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CHAPTER I 

INTROpUCTION 

In recent years, interest in the simulation of the dynamics of 

continuous systems has increased manifold. This increase has been aug~ 

mented by the increasing availability and popularity of the digital 

computer and is evidenced by the number of generalized numerical simula-

tion programs being presented in the literature. 

CThe work required for the successful simulation of a dynamic system 

on a digital computer encompasses three fields of technology: (1) engi-

neering, (2) numerical analysis, and (3) computer progranuning. Engineer-

ing is required to generate the mathematical equations which describe 

the performance of the physical system, numerical techniques are 

required fo.r solving the equations, and programming is required for 

implementing these in a usable package) 

Objective and Scope of Study 

The objective of this study was the development of modeling equation 

forms and numerical algorithms which could be used in a digital computer 

program for the simulation of complex systems. During this study it was 

assumed that a complex system could be represented by a network of multi-

port models and that each mo4el could be represented by a set of first-

order, ordinary differential equations and a group of algebraic equations. 

Equation f9rms were sought which were not restrictive a~d algorithms were 

1 



selected on the basis of ~ccurate and efficient solution. Chapter II 

contains an explanation of the forms and algorithms which were 

developec;l. 

This study was the first part of a two-part project. While this 

study dealt with the conceptual framework of· a simulation program, the 

second part dealt with the imple1J1entation of these concepts in the 

simulation program HYDSIM. The main features of the HYDSIM program 

include: 

1. The implementation of special solution algorithms. 

2. A multiport-model representation of components. 

3. A library of standard component models. 
(i. 

4. A~ and free-forriiat input data form with a pre-

pocessor for error checking and user convenience. 

5. The sorting of algebraic equations into sets for increased 

efficiency. 

6. A capa~ility of accepting user programmed component models. 

The overall structure of HYDSlM as an implementation of the conceptual 

framework :f:s discuss.ed in C:tiapter IV, and the methods of using the 

HYDSIM program are described in '1HYDSIM User's Manual" (1). 

Results of Study 

This study deals with the dynamic simulation of complex systems. 

Included in Chapter III of this study are a presentation of functional 

2 

forms of equations which may be \.lSed to model physical systems, numerical 

algorithms which may be used to solve t~e modeling equations, and in 

Chapter IV an introduction to a generalized simulation program for com-

plex systems which utilizes these modeling forms and algorithms. These 
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forms anct algorithms are applicable to the .simulation of any comple~ 

system which may be represented by a set of first-order, non.linear dif-

ferential equations coupled with sets of nonlinear algebraic equations• 

However, due to error checking and output considerations, HYDSIM was 

initially developec1 for the simµlation of hydraulic, mechanical and 

electrical systems. 

Two forms of mocteling equations are presented in Chapter III. Both 

are similar and assume that the components can be described by coupled 

s.ets of nonlinear algebraic and differential equations using multiport 

modeling techniques. However, the second form may be used for block-

oriented component models. 

Two algorithnis are presented in Chapter III for the solution of each 

modeling form. The first algorithm for each form uses "conventional" 

numerical methods for the solutioti of the modeling equations. The second 

algorithm usel?·"conventional" numerical integration for the solution of 

the c\ifferential equations in conJunction with an implicit method for 

the solution of the algebraic eqµations. This method, called the 

Implicit method, is numerically similar to the Newton-Raphson method, 

but it is not iterative at each time step which results in a reduction 

of computer execution time. Finally, a third algorithm is presented for 

the solution of the block-orienteµ modeling form. This algorithm com-

bines the methods of the first an(i secop.d algorithms with a method for 
' 

separating the set of algebraic equations into a number of smaller sets. 



CHAPTER lI 

PRELIMINARY-CONSIPERATION~ 

Before the development of a computer algorithm .is undertaken, the 

desired organization and capabilities of the completed program should be 

considered. This organization will be affected strongly .by two areas. of 

interest: (1) analytical techniques presently in use for describing or 

simulating complex systems, and (2) the organization of previously sue-

cessful simulation programs. 

Related Literature 

~ 1955, Selfridge (2) introduced a method of coding a digital com-

pl,lter to "operate" as a differential analyzer, more widely known as an 

analc;>g computer~ Since then numerous general-purpose simulation programs, 

have been introduced (3-13). Brennan and Linebarger (14) and Clancy and 

Fineberg (15) have provided excellent surveys of t~e first ten years 'of 
~V~'/'q\ 

simulation program development. Seme-0-f--ehe programs. containing major 

contributions·to the field of simulation a+e discussed below. 

In 1958, Stein and Rose (3) generated ASTRAL (acronym for Analog 

Schematic !Ranslator to Algebra Language. ASTRAL contained three firsts: 

(1) the prog+am was a compiler which produced a FORTRAN deck for execu-

tion; (2) the simulation was executed using floating-point arithmetic; 

and (3) a sorting algorithm was used. which relieved the user from the 

task of ordering the program inputs to optain a correct solution (16). 

4 
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Gaskill et al. (6) introduced DAS (acronym for Digital Analog Simu-

lator) in 1963. This used a simplified input language and was an 

1.lJ l+ 
excellent simulation program; .however, it had two drawbacks. DAS con-

. CXr,d_ C "y/ + ui.J est -\ h.£ s-te p 0 t 
tained an elementary integration routine (Euler's method) and did not \,,:,.it~(Q..~;o;t. 

contain a sorting algorithm. MIDAS (Mod:(.fied Integration DAS) introduced 

in 1964 by Harnett, Sansom and Warshawsky (8) contained a sorting algo-

rithm and a.sophisticated fifth-order predictor-corrector integration 

meth,od with variable step size. MIDAS also included a simple input for-

mat an~ a method of handling algebraic loops (loops in the model 

equations which are not br9ken by an integrator, a delay, or any function 

with memory)_. Because of these advantages plus the facts that the 

program was easy to use and was written for the popular 7090-7094 IBM 

computers, MIDAS gained wide acceptance. 

PACTOLUS (the river in which King Midas washed off the golden touch) 

was introduced in 1964 by R. D. Brennan (9) and it also enjoyed wide 

acceptance. PACTOLUS retained most of the features of MIDAS, but .was 

written for the small IBM 1620 computer. This program allowed the user 

to make on-line changes in a simulation through computer switch settings 

and console entries. Consequently, PACTOLUS came closer to the true 

hands-on control of an analog computer than any of its predecessors. 

The input language of all the programs discussed in detail above may 

be classified as block-oriented. In block~oriented programs the function-

al. capabilities of each type of block included in the program are defined 

in terms of the block inputs and outputs by the programmer. User input 

to the program consists of a description of block interconnections, block 

type identifications, and various parameters; and it may be prepared from 

a block diagram of the system to be simulated. This type of input 
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configuration was a direct result of the program originator's efforts. to 

<;luplicate the operation of an analog compute.r. ~6. 
'J;he block.-oriented programs caused diffiaulty for the program user 

in progral1lllling algebraic expressions which could easily be expressed in 

languages such as FORTRAN. ln addition, some .users who modeled s,ystems 11 c 
\lZ<;'q Ii Jftll>'\ 

d~rectly in equation form desired to input these equations directly to._~~ jt\\p~) 
(~uch O..~ +h.s<. >y~~~.,,_ m,oL{~ f't / 

the simulation program without creating a block diagram. Consequently, 
r 

Three of the 

sim~lation programs were introduced. ~ 

most significant language-oriented programs are.MIMIC, 

language-oriented 

DSL/90, and 360 CS:MP (10, 11, 13). These programs incorporated all of 

the major features of·the block~oriented programs plus inareased flexi-

bility due to their input languages. However, these input languages.are 

very FORTRAN oriented and difficult to learn. 

(rn addition to the general-purpose simulation programs.discussed 

above, many special-purpose programs have been introduced. Unlike the. 

general-purpose prog~ams which were intended for the simulation of any 

system that may be represented by a set of ordinary differential equa-

tions, the special-purpose programs were intended for the simulation of 

a special class of systems (for examvle, mechanical, e~ectrica1, or fluid 

systems). Cons~quently, the input l~nguage of a special-purpose program 

may be structwred in the most natural format for the class of systems to 

be simulated and the numerical methods used in the program ma,y be adapted 

for best solving the types .of modeling equations most often used.) 

ENPORT is unique among the special-purpose simulation programs (17). 

This program may be used to simulate the same classes of systems as the 

general-purpose programs. However, the ,input format of ENPORT has been 



structured to be used with the bond graph modeling techniques first 

introduced by Paynter (18). 

7 

One of the most widely used simulation programs for electrical sys­

tems is ECAP (19). In addition to providing transient response solutions, 

this special-purpose program can also provide AC and DC analyses of 

electrical circuits. ECAP has also been used to simulate systems which 

were not electrical. However, since an analogy must be established 

between electrical components and the components of the system to be 

studied, ECAP is not the most desirable tool from the user's viewpoint 

for simulating systems which are not electrical. The numerical methods 

used in EC.AP are heavily dependent on linear techniques and nonlineari­

ties may only be simulated through piecewise-linear approximations. 

Other widely accepted simulation programs for electrical systems are 

NET I and SCEPTRE. These programs and ECAP are compared from a user's 

viewpoint by Lindgren (20). 

A summary of the special-purpose programs available for the simula­

tion of hydraulic (fluid power) systems was given by Waterman et al. (21) 

in a report for the u.s. Air Force. Most notable among the programs 

described are the HYDSIM and HYTRAN programs. These programs contain the 

models of various hydraulic components programmed in subroutines. The 

programs then use these subroutines as required to simulate hydraulic 

systems. Zielke (22) provided more information about HYTRAN. 

The H~DSIM program discuss~d in ~hapter IV of this study is the 

second version of the program (~YDSIM II). The first version, HYDSIM I, 

was developed at Oklahoma State University in conjunction with General 

Dynamic Corporation during 1970 (23, 24). This earlier version lacked 

most of the features and capabilities of the current program. For 
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example, it did not have the HYDSIM II capability of simultaneously solv­

ing coupled, algebraic equations when th.e equatic;ms were contained in 

more than one component model. However, HYDSIM r did contain a library 

of st~darg components. 

Organization of a Generalized Computer Prog:r;:am 

for Hydraulic System Sim:ulation 

Because a hydraulic system is usually composed of many discrete 

hydraulic components coupled together, a block-oriented input language 

would seem natural. However, instead of each block representing a basic 

function as in the "analog-like" languages described above, each block 

should represent a major hydraulic component such as a valve or a cylin­

der. Tb,e incorporation of a library of models for such blocks would 

relieve the program user of much repetitive programming. In addition, 

the organizati9n of.the progra~ in a manner where each component model 

would be contained in a separate subroutine wol\ld .. facilit.;:i.te using the 

models in many 4ifferent interconnection configurations and would ease 

the task of adding additional models to the program at a later date. 

Also, since fluid power (not just pressure nor just flow) is the major 

consideration in a hydraulic system, multiport modeling techniques should 

be used. 

Multiport models of dynamic system components have been in use in 

various forlll$ for many years. For exaip.ple, bond graph techniques are 

based upon the use of multiport models (18). Multiport techniques are in 

evidence whenever the energy transfe:r; at energy exchange ports of system 

components (or subsystems) may be expressed as products of pairs of 

systems variaples. 



9 

Figure 1 shows a typical method of graphically displaying the pairs 

of energy exchange variables for multiport models. Typically, the power 

transferred at the ports connecting the pump and pipe is represented by 

the product of the pressure variqble, P1 , and the flow variable, Q1 • It 

should be noted that the directions of the arrows shown to represent the 

variable pair at this port connection do not represent the direction of 

flow, etc.; the directions represent.the causality of the port variables. 

(This is true of all ports shown in this study.) For example, P1 is 

independent to the pump model and.dependent to the pipe model, and Q1 is 

dependent to the pump model and independent to the pipe model. 

The appli~ation of multiport modeling techniques to a hydraulic 

system usually produces a set of noniinear differential equations which 

are coupled with sets of nonlinear algebraic equations. The algebraic 

equations may be manually reduceQ. to some extent within ~ach block, but 

since these algebraic sets usually span several blocks, they may not be 

eliminated entirely. Elimination of these sets is also hindered by the 

fact that foi;- a generalized program the pattern of block interconnections 

is not known at model programming time and will vary as different systems 

are simulated. Typical forms of these equations are discuss.ed in Chapter 

III. 

A numerical method is r~quired to solve the coupled sets of non­

linear algebraic and differential equ&tions. Two methods are discussed 

in Chapter III of this study, ~d a method has been proposed by Gear (25) 

and by Brayton, Gustavson, and Hachtel .· (26). The latter method uses a 

predictor type of equation to approximate the current value of each state 

variable in terms of the c1,1rrent state variable.derivative value and k 

previous state variabl~ values. This equation, WJ;'itten for each state 
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Figure 1. Block Diagram of Multiport Models 
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variable, may be substituted into the system differential equations to 

eliminate the state variable derivatives. The resulting algebraic equa­

tions and the algebraic equations from the original modeling process form 

one large set of coupled, nonlinear algebraic equations which may be 

solved iteratively for the current values of the state and algebraic 

variables by the Newton~Raphson method. 

The first method discussed in Chapter III uses. the Newton-Raphson 

method and any "conventional" nµmerical integration technique to solve 

the equation sets. However, the second method uses an implicit method 

(hereafter called the Implicit method) to determine derivative values 

for the algebraic variables and then uses a "conventional" numerical 

integration technique to simultaneously solve for the state and the 

algebraic variables in a similar manner. The Implici~ method is not 

iterative at each time step, but uses a linear equation similar to that 

used in one iteration of the Newton-~aphson method. In addition, the 

Implicit technique does not cause th~ coupling of all the algebraic equa­

tions into one large set, but allows the algebraic equations to be 

separated into sets based upon coupling of the algebraic variables only. 



CHAPTER III 

ALGORITHMS FOR SIMULATION OF·HYDRAULIC SYSTEMS 

A Generalized Form for Hydraulic 

System Modeling Equations 

The system of equations developed during the mathematical modeling 

of most hydraulic systems is composed of algebraic and ordin~ry differ­

ential equations (27). This section discusses these equations and their 

functional forms. 

In general, th~ algebraic equations included in a mathematical 

model of a hydraulic system are nonlinear and may not be reduced analyt­

ically. These equations relate a set of algebraic variables, y's, to a 

set of state variables, x's, and the independent variable time, t. A 

functional representation for a set of m of these equations is 

' y m' t) ' 

i = 1, 2, .•. , m. (1) 

Examination of the y-variables in the algebraic equations for a specific 

hydraulic system model often reveals that the equations may be divided 

into a number of sets where no y-variable coupling exists between sets 

of algebraic equations. Since this separation must be performed for a 

specific .set of equations and since it would not greatly affect the 

algorithms discussed below except with regard to execution speed, 

12 
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separation of algebraic equations will not be.discussed until near the 

end of this chapter. 

The ordinary.differential equations resulting from the 1118thematical 

modeling 9f a hydraulic system are, in generalf nonlineai;- also. These. 
r • 

equations, when written as a set of first-order different:ial equations, 

relate the state variables, x's; their first derivat:ives with respect 

to time, :X's; the algebraic variables, y's; and the independent variable 

. 1 time, t. · 

j = 1, 2, ••• , n. 

Equations (1) and (2) form a coupled system c;>f m+ n equations 

which may be used to model hydraulic systems. These equations· were 

as~mmed to be nonlinear; however, it would be instructive to briefly 

discuss their solution assuming complete linearity. In addition~ the 

(2) 

generation of Equations (1) and (2) in a linear form is often suggested 

in the literature where a manual solution is anticipated and physi~al 

s¥stem conditions permit .this simplification (28). 

With an assumption of linearity, Equation C+) may be solved using 

Cramer's rule (29) to yield 

' x 't)' i n 
1, 2, . . . , m. (3) 

Substitution of Equation (3) into Equation (2) yields 

' x.' • • • ' x 't) ' J. n 

j = 1, 2, . •. , n. (4) 

\ 1rt may not be possible to write all differential equations as sets 
o1 first-order differential equations; however, this difficulty is more 
than offset by the increased flexibility allowed ·during the development 
of the algorithms in thb chapter through the use of Equation (2). 
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Since Equations (1) and (2) were assumed to be linear, Equation (4) will 

be linear and may be solved using the state transition matrix technique 

(30). 

In the above solution method, algebraic equations are analytically 

solved and the algebraic variables are eliminated from the differential 

equations. This solution method is usually the most satisfactory. How-

ever, when the algebraic equations are nonlinear (as for most hydraulic 

systems) and linearization is not acceptable, numerical methods and a 
j 

digital computer are often employed for the solution of Equations (1) 

and (2). 

An Iterative Algorithm for the Simultaneous 

Solution of the Generalized 

Modeling Equations 

Many methods have been given in the literature for numerically 

solving sets of first-order differential equations and for numerically 

solving sets of algebraic equations. This section discusses some of 

these methods and an algorithm for applying these methods to the numeric~ 

al aolution of coupled sets of differentia.+ and algebraic· equations (the 

generalized modeling equatio]'.ls). 

Some of the techniques given in the literature for numerically 

integrating sets of differential equations are the Adams and the Runge-

Kutta integration methods (31). Both of these explicit integration 

methods can be used in a similar manner to integrate sets of .differential 

equations in the form of · 

x. = G. (x1 , x2 , • • • , x , t) , j. = 1, 2, • . • , n, (5) 
J ' a n ' 

where x is the first time derivative of the state variab:Le x. 
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After initialization the Adams or the Runge-Kutta integration 

method can be used in a generalized manner as shown in Figure 2. 2 The 

* integration method will yield a value of the independent variable, t 

(usually considered to be time), and a set of values for the state vari-

* * ables, x1 through xn (not to be considered solution values). The inte-

gration method requires values of the first derivatives of the state 

* . * variables, x1 through xn' which may be evaluated from Equation (5) as 

shc;>wn in Figure 3. After several iterations of producing values for the 

variables and receiving derivative values, the integration method will 

yield a set: of solution values for the state variables, x1 through xn. 

This solution will be for a valu,e of the independent variable, t, which 

will be advanced by a small increment· from the value associated with the 

previous set of sc;ilution .values (or initial conditions). This process 

may be repeated until the integration method has incremented the inde-

pendent variable through the desired range. 

The Newton-Raphson method is an iterative method which can be used 

to find the solution to a set of nonlinear algebraic equations of the 

form 

(6) 

This method requires the evaluation of the partial derivatives of each 

algebraic equation with respect to each algebraic variable and has been· 

explained in more detail in ~ppendix A. 

Solution of the generalized modeling equations by direct use of the 

Newt9n-Raphson method and the generalized integration method discuss.ed 

2Most explicit, numerical integration methods may be used in a 
similar manner. 
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above is not possible because Equations (1) and (2) do not-match the 

functional forms required by the solution methods, Equations (5) and 

(6). However, the ste~s required to use _the generalized integration, 

as shown in Figure 3, may be modified to allow the incorporation of the 

Newton-Raphson technique such that the generalized modeling equations 

may be solved. 

Figure 4 shows the modified steps required when the differential 

and algebraic equations to be solved are coupled as in the generalized 

modeling equations. Step 2 of this figure shows that the functional 

form of the algebraic equations may be reduced to the form required for 

Newton-Raphson solution because the generalized integration method has 

supplied numerical values for the s_tate variables and the independent 

variable in Step 1. Step 2 also represents the solution of the reduced 

algebraic eq~ations by the Newton-Raphson method. Steps 3 and 4 are 

equivalent t.o Steps 2 and 3 in Figure 3. 

A Modified Algorithm for the Simultaneous 

Solution of Modeling Equations With 

Block-Oriented O~ganization 

Block~oriented organization of the mathematical equations which 

model a hydraulic system implies that the equations which describe each 

hydraulic component or hydraulic function (block) are defined only in 

terms of: 

1. The independent variable timeo 

2. The state variables contained within the block. 

3. The algebraic variables contained within the block. 

4. The independent port variables for the block. 
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Therefore, an algebraii; or state variab.le contained in Block A may not 

be explicitly included in the equations that niodel Block B. However, 

the same effect may be .obtained by passing the required information 

thro1:1gh any port variables which might connect B.locks A and B (directly 

or indirectly). 

A port connection between ~wo blocks (also referred to as compo-

nents) ts illustrated in Figure 5. This figure.shows the connection of 

Port q of Block p to Port s of Block r. The port variables of the 

blocks are 

(7) 

urs - ars vpq'J - / 

and 

(8) 

where each "a" is a constant with the value +1/(depending on a port vari-

able sign conventioll,). When, due to the generality, it is uncertain 

what port and block are connected to Port q of Block p, the 

c Equation (7) would be replaced by a general term v • This pq 

term v in rs 
c term, v , pq 

may be defined as the dependent port variable at the port connected to 

Port q of Block p. Consequently, for the port connection shown in 

c Figure 5, v and v refer to the same variable. pq · rs· · 

The generalized m~ing equations will be modified to conform to 

the above restrictions.• 'In addition, another subscript will be added 

to the variables to in4icate with which block the variables are associ­

ated.. For example, yhi .will be the i th algebraic variable in Block h. 

With the assumption that Block h contains m algebraic variables, 

n s.tate variables, and p ports (therefore p indep.endent and p dependent 

port variables), Equations (1) anc;l (2) may be rewritten for Block has 



• 
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PORT s 
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pq 

u =av ANDu =av 
pq pq rs rs rs pq 
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pq rs 

Figure 5. A Port Connection Between 
Two Components 
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O = Fhi (~l' ~2' ••• ' ~n' yhl' yh2' 0 0 0 ' 

Yhm' 1\il' 1\i2 , • • . , 1\ip't), i = 1, 2, ••• , m (9) 

~j = Ghj (~l' ~2' • • • ' ~n' yhl' yh2' ••• ' 

Yhm' 1\il' 1\i2 , • •• , 1\ip't), j = 1, 2, ••• , n. (10) 

If Equations (9) and (10) had been written for Block h in the form of 

Equations (1) and (2), x and y variables from outside of Block h may 

have appeared in the equations. These x and y values from outside of 

Block h are implicitly included in Equations (9) and (10) through the 

\.\c>~J / (1 ,. - , , , . ·1z1--+ ~vc..~ ? 
independent port variables, u's. 

It will aid in developing an algorithm for the solution of Equations 

(9) and (10) if functional forms are defined for the equations which 

will be used to evaluate the dependent port variables within Block h • 

. th 
For the k port in Block h the dependent port variable may be defined 

by 

vhk = vhk (~l' ~2' • • • ' ~n' t) (11) 

or 

(12) 

where bhk is a constant and Yhi is any algebraic variable within Block 

h. I~noted that Eguat..!,Q!.ts (lU_ang (lZ) do not .all_o,_! a depen-

b{_aic and a state variable o.J Block Q.:_ These restrictions. may be 

circumvented where necessary by temporarily defining the dependent port 

variable, vhk' in terms of time and any state, algebraic, and independent 

port variables within h. A~ alg~praic var~ble_may then be introduc~d 

) ·--
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;i.~lock h and . used to repla£~ lT.n tion. ·. The de-

f!:_nin_s equation. ean....tben he consj,dered f!n,~~!.gebraic egyatiOD of Bl orJs. h 

iuid he rearraµged into th.e....f.gm cf E.quatf.on_J9), and xl'tr""c.a.n be define.d. 

i~ terms . of .. tbg .n.e.w-al ~i:a.1~ variable ~ollowing the form of Equ~J2.~ 

(12). Thus a dependent port variable of Block h can be an <i.Inpii~jp -· . - .. ./ 

function of time and any state, algebraic, and independent port variable 

within Block h. 

The steps for using the generalized integration shown in Figure 4 

may be modified to solve Equations (9) and (10) as shown in Figure 6. 

Each step shown in Figure 6 must be completed for every block (component) 

in the hydraulic system before proceeding to the next ~tep. Step 1 

indicates that the generalized integration technique.will supply specific 

valu,es for the independent variable time and all of the state variables. 

Step 2 uses these variables. and Equation (11) to evaluate those dependent 

port variables which are only a fun,ction of state variables and time. 

Equation (7) is used in Step 3 to transfer the values of any dependent 

port variables evaluated in Step 2 to th,e independent port variables of 

connected blocks. Step 4 illustrates that at this point the variables 

remaining unknown in the algebraic equations (Equation (9)) are the 

algebraic variables and some of the indepenc;lent port variables. It 

should be noted that all of the independent port variables remaining 

unknown. in Equatic;m (9) can be related through Equation (7.) to dependent· 

port variables defined only by Equation (12) in other blocks. Therefore, 

each of the independent port variables remaining unknown in Equation (9) 

repre~ents a constant multiplied by an algebraic variable from another 

block. Step 4 also represents the solution of the algebraic equations 

for the algebraic variables using the Newton-Raphson method. The 
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technique of applying the .Newton-Raphson metb,od·for solving these equa-

tions is explained in Appendix B. Step 5 uses Equation (12) to evaluate 

the dependent port.variables not evaluated in Step 2, and Step 6 uses 

Equation (7) t.o transfer these dependent port variable values to inde-

pendent port variables in connected blocks. Step 7 uses Equation (10) 

to evall,late the derivatives of all. th.e state .variables, and Step 8 

illustrates tb,e submission of these derivative values to th.e genera+ized 

integration method, 

An Implicit Method for Solving Nonlinear 

Algebraic Eql,lations Without'Iteration 

The m,imerical sol,ution methods expl,ained above for solving coupled 

sets of nonlinear.differential and algebraic equations requite the 

Newton-Raphson solution of the algebraic equations prior to each evalua-

tion of the state variable derivatives. The Newton-Rapb,son method is 

iterative and i:,nay require several iterations for convergence to a solu-

tion. This section develops an implicit method for evaluating t.he 

algebraic equations. This method, hereafter called the Implicit method, 

is not .iterative and ,requires a similar amo1,lll.t of computation as. one 

iteration of the Newton~Raphson method. 

The Implicit method is based upon the use of a numerical integration 

algorithm to solve the algebraic equations simultaneously with the dif-

ferential equations. Use of tb,e algorithm.in this manner will require 

the evaluation of the time derivatives of the algebraic variables each 

time the time derivatives of the state variables are evaluated. 

Explicit methods for determining dy./dt from the generalized model­
l.. 

ing equati~ms (rewritten here for c;:onvenience), 
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0 = F. (xl' x2' ' ·xn' Y1' Y2' . . . ym, t)' l. ' 

i = 1, 2, . . . ' m (13) 

. 
G. (xl, '·ym,t), x. x2' ' xn' Y1' Y2' . . . 

J J 

j = 1, 2, •.. , n, (14) 

may not be used since these methods would first require the analytical 

solution of E;quation (13). However, the time derivatives .of the alge-

braic variables can be evaluated in an implicit manner. 

The chain rule allows the derivatives of Equation (13) to be 

written as 

n 
dF. 

l. --= 
dt I 1, 2, • . . , m. 

j=l 

(15) 

Since the right side of Equation (15) is equal to zero, it may be 

rearranged in vector-matrix form to yield 

oFl oF1 oF1 dyl 
n oF1 dx. oF1 -I: __J_ 

ayl ay2 ay dt dX, dt at 
* * m * j=l J * * * 

oFZ oF2 oF2 dy2 
n oF2 dx. oF1 

-2= __J_ 

ayl ay2 ay dt dX, dt at 
* * m * j=l J * * * 

oF oF oF dy n oF dx. oF 
m m m m -2= m __J_ m 

ayl ay2 ay dt ox. dt at 
* * m * j=l J * * * 

(16) 
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where the bar·and asterisk to the right of each derivative implies the 

* * * * * evaluation of the ·d~rivatives at the.values x1 , Xz' ... , xn, y1 , y2 , 

* * ••• , ym,t • Equation (16) may be solved for dy/dt through dym/dt 

* * * * * * * at xl' x2 , ••• , xn, y1 , y2 , .• , • , ym,t with the solutions being 

ui;;ed by the numerical int:egration algorithm to solve for yl, y2 , •· •• , 

y • 
m 

The form of Equatic;m (16) should be compared with the form of art 

equation used in the Newton-Raphson method, Equation (34) in Appendix A. 

:aoth of these equations are linear·, of the same order, and contain the 

same matrix of partial derivatives. Equation (34) must be solved repeat-

' edly 1,1I1.til convergence is attained for each. Newton-Raphson solution of 

the algebraic;: equations; however, in the Implicit method described above, 

Equation (16) is only solved once per algebraic solution. 

Figure 7 illustrates the steps required to solve EquatiOns C.13) and 

(14) using Equation (16). After initialization, these steps use .a 

generalized.integration method (as illustrated in Figure 2) in exactly 

the same manner as if m + n differential equations were being solved. 

Step 1 shows that the integration algorithm is used to supply specific 

values fo.r y1 , y2 , • , ym in.addition to values for x1 , x2 , ••• , 

x and t. In Step 2 the differential equations of Equation (14) are 
n 

used to evaluate the time derivatives of the state variables. Steps 3 

and 4 are used to evaluate array elements for EquatiOn (16) which is 

solved for the time derivatives of the algebraic variables in Step 5. 

Step 6 completes the process by showing that the derivatives of the 

state and algebraic variables are made available to the integration 

algorithm. 
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At the beginning of the solution of Equations (13) and (14) using 

the Implicit method, the numerical integration method will require 

initial conditions for the state variables and the algebraic variables. 

Initial conditions for the state variables and some of the algebraic 

variables may be provided by examining the initial state of the physical 

system which Equations (13) and (14) describe. (However, it is possible 

that some or all of the algebraic initial conditions may not be deter-

mined in this manner without solving a set of algebraic equations) In 

this case another solution method for algebraic equations such as the 

Newton-Raphson 

initialize the 

method may be used once fa 
algebraic variables.~ 

the start of the solution to. 

Some important differences should be pointed out between the 

Implicit method explained above and the Newt<;>n-Raphson method. During 

each iteration, the Newton-Raphson method improves its solution values 

by applying solution correction equations developed from Taylor series 

expansions of the algebraic equations (see Appendix A). Since the 

Taylor series expansions are truncated and usually only include the 

first-order terms, the solution correction equations used are approxima-

tions to the true solution correction equations (those including all 

terms in the Taylor series). Therefore, the correction equations must 

be applied repetitively until the solutions are sufficiently corrected 

or the method diverges. 

A Newton's method has been developed which uses solution correction 

equations that include through th.e second-order Taylor series terms (32). 

This method usually converges more rapidly than the first-order Newton-

Raphson method. However, the second-order method is more difficult to 

apply since it requires second-order partial derivatives of the algebraic 
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equations to be derived and evaluated in addition to the first-order 

partial derivatives required by the first-order method. 

The Implicit method makes no approximations in the solution of the 

algebraic equations except those included in the numerical integration 

method. The method requires approximately the same number of computa-

tions to calculate exact values for the time derivatives .of the algebraic 

equations as required for one iteration of the first-order Newton-Raphson 

method. 

~igh-order numerical integration method may be used in conjunction 

with the Implicit method in order to minimize the error in solving for 

the algebraic variables. For example, a method such as a fourth-order 

Runge-Kutta method may be used (31). This integration method is approxi-

mately as accurate as numerical integration using a Taylor series 

expansion of the solution variables wh,ich is truncated after the fourth-

order terms. However, the Runge-Kutta method does not require derivative 

values above the first-order as required by a high-order Taylor series 

integration method. 

A Modified Implicit Method for the Simultaneous 

Solution of Modeling Equations With 

~lock-Oriented Organization 

The Implicit method may be adapted for use with block-oriented 

modeling equations. 
th For the h block (component) of a system contain-

ing t blocks, the block-oriented modeling equations may be written as: 

~2' •.. ' ~rh' ~qh' 

i = 1, 2, ... ,nl\i, 

. ' ~ 't)' 
Ph 

(17) 



and 

or 

= <\i. (~l' ~2' • • • ' ~ ' yhl' yh2' • • .J h .· . ' 

1, 2, •• 

c 
'iik = ~k vhk' k = 1, 2, • • • ' Ph' 

. ' 
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(18) 

(19) 

vhk = vhk (~l' ~2' · · · ' ~1\i,t), k = l; ?, · · · ' Ph' 

(20) 

(21) 

Equations (20) and (21) illµstrate the two allowable equations fori:ns for 

defining dependent port variables. Each of the ph dependent port vari­

ables in Block h must be defined as a function of time and the state 

variables within Block h (Equation (20)) or as the product of a constant 

and one algebraic variable within Block h (Equation (21)). Equation. 

(19) illustrates the relationship of the kth independent port variable 

in Bloc~ h, 'iik' to the dependent port variable at the port of the block 

c 
connected to Port k, vhk• As discussed concerning Equation (7) in an 

earlier section of this chapter, the term v~k is used in Equation (19) 

since, due to generality, the port and block which are connected to 

Port k of Block h are undetermined. 
c The variable v in Equation (22) pq 

represents the variable shown as vrs in Figure 5, and apq is ±1 depend­

ing on a port variable sign convention. 

Equation (18) d.efines the first-order· time derivatives of the 1\i 

state variables within Block h, and Equation (17) illustrates the 1\. 

algebraic equations containing the 1\. algebraic variables within Block 

h. Equation (17) and Figure 8 show that the independent port variables 



COMPONENT b 

1\1 

PORT 

vbl 

. 
• • 

'\irh 

v 
hrb 

COMPONENT a 

VC • V • b • 
bl a£ a£ Yan 

be • e 
• bl ybl 

1 PORT £ 

COMPONENT a 
e v • v 
hrb i3P 

b ' be ' c 
• i3P Ya~ • hrh Yhrh 

rb PORT p 

COMPONENT y 

ve •v =v (xl,x2,. • .,x ,t) 
1---1--T-- hqh yi: yi: Y y yny 

PORT i: 

COMPONENT d 

1--~---+--v~pb = vdlll = vdlll(xdl'xd2'""xdnd ,t) 

PORT Ill 

EACH OF THESE rb 

COMPONENT PORTS HAS 

A DEPENDENT PORT 

VARIABLE WHICH IS 

A FUNCTION OF AN 

ALGEBRAIC VARIABLE 

EACH OF THESE Ph - rb 

COMPONENT PORTS HAS 

A DEPENDENT PORT 

VARIABLE WHICH IS 

A FUNCTION OF TIME 

AND STATE VARIABLES 

Figure 8. Connections Between Independent Port Variables 
of Component h and Dependent Port Variables 
of Other Components 

32 



33 

within Block h may be divided into two groups. As shown in Figure 8, 

each of the first rh independent port variables of Block h · (~1 through 

t\ir ) is connected with a dependent port variable (v~1 through v~rh) of 
h 

another bl<;>ck (a. through S) and the dependent port variable is a fl.me-

tion of-an algebraic vatiable (ya.n through ySA) within the connected 

block. The remainder of th.e independent port variables, ~q through 
h 

u. (where 
nph 

qh = ·rh + 1), are connected with dependent port variables 

(vh · through vb_ ) of c;>ther blocks 
qh . · Ph 

(y thro~gh o) and are functions of 

time and state variables within the connected block. 

The Implicit method may be derived for the block-oriented modeling 

equations by evaluating the·derivatives of the aJ,.gebraic functions in-

Eqilatiol;l. (17) as 

dFhi 
--= dt 

i=:l, 2, ••• '1\_· (22) 

The chain rule is used to expand the terms in the third sul.llillB.tion group. 

of Equation (Z2) and yields 

(23) 

where the dependent port variable of the port which is connected to Port 

j of Block h is a function of the algebraic variable y~j. (In ot:her. 

words, the dependent port variable of ~lock a. in Figure 8 is shown as 

ya.n' but the term y~1 will be used for Ya.n when it is unimportant or 

impossible to determin.e which port is connected t<;> Port 1 of Block h.) 
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Equation (23) IllB.Y also be written as 

(24) 

where 

(25) 

Equations (23) and (24) demonstrate that the algebraic eq1,1ations of 

Block h, Equation (17), are implicitly (but not explicitly) a function 

of algebraic variables within blocks other than h. This is accomplished 

by the independent port variables ~l' ~2 , ••• , ~rh in Equation 

(17) and Equations (19) and (21). 

The chain rule may also be used to expand the terms in the fourth 

summation group of Equation (22) as 

(26) 

c 
where, if Port e of Block f were connected to Port i of Block h, dvhi/dt 

in Equation (26) may be evaluated by 

(27) 

Since the right side of Equation (22) is equal to zero, Equations 

(22), (24) and (26) may be combined to form Equation (28) below. After 

evaluation of its terms, Equation (28) may be solved for the time de-

rivatives of the algebraic variables which are then available to the 

numerical integration routine. 

Figure 9 shows the steps required for applying the Implicit method 

to solve the block-oriented modeling equations. Step 1 shows that the 



a F12 I a F12 

a y11 * a Y12 * 

"1 I ml 

a Yu* 

a F21 

ayn * 

a F22 I 
a Yu * 

a F1 ml 
a Fl 

ml 

a Y12 * 
ay 

lm1 * 

aF211 ···aF21 

a Y12 * a Y1m1 
* 

-- ---a F22 I ... a F22 

a y 12 * d y lml * 

a F£-m 
• • • £, 

a Yl 
ml 

~ ml 

a Y21 * 

a F21 I 
a Y21 * 

a F22 

a Y21 * 

"1m I "1.m 1 .. . 1 

a Y22 * ay 
R.mR, * 

a Fz11 •.• a F21 -- --
a Y 22 * a Y £-m£-

* 

a F 221 •• • a F 22 -- ---
a Y 22 * a Y tm£-

* 

a Yo 
,,m£, * 

dyll 
dt 

dyl 
ml 

dt 

dy21 

.dt' 

dy22 

dt 

dv~k _a F11 ) 
dt at * 

a u1k dv~k a F12 ) -------
" c dt at * 
o Vlk 

•1 " . •1 " c aF ) t l: 1.m1 d"i j _ ~ lm1 a u1k dv ll< _ l":t 
d xl. dt a ulk a c dt a t * 

j=l J k=q Vlk 
1 

( •2 "21 - 2: a x2 . 
j=l . J 

dx, · "2 "21 a •2k dv~k "21) 
Tt -L: a u2k a vc dt' - at * 

k=q2 2k 

( n p c ) 2 a F22 dx2 . . 2 a F22 a u2k dv2k a F22 -1: - ___£L_t: -----
j=l a x2j dt k= a u2k a c dt a t * 

q2 v2k 

(28) w 
1..11 



NUMERICAL 
INTEGRATION YIELDS 

1 

** *** ** "h1 •"!,2 •••• •"!,'\ ,yhl ,yh2 .... ,yh"h. t 

-FOR ALL COMPONENTS-

USING 

cp 
USING THE RESULTS 

7 

OF STEP 4 
EVALUATE 

aFhi I aFhi I a~j I av~j I 
ay~j * a~j *av~.1 *ay~.1 * 

* * * * * vhk • vhk("hl'"h2•"'•"h11,'t) 

EVALUATE ALL DEPENDENT 
PORT VARIABLES 

-FOR ALL COMPONENTS-

EVALUATE 

* * * * * *i,j • Ghj (xhl •"!,2'" '•"!,'\ ,yhl' 

FOR ALL PORTS WHERE 

c 
- b~j • y~j vhj 

APPLIES 

-FOR ALL COMPONENTS-

• EVALUATE 
8 

* * * * * * Yh2'"' ,yh ,uh1'~2'" • ·~ ,t ) 

'\ aFhi I d"hj I £-- + 
j•l a"hj * dt * 

aFhil 

at * 

°h Ph 

j - 1,2, ... •11, 

-FOR ALL COMPONENTS-

EVALUATE 

FOR ALL PORTS WHERE 

vhk • bhk ' Yhi 

APPLIES 

-FOR ALL COMPONENTS-

EVALUATE 

dvhk I • 11, av hk I d"!,j I + 

dt * L: ax. * dt * 
j•l nj 

FOR ALL PORTS WHERE 

avhkl 

at * 

vhk ~ vhk<"h1•"h2•"' '"h11,'t) 

APPLIES 

-FOR ALL COMPONENTS-

• EVALUATE 
6 

i - 1,2, ... ,~ 

-FOR ALL COMPONENTS-

• USING THE RESULTS 
9 

OF STEP 5 
EVALUATE 

Ph aFhil a~k, dv~kl L:---
k•qh a~k *av~k * dt * 

i - 1,2, ... ·"h 

-FOR ALL COMPONENTS-

~ 
SOLVE EQUATION 28 FOR 

dyhl I · dyh2 I· ... . dyh"b I 
dt * dt * dt * 

h - 1,2, ... ,R. 

• OUTPUT 

dyhl I· dyh21 ..... dy~1. 
dt * dt * dt * 

d"hl I d"h2 I d"h I 
--;: : --;: : .... dt'l, * 

h - 1,2, ... ,R. aFhil 

ayhj * TO NUMERICAL INTEGRATION 

j 1:1 1,2, ... •Il\i 

-FOR ALL COMPONENTS-

Figure 9. 

cb 
Algorithm to Solve Block-Oriented 

Modeling Equations by the 
Implicit Method 

10 

11 

36 



37 

generalized integration method furnishes values for the state variables, 

t.he algebraic variables, and time. In Step 2 the dependent port vari-

ables are evaluate4 usiI\g Equati<;>n (20) or Equation (21) for each. 

Equation (18) is used to evaluate the time derivatives of the state 

variables in Step 3 •. 

Step 4 illustrates the eval~ation of avhk/ayhi for all dependent 

port variables which are only a function of an algebraic variable (as 

shown in Equation (21)). From Equation (21) 

(29a) 

Step 5 uses Equations (20) and (2 7) and the results of Step 3 to evalu-

ate the tim,e derivatives of all dependent port variables which are 

functions of time and state variables (as shown in Equation (20)). 

Steps 6 and 7 are used to evaluate the terms of the first array in 

Equation (28). Step 6 evaluates partial derivatives of·the algebraic 

functions (Equation (17)) with respect to all algebraic variables expli-

citly contained in the functions. Step 7 uses the results of Step 4 and 

Equations (17), (19) and (25) to evaluate the partial derivatives of the 

algebraic functions with respect to all algebraic variables not explicit-

ly included in the functions. 

Steps 8 and 9 illustrate the evaluation of the terms in the right-

most vector of Equation (28). Step 8 uses the results of Step 3 and 

Equation (17). Step 9 t,ises the results of Step 5 and Equations (17) and 

(19). 

After the completion of Step 9, all terms are evaluated in Equation 

(28) except the time derivatives of the algebraic variables. Step 10 

represents th.e solution of Equation (28) for these variables. 
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Step 11 ends the algorithm by illustrating that the time derivatives 

of the algebraic ~d state variables are ma.de available to the numerical 

integration algorithm. 

An Algorithm for Separating Algebraic Equations 

With Block-Oriented Organizations Into 

Separate Sets 

In the previous sections of this chapter, all of the algebraic 

equ,ations from a system have been considered to form one equation set. 

This assumption usually causes a large, sparse matrix to be formed dur-

ing the solution of these equations which is similar to that formed in 

other solution methods (25, 26). However, 1.llllike these other methods, 

the Newton-Raphson and Implicit methods explained in this study allow 

the set of algebraic equ,ations to be. separated into s,everal SDfiller 

sets. This separation is usually possible for complex hydraulic systems 

and is highly desirable since the number of operations required to solve 

a set of .equati.ons increa.ses apiroxima.tely a. s the third power of the 

number of equations in the s~assuming a method such as Gaussian elimi­

nation is used in the solution (31). For example, if a large set of 

equations is separated into two smaller sets of equal size, the number 

of operations required for a solution will be redu,ced by approximately 

75 percent. 

The method for separating a set of algebraic equations into several 

smaller sets is based only upon the coupling of algebraic variables be-

tween the equations. However, for modeling equations with block-oriented 

organization, it will be seen that the method is complicated by the fact 

~ 
I 



40 

that independent port variables in the algebraic equations of one block 

may implicitly introduce algebraic variables from another block. 

For a specific system, the separation process may be initiated by 

examining the blocks contained in the system and forming a list of all 

the algebraic equations contained in the system. (Algebraic equations 

may be identified by block number and algebraic equation number within 

the block.) For each algebraic equation entered into the equation list, 

a secondary list must be formed which identifies the algebraic variables 

explicitly contained in the algebraic equation. (Algebraic variables 

may be identified by block number and algebraic variable number within 

the block.) Algebraic variables which are implicitly contained in the 

algebraic equation must also be. added to the secondary list. These may 

be located by checking the port of each independent port variable con­

tained in the algebraic equation. If the port is connected to another 

port with a dependent port variable which is a function of an algebraic 

variable, this algebraic variable is implicitly contained in the alge­

braic equation under examination and must be added to the equation's 

secondary list. The remainder of the steps in the separation process 

are shown in Figure 10 and listed below. 

1. Start a new set by transferring the first equation from the 

equation list into the new set (removing its entry in the equation list) 

and by examining its associated secondary list. 

2. Search the secondary lists of the remaining equation list 

entries to identify any equations containing one or more of the alge­

braic variables in the secondary list placed under examination in Step 

1 (or Step 3). Transfer any equations found with matching variables 

into the new set and remove their equation list entries. 



---------- --------- ---

NO 

NO 
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I = I + 1 
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ADD ANY FOUND 

.TO NEW SET 

SET IS COMPLETE 

SEPARATION 
IS COMPLETE 

Figure 10. Algorithm for Separating Algebraic 
Equations Into Sets 
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3. Repeat Step 2 for the secondary list of each equation placed 

into the new set. When all secondary lists of the equations placed in 

the new set have been examined, the set is complete. 

4. If any equation entries remain in the equation list, an addi­

tional set may be formed by starting with Step 1 and repeating the above. 

When no more entries remain in the equation list, the separation is com­

plete. 

A Combined Algorithm for the Solution of 

Modeling Equations With Block-Oriented 

Organization 

An algorithm may be formed fo+ the solution of block-oriented moqel­

ing equations by combining the solution methods shown in Figures 6 ~nd 

9. Some advantages of the resulting algorithm are: 

1. The Newton-Raphson technique may be used to calculate the 

initial values of all the algebraic variables. 

2. The algorithm may be strl)ctured to solve modeling equations 

containing multiple sets of algebraic equations resulting from the 

application of the separation method shown in Figure 10. 

3. After initialization any algebraic set of equations may be 

switched from the Newton-Raphson solution method to the Implicit method 

or back to the Newton-Raphson method at any point in time without affect­

ing the solution of any other algebraic set. 

As shown in Figure 11, the combined algorithm receives specific 

values of time, the state variables, and any algebraic variables included 

in algebraic equation sets to be solved by the Implicit method (hereafter 

called Implicit variables). After receiving these specific variable 
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values, the combined algorithm uses the methods of Figure 6 to solve for 

specific values of any algebraic variables included in algebraic sets 

not to be solved by the Implicit method (hereafter called Newton-Raphson 

variables). At this point, specific values are known for all algebraic 

variables and the methods of Figure 9 may be used to determine the time 

derivatives of all Implicit variables. The passing of these derivative 

values and those of the state variables to the generalized integration 

method completes the combined algorithm. 

The above algorithm must be modified slightly when used iµ con~unc­

tion with a generalized integration method which requires past values of 

derivatives of the variables being integrated. The explicit Adams inte­

gration methods are methods of this type (31). As shown in Figure 11, 

the combined algorithm will not furnish to the numerical integration 

algorithm derivative values of algebraic variables included in eq~ation 

sets being solved by the Newton-Raphson technique. Consequently, the 

integration algorithm will not contain past derivative values for any 

Newton-Raphson variables if it should be desired to convert a set of 

algebraic equations from Newton-Raphson to Implicit solution. However, 

this problem may be remedied by performing Steps 7 and 8 of the combined 

algorithm for any set being solved by the Newton-Raphson method which 

may later be solved by the Implicit method.· 



CHAPTER·Iv 

APPLICATION OF SIMULATION ALGORITHMS 

Some of the numerical algorithms and the computer program organiza­

tion discussed above have been implemented in the HYDSIM (HYDraulic 

System SIMulation) program. HYDSIM is a transient analysis program which 

was primarily designed for the simulation of complex hydraulic systems. 

However, it may be used to simulate any type of continuous system which 

may be modeled by sets of nonlinear algebraic and differential equations. 

This chapter introduces the program and presents an example simulation 

problem. 

HYDSIM - A Block-Oriented Simulation 

P+ogram for Hydraulic Systems 

HYDSIM is an interpreter type of computer program which uses a 

stored library of component models in conjunction with optional user­

supplied models to simulate a system. The program is written in FORTRAN 

IV. The program controls all branching between component·models, and the 

HYDSIM user is not required to write any FORTRAN programs unless he is 

furnishing a special component model. In addition, no special ordering 

of the input data entires is required to obtain a correct solution. · 

No emphasis has been placed on the solution of any one type of com­

ponent or component model in the HYDSIM program. Instead, an emphasis 

has been placed on treating a group of components as a system. All 

45 
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components in a hydraulic circuit are treated similarly and all modeling 

equations are solved in a simultaneous manner without special constraints 

on allowable compone~t configurations. 

The HYDSIM program conta~ns a library of standard component models 

such as valves, accumulators, cylinders, loads, etc. (1). The models 

have bee~ developed for these components usin~ multiport modeling tech­

niques and all significant nonlinearities have been preserved. If the 

library components are not adequate for a simulation, the program user 

may code special component models (each in a FORTRAN IV subroutine) and 

add them to the program. These component subroutines may be added to 

HYDSIM temporarily by including them with the program input data or added 

permanently by program modification. 

Two types of block-oriented input data formats are accepted by 

HYDSIM. The fixed-format type of input is processed very rapidly by 

HYDSIM, but the user must takE1- care to place entries in the proper card 

columns. The free-format type of input allows the user to place circuit 

description entries in any card columns and in any order. Both types of 

input data are subjected to an error analysis to check for parameter and 

circuit description errors. HYDSIM also has a rerun capability and will 

accept simulation data in a .batch mode. 

Program output consists of printer plots and tabulated values of 

user specified circuit variables. 

Multiple solution methods are available in HYDSIM. The methods use 

a fourth-order Runge-Kutta or Adams-Moulton method to solve the differ­

ential equations and the Newton-Raphson or Implicit method to solve the 

algebraic equations. One of three combinations of these methods may be 

specified by an input entry as: 
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1. Runge-Kutta and Newton-Raphson. 

2. Adams-Moulton and Newton-Raphson. 

3. Adams-Moulton and Implicit. 

All of the solution methods solve the modeling equations in a simultane­

ous manner without ma.kin~ any unusual approximations and without using 

variable values from a previous point in time when a current value should 

be used. 

The Adams-Moulton and Implicit solution method used by the HYDSIM 

program incorporates the combined solution algorithm discussed in the 

previous chapter. The·algorithm is programmed to determine the initial 

conditions and perform the first three time steps using the Newton­

Raphson technique and fourth-order Runge-Kutta integration. After vari­

able values have been computed at these first four points in time, all 

integration is performed by a fourth-order Adams-Moulton integration 

method and the algebraic equ~tion sets are switched to the Implicit solu­

tion method. The HYDSIM program also monitors the accuracy of the 

Implicit solution of each algebraic set and returns any set being solved 

inaccurately to the Newton-Raphson solution method until accurate Impli~ 

cit solution may be obtained. 

The changing of solution algorithms for a set of algebraic equations 

requires methods for determining when to change. Since the Implicit 

algorithm uses a fourth-order Adams-Moulton predictor-corrector numerical 

integration algorithm to solve for the algebraic variables, the amount 

of truncation error occurring in~ solution may be.indicated by comparing 

the predicted and the corrected values for each variable. If these 

differ by more than a fixed amount (see the "HYDSIM User's Manual" (1) 

for a more complete discussion of the error criteria), the algebraic 
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set containing the erring variable is changed to the Newton-Raphson algo­

rithm for solution using the predicted values as starting values for the 

iteration. An algebraic set which has been switched to the Newton­

Raphson solution algorithm will continue to use this algorithm for solu~ 

tion until each of several consecutive Newton-Raphson solutions (usually 

two) has been completed in less than a fixed number of iterations. At 

this point it is assumed that the algebraic set may again be solved 

accurately by the Implicit algorithm and the set is returned to Implicit 

solution. 

HYDSIM Simulation of a 

Fuel-Injection System 

As an example of the us~ of the algorithms discussed in the previous 

chaptei;, the HYDSIM program has been used to simulate the mechanical and 

hydraulic parts of the fuel-i'1jection system shown in Figure 12. This 

system would be used on a four-cylip.der automotive type of engine and 

contains four injectors which are a~tuated in pairs. Injectors 1 and 3 

are actuated first followed by 2 and 4. This simulation could be used 

to study the possibility of fuel starvation at the injectors. Starvation 

might occur because of the differing methods of pairing the injectors for 

fuel supply and actuation. 

The block diagrams which were used to develop the HYDSIM simulation 

of the fuel-injection system are shown in Figures 13, 14 and 15. Figure 

13 shows the blocks used for each injector, Figure 14 shows·the blocks 

used for the regulator, and Figure 15 shows the remainder of the system. 

All blocks were represented by standard HYDSIM library component models 
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except the displacement forcing fllllction shown in Figure 13 which was. 

programmed for this simulatioµ. 

The HYDSIM simulation of the fuel injection system included 26 
\\ 
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first-9rder differential equations and 27 algebraic equations. The alge-

braic equations were separated i~to 5 sets of 1, 6, 6, 6, and 8 equations. 

Figure 16 shows a graph 9f the pressure at the inlet of Injector 2 

during the first eight milliseconds of time after system start-up from 

a c9ndition 9f steady regulator flow with no injector actuation. Appen-

dix C shows a copy of .the HYDSIM input for this simulation and additional 

graphs of system variables. 

During the simulation, integration was performed with a step size of 

0.00001 second and, a total of 800 steps. A group 9f 15 pairs of port 

variable values were printed out at every tenth integration step with a 

total of 81 groups printed,. 

Three simulation r\llls were performed using three different solution 

methods and the computer execution time was recorded for each. A fourth 

rllll was performed for one integration step to evaluate initialization 

time. All r\llls were performed separately on an IBM 370 Mod,el 155 com-

puter with no other jobs executing in the computer system. Execution 

times were: 0.06 seconds for initialization, 2.26 seconds for the Rllllge-

Kutta and Newton-Raphson solution meth9ds, 1.22 seconds fqr the Adams-

Moulton and Newton-Raphson solution method, and 0.95 seconds for the 

Adams-Moulton and Implicit soluti9n method. For the latter method, error 

monitoring of the Implicit method resulted in algebraic equation sets 

being reset nineteen times to the Newton-Raphson solution method. The 

Implicit method was used for 98 percent 9f the algebraic equation set 

solutions. S9lution values from the three solution methods were 
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comparable. The solutions were usually identical to four digits of 

accuracy (all that were printed out) with all values agreeing within 

±0.5 percent except when magnitudes of the compared values were much 

smaller than one. 

Discussion of Results 
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The results of the application of the algorithms contained in this 

study for the simulation of complex systems have been illustrated by the 

simulation of an automotive fuel-injection system. Three different solu­

tion methods were used to produce equivalent simulation runs for this 

example, and a comparison of the results of these runs will illustrate 

the capabilities of the solution algorithms used. 

The fuel-injection system simulation used ten component model blocks 

from the HYDSIM library and resulted in the solution of 26 differential 

equations and 27 algebraic equations. The algebraic equation separation 

algorithm separated these algebraic equations into five sets with each 

containing from one to eight equations. The set of eight contained equa­

tions from four different components and each of the three sets of six 

contained equations from three different components. Each set.was solved 

simultaneously by the solution algorithms; 

The fuel-injection example illustrates one of the major advantages 

of the block-oriented algorithms given in this study. These algorithms 

allow various component models to be programmed individually and then 

connected for a simulation in any manner which matches port variables. 

Therefore, many simple components may be programmed for the HYDSIM com­

ponent library and later connected in a simulation to form a more complex 
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component as illustrated by the fuel-pressure regulator shown in Figure 

14. 

A.comparison of the computer time required for each of the simula­

tion runs indicates the relative speeds of the algorithms. However, some 

problems exist in determining how much computer time was spent during 

each run on solving the algorithms and how much time was spent doing 

other things such as printing. 

The computer used for the simulation runs was an IBM 370-155 operat­

ed in a multiprogrammed environment (IBM MFT), but the simulation runs 

were performed one at a time with no other jobs executing in the computer 

system. Consequently, execution time spent on computer interrupts was 

minimized. In an attempt to evaluate the amount of computer execution 

time required during each run by the IBM Operating System and required 

by HYDSIM for initialization, a fourth simulation run was made which 

performed initialization and one integration step (compared to 800 steps 

for the three comparison runs). Subtracting this execution time from the 

time of the three comparison runs and comparing the results yields: 

1. The Adams-Moulton-Newton-Raphson solution method required 30 

percent more execution time than the Adams-Moulton-Implicit method. 

2. The Runge-Kutta-Newton-Raphson solution method required 147 

percent more execution time than the Adams-Moulton-Implicit method. 

The above comparisons would show an increased spread in performance if 

printing time (the same for each of the three runs) could also be evalu­

ated and subtracted from the execution times. 

As would be expected due to the fewer number of derivative evalwi­

tions required per time step, the solution methods employing the Adams­

Moulton integration method were faster than the method employing 
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Runge-Kutta when equal integration step sizes were used. (No comparison 

was attempted for different step sizes.) Of the two runs using the 

Adams-Moulton integration method, the run using the Newton-Raphson method 

for solution of the algebraic equations required 30 percent more execu­

tion time than the method using the Implicit solution method. It should 

also be noted that similar execution time comparisons have been noted 

during HYDSIM simulations of other systems. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The Implicit method has been presented as a noniterative method of 

solving nonlinear algebraic equations which are coupled with differential 

equations, and the method has been incorporated into the computer program 

HYDSIM, a transient analysis program for hydraulic systems. The Implicit 

method utilizes a "conventional" numerical integration algorithm to solve 

the nonlinear algebraic equations in a manner s.imilar to the differential 

equations. Tqe method uses the single solution of a linear set of alge-. 

braic equations. to evaluate each set of algebraic variable derivative 

values required by the integration algorithm. Since this linear equation 

is very similar to the linear equation which must be used iteratively 

when the Newton-Raphson method is employed, the Newton-Raphson method may 

easily be added to the Implicit method for calculating the initial values 

of the algebraic variables. 

Comparative simulation runs of the HYDSIM program for an example 

have shown the Implicit•method to be 30 percent faster than the Newton­

Raphson method and to have an equal accuracy in most cases. This agree­

ment in accuracy might have been expected since the Implicit method uses 

an exact method to evaluate algebraic derivative values and produces no 

truncation error except that incorporated in the integration algorithm. 
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Further investigation may show that the Implicit error monitoring scheme 

employed in HYDSIM is unnecessary. 

The HYDSIM program has been developed as an engineering tool to 

reduce the effort which was previously required to simulate the response 

of a multicomponent hydraulic system. The program contains a library of 

previously programmed hydraulic ~omponent models which the program user 

may use in any connection configuration (port variables must match at 

connections). In addition, the HYDSIM program user may add component 

models to the program which have been represented by coupled algebraic 

and ordinary differential equations.. The program has a block-oriented 

input format and will accept fixed or free format data. 

Although the HYDSIM program and the Implicit method have been dis­

cusse4 for use in the simulation of hydraulic systems, their use ·need not 

be limited to this. The Implicit method may be used to solve any set of 

algebraic equations as the independent variable is varied if any or all 

of the equations in the set are an explicit function of the independent 

variable. In addition, the Implicit method may be used to solve any sets 

of coupled algebraic and differential equations as the independent vari­

able is varied. However, it should be noted that any application of the 

Implicit method assumes that all required partial derivatives exist and 

may be evaluated for all required values of the independent vari.able. 

Recommendations for Further Study 

One could spend a lifetime making improvements in a large computer 

program such as HYDSIM and in its associated algorithillS. However, some 

of the areas in which improvements would be most beneficial are: 
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1. Develop a simulation alg0rithm which does not require the match­

ing of port~variable depe~dencies at the component connections. 

2. Perform, any modifications which would decrease the time required 

to execute the simulation algoritqms without reducing their flexibility 

nor accuracy. 

Some methods for reducing algorithm execution time might be: (1) 

removing the Implicit method error monitor; (2) implementing sparse mat­

rix methods for the solution of linear algebraic equations; and (3) eli­

mi~ating the double subscripting method shown in the block-oriented 

modeling equations and used in HYDSIM. The first two methods given above 

may not be appropriate and further investigations will have to be per­

formed to justify these changes •. 
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APPENDIX A 

THE NEWTON~RAPHSON METHOD 

The Newton-Raphson method can be used to solve.a set of algebraic 

equations. When applied to a set of nonlinear algebraic equations, the 

method effectively substitutes the iterative solution of a set of linear 

equations for the more difficult task of solving the nonlinear equations. 

The method requires an initial set of 'approximations to the solution set. 

The Newton-Raphson method can be derived.from a truncated Taylor 

series expansion of the algebraic equations abo~t an approximate solution 

point of the equations. Given a set of m algebraic equations of the form 

0 = Fi (y 1 , y 2 , • • • , y m) , i = 1, 2, • • • , m (30) 

and the approximate solution y~, 0 0 
Equation (30) be Yz' . . . ' Ym' may 

expanded in the Taylor series 

(yl, ym) 
0 0 0) F. Yz' . . . ' F. (yl, Yz' . . . ' ym l. l. 

m ClF. 
2: l. 

(yj 
0 

+ - yj) Cly. 0 
j=l J y 

m m a2F. 

~ L: l. 
(yj 

0 0 
+ - yj)(yk - y ) + • . . ' ay. ayk 0 k j=l k=l J y 

i = 1, 2, . . . , -m, (31) 

where the bar and y0 to the right of partial derivative implies that the 

derivatives are to be evaluated at the approximate solution y~, y~, 

0 • • • , y . The truncation of the series in Equation (31) to retain 
m 
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only the linear terms and the combination of this with Equation (30) 

yields 

m oF. 
0 0 0 0 L: l. 

(yj 
0 = F. (yl' Y2' . . . ' y ) + - y j)' l. m ay. 0 

j=l J y 

i = 1, 2, . . . ' m. (32) 

Equation (32) may be rearranged and written in vector-matrix form as 

oF1 oF1 oF1 0 0 0 0 

ay1 ay2 ay (yl - yl) -Fl (yl, Y2' . . . ' ym) 0 0 0 y y m y 

oF2 oF2 oF2 0 0 0 0 

ay1 ay2 ay (y2 - Y2) -F (yl' Y2' . . . ' ym) 0 0 0 2 y 

0 
y 

y 

0 
y 

m 

oF 
m 

y 

ay o m y 

(33) 

The solution of Equation (33) for (y. - y~) where i = 1, 2, • • . , m 
l. l. 

gives values which may be added to the corresponding approximate solu-

0 tion values, y .. Ideally, these additions would yield the solution 
l. 

value~ yi; however, in most cases the exact solution values will not be 

obtained because of the truncation of the Taylor series. Instead, a 

value of y. will be obtained which is not the exact solution, but closer 
l. 

to the exact solution than y~ if the Newton-Raphson method is convergent 

(33). This closer approximate solution may then be used to repeat the 

Newton-Raphson method to obtain a still closer solution. In this 

manner, the method can be repeated until a sufficiently accurate solution 

is obtained. 
th 

It is convenient to rewrite Equation (33) for the k 



iteration as 

aF1 SFi 

ay1 k ayz y 

aF2 aF2 

ayl k ay y m 

. . 

k y 

k y 

k 
y 

••• 

aF1 

aym k y 

aF2 
ay k m y 
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( k+l k 
k k k 

-Fl(yl' Yz' ... 
' ym) y - y ) 1 1 

( k+l k) k k k y . - y -Fz(Yi' Yz' . .. ' ym) 2 2 

= 

(34) 

Figure 17 shows a flow chart for a method of using Equation (34) 

to solve Equation (.30) • 

It should be noted. that Equation (30) could also have been written 

as 

* * • • • , xn, Yi' Yz' ••• , ym, t ), 

i = 1, 2~ ..• , m~ (35) 

where the asterisks indicate that specific values of the variables 

x1 , x2, ••• , xn, t have been substituted into the equations. 



ENTER WITH 

k = 0 

EVALUATE 

k k k 
Fi(yl,y2, ••• ,ym) 

i=l,2, ••• ,m 

i=l,2, ••. ,m 

j = 1,2,.~.,m 

SOLVE 
EOUATION 34 FOR 

( k+l k) 
Yi - Yi 

i = 1,2, •.• ,m 

k+l k k+l k. 
Yi· = y. + (y. - Y~) 

1 1 1 

i=l,2, •.. ,m 

YES 

NO 

k = k+l 

ANSWERS ARE 
k+l k+l k+l 

Y1 ,y 2 '. •. ,y m 

Figure 17. Algorithm to Solve Equation (30) by the Newton-Raphson 
Method 
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APPENDIX B 

A MODIFI~D NEWTON-RAPHSON METHOD 

Appendix A derives the equations to be used in the Newton-Raphson 

method for the solution of algebraic equations of the form 

0 = Fj_ (y 1 , y 2 , • • • , y m) , i = 1, 2, • • • , m. (36) 

This appendix modifies the equations derived in Appendix A for the solu-

ti on of n algebraic equations of the form 

0 = Fi (y l' Yz' . ' yn' ul, u2, . . . ' u ) ' q 

i = 1, 2, . . . , n, (37) 

where 

• ' q. (38) 

Because the u-variables have been introduced into the algebraic equations 

and because the u-variables are defined in terms of the algebraic vari-

ables as shown in Equation (38), partial derivatives used in Equation 

(34), aF./ay , must be replaced by the terms 
1 r 

(39) 

Therefore, Equation (34) may be rewritten in the following form (Equation 

(40)). Figure 18 shows a flow chart for a method of using Equation (40) 

to solve Equations (37) and (38). 
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k=O 

EVALUATE 

k k k k 
uj = uj (yl'y2' ••• ,yn) 

j=l,2, ••• ,q 

EVALUATE 

k k k k k k 
Fi(yl,y2' 000 'yn,ul,u2' 000 'uq) 

i = 1,2, ••. ,n 

EVALUATE 

i = 1,2, ••. ,n 
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EQUATION 40 FOR 

( k+l k) 
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i = 1,2, ••• ,n 

i=l,2, ••• ,n 

NO 

k = k+l 

ANSWERS ARE 
k+l k+l k+l 

Y1 ,y2 , ••• ,yn 

Figure 18. Algorithm to Solve Equation (37) by the 
Newton-Raphson Method 
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APPENDIX C 

A HYDSIM EXAMPLE 

The response of the fuel injection system shown in Figures 13, 14 

·and 15 was simulated using the HYDSIM computer program. The simulation 

started from a condition of steady regulator flow with no injector actu­

ation and was carried out for eight milliseconds of real time. 

Figure 19 shows a copy of the HYDSIM input data cards and Table I 

describes the components used in the simulation. Additional information 

on HYDSIM components and usage can be found in "HYDSlM User's Manual" 

(1). 

All of the components used in this simulation are contained in the 

HYDSIM component library except the displacement forcing function used 

to actuate the injectors. This component was programmed for this simu­

lation. It determines displacement as a function of time by performing 

linear interpolation on time-displacement points given in the input data. 

Figures 20 and 21 show the resulting injector actuations. The first 

three data cards shown in Figure 19 initialize internal HYDSIM tables 

to include this displacement component. The component model was pro­

grammeq in a FORTRAN IV subroutine and submitted with the data cards at 

execut:Lon. 

Figure 16 shows the pressure at the inlets of the injectors. This 

pressure is identical at the inlets of all the injectors since both 
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&ADD COMPONENT 
SPECl,3,10,1,0,0,0,DISP 

&END 
&FREE 
&RKIV 
&* ************************ RUNGE-KUTTA TEST ********************** 

TF=0.008, DT=0.00001, PM=lO, NEWT0Na200 
1(1)=8(l)P, 8(2)P=2(3)G, 2(2)•5(2), 2(1)=3(2) 
3(1)=5(3)P, 3(3)=6(3)P, 5(1)=6(2)P 
6(1)=7(2)P, 7(l)P=9(1), 9(2)=10(l)PG, 10(2)P•ll(l) 
11(2)zl2(1), 9(3)G=29(2), 9(4)•30(2) 
PRESSR/1,12/, TEE/2,6/, CYLIDX/3/, VALV2B/5/ 
VOLUME/7/, LINE2/10/, PUMP/11/, LINEl/8/, CROSS/9/ 
1/10*0/ 
3/4,4,-0.00245,200,0.l/ 
5/75E3,6.4E-5,0.6,0.25,0,0,l/ 
7/50,75E3,l.5/ 
8/0,180,0.500,6.4E-5,75E3,2.9E-8,0,10,-.46/ 
10/0,168,0.375,6.4E-5,75E3,2.9E-8,50,55,-.46/ 
ll/2.9E-8,0.02,0,0,0,0.61E-8,157/ 
12/10*0/ 
14(2)=16(1), 16(2)P=23(1), 16(3)P=24(1), 30(1)=14(1) 
23(2)=27(1), 23(3)=19(1), 24(2)=28(1), 24(3)=20(1) 
LINE2/14/, TEE/16/, DISP/19,20/, VALV2B/23,24/ 
PRESSR/27,28/, LOSS21/30/ 
14/0,12,0.25,6.4E-5,75E3,2.9E-8,50,50,0/ 
19/0,.0005,-.0l,.002,-.0l,.0025,0,.008,0,0/ 
20/0,.004,0,.0045,-.0l,.006,-.0l,.0065,0,.008/ 
23/75E3,6.4E-5,0.6,0.0182,0,0,2/ 
24/75E3,6.4E-5,0.6,0.0182,0,0,2/ 
27/10*0/ 
28/10*0/ 
30/l,.5,.25,6.4E-5,-10,50/ 
13(2)=15(1)," 15(2)PG=21(1), 15(3)PG=22(1), 29(1)=13(1) 
21(2)=25(1), 21(3)P=l7(1), 22(2)=26(1), 22(3)P=l8(1) 
LINE2/13/, TEE/15/, DISP/17,18/, VALV2B/21,22/ 
PRESSR/25,26/, LOSS21/29/ 
13/0,12,0.25,6.4E-5,75E3,2.9E-8,50,50,0/ 
17/0,.0005,-.0l,.002,-.0l,.0025,0,.008,0,0/ 
18/0,.004,0,.0045,-.0l,.006,-.0l,.0065,0,.008/ 
21/75E3,6.4E-5,0.6,0.0182,0,0,2/ 
22/75E3,6.4E-5,0.6,0.0182,0,0,2/ 
25/10*0/ 
26/10*0/ 
29/l,.5,.25,6.4E-5,-10,50/ 

&END 

Figure 19. Input Data for HYDSIM Simulation of Fuel-Injection 
System 
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COMPONENT 
NUMBER 

1 
2 
3 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

TABLE I 

HYDSIM COMPONENTS USED IN SIMULATION 
OF FUEL-INJECTION SYSTEM 

LIBRARY 
NAME 

PRES SR 
TEE 
CYLIDX 
VALV2B 
TEE 
VOLUME 
LIN El 
CROSS 
LINE2 
PUMP 
PRES SR 
LINE2 
LINE2 
TEE 
TEE 
DISP 
DISP 
DISP 
DISP 
VALV2B 
VALV2B 
VALV2B 
VALV2B 
PRES SR 
PRES SR 
PRES SR 
PRES SR 
LOSS21 
LOSS21 

COMPONENT LOCATION 
OR DESCRIPTION 

Exhaust Pressure For Regulator Return Line 
In Low-Pressure Side of Regulator 
Cylinder In Regulator 
Two-Way Valve In Regulator 
In High-Pressure Side of Regulator 
In Regulator. 
Line At Low-Pressure Side of Regulator 
Four-Port Connector 
Line At Pump Outlet 
Constant Speed Pump 
Pressure Source At Pump Inlet 
Fuel Line Leading To Injectors 1 And 2 
Fuel Line Leading To Injectors 3 And 4 
At Inlet To Injectors 1 And 2 
At Inlet To Injectors 3 And 4 
Displacement Function For Injector 1 
Displacement Function For Injector 2 
Displacement Function For Injector 3 
Displacement Function For Injector 4 
Two-Way Valve In Injector 1 
Two-Way Valve In Injector 2 
Two-Way Valve In Injector 3 
Two-Way Valve In Injector 4 
Pressure At Injector 1 Outlet 
Pressure At Injector 2 Outlet 
Pressure At Injector 3 Outlet 
Pressure At Injector 4 Outlet 
Entrance/Exit Loss 
Entrance/Exit Loss 
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pairs are connected into the system through identical lines and loss 

components. Figures 2Z and Z3 show the fuel flow rates through the 

injectors. 
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