
MODIFIED BUTTERWORTH AND CHEBYSHEV FUNCTIONS: 

DIGITAL FILTER ROUNDOFF NOISE 

AND BIT REQUIREMENTS 

By 

KHALIL ELIA MASSAD ,, 
Bachelor of Engineering 

American University of Beirut 
Beirut, Lebanon 

1970 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1972 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1975 



I 
I 

MODIFIED BUTTERWORTH AND CHEBYSHEV FUNCTIONS: 

DIGITAL FILTER ROUNDOFF NOISE 

AND BIT REQUIREMENTS 

Thesis Approved: 

Dean of the Graduate College 

ii 

OKLAHOMA 
STATE UNIVERSITY 

LlClfiARY 

Ml\Y .J 2 1976 



ACKNOWLEDGEMENTS 

Numerous consultations with and suggestions.from Dr. Rao Yarlagadda, 

my thesis adviser and chairman of my doctoral committee, contributed 

significantly to this dissertation •. 

The interest and comments offered by Dr. Robert Mulholland, Dr.· 

Edward Shreve, and Dr. Gerald Goff, membt}rS of my do.ctoral committee, are 

sincerely appreciated. 

I thank Dr. John Chandler, Computer Science Departll).ent, Oklahoma 

State University, for his advice and for I'roviding some.of the computer 

programs used in the course of this·thesis. 

The financial support from the National Science Foundation under 

NSF Grant GU-3160, and.the teaching assistantship from the School of 

Electrical Engineering, Oklahoma State Un~versi ty, is gratefully 

acknowledged. 

For typing this thesis and for suggestions concerning style, I 

e~ress my thanks to Dixie Jennings. 

iii 



Chapter 

I. 

TABLE OF CONTENTS 

INTRODUCTION 

1.1 
1.2 
1. 3 
1.4 

Statement of the Problem . . • . • . . 
Review of the Literature • . ·. 
Technical Approach . . . . 
Organization of the Thesis • 

Page 

1 

1 
3 
5 
7 

II. MODIFIED BUTTERWORTH FUNCTIONS WITH LOW Q-FACTOR 8 

2.1 Introduction . . . . . . . . . . . . . . . . 8 
2.2 Problem Statement. . . . . . . . . . . . . . . 9 
2.3 Modified Butterworth Polynomials . . . . . 10 

2.3.l Double Pole (c = 2) Case. . . . . . 13 
2. 3. 2 Stop Band Specifications. . . . . . 17 
2.3.3 Example . . . . . . . . 18 

2.4 Summary. . . . . . . . . . . . . . . . . . . . 20 

III. MODIFIED CHEBYSHEV FILTERING FUNCTIONS WITH LOW Q-FACTOR . 21 

3.1 Introduction . . . . . . . . . . . . . 
3.2 Problem Statement. . . . . . . . . . . . . . 
3.3 Modified Chebyshev Functions (MCF's) . . 

3.3.1 Physical ,Method . . . . . . . 
3.3,2 Least.Squares Error Algorithm . . 
3.3.3 In'l;ermediate Modified Chebyshev 

Functions .(IMCF's) . . . . . . 
3.4 Examples . . . . . 

3.4.1 Example 1 . . . . . 
3.4.2 Example 2 . . . . . . 

3.5 Conclusion . . . . . . . . 
~V. ROUNDOFF NOISE: COMPARISON OF CHEBYSHEV AND MODIFIED 

CHEBYSHEV DIGITAL FILTERS. . ... 

4.1 
4.2 

Introduction . . . . . • . . 
Roundoff Noise Calculation . 
4.2.1 Realization ...... . 
4.2.2 Noise Due to Product Rounding 
4.2.3 Scaling and Section Permutation 
4.2.4 Noise Comparison~ ...•.•.. 

iv 

. . . 
. . 

. . . . 

. . . . 

21 
23 
23 
24 
30 

37 
38 
43 
44 
45 

46 

46 
47 
47 
49 
50 
53 



Chapter Page 

4.3 On Calcul~ting Roundoff Noise From the Driving 
Point Impedance . . . • . . . • . . . . . . . 55 

4.3.l Proposed Method • . . .... 56 
4.3.2 Example • • . . . . . 58 

4. 4 Conclusion • . . • . . 59 

V. COE.FFICIENT WORD-LENGTH: ESTIMATION AND COMPARISON OF 
CHEBYSHEV AND MODIFIED CHEBYSHEV DIGITAL FILTERS 

5.1 
5.2 

5.3 

5.4 

Introduction . . . . . . . • • . . ·. 
Coefficient Word-Length Estimation • . 
5.2.1 First Order Case ......•.... 
5.2.2 Example ......... . 
5.2.3 Second Order.Case , .... . 
Coefficient Word-Length Comparison 
5. 3 .1 Example . . . . . . . . . 
Conclusion . . . . ·. . . . . . . 

VI. SUMMARY AND SUGGESTIONS FOR FURTHER STUDY. 

6.1 
6.2 

Sutnmazy. • • • • • • • • • • • • 
Suggestions for Further Study .. 
6.2.1 Modified Functions ........ . 

. . . . . 
6.2.2 Coefficient Bit Estimation. . . .. . 
6.2.3 Output Noise Variance . . . • . . .. . 

SELECTED BIBLIOGRAPHY . 

APPENDIX A - PHYSICAL METHOD ALGORITHM. . 

60 

60. 
61 
61 
62 
63 
65 
69 
70 

73 

73 . 
74 
74 
75 
76 

77 

81 

91 APPENDIX B - LEAST SQUARES ERROR ALGORITHM. 

APPENDIX C - ROUNDOFF NOISE COMPUTATION • . . 103 

v 



LIST OF TABLES 

Table Page. 

I. %c and Coefficient Values for c = 2 and n = 3, .•• ,15 

I . 12 2 2n 2 4 Lm(Jw) = 1/(1 + e: w (a1 + a2w + a3w )) • . , • , • 15 

II. Poles of Modified Butterworth Transfer Function Lm(s) 
for c = 2, m ~ n ~ 2(c·- 1) • • • • • • • . • 16 

I II. Critical Quality Factors Qd of Chebyshev (Ch~b.) Hn (s) and 
Modified Chebyshev (MCF) Lra(s) c = 2 Functions,. 
m = n + 2(c - 1). • • • . • . • • • • • • • • • • 31 

IV. 

v. 

Poles of Modified Chebyshev.Transfer Function Lm(s) for 
c = 2, m = n + 2(c - 1) ...•......... 

Roundoff Noise a6: Comparison of Chebyshev I\i(z) and 
MCF Lm(z) for c.= 2 and m = n + 2· .••..•• 

32 

54 

VI. Coefficient.Bit Requirement of the Dominant Pole Section 
for 5% Tolerance Limit. ·. • • • • . • • • . . . . . • . 71 

LIST OF FIGURES 

Figure 

1. Magnitude Comparison Bet~een Eighth Order Butterworth and 
Tenth Order Modified Butterworth Functions . · 

2 .. Flow Chart Using the Physical Method ••••. 

3. Plot of IL (jw)I and Each of its Second Order Sections •. m 

Page 

·, . 19. 

26 

. . . . 28. 

4. Flow Chart Usi~g the Least Squares Error Method. • • . . . • • • 36 

5. (a) Low-Pass Filter p = 50%, Pass-Band. 
(b) Low-Pass Filter. p = 50%, Stop-Band. 
(c) Low-Pass Filter p = 50%, Time Delay 
(d) Low-Pass Filter p = 50% . ' Pole Location. . 

6. Cascade Filter Realization With Noise Inputs . 

vi 

. . . . . . . 
. . . . . . . 

39 
40 
41 
42 

48 



LIST OF SYMBOLS, 

a. Damping ratio of modified functions 
1 

y 1 Inner multiplier of second order digital section 

y 2 Outer multiplier of second order digital section 

Yr Multiplier of first order digital section 

o. Damping ratio , of second order section 
1 

e Pass-band ripple facto~ 

p Reflection coefficient 

2 an Output noise variance 

wA Analog freque~cy 

~i Break point frequency of, second order section 

w CutC?ff frequency, of filter -function c 

wD Digital frequency 

wd Dominant poles location 

w . Frequency of ,second order section magnitude peak p1 

w Lowest specified stop-band frequency 
r 

wtm Cross ·.over frequency of original \ind modified ft.mctions 

a Real _part of s-plane pole location (s = -a ~ jb) 

b Imaginary part of s~plane pole location 

Ch Magnitude of dominant pole section at break point frequency 

c Multiplicity of -the dominant poles 

H (jw) Transfer ft.mction of order n 
n 

L (jw) Modified transfer func~ion of order n 
m 

MCF Modified Chebyshev.ft.mction 

vii 



P. 
1 

T ( ) 
n 

v. (k) 
1 

y. (k) 
i. 

Z (s) 

Peak magnitude of a second order function 

Pole quality factor 

Q of dominant poles 

Q of dominant poles with multiplicity c 

Coefficient bits of first order section 

Coefficient bits of inner multiplier 

Coefficient bits of outer multiplier 

Scaling factors 

Sensitivity of T with respect to x 

Chebyshev polynomials of degree n 

ith section branch node output 

ith section output 

Driving point impedance 

viii 



CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

In the past, minimum order transfer functions were considered 

optimal for filter designs. This is due to the fact that in the passive 

filter design the number of reactive elements is closely tied to the 

degree, n, of the transfer function, and that in the-active and digital 

filter designs, . in terms of first and second order cascade sections, the 

number of components depends upon the degree n~ For a given class of 

functions such as Chebyshev, the poles will be closer to the imaginary 

axis in the s-domain for higher order fun.ct ions, In the z-domain, the 

poles will be closer to the.unit circle for higher n. Therefore, any 

change in the parameter values.in the active or digital filters may move 

the poles into the region of instability [RA l]. In addition, z-domain 

transfer functions with poles close.to the unit circle will e~hibit high 

output roundoff noise variance [GO 3], and the tolerance limits on the 

components of the active and passive filters will decrease with 

increasing n. Since the cost of the circuit components in the passive 

and active filter-designs, in general, is inversely proportional to the 

tolerance limits, it is import~t to con~ider transfer functions which 

have poles away.from the imaginary axis [GE 2]. 

In the digital filter design, the coefficient bit requirement 

increases as the poles approach the unit circle. Considering the cost 

1 
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aspect of filter designs, it is appropriate to find sub-optimal transfer 

functions which have poles away from the imaginary axis in the s-domain 

and away from the unit circle in the.,z-domain, 

The worst case tolerance limits. on the component val.ues. in the cas"". 

caded active filter design and coefficient bit requirements in cascaded 

digital filter-design can best be estimated by considering the second 

order section corresponding to. the dominant _poles. For the .dominant pole. 

pair. located at s = -a !:_ jb, the corresponding quality factor Qd is 

usually defined as Qd = / a2 + b2 /2a [TE l]. It is clear that the 

closer the poles are to the imaginary axis, the larger ~becomes. 

In this thesis, the notion of modified transfer functions with 

dominant pole multiplicity greater than one is used in order to reduce ~ 

and hence move the dominant poles away from the imaginary axis. These 

modified filter functions.must always satisfy the pass-band and stop-band 

specifications, and they are here suggested as alternatives to the 

classical filter functions. The·modified functions considered are the 

modified Butterworth an~ modified Chebyshev functions and are basically 

derived from classical Butterworth and Chebyshev functions, respectively. 

Ideally a large number of bits is required to realize the coeffi-

cients (multi pliers) of the .. discrete function, but due to the limited 

arithmetic word-length, the .coefficients are rounded to the nearest 

quantization step. This change in coefficient values will result in an 

undesirable change in the pole location; therefore, it is important to 

use the minimum number of bits which can satisfy the pole tolerance 

limits. In this thesis a method is developed to estimate the coefficient 

bit requirement. 

Several methods.for c~lculating the digital filter output noise 
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variance have been suggested [MI l]; all of these methods rely on the 

z-domain transfer function for noise calculation. This requires that the 

s-domain filter-function be transformed first into the z-domain prior to 

noise calculation. In this thesis, a method is given which relates the 

output noise variance computation directly to the s-domain filter trans­

fer function and the filter driving point impedance. 

1.2 Review of the Literature 

Earlier, it was pointed out that there is a definite ne~d for 

deriving sub-optimal transfer func~ions. This created an interest in 

deriving transfer functions with higher degree and lower dominant pole 

quality factor Qd than is given by the original minimum order transfer 

functions [GO 1, KO l], These higher degree functions were obtained 

numerically. Kaiser pointed out that there is a definite need for 

developing analytical results in this area [KA 2]. Budak and Aronhime 

[BU l] introduced the transitional Butterworth Chebyshev filters with 

reduced ~; this function is a combination of both the Butterworth and 

Chebyshev functions. 

Recently, Premoli [PR l] used the notion of multiplicity in the 

dominant poles to obtain analytically the multiple critical root maxi­

mally flat (MUCROMAF) polynomials for low-pass filters with lower Qd and 

higher degree than the Butterworth functions. In addition, Premoli 

[PR 2] recently suggested a new class of multiple critical root pair. 

equal ripple (MUCROER) filtering functions which possess reduced Qd and a 

higher degree than the corresponding Chebyshev functions. 

In considering the digital filter realization of transfer functions, 

the word-length requirements and output noise variance have been 



investigated [KN 1, GO 3]. Several methods.for computing the output 

rou~doff noise have been suggested [JU 1, JU 2, KN 1, GE 1, AS 1, MI l]. 

An approach was also proposed for calculating the output roundoff noise 

variance by transforming the z-domain function into tqe s-domain [KI 1, 

GR l]. 

4 

It is well known that a digital filter, in general, has a low output 

noise variance-when it is.realized in terms of first and second order 

cascade sections [KU 1]. In addition, the ordering of the-second order 

section for minimum output noise is important. Several numerical methods 

for reducing the digital filter output roundoff noise by selecting the 

optimum section ordering have been presented [JA 1, LE 1, GO 2], A 

realization of the second order section with reduced quantization noise 

at low frequencies was also introduced [GO 3, KI 2]. 

In the area of coefficient word~length r~quirement, Mitra and Sher-

wood have presented a method for word-length estimation by evaluating the 

pole sensitivity with respect to coefficient cha:Qges due to quantization 

[MI 2]. C_rochier approached the .same problem by using a statistical · 

method for word-length estimation [CR l]. In.order to satisfy the 

s-domain pole tolerance limits, White suggested a word-length estimation 

procedure that depends on the impulse invariant transforJru:!.tion [WH l]. 

Cardwell [CA l] attempted numerically to reduce the coefficient 

word-length by using higher order transfer functions; he succeeded in 

reducing the word-length at the cost of higher output noise variance. 

Avenhau$ [AV 2, RA l] invest~gated numerically word-length reductio~ 

using coefficient optimization techniques and higher degree functions; 

the word-length requirement was.reduced but a higher output noise 

variance resulted. In this thesis, an attempt is made to reduce the. 



output noise variance.without increasing the word-length requirement 

(in many cas~s, lower word-length requirement results). 

1.3 Technical Approach 

The derivation of the modified Butterworth and Chebyshev functions 

is based on the notion of multiple dominant poles. The reduction in Qd 

is possible because the multiP.le dominant poles will complement eac~ 

other in giving the total high magnitude peak required originally by one 

5 

second order high Qd section. Since the .dominant poles with multiplicity 

equal to two give the maximum percentage Qd reduction [PR l], further 

study is directed to this case. 

The approach used in deriving the coefficients of the mth order low-

pass multiple dominant pole modified Butterworth function Lm(s) wi.th 

reduced Qd' given the, nth order Butterworth func~ion Hn(s) with m > n, is 

explained in the following. Since I Hn (jw) I is maximally flat at the , 

origin, I Lm (jw) I must also be maximally flat, This condition requires 

that the first (n - 1) derivatives of I Lm (jw) 12 ~i th respect to w2 be 

equal to zero. at w = 0, Due to the dominant pole multiplicity of .c, the 

first c - 1 derivatives of the denominator.of jLm(jw)j 2 with resp~ct to 

w2 must be zero when evaluated at the dominant pole location. In addi­

tion, the denominator of I Lm(jw) I must equal zero when evaluated at the 

dominant pole location. , To satisfy the pass-band specifications it is 

required that jH (jl)I =IL (jl)j. At w = O, the magnitude IL (jw)j 2 
n m · m 

2 must also be .equ~l to 1 or 1/(1 + e ) for odd and even m, respectively, 

where e is the.ripple factor. The pass~band specifications will always 

be satisfied, and a root locus approach is used to increase the transi-

tion region attenuation. 
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The coefficients of the low-pass non-equal-ripple mth order modified 

Chebyshev functions (MCF's) with multiple dominant poles having signifi­

cantly reduced Qd are derived numerically by employing a new algorithm 

called the physical method. In this algorithm the dominant poles of the 

original Chebyshev function of order n (n < m) are replaced by multiple 

dominant poles; the magnitude of every second order section is iterative­

ly adjusted until the pass-band specifications are met. Since the MCF's 

are not unique; the classical least squares error algorithm is used to 

derive the MCF's and the two methods are compared. By increasing the 

dominant pole break frequency, intermediate modified Chebyshev functions 

with higher transition region attenuation can be obtained at the cost of 

increasing Qd. 

Having derived the MCF's, a c9mparis.on of the digital filter output 

noise variance and coefficient word-length requirement between the low­

pass nth order Chebyshev functions and the low-pas.s double dominant pole 

MCF's of order (n + 2) is investigated. The output noise variance is 

obtained after. scaling and optimum section ordering as discussed by 

Cardwell [CA l], while the estimat~on of the coefficient word-length 

follows a method derived in this study for. the cases where the .bilinear .. 

transformation is employed, In the suggested met;hod for noise computa­

tion, the bilinear transform is also used in relating the output noise 

variance to the s-domain driving point impedance. The digital filter 

realization considered in this study is in terms of first and second 

order cascaded canonical sections [GO 3]. Fixed point arithmetic and 

rounding of products before summation is assumed, · 



1.4 Organization of the Thesis 

Chapter II presents an analytical method for deriving the coeffi­

cients of the modified low-pass maximally flat Butterworth polynomial 

with low Qd and multiplicity of the dominant pole pair greater.than one, 

A root locus method is also presented t~ detennine the modified Butter-

7 

worth coefficients such that the.attenuation of the ,transition region is-

increased. 

Chapter II I presents a new· numerical algorithm (the ,physical method) 

which determines the coefficients of a.low-pass non equal-ripple MCF 

function with multiple dominant poles and significantly lower Qd than the 

corresponding Chebyshev function. For higher transition region attenua-

tion .the physical method can also generate intermediate MCF's. The 

results are compared with those .obtained using the -leas~ squares error 

algorithm. · 

Chapter IV presents the digital filter output roundoff noise com­

parison between the .Chebyshev and MCF functions. The suggested method 

for output.roundoff noise calculation using the .s-domain transfer func-

tion and the filter d,riving point impedance is also given. 

Chapter V presents a method for.estimating the coefficient word ... 

length such that the s-domain pole tolerance limits are satisfied. The 

digital filter coefficient word-length comparison for the Chebyshev and 

MCF realization is also given. 

Chapter VI presents a summary and suggestions for further study. 

Appendices A, B, and C present the algorithms for the physical 

method, the least squares err~r method, and for roundoff noise computa-

tion. 



CHAPTER II 

MODIFIED BUTTERWORTH FUNCTIONS WITH LOW Q-FACTOR 

2,1 Introduction 

In active RC and digital filter designs, the precision requirement 

of e~ch second order section might .dictate a constraint on the maximum 

value of the dominant pole quality-factor Qd [HU 1, KA 1, TE l]. 

In this chapter, a method is given to determine the coefficients of 

a modified low pass maximally flat (at the origin) Butterworth polynomi­

al, with a lower dominant pole.pair Q-factor using a higher order polyno­

mial with multiplicity of the dominant pole pair greater than one, 

There has beep some interest in deriving higher order transfer 

functions with low Q dominant pol es [GO 1, LO 1] • Most of these are 

based upon numerical optimization techniques, It has been pointed out 

that there is a definite need in developing analytical results in this 

area [KA 2], In a recent paper, the Multiple Critical Root Maximally 

Flat (MUCROMAF) polynomials for low pass filters were proposed where 

higher order polynomials with multiple critical roots were developed 

[PR l], The coefficients were obtained by solving two polynomial equa­

tions and a set of n - 2 simultaneous linear equations in (n - 2) un­

knowns, where n is the degree of the transfer function with no root 

multiplicity, Thus as n increases, the number of simultaneous equations 

to be solved increases, 

Using this same notion of multiplicity in the dominant pole pair, 

8 
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this chapter proposes an alternate method which specifies the coeffi-

cients needed with fewer number of equations; the number of equations 

depends upon the dominant root multiplicity rather than the degree of the 

transfer function [MA. l]. The same results that were obtained with the 

MUCROMAF polynomials are obtained here, but with fewer equations. Compu-

tationally, the method presented here is superior to that presented in an 

earlier paper [PR l] when the multiplicity of the dominant poles equal to 

two. A modification of this method to fit more stringent frequency 

domain-specifications is also presented. 

2.2 Problem Statement 

Let 

IH (jw)j2 = 12 2 n n 1 + & w 
(2-1) 

be the Butterworth function satisfying the pass and stop band require-

ments in the frequency domain. It is required to find a modified 

Butterworth function 

IL (jw)j 2 = ---1---
m m 2i 

1 + l d2iw 
i=l 

(2-2) 

which satisfies the frequency domain specifications with the constraint 

that the magnitude function 

H (jw) 
n 

2 

L (jw) m 
(2-3) 

is required to deviate the least amount from unity for frequencies close 

tow= 0 [HS l]. Furthermore, the Q of the dominant poles obtained from 

Equation (2-2) must be less than the specified Q. Let the specified Q be 
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Qd. It is evident that this condition implies that m > n. 

In the .following section, modified Butterworth functions are 

derived with the idea that the Q's of the dominant poles can be minimized 

by having the.dominant.roots with multiplicity c greater than one. It is 

clear that the magnitude of the .dominant second order section of H (s) 
n 

will have a large overshoot for a low damping ratio. The reduction in Qd 

is possible since the multiple critical poles complement each other in 

giving the total high peak required originally by one second order sec-

tion in the Butterworth function. This results in identical second order 

sections each with low Qd replacing the original high Qd second order 

section. The resulting function is called modified Butterworth function, 

since it is maximally flat at the origin. 

2.3 Modified Butterworth Polynomials 

The coefficients d2i, i = 1, .•. ,m, in Equation (2-2) can be deter­

mined by observing the following interesting aspect of F(w2). The func~ 

tion I Hn (j w).1 2 is to be approximated by a higher order function 

jLm(jw)j 2 . Furthermore, 1Hn(jw)j 2 is a maximally flat function and it is 

required that !Lm(jw)i 2 also be a maximally flat function. Therefore, 

F(w2) must also be a maximally flat function. Since F(w) is a function 

of w2 = x, it can be expressed in terms of its Taylor's series about 

w = O, in the form [HS l], 

where 

i 
F(x) = f(O) + F'(O) ~! + •••.+ F(i)(O) ~! + 

F(i)(O) = .dii F(x)lx=O 
dx 
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The maximally flat property qf F(x) and its value at w = 0 implies that 

F(O) = 1 

and that F (i) (0) = 0 for i = 1,,. , ,.n-1. This results in 

for i = 1,2,···,n-l 

whiGh implies that 

d2 =.d4 = ... = d = 0 · 2n-2 

so that Equation (2-2) can be written as 

IL(jw)l 2 = 
1 1 (2-4) = 2 (c-1) m m 2i 2 2n w2i) 1 + l d2i w 1 + € w ( l a. 1 

i=n i=O 1+ 

where the ai's remain to be determined. Let wd = (R + jI) be the loca­

tion of the multiple poles. Due to the pole ml.lltiplicity, the first 

c - 1 derivatives of the denominator in Equation (2-4) will have.a zero 

at w = wd. These result in the following equations. The first deriva­

tive results in 

2 (c-1) 
l 

i=O 

The remaining derivatives result in 

2 (n + .i - l)(i - 1)! ai + (n + i)i! ai+l wd + 

2c-i-l 
l 

k=2 

2k k-1 
(n + i + k - 1) ai+k wd II (i + j) 

j=k+l-i 

. (2-5) 

(2-6) 

= 0 

i = 2,3,•••,c-l 

In addition to the.se derivatives, the denominator in Equation (2-4) has a 

zero at w = wd. This results in the equation 
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2 2n [ 2 Cc-l) 2i J 
1 + e; wd i~O ai+l wd = 0 • (2-7) 

At the cut off frequency, w = 1 (normalized), it is required that 

IH (jw)l 2 = IL (jw)l 2 ; hence n m 

••• +a = 1 2c-l 0 (2-8) 

By substituting a1 from (2-8) into Equations.(2-5) and (2-7), and by 

equating the real and imaginary parts of Equations (2-5), (2-6), and 

(2-7) to zero, a set of 2c simultaneous nonlinear equations in the 2c 

unknowns R, I, a2 , a3, ,,,, a2c-l results. There exists~ solutions 

cn;l if n is odd) to these equations, each of which corresponds to a 

multiple pole on one complex conjugate pole pair of H (s). In order that 
n 

the dominant poles correspond to the multiple poles, one has to initial-

ize the search subroutine used to solve the 2c equations with R and I 

values close to the dominant pole values of H (s), 
n 

Next, let us examine the pass and stop band requirements. 

Theorem 2,3,l 

Proof 

IL (jw) 1
2 satisfies the pass-band specifications; that is 

m 

- 1- < IL (jw) 12 < 1 
1 + e;2 m 

for 0 < w < 1 

The constraints at the terminal points are evident from Equations 

(2-4) and (2-8). Therefore, one needs.to show that for all w, 0 < w < 1, 

0 < f (w) 
2n 2 Cc-l) 2i 

= w l ai+l w < 1 
i=O 

Thus it is sufficient to show that there exists no real w such that 
p 
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O < w < 1 and f' (w ) = ~ f(w) I = O. Differentiating f(w) with 
p p dw w=wp 

respect to w2 and equating it to zero, it follows that 

W2n-2 [ 2i(=~-ol) 2 ·] l (n + i) ai+l w 1 = 0 (2-9) 

which has 2n - 2 roots at w = 0 and 4(c - 1) roots at w = wd = R + j I 

which is complex (see Equation 2-5)), Thus there exists no real w such 
p 

that w > 0 and f'(w) = O. Therefore, the proof follows. 
p p 

The above discussion indicates that the pass-band requirements will 

always be satisfied. The stop-band,requirements will be discussed later. 

First, a special case is considered. 

2.3.1 Double Pole (c = 2) Case 

It can be observed that the rate of Qdc drop is largest in the case 

of c.= 2 [PR l], where Qdc is the Q-factor of the dominant pole pair. It 

is therefore necessary to investigate this case of c = 2 further, It 

will be demonstrated that the 2c = 4 equations needed to solve for the 

coefficients a2 , a3 , R, and I can be reduced to two equations in two 

unknowns R and I. 

The 2c = 4 equations are the real and imaginary parts of Equations 

(2-5) and (2-7). Solving Equation (2-5) for w~ and using wd = R + j I. 

and a1 = 1 - a3 - a2 (Equation (2-8)), the following equations result. 

(I2 2 2 n(l - a3 - a2) 
+ R ) = (n + 2)a3 

(n + 1) a2 

2(n + 2)a3 

Now, from (2-10) and (2-11), a2 and a3 can be expressed as. 

(2-10) 

. (2-ll) 
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2 2 2(I - R )(n + 2)a3 
a2 = n + 1 (2-12) 

n(n + 1) a = --~~~~~~.....,,.~---,,--,..-_,_~__......_~~~.....,,.~--,,,--~~~ 
3 (n + l)(n + 2)(I2 + R2) 2 + n(n + 1) + 2n(I2 - R2)(n + 2) 

(2-13) 

Substituting a2 , a3, and a1 (from Equation (2-8)) in Equation (2-7), the 

following equation results. 

The real and imaginary parts of Equation (2-14) result in two equations 

and two unknowns. These can be solved for the double pole location irre-

spective of the polynomial degree n; a1 , a2, a3, can then be determined 

from Equations (2-8), (2-12), and (2-13). In Table I, Qd , Qd , and a. 
1 2 1 

are given, where Qd 
1 

corresponds to the .Q of the dominant pole pair of 

the Butterworth function; Qd 
2 

corresponds to the Q of the double dominant 

pair. Computationally, the above two equations are simpler to solve on a 

computer than a set of linear equations and two polynomials presented in 

[PR l], This is due to the fact the initial guess of the solution 

(dominant poles of the nth order Butterworth function) is very close to 

the solution itself, However, the story is different when c is greater 

than two. Convergency problems do arise, and the approach in [PR l] is 

more appropriate. 

In Table II, the poles of the modified Butterworth function for 

n = 3, ... ,15 are given, 



\c 
n\ 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TABLE I 

Qd AND COEFFICIENT VALUES FOR. c =.2 AND n = 31 ••• ~15 
c IL (jw)l2 = 1/(1 + e2w2n(a +a w2'+ a wq)) 

m 1 2 3 

1 2 

Qdl al a2 a3 

1.000000 1.139381' - 0.521951 0.382570 

1.306563 1.555091 - 1. 222708 0.667616 

1.618034 2. 059002 - 2.088475 1.029472 

1. 931852. 2.646374 - 3.115571 l.469197 

2.246980 3.315329 - 4.302638 1.987309 

2.562916 4.064973 - 5. 649071 2.584098 

2. 879385 4.894824 - 7.154565 3.259741 

3.196227 5.804601 - 8.818953 4.014351 

3.513337 6.794128 -10.642135 4.848007 

3.830649 7. 863287 -12.624051 5.760763 

4.148114 9.012001 -14.764661 6.752659 

4.465702 10.240212 -17.063938 7. 823725 

4.783385 11. 54 7880 -19.521864 8. 973984 

15 

Qd2 

0.919211 

1.135737 

1. 354353 

1. 574127 

1.794610 

2.015560 

2.236834 

2.458343 

2.680026 

2.901844 

3.123766 

3. 345773 

3.567847 



TABLE II 

POLES OF MODIFIED BUTTERWORTH TRANSFER FUNCTION L (s) FOR c = 2, m = n + 2(c - 1) . m 

n Double Pole 

3 -0.628901 -0.904764 
±J0.970179 

4 
-0,491447 -0.836246 

±Jl. 002310 ±J0.298033 

5 -0.403614 -0.756913 -0.866199 
±Jl. 016042 ±J0.472797 

6 -0.342443 -0.684078 -0. 843611 
±Jl.022266 ±J0.586162 ±J0.202071 

7 -0. 297358 -0.620842 -0.802678 -0. 864777 
±Jl.025022 ±J0.664403 ±JO. 346784 

8 -0.262745 -0.566708 -0.756746 -0.854780 
±Jl. 026048 ±JO. 720905 ±J0.454058 ±J0.155442. 

9 -0.235335 -0.520374 -0. 711259 -0.829941 -0.870318 
±Jl.026173 ±J0.763175 ±JO. 535792 ±J0.277152 

10 -0.213094 -0.480524 -0.668377 -0.798489 -0.865289 
±Jl. 02581~ ±JO. 795713 ±J0.599517 ±JO. 373947 ±J0.127149 

11 -0.194687 -0.446018 -0.628833 -0.764691 -0.848742 --0. 877209 
±Jl. 025208 ±JO. 821357 ±J0.650191 ±J0.452043 ±J0.231922 

12 -0.179201 -0.415925 -0.592731 -0.730777 -0.825941 - - ~-0.874532 

±Jl.024471 ±JO, 841971 ±JO. 691179 ±J0.515894 ±J0.318961 ±JO .107938 

13 -0.165994 -0.389493 -0.559904 -0.697893 -0.800005 -0.862804 -0.884001 
±Jl. 023679 ±J0.858824 ±JO. 724831 ±J0.568735 ±JO. 391874 ±J0.199882 

14 -0.154596 -0.366121 -0.530081 -0.666597 -0.772798 -0.845566 -0.882564 
±Jl. 022872 ±JO. 872804 ±JO. 752823 ±J0.612950 ±J0.453462 ±J0.278563 ±JO. 093957 

15 -0.144662 -0.345325 -0. 502965 -0.637124 -0.745435 -0.825107 -0.873873 -0.890293 
±Jl.022075 ±J0,884550 ±JO. 776379 ±J0.650319 ±J0.505898 ±J0.346247 ±J0.175880 

I-' 

°' 
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2.3.2 Stop Band Specifications 

Earlier, it was shown .. that the pass-band specifications are always 

satisfied. Now, the stop-band requirements will be examined for 

1Lm(jw)i 2 in Equation (2-4). Since, m > n, there exists an wt, suc.h that 

I L (j w) 12 < I H (j w) 12 
m - n 

for w > w 
- tm 

Stqp-band requirements can be e~amined by finding the freque~cies at 

which IL (jw)j 2 = IH (jw)j 2• These frequencies can be found by solving m n 

the equation 

2n 
w 

2(c-l) 
( l 

i=O 

2i a. 1 w 
1+ 

1) = 0 

For the special case (c = 2), the above equation reduces.to 

which has 2n roots at the ·,origin. and the remaining four roots are located 

at (s.ee Equation (2"."8)) 

= + 1 w3,4 = !. R (2-15) 

where wtm = w3 • 

From Table II, one can see that wtm • ·R < 1 for n = 3, 4. 

For n > S, wtm > 1. This implies that for n = 3, 4, the stop-band re­

quirements will always be satisfied. However, for n > S, the st~p band 

requirements are. met if w > wt. where w is the lowest specified stop~ 
r - m r 

band frequen~y. On the ,other hand, if wr < wtm, then the specifications 

are not met. The procedure needs to be modified and the multiple poles 

must be separated into single.poles, which is discussed below .. 
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Now, a2 can be expressed in terms of a3 and wtm and is 

. (2-16) 

From (2-8) and (2-16) 

• (2-17) 

Us~ng these.expressions in (2-4), jLm(jw)j 2 can.be reduced to 

. (2-18) 

A root locus plot of the denominator in (2-18) in terms of the one vari-

able a3 with wtm set equal to wr' gives the value of a3 such that.the 

dominant poles are at the~r maximum distanc~ from the jw axis. a2 and a1 

c~ then be calculated using (2-16) and (2-17). 

2.3.3 Example 

Given the eighth order low-pass Butterworth transfer function 

jH8(jw)j 2 = 1/(1 + w8) with€= 1 and Qd = 2.562916 satisfying the mag-
1 

ni tude spec~fications in the normalized frequency domain with wr = 1. 2 '· 

it is required to reduce Qd using multiplicity of the dominiµit pole pair 
1 

equal to two (c = 2). · From Table I, 

I LlO (jw) I 2 = ----8----1--2----4-
l + w (4.065 - 5.649 w + 2.584 w ) 

0. = 2.01556 
'd.2 

and from (2-15) wt = 1.08.9 which is less than w . Therefore the speci-m r 

fications are met. In Figure 1, jH8(jw)j 2 and jL10 (jw)j 2 are plotted to 

show the differenc~ in the two approximations .. If wr = 1.075 < wtm' then 
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in order to meet this specification the double poles need to be separated 

by applying the root locus technique discussed above. This results in 

a3 = 2.6285, and a2 = -5.6661 and a1 = 4.03756. · The Q of the dominant 

pole is given by ~ = 2.2258, · 

2.4 Summary 

A method that reduces t~e Q of the dominant pole pair of a Butte~-

worth function Hn (s) using a higher. order function Lm (s) is presented. 

It is assumed that Lm(s) has donrl::nant poles.of multiplicity greater than 

one.· Furthermore, the transfer function L (s) is derived using the m 

assumption that 

(-2.._)i I Lm(jw) 12 = 0 
dw2 

for i = 1,2,•••,n-1 

It is shown that I Lm (jw) 12 satisfies the pass-band specifications'· and a 

method is .given to fit ILm(jl.ll) 12 to the stop-band specifications •. 



CHAPTER Ill 

MODIFIED CHEBYSHEV FILTERING FUNCTIONS 

WlTH LOW Q- FACTOR 

3.1 Introduction 

An important factor in the design of RC active filters and digital 

filters is_the quality factor Q of the dominant poles. The precision 

requirements of each second order section realization of an RC or digital 

filter might dictate a constraint on the maximum value of Q [HU 1, KA 1, 

TE l]. Modified Butterworth functions were pr~sented in the previous 

chapter; here a method for modified Chebyshev function derivation is 

developed. 

In this chapter, a,new numerical algorithm is presented which deter­

mines the coefficients of a low-pass non-equal-ripple mo4ified Chebyshev 

function with multiplicity of the dominant.root,pair greater than one; as 

a result its degree is higher than the ,corresponding Chebyshev polynomial 

but a much lower dominant root Q~factor Qd is obtained. Intermediate 

modified Chebyshev functions.with higher transition region attenuation 

and therefore increased Qd are also discussed. 

The concept of multiplicity in the dominant poles has been recently 

used and a substantial reduction in the critical Q-factor, Qd' of the 

dominant poles resulted [PR 1, MA 1, PR 2], In a recent _paper [PR 2], a 

new class.of multiple critical root pair, equal ripple (MUCROER) filter­

ing functions, having a higher degree than the Chebyshev filtering 

21 
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functions, but with a much reduced Qd and an improved time delay charac­

teristic has been developed using the Remez algorithm; however, a reduc­

tion in the attenuation in the transition-band resulted. 

Using this·same notion of multiplicity in the dominant pole pair, a 

new numerical algorithm called the physical method is prese~ted. The 

modified Chebyshev filtering function (MCF) obtained here is of a.higher 

order than the original Chebyshev function. By relaxing the equal-ripple 

condition, a degree of freedom is obtained which results in a signifi­

cantly.lower critical quality factor Qd and a better time delay charac­

teristic than that achieved by either the MUCROER or Chebyshev 

polynomials; however, the transition region attenuation is further re­

duced. The algorithm gene~ates a MCF function for every Chebyshev poly­

nomial. · It .can also generate intermediate modified Cheb:rshev filtering 

functions (IMCF's) satisfying the pass band specifications and.which have 

Qd and transition region attenuation a,riywhere betwe~n the Qd and transi­

tion region attenuation of MCF and MUCROER. 

An example is given where for a low-pass filter with pass-band 

reflection coefficient of 50%, the Qd of a tenth order Chebyshev poly­

nomial is reduced 71.27% using a twelfth order MCF; whereas, the twelfth 

order MUCROER polynomial gives 58.89% reduction •. Due to the .reduction in 

Qd' the tolerance limits on the realized components is reduced. The 

coefficient sensitivities are compared, and the output noise variance due. 

to roundoff in the digital filter realization of each of these functions 

is given. 
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3.2 Problem Statement 

Let 

IH (jw)l2 = __ 1 __ 
n 1 + €2 T2(w) 

(3-1) 

n 

be the.Chebyshev function satisfying the pass and stop-band requirements 

in the frequency domain, where Tn(w) corresponds to the Chebyshev 

polynomial of degree n. It is.required to find a MCF function 

IL (jw)l2 = ___ l __ _ 
m m 

1 + l dz. . 1 1 l.= 

2i w 

(3-2) 

with a reduced Qd of the dominant poles which also satisfies the fre­

quency domain specifications. It is evident that this implies that 

m > n. 

In _the following section, modified Chebyshev functions are derived 

with the idea t~at the Q's of the do~inant poles can be minimized by 

having the dominant roots with multiplicity c > 1. 

3. 3 Modified Chebyshev Functions (MCF' s) 

The numerical methods presented here are applicable to low-pass 

Chebyshev functions; however, by applying the classical frequency trans.-

formations, othel'. modified Che])yshev. low Q filter functions can .. be 

obtained. 

First, a new numerical algorithm called Physical Method is devel-

oped. Second, the ideas are extended to the least.squares error crite-

rion. The result~ obtained by the two methods.are in close agreement; 

however, the first method has more advantages and requires less 



computational time because it is developed for the present problem at 

hand, while the . second method is more ·general and is presented here for 
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purposes of convenience and comparison. Third, the results are extended 

to obtain the IMCF 's. 

3.3.l Physical Method 

A Chebyshev ·transfer function can be written, for n even and odd, 

respectively, as 

H (s) = K 
n 

with 

H (s) 
n 

(n-1) /2 
II 

i=l 

K = 

n/2 2 
wbi 

= II 
i=l 2 

20.~.s s + 
l l 

n/2 
--,,.~~--~~~....,,,..- = II 

2 
+ '\i i=l 

h. (s) 
l 

(3-3a) 

2 (n+l) /2 ~i ~v 
2 2 = K II h. (s) 

+ 20.~.s + s + wbv i=l l s ~i l l (3-3b) 

/1 2 and (n + 1) + e: v = 2 

In the _above equations; let h1(s) represent the section with domi­

nant poles, oi is the damping ratio, wbi the break frequency, and K 

adjusts the maximum passband ripple to / 1 + e:2 for the design purposes; 

this value of K is selected for the convenience of the algorithm. Let 

the quality factor of the second order function corresponding to the 

dominant poles be represented by Qd. It is clear that the magnitude 

function lh. (jw)I will have a large overshoot for a low o •• As pointed 
l l 

out in the last chapter, the reduction in Qd is possible since the mul-

tiple critical poles complement each other in giving the total high peak 

required originally by one second. order section in the Chebyshev 
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function, This results in identical second order sections each with low 

Qd replacing the original high Qd second order section. The resulting 

function is called a modified Chebyshev function (MCF) since it is <level-

oped from the roots of the Chebyshev polynomial. This can be written for 

n even and odd, respectively, as 

L (s) m = l?,,__+_2_a:-~-1-l_s_+_'\..,...2J :~: -s2_+_2-:-i~_i_i_s_+_'\_2_i = (11 (s))c :~: 

L (s) m Kl? 

2 • ~jc 1\1 
= 

~ 2s1'\1s 

(n+l)/2 
= (R,l (s))c II 

i=2 
L (s) 

1 

(n-1)/2 
2 

wbi wbv 
II 2 2 i=2 + 2$.'\.s s + wbv s + wbi 1 1 

L(s)) 
1 

(3-4a) 

(3-4b) 

with m = n + 2(c - 1) and v = (n + 1)/2, where c is the multiplicity of 

the dominant pole pair, and t 1 (s) represents the section with the domi­

nant poles. The only unknowns in Equation (3-4a) or (3-4b) are the damp-

ing ratios Si, and '\l; whereas, the break frequencies '\ii 'f 1 are the 

same as in the Chebyshev case. Due to critical pole modification into 

multiple poles, the pass-band specifications are met by simply modifying 

wbl of the critical poles and Si which controls the peak values of every 

second order section; by also fixing wbi' i 'f 1, the result will not be 

the MUCROER equiripple polynomial and the number of variables is reduced. 

The equations in (3-4) provide a basis upon which the physical 

method is developed and is presented in terms of the following steps. 

Figure 2 gives the flow chart and Appendix A shows the program listing 

The first step is to solve for s1 such that (maxlt1(jw)i)c = maxlh1 (jw)I. 



READ, o. wb. 
1 1 

SET S. = o. i f 1 
1 1 

DELTA = .003 

ADJUST IL (jw) I m 

SEQUENTIALLY ADJUST P. 
1 

KEEP wbi FIXED 

CALL GOLD 1 

NORMALIZE L (s). m 

POLES OF Lm (s) . 

' 

ADJUST V. 
1 

F 

Figure 2, Flow Chart Using the Physical Method 

26 
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This implies that 

which is obtained by first setting dlh1 (jw)l/dw]w=w = 0 and then com-
max 

puting lh1 (jw )J. max In a similar manner, maxJi1 (jw)J can be computed 

[ME l], The remaining S. 's are selected such that S. = 8 .• 
1 1 1 

ing IL (jw)J will not satisfy the pass-band specifications. 
m 

The result-

The second 

step involves an iterative technique to modify the parameters in L (jw) 
m 

such that the pass-band specifications are satisfied. Let w . be the pl 

frequency at which the peak of Ii. (jw)J appear (see Figure 3), and let 
1 

P. =max Ji. (jw)J 
1 w 1 

V. = IH (jw .)I 
1 n pi 

In the following, even n will be considered. However, the same pro-

cedure applies for odd n also, The iteration procedures is as follows: 

n Calculate P and Sn , i = 0,.,.,2 - 2, (I -i)new (2 -i)new 
1) 

successively using [ME l] 

n/2 
II 

~ -i-1 
I ik (j w) 1

2 II 
new k= 2 

k=~ -i+l 
2 

S n 
(2 - i)new 

= 1 -

= v n . 
2 -l 

w=w 

l/P ~ ]

2 

L (~ -i)new 

p (~ -i) 
2 

(3-6a) 

. (3-6b) 
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Each step in the above computation reduces the peak of R, (jw) 
(~ -i)new 
2 

such that ILm new(jw)I fits the specification at w = w (see 
p(~ -i) 

2 

Figure 3), Next, P1 can be computed using new 

= v . 1 (3-7) 

and$ can be computed using Equa~ion (3-6b). 1 new 

2) Keeping the break frequencies wbl ,wb2 ,,., ,~ n/2 fixed, calcu-

late the new location w . of the new peaks. using pi new · 

/ 1 - 2a2 w · = wb. ~i· new pi new i (This is obtained by setting 

dltk(jw) l/dw]w=w = 0,0, [ME l]). 
max 

3) Repeat steps l} and 2) tmtil 

$ - $ n < a. n i = 0 1 ••• - -1 
' ' '2 (~ -i)new (- -i)new-1 2 2 

where a. is a specified small cqnstant. Numerically, it was observed that 

the convergency rate is fast~ For example, for n = 10, c = 2, 1/2 a dB 

-3 ripple, and a. = 10 only 5 it~rations were required. 

4) Call Golden section tmivariate search [WI l] to calculate the 

minima and maxima of IL (jw)I in the pass-band. If the pass-band m new 

specifications are met, then L is normalized to a cutoff frequency m new 

w = l, Otherwise, find the peak P. which causes IL (jw)I to violate c i mn~ · 

the specifications. If it is P1, then set wbl = wbl + delta, where delta 

is a small positive increment, and repeat steps (1) and (2); othez:wise, 

adjust the corresponding vi.and repeat steps.Cl) and (2), 

It.should be pointed out that by increasing the break frequency wbl 
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of the multiple pole, the cutoff frequency of the ILm new(jw)I is 

increased. This obviously extends the range for the pass-band specifica-

tions allowing for the solution. However, no generality is lost since 

the function is normalized with respect to the cutoff frequency w = 1 at c 

the end of the iteration. 

The mth order modified Chebyshev function obtained will have a much 

lower Qd than the nth order Chebyshev func~ion and with an improved delay 

characteristics (see Table III), In Table IV the poles of the MCF func-

tions are listed. The pass-band specifications are met; however, a lower 

transition region attenuation is obtained. Since, m > n it follows that 

for some wt , IL (jw)I < IH (jw)I for all w > w • In section 3.3.3, a m m n tm 

method is given to increase the attenuation in the stop-band. · 

3.3.2 Least Squares Error Algorithm 

The results obtained using the physical method algorithm are not 

unique. · For comparison, the MCF' s were derived using the least squares 

error criterion, The resul t!;i obtained are similar but not identical. 

The least squares error expression is given by [TE 2] 

r 0 < w. < w 
- 1 - c 

(3-$) 

where D and jLr(jw.)j are the desired response and the calculated re-m 1 · 

sponse after r adjustments, R. is a weighting factor taken here to be 
1 

one, and wr is the rth adjustment cutoff frequency. Lr(s) is a function c m 

of two sets of variables: 1) the parameters denoted by the vector 

- T - T 
S = (S1,s2,.",Sn/2) for even n, or S = (S1,s2 , ... ,s(n-l)/2 ,wbv) for 



n 

2 

3 

4 

5 

6 

7 

8 

·9 

10 

TABLE III 

CRITICAL QUALITY FACTORS Qd OF CHEBYSHEV (CHEB.) f\i(s) AND MODIFIED CHEBYSHEV (MCF) 
L (s) c = 2 FUNCTIONS, m = n + 2(c - 1) m 

3 dB 2 dB 1 dB 1/2 dB 

Cheb, Q c MCF Q c Cheb. Q c MCF Q c Cheb. Q 
c 

MCF Q c Cheb. Q c 

1.304694 1. 031882 0.992736 0.955873 0.956520 0.863402 0.863721 

3.067657 1.592415 2.551637 1.524761 2.017720 1,386328 1.706190 

5,578868 2.150385 4.593878 1.996962 3.559044 1. 760761 2.940554 

8.818~28 2.529244 7.232256 2.409009 5.556439 2.246412 4.544964 

12.780106 3. 359719 10.461586 3.173590 8.003696 2.930414 6.512843 

17.464518 3.859683 14.284086 3.736328 10.898676 3.528096 8. 841798 

22.870358 4.974274 18. 687274 4.749682 14.240465 4.055670 11. 530788 

28.998422 5.599986 23. 682711 5.435100 18.028681 5.116562 14.579336 

35.845802 6.935707 29.266127 6.636376 22.263082 6.155976 17. 987144 

MCF Q c 

0.809005 

1.266850 

1. 661111 

2 .109320 

2.747629 

3. 346720 

4.114909 

4.818551 

5. 710818 

~ 
I-' 
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10 

2 

3 

4 

5 
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32 

TABLE IV 

POLES OF MODIFIED CHEBYSHEV TRANSFER FUNCTION Lm(s) FOR 
c = 2, m = n + 2(c - 1) 

Double Pole 
ColunRl 

~Band Ripple~ dB 

-0.470452 
±JO. 849309 

-0.307628 -0.285550 
±JO. 930194 

-0. 230871 -0.287986 
±J0.965711 ±J0.361960 

-0.197961 -0.328308 -0.241331 
±J0.981621 ±J0.544151 

-0.149769 -0.213053. -0.164728 
±J0.995156 ±JO. 712803 ±J0.258955 

-0.130177 -0.227185 -0.189912 -0.166579 
±J0.996418 ±JO, 777018 ±JO. 421118 

-0.100878 -0.176052 -0.130437 -0.119919 
±J0.998510 ±J0.834525 ±J0.561031 ±J0.193954 

-0.089428 -0.193814 -0.143916 -0.149903 -0.134301 
±J0.997588 ±JO. 860497 ±J0.642139 ±JO. 327453 

-0. 072212 -0.148846 -0.110397 -0.100634 -0.094107 
±J0.999082 ±J0.892125 ±JO, 711320 ±J0.456241 ±J0.155214 

Pass Band Ripple ~ dB 

-0.549688 
±JO. 895632 

-0.332505 -0. 327741 
±JO. 957913 

-0.255443 -0.347855 
±J0.987724 ±J0.356831 

-0. 211822 -0.373497 -0.289599 
±J0.998336 ±JO. 539030 

-0.160832 -0.249319 -0.197987 
±Jl.008079 ±JO. 716091 ±J0.261923 
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TABLE IV (Continued) 

Double Pole 
n Colunm 

7 -0.136018 -0.248081 -0.208585 -0.190717 
±Jl.007275 ±J0.782287 ±J0.426160 

8 -0.106568 -0.201389 -0.152970 -0.144823 
±Jl. 006705 ±J0.837492 ±J0.564379 ±J0.195161 

9 -0.092856 -0.208897 -0.156681 -0.165264 -0.153658 
±Jl.005082 ±J0.864663 ±JO. 646631 ±JO. 329872 

10 -0.075945 -0.166927 -0.126406 -0.120074 -0.113539 
±Jl. 005136 ±J0.895139 ±JO. 714637 ±J0.458053 ±J0.156245 

~.Band Ripple .!_ dB 

2 -0. 713612 
±Jl. 004610 

3 -0. 393775 -0.423073 
±Jl. 018318 

4 -0.308687 -0.426159 
±Jl. 042297 ±J0.375837 

5 -0.236329 -0.412406 -0.354125 
±Jl. 035148 ±J0.549875 

6 -0.179409 -0.294947 -0.254285 
±Jl.036068 ±JO. 719068 ±JO. 265342 

7 
-0.147484 -0.270280 -0. 241153 -0. 230998 

±Jl. 030173 ±JO. 789302 ±J0.432801 

8 -0.127981 -0.229144 -0.181407 -0.187608 
±Jl. 030177 ±JO. 884035 ±J0.570710 ±J0.196787 

9 -0.100117 -0.224024 -0.180628 -0.192646 -0.186209 
±Jl. 019604 ±J0.870529 ±J0.651450 ±J0.333528 

10 -0.082806 -0.190242 -0.152606 -0.153264 -0.147676 
±Jl.016140 ±JO. 899211 ±JO. 718776 ±J0.459993 ±J0.157705 

Pass ~ Ripple 1/2 dB 

2 -0.899508 
±Jl.144166 

3 -0.471142 -0.539845 
±Jl. 096823 
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TABLE IV (Continued) 

Double Pole n Column 

4 -0.345099 -0.515889 
±Jl. 093325 ±J0.362793 

5 -0.263978 -0.452096 -0.429882 
±Jl. 081888 ±JO. 559-706 

6 -0.198689 -0.327491 -0. 311706 
±Jl.073619 ±JO. 725646 ±J0.267381 

7 -0.160418 -0.282444 -0.278494 -0.274012 
±Jl. 061697 ±J0.797624 ±J0.437015 

8 -0.128411 -0.242252 -0.228218 -0.231069 
±Jl.048966 ±J0.846921 ±J0.568612 ±J0.196907 

9 -0.108664 -0.220919 -0.207498 -0.221179 -0.219234 
±Jl.041552 ±JO. 877144 ±J0.652693 ±JO. 336349 

10 -0.090911 -0.191322 -0.179017 -0.184855 -0.182019 
±Jl.034364 ±J0.904101 ±JO. 719715 ±J.O. 460324 ±J0.158358 
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odd n; 2) the response sample points wi, denoted w = (w1,w2, .•. ,wN)T with 

O < w. < wr. D is taken as a straight line in the middle of the pass 
- 1 - c 

band. 

The unknown parameters in Equations (3-4a) and (3-4b) corres-

ponding to the even and odd n, respectively, are Si' i = l, •.. ,n/2, and 

wbv and Si' i = l, .•. ,(n-1)/2. The object is to solve for these 

parameters subject to the condition that the pass-band specifications are 

met; this involves the examination of the pass band maxima and minima. 

Numerically, it can be seen that it is sufficient to examine only the 

maxima M1 = maxjLm(jw)j closest to the cutoff frequency. This is due to 

the fact that M1 is most affected by the multiple dominant pole action. 

The Golden Section [WI l] univariate search technique is used to evaluate 

M1, and the multidimensional pattern search [WI l] is used to evaluate i3 

parameters subject to minimization of 'the error term. 

Figure 4 shows the flow chart and in Appendix B the program list­

ing is given; the main inputs are: 1) XLO(I) and XHI(I), I= l, ... ,n/2 

for n even, or I= 11, ..• ,(n+l)/2 for n odd. These are the lower anc;l 

upper bounds of i3; 2) the break point frequency wb(I), I= l, ... ,n/2 for 

n even, or I= l, ... ,(n-1)/2 for n odd; 3) detal is the increment used to 

augment the value of the largest break point frequency wbl" As shown in 

the flow chart, obtain the B parameters by using the pattern search; next 

from Gold 1 search get the value of M1. If M1 is within the pass•band 

specifications then normalize Lm(s) to a cutoff frequency wc = 1 and end 

the program. Otherwise, set wbl = wbl +.delta and repeat the iteration 

process. 

The mth order modified Chebyshev function obtained is similar to 

that obtained using the physical method. Qd is reduced appreciably and 



READ, XLO(I), XHI(I), 

~(I) 

DELTA= .003 

CALL PATRN, GET "if 

CALL GOLD 1, GET M1 

NORMALIZE L (s). m 

POLES OF L (s). m 

Figure 4. Flow Chart Using the Least Squares Error 
Method 
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the time delay is improved. Though the attenuation of the transition 

region is less steep, since m > n, we will have IL (jw)I < IH (jw)I for m n 

all w > wtm" A method is given below to satisfy the attenuation speci-

fications in the stop band. 
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As pointed out earlier, the physical method is more advantageous as 

it is capable of adjusting [L (jw)I at any frequency in the pass-band by m . . 

adjusting each second order.term~ This also makes it an effective method 

for use in all pole filter functi~ns other than the Chebyshev type where 

the .break frequencies are spread out.in the pass-band.· 

The rate of Qd drop is largest for the case c = 2. Tables III and 

IV are given for c = 2, 2 ~ n ~ 10, and a.pass band ripple of 3, 2, 1, 

and 1/2 dB. In Table III the Qd values of the modified Chebyshev and of 

the original Chebyshev functions .are compared. In Table IV, the poles of 

the modified Ch;ebyshev polynomials are listed. 

3.3.3 Intermediate Moqified Chebyshev 

Functions (IMCF's) 

By relaxing the equal-ripple cori.dition, a degree of freedom is ob-

tained which makes·. such low % values possible but at the cost of reduced 

transition band attenuation. · In order to increase the attenuation in the 

transition region, the physical method or the least squares algorithm can 

generate IMCF functions which always satisfy the pass.,.band requirement 

and have a maximum Qd and transition band attenuation approaching that of 

the MUCROER function, or have a minimum Qd and transition band.attenua­

tion corresponding to the MCF. IMCF's are generated by further in-

creasing ~l in the iterative method of Figures 2 or 4, beyond the value 

obtained by MCF. Each incremental increase in wbl gives rise to a new 
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IMCF function with larger Qd value and higher transition region attenua­

tion. For additional transition band attenuation the double poles may be 

slightly separated [MA 1], and/or imaginary axis zeros added [DU 1]. 

I H (jw) I is equal ripple in the interval 0 < w < 1 and has n half cycles; 
n 

however, jLm(jw)j is not equal ripple and has n - 2 half cycles for 

n > S (see Figure Sa). 

3.4 Examples 

In the. following, the tolerances for the Chebyshev; MUCROER, MCF and 

IMCF in terms of their coefficie~t sensitivities are computed. Let 

k 
T(s) = II 

i=l 

Then, the worst case tolerance is given by [HU 1], 

d[T[ 
= jTj + j d arg T 

T where the sensitivity s = d~nT/d~nx. For simplicity let 
x 

jd A./A.! =Id D./D.! =.OS. In the example below, l:i.T/T is evaluated at 
l. l. l. l. 

the corner frequency w = 1. In addition to the tolerances_, output noise 

variance (ONV) comparisons due,to roundoff for cascaded second order 

canonical digital filter realization of functions is given. The bilinear 

transformation approach is used to find the digital functions. In com-

puting the ONV, quantization step is taken as unity and scaling and sec-

tion permutation for minimum ONV is performed [CA 1]. A more detailed 

explanation of ONV calculation and a comparison tabl_e will be given in 
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Chapter IV. 

3.4.1 Example 1 

Given a tenth ord,er low-pass Chebyshev ti:ansfer function with a 

2 2 2 reflection coefficient p = 50% (p = £ /(1 + £ )), Qd = 24.114576, 

dominant pole location at -0.020665 .:!:_J0.996267, with 

6T/T = .7407 + Jl.3619, and ONV = 278.665, satisfying the magnitude 

specifications in the no~malized frequency do~in with wr = 1.5, where wr 

is the lowest specified stop-band frequency. It is required to reduce Qd 

using multiple dominant poles with multiplicity c = .2. 

From the above specifications, we haver·= (o1,o2, ••. ,o5)T = 

(.020738, .066571, .129831, · .248896, .637172)T, and 

- T '\ = (wbl''\2••••1Wb£;) = (.996482, .900741, .719336, .472812, .204734), · 

Using 6" and wb in the physical method, the. twelfth order modified 

Chebyshev function is obtained which has poles at:. - .132666 .:!:. J .155679, 

-.135916 .:!:. J.452385, - .131384 .:!:. J. 706538, -.185692 .:!:. J.880515, and dom­

inant double poles at -:.072812 .:!:. Jl.006276 with Qd = 6.928174, 6T/T = 

.4742 + J.8842, ONV = 195.161, and wt = 1.448 which is less than w . · m r 

Therefore the-specifications are met.and a reduction in Qd' ~T/T, and 

ONV resulted (wt is the frequency such that IL (jw)I < IH (jw)I for all m . m n 

w > wtm). 

Comparing these results to the twelfth order p = 50% MUCROER func-

tion [PR 2] with c = 2 which gave Qd = 9.90919, wtp = 1.132, ~T/T = 

. 5294 + Jl.115, and ONV = 338. 34 (wtp .is the frequency such that I MUCROER 

Function I < IHn (jw) I for all w > wtp), one can see that a 71.27% reduc­

tion in Qd is obtained using the 12th order MCF function; whereas, the .. 

twelfth order MUCROER fmi.ction gives a 58.89% reduction. An additional 
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improvement in the time delay chara9teristic is also obtained but at the 

cost of reduced transition region attenuation. Figures 5a-5d show the 

pass-band ripple, stop-band attenuation, time delay, and pole location of 

the tenth order Chebyshev '· twelfth order MUCROER, and twelfth order MCF 

with p = 50%, However, if more transition region attenuation is desired, 

e.g., wr = 1.18 < wtm then the.specification.s are not met; therefore wbl 

has to be increased a~ indicated above. This results in an IMCF function 

having poles at -.1242.05 .!_ J.143964, -.124136 .!_J.421191, -.124957 .!_ 

J. 65626, - .. 093207 ~ J. 831314, and dominant double poles at - • 055165 + 

Jl.001483 with Qd = 9,090909, AT/T ~ .5102 + Jl.053, ONV = 262.944, and 

with wtm new = 1.178 < wr; therefore the specifications are met; note 

that %• wt , AT/T, and ONV of IMCF approached those of the MUCROER m new · 

function for increased attenuation in the .transition region. Thus one 

can see the flexibility of the physical method (and the )eas~ squares 

method) in adjusting the filter function to meet steeper transition 

region attenuation; this results in a higher Qd value. It should be 

noted that over 50% reduction in Qd (see Table III) must be achieved by 

MCF or IMCF functions in order that AT/T and ONV are reduced; e.g., from 

Table III at 3 dB ripple MCF has more than 50% Qd reduction over 

Chebyshev of .4th and higher orders. 

3.4.2 Example~ 

Given an eighth order low-pass Chebyshev transfer function with 

p = 10% (0.0436 dB pass-band ripple), Qd = 7.046669, and dominant pole 

location at -.074709 + Jl.05024. Using the physical method the corres-

ponding tenth order MCF with dominant pole multiplicity c = 2 has poles 

at -.411372 .!_J.212504, -.389079 .!_J.614068, -.358352 .!_J.918814, and 
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dominant double poles at -.184186 ~Jl.163321 with Qd = 3.197339 

(54.63% Qd reduction). It is to be noted that lower dB ripples give less 

percent reduction in Qd as seen in Table III. 

3.5 Conclu.sion 

A modified non-equal-ripple Chebyshev function Lm(s) with higher 

degree but m~ch reduced dominant pole pair Q-factor Qd than that of the 

corresponding Chebyshev function is present~d. L (s) is derived using a m 

new numeri~al algorithm called the physical method •. The pass.,.band spec~-

fications are satisfied; however•. less transition region atten,uation re-

sulted. Intermediate modified Chebyshev functions with higher transition 

region attenuation and therefore larger Qd are introduced. Im~rovement 

in the worst case sensitivity measure. and output noise variance of a 

digital fiiter.realization required more than 50% Qd reduction (see 

Table III). The physical met.hod could also be effective in deriving 

modified filter functions other than the Chebyshev type.where the.break 

frequencies are spread out in the pass-band. Computer programs are given 

in Appendices A and B. 



CHAPTER IV 

ROUNDOFF NOISE:. COMPARISON OF CHEBYSHEV AND 

MODIFIED CHEBYSHEV DIGITAL FILTERS 

4.1 Introduction 

The reduction of .roundoff noise is of interest to many designers in 

the field of digital filter design. In this chapter the noise reduction 

capability of the new modified Chebyshev functions (MCF's) is demon­

strated. In addition, a method for calculating the roundoff ,noise in 

terms of the driving point impedance is presented. 

Several methods.for t~e reduction of roundoff noise by optimum sec­

tion ordering have been prese~ted. [JA 1, LE 1, GO 2, CH 1]. In addition, 

higher order functions were reported to give lower coefficient bit re­

quirement, but in these cases larger roundoff noise resulted [CA 1, RA l]. 

A digital filter with poles close to the unit circle in the z-plane 

(i.e., high Qd filter) will have a high roundoff noise due to the round~ 

ing of products [GO 3]. This has prompted the development of the higher 

order MCF's with lower Qd as a substitute to.the Chebyshev functions. A 

reduction in the roundoff noise is achieved for the cases where MCF has 

over 50% Qd reduction (see Table III). Coefficient bit comparison will 

be discussed in the next chapter where it will be shown that in many 

cases the MCF would require a lower number of bits. 

Roundoff noise variance comparison of Butterworth and modified 

Butterworth functions are not presented here due to the fact that high 

46 
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degree functions have to be considered for a substantial reduction Qd. 

However, substantial reduction in Qd can be obtained for a lower order n 

using MCF's which are used in this chapter. 

4.2 Roundoff Noise Calculation 

In this section, a procedure for computing the output noise variance 

due to product rounding is given. First, the realization in terms of 

second order cascaded canonical sections is given. Second, the roundoff 

noise inputs are introduced in the realization, Third, the scaling and 

the optimal section ordering for the minimum output noise variance is 

discussed. In addition, a roundoff noise comparison table is given and a 

computer program listing for output roundoff noise calculation is 

included in Appendix C. 

4.2,l Realization 

The output noise variance of a digital filter is a function of the 

realization used, circuit topology employed, the type of quantization 

used, and the location of product quantizations. For example, the reali­

zation in terms of cascaded second order sections has in general a lower 

output noise variance when compared to the output noise variance of a 

direct realization [KU l]. In addition, the output noise variance will 

depend upon whether the products are quantized before or after summing. 

In this section, the filter is realized in terms of first and second 

order·canonical cascade sections as shown in Figure 6. This will not 

introduce any new problems even for functions such as MCF's which have 

multiple poles. Fixed point arithmetic and rounding of products prior to 

summing is used. 
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The MCF's have been derived in the previous chapter and the discrete 

function cq.n be obtained by making use of classical bilinear transforma-

tion (s + z-1/z+l), Let this function be written in the form 

d 
H(z) = II S (i) 

i=l 

2 z + 2z + 1 z + 1 
-2---------- • S · G 
z + y1(i)z + y2 (i) r z +Yr N 

( 4-1) 

where S(i) and S are scaling factors used to prevent overflow. In see­
r 

tion 4.2.3 the computation of these scaling factors is presented. The 

constants y1 , y2 , and yr are the multiplier coefficients, and GN is 

introduced for normalizing the de (z = 1) gain to unity, That is, GN can 

be expressed, respectively, for even and odd functions by 

d 1 + y1 (i) + y2 (i) 
II for even functions 

i=l 4S (i) 

GN = (4-2) 

1 + y d 1 + y1 (i) + y 2 (i) r n for odd functions 2S 4S (i) r i=l 

The explicit realization in terms of c~scaded second order canonical 

sections along with the scaling factors is shown in Figure 6, 

4.2.2 Noise Due to Product Rounding 

One source of noise at the output of a digital filter is due to 

product rounding. The product of an m bit multiplicand and an n bit 

multiplier is an m + n bit product, Due to the finite register length of 

the hardware realization, or due to the finite filter word-length, the 

m + n bit word will be rounded to m bits. This quantization introduces 

an error e. which can be represented as noise sources after each multi­
i 

plier as shown in Figure 6 [GO 3]. Furthermore, the errors are assumed 



to be statistically independent and have a uniform probability density 

with zero mean (for roun~ing). If E0 is the quantization step, the 

variance can be expressed by 

so 

2 
(J . (4-3) 

Noting the statistical independence of the error sources, the total 

output noise of the filter can be expressed by 

2 [ 2 EO d Mi 1 
0 o = -12 l -2 • ~ G. (z)G. (-) 

i=l ~J ~ 1 1 z 
(4-4) 

where d = number of sections; M. = number of input error sources to the 
1 

ith section, and G,(z) =transfer function between the input to the ith 
1 

section and the filter output. Here, E0 is taken as unity and the inte-

gration path is taken around the unit circle [GO 3]. The subroutine 

SALOSS given by Astrom, et al.· [AS l] is used to evaluate Equation (4-4). 

A listing of SALOSS is given in Appendix C. 

4.2.3 Scaling and Section Permutation 

As pointed out earlier, scaling factors must be introduced at the 

input to every section in order to avoid overflow. Next, the computation 

of these scaling factors is discussed. Referring to Figure 6, the 

following transfer functions of interest expressed in the Z transform, 

are given below. 

From the filter input to the ith section output 

00 

F. (z) = l f 1. (k)z-k 
1 k=O 

From the filter input to the ith branch node 



T. (z) = 
1 

co 

l t. (k)z-k 
k=O 1 

These transfer functions can be expressed in terms of 

by 

co 

X(z) = l x(k)z-n 
k=O 

For a filter input lx(k)I.::, 1 for all k, Jackson shows that 

co 

Ir. Ck) I < I If. Ck) I 
1 - k=O 1 

and 

co 
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Iv. Ck) I < I It. Ck) I 
1 - k=O 1 

• (4-5) 

If the scaling factors are selected such that 

and 

N 
l If. Ck) I < 1 

1 -k=O 

N 

l 
k=O 

It. Ck) I < 1 
1 -

(4-6) 

where N is chosen to be large with respect to the time constants of the 

filter, then IY· (k)I < 1 and Iv. (k)I < 1 for all k [JA 2]. 
1 - 1 -

Cardwell's approach for computing the scaling factors will be used 

here. This approach insures that jy. (k)j < 1 [CA 1]. In addition the 
1 -

requirement that Iv. (k)i < 1 will be taken into consideration. The first 
1 -

scaling factor S(l) is chosen such that 
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and 

Iv 1 Ck) I :_ 1 k = 0,1,2,··· • ( 4- 7) 

This is satisfied provided that 

N 

l ifl(k)i < 1 
k=O 

and 

N 

l ltl(k)i < 1 
k=O 

• (4-8) 

N N 
The expressions l if1 (k) I and l lt1(k)i can be evaluated by solving 

k=O k=O 

the difference equations.for the first and second order sections (see 

Figure 6). These equations .are given by 

(4-9a) 

(4-9b) 

where v1 (-l) = v1(-2) = 0, S(l) = 1, and x(k) is a unit impulse input 

applied to the digital filter where 

1 k = 0 

x(k) = 

0 otherwise 

N N N N 
It is clear that l lf1(k)i = l jy1(k)j and l lt1(k)j = l lv1(k)j 

k=O k=O k=O k=O 

which can be evaluated from Equation (4-9). To insure the condition 
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given by Equation (4-7), the scale factor S(l) is evaluated by 

S(l) = min 1 1 • (4-10) 

Similarly e~ch S(i) can be evaluated by using the output of the 

(i - l)th section multiplied by S(i - 1) as input to the ith s~ction. 

The subroutine SCALE that evaluates S(i) is given by Cardwell 
N 

[CA 12]. A listing of a modified version of SCALE that takes l Jt. (k)J 
k=O 1 

into consideration is included in Appendix C. 

Earlier, it was pointed out that the noise variance is a function of 

the realization used and the cir~uit topology .. It .is important tQ find 

an optimal ordering of first and second order sections for minimal output 

noise variance. The comparison. of output noise variance of each filter 

is made on the basis of minimum noise output per filter configuration. 

This is achieved by permuting all the first and second order sections for 

a.minimal output noise variance. 

4.2.4 Noise Comparison 

In Table V the output roundoff noise of an nth order low-pass 

Chebyshev function and low-pass MCF's of order (n + 2), are compared for 

1/2 dB and 3 dB pass band ripples. Note that the MCF functions or order 

(n + 2) will give a lower noise variance than the corresponding nth order 

Chebyshev functions for cases where the MCF's have over 50% Qd reduction 

(see Table III). Furthermore, for low dB ripples, the MCF's will give 

substantial lower noise variance when compared tq Chebyshev functions, 

for higher order n. For example, from Table V, for 3 dB ripple, n is 
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TABLE V 

ROUNDOFF NOISE a3: COMPARISON OF CHEBYSHEV f1n(z) 
AND MCF Lm (z) FOR c.= 2 AND m = n + 2 

3 dB 1/2 dB 

n 2 
MCF a~ 2 

MCF cr~ Cheb.cr0 Cheb, cr 0 

2 4.351 6.487 2.268 4.208 

3 9.564 10. 710 4.980 7.930 

4 29.259 19.957 15.307 15.137 

5 43.781 21. 435 23.959 18.457 

6 104.267 54.861 49.245 40.853 

7 110.273 50.553 61. 835 43.594 

8 222.835 118.417 118.902 77.895 

9 205.532 94.582 121.430 83.605 

10 387.803 219.876 195.102 144.645 
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four and for a 1/2 dB ripple n is five. Note also that higher order odd 

functions tend to have low output noise variance; this is due to the 

noise attenuation of the first order section. 

4.3 On Calculating Roundoff Noise From 

the Driving Point Impedance 

A new approach for the· computation of the. stead,y state output 

quantization noise va~iance of a digital filter is presented here. This 

method makes use of the s-domain transfer functions and the~r relation to 

the driving point impedance in the.classical filter design [VA l]. On 

the other hand, in the traditional method, the transfer function is 

transformed into the z-domain prior to noise calculation. In addition, 

the method presented here will not require the prior knowledge of the 

pole locations. Furthermore, the method can be applied to functions.with 

multiple complex conjugate poles. In the following, a sununary of the 

previous techniques of computing the.output noise variance is given. 

The steady state value of the output noise variance.is ,given by 

(4.11) 

where H(z) is the transfer function from the noise sample input to the 

filter output [GO 3]. Evaluation of Equation (4-11) is important in 

communications and.cont~ol problems. A tabulated solution of (4-11) for 

low order H(z) can be folJJld in Jury [JU l]; whereas, for high order H(z), 

evaluation of Equation (4-11) is difficult and the following methods have 

been used. 

1) Using Cauchy's residue theorem and partial fractions expansion 

of H(z)H(l/z)l/z, 
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2) Using the form 

(4-12) 

where ws = sampling frequency and w0 represents the digital frequency 

[KN l], 

3) Using the time series representation 

2 
a (K) 

where h(kT) = z-1[H(z)], found in [GE l], 
• 0 •• 

Using the numerical formula of Astrom, et al. [AS l], 4) 

5) Using partial fraction expansion of H(z) has also been suggested 

[MI l], and 

6) Using the inners.approach [JU 2]. 

4.3.l Proposed Method 

The proposed method is based upon the use of the bilinear 

transformation 

1 + s z = ..,....--
1 - s 

(4-,13) 

in Equation (4-12) which permits analysis in the s-domain. Replacing z 
jw0T 

bye ands by jw in Equation (4-13), the analog frequency variable w 

and the digital frequency variable w0T are related by 

w0T 
w = tan --2 

Using this expresston in (4-12) with 

.(4-14) 
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dw = ~ 1 dw 
D Tl+w2 

,(4-15) 

Equation (4-12) can be rewritten as [KI l] 

2 co 

2 EO J 2 1 a = 67T jH(w) I 1 2 dw (4-16) n 
0 

+ w 

2 co 

EO 1 J_ 2 = IT 7f IF (w) I dw (4-17) 
-co 

where the relation F(s) = H(s)/(s + 1) has been used. Greaves, et al, 

[GR l] developed a method for obtaining the s-domain coefficients from 

the z-domain transfer function and then evaluating a2 from the tables 
n 

given by Newton, et al. [NE l]. In _this section the procedure will be 

carried out one step further. Papoulis has pointed out the relationship 

for the energy E of a signal given by 
co 

E = ~7T [ jF(w)l 2 dw = ~ lim s Z(s) 
-co s~ . 

.(4-18) 

where Z(s) is the driving point impedance [PA l]. By using (4-18) in 

(4-17), it follows that 

E2 

a~ = 1 ~ lim s Z(s) 
s-+oo 

. (4-19) 

Equation (4-19) gives the output noise varianc~ of a digital filter due 

to A/D noise or due to product quantization; it does not require root 

calculation since Z(s) could be obt~ined using Gewertz or Mitra's method 

[KA 3, MI 3] and it can be applied to filter functions with multiple 

conjugate poles. Equation (4-19) can be used directly on the s-domain 

filter function H(s) without transforming H(s) into the z-domain. This 

is true if the bilinear transformation is used to obtain H(z). However, 

if a method other than the.bilinear transformation is employed to obtain 



H(z), or if scaling is used, then H(z) must be obtained first; next 

IF(w)l 2 must be evaluated by applying Equation (4-13) to H(z), and 

finally cr2 can be calculated from (4-19), 
n 

4.3.2 Example 

Given the second order filter 

H(s) = 

2 
w 
n 

s 2 + 2as + w2 
n 
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(4-20) 

which is to be realized digitally by using the bilinear transformation, 

It is required to find the output noise variance cr2 of the digital filter 
n 

due to A/D quantization. 

From Equation (4-17), 

F(s) = 2 (s + 2as 

2 
w 
n 

2 
+ w ) (s 

n 

where upon using Gewertz's method [KA 3], 

2 By using (4-19), cr can be obtained as 
n 

E2 w2 (2a + 1) 0 n 

+ 1) 

= IT -w2 + (2a + 1) (2a + w2) 
n n 

(4-21) 

• (4-22) 

(4-23) 
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where a2 is determined by using Gewertz's method. In [NE l] a method for 

evaluating a2 in matrix form is given. The output noise variance given 

in Equation (4-23) is in agreement with the answer obtained by using any 

of the previously mentioned methods. For example, by transforming H(s) 

into the z-domain by using the bilinear transformation and then applying 

Cauchy's resiQ.ue theorem, results in an expression for cr 2 identical to 
n 

that given in Equation (4-23). 

4,4 Conclusion 

In this chapter the following has been presented, First, the noise 

reduction capability of the modified Chebyshev functions has been demon-

strated in a table comparing the output _roundoff noise variance of a 

digital fi 1 ter due to product rounding for the nth order Chebyshev and 

the n + 2 order modified Chebyshev functions .including the _3 dB and 

1/2 dB cases. The method used for noise calculation and scaling has also 

been discussed, Second, a method for calculating the roundoff noise in 

terms of the driving point impedance has been derived. This enables the 

designer, in the cases where the bilinear transformation has been used, 

to calculate the A/D quantization noise and the product quantization 

noise (if no scaling used) directly from the _s-domain filter function 

H(s) without following the traditional method of transforming H(s) to the 

z-domain. 



CHAPTER V 

COEFFICIENT WORD-LENGTH: ESTIMAT.ION AND 

COMPARISON OF CHEBYSHEV AND MODIFIED 

CHEBYSHEV DIGITAL FILTERS 

5.1 Introduction 

In this chapteX' a procedure is given for the estimation of mult~..., 

plier word-length (coefficient bits) for the first and second order 

digital filter sections given the transfer function's s-domain pol~s and 

their tolerance specifications. This method is used to compare the mul-· 

tiplier bit requirement for digital filter realizations using Chebyshev 

and modified Chebyshev (MCF) functions •. 

Due to the .finite arithmetic precision, the multi plier values have 

to be rounded to the nearest quantization step.. This change in the mul-. 

ti plier accuracy will result in a corresponding change in the pole. loca­

tion. It is therefore required to obtain the minimum numl;>er of 

multiplier bits such that the corresponding pole shift satisfies the 

given tolerance limits. 

In the literature 1 coefficient sensitivity and statistical approac~­

es have .been proposed for estimating the multiplier word., lengths [MI 2, 

CR l]. In addition, for the cases where the impulse in~ariance transfor­

mation is used to obtain the _discrete function, a method for coefficient 

bit estimation as a function of the s-domain poles and their tolerances 

has been suggested [WH l]. For the cases where the bilinear 

60 
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transformation is used to obtain the discrete function, the method pre-

sented here gives a simple procedure for coefficient bit estimation as a 

function of the s-domain poles and their tolerances; this method will be 

used for the bit comparison. In.addition, the.coefficient word-length 

comparison of nth order low-pass Chebyshev functions and low-pass double 

dominant pole MCF's of order (n + 2) for the .1/2 dB and.3 dB ripple cases 

are tabulated. The word-length requirement is estimated for the dominant 

pole second order section such that a specified tolerance on.both the 

break frequency and the magnitude of the dominant pole section evaluated 

at the break frequency is satisfied. From the table, it can be observed 

that in many cases the MCF will require a lower number of bits. 

5.2 Coefficient Word-Length.Estimation 

In the following a procedure for estimating the word-length for 

first and second order sections is presented. 

5.2.1 First Order Case 

The first order transfer function considered here is given by 

H(s) = 
p . (5-1) s + p 

By applying the bilinear transformation s+(z - 1)/ (z + 1) .to Equation 

(5-1), the following discrete function results 

H(z) = R(z) 
z + y , r 

where yr= (p - l)/(p + 1) 'is the multiplier for which the word-length 

requirements need to be estimated given that the pole locat~d at s = -p 

has a tolerance of 6p. Correspondin$ to this change in pole location, 
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let y' = y + Ay be the new pole location in the z-domain, where Ay is 
r r r r 

half of the maximum quantization step size allowable for rounding. 

Expressing y' in terms of Taylor's series around the nominal value of p 
r 

and keeping only the first tenn, Ay can be expressed by 
r 

Ay ~ _2_A_P_.,,.. 
r (p + l)2 

. (5-4) 

Assuming that _rounding is used, the estimate for the ._number of bits Qr· 

required to keep the pole within the tolerance limits is obtained from 

2-CQ+l) = jAy j. This results in 
r 

. (5-5) 

5.2.2 Example 

Determine the coefficient bit requirement for a first order Butter-

worth digital filter which has_a cutoff frequency of 1 rad/sec, pole 

tolerance Ap/p = 10 per cent, and a. sampling rate of 1 K. Hz. 

In _order to obtain the. transfer function in the s-domain,, prewarping 

must first be performed. Using Equation (4-14), 

with w0 = 1 and T = 1/1000 the analog c~toff frequency is given by 

wA = .0005. The first order filter transfer function is expressed as 

H(s) = 1 • (5-6) s + 1 

Denormalizing (5-6) with respect to wA yields 



.0005 H(s) = --....,,,..,,..,,...,.. s + .0005 
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• (5-7) 

From Equation (5-5) Qr is found to be 12 bits. This agrees with the 

result obtained when the impulse invariance transform was used for the 

filter design [WH l]. 

5.2.3 Second Order Case 

Let the second ord~r transfer function in.the s~domain be given by 

a2 + b2 
H(s) = --.------.---.-

s2 + 2as + a2 + b2 
• (5-8) 

The discrete function is obtained by applying the bilinear transform to 

Equation (5-8). This yields 

where 

and 

R1(z) 
H(z) = --.-----2 z 

2 2 2(a + b - 1) 
2 2 a + b + 2a + 1 

a2 + b2 - 2a + 1 
Yz = 2 2 

a + b + 2a + 1 

(5-9) 

(5-lOa) 

(5-lOb) 

are the .multi pliers for which the word-lengths need to be estimated given 

that the pole located at s = -a ~ jb has a maximum allowable tolerance on 

a and b of ~a and ~b, respectively. Corresponding to this change in pole 

location, let y! = y. + ~y., i = 1,2 be the new multiplier values in the 
1. 1. 1. 

z-domain, where ~y. is half of the maximum quantization step size allow-
1. 

able for rounding. Expressing y! in terms of Taylor's series around the 
1. 

nominal pole location and keeping only the first derivative terms, ~Yi 
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can be expressed as 

Cly. Cly. 
6.y. 

1 

1 1 = Cra:-)6.a + C3b)6.b (5-11) 

which gives 

(5-12a) 

and 

~ 4(a2 - b2 - 1)6.a + 8ab6.b 
2 2 2 (a + b + 2a + 1) 

. (5-12b) 

If rounding is considered, then the estimate of the number of bits Q. 
1 

required to keep the poles within the tolerance limits is obtained by 

-(Q.+l) 
equating 2 1 = [6.y.J, i = 1,2. 

1 
This gives 

(5-13a) 

. (5-13b) 

Unlike the single coefficient first order case, each s-domain pole 

location of the second order section is determined by the value of the 

coefficients y1 and y2 , In considering second order sections, Equation 

(5-13) gives an estimate of the coefficient bits Q1 and Q2 , and therefore 

defines the maximum quantization step, Due to the independent rounding 

of y1 and y2 to a value within the maximum allowable quantization step, 

few cases might arise where the specified pole tolerance limits are 

slightly exceeded, For these cases the estimated bits Q1 and Q2 need to 

be further increased. Usually one bit more than the computed value would 

be adequate, An example for computing Q1 and Q2 is included in the next 
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section illustrating some of the above.ideas. 

The computation of the multiplier bits requirement for setting the 

zeros within specified tqlerance limits is similar to the .above discus- . 

sion and therefore.omitted. 

5.3 Coefficient Word-Length Comparison 

In this section the coefficient.word-length requirements are com-

pared for the Cheoyshev and the MCF functions. In this comparison, bit 

requirements for the dominant pole second order section are.considered as 

it requires a large number of coefficient bits. 

The dominant pole section for a Chebyshev function was given in 

Equation (3-3) and is 

(5-14) 

where wnl and (o1wn1) can be expressed in terms of the pole location as 

can be seen from Equation (5-8). These are given by 

2 = a2 + b2 
~l (5-15a) 

.(5-15b) 

Let the tolerance limits be given on.the break frequency wnl and on 

lhl(jwnl)I =ch. It ,is required to calculate the.number of multiplier 

bits for the corresponding second order digital filter section such that 

the specified tolerance limits are met. The bit requirements are given 

in terms of a, b, ~a, and ~b in Equations (5-13a) and (5-13b). There-

fore, the tolerance limits on wnl and Ch must be related to the tolerance 

limits on the pole locations.· This aspect is discussed in the following.· 
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First, Ch can be expressed in terms of· a and b and is given by 

. (5-16) 

Solving for a and b from Equations (5-15a) and (5-16), it follows that 

(5-17a) 

b = /w~1 - a2 • (5-17b) 

Using the incremental variatio~s and keeping only the first order terms, 

ba and bb can be expressed as 

Using Equations (5-17a) and (5-17b) in the above expressions, the 

following results 

(5-18a) 

(5-18b) 

which relates the pole tolerance limits to the .tolerance limits on wnl 

and Ch. Equation (5-13) can then be used to give an estimate of the 

coefficient bit requirement such that the tolerance limits on wnl and C 

are satisfied. 

In the following a step by step procedure for calculating Q1 and Q2 

given the tolerance limits on wnl and Ch is outlined. 
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1) Obtain the.pole tolerance limits ti.a and Lib from the specified 

Liwnl and LiCh using Equations (5-~8a) and (5-18b). 

2) Evaluate the exact non .. rounded values of the multipliers y1 and. 

y2 using Equation (5~10). 

3) 

and Q2• 

4) 

Use Equation (5-13) to give an estimate of the required bits Q1 

Calculate y1 and y2 the roun4ed values of y 1 and y2 corres-q q . . 

ponding to Q1 and Q2 bits, respectively. 

5) Calculate wnlq and Chq the new values of wnl and Ch corres­

ponding to ylq and Y2q. 

6) Check if wnlq and Chq satisfy the specified tolerance limits; if 

the tolerance limits are satisfied, an attempt must be made to minimize 

Q1 and Q2. Hence, reduce Q1 and Q2 by one bit, respectively, and repeat 

steps 3 to 5. I:f the .tolerance limits are not satisfied, perform coeffi-

cient rounding to the higher or lower quantization step (coefficient 

optimization [RA 1, AV l]) and repeat steps 4 to 5. If the tolerance 

limits are not met after coefficient optimization, increase the estimated 

Q1 and Q2 by one bit, respectively, and repeat steps 4 to 5. Terminate 

the proceQ.ure when a minimum value of Qi and Q2 is. found such that the 

tole~ance limits are satisfied. 

From the various examples attempted, it can be stated that in the 

majority of case~, Equations (S-13a) and (5-13b) give directly the mini-

mum bit requirement such that the _given tolerance limits are satisfied. 

Next, the coefficient bit requirements for double dominant poles are 

discussed. Earlier, Ch was defined to be the magnitude of the dominant 

pole. section at w = wnl. In Equation (:$-4), the term corr(;}sponding to 

double dominant poles is given by 
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2 
R.l (s) = 

Let the magnitude.of this function at w = u;, 1 be identified by 

2 To relate this to the.earlie'Il work, let Ct be equal to CR. where 

CR.= ji1 (j'\1)j. Using the incremental variations, the tolerance limit 

ACR. on CR. can be expressed in terms of the given tolerance limit ACt on 

ct and is 
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Hence, due to the presence of a. double pole, a given tolerance on Ct will 

result in a lower tolerance on CR. which is to be used in Equation (S-18) 

in order to evaluate Aa and Ab, and finally evaluate Q1 and Q2 . 

In the coefficient bit comparison study, the following binary coef-

ficient representation is used. Since the filter coefficients y. lie in . 1 

the range -2 < yi < 2, by assuming fixed point arithmetic and letting the 

0 most significant bit represent 2 = 1, the coefficients yi are expressed 

in the form 

where 

dk = 0 or 1 for each k 
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Followi~g the earlier step by step procedure for minimum coefficient, 

bit calculation, the coefficient bit comparison of the dominant pole 

section for the. nth order, low-pass . Chebyshev functions and low-pass 

double dominant pole MCF's of order (n + 2) can be obti;i.ined. An example 

illustrating the above suggested step by step procedure for a. minimum 

number of bi ts calculatiqn is given below. 

5.3.l. Example 

The critical second.order section of an eighth order 1/2 dB ripple 

low-pass Chebyshev function has a = 0.043620, b = 1.005002, 

wnl = 1. 00594.8, and Ch = 11. 530788. Find the coefficient bit requirement 

Q1 and Q2 such that jllwn1/wn1 1 .:, 5% and jllCh/Chj .:, 5%. · 

From Equation (5-18), Lia= 0.0 and Lib= 0.050345. Substituting Lia 

and Lib in Equation (5~13) gives Q1 = 3 and Q2 = 7 bits. By including the 

sign and integer bits, Q1 = 5 and Q2 = 9 bits. Roun4ing the coefficients 

r1 to five bits and y2 to nine bits results in ylq = 0.0 and 

r 2q = .914063, where ylq and y2q are the rounded coefficients. In order 

to verify whether the given tolerance limits are satisfied, the values of 

aq, bq' wnlq' and Chq must.be calculated, where aq, bq' wnlq' and Chq are 

the values of a, b, wnl' and Ch after coefficient,rounding. From 

Equation (5-10), a = .044899 and b = .99899, By substituting a. and b q q q q 

in Equation (5-15), wnlq = 1.0 and Chq = 11.1360. Therefore, the 

resulting percentage change in Ch and wrtl is given by 

ch - ch . q = 
ch 

3.42% 

and 
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wnl - w 1 n q = 0.59% 
wnl 

These satisfy the ,specified tolerance limits. Coefficient bit minimiza-

tion by setting Q1 = 5 bits and Q2 = 8 bits, or by setting Q1 = Q2 = 8 

bits fails in satisfying the specified tolerance limits; therefore, it is 

necessary to use Q1 = 5 bits and Q2 = 9 bits. 

Next, the above st~p by step procedure is used to compare the coef-

ficient bit requirements·of the dominant pole sections of the.nth ord.er. 

low-pass Chebyshev functions with respect to the low-pass double,dominant 

pole .MCF's of order (n + 2). These results are given in Table VI. In 

Table VI the. number of bits are calculated to satisfy specifications. 

which set a maximum of five per cent wnl and Ch variations for the . 

Chebyshev casc;it and a maximum of five per cent wbl and Ct variations for 

the MCF case. The bits given in Table VI include the integer bit and the 

sign bit. From Table VI it can be seen that the coefficient word-length 

requirement is approximately the same for both functions, and in many 

cases the MCF's would require a lower coefficient word-length. 

5 o4 Conclusion 

A method for computing the coefficient word-length estimation for 

first and second order digital filter sections is presented in this 

chapter. This method can be used for the cases where the bilinear trans-

formation method is employed to obtain the discrete equation. In the 

proposed method the coefficient bits are obtained from the .s-domain poles 

and their tolerance specifications. In addition, coefficient bit word-

length comparison of nth order low-pass Chebyshev functions and low-pass 

double dominant pole MCF's of order (n + 2) is tabluated (Table VI). 



Cheby. 

n 

Y1 
Bits 

2 5 

3 5 

4 5 

5 5 

6 5 

7 5 

8 5 

9 5 

10 5 

TABLE VI 

COEFFICIENT BIT REQUIREMENT OF THE DOMINANT 
POLE SECTION FOR 5% TOLERANCE LIMIT 

3 dB 1/2 dB 

H (z) MCF L (z) Cheby. H (z) m n n m=n+2; c=2 

Y2 Y1 Y2 Y1 Y2 
Bits Bits Bits Bits Bits 

6 5 7 5 7 

7 5 8 5 6 

8 5 5 5 7 

8 5 8 5 8 

8 5 9 5 8 

9 5 8 5 8 

10 5 9 5 9 

10 5 9 5 10 

10 5 9 5 9 
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MCF L (z) m 
m=n+2; c=2 

Y1 Y2 
Bits Bits 

6 7 

5 6 

5 8 

5 5 

5 6 

5 9 

5 7 

5 6 

5 9 
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This comparison is given on the basis of five per~ent tolerance specifi­

cation on both the break frequency and the-magnitude of the dominant 

pole section. From the table it can be seen that in many cases the MCF's 

due to their low dom_inant Q-factor will require fewer number of coeffi­

cient bi ts than the Chebyshev functions. · Examples illustrating these 

ideas are included. 



CHAPTER VI 

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY 

6.1 Summary 

This thesis approaches from a new perspective the reduction of the 

digital filter output noise variance due to product rounding, This 

approach is developed for the Chebyshev and the Butterworth filter func­

tions, and it consists of replacing the designed nth order filter by an 

(n + 2) double dominant pole modified filter function whose dominant pole 

quality-factor Qd is significantly less than the Qd of the original 

filter function. 

An analytical approach for obtaining the coefficients of a modified 

low-pass maximally flat Butterworth function with multiple dominant pole 

and reduced Qd is given, In addition, a new algorithm is presented which 

determines the coefficients of a low-pass non equal-ripple modified 

Chebyshev function (MCF) with multiple dominant poles and notably reduced 

% . These modified filter functions will always satisfy the pass-band 

specifications; however, their transition region attenuation is reduced, 

Alternate methods are pointed out in order to increase the transition 

region attenuation of the modified functions at the cost of increasing 

the low Qd. 

The output noise variance and the coefficient word-length comparison 

of the nth order low-pass Chebyshev functions and the low-pass double 

dominant pole MCF's of order (n + 2) for 1/2 dB and 3 dB cases is drawn, 

73 
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In this study a reduction in the output roundoff noise is achieved for 

the cases where Qd reduction is more than 50%. This includes all high Qd 

Chebyshev functions. In addition, the word-length requirements are 

approximately the same for both functions (in many cases the MCF's would 

require a lower coefficient word-length). For the modified Butterworth 

case, high order functions must be considered in order that Qd reduction 

becomes substantial. Therefore, no comparison tables are given for the 

modified Butterworth functions. 

A new approach is given for computing the output noise variance and 

for coefficient word-length estimation for the cases where the bilinear 

transform is used. The output noise variance is computed using the 

s-domain transfer function and the driving point impedance. The coef­

ficient word-length estimation for the first and second order digital 

filter sections such that the s-domain pole tolerance limits are satis­

fied is presented. If the digital filter is designed based on other than 

the bilinear transformation then the suggested methods for coefficient 

word-length estimation and output noise variance calculation will require 

additional computation steps; in this case, the previously suggested 

methds in the referenced literature are more appropriate to employ. 

6.2 Suggestions for Further Study 

In the following, some extensions to the present study are given. 

Appropriate references are indicated. 

6.2.1 Modified Functions 

The modified Butterworth and modified Chebyshev functions with low 

dominant pole quality factor (~) will always satisfy the pass-band 



75 

specifications. However, in general, the stop band specifications may 

not be met, as the low Qd is obt~ined at the cost of low attenuation in. 

the transition region. A procedure is given in this thesis to increase 

the attenuation of the transition region at the cost of increasing the 

low Qd. As an extension of this present research, the attenuation of the 

transition region might be increased without sacrificing the low Qd by 

including apair of complex conjugate zeros on the jw axis. Some work 

has already been done in this area [DU l]. 

The multiple dominant pole notion has been used in this thesis to 

develop alternate filter functions.for two very common filter types, the 

Butterworth and the Chebyshev functions. However, this same notion of 

dominant pole multiplicity can be used to derive alternate filter func­

tions for other COIIllllOn f::i.lter types such as the Bessel, Chebyshev type 

II, and the elliptic .filters. A suggested approach for the Chebyshev 

type JI function would be t9 derive an analytical method for obtaining 

the. modified Chebyshev type II functions by making use of its maximally 

flat property. For deriving the modified elliptic filter function from 

the given elliptic filter function, a possible approach would be to 

derive a numerical algorithm similar to that used in obtaining the MCF's. 

It is anticipated that due to the elliptic filter's high Qd property, a 

modified elliptic filter with multiple dominant poles will result in a 

substantial Qd reduction. 

6.2.2 Coefficient Bit Estimation 

The coefficient bit estimation procedure given in this thesis will 

in many cases give the minimum number of bits required to meet the given 

pole tolerance limits in the s-domain. For the case where the minimum 
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number of bits is not directly obtained from the equations given, a step 

by step iterative numerical algorithm that results in a minimum,number of 

bits is presented. This problem of obtaining the minimum number of bits 

and not simply a close estimate exists in other methods that, have already 

been suggested [MI 1. CR 1. WH l]. It is therefore desirable to,obtain 

an analytical method that will give the minimum bit requirement directly 

without the need of an iterative numerical minimization procedure. 

6.2.3 Output Noise Variance 

The output noise variance comparison conducted in this thesis is 

based on the mininrum output noise variance of a cascaded first and second 

order section. This ~nvolves optim~ digital filter section ordering 

that results in a mininrum output noise variance, The present research in 

this area including this thesis relies on iterative numerical algorithms 

for optimum section ordering [CH 1. LE 1. JA l]. An analytical approach 

to this problem is desired. 

Finally, the digital filter output,noise variance computation using 

the s-domain transfer fwiction and its driving point impedance concept is 

used in this thesis. Further study in this area may involve these con­

cepts in the z-domain. This may include a new notion of z-domain driving 

point impedance and its relation to the output noise variance of the 

digital filter and to.the s-domain driving point impedance. A suggested 

approach would be to apply the bilinear transformation to every circuit 

element of the s-domain filter realization and to the .s-domain driving 

point impedance. A good reference in this area would, be the work done by 

Crochiere,[CR 2]. 
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APPENDIX A 

PHYSICAL METHOD ALGORITHM 

This algorithmcalculates the poles of the mth order low-pass double 

dominant pole modified Chebyshev function (MCF) with low dominant pole 

quality factor (Qd). The algorithm is initiated with the break point 

frequency and the damping ratio of the nth order Chebyshev function, The 

relationship between the degree of the MCF, m, and the degree of the 

Chebyshev function, n, is given by m = n + 2(c - 1), where c corresponds 

to the dominant pole.multiplicity and is taken here as 2, In the 

algorithm, the .double dominant poles replace the dominant poles of the 

nth order Chebyshev function, and an iterative procedure is used to fit 

the resultant function to the pass-band specifications, After meeting 

the pass-band specification and normalizing the poles to a cutoff fre­

quency of one, the MCF is obtained, The algorithm output includes the 

following: print-out of the data, subrouti.ne Gold 1 [ME l] convergence 

monitor, the adjusted parameters in the iterative procedure, poles and 

Qd of the MCF, and the MCF magnitude print-out, 
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c 

IMPLICn KEAL*olA-H,O-Zl 
OOUBL£ PRE~ISION DSQRT 

C THIS PPuGF.At- U5ES THE PHYS !CAL METHOD TD CALCULATE THE COEFFICIENTS 
C OF fHI: MTH llRDEi< LOW-PASS MODIFIED CHE:BYSHEV FUNCTION WITH LOW UUALITV 
C FACTuR Q, STARTING FROM THE POLES OF THE NTH ORDER ORIGINAL CHEBYSHEV 
C FUl\i(.T IUN. M=N+2*1C-ll 
C INPUT QUANTITIES 
C CASCAuAD EVE:N TRANSFl:R fUNCT tONS OF THE FORM 
C WN**~ll S**2+2*ZETA*WN*S+WN**2 I IS CONSIDERED HERE. 
C Al Il=WI I l= THE BREAK FREQL:El\CY CF THE ORIGINAL CHEBYSHEV FUNCTION 
C ARRAl\6EC II\ ASCENDING SECUf~CE. 
C Bill= THE DAMPING RATIO OF THE ORIGINAL CHEBYSHEV FUNCTION 
C ARRANGED TN DESCENDING SEQUENCE. 
C Riil= £STIMATE OF THE CAMPING RATIO OF THE MODIFIED C~EBYSHEV 
C FUNCTlC'li. ;)l:T Rlll=B!ll, I=1, .. .,N-l AND SET.RINJ=5*BINJ 
C L= ORCEF ~~ THE ORIGINAL CHEBYCHEV FUNCTION 
C EPSI= 0 ASS BAND RIPPLE FACTJR I.E FOR lDB EPSI=.5088471 
C FRED= f"ACTIONAL REDUCTION FOR SUBROUTINE GOLDl SET FRE0=.001 TO .00001 
C DATA REQUIRED: L; EPSI; FRED; AUi; B<IJ; AND RIIJ. 
c 

u I ME l\S 101\ V I 10 l , X I 120 l , WI 15 I , P I q J, HI l 0 I.PI l 0 l, A I 10 l , BI l 0 I , f I 10 I , YI 
1120 J , l 11 OU , WNSiJ 110 I, AX I 6011 , AY 16011 ,REAU 10 I , AE MAJ I 10 l 1XLJ 110 J, XH 
lJ I 10) 
SQRT IX j= DSQR Tl XI 
READl5.~21L,EPSI,FRED 

wPITElt,771L,EPSI,t'RED 
L=L/2 
RtADl511211Alll1I=l,LI 
REA DI 5 .12 )( IH I I, I= l, LI 
REAl:l5.12llRI I J, I=l,LI 
llfl IT E I 6, 78 I I A ( I I , I= l, L l 
WRITE(t,7911B1Il1I=l1LI 
WRITdo,9l)(R( !),I=l1Ll 
~=SQRTll+EPSI**ZI . 
NSKIP=G 
"IJUMP= C 
NTOGL=L-1 
MUP=l 
MULTP=O 
Z ( 11 =O. 
K=L-1 
N=l 
~=C 
KPK:Q 
Lt.Kl=C 
nELSS=l .1150. 

C SETT ING WI I l=A( I): BPEAK FREQUENCY 
DO 1 J=l1L. 

1 w I JI =A I J l 
C COMPUTING XI II THE FREQUENCY WHERE THE PEAK QF EVERY ZND ORDER 
c SECT ION IN THE ORIGTNAL CrEoYSHEV FUNCTION OCCURS. 

DU 3 J=l,L 
UND=l.-2.*81Jl**£ 
IFIUND.GT.O.O)GO TO 2 
XIJl=AIJI 
GO TJ 3 

2 XIJl=AIJ l*S..iRHUNDI 
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3 CONT Ir-iUE 
C CALCULATING THE VALUE V(II Of ORIGINAL CHEBY AT FREQ=X(IJ 

DO 22 J=l,L 
VIJl=l. 
DO 22 l=l,L 
OUM =A I II **2 
FIIl=OUM/SQRTl!DUM-XIJl**21**2+(2e*BIIl*ACil*XlJl)**2) 
VIJ l=V(·J l*fl I l 

22 CONT Il\l.;1:: 
C CALCULATING IDECI THE INCREMENT IN VCLI 

iJEC= ( Q-1 • 1/5 
LAO=l 
NTK=O· 
GO TO 29 

27 MJUMP=J 
29 O=O. 

C ADJUSTING THE PEAK OF EVERY ZND ORDER SECTION TO MEET T~E PASS BAND 
C SPECifICATION 

6 DO 7 J=MIJP,L 
YIJl=l. 
DC 8 I=l,K 
DUM=ri( 11**2 
HIIl~DUM/SQRTllOUM-XIJl**21**2+12.*RIIl*WIIl*XlJll**21 
YIJl=YIJl*HIIl 

8 CUNTIMJE 
HI LI= ..i IL J **4 /l I WI L l **2-X ( J l **21 **2+ ( 2. *R (LI *W ( Ll *XI J)) **2 l 
YIJl=YIJl*Hlll 
PI JI= IV< JI *H ( J l I /Y I JI 
IF( J-LH5.14,l4 

14 PIJl=SQRTIPIJll 
1 :. IF ! P I J )- l • H 0 , 10 , 9 

9 k(Jl=SCRT(.~-.5*SORT(l.-l./IPIJl**2111 
GU TO 7 

10 RIJl=SWRTlllWIJl**4/PIJl**21-IWIJl**2-XIJl**21**21/(4.*wCJl**2*XIJ 
11**211 

7 CONT I NLE 
C CALCULATING THE NEW XI Il & WIU 

DC 17 I=MUP,K . 
IFIRlll-.7071Clll6,17,17 

lo XI I l=WI I l*SORT! 1.-2. *RI I) **21 
17 CUNJINUE 

WILl=X!~l/SQRTl1.-2.*RILl**21 
I~l~TCGL.EC.KlGC TO 49 
w~ JT EI 6, 7 511 VI I I , I =l ~LI , I PI I I , I = 11 LI , ( R lI l , I =l , LI , ! XI I l , I= l , U 

C FINC TrE NI::~ VALUE Of VIII 
4'1 DO H J=f'UP,K 

V!Jl=l. 
DG 19 I= 1, L 
DUM=Alll**2 
Fl Il=DUM/SQRT(IDUM-XIJl**2l**2+!2.*BCil*Al11*XCJJl**2l 
VIJl=VlJl*FCil . 

l~ CLlNT INUE , 
C FIX VC~I SUCH THAT THE LAST VALLEY IN THE PASS BANU IS GREATER THAN 1. 
C INCl'.EASE VlKl BY A SMALL AMOUl\T IF VALLEY IS NUl G.T. 1. 

VIKl=l.OClb 
IF!NTOGL.EQ.KJGO TO 4 

(. SUBTkACT A FIXED A~OUlllT FRCM VC II IN URL>ER TO ADJUST THE FINAL 
C PEAKS AT THE END OF THE ITERATIONS I.E. WHEN NTOGL = 1. 
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VIMJUMPl=VIMJUMPJ-.OOl*MULTP 
4 CONT lNLE 

O=O+l. 
IFIZlll-1.139,40,40 

39 IFI0-12.)6~20,20 
4J IFIU-6.16,20,20 
20 C= lo 
46 CONTINUE 

IFl~~KIP.~Q.l)GO TO 47 
MJUMP'=NTOGL 

47 ZUl=2. 
C FULLCWING·IS GULDl DATA 
C NORM= l ALLOWS US TO EVALUATE THE PEAK OF THE MODI Fl ED CHEBYSHEV 

Il=O 
~GRl"=l 
P 1 K lJ EL = l • I ( 2 • *L. ) 
IFIKPK.GT.21GO TO 68 
KPK=KPK+l 
SS=C. 
01 =l. 
02 =O. 
JF= l 

C COMPUTING XLOW & XHI OF EACH 2NO ORDE~ FOR GOLDl 
[J(j 66 Jl=l,50 
DO 61 J2=l,K 
OUM=WIJ.21**2 
HIJ2l=DUM/SQRTllDUM-SS**21**2+12o*RIJZl*WIJ21*SSl**21 
Jl=Dl*HIJ21 

ol CONTINLE 
'1 IL t=w IL I **4/ I I -ill 1**2-SS**2 I** 2+1 2o*R (Lt *WILi *SS I **21 
Dl=Ol*htLI 
IFID1.GT.D21NCH=O 
IFIU2.LT.lJllGO TO 62 
IFINCf'.EQ.lJGO TO 62 
t-;CH=l 
XLJIJFl=SS-.2 
X HJ ( J F )•SS +. l 
Jf=JF+l 

o2 CONTINUE 
02=01 
:..S=SS+DELSS 

oo CulH INUE 
J F=J f-1 
nR I ti: I 6, 16 I (XL JI J 3 I , J3 = l , J F I , IX f-J I J 3 J, J 3= l , J FI 

6d C.1JNTINUE: 
C CHECK IF PEAKS Of MOU CHES SATISFY THE PASS BAND SPECIFICATION 

00 21 J=MJUMP,K 
43 wFITEll:,!:3lJ 

XLO,.;= XLJ ( J) 
XHI=AHJ( JI 
!f' ( XLCw. LT. 0. l XLOW=C .• 
Cl\ LL GO LO lC 11, XL CW , XH I, FF EC, Y tH G ,X BI Gt B.3 ,s 4, J5, W, P, L, NO RM, UPRI PL ,z 

l l I 
If{l"ULTP.EC.-1.lGO rn 23 
lfl~~LTP.Ewol.lGO TC 2j 
If!YHIG.GT.~IGO TO 30 
!HNTK .EQ.l IGU TU' 21 
IH l\TCGLoEC.KIGO TO 30 
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VIJ>=l. 
C CALCULATING THE NEW VI I) AFTER INCREASING XlL) 

DO 41 I=l,L 
F (I I= A I I I **2 /SQR Tl I A I I I **2-XI JI **21 **2+ ( 2. *BI 11 *A II I* XI JI I **l I 
VC J l=V IJ l*f( 1J 

41 CCNTill:LE 
GO Tw 2'i 

35 l'/RITE (&,SO I 
GU TC 32 

26 Ifl M-2'1.Ht.:i6dc 
36 WC< IH (..1151 I. 

Gu Tc. 6u 
37 M=N 
60 CONT Ii~UE 
32 CONTI l'iUE 

IFINSKIP.tOollGO TO 4d 
NTOGL=l 
GO TC 46 

48 CONTINUE 
l'/P IT t( 6tllJ ( XI I), ; : , , LI 
WRITEl6t1Ulwl Iltl=l,LI 
WR HE Io, 11> .. I'=I11 ,I =l, U 
WR I TEI 6, 11) 1111 I I, I =l, LI 
WP IT EI 6t 1111 YI I I , I = l , L I 
w;·. rrE10, 111c.D 
DU o7 J=l,L 

67 wNSQIJl=wlJl**2 
c CALL GOLOl r. flNU TH~ NORMALIZING FREQU~~cv. SET NORM= 2 

f\;QRM=.t: 
XL011=XBIG 
XHI=l .3 
w PIT EI u, 541 
LALL GCLDlllltXLOW.XHltF~ED,VBIG1XBIGtB3tB41JS,w,R1L1NOFM1UPRIPL,z 

lZI 
lJW=.01 
WF=O. 
NF=l. 
NP=l50 
AX( 11 =llF 

C PLOT TfE MUDIFlEO CHEGYSHEV FUNCTION OBTAINED 
IJli 85 J=l,l\JP 
WA =rif *"ri 1 G 
WSQ=WA**2 
y 2= i. 
DO 80 l=Nf,K 
Yl = wf\::i i;; I I I/ s CRT ( 11-V NS c ( 1 l-W s \JI **2+12. *R ( I l*W ( I ) •w A I** 21 

80 Y2=Y2*Yl 
!ll CONTINUE 

YN=Wll:~ Cl LI** l/ I I wl\S (JI L J-W S l.i 1**2 + (2 •*RI L I *WI LI *WA I **2 I 
AYIJl=YL*YN 
AXCJ+l )=AXIJ )+Ow 
wf=wF+Dw 
WRITE(6,'.)~)AXIJl,AYIJJ 

8'.) CONTINUE 
WR IT EI 6, '.)o I 

C NO~MALllING THE POL~S 

NH=l 
00 90 J=~H, L 
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NTK;iQ 
Mul TP=-1 e*LAD 
LAD=LAC+l 
MUP=J 
wl'ITEl6, 741J,VIJJ 
l I l )=2 • 
NSKIP=l 
GU TU 2 7 

23 ~UL T 0 =0. 
21 Cu•'T 11\LE 
30 ClJNT!\IUE 

IFI \llOGL .FQ.• 1. l l • 't4 
IFIJ.[(;..L)(·. 1 'tv 

C SI: T I MUL TP I Il11 Jd)E ·· TG REC·JC.E VI JI 
IFIMJUMP.F~.J)GO TO d2 
f'IU LT P= l 
•~C TC cJ 

82 ~1ULTP=MULTP+l 
83 CONTINuE 

l!JUMP=J 
MUP=J 
~kITElo,J4)J,VIJI 

Zl U=2• 
'~SKIP= 1 
<\jTK=l 
GJ TO 2"J 

c. l\UJUST 11\iu THt c~ n ICAL 2NU URUER SECTION TO FIT PASS BAND SPECS 
44 CONTINUE: 

lflNSKIP.cQ.l)GO TO 48 
45 WF.ITEl6,7l) 

~=YB IG 
XPl=XBIG 
XLOP=XLGw+.01 
IFILCK1.EW.21Gu TO 2o 
!FIXBIG.LT.XLOPIGO TQ 24 
IFILCKl.EC.llGC Tu 24 
IFIYBIG.GT.QIGU TO 26 

24 CONTINUE 
M=2.*fo( 
l I 11 =2. 
LvKl=l 
IflYSIG.Lt.ulGC TL 33 
LC!<.1=2 
wfd TH 6, 1Z )V ( l l 
VI Ll=VILl-DEL 
wP ITEi 6, 72 IVIL I 
GO TJ 29 

33 wRITEC6,72lVILJ 
VI L l = V ( L I +DEC 
wi:..ITE(6,721VILI 
... u TC 29 

2tl v.P ITE I t, 731 XI LI 
C ~'\ICkEASL: XIL I If P~:;.) i3AND SP2.L.S CAN '\JuT i3E MET 

XILl=XIL l+.0031 
WPITEl6,731XILI 
I H XI L I- l • l 13 8, J 8, 3~ 

38 M=O 
J=l 
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c 
c 

90 

11 
12 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

REAL(JJ=P(JJ*W(JI 
A Eh AJ (JI= ~WR T( wt J l **C.-; EA LI J) ** 2) 

rl. E AL I J I= f:; t: Al I J I/ X i3 I G 
AEMAJIJl=AEMAJ(Jl/XBIG 
W~ ITtt 6,57lC!EALIJI ,AEMAJIJI 
CONTINUE 
l.IUA Lf =IS C: ~l 1 r; EAL IL l * *2 + AEM AJ ( L ) **2 I II I 2 •*PEAL (LI ) 
wR: TE I 6, 5d) QUALF 
11F1TE1v,59IQ 
w:).TTH6,7JI 
CALL G~At-HIAX,AY•AX,NP,O,ll 

Fl.RMAT (bhl.5) 
f0i-"1AT (5fll.71 
FO MAT llX,27HFRfQ RANGE XILI IS EXCEEDED) 
FOH~AT 11X,40HCAUG~T IN A LOOP CF OVER AND UNDER SPECSI 
Fli'' MAT I 12, 2F 1C.71 
FU~MATl/lX, 1 GOING INTO GOLDl FOR GETTING PEAK NUMBER' ,121 
FO~MATl/lX,'FI~DING THE NORMALIZING FREQUENCY' I 
FOkMATllX,5El7.Bl 
FORMAT(//1X. 1PULE LOCATION 1,1ox, 1 REAL'.l6X, 1IMAGINARY',/) 
FCK~ATl14X,El8.8,3X1El8.8I 

FO!UATl//lX,•CPITICAL QUALITY FACTOR Q =• ,El8.8) 
FUf:MAT(!lX,'MAX '<IPPLE MAGNITUDE ABOVE l I.E SORTll+E**21 RIPPLE=' 

l,Eld.81 
70 FORMATl///llX1 1 ---------NOh THE NORMALIZED GRAPH--~-----• I 
71 FOF:MATl/lX,'ADJUSTING CRITICAL 2ND ORDER NOW'l 
72 FURMATl/lx.•vcu =•.fl0.6) 
73 FURMATl/lX, 1 XILl =1,Fl0.61 
74 FD"-MA r 11 ix,• V(I .r1, • 1 =• ,F10.o 1 
7 5 FD~- MAT ( l )\. 5f- 6. 4, 2 x. 5F O• 4 I 2 x. 5F 6. 4. 2X 'SF 6. 41 
76 FORMAT nx •• XLOW( I l £. XHI I I l =I tl0F9. 5) 
TT FOR1"ATllX1'CHEE'YSl-lEV DEGREE =1 1 12,• RIPPLE FACTOR =1 ,Fl0.61 1 GOLD! 

1 FRACTIONAL RECUCTI;JN =' ,Fll.8) 
78 FURMATllX, 1 C~EDYSHEV BREAK FREQUENCIES WNIIl= 1,6Fll.71 
7~ FCRMATllX,'CHEeYSHEV DAMPING RATIO =1 16Fll.71 
91 FORMATllX1 1 DAMPl~G PATIO STARTI~G ESTIMATES= 1 16Fll.7l 

STOP 
ENO 
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c 

SUBROUTINE GOLOl(K,XL1XR1F1YBIG,XBIG,XLl1XRl,N1WN,XZT,NRO,NORM,UPR 
llPL,ZI 
lMPLl~IT REAL*81A-h,C-Z> 

C THIS SUBROUTINE WILL ScARCH OVER A ONE-DIMENSIONAL UNIMODAL FUNCTION 
C ANO REPORT THE EXTREME CRCil\ATE FOUND, ITS ABSCISSA, FINAL ABSCISSAS 
C BOtJNDil\G Thf 11\HRVAL OF Ul\CERTAINTY, ANO THE NUMBER GF FUNCTION 
C EVALUATlUNS EXPENDEJ DUPING THE SEARCH. 
C FOR :<.EFERENCE SEE C.Ml'.31..HKE BOOK 'INTP.O. TO COMPUTER-AIDED OESIGN'PolBO 
c 
C THE SUBROUTINE REQUIRES THE SPECIFICATION OF THE PRESENT INTERVAL OF 
C UNCEPTAINTY, FFACTIUNAL REDUCTION IN THE INTERVAL OF UNCERTAINTY, 
C ANO WHETHEP OP NOT A CONV EPGENCE MONITOR PRINTOUT IS DESIRED. 
C P•,QVIOE A SUBRCUTINE MERITltX,Y I WHICH RETURNS THE ORDINATE Y WHEN 
C THE ABSCISSA XIS TENDERED. 
C VAf;.IABLES 
C K=O CCl\VERGENCE MCNITOP WILL NUT PRINT. 
C K=l CONVERGENCE' MONITOk wILL PRINTo 
C XL= CUGINAL LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY. 
C XR= CRIGINAL RIGHTHANC ABSCISSA OF INTERVAL OF UNCERTAINTY. 
C F= F~ACTIONAL REDUCTION IN INTERVAL OF UNCERTAINTY DESIRED. 
C YbIG= EXTPEME ORDINATE DISCOVERED UURING SEARCH. 
C. XBIG= ABSCISSA OF EXTkEME ORDINATE. 
C Xll= fINAL LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY. 
C Xd= FINAL RIGHTHA:~O ABSCISSA OF I~TERVAL OF UNCERTAINTY. 
C ~= NuMbER OF FUNCTIJN EVALUATIONS EXPENDED DURING SEARCH. 
c 

DIME''<S!ON XZTl9),wN( 15) 
C JAdS(AkGl=ABSIA~Gl 

QAdS(AFGl=DABS(ARG) 
C FD REFEl<ENCE SEE 1...MISCHKE' BCOK 1 INT:~O TU COMPUTER-AIDED DESIGN 1 PAGE 180 

GU TU lUO 
C •••• Pi<JNT CUNVEFGENCE: MUNITOR HEADINGS IF REQUIRl:D •••••. 

111 IF!K)32,31,32 
32 WR I TE! 6,33 I 
33 FURMAT(37HlCONVERGl:NCE MONITOR SUBROUTINE GOL01,//,58H N 

1 Yl YZ Xl X2,//l 
31 N = C 

XLEFT = XL 
XRIGHT = XR 

13 ;,PAN = XR - XL 
uEL l A= QABS (SPAN I 

14 Xl =XL + 0.3<ll96b*OE:LTA 
X2 = XL + 0.61U034*DEL1A 
CALL MERITl(Xl,Yl,WN,XZT,NRJ,NORM,UPRIPL,Zl 
CALL ME:Rill!X2rY2,~\,XZT,NRD,NORM,UPRIPL,zl 

l\=1\+2 
3 IF!i<l34,<;,34 

34 WRITE(6,J:JIN1YloY2,xl,X2 
3 5 F JR M 111 I I 5, 't ( l X, El S • 7 )) 

9 IF!WAl:!S(XL-XP.l-i.JAU.:.(f*SPANll'••418 
!l DEL TA = 1..6ldC34*Dl:L TA 

If(Yl - Y~ll,10,2 

l XL Xl 
Xl = X2 
Yl = Y2 
X2 = XL + C.bl8034*0ELTA 
CALL MERITllX2,v2.wN,XZT,NRU,NORM,UPRIPL1ZI 
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N = N + l 
GO TC 3 

2 XR = X2 
Y2. = Yl 
i>.2 = Xl 
Xl = XL t O.J81966*DE:'L TA 
CALL MERITllXl,Yl,WN,XZT,NPD,NORM,UPRIPL,l) 
JI; = I\ +· 1 
GO TO 3 

4 IF('f'2 - YU5,5,o 
5 Y13IG = Yl 

Xll I G = X 1 
GU TO 7 

6 YBIG = Y2 
XBili = X2 

7 XL 1 = XL 
XRl = XR 
GO TO 39 

10 XL = Xl 
XR = X.2 
DELTA = XP. - XL 
GO TC 14 

39 IFI Kl4C.37.37 
37 WRlTE(6,38lXLEFT,XklGHT,f,y8IG,XBIG,XLl,XRl,N 
38 FOP.MAT(!/, 

154H LEFTHAND ABSCISSA OF INTERV~L OF UNCERTAINTY ••••••••• E1s.1,1, 
254H FIGHTHANO ABSCISSA OF INTERVAL CF UNCERTAINTY •••••••tEl5.7,/ 9 

354H FRACTIONAL REOUCTIGN ~; INTERVAL OF UNCERTAINTY ••••• ,El5.7,/, 
454H EXTREME CRDINATE DISCOVERED DURING SEARCH -.••••••••••tE15.7,/, 
554H ABSCISSA OF EXTFEME Of..OINATE ••••••••••••·····••••••••tfl5.7,/, 
654H NEw LEFTHAND ABSCISSA OF INTERVAL OF UNCERTAINTY •••• ,El5.7,/, 
754H NEW klC,HTHAND ABSCISSA OF .INTERVAL OF UNCERTAINTY •••tE15.7,/, 
85411 NUMdEP. OF FUl\CTION EVALUATICNS EXPENDED IN SEAFlCH ••• ,115,//l 

40 XL = XLEFT 
Xk = XRIGHT 
RETURN 

100 IFIKHC2,101,1Cl 
101 IFIK - 1)104,104,102 
102 W~ITEl6tl03)K 
103 FORMATC41H *****ERROR MESSAGE SUBROUTINE GOLD1*****•/,9H 11,, 

l ll 5t14rl IS NUT 0 OP. 11 
RETURN 

104 IFlXR - XLl105,107,101 
105 wRl TECta 1C6).)IL,XP 
106 FO~MAT(41~ *****ERROR MESSAGE SUBROUTINE GOLDl*****tl19H AZ,, 

1Cl5.7,2lH NCT SMALLER THAN A3,,El5.71 
HTU!<N 

107 IFIFJ1C9,1G9,108 
108 IFCF - leOllll,109,109 
1C9 WK1TEl6,110lF 
110 FOR~ATl4lh *****ERROR ~ESS~GE SUBROUTINE GOLD1*****•/,9H A4,, 

1El5.7.31H Dues NOT LIE BETWEEN a. ANO 1.) 
RETURN 
LNO 
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c 

SUBROUTI~E MERITl(WA,Y~WtRtL,NORMtUPRIPL,ZJ 
IMPLICIT REAL*81A-H,o-z> 

C MERITl IS A SUBROUTINE TO GCLDl SEARCH, AN ORDINATE Y IS RETURNED 
C WHEN COLUMN VECTOR OF ABSCISSA WIS TENDERED. 
c 

DOUBLE PRECISION DSQRT 
DIMENSION R(91,W(l51,WNSQC10t 
SQRT(X):DSQRT(XI 
Y2=1. 
K=L-1 
NG=l 
NF =l 
DO 5 J=NGtL 

5 WNSQIJ)=W!Jl**2 
wSQ=WA**2 

· 0 0 l C J= NF , K 
Yl=WNSQIJl/SQRTllWNSQIJJ-WSQJ**2+(2.*RCJ)*W(JJ*WA)**21 

10 Y2=Y2*Yl 
15 CONTINUE 

YN=WNSQILl**2/llWNSQILl-WSQl**2+12.*RILJ*WCLl*WAl**21 
V=V2*YN 
IFINOR,.EQ.llGC TO 80 
lFINORM.EQ.2lGU TO 25 

25 CONTINUE 
C FOLLOWING IS TO GET XBIG TO NORMALIZE THE MODIFIED CHEBYSHEV 

lFIY.GT.l.lGC TO 30 
Y=l.+I 1.-YJ 

30 CONTINUE 
C NOW LET Y BE ALWAYS -VE EXCEPT AT Y=l WHERE IT£ EQUAL TO ZERO, 
C THUS WE CAN GET MAXY WHERE IT INTERSECTS LINE 1. 

Y=l.-Y 
GO TO 80 

80 CONTINUE 
RETURN 
END 

90 



APPENDIX B 

LEAST SQUARES ERROR ALGORITHM 

This algorithm gives the poles of the mth order lqw-pass double 

dominant poles modified Chebyshev function (MCF) with lo~ dominant pole 

quality factor . (Qd). The input data incl.udes the .. break point frequency 

of the ·.nth order. Chebyshev function, an.d the upper and lower bounc\s for 

the estimated damping ratio of .the MCF. The relationship between the. 

orders m and n is given by m = n + 2(c - 1), where c corresponds to the 

dominant pole multiplicity and is taken here as 2. In.the algorithm 

double dominant poles replace the dominant poles of the nth order 

Chebyshev function, and the pass-band specifications are met by adjusting 

the parameters of the new function. This is achieved by using Gold 1 

and Pattern search [ME l] to minimize the pass-band error function. The 

MCF is obtained after meeting the pass-band specifications, and normal-

izing the poles to a cutoff frequency of one .. The algorithm output 
' ' . 

includes the following: print-out of the data, pattern and Gold 1 

convergence monitor, poles and Qd of the MCF, and the MCF magnitude 

print-out. Subroutine Gold 1 will not be listed here since it has been 

included in Appendix A. 
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c 
C fHIS PF'J• ·A~ Gil/E;S TH: PCLES OF THE: MODEFIED CHEBYCHEV POLYNOMIAL 
c ~ITh ~Eau~ru (LITl,AL QUALITY FACTOR g. USING MULTIPLE POLES 
C IT CAN bt USED FOF CHEBYCHEV PULtNOMIALS OF DEGkEE 2 & GRE:ATER. 
C SE:CCl\C ul<tJFF PCLYl\CMIALS Cf Tl-I: FUR.M S**2+2*ZETA*WN*S+WN**2 ARE 
C CONS IDE!--.EO IN Hl:h. 
C r~PUT QUANT I 1 I ES 
C i~= l\UMBCI< lf Uf\Kl\CwN PARAMETERS= MCF DAMPING RATIOS+ 1 FOR lST 
C ORDtf. SECT Iulli !N COO GHE'BYSHE\I FUNCTIONS. 
C EPSI= PASSrlAND ~IPPLE FACTOR r;E.FOR 2DB EPSI= .7647831 
C Z= CRDER Cf ORIGINAL C~EBYSHEV. FGLYNOMIAL 
C F= MINIMUM STEP S!ZI: !Ill SLBROLiTINE PATTERN BEFORE QUITTING I.E F=.0001 
C FRElJ= fKACT lONAL REDUCTION FOR SUBROUTINE GOLOl I.E FRE0=.0001 
C XLOIJI= LOWER BOUND OF ZETA REQUIRED FOR PATTERN SEARCH 
C XHIIJI= liPPER BOUNO CF ZETA REQUI~ED FOR PATTERN SEARCH 
C WNI JI= dRE.AK FREC::UENCIES CF ORIGINAL CHEBYSHEV POLYNOMIAL 
C DATA F1EQUl~EO: F; FRED; XLOCII; XHllII; iiNiI). 

IMPLICIT ~EAL*81A-fi,o-z·> 
LI MEl\S IGI\ XHI (91, XL:J 191, AV I 150 I ,AXC150I,WNI15J,X(91, WNSQC 101 
l,REALl91,AE~\AJ(91 

C FOLLOWING IS FOR UOUDLE PRECISION 
C QSQRTIARGl=SCRT(ARGI 

QSQRT l AR G l=D SI.JP Tl ARG l 
C JINT(ARGl=INTIARG) 

JINTIARGl=lDil\TIARGI 
READI 5,21 IN, Z,EPSI of ,FRED 

21 FORMATl1£.l-3 .0,3Fll.9l 
C THE LU~Er ANO UPPER BCUl\O FCR ZETAS FOLLOWS 
C THE BREAK FREClENCIES FOLLGWS 

l READ(~,22llXLOIJJ,J=l,NI 
IFIXLO(ll.E::Q.O.OIGO TO 99 
REA0(5,22 l!XHI (Jl ,J=l1NI 
REAC(5123)1Wl\(J),J=l1Nl 
WR.ITEl6186IZ 

22 FOl'MAT 15 F4.2 I 
23 FCR~ATl5fll.8) 

WRITElt,24llWNIJl~J=l,NI 
24 FOR1"1AT<llx, 1 INITIAL CORNER FREQ WN .,, 15El6.8,/l 

C UPP IPL= THE HIGHIEST RIPPLE= SQRTll+EPSl**2loNOTE THAT THE 
C LUWER RIPPLE LIMIT IS AL~AYS = ~ 
C Ol::U1N= INC.'~tMEf\IT FOR THE LAST BREAK FREQ 

IJE LWl\=.OOJ 
UPJ!~ =CS~~Tll+EPSI**2l 

~ FULLU~ING IS PATRN DATA 
C ULTNT= MAX FREQ INCLUDED IN ERROR CUST TERM 

ULTwT=l. 
LP=2 
')ELfA=.uOl 

C NUM= l IS TU K.EAD. IN THE LATEST XI I I TU PATRN 
MJ~=O 

C THE GOLDl VALUES FOLLOWS 
(. NORM= 0 GIVH US THE MAX Of FIL TEP FUNCTION 
C NOR~= l ALLCWS US TO EVALUATE TtE NORMALIZING FREQ 

NORM=O 
11 =l 
CDOEC=Z/ 2 
UDCHK=JINTIOUDEQI 

C APRANGING XLOW FUR GULOl TO GET LAST PEAK 
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IFICCCEQ.EQ.CDCHKIGU TO 2 
!FIZ.l\E.3lGC TC~ 
Xllhl=. 3~ 
1;u TU 4 

2 CONTINUE 
IHN.GT.llGt.. ro j 

;(LGW=Ll .U 
Gu TL 4 

3 CJNTINUt 
XLO ~'=WNI N-11 

4 CONTINl.iE 
XHIG= l .25 
XL CHK=XLUW +.O l 

1, C.ONT INLE 
C CALL PATTERN SEA~CH TO OBTAIN NE~ ZETA VALUE 

CALL PATRNIN.LP,XHI,XLO,DELTA,F,x,wN,NUM,UPRIPL,Z,ULTWTI 
5 CiJNTI Nl.JE 

C CALL GOLUl TIJOBTAIN THE llALUt: CF fHE LAST PEAK.IF IT IS wITHIN 
C THE PAS5 ~AND SPECIFICATION THE ITERATION STOPS;OTHERWISE,WNINI 
C IS I~CREM~NTED AND PATTERN 15 CALLED TO GIVE THE NEW ZETAS 

M2R,.,=O 
CAL l Gu LO 11 I l t XLOV;, XHI G ,FREO 'YB IG,X8 IG ,33 ,a4. JS, w N. x' N, NORM,UPRI PL 

l .Z I 
'F(XBIG.CT.XLCHKIGC TC 20 

15 :orHINLE 
XLOW=XLOW+.02 
.<i.CHK=XLCW+. 01 
.-IP I TE I 6, 70 l X LC w 
GU TO 5 

20 :GNT I l\LE 
IFlYBIG.L[.UPRIPLIGO TC SC 
\luM=l 

2 5 C.i.J!\JT INUE 
wN!Nl=~N(l\)+OELWN 

~~ITElo,7l)WNCNl 

·Jct TA= .OO 1 
CALL PATRNIN,LP,XHI,XLC,CELTA,F,x,wN.NUM,UPRIPL,z,uLTWTJ 
CALL MEPITllXSIG,YBIG,WN,X,N,NCRM,UPRIPL,ZI 
lFIYdIG.GT.UPRIPLIGO TO 25 
GO TO 5 

5C wRJTi::(o,6CllX(f J ,l=l ,l\l 
oJ FIJ~MATl//lX,'THE OPTillUM \/ALUES. OF ZETA ARE X(IJ= 1 ,9El6.3,I) 

AXlll=O. 
w=O. 
)W=l.5/lCC. 
~P= l .. .'J 
l\"=1\-1 
,ff" 1 
•>4G=l 
IF(ODOE~.~Q.CDCHKIGD TO 26 
llG=2 

20 Ci..INT INUc 
JlJ 3'.l J=NG,N 

35 ~NSQ(Jl=k~(Jl**2 
C FuL~OrlING IS TC ~LCT THE NCRMALIZED MAGNITUDE OF MOD CHEBYSHEV 
C f!~5T UBTAIN THE NORMALIZING FREQUENCY FROM GOLDl 

44 ~ONTINUL . 
~CRl'=l 
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XLOW=Xi3I G 
XHIG=l.3 
CALL GCLDltil,XLO~,XHIG,FREO,YbJG,X8IG,B3,84,JS,WN,X,N,NORM,UPRIPL 

l , z) 
Dw=l o/ l()O. 
WF=O. 
f\F=l 
NP=NP+5v 
DO 8~ J= l rNP 
ir<=wF*XBlG 
WSQ=W**2 
YZ=l. 
IFICCOEQ.EC.CDCHKIGO TO 82 
Y2= XI l l*UPP I PL /QSQPT( X ( l) **2+W**2 l 
"JF=2 
IHl\.E1..21GC TC 81 

ll2 CONTINlJE 
IFIN.E~.llGO TO 81 
[J!J SJ I=NfrNM 
Yl=Wl\SCl!J/QSQkTtlwNSQIIl-WSQl**2+12.*XII,*WN(ll*W1**2) 

t<C Y2=Y2*'\'l 
dl CUNT INUE 

YN=1Jt\JI l\}**4/ ( IWN(Nl**2-WSQl**2+12.*XIN)*WNIN l*Wl**2) 
AYI Jl=Y<:*YI\ 
AX! J+l l=AX( J l.+Dw 
wF=wF +Cw 
w~ITE(b,6~JAX(J),AYIJI 

d'j C(JNT !Ni.Jc 
~IRITE(6,74l 

Mi=l 
lFIUDDE~.EQ.CUCrlKIGO TO ll9 
NH=2 
ilR I TE I 6, 7 9 IX Ill 

89 CONT I NUE 
DO 90 J=NH, i·J 
REALIJl=XIJl*WNIJI 
AEMAJIJl=~SWPTiWN(Jl**2-PEAL(Jl**2l 

C NORMALIZING THC' POLES 
RtAL(J l=RE.AL(Jl/XBIG 
AEMAJIJl=AEMAJIJl/XBIG 
wRITElt.>, 7>;; IFEAL(J) ,AEMAJI JI 

90 CDNTJr~UE 
Q UALF- = ( CS Q~ l IRE AL I IH** 2 +A El" AJ IN 1**2 I I I I 2. *REAL! N) l 
wFlTEl6,771~LAL~ 

WR I fE( 6, 7llluPc. !PL 
wf<.ITE:t6, 7o I 

C CALL GRAP~(AX.AY,AX,NP,O,ll 
C NURM=2 GETS THE STOP FRfQ WHtRE MOO CHEB & ORIGINAL CHEB INTERSECT 

NiJRM=2 
XLCC=l.Jl 
XHII=l.75 
CALL GuLUltil.XLJO,XHII,FREO,YB,XBrB3,B4,JS,wN,x,N,NORM,UPRIPL,Zl 
WkITEl6,87lW~(f\1,XB 

c;9 CUNTINLE 
65 Fi..JRMAT(1Xr5t'l7.81 
70 Flll<1'IATllX, 1 NE\\ INC~~EASED XLO=·•,El7.81 
71 flJPMt.TllX.'NEi.. INCREASED· WN(N) =•.Eu.a,/l 
12. FURjVAJUXr'Gllf\G IHC GCLCl'tll 
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13 FURMATl/,/,/,/,11X, 1 ------ l\OW HIE NON NORMALIZED .:>RAPH ---') 
74 f()f:.MATl//lXo •PULE: LOCATION' .1ox, 1 REAL' 'l6X,• IMAGINARY• ,11 
75 FORMATfl4XoE18.9,3X,El8.9) 
76 FO~MAT(/,/,/,11x,•------ NCw THE NORMALIZED GRAPH--~--·> 
77 FURMATC//lX, 1 C.FITIC.AL QUALITY FACTOR Q =',El9.81 
78 FURMATf/lX1 1MAX RIPPLE: MAGNITUDE ABOVE 1 I.E. SQRT(l+E**Z). RIPPLE 

1 =' 1El8.SI 
79 FORMAT(/lX,'VALUE: FCR COD FCLYNCMIAL Xlll =1,El8.9,/) 
il6 FORi'IAT(///////,'******** FOLLOWING IS FOR CHEBY DEGREt N =' 1 F3.0, 1 

lTO ~+2 ******************',//) 
87 FORMATf/lX.•CHFO' MGC ChEE klT~ kN(N)=•,E11.a,•1NTERSECT AT STOP 

lEAN8 AT FREQ W=',E17.8/) 
STOP 
t'~m 
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SUBRCUTil\E P•TPNIN,NP,XHI,XLO,CELTA,F,X2,WN,l\UM,UPRIPL,Z,ULTWTI 
IMPLICIT PEAL*BIA-H,O-ZI 
CI MENS JUN XH I I 9 I , X LO I 9 I, XU 9 I , X 111 9) , Xl 2 ( 9 l , AM ( 9 I , X2 ( 9 I , X SA VE ( 9 l ,x 

1 3 I 9 l , A foll ( 9 l , X4 ( 9 I , COMN T 120 I , W NI 15 I 
C********************************************************************C 
c c 
C THIS SUBRCUTll\E CCl\OUCTS • PATTERN SEARCH WITr.IN REGIONAL C 
C LCNSTRAihTS IN A HYPERSPACE OF UP TO EIGHT INDEPENDENT C 
C VARIA~LES. THIS PROCEDURE WAS DEVISED BY HOOKE ANU JEEVES C 
C lf~CF: OPTIMUM SEEKING METHODS By WILDE, PG. 1451 C 
c c 
C PROVIDl:: A Oil'El\SIGI\ DECLARATION AS FOLLOWS: C 
C DIMENSION XHil9l,XL0(9) C 
c c 
L PROV ICE A SUBRGUTINE MERITIX,YI FROM WHICH AN ORDINATE Y IS C 
L RETJP,NELJ wHEN COLUMN VECTOR UF ABSCISSA XIS TENDERED. C 
c c 
(. PROVICE TrE t'EF'IT FUllCTICI\ Cl\ A CATA CARD C 
c c 
L NP=O CCNVERGENCE MUNITCR WILL NOT PRINT C 
C •••••••••• N'.JMENCLATURE •• • • • •••.. C 
C l\J=NUMBER UF INDEPENDENT VARIA!3LES IN SEARCH 18 OR LESSl C 
C NP=l CONVERGENCE MONITOR WILL PRINT EVERY ITERAT!UN C 
C NP=2 CCNVEP .. ,El\CE 1-'CNITCR WILL PRINT EVERY 2NC ITEl';AT!ON C 
C IJEL TA= INITIAL STEP SI lE C 
C F=MINIMUM STEP SIZE 8EFORE QUITING 
C XLO=LC~Ek BGUl\C CF SEARCH COMA!~, COLUMN VECTOR C 
C XHI=UPPER bOUND OF SEARCH DOMAI~, COLUMN VECTCR C 
c c 
C********************************************************************C 

c 

1000 FORMAT (/// 1 CONVERGENCE MONITOR - PATTERN SEARCH SUBROUTINE',//' 
l NN' ' 4X ' ' UE LT A. ' 7 x' • y' '7 x' 'x ( l) I '6X '' x ( 21 I '6X' • x ( 3 l • '6 x' • x ( 4 I • '6X 
2, 1 X ( 5) ', 6 X, ' X ( 6)' , 6X, 1 XI 7 l 1 r6 X, 1 X ( 8) 1 I ) 

1001 FUHMAT llX,14,lOEl:;.7) 
1002 FORMAT ( 1 1' l 
1003 fOi\MAT 111/' L-'RGl::ST MERIT ORD! MTE FOUND DURING SEARCH •• ••• ••• •• 

1 1 ,El'.1.8/' l~UMllER :Jf FUNCTllJN EVALUATIONS USED DURING SEAl<CH ••• 1 ,I 
215/' FINAL SEARCH STEPSilE •••••••••••••••••••••••••••••••',El5.8/ 
31/ j 

1 004 HJRM AT ( 1 X ( 1 rI l r ' l = 1 , E 15. d/l 
lCO'.:.> FORl't\T (' XLCl'.Il,'I ""'1El5.B,5X, 1 XHil',!l, 1 ) =1 ,El5 •. BI 
lCCo FORMAT l'l','TI-'': MEPIT FUNCTIC~ EllALUATED 1 //1X,20A4//// 1 REGIONAL 

lCUNSTFAINTS' I l 
lUU7 FU~MAT (20A41 

OU l I =l, N 
1 wUTE (6,100:>1 I,XLO(llrlrXHI(l) 

C ------> INITIALIZE<------
C 

Dl5=DC:LTA 
IFINUM.EC.OlGO TU 3 
DOZJ=lrN 
i<. l I J I = X2 I J l 
i<. 11 ( J l =X l ( J I 
Xl2(JJ.=Xl(J) 

2 XSAVE(Jl=Xl(J) 
GU T tJ 6 

3 CCNTINLt. 
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c 

DG5l=l,I\ 
X 11 I l = XH I< 11-( l XH I I l l- XLO ( I l I/ 2 • 0 I 
Xll<Il=Xl<!l 
Xl2(ll=Xll!I 

5 XS AVE I 11=i<11 I I 
6 CONT I1HJE: 

CALL t'E:FIT 1x1.v1,wN,N,UPRIPL1Z1UlTWTJ 
lTER=C 
IF INPI 9,10.9 

9 WRITE ~011000) 

wRIH. (o:..,lCGll ITcR10ELTA1Yl1(XllU1I=l1Nl 
C ------> EVALUATE TliE STAR PATTERN <------
C ------>.TO OETER~I~E HASE POINT, Bill<------
C 

c 

HJ AM ( l l='t'l 
!HJ 55 1=111\ 
J = 1 +l 
Xll (I l=Xll I l+fH;.. TA 
IF (Xlllll-XHrt!ll 20120,15 

b Xll I I l =XH I I I l 
20 CALL MERlT IXll1YA,WN1N1UPRlPL1Z1ULTWTI 

X 12 I I I =X 11 I I-DU.TA 
If tXldll-XU'.IIll 25,30,30 

25 XU( I l=XLOI I I 
30 CALL MEKIT lXl~1Y81WN1N,UPRIPL,Z1ULTWTt 

IF IAl'lll-YAI 4J,35135 
35 IF (AMIIl-Ybl 4:>.sc.sc 
4C AM I JI= 'l'A 

X2 I I J = X 1 1( l I 
Xl21Il=X1ll:J 
GO TC 55 

45 AM(Jl=Yii 
Xl(Il=Xl21Il 
Xll( I l =Xl2 (I I 
GO TO 55 

50 AMI J J=AM I IJ 
X2 I I l: Xl t I I 
XlUI l"'Xll I l 
Xl21ll=Xllll 

55 COl\Tl l\LE 
Y2=AI'( JI 
IT ER= ITf:R +l 
lf lNP-11 59,58,57 

57 D=ITEF./2.C 
K=U 
Dl =i< 
IF (Dl-DI 5~,,t,59 

5tl WRITE: 16.lCCll !TE:P,,UE:LTA,Y2rlX.<:IIltl=l,Nl 
·5'-1 IF IY2-Yll tJ5,t,.J,o'> 
60 O~LTA=DELTA/8. 

GEL=lJf:LT A-f/8. 

C ------> E:VALUAT~ PROJECTED TRIAL POINT <------
C ------>AS TEMP~~A~Y HEAD POINT, T(I,01 <------
C 

65 DU 85 l=l1N 
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X3( I >=2 .o•x2111-XSAVE( 11 
I r ( X3 { 1 >-XL u ( l I l 7 5 ' a 5' 7 0 

·70 IF IX31ll-XHil!ll 85185180 
75 X:;ll I I =XLCI Il 

Gu TU 85 
80 X31ll=XH1111 
85 C. Of\ TI f\LE 

CALL MERIT IX3,Y31Will1N1UPPIPL,Z1ULTWTI 
IF IY3-Y21 90,901165 

C ------> EVALUATE THE STAR PATTERN <------
C ------> AROUND PROJECTED TRIAL POINT <------

90 DO 95 l=l,N 

c 

Xll I I I =X3 i I l 
95 Xl211l=X3ll) 

AMl ( 1 l=Y2 
DO 140 l=l1N 
J=I +-1 
Xll( I l=X3( I l+OEL TA 
IF IXlll Il-XHIIIll 105,1051100 

1 CO Xll (I l=l\Hif I I 
105 CALL MERIT CXll 1YA1Wl\11\1UPRIPL.Z1ULTWT l 

Xl2( I l=X3( I J-DEL TA 
IF (XlL(Il-XLCIIll 110.1151115 

110 Xl21Il=XLCII> 
llS CALL MERIT (Xl21YB,wN,N,UPRIPL,Z1ULTWTI 

IF IAMll I l-YAl 120,125.125 
120 AMllJl=YA 

Xl21 I l=Xll( I l 
X4( Il=XlllII 
GO TC 140 

125 IF IAMll U-YBI 135.13Ctl3C 
130 AMllJl=AMUll 

Xl 11 U=X31 11 
Xl2(ll=X311) 
X4 I I l = X3 I I I 
GO TO 140 

135 AMllJl=Y& 
Xlll Il=Xl2fI I 
X41 U=Xl21 I I 

140 CJNTINUt: 
IF (A~l(Jl-Y21 15511551145 

C ------> ESTABLISH A STAR PATTE~N POINT <------
C ------> AS TE~POFAkY HEAC PClf\T, T1I10I <------
C 

c 
c 
c 
c 

14S DO 150 1=111~ 

XSAVEIIl=X21ll 
AMSAV=Y2 
Xl ( !l=X1-t (Tl 
Xll (I l =X4 II 1 
Xl21Il=X4111 

150 Yl=AMl (J l 
GO TC 10 

------> ESJAi:jl IS 1-l PREVIOUS BASE PO.INT <------
------>AS TEMPORARY HEAD POINT, T(I10l <--·---

155 DO loO I=l,N 
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c 

XSAVE< H=Xl< I) 
AMSAV=\'l 
XU I ) = X2 ( I l 
Xll(Il=X21Il 
Xl 2 ( I l =X2 (I l 

lt:O Yl=Y2 
GO TO 10 

C ------> ESTABLISH PKOJECTED TRIAL POINT <------
C ------>AS TEMPOkARY HEAD POINT, l(I,Ol <------
C 

lt: 5 00 1 7 c l = l , j\j 

XS AVE< I )=X2< I l 
AMSAV=Y2 
X 1( I I = X3 ( I l 
X 11 ( I l =X 3 I I I 
Xl2(ll=X311) 

170 Yl=Y3 
DEL TA= 015 
GO TC 10 

175 OELTA=UELTA*8.0 
wRITE 16.10031 Y2.ITER,OELTA 
00 180 l=l,N 

180 WRITE 16,10041 J,X2(1) 
\vRITE (6,1002) 
CONTINUE 
RETURN 
END 
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c 

SUBROUTll\E MERIT(X,Y,Wt\,N,UPRlPL,z,uLTWTJ 
IMPLICIT REAL*81A-H,O-Zl 

C MERIT IS A SUBRUUTINE OF PATTERN SEARCH, AN ORDINATE V IS RETURNED 
C WHEN COLUMN VECTOF OF ABSCISSA X IS TENDERED. 
c 

DIMEl\SICI\ Wl\ll5J,X(9),WNSC!l01 
C QSQRTIA~GJ=SQFT(ARGJ 

QSORTI ARG).:DSQRTIARGI 
JINT(ARGJ=IDINTIARGI 

C NUMPIK=NUMBER Of CHEBY PEAKS 
C RESPIO= THE IDEAL PASS BANC STRAIGHT LINE ABOVE ONE DESIRED 

Y=O. 
C FOLLOW ING IS FOR !OT I- ORDER CHE BY 308 TO 12TH ORDER 

RESPID=l.+IUPRIPL-1.1/2. 
WT= lo 
NUMPIK=N 
WTMXST =3. 
W=Oo 
MAXIT=NUMPIK*2*10 
OW=ULH.T/MAXIT 
NM=N-1 
NF=l 
NG=l 
ODDEO=l/ 2 
ODCHK=Jil\TIODOEQJ 
IFIODOEQ.EQ.OOCHKIGO TO 26 
NG=Z 

26 CCNTI ,._.LE 
DO 35 J=NG, N 

35 WNSOIJl=WNIJl**2 
00 lC J=l,MAXIT 
wSQ=W**2 
YZ=l. 
IFICCCEt.EC.COLHKIGO TC 39 
Y2=Xlll*UPRIPL/QSQ~TIX!ll**2+W**2l 
Nf=2 
Il-(N.EQ.~JGO TO 41 

39 CGNTINLi: 
IF!N.~~.llGO TO 41 
DO 40 I=NF, NM 
Yl = wNS Cl I J /Q SQRT ( ( WNS Q (I 1-ws QI* *2 +( 2 ·* x ( I I *WN (I) *vd **2 l 

40 Y2 =Y2* 't'l 
41 CONTINUE 

YN = wN ( I\) **4/ ( ( WN IN l ** 2-WS Q )**2 + 12 •* X ( N l *WN ( N ) *W l **2 l 
v;co=YZ*YI\ 
Y=Y+(WT*(Y20-RESPIDll**2 
W=W+OW 
IF(W.GT.~TMXSTlGC TG 3 
GO TO 5 

3 WT=7. 
5 CONTINUE 

10 CONTli\iUE 
Y=l./Y 
RETURt\ 
END 
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c 

SUBROUTINE ~ERITl(w,v.~N.X,N,NORM1UPRIPL,ZI 

lMPLl\;IT RtAL*B(A-H,O-l) 

L MER ITl !SA SUBROUTlNE TO GOLD 1 SEARCH, AN GRDINATF Y IS RETURNED 
C WHEN CGLUMN VECTOR OF ABSCISSA W IS TENDERED. 
c 

DOUBLE PRECISION DLUGlO 
DIMENSION Xl9l1WNl15l1WNSQ(lOl 

C WS~RT(ARGl=SCRTIARGI 
(,)SQPT( AR Gl=DSQR T(ARG l 
JINTIARGJ=IDINTIARGl 
UABS(ARGl=UABS(ARGI 
y 2= 1. 
NM=N-1 
NG=l 
NF= 1 
ODDEQ=Z/2 
CDCHK=JI~TICCDECl 
IFIODDEQ.EQ.UDCHKIGO TO 26 
i11G=2 

26 CUNTI~UE 
DC 35 J=NG, N 

35 WNSQ(J l=WN(J l**2 
WSQ=r-1**2 
lf(OODEQ.EQ.GDCHKlGO TC 39 
Y2= X ( 1 l* LPR I PL/Q SQR Tl X ( ll **2+W**2 I 
NF=2 
IF!N.EC.2lGO TO 41 

39 CONTINLE 
IF<N.EQollGO TO 41 
00 40 I=NF1NM 
y l = w NS" I ) I(.] s c f.T ( ( WNS Q I I 1-ws QI* •2•12. *X ( I I •WN ( I I *W ) * *2) 

40 Y2=Y2*Yl 
41 CUNT INUE 

YN=WNl~l**4/((WN(Nl**2-WSCl**2•12.*XINl*WNINl*Wl**2l 
Y=Y2*YI\ 
lF(NURM.EJ.OIGO TO 80 
!F(l\CR~oEC.llGC TO 42 
IFINCRM.EQ.2JGO TO 47 

42 CONTINUE 
C FOLLOWING IS TU GET XBIG TO NORMALIZE THE MOD CHEB 

!Ft Y.GT.l.IGO TO 45 
Y=l .+( 1.-Y I 

45 CONTINUE 
C NOW LET Y BE ALL WAS -VE EXCEPT AT Y= 1. WHERE ITS EQUAL TO ZERO, 
C THUS ~t CAN GET l'AX Y wHERE IT INTERSECTS L!NE 1. 

Y=l.-Y 
GO Tll BJ 

47 CCNTINLE 
l. f-!NO!NG STOP BAND IN TEP SECTION FREQ BET MDO CHEB & ORIG! NAL CHEB 

tiN ( 11 J =. 6J 7 1 7164 
~iN{ 121=•2488S627 
wN( 131=.12'1b3136 
wN(l4)=.06b57094H 
WN(l51=.Cl0737564 
viN( 6) =. S9t41:ll ?4 
FN= 1. 
lJO 50 J= 1, 4 
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FA=WNS,IJl/QSCRTllWNSCIJl-WSOl**2+12.*WNIJJ*WNllO+Jl*Wl**21 
50 FN=Fl\*FA 

f A=wN ( 6 l **2/QSQR T( ( 1mc 61 **2-WSti >**2+ ( 2. *WNI 6) *WN( 151 *ll'iJ **21 
FN=FN*FA 
Y=20*DLOG(Yl 
fN:20*DLCGlOIFNI 
Y=-QABSI ~-FN I 
GO TO 80 

80 CONTll\UE 
RETURN 
END 
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APPENDIX C 

ROUNDOFF NOISE COMPUTATION 

This progr$m evaluates the output noise variance of a.digital filter 
' ' . 

by computing the integral of (1/ (27Tj) )H(z)H(l/z) l/z ar9und th.e unit 

circle in the. z-plane. Realization in ·ter_ms of first and second order 

casc~ded canonic section.s is considered,, and the bilinear transfc;>rmation 

is employed to transform from the s-do.main function to the z ... domain. Th~ 

scaling factors are evaluated in subroutine SCALE, and. the integral is 

evaluated by subroutine SALOSS [AS l], Input dat:a includ.es ripple factor 

EPSI, desired section ordering, and s-plane poles. The algorithm output 

includes section ordering, and output noise variance due to A/D 

conversion and multiplier roundoff. 

103 



c 

IMPLICIT REAL*BC A-H,O-ZJ 
DOUBLE PRECISION DSQRT 
0 I MENS ION A ( 15), B( 15 It AS I 111 , VA (Bl , KS( l 01 , GNT UO), Bl (10) , B2 ( 10 I , YF 

ll 400), SI 10 l 
ltPP(7J,QQl71,LEl71tKN(7),KE(7) 

C THIS PROGRAM EVALUATES THE OUTPUT NOISE VARIANCE Of A DIGITAL FILTER 
C BY COMPUTING THE INTEGRAL Of ll/(2*PI*JJl*BtZl*B(l/Z)/IAIZl*All/Zl*ZI 
C AROUND THE UNIT CIRCLE 
C THE SECTIONS ARE IN CANONIC CASCADE FORM OF lST & 2NO ORDER SECTIONS 
C THE BILINEAR TRANSFORMATION FRO~ S TO Z DOMAIN IS USED IN THIS PROGRA~ 
C Pl,P2to•• ARE REAL POLE LOCATION INS PLANE,Pl=CRITICAL POLE, 
C P2=NEXT CRITICAL POLE, ETC. 
C Ql,Q2, ••• ARE IMAG POLE LOCATION INS PLANE,Ql=CRITlCAL POLE, 
C Q2=NEXT CRITICAL POLE, ETC. 
C PROGRAM FINDS NOISE DUE TO SECTION Pl,Ql CLOSEST TU OUTPUT, THEN 
C THE NOISE DUE TO Pl,Ql,&P2,Q2 AND SO JN 
C ODD & EVEN FUNCTIONS CAN BE USED 
C G SETS H(Z)=ATTENUATION IATTI WHN Z=l 
C KS = NUMBER OF INPUT NOISE SOURCES 
C NSCT= NUMBER OF FIRST AND SECOND OROEK SECTIONS. 
C N= CROER Of POLYNOMIALS A & B 
C GNl,GN2toooARE TO SET HIZl=ATTENUATIONIATTI AT Z=l ATT=l FOR ODO 
C FUNCTION HIZI 
C CATA NEEDED ARE Pl,Ql,P2,Q2, ••• ,& NSCT AT PROGRAM END. EPSl & KSIII 
C AT PROGRAM TOP. FOR ODD FUNCTIONS SET Ql OF REAL POLE=O.O, & 
C EPS I=O .O 
C EPSI =RIPPLE FACTOR I.E., FOR 1 OB RIPPLE,THEN EPSI=.508847 
C LP & MP ARE THE DESIRED SECTION ORDERING,MP IS-THE SECTION CLOSEST 
C TO OUTPUT,J.E.,FOR TWO 2ND ORDER SECTIONS IF LP=2 & MP=l,IT MEANS 
C THAT THE CRITICAL SECTION IS CLOSEST TO THE OUTPUT. 
C DATA REQUIRED: 1- S-PLANE 2ND QUADRANT POLE LOCATION Pl,Ql,P2,Q2, ••• ; 
C 2- EPSI; 3- NSCT; 4- LP & MP. 
c 
C READ POLES OF 4TH ORDER FUNCTION 

REAOf5,83)Pl,Ql,P2,Q2,EPSI,NSCT 
C READ DESIRED SECTION ORDERING FOR 2 SECTIONSII.Eo,30 OR 4TH ORDER) 

REAOt5 ,80 JLP,MP 
WRITEl6,841Pl,Ql,P2,Q2,EPSI,NSCT,LP,MP 
LZ=l 
NC=l 

C RIPPLE CALCULATION 
ATT=lo/OSQRTl1.+EPSI**21 
GNl=O.O 
GN2=0.0 
GN3=0.0 
GN4=0.0 
GN5=0.0 
GN6=0.0 
ERMX=lOOOO.O 
JR=O 
JQ=O 
JP=O 
KP=O 
NOUS=O 
JINTR=O 

7 CONTINUE 
C ASSIGNING POLE LOCATION FOR 2 SECTIONS,3 SECTIONS, ETC. 
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PP(HPl=Pl 
QQ(HPJ=Ql 
PPILPl=P2 
QQ(LPl=Q2 
GO TO 100 

100 CONTINUE 
C OBTAINING THE CORRECT SECTION ORDERING FOR PRINT OUT 

LE( U =~P 
LEI 2 l=LP 
LEI 3 )=KP 
LE(4l=JP 
LE( 5 l=JQ 
LE(6 J .. JR 
DO 159 J•l,6 
KEIJl•O 

159 KN(Jl=O 
JAal 
DO 161 J"'lt6 
IFILEIJ).LT.KNIJAllGO TO 161 
KNIJAl=LEIJl 
KEI JA) =J 

161 CONl INUE 
JA 2 l 
JB=2 

162 DO 163 J=l,u 
IFILE(Jl.GE.KNIJAloOR.LE(Jl.LTeKNIJBllGO TO 163 
KNIJB):s:LEfJl 
KE I JS I =J 

163 CONTINUE 
JA=JA+l 
JB=JB+l 
IF(JB.LE.NSCTlGO TD 162 
WRITE(6,8llfKE(JJ,J=l,61 
JN=l 
NODD=O 
KS( 11=3 
KSl2l=3 
KSl31=3 
KS(4)=3 
KSl51=3 
KSC61=3 

C CALCULATING MULTIPLIER VALUES 
G=ATT 
IF(QQ(l).EQ.O.OlGO TO 111 
Ul=l. 
Fl=2• 
01 =l. 
El=2.*PP( U 
Wl=PP(ll**2+QQl11**2 
GNl=ATT*Wl/(l.+Wl+Ell 
Xl=2.*(Wl-l.l/(l.+Wl+Ell 
Yl=I l.+Wl-El)/(l.+Wl+Ell 
Bl( NSCT l=Xl 
B21NSCTl=Yl 
G=G*(l.+Xl+Yll/4. 
GO TO 112 

111 Xl=l. 
Yl=lPP(ll-lol/IPPlll+l.) 

105 



Dl=O.O 
Ul=O.O 
Fl=l. 
131< NSC T> =Vl 
G=G*l l.+Yll/2. 
KS(l)=2 

112 CONTINUE 
NF= l 
IF(NSCT.EQ.NFJGO TO 20 
IF(QQ(2J.EQ.O.OlGO TO 113 
U2= 1. 
F2=2. 
02=1. 
E2=2.*PP(2) 
W2=PPl2J**2+0Ql21**2 
GN2=W2/(l.+W2+E2l 
X2=2.*(W2-l.)/(l.+W2+E2) 
Y2=1 l.+W2-E2J/(l.+W2+E21 
Bl ( NSCT-NFJ=X2 
62( NSCT-Nfl=V2 
G= G*I 1. + X2+Y2 > 14. 
GO TO 114 

113 X2=1. 
Y2=1PPl21-l.l/IPPl21+1.I 
02=0 .o 
U2=0.0 
F2=1. 
Bl(NSCT-Nfl=V2 
G=G*ll.+V2J/2. 
KS(2)=2 

114 CONTINUE 
Nf=2 
IFlNSCT.EO.NFJGO TO 20 

20 CONTINUE 
C OBTAIN THE SCALING MULTIPLIERS 

CALL SCALE(NSCT,Bl,82,G,S,GN,QQ) 
DO 10 J=l, 15 

10 A(J)=O.O 
IFINSCT.LT.lJGO TO 40 

C FOR FIRST 2NO ORDER SECTIOI\ CLOSEST TO OUTPUT 
lf(QQ(ll.EQ.O.OIGO TO 123 
N=2 
GO TO 124 

123 N= 1 
NOOO=l 

124 CONT I NUE 
VAT=O.O 
IN=l5 
IFIQC!lJ.EO.O.OIGO TO 140 
A(N-11=01 

140 A(NJ=Xl 
A<N+ll =Yl 
DO 29 J=l,15 

2 9 Y F ( J l= A ( J J 
GNT( 1 J =GI\ 

1 CONTINUE 
GT= GNHJN l 
IFlCQ(lJ.EO.O.OlGO TO 146 
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B(N-lJ=Ul*GT 
146 l:HNJ=Fl*GT 

BIN+l )=l .•GT 
LN=l 
RC=l. 
CALL SALOSS(A,B,N,IERRtVtINJ 
RC=2• 
IFIIERR.EQ.OJGO TO 50 
IFIJN.EQ.lJGO TO 30 
V=V/12. 
WR IT EI 6, 7 6 J V 
GO TO 40 

30 CONTINUE 
VAi 1 )=KS( lJ*V 
VAT=VA T+VA( 1) 
IFINSCT.LT.2JGO TO 40 

C NOW FOR CASCADE OF TWO SECOND ORDER SECTIONS 
lF(QQ(2J.EO.O.OlGO TO 125 
IF(NOOO.EQ.lJGO TO 125 
N=4 
GO TO 126 

12 5 N=3 
NODD=l 

126 CONTINUE 
Rl=Dl*X2+Xl*D2 
R 2=0 l*Y2+D2*Yl+Xl*X2 
R3=Xl*Y2+X2*Yl 
R4=Yl*Y2 
IFIQQ(2J.EQ.O.OJGO TO 141 
IFINODO.EO.llGO TO 141 
A(N-3 J=Dl*D2 

141 AIN-21=Rl 
Al N-ll=R2 
AINl=R3 
AlN+ll=R4 
DO 31 J=l ,15 

31 YFIJl=A(Jl 
GNTlll=GN*SINSCTI 

2 CONTINUE 
Cl=Ul*U2 
C2=Ul*FZ+Fl*U2 
C3=Ul +Fl *F2+U2 
C4=Fl+FZ 
GT=GNTIJNI 
lf(QQIZJ.EQ.O.OIGO TO 147 
lf(NODD.EQ.llGO TO 147 
BIN-3l=Cl*GT 

147 B(N-ZJ=CZ*GT 
BIN-ll=C3*GT 
BINl=C4*GT 
BlN+l l=l .*GT 
LN-=2 
RC=3. 
CALL SALOSSIAeBtN,IERR,v,INI 
RC=4. 
IF! IERR.EQ.OIGO TO 50 
IFIJN.EQ.llGO TO 32 
V=V/12. 
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WR ITE(6,76 IV 
GO TO 40 

32 CONTINUE 
VA{2l=KS12 l*V 
VAT=VA T+VA(2) 
IFINSCT.LT.3lGO TO 40 

40 CONTINUE 
IF(JN.EQ.2)GO TO 45 
DO 42 J=l.15 

42 AIJl=YF(J) 
C NOW OBTAINING THE A/D NOISE VARIANCE 

JN=2 
GNTl21=GNT(l)*S<ll 
IF!LN.EQ.l)GO TO 1 
IFIL~.EQ.21GO TO 2 

45 CONTINUE 
C ADD ONE TO VAT TO ACCOUNT FOR OUTPUT MULTIPLIER IN SECTION CLOSE TO 
C OUTPUT 

VA T=VA T+l. 
VAT= VAT/ 12. 
WR IT E ( 6t 7 2) VAT 
IFIVAT.GE.ERMXJGO TO 175 
ERMX-=VAT 
MJl=KEUI 
MJ2 =KE (2 l 
MJ3=KE!3l 
MJ4=KEl4) 
MJ5=KE15 l 
MJ6:KE(6) 

175 CONTINUE 
110 CONTINUE 

WRITEl6t82)ERMX,MJ1,MJ2,MJ3,MJ4,MJ5,MJ6 
ERMX=lOOOO.O 
NC =l 

50 CONTINUE 
WRITE(6,7011ERR,N 

51 CONTINUE 
70 FORMATClX,'***ERROR-PCLES OUTSICE UNIT CIRCLE.IERR= 1,I1, 1 AT STAGE 

l N=•,12,/l 
71 FORMAT(lX, 10UTPUT NOISE VARIANCE Vl 1 1Il1 1 l= 1 ,Fl6.7, 1*0**2/12' l 
72 FORMATl1X, 1TOTAL OUTPUT NOISE VARIANCE =1 ,Fl6.7r 1*Q**2') 
73 FORMAT(lX,'RC = 1 tF4.2) 
74 FORMAT(lX, 1VALUE OF GNC 11Il1'1= 1,Fl6.7,' & GNT= 1 ,Fl6.7l 
75 FORMATllXt'TOTAL OUTPUT NOISE VARIANCE =•1Fl6e7t'*0**2/12') 
76 FORMATUX1' OUTPUT NOISE VARIANCE DUE TO A/D =1,Fl6.7,'*0**2'1 
77 FORMAT(lX1 1 INITIAL OUTPUT GAIN =1,Flo.71 
80 FORMATl6 I2 I 
81 FORMATC/,6I21 
82 FORMAT(/,lOX,'***MINIMUM OUTPUT NOISE VARIANCE=',Fl6e7r'*Q**2 

lAT SECTION ORDERING'16IZ1//I 
83 FORMATC5Fl0.7, I2l 
84 FORMATClX,'Pl= 1,Fl0.7, 1Ql= 1 ,Fl0.7, 1 P2= 1,Fl0.7,•Q2= 1,Fl0.7,'EPSI='• 

l F l 0. 1 • ' N SC T = ' ' I 2 • I L p =I • I 2 • I Mp= I • I 2 I 
STOP 
ENO 
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109 

SUBROUTINE SALGSS(A,B,N,IERR,V,INI 
c 
C PROGRAM FOR EVALUATING THE INTEGRAL OF THE RATIONAL FUNCTION 
C l/C2*PI*ll•BCZl*BC1/Zl/CAIZl*AC1/Zl*ZI 
C AROUND TtiE UNIT CIRCLE 
C REFERENCE: ASTROM,JURY, &AGNIEL 'A NUMERICAL METHOD FOR THE EVALUATION 
C OF COMPLEX INTEGRALS 1 oIEEE TRANS ON AUTOMATIC CONTRUL,AUG 1970,PP468-471 
C A- VECTOR WITH THE COEFFICIENTS OF THE POLYNOMIAL . 
c A( lJ•Z••N+A(2J•z••cN-lJ+ ••• +A(N+U 
C IT IS ASSUMED THAT A(ll IS GREATER THAN ZERO 
C B- VECTOR WITH THE COEFFICIENTS OF THF. POLYNOMIAL 
C BC ll*Z **N+BI 2 J*Z ** IN-lJ + ••• +BIN+ U 
c 
C THE VECTORS A AND B ARE DESTROYED 
c 
C N- ORDER OF THE POlYNOMIALS A AND B IMAX lOJ 
C IERR- WHEN RETURNING !ERR= 1 IF A HAS ALL ZEROS INSIDE UNIT C!RCLE 
C IERR= 0 IF THE POLYNOMIAL A H~S ANY ROOT OUTSIDE OR ON 
C THE: UNIT CIRCLE OR IF A( 11 IS NOT PJSITIVE 
C V- THE RETURNED LOSS I.E RETURNED VALUE OF THE COMPLEX INTEGRAL 
C IN- Ol~ENSION OF A ANO B IN MAIN PROGRAM 
c 
C SUBROUTINES REQUIRED: NCNE 
c 

c 

IMPLICIT REAL•BCA-H,O-ZI 
DIMENSION ACINJ,BCINJ,ASC121 

C CRUDE STABILITY TEST 
NP=N+l 

c 

If( AC 1)) 50, 5 O, 1 
l R=AU J 

DO 2 I=ltN 
2 R=R+AC I+l I 

IFIR )50, 50, 3 
3 R::A(l) 

Nl=l 
DO 4 I=l,N 
Nl=-Nl 

4 R=-R+AI I+l) 
IFIN1)5,5t6 

5 R=-R 
6 CONTINUE 

1FIRl5C,5Ct7 

C 8EGIN ~AIN LOOP 
c 

7 AO=AllJ 
IERR=l 
v=o.o 
DO 10 K=l,N 
L=N+l-K 
Ll=L+l 
ALF A= A I L 1 ) I A ( l J 
BETA=B Ill J/ All J 
V=V+BETA*BC Ll J 
DO 20 I=ltL 
M=L+2-I 
ASI I l=AI 11-ALFA*AI MJ 



20 BIIJ=BIIJ-BETA*AIMI 
IF( AS I l) )50, 50, 30 

30 DO 40 I=l,L 
40 AII>=ASII> 
10 CONTINUE 

V=V+B( 11**2/AI 11 
V=V/AO 
RETURN 

50 I ERR=O 
70 FORMATl1X, 1 Alll= 1 110Fl2.61 
71 FORMATliX, 1 BIIJ= 1 110Fl2.61 
12 FORMATl/1X, 1 R= 1 ,Fl2.61 
73 FORMATl/1Xt 1 AS( lJ=' ,Fl6.9J 

RETURN 
END 

110 



SUBROUTINE SCALECNSCT,Bl,82,G,S,GN,QQ) 
IMPLICIT REAL*B(A-H,O-ll 
DOUBLE PRECISION DABS 
DIMENSION 81(10J,B2110),YFl400l ,SC 10),QQ(7J 

C THIS SUBROUTINE CALCULATES THE SCALING FACTORS FOR THE CASCADE DIGITAL 
C FILTER SECTIONS SUCH THAT VINT).LE.l ,& YINTJ.LE.l 
C NSCT = NUMBER OF FILTER SECTIONS 
C 81 & 82 = INNER & OUTER FEEDBACK MULTIPLIERS 
C G= FILTER GAIN IT SETS HIZJ=l AT l=l 
C GN= NEw RETURNED FILTER GAIN = G/SIK) 

SllJ=l. 
DO 10 J=l,75 

10 YF(J)=O.O 
YF(l)=lo 
K=l 
JR= NS CT 

11 CONTINUE 
IFCJR.EQ.OJGO TO 58 
!FIKoGT.21GO TO 15 
KM=l 
GO TO 20 

15 KM=K-1 
20 CONTINUE 

IFIQQ(JRJ.EQ.O.OIGO TO 51 
Vl=O.O 
V2=0.0 
SUHV=O.O 
SUMY=O.O 
DO 40 LS=l, 75 
LL=LS 
V=SIKMl*YFllLl-BllKl*Vl-B21Kl*V2 
YF(LLJ=V+2.*Vl+V2 
SUMV=SUMV+DABS IV I 
SUMY=SUMY+DABSIYFILLll 
V2=Vl 
Ill=\/ 

40 CONTINUE 
IFISUMY.GT.SUMVIGO TC 45 
S ( K) =l./SUMV 
GO TO 46 

45 SlKl=l./SUMY 
46 CONTINUE 
50 CONTINUE 

K=K+l 
JR=JR-1 
GO TO 11 

51 CONTINUE 
SUMV=O.O 
SUMY=O.O 
Vl=O.O 
DO 53 LL=l,75 
V=SIKHl*YF(LLl-Bl(Kl*Vl 
YFILLJ=V+Vl 
SUMV=SUMV+DABSIVI 
SUMY=SUMY+DABSIYFILLll 
Vl=V 

53 CONTINUE 
IFISUMY.GT.SUMVIGD TO 56 
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S (KI= 1 el SUMV 
GO TO 57 

56 S!Kl=le/SUMY 
57 CONTINliE 

K=K+l 
JR=JR-1 
GO TO 11 

58 CONTINUE 
GN=G 
DO 55 K== l t N SC T 

55 GN=GN/SCK) 
10 FORMATC/lx,• SUMVI' ,z1, 1 >=• ,F16.1,4x, • & SUMY1 1 ,r1, • 1= 1 ,F16.71 
71 fORMAT(lX, 1 SCALING FACTOR Sl 1 tilt 1 la 1 ,fl6.7l 
72 FORMAT(lX,'ADJUSTED OUTPUT GAIN= 1 ,Fl6.71 

RETURN / 
END 
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