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PREFACE 

This study is concerned with the development of a method of calcu­

lating the statistics of processes in nonlinea:r stochastic systems. The 

main objective is to evaluate the statistical characteristics of the pro­

cesses with sufficient accuracy. The accurate values are used to check 

the accuracy of the method of statistical linearization (MSL). The 

MSL is a very general and powerful method of nonlinear systems analysis 

and synthesis. The only drawback of the method has bee.n the lack of a 

means of checking its accuracy and, therefore, its applicability. The 

method developed in this study fulfills these needs, to a large extent. 

I wish to express my appreciation to my major adviser, Dr. Larry 

Zirkle, for his guidance and assistance throughout this study. Appreci­

ation is also expressed to the chairman of the thesis corrnnittee, Dr. 

Richard Lowery, for his encouragement and counsel; to Dr. Henry Sebesta 

and iJr. Craig Sims, members of the committee, who provided invaluable 

assistance and criticism throughout my program. 

I would like to acknowledge the financial support recei ve.d from the 
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CHAPTER I 

INTRODUCTION 

Background 

In most engineering disciplines linear problems were the first to 

be raised and solved, owing to the relative simplicity of their solutions. 

Development, however, soon confronted the engineer with problems inpos­

sible to approach by linear methods. This tended to focus attention on 

a more profound study of nonlinear systems. In recent years, indeed, 

nonlinearities have increasingly been regarded as difficult to treat 

mathematically, but also as the source of advantages. 

In control engineering, control systems meeting specific operation­

al requirements can be realized. Examples include relay systems and 

the constrained control-variable systems of minimum time, minimum fuel 

or energy consumption. Such problems either cannot be solved by linear 

systems at all or only exceptionally in a very roundabout manner. 

Every physical system is essentially nonlinear. A physical system 

may also have parameters varying more or less with time. In every phys­

ical system, certain limitations will sooner or later set in, either 

with decreasing amplitudes (insensitivity bands) or with their increas­

ing amplitudes (saturation phenomena). Also, time brings about fatigue 

and aging phenomena. 

In the investigation of engineering systems a central position is 

held by the statistical approach to the problems. The pressure fields 

1 
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generated by jet propulsion devices fluctuate in a random manner. They 

contain a wide spectrum of frequencies that may result in severe vibra­

tions in the aircraft. Earthquakes excite severe vibrations which may 

cause failure in strucutres. These excitations are also random. The 

motion of a ship in a confused sea and the motion of an aircraft through 

a turbulent atmosphere can only be described statistically. Dynamic 

systems may also have parameters that vary in a random manner. Servo­

mechanisms with randomly varying transfer functions, random disturbances 

on instruments and rate gyros in an aircraft, and randomly pulsating 

loads on a structure all involve random parameters. 

Confronted with the difficulties that nonlinear closed-loop stochas­

tic systems present, engineers directed their attention to methods of 

approximate analysis. Many such methods have been developed and most of 

them are only applicable to certain types of problems. At the present 

time, three main methods of analysis exist. 

1. The first of these methods is based on representing an arbitrary 

nonlinear operation with memory by means of a system of special operations 

(Pugachev, 1965) (Wiener, 1958). The analysis problem is reduced to 

seeking the parameters of this representation. This is done by computing 

the crosscorrelations of the outputs of the actual nonlinear operations 

and of the model when the signals acting on them are of the white noise 

type. This method, being experimental-analytic in principle, makes it 

possible to construct a practically exact model of the arbitrary nonlinear 

operation but is extremely laborious even at the modern level of develop­

ment of computation techniques. Apparently, there has been little follow 

up or results of practical applications of this approach. 
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2. Another method is that of constructing a Markov model of the 

nonlinear system. In principle, it allows us to solve for the statistics 

of a large class of nonlinear operations. However, in practice we can 

obtain results with relative ease only if the system is described by 

differential equations of first or second order. 

3. Finally, the third method is that of linearization. Lineariza­

tion about an operating point, or direct linearization, is common in 

Western literature and consists of retaining the linear terms of the 

Taylor series expansion of the nonlinear relation. Evidently, this method 

is limited to small variations about the point of linearization. It 

also requires that the nonlinear characteristic be analytic. A more 

general method of linearization is the method of statistical lineariza­

tion (MSL),also called quasi-linear method. The method applies to small 

and large nonlinearities, small and large perturbations and to continuous 

and discontinuous nonlinearities. The method is described in some detail 

in Chapter II. The investigation of the various aspects of this method 

is a main objective in this work. 

Purpose and Method of Investigation 

The purpose of the investigation is the development of a method of 

assessing the accuracy and applicability of the MSL. Means of improving 

the present method are also explored as a side issue. 

The method of investigation depends heavily on an approximate analy­

tical representation of the probability density function of a random pro­

cess. Since the representation has been treated only partially (mainly 

in one dimension) in the literature, a detailed treatment of the problem 

is included as an appendix at the end of this work. In this appendix, 
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the results available in the literature have been organized and the 

results of the author's own investigations are added, especially those i 

of multi-dimensional representations. I ; 
' I ~ 

A brief summary of the methods of nonlinear analysis of stochastic 

systems has been mentioned above. Since the main concern here is the 

accuracy of the MSL, the method is surveyed in an organized manner in 

Chapter II. The material is taken from several sources in the litera-

ture. The main purpose of the s.urvey is to expose the various aspects 

of method: its generality, simplicity and power in problem solving; 

and to indicate the areas which need further investigation. 

A method of nonlinear analysis is developed in Chapter III. It is 

based on the theory of Markov processes and is the main contribution 

in this work. Coupled with the use of the density function representa-

tion, referred to above, the method enables the evaluation of system 

statistics of various orders. The method is quite general for the class 

of problems common in engineering systems and can be made as accurate 

as desired. 

The method of nonlinear analysis is used to assess the accuracy of 

the MSL. This is done by comparing the values of the system statistics 

obtained by the latter with the accurate values obtained by the former. 

This is the subject of Chapter IV. 

In Chapter V, the applicability of the MSL is discussed by investi-

gating the various classes of problems to which the method may be applied 

with confidence. The author developed a modified version of the MSL 

which is more accurate than the presently used version, but which re-

quires additional computations. The development is also based on the 

probability density representation. Finally, some areas of potential 



applications of the MSL to the synthesis problem are briefly mentioned 

These applications are included to show cases which could be evaluated 

with the technique presented in this disseration. 

Summary of Main Results 

Two main results have been achieved in this work: 

1. A method has been developed which allows the calculation of 

the statistical characteristics with arbitrary accuracy. 

5 

2. The accuracy of the MSL has been investigated for typical cases 

of some general nature. 

The investigation of the accuracy of the MSL revealed several 

observations: 

a. It has been found that the assumption of a Gaussian signal at 

the input of the nonlinearity is the main source of error when the MSL 

yeilds inaccurate results. This occurs in systems with narrow band in­

puts. In this case, the assumption does not hold and the computed rms 

values involved large errors. 

b. Limited comparison of the linear models based on the minimum 

mean-square-error and on the equivalence of the correlation functions 

indicates that the former is a pref erred criterion for choosing a linear 

model. 

c. The method of nonlinear analysis developed in this work is 

accurate and thus serves to assess the accuracy of the results obtained 

by the MSL. 

d. The MSL is found to give acceptable results for inputs with 

spectral densities peaking beyond the passband of the system. The MSL 



is also accurate for systems with a systematic narrow-band signal cor­

rupted with wideband noise. 

6 

e. As a general trend, the accuracy of the MSL increases with the 

increase in the order of the system. 

f. The accuracy of the MSL for non-zero-mean systems is not as 

good as that for zero-mean systems. The method developed in this work, 

on the other hand, maintains the same accuracy in both types of systems. 



CHAPTER II 

THE METHOD OF STATISTICAL LINEARIZATION 

Introduction 

The Method of Statistical Linearization (MSL) also called Quasi­

Linear Method, was 'introduced about the same time by Booton (1953) and 

Kazakov (1954). The method is based on the replacement of the nonlinear 

element by a linear model which is equivalent to it in some statistical 

sense. The method was examined later by several workers in the field 

(Barrett and Coales, 1955) (Douce and Roberts, 1963) (Leland, 1960) 

(Brown, 1964) (Pupkov, 1960). 

The main criticism of the method has been on the assumption of a nor­

mal distribution to the signal at the input of the nonlinearity in the 

closed loop. The method has been found to give sufficiently accurate sec­

ond-order statistics when such an assumption holds, while excessive errors 

have been encountered when it does not hold. This suggested the need for 

1. investigating the accuracy of the method based on accurate gen­

eral procedures which do not involve assumptions that are hard to justify, 

2. determining on this basis the areas of applicability of the 

method and 

3. if possible, rendering the method more general without losing its 

chief merit of simplicity. 

Only a few efforts, with limited results, have been made in these 

areas (Smith, 1966) (Kolovskii, 1960) (Pyatnitskii, 1960). Several 

7 



suggestions have been made to imporve the accuracy pf the method by· 

accounting for the distortion effects of the nonlinearity, on the 
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signal spectrum, which the method neglects (Pupkov, 1960) (West, Douce 

and Leary, 1960) (Douce and Roberts, 1963). However, all these attempts 

retained the basic assumption of a normal signal at the input of the 

nonlinearity. Among the major contributions to the method has been 

Kazakov's (1965) extension of the method to multidimensional non­

linearities with nonadditive dependent inputs. This extension forms 

the basis of a general theory of treating nonlinear characteristics of 

the hysteresis type and the analysis of nonlinearities with random 

parameters. The theory was also applied to self-oscillatory systems in 

the steady state (Evlanov and Kazakov, 1969) and in the transient state 

(Evlanov and Kazakov, 1970). 

In this chapter, the MSL is presented in a unified manner. The 

material is based on several sources in the literature. First, the 

general formulation of the method is outlined. The purpose of this for­

mulation is to show the manner in which a linear model can be determined. 

The simplest form of the MSL is presented next. This is the form which 

has been used so far. It uses a simple static model for the nonlinear­

ity. The extension of the MSL to multidimensional nonlinearities is 

described next. This is the basis of a general theory of the MSL which 

is of great generality. Finally, the application of the MSL to the 

analysis of nonlinear systems is outlined. 
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A General Formulation of the MSL 

To determine a linear model which is statistically equivalent to 

the nonlinearity, a criterion for statistical equivalence is to be chosen. 

Two criteria have survived through the literature. The first is based on 

the equivalence of the mean values and correlation functions of the model 

and the nonlinear transformation. The second is based on the minimum 

mean-square error which results from the substitution of the linear model 

for the nonlinear element. 

Let X(t) be the input to the nonlinearity. It is written in the 

convenient form 

X(t) = m (t) + x0 (t) 
x 

(2 .1) 

m (t) is the mean value of X(t) and x0 (t) is the centered random compo­
x 

nentof the signal. In general, these two quantities are functions of 

time. 

The nonlinear function is written as 

Y(t) = ${X(t),t} 

The linear equivalent model is written as 

m (t) is the mean value of 
u 

m (t) 
u 

U(t) = m (t) + u0 (t) 
u 

U(t), given by 

= k0 (t)L ~(t, •)mx(-r)d;: 
0 

(2.2) 

(2.3) 

(2.4) 

where k (t) is a statistical gain, W(.,.) is the weighting function of 
0 . 

the linear model and t is the initial time. k (t) is used with odd 
0 0 . 

synnnetric nonlinearities. For other types of nonlinearities 
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(2.4) is replaced by 

m (t) = ~ (t) 
u 0 

(2. 5) 

where ~ (t) is called the statistical characteristic of the nonlinearity. 
0 

u0 (t) is the centered random component of U(t), given by 

UO ( t) = kl ( t) r W ( t , T) XO ( T) d T 

t 
0 

(2.6) 

where k1 (t) is a statistical gain. This is the most general formulation 

of the linear model, a dynamic one. 

The problem then reduces to the evaluation of the parameters k or 
0 

~o' k1 and W(.,,) which characterize the linear model. These are deter­

mined according to one of the two equivalence criteria. 

1. Equivalence of the mean values and correlation functions of the 

model and the nonlinearity. This means that 

or 

E{Hx,t)} 

and 

m (t) = m (t) 
y u 

= k (t)ftw(t,T) m (T) dT(for synnnetric odd 
0 t x 

0 

= ~ (t)(otherwise) 
0 

R (t,s) = R (t,s) 
y u 

nonlinearities) 

(2. 7) 
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or 

(2.8) 

where Rx(.) is the correlation function of the input signal X(t) and 

m (t) = E{cp(x,t)} 
y 

We take 

k1 (t) = {R (t,t)/R (t,t)}~ 
y x 

and solve (2.8) for W(.) and (2.7) fork (t) or cp (t). The solution of 
0 0 

(2.8) for W(.) is difficult. For a stationary system, we take 

and W(t,s) = W(t-s) can be determined by frequency analysis methods. In 

particular, we have 
co 

W(t) 1 =-
2'1T 

jwt d e w (2.9) 

where G(jw) is the frequency (transfer) function corresponding to W(t), 

and is given by 

2 1 Sy(w) 
!G(jw) I ""2 S (w) 

kl x 

where S(w) is the spectral density function of a signal. 

(2.10) 

· To calculate cp 0 , k1 , and G (j w) or W ( t), it is necessary to know the 

distribution of X(t). Here the major assumption in the method occurs, 
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that X(t) is normally distributed. With this assumption the parameters 

can be determined without difficulty. In particular, it is readily 

shown that, under this assumption 

co 
k ('t) 

R (•) =I PX 2 (2.11) 
y kl ~ 

k=l 

2 2 = R (O) where P ('r) = R (T)/o IJ x x x x x 

and ak are given by 
co 

(2.12) 

where Hk(.) are the Chebychev-Hermite polynomials and p0 (x) is the density 

function corresponding to a normal X(t). 

Equation (2.11) yields 

S (w) y 

co 

from which it is easy to show that 

where 

1 =--
k2 2 
1°x 

co 2 

~ b ~. 
L klZI 
k=l 

b = Sk(w)/S (w) 
k x x 

k 
p ('t) x (2.13) 

(2.14) 
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But, 

00 

a2 = :L a~/kl 
y k=l 

(2.15) 

Therefore, 

00 

(2.16) 

and 
00 

Thus, the equivalent linear model is truly a dynamic one. Usually, the 

first two or three terms in the infinite series are sufficient. 

2. Minimum mean-square error criterion. This requires minimizing 

By conventional variational methods, it is easy to show that this 

is satisfied when 

or 

m (t) = m (t) y u 

E{¢(x, t)} 

t 

= J k (t)W(t,-r)m (-r)d-r 
0 x 

t 
0 

• ¢ (t)(otherwise) 
0 

(2.18) 

(for odd synnnetric 

nonlinearities) 

(2.19) 



as in the first criterion, and 

We take 

E{ x0 (t)¥(s)} = kl(t)ft R (t,T)W(T,s)dT 
t x 

0 

and solve (2.20) for W(.), In particular, (2.20) becomes 

0 1t E{X (t)Y(s)} = kl (t) -~ Rx(t,T)W(T,s)d1 

14 

(2.20) 

(2.21) 

(2.22) 

This is a Wiener-Hopf equation. Methods of solving (2.22) are available 

in the literature. For the special case of a stationary system, we have 

~ 

W(t) = 2; J G(jw)ejwtdw 
-~ 

G(jw) 

where 

S (w) is the spectral density function corresponding to 
xy 

E{ o (t)Y(t +T)} 

and 

(2. 23) 
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We have thus obtained a dynamic model for this case, too. Again, 

with X(t) normal, it is easy to show that ·· 

from which 

and (2.23) is solved easily. 

cr a.1P (•) x x 

From the abov~ relations one can verify the relations 

(2.24) 

(2.25) 

where the superscripts (1) and (2) refer to the first and second criter-

ia, respectively. 

The BMSL 

The form of the MSL that has been used by most workers in systems 

analysis is a special case of the previous general form. It is desig-

nated, the "Basic.Method of !tatistical Liilearization" (BMSL). In this 

form the linear model is without dynamic.a and is characterized by k (t) 
" 0 

or cp0 (t) and k1 (t).only. The linear model for the nonstationary case is 

U(t) = cp 0 (t) + k1 (t) x0 (t) (2. 26) 

where, for an odd symmetric nonlinearity, 

cp (t) = k (t) m (t) 
0 0 x 
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The parameters ~ (t), k (t) and k1 (t) corresponding to the BMSL are easi-o 0 

ly derived from the general expressions just developed. They are given 

by 

k(2)(t) = 
1 E{Hx, t)X0 (t)} / cr2 

x 

(2.27) 

(2. 28) 

(2.29) 

For a stationary system ~o' k0 and k1 are constants, otherwise they 

may be functions of time. 

Using the assumption tAat X(t) is normal one can determine ~o' kil) 

and ki2>. These can be evaluated beforehand for various nonlinear 

characteristics and tables would be prepared for them. These parameters 

will be function of m and cr which characterize the density function x x 

p (x) • 
0 

Important questions include: 

How well does a static model represent the behavior of· the original 

nonlinearity? Which criterion is to be preferred as the basis for 

statistical equivalence? The.minimum mean-square-error criterion involves 

less computational effort than the first criteri.on. Limited evidence 

based on sample problems indicates that this criterion is also more rep-

resentative of the original element. The minimum mean-square-error 

criterion is used in this work. 

In order to gain an appraisal of what to expect from the BMSL in 

the way of representation, consider two nonlinear characteristics. The 

first is a cubic 
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<l>(x) = N x 3 

and the second is an ideal relay 

<l>(x) 111 L sgn x 

The correlation functions of the output of the actual nenlinearity and 

the linear models based on the two criteria are shown in Figures 1 and 

2 for these two nonlinearities. The spectral densities are shown in 

Figure 3 for the relay. The calculations are based on a normal X(t). 

The figures show that the correlation functions based on the first and 

second criteria form an upper and lower bounds, to the actual correla-

tion function, respectively. This fact has been pointed out previously. 

Figure 3 indicates that the model based on the minimum mean-square-

error criterion is more representative of the signal spectrum than that 

based on the first criterion. 

Multidimensional Nonlinearities 

The multidimensional nonlinearities are characterized by the single-

valued transformation 

(2. 30) 

where x1 , ••• ,xn are random dependent variables which, in the general case, 

enter nonadditively and cj>(.) is a nonlinear single-:-valued function or 

characteristic, of arbitrary form. As usual, we write 

i = 1, ... ,n 
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The linear model is then 

u = <P 
0 

n 
~ 

+2 
i=l 

21 

(2.31) 

where <P is, as usual, a nonrandom function which is the statistical 
0 

characteristic of the nonlinearities, and kli are the statistical gains. 

<P 0 and kli are chosen to minimize 

n 

E{ [<P -
~ 
~ 0 Q2} ("' +L kl.x.) 'l'o -- 1 1 
i=l 

Carrying out the minimization operation, we have 

cp = E{~(x1 , ••• , x )} 
o n 

n 

~ k1iRji = E{cp(x1 ~···' xn)xJ~},j = 1,2, ••• , n 
i=l 

Solving (2.34), we get 

where 

n 

= Z" (-l)i+j 
j=l 

A = 
R 
nn 

(2. 32) 

(2. 33) 

(2.34) 

(2.35) 

(2. 36) 

i 
and A. is the cofactor of the element in the ith column and jth row of 

J 

the determinant A. 
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To compute $0 and kli according to the BMSL, the variables xi are 

assumed to have a multidimensional normal density function 

p (x1 , ... ,x ) = 
o n 

1 ell*/2ll 

where ll* is the bordered determinant 

~l Bin X1-m 
xl 

ll* = 
Rnl R x -m nn n xl 
x -m x -m. 0 1 x1 n 

$ is then given by 
0 

co co 

$ = 
0 

I ... J 
-CO -co 

Hx1 , .•. , x ) p (x1 , ... , x ) dx1 ... dx n o n : n 

(2.37) 

(2.38) 

(2.39) 

Differentiating (2. 39) with respect to mi and using (2. 35) we get for kli 

the following convenient form 

mi= m x. 
1 

(2.40) 

Thus, the statistical linearization of the function $ reduces es-

sentially to the computation of $ • The obtaining of the formulas 
0 

for ~ by computing the multiple integrals in (2.39) raises, in general, 
0 

significant technical difficulties. Methods of obtaining formulas for 

the expectation operation of this kind which do not require the computa-

tion of multiple integrals are thus highly desired. The approximate 

analyticexpansions for the density function in the appendix have been 

very helpful for this purpose. 
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The general theory just presented extends the application of the BMSL 

to a large class of nonlinear dependencies of arbitrary forms. In par-

ticular, a hysteresis-type nonlinearity of n input variables may be rep-

resented by a 2n-dimensional single-valued dependency of the form (2.30) 

and treated according to the above procedure. Moreover, the variables 

xi may include random parameters which can also be interrelated, or 

sinusoidal signals with random phases. 

Applications 

In this section the application of the BMSL to the analysis of 

closed-loop systems is outlined. · F~r stationary systems, frequency 

methods of analysis are used. For nonstationary systems, the state-

variable representation is preferred. 

Stationary Systems 

A closed-loop system of a general type is shown in Figure 4. The 

system is described by the equation 

Q(p) Y + R(p) X = S(p) Z 

y = ¢(X) 

(2.41) 

Z(t) is a stationary random process with a rational spectral density 

function. Replacing Y by ~o + k1x0 and taking the mathematical expecta­

tions of both sides in (2.41) we have 

Q(O) m + R(O) m = S(O) m 
y x z 

(2.42) 
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-

z 
§Jp_l_ + x y 

.Q.il>l_ ... cp (. ) 
R(p) 

-, - R(p) 
-

Figure 4. A Closed-Loop System of General Form- Stationary 



Subtracting (2.42) from (2.41) we have for the centered components 

Q(p) k X0 + R(p) Xo = S(p) z0 
1 
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(2.43) 

Equations (2.42) and (2.43) are related since both ~o and k1 depend on 

m and cr . Therefore, they must be solved simultaneously. 
x x 

The transfer function for x0 is 

G(p) = S(p) 
R(p) + kl 

0 The variance of X (t) is then 

where 

cr 2 = l/2TI x 

00 

I 
-oo 

S (w) dw 
x 

S (w) = jG(jw) 12 S (w) x z 

From equation (2.42) we also have 

(2.44) 

(2.45) 

(2.46) 

Equations (2.45) and (2.46) together with the relations defining ~ and 
0 

k1 in terms of m and cr are sufficient to evaluate m ,o , ¢ , and k1• 
x x x x 0 

Once these are determined analysis of the system proceeds according to 

linear theory. For simple problems, graphical methods may be used to 

solve for the parameters. For high dimensions, the equations are solved 

by iterative procedures. A formulation will be.described in connection 
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with nonstationary systems that can be used to evaluate the steady state 

values of the parameters. 

Integrals of the form (2.45) are common in the study of optimal 

systems. Tables are avail~ble for their evaluation (Newton, Gould, and 

Kaisar, 1957).. A fast algorithm is also available for the same purpose 

which is more useful than tables for high-order systems. 

Nonstationary Systems 

A nonstationary system is best described in the state-variable no-

tation. A large class of systems may be described by differential 

equations of the form 

x(t) = _i~,t) + B(t)v(t) ,x(O) =· c (2.47) 

where x(t) is the n-dimensional state vector, cj>(x,t) is a vector of non-- -
'linear characteristics; B(t) is the matrix of coefficients and v(t) is a 

vector of white noise with intensity matrix equal to the identity matrix. 

c is the n-dimensional vector of initial conditions, assumed normally 

distributed. 

Applying the BMSL to (2.47), l_(t,x) is replaced by 

U = ~ (t) + K(t) XO (t) 

where ~ is the statistical characteristics vector and K is the matrix of 

statistical gains. The linearized system equation iS then 

x(t) = ~ (t) + K(t) x0 (t) + B(t) v(t) (2.48) 

x(O) = c 
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It is clear that ~(t) described by (2.48) is a Markov-Gaussian process. 

So it is completely characterized by its mean vector, m (t), and the 
-:x 

matrix of correlation functions, R(t,s). A less complete, but sometimes 

sufficient, representation is obtained if only the covariance matrix is 

available in addition to the mean vector. 

From (2.48), the mean vector satisfies the differential equation 

m (t) = m (t) + B(t) m (t) 
--x -Lo -v (2.49) 

m (0) = m 
--x -c 

The covariance matrix satisfies the differential equation 

• T T 
P(t) = K(t) P(t) + P(t) K (t) + B(t) B (t) (2.50) 

P(O) = P 
c 

Equations (2.49) and (2.50) are easily solved on the digital computer. 

In general, there will be a total of n(n+l)/2 equations. In the steady 

state, the set of differential equations reduces to a set of algebraic 

equations. 

The correlation functions satisfy the relations 

3R(t,s) c K(t) R,(t,s) 
at 

R(t,t) = P(s) 

aR(t,s) = R(t,s) KT(t) 
dS 

R(s,s) = P(t) 

t>s 

(2.51) 

(2.52) 
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Equations (2.51) are integrated for fixed values of s thus obtaining 

sections of R(t,s) that are parallel to the t-axis. Similarly, (2.52) 

is integrated for fixed values of t giving sections of R(t,s) parallel 

to the s-axis. 

If the system is stationary, R(t,s) = R(t-s) = R(•) and 

dR(T) = KR(T) 
dT R(O) = P 

where K is now a matrix of constant static gains. 

Sununary 

(2.53) 

In this Chapter the MSL has been presented in a unified manner. 

The BMSL has been emphasized as the simple and most practical version 

of the general formulation. The static model based on the minimum mean-

square-error criterion ~equires less computations and limited 

evidence indicates that it may even be superior in representing the be-

havior of the original system. This model is adopted throughout this 

work. 

The extension of the BMSL to multidimensional nonlinearities allows 

the application of the method to a wide variety of nonlinear dependencies 

and increases the generality of the method as a tool for systems analysis 

and design. 



CHAPTER III 

A METHOD OF NONLINEAR ANALYSIS 

Introduction 

In this chapter a method of nonlinear analysis which has great gen~ 

erality is developed. Of course, we should not expect to find a univer­

sal method of nonlinear analysis that will be devoid of any limitations. 

In this work, it is assumed that the processes involved are 

Markov. 

One favorable circumstance is that a non-Markov process can be ap­

proximated to within any required precision by a multidimensional Markov 

process. However, it should be understood that the application of the 

theory of Markov processes is essentially connected with some approxi­

mationso In physical systems the processes possess a series of "good" 

properties like smoothness and analyticity which are incompatible with 

the Markov characteristics of the processes. The replacement of a phys­

ical process with a Markov process resembles, to a certain extent, the 

central limit theory, having to do with the convergence of an arbitrary 

process to the Gaussian. The analogy shows the wide scope of the 

problem. 

Experience has shown that since the statistics of the random pro­

cesses at the input of the system are known only approximately, taking 

such processes as Gaussian, or for that matter multidimensional Markov 

is a good engineering strategy in a great number of problems. 

29 
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The theory of Markov processes is well covered in the basic litera-

ture (Doob, 1953) (Bharuch-Reid, 1960) (Stratonovich, 1968). The con-

vergence of physical processes to Markov processes is also treated in 

Stratonovich (1968), among others. 

A continuous stochastic system with state vector x(t)={x1 (t), ••• , 

x (t)} , which can be considered as a Markov process is described by the 
n 

Ito stochastic differential equation 

(3.1) 

where, 

x(t) = {xi(t)} , i=l , ••• ,n is then-dimensional state vector. 

The initial conditions x(t ) can be a constant vector or a 
- 0 

random vector with specified distribution or given statistics. 

A(x, t) ={Ai~' t)} , i=l, ••• , n is an n-dimensional vector function 

of x and t. 

D(x,t) ={Dij(x,t)} , i,j=l, ••• ,n is the matrix of coefficients 

depending on x and t. 

W(t) = (Wi(t)} , i=l, ••• ,n is an n-dimensional Wiener process with 

the incremental properties 

E{dWi(t)} = 0 

"" Qij (t) dt, i,j=l, ••• ,n 

The elements of W(t) are assumed independent of the initial 

conditions x(t ). 
- 0 

The differentials are understood in the Ito sense. 

Equation (3.1) may be written in the more convenient form 
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d ~(t) = A(x,t) dt + B(x,t) dw(t) (3.2) 

where, 

B~,t) = {Bij~'t)} ,i,j•l, ••• ,n 

and = D(x,t) Q~(t) 

dw(t) = Q-~(t) dW(t), w(t) is a normalized Wiener process with the 

incremental properties 

E{dw(t)} = Q 

E{dw(t) dwT (t) } = I dt, I being the identity matrix. 

A wide class of dynamic systems can be reduced to the form in (3.1) 

or (3.2) by the shaping filter methods. This class includes systems 

with random parameters where the randomness can be reduced to a Markov 

process. 

The process x(t) described by the Ito differential equation (3.1) 

or (3.2) is also called an Ito process and the study of the properties 

of this process is termed "Ito calculus". It is known that the transient 

probability density function p(x1t) of the process x(t) satisfies the 

famous Fokker-Plank-Kolmogorov differential equation 
n n 

ap~, t)/at = -1. a! {Aip} + ~ I 
iml i i,jml 

(3. 3) 

In the steady state, if there is one, (3.3) becomes 

(3.4) 
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The integration of equation (3.4), and, in particular, of (3.3) is 

very difficult; very often, it is not possible. The integration has been 

carried out in few special cases of limited practical value. Thus, only 

numerical solutions by means of digital computers are possible in a great 

majority of problems. But the calculations required are so tedious that 

it is possible to accomplish them only when the order of the system is 

not too high, The volume of calculations involved and the necessary 

storage capacity of computers increase rapidly with the increase in the 

order of the system. This makes resort to approximate calculations of· 

the system statistics the only way, for the time being, to tackle com-

plex problems. One such approximate method is developed in this chapter. 

In this method the probability density function p (~, t) is not evaluated 

directly. Instead, the statistics of the process, its moments, correla-

tion functions, semi-invariants, are evaluated. It is known that these 

statistics characterize the random process satisfactorily. The charac-

terization process is described in the appendix. 

A Basic Result 

An important result in the Ito calculus is Ito's differential rule. 

Several important results can be obtained from this rule. Consider a scalar-

valued real function G(x,t), a function of x and t. Let G(x,t) be contin-

uously differentiable in t and twice continuously differentiable in x(t). 

2 2 Let G (t)=3G/3x, G (t)•3G /3x and G = 3G/3t. With x(t) defined by 
x - xx - t 

equation· (3.2), Ito's differential rule states that 

dG = {GTA +~tr (G BBT) + G } dt + G Bdw(t) 
x- xx t x- (3.Sa) 



or 

where 

n n 

{kG A, +~ z T 
dG = G (BB ) ij x. 1 x1xj = 1 i;j=l 

n 

+ I G (B dw(t))i x. -
i=l 1 

G = G (~, t) A= A(x,t) ' B = B(~, t) 

G = 
x 

G = xx 

{G G G }T 

~ x2 x n 

• I 

G G ••. G 
xnxl xnx2 xnxl 
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+ G} 
t 

dt 

(3.Sb) 

Taking the expectation of both sides in (3. Sa) then dividing by dt, we get 

d~E [G} "" (3. 6a) 

where we have m;.;ed the independe.nce of w1 (t) on the initial conditions 

x(t ) and thus on x(t). 
- 0 -

Similarly, fr·om (3.5b) we have 

where 

__.EE{G} 
dt 

n n 

' "'-= L E{G A } + ~ L E{G s } + E{G } 
i•l :xi i. .i .. ,j""l xixj .i.j t 

(3. 6b) 

Equations (3.6) were derived by Cumming (1967) directly from the 

system equation (3.1). Equations (3.6) will be used to obtain the 

equations for the system statistics. 
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Equations for the System Statistics 

The process ~(t) is completely specified by the transient density 

function and the initial conditions. It is known that p(x,t) for the 

process ~ (t) described by (3.1) satisfies equation (3. 3). We have pointed 

out that this equation is difficult to solve in practical problems. 

Another way of characterizing the process x(t) is through its statistics. 

The differential equations for these statistics are easily derived from 

equations (3.6). In what follows some of these equations are derived. 

The Moments Equations 

Differential equations for the initial moments (moments about the 

origin) of the process :x(t) can be derived from (3.6) in the following 

manner (Cumming, 1967), Let 

G (2£, t) (3.7) 

Then the initial moments of order N are 

(3. 8) 

Equations (3.6) are then used to obtain the differntial equations 

for the initial moments of any order N. Note that in this case G is a 

function of x alone, that is, Gt=O. Following are the differential 

equations for the first four orders. 

L First order initial moments 

&n =l (t) = 
i 

E(A.} 
1 



ii. Second order initial moment 

an. "' l ( t) = E { x . A. + x. A, } + E { t3 • , } 
1 J l. 1 J 1J 

n.:1 
J 

iii. Third order initial moments 

0n.=l (t) 
1 

n.=l 
nJ=l 

k 

= E{xj~Ai + xi~Aj + xixj~} 

+ E{x.. B .. + x.B.k + x.B.k} 
K l.J 1 J J 1 

iv. Fourth order initial moments 

+ xixj~AQ.} + E(xkx~Sij + xj~BiQ. 

+ xjxQ.Sik + xix£Sjk + xi~Sjt + xixj Skt} 
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When Bis not a function of~ the equatil0nstakea simpler form. 

The number of differential equations for the moments of order k is given 

by 

M. = n(n+12 ·· (n+2) ..• (n+k-1) 
-1< kl 

where n is the order of the system in (3.1) 

For processes with· symmetrical· distributions the number of equations 

for the moments may be reduced by wsrking with·the central moments 

(moments·about the mean)-of the·process• · The differential equations for 

the central moments of ~(t)- can be obtained from (3. 6) in a similar man-

ner as the quations for·the initial moments;· Thus, letting 

where, 

n n 
( ) (xo1 )· 1 (xo2 )·· 2 G ~,t = 

0 x = x - a i i n.aol 
1. 

n 
(xo) n 

n 
(3.9) 
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Then the central moments·· of order N are defined by 

(3.10) 

Equations (3.6) are then··used.·to derive·thedifferntial equations 

for the·central·moments.·· ·The· equations· for· the central·moments of the 

first four orders are as follows 

i. Second order central moments 

• 0 0 
µ .1(t) • E{x.A. + x.A.} + E{S .. } 
n.=. J i i J l.J 
nl.""1 

j 

ii. Third order central moments 

{ .. 

• 0 0 
µ (t)=E x.x.-
n.=l J K 

} A I 0 0 } 
p 1 . + l.X.;Xk - )l =l A n = 1 ~ n. . 

1 n.=l 
nJ=l 

k 

ni=l n 1 =1 J 
k k 

iii. Fourth order central moments 

0 0 0 + {x.x.xn 
J. J x, 

11 1 JA. + 
n,= i 

nJ=l 
k 

n =1 9,, 

{ 0 0 0 
x.x.xo -
. J. J x, 
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For symmetrical distributions·all oddcentral·mements are zero. 

This will reduce the nomberof·equatf.ons·to·be· solved. Thus for a first 

order system there will be· two· equations ·instead of,. fe·ur; for a second 

order system eight--·instead- of·· feurteen; and so on. 

· · Eguati·omv ft>r:-- trhe:~ Characteristic 

Functions 

The differential .. equation·s·•f.er the; eha:raeteristic· function of the 

process x(t) can also be·derived from (3.6). Let 

G(x, t) 
T = exp (i_! ~) ,, .!.• = {.zi} , i=l,2, •; .n 

The characteristic function·is·then given by 

· f ~' t) = E { G (x, t) } 

From equation (3.6), it follows that 

or in component form 

d 
dt f (.!., t) =iE 

n 

i~zjx" n 
=l J 

{e ~z A } --E 
.(~ j j 

j=l 

zjx. 
J 

} 

(3.11) 

(3.12) 

(3.13a) 

(3.13b) 
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The log characteristic function is defined by 

g(~,t) = ln f (~,t) (3.14) 

from which follows 

f (!, t) = exp g (~, t) (3.15) 

The differential equation for.the logcharacteristic function is obtained 

by-differentiating both-sides'of (3.14) with respeetto t and consider-

ing- (3.15). Thus 

d . ' . 1 d 
dt g(~,t) ... f (~,t) dt f(!,t) 

Using (3.13) and (3.15) we get 

d T T T -g(z t) 
JtS(~,t) = {iE~ AG) -l/2E~ BB ~G)}e -' (3.16a) 

or in component form 

d 
dt g(~,t) 

n 

-~E<I (3.16b) 

It may be pointed out that the differential equations for the ini-

tial moments can also be obtained from (3.1.3) since the Nth order mo-

ment is given by 
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(3 .17) 

z = 0 

Thus by· differentiating: (3;13)-r.epeatedl:y wi.th respect tcr z and evalu-
·- . i 

ating at .!_""'0, the· differential-: equations· fo.r· the· momente of various orders 

are obtained. 

The Semi-invariants Equations 

The semi-invariants· of· a distribu.t;ii;.m are .obtained from the log 

characteristic function just· as the· initial moments are obtained from the 

characteristic function.··· The· semi-invariants of, order N are given by 

z = 0 
~ -

(3.18) 

The differentialequations for the semi-invariants of order N are 

thus obtained-by· differentiating· (3.16) :·repeatedly with. respect to z1 

a total·of N times and·evaluating·at·z ... e~- The equations for the semi---
invariants of the first. four orders are as follows 

· L First. order semi-invariants 

~ 1 (t) = E{Ai} 
ni= 

ii. Second order semi-invariants 



iiL Third order semi-invariants 

- A . 1 }AJ + E{xi0 s.k + x~S.k + x.0 s .. } · n = -1< J J 1 k l.J 
i -n,=l 
J 

iv. Fourth order semi-invariants 

~n =1 (t) 
k 

n.=l 
n~=l 
n =l 

.Q, 

0 
- x. .. A. -

k n =l 
i 1 n.'"'. 
J 

40 
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The Correlation Function Equations 

The equations for the correlation functions.are derived from basic 

rel.,.tions in what follows. For convenience, let B be a function of t 

only. Then the system equation can be written in the form 

x(t) = !(;, t) + B(t) v(t) (3.19) 

where y(t) is now a white noise vector with zero mean vector and inten-

sity equal to the identity matrix. The correlation functions of _3£(t) 

are defined as 

T 
R(t,s) = E(x0 (t) x 0 (s)} 

Differentiating with respect to t 

T 
= E{k0 (t) x 0 (s)} 

where from the system equation 

xO(t) = !!_0 (x,t) + B(t) v(t) 

where 

(3.20) 

(3.21) 

(3. 22) 
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Thus 

T T 
= E(!,0 ~,t) x 0 (s.).} + E{B(t) y_(t) x 0 (s)} (3. 23) 

x0 (s) • G(t0 ,s) x9 (t0 ) +J: G(t,T) B(•) v(•) d• 
. 0 

(3.24) 

where G(t,s) is the transition matrix. 
T 

Substituting for x0 (s) in the second .term of equation (3.23), we have 

T 
aR(t,s) .... E (A0 'x, t) x0 (s)} + E{B(•) v(•). 

at ~ 

T G (t,T) o(t-'t) dt} 

T 
= E{A0 ~,t) x0 (s)} + B(t) BT(s). 

G(t,s) 1 (s-t) (3. 25) 

The unit function is included to emphasize that 

G(t,s) = 0 for t>s. 

This equation is solved with the initial conditions 

R(t,t) = P(s) 

where Pis the eovarianeematri:x (matrix of second order central mo-

ments) of the process x(t). 



Similarly, with res pee t to s, we get 

aR(t,s) 
at 

T 
= E{~0 (t)P;_0 .(x~s)} + B(t) BT(s). 

G(t,s) 1 (t-s) , G(t,s) = 0 , s>t 

and the initial conditions 

R(s,s) = P(t) 

Fromabove, we finally have 

and 

aR(t,s) 
()t 

aR(t,s) 
at 

T 
= E{!0 (x,t) x0 (s)} , t>s 

R(t,t) = P(s) 

T 
• E{x9 (t) A0 (x,s)} , s>t 

R(s,s) = P(t) 
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(3.26) 

(3. 27) 

(3.28) 

Integrating the first equation for fixed values of s, we obtain a number 

of sections of the correlation functions parallel to the t-axis and 

lying in the region t>s. Similarly, integrating the second equation for 

fixed values oft, we obtain·sections.pa:rallelto the·s-axis and lying 

in the region s>t. 

If the system is s.tationary, - the correlation functions will satis-

fy the followi.ng equation 

T 
0 

= E :A(~,t) X .(t+T)} , T=t-s 

R(O) = P (3.29) 
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Note that in order- to .. calculate . .,the. coR:aiatio-n: functions the 

second order central momeirts" .. mustd~e; k.nowia~. - This· is. achieved by solving 

the· set of equations for. the c.entral-mgments .. f.irs't'.~.~the-n:. using them in 

the solution of the correlation: ·fuuot-i.cms equations. 

Comp-ti-tati.on:.of··.the.; Sys-tem Statistics 

Now cons id era ti on·. is. given· to· methods .. of . se>J.vii:rg-~ the· differential 

equations for the statistics•. It· is pointed ou.tthat the three types of 

statistics:. considered~ here are related. by definite relationships (Kendall 

and Stuart, 1969). Thus·one:can calcula.te-::the·-s.tatistics which involve 

less effort· then, if: necessary;. obta..-in: the other types of statistics 

· from· the relations between the-members~o.f:-the different types. 

When A~,t) .is linear in x(t~ alild B il!r a f-unction·-of time only, 

the process x(t) is Gaussian •. · It is completely specified by its mean 

vector and correlationmatrix •. The equations.for these.statistics are 

solved easily. 

If A is linear in x. and B is also linear in x , the process ~ ( t) 

is not Gaussian. However,· the diff:erential equations for the statistics 

of order N will involve statistics of orders equal to and less than N. 

A closed set of differential equations can be obtained· for any order 

and solved for statistics up to that or.der. Of course, an abritrary 

(non:-Gaussian) MarkQV process x (t) is specif.ied :'by· its·: infinity (count­

able) statistics• However, experience has.shownthat statistics up to 

the fourth order, inclusive, describe.the process with·: sufficient ac­

curacy •. This is beside the.fact that higher· order. statistics, if they 

exist, may involve errors. We·recall-that thephysical process is not 

actually aM.a.rkov.process,. strictly.speaking. Its high order statistics 
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computed on the basis of a Markov process will not be the actual statis­

tics. Errors due to the approximation accumulate and render the higher 

order statistics unreliable. 

If A(x,t) is nonlinear in~ then ~(t) is non-Gaussian whether B is 

a function of x or not. In order to solve the resulting set of differ­

ential equations for the statistics, the right hand sides of the equations 

must be expressed explicitly in terms of these statistics. If the non­

linear functions are in the form of polymonials in ~' with time-varying 

coefficients, it is possible to express the right hand sides of the equa­

tions explicitly in terms of the statistics. However, the differential 

equations for the statistics of order N will now include statistics of 

orders higher than No A more complicated situation arises when the non­

linear characteristics cannot be written as polynomials in x. Such case 

includes essentially nonlinear characteristics like relays. The calcula­

tion of the statistics in these last two cases is a main contribution 

of the method to be adopted in this work. 

In all cases, if only the steady-state values of the statistics 

are needed, the equations reduce to a set of algebraic equations. Steady 

state values are independent of the initial conditions. 

In order to solve the equations for the statistics, a closed set 

of equations must be found, or formulated. When the nonlinear functions 

are expressed as polynomials in ~ a closed set of equations for the semi.­

invariants up to a certain order N can be obtained by setting equal to 

zero all semi-invariants of orders higher than N. It is well known that 

the semi-invariants above the second order of a Gaussian process are all 

zero. The semi-invariants of an abritrary process x(t) of higher orders 
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are not zero, in genera:l,- noT::do they. alway.s.-dee:r.:ease in· value with in­

crease in order. However, the contribution- of· hig·h:er -srder semi-invar­

iants to the specification of a random process becomes less important 

with increasing order• ·Havingin:m:Lnd:processes:which are common in 

control systems and the normaii·zation 0f processes by the system in­

ertias the above suggestion can be justified. The same cannot be said 

of the moments. It is known that even the moments ofa Gaussian process 

are not zero above a certain·order and:may very well be large quantities. 

When the nonlinear characteristics cannot be written as polynomials 

in x a way must be· found to express the:.r.i.ght' hand sides of the equations 

explicitly in terms of the statistics. ·Also needed is a way of ob­

taining a closed set of .equations for--t.he- statistics up to a certain 

order. 

We have found that the best' way· to: accomplish the above needs lies 

in an appropriate analytic representation of the probability density 

function of the process ~(t). Such a representation will have the gen­

erality of application and· has been found-: to give results with satis­

factory accuracy for engineering purposes.- It will take care of all 

types of nonlinearities· in· (3.1) or (.3 •. 2). Thee right hand sides of the 

equations are easily expressed in terms of- the statistics up to a de­

sired order and a closed set o-f~ equati.ons for- statistics up to that 

order may be obtained. - The·. representation problem is described in the 

appendix. 

A Computational Aspect 

Investigation of the equationsfor-thestatistics and considera­

tion of the represen ta ti on- of p (.:x} as in the appendix reveal that we 
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i=l,2, ••• ,n (3. 30) 

where p*(x) is the n-dimensional· normal density function for independent 

elements. Similar integrals involving B .. may also occur. These in-. . l.J 

tegrals can be evaluated beforehand for various types of nonlinearities. 

Tables of such integrals for various nonlinear characteristics can be 

prepared. The set of differential equations-can also be written in terms 

of these integrals for repeated use. 



CHAPTER IV 

APPLICATIONS 

Introduction 

The method developed in Chapter III is now applied to the analysis 

of nonlinear feedback systems. Two forms of systems will be considered 

according to the type of the nonlinear characteristic involved. The 

first is that of systems containing odd symmetric nonlinearities. In 

many such systems, once the transients have disappeared, the mean 

value of the input can be tracked by the output with zero-mean error. 

Thus no generality is lost if zero-mean inputs are considered. In this 

case, the output will also be zero-mean and the system is a "zero-mean" 

system. The second form is that of systems containing other types of 

nonlinearities, for example, odd nonsynnnetric and even nonlinearities. 

Application to Zero-Mean Systems 

Figure 5a shows a simple nonlinear feedback system of a general 

form. The block diagram is easily transformed to the form in Figure 5b. 

An accurate expression for the spectral density function of x(t) can be 

obtained when z(t) is a stationary process (Pyatnitskii, 1960). The 

development is based on the assumption that x(t) is Gaussian. The first 

term in the expression for the spectral density function has been found 

to coincide with the expression obtained by the BMSL (based on the min­

imum mean-square-error criterion). This fact is very interesting since 

48 
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it disproves the long-held belief that the BMSL is different in kind 

from the powerful functional approach to systems analysis. As a matter 

of fact, it is easily shown that if the density function of x(t) is 

normal then all the relations obtained in Chapter III reduce to those 

of the BMSL. This is a theoretical justification of the BMSL. It also 

shows that the BMSL is a first approximation to the accurate solution 

of the problem. Of course, we still have with us the assumption that 

x(t) is Gaussian, the effect of which must be investigated. 

z(t) 

T 
e f" x y w(t) I Linear Nonlinear Linear 

Compensator Element 
-~ 

Plant -
'a.-

.. ,_ ... ,,_,.,. ___ 

u(t) Linear 
Feedback 

(a) 

z(t):r- N(p) ~"'r-1 ~(,) y ·I K(p) c;:1-_,.., _ _,,_____.._ l--~--·11 ! 
i 
! 

(b.) 

Figure 5. (a) A Simple Nonlinear Feedback System 
(b) The Equivalent Unit Feedback System 
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Theoretical Investigation 

In Chapter III an approximate method of analysis was developed which 

accounts for the nonlinear effects in the system and which uses an ex-

pansion for the probability density of x(t), as compared with a normal 

x(t) in the BMSL. In this section, exact solutions known in the litera-

ture, for simple problems, are used to examine both the accuracy of the 

approximate method of Chapter III and that of the BMSL. 

Consider the simple first order system in Figure 6 which is de-

scribed by the first order differential equation 

dx = -~(x) dt + dW(t) 

where W(t) is a Wiener process with the incremental properties 

E{dW (t)} = 0 and E{dw(t) dW (t) ,·} = 2b 2dt 

------~~~-y--~-~1~_! _____ 1~...--

Figure 6. A Simple First Order 
Nonlinear System 

(4.1) 
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Equation (4.1) is written in the more convenient form 

dx = -~(x) dt + b/2 dw (t) (4.2) 

where w(t) is a normalized Wiener process. Since blZ in (4.2) is not a 

function of time, (4.2) may be written, using the white noise concept, 

as 

x = -~(x) + blZ v(t) 

where v(t) is white noise with unit intensity. 

Using the BMSL we should be able to determine the mean-square values 

of x(t). By the method of Chapter III statistics of any order can be 

calculated. On the other hand, the exact probability density functions 

are determined by solving the Fokker-Plank-Kolmogorov equation directly. 

Three nonlinear characteristics, shown in Figure 7, are considered. 

I ~(x) ~(x) ¢(x) 
L L 

x 3 

-1 

x x 

I , 
-L ~-L 

I 
Figure 7. Nonlinear Characteristics Used with the First Order 

System with White Noise Input 

1. x 
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First, consider the cubic nonlinearity. In this case and according 

to (3. 2), 

3 A(x,t) = -x 

From symmetry, we have 

B(:x,t) = b/2 

Ak = 0 for all odd k 

The differential equations for "z and\ are 

Giving the steady-state values 

2 
A2 = crx = . 632b 

2 • 2b. 

(4. 3) 

(4. 4) 

(4. 5) 

(4. 6) 

The differential equations for A2 corresponding to the BM~L, is obtained 

from (4.3) by setting A4 equal to zero, 

(4. 7) 

from which we get 

2 A2 = crx = .577b (4. 8) 

The exact probability density function is given by 



12 p(x) = -1--

b ~\(~) 

from which we have 

'-2 = .677b 
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(4. 9) 

(4.10) 

Figure 8 shows the curves for the root mean-square values of the 

error and input signals corresponding to the three methods of calculation. 

Figure 9 shows the corresponding probability density functions for b=.5. 

For this system, the root mean-square value of the input equals b. 

Similar calculations are carried out for the other two nonlinear-

ities. The results are included below and shown in Figures 10 to 13. 

For the ideal relay, 

Exact: 

'-2 = 2 b4/12 = 8 x l0-4b4 (4.11) 

Approximate: 

'-2 = 1.99 b4/L2 = 7.98 x l0-4b4 (4.12) 

BMSL: 

'-2 = (.'rr/2) b 4112 = 6.27 x l0-4b4 (4.13) 

The exact density function is given by 

p(x) = L/2b2 exp (-L/b2 Jxj) = 25/b2 exp (-50/b2 Jxj) (4.14) 
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For the relay with dead zone, 

Exact: 

1 

(4.15) 

The equations corresponding to the approximate method for .\ 2 and /, 4 , 

in the steady state, are 

(4.16) 

(4.17) 

A. 2 corresponding to the BMSL is the solution of the algeb;r,aic equation 

0 = -lOOcr f + 2b 2 
x 0 

(4.18) 

The correlation function of x(t) satisfies the differential equation 

d~ R ('r) = - E{~ (x(t)] x0 (t+'r)} (4.19) 

Letting x1=x(t), x2=x(t+•) and using the two-dimensional Edgeworth ex­

pansion for the joint density function of x1 and x2 we have 

(4.20) 
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Figure 9. Amplitude Probability Density Functions of the Error 
Signal in First Order System with White Noise Input­
Cubic Nonlinearity 
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where Ik has been defined in Chapter III. The equation corresponding 

to the BMSL is 

(4.21) 

Substituting for crx' A2, A4 and Ik for the different non-linearities and 

carrying out the integration, expressions for R(•) are easily obtained 

from (4.20) and (4.21). 

The spectral density functions are then obtained as the Fourier 

transforms of the correlation functions. The final results are as 

follows: 

i. Cubic nonlinearity 

Approximate: 

BMSL: 

R(•) = .632b 
-1. 58bT 

e 

1 
s(w) = .1275 1 + (w/l.58b)2 

R(T) = • 577b -fJbT 
e 

S(w) = .106 1 
-1-+~( w_,./.....,./1-b..,.-) 2' 

ii. Ideal relay. The relatios for the BMSL are 

S(w) = 1 

(4. 22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4. 27) 
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where A2 is given by (4.13). 

The approximate method gives the same expressions except that A2 is deter-

mined from (4.12). 

iii. Relay with dead zone. The same expressions in (4.26) and 

(4.27) apply except that A2 is given by (4.18) for the BMSL and by (4.16) 

and (4.17) for the approximate method. 

Figure 14 shows the spectral densities for the ideal relay system 

corresponding to the BMSL and the approximate method. Also shown, for 

comparison purposes, is the exact spectral density function. The exact 

spectral density function is obtained by the direct solution of the 

Fokker-Plank-Kolmogorov equation for the transient density function and 

the steady-state density function. It is given by 

(4. 28) 

where 

(4.29) 

obtained by choosing the proper sign of the radical. 

Inspection of the results shows that the approximate method of 

Chapter III is consistently more accurate than the BMSL. This is ex-

pected since the excess of the actual density function as compared to 

the normal has been taken into account by the A4 term in the density 

function expansion. The root mean-square values from the approximate 

method are very close to the exact although only one correction te:rlm 
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has been used in the expansion for the probability density function. 

The results can, of course, be made more accurate by including one or 

more additional correction terms. It is also expected that A4 involves 

some error which can be reduced by such additional corrections. As for 

the density function, the same remarks are also true and the approximate 

density functi.on approaches the exact with the inclusion of additional 

correction terms. The error in the approximation being of the order of 

the first neglected term in the Edgeworth (asymptotic) expansion. 

Experimental Investigation 

Smith (1966) conducted an experimental study of the two systems 

shown in Fi.gure 15 where three nonlinearities have been used, one at a 

time, with each system. These are shown in Figure 16. The input was 

filtered white noise. The filter transfer function was 

K 
G(s) = -­

s + a 

In that study, root mean-square values of the error. signal x(t) 

were measured for a wide range of input root mean-square v~lues and for 

three filter bandwidths, namely, a"'l, a=ll, a=Sl radians/~econd. For 

certain selected cases, the amplitude probability density functions were 

also measured. Since the systems in Figure 15 are not amenable to 

exact calculations, the results of Smith's experimental study are used 

as the basis for the investigation. 

A Markov Process Representation of the Input. The spectral density 

function of z(t) is given by 



z (t),.., x(t) 
<P (. ) 

y(t) 1 c (t) -
' s -

(a) 

z(t) x - <P (. ) 
y 1 u 1 c (t) - -,, s s -

I + 
+ 

(b) 

Figure 15. Nonlinear Feedback Systems Used in Experimental 
Investigation. (a) First Order (b) Second Order 

<P (x) <P (x) <P(x) 

L L 

-1. -1. 
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Figure 16. Nonlinear Characteristics Used in Experimental 
Investigation 
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2 

K2 may be considered as the intensity (2b2) of the white noise at the 

input of a filter with a transfer function 

1 
s + a 
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or we may consider a unit intensity white noise at the input of a filter 

with a transfer function 

K 
s + a 

Both representations are equivalent as far as z(t) is concerned. In 

either case, K may be expressed in terms of b as 

Thus 

from which 

or K = bv'2 

2 1 2 
S z ( w) = 2b J j'Ul + a I 

2 
(1w) d·w .. b /a (4. 30) 

The input process z(t) is then expressed as a Markov process as 

follows 
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dz (t) = -az (t) dt + bl2 dw(t) (4. 31) 

where w(t) is a normalized Wiener process. 

A Markov Process Repres~ntation of the First Order System. The 

error signal x(t) in Figure 15a is written as an element of a two­

dimentional Markov process as follows 

Let 

x1 = c(t) x2 = x(t) (4. 32) 

then the process X(t) ={ x1,x2 } is a Markov process satisfying the fol­

lowing stochastic differential equations 

(4. 33) 

(4.34) 

From the nature of the input and the synnnetry of tpe nonlinear 

characteristic it is clear that all odd semi-invariants of the process 

X(t) are zero, i.e. 

A.,ij (t) = 0 for i+j odd (4.35) 

The differential equations for the even semi-invariants are easily ob­

tained by the procedure described in Chapter III. For the cubic non­

linearity, these equations are 
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(4.36) 

The equations corresponding to the BMSL are obtained from the first 

three equations of the set (4.36) by settipg to zero all semi-invariants 

of order greater than the second. Thus we have 
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~11 (t) 

• 2 2 
A02(t) = 2b - 6A02 - 2a(A11 + Ao2> (4.37) 

The steady state values are obtained by solving the set of algebraic 

equations formed by setting to zero all the derivatives. Those corres-

ponding to (4.37) are obtained by inspection, 

~11 = 0 A20 
2 = 3A0/a 

A02 
2 . 2 = -a/6 + 1/6 I a + 12b (4.38) 

The set corresponding to (4.36) must be solved numerically. The root-

mean-square values of the error signal x(t), are plotted versus those of 

the input z(t) in Figure 17 for a•l, 11, and 51 radians/~econd. Also 

shown in the figure are the experimental results obtained by Smith for 

the same system. The histograms for the probability density obtained 

by Smith and the probability density functions corresponding to the BMSL 

and the approximate method are plotted for six selected points in Figure 

18. 

Similar calculations are carried out for the other two nonlinear-

ities. The results are shown in Figure 19 thru 22. 

The correlation functions matrix satisfies the differential equation 

dR(-r) 
dt = oT 

A~,t) x (t + -r) 
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where 

Again, using the two-dimensional Edgeworth expansion for the joint density 

functions, we obtain 

dRll 
c/o" R21 (T) = 

dT X2 
Rll (O) = A20 

dR12 
= c/o. R22(T) dT x2 

R22(0) = >.02 

where 

and 

co 

I Ok= 5 
-co 

as defined in Chapter III. 

The equations corresponding to the BMSL are obtained from the above 

set of equations with 
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· only. 

A Markov Process Representation of the Second Order System. In a 

similar manner, the error signal x(t) in Figure 15b can b~ represented 

as an element of a three-dimensional Markov process. Let 

x1 = c(t) x2 = u(t) x3 = x(t) 

then the process X = { x1 , x2 , .x3 } is a Markov process satisfying the 

following differential equations 

+ bfi dw (4. 39) 

The differential equations are obtained in the same way as those for the 

first order system. Only the even semi-invariants are needed since the 

odd ones vanish. The results are shown in Figures 23 thru 28. Similarly, 

the equations for the correlation functinns are obtained in the same way. 

Application to Non-Zero-Mean Systems 

An interesting feature of non-zero-mean systems is. that a mean 

component appears at the output of the nonlinearity even when there was 
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no such component at the input, which is where the term "non-zero-mean" 

came from. A typical non-zero-mean system is one with a nonsynunetric 

nonlinear characteristic. A nonlinear transformation in such systems 

makes it possible to detect the random component. of the input signal. 

The application of the methods of analysis to non-zero-mean systems 

proceeds in the same manner as the zero-mean systems. Here, however, all 

semi-invariants are of interest since both odd and even statistics are 

usually non-zero. The number of equations to be solved is more than 

that for zero-mean systems. But the procedure is exactly the same. 

Therefore, only a simple system is investigated here to show the effec-

tiveness of the approximate method. In addition to the excess of the 

distribution a skewness factor enters, in analyzing these systems, which 

was absent in symmetric systems. This is expected to be another factor 

contributing to the inaccuracy in the BMSL. At the same time it shows 

how the approximate method is still well-suited for analysis even with 

the presence of considerable skewness. 

Consider the scheme shown in Figure 29, 

Let, 

R = R1 = 100 kilo ohms 

Diode forward resisrance, rf = 2 Kilo-ohms 

Diode backward resistance, rb = 12 Mega-ohms 

The differential equation for x(t) is 

dx 
dt = -1/RC(l + R/Rl + R/r) x (t) + b0 /RC n(t) (4.40) 



b n(t) 
0 

R 

S1 = (l+R/R1+R/rb) 

S2 • (l+R/R1+R/rf) 

c 

x(t) 

Hx) 

x 

Figure 29. A Simple First Order Non-Zero System with White 
Noise Input 
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where 

x>O 

r = 
x<O 

and n(t) is a unit intensity white noise. 

Or, 

where 

dx ( dt =A x,t) + b n(t) 

A(x,t) = , and b = b /RC 
0 

(4. 41) 

The exact density function is obtained by the direct solution of 

the Fokker-Plank-Kolmogorov equation, in the steady state. It is given 

by 

2 
p (x) = -b t- _hr'- ~ 

V'IT (1/ Y pl + 1/ V $2 ) 
(4. 42) 

where 

$ = 

From (4.42) it is easy to calculate the statistics of x(t). In partic-

ular, 



The BMSL gives 

while the approximate method gives, 

t.. = .1043b 2/RC 2 0 

Figure 30 shows the dependence of the root mean-aquare output on b , 
0 

for RC=l, corresponding to the three methods of analysis. Figure 31 

93 

shows the corresponding density functions for the output process x(t). 

The correlation function of x(t) satisfies the equation 

0 dR/dT =E {A(x,t) x (t,T)} 

Using the two-dimensional Edgeworth ~xpansion we get, 

where 

from which 

dR/ d T = - c R ('r) 

R(-r) = t.. 2 
-c• e S ( w) 
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The BMSL gives the same expressions with c = 11 /crx. The spectral density 

functions are shown in Figure 32. The exact spectral density function is 

also shown for comparison. 

Upon examination of these results, the following observations are 

noted. 

1. The approximate method developed in Chapter III is consistently 

more accurate than the BMSL. The root-mean-square values obtained by 

this method, for the first order system, involve errors of less than 

five per cent when only one cor~ection term is included in the expansion 

of the probability density. For the second order system the predicted 

results practically coincide with measured data. 

2. The results obtained by the J3MSL involve errors ranging from 

ff ve to 20 per cent. Accuracy of the method is excellent for rms error 

signals which are of the order of magnitude of the rms inputs. This 

occurs mostly for the wide-pand inputs. When a is much smaller than x 

a the accuracy decreases. The limiter nonlinearity may still give good z 

accuracy in this case if the element is not driven to saturation. So, 

in addition to the order of magnitude of the rms error the distortion 

effects must also be considerable for the accuracy to decrease appreciably. 

The effect of distortion is manifested in the density function curves 

and in the spectral density curves. However, it is observed that in cases 

where the histograms are quite different from the normal curves having 

the same mean-square values, the root-mean-square values have been pre-

dieted within 10 per cent of the measured values. This indicates that 

the root-mean-square values of x(t) are not very sensitive to the dis-

tribution of the signal. This is in favor of the BMSL. 
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3. Both the approximate method and the BMSL give better results 

for the second order system than for the first order system, under the 

same input conditions. The methods are expected to give better results 

for higher order systems. This is due to the severe attenuation of the 

distortion effects by the system dynamics and the normalization of the 

signal at the input of the nonlinearity. 

4. The accuracy of the BMSL is less for non-zero-mean systems 

than for zero-mean systems. This is due to the fact that the BMSL does 

not take into account any skewness in the distribution. It assumes a 

symmetric (about the mean) distribution. On the other hand, the approx-

imate method is as valid for these systems as for the z.ero-mean systems. 

This is due to the fact that the skewness is accounted for by the A3 term 

in the probability density expansion. 2 Moreover, the A3 term in this ex~ 

pansion accounts for any additional excess in the distributaon. This 

term when added to the A4 term may even improve the accuracy of the me­

thod. The improvement depends on the relative magnitude o,f this addi-

tional term. 

The approximate method has thus been found to be of sufficient 

accuracy for practical purposes when statistics up to the fourth order 

only are employed in the probability density expansion. The accuracy 

of the BMSL can therefore be checked by this approximate method. Once 

the BMSL is found to be of sufficient accuracy for a particular problem 

analysis proceeds according to linear theory using the linearized model. 

Otherwise, either the linearized model is improved and the accuracy 

reassessed or the method is rejected as a means of analysis. In either 

case, the BMSL can be considered as a first step towards a more thorough 



analysis by other elaborate (experimental) procedures. This is still 

a great help in many instances. 
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CHAPTER V 

APPLICABILITY AND DESIGN APPLICATIONS 

OF THE BMSL 

Introduction 

A method of assessing the accuraoy of the BMSL, in a particular 

application, is now available. In this chapter we proceed to investi­

gate the applicability of the BMSL based on information gained about its 

accuracy by the approximate method. A modified version of the MSL is 

described for use in exceptional cases when the BMSL is in error or when 

the Markov assumption of Chapter III is not valid. The application of 

the BMSL to the design problem is also outlined. 

Applicability of the m.:tSL 

It is desirable, from the standpoint of the design engineer, to 

have a guide that indicates the so~t of feedback systems to which the 

BMSL may be applied with confidence. 

It has been shown experimentally that the accuracy of .the m1SL de­

creases whenever the effects of nonlinear distortions are large. The 

accurate computation of these effects is then the basis for testing the 

applicability of the method. A coarse estimate of these effects may 

also help as a first step, rule of thumb, towards a more accurate assess­

ment of the applicability of the method. 

100 
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When x(t) is normal, this means that the distortion effects have 

been greatly attenuated by the system inertias. The BMSL has been 

found to be quite satisfactory in this case. The inaccuracies, which 

are mainly due to unfiltered distrotion, can be estimated. 

When x(t) deviates considerably from the normal, this means that 

the distrotion effects are large and the BMSL will involve greater errors. 

Calculation of the distrotion effects, in this case, on the basis of a 

normal x(t) does not reflect the true process which is taking place in 

the system. Smith (1966) used such calculations as a "confidence test", 

that is, if a large amount of distortion is found on this basis the BMSL 

is suspected to yield inaccurate results; otherwise, it is applicable. 

While this argument is not unreasonable, it cannot be proved. A more 

accurate assessment of the actual distortion effects present is still 

needed. The method of calculating the correlation functions (and there­

fore the spectral densities) described in Chapter III provides such 

accurate assessment. The method is not base4 on any assumptions concern­

ing the distribution of x(t). It takes the nonlinearity into consider­

ation and it can be made arbitrarily accurate. 

Nonlinear distrotion effects have been studied by many workers, both 

in the open-loop and closed-loop configurations (West, Douce and Leary, 

1960) (Pyatnitskii, 196~) (Smith, 1966). All the investigations have 

been carried out with the assumption that x(t) is normal. In most of 

these works, the distortion effects have been approximated by a white 

noise component whose intensity is·equal to the amount of distortion at 

zero frequency. This approximation is therefore valid only at low fre­

quencies. Pyatnitskii's result is a more true assessment of the dis­

tortion effects on this basis and his expressions are amenable to 
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computations. Calculations based on the method of Chapter III have been 

carried out in Chapter IV. The procedure is quite simple and applies to 

systems of any order and containing any type of nonlinear characteris-

tics. This is quite important if one realizes that exact calculations 

have been possible only for first order systems with piecewise-linear 

nonlinearities, and with great difficulty. 

From the preceding, it is observed that the assumption that x(t) is 

normal has been the only limitation which prevented the MSL from "turn-

ing" into a precise method. It may be useful to study the implications 

of this assumption. 

The distribution at the output of the linear part of the system is 

essentially given by the frequency characteristics of the linear part and 

by the frequency characteristics of the signal at the input of the non-

linear element. The linear part of a feedback system can be regarded 

as a lowpass filter with a passband over the range O.:_ w.:::_ we' where wc 

is the cutoff frequency• The relationship between the passband of the 

linear part of the system and the band of effective frequencies in the 

spectrum of the input signal can take on several forms. 

1. A wide-band signal. The highest frequency of the signal is 

much greater than w , The output of the system will be normalized and 
c 

x(t) will have a normal distribution. The BMSL can be safely applied in 

this case. 

2. A narrow-band signal. Here we distinguish .among three cases. 

The first case is that when the spectral density of the signal i~ appre-

ciable only at low frequencies. In this case, the system as a whole may 

be considered lagless. The problem is reduced to that of a lagless non-

linear transformation which is not difficult to handle. Here, x(t) is 
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not normal. The second case is that when the frequency band of the in-

put signal lies above the passband of the linear part of the system. 

In this case, the system turns out to be open and may be handled without 

much difficulty. The third case is when the frequency band of the input 

signal lies within the passband of the linear part of the system. In 

this case, if z(t) is a stationary Gaussian process, the BMSL may be ap-

plied together with the method of harmonic linearization. 

A Modified MSL 

The assumption of a normal x(t) in the BMSL is obviously a conven-

ience which made it a simple problem to calculate the static gains of 

the equivalent linear model. Neither x(t) nor z (t) have to be Gaussian 

for a linear model to be formulated. This is clear from the general 

formulation of the MSL in Chapter II. The density function p(x) needed 

for the calculation of the static gains may be taken as the Edgeworth 

expansion~ again. It is straightforward then to calculate the static 

gains on this basis. This will reflect more accurately the actual nature 

of the distribution of x(t). Thus we write, 

where 

0 
Y(t) = ~o + k1 x 

co 

~o = ~~(x) p (x) dx 
- co 

dx -~0 J !ii 

(5 .1) 

(5. 2) 

(5. 3) 

• 



and 

p (x) • p (x) 
0 

104 

(5.4) 

(5. 5) 

where I denotes t.he summation of terms in the Edge:worth series manner, 
E 

bk are. the coefficients in the Edgeworth exps:nsion. 

Sub.stituting (5.5) in (5.2), (5.3) and (5.4), we have 

I 
E 

where 

$(x) p (x) dx = a 
0 0 

corresponding to $ of the BMSL, and 
0 

where 

co 

$ok(mxrax) =~co $(x) ~(xo/ax) po(x) dx = ak 

Similarly, 

k(l) • k(l) (m ,a ) + 
1 10 x x L 

E 
b k(l) (mx,a) 
k lk x 

k (l) (m a ) = 
10 x' x 

~: $2 (x) p0 (x) dx - ~~o 
2 

a x 

(5. 60 

(5. 7) 

(5. 8) 

(5. 9) 

(5 .10) 
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Loo <1>. 
2 (x)Hk(x~cr )p (x) dx - 24> <I> ~~ 

-oo x o oo ok + ~~~~~~~~~~~~~~~ 

Joo 2 
<I> (x) p0 (x) dx 

-oo 

(5 .11) 

and 

k(2) = k(2) (m ,cr ) 
1 10 x x +L 

E 
(5.12) 

where 

00 

k(~6<mx1 ,crx) = 1/cr! ~"" ~(x) x0 p0 (x) dx = a1 /crx (5 .13) 

00 

k(2) (m ,cr ) = l/cr2 J <j>(x) x0 H. (x0 /cr ) p (x) dx lk x x x -K. x 0 
-co 

(5.14) 

Considering the mean-square error criterion and using the Edgeworth 

series expansion for p(x), we have 

(5.15) 

and 
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(5 .16) 

Note that in this formulation two more parameters, y1 and y 2 , of 

the distribution have been used, which must be determined in addition 

to m and cr in order to determine the static gains of the linear model. x x 

Consider again Figure 4. The system equations are repeated here for 

reference. 

Q(p) Y(t) + R(p) X(t) = S(p) Z(t) 

y = ¢ (X) 

The mean values are related by 

Q(O) m + R(O) m = S(O) m. y x z 

and the centered components satisfy the relation 

Q(p) Y0 (t) + R(p) X0 (t) = S(p) z0 (t) yo = k Xo 
1 

(5 .17) 

(5 .18) 

(5.19) 

From (5.19) it is easy to write the equations for crx, y1 and y 2• They 

are 

I G (jw ) 1
2 S (w ) dw (5.20) 

z 
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(5. 21) 

(5. 22) 

G(p) = S(p) 
Q(p) kl + R(p) 

The integral (5.20) is easy to evaluate. Integrals (5.21) and 

(5.22) are more difficult especially with high order systems. As in the 

BMSL, the parameters are determined by iterative procedures. 

The formulation just described is useful in two ways. First, if 

X(t) is Gaussian and the accuracy of .the BMSL is found to be unsatis-

factory, for a certain problem, then (5.15) and (5.16) provide accurate 

expressions for the statistical gains. In this case, the parameter val-

ues obtained by the approximate method.are used in evaluating the static 

gains from (5.15) and (5.16). Second, if Z(t) is.not a Gaussian pro-

cess, then the above formulation becomes the only practical way of check-

ing and, if necessary, improving the accuracy of the BMSL. 

Finally, we point out that if the above formulation had to be re-

sorted to due to gross inaccuracies in the BMSL, then it is reconunended 

that a dynamic model be used, in this case, for the nonlinearity. 



108 

Design Applications 

So far we have been concerned with the analysis problem. We now 

turn to the synthesis, or design, problem. Here, the characteristics 

of the input signal are given. The desired characteristic of the out­

put signal is also given. It is required to find the form of the com­

pensation network, out of a class of compensation networks, which will 

make the transformation approximate the desired output optimally (in 

some given sense). We consider in what follows two problems to the so­

lution of which the BMSL can be useful. 

Optimum Linear Compensation . 

One of the classical design problems is the Wiener filter problem. 

The extension of the solution of this problem to the design of optimum 

linear compensation for a system with fixed linear and nonlinear parts 

is almost trivial using the statistical linearization of the nonlinear 

characteristic. Smith (1966) described and illustrated the appropriate 

procedure. The conditions of the problem are as follows. 

1. The system responds to an input which consists of a signal and 

noise, both of which are considered stationary Gaussian random processes 

with given power spectral density function. 

2. The desired output of the system is a function derived from the 

signal component of' the input by some linear invariant operation, not 

necessarily physically realizable. 

3. The criterion for optimality is minimum steady-state mean­

square error, which is the difference between the actual output of the 

system and the desired output. 
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4. The system contains an invariant stable linear part and a 

static single-valued nonlinear part which are considered fixed. The 

optimum linear, physically realizable compensation is to be designed for 

the system. 

The system configuration is shown in Figure 33a. ¢ (,) and G(s) 

characterize the fixed nonlinear and linear parts of the system. W(s) 

is the compensation to be designed. Figure 33b is an open-loop equiva-

lent configuration of the original system. This is the configuration 

to which the familiar filter theory is applicrable were it not for the 

nonlinear element in the loop. 

The nonlinearity is characterized by the statistical gain k1 which 

i.s a function of m and cr • Since m and cr are unknown until W(s) is 
x x x x 

determined, which in turn depends on k1 , the constrained-optimum design 

technique given by Newton, Gould and Kaisar (1957) provides the appro-

priate procedure for the solution of the problem. Assuming a value for 

mx and ex' k1 is determined and the constrained-optimum design solution 

gives W(s). The solution is repeated for different values of m and 
x 

x' Every time the mean-square error is noted and the solution which 

gives the least mean-square error is the optimum. 

Nonstationary systems are more conveniently treated in the state 

spac.e formulation. Having a statistical linearization ·description of 

the nonlinear system, linear filter theory in the form of the Kalman 

filter is employed directly to obtain approximations of the first-

and second-order statistics which are in this case time varying. 

The procedure described above may be laborious but it requires no 

new concepts and provides a quite satisfying solution to a rather complex 
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problem. It provides a framework for practical design by trial-and-

error methods particularly for nonlinear systems, where past experience 

with linear systems is a doubtful guide, the procedure is of considerable 

assistance to the engineer. 

Optimum Nonlinear Compensation 

A somewhat different problem is presented by a system having a given 

fixed part which is just asked to follow a random input as well as pos-

sible in the least mean-square-error sense. The system should respond 

optimally to inputs of various levels. For each input level there will 

be a different optimum value of forward gain if the system fixed part 

contains a nonlinearity. What is needed then is a forward gain which 

depends on its input rms value, that is, a nonlinear element. Using the 

statistical linearization theory, it is possible to design a nonlinear 

compensator in an optimal way. 

The configuration of a typical ~ys.tem is shown in Fi~ure 34. The 

input signal is a stationary process with a power spectral density of 

prescribed shape but with a variable level. ¢2 (.) is to be designed to 

yield a minimum mean-square value of the error x1 (t) for a range of rms 

values of the input. The solution of this problem by the BMSL is 

straightforward, though tedious. Note that the output of the ¢2(.) is 

fed to the input of ¢1 (.) without the benefit of the heavy filtering by 

the system dynamics. However, in many cases, ¢1 (.) is not strongly 

dependent on the distribution of the input, which in this case will not 
• 

be normal. Here, we have in mind limiter-type characteristics which are 

conunonly used for ¢1 (.). 
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Figure 34. System Configuration for Nonlinear Compenstion Problem 

Other Applications 

The impressive feature of the statistical linearization theory is 

the breadth of the range of complex and practically significant system 

situations in which this theory can be applied with reasonable facility. 

It is difficult to list all the variations of problems that can be treated. 

An important problem which occurs in trac.king applications where the in-

put to the nonlinear system consists of a systematic. signal corrupted by 

a wideband random noise can also be treated by this theory. Smith de-

scribed and illustrated the procedure for this problem. Evlanov and 

Kazakov (1972) used the theory for identification of nonlinear elements 

in multidimensional systems. 



CHAPTER VI 

CONCLUSION 

Conclusions 

The objective of this investigation was stated in Chapter I to be 

the development of a method of assessing the accuracy of the BMSL. The 

applicability of the BMSL was then to be investigated on the light of 

information, gained about its accuracy, ~rom this method. The method 

was to be easy to apply and at the same time accurate enough to be taken 

as a reference for judging the accuracy of the BMSL. Such a method was 

developed in Chapter III and was examined in Chapter IV. The method has 

great generality and, although it can be made arbitrarily accurate, at 

the expense of added labor, it has been found sufficiently accurate if 

only statistics up to the fourth order are used in characterizing the 

probability density function of the process involved. It is recognized 

that the BMSL i.s the simplest and most practical method of nonlinear 

systems analysis and design now available. It is also expected to re­

main so for quite some time. The main need is then to ascertain that 

the results obtained by this method are satisfactorily accurate. This is 

mainly what the approximate method developed in Chapter III was developed 

for. Being accurate enough, this approximate method was used in Chapter 

IV to investigate the various aspects of the BMSL. 

Following are the conclusions arrived at from this investigation. 
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1. It is a known result in nonlinear transformations of random 

processes that their statistics transform linearly. This is true whether 

the statistics are the moments functions, the semi-invariants functions 

or the quasi-moments functions. The coefficients of the linear trans­

formation for a particular order statistic, however, may depend on input 

statistics of higher orders. This is characteristic of nonlinear trans­

formations of random processes. In the BMSL, the statistics transform 

linearly too. However, in this case, the coefficients of the linear 

transformations are dependent on the input's mean value and standard 

deviation only. This is due to the assumption that the input to the non­

linearity is Gaussian. Thus, the BMSL is truly a well-based theory, 

contrary to the belief that i.t lacked such a basis. It is really a 

first approximation, and very often a good one, to the actual nonlinear 

transformation. 

2. Any improvement on the BMSL should be in such a way as to re­

flect the dependence of the statistics of the transformation on the higher 

order statistics of the input to the nonlinear element. This is what 

was done in developing the modified version of the MSL in Chapter V. 

3. The approximate method developed in Chapter III has been found 

to possess adequate simplicity of application, generality and accuracy. 

The method can therefore be used as a test for the accurac?' of the BMSL 

in an effort to determine the latter's applicability to a particular 

problem. 

4. Theoretical as well as experimental analysis revealed that the 

BMSL is accurate for practical purposes when the basic assumption of a 

Gaussian input to the nonlinear element holds. This occurs when nonlinear 

distortion effects are either originally small or have been attenuated 
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by the plant dynamics. The method involved errors in excess of 20 per 

cent when the assumption does not hold. This occurs when adequate filt­

ering of the distortion effects does not take place before the signal 

is fed into the nonlinear element. In most modern dynamic systems, 

linear compensations are often inserted in the loop to improve system 

performance. These compensators often have lowpass characteristics. 

This may help the normalization process of the signal fed to the non­

linear element and increases the chances for acceptable results from 

the BMSL. 

5. Limited evidence indicates the preference of the linear model 

based on the minimum mean-square error criterion of statistical equi­

valence. It has already been observed that the method of analysis based 

on this model is a special case of the more general method developed in 

Chapter III and that if x(t) is truly Gaussian then both methods coincide. 

6. The BMSL may be applied with confidence to systems subjected 

to wideband inputs and where the range of useful frequencies 1 .in the input 

signal spectrum extends well above the effective bandwidth of the system 

under consideration. In these cases the method gave second order statis­

tics of five to 10 per cent accuracy. 

7. The accuracy of the BMSL is expected to decrease when low order 

systems under narrow-band inputs are considered. It has been found that 

when the input signals have power spectra that are different from zero 

only for low frequencies the basic assumption of a normalized signal 

does not hold. The same applies" to input signals with considerable 

power spectra for frequencies within the passband of the system. In these 

cases, the.BMSL is only a rough approximation which can still be quite use­

ful. However, more accurate analysis of the systems in such cases is not 
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difficult since the problems reduce to lagless transformations which can 

be handled by direct nonlinear transformation methods. 

So The BMSL has been found useful in design problems like the 

W.iener filter problem, for stationary systems, and the Kalman filter 

problem for time-varying systems. The conventional description of the 

input processes in such problems is that of a narrow-band signal cor­

rupted with a wideband random noise. The BMSL has been found to give 

good results in these cases. 

9. The BMSL has been found to be less accurate when applied to non­

zero-mean systems than when applied to zero-mean systems of the same 

order and under the same input conditions. This is again due to the as­

sumption of a Gaussian signal at the input of the nonlinear element. 

The distribution of such a signal is symmetric (about the mean), The 

BMSL thus neglects any skewness that may exist in the acutal distribution 

of the signal. The decrease in accuracy, however, depends on the rela­

tive magnitude of the skewness effects. These are usually small in 

systems common in engineering applications. 

10, The approximate method developed in this work is valid for 

skew distributions just as it istvalid for symmetric distributions and 

with the same accuracy. This promotes its use as a valid method of check­

ing the results obtained by the BMSL in all cases and thus fulfills the 

objective of this research. 

Problems for Further Investigation 

l, The investigation in this work has been carried out using zero­

memory nonlinearities. The application of the BMSL to nonlinearities 

with memory is possible on the basis of the general theory of 
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multi-dimensional nonlinearities described in Chapter II. Here, the 

multi-valued nonlinearity is reduced to a multi.,..dimensional single-valued 

characteristic which can be handled by the BMSL. The approximate method 

of Chapter III is extended to this case by the use of a multidimensional 

Edgeworth expansion for the probability density as usual. Investigation 

cf this problem will be of great help in extending the knowledge concern-

ing the behavior of the BMSL in these cases. The same remark also 

applied to nonlinearities which depend on random parameters. 

2. In Chapter III the assumption of a Markov process was made, for 

the state vector of the nonlinear system, which made it possible to de­

velope the method of nonlinear analysiso Although the assumption has 

been found to be a good approximation in the majority of problems occur­

ring in practice, there are. still few instances in which the processes 

involved are quite different from a Markov process. This suggests a 

need for the development of accurate methods of analysis for such problems, 

Just as the method developed here, these methods, if developed, will only 

serve as a device for checking the accuracy of the MSL in the BMSL fonn 

or as modified in Chapter V. It wi.11 be very difficult to use a method 

of nonlinear analysis of any generality in the study of system perfor­

mance or in designing systems containing nonlinear elements. However, 

the information obtained from these methods will be of great assistance 

in establishing the accuracy of the MSL whichmay then be used without dif­

ficulty for detailed analysis or design of a system. The density function 

representation used here may be used in conjunction with the convention­

al methods of functional analysis, for this purpose. However, it is re­

commemled that the functional formulation be made with respect to the 

signal stati.stics and not the signals themselves. Limited investigation 
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by the author indicates that such a development is possible with the risk 

that one may become involved with multiple integrals. The density func­

tion representation in an Edgeworth expansion will definitely simplify 

the problem somewhat. A further simplification might be obtained by 

using an orthogonal expansion for the nonlinear characteristics. An 

orthogonal expansion will represent the nonlinear characteristic satis­

factorily only if enough terms are taken in the expansion. The number 

of terms needed will depend on the level of the input to the system. 

Fewer terms are needed for a high level input than for a small random 

input. However, working with the statistics of the signal, instead of 

the signal itself, may make the number of tenns in the expansion innnater­

ial since all but a few of these terms will cancel due to the orthogon­

ality of the expansion. If used with the Edgeworth representation of the 

probability density, further simplification may result. A thorough in­

vestigation of the problem is however necessary before any commitment 

is made as to its potential success. 

3. Finally, and very importantly, a need exists for methods of 

rapid computations. It has been observed in the development of a modified 

·;version of the MSL that although that version is an improvement on the 

BMSL, yet one has to evaluate multiple integrals i.n order to determine 

the parameters needed. For sytems with high dimensions, this is still 

a difficult task, A greater need for such methods will be encountered 

in the development of the methods proposed in (2) above. 
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APPENDIX 

APPROXIMATE ANALYTIC REPRESENTATION 

OF PROBABILITY DENSITY 

FUNCTIONS 

Introduction 

The majority of the frequency distributions encountered in practice 

possess a high degree of regularity. The forms of the frequency poly­

gons, or histograms, obtained in practice suggest, almost inevitably, 

that data are approximations to distributions which can be specified 

by smooth curves and simple mathematical expressions" 

From the. variety of forms assumed by the frequency distributions 

in practi.ce, it is evident that a flexible system would be required to 

describe them all in mathematical terms. Three approaches have been 

used in the statistical literature for this purpose. The first, due to 

Karl Pearson, seeks to ascertain a family of curves which will satis­

factorily represent practical distributions. The second, due to Bruns, 

Gram, Charlier and Edgeworth, seeks to represent a given frequency 

(density) function as a series of derivatives of the normal density 

function. The third, due to Edgeworth and later writers, seeks a trans­

formation of the variate which will throw the distribution at least ap­

proximately into a known form. 

Of these three approaches, the second has been found, by the author, 

to be most promising for use in complicated operations. It has been 

122 



123 

found that this approach has the simplicity and, above all, the general-

ity required when the resulting expressions for the approximate density 

functions are to be used in further computational operations. As dis-

tinguished from the other two approaches, the series representation 

approach is extended to multidimensional distributions in a workable 

manner, The representation has been found very helpful in statistical 

systems analysis. It is subjected here to a thorough investigation in 

a unified form not available before. 

Univariate Distributions 

Univariate distributions are the most studied distributions in the 

literature. The following treatment is based on material available in 

the published literature. It is, however, organized in a manner suitable 
I 

for the extension to multivariate distributions which are treated under 

a later subtitle. Few remarks derived from the author's own experience 

with this type of representation are also included. 

Representation by a Series 

Let p(x) be the density function which we requlre to represent 

analytically, p (x) be a "standard" probability density function and 
0 

Q0 (x), Q1 (x), ••• , Qn(x), ••• be a set of polynomials in x which are 

orthogonal with respect top (x), i.e. 
0 

oo O m ~ n J Qn (x) Qm (x) po (x) dx = 1 ·, m = n (A. l) 

-oo 

The set of polynomials Q (x) which satisfy (A.l) may be found by ortho­
n 

gonalizing the set of step functions 1, x, x2 , ..• and using them as 
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the initial set of functions. This procedure causes Q to be a polyno­
n 

mial of degree n in x and Q will be equal to unity, 
0 

Q (x) = 1 
0 

Q (x) = ~ 
n "Kao 

n = 1,2, .•• (A. 2) 

We seek a formal series expansion of the probability density p(x) in the 

form 

p(x) 

where 

= p (x) 
0 2-

n=O 
C Q (x) 
n n 

Q (x) p(x) dx 
n 

Substituting Q from (A. 2), we get 
n 

n 
C = L anka.k 
n k=O 

(A. 3) 

n=0,1,2, .•• (A. 4) 

n=l,2, .•• (A.5) 

where a.k is the kth initial moment (moment about x=O) of the random 

variable x whose density function is p(x). Thus if the moments of x 

are known we can determine the coefficients in (A.3) without difficulty. 

Of course, the existence of finite values of all moments used is essential. 

Before using (A.3) to represent the density function of an abritrary 

random variable x it is convenient to normalize x and instead use a 

variable u=(x-m )/a • This new random variable has a zero mean and a x x 

unit dispersion and is subject to the same distribution law as x. There-

fore, for the random variable u, we have a.1 = 0, a. 2 = 1 and 
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c = 1 cl = alO c2 = a20 + a22 0 

n 
c = anO + an2 +)- ankak n=3, 4, 5, ..• (A. 6) n 

"----
k=3 

Series (A.3) may be based on different "standard" densities p (x). 
0 

Examples of standard density functions are those of the normal, gamma, 

and beta distributions. The corresponding polynomials are those of 

Chebychev-Hermite, Laguerre, and Jacobi, respectively. The choice of 

p (x) depends to a large extent on the nature of the function p(x). 
0 

Simplicity and accuracy in representing p(x) by the first few terms of 

(A. 3) depend on the apt choice of p (x). 
0 

In engineering applications, 

it is common to take the normal law as the basis for the expansion 

(A.3) which, in the standardized form,is written as 

2 p (u) = 1 exp (-u /2) , 
o -m (A. 7) 

The polynomials Q become the Chebychev-Hermite (Ch-H) polynomials H (u). 
n - ·- n 

The one-dimensional Ch-H polynomials are defined by 

n 2 dn 2 
H (u) = (-1) exp (u /2) exp (-u /2) 

n dun 
(A. 8) 

These polynomials have a few attractive properties, especially the ortho-

gonality prop~rty, i.e. 

l/nl J 
-"" 

00 

H (u)H (u)p (u) du = 
m n o 

0 , m;'n 

1 , m=n 



By convention, H (u) = 1. The next ten polynomials are 
0 

H1 (u) = u 

H2(u) 2 
- 1 = u 

H3(u) 3 - 3u = u 

H4 (u) 4 2 3 = u - 6u + 

HS (u) 
5 3 = u - lOu + 15u 

H6 (u) 6 1Su4 + 4Su2 - 15 = u -

H7(u) 7 2lu5 + 10Su3 - 105u = u -

H8 (u) 8 28u6 + 210u4 2 = u - - 420u + 105 

H9 (u) = u9 - 36u7 + 378u5 1260u3 + 945u 

10 ' 8 6 4 2 H10 (u) = u - 45u + 630u - 3150u + 4725u - 945 

In this case, formulas (A.6) yield 

and so on. 
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(A. 9a) 

In terms of Thiele's semi-invariants (cumulants), these become 

(A. 9b) 

and so on. 

Series (A.3) becomes 



co 

p(u) = __!__ exp (-u2/2) {l + ~ CH (u)} 
f27f L n n 

n=3 
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(A.10) 

This is the Gram-Charlier (GC) type-A series. It is an orthogonal ex-

pansion for p(x). 

Since for any random variable x the kth moment of the standardized 

k 
variable u is µk/µx' where µk is the kth order central moment (moment 

about the mean) of the random variable x and cr is its standard deviation, 
x 

it follows that for any arbitrary random variable x, having a standard 

deviation crx and a nonzero mean mx' the values of ak in (A.6) and (A.9a) 

must be replaced by the corresponding quantities µk/cr~. Similarly, the 

k A.k in (A.9b) are replaced by A.k/crx. As a result, formulas (A.9a) become 

(A.11a) 
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and (A.9b) and (A.10) become 

(A. llb) 

p(x) (A.12) 

where 

p (x) = 1 exp I~ 1/2t : mx)21 
0 CJ l2TI [ :J x x 

(A.13) 

and en are those in (A.11). c3 and c4 have a special significance in 

that they account for most of the skewness and excess of p(x) as compared 

to p (x). For this purpose we introduce the skewness coefficient 
0 

end the excess coefficient 

(A.14) 
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(A.15) 

All random variables - continuous, discrete, or mixed - may be 

represented by the expansion (A.3). ~aturally, to obtain a good approx-

imation one must select the appropriate standard density function p0 (x). 

But one must not forget that the above representation is only a 

formal one, and we do not know that it is valid. To prove its validity 

we must first show that the series is convergent and secondly that it 

actually represents p(x), for all values of x. 

This is by no means a simple task and it cannot be done by elementary 

methods. A Russian mathematician, Vera Myller-Lebedeff has, however, 

given an elegant solution by means of some well-known theorems from the 

Fredholm integral equations. She has proved, among other things, the 

following criterion: "Every function p(u) which together with its first 

two derivatives is finite and continuous in the interval -co to +co and 

which vanishes together with its derivatives at x =+co can be developed 

into an infinite series of the form 

p(u) .. L. 
i•O 

Under certain conditions the series ·(A. 3) converges to p (x) and 

yields an analytic representation of arbitrary accuracy for p(x). On 

the other hand, it can be shown by examples (Cramer, 1946 p. 258) that, 

if these conditions are not satisfied, the series may be divergent. 

Thus, it is in reality only for a comparatively small class of distribu-

tions that we can assert the validity of the series (A.3). In fact, the 
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majority of the important distributions dealt with in practice are not 

included in this class. However, in practical application it is only 

of little value to know the convergence properties of the series. What 

we really want to know is whether a small number of terms - usually two 

or three - suffice to give a good approximation to p(x). If we know 

this to be the case, it does not concern us much whether the infinite 

series is convergent or divergent. And.conversely, if we know that one 

of the series is convergent, this knowledge is of little practical value 

if it will be necessary to evaluate a large number of coefficients C in 
n 

order to have the sum of the series determined to a reasonable approxi-

mation. Besides, only a few of the initial moments of a random variable 

are usually known with any degr'ee of accuracy. It is not even known 

whether the others exist. Thus, regardless of convergence, expansion 

(A.3) is used. 

Derivation of Gram's Series. Gram's problem in a somewhat modified 

form may briefly be stated as follows: Given an arbitrary density func-

tion p(x), continuous and finite in the interval - 00 to +00 and vanishes 

at x = +oo, it is required to determine the constants c0, c1 , ... in such 

a way that the series 

n 

1/lp0 (x) ~- CiHi(x) p0 (x) 

i=l 

gives the best approximation to the quantity p(x)//p (x) in the least 
0 

squares sense. That is to say we wish to determine the constant coef-

ficients C. in such a manner that the sum of the squares of the differ-
1 

ences between the function and the approximate series becomes a minimum. 

This means that the expression 
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00 

I=f 
-oo 

i=l 

must be a mini.mum. 

Differentiating with respect to Ci and setting the derivative equal to 

zero we have for the extermum condition 

00 

-oo 

p (x)H. (x) dx 
1 

i = 0,1,2, ... 

From the sign of the second derivatives it is found that the extremum is 

a minimum. The solution is gotten by the introduction of Ip (x) which 
0 

serves to make all terms of the form CiH.(x)lp (x) orthogonal to each 
1 0 

other in the interval - 00 to +oo. 

In a series representation the determination of the unknown coef-

ficients or parameters can be looked at from two points of view. We . . 

may either consider the series as infinite in which case the determination 

of the coefficients becomes a problem in the theory of functions; or we 

may deci.de to consider a finite number of terms in the series and deter-

mine the coefficients so that the sum of the squares of the deviations 

of the resulting function from the actual function becomes a minimum in 

the sense of the method of least squares. In the latter case, the coef-

ficients and not the moments or semi-invariants are representative of the 

observations. This latter method is the classical method as used by 

Gram in his fundamental research on the expansion of the density func-

tions in series. A statement of the essential differences of the two 

methods may, however, be of advantage. 
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The method of moments requires that the areas of the definite inte-

grals of the form 

co 
r x p (x) dx 

must equal the areas of the observations which are expressed as power 

sums of the form 

while the method of least squares requires that 

co n 

) -i1111Q 

J {p(x) -
-co 

must equal a minimum but does not necessarily impose any restrictions 

as to the condition of equality of the observed and computed areas de-

rived from the mathematical formula. 

An Alternative Derivation of the A-series. The A-series can also 

be obtained by the powerful theory of characteristic functions. The 

characteristic function is a very important device in probability theory 

and has a number of properties which are important in obtaining many 

useful results. The characteristic function of a random variable is 

defined as 

f(z) = E{exp (izx)} (A.16) 

where z is a real constant. The theory of characteristic functions is 

well covered in the basic literature. 
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It is known that if the central moments µ up to order n+l exist 
r 

then f(z) can be expanded in terms of µ in a Taylor series about a 
r 

small z, 

f (z) = e 
izm 

x{l + 
n 

L_ i rµr in+! n+l 
zr + 01· µ 

rl (n+l) I 
r=2 

where we have used the familiar relation 

d r 
µr = (i)-r {­

dzr 
-izm ' e x f(z)l ,z=O 

which is the moment generating property of the characteristic function. 

The log characteristic function is defined as 

g(z) = ln f(z) (A.17) 

g(z) is also called the cumulant (semi-invariant) - generating function 

since the cumulant A is obtained by the relation 
r 

r dr 
A =(-i) - g(z) I z--0 . 

r dzr 

g(z) can also be expanded in terms of A in a Taylor series of the form 
r 

n (iz)r (iz)n+l 
g(z) = ~ Ar - rl + O I (n+l)t 

r==l 

For the standardized random variable u, we have 
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Thus 

g(z) ~ 3 4 = (i~ /2 + (iz) A3/31 + (iz) A4/4! + ... 

or 

Expanding the second exponent according to the familiar expansion 

2 3 exp(t) = 1 + t + t /2 + t /31 + ... 

we have 

It is known that the density function p(u) is the Fourier transform of 

f(z). Thus 

co 

p(u) = l/2TI J f(z) e-izu dz 

-co 

To perform the integration we note that 

co 

1/2TI f 
-co 

r 21 r (-iz) exp (-z 2 - izu) dz = (~l) H (u)p (u) r o 

From this follows directly the series 
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which is the same as (A.10). All the discussion that followed (A.10) 

applies also here. 

Asymptotic Series Expansion. Cramer (1946) investigated the order 

of magnitude of the coefficients C in an expansion similar to (A.10). 
n 

In that case the expansion was for the density function of the sum of N 

independent random variables. The orders of magnitude of the first few 

C are given below for reference. n 

n = 3 

4 , 6 

5 ' 7 ' 9 

8 ' 10 ' 12 

11 , 13 ' 15 

and so on. 

-~ N 

-1 N 

-3/2 N 

-2 N 

-5/2 
N 

We are not dealing· here with sums of independent random variables but 

we still can use a parameter N as a means of grouping terms according to 

order of magnitude. Extensive work with the A-series verified the ar-

rangement shown above for the general case we are considering here. Thus 

the order of magnitude of the terms in the A-series is not steadily de-

creasing with increasing n. 

Based on the results obtained by Cramer we assume that the cumulant 

-n/2+1 
A is of order of magnitude N for n > 3. Suppose we take few terms n 

in the expansion such that we include all terms of order of magnitude 

equal to N-1• It then follows from the above values that we must consi-

der the terms up to na6 inclusive. Thus we require the calculation of 

A up to the sixth order. 
n But the contributions to the order of magni-

tude N-l really do not contain any cumulant of order higher than the 

fourth, according to the above assumption. If we proceed further and 
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-3/2 -2 include terms of orders of magnitude n , N , etc. it is easily seen 

that we shall encounter similar inadequacies. 

Thus the A-series cannot be considered as a satisfactory solution 

to the expansion problem for p(x). We want, in fact, a series which 

gives a straightforward expansion in powers of N-~, and is such that the 

calculation of the terms up to a certain order does not require the 

knowledge of any statistics that are not really required. These condi-

tions are satisfied by the Edgeworth series. This series is an asymp-

totic expansion. It is obtained by arranging the series in (A.10) in a 

decreasing order of magnitude according to the assumption made above 

concerning the order of magnitude of A for n > 3. 
n 

The resulting ex-

pansion is as follows 

El} 1 A3 x - m 
p(x) = p (x) + {31"" ·3 H3 ( x)} 

0 a 
a x 

A x - m t- 2 
{l 4 (---x) + 10 3 

+ 4f ~ H4 a 61 ·6 
a x a 

>-5 x - m 
+ 35 >-3>.4 x - m 

1 ( x) H7 ( x) +f51 -H 7 --5 5 a 71 a 
a x a x 

+ 2ao 
1.3 x - m 3 

Hg ( x )} 
91 ~g a a x 

1 A6 
1.2 x - m 

+ 11 4 x - m 
H6 ( x) Ha ( x ) +{6f~ a a! a a a x a x 

t. 3A5 x - m 
2 

+ 56 x) + 210 >-3>-4 
a! -8- Ha( a 101 10 

a x a 

x -m 15400 
1.4 x - m 

"] HlO ( x) + 3 
H12 ( x)} + (A.18a) 

a 121 12 a 
x a x 
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where the terms inside each pair of brackets are of the same order 

of magnitude. Or, in terms of the central moments, we have 

Po (x) [{l} 
1 µ3 x - m 

p (x) = + {3T 3H3 ( x)} 
a a x 

2 
1 µ4 x - m 

+ 10 µ3 x - m 
( x) x )} + {- (- - 3) H4 6 H6( 41 (J4 a 6 ! a x a x 

(A.18b) 

Th f . d f ' d N-n/ 2 ' h Ed h . e terms o or er o magnitu e in t e gewort series con-

tain the moments µ3, ••• , µn+Z' which are the moments necessarily re­

quired for an approximation to this order, In practice, it is usually 

not advisable to go be.yond the fourth moment, 

Illustrative Examples. A few examples have been prepared to illus-

trate the previous treatment. The density functions used are known 

functions from the literature. The examples are shown in Figures 35 

to 38, and include functions of shapes encountered in practice. From 

these examples one can see the advantage gained by including the A; 
terms. GC in these examples refers to the GC series terminated at the 

A4 term. These examples give some idea about the degree of representa­

tion to be expected from an Edgeworth series expansion. 
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Figure 35. Exact and Approximate Density Functions for 
A Uniform Distribution over (-1,1) 
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Figure 36. Exact and Approximate Density Functions 
for A triangular Distribution over 
(-1,1) 
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Figure 37. Exact and Approximate Density Functions 
for A Chi-Square Distribution, r=4 
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Figure 38. Exact and Approximate Density Functions 
for A Rayleigh Distribution, b=l 
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Concluding Remarks. It should be noted that (A.18) is.not a proper 

density function in the sense that for large x we may encounter negative 

values for the approximate p(x). This is expected when truncating the 

series. From purely practical considerations this counts little, be-

cause the observations at the extremities are very few in number. We 

usually argue that it is the main body of the density function which is 

important and the tails, where negative values may occur, do not con-

tribute much to the description of the variable. It is possible to 

modify the series so that it has the properties of the density function 

in this sense, but this is not necessary for our purposes here. Para-

meter variatinns in engineering systems are usually of the order of one 

to two standard deviations for which values of x the series is well-

behaved. Statisticians are of ten concerned with points of significance 

in the tails of the distributions. This is why they approach this type 

of representation with some caution. Figure 39 shows the behavior of 

the series expansion in the s1 , s2- plane (Barton and Dennis, 1952). 

s1 and s2 are defined as 

The Edgeworth series has been found satisfactory for cases with a 

considerable amount of skewness. For decidedly skew distributions, 

Edgeworth suggested a simple transformation of the variable. Instead 

of working with x one works with log x. It is known that log x has the 

same distribution as x. 

Finally, both Pearson's system and the series representation char-

acterize a distribution by its moments and in particular the first few 

of them. A question may now be raised as to the extent that moments 
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represent a distribution and whether the representation is unique. It 

is known that the characteristic function specifies a distribution 

uniquely. And it is known that the characteristic function determines 

the moments. It does not, however, follow that the moments completely 

determine a distribution, even when the moments of all orders exist. 

Only under certain conditions will a set of moments determine a dis-

tribution uniquely, but, fortunately for systems engineers, those con-

ditions are obeyed by all the distributions arising in practical stochas-

tic systems. For all ordinary processes, therefore, a knowledge of the 

moments, when they exist, is equivalent to a knowledge of the distribu-

tion law: equivalent, that is, in the sense thatit should be possible 

'theoretically' to exhibit all the properties of a distribution in terms 

of the moments. 

The values of the moments give information abo.ut the shape of the 

density function. The higher the order of the moment, the greater is 

the contribution to it by the tails of the density function, hence, the 
) 

more information it gives about the nature of the tails. The even cen-

tered moments make no distinction between the two tails of the density 

function, so they give information about the width of the distribution, 

roughly speaking. The odd central moments all vanish for a symmetric 

distribution, so they give information about the lack of symmetry 

present. 

The width of the distribution is readily indicated by the second 

moment. This information is removed from the higher moments by non-

dimensionalizing by the standard deviation. The skewness is negative 

if the tail on the left ofthemean if larger than th~ tail on the right. 
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The excess coefficient is larger as the tails of the distribution for 

values of the variate above a standard deviation are larger. 

Multivariate Distributions 

No completely satisfactory method has yet been found of setting up 

families of bivariate frequency functions, much less multivariate fre­

quency functions, in extension of the families of distributions obtained 

by the three approaches mentioned at the beginning of this treatment, 

for the univariate case. 

Consideration will be limited in this work to the series type of 

representation. The following treatment is the product of an effort 

by the author to extend the univariate treatment to the multidimensional 

case both for random variables and random processes. Interest in this 

development has been motivated by the need for an appropriate repre­

sentation of the density functions for use in complex operations involv­

ing integrations. The sought representation must have generality and 

must be suitable for various manipulations. The immediate purpose is 

for use in evaluating various statistical characteristics of dynamic 

systems with stochastic disturbances whether as inputs or as perturba­

tions in the system parameters. The development will thus be made with 

this particular objective in mind. The development will also be useful 

for other purposes since, it is recognized, that an appropriate repre­

sentation of the density functions has always been the major obstacle 

in the various approaches to systems analysis and synthesis. 
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Series Representation of Multivariate 

Density Functions 

The series (A.10) for the univariate density function is extended 

to the multivariate density function in a straight-forward manner. The 

series corresponding to an n-dimensional density function is written in 

the following manner 

where, 

u = {u,} 
l. 

00 

L 
n =O 

n 

i=l,2, ••. ,n 

(A.19) 

H (u) are the ordinary multidimensional Ch-H polynomials 
(nl ..• nn) -

defined by 

where, 

a = {a,.} 
l.J 

N Hu) 
= (-1.) e 

a u 

i,j 

-¢ (u) 
e 

= 1, ... ,n 

and pis the correlation matrix of the standardized vector u, 

= E(u.u.) 
l. J 

(A. 20) 

(A. 21) 

(A. 22) 
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and p (u) is the standardized multidimensional density function given by o-

1 T -1 
exp (-~ .!:!_ p u) (A. 23) 

The coefficients C are obtained in the same way as C in the uni-
n1 ••• nn n 

variate case, using p (.!:!_) and H( ) (.!:!_). 
o n1 ••• nn 

To illustrate, consider the two-dimensional (bivariate) density 

function. Here, (A.19) takes the following form 

00 00 

where 

exp (A. 25) 

The first few values of C n1n2 are 

c 00 = 1 Cij=O i+j = 1,2 

C30 = 1/31 µ30 C03 = 1/31 µ03 

c21 = l/2 ~1 c12 = 1 / 2 µ12 

c40 = 1/41 ( µ40-3) c04 = 1/41 (µ 04-3) 

c22 = 114 (µ22-l.lzo-f.b2- 2 µi2- 1 ) (A. 26) 

c31 = 1/3! (µ 31-3µ11) cl3 = 1/31 (µ13- 3µ11) 

c6o = 10/6! 
2 

' co6 10/61µ~3 µ30 = 

c51 = 10/61 µ30µ21 els = 10/61 µ03µ 12 

c42 = 1/61 2 
<4µ30µ12 + 6µ21 ) 

c24 = 1/6! <4 µ03 µ21 + 
2 

6µ12) c33 = 1/61 (µ30µ03 + 9µ21µ12) 
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The first few Ch-H polynomials are obtained from the definition above. 

If we define 

2 

Yi= L 
j=l 

a.ju. 
1 J 

where for this case, 

then, 

H(Oo)<YiYz) = i 

H(iO)(yi,yz) =Yi 

H(20)(yi,yz) 
2 

= Yi - all 

H(ll)(yi,yz) = YiYz - al2 

H(02)(yi,y2) 
2 

= Yz 

H(30) (yl'y2) 
3 

- 3a11Yi H(03)(yi,yz) = Yi 

H(2l)(yi,y2) 
2 

2a12Yi -= y y - aiiYz 1 2 

H(l2)(yi,yz) 
2 

2alzYz -= YiYz - azzYi 

H(40)(yi,y2) 
4 2 2 

= y - 6a11yi + 3ail i 

H(04)(yl,y2) 
4 2 2 

= Yz - 6azzYz + 3a22 

- a22 

3 
= Yz -

H(3l)(yl,y2) 
3 2 

3a1iYiY2 + 3ailal2 = YiYz - 3al2yl -

H(i3)(yi,Yz) 
3 2 

3az2YiY2 + 3a22a21 = YiYz - 3alzYz -

3azzYz 

H(22)(yi,yz) 
2 2 2 2 

= Y1Yz - azzYi - a11Yz - 4a1zY1Yz + aila22 + 
2 

2a12 
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6 4 2 2 3 
H(60)(yl,y2) = Y1 - 15allyl + 45allyl 15all 

5 4 3 2 
H(5l)(yl,y2) = Y1Y2 - Sa12Y1 - lOa11Y1Y2 + 30al2allyl 

2 2 
+ 1Sa11Y1Y2 - 15al2all 

4 2 4 3 2 2 
= Y1Y2 - a22yl - 8a12Y1Y2 - 6a11Y1Y2 

2 2 
+ 3a11Y2 + 24a12a11Y1Y2 + 6alla22 • 

.2 2 2 2 (1 + 2p 12)y1 - 3a11a22 (1 + 4p ) 

3 3 
H(33)(yl,y2) m Y1Y2 - 3a11Y1Y~ - 3a22yfy2 - 9a12YiY~ 

2 2 
+ 9a12a22Y1 + 9a12a11Y2 + 3alla22 # 

(3 + 5~~2)Y1Y2 - 3al2alla22(3 + 2p~2) (A. 26) 

The density function for the arbitrary random vector:~ is obtained by re­

placing u. by (x.-mi)/cri, andµ,, by µ,j/cri crj • 
i i iJ i x1 x2 

Similarly, for a trivariate density function, we have, 

(A. 27) 

where, 

a u (A. 28) 
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a= {aij} i,j = 1,2,3 

1 2 1 2 
all = b. (l - P23) ' a22 = I (l - P13) 

1 2 1 
a33 = ""i. (l - P12> ' a12 = a21 = ""i. (P13P23 - P12> 

l 
al3 = a31 = A <P12P23 - P13> 

1 
a23 = a32 = I <P12P13 - P23> 

and, 

cooo = 1 ' 

c300 = l/3!µ300 ' c210 = 112µ210 ' c111 = µ111 

2 
c220 = l/4 <µ220 - µ200 - µ020 - 2P12 - l) 

If we use the definition 

i = 1,2,3 

then the first few Ch-H polynomials are, 

H(OOO)(u) = 1 E_ ={ ul'u2, U3} 

H(lOO)(u) 
2 

= Y1 ' H(200)(u) = Y1 - a 
11 

H(llO)(u) H(300)(u) 
3 

3allyl = y y - a12 ' = Y1 -1 2 

H(210)(u) 
2 

2al2yl - a11Y2 = Y1Y2 -

H(lll)(u) = Y1Y2Y3 - a23yl - a13Y2 - a12Y3 

(A. 29) 



H(400)(u) 

H(310)(u) 

4 2 2 = Y1 - 6a11Y1 + 3all 

3 2 
= Y1Y2 - 3a12Y1 - 3a11Y1Y2 + 3alla12 
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2 2 2 2 2 
H(220)(u) = Y1Y2 - a22Y1 - a11Y2 - 4a12Y1Y2 + alla22 + Zal2 

2 2 
H(211) (!;!) • Y1Y2Y3 - a23yl - 2a13Y1Y2 - 2al2yly3 

(A. 30) 

Again, we point out that (A.19) can be obtained from the character-

istic function as in the univariate case. The same discussion and criti-

cism given the A-series in the univariate case apply to the multidimen-

sional case in (A.19). 

The multivariate Edgeworth asymptotic expansion is developed in a 

manner similar to that in the univariate case. As an example, consider 

the two-dimensional problem. The bivariate Edgeworth series is written 

as 

+~ 
r+s=4 

+ 1/2 1 
rlslplql 

1 
rlsl 

/.. /.. rs pq 
r+p s+q 

O'l 0'2 r+s=3 
p+q=3 

H(r+p s+q)(xl,x2) + ···~ (A.31) 
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where, 

Again, as in the univariate case, the approximate density function 

will not be a proper density function and regions can be defined where 

the approximate expression is non-negative and unimodal. 

It is now remarked that, in the multivariate case, the expansions 

already obtained are useful for the purpose of approximating density 

functions of random vectors as an end result. However, if the resulting 

approximation is to be used in operations of some complexity the above 

forms of expansions result in cumbersome computational operations which 

will be difficult to perform. Therefore, it becomes necessary to pre-

sent the above expansions in more attractive forms as far as computa-

tions are concerned so that they can be used in performing various trans-

formations of random vectors. 

The main complication results from the correlation matrix in p (x). o-

For, in a multiple integration operation the integrals will be coupled 

and a simple analytic expression will not be possible in such an opera-

tion • Since we will be needing the expansions mostly in integration 

operations governing the transformations of signals or signal statistics, 

it is necessary to simplify the form of these expansions. 

The first step in this direction is to work on p (x). We attempt o-

* to express the general form of p (x) in terms of p (x), the density 
0 - o-

function for independent elements. This is achieved by working with the 
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characteristic function. The development is carried out in three steps 

to clarify the details involved. 

i. Consider first the two-dimensional density function. It is 

known that the density function is the Fourier transform of the charac-

teristic function. 

00 

I 
-oo 

where 

00 

-oo 

2 

-i L zjxj 
j=l e 

Substituting for f (!),and expanding the exponential cofactor 
0 

in a power series of z1 and z2 , we get the following relation 

= 

j j 
-oo -oo 

2 
exp{ -i ~ zj (xj 

j=l 

00 

- m ) -
j 

crlcr2(zi + z~) }{~ (-l)k/kl (crlcr2pl2zlz2)k} 
k=O 

dz1dz2 

f 
00 

k 

I p 1 (-l)k ~ 
k=O kl (27T)2 

00 00 2 

~ ~ exp{-if> zj(xj-mj) 
-oo -oo j=l 



Simplifying and carrying out the integrations, we get 

00 

Po (xl ,x2) = p~ (xl ,x2) L 
k=O 
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(A.32) 

ii. Next, consider the trivariate density function. The develop-

ment proceeds similar to the bivariate case. In this case, the charac-

teristic function of a trivariate normal vector is given by 

3 

exp{i I 
j=l 

m zj - ~ x. 
J 

Using this expression and expanding the cofactors in powers of z.z., 
J. J 

i,j = 1,2,3, we have 

00 00 00 

1 

-oo -oo -oo 

00 

R.,m,n=O 

m 
(er 2cr 3P 23z2z3) 

ml 

00 

= 

.!l,m,n=O 
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co co co 

1 f f J exp {-i [<x1-m1) z1 + (x2-m2)z2 
(21T)3 

-co -co -co 

+ (x3-m3) J [ 2 2 2 2 2 2] z3 -l/2,cr1z1 + cr2z2 + cr3z3 } 

pl = p 
12 

p2 = p 23 

which, after simplification, reduces to 

co 

po(xl,x2,x3) = p~(xl,x2,x3) ~ 

p3 = p 
l3 

Q m n 
plp 2P 3 

fl ,m, n=O .Umin! 

fll = fl+n fl2 .. fl+m fl = m+n 
3 

(A. 33) 

Note that fl1 ,fl2 and fl 3 are determined by summing up the powers of pi 

where x1 , x2 , x3 are involved, respectively. 

iii. Finally, the expression for the n-dimensional density function 

is obtained in the same manner. The final result is given by 

co 

p (x1 , ••• ,x) = p*(x1 , ••• ,x) '\::" 
o n o n ~ 

co 

I 
k =O m 

0 
H0 (x /a ) 

"'n n n 
(A. 34) 
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pi are the correlation coefficients between the different pairs of the 

elements of x. The number of these pairs is 

n m=---2(n-2) (A. 35) 

i 1 are obtained by sunnning up the powers of the pis where xi are involved. 

Note that now in any integration operation involving p (x) the in­
o -

tegrals will be separate with respect to each xi. Note also that the 

series expansion becomes more convergent with the increase in the order 

of the system by virtue of p~i/k. I. 
J. J. 

Now the expansion (A.34) replaces p (x) in the expansions obtained o-

previously to result in a modified form of expansion which will be suit-

able for the purposes discussed above. 

As an illustration consider the relation (A.31). Using the expres-

sion in (A.32) the following modified form results 

r+s•4 

+ 1/2 L. 
r+s=3 
p+q=3 

00 

00 

I 
k=O 

1 
rlslp!q! 
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co 

L 
k=O 

+ ··-} 
(A.36) 

The extension to higher order density functions is now obvious. 

The relatitns (A.18) and A.36) were used extensively by the author 

and have been found of extreme help in many otherwise complicated situ-

ations. This experience has led to the search for further simplifications. 

One such attempt was to obtain a series expansion, for the arbitrary 

density function, much like the expansion for the multidimensional nor-

mal density function just presented. In other words, we seek an expan-

sion for p(x1 , ... , xn) of the form 

To define the coefficients Gk k we 
i · · · n 

Hi (x0 /cr ) and integrate with respect n n 
n 

co co 

co 

(x0 /cr) n n 

co 

2. 
k =O 

n 

(A. 37) 

multiply (A.37) by Hi (x~/cr1 ) ·•• 
1 

to all variables from -co to +co, 

f f pn (xl' '' '' xn) Hil (x~/al) 
-oo -co 

co 

=L 
k =O 

1 

co 

L 
k =O n 

ek "'k 
1 n 

co 

~ ~l (x~/crl) Hil (x~/crl) 
-co 
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co 

J Hk (x~/cr) Hi (x0 /cr) p (x) dx nn nn on n 
-co n n 

Note how the integral decomposes into separate single integrals. Keeping 

in mind the orthogonality of the Ch-H polynomials, we get 

1 

' 

kl 
n 

co co 

f 
-co -co 

e may thus be expressed in terms of the moments of x. For this 
k1···kn 

purpose we use the f amil.iar relation 

{n/2} 

Hn(z)/nl = 2 
u=O 

(-l) uz (n-2u) 
u 2 (n-2u) lu I 

{n/2} 

= I u (-1) (2u-l) I! 
(2u) I 

u=O 

z(n-2u)/(n-2u)I (A.39) 

where {n/2} is the greatest integer < .n/2. From this follows 

(-1) u (2u1-l) I ! . . • (2un-l) I! 

(2u1) I . . . (2un) I 

(k -2u ) 
0 n n 

n 

(A.40) 
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Once the coefficients in (A.37) are determined, the series terms 

must be rearranged to form an Edgeworth expansion. The advantage gained 

by this representation is, again, simplicity. 

The coefficients 0 will be called "generalized quasi-
nl ••• nn 

moments." Generalized, that is, to distinguish them from the ordinary 

quasi-moments introduced by Kuznetzov and his associates (1953). The 

ordinary quasi-moments will be described shortly in connection with ran-

dom pocesses. It has been found that the type introduced above is more 

useful than the ordinary quasi-moments in computational operations. 

Probability Density Function of A 

Random Process 

For a given argument t, the value of a random process x(t) is gen-

erally a random variable. Therefore, to give a complete probabilistic 

characterization of x(t) we have to give the distribution of the values 

of the random variable x(t) for every t. These are the one-dimensional 

distributions of the random process x(t). In general, the one-dimensional 

distributions of x(t) depend on t as a parameter. These are a sufficient 

characterization of the random process in all problems where the values 

of the random process for particular arguments are considered in isolation. 

To solve problems where the values of the random process have to be con-

sidered together with two or more arguments, we have to int~oduce the 

joint distribution for random processes with several arguments. We 

characterize the n-dimensional distribution of the random process x(t) 

by then-dimensional probability density function p(x1 , ••• xn;t1 ••• tn) 

which will, in general, depend on t 1 , ••• , tn as parameters. However, 

no finite dimensional distribution is capable of characterizing a random 
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process exhaustively, in the general case. In many instances a partial 

characterization is sufficient, however. 

The development already presented for univariate and multivariate 

density functions of random variables carries over to the case of random 

processes and vectors of r~ndom processes. Moments and semi-invariants 

have been used with the expansions of the density functions. For a ran-

dom process these are the moment functions and the semi-invariates func-

tions. Since the quasi-moments have not been used previously, their 

counterparts, the quasi-moment functions, are chosen for the development 

here. 

Consider a one~dimensional distribution. Let the random variable 

x(t) have the probability density p(x). If all the moments of the quan-

tity x are finite then p(x) can be associated with the following formal 

series in the sense discussed previously. 

co 

p(x) p (x) L 1 k 0 
= TI sk/crx Hk (x /crx) 

0 
(A. 4la) 

k=O 

or equivalently, 

co 

p(x) p (x) l_ 1 0 
= kt sk 1\ (x ) 

0 
(A. 4lb) 

kmQ 

The equivalence follows directly from the definition of the one-dimen-

sional Ch-H polynomials. Sk are the quasi-moments. From the orthogon-

ality of the Ch-H polynomials, it follows that 

(A. 42a) 
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or 

k 0 k 
Sk =a E{Hk(x /a )} (A.42b) 

From (A.42) it is evident that a0•1, a1 = a2 = O~ Also, for the Gaussian 

x(t), Sk=O for all k>O. For an arbitrary x(t), it is easy to show that 

the following relations are true. 

a = µ - 2 
7 7 21µ5µ2 + 105µ2µ3 

a = µ - 2 4 
8 8 28µ6µ2 + 210µ4µ2 - 315µ2 

S9 
2 3 = µ - ~6µ7µ2 + 378µ5µ2 ~ 1260µ3µ2 9 

(A.43) 

Or, in terms of the semi~invariants, 

Note that (A. 41) is not different from the A-series. (A.10). The 

Sk are easily related to Ck in (A.10) by 
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ck = l/kl 

So, actually, the notion of quasi-moments is only artificial. It may 

simplify the appearance of the expansion but does nothing to promote the 

application of the original expansion. 

The characteristic function corresponding to p(x) in (A.41) is 

written as 

where 

co 

f(x) = f 0 (z) L 
k=O 

.k k 
J. Q • 

kT 1-'kz 

f (z) = exp{ im z - l/2cr2z2} 
0 x x 

(A.45) 

If we expand the exponent in f (z) in a Taylor series and carry out the 
0 

multiplication we can readily relate Sk to the initial moments ak by 

comparing with the series 

co 

f (z) = L ik/kl 

k=O 

Similarly, we write the characteristic function of a two-dimensional 

process as 

2 

I 
j ,k, R.=l 

(A.46) 



where, 

with 

2 

f 0 (z1 , z2 ; t 1 , t 2) = exp [i 2. 
j=l 
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2 

mx(tj)zj - 1/2 2. R(tj,tk)zjz.J 
j ,k=l ~ 

is the characteristic function corresponding to the two-dimensional nor-

mal density function p0 (x1 ,x2), and where we have used the fact that 

(3 = (3 = o. l 2 

In the same way, we write the n-dimensional characteristic function 

as 

ca 

u + L 
s=3 11)1 w ., ••• , S=l 

n 

f 0 (.) = exp { i 2 
jl!lll 

n 

mx(tj)zj - 1/2 2 R(tj ,tk)zjzk} 

j ,k=l 

(A.47) 

If we consider the symmetry of the quasi-moment functions and combine 

similar terms, we can write 

= f 'z;t) 
0 \!!. -

ca 

2 
k=O 

.k 
J. 

11\ I 



mi= 0,1, ••• , k 

(mi) 
where ti means ti repeated mi times. 

m 
n z 

n 
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(A. 48) 

To determine the expression for the n-dimensional density function, we 

take the Fourier transform of the expression for the characteristic 

function. Thus corresponding to (A.47) we have, 

CC> CC> n 

J exp {-i L ~zk} 
-CC> k=l 

(A. 49) 

Interchanging the operation of summation with respect to s and the inte-

gration, we can write 

CC> 

p(x;t) = {l + 
s=3 

1 
Sf 

n 

I 

In terms of the Ch-H polynomials this becomes 

••• ' tu,> ) 
s 

(A. 50) 

(A. 51) 
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where we have used a form of Ch-H polynomials compatible with the repre-

sentation in (A.47). The relation of these polynomials to the ordinary 

Ch-H polynomials previously introduced is clear from the following 

argument. If we compare H (.)with H( )(x) 
wl ws ml ••• mn -

and imagine 

the subscript w1 repeated m1 times, w2 repeated m2 times, etc. such that 

m1+ ... + mn = s, then the two forms are equivalent. Thus, in two 

dimensions 

~he probability density function corresponding to (A.48) is written as 

p (e.;!) = p (x; t) o--

co 

L 
k=O 

... ' 

1 
ml n 

(A.52) 

Finally, we write the density function in terms of still another type 

of Ch-H polynomials as 

co 

P (x;!) = I l/kl 

k=O 

(A. 53) 

where A = R-l as before. The '}{._(A) are the generalized Ch-H poly-
m1 •• ·~ 

nomials, 
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where ~(x1 , ... ,xn) and yi have been defined previously. 

Equations (A.51) and A.53) differ in an advantageous manner from 

(A.52) in that the number of arguments of the functions S and H 
k w1 ••• ws 

does not change (remains equal to s) when one increases the number n of 

the time instants which are selected. 

We have examined more than one way of representation for the multi-

dimensional density function. Attention has been mainly directed towards 

a form suitable for machine calculations. We have examined three types 

of Ch-H polynomials which could be easily related to eacp other. The 

last type is a general way of writing the Ch-H polynomials from which 

the other two forms can be obtained. To illustrate, consider the first 

few orders of the generalized polynomials 

i = 1,2, ••• , n 

i,j = 1,2, ••• , n 

Applying these expressions to a two-dimensional vector {y1 ,y2} , it is 

easily shown by permutation of the subscripts that 
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No matter how convenient any of the above forms is for the compu-

tation of the Ch-H polynomials none of them is well suited for use in 

other operations due to the dependence on the correlation coefficients 

involved in the polynomials. We also note that all the expansions are 

orthogonal expansions which must be reordered to form the corresponding 

Edgeworth asymptotic expansions. To make the above expansions suitable 

for other operations we expand p0 ~) in terms of p~(x) in the same way 

as with random vectors. To illustrate, consider relation (A.43). 

Using the expansi.on for p (x) we get o-

p~) ... p*~) 
0 

co 

I 
k =O 

m 
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li are found from combinations of ki as discussed previously. To form 

the Edgeworth series we reorder the terms as usual to get 

p(x) = 

co 

I p*(x) o-
k =O 1 

HR. (x0 /cr ) + n n n 

m1 m·. 

13 3 ( tl •• • 'tn n) 

ml! • • • m I n 

HR. +m (x~/cr) 
1 1 

co 

co kl k 

L m 
0 pl Pm HR. (x/cr1) 

k1 I ••• k I 1 
k =O m m 

I 1 

ml+ ••• +mn =3 
0'3 

co 

~ 
k =O 
1 

co 

L 
k =O 

m 

co k k 

L . 1 m 
Pl ···Pm 

kl! • • • k I k =O m m 

kl. km 
pl.• •• pm H ( ) R. +m • • •• 
k1 ! ... km! 1 1 

eoe+oe11} 

ml+ ••• +mn =3 

pl+.· .+pn =3 

Evidently, an expansion can also be obtained using the notation in 

(A.42). The extension to the case of a random process is now clear. 
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Probability Density Function of A Vector 

of Random Processes 

The joint probability density function for several random processes 

is treated in just the same way. Using notation compatible with the 

ordinary Ch-H polynomials, consider two random processes x(t) and y(t). 

Associated with them is the vector!!!. ~t) and the matrix Rx(t
0
,t2) for x; 

~ y(t), Ry(ti_,t2) for y(t} and Rxy(t1 ,tz) for the correlation between x 

and y. The mixed quasi-moment functions are 

S ( ) ( ) ( t 1 , • • • , t ; t 11 , o o • , t I ) p x, q y p q 
p,q = 0,1,2, ••• 

The characteristic function of the multidimensional distribution of 

the quantities x(t1), ... , x(tp); y(ti), ••. , y(t~) is written in terms 

of the quasi-moment functions as follows 

f(z1 , ... ,z ;w , ••. ,w ;t1 ~ ... ,t ;t1', ... ,t') p p q p q 

•exp li i t j=l 

m (t.)z. + i 
x J J 

q 

I 
j=l 

m (t'.)w. + 
y J J 

p p,q 

i 2/2 ~ Rx(tj ,tk)zjzk + i 2 L Rxy(tj ,tk)zjwk 
j,k=l j,k=l 

Is (r) '(s) 
u,µ x Y 



To this characteristic function corresponds the probability density 

where, 

(det A)~ 
P ~,z;.;.,..E.' > = ~---..-.-.---...,...._ 

(21T) (p+q)/2 

2 2 
r,s µ1+ ••• +µp=r 

u1+ ••• +uq =s 

A = {a } = ij 

{R(t,t)} x 0. y 

{R (t' t ) } yx a' y 

i>p 

-~L 
i,j e 

{R (t t')} -l 
xy a' a 

{R (t' t')} 
Y a' P 

i,j .. 1, ••. ,p+q 

o.,y=l, ••• ,p 

a,o = 1, ... ,q 

In terms of the generalized Ch-H polynomials the expression for the 

density function becomes 

p 0 q 0 
-~ L x Q -~~ y T 

(det A)~ j=l j j ~ j j 
e 

(21T)(q+p)/2 
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1 
kl l a (k)x, (.fl.)y (!_, t') . 

k,.fl.=O 



where, 

Q = i i 
j=l 

q 

~ 
µ=l 

0 
a+ . x. + p µ,J J 
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I 
0=1 

Again, the formulas must be simplified by expanding the multidi-

mensional normal density function and must be rearranged to form the 

Edgeworth series. The working details of these operations are now clear. 

The extension to more than two random processes is also obvious. 

SUI1D11ary and Conclusions 

In this appendix the problem of analytic approximate representation 

of the probability density function has been treated in some detail. 

Emphasis has been on the series type of representation. This type of 

representation is quite general especially as extended to the multi-

dimensional functions. The Edgeworth series form of this type of repre-

sentation has been found quite satisfactory for all practical purposes. 

A potential application of the representation is in evaluating mathe-

matical expectation operations of nonlinear functions where the exact 

density function is unknown. Another application which is recommended 

for further investigation is in connection with nonlinear estimation and 

control problems. A representation like this may be employed for the 
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density function in the Bayesian approach to the estimation problem. 

It is known that the Bayesian approach is quite powerful. The only dif­

ficulty is a proper characterization of the density function to which 

this type of ~epresentation may prove a satisfactory solution. The same 

remark applies also to the optimal nonlinear control problem. Of course, 

the representation is approximate. So the results of its application to 

optimal problems will not be the optimal results. However, these near­

optimal results may be brought as close as desired to the optimal. 

Finally, the method may also be used in connection with the function­

al approach to nonlinear systems analysis as a first step towards the 

development of that approach. Actually, a suitable representation of 

the desnity function has always been a main difficulty in all three main 

methods of nonlinear analysis known today, namely, the functional theory 

of Pugachev and Wiener, the Markov theory and the linearization theory. 

The feasibility of applying the representation described above to these 

basic methods of analysis is recounnended for further investigation. 
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