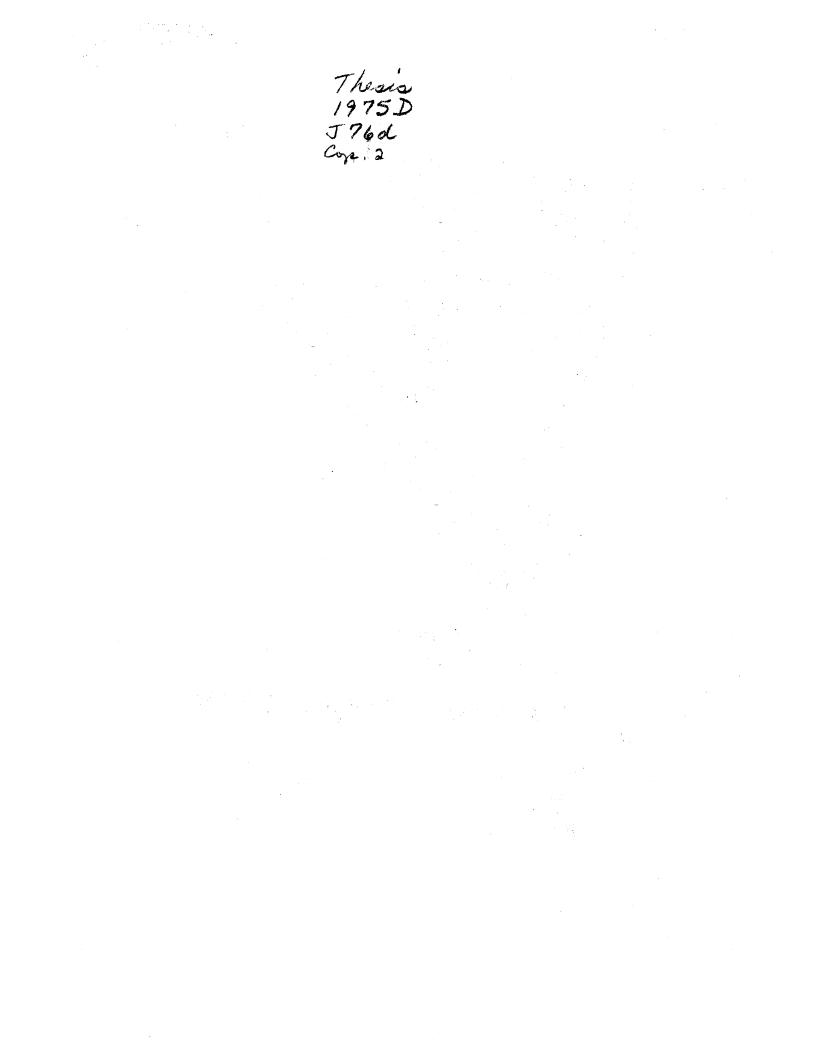
DYNAMIC SIMULATION OF THE ELECTRIC UTILITY

COMPONENT OF A REGIONAL ENERGY SYSTEM


By

BYRON WAYNE JONES

Bachelor of Science Kansas State University Manhattan, Kansas 1971

Master of Science Oklahoma State University Stillwater, Oklahoma 1973

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1975

DYNAMIC SIMULATION OF THE ELECTRIC UTILITY COMPONENT OF A REGIONAL ENERGY SYSTEM

Thesis Approved:

hesi dv se Dean of the Graduate College

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Peter Moretti, Chairman of my Doctoral Committee, for his guidance and encouragement, not only in this research effort, but throughout my studies at Oklahoma State University. I wish also to express my appreciation to the other members of my Doctoral Committee, Dr. Jerald Parker, Dr. Joe Mize, and Dr. Larry Zirkle for their encouragement, counsel, and personal involvement.

I gratefully acknowledge the financial support received from the School of Mechanical and Aerospace Engineering and the Center for Systems Science.

I would like to thank Public Service Company of Oklahoma and Oklahoma Gas and Electric Company for their financial support and continual cooperation. Without their assistance this study would have been quite difficult, if not impossible. In particular, I would like to thank Jim Pogue of PSCO and Tom Hoke of OG&E who were instrumental in providing this assistance and most generous with their own time.

Finally, to my wife, Melanie, I would like to express my deepest gratitude for her sacrifices, support, and encouragement during this work.

iii

TABLE OF CONTENTS

Chapte	r	age
I.	INTRODUCTION	1
II.	REVIEW OF ENERGY MODELS	6
	Introduction	6
	Static Models	7
	Equilibrium Models	9
	Dynamic Models	11
	Other Modeling Methods	13
	Combined Analysis	15
III.	FORMULATION OF A REGIONAL ELECTRIC UTILITIES MODEL	16
	Introduction	16
	Forecasting	21
	Capacity Planning	27
	Energy Resource Planning	42
	Intermediate Planning	54
	Hour to Hour Operations	58
IV.	MODEL VALIDATION AND DETERMINATION OF INITIAL CONDITIONS	68
	Introduction	68
	Validation Data	72
	The Validation Program.	74
	Number of Energy Resources	74
	Classification of Energy Resources	74
	Generation Facilities.	80
		80 81
	Long-Term Capacity Contracts	
	Validation Results	81
	Discussion of Validation Results	87
v.	USE OF THE MODEL FOR A STUDY OF BOILER FUEL REGULATIONS	89
	Introduction	89
	Introduction	89 90
		90 91
	Regulations and Future Scenarios	96 91
	STUDY RESULTS	чn

Chapte	r																									F	age
VI.	SUMM	IARY	AND	CON	CLU	SI	ONS	5.	•	•	•	•	•	•	•	• ;	•	•	•	•	•	•	•	•	•	•	104
A SELE	CTED	BIB	LIOG	RAPH	Y.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	108
APPEND	IX A.	•	• •	• •	• • •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	114
APPEND	IX B.	•	• •	• •	•••	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	119
APPEND	IX C.	•	••	• •	•••	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	121
APPEND	IX D.	•	• •	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	142

•

LIST OF TABLES

Гађ1е		Page
I.	Information Supplied to Desired Capacity Mix Algorithm	. 38
II.	Information Supplied to Planned Capacity Algorithm	. 41
III.	Model Inputs	. 75
IV.	Model Outputs	. 76
ν.	Model Parameters	. 77
VI.	Initial Conditions Required for Model	. 78
VII.	Structure Options in Model	. 79
VIII.	Inputs for Study	. 92
IX.	Parameters for Study	. 93
х.	Parameters Used in Validation	. 139
XI.	Summary of Secondary Parameters	. 140
XII.	Definition of Variables in Computer Program	. 144

LIST OF FIGURES

Figu	re Page	9
1.	Simplified Forrester Diagram of Electric Utility Simulation	С
2.	Effect of Smoothing Delay	2
3.	Modified Forrester Diagram of Forecasting	6
4.	A Typical Load Duration Curve for the Demand for Electrical Energy in a Region	8
5.	Total Generation Cost vs. Time Used for Several Cost Combinations	1
6.	Load Duration Curve and Availability Curves for a Grouping of Hypothetical Capacity	3
7.	Building Up Generation Capability by Increments 3	6
8.	Summary of Capacity Mix Algorithm	7
9.	Summary of Planned Capacity Algorithm 4	0
10.	Modified Forrester Diagram of Capacity Planning 4	3
11.	Adding Energy Resource Supplies to Build Up Deliverability from Declining Sources	6
12.	Anticipated Decline in the Deliverability of an Electric Utility's Natural Gas Supply with No New Supplies Added 4	7
13.	Modified Forrester Diagram of Energy Resource Planning and Energy Resource Supplies	9
14.	Use of Generation Facilities to Fill Demand in Energy Resource Planning	2
15.	Shifting Capacity to Account for Limiting Energy Resource Supply	7
16.	Excess Capability Available for Firm Power Sales	9

Figure

Pag	e
-----	---

17.	Comparing Expected Demand from Firm Power Sales to Excess Capability for Economic Evaluation	60
18.	Hierarchy of Decisions for Hour to Hour Operation	62
19.	Representation of Economy Energy Supply and Demand	64
20.	Economy Supply and Demand Prices Compared to Generation Costs at a Point in Time	65
21.	The Effect of Initial Condition on the Response of a First-Order Delay to a Complex Input	7 0
22.	Comparison of On-Line Capacity with Simulation to Historical Data	82
23.	Comparison of Electrical Energy Generated with Simula- tion to Historical Data	83
24.	Comparison of Energy Resources Used in Simulation with Historical Data	84
25.	Comparison of Total Electrical Energy Supplied to Region with Simulation to Historical Data	85
26.	Comparison of Total Variable Cost of Generation with Simulation to Historical Data	86
27.	Economy Energy Supply and Demand Used for Regulation Study .	9 5
28.	Comparison of On-Line Capacity for Different Regulations	97
29.	Comparison of On-Line Capacity for Different Regulations	98
30.	Comparison of Energy Resource Usage for Different Regulations	99
31.	Comparison of Generation Costs for Different Regulations	100
32.	Segment of Curve Which Results from Using Load Duration Time Axis for Another Variable	116
33.	Distribution of Variations from Average	116
34.	Stochastic Representation of Variable	117
35.	Symbols Used in Simulation Diagrams	120
36.	Example of Modified Symbols	120

Figure	ıge
37. Historical Data for Peak System Demand 1	.30
38. Historical Data for Energy Rescurce Prices 1	.31
39. Historical Data for Generation Facilities Installed 1	.32
40. Historical Data for Electrical Energy Generated 1	.33
41. Historical Data for Energy Resources Used 1	.34
42. Historical Data for Electrical Energy Supplied 1	.35
43. Historical Data for Variable Cost of Generation 1	.36
44. Demand Characteristics Used for Validation 1	L 37
45. Generation Availability Curves Used for Validation 1	_38
46. Supply and Demand for Economy Energy Used for Validation 1	41

ł

NOMENCLATURE

е	- base of natural log
t	- time
Α	- availability
C	- cost
D	- duration of demand
F	- forecasted value
G	- growth rate
K	- time constant
L	- load
Р	- profit
Q	- energy resource supply quantity
U	- utilization
X	- input
Y	- output
CN	- proportionality between deliverability
	and supply
CP	- capacity
DL	- deliverability
EG	- energy generated
EP	- economy energy purchased
ES	- economy energy sold
FC	- fixed cost
FD	- firm demand

х

FL	- fraction long-term
FP	- fixed price
LD	- value on load duration curve
TC	- total cost
TD	- total demand
VC	- variable cost
VP	- variable price
ICP	- incremental demand price
IGC	- incremental generation cost
ISP	- incremental supply price
ф	- defined by $\phi(\mathbf{x}) = \begin{cases} \mathbf{x} & \mathbf{x} \leq \mathrm{LD} \\ \mathbf{x} & \mathbf{x} \geq \mathrm{LD} \end{cases}$

Subscripts

a	- total available to electric utilities
	in region
е	- existing long-term supply
f	- firm power
g	- growth rate
n	- new long-term supply available
S	- spot market
у	- input variable
gn	- generation
lt	- long-term possible
na	- actual new supplies secured

CHAPTER I

INTRODUCTION

Numerous energy models have been developed in an attempt to better understand the operation of the energy system and predict its future. To be of use in making in-depth studies and specific recommendations, a large degree of detail is required. Models of this nature are not overly abundant. The models currently available which do contain a significant level of detail use traditional static and equilibrium approaches. While these models are quite useful, the phenomena which they can investigate is limited.

These traditional modeling methods are unable to address the dynamic behavior of the energy system. During periods of change in the economic and political environment in which the energy system must operate, its dynamic behavior can be the dominant characteristic. In view of the uncertain economic and political future, the ability of traditional models to accurately describe the operation of the energy system is questionable. Even in the time of relative stability, much of the behavior of the system arises from dynamic feedback effects. Relationships which describe these effects are difficult to incorporate into a static or equilibrium model.

The dynamic system simulation approach to enconomic and industrial modeling allows a more complete consideration of dynamic characteristics (1). With this approach, model structure is based on information

feedback and centers around relationships which describe the forces of change. Unfortunately, the dynamic system simulation models developed for energy studies tend to have relatively simple structures based on general characteristics of the energy system. This lack of complexity prevents in-depth studies. Since important dynamic relationships and limits often arise from the technical details, even their general descriptions of system behavior are questionable.

This study attempts to overcome this deficiency of previous dynamic system simulation models for energy studies by basing a model on the technical details involved in the functioning of the energy system. This approach not only provides for a thorough description of the system, but provides sufficient detail for in-depth studies which can address precise policy questions, and make specific recommendations.

The model developed simulates the electric utility component of a regional energy system. A regional geographic scale was selected for several reasons:

- It is at the regional or local level where a large number of the day to day decisions are made which are essential in the operation of the energy system.
- The actual physical entities and processes in the system are more easily identified and described at the regional level.
- 3. There is less variability in characteristics of the system on a regional level.
- More precise policy questions can be asked at the regional level. This gives the possibility of more detailed policy recommendations.

The electric utility part of the energy system was selected for this initial modeling effort for several reasons:

- 1. The electric utility industry is at a uniquely strategic location in the energy system. Through conversion to electricity, nearly every energy resource can be reduced to a common product. Thus, at this point in the energy system the energy resources are direct substitutes for each other and are highly competitive. Also, electricity is one of the most easily used forms of energy existing.
- 2. The electric utility industry is probably the most regulated industry in the energy system. In order to make wise decisions, a thorough understanding of the response of the electric utility industry to regulation policy is needed. A poor understanding of this response can lead to unexpected and harmful side effects from poor decisions. On the other hand, a good understanding can indicate policy options which can alleviate problems in this critical part of the energy system.
- 3. The demand for electricity has been growing rapidly in the past; more rapidly than the demand for most other forms of energy. There is considerable uncertainty as to whether this rapid growth will continue. The long construction period required to build some generation facilities and the non-storable nature of electricity makes accurate planning essential if electric utilities are to meet demands efficiently.

4. Local electric utility companies provided a considerable amount of cooperation in this study. Since the modeling method used emphasizes technical relationships and decision processes, this cooperation was considered to be very valuable.

In order to use technical details in the formulation of the model, a complete, quantitative description of the important variables is necessary. This objective is met by considering:

- variations in the demand for electrical energy throughout the year as well as growth from year to year;
- all major energy resources, their prices, and their availabilities;
- capital investment requirements and the effect of a limited capital supply;
- all major types of generation facilities, their costs, and their variation in availability throughout the year;
- 5. various types of inter-regional electrical energy and power transactions; and
- 6. a complete accounting of generation costs.

The electric utility model developed in this study will serve as a component of a comprehensive regional energy model. The particular niche it will fill in this regional model was discussed in an earlier study (2). It is also designed to be used for a wide range of independent studies. Chapter III gives an in-depth accounting of the development of the electric utility component model.

In Chapter IV the question of model validity is addressed by comparing predicted results to historical data for the geographical

region defined by the State of Oklahoma. Although no validation can be considered as final, this provides the user with some degree of confidence. Following this, the practicality of the model for useful studies is demonstrated in Chapter V. This is done with sample case studies for potential limitations on the use of natural gas as a boiler fuel in Oklahoma.

5

It is felt by the author that this model represents the first time this level of detail has been included in a dynamic system simulation model of any part of a regional energy system. It also appears to be the first attempt to develop a comprehensive regional energy model using dynamic system simulation models of each component as building blocks.

CHAPTER II

REVIEW OF ENERGY MODELS

Introduction

The use of energy models is certainly not new. Hundreds of different energy models have been developed in the last few decades. Many state, national, and international agencies, as well as most companies in the energy industry use energy models regularly. To attempt to discuss all of these is far beyond the scope of this review. Instead, where appropriate, selected illustrative examples will be used. For an in-depth review of most of the major energy models and studies recently completed or still in progress, the reader is referred to the comprehensive study by Decision Sciences Corporation (3). Reviews have also been made on electrical demand forecasting methods by the Federal Power Commission (4) and Edison Electric Institute (5). Reviews of national energy studies and demand forecasts have been made by Battelle-Columbus (6), Edison Electric Institute (7), and for the Committee on Interior and Insular Affairs of the U. S. Senate (8,9).

For the purpose of the following discussion, energy models will be grouped into three classes - static, equilibrium, and dynamic. This classification is somewhat arbitrary. It was chosen to point out the differences and the relative advantages and disadvantages of the dynamic systems simulation method as compared to other modeling methods.

The static models are those which do not deal directly with changes in time. They are generally not used for predictive purposes, but rather for studying energy system structure and operation. Equilibrium models, on the other hand, usually do directly consider variables which change with time and are often used for predictive purposes. However, they consider the response of the system to inputs by assuming pseudo steady state conditions or consider only the net result after all transients have died out. Dynamic models are able to consider transient responses, as well as steady state solutions. Dynamic models are normally used for predictive purposes where transients are of prime importance.

Static Models

The most commonly used modeling method for static energy models is linear programming. Linear programming models are primarily used to study the structure of energy systems and the various flows of energy and other associated materials. They are also well suited for optimization. Linear programming models are useful for studying the effects of new technologies and in assessing various strategies to achieve certain goals, for example, the most effective methods to reduce SO₂ emissions in a region.

The use of linear programming models can, in some cases, be used in an equilibrium context. These often involve supply and demand considerations and price equilibrium. Thus, the distinction between a static application and an equilibrium application often

becomes blurred. In the following discussion this lack of a precise distinction between classes should be remembered.

The geographic scale of the linear programming energy models developed is quite diverse. They range from the model centered around the energy system of New York City being developed by Brookhaven and the State University of New York (10,11) to the national energy model developed by the Atomic Energy Commission (12), to the international energy model which considers both the United States and Canada developed for the Canadian National Energy Board (13). The types of energy studied varies considerably as well, ranging from the electrical energy model developed at Battelle-Northwest (14) and Waverman's (15) natural gas model to the total-energy model developed by Battelle-Columbus and the Associated Universities (16). Linear programming can also be combined with other modeling methods as is done by Griffin (17). The Griffin model uses a standard econometric model to drive a linear programming model.

An alternative to linear programming is network analysis. It is very similar to linear programming, and models formulated using network analysis could also be formulated using linear programming methods. Debanne (18), who uses this method for a model to assess pollution control and new technology, claims network analysis can result in significant savings in computation time as compared to linear programming.

The energy "flow maps" which describe how the different forms of energy flow through an energy system can be considered another form of static energy model. These energy maps are widely used to show the relative magnitudes of various energy uses and to show the processes whereby energy resources are used to supply demands. These energy

maps may consider only a certain region and may be quite detailed, as in the work being done at the University of Wisconsin (19,20). Similar energy maps are also necessary for the development of some linear programming models. On the other hand, energy maps, such as the ones developed for the Joint Committee on Atomic Energy (21) may be very simple and consider the entire nation or even the whole world. These are usually used to give a quick overall perspective of the energy supplies and demands.

Equilibrium Models

Input-output models are a common form of equilibrium model widely used in economic studies. They are now beginning to find useful application for energy studies. However, for energy studies, the models must be formulated on a unit of energy basis (BTU, KWH etc.) rather than on a dollar basis. Input-output models are well suited for showing both the direct and indirect energy cost of individual products. They are also useful for showing how different products contribute to total energy demand. The main drawback to widespread use of energy input-output models is the tremendous amount of work involved in gathering and interpreting sufficient data to develop a detailed model.

Heredeon (22) has converted the 1963 input-output tables to energy terms and shown how they can be applied to a number of energy questions. The energy input-output coefficients for a number of years are being derived in work at Battelle-Northwest (23,24). By determining the coefficients for a number of years, the trends in energy use for various products can be seen. Almon (25) combines direct energy input-output

coefficients with an economic model to forecast demand for petroleum. A more extensive model is being developed at Data Resources (26) which will fully couple energy input-output models and economic models and allow price effects and substitutions between fuels to be considered.

A different form of energy input-output model is used by Maxim and Brazie (27) to assess the total system enviornmental impact and the efficiency of alternatives. The structure of their model, in many ways, is more analogous to some of the linear programming models than the traditional input-output models. Rather than use traditional input-output variables, they use the stages along the energy chains from natural resource to end product. Each stage derives energy inputs from and provides outputs to other stages. Also, pollution outputs are associated with each stage. This method shows great promise for assessing total system effects of attempted improvements in the system.

Econometric models are widely used for energy studies. Most often, these are equilibrium models. The areas of the energy system to which econometric models are applied are diverse as are the particular methods used in individual models. This makes it somewhat difficult to address the advantages and disadvantages of the traditional econometric techniques. Examples of the wide variety of problems for which econometric models are used range from Spann and Erickson's (28) assessment of joint costs in oil and gas exploration to the determination of substitution effects in energy demand by Erickson et al. (29).

In some of the larger studies, econometric and economic models are being used as a complementary model to, or driver for, other types of models. This was seen earlier in the Almon's model (25), the Data Resource model (26), and the Griffin model (17). This may well prove to be one of the most promising areas for application of econometric models. This is becoming especially true as energy models are growing more comprehensive and considering economic factors beyond the confines of the energy system alone.

Dynamic Models

Transient responses, as well as equilibrium considerations, are sometimes included in econometric models. Traditionally, this has involved only explicit functions for the time for certain variables to respond to input changes. These time response functions can reflect limits such as the time required to build new equipment or constraints such as the life time of existing equipment. This approach is used to account for the delays likely to be seen in making substitutions among different kinds of energy as prices change in the model developed by Mount et al. (31) which predicts energy demand. A similar approach is used in the Rand (32) study of regional electric demands.

DSS (Dynamic Systems Simulation) models consider dynamic characteristics much differently than is normally done in econometric models. In a DSS model, a large part of the structure is based on the feedback loops in the system from which the dynamic nature arises. This allows the model to consider a much wider range of dynamic responses such as overshoot, oscillation, and stability. The capability to simulate

this type of dynamic response makes DSS models uniquely valuable for studying transient and alignment problems.

The theory behind using DSS for modeling industrial and economic systems was largely developed by Forrester (1). He later expanded the use of DSS to socio-economic systems as well (33,34). Meadows et al. (35) have continued the development of this application. Due to its relatively recent introduction, compared to other techniques, DSS has not been extensively used in energy modeling. Also slowing its widespread use is the considerable amount of work, comparable to inputoutput and linear programming models, involved in developing detailed quantitative DSS models. However, DSS shows great promise for energy studies where dynamic factors may be of prime importance.

DSS models for energy studies can be either qualitative or quantitative. The qualitative models follow along the lines of the earlier socio-economic models developed by Forrester (34) and describe the basic structure of the interactions and feedback loops in the energy system. The qualitative models are useful for studying general dynamic behavior in the energy system and general policy questions. A model of this type was developed by White (36) to describe the essential workings of the energy system in the United States. Odum (37) has also used qualitative DSS energy models to study the interaction between the energy system and the ecological and economic systems.

Quantitative DSS energy models need to include a considerable amount of technical detail. The inclusion of detail allows them to address more precise questions of system dynamics and to analyze detailed policy alternatives. The inclusion of technical detail, however, requires much more emphasis on analyzing data and deriving

12

technical relationships than for a qualitative model. Two DSS energy models currently in existence show the wide range of possibilities that exist for the technique. A DSS model which simulates interfuel competition has been developed by Baughman (38,39). His model considers the competition between the major fuels on a national basis. Both the demand and supply sides of the markets are considered simultaneously. Garret (40), on the other hand, uses a DSS model to simulate a single electric utility company. His model considers both capital investment and capacity expansion as a joint planning problem to obtain optimal management strategies. The study reported here by the author should demonstrate still further potential of quantitative DSS models by simulating an industry in the energy system at the regional level.

Other Modeling Methods

Probably, the most widely used modeling technique in energy studies is extrapolation of time series trends. There is little theoretical justification for extrapolation of a variable, since any time a variable is extrapolated there is an implicit assumption that all forces affecting the variable will be the same in the future as in the past. However, the technique still is used extensively by the electric industry and other industries in the energy system (4,9). Extrapolation has performed reasonably well in the past when trends have been relatively smooth, giving many users a false sense of reliability. It would be hazardous to expect it to perform similarly in a period of uncertainty and irregular trends. The main advantage extrapolation has over other techniques is the relative ease with which sophisticated analysis can be used. Such sophistication can be seen in the

13

electric utility load forecasting model developed at Purdue (41), and the regional projection of residential electric demand study made by Rand (42). The Purdue model incorporates extensive statistical analysis of weather data, as well as historical data. This is used to give the forecast a probabilistic dimension. The Rand model projects end use saturations as part of the extrapolation technique.

To overcome some of the drawbacks of the extrapolation technique, many energy studies project energy demands by using correlation models to relate demands to other economic variables. By showing their relationship to other variables, insight is gained into the factors which affect demands, and a better description of the forces affecting observed trends is obtained. However, there are also some drawbacks to the use of correlation models. The models depend upon independent projections of the economic variables which may be no more accurate than extrapolations of energy demands. The correlations derived from historical data may not be valid in the future, especially if the data is taken from a time period where most of the variables had monotonic trends.

The most common method used to develop a correlation model is to use multiple regression analysis. A typical example of this can be seen in probabilistic energy demand forecasts made at Rand (43). Another approach at correlation used by Sadiq and Schoeppel (44,45) is to make crossplots of dimensionless groups of economic variables. With this method they were able to make use of data from a number of countries in addition to U. S. historical data.

Combined Analysis

In most major energy studies, no one single model or single modeling method is used for all of the analysis. There is no one method which is best for all types of investigation. Also, time constraints often force the use of extrapolation of other simple methods as part of the analysis. It has already been pointed out that econometric models are often used as complements or as drivers for other models.

There appears to be two trends in the area of combined model studies. One is to use a number of independent models to study separate parts of the system. This approach can be seen in the Rand (42,46,47) models used for estimating total regional electric demand. The other approach is to develop an overall modeling framework within which all of the individual models operate simultaneously. Such a modeling framework, which includes both energy supplies and demands, can be seen in the TERA model being developed by Decision Sciences (48). As the need for major, comprehensive energy studies increase, it can be expected that more and more emphasis will be placed on combined models. In this light, model builders should be aware of what niche each type of modeling method best fills and how the different methods can interface with each other.

CHAPTER III

FORMULATION OF A REGIONAL ELECTRIC UTILITIES MODEL

Introduction

The electric utility companies which make up a regional electric supply system are involved in a wide range of activities. Although all of these activities may be important for overall operation of an electric utility company, each activity does not need to be considered in detail for a simulation of electrical energy supply. The activities which relate directly to the ability to meet demands and the cost of meeting these demands are those which must be fully simulated. Five groups of activities are seen as being fundamental in meeting these requirements:

1. forecasting future conditions;

2. planning the addition of new generation facilities;

- 3. securing supplies of energy resources;
- 4. intermediate planning of operation; and

5. hour to hour scheduling.

Figure 1 shows how these activities act to supply the desired information. Using historical values of key variables and the current values of these variables, forecasts are made of future conditions. These variables include:

16

à

1. peak demands for electrical energy;

2. prices of energy resources; and

3. quantities of energy resources available for use.

Given these forecasts, plans are made for future generation capacity. These plans are quite important since there are severe limits to the kinds of fuel a particular generation plant can utilize. Thus, once generation facilities are built, the choice of fuel is restricted for a number of years.

Given the generation facilities built and planned, plans are made to secure supplies of energy resources to fuel these facilities. Utility companies will normally make long-term arrangements for these supplies if possible. This is to insure supplies for future years. These long-term arrangements may involve contracts with suppliers or actual purchase of gas fields, coal mines, etc.

The forecasting and planning activities discussed effectively control the state of the system. That is, they determine what generation facilities exist and what energy resource supplies are available. This state of the system, in turn, limits what options are available for intermediate planning and operation. This planning takes place on a time scale of one year or less. Given the generation facilities existing and energy resource supplies available, short-term plans must be made to allocate the use of any energy resource that is in short supply. Also, arrangements are made for firm power transactions with neighboring regions.

Up to this point, all the activities have involved some form of planning. However, it is the actual hour to hour operation of the

17

ź

č

generation facilities that determines what demands are met and what energy resources are used. At this point the actual scheduling of generation facilities takes place and most decisions concerning inter-regional transactions are made. Intermediate planning, in turn, supplies the framework in which these decisions are made.

The important costs in generation come from building generation facilities, purchasing energy resources for fuel, and other operation expenses. The ability to meet demands comes from the existing generation facilities and energy resources available in relation to the demands that arise. The activities discussed form a chain of information and actions which are critical in determining these factors. There are several other activities which may be important in some cases. They are:

- 1. power plant siting;
- planning and construction of transmission and distribution lines; and

3. financing of capital expenditures.

These activities are not simulated but are included in the following manner:

- The available sites are incorporated as an upper limit on the amount of different types of generation facilities allowed. This limit is an input to the simulation.
- 2. Transmission and distribution lines are assumed to be built as needed. However, limits to the transmission capability between regions may exist. These limits are inputs to the simulation.

 The capital available for building new generation facilities is an input to the simulation.

Since this simulation is developed for a regional energy system, more than one electric utility company will normally be involved. There are several assumptions made relating to this fact which have a direct impact on the simulation;

- It is assumed that in meeting the hour to hour demands for electrical energy in the region, the lowest cost generation facilities will be used first, regardless of the distribution of demands and facilities among individual companies. Economy energy transactions between the various electric utilities in the region normally makes this possible.
- 2. When new generation facilities are planned, it is assumed that individual companies are fully aware of the plans of other companies. That is, generation facilities are selected so that they complement other facilities being built in the region, regardless of which company owns what facilities.
- 3. The region is assumed to be small enough such that no major transmission losses are encountered in supplying demands at one point in the region.
- 4. It is assumed that all demands for electrical energy in the region are supplied before non-firm demands in other regions, regardless of on which company's system the demands occur. Firm demands in other regions are given the same priority as demands from within the region.

Indirectly, these assumptions say the individual electric utility companies cooperate fully with each other.

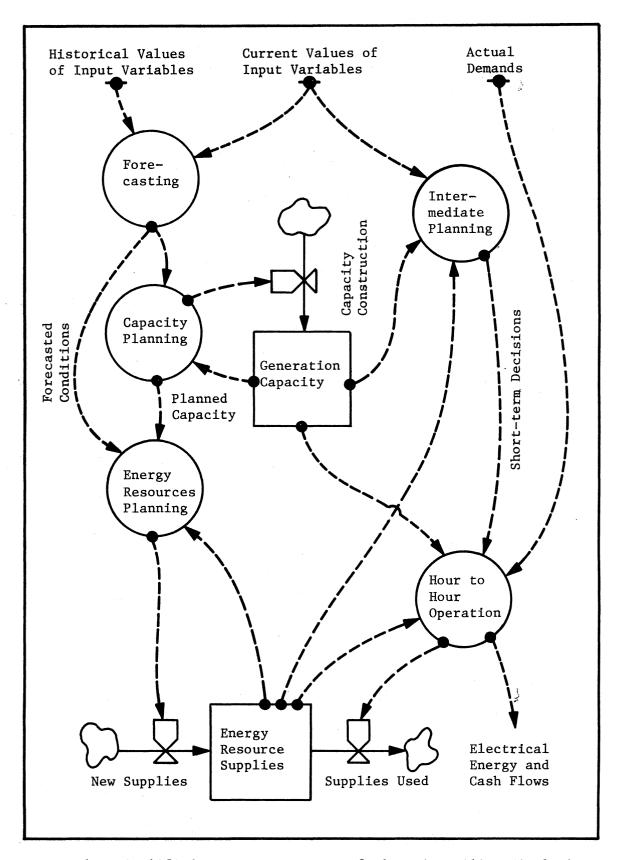
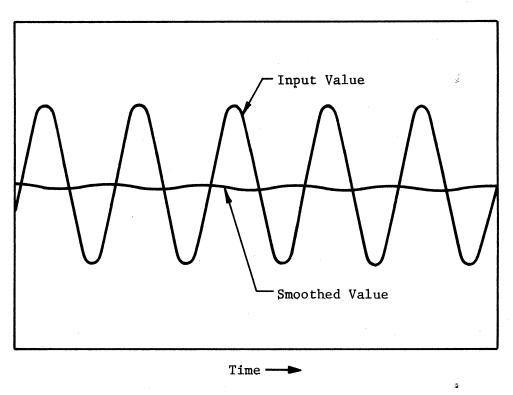
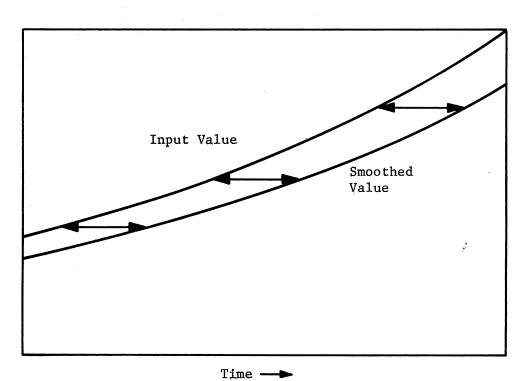


Figure 1. Simplified Forrester Diagram of Electric Utility Simulation


Forecasting

Whether they involve well defined mathematical techniques or simply intuitive judgment on the part of company management, forecasts of future conditions are one of the most important activities in the electric utility industry. The information derived from forecasts are the basis for all major decision options involving construction of new facilities and the selection of energy resources. A number of different formal forecasting techniques are employed by the electric utility industry. Just as important as the formal techniques, however, are the informal or judgment type forecasts that are always present. Thus, it would be difficult to develop a simulation which would always determine how forecasts are to be made. Instead, the model can be altered to test the effect of different forecasting techniques. Since trend extrapolation techniques are still the dominant approach for forecasting in the industry, a technique of this type was selected for the basic simulation (4).


The properties of the first order exponential delay make it well suited for forecasting simulation (1). Mathematically it is expressed by:

$$\frac{dY}{dt} = \frac{X - Y}{K_y}$$
 3.1

where X is the input, Y the output, and K a time constant. The exponential delay can be used to smooth a fluctuating variable or to delay a smooth trend as in Figure 2. The simulation makes use of the smoothing ability of the delay to simulate the averaging of historical data. The delay capability is used to simulate the time required for forecasts to respond to changes.

(a) Fluctuating Input

(b) Input with a Smooth Trend

Figure 2. Effect of Smoothing Delay

The commonly used assumption of a constant percentage growth rate in forecasting is combined with exponential delays to develop simulation forecasts. First, the input variable is smoothed with the exponential delay, mathematically expressed in Equation 3.1. At the same time, the percentage growth rate is calculated and then smoothed with another exponential delay yielding;

$$\frac{dG}{dt} = \frac{\left(\frac{dX}{dt}\right)/X - G}{K_g}$$
 3.2

where G is the percentage growth rate of the input. Using this average value of growth rate G and the smoothed value of the input variable, a forecast can be generated. However, one additional consideration must be made. In using the constant growth rate approach there is an implicit assumption that a smooth trend existed in the input variable. Thus, the smoothed value of the input variable also represents a delayed value of the input variable. For an input with a constant growth rate, the lag is exactly equal to the time constant. Considering this lag in the forecast yields:

$$F(t) = Y \times e^{[(t - t_{o} + K_{y}) \times G]}$$
 3.3

where F(t) is the forecasted value of the variable and t-t is the number of years in the future.

Several additional points should be made concerning this forecasting simulation to assess its suitability.

 Counteracting the delay effect from smoothing does not imply the time required to adjust to changes is not simulated. First, a delay is still present in determining the growth rate. Second, the form of 3.3 effectively assumes that current small fluctuations are not part of the long-term trend and corrects for these fluctuations. An actual change in the trend is only represented by a change in the delayed variable.

- 2. The use of the exponential delay to smooth variables is more than a statistical average of historical data. More recent values are more heavily weighed. Thus, emphasis is placed on recent trends.
- 3. The technique is equally suitable for declining trends and increasing trends. For declining trends the variable is forecast to decline asymptotically to zero at a constant negative percentage growth rate.

A Forrester diagram representing the forecasting simulation technique is shown in Figure 3. The symbology used in this figure is described in Appendix B.

There are a number of variables that change with time which are important factors in electric utility company decision options. These include: future demands for electricity in the region, energy resources prices, quantities of energy resources available, the characteristics of demand for electricity, and construction cost of power plants. The peak demand for electricity is used as the key variable in simulation of the forecasting of electrical demand. Along with this, the characteristics of the demand are included as an input parameter. Demand characteristics will be discussed further at a later point in this chapter. The market price of each of the energy resources being considered is forecasted using the same technique. For the base simulation these energy resources include: coal, oil, natural gas, and nuclear fuel. Other energy resources can be added. The quantity available of each of these energy resources must also be forecasted. In many cases there may only be limited quantities of these energy resources which the electric utilities can use. The forecasting of this is divided into two parts. First, the quantity of each energy resource expected to be available to all users in the region is forecast. Second, the fraction of each of these energy resources which is likely to be available to the electric utilities is forecasted. These are combined to obtain the quantity of each energy resource expected to be available for electric generation. The previously described technique is modified slightly to simulate the forecasting of the fraction available. Since the fraction available must remain in the interval between zero and one, forecast values cannot lie outside this range. If the percentage rate of change is negative no problem is encountered, as the forecast values approach zero asymptotically. However, if the percentage rate of change is positive, the previously described technique would forecast values to increase past one. To overcome this problem the simulation allows the forecast values to approach one asymptotically for a positive rate of change in the same manner as they approach zero for a negative rate of change. This requires the use of the following relation in place of Equation 3.3 when the percentage rate of change is positive.

> $-[(t - t_{o} + K_{y}) \times G]$ F(t) = 1.0 - e

25

3.4

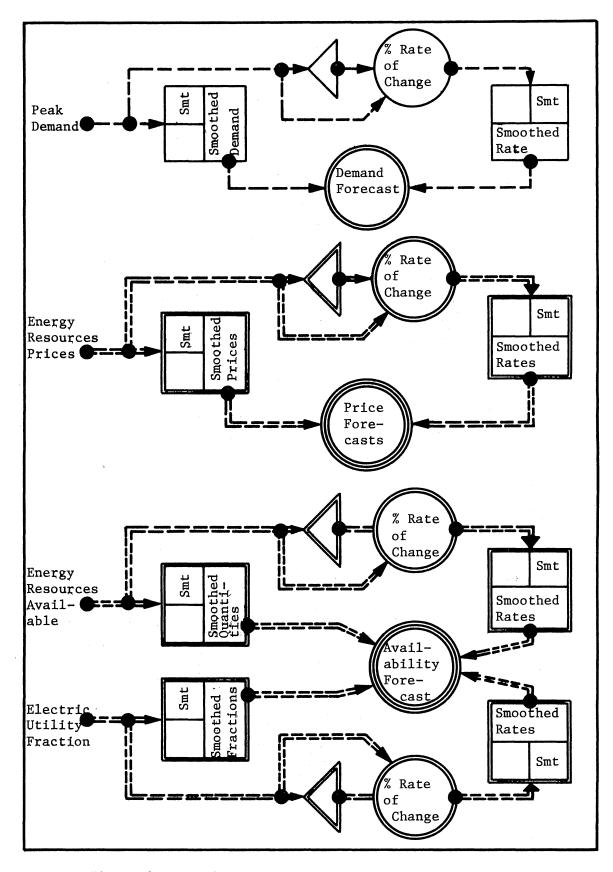


Figure 3. Modified Forrester Diagram of Forecasting

An argument could also be made for forecasting the cost of constructing the various types of power plants. There is no doubt that this is an important decision parameter. However, the initial studies are not aimed at determing response to this parameter. Thus, rather than develop a forecast for this variable it is included as an input parameter which may vary with time. If later studies require a simulation of the forecasting of this variable, it can be easily included.

Capacity Planning

The purpose of building new generation facilities is to be able to efficiently supply anticipated demands. The demand for electrical energy in a region varies considerably from hour to hour as well as from day to day. The non-storable nature of electrical energy makes it necessary to have generation facilities which can adjust to this demand if requirements are to be met at all times. Thus, in planning for new capacity, the time characteristics of the demand can be as important as the total demand. It is not feasible to use the hour by hour demand variations for planning, yet it is important to be able to characterize a whole years demand to study the economics of generation alternatives. The most commonly used technique to achieve this is to reduce the yearly demands to a load duration curve as shown in Figure 4. The load duration curve characterizes the demand by showing for what length of time each level of load exists. Some loss of information is results from describing the demand characteristics with a load duration curve as it does not describe how fast the demand fluctuates or when various demand levels occur.

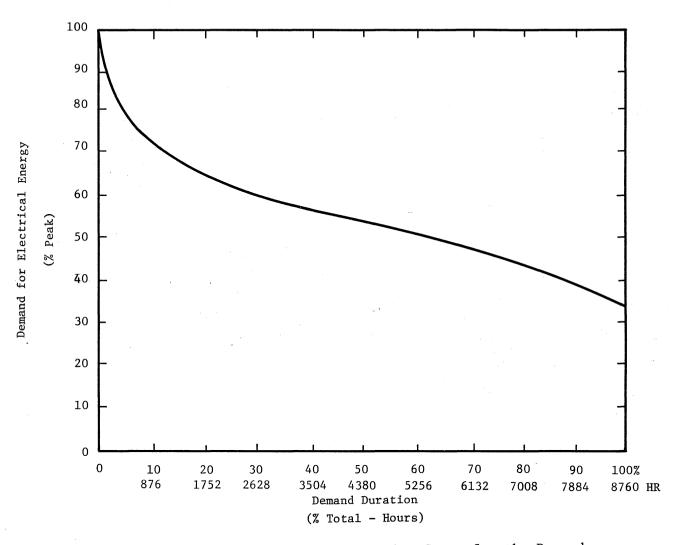
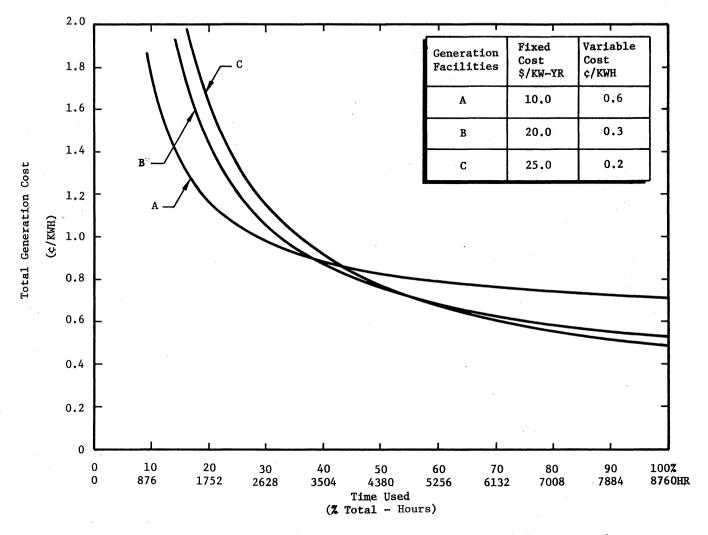


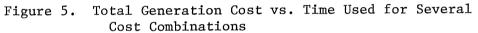
Figure 4. A Typical Load Duration Curve for the Demand for Electrical Energy in a Region

However, it is simple, concise, and widely used for planning purposes.

Once the anticipated demand for future years is thus descirbed, it is necessary to account for the capabilities and costs of various generation facilities which might be used to supply these demands. Due to routine maintenance, breakdowns, fuel availability, and POSsibly government regulations, the availability of a group of facilities will fluctuate throughout a year. These fluctuations may not coincide with fluctuations in demand. Thus, it is necessary to define the fluctuations of availability on the same time bases as demand in the load duration curve. The technique used to do this is described in Appendix A.

Given the characteristics of demand and availability of generation facilities, the electric utility companies must determine the most economical way to match power plant additions to expected demands. This normally involves a capacity expansion plan which charts the additions planned for approximately twenty years. The basis for developing a capacity expansion plan is to build a combination of power plants which provide an economical and reliable means to meet future demands.


Computer programs which attempt to derive an optimum capacity expansion plan have been developed (40,49). However, the actual development of capacity expansion plans are more the result of management judgment than any formalized mathematical technique. The uncertainty in the forecasts of the critical variables affecting capacity expansion alternatives is usually quite large. Thus, long range


optimization techniques are often of less value than they would seem. For these reasons, the development of a capacity expansion plan is not simulated as a true optimizing process. Instead, the simulation aims at capturing the key economic factors which affect the decisions as to what new generation facilities are desired.

The first part of the simulation capacity expansion plan determines what mix of generation facilities are desired. This is done by selecting an arbitrary planning year, in this case the last year of the simulation planning period. Given the forecasts for demand, energy resource prices, and quantities of energy resources available for that year, an attempt is made to determine the least cost mix of generation facilities. In determining the least cost mix, the cost for generation facilities are broken into yearly fixed cost and variable The yearly fixed cost (FC) is primarily the cost for the capital cost. required to build the power plant, although a small amount of the maintenance cost is probably fixed. The variable cost (VC) consists of most of the oepration and maintenance cost as well as the cost of fuel to run the generation facilities. Given the fixed and variable costs for the different types of facilities, the total cost (TC) of operation for each facility for a load of duration (D) can be deter mined by:

$$TC = VC + FC/D$$
 3.5

If these costs were the only consideration, then the optimum mix could be obtained by filling the loads of each range with the lowest cost option in that range as shown in Figure 5.

Unfortunately, several other factors which makes the calculations more difficult must be included in the decision process.

- Since the facilities on line or under construction at the beginning of the planning period are already committed, no fixed cost should be included for these facilities in determining the optimum mix.
- No type of generation facility has a 100% availability at all times. Thus, the variations in availability must be included in the calculations.
- 3. There may be a limit to the amount of capacity of a given type which can be built. For example, there are a limited number of sites where hydroelectric plants can be built.
- 4. The alternative of contracting for large supplies of electrical power from other regions may be a realistic alternative in many regions.
- 5. There may be limited quantities of a given type of energy resources available.

With these complications, it is no longer a simple matter to calculate the optimum mix. Because of the varying generation availabilities, the demands each type of generation is to supply must be measured directly on the load duration curve as shown in Figure 6. The optimum can then be found by minimizing cost (C):

$$C = \sum_{i=1}^{n} FC_{i} * CP_{i} + \int_{0}^{1} Yr \int_{0}^{LD} VCdLdt \qquad 3.6$$

where LD represent the load duration curve, CP an increment of capacity, and n the total number of types of generation facilities.

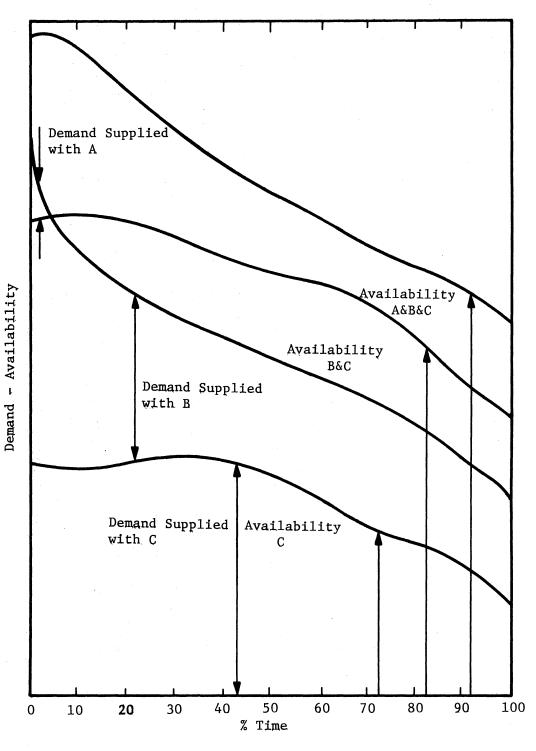


Figure 6. Load Duration Curve and Availability Curves for a Grouping of Hypothetical Capacity

In minimizing this function, the maximum capacity and energy resource availability limits must also be observed. Although it is possible to find an optimum in this manner, it is not feasible in the context of a dynamic simulation. Such an optimization would require a complex, trial and error solution which would result in an unacceptable amount of computation.

In view of this limitation, developing a simulation which could incorporate the previously stated considerations and could determine a near optimum mix was deemed more important than using a fully optimizing technique. The scheme actually used meets these considerations in the following manner:

- 1. Committed capacity of a given type is considered completely separate from new capacity of the same type. Thus, each can be considered with different cost parameters. The only way in which committed capacity and new capacity of a given type are considered together is in determining whether energy resource limits are observed.
- The full availability curve as compared to the load duration curve is considered for each type of capacity in calculating costs, evaluating total capability, and in determining energy resource use.
- No more new capacity of a given type is allowed than a prescribed limit which is an input.
- Contracts for power from other regions, if they are available, are considered in the same manner as building new generation facilities.

5. The use of a given type of capacity is limited to the quantity of energy resources available.

The desired mix is determined as shown in Figure 7 by adding small increments of the lowest total cost capacity given by:

$$TC = VC + FC / \int_{p} \phi(AxCP) dt \qquad 3.7$$

where A is capacity availability, p the cummulative availability, and ϕ is defined in the Nomenclature. When either a maximum capacity or maximum energy limit is met, that type of capacity is removed from consideration. Figure 8 and Table I summarize this algorithm.

Given the mix of generation facilities desired, the second part of the capacity expansion plan calculations determine when what type of generation facilities will be added to achieve the desired mix, if possible. In developing this part of the capacity expansion plan several limiting factors must be observed.

- Demands at all points in the planning period must be met if possible, even if this requires more capacity of some types than desired.
- The existing on-line facilities and those under construction at the beginning of the planning period are fixed and must be considered a part of the expansion plan.
- The time to build each type of generation facility must be observed when planning additions.
- 4. Construction on new facilities cannot proceed faster than capital is made available for this activity.

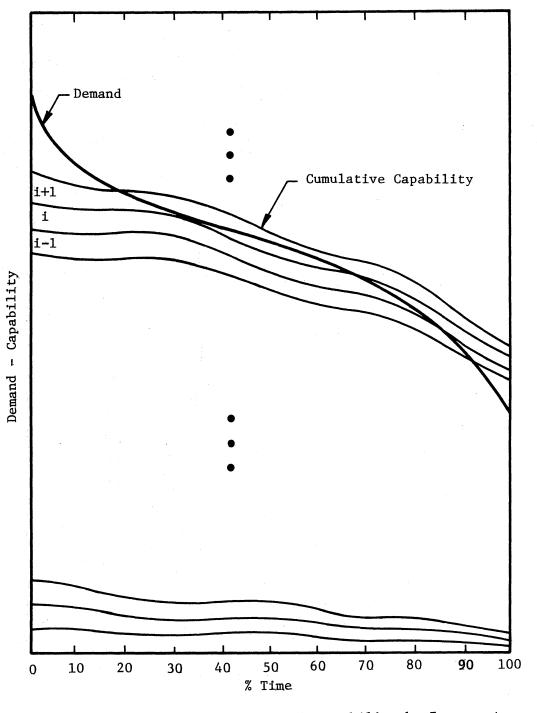


Figure 7. Building Up Generation Capability by Increments

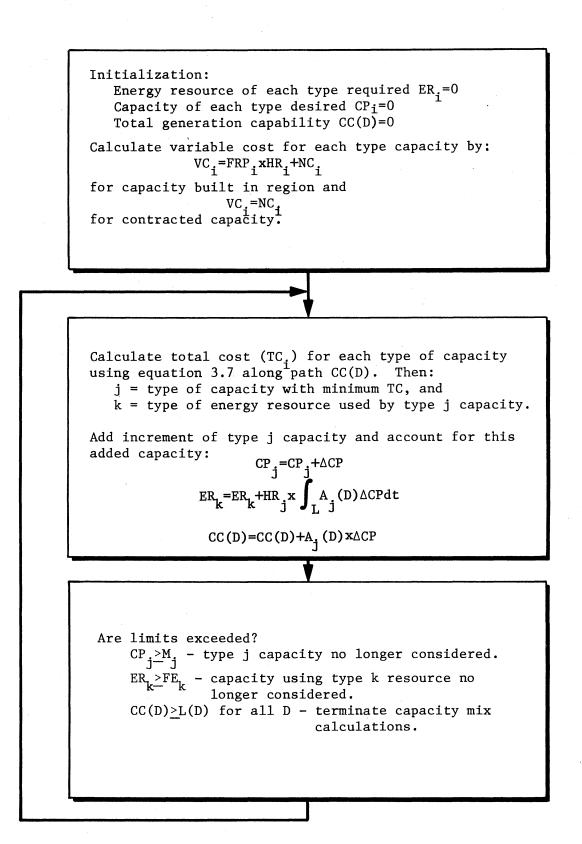


Figure 8. Summary of Capacity Mix Algorithm

TABLE I

Information	Symbol Us	ed in Figure 8	
Load Duration Curve for		ana atau tang mangkatan karang manakaran karang manakaran karang manakaran karang manakaran karang manakaran ka	-
Planning Year		L(D)	
Generation Availability Curves for Each Type of Capacity		A _i (D)	
Heat Rate for Each Type of Capacity		HR	
Non-Fuel Variable Cost of Operation for Each Type of Capacity (Total Variable Cost for Contracted Capacity)		NC	
Yearly Fixed Cost for Each Type of Capacity		FC	
Forecast Price of Each Energy Resource		FRP	
Amount of Each Energy Resource Forecast as Being Available		^{FE} i	
Maximum Amount of Each Type of Capacity Possible (Current On-Line Capacity for Existing; Limit Input to Simulation for New Additions)		M	

INFORMATION SUPPLIED TO DESIRED CAPACITY MIX ALGORITHM

 Any limit on the maximum capacity of a given type allowed must be observed.

Another very important limitation is introduced by assuming generation facilities are unable to be converted to use a different energy resource. Although conversions can be made, it appears to be the experience of the industry that they are unlikely to be economical in the near future. Conversions from coal to oil or gas are simple and inexpensive. However, the reverse is not true. Unfortunately, this is the direction of conversion that is likely to be needed. If particular studies involve conversions from oil and gas to coal, it is necessary to remove this assumption.

In view of these limitations, the capacity expansion plan is developed one year at a time, starting at the beginning of the planning period. For each year the capacity which is under construction and will come on line in that year is added to the capacity from the previous year first. If more capacity is needed to meet anticipated demands, the type which is the furthest below the desired mix is added first. Capacity of this type is added until it is no further below the desired mix than the next lowest capacity. Then both are added until they are no further below the desired mix levels than the next lowest, and so on until all anticipated demands met. In doing this, only those types of facilities which can be built in time to come on line in that year are considered. Figure 9 and Table II summarize this algorithm.

Given the capacity expansion plan which is developed, the simulation is able to directly determine the rates at which new construction is started on the different types of generation facilities. The rate at which construction starts is simply the rate at which new capacity

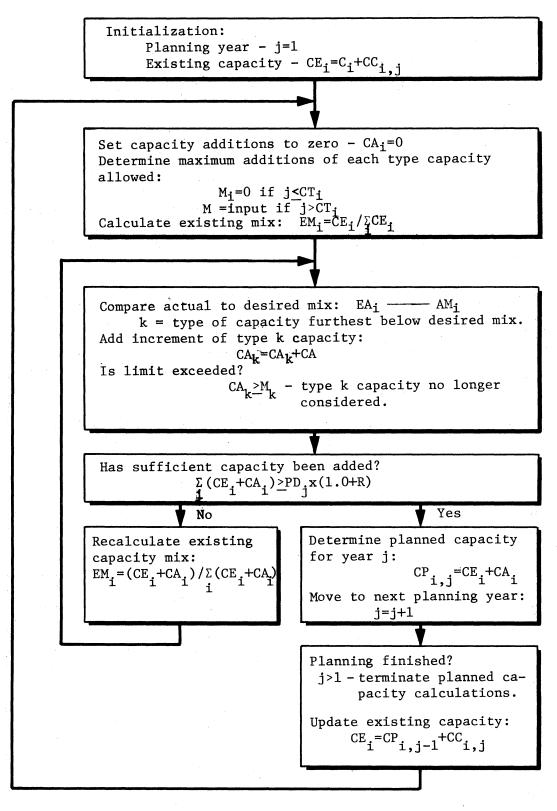


Figure 9. Summary of Planned Capacity Algorithm

TABLE II

Information Symbol Used in Figure 9 Peak Demand Forecast for Each Year in Planning Period PD Reserve Capacity Desired R Construction Time for Building CT_i Capacity (Contract Lead Time forContracted Capacity) Capacity Currently On-Line °, Capacity Under Construction Due CC_{1,1} to Come On-Line for Each Year in Planning Period (Future Capacity Contracts for Contracted Capacity) 1 Length of Planning Period

INFORMATION SUPPLIED TO PLANNED CAPACITY ALGORITHM

is added in the capacity expansion plan the first year in which the construction time allows new capacity to be added. These rates then determine the amounts of capacity that are eventually brought on-line. Figure 10 shows a Forrester diagram of the capacity planning process and the resulting capacity levels. The construction time for building new generation facilities is represented by a boxcar delay. The on-line facilities are represented by a third order delay which feeds into a capacity level referred to as semi-retired. The semi-retired level and the on-line third order delay serve to gradually derate the capacity as it ages while allowing all facilities to be accounted for. Contracts for power from other regions are treated much the same as building new facilities. Since major inter-regional contracts would require the construction of large transmission lines and possibly new generation facilities in the selling region, there is a time delay required before new contracts can be used. However, the "on-line" contracts are represented by a boxcar delay as it is assumed they will be made for a fixed length of time and will specify certain power levels.

Energy Resource Planning

Once a plan for future capacity is determined, the electric utility companies must plan for the energy resources they will need to fuel these planned generation facilities. There are several options available to the electric utility companies depending upon their location and the fuels they intend to use:

1. The utility companies can purchase their own sources. For example, a gas field or a coal mine could be purchased.

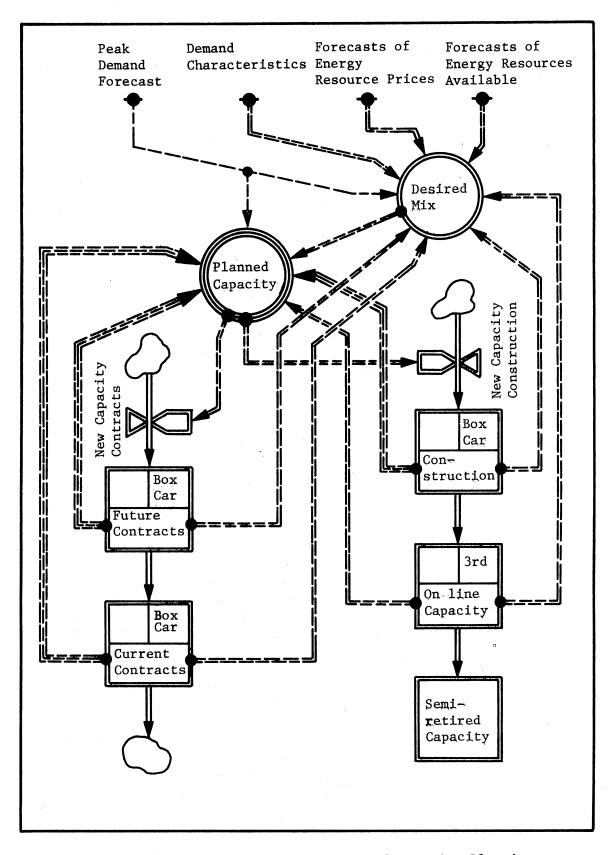


Figure 10. Modified Forrester Diagram of Capacity Planning

- 2. Long-term contracts can be made with other suppliers to assure availability of needed energy resources.
- The utility companies can rely upon short-term spot market purchases.

Most utility companies prefer to arrange for long-term supplies for their major sources of fuel and will either attempt to purchase their own supplies or make long-term contracts for these fuels when possible. They normally will rely upon spot market purchases for energy resources which are used in small quantities. They may also be unable to arrange for long-term contracts for some energy resources and must sometimes rely on spot market purchases for major fuel supplies also.

When a utility company purchases an energy resource supply, it will normally be developed and in production. With such facilities the deliverability possible will decline with time. This is especially true of gas and oil fields and is also true of some coal mines. Similarly, many long-term contracts will also reflect this declining deliverability. To maintain or increase the rate at which they can use energy resources from these sources, the utility companies must continually purchase new supplies or add new contracts as shown in Figure 11. In addition, there exists some control over the rate of which the deliverability declines in these cases. The faster a resource is used, the more rapidly the deliverability declines. Thus, a resource supply can be made to last longer by not consuming it at the maximum rate possible.

For simulation purposes, there is little difference between energy resource supply purchases and long-term contracts which reflect

declining deliverabilities. Assuming the maximum deliverability of a supply (DL) to be proportional to the total quantity of the supply (Q), the deliverability at any point in time can always be determined by:

$$DL = CNxQ$$

where CN is the proportionality constant. The validity of this expression can be tested by assuming the energy resource is used continuously at the maximum rate possible. This yields:

$$\frac{d (DL)}{dt} = CN \frac{dQ}{dt}$$
 3.9

$$\frac{\mathrm{dQ}}{\mathrm{dt}} = -\mathrm{DL}$$
 3.10

$$\frac{d DL}{dt} = -CN x DL \qquad 3.11$$

Equation 3.11 is recognizable as an exponential relationship.

$$DL(t) = DL_{o}e^{-CNxt}$$
 3.12a

or

$$DL(t) = CNQ_{o}e^{-CN \times t} \qquad 3.12b$$

Thus, using Equation 3.8 gives an exponentially declining deliverability which is typical of the deliverability in Figure 12.

A single level for each fuel obtained which has a declining deliverability is used to simulate the quantity of energy resources either purchased or contracted for as shown in Figure 13. The maximum rate at which they can be utilized is then proportional to this level.

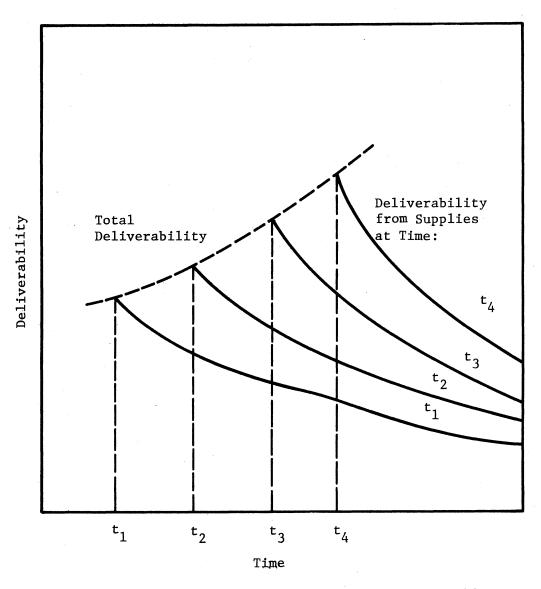


Figure 11. Adding Energy Resource Supplies to Build Up Deliverability from Declining Sources

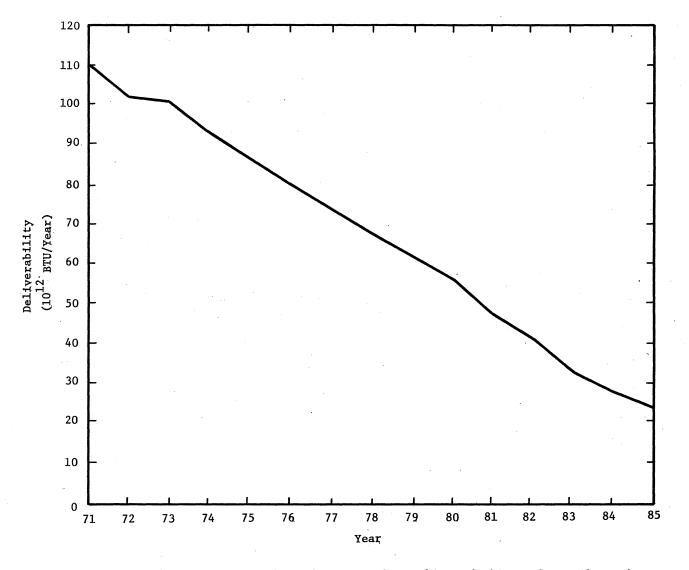


Figure 12. Anticipated Decline in the Deliverability of an Electric Utility's Natural Gas Supply with No New Supplies Added

Since the deliverability is dependent upon the resource supply, if the maximum rate is not used, the deliverability is that much higher for later times. An argument could also be made for minimum usage rates as some contracts also contain conditions to this effect. No provision has been made in the base simulation for this possibility. If this proves to be a limiting factor in a given study, then a minimum rate of delivery should also be included.

There is also the possibility for some energy resources to be obtained where the delivery rates are essentially constant. This case is more typical of an energy resource, such as nuclear fuel, where the deliverability in the near future will be more dependent upon fuel processing facilities than the rate at which the energy resource can be extracted from the earth. These sources are simulated differently than sources with declining deliverability. Rather than simulate the total quantity of the supply, the maximum deliverability is used as a simulation variable. Since this remains constant throughout the life of the contract, a boxcar delay serves to simulate this quantity as shown in Figure 13. Also, this type of contract most often applies to energy resource supplies that are not into full production. Thus, there will be a significant waiting time required before they can be utilized once they have been secured. This requirement is also met in the simulation with a boxcar delay.

Simulation of spot market supplies is relatively straightforward. From the electric utility company point of view, a given quantity is available at a given price. These are both inputs to the simulation.

One additional consideration in simulating energy resource supplies is the price paid for long-term contracts and owned sources.

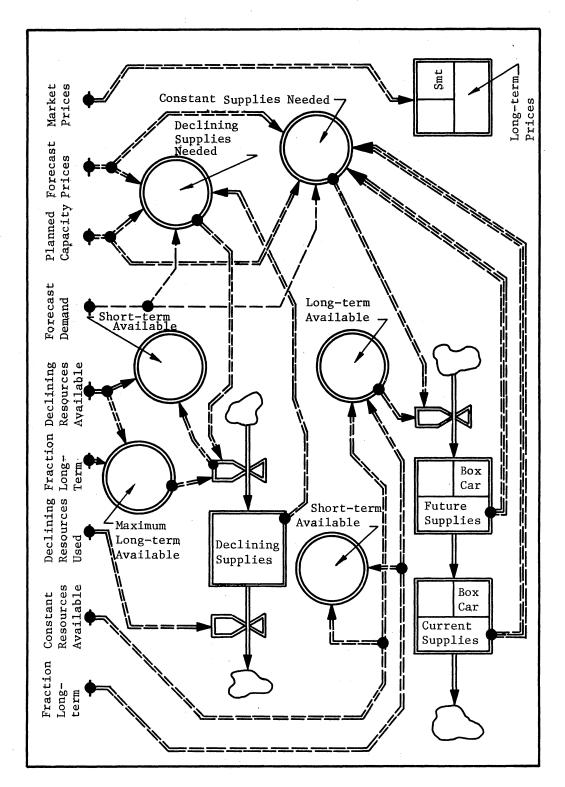
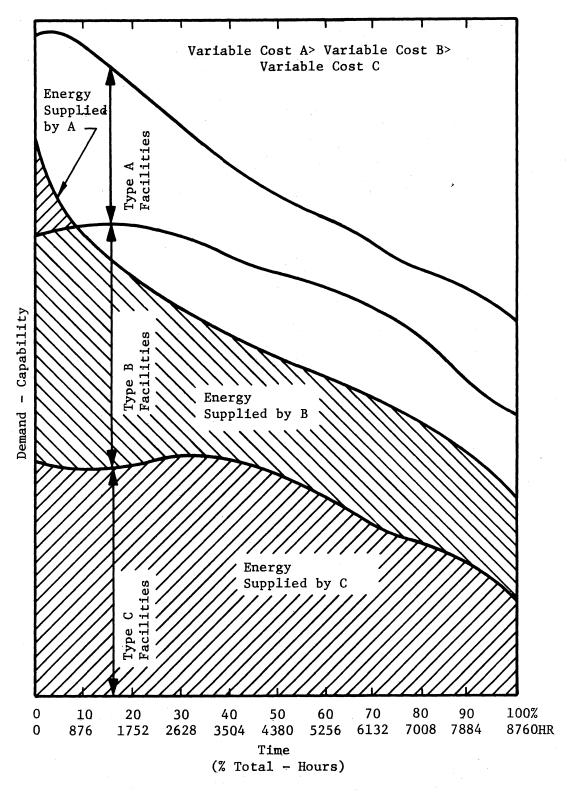
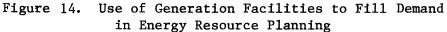


Figure 13. Modified Forrester Diagram of Energy Resource Planning and Energy Resource Supplies

In the past, long-term contracts were often made with a fixed price for the life of the contract. This practice is rapidly disappearing due to the recent increases in market prices and uncertainty about future prices. Most suppliers are reluctant to commit themselves to a fixed price in this kind of an environment. A provision for periodic price updating is now a very common part of long-term contracts. This approach is simulated in the model by using a first order exponential delay to represent the time required for the contract price to respond to changes in the market price as shown in Figure 13.

It is difficult to characterize the cost of using energy resources owned by the electric utility companies. Particular accounting methods of individual companies can have a large effect on this. In addition, there is, at least in theory, the alternative of selling these energy resources at the current market price. For the sake of simplicity, in the simulation, the prices of energy resources owned by the utility companies are assumed to be the same as for those obtained through long-term contracts.


Now that the nature of energy resource supplies has been discussed, attention must be turned to how the electric utility companies determine supplies they actually obtain. As stated earlier, utility companies normally prefer to use long-term arrangements for most of their supplies when possible. On the other hand, it is not usually the policy of the electric utility companies to arrange for any greater quantities of supplies than are needed, nor to secure these supplies for long time periods before they are needed.


The energy resources desired for a given year in the planning period are determined by calculating the energy resources that would

be used in supplying the anticipated demand with the planned capacity. This is done in the simulation as shown in Figure 14. The generation facilities with the lowest variable costs are used to supply the longest loads; the higher variable cost capacity is used to supply the shorter loads. The area under the load duration curve filled by a given type of facility can then be used to determine the energy resources it would use during that year. In this manner the energy resources desired of each type for each year in the planning period can be determined.

It is assumed that in a given region that the nature of all of the long-term supplies of an energy resource will be the same. That is, the declining deliverability or constant deliverability simulation will be typical of all of the supplies of a given energy resource. This information is considered an input to the model. If the energy resource is one with a declining deliverability, there is no long delay involved in utilizing new sources. New sources can be sought which will raise the deliverability to meet the requirements of the first year in the planning period. If the energy resource is one with a constant deliverability, there will normally be a delay in utilizing a new source. This delay must be accounted for in securing new supplies. Thus, new sources must be sought which raise the deliverability to the desired level for the first year in which these sources can be utilized.

Energy resource supplies sought will not always be obtained. It is necessary to include in the simulation a maximum limit on what is obtainable. The same limits to total resoruce availability which were inputs to the forecasting section applies here as well.

An additional parameter (FL) is needed to describe what fraction of these are available as long-term supplies. The use of this second fraction is slightly different for long-term sources with declining deliverability than for sources with constant deliverability.

First, consider the limits for sources with declining deliverability. With these sources it is assumed that the supplies are developed and ready for use. Sources which are not tied up with long-range contracts are normally available on the spot market. The spot market deliverability can then be determined by:

$$Q_{1t} = FLXQ_{2t} \qquad 3.13$$

where subscript 1t indicates long-term, a indicates total available, and

$$Q_n = Q_{1t} - Q_e \qquad 3.14$$

where subscript n indicates new long-term, e existing long-term, and

$$DL_{s} = CNx(Q_{a} - Q_{e} - Q_{na}) \qquad 3.15$$

where subscript s indicates the spot market and na new supplies secured.

The sources with constant deliverability primarily refer to supplies where depletion is not causing a declining deliverability. In this case the spot market supply is not as closely related to the long-term supply as before. The spot market supply results from facilities which are in operation. The long-term supply results from facilities which can be put into operation if a buyer is available. For a simple simulation these supplies are assumed independent. Thus, two separate quantities are used as inputs - the spot market supply and the long-term supply. The fraction parameter is used to separate these. In any situation - spot market, long-term sources with declining deliverability, and long-term sources with constant declining deliverability - these maximums set upper limits on the supply. If the electric utility companies are unable to obtain more than this, they must either use alternative fuels or go without.

Intermediate Planning

Up to this point only the part of electric utility operation which deals with planning one or more years in the future has been discussed. Later, the hour to hour operation of the electric utility companies will be discussed. However, there are some operations which do not fit nicely into either of these categories. Such operations deal with planning for a time horizon of a few weeks to a year. They must still be carried out when there is some uncertainty as to total demand. The two important operations of this nature are:

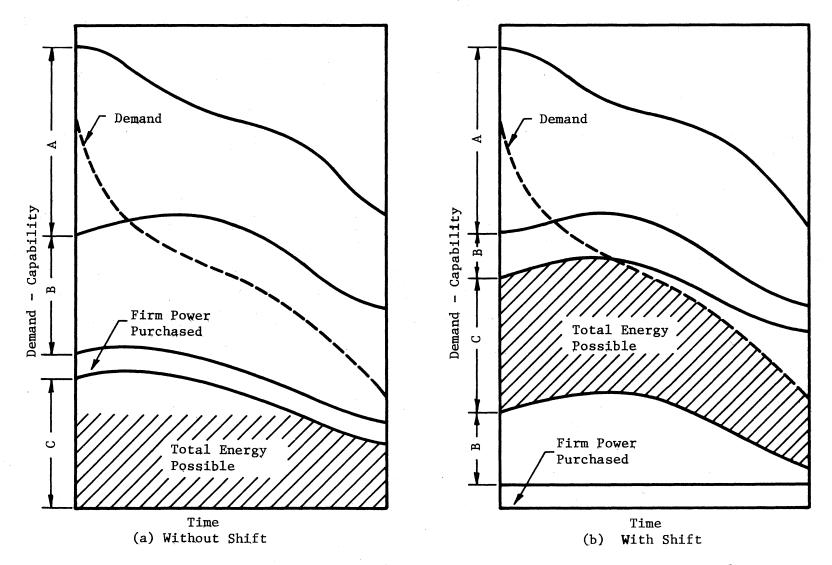
- 1. allocation of the use of power plants to meet demands; and
- contracting with neighboring regions for firm power purchases and sales.

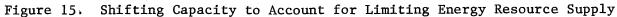
Economic dispatch of electric power is based on using the lowest variable cost capacity first. Demand will normally be filled in the same manner as was discussed in energy resource planning and shown in Figure 15a. However, at each point where variable costs change (the boundaries between different types of generation facilities) there is now the alternative of purchasing firm power from other regions. Such a purchase requires the selling companies to guarantee a power supply. A fixed cost is required to cover this expense. To account for this cost, the firm power must be utilized enough to allow the cost to be spread sufficiently so that:

$$VC_g > VC_f + FC_f/U$$
 3.16

where U is the time used, f indicates firm power cost, and g indicates generation costs. Based on this criterion, increments of firm power are purchased until it is no longer economical. This gives a generation capability as shown in Figure 15a.

If all energy resources needed for fueling the power plants are available, the above considerations are sufficient. However, it is possible that one or more energy resources may be in short supply. If the energy resource in short supply is a low cost fuel, economic considerations are partially overlooked. In order to meet all possible demands it may be necessary to use a more costly energy resource for the longer duration load and save the cheaper energy resource for peaking loads. To determine the optimum filling of the demand under these conditions the same complex mathematical requirements as discussed in capacity planning are necessary. Thus, it is again not feasible to use a true optimizing approach in the simulation.


The scheme used in the base simulation assumes that only one energy resource is in short supply. This assumption greatly simplifies the calculations. However, simulation results should be scrutinized for violation of this assumption. If a cheap energy resource is in short supply, the objective is to utilize both all of the capacity available and all of the energy resources available. To achieve this goal, the load supplied by this energy resource should be moved up the demand curve until the point is reached where the energy required


utilizing full capacity is equal to the energy available as shown in Figure 15b.

To achieve this objective, a ranking system is used in the base simulation. Initially the generation facilities are ranked according to variable cost. Firm purchases desired are determined as discussed previously. If all energy resource supplies are sufficient, no further calculations are necessary. If an energy resource is in short supply, the corresponding capacity is raised one step in rank. The firm purchases and energy requirements are recalculated. This reranking is repeated until the energy resource supply is sufficient.

It should be noted at this point that an important assumption is implicit in this part of the simulation. No consideration is given to fluctuations in the deliverability of energy resources throughout the year. Thus, it is assumed that these deliverabilities can be matched to the rates at which the fuels are used, or storage facilities exist which can be used to store the fuels for later use if necessary when excess deliverability exist. Thus, both spot market and long-term sources of energy resources are assumed to be available as demanded when the hour to hour calculations are made later in the simulation.

One additional consideration must be made before proceeding further. The calculations made here are economic in nature and have therefore been based on the expected demand. Short-term planning must also consider the maximum probable demand. The maximum probable demand is not viewed from the standpoint of economics, but from the ability to meet the demand. Utility companies normally maintain set fraction of reserve capacity for this contingency. If

insufficient reserve capacity exists, additional firm power must be purchased if it is available. This is simulated by assuming that minimum reserves will exist at the peak demand and only checking this one point. Firm power is purchased if it is available to eliminate any deficiencies.

Once provisions have been made to meet all anticipated demands the electric utilities can consider selling any excess capability as firm power. The capability above the expected load duration curve is available for this purpose as shown in Figure 16. Again, as shown in the figure, reserve capacity must also be maintained. Thus, the maximum firm power which can be sold is the minimum excess capability. Within this limit then, capacity is sold if it appears to be economically justifiable. That is, if the anticipated revenue from the sale is greater than the cost of generation. This depends upon the expected demand from firm power, the anticipated demand for an increment of firm power is compared to the generation capability used to supply it as in Figure 17. The profit (P) on the sale of an increment of firm power (i) can then be calculated by:

$$P_{i} = FP_{i} + \int_{FD_{i-1}}^{FD_{i}} \int_{0}^{1 Yr} (VP_{f} - VC_{g}) dt dL \qquad 3.17$$

Hour to Hour Operations

The long-term and intermediate planning determines what facilities are built, what energy resource supplies are secured, how energy resource supplies which will be insufficient are allocated, and

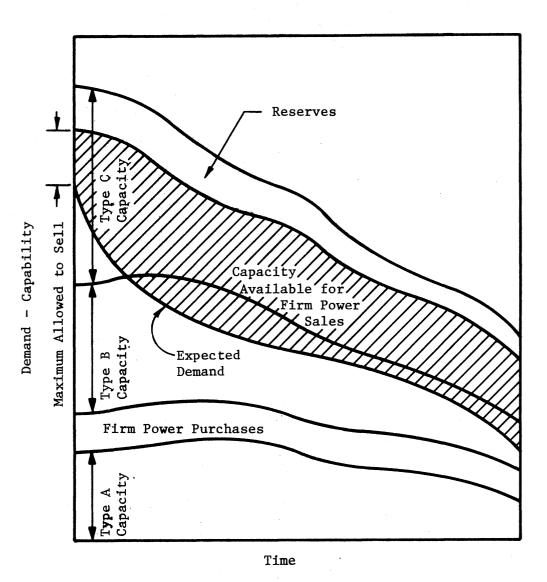


Figure 16. Excess Capability Available for Firm Power Sales

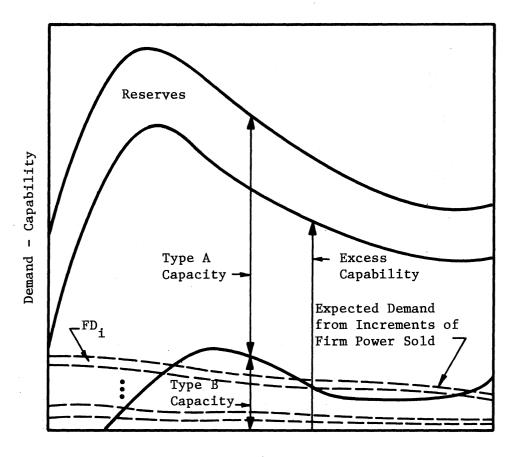


Figure 17. Comparing Expected Demand from Firm Power Sales to Excess Capability for Economic Evaluation

what firm power is bought and sold. However, it is the hour to hour operation of the electric utilities which actually determines what generation facilities are used, what energy resources are used, what demands are met, and how electrical energy flows to and from other regions. These hour to hour activities require a number of decisions which must be continuously updated. Figure 18 shows the hierarchy of these decisions.

The operation of the system each hour cannot be simulated. Instead, the load duration curve must be used to represent the yearly demand. All other fluctuating variables are also reduced to the same time basis. These variables include the previously discussed generation availability curves and the demand from firm power sales. In addition, it is necessary to describe the demand for emergency energy from other regions, and the supply and demand for economy energy. The supply and demand for economy energy must be further descirbed by the values at different prices. Thus, they must be represented as multiple curves as in Figure 19. Given these demands, supplies, and generation capabilities, each point on the load duration curve time axis is simulated as independent and the decision process of Figure 18 is applied¹.

Initially, the demand at a particular point in time is compared to the capability of the electrical utilities to supply demands at the same point in time. The demand includes both the regional demand and the demand from firm power sales. The capability includes all generation facilities at that point in time, plus any firm power

¹A point is meant to refer to a segment of the curve.

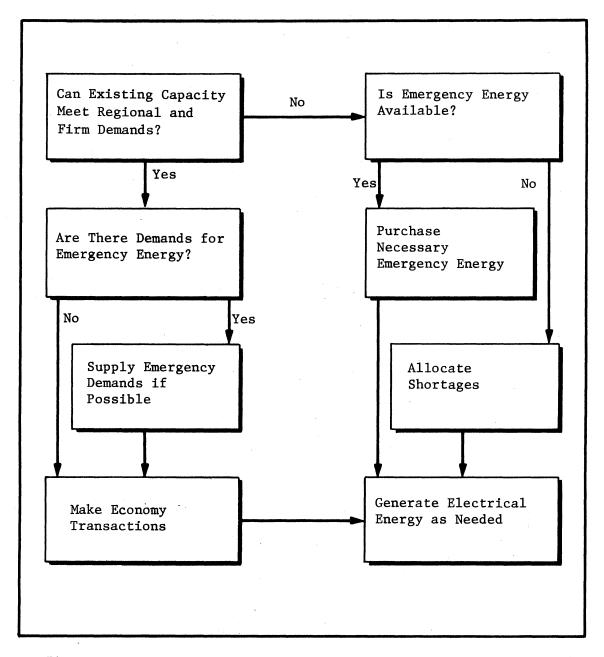


Figure 18. Hierarchy of Decisions for Hour to Hour Operation

which was purchased. As shown in Figure 18 there are two distinct paths the decision options take at this point, depending upon whether or not sufficient capability exists.

First, consider the path where insufficient capability exist. In this case the only alternative available, if the electric utilities are to meet all demands, is to purchase emergency energy. Otherwise, some demands will not be met. In the simulation it is assumed that all demands will be met if possible. Thus, there are no economic considerations involved. Emergency energy is purchased if it is available. The supply of emergency energy is assumed to be described by the uppermost curve of the economy supply. If there is insufficient supply, then shortages are divided proportionally between the regional demand and the firm demand. The nature of emergency demands effectively precludes any economy transactions. Thus, no additional calculations are needed.

The second possibility, when sufficient capability exists, results in a completely different decision path. The first consideration in this case is if any demands for emergency power exist. Again, as in the case of emergency purchases, economics are not considered. Electric utilities are normally required to supply emergency demands if they are able. Once any emergency demands are taken care of, the companies can turn their attention to economy transactions. This involves attempting to purchase and sell energy to other regions so as to minimize the total cost of operation. The basic concept involved in this is simple. If the incremental price curves for economy supply and demand are compared to the incremental cost curve of using the region's capability, as shown in Figure 20, the

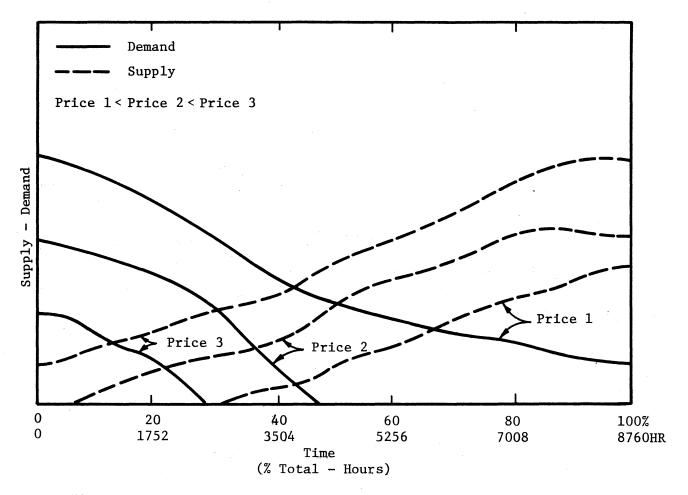
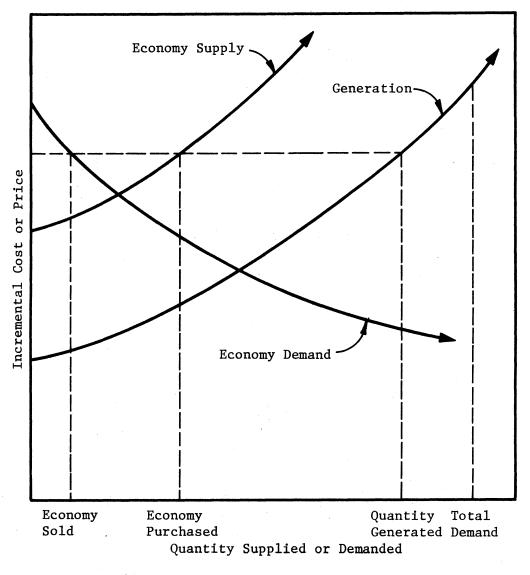
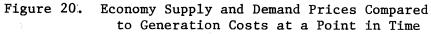




Figure 19. Representation of Economy Energy Supply and Demand

solution is evident. The requirements necessary for the optimum mix are:

$$TD = EP - ES + EG \qquad 3.18$$

where TD is the total demand, EP is the economy energy purchased, ES is the economy energy sold, and EG is the energy generated, and

$$ISP = IDP = IGC$$
 3.19

where ISP is the incremental economy supply price, IDP is the incremental economy demand price, and IGC is the incremental cost of generation. Equation 3.18 results from the requirement of meeting demands. Equation 3.19 assures that no additional purchases or sales will decrease total cost. Unfortunately, the ranking of the use of facilities according to cost is altered when energy resource shortages occur. If this happens, economics are no longer the only factors considered in the decision process, and the cost of generation will not be a monotonically increasing function as shown in Figure 20. The purpose of reranking is to conserve the scarce energy resource. Thus, the decision process should reflect this concern. Since economics are no longer the only criterion, the decision process is unclear. This problem is overcome in the base simulation by arbitrarily assigning a psuedo variable cost to the capacity which has been reranked to reflect the scarce energy resource supply. This psuedo cost should be between the actual costs of the capacities ranked above and below it. Thus, the curve is again returned to its monotonic form and the calculations can proceed as before. The curve will not accurately represent the cost of the arbitrarily ranked capacity. However, the purpose of

reranking in the first place was to account for a low price which did not reflect the availability of the energy resource.

These calculations for hour to hour operation are used to determine the value of a number of important modeling variables. These include:

1. regional demand supplied;

2. firm energy bought and sold;

3. emergency energy bought and sold;

4. economy energy bought and sold; and

 electrical energy supplied by each type of generation facility.

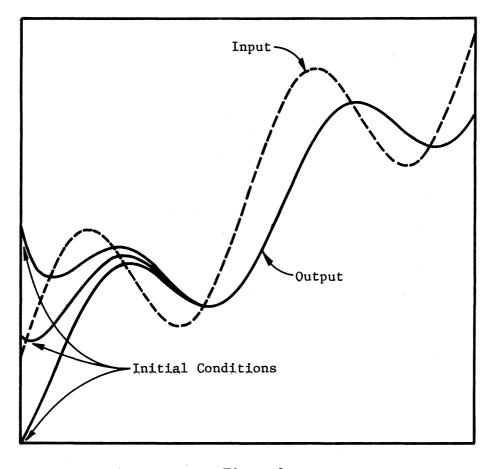
Variable 5 above can in turn be used to directly determine the amount of each energy resource used. The electrical energy flows to and from other regions will also have corresponding cash flows. Also, these variables, when combined with the fixed charges for generation facilities, can be used to determine probably the single most important output variable - the total cost of generation.

CHAPTER IV

MODEL VALIDATION AND DETERMINATION

OF INITIAL CONDITIONS

Introduction


Before using the simulation model to make particular studies, it must be validated to insure that it can simulate an electrical energy supply system. Ideally, this would be done by simulating the system under the conditions encountered in the study and comparing the simulation to actual system behavior. Obviously this cannot be done. Thus, validation must rely on comparison to historical system behavior. A measure of the model's validity is obtained by simulating the system's operation using the historical values of inputs and parameters and comparing the results of the simulation to the historical behavior. If the model closely approximates historical behavior, confidence is gained in its ability to simulate the behavior of the system under conditions encountered in a particular study. Similarly, if the model is unable to simulate historical behavior, it is unlikely to correctly simulate the behavior of the system for other conditions.

The validation requirements for the model can be divided into two categories. The first deals with the general structure of the model. The second deals with the values of particular parameters. Proper structure is much more important than precise values of parameters, as all of the basic system behavior results from the structure of the

system. Thus, most of the validation work centers around verifying that the model structure represents the system structure. Until the structure is validated, attempting to determine correct values of particular parameters makes little sense.

The validation of a model is not a once through process and cannot be considered separate from model building. The process is iterative in nature. First, an attempt is made to describe the system structure. This is then tested and revised again and again until all contradictions and inconsistencies are eliminated. Thus, the formulation of the model discussed in the previous chapter and the validation of the model discussed in this chapter are closely related. Both must be considered simultaneously. They are presented separately here only for the sake of clarity. Likewise, only the final model structure and the validation results for this structure are presented.

Unfortunately, good validation results with historical data do not insure the model will provide accurate simulation for studies of future conditions. Factors which significantly affect system behavior can appear in such studies which were nonexistant or unimportant during the validation time period. Such factors may include environmental regulations, alternative energy resources, energy shortages, etc. Because of this possibility, validation with historical data cannot be considered the end of the validation process. As studies are made and new and different conditions are encountered, the model behavior must be constantly reviewed. If inconsistent or unlikely behavior is predicted, the model structure must be examined to see if there is

Time ----

Figure 21. The Effect of Initial Condition on the Response of a First-Order Delay to a Complex Input

an error in the simulation or if the perverse behavior is reflective of the true behavior of the system. It is only after being applied in a number of studies that the model can be considered fully validated and can be used with a large degree of confidence.

In addition to model structure and parameters, the responses simulated by the model depend upon the initial conditions of the state variables. Figure 21 shows this dependency for a single first order delay. The effect of initial conditions on a large, complex system can be even more dramatic. In the electric utility system, values of such state variables as generation capacity and energy resource supplies can affect system operation for a number of years. Thus, for any medium range study to be meaningful, the proper initial conditions for the system must be established. For this reason, determination of initial conditions is considered an integral part of model validation.

The initial values for many levels which represent physical entities in the system can be determined directly from data regarding the system. These would include: on-line capacity, capacity under construction, and to a lesser extent energy resource supplies. The values of the more abstract state variables, such as those involved in forecasting, are more difficult to determine. The common method used to determine initial conditions for such variables is to assume a steady state condition exists. However, this concept cannot be used in the electrical energy supply system since steady state has little real significance and much of the structure is based on change.

By including initial condition determination in the validation process, the validity of the selected initial conditions can be evaluated by comparing the model results to the data for a number of years. This helps eliminate the problem in two ways. First, by using a time series of data, rates of change in model vairables can be evaluated along with the values of the variables. This provides a much more demanding test of the initial conditions. Second, by moving the beginning point back to the start of the validation time period, errors in the value of the initial conditions will tend to dampen out by the end of the validation time period. This dampening effect can clearly be seen in Figure 21 Thus, the values of the state variables at the end of the validation period should provide accurate and consistent initial conditions for studies which start at this point in time.

Validation Data

The initial studies to be made using the model will deal with the energy system in the geographical region defined by the State of Oklahoma. Therefore, the validation of the model is also based on this region. The electric utility system in Oklahoma consists of: two privately owned electric utility companies which generate about 90% of the State's electricity; two publicly owned electric utility companies, one which operates all of the hydro-electric generation in the State; and a number of small municipal generation facilities which together generate less than 2% of the State's electricity. Due to their small contribution, the municipal facilities are not included in the data base for validation.

A number of variables are involved in the validation process. Tables III-VI list the inputs, outputs, parameters, and initial conditions associated with the model. The inputs, outputs, and parameters are divided into primary and secondary groups. This division is somewhat arbitrary. It is made to reflect the relative importance of the variables in the studies to be made. The primary variables are emphasized in the validation; whereas with the secondary variables, values in the correct range are deemed sufficient. Inputs must be supplied to the model in the form of time series. Similarly, the historical values of the outputs must be expressed as time series for comparison to simulated values. The parameters can be expressed as constants unless the values vary significantly during the validation time period. The initial conditions correspond to the beginning of the validation time period. A brief discussion of the data for each of the validation variables is presented in Appendix C.

Unfortunately, from the validation point of view, the history of the electric utility system in Oklahoma has been rather uneventful. There is no evidence of energy resource limitations being encountered. Thus, three of the primary inputs - total energy resources available, fraction available to electric utility companies, and fraction available as long-term supplies - play no important role in the validation. Consequently, the validation results for two of the primary output variables - total electrical energy supplied to region and unmet demand for electrical energy - are almost automatically correct.

Due to the fact that natural gas resources historically have been much cheaper and easier to use than other energy resources, almost all generation capacity built is for this fuel. Thus, the simulation of the choice among the different types of capacity is difficult to test. Similarly, the variables "energy generated by each type of facility" and "the quantity of each energy resource consumed" are of limited value also.

One final problem in the validation data is the smooth demand growth that has been experienced. This smooth trend provides very little dynamic response to demand to observe.

The Validation Program

Before any validation runs can be made it is necessary to taylor the model to the exact situation being modeled. This involves specifying a number of different options in the structure listed in Table VII. A brief discussion of these options used in the validation follows.

Number of Energy Resources

Although natural gas is the predominant energy resource used during the validation period, all commonly used energy resources are included. This gives the simulation the opportunity to select energy resources other than natural gas and hence, the opportunity to make mistakes. Thus, the selection of natural gas as the primary energy resource is an important test. The energy resources included are: natural gas, coal, oil, and nuclear fuel. Hydro sources are also included, but in a different way and will be discussed later.

Classification of Energy Resources

The classification of the energy resources available is somewhat arbitrary. Natural gas is considered as a declining

TABLE III

MODEL INPUTS

Primary Inputs

Peak Electrical Demand

Market Prices of Energy Resources

Total Quantity of Each Energy Resource Available to Region Fraction of Each Energy Resource Available to Electric Utilities Fraction of Each Energy Resource Available as Long-term Supply

Secondary Inputs

Economy Energy Supply Economy Energy Demand Firm Power Supply Firm Power Demand Emergency Energy Demand Maximum Capacities Allowed Capital Limits

TABLE IV

MODEL OUTPUTS

Primary Outputs

Amount of Each Type of Generation Facility Constructed Energy Generated by Each Type of Generation Facility Quantity of Each Energy Resource Consumed Total Electrical Energy Supplied to Region Unmet Demand for Electrical Energy Total Cost of Generation

Secondary Outputs

Economy Energy Purchased Economy Energy Sold Firm Power Purchased Firm Power Sold Firm Energy Purchased Firm Energy Sold Emergency Energy Purchased Emergency Energy Sold

TABLE V

MODEL PARAMETERS

Primary Parameters

Demand Characteristics

Capacity Availabilities

Capital Cost of Generation Facilities

Yearly Fixed Costs for Generation Facilities

Non-Fuel Variables Costs for Generation Facilities

Heat Rates

Construction Times

Secondary Parameters

Expected Regional Demand Characteristics Characteristics of Demand from Firm Power Sales

Desired Reserve Capacity

Proportionality Constants Relating Deliverability to Total Energy Resource Supplies

Forecasting Delay Constants

Energy Resource Supply Delay Times

Long-Term Supply Price Delay Constants

TABLE VI

INITIAL CONDITIONS REQUIRED FOR MODEL

State Variables

Third Order Delay Levels for On-Line Capacity Semi-Retired Capacity Capacity Under Construction Long-Term Capacity Contracts Future Long-Term Capacity Contracts Smoothed Variables in Forecasting Supplies of Declining Energy Resource Supplies Deliverability of Constant Energy Resource Supplies Deliverability of Future Constant Energy Resource Supplies Prices of Long-Term Energy Supplies

Derivatives

Peak Electrical Demand Energy Resource Prices

Total Quantity of Energy Resources Available Fraction of Energy Resources Available to Electric Utilities

TABLE VII

STRUCTURE OPTIONS IN MODEL

Number of Energy Resources Considered Classification of Energy Resources as Declining or Constant Corresponding Number of Generation Facility Types Capacity Contracts from Outside of Region supply. Figure 12 shows this decline for the supply of a single company at a point in time. Since the coal reserves in states near Oklahoma are extensive and largely untapped, this resource is considered to be of the constant type. Nuclear fuel supplies are currently dependent upon processing facilities, thus, they are a constant type source. Oil is more difficult to classify. If only Oklahoma sources were available then it would be a declining source. However, if world wide sources are included, then contracts for supplies with constant deliverability might be more typical. However, it has been typical for most oil to be purchased on short-term markets. This makes the declining classification more usable.

Generation Facilities

The types of generation facilities correspond directly to the energy resources used. These are: natural gas fired boilers, coal fired boilers, nuclear plants, and oil fired plants. The oil fired plants are assumed to be peaking plants and are thus gas turbines rather than boilers.

Hydroelectric generation is a significant factor in Oklahoma. Thus, it is necessary to include it in the validation. However, the construction of hydroelectric facilities usually involves multiple uses - flood control, navigation, recreation, etc. The economics of hydroelectric facilities are seldom the sole criterion for building such facilities. The decision is usually more heavily dependent upon the other factors and the hydroelectric facilities are more or less by-products. For this reason there is no simple method by which hydroelectric facilities can be included. Instead, the construction of hydroelectric facilities

is considered an input. Once built they are used in the same manner as any other facility.

Long-Term Capacity Contracts

No long-term capacity contracts have been made with other regions in the past. Also, no evidence is available which indicates such contracts were ever considered; nor, is there any information indicating what terms may have been available if such contracts had been sought. For these reasons no long-term capacity contracts were considered in the validation.

Validation Results

Figures 22-26 compare the primary outputs of the simulation with historical data. It is somewhat difficult to interpret the significance of these comparisons in view of the "monotonic history" of the system.

The simulation selects the same types of capacity and in approximately the same proportion as is evidenced in the historical data. However, there does appear to be a tendency for the simulation to lead the historical data for natural gas boiler capacity by one to two years. Also, the simulation tends to indicate more gas turbine capacity than does historical data. However, considering the relatively small quantities of this type of capacity, this is not too upsetting. In addition, the agreement in the trends for gas turbine capacity is excellent.

Given the agreement between the simulation and historical data for the capacity built and the heavy reliance on natural gas boilers,

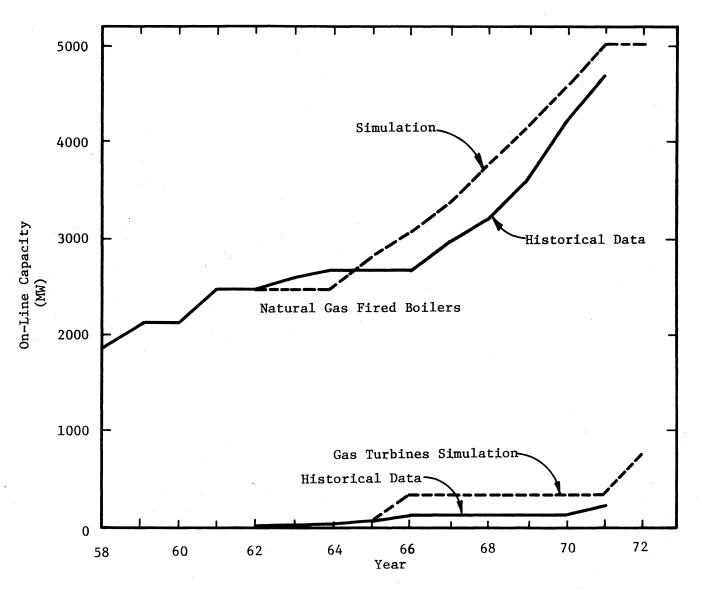


Figure 22. Comparison of On-Line Capacity with Simulation to Historical Data

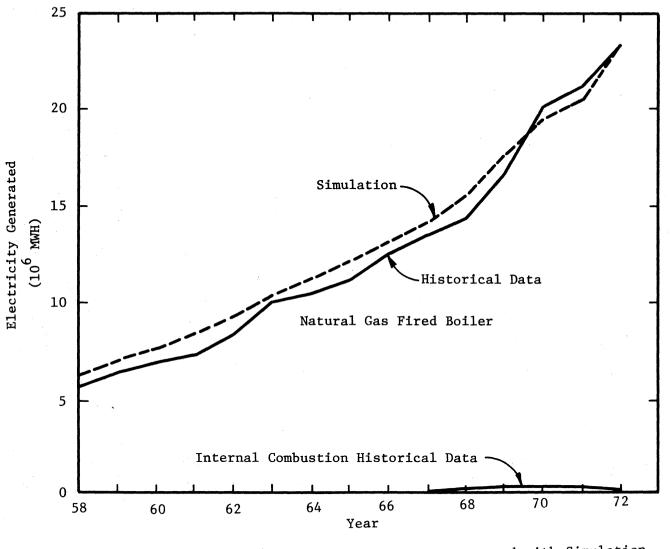


Figure 23. Comparison of Electrical Energy Generated with Simulation to Historical Data

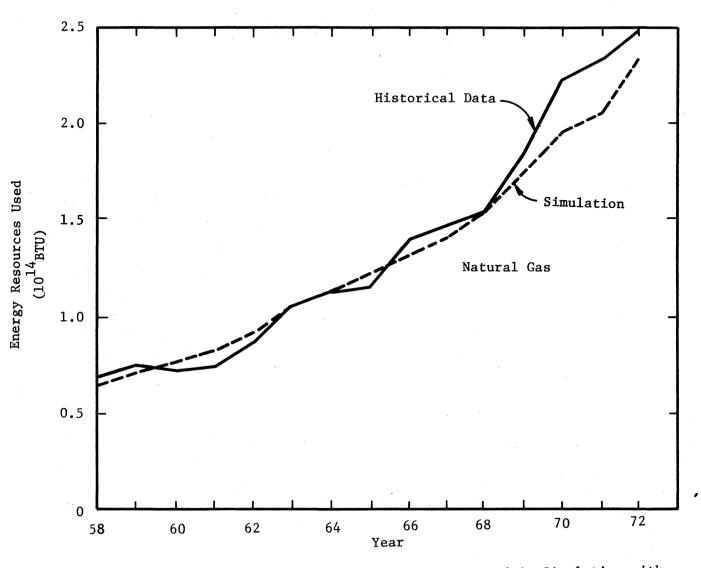


Figure 24. Comparison of Energy Resources Used in Simulation with Historical Data

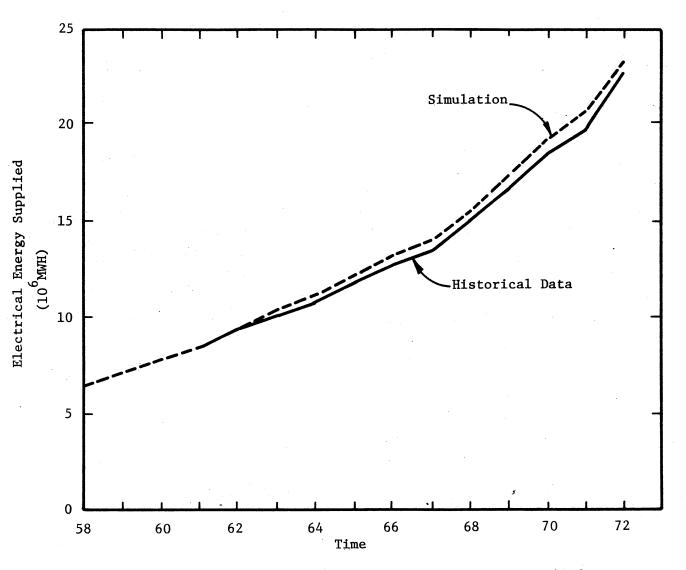
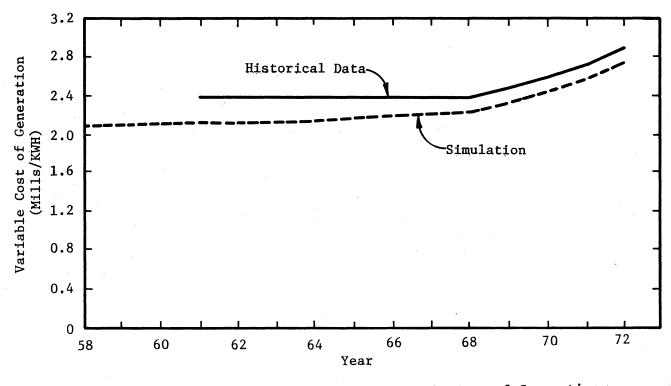
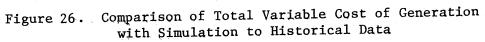




Figure 25. Comparison of Total Electrical Energy Supplied to Region with Simulation to Historical Data

there was every reason to expect energy resource use and generation of electrical energy to follow historical data quite closely. This appears to be the case. There are small discrepancies between historical data and the simulation. Most of these can be ascribed to fluctuations in water flow for hydroelectric facilities and changes in the load duration curve. Both of these parameters were held constant for the entire validation period. There does appear to be a larger discrepancy near the end of the validation period for use of natural gas. This is, in part, due to a rapid increase in the sale of electrical energy to other regions at about that time. This was not reflected in the constant economy supply and demand curves used in the simulation.

Because of the possibility of inconsistencies in accounting procedures for capital costs, data for total generation cost are not compared to the simulation results. Instead, the total variable cost is used. As can be seen in Figure 26, the simulation agrees fairly well with the historical data. The simulation tends to underestimate cost somewhat, but the trend is quite consistent with the historical data.

Discussion of Validation Results

As stated earlier, because of the nature of the history of the electrical energy system in Oklahoma, it is difficult to evaluate the validation results. There are some discrepancies. One could go to great effort to adjust parameters so as to get a closer agreement between the simulation and historical data. However, it is doubtful whether this would improve the simulation. An obsession with exactly fitting simple monotonic curves, not likely to be typical of future conditions, could cause serious problems. By fine

tuning the parameters to fit these trends, more important structural characteristics may be overlooked. Although the simulation results might reproduce historical behavior exactly, the model would be invalid for studies of possible future situations with different conditions.

In fact, an earlier form of the model actually predicted capacity construction which agreed more closely with the historical data than the current form of the model (2). Upon close investigation, it was found that the economic logic of this earlier form was incorrect. However, the selection of capacity types was the result of demand dynamics rather than economics. When demand grew faster than expected, there was insufficient time to build the desired natural gas boiler capacity. Instead, gas turbines were installed. Thus, the correct capacity mix was predicted although the economics in the model were incorrect.

For these reasons, additional effort was not expended in attempting to eliminate the small discrepancies that are evident. Most of the discrepancies can be attributed to a lack of accurate inputs and parameters. It is unlikely that these inputs and parameters can be determined any more accurately for studies of future situations. Thus, further effort at improving validation results is likely to only give the model user a false sense of security.

It should be remembered that the model cannot be considered verified as being completely correct. The validation serves only as one test for inconsistencies. The model must be continuously reviewed for inconsistencies not apparent from the validation when it is being used for other situations.

CHAPTER V

USE OF THE MODEL FOR A STUDY OF BOILER FUEL REGULATIONS

Introduction

As discussed previously, the electric utility model was developed to serve as part of a larger model which includes similar models for other parts of the energy system. Only in this context can the maximum use be made of the electric utility model. The electric utility models should also be useful as an independent model. To demonstrate the practicality of using the model separately, a study was made of possible regulations on the use of natural gas as a boiler fuel. This problem was selected because of its current relevence to the electric utility industry in Oklahoma. It also demonstrates the versatility of the model.

As noted in the validation, almost all of the electricity in Oklahoma is generated with natural gas. Unfortunately, natural gas is now in short supply in many parts of the nation. There are many people who propose banning the use of natural gas as a boiler fuel to make it available for other uses. Such a ban could cause considerable difficulty for electric utility companies in Oklahoma due to the nature of most gas fired boilers. These boilers usually have the capability to burn oil but are unable to burn coal. Since oil is quite expensive and is also in short supply, the electric utilities

would have to consider building new boilers to convert these generation facilities to coal if such a ban were made. Since the base model does not provide for conversion of generation facilities to a different fuel, it must be altered to include this possibility. This demonstrates how the model can be adapted to new and different situations.

Model Alterations

In order to incorporate the possibility of converting natural gas facilities to coal, several changes were required in the model. In setting up the model for the study, a new type of generation capacity was added which is referred to as GCC (gas converted to coal) capacity. Also, the hydroelectric and gas turbine classifications were eliminated since they are a relatively insignificant part of the current capability. In addition, several changes were made in the logic and structure of the model:

- Generation capacity must be off-line for 9-12 months to switch from the gas boiler to the coal boiler. Thus, a rate was added which removes on-line natural gas facilities the year before new GCC facilities come on-line.
- 2. The logic in calculations of the desired mix of facilities was altered to account for the fact that quantities of existing natural gas facilities and new GCC facilities are not independent. If, as the load duration curve is filled in these calculations, GCC capacity becomes economical lower on the demand curve than existing natural gas capacity, the maximum new GCC capacity allowed is set equal to the existing natural gas capacity. Then the existing natural

gas capacity is decreased by the quantity of GCC capacity desired. If existing natural gas capacity becomes economical first, the maximum new GCC capacity allowed is set equal to any existing natural gas capacity not desired.

- 3. In developing the capacity expansion plan, it is assumed that natural gas capacity will not be taken off-line if it means a shortage of capacity will result, unless there is a projected shortage due to energy resource limits anyway.
- 4. The natural gas availability forecast is based on the regulation being studied rather than historical values.

Regulations and Future Scenarios

A complete study of regulations of natural gas use in electricity generation would require dozens of simulations. A wide range of regulation alternatives would need to be considered for various scenarios of future conditions. The purpose here is to demonstrate the use of the model and not to make an exhaustive study. Thus, only two regulation alternatives to reduce the use of natural gas are considered. A single scenario of future conditions is used. This scenario is kept as simple as possible to allow attention to be focused on the reaction to regulation rather than to other inputs. The scenario used for inputs and parameters is summarized in Tables VIII and IX and the regulations are summarized below.

<u>Regulation 1</u>. In the first regulation, a total ban is not imposed on natural gas. The electric utilities are allowed to use their existing long-term supplies. They are also allowed to purchase

TABLE VIII

INPUTS FOR STUDY

Peak Electrical Demand

6100 mw in 1975, Increases 5%/Year

Market Prices of Energy Resources

Energy Resources Available

Maximum Capacities Allowed

Capital Limits

Economy Energy Supply and Demand

Firm Power Supply and Demand

Emergency Energy Demand

Natural Gas \$1.80/10⁶ BTU in 1975 Coal \$1.50 in 1975 Nuclear \$0.50 in 1975 All increase 5%/Year

Assume all coal and nuclear fuel required is available, natural gas as prescribed by regulation.

No restrictions on new coal and nuclear. Assume all on-line natural gas as candidate for conversion.

Assume all capital required is available

See Figure 27 Price 1 = 0.25¢/KWH Price 2 = 1.0¢/KWH Price 3 = 2.5¢/KWH All prices increase at 5%/Year.

Not Required.

Assume None.

TABLE IX

PARAMETERS FOR STUDY

Demand Characteristics

Same as for validation.

Capacity Availabilities

Capital Costs for Generation Facilities

Yearly Fixed Costs for Generation Facilities

Non-Fuel Variable Costs for Generation Facilities

Heat Rates

Construction Times

Expected Regional Demand Characteristics

Characteristics of Demand from Firm Power Sales

Desired Reserves Capacity

Proportionality Constants Relating Deliverability to Total Energy Resource Supplies

Forecasting Delay Constant

Same as for validation, GCC capacity same as with conventional coal capacity.

Natural Gas \$200/KW in 1975 Coal \$500/KW in 1975 Nuclear \$800/KW in 1975 GCC \$125/KW in 1975 All increase 6%/Year

A motorized at 12%/year, 30 year life span, 20 year life span for GCC capacity.

Same as validation, GCC same as conventional coal.

Same as validation, GCC same as conventional coal.

Same as validation, 3 years for conversion construction, 1 year actual outage of plant.

Same as validation

Not required

Same as validation

Same as for validation

Same as for validation

TABLE IX (Continued)

Energy Resource Supply Delay Times

Same as for validation

Long-Term Supply Price Delay Constants Same as for validation

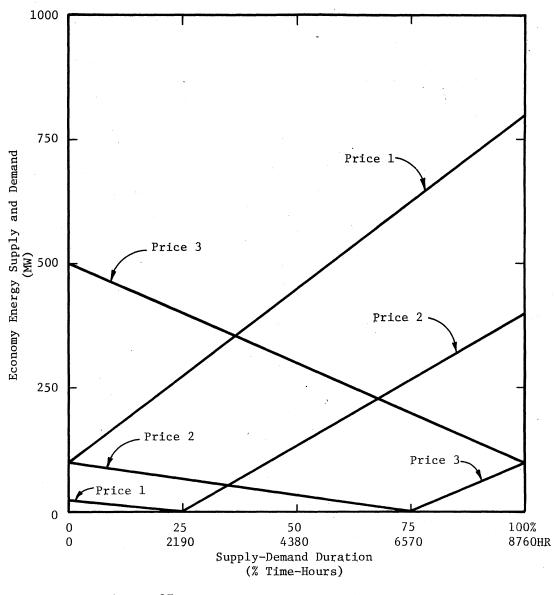


Figure 27. Economy Energy Supply and Demand Used for Regulation Study

up to 3.0 X 10¹⁴ BTU/YEAR on the spot market. However, they are not allowed to add any new long-term supplies.

<u>Regulation 2</u>. The second regulation is the same as the first, except that the spot market purchases allowed are decreased linearly from 3.0 X 10^4 BTU/YEAR in 1975 to none in 1990.

Study Results

The effect of the regulation alternatives on key variables for the years 1975 through 2000 is shown in Figures 28-31. As would be expected, there is a rapid conversion of some of the natural gas facilities to coal with both regulations. The speed of this conversion may be somewhat unrealistic as no capital constraints or limits on construction rates were imposed. This is followed by a rapid increase in conventional coal capacity. The use of the remaining natural gas capacity is relegated to peaking and standby service and the coal capacity carries the base load. As can be seen in Figure 30, this results in an even more rapid decline in natural gas usage than anticipated and coal becomes the dominant fuel. However, the dominance of coal is short lived as the economics in this scenario cause nuclear capacity to replace coal capacity for the base load.

The differences in the response to the two regulation alternatives are not striking. More natural gas capacity is converted to coal with the more severe regulation. Likewise, less natural gas and more coal are consumed in generation with the more severe regulation. The conventional coal capacity initially built is the same in either case and is limited to that already under construction. The most striking difference resulting from the regulations

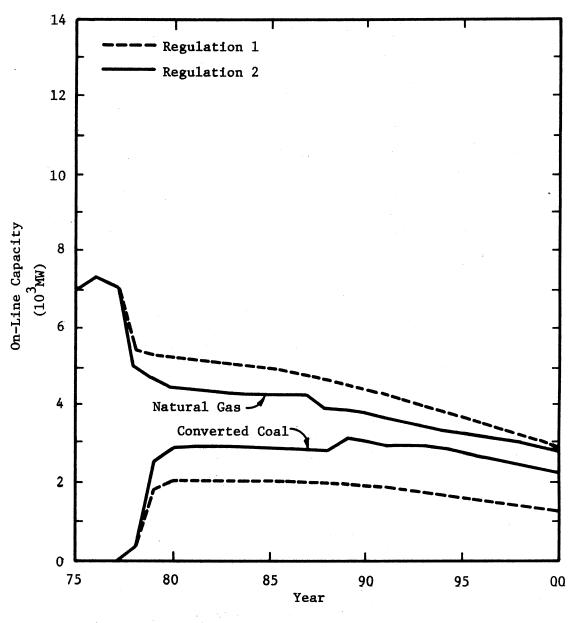


Figure 28. Comparison of On-Line Capacity for Different Regulations

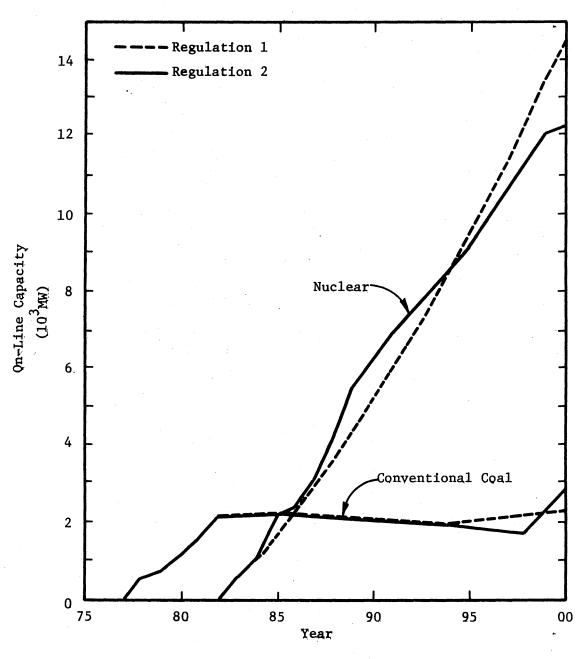


Figure 29. Comparison of On-Line Capacity for Different Regulations

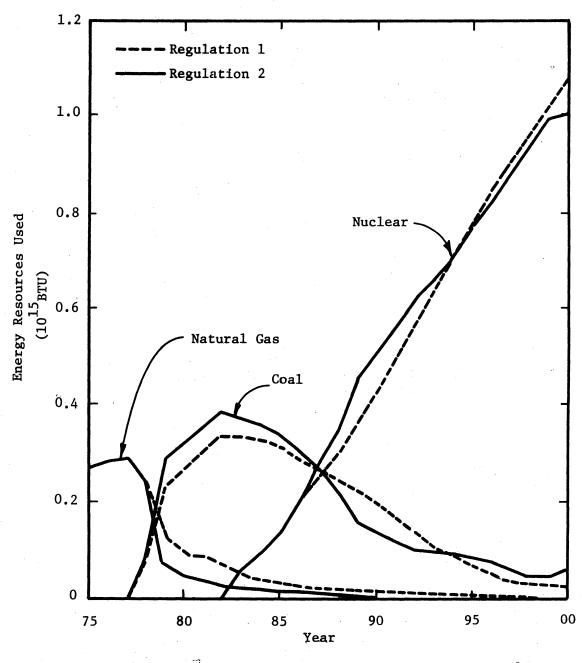


Figure 30. Comparison of Energy Resource Usage for Different Regulations

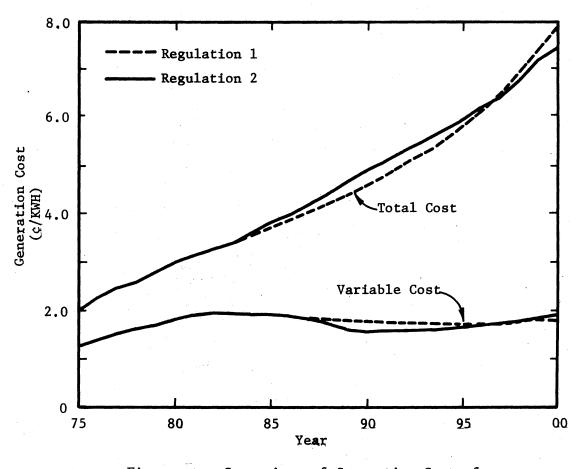


Figure 31, Comparison of Generation Costs for Different Regulations

is seen in the long-term response. Even though natural gas usage has essentially declined to zero by the end of the study period for both cases, the mix of nuclear and coal capacity is still considerably different. At this point there is no evidence that they are converging. Although it is difficult to identify the cause of this unexpected response due to the complexity of the system, two possible causes are identifiable.

The first possibility is an over-response in changing the capacity mix. With the more severe regulation, more nuclear and coal capacity is built. As natural gas use is phased out, the resulting mix of coal and nuclear capacity is not in the desired proportions. In attempting to correct this imbalance, an over-response can easily result. The same argument can be applied to the less severe regulation. As natural gas usage is phased out, the resulting capacity mix may be off in the opposite direction. The same potential for an over-response exists in this case. In fact, the capacity mix could be off in the same direction for both regulations, but more overresponse results in one case than the other.

The second cause for the unexpected response is the continued availability of natural gas for the less severe regulation. This fuel supply allows the existing natural gas capacity to be used for peaking or reserve capacity in calculating the desired mix, causing a shift from coal to nuclear in the desired mix for regulation 1 as compared to regulation 2.

The question of greatest concern to many people is the effect on the cost of electricity for the alternative regulations.

Figure 31 shows the cost to be relatively insensitive to the different regulations. During the critical "transition period" the difference in cost is negligible. It is only after a number of years that some increase in cost for the more severe regulation is observed. This situation eventually reverses, again indicating a possible over-response. However, an imperfection in the model was noted that causes some distortion of the total cost. The capital cost was escalated for both old and new capacity rather than just for new capacity. In the real system, capital cost is based on the original investment. This inconsistency tends to increase the total cost for both cases but has a much smaller effect on the relative cost for the two regulation alternatives.

Another important question deals with the ability of the electric utilities to meet demands. All demands were met for both regulations. However, in both cases small amounts of emergency energy were purchased for several years during the "transition period." The quantities purchased with the more severe regulation were somewhat larger, especially in 1978 when a significant amount of existing capacity was off-line. Even though the quantities of emergency energy purchased were quite small, they do indicate the system was in a marginal state in respect to ability to meet demands at times. If unexpected demand growth or other problems had occurred, outages could have resulted.

This study should not be considered a conclusive study of boiler fuel regulations. It only demonstrates the use of the model for practical studies. It also demonstrates one of the advantages of using

a dynamic systems simulation. It is unlikely that the unexpected behavior could be predicted with a more conventional modeling technique. In comparing the alternative regulations, these unexpected parts of the response are as big a factor as the expected parts.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The model developed in this study for the electric utility component of a regional energy system demonstrates the practicality of incorporating a high level of technical detail into an energy model based on dynamic system simulation. The model is capable of making in-depth studies of precise questions concerning the electric utility industry in a region. It is designed to also serve as a component to a comprehensive regional energy model.

The validation presented in Chapter IV shows the model correctly simulates the results of the major decision options in the electric utility industry. The case study presented in Chapter V demonstrates the versatility of the model and its ability to address precise policy questions. In addition, its ability to predict unexpected results is seen in the case study.

The model can address the performance of a regional electric utility system in terms of:

- 1. the ability to meet demands for electrical energy;
- 2. the cost of generating electrical energy;

3. energy resources used for generating electricity;

- 4. capital requirements for generation facilities; and
- the energy and cash flows from inter-regional transactions involving electrical energy.

The model is designed for use either as a component of a comprehensive regional energy system model utilizing similar models for the other parts of the system, or as an independent model for studies involving the electric utility industry. As a component for a comprehensive model, the information supplied to the electric utility model is obtained from other component models. The only exception would be the information concerning supply and demand pertaining to interregional transactions. These inputs must be treated as an exogenous variable even for a comprehensive model. The information output from the model could in turn be used as inputs for other component models.

As an independent model, all of the input information must be supplied by the user. In this mode the model appears to be useful for studies in several areas:

- The model can be used to predict the response of the electric utility industry in a region to scenarios for future conditions. These scenarios could pertain to a study of the electric utility industry, or to more comprehensive energy studies. In either case, the model should provide a tool for detailed analysis of electrical energy supply questions.
- 2. More general response characteristics of the electric utility industry in a region can be studied using the model. This would deal with the effects of fluctuating inputs or changes in the long-term trends of inputs.
- 3. One of the most promising areas of study for which the model can be used appears to be in the analysis of regulations and controls on the electric utility industry by government agencies. Particular questions which can be readily addressed

involve limits and restrictions on what kinds and amounts of power plants which can be built and on what kinds and amounts of energy resources which can be used for generation.

4. Similar studies can also be made of policies in the electric utility industry. These policies involve forecasting, generation expansion decisions, and the use of energy resources for generation.

The model may be improved for some studies with additional refinement. The refinement required would depend primarily on the particular questions to be analyzed. However, several areas where this refinement would be beneficial can be identified:

- 1. The relationships for parameters which vary throughout the year could be improved if more data were incorporated into their derivation. Ideally, a full statistical analysis as described in Appendix A would be used.
- 2. As noted in Chapter V, problems can arise in the model when certain parameters change significantly over a period of time. Parameters which are affected in this way would be better represented by allowing information about their past values to be utilized in the model.
- 3. In the model developed here, the construction of transmission and distribution facilities was not simulated. Inclusion of this part of utility company operation may be desirable in studies relating to capital expenditures. It is also possible that this area of operations could affect the ability to meet demands in some circumstances.

There are most likely other areas where additional research could improve the model. However, it is only when it is incorporated into a comprehensive regional energy model that the full capabilities of the model described here can be utilized. Thus, probably the most important area for additional research is in the development of similar models for the other components of a regional energy system.

A SELECTED BIBLIOGRAPHY

- (1) Forrester, J. W. <u>Industrial</u> <u>Dynamics</u>. Cambridge, Mass.: MIT Press, 1961.
- (2) Jones, B. W. <u>Energy Demand/Supply Dynamic Systems Model</u> -<u>Dynamic Simulation of the Electric Utilities Within a</u> <u>Specific Geographic Area</u> - <u>Part I</u>. <u>Utilities Within a</u> <u>Laboratory Report ER-ME-8</u>. <u>Stillwater</u>, Okla.: College of Engineering, Oklahoma State University, September, 1974.
- (3) Limaye, D. R., R. Ciliano, and J. R. Sharko. <u>Quantitative</u> <u>Energy Studies and Model - A State of the Art Review</u>. <u>Report No. PB-220 131</u>. Washington, D. C.: U. S. Government Printing Office, 1973.
- (4) Federal Power Commission. <u>1970 Power Survey</u>. Washington,
 D. C.: U. S. Government Printing Office, 1971.
- (5) Burbank, T. H. "A Critique of Projections in the Electric Power Industry, with Particular Reference to the National Power Surveys." <u>Edison Electronic Institute</u> Bulletin, Vol. 41, No. 2 (March/April, 1973), 64-70.
- (6) Battelle Memorial Institute. <u>A Review and Comparison of Selected United States Energy Forecasts</u>. Report No. PB-189 939. Washington, D. C.: U. S. Government Printing Office, 1969.
- (7) Statistical Committee. <u>Bibliography and Digest of U.S.</u> <u>Electric and Total Energy Forecasts</u>: <u>1970-2050</u>. New York: Edison Electric Institute, 1971.
- (8) Committee on Interior and Insular Affairs, U. S. Senate. <u>Survey of Energy Consumption Projections</u>. Serial No. 92-19. Washington, D. C.: U. S. Government Printing Office, 1972.
- (9) Anthony, R. H. <u>Energy "Demand" Studies</u>, <u>An Analysis and Appraisal</u>. Working Report. Washington, D. C.: Committee on Interior and Insular Affairs, U. S. House of Representatives, 92nd Congress, 2nd Session, September, 1972.

- Hoffman, K. C. "An Unified Framework for Energy System Planning." <u>Energy Modeling</u>, <u>Art</u>, <u>Science</u>, <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 108-143.
- (11) <u>A Study of Future Energy Options for New York City</u>. Report to the National Science Foundation. New York: Brookhaven National Laboratory and the State University of New York, August, 1973.
- (12) Atomic Energy Commission. <u>Development of Linear Programming</u> <u>Total Energy Model</u>. Office of Planning and Analysis Report. Washington, D. C.: U. S. Government Printing Office, 1972.
- (13) McLoughlin, G. T. <u>Mathematical Modeling of Trading Policies</u> <u>for Natural Gas</u>. Ottawa, Canada: National Energy Board, 1971.
- (14) Deonigi, D. E. and R. L. Engel. "Linear Programming in Energy Modeling." <u>Energy Modeling, Art, Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 144-176.
- (15) Waverman, L. "Remarks on a Continental Gas Model." <u>Energy</u> <u>Modeling, Art, Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 410-412.
- (16) Brookhaven National Laboratory. <u>Reference Energy Systems</u> <u>and Resource Data for Use in the Assessment of Energy</u> <u>Technologies</u>. Report No. AET-8. New York: Associated Universities, Inc., April, 1972.
- (17) Griffin, J. M. "Suggested Roles for Econometrics and Process Analysis in Long-Term Modeling." <u>Energy</u> <u>Modeling, Art, Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 177-187.
- (18) Debanne, J. G. "A Pollution and Technology Sensitive Model for Energy Supply-Distribution Studies." <u>Energy</u> <u>Modeling, Art, Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 372-409.
- (19) Foell, W. K. and J. E. Rushton. <u>Energy Use in Wisconsin A</u> <u>Survey of Energy Flow in the State of Wisconsin</u>. Institute for Environmental Studies Working Paper No. 4. Madison, Wisc.: University of Wisconsin-Madison, October, 1972.

- (20) Foell, W. K., D. B. Shaver, O. S. Goldsmith and M. A. Caruso. <u>1973</u> Survey of Energy Use in <u>Wisconsin</u>. Institute for Environmental Studies Report 10. Madison, Wisc: University of Wisconsin-Madison, September, 1973.
- (21) The Center for Strategic and International Studies. Understanding the "National Energy Dilemma." A Report of the Joint Committee on Atomic Energy. Washington, D. C.: Georgetown University, 1973.
- (22) Herendeen, R. A. <u>An Energy Input-Output Matrix for the</u> <u>United States, 1963</u>: <u>User's Guide</u>. <u>CAC Document</u> <u>No. 69</u>. Urbann, Ill.: University of Illinois, Urbana-Champaign, March, 1973.
- (23) Reardon, W. A. "Input-Output Analysis of U. S. Energy Consumption." <u>Energy Modeling</u>, <u>Art</u>, <u>Science</u>, <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 23-44.
- Reardon, W. A. <u>An Input/Output Analysis of Energy Use</u>
 <u>Changes from 1947 to 1958 and 1958 to 1963</u>. Report Prepared for the Office of Science and Technology. Richland, Wash.: Battelle Pacific Northwest Laboratories, June, 1972.
- (25) Almon, C. "Use of the Maryland Interindustry Forecasting Model to Project Petroleum Demand." <u>Energy Modeling</u>, <u>Art, Science</u>, <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 45-61.
- (26) Verleger, Jr., P. K. "An Econometric Analysis fo the Relationship Between Macro Economic Activity and U. S. Energy Consumption." <u>Energy Modeling, Art, Science,</u> <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 62-102.
- (27) Maxim, L. D. and C. L. Brazie. "A Multistage Input-Output Model for Evaluation of the Environmental Inpact of Energy Systems." <u>IEEE Transactions on Systems, Man</u>, <u>and Cybernetics</u>, Vol. SMC-3, No. 6 (November, 1973), 583-587.
- (28) Spann, R. M. and E. W. Erickson. "Joint Costs and Separability in Oil and Gas Exploration." <u>Energy Modeling, Art</u>, <u>Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 309-250.

- (29) Erickson, E. W., R. M. Spann and R. Ciliano. "Substitution and Usage in Energy Demand: An Econometric Estimation of Long-Run and Short-Run Effects." <u>Energy Modeling, Art</u>, <u>Science, Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 190-208.
- (30) Khazzoom, J. D. "The F.P.C. Staff Econometric Model of Natural Gas Supply in the U. S." <u>Bell Journal of</u> <u>Economics and Management</u> <u>Sciences</u>, Vol. 2, No. 1 (Spring, 1971), 19-27.
- (31) Mount, T. D., L. D. Chapmand and T. J. Tyrrell. <u>Electricity</u> <u>Demand in the United States: An Econometric Analysis</u>. <u>Report No. ORNL-NSF-EP-49.</u> Oak Ridge, Ten.: Oak Ridge National Laboratory, February, 1973.
- (32) Mooz, W. E. "Projecting California's Electric Energy Demand." <u>Energy Modeling</u>, <u>Art</u>, <u>Science</u>, <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 266-290.
- (33) Forrester, J. W. <u>Urban Dynamics</u>. Cambridge, Mass.: MIT Press, 1969.
- (34) Forrester, J. W. <u>World</u> <u>Dynamics</u>. Cambridge, Mass: Wright-Allen Press, Inc., 1971.
- (35) Meadows, D. H., D. L. Meadows, J. Randers and W. W. Behrens III. <u>The Limits to Growth</u>. New York: Universe Books, 1972.
- (36) White, D. C. "Energy, the Economy, and the Environment." <u>Technology Review</u>, Vol. 74, No. 1 (October/November, 1971), 18-31.
- (37) Odum, H. T. "Energy, Ecology and Economics." <u>Ambio</u>, Vol. 2, No. 6 (December, 1973), 220-227.
- (38) Baughman, M. L. <u>Dynamic Energy System Modeling-Interfuel</u> <u>Competition</u>. Energy Analysis and Planning Group Report No. 72-1. Cambridge, Mass.: School of Engineering, Massachusetts Institute of Technology, August, 1972.
- (39) Baughman, M. L. "Energy System Modeling, Regulation and New Technology." Paper Presented at the Energy, Demand, Conservation and Institutional Problems Conference, Cambridge, Mass., Massachusetts Institute of Technology, February, 1973.
- (40) Garett, J. C. "System Modeling and Optimization of Investment and Capacity Expansion of an Electric Utility." (Unpublished Ph.D. dissertation, Oklahoma State University, July, 1973.)

- (41) <u>Statistical and Stochastic Techniques for Peak Power Demand</u> <u>Forecasting in Electric Utility Systems.</u> <u>PEREC Report</u> <u>Number 51.</u> Lafayette, Ind.: Purdue University, August, 1969.
- (42) Mow, C. C., W. E. Mooz and S. K. Anderson. <u>A Methodology</u> for Projecting Energy Demand of the Residential Sector of California. Report R-995-NSF/CSRA. Santa Monica, Calif.: Rand Corporation, March, 1973.
- (43) Salter, R. G. <u>A Probabilistic Forecasting Methodology</u> <u>Applied to Electric Energy Consumption</u>. Report R-993-NSF. Santa Monica, Calif.: Rand Corporation, June, 1973.
- (44) Sadiq, S. "Development and Application of a Numerical, Techno-Economic Energy Forecasting Model." (Unpublished Ph.D. dissertation, Oklahoma State University, May, 1971.)
- (45) Sadiq, S. and R. J. Schoeppel. "Development of a Numerical Techno-Economic Energy Forecasting Model for the U. S. and Its Relevance to Energy Policy Considerations." <u>Proceedings, Council of Economics Mineral and Energy</u> <u>Policy Session</u>. Annual AIME Meeting. Chicago: American Institute of Mining, Metelurgical and Petroleum Engineers, 1973, pp. 47-54.
- (46) Mooz, W. E. and C. C. Mow. <u>A Methodology for Projecting the Electrical Energy Demand of the Commercial Sector in California</u>. Report R-1106-NSF/CSRA. Santa Monica, Calif.: Rand Corporation, March, 1973.
- (47) Mooz, W. E. and C. C. Mow. <u>A Methodology for Projecting the Electric Energy Demand of the Manufacturing Sector in California</u>. Report R-991-NSF/CSRA. Santa Monica, Calif.: Rand Corporation, January, 1973.
- (48) Limaye, D. R. and J. R. Sharto. "Analytical Techniques for Energy Policy Evaluation." <u>Energy Modeling</u>, <u>Art</u>, <u>Science</u>, <u>Practice</u>. Working Papers for a Seminar on Energy Modeling. Washington, D. C.: Resources for the Future, Inc., 1973, pp. 316-368.
- (49) Peterson, E. R. "A Dynamic Programming Model for the Expansion of Electric Power Systems." <u>Management Science</u>, Vol. 20, No. 4, Part II (December, 1973), 656-664.
- (50) Federal Power Commission. "Electric Power Statistics." Washington, D. C.: U. S. Government Printing Office, January, 1962-December, 1973. (Monthly report.)
- (51) Federal Power Commission. <u>Steam-Electric</u> <u>Plant</u> <u>Construction</u> <u>Cost and Annual Production Expenses</u>. <u>11th-25th Annual</u> <u>Supplements</u>. Washington, D. C.: U. S. Government Printing Office, 1958-1972. (Issued annually.)

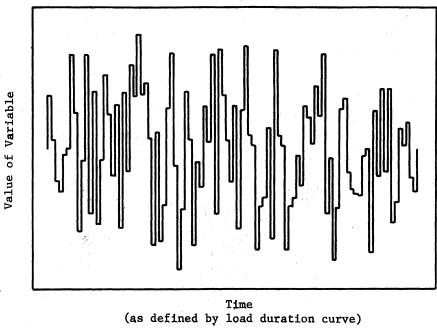
- (52) <u>Bituminous Coal Facts</u> 1972. Washington, D. C.: National Coal Association, 1973.
- (53) Federal Power Commission. <u>Statistics of Publicly Owned</u> <u>Electric Utilities in the United States</u>. Washington, D. C.: U. S. Government Printing Office, 1958-1973. (Issued annually.)
- (54) Federal Power Commission. <u>Statistics of Privately Owned</u> <u>Electric Utilities in the United States</u>. Washington, D. C.: U. S. Government Printing Office, 1958-1972. (Issued annually.)
- (55) Federal Power Commission. <u>Performance Profiles</u>, <u>Private</u>
 <u>Electric Utilities in the United States</u>, <u>1958-1970</u>.
 Washington, D. C.: U. S. Government Printing Office, 1973.

APPENDIX A

REPRESENTATION OF VARIABLES WITH PERIODIC FLUCTUATIONS

In several parts of the simulation it is necessary to be able to compare the demand for electrical energy in the region to other simulation variables. These variables include:

1. the availability of a group of generation facilities;


- 2. the demand for firm energy in other regions;
- 3. the demand for emergency energy in other regions;
- the demand for economy energy at a given price in other regions; and
- the supply of economy energy at a given price in other regions.

Since the demand for electrical energy fluctuates, it is represented by a load duration curve to describe how it varies during the period of a year. The load duration curve is derived by ordering the demands according to magnitudes. This is analogous to deriving a distribution function for a random variable. The variables which are compared to demand also fluctuate. Thus, it is necessary to describe how they vary throughout the period of a year. These variables could be reduced in the same manner as demand to obtain functions analogous to the load duration curve. However, when this technique is used, inconsistent time axes result. Each point along

load duration curve represents the demand at a point in time. Since the curve is obtained by ordering according to magnitude, two adjacent points on the curve may represent two widely separated points in time. This erratic time axis causes no great problem when the load duration curve is considered alone. However, if another variable, reduced using the technique, were to be compared with the load duration curve, the time axes for the two curves would not be consistent and errors could result.

To make accurate comparisons at a point in time on the load duration curve it is necessary to reduce these variables using the same time axis as the load duration curve. That is, each point on the curve for the reduced variable must correspond to the same point in time as for the load duration curve. Unfortunately, this results in an irregular and discontinuous curve. Figure 32 shows a small element of hypothetical curve resulting from the application of this technique.

It would be virtually impossible to use a curve such as the one shown in Figure 32 in the simulation. In order to gain any useful information from such a curve, statistical analysis techniques are necessary. For simulation purposes, the same element of the curve shown in Figure 32 could be represented with a frequency distribution as in Figure 33. If each element of the curve is reduced in a similar fashion, a relationship as shown in Figure 34 can be derived. In this form, the value of the variable is represented by a smooth curve through the average value of each element and the distribution of the variations from this average.

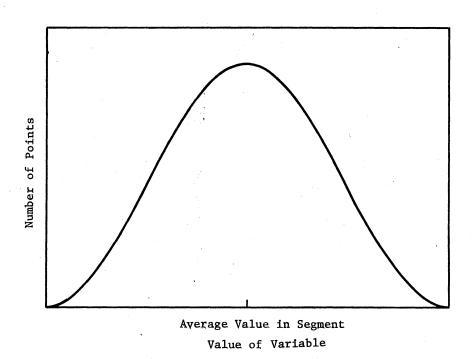


Figure 33. Distribution of Variations from Average

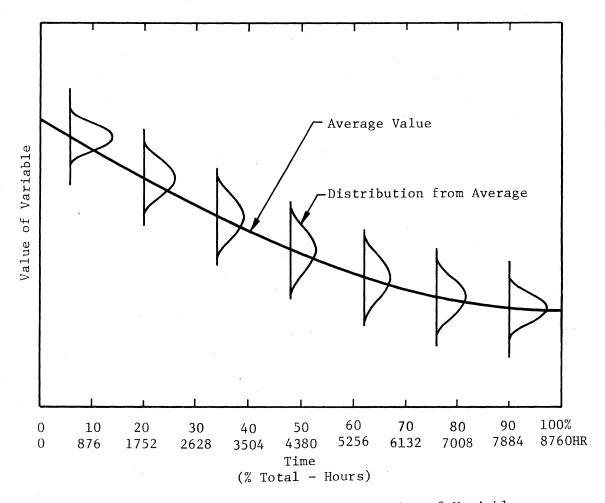
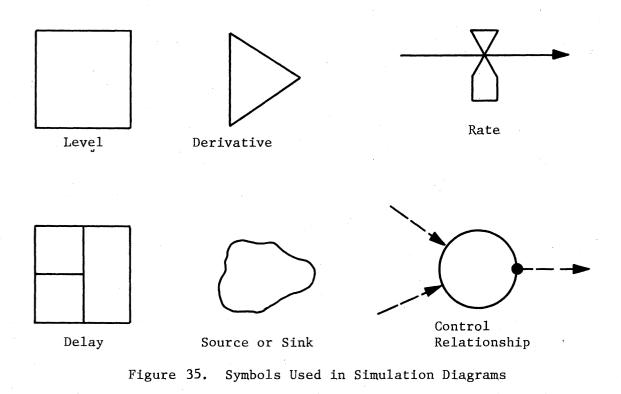


Figure 34. Stochastic Representation of Variable

The stochastic form shown in Figure 34 is desirable and should be used in developing the model when possible. Unfortunately, data which allow such a relationship to be derived for most of the variables is not available. In fact, even an average value curve may be more the product of guesswork than empirical techniques. Due to this lack of data, stochastic representation for these variables is not used in developing the model. For the present, stochastic representation will have to be considered only as a logical next step in improving the model.


APPENDIX B

NOMENCLATURE

The nomenclature used throughout this report in the simulation diagrams is based on the nomenclature developed by J. W. Forrester (1) for the same purpose. The elementary symbols are shown in Figure 35.

In simulating the energy system there are a number of variables which are described in the same way. For example, the generation facilities of different types and energy resources of different types. Also, some variables in planning and forecasting are represented in the same manner for a number of years. Where a number of variables are represented in the same way, a lot of clutter in the simulation diagrams tends to develop. For this reason, Forrester's nomenclature was modified to allow variables to be indexed. This can refer to either a "time" index or a "type" index or both. The kind of index is usually obvious from the context.

If a variable is indexed once, all symbols are represented as double lines. If it is indexed twice, all symbols are represented as triple lines. Examples of both are shown in Figure 36. This modification not only removes a lot of clutter from some simulation diagrams with little loss in information, it also shows at a glance the "dimension" of any variable or information flow in the system.

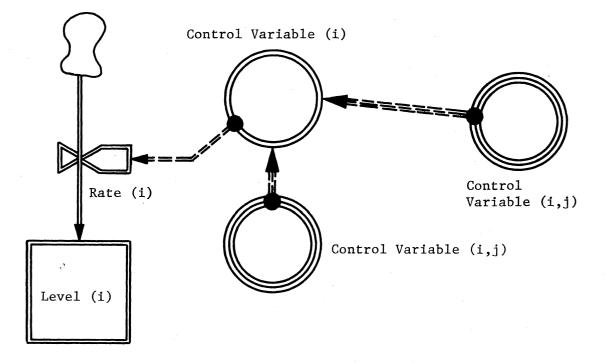


Figure 36. Example of Modified Symbols

APPENDIX C

VALIDATION DATA

Due to the nature of the simulation model and the inputs and parameters required, data often was not readily available in a usable form. Often, a considerable amount of judgment had to be exercised in selecting the exact numbers used. When possible, data supplied by the Federal Power Commission (50,51,53,54,55) was used. However, in many cases their data were not sufficient and other sources had to be tapped. A brief discussion of each of the inputs and parameters used in the validation follows.

Primary Inputs

Peak Electrical Demand

The peak electrical demand for the Oklahoma electric system was not directly available. However, total system energy demand was available in reference (50). The total net system energy was approximated by summing the net system energy for the four major electric utilities². Data for the Western Farmer's Electric Cooperative were not reported separately before 1963. For these years the values used

²Oklahoma Gas and Electric Company, Public Service Company of Oklahoma, Grand River Dam Authority, and Western Farmer's Electric Cooperative.

for that utility were extrapolated from the later data. Given the total net system energy, the peak demand was approximated using the load duration curve derived for the region. This curve results in a load factor of about 0.5. The derivation of the curve will be discussed later. The peak system demand data are shown in Figure 37.

Market Prices of Energy Resources

Almost all of the fuel used by power plants in Oklahoma (exclusive of hydroelectric facilities) during the validation period was natural gas. Thus, it was the only energy resource for which reliable data for the prices paid by electric utility companies could be found. The data used for this were obtained from reference (51). The values used for the validation run were the average of the price paid for all of the gas reported consumed by the four major electric utilities. They are shown in Figure 38.

Small amounts of fuel oil have been used at times by some of the electric utilities. This provided a few data points for oil price. However, there were not enough points to establish a good trend for the entire validation period. Information was available through 1969 for the average price at Oklahoma refineries (38). These data were used for this time period and were extrapolated for later years using the actual price paid as a guide. The values used in the validation are shown along with the data points for average price paid by the electric utilities in Oklahoma in Figure 38.

Even less coal has been purchased by the electric utility companies than oil. Thus, there was no good information regarding market prices from electric utility data. Instead, data for the average price at Oklahoma mines were used (52). Although it is unlikely that Oklahoma coal would have been used extensively if the utility companies had relied on this fuel, competitive forces should cause the Oklahoma mine price to reflect the cost of coal from other sources. The values used for coal price in the validation are shown in Figure 38.

Nuclear power plants were given little attention in Oklahoma during the validation period. Thus, there is little information about nuclear fuel prices in Oklahoma during this time. The price for nuclear fuel was arbitrarily set at 12¢/MMBTU at the beginning of the validation period and increase linearly to 18¢/MMBTU in 1973.

Energy Resources Available

The three variables describing energy resources available -Total Quantity of Each Energy Resource Available to Region, Fraction of Quantity Available to the Electric Utilities, and Fraction of Quantity Available as Long-Term Supplies - had little significance during the validation period. There was a sufficient supply of all energy resources. For this reason, no data were gathered. The inputs were arbitrarily set at values which allowed all supplies desired, to be purchased.

Primary Outputs

Generation Facilities Built

The data for generation facilities built were taken directly from the references (53) and (54), using only information for the four major electric utilities. The values used in the validation are shown in Figure 39.

Energy Generated by Each Type of Facility

Data concerning electrical energy generated were obtained from references (53) and (54). They are shown in Figure 40.

Energy Resources Consumed

Data for energy resources consumed were reported for each power plant in reference (51). Total use was derived by summing the use of individual plants. Natural gas was the only fuel used in significant quantities. The data are shown in Figure 41.

Electrical Energy Supplied to Region

Data was obtained for net electrical energy supplied by summing the net system energy for each of the four major electric utilities as discussed earlier. The data are shown in Figure 42.

Unmet Demands

There were no significant instances where electric demand was unmet in Oklahoma during the validation period. Thus, there are no data for this variable.

Total Cost of Generation

The total cost of generation depends, to some extent, on the method used to calculate the capital cost of the generation facilities. For this reason it was felt that for validation the variable cost would provide a better comparison. The data for this variable were obtained for 1963-1970 from reference (55). Since there was a dramatic rise in costs at the end of the validation period it was deemed necessary to extend the data beyond 1970. This was done by averaging the variable cost of each plant reported in reference (51). The costs were weighed according to electrical energy generated. The data are shown in Figure 43.

Primary Parameters

Demand Characteristics

No data were available for the demand characteristics (load duration curve) for the combined system of the electric utilities in Oklahoma. Typical load duration curves for the validation period were obtained from both Public Service Company of Oklahoma and Oklahoma Gas and Electric Company. Since both of these companies supply widespread regions in the state, it was felt that the load duration curves for either company should be fairly representative of the load duration of the state. The load duration curve used was obtained by averaging the curves for a number of years. The curve derived is shown in Figure 44.

Capacity Availability

The availability of each type of generation facility needs to be defined. Furthermore, this availability needs to be defined in relation to the time axis described by the load duration curve. The technique for developing the required curve is described in Appendix A. Unfortunately, sufficient data were not available to use such techniques. Since natural gas boilers are the only type of facility which has been used extensively in the region, this was the only type for which data were available. Unfortunately, this data was reduced by "magnitude ordering" the outages. Thus, it could not be directly converted to the desired time base. For lack of better information, this curve was used on an "as is" basis.

Natural gas boilers have typically had fewer problems than other types of generation facilities using heat energy. Thus, availability curves were generated for coal boilers, gas turbines, and nuclear plants by arbitrarily decreasing the availability for natural gas boilers. On the other hand, hydroelectric generation facilities usually have very few outage problems. However, in Oklahoma they are often severely limited by water flow rates. This causes some problems in formulating the availability curve. The water flow rate can vary considerably throughout the year as well as from year to year. Also, there is a certain amount of peaking capability at most times, since the water flow can be stored for short periods in a lake. With all of this in mind, an availability curve was derived using the average 'load factor as the main criteria in developing the curve. All of the availability curves used in the validation run are shown in Figure 45.

Capital Cost of Generation Facilities

Capital cost data for steam powered plants were available from reference (51). The values used for coal and natural gas plants were derived by averaging costs for new plants during the validation

period. Data from other regions were included in these calculations. Due to the long construction time required for capacity construction and the rapid increase in its cost, this scheme was deemed insufficient for nuclear capacity. The cost for it was arbitrarily increased to 50% greater than the average cost. Data were not available from the same source for gas turbine capital cost. Discussions with people in the industry indicated gas turbines usually cost about 75% of the cost of natural gas boilers. The capital costs used in the validation run are shown in Table X. These values are meant to reflect the cost seen by the electric utilities during the validation period and should not be considered as indicative of current costs.

Yearly Fixed Costs for Generation Facilities

The yearly fixed cost of generation facilities is directly related to the capital cost. For the validation run the capital cost was amortorized at 8% interest using equal payments over an assumed thirty year life span. The results are shown in Table X. Again, these values are meant to reflect the conditions during the validation period and not present conditions. In reality there are probably some noncapital fixed costs associated with maintenance. These costs are included with the variable costs.

Non-Fuel Variable Costs

The non-fuel variable costs were considered equivalent to operation and maintenance cost. Data for this were available from reference (51). Again, data for other regions were used. The variation in these costs were considerable. Natural gas boiler plant costs ranged

from 0.3 - 0.4 mills/KWH for newer plants and 0.5 - 1.0 mills/KWH for older plants. Coal plants costs ranged from 0.6 - 1.0 mills/KWH for new plants and 1.0 - 3.0 mills/KWH for older plants. The variations for nuclear plants was even more dramatic with costs ranging from 0.4 - 19.3 mills/KWH.

No data were available from the same source for gas turbine costs. Discussions with people in the industry indicated that these run considerably higher than the costs for natural gas boilers.

With variations such as these it is difficult to select a single value for each type of capacity which is representative of the costs. The values used are shown in Table X and represent mid-range values.

Heat Rates

Heat rate information was available from reference (51) for all but gas turbine generation. The heat rate values tended to vary considerably. The heat rates for natural gas boilers were around 10,000 BTU/KWH for all new plants and ranged up to 15,000 BTU/KWH for older plants. The heat rate for new coal plants ranged from 8550 BTU/KWH to 10,500 BTU/KWH depending upon the type of plant, quality of coal used, and the pollution equipment installed. For older plants it ranged up to 16,000 BTU/KWH. All nuclear plants are relatively new and their heat rates ranged from 10,000 BTU/KWH to 12,000 BTU/KWH, depending upon the type of plant. Gas turbine data were not included in the source, but their heat rates run considerably lower than modern fossil fuel plants. This allows their heat rates to be inferred.

The values used for heat rates in the validation are shown in Table X. These values represent mid-range values for the newer plants.

Construction Time

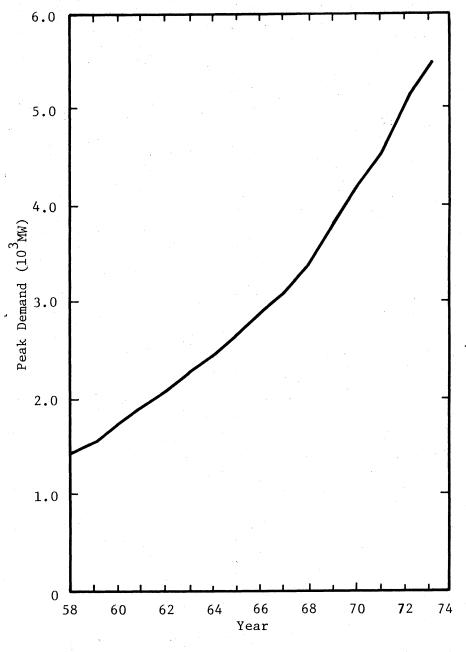
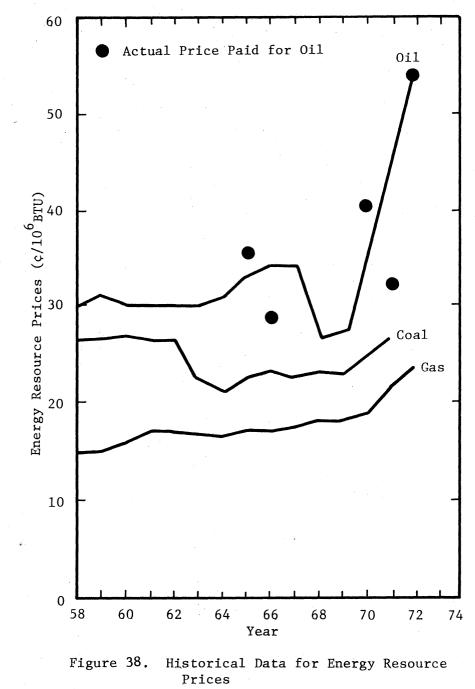
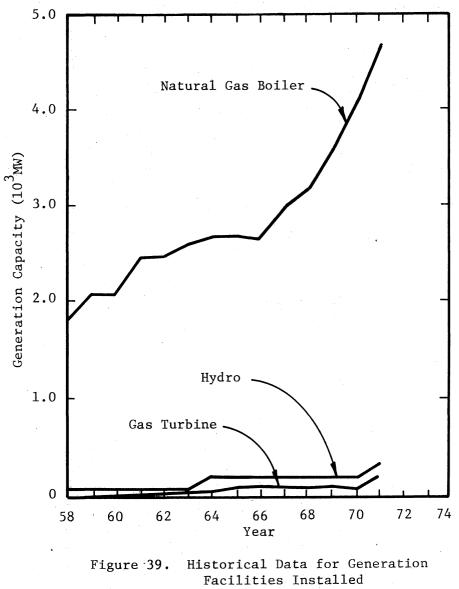
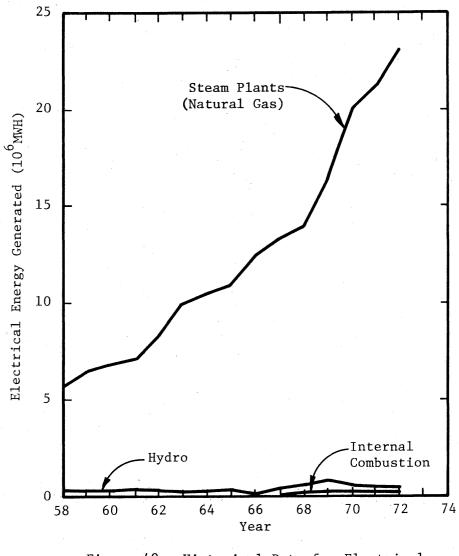
The construction times used in the validation program are shown in Table X. These values resulted from discussions with people in the electric utility industry.

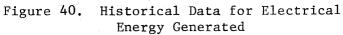
Secondary Inputs and Parameters

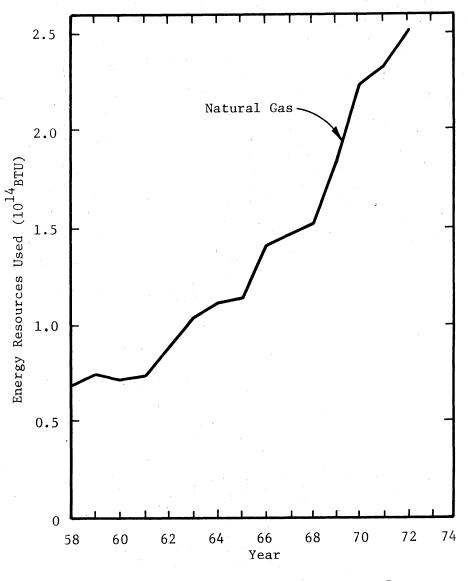
Few data were readily available for the secondary inputs. This is especially true of the variables describing supplies and demand of the various energy forms. In view of this lack of data, all shortterm inter-regional transactions were included in the model as economy energy supply and demands. The supplies and demands were then arbitrarily defined so as to yield results in the correct range. Interregional transactions were relatively small during the validation period. Thus, this simplification should cause no major problems. The supplies and demands used in the validation are shown in Figure 46.

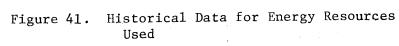
The other two secondary inputs - maximum capacity allowed and capital limits - were not important factors during the validation period. Thus, they were set at sufficiently high values to prevent them from affecting the simulation.

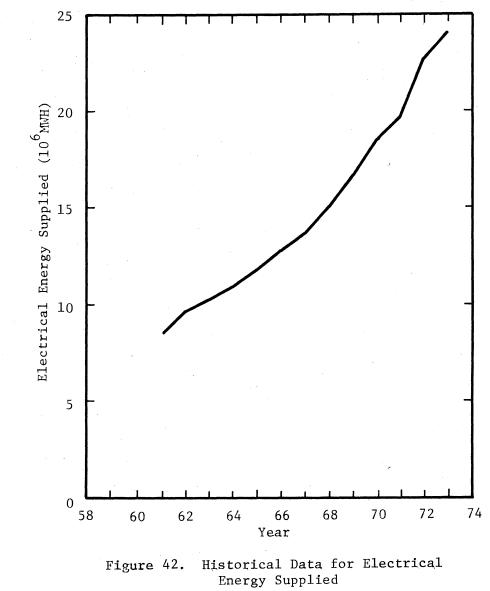
Many of the secondary parameters were rather arbitrary. Table XI summarizes the values used in the validation.

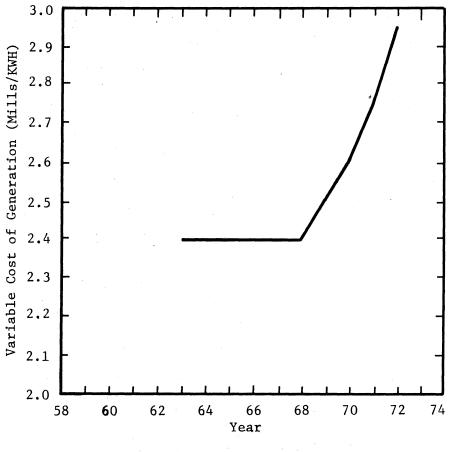





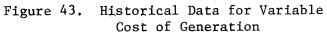

Figure 37. Historical Data for Peak System Demand

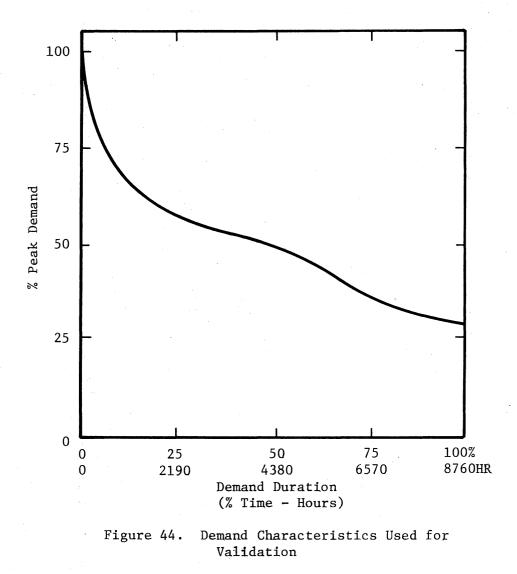












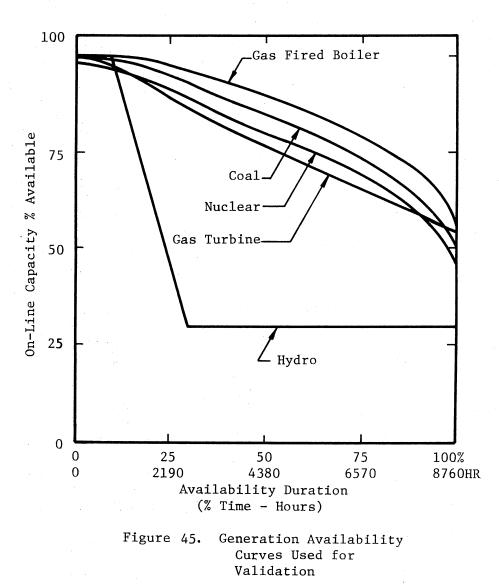
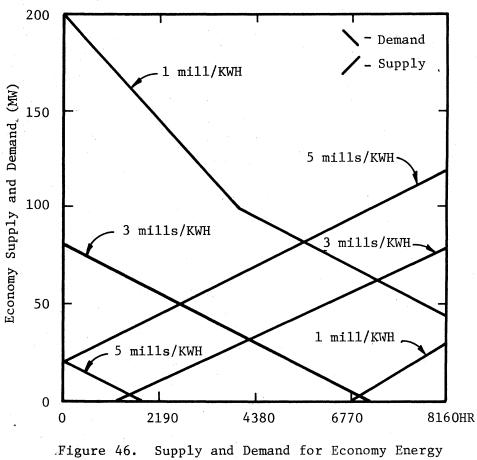


TABLE X


Capacity Type	Capital Cost (\$/KWH)	Yearly Fixed Cost (\$/KWH-yr)	Non-Fuel Variable (mills/KWH)	Heat Rates (BTU/KWH)	Construction Time (Yr)
Natural Gas Boilers	100	8.88	0.50	10,000	4
Coal Boilers	145	12.87	0.90	9,250	6
Nuclear	315	28.00	1.90	11,000	9
Gas Turbine	85	7.55	1.75	11,500	2

PARAMETERS USED IN VALIDATION

TABLE XI

SUMMARY OF SECONDARY PARAMETERS

Variable Name	Values Used
Expected Regional Demand Characteristics	Same as Actual Demand Characteristics
Characteristics of Demand from Firm Power Sales	Not Required
Expected Characteristics from Firm Power Sales	Not Required
Desired Reserve Capacity	15% Minimum
Proportionality Constant Relating Deliverability to Total Energy Resource Supplies	Relevant only for Natural Gas 0.10/year
Forecasting Delay Constants	Inputs – 2 years Growth Rates – 3 years
Energy Resource Supply Delay Constants	5 years
Long-Term Supply Price Delay Constants	5 years

Used for Validation

APPENDIX D

COMPUTER PROGRAM

This appendix contains a complete FORTRAN listing of the model. The listing is for the program as it was used in the boiler fuel study. Statements with CC in the last columns represent additions to the base model which were necessary for this study. Statements with CCR1 are statements that were used for regulation 1 in this study.

A list of the important variables and their definitions is presented in Table X. The variables are grouped according to their function. After the definition of each variable the proper units are shown in parenthesis. It is not necessary to use the units shown as long as a consistent set is used. The output for the simulation, however, assumes the units shown are used.

The computer program consists of a series of subroutines. The main program serves only to control the simulation. That is, it determines when to call subroutines which initialize the system, output information, input information, updates levels, etc. All of the detailed calculations are made in subroutines.

All information used in the simulation, except for simulation control variables, is obtained through two input subroutines - ELIN and ELIP. The simulation control variables are read in or specified in the main program. ELIN is called on only once, at the beginning of the simulation. It reads in all of the initial conditions and

values of parameters which do not normally change during the simulation. ELIP is called at each time step in the simulation. It reads in values for all inputs and parameters which may change during the simulation.

ELIN is a regular part of the simulation program. A 8G10.3 format is used for all decimal variables. The G format is used to provide maximum flexibility. A 2015 format is used for all interger variables. The standard FORTRAN practice of using variables starting with letters I through N for interger variables is used throughout. The order of data input is seen in the listing of ELIN.

ELIP is a user supplied subroutine. However, a user of the model may wish to use the subroutine presented in the listing. In this version, all inputs and parameters not read in ELIN are read at the beginning of the simulation by ELIP. This part of the subroutine is skipped during the rest of the simulation and only changes in variables are considered. The only FORTRAN statements required by the user are those which specify changes in variables. The formats and nomenclature for this version of ELIP are the same as in ELIN.

TABLE XII

DEFINITION OF VARIABLES IN COMPUTER PROGRAM

Simulation Control

BEGTIM - Starting date for simulation. (YR)
DT - Integration time step. (YR)
FINTIM - Ending date for simulation. (YR)
NDT - Integration steps per year. (YR⁻¹)
NOUT - Number of integration steps between outputs. (-)
NRD - Computer reader number. (-)
NW - Computer printer number. (-)
TIME - Time (or date) in simulation. (YR)

Inputs

CAPM(I,J) - Maximum capacity of type I that is allowed to be built to come on line in year J. (MW) CPTLM - Maximum rate at which capital can be committed for new generation facilities. (\$/YR) ECDEM(I,J) - Demand for economy energy at price PDEM(I). (MW) ECSUP(I,J) - Supply of economy energy at price PSUP(I). (MW)ELDM - Peak demand for electricity. (MW) EMCOS - Cost of emergency energy. (\$/MWH) EMER(I) - Demand for emergency energy. (MW) EMPRC - Price received for emergency energy sales. (\$/MWH) ERAP (I) - Fraction of energy resource type I available to electric utilities. (-) ERAQ(I) - New energy resources of type I available in region. (BTU/YR)ERFLT(I) - Fraction of energy resource type I available as long-term supply. (-) ERP(I) - Price of energy resource type I. (\$/BTU) FIRMX - Maximum firm capacity purchase allowed. (MW) FRMSM - Maximum firm capacity sale allowed. (MW) FRMVC(I) - Variable cost of firm energy purchased vs. capacity

purchased. (\$/MWH)

FRMVP(I) - Variable price of firm energy sold vs. capacity sold. (\$/MWH) FXCF - Fixed cost or price of firm capacity. (\$/MW-YR) PDEM(I) - Price levels for economy energy demand. (\$/MWH) PSUP(I) - Price levels for economy energy supply. (\$/MWH)

Parameters

AFDEM(I) - Anticipated demand from firm capacity sales. (MW) AVL(I,J) - Availability of type I capacity. (-) CPCOS(I) - Investment cost of capacity type I. (\$/MW) DCNST(I) - Deliverability of type I declining resources. (YR^{-1}) DUR(I) - Load duration of demand in region. (-) EMXCN(I) - Maximum energy which can be supplied with type I contracted capacity. (MWH/MW-YR) FC(I) - Fixed cost of capacity type I. (\$/MW-YR) FSDM(I) - Demand which arises from firm capacity sale. (MW) FSF - Ratio of peak demand from firm capacity sale to capacity sold. (-) HTRT(I) - Heat rate for capacity type I. (BTU/MWH) ICPT(I) - Time required for construction of type I capacity. (YR) ICTT(I) - Length of capacity contract I. (YR) IFF(I) - Array for function description - altered. (*) IFS(I) - Array for function description - standard. (*) IYPLN - Length of planning period. (YR) K1 - Number of price levels in supply of economy energy. (-) K2 - Number of price levels in demand for economy energy. (-) N - Total number of capacity types considered. (-) NCAP(I) - Specifies capacity I's classification (1 - inside region, 0 - outside region) NER - Number of energy resources types considered. (-) NERT(I) - Classification of energy resource I (0 - declining, 1 - constant)RES - Fraction of reserve capacity desired. (-) VCNF(I) - Non-fuel variable cost of operation for capacity type I. (\$/MWH)

* See subroutine AFNC

с.	ls
	CAPOL1(I) - On-line capacity delay level 1 for type I. (MW)
	CAPOL2(I) - On-line capacity delay level 2 for type I. (MW)
	CAPOL3(I) - On-line capacity delay level 3 for type I. (MW)
	CAPSR(I) - Semi-retired capacity type I. (MW)
	<pre>CERCNC(I,J) - Constant long-term energy resource supplies of type I to be available for J years. (BTU/YR)</pre>
	<pre>CPCN(I,J) - Capacity type I under construction J years from</pre>
	CPCNC(I,J) - Type I long-term capacity contracts J years from expiring. (MW)
	CPCNCT(I) - Total long-term type I capacity contracts. (MW)
	CPCNF(I,J) - Future type I long-term capacity contracts J years from being active. (MW)
	CPCNFT(I) - Total future type I long-term capacity contracts. (N
	CPCNT(I) - Total capacity type I under construction. (MW)
	<pre>ERCN(I) - Supplies of energy resource type I. declining - (BTU)</pre>
	<pre>FERCNC(I,J) - Constant energy resource type I supply available</pre>
	SMD - Smoothed peak demand. (MW)
	SMDG - Smoothed growth rate of peak demand. (YR^{-1})
	<pre>SMERQ(I) - Smoothed quantity of new resource type I available. (BTU/YR)</pre>
	SMERQG(I) - Smoothed rate of change of quantity of new resource type I available. (YR^{-1})
	SMERQG(I) - Smoothed rate of change of quantity of new resource type I available. (YR^{-1})
	<pre>SMRA(I) - Smoothed fraction of new resource type I available to electric utilities. (-)</pre>
	SMRAG(I) - Smoothed rate of change of fraction of new type I resources available to electric utilities. (YR ⁻¹)
	SMRP(I) - Smoothed price of resource type I. (\$/BTU)
	SMRPG(I) - Smoothed rate of change of price or resource type I. (YR ⁻¹)

ELDML - Previous value of peak demand. (MW)

ER	<pre>APL(I) - Previous value of fraction of new energy resource type I available to electric utilities. (-)</pre>
ER	AQL(I) - Previous value of quantity of new energy resource type I available. (BTU/YR)
ER	RPL(I) - Previous value of energy resource price. (\$/BTU)
Rates	
DC	APL1(I) - Rate at which capacity type I comes on-line. (MW/YR)
DC	CAPL2(I) - Rate at which capacity type I enters delay level 2. (MW/YR)
DC	CAPL3(I) - Rate at which capacity type I enters delay level 3. (MW/YR)
DC	APSR(I) - Rate at which capacity type I is retired. (MW/YR)
DC	<pre>PCN(I) - Rate at which construction starts on new capacity type I. (MW/YR)</pre>
DC	PCNC(I) - Rate at which new long-term capacity contract type I comes into use. (MW/YR)
DC	PCNF(I) - Rate at which new long-term capacity contract type I is made. (MW/YR)
DE	RCNC(I) - Rate at which new long-term supplies of energy resource type I are secured. declining - (BTU/YR), constant - (BTU/YR-YR)
DS	MD - Rate of change of smoothed peak demand. (MW/YR)
DS	MDG - Rate of change of smoothed rate of change of peak demand. (YR^{-2})
DS	MERQ(I) - Rate of change of smoothed new energy resources of type I available. (BTU/YR-YR)
DS	MRA(I) - Rate of change of smoothed fraction of new resource type I available to region. (YR ⁻¹)
DS	MRAG(I) - Rate of change of smoothed rate of change of new resource type I available. (YR ⁻²)
DS	<pre>MRP(I) - Rate of change of smoothed resource price of type I. (\$/BTU-YR)</pre>
DSI	<pre>MRPG(I) - Rate of change of smoothed rate of change of resource price of type I. (YR⁻²)</pre>
DSI	MRQG(I) - Rate of change of smoothed rate of change of new resource type I available. (YR ⁻²)
ER	USED(I) - Rate at which declining resource type I is used. (BTU/YR)

Output Variables Not Previously Listed

EXCPCR(I) - Rate at which long-term capacity contracts of type I expire. (MW/YR)

ACCAP - Rate at which capital commitments are made for new generation facilities. (\$/YR) CAPP(I,J) - Capacity planned of type I for year J. (MW) CFEB - Cash flow for economy energy purchased. (\$/YR)CFERU(I) - Cash flow for energy resources of type I purchased. (\$/YR) CFES - Cash flow from economy energy sold. (\$/YR) CFFB - Cash flow for firm energy purchased. (\$/YR) CFFS - Cash flow from firm energy sold. (\$/YR) CFMB - Cash flow for emergency energy purchased. (\$/YR)CFMS - Cash flow from emergency energy sold. (\$/YR) ERC(I) - Electrical energy generated by capacity type I. (MWH/YR) EREB - Economy energy purchased. (MWH/YR) ERES - Economy energy sold. (MWH/YR) ERFB - Firm energy purchased. (MWH/YR) ERFS - Firm energy sold. (MWH/YR) ERMB - Emergency energy purchased. (MWH/YR) ERMS - Emergency energy sold. (MWH/YR) ERUR - Electrical energy supplied to region. (MWH/YR) FELDM(J) - Forecast of peak demand in year J. (MW) FERAQ(I,J) - Forecast of new energy resources of type I available in year J. (BTU) FERP(I,J) - Forecast price of energy resource type I in year J. (\$/BTU) FIRM - Firm capacity purchased. (MW) FMSL - Firm capacity sold. (MW) TGCOS - Total generation cost for supplying electrical energy to region. (\$/MWH) UEDF - Unmet demand from firm capacity sold. (MWH/YR) UEDR - Unmet demand in region. (MWH/YR) VGCOS - Variable cost of generation for electrical energy supplied to region. (\$/MWH)

Computer Program Listing

	0000000011111111122222222233333333334444444444	
	1234567890123456789012345678901234567890123456789012345678901234567890123	4567890
CARD		
1	C***** COMMON VARIABLES ************************************	
2	C***** SIMULATION CONTROL VARIABLES	
3	COMMON TIME, FINTIM, BEGTIM, DT, NUT, NW, NRD, NOUT	
4	C+++++ BASIC INPUTS	
5	CGMMON_ECSUP(3,42),ECCEM(3,42),CAPM(5,10),DUR(42),EMER(42),	
6	1FSDM(42), FRMVC(20), FRMVP(20), PSUP(3), PDEM(3), ERP(4), ERAP(4),	
78	2ERAQ(4),ERFLT(4),ELDM,FXCF,FIRMX,FRMSM,EMPRC,EMCOS,CPTLM C***** PARAMETERS	•
°.		
10	COMMON AVL(9,42),AFDEN(21),VCNF(9),HTRT(9),EMXCN(1),FC(5),CPCOS(5) 1.DCNST(4).RES.FSF	
11	COMMON NCAP(5),ICPT(5),ICTT(1),IFF(5),IFS(5),ICNTIM(4),	
12		
13	1NERT(4),NERCT(4),NERDT(4),N,NER,K1,K2,IYPLN C***** LEVELS	
14		
15	COMMON CERCNC(3,20), FERCNC(3,10)	
16	CCMMON CPCN(4,20),CPCNC(1,30),CPCNF(1,10),SMRP(4),SMRPG(4),SMRA(4)	
17	1, SMRAG(4), SMERQ(4), SMERQG(4), CPCOL(4), CAPOL1(4), CAPOL2(4),	
18	2CAPOL3(4), CAPSR(4), CPCNCT(1), CPCNT(4), CPCNFT(1), ERCN(4), ERCNS(4),	
	3 ERCNM(4), SMD, SMDG C ***** RATES	
20		
20	COMMON DSMRP(4), DSMRPG(4), DSMRA(4), DSMRAG(4), DSMRAG(4), DSMRQG(4),	
22	1DCPCNF(4), DCPCN(4), DCAPL1(4), DCAPL2(4), DCAPL3(4), DCAPSR(4),	
23	2DCPCNC(1), EXCPCR(1), DERCNS(4), DERCNC(4), ERCCF(4), ERUSED(4),	
23	3CFERU(4),DERUP(4),DSMD,DSMDG C***** DERIVATIVES	
25		
26	COMMON ERPL(4),ERAPL(4),ERAQL(4),ELOML C***** INTERNAL VARIABLES	
27	C***** INTERNAL VARIABLES CEMMON FERAQ(4,10),FERP(4,10),CAPP(5,10),AA(42),SCLCP(9),ERUP(4),	
28	1VC(9), ENR(9), FCPL(9), FCP(9), ERC(9), CAPMX(5), FELDM(10), CAPMAX(10),	
29	2ENRMX (5), ERN (5), CAPD(10), ERUS (5), ELLLOW(4), DERATE(9), ERAV(4)	
30	COMMON SCLDM, SCLDF, FIRM, FMSL, ERFB, ERFS, EREB, ERES, ERMB, ERMS, CFFB,	
31	1CFEB,CFES,UEDR,UEDF,ERUR,CFFS,VGCOS,CFMB,CFMS,ACCAP,TGCOS	
32	COMMON NR(20,2), NS(21), NC(10), KRANK, NN, III, IL	
33	C***** FUNCTION VARIABLES	
34	COMMON XFNC(25,21,2),IFNC(25,5),IERROR	
35	NRD=5	
36	Nw=6	
37	READ(NRD,1000) BEGTIM,FINTIM,DT	
38	READ(NRD,1001) NOUT	
39	WRITE(NW,1002) BEGTIN,FINTIN,DT,NOUT	
40	NGT = $[F(x(1-2)T+1)]$	
41		
42	NOTEO	
43	CALL ELIN	
44	BT=BEGTIM+.01	
45	100 CALL ELIP	· · · · ·
46	IF(TIME.GT.BT) GO TO 105	
47		
48	IT2=IFIX(FINTIM+.01)	
49	WRITE(NW, 1003)	
50	WRITE(NW,1003) WRITE(NW,1004) IT1,IT2,N,NER	
51	105 CALL ALGEL	
52	IF(NOT.NE.O) GO TO 110	
53	CALL OUTPUT	
54	110 NOT=NOT+1	

	00000000111111111222222223333333333334444444444
CARD	
55	IF(NOT.GE.NOUT) NOT=0
56	IF(TIME.GE.FINTIM) GO TO 200
57	TIME=TIME+DT
58	
	CALL ELUO
59	GO TO 100
60	200 CONTINUE
61	1000 FORMAT(8G10-3)
62	1001 FORMAT(2015)
63	1002 FORMAT(10H DATA DUMP//3G15.4,15)
64	1003 FORMAT('1'//////////// 0X,40H ************************************
65	1***//40X,40H DYNAMIC REGIONAL ENERGY SYSTEM ANALYSIS//44X,
66	23 2H ELECTRICAL ENERGY SUPPLY SECTOR)
67	1004 FORMAT(///////46x,15H SIMULATION FOR,15,3H TO,15//////48X,
68	112,22H TYPES OF POWER PLANTS//46X,12,26H FORMS OF ENERGY RESOURCES
69	2)
70	STOP
71	END
72	
73	
74	C***** INITIALIZE NON-VARIING PARAMETERS
75	READ(NRD,1001) N,NER,K1-K2,IYPLN
76	WRITE(NW+1001) N+NER+K1+K2+IYPLN
77	READ(NRD,1001) (NERT(I),I=1,NER)
78	WRITE(NW.1001) (NERT(I).I=1,NER)
79	DO 95 I=1.NER
80	IF(NERT(I).EQ.0) GO TO 90
81	READ(NRD, 1001) NERCT(I), NERDT(I)
82	WRITE(NW,1001) NERCT(I),NEROT(I)
83	GO TO 95
84	90 READ(NRD,1000) DCNST(I)
85	WRITE(NW,1000) DCNST(I)
86	95 CONTINUE
87	READ(NRD,1001) (IFS(I), [=1,5)
88	wRITE(NW,1001) (IFS(I),I=1,5)
89	READ(NRD,1001) (IFF(I),I=1,5)
90	WRITE(NW,1001) (IFF(I),I=1,5)
-	
91	READ(NRD, 1001) (ICPT(I), I=1, N)
92	WRITE(NW, 1001) (ICPT(I), I=1, N)
93	READ(NRD,1001) (NCAP(I),I=1,N)
94	WRITE(NW, 1001) (NCAP(I), I=1, N)
95	REAC(NRD,1001) (ICNTIM(I),I=1,NER)
96	WRITE(NW,1001) (ICNTIM(I), I=1, NER)
97	C***** INITIALIZE LEVELS
98	READ(NRD,1000) SMD, SMDG
99	WRITE(NW,1000) SMD,SMDG
100	READ(NRO,1000) (SMRP(I),I=1,NER)
101	WRITE(NW,1000) (SMRP(I),I=1,NER)
102	READ(NRD,1000) (SMRPG(I),I=1,NER)
103	WRITE(NW,1000) (SMRPG(I), $I=1$,NER)
104	READ(NRD,1000) (SMRA(I),I=1,NER)
105	WRITE(NW,1000) (SMRA(I),I=1,NER)
106	READ(NRD,1000) (SMRAG(I),I=1,NER)
107	WRITE(NW,1000) (SMRAG(I),I=1,NER)
108	READ(NRD,1000) (SMERQ(I),I=1,NER)
100	UENTHURDEAAAE TOLEVETTEET ET URUF

	•			
	000000001111111112222	2222223333333333444	444444455555555555666666666667777 23456789012345678901234567890123	777 777 8 4567 890
CARD				
109	WRITE(NW,1000) (S	MERQ(I),I=1,NER)		
110		MERQG(I), I=1,NER)		
111		MERQG(I), I=1,NER)		
112	RÉAD(NRD,1000) (C			
113	WRITE(NW,1000) (C			
114		APOL1(1), I=1,NER)		
115		APOL1(I), I=1,NER)		
116	READ(NRD,1000) (C			
117		APOL2(I), I=1,NER)		
118	READ(NRD,1000) (C			
119		APOL3(I),I=1,NER)		
120	READ(NRD,1000) (C	APSR(I),I=1,NER)	•	
121	WRITE(NW,1000) (C	APSR(I), I=1, NER)		
122	READ(NRD,1000) (C	PCNT(I), I=1,NER)		
123	WRITE(NW,1000) (C	PCNT(I),I=1,NER)		
124	READINRD,1000) (E			
125	WRITE(NW,1000) (E			
126	READ(NRD,1000) (E			
127	WRITE(NW,1000) (E			
128	DO 100 I=1.NER			
129	NA=ICPT(I)*NDT			
130	READ(NRD,1000) (C			
131	100 WRITE(NW,1000) (C	PUNII,KI,K=I,NAJ		
132	NA=N-NER			
133	IF(NA.EQ.O) GO TO			
134	READ(NRD,1001) (I			
135	WRITE(NW,1001) (I			
136	READ(NRD,1000) (C	PCNCT(I), I=1,NA)		
137	WRI TE(NW,1000) (C	PCNCT(I),I=1,NA)		
138	READ(NRD,1000) (C	PCNFT(I),I=1,NA)		
139	WRITE(NW,1000) (C	PCNFT(I), I=1,NA)		
140	DO 110 I=1.NA			
141	NB=ICTT(I)*NDT			
142		PCNC(I,K),K=1,NB)		
143	110 WRITE(NW,1000) (C			
144	DO 120 I=1.NA			
145	NB=ICPT(I+NER)*NO	T		
146		PCNF(I,K),K=1,NB)		•
-				
147	120 WRITE(NW, 1000) (C	PUNF(1,K),K=1,N0)		
148	200 DO 140 I=1,NER			
149	IF(NERT(I).EQ.0)	60 10 140		
150	K=NERCT(I)*NDT			
1 51		ERCNC(I,J),J=1,K)		
152		ERCNC(I,J),J=1,K)		
153	K=NERDT(I)*NDT			
154	READ(NRD,1000) (F	ERCNC(I,J),J=1,K)		
155	WRITE(NW,1000) (F	ERCNC(I,J),J=1,K)		
156	140 CONTINUE			
157	C***** INITIALIZE DE	RIVATIVES		
158	READ(NRD, 1000) EL			
159	WRITE(NW,1000) EL			
160	READ(NRD,1000) (E			
161	WRITE(NW,1000) (E			
162	READ(NRD,1000) (E			

	· · · · · · · · · · · · · · · · · · ·	
	0000000011111111122222222233333333334	4444444455555555555666666666666777777777
	1234567890123456789012345678901234567890	1234567890123456789012345678901234567890
CARD		
163	WRITE(NW,1000) (ERAPL(I),I=1,NER)	
164	READ(NRD, 1000) (ERAQL(I), I=1, NER)	
165	WRITE(NW,1000) (ERAQL(I),I=1,NER)	
166	1000 FORMAT(8G10.3)	
167	1001 FORMAT(2015)	
168	WRITE(NW,1002)	
169	1002 FORMAT(' END INITIAL')	
170	RETURN	
171	END	
172		
173	SUBROUT INE EL IP	
174	IF(TIME.NE.BEGTIM) GO TO 201 C***** READ PARAMETERS AND INPUTS	
175	C***** READ PARAMETERS AND INPUTS READ(NRD,1000) RES,FSF,FXCF,FIRMX,	CONCH CLON. CHORC . CHOOS .COTIN
176 177		
178	WRITE(NW,1000) RES,FSF,FXCF,FIRMX,	
179	READ(NRD,1000) (CPCOS(I),I=1,N)	
180	WRITE(NW,1000) (CPCOS(I),I=1,N) READ(NRD,1000) (FC(I),I=1,N)	
181	WRITE(NW,1000) (FC(I),I=1,N)	
182	NA=N+NER	•
183	READ(NRD,1000) (HTRT(I),I=1,NN)	
184	WRITE(NW, 1000) (HTRT(I), I=1, NN)	
185	READ(NRD,1000) (VCNF(I),I=1,NN)	1
186	WRITE(NW,1000) (VCNF(I),I=1,NN)	
187	READ(NRD,1000) (AFDEM(I),I=1,21)	
188	WRITE(NW,1000) (AFDEM(I), I=1,21)	
189	DO 100 I=1,NN	
190	REAC(NRD,1000) (AVL(I,K),K=1,42)	
191	100 WRITE(NW,1000) (AVL(I,K),K=1,42)	
192	DO 101 1=1.K1	
193	READ(NRD,1000) (ECSUP(I,K),K=1,42)	
194	101 WRITE(NW,1000) (ECSUP(I,K),K=1,42)	
195	DO 102 I=1,K2	
196	READ(NRD,1000) (ECDEM(I,K),K=1,42)	
197	102 WRI TE(NW,1000) (ECDEM(I,K),K=1,42)	· · · · · ·
198	READ(NRD, 1000) (DUR(I), I=1,42)	
199	wRITE(Nw,1000) (DUR(I), $I=1,42$)	· · · ·
200	READ(NRD, 1000) (EMER(I), I=1,42)	
201	WRITE(NW,1000) (EMER(I),I=1,42)	
202	READ(NRD,1000) (FSDM(I),I=1,42)	
203	WRITE(NW,1000) (FSDM(I),I=1,42)	
204	READ(NRD,1000) (FRMVC(1),I=1,20)	
205	wRITE(NW,1000) (FRMVC(I),I=1,20)	
206	READ(NRD,1000) (FRMVP(I),I=1,20)	
207	WRITE(NW,1000) (FRMVP(I),I=1,20)	
208	DO 103 I=1,N	
209	REAC(NRD,1000) (CAPM(I,K),K=1,IYPL	
210	103 WRITE(NW,1000) (CAPM(I,K),K=1,IYPL	NJ
211	READ(NRD, 1000) (PSUP(I), I=1,K1)	
212	WRITE(NW,1000) (PSUP(I),I=1,K1)	
213	READ(NRD,1000) (PCEM(I),I=1,K2)	
214	WRITE(NW,1000) (PDEM(I),I=1,K2)	
215	READ(NRD,1000) (ERP(I),I=1,NER)	
216	WRITE(NW,1000) (ERP(I),I=1,NER)	

			0000111111111122222222233333333334444444444		
		12345	6789012345678901234567890123456789012345678901234	5678901234	5678901234567890
. (ARD				•
	217		REAC(NRD,1000) (ERAP(I), I=1, NER)		
	218		WRI TE(NW,1000) (ERAP(I),I=1,NER)	+	
	219		READ(NRD,1000) (ERAQ(I),I=1,NER)		
	220		WRITE(NW,1000) (ERAQ(I),I=1,NER)		
	221		READ(NRD,1000) (ERFLT(I),I=1,NER)		
	222 223		WRITE(NW,1000) (ERFLT(I),I=1,NER) NA=N-NER		
	224		IF(NA.EQ.0) GO TO 200		•
	225		READ(NRD.1000) (EMXCN(I).I=1.NA)		4 - A - A - A - A - A - A - A - A - A -
	226		WRITE(NW,1000) (EMXCN(I),I=1,NA)		
	227	1000	FORMAT(8610.3)		
	228		CONTINUE		
	229	200	RETURN		
	230	201	CONTINUE		
	231	C****			
	232	•	ERAQ(1)=3.0E14+(1.0-(TIME-1975.)/(19901975.))		CCR1
	233		IF(ERAQ(1).LT.0.0) ERAQ(1)=0.0	•	CCR1
	234		ELDM=ELDM+1.05		
	235		DO 301 I=1,NER		
	236		ERP(I)=ERP(I)*1.05		
	237		CPCOS(I)=CPCOS(I)*1.06		
	238	301	FC(1)=FC(1)+1.06		
	239		DO 302 I=1,3		
	240		PSUP(I)=PSUP(I)+1.05		•
	241	302	PDEM([)=PDEM(])*1.05		
	242		EMPRC=EMPRC*1.05		
	243		EMCOS=EMCOS+1.05		
	244		RETURN		
	245		END		
	246	C			
	247	C ****			
	248		SUBROUT INE OUTPUT		
	249		DIMENSION AOUT(5)		-
	250		WRITE(NW,1) TIME		
	251		WRITE(NW,2) ELDM,SMD,SMDG,(FELDM(J),J=1,IYPLN)		
	252		WRITE(NW,3)		
	253 254		WRITE(NW,4) (ERP(I),I=1,NER) WRITE(NW,5) (SMRP(I),I=1,NER)		
	255		WRITE(NW,6) (SMRPG(I),I=1,NER)		
	256		WRITE(NW.65)		
	257		DO 100 I=1.NER		· ·
	258	1 00	WRITE(NW,7) I,(FERP(I,J),J=1,IYPLN)		
	259	1.00	WRITE(NW,8) (ERAP(I),I=1,NER)		
	260		WRITE(NW,9) (SMRA(I), I=1, NER)		
	261		WRITE(NW,10) (SMRAG(I),I=1,NER)		
	262		WRITE(NW,11) (ERAQ(I), I=1, NER)		
	263		WRITE(NW,12) (SMERQ(I),I=1,NER)		
	264		WRITE(NW,13) (SMERQG(I),I=1,NER)		
	265		WRITE(NW,135)		
	266		DO 200 I=1,NER		
	267	200	WRITE(NW,14) I,(FERAQ(I,J),J=1,IYPLN)		
	268		WRITE(NW,15) (ERCN(I),I=1,NER)		
	269		WRITE(NW,16) (ERCNS(I),I=1,NER)	*	
	270		WRITE(NW,17) (DERCNC(I),I=1,NER)		

		000001111111112222222223333333334444444445555555555
CARD		
271		WRITE(NW,18) (ERCNM(I),I=1,NER)
272		WRITE(NW,19)
273		WRITE(NW,20) (CPCCL(I),I=1,NER)
274		WRITE(NW,205) (DERATE(I),I=1,NER)
275		WRITE(NW.21) (CAPSR(I).I=1.NER)
276		
277		NN=N+NER
278		
279		WRITE(NW,205) (DERATE(I),I=III,NN)
		WRITE(NW,22) (CPCNT(I),I=1,NER)
280		WRITE(NW,23) (DCAPL1(I),I=1,NER)
281		WRITE(NW,24) (DCPCN(I),I=1,NER)
282		WRITE(NW,241) (CAPM(I,1),I=1,NER)
283		WRITE(NW, 245) (DCAPSR(I), I=1, NER)
284		J=N-NER
285		IF(J.EQ.0) GO TO 210
286		WRITE(NW,25) (CPCNCT(I),I=1,J)
287		WRITE(NW,26) (CPCNFT(I),I=1,J)
288		WRITE(NW,27) (DCPCNC(I),I=1,J)
289		WRITE(NW,28) (DCPCNF(I),I=1,J)
290		
291	20.2	AOUT(I) = CAPM(I + NER, 1)
292	202	
		WRITE(NW,285) (AOUT(I),I=1,J)
293		WRITE(NW,29) (EXCPCR(I),I=1,J)
294		WRITE(NW,30)
295		DO 300 I=1,N
296		K=I+N
297	30 0	WRITE(NW,31) I, CAPD(K), (CAPP(I,J),J=1,IYPLN)
298	•	WRITE(NW,50) (ERC(I),I=1,NN)
299		WRITE(Nw,51) (ERUSED(I),I=1,NER)
300		DO 350 I≠1,NER
301	350	ACUT(I)=ERCN(I)/FLOAT(ICNTIM(I))
302		WRITE(NW,511) (AOUT(I),I=1,NER)
303	×-	WRITE(NW,515) (ERUP(1),I=1,NER)
304		WRITE(NW,525) ACCAP,CPTLM
305		WRITE(NW, 52) FIRM, FMSL, FIRMX, FRMSM, ERFB, ERFS, EREB, ERES, ERMB,
306		IERNS, ERUR, UEDR, UEDF
307		WRITE(NW,53) CFFB,CFFS,CFEB,CFES,CFMB,CFMS
308		WRITE(NW,54) (CFERU(I),I=1,NER)
309		
	•	WRITE(NW,55) VGCOS,TGCOS
310	1	FORMAT('1',' SIMULATION RESULTS'//GI5.4)
311	2	FORMAT(//// DEMAND INFORMATION'/ CURRENT PEAK DEMAND', G15.5// A
312		1VERAGED DEMAND',G15.5//' FORECASTED GROWTH RATE',G15.5//' FORECAST
313		2ED DEMAND FOR FUTURE YEARS 1/5G15.5/5G15.5)
314	3	FORMAT(////// ENERGY RESOURCE INFORMATION'/' ALL QUANTITIES IN BT
315		2U AND ALL PRICES IN \$/BTU'//)
316	4	FORMAT(' CURRENT RESOURCE PRICE'/5G15.5)
317	5	FORMAT(//' AVERAGED RESOURCE PRICE'/5G15.5)
31.8	6	FORMAT(//' FORECASTED RATE OF PRICE CHANGE'/5G15.5)
319	65	FORMAT(//' FORECASTED ENERGY RESOURCE PRICES BY TYPES')
320	7	FORMAT(/' TYPE', 14/5G15.5/5G15.5)
321	8	FORMAT(//' CURRENT FRACTION OF ENERGY RESOURCES AVAILABLE'/5G15.5)
322	. <u>9</u> .	FORMAT (// AVERAGED FRACTION OF ENERGY RESOURCES AVAILABLE / JG15.5
323		1)
324	10	FORMAT(//' RATE OF CHANGE OF FRACTION AVAILABLE'/5G15.5)
544	10	FURMATLY - RATE OF GRANUE OF FRACTION AVAILAGE 70010401

	0000000011111111122222222333333333334444444444
CARD	
325	11 FORMAT(// CURRENT QUANTITY OF ENERGY RESOURCES AVAILABLE'/5G15.5)
326	12 FORMAT(// AVERAGED QUANTITY OF ENERGY RESOURCES AVAILABLE'/5615.5
327	1)
328	13 FORMAT(//' RATE OF CHANGE CF QUANTITY AVAILABLE'/5G15.5)
329	135 FORMAT(// FORECASTED QUANTITIES OF ENERGY RESOURCES AVAILABLE TO
330	1ELECTRIC UTILITIES'//)
331	14 FORMAT(/' TYPE', 14/5G15.5/5G15.5)
332	15 FORMAT(//' CURRENT ENERGY RESOURCES CONTRACTS'/5G15.5)
333	16 FORMAT(// ADDITIONAL CONTRACTS BEING SOUGHT //5G15.5)
334	17 FORMAT(// RATE AT WHICH NEW CONTRACTS ARE BEING GENERATED //5G15.5
335	1)
336	18 FORMAT(//' MONEY VALUE OF ENERGY RESOURCE CONTRACTS'/5G15.5)
337	19 FORMAT(/////// CAPACITY INFORMATION'/ ALL QUANTITIES IN MW)
338	20 FORMAT(/// CURRENT ON LINE CAPACITY'/5G15.5)
339	205 FORMAT(/' FRACTION OF CAPACITY AVAILABILITY LIMITED BY ENERGY RESO
340	1URCE AVAILABILITY'/5G15.5)
341	format(//* Semi-RetireD CAPACITY*/5615.5)
342	22 FORMAT(//' CAPACITY UNDER CONSTRUCTION'/5G15.5)
343	23 FORMAT(//' RATE AT WHICH NEW CAPACITY COMES ON LINE'/5G15.5)
343	25 FORMAT(//' RATE AT WHICH NEW CAPACITY COMES ON LINE'/3613.57
345	
346	241 FORMAT(/' MAXIMUM RATE OF CONSTRUCTION STARTS ALLOWED'/5G15.5)
347	245 FORMAT(//' RATE AT WHICH CAPACITY IS RETIRED'/5G15.5)
348	25 FORMAT(//' CONTRACTED CAPACITY IN USE'/3G15.5)
349	26 FORMAT(//' FUTURE CAPACITY CONTRACTS'/3G15.5)
350	27 FORMAT(//' RATE AT WHICH NEW CONTRACTS COME INTO USE'/3GL5.5)
351	28 FORMAT(//' RATE AT WHICH NEW CONTRACTS ARE MADE'/3G15.5)
352	285 FCRMAT(/' MAXIMUM NEW CCNTRACTS ALLOWED'/5G15.5)
353	29 FORMAT(//' RATE AT WHICH OLD CONTRACTS EXPIRE'/3G15.5)
354	30 FORMAT(//' PLANNEC CAPACITY BY TYPES'/)
355	31 FORMAT(/' TYPE',14,' DESIRED FRACTION',G15.5/5G15.5/5G15.5)
356	50 FORMAT(//' ELECTRICAL ENERGY GENERATED IN MWH'/5G15.5/5G15.5)
357	51 FORMAT(//" ENERGY RESOURCES USED IN BTU "/5G15.5)
358	511 FORMAT(/' MAXIMUM AVAILABLE'/5G15.5)
359	515 FORMAT(// PRICE PAID FOR ENERGY RESOURCES IN \$/BTU*/5G15.5)
360	52 FORMAT(//' FIRM CAPACITY BOUGHT AND SOLD IN MW'/2G15.5/' MAXIMUN A
361	1LLOWED'/2G15.5//' ENERGY BOUGHT AND SOLD IN MWH'/' FIRM',2G15.5/'
362	2ECONOMY',2G15.5/' EMERGENCY',2G15.5/' IN REGION',G15.5//' UNMET DE
363	3MAND'/' IN REGION',G15.5/' FROM FIRM CAPACITY SALES',G15.5)
364	525 FORMAT(//' RATE AT WHICH CAPITAL IS BEING COMMITTED',G15.5/' MAXIM
365	1UM RATE POSSIBLE , G15.5)
366	53 FORMAT(//' CASH FLOWS IN \$/YEAR'/' FIRM ENERGY PURCHASED',G15.5/'
367	1FIRM ENERGY SOLD',G15.5/' ECONOMY ENERGY PURCHASED',G15.5/' ECONOM
368	2Y ENERGY SOLD',G15.5/' EMERGENCY ENERGY BOUGHT',G15.5/' EMERGENCY
369	3ENERGY SOLD , G15.5)
370	54 FORMAT(/' ENERGY RESOURCES PURCHASED'/5G15.5)
371	55 FORMAT(// VARIABLE COST OF GENERATION OF ELECTRICAL ENERGY FOR RE
372	1GION IN \$/MWH',G15.5/' TOTAL COST',G15.5)
373	RETURN
374	END
375	
376	SUBROUT INE ELUD
377	C***** UPDATE BOXCAR DELAYS
378	DO 100 I=1.NER

	0000000011111111122222222333333333444444444	44555	55555	556666	666666	777777	17778
	123456789012345678901234567890123456789012345678	89012	34567	890123	4567890	0123456	57890
C AR D							· ·
379	NA=ICPT(I) +NDT-1						
380	DO 101 J=1,NA						
381	101 CPCN(I,J)=CPCN(I,J+1)						
382	100 CPCN(I,J)=DCPCN(I)+DT						
383	DO 400 I=1.NER						
384	C ASSUMES 1 YEAR TIME STEP, 3 YEAR CONSTRUCT	TION	TIME,	AND			
385	C 1 YEAR OUTAGE.						
386	IF(I.NE.1) GO TO 900	· .		1			
387	IF(CPCN(4+1).LT.1.0) GO TO 900					CC	
388	IF(CPCOL(1).LT.1.0) GG TO 900					00	
389	DCAPL 2(1)=CPCN(4,1)*CAPOL1(1)/CPCOL(1)	:				CC	
390	DCAPL3(1)=CPCN(4,1)*CAPUL2(1)/CPCOL(1)					00	
391	DCAPSR(1)=CPCN(4,1)*CAPCL3(1)/CPCOL(1)					CC	
392	CAPOL1(1)=CAPOL1(1)-DCAPL2(1)					CC	
393	CAPOL2(1) = CAPOL2(1) - DCAPL3(1)	•				CC	
394	CAPOL3(1) = CAPOL3(1) - DCAPSR(1)				N	CC	
395	DCAPSR(1)=0.					CC	
396	GO TO 901					ĊĊ	
397	900 CONTINUE					čč	•
398	CAPOL1(I)=CAPOL1(I)+(DCAPL1(I)-DCAPL2(I))	*D T			•		
399	CAPOL2(I) = CAPOL2(I) + (DCAPL2(I) - DCAPL2(I))						
400	CAPOL2(1)=CAPOL2(1)+(DCAPL2(1)-DCAPL3(1)) CAPOL3(1)=CAPOL3(1)+(DCAPL3(1)-DCAPSR(1))						
	901 CONTINUE	τ υ ι.				cc	
401							
402	CAPSR(I)=CAPSR(I)+DCAPSR(I)+DT						
403	CPCOL(I) = CAPOL1(I) + CAPOL2(I) + CAPOL3(I)						
404	CPCNT(I)=CPCNT(I)+(DCPCN(I)-DCAPL1(I))+DT						
405	ERUP(I)=ERUP(I)+DERUP(I)*DT						
406	IF(NERT(I).NE.O) GO TO 90						
407	ERCN(I)=ERCN(I)+(DERCNC(I)-ERUSED(I))+DT						
408	GO TO 95						
409	90 ERCN(I)=ERCN(I)+FERCNC(I,1)-CERCNC(I,1)						
410	K=NERCT(I)*NOT-1						
411	DO 91 J=1.K						
412	91 CERCNC(I,J)=CERCNC(I,J+1)					-	
413	CERCNC(I,J) = FERCNC(I,1)						
414	K=NERDT(I)*NDT-1						
415	00 92 J=1,K						•
416	92 FERCNC(I,J)=FERCNC(I,J+1)						
417	FERCNC(I,J)=DERCNC(I)+DT						
418	95 SMRP(I)=SMRP(I)+DSMRP(I)+DT						
419	SMRPG(I)=SMRPG(I)+DSMRPG(I)+DT						
420	SMRA(I)=SMRA(I)+DSMRA(I)*DT						
421	SMRAG(I)=SMRAG(I)+DSMRAG(I)+DT						
422	SMERQ(I)=SMERQ(I)+DSMERQ(I)+DT			· .			
423	400 SMERQG(I)=SMERQG(I)+DSMRQG(I)+DT						
424	C***** LONGTERM CAPACITY CONTRACT VARIABLES						
425	NB=N-NER						
426	IF(NB.LE.O) GO TO 250		1				
427	DO 200 I=1.NB						
428	NA=ICTT(I)*NDT-1						
428	NA = 1C (1(1) + NO) - 1 DO 201 J=1.NA						
· • ·							
430	201 CPCNC(I,J) = CPCNC(I,J+1)						
431	$C PC NC (I_{J}) = DCPC NC (I) * DT$						
432	NA=ICPT(I+NER)*NDT-1						

	000000001111111111222222223333333334444444445555555555	
CARD		
433		
434		
435		
436		
437		
438		
439		
440		
441		
441		
443		
444		
445		
446		
447		
448		
449		
450		
451		
452		
453		
454		
455	C****FORECASTING	
456	DSMD=(ELDM-SMD)/2.	
457	DG=(ELDM-ELDML)/(ELDML*DT)	
458		
459	DO 100 J=1,IYPLN	
460	100 FELDM(J)=SMD*EXP(SMDG*2.)*EXP(SMDG*J)	
461	DO 110 I=1.NER	
462		
463		
464		
465		
466		
467		
468		
469		•
470		
471		
472		
473		
474		CCRL
		CURL
475		
476		
477		
478		
479		AG
480		
481		CCRL
482		CCR1
483		CCR1
484	110 CONTINUE	
485	C * * * * * * * * * * * * * * * * * * *	*
486	C PREPARE FOR CAPACITY PLANNING SIMULATION	

	00000	00001111111112222222223333333334444444444	66666777777777778
	12345	6789012345678901234567890123456789012345678901234567890123456789012345	678901234567890
CARD			
487		CALL CHNG(1,DUR,IFS)	
488		SCLDM=FELDM(IYPLN) + (1.+RES)	
489		DO 190 I=1,N	
490		CAPMAX(I)=0.	
491		DO 190 J=1.IYPLN	
492		IF(J.GE.ICPT(I)) CAPMAX(I)=CAPMAX(I)+CAPM(I,J-ICPT(I)+1)	
493	190	CONTINUE	
494		DO 2006 I=1.N	
495		IF(I.GT.NER) GO TO 2001	
496		VC(I)=VCNF(I)+FERP(I,IYPLN)+HTRT(I)	
497		CAPMAX(I+N)=CPCOL(I)+CPCNT(I)	
498		ENRMX(I)=FERAQ(I,IYPLN)/HTRT(I)	
499		GO TO 2002	
500	2001	CAPMAX(I+N)=CPCNCT(I-NER)+CPCNFT(I-NER)	
501	2001	VC(1) = VCNF(1)	
502		ENRMX(I)=(CAPMAX(I)+CAPMAX(I+N))*EMXCN(I-NER)	
503	2002	$D0 \ 2005 \ J=1,42$	
504		AA(J) = AVL(I,J)	
505		CALL CHNG(2+I,AA,IFS)	
506	2000	CAPMAX(5) = CAPMAX(5) - CPCNT(4) + CPCN(4, 1)	CC
507		IF(CAPMAX(5)-LT.0.0) CAPMAX(5)=0.	20
508		CALL CAPMIX	
509		•	
510			
	2007	$00 \ 2007 \ I=1.N$	
511	2007	A=A+CAPD(I)+CAPD(I+N)	
512	C ++	DO 2008 I=1,N	
513	C **	CAPD(I+N)=FRACTION OF CAPACITY DESIRED FROM TYPE I	
514		CAPD(I+N) = (CAPD(I)+CAPD(I+N))/A	
515	C**	SET CAPT(I) TO CURRENT ON LINE CAPACITY	
516		DO 210 I=1,N	
517		IF(NCAP(I).EQ.1) GO TO 201	
518		CAPT(I)=CPCNCT(I-NER)	
519		GO TO 210	
520	201	CAPT(I)=CPCOL(I)	
521		CONTINUE	
52 2	C**	ENRMX(I)=MAXIMUM ELECTRICAL ENERGY FROM TYPE I	
523	C**	ERUS(I)=AMOUNT OF ENERGY RESOURCE TYPE I USED IN PLANNING	•
524	C **	INITIALIZE TO ZERO	
525	C**	ACCAP=NEW CAPITAL COMMITTED	
526	C**	INITIALIZE TO O	
527		DO 2105 I=1,NER	
528		ENRMX(I)=ERCN(I)/(HTRT(I)+FLOAT(ICNTIM(I)))	
529	2105	ERUS(I)=0.	
530		ACCAP=0.	
531		ICP=0	
532	C * *	* * * * * * * * * * * * * * * * * * * *	
533	C**	LOOP 250 DETERMINES PLANNED CAPACITY	
534	C**	J IS THE NO. OF YEARS FROM THE CURRENT TIME	
535	-	DO 250 J=1,IYPLN	
536		ICS=0	
537		JJ=(J-1)*NDT+1	
538		JJJ=JJ+NDT-1	
539		00 230 1=1.N	
540		IF(J.GT.ICPT(I)) GO TO 220	
240			

	00000000111111111122222222333333334444444445555555555			
CARD	12313			
541	C**	*** CAPACITY PLANNING LIMITS FOR J.LE.CONSTRUCTION		
542	0	IF(I.GT.NER) GO TO 212		
543				
	•	DO 211 II=JJ,JJJ		
544	С	ACCOUNTS FOR CAPACITY WHICH WILL BE CONVERTED		
545		A=0.0	CC	
546		IF(I.NE.1) GO TO 211	CC	
547		IF(II.GT.2) GO TO 211	23	
548		A=CPCN(4,II+1)	CC	
549	C**	211 & 213 ADD CAPACITY THAT WILL COME ON LINE BY END OF YEAR J		
550	211	CAPT(I) = CAPT(I) + CPCN(I, II) - A	C	
551		GO TO 214		
552	212	DO 213 II=JJ,JJJ		
553		CAPT(I) = CAPT(I) + CPCNF(I - NER, II)		
554				
555	C**	CAPMAX(II)=COMMITTED CAPACITY FOR YEAR J		
556	C **	CAPMAX(I)=NEW CAPACITY WHICH CAN BE COMMITTED	.)	
557		CAPMAX(II)=CAPT(I)		
558		CAPMAX(I)=0.		
559		GO TO 224		
560	C**	*** CAPACITY PLANNING LIMITS FOR J.GT.CONSTRUCTION TEME		
561	220	ICS=1		
562	22.0	I I= I +N		
563	C**	CAPMAX (I & II) SAME AS ABOVE		
	-		· · · ·	
564		CAPMAX(II)=CAPT(I)		
565		CAPMAX(I) = CAPM(I, J - ICPT(I))		
566		IF(J-1.NE.1CPT(I)) GO TO 224		
567	C **	ICP=1 INDICATES NO MORE CAPITAL COMMITTMENTS ALLOWED		
568		IF(ICP.EQ.1) CAPMAX(I)=0.		
569	224	IF(I.GT.NER) GO TC 225		
570	C**	UPDATE THE AMOUNT OF ENERGY THAT CAN BE SUPPLIED AND CALCULATE VC		
571	-	ENRMX(I)=ENRMX(I)+FERAQ(I,J)/HTRT(I)-ERUS(I)		
572		VC(I)=VCNF(I)+FERP(I,J)+HTRT(I)		
573		GO TO 230		
574	225	ENRMX(I)=(CAPMAX(I)+CAPMAX(II))+EMXCN(I-NER)		
	223			
575		VC(I)=VCNF(I)		
576		CONTINUE		
577	C**	ICS=0 INDICATES THAT NO CAPACITY CAN BE ADDED	•	
578		IF(ICS.NE.0) GO TO 240		
579	C**	CAPC(I)=NEW CAPACITY TO BE ADDED=0 WHEN NONE ALLOWED	·	
580		DC 235 I=1,N		
581	235	CAPD(I)=0.		
582		GO TO 243		
583	240	SCLDM=FELDM(J)*(1.+RES)		
584	240		•	
	C ++		· ·	
585	C**	2401 & 2402 REDUCES NEW CAPACITY ALLOWED TO ACCOUNT FOR CAPITAL		
586	C **			
587	C**	CAPAITAL LIMIT IS CALCULATED IN 241 & 242		
588	2401	00 2402 I=1,N		
589		IF(J-1.NE.ICPT(I)) GO TO 2402		
590		CAPMAX(I)=CAPU(I)		
591	2402	CONTINUE		
592		III=J		
593	2.00	IF(CAPD(8).GT.0.01) CAPMAX(1)=0.	cc	
594		IF(J.LT.4) GO TO 2409	čč	
2,74		21,002,1017 00 10 2107		

Ş

123456789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789012345789000	CC CC CC CC CC CC CC CC CC CC CC CC CC
595 IF(CAPD(8).LT.0.01) GO TO 2409 596 A=0. 597 U=5. 598 2406 CALL AFNC(U,B,1) 599 B=8*FELDM(J) 600 9406 A=A+(FELDM(J)-B)*438.*HTRT(1) 601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(8.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(5)=FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC CC CC CC CC CC
596 A =0. 597 U=5. 598 2406 CALL AFNC(U,B,1) 599 B=B*FELDM(J) 600 9406 A=A+(FELDM(J)-B)*438.*HTRT(1) 601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(4)=ELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC CC CC CC CC CC
598 2406 CALL AFNC(U,B,1) 599 B=8+FELDM(J) 600 9406 A=A+(FELDM(J)-B)*438.*HTRT(1) 601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+8 610 CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	
599 B=B*FELDM(J) 600 9406 A=A+(FELDM(J)-B)*438.*HTRT(1) 601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(5)=FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC CC CC
600 9406 A=A+(FELDM(J)-B)*438.*HTRT(1) 601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC CC
601 IF(A.GT.FERAQ(1,J)) GO TO 2407 602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(5)=FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC
602 IF(FELDM(J)-B.GT.CAPMAX(5)) GO TO 2408 603 U=U+5. 604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC CC
603 U=U+5. 604 IF(U.LE.100.) GD TD 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GD TD 9406 608 GD TD 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC CC
604 IF(U.LE.100.) GO TO 2406 605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(5)=FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC CC
605 U=100. 606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	CC CC CC CC CC
606 B=B-FELDM(J)/20. 607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC CC
607 IF(B.GT.0.) GO TO 9406 608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT.0.0) CAPMAX(4)=0.0	CC CC CC
608 GO TO 2409 609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+8 610 CAPMAX(5)=FELDM(J)-8 611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	СС СС
609 2407 CAPMAX(4)=CAPMAX(5)-FELDM(J)+B 610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT-0-0) CAPMAX(4)=0-0	CC
610 CAPMAX(5)=FELDM(J)-B 611 IF(CAPMAX(4)-LT-0-0) CAPMAX(4)=0-0	
611 IF(CAPMAX(4).LT.0.0) CAPMAX(4)=0.0	
	22
	22
612 GO TO 2409	CC .
613 2408 CAPMAX(4)=0.	CC
614 2409 CONTINUE	5 0
615 C** DESCAP DETERMINES WHAT CAPACITY WILL BE ADDED DURING YEAR J	
616 CALL DESCAP	
617 241 IF(ICP-E0.1) GO TO 243	
618 D0 242 I=1,N	
619 IF(J-1.NE.ICPT(I)) GO TO 242	
620 C** ADD ON NEW CAPITAL COMMITTED	
621 ACCAP=ACCAP+CAPD(I)+CPCOS(I)	
622 IF(ACCAP.LE.CPTLM) GO TO 242 623 ICP=1	
624 C** LIMIT NEW CAPACITY TO CAPITAL LIMIT IF NECESSARY	
625 CAPD(I)=CAPD(I)-(ACCAP-CPTLM)/CPCOS(I)	
626 ACCAP=CPTLM	
627 242 CONTINUE	
628 IF(ICP.EQ.1) GO TO 2401	-
629 243 DD 250 I=1,N	
630 C** ADD NEW CAPACITY TO TOTAL COMMOTTED CAPACITY	
$631 \qquad CAPT(I)=CAPT(I)+CAPD(I)$	•
632 IF(I.NE.1) GO TO 244	CC
533 IF(CAPD(1), IT, 1, 0) CAPT(1) = CAPMAY(5)	0.0
634 244 CONTINUE	čč
$635 \qquad CAPP(1,J)=CAPT(1)$	
636 IF(J-1.NE.ICPT(I)) GO TO 250	
637 IF(NCAP(I)-EQ-1) GO TO 245	
638 C** SET CAPACITY CONSTRUCTION STARTS RATES	
$639 \qquad DCPCNF(I-NER)=CAPD(I)$	
640 GO TO 250	
641 245 DCPCN(I)=CAPD(I)	
642 250 CONTINUE	
643 C*****RATE VARIABLES FOR THIRD ORDER CAPACITY DELAY	
644 DD 270 I=1,N	
645 IF(NCAP(I)-EQ-2) GO TO 260	
646 DCAPL1(I)=CPCN(I,1)/DT	
647 DCAPL2(I)=CAPOL1(I)/10.	
648 DCAPL3(I)=CAPOL2(I)/10.	

CARD		
649	DCAPSR(1)=CAPOL3(1)/10.	
650	GO TO 270	
651	C** CAPACITY CONTRACTS RATES	
652	260 DCPCNC(I-NER)=CPCNF(I-NER, 1)	
653	EXCPCR(I-NER)=CPCNC(I-NER, 1)	
654	270 CONTINUE	
655	C****ENERGY RESOURCE PLANNING	
656	CALL CHNG(1, DUR, IFS)	
657	DO 301 $I=1,N$	
658	DO 300 $J=1,42$	
659	300 AA(J)=AVL(I,J)	
660	301 CALL CHNG(I+1,AA,IFS)	
661	SCLDM=FELDM(1)	
662	DO 308 I=1,N	
663	IF(I.GT.NER) GO TO 306	N Contraction of the second seco
664	VC(I)=VCNF(I)+ERUP(I)+HTRT(I)	
665	GO TO 308	
666	306 VC(I)=VCNF(I)	
667	308 SCLCP(1)=CAPP(1,1)	
668		
669	CALL ERNEED	
670	DO 310 I=1,NER	•
671	IF(NERT(I).NE.0) GO TO 310	پ
672	CCND(I)=ENR(I)*HTRT(I)	
673	31 0 CONTINUE	
674	DO 350 J=1,IYPLN	
675	DO 350 I=1,NER	
676	IF(NERT(I).EQ.0) GO TG 350	
677	IF(NERDT(I).LT.J) GO TO 350	
678 679	IF(J.NE.1) GO TO 321 Ercnm(I)=Ercn(I)	
680	321 K11=(J-1)*NDT+1	
681	K22 = K11 + NDT - 1	
682	DO 322 K=K11, K22	
683	322 ERCNM(I)=ERCNM(I)+FERCNC(I,K)-CE	
684	IF(NERDT(I).NE.J) GO TO 350	
685	DO 325 K=1.N	
686	325 SCLCP(K)=CAPP(I,J)	
687	SCLDM=FELDM(J)	
688	CALL ERNEED	
689	IF(NERDT(I).NE.J) GO TO 350	
690	C CND(I) = ENR(I) + HTRT(I)	
691	350 CONTINUE	
692	DO 380 I=1, NER	•
693	A=ERAQ(I)*ERAP(I)*ERFLT(I)	
694	B = ERAQ(I) * ERAP(I) * (1 ERFLT(I))	
695	IF(NERT(I).EQ.0) GO TO 360	
696	COND(I) = COND(I) - ERCNM(I)	
697	IF(COND(I) - LT - 0 -) COND(I) = 0 -	
698	IF(COND(I).GT.A) CONC(I)=A	
699	ERAV(I) = ERCN(I) + B	
700 701	DER CNC(I)=COND(I) GO TO 370	
/ () (GU IU 370	

ð

		•	<u> </u>
	0000000011111111122222222333333333334444 12345678901234567890123456789012345678901234		
CARD			•
703	IF(COND(I).LT.O.) COND(I)=0.		
704	IF(COND(I), GT, A/DCNST(I)) COND(I) = A/D(I)		
705	ERAV(I)=ERCN(I)*DCNST(I)+B+A-COND(I)*	DCNST(I)	
706	DERCNC(I)=COND(I)/DCNST(I)		
707	370 CONTINUE		
708	380 DERUP(I)=(ERP(I)-ERUP(I))/5.		
709	C *****INTERMEDIATE PLANNING		•.
710	DO 400 I=1,N		
711	IF(I.GT.NER) GO TO 410		
712	VC(I)=VCNF(I)+ERUP(I)+HTRT(I)		
713	SCLCP(I)=CPCOL(I)	÷ .	
714	SCLCP(I+N) = CAPSR(I)		
715	VC(I+N)=VCNF(I+N)+ERUP(I)+HTRT(I+N)		
716	GO TO 400		
71 7	410 VC(I)=VCNF(I)		
718	SCLCP(I)≠CPCNCT(I-NER)	N N	
719	400 CONTINUE		
720	SCLDM=ELDM		
721	CALL RANKC		
722	DC 415 I=1,N		
72 3	DO 420 K=1,42		
724	420 AA(K)=AVL(I,K)	-	
725	415 CALL CHNG(I+2,AA,IFS)		
72.6	CALL CHNG(2,FRMVC,IFF)	· · · · · ·	
727	SCLDM=ELDM*(1.1+RES)		
728	CALL STERM		
729	SCLDM=ELDM+1.1		
730	CALL CHNG(NN+3, FRMVP, IFF)		
731	CALL STFS		
732	SCLDM=ELDM		
733	SCLDF=FSF*FMSL		
734	CALL CHNG(2,FSDM, IFS)		
735	C +++ ++ NEXT TWO CARDS MAY BE TEMPORARY		
736	CALL CHNG(3,FRMVC, IFF)		
737	CALL CHNG(4, FRMVP, IFF)		
738	DO 450 I=1,NN		
739	DO 451 J=1,42	$\mathcal{K} = \mathcal{K}$	•
740	451 AA(J) = AVL(I, J)		
741	450 CALL CHNG(I+4,AA,IFS)		
742	DO 460 $I=1,K1$		
743	DO 461 J=1,42		
744	$461 \text{ AA}(J) = \text{ECSUP}(I_{+}J)$		
745	460 CALL CHNG(NN+4+I, AA, IFS)		
746	DO 470 I=1,K2		
747	DO 471 J=1,42	•	
748	471 AA(J) = ECDEM(I,J)		
749	470 CALL CHNG(NN+4+K1+I,AA,IFS)	•	
750	CALL CHNG(NN+5+K1+K2, EMER, IFS)		
751 752	CALL DAILY DO 480 I≖1•NER	м́` -	
753	ERUSED(I)=ERC(I)+HTRT(I)+ERC(I+N)+HTR	T(T+N)	
754	480 CFERU(I)=ERUSED(I)+ERUP(I)	* * * * ***	
755	480 CFERO(114ER05ED(114ER0F(11) VGC 05=0.		
756	DO 500 I=1.NN		
(20	00 J00 I-LONN		

)000111111111222222222333333333334444444444
	11	2345	678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
CARD			
757			IF(I_GT_NER) GO TO 501
758			VGCDS=VGCDS+CFERU(I)+ERC(I)+VCNF(I)
759			GO TO 500
760			VGCOS=VGCOS+ERC(I)*VCNF(I)
761		500	CONTINUE
762			CFMB=ERMB*EMCOS
763			CFMS=ERMS*EMPRC
764			CFFB=CFFB+FIRM*FXCF
765			CFFS=CFFS+FMSL*FXCF
766			VGCOS=VGCOS+CFFB-CFFS+CFEB-CFES+CFMB-CFMS
767			VGC OS=VGC OS/ERUR
768			T CCOS=V GCOS
769			00 510 I=1.N
770			IF(I.GT.NER) GO TO 505
771			TGCOS=TGCOS+CPCOL(I)*FC(I)/ERUR
772			
773			TGCOS=TGCOS+CPCNCT(I-NER) + FC(I)/ERUR
774		510	CONTINUE
775			TGCOS=TGCOS+(CPCOL(4)+CPCNT(4))*FC(1)/ERUR
776			RETURN
777	~		END
778 779	С		CHOROLITING CARNEY
780			SUBROUTINE CAPMIX
	~		DIMENSION BB(42), ICON(10)
781	ι L		TEST FLAGS FOR CONVERSION CC
783			I 22=0 CC I 21=0 CC
784			121=0 CC DO 85 J=1 •N
785			C=0.
786			DO 80 I=1,21
787			A=FLOAT(I-1)*5.
788			CALL AFNC(A,B,J+2)
789			IF(C.EQ.O.) GO TO 75
790			
791			G0 T0 76
792		75	D = FC(J)/.01
793			JK=2+I-1
794			A=FLOAT(I-1)*438.
795			AA(JK)=A
796			BB(JK)=A
797			AA(JK+1)=C
798			8B(JK+1)=D
799		80	C =C +B * 4 38.
800			CALL CHNG(J+N+2,BB,IFS)
801			CALL CHNG(J+2*N+2,AA, IFS)
802		. 85	CONTINUE
803			DO 99 I=2,42,2
804			AA(I)=0.
805		99	AA(I-1)=(FLOAT(I)/21.)*5.
806			CALL CHNG(2,AA, IFS)
807			NN=2*N
808			DO 100 I=1,NN
809			CAP(1)=0.
81 0			ICON(I)=1

ő

811		IF(CAPMAX(I).EQ.O.) ICON(I)=0		
812		IF(I.GT.N) GO TO 100		$(a_{i})_{i} \in [0,\infty)$
813		ERUS(I)=0.		
81.4	100	CONTINUE		
815		ICON(4)=1		CC
816		IGT 0=1		
817		U=8760.		
818		GO TO 1000		
819	101	JL=1		
82.0		JK=NR(JL,1)		
821	1 02	IF(JK.EQ.5) GO TO 800		22
822		IF(JK.EQ.4) GO TO 810		čč
823		GO TO 830		cc
	000		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
824	800	IF(IZ1.EQ.1) GO TO 830		CC
825		I 21 =1		23
826		IF(122.EQ.1) GO TO 805		CC
827		GO TO 830	N	CC
828	805	CAPMAX(5)=CAPMAX(5)-CAPD(4)		22
829		IF(CAPMAX(5).LT.O.) CAPMAX(5)=0.		CC
830		GO TO 830		CC
831	81 0	IF(1Z2.EQ.1) GO TO 830		. CC
832		122=1		CC
833		IF(IZ1.EQ.1) GO TO 815		CC
834		CAPMAX(4)=CAPMAX(5)		CC
835		GO TO 830		CC
836	81 5	CAPMAX(4) = CAPMAX(5) - CAPD(5)		23
837		IF(CAPMAX(4).LT.O.) CAPMAX(5)=0.		CC (
838	830	CONTINUE		с с
839		J J= JK		
840		IF(JK.GT.N) JJ=JK-N		
841		CSF=0.		
842		DO 105 [=1.1]		
843		U=FLOAT(I-1)*10.		
844		CALL AFNC(U,A,1)		
845		CALL AFNC(U,B,2)		
846		A=A-B/SCLDM		<i>r</i>
847		CALL AFNC(U, B, 2+JJ)		
848	1.05	IF(CSF.LT.B/A) CSF=B/A		
849	105	CALL AFNC(8760ESF.JJ+2*N+2)		•
850		A=CAPMAX(JK)		
851		B=(ENRMX(JJ)-ERUS(JJ))/ESF		
852		C=SCLDM/CSF		
853		IF(A.GT.C) GO TO 115		
854		ICON(JK)=0		
855		IF(A.GT.B) GO TO 113		
856		CAPD(JK)=A		
857		GO TO 120		
858	113	CAPD(JK)=B		
859		GO TO 120		
860	115	IF(B.GT.C) GO TO 118		
861		ICON(JK)=0		
0 / 2		CAPD(JK)=B		
862 863		GO TO 120		

	00000	0000111111111122222222222333333334444444444
CARD	12345	5789012345678901234567890123456789012345678901234567890123456789012345678901234567890
865	120	ERUS(JJ)=ERUS(JJ)+CAPC(JK) *ESF
866		A = (APD(JK))
867		GO TO 2000
868	135	IF(ICON(JK).NE.0) GO TO 200
869	133	JL=JL+1
870		IF(JL.GT.K) GO TO 5000
871		GO TO 102
872	20.0	1GT0=2
873	200	CD= SCL DM/10.
874	201	CALL AFNC(0,,A,2)
875	201	IF(A.GE.SCLDM*.999999) GO TO 5000
876		
877		IF(SCLDM-A.LT.CD) CD=SCLDN-A U=0.
878		
		DO 205 I=1,20
879		UU=FLOAT(I-1)+5.
880		CALL AFNC(UU,A,1)
881	205	CALL AFNC(UU,B,2)
882	205	IF(A*SCLDM.GT.B) U=U+438.
883		GO TO 1000
884	210	JK=NR(1,1)
885		IF(JK.EQ.5) GO TO 900 CC
886		IF(JK.EQ.4) GO TO 910 CC
887		GO TO 930 CC
888	900	IF(IZ1.E0.1) GO TO 930 CC
889		121=1 CC
890		IF(122.EQ.1) GO TO 905 CC
891		GO TO 930 CC
892	905	CAPMAX (5) = CAPMAX (5) - CAPD (4) CC
893		IF(CAPMAX(5)-LT-0-) CAPMAX(5)=0. CC
894		GO TO 930 CC
895	910	IF(122.EQ.1) GO TG 930 CC
896		122=1 CC
897		IF(121.E0.1) GO TO 915 CC
898		CAP MAX (4) = CAP MAX (5) CC
899		GO TO 930 CC
900	915	CAPMAX (4) = CAPMAX (5) - CAPD (5) CC
901		IF(CAPMAX(4).LT.0.) CAPMAX(5)=0. CC
902	930	CONT INUE CC
903		J]=]K
904		IF(JK.GT.N) JJ=JK-N
905		CALL AFNC(U,ESF,2+2+N+JJ)
906		A=CAPMAX(JK)-CAPD(JK)
907		IF(ESF.LT.0.1) ESF=0.1
908		B=(ENRMX(JJ)-ERUS(JJ))/ESF
909		IF(A.GT.CD) GO TO 215
910		ICON(JK)=0
911		IF(A.GT.B) GO TO 213
912		D=A
913		GO_TO_220
914	213	
915	<u> </u>	GO TO 220
916	215	IF(B_GT_CD) GO TO 218
917		I CON(JK)=0
918		O≠B

	00000000111111111222222223333333334444444444				
CARD			2313010		
919					
920	218 D=CD				
921	220 CAPD(JK)=CAPD(JK)+D				
922	ERUS(JJ)=ERUS(JJ)+D+ESF				
923	A=D				
924	GO TO 2000				
925	1000 K=0				
926	DO 1001 I=1,NN				
927	IF(ICON(I).EQ.0) GO TO 1001				
928	K=K+1				
929					
930					
931					
932					
933		•	,		
934			`.		•
935	IF(J.GT.N) GO TO 1002				
936					
937					
938					
93 9					
940	NR(I,1)=J				
941					
942					
943					
944					
945					
946					
947					
948					
949					
950					
951				-	
952					
953					
954					
955	-				
956					
957					
958					
959					
960					
961					
962					
963					
964					
965					
966					
967					
968					
969					
970				÷	
971					
972	C CAPDD(I+N)=FRACTION OF DESIRED CAPACITY NOW EXISTING				

	000000001111111112222222223333333334444444444				
CARD					
973 974	CAPDD(I + N) = CAPMAX(I + N)/CAPDD(I)				
974	GO TO 100				
976	$95 \text{ CAPDD(I+N)} \pm 1.620$				
977	C CAPD(I)=ADDITIONAL CAPACITY TO ADD. INITIALIZE TO O 100 CAPD(I)=0.				
978	IF(K.EQ.0) GD TO 1000				
979	IF(CAPUS.GE.SCLDM) GD TO 1000				
980	C RANK CAPACITY TYPES ACCORDING TO HOW FAR BELOW DESIRED NIX				
981	C CONSIDERED ONLY THOSE WHICH CAN BE USED				
982	DO 110 I=1.N				
983	110 NR(I,2)=ICON(I)				
984	DO 120 I=1.K				
985	A=+2.E20				
986	DO 115 J=1,N				
987					
988	IF(CAPDD(J+N).GT.A) GO TO 115	λ			
989	NR(1,1)=J	·		•	
990	A=CAPDD(J+N)				
991	115 CONTINUE				
992	120 NR(NR(I,1),2)=0				
993	C CAPACITY ADDITION CALCULATIONS				
994	D=SCLDM/100.				
995	C J=NO. TYPES CONSIDERED THIS RCUND				
996	C JJ=TOTAL NO. OF TYPES WHICH COULD BE CONSIDERED THIS ROUND			•	
997	J=1				
998	X=L L				
999	205 IF(JJ.LE.0) GO TO 1000				
1000	IF(JJ.EQ.1) GQ TQ 300				
1001	IC=0				
1002	I I=0				
1003	JI=1				
1004	DO 210 I=1,J			÷	
1005	IF(JI+EQ+0) GO TO 210				
1006	I J=NR (I,1)		-		
1007	IF(ICON(IJ).EQ.O) GO TO 210				
1008	IC=1				
1009	CAPD(IJ)=CAPD(IJ)+D				
1010	IF(CAPD(IJ)-LT-CAPMAX(IJ)) GO TO 208				
1011	ICON(IJ)=0				
1012	JJ=JJ-1				
1013	208 CAPUS=CAPUS+D				
1014	IF(CAPUS.GE.SCLDM) JI=0				
1015	IF(CAPDD(1J).EQ.0.) GC TO 209				
1016	CAPDD(IJ+N)=(CAPMAX(IJ+N)+CAPD(IJ))/CAPDD(IJ)				
1017	209 IF(J.EQ.K) GO TO 210				
1018	IF(CAPDD(IJ+N).GE.CAPDD(NR(J+1,1)+N)) II=1				
1019	210 CONTINUE				
1020 1021	J=J+II				
1021	IF(JI+EQ+0) GO TO 1000 IF(IC+EQ+1) GO TO 205				
1022	IF(J.GE.K) GO TO 1000				
1025	J=J+1				
1025	GO TO 205		·		
1026					

	000000001111111122222222233333333334444	
CARD	[234301070123430107012343010701234301070123	4301030[234301030[234301030[234301030
1027	DO 305 I=1.K	
1028	IJ=NR(I.1)	
1029	305 IF(ICON(IJ).EQ.1) JJ=IJ	
1030	B = CAPMAX(JJ) - CAPD(JJ)	
1031	IF(A.GT.B) A=B	
1032	CAPD(JJ)=CAPD(JJ)+A	
1033	1000 CONTINUE	
1034	RETURN	
1035	END	
1036	C	
1037	SUBROUT INE ERNEED	
1038	C****RANK ACCORDING TO VARIABLE COST	
1039	DO 100 I=1,N	
1040	100 ENR(I)=0.	
1041	IF(IL.NE.0) GO TO 110	
1042	CALL RANK1	
1043	110 U=0.	
1044	202 CALL AFNC(U,DEM,1)	
1045	A=DEM*SCLOM	
1046	B =0 •	
1047	DO 200 I=1,N	•
1048	IF(B.GE.A) GO TO 200	
1049	CALL AFNC(U,C,NR(I,1)+1)	
1050	C=C*SCLCP(NR(I,1))	
1051	IF(B+C.GT.A) GO TO 201	
1052	ENR(NR(I,1))=ENR(NR(I,1))+C*428.	
1053	8 =8 +C	
1054	GO TO 200	
1055	201 ENR(NR(I,1))=ENR(NR(I,1))+(A-B)*428.	
1056	B=A	
1057	200 CONTINUE	
1058	U=U+5.	
1059	IF(U.LT.100.) GO TO 202	· · · · · · · · · · · · · · · · · · ·
1060	RETURN	
1061	END	
1062	C	
1063	SUBROUTINE STERM	
1064	C****RANK ACCORDING TO VARIABLE COST	
1065	NN=N+NER	
1066	DO 800 I=1.NN	
1067	800 NR([,2]=1	
1068	DO 802 J=1.NN	
1069	COS = 10. **20	
1070	DO 801 I=1.NN	
1071	IF(NR(I,2).EQ.0) GO TO 801	
1072	IF(VC(I).GT.COS) GO TO 801	
1072	NR(J.1)=I	
1074	COS = VC(1)	
1074	801 CONTINUE	
1075	801 CUNTINUE 802 NR(NR(J.1).2)=0	
1077	FIRM=0.	
1078	U=100	
1079	D = ELDM/100.	
1080	100 CALL AFNC(U,A,1)	

CARD	12343	6789012345678901234567890123456	.070		20107	91294	201070			
1081		A=A+ELDM								
1082		AVLL=0.					· .			
1083		KK=1								
1084		DO 150 K=1,NN								
1085	110	IF(FIRM.GE.FIRMX) GO TO 150								
1086		IF(AVLL+FIRM.GE.A) GO TO 150								
1087		CALL AFNC(FIRM,VCF,2)								
1088		C=VCF+FXCF/(U*87.6)								
1089		IF(C.GT.VC(NR(K,1))) GO TO 115								
1090		FIRM=FIRM+D								
1091		GO TO 110								
1092	115	KK=KK+1								
1093		CALL AFNC(U,B,2+NR(K,1))								
1094		A VLL=A VLL+B*SCLCP(NR(K,1))								
1095	150	CONTINUE								
1096		IF(FIRM.GE.FIRMX) GO TO 300						ν.		
1097		A=A + SCLDM/ELDM	*0							-
1098		IF(A*(1.+RES).LE.AVLL+FIRM) GO	1U	200						
1099		IF(KK.GT.NN) GO TO 170								
1100 1101		DO 160 K=KK,NN								
1102	140	CALL AFNC(U,B,2+NR(K,1;) AVLL=AVLL+B*SCLCP(NR(K.1))								
1102	-	IF(A*(1.+RES).LE.AVLL+FIRM) GO	τo	200					•	
1103	170	FIRM=(A*(1.+RES)-AVLL)	10	200					· .	
1104		IF(FIRM.GE.FIRMX) GO TO 300								
1106	200	U=U-5.								
1107	200	IF(U.LT.0.) GO TO 300								
1108		IF(U.LT.1.) U=1.								
1109		GO TO 100								
1110	300	IF(FIRM.GT.FIRMX) FIRM=FIRMX								
1111		RETURN								
1112		END								
1113	С									
1114		SUBROUTINE STES								
1115		DO 99 I=1,NN								
1116	99	NC(1)=1								
1117		F=0.								
1118		CALL AFNC(F,FP,2)								
1119		NF=1								
1120		IF(FIRM.LE.O.) NF=0								
1121		K F= 1								
1122		K=1								
1123		D=EL DM / 100.								
1124		DO 100 I=1,NN								
1125		COS=10.E20								
1126		DO 101 J=1,NN								
1127		IF(NC(J).EQ.0) GO TO 101								
1128		IF(VC(J).GT.COS) GO TC 101							•	
1129		COS =VC(J)		- 1 <u>1</u> - •		a				
1130 1131	101									· · · ·
1132	101	CONTINUE IF(NF.EQ.O) GO TO 105								
1133		IF(FP.GT.VC(L)) GO TO 105								
1134		FF=0.								
A & J T										

	00000									7777770
		00001111111112222222222333 6789012345678901234567890123								
C AR D										
1135	102	FF=FF+D								
1136		F=F+D								
1137		IF(F.GE.FIRM) GO TO 103								
1138		CALL AFNC(F,FP,2)								
1139		IF(FP.LT.VC(L)) GO TO 102								
1140		FCP(KF)=FF								
1141		FCPL(KF)=F								1. State 1.
1142		GO TO 104							1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
1143 1144	103	NF≠0 FCP(KF)≠FF-(F-FIRM)								
1144		FCPL(KF)=FIRM								
1145	104	$NR(K_{\bullet}2) = 0$				•				
1147	104	$NR(K \cdot 1) = KF$								
1148		KF=KF+1			1. J.					
1149		K=K+1								
1150	105	NR(K,2)=1						ν.		
1151		NR(K.1)=L					•	•		·
1152		NC(L)=0								
1153		K=K+1								
1154	100	CONTINUE								
1155		L=K-1								•
1156		KRANK=L							•	
1157		CMIN=1.E20								
1158		DG 200 K=1,21		5 .						
1159		X=FLOAT(K-1)*5.								
1160		CALL AFNC(X,A,1)								
1161		A=A+ELDM								
1162		F=0.								
1163		NF=0					•			
1164		DO 201 J=1,L								
1165		IF(NR(J,2).EQ.0) GO TO 202								
1166		CALL AFNC(X,FF,NR(J,1)+2)								
1167 1168		FF=FF*SCLCP(NR(J,1)) GD TO 203							_	
1169	202	FF=FCP(NR(J,1))								1. Contract (1997)
1170		F =F +FF								
1171	205	IF(F.GE.A) GO TO 204								
1172		FF=0.								
1173		GO TO 205								
1174	204	FF=F-A								
1175		IF(NF.EQ.1) GO TO 205								
1176		NF=1								
1177		NS(K)=J	· •						2	
1178		XFNC(NN+3+J,K,2)=FF		•						
1179	201	XFNC(NN+3+J,K,1)=X							· · ·	
1180	•	F=F/(1.+RES)-A*SCLDM/ELDM								
1181	200	IF(CMIN.GT.F) CMIN=F								
1182		F=0.								
1183		IF(CMIN.LT.O.) CMIN=0.	~							
1184	200	IF(CMIN.GT.FRMSM) CMIN=FRMS	5M							
1185 1186	500	IF(F.GE.CMIN) GO TO 400 F=F+D								
1185		r =r +D COS=0.								
1188		REV=0.								
				•						

		0000111111111222222222233333333 678901234567890123456789012345678		
CARD	12343	516901254561690125456169012545616	901234301890123430109012	549010701234901070
1189		CALL AFNC(F, FPP, NN+3)		
1190		DO 304 K=1,21		
1191		J=NS(K)		
1192		FFF=0.		
1193	301	Z=FLOAT(K-1)*5.		
1194		IF(NR(J,2).EQ.0) GO TO 3015		
1195		CALL AFNC(Z,FF,NR(J,1)+2)		
1196		FF=FF*SCLCP(NR(J,1))		
1197		GO TO 3016		
1198		FF=FCP(NR(J,1))		
1199	3016	FFF=FFF+FF		
1200		IF(FFF.LT.F*AFDEM(K)) GO TO 302	•	
1201	2.02	GO TO 3025		
1202	. 302	J=J=1		
1203 1204	3035	GO TO 301 IF(NR(J,2).EQ.1) GO TO 303		
1204	3029	CALL AFNC(FCPL(NR(J.1)), FP.2)		· .
1206		COS=COS+FP*AFDEM(K)		
1207		GO TO 304		
1208	303	COS=COS+VC(NR(J,1))*AFDEN(K)		
1209		REV=REV+FPP+AFDEM(K)		
1210		COS=(COS/21.)*8760.		
1211		REV=(REV/21.)*8760.+FXCF*D		·
1212		IF(REV.GE.COS) GO TO 300		
1213		F=F-D		. 1
1214	400	FMSL=F		
1215		IF(CMIN.LT.F) FMSL=CMIN		
1216		RETURN		
1217		END		
1218	C			
1219		SUBROUTINE DAILY		
1220	0.0	DO 99 I=1,NN ERC(I)=0.		
1222		ERFB=0.		
1223		ERF S=0.		
1224		EREB=0.		
1225		ERES=0.		
1226		ERMB=0.		
1227		ERMS=0.		
1228		CFFB=0.		
1229		CFF S=0.		
1230		CFEB=0.		
1231		CFES=0.		
1232		UEDR=0.	•	
1233		UEDF=0.	$= L_{\rm eff}$, $\epsilon_{\rm eff}$	
1234		ERUR=0.		
1235 1236				
1230		IU=0 D=(SCLDM+SCLDF)/100•		
1238		CALL AFNC(0., PF2,4)		
1239	100	U=FLOAT(IU)		
1240		CAP = 0.		
1241		DO 110 I=1,K		
1242		IF(NR(I,2).EQ.0) GO TO 101		*
	•			

		807	00 LISI
			333334444444444555555555566666666666777777777
CARD	12345	6/890123456/890123456/8901234	5678901234567890123456789012345678901234567890
1243		CALL AFNC(U.DD.4+NR(I.1))	
1244		DD=DD*SCLCP(NR(I,1))	
1245		CAP = CAP + DD	
1246		GO TO 110	
1247	1.01	CAP = CAP + FCP(NR(I,1))	
1248		CONTINUE	
1249		EMP=0.	
1250		CAPR=CAP/(1.+RES)	
1251		CALL AFNC(U.A.1)	
1252		CALL AFNC(U.DD.2)	
1253		OD=DD*SCLDF	•
1254		CALL AFNC(DD.PF1.4)	
1255		PF=(PF1+PF2)*.5	
1256		CFFS=CFFS+DD*PF*433.644	
1257		ERF S=ERFS+DD*433.644	
1258		A=A*SCLDM	
1259		ERUR=ERUR+A*433.644	
1260		A=A+DD	
1261		B=A-CAPR	
1262		IF(B.LE.O.) GO TO 150	
1263		CALL AFNC(U,C,NN+4+K1)	
1264		EMP=B	
1265		IF(EMP.LT.C) GO TO 120	•
1266		EMP=C	
1267		F=CAP-CAPR	
1268		IF(F.GT.C-B) GO TO 120	•
1269		F=B-C-F	
1270		C=DD/A	
1271		F=F*433.644	
1272		UEDF=F *C+UEDF	
1273		CFFS=CFFS-F*C*PF	
1274		UEDR = (1 - C) + F + UEDR	
1275		ERF S=ER FS-UEDF	
1276		ERUR=ERUR-UEDR	
1277	120	ERMB = ERMB+ EMP + 433 .644	
1278		EC=EMP	
1279		CALL AFNC(U,F,NN+K1+K2+5)	
1280		IF(F.LE.0.) GO TO 200	
1281		C=CAPR+EMP-A	
1282		IF(C.LE.O.) GO TO 200	
1283		IF(C.GE.F) GO TO 151	
1284		ERM S = ERMS +C + 4 33 . 6 4 4	
1285		EMP=EMP-C	
1286		GO TO 200	
1287	151	ERMS=ERMS+F*433.644	•
1288		EMP=EMP-F	,
1289	200	CAP = A - EMP	
1290	4	ECB=0.	
1291		ECS=0.	
1292		IF(CAP.GE.CAPR) GO TO 300	
1293		CALL AFNC(U, ECBM, NN+K1+4)	
1294		ECBM=ECBM-EC	
1295		CALL AFNC(U,ECSM,NN+K1+K2+4)	•
	201	I=0	
1296	201	1-0	

640 0		0000111111111222222223333333334444444444		
CARD				
1297		J=0		
1298		B=0.		
1299		C =0.		
1300	202]=]+]		
1301		IF(J.GT.K) GO TO 211		
1302		IF(NR(J.2).EQ.0) GO TO 205		
1303		CALL AFNC(U,F,4+NR(J,1))		
1304		B=B+F*SCLCP(NR(J,1))	- 5	
1305		PC = VC(NR(J, 1))	- A -	
1306		GO TO 210	· .	
1307	205	C=C+FCP(NR(J,1))		
1308		B=B+FCP(NR(J.1))	•	
1309		CALL AFNC(C,PC,3)		
1310	210	IF(B.LT.CAP) GO TO 202		
1311		IF(CAP.GE.CAPR) GO TO 220		
1312		IF(ECS.GE.ECSH) GC TO 220	<u>`</u> .	•
1313		JJ≠1		
1314		C=0.		
1315		DO 212 J=1,K2		
1316		CALL AFNC(U,B,NN+K1+4+j)		
1317		IF(B.GE.ECS) GO TO 212	•	
1318		l≖ll		
1319		C ≖B		
1320	21 2	CONTINUE	•	
1321		IF(JJ.EQ.1) GO TO 213		
1322		CALL AFNC(U,B,NN+K1+5+JJ)		
1323		PES=PDEM(JJ)+(PDEM(JJ+1)-PDEM(JJ))*(B-ECS)/(B-C)		
1324		GO TO 215		
1325	21 3	CALL AFNC(U,B,NN+K1+5)	2	
1326		CALL AFNC(U,C,NN+K1+6)		
1327		IF(ABS(C-B).LT.1.) B=C+1.		
1328		PES=PDEM(1)-(PDEM(2)-PDEM(1))*(8-ECS)/(C-8)		
1 32 9	21 5	IF(PES.LE.PC) GO TO 220	-	
1330		ECS=ECS+D		
1331		CAP=CAP+D		
1332		[=]		
1333	220	IF(ECB.GE.ECBM) GO TO 230		
1334		JJ=1		
1335		C=0.		
1336		DO 222 J=1,K1		
1337		CALL AFNC(U,B,NN+4+J)		
1338		IF(B.GE.EC) GO TO 222		
1339		JJ=J		
1340		C=8		
1341		CONTINUE		
	~~ ~			
1342	÷	IF(JJ.E0.1) GO TO 223		
1343	*	CALL AFNC(U, B, NN+4+JJ+1)		
1344		PEB=PSUP(JJ)+(PSUP(JJ+1)-PSUP(JJ))+(B-EC)/(B-C)		•
1345		GO TO 225		
1346	223	CALL AFNC(U, B, NN+5)		
1347		CALL AFNC(U,C,NN+6)		
1348		IF(ABS(B-C).LT.1.) B=C+1.		
1349		PEB=PSUP(1)-(PSUP(2)-PSUP(1))*(B-EC)/(C-B)		
1350	225	IF(PEB.GE.PC) GO TO 230		

		00001111111111222222223333333333444444444555555 67890123456789012345678901234567890123456789012345		
CARD				
1351		EC=EC+D		•
1352		ECB=ECB+D		
1353		CAP=CAP-D		
1354		I=1		
1355	230	IF(I.EQ.1) GO TO 201		
1356	300) J ≖0	· · · · · · · · · · · · · · · · · · ·	
1357		F=0.		
1358		C=0.		
1359		I =0		
1360		EREB=EREB+ECB+433.644		
1361		ERES=ERES+ECS+433.644		
1 362		IF(ECS.LE.0.) GO TO 3005		
1363		CFES=CFES+ECS+433.644*(PC+PES)*.5		
1364	3005	IF(ECB.LE.O.) GO TO 301		
1365	5005	CFEB=CFEB+ECB*433.644*(PC+PEB)*.5		
1366	3.01	I=I+1	N,	
1367	301	IF(I.GT.K) GO TO 308		
1368		IF(NR(1,2).EQ.0) GO TC 302		•
1369		CALL AFNC(U , B , 4 + $NR(I$, 1)		
			`	
1370		B=B*SCLCP(NR([,1))		· · · ·
1371	202	GO TO 303	•	
1372	302	B=FCP(NR(I,1))		
1373		F=F+B		· · · ·
1374	303	C=C+B		
1375		IF(C.LT.CAP) GO TO 305		
1376		j=]		
1377		B=B-C+CAP		
1378	305	IF(NR(I,2).EQ.0) GO TO 306		
1379		ERC(NR(I,1))=ERC(NR(I,1))+8+433.644		
1380		GO TO 307		
1381	3 0 6	DD=F5+8		
1382		CALL AFNC(DD,PC,3)	•	
1383		ERF B= ER FB +B +433.644		
1384		CFFB=CFFB+B*433.644*PC		
1385	307	IF(J.EQ.0) GO TO 301		
1386	308	IU=IU+5		
1387		IF(IU.LE.100) GO TO 100		
1388		RETURN		
1389		END		
1390	C			
1391		SUBROUTINE RANKC		
1392		CALL ERNEED		CCR1
1393		DO 110 I=1.NER		CCR1
1394		A=ERAV(I)-ENR(I)+HTRT(I)		CCR1
1395		IF(A.GE.0.0) GO TO 110		CCR1
1396		SCL CP (I + N) =0.		CCR1
1397		SCLCP(I)=SCLCP(I)+(1.+A/(ENR(I)+HTRT(I)))		CCR1
1398	110	CONTINUE		CCR1
1399		RETURN		UUNI
1400		END		
1400	с			
1401		SUBROUTINE RANKI		
1402		DO 100 I=1.N	•	
1405	100			
1404	100	NR(I,2)=1		

		333334444444445555555555555666666667777777777
C AR D	1234301070123430107012343010701234	018301234301830123430183012343010301234301030
1405	00 102 J=1.N	
1406	COS=10. ** 20	
1407	DO 101 I=1.N If(nr(I,2).Eq.0) GD TO 101	
1408		
1409	IF(VC(I).GT.COS) GO TO 101	
1410	$NR(J,1) \neq I$	
1411		
1412	101 CONTINUE	
1413	102 NR(NR(J,1),2)=0	
1414	RETURN	
1415	END	
1416	-	•
1417	SUBROUTINE CHNG(I,AAA,IA)	
1418	DIMENSION AAA(1), IA(1)	
1419	DO 100 J=1,5	
1420	100 IFNC(I,J)=IA(J)	\mathbf{v}
1421	JJ=IFNC(1,4)+2	
1422	JX=0	
1423	DO 200 J=1,JJ,2	
1424	JX≖JX+1	
1425	XFNC(I, JX, I) = AAA(J)	• · · ·
1426	200 XFNC(I, JX, 2) = AAA(J+1)	
1427	RETURN	
1428	END	
1429		
1430	SUBROUTINE AFNC(XZ,Y,IZ)	
		_
1431	COMMON TIME, FINTIM, BEGTIM, DT	
1432	C ************************************	,N DT , NW , NR D , NGU T ************************************
1432 1433	C ************************************	
1432 1433 1434	C ************************************	
1432 1433 1434 1435	C ************************************	***************************************
1432 1433 1434 1435 1436	C ************************************	POLATES BETWEEN TABLED FUNCTION
1432 1433 1434 1435 1436 1437	C ************************************	POLATES BETWEEN TABLED FUNCTION
1432 1433 1434 1435 1436 1437 1438	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE
1432 1433 1434 1435 1436 1437 1438 1439	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE
1432 1433 1434 1435 1436 1436 1437 1438 1439 1440	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED LT THROUGH COMMON
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1444 1445	C ************************************	POLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED NTS
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED VIS ABLE AND 2 FOR THE DEPENDENT VARIABLE
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED VIS ABLE AND 2 FOR THE DEPENDENT VARIABLE
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1445 1446 1447 1448	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O'A NUMBER OF POINTS VT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED VTS ABLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION
1432 1433 1434 1435 1436 1437 1438 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED NTS ABLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1445 1450 1451	C ************************************	APPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS NT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON TATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED NTS ABLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION NO
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1451 1452	C ************************************	ROLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS WT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED WTS ABLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION NO
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1445 1446 1445 1446 1451 1455	C ************************************	ARTING A NUMBER OF POINTS O A NUMBER OF POINTS O A NUMBER OF POINTS VARIABLE VARIABLE CALCULATED IT THROUGH COMMON TATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED UTS ABLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION NO MUM VALUE OF INDEPENDENT VARIABLE KIMUM VALUE OF INDEPENDENT VARIABLE
$\begin{array}{c} 1432\\ 1433\\ 1434\\ 1435\\ 1436\\ 1437\\ 1438\\ 1437\\ 1440\\ 1441\\ 1442\\ 1443\\ 1444\\ 1445\\ 1446\\ 1447\\ 1448\\ 1445\\ 1446\\ 1451\\ 1451\\ 1452\\ 1455\\ 1454\end{array}$	C ************************************	ARTING AND
$\begin{array}{c} 1432\\ 1433\\ 1434\\ 1435\\ 1436\\ 1437\\ 1438\\ 1439\\ 1440\\ 1441\\ 1442\\ 1443\\ 1444\\ 1445\\ 1446\\ 1445\\ 1446\\ 1445\\ 1446\\ 1455\\ 1451\\ 1452\\ 1455\\$	C ************************************	ARE AND A DEPENDENT VARIABLE AND VALUE OF INDEPENDENT VARIABLE OF THE FUNCTION A NUMBER OF POINTS AT VARIABLE VARIABLE CALCULATED AT THROUGH COMMON TATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED ATS ADLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION NO AUM VALUE OF INDEPENDENT VARIABLE (IMUM VALUE OF INDEPENDENT VARIABLE ADDEPENDENT VARIABLE DATA POINTS IN THE FUNCTION
$\begin{array}{c} 1432\\ 1433\\ 1434\\ 1435\\ 1436\\ 1437\\ 1438\\ 1439\\ 1440\\ 1441\\ 1442\\ 1443\\ 1444\\ 1445\\ 1446\\ 1447\\ 1448\\ 1446\\ 1451\\ 1452\\ 1455\\ 1455\\ 1456\\ \end{array}$	C ************************************	REPOLATES BETWEEN TABLED FUNCTION O A NUMBER OF POINTS WT VARIABLE VARIABLE CALCULATED IT THROUGH COMMON FATEMENT SUITABLE FOR THE FUNCTIONS CONTAINS THE TABLED FUNCTION BEING USED WTS ADLE AND 2 FOR THE DEPENDENT VARIABLE OF THE FUNCTION INFORMATION ABOUT THE FUNCTION NO AUM VALUE OF INDEPENDENT VARIABLE (IMUM VALUE
$\begin{array}{c} 1432\\ 1433\\ 1434\\ 1435\\ 1436\\ 1437\\ 1438\\ 1439\\ 1440\\ 1441\\ 1442\\ 1443\\ 1444\\ 1445\\ 1446\\ 1445\\ 1446\\ 1445\\ 1446\\ 1455\\ 1451\\ 1452\\ 1455\\$	C ************************************	ARTIGUES OF THE SET THE SET AND SET AN

	0000000011111111122222222233333333334444444444
CARD	
1459	C
1460	C
1461	C REASSIGN OFTEN USED ARRAY VALUES
1462	J4= IFNC(I,4)
1463	J5≠IFNC(1,5)
1464	X1= XFNC(I,1,1)
1465	XN=XFNC(I,J4,1)
1466	C INITIALIZE ERROR PARAMETER
1467	I ERROR=0
1468	C CHECK TO SEE IF X IS IN THE PROPER RANGE
1469	IF(X.GE.X1) GO TO 103
1470	IF(IFNC(I,1).EQ.1) GO TO 102
1471	WRITE(6,101) I,X
1472	101 FORMAT(24H BELOW RANGE OF FUNCTION, 14, G15,4)
1473	I ERROR = 1
1474	102 Y=XFNC(I,1,2)
1475	RETURN
1476	103 IF(X.LE.XN) GO TO 106
1477	IF(IFNC(I+2)-EQ-1) GO TO 105
1478	WRITE(6,104) I,X
1479	104 FORMAT(24H ABOVE RANGE OF FUNCTION, 14, G15.4)
1480	IERROR=1
1481	105 Y * XF NC (1, J4, 2)
1482	RETURN
1483	
1484	106 IX=IFIX(((X-X1)/(XN-X1))*FLOAT(J4-1))+1
1485	IF(IX-EQ-J4) IX=J4-1
1486	
1487	IF(IFNC(I.3).EQ.0) GO TO 110
1488	
1489	1065 A=FLOAT(J5)*•5
1490	IA=IFIX(A+.1)
1491	IF(A.GT.FLOAT(IA)) GO TO 107
1492	$I = I \times - I + I$
1493	GO TO 150
1494	
1495	107 J=0
1496	XI1=XFNC(I,IX+1,1)
1497	IF((XI1-X)/(XI1-XFNC(I,IX,1)).LT.0.5) J=1
1498	I X= I X+ I A+ J
1499	GO TO 150
	C SEARCH FOR INDEXES
1501	110 J=0
1502	K=0
1503	111 IF(X-XFNC(I,IX)) 120,120,125
1504	120 IF(J_EQ.0) GO TO 121
1505	
1506	GO TO 1065
1507	121 K=1
1508	
1509	IF(IX.NE.O) GO TO 111
1510	
1511	GO TO 1065
1512	125 IF(K.EQ.1) GO TO 1065

	000000001111111112222222223333333333444444444555	5555555666666666	67777777778
	12345678901234567890123456789012345678901234567890123		
CARD	D		
1513	3 J=1	1	
1514	4 IX=IX+1		
1515	5 GO TO 111		
1516	6 C SET INDEXES FOR INTERPOLATION		
1517	7 150 IF(IX.LT.1) IX=1		
1518	8 J=J4-J5+1		
1519	9 IF(IX.GT.J) IX=J		
1520	0 L=IX+J5-1		
1521	1 C MAKE INTERPOLATION		
1522	2 Y=0.		
1523	3 DO 400 K=IX,L		
1524	4 YL=1.0		
1525	5 DO 300 J=IX,L		
1526	6 IF(J.EQ.K) GO TO 300		
1527	7 XJ=XFNC(1, J, 1)		
1528	8 YL=YL*(X-XJ)/(XFNC(I,K,1)-XJ)		
1529	9 300 CONTINUE		•
1530	0 400 Y=Y+YL *XFNC(I,K,2)		•
1531	1 RETURN		
1532	2 END		

VITA

Byron Wayne Jones

Candidate for the Degree of

Doctor of Philosophy

Thesis: DYNAMIC SIMULATION OF THE ELECTRIC UTILITY COMPONENT OF A REGIONAL ENERGY SYSTEM

Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Westmoreland, Kansas, June 7, 1949, the son of Mr. and Mrs. Lowell J. Jones.
- Education: Graduated from Blue Valley High School, Randolph, Kansas, in May, 1967; received the Bachelor of Science degree in Mechanical Engineering from Kansas State University in July, 1971; received the Master of Science degree in Mechanical Engineering from Oklahoma State University in May, 1973; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1975.
- Professional Experience: Energy Modeling Fellowship, Public Service Company of Oklahoma, Summer, 1973, Oklahoma Gas and Electric Company, Summer, 1974; Graduate Teaching Assistant, School of Mechanical and Aerospace Engineering, Oklahoma State University, 1971 - 1973, Graduate Research Assistant, 1973 - 1975, Instructor, 1975 - present.
- Professional Organizations: American Society of Mechanical Engineers; Society of Petroleum Engineers of the American Institute of Mining, Metalurgical and Petroleum Engineers.