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ON UNIFORM CONVERGENCE STRUCTURES AND CONVERGENCE SPACES

CHAPTER I 

INTRODUCTION

In th is paper we consider the uniform convergence spaces of C. H.

Cook and H. R. Fischer [6] . We are mainly interested  in  uniformization 

and compactifications of convergepce spaces and completions of uniform 

convergence spaces.

In the f ir s t  chapter we give a b r ie f h is to r ic a l account of conver

gence theory. The remainder of the chapter contains an explanation of 

the notations which are used in  the remaining chapters.

In Chapter II we introduce a notion of "bases" into uniform conver- 

gence structures which we call U-bases and U -bases. This notion is  

then used to obtain several resu lts about uniform convergence spaces and 

to construct several examples. We also give conditions on a uniform con

vergence structure which characterize separation and give a construction  

of an "associated separated space". F in a lly , the important problem of 

uniformization of convergence spaces is  considered in th is chapter.

Completions of uniform convergence spaces are considered in Chapter

I I I . In general, a completion is  a solution  to a universal mapping prob

lem in  a given category. The category we consider consists of uniform 

convergence spaces and the uniformly continuous functions on these spaces. 

We give a completion in  th is category which is  due, in the separated case, 

to 0. Wyler [25]. Then we obtain several resu lts about th is completion. 

The remainder of th is chapter is  devoted to the category consisting of



uniform convergence spaces and a subcollection  of the uniformly continuous 

functions. This subcollection  of maps, called  strongly uniformly contin

uous maps, has several useful properties which we discuss in d e ta il.

In Chapter IV, we consider compactifications of convergence spaces.

We give a compactification which is  "universal" for principal con

vergence spaces in  the sense that every compactification of a principal 

Tg convergence space which is  i t s e l f  principal and is  the continuous 

image of th is "universal" com pactification. We also consider compactifica

tions with other properties such as the separation axioms and T .̂

1 .1 . H istorica l Background. In h is famous doctoral d isserta tion  in 1906 

M. Frechet [9] inaugurated the study of abstract spaces and, in  particu lar, 

he used the concept of convergence of sequences to introduce the so-ca lled  

sequence spaces. Frechet's orig inal paper thus gave the study of metric 

spaces a su itab le b asis . However, the general mathematical world adopted 

the axioms given by F. Hausdorff [13] in  1914 for further investigation  

of abstract spaces. This, of course, has led to the development of topo

lo g ica l spaces, making use o f open se t and neighborhood as the basic notion. 

Frechet was disappointed and discouraged because h is idea of using con

vergence as the basic notion was apparently ignored. In any case, Frechet's 

work is  the basis of convergence theory as we know i t  today.

In Frechet's work the "instrument of convergence" is  the sequence.

I t  i s ,  of course, well-known that sequences are not su ffic ie n t to describe 

convergence in the subsequently developed topological spaces. An example 

to demonstrate th is fact may be found in  [15]. That sequences are not 

s u ff ic ie n t  to describe convergence in  general spaces is  a serious lim ita-



cion to the value of the work of Fréchet. However, other "instruments of 

convergence" have since been developed.

Of particular importance to us are the "nets" of Moore and Smith 

and " filte r s" . Other means of describing convergence may be found in  the 

litera tu re  such as the "runs" of Kenyon and Morse [16] but we w il l  pri^ 

marily make use of f i l t e r s .

The idea of nets f i r s t  appeared in the litera tu re  in  1922 in a 

paper by E. H. Moore and H. L. Smith [20]. I t  is  w ell known that topo

lo g ica l spaces can be described in terms o f convergent nets ( c . / . , for 

example, [15 ]). The nets o f Moore and Smith were placed in a topological 

context in 1937 in  a paper by G. Birkhoff [1 ]. Birkhoff's work is  appar

ently  the f i r s t  to consider the relationship  between topological spaces 

and convergence theory.

The la s t  instrument of convergence that we w il l  mention, indeed, the 

one we make use of in  th is paper, is  that of f i l t e r .  H. Cartan [4] and 

[5] is  given credit by most authors for the concept of f i l t e r  which he 

introduced in  1937. J. Schmidt [21] and [22] developed the f i l t e r  theory 

and gave many useful relationships about f i l t e r s .  A very important resu lt  

for our purposes here was given in  a paper by G. Bruns and J. Schmidt [3 ]. 

Bruns and Schmidt showed that f i l t e r s  and Moore-Smith nets give "equivalent" 

convergence theories. The equivalence which Bruns and Schmidt demonstrate 

is  s t r ic t ly  se t  theoretic and has nothing to do with topological spaces 

as such. An elegant treatment of f i l t e r  theory may be found in  N. Bourbaki 

[2].

Using the above-mentioned instruments of convergence we then find  

attempts to use convergence as the basic idea in  topology. One of the



most important works in th is connection is  that of J. W. Tukey [23].

Tukey shows that closure, neighborhoods, and convergence each can be

used as the basic  concept in  topological spaces and thus achieves a

unity among these ideas. I t  i s  shown in th is work how and when one can

recover any two of the three mentioned concepts using the third.

As we mentioned e a r lie r , a topological space may be characterized  

in  terms of n ets . One can find a treatment of th is topic in J. L. Kelley 

[15 ], where a l i s t  of four axioms (which are due to G. Birkhoff) are used. 

The f i l t e r  analogues to the f ir s t  three axioms are obvious. However, the 

fourth or the so-ca lled  interated lim it axiom is  much more d if f ic u l t .

H. J. Kowalsky [17] has introduced a "compression operator" to obtain an 

analogue of th is  axiom. We then get sim ilar resu lts using f i l t e r s  to 

those using n ets .

But th is fourth axiom is  of some in terest in  i t s e l f .  Cook and 

Fischer [7] have used the compression operator to describe regular 

spaces. A lso, G. Grimeisen [11] and [12] has a d iscussion of the ite r 

ated lim it processes in terms of f i l t e r s .

In recent years several attempts to develop a theory of spaces in  

which convergence has been or can be defined may be found in  the l i t e r 

ature. H. J. Kowalsky [17] and [18] in  h is papers published in 1954 

gives an ex ce llen t treatment of convergence spaces. Of primary in terest  

here is  the work of H. R. Fischer [8] published in 1959. Fischer gives 

a theory of convergence spaces which includes topological spaces and the 

pseudo-topologies. His work was motivated by problems of the recently  

developed d istrib u tion  theory. At the present time most applications of 

convergence space theory are -in- an alysis. For other papers dealing with



various aspects of convergence spaces see the bibliography.

Another notion basic to th is study is  that of uniform spaces, intro

duced in  1937 by A. Weil [24]. We find here a generalization of the met

r ic  space. I t  is  of course w ell known that the uniform topology induced 

by a uniform structure is  completely regular and that every completely 

regular topology can be obtained as the topology induced by a uniform 

structure. Thus, in th is sense uniform spaces characterize complete regu- 

- la r ity . In a uniform space there is  enough structure to obtain useful 

notions of uniform continuity, Cauchy f i l t e r ,  completeness and other 

properties usually associated with metric spaces. An elegant treatment 

of uniform spaces appears in N. Bourbaki [2 ].

The concept of uniform spaces has been generalized by C. H. Cook 

and H. R. Fischer [6] . This generalization , together with the conver

gence spaces mentioned e a r lie r , is  indeed the basis of th is study.

1 .2 . Notations and D efin ition s. In th is section  we attempt to l i s t  the 

basic  d efin itions and give the notations which are extensively used in 

th is d issertation .

Let IF(E) denote the co llection  of a l l  f i l t e r s  in a se t E ,”̂ (E) 

the co llection  of a l l  subsets of E and IF B (E) the co llection  of 

a l l  f i l t e r  bases on E. We denote elements of IF(E) by German scrip t 

le tte r s  such as 3 ,  ® , S and A . In the cases where we have occa

sion to use f i l t e r s  on a product ExE we w il l  denote these f i l t e r s  by

Greek cap ital le tte r s  such as 0, Y............. For a f i l t e r  base 8 we

w il l  write [SI. I f  8 consists of a sin g le  se t B we w il l  w rite th is

f i l t e r  as [B] and i f  B = {x} then we write x = ( ix } ] .  An u ltra-



f i l t e r  JteF(E) is  a maximal element of F  (S) with respect to the 

obvious p artia l order $ defined by: i f  3 * 8  eF (E ) then g @

i f  and only i f  3 5  @ where £  is  ordinary se t  inclusion . Clearly

X is  an u ltr a f i lte r  for each xeE,

For any map <() : E ->■ F we d efin e , for 3 s F ( E ) ,

<t'(2) “ [{ip(F) I Fa 3 ]  ' Thus any map from E to F induces a map from

F(E) to F (F ) . I t  is  well-known that i f  R is  an u ltr a f i lt e r  on E

then is  an u ltr a f i lt e r  on F.

A convergence structure, x, (we have translated the terms "Limit- 

ierung" and "Limesraum" as they appear in [8] by the respective terms 

"convergence structure" and "convergence space") on a se t  E is  a map 

T : E ^ F (^ )) which s a t is f ie s  the following conditions :

(Cl) xexx for each xeE.

(C2) i f  3 Exx, 0  exx then 3 0 ®  ex x , for a l l  xeE.

(C3) i f  3GTX, 8 ^ 3  then ® exx, for a l l  xeE.

A convergence space. (E ,x ), is  a pair consisting of a se t E and a 

convergence structure x on E; the co llec tio n  of a l l  convergence 

structures on E w il l  be denoted by C(E).

A map : (E,x) (F,o) between the convergence spaces (E,x)

and (F,o) is  continuous at x, i f  and only i f  for a l l  3 

<^(3)eo((|)(x)). The map (ji is  then said to be continuous i f  i t  i s  con

tinuous at each point xeE. The map ij) i s  a homeomorphism of (E,x) 

and (F,o) i f  and only i f  (j) is  a b ijec tio n  such that ÿ and (ji  ̂

are continuous.



For any se t  A Ç E , (E ,t) a convergence space, we define a clo 

sure as follows: _ _

= {x I there ex is ts  3 e|F (E) such that

Ae 3 and 3 e t x } .

This operator, s a t is f ie s  the following conditions:

(1) A Q a \  for a l l  Ae-^CE);

(2) *  ̂ ;

(3) I f  A £ b then A ^ C b "̂;

(4) Afl B '^C l'^n B a n d  A U B  ̂ = Â ’̂ IJË^, for a l l  

A, B e^(E ).

The co llec tio n  C = {A Q E |A ^ “ A} give the closed se ts  in a topology 

on E which we denote by u t. This topology (considered as a conver

gence space) is  the f in e s t  topology coarser then t with respect to 

the p artia l order on C(E) defined as follows :

0 $ T i f  and only i f  o (x )Q  t ( x ) ,  for a l l  xeE.

The p a rtia lly  ordered se t  (C(E),$) i s  a complete la t t ic e  with largest  

element the d iscrete topology, and sm allest element the

tr iv ia l  topology.

The separation axioms, T̂  and T^, may be generalized from topo

logy to convergence spaces. Thus, (E,o) is  T̂  i f  and only i f  

yea(x) implies x ■ y; (E,a) is  T̂  i f  and only i f  a(x) f |  a(y) = *, 

for a l l  X  ̂ y , X ,  yeE. These d e fin it io n s , of course, agree in  the 

topological case with the usual separation axioms.
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A convergence space (E,a) i s  compact i f  and only i f  for any u ltra

f i l t e r  St there ex is ts  an xeE such that R ea(x). I t  i s  e a s ily  shown 

that the image of a compact space under a continuous map is  again compact.

For the remainder of th is theory we refer the reader to the above- 

mentioned paper.

We w il l  denote by A the s e t ,  {(x ,x ) |xeE}. For V, WC ExE we 

define V  ̂ = {(x ,y ) |(y ,x )eV } and V o w = {(? ,y )j there e x ists  zeE 

such that (x ,z)eV , (z,y)eW}. Then for $ ,’J'eF(ExE) we define  

$  ̂ = {V ^|Ve$} and = [{VoW|Ve$, We’F}] provided VoW \  (|) for

a l l  Ve$, We$. Then $ ^eFi(ExE) and $oYE|p (ExE) i f  e x is t s ,

i . e . ,  i f  V»W “f (|) for a l l  Ve$, We$.

With these d efin ition s we now define a uniform space in  terms of 

f i l t e r s .  Let E be a non-empty s e t . Then a uniform structure on E 

i s  a f i l t e r  $e|p(ExE) which s a t is f ie s  the following conditions;

(1) $ $ [A];

( 2) $ =

(3) $0$ = $.

A uniform space is  a pair (E,®) where E is  a se t  and $ a uniform 

structure on E. For xsE, VQExE, we define V[x] = {y l(x ,y )eV }, 

and for a uniform structure ® on E, $[x] = {V[x]|Ve$}. Then ®[x] 

is  the neighborhood f i l t e r  about x in  a completely regular topology 

on E. We, o f course, do not assume the separation axiom T̂  for com

p lete  regu larity . In fa c t , i t  is  w ell known that completely regular 

topologies are uniformizable in the sense that there e x ists  a uniform



space whose induced topology is  the given completely regular topology.

For an elegant treatment of uniform spaces see N. Bourbaki [2].

F in a lly , a uniform convergence structure on a set E is  an in ter

section  id ea l 3 |F(ExE) which s a t is f ie s  the following conditions :

(UCS 1) [A]e 3;

(UCS 2) i f  $E3 then 3 ;

(UCS 3) i f  $,YE 3  and ex ists  then $oŸE 3 .

A uniform convergence space is  a pair (E ,3 )  where E is  a se t and 

3 is  a uniform convergence structure on E. Let ^ ( E )  denote the 

co llec tio n  of a l l  uniform convergence structures on E.

I t  was shown in [6] that U ^(E ) is  a complete la t t ic e  with 

respect to the operations induced by

3^ $ 3^ i f  and only i f

3 , 3  3 , .

I f  the inclusion  is  proper then we w il l  w rite 3  ̂ < 3 g» Although we 

have used the same symbol for the order on [p (£) the meaning w ill  be 

clear where i t  is  used.

I f  3 is  generated by a s in g le  f i l t e r  $ then 3 w il l  be called  

p rin cip a l. Every principal uniform convergence structure is  generated 

by a uniform structure and conversely, every uniform structure generates 

a principal uniform convergence structure.

Let ® be a co llection  of f i l t e r s  on ExE, Then jpBll w ill  denote 

the in tersection  ideal in p  (ExE) generated by % . I f  ® « {$} then
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we w ill  write |^ j | = |î$]j .
Let : E ->• F- E, F s e ts . Then we define a map, denoted by (t)X(p, 

as follows: i|ix* : ExE ->■ FxF : : (<|)X(fi) (x,y) = (iji(x) ,i|)(y)). A map

f  : (E, 3) (F, Ü) where (E, 3 )  and (F ,U ) are uniform convergence

spaces is  said  to be uniformly continuous i f  and only i f  (fx f) g Ç U  .

I t  is  ea s ily  shown that the conmosition of uniformly continuous maps is  

again uniformly continuous.

The map is  called  a uniform isomorphism i f  and only i f  (p i s  a 

b ijectio n  such that * and i)> are uniformly continuous.

A uniform convergence space (E, 3 )  has an associated convergence 

space obtained as follow s:

T : E (E)) :: T (x) -  { 3e|P(E) |3  x xe 3%
o 3

Then (E,t ) i s  a convergence space. A convergence space (E,o) is  
o

uniformizable i f  and only i f  there e x is t  3  elA^E) such that içj = a.

There is  a very natural d efin itio n  of "Cauchy f ilte r "  in  a uniform

convergence spaces. Thus, 3 ep (E ) is  a 3 -Cauchy f i l t e r  (denoted

simply by Cauchy f i l t e r  when there is  no ambiguity) on E i f  and only

i f  3  ̂ 0 G 3 ' We denote the co llection  of a l l  Cauchy f i l t e r s  of ( E ,3 )

by C . Then (E, 3 ) is  complete i f  and only i f  every 3 -Cauchy f i l t e r  
0

on E "converges", i . e . ,  3sT^ (x) fo r some xeE. I t  is  shown in  [6] 

th a t the product of uniform convergence spaces is  complete i f  and only i f  

each component is  complete.

A subset A of a uniform convergence space (E ,3 )  is  to ta lly  

bounded i f  and only i f  for a l l  ffle|p(E) such that Ae® there ex ists  

3eC ^ such that 3  ̂ ® • The space (E, 3 ) is  compact i f  and only i f
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(E ,T^) is  a compact convergence space. Again, i t  i s  ea s ily  shown that 

(E, 3 ) is  compact i f  and only i f  (E, 3 )  is  complete and to ta lly  bounded. 

For a comprehensive treatment of uniform convergence spaces see [ 6] .



CHAPTER II

UNIFORM CONVERGENCE SPACES AND UNIFORMIZATION OF CONVERGENCE SPACES 

In th is chapter we introduce a concept, which we c a ll U-bases and
*

U -b ases, into uniform convergence spaces. These bases allow us to 

obtain several resu lts about uniform convergence spaces and to construct 

examples of these spaces in a re la tiv e ly  simple manner. We give an ex

p l i c i t  representation of the infimum of a co llec tio n  of uniform conver

gence structures on a .se t  E, prove the d istr ib u tive  properties for the 

complete la t t ic e  of uniform convergence structures on a se t E and give 

a construction for an "associated separated space" which is  analogous to 

the associated separated uniform space as found in N. Bourbaki [2 ].

We consider the problem of uniformization in  Section 2 .3 . We show 

that every separated convergence space admits of a uniform convergence 

structure which induces the given convergence structure. This means, in  

particu lar, that every T̂  topological space has the uniform properties 

of a uniform convergence space.

The la s t  section  of th is chapter is  devoted to l is t in g  some examples 

of uniform convergence spaces.

2 .1 . Bases for Uniform Convergence Structures. Let E be a non-empty 

se t and le t  3 be a non-empty co llec tio n  of f i l t e r s  on Ê E which sat

is fy  the three following conditions:

12
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(U 1) i f  $E % then [A] 5 $;

(U 2) i f  $E@ then $ = $

(U 3) i f  $,YE % then there ex ists

Te ïï such that  ̂ F. Note that i f  $,4'e S6 then always ex ists

since [ A ]  )  from (U 1). We now have the following resu lt:

Theorem 2 .1 . Let E be a non-empty se t and le t  ffl be a non-empty 

co llec tio n  of f i l t e r s  on ExE sa tisfy in g  (Ü 1 ), (U 2 ), and (U 3). Then 

j[®ij i s  a uniform convergence structure on E. Conversely, for every

uniform convergence structure 3 on E there ex ists  a co llec tio n  3  g 

of f i l t e r s  sa tisfy in g  (U 1 ) , (U 2) and (U 3) which generate 3 •

Proof: Let ÏÏ Ç  |F (ExE) be such that (U 1) -  (U 3) hold in  ® . By

d efin itio n  is  an in tersection  ideal in F(ExE). Since 8  is

non-empty, (U 1) implies that [A]e jisjj . For Ys , Y ^

Y^e8 , 1 $ i  $ n. Then Y^)“  ̂ )  Ŷ "̂  = Ŷ  from (U 2)

Hence Y ê whenever Ye j^jj . Let $,Ye be such that $°Y

e x is ts .  We then have $  ̂ Y ) Ŷ  where $^e 8 , 1 s i  ( n

and Y .j e S ,' î  $ j S m. Hence $*Y  ̂ ° Ŷ ) = ^  j-($j^°Yj).

From (U 3) there ex ists  F^ êB such that  ̂ and hence

$oY 5 Fĵ j so $»Y e [[8 ]j . This completes the proof that |[8 ]j is

a uniform convergence structure on E.

Conversely, le t  3 he a uniform convergence structure on E. Then 

define 3 g  as follows:

3g =  { $ | $ e 3 ,  $ = $ [A] $}.
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Clearly [A ]e3g so 3 g is  not empty. Axioms (U 1) and (U 2) are 

obviously s a t is f ie d  by 3g* Let 3 Then ($»Y) D (4'®$)e3

since ^ is  a u .c . s . and >, ($«Y) f) (T=$). But ($oY) fi (l'°^’)e 3 g

so 3 g s a t is f ie s  (U 3). I t  remains only to show that |[ 3 = 3*

Obviously |^ 3^ïj C- 3 .  Hence le t  $ e 3 • Then $ 5 ^0[A] and

since ^'s^Sgîj • Thus |[ 3 g]j = 3 .  This completes

the proof of Theorem 1.

A non-empty co llec tio n  o f f i l t e r s  S3 which sa t is fy  (Ü 1 ), (U 2) 

and (U 3) w il l  be called  a U-base for j^]j . We have shown that the 

natural map n  : IP (E) :: n ( ® )  = ]j of the co llec tio n  of

a l l  U-bases on E (denoted by |P(E)) to the co llec tio n  of a l l  uni

form convergence structures on E is  su rjective .

Let 0 be a U-base on E with the additional property:

(U 4) i f  m u  -  ® then ® .

Then $ w ill  be called  a U -base for jfs jj . Clearly 3  ̂ i s  also

a U -base for 3 so every uniform convergence structure has a
*

U -base.

Corollary: Let 3 sTA(E) have a U-base ® consisting of a f in ite

number of elements. Then 3 is  principal.

Proof: Let ® = (î> )̂ ]̂ < be a U-base for 3 • Then clearly

i^ l ^i generates 3 so 3 is  principal.

As we have mentioned in  the introduction *b\(E) is  a complete 

la t t ic e  with respect to the p artia l order given. I t  is  clear that the 

supremum of a co llec tio n  ( 3 ) l , 3 E Î\(E ), for a l l  aeA is  givenC( CtEA 0I>



15

by sup 3 = n  3 Also ^ ( E )  has a greatest element, ^ { [ A ] } ] ]  ,
aeA “ aeA “

and a le a st element, IF (ExE) . Our next theorem gives a  means of ca l

culating the infimum of ( whore • We w ill

f i r s t  prove the following letmna:

Lemma. Let $. , 1 $ j $ m (i), 1 g i  $ n and W, , 1 $ & $ q (k ),
j

1 $ k ( p be f i l t e r s  on ExE such that [ A ]  i $ ,  [ A ]   ̂Y . Then
j « Z

n m(i) p q(k) m(i) q(k)
(*) IJJi  (j2 i )1 • l 4  ‘A  \  >1 ■ f t  ) ■ ( .0 ,  » )J

J J ^

n
where ^0  ̂ T̂  i s  defined to be the composition r^»r^o.. .

Proof; Since [ A ]   ̂ $ , T the components of (*) are a l l  meaningful,
j &

i . e . ,  each composition e x is ts . Thus, i t  su ffices  to show that

= U  (V o . . .o v  o V O...0V )
^1 m(i) h  q(k)

for each V. e$, , V, eY , 1 $ j $ m (i) . 1 $ i   ̂ n and 1 $ Z  ̂ q (k ), 
j j & &

1 $ k $ p. But

(x ,y )e [ Û V 0 . . . 0V ] 0 [jÛ  V o...=V  ]
 ̂  ̂ 1̂ m(i) ^  ̂ ‘̂ 1 q(k)

* * *
i f  and only i f  there ex ists  z such that for some i  , k , 1 $ i  $ n,

1 $ k $ p, (x,z)eV , , (z,y)eV, ^oi-..oV,^ , which
1 m(i*) *̂ 1 q(k*)

holds i f  and only i f  (x,y)e ,U, (v. 0 . . . 0V, 0 V, 0 . . . 0V, ) .
h  m(i) ^1 q(k)

Theorem 2 .2 . Let ( be a non-empty co llec tio n  of uniform con

vergence structures on E with respective (J-bases Then
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in f 1  ̂ 1  ̂ n , neN ^
-. aeA

where N is  the se t of p o sitiv e  in tegers.

Proof: Let E denote the in tersection  ideal generated by

U 1 $ i  $ n, neN}.

We f i r s t  assert that SBe*lA(E):

(1) Since $^e U 0 , 1 $ i  $ n, [A]  ̂ '̂ 1°' ' hence 

[ A ] e J B .
A m(i)

(2) Let 'FeSS. Then Y  ̂ ' ( ,0 , $, ) where $, e U S  , 1 (  j ( m (i) ,
1—1 J^l 1 j 1 Ot u

. n m(i) . n mfi) .
1 $ i   ̂ n. Thus, Y-" >. [ (jO  ̂ = iQi (jO  ̂ \

Obviously,
-1 -1  -1  -1( 0 . $, ) = $ /  » . . . » $ /  » $ /  .

m(i) h  h
-I

I t  then follows from th is  re la tion  and the condition that 4>. = $.

-1  A -1  ̂ ^that Y i i l  $ « . . . 0$ and hence Y e2B.
& ( i)  *

(3) Let $ ,YeS such that $®Y e x is ts .
^  m(i) ^  q(k)

Ih.„ •> . iJ jC jO j. ) and
j ^

where ^ , ’i', e M SB . Thus,
‘ j ‘‘n a  “

n m(l) p q(k)

1 H I  m(i) 1 > •

m(i) p q(k)

y  ^ ^ - I  "m(i) "1 "q(k)

which follows from the Lemma. But th is  means that $®Ye33 from the 

d efin itio n  of 23. Thus, 2Set4(E).

C learly, for each aeA so that 33 $ for each

aeA. Let U e't((E) be such that U $ 3^ for each aeA. Since



u e U for each  ̂  ̂  ̂ U 0^.  Hence

or 8 ) U and i t  follows that ® = inf{

One should note that

® = { ( Y " ' " V  ^  ( V - - ' “V l ^ V l  s 1 $ n ^  

is  a U-base for in f  3^*

Remark. We may use th is construction to obtain the f in est uniform con

vergence structure which contains any given subset of IF(ExE). Thus, le t  

 ̂W e A  subset of IF (ExE). For each aeA, le t

*̂ a ~ n  [A]. Then the f in e s t  uniform convergence structure on E

which contains ($ ) , i s  the in tersection  ideala aeA

3 = {[{$g ». .  .«^ la^eA, 1 $ i  $ n, neN}]| .
1 n

The proof of th is statement is  sim ilar to the proof of Theorem 2 and is  

omitted here.

One should note that Ye 3 i f  and only i f  Y :) Y , since
“l  “n

0 Y o. . . °Y 
‘'m(l) 1 m(n)

n m(i)

j 1 n
We next show that (E) s a t is f ie s  the d istr ib u tive  properties. 

Theorem 2 . 3 . Let 3j> 3 2 and 3gG%((E). Then

3 f V  ( ^ 2  A 33) = (3 ^  V ^ 2) A O ^ y S g ) .

Proof: Since 3ĵ  V 3 2 > ^  ^3  ̂ 3]^V ( 82 A 3 g ) , we always have

( 3 i  V  32) A ( 3 i  V 3 3)  ̂ 3ĵ  V  ( 32 A  3 3) - Thus, i t  su ffices  to show

that 3 i V  ( 3 2  A 33 ) 32 ) A (3 ^  V  33) .  Let

$ E 3 ^ V  ( S g A S ] )  = 3 i  n (  3 g A 33 ) .  Then $ e 3 i  and $e 33 A 3 3

and hence from Theorem 2, there e x ists  Y e 3 U ® - ,  l $ j $  m( i ) ,
j
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n m (i)
1 $ i  $ n such th a t  $ i  i= l^ j= l  ̂ where o f cou rse  i s  a

j
U -base f o r  3o  and \  a  U -base f o r  A lso , s in c e  $e 3  ^ ,

th e r e  e x i s t s  1 $ k $ p such th a t  ^ and $ 5 where

i s  a  U -base f o r  3 ^ '  Thus

» = » v «  >. ( A \ > v ( A < A ’ i j ) ) -

w here V  $ ^ ) . But n o te  th a t  e 3̂  ̂ V  ^2 ^ f  e S ^

and A e 3i V 3o Y e % Thus, i t  fo llo w s from  p rev io u s  work
j j

that $e( 3^ V 3g) A ( 3 i  V 'Sg) so that ( 3^ V A ( 3 i  V 3g)

= 3 i  V ( 3g A 3g).

Theorem 2 .4 . L e t 3]^, 32» 3gE 'U (E ). Then 3 ^  A ( 3 g V  3g)

= ( 3 i  A 3g) V ( 3^ A 33) .

P ro o f : We always have th e  in e q u a l i ty

3 i A ( 32 V 3g) M  3 i  A 3g) V (  3^ A 3^) 

since 3 i  A ( 3% V 33 )  ̂ ( 3% A 3%) > ( 3 i A 3 ] ) '

We now show th a t

( 3 i  A  3g) V  ( 3 i  A  3g ) ^ 3 i  A (  3% V  3 3 ) .

T hus, l e t  $e( 3  ̂ A 3£) V  ( 3^ A Sg) . Then $e 3^ A 3g and

n  m (i) p q (k)
$s 3i A 3g so. that $  ̂ i= l^j2 l '*'i  ̂ and $  ̂ k = l^ £ 2 i \  ^

j ^
'*'i  ̂® 3 /V 3 snd e% 3 for 1 $ j $ m ( i) , 1 (  i  $ n and

1 i  I  i  q ( k ) ,  1 $ k $ p and % g  A 3 ’ ®3 3  U -bases f o r

3 i  A 3g and 3]^ A 3 3 " But we now have
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n m(i) p q(k)
>, [jOiCjOi» )J V

J  &

B q(k) n  m(i) p n q(k) m(l)

Let i  and k be fixed . Then

m(l) q(k) r

J  X, c

where
r

mln(m(l), q(k))
A

(Ik),

Then  ̂  ̂ ^ ( ik )^ ^ ’ and clearly  A^^^ i f  e ith er

or t of i f  min(m(i), q(k)) < t $ r̂ ^̂  = max(tn(i), q(k)) and 

A(ikj e ^2 V ^3 otherwise. Hence $e A ( Üg V  3g) and we have

3j^A( ^2 ^  ^ 3) “ ( A 3^) V  ( 3^ A 3^ ).

Thus, ^>^(E) is  a d istr ib u tive  la t t ic e  with greatest element j[A  ̂

and the le a st  element IF (ExE) with respect to A and V  ̂ where these 

operations are induced by the p artia l order g.

2 .2 . Separation and Associated Separated Spaces. The following two 

theorem? provide conditions on 3 which are necessary and su ff ic ie n t  

that (E, 3 ) be separated. The f ir s t  of these is  ea s ily  seen to be a 

direct generalization of the uniform spaces; i . e . ,  a uniform space 

(A,$) is  separated i f  and only i f  n{V|VE$} = A. The second gives
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•k
a condition in terms of U -bases.

Theorem 2 .5 . Let (E, 3) be a uniform convergence space. Then

(E, 3) is  separated i f  and only i f  for a l l  3 ,  {v{Ve$} Ç  A.

Proof: Let (E, 3) be separated and suppose there e x is ts  $e 3 such 

that n  {v|Ve$}_^ A . Then there e x is t  x,yeE such that x -f y and 

(x ,y )e  n {v |V e*}. But then x^y )  $ and hence xxÿe 3 which is  a con

trad iction  since (E, 3) is  separated.

Conversely, suppose that for a l l  3 , H {v |V e*}C A . Then 

xxye3 implies (1 {v|Vexxÿ} = (x ,y ) C  A so that x = y . Hence (E, 3 )  is  

separated.

Theorem 2 .6 . Let (E, 3 )  be a uniform convergence space and le t  j&
it

be any U -base for 3* Then (E, 3 ) i s  separated i f  and only i f  for 

a l l  ŸeSB, 0{v|VeŸ } » A.

Proof: Let (E, 3 ) be separated. Then frojn Theorem 5 i t  follows that

0{v |V e'i'}C  A, for a l l  Ÿe S . But [A] 3 Y, for a l l  4'e »  so

{v |V eY }3 A and hence r i{v |v e ’i'} = A.

Conversely, le t  xxye 3* Then there ex ists  $eS such that xxy  ̂ $. 

Thus, nCvjVexxy} = (x , y ) C  H {W|Me$} = A so x = y and (E, 3 )  

i s  separated.

Let (E, 3 ) be a uniform convergence space. For each 3 le t  

Cj = {(x»y )I(x ,y )e  r i{v |Ve$}} ,  and le t  C », U {C^|$e 3 }* One may 

observe that C ■ |J {CyjYe 8} where 8 is  any U -base for 3 . We 

f i r s t  show that C CE*E determines an equivalence rela tion  on E.

This is  equivalent to showing that:
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( 1 )  C p  A

(2) C = C“  ̂ and

(3) C o c = C.

The properties (1) and (2) are obvious. To verify  that C s a t is f ie s  (3 ), 

le t  (x,y)eC <>C. Then there e x is ts  zeE such that (x,z)eC^, (z,y)eCy 

for. some $,4'E3g* But e x is t s ,  3 and ( A {V|VE$})g( H {W|WEŸ})

= n  {U|UE$»Y}. Thus C o C C C . A lso, since A C C . C o C 3  C so

C o c = c.

We w i l l ,  of course, use the equivalence rela tion  determined by C 

to construct an associated separated space for each 3e*|>((E). In order 

to do th is  we need the following theorem:

Theorem 2 .7 . Let t : (E, 3 ) F where (E, 3 ) i s  a uniform convergence 

space. Then there ex ists  a f in e s t  uniform convergence structure on F 

such that i|) i s  uniformly continuous.

Proof: Consider the co llec tio n  } where 8 is  a U-base

for 3* From the remark following Theorem 2 there ex ists  a f in est  uniform 

convergence structure U on F which contains 'S. But then U s a t is f ie s

the conditions of the theorem.

Remark. I f  (|) i s  an in jection  then a U-base for U is  the co llection  

53 = n  [A ]|$e 5B} where i0 is  a U-base for 3 - This follows

from the fact that i f  iji is  1 -  1 then o = (#x^)

Now, we may construct an associated separated space for an arbitrary 

space (E, 3) in much the same way that an associated separated uniform 

space is  constructed by N. Bourbaki [£]• Thus, le t  E = E/f  ̂ where ^

denotes the equivalence re la tion  determined by C. We define a uniform
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convergence structure 3 on E as follows: 3 is  the f in e s t  uniform 

convergence structure on E such that the canonical map (|i : ( E ,3 )  ^ E 

is  uniformly continuous. I t  is  easy to show that (̂ E, 3 ) is  indeed sepa

rated.

2 .3 . Uniformization of Convergence Spaces. In th is section  we develop 

conditions under which a convergence space (E,o) is  uniformizable, i . e . ,  

that there ex ists  a uniform convergence structure 3 s%t(E) such that 

a = T3 . We conclude the section  with a proof that every separated con

vergence space is  uniformizable.

Let (E,o) be a convergence space. For each xeE and for each 

3eox we define a f i l t e r  as follow s: g = ( 3xx)D  [A] f |  (xx 3 ) .

Hence, i f  3 is  any uniform convergence structure on E such that 

T (V = cj then $ rj e 3» for a l l  xeE and Oeax. I t  i s  immediate that 

i f  (E,o) i s  uniformizable then the f in e s t  uniform convergence construc-

ture containing H = U {$ ~ |xeE ,3eax} must induce a. But from the
X , Ü

remark following Theorem 2 .2 ,

3  ̂ = _ |x ,eE , 1  ̂ i  $ n and pj eox , 1 3 i  $ n, neN}!]
1’ ^1 n ’ ^n - ' 1 1  J

is  precisely  the f in e s t  uniform convergence structure containing H.

The convergence space (E,a) is  induced by ( E ,3 )  i f  and only i f  

T = a(x) 5 for a l l  xeE, Clearly t  ^ (x )  3  o (x ) , for a l l  xeE.

Hence, (E,o) i s  uniformizable i f  and only i f  x ^y (̂x) C. o (x ) , for a ll  

xeE.

Theorem 2 .8 . Let (E,a) be a convergence space which s a t is f ie s  the 

following condition;



23

(*) for a l l  (x^)^ < i  < n 3 jE0x^, 1 3 1 3 n,

there ex ists  yeE, ®eay such that $ „
X l'B l  = a '8 n  f 'G

Then (E,a) is  uniformizable.

Proof: We show that t ^̂ (̂x) C  o (x ) . T hus,'let ©et^y^Cx). Then

® X XE^^ so that ® X X  ̂ 0. $ „  where x, eE, 3  ̂eax^, 1 $ i  3 n.
1 1 * i. * ^

n
Hence, from (*) there ex ists  yeE, Seay such that ® x x  ̂ .0 .$  r,l - i  x^ ,u ^

)  5* Thus X = y and S so ® eay. This completes the

proof of Theorem 2-8.

Theorem 2 .9 . Let (E,o) be a separated convergence space. Then (E,a) 

i s  uniformizable.

Proof: We again show that t ^ ^ (x)C  a (x ), for a l l  xeE. Hence suppose
0

@x ÿ $ o ..,o $  where $ _ eH, 1 $ i  $ n. I f  ® = y then
* i ' 3 i  3 .  * l ' 3 i

®eay and we are fin ished . Thus we assume ® ÿ. Let A = { i|x^  = x̂

for some i   ̂ j ,  1 $ i ,  j $ n}. Since (E,o) is  separated, ax fl oy = 0

for x “f y so 3 V® does not e x is t  for a l l  3cox and for a l l  ®eay.

I t  follows from th is observation and a sipp le calcu lation  that

$ _ .  = A ( 3 A ) n [ d ] n  ( A  ( A S L A Y Y )* l » 3 i   ̂  ̂  ̂  ̂ l - i  1 “L ^ ^ ^ 1 - 1 1 1

Suppose that y|;{xj^,.. .  ,x^}. Again by the separation of (E ,a),

there ex ists  Fĵ e 3 such that y^F  ̂ , 1 $ i  $ n. Since 0 xÿ

3 $ . . .  $ there ex ists  Ge @ such that
*1» O i 3n>

G x{y}C {^y^[(F*x(x^})U ({x^}xF*)]}U  A Ll{ U [(F* x F*) 1 >
ieA
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and hence Gx{y}C A so that @ = ÿ contrary to assumption. Thus 

ye{X j^ ,..., x^}. Without lo ss of gen era lity , le t  y * x^. I f  1 ^ ,  

there ex is ts  F*E g such that x^^F^, 2 $ i  $ n. Then for any

^ l^ ^ l e x ists  Ge® such that

G x{x^}C {jO ,[(F i x{x^ } )U (U i }xF * )]}U aU {U I(F * x F*) U ({x^}x{x^})
ieA

U(Fj^x{x^}) Ü (tx^}xF^) .

I t  follows that GC (J {x^} so that 0  ̂ 3^ A  x  ̂ and hence @ eay.

I f  leA the proof is  sim ilar and w ill  be omitted here.

2 .4 . Examples of Uniform Convergence Structures. We conclude Chapter

II  with some examples of uniform convergence spaces.
*

Example 1. Let R denote the se t of real numbers and le t  $ denote
A

the usual uniform structure of R. The reader w il l  rec a ll that $ is  

generated by the se ts  = {(x ,y ) | |x -y | < e } , defined for each e > 0, 

where |x -  y | i s  the usual absolute value of the difference of x and

y-

For each p o sitiv e  integer n le t  = [{V°|e > 0}] where

Vg = {V n  ( (-n ,n) X (-n ,n) )} U

and (-n,n) is  the open in terval {xeR|-n < x < n}. I t  is  easy to verify

that is  a uniform structure on R for each p ositive  integer n.

For m, n p o sitiv e  intergers we have the following relations:
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(a) $ n  $m n = $max (m,n) ’

(b) 0 0 $ 
m n

= $max (m,n) ;

(c) $m = ^m’

(d) = ^R’

(e) [1] "m-:

( f ) $m
*

$ fo r  each

(g) ^  » *2 ) .  . ^ . . .  •

Note that (a ) , (b) , (c) and (e) show that ib  ̂ i s  a U -base for a uni

form convergence structure on R where 0  ̂ = {$^|n = 1, 2 , . . . } .  I t  

follows from (d) and Theorem 2.6 that is  separated where 3^

= • Clearly 3 ^ C  j[$ jj so  ̂ j] "  ̂  ̂ 3^ so

3 i '  K ü  •

However, = C ^ and ~ ^ 3  ®° that (R, 3ĵ ) i s  complete.

This gives us an example of a uniform convergence space which is  s tr ic t ly  

fin er  than j[$ ^  but has the same induced convergence structure and 

the same Cauchy f i l t e r s .  The reader w il l  note that the f in est uniform 

space coarser than 3^ p recise ly  $ .

Example 2. For each p ositive  integer n and each e > 0 we define

n  ( (-n ,n) X (-n ,n) ) .

For each n we have a uniform space (E ) where E = (-n ,n) andn n n

'**n ~ 11 > 0 }]. Consider the maps defined as follows: for each pair

of p o sitiv e  integers (m,n) such that m g n, i  : (E ,Y ) ^ (E ,Y )nm m m  n n

: : i  (x) = X .  Clearly each i  i f  uniformly continuous for eachnm nm
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pair (m,n), m s n  since 3  ( i^ x  note that R = E .̂

The "almost" inductive lim it of (E , i  ) is  defined to be the f in estn nm

uniform convergence structure such that the inclusion  maps i^ : (E^.T^)->■ R

are a l l  uniformly continuous. This inductive lim it i s  ea sily  seen to be

(R, 3^) so that Example 1 may be obtained as an inductive lim it of the

uniform spaces { (E )}n n nsN
Example 3. Let I denote the se t of integers and for each kel le t

\  k+1 ~ E > 0}] where ^ = {V^H ( (k,k+l) x (k,k+l) ) } U

One can ea s ily  verify  that , i s  a uniform structure on R fork ,k+l

each k el. We have the following relations for the k+l^kel"

<b) ,k j + l '  ■ * f l l* k j ,k ^ + l*  ^  * A * k j  ,kj+X^ ’

(c) [A] for a ll  kel;

W) < \ ,k + l* '^  '  *k ,k + l’

n *
Thus, = {jQ^^k k +1 » 1 S i  S n, neN} is  a U -base for a

i* i

uniform convergence structure on R. We denote by the uniform con

vergence structure generated by 0 .̂

We observe f i r s t  that for neN, $ , ) $ where $ e ® „ Thus
n -l,n  n n 1

5̂  5 3 I t  is  ea sily  shown that 3  ̂ > 3  ̂again

= However, (R ,3 g) Is not complete s in ce , for example, the f i l t e r

Xof fin a l sections of the sequence {1 -  — does not converge with

respect to 3 2" In th is example, the f in est  uniform space coarser than

3 2 is  'I' V [c l  ̂ c l] where c l denotes the complement (in  R) of I .
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In summary, we have given three separated uniform convergence struc

tures on R such that

(1) > 3^ > [[$^]] ;

(2) = Cg  ̂ ;

(3) y 3 ^  > y 3 i  = $ ;

(4) (R, 32  ̂ i s  not complete but both (R, 3^)

(R, [ï$*jj ) are complete.

Example 4. Let Q be the se t of rational numbers and le t  2B denote

the co llection  of a l l  f in it e  subsets of Q. Then le t  = [{V^}] where

F e a n d  V„ = A U FxF. We have the following relations:  
r

(1) >. for a l l  F,Ge 23;

(2) for a l l  Fe 22 ;

(3) [A]  ̂ for a l l  Fe 22 ;

(4) o  ̂ for a l l  F.Ge 22.

Thus, jPE 22} is  a U -base for a uniform convergence structure

3g on Q. Note that 3  ̂ is  not separated since for any F 4 0) 

fl{v|Ve$p} = Vp 4 f t  can be shown that ,

T g (x) = { 3 e IF(Q) I 0  ̂ in f{y  |yeF,Fex} for some Fe 22 }.

This uniform convergence space has the property that for any H 4 0,

HC Q, H = Q where denotes closure with respect to T  ̂ .



CHAPTER I I I  

COMPLETIONS OF UNIFORM CONVERGENCE SPACES

In th is chapter we investigate completions of uniform convergence 

spaces. F ir s t ,  we give a completion which, in the separated case, i s  due 

to Oswald Wyler [25]. We then derive several properties of th is  comple

tion including the resu lt that a commutative convergence group has a com

p letion  which is  again a commutative convergence group. From a categori

cal viewpoint the completion we give has several undesirable properties. 

We show th at, in  general, completions in the subcategory of uniform

spaces do not coincide with the usual completion.

L astly , we consider a subset of the uniformly continuous maps which 

we cjall strongly uniformly continuous maps. We obtain a sub category of 

the orig inal category in which a more sa tisfactory  completion theory is  

obtained.

3 .1 . Completion. In general a completion is  a solution  to a universal 

mapping problem in a given category. Of course, we assume that some 

notion of "completeness" has been defined in  the category. Then given 

an object of the category one attempts to obtain a "complete" object of 

the same catetory subject to certain conditions defined in terms of the 

maps of the category.

For example, the problem mentioned above and i t s  solu tion  is  w ell-  

known in  the category whose objects are metric spaces, whose maps are the

28
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uniformly continuous ones and whose composition is  ordinary function  

composition. A second example is  the category ( uni

form spaces, uniformly continuous maps and usual function composition.

Here we consider the category ÏS = ( , 1 )  where JSq denotes

the co llec tio n  of a l l  uniform convergence spaces, ^  the co llec tio n  of 

a l l  uniformly continuous maps and A the usual function composition.

I t  is  shown in  [6] that the composition (when defined) of two uniformly 

continuous maps is  again uniformly continuous. The v er ifica tio n  that 

^  s a t is f ie s  the d efin itio n  of a category is  t r iv ia l .  I t  is  immediate 

that the category ( U ,̂ 2Sg> ®) is  a sub category of S .

The notion of Cauchy f i l t e r  and hence completeness is  w ell defined  

in  SES so i t  is  natural to consider completions in 3S. The sp e c if ic  

universal mapping problem which we solve in SS may be stated  as follows :

A completion of a uniform convergence space (E, 3 )  is  a pair 

( ( ^  3 ) , j )  consisting of a complete uniform convergence space (e , 3 )  

and a uniformly continuous in jec tiv e  map such that

(C) I f  ((B, U) ,f )  is  any pair where (B ,U ) is  a complete

uniform convergence space and f is  a uniformly continuous 

map from (E ,3 )  to (B,U ) then there e x ists  a uniformly 

continuous map f from 3) to (B, U) such that

foj = f .

As one would expect, i f  we r e s tr ic t  the problem to separated spaces 

and ask for a separated completion then the solution  is  unique except 

for uniformly isomorphic spaces. We now construct a completion.

Let (E, 3) be a uniform convergence space and le t  ^  = Cc, , theO

co llec tio n  of a l l  Cauchy f i l t e r s  of (E, 3)* Let j : (E ,3)-^  : : j(x)=x.
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/N
Clearly xeC ^ and j i s  in jec tiv e . Denote by 3 the in tersection  

ideal generated by the following f i l t e r s  :

(1) ( j x j ) $ ,  3  ;

( 2) j (  3) X @and f f l x j ( 3 ) ,  0 .  . 3 x ® e  3 ;

(3) ® X 5 ,  |3 ,®eC g x@e 3;

(4) [A],

We w ill  ver ify  that (($','$) ,j )  i s  a completion of ( E , 3 )  with the 

following lemmas.

Lemma 3 .1 . The in tersection  ideal 3 is  a uniform convergence structure
A

on E.

Proof: The f ir s t  two axioms of a uniform convergence space are obviously
^  / \

sa t is f ie d  by 3* We show that 3 is  closed with respect to composition

(whenever i t  e x is t s ) .

case 1. Let 3 .  Then since j is  in jectiv e  (jxj)$®(jxj)'l' = (jxj)$®Y

i f  either side e x is ts . But 3 E%/l(E) so OoYe 3 i f  i t  e x is ts  and hence

(jxj)($®Y)e 3l
»

case 2. Let @ = j(x ) for xeE. Then j" (^ xj(3  ) = (jx j) (x xg) and 

j (  3 )  X j7x5 = (jx j) (3x  x ) . Hence (j (3  ) x  @) o (jx j)$ , (jx j)$  o ( j ( 3  ) x  ®)

( @xj( 3 ) )  ° ( j x j ) $  and (jxj)$o(@ x j ( 3 ) )  a l l  reduce to the form con

sidered in  case 1.

case 3. Suppose ©^j(x) ,  for a l l  xeE. We digress here to consider the 

following remark:

Remark. Let $e 3, 3^ p ( E) . Then i f  3 sC ^ i t  follows that $ [3 ]e C ^  

and $( 3 )x 3e 3 provided that $ [3  1 e x is t s ,  i . e . ,  provided V[F] =f 0
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for a l l  Ve$ and for a l l  F e jj• This r e su lt  fo llow s immediately from

the re la tio n  ( ) 3$ = 3 g ] .  Hence, i f  (@ x j ( 3 ) ) ° ( j x j ) 0  e x is t s

then $[ [geC ^ and $[ 3  ]x g e  3 so (® xj ( 3 )) ® (j^ j)$ = ® xj ($ [0  ] ) e 3 •

A lso , ( j ( 3 ) x ® ) o ( j x j ) $  does not e x is t  s in ce  ® çj (E) „ 

case 4. Let @ x 3 i  3 and ® , 3  - j ( E ) .  Then n eith er

( j ( & ) x @ ) o ( Q x j ( R ) )  nor ( @ x j ( % ) ) o ( g x j ( R ) )

e x ists  where S , ReC<v and &x 3 x R e 3 «

case 5. Let 3 , ® , &, ReC^ and 3  xR , @x%e 3 .  Then ( 3xj ( R ) ®(j(&)x ®;

ex ists  i f  and only i f  R x S e3  and then th is composition reduces to 
* • o
3 x ® e 3 .

» t
case 6 . Let ® |:j(E ). Then (3 x@) o( j xj ) $  does not e x is t .  I f

• # »
@ cj(E) then the Remark of case 3 shows that ( 3 ^ ® ) ° ( j ^ j ) ^  = 3 x ( j ( $ [ ® ] ) )

in  the sense that i f  e ith e r  sid e  o f th is  expression e x is t s  then so does

the other and the eq u a lity  holds.

case 7. The remaining combinations o f composition of generators are 

e a s ily  seen to be elements o f ‘3 ' when the composition e x is t s .

I t  f o l lq ^ '  that 3 i s  a uniform convergence structure on E. The

reader w ill  note from section  2 .1 . of Chapter II that 3 Is the fin est
A

uniform convergence structure on E which contains the given f i l t e r s

(1) -  (4).

Lemma 3 .2 . The map j is  uniformly continuous from (E, 3 )  to ( E , ^  

and j (E) is  dense in (^, .

Proof: The uniform continuity of j i s  obvious from the manner in which

3 is  constructed. Let 3sC Then j ( 3  )" 3^ 3 and j ( E ) c j ( 3 ) .
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Thus 0e j(E) so that j(E) is  dense in (Ê', 3 ) .

Lemma 3 .3 . Let Then $ is  generated by sets  which contain no

pair ( 3> ® ) where g x ® 3» S » ® eC^-j (E).

Proof: For we have

$ )  q O i( jx j )Y n  [a]

where 3 , 1  $ i  $ n; 3 3 ,  1 $ k $ m; 3 ,  1 $ & $ p;

and ®^x3B^e3, 1 $ t  g s .  Since j|^^(jxj)$^ = (jxj)^Qj^$^ = (jxj)Y for 

Ye 3» th is reduces to

(1) $ ) (jxj)Y n (kOi j( ^ k ) " n  (&  ) n [A].
The f i l t e r  on the right side of (1) is  generated by se ts  of the form

(2) (jxj)V  U(i^üi(j(F^)x {(^ })) V "  A

where Vey, F^e 1 $ k $ m and Ŵ e 1 $ 2 $ p. I t  follows from

(1) that each se t  of the form given in (2) is  an element of $ , and clearly

sets  of the form given in (2) contain no pair ( 3  ,® ) where 3 ,®eC^ -j(E )

and 3 x ® i 3* Let l8=  {B^|aeA} be a b a se  for $ and le t  H be any 

se t  of the form given in (2 ). Then t g '= {B  ̂ H H ,aeA} is  obviously

a base for $ and has the properties given in  the lemma.

Lemma 3 .4 . Let $ e 3 be generated by sets  in  j(E )xj(E ). Then 

* “ (jxj)Y for some Ye 3 -  Any Cauchy f i l t e r  of is  of one of

the following forms:
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(1) j ( 3 ) ,

(2) OiEC ^ , 3 1  ̂ 1 , j $ n ;

(3) j ( 3 )  n (.ftj o p ,  3 , o p O jE C g ,

3 xOĵ  E 3 , 1 $ 1, j $ n.

Proof: Let $e o be generated by se ts  in j ( E ) x j ( E ) .  Then

Y = [ { B x c | j ( B )  x j(c )e $ } ] . Clearly Ye |F(E) and since $ = ( j x j ) Y  i t

follows that Ye 3* Let S be a "^-Cauchy f i l t e r .  Then i t  follows from

Lemma 3 .3 . that & must be of one of the forms given.

Lemma 3 .5 . The uniform convergence space (S', 3 ) i s  complete.

Proof: Let Sj be a 3 -Cauchy f i l t e r .  Then we have three cases front

Lemma 3 .4 .:

case 1. S? = j (  3)« Then S x Qe S  so that S t - converges to 0 .

case 2. S&= Then 6 -converges to 0

case 3. S= j ( 0 ) '^^n @ Tg. -converges to g. Thus

is  complete since every Cauchy f i l t e r  converges. We may summarize the

resu lts  of the previous lemnas as follows:

Theorem 3 .1 . Let (E, 3) be a uniform convergence space. Then there 

e x ists  a conçlete space (Ê, ^  and an in jec tiv e  uniformly continuous 

map j from (E, 3) to (E*, 3 ) .

We now have the following theorem:

Theorem 3 .2 . Let (f  ,(B U)) be any pair such that f  is  a uniformly

continuous map from (E, 3 ) to a complete uniform convergence space

(B, U). Then there e x ists  a uniformly continuous map f  from (^,"^)

to (B, u) such that f»j = f .
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Proof: Let gsE. Then since f is  uniformly continuous and (B,U )

complete, f ( 3) converges to some bg eB. In general bg is  not 

unique but we may choose a fixed bg with the understanding that for

3=  X ,  bg = f (x ) . Then we define f ( 3 )  = b ^ and clearly  foj = f .

We now show that f  is  uniformly continuous.

case 1. Let S =  (j xj) $ for 3 • Then (fx f)  ( j x j ) $ =  (fx f)$  and 

since f i s  uniformly continuous (fx f)$ e U .

case 2. Let S =  Since 2  (fx f) i t  follows that

( f « )  >. I V bI-

case 3. Let & = 3  ̂ ®> where 3 x @e 3 -  Then (fx f) ( 3 ^ ® )
•  •  •  •

= (b gXb^ ) and since 3 ^ ® ^ 3 >  b  ̂  ̂bĝ  e U .

case 4. Let &= j ( 3 ) ^ ®  where 3 ^ ®  ^3* Then (fx f) ( j ( g  )x@ )

= f ( 3 )  ̂bg and since 3  ̂® G 3 i t  follows that i(3)^%G U . Simi

la r ly , i f  & = @ x j ( 3 )  where ® x 3 e 3 i t  follows that (fx f) 

( @ x j ( 3 ) ) e U  . Hence f is  uniformly continuous.

From Theorem 3 .1 . and Theorem 3 .2 . we have:

Theorem 3 .3 . Let ( E , 3 ) be a uniform convergence space. Then there

e x ists  a pair ( j , ( ^ ,^ ) )  where j is  an in jectiv e  uniformly continuous

map from (E, 3 ) to (^ ,^ )  and ( j , ( ^ ,^ ) )  s a t is f ie s  (C) given above.

Of course. Theorem 3 .3 . simply means that every uniform convergence 

space has a completion. We may now treat the separated case. Thus, le t  

(E, 3) be a separated uniform convergence space. We define an equivalence 

relation  in as follows:

3*5® i f  and only i f  3  ̂ ®g 3 . I t  is  easy to verify  that is  

an equivalence rela tion . The following lemma shows the connection between
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% and the se t C defined in  section  2 .2 .

Lemma 3 .6 . Let g , @ eC _ . Then i f  and only i f  ( 3 , ® ) e C
o

where C =» U {Ĉ  | } and 0 ^ = 0  {V|Ve$}.

Proof; Let . Then 3><®e3 so j J x Q e ' J  and ( g , ® ) e C g ^ ^  .

Thus ( 3 , ®)eC. Conversely ( g , ® ) e C  implies QxOe ^ so that

3 » ® .

We denote the associated separated space of ) by (E , 3 ) .

Since (E, 3) is  separated, the map j : (E, 3 )  (E , 3 ) : : j (x)

= q (x ), where q( D)  = { ® eC  ̂ | ®%3}, i s  in jec tiv e  and uniformly con

tinuous. The reader w ill  reca ll that for the natural map 

* : (E, 3) (E , 3 ) we have j = (|»®j, and 3  Is the f in e s t  uni-
•fç

form convergence structure on E such that (|) is  uniformly continuous.
* * * * *

I t  follows that (E , 3 ) i s  complete and j (E) is  dense in (E , 3 )•

We have the following additional theorem:

Theorem 3 .4 . Let ( f ,  (B,U )) be any pair such that f  is  a uniformly

continuous map from (E ,3 ) to a complete separated uniform convergence

space (B, U). Then there ex ists  a unique map f  from (E , 3 ) to

(B, 1$ such that f  is  uniformly continuous and f  = f®j .

Proof: The proof is  sim ilar to that of Theorem 3 .2 . The uniqueness of

f follows from the separation of (B,U ) and continuity of f .

Remark. The in tersection  ideal 3 is  generated by f i l t e r s  of the

following forms:

(1) (j*xj*)$ , $E3;
it * *

(2) j ( 3 )  x ^ ) , ‘5 ( 3 )  x j * ( 3 ) ,  3 EC g ;

X E*^.
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The proof of th is remark is  immediate from the d efin ition s of 3 and
J* ÿj

3 and from the fact that j = (jjo j .  These f i l t e r s  are, of course, 

p recise ly  the ones used by 0. Wyler [25] to obtain a completion in the 

separated case.

The next theorem shows that the completion is  unique for separated 

spaces.

Theorem 3 .5 . Let (E,3 ) be a separated uniform convergence space and 

le t  U^)) and (j^ , B^,U be separated completions of

(E, 3)* Then (B^, U^) is  uniformly isomorphic to

Proof; Since (jj^,(Bj^, U i s  a completion and is  uniformly con

tinuous there e x is ts  a unique uniformly continuous map 

iĵ  : (B^, U|̂ )-*-(Bg,Û ) such that i^oj^ = j^. Separation is  needed for 

the uniqueness of i^ . S im ilarly, there e x is ts  a unique uniformly con

tinuous map i^ : (B^, U^) -+ (B^,U such that = i^ o j^. Then 

i^ 0 ig  i s  the id en tity  map on the image of and 1  ̂ o i^ is  the

id en tity  map on the image of We w il l  now show that i^ is  a uni

form isomorphism and i^ = (i^)"^;

(1) i^ is  1 -  1 : Let i^(x) = i^ (y ) . Since j^(E) is  dense

in  B̂  there ex ists  such that @ x xcU  ̂ and yeU^

and j (E)e But ®, and S . e x is t  and since

i^(x) = l^(y) we have

(a) i^( 0 )x i^ ( S ) e U^. Also

(b) ( i j l j^(E))  = i i ( ® )  and

(c) ( Sj (Ej) = i] (̂S&) since j^(E)c & A @



37

But ± 2  i s  uniformly continuous so (i^ x ^2  ̂  ̂  ̂ i]^( S ))

= Y i (  0 )  X Y ^ ( S )  = igCCi^l j^CE))  ( @ j  (E))  X i g ( i J j ^ ( E ) )  ( s ,

= ®x U^.

Since (B^,U^) is  separated, x = y.

(2) 1  ̂ i s  onto: Let b^eB^. Then there ex ists  QGlF(Bg) such

that j 2(E)e 3 and 3 x b^s Then i ^Cg)  t .C  ̂ , i g ( j 2(E))

•

= j^ (E )ei2( g ) ,  and, since (B^,U^) is  complete, 12(3 ) x b^sU ^

for uniquely determined b^cB^. But then b2 = i^(b^^).
- I

(3) i^ is  a uniform isomorphism and i 2 = (i^) : We already

have that i^ and i 2 are uniformly continuous. Let b^cB^. Then i t  

i s  ea s ily  shown that i 2(i^(bj^)) = b  ̂ so that id en tity

map on B̂  and sim ilarly  i^ o i2 is  the id en tity  map on B2. Thus
- I

± 2  =  (ij^) and i^ is  a uniform isomorphism.

We now have shown the following resu lt:

Theorem 3 . 6 . Let (E, 3 ) be a separated uniform convergence space.

Then there ex ists  a separated completion (E , 3 ) which is  unique except 

for uniformly isomorphic spaces.

Remark. The completion of a space (E, 3)  ̂ not, in  general, d iscrete

on the complement of j (E) .  Thus, le t  (E). Then j ( 3 )  t 0

and both J ( g )  and g converge in the completion to 3 .  Note that 

i f  ge j(E) then t̂ * (3 )  = { j (  @) | @ % x and 3 ■ j ( x ) }.

3 . 2 . Completions of Convergence Groups. I t  was shown in [6] that a

convergence group is  uniformizable in  the sense defined in  Chapter I I .

We w ill  show in  th is section  that the completion of a separated uniform 

convergence space (G, 3) »  where (G,o) is  a convergence group and
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T = 0 , is  again a convergence group with respect to natural group
o

operations which agree on (G,o).

We reca ll here the basic d efin itions and notations of convergence 

groups. Hence, (G,o) is  a convergence group i f  and only i f  (G,*) 

is  a group and o is  a convergence structure on G such that the group 

operations are coAtinuous. In terms of the id en tity  element e of G, 

a convergence group (G,o) is  a group (G,*) and a convergence struc

ture a  on G such that:

(G )̂ a(e) • a(e)C  o(e) ;

(Gp ( a ( e ) ) " t  a(e);

(G )̂ X • a(e) • X ^ C  o ( e ) , for a l l  xeG; where, of course, for

F , H C g, F*H ={ f  •h|feF,heH} and F~  ̂ = {f“  ̂| feF},  and for 

3 , ® e F ( G ) ,  3" ® = [{F*HjFe3,  He®}] ,  g = {F"^|Fe3},

X. g = [{x*F|Fe g}] and 3* x = [{F*x|Fe g}] .  Then 3 elF(G) is  called  

a le f t  Cauchy f i l t e r  i f  g ^' g eo(e) and g is  called  a right Cauchy 

f i l t e r  i f  3 * 3  ^ea(e). We denote the co llection  of a ll  l e f t  Cauchy 

f i l t e r s  on G by C  ̂ and the co llection  of a l l  right Cauchy f i l t e r s  on 

G by Cj.

Lemma 3. 7 . Let ( G , t )  be a commutative convergence group. Then ( G , t )  

s a t is f ie s  the following conditions:

( i i )  i f  then 3 t̂C ;̂

( i i i )  i f  3 » ®GĈ  then 3 *®£C^;

(iv) i f  3 © £T(e) then g*©* 3 ^ex(e).
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Proof; Conclusions ( i )  and (11) are obvious sin ce  (G ,t) I s com

m utative. Let D , ®eC  ̂ so that 3  3GT(e) and ® ET(e) .

Then from (G )̂ we have ( 3 3 )  ' ( ® ^•®)eT(e)  and ( 3  ^*3 )*

( ) = ( 3 ( 3 * ® ) .  Thus 3 @ECg. L a stly , l e t  @e T ( e ) ,

geCg. Then 3  3 ET(e) and from (G^), ( 3  3 ) ' ®ET(e) . But

( 3  ^‘ 3 ) ®  ■= 3 * ® * D  This concludes the proof of the lemma.

I t  was shown In [6] that 3  = jf{3 x 3 A [^] | 3  Induces t  .

Since ( G , t )  I s separated, (G, 3 )  Is a separated uniform convergence
* *

space and hence has a unique separated completion (G , 3 )•  Let 

+ :G  xG  4- G : : q( 3 ) + q( @) = q( 3 '® ) » where q( 3 )  = { ' ®|3fi® } •

I t  follows from Lemma 3.7.  that th is map Is meaningful. Let 0^ 0^

where 3 »3 ^>®» convergence groups, 3 ^® I f  and only I f

3 ®ET(e). Thus 3 3]̂ ET (e) and 0  0  ( e ) . I t  now follows

from Lemma 3 . 7 . ,  (11) and (Iv) that ® 3 ® er ( e ) . Also

0  ^0 ^ET(e) so from (G )̂ we have (® ^«3 ^*3 ®)* ( ® ® 2̂ )et ( e ) .

But ®"^3"^3^- ®^ 5 ( 0 ‘ -̂ 3"^ 3 ^-®)  ( ®"^®P so

0   ̂ 3"^ ^1 ^ 1 " ®)  ̂ ( 3j^® j^)eT(e) . Hence 3 ® ^ 3 ^  ®  ̂ + Is

w ell defined.
' *

Theorem 3 . 7 . The system (G ,+) forms a commutative group.

Proof: Note f ir s t  that q(3 ) + q(e) = q(e ) + q( 3 ) = 9 ( 3 ) »  a ll
<fe * "fç

q ( 3 )GG so that q(e) Is an Identity for (G ,+ ). Obviously + Is
_1

an associative operation and q ( 3 ) + 9 ( ®) = 9 ( 3 * 3 ) ~ 9(e) so

that q(3 )̂ = (9( 3 ))  ̂ (c learly  I f  3 «"® then 3 ^*®  ̂ so th is

Inverse Is unique and w ell-d efin ed ). L astly ,
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q (ü )  + q (® ) = q (3 *  = q('5) -5 ) = q ( 3 )  + q(2 ) ,  for a l l  0 , 3  eG*.
*

Hence (G ,+) is  a commutative group.
A *-|_ *

Recall that * (q (0  ))  = (S eF(G ) |  S x q ( 0 ) e 3  }.

We w il l  now show that t  ̂ i s  compatible with the group structure ju st
0

defined.

Theorem 3 .8 . The System (G , t is  a convergence group with respect

to the group (G ,+ ).

Proof; We ver ify  the conditions (G )̂ -  (G^)• From the remark following

Theorem 3 .6 . we have T ,,,^ (q (è ))  = {j ( 3 ) |  SerC e)}. Hence i f
\3

% , *(q (ê)) then = j ( 0 )  and = j ( @ ) where 0 ,  ® E i(e ).

Thus = j ( & ) + j ( )  = j ( 0 ' 3 )  . But 0 £T(e), 3  Er(e) implies

0* 2 e i(e )  so j ( g « @)ET^ * (q (ê )) . Thus (G *) s a t is f ie s  (G^).

Let ^ET g * (q (e ) ) . Then S = j (0  ) for some 0 Er(e) and hence

0 ^ET(e). I t  follows that &  ̂ = j ( 0  *(q (e)) so that (G , t

s a t is f ie s  (G_). L astly , le t  q ( @ ) EG , S et . (q(e) ) .  Then

= j* (3  ) ,  0 er(e) so 

«

q(® ) + j (0 ) + q('- = q( O  + q(^ )̂ + j ( 0 ) = q(e) + j ( c  ) = j ( 0 ).

Hence (G_) holds in  (G , t ^ ). This concludes the proof of Theorem 3 .8 .
 ̂ vi

2l2" Properties of the Completion. As mentioned e a r lie r , a uniform space 

(E,$) may be id en tified  with a uniform convergence space, namely (E ) .  

Also, every principal uniform convergence structure is  generated by a uni

form structure. I t  follows ea s ily  from the d efin ition s of uniform con

tin u ity  in the respective categories that the uniformly continuous maps 

between uniform spaces (E,$) and (F,¥) are p recisely  the uniformly
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continuous maps between the uniform convergence spaces (E, ) and

(F, Iç’i'îj ) .  Thus, i t  is  desirable that the completion in the larger cate

gory of uniform convergence spaces would agree with the usual completion 

of uniform spaces when a space (E, j [$ ] | ) is  considered. Our f ir s t  

theorem in  th is  section  shows that th is does not happen. In th is section  

we w ill  consider only separated spaces and we w il l  denote the completion

of a uniform convergence space (E ,3 ) by and the completion

of a uniform space (E, by (2® ,“̂ ) .

We digress here to give a very b r ie f description of the completion 

of uniform spaces. The d e ta ils  may be found in  N. Bourbaki [2 ] . Thus, 

le t  (E,$) be a uniform space. Then for Ve$, V symmetric, define 

y ® { ( 3 »@ ) I 3>® Cauchy f i l t e r s  and there ex ists  AeJjH® such that 

A*SCV}. Then $ = [{V|vE$, V symmetric)] i s  a uniformity for E, the
/V A#

co llec tio n  of a l l  Cauchy f i l t e r s  of (E ,$ ). Then ( j ,(E ,$ ))  i s  a comple

tion  of (E,$) in the category of uniform spaces whepe

j ’ (E,$) -+ (E,$) : : j(x ) = x.

I f  (E,$) i s  a separated uniform space, a separated completion is

obtained by means of an equivalence re la tion  S t defined by: 3 ,® eE ,

3 S t®  i f  and only i f  3 x @  ̂ I t  is  obvious that E is  p recise ly  

the same se t  as C and 3 (R ® i f  and only i f  3 ^ ®  • In th is

case ^  = E /(t  and ^  |Ve$, V symmetric}] where

= {(q( 3)  , q( ®) ) ( there exists 3 ĵ eq( 3) » ® (® )

such that ( 3 ^ , ®2̂ )eV} where q(3 ) = (® | 3 A.® }.

Of course, q( 3 )  = { @ |3Sf® }»



42

Thus, given a separated uniform space (E,$) and therefore the 

corresponding separated uniform convergence space (E, ) ,  the sets

used in the conçletions of each may be considered the same. That i s ,

^  However, the following theorem shows that in general

Theorem 3 .9 . Let (E, ) be a separated uniform convergence space

( j , (E^, ) i t s  separated completion and (jj^, Ê®, jrî^ïj ) ) the

separated completion of the uniform space (E ,$). I f  E -  j^(E) is  

dense in  ^  then is  s tr ic t ly  finer than •

Proof: From properties of the w-completion and the fact that

: (E,$) is  uniformly continuous, there ex is ts  a uniformly

continuous map i|) : ( ^ ,  ^ |?î*îj ) .  Clearly i|i is  the id en tity

map in  th is particular case so . Suppose that

there ex ists ^1 , , 1 $ i$ n,  1 $ k  ̂ m

such that

(*) T  >. (jxj)$ n (ĵ Pij(â )><q(3.)) n (kQi^i^)xj(\)) n im .

Then given Ve$ , 1 $ i  $ n , and 1 < k $ m, there e x is t s

WeS such that

m
(**) W C (jx j)V  U q y j(j(F ^ )x {q (3 ^)})) U (jU^({q(®^)}xj(Gj^)))U A.

But (jx j) V = (j(E )xj(E )) so that (**) reduces to

(***) [(j(E )x j(E ))fl ŸI U (iy ij(F p x {q ( g p } )U  (^y^{q(®j^}xj(G^))Ui
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Since *E®-jj (̂E) is  dense in for each we have

i^ q ( 0)] n  C^-j^(E)) f  0. Let 'S'éî^ be such that H o 'hC'^?, H 

symmetric, and choose xeE so q(x)ej^(E). Then there ex ists  

q (3  )e'S®_j^(E) such that (q (x), q(8 ) ) ^ .  Clearly q(x) =f 9 (8  )

and since ̂ i s  separated, Q {'Tj /̂eS }̂ = A so there ex ists

such that (q (x), q( Q ) ) ^ .  But so there ex ists

q( @ )e^-j^(E) such that (q (x ), q(®))e1?^1^. Clearly q (3  ) f  q(® ) 

and q ( 3 ) >  q(@ . Since "H" is  symmetric ( q ( 3 ) ,  q(x))e*H‘

and hence (q( 8  ) ,  q( ®)) e IT “ (U fl H) C  W. But q ( 3 )  q(@) and

q( g ) , q( l3)e^®-jj^(E) and since each se t of the form given in (**) con

tains no pair of ( q ( 3 ) ,  q(® ))  th is is  a contradiction. Hence

A
The co llection  of uniform spaces (E,$) such that ^ -j^ (E )  is  

dense in  is  not vacuous. Consider, for example, the se t of rationale  

with the usual uniformity. Then E = E = R, the se t of real numbers.

Corollary 3 .9 . Let (E,$) be a separated uniform space with the separated

completion (2®,*^). I f  for each "vej® there ex ists  q( 8 ) >q( ® ) ^ ”j]^(E) ,

q ( 8 )  4 q(®)  and (q(8 ) » q(® ) ) é^ then > j ï ^ j  •

Proof; This resu lt follows from the proof ^ v e n  for Theorem 3 .9 .

We may now draw several conclusions about the W.-completion:

(1) The f i l t e r  given by fl { ' F | i s  s t i l l ,  in  general, coarser 

than This resu lt follows from the fact that the generators

of n  { ’i'l'i'e } again contain no pair (q (g  ) ,  q(@ )) such that

q ( g )  + q(@) and q ( g ) ,  q (@ )ef-j^ (E ). I f  fl I i s  

a uniform space then i t  is  precisely  » the fin est  uniform
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space coarser than

(2) Let (E, 3 ) be a dense subspace of a complete separated space 

(F ,U ) . Then, in general we cannot consider (F ,U ) as the 

W-completion of (E ,3 )*  A simple counter example is  obtained by 

taking the rational numbers together with the usual uniformity, 

(Q,$q). Then (Q, ) i s  a dense subspace of the reals together

with the principal uniform convergence space generated by the usual 

uniform structure of the re a ls , (R, ) .  But as we have shown

in Theorem 3 .9 . ,   ̂ 0 * l3  ’

(3) I t  is  well-known that in the category ibe corre

sponding universal mapping problem whose so lu tion  gives the W-com

p letion  is  equivalent to the following statement:

A completion of a separated uniform space (E,$) i s  a complete 

separated uniform space (^,T) and an in jec tiv e  uniformly continuous 

map j : (E,$) ->■ such that j(E) is  dense in ; and,

given any complete separated uniform space (B,Y) and a uniformly 

continuous in jectiv e  map f  : (E,$) -► (B ,f) such that f(E) is  

dense in (B,y) then there ex ists  a uniform isomorphism 

f  : (e ',^  -*■ (B,Y). I t  is  clear from (2) that the two statements 

are not equivalent in the category (2̂ , j.) .

(4) Another consequence which is  connected to completions is  that a uni

formly continuous map from a dense subspace of a uniform convergence 

space to a conçlete separated uniform convergence space can not, in  

general, be extended to the en tire space. As a counter example con-

L 'o ]
sider the space mentioned in (2 ) , (Q, {[$ ) and the uniform
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convergence space | |^ ] ]  ) • i  : (Q, |T$q1| ) ->■ )

be the id en tity  map. Then clearly  (Q, ) is  dense in

and i  i s  uniformly continuous to a complete sepa

rated space , 1 ^ 1  ) but i  can not be extended to

These consequences of the completion we have given show that the 

completion theory for uniform convergence spaces has several "unfriendly" 

properties. Not the le a st  of the properties is  the fact that the comple

tion  does not agree on the smaller category (U A lso, the

resu lts given in  (2) and (4) make i t  d i f f ic u lt  to answer questions such 

as; "Is the conçletion of a product o f uniform convergence spaces uni

formly isomorphic to the product of the completions?" In the next section  

we define a new category by restr ic tin g  the maps of the category 

(3S q, ^ , X ) -  In th is  category a completion is  obtained which agrees on

the smaller category (U q, ^ q, o) with the usual completion.

3 .4 . Strong Uniform Continuity. Let (j> : (E ,3 )  ->■ (F, U ) where (E ,3 )  

and (F, U ) are uniform convergence spaces. Then ()> is  strongly uniformly 

continuous i f  and only i f  3 e w h e r e  y 3 is  the f in e s t  uniform

space coarser than 3 . The map (p is  ca lled  a strong uniform isomorphism 

i f  and only i f  ÿ is  a h i j action and (ji and  ̂  ̂ are strongly uniformly 

continuous.

Theorem 3.10. Let <(, : (E, 3 )  -»■ (F, U ) and tp : (F, U ) ^ (G ,B ) be

strongly uniformly continuous maps. Then ij/oij) is  strongly uniformly con

tinuous .

Proof: Since ÿ is  strongly uniformly continuous (<j>X(j))y U . Hence
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((j)X(l))y 3^ WU and we have ((j)>=ij))vi3  ̂ U . But ij; is

strongly uniformly continuous so Ue2S and (̂ %̂ ) 3 =

(tj)»(j)xi|)o(j))y 3 e 2B. Thus i(/o(̂  is  strongly uniformly continuous.

Let *f|C denote' the co llection  of a l l  strongly uniformly continuous 

maps. Then i t  follm fs from Theorem 3.10. that (® qj'TTI.°) is  a category

where ° is  usual function composition.

Let (|) : (E, 3 )  (F ,U ) be strongly uniformly continuous. Then

for $E3»* )  p 3 and hence ((j)x(j))$e U . This shows that ((jixiji) 3CU 

so that (j) i s  uniformly continuous. Thus TTL C  Note that strongly

uniformly continuous maps preserve Cauchy f i l t e r s .

Theorem 3.11. Let $ and T be uniform structures on E and F respec

tiv e ly  and le t   ̂ : (E, (F, |[T]j ) .  Then ij> is  uniformly continuous

i f  and only i f  (|> is  strongly uniformly continuous.

Proof: The map <{) is  uniformly continuous i f  and only i f   ̂ Y.

But p( |[$]| ) = $ and the resu lt is  now clear.

Thus , the category ( contains ( U g , as a sub cate

gory. A lso, (SSqjITI»®) has several properties which do not hold in 

( y ,  j.) as we w ill  now show.

Lemma 3 .8 . Let (j> : E ->• F and le t  $ be a uniform structure on E. I f  

<j) i s  in jectiv e  then (<j)X(|))$n [A] is  a uniform structure on F.

Proof: The f ir s t  two properties of a uniform structure are obviously

sa t is f ie d  by (i|)X(j))$ f | [A]. Since <l> is  in jec tiv e ,

(*x*)V « (*x$)W = (*%*) (V o W), for a l l  V.WCExE,

and hence 0  lAj) o ((<j»xy)$ D [A]) = D [A] so that
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((j)X(ji)$ n  [4] i s  a uniform structure.

Theorem 3.12. Let if, : (A,3 ^ ) (F,U ) be a strongly uniformly contin

uous in jectiv e  map from a dense subspace (A ,3^ ) ( E , 3 )  to a com

p lete  separated space ( F , U) .  Then there e x ists  a unique extension ^  

of * to ( E , 3 J .

Proof: Since 6 is  strongly uniformly continuous (((ix(j))p3^s U . Also,

[a] e U  so (‘I>,x(|>)y3̂  n  [ A ] e U  . Thus, from properties of uniform spaces 

i t  follows that there ex ists  a unique map

i  :  ( E , u 3 )  -*■ ( F , ( ( | i x < p ) p 3 ^ n  [ A ] )

such that <|> restr icted  to A is   ̂ and <|i i s  uniformly continuous.

( I t  is  obvious that i f  (A,3 ^ )  is  dense in ( E , 3 )  then (A ,p3^) is  

dense in ( E , p 3 ) - )  Hence ((|ix,j,)p 3 E U so (|) s a t is f ie s  the conclusion

of the theorem.

We may now consider completions in (32g/TTZ,») .  Thus, a c-comple- 

j^ton of a uniform convergence (E, 3) is  a pair ( k , ( E ^ , , where k 

i s  an in jectiv e  strongly uniformly continuous map from ( E , 3 )  to 

(E^, "^) and is  a conçlete uniform convergence space, such

that the following condition holds:

(C ) Given any pair ((j),(B,U)) where  ̂ is  a strongly uniformly 

continuous map from ( E , 3 )  to a complete uniform convergence space 

( B , U ) ,  then there ex is ts  a strongly uniformly continuous map

(p : ( ^ ,  -> ( B , U  ) such that (ji o k = (j).

For a separated space ( E , 3 )  we require a separated completion in  

which case the c -complet!on is  unique. For the remainder of th is section
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we consider only separated spaces.

I t  i s  not d if f ic u lt  to construct a c-completion of a space ( E ,$ ) .  

Thus, le t  = C where % is  the equivalence rela tion  defined above.

Let k : E : : k(x) = q(x) where, again, q(Q ) = {® Then

k is  obviously in jec tiv e  since (E ,$ )  i s  separated. One can verify  

that the separated completion of the uniform space (E,y 3 )

w ill  give a c-completion of (E,3 ) in  the sense that (k,(S*^, ^]| ) )

i s  strongly uniformly isomorphic to the unique c-completion.

We now have several resu lts about the c-completion;

Theorem 3 .13. Let (B, U) be any separated complete space and 

(j: : (E, 3 )  (B,U ) an in jec tiv e  strongly uniformly continuous map such 

that (|)(E) i s  dense in (B ,U ). Then (B, U) is  strongly uniformly 

isomorphic to (E^, .
A

Proof: From (C ) i t  follows that there ex ists  a unique strongly unir

formly continuous map <f • (B,U ) such that (f> o k =

Since i()(E) is  dense and (B ,U ) is  complete and separated i t  follows

that ÿ is  a b ijec tio n . But c learly  f = <|i |̂(j)(E) is  a strongly uni

formly continuous map from ((p(E) , U bo (2"", 3^) and by Theorem

3.12. we may extend f to a strongly uniformly continuous map f  on

(B, U). But clearly  ij)  ̂ = f so (|i is  a strong uniform isomorphism.

This theorem immediately gives the resu lt that i f  (E,3 ) is  a 

complete separated space with a dense sub space (A, 3^) then ( E , 3 )  

is  strongly uniformly isomorphic to ( ^ ,^ ^ ) .

A lso, i t  is  obvious from the construction of a c-completion that 

th is completion agrees on the smaller category (U with the
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usual completion»

Let {(E^, be a co llec tio n  of uniform convergence spaces

and X denote the product space. Let 3^ )) denote

the completion of (E ^ ,3^) for each aeA. Then

X : (><E^,x3^) -»■ ( ) ^ ,  x'3' )̂ :: (xk^) (f) = g where g(a) = k^(f(a)) 

for each a is  a strongly uniformly continuous map and (xk^) (xE^) is  

dense in  *3^). Thus ^3^) is  strongly uniformly isomorphic

to (x R ,a a

Thus, the c-completion of a uniform convergence space gives a stronger 

completion theory than the completion defined in the f i r s t  part of th is  

chapter.



CHAPTER IV

COMPACTIFICATIONS OF CONVERGENCE SPACES

I t  is  well-known that compactness of topological spaces m a y  be 

defined in  terms of convergence. Thus, a topological space is  compact 

i f  and only i f  every u ltr a f i lte r  converges or i f  and only i f  every uni

versal net converges. Hence, compactness is  a completeness property.

In convergences spaces, a convergence space is  compact i f  and only i f  

every u ltr a f i lte r  converges. I t  is  natural to ask i f  every convergence 

space can be embedded in a contact convergence space. We give an affirm

ative answer to th is question in th is chapter.
* *

We w il l  consider a general compactification (E ,t ) of a conver

gence space ( E , t )  which is  "universal" in the sense that any compact

principal T̂  space which contains (E,t) (and (E,t) must be com-
* *

pact and T )̂ as a dense subspace is  a continuous image of (E , t ) .

L astly , we w ill  consider compactifications which have specia l pro

p er tie s . For exançle, we w ill  obtain a T^-compactification for a 

T^-convergence space and a T^-compactification of a T^-convergence space. 

D efin ition  4 .1 . A compactification of a convergence space ( E , t )  is  a 

pair consisting of a compact convergence space (^,Ÿ)  and a

function (() : ( E , t ) -*■ (E*,?) such that <() is  a homeomorphism of E onto 

(j)(E) and (j>(E) is  dense in ) .

50
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Theorem 4 .1 . Every convergence space has a com pactification.

Proof: Let (E,t) be a convergence space and le t  " denote any object

which is  not an element of E (for example, {E} ) .  Then consider the 

se t

= E U {“}. For xeE^, t „ ( x )  = <

(

{ [ 3 ] jOsTx} > i f  

IF (E„) , i f  X =■ » ;

defines a convergence structure on E .̂ I t  is  immediate that 

i s  compact since every f i l t e r  r^-converges to “ and hence every u ltra

f i l t e r  converges. I t  is  also clear that for (ji : (E ,t) -> : :

(j) (x) = x,(|)(E) is  a dense subspace of atid that (|i i s  a homeo

morphism onto (j) (E). Thus ( „)»<!> ) i s  a com[)actification of (E,% ) .

This f ir s t  theorem is  of l i t t l e  in terest except to exh ib it a com

p a ctifica tio n  of any convergence space whatsoever. We now turn our

attention  to more in teresting  com pactifications.
*

Let (E,t ) be a convergence space, E the co llec tio n  of a l l  u ltra-
A

f i l t e r s  on E and : (E,-r) ->• E :: $(x) = x. I t  is  well-known that x

is  an u ltr a f i lt e r  so that (ji i s  w ell-defined . Let us consider the map

* ^ (E )  ĵSL(E ) which is  defined by A = { QeE | A eJJ} . We w ill

denote by E the se t { x| xtE} so that E C E  . Note that 

(|) = * I { {x} |xeE} and (j)(A) = A fl E for each A C E .

Theorem 4 .2 . The map * has the following properties:

( i)  0 * = 0 ;

( i i )  A C B  implies A C B   ̂ for a l l  A, Be "pi(E) ;

( i i i )  (A flB )*  = A*n B*, for a ll  A, Be^(E);

(iv ) ( A U b)* = A*UB*,  for a l l  A, Be7^(E);

(v) (E -  A)* = E* -  A*, for a l l  As-pCE).
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The proof of th is theorem is  immediate from the d efin ition s of 

f i l t e r ,  u ltr a f i lte r  and *.
*

We now define a convergence structure on the se t  E : Let

{ 0 I @ S for some & etx}

T* ; :: t (gp=< i f  X = 3 eE,

{ ®eiF(E*)| i f  QcE*-E,

where for Oe ip(E ), 3 = f{A |Ae3 ) ] .

*  *We w i l l  next show that t  i s  a convergence stru ctu re  on E and

that (E ,T ) i s  a co n ç a c tific a tio n  for (E ,t ) .
* *

Theorem 4 .3 . The mapping t i s  a convergence structure on E .
#

Proof: For each 3e  E we have { 3  ) ) 3  sin ce  A e 3  i f  and only
*

i f  A e3* C learly t ( 3 )  i s  an in te r se c t io n  id e a l s in ce  from Theorem 

4 .2 . we have ( 3 0 ® )  = 3  0 ®  and tx i s  an in te r se c t io n  id ea l

for  each xeE.
*  *

Theorem 4 .4 . The map ÿ : (E ,t) ̂  (E , t ) induces a homeomorphism of

(E ,t) onto (<|)(E), T |4)(E)).

Proof: The map  ̂ i s  1 -  1 sin ce  x = ÿ i f  and only i f  x = y , and

obviously (j) i s  a map onto E = (ji(E). Thus i t  remains to show that ^

■"1 *  " 
and if are continuous. For 3 erx, xeE we have (|)(3 ) = [{A Q E |At 3 )]

sin ce  for any se t  A C E ,  if (A) = (A 0  E ) . But i t  i s  c lea r  from th is

re la tio n  that [if(3)]g* ) 3  so that if ( 3 ) st(x) where t = t |e . Thus

(f is  continuous. Let S) ex ( ÿ ) . Then E e % and [ ^ ] ex (ÿ) „ But

then [ ) 3  for  some 3ex y , and S )  ( 3  ) • Then

-1  -1  * Ê
if ( & ) ^ i f  ( ( 3  ) . )  ' We note now that

K
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O " ) . )  = [ { r ^ (F * n  E )|F *eg*}] = [ { f | f * e 3 *}] = g .
E

Hence <|)~̂ ( ) g so ij» ^(g ) ETy. This completes the proof that (j)

is  a homeomorphism of (E ,t) onto (E ,t) .
* *

Theorem 4 .5 . The space (E,t) i s  dense in (E ,x )•
is is *

Proof; Let g e E . We w ill  exh ib it a f i l t e r  ®eF  (E ) such that E s( 

and ® ex ( g ) . By d efin ition  0 ex ( g ) .  Clearly

®= [{F*n e IFe g } ]e F  (E*) and ® $ g * so ® e x * (g ) .  But Ee@

so E is  dense in (E ,x ) .
* *

Theorem 4 .6 . The convergence space (E ,x ) i s  compact.
* * 

Proof: Let 8  be an u ltr a f i lte r  on E . Then we assert that “ eE

where Si =  {H|H e S }:

(1) Clearly {H|H*e S&} f  0 since Ee{H|H*e S} and

0 I {h |h  e &} since 0 = 0  and S is  a f i l t e r .

(2) I f  A ,  B  t St then A , B e $  so from Theorem 4 .2 . ( i i i )  i t

follows that (A n  B ) = (A n  B) eS so A fl Be R.

(3) I f  A t  St, B D A  then i t  follows from Theorem 4 .2 . ( i i )  that 

B D  A and since A e & , B e &  so B e^ .

Thus, R s|p(E).

(4) A U B e R i f  and only i f  (A (J B) = A (J B e % and since â
*, * * 

i s  an u lt r a f i l t e r ,  A (J B e S i f  and only i f  e ith er  A tS3

or B eS); hence, i f  and only i f  A eR or B eR. Thus ReE .

* *,Now the theorem is  obvious; since Sj i R , S & e x ( R ) .
* *

As a resu lt of the previous four theorems, ((E ,x ),(ji) i s  a 

conçactification  of (E ,x). This com pactification is  of some in terest  

since i t  is  a "universal" com pactification for principal T^-convergence
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spaces. More p rec ise ly , any principal Tg-compactification of a princi-
* *

pal Tg-convergence space is  the continuous image of (E ,x ) .  In order 

to  prove th is resu lt we f ir s t  prove the following two resu lts:

Lemma 4 .7 . Let f  be a map from a se t E to a set F. Then for any

u ltr a f i l t e r  ® on F ) f ( i l )  for some- (Je |p(E ), there e x ists  an

u ltr a f i l t e r  R on E such that f ( R) = ® , and R (J 

Proof: Let 0  be an u ltr a f i l t e r  on F and ^e |p(E) such that

f  ( (J ) ) ® . Then, in  particu lar, f(E) e® so that ^f (E)

Then note that (J $ S for Ô = [{ f  (̂G f) f(E)|G e®}] eF(E) where, 

of course, f  ^(A) is  the complete inverse image of A. But clearly  

f ( f  (̂G n  f(E )))=  G n  f(E) so f (S  ) = ) 0  . But there ex ists

an u lt r a f i l t e r  Re|p(E) such that R ) (J ) S and hence 

f ( R ) ^ f ( S î )  ) 0 .  Since ® i s  an u ltr a f i lte r  f  ( R ) = ® . That 

R  ̂ (3 i s  obvious from our choice of R .

Theorem 4 .8 . Let f  be a qap from a convergence space (E,o) to a

principal convergence space (F,%). Then f is  continuous i f  and only

i f  (*) for each xeE,Reax, R an u ltr a f i lt e r  implies f ( R )e x (f  (x ) ) .

Proof: I f  f  i s  continuous (*) is  obvious. Conversely suppose (*)

holds. Let (Jea(x). We must show that f  ((J )ex (f (x ) ) . I t  i s  w ell-

known that every f i l t e r  0 on a se t H is  the infimum of a l l  u ltra

f i l t e r s  R such that R ) 0. Thus le t  0  be any u ltr a f i lte r  on

F such that 0  ) f ( (J ) .  By Lemma 4 .7 . there ex ists  an u ltr a f i lte r

R m ' R m )  3 f(R   ̂ ) = 0  . Then i t  follows from (*) that

f (  Ex(f (x)) , and from an ea r lier  remark f((J ) = H^fCRgj | ® ) f ( (J)

The theorem now follows since (F,x) i s  principal and hence f (  (J )ex (f(x )) .
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Theorem 4 .9 . Let ( E , b e  a convergence space and (F,a) be any

principal T^-convergence space which is  compact and contains (E^t) as
* *

a dense subspace. Then (F,o) i s  the continuous image of (E ,t ) .

Proof: Consider the correspondence p : (E , t ) ->■ (F,a) ::p ( H )  =

where [ R]eo(x ^ ). This is  a w ell-defined correspondence since every 
*

ReE converges on F and x^  i s  unique since (F,a) is  T .̂ Let

yeF. Since E is  dense there ex ists  g e IF (F) such that E cQ and 

g e o (y ) . But 3 g is  contained in an u ltr a f i lte r  R on E so

y = n ( R). Thus n  i s  onto. A lso, n |i|i (E) is  1 -  1 since p (x) = x.

I t  remains to show that p is  continuous. Let S) be an u ltr a f i lt e r  on
*  *  it

E such that Sex ( R). Then @ ) R and i t  follows that the u ltra

f i l t e r  3B = { H| H G & } is  p recise ly  R . But p (S )eo (x j^ ) so by Theorem 

4 .8 . we are done.

Theorem 4.10. Let (E ,i) he a principal convergence space. Then

(E , T ) is  principal.

Proof: This is  immediate since for xx = we have x (x) =
*  *  *  • 

for xeE and x ( R) = [ R ] for R eE  -E.
*  *

In general (E ,x ) is  not T̂  even i f  (E,x) is  T .̂ In fa c t , i f

there ex ists  an u ltr a f i lt e r  R such that R  ̂ Ê and Rex x for some 
#

xeE then f ^ e x  (x) so that (E ,x ) is  not T .̂ We w il l  now give a 

T^-compactification for a Tj^-convergence space.
* *

Let (E,x) be a T^-convergence space, (E ,x ) the compactification

defined previously and le t  Ê  denote the subset of E defined as

follow s: Ê  = EU{R E E I R^JU^tx} . We w ill  denote by x̂  the conver-
*

gence structure induced on by x .



56

Theorem 4 .11 . Let ( E , t)  be a convergence space. Then is

a com pactification of ( E , t)  which is  T .̂

Proof: I t  is  immediate from Theorem 4 .4 . that (E, t̂ ) i s  homeomorphic

^  I  *to (E ,t) where |E. A lso, i t  follows from Theorem 4 .5 . that

for (j) : (E ,t) ->• (Eĵ .t̂ ) : : $ (x) = x,ij) (E) is  dense in (E^,t̂ ). I t

remains to ver ify  that ( E ^ , i s  compact and T .̂

(a) i s  compact: Let Si be an u ltr a f i lte r  on E .. We assert
*

that 3 = {A IA n  Ê  eS) is  an u ltr a f i l t e r  on E.

(1) Clearly 0  ̂ g since 0  ̂ Si and 3 t  since E ĉ S .

(2) I f  A e 3 , B D A  then A*fl and B* D  A* so A*n Eĵ Cb*DE ĵ , 

Hence B e 3 since S is  a f i l t e r .

(3) I f  A, B e 3 then from Theorem 4 .2 . ( i i i )  we have (A f | B> (1 =

A*n B* n Ê  = (A*n E )̂ n  (B *n But A*n e^, B*n e^e s> so

th e ir  in te r se c t io n  i s  a member of S and hence AO B e3*

(4) I f  A U B 3 then from Theorem 4 .2 . ( iv )  we have (A U 9  A Ê  =

(A*U B*) n Ê  = (A* n E^) u (B* n  E^)e S .

But % i s  an u l t r a f i l t e r  so e ith e r  A H E^g % or B A E^eS . Hence

e ith e r  A e 3  or B e3. The r e la tio n s  (1) -  (4) show that Qc E . I f

3 sE^ then we are through for then S>et 2̂ (0 ) '  ([ S ]  )  ( f  and

tS ]g *  =S .)

Suppose that 3  ̂ E^. Then there e x is t s  xeE such that 3 t tx  and

[ & ] )  3  so [S0] et (x) .  But again ( [ ^ ] ) g =  & , & et-̂ x and xeE^.

So in  e ith e r  case Q T^-converges to  a p o in t o f  E^, and hence (E^,T^)

i s  compact.

(b) We now show that (E^,T^) is  T^. Suppose R ET^(B) for E E .̂

Then either [ 3 ]   ̂ ® for  ̂ or [ R ] ) 3 for some
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gETXQ, XqEE.

I f  [ R] ) 22 then for each Veffi, { R} C  V so that Ve R .

Hence BCR or 33 s; ft and since ft , 23 are u ltr a f i lte r s

ft =53 .
* A *

I f  [ ft]  ̂ 0 J where S gtKq, XqEE, then for each ,{ ft]CF 

so that F eR . But then ft  ̂ 3 and hence ftEtx^. Since (E,t) is  

and fteE^ is  follows that ft = Xq =23 . Hence (E^,T^) is  a 

T^-convergence space.

Theorem 4 .12 . Let (E ,t) be a T^-convergence space. Then the space

(E^,T^) is  a com pactification of (E ,t) .

Proof: From Theorem 4.11. i t  follows that i|) : (E,x) ->■ (E^,x^) : : x ->• x

is  a homeomorphism, E is  dense in  (E^,t )̂ and (E^,t )̂ is  compact.

Thus, a l l  that remains to be shown is  that (E^,x^) is  T .̂ Thus, suppose

QET (̂ ft) n  T^(33). We now have three cases as follows:

(1) ft , 33eE^-E: Then [%] )  ft ,23 . Again, le t  3 = {A|A e[ & ]}.

I t  follows as in  Theorem 4.6 that 3 eE . But then 3 3 ft and

3 5 23 so that 3 = ^ = 23 .
® * X

(2) ft EE, 23EE -̂E: Again, 3 = ft and [ Sî] ̂  ® for some ®etx.

‘Where x = jjj. But then g  ̂ @ so that 3^^^- This contradicts

the assumption that g = ReE .̂

(3) R , ÎBeE: Then i t  follows from, the fact that (E,x) is  T̂  that

T^( R) n  t^(23) = 0 .

These three cases show that i f  ft , 23eÊ  and ft  ̂23 then

T (̂ ft) n  23) = 0 and hence that (E^,t )̂ i s  T .̂

The reader should note that the continuous functions, C((E,t) , (F ,o ) ) ,
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from a convergence space (E,x) to a convergence space (F,o) are

related  to the continuous functions C((E,o)t) ,  (F,wa)) from the associ

ated topological space (E,WT) to the associated topological space 

(F,wo) in the following manner: C((E,wx), (F ,w o))c  C ((E ,x), (F ,a )).

Theorem 4 .13 . Let f  be a real-valued bounded continuous function on

(E,t) .  Then f may be extended to a real-valued continuous bounded
*  *  *  

function f  on the com pactification (E ,t ) .

Proof: Let f  : ( E , x ) ^ R : : f ( g )  = in f  (sup f (x ) ) .  For 3 fixed ,

Fe 3 xeF

le t  a = in f (sup f (x ) )  and 3 = sup ( in f  f ( x ) ) . Then we assert

Fe 3 xeF Fe 3 xeF

a = 3- We always have in f (sup f(x ))  3 sup (in f f(x ))  so a 5 3 . Let

FeO xeF F̂ J xeF

e > 0 be given. Then by the d e fin itio n  of a ; there ex ists  F^e 0 such

that a $ sup f(x ) $ a + .̂
xeF^

By the d efin ition  of supremum, there e x is ts  x^eF  ̂ such that

a -  3 <f(x^)< a + e. Consider the se t  ={% | a - z <  f(x) < a  +e}. The

remark ju st made shows that B is  non empty. We assert that B e 3 :
e e

Suppose B^^3* Since 3 is  an u ltr a f i lte r  E-B^fc'3 and hence

(E-B ) n  F̂  =j= 0' We now have the following conditions for xe(E-B^) 0  F :̂

(a) xeF^ implies f(x) < a + t;

(b) xeE-B^ implies f  (x) $ a -  E or f(x )§  a + e.

Thus, for xe(E-*B ) F̂  , f(x )g  a - e  and hence sup f (x) $ a -  e
 ̂ xeF  ̂ n  (E-B Ji  c.

which contradicts the d efin itio n  of a . Therefore B e 3»
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Now i t  follows that in f  f(x )  ̂a -  e so that ot-e  ̂ 8. Since
xe B

E

e > 0 was an arbitrary p o sitiv e  real number, a $ 8 and thus a = 8-
* * 

We note immediately that f  (x) = in f sup f(y) = f(x) so that f
xeF yeF

• *
is  an extension of f .  (Of course, E has been id en tified  with E C E ) .

Also, Ee 3 so sup f(x) ) f  ( 3 )  $ in f f(x) and since f  is  bounded,
xeE xeE

so is  f  .

I t  remains to show that f  is  continuous. Let  ̂e F (E ) be such

that ^ex ( 3 )  for geE . Then i t  su ffices  to show that f  ( § )  con

verges to f*( 3 )  or that f  (& ) {f ( 3 ) )  where ^ ( f  ( 3 ) )  is  the

neighborhood system of f  ( 3 )  in the rea ls . Hence, for e > 0 we must

find He ^ 9 f*(H )C  (f*( 3 ) -  e , f*( 3 ) + e) . We have the following two 

cases:
• *

(1) 3 Then R ) 3 - The se t (defined earlier ) is  a member

of 3 so B^y^e 3 ‘ Hence, there ex is ts  He S such that HClB^y^

and then f*(H) C  f*(B*yg) C  [f* ( 3) " f»  3 ) + "̂3 C  (f ( 3 ) -  e ,

f * ( 3 ) + G).
• *

(2) 3 sE. Then % ) 0 for some 0 exx where 3 = x. Since f is

continuous, f(@ ) i "\f  ( f (x ))  = ^Y"(f (x )) .  Thus

G = (x lf  (x) -  $ f(x ) $ f (x) + -J }

is  a member of 0  since there ex ists  G^e® such' that

f(G^) C (f (x )  -  J  , f(x) + J  ) = (f*(x) -  Y , f  (x) + ^ ) 

so G 3  Ĝ  and hence Ge® . But again, there ex ists  He§ such that
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HCG so f*(H )C  f* (G )C  (f*(x) -  E, f*(x) + e ) .
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