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CHAPTER I
INTRODUCTION
1.1 Statement of the Problem

In the past, minimum order transfer functions were considered
optimal for filter designs. This is due to the fact that in the passive
filter design the number of reactive elements is closely tied to the
degree, n, of the transfer function, and that in the active and digital.
filter designs, in terms of first and second order cascade sections, the
number of components depends upon the degree n., For a given class of
functions such as Chebyshev, the poles will be closer to the imaginary
axis in the s-domain for higher order functions. In the z-domain, the
poles will be closer to the unit circle for higher n. Therefore, any
change in the parameter values in the active or digital filters may move
the poles into the region of instability [RA 1]. In addition, z-domain
transfer functions with poles close .to the unit circle will exhibit high
output roundoff noise variance [GO 3], and the tolerance limits on the
components of the active and passive filters will decrease with
increasing n. Since the cost of the circuit components in the passive
and active filter designs, in general, is inversely proportional to the
tolerance limits, it is important to consider transfer functions which
have poles away from the imaginary axis [GE 2].

In the digital filter design, the coefficient bit requirement

increases as the poles approach the unit circle. Considering the cost



aspect of filter designs, it is appropriate to find sub-optimal transfer
functions which have poles away from the imaginary axis in the s-domain
and away from the unit circle in the.z-domain:

The worst case tolerance limits on the component values in the cas-
caded active filter design and coefficient bit requirements in cascaded
digital filter design can best be estimated by considering the second
order section corresponding io the dominant poles. For the dominant pole.
pair.located at s = -a + jb, the corresponding quality factor‘Qd is
usually defined as Qd = a2 + b2 /2a [TE 1]. It is clear that the
closer the poles are to the imaginary axis, the larger Qd becomes.

In this thesis, the notion of modified transfer functions with
dominant pole multiplicity greater than one is used in order to reduce Qd
and hence move the dominant poles away from the imaginary axis. These
modified filter functions must always satisfy the pass-band and stop-band
specifications, and they are here suggested as alternatives to the
classical filter functions. The modified functions considered are the
modified Butterworth and modified Chebyshev functions and are basically
derived from classical Butterworth and Chebyshev functions, respectively.

Ideally a large number of bits is required to realize the coeffi-
cients (multipliers) of the discrete function, but due to the limited
arithmetic word-length, the coefficients are rounded to the nearest
quantization step. This change in coefficient values will result in an
undesirable change in the pole location; therefore, it is important to
use the minimum number of bits which can satisfy the pole tolerance
limits. In this thesis a method is developed to estimate the coefficient
bit requirement.

Several methods for calculating the digital filter output noise



variance have been suggested [MI 1]; all of these methods rely on the
z-domain transfer function for noise calculation. This requires that the
s-domain filter.function be transformed first into the z-domain prior to
noise calculation. In this thesis, a method is given which relates the
output noise variance computation directly to the s-domain filter trans-

fer function and the filter driving point impedance.
‘1.2 Review of the Literature

Earlier, it was pointed out that there is a definite need for
deriving sub-optimal transfer functions. This created an interest in
deriving transfer functions with higher degree and lower dominant pole
quality factor Qd than is given by the original minimum order transfer
functions [GO 1, KO 1]. These higher degree functions were obtained
numerically. Kaiser pointed out that there is a definite need for
developing analytical results in this area [KA 2]. Budak and Aronhime
[BU 1] introduced the transitional Butterworth Chebyshev filters with
reduced Qd; this function is a combination of both the Butterworth and
Chebyshev functions.

Recently, Premoli [PR 1] used the notion of multiplicity in the
dominant poles to obtain analytically the multiple critical root maxi-
mally flat (MUCROMAF) polynomials for low-pass filters with lower Qd and
higher degree than the Butterworth functions. In addition, Premoli
[PR 2] recently suggested a new class of multiple critical root pair
equal ripple (MUCROER) filtering functions which possess reduced Qd and a
higher degree than the corresponding Chebyshev functions.

In considering the digital filter realization of transfer functions,

the word-length requirements and output noise variance have been



investigated [KN 1, GO 3]. Several methods.for computing the output
roundoff noise have been suggested [JU 1, JU 2, KN 1, GE 1, AS 1, MI 1].
An approach was also proposed for calculating the output roundoff noise
variance by transforming the z-domain function into the s-domain [KI 1,
GR 1].

It is well known that a digital filter, in general, has a low output
noise variance when it is realized in terms of first and second order.
cascade sections [KU 1]. 1In addition, the ordering of the second order
section for minimum output noise is important. Several numerical methods-
for reducing the digital filter output roundoff noise by selecting the
optimum section drdering have been presented [JA 1, LE 1, GO 2]. A
realization of the second order section with reduced quantization noise
at low frequencies was also introduced [GO 3, KI 2].

In the area of coefficient word-length requirement, Mitra and Sher-
wood have presented a method for word-length estimation by evaluating the
pole sensitivity with respect to coefficient changes due to quantization
[MI 2]. Crochier approached the same problem by using a statistical-
method for word-length estimation [CR 1]. In order to satisfy the
s-domain pole tolerance limits, White suggested a word-length estimation
procedure that depends on . the impulse invariant transformation [WH 1].

Cardwell [CA 1] attempted numerically to reduce the coefficient
word-length by using higher order transfer functions; he succeeded in
reducing the word-length at the cost of higher output noise variance.
Avenhaus [AV 2, RA 1] investigated numerically word-length reduction
using coefficient optimization techniques and higher degree functions;
the word-length requirement was reduced but a higher output noise

variance resulted. In this thesis, an attempt is made to reduce the



output noise variance without increasing the word-length requirement

(in many cases, lower word-length requirement results).
1.3 Technical Approach

The derivation of the modified Butterworth and Chebyshev functions
is based on the notion of multiple dominant poles. The reduction in Qd
is possible because the multiple dominant poles will complement each
other in giving the total high magnitude peak required originally by one
second order high Qd section., Since the dominant poles with multiplicity
equal to two give the maximum percentage Qd reduction [PR 1], further
study is directed to this case,

The approach used in deriving the coefficients of the mth order low-
pass multiple dominant pole modified Butterworth function Lm(s) with
reduced Qd’ given the nth order Butterworth function Hn(s) with m > n, is
explained in the following. Since lHn(jw)| is maximally flat at the.
origin, |Lm(jw)| must also be maximally flat., This condition requires
that the first (n - 1) derivatives of le(jw)|2 with respect to wz’be
equal to zero at w = 0. Due to the dominant pole multiplicity of .c, the
first ¢ -.1 derivatives of the denominator. of ['Lm(jw)l2 with respect to
w2 must be zero when evaluated at the dominant pole location. In addi-
tion, the denominator of |Lm(jw)| must equal zero when evaluated at. the
dominant pole location, To satisfy the pass-band specifications it is
required that ]Hn(jl)l = [Lm(jl)l, At w = 0, the magnitude |Lm(jw)|2
must also be equal to 1 or 1/(1 + 52) for odd and even m, respectively,
where ¢ is the ripple factor. The pass-band specifications will always
be satisfied, and a root locus approach is used to increase the transi-

tion region attenuation.



The coefficients of the low-pass non-equal-ripple mth order modified
Chebyshev functions (MCF's) with multiple dominant poles having signifi-
cantly reduced Qd are derived numerically by employing a new algorithm
called the physical method. In this algorithm the dominant poles of the
original Chebyshev function of order n (n < m) are replaced by multiple
dominant poles; the magnitude of every second order section is iterative-
ly adjusted until the pass-band specifications are met. Since the MCF's
are not unique; the classical least squares error algorithm is used to
derive the MCF's and the two methods are compared. By increasing the
dominant pole break frequency, intermediate modified Chebyshev functions
with higher transition region attenuation can be obtained at the cost of
increasing Qdo

Having derived the MCF's, a comparison of the digital filter output
noise variance and coefficient word-length requirement between the low-
pass nth order Chebyshev functions and the low-pass double dominant pole
MCF's of order (n + 2) is investigated. The output noise variance is
obtained after scaling and optimum section ordering as discussed by
Cardwell [CA 1], while the estimation of the coefficient word-length
follows a method derived in this study for the cases where the bilinear
transformation is employed. In the suggested method for noise computa-
tion, the bilinear transform is also used in relating the output noise
variance to the s-domain driving point impedance. The digital filter
realization considered in this study is in terms of first and second
order cascaded canonical sections [GO 3]. Fixed point arithmetic and

rounding of products before summation is assumed.



1.4 Organization of the Thesis

Chapter II presents an analytical method for deriving the coeffi-
cients of the modified low-pass maximally flat Butterwofth polynomial
with low Qd and multiplicity of the dominant pole pair greater  than one.
A root locus method is also presented to determine the modified Butter-
worth coefficients such that the attenuation of the transition region is-
increased.

Chapter III presents a new numerical algorithm (the physical method)
which determines the coefficients of a low-pass non equal-ripple MCF
function with multiple dominant poles and significantly lower Qd than the
corresponding Chebyshev function. For higher transition region attenua-
tion the physical method can also generate intermediate MCF's. The
results are compared with those obtained using the least squares error
algorithm.

Chapter IV presents the digital filter output roundoff noise com-
parison between the.Chebyshev and MCF functions. The suggested method
for output roundoff noise calculation using the s-domain transfer func-
tion and the filter driving point impedance is also given.

Chapter V presents a method for estimating the coefficient word-
length such that the s-domain pole tolerance limits are satisfied. The
digital filter coefficient word-length comparison for the Chebyshev and
MCF realization is also given.

Chapter VI presents a summary and suggestions for further study.

Appendices A, B, and C present the algorithms for the physical
method, the least squares error method, and for roundoff noise computa-.

tion.



CHAPTER II
MODIFIED BUTTERWORTH FUNCTIONS WITH LOW Q-FACTOR
2,1 Introduction

In active RC and digital filter designs, the precision requirement
of each second order section might dictate a constraint on the maximum
value of the dominant pole quality-factor Qd [HU 1, KA 1, TE 1].

In this chapter, a method is given to determine the coefficients of
a modified low pass maximally flat (at the origin) Butterworth polynomi-
al, with a lower dominant pole pair Q-factor using a higher order polyno-
mial with multiplicity of the dominant pole pair greater than one.

There has been some interest in deriving higher order transfer
functions with low Q dominant poles [GO 1, LO 1]. Most of these are
based upon numerical optimization techniques. It has been pointed out
that there is a definite need in developing analytical results in this
area [KA 2]. In a recent paper, the Multiple Critical Root Maximally
Flat (MUCROMAF) polynomials for low pass filters were proposed where
higher order polynomials with multiple critical roots were developed
[PR 1]. The coefficients were obtained by solving two polynomial equa-
tions and a set of n - 2 simultaneous linear equations in (n - .2) un-
knowns, where n is.the degree of the transfer function with no root
multiplicity. Thus as n increases, the number of simultaneous equations
to be solved increases.

Using this same notion of multiplicity in the dominant pole pair,



this chapter proposes an alternate method which specifies the coeffi-
cients needed with fewer number of equations; the number of equations
depends upon the dominant root multiplicity rather than the degree of the
transfer function [MA 1]. The same results that were obtained with the
MUCROMAF polynomials are obtained here, but with fewer equations. Compu-
tationally, the method presented here is superior to that presented in an
earlier paper [PR 1] when the multiplicity of the dominant poles equal to
two. A modification of this method to fit more stringent frequency

domain. specifications is also presented.
2,2 Problem Statement

Let

. 2 1
|0 (jw)|© = ——e
n- 1+ s2w2n

(2-1)

be the Butterworth function satisfying the pass and stop band require-
ments in the frequency domain. It is required to find a modified

Butterworth function

le(jw)lz = (2-2)

1+ ﬂz dZiw
i=1

which satisfies the frequency domain specifications with the constraint

that the magnitude function

H (ju) |2
F(mz) = 'E-Iri-m (2-3)

is required to deviate the least amount from unity for frequencies close
to w = 0 [HS 1]. Furthermore, the Q of the dominant poles obtained from

Equation (2-2) must be less than the specified Q. Let the specified Q be
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Qd° It is evident that this condition implies that m > n,

In the following section, modified Butterworth functions are
derived with the idea that the Q's of the dominant poles can be minimized
by having the dominant roots with multiplicity c greater than one. It is
clear that the magnitude of the dominant second order section of Hn(s)
will have a large overshoot for a low damping ratio, The reduction in Qd
is possible since the multiple critical poles complement each other in
giving the total high peak required originally by one second order sec-
tion in the Butterworth function. This results in identical second order
sections each with low Qd replacing the original high Qd second order
section. The resulting function is called modified Butterworth function,

since it is maximally flat at the origin.
2,3 Modified Butterworth Polynomials

The coefficients dZi’ i=1,...,m, in Equation (2-2) can be deter-
mined by observing the following interesting aspect of F(wz)c The func-
tion IHn(jw)Jz is to be approximated by a higher order function
|Lm(jw)|2o Furthermore, |Hn(jw)|2 is a maximally flat function and it is
required that |Lm(jw)|2 also be a maximally flat function. Therefore,
F(mz) must also be a maximally flat function. Since F(w) is a function
of wz = X, it can be expressed in terms of its Taylor's series about
w =0, in the form [HS 1],

F(x) = £00) + F'(0) X+ ++- + () (0) ll‘-jur

where

1),y _ dF
F (0) = ;'x—f F(X) x=0
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The maximally flat property of F(x) and its value at w = 0 implies that
F(0) =1

and that»Fcl)(O) =0 fori=1,...,n-1. This results in

d i ) .
(—~§01 ILm(Jw)| =0 for i = 1,2,*°+,n-1
dw

which implies that

[a N
]
o
n
.
"
o
1}
(=]

so that Equation (2-2) can be written as

. (2 1 1
ILm(Jw)| - m o 2(c-1) . (2-4)
1+ Z d w21 1+ 62 w2n ( z a w21)
. 21 i+l
i=n i=0

where the ai's remain to be determined. Let wy = (R + jI) be the loca-
tion of the multiple poles. Due to the pole multiplicity, the first

¢ - 1 derivatives of the denominator in Equation (2-4) will have a zero
at w = Wy These result in the following equations. The first deriva-

tive results in

2(c-1) .
’ZO @+ 1) a,,, wgl =0 . (2-5)
i=

The remaining derivatives result in

(m+i-1(@E-1Da + @+ il a wi +
2¢c-i-1 2k k-1 (2-6)
n+1i+k-1) 3, Yy I 1+3)=0
k=2 jek+l-i

i=2,3,*°°,c-1

In addition to these derivatives, the denominator in Equation (2-4) has a

zero at w = W. This results in the equation
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2(c-1) .
2 2 2i _
L+ e uy .2 a1 Yy =0 . (2-7)
i=0
At the cut off frequency, w = 1 (normalized), it is required that

IHn(jw)|2 = |Lm(jw)|2; hence

ag ta, tag e ta, o= 1 . (2-8)

By substituting a; from (2-8) into Equations . (2-5) and (2-7), and by
equating the real and imaginary parts of Equations (2-5), (2-6), and
g p q
(2-7) to zero, a set of 2c¢c simultaneous nonlinear equations in the 2c

. n. .
g3 cees Byl g results. There exists E-solutlons
n+1

G?f— if n is odd) to these equations, each of which corresponds to a

unknowns R, I, ay, @

multiple pole on one complex conjugate pole pair of Hn(s). In order that
the dominant poles correspond to the multiple poles, one has to initial-
ize the search subroutine used to solve the 2c equations with R and I
values close to the dominant pole values of Hn(s).

Next, let us examine the pass and stop band requirements.

Theorem 2.3.1

[Lm(jw)]2 satisfies the pass-band specifications; that is.

._;L_7§ <L Gwl]? <1 for 0<w<l
— m — —— —
1+ €

Proof

The constraints at the terminal points are evident from Equations
(2-4) and (2-8). Therefore, one needs.to show that for all w, 0 < w < 1,

2n 2(c-1) 2i

0< £ =w" ) ayw <l .
i=0

Thus it is sufficient to show that there exists no real wp such that



13

4

0<w <1andf'(w =
p ( p) du?

f(m)|w=w = 0. Differentiating f(w) with

respect to w2 and equating it to zero, it follows that

2(c-1) . ’
w22 {: .ZO (n+ i) a, W2l 0 (2-9)
i=

which has 2n - 2 roots at w = 0 and 4(c - 1) roots at w = wy = R+ jI
which is complex (see Equation 2-5)). Thus there exists no real wp such
that wp > 0 and f'(wp) = 0. Therefore, the proof follows.

The above discussion indicates that the pass-band requirements will
always be satisfied. The stop-band requirements will be discussed later.

First, a special case is considered.

2,3.1 Double Pole (c = 2) Case

It can be observed that the rate of Qdc drop is largest in the case
of ¢c.= 2 [PR 1], where Qdc is the Q-factor of the dominant pole pair. It
is therefore necessary to investigate this case of ¢ = 2 further. It
will be demonstrated that the 2c = 4 equations needed to solve for the

coefficients a,, 3z, R, and I can be reduced to two equations in two

3’

unknowns R and I.

The 2c = 4 equations are the real and imaginary parts of Equations

(2-5) and (2-7). Solving Equation (2-5) for wﬁ and using wy = R+ jI.
and a, = 1 - a; - a, (Equation (2-8)), the following equations result,
n(l - a, - a,)
2 2.2 3 %
(1 + R = — yEm (2-10)
(n + 1a
1% - 2 £ . (2-11)

- 2(n + 2)a3

Now, from (2-10) and (2-11), a, and a; can be expressed as.

2
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2012 - R (n + 2)a,
a, = ——) (2-12)
a, = nn + 1) (2-13)

e Dm+ @ R e+ 1) + 2n(12 - RO (n + 2)

Substituting a,, a and a; (from Equation (2-8)) in Equation (2-7), the

3’

following equation results.

- n(wgél)(n+l) . 2n(n+2)(12-R2)(w§-1)
Lve”ug’ | 1+ RN ) =0
(n+1) (n+2) (I"+R™)" + n(n+1) + 2n(n+2)(I"-R7)

(2-14)
The real and imaginary parts of Equation (2-14) result in two equations
and two unknowns. These can be solved for the double pole location irre-
spective of the polynomial degree n; ;5 8y, 24, can then be determined
from Equations (2-8), (2-12), and (2-13). In Table I, le, de, and a,
are given, where le corresponds to the Q of the dominant pole pair of
the Butterworth function; de corresponds to the Q of the double dominant
pair. Computationally, the above two equations are simpler to solve on a
computer than a set of linear equations and two polynomials presented in.
[PR 1]. This is due to the fact the initial guess of the solution
(dominant poles of the nth order Butterworth function) is very close to
the solution itself., However, the story is different when c is greater
than two, Convergency problems do arise, and the approach in [PR 1] is
more appropriate.

In Table II, the poles of the modified Butterworth function for

n=3,...,15 are given.



Qd AND COEFFICIENT VALUES FOR ¢ = 2 AND n = 34.0.,
¢ fr,Gw 2 = 170+ R(ay + aw? v awh))

TABLE

I

15

15

\\\ c 1
n Q1 2 2 23 Q2
3 1.000000 1.139381 - 0.521951  0.382570  0.919211
4 1.306563 1.555091 - 1.222708  0.667616  1.135737
5 1.618034 2,059002 _ 2.088475  1.029472  1.354353
6 1.931852 2.646374 - 3.115571  1.469197  1.574127
7 2.246980 3.315320 - 4.302638  1.987309  1.794610
8 2.562916  4.064973 - 5.649071  2.584098  2.015560
9 2.879385 4.894824 - 7.154565  3.259741  2.236834
10 3.196227 5,804601 - 8.818953  4.014351  2.458343
11 3.513337 6.794128  -10.642135  4.848007  2.680026
12 3.830649 7.863287  -12.624051  5.760763  2.901844
13 4.148114 9.012001  -14,764661  6.752659  3.123766
14 4.465702 10.240212  -17.063938  7.823725  3.345773
15 4.783385 11.547880  -19.521864  8.973984 3.567847




POLES OF MODIFIED BUTTERWORTH TRANSFER FUNCTION Lm(s) FOR ¢

TABLE 11

=2, m=n+ 2(c - 1)

n Double Pole

3 -0.628901 -0.904764
+J0.970179

4 -0.491447 -0,836246
+J1.002310 +J0,298033

5 -0.403614 -0.756913 -0.866199
+J1.016042 £J0.472797

6 -0.342443 -0.684078 -0.843611
+J1.022266 £J0.586162 +J0.202071

. -0,297358 -0.620842 -0.802678 -0.864777
+J1.025022 +J0.664403 +J0.346784

8 -0.262745 -0.566708 -0.756746 -0.854780
+J1.026048 +J0,720905 +£J0.454058 +J0.155442

9 -0.235335 -0.520374 -0,711259 -0.829941 -0.870318
+J1.026173 +J0,763175 +J0.535792 +J0.277152

10 -0.213094 -0.480524 -0.668377 -0.798489 -0.865289
+J1.025818 +J0.795713 +£J0.599517 +J0.373947 +J0.127149

11 -0.194687 -0.446018 -0.628833 -0.764691 -0.848742 -0.877209
+J1.025208 +J0.821357 +£J0.650191 +J0.452043 +J0.231922

12 -0.179201 -0,415925 -0.592731 -0.730777 -0.825941 -0,874532
+J1,024471 +J0.841971 +J0.691179 +J0.515894 +J0.318961 +J0.107938

13 -0.165994 -0.389493 -0.559904 -0.697893 -0.800005 -0.862804 -0.884001
+J1.023679 +J0.858824  +J0.724831 +J0.568735 +J0.391874 +J0.199882

14 -0.154596 -0.366121 -0.530081 -0.666597 -0.772798 -0.845566 -0.882564
+J1.022872 +J0.872804  +£J0.752823 +J0.612950 +J0.453462 +J0.278563 +J0.093957

15 -0.144662 -0.345325 -0.502965 -0.637124 -0.745435 -0.825107 -0.873873 -0.890293
+J1.022075 +J0,884550 +J0.776379 +J0.650319 +J0.505898  £J0.346247 +J0.175880

91
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2.3.2 Stop Band Specifications

Earlier, it was shown that the pass-band specifications are always
satisfied. Now, the stop-band requirements will be examined for

ILm(jw)[2 in Equation (2-4). Since, m > n, there exists an W s such that

L Gol? < B Gwl? for e

Stop-band requirements can be examined by finding the frequencies at
which |Lm(jw)]2 = |Hn(jw)|2. These frequencies can be found by solving
the equation

2(c-1)
2
w ™ ( .Z as,. W - 1) =0
i=0

For the special case (c = 2), the above equation reduces to

2n 4

2
W (asw + a,w + a

2 p - =0

which has 2n roots at the origin and the remaining four roots are located

at (see Equation (2-8))
where w,_ = w

. a,
“,27L1 s 85t S0l g (2-15)
tm 3°
2
From Table II, one can see that w, = -1 - =<1 forn-=.23, 4,
tm a3

For n > 5, W > 1. This implies that for n = 3, 4, the stop-band re-

quirements will always be satisfied. However, for n > 5, the stop band

requirements are met if W, 2w where W, is the lowest specified stop-

band frequency. On the other hand, if W, < then the specifications

w
tm’

are not met. The procedure needs to be modified and the multiple poles

must be separated into single poles, which is discussed below.
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Now, a, can be expressed in terms of ag and Oen and is
a = - a (Wl +1) . (2-16)
2 3 7tm
From (2-8) and (2-16)
a, =1+ a wz . (2-17)
1 3 “tm

Using these expressions in (2-4), ILm(jm)I2 can be reduced to

1
> . (2-18)

LG |? =
m €2 wzn[(wtm - wz)(l - wz)a3 + 1]

1 +

A root locus plot of the denominator in (2-18) in terms of the one vari-

able a, with w__ set equal to W, gives the value of a, such that the

3 tm 3

dominant poles are at their maximum distance from the jw axis. a, and a;

can then be calculated using (2-16) and (2-17).

2,3.3 Example

Given the eighth order low-pass Butterworth transfer function
|H8(jm)|2 =1/(1 + w8) with € = 1 and Qd = 2,562916 satisfying the mag-
nitude specifications in the normalized %requency domain with w, = 1.2,
it is required to reduce le using multiplicity of the dominant pole pair
equal to two (c = 2).  From Table I,

1
1+ 02(4.065 - 5.649

2
L, G |[“ =
10 2, 2.584 o

= 2,01556
Qd2

and from (2-15) Wi = 1.089 which is less than W« Therefore the speci-
fications are met. In Figure 1, |H8(jw)|2 and |L10(jw)[2 are plotted to

show the difference in the two approximations. If w, = 1,075 < Wems then



Magnitude Squared

2
IHgl
\8

“2
“—]0|

]}18|2 = 8th Order Butterworth
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Frequency (Rad/Sec)

Figure 1. Magnitude Comparison Between Eighth Order Butterworth and Tenth
Order Modified Butterworth Functions
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in order to meet this specification the double poles need to be separated

by applying the root locus technique discussed above. This results in

n

= 2,6285, and a, -5.6661 and a; = 4,03756,  The Q of the dominant

&3
pole is given by Qd

2,2258. -
2,4 Summary

A method that reduces the Q of the dominant pole pair of a Butter-
worth function Hn(s) using a higher order function Lm(s) is presented.
It is assumed that Lm(s) has dominant poles of multiplicity greater than
one. Furthermore, the transfer function Lm(s) is derived using the
assumption that

ot L Gwl® =0 for i=1,2,00%,n-1
dw
It is shown that |Lm(jw)|2 satisfies the pass-band specifications, and a

method is given to fit |Lm(jw)|2 to the stop-band specifications.



CHAPTER III

MODIFIED CHEBYSHEV FILTERING FUNCTIONS

WITH LOW Q- FACTOR
3.1 Introduction

An important factor in the design of RC active filters and digital
filters is the quality factor Q of the dominant poles. The precision
requirements of each second order section realization of an RC or digital
filter might dictate a constraint on the maximum value of Q [HU 1, KA 1,
TE 1]. Modified Butterworth functions were presented in the previous
chapter; here a method for modified Chebyshev function derivation is
developed.

In this chapter, a.new numerical algorithm is presented which deter-
mines the coefficients of a low-pass non-equal-ripple modified Chebyshev
function with multiplicity of the dominant root pair greater than one; as
a result its degree is higher than the corresponding Chebyshev polynomial
but a much lower dominant root Q-=factor Qd is obtained. Intermediate
modified Chebyshev functions with higher transition region attenuation
and therefore increased Qd are also discussed.

The concept of multiplicity in the dominant poles has been recently
used and a substantial reduction in the critical Q-factor, Qd’ of the
dominant poles resulted [PR 1, MA 1, PR 2]. In a recent paper [PR 2], a
new class of multiple critical robt pair, equal ripple (MUCROER) filter-

ing functions, having a higher degree than the Chebyshev filtering

21



22

functions, but with a much reduced Qd and an improved time delay charac-
teristic has been developed using the Remez algorithm; however, a reduc-
tion in the attenuation in the transition-band resulted.

Using this same notion of multiplicity in the dominant pole pair, a
new numerical algorithm called the physical method is presented. The
modified Chebyshev filtering function (MCF) obtained here is of a higher
order than the original Chebyshev function. By relaxing the equal-ripple
condition, a.degree of freedom is obtained which results in a signifi-
cantly lower critical quality factor Qd and a better time delay charac-
teristic than that achieved by either the MUCROER or Chebyshev
polynomials; however, the transition region attenuation is further re-
duced. The algdrithm generates a MCF function for every Chebyshev poly-
nomial. It can also generate intermediate modified Chebyshev filtering
functions (IMCF's) satisfying the pass band specifications and which have
Qd and transition region attenuation anywhere between the Qd and transi-
tion region attenuation of MCF and MUCROER.

An example is given where for a low-pass filter with pass-band
reflection coefficient of 50%, the Qd of a tenth order Chebyshev poly-
nomial is reduced 71.27% using a twelfth order MCF; whereas, the twelfth
order MUCROER polynomial gives 58.89% reduction. . Due to the reduction in
Qs the tolerance limits on the realized components .is reduced. The
coefficient sensitivities are compared, and the output noise variance due.
to roundoff in the digital filter realization of each of these functions

is given.



23

3.2 Problem Statement

Let

. N2 1
[H, Gu)|“ = 5 (3-1)

2
1+ ¢ Tn(w)
be the.Chebyshev function satisfying the pass and stop-band requirements
in the frequency domain, where Tn(w) corresponds to the Chebyshev

polynomial of degree n. It is required to find a MCF function

L (3-2)

L 112
L G| =
2i

d,. w

1+ 21

i

I~

1

with a reduced Qd of the dominant poles which also satisfies the fre-
quency domain specifications, It is evident that this implies that
m > n,

In the following section, modified Chebyshev functions are derived
with the idea that the Q's of the dominant poles can be minimized by

having the dominant roots with multiplicity c¢ > 1.
3.3 Modified Chebyshev Functions (MCF's)

The numerical methods presented here are applicable to low-pass
Chebyshev functions; however, by applying the classical frequency trans-
formations, other modified Chebyshev low Q filter functions can be
obtained.

First, a new numerical algorithm called Physical Method is devel-
oped. Second, the ideas are extended to the least squares error crite-
rion. The results obtained by the two methods are in close agreement;

however, the first method has more advantages and requires less
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computational time because it is developed for the present problem at
hand, while the second method is more general and is presented here for
purposes of convenience and comparison. Third, the results are extended

to obtain the IMCF's.

3.3.1 Physical Method

A Chebyshev transfer function can be written, for n even and odd,

respectively, as

n/2 wii n/2
H(s) = I ' = 1T h.(s) (3-3a)
n i=1 52 + 28 s + 2 i=1 *t
i%i® " Ypi
(n-1)/2 ol o, (n+1)/2
H(s) =K I ’ . = K I h. (s)
n . 2 2 S + W . i
i=1 s7 o+ Zdiwbis + wbi b i=1
(3-3b)
with

K=v1+ 52 and v =‘£2—14£L .

2

In the above equations; let hl(s) represent the section with domi-

nant poles, Gi is the damping ratio, w, . the break frequency, and K

bi

adjusts the maximum passband ripple to v 1 + 32 for the design purposes;
this value of K is selected for the convenience of the algorithm. Let
the quality factor of the second order function corresponding to the
dominant poles be represented by Qd' It is clear that the magnitude
function lhi(jw)l will have a large overshoot for a low éi. As pointed
out in the last chapter, the reduction in Qd is possible since the mul-
tiple critical poles complement each other in giving the total high peak

required originally by one second order section in the Chebyshev
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function. This results in identical second order sections each with low
Qd replacing the original high Qd second order section. The resulting
function is called a modified Chebyshev function (MCF) since it is devel-
oped from the roots of the Chebyshev polynomial. This can be written for

n even and odd, respectively, as

2 ¢ 2
oWy n/2 Wy c n/2
Lm(s) = ) ) .H ) V) = (2‘1(5)) H 2‘1(5))
s + Zslwbls + wbl i=2 s~ + ZBiwbis + wbi 1=2
(3-4a)
2 ¢ 2
(n-1)/2 w, . w
L (s) = K b1 I bi bv
m 52 + 28 s + wz i=2 52 + 2B8.w, .S + w2 s+ Yy
5 “P1%1 b1 1%bi bi
(3-4b)
c (n+1)/2
= (£,(s)) I 2. (s)
1 . i
i=2

withm=n+ 2(c - 1) and v = (n + 1)/2, where ¢ is the multiplicity of
the dominant pole pair, and ll(s) represents the section with the domi-
nant poles. The only unknowns in Equation (3-4a) or (3-4b) are the damp-
ing ratios Bi, and W whereas, the break frequencies wbii # 1 are the
same as in the Chebyshev case. Due to critical pole modification into
multiple poles, the pass-band specifications are met by simply modifying
@ of the critical poles and 8; which controls the peak values of every

second order section; by also fixing w i # 1, the result will not be

bi’

the MUCROER equiripple polynomial and the number of variables is reduced.
The equations in (3-4) provide a basis upon which the physical

method is developed and is presented in terms of the following steps.

Figure 2 gives the flow chart and Appendix A shows the program listing

The first step is to solve for 81 such that (maxlﬁl(jw)l)c = max]hl(jw)l.



///EEAD, 6i W5

SET Bi = Gi i#1

DELTA = .003

J

GET Bl USING

2.¢C
(281 1—81) = 261 1-6

2
1

]

ADJUST |L_(jw)|

SEQUENTIALLY ADJUST P, <1 ADJUST V,
KEEP w, . FIXED
bi
N
CALL GOLD 1 Wy, + DELTA

PASSBAND
SPECS
MET?

NORMALIZE L_(s).

POLES OF L_(s).

SPECS NOT
MET DUE
TO Pl?

Figﬁre 2. Flow Chart Using the Physical Method

26



27

This implies that

C.
1 _ 1 (3-5)
28, /1 - 6 25, /1 - 2
which is obtained by first setting dlhl(jw)|/dw]w=w = 0 and then com-
max
puting |hl(jwmax)|. In a similar manner, maxlll(jw)l can be computed

[ME 1]. The remaining Bi's are selected such that Bi = Gi. The result-
ing ILm(jw)I will not satisfy the pass-band specifications. The second

step involves an iterative technique to modify the parameters in Lm(jw)

such that the pass-band specifications are satisfied. Let wpi be the

frequency at which the peak of Izi(jw)l appear (see Figure 3), and let
P, = max Ili(Jw)I s Vi = IHn(pri)l

In the following, even n will be considered. However, the same pro-
cedure applies for odd n also. The iteration procedures is as follows:

1) Calculate P and B , 1= 0,.°.,%-- 2,
Qf -i)new (5--i)new

successively using [ME 1]

n .
c n/2 5‘ -i-1
|2, Gw) | R 12 oy (G0 k¥2 llk(Jm)IP(E._i)new Yy
k=§- i+l - 2 2
wW=w
n
PGz -1)
(3-6a)
2
B = 5./1 - | 1/pP . (3-6b)

C% - i)new (%--i)new
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Each step in the above computation reduces the peak of |2% 0 (jw)
(E--i)new

such that ILm new(jw)[ fits the specification at w = w no. (see

pG -1)
Figure 3). Next, P1 new a0 be computed using
c n/2
(P )T L Gu) |- =V (3-7)
1 new k=2 k new W wpl 1
and B can be computed using Equation (3-6b).

' 1 new

2) Keeping the break frequencies NI

of the new peaks using

s Wy n/2 fixed, calcu-

late the new location wp.

i new
_ [ 2 - . :
wpi new = Ypi 1 - ZBi new” (This is obtained by setting
dle GGl |/de] _ = 0.0, [ME 1]).
max

3) Repeat steps 1) and 2) until

-8

B < QO i = 0,]_’--.,2 _,1
n . n . 2
(E--l)new (5-—1)new-l

where o is a specified small constant. Numerically, it was observed that
the convergency rate is fast. For example, for n = 10, ¢ = 2, 1/2 a dB
ripple, and a = 10"3 only 5 iterations were required.

4) Call Golden section univariate search [WI 1] to calculate the

minima and maxima of |L (jw)| in the pass-band. If the pass-band

m new

specifications are met, then Lm new is normalized to a cutoff frequency

w, = 1. Otherwise, find the peak Ps which causes |L (jw)| to violate

m new

the specifications. If it is Pl’ then set W1 = Y1

is a small positive increment, and repeat steps (1) and (2); otherwise,

+ delta, where delta

adjust the corresponding Viband repeat steps (1) and (2).

It should be pointed out that by.increasing the break frequency W1



30

of the multiple pole, the cutoff frequency of the |Lm new(jw)f is
increased. This obviously extends the range for the pass-band specifica-
tions allowing for the solution. However, no generality is lost since
the function is normalized with respect to the cutoff frequency w, = 1 at
the end of the iteration,

The mth order modified Chebyshev function obtained will have a much
lower Qd than the nth order Chebyshev function and with an improved delay
characteristics (see Table III). In Table IV the poles of the MCF func-
tions are listed. The pass-band specifications are met; however, a lower
transition region attenuation is obtained. Since, m > n it follows that

for some Wy s ]Lm(jw)] < IHn(jw)l for all w > w In section 3.3.3, a

tm*

method is given to increase the attenuation in the stop-band.-

3.3.2 Least Squares Error Algorithm

The results obtained using the physical method algorithm are not
unique. For comparison, the MCF's were derived using the least squares
error criterion. The results obtained are similar but not identical.

The least squares error expression is given by [TE 2]
- T.. 2
E = g (R, (|1 Gw)| - D)) ; 0<w

- 1+ v 1+ e%)
' 2

T
S wg (3-8)

D

where D and IL;(jmi)[ are the desired response and the calculated re-
sponse after r adjustments, Ri is ‘a weighting factor taken here to be
one, and wz is the rth adjustment cutoff frequency. L;(s) is a function
of two sets of variables: 1) the parameters denoted by the vector

- T - T
B = (81,62,,n°,6n/2) for even n, or B = (Bl,Bz,cau,B(n_l)/z,wbv) for .



TABLE III

CRITICAL QUALITY FACTORS Q OF CHEBYSHEV (CHEB.) H,(s) AND MODIFIED CHEBYSHEV (MCF)

Lm(s) ¢ = 2 FUNCTIONS, m = n + 2(c ~ 1)
2 dB 1/2 dB
n
Cheb. Q,C MCF Qc Cheb. Qc MCF Qc Cheb. Qc MCF QC Cheb. Qc MCF Qc

2 1.304694 1.031882 0.992736 0.955873 0.956520 0.863402 0.863721 0.809005

3 3.067657 1.592415 2,551637 1.524761 2.,017720 1.386328 1.706190 1.266850

4 5.578868 2,150385 4,593878 1.996962 3.559044 1.760761 2.940554 1.661111

5 8.818828 2.529244 7.232256 2.409009 5.556439 2.246412 4.544964 2.109320

6 | 12.780106 3,359719 10.461586 3.173590 8.003696 2.930414 6.512843 2.747629

7 | 17.464518 3.859683 14.284086 3.736328 10.898676 3.528096 8.841798 3.346720

8 | 22.870358 4,974274 18.687274 4.749682 14.,240465 4.055670 11.530788 4,.114909
"9 | 28.998422 5.599986 23,682711 5.435100 185028681 5.116562 14.579336 4.818551
10 35.845802 6.935707 29.266127 6.636376 22.263082 6.155976 17.987144 5.710818

1<
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TABLE IV
POLES OF MODIFIED CHEBYSHEV TRANSFER FUNCTION Lm(s) FOR
c=2,m=n+ 2(c - 1)
0 Double Pole
Column
Pass Band Ripple 3 dB
2 -0.470452
+J0.849309
3 -0.307628 -0.285550
£J0.930194
4 -0.230871 -0.287986
+J0.965711 +J0,361960
5 -0.197961 -0.328308 -0.241331
+J0.981621 +J0.544151
6 -0.149769 -0.213053 -0.164728
+J0.995156 +J0.712803 +J0.258955
7 -0.130177 -0.227185 -0,189912 -0.166579
+£J0,996418 £J0.777018 +J0,421118
8 -0,100878 -0.176052 -0.130437 -0.119919
+J0.998510 +J0.834525 +J0.561031 +J0.193954
9 -0.089428 -0.193814 -0.143916 -0.149903 -0,134301
£J0.997588 +J0.860497 +J0.642139 +J0. 327453
10 -0.072212 -0,148846 -0,110397 -0.100634 -0,094107
+J0.999082 +J0,892125 +J0,711320 +J0.456241 +J0,.155214
Pass Band Ripple 2 dB
2 -0.549688
+J0, 895632
3 -0.332505 -0,327741
+J0,957913
4 -0.255443 -0,347855
+J0,.987724 +J0. 356831
5 -0.211822 -0,373497 -0.289599
+J0,998336 +J0.539030
6 -0.160832 -0.249319 -0.197987
+J1.008079 +J0,716091 +£J0,261923



TABLE IV (Continued)
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Double Pole

n Column
7 -0,136018 -0.248081 -0,208585 -0.190717
+J1,007275 +£J0.782287 +J0.426160
8 -0.106568 -0.201389 -0.152970 -0,144823
+£J1,006705 +J0.837492 +£J0,564379 +J0.195161
9 -0,092856 -0.208897 -0.156681 -0.165264 -0.153658
+J1,005082 +J0.864663 +J0.646631 +J0.329872
10 -0.075945 -0,166927 -0,126406 -0.120074 -0.113539
+J1.005136 £J0.895139 +£J0.714637 +J0,458053 +J0.156245
Pass Band Ripple 1 dB |
2 -0.713612
£J1.004610
3 -0.393775 -0.423073
+J1,018318
4 -0.308687 -0,426159
+J1.042297 +J0, 375837
5 -0,236329 -0,412406 -0.354125
+J1.035148 +J0.549875
6 -0,179409 -0.294947 -0.254285
+J1.036068 +£J0,719068 +J0.265342
7 -0,147484 -0,270280 -0,241153 -0.230998
£J1.030173 +J0, 789302 +J0.432801
3 -0,127981 -0,229144 -0.181407 -0.187608
£J1,030177 +J0.884035 +J0,570710 +J0.196787
9 -0.100117 -0,224024 -0.180628 -0.192646 -0,186209
£J1.019604 +J0,.870529 +J0.651450 1J0,333528
10 -0.082806 -0.190242 -0.152606 -0.153264 -0.147676
+J1.016140 +J0, 899211 +£J0.718776 +£J0,459993 +£J0.157705
Pass Band Ripple 1/2 dB
2 -0.899508
+J1.144166
3 -0,471142 -0.539845

+J1.096823
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Double Pole

n Column

4 -0,345099 -0.515889
+J1.093325 +J0.362793

5 -0.263978 -0.452096 -0.429882
+J1.081888 +J0.559706

6 -0.198689 -0.327491 -0.311706
+J1.073619 +J0.725646 +J0.267381

7 -0.160418 -0.282444 -0.278494 -0.274012
+J1,061697 +J0.797624 +J0.437015

3 -0.128411 -0.242252 -0.228218 -0.231069
+J1.048966 +J0.846921 +J0.568612 +J0.196907

9 -0.108664 -0,220919 -0.207498" -0.221179 -0.219234
+J1.041552 +J0.877144 +J0.652693 +J0.336349

10 -0,090911 -0.191322 -0,179017 -0.184855 -0.182019
+J1.034364 +J0.904101 +J0.719715 +J0.460324 +J0.158358
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odd n; 2) the response sample points W, denoted w = (wl,wz,...,wN)T with

< U.)r.

¢ D is taken as a straight line in the middle of the pass

0 < w.
-1

band.

The unknown parameters in Equations (3-4a) and (3-4b) corres-
ponding to the even and odd n, respectively, are Bi, i=1,...,n/2, and
w.

bv

parameters subject to the condition that the pass-band specifications are

and Bi, i=1,...,(n-1)/2. The object is to solve for these

met; this involves the examination of the pass band maxima and minima.
Numerically, it can be seen that it is sufficient to examine only the
maxima M, = maxILm(jw)I closest to the cutoff frequency. This is .due to
the fact that M, is most affected by the multiple dominant pole action.

1

The Golden Section [WI 1] univariate search technique is used to evaluate
Ml’ and the multidimensional pattern search [WI 1] is used to evaluate B
parameters subject to minimization of ‘the error term.

Figure 4 shows the flow chart and in Appendix B the program list-
ing is given; the main inputs are: 1) XLO(I) and XHI(I), I = 1,...,n/2
for n even, or I = 1,...,(n+1)/2 for n odd. These are the lower and
upper bounds of B; 2) the break point frequency wb(I), I=1,...,n/2 for
neven, or I = 1,...,(n-1)/2 for n odd; 3) detal is the increment used to

augment the value of the largest break point frequency w As shown in

bl®

the flow chart, obtain the E'parameters by using the pattern search; next

from Gold 1 search get the value of M If M1 is within the pass-band

ll
specifications then normalize Lm(s) to a cutoff frequency w, = 1 and end

the program. Otherwise, set Wy = @ + delta and repeat the iteration

bl
process.
The mth order modified Chebyshev function obtained is similar to

that obtained using the physical method. Qd is reduced appreciably and



///ﬁﬁAD, XLO(I), XHI(I),

w, (1)
DELTA = .003

v

CALL PATRN, GET B F:

)

CALL GOLD 1, GET M

1

wbl = wbl + DELTA‘

T

NORMALIZE L_(s).

POLES OF L_(s).

Figure 4, Flow Chart Using the Least Squares Error
Method

36
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the time delay is improved. Though the attenuation of the transition
region is less steep, since m > n, we will have |Lm(jw)| < IHn(jw)| for
all w > O e A method is given below to satisfy the attenuation speci-
fications in the stop band.

As pointed out earlier, the physical method is more advantageous as
it is capable of adjusting ]Lm(jw)[ at any frequency in the pass-band by
adjusting each second order term, This also makes it an effective method
for use in all pole filter functions other than the Chebyshev type where
the break frequencies are spread out in the pass-band.

The rate of Qd drop is largest for the case ¢ = 2, Tables III and
IV are given for ¢ = 2, 2 < n < 10, and a pass band ripple of 3, 2, 1,
and 1/2 dB. In Table III the-Qd values . of the modified Chebyshev and of

the original Chebyshev functions are compared. In Table IV, the poles of

the modified Chebyshev polynomials are listed.

3,3.3 Intermediate Modified Chebyshev

Functions ' (IMCF's)

By relaxing the equal-ripple condition, a degree of freedom is ob-
tained which makes‘such low Qd values possible but at the cost of reduced
transition band attenuation. In order to increase the attenuation in the
transition region, the physical method or the least squares algorithm can
generate IMCF functions which always satisfy the pass-band requirement
and have a maximum Qd and transition band attenuation approaching that of
the MUCROER function, or have a minimum Qd and transition band attenua-
tion corresponding to the MCF. IMCF's are generated by further in-
creasing W q in the iterative method of Figures 2 or 4, beyond the value

obtained by MCF. Each incremental increase in W1 gives rise to a new
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IMCF function with larger Qd value and higher transition region attenua-
tion. For additional transition band attenuation the double poles may be
slightly separated [MA 1], and/or imaginary axis zeros added [DU 1].
[Hn(jw)[ is equal ripple in the interval 0 < w < 1 and has n half cycles;
however, [Lm(jw)l is not equal ripple and has n - 2 half cycles for

n > 5 (see Figure 5a).
3.4 Examples

In the following, the tolerances for the Chebyshev, MUCROER, MCF and

IMCF in terms of their coefficient sensitivities are computed. Let

D.
1

k
T(s) = .H

2
i=1 (s + Ais + Di)

Then, the worst case tolerance is given by [HU 1],

k AA. AD, AA. AD.
AT T T . T T
T ,2 ([IReSA. AT l * IReSD, DT I] * J[lImSA. AT l ¥ IImsD. D% |])
i=1 i i i i 1 1 1 i
d|T]

- [T| + j darg T

where the sensitivity sz = de¢nT/dnx. For simplicity let

|d Ai/Ai[ = |d Di/DiI = ,05. In the example below, AT/T is evaluated at
the corner frequency w = 1. In addition to the tolerances, output noise
variance (ONV) comparisons due to roundoff for cascaded second order
canonical digital filter realization of functions is given., The bilinear
transformation approach is used to find the digital functions. In com-
puting the ONV, quantization step is taken as unity and scaling and sec-
tion permutation for minimum ONV is performed [CA 1]. A more detailed

explanation of ONV calculation and a comparison table will be given in
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Chapter IV.

3.4.1 Example 1

Given a.tenth order low-pass Chebyshev transfer function with a
reflection coefficient p = 50% (p2 = 62/(1 + ez)), Qd = 24,114576,
dominant pole location at -0.020665 + J0.996267, with
AT/T = ,7407 + J1.3619, and ONV = 278,665, satisfying the magnitude
specifications in the normalized frequency domain with w, = 1.5, where w,
is the lowest specified stop-band frequency. It is required to reduce Qd
using multiple dominant poles with multiplicity c =2,

From the agove specifications, we have § = (61,62,.¢.,65)T =
(.020738, .066571, .129831, .248896, .637172)", and
Eﬁ = (wbl’wb2’°°°’wb5)T = (.996482, .900741, .719336, .472812, .204734).
Using § and E£ in the physical method, the twelfth order modified
Chebyshev function is obtained which has poles at: -.132666 + J.155679,
-.135916 + J.452385, - .131384 + J.706538, -.185692 + J.880515, and dom-
inant double poles at -.072812 + J1.006276 with Qd = 6,928174, AT/T =
4742 + J,8842, ONV = 195.161, and W = 1.448 which is less than W,
Therefore the specifications are met and a reduction in Qd’ AT/T, and
ONV resulted (mtm is the frequency such that ]Lm(jw)| < lHn(jw)| for all
w > mtm).

50% MUCROER func-

1l

Comparing these results to the twelfth order p

1.132, AT/T =

tion [PR 2] with ¢ = 2 which gave Qd = 9,90919, wtp
.5294 + J1.115, and ONV = 338.34 (wtp is the frequency such that |MUCROER
Function| < IHntjw)| for all w > wtp)’ one can see that a 71.27% reduc-

tion in Qd is obtained using the .12th order MCF function; whereas, the

twelfth order MUCROER function gives a 58.89% reduction. An additional
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improvement in the time delay characteristic is also obtained but at the
cost of reduced transition region attenuation., Figures 5a-5d show the
pass-band ripple, stop-band attenuation, time delay, and pole location of
the tenth order Chebyshev, twelfth order MUCROER, and twelfth order MCF
with p = 50%. However, if more transition region attenuation is desired,

€.gey W, = 1.18 < w - then the specifications are not met; therefore w

t bl

has to be increased as indicated above. This results in an IMCF function
having poles at -.124205 + J.143964, -.124136 + J.421191, -.124957 +
J.65626, -.093207 + J.831314, and dominant double poles at -.055165 +
J1.001483 with Q =9.090909, AT/T = .5102 + J1.053, ONV = 262.944, and
with w = 1.178 < w3 therefore the specifications are met; note

tm new
that Qd’ O new’ AT/T, and ONV of IMCF approached those of the MUCROER
function for increased attenuation in the transition region. Thus one
can see the flexibility of the physiéal method (and the least squares
method) in adjusting the filter function to meet steeper transition
region attenuation; this results in a higher Qd value. It should be
noted that over 50% reduction in Qd (see Table III) must be achieved by
MCF or IMCF functions in order that AT/T and ONV are reduced; e.g., from
Table III at 3 dB ripple MCF has more than 50% Qy reduction over

Chebyshev of 4th and higher orders.

3.4.2 Example 2

Given an.eighth order low-pass Chebyshev transfer function with
p = 10% (0.0436 dB pass-band ripple), Qd = 7.046669, and dominant pole
location at -.074709 + J1.05024. Using the physical method the corres-
ponding tenth order MCF with dominant pole multiplicity ¢ = 2 has poles

at -.411372 + J.212504, -.389079 + J.614068, -.358352 + J.918814, and
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dominant double poles at -.184186 + J1.163321 with Qd = 3.197339
(54.63% Qd reduction). It is to be noted that lower dB ripples give less

percent reduction in Qd as seen in Table III.
3.5 Conclusion

A modified non-equal-ripple Chebyshev function Lm(s) with higher
degree but much reduced dominant pole pair Q-factor Qd than that of the
corresponding Chebyshev function is presented. Lm(s) is derived using a
new numerical algorithm called the physical method. . The pass-band speci-
fications are satisfied; however, less transition region attenuation re-
sulted. Intermediate modified Chebyshev functions with higher transition
region attenuation and therefore larger Qd are introduced. Improvement
in the worst case sensitivity measure, and output noise variance of a
digital filter realization required more than 50% Qd reduction (see
Table III). The physical method could also be effective in deriving
modified filter functions other than the Chebyshev type where the break
frequencies are spread out in the pass-band. Computer programs are given

in Appendices A and B.



CHAPTER IV

ROUNDOFF NOISE: COMPARISON OF CHEBYSHEV AND

MODIFIED CHEBYSHEV DIGITAL FILTERS
4,1 Introduction

The reduction of roundoff noise is of interest to many designers in
the field of digital filter design. In this chapter the noise reduction
capability of the new modified Chebyshev functions (MCF's) is demon-
strated. In addition, a method for calculating the roundoff noise in
terms of the driving point impedance is presented.

Several methods.for the reduction of roundoff noise by optimum sec-
tion ordering have been presented [JA 1, LE 1, GO 2, CH 1]. In addition,
higher order functions were reported to give lower coefficient bit re-
quirement, but in these cases larger roundoff noise resulted [CA 1, RA 1].

A digital filter with poles close to the unit circle in the z-plane
(i.e., high Qd filter) will have a high roundoff noise due to the round-
ing of products [GO 3]. This has prompted the development of the higher
order MCF's with lower Qd as a substitute to the Chebyshev functions. A
reduction in the roundoff noise is achieved for the cases where MCF has
over 50% Qd reduction (see Table III). Coefficient bit comparison will
be discussed in the next chapter where it will be shown that in many
cases the MCF would require a lower number of bits.,

Roundoff noise variance comparison of Butterworth and modified

Butterworth functions are not presented here due to the fact that high

46
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degree functions have to be considered for a substantial reduction Qd'
However, substantial reduction in Qd can be obtained for a lower order n

using MCF's which are used in this chapter.
4.2 Roundoff Noise Calculation

In this section, a procedure for computing the output noise variance
due to product rounding is given. First, the realization in terms of
second order cascaded canonical sections is given. Second, the roundoff
noise inputs are introduced in the realization. Third, the scaling and
the optimal section ordering for the minimum output noise variance is
discussed. In addition, a roundoff noise comparison table is given and a
computer program listing for output roundoff noise calculation is

included in Appendix C.

4,2,1 Realization

The output noise variance of a digital filter is a function of the
realization used, circuit topology employed, the type of quantization
used, and the location of product quantizations., For example, the reali-
zation in terms of cascaded second order sections has in general a lower
output noise variance when compared to the output noise variance of a
direct realization [KU 1]. In addition, the output noise variance will
depend upon whether the products are quantized before or after summing.

In this section, the filter is realized in terms of first and second
order canonical cascade sections as shown in Figure 6. This will not
introduce any new problems even for functions such as MCF's which have
multiple poles. Fixed point arithmetic and rounding of products prior to

summing is used.
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The MCF's have been derived in the previous chapter and the discrete
function can be obtained by making use of classical bilinear transforma-

tion (s - z-1/z+1). Let this function be written in the form

d . z2 + 2z + 1 z + 1
H(Z) = I S(l) 5 ° Sr m— * GN (4-1)
i=1 27+ vy, (3)z + v, (1) T

where S(i) and Sr are scaling factors used to prevent overflow. In sec-
tion 4.2,3 the computation of these scaling factors is presented. The
constants Y1 Yo» and Y, are the multiplier coefficients, and GN is
introduced for normalizing the dc (z = 1) gain to unity. That is, GN can

be expressed, respectively, for even and odd functions by

d 1+ v, (1) + v, (1)
1 2 .

I. - for even functions

L 4S(1)

i=1

GN = (4-2)

1 + Ty d 1+ 'Yl(i) + yz(i)
— ] - for odd functions .

28r i=1 4S(i)

The explicit realization in terms of cascaded second order canonical

sections along with the scaling factors is shown in Figure 6,

4.2.2 Noise Due to Product Rounding

One source of noise at the output of a .digital filter is due to
product rounding. The product of an m bit multiplicand and an n bit
multiplier is an m + n bit product. Due to the finite register length of
the hardware realization, or due to the finite filter word-length, the
m + n bit word will be rounded to m bits. This quantization introduces
an error e, which can be represented as noise sources after each multi-

plier as shown in Figure 6 [GO 3]. Furthermore, the errors are assumed
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to be statistically independent and have a uniform probability density
with zero mean (for rounding). If EO is the quantization step, the

variance can be expressed by
(4-3)

Noting the statistical independence of the error sources, the total.
output noise of the filter can be expressed by
2
E d M,
2 _ 70 i 1.1
% = 12 121 273 jé;Gi(Z)Gi(z) z 42 (4-4)
where d = number of sections; Mi = number of input error sources to the
ith section, and Gi(z) = transfer function between the input to the ith

section and the filter output. Here, E, is taken as unity and the inte-

0
gration path is taken around the unit circle [GO 3]. The subroutine
SALOSS given by Astrom, et al, [AS 1] is used to evaluate Equation (4-4).

A listing of SALOSS is given in Appendix C.

4,2,3 Scaling and Section Permutation

As pointed out earlier, scaling factors must be introduced at the
input to every section in order to avoid overflow. Next, the computation
of these scaling factors is discussed. Referring to Figure 6, the
following transfer functions of interest expressed in the Z transform,
are given below.

From the filter input to the ith section output

®
Fo(z) = ] £ 002 :
k=0

From the filter input to the ith branch node
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T, (2) = kzo ti(k)z“k

These transfer functions can be expressed in terms of

X(z) = )} x(K)z ™"
k=0
by
Yi(z) = Fi(z)X(z)
Vi(z) = Ti(z)X(z)

For a filter input [x(k)l < 1 for all k, Jackson shows that

-]

ly; ] < 20 £, ()]

and

(-]

v, (k)| < t. (k) . (4-5)
@l s T e

If the scaling factors are selected such that

N
NREACIES!
k=0
and
N
ol ool <1 (4-6)
k=0

where N is chosen to be large with respect to the time constants of the
filter, then |y, (k)| < 1 and |vi (k)| <1 for all k [JA 2].

Cardwell's approach for computing the scaling factors will be used
here. This approach insures that lyi(k)l <1 [CA1]. 1In addition the
requirement that Ivi(k)| < 1 will be taken into consideration. The first

scaling factor S(1) is chosen such that
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ly, ()| <1
and
lvl(k)l <1 k = 0,1,2,¢°° . (4-7)
This is satisfied provided that

N
NGRS
k=0

and

N
kZO [t (0] <1 . (4-8)

N N

The expressions ) Ifl(k)[ and 2 ]tl(k)l can be evaluated by solving
k=0 k=0

the difference equations for the first and second order sections (see

Figure 6). These equations .are given by
v () = x(K) - v (v (k - 1) - v, (1v, (k - 2) (4-92)
yl(k) = vl(k) +-2vl(k - 1) + vl(k - 2) (4-9b)

where vl(—l) = vl(-Z) = 0, S(1) = 1, and x(k) is a unit impulse input

applied to the digital filter where

1 k=0
x(k) = ¢
0 otherwise
N N N N
It is clear that | |f1(k)| = ) Iyl(k)l and ) |t1(k)] = 3 ]vl(k)l
k=0 k=0 k=0 =0

which can be evaluated from Equation (4-9). To insure the condition
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given by Equation (4-7), the scale factor S(1) is evaluated by

. 1 1
S(1) = min N s X . (4-10)

£ (k) t, (k)]
kZO £, (k) | 20 t;

Similarly each S(i) can be evaluated by using the output of the
(i - 1)th section multiplied by S(i - 1) as input to the ith section.
The subroutine SCALE that evaluates S(i) is given by Cardwell

N
[CA 12]. A listing of a modified version of SCALE that takes ) |ti(k)|
0

into consideration is included in Appendix C.

Earlier, it was pointed out that the noise variance is a function of
the realization used and the ciréuit topology. It is important to find
an optimal ordering of first and second order sections for minimal output
noise variance. The comparison of output noise variance of each filter
is made on the basis of minimum noise oﬁtput per filter configuration.
This is achieved by permuting all the first and second order sections for

a minimal output noise variance.

4.2.4 Noise Comparison

In Table V the output roundoff noise of an nth order low-pass
Chebyshev function and low-pass MCF's of order (n + 2), are compared for
1/2 dB and 3 dB pass band ripples. Note that the MCF functions or order
(n + 2) will give a lower noise variance than the corresponding nth order
Chebyshev functions for cases where the MCF's have over 50% Qd reduction
(see Table III). Furthermore, for low dB ripples, the MCF's will give
substantial lower noise variance when compared to Chebyshev functions,

for higher order n. For example, from Table V, for 3 dB ripple, n is



ROUNDOFF NOISE oy:

TABLE V

COMPARISON OF CHEBYSHEV Hj (z)

54

AND MCF Ly (z) FOR ¢c.= 2 AND m = n + 2
3 dB 1/2 dB

" Cheb.c2 MCF 02 Cheb. 02 MCF 02

0 0 70 0
2 4,351 6.487 2,268 4,208
3 9.564 10.710 4,980 7.930
4 29.259 19.957 15.307 15.137
5 43,781 21.435 23.959 18.457
6 104.267 54.861 49,245 40.853
7 110.273 50.553 61.835 43.594
8 222,835 118.417 118.902 77.895
9 205,532 94,582 121.430 83.605
10 387.803 219.876 195.102

144.645
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four and for a 1/2 dB ripple n is five. Note also that higher order odd
functions tend to have low output noise variance; this is due to the

noise attenuation of the first order section.

4.3 On Calculating Roundoff Noise From

the Driving Point Impedance

A new approach for the computation of the steady state output
quantization noise variance of a digital filter is presented here. This
method makes use of the s-domain transfer functions and their relation to
the driving point impedance in the classical filter design [VA 1]. On
the other hand, in the traditional method, the transfer function is
transformed into the z-domain prior to noise calculation. In addition,
the method presented here will not require the prior knowledge of the
pole locations. Furthermore, the method can be applied to functions with
multiple complex conjugate poles. In the following, a summary of the
previous techniques of computing the.output noise variance is given.

The steady state value of the output noise variance is given by

[\S)
=l T
NjO N

-2—11r_j_ %H(z)H(—i—) -i-dz (4.11)

where H(z) is the transfer function from the noise sample input to the
filter output [GO 3]. Evaluation of Equation (4-11) is important in
communications and control problems. A tabulated solution of (4-11) for
low order H(z) can be found in Jury [JU 1]; whereas, for high order H(z),
evaluation of Equation (4-11) is difficult and the following methods have
been used.

1) Using Cauchy's residue theorem and partial fractions expansion

of H(z)H(1/2z)1/z,
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2) Using the form

w
S

E2
2 _ 01 2
O'n = Tz—-w—s— ‘/0» |H(mD)l de (4-12)

where W = sampling frequency and wy represents the digital frequency
[KN 17,

3) Using the time series representation

tTd

2 g Ko
k) T T2 [kzo h® (kT)]
where h(kT) = Z '[H(z)], found in [GE 1],
4) Using the numerical formula of Kstram, et al. [AS 1],
5) Using partial fraction expansion of H(z) has also been suggested

[MI 1], and

6) Using the inners approach [JU 2].

4,3.1 Proposed Method

The proposed method is based upon the use of the bilinear

transformation

Z = (4-13)

in Equation (4-12) which permits analysis in the s-domain. Replacing z
jw. T
by e and s by jw in Equation (4-13), the.analog frequency variable w

and the digital frequency variable wDT are related by

wDT
w = tan —— . (4-14)

Using this expression in (4-12) with



57
2
dw, = T % dw » (4-15)

Equation (4-12) can be rewritten as [KI 1]

B2 7
2 0 2 1
o= & f |H(w)| -1—-:—;-5- dw (4-16)
0
B2 ~
01 2
=7 f |F(w)|” duw (4-17)

where the relation F(s) = H(s)/(s + 1) has been used. Greaves, et al.
[GR 1] developed a method for obtaining the s-domain coefficients from
the z-domain transfer function and then evaluating ci from the tables
given by Newton, et al. [NE 1]. In this section the procedure will be
carried out one step further. Papoulis has pointed out the relationship

for the energy E of a signal given by

8

E = [F@)|? do = & lin s Z(s) . (4-18)

S~

1
2m

8

where Z(s) is the driving point impedance [PA 1]. By using (4-18) in

(4-17), it follows that

g =

2
2 _ %o
n 12

lim s Z(s) . (4-19)
S0

Equation (4-19) gives the output noise variance of a digital filter due
to A/D noise or due to product quantization; it does not require root
calculation since Z(s) could be obtained using Gewertz or Mitra's method
[KA 3, MI 3] and it can be applied to filter functions with multiple
conjugate poles. Equation (4-19) can be used directly on the s-domain
filter function H(s) without transforming H(s) into the z-domain. This

is true if the bilinear transformation is used to obtain H(z). However,

if a method other than the bilinear transformation is employed to obtain
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H(z), or if scaling is used, then H(z) must be obtained first; next
|F(w)|2 must be evaluated by applying Equation (4-13) to H(z), and

finally cﬁ can be calculated from (4-19).

4.3.2 Example

Given the second order filter

2
W

H(s) = I

> > (4-20)
s + 2as + wn

which is to be realized digitally by using the bilinear transformation.
It is required to find the output noise variance cﬁ of the digital filter
due to A/D quantization.

From Equation (4-17),

2
W
n
F(s) = 3 5 (4-21)
(s™ + 2as + wn)(s + 1)
where upon using Gewertz's method [KA 3],
azs2 *a;s +oa,
Z(s) = . (4-22)
5 + b 52 + b,s +b
s 2 1% " o
By using (4-19), Oi can be obtained as
2
0% = Eg-a
n 12 %2
Eg wi(Za + 1)
- = (4-23)

2 2
Wt (2a + 1) (2a + wn)
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where a, is determined by using Gewertz's method. In [NE 1] a method for

evaluating a, in matrix form is given. The output noise variance given

2
in Equation (4-23) is in agreement with the answer obtained by using any
of the previously mentioned methods. For example, by transforming H(s)

into the z-domain by using the bilinear transformation and then applying

. . . 2. .
Cauchy's residue theorem, results in an expression for o, identical to

that given in Equation (4-23).
4.4 Conclusion

In this chapter the following has been presented. First, the noise
reduction capability of the modified Chebyshev functions has been demon-
strated in a table comparing the output:roundoff noise variance of a
digital filter due to product rounding for the nth order Chebyshev and
the n + 2 order modified Chebyshev functions including the 3 dB and
1/2 dB cases. The method used for noise calculation and scaling has also
been discussed. Second, a method for calculating the roundoff noise in
terms of the driving point impedance has been derived. This enables the
designer, in the cases where the bilinear transformation has been used,
to calculate the A/D quantization noise and the product quantization
noise (if no scaling used) directly from the s-domain filter function
H(s) without following the traditional method of transforming H(s) to the

z-domain.



CHAPTER V

COEFFICIENT WORD-LENGTH: ESTIMATION AND
COMPARISON OF CHEBYSHEV AND MODIFIED

CHEBYSHEV DIGITAL FILTERS
5.1 Introduction

In this chapter a procedure is given for the estimation of multi-
plier word-length (coefficient bits) for the first and second order
digital filter sections given the transfer function's s-domain poles and
their tolerance specifications. This method is used to compare the mul--
tiplier bit requirement for digital filter realizations using Chebyshev
and modified Chebyshev (MCF) functions.

Due to the finite arithmetic precision, the multiplier values have
to be rounded to the nearest quantization step. This change in the mul-
tiplier accuracy will result in a corresponding change in the pole loca-
tion. It is therefore required to obtain the minimum number of
multiplier bits such that the corresponding pole shift satisfies the.
given'tolerance limits.,

In the literature, coefficient sensitivity and statistical approach-
es have been proposed for estimating the multiplier word-lengths [MI 2,
CR 1]. In addition, for the cases where the impulse invariance. transfor-
mation is used to obtain the discrete function, a method for coefficient
bit estimation as a function of the s-domain poles and their tolerances

has been suggested [WH 1]. For the cases where the bilinear
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transformation is used to obtain the discrete function, the method pre-
sented here gives a simple procedure for coefficient bit estimation as a
function of the s-domain poles and their tolerances; this method will be
used for the bit comparison. In addition, the coefficient word-length
comparison of nth order low-pass Chebyshev functions and low-pass double
dominant pole MCF's of order (n + 2) for the 1/2 dB and 3 dB ripple cases
are tabulated. The word-length requirement is estimated for the dominant
pole second order section such that a specified tolerance on both the
break frequency and the magnitude of the dominant pole section evaluated
at the break frequency is satisfied. From the table, it can be observed

that in many cases the MCF will require a lower number of bits.
5.2 Coefficient Word-Length Estimation

In the following a procedure for estimating the word-length for

first and second order sections is presented.

5.2.1 First Order Case

The first order transfer function considered here is given by

H(s) = —b— . (5-1)

s +p

By applying the bilinear transformation s>(z - 1)/(z + 1) to Equation

(5-1), the following discrete function results

H(z) =
‘ r

where Yy = (p - 1)/(p + 1) is the multiplier for which the word-length
requirements need to be estimated given that the pole located at s = -p

has a tolerance of Ap. Corresponding to this change in pole location,
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let y; =Y, t Ayr be the new pole location in the z-domain, where Ayr is
half of the maximum quantization step size allowable for rounding.
Expressing y; in terms of Taylor's series around the nominal value of p
and keeping only the first temm, AYr can be expressed by
. _2bp
Ay = . (5-4)
T 2
p+1)

Assuming that rounding is used, the estimate for the number of bits Qr’
required to keep the pole within the tolerance limits is obtained from

2' (Q+1) =

= ]Ayr|. This results in

Q>-1- 1og2((p2221__)2) . (5-5)

5.2.2 Example

Determine the coefficient bit requirement for a first order Butter-
worth digital filter which has a cutoff frequency of 1 rad/sec, pole
tolerance Ap/p = 10 per cent, and a sampling rate of 1 K.Hz.

In order to obtain the transfer function in the s-domain, prewarping
must first be performed. Using Equation (4-14),

w, = tan SRE
A 2

with wy = 1 and T = 1/1000 the analog cutoff frequency is given by

wy = .0005. The first order filter transfer function is expressed as

H(s) =

s + 1 (5-6)

Denormalizing (5-6) with respect to wa yields
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.0005

H(s) = s+ 000% . (5-7)

From Equation (5-5) Qr is found to be 12 bits. This agrees with the
result obtained when the.impulse invariance transform was used for the

filter design [WH 1].

5.2.3 Second Order Case

Let the second order transfer function in the s-domain be given by

a2 +-b2

52 + 2as + a2 + b2

H(s) = . (5-8)

The discrete function is obtained by applying the bilinear transform to

Equation (5-8). This yields

R, (2)
H(z) = — (5-9)
z + le + Y2
where
2 2
v, = e - b - 1) (5-10a)
a +b” +2a+1
and

2 2
v, = a~ +b" - 2a+1 (5-10b)

a2 + b2 + 2a + 1

are the multipliers for which the word-lengths need to be estimated given
that the pole located at s = -a :_jB has a maximum allowable tolerance on
a and b of Aa and Ab, respectively. Corresponding to this change in pole
location, let yi =gt Ayi, i = 1,2 be the new multiplier values in the
z-domain, where Ay, is half of the maximum quantization step size allow-
able for rounding. Expressing yi in terms of Taylor's series around the

nominal pole location and keeping only the first derivative terms, Ayi
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can be expressed as

Byi Byi
Ayi = (ga—JAa + (SB—QAb (5-11)

which gives

o 4(a2 + 2a - b2 + 1)Aa + 8b(a + 1)Ab

(5-12a)
(a2 + b2 + 2a + 1)2

Ay

1
and

- 4(a2 - b2 - 1)Aa + 8abAb
2 2 2
(a” + b™ + 2a + 1)

Ay . (5-12b)

2

If rounding is considered, then the estimate of the number of bits Qi

required to keep the poles within the tolerance limits is obtained by

= (Q1+1)
equating 2 = lAyi|, i =1,2, This gives
Q2-1- 1og2|Ay1| (5-13a)
Q>-1- logzlAY2| . (5-13b)

Unlike the single coefficient first order case, each s-domain pole
location of the second order section is determined by the value of the
coefficients Y1 and Yoo In considering second order sections, Equation
(5-13) gives an estimate of the coefficient bits Q1 and Qz, and therefore
defines the maximum quantization step. Due to the independent rounding
of Yq and Y, to a value within the maximum allowable quantization step,
few cases might arise where the specified pole tolerance limits are
slightly exceeded. For these cases the estimated bits Q1 and Q2 need to
be further increased. Usually one bit more than the computed value would

be adequate. An example for computing Q1 and Q2 is included in the next



65

section illustrating some of the above ideas.
The computation of the multiplier bits requirement for setting the
zeros within specified tolerance limits is similar to the above discus-

sion and therefore omitted.
5.3 Coefficient Word-Length Comparison

In this section the coefficient word-length requirements are com-
pared for the Chebyshev and the MCF functions. In this comparison, bit
requirements for the dominant pole second order section are considered as
it requires a large number of coefficient bits.

The dominant pole section for a Chebyshev function was given in

Equation (3-3) and is

2.
W

hy(s) = = nl (5-14)

2
s” o+ Zdlwnls *wg

where W and (élwnl) can be expressed in terms of the pole location as

1

can be seen from Equation (5-8). These are given by
w . =a +b (5-15a)

S0 = a . (5-15b)

Let the tolerance limits be given on the break frequency ©q and on
lhl(jwn1)| = Ch. It is required to calculate the number of multiplier
bits for the corresponding second order digital filter section such that
the specified tolerance limits are met. The bit requirements are given
in terms of a, b, Aa, and Ab in Equations (5-13a) and (5-13b). There-
fore, the tolerance limits on 01 and Ch must be related to the tolerance

limits on the pole locations. This aspect is discussed in the following.
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First, Ch can be expressed in terms of a and b and is given by

wnl

. 1
ch - ]hlc‘]wnl)l = E‘g‘ T g '(5-16)

Solving for a and b from Equations (5-15a) and (5-16), it follows that

“n1
a = —— (5-17a)
2C,

b= /w., -.a . (5-17b)

Using the incremental variations and keeping only the first order terms,
Aa and Ab can be expressed as

da
+ Ga:—ﬂAw

Aa = (EEEQAC " hl

_3b 3b
b = (F7)ha + (Bwnl)Awnl

Using Equations (5-17a) and (5-17b) in the above expressions, the

following results

ACh
(m%l_(%lﬁgﬂ
Aa = (5-18a)

(wnlAwnl - ala)

Ab = = (5-18b)

which relates the pole tolerance limits to the tolerance limits on w g

and Ch. Equation (5-13) can then be used to give an estimate of the

coefficient bit requirement such that the tolerance limits on wo.q and C

are satisfied.
In the following a step by step procedure for calculating Q1 and Q2

given the tolerance limits on w_, and Ch is outlined.

nl
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1) Obtain the pole tolerance limits Aa and Ab from the specified

Awnl and ACh

2) Evaluate the exact non-rounded values of the multipliers Yy and

using Equations (5-18a) and (5-18b).

Y, using Equation (5-10).

3) Use Equation (5-13) to give an estimate of the required bits Q1
and Q2.

4) Calculate qu and Y2q the rounded values of Y1 and Y, corres-
ponding to Q1 and Q2 bits, respectively,

5) Calculate w

nlq
ponding to qu and Y2q'

and Ch the new values of w and C, corres-
q nl h

6) Check if wnlq and Chq satisfy the specified tolerance limits; if
the tolerance limits are satisfied, an attempt must be made to minimize
Ql and Q2‘ Hence, reduce Q1 and Q2 by one bit, respectively, and repeat
steps 3 to 5. If the tolerance limits are not satisfied, perform coeffi-
cient rounding to the higher or lower quantization step (coefficient
optimization [RA 1, AV 1]) and repeat steps 4 to 5. If the tolerance
limits are not met after coefficient optimization, increase the estimated
Q1 and Q2 by one bit, respectively, and repeat steps 4 to 5. Terminate
the procedure when a minimum value of Qi and Q2 is found such that the .
tolerance limits are satisfied.

From the various examples attempted, it can be stated that in the
majority of cases, Equations (5-13a) and (5-13b) give directly. the mini-
mum bit requirement such that the given tolerance limits are satisfied.

Next, the coefficient bit requirements for double dominant poles are

discussed. Earlier, C, was defined to be the magnitude of the dominant

h

pole. section at w = wope In Equation (3-4), the term corresponding to

double dominant poles is given by
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w2
2 bl

27 (s) = .
1 2 2
s+ ZBlwbls + wbl

Let the magnitude of this function at w = ®pq be identified by
. 2
Ct = |2’1(J“b1)| °

To relate this to the earlier work, let Ct be equal to Ci where
C2 = |21(jwb1)|a Using the incremental variations, the tolerance limit
AC2 on Cz can be expressed in terms of the given tolerance limit ACt on

Ct and is

AC, = C’Ll: JT+ (C T - 1] , .

Hence, due to the presence of a double pole, a given tolerance on Ct will
result in a lower tolerance on CQ which is to be used in Equation (5-18)
in order to evaluate Aa and Ab, and finally evaluate Q1 and Q2°

In the coefficient bit comparison study, the following binary coef-
ficient representation is used. Since the filter coefficients | lie in
the range -2 < Y < 2, by assuming fixed point arithmetic and letting the
most significant bit representbz0 = 1, the coefficients Y; are expressed

in the form

where

d, =0orl for each k
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Following the earlier step by step procedure for minimum coefficient
bit calculation, the coefficient bit comparison of the dominant pole
section for the nth order low-pass Chebyshev functions and low-pass
double dominant pole MCF's of order (n + 2) can be obtained. An example
illustrating the above suggested step by step procedure for a minimum

number of bits calculation is.given below.

5.3.1 Example

The critical second order section of an eighth order 1/2 dB ripple
low-pass Chebyshev function has a = 0.043620, b = 1.005002,
w1 = 1.005948, and Ch = 11.530788. Find the coefficient bit requirement
Q; and Q, such that |Awn1/wn1| < 5% and [ACh/Ch| < 5%.

From Equation (5-18), Aa = 0.0 and Ab = 0.050345. Substituting Aa
and Ab in Equation (5-13) gives Q1 = 3 and Q2 = 7 bits. By including the
sign and integer bits, Ql = 5 and Q2 = 9 bits. Rounding the coefficients
Y1 to five bits and Y, to nine bits results in qu = 0.0 and
Y2q = ,914063, where qu and Y2q are the rounded coefficients. In order
to verify whether the given tolerance limits are satisfied, the values of
, and C , and C

a,b ,w are

qQ’ "q’ "nlq hq
the values of a, b, Woqo and C

must be calculated, where aq, bq’ w

nlq hq

h after coefficient rounding. From

Equation (5-10), aq = ,044899 and bq = ,99899, By substituting aq and bq

in Equation (5-15), w

= 1,0 and C, = 11.1360., Therefore, the
nlq hq

resulting percentage change in Ch and woq is given by

ACh ) Ch _'Chqf_ .
C = c = 3.42%
h h

and
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Aw

W, - W
nl

=l nlg 4 5oy
w
nl

wnl

These satisfy the specified tolerance limits. Coefficient bit minimiza-
tion by setting Ql =.5 bits and Q2 = 8 bits, or by setting Q1 = Q2 = 8
bits fails in satisfying the specified tolerance limits; therefore, it is
necessary to use Q1 = 5 bits and Q2 = 9 bits.,

Next, the above step by step procedure is used to compare the coef-
ficient bit requirements -of the dominant pole sections of the nth order.
low-pass Chebyshev functions with respect to the low-pass double dominant
pole MCF's of order (n + 2). These results are given in Table VI. 1In
Table VI the number of bits are calculated to satisfy specifications.
which set a maximum of five per cent w_. and C,_ variations for the-

nl h

Chebyshev case, and a maximum of five per cent w,, and Ct variations for

bl
the MCF case. The bits given in Table VI include the integer bit and the
sign bit. From Table VI it can be seen that the coefficient word-length

requirement is.approximately the same for both functions, and in many

cases the MCF's would require a lower coefficient word-length. .
5.4 Conclusion

A method for computing the coefficient word-length estimation for
first and second order digital filter sections is presented in this
chapter. This method can be used for the cases where the bilinear trans-
formation method is employed to obtain the discrete equation. In the
proposed method the coefficient bits are obtained from the s-domain poles
and their tolerance specifications. In addition, coefficient bit word-
length comparison of nth order low-pass Chebyshev functions and low-pass

double dominant pole MCF's of order (n + 2) is tabluated (Table VI).



TABLE VI

COEFFICIENT BIT REQUIREMENT OF THE DOMINANT
POLE SECTION FOR 5% TOLERANCE LIMIT

71

3 dB 1/2 dB

Cheby. H (z) MCF Lm(Z) Cheby. H (z) MCF Lm(z)
n n m=n+2; c=2 n m=n+2; c=2

"1 Y2 5! "2 "1 2 "1 2

Bits Bits Bits Bits Bits Bits Bits Bits
2 5 6 5 7 5 7 6 7
3 5 7 5 8 5 6 5 6
4 5 8 5 5 5 7 5 8
5 5 8 5 8 5 8 5 5
6 5 8 5 9 5 8 5 6
7 5 9 5 8 5 8 5 9
8 5 10 5 9 5 9 5 7
9 5 10 5 9 5 10 5 6
10 5 10 5 9 5 9 5 9
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This comparison is given on the basis of five percent tolerance specifi-
cation on both the break frequency and the magnitude of the dominant
pole section. From the table it can be seen that in many cases the MCF's
due to their low dominant Q-factor will require fewer number of coeffi-
cient bits than the Chebyshev functions. Examples illustrating these

ideas are included.



CHAPTER VI
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY
6.1 Summary

This thesis approaches from a new perspective the reduction of the
digital filter output noise variance due to product rounding. This
approach is developed for the Chebyshev and the Butterworth filter func-
tions, and it‘consists of replacing the designed nth order filter by an
(n + 2) double dominant pole modified filter function whose dominant pole
quality-factor Qd is significantly less than the Qd of the original
filter function,

An analytical approach for obtaining the coefficients of a modified
low-pass maximally flat Butterworth function with multiple dominant pole
and reduced Qd is given. In addition, a new algorithm is presented which
determines the coefficients of a low-pass non equal-ripple modified
Chebyshev function (MCF) with multiple dominant poles and notably reduced
Qd' These modified filter functions will always satisfy the pass-band
specifications; however, their transition region attenuation is reduced.
Alternate methods are pointed out in order to increase the transition
region attenuation of the modified functions at the cost of increasing
the low Qd‘

The output noise variance and the coefficient word-length comparison
of the nth order low-pass Chebyshev functions and the low-pass double

dominant pole MCF's of order (n + 2) for 1/2 dB and 3 dB cases is drawn.

73
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In this study a reduction in the output roundoff noise is achieved for
the cases where Qd reduction is more than 50%. This includes all high Qd
Chebyshev functions. In addition, the word-length requirements are
approximately the same for both functions (in many cases the MCF's would
require a lower coefficient word-length). For the modified Butterworth
case, high order functions must be considered in order that Qd reduction
becomes substantial. Therefore, no comparison tables are given for the
modified Butterworth functions.

A new approach is given for computing the output noise variance and
for coefficient word-length estimation for the cases where the bilinear
transform is used., The output noise variance is computed using the
s-domain transfer function and the driving point impedance. The coef-
ficient word-length estimation for the first and second order digital
filter sections such that the s-domain pole tolerance limits are satis-
fied is presented. If the digital filter is designed based on other than
the bilinear transformation then the suggested methods for coefficient
word-length estimation and output noise variance calculation will require
additional computation steps; in this case, the previously suggested

methds in the referenced literature are more appropriate to employ.
6.2 Suggestions for Further Study

In the following, some extensions to the present study are given.

Appropriate references are indicated.

6.2,1 Modified Functions

The modified Butterworth and modified Chebyshev functions with low

dominant pole quality factor (Q,) will always satisfy the pass-band
p q y 4 P
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specifications., However, in general, the stop band specifications may
not be met, as the low Qd is obtained at the cost of low attenuation in.
the transition region. A procedure is given in this thesis to increase
the attenuation of the transition region at the cost of increasing the
low Qd° As an extension of this present research, the attenuation of the
transition region might be increased without sacrificing the low Qd by
including a pair of complex conjugate zeros on the jw axis. Some work
has already been done in this area [DU 1].

The multiple dominant pole notion has been used in this thesis to
develop alternate filter functions . for two very common filter types, the
Butterworth and the Chebyshev functions. However, this same notion of
dominant pole multiplicity can be used to derive alternate filter func-
tions for other common filter types such as the Bessel, Chebyshev type
II, and the elliptic filters. A suggested approach for the Chebyshev
type II function would be to derive an analytical method for obtaining
the modified Chebyshev type II functions by making use of its maximally
flat property. For deriving the modified elliptic filter function from
the given elliptic filter function, a possible approach would be to
derive‘a numerical algorithm similar to that used in obtaining the MCF's.,
It is anticipated that due to the elliptic filter's high Qd property, a
modified elliptic filter with multiple dominant poles will result in a

substantial Qd reduction,

6.2.2 Coefficient Bit Estimation

The coefficient bit estimation procedure given in this thesis will
in many cases give the minimum number of bits required to meet the given

pole tolerance limits in the s-domain. For the case where the minimum
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number of bits is not directly obtained from the equations given, a step
by step iterative numerical algorithm that results in a minimum. number of
bits is presented. This problem of obtaining the minimum number of bits
and not simply a close estimate exists in other methods that have already
been suggested [MI 1, CR 1, WH 1]. It is therefore desirable to obtain-
an analytical method that will give the minimum bit requirement directly

without the need of an iterative numerical minimization procedure.

6.2,3 Output Noise Variance

The output noise variance comparison conducted in this thesis is
based on the minimum output noise variance of a cascaded first and second
order section. This involves optimum digital filter section ordering
that results in a minimum output noise variance. The present research in
this area including this thesis relies on iterative numerical algorithms
for optimum section ordering [CH 1, LE 1, JA 1]. An analytical approach
to this problem is desired.

Finally, the digital filter output noise variance computation using
the s-domain transfer function and its driving point impedance concept is
used in this thesis. Further study in this area may involve these con-
cepts in the z-domain. This may include a new notion of z-domain driving
point impedance and its relation to the output noise variance of the
digital filter and to .the s-domain driving point impedance. A suggested
approach would be to apply the bilinear transformation to every circuit.
element of the s-domain filter realization and to the s-domain driving
point impedance. A good reference in this area would be the work done by

Crochiere [CR 2].
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APPENDIX A
PHYSICAL METHOD ALGORITHM

This algorithm.calculates the poles of the mth order low-pass double
dominant pole modified Chebyshev function (MCF) with low dominant pole
quality factor (Qd).. The algorithm is-initiated with the break point
frequency and the damping ratio of the nth order Chebyshev function. The
relationship between the degree of the MCF, m, and the degree of the
Chebyshev function, n, is given by m = n + 2(c - 1), where c corresponds
to the dominant pole multiplicity and is taken here as 2. In the
algorithm, the double dominant poles replace the dominant poles of the
nth order Chebyshev function, and an iterative procedure is used to fit
the resultant function to the pass-band specifications. After meeting
the pass-band specification and normalizing the poles to a cutoff fre-
quency of one, the MCF is obtained. The algorithm output includes the.
following: print-out of the data, subroutine Gold 1 [ME 1] convergence
monitor, the adjusted parameters in the iterative procedure, poles and

Qd of the MCF, and the MCF magnitude print-out.
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IMFLICTIT KEAL*3(A-Hy0-1)
DOUBLE PRECISIUN DSORT

THIS PFUGRAM USES THE PHYSICAL METHOD TO CALCULATE THE COEFFICIENTS

GF THE MTH URDEx LOW-PASS MODIFIED CHEBYSHEV FUNCTION WITH LOW QUALITY

FACTUR Gy STARTING FROM THE POLES OF THE NTH ORDER ORIGINAL CHEBYSHEV

FUNCTIUN e M=N+2%*(C-1)

INPUT QUANTITIES

CASCAUAD EVEN TRANSFER FUNCTIONS OF THE FORM

WNZ%2/(S*% 24 2% ZETAXWN*S+WN**2) IS CONSIDERED HERE.

A(T)=W(I)= THE BREAK FREQUENCY CF THE ORIGINAL CHEBYSHEV FUNCTION
ARRANGEL IN ASCENDING SEQUEtNCE.

B{I)= THE DAMPING RATIO OF THE ORIGINAL CHEBYSHEV FUNCTION
ARKANGEND TN DESCENDING SEQUENCE.

R(1)= ESTIMATE OF THE CAMPING RATIO OF THE MODIFIED CHEBYSHEV
FUNCTICNs SET R(IV=B(I)y I=1lseeesN=1 AND SET.R(N)=5*B(N)

L= ORCEF Jb THE ORIGINAL CHEBYCHEV FUNCTIUN

EPSI= PASS BAND ®IPPLE FACTOR [.E FOR 1DB EPSI=¢5088471

FRED= f-ACTIONAL REDUCTION FOR SUBROUTINE GOLDl SET FRED=.0C1 TO .00001

DATA REQUIRED: L; EPSI s FRED3 A(I)s B(I); AND R(I).

DIMENS ION V(10),X(120)9W(15)sR{9)yH(L10)},PL10)4A(10)4B(10),F(L10),Y{(
1120)42(101) yWNSQ(12)y AX(601),AY (60L)REAL(LO),AEMAJ(10)yXLJI(10), XH
1J(10)

SORT (X )=0SQRT (X

REAB(5+,52)L,EPSI,FREC

WRITE(C, 7T)LLEPSI,+RED

L=L/s2

KEAD(54912)(A(1)yI=1,L)

READ(5,12)(B(1)sI=1,L1)

REAL(54,12)(R(I)yI=1yL)

WRITE(6,78)(A(I),I=1,L)

WRITE(ELTGI(BII)T=1,L)

WRITE(oy 9L MR(I)yI=1,1)

J=SQRT (1L +EPSI*%2)

NSKIP=(C

MJuMP=_

NTOGL=L-1

MUP=1

MULTP=0

2(1)=0.

K=L=1
N=1

M=C
KPK=0

LCKL1=C

NELSS=1.1/50.

SETTING w(I)=A(I)= BFLAK FREQUENCY

DO 1 J=lso

1 w{J)=A(J)
COMPUTING X(I) THE FREQUENCY WHERE THE PEAK OF EVERY 2ND ORDER
SECTICON IN THE ORIGINAL CHEBYSHEV FUNCTION OCCURS.

DL 3 J=1l,L

UND=1e=2+*B(J)%%x2

IF(UND«GT4040)GI TCO 2

X(J)=A(J)

G3 Tu 3

2 X(J)=A(JI*SIRTLUND)



22

27
29

12

1

17

49

19

CONT INUE

CALCULATING THE VALUE V(I) OF ORIGINAL CHEBY AT FREQ=X{(1I)
DG 22 J=1,L

Vidi=l.

DG 22 I=1,L

DUM=A(T)%x2
FOI)=DUM/SQRTIIDUM=X{J)*%2) %% 2+ (24 ¥BIIN*A(TI*X(J))%%2)
VIJI=VIJIXF( 1)

CONTINLE

CALCULATING (DEC) THE INCREMENT IN V(L)

DEC=(w-1.}/5

LAD=1

NTK=0"

GO TO 29

MIuMP=J

0=0. .

ADJUST ING THE PEAK CF EVERY 2ND ORDER SECTION TO MEET THE PASS BAND
SPECIFICATION.

DO 7 J=MuP,L

Y{J)=1.

DC 8 I=1+K

DUM=wW (1) *%2
H{T)=DUM/SQRT{(DUM=X{J) *%2 ) %¥k 2+ ( 2 %R{T I *W (I ) X(J) ) *%2)
Y{Jd)=Y(J)*H(T) )

CUNTINLE

HIL)=W (L )¥x4 /{ LWL )3x2=X{J) #%2) %%k 2+ { 2 *R(L}*XW(LI®RX(J))*%*2)
YOI =Y(JI®H(L)

PLJI)=(V{JII*H{J)IZY ()

IF(J-LI15.14414

PLJI=SQERT(P(I)I

IF(P{J)=1.)10,10,9

KEJY=SCRTLe5=e5*STRT(Lla=1e/ (PLJIIXX2}))

GO TO 7
RUJ)=SWURTOUIW(I)*%4/ P(J)*%2)= (W) %X 2=X(J) %%2)%#2) /{4oxW(J) *¥2%X(J
1)%%2))

CONTINLUE

CALCULAT ING THE NEW X{I) & W(L)

DG 17 I=MUP,K ’

IF(R{I =4 7071C7)16,17,17

XOI =W {I)%SQRT(L a2, %R(I)%%*2)

CUNT INUE

WIL)=X(L)/SORT (1e=2.%R(L)%%2)

IFINTCGLL.EQC.K)GC TC 49

WETITECEy T5M(VET) o T=1 L) g PUL) I =1al) o (RAI)yI=1yL)y (X{I)yI=1,L)
FING TFE Nbw VALUE OF V(1)

DG 139 J=FUPWK

V(J)=le.

DG 19 I=1,L

DUM=A(T)*%*2
FOI)=DUM/SQRTUIDUM=X(J )% %2 )%x%2+ (2.%B(T)*A{T I%X(J))**2)
VIJ)I=VIJ)I*F(T)

CUNTINUE .

FIX V(K) SUCH THAT THE LAST VALLEY IN THE PASS 8AND IS GREATER THAN 1.

INCKEASE V(K) BY A SMALL AMOUNT IF VALLEY IS NUT GeTe 1le

V(K)=1.0C18

IFINTOCL +EQ.K)GO TO 4

SUBTRACT A FIXED AMOUNT FRCM V(D) IN ORODER TG ADJUST THE FINAL

PEAKS AT THE END UGF THE ITERATIUNS I+Ee WHEN NTUGL = 1.
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L2

63

43

VIMJUMP) =V (MJUMP )= s 001 *MULTP
CONTINLE )

0=0+1.
IF(Z(1)=14)39+40,40
IF(0-12.1€+42Cs20
IF(U=~64)64+20,20

C=1.

CONTINUE
IF(NSKIPSEGQC.1)GO TC 47
MJUMP=NTOGL

Z{l1i1=2.

FULLCWING IS GGLD1 DATA

NORM= 1 ALLUWS US TUO EVALUATE THE PEAK OF THE MODIFIED CHEBYSHEV

11=0

NCRM=1
PIKDEL=1e/(24%*L)
IF(KPK «GT&2)65U TO 68
KPK=KPK+1

S$=Ce

Dl=1.

D2=0.

JF=1

COMPUTING XLOW ﬁ XHI OF EACH 2ND ORDER FOR GOLD1

DU 66 J1=1,50
DO €1 J2=1,K
DUM=W (J2 ) %*2

H(J2)=DUM/SGRT((DUM=~SS*%2 &% 2+( 26 %R (J2) (W (J2)¥SS) *%*2)

V1=D1*H(J2)
CONTINLE

H{L ) =W (L) %54/ (WL )*K2=SS%%2 )R%k 24 ( 26 kR(L) ¥ W{L ) %SS) *%2)

DL=D1*H{L)
1F(D1.CT«D2)INCH=0
TF(U2eLTSD1IGU TU 62
IF(NCEJWEQLLIGL TO 62
NCH=1

KLJ(JF)=35S5~a2
XHJ(JF)=SS+.1
JE=JF+1

CUNT INUE

£2=D1

>5=85+0c LSS

CuNT INUE

JF=JF-1

WRITE(O2 76D IXLI(I3)9d3=14JF)y(XFJ(I3)yI3=1,JF)

CuNTINLE

CHECK IF PEAKS OF ML CHEB SATISFY THE PASS BAND SPECIFICATION

DG 21 J=MJUMP,K

wr ITE(E9E3)J
ALOW=XLJ(J)
XHI=xHJ(J)
TFOXLCWeLTeUe)XLOW=C.u

Labi COLDL(ILoXLOWN o XHIWFRELC)YBIGyXBIGyB34B4yJSswyFyL 9 NORM, UPRIPL 42

12)
IF(MULTP.ECe=1e)GO TO 23
IF(MULTP.EGela)G0 TC 25
IFIYBIGsGTaw )G TO 30
TE(NTK «EQ.1)GL TU 21
IF{NTCCLEC.KIGO TG 30
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41
35

26
36

37
60
32

48

67

80
al

8b

ViJl=1,

CALCULATING THE NEWw V(I) AFTER INCREASING X{L)
DO 41 I=1,L

FOII=ACT ) %%2/SCRT((A(T ) ¥%2=X(J) #%2 ) %%24+( 24 %BIIV¥XA(I ) XX{J) I *¥*2 )
VIJIsVIJI*F(T)

CCONTINLE

GO Tu 2y

WRITE (6950)

GuU TC 32

IF{M=2)37y36y3¢

WRITE (us51)

Gy TL éu

M=N

CONT THUE

CONTINUE

IFINSKIPStQel)GU TC 48

NTOGL=1

GO TC 46

CGNTINUE

WRITE(EyLLI(X{UTI)ei=.oL)
WRITE(G6y 11 M W(I)yi=1,yL)
WRITE(OLLI("(I)y1=1,L)
WRITE(G6yLL)(V{I)yI=1lyL)
WRITE(GLLI(Y(I)sI=1,L)

wi-ITE(os11)CHD

DU o7 J=1.,L

WNSWQ(J )= () kkz

CALL GOLDL & FIND THE NORMALIZING FREQUuNCY. SET NORM= 2
NORM=2

XLOw=xB8IG

XHI=1.,3

WRITE(G54)

CALL GCLDL(ILloXLCWoXHIFRECYBICIXBIGB3 oB4yJ59WeRyL yNOFMyUPRIPL,Z
12)

DW=e01

WF=0.

NF=1.

NP=150

AX{1)=wF

PLOT THE MODIFIED CHEBYSHEV FUNCTION QBTAINED
Dii 85 J=1.NP

WA=AF*AB LG

WSQ=WA*%2

Y2=1.

DO 8C I=NF,K
YL=wASQLI)/SCRT ( {WNSC{I)=WSG)¥*x2+(2*R(I)IXW(])3WA)*%2)
Y2=Y2%Y1l

CONT INUE

YNSWNSCUL)Y %2/ ( {LaNS QUL )=WS G )I*¥Z (2 ¢ ¥R(L ) ¥*W (L ) XWA )%%2)
AY(J)=Y2%*YN

AX(Jd+1)=AX(J )+DwW

WE=nwF+0i

WRITE(GsH5)AX(J)sAY(J)

CONT INUE

WRITE(6ybs)

NORMAL IZING THE POLES

NH=1 ‘

DO 90 J=NH,L
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23

30

82
33

44

45

33

28

38

NTK=0
MULTP==14%LAD
LAC=LAC+]

MUP=J

WRITE(Cy 7T4)dW VI
Zl)=2.

NSKIP=1

GU Tu 27

MUL TP =0,

CunTINLE

CUNT TNUE
IFINTOGL o FQer s v ) T
IF(JeECel)(. 1V 4y
SET (MULTP) IN orDE
IF(MJUMP 4F o oJ GO TO
MULTP=1

GC TC &3
MULTP=MULTF+1

CONT INJUE

MJUMP=J

MUP=J
WRITE(6s74)J0V(J)
Z(1)=2.

NSKIP=1

NTK=1

GJ TO 29

ALJUSTING THE CFITICAL 2ND ORDER SECTION TO FIT PASS BAND SPECS

CCNTINUE

IF(NSKIP.:Q.1)GO TO 48

WRITE(O,T71)

C=YBIG

XPl=XB1lo
XLOP=XLCh+.01
IFILCKleEN2)60U TO
[F{XBICLTXLOP)IGT
IF(LCKL1.ECel)GC TUL
IF(YBIG.GTeQIGU TO
CONT INUE

M= %M

I(1)=2.

Lokl=1
IF(YBICGatEeW)GL TL
LCK1=2
WRITFE(6, 72V (L)
viL)=v{L)-DEL

W ITE( €y 72IVIL)

60 Ta 29
WRITE(6,72)VIL)
VIL)I=V({L)+DEC
WkITE(6,T72)V (L)

o0 TC 29

WP ITEL €4 73) X(L)

INCREASE X (L) IF PASS SBAND 5PzLS CAN NOT

X(L)=X(L)+.0031
WPITE(6,73)X(L)
TFIX(L)-1.1)38,38,3
M=0

J=L

44

-~ TCL RECJCE v(J)

32

20
T
24
23

33

5

24
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REAL(J)=R{JI*W(J)
AERMAS(J)=SYRT(W(J ) *x2=EAL(J)%*2)
REAL(J)=ReAL(J)/XDBIG
AEMAJ(J)=AEMAJ(JI/XBIG

Wk ITE( 6o STIREAL(J) yAEMAJLY)

90 CONTINUE
QUALF=(SCRTIREAL (L )*%2+AEMAJ (L )%%2) )/ (2.*%REAL(L))
WRITE( &9 53) QUALF
AF ITELG59)0Q
wWATTE(6,TU)

CALL GRAFH(AXyAY9AXyNP,0,1)

11 FURMAT (bF945)

12 FOFMAT (5F11a7)

50 FU MAT (LX,2THFREQ RANGE X(L) 1S EXCEEDED)

51 FGRMAT (1X,40HCAUGHT IN A LOOP CF OVER AND UNDER SPECS)

52 FUSMAT(1242F1Ce7) .

53 FURMAT(/1X+'GOING INTUC GOLD1 FOR GETTING PEAK NUMBER',12)

54 FO'MAT{/L1X+'FINDING THE NCRMALIZING FREQUENCY*')

55 FOKMAT(1Xs5EL1T7e8)

56 FORMAT(//1X+'PULE LOCATION', 10Xy 'REALY 9y16X,*IMAGINARY', /)

57 FCRMAT (L4X+yELB8e893XyELBe8)

56 FORMAT(//1LX,*CRITICAL QUALITY FACTOR Q =*,E18.8)

59 FUFMAT(/1X,'MAX RTIPPLE MAGNITUDE ABOVE 1 I.E SQRT(l+E%*%*2) RIPPLE=?

1lyElde8)

T0 FORMAT(///11Xy'==mm—mmee NOw THE NORMALIZED GRAPH=mw==w=—e—t )

71 FORMAT(/1X,s*ADJUSTING CRITICAL 2ND ORDER NOW')

72 FURMAT(/LXs'V(L) ='4F10s5)

73 FORMAT(/1X4*X(L) =',Fl0e6)

T4 FURMAT(/LXe" VI 3I19') ='3F1l0e6)

75 FORMAT LX) 5t 60492X95F 0e492X95F60492X95F 6o 4)

76 FORMAT(1X,'XLOW(I) & XHI(I) =?,10F9.5)

T7 FORMAT(LX,'CHERYSHEV CECGREE =%, 12, RIPPLE FACTOR =!',F1046,' GOLD1

1 FRACTIONAL RECUCTION =',F1ll.8)

78 FORMAT(LXs'CHEBYSHEV BREAK FREQUENCIES WN(I)=',6F11.7)

79 FCRMAT (L Xy 'CHERYSHEV DAMPING RATIO =',6F11le7)

91 FORMAT(LX,'DAMPING RPATIC STARTING ESTIMATES=',6Fll.7)
STGP
END
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SUBROUTINE GOLDL(KeXLyXRoF ¢ YBIGoXBIGoXLL #XR1 o NyWNy XZT»NRD, NORM,UPR
1IPL,2)
IMPLICIT REAL*8(A~hyC-2)

THIS SUBKOUTINE wILL ScARCH OVER A ONE-DIMENSIONAL UNIMODAL FUNCTION
AND REPORT THE EXTREME CRCINATE FOUNDy ITS ABSCISSA, FINAL ABSCISSAS
BOUNDING ThE INTERVAL OF UNCERTAINTY, AND THE NUMBER CF FUNCTION
EVALUATIONS EXPENDED DURING THE SEARCH.

FOR REFERENCE SEE Co.MISUHKE BOOK 'INTRCe TO COMPUTER-AIDED DESIGN'P.180

THE SUBROUTINE REQUIRES THE SPECIFICATION OF THE PRESENT INTERVAL OF
UNCEPTAINTY, FFRACTIONAL REDUCTION IN THE INTERVAL OF UNCERTAINTY,
AND WHETHEF CF NCT A CONVERGENCE MONITOR PRINTOUT IS DESIRED.
P+~COVIDE A SUBRCUTINE MERIT1(X,Y) WHICH RETURNS THE ORDINATE Y WHEN
THE ABSCISSA X IS TENDEKED.
VARTABLES
K=0 CCNVERGENCE MCNITGR WILL NOT PRINT.
K=1 CONVERGENCE MONITOK WILL PRINT.
XL= URIGINAL LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY.
XR= CKRIGINAL RIGHTHANC ABSCISSA OF INTERVAL OF UNCERTAINTY,
= FRACTIONAL REDUCTICN IN INTERVAL OF UNCERTAINTY DESIRED.
YBIG= EXTREME ORDINATE DISCOVERED DURING SEARCH.
XBIG= ABSCISSA OF EXTKREME OKRDINATE.
XL1l= FINAL LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY.
Xel= FINAL RIGHTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY.
N= NUMBER OF FUNCTION EVALUATIUNS EXPENDED DURING SEARCH

DIMENSION XZT(9),wN(15)
JABS(AKG)=ABS(ARG)
QABS(AFG)=DABS (ARG) :

FO REFERENCE SEE LeMISCHKE BCOK ! INTRJ TO COMPUTER-AIDED DESIGN'PAGE 180
GO Tu 100

esee PFRINT CONVEFGENCE MUNITOR HEADINGS IF REQUIRED eeeees

111 IF(K)32431+32
32 WRITE(Ey33)

33 FORMAT(37HICUNVERGENCE MUNITUR SUBROUTINE GOLDLls//+58H N
1 vl Y2 X1 X24/7)

31 N = ¢
XLEFT = XL

XRIGHT = XR
13 LPAN = X& = XL
UELTA=0QABS(SPAN)
14 X1 = KL + 06381966%DELTA
X2 = XL + C.618034%DELTA
CALL MERITL(OXLyYLyWN,XZTyNRDOYNORMyUPRIPL,Z)
CALL MERITL(XZ2:Y2y wWNyXZT o NRDyNORMyUPRIPL,2Z)
N =N+ 2
IF(K)3445,34
WRITE(6y35)NeYLly Y2yx1yX2
FIRMAT (1544 (1lXyEL5.7))
IF(GABSIXL=-XR)=QABS(F*SPAN) V4,4 ,8
DELTA = Leb618C34%DEL TA
IF(YL = Yz)le10,42
XL X1
X2
Y2
XL + C,018034*%DELTA
CALL MERITLI(X2¢Y2yWNeXZTeNRDyNORMyUPRIPL,Z)

A
O VW

-

<
—
[T I TRT)



N=N+1
GC TC 3

2 XR = X2
Y2 = Y1
A2 = X1
X1 = XL ¢t 04381966%DELTA
CALL MERITLUALyW1yWNyXZTyNRCyNORMyUPRIPL,2Z)
N=N+1
GO TO 3

4 IF(YZ = Y1)5,45,406

S YBIG = Y1
X315 = X1
GU T0 7

6 YBIG = Y2
XBIG = X2

7 XL1 = XL
Xkl = XR
GO TU 39

10 XL = X1
XR = X2
DELTA = XR - XL
GG TC 14

39 [F(K)4(,37,37

37 WRITE(€Ce38)IXLEFTyXKIGHT oF yYBIG s XBIGoXL 1y XR1yN

38 FORMAT(//,

40

100
101
102
103

104

154H LEFTHAND ABSCISSA OF INTERV AL OF UNCERTAINTY seeeeeceesELSeTy/y
254H P IGHTHAND ABSCISSA COF INTERVAL OF UNCERTAINTY escesnoeesEl5a74/y
354H FRACTIGNAL REDUCTICN U~ INTERVAL JF UNCERTAINTY seeeerEL5.74/,
454H EXTKEME CRDINATE CISCCVERED DURING SEARCH ceasceesceerEL5eTy/,
554H ABSCTISSA UF EXTFREME ORCINATE cecccccacscccccsccocsceccesfl5eTy/,
654H NEW LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY eseeesEl5e74/,
754H NEW KIGHTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY eee9E15e74/,
854H NUMBER OF FUNCTICN EVALUATICNS EXPENDED IN SEARCH eee9115,/7/7)

XL = XLEFT

XR = XRIGHT

RETURN

IF(K)1C2,101,1C1

IF(K = 1)104,104,102

WRITE(6,103)K

FOR MAT (41l H =x%*xxEFROR MESSAGE SUBROUT INE GOLDL k*¥%¥¥*, /,9H Il
1I115,14d4 IS NUT O OR 1)

RETURN

IF(XR = XL)105,107,107

105 WRITE(€v1C6) XLy XP

106

107
108
1G5
110

FORMAT (41l b *%%xx%ERROR MESSAGE SUBROUTINE GOLDL1*%x%%, /,9H A2y
1C15e7+21H NCT SMALLER THAN A3,,El5.7)

RETURN

IF(FILC99109,108

IF(F - 1,0)111,109,109

WRITE(6,110)F .

FORMAT (41H **%x%%ERROR MESSAGE SUBRQUT INE GOLD] **%%%, /,9H Abyy
1615479 31H DUES NOT LIE BETWEEN Qe AND 1)

RETURIN

LND
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30

80

90

SUBROUTINE MERITL{WA,Y yWsRyLyNORMyUPRIPL,Z)
IMPLICIT REAL*8(A-H,0-2) '

MERIT1 IS A SUBROUTINE TO GCLD1l SEARCH, AN ORDINATE Y IS RETURNED
WHEN COLUMN VECTOR OF ABSCISSA W IS TENDERED.

pousLE PRECISICN DSQRT
DIMENSION R(9),wW{15) yWNSQ(10)
SQRT{X )=DSQRT(X)

Y2=1.

K=L~-1

NG=1

NF =1

DO 5 J=NGoL

WNSQUJI=W{J ) *%2

WS Q=WA%% 2

D0 16 J=NF,K

Y1=WNSQUJ}/SQRTI(WNSQUJII=WSQI*¥2+( 2. XR(J) *W{J)*HWA)*%2)
Y2=Y2%Y1

CONTINUE

YN=WNSQUL ) *%2/({ { WNSQ{L )=WSQ)*%2+{ 2. *R{ L) *W L }*kWA)*%*2)
Y=Y2%YN

IF(NCRM.EG.L)IGC TO 80

IF(NORM.EQ.2)G0U TO 25

CONTINUE )

FOLLOWING IS TO GET XB81G TO NORMALIZE THE MODIFIED CHEBYSHEV
IF(Y«GT.1l.)GC TG 30 )

Y=1le#{1la=Y) .

CONT INUE

NOWw LET Y BE ALWAYS =-VE EXCEPT AT Y=1 WHERE ITS EQUAL TO ZERO,
THUS WE CAN GET MAX Y WHERE IT INTERSECTS LINE 1.

Y=1 =Y

60 TG 80

CONTINUE

RETURN

END



APPENDIX B
LEAST SQUARES ERROR ALGORITHM

This algorithm gives the poles of the mth order low-pass double
dominant poles modified Chebyshev function (MCF) with low dominant pole
quality factor (Qd)° The input data includes the break point frequency
of the nth order. Chebyshev function, and the upper and lower bounds for
the estimated damping ratio of the MCF. The relationship between the
orders m and n is given by m = n + 2(c - 1), where c corresponds to the
dominant pole multiplicity and is taken here as 2. In the algorithm
double dominant poles replace the dominant poles of the nth order
Chebyshev function, and the pass-band specifications are met by adjusting
the parameters of the new function. This is achieved by using Gold 1
and Pattern search [ME 1] to minimize the pass-band error function. The
MCF is obtained after meeting the pass-band specifications, and normal-
izing the poles to a cutoff frequency of one. The algorithm output
includes the following: print-out of the data, pattern and Gold 1
convergence monitor, poles and Qd of the MCF, and the MCF magnitude
print-out. Subroutine Gold 1 will not be listed here since it has been

included in Appendix A.
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THIS PE a4 GIVES TRE PCLES OF THE MODEFIED CHEBYCHEV POLYNOMIAL
WITH <EUuciu CPITICAL QUALITY FACTOR Qe USING MULTIPLE POLES
IT CAN bt USED FUOF CHEBYCHEV PULYNOMIALS OF DEGKEE 2 & GREATER.
SECCNL uROFR FOCLYNUMIALS CF THE FURM S*%242%2ETAXWN%S #s N¥%2 ARE
CONSIDERED  IN HER.
INPUT QUANTITIES
N= NUMBEEK (F UNKNCWN PARAMETERS = MCF DAMPING RATIOS + 1 FOR 1ST
ORDER SECTIUN IN CDD CHEBYSHEV FUNCTIOUNS,
EPS I= PASSBAND ~IPPLE FACTOR I.E.FOR 2DB EPSI= .7647831
2= CROER CF CRIGINAL CHEBYSHEV FGLYNOMIAL
F= MINIMUM STEF SIZE IN SUBROUTINE PATTERN BEFCORE GUITTING 1.E F=.,0001
FRED= F<ACTIONAL FEDUCTION FOR SUBROUTINE GOLDl 1.E FRED=.0001
XLO(J)= LOWER BUOUND OF ZETA REQUIRED FOR PATTERN SEARCH
XHI(J)= UPPER BOUND CF ZETA REQUIRED FOR PATTERN SEARCH
WN{J)= BREAK FREGUENCTES CF ORI ¢INAL CHEBYSHEV POLYNOMIAL
DATA REQUIRED: F3i FRED3: XLO(IV: XHI(I)3 wWN{I),
IMPLICIT REAL¥B(A=H,yG=12) :
CIMERSIGA XHI(9) s XLI(9) 9 AY (15C) AX{150)sWN(15),X{%9), WNSC(10)
LyREAL(S) 2 AEMAJL(D)
FOLLOWING IS FOR 0OUBLE PRECISION
QSQRT{ ARG ) =SCRT (ARG)
OSQRT(ARG)=DSWUR T{ARG)
JINT (ARG )=INT(ARG)
JINT{ARGI=IDINT (ARG)
READ( 5921 )Ny ZyEPSI F ,FRED

21 FORMAT(Iz,F3 4093F11.9)

THE LUWEF ANC UPPER BCUNC FCR ZETAS FOLLOWS
THE BREAK FRECLENCIES FOLLCWS

1 READ{(5,22)(XLO(J)sJ=14N)

IF(XLO(1)eEQa040IGL TO 99
READ(5+22  IXHI{J) v J=14N)
REAC(5+233{WN(J)syJI=1,N)
WRITE(6+8012

22 FORMAT (5F4.2)
23 FCRMATI(5FL1.8)

WRITEC€s24)(WN(J)sd=1sN)

24 FORMAT{/1X,* INITIAL CORNER FREQ WN =',5E1648,/)

UPFIPL= THE HIGHIEST RIPPLE= SGQRT(L+EPSI*%2) ,NOTE THAT THE
LUWER KIPPLE LIMIT IS ALWAYS = l.
DELWN= INCXEMENT FOK THE LAST BREAK FREQ
DELWA=,003
UP= 17 =QSCRT(L+EPSI*%2)
FOLLOWING 1S PATAN DATA
ULT#T= MAX FREQ INCLUDED IN ERRCR CUST TERM
ULTWT=1. '
LP=2
DELTA= 4001
NUM= 1 IS TG REAL IN THE LATEST X(I) TU PATRN
NUM=0
THE GOLD1 VALUES FULLUWS
NORM= 0 GIVES US THE MAX OF FILTEP FUNCTION
NGRM= 1 ALLCWS US TO EVALUATE THE NORMALIZING FREQ
NORM=0
11=1
CDDEG=2/2
UDCHK=JINT{ODDERQY
APRANGING XLOW FUR GOULD1 TO GET LAST PEAK
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IF(CCLCEQ.EG.COCHKIGU TO 2

IF(Z.NEL3)GC TU 2

XLUwW=435

SL TU 4

CONTINCE

IF(NCT1)IGL TO 3

XLuw=0 U

cu TL 4

CINT INUE

XLOA=WiN(N=1)

CONTINUE

XHIG=1 .25

XLCHK=XLUW+.01

CONTINLE

CALL PATTERN SEARCH TO OBTAIN NEW ZETA VALUE

CALL PATRN(NoLPyXHIyXLOyDELTA9F oXsWNyNUMJUPRIPLy ZyULTWT)
CONTINUE

CALL GOLDl TU GBTAIN THE VALUE CF THE LAST PEAK.IF IT IS WITHIN
THE PASS BAND SPECIFICATION THE ITERATION STOPSsOTHERWISE,wWN({N)
1S INCREMENTED AND PATTERN IS CALLED TO GIVE THE NEw ZETAS
NCGRNM=0

CALL CGULLODI(ILsXLOWeXHIG)yFRED yYBIGyXBIG s839B4yJSeWNsX9Ny NORMyUPRIPL
vZ)

"FIXBICsCTeXLCHKIGC TC 20

CUNTINLE

KLOW=XLOW+.02

XLCHK=XLCW+e 01

AR ITE(EsTOIXLEW

GU TO 5%

CGNTINLE

IF(YBIGeLLLUPRIPLIGC TC 5C

NUM=1

CUNT INUE

WN{N)=WN{N)+DELWN

e ITE(6e TLIWNIN)

Jel.TA=,001

CALL PATRN(NyLPyXHI ¢yXLCyCELTAyFoXoWNyNUMyUPRIPLyZ  ULTWT)
CALL MERITL(XBIGC YBIGyWNeXyNyNCFMyUPRIPL,2Z)
IF(YBTICeGTUPRIPLIGO TO 28

SO 7O 5

WRTITE(696C)IIXTI)I=1yN)

FOFMAT(//1Xs*THE OPTINMUM VALULES OF ZETA ARE X(I)=!',9E16.3,/)
AX(1)=C.

W=0e

IJH=1e5/1CCe

NWP=100

NV=N=-]

Wk =1

NG=1

IF(OCOEQEWa COCHK)IGD TO 26

NG=2

CUNT INUE

20 35 J=NGeN

ANSQ(JI=aN(J) *%2

FOLLGWING IS TC FLCT THE NCRMALIZED MAGNITUDE OF MOD CHEBYSHEV
rISST UBTAIN THE NURMALIZING FREQUENCY FROM GOLD1

CONT INUCE '

NCRM=]



[N el

94

XLOW=XBIG

XHIG=1,3

CALL GULDI(Il o XLOWsXHIGy FREDyYbIGyXBIGsB3 B4 J5,WNyX NyNORM,UPRI PL
1+2)

DW=14/100,

WF=0.

NF=1

C NP=NP+5U

&0
a1

89

90

S9
&5
70
71
12

DO 85 J=1,.NP

wswWEXXELG

WSQ=Wx%2

Y2=1. ’

IF{CCODEQ.EC.COCHKIGG TC 82
Y2=X{1}*UPFIPL/QSQFT{X{1) *%2+4%k%x2)

NF=2

IF(NsELe2)GC TC 81

CONTINUE

IF{N.EQ.1)GU TC 81

DO 8y I=NFyNM
YL=aNSCUT)/QSQRT O WNSQUII=WSQI* %2+ (24X (T )XWN(I)*RN)%k%2)
Y2=Y2* YL

CUNTINUE

YN=WNIANY R4/ {LWNIN)ER2-WS Q1% 2+ (2% X (N I*NN(N ) %W) %%2)
AY(Jd)=Ye*YN

AX{J+1I=AX(S ) +Diw

WF=wF+Ch )

WRITE(EY65)AX(I) 4 AY (J)

> COUNT INUE

WRITE(6yT4)

Ni{=1

IF(UDDEW.EQ.CUCHKIGO TC 89

NH=¢

WRITE(S,790X (1)

CONTINUGE

D0 90 J=NH,H

REAL(J) =X (J)RWN(J)

AEMAJ(J)=GSRPTIWN(J) x5 2=PEAL(J)*%x2)

NiIJRMAL IZ ING THE POLES

REAL{J I)=REALIJI/XBIG

AEMAJ(J)=AEMAJ(J)/XBIG

WRITE(O, TS )REAL(J ) WAEMAJ(Y)

CONTINUE .

QUALF={CSCFT (REAL(N)*%2+AENAS (N )%%2) )}/ (2 *REALIN))
whITE(6,77)CLALK

WRITE(6y TUIUPSTPL

WRITE(O,T0)

CALL GRAFF{AX,AY 4AX NP40,1)

NOEM=2 GETS THt STOP FREQ WHERE MOD CHEB & ORIGINAL CHEB INTERSECT
NiRM=2

XLCC=lacl

XtilI=1a7% :
CALL GUULDI{I1sXLUOWXHIT,FRED»YB 9w XBsB39B49J59WNsXyNyNORMyUPRIPLZ)
WHITE(OVWBTIWNIN) +XB

CUNTINLE

FURMAT (L X+5E17.8)

FORMAT(LX, *™NER INCREASED XLO= ' ,E17.8)

FOPMAT(L X " NEw INCREASED WN(N) ='3E17.8,/)
FORMAT{(1 X" GLIM; INTC CGCGLLL1'y/)
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FORMAT(/ 9 /9 / s/ 11Kyt === NOW THE NON NORMALIZED GRAPH ===1t)
FOREMAT(//1Xy "PULE LOCATION® 10X, *REAL' y16Xy' IMAGINARY", /)
FORMAT(14XyE18.943XyE18.9)

FORMAT(/ v/ 4/ 911Xyt ==ommm NCw THE NORMALIZED GRAPH =====1t)
FORMAT(/ /71X, 'CRITICAL QUALITY FACTOR Q =',E19%9.38)

FURMAT (/1X,*MAX FIPPLE MAGNITUDE ABOVE 1 I.Ee. SQRT{L+E*%*2), RIPPLE
1 ='4E18.5)

FORMAT(/1X* VALUE FCR CDD FCLYNCMIAL X(1) =',E18.9,/)
FORMATL////7 /7 " 3tk FOLLOWING IS FOR CHEBY DEGREE N =',F3.,0,°
LTU N+2 ddkodkstopadokfkledkokkikk ¢ ,//)

FORMAT(/1X ' CHEB & MCC CHEE WITF WN(N)=',E17.8,' INTERSECT AT STQP
LBANE AT FREQ W=',El7.8/)

STOP

cND



SUBRCUTINE PAIPN(N,NPyXHI,XLUyDELTA;FoXZoHN,NUM,UPRIPL.Z,ULTNT)
IMPLICIT PEAL*8(A~Hy0-2)
CIMENS IUN XHI(9)9sXLO(9)sX1(9) 3 X11(9) 4 X12(9) yAM(9) 4 X2 {9) 4 XSAVE(9) 4X

L3(9)yANML(9) s X4 (9), COMNT (20) 4WN(15)
€ 3 R R B s o o R R Rl o A B s R R R

THIS SUBRCUTINE CCNDUCTS A PATTERN SEARCH WITHIN REGIONAL
CCNSTRAINTS IN A HYPERSPACE OF UP TO EIGHT INDEPENDENT
VARIABLES. THIS PROCEDURE WAS CEVISED BY HOOKE AND JEEVES
(REF: OPTIMUM SEEKING METHODS BY WILDE, PG. 145)

PROVIOE A DIMENSIGN DECLARATICN AS FOLLOWS:
DIMENS ION XHI(9),XLO(S)

PROVICE A SUBRCUTINE MERIT{X,Y) FROM WHICH AN CRDINATE Y IS
RETURNED wWHEN COLUMN VECTOR UF ABSCISSA X IS TENDERED.

PROVICE THRE MEFRIT FUNCTICN CN A CATA CARD

NP=0 CCNVERGENCE MUNITCR WILL NOT PRINT

LRI B A N ) ..f\ngENCLATURE..........

N=NUMBER UF INDEPENDENT VARIASLES IN SEARCH (8 OR LESS)

NP=1 CONVERGENCE MONITOR WILL PRINT EVERY ITERATIUN

NP=2 CCNVERLENCE MCNITCR WILL PRINT EVERY 2NC ITERATION

DELTA=INITIAL STEP SIZE

F=MINIMUM STEP SI1ZEt BEFORE QUITING

XLO=LCWEK BOUNC CF SEARCH CCMAIN, COLUMN VECTOR C

XHI=UPPER BOUND OF SEARCH DCMAIN, COLUMN VECTCR c

) C

(C e 3 ske e ol ok e 3¢ s 39 3 okl o o e ol s ok ok sk o ek e e kol Aok oo o ke o e ok sk e ook ok e 3k ofe ok ok ok ek e sk e o ok 3k e e ke ok ke o ek

10C0 FORMAT (///' CONVERGENCE MONITOR = PATTERN SEARCH SUBROUTINE',//?
L NN"AX o "DELTAY 97Xy 'Y 3 TXy " X(L) 96X s"X(2) " 96Xy X(3) 196Xyt X(4)",6X
29" X(5) 9 6Xe P XLEN 46Xy " X(T) 146X 'X(8)'/)

1001 FURMAT (1X,14410E15.7)

1002 FCRMAT ('1')

1003 FORMAT (///' LARGEST MERIT ORDINATE FOUND DURING SEARCH seescscces
LYy ELH.8/" NUMBER OF FUNCTION EVALUATIUNS USED DURING SEARCH eee'yl
215/' FINAL SEARCH STEPSIZE ..l.......‘....'..........-.....'Els.a/
3/7/7) :

1604 FORMAT (' X('yIl,") ='4E15.8/7)

1COY FORMAT (' XLC('yIle') =1'9yEL5.895X¢ "XHI{ "9y I1ly?) ='yE1548)

1CCo FORMAT ('1%','THE MERIT FUNCTICN EVALUATED'//1X,20A4///7/"' REGIGONAL
1CONSTRAINTS' /)

1007 FORMAT (20A4)

D0 L I=1sN
1 WRITE (641005) T2XLOCI)»IoXHI(I)

2XksksRalsiniakskzislatataNeiake e R oo Re)

OO0 CODOCoOC OO Nn o000

c
C  ==———- > INITIALIZE K======
C

015=DELTA

IF(NUMLEGC.0IGO TO 3

D0 2 J=1N

Altad)=x2(J)
A11(0J)=X1(J)
X12(J4)=X11J)

2 XSAVE(J)=X1(J)
GU Tu 6

3 CCNTINLE
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3N

35
4C

45

50

55

58
59
6C

DG 5 I=1sN
XLUI)=sXHI(L)=({XHI(1)=-XLO(1))/2.0)
X11(1)=X1(1)

X12(1}=x1(1)

XSAVE(L 1)=4A1( 1)

CONT InUE

CALL MERIT (X1,YLlyWNyNyUPRIPLyZ»ULTWT)
ITER=C

IF (NP} 941C.9

WRITE {0,1008)

AR ITE (uelCCl) ITERWDELTASY Lo (X1{I)sI=1sN)

—————— > EVALUATE THE STAR PATTERN K==
————— > TO DETERMINE BASE POINT, B{I}) <--
AM(1)=Yl

DO 55 1=1,4N

J=1+1

AKLLI(I)=X10T1)+DFC_TA

IF (X11(I)=XHT(I)) 20,20,15
XL1{I)=XHI(])

CALL MERIT (X1le YA WNyNyUPRIPL +Z+ULTWT)
X12(1)=X1(1J)=-DLLTA :
IF (Xle(I)=XLCA(I)) 254+30,30
X120 Di=XLo0 1)

CALL MERIT (XlzyYBsWNyNyUPRIPLsZyULTWTY)
IF (AM(I)=YA) 42,35,35

IF (AM(I)=Y5) 45,5C,5C
AM(J)=YA

X2{1)=X11(1)

X12(1)=X11(:)

GO0 TC 55

AM(J)=v4d

X2{1)=x12(1)

X11(1)=X121(1)

GO TU 55

AM(J)=AM(I)

X211)=x11(1)

X11¢id=X1(1)

X12(I)=x1(1)

CONTINLE

Y2=ANM(J)

ITER=ITER +1

IF (NP=1) 59,58,57

D=ITEK /2.0

K=1i)

D1=K

IF (D1=0D) 59Ye5Es 59

WRITE (641001) ITERSOUELTA Y Zo(X2{I)sI=14N
IF (Y2=Y1) &5,60405
DELTA=DELTA/E.

CEL=UELTA-Fr/8.

I+ (CEL) 175,905,065

—————— > EVALUATE PRUJECTED TRIAL POINT <

------ > AS TEMPURARY HEAD PUOINT, T{I«Q) <

DU 85 1I=1.N

-

)
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70
75

90

S5

1C0O
105

110
115

12¢C

125

130

135

140

145

150

155

X3({I1)=2.C%X2(1)=-XSAVE( )
IF (X3(1)=XLUll)) 75,85,70
IF (X3(1)=-XHI(I)) 85,85,80
X3(I)=XLC( 1)

GU TU 85

0 X3(I)=XHI(1)

CONTINLE
CALL MERIT (X3,Y3, WNyNyUPRIPL yZ yULTHT)
IF (Y3=Y2) 90,90,165

------ > EVALUATE THE STAR FATTERN (mmmmmm
------ > ARQUND PROJECTED TRIAL POINT K===m=-=
DO 95 I=1,N

X11(1)=X3(1)

X12(1)=X3(1)

AML(1)=Y2

DO 140 I=1,N

J=T+1

X11(I)=X3(1)+DELTA

IF (XL1(I)=XHI(I)) 105,105,100

XLL (I )=AHI(I)

CALL MERIT (XL1 YA WNyNoUPRIPLyZ ULTWT )
X12(1)=X3(1)=-DELTA

IF (XL2(1)=XLC(I)) 110,115,115
X12(1)=XLC(I)

CALL MERIT {X12yYB,WNyNsUPRIPL, ZyULTWT)
IF (AML(I)=YA) 120,125,125

AML(J)=YA

X12( 1)=Xx11(1)

X4 {I)=X11(1)

GO TC 14GC

IF (AM1(I)-YB) 135,13C,13C
AML{J)=AML(1)

XL1(I)=X3(1)

X12(1)=X3(1)

X4(1)=X3(1)

GG TO 140

AML(J)=YE

X11(I)=X12(1)

X4(1)=x12(1)

CONT INUE

IF (AML(J)=Y2) 155,155,145

------ > ESTABLISH A STAR PATTERN POINT K===m=m
—————— > AS TEMPORAKY HEAC PCINT, T(I,0) <==m==m

DO 150 I=1lwn
XSAVE(I)=x2(1)
AMSAV=Y2
XL{I)=X4(1)
X11(I)=X4(1)
X12{I)=X4(1)
Y1i=AM1(J)

GG TC 10

—————— > ESTABLISH PREVIOUS BASE POINT (m=om——

------ > AS TEMPURARY HEAD POINTy T(I40) K==sm==
D0 160 I=1,N
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170

175

180

XSAVE( I1)=X1(1)
AMSAV=YL
X1I)=x2(1)
X11{1)=X2(1)
X12(1)=X2(1)
Yl=Y2

GO TO 10

—————— > ESTABLISH PROJECTED TRIAL POINT Km==e-mv
—————— > AS TEMPORARY HEAD POINT, T(1,0) K===-=-

DO 17C I=1sN
XSAVE(I)=X2(T1)
AMSAV=YZ2

X1(1)=Xx3(I)
XL1(I¥=X3(1)
X12(14=X3(1)

Yyl=Y3

DELTA=D15

GO 7C 10 :
DELTA=DELTA*8.0

WRITE (641003) Y2, ITER,DELTA
DO 180 I=1sN

WRITE. (6,1004) I,X2(1)
WRITE (6+1002)

CONT INUE

RETURN

END
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SUBRGUTINE MERIT(X»YsWNsNsUPRIPLyZyULTHWT)
IMPLICIT REAL*8(A-H,0-2)

MERIT IS A SUBRUUTINE GF PATTERN SEARChHs AN ORDINATE Y IS RETURNED
WHEN CGOLUMN VECTOR OF ABSCISSA X IS TENDERED.

DIMENSICN WN{1S5),X{9)s WNSG(10)
QSQRT(ARG)=SQFT(ARG)
QSQRT(ARG)I=DSORT(ARG)
JINT(ARG)=IDINT(ARG)

NUMPIK=NUMBER OF CHEBY PEAKS .
RESPID= THE IDEAL PASS BANLC STRAIGHT LINE ABCVE ONE DESIRED
Y=0e

FOLLOWING IS FCR 10T+ ORDER CHEBY 3DB TO 12TH ORDER
RESPID=1 4+ {UPRIPL=14)/2,

WT=1.

NUMP IK=N

WIMXST =3,

W=0e

MAXIT=NUMPIK*2%10

OW=sULTWT/MAXIT

NM=N~-1

NF=1

NG=1

0DDEQ=2/2

CDCHK=JINT(CDDEQ)

IF(ODDEQeEQ.ODCHKIGO TO 26

NG=2

CCNTINLE

DO 35 J=NGsN

WNSQ(J )=uWN(J )*¥%2

DG 1C J=1,MAXIT

WSQ=w¥k%*2

YZ=1.

IF(CCCECSEC.CLLHKIGU TC 39

Y2=X{ 1 )%UPRIPL/QSQRT(X(1)*%2+wk*2)

NF=2

TF(NeEQe2)G0 TO 41

CONTINLE

IF(N.tEwel)GO TO 41

D0 40 I=NF,NM
Y1I=wNSC{I)/QSCRTCIWNSQII)=WSQ)I**2+(2 X X(TIRWN(I)*W)%%2)
Y2=Y2*YL

CONT INUE

YN=WNEN) %3G/ COWN(N) %% 2=WS Q )¥%2+ (2% X(N)*EWN (N ) ¥W) %*x2)
YZU=Y2%YN

Y=Y+ (WTH(Y20-RESPID) ) *%2

W=W+DW

IF{WweGTenIMXST)IGC TG 3

GO T0O S

WT=T7.

CONTINUE

CONTINUE

Y=1./Y

RETURN

END
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SUBROUTINE “ERITL{WysYyWN9XyNyNORMUPRIPL,Z)
IMPLI1CIT REAL*8(A-Hy0-12)

MERIT1 IS A SUBROUTINE TO GOLD 1 SEARCH, AN CGRDINATE Y IS RETURNED

WHEN CCLUMN VECTOR OF ABSCISSA W IS TENDERED.

DOUBLE PRECISION DLOUGLO

DIMENS ION X{9)yWN{15),WNSQ(10)
QSURT(AKG) =S CRT ( ARCG)

QSQRT{ARC)=DSQRT(ARG)

JINT(ARG)I=IDINT {ARG)

GABS(ARG)I=UABS{(ARG)

Y2=1a

NM=N-1

NG=1

NF=1

ODDEQ=2/2

COCHK=JINT{CCLEQ)

IF(ODDEQ.EQODCHKIGO TO 26

NG=2

CUNTINUE

DC 35 J=NGsN

WNSQ(J )sWN(J )*%2

WS Q=nwi*%2

LF(ODDEQ.EQ.CDCHK)IGO TC 39

Y2=X{1 )*UPRIPL/QSQRT{X (1) **2+Wk%2)

NF=2

IF(NEGC.2)GO TO 41

CONTINLE

IF(NsEQe1)GO TO 41

DO 40 I=NF,NM

YL=ANSCOI)/QSCRT C{WNSQUI)=WSQ)*¥2+(2*X (T )*WN(1)*W)x%2)
Y2=Y2%Yl

CONTINUE

YN=WNCON) %G/ (ORNIN)*%2-WS Q )¥%2 4 (24 & X (N )*WN (N ) *W ) %%2)
Y=Y 2%YN

IF(NURM.EQ.0)GO TO 80

TF(NCFRPeECeL)IGL TO 42

IF(NCRM.EQL2)GO TO 47

CONT INUE

FOLLOWING IS TO GET XBIG TO NORMALIZE THE MOD CHESB
IF(YGTele)GO TO 45

Y=let(le=Y)

CONTINUE

NOW LET Y BE ALLWAS =-VE EXCEPT AT Y=1l. WHERE ITS EQUAL TG ZERO,
THUS WE CAN GET MAX Y WHERE IT INTERSECTS LINE 1.
Y=1e-Y

¢0 TO 89

CCONTINLE

C FINDING STOP BANO INTERSECTION FREQ BET MOD CHEB & ORIGINAL CHEB

AN(LL)=.63717164
whN(12)=e2488%9627
WAN{13)=e12983136
wN{14)=.066570948
WN(15)=,C20737564
wWN(E)=.69€48154
FN=1,

DO 50 J=1+4
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50

80

FA=WNSCLJ)/QSCRT{(WNSQ(J)I=WSQ)I*¥2+(2 4 *¥WN(J IFWN(10+J) *W) %%2)
FN=FN*FA

FA=WN(6) %2 /QSORT( (WN{6) **2~WSQ JX*2+{ 2o ¥WN{ 6) XWN(15) ¥ W) %¥%2)
FN=FN*FA

Y=20*DLCG(Y)

FN=20%DLCGLO(FN)

Y==QABS( Y=-FN)

GO TO 80

CONTINUE

RETURN

END
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APPENDIX .C
ROUNDOFF NOISE COMPUTATION

This program evaluates the output noise variance of a digital filter
by computing the integral of (1/(2mj))H(z)H(1/z)1/z around the unit
circle in the z-plane. Realization in -terms of first and second order
cascaded canonic sections is considered, and the bilinear transformation
is employed to transform from the.s-domain function to the z-domain. The
scaling factors are evaluated in subroutine SCALE, and the integral is
evaluated by subroutine SALOSS [AS 1]. Input data includes ripple factor
EPSI, desired section ordering, and s-plane poles. The algorithm output
includes section ordering, and output noise variance due to A/D

conversion and multiplier roundoff.
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IMPLICIT REAL*8(A-H,0-2)
COUBLE PRECISION DSQRT
DIMENSION A(15)+B(15)9AS(11),VA(8),KS(10),GNT(10),8B1(10),B2(10),YF

1(400),5(10)

LePP{T)+QQ(T7) 4 LE(T)+KN(T) yKE(T)

THIS PROGRAM EVALUATES THE OUTPUT NOISE VARIANCE OF A DIGITAL FILTER
BY COMPUTING THE INTEGRAL OF (L1/(2*%PI%*J))*B{Z)*B(1/Z)/(ALZ)*A(L/2)%*L)
AROUND THE UNIT CIRCLE

THE SECTIONS ARE IN CANONIC CASCADE FORM OF 1ST & 2ND ORDER SECTIONS

THE BILINEAR TRANSFORMATIGN FROM S TO Z DOMAIN IS USED IN THIS PROGRAM

PlyP29eee ARE REAL POLE LOCATION IN S PLANE,P1=CRITICAL POLE,

P2=NEXT CRITICAL POLE, ETC.
QleQ2yeee ARE IMAG PUOLE LOCATION IN S PLANE,Ql=CRITICAL POLE,
Q2=NEXT CRITICAL POLE, ETC.

PROGRAM FINDS NOISE DUE TO SECTION P14Q1 CLGSEST TO OUTPUT, THEN

THE NOISE DUE 70O P14Q1+6&P2,Q2 AND SO IN

ODD & EVEN FUNCTIONS CAN BE USED

G SETS H{Z)=ATTENUATION (ATT) WHEEN Z=1

KS = NUMBER OF INPUT NOISE SOURCES

NSCT= NUMBER OF FIRST AND SECOND ORDER SECTIONS.

N= CRDER OF POLYNOMIALS A & B

GN1yGN2s essARE TO SET H(Z)=ATTENUATION(ATT) AT Z=1 ATT=1 FOR 0ODD

FUNCTION H(Z)

CATA NEEDED ARE PlsQlyP2yQ2seees& NSCT AT PROGRAM END. EPSI & KS(I)
AT PROGRAM TOP. FOR ODD FUNCTIONS SET Q1 OF REAL POLE=0.0, &
EPSI=0.0

EPSI = RIPPLE FACTOR Ie.Eey FOR 1 DB RIPPLEyTHEN EPSI=4508847

LP & MP ARE THE DESIRED SECTION ORDERINGyMP IS THE SECTION CLOSEST
TO OUTPUTyIeE«sFOR TWO 2ND ORDER SECTIONS IF LP=2 & MP=1,IT MEANS
THAT THE CRITICAL SECTION IS CLOSEST TO THE OUTPUT.

DATA REQUIRED: 1= S~PLANE 2ND QUADRANT POLE LOCATION Pl +QlsP29Q290ee3

2= EPSI; 3= NSCT; 4= LP & MP.

READ POLES OF 4TH ORDER FUNCTION

READ(5+83)P1,Q1lyP2,+Q2y EPSIoNSCT

READ DESIRED SECTION ORDERING FOR 2 SECTIONS(I.Esy3D OR 4TH ORDER)
READ{5+80)LP,MP

WRITE(6:84)PLyCLoP29Q2yEPSTyNSCTyLPyMP

Lz=1

NC=1

RIPPLE CALCULATION

ATT=1e/DSQRT{1le+EPSI*%2)

GN1=0.0
GN2=0.0
GN3=0.0
GN4=0.0
GN5=0.0
GN6=0.0
ERMX=10000.0
JR=0

JQ=0

JP=0

KP=0

NOUS=0
JINTR=0

CONT INUE ’

ASSIGNING POLE LOCATION FOR 2 SECTIONSs3 SECTIONSs ETC.
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100

159

161

162

163

PP(MP)=P1
QQ(MP)=Q1
PPILP)=P2
QQ(LP)=Q2
GO TO 100
CONT INUE

DBTAINING THE CORRECT SECTION ORDERING FOR PRINT 0OUT

LE(1l)=MP

LE(2)=LP

LE(3)=KP

LE(4)=JP

LE(5)=JQ

LE(6)=JR

DO 159 J=1,6

KE{ J) =0

KN(J =0

JA=1

DO 161 J=1+6

IF(LE(J) LLTL.KN(JA)IGO TO 161
KN(JA)=LE(J)

KE( JA)=J

CONT INUE

JA=1

JB =2

DO 163 J=ly0

IFILE(J) eGEoKN(JA) sOReLE(J) LT« KN(JUBIIGO TO 163
KN(JB)=LE(J)

KE(JB)=J

CONT INUE

JA=JA+1

JB=JB+1

IF(JBsLENSCTIGO TO 162
WRITE(6yBLIKE(J)yJI=146)
JN=1

NODD=0

KS(1)=3

KS{(2)=3

KS(3)=3

KS{4)=3

KS(5)=3

KS{6)=3

CALCULAT ING MULTIPLIER VALUES
G=ATT

IF(QQ(1).EQ.0.0)G0 TO 111
Ul=1.

Fl=2.

Dl=1l.

EL1=2.%PP(1)
W1=PP(1)**%2+QQ(1)%*2
GN1=ATT®W1/(1.+Wl+E1)
X1=2e*(Wl=1e )/ (1le+Wl+E1)
Yl=(1le+W1l-E1)/(1le+WL+EL)
BLINSCT)=X1

B2 (NSCT)=Y1
G=G*¥(1le+X1+YLl) /4.

GO TO 112

X1=1, '
YL=(PP(1l)=1.)/(PP(1l)+1l.)
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D1=0.0
Ul=0.0
Fl=1le.
BLINSCT)=Y1
G=G*(1.+Y1)/2.
KS(1)=2
112 CONTINUE
NF=1
IFINSCT.EQ.NF)GO TG 20
IF{QQ(2).EQ.0.0)GO TO 113
uz2=1.
F2=2.
D2=1.
E2=2.%#PP(2)
W2=PP(2)*%2+4QQ(2)*%2
GN2=W2 /{1 .+W2+E2}
X2=2+%({W2=16)/{la+W2+E2)
Y2=(le+W2-E2)/{Le + W2+E2)
BL{NSCT-NF)=X2
B2(NSCT-NF)=Y2
G=G*(1e+X2+Y2) /4,
GO TO 114
113 X2=1.
Y2=(PP(2)-14)/(PP(2)+1.)
02=0.0
U2=0.0
F2=1.
BL{NSCT-NF)=Y2
G=G¥*(1le+Y2)/2¢
KS{2)=2
114 CONT INUE
NF =2
IFINSCT.EQ.NF)GO TO 20
20 CONTINUE
OBTAIN THE SCALING MULTIPLIERS
CALL SCALE(NSCT,81,82+G»S+GN,QQ)
DO 10 J=1,15
10 A(J)=0.0
IF(NSCT.LT.1)GO TO 40
FOR FIRST 2ND ORDER SECTION CLOSEST TO0 OUTPUT
IF(QQ(1)eEQe0.0)GO TO 123
N=2
GO T0 124
123 N=1
NODD=1
124 CONTINUE
VAT=0.0
IN=15
IF(QQ(1)«EQs0.0)GO TO 140
A(N-1)=D1
140 A(N)=X1
A(N+1)=Y1
DO 2S J=1,15
29 YF(J)=ALJ)
GNT(1) =GN
1 CONTINUE
GT=GNT (JN)
IF(QQ(1) s EQe040)GO TO 146



146

30

125

126

141

31

147

B{N=1)=UL*GT
BIN)=F1%GT
BIN+1)=1 .%GT
LN=1

RC=1.

CALL SALOSS(AyBsN, IERR,VyIN)

RC=2.

IF(IERR.EQe0)GO TG 50
IF(JN.EQ.1)GO TO 30

vV=V/12.
WRITE(6+76)V
GO TO 40

CONT INUE
VA{1)=KS(L)*V
VAT=VAT+VA(1l)

IF(NSCT.LT.2)G0O TO 40
NOW FOR CASCADE OF TWO SECOND ORDER SECTIONS
IF(QQ(2) «EQe0.0)G0 TO 125

IF(NODD.EQ.1)GO TO
N=4

GO TC 126

N=3

NODD=1

CONT INUE
R1=D1%X2+X1%¥D2

R2=D1*Y2+D2*Y1+X1%X2

R3=X1%Y2+X2*Y1l
R4=Y1%xY2

IF(QQ(2).EQ.0.0)G0 TO 141
IF(NODDsEQ.1)GO TO 141

A(N=-3)=D1%D2
A(N=2)=R1
A(N-1)=R2
A(N)=R3
A(N+1)=R4

DO 31 J=1,15
YF(J)=A(J)

CNT (1 )=GN*S(NSCT)
CONTINUE
Cl=Ulx%U2
C2=U1*F2+F1%U2
C3=Ul+F1%F2+U2
C4=F1l+F2
GT=GNT (JN)

IF(QQ(2).EQ.0.0)G0 TO 147
IF(NCDD.EQ.1)GO TO 147

BIN=-3)=C1*GT
B{N=-2)=C2%GT
B{N=1)=C3%GT
BIN)=C4%*GT
BI(N+1)=1.%GT
LN=2

RC=3,

CALL SALUSS({A+BsNsIERR,V,IN)

RC=4.

IF{IERR«EQ40)GO TO 50
IF(UN.EQ.1)GO TO 32

V=V/12,

107



32

40

42

45

175
110

50

51
70
1

1
83
84

WRITE(6,76)V

GO T0 40

CONT INUE

VA(Z)=KS (2)*V
VAT=VAT+VA(2)
IF{NSCT.LT.3)GO TO 40
CONT INUE
IF(JIN.EQ.2)G0 TO 45
DO 42 J=1,15
A(J)=YF(J)

NOW OBTAINING THE A/D NOISE VAR IANCE
JN=2
GNT(2)=GNT(1)*S(1)
IF(LN.EQ.1)G0 TO 1
IF(LN.EC.2)G0 TO 2
CONTINUE

ADD ONE TO VAT TO ACCOUNT FOR QUTPUT MULTIPLIER IN SECTION CLOSE TO

QUTPUT

VAT=VAT+1.

VAT=VAT/12.

WRITE(64 T2)VAT

IF(VAT.GE.ERMX)GO TO 175

ERMX=VAT

MJ1=KE(1)

MJ2=KE(2)

MJ3=KE(3)

MJ4=KE(4)

MJ5=KE(5)

MJ6=KE (6)

CONT INUE

CONTINUE

WRITE(6+82)ERMXy MIL MI29MI34MI4IMI59MI6

ERMX=10000.0

NC =1

CONTINUE

WRITE(6s70)IERRWN

CONTINUE

FORMAT (1X9? *%*ERRCR=PCLES OUTSICE UNIT CIRCLEL.IERR=',1I1,* AT STAGE
N=%41247)

FORMAT (1X, *OUTPUT NUISE VARIANCE V(' 9ILlye")='yFl6.7,'%Q%%2/12")
FORMAT (1 X, * TOTAL OQUTPUT NOISE VARIANCE ='¢Fl6e7, "%Q%%2")
FORMAT(LXs'RC = 'yF4e2)

FORMAT (1X+*VALUE OF GN('9Ils*)=?yFlb6e7," & GNT='4Fl6.7)
FORMAT (1X+ *TOTAL OUTPUT NOISE VARIANCE =',Fl6e 7y '%Q%%2/12')
FORMAT(1X,' OUTPUT NOISE VARIANCE DUE TO A/D ="'y FL6.T ' ¥Q%%2")
FORMAT(1X,* INITIAL OUTPUT GAIN =*,Fl6.7)

FORMAT(612)

FORMAT(/ 4612)

FORMAT (/ 910X " ¥%xMINIMUM CUTPUT NOISE VARIANCE=',Fl6¢7y **Q%%2
AT SECTION ORDERING'y6124/7)

FORMAT(5F10.7412)

FORMAT(1X ' Pl="yFl0e7+'QLl=*yFl0aTy'P2="yFl0e74'Q2="'+F107,4'EPSI=",

LF10e 79" NSCT="412,"LP=",12,"'MP=",12)

sTOP
END
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SUBRGUTINE SALGSS(AyByNsIERRV, IN)

PRGGRAM FOR EVALUATING THE INTEGRAL OF THE RATIONAL FUNCTION
17(2%PI*1)*B(Z)*B(1/Z)/(ALZ)*A(1/2)*1)

AROUND THE UNIT CIRCLE

REFERENCE:. ASTROM,JURY, 8AGNIEL 'A NUMERICAL METHOD FOR THE EVALUATION

OF COMPLEX INTEGRALS',IEEE TRANS ON AUTOMATIC CONTRULAUG 1970,PP468-4T71

A= VECTOR WITH THE COEFFICIENTS OF THE POLYNOMIAL
ACL)I*Z*xEN+A(2 ) ¥ *¥%(N=1)+eee+A(N+1)

IT IS ASSUMED THAT A(1) IS GREATER THAN ZERO

B- VECTOR WITH THE CGEFFICIENTS OF THE POLYNOMIAL
BUL)*Z *%N+B(2)*2 **(N=1)+eee+B(N+1)

THE VECTORS A AND B ARE DESTROYED

N- ORDER OF THE POLYNOMIALS A AND B (MAX 10)

IERR= WHEN RETURNING ITERR =1 IF A HAS ALL ZERGS INSIDE UNIT CIRCLE
IERR= O IF THE POLYNOMI AL A HAS ANY ROOT QUTSIDE OR ON
THE UNIT CIRCLE OR IFf A(1l) IS NOT P3SITIVE '

V- THE RETURNED LOSS I.E RETURNED VALUE OF THE COMPLEX INTEGRAL

IN- OIMENSION OF A AND B IN MAIN PROGRAM

SUBROUTINES REQUIRED: NCNE

IMPLICIT REAL*8(A=-H,0-2)
DIMENS ION A(CIN) B(IN),AS(12)

CRUBE STABILITY TEST
NP=N+1
IF(A(1))50,50,1
R=A(1)

DO 2 I=1sN
R=R+A( I+1)
IF(R)150450,3
R=A(1)

N1l=1

DO 4 I=1sN
N1==N1
R==R+A(I+1)
IF(NL)5+546
R==R

CONTINUE
IF(R)IS5Cy5Ce 7

BEGIN MAIN LOOP

AO=A(1)

IERR=1

V=0.,0

DO 10 K=1,N
L=N+1-K

Ll=L+1
ALFA=A(L1)/A(L)
BETA=B(LL)/A(L1)
V=V+BETA*B(L1l)
DO 20 I=1,L
M=L+2-1
AS(IN=A(T)I-ALFA%XA(M)



B(IN=B(I)-BETA*A(M)
IFCAS(1)150,50,30

DO 40 I=1,L

A(TI)=AS(I)

CONT INUE

V=V+B(1)*%2/A(1)

V=V/AO

RETURN

IERR=0 .
FORMATI{LIX,"A(I)=",10F12.6)
FORMAT{1X,"B(I)=',10F12.6)
FORMAT(/1Xs'R=',F12.6)
FORMAT(/LX+'AS(1)="4Fl6.9)
RETURN

END
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40

45
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53

SUBROUTINE SCALE(NSCT,B1+sB2+GsSsGNyQQ)
IMPLICIT REAL*8(A-Hy0-1)

DOUBLE PRECISICON DABS

DIMENS ION B1(10),82(10),YF{400),5(10},QQ(7)
THIS SUBROUTINE CALCULATES THE SCALING FACTORS FOR THE CASCADE DIGITAL
FILTER SECTIONS SUCH THAT V(NT) .LE.l +& Y(NT).LE.l
NSCT = NUMBER OF FILTER SECTIONS

Bl & B2 = INNER & OUTER FEEDBACK MULTIPLIERS
G= FILTER GAIN IT SETS H(Z)=1 AT =1
GN= NEW RETURNED FILTER GAIN = G/S(K)
S(1)=1,

DO 10 J=1,75

YF({J)=0.0

YF(1l)=1.

K=1

JR=NSCT

CONT INUE

IF(JR.EQ.0)GO TO 58

IF(KeGTe2)GO TO 15

KM=1

GO TO 20

KM=K~1

CONTINUE

IF(QQ(JR)EQ.0.0)G0 TO 51

V1=0.0

v2=0.0

SUMV=0.0

SUMY=0,.0

DO 40 LS=1,75

LL=LS
V=S{KMI®*YF({LL)=-BLIK)*V1=-B2(K)*V2
YE(LL)=V+2,%V1+V2

SUMY=SUMV+DABS (V)
SUMY=SUMY+DABS(YF(LL))

V2=Vl

Vli=V

CONT INUE

IF(SUMY.GT.SUMVIGO TC 45

S(K)=1./SUMV

GO TO 46

S(K)=1./SUMY

CONTINUE

CONTINUE

K=K+1

JR=JR~-1

GO TO 11

CONTINUE

SUMV=0.,0

SUMY=0.0

V1=0.0

DO 53 LL=14+75
V=S{KM)*YF(LL)-BLl(K)*V]

YF(LL)=V+V1

SUMV=SUMV+DABS (V)
SUMY=SUMY+DABS(YF(LL))

vVi=v

CONTINUE

IF(SUMYeGT+SUMVIGO TO 56
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56
57

58

55
70

72

S(K)=1e/SUMV

GO TO 57

S{K)=1./SUMY

CONTINUE

K=K +1

JR=JR~-1

GO 7O 11

CONT INUE

GN=G

DO 55 K=14NSCT

GN=GN/S(K)

FORMAT(/1Xy' SUMV ' 9yILle® )= yFléaTo4Xe ' & SUMY('yI1y')=14Fl647)
FORMAT(L X" SCALING FACTOR S({*yI1y*)=",F16.7)
FORMAT (1 Xy *ADJUSTED OUTPUT GAIN=',F1l6.7)
RETURN -

END
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