DIGITAL COMPUTER SIMULATION OF COMPLEX
HYDRAULIC SYSTEMS USING MULTIPORT

COMPONENT MODELS

By
CHRISTOPHER K. SMITH

Bachelor of Science in Mechanical Engineering
Tennessee Technological University
Cookeville, Tennessee
1967

Master of Science
Tennessee Technological University
Cookeville, Tennessee

1969

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1975



T
/1978D
Se¥yd

C«Vax.&



OKLAHOMA
STATE UNIVERSITY
LIBRARY

MAY 12 1976

DIGITAL COMPUTER SIMULATION OF COMPLEX
HYDRAULIC SYSTEMS USING MULTIPORT

COMPONENT MODELS

Thesis Approved:

a9

4 67 Thesis ’Adviser

kat2] K.V

722

/) Lwber———

Dean of the Graduate College

939001

ii



ACKNOWLEDGMENTS

The author is very grateful to all who have encouraged him through-
out his educational career. Without their guidance and assistance this
endeavor would not have been possible.

Deep appreciation and gratitude is expressed to Dr.iHenry R.
Sebesta, the author's major adviser. His technical guidance, patience.
and friendship have been major contributing factors towards the comple-
tion of this work. Special thanks are also expressed to Dr. Karl N.
Reid, whose abilities to convey optimism and inspire the author are out-
standing., The time, the constructive criticisms, and the willingness to
be helpful given by the members of the thesis committee, Dr. James E.
Bose and Dr. Ronald P. Rhoten, are also gratefully appreciated.

Special gratitude is expressed to the author's wife, Doris, and
daughter, Lisa, for their understanding and confidence in him and for
their many sacrifices.

The author also wishes to thank the Center for Systems Science at
Oklahoma State University for supporting the research reported here and
to thank Mr. Lael B. Taplin, Dr. A. B. Van Rennes, and Dr. D. Bitondo at
Bendix Research Laboratories for allowing the author the time to finish
this manuscript.  Thanks are also given to Mrs. Virginia Hanadel for her

assistance in typing the early drafts of this manuscript.

iii



Chapter
I. INTRODUCTION . & o o o o o o o ¢ o o o o o o o o o o s &
Objective and Scope of Study . « + o « & o o « s o &
Results of Study - o ¢ ¢ ¢ &« & ¢ o o o o o s o o o o
II, PRELIMINARY CONSIDERATIONS . v & & ¢ o o o o « o o o s
Related Literature . o o v o o o o o o o o o o o o
Organization of a Generalized Computer Program for
Hydraulic System Simulation . . . « + & &« o o o o« o
III. ALGORITHMS FOR SIMULATION OF HYDRAULIC SYSTEMS . . . . . &

Iv.

V.

TABLE OF CONTENTS

A Generalized Form for Hydraulic System Modeling
Equations . ¢« ¢ &+ o o « o o s« s o o o o o o o o o e
An Iterative Algorithm for the Simultaneous Solution
of the Generalized Modeling Equations . . . . . . .
A Modified Algorithm for the Simultaneous Solution
of Modeling Equatlons With Block-Oriented
Organization . . o5 ¢ & + & e e e o o o e o s e
An Tmplicit Method for Solving Nonllnear Algebraic
Equations Without Iteration . . . . « . '« o o & & o
A Modified Implicit Method for the Simultaneous
Solution of Modeling Equations With Block-Oriented
Organization . . + o o« o o o o s o o s s o ¢ o o o
An Algorithm for Separating Algebraic Equations With
Block-Oriented Organizations Into Separate Sets . .
A Combined Algorithm for the Solution of Modeling
Equations With Block-Oriented Organization . . .

APPLICATION OF SIMULATION ALGORITHMS v . 4 ¢ o o o o« o o o

HYDSIM - A Block—~Oriented Simulation Program for

Hydraulic Systems . « « ¢« &« o o ¢ o ¢ o o ¢ o s o
HYDSIM Simulation of a Fuel~-Injection System e o o e
Discussion of Results « v o« o ¢« o o o ¢ ¢ o o o o o o

CONCLUSIONS AND RECOMMENDATIONS . . ¢ ¢ o o o s o o o o &
Conclusions . ¢ o o o« o s '« « o o o o o o s o o o o o
Recommendations for Further Study . . « + « « « « o &

iv

Page

N

12

12

14

18

25

30
39
42
45
45
48
55
58

58
59



Chapter

BIBLIOGRAPHY . . . . « ¢ o &

°

APPENDIX A - THE NEWTON-RAPHSON METHOD .

APPENDIX B - A MODIFIED NEWTON-~-RAPHSON METHOD

APPENDIX C - A HYDSIM EXAMPLE

°

Page
61
64
68

71



LIST OF TABLES
Table Page

I. HYDSIM Components Used in Simulation of Fuel-Injection
SYSEEM « & & & ¢ o o '« o o o 4 o o o o e o s e o o o0 oo 13

vi



LIST OF FIGURES

Figure.
1. Block Diagram of Multiport Models . . . . . . . « &« « & + &
2. Concept of a Generalized Numerical Integration Method
After Initialization . . . ¢ ¢« ¢ ¢ @ & o o o o o o o s
3. Steps Required for Use of Runge-Kutta or Adams-Moulton
Integration After Initialization . . . . « « v ¢ &« &+ o &
4, Algorithm to Solve Coupled Algebraic and Differential
EQuUations +« « o v ¢ ¢ o 4 s 4 o 6 o 4 s s s 8 e s o o o s
5. A Port Connection Between Two Componénts . . . . « « o+ + &
6. Algorithm to Solve Coupled and Block-Oriented Algebraic and
Differential EqQuations . . + o« ‘s o o « o o o s o o o &
7.  Algorithm to Solve Generalized Modeling Equations by the
Implicit Method . . ¢ & & v ¢ v @ ¢« v v o v o v o's o o o
8. Connections Between Independent Port Variables of Component
h and Dependent Port Variables of Other Components . . .
9. Algorithm to Solve Block-Oriented Modeling Equations by the
Implicit Method . . . + ¢ v & ¢ o & o o & o o o o « &+ o« &
10. Algorithm for Separating Algebraic Equations Into Sets . .
11. Algorithm for Combining Implicit and Newton-Raphson Solution
Methods o v ¢« ¢ ¢ ¢ o o o o o o o o o o o s o o o o o o o
12. Diagram of Fuel-Injection System . . « « & & o o o & o & &
13. HYDSIM Representation of Fuel Injector . . . . . . . .. .
14. HYDSIM Representation of a Simplified Fuel Pressure
Regulator . &+ & v ¢ ¢ ¢ o o o s o s o o o o o o o8 o s .
15. HYDSIM Representation of a Fuel-Injection System . . . . .
16. Pressure at Injector InletsS . . + o & « o ¢ ¢ o o o o o o o

vii

Rage

10
16
17

19

21
24
28
32

36

41

43
49

50

51
52

54



Figure
17.
Method . .
18.
Method . . . . . . « « . .
19.
20, Valve Opening for Injectors 1 and 3
21. Valve Opening for Injectors 2 and 4
22. Flow Through Injector 1 or 3
23. Flow Through Injector 2 or 4 .

Algorithm to Solve Equatlon (30) by the Newton—Raphson
Algorithm to Solve Equation (37) by the Newton-Raphson

Input Data for HYDSIM Simulation of Fuel-Injection System

viii

Page

67

69
72
74
75
77

78



LIST OF SYMBOLS

Constant defined in Equation (7)

Constant defined in Equation (12)

Functional representation of an algebraic equation

Functional representation of a first-order differential equation
Independent variable

Independent port variable

Dependent port variable

State or dependent variable

Algebraic variable

ix



CHAPTER I
INTRODUCTION

In recent years, interest in the simulation of the dynamics of
continuous systems has increased manifold. - This increase has been aug-
mented by the increasing availability and popularity of the digital
computer and is evidenced by the number of generalized numerical simula-
tion programs being presented in the literature.

(;?he work required for the successful simulation of a dynamic. system
on a digital computer encompasses three fields of technology: (1) engi-
neering, (2) numerical analysis, and (3) computer programming. Engineer-
ing is required to generate the mathematical equations which describe
the performance of the physical system, numerical techniques are
required for solving the equations, and programming is required for

implementing these in a usable package{)
Objective and Scope of Study

The objective of this study was the development of modeling equation
forms and numerical algorithms which could be used in a digital computer
program for the simulation of complex systems. During this study it was
assumed that a complex system could be represented by a network of multi-
port models and that each model could be represented by a set of first-
order, ordinary differential equations and a group of algebraic equations.

Equation forms were sought which were not restrictive and algorithms were



selected on the basis of accurate and efficient solution. Chapter II
contains an explanation of the forms and algorithms which were
developed.

This study was the first part of a two-part project. While this
study dealt with the conceptual framework of a simulation program, the
second part dealt with the implementation of these concepts in the
simulation program HYDSIM. The main features of the HYDSIM program
include:

1. The implementation of special solution algorithms.

2. A multiport-model representation of components.

3. A libraryfgf standérd component models.

4. A nggk:g;igg;gg‘and free-format input data form with a pre-
pocessor for error checking and user convenience.

5. The sorting of algebraic equations into sets for increased
efficiency.

6. A capability of accepting user programmed component models.
The overall structure of HYDSIM as an implementation of the conceptual
framework is discussed in Chapter IV, and the methods of using the

HYDSIM program are described in "HYDSIM User's Manual" (1).
Results of Study

This study deals with the dynamic simulation of complex systems.
Included in Chapter III of this study are a presentation of functional
forms of equations which may be used to model physical systems, numerical
algorithms which may be used to solve the modeling equations, and in
Chapter IV an introduction to a generalized simulation program for com-

plex systems which utilizes these modeling forms and algorithms. These



forms and algorithms are applicable to the simulation of any complex
system which may be represented by a set of first-order, nonlinear dif-
ferential equations coupled with sets of nonlinear algebraic equations.
However, due to error checking and output considerations, HYDSIM was
initially developed for the simulation of hydraulic, mechanical and
electrical systems.

Two forms of modeling equations are presented in Chapter III. Both
are similar and assume that the components can be described by coupled
sets of nonlinear algebraic and differential equations using multiport
modeling techniques. However, the second form may be used for block-
oriented component models.

Two algorithms are presented in Chapter III féf the solution of each
modeling form. The first algorithm for each form uses '"conventional"
numerical methods for the solutioh of the modeling equations. The second
algorithm uses ''conventional" numerical integration for the solution of
the differential equations in conjunction with an implicit method for
the solution of the algebraic equations. This method, called the
Implicit method, is numerically similar to the Newton-Raphson method,
but it is not iterative at each time step which results in a reduction
of computer execution time. Finally, a third algorithm is presented for
the solution of the block-oriented modeling form. This algorithm com-
bines the methods of the first and secopd algorithms with a method for

separating the set of algebraic equations into a number of smaller sets.



CHAPTER II
PRELIMINARY - CONSIDERATIONS

Before the development of a computer algorithm is undertaken, the
desired organization and capabilities of the completed program should be
considered. This organization will be affected strongly by two areas of
interest: (1) analytical techniques presently in use for describing or
simulating complex systems, and (2) the organization of previously suc-

cessful simulation programs.
Related Literature

\\yé 1955, Selfridge (2) introduced a method of coding a digital com-
puter to "operate' as a differential analyzer, more widely known as an
analog computer. Since then numerous general-purpose simulation programs
have been introduced (3-13). Brennan and Linebarger (14) and Clancy and

Fineberg (15) have provided excellent surveys of the first ten years of

Cavayal

simulation program development. Seme-of-the programs containing major
contributions to the field of simulation are discussed below.

In 1958, Stein and Rose (3) generated ASTRAL (acronym for Analog
Schematic TRanslator to Algebra Language. ASTRAL contained three firsts:
(1) the program was a compiler which produced a FORTRAN deck for execu-
tion; (2) the simulation was executed using floating-point arithmetic;
and (3) a sorting algorithm was used which relieved the user from the

task of ordering the program inputs to obtain a correct solution (16).



Gaskill et al. (6) introduced DAS (acronym for Digital Analog Simu~
lator) in 1963. This used a simplified input language and was an

UNES
excellent simulation program; however, it had two drawbacks. DAS con-

ond Can'd adyest the step ot
tained an elementary integration routine (Euler's method) and did not héqu*OW
contain a sorting algorithm. MIDAS (Mddified Integration DAS) introduced
in 1964 by Harnett, Sansom and Warshawsky (8) contained a sorting algo-
rithm and a sophisticated fifth-order predictor-corrector integration
method with variable step size. MIDAS also included a simple input for-
mat and a method of handling algebraic loops (loops in the model
equations which are not broken by an integrator, a delay, or any function -
with memory). Because of these advantages plus the facts that the
program was easy to use and was written for the popular 7090-7094 IBM
computers, MIDAS gained wide acceptance.

PACTOLUS (the river in which King'Midas washed off the golden touch)
was introduced in 1964 by R. D. Brennan (9) and it also enjoyed wide
acceptance., - PACTOLUS retained most of the features of MIDAS, but was
written for the small IBM 1620 computer. This program allowed the user
to make on-line changes in a simulation through computer switch settings
and console entries. Consequently, PACTOLUS came closer to the true
hands-on control of an analog computer than any of its predecessors.

The input language of all the programs discussed in detail above may
be classified as block-oriented. In block-oriented programs the function-
al capabilities of each type of block included in the program are defined
in terms of the block inputs and outputs by the programmer. User input
to the program consists of ‘a description of block interconnections, block
type identifications, and various parameters; and it may be prepared from

a block diagram of the system to be simulated. This type of input



configuration was a direct result of the program originator's efforts to
duplicate the operation of an analog computer. g}g

The block-oriented programs caused difficulty for the program user
in programming algebraic expressions which could easily be expressed in
languages such as FORTRAN. In addition, some users who modeled systems

resalt Seom

directly in equation form desired to input these equations directly to_bo~d jrﬁfk
(Such og the Sysrerm mode] )

the simulation program without creating a block diagram. Consequently,

P
language-oriented simulation programs were introduced. %:E

Three of the most significant language-oriented programs areMIMIC,l
DSL/90, and 360 CSMP (10, 11, 13). These programs incorporated all of
the major features of the block-oriented programs plus increased flexi-
bility due to their input languages. However, these input languages are
very FORTRAN oriented and difficult to learn.

(In addition to the general-purpose simulation programs  discussed
above, many special-purpose programs have been introduced. Unlike the
general-purpose programs which were intended for the simulation of any
system that may be represented by a set of ordinary differential equa-
tions, the special-purpose programs were intended for the simulation of
a special class of systems (for example, mechanical, electrical, or fluid
systems). Consequently, the input language of a special-purpose program
may be structured in the most natural format for the class of systems to
be simulated and the numerical methods used in the program may be adapted
for best solving the types of modeling equations most oftenused.)

ENPORT is unique among the special-purpose simulation programs (17).
This program may be used to simulate the same classes of systems as the

general-purpose programs. However, the input format of ENPORT has been



structured to be used with the bond graph modeling techniques first
introduced by Paynter (18).

One of the most widely used simulation programs for electrical sys-
tems is ECAP (19). 1In addition to providing transient response solutions,
this special-purpose program can also provide AC and DC analyses of
electrical circuits. ECAP has also been used to simulate systems which
were not electrical. However, since an analogy must be established
between electrical components and the components of the system to be
studied, ECAP is not the most desirable tool from the user's viewpoint
for simulating systems which are not electrical. The numerical methods
used in ECAP are heavily dependent on linear techniques and nonlineari-
ties may only be simulated through piecewise-linear approximations.

Other widely accepted simulation programs for electrical systems are
NET I and SCEPTRE. These programs and ECAP are compared from a user's
viewpoint by Lindgren (20).

A summary of the special-purpose programs available for the simula-
tion of hydraulic (fluid power) systems was given by Waterman et al. (21)
in a report for the U.S. Air Force. Most notable among the programs
described are the HYDSIM and HYTRAN programs. These programs contain. the
models of various hydraulic components programmed in subroutines. The-
programs then use these subroutines as required to simulate hydraulic
systems. Zielke (22) provided more information about HYTRAN.

The HYDSIM program discussed in Chapter IV of this study is the
second version of the program (HYDSIM II). The first version, HYDSIM I,
was developed at Oklahoma State University in conjunction with General
Dynamic Corporation during 1970 (23, 24). This earlier version lacked

most of the features and capabilities of the current program. For



example, it did not have the HYDSIM IT capability of simultaneously solv-
ing coupled, algebraic equations when the equations were contained in
more than one component model. However, HYDSIM I did contain a library

of standard components.

Organization of a Generalized Computer Program

for Hydraulic System Simulation

Because a hydraulic system is usually composed of many discrete
hydraulic coméonents coupled together, a block-oriented input language
would seem natural. However, instead of each block representing a basic
function as in the "analog-like" languages described above, each block
should represent a major hydraulic component such as a valve or a cylin-
der. The incorporation of a library of models for such blocks would
relieve the program user of much repetitive programming. In addition,
the organization of the program in a manner where each component model
would be contained in a separate subroutine would facilitate using the
models in many different interconnection configurations and would ease
the task of adding additional models to the program at a later date.
Also, since fluid power (not just pressure nor just flow) is the major
consideration in a hydraulic system, multiport modeling techniques should
be used.

Multiport models of dynamic system components have been in use in
various forms for many years. For example, bond graph techniques are
based upon the use of multiport models (18). Multiport techniques are in
evidence whenever the energy transfer at energy exchange ports of system
components (or subsystems) may be expressed as products of pairs of

systems variables.



Figure 1 shows a typical method of graphically displaying the pairs
of energy exchange variables for multiport models. Typically, the power
transferred at the ports connecting the pump and pipe is represented by
the product of the pressure variable, Pl’ and the flow variable, Ql' It
should be noted that the directions of the arrows shown to represent the
variable pair at this port connection do not represent the direction of
flow, etc.; the directions represent the causality of the port variables.
(This is true of all ports shown in this study.) For example, P1 is
independent to the pump model and dependent to the pipe model, and Ql is
dependent to the pump model and independent to the pipe model.

The application of multiport modeling techniques to a hydraulic
system usually produces a set of nonlinear differential equations which
are coupled with sets of nonlinear algebraic equations. The algebraic
equations may be manually reduced to some extent within each block, but
since these algebraic sets usually span several blocks, they may not be
eliminated entirely. Elimination of these sets is also hindered by the
fact that for a generalized program the pattern of block interconnections
is not known at model programming time and will vary as different systems
are simulated. Typical forms of these equations are discussed in Chapter
ITI. -

A numerical method is required to solve the coupled sets of non-
linear algebraic and differential equations. - Two methods are discussed
in Chapter III of this study, and a method has been proposed by Gear (25)
and by Brayton, Gustavson, and Hachtel (26). The latter method uses a
predictor type of equation to approximate the current value of each state
variable in terms of the current state variable derivative value and k

previous state variable values. This equation, written for each state
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variable, may be substituted into the system differential equations to
eliminate the state variable derivatives. The resulting algebraic equa-
tions and the algebraic equations from the original modeling process form
one large set of coupled, nonlinear algebraic equations which may be
solved iteratively for the current values of the state and algebraic
variables by the Newton-Raphson method.

The first method discussed in Chapter III uses the Newton-Raphson
method and any "conventional" numerical integration technique to solve
the equation sets. However, the second method uses an implicit method
(hereafter called the Implicit method) to determine derivative values
for the algebraic variables and then uses a '"conventional" numerical
integration technique to simultaneously solve for the state and the
algebraic variables in a similar manner. The Implicit method is not
iterative at each time step, but uses a linear equation similar to that
used in one iteration of the Newton-Raphson method. In addition, the
Implicit technique does not cause the coupling of all the algebraic equa-
tions into one large set, but allows the algebraic equations to be

separated into sets based upon coupling of the algebraic variables only.



CHAPTER III
ALGORITHMS FOR SIMULATION OF HYDRAULIC SYSTEMS

A Generalized Form for Hydraulic

System Modeling Equations

The system of equations developed during the mathematical médeling
of most hydraulic systems is composed of algebraic and ordinary differ-
ential equations (27). This section discusses these equations and their
functional forms.

In general, the algebraic equations included in a mathematical
model of a hydraulic system are nonlinear and may not be reduced analyt-
ically. These equations relate a set of algebraic variables, y's, to a
set of state variables, x's, and the independent variable time, t. A

functional representation for a set of m .of these equations is

0 = Fi (xl, Xys + v o 5 X5 Vis Yoo o o 0 5 Yy

s o e vy Ym? t),
i=1,2,, .., m (1)
Examination of the y-variables in the algebraic equations for a specific
hydraulic system model often reveals that the equations may be divided
into a number of sets where no y-variable coupling exists between sets
of algebraic equations. Since this separation must be performed for a

specific set of equations - and since it would not greatly affect the

algorithms discussed below except with regard to execution speed,

12
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separation of algebraic equations will not be discussed until near the
end of this chapter.

The ordinary differential equations resulting from the mathematical
modeling of a hydraulic system are, in general, nonlinear also. These.
equations;'wheﬁ written as a set of first-order differential equations, .
relate ﬁhe state variables, x's; their first derivatives with respect
to time, x's; the algebraic variables, y's; and the independent variable
time, t.l

xj = Gj (xl, Xos o s o s xj, s e e s X5 Vs Yoys o e s ym,t),

§=1,2, ..., n. (2)

Equations (1) and (2) form a coupled system of m + n equations
which may be used to model hydraulic systems. These equations were
assumed to be nonlinear; however, it would be instructive to briefly
discuss their solution assuming complete linearity. In addition, the
generation of Equ;tions (1) and (2) in a linear form is often suggested
in the literature where a manual solution is anticipated and physical
system conditions permit this simplification (28).

With an assumption of linearity, Equation (1) may be solved using

Cramer's rule (29) to yield

v,

i= Fi (xl, Xos o o o xn,t), i=1,2, .. . , m. (3)

Substitution of Equation (3) into Equation (2) yields

ij = Gj (xl, Kys = o o s xj, o e e s xn,t),
i=1,2, .. . , n. (4)
\ 1It may not be possible to write all differential equations as sets

o} first-order differential equations; however, this difficulty is more
than offset by the increased flexibility allowed  during the development
of the algorithms in this chapter through the use of Equation (2).
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Since Equations (1) and (2) were assumed to be linear, Equation (4) will
be linear and may be solved using the state transition matrix technique
(30).

In the above solution method, algebraic equations are analytically
solved and the algebraic variables are eliminated from the differential
equations. This solution method is usually the most satisfactory. How-
ever, when the algebraic equations are nonlinear (as for most hydraulic
systems) and linearization is not acceptable, numerical methods and a
digital computer are often employed for the solution of Equations (1)

and (2).

An Iterative Algorithm for the Simultaneous
Solution of the Generalized

Modeling Equations

Many methods have been given in the literature for numerically
solving sets of first-order differential equations and for numerically
solving sets of algebraic equations., This section discusses some of
these methods and an algorithm for applying these methods to the numeric-
al solution of coupled sets of differential and algebraic equations (the
generalized modeling equations).

Some of the techniques given in the literature for numerically
integrating sets of differential equations are the Adams and the Runge-.
Kutta integration methods (31). Both of these explicit integration
methods can be used in a similar manner to integrate sets of differential
equations in the form of -

'°'sxh,t), j=l,2,...,n, (5)

where x is the first time derivative of the state variable x.
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After initialization the Adams or the Runge-Kutta integration
method can be used in a generalized manner as shown in Figure 2.2 The
integration method will yield a value of the independent variable, t
(usually considered to be time), and a set of values for the state vari-

*
ables, x

1

gration method requires values of the first derivatives of the state

*
through X (not to be considered solution values). The inte-

* *
variables, x through'in, which may be evaluated from Equation (5) as

1
shown in Figure 3. After several iterations of producing values for thé
variables and receiving derivative values, the integration method will
yield a set of solution values for the state variables, X throughbxn.
This solution will be for a value of the independent variable, t, which
will be advanced by a small increment from the value associated with the
previous set of solution values (or initial conditions). This process
may be repeated until the integration method has incremented the inde-
pendent ‘variable through the desired range.

The Newton-Raphson method is an iterative method which can be used
to find the solution to a set of nonlinear’algebraic-equations of the

form

0=‘Fi(yl,y2s°°-a}7)’ i=1,2, ..., m (6)

This method requires the evaluation of the partial derivatives of each
algebraic equation with respect to each algebraic variable and has been’
explained in more detail in Appendix A.

Solution of the generalized modeling equations by direct use of the

Newton-Raphson method and the generalized integration method discussed

2 . . . . .
Most explicit, numerical integration methods may be used in a
similar manner.
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above is not possible because Equations (1) and (2) do not match the
functional forms required by the solution methods, Equations (5) and ‘
(6). However, the steps required to use the generalized integrationm,
as shown in Figure 3, may be modified to allow the incorporation of the
Newton-Raphson technique such that the generalized modeling equations
may be solved.

Figure 4 shows the modified steps required when the differential
and algebraic equations to be solved are coupled as in the generalized
modeling equations.  Step 2 of this figure shows that the functional
form of the algebraic equations may be reduced to the form required for
Newton-Raphson solution because the generalized integration method has
supplied numerical values for the state variables and the independent
variable in Step 1. Step 2 also represent$ the solution of the reduced
algebraic equations by the Newton-Raphson method. Steps 3 and 4 are

equivalent to Steps 2 and 3 in Figure 3.

A Modified Algorithm for the Simultaneous
Solution of Modeling Equations With

Block-Oriented Organization

Block-oriented organization of the mathematical equations which
model a hydraulic system implies that the equations which describe each
hydraulic component or hydraulic function (block) are defined only in
terms of:

1. The independent variable time.

2. The state variables contained within the block.

3. The algebraic variables contained within the block.

4. The independent port variables for the block.



NUMERI CAL
INTEGRATION YIELDS

x % * %
X, 9Xse0 09X oL
l’ 2, ] n’

!

USE NEWTON-RAPHSON TO
ITERATIVELY SOLVE

* * * *
0 = Fi(x1:x29'°:sxnsylsy2’~'-symst )

* % %
FOR ¥15¥gseees¥

v

EVALUATE

) * % X k% k%
xj = Gj(xl’XZ’”"xn’yl’YZ"“’ym’t )

ROk K
FOR XysKgpe e X

!

OUTPUT

* % %

Xy sXgsee sk

TO NUMERICAL
INTEGRATION

Figure 4. Algorithm to Solve Coupled
Algebraic and Differen-
tial Equations




20

Therefore, an algebraic or state variable contained in Block A may not
be explicitly included in the equations that model Block B. However,
the same effect may be obtained by passing the required information
through any port variables which might connect Blocks A and B .(directly
or indirectly).

A port connection between two blocks (also referred to as compo-
nents) is illustrated in Figure 5. This figure shows the connection of
Port q of Block p to Port sbof Block r. The port variables of the

blocks are related by

R st\/ 7

Pq

and . /
N,/
rs _ Zrs qu’ ~/ (8)

u

where each "a" is a constant with the value ;}Jégepending on a port vari-
able sign convention). When, due to the generality, it is uncertain
what port and block are connected to Port q of Block p, the term Voo in
Equation (7) would be replaced by a general term V;q' This term, v;q,
may be defined as the'dependent port variable at the port connected to
Port q of Block p. Consequently, for the port connection shown in
Figure 5, v;q,and vrshrefer to the same variable.

The generalized modeling equations will be modified to conform to
the above restrictionsj ;In addition, another subscript will be added
to the variables to indicate with which block the variables are associ-
ated. For example, yhi’Will be the ith algebraic variable in Block h.

With the assumption that Block h contains m algebraic variables,

n state variables, and p ports (therefore p independent and p dependent

port variables), Equations (1) and (2) may be rewritten for Block h as
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0 =T (fps Koo = o+ 5 Fps Vpgs Fyps » - - s
Yo U1 Upr c 0t Ut 1L 2w O
%5 % Gy Ghrr Fh2s 0 0 % Yn1e Ym2e v v

Yhm® Yh1® Yh2® ¢ ¢ ¢ o uhp,t), i=1,2, .. ., n. (10)
If Equations (9) and (10) had been written for Block h in the form of
Equations (1) and (2), x and y variables from outside of Block h may
have appeared in the equations. These x and y values from outside of

Block h are implicitly included in Equations (9) and (10) through tEf
““.“\',\\ 0 )\\"(“ AT T O R ’.ul‘z/l(—'k' ‘\\/(—'9 l

)

independent port variables, u's.
It will aid in developing an algorithm for the solution of Equations

(9) and (10) if func;ional forms are defined for the equations which

will be used to evaluate the dependent port variables within Block h.

For the kth port in Block h the dependent port variable may be defined

by

Yok = Ve Fh1c Fnoe v v ¢ 0 ¥po©) (11)
or

v,, =b (12)

hk = "hk  “h&’

where bhk is a constant and Yhe is any algebraic variable within Block

h. It _should be noted that Equations (11) and.(12) do not allow a depen-

dent port variable of Block h’«th&Mto be explicitly a function of an

independent port.variable of Block h nor a_ combined function of an alge-

b{iig_and a state variable of Block h, These restrictions may be

R

AR
circumvented where necessary by temporarily defining the dependent port \JUW~V“\k

variable, , in terms of time and any state, algebraic, and independent

Vhk
port variables within h. A new. algebraic variable may then be introduced
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into Block h ang‘gggQ_LQ.IeRlaQwaﬁkminwigﬁmdg£ining equation. : The de-
fining equation-ean.then.be considered an algebraic equation.of Block h
nd , fo; 9 ] be d ‘
in terms of the .new.algebrajc variable following the form of Equation

glgz;w Thus a dependent port variable of Block h can be aniiﬁﬁiiéi%;
function of time and any state, algebraic, and independent port variable
within Block h.

The steps for using thé generalized integration shown in Figure 4
may be modified to solve Equations (9) and (10) as shown in Figure 6.
Each step shown in Figure 6 must be completed for every block (component)
in the hydraulic system before proceeding to the next step. Step 1
indicates that the generalized integration technique will supply specific
values for the independent variable time and all of the state variables.
Step 2 uses these variables and Equation (11) to evaluate those dependent
port variables which are only a function of state variables and time.
Equation (7) is used in Step 3 to transfer the values of any dependent
port variables evaluated in Step 2 to the independent port variables of
connected blocks. Step 4 illustrates that at this point the variables-
remaining unknown in the algebraic equations (Equation (9)) are the
algebraic variables and some of the independent port variables. It
should be noted that all of the independent port variables remaining
unknown in Equation (9) can be related through Equation (7) to dependent
port variables defined only by Equation (12) in other blocks.  Therefore,
each of the independent port variables remaining unknown in Equation (9)
represents a constant multiplied by an algebraic variable from another
block. Step 4 also represents the solution of the algebraic equations

for the algebraic variables using the Newton-Raphson method. The
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technique of applying the Newton-Raphson method for solving these equa-
tions is explained in Appendix B. Step 5 uses Equation (12) to evaluate.
the dependent port variables not evaluated in Step 2, and Step 6 uses
Equation (7) to transfer these dependent port variable values to inde-
pendent port variables in connected blocks. Step 7 uses Equation (10)

to evaluate the derivatives of all the state variables, and Step 8
illustrates the submission of these derivative values to the generalized

integration method.

An Implicit Method for Solving Nonlinear

Algebraic Equations Without Iteration

The numerical solution methods explained above for solving coupled
sets of nonlinear differential and algebraic equations require the
Newton-Raphson solution of the glgebraic equations prior to each evalua-
tion of the state variable derivatives. The Newton-Raphson method is
iterative and may require several iterations for convergence to a solu-
tion. This section develops an implicit method for evaluating the
algebraic equations. This method, hereafter called the Implicit method,
is not iterative and :requires a similar amount of computation as. one
iteration of the Newton-Raphson method.

The Implicit method is based upon the use of a numerical integration
algorithm to solve the algebraic equations simultaneously with the dif-
ferential equations. Use of the algorithm in this manner will require
the evaluation of the time derivatives of the algebraic variables each
time the time derivatives of the state variables are evaluated.

Explicit methods for determining dyi/dt from the generalized model-

ing equations (rewritten here for convenience),
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0=F, (X;5, Xgp « o« « 5 X 3 Yoy Yos o » « 5 ¥ _5t),
i 1 1 2 m

n
i=1,2, ..., m (13)
ij = G, (xl, Xgs + v o s X5 Yis Yogr v o ,*Ym,t),

i=1i 2, .. ., n, (14)
may not be used since these methods would first require the analytical
solution of Equation (13). However, the time derivatives of the alge-
braic variables can be evaluated in an implicit manner.

The chain rule allows the derivatives of Equation (13) to be

written as

n m
dF; }: oF, dx, oF, dy, OF,

i i i i _
—_— — + + y1i=1,2, .. ., m
dt =1 x, dt = 3y£ dt ot
(15)
Since the right side of Equation (15) is equal to zero, it may be
rearranged in vector-matrix form to yield
— - - - - -
BFl BFl BFl dy1 _E: BFl dx, _?El
3yl % 8y2 % Bym * dt =1 ij « 4t |, ot |,
n
3F2 3F2 3F2 dyz _ Z 3F2 dx —a_F_‘]__
Byl & 3y2 * Bym * dt = ij % 4t [ ot |,
OF OF OF dy 2 5F dx, OF
“m| m —m Zm o= i lm
Syl * Byz * Bym % dt = ij x 4t [, at |,
L IR I . L -

(16)
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where the bar and asterisk to the right of each derivative implies the

. * % * k%
evaluation of the derivatives at the values X15 Xgs o o o 5 X5 V15 Yy

* %
« « + >yt . Equation (16) may be solved for dylldt through dym/dt
* % I T * % .

at Xis Xgs o 0 o5 X yl, yz,.. . ey ym,t with the solutions being
used by the numerical integration algorithm to solve for-yl, Yogs o o o s

Yo'

The form of Equation (16) should be compared with the form of an
equation used in the Newton-Raphson method, Equation (34) in Appendix A.
Both of these equations are linear, of the same order, and contain the
same matrix of partial derivatives. Equation (34) must be solved repeat-
edly until convergence is attainei for each Newton-Raphson solution of
the algebraic equations; however, in the Implicit method described above,
Equation (16) is only solved once per algebraic solution.

Figure 7 illustrates the steps required to solve Equations (13) and
(14) using Equation (16). After initialization, these steps use a
generalized integration method (as illustrated in Figure 2) in exactly
the same manner as if m + n differential equations were being solved.
Step 1 shows that the integration algorithm is used to supply specific
values for Yys Yoo = ¢« s Yo in addition to values for X5 Xgs o 0 o
X and t. In Step 2 the differential equations of Equation (14) are
used to evaluate the time derivatives of the state variables. Steps 3
and 4 are used to evaluate array elements for Equation (16) which is
solved for the time derivatives of the algebraic variables in Step 5.
Step 6 completes the process by showing that the derivatives of the

state and algebraic variables are made available to the integration

algorithm.
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At the beginning of the solution of Equations (13) and (14) using
the Implicit method, the numerical integration method will require
initial conditions for the state variables and the algebraic variables.
Initial conditions for the state variables and some of the algebraic
variables may be provided by examining the initial state of the physical
system which Equations (13) and (14) describe.«<ﬁowever, it is possible.
that some or all of the algebraic initial conditions '‘may not be deter-
mined in this manner without solving a set of algebraic equatione:) In
this case another solution method for algebraic equations such as the
Newton-Raphson method may be used e:jj/af the start.of~the solution to
initialize the algebraic variables. V.

Some important differences should be pointed out between the
Implicit method explained above and the Newton-Raphson method. During
each iteration, the Newton-Raphson method improves its solution values
by applying solution correction equations developed from Taylor series
expansions of the algebraic equations (see Appendix A). Since the
Taylor series expansions are truncated and usually only include the
first-order terms, the solution correction equations used are approxima-
tions to the true solution correction equations (those including all
terms in the Taylor series). Therefore, the correction equations must
be applied repetitively until the solutions are sufficiently corrected
or the method diverges.

A Newton's method has been developed which uses solution correction
equations that include through the second-order Taylor series terms (32).
This method usually converges more rapidly than the first-order Newton-
Raphson method. However, the second-order method is more difficult to

apply since it requires second-order partial derivatives of the algebraic
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equations to be derived and evaluated in addition to the first-order
partial derivatives required by the first-order method.

The Implicit method makes no approximations in the solution of the
algebraic equations except those included in the numerical integration
method. The method requires approximately the same number of computa-
tions to calculate exact values for the time derivatives of the algebraic

equations as required for one iteration of the first-order Newton-Raphson

method.

\ﬁ/;igh—order numerical integration method may be used in conjunction
with the Implicit method in order to minimize the error in solving for
the algebraic variables. For example, a method such as a fourth-order
Runge-Kutta method may be used (31). This integration method is approxi-
mately as accurate as numerical integration using a Taylor series
expansion of the solution variables which is truncated after the fourth-
order terms. However, the Runge-Kutta method -does not require derivative
values above the first-order as required by a high-order Taylor series

integration method.

A Modified Implicit Method for the Simultaneous
Solution of Modeling Equations With

Block-Oriented Organization

The Implicit method may be adapted for use with block-oriented

h

modeling equations. For the h® block (component) of a system contain-

ing 2 blocks, the block-oriented modeling equations may be written as:
0= Py > 2> o ¢ 0 2 Fpn 0 Tne hee t 0 0 The U

3 ¢ o e 9 > 5 ¢ o e :t)’
Yh2 uhrh uhqh uhph
i=1,2,...,Mm, (17)
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xhj =Ghj (xhl’ x-hz, e o o 9 xhnh’ yhl’ yhz’ e e ey
Yhmh, Ugs Yoo oo e s uhph,t), i=1; 2, ...,m1,

(18)
W = A, vﬁk, k=1,2, . . ., P> (19)
and
Vi = Vi (Xhl’ Xgs 0 s xhnh,t), k=12, . . ., P
(20)
or
ik = bhk " Ypio k=1, 2, . . ., Py - (21)

Equations (20) and (21) illustrate the two allowable equations forms for
defining dependent port variables. Each of the Py dependent port vari-
ables in Block h must be defined as a function of time and the state
variables within Block h (Equation (20)) or as the product of a constant
and one algebraic variable within Block h (Equation (21)). Equation
(19) illustrates the relationship of the kth independent port variable

in Block h, Upges to the dependent port variable at the port of the block

c . . . .
connected to Port k, Vi As discussed concerning Equation (7) in an
. . . Voo . .
earlier section of this chapter, the term v,, is used in Equation (19)

hk

since, due to generality, the port and block which are connected to
Port k of Block h are undetermined. The variable,v;q in Equation (22)
represents the variable shown as Voo in Figure 5, and apq is +1 depend-
ing on a port variable sign convention.

Equation (18) defines the first-order time derivatives of the nh
state variables within Block h, and Equation (17) illustrates the m
algebraic equations containing the m algebraic variables within Block

h. Equation (17) and Figure 8 show that the independent port variables
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within Block h may be divided into two groups. As shown in Figure 8,
each of the first r_independent port variables of Block h‘(uhl through

h
W ) is connected with a dependent port variable (v, , through ve ) of
h hl hrh

another block (o through B) and the dependent port variable is a func-
tion of -an algebraic variable (yOm through yBA) within the connected

block. The remainder of the independent port variables,'uhq through
h

uhP (where 4 =T, + 1), are connected with dependent port variables
h

(vﬁq through vcp ) of other blocks (y through §) and are functions of
h h

time and state variables within the connected block.
The Implicit method may be derived for the block-oriented modeling
equations by evaluating the derivatives of the algebraic functions in -

Equation (17) as

SF i dxh j;f BF

Bth dt =1 ath Bth dt

ol &
|
'—l
]
l_|.
Mp
=

Ph
BF i duh oF. .
2 hi .
+ :E: auh It + Yl i=1,2, ..., m - (22)

The chain rule is used to expand the terms in the third summation group.

of Equation (22) and yields

c c
thi duhj _ thi Buhj thj dyhj 23
Buh, dt Buh. 5vC  5vC dt °?

J J hj th

where the dependent port variable of the port which is connected to Port
j of Block h is a function of the algebraic variable yﬁj. (In other
words, the dependent port variable of Block o in Figure ‘8 is shown as

c . R .
Yan? but the term.y, , will be used for yan when it is unimportant or

impossible to determine which port is connected to Port 1 of Block h.)
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Equation (23) may also be written as

.. C

Oy Wy 0P Wy

? ., dt 2 c dt
hj Vs

> (24)

where

(o4
thi ) thi Suhj thj 25)
5y C Buh; 5vC  vC '
7hj + g Vny

Equations (23) and (24) demonstrate that the algebraic equations of
Block h, Equation (17), are implicitly (but not explicitly) a function
of algebraic variables within blocks other than h. This is accomplished
by the independent port varlablgs uhl’,uhZ’ e e e s uhrh in Equation
(17) and Equations (19) and (21).
The chain rule may also be used to expand the terms in the fourth
summation group of Equation (22) as
c
Fri Yng _ Thg e g
dupg 4t Buyy 2y, de

> (26)

where, if Port e of Block f were connected to Port & of Block h, dvﬁl/dt

in Equation (26) may be evaluated by

c f
dvhz =‘dv:Ee ) EZ: Ve dxfj . Ve, on
dt dt 4 ox,., dt it '
=1 "7fj

Since the right side of Equation (22) is equal to zero, Equations
(22), (24) and (26) may be combined to form Equation (28) below. After
evaluation of its terms, Equation (28) may be solved for the time de-
rivatives of the algebraic variables which are then available to the
numerical integration routine.

Figure 9 shows the steps required for applying the Implicit method

to solve the block-oriented modeling equations. Step 1 shows that the
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generalized integration method furnishes values for the state variables,
the algebraic variables, and time. In Step 2 the dependent port vari-
ables are evaluated using Equation (20) or Equation (21) for each.
Equation (18) is used to evaluate the time derivatives of the state
variables in Step 3.

Step 4 illustrates the evaluation of avhk/ayhi for all dependent
port variables which are only a function of an algebraic variable (as
shown in Equation (21)). From Equation (21)

V.
hk by, - (292)
Yhi %

Step 5 uses Equations (20) and (27) and the results of Step 3 to evalu-
ate the time derivatives of all dependent port variables which are
functions of time and state variables (as shown in Equation (20)).

Steps 6 and 7 are used to evaluate the terms of the first array in
Equation (28). Step 6 evaluates partial derivatives of the algebraic
functions (Equation (17)) with respect to all algebraic variables expli-
citly contained in the functions. Step 7 uses the results of Step 4 and
Equations (17), (19) and (25) to evaluate the partial derivatives of the
algebraic functions with respect to all élgebraic variables not explicit-
ly included in the functiomns.

Steps 8 and 9 illustrate the evaluation of the terms in the right-
most vector of Equation (28). Step 8 uses the results of Step 3 and
Equation (17). Step 9 uses the results of Step 5 and Equations (17) and
(19).

After the completion of Step 9, all terms are evaluated in Equation
(28) except the time derivatives of the algebraic variables. Step 10

represents the solution of Equation (28) for these variables.
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Step 11 ends the algorithm by illustrating that the time derivatives
of the algebraic and state variables are made available to the numerical

integration algorithm.

An Algorithm for Separating Algebraic Equations
With Block-Oriented Organizations Into

Separate Sets

In the previous sections of this chapter, all of the algebraic
equations from a system have been considered to form one equation set.
This assumption usually causes a large, sparse matrix to be formed dur-
ing the solution of these equations which is similar to that formed in
other solution methods (25, 26). However, unlike these other methods,
the Newton-Raphson and Implicit methods explained in this study allow
the set of algebraic equations to be separated into several smaller
sets, This separation is usually possible for complex hydraulic systems
and is highly desirable since the number of operations required to éolve
a set of equations increases approximately as the third power of the

number of equations in the set /assuming a method such as Gaussian elimi-
~

.

nation is used in the solution (31)., For example, if a large set of
equations is separated into two smaller sets of equal size, the number
of operations required for a solution will be reduced by approximately
75 percent.

The method for separating a set of algebraic equations into several
smaller sets is based only upon the coupling of algebraic variables be-
tween the equations. However, for modeling equations with block-oriented

organization, it will be seen that the method is complicated by the fact
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that independent port variables in the algebraic equations of one block
may implicitly introduce algebraic variables from another block.

For a specific system, the separation process may be initiated by
examining the blocks contained in the system and forming a list of all
the algebraic equations contained in the system. (Algebraic equations
may be identified by block number and élgebraic equation number within
the block.) TFor each algebraic equation entered into the equation list,
a secondary list must be formed which identifies the algebraic variables
explicitly contained in the algebraic equation. (Algebraic variables
may be identified by block number and algebraic variable number within
the block.) Algebraic variables which are implicitly contained in the
algebraic equation must also be added to the secondary list. These may
be located by checking the port of each independent port variable con-
tained in the algebraic equation. If the port is connected to another
port with a dependent port variable which is a function of an algebraic
variable, this algebraic variable is implicitly contained in the alge-
braic equation under examination and must be added to the equation's
secondary list. The remainder of the steps in the separation process
are shown in Figure 10 and listed below.

1. Start a new set by transferring the first equation from the
equation list into the new set (removing its entry in the equation list)
and by examining its associated secondary list.

2. Search the secondary lists of the remaining equation list
entries to identify any equations containing one or more of the alge-
braic variables in the secondary.list placed under examination in Step
1 (or Step 3). Transfer any equations found with matching variables

into the new set and remove their equation list entries.
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3. Repeat Step 2 for the secondary list of -each equation placed
into the new set. When all secondary lists of the equations placed in
the new set have been examined, the set is complete.

4, 1If any equation entries remain in the equation list, an addi-
tional set may be formed by starting with Step 1 and repeating the above.
When no more entries remain in the equation list, the separation is. com-

plete.

A Combined Algorithm for the Solution of
Modeling Equations With Block-Oriented

Organization

An algorithm may be formed for the solution of block-oriented model-
ing equations by combining the solution methods shown in Figures 6 and
9. Some advantages of the resulting algorithm are:

1. The Newton-Raphson technique may be used to calculate the
initial values of all the algebraic variables.

2. The algorithm may be structured to solve modeling equations
containing multiple sets of algebraic equations resulting from the
application of the separation method shown in Figure 10.

3. After initialization any algebraic set of equations may be
switched from the Newton-Raphson solution method to the Implicit methpd
or back to the Newton-Raphson method at any point in time without affect-
ing the solution of any other algebraic set.

As shown in Figure 11, the combined algorithm receives specific
values of time, the state variables, and any algebraic variables included
in algebraic equation sets to be solved by the Implicit method (hereafter

called Implicit variables). After receiving these specific variable
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values, the combined algorithm uses the methods of Figure 6 to solve for
specific values of any algebraic variables included in algebraic sets
not to be solved by the Implicit method (hereafter called Newton-Raphson
variables). At this point, specific values are known for all algebraic
variables and the methods of Figure 9 may be used to determine the time
derivatives of all Implicit variables. The passing of these derivative
values and those of the state variables to the generalized integration
method completes the combined algorithm.

The above algorithm must be modified slightly when used in conjunc-
tion with a generalized integration method which requires past values of
derivatives of the variables being integrated. The explicit Adams inte-
gration methods are methods of this type (31). As shown in Figure 11,
the combined algorithm will not furnish to the numerical integration
algorithm derivative values of algebraic variables included in equation
sets being solved by the Newton-Raphson technique.: Consequently, the
integration algorithm will not contain past derivative values for any
Newton-Raphson variables if it should be desired to convert a set of
algebraic equatioqs from Newton-Raphson to Implicit solution. However,
this problem may be remedied by performing Steps 7 and 8 of the combined
algorithm for any set being solved by the Newton-Raphson method which

may later be solved by the Implicit method.



CHAPTER IV

APPLICATION OF SIMULATION ALGORITHMS

Some of the numerical algorithms and the computer program organiza-
tion discussed above have been implemented in the HYDSIM (HYDraulic
System SIMulation) program. HYDSIM is a transient analysis program which
was primarily designed for the simulation of complex hydraulic systems.
However, it may be used to simulate any type of continuous system which
may be modeled by sets of nonlinear algebraic and differential equations.
This chapter introduces the program and presents an example simulation

problem.

HYDSIM - A Block-Oriented Simulation

Program for Hydraulic Systems

HYDSIM is an interpreter type of computer program which uses a
stored library of component models in conjunction with optional user-
supplied models to simulate a system. The program is written in FORTRAN
IV. The program controls all branching between component models, and the
HYDSIM user is not required to write any FORTRAN programs unless he is
furnishing a special component model. In addition, no special ordering
of the input data entires is required to obtain a correct solution.

No emphasis has been placed on the solution of any one type of com-
ponent or component model in the HYDSIM program. Instead, an emphasis

has been placed on treating a group of components as a system. All
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components in a hydraulic circuit are treated similarly and all modeling
equations ‘are solved in a simultaneous manner without special constraints
on allowable component configurations.

The HYDSIM program contajns a library of standard component models
such as valves, accumulators, cylinders, loads, etc. (l). The models
have been developed for these components using multiport modeling tech-
niques and all significant nonlinearities have been preserved. If the
library components are not adequate for a simulation, the program user
may code special component models (each in a FORTRAN IV subroutine) and
add them to the program. These component subroutines may be added to
HYDSIM temporarily by including them with the program input data or added
permanently by program modification.

Two types of block-oriented input data formats are accepted by
HYDSIM. The fixed-format type of input is processed very rapidly by
HYDSIM, but the user must take care to place entries in the proper card
columns. The free-format type of input allows .the user to place circuit
description entries in any card columns and in any order. Both types of
input data are subjected to an error analysis to check for parameter and
circuit description errors. HYDSIM also has a rerun capability and will
accept simulation data in a batch mode.

Program output consists of printer plots and tabulated values of
user specified circuit variables.

Multiple solution methods are available in HYDSIM. The methods use
a fourth-order Runge-Kutta or Adams-Moulton method to solve the differ-
ential equations and the Newton-Raphson or Implicit method to solve the
algebraic equations. One of three combinations of these methods may be

specified by an input entry as:
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1. Runge~Kutta and Newton-Raphson.

2. Adams-Moulton and Newton-Raphson.

3. Adams-Moulton and Implicit.

All of the solution methods‘'solve the modeling equations in a simultane-
ous manner without making any unusual approximations and without using
variable values from a previous point in time when a current value should
be used.

The Adams-Moulton and Implicit solution method used by the HYDSIM
program incorporates the combined solution algorithm discussed in the
previous chapter. The algorithm is programmed to determine the initial
conditions and perform the first three time steps using the Newton- |
Raphson technique and fourth-order Runge-Kutta integration. After vari-
able values have been computed at these first four points in time, all
integration is performed by a fourth-order Adams-Moulton integration
method and the algebraic equation sets are switched to the Implicit solu-
tion method. The HYDSIM program also monitors the accuracy of the
Implicit solution of each algebraic set and returns any set being solved
inaccurately to the Newton-Raphson solution method until accurate Impli-
cit solution may be obtained.

The changing of solution algorithms for a set of algebraic equations
requires methods for determining when to change. Since the Implicit
algorithm uses a fourth-order Adams-Moulton predictor-corrector numerical
integration algorithm to solve for the algebraic variables, the amount
of truncation error occurring in a solution may be indicated by comparing
the predicted and the corrected values for each variable. If these
differ by more than a fixed amount (see the "HYDSIM User's Manual" (1)

for a more complete discussion of the error criteria), the algebraic
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set containing the erring variable is changed to the Newton-Raphson algo-
rithm for solution using the predicted values as starting values for the
iteration. An algebraic set which has been switched to the Newton-
Raphson solution algorithm will continue to use this algorithm for solu-
tion until each of several consecutive Newton-Raphson solutions (usually
two) has been completed in less than a fixed number of iterations. At
this point it is assumed that the algebraic set may again be solved
accurately by the Implicit algorithm and the set is returned to Implicit

solution.

HYDSIM Simulation of a

Fuel-Injection System

As an example of the use of the algorithms discussed i% the previous
chapter, the HYDSIM:program has been used to simulate the mechanical and
hydraulic parts of the fuel—ipjection system shown in Figure 12. This
system would be used on a four-cylinder automotive type of engine and
contains four injectors which are actuated in pairs. Injectors 1 and 3.
are actuated first followed by 2 and 4. This simulation could be used
to study the possibility of fuel starvation at the injectors. Starvation
might occur because of the differing methods of pairing the injectors for
fuel supply and actuation.

The block diagrams which were used to develop the HYDSIM simulation
of the fuel-injection system are shown in Figures 13, 14 and 15. Figure
13 shows the blocks used for each injector, Figure 14 shows the blocks
used for the regulator, and Figure 15 shows the remainder of the system.

All blocks were represented by standard HYDSIM library component models
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except the displacement forcing function shown in Figure 13 which was.
programmed for this simulation.

The HYDSIM simulation of the fuel injection system included 26
first-order differential equations and 27‘:lgebraic equations. The alge~-
braic equations were separated into 5 sets of 1, 6, 6, 6, and 8 equations.

Figure 16 shows a graph of the pressure at the inlet of Injector 2
during the first eight milliseconds of time after system start-up from
a condition of steady regulator flow with no injector actuation. Appen-
dix C shows a copy of the HYDSIM input for this simulation and additional
graphs of system variables.

During the simulation, integration was performed with a step size of
0.00001 second and a total of 800 steps. A group of 15 pairs of port
variable values were printed out at every tenth integration step with a
total of 81 groups printed.

Three simulation runs were performed using three different solution
methods and the computer execution time was recorded for each. A fourth
run was performed for one integration step to evaluate initialization
time. All runs were performed separately on an IBM 370 Model 155 com-
puter with no other jobs executing in the computer system. Execution
times were: 0.06 seconds for initialization, 2.26 seconds for the Runge-
Kutta and Newton-Raphson solution methods, 1.22 seconds for the Adams-
Moulton and Newton-~Raphson solution method, and 0.95 seconds for the
Adams-Moulton and Implicit solution method. For the latter method, error
monitoring of the Implicit method resulted in algebraic equation sets
being reset nineteen times to the Newton-Raphson solution method. The
Implicit method was used for 98 percent of the algebraic equation set

solutions. Solution values from the three solution methods were
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comparable. The solutions were usually identical to four digits of
accuracy (all that were printed out) with all values agreeing within
+0.5 percent except when magnitudes of the compared values were much

smaller than one.
Discussion of Results

The results of the application of the algorithms contained in this
study for the simulation of complex systems have been illustrated>by the
simulation of an automotive fuel-injection system. Three different solu-
tion methods were used to produce equivalent simulation runs for this
example, and a comparison of the results of these runs will illustrate
the capabilities of the solution algorithms used.

The fuel-injection system simulation used ten component model blocks
from the HYDSIM library and resulted in the solution of 26 differential
equations and 27 algebraic equations. The algebraic equation separation
algorithm separated these algebraic equations into five sets with each
containing from one to eight equations. The set of eight contained equa-
tions from four different components and each of the three sets of six
contained equations from three different components. Each set was solved
simultaneously by the solution algorithms.

The fuel-injection example illustrates one of the major advantages
of the block-oriented algorithms given in this study. These algorithms
allow various component models to be programmed individually and then
connected for a simulation in any manner which matches port variables.
Therefore, many simple components may be programmed for the HYDSIM com-

ponent library and later connected in a simulation to form a more complex
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component as illustrated by the fuel-pressure regulator shown in Figure
14.

A comparison of the computer time required for each of the simula-
tion runs indicates the relative speeds of the algorithms. However, some
problems exist in determining how much computer time was spent during
each run on solving the algorithms and how much time was spent doing
other things such as printing.

The computer used for the simulation runs was an IBM 370-155 operat-
ed in a multiprogrammed environment (IBM MFT), but the simulation rumns
were performed one at a time with no other jobs executing in the computer
system. Consequently, execution time spent on computer interrupts was
minimized. In an attempt to evaluate the amount of computer execution
time required during each run by the IBM Operating System and required
by HYDSIM for initialization, a fourth simulation run was made which
performed initialization and one integration step (compared to 800 steps
for the three comparison rums). Subtracting this execution time from the
time of the three comparison runs and comparing the results yields:

1. The Adams-Moulton-Newton-Raphson solution method required 30
percent more execution time than the Adams-Moulton-Implicit method.

2.  The Runge-Kutta-Newton-Raphson solution method required 147
percent more execution time than the Adams-Moulton-Implicit method.

The above comparisons would show an increased spread in performance if
printing time (the same for each of the three runs) could also be evalu-
ated and subtracted from the execution times.

As would be expected due to the fewer number of derivative evalua-
tions required per time step, the solution methods employing the Adams-

Moulton integration method were faster than the method employing
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Runge-Kutta when equal integration step sizes were used. (No comparison
was attempted for different step sizes.) Of the two runs using the
Adams-Moulton integration method, the run using the Newton-Raphson method
for solution of the algebraic equations required 30 percent more execu-
tion time than the method using the Implicit solution method. It should
also be noted that similar execution time comparisons have been noted

during HYDSIM simulations of other systems.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS
- Conclusions

The Implicit method has been presented as a noniterative method of
solving nonlinear algebraic equations which are coupled with differential
equations, and the‘method has been incorporated into the computer program
HYDSIM, a transient analysis program for hydraulic systems. - The Implicit
method utilizes a "conventional numerical integration algorithm to solve
the nonlinear algebraic equations in a manner similar to the differential
equations. The methdd uses the single solution of a linear set of alge-.
braic equations to evaluate each set of algebraic variable derivative
values required by the integration algérithm. Since this linear equation
is very similar to the linear equation which must be used iteratively
when the Newton-Raphson method is employed, the Newton-Raphson method may
easily be added to the Implicit method for calculating the initial values
of the algebraic wvariables.

Comparative simulation runs of the HYDSIM program for an example
have shown the Implicit 'method to be 30 percent faster than the Newton-
Raphson method and to have an equal accuracy in most cases. This agree-—
ment in accuracy might have been expected since the Implicit method uses
an exact method to evaluate algebraic derivative values and produces no

truncation error except that incorporated in the integration algorithm.

58



59

Further investigation may show that the Implicit error monitoring scheme
employed in HYDSIM is unnecessary.

The HYDSIM program has been developed as an engineering tool to
reduce the effort which was'previously required to simulate the response
of a multicomponent hydraulic system, The program contains a library of
previously programmed hydraulic component models which the program user
may use in any connection configuration (port variables must match at
connections). In addition, the HYDSIM program user may add component
models to the program which have been represented by coupled algebraic
and ordinary differential equations. The program has a block-oriented
input format and will accept fixed or free format data.

Although the HYDSIM program and the Implicit method have been dis-
cussed for use in the simulation of hydraulic systems, their use need not
be limited to this. The Implicit method may be used to solve any set of -
algebraic equations as the independent variable is varied if any or all
of the equations in the set are an explicit function of the independent
variable. In addition, the Implicit method may be used to solve any sets
of coupled algebraic and differential equations as the independent vari-
able is varied. However, it should be noted that any application of the
Implicit method assumes that all required partial derivatives exist and

may be evaluated for all required values of the independent variable.
Recommendations for Further Study

One could spend a lifetime making improvements in a large computer
program such as HYDSIM and in its associated algorithms. However, some"

of the areas in which improvements would be most beneficial are:
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1. Develop a simulation algorithm whiech does not require the match-
ing of port-variable dependencies at the component connections.

2. Perform any modifications which would decrease the time required
to execute the simulation algorithms without reducing their flexibility
nor accuracy.

Some methods for reducing algorithm execution time might be: (1)
removing the Implicit method error monitor; (2) implementing sparse mat-
rix methods for the solution of linear algebraic equations; and (3) eli-
minating the double subscripting method shown in the block-oriented
modeling equations and used in HYDSIM. The first two methods given above
may not be appropriate and further investigations will have to be per-

formed to justify these changes. .
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APPENDIX A
THE NEWTON-RAPHSON METHOD

The Newton-Raphson method can be used to solve a set of algebraic
equations. When applied to a set of nonlinear algebraic equations, the
method effectively substitutes the iterative solution of a set of linear
equations for the more difficult task of solving the nonlinear equations.
The method requires an initial set of approximations to the solution set.

The -Newton-Raphson method can be derived from a truncated Taylor
series expansion of the algebraic equations about an approximate’solution
point of the equations. Given a set of m algebraic equations of the form

0 = Fi (yl, Yos o+ ,vym), i=1,2, ... ,m (30)

o

and the approximate solution yi, Yo - . y;, Equation (30) may be

expanded in the Taylor series

_ o o o
Fi (Y]_: yZ’ e o o Ym) = Fl (yl! Yz, L A e | Ym)
m BFi
+ 3 3y, | o (YJ - YJ)
j=1 73 |y
fju m azFl o o
+ (v, — vy 290 B PR
=1 =1 ayj Byk o 7j i k k
i=1,2, ..., m (31)

where the bar and yo to the right of partial derivative implies that the
. . o
derivatives are to be evaluated at the approximate solution Yis y;,

o . . . . ,
e e e s yﬁ. The truncation of the series in Equation (31) to retain
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only the linear . terms and the combination of this with Equation (30)

yields

m oF,
o o 0 —= °
0= Fi (yls st L L | yﬂ? + ;g; Byj‘ yo (yj - Yj),

i=1,2, ..., m (32)

Equation (32) may be rearranged and written in vector-matrix form as

oF oF oF
L 1 i (y v7) Fo (s Yos + o)
N o 0 o - - ’ ’ . L) . E ]
Byl yo 3y2 y0 aym yo 1 1 1 1% 72 m
—BFZ -—aFZ —-—BFZ v, = v -F, (y7, v, )
oo R s + o o s
Byl yo 8y2 y0 Bym yo 2 2 2 1’ 72 m
aFm BFm aFm o o o o
B e (y - Y‘) -F_ (y s Yos o ¢« « 5 ¥ )
Byl yo 3y2 yo Yo yo m m m 1 2 m
- 4 L B [ . -
(33)

The solution of Equation (33) for (yi - yg) where 1 =1, 2, . . . , m
gives values which may be added to the corresponding approximate solu-
tion values, yz. Ideally, these . additions would yield the solution
values yi; however, in most cases the exact solution values will not be
obtained because of the truncation of the Taylor series. Instead, a
value of vy will be obtained which is not the exact solution, but closer
to the exact solution than y: if the Newton-Raphson method is convergent
(33). This closer approximate solution may then be used to repeat the
Newton-Raphson method to obtain a still closer solution. In this

manner, the method can be repeated until a sufficiently accurate solution

th
is obtained. It is convenient to rewrite Equation (33) for the k



iteration as

BFl
Byl

k oo o

k e e

oF

.

to solve Equation (30).

as

*
0 = Fi (xl, X,

*

k+1
(yl

k+1
(y2

k+1
(y

*

m,

k
- yl)

- yz)

- ym)

9 o o o o xﬁ’ y1, YZ, o o

k k
'Fl(yl? y2’

k

k

*
e Ym, t )9

k
“F; (315 ¥ys -

k
_Fm(yl’ Yoo v

k
s Y

N A

where the asterisks indicate that specific values of the variables

X1s Xps o -

s X s t have been substituted into the equations.
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ky

(34)

Figure 17 shows a flow chart for a method of :using Equation (34)

It should be noted, that Equation (30) could also have been written

(35)



ENTER WITH
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!

EVALUATE
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9
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j=1,2,0s.,m

!

SOLVE
EOUATION 34 FOR

k+1 k
(v. = =-vy.)

1 1

i=1,2,...,m

Figure 17.

Method

k = k+1

I

ANSWERS ARE
k+1 k+l

Yy ¥y seees

k+1
m

Algorithm to Solve Equation (30) by the Newton-Raphson
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APPENDIX B
A MODIFIED NEWTON-RAPHSON METHOD

Appendix A derives the equations to be used in the Newton-Raphson

method for the solution of algebraic equations of the form

0= Fi (yl, Yys « o s yng, i=1,2, ..., m (36)

This appendix modifies the equations derived in Appendix A for the solu-

tion of n algebraic equations of the form

0= Fi (yl, Yoo o v 0 5 Yps Ups Ups o 0 vy uq),
i=1,2, ..., n, (37)
where
uj =.uj (yl, Yos + ¢ v s yh), i=1,2, . . ., q. (38)

Because the u-variables have been introduced into the algebraic equations
and because the u-variables are defined in terms of the algebraic vari-
ables as shown in Equation (38), partial derivatives used in Equation

(34, aFi/Byr, must be replaced by the terms

oF 9 3F, ou
_1i i i
dy + 23 du, 3dy_ ° (39)

r j=1 "7j r
Therefore, Equation (34) may be rewritten in the following form (Equation
(40)). Figure 18 shows a flow chart for a method of using Equation (40)

to solve Equations (37) and (38).
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Figure 18. Algorithm to Solve Equation (37) by the

Newton-Raphson Method
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BFl du, BFl Z aFl Ju k+1 K
5a, 3y, | . 0 " Gy, v L %a, 3y oy " - vp
i Y2 | k Yno 3=1 °%4 “n | k
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oF, ou. oF oF_ 9du
e I e e ARy
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APPENDIX C
A HYDSIM EXAMPLE

The response of the fuel injection system shown in Figures 13, 14
~and 15 was simulated using the HYDSIM computer program. The simulation
started from a condition of steady regulator flow with no injector actu-
ation and was carried out for eight milliseconds of real time.

Figure 19 shows a copy of the HYDSIM input data:cards and Table I
describes the components used in the simulation. Additional information
on HYDSIM components and usage can be found in "HYDSIM User's Manual"
(1).

All of the components used in this simulation are contained in the
HYDSIM component library except the displacement forecing function used
to actuate the injectors. This component was programmed for this simu-
lation. It determines displacement as a function of time by performing
linear interpolation on time-displacement points given in the input data.
Figures 20 and 21 show the resulting injector actuations. The first
three data cards shown in Figure 19 initialize internal HYDSIM tables
to include this displacement component. The component model was pro-
grammed in a FORTRAN IV subroutine and submitted with the data cards at
execution.

Figure 16 shows the pressure at the inlets of the injectors. This

pressure is identical at the inlets of all the injectors since both
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&ADD COMPONENT
SPEC1,3,10,1,0,0,0,DISP

&END '

&FREE

&RKIV

&% hkkkhkkhkkhkhkhkhhkkhhkkkkhkk RUNGE~KUTTA TEST *kkkkkkkhkhkhkhhkhkhihhkk
TF=0.008, DT=0.00001, PM=10, NEWTON=200
1(1)=8(1)P, 8(2)P=2(3)G, 2(2)=5(2), 2(1)=3(2)
3(1)=5(3)P, 3(3)=6(3)P, 5(1)=6(2)P
6(1)=7(2)P, 7(1)P=9(1), 9(2)=10(1)PG, 10(2)P=11(1)
11(2)=12(1), 9(3)G=29(2), 9(4)=30(2)
PRESSR/1,12/, TEE/2,6/, CYLIDX/3/, VALV2B/5/
VOLUME/7/, LINE2/10/, PUMP/11/, LINE1/8/, CROSS/9/
1/10%0/
3/4,4,-0.00245,200,0.1/
5/75E3,6.4E-5,0.6,0.25,0,0,1/
7/50,75E3,1.5/
8/0,180,0.500,6.4E-5,75E3,2.9E-8,0,10,-.46/
10/0,168,0.375,6.4E-5,75E3,2.9E-8,50,55,~.46/
11/2.9e-8,0.02,0,0,0,0.61E-8,157/
12/10%0/
14(2)=16(1), 16(2)P=23(1l), 16(3)P=24(1), 30(1)=14(1)
23(2)=27(1), 23(3)=19(l), 24(2)=28(1), 24(3)=20(1)
LINE2/14/, TEE/16/, DisP/19,20/, VALV2B/23,24/
PRESSR/27,28/, 1L0SS21/30/
14/0,12,0.25,6.4E~5,75E3,2.9E-8,50,50,0/
19/0,.0005,-.01,.002,-.01,.0025,0,.008,0,0/
20/0,.004,0,.0045,-.01,.006,-.01,.0065,0,.008/
23/75E3,6.4E-5,0.6,0.0182,0,0,2/
24/75E3,6.4E-5,0.6,0.0182,0,0,2/
27/10%0/
28/10%0/
30/1,.5,.25,6.4E~5,-10,50/
13(2)=15(1), 15(2)PG=21(1), 15(3)PG=22(1), 29(1)=13(1)
21(2)=25(1), 21(3)P=17(1), 22(2)=26(1l), 22(3)P=18(1)
LINE2/13/, TEE/15/, DISP/17,18/, VALV2B/21,22/
PRESSR/25,26/, 1L0SS21/29/
13/0,12,0.25,6.4E-5,75E3,2.9E-8,50,50,0/
17/0,.0005,-.01,.002,-.01,.0025,0,.008,0,0/
18/0,.004,0,.0045,~.01,.006,-.01,.0065,0,.008/
21/75E3,6.4E-5,0.6,0.0182,0,0,2/
22/75E3,6.4E-5,0.6,0.0182,0,0,2/
25/10%0/ .
26/10%0/
29/1,.5,.25,6.4E-5,-10,50/

&END

Figure 19. Input Data for HYDSIM Simulation of Fuel-Injection
System
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TABLE 1

HYDSIM COMPONENTS USED IN SIMULATION

OF FUEL-INJECTION SYSTEM

COMPONENT  LIBRARY COMPONENT LOCATION
NUMBER NAME OR DESCRIPTION
1 PRESSR Exhaust Pressure For Regulator Return Line
2 TEE In Low-Pressure Side of Regulator
3 CYLIDX Cylinder In Regulator
5 VALV2B Two-Way Valve In Regulator
6 TEE In High-Pressure Side of Regulator
7 VOLUME In Regulator.
8 LINEl Line At Low-Pressure Side of Regulator
9 CROSS Four-Port Connector
10 LINE2 Line At Pump Outlet
11 PUMP Constant Speed Pump
12 PRESSR Pressure Source At Pump Inlet
13 LINE2 Fuel Line Leading To Injectors 1 And 2
14 LINE2 Fuel Line Leading To Injectors 3 And 4
15 TEE At Inlet To Injectors 1 And 2
16 TEE At Inlet To Injectors 3 And 4
17 DISP Displacement Function For Injector 1
18 DISP Displacement Function For Injector 2
19 DISP Displacement Function For Injector 3
20 DISP Displacement Function For Injector 4
21 VALV2B Two-Way Valve In Injector 1
22 VALV2B Two-Way Valve In Injector 2
23 VALV2B Two-Way Valve In Injector 3
24 VALV2B Two-Way Valve In Injector 4
25 PRESSR Pressure At Injector 1 Outlet
26 PRESSR Pressure At Injector 2 Outlet
27 PRESSR Pressure At Injector 3 Outlet
28 PRESSR Pressure At Injector 4 Outlet
29 L0SSs21 Entrance/Exit Loss
30 L0SS21 Entrance/Exit Loss
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pairs are connected into the system through identical lines and loss
components. Figures 22 and 23 show the fuel flow rates through the

injectors.
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