
DIGITAL COMPUTER SIMULATION OF COMPLEX

HYDRAULIC SYSTEMS USING MULTIPORT

COMPONENT MODELS

By

CHRISTOPHER K. riMITH

Bachelor of Science in Mechanical Engineering
Tennessee Technological University

Cookeville, Tennessee
1967

Master of Science
Tennessee Technological University

Cookeville, Tennessee
1969

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
July, 1975

I~
l,'1!5'D

s " '1 '1 "-
~, :;_

DIGITAL COMPUTER SIMULATION OF COMPLEx; ·

HYDRAULIC SYS,TEMS USING MU~TIPORT

COMPONENT MODELS

Thesis Approved:

Dean .of the Grad~~~ College

939001
ii

OKI.AH OMA

STATE UNIVERSITY
USRARY

MW 12 1976

ACKNOWLEDGMENTS

The author is very grateful to all who have encouraged him through

out his educational career. Without their guidance and assistance this

endeavor would not have been possible.

Deep appreciation and gratitude is expressed to Dr. Henry R.

Sebesta, the author's major adviser. His technical guidance, patience

and friendship have been major contributing factors towards the comple

tion of this work. Special thanks are also expressed to Dr. Karl N.

Reid, whose abilities to convey optimism and inspire the author are out

standing. The time, the constructive criticisms, and the willingness to

be helpful given by the members of the thesis committee, Dr. James E.

Bose and Dr. Ronald P. Rhoten, are also gratefully appreciated.

Special gratitude is expressed to the author's wife, Doris, and

daughter, Lis.a, for their understanding and confidence in him and for

their many sacrifices,

The author also wishes to thank the Center for Systems Science at

Oklahoma State University for supporting the research reported here and

to thank Mr, Lael B. Taplin, Dr. A. B. Van Rennes, and Dr. D. Bitondo at

Bendix Research Laboratories for allowing the author the time to finish

this manuscript. Thanks are also given to Mrs. Virginia Hanadel for her

assistance in typing the early drafts of this manuscript.

iii

TA~LE OF CONTENTS

Chapter Page

I. INTRQDUCTION 1

Objective,and Scope of Study
Results of Study • • • • •

1
2

II. PRELIMINARY CONSIDERATIONS • 4

4 Related Literature ., • • • • e ~ • • • • • • • • • • •

Organization of a Generalized Computer Program for
Hydraulic System Simulation • • • • 8

III. ALGORITHMS FOR SIMULATIO~ OF HYDRAULIC SYSTEMS- • . . 12

IV.

A Generalized Form for Hyd~aulic System Modeling
Equations • • • • • • • • • • • • • • • • 12

An Iterative Algo~ithm_for the Simultaneous Solution
ofthe Generalized, Modeling Equations • • •• ._ • 14

A Modified Algorithm for the Simultaneo~s Solution
of Modeling Equations With Block-Oriented
Organization • . • ·• • • • • • • • • • • • • • • 18

An Implicit Method for Solving Nonlinear Algebraic
Equations Without Iteration • • • • • • • • • • • 25

A Modified Implicit Method for the Simultaneous
Solution of Modeling Equations With Block-Oriented
Organi.za tion • 30

An Algorith~ for Separating Algebraic Equations With
Block.;..Oriented Organizations Into Separate Sets • 39

A Combined Algorithm for the Solution of Modeling
Equations With Block.,..qriented Organization • • • • • 42

APPLICATION OF SIMULATION ALGORITHMS eoee& .. 11

HYDSIM - A Block-Oriented_Si.mulation Program for
Hydraulic Systems • • • • • • • • • • • • •

HYDSIM Simulation of a Fuel-Injection System
Discussion of Results • • • • • • • • • • • •

45

45
48
55

V. CONCLUSIONS AND RECOMMENDATIONS 58

Conclusions • •
Recommendations for Further Study • •

iv

• • • • • • 91 • •

58
59

Chapter

BIBLIOGRAPHY • • • . • • • • •

APPENDIX A - THE NEWTON-RAPHSON METHOD .

APPENDIX B - A MODIFIED NEWTON-RAPHSON METHOD

APPENDIX C - A HYDSIM EXAMPLE

v

. '.
Page

61

64

68

71

LIST OF TABLES

Table Page

I. HYDSIM Components Used in Simulation of Fuel-Injection
~ys tem • • • • • • • ·• • • • • • • 73

vi

LIST OF FIGURES

Figure. l?age..

1. Block Diagram of Multi port Models . • • • • • • • • • • • • • 10

2. Concept of a Generalized Numerical Integration Method
After Initialization • • . . • • • • • • . • . • • •

3. Steps Required for Use of Runge-Kutta or Adams-Moulton
Integration After Initialization . • • • . • . • .

4. Algorithm to Solve Coupled Algebraic and Differential
Equations

5. A Port Connec.tion Between Two Components

6. Algorithm to Solve Coupled and Block-Orientec;l Algebraic and

16

17

19

21

· Differential Equations . • • • . • • • • • • • • 24

7. Algorithm to Solve Generalized Modeling Equations by the
Implicit Method • . • • • • . . • • • • • . • • • • • . 28

8. Connections Between Independc;!.nt Port Variables o~ Component
h and Depen<;lent Port Variables of Other Components • • • • 32

9. Algorithm to Solve Block-Oriented Modeling Equations by the
Implicit Method • . • • • . • . . • • . • • • 36

10. Algorithm for Separating Algebraic Equations Into Sets 41

11. Algorithm for Combining Implicit and Newton-Raphson Solution
Methods • • • • • • • • • • 43

12. Diagram of Fuel-Injection System 49

13. HYD$IM Representation of Fuel Injector 50

14. HYDSIM Representation of a Simplified Fuel Pressure
Regulator 51

15. HYDSIM Representation of a Fuel-Injection System 52

16. Pressure at Injector Inlets ••••••.•••. 54

vii

Figure Page

17. Algorithm to Solve Equation (30) by the Newton-Raphson
Method . 67

18. Algorithm to Solve Equation (37) by the.Newton-Raphson
Method . 69

19. Input Data for HYDSIM Simulation of Fuel-Injection System 72

20. Valve Opening for Injectors 1 and 3 74

21. Valve Opening for Injectors 2 and 4 . . 75

22. Flow Through Injector 1 or 3 77

23. Flow Through Injector 2 or 4 78

viii

LIST OF SYMBOLS

a - Constant defined in Equation (7)

b - Constant defined in Equation (12)

F - Functional representation of an algebraic equation

G - Functional representation of a first-order differential equation

t - Independent variable

u - Independent port variable

v - Dependent port variable

x - State or dependent variable

y - Algebra~c variable

ix

CHAPTER I

INTROpUCTION

In recent years, interest in the simulation of the dynamics of

continuous systems has increased manifold. This increase has been aug~

mented by the increasing availability and popularity of the digital

computer and is evidenced by the number of generalized numerical simula-

tion programs being presented in the literature.

CThe work required for the successful simulation of a dynamic system

on a digital computer encompasses three fields of technology: (1) engi-

neering, (2) numerical analysis, and (3) computer progranuning. Engineer-

ing is required to generate the mathematical equations which describe

the performance of the physical system, numerical techniques are

required fo.r solving the equations, and programming is required for

implementing these in a usable package)

Objective and Scope of Study

The objective of this study was the development of modeling equation

forms and numerical algorithms which could be used in a digital computer

program for the simulation of complex systems. During this study it was

assumed that a complex system could be represented by a network of multi-

port models and that each mo4el could be represented by a set of first-

order, ordinary differential equations and a group of algebraic equations.

Equation f9rms were sought which were not restrictive a~d algorithms were

1

selected on the basis of ~ccurate and efficient solution. Chapter II

contains an explanation of the forms and algorithms which were

developec;l.

This study was the first part of a two-part project. While this

study dealt with the conceptual framework of· a simulation program, the

second part dealt with the imple1J1entation of these concepts in the

simulation program HYDSIM. The main features of the HYDSIM program

include:

1. The implementation of special solution algorithms.

2. A multiport-model representation of components.

3. A library of standard component models.
(i.

4. A~ and free-forriiat input data form with a pre-

pocessor for error checking and user convenience.

5. The sorting of algebraic equations into sets for increased

efficiency.

6. A capa~ility of accepting user programmed component models.

The overall structure of HYDSlM as an implementation of the conceptual

framework :f:s discuss.ed in C:tiapter IV, and the methods of using the

HYDSIM program are described in '1HYDSIM User's Manual" (1).

Results of Study

This study deals with the dynamic simulation of complex systems.

Included in Chapter III of this study are a presentation of functional

2

forms of equations which may be \.lSed to model physical systems, numerical

algorithms which may be used to solve t~e modeling equations, and in

Chapter IV an introduction to a generalized simulation program for com-

plex systems which utilizes these modeling forms and algorithms. These

3

forms anct algorithms are applicable to the .simulation of any comple~

system which may be represented by a set of first-order, non.linear dif-

ferential equations coupled with sets of nonlinear algebraic equations•

However, due to error checking and output considerations, HYDSIM was

initially developec1 for the simµlation of hydraulic, mechanical and

electrical systems.

Two forms of mocteling equations are presented in Chapter III. Both

are similar and assume that the components can be described by coupled

s.ets of nonlinear algebraic and differential equations using multiport

modeling techniques. However, the second form may be used for block-

oriented component models.

Two algorithnis are presented in Chapter III for the solution of each

modeling form. The first algorithm for each form uses "conventional"

numerical methods for the solutioti of the modeling equations. The second

algorithm usel?·"conventional" numerical integration for the solution of

the c\ifferential equations in conJunction with an implicit method for

the solution of the algebraic eqµations. This method, called the

Implicit method, is numerically similar to the Newton-Raphson method,

but it is not iterative at each time step which results in a reduction

of computer execution time. Finally, a third algorithm is presented for

the solution of the block-orienteµ modeling form. This algorithm com-

bines the methods of the first an(i secop.d algorithms with a method for
'

separating the set of algebraic equations into a number of smaller sets.

CHAPTER lI

PRELIMINARY-CONSIPERATION~

Before the development of a computer algorithm .is undertaken, the

desired organization and capabilities of the completed program should be

considered. This organization will be affected strongly .by two areas. of

interest: (1) analytical techniques presently in use for describing or

simulating complex systems, and (2) the organization of previously sue-

cessful simulation programs.

Related Literature

~ 1955, Selfridge (2) introduced a method of coding a digital com-

pl,lter to "operate" as a differential analyzer, more widely known as an

analc;>g computer~ Since then numerous general-purpose simulation programs,

have been introduced (3-13). Brennan and Linebarger (14) and Clancy and

Fineberg (15) have provided excellent surveys of t~e first ten years 'of
~V~'/'q\

simulation program development. Seme-0-f--ehe programs. containing major

contributions·to the field of simulation a+e discussed below.

In 1958, Stein and Rose (3) generated ASTRAL (acronym for Analog

Schematic !Ranslator to Algebra Language. ASTRAL contained three firsts:

(1) the prog+am was a compiler which produced a FORTRAN deck for execu-

tion; (2) the simulation was executed using floating-point arithmetic;

and (3) a sorting algorithm was used. which relieved the user from the

task of ordering the program inputs to optain a correct solution (16).

4

5

Gaskill et al. (6) introduced DAS (acronym for Digital Analog Simu-

lator) in 1963. This used a simplified input language and was an

1.lJ l+
excellent simulation program; .however, it had two drawbacks. DAS con-

. CXr,d_ C "y/ + ui.J est -\ h.£ s-te p 0 t
tained an elementary integration routine (Euler's method) and did not \,,:,.it~(Q..~;o;t.

contain a sorting algorithm. MIDAS (Mod:(.fied Integration DAS) introduced

in 1964 by Harnett, Sansom and Warshawsky (8) contained a sorting algo-

rithm and a.sophisticated fifth-order predictor-corrector integration

meth,od with variable step size. MIDAS also included a simple input for-

mat an~ a method of handling algebraic loops (loops in the model

equations which are not br9ken by an integrator, a delay, or any function

with memory)_. Because of these advantages plus the facts that the

program was easy to use and was written for the popular 7090-7094 IBM

computers, MIDAS gained wide acceptance.

PACTOLUS (the river in which King Midas washed off the golden touch)

was introduced in 1964 by R. D. Brennan (9) and it also enjoyed wide

acceptance. PACTOLUS retained most of the features of MIDAS, but .was

written for the small IBM 1620 computer. This program allowed the user

to make on-line changes in a simulation through computer switch settings

and console entries. Consequently, PACTOLUS came closer to the true

hands-on control of an analog computer than any of its predecessors.

The input language of all the programs discussed in detail above may

be classified as block-oriented. In block~oriented programs the function-

al. capabilities of each type of block included in the program are defined

in terms of the block inputs and outputs by the programmer. User input

to the program consists of a description of block interconnections, block

type identifications, and various parameters; and it may be prepared from

a block diagram of the system to be simulated. This type of input

6

configuration was a direct result of the program originator's efforts. to

<;luplicate the operation of an analog compute.r. ~6.
'J;he block.-oriented programs caused diffiaulty for the program user

in progral1lllling algebraic expressions which could easily be expressed in

languages such as FORTRAN. ln addition, some .users who modeled s,ystems 11 c
\lZ<;'q Ii Jftll>'\

d~rectly in equation form desired to input these equations directly to._~~ jt\\p~)
(~uch O..~ +h.s<. >y~~~.,,_ m,oL{~ f't /

the simulation program without creating a block diagram. Consequently,
r

Three of the

sim~lation programs were introduced. ~

most significant language-oriented programs are.MIMIC,

language-oriented

DSL/90, and 360 CS:MP (10, 11, 13). These programs incorporated all of

the major features of·the block~oriented programs plus inareased flexi-

bility due to their input languages. However, these input languages.are

very FORTRAN oriented and difficult to learn.

(rn addition to the general-purpose simulation programs.discussed

above, many special-purpose programs have been introduced. Unlike the.

general-purpose prog~ams which were intended for the simulation of any

system that may be represented by a set of ordinary differential equa-

tions, the special-purpose programs were intended for the simulation of

a special class of systems (for examvle, mechanical, e~ectrica1, or fluid

systems). Cons~quently, the input l~nguage of a special-purpose program

may be structwred in the most natural format for the class of systems to

be simulated and the numerical methods used in the program ma,y be adapted

for best solving the types .of modeling equations most often used.)

ENPORT is unique among the special-purpose simulation programs (17).

This program may be used to simulate the same classes of systems as the

general-purpose programs. However, the ,input format of ENPORT has been

structured to be used with the bond graph modeling techniques first

introduced by Paynter (18).

7

One of the most widely used simulation programs for electrical sys

tems is ECAP (19). In addition to providing transient response solutions,

this special-purpose program can also provide AC and DC analyses of

electrical circuits. ECAP has also been used to simulate systems which

were not electrical. However, since an analogy must be established

between electrical components and the components of the system to be

studied, ECAP is not the most desirable tool from the user's viewpoint

for simulating systems which are not electrical. The numerical methods

used in EC.AP are heavily dependent on linear techniques and nonlineari

ties may only be simulated through piecewise-linear approximations.

Other widely accepted simulation programs for electrical systems are

NET I and SCEPTRE. These programs and ECAP are compared from a user's

viewpoint by Lindgren (20).

A summary of the special-purpose programs available for the simula

tion of hydraulic (fluid power) systems was given by Waterman et al. (21)

in a report for the u.s. Air Force. Most notable among the programs

described are the HYDSIM and HYTRAN programs. These programs contain the

models of various hydraulic components programmed in subroutines. The

programs then use these subroutines as required to simulate hydraulic

systems. Zielke (22) provided more information about HYTRAN.

The H~DSIM program discuss~d in ~hapter IV of this study is the

second version of the program (~YDSIM II). The first version, HYDSIM I,

was developed at Oklahoma State University in conjunction with General

Dynamic Corporation during 1970 (23, 24). This earlier version lacked

most of the features and capabilities of the current program. For

8

example, it did not have the HYDSIM II capability of simultaneously solv

ing coupled, algebraic equations when th.e equatic;ms were contained in

more than one component model. However, HYDSIM r did contain a library

of st~darg components.

Organization of a Generalized Computer Prog:r;:am

for Hydraulic System Sim:ulation

Because a hydraulic system is usually composed of many discrete

hydraulic components coupled together, a block-oriented input language

would seem natural. However, instead of each block representing a basic

function as in the "analog-like" languages described above, each block

should represent a major hydraulic component such as a valve or a cylin

der. Tb,e incorporation of a library of models for such blocks would

relieve the program user of much repetitive programming. In addition,

the organizati9n of.the progra~ in a manner where each component model

would be contained in a separate subroutine wol\ld .. facilit.;:i.te using the

models in many 4ifferent interconnection configurations and would ease

the task of adding additional models to the program at a later date.

Also, since fluid power (not just pressure nor just flow) is the major

consideration in a hydraulic system, multiport modeling techniques should

be used.

Multiport models of dynamic system components have been in use in

various forlll$ for many years. For exaip.ple, bond graph techniques are

based upon the use of multiport models (18). Multiport techniques are in

evidence whenever the energy transfe:r; at energy exchange ports of system

components (or subsystems) may be expressed as products of pairs of

systems variaples.

9

Figure 1 shows a typical method of graphically displaying the pairs

of energy exchange variables for multiport models. Typically, the power

transferred at the ports connecting the pump and pipe is represented by

the product of the pressure variqble, P1 , and the flow variable, Q1 • It

should be noted that the directions of the arrows shown to represent the

variable pair at this port connection do not represent the direction of

flow, etc.; the directions represent.the causality of the port variables.

(This is true of all ports shown in this study.) For example, P1 is

independent to the pump model and.dependent to the pipe model, and Q1 is

dependent to the pump model and independent to the pipe model.

The appli~ation of multiport modeling techniques to a hydraulic

system usually produces a set of noniinear differential equations which

are coupled with sets of nonlinear algebraic equations. The algebraic

equations may be manually reduceQ. to some extent within ~ach block, but

since these algebraic sets usually span several blocks, they may not be

eliminated entirely. Elimination of these sets is also hindered by the

fact that foi;- a generalized program the pattern of block interconnections

is not known at model programming time and will vary as different systems

are simulated. Typical forms of these equations are discuss.ed in Chapter

III.

A numerical method is r~quired to solve the coupled sets of non

linear algebraic and differential equ&tions. Two methods are discussed

in Chapter III of this study, ~d a method has been proposed by Gear (25)

and by Brayton, Gustavson, and Hachtel .· (26). The latter method uses a

predictor type of equation to approximate the current value of each state

variable in terms of the c1,1rrent state variable.derivative value and k

previous state variabl~ values. This equation, WJ;'itten for each state

STROKE FORCE
j

pl Q2 ' I p3 !,ORQUE '!.ORQUE - - -- -
PUMP PIPE VALVE MOTOR

- - -
SPEE IT Q - p - - SPEED ~ 1 2

Figure 1. Block Diagram of Multiport Models

11

variable, may be substituted into the system differential equations to

eliminate the state variable derivatives. The resulting algebraic equa

tions and the algebraic equations from the original modeling process form

one large set of coupled, nonlinear algebraic equations which may be

solved iteratively for the current values of the state and algebraic

variables by the Newton~Raphson method.

The first method discussed in Chapter III uses. the Newton-Raphson

method and any "conventional" nµmerical integration technique to solve

the equation sets. However, the second method uses an implicit method

(hereafter called the Implicit method) to determine derivative values

for the algebraic variables and then uses a "conventional" numerical

integration technique to simultaneously solve for the state and the

algebraic variables in a similar manner. The Implici~ method is not

iterative at each time step, but uses a linear equation similar to that

used in one iteration of the Newton-~aphson method. In addition, the

Implicit technique does not cause th~ coupling of all the algebraic equa

tions into one large set, but allows the algebraic equations to be

separated into sets based upon coupling of the algebraic variables only.

CHAPTER III

ALGORITHMS FOR SIMULATION OF·HYDRAULIC SYSTEMS

A Generalized Form for Hydraulic

System Modeling Equations

The system of equations developed during the mathematical modeling

of most hydraulic systems is composed of algebraic and ordin~ry differ

ential equations (27). This section discusses these equations and their

functional forms.

In general, th~ algebraic equations included in a mathematical

model of a hydraulic system are nonlinear and may not be reduced analyt

ically. These equations relate a set of algebraic variables, y's, to a

set of state variables, x's, and the independent variable time, t. A

functional representation for a set of m of these equations is

' y m' t) '

i = 1, 2, .•. , m. (1)

Examination of the y-variables in the algebraic equations for a specific

hydraulic system model often reveals that the equations may be divided

into a number of sets where no y-variable coupling exists between sets

of algebraic equations. Since this separation must be performed for a

specific .set of equations and since it would not greatly affect the

algorithms discussed below except with regard to execution speed,

12

13

separation of algebraic equations will not be.discussed until near the

end of this chapter.

The ordinary.differential equations resulting from the 1118thematical

modeling 9f a hydraulic system are, in generalf nonlineai;- also. These.
r •

equations, when written as a set of first-order different:ial equations,

relate the state variables, x's; their first derivat:ives with respect

to time, :X's; the algebraic variables, y's; and the independent variable

. 1 time, t. ·

j = 1, 2, ••• , n.

Equations (1) and (2) form a coupled system c;>f m+ n equations

which may be used to model hydraulic systems. These equations· were

as~mmed to be nonlinear; however, it would be instructive to briefly

discuss their solution assuming complete linearity. In addition~ the

(2)

generation of Equations (1) and (2) in a linear form is often suggested

in the literature where a manual solution is anticipated and physi~al

s¥stem conditions permit .this simplification (28).

With an assumption of linearity, Equation C+) may be solved using

Cramer's rule (29) to yield

' x 't)' i n
1, 2, . . . , m. (3)

Substitution of Equation (3) into Equation (2) yields

' x.' • • • ' x 't) ' J. n

j = 1, 2, . •. , n. (4)

\ 1rt may not be possible to write all differential equations as sets
o1 first-order differential equations; however, this difficulty is more
than offset by the increased flexibility allowed ·during the development
of the algorithms in thb chapter through the use of Equation (2).

14

Since Equations (1) and (2) were assumed to be linear, Equation (4) will

be linear and may be solved using the state transition matrix technique

(30).

In the above solution method, algebraic equations are analytically

solved and the algebraic variables are eliminated from the differential

equations. This solution method is usually the most satisfactory. How-

ever, when the algebraic equations are nonlinear (as for most hydraulic

systems) and linearization is not acceptable, numerical methods and a
j

digital computer are often employed for the solution of Equations (1)

and (2).

An Iterative Algorithm for the Simultaneous

Solution of the Generalized

Modeling Equations

Many methods have been given in the literature for numerically

solving sets of first-order differential equations and for numerically

solving sets of algebraic equations. This section discusses some of

these methods and an algorithm for applying these methods to the numeric~

al aolution of coupled sets of differentia.+ and algebraic· equations (the

generalized modeling equatio]'.ls).

Some of the techniques given in the literature for numerically

integrating sets of differential equations are the Adams and the Runge-

Kutta integration methods (31). Both of these explicit integration

methods can be used in a similar manner to integrate sets of .differential

equations in the form of ·

x. = G. (x1 , x2 , • • • , x , t) , j. = 1, 2, • . • , n, (5)
J ' a n '

where x is the first time derivative of the state variab:Le x.

15

After initialization the Adams or the Runge-Kutta integration

method can be used in a generalized manner as shown in Figure 2. 2 The

* integration method will yield a value of the independent variable, t

(usually considered to be time), and a set of values for the state vari-

* * ables, x1 through xn (not to be considered solution values). The inte-

gration method requires values of the first derivatives of the state

* . * variables, x1 through xn' which may be evaluated from Equation (5) as

shc;>wn in Figure 3. After several iterations of producing values for the

variables and receiving derivative values, the integration method will

yield a set: of solution values for the state variables, x1 through xn.

This solution will be for a valu,e of the independent variable, t, which

will be advanced by a small increment· from the value associated with the

previous set of sc;ilution .values (or initial conditions). This process

may be repeated until the integration method has incremented the inde-

pendent variable through the desired range.

The Newton-Raphson method is an iterative method which can be used

to find the solution to a set of nonlinear algebraic equations of the

form

(6)

This method requires the evaluation of the partial derivatives of each

algebraic equation with respect to each algebraic variable and has been·

explained in more detail in ~ppendix A.

Solution of the generalized modeling equations by direct use of the

Newt9n-Raphson method and the generalized integration method discuss.ed

2Most explicit, numerical integration methods may be used in a
similar manner.

* * * * * x1 Cx1 ,x2 , ... ,xn,t) -

* * * * * x2(xl,x2'' •. ,xn,t) -

-

* t

* xl

* Xz
·,

. .
* x
n

NUMERICAL
INTEGRATION

Jv!ETHOD

..
--
-

--

-
--

--

--

t

x 2 (t)

x (t)
n

Figure 2. Concept of a Generalized Numerical Integration
Method After Initialization

16

NUMERICAL
INTEGRATION YIELDS

. , ,
EVAr.UATE

·* * * * * xj = Gj(x1 ,~2 , ••• ,xn,t)

* * * FOR xl,x2, ••• ,xn

, I

OUTPUT

TO NUMERICAL
INTEGRATION

1

2

3

Figure 3. Steps Required for
Use of Runge-Kutta
or Adams-Moulton
Integration After
Initialization

17

18

above is not possible because Equations (1) and (2) do not-match the

functional forms required by the solution methods, Equations (5) and

(6). However, the ste~s required to use _the generalized integration,

as shown in Figure 3, may be modified to allow the incorporation of the

Newton-Raphson technique such that the generalized modeling equations

may be solved.

Figure 4 shows the modified steps required when the differential

and algebraic equations to be solved are coupled as in the generalized

modeling equations. Step 2 of this figure shows that the functional

form of the algebraic equations may be reduced to the form required for

Newton-Raphson solution because the generalized integration method has

supplied numerical values for the s_tate variables and the independent

variable in Step 1. Step 2 also represents the solution of the reduced

algebraic eq~ations by the Newton-Raphson method. Steps 3 and 4 are

equivalent t.o Steps 2 and 3 in Figure 3.

A Modified Algorithm for the Simultaneous

Solution of Modeling Equations With

Block-Oriented O~ganization

Block~oriented organization of the mathematical equations which

model a hydraulic system implies that the equations which describe each

hydraulic component or hydraulic function (block) are defined only in

terms of:

1. The independent variable timeo

2. The state variables contained within the block.

3. The algebraic variables contained within the block.

4. The independent port variables for the block.

1
NUMERICAL

INTEGRATION YIELDS

* * * * x1 ,x2, ••• ,xn,t

•
USE NEWTON-RAPHSON TO

ITERATIVELY SOLVE

* * * * 0 = Fi(x1,x2,··~'xn,yl,y2, ••• ,ym't)

. x.
J

* * * FOR y1 ,y2 , ••• ,ym

t
EVALUATE

* * * * * * * = Gj(xl,x2, ••• ,xn,yl,y2, ••• ,ym't)

FOR . * . * ·* xl,x2, ••• ,xn

• 4
OUTPUT

* * * x1,x2, ••• ,xn

TO NUMERICAL
INTEGRATION

Figure 4. Algorithm to Solve Coupled
Algebraic and Differen
tial Equations

19

2

3

20

Therefore, an algebraii; or state variab.le contained in Block A may not

be explicitly included in the equations that niodel Block B. However,

the same effect may be .obtained by passing the required information

thro1:1gh any port variables which might connect B.locks A and B (directly

or indirectly).

A port connection between ~wo blocks (also referred to as compo-

nents) ts illustrated in Figure 5. This figure.shows the connection of

Port q of Block p to Port s of Block r. The port variables of the

blocks are

(7)

urs - ars vpq'J - /

and

(8)

where each "a" is a constant with the value +1/(depending on a port vari-

able sign conventioll,). When, due to the generality, it is uncertain

what port and block are connected to Port q of Block p, the

c Equation (7) would be replaced by a general term v • This pq

term v in rs
c term, v , pq

may be defined as the dependent port variable at the port connected to

Port q of Block p. Consequently, for the port connection shown in

c Figure 5, v and v refer to the same variable. pq · rs· ·

The generalized m~ing equations will be modified to conform to

the above restrictions.• 'In addition, another subscript will be added

to the variables to in4icate with which block the variables are associ

ated.. For example, yhi .will be the i th algebraic variable in Block h.

With the assumption that Block h contains m algebraic variables,

n s.tate variables, and p ports (therefore p indep.endent and p dependent

port variables), Equations (1) anc;l (2) may be rewritten for Block has

•

COMPONENT p COMPONENT r

v
rs u a pq --I pq t-....... 1---t------

PORT s
PORT q

a u -----t----.i.,_--1 rs .__._ rs
v

pq

u =av ANDu =av
pq pq rs rs rs pq

WHERE a = ±1 AND a = ±1
pq rs

Figure 5. A Port Connection Between
Two Components

21

22

O = Fhi (~l' ~2' ••• ' ~n' yhl' yh2' 0 0 0 '

Yhm' 1\il' 1\i2 , • • . , 1\ip't), i = 1, 2, ••• , m (9)

~j = Ghj (~l' ~2' • • • ' ~n' yhl' yh2' ••• '

Yhm' 1\il' 1\i2 , • •• , 1\ip't), j = 1, 2, ••• , n. (10)

If Equations (9) and (10) had been written for Block h in the form of

Equations (1) and (2), x and y variables from outside of Block h may

have appeared in the equations. These x and y values from outside of

Block h are implicitly included in Equations (9) and (10) through the

\.\c>~J / (1 ,. - , , , . ·1z1--+ ~vc..~ ?
independent port variables, u's.

It will aid in developing an algorithm for the solution of Equations

(9) and (10) if functional forms are defined for the equations which

will be used to evaluate the dependent port variables within Block h •

. th
For the k port in Block h the dependent port variable may be defined

by

vhk = vhk (~l' ~2' • • • ' ~n' t) (11)

or

(12)

where bhk is a constant and Yhi is any algebraic variable within Block

h. I~noted that Eguat..!,Q!.ts (lU_ang (lZ) do not .all_o,_! a depen-

b{_aic and a state variable o.J Block Q.:_ These restrictions. may be

circumvented where necessary by temporarily defining the dependent port

variable, vhk' in terms of time and any state, algebraic, and independent

port variables within h. A~ alg~praic var~ble_may then be introduc~d

) ·--

23

;i.~lock h and . used to repla£~ lT.n tion. ·. The de-

f!:_nin_s equation. ean....tben he consj,dered f!n,~~!.gebraic egyatiOD of Bl orJs. h

iuid he rearraµged into th.e....f.gm cf E.quatf.on_J9), and xl'tr""c.a.n be define.d.

i~ terms . of .. tbg .n.e.w-al ~i:a.1~ variable ~ollowing the form of Equ~J2.~

(12). Thus a dependent port variable of Block h can be an <i.Inpii~jp -· . - .. ./

function of time and any state, algebraic, and independent port variable

within Block h.

The steps for using the generalized integration shown in Figure 4

may be modified to solve Equations (9) and (10) as shown in Figure 6.

Each step shown in Figure 6 must be completed for every block (component)

in the hydraulic system before proceeding to the next ~tep. Step 1

indicates that the generalized integration technique.will supply specific

valu,es for the independent variable time and all of the state variables.

Step 2 uses these variables. and Equation (11) to evaluate those dependent

port variables which are only a fun,ction of state variables and time.

Equation (7) is used in Step 3 to transfer the values of any dependent

port variables evaluated in Step 2 to th,e independent port variables of

connected blocks. Step 4 illustrates that at this point the variables

remaining unknown in the algebraic equations (Equation (9)) are the

algebraic variables and some of the indepenc;lent port variables. It

should be noted that all of the independent port variables remaining

unknown. in Equatic;m (9) can be related through Equation (7.) to dependent·

port variables defined only by Equation (12) in other blocks. Therefore,

each of the independent port variables remaining unknown in Equation (9)

repre~ents a constant multiplied by an algebraic variable from another

block. Step 4 also represents the solution of the algebraic equations

for the algebraic variables using the Newton-Raphson method. The

NUMERICAL
INTEGRATION YIELDS

* * * *
~1'~2·····~n't

-FOR ALL COMPONENTS-

EVALUATE ALL
DEPENDENT PORT

VARIABLES
DEFINED BY

1

* * * * *
vhk = vhk(~1·~2···· ·~n't)

-FOR ALL COMPONENTS-

EVALUATE ALL u's
CORRESPONDING TO v's
EVALUATED IN STEP 2

USING

* * u = a v pq pq hk

~FOR ALL COMPONENTS-

USE NEWTON-RAPHSON TO
ITERATIVELY SOLVE

2

3

4

* * *
O = Fhi(~1·~2·····~n'yhl'yh2''''•

* * *
Yhm'~1·~2·····~r'~q•····~p't)

* * *
FOR yhl'yh2'''' ,yhm

-FOR ALL COMPONENTS-

·*
~j

1
I I

EVALUATE ALL v's
NOT EVALUATED IN

STEP 2 USING

-FOR ALL COMPONENTS-

EVALUATE ALL u's
CORRESPONDING TO v's
EVALUATED IN STEP 5

USING

* * u = a v pq pq hk

-FOR ALL COMPONENTS-

EVALUATE

* * * * * = Ghj(~1'~2'''''~n'yhl'yh2'

* * * * *
••• ,yhm'~1·~2·····~p't)

·* ·* ·*
FOR ~1'~2'''''~n

-FOR ALL COMPONENTS-

OUTPUT

. * ·* . *
~1'~2···· '~n

TO NUMERICAL
INTEGRATION

8

Figure 6. Algorithm to Solve Coupled and Block-Oriented
Algebraic and Differential Equations

24

5

6

7

25

technique of applying the .Newton-Raphson metb,od·for solving these equa-

tions is explained in Appendix B. Step 5 uses Equation (12) to evaluate

the dependent port.variables not evaluated in Step 2, and Step 6 uses

Equation (7) t.o transfer these dependent port variable values to inde-

pendent port variables in connected blocks. Step 7 uses Equation (10)

to evall,late the derivatives of all. th.e state .variables, and Step 8

illustrates tb,e submission of these derivative values to th.e genera+ized

integration method,

An Implicit Method for Solving Nonlinear

Algebraic Eql,lations Without'Iteration

The m,imerical sol,ution methods expl,ained above for solving coupled

sets of nonlinear.differential and algebraic equations requite the

Newton-Raphson solution of the algebraic equations prior to each evalua-

tion of the state variable derivatives. The Newton-Rapb,son method is

iterative and i:,nay require several iterations for convergence to a solu-

tion. This section develops an implicit method for evaluating t.he

algebraic equations. This method, hereafter called the Implicit method,

is not .iterative and ,requires a similar amo1,lll.t of computation as. one

iteration of the Newton~Raphson method.

The Implicit method is based upon the use of a numerical integration

algorithm to solve the algebraic equations simultaneously with the dif-

ferential equations. Use of tb,e algorithm.in this manner will require

the evaluation of the time derivatives of the algebraic variables each

time the time derivatives of the state variables are evaluated.

Explicit methods for determining dy./dt from the generalized model
l..

ing equati~ms (rewritten here for c;:onvenience),

26

0 = F. (xl' x2' ' ·xn' Y1' Y2' . . . ym, t)' l. '

i = 1, 2, . . . ' m (13)

.
G. (xl, '·ym,t), x. x2' ' xn' Y1' Y2' . . .

J J

j = 1, 2, •.. , n, (14)

may not be used since these methods would first require the analytical

solution of E;quation (13). However, the time derivatives .of the alge-

braic variables can be evaluated in an implicit manner.

The chain rule allows the derivatives of Equation (13) to be

written as

n
dF.

l. --=
dt I 1, 2, • . . , m.

j=l

(15)

Since the right side of Equation (15) is equal to zero, it may be

rearranged in vector-matrix form to yield

oFl oF1 oF1 dyl
n oF1 dx. oF1 -I: __J_

ayl ay2 ay dt dX, dt at
* * m * j=l J * * *

oFZ oF2 oF2 dy2
n oF2 dx. oF1

-2= __J_

ayl ay2 ay dt dX, dt at
* * m * j=l J * * *

oF oF oF dy n oF dx. oF
m m m m -2= m __J_ m

ayl ay2 ay dt ox. dt at
* * m * j=l J * * *

(16)

27

where the bar·and asterisk to the right of each derivative implies the

* * * * * evaluation of the ·d~rivatives at the.values x1 , Xz' ... , xn, y1 , y2 ,

* * ••• , ym,t • Equation (16) may be solved for dy/dt through dym/dt

* * * * * * * at xl' x2 , ••• , xn, y1 , y2 , .• , • , ym,t with the solutions being

ui;;ed by the numerical int:egration algorithm to solve for yl, y2 , •· •• ,

y •
m

The form of Equatic;m (16) should be compared with the form of art

equation used in the Newton-Raphson method, Equation (34) in Appendix A.

:aoth of these equations are linear·, of the same order, and contain the

same matrix of partial derivatives. Equation (34) must be solved repeat-

' edly 1,1I1.til convergence is attained for each. Newton-Raphson solution of

the algebraic;: equations; however, in the Implicit method described above,

Equation (16) is only solved once per algebraic solution.

Figure 7 illustrates the steps required to solve EquatiOns C.13) and

(14) using Equation (16). After initialization, these steps use .a

generalized.integration method (as illustrated in Figure 2) in exactly

the same manner as if m + n differential equations were being solved.

Step 1 shows that the integration algorithm is used to supply specific

values fo.r y1 , y2 , • , ym in.addition to values for x1 , x2 , ••• ,

x and t. In Step 2 the differential equations of Equation (14) are
n

used to evaluate the time derivatives of the state variables. Steps 3

and 4 are used to evaluate array elements for EquatiOn (16) which is

solved for the time derivatives of the algebraic variables in Step 5.

Step 6 completes the process by showing that the derivatives of the

state and algebraic variables are made available to the integration

algorithm.

NUMERICAL
INTEGRATION YIELDS

1

* * * * * * * xl,x2, ••• ,xn,yl,y2, ••. ,ym,t 4 EVALUATE

EVALUATE

EVALUATE

n
aF. dx. aF1

[l. J
+-

j=l ax. * dt *
at

J

;i=l,2, .•. ,m

2

3

*

aF.
l.

ay.
J

i=l,2, ••• ,m

,j = 1,2, .•. ,m

SOLVE
EQUATION 16

FOR

. * . * ·* yl,y2, ... ,ym

OUTPUT

TO NUMERICAL
INTEGRATION

Figure 7. Algorithm to Solve Generalized Modeling
Equations by the Implicit Method

5

28

6

29

At the beginning of the solution of Equations (13) and (14) using

the Implicit method, the numerical integration method will require

initial conditions for the state variables and the algebraic variables.

Initial conditions for the state variables and some of the algebraic

variables may be provided by examining the initial state of the physical

system which Equations (13) and (14) describe. (However, it is possible

that some or all of the algebraic initial conditions may not be deter-

mined in this manner without solving a set of algebraic equations) In

this case another solution method for algebraic equations such as the

Newton-Raphson

initialize the

method may be used once fa
algebraic variables.~

the start of the solution to.

Some important differences should be pointed out between the

Implicit method explained above and the Newt<;>n-Raphson method. During

each iteration, the Newton-Raphson method improves its solution values

by applying solution correction equations developed from Taylor series

expansions of the algebraic equations (see Appendix A). Since the

Taylor series expansions are truncated and usually only include the

first-order terms, the solution correction equations used are approxima-

tions to the true solution correction equations (those including all

terms in the Taylor series). Therefore, the correction equations must

be applied repetitively until the solutions are sufficiently corrected

or the method diverges.

A Newton's method has been developed which uses solution correction

equations that include through th.e second-order Taylor series terms (32).

This method usually converges more rapidly than the first-order Newton-

Raphson method. However, the second-order method is more difficult to

apply since it requires second-order partial derivatives of the algebraic

30

equations to be derived and evaluated in addition to the first-order

partial derivatives required by the first-order method.

The Implicit method makes no approximations in the solution of the

algebraic equations except those included in the numerical integration

method. The method requires approximately the same number of computa-

tions to calculate exact values for the time derivatives .of the algebraic

equations as required for one iteration of the first-order Newton-Raphson

method.

~igh-order numerical integration method may be used in conjunction

with the Implicit method in order to minimize the error in solving for

the algebraic variables. For example, a method such as a fourth-order

Runge-Kutta method may be used (31). This integration method is approxi-

mately as accurate as numerical integration using a Taylor series

expansion of the solution variables wh,ich is truncated after the fourth-

order terms. However, the Runge-Kutta method does not require derivative

values above the first-order as required by a high-order Taylor series

integration method.

A Modified Implicit Method for the Simultaneous

Solution of Modeling Equations With

~lock-Oriented Organization

The Implicit method may be adapted for use with block-oriented

modeling equations.
th For the h block (component) of a system contain-

ing t blocks, the block-oriented modeling equations may be written as:

~2' •.. ' ~rh' ~qh'

i = 1, 2, ... ,nl\i,

. ' ~ 't)'
Ph

(17)

and

or

= <\i. (~l' ~2' • • • ' ~ ' yhl' yh2' • • .J h .· . '

1, 2, ••

c
'iik = ~k vhk' k = 1, 2, • • • ' Ph'

. '

31

(18)

(19)

vhk = vhk (~l' ~2' · · · ' ~1\i,t), k = l; ?, · · · ' Ph'

(20)

(21)

Equations (20) and (21) illµstrate the two allowable equations fori:ns for

defining dependent port variables. Each of the ph dependent port vari

ables in Block h must be defined as a function of time and the state

variables within Block h (Equation (20)) or as the product of a constant

and one algebraic variable within Block h (Equation (21)). Equation.

(19) illustrates the relationship of the kth independent port variable

in Bloc~ h, 'iik' to the dependent port variable at the port of the block

c
connected to Port k, vhk• As discussed concerning Equation (7) in an

earlier section of this chapter, the term v~k is used in Equation (19)

since, due to generality, the port and block which are connected to

Port k of Block h are undetermined.
c The variable v in Equation (22) pq

represents the variable shown as vrs in Figure 5, and apq is ±1 depend

ing on a port variable sign convention.

Equation (18) d.efines the first-order· time derivatives of the 1\i

state variables within Block h, and Equation (17) illustrates the 1\.

algebraic equations containing the 1\. algebraic variables within Block

h. Equation (17) and Figure 8 show that the independent port variables

COMPONENT b

1\1

PORT

vbl

.
• •

'\irh

v
hrb

COMPONENT a

VC • V • b •
bl a£ a£ Yan

be • e
• bl ybl

1 PORT £

COMPONENT a
e v • v
hrb i3P

b ' be ' c
• i3P Ya~ • hrh Yhrh

rb PORT p

COMPONENT y

ve •v =v (xl,x2,. • .,x ,t)
1---1--T-- hqh yi: yi: Y y yny

PORT i:

COMPONENT d

1--~---+--v~pb = vdlll = vdlll(xdl'xd2'""xdnd ,t)

PORT Ill

EACH OF THESE rb

COMPONENT PORTS HAS

A DEPENDENT PORT

VARIABLE WHICH IS

A FUNCTION OF AN

ALGEBRAIC VARIABLE

EACH OF THESE Ph - rb

COMPONENT PORTS HAS

A DEPENDENT PORT

VARIABLE WHICH IS

A FUNCTION OF TIME

AND STATE VARIABLES

Figure 8. Connections Between Independent Port Variables
of Component h and Dependent Port Variables
of Other Components

32

33

within Block h may be divided into two groups. As shown in Figure 8,

each of the first rh independent port variables of Block h · (~1 through

t\ir) is connected with a dependent port variable (v~1 through v~rh) of
h

another bl<;>ck (a. through S) and the dependent port variable is a fl.me-

tion of-an algebraic vatiable (ya.n through ySA) within the connected

block. The remainder of th.e independent port variables, ~q through
h

u. (where
nph

qh = ·rh + 1), are connected with dependent port variables

(vh · through vb_) of c;>ther blocks
qh . · Ph

(y thro~gh o) and are functions of

time and state variables within the connected block.

The Implicit method may be derived for the block-oriented modeling

equations by evaluating the·derivatives of the aJ,.gebraic functions in-

Eqilatiol;l. (17) as

dFhi
--= dt

i=:l, 2, ••• '1_· (22)

The chain rule is used to expand the terms in the third sul.llillB.tion group.

of Equation (Z2) and yields

(23)

where the dependent port variable of the port which is connected to Port

j of Block h is a function of the algebraic variable y~j. (In ot:her.

words, the dependent port variable of ~lock a. in Figure 8 is shown as

ya.n' but the term y~1 will be used for Ya.n when it is unimportant or

impossible to determin.e which port is connected t<;> Port 1 of Block h.)

34

Equation (23) IllB.Y also be written as

(24)

where

(25)

Equations (23) and (24) demonstrate that the algebraic eq1,1ations of

Block h, Equation (17), are implicitly (but not explicitly) a function

of algebraic variables within blocks other than h. This is accomplished

by the independent port variables ~l' ~2 , ••• , ~rh in Equation

(17) and Equations (19) and (21).

The chain rule may also be used to expand the terms in the fourth

summation group of Equation (22) as

(26)

c
where, if Port e of Block f were connected to Port i of Block h, dvhi/dt

in Equation (26) may be evaluated by

(27)

Since the right side of Equation (22) is equal to zero, Equations

(22), (24) and (26) may be combined to form Equation (28) below. After

evaluation of its terms, Equation (28) may be solved for the time de-

rivatives of the algebraic variables which are then available to the

numerical integration routine.

Figure 9 shows the steps required for applying the Implicit method

to solve the block-oriented modeling equations. Step 1 shows that the

a F12 I a F12

a y11 * a Y12 *

"1 I ml

a Yu*

a F21

ayn *

a F22 I
a Yu *

a F1 ml
a Fl

ml

a Y12 *
ay

lm1 *

aF211 ···aF21

a Y12 * a Y1m1
*

-- ---a F22 I ... a F22

a y 12 * d y lml *

a F£-m
• • • £,

a Yl
ml

~ ml

a Y21 *

a F21 I
a Y21 *

a F22

a Y21 *

"1m I "1.m 1 .. . 1

a Y22 * ay
R.mR, *

a Fz11 •.• a F21 -- --
a Y 22 * a Y £-m£-

*

a F 221 •• • a F 22 -- ---
a Y 22 * a Y tm£-

*

a Yo
,,m£, *

dyll
dt

dyl
ml

dt

dy21

.dt'

dy22

dt

dv~k _a F11)
dt at *

a u1k dv~k a F12) -------
" c dt at *
o Vlk

•1 " . •1 " c aF) t l: 1.m1 d"i j _ ~ lm1 a u1k dv ll< _ l":t
d xl. dt a ulk a c dt a t *

j=l J k=q Vlk
1

(•2 "21 - 2: a x2 .
j=l . J

dx, · "2 "21 a •2k dv~k "21)
Tt -L: a u2k a vc dt' - at *

k=q2 2k

(n p c) 2 a F22 dx2 . . 2 a F22 a u2k dv2k a F22 -1: - ___£L_t: -----
j=l a x2j dt k= a u2k a c dt a t *

q2 v2k

(28) w
1..11

NUMERICAL
INTEGRATION YIELDS

1

** *** ** "h1 •"!,2 •••• •"!,'\ ,yhl ,yh2 ,yh"h. t

-FOR ALL COMPONENTS-

USING

cp
USING THE RESULTS

7

OF STEP 4
EVALUATE

aFhi I aFhi I a~j I av~j I
ay~j * a~j *av~.1 *ay~.1 *

* * * * * vhk • vhk("hl'"h2•"'•"h11,'t)

EVALUATE ALL DEPENDENT
PORT VARIABLES

-FOR ALL COMPONENTS-

EVALUATE

* * * * * *i,j • Ghj (xhl •"!,2'" '•"!,'\ ,yhl'

FOR ALL PORTS WHERE

c
- b~j • y~j vhj

APPLIES

-FOR ALL COMPONENTS-

• EVALUATE
8

* * * * * * Yh2'"' ,yh ,uh1'~2'" • ·~ ,t)

'\ aFhi I d"hj I £-- +
j•l a"hj * dt *

aFhil

at *

°h Ph

j - 1,2, ... •11,

-FOR ALL COMPONENTS-

EVALUATE

FOR ALL PORTS WHERE

vhk • bhk ' Yhi

APPLIES

-FOR ALL COMPONENTS-

EVALUATE

dvhk I • 11, av hk I d"!,j I +

dt * L: ax. * dt *
j•l nj

FOR ALL PORTS WHERE

avhkl

at *

vhk ~ vhk<"h1•"h2•"' '"h11,'t)

APPLIES

-FOR ALL COMPONENTS-

• EVALUATE
6

i - 1,2, ... ,~

-FOR ALL COMPONENTS-

• USING THE RESULTS
9

OF STEP 5
EVALUATE

Ph aFhil a~k, dv~kl L:---
k•qh a~k *av~k * dt *

i - 1,2, ... ·"h

-FOR ALL COMPONENTS-

~
SOLVE EQUATION 28 FOR

dyhl I · dyh2 I· dyh"b I
dt * dt * dt *

h - 1,2, ... ,R.

• OUTPUT

dyhl I· dyh21 dy~1.
dt * dt * dt *

d"hl I d"h2 I d"h I
--;: : --;: : dt'l, *

h - 1,2, ... ,R. aFhil

ayhj * TO NUMERICAL INTEGRATION

j 1:1 1,2, ... •Il\i

-FOR ALL COMPONENTS-

Figure 9.

cb
Algorithm to Solve Block-Oriented

Modeling Equations by the
Implicit Method

10

11

36

37

generalized integration method furnishes values for the state variables,

t.he algebraic variables, and time. In Step 2 the dependent port vari-

ables are evaluate4 usiI\g Equati<;>n (20) or Equation (21) for each.

Equation (18) is used to evaluate the time derivatives of the state

variables in Step 3 •.

Step 4 illustrates the eval~ation of avhk/ayhi for all dependent

port variables which are only a function of an algebraic variable (as

shown in Equation (21)). From Equation (21)

(29a)

Step 5 uses Equations (20) and (2 7) and the results of Step 3 to evalu-

ate the tim,e derivatives of all dependent port variables which are

functions of time and state variables (as shown in Equation (20)).

Steps 6 and 7 are used to evaluate the terms of the first array in

Equation (28). Step 6 evaluates partial derivatives of·the algebraic

functions (Equation (17)) with respect to all algebraic variables expli-

citly contained in the functions. Step 7 uses the results of Step 4 and

Equations (17), (19) and (25) to evaluate the partial derivatives of the

algebraic functions with respect to all algebraic variables not explicit-

ly included in the functions.

Steps 8 and 9 illustrate the evaluation of the terms in the right-

most vector of Equation (28). Step 8 uses the results of Step 3 and

Equation (17). Step 9 t,ises the results of Step 5 and Equations (17) and

(19).

After the completion of Step 9, all terms are evaluated in Equation

(28) except the time derivatives of the algebraic variables. Step 10

represents th.e solution of Equation (28) for these variables.

3 F11 :.i Fll I aF11 1 aF11 dyll
nl pl c

). } Fll I 3 Fll I t L ' F 11 d'IJ - l: ' F ll ' "lk dvlk a F11

a Y 12 * · · ·
-- ... -- -----

a Yll * 3 ylm a Y21 * a y22 * a y 1 dt '=l a xlj dt k= a ulk a c dt at
1 * mR. * J ql Vlk

a F12 I a F12 I a Fl2 a Fl2 I a Fl2 I a Fl2 dyl2 ~ n P a "tk dv~ "12) 1 a F 12 dx1 j 1 a F 12

a Y 12 * · · · dt"" -L:- -E- -------
a Y11 * () y a Y21 * a Y22 * a Y j=l a x1 j dt k=q a u1k a c dt at *

lm1 * R.mR. * 1 Vlk

a F1 a F1 a F1

~ "1m I "1m
dyl •1 " Pi " c ") ml ml ml ml 1 . • • 1 ml (- E. l"t dxlj _ l"t a ":tk dvlk _ l"t

a Yll * a Y12 Cly a Y21 * a Y22 * a YR. ~ a xl. dt L: a ulk a c dt a t * * lm1 * mR. * j=l J k=q Vlk
1

a F21 I a F21 I ... a F21 a F21 I a Fz1 I ... a Fzi dy21 ("2 "21 dx2j _ ~ "21 a "2k dv~ _a '21) -- --- -E ax2 . a y11 * ay12 * aylml a Y21 * a Y 22 * 3 Y tm1
.dt. dt Cl u2k () VC dt d t *

* * j=l J k=q2 2k

a F 221 ••• a F 22 a F22 I a F I a F22 dy22 (D d.,. ., '"" 0 2k ··~k ''22) a F22 I ~ ... 2 a F22
-- --- ~ -1: - ~-L: -----

.a Y11 * a y 12 * a y lml * a Y21 * a Y22 * ay j=l a x2j dt k= a u2k a c dt a t *
R.mR. * q2 v2k

dt

(29b)

39

Step 11 ends the algorithm by illustrating that the time derivatives

of the algebraic ~d state variables are ma.de available to the numerical

integration algorithm.

An Algorithm for Separating Algebraic Equations

With Block-Oriented Organizations Into

Separate Sets

In the previous sections of this chapter, all of the algebraic

equ,ations from a system have been considered to form one equation set.

This assumption usually causes a large, sparse matrix to be formed dur-

ing the solution of these equations which is similar to that formed in

other solution methods (25, 26). However, 1.llllike these other methods,

the Newton-Raphson and Implicit methods explained in this study allow

the set of algebraic equ,ations to be. separated into s,everal SDfiller

sets. This separation is usually possible for complex hydraulic systems

and is highly desirable since the number of operations required to solve

a set of .equati.ons increa.ses apiroxima.tely a. s the third power of the

number of equations in the s~assuming a method such as Gaussian elimi

nation is used in the solution (31). For example, if a large set of

equations is separated into two smaller sets of equal size, the number

of operations required for a solution will be redu,ced by approximately

75 percent.

The method for separating a set of algebraic equations into several

smaller sets is based only upon the coupling of algebraic variables be-

tween the equations. However, for modeling equations with block-oriented

organization, it will be seen that the method is complicated by the fact

~
I

40

that independent port variables in the algebraic equations of one block

may implicitly introduce algebraic variables from another block.

For a specific system, the separation process may be initiated by

examining the blocks contained in the system and forming a list of all

the algebraic equations contained in the system. (Algebraic equations

may be identified by block number and algebraic equation number within

the block.) For each algebraic equation entered into the equation list,

a secondary list must be formed which identifies the algebraic variables

explicitly contained in the algebraic equation. (Algebraic variables

may be identified by block number and algebraic variable number within

the block.) Algebraic variables which are implicitly contained in the

algebraic equation must also be. added to the secondary list. These may

be located by checking the port of each independent port variable con

tained in the algebraic equation. If the port is connected to another

port with a dependent port variable which is a function of an algebraic

variable, this algebraic variable is implicitly contained in the alge

braic equation under examination and must be added to the equation's

secondary list. The remainder of the steps in the separation process

are shown in Figure 10 and listed below.

1. Start a new set by transferring the first equation from the

equation list into the new set (removing its entry in the equation list)

and by examining its associated secondary list.

2. Search the secondary lists of the remaining equation list

entries to identify any equations containing one or more of the alge

braic variables in the secondary list placed under examination in Step

1 (or Step 3). Transfer any equations found with matching variables

into the new set and remove their equation list entries.

---------- --------- ---

NO

NO

MOVE
FIRST EQUATION

FROM
EQUATION LIST

INTO
NEW SET

LET I 0

I = I + 1

SEARCH EQUATION LIST
FOR

EQUATIONS COUPLED TO
EQUATION "I" THROUGH
ALGEBRAIC .VARIABLES

AND
ADD ANY FOUND

.TO NEW SET

SET IS COMPLETE

SEPARATION
IS COMPLETE

Figure 10. Algorithm for Separating Algebraic
Equations Into Sets

41

42

3. Repeat Step 2 for the secondary list of each equation placed

into the new set. When all secondary lists of the equations placed in

the new set have been examined, the set is complete.

4. If any equation entries remain in the equation list, an addi

tional set may be formed by starting with Step 1 and repeating the above.

When no more entries remain in the equation list, the separation is com

plete.

A Combined Algorithm for the Solution of

Modeling Equations With Block-Oriented

Organization

An algorithm may be formed fo+ the solution of block-oriented moqel

ing equations by combining the solution methods shown in Figures 6 ~nd

9. Some advantages of the resulting algorithm are:

1. The Newton-Raphson technique may be used to calculate the

initial values of all the algebraic variables.

2. The algorithm may be strl)ctured to solve modeling equations

containing multiple sets of algebraic equations resulting from the

application of the separation method shown in Figure 10.

3. After initialization any algebraic set of equations may be

switched from the Newton-Raphson solution method to the Implicit method

or back to the Newton-Raphson method at any point in time without affect

ing the solution of any other algebraic set.

As shown in Figure 11, the combined algorithm receives specific

values of time, the state variables, and any algebraic variables included

in algebraic equation sets to be solved by the Implicit method (hereafter

called Implicit variables). After receiving these specific variable

1
NUMERICAL INTEGRATION ALGORITHM 1

YIELDS SPECIFIC VALUES
FOR

TIME, STATE VARIABLES \ I

AND IMPLICIT VARIABLES USE THE RESULTS OF STEP 4
TO

(SIMILAR TO STEP 1 OF FIGURE 6) EVALUATE ALL REMAINING
DEPENDENT PORT VARIABLES
AND THEIR CORRESPONDING

' I INDEPENDENT PORT VARIABLES

EVALUATE 2

ALL DEPENDENT PORT VARIABLES
WHICH ARE FUNCTIONS

(SIMILAR TO STEPS 5
AND 6 OF FIGURE 6)

OF
STATE VARIABLES AND TIME

OR \ 11

IMPLICIT VARIABLES EVALUATE
THE DERIVATIVE FUNCTIONS

(SIMILAR TO STEP 2 OF OF ALL STATE VARIABLES
FIGURES 6 AND 9)

(AS SHOWN IN STEP 7 OF FIGURE
AND IN STEP 3 OF FIGURE 9)

EVALUATE 3

ALL INDEPENDENT PORT VARIABLES ' I

CORRESPONDING TO THE USE
DEPENDENT PORT VARIABLES OF STEP 2 THE PRELIMINARY OPERATIONS

SHOWN IN STEPS 4 THROUGH 9
(SIMILAR TO STPE 3 OF FIGURE 6) OF FIGURE 9

TO
SOLVE EQUATION 28

'~ FOR EACH IMPLICIT SET

USE THE NEWTON-RAPHSON METHOD
4

TO ' II
ITERATIVELY SOLVE

ALL NEWTON-RAPHSON EQUATION SETS OUTPUT SPECIFIC VALUES
FOR

(SIMILAR TO STEP 4 OF FIGURE 6) THE TIME DERIVATIVES
OF

ALL STATE VARIABLES
AND

\II ALL IMPLICIT VARIABLES

1
TO

THE GENERALIZED NUMERICAL
INTEGRATION ALGORITHM

Figure 11. Algorithm for Combining Implicit and
Newton-Raphson Solution Methods

43

5

6

6

7

8

44

values, the combined algorithm uses the methods of Figure 6 to solve for

specific values of any algebraic variables included in algebraic sets

not to be solved by the Implicit method (hereafter called Newton-Raphson

variables). At this point, specific values are known for all algebraic

variables and the methods of Figure 9 may be used to determine the time

derivatives of all Implicit variables. The passing of these derivative

values and those of the state variables to the generalized integration

method completes the combined algorithm.

The above algorithm must be modified slightly when used iµ con~unc

tion with a generalized integration method which requires past values of

derivatives of the variables being integrated. The explicit Adams inte

gration methods are methods of this type (31). As shown in Figure 11,

the combined algorithm will not furnish to the numerical integration

algorithm derivative values of algebraic variables included in eq~ation

sets being solved by the Newton-Raphson technique. Consequently, the

integration algorithm will not contain past derivative values for any

Newton-Raphson variables if it should be desired to convert a set of

algebraic equations from Newton-Raphson to Implicit solution. However,

this problem may be remedied by performing Steps 7 and 8 of the combined

algorithm for any set being solved by the Newton-Raphson method which

may later be solved by the Implicit method.·

CHAPTER·Iv

APPLICATION OF SIMULATION ALGORITHMS

Some of the numerical algorithms and the computer program organiza

tion discussed above have been implemented in the HYDSIM (HYDraulic

System SIMulation) program. HYDSIM is a transient analysis program which

was primarily designed for the simulation of complex hydraulic systems.

However, it may be used to simulate any type of continuous system which

may be modeled by sets of nonlinear algebraic and differential equations.

This chapter introduces the program and presents an example simulation

problem.

HYDSIM - A Block-Oriented Simulation

P+ogram for Hydraulic Systems

HYDSIM is an interpreter type of computer program which uses a

stored library of component models in conjunction with optional user

supplied models to simulate a system. The program is written in FORTRAN

IV. The program controls all branching between component·models, and the

HYDSIM user is not required to write any FORTRAN programs unless he is

furnishing a special component model. In addition, no special ordering

of the input data entires is required to obtain a correct solution. ·

No emphasis has been placed on the solution of any one type of com

ponent or component model in the HYDSIM program. Instead, an emphasis

has been placed on treating a group of components as a system. All

45

46

components in a hydraulic circuit are treated similarly and all modeling

equations are solved in a simultaneous manner without special constraints

on allowable compone~t configurations.

The HYDSIM program conta~ns a library of standard component models

such as valves, accumulators, cylinders, loads, etc. (1). The models

have bee~ developed for these components usin~ multiport modeling tech

niques and all significant nonlinearities have been preserved. If the

library components are not adequate for a simulation, the program user

may code special component models (each in a FORTRAN IV subroutine) and

add them to the program. These component subroutines may be added to

HYDSIM temporarily by including them with the program input data or added

permanently by program modification.

Two types of block-oriented input data formats are accepted by

HYDSIM. The fixed-format type of input is processed very rapidly by

HYDSIM, but the user must takE1- care to place entries in the proper card

columns. The free-format type of input allows the user to place circuit

description entries in any card columns and in any order. Both types of

input data are subjected to an error analysis to check for parameter and

circuit description errors. HYDSIM also has a rerun capability and will

accept simulation data in a .batch mode.

Program output consists of printer plots and tabulated values of

user specified circuit variables.

Multiple solution methods are available in HYDSIM. The methods use

a fourth-order Runge-Kutta or Adams-Moulton method to solve the differ

ential equations and the Newton-Raphson or Implicit method to solve the

algebraic equations. One of three combinations of these methods may be

specified by an input entry as:

47

1. Runge-Kutta and Newton-Raphson.

2. Adams-Moulton and Newton-Raphson.

3. Adams-Moulton and Implicit.

All of the solution methods solve the modeling equations in a simultane

ous manner without ma.kin~ any unusual approximations and without using

variable values from a previous point in time when a current value should

be used.

The Adams-Moulton and Implicit solution method used by the HYDSIM

program incorporates the combined solution algorithm discussed in the

previous chapter. The·algorithm is programmed to determine the initial

conditions and perform the first three time steps using the Newton

Raphson technique and fourth-order Runge-Kutta integration. After vari

able values have been computed at these first four points in time, all

integration is performed by a fourth-order Adams-Moulton integration

method and the algebraic equ~tion sets are switched to the Implicit solu

tion method. The HYDSIM program also monitors the accuracy of the

Implicit solution of each algebraic set and returns any set being solved

inaccurately to the Newton-Raphson solution method until accurate Impli~

cit solution may be obtained.

The changing of solution algorithms for a set of algebraic equations

requires methods for determining when to change. Since the Implicit

algorithm uses a fourth-order Adams-Moulton predictor-corrector numerical

integration algorithm to solve for the algebraic variables, the amount

of truncation error occurring in~ solution may be.indicated by comparing

the predicted and the corrected values for each variable. If these

differ by more than a fixed amount (see the "HYDSIM User's Manual" (1)

for a more complete discussion of the error criteria), the algebraic

48

set containing the erring variable is changed to the Newton-Raphson algo

rithm for solution using the predicted values as starting values for the

iteration. An algebraic set which has been switched to the Newton

Raphson solution algorithm will continue to use this algorithm for solu~

tion until each of several consecutive Newton-Raphson solutions (usually

two) has been completed in less than a fixed number of iterations. At

this point it is assumed that the algebraic set may again be solved

accurately by the Implicit algorithm and the set is returned to Implicit

solution.

HYDSIM Simulation of a

Fuel-Injection System

As an example of the us~ of the algorithms discussed in the previous

chaptei;, the HYDSIM program has been used to simulate the mechanical and

hydraulic parts of the fuel-i'1jection system shown in Figure 12. This

system would be used on a four-cylip.der automotive type of engine and

contains four injectors which are a~tuated in pairs. Injectors 1 and 3

are actuated first followed by 2 and 4. This simulation could be used

to study the possibility of fuel starvation at the injectors. Starvation

might occur because of the differing methods of pairing the injectors for

fuel supply and actuation.

The block diagrams which were used to develop the HYDSIM simulation

of the fuel-injection system are shown in Figures 13, 14 and 15. Figure

13 shows the blocks used for each injector, Figure 14 shows·the blocks

used for the regulator, and Figure 15 shows the remainder of the system.

All blocks were represented by standard HYDSIM library component models

LINE

(LENGTH= 180 INCHES, ID= .soq INCHES)

LINE

(LENGTH= 168 INCHES, ID= .375 INCHES)

PUMP

INJECTOR 1

LINES
(LENGTH = 12 INCHES,
ID = • 25 INCHES)

INJECTOR 2 INJECTOR 3

Figure 12. Diagram of Fuel Injection System

PRESSURE
REGULATOR

INJECTOR 4

p

DISPLACEMENT
FORCING
FUNCTION F

-

x

Q

PRESSURE
FORCING
FUNCTION

~

' .
r

Q

INLET

TWO-WAY
VALVE

OUTLET

p

Figure 13. HYDSIM Representation of
Fuel Injector

50

p

Q
LOW
PRESSURE

. PORT

HIGH
PRESSURE
PORT

p

TEE

p q·

x CYLINDER

D LJ' 3 h:f $

I 1 I F
TWO-WAY

VALVE

Q p Q p

TEE

VOLUME
Q

Figure 14. HYDSIM Representation of a Simplified
Fuel Pressure Regulator

~ I
p Q

PRESSURE
SOURCES

INJECTOR l

LINE

PUMP LINE

LINE

TEE

p

INJECTOR 2

EXIT
LOSS

INJECTOR 3

p

LINE

TEE

Figure 15. HYDSIM Representation of a Fuel-Injection System

PRESSURE
REGULATOR

INJECTOR 4

\JI
N

except the displacement forcing fllllction shown in Figure 13 which was.

programmed for this simulatioµ.

The HYDSIM simulation of the fuel injection system included 26
\\

53

first-9rder differential equations and 27 algebraic equations. The alge-

braic equations were separated i~to 5 sets of 1, 6, 6, 6, and 8 equations.

Figure 16 shows a graph 9f the pressure at the inlet of Injector 2

during the first eight milliseconds of time after system start-up from

a c9ndition 9f steady regulator flow with no injector actuation. Appen-

dix C shows a copy of .the HYDSIM input for this simulation and additional

graphs of system variables.

During the simulation, integration was performed with a step size of

0.00001 second and, a total of 800 steps. A group 9f 15 pairs of port

variable values were printed out at every tenth integration step with a

total of 81 groups printed,.

Three simulation r\llls were performed using three different solution

methods and the computer execution time was recorded for each. A fourth

rllll was performed for one integration step to evaluate initialization

time. All r\llls were performed separately on an IBM 370 Mod,el 155 com-

puter with no other jobs executing in the computer system. Execution

times were: 0.06 seconds for initialization, 2.26 seconds for the Rllllge-

Kutta and Newton-Raphson solution meth9ds, 1.22 seconds fqr the Adams-

Moulton and Newton-Raphson solution method, and 0.95 seconds for the

Adams-Moulton and Implicit soluti9n method. For the latter method, error

monitoring of the Implicit method resulted in algebraic equation sets

being reset nineteen times to the Newton-Raphson solution method. The

Implicit method was used for 98 percent 9f the algebraic equation set

solutions. S9lution values from the three solution methods were

80

8 60
H
ti)

P-i
'-'

20

0 .001 .002 .003 .004 .005 .006 .o 7

TIME (SEC)

Figure 16. Pressure at Injector Inlets

comparable. The solutions were usually identical to four digits of

accuracy (all that were printed out) with all values agreeing within

±0.5 percent except when magnitudes of the compared values were much

smaller than one.

Discussion of Results

55

The results of the application of the algorithms contained in this

study for the simulation of complex systems have been illustrated by the

simulation of an automotive fuel-injection system. Three different solu

tion methods were used to produce equivalent simulation runs for this

example, and a comparison of the results of these runs will illustrate

the capabilities of the solution algorithms used.

The fuel-injection system simulation used ten component model blocks

from the HYDSIM library and resulted in the solution of 26 differential

equations and 27 algebraic equations. The algebraic equation separation

algorithm separated these algebraic equations into five sets with each

containing from one to eight equations. The set of eight contained equa

tions from four different components and each of the three sets of six

contained equations from three different components. Each set.was solved

simultaneously by the solution algorithms;

The fuel-injection example illustrates one of the major advantages

of the block-oriented algorithms given in this study. These algorithms

allow various component models to be programmed individually and then

connected for a simulation in any manner which matches port variables.

Therefore, many simple components may be programmed for the HYDSIM com

ponent library and later connected in a simulation to form a more complex

56

component as illustrated by the fuel-pressure regulator shown in Figure

14.

A.comparison of the computer time required for each of the simula

tion runs indicates the relative speeds of the algorithms. However, some

problems exist in determining how much computer time was spent during

each run on solving the algorithms and how much time was spent doing

other things such as printing.

The computer used for the simulation runs was an IBM 370-155 operat

ed in a multiprogrammed environment (IBM MFT), but the simulation runs

were performed one at a time with no other jobs executing in the computer

system. Consequently, execution time spent on computer interrupts was

minimized. In an attempt to evaluate the amount of computer execution

time required during each run by the IBM Operating System and required

by HYDSIM for initialization, a fourth simulation run was made which

performed initialization and one integration step (compared to 800 steps

for the three comparison runs). Subtracting this execution time from the

time of the three comparison runs and comparing the results yields:

1. The Adams-Moulton-Newton-Raphson solution method required 30

percent more execution time than the Adams-Moulton-Implicit method.

2. The Runge-Kutta-Newton-Raphson solution method required 147

percent more execution time than the Adams-Moulton-Implicit method.

The above comparisons would show an increased spread in performance if

printing time (the same for each of the three runs) could also be evalu

ated and subtracted from the execution times.

As would be expected due to the fewer number of derivative evalwi

tions required per time step, the solution methods employing the Adams

Moulton integration method were faster than the method employing

57

Runge-Kutta when equal integration step sizes were used. (No comparison

was attempted for different step sizes.) Of the two runs using the

Adams-Moulton integration method, the run using the Newton-Raphson method

for solution of the algebraic equations required 30 percent more execu

tion time than the method using the Implicit solution method. It should

also be noted that similar execution time comparisons have been noted

during HYDSIM simulations of other systems.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The Implicit method has been presented as a noniterative method of

solving nonlinear algebraic equations which are coupled with differential

equations, and the method has been incorporated into the computer program

HYDSIM, a transient analysis program for hydraulic systems. The Implicit

method utilizes a "conventional" numerical integration algorithm to solve

the nonlinear algebraic equations in a manner s.imilar to the differential

equations. Tqe method uses the single solution of a linear set of alge-.

braic equations. to evaluate each set of algebraic variable derivative

values required by the integration algorithm. Since this linear equation

is very similar to the linear equation which must be used iteratively

when the Newton-Raphson method is employed, the Newton-Raphson method may

easily be added to the Implicit method for calculating the initial values

of the algebraic variables.

Comparative simulation runs of the HYDSIM program for an example

have shown the Implicit•method to be 30 percent faster than the Newton

Raphson method and to have an equal accuracy in most cases. This agree

ment in accuracy might have been expected since the Implicit method uses

an exact method to evaluate algebraic derivative values and produces no

truncation error except that incorporated in the integration algorithm.

58

59

Further investigation may show that the Implicit error monitoring scheme

employed in HYDSIM is unnecessary.

The HYDSIM program has been developed as an engineering tool to

reduce the effort which was previously required to simulate the response

of a multicomponent hydraulic system. The program contains a library of

previously programmed hydraulic ~omponent models which the program user

may use in any connection configuration (port variables must match at

connections). In addition, the HYDSIM program user may add component

models to the program which have been represented by coupled algebraic

and ordinary differential equations.. The program has a block-oriented

input format and will accept fixed or free format data.

Although the HYDSIM program and the Implicit method have been dis

cusse4 for use in the simulation of hydraulic systems, their use ·need not

be limited to this. The Implicit method may be used to solve any set of

algebraic equations as the independent variable is varied if any or all

of the equations in the set are an explicit function of the independent

variable. In addition, the Implicit method may be used to solve any sets

of coupled algebraic and differential equations as the independent vari

able is varied. However, it should be noted that any application of the

Implicit method assumes that all required partial derivatives exist and

may be evaluated for all required values of the independent vari.able.

Recommendations for Further Study

One could spend a lifetime making improvements in a large computer

program such as HYDSIM and in its associated algorithillS. However, some

of the areas in which improvements would be most beneficial are:

60

1. Develop a simulation alg0rithm which does not require the match

ing of port~variable depe~dencies at the component connections.

2. Perform, any modifications which would decrease the time required

to execute the simulation algoritqms without reducing their flexibility

nor accuracy.

Some methods for reducing algorithm execution time might be: (1)

removing the Implicit method error monitor; (2) implementing sparse mat

rix methods for the solution of linear algebraic equations; and (3) eli

mi~ating the double subscripting method shown in the block-oriented

modeling equations and used in HYDSIM. The first two methods given above

may not be appropriate and further investigations will have to be per

formed to justify these changes •.

BIBLIOGRAPHY

(1) Smith, C. K. "HYDSIM User's Manual." Stillwater: School of
Mechanical and Aerospace Engineering, Oklahoma State Univer

L ')) sity, August, 1973. (Unpub. notes.)

(}y Selfridge, R. G. "Coding a General Purpose Digital Computer to
Operate as a Differential Analyzer." Proceedings 1955

'"b~ , Western Joint Computer Conference (IRE), Vol~ 8 (1~55), 82-84.

(~) · Stein, M. L., J. Rose, and D. B. Parker. "A Compiler With an
Analog-Oriented Input Language." Proceedings 1959 Western
Joint Computer Conference, Vol. 16 (1959),92-102.

(4) Hurley, J. R. and J. J. Sk:Lles. "DYSAC: A Digitally Simulated
Analog Computer." Proceedings 1963 Spring Joint Computer
Conference, Vol. 23 (1963),69-82.

(5) Stover, R. F. and H. A. Knudston. "H-800 PARTNER-Proof of Analog
Results Through a Numerically Equivalent Routine."
Minneapolis: Honeywell Scientific Computing Aeronautical
Division, Document No. U-ED 15002, April, 1962.

~f) Gaskill, R. A., J. W. Harris, and A. L. McKnight. "DAS--A Digital
Analog Simulator." Proceedings Spring Joint Computer Confer
ence, Vol. 23 (1963), 83-90.

(7) Rideout, V. C. and L. Tavernini. "MADBLOC, A Program for Digital
Simulation of a Hybrid Computer." Simulation, Vol. 4

~)) (January, 1965), 21-25.

(8) Harnett, R. T,, F. J. Sansom, and L. M. Warshawsky. 11MIDAS--An
Analog Approach to Digital Computation. 11 Simulation, Vol. 3
(September, 1964), 17-43.

Brennan, R. D. and H. Sano. "PAGTOLUS--A Digital Analog Simulator
Program for the IBM 1620. 11 Proceedings 1964 Fall Joint Com
puter Conference, Vol. 26 (1964), 299-312.

(10) Peterson, H. E. and F. J, Sansom. "MIMIC--A Digital Simulator
Program." Wright-Patterson AFB, Ohio: SESCA Internal Memo
65~12, May, 1965.

(11) Syn, W. M. and R. N. Linebarger. "DSL/90--A Digital Simulation
Program for Continuous System Modeling. 11 Proceedings 1966
Spring Joint Computer Conference, Vol. 28 (1966), 165-187.

61

(12)

(13)

\?~)
(14)/

\l.t.J
(15f

(17)

001
~ZJ

(19)

(20)

c2lA

(22)

(23)

(24)

62

1130 Continuous System Modeling Program (1130-CX-13X). IBM Report
No. H20-0209-l. White Plains, N.Y.: IBM Corp., 1966.

System/360 Continuous System Modeling Program (360A-CX-16X). IBM
Report No. H20-0367-0. White Plains, N.Y.: IBM Corp., 1967.

Brennan, R. D. and R. N. Linebarger. "A Survey of Digital Simula
tion Languages." Simulation, Vol. 3 (December, 1964), 22-36.

Clancy, J. J. and M. S. Fineberg. "Digital Simulation Languages:
A Critique and a Guide." Proceedings 1965 Fall Joint Com
puter Conference, Vol. 27 (1965), 23-36.

Stein, M. L. and J. Rose. "Changing from Analog to Digital Pro
gramming by Digital Techniques." ACM Journal, Vol. 7
(January, 1960), 10-23. ~-

Rosenberg, R. C .. "A User's Guide to ENPORT-4." East Lansing,
Mich.: Mich,igan State University, Division of Engineering
Research, June, 1972.

Paynter, H. M. Analysis and Design of Engineering Systems.
Cambridge: The MIT ·Press, 1961.

The 1620 Elecfronic Circuit Analysis Program (ECAP)(l620-EE-02X).
IBM Repo+t No. H20-0170. White Plains, N.Y.: IBM Corp., 1965.

Lindgren, A. G. "Computer-Aided Circuit Design: A User's View
point." Simulation, Vol. 16 (May, 1971), 195-206.

Waterman, A. W., A. K. Trikha and K. D. Groom. Aircraft Hydraulic
System Dynamics. USAF Technical Report No, AFAPL-TR-73-2.
Wright-Patterson AFB, Ohio: Air Force Aero Propulsion Labora
tory, February, 1973. (Report submitted to Air Force Aero
Propulsion Laboratory, Wright-Patterson AFB under Contract
No. F33615-72-C-1699 by Boeing Commercial Airplane Company.)

Zielke, W. "Digital Simulation of Airplane Hydraulic Systemso 11

ASME Paper No. 71-WA/FE-21, November, 1971. (Paper was pre
sented at the 1971 ASME Winter Annual Meeting.)

Smith, C. and R. P. Braden. "Hydraulic System Simulation."
Stillwater: School of Mechanical and Aerospace Engineering,
Oklahoma State Unive.rsity, December, 1970. (Report Submitted
to General Dynamics Corp. , Convair Aerospace Di vision,
Fort Worth, Texas.)

Smith, C. K. "HYDSIM--A Generalized Hydraulic System Simulation
Program." Proceedings Second Southwestern Graduate Research
Conference in Applied Mechanics, Vol. 2 (March, 1971), 73-75.

63

(25) Gear, C. W. "The Automatic Integration of Stiff Ordinary Differ
ential Equations." Information Processing~· Edited by
A. J. H. Morrell. The Netherlands: North Holland Publishing
Co., 1969, 187-193.

(26) Brayton, R. K., F. Ga Gustavson and G. D. Hacktel. "The Use of
Variable-Order Variable-Step Backward Differentiation Methods
for Nonlinear Electrical Networks." Memo Mexico 1971 Inter
national IEEE Conference on Systems, Networks, and Computers,
Oaxtepec, Mexico, 1971, 102-106.

(27) Merritt, H. E. Hydraulic Control Systems. New York: John Wiley
& Sons, Inc., 1967, 52.

(28) Merritt, H. E. Hydraulic Control Systems. New York: John Wiley
& Sons, Inc., 1967, 83.

(29) Soloknikoff, I. S. and R. M, Redheffer" Mathematics of Physics
and Modern Engineering. New York: McGraw-Hill Book Co., 1958,
708.

(30) Derusso, P. M., R. J. Roy and C. M. Close, State Variables for
Engineers. New York: John Wiley & Sons, Inc., 1965,

(31) Ralston, A. A First Course in Numerical ~nalysis. New York:
McGraw-Hill Book Co., 1965.

(32) James, M. L., G. M. Smith and J. C. Wolford. Analog and Digital
Methods in Engineering Analysis. Scranton: International
Textbook Co., 1964, 259-262.

(33) Ostrowski, A. M. Solutions of Equations and Systems of Equations.
New York: Academic Press, Inc., 1960, 43-50.

APPENDIX A

THE NEWTON~RAPHSON METHOD

The Newton-Raphson method can be used to solve.a set of algebraic

equations. When applied to a set of nonlinear algebraic equations, the

method effectively substitutes the iterative solution of a set of linear

equations for the more difficult task of solving the nonlinear equations.

The method requires an initial set of 'approximations to the solution set.

The Newton-Raphson method can be derived.from a truncated Taylor

series expansion of the algebraic equations abo~t an approximate solution

point of the equations. Given a set of m algebraic equations of the form

0 = Fi (y 1 , y 2 , • • • , y m) , i = 1, 2, • • • , m (30)

and the approximate solution y~, 0 0
Equation (30) be Yz' . . . ' Ym' may

expanded in the Taylor series

(yl, ym)
0 0 0) F. Yz' . . . ' F. (yl, Yz' . . . ' ym l. l.

m ClF.
2: l.

(yj
0

+ - yj) Cly. 0
j=l J y

m m a2F.

~ L: l.
(yj

0 0
+ - yj)(yk - y) + • . . ' ay. ayk 0 k j=l k=l J y

i = 1, 2, . . . , -m, (31)

where the bar and y0 to the right of partial derivative implies that the

derivatives are to be evaluated at the approximate solution y~, y~,

0 • • • , y . The truncation of the series in Equation (31) to retain
m

64

65

only the linear terms and the combination of this with Equation (30)

yields

m oF.
0 0 0 0 L: l.

(yj
0 = F. (yl' Y2' . . . ' y) + - y j)' l. m ay. 0

j=l J y

i = 1, 2, . . . ' m. (32)

Equation (32) may be rearranged and written in vector-matrix form as

oF1 oF1 oF1 0 0 0 0

ay1 ay2 ay (yl - yl) -Fl (yl, Y2' . . . ' ym) 0 0 0 y y m y

oF2 oF2 oF2 0 0 0 0

ay1 ay2 ay (y2 - Y2) -F (yl' Y2' . . . ' ym) 0 0 0 2 y

0
y

y

0
y

m

oF
m

y

ay o m y

(33)

The solution of Equation (33) for (y. - y~) where i = 1, 2, • • . , m
l. l.

gives values which may be added to the corresponding approximate solu-

0 tion values, y .. Ideally, these additions would yield the solution
l.

value~ yi; however, in most cases the exact solution values will not be

obtained because of the truncation of the Taylor series. Instead, a

value of y. will be obtained which is not the exact solution, but closer
l.

to the exact solution than y~ if the Newton-Raphson method is convergent

(33). This closer approximate solution may then be used to repeat the

Newton-Raphson method to obtain a still closer solution. In this

manner, the method can be repeated until a sufficiently accurate solution

is obtained.
th

It is convenient to rewrite Equation (33) for the k

iteration as

aF1 SFi

ay1 k ayz y

aF2 aF2

ayl k ay y m

. .

k y

k y

k
y

•••

aF1

aym k y

aF2
ay k m y

66

(k+l k
k k k

-Fl(yl' Yz' ...
' ym) y - y) 1 1

(k+l k) k k k y . - y -Fz(Yi' Yz' . .. ' ym) 2 2

=

(34)

Figure 17 shows a flow chart for a method of using Equation (34)

to solve Equation (.30) •

It should be noted. that Equation (30) could also have been written

as

* * • • • , xn, Yi' Yz' ••• , ym, t),

i = 1, 2~ ..• , m~ (35)

where the asterisks indicate that specific values of the variables

x1 , x2, ••• , xn, t have been substituted into the equations.

ENTER WITH

k = 0

EVALUATE

k k k
Fi(yl,y2, ••• ,ym)

i=l,2, ••• ,m

i=l,2, ••. ,m

j = 1,2,.~.,m

SOLVE
EOUATION 34 FOR

(k+l k)
Yi - Yi

i = 1,2, •.• ,m

k+l k k+l k.
Yi· = y. + (y. - Y~)

1 1 1

i=l,2, •.. ,m

YES

NO

k = k+l

ANSWERS ARE
k+l k+l k+l

Y1 ,y 2 '. •. ,y m

Figure 17. Algorithm to Solve Equation (30) by the Newton-Raphson
Method

67

APPENDIX B

A MODIFI~D NEWTON-RAPHSON METHOD

Appendix A derives the equations to be used in the Newton-Raphson

method for the solution of algebraic equations of the form

0 = Fj_ (y 1 , y 2 , • • • , y m) , i = 1, 2, • • • , m. (36)

This appendix modifies the equations derived in Appendix A for the solu-

ti on of n algebraic equations of the form

0 = Fi (y l' Yz' . ' yn' ul, u2, . . . ' u) ' q

i = 1, 2, . . . , n, (37)

where

• ' q. (38)

Because the u-variables have been introduced into the algebraic equations

and because the u-variables are defined in terms of the algebraic vari-

ables as shown in Equation (38), partial derivatives used in Equation

(34), aF./ay , must be replaced by the terms
1 r

(39)

Therefore, Equation (34) may be rewritten in the following form (Equation

(40)). Figure 18 shows a flow chart for a method of using Equation (40)

to solve Equations (37) and (38).

68

ENTER WITii

k=O

EVALUATE

k k k k
uj = uj (yl'y2' ••• ,yn)

j=l,2, ••• ,q

EVALUATE

k k k k k k
Fi(yl,y2' 000 'yn,ul,u2' 000 'uq)

i = 1,2, ••. ,n

EVALUATE

i = 1,2, ••. ,n
r=l,2, ••• ,n

SOLVE
EQUATION 40 FOR

(k+l k)
Yi - Yi

i = 1,2, ••• ,n

i=l,2, ••• ,n

NO

k = k+l

ANSWERS ARE
k+l k+l k+l

Y1 ,y2 , ••• ,yn

Figure 18. Algorithm to Solve Equation (37) by the
Newton-Raphson Method

69

-F
1

-F
2

-F
n

k k
(yl' Y2' .

k k
(yl, Y2' .

k k . . ' yn, ul'

k k . . ' yn' ul,

aF1 ~ aF1 au ..
(- + Li - ----'-)

Cly . 1 Cluj Cly k
n J"' n y

aF q aF au
(n+ '\"' n_:_=i)

Cly ~ au. Cly
n J=l J n k y

k uk)
u2' . . . ' q

k uk)
u2' . . . ' q

. . . ,

(40)

-..J
0

APPENDIX C

A HYDSIM EXAMPLE

The response of the fuel injection system shown in Figures 13, 14

·and 15 was simulated using the HYDSIM computer program. The simulation

started from a condition of steady regulator flow with no injector actu

ation and was carried out for eight milliseconds of real time.

Figure 19 shows a copy of the HYDSIM input data cards and Table I

describes the components used in the simulation. Additional information

on HYDSIM components and usage can be found in "HYDSlM User's Manual"

(1).

All of the components used in this simulation are contained in the

HYDSIM component library except the displacement forcing function used

to actuate the injectors. This component was programmed for this simu

lation. It determines displacement as a function of time by performing

linear interpolation on time-displacement points given in the input data.

Figures 20 and 21 show the resulting injector actuations. The first

three data cards shown in Figure 19 initialize internal HYDSIM tables

to include this displacement component. The component model was pro

grammeq in a FORTRAN IV subroutine and submitted with the data cards at

execut:Lon.

Figure 16 shows the pressure at the inlets of the injectors. This

pressure is identical at the inlets of all the injectors since both

71

&ADD COMPONENT
SPECl,3,10,1,0,0,0,DISP

&END
&FREE
&RKIV
&* ************************ RUNGE-KUTTA TEST **********************

TF=0.008, DT=0.00001, PM=lO, NEWT0Na200
1(1)=8(l)P, 8(2)P=2(3)G, 2(2)•5(2), 2(1)=3(2)
3(1)=5(3)P, 3(3)=6(3)P, 5(1)=6(2)P
6(1)=7(2)P, 7(l)P=9(1), 9(2)=10(l)PG, 10(2)P•ll(l)
11(2)zl2(1), 9(3)G=29(2), 9(4)•30(2)
PRESSR/1,12/, TEE/2,6/, CYLIDX/3/, VALV2B/5/
VOLUME/7/, LINE2/10/, PUMP/11/, LINEl/8/, CROSS/9/
1/10*0/
3/4,4,-0.00245,200,0.l/
5/75E3,6.4E-5,0.6,0.25,0,0,l/
7/50,75E3,l.5/
8/0,180,0.500,6.4E-5,75E3,2.9E-8,0,10,-.46/
10/0,168,0.375,6.4E-5,75E3,2.9E-8,50,55,-.46/
ll/2.9E-8,0.02,0,0,0,0.61E-8,157/
12/10*0/
14(2)=16(1), 16(2)P=23(1), 16(3)P=24(1), 30(1)=14(1)
23(2)=27(1), 23(3)=19(1), 24(2)=28(1), 24(3)=20(1)
LINE2/14/, TEE/16/, DISP/19,20/, VALV2B/23,24/
PRESSR/27,28/, LOSS21/30/
14/0,12,0.25,6.4E-5,75E3,2.9E-8,50,50,0/
19/0,.0005,-.0l,.002,-.0l,.0025,0,.008,0,0/
20/0,.004,0,.0045,-.0l,.006,-.0l,.0065,0,.008/
23/75E3,6.4E-5,0.6,0.0182,0,0,2/
24/75E3,6.4E-5,0.6,0.0182,0,0,2/
27/10*0/
28/10*0/
30/l,.5,.25,6.4E-5,-10,50/
13(2)=15(1)," 15(2)PG=21(1), 15(3)PG=22(1), 29(1)=13(1)
21(2)=25(1), 21(3)P=l7(1), 22(2)=26(1), 22(3)P=l8(1)
LINE2/13/, TEE/15/, DISP/17,18/, VALV2B/21,22/
PRESSR/25,26/, LOSS21/29/
13/0,12,0.25,6.4E-5,75E3,2.9E-8,50,50,0/
17/0,.0005,-.0l,.002,-.0l,.0025,0,.008,0,0/
18/0,.004,0,.0045,-.0l,.006,-.0l,.0065,0,.008/
21/75E3,6.4E-5,0.6,0.0182,0,0,2/
22/75E3,6.4E-5,0.6,0.0182,0,0,2/
25/10*0/
26/10*0/
29/l,.5,.25,6.4E-5,-10,50/

&END

Figure 19. Input Data for HYDSIM Simulation of Fuel-Injection
System

72

COMPONENT
NUMBER

1
2
3
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

TABLE I

HYDSIM COMPONENTS USED IN SIMULATION
OF FUEL-INJECTION SYSTEM

LIBRARY
NAME

PRES SR
TEE
CYLIDX
VALV2B
TEE
VOLUME
LIN El
CROSS
LINE2
PUMP
PRES SR
LINE2
LINE2
TEE
TEE
DISP
DISP
DISP
DISP
VALV2B
VALV2B
VALV2B
VALV2B
PRES SR
PRES SR
PRES SR
PRES SR
LOSS21
LOSS21

COMPONENT LOCATION
OR DESCRIPTION

Exhaust Pressure For Regulator Return Line
In Low-Pressure Side of Regulator
Cylinder In Regulator
Two-Way Valve In Regulator
In High-Pressure Side of Regulator
In Regulator.
Line At Low-Pressure Side of Regulator
Four-Port Connector
Line At Pump Outlet
Constant Speed Pump
Pressure Source At Pump Inlet
Fuel Line Leading To Injectors 1 And 2
Fuel Line Leading To Injectors 3 And 4
At Inlet To Injectors 1 And 2
At Inlet To Injectors 3 And 4
Displacement Function For Injector 1
Displacement Function For Injector 2
Displacement Function For Injector 3
Displacement Function For Injector 4
Two-Way Valve In Injector 1
Two-Way Valve In Injector 2
Two-Way Valve In Injector 3
Two-Way Valve In Injector 4
Pressure At Injector 1 Outlet
Pressure At Injector 2 Outlet
Pressure At Injector 3 Outlet
Pressure At Injector 4 Outlet
Entrance/Exit Loss
Entrance/Exit Loss

73

.10- I

-z
H,

E-t

~
r>:l u
<
....:i p..,
tn .os-s

\
I I I I l I I

0 .001 .002 .003 .004 .005 .006 .007

TIME (SEC)

Figure 20. Valve Opening f_or Injectors 1 and 3

.10-

........
z
H ..._,

H
.. ,

z
>"l
::<::
>"l
C,)

<
,...:i
p.. .os-Cl)

H
A

I

0 .001
I

.002
I

.003
I

.004

f

I

.005

Figure 21. Valve Opening for Injectors 2 and 4

,

I

.006

TIME (SEC)

I
I

.007
-

.......
\J1

pairs are connected into the system through identical lines and loss

components. Figures 2Z and Z3 show the fuel flow rates through the

injectors.

76

.4

-~
tl.l -~ .3
H .._,,

~
.2

.1

0 .001 .002 .003 .004 .005

Figure 22. Flow Through Injector 1 or 3

.006

TIME (SEC)

.007

......

-tJ
r:r.l
tll

.4

M- .3
z
H .._,.

~
~
""'4

.2

.1

0 .001 .002 .003 .004 .005

Figure 23. Flow Through Injector 2 or 4

.006

TIME (SEC)

.007

......
00

VITA

Christopher K. Smith

Candidate for the Degree of

Doctor of Philosophy

Thesis: DIGITAL COMPUTER SIMULATION OF COMPLEX HYDRAULIC SYSTEMS USING
MULTIPORT COMPONENT MODELS

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born at Scofield Barracks, Oahu, Hawaii, on June 30,
1938.

Education: Graduated from Hillsboro High School, Nashville,
Tennessee, in June, 1956; received Bachelor of Science degree
in Mechanical Engineering from Ten1:1:essee Technological Univer
sity in 1967; received the Master of Science degree from
Tennessee Technological University in 1969; completed require
ments for the Doctor of P}\ilosophy degree at Oklahoma State
University in July, 1975.

Professional Experience: Graduate teaching assistant, Tennessee
Technological University, 1967-69; Summer school instructor,
Tennessee Technological University, 1968; graduate teaching
assistant, Oklahoma State University, 1969; graduate research
assistant, Oklahoma State University, 1970-72; member of
Engineering Staff, Bendix Research Laboratories, Bendix Corpor
ation, 19 72.

Professional Organizations: Member Pi Tau Sigma; member Tau Beta
Pi.

