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PREFACE -

In this thesis, the relativistic statistical models of the atom are
investigated. The development of the model is put on a sound basis, and
numerical solutions ‘of the resulting equations have been obtained.  The
agreement between theory and experiment has been improved over the non-
relativistic calculations, but the agreement for diamagnetic susceptibil-
ities is still only fair. This calculation, however, is regarded as
only a preliminary application of a model which promises to be more use-
ful in other areas.
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suggestion of this topic and for his patient guidance during the course
of this work. The financial support of the Physics Departmént at Okla-
homa State University in the form of a teaching assistantship and of the
National Science Foundation in the form of a traineeship is.gratefully
acknowledged: Also, I would like to than Dr. J. Chandler of the Computer
Science Department for his valuable discussion concerning the computa-
tional details and Mrs. Janet Sallee for her expert typing of this manu-
script. Above all, I would like to thank my parents, without whose in-

spiration this would not have been possible.
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CHAPTER 1
INTRODUCTION

The statistical models of the atom are finding new usefulness today
in the.studies of many diverse systems.  Atomic collision experiments,
high energy plasmas, low energy electron diffraction, and molecular
theory have all utilized statistical models of the atom to describe cer-
tain phenomena. Also, the easily calculated statistical densities are
finding usefulness as starting points for more. involved self-consistent
calculations.

In .this thesis we will discussvthe relativistic Thomas-Fermi (RTF)
model of .the atom.. The RTF model is derived from the central field.
Dirac equation and is seen to lead to four similar densities, depending
on the precision carried through the derivation. While the model as
presented here is applied only to isolated, neutral atoms, immediate ex-.
tensions of this model are possible to include thermally excited atoms,
diatomic molecules, high pressure matter, and ionized states; Thus,
while we treat the RTF model as an atomic theory, it is much more gener-.
ally applicable than that. (In fact, the RTF is more approbriate to
other cases than neﬁtral atoms, but we are restricting ourselves in this
study to_this one application.)

Chapters II and III review the early development and modifications
of the Thomas-Fermi model, and Chapter IV presents the basis of the RTF

model as first presented by M. Rudkjobingl and J. J. Gilvarryz. The



systematic ‘development of the RTF equations 'is then presented in Chapter
V, and the method.of solution and numerical results are.given in Chapter

VI for one of these four equations.
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CHAPTER II

THE THOMAS-FERMI MODEL OF ATOMS

Development of .the Theory

The development of the statistical model of the atom is presented.

in three main references: Paul Gombas' book, Die Statistische Theorie

1 s o
des Atoms und ihre Anwendungen , his review article "Statistische

Behandlung des Atoms," in Handbuch der Physik2 and the review article by
3 .

N. H, March, "The Thomas-Fermi Approximation in Quantum Mechanics,"
The Thomas-Fermi model was developed independently by L. H. Thomas4

,6

and Enrico Fermi, and is based on four explicit assumptions regarding

the atomic system:
(1) Relativity corrections can be ignored.
(2) The atomic potential V depends only on the distance r from

the nucleus in such a way that:

limit V(r) = O,
r > o

limit V(r) = 28 .
r > o r

(3) The electrons are distributed uniformly in the six-dimensional:
phase space at the rate of 2 per h3 of volume.

(4) The potential V(r) is itself determined by the nuclear charge
and . this distribution of -electrons.,

We are thus assuming that the electrons constitute a degenerate electron



gas under the influence of a central potential, As given by Thomas4 him-
self, the development is as follows: Suppose that around a point ?, the
momentum space is occupied up to a certain maximum momentum po('i:*)q Now,
the volume in momentum space occupied by these electrons is a sphere
with radius pO: VP = %‘ﬂ p03o Because of the spin degeneracy, there are
2 electrons per h3 of phase space volume, so we can find the volume den-
sity of electrons at a point T by multiplying the phase space density by

the momentum space volume:
T Po(¥)
— . -
plr ) = 343 , (1)

At this point ¥, the energy of the electron with the maximum momen-
tum P, is given by

o ()
E.-= Pam - e Vv . (2)

If we write Eo as —eVo and substitute for P,s the electron density can

be written as

)3/2

3/
P(?): %‘E} (&me) z (V(V)—Vo , (3

Now, we apply assumption (4) by requiring that the density and potential

be related by Poisson's equation:

Vz\/(_?) = 47 e f)(?) : (4)

The fundamental equation in the Thomas-Fermi model is then

2 A Y2 )
v (V-V,) = 3geame)” (Ve -ve)



If we now assume that the electron density (and hence, the potential) is

spherically symmetric and make the following substitutions:

\/(Y) *—Vo = Z'Yg' ' CI)(Y) (6a)

ro= b.ox
(6b)
3 )7_/3 &3
b = (32 T ame? Z,y3 (6¢)
the Thomas-Fermi equation takes on the simple form
I'd  p*
dxt © x% 7
The -boundary conditions for an isolated, neutral atom now become:
,I‘YY]|.+ CiD(x) = @) (8a)
X —> 00
[rmit @(X) = 1
X—> O (8b)

Before discussing the solutions of this equation, it is important
to note that the same equation can be derived from a variational point
of view7’8. This approach is useful because it permits a direct incor-
poration of exchange and correlation corrections and will be discussed
in Appendix A.

The Thomas-Fermi equation as written above is a dimensionless equa-

tion, independent of Z. This means that it need only be solved once and

the actual atomic potential for any Z can be easily found from the uni-



versal solution. Unfortunately, this desirable feature is lost as ‘soon
as the equation is modified to take into account corrections due to ex-—
change, correlation, or relativity, but with modern computers this is

less a disadvantage than it once was.
Solutions of the Thomas-Fermi Equation

Being a second-order differential equation, the Thomas-Fermi equa-
tion possesses-a doubly infinite number of solutions if no boundary con--
ditions are.imposed. Applying the boundary condition at the origin
(Eq. 8a) allows an infinite family of curves with $(0) = 1, all concave

upwards.9

$ A

.
>

|
!
0 Xo X

Figure 1. Solutions of the Thomas-Fermi Equation
Satisfying the Boundary Condition
2(0) =1



These solutions can be .identified by their initial slope.:' Curve I .rep-
resents the solution describing an isolated, neutral atom, and approaches.
the x-axis as 144 x—3hfor large X. Curve II is representative of those
With a steeper initial slope than I, and these describe positive ionmns. .
Curve III, which diverges for large X, is used (out to a certain finite
XO) in the statistical model of crystals and molecules with high symme-~
try. The emphasis in this thesis 'is on the neutral-atoms, so we will -
concern ourselves primarily with the asymptotic solution.

The Thomas-Fermi equation has an analytic solution

3
P(x) = 144 - X (9

which satisfies the boundary condition at infinity, but it does not sat-
isfy the requirement that ¢(0) = 1. There does not exist.an analytic-
solution satisfying both boundary conditions, so the solution must be’
obtained by numerical integration. Integration of this equation has
been performed by .several authors, beginning with Thomas4 and Fermis;
Subsequent numerical integrations were published by E. Bakerlo, C.

11

12
Miranda™ ™, Slater and Crutter  and more recently in a series -of articles

‘in_the Journal of the Physical Society of Japan by Umeda, Kobayashi, and
others13—l6. It is interesting to note that, for more than twenty years,
the most reliable solution of .the Thomas-Fermi equation was that pro-
duced by a mechanical integrating ma?hine, the "differential analyzer"
of Bush and Ca1dwelll7.

Several investigations have been made regarding the asymptotic be-
havior of the numerical solution and various refinements have been made

in the analytic approximation to the exact numerical solution. The

analytic properties of the Thomas-Fermi equation were developed by Arnold



Sommerfe1d18'and,an important result is the fact that, if ¢(x) is a so-

lution, then so also is x(y), where:

$=a X (10)

X = b‘}’ (11)

provided that,ab3"= 1. This means that a single numerical integration
can be carried out and the resulting solution .can be scaled to fit the
requisite boundary conditions.

N. H. March‘ll9 used this fact to set up two "master solutions' of:

the Thomas~Fermi equation. Using the.CoulsoneMarch.zO asymptotic expan-

sion
144 Fy R F
@(x>=—;<3(1— ;c’f;(ﬁ-;sjz’fw) (12)

two solutions were produced: one with positive,Fl, and one with negative

Fl. '

particular solution desired.

These two solutions can be transformed by the scale factors 'to.any

A procedure similar to this\wasbused by Kobayashi, et al.lsdin their
numerical integration. The procedure used was to integrate from x =
toward the point x = 1 using the transformed variable y = 1/x and start-
ing with Eq. (12). At x = 1, the then determined values of ¢(1) and
¢'(1l) were used to begin an. integration from x = 1 to x = o, using the:
variable .z = x;5 to remove.the divergence in the second derivative at the
origin. The solution generated by this method automatically satisfies
the boundary condition at.infinity, but probably does not intersect the
¢-axis at ¢ = 1. To produce the proper behavior at the origin, the in-

variance properties developed by Sommerfeld can be employed, scaling the
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entire solution to ¢(0) = 1,
The exact numerical solution of the Thomas-Fermi equation for a
neutral, isolated atom is plotted in Figure 2 and the numerical values

are given in Table I.

Figure 2. Solution15 of the Thomas-Fermi Equa-
tion

Approximations to the Solution

It is often helpful to have a polynomial approximation for this
function, and two expansions have been developed. A small argument ex-

pansion was developed by Baker]f0 and later extended out to eleven terms



EXACT VALUES OF THE ORDINARY THOMAS-FERMI -

TABLE T

FUNCTION AND ITS DERIVATIVE15

11

b3 6 (x) -¢' (x) b3 ¢ (x) - (%)
0.0 1.00000 1.588071 1.0 0.42401 0.27399
0.1 0.88170 0.99535 1.5 0.31478 0.17374
0.2 0.79306 0.79423 2.0 0.24301 0.11824
0.3 0.72064 0.66180 3.0 0.15663 0.062457
0.4 0.65954 0.56464 5.0 0.078808 0.023560
0.5 0.60699 0.48941 10.0- 0.024314 0.0046029
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by Feynman, Metropolis and Tellerzz. In their calculations of the
Thomas~-Fermi-Dirac potential, Metropolis and-Reitz21 amended an. error in
Ref. 22, and finally, Kobayashi16 developed the expansion to 17 terms.

The expansion is, for x << 1:

\7

b= 22 anx™ 13)

n=o
The coefficients a are given below in Table II.

The large argument expansion, as developed by Coulson and March20,
consists 'of a polynomial factor multiplying the asymptotic behavior of
the ThpmaSTFermi function, viz., ¢(x) ~ 144 x=3, The form of this expan-
sion, as originally given by Coulson and March, is:

144{1_E1_+E£_F3 }

b= T3 Nl v TR R (14)

The succeeding Fn coefficients can all be expressed as a multiple of the
first, and in this case, we can write the large argument expansion of the

Thomas-Fermi function as:
Px) =144 x‘3<"+c17+°1f" ot Cay'™) (15)

where: y = = FX-

The numerical values of these parameters were determined by Kobayashi,
et al.15 to a precision of ‘15 significant figures. For completeness, we
list these coefficients 'in Table III. The values used for F and A are.
13.27097391 and 0.772001872658766, respectively.

'It should be noted that Eq. 15 is valid only for x 2 15, and. that

Eq. 13 is valid only for x s 0.6. ' The derivatives obtained by simple

differentiation of Eq. 13 and Eq. 15 are even more restricted.



TABLE II

COEFFICIENTS IN THE SMALL ARGUMENT EXPANSION OF

13

THE THOMAS-FERYL FuNcTION > *2L
¢ Gx) = néo 25 X"
an n. an
2 1 3
12
0 10 Eﬁg'az
' 31 1 4

$'(0) 11 i85 22 * 1056 22

4 Ao 43

3 12 705 T 1575 22

557 2 3 5

0 13 760100 22 ~ 9152 %2
-g'a 14 -fL-~a " 4
) £937%2 ~ 74355 22

1 s 101 623 3. 7 _ 6

3 59650 351000 2 T 49970 22
3 4 2 68 5
70 2 16 ~ 75045 %2 T 105105 %2
2 . 113 , 153173 b3 7
15 27 1178100 22 * 116424000 22 ~ %3520 22
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TABLE -III

COEFFICIENTS IN THE LARGE ARGUMENT EXPANSION OF THE

THOMAS~FERMI FUNCTION 15,20

. -3 17 n
d(x) = 144 x néo Cn y

Cn n Cn

1.0 9 .00085 41653 77807 -

1.0 10 .00027 83738 39349
.62569 74977 82349 11 .00008 88230 01411
»31338 61150 73309 12 .00002 78360 15974
.13739 12767 19371 13 +00000 85895 00194
.05508 34346 64149 14 .00000 26150 62632
.02070 72584 99192 15 .00000 07867 99377
-00741 45294 78496 16 .00000 02342 63579
.00255 55311 67949 17 .00000 00691 03239
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A more useful approximation for the Thomas-Fermi function was de-
veloped by R. Latter23, who determined, on .a best-fit basis, the coeffi-

cients in a function of the form

6 02 -1
@MF-[1+ZjanX J (16)
n=1

At present, the rational expression which provides the closest
agreement with the exact numerical solution was developed by J. C.

Mason?4 in 1964. Mason chose the functional form to be.

P n/2
Ci?(X) = % n/2 1n
| + b, X
Nz

The requirement that lim ¢(x) = 144 x_3 led to the fact that.q = p+3.

The value of the coefficients which give the best agreement with the

solutions of Kobayashi15 are listed in Table IV,

TABLE IV

COEFFICIENTS IN THE THOMAS-FERMI APPROXIMATION OF'MASON24

n a ‘ b

n : n.
1 1.81061 1.81061
2 0.60112 1.39515
3 (0) 0.77112
4 (0) | 0.21465

5 (0) 0.04793
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With qhis‘approximation, the deviation from the exact result in either

the function or its derivative is on the order of 10-5.'
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CHAPTER III .

MODIFICATIONS OF THE THOMAS-FERMI MODEL

]

When any simple theory'is presented Whieh meets with moderate suc-
cess in predicting observed behavior of a system, it is natural to see
if its‘predictions can be extended or. improved by including more and
more corrections and by eliminating as many of the restrictive assump~
tions as possible. The Thomas-Fermi theory of atoms is no exception,
and since its inception, it has been expanded to include exchange, corre-
lations, periodicity, quantum corrections, and relativity. It has been
applied to such diverse systems as nuclei, atoms, ions, molecules, atoms
in a crystal, and stars. In this chapter, we review some of the modifi-
cations which heve been proposed for the Thomas-Fermi model of free,
neutral atoms with a particular emphasis on. the relativistic corrections.

One of the simplest corrections that was proposed was that,of Fermi
and Amaldile In the original Thomas-Fermi (TF) theory, the electrons
are assumed-to constitute a continuous charge distribution and the po-
tential is determined by this charge distribution. Consequently, the
electrostatic Coulomb interaction includes the electrostatic self-inter~
action of,the electrons.. To eliminate this, Fermi ‘and Amaldi proposed
that the mean~potential of one . electron, Ve/Z, be subtracted from the
total atomic .potential.  Thus, in effect, the Thomas-Fermi potential is
multiplied by the correction factor (Z-1)/Z. This self-interaction has.

been studied more recently by R. Latterz'and C. A. Coulson and C. S.

19



20

Sharmas.

It is well knpwn.that.the exchange energy in a large atom can con-.
tribute a significant portion~of»the'total,energy4; The TF model as
described here does not take this exchange energy into account, and
Dirac, using the expression for the exchange energy derived by F@ckz,

applied this to the TF theory.  The electron density then takes on the

form-
Y2
N= 37[2%5 a + (\/'—vo + &)
1 me3
where. a = 1 5 The similarity to the TF density is evident if we
2m

write the TF density in the form

3/2 \ 3
ne G [ V)" ]

It is interesting to note that Eq. (1) can be derived very simply if we
use the variational derivation of the TF eguations. Bloch6 showed very
early that the exchange energy per unit volume for a system of electrons

has the form
N 43
eex = — Ce vV

(3)
3e? 3,1/3 . .
where Ce == Q; » If this energy term is added to the total energy

expression (cf. Appendix A), the TFD equation results (Eq. (1)). J. M.
c. Scott7 has shown that, if this energy is evaluated using the TF den-.

sity, the correction term due to exchange is, in eV,
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5
Eex= =602 Z 73 (4)

The TFD model has itself been the subject of several improvements.
Fermi—Amaldi1 corrections have been made, and Jensens added a term to
the energy of the TF model which varied with the radius and density in
such a manner that it was identical to the exchange interaction in the.
center of the atom and reduced to the Fermi-Amaldi correction atthe
edge of the atom.

Correlation effects are generally much smaller than exchange effects
in atoms (in fact,'P. O,'Framang feels that correlation effects are neg-
ligible in comparison with the basic approximate nature of the Thomasr

10-12

Fermi theory), but Gombas has evaluated the correction to the po-.

tential energy due.to correlation to be

&4 p‘/b (5)

Covrr = — P
C
ovy ’DV3 . O(,l

2

where a. = 0.05647 g— and a, = 0.1216/a0. (ao is the first Bohr radius
o

1 2
of the hydrogen atom.) The total energy due to this correction is in-

deed very small, as can be seen by the following argument. The greatest
contribution wiil occur when p is very large, so let us allow p to dom-
and o

inate o in Eq. (5). Then.

Ecorr ~ = fp clv (6)

1 2

~ -0y Z (7).

~ A5 Z (eV) | (8)
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A second class of corrections are those which modify the kinetic
energy term in the energy. The first and basic correction to the kinetic
energy was developed by C. F. v. Weizséckerl3. This correction is der
rived as fo;lows: First, one ignores the Pauli exclusion principle and
allows the n electrons in a given volume element dv to coexist in the
same ‘state ¥. Then the electron density becomes p =,niw|2n It can be
- shown that the kinetic energy density from the Schroedinger equation is-

given by
2
P N
e\:;e aoﬂ(vq’) 9)

<

Thus, the correction to the energy due to Weizsidcker .is:

(Vo)
E - Legao ] (10)
LR P

This simple -approach overestimates the energy and several attempts have:

been made to correct this problemM—22

Recently, the TF theory has been the subject of investigation from
several different points of view. The aim of many efforts has been to.
somehow include the angular-momentum dependence of the quantum mechanical
density. As Gombas-23 points out, most of the attempts to derive the
electron shells from the TF theory have been unsuecessful, but a more
fruitful approach to the problem has been the incorporation of shells
into the model. Most of the success in the former approaches have béen

24,25

in the area'of‘nuclear shell structure » Wwhile the attempts to de-

. . 26~-31
rive atomi¢ shell structure 3 have met with only ‘moderate success.

L. C. R,Alfred32 has approached the problem from both points of view,
while P.‘Gombass:a_41 has limited himself to the inclusion of the shells

into the statistical models.
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Several papers have al$o appeared recently which demonstrate that.
the Thomas-Fermi theory is a particular approximation in a rigorous.

N—body\formalism42_47. This approach has led to the efforts of subse-

' quent‘authors to include quantum corrections48_51, and the majority of
the recent work in TF theory has been in these two areas. By combining
some of the known properties of the electron density,derived from wave
mechanics, these authors have been able to circumvent some of the diffi-
culties encountered in the asymptotic behavior of the sfatistical elec-
tron density.-

Some independent approaches have appeared recently, like the modi-.
fied statistical atom model proposed by W. H. E. Schwartzsz, in which
account is taken of the Heisenberg uncertainty principle to derive a.
modification of the exchange po:ehtiale* P. Gombas has also proposed a
new approach to.the exchange potential53 and to the periodicity prob-
lem54.

Another interesting approach to the asymptotic problems of the TF
density is that of P, Csavinszky55, who replaced the differential form

of the TF equation (Poisson's equation) by its equivalent variational

integral equation.  Choosing
5
_ L (dE) 2 (iﬁ)
F= 2\ 5 \X"2/ (1

the variation of

L [

is equivalent to the ordinary TF equation. This variational equation is

then solved subject to the boundary conditions
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Po=1 Plo)= 0, P'o)= 0. (13)

The functions chosen by Csavinszky were of the form

P = [a-‘e"ux%‘e”m]z ao

and the total energy of an atom calculated on this basis was found to be
much closer than the unmodified TF results.

However, the primary concern of this thesis is a relativistic form-
ulation of the statistical model, so in this last section, we review the
early attempts at a relativistic Thomas~Fermi model. The earliest at-
tempt was that of Vallarta and Rosen56. By taking into account the
variation of the electron's mass with velocity, the relativistic Hamil-

tonian

2
P2C2—~ (\/\/+e\/) + moch =0 (15)
leads to the relativistic TF equation of Vallarta and Rosen:
Y
\d 20@) X
% EI{Z(X o) =9 (1+2¢) : (16)

where

e b _ -5 4/3
>\"o’2m°c2 = 1.841x10"° A @n

This equation, unfortunately, leads to an electron density which diverges
- R . 57
as r 3 at the origin and is thus unnormalizable. H. Jensen~ circumvent-

ed this problem by recognizing the finite size of the nucleus and utiliz-
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ing a cut-off radius of r ~ 3Z x 1,0'_13 cm, Much later, J. S. Plaskett15

combined an expression for the electron density in an atom with the
Klein-Gordon equation with zero vector potential, obtaining the approxi-
mate result

4 | 2, Kot 172
0= 5 i [(E-e) it - I | e

However, the derivation of this density requires the restrictive assump--
tion_that.ZZ <. 1/a, or Z'5 64, so the expression is not applicable to

the very region in which one would expect a statistical model to be most
useful., Y. TomishimaSB'attempted to overcome the divergence of Vallarta
and Rosen's density by including a modified Weizsicker correction to re-

duce the singularity at the origin. The equation thus derived is
. 22 o
Ak VY = X[+ 0r)” ol )" —1}
5/
+ %K/ovkpz"'(\/’\/O)\P:O'

(19)

1
1/3, and ¢y = p1. The asymptotic behavior of Y

1 3,3
Here, k; =g a,, K, = Z<;0

for large r.is

P o &-exp[—ﬁ/ﬁ/ﬁj J (20)

and as r > o, y remains essentially constant: The A that appears in Eq.
(15) is an adjustable parameter and is chosen to provide the best value
for the total energy of the atom.

To date, however, the most satisfactory approach to the inclusion
of relativistic effects is that of Rudkjobing59 and Gilvarry60° Since

the work of these two authors is fundamental to our proposed relativistic
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Thomas-Fermi (RTF) model, we will present their development of the RTF

equation in detail in the next chapter.
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CHAPTER IV

DEVELOPMENT OF THE RUDKJOBING-GILVARRY.MODEL .

In 1952, the Danish astrophysicist M. Rudkjobing developed an equa-
tion giving the .density of states at a zero-temperature for a system of
relativistic particles in a central fieldl. He went on to apply this
density'to_the case of a white dwarf star, considering the variation in
mass density to be a consequence of the (central) gravitational field.
The derivation did not require that the potential be gravitational. In
1954, J. J. Gilvarry used this density as the basis of a relativistic
Thomas~-Fermi model of the atom.2 Since our work is essentially based on
this approach, we will discuss the derivation of Gilvarry's model in this

chapter.
Rudkjobing's Theory

Beginning with the Dirac equation for particles in a central field,
Sommerfeld3 has shown that the spin-angle part of the solution is inde-

pendent of a central potential, and the radial functions Rl and R2 are

solutions of the following two simultaneous differential equations:

(¢ IR, - (Ve )R,

(1a)

-

(a% 5 “k)Rl = %Z(—E+\/+EO)R1

(1b)
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In these equations, Eo is the rest energy of the electron, and k is the.
eigenvalue of (3 - T + 4) operating on the spin-angle function xs. Thus,
k can take on all integer values except zero.*

Introducing the variables P, = 1R and P, = rR,, we get

(———— -—) 1% ’--éE(E'\/*‘Eo)PZ (2a)

(% +5) P = 5 (vl

(2b)
dp
Now, if we differentiate Eq. (2a) and substitute for-E;— the expression
in Eq. (2b), we obtain
P_kdd Ko -
ATy ar Teh T
1 1 _k 1.4V, 3
fo (EveE) (B Ve =BRGP

Substitution of the expression for P, in Eq. (2a) into Eq. (3) eliminates

P, from the bracket, leaving

2
4P V)'-Eo 4’k a4
[ e p G R e
dzP2
Similarly, we can find the corresponding expression for 2#
' dr
d'P E-V)*-Eo  Hi+k | dV (4b)
+ | TR T 7 P = i p p1 .
dYJ-— )R c Y ,R chv

*k corresponds to -k in Rose's4 notation.
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If the potential has a vanishing gradient, then, (4a) and (4b) separate

~into two wave equations. In order to treat the general case, when

%% # 0, we introduce a new radial function Q(r) which is a linear com-

bination of P, and P,:

1 2
Q: a\tP,l + azt PZ_ (5)

Here, a; and a, are as yet unspecified constants. . Multiplying Eq. (4a)

by,al_and Eq. (4b) by a, and adding, we get

2
d'Q [ (E-V)'—Eo" %t
cr® * e oy Q +

(6)
L dv -
* %&Pt *fe dr ab - Fak- Re &vdzR = 0.

S

We now define a function g such that

dQ X [(E-a\/gl;Eo _ ‘qu‘rﬂJ Q =0, (7)

cdr? ¢ Y

It»then follows that

(Y% %
& fodv G T T

ey a, e a4 (8a)

LAV k. o

ﬁdyd1~?{a’2 ﬂgza'ﬁ

(8b)

. 2 dv | . .
If we now make the reasénable assumption that r Ir 1s essentially con-

stant over a small interval, we find that
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- + 2_ 2
9= VK- % (9
where ko is defined to be
o= he dy

Whether the + sign or the - sign in Eq. (9) is chosen makes no differ-
ence, and we can write a single equation for the radial function Q:

1 2 ( 0\\/)2 (
2 - - - {r +
d'q +[ E-W-E - g/ Y

)
dr* Rec? - Q=0 (11)

This equation determines the radial function Q(r) if the energy and the
form of ‘the potential are known, and the solutions Q(r) are parametrized
by the number g.

For each energy E, there is a 2|k|—fold‘degeneracy due to the angu-
lar parts of the functions. For each value of g, the number of states-
with energy less than some maximum energy Em in a volume element in the
form of -a shell of unit thickness is equal to 21k| times the number .of
half oscillations of the Q function for Em, since each radial eigenfunc-
tion has one more node than the one immediately below it in energy.

The minimum.radial wavelength Amin is deperident on Em and g and is

found from Eq. (11).

()2 G B O8R4

T2 (12)
>\min TK <
3 ‘ Ze2 Ze2
For a coulombic potential V = - = and ko = Fe = aZ, where o

is the fine structure constant.
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If we make the assumption that g2 >> g, the total number of states with'

a certain magnitude of g lying in the spherical shell is -

2 =2 V\e 23
R e -
n= o & “Rier - —@ (13)

To find the total number of states, we integrate over k, using the fact

that

21kl dlk] = d(gz) ; (14)

resulting in:

, fgm[ l(Em-v)’—Eo‘~(v§(¥)2_ . Vzol z
™ 9=o ' We? % (9) (15)

PQ'= TY

Thus, the volume density of states (or, at T = 0, the volume density of

matter) is

(16)

N2 (vdV)? /.
pege [ L )

From this point on, Rudkjobing applies this equation to the specific
case of the gravitational potential of a white dwarf star. Here we are
primarily concerned with statistical models of the atom, so we next sum-
marize Gilvarry's use of this density as a relativistic Thomas-Fermi

atom model.
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Gilvarry's Theory

Noting that previous attempts to derive a relativistic generaliza-
tion of the Thomas~Fermi atom were unsatisfactory for one reason or
another, J. J.'Gilvarry2 used the equation derived by Rudkjobing (Eq.
16) as the basis of a statistical atom model. In Gilvarry's notation,
the number of states,n(r,E) per unit volume and per unit energy range of
an electron of total energy E at a point r in a spherically symmetric
atom where the electrostatic potential is V(r) is found by differenti-

ating Eq. (16) with respect to energy:

n(rE) =g | Erev) - mict — fre %&\%” Heev) an

Applying the Fermi-Dirac distribution function, one can obtain an expres-
sion for the number density of electrons p(r) at the point r at a non-

zero temperature T:

dE

= ———*"""””" (18)
(n=| n(rE)

P I+ g ar

Substitution of this expression, evaluated-at . T = 0, into Poisson's equa-

tion results in the relativistic Thomas-Fermi (RTF) equation:
dV)? 1%

1 eV): = \re gy
"fad‘(\f\/ (“fl+e\/) Oﬁ amc? ( - (19)

32n

where o, = (2m )3/2 e ' 2
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Furthermgre, if one assumes that relativistic effects affect the
exchange correction only slightly and operate mainly to modify the un-

corrected potential Vo’ one can obtain a relativistic Thomas—Fermi—Dirac5

equation:

2 ) (’Y)H’,Vo : 6’35[?) 3/2’
-‘F%z(vvoﬁ S, {Y +]:’>/ +(reVo) + J } (20)

ame?

1
s 2
where, 7Y = LZE%_E_ .

Whereas these equations have been cited by several authors6é10; the
solutions have never been published, élthough B, Rosznyaill has present-

ed the results of his relativistic self-consistent calculations which

were begun with Eq. (19).
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CHAPTER V
THE RELATIVISTIC THOMAS~FERMI EQUATION

In this chapter, the arguments of Rudkjobing and Gilvarry will be
re-derived and put on a more sound basis. Also, it will be seen, that .
Rudkjobing's densi;y is only one of four possible expressions derivable
from the same basic idea, the four expressions resulting from different

treatments of a summation which is encountered.
The Central-Field Dirac Equation

We begin by considering the motion of a relativistic fermion moving
under the influence of a scalar potential V and has potential -energy, U.

Such a particle can bé described by the Dirac*equation:l

(cTB +pmc )W = (W-U)E "

>
where W = total energy of the particle. In this form, % = (g g) and O s

cy, o, are the Pauli spin matrices for a spin % particle., Also,

/10 0 0
8 = 01 0 0
00-1 0]} °
00 0 -1:
Making use of the relation,
Ay 9 V(2 A 2T
55 =-ch (@757 — ¥ (@MST) @
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and the Ys Dirac matrix

0 -l
Vs = (-1 O) ®

we can write the Dirac equation in the form

[icv/g (9 ,;'-ﬁK)pmc +U]qf WY )

where
K= §(51+4§> : (5)

We now assume V is a central potential and write the (four component)

wave functions in the form

M
£ ?(K,

= (6)
N R XA

The xE are the spin-angle functions which are eigenfunctions of $ 1 +4:

F18) Xob = b ) e

Mo
Oy Xfﬁ, = 7 )(w« (7b)

Then the Dirac equation takes on the form

(B B) U eRRE XS UAXE R
=W (®)

Lf\c(-g-ﬂﬂf‘wmﬂﬁc IXK;H Emgets U X K of o

r ' Y
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which allows separation of the spin-angle dependent parts, leaving the
radial eigenfunctions to be determined by the two simultaneous differ-

ential equations:

(W-U-mec?)f, = -Re (2 + 55) 4 o)

(W-Usmye ), = e (& +85) f,

(9b)

If we use k = -k, these two equations are identical with Rudkjobing's.
(1) with f2 = R2 and f1 = Rle

Development of the Density of States

Following the same reasoning presented in Chapter IV, we define an

arbitrary linear combination of f1 and.fz:

Q= (a,f +a.f)r (10)
which results in the following expression:

d*@ [(w—u)l-go kZJ q +

ar * hie?
(11)
13 r d r dk) _
+Fa,ﬂ +ﬂa’% a€ azﬁ = 0,
We now define a new variable g such that.
y du
a\—__ 7-kc Cl\(‘ - a"% (21a)

(12b)
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This requires that, unless a

1 =8 = o,

gi= k- (ﬁdg)z

We define the second term to be koz:

(13)

_rt dy
ko' fic  dr (14)

(As noted previously, for a coulombic potential, ko = aZ,) Then

q= 4/ k- ko (15)
and we can write, for either sign of g:
d*Q . Q
T+ (996 =0 (16)

where we have defined € by:.

e= fo [(w-ur-£2- (e ] an

or, equivalently,

2
L 'z 2 2
€= K (W"U) = Eo] -'{220 (18)
Now, the radial momentum operator has the representation2
Rid 1)
f” = T(éﬂ‘*r (19)
Since the radial behavior of a particle described by our function Q

is proportional to Q/r, we find that.

(20)

Pt

2|2
Sls

For this reason,
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4@ B>
a2 R Q@

(21)

Comparison of Eq. (21) with Eq. (16) shows that

2

ple & (g-gue) )

Using the deBroglie relationship (Xr = %10, see the radial wave-
' r
length becomes

-V
)grgnv(~859+€) 2. (23)

We wish to establish a connection between,the number of states for
given values of r, g, and E and the properties of this Q function. It
is well known3 that, for the non-relativistic Kepler problem, the number
of nodes in any particular radial eigenfunction is one greater than the
number of nodes in the radial eigenfunction for the state lying immedi-
ately below it in energy. For the Dirac problem, it is a little more
complicated, since fl and f2 do not vanish simultaneously4 (except pos-
sibly at the origin and at infinity). However, it is known that5 between
each pair of nodes in £, (or f2) there is a node in f2 (or fi) and that

the number of nodes in f, follows the same rules as the non-relativistic

1

radial eigenfunctions. It then follows that, regardless of the magni-

tudes or the signs of a, and ays @ node of Q will fall between adjacent

1
nodes - of fl and f2, such that the number of nodes in Q will be the same
as the number of nodes in fl. That is,; a particular Q function will

have one more node than the Q for the next lowest energy level. If we
define an energy Wm such that all states with W > Wm are unoccupied, we

can count the number of states by counting the number of nodes in the Q



43

function for Wm.

We are specifically interested in the number of states availablé to
a particle with a particular value of g between a distance r and r + dr
from the nucleus. The number of these Q functions per unit radial dis-
tance is equal to the number of nodes in Q(Wm) between r and r + dr. As"
Figure 3 shows, this number (dnq) is equal to dr. divided by one-half the

radial wavelength of Qm.

> vadius
‘ \/k— 3 ——4\/*‘*‘“

Figure 3. Nodes in the Radial Function Q
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Thus,
Fr @)

Substituting the value of AL from Eq. (23), the number of Q functions

with energy W < Wm between r and r + dr is

dn,
ar

(24)

= 7 (-g-g7e)"

where € = ¢(Wm). ' With each Q are associated'2|k| spin-angle functions,
so the volume density of states with value of g at a distance r from. the

nucleus available to a particle of energy W is

(_)l_Y_]_Q .I_ik._! (_9l_g+e)‘/2'

dv = amr? (25)

Summation Over g

The remaining step is to sum over the different k values to obtain
the final expression for the total density of states. Depending on the

approximations used, any of four expressions can be derived.

Discrete Densities

We can make use of Eq. (15) to write

ol
W ey Cg-greNg kY ¢6)

At a fixed value of r, g can take on the following discrete values:

g: t’v1—ko? , iV4"lﬂoz ) tV9"fQoi ) ~ oY
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The upper and lower limits of the summation over g are determined by the
requirement that the density remain real; i.e., that -gz -g +¢ > 0, This

gives us the following limits:

-1 +V4e+1

gmw = 7 (27)
1= /4€+
9mm = ) (28)

Thus, the density of states available to a particle of energy W at.a dis~-

tance 'r from the nucleus becomes-
Gwarx

pr (= an?f’ 32;4 V(-9 -greX g ket 29)

It is interesting to note that this expression can as well be expressed

as a Stieltjes integral., The concept of the Stieltjes integral is use-
ful in discussing summations within the formalism of the integral. The
connection between the two is evident from the definition6 of the

Stieltjes integral:

[?(x) advex) = Z £ X) [Y(X Y(X:-;)J (30)

Here, xi' lies between Xi and £ 10 Our density (Eq. 29) can be written

as a Stieltjes integral if we define Y(g) in the following manner:

Y(g):-n ek < 9 PRV cEpNG

(31a)

vip=n ke €9 <y -k

(31b)



This integrating function is shown in Figure 4.

lY(ta)
-5
L4 —
[ < —
L 2 —_—
T U —
I
—_— kA
P - -2
— - -3
L -4
- -5

Figure 4. Integrating Function for Stieltjes Density
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Then

9mmx

where Y(g) is given by Eq. (3la) and Eq. (31b). A second possibility
arises in the case where g2 >> g or k02° In this case, Y(g) takes on

the simple form

Y(g) = N+ P f n<o (33a)
v(9)= n o n2o0 (33b)
and n<g<n+ 1.

The resulting density can then be expressed as the following sum:

|
P =g Ly Vg 19l “

Continuous Densities

A second approach to the problem arises When»gmax and 8, iy 2re SO
large in magnitude that the integrating function Y(g) in Eq. (32) can be
reasonably approximated by Y(g) =.g. In this case, we are left with a
Riemann integral of the square root of a fourth-degree polynomial, inte-
grated from one zero of the integrand to the second zero of the inte-

grand:

amm
{
()3:5]:\;;; f ﬁg“g%)(g”ﬁ#) dg, (35)

Imin
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An integral of this type can be reduced to a sum of the three standard
elliptic integrals, and this reduction is given in Appendix B,
If we further approximate the integrand, by allowing g2 to be much

‘larger than g or kd, the integral becomes much simpler:

Jmaw

where the limits -are now Brax = Ve = - /e. This integration can

* 8nin

be performed analytically, resulting in

3
c ™ (37)

i

l
P4:m3
This result is identical to Eq. (16) in Chapter IV, so it is seen that
Rudkjobing's density depends on two assumptions:
(1) that the number.of allowed g values is so large that the sum
can be replaced by an integral, and,
(2) that 8rax and 8.i, 3T€ SO large that, for the major portion of
the integration, gz >> g or ko.
The validity of these assumptions will be discussed in the next chapter.
For completeness, we list here the conclusions of this model:

The exact density is

P«””éT'ﬁ’ & VEg-geelly k) 29)

If‘g2 >> g and g2 >> koz, the approximate discrete density is

pali)= ﬁ,%\/e-gz-]g[ (34)

If we replace the sum in Eq. (29) by a Riemann integral,
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9max
(_)3 = 5%;3 fw\/égl-g*-é Xg% ) 0('»’2‘}/ (35)

Finally, if we hold that |g|‘and koz are negligibly small when

2
compared to g, the approximate continuous density can be written as.

L 2 % |

In all four cases,
r? )z Ez ,kz
€= pa [QWJU T B :‘ - Ko (38)

and

rt du
Ro: o dy - (39)
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CHAPTER VI
SOLUTION OF THE RTF EQUATION

We have seen that the approach of Rudkjobing leads to four possible
relativistic Thomas-Fermi equations, depending on the approximations made
in the derivation. Substitution of these expressions into Poisson's

equation produces a RIF equation of the form

2 2
VUz"Wr\g‘R(Y‘) | L

where R(r) = 21r2r3 p(r), and the density p(r) is given by Eq. (29), Eq.
(34), Eq. (35) or Eq. (37) in Chapter V.
Since we are assuming a central potential, we can write the Laplac-

ian as

(2)

To eliminate the first-order term, we define Y(r) by:

q):: Y’k) (3)

Then a direct calculation shows that

d'¥

——

{
2 L.
VU= ¥ dr? ()
One of the basic assumptions is that, as r approaches zero, the

screening effect of the electron cloud disappears, and the potential ap-

proaches that of the bare nucleus with a charge of +Z. (We will use
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atomic units in which i'=m = e = 1.) That is,

limit Ulr)= - %‘- (5)
>0 _

To avoid a divergence in the second derivative, we rewrite the RTF

equations 'in terms of a new variable x:

X

1

VY (6)

resulting in:

d*¥ LGN S TN

|
dxz X dx T TX (7
The limits of these terms are, in light of Eq. (5):
lim} $x)=- Z (8)
X—0
[ d¥ |

[im it X - O, (9
X=0

' 2
limt 3 = 0. | (10)
X— 0 ;

The functions R(x) are

Ry (x)= % VEG-greXgirksY) (11)

R, ()= Z?Z Vegrigl (12)
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ES(XF f\/@g‘—g *—é)(g‘*r ko) 0(9 (13)

2 2
RL;U): 3 € (14)

In Eq. (11) and Eq. (13), the upper and lower limits are 8rax =‘%-(n—l);
8in =-% (-n-1), respectively, with n = V4e + 1. In Eq. (12), the
limits are simply + Ve. The functions ¢ and ko’ written in terms of

Y(x), take on the form:

AP
*,= ‘%(q/‘ %5@2) (15)

€= ?; [ <\/\/m- -ij)2~ C“*_-, - %, (16)

The relativistic Thomas-Fermi equation is then defined, in a form suit-
able for computation, by Eq. (7) - Eq. (16). The number Wm, which
physically represents the energy of the most energetic electron, is a

parameter which is varied to allow normalization of the density:
a7
Functional Form of R(x)

As can be seen by inspection of Eq. (11) - (16), the function R(x)
depends on x in a very complicated manner. Before attempting to numeri-
cally integrate Eq. (7), it is helpful to have some idea of how R(x) may
vary with x. Although this dependence is not known until the equation

is solved, we can get a qualitative idea of the behavior to be expected
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by usiﬁg_a known expression for the atomic.potential and then.evaluating
R(x) as a function of this potential. Especially if we use the Thomas-—.
Fermi function, we could expect this to give a fairly good idea.

In Figures 5 - 8, we have shown the electron density (D = 4ﬂr2'p)
as calculated from R, , R2, R3, and R4, using Mason's1 approximation for
the TF function. Since we are here only interested in the qualitative
behavior of the:function R(r); no attempt at normalization was made and
we arbitrarily chose Wm = EO. (Even-with‘thiS‘choiqe of Wm, the normali-
zation integrals came put{remarkably close; the error was less than 10%
in each case, with the exception of the densities based on R3, which di-+
verge at ‘the origin. This point will be discussed later.)

The densities based on R, and R2 are perhaps the most interesting

1
(and most difficult to work with) because of thetdiscontinuities‘in the
slopes which oceur. These occur as the limits of the sums in Rl and.’R2

"gradually increase and then decrease with increasing radius. - As'gmin
and 8pax PasS each succeeding integer, the allowed number of g valﬁes
in the sum jumps discontinuously from one integer to the next. A care-
ful numerical examination of these transition points reveals the follow-.
ing behavior: The number of allowed g values (Ng) changes only by one
region to the next, although it may change very quickly. For example,
in rubidium, Ng goes from 1 to 2 at r = .02826, but almost immediately
increases to Ng = 3 at r = .0292. Also, the first derivative of p goes
abruptly from a negative value to a positive value as Ng changes.
Finally, it can happen that Ng remains zero for a finite region around

the nucleus, thereby producing a density which vanishes in a small region

in the center of the atom.



D, (exact)

r

Figure 5. Stieltjes Densities for Rubidium



70

60

50

40 -

30

20

o -

D, (exact)

Figure 6. Riemann Densities for Rubidium

2,0

56



180

160 1

140 1

120 1

100 4

80 1

60

40 1

201

Figure 7. Stieltjes Densities for Uranium



58

1.2

130 /,\
;o\
|\
o\
160 \
\
‘ a2U
140 1
Ds (exact)
——— — Dy (appx)
120 -
100 -
D
30 1
60
40 1
20 -
(o} T T T T T
o 2 4 A 8 1.0

Figure 8.

Riemann Densities for Uranium



59

Normalizability -

To examine the normalizability of these densities, we must look at
the r + 0 limits of Eq. (11) - Eq. (14). Assuming the potential is

coulombic near the nucleus, we find

lim+ &, = 2 ‘E’Z = o (18)

F=>0

W
imt € = AZ 'Eizn' =0 (19)
y=>0 '

Thus, the limits for the exact expressions (Rl and R3) become, as r ap-

proaches ‘zero:

,"V”"'} (gmmx>= lim it { ;‘(”]‘1)} =0 (20)

Y0 y->0

i

IiMl{f(?m.‘n): Lt {%‘_(“7’]-1)}

=0 r—>0

-1 (21)

Thus, at r = 0O, Rl can have two values of g:0 and -1. The resulting ex-

pression, however, still vanishes because of €:

,“W\l“;\ Qj(.X) = O. (22)

r—->o0

The integral expression, however, is non-vanishing at the origin:

0
limit Ryt = L Vv (-9'-9 +0)(gt+ ko*) da (23)

y=0.
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limi} Ry00 = f\/g 9N g+ke?) dg  # 0. (24)

r—o0
so the resulting density (p3 2ﬂ§r3 3) diverges as r 3. Thus, the
density based on R3 is not normalizable if a point nucleus is assumed.
A way around this problem was proposed by Jensenz'in his discussion of
Vallarta and Rosen's3 RTF model. This consists simply of recognizing
the finite size df the nucleus so.that the potential is no longer diver-
gent. - This approach was tried, but the discontinuity of the electron
density at the edge of the nucleus hindered the numerical solution of the
RTF equation using R3, and this remains a point to be resolved.

The density based on R, vanishes-identically at the origin, since

2

= Brax = 0, and no normalization difficulties are encountered.

The density based on R4 (which is identical to Rudkjobing's density)
diverges at the origin:

limy+ [)40*): lim 4 (m(tﬂ)( 3€ ” ) (25)

r-0 r=0

eh)3
- Iwm+ (*‘)
3n1 r0 4 (26)
%
1 / Wm
= llmg['f ra 'VJ (27)
Y-

2
:_.7_'[_(2'2 —_.) lfo+(r-3/2>= o0 . (28)

P =0
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However, its divergence is weak enough (rf3/2) to allow normalizatiom,

so no difficulties are encountered here.
Numerical Integration of the RTF Equation

The remainder of the computational work was directed toward a direct
numerical integration of the'RTF equation. This equation was attempted
with each of the four densities, but the discontinuities have so far
prevented any success in the first threev(Rl, R2, and'R3). However,
the fourth density has been satisfactorily evalﬁated, at least on a pre-
liminary basis, for two elements: 37Rb and 92U. Normalization has been
achieved to within #.08% and +0.2%, respectively, and the reot-mean-
square radius has been evaluated, permitting calculation of the diamag-
netic susceptibility.

The ‘equation to be solved is a second-order, non-linear, ordinafy
differential equation, with one initial condition (Eq. 8) and a second

boundary condition which is expressed through the normalization integral: -

dy_LdY | e ek 63/2

T X & T ) @

V(o) = -2 (30)

o0
@ Y .-l _
3 fo e *xldw = Z 1)

where ¢ and k0 are functions of ¢ and ', defined in Eq. (15) and Eq.
(16).

The procedure to solve this equation was the following: First, a
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value of 7 = Wm - EO was guessed, and Eq. (29) was integrated outward
from the’origin,using a modified fourth-order Runge~Kutta program. As
the integration of Eq. (29) was performed, the normaliza;ion integrand =
was evaluated at each step énd the normalization integral was estimated
by a simple trapezoidal integration, Since the most radical changes in
p occur near the origin, the step size was enlarged as the integration
progressed outward. The actual integration was performed using relative
and absolute error tolerances in each step ofAlO?4, 10—6, and 10—8. Al-
though there was virtually no difference between the results obtained
with a tolerance of 10_6 and those with 10_85 the final values were ob-

tained using the smallest error tolerance. The step sizes originally

tried were the following:

0 <X < .0005 ; AX = 1074 (32)
0005 < x < .01 ; AX =5%x 1074 (33)
0L <X < .4 3 AX =102 (34)
o< X < s AX =5 x 1072, (35)

(In the integration routine, these intervals were automatically reduced
to meet the error tolerances imposed.)

Once the integration was completed, subéeguent guesses at [ were.
made, until two values of [ were found, one of which gave a value of the
normalizatioﬁ integral too large, and the other producing a value too
small. These two values of f were then given to a root-finding sub-
routine, PEGASS, (a modified regula-falsi algorithm) and the normaliza-

tion was accomplished by finding a root of the equation

(norm. integral) - Z = 0. (36)
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The values of ¢ which produced normalization are:

B

Z =37: ¢ =- 219.462955075 (37)

Z =92: z

- 726.06428495 (38)

The electron densities for 37Rb and 92U as calculated from the RTF
equation are shown in Figures 9 and 10.
It is a simple matter to evaluate <r2> as the integration is carried.

out, and the root-mean-square radii of these two atoms were calculated

from the definition

0
Yf:<W>:4ﬂf Fr4w . (39)

The resulting values were found to be.

37Rb rr,o= 1.76 (40)

92U rro= 1.28 . (41)

The surprising result that the r.m.s. radius is smaller for the
heavy atom than for the light atom is consistent with the predictions of
the non-relativistic Thomas~Fermi theory. It was shown that the Thomas-
Fermi equation can be put into a dimensionless form that is valid for

all values of Z:

%2

X* C_I)” = @ : (42)

This defines a function y(x), where x is related to the radius by

r = (0.885 z"1/3

) x . (43)
Thus, if X is the r.m.s. radius in dimensionless units, the correspond-

ing length in Bohr radii will be proportional to Z—1/3. This result
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could be physically rationalized, if not proven, by recalling that, in
the statistical models, nb explicit account is taken of the Pauli exclu-
sion principle, except to allow two electrons per h3 of phase space
volume. It is then conceivable that the increased nuclear attraction of
the heavy atom could outweigh the increased electron-electron repulsion,
thereby pulling the electron cloud in tighter.

The diamagnetic susceptibility per gram-atom of:an element is given.

by6
2

e 2
X:: —NO &MCZ <Y‘ > P . (44)

where N is Avogadro's number, and the units of X (in the CGS system)

are cms. Using the values of <r2> from Eq. (40) and Eq. (41), we find

37Rb: X = 14.9 x‘10“6 cm3 (45)

92U: X = 7.8x 10_6 cm3 . (46)

The values determined from Mann's data are:

Rb: 29, x 1070 -

37777 Xexp

-6 3
92U. Xexp 70, x10 © em”,

resulting in a relative error of ~50% and ~90%. For comparison, the un-

modified TF density gives errors of 2647% and 200%, respectively.
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CHAPTER VII
CONCLUSIONS

It was the purpose of this study to investigate the relativistic
statistical atom model. It was found that.the density obtained by
Gilvarry corresponds to one possible approximation in the general expres-.
sion for the RIF equation. The numerical solution of this equation has
never~been.published, and this was carried out, providing the electron
density and root-mean-square radius to compare. It was found that the
r.m.s. radius is smaller than that of the non-relativistic TF density,
and that the resulting values of diamagnetic.susceptibility are closer
to the experimentally determined values, although agreement is still
poor,

Like all modifications of the TF equation, the RTF modelyhgs the
drawback that no single universal solution exists, unlike the unmodified
TF equation. With modern computers, this is less a drawback than it may
have been some time ago, and numerical values for the RTF equation are
now available for two elements, and any others are immediately calcula-
ble.

This investigation has‘only been the beginning of this area, and
there is much that can be done. The most immediate problem outstanding
is the numerical integration of the RTF equation using the other three
densities. A means must be developed for handling the discontinuities

in the functions and their derivatives. Another project, purely compu-
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tatiqnal, would be to expand the computations to all the elements. Since
the most .difficult part of the solution procedure is the determination
of the maximum energy (Em), a table of the correct values of Em for each
element would allow a worker in the field to easily calculate the RTF
density ‘and potential for any.atom with a single integration over the
desired range of r, Also, a perturbation calculation could be attempted.
in terms of the non-relativistic Thomas-Fermi function, Y. Finally, a
curve-fitting scheme could be employed to obtain an analytical approxi-

mation for the solutions of the RTF equation.
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APPENDIX A

VARIATIONAL DERIVATION OF THE

THOMAS-FERMI EQUATION

An alternative derivation of the Thomas-Fermi equation involves the -
variational principle, First, the total energy of the electron system is
written down as a function of the electron density. Then this expression
for the energy is varied with respect to the density, subject to the re-

straint that the density be normalized according to
y()dV——-Z (1)

One-begins by splitting the (non-relativistic) emergy into three
separate terms: the kinetic -energy.(T), the potential energy of the elec-
tron-nucleus interaction (Un), and the potential energy of the electron-
electron interaction (Ué)'

The nucleus—-electron interaction is simply

Un = ~Zezf—€ dv @

We can also write down the expression for the electron-electron interac-

tion:

@ LGNSR Y
Ue— “;fo %’T\’é_’l— 0 (3
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The expression for the kinetic energy can be derived as follows:
Since there are two electrons per h3 of phase space volume, the number

of electrons per volume element dv with momenta between p and p + dp is

d 2
a%f: ﬁspdp )

Then the volume density of electrons with momentum less than P, is found

by integrating Eq. (4): P
/3-_- fo olnp dp (5)

3
Po
0= 3n°% 0
Then the kinetic energy per volume element dv is:
dT f
-_— = @)
dv T O(//LP :

Substitution of Eq. (4) for dnp gives:

Po o 2
drl _ PP dp "

dv = ), am h

AT

.
o dT Po
dv = jommh? ©)

Finally, solviﬁg Eq. (6) for P, gives an expression for the kinetic

energy in terms of the electron density:
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3n?)” R* 5
T~(107rm prdv (10)

Thus, the total energy of the atom can be expressed as

F= K f{b/BdV—Zdev+— -i-——é———o\ dv!  av

To allow the normalization requirement to be met, we introduce a Lagrange
multiplier V0 and require the energy given by Eq. (11) to be stationary

with respect to variations in the electron density:

(12)

]-f-p/
a2 4420 gl

Evaluating these variations, we obtain: |
SJ‘KkP%dVZ %K{Q J‘P% 5P dV (13)
gf“%()d\/:—ifj—fg() dv o
S%ffﬁg—;,dvdv'z fCPe SP dv (15)

gfv"f)dvz V°f5(’dv 16)

Thus,
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f(gKkPZ/B- é + (Pe +\/0) SP dv (17)

For this expression to vanish for any Sp, the factor in parentheses
must vanish separately. Denoting the total atomic potential by

V = Z_ ¢ , we obtain:
T e

% 2/
p=(35) (v-v)™. ao

Substitution of this expression in Poissen's-equati@n‘then yields the

Thomas-Fermi equation.



APPENDIX B
REDUCTION OF Pq TO ELLIPTIC INTEGRALS -

The exact Riemann density (p3)-involves an integral of a square
root of a fourth-degree polynomial, where the range of integration is-
from one zero of the polynomial to the other zero. The integral has the

specific form

g
1- fg T3y k) ds o

Min
where, for purpeses of integration, € and k0 can be treated as positive

constants. The limits of integration are the roots of the equation

- g2 -g+e = 0, (B-2)

namely, g = ‘ and.gmin = :%fl;.where n = v4e+ 1. - Since.this.

max

ofd

integral must be evaan;ed~repeatedly to a high degree of precision in
the numerical solution of the RTF equation, it is highly desirable that
a means be obtained of doing this in the minimum amount of time while
maintaining sufficient accuracy to permit a numerical integration of the
differential equation. This can be accomplished by reduction of the in-
tegral to an expression involving the standard Jacobian elliptic inte-
grals. The theory of these elliptic integrals has been extensively

developedl—A, and a means of evaluating these integrals through trans-
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formations of the parameters has been adapted for computer work by

Bulirsch and otherss’ll.

The transformations are discussed in Appendix
c.
The standard form of the elliptic integrals of the first, second,

and third kind are the following:

X
F(Z}k): L \/("“(ZXL)(I“XI) (B-3)

Z kle
E(zyk)= fo 1__)(1 Ax (B-4)

Z (ix
TT(z5k,m)= fo (= mx3 V(=KX 1-X) (B-5)

Under the substitutions x = sin 6 and k = sin o, these may be written in

the equivalent forms:®

F( CP\k)‘f YR kzsm ) (B-6)

E(p\k)= f 'sin‘d 6 (B-7)
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¥ 8
TT(P\k,m)= y o (I-msin9 )/ 1-Ksin' (B-8)

The number k is called the "modulus", y is.the amplitude, and the elliptic
integral ofJghe‘third kind also depends on m, the "éharacteristic"°

The reduction of Eq. (B-1) to the elliptic integrals is carried out
in four parts:

(1) Reduction to an expression invelving Id, Il’ and Iz, where

I,= f t"_dt (B-9)
" VR

and R(t) is a fourth-degree polynomial;

(2) Transformation of variables to eliminate the odd powers of t
in R(t);

(3) Factorization and rearrahgement to reduce these expressions to.
thé canonical forms;

(4) Transformations to eliminate imaginary arguments.

The integral we must evaluate has.the form

T
L f.v.-.w‘ﬂ“ﬂ*é (gekD) dy i

To make the limits symmetric, make the following changes of variable:
t*=.,8+%‘; n = vie + 13 K=V4k02+l.

Then,

1
I- [, VEE TIEEE) d



or,

L= fﬂ /-ty Joe - gt et ot

Hancock2 has ‘shown that an integral of the form
t
R(t) dt
.0

where

R =V Gt s Gt ot « o
can be reduced to -

[(4@ +Cy) R+ (S’Czﬂ; 3G() 1,
t

t=to

.24-C

+(12¢,6,-26.6) T, +(166G=-0G) T, J

t,
i} tdt
In B ‘/:w R(t)

Equation (B-12) then reduces to

where

I:-—-[(—M +ak*-3)1, 4.(57)%%&1)I,”11(ﬁ'*’»1)10]

since R(to) =‘R(t1) =0, I Il, and I2 all involve

0,

Re=v Et+ T -4+ &)

The first factor vanishes at t = % 33 while the ‘second is positive

definite for all real values of t.
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(B-16)

(B-17) .
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Following the method of Abramowitz and(Steguan, we define a new

variable to produce an expression involving only the even powers of x.

For an expression of the form

R =V ot bt+ ) dttee)

(B-19)

we define x by: .
dt’+e
X=+V ot bt +c (8-20)

Then it is evident that

2 (B-21)

R(t) = <(at”™ + bt +.¢) x.

Solving Eq. (20) for t(x), we find two possible values:

~bx*+ T
J(i (0= 77 o:c -d) (8-22)

where T(xz) is defined to be

T'—‘M(b‘- 4ac) Xt 4(cd+ae)x? - 4de

After a long but straightforward calculation, it can be shown that

(B-23)

C*tfi _le&_ 'B-24)
R(U = T Z 'T'(Xl) (B-24)

de into (Eq. 17), let us.

Before substituting this expression for iz—y
split the integration from t = - %-to t =+ %-into two parts: t < O and

t > O: " "
| ottt
In = J‘— . R(.t) (B-25)
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0 i
t" dt 4" dt
In f.n R |, R® 3-26)
1 1
n[ * it * 1" db
=tV ), Rt RO -27
= (1) In_ v 17 (8-28)

Here,

R_(t)-’- R("t):\/(&t’m b‘t+CXdJL1+€> (B-29) .

Thus, R_(t) can be obtained from R(t) simply by changing the sign of b.
It is important to note that T(xz).depends only on b2, so T(xz) derived
from R(t) is identical to the T(xz) derived from R_(t).

We ‘must now look at our transformation (Eq. B-20) more carefully.
For t, in Eq. (B-22),

-+

(B-30)

X, (t)=

The x(t) defined here is not monotonically decreasing as.t increases

from O‘to-ﬂ

o but reaches a maximum at

tt:#(éim> (B-31)

where
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t_ is negative and thus lies outside the range (O, %D, but t, does lie

inside this range, so x as a function of t behaves.as shown in Figure 11.

X+

(o]

(’-

+
N\—‘S

Figure 11. Transformation From t to x in In+

Thus, in the range 0 < t < s x(t) is an increasing function of t and
%% > 0. In the range t, st %3 x(t) is a decreasing function of t,
and %% < 0. By inspection of Eq. B-24, we find that the sign is now

uniquely determined: for 0 < t < t4,‘we must choose t_, and for

+
t, <t we must choose t Thus, we find that the In integral in

+ = 2?
Eq. (B-28) becomes:

+!
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In-‘-:f t+ Jl'.-n 0&- t+ 0H34

RE) L, RA) (=32
X({+) X(?)
) n Rdx N f n -2 dx
B fxm E Ty x<t+)({+) T 339
Xm Q

[Xi_-r}h ££§ X1+jT-JW dﬁ
woen) T TR " A1) T (B-34)
where

4 - §(§+«/§2—4n1)
= (AT ) Al @9

The integral I; in Eq. (B-28) contains R_(t) so the transformation

corresponding to Eq. (B-30) now becomes

(B-36)

A similar analysis of the extrema of x_ shows that they are located at:

%(-é'im> N (3-37)

In this case, both t+ and t_ are negative, so there are no extrema of

x_(t) in the range 0 < t < 2 and x_ as a function of t is monotonically

decreasing, as shown in Figure 12.
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X -
A
1
i<
o . w t
2
Figure 12, Transformation From t to x in I;
Thus,; throughout the whole range of fn of‘I;, %% is negative, so we must
choose t, in Eq. (B-22): " ,
2
I, = f te oty (B-38)
0 R_ )
1
= (B-39)
fm) 20cw)] T
L n
K X*+T olx
=R f 2 (Xt41) T (B-40)
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Combining Eq. (B-40) and Eq. (B-34) gives the result:

Xm oy
I.=4 f T (B-41)

(o}

Xm 5
Xt dy ,
I= ;zﬁl Xt+1 T @2
K
Xm 2
I _f XL'+T o{x
- 2o &
: o (X 1) T (B-43)

In these expressions, T is defined as follows:

T=V (-0 XY 4 O -kP)X 4 | (8-44)
and X is given .in Eq. (B-35).

Let us first consider I.. Adding and subtracting S %%j we obtain:

1

XM XM
- ol dy (B-45)
1,= Q\ﬁ T _Q‘fﬁ (4x2) - T
R K

The first of these is identical in form to Io and integrals of this type

will be seen to reduce to the elliptic.integral of the first kind F(x;k).
The second integral will be seen to reduce to the elliptic integral of
the third kind, and we now consider the first integral in Eq. (B-43).

Writing out T(xz), we find we have the integral
2y dX
1= P (x*) T (B-46)

where:
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(;z—\g"))(4 + (ﬂl—\cl)x" Mq"
Xt s axt et (B-47)

Px9)=

Expanding <I>(x2) in partial fractions of (xz + 1),

N+ K- 2
S = (9-Kk) + ) + ICETE (B-48)

Thus, Eq. (B-46) becomes

Xm Xm Xm
I:: (a-K )J; T + (7} +K 4)];(1“(’.) T {‘QLUH&)Z T (B-49)

The first two integrals have already been encountered, so we have only

the third integral to investigate. Let us for the moment write T(xz) in

the form
T=\/—’>’><*+@X1 + & (B-50)
We begin by considering the differential of Z = —t—s:
1+x
%{_} = 'l—)i (a7%*+p) (8-51)

dz _ (1=X®)T + (14X)X T'
ox ~ (1+x2)*

(B-52)

yx¥s sy xte @p-o)xt + o
(1+ X9)* T (B-53)

oz
X
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If we now write the numerator of Eq.-(B=53) in terms of y = (1 + Xz),
%/%3’{.(_3.)/*.;@—0()’\34' &7-9{5%106
a—;( = ;y:."r (B-54)

Upon integrating both sides of Eq. (B-54), we find that

Kook I: _y f dx |
o x2)=T Y o-(3+Y) 1+4X*

oK Xo (B-55)
+(a-2p+3Y) f(uxz)—r - =0

In our case, a = nz, B = n2 - K2, and ¥ =1 - Kz. Also, the first term

in Eq. (B-55) vanishes at both limits. Combining Eq. (B-55), Eq, (B-49),
Eq. (3—43), and Eq. (B-17), we obtain.the following expression:
m? ol

I-= 3‘;{[%(6 1e‘)+3]K “11 o 44, eeu)f X |

(B-56)
IO(/X} .

243

(|Q€+|&ﬁo+3>f(| x’-)‘r + 4’k [.?<€ {é + ] f T

We now make a further transformation of variables to take T(Xz) in-

to the form V/ﬁ;z ) (1- k z ) With a = nz, B = n2 - K2, y=1- KZ,

T(xv) can be written

T= v Y X* 4 @XZ + A (B-57)

If we define

{: v—%i—\/%‘i—qy (B-58)

\ _
%: ;}g \/%é (B-59)
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_ 6 |
k— 4"@0 (B-60)
z%= - X (
= %2 /YI"L B-6l)
we find that .
olx dz |
T b V-z2)X 1+ k*z?) (8-62)

The upper .limit of integration, Z s becomes
%

Thus, the integrals appearing, in Eq. (B-56) are now the standard elliptic

" Zy= (B-63)

integrals:

9(e-%kS)+3 M *
I= 24 [CETS

. {(lee 21)12,‘% ~ w{&o[ X(E-fj)ﬁ:{} u

16 ko[ S(e-ke)+ 3J £

% a4

19.(6+&o )+3 q T

+

(B-64)

+

where F, E, and Il are the standard elliptic integrals:

dz

Zo
- . k) = - (B-65)
F F'—<Z y L ) J; ’\/(1—22)(1+k22_7')
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E= E(Zoﬂwf +k2 dz (8-66)

oz
TT T]-('Ze‘,tk %Y)) fm %,,?221%/0 22)(1+|< ZL) (B-67)

The last step in.our reduction is to use the "imaginary modulus

transformation” to remove the ik. As given by Byrd and,FriedmanlS,

Fle, i =k F(g, k) s

E(q3)1‘|<)= é?[ E(@*k‘) _l(’z Sin p- (05 Py 1..k".5.‘n’(3} (B-69)

|<|

TT(eq tk)““[k r((é, kSt TT ( A 4 "k >] (8-70)

I<

enri——

where: \<‘ = m (B-71)

k1/ = V4 |<,7' (3;72)

2

Z
o= o k' “+ (B-73)
VA k® ‘
csin @ (B-74)

Ql‘n (3 = ,——-—-' +|<1« Sinlsp
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An interesting thing now happens to the upper limit of the integral.

Combining Eq. (B-74) with Eq. (B-63) and Eq. (B-59), we find

sin B =1 , (B-75)
That is, the integrals become complete elliptic integrals. This simpli-
fies the computation of these integrals, and provides us with our final
expression for the integral,:

1255-{ ";% R, + %(a-&) ; S,i[(Q.-R;)-aﬁ:xmzmz-m] }

(B-76)
where the following identifications ‘are made:
/
R\ = k\ ! F B (B-77)
LE
R.= k,’ > (B-78)

12 2|/ ,<1/
Rf[“‘kr )F - pkTT g (B-79)

C, = M(K'- ) (8-80)
¢, = —<10€+2’koz+3> (B-81)
(.= ‘Z(é-ﬁoz) +3 ) (B-82)
P = (1+4p7): K/ : (B-83)



= (o TRT ) 2k

“f o\x
F= s T o)

]

M= f( mxwxxw

m= (B Fﬁ 5

k =/1-k'*.

)

i
J
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(B-84)

(B-85)

(B-86)

(B-87)

(B-88)

(B-89)
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APPENDIX C
EVALUATION OF ELLIPTIC INTEGRALS -

The evaluation of elliptic integrals is conveniently carried out by
.1 .
a process known as Landen's transformation’ . The transformation is based

on the identities

F(?,k )

H

(t+ k') F(o,k) (c-1)

E(% k)= (’,“;,’i;?)[QE(@;k) Fak! F(Bk)+(k-t)sin@] (2

ﬂ(‘ﬁa.z,lq):(Lﬂ)[w-w)ﬂ(@ﬂ‘)k)+<Off’kz)‘”(9:df)k):l (c-3).

0(7,1_ dl

where:

(C-4)

(1+k') sin B cosO

o (c-5)
Sin ¢ = V1= k% sin'd

o (1+K)° 2 7
a= g ) ks o=/l - o) J -

96
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a, = (“__‘592[ k, + ot +\/(1-oz,‘)(l<,z-0(,1) ] (c-7)

2 A

Successive substitutions of Eq. (C-4) into (C-1) and (C-2) provide:

‘ ‘kz“‘kh-
F (e k)= kn\/ - Panm F (8, k) (c-8)

Qn-l
E(q)k)" F(CP k gi +‘<[1+ k1 k,kz kl‘"kn-i *
, 0, 2 b, +
T \m]} SMP* AU
n-1i n
o g 2 sint o sin ©

v k\u kY\" : - V k... kn

(c-9)

The advantage in.this.lies in the fact-that kn and wn rapidly approach
a limit'(the convergence is quadratic), and at that point, the elliptic,

integral can be evaluated analytically by one of the formulas

E(Q1) = sin ¢ (e
F(P1)= In (tanP+sec?)

(c-11)

The evaluation of II(y, az, k) is somewhat more involved, and an ex-

cellent algorithm for this integral was worked out by R. Bulirsch2e The

FORTRAN coding of these algorithms is listed in Appendix D.
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APPENDIX D
COMPUTER PROGRAMS

The first set of .programs lists two subprograms used in the solu-
tion of the RTF equation. Function ZINT(ZETA) is used as the function
subprogram of the root-finding routine. (The program actually used was .
PEGAS.) A value of ZETA (g = Wm - Eo) is given to the function ZINT,
and a value ZINT (= Norm. Int. - Z) is returned to the calling program.
When ZINI = 0, normalization is achieved. The second subprogram, sub-
routine RTF1(NEQ,X,Y,DYDX) is the function subroutine required by the
differential equation integration routine, GEM. As indicated, values:
for Y(1) and Y(2) are passed to the program, and RTFl returns values for

the first and second derivatives.

99
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FUNCTION ZINT(ZETA)
0 0 00 0000000000000 00¢000000000000 0000000000 0000000000000 00000000000000000¢009000O

SCLUTION OF RUDKJOBING'S EQN. BY GEM. UNDER THE TRF OF VARIABLES
U(R) ==> PSI(X)/X*¥*2 3 R ==> X%%x2
PSI <== U(R)}*R 3 X <== SQRT{R) ,
RUDKJOBING'S EQUATION:
D2U/DR2 + 2/R * DU/DR = =4#%PI * RHO(R)
WHERE RHO(R) IS THE RADIAL ELECTRON DENSITY:
RHO(R) = (2/3) * EPS*%(3/2) / (2%PI#%2 % R¥%k3) ,

NOW TAKES ON THE FORM:
D2PSI/DX2 - 1/X * DPSI/DX = ~16*%PI * X*¥& * RHO(X)
WHERE RHO(X) IS NOW:
RHO(X) = (1/3 * PI*3%2) * (2%(ZETA - PSI/X*%2) + 1/C**2 %
(ZETA*(ZETA = 2%PSI / X*#%2) + PSI*/X *
(PST /7 X*¥%2 = 0.,25%PSI*/X) ) V%%(3/2)
AND PSI' = DPSI/DX, ZETA = WM-EO

THE BOUNDARY CONDITIONS OF THIS EQN ARE:
PSI {0)==ZNUM
PSI*(0)=0. ’ PSI*'(03/0 = O
PSI*{0)=0 + O%*4 * RHO(O) = 0.

© 0 000000 0900000000000 00 0000000000000 C0T000000000000 000000000 00000000000 0000000

2533k ksizEa2 e NN e NN ol e aNaNeNa N e Xa e RN o o N a N o Na)

IMPLICIT REAL*8 (A-He0-2)

DIMENSION Y(2),DYDX{2),ERR(2)4RERR(2)
COMMON ZNUM

CCMMCN /ZBLK/ RHDy2ZZZZ4NG

EXTERNAL RTF1

CATA CyC2 / 137.03602D0,1.87787077D4/

SOME DENSITIES NEED A CUT-OFF RADIUS FOR NORMALIZABILITY; IF ONE IS
NEEDED, A UNIFORMLY CHARGED NUCLEUS WITH RADIUS RNUC CAN BE INTRODUCED.
IF XJLEJXNUC ( XNUC=SQRT(RNUC) ) THEN U(R)I==ZNUM*R*%*2/RNUC**3
IF THE CUT-OFF RADIUS IS NOT TO BE USED, SET XNUC EQUAL TO A NEGATIVE
VALUE.

XNUC=1.D-1

XNUC=-1.D0

RNUC=XNUC*XNUC

AOONOO

o0

LIII=7ETA
SUMRM=0.D0
SuM=0.00

C ENTER INITIAL VALUES AND ERROR TOLERANCES
X=0.D0
Y (1 )==ZINUM
Y(2)=0,00
XP=X
FCTP=0.00

NMAX=200
NMAX=400
ER=1,D-04
ER=1.D0-06
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10

20

21

22
622

4
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ER=1.0-08
00 10 J=1,2
ERR (J) =ER
RERR (U )=ER

DO 7 111=1,500

IF(XelLTe0e5D-3) XF=X+1.D-4
IF{XeGEe0e50=3 cANDoX ol T o0.99D=-2) XF=X+5.D-4
IF(XeGEeDa99D-2 AND X ol Ta0.4D0) XF=X+1,D-2
IF(XeGELDe4D0) XF=X+5.0-2

IF (XF=-XNUC) 20420,21
CALCULATE POTENTIAL FROM UNIFORM NUCLEUS
R=XF*XF
RR=R/FENUC
Y(1)==7INUM*RR¥*%3
Y(2)=6.00*%Y(1)/XF
X=XF
CALL RTF1{24X,Y,DYDX)
60 TC 2

CALCULATE POTENTIAL FROM POISSON'S £QN USING GEM,
CCNT INUE
H=XF
HMAX=10.,D0*XF
KN=0
CALL GEM{23KNyOyXyXFygHy HMAX,Y,ERR,RERRyRTF]1 yNMAX,NUSED)
IFINUSED}) 22,23,23
WRITE(6,4622) X
FORMAYL1HO, 10X, *GEM UNSUCLCESSFUL AT X=',D13.6//)
GO TQ 8
CONTINUE
KN=1
Y{1)=PSI ; Y(2)=PSI*
R=X%X
IF(X) 14192
R ==> 0 LIMIT OF 4*%P [#P%%*2%RH0 FOR GILVARRY'S DENSITY
FCT=((ZNUME INUM) * (1. DO+ZETA/C2) )*¥]1 .5D0 * 5.4882636310~1
CO 70 3
FCT=X*P*R¥RHO*2.51327412287183D1
DEL TA=X-XP
TERM=(FCT+FCTP)*DELTA%*0 ,5D0
SUM=SUM+TERM
SUMRM=SUMRM+R*R%TERM

Ir {SUM.GT.500.D0) GO TO 8

XP=X
FCTF=FCT

IF(X) 49445

U==1.075

CUCR=1.D75

GO 10 6

U=Y(1)/R
CUCR=(Y {2 )/ (XX )=U)/R
CONTINUE

JPRINT= 1

IPRINT ==1
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IF(IPRINT)} 666,466,606
66 WRITE(6+100) XyY(1),Y¥Y{2)yHyNUSEDy TERMyR,RHO4Uy DUDR , SUM, NG
100 FORMAT(LH 4 *'X=14D13.642X,'Y(1)="9D13.642X,"'Y(2)=,D13.6,
* 5XytH="yD13.692Xy "NUSED="y 14910X, ' TERM=*,D13,6/
114 y20Xs'R="yD13.642X9 " RHO=*,D13.692X9"U=",D13.6,2X+*DU/DR=",D13.6
295Xy *SUM='yD13.692Xy *NG=*y12/)
666 CONTINUE .

IF(TERM=1 .D=6%SUM) 8,7, 7

CUNT INUE

LINT=SUM=ZNUM

RM=DSQRT (SUMRM/ ZNUM)

WRITE(6+600) ZETA,SUM

600 FORMAT(1HO,5Xs*'IN ZINT, WITH ZETA='",4D22.15,' SUM=',D13.6/)
WRITE(6,601) RM

60l FCRMAT(1HO,5X,*THE RoMoS. RADIUS IS RO =1,D13,6/)
RETURN
END
SUBRCUTINE RTF1(NEQyX,Y,DVYDX)

@ -~

THIS SUBROUTINE PROVIDES GEM WITH RUDKJOBING'S RTF EQN

Y{1)=PSI(X)
Y{2)=DYDX{1)=DPSI/DX
DYDX(2)=D2PS1/DX2

IMPLICIT REAL*8 (A-H,0-1)

DATA CyC2 / 137.03602D0,1.87788T7077D4/
DIMENSION Y(2),DYDX(2}

COMMON /ZBLK/ RHOyZETAyNG

DYDX(1)=Y{2)
IF(X) 14192
1 CYDX{2)=0.D0
FHO=1.D75
FETURN
2 k=X%*X

Tl=Y(1)/R

T2=Y(2)/X ‘
F=(ZETA*(ZETA-T1-T1)+T2%(T1-0.25D0%T2))/C2+2.DO*(ZETA-T1)
IF(F) 3,344

» 3 RH{=0.00

GU TO 5
4 RHO=3.3T773727880-2%F%¥] ,500

< 5 DYDX(2)=T2-5.0265482450 1%R*R*RHO

RETURN :
END
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The remaining four subprograms evaluate the four expressions 4nr?p1,
4nr2p2, 4nr2p3, and 4wr294. They require a subroutine POT(R,RU,RZDU)
which will, given a value of R, return values of RU = r«U(r) and

‘e %- ' The third subprogram actually comsists of three parts:

R2DU = ¢
one  part evaluates 4ﬂrzp and provides communication with the calling
program. A second part (RHS) evaluates the coefficients.and arguments:

for the elliptic integral routine (DCEL), which makes ‘up the third part,
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FUNCTIUN £CT(R)

THIS ROUTINE EVALUATES FCT=4%¥PI*RHO(R)*R*%R, WHERE RHO(R) IS THE
EXACT STIELTJES DENSITY

IMPLICIT REAL*8 (A=H,0-1}

CUMMON /FCTBLK/ ZETA

COMMCN  ZNUM

DATA C,C2,FOURPI/137.03602D041.877887077D4+1.25663706143592D1/

IF(R) 141,2

V=1.D75

GO TO 3

V=1.,00/(1.9739208802178 TDL*R**3)
CONTINUE

THIS SECTION PROVICES VALUES FOR R*U(R) AND R*%2 * DU/DR.

IF R IS .GT. RNUC (THE NUCLEAR RADIUS, APPX 1.D-4*%A0) THE POTENTIAL

IS PROVIDED BY DHFPOT()e IF R IS .LE. RNUC, A UNIFORM NUCLEUS IS USED.
RNUC=1 .D~04

IF(R=RNUC) 44495
X=R/RNUC
RU==INUM% X% % 3
K2BU=RU+RU

GO TG 6

CALL POT(R,RU,R2DU)
CONTINUE

AK=R2DU/C

AK 2= AK ¥ AK
EPS=R¥* ZET A-RU
EPS=EPS#(R+R+EPS/C2)

EVALUATE EXACT STIELTJUES DENSITY
IF(EPS+0.25D0) 747,8

IF ETA.LTL0 OR IF G(1).LT.GMIN, RHO=0.
N=0
RHO=0.D0
FCT=0.D0
GO 10 50
SEE If |EPSI IS SMALL
IF{DABS(EPS )~14D0~15)949, 11
IF{EPS-0.5D0%AK2) 7,410,190
SMALL [EPS|
N=1
RHO=VEDSQART (EPS+AK2)
FCT=FOURP %R%R ¥RHO
GO TO 50

NORMAL 1EPS|
RHO=0.00
ETA=DSCRT (4 .DO*EPS+1.C0 )
GMAX=(ETA~1.D0)/2.DC
GMIN=GMAX-ETA
CO 17 KAPPA=1,50
SQKAP=KAPPA*KAPPA
AKAPP=KAPPA
G==DSGRT (SQKAP=AK2)
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GG=G*G
IF(G-GMIN} 12,1314
12 N=KAPPAKAPPA-2
GO TO 18
13 N=KAPPA+KAPPA-1
RHO=RHO+AKAPP #*DSQRT(~GG~G+EPS)
GO 70 18
14 RHO=RHO+AKAPP *DSQRT(-GG~G+EPS)

€==C
IF(G-GMAX} 17,16415
15 N=KAPPA+KAPPA-1
GO TO 18
16 N=KAPPA+KAPPA
RHO=RHC+AKAPP*DSQRT (~GG-G+EPS)
GO TO 18
17 RHO=RHO+AKAPP*DSQRT (-GG-G+EPS)
WRITE(6+170) KAPPA
170 FORMAT{(1Hy10X,*IN FCTy SUM IS STILL CONTINUING AFTER KAPPA=',14)
18 RHO=V%*RHO
FCT=R*R*FOURP I #*RHO
GG TC 50

50 CONTINUE
~ WRITE(69500) RyRHOyFCT4 Ny AKyEPS
500 FORMAT(1H +*R="yD13.642X,"RHO=" yD13.642X9*FCT="9D13.692X9"NG=",12,
* SXy'AK="yD13.692Xy "EPS=',D13.6)
RETURN
END
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FUNCTION FCT(R)

THIS ROUTINE EVALUATES FCT=4*PI*RHO(R)*R*R, WHERE RHO(R) IS THE
APPROXIMATE STIELTJES DENSITY

IMPLICIT REAL#*8 (A~Hy0-1)

COMMCN /FCTBLK/ ZETA

COMMON  ZNUM

CATA C4C2,FOURPI/137.03602D0,1.377887077D4,1.2566370614359201/

IF(R) 141,2

V=1.075

GO 7C 3
V=1.D0/(1.97392088021781D1%R%%*3)
CONTINUE

THIS SECTION PROVIDES VALUES FOR R*U(R) AND R*%2 * DU/DR.

IF R IS +GT. RNUC (THE NUCLEAR RADIUS, APPX 1.D-4¢A0) THE POTVENTIAL

IS PROVIDED BY DFFPOT()e. IF R IS .LE. RNUC, A UNIFORM NUCLEUS IS USED.
RNUC=1.D-04

IF(R=-RNUC) 44445
X=R/RNUC

RU=— INUM* X¥% 3
R2DU=RUL+RU

GO 70 6

CALL POT (RyRU,R2DU)
CONTINUE

AK=R2DU/C

AK2=AK*AK
EPS=R*2ETA-RU
EPS=EPS*(R+R+EPS/C2)

APPROXIMATE STIELTJES DENSITY

IF(EPS) 20,20,21

N=0

RHC=0.D0"

FCT=0.D0

G0 TO 50

RHC=0. 00

D0 24 KAPPA=1,50

SQKAP=: APPAXKAPPA
E=EFS+AK2-S QK AP

IE(E) 22,23,24

N=K APPA+K APP A-2

G0 TG 25
RHO=RHG+DFLOAT(KAPP A)*0SQR T (€)
N=KAPPA+K APP A

GG TC 25
RHO=RHO+DFLOAT (KAPPA ) *DSQRT (€ )
WRITE(64240) KAPPA

FORMAT (LHy1OX,* IN FCT, SUM IS STILL CONTINUING AFTER 2%(KAPPA=',I4
Ee?) TERMS.')

RHO= (REO+RHO )%V

FCT=FOURPT *R*R*RHO

G0 1O 50
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50 CONTINUE i
WRITE(64500) RyRHO, FCTy Ny AK,HEPS
500 FORMAT(LH »'R=',D13+692Xs*RHO="4D13.6+2Xy "FCT="'yD13.692X,"'NG=*,12,
* 5)(,'AK=',DI3.6,2X.'EPS=',D[3.6)
RETURN
END
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FUNCTION FCT (R)

THIS ROUTINE EVALUATES FCT=4%PI¥RHO{R)*R*R, WHERE RHO(R) 1S THE
EXACT RTIEMANN DENSITY

IMPLICIT REAL*8 (A-H,0-2)

COMMON /FCTBLK/ ZETA

COMMCN ZNUM

DATA C,C2,FOURPI/137.03602D0y1.877887077TD4+1.2566370614359201/

ano

IF(R) 1,41,2
1 v=1.D75

GO 70 3 .
2 V=1.00/(1.9739208802178 TD1L*R*%3)
3 CUONTINUE

THIS SECTION PROVIDES VALUES FOR R*U(R) AND R¥*2 * DU/DR.

If R IS «GT. RNUC (THE NUCLEAR RADIUS, APPX 1.D-4%A0) THE POTVENTIAL

IS PROVILUED BY DFFPOT()e IF R IS 4LE. RNUC, A UNIFORM NUCLEUS IS USED.
RNUC=1.0-04

(aNaNaNel

o

IF(R=-RNUC) 4+445
4 X=R/RNUC
RU==ZNUM* X*¥%*3
R2DU=RU+RU
GG TC 6
5 CALL POT(R,RU4R2DU)
6 CONTINUE : '

AK=R2DU/C *
AK2= AK* AK

EPS=R* ZET A-RU

EPS=EPS*(R+R+EPS/C2)

EXACT RIEMANN DENSITY

(s NeNeNel

IF(R) 40440441

40 RHO=1.D75
FCT=1.D75
GO 10 50

41 CALL RHS(EPS,AK,2Z)
RHO=V*Z
FCT=FOURP I *R*R %R HO
GO T0 SO0

50 CONTINUE
WRITE(64500) R,4RHOWFCT,NyAKHEPS
500 FORMAT{LH ,"R="yD13e642Xy 'RHO=*4D13.692Xy'FCT="yD13.692Xs*NG="*,12,
® 5X g 'AK="y013.692Xy 'EPS='4D1346)
RETURN
END
SUBROUT INE RHS(EPS,BK,Z)
cceeeeceeccceccecceccececceececcccceccecceecceccecececcccccecccecccceccececccecccccceccceccceccce
C !
THIS SUBRQOUT INE, WHICH CALLS SUBROUTINE DCEL, EVALUATES THE INTEGRAL
WHICH OCCURS IN THE RHS OF THE RTF EQN:

Z=INTEGRAL OF: DSQRT((-T*%2+¢ETA2/4 )% (Tx%¥2=-T+AKAP2/44))

s N aNeRal
sEsXaEaNalal



109

C WHERE: ETA2=4.%EPS+l. AKAP2=4 % AK¥%2+1, c
C C
cceececeeecccceccccceecccceccggcceceeccecccceececececceecececcececececccecceccceoccecccceccccccc

IMPLICIT REAL*¥8 (A-Hy(0-1)

COMMON /0CBLK/ CKL24CKl+XPlsR1yR24R3,IER
AK=BK

IF(AK.LT.0.D00) AK==AK

AK2=AK*AK

ETA2=4 .00%EPS+1 .00

AKAP2=4.D0%*AK2 +1 .DO

IFCAKAP2-1 .DCO*ETA2) 24141

AK IS MUCH GREATER TFHAN EPS; THUSy WE USE AN EXPANSION OF THE
SECOND FACTOR IN THE INTEGRAND, KEEPING TERMS UP THROUGH ORDER
ETA2/AKAP2, BUT IGNORING ETA4/AKAP4, ETC,
1 AKAP=DSQRT(AKAP2)
1=0.196349540849362D0%ETA2* (AKAP+0. 125D0*ETA2/ AKAP)
FETURN

'skaksls

2 IETA=EPS~AK2
2I=ZETA%ZETA
RAD=DSQRT{ZZ+ETA2¥AK2)
TAK=AK 2+AK 2
XPSQ=(2ET A+RAD)/TAK
XMSQ=( ZETA-RAD) /TAK
Q=( AK+AK )*DSQRT (=XMSQ)
CKL2=ETA2+(ZETA+ZETA)XXPSQ
CK12=ETA2/(CK12+CK12)
CK1=DSQRT(CK12)
XP1={1.D0+XPSQ)*CK12

XK=DSQRT(1.00-CK12)
XM=1.D0-XP1 ' $yHT+E=
WRITE(69L12) AKyXKyCK 1y XMy XPLyXPSQy XMSQ»Q
112 FORMAT (1H¢5Xy*AK="yD22 ¢159y5Xs* XK1=y D22 1592Xy*CK1="yD22.15,4/
1 1H35X, " XM=9,D22.1592X9* XP1=94D22.159/ LH135X*XPSQ=*4D22.1542X,
2'XMSQ=*,D22.1595Xy'Q="'yD22.15)
CALL OCEL
CO=ETA2%(AKAP2-0.25D0)
Cl=={(10.D0%¥EPS+AK2 +AK2+3.00)
C2=8.DO*(EPS-AK2)+3.D0
WRITE(64122) COyC1yC24R14R24R3
122 FORMAT (1Hy35Xy'C0="yD22 41592Xs*Cl="yD22.1542Xy *'C2=*,D22.15/
1 1Hy35Xs"'R1=1yD022.15y2Xy*R2="yD22.1542X¢*R3=",D22.15)
R3=((1«D0-CK12)%R1~XPSQ*CK12%R3)*CK1/(1.D0-XP1)
R2=R2/CK1
R1=CK1*R1
V0=4.D0%R1/Q
Vi={(R1-R3)/Q
V2=V1~(TAK+TAK) *XMSQ*(R2=-R1)/Q
V1i=Vl+Vvl
Z=(CO%VO+Cl*V1+C2%V2)/24.D0
RETURN
ENC
SUBROUTINE DCEL
ceeeeecececceccceecececececccececcecceecccecccccccceccecccceccceccccececcccccecccccecccecccceccccecc
c C
C THIS SUBROUT INE EVALUATES THE COMPLETE ELLIPTIC INTEGRALS C
c USING THE DESCENDING LANDEN'S TRANSFORMATION c

2z eNeEaNaNel

o6



110

REFERENCE: R. BULIRSCH, NUM MATH 7,78(1965)

THE INTEGRALS ARE DEFINED AS:
R1=F(PI/24XK)=INTEGRAL OF DY/DELTA
R2=E(PI/2yXK}=INTEGRAL OF DY*DELTA
R3=PI(PI/2yXKyXM)=INTEGRAL OF DY/{(1le=XMcSIN(Y)%*2)%DELTA)
' WHERE: OELTA=DSQRT (1 ~XK#¥2XSIN(V)*%2)
(ALL ARE SUMMED OVER Y FROM v=0. TO Y=Pl/2.

© 000 0000000000000 IPDNCECPEL 000 E00 0000000000 0600000000000P00000000CCCILIOIINUVUTINICGIOIOESITESOEES

c c
C C
C C
C C
c C
C C
c c
c C
c C
c C
C _ c
c INPUT PARAMETERS 3 C
C CK2=COMPLEMENTARY MODULUS=1 .=XK*¥2 C
C CK=DSQRT(CK2) c
C XP=1.=XM ' ) C
C C
CO'.O.l...l.lo..l....o.....l.l...lO......QI...........C.O..Il.l..."...0.....‘.(4
c c
c OUTPUT VALUES: C
C R1,R2,R3: VALUES OF ELLIPTIC INTEGRALS (DEFINED ABOVE) c
C IER... ERROR CODE: c
c IER=0; NORMAL EXECUTION--ALL INTEGRALS ARE FINITE. c
C c
C C
c C
C C
C c
c C
C C

IER=1; ONE OR MORE INTEGRALS ARE INFINITE--
T:¢ VALUE 1.D75 IS ASSIGNED TO THE INTEGRAL

(ALL COMMUNICATION WITH THE CALLING PROGRAM IS DONE THROUGH
COMMUN /DCBLK/  CK2,CKyXPyR1,R2,RE, [ER

gcceceeceeccecceeccecccceccecceeccecceccecccececceceecccececccceccecceccccccececcceccecceccecccceccccccccccecceccc
IMPLICIT REAL*8 (A-Hy0~1)
COMMON /DCBLK/ CK2yCKyXPyR1yR24R3,TER
DATA ©P12/1.5707363267949D0/
IER=C
KUUNT=0

TEST FOR SPECIAL CASES

o000

TF(CK) 241,43
1 RPL=1.D75
R2=1.D00
R3=1.D75
IER=1
GO T 17
CK==(k ,
IF(CK2=1.D0) 744,7
Kl=P12
RZ2=FI2
IF(XP) 7,546
5 R3=1.D75
IER=]
GO TO 17
6 R3=PI2/0SQRT(XP)
6o TC 17

S wnN

INITIALIZATION

a6

T G=CK
A=1.D0
r=2,00



OoOan (2]

oo [N aX2]

SO0

10

11

12

13

14

15

16
17

AA=1.00+CK2
B=CK2

C=1.D0

IF(XP) 9,10,8
P=DSCRT(XP)
PC=1.D0
PD=1.D0O/P

GO 7O 11

PF=1.00-XP
P=DSQRT((CK2=XP)/PF)
PD=(CK2-1.D0)/(P*PF)
PC=0.00

G0 TO 11

1ER=1

BEGIN LANDEN®'S TRF USING MODIFIED A-G MEAN

KCUNT=KOUNT+1
E=A%G
R=R +R

IF(IER) 12,12,13
PG=E/P

PE=PC

PC=PD/P+PC
PD=PF%PG+PD
PD=FD+FD

P=PG+P

APREV=A
A=A+G

B=C*C+8
B=8+8B
C=AA
AA=B/A+AA

TEST FOR CONVERGENCE
IF(G/APREV=-0.99999999500) 14,+15415
NCT CONVERGED; TRY AGAIN
G=DSQRT(E)
G=G+G '
€O TO 11
CONVERGENCE ACHIEVED
F=0,78539816339744800/A
R1=E*R
R2=E*AA
IF(IER) 1641645
R3=(E+E)*(PC*A+PD)/(A+P)
CONT INUE

RECORD NUMBER OF ITERATIONS AND IER

(CPTIONAL)

111
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100 FCRMAT (1H,80X,25HSUBRUUT INE DC* +AS USED ,1497H CYCLES/
1 1H,80X,12HERROR CODE =,11)
RETURN
END

C
C WRITE{(6,100) KOUNT,IER
[
c
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FUNCTION FCT(R)

THIS ROUTINE EVALUATES F({T=4%PI%®RHO(R)*R%*R, WHERE RHO(R) IS THFf
APPROXIMATE RIEMANN DENSIVY

IMFLICIT REAL*8 (A~ky0-1)

COMMON /FCTBLK/ ZETA

COMMON  ZNUM

DATA C,C2,+FOURPI/L137.0360200,1.877887077D4,1.25663706143592D1/

IF(R) 141y2

V=1.D75

GO 10 3

V=1.,D0/(1.9739208802178 7D1%R%*%3)
CONTINUE

THIS SECTION PROVIDES VALUES FOR R*U(R) AND R%%x2 & DU/DR.

IF R IS .GT. RNUC (THE NUCLEAR RADIUS, APPX 1.D=-4%A0) THE POTVENTIAL

IS PROVIDED BY DHFPOT(). IF R 'S .LE. RNUC, A UNIFORM NUCLEUS IS USED.
RNUC=1.L~-04
RNUC=-1.D0 HHEHRA Y

IF(R=RNUC) 44445
X=R/RNUC
RU=—ZNUMEX%% 3
R2DU=RU+RU

GO TQ &6

CALL POT{R,RUyR2DU)
CONT INUE

AK=R2DU/C

AK2= AK *AK
EPS=R* ZET A~RU
EPS=EPS*{R+R+EPS/C2)

APPROXIMATE = 1:MANN DENSITY

IF{R-1.0-20) 30,30,31

RHO=1.D75

FCT=0.D0

GO 10 50

IF(EPS) 32,433,33

WRITE(64310) EPS

FORMAT (1HO, 10X, "IN FCTy EPS=1,013.64"'. RHO IS SET=0."')
RHO=0.D0

FCT=0.00

CO TC 50

RHO=0. 66666666666666TDO*V¥EPS*¥1.500
FCT=FOURP I ¥R ¥R ¥RHO

GO TQ 50

CONTINUE

WRITE(6,500) RyRHOs FCT4 Ny AK,EPS

FORMAT({LIH 3 "R=?,D13.642Xy'RHEO=?"yD13.632Xs'"FCT="yD13.692Xs*NG=",12,
% 5X9 *AK=?yD13,692Xy 'EPS=7,D13,6)

FETURN

END
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