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CHAPTER I 

INTRODUCTION AND REVIEW OF THE LITERATURE 

General Statement of the Problem 

There are at least two distinct types of problems for which cluster 

analysis has been utilized. The first type of clustering will be re~ 

ferred to as mathematical cluster analysis, which may be appropriate when 

data has been collected on each of n units and a scientist wishes to 

make inferences about only those n units. The existence of "clusters" 

is determined by the definition of a cluster in this situation. For 

some definitions of a cluster there are algorithms which will locate 

all the clusters in the data. Since there are so many possible defi­

nitions of a cluster, it is unlikely that for a specific definition 

an algorithm exists to locate all the clusters according to that 

definition. There are many algorithms in use today that find approxi­

mate clusters, while using relatively little computer time. The 

evaluation of this type of clustering will have to center on the ade­

quacies of the definitions of clusters and with how similar the approxi­

mate clusters are to the real clusters. Until a singl~ satisfactory 

definitic;m of a cluster is accepted, many aspects of the evaluation 

of mathematical clustering will remain arbitrary. 

The second type of clustering ~ill be ref erred to as inferential 

clustering, which may be appropriate when data has been collected on 

each of n units ~nd a scientist wishes to make inference to more 

1 



than the n units he has observed. The n units are regarded as 

being a sample from one or more populations, whereas mathematical 

clustering regards the n units as being one or more populations. 

2 

There has been a great deal of confusion with respect to the 

evaluation of these two types of clustering, because many of the same 

algorithms are used with both types of clustering. Clustering algorithms 

attempt to group units into "clusters" such that the units within a 

cluster are homogeneous and such that units in different clusters 

are heterogeneous. A major problem is that the algorithm does not 

know whether it is operating on a population or on a sample from a 

population. 

The problem that this study is concerned with, simply stated, is 

to discover practical methods to aid the user of cluster analysis in 

the evaluation of his cluster analysis. 

General Review of Some of the Clustering 

Algorithms in Existence 

Currently there exist a large number of clustering algorithms 

which ope~ate directly or indirectly on a data matrix. All of the 

algorithms can be applied to either populations or samples, as mentioned 

in t:P,e previous section, with "clusters" resulting. The class of 

clustering algorithms that will be of primary importance for this 

paper will be the sequential, agglomerative, hierarchal a.lgori thms. 

Most agglomerative procedures are sequential, and begin at stage one 

with all n observations regarded as clusters each containing a single 

observation. The agglomerative procedures compute a matrix of pairwise 

similarities (correlations, etc.) or dissimilarities (distances, etc.). 
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The two units which are most similar (or least dissimilar) are grouped 

together to be regarded as a single unit at stage two. The similarities 

or dissimilarities matrix is then recomputed regarding the two previous-

ly grouped observations as one, so that the dimension of the new similar-

ities matrix will be (n-l)x(n-1). This procedure is repeated until 

all n observations are grouped together into a single unit at stage 

n-1. One of the differences between the sequential, agglomerative, 

hierarchal algorithms is the linkage method used. The concept of 

linkage is associated with the need to compute the distance (or 

similarity) between group L and the group (JUK), which was formed 

at the previous· stage as the union of groups J and K. Lance and 

Williams (1967) have developed a formula which will compute the distance 

between group L and group (J UK) for many of the common linkage 

methods by variation of the four parameters in the formula 

U (JUK) ,L 

where a.3 , a.K' (a and y are determined by the linkage method used, 

U (JUK) ,L is the distance between group L and group JUK at stage 

i, UM,N is the distance between group M and group N at stage i-1. 

There is some confusion about whether Euclidean or Squared Euclidean 

distance is most appropriately used with this formula. This question 

will be considered in Chapter III. If we substitute a.3 = 1/2, 

a.K = 1/2, (a = O, y = -1/2 the linkage method is called single linkage. 

If we substitute a.3 = 1/2, a.K = 1/2, (a = 0, y = 1/2 then the linkage 

method is called complete linkage. 

Regardless of the method selected, the results may be graphically 

displayed by a tree (dendogram) or by a contour map. If the number of 



groups or clusters is known, then the scientist uses the appropriate 

stage of the algorithm to indicate which observations have been 

grouped together. If the number of groups or clusters is not known, 

then there are theoretically n choices for the number of groups to 

best represent the data. In· either case, it is not clear how the 

results are to be interpreted, Some discussion and various applica-

tions of sequential agglomerative algorithms and sequential agglomer-

ative algorithms with stopping rules may be found in Lance and 

Williams (1967), Sneath (1957), Sokal and Michener (1958), Sokal and 

Sneath (1963) and Sneath and Sokal (1973). 

A second major class of clustering algorithms is the divisive 

algorithms, which unlike the agglomerative procedures does not compute 

a similarities or distance matrix. The divisive algorithms are 
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sequential and they do impose a hierarchal structure on the data. After 

beginning at stage 1 with all n observations being regarded as one 

cluster, the next step is to divide the observations into two groups 

in such a way as to optimize some pre-determined criterion. One such 

criterion is the ratio of between groups sum of squares to within 

group silm of squares, in the univariate case (Edwards and Cavalli-Sforza, 

1965). The result is of course two groups at stage two with n1 and 

n2 observations in each group. This process is repeated on each of the 

resulting clusters until all clusters have two or less observations 

(it is impossible to split a group having two observations or less 

using this criterion), or until the procedure is halted by a stopping 

rule. Other criteria which may.be considered as generalizations of the 

sum of squares criterion, are used with multivariate data. Some of these 

criteria are: Minimum ~j1 J Wi I ni, Minimum I W j, Min g2 j W I and 



Min trace W, where g is the number of groups, W is the pooled 

within group covariance matrix, Wi is the within group covariance 

matrix for group i and n. 
J. 

is the number of units in group i. 

As with the agglomerative procedures, a tree or contour map may be 

used to graphically display the results. The same problem remains 

of interpreting the results, even if the number of groups is known. 

Various optimization criteria and arguments for and against the 

usage of divisive algorithms can be found in Williams and Tu.le (1965), 

Edwards and Cavalli-Sforza (1965), Orloci (1967), Ling (1971), Sneath 

and Sokal (1973), Scott and Symon (1971), Everitt (1974). 

A third major class of clustering algorithms might be called 

simultaneous techniques. There is no hierarchal structure imposed 

5 

because the number of groups, K, is required as input to the algorithm. 

The observations are then partitioned into K groups according to 

some pre-determined criterion, such as the ratio of between group sum 

of squares to within group sum of squares, in the univariate case. 

The most: .common practice appears to be running the procedure several 

times with a different K each time and then selecting the result which 

subjectively seems best. Techniques of this type are presented and/or. 

discussed in Fisher (19.58), Ward (1963), Rubin (1967), Friedman and 

Rubin (1967), Edwards anP. Cavalli-Sforza (1965) and Ling (1971). 

There are many more techniques which do not strictly belong in 

any of these categories, but these are similar to the above techniques 

in many respects. 

All clustering algorithms have one feature in common; they pro-

duce groups or clusters of observations. The vast majdrity of the 

literature until very recently has been concerned with the comparison 



of techniques or the proposal of new techniques and their application 

to specific problems. These efforts appear to be directed toward 

mathematical clustering because there are no distributional results 

given, but the algorithms can of course be used with inferential 

clustering. The inferential clustering problem has received more 

attention recently and will be very important in this study. As 

pointed out previously, a clustering algorithm will cluster any set 

of data that is input to the algorithm. If a scientist collects a 

sample from a single population and a clustering algorithm "discovers" 

several clusters, then the scientist is likely to be misled concerning 

the structure of the population from which the d~ta was sampled, The 

literature and mathematical problems associated with inferential 

clustering will be discussed in some detail in the next chapter. 

A Numerical Example of a Simple Agglomerative 

Clustering Procedure 

A specific example will be given to illustrate the details of a 

clustering algorithm. The algorithm selected is a sequential, agglom-

erative, hierarchal procedure using squared Euclidean distance as a 

measure of dissimilarity. The linkage method used will be complete 

linkage, which corresponds to a.J = 1/2, a.K = 1/2, ~ = O, y = 1/2, in 

the Lance and Williams (1967) formula mentioned previously (1). 

6 

Following much the same notation as Mrachek (1972) and Warde (1975), 

let X be a pxn data matrix where each of the n columns represents a 

p-variate response vector. 

Let X., i = 1, ... , n represent one of the n observation 
]. 

vectors. 



Let M1 be a matrix, nxn, of pairwise squared Euclidean 

distances between the columns of X. Let d .. , i, j = 1, ... , n 
1J 

represent the elements of M1 . M1 will be symmetric with zeroes on 

the main diagonal. 

The following iterative procedure is used to cluster a data set 

using the complete linkage criterion. The procedure begins with i = 1 

and terminates when 

1. Select the 
i = n-1. (n+ 1-i) 

minimum distance from the 2 elements above 

the main diagonal of 

2. The two vectors which were separated by the minimum distance 

7 

in 1 above are to be regarded as a single group for further computational 

purposes. 

J. Recompute the distance matrix which will now have dimension 

(n-i) x (n-i) using the complete linkage criterion. Call this new 

matrix Mi+l' Note that only distances between the new group and the 

other vectors need be computed. 

4. If i is less than n-1, then add one to i and go back 

to step 1. If i is equal to n-1 then stop, 

Let Mi* be the matrix Mi with row and column labels adjoined 

for clarity. 

Example: Suppose it is desired to cluster the following bivariate 

observations: 

Using a sequential, agglomerative, hierarchal method with complete 

linkage and squared Euclidean distance, we would have: 



x 

x1 X2 x3 X4 x5 

x1 0 4 5 41 61 

X2 4 0 1 25 41 

M * 1 X3 5 1 0 18 32 

X4 41 25 18 0 2 

X5 61 41 32 2 0 

The execution of the procedure outlined above will be illustrated. 

At step 1 of iteration 1, the minimum distance above the main 

diagonal of M1 is 1, hence x2 and x3 are grouped together. At 

step 3 of iteration 1 the new distances are: d1 ,(2U3) = Max(495) 

= 5, d4 ,(2LJ 3) = Max(25,18) = 25, and d5 ,(2LJ 3) = Max(41,32) 

= 41. Hence 

x1 x2 Ux3 X4 x5 

x1 0 5 41 61 

M2* x2Ux3 5 0 25 41 

X4 41 25 0 2 

X5 61 41 2 0 

At step 4 of iteration 1, i = 1 which is less than i = 4, so i 

is set equal to 2. 

At step 1 of iteration 2, the minimum distance above the main 
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diagonal of M2 is 2, hence x4 and x5 are grouped together. At 

step 3 of iteration 2 the new distances are d1 ,(4 LJ5) = Max(41,61) = 61, 

d( 2LJ 3),(4U5) = Max(d4 ,(~LJ 3 )' d5 ,(2 LJ 3)) = Max(25,41) = 41. Hence 



x1 x2U x3 X4UX5 

xl 0 5 61 

M3* x2U x3 5 0 41 

x4Ux5 61 41 0 

At step 4 of iteration 2, i = 2 which is less than i = 4, so i 

is set equal to J, 

At step 1 of iteration J, the minimum distance above the main 

diagonal of M.3 is 5, hence xl is grouped with x2U x.3. At step 3 

9 

of iteration 3 the new distances are d(4 Us),(lUZUJ) = Max(d(4U5),l' 

d(4U S),(ZUJ)) = Max(61,41) = 61. Hence 

x1U x3U x3 I o 
X4U X5 61 

61 

0 

At step 4 of iteration J, i = .3 which is less than i = 4, so i is 

set equal· to 4. 

At step 1 of iteration 4, the only remaining distance above the 

main diagonal is 61, hence X4UX5 is grouped with x1Ux2Ux3. At 

step 3 of iteration 4 there are no new distances. Hence 

_x1 U x2Ux3 U x4 U x5 

Ms* = x1Ux2Ux3Ux4 Ux5 I o 

At step 4 of.1teration'4, i = 4 which is not less than 4, so that the 

procedure is terminated. The data may be summarized by a tree diagram 

(or dendogram) (see Figure 1). 



Figure 1. Iendogram (or Tree Diagram) for re.ta Given 
in Section 3 

10 
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Objectives and Scope of This Study 

The first objectives of this study are concerned with the needs of 

the potential user of cluster analysis. First, the user of cluster 

analysis needs to be aware of the type of evidence that a cluster 

analysis can provide, in order to avoid confusion and misinterpretation 

of his data. Second, when a test is appropriate, the potential user 

of cluster analysis needs a test that can be used immediately. This 

test procedure should be reasonably easy to use and should be inexpen­

sive to use. This study strives to provide a conservative test that can 

be used immediately, and also gives estimated percentage points of 

a level n test. Since the percentage points are estimated the test 

may not in reality be a level n test. The percentage points are 

estimated for as many sample sizes as cost will allow. Third, the 

potential user needs help in deciding whether or not he should'spend 

his time and money on a cluster analysis. To help the potential user 

decide whether a cluster analysis will be worthwhile, this study will 

provide some estimates of the power of the proposed procedures assuming 

·various, "representative" al terna ti ves ... 

The other objective is to provide some guidance to future 

researchers who will be concerned with statistical and mathematical 

problems in cluster analysis, by pointing out where some of the main 

problems lie. The author will also suggest some test procedures 

that appear promising, but which the author has been unable to 

pursue in depth. 

It is the author's opinion that the simple cases of clustering 

must be understood before more ambitious goals are attempted, so the 



single variable cases have been selected as a logical starting: point. 

It is also appropriate to begin with single variable cases because 

little progress has been made in this area. The generalization of 

single variable results to multivariate cases is not immediate because 

we lose the ability to rank observations and there are more unknown 

parameters present. 
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This study will be limited to the four major sequential, agglom­

erative, hierarchal clustering procedures that are in use today. 

The four procedures selected include boundary type algorithms and 

"representative" type algorithms, which require little enough computer 

time to be considered practical. 

Many empirical results are presented in this paper, because the 

complexity of the mathematics prohibited other types of solution. 

The computer programs, written in FORTRAN, which were used to generate 

the results contained in this study are listed in the Appendix . They 

are ready to use to generate estimated percentage points for additiona;l 

sample sizes and estimates of the power of these procedures, with 

only minor changes in the parameters being necessary, 

The application of mathematical clustering will be illustrated 

by considering several approaches to grouping target elements from 

a complex target element configuration supplied by the Air Force. 



CHAPI'ER II 

SOME MATHEMATICAL AND STATISTICAL PROBLEMS 

The Problem of Definition of a Cluster 

Although the concept of a cluster is central to the field of 

cluster analysis, an adequate definition still remains elusive. One 

seemingly logical and straightforward approach would be to devise a 

mathematical definition of a cluster which would incorporate the con­

cepts of homogeneity (or closeness) within clusters and heterogeneity 

(or separateness) of points in different clusters. A simple example 

illustrates that a single definition cannot be adequate for all purposes. 

Consider a collection of houses located in Stillwater and another 

collection located in Perry. The houses in Stillwater might be con­

sidered a cluster since the houses in Stillwater are relatively close 

to each other and are relatively far from the houses in Perry. Suppose 

we next consider a collection of houses in Brandon, Vermont, in 

addition to the others. Now it appears that the houses in Stillwater 

and Perry may be considered as part of the same cluster because the 

distances between houses in Oklahoma are relatively close compared to 

the distances between houses in Oklahoma and in Vermont. Ling (1971) 

recognizes this problem and makes some progress toward a definition 

of different levels of clustering. His approach will be discussed in 

more detail in Chapter IV. 

13 
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Let us assume for the sake of argument that an adequate definition 

of a cluster is established for some given problem. It would be possible 

to find all the clusters according to this definition, although this 

might involve a lengthy search through all possible partitions of the 

data. It may be rather cumbersome and costly to search through all 

the partitions of the data, so it may be advantageous to use an algo­

rithm such as a complete linkage agglomerative procedure to find 

"approximate" clusters. Emphasis must be placed on "approximate" 

because the units the algorithm groups together may not be clusters 

by the definition established, and in addition the algorithm may not 

succeed in finding all the clusters even if it does find some of them. 

Some work (Rand, 1969) has been done to determine how well certain 

algorithms "retrieve" clusters according to several definitions of 

clusters. 

Another type of definition is an operational one, which does not 

seem as desirable from a philosophical point of view. This definition 

is: The algorithm generates clusters at each stage of the clustering 

procedures and the clusters are of different levels. This last 

definition although less than satisfactory is probably the most fre­

quently used definition in practice. 

All the previous discussion has been restricted to cases in which 

the inferences are to be made only about the' structure of the units 

observed.. Suppose a scientist wishes to make inferences about more 

units than the n units observed. The same definition may be used 

with this inferential clustering as was used with mathematical cluster­

ing, with the resulting clusters being called sample clusters or 

approximate sample clusters to distinguish them from the mathematical 
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clusters. The choice of the terminology sample cluster may be unfor-

tunate if it implies that it is estimating a "population cluster". A 

sample cluster is merely a collection of observations which are "close", 

and all the sample clusters together provide evidence to help the 

scientist decide whether the sample was from one parent population 

or from two or more parent populations. This study will allow four 

algorithms to generate clusters, and will attempt to discover which of 

them is most sensitive in detecting the presence of two or more normal 

populations. The basic question of whether or not there is enough 

evidenc.e to conclude the sample was not drawn from a single normal 

population will be explored in more mathematical detail in the next 

section. 

The Problem the Cluster Analyst Would like to be 

Able to Solve in the Univariate Case 

The scientist would like to be able to ta~e a sample of size n 

and have a test available to test whether all the observations were 

from the same population, and he wants the test to be sensitive to 

any departure from his null hypothesis. This i~ essentially a one-way 

classification problem with no replicates. 

In order to state the above hypothesis in parametric form, assume 

the observations are all from normal populations with equal but unknown 

variance and possibly different, means. 

2 
Let Xi"" N(µi, a ) for i = 1, ... , n, 

The desired test hypothesis is; 

unknown. 

µ versus 
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When a simple null hypothesis is to be tested against a simple 

alternative hypothesis, the Neyman-Pearson Lemma states that the best 

level a test is given by the likelihood ratio test. When a test is 

desired for a composite null versus a composite alternate, one method 

of constructing a test is the Generalized Likelihood ratio test. The 

Generalized Likelihood Ratio (GLR) test has no·guaranteed optimality 

properties, but it has been useful in the construction of many good 

test procedures. 

Consider the following attempt to construct a GLR test for the 

aforementioned hypotheses. e I If µn' 

be the likelihood function. Let 1Ji0(x1 , x2 , ... , xn' µ1 , µ2 , ... , µn, 

a2) be the likelihood function restricted by the null hypothesis. Let 

2 
~ (x1 , x2 , ... , xn' µ1 , µ2 , •.. , µn' a) be the likelihood function 

A 
restricted by the alternative hypothesis. 

The GLR test will reject H0 in favor of HA at level a 

whenever 

M/\X 

(µl, µ2 ' · · • ' µn' 

is a constant determined by the level of the test, a. 

In order to find the maximum of the above function with respect 

2 to choices of µ and a it is sufficient to find.the maximum of the 

logarithm of the function, because a logarithmic transformation is 

monotopic. 



~ ln r.__ (xl'Xz' ... ,x ,µl,µ2' •.. ,µ ,0'2) a a ~a0 n n 
2 

(xi - µ) . 

The partial derivatives above are both set equal to zero, and the 

resulting equations are solved simultaneously. Thus, 

or 

which yields 

n 
l~ 

2 L(xi 
C1 • 1 J.= 

n 

- µ) 0 

I xi - nµ o 
i=l 

/\ 
µ = n 

17 



Similarly, 
n 

-n 1 
Icxi 

2 -+- - µ) 0 
2rJ2 2r:J4 

i=l 

or 
n 

2 
-nO' + Icxi - µ) 

2 
0 

i=l 

which yields 
n 

Icxi - µ);a 

"2 
CJ 

i=l 
n 

The simultaneous solution of these equations is: 

µ x 

n 
~ -)2 L (xi - x 

These two values do lead to a maximum of the likelihood function, 

with that maximum value being given by: 

-n/2 

e -n/2 

There are no problems yet since these results are well known. 

Next consider the maximization 

with respect to choices of µ1 , µ2 , 

( 2) ( )-n/2( 2)-n/2 1JIA xl'x2' .•. ,xn,µl,µ2' ..• ,µn,CJ = 2'1T CJ 

Again it is sufficient to maximize the logarithm of the function. 

18 

2 
-· µ.) 

1 
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n 

ln 1RA. (xl,x2' ... ,xn,µl,µ2' ... ,µn,C12) =-·¥ ln(2'1T)-¥ln(C12)- 2~2? (xi-µi)2 
, .. 1=1 

~ ln LH (xl,x2' ..• ,x ,µl,µ2.' ... ,µ ,C12) = 12(x. -µ.) 
oµi A n n CJ i i 

for i=l, ..• , n. 

n 

0,2 ln L__ (xl ,x2' ... ,x ,µl ,µ2, .•. ,µ ,C12) = -n2 + 14 "'(xi. - µ1. )2 
aa !iA n n 2C1 2C1 L 

i=l 

The partial derivatives above are all set equal to zero. 

- .-E..... + 
2()2 

1 
-2 (x. - µ.) 
CJ . l .. l 

n 

14 I <xi 
2a i=l 

2 - µ.) 
l 

0 

= 0 

The simultaneous solution of these equations is: 

x. 
l 

~2 0 

for i 

for i 

1, ... , n. 

1, ... , n 

Substitution of these values into the likelihood function does not 

lead to a maximum, because there is no maximum. The GLR criterion 

has failed to lead to any test, good or otherwise. One of the problems 

2 seems to be that of obtaining a good estimate of a , but that should 

not be surprising since there are only n observations and n+l 

unknown parameters. 

The author attempted to formulate tests on the basis of intuition 

and other subjective methods. The following procedure will illustrate 

the difficulties involved. 



Let x1 , .•• , xn be the random sample of size n. Let 

Yi = xi - xn for i = 1, 2, ... , n-1. Then it follows that: 

- (n-l)x n 

- x n 

Subject to the null hypothesis, that the x's are a random sample 

2 y n 2 from N(µ, C1) it follows that NN(O, n-l C1 ). 

Let and 

x= Y= 

Let 

52 = 
y 

··r-r J n-11 y y . ~ ~ n-U_ 
n-2 

where I is the (n-1) x (n-1) identity matrix and 

(n-1) x (n-1) matrix whose every element is a 1. 

J n-1 
n-1 is an 

Y ·s 2 x. Y and y can be written in terms of instead of . 

\I = <1. 1, 1, .. ., -<n-1) )X 
I n-1 

52 
y 
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From Theorem J of Searle (1971, p. 59), Y and 5·2 
y are 

distributed independently, under the null hypothesis. From Theorem 2 

of Searle (1971): 

is distributed as ~~?(n-2) 

where the degrees of freedom are determined by the rank of 

is an idempotent matrix and the· rank of an idempotent matrix. is its · 

trace, The trace of the above matrix is n-2, hence the degrees of 

freedom of the )( 2 variable are n-2. 
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It then follows that under the assumptions of the null hypothesis 

that: 

N t(n-2), 

where t represents'the Student's ·t distribution. 

There are some obvious deficiencies ~ith this procedure: The 

test ~s "acceptable" power if the true a:J,.ternative is µ1 = µ2 = •.. 

= µn-l f µn. However, if the true alter~tive is such that 
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then the test can have power less than a. Thus, the test is biased 

with respect to some alternatives. 

If there exists an unbiased test for this general alternative, no 

one, including the present author, has been successful in finding it. 

The next logical step it would seem, would be to search for a 

test which will be sensitive to the most interesting or most important 

alternatives, instead of being sensitive to all possible alternatives. 

There are several approaches of this type in the next section. 

Some Procedures Based on the Likelihood Ratio 

Since one of the objectives of a cluster analysis is to reduce or 

condense data, a scientist given the choice of a procedure which is 

sensitive to large numbers of clusters, or a procedure which is 

sensitive to small numbers of clusters, will probably choose the 

latter. Engelman and Hartigan (1969) formulate the problem in terms 

of a two cluster alternative. 

xl' ..• ' 

versus 

x· 
n 

2 are a random sample from N(µ, a ) 

HA: For some partition of xl, ... ' x n' the cluster xll' xl2' . ' . , 
2 x ln1 

is a sample fr em N(µ 1 , G ) and the cluster x21' x22' ... ' x 2n2 

N(µ2, 
2 is a sample from a ) , where n1 ~ 1, n2 ~ 1, n1 + n2 = n, n> 

The concept of a partition has been introduced in the Engelman 

and Hartigan alternative hypothesis. A partition is an assignment 

of the sample values xl' ••• ,xn to a known number of groups. The true 

:i;artition is the correct assignment of the observations to their 

respective groups. 

2. 



An example may help illustrate the point. Suppose there are 

three observations A, B, C and suppose that observations A and 

C came from population 1, while observation B came from population 

2. The observations may be partitioned into 2 groups in the 

following way: 

Partition Grou 1 Grou 2 

1 A BC 

2 B AC 

3 c AB 

4 BC A 

5 AC B 

6 AB c 

Partition 5 is the true partition. 

In most statistical problems the true: partition is known; the 

"usual" two group t test is an example. Under the alternative, 

there are observations from population 1, and n2 observations 

from population 2, where n1 and n2 are known. It is also known 

which observations came from population 1 and which observations came 

from population 2, 

For notational purposes, let the partition be denoted by H and 

let xll' xl2' I e I ' 
x ln1 

be the observations assigned to group l; 
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let x21' x22' ... ' x 2n2 
be the observations assigned to group 2, etc. 

Engelman and Hartigan (1969) used the Generalized Likelihood Ratio 

criterion to formulate a test procedure. 

Reject HO in favor of HA when 

MAX 2 ~ (xl' 
2 

H) x2' I I I f x ' ~i' µ2, I I I f µn, a ' 
(µl ,µ2' · · • ,µn ,a H) A n 

>K 
MAX2 ~, (xl, x2, µl, µ2' µn' 02) a. 

I I I f xn' I I I f 

(µ, a ) 0 
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where Ka is a constant determined by the level of the test a. 

The likelihood function restricted by the null hypothesis is: 

L. 2 )-n/2( 2)-n/2 ( 1 ~( )2 \ 
H (xl,x2'''''xn,µl,µ2'''''µn,O') = (2'1T 0 exp- 202? xi-µ )' 

0 J.=l / 

2 The maximum of this function with respect to µ and O' is the same 

as in the previous section. 

n 

"'"' -)2 L. (xi - X 
I\ 
µ 

/\2 i=l 
X and O = ------

are the values of µ 

The maximum is : 

2 and O 

n 

n 

which maximize the likelihood function. 

-n/2 

( 2: (x1 - Xi 
(2'TT)-n/2 \ i~l n exp (-~) 

The likelihood function restricted by the alternative hypothesis is: 

I~ is necessary to find the maximum of this function with respect to 

2 µ1 , µ2 , 0 and the partition, H, of the sample into two groups. 

Fix the partition, H, and maximize with respect to µ1 , µ2 , and 

o2 . As before it is suf'ficient to maximize the logarithm of the likeli-

hood ·. function. 



2.5 

ln 11fA (x1 ,~2 , ... ,xn 1µ1 ,µ 2 , ... ,µn,0'£, H) = --¥-ln(2'1T) -·¥ln(cr2) 

-~2 ~~<~1~1>2 + ~(Xij~2)~ 
Hence 

and 

_a_ ( 2 ) 2 ln.L._ x1 ,x2 , ••• ,x :,µ1 ,µ2 , .•. ,µ ,a, H = 
aa ~A · n n 

nl n2 
I 

n 1 I 2 I (x2j - µ2)2 -· 2'12 + 2CJ 4 (xli - µl) + 
i=l j=l 

-i. 

Setting these three partial derivatives equal to 0 and solving 

simul taneoi.lsly, . the values of µ1 , µ2 and a2 that maximize the like­

lihood for a fixed partition are: 

~ 
- )2 - xl + ""' - 2 L (x2j - ~) 

j=l 
n 



The maximum is then given by: 

MAX 
H 

(2'1J)~~/2 

- )2 - xl + 

n 

-n/2 
- )2 - X2 

exp(-n/2) 

Hence, the likelihood ratio criterion rejects H0 in favor of 

HA whenever 

MAX 
(2'IT)-n/2 

H 
(2'IT)-n/2 

or 

( nl 
I12 )-n/2 

.6(xli 
- )2 

Icx2j 
- )2 - xl + - X2 2 

nn/ exp(-n/2) 
j=l 

1 n · -n/2 { L (xi - X)2) nn/2 exp(-n/2) 

\ i=l -

MAX 
H 

n 
~, -)2 L xi - x 
i=l 
nl 

L'xli - x1)2 + 
i=l 

For a fixed partition this is equivalent to 

or 

B+W 

w 

> Ka. 
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B W > K2a. where B is the between cluster 

sum of squares and W the pooled within cluster sum of squares. 

The final form of the test as derived by Engelman and Hartigan (1969) 

is: 



Reject H0 in favor of HA whenever 

MAX 
H 

B W > ~ where K2 is a constant determined by the level of 

the test, a.. 

The authors then generate percentage points for this test based on 

100,000 replications. This test procedure is most appropriate for use 

with the divisive algorithm that divides the observations into two 

groups in such a way as to maximize the ratio of between cluster sum 

of squares to within cluster sum of squares. Another use will be made 

of this test, which will be discussed in a later chapter. 

Although not given in their paper the above procedure is easy to 

generalize to J, 4, ... , n-1 cluster alternatives. To illustrate 

this consider the three cluster alternative formulated in the 

following way: 

2 x1 , ..• , xn are a random s~mple from N(µ, a) 

versus 

HA: For some partition of x1 , ..• , xn into three clusters, the 

cluster x11 , x12 , .•. , x1n is a sample from N(µ 1 , a2}, the cluster 
1 . 2 

Xz1' x22 ' ' ' ' ' x2n2 .. 

XJl' XJ2' ', '' XJnJ 

n2 ~ 1, n3 ~ 1, n1 + 

is a sample from N(µ 2 , a ), and the cluster 

2 is a sample from N(µ3, a ) where n1 ~ 1, 

The maximum of the likelihood restricted by H0 is the same as 

before, namely: 

(21T)-n/2 
.n )-n/2 , fri (x: -X)2 exp{r-n/2), 
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The likelihood function restricted by HA 

x 
1 

exp -·2ri 

is given by: 

It is necessary to find the maximum of this function with respect to 

the partition, H, µ1 , µ2 , µ3, a2 • Fix the partition and maximize 

with respect to µ1 , µ2 , µ3 and a2 . The algebra is straightforward 

but tedious. The maximum is given by: 

nl -n/2 

28 

MAX 
H 

(2'1T)-n/2 

I {xli -x1)2 + 
i=l 

n 
exp(..:n/2)·~ 

The likelihood ratio test is to reject H0 in favor of HA 

whenever 

MAX~>C 
H W a. 

where Ca. is a constant determined 

by the level of the test a.. 

In a similar fashion the generalized likelihood ratio test for 

all the observations from one norm.al population versus the alternative 

that for some partition of the observations into k clusters, where 

2 ::; k $ n-1, 

2 
xll' xl2' I I I f x is a sample from N(µ 1 , a ) ln1 

2 
x21' ~2' ... ' x is a sample from N(µ 2 , a ) 2n2 

2 
xkl, xk2' ... , ~ is a sample from N(µk, a ) 

k 
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is given by rejection of H0 in favor of HA whenevers 

B . 
MAX W > Ca. , Ca. is a constant determined by the level of 

H 
the test. 

These tests cannot be used yet because there are no percentage points 

available for them. It is unlikely that empirical tables of percentage 

points for these tests will be developed since the number of possible 

(n-1) partitions is ~-l where i is the number of groups in the alter-

native. This number is smaller for the univariate case than for the 

general multivariate case, but it does increase rapidly with sample 

size. An example is for n = 50 to find the maximum ~ for 5 

clusters requires a search through more than 211,000 partitions. 

Lee (1974) has formulated another likelihood ratio test under 

a slightly different set of assumptions. Instead of regarding n1 , 

the number of observations in cluster 1, as being a fixed but unknown 

constant as Engelman and Hartigan must have, Lee (1974) assumes that 

n1 is a random variable whose probability distribution is determined 

by n and p, where p is an unknown mixing parameter. The assump-

tion that n1 is random appears to be a good one, but there are 

several confusing aspects of Lee's (1974) formulation of a test 

statistic. Lee (1974) lets X represent the n sample observations 
(\) 

and lets L(*1rn1 , n) represent the likelihood function under the 

alternative suggested by Engelman and Hartigan (1969), He states that 

Engelman and Hartigan (1969) maximize this likelihood by considering 

~ ~X L(:S I n1, n) • It is not clear what Lee (1974) means by £ , 
but it does appear to the present author that it was the maximtzation 

Engelman and Hartigan had in mind, It seems more logical to assume that 
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maximization was MAX MAX 2 L(XI n1 , n). The maximum of this 
H µ1 ,µ 2 ,a N 

likelihood function is sought with respect to µ1 , µ2 , a2 , ~ and H. 

The values of p, µl, µ2 , a2 which maximize the likelihood for a 

fixed partition are 

/\ nl 
p = n 

nl 

Ixli 
A i=l 
µl = = x1 nl 

n-n1 

Ix2j 
/\ j=l 
µ2 = X2 n·- n 1 

n 

The likelihood ratio test is then to reject H0 in favor of HA 

whenever 

Given the partition, then ~ is known. It is not clear why Lee (1974) 

attempted to maximize the likelihood over n1 with his assumptions. 

Lee (1974) then tfies to compare the power of this statistic, c1* with 

:the. power of the Engelman and Hartigan (i969) statistic, C for some 

values of p the' mixing parameter. : .This type of comparison is not 

really appropriate because the Engelman-H~rtigan procedure is not 
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formulated in terms of a mixing p:i.rameter p. This is the same problem 

encountered when nonp:i.rametric and parametric tests are compared 

when the parametric assumptions are assumed. It is the author's 

opinion that Lee could have made a good case for using 

than C -based purely on the underlying assumptions. 

c * 1 rather 

This procedure was formulated with respect to a two group 

alternative. It is easy to see the generalization to the case where 

under the alternative there are k clusters with different means 

and k-1 mixing p:i.rameters p1 , p2 , •.• , pk-l' where 2 $ k $ n-1. 

Without displaying the algebra, the test for the k group alternative 

would be: 

Reject H0 in favor of HA whe~ever 

It is unfortunate that no tables of percentage points exist for 

any of these tests, because they seem to be better in terms of assump-

tions than the Engelman and Hartigan type tests. It is unlikely that 

percentage points will be generated because of the great expense in 

examining all the p:i.rtitions required, 

One of the advantages that the likelihood ratio tests have is 

that the tests for clusters do not depend on any measures of association 

or distance computed between units. One of the disadvantages is that 

many p:i.rtitions have to be examined, which is costly in terms of computer 

time to the user and also to the researcher trying to gener~te empirical 

results. The next section will review problems in formulating a test 

which is dependent on the measure of distance. 



Some Procedures Based on the Dendogram 

Suppose a sequential agglomerative hierarchal algorithm is used 

to form clusters at each of n-1 stages. Suppose that Squared 

Euclidean distance is used as a measure of distance. As mentioned 

previously n-1 distance matrices are computed in order to "cluster" 

the data. Let M1 be the first distance matrix computed, M2 the 

second, and so on with M 1 being the last IiJ.atrix (2 x 2) computed, n-

Let f 1 be the minimum element above the main diagonal of M1 , f 2 

the minimum element above the main diagonal of M2 and so on with 

f n-1 the minimum element above the main diagonal of M 1 . n- Can the 

observed values of the f's be used to determine whether all the 

original observations were sampled from the same normal population? 
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A simple bivariate example will be used to illustrate the difficulties 

with this type of approach. 

Let x., i =. 1, 2, 3 be randomly sampled from a bivariate normal 
l. 

distribution with parameters µl = 0, µ2 = o, al= 1, a2 = 1, p = o. 

and x .. 
l.J 

f 1 = minimum (~2 , d13 , dz3) 

= 

= 

== 

are components of 

2 2 
(xll - x21) + (xl2 - Xz2) 

x •• 
l. 

where 

Can the distribution of f 1 be found in some useful form? First 

the distribution of dl2 will be found. Let 

x .. N N(O, 1) for i = 1, 2, 3 j = 1, 2 • 
J.J 

x(. ') and x are independent whenever (i,j) f (m,n). 
;I,' J (m,n) 



33 

Hence X11 - X21 N N(O, 2), 

and thus 
x - x l/2- 21 N N(O, 1) 

• 
and 

x - x 
12 22 N(O l) Vz N ' • 

Thus 

(Xn~Xz~rN x2(1) 

and 

(X12~ X22j2N x2(1). 

The sum of two independent Ghi-square variables with n1 and n2 

degrees of freedom is distributed as a Chi-square variable with n1 + n2 

degrees of freedom, so since 

Hence, 

dl2 2 
2 N X (2) 

and we conclude that ~2 N 2x2(2), 

From this result it follows immediately that d13 is distributed 

2 2 as 2X (2) and also d23 is distributed as 2x (2), 



These three distances are not independent since 

Hence, 
4 .25. 

(16 . 16 

Now, 

and so the cumulative distribution function for f 1 is given by: 

F(t) = Pr(d12 < t or d13 < t or d23 < t) 

=: 1 - Pr(dl2 > t, dl3 > t, dz3 > t). 

Pr(d12 > t, d13 > t, d23 > t) = Pr(/d12 > {t, ~ > {t, ~ > /t). 
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= J J J J :er(~ >ft, A3 >.jt, A; >Jt I xu = "i1' X12 = "i2' .. " 

X21 = x21' X22 = x22)· ¢(x11)¢(x12)¢(x21)¢(xz2) 

=J J J J Pr(~> /t, ~ > /t.v'd;) >/t I xu - "il' 

Rl. 
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f If fr[~> ./t. A:; >fi,, Id;; >v'tJxu = xll, X12 = "12• X21 ~ "21• 

Rz 

where Rl = Region where /<x11 - Xz1)2 +(x12 - Xzz) 2 c t, 

Rz = Region where /c"x11 - Xz1)2+(x12 - x2~)2 < t ' 

~(x) 
1 .:.x2 /2 

= -e 
l2n 

and 

Thus, 

F(t) = ~~~~P(tjz, r1)0(x11lO(xzz)O(x12)0(xz1l dx11dxz2dx12dxz1 

where 

P(tl2, r) is the cumulative distribution function of the non­

central x2 distribution with 2 degrees of freedom and non-centrality 

2 2 2 2 parameter, r, r 1 = x11 + x12 ,. ·r2 = x21 + x22 . 

The conditional probability in the last integral can be found by 

integrating over two intersecting circles in the plane with respect to 

a bivariate normal distribution. 
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The region where the two circles intersect is the worst problem. 

One approximation would be to assume the region where the two circles 

intersected was an ellipse and follow procedures set forth by Snow and 

Ryan (1970) for its numerical evaluation. 

Numerical integration of multiple integrals is often very costly 

and is subject to many rounding errors during computation. The 

problem is further complicated by the fact that the cumulative 

distribution function of the non-central Chi~square distribution is 

not known in closed form. It is the author's conclusion that numerical 

evaluation of the above expressions is not feasible, especially since 

the above example is perhaps the most simple case of clustering that 

can be considered. 

Another approach to this problem is to assume that d12 , d13 , dzJ 
are independent in calculating the distribution of f 1 . It was 

previously demonstrated that this is not true. The result is to be 

compared with an empirical distribution of f 1 based on a large 

number of observations. The result may indicate that the assumption 

of independence is tolerable. 

It was previously demonstrated that dl2/ N 2x2(2). The x2(2) 

density is: 

where 0 < x < 00< 

f (x) 

otherwise 

which is the exponential density with parameter 1/2. Then bY a simple 

change of variable the density of d12 is: 

~ {
0
1/4 e -y / 4 

fl2(y). 

where 0 < y < 00 

otherwise 



which is exponential with parameter 1/4. 

The cumulative distribution function is then: 

y 

F12(y) ~ ~ 1/4 e-t/4 dt ~ 1 - e-y/4 

The density of the minimum of three independent variables each having 

this same density is given by: 

of~! [F(y)]o [1-F(y)]2 f(y) for O < y < 00 

otherwise 

for 0 < y < 00 

otherwise 

This is exponential with parameter 3/4. 

10,000 values of f 1 were generated, and an empirical frequency 

distribution was computed (see Table I). An estimate of the density 

function was found for the midpoint of each class interval. This 

estimate y is given by observed % frequency of the class 
length of the class interval If it 

is assumed that f 1 has an exponential density with parameter A, 

( ) -AX ( ) then f 1 x = A e for x > 0. It follows that log y and x 

would be approximately linearly related, and a least squares procedure 

might be useful in estimating the parameters of the line. However, 

for some of the larger values of x, the observed frequency is zero, 

hence the logarithm cannot be taken. An arbitrary decision was made 

to disregard all the class intervals greater than 10.1, and to 

estimate A from only the slope of the regression line. The result 

is a somewhat crude estimate of the density of -'f1 . The estimate 

37 
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TABLE I 

EMPIRICAL FREQUENCY DISTRIBUTION FOR 
f 1, n = 3 

Class Interval Frequency Class Interval Frequency 

0 - .20 1363 5.00 - 5.20 32 
.20 - .40 1168 5.20 - 5.40 25 
.40 - .60 1013 5.40 - 5.60 29 
.60 - .80 902 5.60 - 5.80 25 
.80 - 1.00 756 5.80 - 6.00 29 

1.00 - 1.20 651 5.00 - 6.20 18 
1.20 - 1.40 528 6.20 - 6.40 26 

1.40 - 1.60 484 6.40 - 6.60 10 
1. 60 - 1.80 415 6.60 - 6.80 17 
1.80 - 2 .00 358 6.80 - 7.00 7 
2.00 - 2.20 321 7.00 - 7.20 8 
2.20 - 2.40 245 7.20 - 7.40 10 
2.40 - 2.60 198 7.40 - 7.60 10 
2.60 - 2.80 196 7.60 - 7.80 9 
2.80 - 3.00 186 7.80 - 8.00 5 
3.00 - 3.20 165 8.00 ..: 8.20 7 
3.20 - 3.40 149 8.20 - 8.40 5 
3,40 - 3.60 119 8.40 - 8.60 4 

3.60 - 3.80 109 8.60 - 8.80 13 
3.80 - 4.00 72 8.80 - 9.00 6 
4.00 - 4.20 72 9.00 - 9.20 2 

4.20 - 4.40 72 9.20 - 9.40 3 
4.40 - 4.60 45 9.40 - 9.60 1 
4.60 - 4.80 52 9.60 - 9.80 3 
4.80 - 5.00 35 9.80 -10.00 2 

10.00 -10.20 2 
10 ,20 - +co 18 
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of the density is: f 1(x) .66 e· 66x x > O. 

Suppose that instead of a sample of size 3 from the bivariate 

normal distribution previously mentioned, a sample of ten points is 

available. Since some of the 45 distances are pairwise independent, 

will the distribution of f 1 assuming all the distances are independent 

be any "better" than the previous case where all the distances were 

pairwise dependent? 

Assuming all 45 distances are independent, the density of f 1 

would be: 

for O < y < oo 

otherwise 

for 0 < y < oo 

otherwise. 

10,000 values of f 1 were generated, and an empirical frequency 

distribution was computed (see Table II). Following the same procedure 

as in the previous example, the estimate of the density was found to be: 

for x > 0 

otherwise. 

It is to be noted that both of the estimated densities are based 

on the assumption that f 1 has an exponential distribution. It would 

be difficult to objectively evaluate the approximation of the dis­

tribution of f 1 , based on the assumption of independence of the 

distances, even if the true distribution of f 1 was known. The author 

will not attempt to do so, since it is a subjective judgment. 
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TABLE II 

EMPIRICAL FREQUENCY DISTRIBUTION FOR 
f 1, n = 10 

Class Interval Frequency Class Interval Frequency 

b - .01 105J .26 - .27 55 
.01 - .02 924 .27 - .2S 54 
.02 - .OJ S.52 .2S - .29 51 
.OJ - .04 72S .29 - .JO 46 
.04 - .05 677 .JO - .Jl 42 
.05 - .06 57S .Jl - .J2 29 
.06 - .07 547 .J2 - .JJ 32 
.07 - .OS 477 .3J - .J4 25 
.OS - .09 4S9 .J4 - .J5 29 
.09 - .10 35J .J5 - .J6 26 
.10 - .11 J6S .J6 - ,37 19 
.11 - .12 Jl4 .J7 - .JS 23 
.12 - .13 259 .JS - .J9 11 
.lJ - .14 24J .J9 - .40 19 
.14 - .15 211 .40 - .41 14' 
.15 - .16 207 .41 - .42 11 
.16 - .17 16S .42 - .4J 11 
.17 - .lS 167 .43 - .44 9 
.lS - .19 146 .44 - .45 6 
.19 - .20 llS .45 - .46 s 
.20 - .21 101 .46 - .47 5 
.21 - .22 97 .47 - .4S 5 
.22 - .2J lOJ .4S - .49 5 
.2J - .24 94 .49 - .50 10 
.24 - .25 76 .50 - .51 J 
.25 - .26 60 ,51 - f- 00 42 
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The distribution of· f 2 is conditional on the result at stage 1, 

and is therefore much more complex than that of f 1 . Besides.the 

complexity of the mathematics, the author believes that this type 

of approach will not lead to many useful results for reasons to be 

mentioned at the end of this section. 

It has been worthwhile studying t~is type of approach because 

the theoretical difficulties are illustrated in a simplified form, 

which allows one to avoid difficulties such as those encountered by 

Rohlf (1975). Rohlf (1975) considers a procedure which computes 

g. = f. - f. 1 , (where fo is defined as 0). The algorithm 
1 1 1-

used is the single linkage, sequential agglomerative hierarchal pro-

cedure with squared Euclidean distance as the distance measure. The 

Minimum Spanning Tree (MST), is a minimally connected graph with no 

circuits (Gower and Ross, 1969), Rohlf (1975) bases several theoretical 

derivations on the false assumption that the edges in the MST are 

independent (see Norton and Warde, 1975). Judgment on this study must 

be reserved until the empirical results Rohlf used as a basis for his 

conclusions are examined. 

There are two major difficulties that the author sees· with these 

dendogram-based procedures; first, the distributional results will 

depend on the measure of similarity or distance between units 

that the algorithm is using; and secondly, there is no indication 

2 that the procedures would be independent of cr • It does not seem 

reasonable that cr2 be assumed known in clustering problems. It is 

also to be noted that standardization of a variable by its estimated 

standard deviation is not justification for assuming cr2 1. 
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Formulation of the Clustering Problem as a 

Mixture of Normal Distributions 

In addition to Lee (1974), other authors, such as ray (1969), have 

considered formulating the clustering problem as a mixture of normal 

distributions. There are so many difficulties still present in solving 

the normal mixtures problem that solution of the clustering problem 

has hardly been more than mentioned, with the exception of Lee (1974). 

A formulation of the· problem in a manner in which there is a 

reasonable chance for solution is: 

Let x1 , ... , xn be a random sample from a population f where 

f 

k 

~P.f. L 11 

i=l 
with fi N N(µi, a2), Pl' P2 , ... , Pk are 

mixing parameters 0 ~Pi~ 1, i = 1, ... , k, 
k 

2: Pi = 1, and k is known 2::;: k $ n/2. 

i=l 

The procedures that are used most often to find point estimators 

of the unknown parameters are the method of moments (which goes back 

to Pearson, 1894) and the method of maximum likelihood. In the 

clustering context, it would be desirable to set confidence intervals 

on the Pi's. In order to set confidence intervals on the Pi, 
I\ 

i = 1, ..• , k, the sampling distributions of the estimates Pi' 

i = 1, ... , k, are needed, and they are not present~y" -available. 

To further complicate the issue, the maximum likelihood estimators 

are usually found by iterative procedures, which occasionally converge 

to an incorrect value. 
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The a~thor's conclusion is that the formulation of the clustering 

problem in terms of mixtures of normal distributions is most tractable 

using the Lee (1974) approach. Further work on this approach may 

lead to some advances in the decomposition of normal mixtures. 

Other Miscellaneous Test Procedures 

Ling (1971) selects a single linkage sequential agglomerative 

hierarchal algorithm as a procedure that will yield "exact" distri­

butional results. A matrix of pairwise distances is assumed to be 

available, but the actual distances above the main diagonal are replaced 

with the ranks of these distances. The single linkage algorithm is 

then used in the usual way on this matrix of ranks, to cluster the data. 

Ling (1971) tries to formulate a null hypothesis of "randomness". 

Based on this null hypothesis, he finds exact probability 

distributions for the number of units belonging to clusters of 2 or more 

at each stage of the algorithm., 

Assuming there are n responses to be clustered, then there 

are n(n-1)/2 ranks above the main diagonal of the distance matrix. 

Ling (1971) assumes that all [n(n-1)/2]! permutations are equally 

likely. He points out that the assumption of equally likely permu­

tations of ranks makes the mathematics possible to work with, but 

admits that this assumption is impossible for some lower dimensional 

spaces. He avoids mentioning that the problems arise when the number 

of units to be clustered is larger than the number of response variables 

measured on each unit. The most important and useful results from 

clustering data are obtained when there are more units than response 

variables. 
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Example: Suppose four univariate observations are collected and 

the six pairwise distances are computed, then the following relative 

ordering is impossible: 

The present author has no confidence in results based on this 

assumption of equally likely permutations of ranks, regardless of how 

well the mathematics works. In many cases, the null hypothesis could 

be rejected without bothering to look at the data. 

Mrachek (1972) proposed two tests. The first test assumed at 

the outset that 

= µ. 
1 

and 

It is not stated that a2 is known, but later computation of 

the te~t statistic seems to require a2 to be known. Let D' = 

(d12 , d13 , ... , ~n' ~J' ... , d2n' ... , d(n-l)n). Some argument is 

given to justify assuming D has approximately a multivariate normal 

distribution. 

In the type of situations where cluster analysis is most appro­

priate it seems unreasonable to assume that a2 will be known. 

Mrachek (1972) makes the comment that if a2 is not known then the 

data matrix should be standardized and a2 set equal to one in the 

computation of the test statistic. Standardizing variables by their 

estimated standard deviation does not justify assuming a2 = 1, 

although several authors in the literature seem to believe that this 

is possible. If the data matrix is standardized by estimated standard 

deviations the distribution of D will be affected, but no mention 
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is made of this problem. It is also to be noted that Mra.chek's ' 

(1972) arguments concerning the normality of D are based on allowing 

the number of components of the response vector to become large. This 

seems to make the test quite questionable when there are a relatively 

small number of components in the response vector, For application 

purposes, this comment seems especially important in view of Mrachek's 

conclusion that the addition of uninformative variables hinders the 

performance of clustering procedures. 

The second test is based on Jacknife estimators and it also assumes 

a2 is known. The test statistic which is computed has a 

Hotelling's T2 distribution, This is based on a conjecture by Tukey 

(1962) that individual Jacknife estimators of distances are approximately 

normally distributed. From this conjecture Mrachek (1972) concludes 

that the vector of distances is approximately normally distributed. 

This appears to be rather weak "evidence" on which to base a test. 

In the next chapter, some test procedures based on empirical 

results will be suggested as practical alternatives to the procedures 

previously mentioned in this chapter. 



CHAPI'ER III 

A MONTE CARLO INVESTIGATION OF FOUR MAJOR 

AGGLOMERATIVE CLUSTERING PROCEDURES 

Justification for the Selection of These 

Four Procedures 

There is at least some theoretical justification for using the 
• 

divisive algorithm which partitions the data into clusters using the 

sum of squares criterion discussed p~eviously, with regard to the 

~ngelman and Hartigan (1969) test. Since the divisive algorithms 

require a relatively large amount of computing time, they are not 

extensively used in applications, of cluster analysis. The author sought 

an algorithm that would approximate the partitioning given by the 

aforementioned divisive algorithm, which would be extensively used at 

present and hence readily available to potential users. An algorithm 

which is relatively inexpensive to use was also sought because more 

cases could be .considered by empirical methods.· Since the sum of 

squared deviations of a set of observations about their mean is smaller 

than the sum of squared deviations about any other number, it was 

intuitively reasoned that the weighted average algorithm or centroid 

algorithm would closely approxi~ate the partitioning given by the 

divisive algorithm. In order to be able to make evaluations of some of 

the algorithms not specifically considered, it was decided to include 

the two algorithms, which are considered as "boundary" algorithms. 

46 
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More discussion of "boundary" type algorithms will be given in Chapter 

IV. After the above choices of algorithms had been made and many of 

the results collected, Baker and Hubert (1975) published an article 

which evaluated the power of some of these same algorithms, but with 

respect to a different class of null and alternative hypotheses. This 

makes the above choice of algorithms all the more appropriate for 

comparison purposes. 

Statement of the Proposed Statistical 

Procedures 

In order to test for a known number of clusters, k, where 

2 ~ k ~ n-1, the user may select one of the four algorithms and cluster 

the data. At stage n - k + 1, the algorithm has assigned the n 

observations to k clusters. The ratio, between cluster sum of 

squ~res divided by within cluster sum of squares (B/W), must be computed 

and referred to the appropriate table of percentage points. 

There is at present a practical problem using the above procedure, 

namely, tables of percentage points have been generated for only a 

very limited number of sample sizes. In order to have some test avail­

able until more tables can be generated, a conservative test for the 

two cluster alternative can be devised based on the presently tabled 

Engelman and Hartigan (1969) percentage points. To perform this 

conservative test, the user selects one of the four agglomerative 

algorithms and as before clusters the data. At stage n-1, the algo­

rithm has assigned the observations to two clusters. The ratio B/W is 

computed and referred to the table of percentage points of Engelman and 

Hartigan (1969). The test is conservative because the percentage points 
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of the Engelman and Hartigan (1969) test are based on the computation 

of the maximum B/W, and there is no guarantee that the assignment 

of observations to clusters by the agglomerative procedures will lead 

to the maximum B/W. 

Selected percentage points of the null distributions are given 

in Tables III through XVI. For notational purposes a<*' to the right 

of an entry will indicate that the entry is theoretically too large, 

making the test conservative. If an entry is larger than 4,000,000 

it will be replaced by ** in the table, and if an entry is larger 

than 8,000,000 it will be replaced by *** in the table. E-H will 

represent the Engelman and Hartigan percentage points. 

Approximate Confidence Inter:Vals for the 

Estimated Percentage Points 

Let FB/W(x) be the cumulative distribution function of an 

unknown distribution. Let Ca be the point such that FB/W(ca) = a. 

The problem in general is to take a sample from this distribution, and 

to find an approximate confidence interval for Ca. 

More specifically, 1000 observations were selected at random from 

FB/W' and it is desired to find approximate 95% confidence intervals 

for c.50' c.75' c.90' c.95' c.99· 

Consider the problem of finding a confidence interval for c. 50 . 

A point estimate of c. 50 is given by the value of the 500th order 

statistic from the sample of 1000. The density of the 500th order 

statistic from a random sample of size 1000 is given by: 

[(49~?)(1oo!) (FB/W(x)J499 [l - FB/W(x)J500 fB/W(x) 

, fB/W(x) = for x > O 
0 otherwise. 
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TABLE III 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE TWO GROUP ALTERNATIVE 

WITH n = 6. 

E-H Single Complete Weighted Centroid Avera e 

c = a. .50 3.88 3.525 3.85 3.85 3.85 

.75 5.96 5,95 5,925 5,95 5.925 

.90 9.84 9.30 9.30 9,30 9.20 

.95 14.1 13.825 13.825 13.825 13.55 

.99 33.1 30.8 30.8 30.8 28.225 
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TABLE IV 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE THREE GROUP ALTERNATIVE 

WITH n = 6 

Single Complete Weighted Centroid Averaf;ie 

c = a. .50 19.267 21.0 20.867 20.867 

. 75 36.80 37.6 37.600 37.600 

.90 71.60 '(2.8 72.800 72.800 

,95 118.00 118.0 118.000 118.000 

,99 418.40 418.4 418.400 418.400 
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TABLE V 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE FOUR GROUP ALTERNATIVE 

WITHn=6 

Single Complete Weighted Centroid Average 

c = a. .50 110.40 111.15 111.15 111.15 

,75 234,75 234.75 234,75 234.75 

.90 530.55 537,90 537,90 537,90 

,95 1485.15 1485.15 1485.15 1485.15 

,99 4006.95 4006.95 4006.95 4006.95 



c = a. .50 

. 75 

.90 

,95 

,99 

TABLE VI 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE FIVE GROUP ALTERNATIVE 

WITH n = 6 

Single Complete Weighted 
Averaflie 

1132.4 1132.4 1132.4 

5461.6 .5461.6 .5461.6 

38795,6 38795 .6 38795.6 

21.5374~8: 215374.8 215374.8 

** ** ** 

** > 4,000,000 
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Centroid 

1132.4 

5461.6 

38795.6· 

215374.8 

** 
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TABLE VII 

SELECTED PERCENTAGE POINTS OF THE B /W TESTS 
FOR THE TWO GROUP ALTERNATIVE 

WITH n = 10, RUN ONE 

E-H Single Complete Weighted Centroid Average 

c = ex. .50 2.76 1.5625 2.525 2.5625 2.5625 

,75 3,76 3.0625 3.525 3.55 3,5625 

.90 5.14 5.30* 5.3125* 5.40* 5.40* 

.95 6.34 6.575* 6.575* 6.575* 6.575* 

.99 9.89 10.2875* 10.2875* 10.2875* 10.2875* 
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TA:SIE VIII 

SEIECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE TWO GROUP ALTERNATIVE 

WITH n = 10, RUN TWO 

E-H Single Complete Weighted Centroid Average 

c = a. .50 2.76 1.5625 2.525 2.475 2.475 

. 75 3.76 3.075 3,6375 3,6375 3.6125 

.90 5.14 4.7875 4.8125 4.8125 4.8125 

,95 6.34 5,775 5,775 5,775 5,775 

,99 9,89 10.650 10.650* 10.650* 10.650* 
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TABLE IX 

SELECTE:p PERCENTAGE POINTS OF THE Bjw TESTS 
FOR THE TWO-GROUP ALTERNATIVE 

WITH" :n: = 10, COMBINED RUNS 

E-H Single Complete W~ighted Centroid Average 

c = a. .50 2.76 1.5625 2.525 2.525 2.5125 

,75 3.76 3,0750 3,5625 3.6125 3.6125 

.90 5.14 5.0125 5.0500 5.0625 5,0625 

,95 6.34 6.2250 6.1875 6.2250 6.2250 

,99 9r,89·_ 10.650* 10.650* 10.650* 10.650* 



TABLE X 

SELECTED PERCENTAGE POINTS OF THE B/w TESTS 
FOR THE THREE GROUP ALTERNATIVE 

WITH n .;. 10, COMBINED RUNS 

Single Complete Weighted Centroid Average 

c = a. .50 7.343 9.800 9,771 9,686 

. 75 12.657 14.143 13.857 13.857 

.90 18.857 19.600 19,571 19.514 

,95 25.086 25,943 26.257 26.257 

,99 41.40 41.40 41.400 4l.400 
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TABLE XI 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE FOUR GROUP ALTERNATIVE 

:WITH. n ;;;: 10, COMBINED RUNS 

Single ·· Co!'1plete Weighted Centroid Average 

c = a. 
.50 23.3 28.35 . 28.35 28.15 

.75 37,2 ·.41.45 41.15 40.85 

.90 58.75 64.oo 62.65 62.30 

:.'95 . 78.4 83,95 82.60 82.55 

,99 136.8 151.05 152.05 151.05 
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TABLE XII 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE FIVE GROUP ALTERNATIVE 

WITH n == 10, COMBINED RUNS 

Single Complete Weighted Centroid Average 

c == 
O'.. 

.50 65.04 74.80 73,20 72.80 

,75 108.72 122.24 120.40 120.40 

.90 180.16 187.44 187.44 186.56 

,95 234.24 255,60 244.32 244.32 

,99 431.68 431.68 431.68 435,16 
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TABLE XIII 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE SIX GROUP ALTERNATIVE 

WITH n = 10, COMBINED RUNS 

Single Complete Weighted Centroid Average 

c = ex .50 189.0 209.0 208.5 208.5 

. 75 334.135 348.125 344.5 344.125 

.90 626.875 642.25 637,75 644.750 

. 95 869.500 883.25 883.250 883.250 

,99 1509 ._500 1509.500 1509.500 1509.50 
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TABLE XIV 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE SEVEN GROUP ALTERNATIVE 

WITH n = 10, COMBINED RUNS 

Single Complete Weighted Centroid Average 

c = a. .50 562.8 582.4 585.4 585.4 

,75 1115.4 1176.2 116).6 116).6 

.90 2488.8 2509.4 2509.4 2509.4 

,95 4019.0 4019.0 4019.0 4019.0 

,99 10027.0 10027.0 10027.0 10027.0 
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TABLE XV 

SELECTED PERCENTAGE POINTS OF THE B /w TESTS 
FOR THE EIGHT GROUP ALTERNATIVE 

WITH ·n = 10, COMBINED RUNS 

Single Complete Weighted Centroid Average 

c = a. .50 2310.35 2363,2 2359,7 2359,7 

,75 6737,50 6737,5 6737,5 6737,5 

.90 18572.40 18885,3 18885,3 18885,3 

,95 43214.50 43214.5 43214.5 43214.5 

,99 182917.0 182917.0 182917.0 182917.0 



c = a. .50 

,75 

.90 

,95 

,99 

TABLE XVI 

SELECTED PERCENTAGE POINTS OF THE B/W TESTS 
FOR THE NINE GROUP ALTERNATIVE 

WITH n = 10, COMBINED RUNS 

Single Complete Weighted 
Average 

24152.8 24152.8 24152.8 

132056.8 132056.8 132056.8 

810454.4 810454.4 810454.4 

5380584.8 5380584.8 5380?)84.8 

*** *** *** 

*** > 8,000,000 
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Centroid 

2415?.8 

132056.8 

810454.4 

5380584.8 

*** 



This expression contains the unknown distribution of FB/W' hence 

an exact confidence interval cannot be found. 

The following approximate procedure can be used: 

1. Plot a smoothed empirical distribution function. 

2. Regard the observed value of the 500th order statistic as a 

fixed constant, the true median of FB/W' 
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3, Find a point estimate of the probability that a randomly chosen 

observation will be less than this observed value of the 500th 

order statistic (the point estimate is ,5 of course, for this 

sample). 
A 

4. Find an approximate distribution for P. In this case, it 

is assumed ~IV N( .5, ( 'fb~o5)). In general it is assumed 

~ N N(P, P(l;P)) where ·n is the sample size. 

5, Find a confidence interval on P. Using the distributional 

assumptions in (4) above, a 95% confidence interval on P is 

given by: 

(.5 - 1.96 ~, ,5 + 1.96 ~ ) . 
6. This interval is inverted graphically to approximate a 95% 

confidence interval about 

This procedure is illustrated and carried out in Figures 2 through 

5, The results are collected in Table XVII. 

The Alternative Hypotheses Selected 

for this Study 

The test procedures suggested in one of the previous sections could 

be used for detection of two different types of alternative. The first 

type of alternative is to consider the number of observations from each 



TABLE XVII 

APPROXIMATE CONFIDENCE INTERVALS ON Qy FOR THE 
B/W TESTS FOR THE TWO GROUP ALTERN?\TIVE 

WITH n = 10 

Single Linkage 1.46 < c.50 < 1.69 
2.89 < c.75 < 3,34 
4,75 < c.90 < 5,29 
5,74 < c.95 < 6.94 
9,56 < c.99 < 13.13 

Complete Linkage 2.475 < c.50 < 2.63 
3,34 < c.75 < 3,69 
4.81 < c.90 < 5.50 
6.00 < c.95 < 7,19 
9,56 < c.99 < 13.13 

Weighted Average 2.40 < c.50 < 2.63 
Linkage 3.41 < c.75 < 3.68 

4,73 < c.90 < 5,35 
5,63 < c.95 < 6.85 
9,56 < c,99 < 13.13 

Centroid Linkage 2.34 < 0 .50 < 2,59 
3,44 < c.75 < 3.81 
4.76 < 0 .90 < 5,35 
5,96 < c.95 < 7,13 
9,56 < c.99 < 13.13 
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population as fixed, but unknown as with the Engelman and Hartigan (1969) 

formulation. The second type of alternative is to consider the number 

of observations from each population as being random, with their 

probability distribution being determined by unknown mixing parameters. 

Tyis is the type of formulation of the alternative considered by 

Lee (1974). 

Some of the procedures proposed will be evaluated by considering 

their power against the alternatives selected. 

There are no published tables of percentage points for the Lee 

(1974) test, hence to compare the power of the previously suggested 

procedures with the Lee (1974) test would require generation of per­

centage points for that test. However, there are already percentage 

points available for the Engelman and Hartigan (1969) test; therefore, 

alternatives of the Engelman and Hartigan (1969) type will be considered 

in this study, 

For n = 10, 6 different two population alternatives are considered: 

( . .5o', 5-5), (2a, 5-5), (4a, 5-5), (4a, 7-3), (4a, 9-1), (6a, 5-5), where 

the first coordinate represents the separation of the means, in units 

of a, of the two normal populations and the second coordinate represents 

the numbers of observations from each of the two normal populations. 

The results are presented in Tables XVIII through XXIII. If an estimate 

of power has been based on a tabulated value which is theoretically 

too large, then a * is placed to the right of the estimate to indicate 

that the estimate of power is conservative. A less conservative 

estimate of power is given in parentheses. This less conservative esti­

mate is obtained by rejecting the null hypothesis when the Engelman­

Hartigan critical point is exceeded. 
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TABLE XVIII 

ESTIMATED POWER OF THE B/W TESTS FOR THE TWO 
GROUP, ( . ':fJ, 5-5) ALTERNATIVE 

E-H Power Single Complete Weighted ·centroid Avera e 

c = 
Cl 

.50 .502 ,542 ,518 ,516 .519 

,75 .240 .292 .260 .246 .246 

.90 .084 .102 .104 .104 .106 

,95 .046 .064 .066 .o68 .070 

.99 .014 .008* .008* .008* .008* 

(.010) (.010) (.010) (.010) 
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TABLE XIX 

ESTIMATED POWER OF THE B/W TESTS FOR THE TWO 
GROUP, (2o', 5-5) ALTERNATIVE 

E-H Power Single Complete Weighted Centroid Average 

c = a. .50 ,592 ,556 .628 .640 .638 

,75 .340 ,344 .380 .388 .386 

.90 .166 .132 .152 .154 .158 

,95 .090 .082 .082 .082 .082 

;99 .020 .012* .012* .012* .012* 

(.018) ( .018) (.018) (.018) 
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TABLE XX 

ESTIMATED POWER OF THE B/W TESTS FOR THE TWO 
GROUP, (Lia, 5-5) ALTERNATIVE 

E-H Power Single Complete 
Weighted 

Centroid 
Avera e 

c = ex . 50 ,966 .844 .944 .942 ,938 

. 75 .820 ,778 .800 .810 .808 

.90 .614 .600 ,578 ,598 .602 

. 95 .474 .450 .442 .452 .452 

,99 .218 .144* .144* .144* .144* 

(.174) (.174) (.174) (.174) 
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TABLE XXI 

ESTIMATED POWER OF THE B/W TESTS FOR THE TWO 
GROUP, (LKr, 7-3) ALTERNATIVE 

E-H Power Single Complete Weighted Centroid Average 

c = a. .50. .916 .868 .904 .892 .892 

,75 .738 .748 .742 ,738 ,738 

.90 .448 .486 .480 .494 .496 

,95 .306 .364 .364 ,364 .366 

,99 .118 .110* .110* .110* :.110* 

( .136) (.136) (.136) (.136) 
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TABLE XXII 

ESTIMATED POWER OF THE B/W TESTS FOR THE TWO 
GROUP, (40', 9~i) ALTERNATIVE 

E-H Power Single Complete Weighted Centroid Average 

c = 
O'.. 

.50 .492 .719 .502 .492 .485 

,75 .270 .317 .282 .268 .263 

.90 .130 .122 .130 .130 .128 

,95 .078 .072 .072 .072 .072 

,99 .018 .016* .016* .016* .016* 

( .018) (.018) ( .018) (.018) 
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TABLE XXIII 

ESTIMATED POWER OF THE B/'W TESTS FOR THE TWO 
_ GROUP, ( 6o' , 5-5) ALTERNATIVE 

E-H Power Single Complete Weighted Centroid 
A.vera~e 

c = .50 ,998 ,990 ,996 ,998 ,998 
a. 

,75 ,996 ,986 .986 ,990 ,992 

.90 ,956 ,962 ,960 .962 .962 

,95 .896 .908 ,906 .908 .908 

,99 .648 ,562* ,562* .562* .562* 

( .624) ( .624) (.624) ( .624) 
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Power Comparisons Among the Proposed Procedures 

For each of the six alternatives considered, 500 data sets were 

generated. The four agglomerative procedures were allowed to cluster 

the same 500 data sets. For each data set the ratio, B/W, was computed 

for each algorithm at stage n-1, then the observed value of B/W 

was referred to the table of estimated percentage points for that 

algorithm. The Engelman-Hartigan (1969) test statistic, MAX B/W, was 

computed at a later time for each of the 500 data sets that were 

generated for each of the six alternatives. MAX B/W was computed 

from different generated observations than the B/W's that were 

computed by the agglomerative algorithms. The percentage of rejections 

of the null hypothesis is an estimate of the power of the procedure. 

All the procedures were more powerful when there were an equal 

number of observations from each of the two populations. This result 

is not unexpected since in many standard allocation problems the optimal 

allocation of samples to two groups is proportional to the variances 

of the groups. In the present case, the variances were assumed to be 

equal; hence, the data sets were generated from populations having 

equal variances. 

Based on samples of size 500 there does not seem to be any evidence 

of differences in power between the Engelman-Hartigan test and the 

procedures based on the four agglomerative clustering algorithms 

expecially at the .a levels most commonly used, a= .10, .05, .01. 

The interpretation may be that in order to have significance at a "low" 

value of a, the observations must be so distinctly separated that all 

the agglomerative procedures cluster them in the same way. The 
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agreement of the agglomerative clustering procedures will be discussed 

further in the next section. 

It is interesting to note that the conclusion that Baker and 

Hubert (1975) reached was that the single linkage method was not a good 

procedure for most cases. It is to be noted that the null hypothesis 

that Baker and Hubert (1975) are testing, is the null hypothesis 

formulated by Ling (1971) which the present author found objectionable 

in a previous chapter. The size of the power as a function of the 

separation of the two populations is worthy of note. The power of the 

tests, at a = .10, for the two population alternative where the 

population means are separated by ,!JJ units is little better than 

.10 (the estimate of the power of the Engelman-Hartigan (1969) test 

is even less than .10), which means for this alternative the test is 

little better than ignoring the data· completely and adopting a test 

which randomly rejects H0 at level a. When the separation of the 

population means is 20' units the power increases to about .16, which 

is somewhat better than ignoring the data. A separation of the two 

population means by 4C1 units finally leads to a reasonably good 

power, which is about .6. It should not be too surprising that the 

power is low for some separations of the populations, considering the 

almost total lack of assumptions that are imposed, and also considering 

the small sample size. 

Agreement of the Four Agglomerative 

Clustering Procedures 

The data presented in the previous sections indicate that the four 

agglomerative procedures "agree" in. many cases. Two procedures will be 
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defined to "agree" if the ratio, B/W, computed from the algorithm 

assignment of observations to two clusters is the same. Therefore, if 

two procedures cluster the data in the same way they will "agree", 

or if they cluster the data in a different manner that leads to the 

same ratio, B/W, they will be defined to agree. It is to be noted 

that different clusterings which lead to the same ratio, B/W, for 

the two group alternative are rare. 

The methods that the different algorithms use to measure distances 

between clusters will be examined as the first step toward understanding 

why the procedures "agree" as often as is observed. The coefficients 

that are used in the Lance and Williams (1967) formula, to represent 

the four agglomerative procedures are given in Table XXIV, where NGJ 

represents the number of units in cluster J, , and NGK represents the 

number of units in cluster K. 

The following simple example will illustrate several important 

points. Suppose there are three units to be clustered, A, B, C, 

that are located at +l, +2, and +4, respectively. The measure of 

distance is to be Euclidean or squared Euclidean distance. A and B 

are the closest, and are grouped together first, by all of the 

procedures. The next step is to compute the distance between C and 

the group (ALJB). This distance is computed for each of the four algo­

rithms and for each of the two measures of distance (see Table XXV). 

It can be seen that there is some lack of correspondence between 

the names attached to the procedures and the geometrical interpretation 

implied by those names. For example, the Euclidean distance from C 

to the centroid of the cluster (ALJB) is 2,5 units, but according to 

the centroid linkage method the distance is computed to be 2.25. Also 



TABLE XXIV 

COEFFICIENTS IN THE LANCE AND WILLIAMS FORMULA 
FOR FOUR AGGLOMERATIVE AIGORITHMS 

Single Linkage 

Complete Linkage 

Weighted Aver:age 
Linkage 

Centroid Linkage 

.-5 

· . .s 

0 

,5 0 

0 
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y 

-.5 

,5 

0 

0 



d(ALJB) ,c 

d (A UB) ,c 

d(A UB) ,c 

d(AUB) ,c 

TABLE XXV 

mSTANCES BETWEEN CLUSTERS AS MEASURED 
BY illFFERENT AIGORITHMS 

80 

Linkage Method Euclidean Distance Squared Euclidean Distance 

Single 2 4 

Complete 3 9 

Weighted Average 2.5 6.5 

Centroid 2.25 6.25 
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the squared Euclidean distance between C and the average of the units 

in cluster (AU B) is 6 . 2 5, but the weighted average linkage method 

computes the distance as 6.5, which is the average of the squared 

distances, 2 2 (AC) , (BC) . The user should be aware of how the algorithm 

he selects computes distances and the consequences this selection has on 

the resulting "clusters". This problem is being studied in detail by 

DuBien (1975), 

A fourth point, X, will be assumed, whose value is greater than 

that of unit c. If the distance from C to X is greater than the 

distance from C to the cluster (A1U B) , then C will be added to 

the cluster (AUB). However, if the distance from C to X is less 

than the distance from C to (AUB), then the resultant grouping into 

two clusters will be (A UB), (cUx). The behavior of the four pro-

cedures in grouping the four points into two clusters will be studied 

as a function of the position of X. The results are in Table XXVI. 

Let X denote the coordinate of X. The single linkage algorithm 

was the algorithm that divided the observations ABC, X for the smallest 

value of X, while the complete linkage algorithm was the algorithm that 

divided the observations, A.BC, X for the largest value of X. These 

two algorithms are sometimes referred to as boundary algorithms because 

of their diverse ways of measuring distances. It is also to be noted 

that the weighted average linkage method is the only one for which the 

choice of distance measure altered the resultant clustering. 

For comparison purposes the maximum, B/W, criterion will cluster 

the units as follows: 

4<x<4+29' 

X>4+5VJ 
J 

AB, ex 

ABC, X 



TABLE XXVI 

CLUSTERING OF FOUR POINTS BY DIFFERENT 
AI.CORITHMS 

Value of Linkage Method 

4 < X < 6 Single 

X > 6 Single 

4 < X < 6 Single 

X > 6 Single 

4 < X < 7 Complete 

X > 7 Complete 

4 < X < 7 Complete 

X > 7 Complete 

4 < X < 6.5 Weighted Average 

X > 6 .5 Weighted Average 

4 < X < 4 + J"6:5 Weighted Average 

X > 4 + J6:5 Weighted Average 

4 < X < 6.25 Centroid 

X > 6.25 Centroid 

4 < X < 6.25 Centroid 

X > 6.25 Centroid 

Distance Measure 

Euclidean 

Euclidean 

Squared Euclidean 

Squared Euclidean 

Euclidean 

Euclidean 

Squared Euclidean 

Squared Euclidean 

Euclidean 

Euclidean 

Squared Euclidean 

Squared Euclidean 

Euclidean 

Euclidean 

Squared Euclidean 

Squared Euclidean 
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Resultant 
Clustering 

AB, ex 

ABC, X 

AB, ex 

ABC, X 

AB, ex 

ABC, X 

AB·, ex 

ABC, X 

AB, ex 

ABC, X 

AB, ex 

ABC, X 

AB, ex 

ABC, X 

AB, ex 

ABC, X 
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The value of X, where the maximum B/W criterion changes from 

the clustering AB, CX to the clustering ABC, X is found by equating 

the within cluster (ALJBLJC) sum of squares to the pooled within 

cluster sum of squares computed from the two clusters (AUB) and 

(cUx), then solving for x. 

It is to be noted that all the agglomerative procedures and the 

maximum B/W criterion agree as to the clustering except for values of 

X such that 6 < X < 7, In this interval the agglomerative procedures 

all disagree as to the proper clustering, and without knowledge about 

how X is distributed in this interval it is impossible to predict 

which procedure would most often be in agreement with the maxim'ilm B/W 

clustering. It should be pointed out that this example is only one 

possible configuration of four points, so the generalizations are 

somewhat limited. More generally, how much agreement should be expected 

from the four agglomerative algorithms when they are assigning observa­

tions to two groups? The answer will surely depend on the sample size, 

but in an effort to gain partial information about the agreement of 

the algorithms, 200 data sets were generated from a single normal popu­

lation. Each of the agglomerative algorithms clustered each of the 

data sets and the ratio B/w was computed as usual. The agreement of 

the procedures was tabulated (see Table XXVII). In almost 75% of the 

200 cases, all four procedures produced the same B/W : ratio. This 

percentage is probably a lower bound for n = 6, since under any of the 

two.population alternatives the observations are more likely to be 

separated by larger distances. 

For small sample sizes the above results suggest the following 

"rule of thumb" for the two group alternative: ... If the four agglomerative 
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TABLE XXVII 

THE AGREEMENT OF FOUR AGGLOMERATIVE ALGORITHMS 

Number of Agreements 

All 4 in agreement 149 

Uhen not all 4 agree then 

Single and Complete 1 

Single and Weighted Average 1.5 

Single and Centroid 19 

Complete and Weighted Average J2 

Complete and Centroid 28 

Weighted Average and Centroid 47 



procedures agree as to the clustering then continue and perform the 

tests suggested, but if the agglomerative procedures are not in agree­

ment about the assignment of the observations to two groups then stop. 

It is unlikely that the observed significance level will be .10 or 

less if the procedures disagree. This procedure needs further 

investigation. 

The Role of Clustering Tests 

as Statistical Tools 

Should researchers in various fields be encouraged to use clustering 

tests? If the purpose of the clustering is to make inferences to units 

other than the units observed, and if the researcher is concerned 

about being misled by observations which happened to be "close" by 

chance, then he should consider a clustering test. Very few assumptions 

are required to use the test procedures proposed in the previous 

sections, only that the number of populations under the alternative be 

known. If more assumptions can be made about the data, then there are 

probably much better methods than clustering tests to detect the presence 

of more than one normal population. This suggests that clustering tests 

are probably most useful in situations where little is known about the 

data. This might logically occur at the beginning of research in a new 

field. As with almost any statistical test,, as··the separation between 

the populations becomes larger and as the sample size becomes larger the 

power of the test increases. However the power of these tests is not 

as large as many researchers tend to think it is. As was pointed out 

previously with a sample size of 10, the test for 2 populations requires 



the populations be separated by almost 4e:J units and have equal (5) 

observations from each population in order to have power of about .6. 
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It is the author's opinion that many of the articles in the liter­

ature whose conclusions were based on the results of a cluster analysis 

with no test of any type would not be there if the probability of a 

type I error was known. It is also the author's opinion that clustering 

tests will help to screen many spurious conclusions. In addition, it 

is felt that clustering results have been used as "proof" or evidence 

in many studies where other more powerful procedures might have 

reasonably been used. In general, a great deal more care needs to be 

taken in deciding whether a cluster analysis will be beneficial to 

the researcher. 



CHAPI'ER IV 

MATHEMATICAL CLUSTERING 

A Mathematical Definition of a Cluster 

The problem of definition of a cluster has been alluded to in a 

previous chapter. Ling (1971) has proposed a formal definition of a 

cluster, which incorporates several topological concepts. The first 

property is connectedness of a set of points. A set of points is 

r-connected if any two points in the set can be connected by a path 

traced by line segments between pairs of points of the set, where the 

line segments are all less than or equal to r in length. If a set of 

n points is r-connected, then it follows that the set is contained in a 

sphere of diameter less than or equal to (n-l)r. Another important con­

sequenc~ of r-connectedness is that a set of points which is r-connected 

is also a-connected for any s > r. The second property that Ling (1971) 

considers is bondedness of a set pf points. A set of points, X is 

(k, r) bonded if for every point x E X, a spherical neighborhood of 

radius r contains k points of X other than x. Since a set of 

points which is (k, r) bonded is not necessarily r-connected a third 

definition is needed to incorporate both connectedness and bondedness. 

A set of points is (k, r) connected if it is both r-connected and 

(k, r) bonded. If r is the minimum value for which a set of points 

X is (k, r) connected and if X is not a proper subset of any (k, r) 

connected set, then X is defined to be a (k, r) cluster. 

87 
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This definition of a cluster is quite flexible; for k = 1, rather 

elongated clusters are possible while for k = n-1 all the points of 

the cluster are contained in a sphere of radius r. It is to be noted 

that although the points are bounded by spheres there are no constraints 

to require that the shapes of the clusters will be spherical. Using 

this definition of a cluster, the clusters can be represented by a tree 

(see Hartigan, 1967). 

One method of finding all the (k, r) clusters would be to examine 

all the possible partitions of the data, but that method is inefficient. 

Ling (1971) has written a computer program to locate all the (k, r) 

clusters more efficiently than by searching all partitions. 

If one is willing to specify very: precisely the type of clusters 

that are being sought, the clustering problem becomes much the same as 

the pattern recognition problem in engineering. 

The Role of An Algorithm in 

Mathematical Clustering 

The procedure that Ling (1971) proposes is to define a cluster 

mathematically, and then write a program to find all the sets of points 

that satisfy the definition of a cluster. The only role of the algorithm 

in this situation is to search efficiently through the data for all the 

clu15ters. 

There is an obvious problem for the researcher who for various 

reasons cannot accept Ling's (1971) definition of a cluster. The problem 

is that he would be forced to write a new program to locate all the 

clusters in the data according to his own definition of a cluster. If 

the researcher is not willing to write a new program each time the 
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definition of a cluster changes, he may choose one of the standard 

clustering algorithms to "approximate" the clusters that he has defined. 

The new role for the clustering algorithm is then to "approximate" 

clusters. 

Still another role .of the algorithm is to define clusters. An 

algorithm may be chosen to cluster data because of the topological 

properties of the clusters it produces, such as connectedness. After 

the algorithm has been selected for use, the data are clustered with 

the output being operationally defined to be ••clusters". 

A slight modification of the above procedure leads to still another 

role for the clustering algorithm. This role may be the most common one 

in practice. An algorithm or algorithms that happen to be available are 

used to cluster the data. The resulting "clusters" are regarded as 

candidates for being real clusters. After an examination of the suggest­

ed clusters the researcher formulates the definition of a cluster, 

although the definition may not be form.ally stated. 

The problems that occur when one tries to evaluate algorithms with 

respect to their intended roles is discussed in the next section. 

The Problems of Assessing the Perf orm.ance of 

Algorithms in the Mathematical 

Clustering Context 

In order to be able to evaluate the performance of an algorithm, the 

algorithm·'s intended role must be considered. The role of the algorithm 

which Ling (1971) devised was to locate all the clusters according to 

his definition of a cluster. His algorithm does find all the clusters, 

according to the definitions he has made, so the algorithm works 
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perfectly with respect to its intended role. 

If an algorithm is used to find "approximate" clusters with respect 

to some definition of a cluster, its performance may be judged on the 

frequency with which it will locate the "real" clusters in the data, 

for various configurations of the data points. This is the type of 

evaluation many researchers seem to have been using to justify the 

usage of a new algorithm. The researchers will use the new algorithm 

on the Fisher (1936) Iris data, or the Skull data presented in Sneath 

and Sokal (1973). Several clusters have been identified by experts for 

the Iris data and Skull data and the algorithm is tested with respect 

to its ability to find these "known" clusters. Since there are an 

infinite number of possible.cluster definitions, it is impossible 

to test the algorithms performance for all cluster definitions. 

There is some confusion about the evaluation of algorithms in 

the mathematical clustering context, because the performance of the 

algorithm depends on both the properties of the algorithm and the 

definition of a cluster. 

If the purpose dr role of an algorithm is to define clusters or 

to suggest clusters, then there is no objective method with which to 

evaluate the performance. The algorithm has produced clusters. Several 

quantities might be computed to help describe the resulting clusters~ 

such as the average squared deviation of points from the centroid of 

the cluster or the radius of the smallest sphere containing the cluster, 

but in general there is no set of quantities that can be computed that 

will contain all the information about an arbitrary cluster. 

The conclusion is that if a researcher only wishes to make infer­

ences about the units he has observed, he may choose to compute any 
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quantity which he feels is informative, but he must justify his selection 

in the context of his specific problem. There is essentially no statis­

tical problem involved (other than a degenerate one). 



CHAPTER V 

APPLICATION OF MATHEMATICAL CLUSTERING TO A 
.. 

COMPLEX TARGET CONFIGURATION 

Statement of the Problem 

A situation which arises in a military context is one in which 

there are n individual target elements in a complex target config-

uration. The optimal strategy for attacking the configuration is 

desired. If the optimal offensive strategy is known, it can be used 

also for defensive purposes by suggesting modifications to existing 

installations. If it is assumed that one pass is sufficient to totally 

destroy a target element, and if it is possible to make n passes, 

then the optimal strategy is obvious; a pass is attempted at each target 

element. However, it is unrealistic to assume that n passes can be 

attempted, if n is at all large, because of the prohibitive cost in 

terms of personnel and materials,, If some of the target elements are 

close enough together, a single pass may damage several target eleme~ts. 

This suggests that grouping the target elements into a smaller number 

·than n groups may be useful in determining the optimal strategy. If 

a maximum of k passes can be attempted, can the target elements.be 

assigned to k groups so the maximum damage is inflicted by making a 

pass at each group? Since clustering algorithms are procedures for 

assigning observations to groups, can the algorithms be of use to aid 

in the selection of k optimal aim .points? The problem that this 

92 
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chapter of this study is concerned with is to formul~te some strategies 

based on clustering algorithms in order to provide at least some partial 

answers to the above question. 

A Simplified Model of a Complex Target 

Configuration 

The first simplifying assumption that will be made is that the 

complex target configuration is an airfield. 

A decision must be made about the kind of inferences that are to 

be drawn from an examination of an airfield or airfields. The first 

possible viewpoint is that the specific airfield being examined is a 

random sample from a population of all possible airfields, Some paramet­

ric form might be assumed about the population from which this airfield 

was sampled. The parameters could then be estimated by examining several 

airfields. The author has been advised that an "average" airfield has 

been constructed, wh~~h may imply that inferences are to be made in some 

instances about airfields not actually observed. 

Another viewpoint is that the only concern should be with respect 

to observed airfields and groupings of observed target elements. The 

argument for this viewpoint is that it seems unreasonable to assume that 

any military airfield configuration is unknown, anywhere in the world. 

These airfields, it is argued, are the population of interest, because it 

is impossible to carry out an attack on an airfield that exists only 

hypothetically. If inferences are to be made about only the airfields 

and target elements observed then the mathematical clustering approach 

seems to be the most reasonable approach. 
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From maps supplied by the Air Force, a "typical", although fiction­

al, airfield was created arbitrarily by the author and Gibson (1975). 

Target elements .were invented and then were placed where they might 

reasonably be expected to be found in an airfield complex. A measure 

of importance was assigned to each target element (see Table XXVIII for 

a summary of the airfield). There are a number of problems in attempt­

ing to model the airfield attack problem. One such problem is the 

assignment of the importance measure, because in addition to the fact 

that the importance measures were not being assigned by true experts, 

there should be a time dependency associated with each element. A 

surface to air missile emplacement is likely to be very important in 

the early stages of an attack, with other target elements gaining 

importance, conditional on nullifying the effectiveness of the missile 

sites. There was no attempt to build the time dependency into the 

importance measure, but an attempt was made to subjectively average the 

importance measure with respect to time. 

Another problem is that each target element is represented by a 

point located at its geometrical center. This representation may cause 

some difficulties in cases such as the following: Suppose a runway is 

assigned to group A, while an aircraft located on the end of the runway 

is assigned to group B. The aircraft and the runway are probably closer 

together than many of the elements of group A or group B, but :they have 

been assigned to different groups. 

The most reasonable assumption about damage within a pattern would 

be that the damage is most severe near the center of the pattern, the 

impact point, and that the damage decreases as the outer boundaries of 

the pattern are approached. In the interests of simplicity it is 
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TABLE XXVIII 

THE AIRFIELD COMPLEX 

Target Element Description x y Importance ·Number 

1 A/C Shelter 15 97 6 
2 A/C Shelter 11 96 6 

3 A/C Shelter 8 98 6 
4 A/C Shelter 10 101 6 

5 A/C Shelter 14 102 6 
6 A/C Repair Hangar 22 87 4 

7 A/C Repair Hangar 20 $5 4 
8 A/C Repair Hangar 18 82 4 

9 A/C Repair Hangar 18 86 4 
10 A/c Repair Hangar 20 88 4 
11 Visible Aircraft 28 91 13 
12 Visible Aircraft 26 93 13 
13 Visible Aircraft 24 92 13 
14 Visible Aircraft 23 95 13 
15 Visible Aircraft 24 99 13 
16 Visible Aircraft 26 105 13 
17 Defense Installation 13 113 95 
18 Ordinance 73 104 50 
19 Runway 51 91 20 
20 Runway 74 77 20 
21 Defense Installation 105 . 52 100 
22 Tower 109 .70 65 
23 Command Post 136 89 70 
24 Pumping Station 151 92 5 
25 Fuel Storage 150 94 17 
26 Fuel Storage 153 94 17 
27 Fuel Storage 154 92 17 
28 Runway 126 109 15 
29 Runway 108 102 25 
30 Runway 104 84 15 



TABLE XXVIII (continued) 

Target Element Tuscription x· y Importance Number 

31 Tufense Installation 118 148 90 
32 Runway 113 124 15 
33 A/C Repair Hangar 115 80 4 
34 A/C Repair Hangar 116 BJ 4 

35 A/c Repair Hangar 115 86 4 
36 A/C Repair Hangar 115 89 4 

37 A/C Repair Hangar 116 92 4 
38 A/c Repair Hangar 121 98 4 

{ 

39, A/C Repair Hangar 120 98 4 
40 A/C Repair H?ngar 126 97 4 
41 A/C Repair Hangar 128 97 4 
42 Visible Aircraft 99 103 13 
43 Visible Aircraft 101 105 13 
44 Visible Aircraft 105 106 13 
45 A/C Shelters 94 100 6 
46 A/C Shelters 97 106 6 
47 A/C Shelters 99 109 6 
48 A/C Shelters 100 104 6 
49 A/C Shelters 104 106 6 
50 A/C Shelters 106 109 6 
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assumed that the damage is uniform within the pattern. 

Weapons are differentially effective against target elements; an 

incendiary weapon may be effective against a petroleum storage area, but 

highly ineffective against a tank. Once again, to simplify the problem 

to a manageable level it is assumed the nature of the weapon causing the 

pattern is irrelevant; that is, it is assumed that all target elements 

are damaged equally by all weapons. 

Selection of Variables and Scaling 

There are many variables that could be measured on each of the 

target elements, but the inclusion of too many variables might obscure 

the main issue. The model must be kept simple enough to allow a decision 

to be made about whether or not clustering algorithms will be useful 

aids to a decision maker, who wishes to select optimal aim points. If 

the algorithms appear to be performing satisfactorily for the simple 

problems, then more variables can be added to the p~oblem, but if the 

algorithms are not performing well for simple cases using the most 

important variables, then there is little hope that the algorithms will 

perform well for more complex cases. 

It seems reasonable to assume that the most important variables for 

grouping target elements together to maximize damage to the group will 

be variables measuring physical separation. Two target elements that 

are separated by a "largen distance cannot· be damaged in a single pass 

no matter how similar the elements may be to each other i~ size, shape, 

construction material, etc. Two variables which were selected to measure 

physical separation were rectangular coordinates measured from some 

arbitrarily defined origin. 
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The first attempts to cluster the target elements utilized only 

these coordinates, and since there was no bias desired in any direction, 

the variables were not scaled. Later attempts to cluster the target 

elements included the importance measure as a third variable. 

Scaling can be used to bias the shapes of resulting clusters, in 

addition to the usual usage, which is to convert all the measurements 

on a variable to comparable units. An example of how scaling can be 

used to bias the shape of clusters is the following: Suppose there are 

four points A, B, C, D located at (l, 0) , (-1, 0) , ( 0, 2) , ( 0, -2) 

respectively. Without any scaling~ ·points A and B are the closest. 

Suppose a bias is desired in the direction of the y-axis, then the y 

co-ordinate is multiplied by a scale factor k, where 0 < k < 1. For 

selections of k ~<k<l 
' 2 ' 

A and B are still the closest points., 

but if k == 4 the, ~l9;tances AB, AC, AD, BC, BD are all the same. 

For selecti.ons of k, q < k < 4 , AC, AD, BC, BD are equal and are 

the smallest distances. When 0 < k < 4 the smallest distance is CD, 

which initially was the largest distance. 

In order to use scaling to bias the resulting clusters, it is 

necessary to know both the magnitude and direction of the bias desired. 

Two Strategies for Selecting Aimpoints 

Suppose that a maximum of k passes can be made at an airfield 

complex of n target elements. One present procedure is to look at 

a map displaying the target elements and visually select the k 1best 

aimpoints. Another procedure is to use a computer program by Gay (1974)? 

which evaluates the damage over a grid of points covering the entire 

airfield complex, to select the k best aim points. The following 
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procedures seek to restrict the search for optimal aim points to groups 

of target elements, which are close enough together to be damaged by a 

single pass, when such groups exist. Beginning at stage one the target 

elements are each regarded as a cluster, which is represented by a single 

point. It is assumed that any siZie or shape of pattern will cover a 

single point. At stage two, two points have been joined so there are 

n-1 clusters. The value of f 1 , defined previously in Chapter II, is 

computed in order to measure the distance that the two entities just 

merged were apart. If the distance is small enough relative to the 

pattern siZie, then the clustering is carried out through the next stage. 

Thus f 1 , f 2 , ... ,ft are examined successively until either k 

clusters are formed or until the pattern is too small to darn.age all the 

elements in the cluster most recently formed, If there are more than k 

clusters when the procedure is terminated, then the importance measures 

of the points within each clus.ter are added, with the k largest imper-

tance totals determining the k clusters for aim point purposes, Both 

strategies are the same until this point in the procedure. The first 

strategy is to select the centroid from each of the k clusters as the 

best aimpoint. +he second strategy is to use the Gay (197~) program 

on each of the k clusters to find the best aimpoint within that 

particular cluster. 

It is to be noted that the values of the f. 's 
1 

provide different 

information about the clusters when different algorithms are used, A 

further discussion about how to evaluate th,~ iilf.ormation provided by 

the'' f 's will. be presented in the:.next section. ' i 
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Selection of the Algorithms to Execute 

the Strategies 

It would be possible to define the clusters in an airfield complex, 

for a known size ap.d shape of pattern, as "disjo~nt sets of points 

such that the pattern could be delivered in such a way as to damage 

all the elements in the cluster". Theoretically it would be possible 

to write a program which would search all possible partitions of the 

data to locate all the sets of target elements that could be damaged 

by the pattern given. However, this procedure would likely be as 

costly, in terms of computing time, as the Gay(l974) program. As an 

alternative two of the four agglomerative procedures, discussed 

previously, could be used to approximate the clusters. 

As was previously mentioned, the computed from the different 

algorithms provide different information about the configuration of 

the target elements in the clusters. Consider first the single linkage 

algorithm, in which fi is computed from the target elements in the 

two clusters, J and K, which were joined at stage i + 1. fi is 

the minimum distance between two target elements, where one of the 

target elements is from J and the other target element is from K. 

It is easy to see that if f. = t, 
1 

then all the clusters at stage 

are t-connected. The single linkage algorithm produces a s~t of 

i + 1 

monotonic f. •s; that is, 
1 

f 1 < f 2 < ... < fn-l' (see Sneath and Sokal, 

1973). 

It is also easy to see that a circle of diameter t(s-1), where 

s is the largest number of target elements contained in any cluster 

at stage i + 1, will cover or bound the target elements in any cluster. 

This algorithm can locate elongated clusters more easily than most other 
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algorithms. Elongated clusters might be appropriate when the pattern 

has been produced by a stick of weapons used with a "long" intervalometer 

setting. There are two possible difficulties; first, the bound may be 

too large to be practically useful in determin~ng a stopping point in 

the algorithm. Secondly, the target elements are bounded by a circle, 

but there is no implication about the shape of the configuration of 

target elements contained within the circle. For a given value of f., 
- 1 

the elements may be either elongated or more compact. If the complete 

linkage algorithm is used to cluster the target elements then the fi 

is computed from the two target elements in the two clusters, J and 

K, which were joined at stage i + 1. fi is computed as the maximum 

distance between two target elements, where one of the target elements 

is from J and the other target element is from K.} It is easy to see 
.t 

that if f. = t, then all the clusters at stage i i+l are t-connected 
1 

and (s-1, ~) bonded, where s is the maximum number of target ele-

ments contained in any clu5ter at stage i + 1. The complete linkage 

algorithm also produces a set of monotonic. fi's (see Sneath and Sokal, 

1973). It is also easy to see that a circle of diameter v'Jt will cover 

or bound the target elements in any cluster at stage i + 1. The bound, 

for a fixed value of f., given by this a~_gorithm is much smaller than 
1 

the bound given by the single linkage algorithm. 

There are difficulties involved with using the average and centroid 

linkage methods for the two strategies proposed. It is difficult to 

obtain "good" bounds for the average linkage method, and in addition 

to this problem, the centroid method does not necessarily produce a 

monotonic set of f. 's (see Sneath and Sokal, 1973). However, in the 
1 

next section all four of the agglomerative algorithms will be used to 
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cluster the target elements. This will allow a comparison of the 

clusters generated at each stage of the agglomerative process and may 

generate suggestions for further study. 

Application of the Algorithms to the Tu.ta 

and Discussion of Results 

The data were first clustered by each of four agglomerative algo­

rithms, utilizing the two physical coordinates as the variables. Squared 

Euclidean distance was selected as the measure of distance. Tables 

XXIX through XXXII summarize the clustering for these four algorithms. 

For notational purposes, in the tables if there is more than one target 

element (TE) in a cluster, the smallest numbered element in the cluster 

will be used to identify the cluster. Example: If elements 1 and 3 

were joined at the first stage, the notation would be element 1 joined 

element 3, At the next stage if element 4 joined the first two elements 

the notation would be element 1 joins element 4. Since k, the maximum 

number of passes that can be made is usually small relative to n, the 

number of target elements, the clustering was eocamined most closely 

for small numbers of clusters. Figures 6 through 13 visually show the 

resulting clusters for k = 2, 4, .•. , 16, for each of the four 

algorithms . 

There are some specific groupings which are worthy of note. When 

k = 16, the four algorithms agree ve-ry closely except that the single 

linkage algorithm has grouped elements 33-41 together,· whereas the 

other 3 algorithms have divided these elements into two clusters. When 

k = 14, the single linkage algorithm has produced 10 single element 

c_lusters, which is the most of any of the: procedures. The complete 
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TABLE XXIX 

CLUSTERING OF THE TARGET ELEMENTS USING 
SINGLE LINKAGE WITH TWO VARIABLES 

Stage Target . J oiried· Target Max·-p Elements f. Element Element in anl Cluster ]. 

2 44 49 2 1.00 

3 42 48 2 2.00 

4 42 43 3 2.00 

5 38 39 3 4.00 
6 40 41 3 4.00 

7 7 9 3 5.00 
8 6 10 3 5.00 

9 12 13 3 5.00 
10 24 25 3 5.00 
11 26 27 3 5.00 
12 6 7 4 8.00 

13 11 12 4 8.00 
14 24 26 4 8.00 

15 35 36 4 9.00 
16 11 14 4 10.00 

17 33 34 4 10.00 
18 33 35 4 10.00 

19 33 37 5 10.00 
20 38 40 5 10.00 
21 42 44 5 10.00 
22 42 50 6 10.00 

23 2 3 6 13.00 
24 2 4 6 13.00 
25 6 8 6 13.00 
216 42 46 7 13.00 
27 42 47 8 lJ.00 
28 1 2 8 17.00 

'29 i: 5 8 17.00 

30 11 15 8 17.00 
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TABLE XXIX (continued) 

Stage Target_ Joined Target Ma,x # Elements f. Element Element in any Cluster J. 

Jl 29 42 9 25.00 

J2 6 11 10 29.00 

JJ 29 45 10 J4.00 

J4 6 16 11 40.00 

J5 JJ J8 11 61.00 

J6 1 6 16 68.00 

J7 1 17 17 122.00 

J8 JO JJ 17 125.00 

J9 2J JO 17 128.00 

40 2J 28 17 lJ0.00 

41 22 2J 17 1J6.oo 

42 22 29 2J 164.00 

4J 22 24 27 221.00 

Ll4 22 J2 28 274.00 

45 21 22 29 J40.00 

46 18 21 JO 457.00 

47 1 19 JO 529.00 

48 18 Jl Jl 601.00 

49 1 18 49 6,5J.OO 

50 1 20 50 7~5.00 
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TA:SLE XXX 

CLUSTERING OF THE TARGET ELEMENTS USING 
COMPLETE LINKAGE WITH TWO VARIABLES 

Stage Target Element Joined Target f. - ~Element ]. 

2 44 49 1.00 

3 42 48 2.00 

4 38 39 4.00 

5 40 41 4.00 
. 6 7 9 5.00 

7 6 10 5.00 
8 12 13 5.00 

9 24 25 5.00 
10 26 27 5.00 
11 42 43 8.00 
12 35 36 9.00 
13 33. 34 10.00 
14 2 3 13.00 
15 12 14 13.00 
16 46 47 13.00 
17 44 50 13.00 
18 7 8 16.oo 
19 4 5 17.00 
20 24 26 20.00 
21 42 46 36.00 
22 35 37 37.00 
23 15 16 40.00 
24 1 4 41.00 
25 6 7 41.00 
26 11 12 41.00 
27 38 40 50.00 
28 1 2 52.00 
29 29 44 53.00 
30 42 45 io6.oo 
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TABLE XXX (continued) 

Stage Target Element Joined Target f. Element ]. 

Jl JO JJ 145.00 

J2 28 J8 148.00 

JJ 6 11 194.00 

J4 JO J5 208.00 

J5 29 42 225.00 

J6 1 17" 29J .00 

J7 2J 24 JJJ.00 

J8 21 22 J40.00 

J9 1 15 J7J.OO 
40 Jl J2 601.00 
41 18 19 65J.OO 
42 18 20 7JO.OO 

4J 1 6 986.00 

44 29 JO 1097.00 

45 2J 28 1125.00 
46 21 29 J285.oo 

47 21 2J 4068.00 

48 1 18 5017.00 

49 21 Jl 9J85.00 

50 1 21 >10,000.00 
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TABLE XXXI 

CLUSTERING OF THE TARGET ELEMENTS USING WEIGHTED 
AVERAGE LINKAGE WITH TWO VARIABLES 

Stage . .. Target Element . Joined Target .. f. Element 1 

2 44 49 1.00 

J 42 48 2.00 
4 JS J9 4.00 

5 40 41 4.00 
6 7 9 5.00 

7 6 10 5.00 
8 12 lJ 5.00 

9 24 25 5.00 
10 26 27 5.00 
11 42 4J 5.00 
12 J5 J6 9.00 

lJ JJ J4 10.00 
14 6 7 10.50 

15 12 14 11.50 
16 24 26 11.50 
17 44 50 11.50 
18 2 J lJ.00 
19 46 47 lJ.00 
20 4 :s 17.00 
21 42 46 20,SJ 
22 11 12 22.00 

2J J5 J7 2J.50 
24 6 8 27.50 
25 JS 40 28.00 
26 1 ;.2 JJ.50 
27 1 4 JJ.8J 
28 29 44 J6.67 
29 15 16 40.00 

JO 29 42 57.40 
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TABLE XXXI (continued 

Stage Target Element Joined Target f. Element l. 

31 33 35 65.00 
32 6 11 95.40 
33 29 45 114.33 
34 28 38 142.00 

35 30 33 152.20 
36 1 15 211.80 

37 1 17 232.57 
38 23 28 269.60 
39 1 6 298.06 
40 22 30 299.50' 
41 22 23 521.09 
42 29 32 522.50 
43 18 19 653,00 
44 18 20 727.50 
45 22 29 782.08 
46 22 24 1920.58 
47 1 18 2572.04 
48 21 22 2604.43 
49 21 31 3235.89 
40 1 21 9246.42 
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TABLE XXXII 

CLUSTERING OF THE '.I'ARGET ELEMENTS USING CENTROID 
LINKAGE WITH TWO VARIABLES 

Joined Target · 
,. 

Stage Target Element f. Element J. 

2 44 49 1.00 

3 42 48 2.00 
4 38 39 4.00 

5 40 41 4.00 
6 42 43 4.50 

7 7 9 5.00 
8 6 10 5.00 

9 12 13 5.00 
10 24 25 5.00 
11 26 27 5.00 
12 6 7 8.00 
13 24 26 9:.00 
14 35 36 9.00 
15 33 34 10.00 
16 l~ 14 10.25 
17 44' 50 11.25 
18 42 46 13.00 
19 2 3 13.00 
20 2 4 16.25 
21 11 12 18.89 
22 42 47 20.31 
23 35 37 21.25 
24 6 8 24.25 
25 1 5 26.00 
26 1 2 24.72 
27 38 40 26.00 
28 29 44 34.00 
29 15 16 40.00 
30 29 42 43.02 
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TABLE XXXII (continued) 

Stage Target Element Joined Target f. Element J. 

31 33 35 56,28 
32 6 11 83.04 

33 29 45 96.65" 
34 30 33 133,96 
35 28 38 134,50 
36 6 15 183,17 

37 1 6 179.84 
38 23 28 242.08 

39 22 30 265.69 
40 22 23 4o3.03 
41 1 17 416.10 
42 29 32 497.89 
4J 22 29 559.18 
44 18 19 653.00 
45 18 20 564.25 
46 22 24 1662.81 
47 21 22 2182.37 
48 1 18 .2241.93 
49 21 31 2755,73 
50 1 21 8290.97 
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linkage algorithm has produced only 7 single element clusters, which 

is the least of any of the procedures. The four algorithms begin 

119 

to differ more as k becomes smaller. When k = 10, the single linkage 

algorithm has produced 4 large clusters and 6 single element clusters, 

while the complete linkage algorithm has produced 9 moderate sized 

clusters and only 1 single element cluster. At this stage of the 

clustering the single, average and centroid algorithms have produced 

essentially the same clusters, while the complete linkage algorithm 

has produced a much different set of clusters. In general the single 

linkage algorithm has tended to produce a few large clusters and many 

single element clusters. 

The complete linkage algorithm has tended to produce many moderate 

sized clusters and few single eiement clusters. The other two algorithms 

produced clusters which were usually between the extremes produced by 

the single and complete linkage algorithms. 

It was noted previously that the centroid algorithm does not 

necessarily produce a monotonic set of fi's, but for this case the 

fi's produced were monotonic. 

The clusters, which were produced by the algorithms when the impor­

tance measure was used as a third variable, were examined for k = 2, 

4, 6, •.. , 16. Tables XXXIII through XXXVI summarize the clustering 

for the four algorithms. The same notation is utilized, except the 

fi's are not given because it is not known how to interpret them in 

these cases. Figures 14 through 21 visually show the resulting clusters 

for k = 2, 4, 6, ... , 16. 

There are several groupings for these cases which also require 

special note. When k = 16, all of the procedures assign target elements 
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TABLE XXXIII 

CLUSTERING OF THE TARGET ELEMENTS USING SINGLE 
LINKAGE WITH THREE VARIABLES 

Stage Target Element Joined· Target 
Element 

2 38 39 
3 ·:40 41 
4 7 9 
5 6 10 
6 12 13 
7 26 27 
8 6 7 
9 11 12 

10 42 43 
11 25 26 
12 35 36 
13 11 14 
14 33 34 
15 33 35 
16 33 37 
17 38 40 
18 2 3 
19 2 4 
20 6 8 
21 46 47 
22 46 48 
23 49 50 
24 1 2 
25 1 5 
26 11 15 
27 42 44 

28 46 49 
29 11 16 
30 45 46 
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TABLE XXXIII (continued) 

Stage Target Element -Joined Target 
Element 

Jl 42 45 
J2 JJ J8 

JJ 1 6 

J4 1 11 

J5 24 25 

J6 29 42 

J7 JO JJ 
J8 28 JO 

J9 28 29 
40 28 J2 
41 24 28 
42 1 19 
4J 1 20 
44 1 24 
45 22 2J 
46 1 18 
47 21 22 
48 1 21 
49 1 Jl 
50 1 17 
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TABLE XXXIV 

CLUSTERING OF THE TARGET ELEMENTS USING 
COMPLETE LINKAGE WITH THREE VARIABLES 

Stage Target Element Joined Target 
Element 

2 38 39 
3 40 41 
4 7 9 
5 6 10 
6 12 13 
7 26 27 
8 42 43 
9 35 36 

10 33 34 
11 2 3 
12 12 14 
13 46 47 
14 49 50 
15 7 8 
16 4 5 
17 25 26 
18 46 48 
19 35 37 
20 15 16 
21 1 l~ 

22 6 7 
23 11 12 
24 42 44 
25 38 40 
26 l 2 
27 46 49 
28 42 46 
29 33 35 
30 24 25 
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TABLE XXXIV (continued) 

Stage Target Element Joined Target 
Element 

31 11 15 
32 42 45 
33 28 38 
34 30 33 
35 1 6 
36 29 42 
37 1 11 
38 19 20 
39 29 32 
40 28 30 
41 22 23 
42 18 19 
43 28 29 
44 21 22 
4.5 24 28 
46 1 18 
47 21 31 
48 1 17 
49 21 24 
50 1 21 
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TABLE XXXV 

CLUSTERING OF THE TARGET ELEMENTS USING WEIGHTED 
AVERAGE LINKAGE WITH THREE VARIABLES 

Stage Target Element Joined Target 
Element 

2 38 39 
3 40 41 
4 7 9 
5 6 10 
6 12 13 
7 26 27 
8 42 43 
9 35 36 

10 33 34 
11 6 7 
12 12 14 
13 2 3 
14 46 47 
15 49' 50 
16 25 26 
17 4 5 
18 46 48 
19 11 12 
20 35 37 
21 6 8 
22 38 40 
23 42 44 
24 1 2 
25 1 4 
26 15 16 
27 46 49 
28 33 35 
29 42 46 
30 11 15 
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• 
TABLE XXXV (continued) 

Stage Target Element Joined Target 
Element 

31 42 45 
32 24 25 

33 33 38 
34 6 11 

35 1 6 
36 29 42 

37 28 32 
38 30 33 
39 28 29 
40 28 JO 
41 19 20 
42 22 23 
43 18 19 
44 24 28 
45 21 22 
46 1 18 
47 21 24 
48 1 17 
49 21 31 
50 1 21 
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TABLE XXXVI 

CLUSTERING OF THE TARGET ELEMENTS USING CENTROID 
LINKAGE WITH THREE VARIABLES 

Stage Target Element Joined Target 
Element 

2 38 39 
3 40 41 
4 7 9 
5 6 10 
6 12 13 
7 26 27 
8 6 7 
9 42 43 

10 35 36 
11 33 34 
12 12 14 
13 2 3 
14 .li!6 47 
15 49 50 
16 25 26 
17 2 4 
18 46 48 
19 11 12 
20 35 37 
21 6 8 
22 1 5 
23 1 2 
24 38 40 
25 42 44 
26 15 16 
27 46 49 
28 42 46 
29 33 35 
30 11 15 
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TABLE XXXVI (continued) 

Stage Target Element Joined Target 
Element 

31 42 4.5 
32 24 2.5 
33 33 38 
34 6 11 

3.5 1 6 

36 29 42 
37 28 32 
38 30 33 
39 28 29 
40 28 30 
41 19 20 
42 22 23 
43 18 19 
44 24 28 
4.5 21 22 
46 1 18 
47 21 24 
48 1 17 
49 21 31 
.50 1 21 
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. 33-41 to the same cluster except the complete linkage algorithm. The 

reason for the· '.Change from the two variable clustering is that the 

elements 33-41 all have about the same importance and hence are relative-

ly closer together than in the two variable case. When k = 4, the 

problem of having very important but very distant target elements grouped 

together is illustrated. The same general conclusions, about the types 

of clustering prodilced by the algorithms, are also true in the three 

variable cases. 

There are some desirable features of using the importance measure 

as a third variable. The single linkage algo:d thm assigns many of the 

important target elements to single element clusters, where they : , 

receive maximum attention. Another advantage is that target elements 

of the same kind are grouped together. Thus when the differential 

effect of weapons on target elements is considered in more general 

models, elements which can be damaged by the same weapon will be grouped 

together. 

There are some undesirable features of using the importance 

measure as a third variable. The f. 's no longer have a physical 
1 

interpretation, which seems to make the formulation of a good stopping 

rule impossible. As mentioned previously some clusters are formed which 

contain target elements of similar importance but which are so distant 

that a pattern could not be expected to cover them all. 

The question arises: Is it necessary to use the importance as a 

variable to assign target elements to clusters? It could be argued that 

important target elements are "naturally" isolated when an airfield 

complex is constructed. It could also be argued that similar elements 

of moderate importance would tend to be grouped together because of 
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similar strategic functions and for convenience. It would be reasonable 

to expect groups of aircraft to be located near runways, etc. Consid­

eration of these arguments has lead to the strategies suggested in a 

previous section. 

The straty~ies proposed use the physical coordinates, and the 

pattern size and shape to cluster the target elements. Then they use 

the importance measure to select the most important clusters, if a pass 

cannot be made at each cluster. The strategies that were proposed were 

tested on the data for six different p:i.tterns. Three of the patterns 

were circles with diameters VJ?, 9,v'268. The remaining patterns were 

rectangles whose dimensions were ~ xv'lO, vYf' x "2, v'5J x Vi?. 
For the circular patterns the single linkage algorithm is allowed 

to group elements together until the maximum number of elements in any 

cluster multiplied by the value of fi is greater than the square of 

the diameter of the circular pattern. Figures 22 through 24 visually 

display the resulting clusters for these three patterns. The stopping 

rule used by this procedure is somewhat conservative. The clustering 

is stopped in some cases when the pattern is s±ill large enough to 

cover all the elements in any cluster at several additional stages. 

The complete linkage algorithm is allowed to group elements together 

until f i 

pattern. 

is larger·than the square of the diameter of the circular 

Figures 25 ~hrough 27 visually display the clusters for these 

three patterns. 

For the rectangular patterns, the single linkage algorithm is 

allowed to group elements together until the maximum number of elements 

in any cluster multiplied by the value of fi is greater than the square 

of the shorter side of the rectangle. The complete linkage algorithm 
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is allowed to group elements together until f. is larger than the 
1 

square of the shorter side of the rectangle, 

144 

The results were not very encouraging for the rectangular patterns, 

due primarily to the algorithm's failure·to produce many elongated 

clusters. Further research is needed to determine if any other 

algorithms, such as Ling's (1971), would be more useful for rectangular 

pattems. 

The conclusion for circular patterns is that the complete linkage 

algorithm appears to be the best algorithm and that the clusters of 

target elements it produces are quite reasonable. It has not yet been 

established whether or not the complete linkage technique will suggest 

"better" aim points:at·a more reasonable cost than would present methods. 

Further research has been planned to determine the "optimality" of this 

procedure compared to the present methods. The basis for comparison 

could be a criterion such as expected fractional coverage. 



CHAPI'ER VI 

POSSIBLE EXTENSIONS 

Additional Tables of Percentage Points 

The present study has indicated that the use of tests based on the 

clustering suggested by various sequential agglomerative algorithms com­

pares favorably with the Engelman-Hartigan (l969) test. In order to make 

these tests more useful in practice, additional tables of percentage 

points are needed for many different sample sizes. It would be desirable 

to have these additional tables based on the generation of very large 

numbers of data sets, so that the standard errors of the estimates would 

compare favorably with the Engelman-Hartigan tables, which are based on 

100,000 data sets. The major problem with generating additional per­

centage points is the enormous amount of computer time required. 

Some Possible Sequential Test Procedures 

There are at least two logical sequential test procedures which 

could be used in conjunction with the tests either reviewed or proposed 

previously, when the number of clusters in the alternative is unkn~wn. 

The first procedure will be referred to as the "changing null hypothesis 

procedure", for reasons which will become obvious. At stage n - 1, 

the null hypothesis that all the observations are from the same normal 

population is tested against the two cluster alternative, using the 

Engelman~Hartigan test or the tests based on the agglomerative 
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algorithms, whichever is appropriate. If the null hypothesis is 

rejected, then at stage n - 2 each of the resulting clusters, which 

have at least three observations, is.tested by recomputing.the test 

statistic that was used at the previous stage. The test statistic is 

computed from the assignment of observations to clusters at stage n - 2. 

The sample size is smaller and the statistic is referred to a different 

table of critical values. This process is continued until all the 

"clusters" cannot be further divided. This procedure is much the same 

as many multiple comparison procedures, and is subject to the same type 

of errors. Murphy (1973) gives a detailed discussion of the different 

types of errors a sequential multiple comparison procedure may incur. 

Another procedure will be referred to as the "changing alternative 

hypothesis" procedure. For this procedure, at stage n - 1, the null 

hypothesis that all the observations are from a single normal population 

is tested against the two cluster alternative. The ratio B/W is 

computed from the observations assigned to clusters by one of the 

agglomerative procedures and then B/W is referred to the proper table 

of critical values. If the null hypothesis is rejected then the ratio 

B/W is computed at stage n - 2. from the algorithm's assignment of 

observations to three clusters; B/W is referred to the critical point 

for the three cluster alternative. The process is repeated until the 

null hypothesis can .no longer be rejected, or until all the possible 

alternatives have been tested. The procedure just considered began by 

testing the two cluster alternative first, and then conditional on a 

rejection of the two cluster alternative, the three cluster alternative 

was considered, etc. But there is no compelling reason for this to be 

the proper order; in fact, there are (n - 2)l possible orders in which 
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this sequential test might be run. It is not known which order or 

orders are the best. A study of these sequential procedures appears to 

be feasible, but the investigation would probably have to be done on an 

empirical basis. 

Additional Investigation of the Relationship 

Between the Normal Mixtures Problem 

and Clustering 

All of the test procedures that are based on the agglomerative 

algorithms have been investigated with respect to the Engelman and 

Hartigan (1969) alternative, that the number of observations from each 

population is a fixed but unknown constant. These same test procedures 

may also be adequate for the Lee (1974) alternative, that the number of 

observations from each population is random. The probability distribu­

tion of these random variables is determined by k - 1 unknown "mixing" 

parameters. Lee (1974) derived a test criterion for this alternative, 

but did not generate percentage points for its distribution. The 

generation of percentage points for this test would serve several 

purposes; first the test could be carried out in practice, although like 

the Engelman and Hartigan test it would require relatively large amounts 

of computer time to be performed, Second, the power of this procedure 

could be investigated for various separations of the means and for 

various values of the mixing parameters. After the power of the Lee 

(1974) test has been determined, then the power of the agglomerative 

algorithm based procedures could be estimated and compared with the 

power of the Lee (1974) test. 
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The Lee (~974) formulation of the likelihood suggests a new method, 

through clustering, of obtaining estimates for the parameters in the 

normal mixture problem. There appears to be a good chance to empirically 

estimate the distributions of the estimators. It is the author's 

opinion that further investigation of this approach would lead to 

advances in both the clustering and norm.al mixtures problems; 

Extension to Multivariate Cases 

The generalization of the univariate results to multivariate cases 

is not immediate. One of the first problems is the increase in the 

number of unknown parameters in both the null and alternative hypotheses. 

No good tests were discovered in the univariate case for alternatives 

having more unknown parameters than the number• of observations available 

(the partition is not included as an unknown parameter in this counting). 

For the bivariate norm.al case there a.re 2 unknown parameters in each 

mean vector and 3 unknown parameters in the covariance matrix, assuming 

the~same covariance structure for each observation. By analogy, it may 

be expected that "good" tests will exist only for 2, J, ... ' cn23J 

population alternatives. 

One reasonable test procedure (at least theoretically) for the 

univariate test of the two population alternative was given by maxi;-·· 

m:U'.m. B/W, · or .m.axiI)lum· f,· where the. maximum is. ·aver all po~sible_ parti­

tions of the observations into two clu.sters, By analogy it may be that 

a good test will be given by the maximum of one of the standard multi~ 

variate test criteria (see Everitt, 1974), over all partitions of the 

data into two .clusters, . There are at least two problems with this 

approach; first, which one of the multivariate test criteria should be 
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chosen, and secondly in multivariate cases the observations cannot be 

ranked as univariate opserVa.tions c~n, so iru,:i.ny mor~ partitions :w.ould need 

to be searched. Procedures which were expensive and inconvenient to 

work with in the uni.variate case often beo-0me totally impossible in 

multivariate cases. 

It is anticipated that the "good" tests derived by theoretical 

considerations will not be practical to use, so the sequential 

agglomerative procedures may be used as an adequate approximation to the 

clustering suggested by the theoretical tests. Tables of percentage 

points for these procedures could be generated, and the power of the 

procedures estimated also by empirical methods. 

The amount of computer time required to generate these tables would 

be very· uarge. 
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Generation of percentage points for null distributions or esti­

mates· of powe!:1 will reqUire modifications. :of. the paramet~rs in· 
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these programs. The first program generates percentage points or 

estimates of power for the four agglomerative procedures. The parameters 

in this program will be briefly described. 

N is the sample size. 

M is the number of replications. 

IX and JX are random, odd, six-digit integers to start the 

normal generator. 

POWER is the separation of the two normal populations which have 

unit variances. 

If N is larger than 10, modifications must be made in all the 

array sizes. The loop on line 24 must be modified to generate the 

desired p:i.rtition into 2 groups. 

There are four subroutines in this program and their functions will 

be briefly described. 

BUTLER generates random normal (0, 1) variables. 

EUCLID computes a vector of pairwise squared Euclidean distances 

from the generated data. 

MESA carries out the clustering using the single, complete, weighted 

aver~ge and centroid linkage methods. 

F computes an F value for each stage of the clustering as long 

as that value is less than or equal to 999,999. If the F value is 

greater than 999,999 then the subroutine will report the value as 

999,999, 

The second program generates data sets to be used to estimate the 

power of the Engelman and Hartigan test. The parameters are the same 



as those previously used except the loop on line 14 must be modified 

to generate the desired partition into two groups. 
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CARC 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2S 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

0 JMEf\S I CN V U0.10 It W ( l-0,10 It DC 10'011 n'1 Z-.01 
DIMENSICN V2(20) 
DIMENSION DDD( 32) 
CCMMON CF1STOT 
REAL*8 W 
KKK=l 
NEND=KKK+l 
JX=689633 
N-=10 
NS=N*I N-U/ 2 
L=4 
NN=4 
NNl=NN-1. 
K=l 
M=SOO 
PCJWER=4. 
IX=515167 
DC 90 IJK=l1M 
DC 10 I=l1N 
DC 10 J=l1K 

. Cl\LL E!lJTLER !KKK,WCl1Jl1IX1JX1NENOJ 
10 CONTINUE. 

DO 11 I=l 1K 
DC 11 J=l,K 
k(J,Jl=~CltJ)+PCWER 

11 CONTINUE 
IKJ=l 
DEL lA=O. 
DO 12 l=l,N 
00 12 J=l,K 

12 \ICI,JJ=aCl,J) 
13 CONTINUE 

DO 25 I=l,N 
\Ill U=kC I ,U 

25 CONTINUE 
CF=O. 
DC 26 l=l,N 
CF=CF+V lC II 

26 CON 1 INLE 
CF=Cf*CF/N 
STOT=O. 
DC 27 I=l ,N 
STOT=STOT+Vlfll*VlCIJ 

27 CCNT INU E 
S 10 T=S TOT-CF 
CALL EUCLIDfN,K,V,DJ 
C~LL MES~CN1D1VlJ 

90 CONTINUE 
100 CONTINUE 

STOP 
END 
SlBROUTINE EUCLIOCf\,K1V1DJ 
CIMENSION vc10,1ot,oc1co1 
NR=N*I N-11 /2 



CAP.C 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
15 
76 
77 
78 
H 
80 
81 
82 15 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
'i4 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 

. DC 5 J::i:hNR 
5 DlI)=O. 

U=O 
DC 300. I =2 tN 
•J= I-1 
co 300 J=ltlJ 
I I=II+l 
DO 300 JJ= ltK 

300. Dl I I >=Dl II J+l Vl I,JJJ-VC J,JJ) J*(VC I,JJJ-VIJ,JJIJ 
RETURN . 
END 
S.U8ROUT INE MESA(N,DRtV U 
DI MENSI ON I A\20 ,4) t IS 120,4 It OS C20t4 It CRUOO J 
DIMENSION K<t~O) ,KC(20J ,DI lOOJ tK1C20J ,K2(20J 
ClMENSION Vll20J,V2l201 
DIME~SIC~ 000(321 
IIIII=l 
JJJJJ=2 
Kl<KK=3 
llll=4 
NN=N*lN-lJ/2 
N2,.N-l 
Nl=N-2 
KCT=l 
DC 70 KODE=lt4 
DO 15 I=l ,N 
V2l IJ=Vll II 
CONTINUE 
DO 5 l=l,NN 

5 C (I J= OR l II 
GO TO t1,1,2,3J,l<CDf 

1 AP=. 5 
AQ= .5 
B=O. 
G=-.5 
IflKOOE.EQ.21 G=-G 
GC TC 4 

2 B=O. 
3 G=O• 
4 DC 10 l=l,N 

lC KHJ=l 
KG=l 

20 I I= 0 
I II= l 
Jl=O 
I l=O 
CC= lCOOOOO. 
DO 30 J=2tN 
IJ=J-l 
DC 30 l=l,IJ 
ll=II+l. 
If( DO .LE .Ol It J J GO TO 30 
lf(K(J J.EQ.OJ GO TO 30 
IflK{IJ.EC.OJ GC TC 30 
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C.ARC 
ice; · DO=DC II I 
110 III=II 
111 Il= I 
112 Jl-=J 
113 30 CONTINUE 
114 I.ACKG,KOOEl=Il 
115 IBCKG,KCDEl=Jl 
116 OSIKG,KODEJ:OD 
117 11=0 
llf JJ=O 
119 LL=O 
120 CC 60 J=2tN 
121 I J=J-1 
122 DO 60 I=l .IJ 
123 I I= I I+ 1 
124 IFC II .EQ.II II GO TC 60 
125 If( I.EQ.IlJ GO TO 40 
126 If C J • EQ • Il J GO TO 40 
12 7 If(J.EQ.Jl) GC TC 50 
128 IFC I .EQ.Jl) G·O TO 50 
129 GO TO 60 
13C 40 JJ=JJ+l 
131 Kl(JJJ=II 
132 GO TO 60 
133 50 ll=ll+ l 
134 K2CLLJ=II 
135 6C CONlINLE 
136 DO 65 I=l,Nl 
137 II=KlC I I 
138 ll=K2(IJ 
139 lf(KOOE.LE.2J GO TO 65 
140 GG=KC H J+KCJl J 
141 AP=KC Il J/GG 
142 AQ=KC J 1) /GG 
143 If(KODE.EQ.3) GO TO 65 
144 8:-AP*AC 
145 65 D( I I J=AP •DI I I J+AQ•DC LU +8* D( II IJ +G* ABS ( D (I U-DC LL J J 
146 KCill=KCill+KCJlJ 
147 KCJU=O 
148 V2CilJ=V2Cill+V2CJlJ 
149 V21JlJ=C. 
150 IFCKG.EQ.N-11 GO TO 66 
151 Co6Ll FCN,V2,K,KG,FSTATJ 
152 OCDCKCTJ=FSTAT 
153 66 CONTINUE 
154 KG=KG+l 
155 Ifl KG.EC.~lJ GO TC 67 
156 KCT=KC T+ l 
157 67 CCNT INU E 
158 lFCKG.NE.N ) GC TC 20 
159 70 CONTINUE 
160 WRITE17o550J (ODD~IJ,I=l,8J,IJill 

161 ~RI TEC 1 ,5501 CDCOCIJ,I=9tl6J,JJJJJ 
162 WRITEl7r550J CDDOC U tl=l7t24J ,KKKK 



CARD 
163 
164 
165 550 
166 
167 
168 
169 
17C 
171 
172 
l 73 
174 10 
1.75 
l 76 
177 
178 
1 7c; 
180 15 
181 16 
182 
183 
184 
185 c 
186 c 
187. c 
188 c 
189 c 
190 c 
191 c 
192 c 
i93 c 
194 c 
19 5 c 
196 c 
197 c 
198 
1 c;c; 
200 
201 
202 
203 
2·04 
205 
206 
2C7 
208 
209 
21C 
211 c 
212 c 
213 c 
214 
215 
2H 

WRITEC 7,550) CDDOlH,!=2513.2) eLlll 
RETURN 
FORMATC 7Fl0.3,F9.3,11) 
ENO 
SUBROUTIN~ FCNeVltKtKG,FSTATI 
CCMfliON Cf, STOT 
DIME~SION VlC20J,KC20) 
S\'Y=O. 
00 10 I=ltN 
IfCK(l).EQ.OJ GO TO 10 
S~\'=SYY+~l(l)*Vl(J)/K(IJ 

CONTINUE 
S\'Y=SYY-CF 
Slo\ITH=STOT-SYY 
IFCSWITH.LE.uOOOOOlJ GO TO 15 
FSTAT=( SYY*KG )/ C SWlTH*CN-KG- U I 
IFIFSTAT.LE.999999.) GC TO 16 
F STAT=999999u 
CONTINUE 
RETURN 
El'\D 
SUBROUTINE BUTLER CL, RANDt JX, JX, NENDI 
RAND IS THE RANDOM DEVIATE GENERATED 
IX AND JX ARE INITAL VALUES 
NEND IS L + l 
L IS AN INITIAL INTEGER 

RANDCM NORMAL DEVIATES GENERATING PROGRAM 

l IS THE INDEX FOR THE l TH ~ANDOH VARIABLE GENERATED 
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RAND IS THE RANDOfl VARIABLE GENERATED, HISTRIBUTEO NORMALCO,l) 

CCMFUTOR PROGRAM WRITTEN BY C. E. GATES, ESQ. 2/6/73 
FOR GENERATING RA~OCfl VARIABLES FROM THE NORMAL DISTRIBUTION 

IMPLICIT REAL*B lA-H,O-ZJ 
REAL•4 C 
D lMENSICN C (6) ,X(257l ,U(3) eRC256) 
DATA C/2.515517,.802853,.0103281le432791el89269,.001308/ 
IF (L.GT.NENDl'GO TO 70 . 
ccN~T = CSQRT c1.coc1c2.ooo * 3.141590011 
XU I = -3.6 
XC257) = 3 .6 
FCLC = O.O 
RAT = 1.1256. 
RAND = O.O 
DO 10 I = 11255 
RAND = RA~D + RAT 

c.o.F. VALUE IS 1/256 

If( I.GT.1281 GO TO 12 
T = CSQRTl-2.0DO *DLCG(RANOJI 
GC TO 14 



CAR[ 
217 
218 c 
219 c 
22C C 
221 
222 
223 
224 
225 c 
22t c 
227 c 
228 
229 
230 
231 
232 
233 c 
234 c 
235 c 
236 
237 c 
238 c 
239 c 
240 
241 
242 
243 
244 c 
245 c 
246 c 
247 
248 
249 
250 
251 
252 c 
253 c 
254 c 
255 c 
25(; 
257 
258 
259 c 
260 c 
261 c 
262 c 
263 
264 
265 
266 
267 
268 
269 
2·10 

160 

12 1 = DSQRH-2.0DO * DLCG(l.ODO - RANDJJ 

Z VALUE IS THE VALUE ALONG THE X-AXIS , I.E. X 

14 l = T - (C(l) • CC2J*T + Cl3J*T**21/Cl. + CC4J*T • CCS)*T**2 + 
S CC 6 l*T**3 J 

IF CI. L 1e12 91 Z = -z 
X( I +l) = Z 

FNEW IS THE CURRENT VALUE CF FIX); RllJ IS BUTLERtS RCII 

ff\EW = CONST *DEXPC-Z••Z /~eODOJ 
20 R(IJ = CFNE~-FOLC)/(HEW • FCLDJ 
10 FOLD = FNE W 

fNEW = 0 .o 
Rl2561 = (fNEW-FOLDJ/lfl\EW • FOLOJ 

~ERE WE START TO DO THE SAMPLING PHASE 

70 CONTINUE 

SELECT T~E I TH INTERVAL WITH PROBABILITY 1/256 

IX = IX *65.5.39 
JX = JX. * 262147 
RAND = .4656t)l30-9 * OFLOATl IABS( IX + JX)) 
I = 256.*RAND + leO 

WE GENERA TE THE THREE RANDOM UNIFORMS NEEDED 

DC 32 K = 1 ,3 
JX = JX *262147 
IX = IX *65539 

32 U(KJ = .4656613D-9* DFLOAT(IABSCIX + JXIJ 
Z = XC I + l J - X C I I 

U(3J IS LSED TO CETER~I~E WHETHER WE SAMPLE WITH PROBABILITY 
ABS(R( 111 OR 1 - ABSlRCI>J 

If CL(31.LT. OABSCRCIJJJ GC TO 34 
RAND = X l I I + Z *U ( U 
GC TO 36 

WE DETERMINE THE MAX. OR MIN. OF RCIJ DEPENDING OF WHETHER 
R(I) .LT. OR.GT. 0 

34 If (R(I).LT.O.OJ GO TO 50 
RAND= DMAXl(U(l),Ul2JJ 
GC 10 52 

50 RAND = DMINl ( lH 1) ,UC 2) J 
52 RAND = Xl I I + Z*RAND 
36 CCNTINUE 

RETURN 
END 



CARD 
l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 10 
14 
15 
16 20 
17 
lS 
19 
20 
21 
22 30 
23 40 
24 
25 
2 (: 
27 50 
28 
29 100 
30 500 
31 
32 
33 
34 c 
35 c 
36 c 
37 c 
38 c 
39 c 
4C c 
41 c 
42 c 
43 c 
44 c 
45 c 
46 c 
47 
48 
4S 
50 
51 
52 
53 
54 

0 IMENSION DI lOJ ,DOI 101 
MMM=l 
Kl<K=l 
NEND=KKK•l 
M=500 . 
PCkER=4• 
JX=476963 
IX=445123 
A=lOOOOO. 
DO 100 III=l,M 
DO 10 l=l,10 
CALL BUTLER (l<KK,O(IJ,IX,JX,NENCJ 
CONTINUE 
0( 20 l=l,MMM 
0( I l=DI I J+PCWER 
CONTINUE 
CO 50 K=l,10 
D( 40 I:l ,10 
If( A .LE .o ( I I I G 0 TO 30 
A=DIIJ 
J :I 
CONTINUE 
CONTINUE 
DD(KJ=A 
O(J 1=100000. 
A:l 00000. 
CONTINUE 
~RITE(7,500J IDD(JJJ,JJ=lrlOI 
CCNTINUE 
FORMAT( lOF8.L1 I 
STOP 
END 
SLBROUTINE eUTLER (L, RAND, IX, JX, NENOI 
RAND IS THE RANDG~ DEVIATE GENERATED 
IX AND JX ARE INITAL VALUES 
NENCISL+l 
L IS AN INIT!AL I~TEGER 

R..,NCCM NO PM AL. DEVIATES GENERATING PROGRAM 

L IS TH~ INDEX FOR THE L TH RANDOM VARIABLE GENERATED 
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RAND rs THE RANDOM VARIABLE GENERATED, (DISTRIBUTED NORMALCO,lt 

COMPUTOR PROGRAM ~RITTEN BY C. E. GATES, ESQ. 2/6/73 
FOR GENERATING RANDOM VARIABLES FROM THE NORMAL DISTRIBUTION 

IMPLICIT REAL*8 CA-HrO-ZI 
R EAL*4 C 
DIME~SICN C(6J,Xl257J,UC31,R(2561 
DATA C/2.515517,.8C2853,.0J0328rl.43279,.189269,.001308/ 
IF CL.GT.NENDI GO TO 70 
CCNST = DSQRT (1.000/(2.0DO * 3.14159DOIJ 
X(ll = -3.6 
)112571 = 3.6 



CllR[ 
55 
56 
57 
58 
59 
60 c 
61 c 
62 c 
63 
64 
65 
66 
67 c 
68 c 
69 c 
70 
71 
72 
73 
74 c 
75 c 
76 c 
77 
78 
79 
80 
81 
82 c 
83 c 
84 c 
85 
86 c 
87 c 
88 c 
89 
90 
91 
92 
93 c 
94 c 
95 c 
96 
97 
98 
99 

100 
101 c 
102 c 
103 c 
104 c 
105 
106 
107 
108 c 

FOLD = O.O 
RAT = 1 ./256. 
RANt = o.o 
DC 10 I = 1 ,255 
RAND = RAND + RAT 

c.D.F. VALUE IS I/256 

IFCI.GT.128J GO TO 12 
T = DSQRTC-2.0DO *DLOG(RANDll 
GO TO 14 

12 T = DSQRTC-2.000 * DLOGCl.000 - RANOJJ 

Z VALUE IS THE VALUE ALONG THE X-AXIS , I.E. X 
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14 l = T - CCU) + C(2)*T + 1CC3J*T**2)/(l. + CC4)*T + CC51*T**2 + 
S Ct6)*T**31 

IF ( I.L T.1291 l • -z 
XC I +l J = l 

FNE .. IS THE CURRHT VALUE CF FCXJ; RUJ IS BUTLERt.S RCU 

FNEW = CONST *DEXPC-Z**2 12.0DOI 
20 R(II = CFNE .. -FOLDJ/CF~EW + FCLDJ 
10 FOLD = FNEW 

FNEW = O.O 
RC256J = (fhEW-FCLDJ/CFNEW + FOLDI 

~ERE WE START TO DO THE SAMPLING PHASE 

70 CONTINUE 

SELECT T~E I TH I~TERVAL WITH PROBABILITY I/256 

IX = IX *65539 
J)I = JX * 262147 
RAND = .4656613D-'I * DFLOATC IABSC IX + JXU 
I = 256.*RANO + 1.0 

WE GENERATE THE THREE RANDOM UNIFORMS NEEDED 

DC 32 K = 1,3 
JX ::: JX *262147 
IX = IX *65539 

32 U(K) = .4656613D-9* OFLOATCIABSCIX + JXJJ 
l = XC I • l J - X( I J 

U(3J IS USED TO DETERMINE WHETHER WE SAMPLE WITH PROBABILITY 
AESCRCIJJ OR 1 - ABSCRCJll 

If CUC3J.LT. DABSCR(IJJI GO TO 34 
IUN[ = xcu·+ Z•UClJ 
GC TO 36 



CARC 
1 C9 C 
110 c 
111 c 
112 
113 
114 
115 
116 
11 7 
118 
119 

aE DETERMINE THE l"AX. CR H.JN. OF R( U DEPENDING OF WHETHER 
R (I ) • LT• OR• GT• 0 

34 If (R(IJ.LT.0.0) GO TO 50 
R.t!NI: ~ tMAXlCUllleU(211 
GO TO 52 

50 RAND= DMIN11Ull),U(2J) 
52 RAN()= X(ll + Z*RAND 
36 CCNTINUE 

RETURN 
END 
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