates for the rates of
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growth of a complete set of linearly independent solutions for the
equation Ly = Ay, Im k-f 0. KXnowing the rate of growth of the solutions
in this baslic set, one can usually determine the dimension of the sub-
space of the solutlon space that lles 1n L2(0,<n). A more complete
description of the asymptotic method will be made later, along with an
example of its use,

The problem of determining the limit-p, n < p £ 2n, case of a
linear differential operator is commonly called the deficiency index
problem. A complete description of the reasoning behind this name
would take considerable development of the general theory of linear
differential operators, but an informal description will be given. A
complete development may be found in Naimark's book [65]. In the theory

of linear differential operators, one may consider the formal operator
- k (k) (k)
My - Zk=0 (—1) (Pn-ky ) (5'1)

operating on certain functions that are defined on an interval (a,b).
The coefficlents p, are assumed to be real-valued with Py taking only
positive values, The formal operator (5.1) is self-adjoint in the sense
that for any two functions u and v having continuous derivatives of all
orders and vanishing outslide some compact subinterval of (a,b), the

inner product identity,
(Muo V) = (u'MV) (5-2)

holds. Hence, when restricted to the test functions, M is a densely

0
LZ(O,cn) and so has a symmetric, closed extension Lo, called the mini-

defined symmetric operator, say L., in the Hilbert-Lebesgue space

mum operator assoclated with M, The above statements are discussed in
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Section 17.4 of [65]. The operator L = BB, the adjoint of LO described
in Chapter I, is called the maximal operator assoclated with M, L is
a closed operator which 1s the restriction of M to those functions u
such that u and Mu are in Lz(a,b) and u[2n—11 is locally absolutely
continuous on (a,b).

The formal self-adjoint operators which arise from physical prob-
lems usually come equipped with natural boundary conditlions at a and b.
If these are of the proper type and number, then the restriction of L
to those elements in its domaln which satisfy the boundary conditions
is a self-adjoint operator H which satisfies the relation LO(E.H(E L.
The operator L of Chapter IV defined on D( @) is such an operator pro-
vided the limit-point case occurs. As shown in Chapter IV, such
operators allow expansions of functions in Lz(a,b) which satisfy cer-
tailn boundary conditions. Recall that no conditions at the singular
endpoint(s) are required on the function to be expanded if the differ-
ential expression is in the limit-point case. If the expression is not
limit-point, some conditions on the function to be expanded must be im-
posed at the singular endpoinﬁ(s). In Chapter IV, the endpoint x = 0
was taken to be regular and the endpoint x =  was taken to be singu-
lar. At the regular endpoint, boundary conditions were imposed since
the expression can be considered to be limit-2n at that endpoint. That
is, for b > 0, all solutions of Ly = Ay are square-integrable on
0 < x£Db, and so the expression is not self-adjoint on 0 < x < b,
Thus, boundary conditions must be imposed at a regular endpoint. At
the singular endpoint, x = o, boundary conditions were needed only if
the 1limit-point case did not occur.

In the theory of the extensions of symmetric operators described
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by Naimark and developed by von Neumann, two cardinals are vital. To
describe these cardinals, flrst let D(LO) denote the domain of the

operator L

Define the range spaces Rk and RX by

ol

Ry = (LO - RI)D(LO), Ry = (LO - XI)D(LO) (5.3)

where A 1s a complex number, Im A > 0, Then deflne NR and NX as the

orthogonal complements of R, and Ry, respectively, in Lz(a,b). The

deflciency numbers of LO are then defined by

k=dim N, , m = dim N-.

A’ A

The pair (k,m) is called the deficiency index of L An application of

Ol

(5.2) shows that if y is in Nf and if z is any member of D(LO), then

( Ly - A1 (2),y) = 0.
That is, by (5.2),
(LOZ - Xz,y) =0
and therefore, the inner product identity

(z,Lyy) = (z.Ay)

holds., Since z is an arbitrary membgr of D(LO), it follows then that y
is a solution of Ly =Ly that lies in Lz(a,b). But since Ly = M* =M
by (1.6), the deficiency number m is the dimension of the subspace of
the solution space of My = Ay that lies in Lz(a,b). From (5.3) and
since the coefficients of M are real-valued, it follows that k = m,

From the above comments, the deficlency index problem is the same prob-

lem as determining the maximal number of linearly independent solutions
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of My = Ay that lie in Lz(a,b). Thus, there i1s reason to study the
deficlency index problem. However, perhaps the primary reason for
studying the deficiency index problem is "..,. because it is difficult,
and therefore challenging” [11, p. 355].

The defielency index problem, as now known, dates back fo Hermann
Weyl [79], around 1910. Until about the mid 1940's, only a few papers
appeared dealing with this problem. At that time, several contribu-
tions dealing with the deficlency index problem appeared. Most notable

among these is Bigenfunction Expansions by E, C. Titchmarsh [74].

Weyl's comments, made in a Gibb's lecture [80], on the span of nearly
forty years without consideration of the problem are interesting. His
comments refer to the above mentloned work by Titchmarsh and to a major
paper by Kunihiko Kodaira [ 59].

It is remarkable that forty years had to pass before such a

thoroughly satisfactory direct treatment emerged; the fact

is a reflection on the degree to which mathematicians during

this period got absorbed in abstract generalizations and lost

sight of their task of finishing up some of the more concrete

problems of undeniable importance (p. 124).

The current thrust of the work on the deficliency index problem is
toward determining necessary and sufficient conditlons on the coeffi-
clents of the differentlal expression to establish the 1limlt-p case.
There have been a large number of sufficient conditions found, but so
far, necessary conditlons have been elusive. Some of the results for
second and fourth-order problems will be discussed. The first series of
results will be examples of the flrst two methods described earlier,
Following these, an example of the asymptotic method will be given.

The asymptotic method is quite difficult and techhical, and as a result,

only one example will be given. After this example is given, a remark-

able theorem that indicates the delicacy of the problem of finding
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necessary conditions will be proved. In all cases that follow, the

foilowing notations and conditions will be assumed.
Ly = - (py')' + ay, (5.4)
Ly = (zy)" =« (py')" +ay. (5.5)

The coefficients r, p,‘and q of‘(5.4) and (5.5) will be assumed to be
real-valued and continuous on the interval 0 < x < o with p(x) > 0
for all x in (5.4) and r(x) > 0 for all x in (5.5). Other conditions
may be imposed in the individual theorems. 1In the second-order prob-
lem, the functions @ and %/ will be those introduced in Chapter II and
in the fourth-order problem, the functions ¢1, ¢2, 7"1, and \/Jz will be
those introduced in Chapter III. Recall that Y/, Wl, andsuz are all
in LZ(O, ®).

The following result is due to Levinson and is one of the more
widely known conditions for the limit-point case for second-order dif-
ferentlal expresslons. His result is 1n terms of a comparison function

for the coefficient q(x). This theorem is Theorem 2.4 of Chapter 9 of

[77.

THEOREM 5.1: Let L,y be given by (5.4). Suppose M(x) is a positive,
differentiable function such that
(1) (pM)-l/2 is not in L(O;oo), and
(11) o232 15 vounded.
Suppose further, that for some K > 0,
(111) q(x) > - KM(x) eventually.

Then Lzy is in the limit-point case.
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The following theorem 1s due to Titchmarsh and is similar to
Theorem 5.1, In this theorem, if p(x) = 1 and the bounding function M
is assumed to be nondecreasing, then hypothesis (ii) of Theorem 5.1 is

not needed. This theorem is Theorem 2,20 of [74].

THEOREM 5.2: Let L,y be given by (5.4) and assume p(x) = 1 for all
x > 0. Suppose M(x) is a positive, continuous, and nondecreasing
function such that M_l/2 is not integrable on 0 < x < w. Then, Lzy

is in the limit-point case provided gq(x) > - M(x) for all x > 0.

Of historical interest 1s Weyl's original result from his paper
[791. This result follows immediately from either Theorem 5.1 or 5.2

by setting M(x) = K,

COROLLARY 5.1: Let L,y be given by (5.4) and assume p(x) = 1 for all
x > 0. If for some K > 0, g(x) > - K for all x > 0, then L,y is in

the limit-point case,

The followlng result was established independently by Titchmarsh
-[73] and Hartman and Wintner [51] in 1949, As in the first two theo-
rems, the interest is in the growth of the coefficlent g and this

result allows more growth than Weyl's result.

]

1l for all

x > 0., If there exists a constant K > O such that q(x) > - Kx® for

THEOREM 5.3: Let L,y be glven by (5.4) and assume p(x)

all x > 0, then Lzy is in the limit-point case. Furthermore, the
exponent 2 is the best possible in the sense that if 2 is replaced by

2+56, 8§ >0, the result may no longer be true.

PROOF: The first part of the theorem follows from Theorem 5.2 by
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setting M(x) = sz. To show the second part, the second-order analogy
of Theorem 4.4 will be used.

Let Ly be glven by

Ly = - y" - x2+6y, 5 > 0, (5.6)

Let the function u be defined by

f(x), 0<x<1,

T W e (P2 e, 1 <x <

where.f is any 01(0,1) function such that £(0) = £'(0) = 0 and such
that uEl} 1s absolutely continuous on 0 < x £ 2, It may then be calcu-
lated directly that u and Lu are in LZ(O,cn) and that uEl? is locally
absolutely continuous on 0 < x < . Also, it is easily seen that con-
dition (1v) of Theorem 4.4 is satisfied (for the second-order case.)
Now, for the hermitian form [ u v | with respect to (5.6), for b > 1,

it may easlly be calculated that
[ uu J(b) = - 2iIm(u(b)u'(v)) = 2.

By Theorem 4,4, Ly is not in the limit-point case, implyling Ly is in

the limit-circle case. This completes the proof of the theorem.

The following result is also due to Hartman and Wintner [507]. It

is similar in its restrictlons on the growth of q.

THEOREM 5.4:1 Let L,y be given by (5.4) and assume p(x) = 1 for all
x > 0. If for a certain constant ¢ > 0, and for some K > 0, the

inequality.

alx,) - a(x) > - K(x, - x,) (5.7)
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holds for ¢ < x, < x

1 o then L2y 1s in the limit-point case.

PROOF: Let x, = x and keep x, fixed in (5.7). Then

2 1

a(x) > - K(x - %) + a(x)).

Thus, for x sufficiently large, for some constant K, q(x) > - K, x.

The result now follows from Theorem 5.2 by taking M(x) = K,x, and the

1

proof 1s complete,

The next result leads to the generalization of Weyl's result in
Corollary 5.1 to the more general expression (5.4). In Coddington and
Levinson's book [7], L2y was shown to be in the limit-point case if q
is bounded below and p—l/2 is not in L(0, ). This is an immediate
corollary of Levinson's theorem, Theorem 5.1, be taking M(x) = 1. 1In

1/2 is not in L(0, o).

1966, Everitt [ 34 removed the condition that p~
His proof, however, is tedious. In 1969, Wong [821 gave an elegant
proof of the result by using the mean value theorem for derivatives.
The result is a corollary of the followlng theorem which connects the
ideas of the limlt-point and limit-circle cases to the notion of oscil-
latory differential equations. A differential equation is said to be
oscillatory 1f the equation has at least one osclillatory solution, that

is, has at least one nontrivial solution with an infinite number of

zeros. This theorem and 1ts corollary are due to Kurss [611.

THEOREM 5.5: Let Lzy be given by (5.4) and let a comparison operator

be defined by

My = - (py')' + q;¥.

Then L2y is in the 1limit-point case if
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(1) M is in the limit-point case and is nonoscillatory, and

(11) q - q; 1s bounded below.

PROOF: By (1), there is a solutlon v of My = 0 that is strictly posi-
tive for sufficiently large x and is not in LZ(O,oo). Also, (i1)
implies there exlsts a real number A such that for x sufficiently
large, q ~ 9 > A, Without loss of generality, assume the above holds

for all x > 0. Let y be the solution of L,y = Ay that satisfies the

o
initial conditions y(0) = v(0) and y'(0) = v'(0). Then since

a(x) - A > q; and (L2 - X)y = 0, the Sturm Comparison Theorem implies
y(x) > v(x) for all x > 0. Thus, y is not in LZ(O,(D) and the limit-
circle case cannot hold. Therefore, Lzy is in the limit-point case

and the proof 1s complete.

COROLLARY 5.2: Let Lzy be given by (5.4). Then L2y is in the limit-

point case 1f q 1s bounded below.

PROOF: Let ql(x) = 0 for all x > 0. Then the solutions of My = 0 are

linear combinations of the functions

u(x) =1, v(x) = Ig 1/p(t) dt

and thus do not oscillate. Also, My cannot be in the limit-circle case
since u 1s not in LZ(O,cn). Therefore, the result holds by Theorem 5.5.

Thils completes the proof of the corollary.

The following result glven a different restriction on the growth
of q. In this theorem, if q is in LZ(O,cD), then the limit-point case
holds. Thus, q may be allowed to be arbitrarily large, but only on

very small sets. The theorem in the special case p(x) = 1 is due to
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Putnam [69]. To the author's knowledge, the following generalization

has not appeared.

THEOREM 5.61 Let L,y be given by (5.4) and assume q is in LZ(O,co).

Then Lzy is in the limit-point case.

PROOF: It will be shown that if two solutlons of L2y = 0 are in
LZ(O,oo), then they are necessarily linearly dependent, implying the
limit-circle case cannot occur..

Let y be any solution of Lzy = 0 such that y is in LZ(O,(D). Then

(py')'(x) = a(x)y(x). (5.8)

Integration of both sides of (5.8) from O to x yields the identity

[(oy ) ()T = Fg alt)y(t) at (5.9)

and it follows by the Schwarz inequality that the right side of (5.9)

1s bounded as x -> . Thus, as x - o,

p(x)y'(x) = 0(1). (5.10)

Let y and z be any two solutions of Lzy = 0 that are in LZ(O,cn).

Then, since

[yz J(x) = p(x)y(x)z'(x) - p(x)y'(x)z(x), (5.11)

(5.10) implies each of the terms on the right side of (5.11) is in
LZ(O,GD). Thus, [ ¥y 2 J(x) is in LZ(O,oo). By Theorem 1.3, [ y 2 J(x)
is independent of x, and so (5.11) must be identically zero. Since
(5.11) is the generalized Wronskian for solutions of L,y =0, y and 2z

cannot be linearly independent. Therefore, the limit-circle case cannot
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occur, and the conclusion follows. This completes the proof of the

theorem,

The following two theorems are due to Wong and Zettl [851. These
theorems also make use of a comparlson operator as in Theorem 5.5. The
second of these results involves the oscillatory nature of the two op-
erators. L2y will be the expression (5.4) with the added condition

that q(x) < 0 for x > 0. Define the comparison operator
Mz = - (2'/q)" + z/p, (5.12)

where q and p are the coefficlents of Lzy. Also, assume p and q are
continuously differentiable on the interval 0 < x < . The proofs of

these theorems are found in [85].

THEOREM 5.7t Let Y = (qp)'/(qp) and Mz be as defined in (5.12), If
elther

(1) YY" 1s in L(0, @), or

(11) Y is in L(0, @) and - qp is bounded above,

then L2y is in the 1limit-point case.

The next theorem considers the oscillatory properties of the com-

parison operator Mz and of Lzy.

THEOREM 5.8:¢ Suppose 1/p is not in L(0, @) and q < 0. Then L,y is in

the limit-point case 1f elther L2y or Mz 1s nonoscillatory.

The search for conditions on the coefficlents of L2y in order to
place the operator in the limit-clrcle case appears to be less extensive.

It may be that the limit-point case is more interesting since this case
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makes the problem L.y = Ay self-adjoint. This is easily seen from the

2
results of Theorem 4.4, For if Lzy is in the limit-point case, then

for all functions u and v in the domain of L2, Theorem 4,4 implies
[uv (p) >0asb~> .

Thus, for u and v in the set E of Theorem 4.4, an application of

Theorem 1.3 yields

it

(Lzu,v) - (u,L,v) = 1im fg {(Lzu)G - u(f;;)} dx

b> @

1im {[ uv J(b) - uv ](Oﬁ

b-> @

- [ uv 10). (5.13)

i

As in the proof of Lemma 4.1, [ u v ](0) = 0 and (5.13) implies

(Lzu,v) = (u,sz). Therefore, L.y with the boundary conditions of the

2
set & of Theorem 4.4 is self-adjoint. If the limit-circle case holds,

then L,y restricted to the set D( @) of Definition 4.1 is self-adjoint.

2
The following two theorems glve conditions on the coefficients of
L2y in order that the limit-circle case holds. The first theorem is
more useful for constructing a class of examples. The second theorem
is a generalization of a special case of the first result to the more
general expression (5.4). The first theorem is due to Eastham [20].
It is noted that the techniques used to determine the limit-point case
are less successful in determining the limit-circle case since most of
the limit-point results are established by showing that at least one

solution of L,y = 0 is not in LZ(O,co). It is a more difficult problem

2
to show all solutions of L,y = 0 are in LZ(O,oo) if the solutions or

asymptotic estimates of the solutions are not known. A proof of the
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first theorem may be found in [20] and is an application of Theorem 4.4,

THEOREM 5.9: Let L,y be given by (5.4) and assume p(x) = 1 for all

2
x> 0., Let P, Y, and h be real-valued functions defined on b < x < w,
b > 0, such that
(1) P(x) > 0 for x > b and P is in L3(0, ®),
(11) P’ and Y are locally absolutely continuous on b <x< o,
(111) Y(x) = o(1) as x => o, and

(1v) h and Y'/P are in Lz(b,(D).

Let q be defined by

q=h/P+P"/P - (1+ Y)/P”,

for x > b and defined to be any LZ(O,b) function on 0 € x < b, Then

Lzy is in the limit-circle case.

The following corollary of Theorem 5.9 is simple, but will be used

in a later theorem.

COROLLARY 5.3t Let ql(x) be a negative, decreasing function such that
- 2
(- ql) 1/4 is in L7(0, @) and q, has continuous derivatives of all

orders. Then for a, defined by

a, = ap + ||V ay| VM,

the differential expression My defined by
My = - y" + a5y

is in the limit-clrcle case.

“1/b

PROOF: The corollary follows lmmedlately by taking P = |q1| , h =0,

and Y = 0 in Theorem 5.9.
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Note that there have been a number of theorems in which 93 can
satisfy the hypothesls of Corollary 5.3 and Ly = - y" + q,y may be in
the 1imit-point case and (5.14) may be in the limit-circle case. Such
a situation will be examined in a later theorem. The followlng theorem
is due to Everitt [38] and 1s shown for the general expression (5.4).

The corresponding result for p(x) = 1 will follow from Theorem 5.9.

THEOREM 5.10: Let L2y be given by (5.4) and assume p' is continuous.
If
(1) p' and q' are locally absolutely continuous on 0 < x < @,
(11) p" and q" are in LZ(O,OD) locally,
(111) q(x) < 0 for x > 0,
(1) (- p)) ™"
(v [e(e0)' (- 22)™*7 15 10 130, ),

then Lzy is in the limit-circle case.

is in LZ(O, o), and

PROOF1 The proof will use Theorem 4.4, Define f by
-1/4 1/2
£(x) = (- p0) Vexp (0% (- o/p)Y/? at).

It 1s readlly verified that the hypotheses of the theorem imply f
satisfies the hyoptheses of the second-order version of Theorem 4.4, A
simple calculation will then show that [ £ f |(b) = - 2i, and thus, by

Theorem 4.4, L,y is in the limit-circle case. This completes the proof.

2

It is noted that in the case p(x) =1, by letting P = (- q)_l/u,

Y =0, and h = - P", Theorem 5.10 follows from Theorem 5.9,
The followilng result is due to Patula and Wong [68] and relates
the 1limit-point case of a differentlial expression to a known differen-

tial expression. This result will also be used later,
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THEOREM 5.11: Let Lzy be given by (5.4) and let My be given by
My = - (py')' + q .

Assume Lzy is in the limit-point case, If all solutions of L2y = 0 are

bounded and lq - qli is bounded, then My is 1n the limit-point case.

The next theorem is due to Eastham and Thompson [227]. The result
of this theorem 1s qulte remarkable and indicates the difficulty of the
problem of determining necessary and sufficlent conditlions for the
limit-point or limit-clrcle case to occur. The problem is shown to be
quite dellicate and it is possibly true that for this reason, no neces-
sary and sufficlent conditions on the coefficients of L2y have yet been
found that place the operator Lzy in the limit-point or limit-circle

case., The proof glven 1s a speclal case of the results of [22].

THEOREM 5.123% Given € > 0, there exist functions 9 and 45 that agree
except on a sequence of intervals of total length of at most &, and

such that for Ly and My defined by

Ly = - y" + q.y, My = - y" + @V, (5.15)

Ly is in the limit-point case and My is in the limit-circle case.
Furthermore, 9 and q, can be taken to have continuous derivatives of

all orders and q, can be taken to be monotone.
PROOF: For each n =1, 2, ..., define
b =2n/n, s =S¢ . b
n ' ®n k=1 'k’

Then let g be the step function defined by
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2
= o <
a(x) n", s 5 <x<s,

where 5o = 0. It will first be established that the differential
expression L2y = - y" + qy 1s in the limit-point case and that all

solutions of L2y = 0 are bounded. Let Y and Z be the functions glven by
Y(x) = cos (n[x - sn_lj), Sp-1 S X <5
z(x) =.sin (n[x - sn_ll), s 3 Sx<s.

It is easlly verified that Y and Z satisfy L2y = 0 and are bounded.

Also, since n(sn - ) = nbn = 21, 1t 1s easily verified by elemen-

sn—l

tary integration that
® 2 _ a=l—m _
IO Y9(x) dx = 2 E:k=l b = o,

implying Y 1s not in Lz(0,0D).- Therefore, Lzy is in the limit-point
case.,
Let a4 be any Cm(O, o) function satisfying the conditions
(1) q; is nondecreasing,
(11) ql(x) < g(x) for each x > 0,
(111) |q1 - ql is bounded on 0 < x < oo,

(1v) q,(x) = q(x) except in an g2n1
1

neilghborhood of each Sp
Then, since L2y is in the limit-point case and all solutions of’LZy =0
are bounded, condition (i1ii) and Theorem 5.11 imply Ly given in (5.15)
is in the limit-point case.

Define a, by

a,(x) = a,(x) + |ay ()] Y H|qy ()| My,

Recall that by the definition of q and condition (iv), q; is constant
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outside 52“““1

nelghborhoods of S Hence, outside these nelghborhoods,
{lqll-l/“}" = 0, and thus qz(x) = ql(x) for values outside these neigh-
borhoods. That is, 9 and q, agree except on a set of measure less

than €. Since 9 is nonincreasing and negative,

|0y ()| /2 < |a,(0)] /2

-n-1 + 82-n—1.

For each n, let In denote the interval S, - €2 <x<sy

Then since q; = q on o( In).
® -1/2 -1/2 -1/2
foo 900 < fyp (o (O T dx+ Tggyr y [y (0] 7 ax

< Elql(O)I"l/2 +3 2 I:ﬁ_l ]q(X)l'l/2 dx

i

o(1) + EZ:Zl (sn - Sn—l)/n

]

o(1) + Z:i b /n

]

o(1) + 25;21 2r/n”.

Ihl/h is in LZ(O,OD). Therefore, by Corollary 5.3, My

Thus, |q1(X)
given in (5.15) is in the limit-circle case. This completes the proof

of the theorenm,

Attention will now be centered on the fourth-order expression Luy
glven in (5.5). Fewer results have been established for this expres-
slon. One of the difficulties is that there is a case "between" the
limit-point and limit-circle cases, namely the 1limit-3 case. The prin-
cipal methods used to establish results in the fourth-order problem
(and for higher order problens) ére the use of Theorem 4.4 and the
asymptotic method, although Hinton has published a fourth-order result

using neither of these methods., The first theorem is an extension of
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Corollary 5.2 in that it 1s assumed that the coefflcient q of y is
bounded, This result is due to Everitt [36] and a proof may be found

in Theorem 1 of his paper.

THEOREM 5.13: Let Ly be given by (5.5) and assume r(x) = 1 for all
x > 0. Suppose the coefficlents p and q satisfy the conditions
(1) q is locally integrable on 0 < x < w,
(11) p is locally absolutely continuous on 0 <x< w,
(111) p(x) > 0 for x > o,
(1v) q is bounded below, and
(v) elther 0 < p(x) < Kx° or 0 < p(x) < Kx2|q(x)|l/2 for some
K> 0 and for all x > 0.

Then Luy is in the limit-point case.

The following theorem, also due to Everitt [371, is similar to
Theorem 5,13 in that the growth of the coefficients p and q is re-

stricted. A proof of this result may be found in that paper.

THEOREM 5.14: Let L,y be given by (5.5) and assume r(x) = 1 for all x.
Let E be as defined in Theorem 4.4 where the form [ u v | is defined
with respect to the differential expression Luy. Let k, 1, and m be
nonnegative constants and let the coefficlents p and q of Lay satisfy
the conditlons
(1) q is locally integrable on 0 < x < ,

(11) P 1s locally absolutely continuous on 0 < x < m,

(111) q(x) > - kx* almost everywhere for x > 0, and

(1v) - lxz/3 < p(x) < mxlo/3 for all x > 0.

Then Luy is in the limit-point case.
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The method of proof of the following theorem by Hinton [521 is
unusual for a fourth-order problem in that it does not involve elther
Theorem 4.4 or the asymptotic method. Moreover, the result is easily
applied. The statement given is for a speclal case of Hinton's theorem

and the proof glven in hils paper 1s easlly followed.

THEOREM 5.15: Let L,y be given by (5.5) and assume further that
p(x) > 0, q(x) > 1, p(x) = O(xz), and r'(x) = O(x3) as x = . Then

Luy is in the limit-point case.

The asymptotic method will now be considered. Since the mid 1940's,
the main work on the deficlency index problem has been done in England,
Russia, and.the Unlted States. In England and in the United States,
the specific problem of the deficlency index was studied only for
second;order operators until the late 1960's. At that time the fourth-
order problem was conslidered, primarily by Everitt, Hinton, Eastham,
Devinatz, Walker, and Wood. In Russla, beginnings were made on the
establishment of a theory for higher order operators. The Russian
school used the asymptotic method in the early 1950's to obtain defi-
clency index theorems for higher order operators. An excellent account
of some of these methods and results appears in Nalmark's book [651.

In the Unlted States, Everltt, Hinton, and Eastham generally used
methods other than the asymptotlc method while Devinatz, Walker, and
Wood employed asymptotic methods. An example of the asymptotic method
will be consildered. This example 1s due to Walker [76, 77]. To at-
tempt to survey all the results using this method would be too lengthy
since the proofs of these results tend to be quite complicated and long.

For the fourth-order problem, the most notable results are due to
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Devinatz [13, 14, 15], Walker [76, 77, 787, and Wood [86]. The results
presented by Naimark [ 65] for the 2n-th order operator can also cer-
talnly be restricted to the fourth-order operator Luy.

The asymptotic method in the deficlency index problem is generally
based on an asymptotic theorem of Levinson [7] or [8:p. 92°] and certain
extensions of this theorem due to Devinatz [11] and Fedorjuk [45]. In-
stead of trylng to apply Levinson's theorem directly to the problen,
the procedure is to make certain transformatlions on the independent and
dependent variables in order that Levinson's theorem may be applied.
This procedure will be generally described for the 2n-th order problem,

The differential equatlon to be considered is put into the form
U'(x) = A(x)U(x), (5.16)

where the matrix A is given by (1.5). For convenience, assume the
problem is defined on the interval 0 < x < w. Let QO be a nonnegative
measurable function such that l/Q,0 is locally integrable on 0 < x < o,

but not integrable on the entire interval 0 < x < w. Let

s(x) = [ (1/0y(t)) at.

The function s is monotone increasing, locally absolutely continuous
and has a monotone increasing inverse which may be denoted x = x(s).

By setting V(s) = U(x(s)), (5.16) ylelds

Vi(s) = Qp(x(s))A(x(s))¥(s), (5.17)

where the prime in each case willl denote differentiation with respect
to the indicated independent variable., Let Ql, ces Qn be positive

functions on the interval 0 < x < o which are all locally absolutely



continuous. Let Q be the diagonal matrix

Q = diag [Qn, veo g Qll Qil, vee Q,;1~I’

89

where Qil denotes 1/Qk and let V(s) = Q(x(s))W(s). The differential

equation (5.17) then becomes

W'(s) = C(S)V(s)

where the 2n x 2n matrix C is glven by

_dn ®h-1
Cl E
I
"4 19,
a4 e
91 % 1
% “°n-1
gEO dn*q

where

q.o = Qo/Qipov qk = QOQipk. 1<k<n- 1,
- g% - <
qn - QOQ‘n(pn - >\-)v Ck = QOQk/Qk+1’ 1 < k =n - 1,
-1 -
a, = (ko/ds)Qk = Qo(ko/dt)le, 1<k<n,

and the unmarked entries are zero.

Assume

c(s) =B + V(s) + R(s),

(5.18)

(5.19)
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where B 1s a constant matrix with simple elgenvalues, V(s) = o(1l) as

s > o, and V;(s) and R(s) are integrable on some interval a < s < o,
a > 0, With these hypotheses and under other suitable conditlons, the
theorem of Levinson can be applied. This theorem states that there is

a complete set {wg} of solutions of (5.18) and an s, > 0 such that
) s
wk(s)exp {— fSo ké} > ey,

where L is a complete set of elgenvectors for B. Thus, an estimate

on the growth of the solutlons w, can be given, and transforming hack,

k
estimates on the growth of a complete set of solutlons of L2ny = Ay can
be made.

The asymptotic method is not always applicable. Generally, when
the coefficients have "large" osclllations, it is not possible to
transform the problem into one which is a small perturbation of a dif-
ferential operator with constant coefficients., Even if such a
transformation is possible, the constant matrix B of the decomposition
(5.19) may have multiple eigenvalues. The problem of finding asymptotic
estimates in the latter case is not easy, and only recently have some
beginnings been made by Devinatz and Walker. It is a problem of the
latter type that will be considered. The asymptotic theorem of
Levinson's is Theorem 1, page 88, of [8]. It is this theorem that will

be used, Before stating thils theorem, a lemma and a definition will be

stated.

DEFINITION 5.1 Let b be a real number and D a real-valued continuous
function defined on b < x.< w. Then D is said to satisfy condition (*)

if and only 1f elther
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(1) J‘g D(t) dt = @ as x => @ and there is a real number K such

that 1f b < x, < x,, then J'fé D(t) dt > X, or

1 2’
(11) there exists a real number K such that if b < X < Xo

then fﬁi D(t) dt < K,

Note that K need not be positive. Condition (*) will be used in
the theorems to follow and it will be useful to have some conditions
that imply condition (¥). The proof of the following lemma is

elementary.

LEMMA 5.13 Let b, and bl be real numbers with bO < b1 and let D be a

0
continuous function defined on bo < x < w. Then, each of the following

implies D satisfies condition (*).

(1) The restriction of D to x > b, satisfies condition (*).

1

(11) D i1s nonnegative, negative, nonpositive, or positive for

all x Z-bl'

(111) There exists a monotone function m and a bounded function w

such that for bl <x = Xp
X2 = X2
fxl D(t) at = [m(t) + w(t)_]XI.
(iv) D =D, + D, for x > b, where D, satisfies condition (*) and
1 2 -1 1
D2 is integrable on bl <x < w,

Following is the variation of Levinson's theorem that will be used.
In this theorem and in the next, capital letters will denote matrices
or vectors and lower case letters will denote real or complex valued
functions. In Theorem 1, page 88, of [8], a condition that Re (xk - xj)

does not change sign 1s made. In the following theorem, this condition
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is replaced by a condition that Re (xk - Aj) satisfies condition '*).
It 1s easily seen that the theorem remains valid under this weakef

condition. Theorem 8.1, Chapter 3, of [7] uses this weaker condition.

THEOREM 5.16: Let T be the diagonal matrix

T(x) = diag [Xl(X). cee Xn(x)] _

and let F be a continuous matrix such that HF(X)H is integrable on the

interval b < x < ®. For a fixed k, 1 < k < n, define
() = - < j<n,
ij(x) Re (Xj(x) Xk(x))' 1<3j<n

If all the functionS«ij satisfy condition (*), then the differential

equation

Y' =[T(x) + F(x)] Y

has a solution Yk(x) such that as x = o,
X
Y, (x) = B exp {fb A (t) at} + o(1),

whereEk is the elementary vector with zeros in each position except the

k-th position which is one.

Before presenting'the theorem, a preliminary lemma will be needed.
The lemma follows immediately by performing the indicated differen-

tiation.

LEMMA 5.2: Let each of S and T be a nondegenerate connected subset of
the real line. Suppose there is a continuously differentiable homeo-

morphism h: S => T such that h' does not vanish on T. Let g be the
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function inverse of h, For Mn the set of n x n complex matrices, let
Ay T = Mn be a continuous function. Let Q: T - Mn be a continuously
differentiable function such that Q-l(t) exlsts for each t in T, Then,
if Yoz T => Mn is a fundamental matrix for Y' = AY, then Zoz s = Mn'

defined by Z, = Q(g)YO( g), is a fundamental matrix for
7' = (1/h'(e)) [U)A(e)a () + Q' (2)aH(e)] 2.

The following theorem employing the asymptotic method is due to
Walker [76]. Although he established the theorem for more general
coefficients r, p, and q on Luy, the theorem will be established for the

particular case
Ly = (Py)" - (- DI y) + 2%, x 21 (5.20)

since the general theorem is quite complicated and is less sulted to the
deficiency index problem. Particular differential expressions of the
form (5.20) have been studied in recent years since they hope to give an
indication of how "near" the sufficient conditions of such results as
the preceding fourth-order results are to being necessary. This partic-
ular result will show the results of Theorem 5.13 are not the best

possible for Ly given by (5.20).

THEOREM 5.173 Let Luy be given by (5.20) with a = 0, ¢ =0, and b = 4,
Then the differential expression Luy is in the 1imit-2 (limit-point)

case if j = 2.

PROOF': Let the function h: [1, cn) > [O, CD) be glven by the equation
h(x) = (1/3)(x3 - 1) and let g [0, @) => [1, ®) be given by the

equation g(s) = (3s + 1)1/3. Note that g is the function inverse of h.
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- For s > 0, define the functions o and B by
‘ - -8
a(s) = (3 + 1)L, B(s) = (35 + 1),

Then it is easily seen that o', B', and az are in L(0, ®). Let v> 1 be

such that svﬁiis in L(0, ®). Define E: [0, @) => M, by
B(s) = diag [e7®, &5, s™V(3s + 1), (3s + 1)} (5.21)
and define G: [1, @) = M, by
G(x) = diag th, X, x-l, x“BhV(x)w.‘

Let A be the matrix

A(x) = " .

By Theorem 1.2, the system
Y' =AY (5.22)

is equlvalent to the differential equation Luy = 1iy. It will be shown
that there exists a fundamental matrix YO for (5.22) such that as

G(x)Yo(x)E(h(x)) = K + o(1) (5.23)

where K 1s the matrix
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-1 -1 0 0

0 0o -1 0

Let Y, be a fundamental matrix for (5.22) and define Q: [1, @) - M),
by

Q(x) = diag [x3, X, x-l, x-B]

and let Z1 be glven by

z,(s) = Q(a(s))¥(&(s)). (5.24)
By Lemma 5.2, Z, is a fundamental matrix for the system
7' = (1/h'(g)) [Ae)a(e)e ™ (e) + Q'(g)a (8)] 2. (5.25)

Note that (5.25) may be expressed as

7' = [Ao +V]2z (5.26)
where AO and V are glven by
0 1 0 0 3a/4 0 0 0
o o0 1 o0 0 o+ o0 O
Ay = , V= .
0 -1 o0 A 0 0 -/ 0
0 0 0 0 0 0 0 -3a/4

Let J be the matrix
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11 0 1
1 -1 1 0
J = .
| 0 o0
|0 0 -1 0]
Let
-1
W (s) = 3772,(s) (5.27)
and note that by (5.26),
[ R -1
Wy o= (J [Ao + V] J)Wl. (5.28)

Also, note that W1 is nonsingular. By a calculation,

_ — _ -
1 0O 0 0 0 o0 -a/2 0
1 o -2 o o o 0 a/2 0
J7AyT = , J7UVI = .
0o 0 o0 0 0 0 =-3/4 o0
0 0 4
B 0 1 i)_ R BOLL
For s > 1, define p by
P(s) = dtag [1, 1, s', 1]
and let Xl(s) be given for s > 1 by
X,(s) = B(s)u,(s). ' (5.29)
Then it follows from (5.28) and (5.29) that
xy = [pph 4 paTha ™t + potvarT ) x (5.30)

Also, note that X, is nonsingular. Expression (5.30) may be expressed

as



3 =[B+c)xy, (5.31)
where B and C are glven by
1 -/ 0 0 0 0 -as /2 0
-o/4 -1 0 0 0 0 as /2 O
B = ‘1 [} C = ) L]
0 0 wvs =3/ O 0 0 0 0
a a 0 0 0o 0 sV 0

L _— L . p—

From the cholce of v and the definition of o, it is clear that C is in
L(1, ). Let R be the function defined as R: ¢ x [1, @) > #, where

R(z,s) = det (B - qu). Then a computation shows
R(z,5) = (Go/k - 2)(- 3u/b + vs™h - 2)(2® - 1 - o®/26).

Let xl(s) and Az(s) be the two continuous functions satisfying
Xi(s) -1 - az(s)/lé =0, k=1 and 2. Then xl(s) =1+ o(1) and

kz(s) = -1+ 0(l) as s = o since a(s) = o(1). Also, define A, and My,

3
by

Ay(s) = - 3als)/b + vs™h, A (s) = 3a(s)/, (5.32)

and note that R(kk(s),s) =0 for 1 <k<U4. LetS be the matrix

1\ -0/ 0 0
o/4 -1-A, 0 0
S = * .
0 . 0
a(l+k4-a/4) a(lu—l-a/b) 0 1+xi-a2/16

Then by using the definitions of Al and Xz' it is easily calculated that

SB = dlag [A)s Ay Aqs AT S,
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From the definitions of «, A,, and A, it follows that 5] 1s

1’
integrable on 1 <s < ®. Also, note that as s > o, a = o(1), thus

S(s) = atag [2, - 2, 1, 1]+ o(1). (5.33)

Therefore, S is nonsingular for sufficiently large s. Applying

Lemma 5.2 again and using (5.31) while letting

Uy (s) = s(s)X(s), (5.3)
for s > S Z,SO, it follows that U1 is a fundamental matrix for the
system

ur = [sBs! + scs™t + 557 v, (5.35)

where, for this application of the lemma, h(s) = s. By consideration of

(5.33), both S and s are bounded for s > s Thus, since||C" is

1.
integrable on s 2 85 and'lS'H is integrable on the same interval, it

follows 't,hat”SCS_l + st_lu 1s integrable on s, < s < ®. Therefore,

1
the system (5.35) may be expressed as

v =[T+F]u, (5.36)

where

T = diag [1, - 1, XB. Xuj.

1 1

F = diag [xl -1, \,+1, 0, 0] +sCs™™ +s's™,

2

It is easily seen that "F" is in L(sl,oo). Also, it is easily seen

by using Lemma 5.1, for D, the real part of the k-th dlagonal element

km

of T minus the m-th, ka satisfies condition (*) for all k and all m.

Therefore, by Theorem 5.16, there is a fundamental matrix UO for the



99
system (5.36) such that as s = m,
U,(s)exp {- fil dlag [1, - 1, a4(t), Ay(8)] at} = 1, + o(1).(5.%)

By evaluating the integral using (5.32), the exponential factor in
(5.37) is glven by DE(s) where D is the constant diagonal matrix ob-

talned by evaluating the integral at Sq Therefore, by (5.37),
Uo(s)DE(s) =TI, + o(l).

The reverse transformatlons will be made. D is nonsingular and so
each of UOD and U1 are fundamental matrices forythe'system (5.36). Let
H be a constant nonsingular matrix such that UOD = UlH' Then by (5.34),
(5.29), (5.27), and (5.24), for s = h(x),

= = = —1‘ = —l
Uy = 8X, = SPW, = SPJ "2, = SPJ "QY,. (5.38)

Let Y, = Y.H on the interval [ a( sl), ®) and extend this to a fundamental

matrix of (5.22) on all of [l,oo). Then from (5.38),

UODE = U.HE + SPJ_lQYlHE = SPJ-IQYZE. (5.39)

1
By (5.39), as s = ® (h(x) = o),
SPJ']'QYZE =1, + o(1). (5.40)
Since J-1 is constant and
s7H(x) -+ diag [1/2, 1/2, 1, 17,

(5.40) implies

PJ_lQYZE - s (@) + o(1),
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that 1is,

JPJ'1QY2E = 35N o) + o(1).

It is easily calculated that

spst =k dtag [1, 1, 1, '],
where
1 0 © 0
0 1 0 n¥a
K = .
L 1o o 1 0
o 0 o0 1
Therefore,
K, dlag [1, 1, 1, h'] Qr.E - IS @) + o(1),
that 1is,
v s -1..-1
dtag [1, 1, 1, h') QY,E = K;™JS (o) + o(1).
Now, let

Y (x) = Yz(x)s'l( ®)

and note that diag [1, 1, 1, hv] Q@ = G. Since diagonal matrices

commute among themselves,
G(x)¥y(x)B(n(x)) = KI'(®)J + o(1) = K + o(1).

Therefore, (5.23) is established. The conclusion of the theorem may now

be shown. The first row of the product GY.E will be compared with the

0
first row of K. From (5.21), using g(h(x)) = x and h(g(s)) = s,
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E(x) = diag [e_h(x), eh(x), hV(x), x“3].

Then by comparing the first and fourth columns, there are solutions A

and Yo such that
¥ = x_Beh(x)(l + o(1)), yp, =1+ o(1).

Since h(x) tends to infinity with x, ¥q tends to infinity and ¥y i1s not
in Lz(l,oo). Also, it 1s clear that no linear combination of ¥y and Yo
can be in Lz(l,qﬁ. Therefore, the limit-point case holds and the proof

of Theorem 5,17 is complete.

Theorem 5.17 implies the differential expression

iv

n
Ly=y -(xy)' +y

is in the limit-point case and thus the condition

0 < p(x) < K or 0 < p(x) < K,leq()c)|l/2.

where p(x) = ot and q(x) = 1, of Theorem 5.13 is not nearly a necessary
condition for the limit-point case to hold.

This survey of the deficiencyvindéx problem will be concluded by
some results that connect certaln results for the second and fourth-
order‘cases. This connection will be consldered by examining the
limit-p properties of the fourth-order operator obtained‘by "squaring"
the second-order operator, that is, for sufficiently differentiable co-

efficients p and gq,
2
L%y = L(Ly),

where Ly is the operator defined by (5.4).
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Let p and q be real-valued functions such that p(x) > 0 for all
x > 0, q is locally integrable on 0 < x < w, and p, p', P", q, and q'
are all locally absolutely continuous on 0 < x < @. Then (5.41) can be

put into the form

2

2“" ”n 1 ] 2 " 1]
L%y = (p"y")" - ( 2pq - pp" y')' + (a° - pq" - p'q")y.

The first of these results is quite easily'established and the results

are due to Chaudhurl and Everitt [5].

THEOREM 5.18: The differential expression L2y is in the limit-4 case if

and only if Ly is in the limit-circle case.

PROOF: Suppose Ly is in the limit-circle case. Let u(x,1i) and v(x,1)

be two linearly independent solutions of Ly = iy. Then, since Ly is in
the limit-circle case, both u(x,1) énd v(x,1) are in LZ(O;(D). Also,
since the coefficients of Ly are real-valued, u(x,i) = u(x,- i) and
v(x,1) = v(x,- 1) where u(x,- 1) and v(x,- 1) are solutions of Ly = - iy.

Clearly, both u(x,- 1) and v(x,- i) are also in LZ(O,(D). Then,
1%u(x,1) = L(Lu(x,1)) = L(1u(x,1)) = - u(x,1),
ﬁmn-n=L@ML-Q)=u-mu,1»=-uu,1L

Similar relafibns hold for v. - Thus, the four functions u(x,+ i) and
v(x,i i) are solutions of Lzy = - y, It is easily shown that the four
solutions are linearly independent. Since the limit-4 case is inde-
pendent of the parameter ), L2y is in the limit-4 case.

The argument 1s reversible. If L2y is in the 1limit-4 case, then

all solutions of L2y = - y are in L2(0,<D) In particular, for u(x,i)
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and v(x,1) linearly independent solutions of Ly = iy, u(x,+ i) and

v(x,+ 1) are four linearly independent solutions of Lzyv= - y and are in
LZ(O,co). In particular, the solutions u(x,i) and v(x,1) of Ly = iy are
in LZ(O,GD). Therefore, Ly 1s in the limit-circle case and the proof is

complete.

Let [ uv ] denote the bilinear form associated with Ly and
[ uv ]2 the bllinear form assoclated with L2y. The expression Ly will
be assumed to be in the limit-point case. The following theorem gives a
characterizatioh for L2y to be in the 1limit-2 case. Since part of the
proof is in terms of the theory of self-adjoint operators, some sets
will need to be defined. Let @ be the boundary value function defined
for the second-order problém and ¢1 and ¢2 the boundary value functions
for the fourth-order problem.
Let D(T) be the set of all functions f satisfying the following
conditions,
(1) £ 1s in 120, @),
(11) f' is locally absolutely continuous on O <x < o,
(111) Lf is in L2(0, ), and
(iv) [ £4 0) =o.
Then define T by T(f) = Lf for f in D(T).
Let D(T2) be the set of all functions f satisfying the following
conditions.
(1) f is in D(T), anci
(11) Tf 1is in D(T).
Then define TZ by T2(f) = T(Tf) for £ in D(T?).
Let D(S) be the set of all functions f satisfying the following

conditions.
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(1) f is in LZ(O,OD),
(11) f"' 1is locally absolutely continuous on 0 < x < ,

2f 1s in LZ(O,GD), and

(111) L
(tv) [£g, L(0)=0,1=1, 2

Then define S by
s(f) = 12f (5.42)

for f in D(S).
Assume T 1is self-adjoint and u and v are functions in D(TZ). From
the definition of D(Tz), these functions are in D(T) and Lu and Lv are

also in D(T). Therefore,
(Tzu,v) = (T(Tu),v) = (Tu,Tv) =“(u,T2v),

implying T2 1s self-adjoint. Also; if Ly is in the limit-point case,
the second-order version of Theorem 4.4 implies T is self-adjoint. To
see this, let u and v be in D(T). Then applying Theorem 3.2 with

fl =& - ¢. fz =8 =, and f3 = g3 = v ylelds the relation

[ uv ])(0) =0. By Theorem 4.4 and Theorem 1.3,

(u,Lv) - (Lu,v) =[ uv (@) -[ uv J(0) =0,

implying T 1s self-adjoint. A similar result holds for the operator S,
that is, if L2y is in the limit-point case, then S is self-adjoint.

It 1s readily calculated by Definition 1.5 that

[uv ]z(x) =[ ulv J(x) +[ Luv J(x) (5.43)

when certailn differentiability conditions are assumed on p and q. For

example, involved in the second-order quasi-derivative is the
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expression (py')'. This can be expanded to p'y' + py" and (5.43) can
then be established with elementary calculations. The characterization
that Lzy be in the 1limit-2 case can now be given., The proof of this
theorem is given in Section 7 of [ 5] and is estabiished by showing that

D(Tz) = D(S) under the conditions of the theorem.

THEOREM 5.191 Let Ly be in the limit-point case and let S and D(S) be
as defined in (5.42). Then Lzy is in the limit-2 case if and only if

£ 1in S implies Lf is in L%(0, @).

The following theorem glves a necessary and sufficlent condition
for L2y to be in the 1limit-3 case in terms of the solutions of Ly = Ay.

Its proof is given in Section 8 of [5].

THEOREM 5.20t Let Ly be in the limit-point case and let @(x,A) be that

solution of Ly = Ay such that for all A,
glo,r) =0, g'(0,1) = - 1.

Then the differential expression L2y is in the 1imit-3 case if and only

1f there 1s a value of A with
- n/2 < Arg A < w/2, Arg A £ 0O
and a complex constant k such that
B(x,\) + kf(x, - 1)
2
is in L°(0, o).

The following theorem is an application of the'previous theorems

on the square of Ly.
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THEOREM 5.21% Let'Ly = - y" + qy and assume q' is locally absolutely
contlnuous on 0 < x < w. Then Ly is in the limit-point case and Lzy
is in the 1imit-2 case if either |

(1) aq(x) > k; for all x > 0 and qQ"(x) < qu(x) almost everywhere
forlewhereogkl<coand0<k<l,'or

4/3

(11) -k xz/3 <q(x) <k x2/3 for all x > 0 and q"(x) < k), x for

2 3
almost all x > 0, where 0 < kz, k3, k4 < .

In Theorem 5.21, condition (1) and Theorem 5.7 imply Ly is in the
limit-point case.  Condition (11) and Theorem 5.1 imply Ly is in the
limit-point case. Condition (i) and Theorem 5.13 imply L,y is in the
1imit-2 case and condition (1i) and Theorem 5.14 imply Lzy is in the
limit-2 case.

Some examples illustrating all the possibilities qf Ly and LZy are

given. If Ly is glven by
Ly = - y" + ay (5.44)
with q glven by any of
a(x) = 0, a(x) = &, a(x) = - (x + DY/,

then Ly 1s limit-point and L2y i1s 1imit-2. In each of the three cases,
(5.44) is 1imit-point by applying Theorem 5.1 and L2y is 1imit-2 by
Theorem 5.21.

For Ly given by (5.44) and q glven by
‘ x
a(x) = - e" + 1/16,

Ly is limit-circle and Lzy is limit-4. That Ly is limit-circle follows
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from Corollary 5.3 by taking ql(x) = - ¢° in the definitlon of %, and
letting q = qp- L2y is limit-4 by Theorem 5.18.

Let Ly be glven by (5.4) with

p(x) = (1/6)(x + 1)%, a(x) = (x + 1)?

Then q is clearly bounded below and thus by Corollary 5.2, Ly is in the

limit-point case. By Theorem 5.18, Lzy is not in the 1limit-4 case.

Let o = - (1/2)(7 - J/33) and let
f(x) = (x + 1)%,

It 1s easlly calculated that for the given value of q, sz = 0, Also,

- o< ~-1and thus f is in LZ(O,GD). It 1s also easily verified that
Lf = - (1/6)(a + 30 - 6)(x + 1)**2,

Then, since o + 2 > 0, Lf is not insz(O,cD). Clearly f"' is locally
absolutely continuous on Q < x <. Redefine f, if necessary, on the
interval 0 < x < 1 such that condition (iv) of the definition of D(S)
holds. Then for this new function, say g, g and ng are in LZ(O,oo)
and g satisfies condition (iv) of the definition of D(S). Therefore,

g 1s in D(S). Now, if Lzy were in the 1imit-2 case, Theorem 5.19 would
imply Lg is in LZ(O,OD). That is, Lf is in LZ(O,(D), a contradiction.

Thus, Lzy is in the 1limit-3 case.



CHAPTER VI
SUMMARY

The primary purpose of this paper has been to trace the development
of the deficiency index problem and to present a justification for its
existence. Fourler serles were generalized by Sturm and Liouville so
as to cover the elgenvalues and eigenfunctions of the formally self-

adjoint differential expression
Ly=-(py') +(a-2y=0 (6.1)

subject to real linear boundary conditions at elther end of a compact
interval 0 < x < b, b> 0., The deficiency index problem had 1its begin-
nings in Hermann Weyl's [79] investigations of the generalizations to a
singular interval of the Sturm-Liouville expansions associated with
(6.1). As was demonstrated in Chapter II, the extension of the problem
to the semi-infinite interval 0 < x < ® induced a classification of the
differential equation (6.1) into one of two families. Membership in one
of these families 1s determined by whether (6.1) is in the limit-point
or limit-circle case, that is, whether or not all solutions of (6.1) lie
in L2(0,oo). These cases are determined geometrically by "contracting
circles" in the complex plane and are independent of the complex
parameter A.

W. N, Everitt [ 30] extended the deficlency index problem to

formally self-adjoint differential expressions of any even order, His

108
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development was presented in Chapter III for these higher order problems
by restricting attentlon to the fourth-order case. This restriction
still contains all of the difficulties present in higher order problems.
That is, generalization of the development to problems of order 2n,

n> 2, is a matter of notation while the extension from second-order to
fourth-order introduces some problems caused by the exlstence of cases
"between" the limit-point and limit-circle cases. These difficulties
may be seen by comparing the results of Chapter ITI with those of Chapter
III. The results of Chapter II follow immediately from those of Chapter
III, but the second-order case was presented separately since the ideas
are more intuitive and geometric and the development is simpler.

Separate development of a second-order expansion theorem was
omitted even though the restrictions from fourth-order expansions to
those of the second order have the advantages of simplicity. However,
the order of simplification from fourth-order expansion theorems to
those of second order 1s not sufficient to justify a separate develop-
ment., In other words, the establishment of a second-order expansion
theorem is almost as complicated as the establishment of the fourth-
order theorem,

The primary goal of thils paper 1s contained in Chapter V. The
intention has been to present in a unified manner varlous results on
necessary and sufficlent conditions for the various limit-p cases to
occur and to examine various techniques employed to establish these
results. The presentation of these results and techniques may serve to
ald in the further investigation toward the ultimate goal of determining
necessary as well as sufficlent conditions for the determination of the

deficlency index of a particular problem. This ultimate goal would
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seem to be very dlfficult to obtain in light of Theorem 5.13 due to
Eastham and Thompson [22]. Recall that this theorem states that for
the differential expression - y" + qy, the coefficlent q may be re-
defined on a set of arbitrarily small positive measure and change the
deficlency index.

As discussed in Chapter V, the primary method for considering
differential expresslons of order higher than two 1s the asymptotic
method, As seen in the presentation of the example of this method, this
technique can be qulte difficult to apply and in fact may not always be
applicable., Thus, it would seem fhat one of the primary problems in the
area of the investigation of higher order problems would be to establish
a technique, other than the asymptbtic method, for classifying a differ-
entlal expression that is not in the limit-point case, that is, the
deficlency index is not half the order of the expression. Recall that
Theorem 4.4 only determines whether the expression is or is not in the
limit-polnt case.

Investigation of the deficlency index problem has not been
restricted to differential expressions with real-valued coefficients.
Everitt [27, 28, 32, 33, 35] has considered the problem for differential
expressions having complex-valued coefflcients. This problem is more
difficult since the conjugation operator does not necessarily commute
with the operator determined by the differential expression as has been
the case of real-valued coefficients. It would be of interest to deter-
mine those results that carry over from the real-valued coefficient
problem, The complex-valued coefficient problem was not considered in
the interest of compactness of presentation,

In recent years, the problem of classifying differential
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expressions into varlous limit-p cases has been extended to concepts of
whether the differential expression (6.1) is in the strong (weak) limit
point case or whether it is separated in L2(0,<n) space [2, 40, 41, 42,
43, 447, Recall that Theorem 4.4 implies (6.1) is in the limit-point
case i1f and only 1f the expression [ uv ](b) tends to zero as b “ends
to infinity for certain functions u and v. To illustrate the terms
used above, definitions will be formulated for the second-order differ-

ential expression
Ly = - y" + qy (6.2)

where the coefficient q belongs to the class Lp(O,cn) for some p,

l1<p< o

DEFINITION 6.1: Let f be a function in Lz(o, ®) and let Ly be given by
(6.2). Then f belongs to the class D(q) if and only if

(1) £ is in 10, @),

(11) f and f' are locally absolutely continuous on 0 <x o,

(111) Lf is in L2(0, ®).

Recall that by Definition 4.4 and the definition of the form

[ uv ], (6.2) is in the limit-point case if and only if

Un [£(0)z(v) - £'(5)&()] = 0. (6.3)

DEFINITION 6.2: The differential expression Ly of (6.2) is said to be
strong limit-point if and ohly if for each pailr of functions f and g in

the class D(q),

i 2(b)a"(v) = 0. (6.4)
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Clearly, if Ly is strong limit-point, then Ly is limit-polnt. Ly
1s called weak limit-point if it is 1limit-point without being strong
limit-point. The concept of a differential expression to be separated
in LZ(O,OD) is basically a modification of condition (iii) of Definition

6.1,

DEFINITION 6.3: Let Ly be given by (6.2). Then Ly is said to be
separated in L2(O,oo) if and only if for f in D(q),
(1) q is locally square integrable on 0 < x < @, and

(11) qf is in L2(o, ®).

Note that Ly is separated in LZ(O, ®) if in addition to Lf being in
LZ(O,oo), each of the terms of Lf is also in L2(O,<n). Several papers
have appeared concernlng these concepts. An expository paper presenting
these concepts in a unified manner and connecting these with known limit-
point criteria would be of interest.

The bibliography glven here is not restricted to those works;upon
which this paper depends. One of the goals in undertaking the research
for this paper has been to locate those papers and books that deal in a
general way with elgenfunctlon expansion theorems and the deficlency
index problem. With this blbliography, 1t is hoped that anyone wishing
to conslder some aspect of the toplcs presented here or some of the
generalizations to the concepts mentioned above wlll find a comprehen-

sive listing of appropriate sources with which to begin a study.
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