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CHAPTER I 

INTRODUCTION 

Statement of Problem 

Rutting, as evidenced by vertical deformations in the wheelpaths on 

flexible pavement surfaces, is a serious highway performance problem in 

Oklahoma (55). Rutting is due to traffic action and it affects the quali

ty of ride in two distinct ways. First, rutting tends to define the po

sition of vehicle wheels on the pavement, i.e., wheels slightly displaced 

tend to be directed back to points of maximum rutting, making steering 

more difficult at high vehicle speeds. Second, rutting tends to chan

nelize and retain free surface water along the wheelpaths during and 

after rainfall. This surface water acts at the tire-pavement interface 

to form an effective lubricant so that the intended frictional resis

tance at this interface is not mobilized and surface slickness results. 

In extreme cases. the interfacial phenomenon referred to as "hydroplan

ing" occurs and this is a definite traffic safety hazard. This channel

ization also allows drainage of more surface water into intersecting or 

transverse cracks and thus into the underlying pavement layers to deter

iorate the asphalt-bound materials (27), and to soften the subgrade 

materials. 

1 
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Method and Scope of Study 

Field and laboratory observations·indicate three major modes of rut-,:' 

ting. Regarding the bituminous bound layers, these modes are: 1) post

construction differential densification of one or more of the pavement 

layers, 2) shear failure or lateral displacement of material in one or 

more layers from beneath the wheelpaths, and 3) surface wear or errosion 

of surface material under traffic. In addition, densification (consoli

dation) and/or shear failures in the non-bituminous bound base and sub

grade materials can influence the total amount of rutting. In a specific 

case, :each of these factors may act singularly or in various combinations. 

The primary objective of this research was to investigate rutting on 

high quality flexible pavements and to detect, where possible, evidence 

of contribution of the bituminous bound pavement materials to this type 

of failure. This research did not deal directly with the influence or 

contributions to rutting of the subgrade soils and the non-asphalt bound 

base materials. 

A transverse profile apparatus was developed to plot the profile of 

the pavement surface perpendicular to the centerline. Rut depths could 

be scaled directly and humps outside the wheelpath locations detected 

from the transverse profile tracings. Heaving or humping adjacent to 

ruts was considered an indication of outward or lateral creep of mater

ial from beneath the wheelpaths. 

Four inch diameter (10.16 cm) cores of the asphalt bound pavement 

materials were recovered at selected points across the pavement. The 

percent density values of the respective subdivisions of the core sam

ples were determined and compared. Significant differences in the per

cent density values between materials in the wheelpath locations and 
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those outside the wheelpaths were considered as evidence of differential 

densification. Correlation between laboratory densities and field mea

sured nuclear-densities at the selected sites was also attempted. 

Stereo photography was employed to obtain quantitative estimates of 

differential wear in the wheelpath locations. Also, visual rating of 

the pavement surface conditions was made at each test site so as to pro

vide comparative data for the study of trends at these locations. 

Sixteen test sites were selected on two interstate highway systems 

(I-35 and I-40) in Oklahoma. Performance of four test sites of flexible 

pavements constructed on each of the following types of base course ma

terials were studied: 1) hot mix sand asphalt (HMSA), 2) soil-cement 

base (SCB), 3) black base (BB), and 4) stabilized aggregate base course 

(SABC). 

Classical statistical methods, using the Statistical Analysis Sys

tem (SAS) computer program, was employed in the analysis of test data. 

Traffic volumes were not counted at the time of testing and the recorded 

in-service age of the pavement sections at the test sites were estimated 

from.construction completion records obtained from the research section 

of the Oklahoma Department of Highways (OOH). 



CHAPTER II 

REVIEW OF PREVIOUS OBSERVATIONS AND RESEARCH 

Introduction 

An asphalt pavement structure is a layered system composed of an as

phalt surface course, an asphalt leveling course, and a base course ma

terial supported by the subgrade soil. The following types of base course 

materials are used by the Oklahoma Department of Highways: 1} portland 

cement treated soil usually referred to as soil-cement base {SCB}, 

2} soil-stabilized aggregate material (SABC}, 3} an asphalt bound select 

aggregate material or black base {BB}, .and 4} a hot mixed sand-asphalt 

material (HMSA}. Sometimes, layers termed 11 subbase 11 or 11 improved sub

grade11 or both, are also included in the structure. 

The load-carrying capacity of an asphalt pavement structure is 

brought about by the load-distributing characteristics of the layered 

system. Because the pavement structure consists of a series of layers 

with the highest quality materials at or near the surface of the pavement 

{the surface and the binder or leveling courses), the strength of the 

system is a result of building up thick layers to distribute traffic 

loads safely over the base course and to the subgrade rather than by the 

bending action of the slab {98).· ·Wheel loads act on the pavement as com

pressive load pulses. These loads are then transmitted through the pave

ment layers to the underlying subgrade soil in the form of stress pulses. 

During the process of load distribution, the stresses are largest at the 

4 
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surface {equal to the contact pressure) and decrease non-linearly with 

increases in depth (16). · By proper selection of pavement materials and 

with appropriate depth and strength of the structure, the pavement layers 

spread the load stresses until these become small enough to be safely 

supported by the subgrade. 

The Bituminous Mixture 

The bituminous mixture consists of graded mineral aggregates {non

mineral aggregates can be used) and an asphalt cement mixed together and 

compacted in layers to form a solid mass. The compacted mixture utilizes 

the cohesive strength of the asphalt material, the frictional resistance 

developed between the aggregate particles and the interlocking resistance 

that is introduced in the compacted structure of the aggregate combina

tion (76) to distribute the traffic load stresses to the base or subgrade. 

For a given degree of compaction, the strength components of the bitumi

nous mixture will depend on the individual properties of the mineral 

aggregate combination and the. asphalt binder, and the interaction between 

these materials. 

Mineral Aggregate 

Particle Size and Gradation •. Much has been written on the effects 

of aggregate gradation and particle size on the characteristics of the 

bituminous mixtures, however, opinions and conclusions are not completely 

consistent. 

According to Hargett (76} the term 11 size of particles 11 needs quali

fication in a discussion of the effects of particle size on the proper

ties of the bituminous mixture •. Bituminous mixtures are actually affected 
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by the maximum size of particles, the minimum size of particles, and the 

gradation of particle sizes within these size limits. Particle size dis

cussed in terms gradation and gradation limits affects the amount of as

phalt required for stability, density, workability, and the performance 

characteristics of the pavement. A large percentage of coarse particles 

tends to produce harsh mixtures and creates problems in the laydown oper

ations. Poorly graded aggregate combinations have high void ratio, re

quire high asphalt content, and usually produce low stability mixes. On 

the other hand, fine-grained mixtures are workable but they usually lack 

the stability developed in a well graded aggregate combination. 

With regard to gradation, Regal (80) has noted a tendency for bitu

minous surfaces to rub and shove when constructed from aggregates having 

11 humps 11 in their gradation curves. In comparison, Naughton (60) believes 

that there is a fairly wide band of tolerance within which the gradation 

curve can shift, without changing, appreciably, the fundamental charac

teristics of the mixture as regards.bitumen requirements, density, and 

stability. 

Benson (12) has pointed out the importance of maximum size of aggre

gates with regard to bitumen requirements, workability and economy of the 

mixture. In an experiment utilizing sand with 100 percent passing the 

No. 4 sieve and 42 to 100 percent passing the No. 20 sieve, it was found 

that when the percentage passing the No. 20 sieve was increased from 42 

to 100 percent, the Marshall stability dropped from 920 to 490 lbs., and 

the optimum asphalt content increased from 5.5 to 9.2 percent. Also, it 

was found that as the gradation became denser, degradation decreased. 

For the materials used, the gradation and aggregate size range did 



influence the strength and stiffness characteristics, permeability, as

phalt content, workability, economy and skid resistance of the mixture. 

7 

Foster's series of tests (29) revealed that the true capacity of 

dense-graded mixtures to resist traffic induced stresses was controlled 

by the characteristics of the fine aggregate. In these tests, the mix

tures incorporating coarse aggregates exhibited better stress-distribut

ing capabilities than those which utilized only fine aggregates. 

Though often associated with low stability, sand mixtures may pos

sess some good desirable properties. From his experience in Virginiat 

Britton (15) noted the tendency for local sand mixtures to wear or abrade 

faster than normal mixes. In some cases, the weardown was sufficient for 

a driver to notice an elevation difference immediately adjacent to the 

wheelpath. Even so, Britton observed that the sand mixes always provi

ded an excellent skid-resistant surface. 

Shape of Particles. The shape of the aggregate particles affects 

the interlocking resistance that is developed in the compacted mixture. 

Laboratory tests conducted by Hargett (76) indicated that about 25 per

cent of the shearing resistance in a dense-graded mixture was developed 

in the form of interlocking resistance. Also, the shape of the aggre

gate particles appeared to affect the void content and the workability 

of the mixture. 

In a literature survey, Benson (12) summarized the results of the 

work of Herrin and Goetz (1954) in the study of the effects of aggregate 

shape on the stability of bituminous mixtures as follows: 

1) When the percentage of uncrushed gravel in the coarse aggregate 

fraction increased, the strength varied with grading, and decreased as 
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the grading became denser. This was also true for mixtures incorporating 

natural sand aggregates. 

2) For one-sized grading (zero percent fine aggregate), the strength 

increased directly and substantially with increasing percentages of 

crushed gravel. The substantial increases in strength was attributed to 

changes in internal friction. Cohesion remained essentially the same. 

3) In open-graded mixtures (about 39 percent fine aggregates), an 

increase in the percentage of crushed gravel from zero to 55 percent pro

duced a slight increase in strength; percentages of crushed gravel above 

55 gave no further increase in strength. The angle of internal friction 

did not change for varying percentages of crushed gravel, however, cohe

sion increased as the percentage of crushed gravel increased from zero 

to 55 percent. 

4) The strengths of dense-graded mixtures were not influenced by 

the percentage of crushed gravel. 

5) In all gradings (one-sized, open, and dense), greater strengths 

were shown by crushed stone than crushed gravel.· The increased strength 

was attributed to increased cohesion. 

6) Regardless of the coarse aggregates used, the strengths of both 

dense- and open-graded mixtures increased when the fine aggregate was 

changed from rounded sand to crushed limestone. The increases caused by 

changes in fine aggregate were much larger than those caused by changes 

in the angularity of the coarse aggregates. The strength increases were 

attributed to increases in cohesionq 

7) Because substantial strength was derived from internal friction, 

it was concluded that the aggregate grading was more of a determining 

factor.for strength than the aggregate shape. 
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In a research study on the properties of mixtures incorporating 

large-sized aggregates .of different particle shapes, Kalcheff (40) found 

the angularity of aggregates contributed significantly to the strength 

properties of both the coarse and the fine portions of the mix. Both 

strength properties were associated with mixtures incorporating crushed 

stone aggregates. 

Surface Texture. Hargett (76) has observed in laboratory tests that 

frictional resistance accounts for about 50 percent of the shearing re

sistance that is developed in a dense-graded bituminous mixture. In his 

concluding remarks, the author stated that the frictional resistance 

that is developed between aggregate particles depends on the surface tex

ture of the particles, hence the surface texture has significant effect 

on the stability of the bituminous mixture. This surface property of the 

aggregate was reflected by large increases in the angle of internal 

friction. 

According to Monismith (62) it is desirable to utilize rough-tex

tured materials with dense gradations and to produce well-compacted mix

tures in thick pavement sections because these factors tend to increase 

mixture stiffness. 

Benson's literature survey (12) points out that stability of road 

aggregates depends primarily on the internal friction and mechanical ar

rangement or interlocking of individual particles of the mass. The two 

strength components are affected by the degree of compaction, particle 

slope or angularity, surface texture, and grading of the aggregate com

bination. 
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Other Desirable Properties 

To satisfactorily perform as the major medium for stress distribu

tion the mineral aggregate must also be tough enough to withstand the 

action of rolling during construction and the action of traffic without 

breaking up or degrading under the imposed loads. The test used for 

evaluating this property is the Los Angeles abrasion test and is de

scribed in detail in AASHO T-96. Also, the aggregates which undergo 

disintegration under weathering are unsuitable for paving purposes (101). 

Bituminous Binder 

The asphalt binder performs several tasks in the pavement. 1) It 

acts as a cementing agent to bind the aggregate particles together and 

keep them in proper position to transmit the applied loads. 2) It inter

acts with the aggregate particles to develop the cohesive strength com

ponent of the compacted mass. 3) It acts as a waterproffing agent to 

resist infiltration of moisture, and assists in drainage of surface wa

ter. Also it imparts the necessary workability to the system while the 

mixture is still hot and this assists in compacting the mixture to a 

dense masso These functions are very important and any factors which 

reduce the effectiveness of the binder to perform these tasks will di

rectly affect the overall performance of the pavement structure. 

The asphalt material exists in the pavement structure as a thin 

film, When exposed to weathering, the film loses much of its plasticity 

and becomes brittle. In this form, the material loses most of its cement

ing properties and the subsequent cohesive resistance that is developed 

in the pavement structure. Hargett (76) believes that the inherent de

velopment of major increases in shearing resistance in the form of 
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cohesion, is unreliable and explains further that the strength component 

developed in the form of cohesion is subject to deterioration or strength 

loss because of aging and the thermoplastic properties of the asphalt 

binder, 

Several theories are currently used to describe failure modes of 

asphalt films subject to load stresses. Ford (27) refers to one mode of 

failure as 11 film rupture". Film rupture may occur when adhesion of the 

asphalt cement is not uniform over the entire surface of the aggregate. 

The asphalt film tends to be thinnest at sharp corners and edges of the 

aggregate and the effect of traffic may cause the film to fracture. When 

fractured, moisture will enter the asphalt-aggregate interface to cause 

further stripping. 

Majidzadeh and Herrin (53) have explained the dependence of the ten

sile strength of materials on the magnitude of the film thickness when 

tested in thin films by the 11 strength-thickness 11 rule. According to this 

rule, the tensile strength of thin films of a material when tested in 

tension, increases as the thickness of the film decreases. Experiments 

with thin films of asphalt cement indicated similar results. The tensile 

strength decreased as the film thickness increased and the tensile 

strength approached a constant value which did not change as the film 

thickness was increased. The film thicknesses used in the experiment 

ranged from 10 to 1000µ. For the type of asphalt cement studied, the 

tensile strength-film thickness relationship was linear on a semiloga

rithmic scale. Three types of failure were observed: brittle fracture 

occurred in thin films; thick films failed by flow and necking; the fail

ure of intermediate film thicknesses was by tensile rupture and was char

acterized by the formation of cavities and filaments in the film. 



12 

Two theories can be used to accurately predict the tensile strength 

of asphalts in thin and thick films. These theories are the Hydrodynamic 

theory. (64) and the Theory of Potential Energy and Cavities (51). 

Hydrodynamic Th.e?!'Y. According to this theory, the rhea 1 og i ca 1 

(flow) behavior of thin layers of viscous materials placed between two 

parallel plates and subject to tension, varies with the thickness of the 

layer. As the film thickness decreases, the stress required to deform 

the material increases to a certain value. In a Newtonian liquid subject 

to tension, the material flows horizontally between the two parallel 

plates in addition to deforming in the direction of the applied stress, 

i.e., shear stresses are also present. Because the inward movement of 

the material in contact with the plates is prevented, the theory assumes 

that the flow perpendicular to the direction of the applied stress at any 

other plane is a parabolic function of the distance between the two plates. 

Hence the inward movement, which is a parabolic function of the film 

thickness, is considerably smaller in thin films, i.e., a larger stress 

is required to deform thinner films. 

The Theory of Potential, Energy and Cavities. According to this 

theory, the strength of a material that fails in pure tension is partly 

a function of secondary valence forces between adjacent molecules. With 

an increase in distance be4ween molecules, the repulsive forces diminish 

more rapidly than the attractive forces. So the attractive forces govern 

the strength of the material. The energy associated with the attractive 

forces is inversely proportional to the sixth power of the distance be

tween the adjacent molecules. Tensile rupt~re occurs when the applied 

force equals the maximum force due to the potential of the bonds. Mater

ials ·with closely packed molecules are characterized by molecules of low 
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potential energy and have higher theoretical tensile strength than mater

ials .with loosely packed molecules. 

Because cavities are associated with an increase in volume and are 

dependent on the tensile strain, it can be concluded that film thickness 

influences rupture stresses. Mack's experimental and theoretical inves

tigation (51) indicate an optimum film thickness. When tensile strength 

was plotted against film thickness on a logarithmic scale, it increased 

linearly with film thickness up to an optimum thickness, then decreased 

linearly with further increase in film .thickness. 

Summary 

The stress distributing characteristics of a paving mixture result 

from aggregate-binder interaction. When adequately compacted, the cohe

sive strength of the asphalt is utilized to bind the aggregates together 

and prevent dilation of the mixture under loads. The major strength 

components of the compacted mixture are therefore derived from the inter

nal friction and the interlocking resistance developed in the compacted 

mixture. To help develop these major strength components, all attempts 

should be made to exclude moisture in the mixture since moisture tends 

to weaken the bond between the mineral aggregates and the asphalt cement. 

Mix Design 

The purpose of the design of asphalt paving mixture is to select and 

proportion raw materials to obtain a desired product (94). The overall 

objective, however, is to determine an economical blend and gradation of 

aggregates and asphalt that yields a mix with: 1) sufficient asphalt to 

insure adequate coating of the mineral aggregates and a durable pavement, 
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2) sufficient mix stability to satisfy the demands of traffic without 

distortion or displacement, 3) sufficient voids in the compacted mixture 

to allow for a slight amount of additional compaction under traffic load

ing without flushing or.bleeding and loss of stability, yet enough to 

keep out harmful air and moisture, and 4) sufficient workability to per

mit efficient placement of the mixture. The Asphalt Institute {61) pre

sents detailed procedures of three major mix design methods. These 

methods, the Marshall, the Hubbard-Field and the Hveem methods are cur

rently being used with satisfactory results. 

The Hveem method uses a stabilometer, a cohesionmeter and swell 

tests to determine the suitability of a mixture for paving purposes. The 

stabilometer test utilizes a special triaxial,-type testing cell to measure 

the resistance of the compacted mixture to lateral displacement under 

vertical loading. The cohesiometer test, on the other hand, measures 

the cohesive or tensile resistance that is deve.loped in the mix. The 

swell test measures the resistance of the mixture to the action of water. 

The Marshall method uses a stability value and a total deformati.on 

value referred to as. 11 flow 11 , to determine the suitability of the mixture.· 

The Hubbard-Field method, utilizes only a stability test to predict the 

strength characteristics of the mixture. 

While stability values of compacted specimens often form the basis 

for.selection of optimum asphalt contents to be incorporated in the paving 

mixture, stability numbers, as measured by the mix design methods, do not 

rate mixtures on their capability to withstand stresses induced in the 

mix. · Foster {29) reported that two mixtures described by similar stabil

ity numbers which lie on either side of the optimum on a Marshall stabil

ity curve will not exhibit the same strength characteristics; i.e., a 
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lean mix will not exhibit the same strength characteristics as an overly 

rich mix. 

Extensive experiment has also been conducted by Hadley and others 

(34) to determine correlation between direct tensile test results and 

those of the Hveem stabilometer and cohesiometer tests. Based on the 

series of specimens tested, acceptable correlations were found for the 

following comparisons: 

1) modulus of elasticity versus cohesiometer value 

2) tensile strength versus cohesiometer value 

3) tensile strain versus cohesiometer value 

4) Poisson 1 s ratio versus stability, and 

5) tensile strain versus stability. 

No acceptable correlation was obtained for the following comparisons: 

1) modulus of elasticity versus stability 

2) tensile strength versus stability 

Although, stability values do not directly rate paving mixtures ac

cording to their capacities to resist induced stresses they do aid the 

engineer in determining the optimum asphalt content for the mix. For a 

given type and gradation of aggregate, the amount of asphalt incorporated 

in the mixture determines, to a large extent, the thickness of the asphalt 

film, ·and directly affects the amount of air voids in the mixture, all 

other factors remaining constant. The test property curves for hot-mix 

design data by the Marshall method indicate large decreases in percent 

air voids as the amount of asphalt (percent by weight) increases. As more 

void spaces are filled with asphalt, the rate of decrease in air voids 

gradually decreases with increasing asphalt content. The percent voids 

in the mineral aggregate (VMA), ·consists of the volume of voids plus the 
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volume of asphalt expressed as a percentage of the bulk volume of the 

compacted mixture. A curve plotting VMA versus the percent asphalt con

tent (by weight) shows a minimum at the optimum asphalt content. Any in

crease in asphalt content above the optimum results in an increase in 

VMA and increases the asphalt film thickness between adjacent aggregate 

particles. Therefore, according to the strength-thickness rule (53), 

increases in asphalt content above the optimum will directly decrease the 

tensile strength of the mixture and encourage a flow-type failure. This 

situation will almost certainly result in premature rutting. 

From durability point of view, the amount and distribution of air 

voids in the compacted mixture is very important (61). Asphalt expands 

about twenty times more than the aggregate does in the temperature range 

sooF to 1350F (22). When expansion takes place, the excess asphalt flows 

to occupy some of the void spaces in the mixture. Deficiency in voids 

will therefore encourage flow of the asphalt to the surface of the pave

ment to create the condition referred to as 11 bleeding 11 in the literature 

(61, 101). Excess voids, on the other hand, will allow free circulation 

of air and moisture in the mixture to oxidize the asphalt and deteriorate 

the bond between the asphalt and the aggregate. 

Pavement Performance Characterization 

Effect of Traffic Loads 

Pavement response to loads depends on the nature and magnitude of 

the applied load. A study of the types of wheel loads actions is, there

fore, a prerequisite to the understanding of the nature of stresses that 

are induced in the pavement structure by traffic. Although many papers 

have been written about pavement materials response to loading (3, 9, 17, 
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21, 35, 39, 64, 96, 97, 103, 108, 110), there is a notable absence of ex

perimental data on tire actions on pavement surfaces under normal highway 

conditions. Because of this lack of information and other unknown varia

bles, the structural design of highway pavements had taken the form of 

empirical techniques (39, 65). As a result, it is generally recognized 

that the relationships between traffic loadings and pavement performance 

developed at road tests apply only to the "conditions at the test site 

and direct application of the interrelationships in other areas is not 

valid. 

In the absence of experimental data for pavement/tire interactions, 

however, soil/wheel interactions, usually studied in the field of terra

mechanics, may be used to characterize the types of actions at the tire/ 

pavement interface. In their study of soil stresses, Wong and Reece (107) 

rolled a rigid wheel (2000 lb. axle load) over soil materials including 

loose sand, dry sand, and compacted sand. They observed two stress zones 

and one main failure surface AD (Fig. 1). Under the action of the wheel, 

the soil in the region ABC moved upward as the rim moved around the in

stantaneous center, I. The soil appeared to slide along AC producing po

sitive tangential shear stress. Between points A and D, the soils moved 

in the opposite direction (backward). The authors (107) remarked that 

the zone AD was fairly long and approximately parallel to the wheel rim 

so the squeezing out action was small enough to be neglected. 

Onafeko et al. (69), and Kirk (45) have carried out extensive exper

imental investigation concerning stress fields under slipping rigid 

wheels on soils. Elsammy and Ghobarah's (23) theoretical approach agrees 

with the findings of Onafeko and Kirk. At the point of slipping, the 

soil mass under the rigid wheel tends to flow in the direction of rotation 
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of the wheel. Also the loads on the wheel tend to compress the soil ma

terials immediately under the wheel. The flow zone was characterized by 

three modes of behavior (Fig. 2): 

Mode 1: The soil mass outlined by wedge I was described to be in an 

active state of equilibrium as the rigid wheel was on the verge of push

ing into the soil body. When the soil is in the state of plastic flow, 

the soil in this zone spreads in a horizontal direction. 

Mode 2: The soil mass outlined by wedge II was described as a zone 

of radial shear failure. The lines that constitute one set in the shear 

pattern in this zone radiate from the outer edge of the wheel-soil con

tact surface at point 0. 

Mode 3: The soil wedge III, on the other hand, was considered to 

be in a passive state of limiting equilibrium. In the state of plastic 

flow, the soil in this wedge is compressed laterally and causes the sur

face to rise. 

Grenshaw (31) has conducted detailed experiments to study the effects 

of wheels on soils. In Grenshaw 1 s experiments, a high-flotation aircraft 

tire loaded to 5000 lbs was towed through a soil bin containing buckshot 

clay and Virginia river sand. His major findings may be summarized as 

follows: 

1) prior to the point of planing, the wheel applies a drag load on 

the soil at the point of tire/soil contact. 

2) there is a tendency for incremental increase in rut depth caused 

by the application of brake torque. 

Grenshaw was of the opinion that the drag load response of the wheel on 

the soils used in his experiments was similar to the drag load response 

of a wheel hydroplaning on a water-covered hard surface and recognized 
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the differences between the two phenomena. The tire on soft soil is near 

its maximum penetration into. the soil whereas the hydroplaning tire is 

free of the pavement surface at its hydroplaning speed. 

Wiendieck (104) has observed three major stress zones (Fig~ 3). In 

his evaluation of stresses under rigid wheels rolling on soft soil, he 

characterized zone A as a wedge of soil being shoved or bulldozed ahead 

of the wheel, and zone C as an elastic zon~ that resists slippage stres

ses. He referred to the B zones as zones.of lateral flow.· Wiendieck 

described the behavior of materials in this ~one as tending to undergo 

downward and sideward movements in a complicated manner. This finding 

can be used to explain some of the causes of permanent deformations that 

occur on asphalt pavements in service. These deformations.are discussed 

later. 

Summary 

Though not exactly the same,-the actions of rigid wheels can be used 

to predict the actions which vehicle tires.tend to apply to highway pave~ 

ments. These types of tire/pavements interaction may be summarized as 

follows: 1) vehicle wheel loads tend to apply a kneading action on 

materials in front of the wheel and the direction of stresses is parallel 

to the direction of the travel (Fig. 3), ·2) in the opposite direction, 

the wheel tends to apply slippage or shear stresses on the pavement,· 

3) in the direction perpendicular to the direction of travel, the wheel 

tends to apply shoving action on the materials, 4) the wheel loads also 

tend to apply compressive stresses on the pavement material directly under 

the wheel, and 5) all these actions are cumulative; they act on the pave

ment surface in the form of stress pulses. 
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Response to Loading 

Elastic Deformations. Under applied wheel loads, bituminous pave

ments undergo both elastic and plastic deformations (14, 65). These de

formations occur in both the longitudinal and the transverse directions 

to form a deflection basin. The elastic deformations are recoverable up

on removal of the load. However, complete recovery is gradual and depends 

on the magnitude and duration of load, temperature, and stiffness proper

ties of the pavement materials. Sometimes, complete recovery of this 

portion of deformation is not achieved before subsequent load coverages. 

Theories for predicting elastic deformations consider the pavement 

material as an ideal material of some kind (34, 65, 110) and assume that 

the primary response of the pavement structure can be defined by its me

chanical state (65), as a result of the applied loads. Laws of classical 

physics are then employed to determine the stress-strain relationships 

and to formulate constitutive equations (mathematical models) of response. 

Because of the complexities in the behavior of subgrade materials and the 

fact that the bituminous pavement.constitutes a layered system, deforma

tion values obtained using these methods are approximate. The degree of 

accuracy resulting from use of any of these theories will depend on how 

close the assumptions, upon which the theory was developed, relate to the 

field conditions. Some of the commonly used theories are discussed in 

the following sections. 

Boussinesg's Theory .. This theory is based on assumptions of a homo

geneous, isotropic, and perfectly elastic mass that extends infinitely 

in all directions below a level surface. Use of the Boussinesq's defor

mation equation requires knowledge of the vertical and horizontal stres

ses. The equations give the elastic deformation (due to flexible circular 
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plate loaded at the center) at a depth, z, ~ue to elastic strains in the 

materials between z and infinity, i.e., the equations do not consider any 

ela.stic deformations occurring in the pavement thickness itself; the com

puted deformations.are those which occur in the subgrade materials be

neath the base course layer (110). 

Burmister's Theory. This was the first theory developed to solve 
'" 

the problem of an elastic multi-layered system and was.based on the fol

lowing assumptions: 1) each layer acts as a continuous, isotropic, homo

geneous, linearly elastic medium infinite in horizontal extent; 2) the 

surface loading can be represented by a uniformly distributed vertical 

stress acting over a circular area; 3) the interface conditions between 

layers can be represented as being either smooth or perfectly roug.h; 

4) each layer is continuously supported by the layer·beneath; 5) inertia 

forces are negligible; and 6) deformations throughout the system are 

small (16). Use of this theory requires knowledge of the modulus of 

elasticity of the individual pavement layers and the subgrade material 

(9, 110). The determination of these moduli for the subgrade materials 

and the base course materials are usually done by means of plate-load 

test (5). Although equally approximate, this theory simulates the field 

conditions better than the Boussinesq's theory. 

Westergaard Theory. Westergaard has also used the elastic theory 

to investigate stresses and deflections in layered systems (9). His 

theory considered a thin plate continuously supported by a bed of closely 

spaced, independent springs referred to as the Winkler foundation (dis

cussed later under discrete models). This thin plate theory neglects 

the axial stresses perpendicular to the plate and shearing stresses paral

lel to the plate. Furthermore, the Winkler foundation used by Westergaard 



25 

assumes the foundation to act as a discontinuous medium. - Nevertheless, 

Westergaard's charts.of influence values are often used to predict sub

grade deformations. 

Discrete Models. These are response models where a continuum is 

represented by a system of independent or partially dependent mechanical 

models. In these models, the Winkler model, the Hetenyi foundation, the 

Filomenko-Borodick foundation, the Pasternak foundation, the Kerr model 

and the Tsai-Westmann tensionless foundation are commonly used (65). Al

though some of these models are sometimes employed to predict flexible 

pavement deformations, they are used primarily in the design of portland 

cement concrete pavements~ In general~ the analytical difficulties as

sociated with these models depend on the closeness with which they approx

imate the elastic continum. 

Plastic Deformations. This portion of the total deformation is un .. 

recovered after removal of the applied load, i.e., the deformation remains 

permanent~ Unlike elastic _deformations, plastic deformations .are cummu

lative and depend on the magnitude and duration of loading, temperature 

and the stress history of the material (9, 37, 65). Basic concepts of 

material behavior and constitutive laws of plasticity are currently used 

to predict the onset of plastic behavior. However, because the stress

strain relationships in the plastic range are generally non-linear, plas

tic deformations are not uniquely determined by stresses. Though seldom 

used, numerous criteria have been proposed for predicting plastic behav-_ 

ior, and are based on a concept of either stress, strain or energy (65, 

100): 

1. Maximum Stress Theory: Often referred to as Rankine or Lame

Navier failure criterion, this theory postulates that the maximum 
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principal stress in the material determines failure, regardless of the 

magnitude and sense of other principal $tresses. Therefore, according to 

this theory, yielding begins when the absolute value of the maximum stress 

reaches the yield point of the material as found in simple tension or 

compression tests. This theory is rarely applied in pavement analysis 

because it does not consider the influence of two of the three principal 

stresses and conflicts with experimental information. 

2. Maximum Elastic Strain Theory: This theory was proposed by St. 

Venant (65, 100} and assumes that yielding will occur when the maximum 

principal strain reaches the value of the yield strain in simple tension 

or compression. This theory is contradicted by material behavior under 

hydrostatic tensile or compressive stresses so it is seldom used {65}. 

3. Maximum Strain Energy Theory: This is often referred to as the 

Beltrami's energy theory and assumes yielding will occur when the total 

strain energy per unit volume equals the total strain energy per unit vol

ume at yielding as found in a uniaxial tension or compression tests. In

vestigators have shown that this theory can be extended from the static 

to the dynamic case (100}. 

The Von Mises and the Coulomb-Tresca or Maximum Shear Stress Criteria 

are recognized as the basic theories currently used to predict the incip

ience of plastic yielding in soil and bituminous mixtures, and in mater

ials characterized by ductile behavior (65}. Both theories neglect the 

effect of mean stress and require knowledge of the yield stress in a un

iaxial state of stress to predict the behavior under any combination of 

principal stresses. Also~ the yield stress is assumed to be identical in 

tension and compression. Furthermore, the material is assumed to be iso

topic •. Detailed discussion of these theorie~ dre given in the references 

(65, 100}. 
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Viscoelastic Response. Vi scoel as ti city attempts to represe.nt the 

behavior of real materials by combining time-dependent response and time

independent response models (14, 65). Two types of viscoelastic models 

exist: Linear Viscoelastic and Non-linear Viscoelastic models. 

Two basic models are used to develop a linear viscoelastic (one di

mensional) model. These models are those of linear elastic spring (elas

tic model) and the linear viscous.model as represented by a dashpot 

(stress is proportional to the rate of strain). Generally, linear visco

elastic models employ a basic stress-strain rule to combine the two por

tions of the model. The basic rule states: 

When two models are placed in series, the stress is the same 
in each model, but the total strain is the sum of the strain 
in each model. When two models are placed in parallel, the 
strain is the same in each model, but the total stress is the 
sum of the stresses in each model. 

The linear viscoelastic models in current use are the Kelvin and the Max-

well models. These models have been discussed in detail by Nair and 

Chang (65). 

Linear viscoelastic models are the most widely used in bituminous 

pavement analysis because of their relative simplicity and the closeness 

with which they predict field behavior. Barksdale and others (9) have 

compared measured and computed responses using a linear viscoelastic mo

del. They computed both elastic and permanent deflections for a 3-layer 

pavement system on the AASHO test road.(96). The computed response was. 

in close agreement with the measured response. In their concluding re

marks, it was stated that the viscoelastic theory appeared to give a re

alistic approximation of the actual behavior of a bituminous pavement 

system. 
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Non-linear viscoelastic models only exist as theoretical tools. They 

have not been applied to the analysis of pavement structures because of 

the complexity of the theory, the difficulty in experimentally determin

ing the material functions, and the problems associated with developing 

solutions to the non-linear boundary value problems (65). 

Summary 

The elastic theories used to analyze pavement material response are 

based on assumptions of ideal materials which do not exist in the field~ 

Also, these theories require experimental determination of material func

tions. Because of the fact that experimental determinations.are also 

subject to error, the elastic models do not give any realistic approxima

tion of actual field behavior. Nevertheless, some of them do provide 

reasonably good tools for predicting the onset of plastic behavior. Even 

so, the close.ness of prediction depends to a larger extent, on how well 

the theoretical assumptions simulate the field conditions. Because the 

materials of a flexible pavement system have time dependent stress-strain 

properties, due to consolidation, creep, and temperature effects, the 

viscoelastic approach appears to be an important improvement over the 

elastic methods for predicting performance parameters now recognized as 

relevant in the design and analysis of bituminous pavements. 

Phenomenon of Rutting 

Field and laboratory observations indicate different modes of rut

ting. Foster (29) has observed a situation in which high asphalt content 

mixes shoved out from under the path of traffic wheels and bulged up on 

the sides (lateral creep). Similarly, studies by Regal (80) indicated 
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a tendency for bituminous .surfaces to rub and shove when constructed from 

aggregates having 11 humps 11 in their gradation •. At a symposium on Pavement 

Evaluation, Hartranft (73) cited an example of decreases in density of 

stone base course materials between wheelpaths and referred to this as 

an apparent permanent loss of density. This situation may be due to la

teral creep of material from beneath the wheelpaths to this location thus 

resulting in dilation of the material. 

Wissa (30), and others (59) are of the opinion that pavement mix

tures undergo densification under traffic. In a general discussion on 

the effects of load repetition of bituminous mixtures, Wissa remarked 

that, with repetitions of loads, strains to reach a maximum strength 

tend to decrease as densification occurs, i.e., densification tends to 

increase the stiffness of the bituminous mixture. In a detailed study of 

the performance of full-depth asphalt bases, Shook and others (88) found 

surface rutting to be related to the vertical compressive strain and the 

vertical compressive stress on the subgrade surface. Studies by Nabil 

(41) has confirmed this relationship. In his concluding remarks, Nabil 

noted that present technology is able to recommend criteria for preclud

ing excessive rutting but is not developed enough to confidently predict 

the actual amount of rutting that might occur for any given design situa

tion. Marks and Ford (57) have also studied the effect of density on 

surface performance of bituminous mixtures. In their field investigation, 

study cores obtained adjacent to initial reference cores indicated in

creased densities in the surface course materials ranging from 0.5 percent 

to 7.5 percent of Marshall Laboratory density. It was also found that 

the average rut depth increased with increases in the percent density 

change of the natural gravel mixtures used in the study. 
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Shoving or lateral displacement {lateral creep) and post-construction 

densifi~ation do not appear to be the only factors that contribute to 

rutting. Wear of surface materials can also contribute significantly to 

rutting as was reported by Britton {15). Evidence of pavement wear has 

also been observed in performance studies using studded tires (24). 

Rut depths on high class pavements are usually very small {maximum 

values around 0,5 in. {1.27 cm),·however, data from large scale road 

tests show that rutting on.highway pavements can be substantial. Ramsey 

(79) has reported rut depths up to 1.8 in. {4.572 cm) on granular base 

course materials in Nebraska. The British full-scale design experiment 

{48) also shows rut depths exceeding 3.0 ins. (7.62 cm). Similarly~ data 

from the AASHO road test (96) suggests excessive rut depths in the order 

of 4.0 ins. (10.16 cm). 

Summary 

Three major factors (relative to the bituminous bound layers) appear 

to contribute to rutting of flexible highway pavements. These factors in

clude: 1) post-construction densification; 2) lateral creep of material 

from beneath the wheelpaths, and 3) attrition or errosion of surface ma

terials under traffic. In addition densification (consolidation and/or 

shear failures in the non-bituminous bound base and subgrade materials 

can also influence the total amount of rutting. In a specific case, each 

of these factors may act singularly or in various combinations. 
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Mechanisms of Rutting 

Densification 

The mechanism of densification is best understood by considering the 

stress conditions occurring under the action of a moving load. When a 

wheel load moves past an element of material located beneath the surface 

of the pavement system, the element is subject to stress states similar 

to tha~ shown in Fig. 4 (14). Consider a particular situation tn which 

the moving load is at position A. If the surface frictional resistance 

were neglected, the orientation of the major and minor stresses acting 

on an element located under position B will be as shown by broken lines. 

As the load moves past position A towards position B, the orientation of 

the principal stresses gradually changes and finally assume the orienta

tion indicated by the bold lines when the load reaches position B. That 

is, each element of material under the pavement surface is subject to a 

simultaneous build up of principal stresses (cr 1 and cr3). As these stres

ses build up, a rotation of the principal stress axis occurs. The ten

dency of this rotation and stress build up is to, encourage reorientation 

of aggregate particles in the paving mixture, followed by degradation 

(if the stresses are large enough) and, finally, a decrease in void con

tent or an increase in density. If the paving mixture is already at its 

maximum density, th.en dilation (increase in void ratio) will tend to take 

place. 

The mechanism of densification may also be explained by any of the 

viscoelastic response models or systems consisting of a combination of 

elastic springs and dash pots. Representing the materials beneath the 

thin wearing surface by a viscoelastic medium and assuming no lateral 
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escape of material occurs, it can be inferred that the unrecovered portion 

of deformations upon removal of the load, directly decreases the volume 

of the material, and is a measure of densification due to the applied 

load. 

Densification can also occur as a result of temperature cycling. 

Ellis and others (22) have noticed significant increases in density of 

Marshall briquettes subject to temperature cycling. They attributed 

this type of densification to the behavior of the asphalt binder during 

heating and cooling. Asphalt cement increases in volume by approximately 

3.0 percent over a 100°F (37.7°c) rise in temperature. Over the temper

ature range of the experiment, the asphalt binder was considered to have 

expanded in volume about twenty times more than the aggregate in the mix

ture. This expansion caused the binder material to flow into the air 

voids in the briquette. Upon cooling the asphalt cement contracted and 

pulled the aggregate particles closer together by the action of surface 

tension. This caused the air voids to decrease and the briquette to 

shrink. Their experimental data associated increasing densification 

with: 1) high absorptive aggregates. 2) low viscosity asphalt cement, 

and 3) high asphalt content. It is believed that this type of densifica

tion is not a contributing factor to pavement rutting. Nevertheless, 

thermal densification will develop large contraction stresses in the pav

ing mixture. 

Review of compressive stress distribution in materials under load 

reveals large stresses approaching or approximately equal to the contact 

pressure, in the surface (wearing) course. These stresses become smaller 

at greater depths Fig. Sa. This indicates greater densification in the 

surface layers. When the surface layers attain maximum densities no more 
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densification can occur in these layers and any further densification 

will occur in the underlying layers. That is; densification in the pave

ment materials layers is cummulative. 

The contribution of densification to rutting can be illustrated by 

considering a column of material defined by rigid boundaries at the sides 

and at the base (Fig. 6). Assume this column of material changes in vol

ume from Va to v1 as a result of the applied load P. The height Ha of 

the column is reduced to H1 and the density of the column of material is 

increased. The increase in density reduces the void content in the ma

terial. The percent change in void content can thus be shown to be di

rectly proportional to loss in height of the column of material. That 

is, differential densification contributes directly to rutting on bitumi-

nous pavements. 

Lateral Displacement . 
In addition to tensile and compressive stresses, the vertical com

pressive stress pulses acting on the pavement tend to induce shearing 

stresses in the pavement layers. The induced shearing stresses are re

sisted by the cohesive strength developed by the asphalt-aggregate inter

action and the inter-particle frictional resistance developed in the 

compacted mixture. When the induced shearing stresses exceed the shear

ing strength of the mixture, plastic flnw of the materials beneath the 

loaded area occurs (lla}. Lateral flow of materials from beneath the 

loaded area is evidenced by upheaval of surfaces adjacent to the loaded 

area (Fig. 5b). 

In bituminous pavement structures, lateral creep may occur in the 

surface layer, base course, or in the subgrade soil. These modes of 
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failure are illustrated in Figures 7, 8, and 9. Lateral creep will con

tribute to rutting, however, the amount of this contribution is difficult 

to determine. If an initial transverse profile graph of a new pavement 

surface was made prior to traffic use, then any subsequent upheaval of 

the surface adjacent to the wheelpaths could be measured. The amount of 

upheaval of the adjacent surfaces will provide an estimate of the rut 

depth resulting from lateral flow of material from beneath the wheelpath. 

Estimates obtained this way are highly approximate because of volumetric 

changes the pavement materials undergo in service, and the complex behav

ior of the subgrade soil. Nevertheless, lateral creep can occur in bitu

minous pavement structures (96) and upheaval of surfaces adjacent to the 

wheelpaths is a good indication of this phenomenon. 

Surface Wear 

Wear of pavement surfaces is due to frictional stresses developed at 

the tire-pavement interface as a result of resistance to rotation of the 

tire offered by the surface materials. It is a complicated phenomenon 

and depends on several factors including: The nature of vehicle tire, 

type of tread or stud, strength characteristics of the surface mixture, 

nature of traffic and environmental conditions. On bituminous pavements, 

the slippage stresses which the tire applies to the pavement surface tend 

to polish, fracture loosen and pulverize the matrix. 

According to Keyser (43, 44) bituminous surfaces are worn by a com

bination of three processes: 1) pulverization, cutting and attrition of 

the surface matrix; 2) fragmentation and loosening of the mineral aggre

gate; and 3) loosening and dislodging of the aggregate particles. Keyser 



&> ,. ti. ~ 

l:t ,,. t- . 

t> ~ 

WHEEL 
LOAD 

SURFACE LAYERS 

BASE COURSE 

SU BG RADE 

Figure 7. Lateral Creep {Shear Failure) in Surface Layers 

w 
00 



I> pt> l> 

t> t> 1::. BASE COURSE 
!:> I>~ A~ ,.. U ~ "'1 A 

SUBGRADE 

WHEEL 
LOAD SURFACE LAYERS 

b b ~ ,b t> 

Li b v 
q A 

Figure 8. Lateral Creep (Shear Failure) in Base Course 

w 
~ 



WHEEL 
LOAD 

-------------..:-.- (UH) 
---~------------------. .q >-
/> .·-. ct 
c1 I> 

SUB GRADE 

Figure 9. Lateral Creep (Shear Failure) in Subgrade Soil 

.j::z. 
0 



41 

performed detailed laboratory and field studies using studded tires and 

explained the mechanism of wear as follows:· 

a) The surface matrix wore rapidly at the beginning of the test. 

The rate of wear of the aggregates which was lower than that of the mor

tar was also higher at the beginning. On surfaces incorporating hard 

(lamprophyre) aggregates; the mortar and the sharp edges of aggregates 

wore rapidly until the asperity or the projection of the coarse aggre

gate was approximately equal to the stud protrusion. · At this stage, the 

tire and the studs were chiefly supported by the rounded surface aggre

gate particles and the rate of wear of the mortar remained constant and 

followed the rate of wear of the coarse aggregates. On limestone surfa

ces, the nature of wear depended on the relative wear resistance of the 

constituent coarse aggregate and the mortar. Where the aggregate was 

more resistant, the rate of wear stabilized when the coarse aggregate had 

worn to a constant average protrusion value less than the stud protrusion. 

At that stage, the tire and studs were supported partly by the aggregate 

and partly by the mortar. The surface of the stone particles was much 

rougher than that obtained on the lamprophyre aggregates and was not 

rounded. 

b) When the exposed aggregates reached a depth of embedment of 

about .05 in. (1.20 cm), the aggregates wore out rapidly by fragmentation, 

loosening, and dislodgement. 

c) The powder produced by the wear of the lamprophyre mixture had 

a fairly uniform size, with particles ranging between 0.03 mm and 0.09 

mm. For the limestone mixtures the size of the powder particles was be

tween 0.02 mm and 0.15 mm. The difference in sizes was attributed to the 

difference in hardness and structure of the two aggregates. Limestone, 



being a soft crystalline aggregate was pulverized and fragmented more 

easily than the hard armorphous lamprophyre aggregates~ 
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Effects of Environment. Wear was lowest at near freezing tempera

tures and increased with an increasing or decreasing temperatures. This 

behavior of the wear versus temperature curve was attributed to changes 

in both rigidity of the rubber tires supporting the studs and the stiff

ness of the bituminous mixture with temperature. The hardness of the 

tires increased at low temperatures and decreased at high temperatures, 

so the force required to push the stud into the tire to become flush with 

the pavement surface changed with changes in temperature. At low temper

atures the unit pressure was higher thus causing more wear. The asphalt 

cement, on the other hand, behaves as a viscoelastic, semi-solid material 

with .less cohesion at 70°F (21.1°c) than at lower temperatures. When 

the stud comes in contact with the mixture, it penetrates deeper into it, 

displacing the aggregate particles thus producing more wear by shear and 

dislodgement. At low temperatures, the asphalt becomes brittle. So dur

ing the indentation process the matrix was partly crushed and chipped by 

fracture thus producing a higher rate of wear. 

When the test track was kept wet, the rate of wear on the lamprophyre 

mixture doubled, whereas, the wear ratio between the wet and dry condi

tions for mixtures incorporating limestone aggregates ranged from 1.3 to 

1.7. The increased rate of wear was attributed to loss in adhesion and 

loss in hardness and strength of the aggregates and the matrix due to ab

sorption of water by the surface particles. 

For pavements receiving all year round traffic with standard auto

mobile tires, surface wear takes place at very slow rates, and magnitudes 

of wear are usually very small, In the case of traffic using studded 
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tires during the winter months, however, wear takes place rapidly and 

magnitudes become·relatively large in short periods of time depending on 

the wear-resistance of the surface materials. Preus (78) has observed 

depths of wear on both bituminous and portland cement concrete pavements 

for traffic using studded tires and for traffic using standard, non

studded tires. On one portland cement pavement the depth of wear was 

0.32 after estimated 1.7 million studded tire passes. The depth of wear 

after 2.3 million studded tire passes on the same pavement was 0.4 in. 

(1.01 cm). The depths were measured under a 10.0 ft. straight edge, and 

the midpoint wear depth was 0.1 in, (2.54 cm). On a bituminous surface 

incorporating gravel aggregates the wear depth was 0.41 in. (1.02 cm) af

ter estimated 1.0 million studded tire passes (after 6 winters). The 

surface wear effect on texture was much the same as that of the portland 

cement concrete. In all cases, the wear pattern gradually widened as a 

result of lateral shift of traffic to avoid driving in the roughened 

wheel paths. 

Preus 1 s laboratory study of wear using non-studded tires showed 

0.008 in. (0.02 cm) wear depth on a bituminous surface compared with 

0.006 in. (0.015 cm) on a portland cement pavement, after 4.0 million 

tire passes. Under field conditions, however, greater depths of wear can 

be expected on bituminous surfaces. This increased wear is due to loss 

in adhesion and strength of the surface mixture resulting from the pre

sence of water and changes in temperature. 



CHAPTER III 

EXPERIMENTAL DESIGN 

By definition, the terminology "design of experiment" refers to: 

the specification of treatments whose effects ar~, to be investigated, the 

selection and the arrangement of the experimental units to which specific 

treatments are to be applied, and the specification of measurements to be 

made on each experimental unit (26). 

Initially, it was planned to use a purely statistical approach in 

this investigation. However, as in the case of many other field research 

programs, existing limitations required some departure from the classical 

statistical approach. Some of these limitations pertained to: 1) safety 

of the research personnel on high-speed highways, 2) time restrictions 

related to completing certain phases of the study within an established 

time frame, 3) existence of a particular base course material at an ap

propriate experimental design location on the Oklahoma interstate high

way system, and 4) precise transverse location of the wheelpaths in the 

respective traffic lanes. 

For this investigation, types of base course materials were referred 

to as "treatments". Test sites were selected on flexible pavement sec

tions of interstate highways constructed on four types of base course ma

terials. These base course materials are the four major types commonly 

specified by the Oklahoma Department of Highways: Hot Mix Sand Asphalt 
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(HMSA), Soil-Cement Base (SCB), Black Base (~B), and Stabilized Aggregate 

Base Course (SABC) (92). 

The individual test sites were considered as "experimental units" 

and were picked from locations on the two interstate highways in Oklahoma. 

These highways, Interstate 35 (north-south) and Interstate 40 (east-west), 

roughly divide the state into four quadrants. To be able to detect pos

sible regional differences resulting from climatic variations and the 

subsequent differences in subgrade moisture contents, variations in sub

grade soil types and differences in traffic characteristics, it was 

thought that the "completely randomized block design" (26) would be most 

effective. However, the field limitations mentioned above did not per

mit use of the randomized block design. Tentative selection of the test 

sites (experimental units) was based on performance data obtained from 

the research section of ·the Oklahoma Department of Highways. This infor

mation indicated the design average daily traffic volumes (design ADT) 

of the two interstate highways and the construction completion dates and 

existing paving materials of respective pavement sections on these high

ways. The data also included Benkelman beam deflections and 11 A-frame 11 

rut depth measurements at approximately 176.0 yd. (160 meter) intervals. 

From this performance data, possible test sites were selected, making 

sure that they were evenly distributed over the entire state. 

Preliminary site visits were made to these test sites to: 1) eval

uate the extent of sight distance available to on-coming motor vehicles, 

2} check the vertical and the horizontal alinement, 3) check for the ex

istence of the indicated type of base course materials, 4) visually exam

ine and rate the surface characteristics including estimates of the extent 

of rutting, 5) study the general geometric design characteristics in the 
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vicinity and, 6) mark out suitable test sites as possible candidates for 

final selection. Whenever a site was found to lie on curved section 

(horizontal or vertical) or near interchanges, a substitute test site in 

the same vicinity was picked. Each tentative test site was permanently 

identified by attaching a 4.011 x 6.0 11 orange painted sheet metal marker 

to the right-of-way fence. For the test sites on Interstate 35, the mar

kers were located at measured odometer distances north of the appropriate 

south boundary line of the county in which the test site was located. If 

the location of the site happened to be in the southbound traffic lanes, 

the distance was measured in the northbound traffic lanes. The location 

was temporarily identified in the northbound lane and then projected 

transversely to the west right-of-way fence adjacent to the southbound 

lanes, where it was permanently marked as described above. The sites on 

Interstate 40 were similarly identified. The only exception was that all 

distances were measured east of the west county line in the eastbound 

traffic lane. 

In order to assure the safety of the study personnel on these high 

speed highways, the governing criteria for site selection was that the 

test sites had to lie on straight tangent sections. This was needed so 

that drivers of on-coming vehicles could be given sufficient distance to 

effectively perceive and react safely to the changed road conditions 

caused by the study operations. A minimum of one-half mile (804 meters) 

of unabstructed sight distance was considered necessary to meet this safe

ty requirement. 

To keep the volume of experimental data within the limits practical 

to the planned time schedule, a total of sixteen test sites meeting the 

aforementioned requirements were finally selected for investigation. 
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These included four test sites, comprising two minimum and two maximum rut 

depth sections of pavements constructed on each of the four types of base 

course materials (HMSA, SCB, SABC, and BB). The resulting allocation of 

base course materials (treatments) to the test sites (experimental units), 

though not completely randomized, was considered as a completely random

ized experiment (26, 89) instead of the intended randomized block design. 

In other words, eventhough the effects of regional differences on perfor

mance were somehow allowed for, the final site selection procedure did 

not permit direct classical statistical investigation of the influence of 

regional differences on the performance of the individual types of base 

course materials. 

The data collected from both the field and the laboratory portions 

of this investigation are referred to as 11measurements 11 in the above sta

tistical definition of 11 design of experiment 11 • Specification of types .of 

measurements to be made on the test sites were dictated by the prevailing 

field conditions and lack of desirable information on individual test 

sites~ Absence of initial in-place densities of the asphalt-bound paving 

materials at the selected test sites required the determination of per

cent densities instead of the existing bulk densities alone. To obtain 

the percent density values, two other laboratory values were required: 

the in-place bulk specific gravities and the maximum theoretical specific 

gravities of the existing pavement materials (56). Standard procedures 

for measurement of the theoretical specific gravity were reviewed in 

terms of their relative advantages and Rice 1 s Method (91) was found to be. 

the most appropriate. This procedure, in turn, required that 11 undisturbed 11 

samples (47) be taken from the layered system at appropriate points across 
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the pavement surface. Four inch diameter core specimens were considered 

convenient. 

It was also decided that a nuclear technique (19) be employed to 

measure the in-place bulk densities in addition to the laboratory methods 

of measurement of bulk specific gravities of the core samples. The major 

reason for this additional field measurement was to determine, if possi

ble, a correlation between the nuclear measurements and the conventional 

laboratory measurements. If good correlation were found, the destructive 

laboratory procedure could be replaced by the faster non-destructive nu

clear method for all future research or field testing involving measure

ment of in-place bulk densities. 

In order that the pavement surface configuration could be clearly 

observed, and to accurately measure the rut depths in the wheelpaths and 

possible heaves immediately outside the wheelpaths, it was decided that 

continuous plots of the transverse profiles at the individual test sec

tions be made. Most of the existing profilometers or road meters (71) 

were found to be incapable of producing the required continuous tracings. 

Furthermore, the sizes of those which could possibly be modified to do 

the job made them unfeasible, so a portable transverse profile gage was 

developed for this research investigation. In addition to plotting the 

transverse profiles, the cross-slopes of the pavement surface could also 

be determined with this equipment. 

Some means of measuring or estimating the amount of attrition in the 

wheelpaths was desirable. It was found that a qualitative estimate of 

attrition could be made by means of stereo-photography (84, 85). Stereo

pairs of 35 mm photographs taken at appropriate transverse points on the 

pavement surface were required. Comparison of projections of the surface 
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aggregates in the wheelpaths with those outside the wheelpaths would pro

vide estimates of relative attrition or frictional wear of surfaces in 

the wheelpaths. 

For comparative purposes, two other sets of data were needed. These 

were: 1) estimates of the in-service pavement age, and 2) pavement sur

face condition rating (qualitative) (105). The final field layout of 

test points at a given test site is illustrated in Fig. 10. The geogra

phical locations of the test sites selected for this study are described 

in Appendix A. 
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CHAPTER IV 

DEVELOPMENT OF TRANSVERSE PROFILE 

GAGE AND EQUIPMENT 

A continuous transverse profile tracing apparatus, the "transverse 

profile gage'', was developed for this and future research because the ex

isting profilometers were designed primarily for longitudinal profile 

studies. The few that were designed for transverse profiles, on the other 

hand, were too large to handle and cost more than small to medium sized 

research programs could afford. Furthermore, 'successful operation of 

these equipments required trained personnel and special instrument vehi

cles. 

The portable types including the "A-frame" and the electronic rut 

depth gage (96), for example, are only capable of producing point esti

mates of rut depths. Also, their operational procedures require knowledge 

of the transverse location of the wheelpath whose rut depth is to be es

timated, and their accuracy depends, to a large extent, on the curvature 

or configuration of the rut. Because these variables are usually un

known, measurements made with this equipment are only approximate and can 

be highly erroneous, making them unsuitable for research studies which 

require reasonably accurate measurements of rut depths or upheaval of 

pavement surfaces. 

The transverse profile gage was developed to provide a portable and 

accurate means of obtaining continuous transverse profile graphs. In 
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addition to the measurement of rut depths and heaves outside of the wheel

paths, the plotted transverse profile graphs provide permanent records of 

these conditions at a specific time in the service life of a pavement and 

can be used in future studies. The equipment could also be employed to 

check the transverse profile tolerances usually specified in the construc

tion of highway pavements. 

Transverse Profile Gage 

Essentially, the transverse profile gage consists of: 1) a straight 

edge, 2) a cross-slope device, 3) a trolley system, 4) an 11 X-Y" recorder, 

and 5) electrical installation equipment. 

Straight Edge 

The straight edge was designed to serve as a guide rail and a datum 

plane for the trolley system. The major design requirements were: 

1) that the unit be subject to a minimum amount of temperature distor

tion, 2) that its weight be kept to a minimum to facilitate transporta

tion to and handling at the site, 3) that its length be sufficient to 

span, at least, one traffic lane of an interstate highway without picking 

up vibrations from high speed vehicles in the adjacent traffic lane, and 

4) that its supports be adjustable in height to provide means of increas

ing or decreasing the relative elevations of the datum plane at the sup

port points. 

Temperature distortion was a major problem in the selection of a 

suitable member. In addition to the unavoidable expansion and contrac

tion, a metallic section undergoes twisting and warping when subjected to 

sudden temperature change. These distortions could add to the factory 



or mill imperfections which alone might be greater than was desirable. 

For example, a standard American wide flange steel section could come 

from a mill with an "out-of-square" of 0.25 in. at any cross-section. 

Factory tolerances and temperature suseptibility of similar aluminum

alloy structural sections are equally high, if not worse. 

53 

The weight of the member was also a problem. The unit had to be 

transported to and from the site and it also has to be handled several 

times at the site. Under the expected conditions, it was considered that 

any member that was heavier than one person could conveniently handle 

would create both handling and safety problems. Also, the weight of the 

member would encourage flexural deflections. For this study, flexural 

deflections.exceeding 0.05 in, (0.127 cm) were considered excessive. 

To provide a member that was less subject to temperature distortion 

and yet light in weight, the straight edge was made from magnesium-alloy 

carpenter's framing levels. Two standard 6.50 ft. long carpenters levels 

(1.0 in. wide x 2.25 in. deep I-section) were spliced together on the web 

with two 1.5 in. wide x 8.0 in. long aluminum-alloy plates, 0.3125 in. 

(0.794 cm) thick to provide continuity. The spliced connection was bol

ted along the mid-depth of the web with four 0.25 in. (0.635 cm) diameter 

bolts so the built-up member could be taken apart by removing two bolts 

for transportation to and from the site. The built-up member had a fin

ished length of 13.0 ft. (3.96 cm). The member was also bracketed at its 

mid-length with a dismountable heavy gage steel bracket (38 in. long} to 

provide the desired rigidity and to provide a means of support at the 

mid-span (Fig. 11). 

The straight edge was supported at the ends and at the center. The 

end supports utilized 12.0 in~ lengths of standard 10.0 in. x 2.5 in. 
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(25.4 cm x 6.35 cm) structural steel channel sections as base plate which 

were supported on three leveling screws. These screws were 0.75 in. 

(1.905 cm) diameter bolts, 3.0 in (7.62 cm) long, with spherically shaped 

ends so the height of the base plate from the pavement surface could be 

varied and the entire base leveled by adjusting the screws. The stem of 

the end support system utilized a standard 2.0 in. x 2.0 in. (5.08 cm x 

5.08 cm) structural steel angle 12.0 in (30.48 cm) long which was cen

tered and welded at its lower end to the side of the base plate such 

that the stem stood vertically when the base plate was level. A 0.5 in. 

dia. x 3.0 in. long (1.27 cm x 7.62 cm) steel bolt was screwed to the 

stem to provide a horizontal abutment for the straight edge (Fig. 12). 

The straight edge was fastened to the face of the stem by a 0.5 in. 

(1.27 cm) diameter bolt. 

The base plate for the center support system was,built from three 

pieces of 0.5 in (1.27 cm) thick steel plates and one piece of a stan

dard 8.0 in. x 6.0 in. (20.32 cm x 15.24 cm) structural steel T-section 

as shown in Fig. 12. The threaded steel rod was bolted at its lower end 

to the horizontal leg of the T-section to form a vertical shaft which 

supported the center bracket of the straight edge. A brass nut, bevel

pointed at the contact end, provided a bearing surface for the bracket. 

The brass nut also provided a means of adjusting the elevation of the 

straight edge at this point. A second brass nut firmly held the bracket 

at a desired elevation when tightened. 
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Cross.,.Slope D-evice 
<• 

This is a simple accessory that was attached to the straight edge 

to estimate the average cross-slope of the pavement surface for each 

traffic lane of the highway. 
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A selected 15.0 in. (38.l cm) length was cut from a standard 1.0 in. 

x 1.0 in. (2.54 cm x 2.54 cm) extruded aluminum-alloy angle. One leg 

(vertical) of the member was notched at a distance of 1.0 in. (2.54 cm) 

from one end. The other leg (horizontal) was also notched at a distance 

of 12.0 in. (30.48 cm) from the same end. The vertical leg was pivotted 

to the face of the stem of one support of the straight edge by bolting 

through the notch such that the angle would lie flat on the top surface 

of the straight edge when freed to do so. A dial gage with thousandths 

of inch graduations was attached to the web of the straight edge (by a 

bolt) at a distance of 12.0 in. (30.48 cm) from the end of the straight 

edge so that the neck of the dial gage shaft would freely slide into the 

notch cut through the horizontal leg of the angle section. A torpedo 

type spirit level was placed on the top surface of the horizontal leg to 

complete the fabrication of the device. 

To measure the average cross-slope of a highway pavement, the 

straight edge was first set up transversely across the pavement so that 

the height of the top flange (straight edge) above the pavement surface 

was equal at the two end support points. ·Any mid-span deflection of the 

straight edge was removed by adjusting the height of the center support 

(a detailed procedure for setting up the profile gage is discussed later). 

The aluminum angle was adjusted to lie flat on the top of the straight 

edge. This position established the datum line parallel to a line join

ing the pavement surface at the end support points. The dial gage was 



58 

set to zero and the free end of the aluminum angle was raised vertically 

until the bubble in the spirit level moved to a level position. The ob

served dial gage reading gives the average cr.oss~slope of the pavement 

surface in inches per foot. 

The Tro~ley System 

This portion of the transverse profile gage consists of: 1) a 15-

turn, 2-ohm Helipot helical potentiometer, 2) a 0.5 in. dia. x 4.75 in. 

long (1.27 cm x 12.06 cm) 2-ohm linear potentiometer with 1.5 in. (3.81 

cm) travel, 3) 5.0 in. (12.70 cm) diameter teflon actuating wheel, 

4) four 1.5 in. dia. x 2.5 in. long (3.81 cm x 6,35 cm) nylon rail track 

wheels, and 5) a 9.0 in. x 12.0 in. (22.86 cm x 30.48 cm) aluminum suspen

sion plate 0.5 in. (1.27 cm) thick, Functionally, the helical potento

meter scales the transverse displacements while the vertical potentometer 

gages the vertical displacements of the actuating wheel (Fig. 13). 

The rail track wheels were cut from a 1.75 in. diameter nylon rod and 

machined so that the cylindrical web would freely track along the flanges 

of the straight edge (Fig. 14). The four track wheels were bolted along 

their cylindrical axes to the upper portion of the steel suspension plate. 

The two rows.(upper and lower) of track wheels were centered to freely 

fit the straight edge, as explained above, and to provide a smooth ride 

along the entire span of the straight edge. 

The actuating wheel was cut from 0.75 in. (1.91 cm) thick teflon 

sheet. The outer circumference was slightly crowned and grooved. A 

0.1875 in. diameter circular rubber ring was placed in the groove on the 

outer circumference of the wheel to provide for a smoother ride and to 

minimize permanent circumferential deformations on the relatively plastic 
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Fi gure 14 , Straight Edge and Trolley Unit--(Photo , ) 



teflon wheel. Also, the rubber ring could easily be replaced without 

having to machine a new actuating wheel should excessive wear occur or 

the rubber material become fatigued. 
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The mounting ring on the shaft of the helical potentiometer was fit

ted to an opening cut at the centroid of the actuating wheel. The pro

truding end of the potentiometer shaft was bolted to one end of a pivot 

arm the other end of which was hinged to the aluminum suspension plate. 

There was sufficient tolerance at the hinged connection for free rotation 

of the wheel system about this point. The wheel system was sufficiently 

mass-weighted (5 lbs. approximately) to keep the actuating wheel in con

tinuous contact with the traveled surface. 

The vertical potentiometer was similarly mounted by attaching one 

end to the suspension plate and the other to the axle of the actuating 

wheel such that the stem of the potentiometer remained approximately ver

tical when the shaft of the potentiometer was at its midpoint of travel. 

This was designated as the datum for the vertical potentiometer so that 

both positive (subsidence) and negative (upheaval) deformations could be 

measured. The sensitive portions (the potentiometers) of the trolley 

system were shielded with a plexiglass cover attached to the suspension 

plate. 

A small reel of fine copper cable was bolted onto one end support 

for the straight edge and the end of the cable was hooked to the alumi

num suspension plate as shown in Fig. 13. The trolley could be manually 

cranked in one direction at a fairly uniform speed from one end of the 

straight edge to the other. In this way, induced structural vibrations 

in the straight edge could be minimized and undue deflections that might 

result from 11 push loads 11 on the trolley system eliminated. 
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Electrical Installation System 

Fig. 15, shows a diagramatic sketch of the electrical installation 

system which was employed to provide a source of electrical power to the 

trolley system and to the "X-Y" recording equipment. Using a standard 

automobile battery cable, electrical current from a 12 volt pickup bat

tery was passed through a safety switch and through a low resistance re

lay switch system to the 200 watt/115 volt D.C. to A.C. inverter. The 

inverter supplied the appropriate alternating current (AC) to the Hewlett 

Packard "X-Y" recorder. The potentiometers used direct current from the 

storage battery. Both the input to and the output from the potentiome

ters were passed through an input-output socket unit which was attached 

to the trolley system. In this fashion, the number and lengths of the 

electrical leads could be minimized and the displacement output leads 

from the potentiometers to the "X-Y" recorder pulled together into a sin

gle 6-wire conductor cable. 

The negative to ground (vehicle chasis) system of electrical instal

lation was adopted. The equipment power switch which was attached to the 

dash of the pickup was installed on the electrically negative conductor. 

This was done because the size of the electrically positive conductor 

(battery cable) would not permit the installation of the standard power 

switch on the positive conductor. The low resistance electrical power 

relay switch system was installed on the positive conductor to serve as 

a circuit breaker, i.e.~ electrical current from the storage battery 

would flow through the installation system only when the equipment power 

switch were turned to the "ON" position. If the positive conductor had 

been directly connected to the storage battery, the electrical circuit 

would be complete whenever the bare end of the positive conductor 
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contacted any metallic part (body) of the vehicle, a condition that would 

create a serious fire hazard. A second safety provision was built into 

the system by passing the positive conductor cable through the vehicle's 

ignition safety switch system. A third safety provision consisted of 

grounding the inverter to take care of probable stagnant electrical pow

er on this unit. 

Fig. 15 also shows the electrical circuit diagram employed to power 

the emergency flasher lights which were utilized to provide additional 

warning to on-coming vehicular traffic of the restrictions created by the 

study operations. The detachable type dome flasher lights with magnetic 

base were placed on the cab of the pickup when in use. The complete set 

up of the transverse profile gage including the electrical installation 

system is shown in Fig. 14. 

Calibration of the Transverse Profile Gage 

Trolley Unit 

The first set of tests made on the performance of the profile gage 

were those involving linearity and reproducibility of results. A park

ing lot on the campus of Oklahoma State University (OSU) which had some 

rutted areas, was selected for the preliminary testing. Having obtained 

permission from the OSU, Department of Safety and Security, a section of 

this parking lot was blocked to traffic and the profile gage was set up 

in this location. 

Helical Potentiometer. Initially, a plot of the pavement surface 

was made so that the surface characteristics could be studied and the 

suitability of the location for calibration purposes evaluated. A fine 

chalk line was then drawn along the path of the gage actuating wheel. 
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Using a steel tape, distances of 1, 3, 6, 9, and 11 feet were measured 

from the starting point and marked off along the chalk line of the pave

ment. A trial scale was selected on the 11 X-Y 11 recording equipment. The 

trolley unit was then reeled along the measured path. The recorded dis

tances were compared with the measured distances traversed. This process 

was repeated numerous times using different 11 X-Y 11 recorder scales. A 

high degree of accuracy and reproducibility of the profile tracings was 

observed in these trials. Subsequently, a horizontal scale of 0.5 volts/ 

in. was selected as the most convenient and practical for field work and 

a calibration factor was determined for this scale setting. 

Vertical Potentiometer. From the initial plot of the surface pro

file of the parking lot area, a relatively level section along the path 

of the profile gage was selected on the plot and the corresponding loca

tion on the pavement surface was identified by moving the actuating wheel 

back and forth until the position of the plotter pen coincided with the 
I 

midpoint of the selected section. A 0.125 in. (0.62 cm) thick plexiglass 

plate 2.5 in. wide and 6.0 in. long (6.35 cm x 15.24 cm) was taped to 

the pavement surface at this point with masking tape. A vertical scale 

of 0.5 volt/in. on the recording equipment was selected, the actuating 

wheel was reeled slowly over the plexiglass plate and the profile of this 

surface obstruction plotted. This process was repeated several times 

using the same vertical scale on the recorder. Comparison of the plotted 

heights of the same 0.125 in. (0.62 cm) thick plate on the various profile 

traces showed excellent reproducibility. This procedure was repeated us

ing other plotter scales of 1.0, 2.0, 5.0, and 10.0 volt/in. and for 

plate thicknesses of 0.25, 0.375, 0.5, 0.75, and 1.0 in. Convenient 



recorder scales of 0.5 and 1.0 volt/in. were selected for field usage 

and calibration factors for these settings were determined. 

Cross-Slope Device 
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The specified procedure for measurement of cross-slope was followed 

by three operators, each recording the observed average gradient of the 

same parking lot area without moving the supports of the straight edge. 

The reported results were as shown in Table I. 

Operator 
No. 

1 

2 

3 

TABLE I 

TEST RESULTS 

Observed Gradient 
in./ft. 

0.0028 
0.0026 

0.0029 

-

Average of Obsns. 
in./ft. 

0.0027 

Eventhough the observed cross-slope values did vary slightly from. 

one operation to the other, the data shows that results would be reason

ably reproducible. Subsequent calibration checks showed similar repro

ducibilities. 
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Laboratory Calibration 

To check for any adverse effects of wind and temperature on the ac

curacy and reproducibility of the profile gage the calibration processes 

described above were repeated in the Asphalt Laboratory of the School of 

Civil Engineering, at OSU where the air was relatively still and where 

the room temperature was held approximately constant at 77of, 

A selected 14.0 ft. long two by four plank with a smooth surface 

was placed on the concrete floor and the profile gage was set up such 

that the path of the (gage) actuating wheel followed the longitudinal 

center line of the plank. Measured distances were marked on the top sur

face of the two by four and the various (height) calibration plates were 

taped to the plank (one at each trial)~ A new set of calibration data 

'was obtained and compared with the previous field calibration data. 

Good agreement between the two sets of calibration data was observed. 

This substantiated the validity of the field calibration data and showed 

very little variance in the performance of the profile gage for the con

ditions under which the two sets of the calibration data were obtained. 

The profile gage was subsequently considered acceptable for the purposes 

for which it was designed. That is, 1) to measure the average cross~ 

slopes of highway pavements in inces per foot to 2 decimal places, and 

2) accurately plot the transverse profile of pavement surfaces so rut 

depths and/or heaves outside the wheelpaths could be detected and measured 

to the nearest hundredth of an inch. 



CHAPTER V 

TEST PROCEDURES 

This research investigation can be divided into two parts or phases 

relative to the procedures employed in collecting data and core samples 

at the field test sites and those used in the laboratory to analyze the 

pavement materials and stereo-photographs. 

Field Testing 

safetx 

Safety of research personnel on the highway was a deciding factor 

in the design of the field operations. Selection of test sites was based 

primarily on the availability of adequate sight distance to oncoming mo

tor vehicles. All field work was terminated or cancelled whenever there 

was any form of precipitation at the test site. Similarly no work was 

carried out whenever visibility was poor or whenever traffic volumes be

came larger than a single traffic lane could handle. While these actions 

were expensive in terms of both time and money, they were considered ne

cessary to minimize the danger of traffic accidents. 

Workmen. research equipment and highspeed traffic do not operate 

too well together on an interstate highway without some means of separa

tion. To avoid any unfortunate accident. one lane of the highway was 

kept open to traffic while the other was blocked for field tests. Each 

field test site was preceded by appropriate advance signing to warn the 

68 
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motorist at 880 yds. (800 meters) from the work area. This was followed 

by directional signals, a flagman and finally a physical barrier to block 

the lane undergoing field tests to vehicular traffic. The directional 

markers and barriers were then switched to allow work in the other lane. 

All signing, signalling, blocking and flagging were done by personnel 

from Research and Development, and other respective Divisions of the Ok

lahoma Department of Highways. 

Setting Up the Profile Equipment 

Having blocked the test lane to all vehicular traffic, a chalk line 

was used to mark the pavement surface perpendicular to the center line. 

Two bottle caps were nailed to the pavement surface to mark the ends of 

this transverse line at the shouldet and the center line of the pavement. 

The straight edge (gage rail) was then set up, as described previ

ously, directly over the chalk line by shifting the end supports later

ally. The trolley unit was moved to one end of the gage rail (the bottle 

cap point) and the height of the support at this end was adjusted so that 

the vertical potentiometer shaft was positioned at the midpoint of its 

effective travel distance. The trolley unit was then moved to the other 

end and the height adjusting process was repeated. This assured that the 

two ends of the gage rail were the same height above the pavement sur

face. 

A string line was stretched along the top surface of the gage rail 

between the end support points. The height of the rail at the middle 

support point was then adjusted until the top surface of the rail just 

touched the string line. Adjustment of the middle support was also made 

for the lateral alinement or straightness of the straight edge. In this 
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way, the top surface of the straight edge was set parallel to an imagi

nary line joining the bottle cap points at the edges of the pavement 

lane. This imaginary line was considered as the datum for subsequent 

profile measurements. 

Profile Tracings 

After making the appropriate output and input power connections, 

the helical potentiometer was set to zero by moving the trolley unit to 

its starting position at one end of the straight edge. The trolley unit 

was reeled from this point to the other end of the straight edge and the 

resulting linear and vertical displacements were recorded on a standard 

8.5 in. x 11.0 in. graph paper by the 11 X-Y 11 recorder. This was in the 

form of a continuous plot on the graph paper and this tracing indicated 

the transverse profile of the pavement surface (at a selected recorder 

scale) along the path of the actuating wheel. 

Measurement of Cross--Slope 

The cross-slope device was attached to the straight edge and con

nected to the indicator dial gage. With the device lying flat on the 

top surface of the straight edge, the dial gage was set to zero. The 

free end of the cross-slope device was then raised vertically until the 

bubble in the torpedo level moved into a level position. The observed 

gage reading was recorded as the average cross-..slope (in inches per foot) 

of the pavement surface. 
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Location of Wheelpaths 

If the theory of rutting on bituminous highway pavements is valid, 

then the most frequently traveled pavement surfaces, i~e., those areas 

receiving the greatest number of wheel coverages; will show a concave 

profile. · The relatively less traveled surfaces, on the other hand, will 

remain practically unchanged from the original profile or will possibly 

show some convexity. On medium to heavily rutted pavements, therefore, 

the points where the surface profile changes direction (a maximum or mi

nimum point on the plot) would very closely define the location of the 

center of the wheelpaths and the approximate midpoint of the distance 

between the wheelpaths, respectively. 

The following procedure was used to locate the vehicle wheelpaths 

and the approximate midpoint of the wheelpaths on the pavement surface. 

After obtaining an accurate plot of the transverse profile of the pave

ment surface, points of maximum depression and points of maximum upheaval 

as indicated where the surface profile significantly changed direction 

were marked on the plotted transverse profile. The actuating wheel of 

the trolley unit was wheeled back and forth on the pavement surface un

til the position of the plotter pen coincided with one of the identified 

points on the profile tracing. The corresponding point on the pavement 

surface was then marked. This process was repeated until all the re

quired points (center of wheelpaths and midpoint of the distance between 

wheelpaths) were identified on the pavement surface. Five points per 

traffic lane were selected along the profile line for further tests. 

These points are shown in Fig. 10. 

Measurement of Rut Depths •. Lack of an original profile of the pave

ment surface at a test site made it rather difficult to determine the 
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total subsidence or upheaval the surfaces had undergone since the road

way was opened to vehicular traffic. For this reason, the observed pro

file measurements were referred to as minimum values of the variables 

whose magnitude were being measured, and were. based on measurements from 

defined datum plane. That is, rut depth was measured as the maximum ver

tical displacement of the surface in the wheelpath from a straight line 

whose ends formed tangents to the transverse profile curve at the adja

cent points of maximum elevation. All rut depth measurements were scaled 

directly from the profile tracings and recorded in inches. 

Lateral Creep. Upheaval of the pavement surfaces immediately out

side the wheelpaths is some indication of increases in thicknesses of 

pavement layers beneath those surfaces and is an indication of lateral 

creep of material from beneath the wheelpaths. It was known from design 

records that the surface of the pavements studied had uniform cross-slope 

for lanes in the same traffic direction. Since an original transverse 

profile of the pavement surface was not available, a straight line join

ing the end support points of the straight edge was assumed to be the 

original surface. Based on this assumption, upward displacements of the 

pavement surfaces above this base line were scaled directly from the 

profile tracings at points between the wheel paths. - The maximum upward 

displacement so measured was considered as the probable heave resulting 

from lateral creep of materials from beneath the wheelpaths. Even very 

small displacements could be measured. Measurements of heave were recor

ded in inches. 
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Stereo ... Photos 

An offset line, parallel to and 12.0 in. from the profile line in 

the direction of traffic, was marked on the pavement. The selected test 

points on the profile line were laterally transferred to this offset 

line. Stereo ... photographs of the pavement surface were then taken at 

these points. The stereo ... photo box described by Schonfeld {86), a 35 mm 

Kodak Retina IV single reflex camera, and an automatic 80 shot electronic .. 

flash accessory were used to make these photographs. Interpretation of 

the$e photographs is described later under Laboratory Tests. 

Nuclear Density Measurements 

A Troxler Series 2400 Compac Surface Density/Moisture Gage was used 

to obtain the nuclear density measurements. Following both the manufac ... 

turer 1 s Instruction Manual {99) and the ASTM Method of Test {95), a stan ... 

dard count for the nuclear gage was taken in the morning and at noon of 

each day of operation. Prior to each standard count, a series of tests 

were made to check for drift {99) and malfunction {95, 99). Tests for 

reproducibility of results were also conducted at each test point to 

make sure the recorded density counts were representatiye for the pave

ment materials beneath the respective test points. Using the backscatter 

method of test (99), density counts were obtained for each of the previ

ously selected test points; These counts were later converted to density 

units {pounds per cubic foot) using the manufacturer's calibration data. 

Surface Condition Rating 

A surface condition evaluation was included in this investigation to 

establish, in terms .of suitable qualitative index, the overall condition 



of the pavement surface at the test locations. The surface condition 

rating format suggested by Winnitoy (105) was modified to include the 

following conditions: 

1. General structural condition, 

2. Degree of weathering, 

3. Uniformity, 

4. Crack condition, and 

5. Surface wear/excess asphalt 

Each of these conditions was rated in terms of serviceability indices 

ranging from 1.0 to 5.0. A typical rating form is shown in Fig. 16. 

Core Drill Operat1ons 
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The core drill equipment and personnel were provided by the Research 

and Development Division of the Oklahoma Department of Highways. Using 

a 4.0 in. diameter (10.16 cm) core drill, the angular speed and the rate 

of penetration were regulated to obtain core specimens with minimum pos

sible disturbance of the material layers. Ten cores of full thickness 

ranging from 6.0 in. (15.24 cm) to 14.0 in. (35.56 cm) of the asphalt 

bound pavement materials were cut at the selected test points along the 

previously described offset line and at the same points where the nuclear 

density measurements were obtained. Each core specimen was immediately 

identified, wrapped in plastic bags, and stored in a heat insulated con

tainer. Individual core specimens in the container were isolated from 

each other by placing layers of sponge rubber between any two specimens 

before transporting them from the site to the OSU Civil Engineering Lab

oratories for further tests. 



SURFACE CONDITION RATING 

Rated by · Date. Base Course type 
~----~--~~------~-

Site Description Age of pavement (months} 
~--------------

Rated for (Job) Pavement on:· cut / fill / Nat. grade .. 

Rating 
Co_,de 

5 

4 

3 

2 

1 

Gem. Str. 
Condition 

--Good 

Surf. Wear 
Excess Asphalt 

--None 

:-Long erk !:-Slight 

:-Map erk --Moderate 

:~Allig crkl--Severe 

--Erosion !--Abrasion/ 
bleeding 

Weathering 

--None 

:-Slight 

--Moderate 

--Severe 

--Erosion 

Uniformity Crack Condition 
Opehlng T · Aoras1on--T-Mulf1pJe 

--Good --Hairline I --None --None 
: 1/16 

--Streaked :-Slight :-Slight 
: 1/8 

--Crk-filling-- --Moderate! --Moderate 
: 1 : 114 

--Blotchy 

--None 
uniform 

--Severe --Severe 
: 1/2 

--Greater I --Abrasion! --Erosion 
than 1/2 

Figure 16. Surface Condition Rating Form 

Remarks 

....... 
01 
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Laboratory Testing 

Cutting Core Specimen 

Following the ASTM methods of test: D-2726 and D-2041 and the OSU 

Asphalt Laboratory Manual (56). each pavement core was cut into five sub

divisions with a diamond edged concrete saw. The subdivision included 

the surface course, leveling course, and top third, middle third, and 

bottom third of the base course materials. Only the asphalt bound pave

ment materials were included in these subdivisions. The average thick

nesses of the individual subdivisions were measured, recorded, and then 

marked on the cores before sawing, Separation of the core into layers 

was done so that the specific gravities of individual layers could be 

compared and differences in densities detected (see analysis of data). 

Bulk Specific Gravity 

The extent of water absorption of the core samples was evaluated by 

comparing the results of two series of tests. In one series, the bulk 

specific gravities of five samples comprising the subdivisions from one 

core specimen cut from a pavement constructed on Black Base (BB} material 

were determined by weighing the sample in air, then weighing it is water 

and computing its bulk specific gravity from the relationship (56): 

weight of sample in air 
Bulk Sp. Gr. = weight of sample in air - weight of sample in water 

The five samples were then allowed to dry at room temperatures (77°F 

or 2soc approx.) and their specific gravities were remeasured with the 

samples coated with paraffin. Comparison of the results from the two 

series of tests on the same samples showed very large differences. The 
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observed specific gravities of the uncoated samples were much larger than 

the specific gravities of the same samples coated with paraffin. Appar

ently, the uncoated samples absorbed sufficient water during the process 

of weighing the samples in water to result in an appreciable reduction 

of value in the denominator of the Bulk Specific Gravity equation. Sub

sequently, it was concluded that the extent of water absorption of the 

field core samples were high enough to appreciably affect their observed 

bulk specific gravity values. Based on this finding, it was decided that 

all the core samples be coated accordingly. 

Following the test procedure described in reference 31, each sample 

was coated with paraffin which- had a specific gravity of 0.866 at noF 

(25°C), and a melting point of 122°F (5o0c) and was allowed to cool at 

room temperature before its weight in water was determined. The paraffin 

coating was peeled off immediately after the 11weight-in-water 11 process 

by first dipping the coated specimen in a bath whose temperature was set 

at 122oF {5o0c) approximately (melting point of paraffin). 

Rice's Specific Gravity 

The ASTM test procedure (91) for the determination of the maximum 

theoretical specific gravity (Rice's vacuum saturation method) was slight

ly modified so existing equipment in the OSU Civil Engineering Asphalt 

Materials Laboratory could be used. The following modifications were 

made: 

1) Container: 0.5 gallon (1.8925 liters) Mason fruit jar with rub

ber gasket, conical cap with #40 US Standard mesh strainer, and a hose 

connection was used instead of the suggested 1000 ml volumetric flask. 

Each jar was calibrated prior to use. 
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2) Vacuum Pump: A Nelson vacuum pump capable of holding 14.7 psi 

(30 in. Hg) vacuum pressure was used to evacuate the entrapped air. The 

specimen was subjected to full vacuum for 15 minutes. 

3) Preparation of Test Samples: The core sample used in the bulk 

specific gravity test was heated in a temperature controlled oven until 

the asphalt in the sample attained a fluid consistency. Using a spatula, 

the particles of the sample were separated by stripping the coarse aggre

gates clean of lumps of fine material and by breaking down lumps of the 

fine materials portion as fine as possible, while the mixture was still 

hot, without fracturing the mineral particles. The separated mixture 

was allowed to cool to room temperature by thoroughly stirring the mix

ture to prevent the particles from caking together. Where the volume of 

a core sample was significantly larger than was specified, the standard 

11 quartering 11 method of sampling was employed to reduce the volume of the 

separated sample to a convenient size. 

4) To facilitate release of entrapped air a wetting agent (liquid 

calgon) was added to the deaired-distilled water used in the test. 

Percent Densit,Y 

The percent density values for the individual test samples were cal

culated using the relationship: 

P t D 't Bulk Specific Gravit,Y x 100 ercen ensi Y = Rice's Specific Gravity 

The percent density values, expressed as a percentage of the maximum theo

retical specific gravity (voidless mix), may be used to determine the 

volume of voids in the sample as follows: 
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Percent Air Voids = (100 - Percent Density Value) 

Also, comparison of the percent density values for the core samples at 

the individual test points on a test site can be made and differences de

tected. Significant differences in percent density values could then be 

assumed as resulting from densification under traffic (see analysis of 

data). 

Stereo-Photo Interpretation 

Wear is a contributing factor to rutting of bituminous highway pave

ments. In surface mixtures incorporating non-polishing aggregates, only 

the fine materials and the asphaltic binder tend to wear or abrade under 

traffic. This leaves the larger non-polishing aggregate particles pro

jecting above the partially worn background fines, in the form of angular 

to sub-angular pyramid depending on the polish-resistant characteristics 

of the material. In the case of mixtures made with polishing aggregates, 

both the surface aggregates and the background fines tend to wear under 

traffic though at different rates depending on the relative wear-resis

tance of the surface materials. In either case the amount of wear due 

to traffic action is greater on heavily traveled surfaces (wheelpaths) 

than on less frequented surfaces (surfaces other than wheelpaths). 

Based on this duscussion, the projection of the coarser aggregate 

particles at the pavement surface would be relatively higher in the 

wheelpaths than outside the wheelpaths. This assumes that the background 

fines do not wear to an extent that would permit the dislodging of the 

surface aggregates, that raveling due to stripping of the asphaltic bin

der from the aggregates does not occur, and that bleeding of excess as

phalt onto the surface does not take place. If these assumptions are 
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reasonable, then comparison of the projections of surface aggregates in 

the wheelpaths with those outside the wheelpaths will give a reasonably 

good estimate of the differential wear that occurs. 

To obtain estimates of these projections, the stereo~slide pairs 

were viewed under a telescopic lens with six power magnification on a 

flourescent light desk. By comparing the heights of projections with 

that of a calibrated wedge scale which was placed on the pavement at the 

tfme the photographs were taken, estimates of maximum projections were 

recorded in terms of the calibrated scale. These scale values were la

ter converted to inches by means of a calibration curve. 

Other surface characteristics were observed during the microscopic 

study. These included the degree of polishing of the surface, geometry 

of projections, raveling, bleeding, fracture of surface aggregates, 

cracking and erosion. This supplementary information aided the evalua

tion of the general condition of the pavement surfaces of the individual 

test points at a test site. 



CHAPTER VI 

TEST RESULTS AND DISCUSSION 

Density Measurements 

The percent density values for the individual core subdivisions 

were computed from the bulk specific gravity and the Rice 1s specific gra

vity values. The percent air void content values were calculated direct

ly from the percent density values as follows: 

Percent Air Void Content = (100 - percent density value) 

If the initial percent density values were known, then comparison with 

the test valu.es would directly indicate the changes in density caused by 

traffic compaction. The contribution to rutting of these changes could 

then be estimated, using the procedure discussed earlier. Because the 

initial values were unknown, classical statistical methods were employed 

to test for differences in the observed percent density values. Signi~ 

ficant point differences were considered as changes resulting from traf

fic action. 

Tests for evidence of differences were conducted for each test site 

using the Statistical Analysis System (SAS) standard computer program 

(Appendix C), (10). The computer program gave the Observed Significance 

Level (OSL), (26) and acceptance or rejection of the null-hypothesis (no 

differences) depended on the choice of a.significance level. Choice of 

this significance level depends on several factors including: 1) expected 
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variability in the initial values, 2} degree of certainty or accuracy re

quired, 3} accuracy of test results, and 4) consistency with which the 

tests were conducted. For this study, a value of 0.1 was considered as 

the significance criterion for the rejection or acceptance of the hypo

thesis of no differences. The results of the computer analysis for the 

individual test sites are discussed in the following paragraphs under 

the four types of base course materials. 

HMSA Materials 

All the four test sites showed strong evidence of layer differences 

in the percent density values. The observed significance level was 

0.0001 in each case. The percent density of the surface materials (sur

face and leveling courses} appeared to be essentially the same and ranged 

from a high value of 99 percent to a low value of 90 percent. The per

cent density values of the HMSA base course materials did contribute a 

greater portion of the observed variability and ranged from a high value 

of 93 percent to a low value of 77 percent. 

The computer analysis did not show strong evidence of point differ

ences in the percent density values for test site #10. The observed sig

nificance level was 0,2465. However, a plot of percent density values 

versus transverse location of test points indicated peak values occurring 

at the wheel path locations (Fig. 34} for both the surface and the base 

course materials and is an indication of some differential densification 

(wheelpath versus outside wheelpaths} at these locations. For the sur

face materials the maximum values occurred at test points #2 and #7, 

which are the respective transverse locations of the outer wheelpaths in 

the outer and the inner traffic lanes. For the base course materials, 
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the maximum values occurred at test points #2 and #9 and were the outer 

and the inner wheelpath locations in the outer and the inner traffic 

lanes, respectively. 

The Analysis of Variance (ADV) for test site #6D indicated strong 

evidence of point differences in the percent density values. The obser

ved Significance Level (DSL) was D.DDDl. Although the data showed some 

scatter, a plot of percent density versus transverse test point (Fig. 35) 

associated the peak values with wheelpath locations •. For the surface 

materials, the maximum values occurred at test points #2, #4, and #9. 

For the base course materials, however, the curves indicated one major 

peak value (86 percent density), and this occurred at the transverse lo

cation of the inner wheelpath in the outer traffic lane. 

Similar behavior of the percent density curves was recorded for test 

site #70 (Fig. 36). The ADV indicated strong evidence of both layer and 

point differences. Unlike those of test sites #lD and #6D, the curves 

show consistent differential densification in the surface course mater

ials in the wheelpaths. In the inner traffic lane, a differential value 

of 2 percent density units was recorded at both wheelpath locations. For 

the outer traffic lane, the maximum differential densification was 5.6 

percent density units and occurred at the outer wheelpath location. The 

percent density values for the leveling course materials were consistent

ly high and uniform across the pavement. Even so, a differential densi

fication of 1.6 units was observed at the same outer wheelpath location. 

At the inner wheelpath location (outer lane), however, both the surface 

course and the base course materials showed similar differential densi

fication and these were 2.8 and 3.4 percent density units respectively. 
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The percent density curves for test site #120 (Fig. 37) exhibited 

behavior similar to that of test site #70. Major differential densifica

tion occurred in the surface course materials and relatively uniform 

percent density values in the leveling course material are indicated. 

Owing to the uniform distribution of density values in the base course 

materials it can be assumed that the major densification at this site 

occurred in the surface materials. 

Black Base Materials 
. . 

Unlike the pavement sections on the HMSA base course materials, 

the percent density values of both the surface and the base course ma

terials of pavement sections utilizing the black base as the base course 

materials were found to be relatively high and ranged from about 90 to 

98. Nevertheless, the analysis of variance on the percent density val

ues did indicate strong evidence of point differences for all four of 

the test sites and strong evidence of layer differences for three test 

sites. 

For test site #30, the analysis did not indicate any strong evidence 

of layer differences. Accordingly, the percent density values of the 

layers were averaged for each test point and a percent density versus 

test point curve was plotted for this test site (Fig. 38). The density 

curve showed two peak values corresponding to the outer and the inner 

wheelpath locations in outer traffic lane. The differential densifica

tion at these wheelpath locations was estimated as 1.6 percent density 

units for each layer. The AOV indicated a strong evidence of point dif-

ferences and is an indication of this differential densification. 
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In the inner traffic lane, the plotted density values exhibited con

siderable scatter. In fact, the only peak value shown by the curve oc

curred at a non-wheelpath location. The recorded density values for the 

materials in this lane were considered inconsistent and this can be at

tributed to experimental error in the density determinations. However, 

the average density values were lower than in the outer lane, indicating 

the compactive influence of traffic in the more frequently traveled right 

hand lane. 

The AOV on the values for test site #50 indicated significant layer 

and point differences in the percent density values. This indicated 

that averaging of layer values corresponding to a given transverse test 

point was not legitimate so separate curves were plotted for each layer 

(Fig. 39). Although the percent density values did not vary too much 

from one layer to another~ peak values were associated with wheelpath 

locations. The maximum differential densification occurred at test point 

#4 which is the transverse location of the inner wheelpath in the outer 

lane, and this was estimated as 4.8 percent density units. The density 

curve for the base course material showed very little change across the 

roadway and density values ranged from 87 to 90 percent of the maximum 

theoretical density obtained by Rice's method. The curve for the level

ing course materials showed similar behavior except that peaks were more 

distinct in the inner traffic lane and density values were slightly high

er (90 to 92 percent density). For the surface course materials major 

peak values occurred at test points #4 and #8. The occurrence of peak 

value at test point #8 is similar to that observed at test site #30. In 

this case, however, major densification in the inner traffic lane appeared 

to occur in the leveling and base course materials so that the peak value 
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observed at test point #8 in the surface material did not have any sig

nificant influence on the total densification recorded at the adjacent 

wheelpath locations. 

The density curves for test site #20 (Fig. 40) indicated higher per

cent density values in the base course materials than in the leveling 

course materials. The base course materials averaged 92 percent compared 

with an average of 90 percent in the leveling course materials. This 

type of situation should be avoided in pavement construction. That is, 

a low density layer between two layers of higher density materials will 

almost certainly result in pavement rutting due to either differential 

densification and/or lateral creep of material in the sandwiched layer. 

The curves for the base and leveling courses .did not show major peak val

ues, however, the surface course materials which had relatively high per

cent density values (98 percent average) did indicate differential 

densification as large as 3.6 percent density units. Densification was 

observed at all four wheelpath locations in the surface layer. 

On test site #40, the density curves indicated the lowest percent 

density values in the surface course materials (Fig. 41). It was, there

fore, not suprising that differential values as high as 4.2 percent den

sity units were observed at the inner wheelpath location in the outer 

traffic lane. When surface materials have relatively low density, their 

load-distributing capability is reduced and this will tend to encourage 

concentration of stresses in the underlying layer. This may explain the 

substantial difference in density values occuring between the leveling 

course materials in the outer traffic lane and those in the inner traffic 

lane. In the outer lane the leveling course materials had percent densi

ty values approaching 98 percent as compared to 95 percent-in the inner 
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traffic lane •. On the other hand, when material layers have sufficient 

density to withstand the applied loads, they tend to be stable under 

traffic and this is shown by the uniformity of .the percent density val

ues of the base course materials. 

SABC Materials 

The percent density curves for all the pavement sections utilizing 

this type of .base course materials showed peak values in both the surface 

and the leveling course materials at the wheelpath locations and this is 

an indication that densification extends into the base course. In three 

of the pavement sections tested. the measured percent density values for 

the leveling course materials were found to be higher than those of the 

surface course materials. The ADV on the percent density values indica

ted strong evidence of point differences for all four test sites and 

strong evidence of layer differences for three of the test sites. 

That the ADV did not indicate strong evidence of ·layer differences 

for test site #100 is not surprising because the surface course materials 

which showed larger values in the outer traffic lane had percent density 

values lower than those of the leveling course materials in the inner 

traffic lane (Fig. 42). If the initial density values were approximately 

equal in both lanes, then it can be inferred that the change in trend is 

due to mass densification of the surface course materials which must 

have had relatively low initial densities. This is evidenced by the sur

face density values approaching those of the leveling course materials 

at the wheelpath locations in the inner traffic lane. According to the 

density curve, peak values occurred at the four wheelpath locations and 

a maximum differential densification of 2 percent density units was. 
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observed at the outer lane compared with 5 percent in the inner traffic 

lane. 

Except for the transverse test point #7, the percent density values 

recorded for the leveling course materials indicated higher values than 

those of the surface course materials for the pavement section at test 

site #80. Accordingly, large differential densification was observed at 

the wheelpath locations in the surface materials (Fig. 43). Maximum dif

ferential values of 5 units were observed at test points #2, #7, and #9 

in the surface course materials. A value of 3.5 percent density units 

of differential densification was observed at test point #7 in this lay

er. The density curve for the leveling course materials was relatively 

uniform for the materials in the outer traffic lane but showed signifi

cant peaks in the inner traffic lane. The maximum differential densifi

cation of 3.0 percent density units in this layer was observed at test 

point #9. No substantial differential densification was observed in the 

outer traffic lane because of the probable high initial densities. The 

observed percent density values ranged from 97.1 to 98.7. 

The density curves for test site #90 (Fig. 44) indicated similar 

trends. The surface course materials exhibited relatively lower percent 

density values than the leveling course. The curves showed peak values 

at the wheelpath locations in both layers and suggest that differential 

densification extends into the base course. Maximum differential densi

fication of 3.5 percent density units were observed at the wheelpath lo

cations in the outer traffic lane. The densities of all the materials 

in the outer traffic lane were consistently higher than those in the in

ner lane and this is an indication again of the compactive influence of 

more frequently applied traffic loads. 
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The density curves for site #110 (Fig. 45) exhibited different be

havior in that the surface layer indicated higher density materials at 

all the transverse test points except at points #5 and #6. Nevertheless, 

peak values were observed in both the surface and leveling course mater

ials at the wheelpath locations, and this was particularly true in the 

surface layer. Densification of about 3.0 units was noticed at the wheel

path locations in both pavement lanes. 

Soil-Cement Mater4als 

The percent density curves plotted for the four test sites utilizing 

soil~cement base course materials showed the densities of the surface 

course materials approaching those of the leveling course materials in 

the outer traffic lane and much lower values in the inner traffic lane. 

There can be no direct explanation for this behavior since the initail 

densities of the materials are not known. Considering the rigidity of 

the soil-cement materials and heavier traffic volumes in the outer traf-

fie lanes, however, it can be inferred that this behavior is due to a 

greater rate of densification occurring in the outer traffic lanes. The 

rigidity of the base course materials may also have facilitated compac

tion of the leveling course materials during construction resulting in 

denser leveling course materials. Because the surface course materials 

had relatively lower initial densities, densification of materials in 

this layer was much easier especially during the early stages of pave

ment life and may have resulted in the observed high density materials 

in the outer traffic lanes. 

For test site #130, the densities of the surface course materials 

were essentially the same as those of the leveling course materials in 

* 
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the outer lane and ranged from 96 to 98 percent density (Fig. 46). The 

maximum differential densification was 1.5 percent density units for 

each layer and this occurred at the outer wheelpath location in this 

lane. For the materials in the inner lane, the percent density values of 

the surface course materials ranged from 95.5 at the outer wheelpath lo

cation to 92.6 at the shoulder compared with the average value of 98 re

corded for the leveling course materials in this lane. Differential 

densification of 2,D percent density units was observed at the outer 

wheelpath location. Generally, the curves showed peak values at all the 

wheelpath locations and is an indication of densification at these trans

verse locations. 

The materials at test site #14D indicated behavior similar to those 

at test site #13D (Fig. 47). Density values were much higher in the outer 

traffic lane and ranged from 96 to 99 percent density. Those in the in

ner traffic lane ranged from 91.5 to 96.8. The density curves peaked at 

the wheelpath locations and differential densification was similar to 

that observed at test site #13D. 

For site #17D, the ADV did not indicate any strong evidence of layer 

differences. Accordingly, averaging of the percent density values was 

performed for the two layers and a density curve was drawn (Fig. 48). 

The curve indicated peak values at the wheelpath locations. The differ

ential densification occurring at the two wheelpath locations in the outer 

traffic lane may be estimated at 2.D percent density units and is approx ... 

imately equal to that observed at the inner wheelpath location in the 

inner traffic lane. The significant differential densification was iden

tified by the ADV when it recorded a very strong evidence of point dif

ferences in the percent density values of materials at this test site. 
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The percent densities recorded for the materials on test site #180 

(Fig. 49) showed maximum va.lues at test point #3 which is located between 

the two wheelpaths in the outer lane. No explanation for this can be 

given except that the profile tracing indicated a lateral shift of traf

fic toward this point. Nevertheless, some peak values occurred at the 

wheelpath locations especially in the surface course materials. In the 

outer traffic lane, a maximum differential densification of 5.5 percent 

density units was observed at the outer wheelpath location in the surfac~ 

course materials. In the leveling course materials, the differential 

densification was 2.5 units at this location. In the inner traffic lane, 

observed densification was equal at both wheelpath locations in the sur

face course material and may be estimated as 1.6 units. In the leveling 

course materials, maximum densification occurred at the inner wheelpath 

location in this lane and this was 1.5 units. The behavior of materials 

at this test site was different from those observed earlier in that the 

density curves .for the two layers stayed approximately parallel to each 

other. Like the other test sites utilizing soil-cement base course ma

terials, the percent density values for the surface course materials 

were lower than those of the leveling course materials. 

Profile Measurements 

As was noted earlier, one profile tracing was made for each pavemen~ 
' 

lane and the two tracings for a test site were put together to obtain 

the continuous transverse profile tracings shown in Appendix B. On these 

tracings; the transverse location of the test points have been marked 

and numbered sequentially. The test points identified as #1 and #10 re

fer to the locations of the outer and the inner shoulder lines 
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respectively (Fig. 10). Points #2 and #4 refer to wheelpath locations 

in the outer pavement lane and points #7 and #9 are the locations of the 

outer and the inner wheelpaths in the inner lane. The measured values 

of relative subsidence or rut depths are identified as 11 positive 11 val

ues, whereas 11 negative 11 values refer to heaves. These measurements were 

scaled directly from the original tracings and are presented immediately 

below the profile tracings (Appendix B) as 11 profile measurements 11 • 

The characteristics of the transverse profiles of the pavement sec

tions studied are discussed in the following paragraphs under the four 

types of base course materials. It must be pointed out that the mea

sured subsidence and/or heave cannot be considered as the true displace

ment that occurred since 11 initial 11 profile traces, i.e., traces made at 

the time the pavement was.first opened for traffic, were not available 

and an assumed profile line was· used as a basis for comparison.· 

Also, subgrade behavior may have a significant influence on the de

termined values. If major subsidence occurred in the subgrade soil, la

teral displacement of the bituminous materials (as evidenced by upheaval 

of the pavement surfaces) will not be apparent and erroneous conclusions 

may be drawn. Similarly, .if substantial heave or swelling occurred in 

the subgrade materials at the pavement shoulders due to changes in mois

ture content, the observed subsidence or rut depths will be magnified by 

'the amount of heave and lateral displacement of materials may be inferred. 

The determination of heave was, however, based on the assumption that any 

moisture-associated heave at the pavement shoulders would not be suffi

cient to significantly affect the measurements in the traffic lanes. That 

is, moisture-associated heaves at the shoulders would result in relative

ly uniform or large radii surface curvatures and these are different from 



the small radii humps associated with shear failure or lateral creep 

which occurs immediately adjacent to the wheelpaths. 

HMSA Sections 
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At test site #10 (Fig. 17) heaves of 0.2, 0,5, and 0.4 inches were 

determined at the test points #1, #3, and #8, respectively, indicating 

lateral creep of materials from beneath the wheelpaths to these loca

tions. Also, lateral shift of traffic towards the inner pavement lane 

can be observed on the profile tracing. This is indicated by the widen

ing of the outer wheelpath in the outer pavement lane towards th~ inner 

lane. This widening may have subdued the magnitude of heave at test 

point #3. Visual examination of the pavement surface at this test site 

also indicated hairline longitudinal cracking at test point #3 and wider 

longitudinal cracking at the outer shoulder and at the pavement center 

line (between points #5 and #6). This is an indication of overstressing 

(tensile) of the pavement materials at these locations. No cracking was 

observed in the inner lane. 

The density data at this test site showed large differential densi

fication in all the pavement layers at test point #2 and minimum densi

fication at test point #4. Comparing the magnitudes of differential 

densification and the rut depths at test points #2 and #4, it may be con

cluded that a major portion of the observed heave at test point #3 was 

contributed by lateral creep of base course material from beneath the 

outer wheelpath, However, if the peaking of the density curve for the 

base course materials at test point #2 is considered, it can be argued 

that substantial consolidation of the subgrade soil may have occurred at 



this location and this may have contributed to the rut depth in this 

wheel path. 

The performance of test site #60 was different from that of test 

site #10 in that subsidence at the midsections of both pavement lanes 
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was observed (Fig. 18). In the outer pavement lane, the subsidence was 

0.078 in. (0.2 cm) compared with 0.214 in. (0.54 cm) recorded in the in

ner lane. Nevertheless, heaving was noticed at the pavement center line 

(between points #5 and #6). The magnitude of heave was estimated at 

0.125 in. (0.32 cm) and was attributed to lateral creep of materials. A 

study of the surface profile at this location and evidence of large dif

ferential densification occurring in the pavement materials at test point 

#4 relative to point #5, suggests that the observed heave was due to la

teral dispalcement of the bituminous materials from beneath the adjacent 

wheelpath in the outer lane. 

Although no surface cracking was apparent at this test site, indi

cating good structural integrity, it must be pointed out that the surface 

subsidence is detrimental to traffic safety because this will impair ef

fective drainage of surface water. Major rutting occurred in the outer 

pavement lane. Rut depths of 0.43 in. (1.09 cm) and 0.30 in. (0.76 cm) 

were noticed at test points #2 and #4 respectively. 

The performance of the pavement section at test site #70 was simi

lar to that at test site #60. Subsidence was apparent in both traffic 

lanes (Fig. 19). In the outer lane, a subsidence of 0.125 in. (.32 cm) 

was determined at the center compared with 0.036 in. (0.091 cm) in the 

inner pavement lane. Rutting, however, was more pronounced at this site. 

Rut depths of 0.574, 0.464, 0.125, and 0.143 in. (1.458, 1.186, 0.32, and 

0.36 cm) were noticed at test points #2, #4, #7, and #9 respectively. 
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The values indicate maximum rutting at the wheelpath locations adjacent 

to the shoulders. Since shear failure is likely at the unsupported pave

ment edges, i.e., lower lateral confining pressures at these locations, 

some of this rutting could be attributed to lateral creep. However, the 

density curves at this location indicated strong evidence of differential 

densification. No upheaval was indicated at this site, however, a slight 

hump at the pavement center line could be some indication of lateral dis

placement of materials from beneath the adjacent wheelpaths. 

Based on rutting alone, site #120 (Fig. 20) may be considered as the 

one that showed the best performance in this group of pavement sections. 

Only two rut depths were large enough to be measured and these were 0.38 

in. (0.965 cm) and 0.16 in. (0.41 cm) and occurred at the inner wheel

path locations in the outer and the inner pavement lanes respectively. 

However, visual examination of the pavement structure indicated consider

able surface cracking (longitudinal, transverse/map cracking, etc.), and 

raveling especially in the outer pavement lane. The surface cracks and 

the wide depression basin in the outer lane indicate a base failure. 

This concept was further substantiated by the fact that in several of the 

cores at this location, the hot sand base material completely washed out 

during the coring operation. Evidently, considerable stripping had occur

red in this layer. 

Black Base Sections 

Careful study of the profile tracing for test site #50 (Fig. 21) 

revealed sharp humps at the pavement center line and at test point #3 

(between the wheelpaths in the outer lane). This was considered an in

dication of shoving or lateral creep of materials from beneath the 
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adjacent wheelpaths. However, more positive evidence of lateral creep 

could not be determined because the initial transverse profile at this 

site was unknown. Rut depths of 0.786, 0.464, 0.232, and 0.09 in. (2.0, 

1.18, 0.59, and 0.23 cm respectively) were measured at test points #2, 

#4, #7, and #9 respectively. These indicate deeper rut depths at the 

outer wheel path locations in both pavement lanes, and may be related to 

the effects.of cross-slope on weight distribution to the vehicle wheels. 

The cross-slope of the pavement section was measured at 0.275 in. per 

foot (2.29 cm/meter). A subsidence of 0.411 in. (1.04 cm) was noticed 

at the midsection of the outer lane as compared with 0.054 in. (0.137 cm) 

in the inner lane. Densification of the bituminous materials cannot ac

count for this total vertical deformation, however, this test site is in 

a fill section and there is a possibility of subgrade consolidation be

neath the outer lane. 

At test site #20 (Fig. 22), subsidence was noticed at the midsection 

of the outer lane whereas evidence of heave was established at a similar 

location in the inner traffic lane. Magnitudes, however, were very low: 

the subsidence was 0.078 in. (0.2 cm) and the heave was 0.054 in. (0.137 

cm). Rut depths of 0.25 in. and 0.571 in. (0.635 and 1.45 cm) were no

ticed at test points #2 and #4 respectively in the outer lane, compared 

with 0.161 and 0.170 in. (0.409 and 0.43 cm) at test points"#7 and #9 re

spectively in the inner pavement lane. No direct explanation could be 

given for the occurrence of deeper rutting at the inner wheelpath loca

tions in both pavement lanes. 

Evidence of lateral creep was noticed at all locations adjacent to 

wheelpaths in the outer pavement lane at test site #30 (Fig. 23). The 

largest heave was observed at the midsection of this lane and this was 
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0.233 in. (0.59 cm). Large longitudinal cracking in the wheelpath was 

observed at test point #2 and this is an indication of excessive flexural 

stresses in the pavement structure. The apparent tilting of the surface 

profile between test points #2 and #1 towards the pavement center also 

supports this idea. Deep rutting 0.607 in. (1.54 cm) at this location 

will channelize surface water along the longitudinal crack and, subse

quently, to the underlying materials. The deep rutting and cracking in 

the outer lane and the substantial elevation difference (between the in

ner and the outer lanes) observed at this site can be attributed to deter

ioration of the base course materials and possibly to softening and 

volume change of the subgrade. 

At test site #40 (Fig. 24), the outer pavement lane appeared to be 

at a lower elevation than the inner lane. While this could be due to 

failure to achieve proper grade at the time of construction another ex

planation might be general subsidence of materials in this lane. Also 

the leveling course materials in this lane had higher percent density 

values relative to those observed in the inner pavement lane.· This sug

gests that the densification of the leveling course materials contributed 

to the apparent subsidence in this pavement lane. Rutting was heavy in 

the outer lane and lateral shift of traffic towards the inner pavement 

lane was evident on the profile tracing. Rut depths of 0.643 in. and 

0.607 in. (1.63 and 1.54 cm) were measured at points #2 and #4 res~.t-ive

ly, compared with 0.094 in. and 0.233 in. (0.24 and 0.59 cm) observed at 

test points #7 and #9 in the inner pavement lane. Upheaval of approxi

mately 0.078 in. (0.198 cm) was noticed at test points #3 and #5. 
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SABC Sections 

Evidence of lateral creep was observed at all the four test sites 

utilizing this type of base course material. Substantial rutting occur

red on both pavement lanes at all four of the test sites, and this sug

gests relative flexibility or instability in the base course materials. 

At test site #80 (Fig. 25), a heave of 0.2 in. (0.51 cm) was obser

ved at test point #3. The rut depths measured at the adjacent wheelpath 

locations (test points #2 and #4) were 0.482 in. and 0.571 in. (1.22 and 

1.45 cm). A study of the percent density curves for the bituminous ma

terials in this lane indicated relatively uniform density values at the 

three test points for each layer and this suggests that differential den

sification in these materials did not contribute appreciably to rutting. 

The substantial rutting observed in this pavement lane, therefore, can 

be related to lateral creep and differential densification in the stabi-

1 ized-aggregate base course materials. Base failure was evidenced by 

wide longitudinal cracking in and between the wheelpaths. These cracks 

were developing into map cracking patterns and it was not surprising that 

base stabilization operations (lime injection) were being carried out at 

this test site at the time of testing. 

The profile tracings made at test site #90, #100, and #110 (Figs. 

26, 27, and 28), indicated trends similar to that observed at test site 

#80, i.e., deep rutting and upheaval of surfaces adjacent to the wheel

paths were in evidence. It should be noted that these pavement sections 

were relatively old (ages ranged from 158 to 165 months) and the fatigue 

life of the unbound base materials is a factor relating to the apparent 

deterioration in this layer. Thus, age of the pavement structure should 



be considered in an overall performance evaluation of the bituminous 

bound layers. 

Soil-Cement Secti~ns 
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Rutting was minimal at test site #130 (Fig. 29). The maximum rut 

depth was 0.2 in. (0.51 cm) and occurred at test points #2, #4, and #9. 

Evidence of lateral creep was observed at test points #1 and #3 where 

heaves of 0.184 and 0.062 in. (0.47 and 0.16 cm) were measured. Although 

differential densification occurred in the pavement at the wheelpath lo

cations, these values were not large and since the total thickness of the 

materials that could undergo densification was also small, a major por

tion of the observed rut depths can be attributed to lateral creep of the 

bituminous materials. It may be recalled that a differential densifica

tion of 2 percent density units occurring in a 6 in. thick layer will 

result in a differential change in thickness equal to (.02 in. x 6 in.) 

0.12 in. (0.3048 cm). The thicknesses of the core specimens from the 

pavement sections constructed on soil-cement base course materials ranged 

from 6 to 8 in. (15.24 to 20.32 cm) so any section that showed rut depths 

greater than 0.2 in. (0.508 cm) and differential densification less than 

3 percent density units (assuming these were computed based on the ini

tial values), could not be considered as deriving its rut depths from 

differential densification alone. 

Some evidence of lateral creep was also observed at test site #140 

(Fig. 30). However, the magnitude of heave was very small 0.03 in. 

(0.076 cm) and this occurred at test point #3. Rut depths measured at 

the outer pavement lane were 0.289 and 0.257 in. (0.73 and 0,65 cm) at 



the outer and the inner wheelpath locations, respectively. The inner 

pavement lane did not show any appreciable rutting. 
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The pavement at site #170 (Fig. 31) showed deep rutting at all the 

four wheelpath locations and substantial heave of surfaces at the shoul

der and the pavement midsection in the outer lane. The observed rut 

depths were 0.5, 0.5, 0.3, and 0.2 in. (1.27, 1.27, 0.76, and 0.51 cm) 

at test points #2, #4, #7, and #9, respectively. The magnitudes of heave 

were 0.125, 0.25, and 0.03 in. (0.32, 0.635, and 0.076 cm) and these oc

curred at test points #1, #3, and #5, respectively, in the outer pavement 

lane. The magnitudes of rutting and heaving indicate substantial later

al displacement of the bituminous materials must have occurred. Consid

erable differential densification at these locations was inferred from 

the density curves but this cannot account for the total amount of rut 

depth observed. 

Subsidence of 0.217 in. (0.55 cm) was recorded at the midsection of 

the outer pavement lane at test site #180 (Fig. 32). A review of the 

density curves for this test site, however, indicated large differential 

densification in the pavement materials at this location (5.5 and 2.0 

percent density units in the surface and leveling course materials, re

spectively) so that the observed subsidence can be attributed to densifi

cation of the bituminous materials. Lateral shifting of traffic, as 

evidenced on the profile tracing, toward the inner pavement lane resulted 

in densification of .the materials at that location. Rut depths of 0.478, 

0.289, 0.043, and 0.055 in. (1.21, 0.75, 0.11, and 0.14 cm) were observed 

at test points #2, #4, #7, and #9, respectively. 

Cracking appeared to be the major problem associated with the pave

ment sections which utilized soil-cement as base course materials. All 
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four pavement sections on this type of base showed transverse cracking 

at regular intervals of 50 to 60 ft. (15.24 to l8.29 cm). Between the 

wheelpaths in the outer pavement lanes dendritic type cracking had devel

oped at irregular intervals along the longitudinal cracks. The trans

verse cracks showed no symptoms of surface distortion or break-out of 

material adjacent to the crack joint. These cracks were, of course, con

sidered as reflection of shrinkage cracks in the soil-cement materials. 

Nevertheless, traffic action will subsequently cause erosion of materials 

at the cracked joints (interface). Also, surface water will drain through 

these cracks to deteriorate the bituminous materials and soften the sub

grade soil. Considering the action of water and the effects of freeze

thaw circles during the winter months at the cracked joints, it may be 

concluded that these cracks are detrimental to the structural integrity 

of pavement system and require appropriate remedial action. 

Surface Wear 

The method of test for wear of pavement surfaces at the wheelpath lo

cations was described under "Test Procedures" and was based on the as

sumption that wear of the matrix would not be sufficient to cause complete 

dislodgement of the surface aggregates. It was originally planned to use 

a classical statistical method (AOV) to test for differences in the test 

data which will be an indication of differential wear resulting from 

traffic action. Use of this statistical method implied data sets of full 

size, i.e., if any of the classification variables had blank or missing 

values in an observation, that observation will be excluded from the 

analysis. 
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Surprisingly, the state of wear observed at most of the sites (at 

the time of testing) had passed the fracturing stage and substantial dis

lodgement was noticed. Surface raveling was observed at a number of the 

pavement test sections. Furthermore, some of the stereo-pairs of photo

graphs made of the pavement surface at some of the sites were very poor 

due to a malfunction of the camera shutter system. These situations 

weakened the effectiveness of the statistical test method proposed and 

resulted in a departure from the intended method of analysis. 

A new method of analysis (non-statistical) was devised and this con

sisted of comparing the maximum projections of the surface aggregates ob

served at the wheelpath locations in a given pavement lane with those 

observed at the adjacent non-wheelpath locations. Because the aim of 

this analysis was to detect evidence of differential wear (not magnitudes 

of wear), the surfaces at the pavement shoulders (test points #1 and #10) 

were excluded from the analysis. Absolute arithmetic mean differences 

were used so differential wear on pavement surfaces incorporating either 

polishing or non-polishing aggregates or both could be detected. Averag

ing of differential values indicated conservative results, i.e., the 

differential values obtained this way are minimal. Table II shows a clas

sified summary of the results of this analysis. The results indicated 

differential wear values at all the test sites where comparisons were pos

sible. As would be expected, the larger values occurred in the wheelpaths 

of the outer traffic lane. While the determined magnitudes of wear were 

smaller than anticipated, the results indicate that wear is definitely a 

contributing factor to rutting on flexible pavements. 



BASE COURSE MATL. 

HMSA 

BB 

SABC 

SCB 

*** MISSING VALUES 

TABLE II 

DIFFERENTIAL WEAR 

SITE # AGE 
MO. 

10 36 
60 169 
70 169 

120 105 

20 82 
30 56 
40 56 
50 86 

80 165 
90 165 

100 158 
110 158 

130 148 
140 148 
170 169 
180 169 

1. CONVERSION: 1.0 in. = 2.54 cm 
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DIFFERENTIAL WEAR (INS.)(l) 
AT WHEELPATH LOCATIONS 

INNER LANE OUTER LANE 

0.012 0.020 
0.016 0.023 
0.018 0.027 
0.016 0.029 

0.008 0.071 
*** *** 
*** 0.016 

0.015 0.016 

0.016 0.031 
0.023 0.078 
*** *** 
*** *** 

0.010 0.017 
0.005 0.014 
0.028 0.039 
0.031 0.031 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Based on the test procedures employed and the pavement sections stu

died, the following conclusions are made: 

1. The transverse profile gage provides a portable and accurate 

means of obtaining continuous profile tracings of a pavement surface. 

2. In addition to measurement of surface deformations, the plotted 

profile graphs provide permanent records of these conditions at a speci

fic time in the service life of a pavement and can be used for future 

studies. 

3. The profile gage can be used to follow the development of sur

face deformations at sites on stage construction pavement sections. The 

transverse profile information and other test data, e.g., Benkelman beam 

deflections, can provide guidance in determining the optimum time for 

placing subsequent overlays. The gage is currently being used for this 

purpose. 

4. With slight modifications to increase its portability, the pro

file gage can be employed to check surface tolerances on concrete bridge 

floors. This capability has been demonstrated. 

5. On flexible pavements, densification under traffic loadings oc

curs in all asphalt bound material layers with the greatest amount of 

densification in evidence at the wheelpath locations in the outer 
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pavement lane. Densification contributes a significant amount to the to

tal surface rut depth, particularly where a thick layer of low density 

(below 92. percent density) asphalt base is used. 

6. Lateral creep or instability in the bituminous pavement mater

ials, as evidenced by surface heaves immediately adjacent to the wheel

paths. was found on 12 of the 16 test sites. This occurred in high as 

well as low density materials and contributed greatly to the total rut

ting at these locations. Evidence of lateral creep was observed on all 

types of base course materials. More prominent surface heaves were no

ticed at sites where the bituminous material layers had low densities. 

7. Lateral shift of traffic towards the inner pavement lane was 

noticed on pavement sections where rut depths exceeded 0.5 in. (1.27 cm). 

This was indicated by the widening of the wheelpaths in the heavily tra

veled right hand lane towards the inner traffic lane. Apparently, dri

vers tend to avoid driving in rutted wheelpaths and steer to the left 

rather than towards the pavement shoulder. On two lane facilities, this 

reduces the lateral vehicle clearance and can result in hazardous driv

ing conditions. 

8. Surface wear or attrition in the wheelpaths on heavily trav

eled traffic lanes is an important contributing factor to rutting on flex

ible pavements. 

9. No satisfactory correlation between laboratory density values 

and the values obtained using the surface nuclear density gage was found. 

The accuracy of measurements obtained using the surface or back scatter 

method (nuclear method) appeared to depend on the pavement surfaces ma

terial characteristics, particularly, surface roughness as well as exper

ience with the operation of the equipment. See Appendix E. 
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10. The analysis of data using the multiple regression (multivari

ate) methods (28) indicated negative correlation coefficient between rut 

depth and age of pavement, i.e., greater rut depth values were associated 

with more recent pavement sections. The older pavement sections might 

have been overlaid or they were built to resist rutting better than the 

more recent ones. This indicates that, if rutting should be a major 

problem, it will occur during the early stages of pavement life. 

11. A negative correlation coefficient was found between rut depth 

and surface (differential) wear in the wheelpaths and this confirms the 

afforementioned finding that motorists tend to avoid driving in deep ruts 

by shifting to less rutted pavement surfaces. 

12. The importance of drainage in flexible pavement construction 

was indicated by the negative correlation coefficient observed between 

rut depth and the cross-slope of the pavement surface. Apparently, sur

faces with greater cross-slope tend to drain surface water faster during 

and after rainfall thus reducing infiltration of water into the pavement 

structure to deteriorate the bituminous materials and soften the under

lying subgrade soil. 

Recommendations 

In view of the results of this research investigation, the following 

recommendations are made: 

1. Investigate modifications to increase the portability of the 

transverse profile gage so it can provide faster means of monitoring 

pavement surface deformations and for checking surface tolerances on con

crete bridge floors. 
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2. In order to follow surface deformations due to traffic action, 

profile tradngs at a site should be made prior to opening the highway 

to traffic. This will provide an initial tracing at time 11 zero 11 for sub

sequent comparisons. 

3. Following the above recommendation, additional (or further) 

studies could ascertain exact amounts of surface heave, and determine the 

bituminous pavement layer(s) responsible for this type of displacement. 

With careful monitoring of specially constructed test sections, it should 

be possible to distinguish between surface heave resulting from lateral 

creep (shear failure) in these layers and that due to changes in the en

vironment, e.g., swelling of subgrade soils. Higher stability values for 

the respective layers may be required. 

4. Increased surveillance of operations at hot-mix plant sites and 

more stability checks on the mixture being produced could be instituted 

to insure conformance with the stability requirements for a given type 

of mix. Special studies of this nature on selected projects would indi

cate the adequacy of present inspection and check test procedures. 

5. To minimize the contributions of densification and lateral 

creep to rutting, construction methods and specifications should be re

viewed to determine if changes are necessary to insure adequate compac

tion and density of all asphalt bound pavement materials. 

6, The accuracy of current laboratory procedures for determining 

percent density values of both laboratory and field compacted specimens 

should be investigated. Error in the determination of the maximum speci

fic gravity of a mixture can easily result in very low in-place density 

values. Due to this error, the measured percent density values of field 
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specimens can be above the specified minimum value but the actual den

sity of these specimens may be a great deal below the desired value. 

7. A comprehensive study of the effectiveness of the various types 

of base course material used in flexible pavement construction in Oklaho

ma should be made. A feasible appraoch to such a study would be to use 

stage construction test sections at various geographical locations in 

Oklahoma. That is, for a given type of base, design and construct test 

sections with varying thicknesses of the surface course material and fol

low subsequent behavior in terms of appropriate performance variables in

cluding 1) rutting, 2) surface roughness, 3) longitudinal cracking, 

4) transverse cracking, and 5} slope variance. Other material variables, 

e.g., initial density of material layers, layer thickness, type of sec

tion, etc., may be included to provide a set of data for classical sta

tistical analysis using mutivariate methods. 
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TABLE I II 

DESCRIPTION OF TEST 

-------
TEST LOCATION SECTION TYPE BASE TYPE AGE _ocATION OF MARKER 

SITE # (MONTHS) (ORANGE PLATE) 

10 Interstate 40, Westbound Lanes, Fm Hot Mix Sand Aspha 1t 36 North right-of-
Muskogee ,County, Oklahoma, ap- way fence 
prox. 12.50 miles East of Mc-
I ntosh County 11 ne 

20 Interstate 40, Westbound Lanes, Fm Black Base 82 North right-of-
Seminole County, Oklahana, ap- way fence 
prox. 2.4 miles East of Potta-
wa tom! e County 11 ne 

30 Interstate 40, Westbound Lanes, Cut Black Base 56 North right-of 
Sequoyah County, Oklahoma, ap- way fence 
prox. 13.0 miles East of Mus-
kogee County line 

40 Interstate 40, Eastbound Lanes, Fill Black Base 56 South right-of-
Sequoyah County, Oklahoma, ap-
prox. 12.6 miles East of ~us-

way fence 

kogee County line 

50 Interstate 40, Westbound Lanes, Slight Cut Black Base 86 North right-of-
Seminole County, Oklahoma, ap- way fence 
prox. 4. 5 miles East of Potta-
watomie County line 

60 Interstate 40, Westbound Lanes, Slight Fm Hot Mix Sand Aspha 1t 169 North right-of-
Beckham County, Oklahoma, <0- way fence 
prox. 19.0 miles East of Texas-
Oklahoma State line 

70 Interstate 40, Westbound Lanes, Sl 1ght Fill Hot Mix Sand Aspha 1 t 169 North right-of-
Beckham County, Oklahoma, ap- way fence 
prox. 20.50 miles East of Texas-
Oklahooia State line 

80 Interstate 35, Southbound Slight F111 Stabil 1zed Aggregate 165 West right-of-
Lanes, Kay County, Oklahoma, Base Course way fence 
approx. 25.0 miles North of 
Noble County 1 i ne 

90 Interstate 35, Southbound Slight Fill Stabilized Aggregate 165 West right-of- --Lanes, Kay County, Oklahoma, Base Course way fence 
approx. 26.0 miles North of 
Noble County line 

100 Interstate 35, Southbound Slight F111 Stabil 1zed Aggregate 158 West right-of-
Lanes, Cleveland County, Ok- Base Course way fence 
lahoma, approx. 4. 5 mil es 
North of McClain County 1 i ne 

110 Interstate 40, Westbound Lanes, Slight Fill Stabilized Aggregate 158 West. right-of-
Cleveland County, Oklahoma, ap- Base Course way fence 
prox. 12.0 miles East of Okla-
homa County line 

120 Interstate 40, Eastbound Lanes, Slight F111 HMSA 105 North right-of-
Pottawatooiie County, Oklahoma, way fence 
approx. 12.0 miles East of Ok-
lahoma County line 

130 Interstate 40, Eastbound Lanes, Slight Fm . Soil-Cement Base 148 South r1 ght-of-
Washita County, Oklahana, ap- way fence 
prox. 9.0 miles East of Beckham 
County line 

140 Interstate 40, Westbound Lanes, Fill Soi 1-Cement Base 148 North right-of-
Washita County, Oklahoma, ap-
prox. 12.25 miles East of Beck-
ham County line 

way fence 

170 Interstate 40, Eastbound Lanes, Fill Soil-Cement Base 169 South right-of-
Beckham County, Oklahoma, ap- way fence 
prox. 26.4 miles East of Texas-
Oklahoma State 1 ine 

180 Interstate 40, Eastbound Lanes, Fm Soil-Cement Base 196 South r.gnt-of-
Beckham County, Oklahoma, ap- way fence 
prox. 20.25 miles East of Texas-
Ok' · ooma State line 

./ 
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TEST POINT NO.: IO 9 8 7 6 
't. 

5 4 3 2 1 

+ + + + + + + + + 
-~ OUTER 
"' R SHOULDER ~ LINE LINE .. ... 

TRANSVERSE 
g 
"' PROFILE 

!:1 
8 ' ' ' ' .. 

r.O 2D 3.0 4.0 5D 6.0 
TRANSVERSE SCALE • FEET 

PROFILE MEAS.llNSI: r. ... VAWE • RUT J 
• -• VALUE • HEAVE 0.00 ll400 -o.- USO o1oo O.ISO O.lllO •O.llOO a.no ·0.200 

8ll.K SP." &RAYi!! 

LAYER A 2.27 2.30 2.21 2.31 2.-31 2.30 2.31 2.30 2.31 2.31 
LAYER 8 2.30 2.31 2.311 2.32 2:32 2.30 2~34 2.30 2.:M 2.311 
LAYER C 2.17 2.34 2_~18 2.19 2~11 2.11 2.211 2.11 2.11 2.11 
LAYER D 2.21 2.25 2'22 Z.2' 2".21 2.211 2.21 2.211 2.41 2.211 

L!-Y.B ~ 2.211 Ul! .... ~. " ... z.~ ..... -·"' .. ~·1!. .1.~ . 2.~!' .... ~:!.' __ z~ 2.19. 2.1& 

RICE'S SP. §!!vm 

LAYER A 2.33 "2.33 2.30 2.33 2.33 2.33 2.33 2.33 2.32 2.33 
LAYER ii 2.35 2.35 2.35 2;37 2.37 2.33 2.37 2.33 2.35 2.35 
LAYER C 2.42 2.43 .... 2.42 2.41 2.41 2.42 Z.41 2.45 2.41 
LAYER D 2.41 Z.41 Z.41 2.411 2.41 Z.41 2.41 2.41 2.43 2.41 
LAY£R "E 2.41 2.41 2.41 2.41 2~41 2.41 2.41 2.41 2 •. 41 2.41 

·•·. ... 
PERCENT DENSITY 

LAYER A !17.42 98.711 !17.1& 91.14 99! .. 14 98.71 99.14 98.71 9!1.57 H.14 
UYER 8 97.to !17.18 .,.., ..... .. ... 98.71 98.73 97.87 99.15 tJ..11 
LAYER C 89.17 ... 30 ..... 911.511 OIJ.46 ..... 90.91. 90,415 as .• oo ..... 
LAYER D 91.70 . 93.3& 12.12 94.17 91":10 91.29 91.711 91.28 99.111 !lli.19 
LAYER E 91.28 ~.12 91.28 ..... 77.18 ..... 90.87 ..... 90.B? all>~ 

IUllAR DEllSITY 

LAYEi A 125.60 131.10 130.60 134.0 134.30 72.50* ti ti -- 75.50* 
(PCF) 

ATTRITI'* _, 
(MX. PROJECTI<llS·IJICJtESJ 0.016 ..... 0.016 ..... 0.016 0.11118 O.DD4 0.024 0.016 0.053 

* Liii YALIES COMSIDEllED llllELIAILE 
.., VM.lES. COllSllDfD EROINmfS 

Figure 17. Data for Site #10 _... 
N _... 



SITE NO.: 60 ~ I-40 WEST BECKHAM CO MILE 19.0 BASE COURSE TYPE: H.M. S.A. AGE (l,l_Ql'iTHfil: 169 CROSS-SLOPE (IN/FT): 0.178 

<t. 
TEST POINT NO.: 10 9 a 7 6 5 4 3 2 I 

u; t t t t t t t t t t 
;!': 
;::; 0 . 
...J 

" TRANSVERSi;; u 

"' PROFILE ...J 

~ Q 

~ 0. 

~ 0.7sl- 0 1.0 2.0 3.0 4.0 5.0 6.0 
TRANSVERSE SCALE !FEET) 

PROFlbE MEAS. !INS! 
"•" VALUE • RUT J 
"-"VALUE• "HEAVE 

0.094 0.130 0.214 0.214 0.094 -0.125 0.300 0.078 0.429 0.00 

Bll.K SP. GRAVITY 

LAYER A 2.34 2.37 2.33 2.38 2.35 2 ... 2.46 2.37 2.45 2.40 

LA.YER B 2.37 2.41 2.02 2.07 2.42 2.41 2.43 2.39 2.41 2.36 

LAVER C 1.90 1.90 1.60 1.61 1.91 L92 1.92 1.91 1.92 1.91 

LAYER D 1.90 1.91 1.89 1.60 l.91 ., 1.90 1.91 1.91 1.93 1.91 

LAYER E l.89 1.92 1.88 1.93 1.90 1.91 1.88 t .. ·!KI -1.90 1.91 

RJC£'S SP. GRAVITY 

LAYER A 2.51 2.'8 2.42 2.52 2.52 2.47 2.52 2.50 2.'8 2.51 
LAYER B 2.47 2.'8 2.46 2.46 2.49 2.48 2.'8 2.49 2.50 2.48 
LAYER C 2.42 2.'8 2.41 2.« 2.46 2.42 2.23 2.4Z 2.42 2._43 

LAYER D 2.41 2.35 2.43 2.42 2.47 2.42 2.21 2.43 2.41 2.43 
LAYER E 2.43 2.42 2.39 2.47 2.42 ' 2.41 2.20 2.40 2.38 2.43 

PERCENT DE.HSITY 

LAYER A 93.23 95.56 %.28 94.44 93.25 94.74 97.62 94.00 98.79 95.62 
LAYER B 95.95 97.18 B2.11 84.15 97. 19 97.18 97.98 95.98 96.40 95.16 
LAYER C 78.51 76.-61 66.40 65.98 n.8' 79.34 86.10 78.93 79.34 7.8.60 
LAYER 0 78.84 81.28 77.78 66.12 77.33 78.51 86.43 78.60 Q0.08. 78.60 
LAYER E 77.78 79.34 78.61 78.14 78.51 79.25 85.45 79.17 79.83 78.60 . 

M.ICLEAR DENSITY 

LAYER A 158.00*" 155.00* 153.50* 154.30* 157 .IJOfr 108.40 154.50 103.50 162.00* 156.00* 

ATIRITION 

(MAX. PROJECTIOOS): 0.016 0.002 0.002 0.031 o.ooa 0.047 0.031 

* VALUES CONSIDERED UHRELIABLE 

***BAD PffOTOS 

Figure 18. Data for Site #60 ,_. 
N 
N 



!ll/LK~ 

LAYER A 2.30 2.35 2.30 2.35 2.30 2.35 2.42 2.34 2.-46 2.43 
LAYER II 2.34 2.42 2.43 2.43 2.42 2.45 2.43 2.43 Z.46 2.43 
LAYER C 1.92 1.98 1.06 1 .. 96 1.06 1.97 2.00 2.00 1.99 1.99 
LAYER D 1.88 1.92 1.91 1.91 1.90 -1.90 1.92 1.94 1.91 1.95 
LAYER E 1.88 1.92 .... 1.89 1.87 1.84 1.84 1.91 '·"' 1.~5 

RICE'S SP. GRAVITY 

LAYER A 2.52 ?.51 2.52 2.51 2.52 2.49 2.50 2.50 2.48 2.51 
LAYER B 2.49 2.49 2.51 2.50 2.49 2.51 2.52 2.52 2.51 2.52 
LAYER C 2.42 2.43 2.43 2.43 2.44 2.43 2.35 2.41 2.44 2.44 
LAYER D 2.45 2.43 2.44 2.51 2.44 2.41 2.29 2.39 2.41 2.42 
LAYER E 2.4-0 2.40 2.40 2.47 2.43 2.43 2.30 2.43 2.42 2.41 

PERCENT DENSITY 

I.AYER A 91.27 93.63 91.27 93.63 91.27 94.38 ..... 93.60 99.18 96.81 
• LAYER B 93.98 97.19. 96.81 97.20 97.19 97.61 96.43 96.43" 98.01 96.43 

LAYER C 79.34 .81.48 ..... 80.66 80.33 81.07 85.11 82.99 81.56 81.56 
LAYER 0 76.73 ' 79.01 78.28 76.10 77.87 78.84 83.84 81.17 79.25 80.58 

"LAYER E 78.33 80~00 79.17 76.52 76.95 75.72 80.00 78.60 75.21 . 76.76 

NUCLEAR DENSITY (PCF) 

LAYER A 104.50 104.00 150.50** 92.00** 105.00 154.00- 157.50" 157 .(l()tt 158.50** 158.50** 

ATIRITION MEAS. (INS) 
(HAX. PROJECTJOHS) 0.006 0.006 0.006 0.008 0.002 - ·- - - 0.002 

HIGH YALIES CONSIDERED ERROR11EOIJ5 
BAD PHOTOS 

Figure 19. Data for Site #70 
...... 
N 
w 



SITE NO,: 120 ~= I-40 WEST POTTAWATOMIE CO. MILE 12.0 BASE COURSE JYPE: HM.S.A. Afi£_1MllNilfS1: 105 CBOSS-SLOPEllNlm: 0.364 

ct. 
TEST POINT NO.: 10 9 8 7 6 5 4 ll 2 

+ + + • + + • • + + 
OUTER 

SHOULDER. 
LINE .. ---1 ~~-

TRANSVERSE 
f!!Qf!l& 

3 u.:r 
c: n 

0 LO 2D 3.0 4.0 5.0 s.o. 
TRANSVERSE SCALE -.FEET 

PROFILE MEAS. (INS) 
i •" VALUE • RUT J 
"-• VALUE • HEAVE 

0.000 O.IGO 0.050 o.ooo 0.000 0.000 O.HO 0.000 o.ooo 0.000 

BULlt~ 

LAYER A -~·15 2.25 2.26 2.32 2.31 2:32 2.38 2.27 2.31 . 2.23 
LAYER B 2.27 2.33 2.30 2.29 2.31 2.2!5 2.33 2.32 2.33 2.24 
lAYER C 1.93 1.9~ 1.93 1.95 1.i11 1.90 1.92". l.91··· 1.93 1.91 
LAYER 0 1.95 1.99 1.96 . 1.97 "f.90 1.88 1.91. l.90 1.91 1.89 
LAYEl E 1.93 1.93 l.93 1.93 l.89 1.92 1.93 1.94 1.94 1.91 

RICE'S SP. GRAVITY 

LAYER A ·v14 2.44 2.45 2.42 2.49 t.49 2.42 2.41 2.38 2.38 
LAYER B 2.42 2.43 2.41 2.40 2 •. 41 2.39 2.41 2.40 2,39 2.41 
LAYER C 2.44 2.44 2.44 2.44 2.43 2.44 2.43 2.43 2.43 2.43 
LAYER D 2.43 2.42 ·2,42 2.43 2.42 2.42 2.44 2.il2 2.42 2.45 
LAYER E 2.43 2.40 2.43 2.44 2.43 2."42 2.44 2.41 2.42 2._44 

PERC~ 

LAYER A 88.11 92.21 92.24 95.87 92.77 93.17 98.35 94.19 97.06 93.70 
LAYER 8 93.80 95".88· 95.44 95.42 95,85 94.56 96.68 96.67 97.49 92.95 
LAYER C 79.10 79.92 79.10 79.92 78.60 77.87 79.01 78.60 79.42 78.60 
LAVE~ t! 80.25 82.23 80.99 81.07 78.51 77:69 78.28 78.51 78.H 77.14 
LAYER E 79.42 80.41 79.42 79.10 77.78 79;34 79.10 80.50 80.17 78,28 

NIJCL~(PCF) 

LAYER A 149.68 150.95 148.00 151.30 152.05 154.17 155.92 152.92 153.80 147.18 

ATTRITION MEAS. (INS) 
(IWC. PROJECTIONS) 0.094 D.047 0.024 0.008 0.016 0.031 0.002 0.016 0.002 0.031" 

Figure 20. Data for Site #120 ....... 
N 
..i::. 



SITE NO.: 50 ~ I-40 WEST SEMINOLE CO, MILE 4.5. BASE COURSE TYPE: B.8. AGE (MONTHS I : 86 CROSS-$1.QPE (INIFTI: 0.275 
~ 

i 
TEST POINT NQ : 10 9 8 7 6 5 4 3 2 I 

·r + + + + + + ·+ + + 
z INNER OUTER = Q.50 SHOULDER SHOULDER 

~ o,25 LINE 
LINE 

TRANSVERSE 
PROFILE 

.. °'25 
u 
~ 0,50 

0 1.0 2.0 3.0 4.0 5.0 6.0 
TRANSVERSE SCALE I FEET) 

PROFILE MEAS. llNS 

E•" VALUE • RUT 
"-" VALUE• HEAVE 

0.00 0.010 0.054 0.232 o.oo 0.094 0.484 0.411 0.718 0.00 

BILK SP. GRAVITY 

LAYER A 2.24 2.27 2.27 2.24 .... 2.26 2.28 2.26 2.27 2.26 

LAYER B 2.22 2.25 2.23 2.23 2.23 2.23 2.26 2.22 Z.23 2.23 

LAYER C 2.18 2.16 2.19 2.12 Z.ll 2.20 2.11 2.13 2.19 2.15 

LAYER 0 2.21 • 2.23 2.23 2.22 2.20 2.~ •. 2.24 2.21 z.22 2.21 

LAYER E 2.20 2.23 2.20 2.22 2.20 2.20 2.22 2.22 2.19 2.20 

RJCE'S SP. GRAVITY 

LAYER A 2.43 2.45 2.43 2.44 2.43 2.40 2.4'1 2.45 2.42 2.41 

LAYER B 2.47 2.44 2.49 2.43 2.46 2.48 2.45 2.45 Z.44 2.44 

LAYER C 2;47 2.43 .... 2.42 2.42 2.46 2.44 2.41 2.44 2.43 

LAYER D .... .... 2.48 2-~· Z.44 2.41 2.46 2.42 2.47 2.42 

LA\'EJI £ 2.48 ·2.48 2.48 .... 2.'4 2.45 2.44 2.45 2.42 2.45 

PERCENT DENSITY 

LAYER A 92.18 92.65 93.42 91.80 92.59 94.17 94.61 92.24 13.80 93.~ 

LATE11: a ..... 92_.21 ..... 91.17 ..... 91.13 92.24 90.61 91.39 91.39 

LAYEit. 88.26 ..... 88.31 87.60 87.19 89.43 88.93 88.38 89.75 81:48 
LAYER O 89.11 ..... ..... 89.52 90.16 ..... 91.06 91.32 ..... 1i:"32 
LAYER E 88.71 89.92 88.71 89.52 90.1& ..... !K).98 ..... 90.50 ~-80 

NUCLEAR DEHSin 

LAYER A 143.00 145,50 144.50 147.50 140.50 120.20 143.50 126~00 148.50 l~IO 

Amt.ITIDN (INS) 

[tv.X. PRO.JECTIONSJ 0.01& 0.023 0.016 0.016 0.031 0.078 ..... - - ""' 
_.BAD PHOTOS 

Figure 21. Data for Site #50 

...... 
N 
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~: 20 ~: 1·40 WEST SEMINOLE CO. MILE 2.40 BASE CO_URSE_IYP£_: 8.8. AGE U,t_ONJ}lSl: 82 CROSS·SLO!'EJl_NlEfJ: O.Z70 

<t 
TEST POINT NQ. : 10 9 8 7 6 5 4 3 2 I 

- j t t t + + + t t t t 
~O. INNER OUTER = SHOULDER SHOULDER 
~o.- LINE LINE 

_<[ 

TRANSf'"ErE 
<..> 

"' PRO IL ..J 
~o. 

~0.501 
0 ID 2.0 3.0 4D 15.0 6.0 

TRANSVERSE SCALE - FEET 

0.00 OJ70 -0.0!!4 0.161 ·o.oo 0.00 0.571 0.078 o.zso o.oo 

BULP:: SP. GRAVITY 

LAYER A 2.40 2.44 2.41 2.34 2.40 2.41 2.43 2.42 2.44 2.40 
LAYER 8 2.18 2.25 2.22 2.20 2.18 2.22 2.24 2.23 2.22 2.20 
LAYER C 2.20 2.25 2:26 2.25 2.24 2.23 2.19 2.19 2.28 2.19 

LAYER D 2.21 2.37 2.22 2.25 2.28 2.34 2.Zl 2.19 2.22 2.22 

LAYER E 2.3-0 2.27 2.21 2.27 2.37 2.30 2.2-0 2.18 2.22 2.22 

RICE'S SP. GRAVITY 

LAYER A 2.45 2.45 2.44 2.44 2.46 2.45 2.45 2.46 . 2.45 2.45 
LAYER B 2.47 2.48 2.44 2.44 2.45 2.44 2.46 2.47 2.44 2.45 

LAYER C 2.43 _2.46 2.44 2.44 2.46 2.44 2.44 2.45 2.45 2.40 
LAYER D 2.41 2.47 2.42 2.44 2.46 2.47 2.44 2.41 2.42 2.44 

LAYER E 2.47 2.46 2.42 2.45 2.47 2.45 2.44 2.44 2.42 2.45 

PERCENT DEHSITY 

LAYER A 97.96 99.59 98.77 95.90 97.56 98.37 99.18 98.37 99.j9 97.96 

LAYHt 8 88.26 90.73 90.98 90.16 88.98 90.98 91.06 90.28 9().98 89.80 

LAYER C 90.54 91.46 92.62 92.21 91.06 91.39 89.75 89.39 93.06 91.25 

LAVER D 91.70 95.18 91 .74 92.21 . 92.68 94.74 90.57 88.66 91.74 90.98 
LAYER E 93.12 92.28 91.32 92.65 95.95 93.88 90.16 89.34 91.74 90.61 

HIJCLEAR DENSITY (P.C.F.) 

LAYER A 80.00* 79.0 * 138.00 81.00* lJD.50 - 139.50 87.00* 79.50* 133.50 

~ 
MAX. PROJ. (IMS) <tt 0.016 0.008 tto 0.032 -0.004 0.079 -0.008 

* LOW VALUES CONSIDERED UNRELIABLE 

- VALUES CONSIOEREO ERRORNEOUS 
""*SAD PHOTOS 

1--' 

Figure 22. Site #20 
N 

Data for O""I 



~ 30 LOCATION: I-40 WEST SEQUOYAH CO. MILE 13.0 BASE COURSE TYPE: B.B. AGE C MONTHS): 56 

i 
TEST POINT NO.: 10 9 8 7 6 5 4 

·+ + + + + + + 
0~ !! 0 INNER 
;;; LDER 
</ 0.25 LINE 

TRANSVERSE 
PROA LE 

~ ~-~t ~ 
0 1.0 2.0 3"0 4.0 5.0 6.0 

TRANSVERSE SCALE C FEET) 

PROFILE MEAS. ClllS) 

" - " VALUE • HEAvE 
["•"VALUE• RUT l 0.00 0.250 0.125 0.146 0.070 -0.094 0.536 

BULK SP. ~VITY 

LAYER, A 2.24 2.27 2.23 2.16 2.23 2.30 2.31 
LAYER B 2.21 2.25 2.30 2.24 l.26 2.28 2.31 
LAYER C 2.22 2.24 z.3o 2.24 2.30 2.09 2.34 
LAYER D 2.25 2.25 2.30 2.18 2.25 2.25 2.34 
LAYElt.E 2.2ti 2.26 2.26 2.22 2.26 2.26 2.20 

RICE'S SP. GRAVITY 

LAYER A 2.34 2.32 2.32 2.29 2.33 2.33 2.32 
LAYER B 2.36 2.33 2.34 2.33 2.37 2.36 2.37 
LAYER C 2.36 2.35 2.37 2.35 2.37 2.36 2.36 
LAYER 0 z.36 2.36 2.36 2.36 2.36 2.36 2.36 
LAYER E 2.34 2.34 2.34 2.34 2.34 2.34 2.32 

PERCEHTDEtlSITY 

l.).YER A 95.73 97.84 96.12 94.32 95.71 98.71 99.57 
LAYER B 93.64 96.57 98.29 96. ~· 95.36 96.61 97.47 
LAYER C 94.07 95.32 97.05 95.32 97.05 88.56 99.15 
LAYER D 95.34 95.34 97.46 92.37 95.34 95.34 99.15 
LAYER E 95.58 96.58 96.58 94.87 96.58 96.58 94.83 

lfUCLEAROE11SJTY 

LAYER A 107.50 124.00 111.00 116.20 115.70 126.00 127.50 

ATTRITION (IHS) 

[MllX. PROJECTIC»IJ 

*** BAO PHOTOS 

Figure 23. Data for Site #30 

CROSS-SLOPE (IN/FT): 0.208 

3 2 

+ + 

-0.233 o.eo1 

2.30 2.31 

2.29 2.32 
2.28 2.34 

2.25 2.34 

2.26 2.20 

2.32 2.32 

2.37 2.34 
2.34 2.36 
2.Ji 2.36 
2.34 2.32 

99.14 99.57 
96.62 99.14 
97.43 99.15 
95.34 99.15 
96.58 94.83 

il(J.50 131.20 

I 

+ 

-0.042 

2.30 
2.29 

2.29 

2.25 

2.26 

2.32 

2.37 

2.36 

2.36 

2.34 

99.14 
96.62 

97.03 

95.34 

96.58 

129.00 

__, 
N 
........ 



~~40 ~ I-40 EAST SEQUOYAH co. Ml~ 12.6 BASE COUftSE DPE! aa. AGE !MQNTHSJ: 56 CBOSS-SLQPE I INIFTI: .0.225 

i 
TEST POINTJ'IO,_: 10 9 8 7 6 1 5 4 5 2 I 

+ + t + + 
I 

+ t + t + i ·l-= Q HOULDER OUTER 
kl UNE SHOULDER 
:;i 0. UNE 

T•EF Iii . 
5 D.25 
;:: 

~ 8 ID 
,. . I I I I • 2.0 •. 5D 4D 5.0 . 6.0 

TRANSVERSE SCALE !FEET! 

0.0!1 0,2!! 0.00 0.094 0.00 -a.on r; 907 -o.on O.H! 0.00 

!JU. SP; &IAV1TY 

LAYER A 2.22 2.28 2.25 .... 2.27 2.24 2.35 Z.27 2.30 Z.30 

LAYER 8 2.15 2.17 2.17 2.21 2.15 2.24 2.29 2.25 ·2.21 Z.24 

LAYEii C =2.23 2.24 2.22 2.24 2.24 2.29 2.30 .... 2.31 2.21 

"'"". .... 2.19 2.25 2.25 Z.22 .... z.zz 2.ZD z.22 2.i1 

U..Yil E ~-1.8 2.H .2.25 2.25 2.18 Z.ZD 2.11 Z.ZD .2.18 2.21 

RICE'S SP. GRAVITY 

LA~ER A 2.45 .... 2.42 2.43 .... 2.43 .... 2.45 2,45 Z.43 

LAYEi: 8 2.30 2.31 2.32 2.32 2.32 2.31 .... 2.32 Z.32 2.31 

LA.YER C 2.36 .... 2.35 2.37 2.37 2.39 .... .... . ... 2 ... 

LAYER o· 2.3) 2.36 2.36 2.37 2.34 2.36 2.34 2.36 2.34 2.37 

LAYER E 2 .• 35 .... .... 2.37 2.37 2.36 2.37 !·35 2.37 2.37 

PERCEMT DEllSm 

LAYEi A 90.61 93.44' 92~98 13.83 93.03 92.18 96.31 ·92.15 ..... 94.15 

LAYER I ..... 93.94 93.53 ..... 92.17 96.97 97.03 98.98 98.28 96.97 

tAYER C 94.49 95.3Z 94.47 94.51 94.51 ..... 96.23 96.22 97.05 95.00~ 

LAYEi D 92.83 92.80 95.34 94.94 94.87 93.22. M.87 93.22. 94.17 93,25 

.LAYER E 12.n 92.IO 95.34" 94.94 91.98 93.22 91.98 93.2Z 91,98 93.25. 

llllQ.EAA.J!m!ll !PCF! 

LAYEi A 131.60 136.00 135.50 136.50 134.00 132.00 140.50 139.00 140.50 135.10 

ATIRITilll (IN$.) 

(Ml. PRo.JEcilOHSJ ..... - ·- . .... -· ..... 0.016 ..... - ..... 
- .BAD· PHOTOS 

Figure 24. Data for Site #40 
__, 
NI 
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SITE NO.: BO LOCATION: I-35 SOUTH KAY CO. MILE: 25.0 BASE COURSE TYPE: S. A.B.C. AGE(MONTHS): 165 CROSS-SLOPEUNt_FT): 0.205 

Cf. 
TEST POINT NO.: 10 9 8 7 6 5 4 3 2 I 

+ + + + + + + + + 
OUTER 

SHOULDER 

I\ W&.o.11 ~ ~ 
LINE; 

TRANSVERSE 
PROFILE 

~~J 
0 1.0 2.0 3.0 4.0 5.0 6.0 

TRANSVERSE SCALE (FEET) 

PROFILE MEAS. (INS) 
··.·VALUE• RUT 1 
"-" VALUE• HEAVE 

0.000 0.125- 0.000 0.196 0.000 0.000 0.571 -0.200 0.482 0.000 

BULK SP. GRAVITY 

LAYER A 2.16 2.27 2.23 2.37 2.25 2.29 2.32 2.31 2 .. 31 2.19 
LAYER B 2.33 2.40 2.33 2.41 2.34 2.35 2.35 2.36 2.35 2.35 
LAYER C 

LAYER D 

LAYER E 

RICE'S SP. GRAVITY 

LAYER A 2.39 2.39 2.38 2.40 2.38 2.45 2.39 2.39 2.39 2.39 

LAYER B 2.45 2.46 2.40 2.45 2.41 2.41 2.39 2.41 2.39 2.38 

LAYER C 

LAYER D 

LAYER E 

PERCEf'IT DENSITY 

LAYER A 90.38 94.98 93.70 98.75 94.54 93.47 97 .07 96.65 96.65 91.63 

LAYER B 95.10 97.56 97.08 98.37 97.10 97.51 98.32 97 .93 98.33 98.74 
LAYER C 

LAYER D 

LAYER E 

NUCLEAR DENSITY (PCF) 

LAYER A 82.00* 141.00 144.00 93.80'*' 142.60 146.50 151 .so 101.20 149.50 87.00" 

ATTRITION MEAS. (INS) 

(MAX. PROJECTIO:l) 0.047 0.062 0.062 0.078 0.078 0.047 0.031 0.016 0.047 0.031 

LOW VALUES COflSIOEREO UNRELIABLE 

fil!: NO!i-8ITUMHIOUS MATERIALS EXCLUilED 

Figure 25. Data for Site #80 
....... 
N 
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SITE NO.: I 00 LOCATION• 1·35 SOUTH CLEVELAND CO. MILE 4.5 aM!i: ~!l!!Rll TYef:: S.A.B.C. AGfi: (MONTHS!: 158 ~!!!!§!!!::: ~b!lflW!l'fII=. o.z7 

It. 
TEST POlll!I_NO._: 10 9 8 7 6 5 4 3 2 I 

- ·+ + + + + + + + + + 
~ ~NNER - HOULDER OUTER 
~ LINE ~~-

SHOULDER 

I cw - LINE 

TRANSVERSE 
... 0' PROFILE 

~ D.251 
0: ' ... D.l50 
> I 

0 ID .ZD 3.0 4.0 5;0 6.0 
TRANs\ll!liSE SCALE· FEET 

PROFILE MEAS. UNSI 

[:•"VALUE• RUT· J 
- " VALUE • HEAVE 

0.000. 0:200 0.000 0.071 QOOO 0.000 0.I07 •0.212 O.HO •0.()14 

Ill.It SP. GRAYlTT ., 

1.AYERA 2.31 2.35 2.29 2.31 2.33 2.33 2.n 2.38 2.40 .... 
I.ARRI '·" '·" 2.31 .... 2.27 2.31 2.41 2.38 .... 2.32· 
LAYER t 
LATER D 
LAYER E 

RICE'S SP. GRAYI!l 

LAYER A .... 2.43 .... 2.42 2.47 2.44 2.42 2.43 2.u 2.44 
LAYEA B 2.44 .... 2.44 2.43 2.38 .... 2.46 2.47 .... Z.45 
1.AYERC 
LAYER D 

LAYER E 

PfRCENT DENSITY 

LAYEil A 94.67 96.71 94.24 97.52 94.33 95.49 98.76 97.M 98.77 97.95 
0 LAYEI 8 95.0B 96.72 97.95 98.77 95.38 95.16 '17.97 '"·" 97.95 94.69 

LAYER C 
I.AYER D 

LAYER E 

NIJ:LEAR DDISITT (PCF} 

LAYER A 150.50 155.00 103.00 ...... 106.50 150.70 152.70 152.00 157 .• 00 115.50 

ATIRlTJ(lf tEAS. (INS} 

(MX. PROJECTIONS) - ·- - -
• LOii VAWES CONSIDERm IRCRELIABLE 

BAD PHOTOS 
!!,: HON-BITlllillOUS MTERIALS EXCLUDED 

Figure 27. Data for Site #100 
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~: 110 LOCATION: 1·35 SOUTH CLEVELAND CO. MILE 4.75 BASE COUR$E lYPE: S.A.B.C. AGE!MONTHSI: 158 C!!OSS·SLCIPE!INIFTt: 0.202 

CL 
TEST J'OIN"[_NQ.: IO 9 8 7 6 5 4 3 2 I 

;;tt t t t t t t t t t 
~ - -

~ 

TRANSVERSE ~ 
f!!!!f!b!i ~ ~ ;: 

a:· ... 
0 1.0 2.0 3.0 4.0 5.0 6.0 

'!RANSVERSE SCALE ! FEET I 

PROFILE MEAS. !INS! 

[•+•VALUE" RUT 1 o.ooo 0.047 .o.ooo 0.250 -0.011 0.000 ci.412 -G;Z14 o.zoo -0.031 
•.•VALUE• HEAVEj . 

llUl..KSP,~Vln 

lATfR A 2.40 2.41 2.35 2.41 2.30 2.32 2.37 .... 2.38 .... 
V.YSI: 8 2.26 2.33 2.27 2.32 Z.30 2.31 2.43 2.40 2.38 .... 
lAYER C ·' 

lAYat D 

LAYER E 

ug;•s SP. !!!aVIn 

LAYER A 2.48 2.47 ... , .... . ... 2.48 2.43 2.44 2.42 2.44 
LAYER B 2.44 2.45 2.43 .... 2.43 2.43 2.so 2.48 2.47 2.41 
LAYER C 

LAYER D 
LAYER E 

p~ 

LAJER A 96.77 97.57 94.38 96.79 93.50 93.55 97.53 96.72 ..... 96.72 
LAYER B 92.&2 95.10 93.42 95.0B ..... 95.06 97.20 96.77 96.36 95.1& 
LAYER C 
LAYER D 
LAYER E 

lllCL£AR DEHSln (PCF) 

LAYER A 156.30 154.48 155.40 157.50 150.00 79.90" 155.80 156.61 ISd.45 153.35 

AlTRITIOH tos. (INS) 

{fW:. PRo.lECTiflfSJ 

* LOW VALUES CONSIDERED UNRELIABl.E 
... PlllTOS 

Figure 28. Data for Site # 11'.'0 
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~:130 

TEST POINT NO,: 

TRANSYERSE 
f!!l!f!.Lt. 

~ I-40 EAST WASHITA CO. MILE: 9.0 

IO 9 

+ + 

I I ' I 

BASE COURSE TYPE: S.C.8. AGE !MONTHSJ: 148 

<i. 
8 7 6 5 4 

+ + + + + 

I • '3 1.0 2.0 3.o 4.0 5.0 6.0 
TRANSVERSE SCALE !FEETI 

E!!Qf!L~ M~~ !l!llll 
[•"VALUE• RUT ] 
•-•VALUE• HEAVE 

0.000 0.200 0.113 0.097 0.000 0.000 0.200 

BULK SP. GRAVITY 

LAYER A 2.30 2.35 Z.34 2.36 2.35 2.40 2.42 

LAYER a 2.45 2.46 2.42 .... 2.45 '·" 2.46 

LAYER C 

LAYER D 
LAYE! E 

RICE'S 5'. GRA'fITY 

LAYER A Z.48 2.47 2.48 2.47 2.48 2.48 2.48 

LAYER B ·2.50 2.51 Z.50 2.50 2.50 2.53 2.51 

LAYER C 
LAYER D 
LAYER E 

PERCENT DENSITY 

·LAYER A 92.74 95.14 94.35 95.55 94.76 96.77 97.58 

LAYER B 98.00 98.01 ..... 98.40 98.00 96.44 98.01 

LAYER C 

LAYER D 

LAYER E 

NUCLEAR DENSITY (PCF) 

LAYER A 152.20 152.67 149.45 151.77 151.40 156.42 158.05 

AITRITIQN l"EAS. (INS) 

OW. PROJECTIONS) 

llAI> PHOTOS 

.!!,: llJH~BITllllltOUS MTERIAlS EXCLUDED 

Figure 29. Data for Site #130 

CR05S-SLQPE ! IN/Fii: 0.165 

3 2 

+ + 

-<I.OH 0.219 

2.38 2.'2 

2.42 2..0 

2.48 2.48 

2.50 2.-49 

95.9? 97.58 ..... 97.59 

156.42 160.17 

I 

+ 
OUTER 

SHOULDER 
LINE 

-0.1194 

2.37 

2.41 

2.47 
2.51 

..... 
96.0Z 

157.67 

--' 
w 
w 



SITE NO.: 140 ~ I·40WEST WASHITA CQ MILE 12.25 BASE COURSE TYPE: S.C.B. /IGE t.MO!l"fJ!fil: 148 CROSS-SLOPE (IN/FT l: 0.358 

Cf. 
TEST POINT NO.: 10 9 8 7 6 5 4 3 2 

-· + ·+ + t H + t + 
~ O~INNER OUTER w Q SHOULDER 
;i _ LINE SHOULDER 

LINE 
0 

TRANSVERSE 
In 

PROFILE 
_, ... 
0 
;:: 
"'o. 
"' •o > 

1.0 2.0 3.0 4.0 5.0 6.0 
TRANSVERSE SCALE !FEET) 

PROFILE MEAS. ( INS) 

"-"VALUE. HEAVE 
r +"VALUE • RUT ] 0.000 0.098 0.000 0.043 -0.03.0 o.ooo 0.257 0.183 0.219 0.000 

Btn..K SP. GRA.YlTY 

2.28 2.31 2.28 2.31 2.31 2.36 2.'4 2.41 2.44 2.41 
LAYER A. 2.44 2.43 
LAYER 8 2.37 2.39 2.36 2.42 2.42 2 ... 2.45 2.40 

LAYER C 

LAYER D 

LAYER r 

RICE'S 5'. GRAYITY 

2.49 2.48 2.48 2.48 2.49 2.48 2.48 2.47 2.48 2.48 
LAYER A 2.48 2.48 
LAYER B 2.5(} 2.50 2.50 2.50 2.50 2.49 2.so 2.50 

LAYER C 
LAYER D 

LAYER E 

PERCENT DENSITY 

91 .57 93.15 91.94 93.15 92.77 95.16 98.39 97.57 98.39 97.17 
LAYER A 98.39 97.98 
LAYER B 94.ll{) g!j,60 94.40 96.8-0 96.8-0 95.58 98.00 96.00 

LA.YER C 

LAYER D 

LAYER E 

NOCLEAR DENSITY (PCF) 

148.43 1s2·.os 150.92 150.42 152.05 152.83 160.07** 159.25** 161.32" 157.57-
LAYER A 

ATTRITION MEAS. (INS) 
o.o 0.03 0.016 0.008 0.016 0.003 

(W.X. PROJECTIONS) 0.002 0.008 0.003 0.006 

t!IGK VALUES COJtSIDERED ERRGRHEOUS 

Figure 30. Data for Site #140 
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~:170 ~ 1·40 EAST BECKHAM CO., MILE: 26.4 BASE COURSE TYPE: S.C.B. AGE! MONTHS): 169 CRQSS·SLOPE ! INS/FT!: 0.214 

ct. 
TEST POINT NO.: 10 9 8 7 6 5 4 3 2 I 

t t t + + + + + + t 

~~-"' SHOULOER 

TRANliVliRSE 
3 O. LINE ., 

fBQf.!..L& ..J 

~ 0.25 
;::: 
0: 

\:! 8 1'.o ' ' ' ' .. 
20 3D 4.0 5.0 6.0 

TRANSVERSE SCALE!FEET) 

PROFILE MEAS. (INS.) 

["•"VALUE • RUT J 
" - "VALUE • HEAVE 

0.000 0.200 0.125 0.300 0.000 -0.030 0.500 ·0.250 0.500 -0.125 

BULK SP. GRAVITY 

LAYER A 2.37 2.43 2.42 2.41 2.39 2.42 2.43 2.43 2.43 2.40 
LAYER 8 2.36 2.39 2.41 2.40 2.37· 2.39 2.45 2.43 2.44 2.41 
LAYER C 
LAYER D 

LAYER E 

RICE'~ 

LAVER A 2.48 2.48 2.49 2.49 2.48 2.48 2.47 2.49 2.47 2.49 
LAYER B 2.45 2.45 2.49 2.48 2.49 2.49 Z.49 2.~ z.48 2.48 
LAYER C 
LAYER D 

LAYER E 

PERCENT DENSITY 

LAYER A 95.56 97.98 97.19 96.79 96.37 97.58 98.38 97.59 98.38 ~ 96..39 
LAYER B 95.94 97.55 96.79 96.77 95.18 95.98 98.39 97;98 98.39 97.18 
LAYER C 
l.A"fC:r.i:: 

LAYER E 

NUCLEAR DENSITY (PCF) 

LAYER A 159.25111 162.60* 163.97* 157.57* 162.20* 163.45• 162.60* 165.65* 164.35*. 162.20* 

ATTRITION HEAS. (INS) 

(MAX. PROJECTIONS} 0.016 0.047 0.003 0.031 0.008 0.047 0.008 0.000 0.002 0.003 

* HIGH VALUES CONSIDERED UNRELIABLE 

...... 
Figure 31. Data for Site #170 w 
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.s.tIE..llQ.: 180 L.®AI!ll!!L' I· 40 EAST BECKHAM CO. MILE 20.25 BASE COURSE JYPE: see AGE (MONTHS): 169 CROSS-SLOPE-11NlfIJ: 0.183 

<t. 
TEST POINT NO.: 10 9 8 7 6 5 4 3 2 I 

+ + + + + + + + OU~R. 
R SHOULOER 

LINE 

~o~ 
.: 0. 

TRANSVERSE 
.!!BQfl.L£. 

~;r 
0 1.0 2.o 3.0 4.0 5.0 &.o 

TRANSVERSE SCALE IFEETI 

0.000 0.055 0.00 0.041 o.ooo 0.000 0.219 0.217 0.478 0.000 

Btn.K SP. GRAVITY 

LAYER A 2.35 2.38 2.32 2.34 2.33 2.36 2.43 2.38 2.43 2.32 

~YER B 2.48 2.43 2.40 2.41 2.41 2.43 2.47 2~45 2.47 2.41 

LAYER C 
LAT£R D 
LAYER E 

RICE'S SP. GRAVITT 

LAYER A 2.51 2.50 2.49 2.47 2.51 2.49 2.50 2.50 2.48 2.51 

LAYER B 2.50 2.51 2.50 2.51 2..53 2.52 2.49 2.50 2.50 2.50 

LUER C 

LAYER D 

LAYER E 

PERCENT DENSITY 

LAYER A 93.63 95.20 93.17 94.74 92.83 94.78 97.20 95.20 97.98 92.43 

LAYER B 96.00 96.81 96.00 9ti.02 95.26 96.43 99.20 98.00 98.80· 96.40 

LAYER C 

LAYER 0 

LAYER E 

NUCLEAR DENSITY (PCF) 

LAYER A 156.67 159.25* 155.92'* 156.67* 153.42* 157.0S 160.07* 158.42* 160.42* 155.42* 

ATTRITION MEAS. {INS) 
{Ml. PROJECTIONS) 0.062 0.040 0.031 0.047 0.016 0.062 0.031 0.016 0.031 0.016 

* HIGH VALUES CONSIDERED UNRELIABLE 

Figure 32. Data for Site #180 
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( START ) 

I 
INPUT DATA; DATA SET: HIGHWAYS 

DATA: SITE NO., AGE, SLOPE, BASE-CS, 
REP, POINT NO., BSG·A, RSG·A, 
NUC·DEN, ATTRIT, PROFILE MEAS, 
BSG·B, RSG-B, BSG·C, RSG·C, 
BSG·D, RSG-D, BSG-E, RSG-E. 

I 
COMPUTE 0/o DENSITY VALUES 
FOR EACH CORE SUBDIVISION 

PDENi • BSGi + RSGi X 100 
OUTPUT PDEN VALUES 

I 
I 

SORT DATA BY SITE I DATA SET: NEW 

I 
UNIVARIATE ANALYSIS OF VARIANCE 

BY SITE, DATA SET NEW 

VARIABLES: PDEN 

CLASSES: POI NT, LAYER 

I 
CHECK FOR SOURCES OF DIFFERENCES: 

DUNCAN'S .MULTIPLE RANGE TEST 
DATA SET: NEW, BY SITE 

I 
SORT DATA HIGHWAY BY BASE-CS 

OMIT OBSERVATIONS WITH MISSING VALUES 

DATA SET: FINALE 

I I PRINT DATA SET FINALE 
BY BASE-CS I 

I 
MULTIVARIATE ANALYSIS OF DATA 

VARIABLES: AGE, SLOPE,RUT,PDEN,BSG, 
HEAVE, ATTRIT, NUC-DEN 

DATA SET: FINALE 

I 
SORT DATA "NEW", PICK BSG·A a NUC·DEN 

DATA SET: CORRELATION 

I 
BIVARIATE REGRESSION, DATA SET: CORRELATION 
VARIABLES: LAB-DEN, NUC·DEN 
OUTPUT: AUGMENT PREDICTED VALUES 
PLOT DATA: LAB-DEN VS. NUC-DEN 
PLOT REGRESSION CURVE 

I 
( STOP ) 

LEGEND 

B SG BULK SPECIFIC GRAVITY 
R SG RICE SPECIFIC GRAVITY 
p DEN PERCENT DENSITY 
MEAS. MEASUREMENT 
s LOPE CROSS-SLOPE 
p OINT TRANSVERSE TEST POINT 
R EP REPLICATE . 
B 
L 

ASE-CS BASE COURSE TYPE 
AB-DEN LABORATORY DENSITY 
TTRIT ATTRITION MEASUREMENT 
UC-DEN NUCLEAR GAGE DENSITY 

A 
N 

MEASUREMENTS 

Figure 33. Flow Diagram: Computer Analysis of Test Data 
Using the SAS Computer Program 
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Di. LEVELi NG COURSE 
D BASE COURSE 
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WP WP 
OUTER LANE 

TRANSVERSE TEST POINT NUMBER 

WP-WHEEL PATH 

I. 

Figure 34. Percent Density Versus Transverse Test Point 
Site #10, Base Type--HMSA 
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Figure 35. Percent Density Versus Transverse Test Point 
Site #60, Base Type--HMSA 
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Figure 36. Percent Density Versus Transverse Test Point 
Site #70, Base Type--HMSA 
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Figure 37. Percent Density Versus Transverse Test Point 
Site #120, Base Type--HMSA 
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Figure 38. Percent Density Versus Transverse Test Point 
Site #30, Base Type--BB 
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Figure 39. Percent Density Versus Transverse Test Point 
Site #50, Base Type--BB 
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Figure 40. Percent Density Versus Transverse Test Point 
Site #20, Base Type--BB 
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Figure 41. Percent Density Versus Transverse Test Point 
Site #40, Base Type--BB 
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Figure 42. Percent Density Versus Transverse Test Point 
Site #100, Base Type--SABC 
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Figure 43. Percent Density Versus Transverse Test Point 
Site #80, Base Type--SABC 
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Figure 44. Percent Density Versus Transverse Test Point 
Site #90, Base Type--SABC 
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Figure 45. Percent Density Versus Transverse Test Point 
Site #110, Base Type--SABC 
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Figure 46. Percent Density Versus Transverse Test Point 
Site #130, Base Type--SCB 
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APPENDIX E 

CORRELATION BETWEEN NUCLEAR GAGE DENSITY 

AND LABORATORY DENSITY VALUES 
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